hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
97d3d479f4d7bb607ee11ef3af9de4bcb2b193c7
12,781
py
Python
tests/helpers/test_file.py
Centaurioun/PyFunceble
59b809f3322118f7824195752c6015220738d4a0
[ "Apache-2.0" ]
null
null
null
tests/helpers/test_file.py
Centaurioun/PyFunceble
59b809f3322118f7824195752c6015220738d4a0
[ "Apache-2.0" ]
null
null
null
tests/helpers/test_file.py
Centaurioun/PyFunceble
59b809f3322118f7824195752c6015220738d4a0
[ "Apache-2.0" ]
null
null
null
""" The tool to check the availability or syntax of domain, IP or URL. :: ██████╗ ██╗ ██╗███████╗██╗ ██╗███╗ ██╗ ██████╗███████╗██████╗ ██╗ ███████╗ ██╔══██╗╚██╗ ██╔╝██╔════╝██║ ██║████╗ ██║██╔════╝██╔════╝██╔══██╗██║ ██╔════╝ ██████╔╝ ╚████╔╝ █████╗ ██║ ██║██╔██╗ ██║██║ █████╗ ██████╔╝██║ █████╗ ██╔═══╝ ╚██╔╝ ██╔══╝ ██║ ██║██║╚██╗██║██║ ██╔══╝ ██╔══██╗██║ ██╔══╝ ██║ ██║ ██║ ╚██████╔╝██║ ╚████║╚██████╗███████╗██████╔╝███████╗███████╗ ╚═╝ ╚═╝ ╚═╝ ╚═════╝ ╚═╝ ╚═══╝ ╚═════╝╚══════╝╚═════╝ ╚══════╝╚══════╝ Tests of the file helper. Author: Nissar Chababy, @funilrys, contactTATAfunilrysTODTODcom Special thanks: https://pyfunceble.github.io/special-thanks.html Contributors: https://pyfunceble.github.io/contributors.html Project link: https://github.com/funilrys/PyFunceble Project documentation: https://pyfunceble.readthedocs.io/en/dev/ Project homepage: https://pyfunceble.github.io/ License: :: Copyright 2017, 2018, 2019, 2020, 2021, 2021 Nissar Chababy Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import secrets import tempfile import unittest from PyFunceble.helpers.file import FileHelper from PyFunceble.utils.platform import PlatformUtility class TestFileHelper(unittest.TestCase): """ Tests of the file helpers. """ def test_set_path_return(self) -> None: """ Tests the response from the method which let us set the path to work with. """ given = tempfile.NamedTemporaryFile() file_helper = FileHelper() actual = file_helper.set_path(given.name) self.assertIsInstance(actual, FileHelper) def test_set_path(self) -> None: """ Tests the method which let us set the path to work with. """ given = tempfile.NamedTemporaryFile() expected = given.name file_helper = FileHelper() file_helper.set_path(given.name) actual = file_helper.path self.assertEqual(expected, actual) file_helper = FileHelper(given.name) actual = file_helper.path self.assertEqual(expected, actual) def test_set_path_not_str(self) -> None: """ Tests the method which let us set the path to work with for the case that it's not a string. """ given = ["Hello", "World"] file_helper = FileHelper() self.assertRaises(TypeError, lambda: file_helper.set_path(given)) def test_join_path(self) -> None: """ Tests the method which let us join paths. """ given = "/hello/world" if PlatformUtility.is_windows(): expected = "/hello/world\\hello\\world" else: expected = "/hello/world/hello/world" actual = FileHelper(given).join_path("hello", "world") self.assertEqual(expected, actual) def test_exists(self) -> None: """ Tests the method which let us check if the given file exists. """ file_helper = FileHelper(tempfile.gettempdir()) file_helper.set_path(file_helper.join_path(secrets.token_hex(8))) expected = False actual = file_helper.exists() self.assertEqual(expected, actual) with open(file_helper.path, "w") as file_stream: file_stream.write("Hello, World!") expected = True actual = file_helper.exists() self.assertEqual(expected, actual) os.remove(file_helper.path) expected = False actual = file_helper.exists() self.assertEqual(expected, actual) def test_get_size(self) -> None: """ Tests the method which let us get the size of a file. """ file_helper = FileHelper(tempfile.gettempdir()) file_helper.set_path(file_helper.join_path(secrets.token_hex(8))) expected = False actual = file_helper.exists() self.assertEqual(expected, actual) with open(file_helper.path, "w") as file_stream: file_stream.write("Hello, World!") expected = True actual = file_helper.exists() self.assertEqual(expected, actual) expected = 13 actual = file_helper.get_size() self.assertEqual(expected, actual) os.remove(file_helper.path) def test_is_empty(self) -> None: """ Tests the method which let us check if a file is empty. """ file_helper = FileHelper(tempfile.gettempdir()) file_helper.set_path(file_helper.join_path(secrets.token_hex(8))) expected = False actual = file_helper.exists() self.assertEqual(expected, actual) with open(file_helper.path, "w") as file_stream: file_stream.write("") expected = True actual = file_helper.is_empty() self.assertEqual(expected, actual) with open(file_helper.path, "w") as file_stream: file_stream.write("Hello, World!") expected = False actual = file_helper.is_empty() self.assertEqual(expected, actual) os.remove(file_helper.path) def test_delete(self) -> None: """ Tests the method which let us delete a file. """ file_helper = FileHelper(tempfile.gettempdir()) file_helper.set_path(file_helper.join_path(secrets.token_hex(8))) expected = False actual = file_helper.exists() self.assertEqual(expected, actual) with open(file_helper.path, "w") as file_stream: file_stream.write("") expected = True actual = file_helper.exists() self.assertEqual(expected, actual) file_helper.delete() expected = False actual = file_helper.exists() self.assertEqual(expected, actual) def test_write(self) -> None: """ Tests the method which let us write a file. """ given = tempfile.NamedTemporaryFile(delete=False) file_helper = FileHelper(given.name) file_helper.write("Hello, World!") given.seek(0) expected = b"Hello, World!" actual = given.read() self.assertEqual(expected, actual) file_helper.write("Hello, this is Funilrys!") given.seek(0) expected = b"Hello, World!Hello, this is Funilrys!" actual = given.read() self.assertEqual(expected, actual) file_helper.write("Hello, World!", overwrite=True) given.seek(0) expected = b"Hello, World!" actual = given.read() self.assertEqual(expected, actual) def test_read(self) -> None: """ Tests the method which let us read a file. """ given = tempfile.NamedTemporaryFile(delete=False) file_helper = FileHelper(given.name) file_helper.write("Hello, World!") given.seek(0) expected = "Hello, World!" actual = file_helper.read() self.assertEqual(expected, actual) def test_read_file_does_not_exists(self) -> None: """ Tests the method which let us read a file for the case that the given file does not exists. """ file_helper = FileHelper(tempfile.gettempdir()) file_helper.set_path(file_helper.join_path(secrets.token_hex(8))) expected = False actual = file_helper.exists() self.assertEqual(expected, actual) expected = None actual = file_helper.read() self.assertEqual(expected, actual) def test_read_bytes(self) -> None: """ Tests the method which let us read (bytes) a file. """ given = tempfile.NamedTemporaryFile(delete=False) file_helper = FileHelper(given.name) file_helper.write("Hello, World!") given.seek(0) expected = b"Hello, World!" actual = file_helper.read_bytes() self.assertEqual(expected, actual) def test_read_bytes_file_does_not_exists(self) -> None: """ Tests the method which let us read (bytes) a file for the case that the given file does not exists. """ file_helper = FileHelper(tempfile.gettempdir()) file_helper.set_path(file_helper.join_path(secrets.token_hex(8))) expected = False actual = file_helper.exists() self.assertEqual(expected, actual) expected = None actual = file_helper.read_bytes() self.assertEqual(expected, actual) def test_open(self) -> None: """ Tests the method which let us open the given file as we want. """ file_helper = FileHelper(tempfile.gettempdir()) file_helper.set_path(file_helper.join_path(secrets.token_hex(8))) expected = False actual = file_helper.exists() self.assertEqual(expected, actual) with file_helper.open("w") as file_stream: file_stream.write("Hello, World!") expected = True actual = file_helper.exists() self.assertEqual(expected, actual) expected = "Hello, World!" actual = file_helper.read() self.assertEqual(expected, actual) def test_copy(self) -> None: """ Tests the method which let us copy a file to another place. """ file_helper = FileHelper(tempfile.gettempdir()) file_helper.set_path(file_helper.join_path(secrets.token_hex(8))) copy_file_helper = FileHelper(tempfile.gettempdir()) copy_file_helper.set_path(copy_file_helper.join_path(secrets.token_hex(8))) expected = False actual = file_helper.exists() actual_copy = copy_file_helper.exists() self.assertEqual(expected, actual) self.assertEqual(expected, actual_copy) file_helper.write("Hello, World!") expected = True actual = file_helper.exists() self.assertEqual(expected, actual) expected = False actual_copy = copy_file_helper.exists() self.assertEqual(expected, actual_copy) file_helper.copy(copy_file_helper.path) expected = True actual_copy = copy_file_helper.exists() self.assertEqual(expected, actual_copy) expected = "Hello, World!" actual = copy_file_helper.read() self.assertEqual(expected, actual) expected = True actual = file_helper.exists() actual_copy = copy_file_helper.exists() self.assertEqual(expected, actual) self.assertEqual(expected, actual_copy) def test_move(self) -> None: """ Tests of the method which let us move a file to another location. """ file_helper = FileHelper(tempfile.gettempdir()) file_helper.set_path(file_helper.join_path(secrets.token_hex(8))) destination_file_helper = FileHelper(tempfile.gettempdir()) destination_file_helper.set_path( destination_file_helper.join_path(secrets.token_hex(8)) ) expected = False actual = file_helper.exists() actual_destination = destination_file_helper.exists() self.assertEqual(expected, actual) self.assertEqual(expected, actual_destination) file_helper.write("Hello, World!") expected = True actual = file_helper.exists() self.assertEqual(expected, actual) expected = False actual_destination = destination_file_helper.exists() self.assertEqual(expected, actual_destination) file_helper.move(destination_file_helper.path) expected = True actual_destination = destination_file_helper.exists() self.assertEqual(expected, actual_destination) expected = "Hello, World!" actual = destination_file_helper.read() self.assertEqual(expected, actual) expected = False actual = file_helper.exists() self.assertEqual(expected, actual) expected = True actual_destination = destination_file_helper.exists() self.assertEqual(expected, actual_destination) if __name__ == "__main__": unittest.main()
26.627083
88
0.606838
10,905
0.804026
0
0
0
0
0
0
4,333
0.319472
97d574a37c2dcf1ccbae57ff4f4d838393dd694f
1,938
py
Python
malaya_speech/supervised/unet.py
ishine/malaya-speech
fd34afc7107af1656dff4b3201fa51dda54fde18
[ "MIT" ]
111
2020-08-31T04:58:54.000Z
2022-03-29T15:44:18.000Z
malaya_speech/supervised/unet.py
ishine/malaya-speech
fd34afc7107af1656dff4b3201fa51dda54fde18
[ "MIT" ]
14
2020-12-16T07:27:22.000Z
2022-03-15T17:39:01.000Z
malaya_speech/supervised/unet.py
ishine/malaya-speech
fd34afc7107af1656dff4b3201fa51dda54fde18
[ "MIT" ]
29
2021-02-09T08:57:15.000Z
2022-03-12T14:09:19.000Z
from malaya_speech.utils import ( check_file, load_graph, generate_session, nodes_session, ) from malaya_speech.model.tf import UNET, UNETSTFT, UNET1D def load(model, module, quantized=False, **kwargs): path = check_file( file=model, module=module, keys={'model': 'model.pb'}, quantized=quantized, **kwargs, ) g = load_graph(path['model'], **kwargs) inputs = ['Placeholder'] outputs = ['logits'] input_nodes, output_nodes = nodes_session(g, inputs, outputs) return UNET( input_nodes=input_nodes, output_nodes=output_nodes, sess=generate_session(graph=g, **kwargs), model=model, name=module, ) def load_stft(model, module, instruments, quantized=False, **kwargs): path = check_file( file=model, module=module, keys={'model': 'model.pb'}, quantized=quantized, **kwargs, ) g = load_graph(path['model'], **kwargs) inputs = ['Placeholder'] outputs = [f'logits_{i}' for i in range(len(instruments))] input_nodes, output_nodes = nodes_session(g, inputs, outputs) return UNETSTFT( input_nodes=input_nodes, output_nodes=output_nodes, instruments=instruments, sess=generate_session(graph=g, **kwargs), model=model, name=module, ) def load_1d(model, module, quantized=False, **kwargs): path = check_file( file=model, module=module, keys={'model': 'model.pb'}, quantized=quantized, **kwargs, ) g = load_graph(path['model'], **kwargs) inputs = ['Placeholder'] outputs = ['logits'] input_nodes, output_nodes = nodes_session(g, inputs, outputs) return UNET1D( input_nodes=input_nodes, output_nodes=output_nodes, sess=generate_session(graph=g, **kwargs), model=model, name=module, )
25.168831
69
0.609391
0
0
0
0
0
0
0
0
140
0.072239
97d6b1b1207de186f313949afee6fd694df16691
4,618
py
Python
scripts/GUI_restart.py
zainamir-98/bioradar
b826ed869a58778a321153dae3c93f17f40d2f7a
[ "MIT" ]
null
null
null
scripts/GUI_restart.py
zainamir-98/bioradar
b826ed869a58778a321153dae3c93f17f40d2f7a
[ "MIT" ]
null
null
null
scripts/GUI_restart.py
zainamir-98/bioradar
b826ed869a58778a321153dae3c93f17f40d2f7a
[ "MIT" ]
null
null
null
# Use this command if numpy import fails: sudo apt-get install python-dev libatlas-base-dev # If this doesn't work, uninstall both numpy and scipy. Thonny will keep an older default version of numpy. # Install an older version of scipy that corresponds to the correct version of numpy. from guizero import App, PushButton, Slider, Text, ButtonGroup, Picture, Box, CheckBox import sys import time import subprocess import os DEBUG_MODE = False #CONT_REALTIME_MONITORING = False def gui_open_rr_hr(): app.destroy() #os.system("cmd /c py final.py -u") process = subprocess.run('python3 scripts/run_rr_hr.py -u', shell=True) def gui_open_hrv_hr(): app.destroy() process = subprocess.run('python3 scripts/run_hrv_hr.py -u', shell=True) def gui_go_to_connect(): print("Connecting...") start_menu_box.hide() connect_menu_box.show() start_footer_box.hide() other_footer_box.show() connect_menu_text2.hide() # Connection function connect_menu_text.after(1000, gui_check_connection) def gui_go_to_manual(): start_menu_box.hide() manual_menu_box.show() start_footer_box.hide() other_footer_box.show() def gui_check_connection(): connect_menu_text.value = "Connected!" connect_menu_text2.show() def gui_go_back_to_menu(): connect_menu_box.hide() manual_menu_box.hide() if connect_menu_text.value == "Connected!": connect_menu_text.value = "Connecting to MyVitals..." start_menu_box.show() other_footer_box.hide() start_footer_box.show() app = App(title="BioRadar (Prototype)", width=480, height=320, bg="#141414") if not DEBUG_MODE: app.full_screen = True start_menu_box = Box(app, width="fill") pad_1 = Box(start_menu_box, width="fill", height=20) box_1 = Box(start_menu_box, width="fill") pad_1_2 = Box(box_1, width=140, height=1, align="left") picture = Picture(box_1, image="images/brlogo.png", width=51, height=40, align="left") # W:H = 1.277 pad_1_2 = Box(box_1, width=10, height=1, align="left") message = Text(box_1, text="BioRadar", color="#FFFFFF", size=20, align="left") pad_2 = Box(start_menu_box, width="fill", height=40) message = Text(start_menu_box, text="Select how you want to monitor your vitals.", color="#FFFFFF", size=15) pad_3 = Box(start_menu_box, width="fill", height=18) button1 = PushButton(start_menu_box, text="Online mode", command=gui_go_to_connect) button1.bg = "#6ED3A9" pad_4 = Box(start_menu_box, width="fill", height=10) button2 = PushButton(start_menu_box, text="Manual mode", command=gui_go_to_manual) button2.bg = "#6ED3A9" start_menu_box.hide() connect_menu_box = Box(app, width="fill") pad_1 = Box(connect_menu_box, width="fill", height=100) connect_menu_text = Text(connect_menu_box, text="Connecting to MyVitals...", color="#FFFFFF", size=20) pad_2 = Box(connect_menu_box, width="fill", height=30) connect_menu_text2 = Text(connect_menu_box, text="Waiting for online commands...", color="#FFFFFF", size=16) connect_menu_box.hide() # Manual mode manual_menu_box = Box(app, width="fill") pad = Box(manual_menu_box, width="fill", height=20) manual_menu_text = Text(manual_menu_box, text="Manual Mode", color="#FFFFFF", size=20) pad = Box(manual_menu_box, width="fill", height=50) button_box = Box(manual_menu_box, width=460, height=90) button1 = PushButton(button_box, text="Respiration Rate\nHeart Rate", command=gui_open_rr_hr, align="left") pad = Box(button_box, width=10, height=90, align="left") button2 = PushButton(button_box, text="Heart Rate Variability\nHeart Rate*", command=gui_open_hrv_hr, align="right") button1.text_size = 16 button2.text_size = 16 button1.bg = "#6ED3A9" button2.bg = "#6ED3A9" pad = Box(manual_menu_box, width="fill", height=30) pad = Box(manual_menu_box, width="fill", height=6) txt = Text(manual_menu_box, text="* You will need to hold your breath for 10 seconds for\nheart rate variability measurements.", color="#C8C8C8", size=11) # Footers start_footer_box = Box(app, width="fill", align="bottom") fyp_text = Text(start_footer_box, text=" © 2021 Final-Year Project, SEECS, NUST", color="#C8C8C8", size=11, align="left") exit_button = PushButton(start_footer_box, text="Exit", align="right", command=exit) exit_button.bg = "#6ED3A9" start_footer_box.hide() other_footer_box = Box(app, width="fill", align="bottom") exit_button = PushButton(other_footer_box, text="Exit", align="right", command=exit) exit_button.bg = "#6ED3A9" back_button = PushButton(other_footer_box, text="Back", align="right", command=gui_go_back_to_menu) back_button.bg = "#6ED3A9" app.display()
39.470085
154
0.731919
0
0
0
0
0
0
0
0
1,274
0.275817
97da085bfcfa86877a3a5eae743b983ac785a5f4
1,182
py
Python
pyFileFixity/lib/distance/distance/_lcsubstrings.py
hadi-f90/pyFileFixity
2cb3dd6225a6b062a98fa2d61c4a0a29d8010428
[ "MIT" ]
null
null
null
pyFileFixity/lib/distance/distance/_lcsubstrings.py
hadi-f90/pyFileFixity
2cb3dd6225a6b062a98fa2d61c4a0a29d8010428
[ "MIT" ]
1
2022-01-19T13:46:55.000Z
2022-01-19T13:46:55.000Z
pyFileFixity/lib/distance/distance/_lcsubstrings.py
hadi-f90/pyFileFixity
2cb3dd6225a6b062a98fa2d61c4a0a29d8010428
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from array import array def lcsubstrings(seq1, seq2, positions=False): """Find the longest common substring(s) in the sequences `seq1` and `seq2`. If positions evaluates to `True` only their positions will be returned, together with their length, in a tuple: (length, [(start pos in seq1, start pos in seq2)..]) Otherwise, the substrings themselves will be returned, in a set. Example: >>> lcsubstrings("sedentar", "dentist") {'dent'} >>> lcsubstrings("sedentar", "dentist", positions=True) (4, [(2, 0)]) """ L1, L2 = len(seq1), len(seq2) ms = [] mlen = last = 0 if L1 < L2: seq1, seq2 = seq2, seq1 L1, L2 = L2, L1 column = array('L', range(L2)) for i in range(L1): for j in range(L2): old = column[j] if seq1[i] == seq2[j]: if i == 0 or j == 0: column[j] = 1 else: column[j] = last + 1 if column[j] > mlen: mlen = column[j] ms = [(i, j)] elif column[j] == mlen: ms.append((i, j)) else: column[j] = 0 last = old if positions: return (mlen, tuple((i - mlen + 1, j - mlen + 1) for i, j in ms if ms)) return {seq1[i - mlen + 1:i + 1] for i, _ in ms if ms}
22.730769
76
0.583756
0
0
0
0
0
0
0
0
488
0.41286
97db509debe2b8503920910c68f09fde1efdca62
6,072
py
Python
colour/models/rgb/transfer_functions/tests/test_panasonic_vlog.py
JGoldstone/colour
6829b363d5f0682bff0f4826995e7ceac189ff28
[ "BSD-3-Clause" ]
null
null
null
colour/models/rgb/transfer_functions/tests/test_panasonic_vlog.py
JGoldstone/colour
6829b363d5f0682bff0f4826995e7ceac189ff28
[ "BSD-3-Clause" ]
null
null
null
colour/models/rgb/transfer_functions/tests/test_panasonic_vlog.py
JGoldstone/colour
6829b363d5f0682bff0f4826995e7ceac189ff28
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ Defines the unit tests for the :mod:`colour.models.rgb.transfer_functions.\ panasonic_vlog` module. """ import numpy as np import unittest from colour.models.rgb.transfer_functions import ( log_encoding_VLog, log_decoding_VLog, ) from colour.utilities import domain_range_scale, ignore_numpy_errors __author__ = 'Colour Developers' __copyright__ = 'Copyright (C) 2013-2021 - Colour Developers' __license__ = 'New BSD License - https://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'Colour Developers' __email__ = 'colour-developers@colour-science.org' __status__ = 'Production' __all__ = [ 'TestLogEncoding_VLog', 'TestLogDecoding_VLog', ] class TestLogEncoding_VLog(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.panasonic_vlog.\ log_encoding_VLog` definition unit tests methods. """ def test_log_encoding_VLog(self): """ Tests :func:`colour.models.rgb.transfer_functions.panasonic_vlog.\ log_encoding_VLog` definition. """ self.assertAlmostEqual(log_encoding_VLog(0.0), 0.125, places=7) self.assertAlmostEqual( log_encoding_VLog(0.18), 0.423311448760136, places=7) self.assertAlmostEqual( log_encoding_VLog(0.18, 12), 0.423311448760136, places=7) self.assertAlmostEqual( log_encoding_VLog(0.18, 10, False), 0.421287228403675, places=7) self.assertAlmostEqual( log_encoding_VLog(0.18, 10, False, False), 0.409009628526078, places=7) self.assertAlmostEqual( log_encoding_VLog(1.0), 0.599117700158146, places=7) def test_n_dimensional_log_encoding_VLog(self): """ Tests :func:`colour.models.rgb.transfer_functions.panasonic_vlog.\ log_encoding_VLog` definition n-dimensional arrays support. """ L_in = 0.18 V_out = log_encoding_VLog(L_in) L_in = np.tile(L_in, 6) V_out = np.tile(V_out, 6) np.testing.assert_almost_equal( log_encoding_VLog(L_in), V_out, decimal=7) L_in = np.reshape(L_in, (2, 3)) V_out = np.reshape(V_out, (2, 3)) np.testing.assert_almost_equal( log_encoding_VLog(L_in), V_out, decimal=7) L_in = np.reshape(L_in, (2, 3, 1)) V_out = np.reshape(V_out, (2, 3, 1)) np.testing.assert_almost_equal( log_encoding_VLog(L_in), V_out, decimal=7) def test_domain_range_scale_log_encoding_VLog(self): """ Tests :func:`colour.models.rgb.transfer_functions.panasonic_vlog.\ log_encoding_VLog` definition domain and range scale support. """ L_in = 0.18 V_out = log_encoding_VLog(L_in) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( log_encoding_VLog(L_in * factor), V_out * factor, decimal=7) @ignore_numpy_errors def test_nan_log_encoding_VLog(self): """ Tests :func:`colour.models.rgb.transfer_functions.panasonic_vlog.\ log_encoding_VLog` definition nan support. """ log_encoding_VLog(np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestLogDecoding_VLog(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.panasonic_vlog.\ log_decoding_VLog` definition unit tests methods. """ def test_log_decoding_VLog(self): """ Tests :func:`colour.models.rgb.transfer_functions.panasonic_vlog.\ log_decoding_VLog` definition. """ self.assertAlmostEqual(log_decoding_VLog(0.125), 0.0, places=7) self.assertAlmostEqual( log_decoding_VLog(0.423311448760136), 0.18, places=7) self.assertAlmostEqual( log_decoding_VLog(0.423311448760136, 12), 0.18, places=7) self.assertAlmostEqual( log_decoding_VLog(0.421287228403675, 10, False), 0.18, places=7) self.assertAlmostEqual( log_decoding_VLog(0.409009628526078, 10, False, False), 0.18, places=7) self.assertAlmostEqual( log_decoding_VLog(0.599117700158146), 1.0, places=7) def test_n_dimensional_log_decoding_VLog(self): """ Tests :func:`colour.models.rgb.transfer_functions.panasonic_vlog.\ log_decoding_VLog` definition n-dimensional arrays support. """ V_out = 0.423311448760136 L_in = log_decoding_VLog(V_out) V_out = np.tile(V_out, 6) L_in = np.tile(L_in, 6) np.testing.assert_almost_equal( log_decoding_VLog(V_out), L_in, decimal=7) V_out = np.reshape(V_out, (2, 3)) L_in = np.reshape(L_in, (2, 3)) np.testing.assert_almost_equal( log_decoding_VLog(V_out), L_in, decimal=7) V_out = np.reshape(V_out, (2, 3, 1)) L_in = np.reshape(L_in, (2, 3, 1)) np.testing.assert_almost_equal( log_decoding_VLog(V_out), L_in, decimal=7) def test_domain_range_scale_log_decoding_VLog(self): """ Tests :func:`colour.models.rgb.transfer_functions.panasonic_vlog.\ log_decoding_VLog` definition domain and range scale support. """ V_out = 0.423311448760136 L_in = log_decoding_VLog(V_out) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( log_decoding_VLog(V_out * factor), L_in * factor, decimal=7) @ignore_numpy_errors def test_nan_log_decoding_VLog(self): """ Tests :func:`colour.models.rgb.transfer_functions.panasonic_vlog.\ log_decoding_VLog` definition nan support. """ log_decoding_VLog(np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) if __name__ == '__main__': unittest.main()
31.138462
78
0.640316
5,320
0.876153
0
0
568
0.093544
0
0
1,783
0.293643
97db587e34c2af72ba15568d5a03261d228ebb29
3,546
py
Python
test/IECoreRI/All.py
gcodebackups/cortex-vfx
72fa6c6eb3327fce4faf01361c8fcc2e1e892672
[ "BSD-3-Clause" ]
5
2016-07-26T06:09:28.000Z
2022-03-07T03:58:51.000Z
test/IECoreRI/All.py
turbosun/cortex
4bdc01a692652cd562f3bfa85f3dae99d07c0b15
[ "BSD-3-Clause" ]
null
null
null
test/IECoreRI/All.py
turbosun/cortex
4bdc01a692652cd562f3bfa85f3dae99d07c0b15
[ "BSD-3-Clause" ]
3
2015-03-25T18:45:24.000Z
2020-02-15T15:37:18.000Z
########################################################################## # # Copyright (c) 2007-2013, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of Image Engine Design nor the names of any # other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import sys import unittest import IECore import IECoreRI from SLOReader import * from Renderer import * from Instancing import * from PTCParticleReader import * from PTCParticleWriter import * from ArchiveRecord import * from DoubleSided import * from Orientation import * from MultipleContextsTest import * from Camera import * from CurvesTest import * from TextureOrientationTest import * from ArrayPrimVarTest import * from CoordinateSystemTest import * from IlluminateTest import * from SubsurfaceTest import * from PatchMeshTest import * from RIBWriterTest import * from ParameterisedProcedural import * from MotionTest import MotionTest from PythonProceduralTest import PythonProceduralTest from DetailTest import DetailTest from ProceduralThreadingTest import ProceduralThreadingTest from StringArrayParameterTest import StringArrayParameterTest from CoshaderTest import CoshaderTest from GroupTest import GroupTest from DspyTest import DspyTest from RerenderingTest import RerenderingTest if hasattr( IECoreRI, "SXRenderer" ) : from SXRendererTest import SXRendererTest if hasattr( IECoreRI, "GXEvaluator" ) : from GXEvaluatorTest import GXEvaluatorTest if hasattr( IECoreRI, "DTEXDeepImageReader" ) : from DTEXDeepImageReaderTest import TestDTEXDeepImageReader from DTEXDeepImageWriterTest import TestDTEXDeepImageWriter if hasattr( IECoreRI, "SHWDeepImageReader" ) : from SHWDeepImageReaderTest import TestSHWDeepImageReader from SHWDeepImageWriterTest import TestSHWDeepImageWriter if IECore.withFreeType() : from TextTest import * unittest.TestProgram( testRunner = unittest.TextTestRunner( stream = IECore.CompoundStream( [ sys.stderr, open( "test/IECoreRI/resultsPython.txt", "w" ) ] ), verbosity = 2 ) )
36.183673
76
0.758037
0
0
0
0
0
0
0
0
1,857
0.523689
97dd0689130d6bd5ed6a18fd645d0dcff177ddd3
2,164
py
Python
molecool/tests/test_measure.py
pavankum/molecool
0aa4fe5423aa91cb59fb603e3293d89741cb87a6
[ "MIT" ]
null
null
null
molecool/tests/test_measure.py
pavankum/molecool
0aa4fe5423aa91cb59fb603e3293d89741cb87a6
[ "MIT" ]
null
null
null
molecool/tests/test_measure.py
pavankum/molecool
0aa4fe5423aa91cb59fb603e3293d89741cb87a6
[ "MIT" ]
null
null
null
""" Unit tests for measure """ # Import package, test suite, and other packages as needed import numpy as np import molecool import pytest def test_calculate_distance(): """Sample test to check calculate_distance is working """ r1 = np.array([1, 0, 0]) r2 = np.array([3, 0, 0]) expected_distance = 2 calculated_distance = molecool.calculate_distance(r1, r2) assert calculated_distance == expected_distance def test_calculate_distance_typeerror(): r1 = [1, 0, 0] r2 = [2, 0, 0] with pytest.raises(TypeError): calculated_distance = molecool.calculate_distance(r1, r2) def test_calculate_angle(): """Sample test to check calculate_anlge is working""" r1 = np.array([1, 0, 0]) r2 = np.array([0, 0, 0]) r3 = np.array([0, 1, 0]) expected_angle = 90 calculated_angle = molecool.calculate_angle(r1, r2, r3, degrees=True) assert calculated_angle == expected_angle @pytest.mark.parametrize("p1, p2, p3, expected_angle", [ (np.array([np.sqrt(2)/2, np.sqrt(2)/2, 0]), np.array([0, 0, 0]), np.array([1, 0 , 0]), 45), (np.array([0, 0, -1]), np.array([0, 1, 0]), np.array([1, 0, 0]), 60), ]) def test_calculate_angle_many(p1, p2, p3, expected_angle): calculated_angle = molecool.calculate_angle(p1, p2, p3, degrees=True) assert pytest.approx(calculated_angle) == expected_angle def test_molecular_mass(): symbols = ['C', 'H', 'H', 'H', 'H'] calculated_mass = molecool.calculate_molecular_mass(symbols) actual_mass = molecool.atom_data.atomic_weights['C'] + molecool.atom_data.atomic_weights['H'] +\ molecool.atom_data.atomic_weights['H'] + molecool.atom_data.atomic_weights['H'] + molecool.atom_data.atomic_weights['H'] assert actual_mass == calculated_mass def test_center_of_mass(): symbols = np.array(['C', 'H', 'H', 'H', 'H']) coordinates = np.array([[1,1,1], [2.4,1,1], [-0.4, 1, 1], [1, 1, 2.4], [1, 1, -0.4]]) center_of_mass = molecool.calculate_center_of_mass(symbols, coordinates) expected_center = np.array([1,1,1]) assert np.allclose(center_of_mass, expected_center)
30.914286
129
0.652033
0
0
0
0
428
0.197782
0
0
271
0.125231
97dd106f5157a62375f9741a6b7c0edb0c3a8dee
1,240
py
Python
tests/test_util_matrix.py
PeerHerholz/pyrsa
994007086c59de93d86b982f1fff73fe6a8ea929
[ "MIT" ]
4
2015-08-10T18:34:21.000Z
2018-05-15T20:43:15.000Z
tests/test_util_matrix.py
PeerHerholz/pyrsa
994007086c59de93d86b982f1fff73fe6a8ea929
[ "MIT" ]
null
null
null
tests/test_util_matrix.py
PeerHerholz/pyrsa
994007086c59de93d86b982f1fff73fe6a8ea929
[ "MIT" ]
2
2018-03-26T03:02:07.000Z
2021-11-10T21:09:48.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ test_util_matrix @author: jdiedrichsen """ import unittest import pyrsa.util as rsu import numpy as np class TestIndicator(unittest.TestCase): def test_indicator(self): a = np.array(range(0, 5)) a = np.concatenate((a, a)) X = rsu.matrix.indicator(a) n_row, n_col = X.shape self.assertEqual(n_row, 10) self.assertEqual(n_col, 5) self.assertEqual(X[0, 0], 1.0) def test_indicator_pos(self): a = np.array(range(0, 5)) a = np.concatenate((a, a)) X = rsu.matrix.indicator(a, positive=True) n_row, n_col = X.shape self.assertEqual(n_row, 10) self.assertEqual(n_col, 4) self.assertEqual(X[0, 0], 0.0) def test_pairwise(self): a = np.array(range(0, 5)) X = rsu.matrix.pairwise_contrast(a) n_row, n_col = X.shape self.assertEqual(n_row, 10) self.assertEqual(n_col, 5) self.assertEqual(X[0, 0], 1.0) def test_centering(self): X = rsu.matrix.centering(10) n_row, n_col = X.shape self.assertEqual(n_row, 10) self.assertEqual(n_col, 10) if __name__ == '__main__': unittest.main()
24.313725
50
0.592742
1,032
0.832258
0
0
0
0
0
0
102
0.082258
97de7958e0a043ea00870086f0a3a9e86192755c
6,999
py
Python
custom_components/smartthinq_washer/wideq/washer.py
Golab/ha-smartthinq-washer
92e4589a9be143f9b167853e2b5a1607631c1c42
[ "Apache-2.0" ]
1
2020-04-13T14:09:28.000Z
2020-04-13T14:09:28.000Z
custom_components/smartthinq_washer/wideq/washer.py
Golab/ha-smartthinq-washer
92e4589a9be143f9b167853e2b5a1607631c1c42
[ "Apache-2.0" ]
null
null
null
custom_components/smartthinq_washer/wideq/washer.py
Golab/ha-smartthinq-washer
92e4589a9be143f9b167853e2b5a1607631c1c42
[ "Apache-2.0" ]
null
null
null
"""------------------for Washer""" import datetime import enum import time import logging from typing import Optional from .device import ( Device, DeviceStatus, STATE_UNKNOWN, STATE_OPTIONITEM_ON, STATE_OPTIONITEM_OFF, ) from .washer_states import ( STATE_WASHER, STATE_WASHER_ERROR, WASHERSTATES, WASHERWATERTEMPS, WASHERSPINSPEEDS, WASHREFERRORS, WASHERERRORS, ) _LOGGER = logging.getLogger(__name__) class WasherDevice(Device): """A higher-level interface for a washer.""" def poll(self) -> Optional["WasherStatus"]: """Poll the device's current state.""" res = self.device_poll("washerDryer") if not res: return None return WasherStatus(self, res) class WasherStatus(DeviceStatus): """Higher-level information about a washer's current status. :param device: The Device instance. :param data: JSON data from the API. """ def __init__(self, device, data): super().__init__(device, data) self._run_state = None self._pre_state = None self._error = None def _get_run_state(self): if not self._run_state: state = self.lookup_enum(["State", "state"]) self._run_state = self._set_unknown( state=WASHERSTATES.get(state, None), key=state, type="status" ) return self._run_state def _get_pre_state(self): if not self._pre_state: state = self.lookup_enum(["PreState", "preState"]) self._pre_state = self._set_unknown( state=WASHERSTATES.get(state, None), key=state, type="status" ) return self._pre_state def _get_error(self): if not self._error: error = self.lookup_reference(["Error", "error"]) self._error = self._set_unknown( state=WASHREFERRORS.get(error, None), key=error, type="error_status" ) return self._error @property def is_on(self): run_state = self._get_run_state() return run_state != STATE_WASHER.POWER_OFF @property def is_wash_completed(self): run_state = self._get_run_state() pre_state = self._get_pre_state() if run_state == STATE_WASHER.END or ( run_state == STATE_WASHER.POWER_OFF and pre_state == STATE_WASHER.END ): return True return False @property def is_error(self): error = self._get_error() if error != STATE_WASHER_ERROR.NO_ERROR and error != STATE_WASHER_ERROR.OFF: return True return False @property def run_state(self): run_state = self._get_run_state() return run_state.value @property def pre_state(self): pre_state = self._get_pre_state() return pre_state.value @property def error_state(self): error = self._get_error() return error.value # error = self.lookup_reference('Error') # if error == '-': # return 'OFF' # elif error == 'No Error': # return 'NO_ERROR' # else: # return WASHERERROR(error) @property def spin_option_state(self): spinspeed = self.lookup_enum(["SpinSpeed", "spin"]) if spinspeed == "-": return "OFF" return self._set_unknown( state=WASHERSPINSPEEDS.get(spinspeed, None), key=spinspeed, type="spin_option", ).value @property def water_temp_option_state(self): water_temp = self.lookup_enum(["WTemp", "WaterTemp", "temp"]) if water_temp == "-": return "OFF" return self._set_unknown( state=WASHERWATERTEMPS.get(water_temp, None), key=water_temp, type="water_temp", ).value @property def current_course(self): course = self.lookup_reference( ["APCourse", "Course", "courseFL24inchBaseTitan"] ) if course == "-": return "OFF" return course @property def current_smartcourse(self): smartcourse = self.lookup_reference( ["SmartCourse", "smartCourseFL24inchBaseTitan"] ) if smartcourse == "-": return "OFF" else: return smartcourse @property def remaintime_hour(self): if self.is_api_v2: return str(int(self._data.get("remainTimeHour"))) return self._data.get("Remain_Time_H") @property def remaintime_min(self): if self.is_api_v2: return str(int(self._data.get("remainTimeMinute"))) return self._data.get("Remain_Time_M") @property def initialtime_hour(self): if self.is_api_v2: return str(int(self._data.get("initialTimeHour"))) return self._data.get("Initial_Time_H") @property def initialtime_min(self): if self.is_api_v2: return str(int(self._data.get("initialTimeMinute"))) return self._data.get("Initial_Time_M") @property def reservetime_hour(self): if self.is_api_v2: return str(int(self._data.get("reserveTimeHour"))) return self._data.get("Reserve_Time_H") @property def reservetime_min(self): if self.is_api_v2: return str(int(self._data.get("reserveTimeMinute"))) return self._data.get("Reserve_Time_M") @property def creasecare_state(self): if self.is_api_v2: return self.lookup_bit_v2("creaseCare") return self.lookup_bit("Option1", 1) @property def childlock_state(self): if self.is_api_v2: return self.lookup_bit_v2("childLock") return self.lookup_bit("Option2", 7) @property def steam_state(self): if self.is_api_v2: return self.lookup_bit_v2("steam") return self.lookup_bit("Option1", 7) @property def steam_softener_state(self): if self.is_api_v2: return self.lookup_bit_v2("steamSoftener") return self.lookup_bit("Option1", 2) @property def doorlock_state(self): if self.is_api_v2: return self.lookup_bit_v2("doorLock") return self.lookup_bit("Option2", 6) @property def prewash_state(self): if self.is_api_v2: return self.lookup_bit_v2("preWash") return self.lookup_bit("Option1", 6) @property def remotestart_state(self): if self.is_api_v2: return self.lookup_bit_v2("remoteStart") return self.lookup_bit("Option2", 1) @property def turbowash_state(self): if self.is_api_v2: return self.lookup_bit_v2("turboWash") return self.lookup_bit("Option1", 0) @property def tubclean_count(self): if self.is_api_v2: return str(int(self._data.get("TCLCount", -1))) return self._data.get("TCLCount")
27.555118
84
0.603658
6,538
0.934133
0
0
4,631
0.661666
0
0
1,120
0.160023
97df4a022eaff541facbf55fa41d937b36722e9a
375
py
Python
year2020/day17/reader.py
Sebaestschjin/advent-of-code
5fd708efa355483fc0ccddf7548b62682662bcc8
[ "MIT" ]
null
null
null
year2020/day17/reader.py
Sebaestschjin/advent-of-code
5fd708efa355483fc0ccddf7548b62682662bcc8
[ "MIT" ]
null
null
null
year2020/day17/reader.py
Sebaestschjin/advent-of-code
5fd708efa355483fc0ccddf7548b62682662bcc8
[ "MIT" ]
null
null
null
from pathlib import Path def read(filename='in'): file_path = Path(__file__).parent / filename with file_path.open('r') as file: return read_lines(file.readlines()) def read_lines(lines): cells = {} for y in range(len(lines)): line = lines[y].strip() for x in range(len(line)): cells[(x, y)] = line[x] return cells
22.058824
48
0.597333
0
0
0
0
0
0
0
0
7
0.018667
97e1339259b947d5c260266bb5a742c74a8323da
4,644
py
Python
squad/base/argument_parser.py
uwnlp/piqa
e18f2189c93965c94655d5cc943dcecdc2c1ea57
[ "Apache-2.0" ]
89
2018-08-25T07:59:07.000Z
2021-05-04T06:37:27.000Z
squad/base/argument_parser.py
seominjoon/piqa
e18f2189c93965c94655d5cc943dcecdc2c1ea57
[ "Apache-2.0" ]
11
2018-09-28T17:33:27.000Z
2019-11-27T23:34:45.000Z
squad/base/argument_parser.py
uwnlp/piqa
e18f2189c93965c94655d5cc943dcecdc2c1ea57
[ "Apache-2.0" ]
10
2018-09-19T06:48:06.000Z
2020-04-14T20:42:06.000Z
import argparse import os class ArgumentParser(argparse.ArgumentParser): def __init__(self, description='base', **kwargs): super(ArgumentParser, self).__init__(description=description) def add_arguments(self): home = os.path.expanduser('~') self.add_argument('model', type=str) self.add_argument('--mode', type=str, default='train') self.add_argument('--iteration', type=str, default='0') self.add_argument('--pause', type=int, default=0) # ignore this argument. # Data (input) paths self.add_argument('--train_path', type=str, default=os.path.join(home, 'data', 'squad', 'train-v1.1.json'), help='location of the training data') self.add_argument('--test_path', type=str, default=os.path.join(home, 'data', 'squad', 'dev-v1.1.json'), help='location of the test data') # Output paths self.add_argument('--output_dir', type=str, default='/tmp/piqa/squad/', help='Output directory') self.add_argument('--save_dir', type=str, default=None, help='location for saving the model') self.add_argument('--load_dir', type=str, default=None, help='location for loading the model') self.add_argument('--dump_dir', type=str, default=None, help='location for dumping outputs') self.add_argument('--report_path', type=str, default=None, help='location for report') self.add_argument('--pred_path', type=str, default=None, help='location for prediction json file during `test`') self.add_argument('--cache_path', type=str, default=None) self.add_argument('--question_emb_dir', type=str, default=None) self.add_argument('--context_emb_dir', type=str, default=None) # Training arguments self.add_argument('--epochs', type=int, default=20) self.add_argument('--train_steps', type=int, default=0) self.add_argument('--eval_steps', type=int, default=1000) self.add_argument('--eval_save_period', type=int, default=500) self.add_argument('--report_period', type=int, default=100) # Similarity search (faiss, pysparnn) arguments self.add_argument('--metric', type=str, default='ip', help='ip|l2') self.add_argument('--nlist', type=int, default=1) self.add_argument('--nprobe', type=int, default=1) self.add_argument('--bpv', type=int, default=None, help='bytes per vector (e.g. 8)') self.add_argument('--num_train_mats', type=int, default=100) # Demo arguments self.add_argument('--port', type=int, default=8080) # Other arguments self.add_argument('--draft', default=False, action='store_true') self.add_argument('--cuda', default=False, action='store_true') self.add_argument('--preload', default=False, action='store_true') self.add_argument('--cache', default=False, action='store_true') self.add_argument('--archive', default=False, action='store_true') self.add_argument('--dump_period', type=int, default=20) self.add_argument('--emb_type', type=str, default='dense', help='dense|sparse') self.add_argument('--metadata', default=False, action='store_true') self.add_argument('--mem_info', default=False, action='store_true') def parse_args(self, **kwargs): args = super().parse_args() if args.draft: args.batch_size = 2 args.eval_steps = 1 args.eval_save_period = 2 args.train_steps = 2 if args.save_dir is None: args.save_dir = os.path.join(args.output_dir, 'save') if args.load_dir is None: args.load_dir = os.path.join(args.output_dir, 'save') if args.dump_dir is None: args.dump_dir = os.path.join(args.output_dir, 'dump') if args.question_emb_dir is None: args.question_emb_dir = os.path.join(args.output_dir, 'question_emb') if args.context_emb_dir is None: args.context_emb_dir = os.path.join(args.output_dir, 'context_emb') if args.report_path is None: args.report_path = os.path.join(args.output_dir, 'report.csv') if args.pred_path is None: args.pred_path = os.path.join(args.output_dir, 'pred.json') if args.cache_path is None: args.cache_path = os.path.join(args.output_dir, 'cache.b') args.load_dir = os.path.abspath(args.load_dir) args.context_emb_dir = os.path.abspath(args.context_emb_dir) args.question_emb_dir = os.path.abspath(args.question_emb_dir) return args
50.478261
120
0.644703
4,615
0.993755
0
0
0
0
0
0
1,143
0.246124
97e32ebe567c88c97e005c959868e8ed6406d1eb
2,210
py
Python
getml/loss_functions.py
srnnkls/getml-python-api
032b2fec19a0e0a519eab480ee61e0d422d63993
[ "MIT" ]
null
null
null
getml/loss_functions.py
srnnkls/getml-python-api
032b2fec19a0e0a519eab480ee61e0d422d63993
[ "MIT" ]
null
null
null
getml/loss_functions.py
srnnkls/getml-python-api
032b2fec19a0e0a519eab480ee61e0d422d63993
[ "MIT" ]
null
null
null
# Copyright 2019 The SQLNet Company GmbH # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. """ This module contains the loss functions for the getml library. """ # ------------------------------------------------------------------------------ class _LossFunction(object): """ Base class. Should not ever be directly initialized! """ def __init__(self): self.thisptr = dict() self.thisptr["type_"] = "none" # ------------------------------------------------------------------------------ class CrossEntropyLoss(_LossFunction): """ Cross entropy function. Recommended loss function for classification problems. """ def __init__(self): super(CrossEntropyLoss, self).__init__() self.thisptr["type_"] = "CrossEntropyLoss" # ------------------------------------------------------------------------------ class SquareLoss(_LossFunction): """ Square loss function. Recommended loss function for regression problems. """ def __init__(self): super(SquareLoss, self).__init__() self.thisptr["type_"] = "SquareLoss" # ------------------------------------------------------------------------------
32.985075
80
0.619005
705
0.319005
0
0
0
0
0
0
1,783
0.806787
97e4ff9556a184829362cc46861ffd16d6689ddb
870
py
Python
transit/helpers.py
moredatarequired/python-stitch-client
222ba24e34614d3acecab41cd78a5c78ab8ea782
[ "Apache-2.0" ]
71
2015-01-03T07:55:33.000Z
2021-10-30T16:52:09.000Z
transit/helpers.py
moredatarequired/python-stitch-client
222ba24e34614d3acecab41cd78a5c78ab8ea782
[ "Apache-2.0" ]
27
2015-01-02T06:10:25.000Z
2022-02-20T21:54:13.000Z
transit/helpers.py
moredatarequired/python-stitch-client
222ba24e34614d3acecab41cd78a5c78ab8ea782
[ "Apache-2.0" ]
20
2015-01-05T04:07:52.000Z
2022-02-20T19:08:15.000Z
## Copyright 2014 Cognitect. All Rights Reserved. ## ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS-IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. import itertools from transit.pyversion import imap, izip def mapcat(f, i): return itertools.chain.from_iterable(imap(f, i)) def pairs(i): return izip(*[iter(i)] * 2) cycle = itertools.cycle def take(n, i): return itertools.islice(i, 0, n)
27.1875
75
0.725287
0
0
0
0
0
0
0
0
596
0.685057
97e737d9c2d51a5e35ef3bbd28e5bc15aadb06de
1,779
py
Python
part4/matplotlib/seoul_to_cn_gb_kw.py
tls1403/PythonTest
069f23b25ec655aa199d13aef9c14d2e33366861
[ "MIT" ]
null
null
null
part4/matplotlib/seoul_to_cn_gb_kw.py
tls1403/PythonTest
069f23b25ec655aa199d13aef9c14d2e33366861
[ "MIT" ]
null
null
null
part4/matplotlib/seoul_to_cn_gb_kw.py
tls1403/PythonTest
069f23b25ec655aa199d13aef9c14d2e33366861
[ "MIT" ]
null
null
null
import pandas as pd import matplotlib.pyplot as plt #한글 폰트 오류 제거 from matplotlib import font_manager,rc font_path ="D:/5674-833_4th/part4/malgun.ttf" font_name = font_manager.FontProperties(fname=font_path).get_name() rc('font',family = font_name) df = pd.read_excel('D:/5674-833_4th/part4/시도별 전출입 인구수.xlsx',engine = 'openpyxl',header =0) df = df.fillna(method='ffill') #누락값을 앞 데이터로 채움 #서울에서 다른 지역으로 이동한 데이터만 추출하여 정리 mask = (df['전출지별'] == '서울특별시') & (df['전입지별'] != '서울특별시') df_seoul = df[mask] df_seoul = df_seoul.drop(['전출지별'],axis= 1) #전출지별 column 삭제 df_seoul.rename({'전입지별':'전입지'},axis=1,inplace=True) #전입지별 column을 전입지로 바꿔줌 df_seoul.set_index('전입지',inplace = True) print(df_seoul) #서울에서 충청남도 , 경상북도 ,강원도 로 이동한 인구 데이터 값 선택 col_years = list(map(str,range(1970,2018))) df_3 = df_seoul.loc[['충청남도','경상북도','강원도'],col_years] #스타일 지정 plt.style.use('ggplot') #그래프 객체 생성(figure에 1개의 서브 플롯생성) fig = plt.figure(figsize=(20,5)) ax =fig.add_subplot(1,1,1) #axe 객체에 plot 함수로 그래프 출력 ax.plot(col_years,df_3.loc['충청남도',:],marker = 'o',markerfacecolor = 'green', markersize = 10,color = 'olive',linewidth = 2, label = '서울 -> 충남') ax.plot(col_years,df_3.loc['경상북도',:],marker = 'o',markerfacecolor = 'blue', markersize = 10, color = 'skyblue', linewidth = 2 , label = '서울 -> 경북') ax.plot(col_years,df_3.loc['강원도',:],marker = 'o',markerfacecolor = 'red', markersize =10, color = 'magenta',linewidth = 2, label = '서울 -> 강원') #범례표시 ax.legend(loc = 'best') #차트 제목 추가 ax.set_title('서울 -> 충남, 경북 , 강원 인구 이동',size = 20 ) #축 이름 추가 ax.set_xlabel('기간',size =12) ax.set_ylabel('이동 인구수',size =12) #축 눈금 라벨 지정 및 90 도 회전 ax.set_xticklabels(col_years,rotation = 90) #축 눈금 라벨 크기 ax.tick_params(axis = "x", labelsize =10) ax.tick_params(axis = "y", labelsize= 10) plt.show()
30.672414
90
0.675098
0
0
0
0
0
0
0
0
1,060
0.466755
97e73f20826e580f553c50fa8510c0e35ee9a048
365
py
Python
blsqpy/query.py
BLSQ/blsqpy
52fcbd655780e78eccceb2a61280262194c2416c
[ "MIT" ]
null
null
null
blsqpy/query.py
BLSQ/blsqpy
52fcbd655780e78eccceb2a61280262194c2416c
[ "MIT" ]
7
2018-12-18T10:11:34.000Z
2019-03-27T07:09:38.000Z
blsqpy/query.py
BLSQ/blsqpy
52fcbd655780e78eccceb2a61280262194c2416c
[ "MIT" ]
2
2018-12-12T12:31:40.000Z
2019-02-25T12:34:48.000Z
import os from jinja2 import Environment, FileSystemLoader QUERIES_DIR = os.path.dirname(os.path.abspath(__file__)) def get_query(query_name, params): j2_env = Environment(loader=FileSystemLoader(QUERIES_DIR+"/queries"), trim_blocks=True) return j2_env.get_template(query_name+'.sql').render(**params)+"\n -- query : "+query_name
36.5
94
0.715068
0
0
0
0
0
0
0
0
32
0.087671
97e7b0008c9dde06dac12b270121649a12a1ff61
8,507
py
Python
SINE.py
EduardoMCF/SINE
061960b65164ae612a5cb63c540eb8a488505073
[ "MIT" ]
null
null
null
SINE.py
EduardoMCF/SINE
061960b65164ae612a5cb63c540eb8a488505073
[ "MIT" ]
null
null
null
SINE.py
EduardoMCF/SINE
061960b65164ae612a5cb63c540eb8a488505073
[ "MIT" ]
null
null
null
import matplotlib.pyplot as plt import pyaudio, wave import numpy as np from collections import OrderedDict as OD from struct import pack from math import fmod from os import system def getNoteAndDuration(chord : str, defaultDuration : float): if ',' in chord: note,duration = chord.strip('()').split(',') return note,float(duration) return chord,defaultDuration def generateSineWave(samplingFreq : int = 44100, freq : float = 440.0, amplitude : float = 0.4, duration : float = 1.0, phase : float = 0, chunk : int = 0): t = np.arange(samplingFreq*duration)/samplingFreq if not chunk else np.arange(chunk)/samplingFreq sineWave = amplitude*np.sin(2 * pi * freq * t + phase) return sineWave def generateSong(keysOfChords : [str], samplingFreq : int = 44100, amplitude : float = 0.4, defaultDuration : float = 0.5, phase : float = 0): song = np.array([]) for chord in keysOfChords: note, duration = getNoteAndDuration(chord,defaultDuration) noteFreq = octaves[note] sineWave = generateSineWave(samplingFreq,noteFreq,amplitude,duration,phase) phase = fmod(2.0 * pi * noteFreq * duration + phase, 2.0*pi) song = np.concatenate((song,sineWave)) return song def playAudio(samples,samplingFreq : int = 44100): stream = p.open(format = pyaudio.paFloat32, channels = 1, rate = samplingFreq, output = True) stream.write(samples.astype(np.float32).tostring()) stream.close() def playAudioFromFile(path : str): wf = wave.open(path,'rb') stream = p.open(format = p.get_format_from_width(wf.getsampwidth()), channels = wf.getnchannels(), rate = wf.getframerate(), output = True) chunk = 4096 data = wf.readframes(chunk) while data: stream.write(data) data = wf.readframes(chunk) stream.close() wf.close() def pad(data : [float]): nextPowerOf2 = lambda x: 1 << (x-1).bit_length() return np.concatenate((data,np.zeros(nextPowerOf2(len(data))-len(data)))) def plot(data : [float], nchannels : int = 1, samplingFreq : int = 44100): formerLen,data = len(data),pad(data) channels = [[] for channel in range(nchannels)] for index, channelData in enumerate(data): channels[index%len(channels)].append(channelData) t=np.linspace(0, int(formerLen/len(channels)/samplingFreq), num=int(formerLen/len(channels))) fig,ax = plt.subplots(nrows=2,ncols=2) fig.tight_layout() for idx in range(len(channels)): ax[0,idx].plot(t,channels[idx][:formerLen//nchannels],color='C'+str(idx)) ax[0,idx].set_title('Signal (channel %i)' %(idx+1)) ax[0,idx].set_xlabel('Time') ax[0,idx].set_ylabel('Amplitude') n = len(data) T = n/samplingFreq frq = np.arange(n)/T frq = frq[range(n//2)] for idx in range(len(channels)): FFT = (np.fft.fft(channels[idx])/n)[range(n//2)] ax[1,idx].plot(frq,abs(FFT),color='C'+str(idx+2)) ax[1,idx].set_title('Spectrum (channel %i)' %(idx+1)) ax[1,idx].set_xlabel('Freq (Hz)') ax[1,idx].set_ylabel('Magnitude') plt.subplots_adjust(left=0.125, bottom=0.1, right=0.9, top=0.9, wspace=0.5, hspace=0.5) plt.show() def plotFromFile(path : str): wf = wave.open(path,'rb') data = np.frombuffer(wf.readframes(wf.getnframes()), np.int16)/32767 plot(data, wf.getnchannels(),wf.getframerate()) wf.close() def groupByChunk(n, iterable): l = len(iterable) for idx in range(0,l,n): yield iterable[idx:min(idx+n,l)] def saveFile(fileName : str, samples : [float], sampleFreq : int = 44100): wf=wave.open(fileName,"w") nchannels = 1; sampwidth = 2 wf.setparams((nchannels, sampwidth, sampleFreq, len(samples), "NONE", "not compressed")) for chunk in groupByChunk(4096,samples): wf.writeframes(b''.join(map(lambda sample : pack('<h', int(sample * 32767)),chunk))) wf.close() def getParamsSineWave(): parameters = OD() inputs = [input('Sampling Frequency (Hz | default = 44100): '),input('Sinewave Frequency (Hz | default = 440.0): '),input('Amplitude ( float (0,1] | default = 0.4): '),input('Duration ( s | default = 1): '),input('Phase ( radians | default = 0): ')] parameters['samplingFreq'] = int(inputs[0]) if inputs[0] else 44100 parameters['freq'] = float(inputs[1]) if inputs[1] else 440.0 parameters['amplitude'] = float(inputs[2]) if inputs[2] else 0.4 parameters['duration'] = float(inputs[3]) if inputs[3] else 1 parameters['phase'] = eval(inputs[4]) if inputs[4] else 0 return parameters def getParamsSong(): parameters = OD() inputs = [input('Insert the path to a txt file with keys of chords (more info in help.txt): '), input('Sampling Frequency (Hz | default = 44100): '),input('Amplitude ( float (0,1] | default = 0.4): '),input('Duration ( s | default = 0.4): '),input('Phase ( radians | default = 0): ')] f = open(inputs[0],'r') parameters['keysOfChords'] = f.read().split() parameters['samplingFreq'] = int(inputs[0]) if inputs[1] else 44100 parameters['amplitude'] = float(inputs[2]) if inputs[2] else 0.4 parameters['duration'] = float(inputs[3]) if inputs[3] else 0.4 parameters['phase'] = eval(inputs[4]) if inputs[4] else 0 f.close() return parameters def getParamsFile(): return input('Path to a wav file: ') pi = np.pi p = pyaudio.PyAudio() octaves = { 'C0': 16.35, 'C#0': 17.32, 'D0': 18.35, 'D#0': 19.45, 'E0': 20.6, 'F0': 21.83, 'F#0': 23.12, 'G0': 24.5, 'G#0': 25.96, 'A0': 27.5, 'A#0': 29.14, 'B0': 30.87, 'C1': 32.70, 'C#1': 34.65, 'D1': 36.71, 'D#1': 38.89, 'E1': 41.20, 'F1': 43.65, 'F#1': 46.25, 'G1': 49.0, 'G#1': 51.91, 'A1': 55.0, 'A#1': 58.27, 'B1': 61.74, 'C2': 65.41, 'C#2': 69.3, 'D2': 73.42, 'D#2': 77.78, 'E2': 82.41, 'F2': 87.31, 'F#2': 92.5, 'G2': 98.0, 'G#2': 103.83, 'A2': 110.0, 'A#2': 116.54, 'B2': 123.47, 'C3': 130.81, 'C#3': 138.59, 'D3': 146.83, 'D#3': 155.56, 'E3': 164.81, 'F3': 174.62, 'F#3': 185.0, 'G3': 196.0, 'G#3': 207.65, 'A3': 220.0, 'A#3': 233.08, 'B3': 246.94, 'C4': 261.62, 'C#4': 277.19, 'D4': 293.67, 'D#4': 311.12, 'E4': 329.62, 'F4': 349.23, 'F#4': 370.0, 'G4': 392.0, 'G#4': 415.31, 'A4': 440.0, 'A#4': 466.17, 'B4': 493.88, 'C5': 523.25, 'C#5': 554.37, 'D5': 587.33, 'D#5': 622.25, 'E5': 659.25, 'F5': 698.46, 'F#5': 739.99, 'G5': 783.99, 'G#5': 830.61, 'A5': 880.0, 'A#5': 932.33, 'B5': 987.77, 'C6': 1046.5, 'C#6': 1108.74, 'D6': 1174.66, 'D#6': 1244.5, 'E6': 1318.5, 'F6': 1396.92, 'F#6': 1479.98, 'G6': 1567.98, 'G#6': 1661.22, 'A6': 1760.0, 'A#6': 1864.66,'B6': 1975.54, 'C7': 2093.0, 'C#7': 2217.48, 'D7': 2349.32, 'D#7': 2489.0, 'E7': 2637.0, 'F7': 2793.84, 'F#7': 2959.96, 'G7': 3135.96, 'G#7': 3322.44,'A7': 3520.0, 'A#7': 3729.32, 'B7': 3951.08, 'C8': 4186.0, 'C#8': 4434.96, 'D8': 4698.64, 'D#8': 4978.0, 'E8': 5274.0, 'F8': 5587.68, 'F#8': 5919.92, 'G8': 6271.92, 'G#8': 6644.88, 'A8': 7040.0, 'A#8': 7458.64, 'B8': 7902.16, '.': 0 } choice1 = int(input('Select an option:\n1 - Generate sine wave\n2 - Generate song\n3 - Load wav file\n\nYour choice (1,2 or 3): ')) if choice1 not in [1,2,3]: raise ValueError('Invalid choice: %i' %choice1) options = {1: getParamsSineWave, 2:getParamsSong, 3:getParamsFile} param = options[choice1]() system('cls||clear') dialog = 'Select an option:\n1 - Play\n2 - Plot\n3 - Save\n4 - Exit\n\nYour choice (1,2,3 or 4): ' dialog2 = 'Select an option:\n1 - Play\n2 - Plot\n3 - Exit\n\nYour choice (1,2 or 3): ' while True: choice2 = int(input(dialog)) if choice1 in [1,2] else int(input(dialog2)) if choice1 in [1,2]: dataSine = generateSineWave(*param.values()) if choice1 == 1 else None dataSong = generateSong(*param.values()) if choice1 == 2 else None if choice2 == 1: playAudio(dataSine, param['samplingFreq']) if choice1 == 1 else playAudio(dataSong,param['samplingFreq']) elif choice2 == 2: plot(dataSine, samplingFreq = param['samplingFreq']) if choice1 == 1 else plot(dataSong, samplingFreq = param['samplingFreq']) elif choice2 == 3: fileName = input('File name: ') saveFile(fileName,dataSine if choice1 == 1 else dataSong,param['samplingFreq']) elif choice2 == 4: break elif choice1 == 3: if choice2 == 1: playAudioFromFile(param) elif choice2 == 2: plotFromFile(param) elif choice2 == 3: break system("cls||clear") p.terminate()
48.611429
288
0.611379
0
0
122
0.014341
0
0
0
0
1,582
0.185964
97e7c3ef3fb80b92eda0926518e235c327df3ae0
1,603
py
Python
setup.py
lkylych/lagom
64777be7f09136072a671c444b5b3fbbcb1b2f18
[ "MIT" ]
null
null
null
setup.py
lkylych/lagom
64777be7f09136072a671c444b5b3fbbcb1b2f18
[ "MIT" ]
null
null
null
setup.py
lkylych/lagom
64777be7f09136072a671c444b5b3fbbcb1b2f18
[ "MIT" ]
null
null
null
from setuptools import setup from setuptools import find_packages from lagom.version import __version__ # Read content of README.md with open('README.md', 'r') as f: long_description = f.read() setup(name='lagom', version=__version__, author='Xingdong Zuo', author_email='zuoxingdong@hotmail.com', description='lagom: A light PyTorch infrastructure to quickly prototype reinforcement learning algorithms.', # Long description of README markdown, shows in Python Package Index long_description=long_description, long_description_content_type='text/markdown', url='https://github.com/zuoxingdong/lagom', # Install dependencies install_requires=['numpy', 'scipy', 'pandas', 'matplotlib', 'seaborn', 'scikit-image', 'jupyterlab', 'gym', 'cma'], tests_require=['pytest'], # Only Python 3+ python_requires='>=3', # List all lagom packages (folder with __init__.py), useful to distribute a release packages=find_packages(), # tell pip some metadata (e.g. Python version, OS etc.) classifiers=['Programming Language :: Python :: 3', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Natural Language :: English', 'Topic :: Scientific/Engineering :: Artificial Intelligence'] )
37.27907
114
0.5733
0
0
0
0
0
0
0
0
773
0.482221
97e804ef9c7c1c0635aab0477304f63f5daafe96
2,046
py
Python
plugins_inactive/plugin_wikipediasearch.py
ademaro/Irene-Voice-Assistant
34a71892258d993dc227e6653281444f091e86ae
[ "MIT" ]
null
null
null
plugins_inactive/plugin_wikipediasearch.py
ademaro/Irene-Voice-Assistant
34a71892258d993dc227e6653281444f091e86ae
[ "MIT" ]
null
null
null
plugins_inactive/plugin_wikipediasearch.py
ademaro/Irene-Voice-Assistant
34a71892258d993dc227e6653281444f091e86ae
[ "MIT" ]
null
null
null
import os import time import pyautogui # from voiceassmain import play_voice_assistant_speech from vacore import VACore # based on EnjiRouz realization https://github.com/EnjiRouz/Voice-Assistant-App/blob/master/app.py # функция на старте def start(core: VACore): manifest = { "name": "Википедия (поиск)", "version": "1.0", "require_online": True, "commands": { "википедия|вики": run_wiki, }, } return manifest def run_wiki(core: VACore, phrase: str): # if core != None: # core.play_voice_assistant_speech("Ищу на вики {}".format(phrase)) import wikipediaapi wiki = wikipediaapi.Wikipedia("ru") # поиск страницы по запросу, чтение summary, открытие ссылки на страницу для получения подробной информации wiki_page = wiki.page(phrase) try: if wiki_page.exists(): core.play_voice_assistant_speech( "Вот что я нашла для {} в википедии".format(phrase) ) # webbrowser.get().open(wiki_page.fullurl) # чтение ассистентом первых двух предложений summary со страницы Wikipedia # (могут быть проблемы с мультиязычностью) core.play_voice_assistant_speech(wiki_page.summary.split(".")[:2]) else: # открытие ссылки на поисковик в браузере в случае, если на Wikipedia не удалось найти ничего по запросу # play_voice_assistant_speech(translator.get( # "Can't find {} on Wikipedia. But here is what I found on google").format(search_term)) # url = "https://google.com/search?q=" + search_term # webbrowser.get().open(url) core.play_voice_assistant_speech("Не нашла {} в википедии".format(phrase)) # поскольку все ошибки предсказать сложно, то будет произведен отлов с последующим выводом без остановки программы except: import traceback core.play_voice_assistant_speech("Проблемы с поиском в Википедии") traceback.print_exc() return
33.540984
118
0.655425
0
0
0
0
0
0
0
0
1,598
0.638434
97e922fd511e37dd6ba6caa81bbded4c80d22dc7
316
py
Python
todo/management/urls.py
Sanguet/todo-challenge
8eabc02081e7ce6b33408558d4a4a39edee3944c
[ "MIT" ]
null
null
null
todo/management/urls.py
Sanguet/todo-challenge
8eabc02081e7ce6b33408558d4a4a39edee3944c
[ "MIT" ]
null
null
null
todo/management/urls.py
Sanguet/todo-challenge
8eabc02081e7ce6b33408558d4a4a39edee3944c
[ "MIT" ]
null
null
null
# Django from django.urls import include, path # Django REST Framework from rest_framework.routers import DefaultRouter # Views from .views import tasks as task_views router = DefaultRouter() router.register(r'tasks', task_views.TaskViewSet, basename='task') urlpatterns = [ path('', include(router.urls)) ]
19.75
66
0.762658
0
0
0
0
0
0
0
0
54
0.170886
97e9830408b6514215e19bea044829eb96f15f7c
7,936
py
Python
dnd5e/items.py
MegophrysNasuta/dnd5e
431c0c219052ddf5c62a500bd14f17fab3574648
[ "MIT" ]
null
null
null
dnd5e/items.py
MegophrysNasuta/dnd5e
431c0c219052ddf5c62a500bd14f17fab3574648
[ "MIT" ]
null
null
null
dnd5e/items.py
MegophrysNasuta/dnd5e
431c0c219052ddf5c62a500bd14f17fab3574648
[ "MIT" ]
null
null
null
import enum from typing import Any, List, Optional, Tuple class ArmorType(enum.Enum): LIGHT = enum.auto() MEDIUM = enum.auto() HEAVY = enum.auto() def __repr__(self): return '%s.%s' % (self.__class__.__name__, self.name) class Armor: def __init__(self, name: str, armor_class: int, armor_type: Optional[ArmorType] = None, min_str_requirement: Optional[int] = None, disadvantages_stealth: bool = False): self.name = str(name) self.armor_class = int(armor_class) self.armor_type = armor_type self.min_str_requirement = (min_str_requirement and int(min_str_requirement)) self.disadvantages_stealth = bool(disadvantages_stealth) if self.armor_type == ArmorType.HEAVY: self.disadvantages_stealth = True @property def max_dex_modifier(self) -> Optional[int]: if self.armor_type == ArmorType.LIGHT: return None elif self.armor_type == ArmorType.MEDIUM: return 2 else: return 0 def __eq__(self, other: Any) -> bool: if not isinstance(other, self.__class__): return False return ( self.name == other.name and self.armor_class == other.armor_class and self.armor_type == other.armor_type and self.min_str_requirement == other.min_str_requirement and self.disadvantages_stealth == other.disadvantages_stealth ) def __repr__(self): return ('Armor(%r, %r, armor_type=%r, ' 'min_str_requirement=%r, disadvantages_stealth=%r)') % ( self.name, self.armor_class, self.armor_type, self.min_str_requirement, self.disadvantages_stealth) def __str__(self): return '<%sArmor: %s (AC %i)>' % (self.armor_type.name.title(), self.name, self.armor_class) RangeIncrement = Tuple[int, int] class WeaponType(enum.Enum): SIMPLE = enum.auto() MARTIAL = enum.auto() def __repr__(self): return '%s.%s' % (self.__class__.__name__, self.name) class WeaponDamageType(enum.Enum): PIERCING = 'P' SLASHING = 'S' BLUDGEONING = 'B' def __repr__(self): return '%s.%s' % (self.__class__.__name__, self.name) class Weapon: def __init__(self, name: str, damage: Optional[str] = None, two_handed_damage: Optional[str] = None, damage_type: Optional[WeaponDamageType] = None, range_increment: Optional[RangeIncrement] = None, requires_ammo: bool = False, finesse_weapon: bool = False, is_heavy: bool = False, is_light: bool = False, slow_loading: bool = False, has_reach: bool = False, can_be_thrown: bool = False, requires_two_hands: bool = False, versatile: bool = False): self.name = str(name) self.damage = damage and str(damage) self.two_handed_damage = two_handed_damage and str(two_handed_damage) self.damage_type = damage_type self.range_increment = range_increment and tuple(map(int, range_increment)) self.__requires_ammo = None self.requires_ammo = bool(requires_ammo) self.finesse_weapon = bool(finesse_weapon) self.__is_heavy = None self.__is_light = None self.is_heavy = bool(is_heavy) self.is_light = bool(is_light) self.slow_loading = bool(slow_loading) self.has_reach = bool(has_reach) self.__can_be_thrown = None self.can_be_thrown = bool(can_be_thrown) if self.can_be_thrown: self.range_increment = (20, 60) self.__requires_two_hands = None self.__versatile = None self.requires_two_hands = bool(requires_two_hands) self.versatile = bool(versatile) if self.damage and self.two_handed_damage: self.versatile = True if self.versatile: assert self.two_handed_damage is not None @property def can_be_thrown(self): return bool(self.__can_be_thrown) @can_be_thrown.setter def can_be_thrown(self, value): self.__can_be_thrown = bool(value) if self.__can_be_thrown: self.__requires_ammo = False @property def has_range(self) -> bool: return self.range_increment is not None @property def is_heavy(self): return bool(self.__is_heavy) @is_heavy.setter def is_heavy(self, value): self.__is_heavy = bool(value) if self.__is_heavy: self.__is_light = False @property def is_light(self): return bool(self.__is_light) @is_light.setter def is_light(self, value): self.__is_light = bool(value) if self.__is_light: self.__is_heavy = False @property def requires_ammo(self): return bool(self.__requires_ammo) @requires_ammo.setter def requires_ammo(self, value): self.__requires_ammo = bool(value) if self.__requires_ammo: self.__can_be_thrown = False @property def requires_two_hands(self): return bool(self.__requires_two_hands) @requires_two_hands.setter def requires_two_hands(self, value): self.__requires_two_hands = bool(value) if self.__requires_two_hands: self.__versatile = False @property def versatile(self): return bool(self.__versatile) @versatile.setter def versatile(self, other): self.__versatile = bool(other) if self.__versatile: self.__requires_two_hands = False @property def properties(self) -> List[str]: prop_list = [] if self.requires_ammo: assert self.range_increment is not None prop_list.append('Ammunition (range %i/%i)' % self.range_increment) if self.finesse_weapon: prop_list.append('Finesse') if self.is_heavy: prop_list.append('Heavy') if self.is_light: prop_list.append('Light') if self.slow_loading: prop_list.append('Loading') if self.has_reach: prop_list.append('Reach') if self.can_be_thrown: assert self.range_increment is not None prop_list.append('Thrown (range %i/%i)' % self.range_increment) if self.requires_two_hands: prop_list.append('Two-handed') if self.versatile: prop_list.append('Versatile (%s)' % self.two_handed_damage) return prop_list def __repr__(self): return ('Weapon("%s", %r, two_handed_damage=%r, ' 'damage_type=%r, range_increment=%r, is_light=%r, ' 'requires_ammo=%r, finesse_weapon=%r, is_heavy=%r, ' 'slow_loading=%r, has_reach=%r, can_be_thrown=%r, ' 'requires_two_hands=%r, versatile=%r)') % ( self.name, self.damage, self.two_handed_damage, self.damage_type, self.range_increment, self.is_light, self.requires_ammo, self.finesse_weapon, self.is_heavy, self.slow_loading, self.has_reach, self.can_be_thrown, self.requires_two_hands, self.versatile, ) def __str__(self): str_rep = ['<%s: %s'] str_rep_contents = [self.__class__.__name__, self.name] if self.has_range: str_rep.append(' %s') str_rep_contents.append(self.range_increment) str_rep.append(' %s (%s)>') str_rep_contents.extend([self.damage, self.damage_type.value]) return ''.join(str_rep) % tuple(str_rep_contents) class SimpleWeapon(Weapon): pass class MartialWeapon(Weapon): pass
33.344538
79
0.606981
7,822
0.985635
0
0
2,717
0.342364
0
0
510
0.064264
97eb5eb44132b5d87929c59ff9f174afa27e84b4
7,094
py
Python
dbd/cli/dbdcli.py
AlexRogalskiy/dbd
ac2c6fb673861321b23fbf2a57d9e39fa5cb5352
[ "BSD-3-Clause" ]
33
2022-01-09T09:32:17.000Z
2022-03-05T18:52:11.000Z
dbd/cli/dbdcli.py
zsvoboda/dbd
ac2c6fb673861321b23fbf2a57d9e39fa5cb5352
[ "BSD-3-Clause" ]
2
2022-02-16T19:14:13.000Z
2022-02-16T19:14:34.000Z
dbd/cli/dbdcli.py
zsvoboda/dbd
ac2c6fb673861321b23fbf2a57d9e39fa5cb5352
[ "BSD-3-Clause" ]
null
null
null
import importlib.metadata import logging import os import shutil from typing import Dict, Any, List import click from sqlalchemy import text from dbd.log.dbd_exception import DbdException from dbd.config.dbd_profile import DbdProfile from dbd.config.dbd_project import DbdProject from dbd.executors.model_executor import ModelExecutor, InvalidModelException from dbd.log.dbd_logger import setup_logging log = logging.getLogger(__name__) this_script_dir = os.path.dirname(__file__) class Dbd(object): """ Top level CLI object """ def __init__(self, debug: bool = False, logfile: str = 'dbd.log', profile: str = 'dbd.profile', project: str = 'dbd.project'): """ Constructor :param bool debug: debug flag :param str logfile: log file :param str profile: profile file :param str project: project file """ self.__debug = debug self.__logfile = logfile self.__profile = profile self.__project = project def debug(self) -> bool: """ Debug flag getter :return: debug flag :rtype: bool """ return self.__debug def logfile(self) -> str: """ Logfile getter :return: logfile :rtype: str """ return self.__logfile def profile(self) -> str: """ Profile getter :return: profile :rtype: str """ return self.__profile def project(self) -> str: """ Project getter :return: project :rtype: str """ return self.__project def print_version(): """ Prints DBD version """ click.echo(f"You're using DBD version {importlib.metadata.version('dbd')}.") @click.group(invoke_without_command=True) @click.option('--debug/--no-debug', envvar='DBD_DEBUG', default=False, help='Sets debugging on/off') @click.option('--version', help="Print the DBD version and exit.", is_flag=True, is_eager=True) @click.option('--logfile', envvar='DBD_LOG_FILE', default='dbd.log', help='Log file location') @click.option('--profile', envvar='DBD_PROFILE', default='dbd.profile', help='Profile configuration file') @click.option('--project', envvar='DBD_PROJECT', default='dbd.project', help='Project configuration file') @click.pass_context def cli(ctx, debug, logfile, version, profile, project): if debug: click.echo(f"Logging DEBUG info to '{logfile}'") setup_logging(logging.DEBUG, logfile) if version: print_version() ctx.exit(0) ctx.obj = Dbd(debug, logfile, profile, project) # noinspection PyUnusedLocal @cli.command(help='Initializes a new DBD project.') @click.argument('dest', required=False, default='my_new_dbd_project') @click.pass_obj def init(dbd, dest): try: src = os.path.join(this_script_dir, '..', 'resources', 'template') if os.path.exists(dest): log.error(f"Can't overwrite directory '{dest}'") raise DbdException(f"Can't overwrite directory '{dest}'") shutil.copytree(src, dest) click.echo(f"New project {dest} generated. Do cd {dest}; dbd run .") except DbdException as d: click.echo(f"ERROR: '{d}'") @cli.command(help='Executes project.') @click.option('--only', envvar='DBD_ONLY', default=None, help='Comma separated list of fully qualified table names ' '(<schema>.<table-name-no suffix>) to execute.') @click.option('--deps/--no-deps', envvar='DBD_DEPS', default=True, help='Ignores dependencies for the --only list.') @click.argument('dest', required=False, default='.') @click.pass_obj def run(dbd, only, deps, dest): try: log.debug("Loading configuration.") prf = DbdProfile.load(os.path.join('.', dbd.profile())) prj = DbdProject.load(prf, os.path.join(dest, dbd.project())) log.debug("Creating model.") model = ModelExecutor(prj) log.debug("Connecting database.") engine = prj.alchemy_engine_from_project() # engine.execution_options(supports_statement_cache=False) log.debug("Executing model.") if not deps and only is None: log.error("You must specify --only list for --no-deps.") raise DbdException("You must specify --only list for --no-deps.") if only is not None: only_list = only.split(',') try: model.execute(engine, only_list, deps) except InvalidModelException as e: log.error(f"Can't run {only_list}: {e}") raise DbdException(f"Can't run {only_list}: {e}") else: model.execute(engine) log.debug("Finished.") click.echo("All tasks finished!") except DbdException as d: click.echo(f"ERROR: '{d}'") @cli.command(help='Validates project.') @click.argument('dest', required=False, default='.') @click.pass_obj def validate(dbd, dest): try: prf = DbdProfile.load(os.path.join('.', dbd.profile())) prj = DbdProject.load(prf, os.path.join(dest, dbd.project())) model = ModelExecutor(prj) engine = prj.alchemy_engine_from_project() # noinspection PyBroadException try: engine.execute(text("SELECT 1")) except Exception: click.echo( f"Can't connect to the target database. Check profile configuration in " f"'{os.path.normpath(os.path.join(dest, dbd.profile()))}'.") validation_result, validation_errors = model.validate() if validation_result: click.echo("No errors found. Model is valid.") else: click.echo("Model isn't valid. Please fix the following errors:") __echo_validation_errors(validation_errors) except DbdException as d: click.echo(f"ERROR: '{d}'") def __echo_validation_errors(validation_errors: Dict[str, Any]): """ Top level function for printing validation errors :param validation_errors: :return: """ __echo_validation_level(validation_errors) class InvalidValidationErrorStructure(DbdException): pass def __echo_validation_level(level_validation_errors: Dict[str, Any], indent: int = 0): """ Echo validation error line (called recursively on all Dict values) :param level_validation_errors: Dict with validation result :param indent: indentation level """ for (k, v) in level_validation_errors.items(): if isinstance(v, str): msg = f"{k}:{v}" click.echo(msg.rjust(indent * 2 + len(msg), ' ')) elif isinstance(v, Dict): msg = f"{k}:" click.echo(msg.rjust(indent * 2 + len(msg), ' ')) __echo_validation_level(v, indent + 1) elif isinstance(v, List): msg = f"{k}:{str(v)}" click.echo(msg.rjust(indent * 2 + len(msg), ' ')) else: raise InvalidValidationErrorStructure(f"Invalid validation result: '{v}' isn't supported type.")
34.436893
116
0.623203
1,214
0.171131
0
0
4,102
0.578235
0
0
2,532
0.356921
97eb87e8a632182f8518b1d3afd5e6530ac981a5
9,901
py
Python
bestiary/serializers.py
Itori/swarfarm
7192e2d8bca093b4254023bbec42b6a2b1887547
[ "Apache-2.0" ]
66
2017-09-11T04:46:00.000Z
2021-03-13T00:02:42.000Z
bestiary/serializers.py
Itori/swarfarm
7192e2d8bca093b4254023bbec42b6a2b1887547
[ "Apache-2.0" ]
133
2017-09-24T21:28:59.000Z
2021-04-02T10:35:31.000Z
bestiary/serializers.py
Itori/swarfarm
7192e2d8bca093b4254023bbec42b6a2b1887547
[ "Apache-2.0" ]
28
2017-08-30T19:04:32.000Z
2020-11-16T04:09:00.000Z
from rest_framework import serializers from bestiary import models class GameItemSerializer(serializers.ModelSerializer): category = serializers.SerializerMethodField() class Meta: model = models.GameItem fields = [ 'id', 'com2us_id', 'url', 'name', 'category', 'icon', 'description', 'sell_value', ] extra_kwargs = { 'url': { 'view_name': 'bestiary/items-detail', }, } def get_category(self, instance): return instance.get_category_display() class SourceSerializer(serializers.ModelSerializer): class Meta: model = models.Source fields = ['id', 'url', 'name', 'description', 'farmable_source'] extra_kwargs = { 'url': { 'view_name': 'bestiary/monster-sources-detail', }, } class SkillUpgradeSerializer(serializers.ModelSerializer): effect = serializers.SerializerMethodField() class Meta: model = models.SkillUpgrade fields = ('effect', 'amount') def get_effect(self, instance): return instance.get_effect_display() class SkillEffectSerializer(serializers.ModelSerializer): type = serializers.CharField(source='get_type_display') class Meta: model = models.SkillEffect fields = ('id', 'url', 'name', 'is_buff', 'type', 'description', 'icon_filename') extra_kwargs = { 'url': { 'view_name': 'bestiary/skill-effects-detail', }, } class SkillEffectDetailSerializer(serializers.ModelSerializer): effect = SkillEffectSerializer() class Meta: model = models.SkillEffectDetail fields = [ 'effect', 'aoe', 'single_target', 'self_effect', 'chance', 'on_crit', 'on_death', 'random', 'quantity', 'all', 'self_hp', 'target_hp', 'damage', 'note', ] class SkillSerializer(serializers.HyperlinkedModelSerializer): level_progress_description = serializers.SerializerMethodField() upgrades = SkillUpgradeSerializer(many=True, read_only=True) effects = SkillEffectDetailSerializer(many=True, read_only=True, source='skilleffectdetail_set') scales_with = serializers.SerializerMethodField() used_on = serializers.PrimaryKeyRelatedField(source='monster_set', many=True, read_only=True) class Meta: model = models.Skill fields = ( 'id', 'com2us_id', 'name', 'description', 'slot', 'cooltime', 'hits', 'passive', 'aoe', 'max_level', 'upgrades', 'effects', 'multiplier_formula', 'multiplier_formula_raw', 'scales_with', 'icon_filename', 'used_on', 'level_progress_description', ) def get_level_progress_description(self, instance): if instance.level_progress_description: return instance.level_progress_description.rstrip().split('\n') else: return [] def get_scales_with(self, instance): # TODO: Fix N+1 query in API response caused by this return instance.scaling_stats.values_list('stat', flat=True) class LeaderSkillSerializer(serializers.ModelSerializer): attribute = serializers.SerializerMethodField('get_stat') area = serializers.SerializerMethodField() element = serializers.SerializerMethodField() class Meta: model = models.LeaderSkill fields = ('id', 'url', 'attribute', 'amount', 'area', 'element') extra_kwargs = { 'url': { 'view_name': 'bestiary/leader-skills-detail', }, } def get_stat(self, instance): return instance.get_attribute_display() def get_area(self, instance): return instance.get_area_display() def get_element(self, instance): return instance.get_element_display() class HomunculusSkillCraftCostSerializer(serializers.ModelSerializer): item = GameItemSerializer(read_only=True) class Meta: model = models.HomunculusSkillCraftCost fields = ['item', 'quantity'] class HomunculusSkillSerializer(serializers.ModelSerializer): craft_materials = HomunculusSkillCraftCostSerializer(source='homunculusskillcraftcost_set', many=True, read_only=True) used_on = serializers.PrimaryKeyRelatedField(source='monsters', many=True, read_only=True) class Meta: model = models.HomunculusSkill fields = ['id', 'url', 'skill', 'craft_materials', 'prerequisites', 'used_on'] extra_kwargs = { 'url': { 'view_name': 'bestiary/homunculus-skills-detail', }, } class MonsterCraftCostSerializer(serializers.ModelSerializer): item = GameItemSerializer(read_only=True) class Meta: model = models.MonsterCraftCost fields = ['item', 'quantity'] class AwakenCostSerializer(serializers.ModelSerializer): item = GameItemSerializer(read_only=True) class Meta: model = models.AwakenCost fields = ['item', 'quantity'] class MonsterSerializer(serializers.ModelSerializer): url = serializers.HyperlinkedIdentityField(view_name='bestiary/monsters-detail') element = serializers.SerializerMethodField() archetype = serializers.SerializerMethodField() source = SourceSerializer(many=True, read_only=True) leader_skill = LeaderSkillSerializer(read_only=True) awaken_cost = AwakenCostSerializer(source='awakencost_set', many=True, read_only=True) homunculus_skills = serializers.PrimaryKeyRelatedField(source='homunculusskill_set', read_only=True, many=True) craft_materials = MonsterCraftCostSerializer(many=True, source='monstercraftcost_set', read_only=True) class Meta: model = models.Monster fields = ( 'id', 'url', 'bestiary_slug', 'com2us_id', 'family_id', 'name', 'image_filename', 'element', 'archetype', 'base_stars', 'natural_stars', 'obtainable', 'can_awaken', 'awaken_level', 'awaken_bonus', 'skills', 'skill_ups_to_max', 'leader_skill', 'homunculus_skills', 'base_hp', 'base_attack', 'base_defense', 'speed', 'crit_rate', 'crit_damage', 'resistance', 'accuracy', 'raw_hp', 'raw_attack', 'raw_defense', 'max_lvl_hp', 'max_lvl_attack', 'max_lvl_defense', 'awakens_from', 'awakens_to', 'awaken_cost', 'source', 'fusion_food', 'homunculus', 'craft_cost', 'craft_materials', ) def get_element(self, instance): return instance.get_element_display() def get_archetype(self, instance): return instance.get_archetype_display() class FusionSerializer(serializers.ModelSerializer): class Meta: model = models.Fusion fields = ['id', 'url', 'product', 'cost', 'ingredients'] extra_kwargs = { 'url': { 'view_name': 'bestiary/fusions-detail', }, } class BuildingSerializer(serializers.ModelSerializer): url = serializers.HyperlinkedIdentityField(view_name='bestiary/buildings-detail') area = serializers.SerializerMethodField() affected_stat = serializers.SerializerMethodField() element = serializers.SerializerMethodField() class Meta: model = models.Building fields = [ 'id', 'url', 'area', 'affected_stat', 'element', 'com2us_id', 'name', 'max_level', 'stat_bonus', 'upgrade_cost', 'description', 'icon_filename', ] def get_area(self, instance): return instance.get_area_display() def get_affected_stat(self, instance): return instance.get_affected_stat_display() def get_element(self, instance): return instance.get_element_display() class DungeonSerializer(serializers.ModelSerializer): url = serializers.HyperlinkedIdentityField(view_name='bestiary/dungeons-detail') levels = serializers.PrimaryKeyRelatedField(source='level_set', read_only=True, many=True) category = serializers.SerializerMethodField() class Meta: model = models.Dungeon fields = [ 'id', 'url', 'enabled', 'name', 'slug', 'category', 'icon', 'levels', ] def get_category(self, instance): return instance.get_category_display() class EnemySerializer(serializers.ModelSerializer): class Meta: model = models.Enemy fields = [ 'id', 'monster', 'stars', 'level', 'hp', 'attack', 'defense', 'speed', 'resist', 'crit_bonus', 'crit_damage_reduction', 'accuracy_bonus', ] class WaveSerializer(serializers.ModelSerializer): enemies = EnemySerializer(source='enemy_set', many=True, read_only=True) class Meta: model = models.Wave fields = [ 'enemies', ] class LevelSerializer(serializers.ModelSerializer): url = serializers.HyperlinkedIdentityField(view_name='bestiary/levels-detail') difficulty = serializers.SerializerMethodField() waves = WaveSerializer(source='wave_set', many=True, read_only=True) class Meta: model = models.Level fields = [ 'id', 'url', 'dungeon', 'floor', 'difficulty', 'energy_cost', 'xp', 'frontline_slots', 'backline_slots', 'total_slots', 'waves', ] def get_difficulty(self, instance): return instance.get_difficulty_display()
31.233438
122
0.620644
9,779
0.987678
0
0
0
0
0
0
2,238
0.226038
97ec6821afa2d1990aea0fcfa7884edc560b6cc4
56,761
py
Python
Code/ConvNetAbel.py
abel-gr/AbelNN
e9f54a6a3844a504ff82e4bae97d43064834e90a
[ "MIT" ]
1
2021-11-05T16:01:15.000Z
2021-11-05T16:01:15.000Z
Code/ConvNetAbel.py
abel-gr/AbelNN
e9f54a6a3844a504ff82e4bae97d43064834e90a
[ "MIT" ]
null
null
null
Code/ConvNetAbel.py
abel-gr/AbelNN
e9f54a6a3844a504ff82e4bae97d43064834e90a
[ "MIT" ]
null
null
null
# Copyright Abel Garcia. All Rights Reserved. # https://github.com/abel-gr/AbelNN import numpy as np import copy as copy import random import matplotlib import matplotlib.pyplot as plt import matplotlib.cm as cm from pylab import text import math class ConvNetAbel: version = 1.2 def __init__(self, hidden = [1], nEpochs = 1, learningRate=0.1, manualWeights=[], debugLevel=1, rangeRandomWeight=None, showLogs=False, softmax=False, activationFunction='leakyrelu', verbose = False, use='classification', batch_size=1, batch_gradient='average', batch_mult=1, dropout=0, pre_norm=False, shuffle=True, iterationDrop=0, convFilters = [32, 64, 128], convStride=2, convFilterSizes=3, learningRateConv=0.001, convEpochs=10, kernel_initializer='he_normal'): self.hiddenL = copy.deepcopy(hidden) self.hiddenL2 = copy.deepcopy(hidden) self.learningRate = learningRate self.numEpochs = nEpochs self.costs = [] # Costs list to check performance self.debugWeights = [] self.meanCostByEpoch = [] self.hiddenWeights = [] self.manualWeights = manualWeights self.debugMode = debugLevel self.rangeRandomWeight = rangeRandomWeight self.showLogs = showLogs self.softmax = softmax self.n_layer0 = -1 self.activationFunction = activationFunction self.verbose = verbose self.use = use self.batch_size = batch_size self.batch_gradient = batch_gradient self.batch_mult = batch_mult self.dropout = dropout self.pre_norm = pre_norm self.shuffle = shuffle self.iterationDrop = iterationDrop self.XavierInitialization = '1' self.lastLayerNeurons = -1 # ConvNet: self.convFilters = convFilters self.filtersValues = [None] * len(convFilters) self.convStride = convStride self.convFilterSizes = convFilterSizes self.learningRateConv = learningRateConv self.convEpochs = convEpochs self.kernel_initializer = kernel_initializer # Conv2 with only one kernel def conv2(self, x, kernel, stride=1): output = [] #np.zeros((kernel.shape), dtype=np.float32) kernel_l = kernel.shape[0] kernel_size = kernel.shape[0] * kernel.shape[1] c = int(kernel_l / 2) for i in range(c, x.shape[0] - c, stride): o = [] for j in range(c, x.shape[1] - c, stride): i0 = i - c j0 = j - c i1 = i + c + 1 j1 = j + c + 1 o.append(np.sum(x[i0:i1, j0:j1] * kernel)) output.append(o) output = np.asarray(output) return output # Convolution with multi-filters def conv_filters(self, x, filters, stride=1, relu=False, mode='same'): lex = len(x.shape) lef = len(filters.shape) if lex > lef: print('conv_filters: The input array cannot have more dimensions than the filter array.') return 0 output = [] kernel_l = filters.shape[0] kernel_size = filters.shape[0] * filters.shape[1] if lef == 2: num_filters = 1 else: num_filters = filters.shape[-1] c = int(kernel_l / 2) dim3 = False evenShapeKernel = (kernel_l % 2 == 0) if lex == 2: dim2 = True p0 = x.shape[0] p1 = x.shape[1] else: # x parameter was the output of this method previously called if lex == lef: num_new_filters = int(num_filters / x.shape[-1]) if (num_new_filters % 2 != 0) and (num_filters % 2 == 0): num_new_filters = num_new_filters - 1 if (num_new_filters == 0): num_new_filters = 1 else: # It is the first convolutional layer of a color image num_new_filters = num_filters dim3 = True dim2 = False p0 = x.shape[0] p1 = x.shape[1] if mode == 'full': fs0 = int(filters.shape[0] / 2) fs1 = int(filters.shape[1] / 2) max0 = p0 + fs0 max1 = p1 + fs1 ini0 = -1 * fs0 ini1 = -1 * fs1 elif mode == 'same': max0 = p0 max1 = p1 ini0 = 0 ini1 = 0 elif mode == 'valid': fs0 = int(filters.shape[0] / 2) fs1 = int(filters.shape[1] / 2) max0 = p0 - fs0 max1 = p1 - fs1 ini0 = fs0 ini1 = fs1 else: print('Mode must be same, valid or full') return 0 if evenShapeKernel and mode == 'valid': max0 = max0 + 1 max1 = max1 + 1 for i in range(ini0, max0, stride): o = [] for j in range(ini1, max1, stride): i0 = i - c j0 = j - c i1 = i + c + 1 j1 = j + c + 1 if evenShapeKernel: i0 = i0 + 1 j0 = j0 + 1 zero_padding_top = 0 zero_padding_bottom = 0 zero_padding_left = 0 zero_padding_right = 0 if i0 < 0: zero_padding_top = abs(i0) i0 = 0 if j0 < 0: zero_padding_left = abs(j0) j0 = 0 if i1 > p0: zero_padding_bottom = i1 - p0 i1 = p0 if j1 > p1: zero_padding_right = j1 - p1 j1 = p1 if dim2: m = x[i0:i1, j0:j1] #print('mshape:', m.shape, kernel_size, zero_padding_top, zero_padding_left) # Zero padding: m = np.pad(m, ((zero_padding_top,zero_padding_bottom),(zero_padding_left,zero_padding_right)), 'constant') if lef != 2: m = np.expand_dims(m, axis=-1) m = np.repeat(m, num_filters, axis=-1) else: xi = x[i0:i1, j0:j1, :] # Zero padding: xi = np.pad(xi, ((zero_padding_top,zero_padding_bottom),(zero_padding_left,zero_padding_right),(0,0)), 'constant') if dim3: xi = np.expand_dims(xi, axis=-1) m = np.repeat(xi, num_new_filters, axis=-1) #print('M,F\n', m[:,:,0], filters[:,:,0]) #print(m.shape, filters.shape) m = m * filters #print('m*f\n', m[:,:,0]) m = np.sum(m, axis=0) m = np.sum(m, axis=0) if dim3: m = np.sum(m, axis=0) o.append(m) output.append(o) output = np.asarray(output) if relu: output[output < 0] = 0 return output def kernelInitializer(self, i, ksize, inSize, outSize): if 'xavier' in self.kernel_initializer: if self.kernel_initializer == 'xavier_normal': if len(ksize) == 4: self.filtersValues[i] = np.random.randn(ksize[0],ksize[1],ksize[2],ksize[3]) * math.sqrt(2.0 / (inSize + outSize)) else: self.filtersValues[i] = np.random.randn(ksize[0],ksize[1],ksize[2]) * math.sqrt(2.0 / (inSize + outSize)) elif self.kernel_initializer == 'xavier_uniform': highVal = math.sqrt(6.0 / (inSize + outSize)) lowVal = -1 * highVal self.filtersValues[i] = np.random.uniform(low=lowVal, high=highVal, size=ksize) else: if self.kernel_initializer == 'he_normal': if len(ksize) == 4: self.filtersValues[i] = np.random.randn(ksize[0],ksize[1],ksize[2],ksize[3]) * math.sqrt(2.0 / inSize) else: self.filtersValues[i] = np.random.randn(ksize[0],ksize[1],ksize[2]) * math.sqrt(2.0 / inSize) elif self.kernel_initializer == 'he_uniform': highVal = math.sqrt(6.0 / inSize) lowVal = -1 * highVal self.filtersValues[i] = np.random.uniform(low=lowVal, high=highVal, size=ksize) def convLayersFeedForward(self, im): self.convInputs = [] len_m = len(im.shape) #print('len_m:', len_m) for i, cl in enumerate(self.convFilters): self.convInputs.append(im) if (self.filtersValues[i] is None): if (type(self.convFilterSizes) == list): ks = self.convFilterSizes[i] else: ks = self.convFilterSizes inSize = np.prod(im.shape) if 'xavier' in self.kernel_initializer: if self.batch_size == 1: imshape = np.asarray([im.shape[0], im.shape[1]]) else: imshape = np.asarray([im.shape[1], im.shape[2]]) extraShape = int((ks % 2) == 0) ks2 = int(ks / 2) * 2 outSize = np.prod((imshape - ks2 + extraShape)) * cl else: outSize = 0 if i == 0 and len_m == 3: if self.batch_size == 1: self.kernelInitializer(i, (ks,ks,im.shape[2],cl), inSize, outSize) else: self.kernelInitializer(i, (ks,ks,cl), inSize, outSize) else: self.kernelInitializer(i, (ks,ks,cl), inSize, outSize) k_filters = self.filtersValues[i] if (type(self.convStride) == list): stride_par = self.convStride[i] else: stride_par = self.convStride #print('Convolutional layer', i, '\n') #print('Layer input shape:', im.shape) #print('Layer filters array shape:', k_filters.shape) # Start of convolutions #im = self.conv_filters(im, k_filters, relu=True, stride=stride_par, mode='valid') filtersValues_shape01 = np.asarray([k_filters.shape[0], k_filters.shape[1]]) filtersValues_shape_d2 = (filtersValues_shape01 / 2).astype(int) extraShape = (filtersValues_shape01 % 2) == 0 eS0 = extraShape[0].astype(int) eS1 = extraShape[1].astype(int) posYf = eS0 posXf = eS1 filter_shape0 = k_filters.shape[0] filter_shape1 = k_filters.shape[1] if (len(k_filters.shape) >= 3): num_filters = k_filters.shape[-1] else: num_filters = 1 if self.batch_size == 1: xshape = np.asarray([im.shape[0], im.shape[1]]) else: xshape = np.asarray([im.shape[1], im.shape[2]]) output_shape = xshape - filtersValues_shape_d2*2 + eS0 if ((len(im.shape) < len(k_filters.shape)) or (len(im.shape) == 2 and num_filters == 1)): Xr = np.expand_dims(im, axis=-1) Xr = np.repeat(Xr, num_filters, axis=-1) else: if (len(im.shape) == len(k_filters.shape)): if self.batch_size == 1: new_filters = int(im.shape[-1] / num_filters) Xr = np.repeat(im, new_filters, axis=-1) else: Xr = np.expand_dims(im, axis=-1) Xr = np.repeat(Xr, num_filters, axis=-1) else: Xr = im if (len(Xr.shape) == 2): npad = ((0,eS0), (0,eS1)) out_s = [output_shape[0], output_shape[1], 1] elif (len(Xr.shape) == 3): npad = ((0,eS0), (0,eS1), (0,0)) out_s = [output_shape[0], output_shape[1], num_filters] elif (len(Xr.shape) == 4): if self.batch_size == 1: npad = ((0,eS0), (0,eS1), (0,0), (0,0)) out_s = [output_shape[0], output_shape[1], im.shape[2], num_filters] else: npad = ((0,0), (0,eS0), (0,eS1), (0,0)) out_s = [im.shape[0], output_shape[0], output_shape[1], num_filters] X_pad = np.pad(Xr, npad, 'constant') out_s[0 if self.batch_size == 1 else 1] = int(np.ceil(out_s[0 if self.batch_size == 1 else 1] / stride_par)) out_s[1 if self.batch_size == 1 else 2] = int(np.ceil(out_s[1 if self.batch_size == 1 else 2] / stride_par)) conv_output = np.zeros(out_s) if self.batch_size != 1: k_filters = np.expand_dims(k_filters, axis=0) k_filters = np.repeat(k_filters, im.shape[0], axis=0) #print(Xr.shape, X_pad.shape, k_filters.shape, conv_output.shape, output_shape) for posY in range(0, filter_shape0): for posX in range(0, filter_shape1): # valid convolution if self.batch_size == 1: conv_output += X_pad[posYf:posYf+output_shape[0]:stride_par, posXf:posXf+output_shape[1]:stride_par] * k_filters[posY, posX] else: conv_output += X_pad[:, posYf:posYf+output_shape[0]:stride_par, posXf:posXf+output_shape[1]:stride_par] * k_filters[:, posY, posX].reshape(k_filters.shape[0],1,1,k_filters.shape[3]) posXf = posXf + 1 posYf = posYf + 1 posXf = eS1 # End of convolutions if self.pre_norm: ax_f = tuple(range(0,len(conv_output.shape))) if self.batch_size == 1: ax_f = ax_f[0:-1] conv_output = (conv_output - np.mean(conv_output, axis=ax_f)) / (np.std(conv_output, axis=ax_f) + 1e-7) else: ax_f = ax_f[1:-1] conv_output = (conv_output - np.mean(conv_output, axis=ax_f).reshape(conv_output.shape[0],1,1,conv_output.shape[3])) / (np.std(conv_output, axis=ax_f).reshape(conv_output.shape[0],1,1,conv_output.shape[3]) + 1e-7) #conv_output = (conv_output - conv_output.mean()) / (conv_output.std() + 1e-7) im = self.ActivationFunction(conv_output, 'relu') #print('Layer output shape:', im.shape, '\n---------------------\n') return im def convLayersBackpropagation(self, last_layer_output, prev_cost): i = len(self.filtersValues) - 1 last_shape = list(last_layer_output.shape) if self.batch_size != 1: batch_el = last_shape[0] last_shape = last_shape[1:] + [batch_el] error_by_x = np.reshape(prev_cost, last_shape) """ if self.batch_size == 1: num_filters = last_layer_output.shape[2] else: num_filters = last_layer_output.shape[3] """ self.log('Start of convLayersBackpropagation:', '\n') #self.log('prev_cost:', prev_cost.shape, prev_cost, '\n') #self.log('last_layer_output:', last_layer_output.shape, last_layer_output, '\n') #self.log('error_by_x:', error_by_x.shape, error_by_x, '\n') #if self.batch_size != 1: #error_by_x = np.mean(error_by_x, axis=0) for k_filters in self.filtersValues[::-1]: X = self.convInputs[i] if self.batch_size != 1: X_batchshape = list(X.shape) X_batch_elements = X_batchshape[0] X_batchshape = X_batchshape[1:] + [X_batch_elements] X = np.reshape(X, X_batchshape) #X = np.mean(X, axis=0) # to dilate gradient if needed because of stride if (type(self.convStride) == list): stride_par = self.convStride[i] else: stride_par = self.convStride if stride_par != 1: #erShape = error_by_x.shape[0] * stride_par erShape = (X.shape[0]) if self.batch_size == 1: error_by_output = np.zeros((erShape, erShape, self.convFilters[i]), dtype=float) else: error_by_output = np.zeros((erShape, erShape, self.convFilters[i], batch_el), dtype=float) #print(error_by_output.shape, error_by_x.shape) posI = 0 posJ = 0 erx1 = (error_by_x.shape[0]) erx2 = (error_by_x.shape[1]) # Zero-interweave: for pe_i in range(0, erx1): for pe_j in range(0, erx2): error_by_output[posI, posJ] = error_by_x[pe_i, pe_j] if (posJ + 2) < erShape: posJ = posJ + 2 else: posJ = posJ + 1 if (posI + 2) < erShape: posI = posI + 2 else: posI = posI + 1 posJ = 0 else: # dE/dO error_by_output = error_by_x f_rotated = np.flip(self.filtersValues[i], 0) f_rotated = np.flip(f_rotated, 1) # dE/dF #error_by_filter = self.conv_filters(X, error_by_output, relu=False, stride=1, mode='valid') # dE/dX #error_by_x = self.conv_filters(f_rotated, error_by_output, relu=False, stride=1, mode='full') # Start of convolutions err_output_shape01 = np.asarray([error_by_output.shape[0], error_by_output.shape[1]]) err_out_shape_d2 = (err_output_shape01 / 2).astype(int) xshape = np.asarray([X.shape[0], X.shape[1]]) fshape = np.asarray([f_rotated.shape[0], f_rotated.shape[1]]) extraShape = (err_output_shape01 % 2) == 0 eS0 = extraShape[0].astype(int) eS1 = extraShape[1].astype(int) err_filt_shape = xshape - err_out_shape_d2*2 + eS0 err_x_shape = fshape + err_out_shape_d2*2 + eS0 num_filters = self.filtersValues[i].shape[-1] #print(error_by_output.shape, xshape, err_output_shape01, err_out_shape_d2*2, eS0, err_filt_shape) if self.batch_size == 1: error_by_filter = np.zeros((err_filt_shape[0], err_filt_shape[1], num_filters)) error_by_x = np.zeros((err_x_shape[0], err_x_shape[1], num_filters)) else: error_by_filter = np.zeros((err_filt_shape[0], err_filt_shape[1], num_filters, X_batch_elements)) error_by_x = np.zeros((err_x_shape[0], err_x_shape[1], num_filters, X_batch_elements)) err_out_shape0 = error_by_output.shape[0] err_out_shape1 = error_by_output.shape[1] fil_shape0 = error_by_filter.shape[0] fil_shape1 = error_by_filter.shape[1] ex_shape0 = self.filtersValues[i].shape[0] ex_shape1 = self.filtersValues[i].shape[1] posYf = eS0 posXf = eS1 if (len(X.shape) < 3): Xr = np.expand_dims(X, axis=-1) Xr = np.repeat(Xr, num_filters, axis=-1) else: Xr = X if (len(Xr.shape) == 3): X_pad = np.pad(Xr, ((0,eS0), (0,eS1), (0,0)), 'constant') elif (len(Xr.shape) == 4): X_pad = np.pad(Xr, ((0,eS0), (0,eS1), (0,0), (0,0)), 'constant') else: # color image with batch X_pad = np.pad(Xr, ((0,0), (0,eS0), (0,eS1), (0,0), (0,0)), 'constant') layer_filters = self.filtersValues[i] if self.batch_size != 1: layer_filters = np.expand_dims(layer_filters, axis=-1) layer_filters = np.repeat(layer_filters, X_batch_elements, axis=-1) #print(X_pad.shape, error_by_output.shape, error_by_filter.shape, self.filtersValues[i].shape, error_by_output.shape, error_by_x.shape) for posY in range(0, err_out_shape0): for posX in range(0, err_out_shape1): # valid convolution (dE/dF) error_by_filter += X_pad[posYf:posYf+fil_shape0, posXf:posXf+fil_shape1] * error_by_output[posY, posX] # full convolution (dE/dX) error_by_x[posYf:posYf+ex_shape0, posXf:posXf+ex_shape1] += layer_filters * error_by_output[posY, posX] posXf = posXf + 1 posYf = posYf + 1 posXf = eS1 error_by_x = np.flip(error_by_x, 0) error_by_x = np.flip(error_by_x, 1) # End of convolutions #print(X.shape, X_pad.shape, self.filtersValues[i].shape, error_by_filter.shape, error_by_x.shape, error_by_output.shape) #self.log('error_by_filter:', error_by_filter[:,:,0], '\n\n') #self.log('prev filtersValues[i]:', self.filtersValues[i][:,:,0], '\n\n') #self.log('error_by_x:', error_by_x[:,:,0], '\n\n') if self.batch_size != 1: error_by_filter = np.mean(error_by_filter, axis=-1) #if self.pre_norm: #ax_f = tuple(range(0,len(error_by_filter[i].shape)))[0:-1] #error_by_filter = (error_by_filter - np.mean(error_by_filter, axis=ax_f)) / (np.std(error_by_filter, axis=ax_f) + 1e-7) #error_by_filter = (error_by_filter - error_by_filter.mean()) / (error_by_filter.std() + 1e-7) # Filters update self.filtersValues[i] = self.filtersValues[i] - self.learningRateConv * error_by_filter if self.pre_norm: ax_f = tuple(range(0,len(self.filtersValues[i].shape)))[0:-1] self.filtersValues[i] = (self.filtersValues[i] - np.mean(self.filtersValues[i], axis=ax_f)) / (np.std(self.filtersValues[i], axis=ax_f) + 1e-7) #self.log('filtersValues[i] updated:', self.filtersValues[i][:,:,0], '\n\n') #self.log('\n-----------------------\n') i = i - 1 self.log('End of convLayersBackpropagation') def draw(self, showWeights=False, textSize=9, customRadius=0): plt.figure(figsize=(10,8)) fig = plt.gcf() ax = fig.gca() ax.set_xlim(xmin=0, xmax=1) ax.set_ylim(ymin=0, ymax=1) xmin, xmax, ymin, ymax = ax.axis() xdim = xmax - xmin ydim = ymax - ymin space_per_layer = xdim / (len(self.hiddenL) + 1) x0 = xmin x1 = xmin + space_per_layer medio_intervalo = space_per_layer / 2 if customRadius <= 0: radio = 1 / ((sum(self.hiddenL) + self.n_layer0) * 5) else: radio = customRadius lista_lineas_xy = [] lasth = self.n_layer0 for capa,h in enumerate([self.n_layer0] + self.hiddenL): space_per_neuron = ydim / h y0 = ymin y1 = ymin + space_per_neuron medio_intervalo_n = space_per_neuron / 2 lista_lineas_xy_pre = [] ne = (lasth * h) - 1 neY = h - 1 for j in range(0, h): ax.add_patch(plt.Circle(((medio_intervalo + x0), (medio_intervalo_n + y0)), radio, color='r')) neX = lasth - 1 for xy in lista_lineas_xy: if True: #j == 2: plt.plot([xy[0],(medio_intervalo + x0)],[xy[1], (medio_intervalo_n + y0)]) #print(capa, ne, self.hiddenWeights[capa-1][ne]) my = ((medio_intervalo_n + y0) - xy[1]) mx = ((medio_intervalo + x0) - xy[0]) pendiente = my / mx ordenada_origen = xy[1] - pendiente * xy[0] margen_ord = 0.015 if pendiente < 0: margen_ord = -0.045 # para compensar la rotacion del texto ordenada_origen = ordenada_origen + margen_ord # para evitar que el texto salga encima de la linea no sobre ella # aleatorio entre las x del segmento de la recta (menos un margen para que no salga demasiado cerca de la neurona) mx2 = random.uniform(xy[0] + 0.04, (medio_intervalo + x0) - 0.04) my2 = pendiente*mx2 + ordenada_origen alfa = math.degrees(math.atan(pendiente)) if showWeights: #print(h, capa-1, neX, neY) text(mx2, my2, round(self.hiddenWeights[capa-1][neX][neY],3), rotation = alfa, fontsize = textSize) ne = ne - 1 neX = neX - 1 lista_lineas_xy_pre.append([(medio_intervalo + x0), (medio_intervalo_n + y0)]) neY = neY - 1 y0 = y0 + space_per_neuron y1 = y1 + space_per_neuron lasth = h #print('\n') x0 = x0 + space_per_layer x1 = x1 + space_per_layer #print('-------------\n') lista_lineas_xy = lista_lineas_xy_pre plt.show() def importModel(self, path='', filename='ConvNetAbel_model'): self.hiddenWeights = np.load(path + filename + '_weights.npy', allow_pickle=True) mConfig = np.load(path + filename + '_config.npy', allow_pickle=True) self.n_layer0 = int(mConfig[0]) self.showLogs = bool(mConfig[1]) self.lastLayerNeurons = int(mConfig[2]) self.numEpochs = int(mConfig[3]) self.learningRate = float(mConfig[4]) self.debugMode = int(mConfig[5]) self.softmax = bool(mConfig[6]) self.activationFunction = str(mConfig[7]) self.verbose = bool(mConfig[8]) self.use = str(mConfig[9]) self.batch_size = int(mConfig[10]) self.batch_gradient = str(mConfig[11]) self.batch_mult = int(mConfig[12]) self.dropout = float(mConfig[13]) self.pre_norm = bool(mConfig[14]) self.shuffle = bool(mConfig[15]) self.iterationDrop = float(mConfig[16]) self.version_importedModel = mConfig[17] self.hiddenL2 = mConfig[18] self.hiddenL = mConfig[19] convConfig = np.load(path + filename + '_convConfig.npy', allow_pickle=True) self.convFilters = convConfig[0] self.convStride = convConfig[1] self.convFilterSizes = convConfig[2] self.kernel_initializer = str(convConfig[3]) self.convEpochs = int(convConfig[4]) self.learningRateConv = float(convConfig[5]) self.filtersValues = np.load(path + filename + '_filtersValues.npy', allow_pickle=True) if self.debugMode > 0: self.meanCostByEpoch = np.load(path + filename + '_meanCostByEpoch.npy', allow_pickle=True).tolist() if self.debugMode > 1: self.debugWeights = np.load(path + filename + '_debugWeights.npy', allow_pickle=True).tolist() def exportModel(self, path='', filename='ConvNetAbel_model'): np.save(path + filename + '_weights.npy', np.asarray(self.hiddenWeights, dtype=object)) mConfig = [] mConfig.append(self.n_layer0) mConfig.append(self.showLogs) mConfig.append(self.lastLayerNeurons) mConfig.append(self.numEpochs) mConfig.append(self.learningRate) mConfig.append(self.debugMode) mConfig.append(self.softmax) mConfig.append(self.activationFunction) mConfig.append(self.verbose) mConfig.append(self.use) mConfig.append(self.batch_size) mConfig.append(self.batch_gradient) mConfig.append(self.batch_mult) mConfig.append(self.dropout) mConfig.append(self.pre_norm) mConfig.append(self.shuffle) mConfig.append(self.iterationDrop) mConfig.append(self.version) mConfig.append(self.hiddenL2) mConfig.append(self.hiddenL) mConfig = np.asarray(mConfig, dtype=object) np.save(path + filename + '_config.npy', mConfig) convConfig = [] convConfig.append(self.convFilters) convConfig.append(self.convStride) convConfig.append(self.convFilterSizes) convConfig.append(self.kernel_initializer) convConfig.append(self.convEpochs) convConfig.append(self.learningRateConv) convConfig = np.asarray(convConfig, dtype=object) np.save(path + filename + '_convConfig.npy', convConfig) np.save(path + filename + '_filtersValues.npy', np.asarray(self.filtersValues, dtype=np.float32)) if self.debugMode > 0: np.save(path + filename + '_meanCostByEpoch.npy', self.meanCostByEpoch) if self.debugMode > 1: np.save(path + filename + '_debugWeights.npy', np.asarray(self.debugWeights, dtype=object)) def log(self, *m): if self.showLogs: print(*m) def printVerbose(self, *m): if self.verbose: print(*m) def initializeWeight(self, n, i, lastN): if len(self.manualWeights) == 0: numW = n * lastN if self.rangeRandomWeight is None: if self.activationFunction == 'sigmoid': if self.XavierInitialization == 'normalized': # Normalized Xavier initialization highVal = math.sqrt(6.0) / math.sqrt(lastN + n) lowVal = -1 * highVal mnar = np.random.uniform(low=lowVal, high=highVal, size=(numW,1)) else: # Xavier initialization mnar = np.random.randn(numW, 1) * math.sqrt(1.0 / lastN) else: mnar = np.random.randn(numW, 1) * math.sqrt(2.0 / lastN) # He initialization else: highVal = self.rangeRandomWeight[1] lowVal = self.rangeRandomWeight[0] mnar = np.random.uniform(low=lowVal, high=highVal, size=(numW,1)) else: mnar = np.asarray(self.manualWeights[i]) #mnar = mnar.reshape(mnar.shape[0], 1) #ns = int(mnar.shape[0] / lastN) #print('ns: ', ns) mnar = mnar.reshape(lastN, n, order='F') return mnar def ActivationFunction(self, x, activ_type='sigmoid'): if activ_type=='sigmoid': return 1.0/(1 + np.exp(-1*x)) elif activ_type=='relu': return np.where(x > 0, x, 0) elif activ_type=='softplus': return np.log(1 + np.exp(x)) elif activ_type=='leakyrelu': return np.where(x > 0, x, 0.01 * x) elif activ_type=='identity': return np.copy(x) else: x[x>0.5] = 1 x[x<=0.5] = 0 return x def functionDerivative(self, x, activ_type='sigmoid'): if activ_type=='sigmoid': return self.ActivationFunction(x,activ_type) * (1-self.ActivationFunction(x,activ_type)) elif activ_type=='relu': return np.where(x >= 0, 1, 0) elif activ_type=='softplus': return 1.0/(1 + np.exp(-1*x)) elif activ_type=='leakyrelu': return np.where(x >= 0, 1, 0.01) elif activ_type=='identity': return 1 else: return 1 def cost(self, y_true, y_pred): c = y_true - y_pred return c def softmaxF(self, x): if np.max(np.abs(x)) < 500: # prevent overflow expX = np.exp(x) return expX / np.sum(expX, axis=-1).reshape(-1, 1) else: return x / np.maximum(1, np.sum(x, axis=-1).reshape(-1, 1)) def pre_norm_forward_FC(self, v_layer): if self.batch_size == 1 or len(v_layer.shape) == 1: v_layer_norm = (v_layer - v_layer.mean()) / (v_layer.std() + 1e-7) else: v_layer_norm = ((v_layer.T - np.mean(v_layer, axis=1)) / (np.std(v_layer, axis=1) + 1e-7)).T return v_layer_norm def fit(self, x, y): n_layer0 = -1 self.hiddenL = copy.deepcopy(self.hiddenL2) hiddenW = [None] * (len(self.hiddenL) + 1) self.lastLayerNeurons = y.shape[1] self.hiddenL.append(y.shape[1]) self.convOutputs = [] self.printVerbose('Training started with', x.shape[0], 'samples') if self.batch_size == 1: numIterations = x.shape[0] else: numIterations = math.ceil(x.shape[0] / self.batch_size) numIterations = int(numIterations * (1 - self.iterationDrop)) for epochs in range(0, self.numEpochs): meanCostByEpochE = 0 batch_pos = 0 if epochs < self.convEpochs: xy_ind = np.arange(x.shape[0]) else: xy_ind = np.arange(len(self.convOutputs)) if self.shuffle: np.random.shuffle(xy_ind) for x_pos in range(0, numIterations): if epochs < self.convEpochs: if self.batch_size == 1: c_positions = xy_ind[x_pos] else: if (batch_pos + self.batch_size) < xy_ind.shape[0]: c_positions = xy_ind[batch_pos:batch_pos+self.batch_size] else: c_positions = xy_ind[batch_pos:] x_val = x[c_positions] x_val_batch_s = x_val.shape[0] last_layer_output = self.convLayersFeedForward(x_val) x_val = last_layer_output.flatten() if self.batch_size != 1: x_val = x_val.reshape(x_val_batch_s, int(x_val.shape[0] / x_val_batch_s)) if epochs == (self.convEpochs - 1): self.convOutputs.append([x_val, c_positions]) else: x_val, c_positions = self.convOutputs[xy_ind[x_pos]] #self.log('x_val:', x_val.shape, x_val) #print(x_val.shape) if n_layer0 == -1: if self.batch_size == 1: n_layer0 = x_val.shape[0] else: n_layer0 = x_val.shape[1] self.n_layer0 = n_layer0 v_layer = x_val lastN = n_layer0 layerValues = [] preActivateValues = [] f_vlayer = self.ActivationFunction(v_layer, 'identity') layerValues.append(f_vlayer) preActivateValues.append(v_layer) f_vlayer = v_layer dropout_values = [] for i, hiddenLayer in enumerate(self.hiddenL): entries = hiddenLayer * lastN if hiddenW[i] is None: hiddenW[i] = self.initializeWeight(hiddenLayer, i, lastN) # Initialize weights valuesForPerc = int(entries / hiddenLayer) firstPos = 0 lastPos = valuesForPerc self.log('x_j: ', f_vlayer) self.log('w_j: ', hiddenW[i]) v_layer = f_vlayer.dot(hiddenW[i]) if self.pre_norm and (i < (len(self.hiddenL) - 1)): v_layer = self.pre_norm_forward_FC(v_layer) if self.dropout != 0 and (i < (len(self.hiddenL) - 1)): dropout_v = np.random.binomial(1, 1-self.dropout, size=hiddenLayer) / (1-self.dropout) v_layer = v_layer * dropout_v dropout_values.append(dropout_v) self.log('net_j:', v_layer, '\n') if (i == (len(self.hiddenL) - 1)): if(self.softmax): f_vlayer = self.softmaxF(v_layer).reshape(-1) else: if self.use == 'classification': f_vlayer = self.ActivationFunction(v_layer, 'sigmoid') # use sigmoid on last layer if classification else: f_vlayer = self.ActivationFunction(v_layer, 'identity') # use identity on last layer if regression else: f_vlayer = self.ActivationFunction(v_layer, self.activationFunction)#.reshape(-1) layerValues.append(f_vlayer) preActivateValues.append(v_layer) v_layer = f_vlayer self.log('f(net_j):', f_vlayer, '\n') lastN = hiddenLayer coste_anterior = None i = len(self.hiddenL) - 1 #print(f_vlayer) """ if(self.softmax): f_vlayer = self.softmaxF(f_vlayer).reshape(-1) self.log('f_vlayer (Softmax output):', f_vlayer) #print(f_vlayer) """ #print(f_vlayer, '\n\n') self.log('-----------------\nBackPropagation: \n') # backpropagation: for hiddenLayer in ([n_layer0] + self.hiddenL)[::-1]: self.log('Neurons in this layer: ', hiddenLayer) #print('i: ', i, '\n') if coste_anterior is None: if(self.softmax): derivf_coste = self.functionDerivative(v_layer, self.activationFunction) else: if self.use == 'classification': derivf_coste = self.functionDerivative(v_layer, 'sigmoid') else: derivf_coste = self.functionDerivative(v_layer, 'identity') f_cost = self.cost(y[c_positions], f_vlayer) #if self.batch_size != 1: #f_cost = f_cost / v_layer.shape[0] coste = f_cost * derivf_coste if self.batch_size != 1: batch_pos = batch_pos + self.batch_size #coste = coste.reshape(-1) #coste = coste.reshape(coste.shape[0], 1) #if self.batch_size != 1: #coste = np.sum(coste, axis=0) #derivf_coste = np.sum(derivf_coste, axis=0) if self.debugMode > 0: meanCostByEpochE = meanCostByEpochE + (abs(coste) if self.batch_size == 1 else np.mean(np.absolute(coste), axis=0)) if self.debugMode > 2: self.costs.append(coste) self.log('derivf_coste: ', derivf_coste, 'cost: ', coste, '\n') else: entries = hiddenLayer * nextN valuesForPerc = int(entries / hiddenLayer) firstPos = 0 lastPos = valuesForPerc #coste = [] #coste = np.zeros(shape=(hiddenLayer)) self.log('prev_error: ', coste_anterior) pesos_salientes = hiddenW[i+1].T #print('hiddenW[i+1][j::hiddenLayer]: ', pesos_salientes) preActivateValueM = preActivateValues[i+1] preDeriv = self.functionDerivative(preActivateValueM, self.activationFunction) self.log('preDeriv: ', preDeriv) costeA = coste_anterior.dot(pesos_salientes) # coste por los pesos que salen de la neurona #costeA = np.asarray(costeA) self.log("preCostA: ", costeA) costeA = costeA * (preDeriv) #costeA = costeA.reshape(-1) #costeA = costeA.T if self.dropout != 0 and i > -1: # dropout is not done on input layer costeA = costeA * dropout_values[i] self.log('costA: ', costeA) layerValueM = layerValues[i+1] #print("coste_anterior.shape: ", coste_anterior.shape) self.log("layer values: ", layerValueM) if self.batch_gradient == 'sum': preT1 = coste_anterior.reshape((1 if self.batch_size==1 else coste_anterior.shape[0]), (coste_anterior.shape[0] if self.batch_size==1 else coste_anterior.shape[1])) preT2 = layerValueM.reshape((layerValueM.shape[0] if self.batch_size==1 else layerValueM.shape[1]), (1 if self.batch_size==1 else layerValueM.shape[0])) elif self.batch_size == 1: preT1 = coste_anterior.reshape(1, coste_anterior.shape[0]) preT2 = layerValueM.reshape(layerValueM.shape[0], 1) else: preT1 = np.mean(coste_anterior, axis=0) preT1 = preT1.reshape(1, preT1.shape[0]) preT2 = np.mean(layerValueM, axis=0) preT2 = preT2.reshape(preT2.shape[0], 1) pre = preT2.dot(preT1) #if self.batch_size != 1: #pre = pre * (1.0 / layerValueM.shape[0]) pre = pre * self.learningRate self.log('pre: ', pre, '\n') self.log('Old weight: ', hiddenW[i+1]) hiddenW[i+1] = (hiddenW[i+1] + pre) self.log('New weight: ', hiddenW[i+1], '\n\n') coste = costeA self.log('\n\n') #coste = coste.reshape(-1) #print(coste.shape) #if len(coste.shape) == 3: #coste = coste.reshape(coste.shape[0] * coste.shape[1], coste.shape[2]) #print('Coste: ' , coste, coste.shape) #print("\n\n") coste_anterior = coste nextN = hiddenLayer i = i - 1 #print('------------------') #print('\n\nNuevos pesos: ', hiddenW) #print('Coste anterior shape: ', coste_anterior.shape) if epochs < self.convEpochs: # because of resources limitations self.convLayersBackpropagation(last_layer_output, coste_anterior) self.printVerbose('\nEpoch', str(epochs+1) + '/' + str(self.numEpochs), 'completed') if self.debugMode > 0: self.meanCostByEpoch.append(meanCostByEpochE / numIterations) self.printVerbose('--- Epoch loss:', round(np.mean(self.meanCostByEpoch[-1]),4)) if self.debugMode > 1: self.debugWeights.append(copy.deepcopy(hiddenW)) self.batch_size = int(self.batch_size * self.batch_mult) self.hiddenWeights = hiddenW #print('\n\nNuevos pesos: ', hiddenW) self.printVerbose('\n\nTraining finished\n\n') return self def predict(self, x, noProba=1): n_layer0 = -1 layerValues = np.zeros(shape=(x.shape[0],self.lastLayerNeurons)) batch_pos = 0 if self.batch_size == 1: numIterations = x.shape[0] else: numIterations = math.ceil(x.shape[0] / self.batch_size) for x_pos in range(0, numIterations): if self.batch_size == 1: x_val = x[x_pos] else: if (batch_pos + self.batch_size) < x.shape[0]: x_val = x[batch_pos:batch_pos+self.batch_size] else: x_val = x[batch_pos:] x_val_batch_s = x_val.shape[0] #for x_pos, x_val in enumerate(x): x_val = self.convLayersFeedForward(x_val).flatten() if self.batch_size != 1: x_val = x_val.reshape(x_val_batch_s, int(x_val.shape[0] / x_val_batch_s)) if n_layer0 == -1: n_layer0 = x_val.shape[0] self.n_layer0 = n_layer0 v_layer = x_val lastN = n_layer0 f_vlayer = self.ActivationFunction(v_layer, 'identity') for i, hiddenLayer in enumerate(self.hiddenL): entries = hiddenLayer * lastN valuesForPerc = int(entries / hiddenLayer) firstPos = 0 lastPos = valuesForPerc v_layer = f_vlayer.dot(self.hiddenWeights[i]) if self.pre_norm and (i < (len(self.hiddenL) - 1)): v_layer = self.pre_norm_forward_FC(v_layer) if (i == (len(self.hiddenL) - 1)): if(self.softmax): f_vlayer = self.softmaxF(v_layer).reshape(-1) else: if self.use == 'classification': f_vlayer = self.ActivationFunction(v_layer, 'sigmoid') # use sigmoid on last layer if classification else: f_vlayer = self.ActivationFunction(v_layer, 'identity') # use identity on last layer if regression else: f_vlayer = self.ActivationFunction(v_layer, self.activationFunction)#.reshape(-1) v_layer = f_vlayer lastN = hiddenLayer if self.batch_size == 1: layerValues[x_pos] = f_vlayer else: if (batch_pos + self.batch_size) < x.shape[0]: layerValues[batch_pos:batch_pos+self.batch_size] = f_vlayer else: layerValues[batch_pos:] = f_vlayer batch_pos = batch_pos + self.batch_size """ if(self.softmax): layerValues = self.softmaxF(layerValues) """ if noProba==1: if self.use == 'classification': return self.ActivationFunction(layerValues, 2).astype(int) else: return layerValues else: return layerValues def predict_proba(self, x): return self.predict(x, 0) def plot_mean_error_last_layer(self, customLabels=[], byClass=False): if self.debugMode > 0: meancost = np.asarray(self.meanCostByEpoch) if len(meancost.shape) > 1 and not byClass: meancost = np.mean(meancost, axis=1) ptitle = 'Last layer mean error by epoch' fig, ax = plt.subplots(figsize=(8,6)) ax.plot(range(0, meancost.shape[0]), meancost) ax.set(xlabel='Epoch', ylabel='Mean error', title=ptitle) ax.grid() if len(meancost.shape) > 1: if meancost.shape[1] > 1: if len(customLabels) == 0: neur = [("Neuron " + str(i)) for i in range(0, meancost.shape[1])] else: neur = customLabels plt.legend(neur, loc="upper right") plt.show() else: print('ConvNet debug mode must be level 1 or higher') def plot_weights_by_epoch(self, max_weights=-1): if self.debugMode > 1: dw = self.debugWeights dwx = dw[0][len(dw[0]) - 1][:] fig, ax = plt.subplots(figsize=(8,6)) ygrafico = {} for jposH, posH in enumerate(range(0, len(dw))): # for each epoch dwF = dw[jposH][len(dw[0]) - 1][:] #print(dwF.shape) for posg, neu in enumerate(dwF): #print(neu.shape) if posg in ygrafico: ygrafico[posg].append(neu[0]) else: ygrafico[posg] = [neu[0]] if max_weights == -1: for ygrafico2 in ygrafico.values(): ax.plot(range(0, len(ygrafico2)), ygrafico2) else: if max_weights < 1: print('max_weights must be bigger than 0') elif max_weights > len(ygrafico.values()): print('max_weights must be lower than total weights of last layer') else: ygrafico3 = [] # Gets the weights that have changed the most from beginning to end. for yi, ygrafico2 in enumerate(ygrafico.values()): a = abs(ygrafico[yi][0] - ygrafico[yi][-1]) #print(ygrafico[yi][0], a) ygrafico3.append([ygrafico2, a]) for ygrafico4 in sorted(ygrafico3, key=lambda tupval: -1*tupval[1])[0:max_weights]: #print(ygrafico4) plt.plot(range(0, len(ygrafico4[0])), ygrafico4[0]) ax.set(xlabel='Epoch', ylabel='Weight', title='Last layer weights by epoch') ax.grid() plt.show() else: print('ConvNet debug mode must be level 2 or higher')
37.590066
233
0.448847
56,511
0.995596
0
0
0
0
0
0
7,020
0.123676
97ef61709a2ecbbabd5edf5fdc1f79875ed56c5b
1,365
py
Python
trading_ig/config.py
schwankner/ig-markets-api-python-library
7a6add860e0abefcc252da232524e8ad0be86692
[ "BSD-3-Clause" ]
1
2021-03-01T09:51:59.000Z
2021-03-01T09:51:59.000Z
trading_ig/config.py
schwankner/ig-markets-api-python-library
7a6add860e0abefcc252da232524e8ad0be86692
[ "BSD-3-Clause" ]
null
null
null
trading_ig/config.py
schwankner/ig-markets-api-python-library
7a6add860e0abefcc252da232524e8ad0be86692
[ "BSD-3-Clause" ]
1
2022-01-04T21:17:10.000Z
2022-01-04T21:17:10.000Z
#!/usr/bin/env python # -*- coding:utf-8 -*- import os import logging ENV_VAR_ROOT = "IG_SERVICE" CONFIG_FILE_NAME = "trading_ig_config.py" logger = logging.getLogger(__name__) class ConfigEnvVar(object): def __init__(self, env_var_base): self.ENV_VAR_BASE = env_var_base def _env_var(self, key): return(self.ENV_VAR_BASE + "_" + key.upper()) def get(self, key, default_value=None): env_var = self._env_var(key) return(os.environ.get(env_var, default_value)) def __getattr__(self, key): env_var = self._env_var(key) try: return(os.environ[env_var]) except KeyError: raise Exception("Environment variable '%s' doesn't exist" % env_var) try: from trading_ig_config import config logger.info("import config from %s" % CONFIG_FILE_NAME) except Exception: logger.warning("can't import config from config file") try: config = ConfigEnvVar(ENV_VAR_ROOT) logger.info("import config from environment variables '%s_...'" % ENV_VAR_ROOT) except Exception: logger.warning("can't import config from environment variables") raise("""Can't import config - you might create a '%s' filename or use environment variables such as '%s_...'""" % (CONFIG_FILE_NAME, ENV_VAR_ROOT))
29.673913
78
0.650549
584
0.427839
0
0
0
0
0
0
387
0.283516
97ef67beb062520b730797c508d9465eec545451
6,434
py
Python
train.py
jmlipman/MedicDeepLabv3Plus
4eb5c6c21765db24502d434d01c0ee9b9fd66b27
[ "MIT" ]
1
2021-11-23T16:41:24.000Z
2021-11-23T16:41:24.000Z
train.py
jmlipman/MedicDeepLabv3Plus
4eb5c6c21765db24502d434d01c0ee9b9fd66b27
[ "MIT" ]
null
null
null
train.py
jmlipman/MedicDeepLabv3Plus
4eb5c6c21765db24502d434d01c0ee9b9fd66b27
[ "MIT" ]
1
2021-09-08T02:02:11.000Z
2021-09-08T02:02:11.000Z
# Example usage: # python train.py --device cuda --epochs 10 --input /home/miguelv/data/in/train/ --output /home/miguelv/data/out/delete/test/25/ import os, time, torch, json import numpy as np import nibabel as nib from lib.utils import * from lib.losses import Loss from torch.utils.data import DataLoader from datetime import datetime from lib.models.MedicDeepLabv3Plus import MedicDeepLabv3Plus from lib.data.DataWrapper import DataWrapper def get_arguments(): """Gets (and parses) the arguments from the command line. Args: `args`: If None, it takes the arguments from the command line. Else, it will parse `args` (used for testing with sacred) """ def str2bool(v): if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') parser = argparse.ArgumentParser() # Data parser.add_argument("--input", type=str, required=True, help="Directory with the data for optimizing MedicDeepLabv3+") # Training parser.add_argument("--epochs", type=int, default=300, help="Epochs. If 0: only evaluate") parser.add_argument("--batch_size", type=int, default=1, help="Batch size") parser.add_argument("--lr", type=float, default="1e-4", help="Learning rate") parser.add_argument("--wd", type=float, default="0", help="Weight decay") parser.add_argument("--filters", type=int, default=32, help="Number of filters (fewer filters -> lower GPU requirements)") # Validation parser.add_argument("--validation", type=str, default="", help="Directory with the data for validation") parser.add_argument("--val_interval", type=int, default=1, help="After how many epochs data is validated") parser.add_argument("--val_metrics", type=str, default="dice", help="List of metrics to measure during validation") # Other parser.add_argument("--output", type=str, required=True, help="Output directory (if it doesn't exist, it will create it)") parser.add_argument("--gpu", type=int, default=0, dest="device", help="GPU Device. Write -1 if no GPU is available") parser.add_argument("--model_state", type=str, default="", help="File that contains the saved parameters of the model") parsed = parser.parse_args() # --input if not os.path.isdir(parsed.input): raise Exception("The input folder `" + parsed.input + "` does not exist") # --output if os.path.exists(parsed.output): if os.path.isfile(parsed.output): raise Exception("The provided path for the --output `" + parsed.output + "` corresponds to an existing file. Provide a non-existing path or a folder.") elif os.path.isdir(parsed.output): files = [int(f) for f in os.listdir(parsed.output) if f.isdigit()] parsed.output = os.path.join(parsed.output, str(len(files)+1), "") os.makedirs(parsed.output) else: raise Exception("The provided path for the --output `" + parsed.output + "` is invalid. Provide a non-existing path or a folder.") else: parsed.output = os.path.join(parsed.output, "1", "") os.makedirs(parsed.output) # --validation if parsed.validation != "" and not os.path.isdir(parsed.validation): raise Exception("The validaiton folder `" + parsed.validation + "` does not exist") if parsed.validation == "": print("> Note: No validation data was provided, so validation won't be done during MedicDeepLabv3+ optimization") # --gpu if parsed.device >= torch.cuda.device_count(): if torch.cuda.device_count() == 0: print("> No available GPUs. Add --gpu -1 to not use GPU. NOTE: This may take FOREVER to run.") else: print("> Available GPUs:") for i in range(torch.cuda.device_count()): print(" > GPU #"+str(i)+" ("+torch.cuda.get_device_name(i)+")") raise Exception("The GPU #"+str(parsed.device)+" does not exist. Check available GPUs.") if parsed.device > -1: parsed.device = "cuda:"+str(parsed.device) else: parsed.device = "cpu" # Metrics to be evaluated during evaluation allowed_metrics = ["dice", "HD", "compactness"] # Metrics to be evaluated during validation parsed.val_metrics = parsed.val_metrics.split(",") for m in parsed.val_metrics: if not m in allowed_metrics: raise Exception("Wrong --val_metrics: "+str(m)+". Only allowed: "+str(allowed_metrics)) return parsed def main(args): log("Start training MedicDeepLabv3+", args.output) # Creates the folder where the models will be saved os.makedirs(args.output + "model") # Parameters required to initialize the model model = MedicDeepLabv3Plus(modalities=1, n_classes=3, first_filters=args.filters) model.initialize(device=args.device, output=args.output, model_state=args.model_state) # Dataloaders tr_data = DataWrapper(args.input, "train") val_data = DataWrapper(args.validation, "val") if len(tr_data) > 0 and args.epochs > 0: # DataLoaders tr_loader = DataLoader(tr_data, batch_size=args.batch_size, shuffle=True, pin_memory=False, num_workers=6) if len(val_data) > 0: val_loader = DataLoader(val_data, batch_size=args.batch_size, shuffle=False, pin_memory=False, num_workers=6) else: val_loader = [] # So that len(val_loader) = 0 # Loss function loss = Loss("CrossEntropyDiceLoss_multiple") # Deep supervision # Optimizer optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.wd) # Train the model model.fit(tr_loader=tr_loader, val_loader=val_loader, epochs=args.epochs, val_interval=args.val_interval, loss=loss, val_metrics=args.val_metrics, opt=optimizer) log("End", args.output) if __name__ == "__main__": # Get command-line arguments args = get_arguments() # Train MedicDeepLabv3+ main(args)
38.526946
164
0.63553
0
0
0
0
0
0
0
0
2,249
0.349549
97efd3b3f7f5f7bf285460221c0433426399a499
2,053
py
Python
src/graph_util.py
oonat/inverse-distance-weighted-trust-based-recommender
3f559f3e7dbc565da373f6297362ddf307b2d0ec
[ "BSD-3-Clause" ]
null
null
null
src/graph_util.py
oonat/inverse-distance-weighted-trust-based-recommender
3f559f3e7dbc565da373f6297362ddf307b2d0ec
[ "BSD-3-Clause" ]
null
null
null
src/graph_util.py
oonat/inverse-distance-weighted-trust-based-recommender
3f559f3e7dbc565da373f6297362ddf307b2d0ec
[ "BSD-3-Clause" ]
null
null
null
import numpy as np from toml_parser import Parser from scipy.sparse.csgraph import dijkstra, csgraph_from_dense from sklearn.metrics.pairwise import nan_euclidean_distances from math import sqrt class Graph(object): def __init__(self, transactions, weighted=True): config = Parser("config.toml").load() self._max_distance = \ config["graph"]["max_distance"] self._transactions = transactions self._weighted = weighted self._create_customer_trust_matrix() def _create_adjacency_matrix(self): if self._weighted: self._adjacency_matrix = nan_euclidean_distances(self._transactions, self._transactions, missing_values=0) """ self._adjacency_matrix /= sqrt(self._transactions.shape[1]) """ self._adjacency_matrix[~np.isnan(self._adjacency_matrix)] += 1 else: self._adjacency_matrix = np.zeros( (self._transactions.shape[0], self._transactions.shape[0]), dtype=np.bool, ) list_of_neighbour_customers = [ np.nonzero(t)[0] for t in self._transactions.T ] for neighbour_customers in list_of_neighbour_customers: for i in range(neighbour_customers.shape[0]): self._adjacency_matrix[neighbour_customers[i], neighbour_customers[i+1:]] = \ self._adjacency_matrix[neighbour_customers[i+1:], neighbour_customers[i]] = True def _create_distance_matrix(self): self._create_adjacency_matrix() if self._weighted: adjacency_csgraph = csgraph_from_dense(self._adjacency_matrix, null_value=np.nan) self._distance_matrix = \ dijkstra(csgraph=adjacency_csgraph, directed=False, limit=self._max_distance) else: self._distance_matrix = \ dijkstra(csgraph=self._adjacency_matrix, directed=False, unweighted= True, limit=self._max_distance) self._distance_matrix[~np.isfinite(self._distance_matrix)] = 0 def _create_customer_trust_matrix(self): self._create_distance_matrix() self._customer_trust_matrix = \ np.reciprocal(self._distance_matrix, out=np.zeros_like(self._distance_matrix), where=self._distance_matrix!=0)
26.320513
113
0.754506
1,856
0.904043
0
0
0
0
0
0
107
0.052119
97efd442d5baa89669000d346b5c499ecd9f4c0b
203
py
Python
qtapps/skrf_qtwidgets/analyzers/analyzer_rs_zva.py
mike0164/scikit-rf
0af25754b097ee24089ea7e0eacde426a51df563
[ "BSD-3-Clause" ]
379
2015-01-25T12:19:19.000Z
2022-03-29T14:01:07.000Z
qtapps/skrf_qtwidgets/analyzers/analyzer_rs_zva.py
mike0164/scikit-rf
0af25754b097ee24089ea7e0eacde426a51df563
[ "BSD-3-Clause" ]
456
2015-01-06T19:15:55.000Z
2022-03-31T06:42:57.000Z
qtapps/skrf_qtwidgets/analyzers/analyzer_rs_zva.py
mike0164/scikit-rf
0af25754b097ee24089ea7e0eacde426a51df563
[ "BSD-3-Clause" ]
211
2015-01-06T17:14:06.000Z
2022-03-31T01:36:00.000Z
from skrf.vi.vna import rs_zva class Analyzer(rs_zva.ZVA): DEFAULT_VISA_ADDRESS = "GPIB::16::INSTR" NAME = "Rhode & Schwartz ZVA" NPORTS = 4 NCHANNELS = 32 SCPI_VERSION_TESTED = ''
20.3
44
0.665025
169
0.832512
0
0
0
0
0
0
41
0.20197
97efe95631dbd9f43d8fc44a21511eb903a34116
1,507
py
Python
rules/taxonomic_classification/utils.py
dahak-metagenomics/taco-taxonomic-classification
854cae4f1b2427746a1faa6a0e0aefbfb11c5523
[ "BSD-3-Clause" ]
null
null
null
rules/taxonomic_classification/utils.py
dahak-metagenomics/taco-taxonomic-classification
854cae4f1b2427746a1faa6a0e0aefbfb11c5523
[ "BSD-3-Clause" ]
null
null
null
rules/taxonomic_classification/utils.py
dahak-metagenomics/taco-taxonomic-classification
854cae4f1b2427746a1faa6a0e0aefbfb11c5523
[ "BSD-3-Clause" ]
null
null
null
def container_image_is_external(biocontainers, app): """ Return a boolean: is this container going to be run using an external URL (quay.io/biocontainers), or is it going to use a local, named Docker image? """ d = biocontainers[app] if (('use_local' in d) and (d['use_local'] is True)): # This container does not use an external url return False else: # This container uses a quay.io url return True def container_image_name(biocontainers, app): """ Get the name of a container image for app, using params dictionary biocontainers. Verification: - Check that the user provides 'local' if 'use_local' is True - Check that the user provides both 'quayurl' and 'version' """ if container_image_is_external(biocontainers,app): try: qurl = biocontainers[k]['quayurl'] qvers = biocontainers[k]['version'] quayurls.append(qurl + ":" + qvers) return quayurls except KeyError: err = "Error: quay.io URL for %s biocontainer "%(k) err += "could not be determined" raise Exception(err) else: try: return biocontainers[app]['local'] except KeyError: err = "Error: the parameters provided specify a local " err += "container image should be used for %s, but none "%(app) err += "was specified using the 'local' key." raise Exception(err)
33.488889
75
0.606503
0
0
0
0
0
0
0
0
756
0.501659
97f060a2b95bbc614a022bf67e45afe532ebb45d
37,531
py
Python
Contents/Libraries/Shared/guessit/rules/properties/episodes.py
slvxstar/Kinopoisk.bundle
dcb96c870c3a96fcf33b8d13d79d47f0a7cbf5fb
[ "MIT" ]
7
2021-02-11T08:03:00.000Z
2022-01-23T22:33:32.000Z
Contents/Libraries/Shared/guessit/rules/properties/episodes.py
slvxstar/Kinopoisk.bundle
dcb96c870c3a96fcf33b8d13d79d47f0a7cbf5fb
[ "MIT" ]
null
null
null
Contents/Libraries/Shared/guessit/rules/properties/episodes.py
slvxstar/Kinopoisk.bundle
dcb96c870c3a96fcf33b8d13d79d47f0a7cbf5fb
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ episode, season, disc, episode_count, season_count and episode_details properties """ import copy from collections import defaultdict from rebulk import Rebulk, RemoveMatch, Rule, AppendMatch, RenameMatch from rebulk.match import Match from rebulk.remodule import re from rebulk.utils import is_iterable from .title import TitleFromPosition from ..common import dash, alt_dash, seps, seps_no_fs from ..common.formatters import strip from ..common.numeral import numeral, parse_numeral from ..common.pattern import is_disabled from ..common.validators import compose, seps_surround, seps_before, int_coercable from ...reutils import build_or_pattern def episodes(config): """ Builder for rebulk object. :param config: rule configuration :type config: dict :return: Created Rebulk object :rtype: Rebulk """ # pylint: disable=too-many-branches,too-many-statements,too-many-locals def is_season_episode_disabled(context): """Whether season and episode rules should be enabled.""" return is_disabled(context, 'episode') or is_disabled(context, 'season') rebulk = Rebulk().regex_defaults(flags=re.IGNORECASE).string_defaults(ignore_case=True) rebulk.defaults(private_names=['episodeSeparator', 'seasonSeparator', 'episodeMarker', 'seasonMarker']) episode_max_range = config['episode_max_range'] season_max_range = config['season_max_range'] def episodes_season_chain_breaker(matches): """ Break chains if there's more than 100 offset between two neighbor values. :param matches: :type matches: :return: :rtype: """ eps = matches.named('episode') if len(eps) > 1 and abs(eps[-1].value - eps[-2].value) > episode_max_range: return True seasons = matches.named('season') if len(seasons) > 1 and abs(seasons[-1].value - seasons[-2].value) > season_max_range: return True return False rebulk.chain_defaults(chain_breaker=episodes_season_chain_breaker) def season_episode_conflict_solver(match, other): """ Conflict solver for episode/season patterns :param match: :param other: :return: """ if match.name != other.name: if match.name == 'episode' and other.name == 'year': return match if match.name in ('season', 'episode'): if other.name in ('video_codec', 'audio_codec', 'container', 'date'): return match if (other.name == 'audio_channels' and 'weak-audio_channels' not in other.tags and not match.initiator.children.named(match.name + 'Marker')) or ( other.name == 'screen_size' and not int_coercable(other.raw)): return match if other.name in ('season', 'episode') and match.initiator != other.initiator: if (match.initiator.name in ('weak_episode', 'weak_duplicate') and other.initiator.name in ('weak_episode', 'weak_duplicate')): return '__default__' for current in (match, other): if 'weak-episode' in current.tags or 'x' in current.initiator.raw.lower(): return current return '__default__' season_words = config['season_words'] episode_words = config['episode_words'] of_words = config['of_words'] all_words = config['all_words'] season_markers = config['season_markers'] season_ep_markers = config['season_ep_markers'] disc_markers = config['disc_markers'] episode_markers = config['episode_markers'] range_separators = config['range_separators'] weak_discrete_separators = list(sep for sep in seps_no_fs if sep not in range_separators) strong_discrete_separators = config['discrete_separators'] discrete_separators = strong_discrete_separators + weak_discrete_separators max_range_gap = config['max_range_gap'] def ordering_validator(match): """ Validator for season list. They should be in natural order to be validated. episode/season separated by a weak discrete separator should be consecutive, unless a strong discrete separator or a range separator is present in the chain (1.3&5 is valid, but 1.3-5 is not valid and 1.3.5 is not valid) """ values = match.children.to_dict() if 'season' in values and is_iterable(values['season']): # Season numbers must be in natural order to be validated. if not list(sorted(values['season'])) == values['season']: return False if 'episode' in values and is_iterable(values['episode']): # Season numbers must be in natural order to be validated. if not list(sorted(values['episode'])) == values['episode']: return False def is_consecutive(property_name): """ Check if the property season or episode has valid consecutive values. :param property_name: :type property_name: :return: :rtype: """ previous_match = None valid = True for current_match in match.children.named(property_name): if previous_match: match.children.previous(current_match, lambda m: m.name == property_name + 'Separator') separator = match.children.previous(current_match, lambda m: m.name == property_name + 'Separator', 0) if separator.raw not in range_separators and separator.raw in weak_discrete_separators: if not 0 < current_match.value - previous_match.value <= max_range_gap + 1: valid = False if separator.raw in strong_discrete_separators: valid = True break previous_match = current_match return valid return is_consecutive('episode') and is_consecutive('season') # S01E02, 01x02, S01S02S03 rebulk.chain(formatter={'season': int, 'episode': int}, tags=['SxxExx'], abbreviations=[alt_dash], children=True, private_parent=True, validate_all=True, validator={'__parent__': ordering_validator}, conflict_solver=season_episode_conflict_solver, disabled=is_season_episode_disabled) \ .regex(build_or_pattern(season_markers, name='seasonMarker') + r'(?P<season>\d+)@?' + build_or_pattern(episode_markers + disc_markers, name='episodeMarker') + r'@?(?P<episode>\d+)', validate_all=True, validator={'__parent__': seps_before}).repeater('+') \ .regex(build_or_pattern(episode_markers + disc_markers + discrete_separators + range_separators, name='episodeSeparator', escape=True) + r'(?P<episode>\d+)').repeater('*') \ .chain() \ .regex(r'(?P<season>\d+)@?' + build_or_pattern(season_ep_markers, name='episodeMarker') + r'@?(?P<episode>\d+)', validate_all=True, validator={'__parent__': seps_before}) \ .chain() \ .regex(r'(?P<season>\d+)@?' + build_or_pattern(season_ep_markers, name='episodeMarker') + r'@?(?P<episode>\d+)', validate_all=True, validator={'__parent__': seps_before}) \ .regex(build_or_pattern(season_ep_markers + discrete_separators + range_separators, name='episodeSeparator', escape=True) + r'(?P<episode>\d+)').repeater('*') \ .chain() \ .regex(build_or_pattern(season_markers, name='seasonMarker') + r'(?P<season>\d+)', validate_all=True, validator={'__parent__': seps_before}) \ .regex(build_or_pattern(season_markers + discrete_separators + range_separators, name='seasonSeparator', escape=True) + r'(?P<season>\d+)').repeater('*') # episode_details property for episode_detail in ('Special', 'Pilot', 'Unaired', 'Final'): rebulk.string(episode_detail, value=episode_detail, name='episode_details', disabled=lambda context: is_disabled(context, 'episode_details')) def validate_roman(match): """ Validate a roman match if surrounded by separators :param match: :type match: :return: :rtype: """ if int_coercable(match.raw): return True return seps_surround(match) rebulk.defaults(private_names=['episodeSeparator', 'seasonSeparator', 'episodeMarker', 'seasonMarker'], validate_all=True, validator={'__parent__': seps_surround}, children=True, private_parent=True, conflict_solver=season_episode_conflict_solver) rebulk.chain(abbreviations=[alt_dash], formatter={'season': parse_numeral, 'count': parse_numeral}, validator={'__parent__': compose(seps_surround, ordering_validator), 'season': validate_roman, 'count': validate_roman}, disabled=lambda context: context.get('type') == 'movie' or is_disabled(context, 'season')) \ .defaults(validator=None) \ .regex(build_or_pattern(season_words, name='seasonMarker') + '@?(?P<season>' + numeral + ')') \ .regex(r'' + build_or_pattern(of_words) + '@?(?P<count>' + numeral + ')').repeater('?') \ .regex(r'@?' + build_or_pattern(range_separators + discrete_separators + ['@'], name='seasonSeparator', escape=True) + r'@?(?P<season>\d+)').repeater('*') rebulk.regex(build_or_pattern(episode_words, name='episodeMarker') + r'-?(?P<episode>\d+)' + r'(?:v(?P<version>\d+))?' + r'(?:-?' + build_or_pattern(of_words) + r'-?(?P<count>\d+))?', # Episode 4 abbreviations=[dash], formatter={'episode': int, 'version': int, 'count': int}, disabled=lambda context: context.get('type') == 'episode' or is_disabled(context, 'episode')) rebulk.regex(build_or_pattern(episode_words, name='episodeMarker') + r'-?(?P<episode>' + numeral + ')' + r'(?:v(?P<version>\d+))?' + r'(?:-?' + build_or_pattern(of_words) + r'-?(?P<count>\d+))?', # Episode 4 abbreviations=[dash], validator={'episode': validate_roman}, formatter={'episode': parse_numeral, 'version': int, 'count': int}, disabled=lambda context: context.get('type') != 'episode' or is_disabled(context, 'episode')) rebulk.regex(r'S?(?P<season>\d+)-?(?:xE|Ex|E|x)-?(?P<other>' + build_or_pattern(all_words) + ')', tags=['SxxExx'], abbreviations=[dash], validator=None, formatter={'season': int, 'other': lambda match: 'Complete'}, disabled=lambda context: is_disabled(context, 'season')) # 12, 13 rebulk.chain(tags=['weak-episode'], formatter={'episode': int, 'version': int}, disabled=lambda context: context.get('type') == 'movie' or is_disabled(context, 'episode')) \ .defaults(validator=None) \ .regex(r'(?P<episode>\d{2})') \ .regex(r'v(?P<version>\d+)').repeater('?') \ .regex(r'(?P<episodeSeparator>[x-])(?P<episode>\d{2})').repeater('*') # 012, 013 rebulk.chain(tags=['weak-episode'], formatter={'episode': int, 'version': int}, disabled=lambda context: context.get('type') == 'movie' or is_disabled(context, 'episode')) \ .defaults(validator=None) \ .regex(r'0(?P<episode>\d{1,2})') \ .regex(r'v(?P<version>\d+)').repeater('?') \ .regex(r'(?P<episodeSeparator>[x-])0(?P<episode>\d{1,2})').repeater('*') # 112, 113 rebulk.chain(tags=['weak-episode'], formatter={'episode': int, 'version': int}, name='weak_episode', disabled=lambda context: context.get('type') == 'movie' or is_disabled(context, 'episode')) \ .defaults(validator=None) \ .regex(r'(?P<episode>\d{3,4})') \ .regex(r'v(?P<version>\d+)').repeater('?') \ .regex(r'(?P<episodeSeparator>[x-])(?P<episode>\d{3,4})').repeater('*') # 1, 2, 3 rebulk.chain(tags=['weak-episode'], formatter={'episode': int, 'version': int}, disabled=lambda context: context.get('type') != 'episode' or is_disabled(context, 'episode')) \ .defaults(validator=None) \ .regex(r'(?P<episode>\d)') \ .regex(r'v(?P<version>\d+)').repeater('?') \ .regex(r'(?P<episodeSeparator>[x-])(?P<episode>\d{1,2})').repeater('*') # e112, e113, 1e18, 3e19 # TODO: Enhance rebulk for validator to be used globally (season_episode_validator) rebulk.chain(formatter={'season': int, 'episode': int, 'version': int}, disabled=lambda context: is_disabled(context, 'episode')) \ .defaults(validator=None) \ .regex(r'(?P<season>\d{1,2})?(?P<episodeMarker>e)(?P<episode>\d{1,4})') \ .regex(r'v(?P<version>\d+)').repeater('?') \ .regex(r'(?P<episodeSeparator>e|x|-)(?P<episode>\d{1,4})').repeater('*') # ep 112, ep113, ep112, ep113 rebulk.chain(abbreviations=[dash], formatter={'episode': int, 'version': int}, disabled=lambda context: is_disabled(context, 'episode')) \ .defaults(validator=None) \ .regex(r'ep-?(?P<episode>\d{1,4})') \ .regex(r'v(?P<version>\d+)').repeater('?') \ .regex(r'(?P<episodeSeparator>ep|e|x|-)(?P<episode>\d{1,4})').repeater('*') # cap 112, cap 112_114 rebulk.chain(abbreviations=[dash], tags=['see-pattern'], formatter={'season': int, 'episode': int}, disabled=is_season_episode_disabled) \ .defaults(validator=None) \ .regex(r'(?P<seasonMarker>cap)-?(?P<season>\d{1,2})(?P<episode>\d{2})') \ .regex(r'(?P<episodeSeparator>-)(?P<season>\d{1,2})(?P<episode>\d{2})').repeater('?') # 102, 0102 rebulk.chain(tags=['weak-episode', 'weak-duplicate'], formatter={'season': int, 'episode': int, 'version': int}, name='weak_duplicate', conflict_solver=season_episode_conflict_solver, disabled=lambda context: (context.get('episode_prefer_number', False) or context.get('type') == 'movie') or is_season_episode_disabled(context)) \ .defaults(validator=None) \ .regex(r'(?P<season>\d{1,2})(?P<episode>\d{2})') \ .regex(r'v(?P<version>\d+)').repeater('?') \ .regex(r'(?P<episodeSeparator>x|-)(?P<episode>\d{2})').repeater('*') rebulk.regex(r'v(?P<version>\d+)', children=True, private_parent=True, formatter=int, disabled=lambda context: is_disabled(context, 'version')) rebulk.defaults(private_names=['episodeSeparator', 'seasonSeparator']) # TODO: List of words # detached of X count (season/episode) rebulk.regex(r'(?P<episode>\d+)-?' + build_or_pattern(of_words) + r'-?(?P<count>\d+)-?' + build_or_pattern(episode_words) + '?', abbreviations=[dash], children=True, private_parent=True, formatter=int, disabled=lambda context: is_disabled(context, 'episode')) rebulk.regex(r'Minisodes?', name='episode_format', value="Minisode", disabled=lambda context: is_disabled(context, 'episode_format')) rebulk.rules(WeakConflictSolver, RemoveInvalidSeason, RemoveInvalidEpisode, SeePatternRange(range_separators + ['_']), EpisodeNumberSeparatorRange(range_separators), SeasonSeparatorRange(range_separators), RemoveWeakIfMovie, RemoveWeakIfSxxExx, RemoveWeakDuplicate, EpisodeDetailValidator, RemoveDetachedEpisodeNumber, VersionValidator, RemoveWeak, RenameToAbsoluteEpisode, CountValidator, EpisodeSingleDigitValidator, RenameToDiscMatch) return rebulk class WeakConflictSolver(Rule): """ Rule to decide whether weak-episode or weak-duplicate matches should be kept. If an anime is detected: - weak-duplicate matches should be removed - weak-episode matches should be tagged as anime Otherwise: - weak-episode matches are removed unless they're part of an episode range match. """ priority = 128 consequence = [RemoveMatch, AppendMatch] def enabled(self, context): return context.get('type') != 'movie' @classmethod def is_anime(cls, matches): """Return True if it seems to be an anime. Anime characteristics: - version, crc32 matches - screen_size inside brackets - release_group at start and inside brackets """ if matches.named('version') or matches.named('crc32'): return True for group in matches.markers.named('group'): if matches.range(group.start, group.end, predicate=lambda m: m.name == 'screen_size'): return True if matches.markers.starting(group.start, predicate=lambda m: m.name == 'path'): hole = matches.holes(group.start, group.end, index=0) if hole and hole.raw == group.raw: return True return False def when(self, matches, context): to_remove = [] to_append = [] anime_detected = self.is_anime(matches) for filepart in matches.markers.named('path'): weak_matches = matches.range(filepart.start, filepart.end, predicate=( lambda m: m.initiator.name == 'weak_episode')) weak_dup_matches = matches.range(filepart.start, filepart.end, predicate=( lambda m: m.initiator.name == 'weak_duplicate')) if anime_detected: if weak_matches: to_remove.extend(weak_dup_matches) for match in matches.range(filepart.start, filepart.end, predicate=( lambda m: m.name == 'episode' and m.initiator.name != 'weak_duplicate')): episode = copy.copy(match) episode.tags = episode.tags + ['anime'] to_append.append(episode) to_remove.append(match) elif weak_dup_matches: episodes_in_range = matches.range(filepart.start, filepart.end, predicate=( lambda m: m.name == 'episode' and m.initiator.name == 'weak_episode' and m.initiator.children.named('episodeSeparator') )) if not episodes_in_range and not matches.range(filepart.start, filepart.end, predicate=lambda m: 'SxxExx' in m.tags): to_remove.extend(weak_matches) else: for match in episodes_in_range: episode = copy.copy(match) episode.tags = [] to_append.append(episode) to_remove.append(match) if to_append: to_remove.extend(weak_dup_matches) return to_remove, to_append class CountValidator(Rule): """ Validate count property and rename it """ priority = 64 consequence = [RemoveMatch, RenameMatch('episode_count'), RenameMatch('season_count')] properties = {'episode_count': [None], 'season_count': [None]} def when(self, matches, context): to_remove = [] episode_count = [] season_count = [] for count in matches.named('count'): previous = matches.previous(count, lambda match: match.name in ['episode', 'season'], 0) if previous: if previous.name == 'episode': episode_count.append(count) elif previous.name == 'season': season_count.append(count) else: to_remove.append(count) return to_remove, episode_count, season_count class SeePatternRange(Rule): """ Create matches for episode range for SEE pattern. E.g.: Cap.102_104 """ priority = 128 consequence = [RemoveMatch, AppendMatch] def __init__(self, range_separators): super(SeePatternRange, self).__init__() self.range_separators = range_separators def when(self, matches, context): to_remove = [] to_append = [] for separator in matches.tagged('see-pattern', lambda m: m.name == 'episodeSeparator'): previous_match = matches.previous(separator, lambda m: m.name == 'episode' and 'see-pattern' in m.tags, 0) next_match = matches.next(separator, lambda m: m.name == 'season' and 'see-pattern' in m.tags, 0) if not next_match: continue next_match = matches.next(next_match, lambda m: m.name == 'episode' and 'see-pattern' in m.tags, 0) if previous_match and next_match and separator.value in self.range_separators: to_remove.append(next_match) for episode_number in range(previous_match.value + 1, next_match.value + 1): match = copy.copy(next_match) match.value = episode_number to_append.append(match) to_remove.append(separator) return to_remove, to_append class AbstractSeparatorRange(Rule): """ Remove separator matches and create matches for season range. """ priority = 128 consequence = [RemoveMatch, AppendMatch] def __init__(self, range_separators, property_name): super(AbstractSeparatorRange, self).__init__() self.range_separators = range_separators self.property_name = property_name def when(self, matches, context): to_remove = [] to_append = [] for separator in matches.named(self.property_name + 'Separator'): previous_match = matches.previous(separator, lambda m: m.name == self.property_name, 0) next_match = matches.next(separator, lambda m: m.name == self.property_name, 0) initiator = separator.initiator if previous_match and next_match and separator.value in self.range_separators: to_remove.append(next_match) for episode_number in range(previous_match.value + 1, next_match.value): match = copy.copy(next_match) match.value = episode_number initiator.children.append(match) to_append.append(match) to_append.append(next_match) to_remove.append(separator) previous_match = None for next_match in matches.named(self.property_name): if previous_match: separator = matches.input_string[previous_match.initiator.end:next_match.initiator.start] if separator not in self.range_separators: separator = strip(separator) if separator in self.range_separators: initiator = previous_match.initiator for episode_number in range(previous_match.value + 1, next_match.value): match = copy.copy(next_match) match.value = episode_number initiator.children.append(match) to_append.append(match) to_append.append(Match(previous_match.end, next_match.start - 1, name=self.property_name + 'Separator', private=True, input_string=matches.input_string)) to_remove.append(next_match) # Remove and append match to support proper ordering to_append.append(next_match) previous_match = next_match return to_remove, to_append class RenameToAbsoluteEpisode(Rule): """ Rename episode to absolute_episodes. Absolute episodes are only used if two groups of episodes are detected: S02E04-06 25-27 25-27 S02E04-06 2x04-06 25-27 28. Anime Name S02E05 The matches in the group with higher episode values are renamed to absolute_episode. """ consequence = RenameMatch('absolute_episode') def when(self, matches, context): # pylint:disable=inconsistent-return-statements initiators = {match.initiator for match in matches.named('episode') if len(match.initiator.children.named('episode')) > 1} if len(initiators) != 2: ret = [] for filepart in matches.markers.named('path'): if matches.range(filepart.start + 1, filepart.end, predicate=lambda m: m.name == 'episode'): ret.extend( matches.starting(filepart.start, predicate=lambda m: m.initiator.name == 'weak_episode')) return ret initiators = sorted(initiators, key=lambda item: item.end) if not matches.holes(initiators[0].end, initiators[1].start, predicate=lambda m: m.raw.strip(seps)): first_range = matches.named('episode', predicate=lambda m: m.initiator == initiators[0]) second_range = matches.named('episode', predicate=lambda m: m.initiator == initiators[1]) if len(first_range) == len(second_range): if second_range[0].value > first_range[0].value: return second_range if first_range[0].value > second_range[0].value: return first_range class EpisodeNumberSeparatorRange(AbstractSeparatorRange): """ Remove separator matches and create matches for episoderNumber range. """ def __init__(self, range_separators): super(EpisodeNumberSeparatorRange, self).__init__(range_separators, "episode") class SeasonSeparatorRange(AbstractSeparatorRange): """ Remove separator matches and create matches for season range. """ def __init__(self, range_separators): super(SeasonSeparatorRange, self).__init__(range_separators, "season") class RemoveWeakIfMovie(Rule): """ Remove weak-episode tagged matches if it seems to be a movie. """ priority = 64 consequence = RemoveMatch def enabled(self, context): return context.get('type') != 'episode' def when(self, matches, context): to_remove = [] to_ignore = set() remove = False for filepart in matches.markers.named('path'): year = matches.range(filepart.start, filepart.end, predicate=lambda m: m.name == 'year', index=0) if year: remove = True next_match = matches.range(year.end, filepart.end, predicate=lambda m: m.private, index=0) if (next_match and not matches.holes(year.end, next_match.start, predicate=lambda m: m.raw.strip(seps)) and not matches.at_match(next_match, predicate=lambda m: m.name == 'year')): to_ignore.add(next_match.initiator) to_ignore.update(matches.range(filepart.start, filepart.end, predicate=lambda m: len(m.children.named('episode')) > 1)) to_remove.extend(matches.conflicting(year)) if remove: to_remove.extend(matches.tagged('weak-episode', predicate=( lambda m: m.initiator not in to_ignore and 'anime' not in m.tags))) return to_remove class RemoveWeak(Rule): """ Remove weak-episode matches which appears after video, source, and audio matches. """ priority = 16 consequence = RemoveMatch def when(self, matches, context): to_remove = [] for filepart in matches.markers.named('path'): weaks = matches.range(filepart.start, filepart.end, predicate=lambda m: 'weak-episode' in m.tags) if weaks: previous = matches.previous(weaks[0], predicate=lambda m: m.name in ( 'audio_codec', 'screen_size', 'streaming_service', 'source', 'video_profile', 'audio_channels', 'audio_profile'), index=0) if previous and not matches.holes( previous.end, weaks[0].start, predicate=lambda m: m.raw.strip(seps)): to_remove.extend(weaks) return to_remove class RemoveWeakIfSxxExx(Rule): """ Remove weak-episode tagged matches if SxxExx pattern is matched. Weak episodes at beginning of filepart are kept. """ priority = 64 consequence = RemoveMatch def when(self, matches, context): to_remove = [] for filepart in matches.markers.named('path'): if matches.range(filepart.start, filepart.end, predicate=lambda m: not m.private and 'SxxExx' in m.tags): for match in matches.range(filepart.start, filepart.end, predicate=lambda m: 'weak-episode' in m.tags): if match.start != filepart.start or match.initiator.name != 'weak_episode': to_remove.append(match) return to_remove class RemoveInvalidSeason(Rule): """ Remove invalid season matches. """ priority = 64 consequence = RemoveMatch def when(self, matches, context): to_remove = [] for filepart in matches.markers.named('path'): strong_season = matches.range(filepart.start, filepart.end, index=0, predicate=lambda m: m.name == 'season' and not m.private and 'SxxExx' in m.tags) if strong_season: if strong_season.initiator.children.named('episode'): for season in matches.range(strong_season.end, filepart.end, predicate=lambda m: m.name == 'season' and not m.private): # remove weak season or seasons without episode matches if 'SxxExx' not in season.tags or not season.initiator.children.named('episode'): if season.initiator: to_remove.append(season.initiator) to_remove.extend(season.initiator.children) else: to_remove.append(season) return to_remove class RemoveInvalidEpisode(Rule): """ Remove invalid episode matches. """ priority = 64 consequence = RemoveMatch def when(self, matches, context): to_remove = [] for filepart in matches.markers.named('path'): strong_episode = matches.range(filepart.start, filepart.end, index=0, predicate=lambda m: m.name == 'episode' and not m.private and 'SxxExx' in m.tags) if strong_episode: strong_ep_marker = RemoveInvalidEpisode.get_episode_prefix(matches, strong_episode) for episode in matches.range(strong_episode.end, filepart.end, predicate=lambda m: m.name == 'episode' and not m.private): ep_marker = RemoveInvalidEpisode.get_episode_prefix(matches, episode) if strong_ep_marker and ep_marker and strong_ep_marker.value.lower() != ep_marker.value.lower(): if episode.initiator: to_remove.append(episode.initiator) to_remove.extend(episode.initiator.children) else: to_remove.append(ep_marker) to_remove.append(episode) return to_remove @staticmethod def get_episode_prefix(matches, episode): """ Return episode prefix: episodeMarker or episodeSeparator """ return matches.previous(episode, index=0, predicate=lambda m: m.name in ('episodeMarker', 'episodeSeparator')) class RemoveWeakDuplicate(Rule): """ Remove weak-duplicate tagged matches if duplicate patterns, for example The 100.109 """ priority = 64 consequence = RemoveMatch def when(self, matches, context): to_remove = [] for filepart in matches.markers.named('path'): patterns = defaultdict(list) for match in reversed(matches.range(filepart.start, filepart.end, predicate=lambda m: 'weak-duplicate' in m.tags)): if match.pattern in patterns[match.name]: to_remove.append(match) else: patterns[match.name].append(match.pattern) return to_remove class EpisodeDetailValidator(Rule): """ Validate episode_details if they are detached or next to season or episode. """ priority = 64 consequence = RemoveMatch def when(self, matches, context): ret = [] for detail in matches.named('episode_details'): if not seps_surround(detail) \ and not matches.previous(detail, lambda match: match.name in ['season', 'episode']) \ and not matches.next(detail, lambda match: match.name in ['season', 'episode']): ret.append(detail) return ret class RemoveDetachedEpisodeNumber(Rule): """ If multiple episode are found, remove those that are not detached from a range and less than 10. Fairy Tail 2 - 16-20, 2 should be removed. """ priority = 64 consequence = RemoveMatch dependency = [RemoveWeakIfSxxExx, RemoveWeakDuplicate] def when(self, matches, context): ret = [] episode_numbers = [] episode_values = set() for match in matches.named('episode', lambda m: not m.private and 'weak-episode' in m.tags): if match.value not in episode_values: episode_numbers.append(match) episode_values.add(match.value) episode_numbers = list(sorted(episode_numbers, key=lambda m: m.value)) if len(episode_numbers) > 1 and \ episode_numbers[0].value < 10 and \ episode_numbers[1].value - episode_numbers[0].value != 1: parent = episode_numbers[0] while parent: # TODO: Add a feature in rebulk to avoid this ... ret.append(parent) parent = parent.parent return ret class VersionValidator(Rule): """ Validate version if previous match is episode or if surrounded by separators. """ priority = 64 dependency = [RemoveWeakIfMovie, RemoveWeakIfSxxExx] consequence = RemoveMatch def when(self, matches, context): ret = [] for version in matches.named('version'): episode_number = matches.previous(version, lambda match: match.name == 'episode', 0) if not episode_number and not seps_surround(version.initiator): ret.append(version) return ret class EpisodeSingleDigitValidator(Rule): """ Remove single digit episode when inside a group that doesn't own title. """ dependency = [TitleFromPosition] consequence = RemoveMatch def when(self, matches, context): ret = [] for episode in matches.named('episode', lambda match: len(match.initiator) == 1): group = matches.markers.at_match(episode, lambda marker: marker.name == 'group', index=0) if group: if not matches.range(*group.span, predicate=lambda match: match.name == 'title'): ret.append(episode) return ret class RenameToDiscMatch(Rule): """ Rename episodes detected with `d` episodeMarkers to `disc`. """ consequence = [RenameMatch('disc'), RenameMatch('discMarker'), RemoveMatch] def when(self, matches, context): discs = [] markers = [] to_remove = [] disc_disabled = is_disabled(context, 'disc') for marker in matches.named('episodeMarker', predicate=lambda m: m.value.lower() == 'd'): if disc_disabled: to_remove.append(marker) to_remove.extend(marker.initiator.children) continue markers.append(marker) discs.extend(sorted(marker.initiator.children.named('episode'), key=lambda m: m.value)) return discs, markers, to_remove
43.640698
119
0.588154
20,727
0.552263
0
0
1,109
0.029549
0
0
8,688
0.231489
97f09a874f39695917154d611858caf14ea0be1a
76,767
py
Python
cwinpy/heterodyne/heterodyne.py
nigeltrc72/cwinpy
f90cf46e20c4d5abd09dc0540d4694ca6d5d9b42
[ "MIT" ]
5
2021-02-25T13:04:43.000Z
2022-01-15T22:37:33.000Z
cwinpy/heterodyne/heterodyne.py
nigeltrc72/cwinpy
f90cf46e20c4d5abd09dc0540d4694ca6d5d9b42
[ "MIT" ]
4
2021-02-24T12:17:50.000Z
2021-12-09T16:41:33.000Z
cwinpy/heterodyne/heterodyne.py
nigeltrc72/cwinpy
f90cf46e20c4d5abd09dc0540d4694ca6d5d9b42
[ "MIT" ]
1
2021-02-24T11:40:32.000Z
2021-02-24T11:40:32.000Z
""" Run heterodyne pre-processing of gravitational-wave data. """ import ast import configparser import copy import os import shutil import signal import sys import tempfile from argparse import ArgumentParser import cwinpy import numpy as np from bilby_pipe.bilbyargparser import BilbyArgParser from bilby_pipe.job_creation.dag import Dag from bilby_pipe.utils import ( BilbyPipeError, check_directory_exists_and_if_not_mkdir, parse_args, ) from configargparse import ArgumentError from ..condor.hetnodes import HeterodyneInput, HeterodyneNode, MergeHeterodyneNode from ..data import HeterodynedData from ..info import ( ANALYSIS_SEGMENTS, CVMFS_GWOSC_DATA_SERVER, CVMFS_GWOSC_DATA_TYPES, CVMFS_GWOSC_FRAME_CHANNELS, HW_INJ, HW_INJ_RUNTIMES, HW_INJ_SEGMENTS, RUNTIMES, ) from ..parfile import PulsarParameters from ..utils import ( LAL_BINARY_MODELS, LAL_EPHEMERIS_TYPES, check_for_tempo2, initialise_ephemeris, sighandler, ) from .base import Heterodyne, generate_segments, remote_frame_cache def create_heterodyne_parser(): """ Create the argument parser. """ description = """\ A script to heterodyne raw gravitational-wave strain data based on the \ expected evolution of the gravitational-wave signal from a set of pulsars.""" parser = BilbyArgParser( prog=sys.argv[0], description=description, ignore_unknown_config_file_keys=False, allow_abbrev=False, ) parser.add("--config", type=str, is_config_file=True, help="Configuration ini file") parser.add( "--version", action="version", version="%(prog)s {version}".format(version=cwinpy.__version__), ) parser.add( "--periodic-restart-time", default=14400, type=int, help=( "Time after which the job will be self-evicted with code 130. " "After this, condor will restart the job. Default is 14400s. " "This is used to decrease the chance of HTCondor hard evictions." ), ) parser.add( "--overwrite", action="store_true", default=False, help=( "Set this flag to make sure any previously generated heterodyned " 'files are overwritten. By default the analysis will "resume" ' "from where it left off (by checking whether output files, as set " 'using "--output" and "--label" arguments, already exist), such ' "as after forced Condor eviction for checkpointing purposes. " "Therefore, this flag is needs to be explicitly given (the " "default is False) if not wanting to use resume and overwrite " "existing files." ), ) dataparser = parser.add_argument_group("Data inputs") dataparser.add( "--starttime", required=True, type=int, help=("The start time of the data to be heterodyned in GPS seconds."), ) dataparser.add( "--endtime", required=True, type=int, help=("The end time of the data to be heterodyned in GPS seconds."), ) dataparser.add( "--stride", default=3600, type=int, help=( "The number of seconds to stride through the data (i.e., this " "number of seconds of data will be read in in one go), Defaults " "to 3600." ), ) dataparser.add( "--detector", required=True, type=str, help=("The name of the detectors for which the data is to be heterodyned."), ) dataparser.add( "--frametype", type=str, help=( 'The "frame type" name of the data to be heterodyned. If this ' "is not given the correct data set will be attempted to be found " "using the channel name." ), ) dataparser.add( "--channel", required=True, type=str, help=( 'The "channel" within the gravitational-wave data file(s) ' '(either a GW frame ".gwf", or HDF5 file) containing the strain ' "data to be heterodyned. The channel name should contain the " "detector name prefix as the first two characters followed by a " 'colon, e.g., "L1:GWOSC-4KHZ_R1_STRAIN"' ), ) dataparser.add( "--host", type=str, help=( "The server name for finding the gravitational-wave data files. " 'Use "datafind.ligo.org:443" for open data available via CVMFS. ' "To use open data available from the GWOSC use " '"https://www.gw-openscience.org".' ), ) dataparser.add( "--outputframecache", type=str, help=( "If given this should give a file path to which a list of " "gravitational-wave data file paths, as found by the code, will " "be written. If not given then the file list will not be output." ), ) dataparser.add( "--appendframecache", action="store_true", default=False, help=( "If writing out the frame cache to a file, set this to True to " "append to the file rather than overwriting. Default is False." ), ) dataparser.add( "--framecache", help=( "Provide a pregenerated cache of gravitational-wave files, either " "as a single file, or a list of files. Alternatively, you can " "supply a directory containing the files (which will be " "searched recursively for gwf and then hdf5 files), which should " 'be used in conjunction with the "frametype" argument. If giving ' "a list, this should be in the form of a Python list, surrounded " "by quotation marks, e.g., \"['file1.lcf','file2.lcf']\"." ), ) dataparser.add( "--heterodyneddata", help=( "A string, or dictionary of strings, containing the full file " "path, or directory path, pointing the the location of " "pre-heterodyned data. For a single pulsar a file path can be " "given. For multiple pulsars a directory containing heterodyned " "files (in HDF5 or txt format) can be given provided that within " "it the file names contain the pulsar names as supplied in the " 'file input with "--pulsarfiles". Alternatively, a dictionary ' "can be supplied, keyed on the pulsar name, containing a single " "file path or a directory path as above. If supplying a " "directory, it can contain multiple heterodyned files for a each " "pulsar and all will be used. If giving a dictionary it should be " "surrounded by quotation marks." ), ) segmentparser = parser.add_argument_group("Analysis segment inputs") segmentparser.add( "--segmentlist", help=( "Provide a list of data segment start and end times, as " "list/tuple pairs in the list, or an ASCII text file containing " "the segment start and end times in two columns. If a list, this " "should be in the form of a Python list, surrounded by quotation " 'marks, e.g., "[(900000000,900086400),(900100000,900186400)]".' ), ) segmentparser.add( "--includeflags", help=( "If not providing a segment list then give a string, or list of " "strings, giving the data DQ flags that will be used to generate " "a segment list. Lists should be surrounded by quotation marks, " "e.g., \"['L1:DMT-ANALYSIS_READY:1']\"." ), ) segmentparser.add( "--excludeflags", help=( "A string, or list of strings, giving the data DQ flags to " "when generating a segment list. Lists should be surrounded by " "quotation marks." ), ) segmentparser.add( "--outputsegmentlist", type=str, help=( "If generating a segment list it will be output to the file " "specified by this argument." ), ) segmentparser.add( "--appendsegmentlist", action="store_true", default=False, help=( "If generating a segment list set this to True to append to the " 'file specified by "--outputsegmentlist" rather than ' "overwriting. Default is False." ), ) segmentparser.add("--segmentserver", type=str, help=("The segment database URL.")) pulsarparser = parser.add_argument_group("Pulsar inputs") pulsarparser.add( "--pulsarfiles", action="append", help=( "This specifies the pulsars for which to heterodyne the data. It " "can be either i) a string giving the path to an individual " "pulsar Tempo(2)-style parameter file, ii) a string giving the " "path to a directory containing multiple Tempo(2)-style parameter " "files (the path will be recursively searched for any file with " 'the extension ".par"), iii) a list of paths to individual ' "pulsar parameter files, iv) a dictionary containing paths to " "individual pulsars parameter files keyed to their names. If " "instead, pulsar names are given rather than parameter files it " "will attempt to extract an ephemeris for those pulsars from the " "ATNF pulsar catalogue. If such ephemerides are available then " "they will be used (notification will be given when this is " "these cases). If providing a list or dictionary it should be " "surrounded by quotation marks." ), ) pulsarparser.add( "--pulsars", action="append", help=( "You can analyse only particular pulsars from those specified by " 'parameter files found through the "--pulsarfiles" argument by ' "passing a string, or list of strings, with particular pulsars " "names to use." ), ) outputparser = parser.add_argument_group("Data output inputs") outputparser.add( "--output", help=( "The base directory into which the heterodyned results will be " "output. To specify explicit directory paths for individual " "pulsars this can be a dictionary of directory paths keyed to the " 'pulsar name (in which case the "--label" argument will be used ' "to set the file name), or full file paths, which will be used in " 'place of the "--label" argument. If not given then the current' "working directory will be used." ), ) outputparser.add( "--label", help=( "The output format for the heterodyned data files. These can be " 'format strings containing the keywords "psr" for the pulsar ' 'name, "det" for the detector, "freqfactor" for the rotation ' 'frequency scale factor used, "gpsstart" for the GPS start ' 'time, and "gpsend" for the GPS end time. The extension should ' 'be given as ".hdf", ".h5", or ".hdf5". E.g., the default ' 'is "heterodyne_{psr}_{det}_{freqfactor}_{gpsstart}-{gpsend}.hdf".' ), ) heterodyneparser = parser.add_argument_group("Heterodyne inputs") heterodyneparser.add( "--filterknee", type=float, help=( "The knee frequency (Hz) of the low-pass filter applied after " "heterodyning the data. This should only be given when " "heterodying raw strain data and not if re-heterodyning processed " "data. Default is 0.5 Hz." ), ) heterodyneparser.add( "--resamplerate", type=float, required=True, help=( "The rate in Hz at which to resample the data (via averaging) " "after application of the heterodyne (and filter if applied)." ), ) heterodyneparser.add( "--freqfactor", type=float, help=( "The factor applied to the pulsars rotational parameters when " "defining the gravitational-wave phase evolution. For example, " "the default value of 2 multiplies the phase evolution by 2 under " "the assumption of a signal emitted from the l=m=2 quadrupole " "mode of a rigidly rotating triaxial neutron star." ), ) heterodyneparser.add( "--crop", type=int, help=( "The number of seconds to crop from the start and end of data " "segments to remove filter impulse effects and issues prior to " "lock-loss. Default is 60 seconds." ), ) heterodyneparser.add( "--includessb", action="store_true", default=False, help=( "Set this flag to include removing the modulation of the signal due to " "Solar System motion and relativistic effects (e.g., Roemer, " "Einstein, and Shapiro delay) during the heterodyne." ), ) heterodyneparser.add( "--includebsb", action="store_true", default=False, help=( "Set this flag to include removing the modulation of the signal " "due to binary system motion and relativistic effects during the " 'heterodyne. To use this "--includessb" must also be set.' ), ) heterodyneparser.add( "--includeglitch", action="store_true", default=False, help=( "Set this flag to include removing the effects of the phase " "evolution of any modelled pulsar glitches during the heterodyne." ), ) heterodyneparser.add( "--includefitwaves", action="store_true", default=False, help=( "Set this to True to include removing the phase evolution of a " "series of sinusoids designed to model low-frequency timing noise " "in the pulsar signal during the heterodyne." ), ) heterodyneparser.add( "--usetempo2", action="store_true", default=False, help=( "Set this to True to use Tempo2 (via libstempo) to calculate the " "signal phase evolution. For this to be used v2.4.2 or greater of " "libstempo must be installed. When using Tempo2 the " '"--earthephemeris", "--sunephemeris" and "--timeephemeris" ' "arguments do not need to be supplied. This can only be used when " "running the full heterodyne in one stage, but not for " 're-heterodyning previous data, as such all the "--include..." ' "arguments will be assumed to be True." ), ) ephemerisparser = parser.add_argument_group("Solar system ephemeris inputs") ephemerisparser.add( "--earthephemeris", help=( 'A dictionary, keyed to ephemeris names, e.g., "DE405", pointing ' "to the location of a file containing that ephemeris for the " "Earth. The dictionary must be supplied within quotation marks, " "e.g., \"{'DE436':'earth_DE436.txt'}\". If a pulsar requires a " "specific ephemeris that is not provided in this dictionary, then " "the code will automatically attempt to find or download the " "required file if available." ), ) ephemerisparser.add( "--sunephemeris", help=( 'A dictionary, keyed to ephemeris names, e.g., "DE405", pointing ' "to the location of a file containing that ephemeris for the " "Sun. If a pulsar requires a specific ephemeris that is not " "provided in this dictionary, then the code will automatically " "attempt to find or download the required file if available." ), ) ephemerisparser.add( "--timeephemeris", help=( "A dictionary, keyed to time system name, which can be either " '"TCB" or "TDB", pointing to the location of a file containing ' "that ephemeris for that time system. If a pulsar requires a " "specific ephemeris that is not provided in this dictionary, then " "the code will automatically attempt to find or download the " "required file if available." ), ) cfparser = parser.add_argument_group("Configuration inputs") cfparser.add( "--cwinpy-heterodyne-dag-config-file", help=( "A path to the cwinpy_heterodyne_dag configuration file can be " "supplied if this was has been used to setup the heterodyne job." ), ) return parser def heterodyne(**kwargs): """ Run heterodyne within Python. See the `class::~cwinpy.heterodyne.Heterodyne` class for the required arguments. Returns ------- het: `class::~cwinpy.heterodyne.Heterodyne` The heterodyning class object. """ if "cli" in kwargs or "config" in kwargs: if "cli" in kwargs: kwargs.pop("cli") # get command line arguments parser = create_heterodyne_parser() # parse config file or command line arguments if "config" in kwargs: cliargs = ["--config", kwargs["config"]] else: cliargs = sys.argv[1:] try: args, _ = parse_args(cliargs, parser) except BilbyPipeError as e: raise IOError("{}".format(e)) # convert args to a dictionary hetkwargs = vars(args) if "config" in kwargs: # update with other keyword arguments hetkwargs.update(kwargs) else: hetkwargs = kwargs # check non-standard arguments that could be Python objects nsattrs = [ "framecache", "heterodyneddata", "segmentlist", "includeflags", "excludeflags", "pulsarfiles", "pulsars", "output", "earthephemeris", "sunephemeris", "timeephemeris", ] for attr in nsattrs: value = hetkwargs.pop(attr, None) if isinstance(value, str): # check whether the value can be evaluated as a Python object try: value = ast.literal_eval(value) except (ValueError, SyntaxError): pass # if the value was a string within a string, e.g., '"[2.3]"', # evaluate again just in case it contains a Python object! if isinstance(value, str): try: value = ast.literal_eval(value) except (ValueError, SyntaxError): pass hetkwargs[attr] = value elif value is not None: hetkwargs[attr] = value # check if pulsarfiles is a single entry list containing a dictionary if isinstance(hetkwargs["pulsarfiles"], list): if len(hetkwargs["pulsarfiles"]) == 1: try: value = ast.literal_eval(hetkwargs["pulsarfiles"][0]) if isinstance(value, dict): # switch to passing the dictionary hetkwargs["pulsarfiles"] = value except SyntaxError: pass signal.signal(signal.SIGALRM, handler=sighandler) signal.alarm(hetkwargs.pop("periodic_restart_time", 14400)) # remove any None values for key in hetkwargs.copy(): if hetkwargs[key] is None: hetkwargs.pop(key) # convert "overwrite" to "resume" hetkwargs["resume"] = not hetkwargs.pop("overwrite", False) # remove "config" from hetkwargs if "config" in hetkwargs: hetkwargs.pop("config") # set up the run het = Heterodyne(**hetkwargs) # heterodyne the data het.heterodyne() return het def heterodyne_cli(**kwargs): # pragma: no cover """ Entry point to ``cwinpy_heterodyne`` script. This just calls :func:`cwinpy.heterodyne.heterodyne`, but does not return any objects. """ kwargs["cli"] = True # set to show use of CLI _ = heterodyne(**kwargs) def create_heterodyne_merge_parser(): """ Create the argument parser for merging script. """ description = "A script to merge multiple heterodyned data files." parser = BilbyArgParser( prog=sys.argv[0], description=description, ignore_unknown_config_file_keys=False, allow_abbrev=False, ) parser.add("--config", type=str, is_config_file=True, help="Configuration ini file") parser.add( "--version", action="version", version="%(prog)s {version}".format(version=cwinpy.__version__), ) parser.add( "--heterodynedfiles", action="append", type=str, help=("A path, or list of paths, to heterodyned data files to merge together."), ) parser.add( "--output", type=str, help=("The output file for the merged heterodyned data."), ) parser.add( "--overwrite", action="store_true", help=("Set if wanting to overwrite an existing merged file."), ) parser.add( "--remove", action="store_true", help=("Set if wanting to delete individual files being merged."), ) return parser def heterodyne_merge(**kwargs): """ Merge the output of multiple heterodynes for a specific pulsar. Parameters ---------- heterodynedfiles: str, list A string, or list of strings, giving the paths to heterodyned data files to be read in and merged output: str The output file name to write the data to. If not given then the data will not be output. overwrite: bool Set whether to overwrite an existing file. Defaults to False. remove: bool Set whether to remove the individual files that form the merged file. Defaults to False. Returns ------- het: `class::~cwinpy.heterodyne.Heterodyne` The merged heterodyning class object. """ if "cli" in kwargs: # get command line arguments parser = create_heterodyne_merge_parser() cliargs = sys.argv[1:] try: args, _ = parse_args(cliargs, parser) except BilbyPipeError as e: raise IOError("{}".format(e)) # convert args to a dictionary mergekwargs = vars(args) else: mergekwargs = kwargs if "heterodynedfiles" not in mergekwargs: raise ArgumentError("'heterodynedfiles' is a required argument") heterodynedfiles = mergekwargs["heterodynedfiles"] filelist = ( heterodynedfiles if isinstance(heterodynedfiles, list) else [heterodynedfiles] ) filelist = [hf for hf in filelist if os.path.isfile(hf)] if len(filelist) == 0: raise ValueError("None of the heterodyned files given exists!") # read in and merge all the files het = HeterodynedData.read(filelist) # write out the merged data file if "output" in mergekwargs: het.write(mergekwargs["output"], overwrite=mergekwargs.get("overwrite", False)) if mergekwargs.get("remove", False): # remove the inidividual files for hf in filelist: os.remove(hf) return het def heterodyne_merge_cli(**kwargs): # pragma: no cover """ Entry point to ``cwinpy_heterodyne_merge`` script. This just calls :func:`cwinpy.heterodyne.heterodyne_merge`, but does not return any objects. """ kwargs["cli"] = True # set to show use of CLI _ = heterodyne_merge(**kwargs) class HeterodyneDAGRunner(object): """ Set up and run the heterodyne DAG. Parameters ---------- config: :class:`configparser.ConfigParser` A :class:`configparser.ConfigParser` object with the analysis setup parameters. """ def __init__(self, config, **kwargs): # create and build the dag self.create_dag(config, **kwargs) def create_dag(self, config, **kwargs): """ Create the HTCondor DAG from the configuration parameters. Parameters ---------- config: :class:`configparser.ConfigParser` A :class:`configparser.ConfigParser` object with the analysis setup parameters. """ if not isinstance(config, configparser.ConfigParser): raise TypeError("'config' must be a ConfigParser object") inputs = HeterodyneInput(config) dagsection = "heterodyne_dag" if config.has_section("heterodyne_dag") else "dag" if "dag" in kwargs: # get a previously created DAG if given (for example for a full # analysis pipeline) self.dag = kwargs["dag"] # get whether to automatically submit the dag self.dag.inputs.submit = config.getboolean( dagsection, "submitdag", fallback=False ) else: self.dag = Dag(inputs) # get whether to build the dag self.build = config.getboolean(dagsection, "build", fallback=True) # get any additional submission options self.submit_options = config.get(dagsection, "submit_options", fallback=None) # get the base directory self.basedir = config.get("run", "basedir", fallback=os.getcwd()) # create configurations for each cwinpy_heterodyne job if not config.has_section("heterodyne"): raise IOError("Configuration file must have a [heterodyne] section.") # detectors to use detectors = self.eval(config.get("heterodyne", "detectors", fallback=None)) if isinstance(detectors, str): detectors = [detectors] # make into a list elif detectors is None: raise ValueError("At least one detector must be supplied") # get pulsar information pulsarfiles = self.eval(config.get("ephemerides", "pulsarfiles", fallback=None)) pulsars = self.eval(config.get("ephemerides", "pulsars", fallback=None)) if pulsarfiles is None: raise ValueError("A set of pulsar parameter files must be supplied") # output information outputdirs = self.eval(config.get("heterodyne", "outputdir", fallback=None)) if not isinstance(outputdirs, list): outputdirs = [outputdirs] for i, outputdir in enumerate(copy.deepcopy(outputdirs)): if isinstance(outputdir, str): outputdirs[i] = {det: outputdir for det in detectors} elif isinstance(outputdir, dict): if sorted(outputdir.keys()) != sorted(detectors): raise KeyError( "outputdirs dictionary must have same keys as the given " "detectors" ) for det in detectors: if not isinstance(outputdir[det], str): raise TypeError("outputdirs must be a string") else: raise TypeError("outputdirs must be a string or dictionary") label = self.eval(config.get("heterodyne", "label", fallback=None)) if label is not None: if isinstance(label, str): label = [label] elif not isinstance(label, list): raise TypeError("label must be a string or a list") freqfactors = self.eval( config.get("heterodyne", "freqfactors", fallback="[2.0]") ) if isinstance(freqfactors, (int, float)): freqfactors = [freqfactors] # make into a list # get times of data to analyse fullstarttimes = self.eval( config.get("heterodyne", "starttimes", fallback=None) ) if isinstance(fullstarttimes, dict): if sorted(detectors) != sorted(fullstarttimes.keys()): raise ValueError("Start times must be specified for all detectors") for key, value in fullstarttimes.copy().items(): if isinstance(value, int): fullstarttimes[key] = [value] # convert values to lists elif not isinstance(value, list): raise TypeError("Must have a list of start times for a detector") elif isinstance(fullstarttimes, int): fullstarttimes = { det: [fullstarttimes] for det in detectors } # convert to dict else: raise ValueError("Start times must be given") fullendtimes = self.eval(config.get("heterodyne", "endtimes", fallback=None)) if isinstance(fullendtimes, dict): if sorted(detectors) != sorted(fullendtimes.keys()): raise ValueError("End times must be specified for all detectors") for key, value in fullendtimes.copy().items(): if isinstance(value, int): fullendtimes[key] = [value] # convert values to lists elif not isinstance(value, list): raise TypeError("Must have a list of end times for a detector") elif isinstance(fullendtimes, int): fullendtimes = {det: [fullendtimes] for det in detectors} # convert to dict else: raise ValueError("End times must be given") for det in detectors: if len(fullendtimes[det]) != len(fullstarttimes[det]): raise ValueError("Inconsistent numbers of start and end times") stride = config.getint("heterodyne", "stride", fallback=None) joblength = config.getint("heterodyne", "joblength", fallback=86400) # get frame data information frametypes = self.eval(config.get("heterodyne", "frametypes", fallback=None)) if isinstance(frametypes, str) and len(detectors) == 1: frametypes = {det: frametypes for det in detectors} framecaches = self.eval(config.get("heterodyne", "framecaches", fallback=None)) if isinstance(framecaches, str) and len(detectors) == 1: framecaches = {det: framecaches for det in detectors} channels = self.eval(config.get("heterodyne", "channels", fallback=None)) if isinstance(channels, str) and len(detectors) == 1: channels = {det: channels for det in detectors} host = config.get("heterodyne", "host", fallback=None) heterodyneddata = self.eval( config.get("heterodyne", "heterodyneddata", fallback=None) ) framedata = {det: [] for det in detectors} if frametypes is None and framecaches is None and heterodyneddata is None: raise ValueError( "Frame types, frame cache files, or heterodyned data information must " "be supplied" ) if heterodyneddata is None: for fname, finfo in dict( frametypes=frametypes, framecaches=framecaches, channels=channels ).items(): if finfo is not None: # set frame types/caches if isinstance(finfo, dict): for key, value in finfo.copy().items(): if isinstance(value, str): finfo[key] = [value] * len(fullstarttimes[key]) elif isinstance(value, list): if len(value) != len(fullstarttimes[key]): raise ValueError( "{} lists must be consistent with the number of start and end times".format( fname ) ) else: raise TypeError("Must have a list of {}".format(fname)) else: raise TypeError("{} should be a dictionary".format(fname)) # get segment information segmentserver = config.get("heterodyne", "segmentserver", fallback=None) segmentlists = self.eval( config.get("heterodyne", "segmentlists", fallback=None) ) if isinstance(segmentlists, str) and len(detectors) == 1: segmentlists = {det: segmentlists for det in detectors} includeflags = self.eval( config.get("heterodyne", "includeflags", fallback=None) ) if isinstance(includeflags, str) and len(detectors) == 1: includeflags = {det: includeflags for det in detectors} excludeflags = self.eval( config.get("heterodyne", "excludeflags", fallback=None) ) if isinstance(excludeflags, str) and len(detectors) == 1: excludeflags = {det: excludeflags for det in detectors} segmentdata = {det: [] for det in detectors} if segmentlists is None and includeflags is None and heterodyneddata is None: raise ValueError( "Segment lists of segment data quality flags must be supplied" ) for sname, sinfo in dict( includeflags=includeflags, excludeflags=excludeflags, segmentlists=segmentlists, ).items(): if sinfo is not None: if isinstance(sinfo, dict): for key, value in sinfo.copy().items(): if isinstance(value, str): sinfo[key] = [value] * len(fullstarttimes[key]) elif isinstance(value, list): if len(value) != len(fullstarttimes[key]): raise ValueError( "{} lists must be consistent with the number of start and end times".format( sname ) ) else: raise TypeError("Must have a list of {}".format(sname)) else: raise TypeError("{} should be a dictionary".format(sname)) # get ephemeris information earthephemeris = self.eval(config.get("ephemerides", "earth", fallback=None)) sunephemeris = self.eval(config.get("ephemerides", "sun", fallback=None)) timeephemeris = self.eval(config.get("ephemerides", "time", fallback=None)) # get all the split segment times and frame caches if joblength == 0: starttimes = fullstarttimes endtimes = fullendtimes for det in detectors: for i in range(len(fullstarttimes[det])): frinfo = {} if frametypes is not None: # generate the frame caches now rather than relying on # each job doing it frcachedir = os.path.join(self.basedir, "cache") check_directory_exists_and_if_not_mkdir(frcachedir) frinfo["framecache"] = os.path.join( frcachedir, "frcache_{0:d}-{1:d}_{2}.txt".format( starttimes[det][i], endtimes[det][i], frametypes[det][i] ), ) _ = remote_frame_cache( starttimes[det][i], endtimes[det][i], channels[det][i], frametype=frametypes[det][i], host=config.get("heterodyne", "host", fallback=None), write=frinfo["framecache"], ) else: frinfo["framecache"] = framecaches[det][i] frinfo["channel"] = channels[det][i] framedata[det].append(frinfo.copy()) seginfo = {} if segmentlists is not None: seginfo["segmentlist"] = segmentlists[det][i] else: # GWOSC segments look like DET_DATA, DET_CW* or DET_*_CAT* usegwosc = False if ( "{}_DATA".format(det) == includeflags[det][i] or "{}_CW".format(self.detector) in self.includeflags[0] or "CBC_CAT" in includeflags[det][i] or "BURST_CAT" in includeflags[det][i] ): usegwosc = True inputs.require_gwosc = True # if segment list files are not provided create the lists # now rather than relying on each job doing it segdir = os.path.join(self.basedir, "segments") check_directory_exists_and_if_not_mkdir(segdir) seginfo["segmentlist"] = os.path.join( segdir, "segments_{0:d}-{1:d}_{2}.txt".format( starttimes[det][i], endtimes[det][i], includeflags[det][i].replace(":", "_"), ), ) _ = generate_segments( starttime=starttimes[det][i], endtime=endtimes[det][i], includeflags=includeflags[det][i], excludeflags=( None if excludeflags is None else excludeflags[det][i].split(",") ), writesegments=seginfo["segmentlist"], usegwosc=usegwosc, server=segmentserver, ) segmentdata[det].append(seginfo.copy()) elif joblength > 0: starttimes = {det: [] for det in detectors} endtimes = {det: [] for det in detectors} for det in detectors: idx = 0 for starttime, endtime in zip(fullstarttimes[det], fullendtimes[det]): # if segment list files are not provided create the lists # now rather than relying on each job doing it seginfo = {} if segmentlists is not None: seginfo["segmentlist"] = segmentlists[det][idx] segmentlist = generate_segments( starttime=starttime, endtime=endtime, segmentfile=seginfo["segmentlist"], ) else: # GWOSC segments look like DET_DATA or DET_*_CAT* usegwosc = False if ( "{}_DATA".format(det) == includeflags[det][idx] or "CBC_CAT" in includeflags[det][idx] or "BURST_CAT" in includeflags[det][idx] ): usegwosc = True inputs.require_gwosc = True # if segment list files are not provided create the lists # now rather than relying on each job doing it segdir = os.path.join(self.basedir, "segments") check_directory_exists_and_if_not_mkdir(segdir) seginfo["segmentlist"] = os.path.join( segdir, "segments_{0:d}-{1:d}_{2}.txt".format( starttime, endtime, includeflags[det][idx].replace(":", "_"), ), ) segmentlist = generate_segments( starttime=starttime, endtime=endtime, includeflags=includeflags[det][idx], excludeflags=( None if excludeflags is None else excludeflags[det][idx].split(",") ), writesegments=seginfo["segmentlist"], usegwosc=usegwosc, server=segmentserver, ) if len(segmentlist) == 0: raise ValueError( f"No science data segments exist for {det}" ) # make segment list a list of lists, so values are not immutable segmentlist = [list(seg) for seg in segmentlist] frinfo = {} if frametypes is not None: # generate the frame caches now rather than relying on # each job doing it frcachedir = os.path.join(self.basedir, "cache") check_directory_exists_and_if_not_mkdir(frcachedir) frinfo["framecache"] = os.path.join( frcachedir, "frcache_{0:d}-{1:d}_{2}.txt".format( starttime, endtime, frametypes[det][idx] ), ) _ = remote_frame_cache( starttime, endtime, channels[det][i], frametype=frametypes[det][idx], host=config.get("heterodyne", "host", fallback=None), write=frinfo["framecache"], ) else: frinfo["framecache"] = framecaches[det][idx] frinfo["channel"] = channels[det][idx] segidx = 0 while segidx < len(segmentlist): curstart = segmentlist[segidx][0] # get segments containing up to joblength of data sumseg = 0 while sumseg < joblength: sumseg += segmentlist[segidx][1] - segmentlist[segidx][0] segidx += 1 if segidx == len(segmentlist): break if segidx < len(segmentlist): overlap = sumseg - joblength segidx -= 1 curend = segmentlist[segidx][1] - overlap segmentlist[segidx][0] = curend else: # ignore final segment if it's less than 30 mins if sumseg < 30 * 60: break # use end value curend = segmentlist[-1][1] starttimes[det].append(int(curstart)) endtimes[det].append(int(curend)) # append frame data for jobs framedata[det].append(frinfo.copy()) segmentdata[det].append(seginfo.copy()) idx += 1 else: raise ValueError("Length of each job must be a positive integer") # create Heterodyne object to get pulsar parameter file information het = Heterodyne( pulsarfiles=pulsarfiles, pulsars=pulsars, heterodyneddata=heterodyneddata, ) # get number over which to split up pulsars npulsarjobs = config.getint("heterodyne", "npulsarjobs", fallback=1) pulsargroups = [] if npulsarjobs == 1 or len(het.pulsars) == 1: pulsargroups.append(het.pulsars) else: pstep = int(np.ceil(len(het.pulsars) / npulsarjobs)) for i in range(npulsarjobs): pulsargroups.append(het.pulsars[pstep * i : pstep * (i + 1)]) # set whether to perform the heterodyne in 1 or two stages stages = config.getint("heterodyne", "stages", fallback=1) if stages not in [1, 2]: raise ValueError("Stages must either be 1 or 2") # get the resample rate(s) if stages == 1: resamplerate = [ self.eval( config.get("heterodyne", "resamplerate", fallback="1.0 / 60.0") ) ] else: resamplerate = self.eval( config.get("heterodyne", "resamplerate", fallback="[1.0, 1.0 / 60.0]") ) # set the components of the signal modulation, i.e., solar system, # binary system, to include in the heterodyne stages. By default a # single stage heterodyne will include all components and a two stage # heterodyne will include no components in the first stage, but all # components in the second stage. If supplying different values for a # two stage process use lists if stages == 1: includessb = [config.getboolean("heterodyne", "includessb", fallback=True)] includebsb = [config.getboolean("heterodyne", "includebsb", fallback=True)] includeglitch = [ config.getboolean("heterodyne", "includeglitch", fallback=True) ] includefitwaves = [ config.getboolean("heterodyne", "includefitwaves", fallback=True) ] # filter knee frequency (default to 0.1 Hz for single stage heterodyne) filterknee = config.getfloat("heterodyne", "filterknee", fallback=0.1) else: includessb = self.eval( config.getboolean("heterodyne", "includessb", fallback="[False, True]") ) includebsb = self.eval( config.getboolean("heterodyne", "includebsb", fallback="[False, True]") ) includeglitch = self.eval( config.getboolean( "heterodyne", "includeglitch", fallback="[False, True]" ) ) includefitwaves = self.eval( config.getboolean( "heterodyne", "includefitwaves", fallback="[False, True]" ) ) # filter knee frequency (default to 0.5 Hz for two stage heterodyne) filterknee = config.getfloat("heterodyne", "filterknee", fallback=0.5) # get whether using Tempo2 or not and check it's availability usetempo2 = config.getboolean("heterodyne", "usetempo2", fallback=False) if usetempo2 and not check_for_tempo2(): raise ImportError( "libstempo is not installed so 'usetempo2' option cannot be used" ) # get the required solar system ephemeris types and binary model for # the given pulsars etypes = [] binarymodels = [] for pf in het.pulsarfiles: par = PulsarParameters(het.pulsarfiles[pf]) etypes.append(par["EPHEM"] if par["EPHEM"] is not None else "DE405") if par["BINARY"] is not None: binarymodels.append(par["BINARY"]) self.pulsar_files = het.pulsarfiles.copy() # remove duplicates etypes = set(etypes) binarymodels = set(binarymodels) # if ephemeris information is None download/extract information if earthephemeris is None or sunephemeris is None: earthephemeris = {} if earthephemeris is None else earthephemeris sunephemeris = {} if sunephemeris is None else sunephemeris for etype in LAL_EPHEMERIS_TYPES: if etype not in earthephemeris: edat = initialise_ephemeris(ephem=etype, ssonly=True) earthephemeris[etype] = edat.filenameE sunephemeris[etype] = edat.filenameS if timeephemeris is None: timeephemeris = {} if timeephemeris is None else timeephemeris for unit in ["TCB", "TDB"]: if unit not in timeephemeris: _, fnames = initialise_ephemeris( units=unit, timeonly=True, filenames=True ) timeephemeris[unit] = fnames[0] # create copy of each file to a unique name in case of identical filenames # from astropy cache, which causes problems if requiring files be # transferred if inputs.transfer_files or inputs.osg: for edat, ename in zip( [earthephemeris, sunephemeris, timeephemeris], ["earth", "sun", "time"] ): if ( len(set([os.path.basename(edat[etype]) for etype in edat])) == 1 and len(edat) > 1 ): for etype in edat: tmpephem = os.path.join( tempfile.gettempdir(), f"{ename}_{etype}" ) shutil.copy(edat[etype], tmpephem) edat[etype] = tmpephem # check that ephemeris files exist for all required types if not usetempo2: for etype in etypes: if etype not in earthephemeris or etype not in sunephemeris: raise ValueError( f"Pulsar(s) require ephemeris '{etype}' which has not been supplied" ) # check that binary models exist for all required types if not usetempo2: for bmodel in binarymodels: if bmodel not in LAL_BINARY_MODELS: raise ValueError( f"Pulsar(s) require binary model type '{bmodel}' " "which is not available in LALSuite. Try the " "usetempo2 option." ) # check output directories and labels lists are correct length if stages == 1: if label is not None: if len(label) == 0: raise ValueError("A label must be supplied") if len(outputdirs) == 0: raise ValueError("An output directory must be supplied") else: if label is not None: if len(label) != 2: raise ValueError( "Two labels must be supplied, one for each heterodyne stage" ) if len(outputdirs) != 2: raise ValueError( "Two output directories must be supplied, one for each heterodyne stage" ) interpolationstep = config.get("heterodyne", "interpolationstep", fallback=60) crop = config.getint("heterodyne", "crop", fallback=60) overwrite = config.getboolean("heterodyne", "overwrite", fallback=False) merge = config.getboolean("merge", "merge", fallback=True) and joblength > 0 # create jobs self.hetnodes = [] # dictionary to contain all nodes for a given pulsar (for passing on to # cwinpy_pe if required) self.pulsar_nodes = {psr: {det: [] for det in detectors} for psr in het.pulsars} if merge: # dictionary containing child nodes for each merge job mergechildren = { det: {ff: {psr: [] for psr in het.pulsars} for ff in freqfactors} for det in detectors } # dictionary containing the output files for the merge results self.mergeoutputs = { det: {ff: {psr: None for psr in het.pulsars} for ff in freqfactors} for det in detectors } # dictionary to contain all the heterodyned data files for each pulsar self.heterodyned_files = { det: {ff: {psr: [] for psr in het.pulsars} for ff in freqfactors} for det in detectors } # loop over sets of pulsars for pgroup in pulsargroups: self.hetnodes.append([]) # loop over frequency factors for ff in freqfactors: # loop over each detector for det in detectors: # loop over times idx = 0 for starttime, endtime in zip(starttimes[det], endtimes[det]): configdict = {} configdict["starttime"] = starttime configdict["endtime"] = endtime configdict["detector"] = det configdict["freqfactor"] = ff configdict["resamplerate"] = resamplerate[0] configdict["filterknee"] = filterknee configdict["crop"] = crop configdict["overwrite"] = overwrite # set frame data/heterodyned data info configdict.update(framedata[det][idx]) configdict["host"] = host configdict["stride"] = stride configdict["heterodyneddata"] = ( heterodyneddata if heterodyneddata is None else {psr: het.heterodyneddata[psr] for psr in pgroup} ) # set segment data info configdict.update(segmentdata[det][idx]) configdict["pulsarfiles"] = { psr: het.pulsarfiles[psr] for psr in pgroup } configdict["pulsars"] = copy.deepcopy(pgroup) # set whether to include modulations configdict["includessb"] = includessb[0] configdict["includebsb"] = includebsb[0] configdict["includeglitch"] = includeglitch[0] configdict["includefitwaves"] = includefitwaves[0] configdict["interpolationstep"] = interpolationstep configdict["usetempo2"] = usetempo2 # include ephemeris files configdict["earthephemeris"] = earthephemeris configdict["sunephemeris"] = sunephemeris configdict["timeephemeris"] = timeephemeris # temporary Heterodyne object to get the output file names tmphet = Heterodyne( starttime=starttime, endtime=endtime, detector=det, freqfactor=ff, output=outputdirs[0][det], label=label[0] if label is not None else None, pulsars=copy.deepcopy(pgroup), pulsarfiles=pulsarfiles, ) # get lists of set of output heterodyned files for each pulsar/detector for psr in pgroup: self.heterodyned_files[det][ff][psr].append( copy.deepcopy(tmphet.outputfiles[psr]) ) # set the final merged output files for psr in pgroup: if merge and self.mergeoutputs[det][ff][psr] is None: # use full start and end times tmphet.starttime = starttimes[det][0] tmphet.endtime = endtimes[det][-1] self.mergeoutputs[det][ff][psr] = os.path.join( outputdirs[0][det], tmphet.outputfiles[psr], ) configdict["output"] = outputdirs[0][det] configdict["label"] = label[0] if label is not None else None self.hetnodes[-1].append( HeterodyneNode( inputs, { key: copy.deepcopy(value) for key, value in configdict.items() if value is not None }, self.dag, ) ) # put nodes into dictionary for each pulsar if stages == 1: for psr in pgroup: self.pulsar_nodes[psr][det].append( self.hetnodes[-1][-1] ) if merge: for psr in pgroup: mergechildren[det][ff][psr].append( self.hetnodes[-1][-1] ) idx += 1 # need to check whether doing fine heterodyne - in this case need to create new jobs on a per pulsar basis if stages == 2: for i, pgroup in enumerate(pulsargroups): for psr in pgroup: for ff in freqfactors: for det in detectors: configdict = {} configdict["starttime"] = starttimes[det][0] configdict["endtime"] = endtimes[det][-1] configdict["detector"] = det configdict["freqfactor"] = ff configdict["pulsars"] = psr configdict["pulsarfiles"] = pulsarfiles configdict["resamplerate"] = resamplerate[-1] # include all modulations configdict["includessb"] = includessb[-1] configdict["includebsb"] = includebsb[-1] configdict["includeglitch"] = includeglitch[-1] configdict["includefitwaves"] = includefitwaves[-1] # include ephemeris files configdict["earthephemeris"] = earthephemeris configdict["sunephemeris"] = sunephemeris configdict["timeephemeris"] = timeephemeris # input the data configdict["heterodyneddata"] = { psr: self.heterodyned_files[det][ff][psr] } # output structure configdict["output"] = outputdirs[1][det] configdict["label"] = ( label[1] if label is not None else None ) self.pulsar_nodes[psr][det].append( HeterodyneNode( inputs, { key: copy.deepcopy(value) for key, value in configdict.items() if value is not None }, self.dag, generation_node=self.hetnodes[i], ) ) elif merge: # set output merge jobs for i, pgroup in enumerate(pulsargroups): for psr in pgroup: for ff in freqfactors: for det in detectors: if len(self.heterodyned_files[det][ff][psr]) > 1: self.pulsar_nodes[psr][det].append( MergeHeterodyneNode( inputs, { "heterodynedfiles": copy.deepcopy( self.heterodyned_files[det][ff][psr] ), "freqfactor": ff, "detector": det, "pulsar": psr, "output": copy.deepcopy( self.mergeoutputs[det][ff][psr] ), }, self.dag, generation_node=mergechildren[det][ff][psr], ) ) if self.build: self.dag.build() def eval(self, arg): """ Try and evaluate a string using :func:`ast.literal_eval`. Parameters ---------- arg: str A string to be evaluated. Returns ------- object: The evaluated object, or original string, if not able to be evaluated. """ # copy of string newobj = str(arg) try: newobj = ast.literal_eval(newobj) except (ValueError, SyntaxError): # try evaluating expressions such as "1/60" or "[1., 1./60.]"", # which fail for recent versions of ast in Python 3.7+ # if expression contains a list strip the brackets to start objlist = newobj.strip("[").strip("]").split(",") issafe = False for obj in objlist: try: # check if value is just a number _ = float(obj) issafe = True except ValueError: issafe = False for op in ["/", "*", "+", "-"]: if op in obj: if len(obj.split(op)) == 2: try: _ = [float(val) for val in obj.split(op)] issafe = True except ValueError: break # object is "safe", use eval if issafe: newobj = eval(newobj) return newobj def heterodyne_dag(**kwargs): """ Run heterodyne_dag within Python. This will create a `HTCondor <https://htcondor.readthedocs.io/>`_ DAG for running multiple ``cwinpy_heterodyne`` instances on a computer cluster. Optional parameters that can be used instead of a configuration file (for "quick setup") are given in the "Other parameters" section. Parameters ---------- config: str A configuration file, or :class:`configparser:ConfigParser` object, for the analysis. Other parameters ---------------- run: str The name of an observing run for which open data exists, which will be heterodyned, e.g., "O1". detector: str, list The detector, or list of detectors, for which the data will be heterodyned. If not set then all detectors available for a given run will be used. hwinj: bool Set this to True to analyse the continuous hardware injections for a given run. No ``pulsar`` argument is required in this case. samplerate: str: Select the sample rate of the data to use. This can either be 4k or 16k for data sampled at 4096 or 16384 Hz, respectively. The default is 4k, except if running on hardware injections for O1 or later, for which 16k will be used due to being requred for the highest frequency source. For the S5 and S6 runs only 4k data is avaialble from GWOSC, so if 16k is chosen it will be ignored. pulsar: str, list The path to, or list of paths to, a Tempo(2)-style pulsar parameter file(s), or directory containing multiple parameter files, to heterodyne. If a pulsar name is given instead of a parameter file then an attempt will be made to find the pulsar's ephemeris from the ATNF pulsar catalogue, which will then be used. osg: bool Set this to True to run on the Open Science Grid rather than a local computer cluster. output: str, The location for outputting the heterodyned data. By default the current directory will be used. Within this directory, subdirectories for each detector will be created. joblength: int The length of data (in seconds) into which to split the individual analysis jobs. By default this is set to 86400, i.e., one day. If this is set to 0, then the whole dataset is treated as a single job. accounting_group_tag: str For LVK users this sets the computing accounting group tag. usetempo2: bool Set this flag to use Tempo2 (if installed) for calculating the signal phase evolution rather than the default LALSuite functions. Returns ------- dag: An object containing a pycondor :class:`pycondor.Dagman` object. """ if "config" in kwargs: configfile = kwargs.pop("config") else: # pragma: no cover parser = ArgumentParser( description=( "A script to create a HTCondor DAG to process GW strain data " "by heterodyning it based on the expected phase evolution for " "a selection of pulsars." ) ) parser.add_argument( "config", nargs="?", help=("The configuration file for the analysis"), default=None, ) optional = parser.add_argument_group( "Quick setup arguments (this assumes CVMFS open data access)." ) optional.add_argument( "--run", help=( "Set an observing run name for which to heterodyne the data. " "This can be one of {} for which open data exists".format( list(RUNTIMES.keys()) ) ), ) optional.add_argument( "--detector", action="append", help=( "The detector for which the data will be heterodyned. This can " "be used multiple times to specify multiple detectors. If not " "set then all detectors available for a given run will be " "used." ), ) optional.add_argument( "--hwinj", action="store_true", help=( "Set this flag to analyse the continuous hardware injections " "for a given run. No '--pulsar' arguments are required in " "this case." ), ) optional.add_argument( "--samplerate", help=( "Select the sample rate of the data to use. This can either " "be 4k or 16k for data sampled at 4096 or 16384 Hz, " "respectively. The default is 4k, except if running on " "hardware injections for O1 or later, for which 16k will be " "used due to being requred for the highest frequency source. " "For the S5 and S6 runs only 4k data is avaialble from GWOSC, " "so if 16k is chosen it will be ignored." ), default="4k", ) optional.add_argument( "--pulsar", action="append", help=( "The path to a Tempo(2)-style pulsar parameter file, or " "directory containing multiple parameter files, to " "heterodyne. This can be used multiple times to specify " "multiple pulsar inputs. If a pulsar name is given instead " "of a parameter file then an attempt will be made to find the " "pulsar's ephemeris from the ATNF pulsar catalogue, which " "will then be used." ), ) optional.add_argument( "--osg", action="store_true", help=( "Set this flag to run on the Open Science Grid rather than a " "local computer cluster." ), ) optional.add_argument( "--output", help=( "The location for outputting the heterodyned data. By default " "the current directory will be used. Within this directory, " "subdirectories for each detector will be created." ), default=os.getcwd(), ) optional.add_argument( "--joblength", type=int, help=( "The length of data (in seconds) into which to split the " "individual analysis jobs. By default this is set to 86400, " "i.e., one day. If this is set to 0, then the whole dataset " "is treated as a single job." ), ) optional.add_argument( "--accounting-group-tag", dest="accgroup", help=("For LVK users this sets the computing accounting group tag"), ) optional.add_argument( "--usetempo2", action="store_true", help=( "Set this flag to use Tempo2 (if installed) for calculating " "the signal phase evolution rather than the default LALSuite " "functions." ), ) args = parser.parse_args() if args.config is not None: configfile = args.config else: # use the "Quick setup" arguments configfile = configparser.ConfigParser() run = kwargs.get("run", args.run) if run not in RUNTIMES: raise ValueError(f"Requested run '{run}' is not available") pulsars = [] if kwargs.get("hwinj", args.hwinj): # use hardware injections for the run runtimes = HW_INJ_RUNTIMES segments = HW_INJ_SEGMENTS pulsars.extend(HW_INJ[run]["hw_inj_files"]) # set sample rate to 16k, expect for S runs srate = "16k" if run[0] == "O" else "4k" else: # use pulsars provided runtimes = RUNTIMES segments = ANALYSIS_SEGMENTS pulsar = kwargs.get("pulsar", args.pulsar) if pulsar is None: raise ValueError("No pulsar parameter files have be provided") pulsars.extend(pulsar if isinstance(list) else [pulsar]) # get sample rate srate = ( "16k" if (args.samplerate[0:2] == "16" and run[0] == "O") else "4k" ) detector = kwargs.get("detector", args.detector) if args.detector is None: detectors = list(runtimes[run].keys()) else: detector = detector if isinstance(detector, list) else [detector] detectors = [det for det in detector if det in runtimes[run]] if len(detectors) == 0: raise ValueError( f"Provided detectors '{detector}' are not valid for the given run" ) # create required settings configfile["run"] = {} configfile["run"]["basedir"] = kwargs.get("output", args.output) configfile["heterodyne_dag"] = {} configfile["heterodyne_dag"]["submitdag"] = "True" if kwargs.get("osg", args.osg): configfile["heterodyne_dag"]["osg"] = "True" configfile["heterodyne_job"] = {} configfile["heterodyne_job"]["getenv"] = "True" if args.accgroup is not None: configfile["heterodyne_job"]["accounting_group"] = kwargs.get( "accounting_group_tag", args.accgroup ) # add pulsars/pulsar ephemerides configfile["ephemerides"] = {} configfile["ephemerides"]["pulsarfiles"] = str(pulsars) # add heterodyne settings configfile["heterodyne"] = {} configfile["heterodyne"]["detectors"] = str(detectors) configfile["heterodyne"]["starttimes"] = str( {det: runtimes[run][det][0] for det in detectors} ) configfile["heterodyne"]["endtimes"] = str( {det: runtimes[run][det][1] for det in detectors} ) configfile["heterodyne"]["frametypes"] = str( {det: CVMFS_GWOSC_DATA_TYPES[run][srate][det] for det in detectors} ) configfile["heterodyne"]["channels"] = str( {det: CVMFS_GWOSC_FRAME_CHANNELS[run][srate][det] for det in detectors} ) configfile["heterodyne"]["host"] = CVMFS_GWOSC_DATA_SERVER if args.hwinj: configfile["heterodyne"]["includeflags"] = str( {det: segments[run][det]["includesegments"] for det in detectors} ) configfile["heterodyne"]["excludeflags"] = str( {det: segments[run][det]["excludesegments"] for det in detectors} ) else: configfile["heterodyne"]["includeflags"] = str( {det: segments[run][det] for det in detectors} ) configfile["heterodyne"]["outputdir"] = str( { det: os.path.join(kwargs.get("output", args.output), det) for det in detectors } ) configfile["heterodyne"]["overwrite"] = "False" # set whether to use Tempo2 for phase evolution if kwargs.get("usetempo2", args.usetempo2): configfile["heterodyne"]["usetempo2"] = "True" # split the analysis into on average day long chunks if kwargs.get("joblength", args.joblength) is None: configfile["heterodyne"]["joblength"] = "86400" else: configfile["heterodyne"]["joblength"] = str( kwargs.get("joblength", args.joblength) ) # merge the resulting files and remove individual files configfile["merge"] = {} configfile["merge"]["merge"] = "True" configfile["merge"]["remove"] = "True" configfile["merge"]["overwrite"] = "True" if isinstance(configfile, configparser.ConfigParser): config = configfile else: config = configparser.ConfigParser() try: config.read_file(open(configfile, "r")) except Exception as e: raise IOError(f"Problem reading configuration file '{configfile}'\n: {e}") return HeterodyneDAGRunner(config, **kwargs) def heterodyne_dag_cli(**kwargs): # pragma: no cover """ Entry point to the cwinpy_heterodyne_dag script. This just calls :func:`cwinpy.heterodyne.heterodyne_dag`, but does not return any objects. """ _ = heterodyne_dag(**kwargs)
40.746815
116
0.524809
39,712
0.517306
0
0
0
0
0
0
28,777
0.374862
97f1c05811bbe3176ddd3d2e0d9d3415c269f3fe
5,787
py
Python
timpani/webserver/webhelpers.py
ollien/Timpani
0d1aac467e0bcbe2d1dadb4e6c025315d6be45cb
[ "MIT" ]
3
2015-10-16T11:26:53.000Z
2016-08-28T19:28:52.000Z
timpani/webserver/webhelpers.py
ollien/timpani
0d1aac467e0bcbe2d1dadb4e6c025315d6be45cb
[ "MIT" ]
22
2015-09-14T23:00:07.000Z
2016-07-22T08:39:39.000Z
timpani/webserver/webhelpers.py
ollien/timpani
0d1aac467e0bcbe2d1dadb4e6c025315d6be45cb
[ "MIT" ]
null
null
null
import flask import functools import bs4 import urllib.parse from .. import auth from .. import themes from .. import settings INVALID_PERMISSIONS_FLASH_MESSAGE = "Sorry, you don't have permission to view that page." def checkForSession(): if "uid" in flask.session: session = auth.validateSession(flask.session["uid"]) if session is not None: return session return None def redirectAndSave(path): flask.session["donePage"] = urllib.parse.urlparse(flask.request.url).path return flask.redirect(path) def canRecoverFromRedirect(): if "donePage" in flask.session: return flask.session["donePage"] return None #Decorator which checks if a user logged in and capable of using the specified permissions. #If redirectPage is equal to none, #the target funciton MUST have the arguments authed and authMessage defined. def checkUserPermissions(redirectPage=None, saveRedirect=True, redirectMessage=INVALID_PERMISSIONS_FLASH_MESSAGE, requiredPermissions=None): def decorator(function): def decorated(*args, **kwargs): session = checkForSession() if session is not None: username = session.user.username result = True #If we don't have any permissions necessary, a login is enough. #Otherwise, we're going to check to make sure that all necessary permissions are in place. if requiredPermissions is not None: if type(requiredPermissions) == str: result = auth.userHasPermission(username, requiredPermissions) else: for permission in requiredPermissions: if not auth.userHasPermission(username, permission): result = False #If all permissions is valid, redirect as needed. if result: if redirectPage is not None: return function(*args, **kwargs) else: return function(authed=True, authMessage=redirectMessage, *args, **kwargs) else: #We don't want to flash on thigns like ajax routes, so we use redirectPage is not None willFlash = redirectPage is not None return _permissionRedirect(redirectPage, saveRedirect, redirectMessage, willFlash, function, *args, **kwargs) else: return _permissionRedirect(redirectPage, saveRedirect, redirectMessage, False, function, *args, **kwargs) return functools.update_wrapper(decorated, function) return decorator def _permissionRedirect(redirectPage, saveRedirect, redirectMessage, flash, function, *args, **kwargs): if flash: flask.flash(redirectMessage) if redirectPage is not None: if not saveRedirect: return flask.redirect(redirectPage) else: return redirectAndSave(redirectPage) else: return function(authed=False, authMessage=redirectMessage, *args, **kwargs) #Will return all information that is needed to render a post. #Prevents fragmentation in various post display methods def getPostsParameters(): title = settings.getSettingValue("title") subtitle = settings.getSettingValue("subtitle") displayName = settings.getSettingValue("display_name") return { "blogTitle": title, "blogSubtitle": subtitle, "displayName": displayName, } #Renders the theme's template if the theme contains one #Otherwise, it renders the default template def renderPosts(defaultPath, pageTitle, pageNumber, pageCount, nextPageExists, basePageUrl="", *args, **kwargs): theme = themes.getCurrentTheme() template = theme["template"] postParams = getPostsParameters() #Merge postParams and kwargs #Anything in kwargs will overwrite postParams (which is why we use these two lines) postParams.update(kwargs) kwargs = postParams if template is None: templateFile = open(defaultPath, "r") template = templateFile.read() templateFile.close() return flask.render_template_string(template, pageTitle=pageTitle, pageNumber=pageNumber, pageCount=pageCount, nextPageExists=nextPageExists, basePageUrl=basePageUrl, *args, **kwargs) def xssFilter(postBody): whitelistedTags = ["div", "span", "b", "i", "u", "a", "p", "img", "code", "ul", "li", "h1", "h2", "h3", "h4", "h5", "h6", "pre", "br"] #src and href must be checked seperately whitelistedAttributes = ["id", "class", "style"] soupedBody = bs4.BeautifulSoup(postBody, "html.parser") blockedTags = soupedBody.findAll(lambda tag: tag.name not in whitelistedTags) #Check if element has any attriutes that are not allowed, but only if #they are not already in blockedTags. Those will be escaped, anyway. blockedAttrs = soupedBody.findAll(lambda tag: len(set(tag.attrs.keys()) - set(whitelistedAttributes)) != 0 and tag.name in whitelistedTags) for tag in blockedTags: #Beautiful soup will escape HTML strings tag.replace_with(str(tag)) for tag in blockedAttrs: allowedAttrs = {} for attr in tag.attrs: if attr in whitelistedAttributes: allowedAttrs[attr] = tag.attrs[attr] elif attr == "src" or attr == "href": scheme = urllib.parse.urlparse(tag.attrs[attr]).scheme if scheme != "data" and scheme != "javascript": allowedAttrs[attr] = tag.attrs[attr] tag.attrs = allowedAttrs return str(soupedBody)
43.511278
140
0.644375
0
0
0
0
0
0
0
0
1,346
0.23259
97f1ce8901d8660f5836035727b480380b3d1fc2
1,542
py
Python
bot/plugins/keyboard/__init__.py
grahamtito/TelegramFiletoCloud
63ac4a173102ee73615aa5bcf996e545746a1c27
[ "Unlicense" ]
null
null
null
bot/plugins/keyboard/__init__.py
grahamtito/TelegramFiletoCloud
63ac4a173102ee73615aa5bcf996e545746a1c27
[ "Unlicense" ]
null
null
null
bot/plugins/keyboard/__init__.py
grahamtito/TelegramFiletoCloud
63ac4a173102ee73615aa5bcf996e545746a1c27
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python3 # This is bot coded by Abhijith N T and used for educational purposes only # https://github.com/AbhijithNT # Copyright ABHIJITH N T # Thank you https://github.com/pyrogram/pyrogram from pyrogram.types import ( InlineKeyboardMarkup, InlineKeyboardButton ) def server_select(): upload_selection = [ [ InlineKeyboardButton( "transfer.sh", callback_data="transfersh" ), InlineKeyboardButton( "File.io", callback_data="File.io" ) ], [ InlineKeyboardButton( "gofile.io", callback_data="gofileio" ), InlineKeyboardButton( "anonymfiles.com", callback_data="anonymfiles" ) ], [ InlineKeyboardButton( "aparat", callback_data="aparat" ), InlineKeyboardButton( "splus", callback_data="splus" ) ] ] return InlineKeyboardMarkup(upload_selection) def completedKeyboard(dl): replayMarkup = InlineKeyboardMarkup( [[ InlineKeyboardButton( "DOWNLOAD URL", url=f"{dl}" ) ], [ InlineKeyboardButton( "🗂 SOURCE", url="https://github.com/AbhijithNT/" ) ]]) return replayMarkup
23.723077
74
0.485084
0
0
0
0
0
0
0
0
389
0.25178
97f1fff136972b7db73eca847e9e3cb4870be823
4,022
py
Python
django_storymarket/forms.py
jacobian/django-storymarket
ec43318ddb9964e67220f6fa9675389b637422ce
[ "BSD-3-Clause" ]
1
2019-01-12T10:05:59.000Z
2019-01-12T10:05:59.000Z
django_storymarket/forms.py
jacobian/django-storymarket
ec43318ddb9964e67220f6fa9675389b637422ce
[ "BSD-3-Clause" ]
null
null
null
django_storymarket/forms.py
jacobian/django-storymarket
ec43318ddb9964e67220f6fa9675389b637422ce
[ "BSD-3-Clause" ]
null
null
null
import logging import operator import storymarket from django import forms from django.core.cache import cache from django.conf import settings from .models import SyncedObject # Timeout for choices cached from Storymarket. 5 minutes. CHOICE_CACHE_TIMEOUT = 600 log = logging.getLogger('django_storymarket') class StorymarketSyncForm(forms.ModelForm): """ A form allowing the choice of sync options for a given model instance. """ class Meta: model = SyncedObject fields = ['org', 'category', 'tags', 'pricing', 'rights'] def __init__(self, *args, **kwargs): super(StorymarketSyncForm, self).__init__(*args, **kwargs) # Override some fields. Tags is left alone; the default is fine. self.fields['org'] = forms.TypedChoiceField(label='Org', choices=self._choices('orgs'), coerce=int) self.fields['category'] = forms.TypedChoiceField(label='Category', choices=self._choices('subcategories'), coerce=int) self.fields['pricing'] = forms.TypedChoiceField(label='Pricing', choices=self._choices('pricing'), coerce=int) self.fields['rights'] = forms.TypedChoiceField(label='Rights', choices=self._choices('rights'), coerce=int) def _choices(self, manager_name): """ Generate a list of choices from a given storymarket manager type. These choices are cached to save API hits, sorted, and an empty choice is included. """ cache_key = 'storymarket_choice_cache:%s' % manager_name choices = cache.get(cache_key) if choices is None: manager = getattr(self._api, manager_name) try: objs = sorted(manager.all(), key=operator.attrgetter('name')) except storymarket.exceptions.StorymarketError, e: log.exception('Storymarket API call failed: %s' % e) return [(u'', u'--- Storymarket Unavailable ---')] # If there's only a single object, just select it -- don't offer # an empty choice. Otherwise, offer an empty. if len(objs) == 1: empty_choice = [] else: empty_choice = [(u'', u'---------')] choices = empty_choice + [(o.id, o.name) for o in objs] cache.set(cache_key, choices, CHOICE_CACHE_TIMEOUT) return choices @property def _api(self): return storymarket.Storymarket(settings.STORYMARKET_API_KEY) class StorymarketOptionalSyncForm(StorymarketSyncForm): """ Like a StorymarketSyncForm, but with an extra boolean field indicating whether syncing should take place or not. """ sync = forms.BooleanField(initial=False, required=False, label="Upload to Storymarket") def __init__(self, *args, **kwargs): super(StorymarketOptionalSyncForm, self).__init__(*args, **kwargs) # Make fields optional; we'll validate them in clean() for field in ('org', 'category', 'tags'): self.fields[field].required = False def clean(self): if self.cleaned_data['sync']: for field in ('org', 'category', 'tags'): if not self.cleaned_data.get(field, None): message = self.fields[field].error_messages['required'] self._errors[field] = self.error_class([message]) del self.cleaned_data[field] return self.cleaned_data
43.717391
96
0.544008
3,701
0.920189
0
0
98
0.024366
0
0
1,061
0.263799
97f201e4bc64fac90fde4b3a05b02b6bc4e482f8
5,773
py
Python
revisum/snippet.py
medariox/revisum
e92afa047ec66ef80bf3f27e6be81b1505f7151e
[ "MIT" ]
null
null
null
revisum/snippet.py
medariox/revisum
e92afa047ec66ef80bf3f27e6be81b1505f7151e
[ "MIT" ]
null
null
null
revisum/snippet.py
medariox/revisum
e92afa047ec66ef80bf3f27e6be81b1505f7151e
[ "MIT" ]
null
null
null
import pickle from collections import OrderedDict from datetime import datetime from .chunk import Chunk from .review import Review from .tokenizer import LineTokenizer from .utils import norm_path from .database.snippet import maybe_init, Snippet as DataSnippet class Snippet(object): def __init__(self, snippet_id, merged, chunks, source, target): self.snippet_id = snippet_id self.merged = merged self._chunks = chunks self._chunk_ids = [] self.start = chunks[0].start self.length = self.total_len(chunks[0].start, chunks[-1].end) self.source_file = norm_path(str(source)) self.target_file = norm_path(str(target)) self._target_lines = [] self._source_lines = [] self._target_tokens = [] self._source_tokens = [] def __str__(self): return '\n-------------------------\n'.join(self.to_text()) def to_json(self): snippet = OrderedDict() snippet['snippet_id'] = self.snippet_id reviews = Review.load(self.pr_number(self.snippet_id), self.repo_id(self.snippet_id)) snippet['reviews'] = [review.to_json() for review in reviews] snippet['chunk_ids'] = self.chunk_ids return snippet @property def chunks(self): return self._chunks @property def chunk_ids(self): if not self._chunk_ids: self._chunk_ids = [c.chunk_id for c in self._chunks] return self._chunk_ids @staticmethod def repo_id(snippet_id): return snippet_id.split('-')[3] @staticmethod def pr_number(snippet_id): return snippet_id.split('-')[2] @classmethod def make_id(cls, hunk_no, file_no, pr_number, repo_id): return '-'.join([str(hunk_no), str(file_no), str(pr_number), str(repo_id)]) @staticmethod def total_len(start, end): length = end - start + 1 return length def to_tokens(self): chunks = [] for chunk in self._chunks: chunks.append(chunk.as_tokens()) return chunks def to_text(self): chunks = [] for chunk in self._chunks: chunks.append(chunk.as_text(pretty=True)) return chunks @classmethod def as_tokens(cls, code): if not isinstance(code, list): code = [code] tokens = LineTokenizer(code).tokens lines = [] for line in tokens: lines += line return lines @classmethod def as_elements(cls, code): if not isinstance(code, list): code = [code] tokens = LineTokenizer(code).elements lines = [] for line in tokens: lines += line return lines @classmethod def load(cls, snippet_id, path=None): repo_id = cls.repo_id(snippet_id) maybe_init(repo_id, path=path) db_snippet = DataSnippet.get_or_none(snippet_id=snippet_id) if db_snippet: chunks = [] chunk_ids = pickle.loads(db_snippet.chunk_ids) for chunk_id in chunk_ids: chunks.append(Chunk.load(chunk_id)) merged = db_snippet.merged source = db_snippet.source target = db_snippet.target snippet = cls(snippet_id, merged, chunks, source, target) return snippet @classmethod def load_all(cls, repo_id, merged_only=False, path=None): maybe_init(repo_id, path=path) query = DataSnippet.select( DataSnippet.snippet_id, DataSnippet.chunk_ids, DataSnippet.source, DataSnippet.target) if merged_only: query = query.where(DataSnippet.merged == 1) query = query.order_by(DataSnippet.last_mod.desc()) for db_snippet in query: snippet_id = db_snippet.snippet_id chunks = [] chunk_ids = pickle.loads(db_snippet.chunk_ids) for chunk_id in chunk_ids: chunks.append(Chunk.load(chunk_id)) merged = db_snippet.merged source = db_snippet.source target = db_snippet.target snippet = cls(snippet_id, merged, chunks, source, target) print('Finished loading snippet with ID: {0}'.format(snippet_id)) yield snippet def _serialize_ids(self): return pickle.dumps(self.chunk_ids, pickle.HIGHEST_PROTOCOL) def exists(self): repo_id = self.repo_id(self.snippet_id) maybe_init(repo_id) snippet = DataSnippet.get_or_none(snippet_id=self.snippet_id) return bool(snippet) def save(self): repo_id = self.repo_id(self.snippet_id) maybe_init(repo_id) snippet = DataSnippet.get_or_none(snippet_id=self.snippet_id) if snippet: (DataSnippet .update(snippet_id=self.snippet_id, merged=self.merged, last_mod=datetime.now(), start=self.start, length=self.length, source=self.source_file, target=self.target_file, chunk_ids=self._serialize_ids()) .where(DataSnippet.snippet_id == self.snippet_id) .execute()) else: (DataSnippet .create(snippet_id=self.snippet_id, merged=self.merged, last_mod=datetime.now(), start=self.start, length=self.length, source=self.source_file, target=self.target_file, chunk_ids=self._serialize_ids()))
29.01005
77
0.580634
5,506
0.95375
960
0.166291
2,761
0.478261
0
0
111
0.019227
97f20ba0590c9d144a0c17683ec4a0a88ea21ea6
46
py
Python
ainnovation_dcim/workflow/__init__.py
ltxwanzl/ainnovation_dcim
b065489e2aa69729c0fd5142cf75d8caa7788b31
[ "Apache-2.0" ]
null
null
null
ainnovation_dcim/workflow/__init__.py
ltxwanzl/ainnovation_dcim
b065489e2aa69729c0fd5142cf75d8caa7788b31
[ "Apache-2.0" ]
null
null
null
ainnovation_dcim/workflow/__init__.py
ltxwanzl/ainnovation_dcim
b065489e2aa69729c0fd5142cf75d8caa7788b31
[ "Apache-2.0" ]
null
null
null
# default_app_config = '.apps.WorkflowConfig'
23
45
0.782609
0
0
0
0
0
0
0
0
45
0.978261
97f2191d807924b9920f7ca4379d337e4f2f9d92
6,361
py
Python
examples/api-samples/inc_samples/sample33.py
groupdocs-legacy-sdk/python
80e5ef5a9a14ac4a7815c6cf933b5b2997381455
[ "Apache-2.0" ]
null
null
null
examples/api-samples/inc_samples/sample33.py
groupdocs-legacy-sdk/python
80e5ef5a9a14ac4a7815c6cf933b5b2997381455
[ "Apache-2.0" ]
null
null
null
examples/api-samples/inc_samples/sample33.py
groupdocs-legacy-sdk/python
80e5ef5a9a14ac4a7815c6cf933b5b2997381455
[ "Apache-2.0" ]
null
null
null
####<i>This sample will show how to convert several HTML documents to PDF and merge them to one document</i> #Import of classes from libraries import base64 import os import shutil import random import time from pyramid.renderers import render_to_response from groupdocs.StorageApi import StorageApi from groupdocs.AsyncApi import AsyncApi from groupdocs.ApiClient import ApiClient from groupdocs.GroupDocsRequestSigner import GroupDocsRequestSigner from groupdocs.models.JobInfo import JobInfo # Checking value on null def IsNotNull(value): return value is not None and len(value) > 0 ####Set variables and get POST data def sample33(request): clientId = request.POST.get('client_id') privateKey = request.POST.get('private_key') firstUrl = request.POST.get('url1') secondUrl = request.POST.get('url2') thirdUrl = request.POST.get('url3') basePath = request.POST.get('server_type') message = "" iframe = "" # Checking clientId, privateKey and file_Id if IsNotNull(clientId) == False or IsNotNull(privateKey) == False: return render_to_response('__main__:templates/sample33.pt', { 'error' : 'You do not enter all parameters' }) ####Create Signer, ApiClient and Storage Api objects #Create signer object signer = GroupDocsRequestSigner(privateKey) #Create apiClient object apiClient = ApiClient(signer) #Create Storage Api object storageApi = StorageApi(apiClient) #Create Async api object asyncApi = AsyncApi(apiClient) #Set base Path if basePath == "": basePath = "https://api.groupdocs.com/v2.0" storageApi.basePath = basePath asyncApi.basePath = basePath #Create list of URL's urlList = [firstUrl, secondUrl, thirdUrl] #Create empty list for uploaded files GUID's guidList = [] for url in urlList: try: #Upload file upload = storageApi.UploadWeb(clientId, url) if upload.status == "Ok": #Add GUID of uploaded file to list guidList.append(upload.result.guid) else: raise Exception(upload.error_message) except Exception, e: return render_to_response('__main__:templates/sample33.pt', { 'error' : str(e) }) ####Make a request to Signature API using clientId try: #Create list of result document type convertType = [] convertType.append("pdf") #Create JobInfo object and set attributes jobInfo = JobInfo() jobInfo.actions = "convert, combine" jobInfo.out_formats = convertType jobInfo.status = "-1" jobInfo.email_results = True rand = random.randint(0, 500) jobInfo.name = "test" + str(rand) #Create job createJob = asyncApi.CreateJob(clientId, jobInfo) if createJob.status == "Ok": for guid in guidList: try: #Add all uploaded files to created job addJobDocument = asyncApi.AddJobDocument(clientId, createJob.result.job_id, guid, False) if addJobDocument.status != "Ok": raise Exception(addJobDocument.error_message) except Exception, e: return render_to_response('__main__:templates/sample33.pt', { 'error' : str(e) }) #Change job status jobInfo.status = "0" try: #Update job with new status updateJob = asyncApi.UpdateJob(clientId,createJob.result.job_id, jobInfo) if updateJob.status == "Ok": time.sleep(5) try: #Get result file from job by it's ID getJobDocument = asyncApi.GetJobDocuments(clientId, createJob.result.job_id) if getJobDocument.status == "Ok": fileGuid = getJobDocument.result.outputs[0].guid #Generation of iframe URL using $pageImage->result->guid #iframe to prodaction server if basePath == "https://api.groupdocs.com/v2.0": iframe = 'https://apps.groupdocs.com/document-viewer/embed/' + fileGuid #iframe to dev server elif basePath == "https://dev-api.groupdocs.com/v2.0": iframe = 'https://dev-apps.groupdocs.com/document-viewer/embed/' + fileGuid #iframe to test server elif basePath == "https://stage-api.groupdocs.com/v2.0": iframe = 'https://stage-apps.groupdocs.com/document-viewer/embed/' + fileGuid elif basePath == "http://realtime-api.groupdocs.com": iframe = 'http://realtime-apps.groupdocs.com/document-viewer/embed/' + fileGuid iframe = signer.signUrl(iframe) else: raise Exception(getJobDocument.error_message) except Exception, e: return render_to_response('__main__:templates/sample33.pt', { 'error' : str(e) }) else: raise Exception(updateJob.error_message) except Exception, e: return render_to_response('__main__:templates/sample33.pt', { 'error' : str(e) }) else: raise Exception(createJob.error_message) except Exception, e: return render_to_response('__main__:templates/sample33.pt', { 'error' : str(e) }) #If request was successfull - set message variable for template return render_to_response('__main__:templates/sample33.pt', { 'userId' : clientId, 'privateKey' : privateKey, 'url1' : firstUrl, 'url2' : secondUrl, 'url3' : thirdUrl, 'iframe' : iframe, 'message' : message }, request=request)
43.868966
111
0.562962
0
0
0
0
0
0
0
0
1,828
0.287376
97f2ebb10db5b5ba4727a38411b745fbfd41201b
2,503
py
Python
silver/api/pagination.py
DocTocToc/silver
f1b4a8871fc4a37c8813d3c010bc70dc59c0a6e5
[ "Apache-2.0" ]
222
2017-01-15T10:30:57.000Z
2022-03-08T20:34:46.000Z
silver/api/pagination.py
DocTocToc/silver
f1b4a8871fc4a37c8813d3c010bc70dc59c0a6e5
[ "Apache-2.0" ]
141
2017-01-11T10:56:49.000Z
2021-10-12T11:51:00.000Z
silver/api/pagination.py
DocTocToc/silver
f1b4a8871fc4a37c8813d3c010bc70dc59c0a6e5
[ "Apache-2.0" ]
76
2017-01-10T13:50:27.000Z
2022-03-25T21:37:00.000Z
# Copyright (c) 2015 Presslabs SRL # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from rest_framework.pagination import PageNumberPagination from rest_framework.response import Response from rest_framework.settings import api_settings from rest_framework.utils.urls import replace_query_param, remove_query_param class LinkHeaderPagination(PageNumberPagination): page_size = api_settings.PAGE_SIZE or 30 page_size_query_param = 'page_size' max_page_size = 100 def get_last_link(self): url = self.request.build_absolute_uri() page_number = self.page.paginator.num_pages return replace_query_param(url, self.page_query_param, page_number) def get_first_link(self, display_page_query_param=True): url = self.request.build_absolute_uri() if display_page_query_param: page_number = self.page.paginator.validate_number(1) return replace_query_param(url, self.page_query_param, page_number) else: return remove_query_param(url, self.page_query_param) def get_paginated_response(self, data): next_url = self.get_next_link() previous_url = self.get_previous_link() first_url = self.get_first_link() last_url = self.get_last_link() if next_url is not None and previous_url is not None: link = '<{next_url}>; rel="next", <{previous_url}>; rel="prev"' elif next_url is not None: link = '<{next_url}>; rel="next"' elif previous_url is not None: link = '<{previous_url}>; rel="prev"' else: link = '' if link: link += ', ' link += '<{first_url}>; rel="first", <{last_url}> rel="last"' link = link.format(next_url=next_url, previous_url=previous_url, first_url=first_url, last_url=last_url) headers = {'Link': link} if link else {} return Response(data, headers=headers)
37.924242
79
0.691171
1,648
0.65841
0
0
0
0
0
0
755
0.301638
97f305739c9556bc7a629078425a1949c86c0361
3,117
py
Python
process_filing_headers.py
jsfenfen/fec2file
541a7dc40eb4ebf51d1c610ee19fdefc030fc7e3
[ "MIT" ]
1
2019-04-24T16:45:07.000Z
2019-04-24T16:45:07.000Z
process_filing_headers.py
jsfenfen/fec2file
541a7dc40eb4ebf51d1c610ee19fdefc030fc7e3
[ "MIT" ]
null
null
null
process_filing_headers.py
jsfenfen/fec2file
541a7dc40eb4ebf51d1c610ee19fdefc030fc7e3
[ "MIT" ]
null
null
null
import os import fecfile import json import csv import sys from settings import RAW_ELECTRONIC_DIR, MASTER_HEADER_ROW, HEADER_DUMP_FILE START_YEAR = 2019 ERROR_HEADERS = ['path', 'error', ] def readfile(filepath, writer): filename = os.path.basename(filepath) filename = filename.replace(".fec", "") file_number = int(filename) file = open(filepath, encoding = "ISO-8859-1") #file = open(filepath) firstline = file.readline() secondline = file.readline() firstline = firstline.replace("\n", "") raw_results = fecfile.parse_header(firstline) results = raw_results[0] results["filing_number"] = file_number version = raw_results[1] lines = None if len(raw_results)==3: lines = raw_results[1] original_report = results.get('report_id', None) report_number = results.get('report_number', None) if original_report: original_report = original_report.replace("FEC-", "") original_report_number = int(original_report) results["amends"] = original_report_number #print("Found amended filing %s amends %s # %s" % (file_number, original_report_number, report_number)) secondlineparsed = fecfile.parse_line(secondline, version) #print(secondlineparsed) results["form_type"] = secondlineparsed.get('form_type', '') results["filer_committee_id_number"] = secondlineparsed.get('filer_committee_id_number', '') results["committee_name"] = secondlineparsed.get('committee_name', '') results["date_signed"] = secondlineparsed.get('date_signed', '') results["coverage_from_date"] = secondlineparsed.get('coverage_from_date', '') results["coverage_through_date"] = secondlineparsed.get('coverage_through_date', '') writer.writerow(results) if __name__ == '__main__': outfile = open(HEADER_DUMP_FILE, 'w') dw = csv.DictWriter(outfile, fieldnames=MASTER_HEADER_ROW, extrasaction='ignore') dw.writeheader() print("Writing output to %s" % HEADER_DUMP_FILE) errorfile = open("header_read_errors.csv", 'w') error_writer = csv.DictWriter(errorfile, fieldnames=ERROR_HEADERS, extrasaction='ignore') error_writer.writeheader() for dirName, subdirList, fileList in os.walk(RAW_ELECTRONIC_DIR, topdown=False): try: directory_year = int(dirName.split("/")[-1][0:4]) if directory_year < START_YEAR: print("Ignoring directory %s" % dirName) continue except ValueError: continue for fname in fileList: if fname.endswith(".fec"): full_path = os.path.join(dirName, fname) #readfile(full_path, dw) #print("Found file %s" % full_path) try: readfile(full_path, dw) except Exception as e: print("error reading %s: %s" % (full_path, e)) error_writer.writerow({ 'path':full_path, 'error':e })
33.159574
111
0.62881
0
0
0
0
0
0
0
0
681
0.218479
97f379ae1f9f041646342228c2bcfc62e5962980
331
py
Python
src/python/collector/urls.py
swqqn/django-collector
014e5974c8c6dda38682a7ae7eb1d4f0295679b8
[ "MIT" ]
3
2015-11-05T13:42:15.000Z
2020-01-15T08:00:58.000Z
src/python/collector/urls.py
rentalita/django-collector
8646e514d26820e317b2b59828dc0e506a19c780
[ "MIT" ]
null
null
null
src/python/collector/urls.py
rentalita/django-collector
8646e514d26820e317b2b59828dc0e506a19c780
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from django.conf.urls.defaults import patterns, url urlpatterns = patterns('collector.views', url(r'^blob404/$', 'blob404'), url(r'^deleted/$', 'deleted'), url(r'^$', 'create'), url(r'^(?P<uid>\w+)/$', 'delete'), ) # Local Variables: # indent-tabs-mode: nil # End: # vim: ai et sw=4 ts=4
20.6875
51
0.586103
0
0
0
0
0
0
0
0
192
0.58006
97f5869664190ff99134b09c60ba7139b7a21527
7,658
py
Python
cdisp/core.py
felippebarbosa/cdisp
d9a612c252495ab017bffccdd7e82bbb555e07dd
[ "BSL-1.0" ]
null
null
null
cdisp/core.py
felippebarbosa/cdisp
d9a612c252495ab017bffccdd7e82bbb555e07dd
[ "BSL-1.0" ]
null
null
null
cdisp/core.py
felippebarbosa/cdisp
d9a612c252495ab017bffccdd7e82bbb555e07dd
[ "BSL-1.0" ]
null
null
null
#-*- coding: utf-8 -*- """ Dispersion calculation functions """ import numpy # module for array manipulation import pandas # module for general data analysis import os # module for general OS manipulation import scipy # module for scientific manipulation and analysis ## def set_transverse_mode(data_frame, order_tag, neff_tag = 'neff', complex_neff = False): """ Function for classification of transverse modes For this function to work, the frequency and polarization must the the same. Also the input have to be a Pandas data frame; """ if type(x) <> 'pandas.core.frame.DataFrame': raise(ValueError("The object MUST be a Pandas data frame")) #### No = len(data_frame) # number of modes order_list = np.array(['%1d' % x for x in np.arange(1, No + 1)][::-1]) # list with the transversal order neffs = np.array(data_frame[neff_tag]) # neffs of the modes if complex_neff: neffs = np.abs(np.array([complex(s.replace('i' , 'j ')) for s in neffs])) # for complex neff inds = neffs.argsort(kind = 'mergesort') # neff sorting inds2 = np.array(inds).argsort(kind = 'mergesort') # index resorting (reverse sorting) order_list_sorted = order_list[inds2] # list with the right (sorted) transversal order data_frame[order_tag] = order_list_sorted return data_frame ####### def data_classification(data_frame, wavelength_tag = 'wlength', frequency_tag = 'freq', input_tags = ['eig', 'Ptm', 'Ppml', 'Pcore', 'Pbus'], class_tags = ['polarization', 'ring_bus', 'transverse_mode']): """ Function for filtering quality factor, losses and classification of polarization and transverse modes The input have to be a Pandas data frame; """ ## limits setting pml_thre = 0.5 # threshold for power in the PMLs bus_thre = 1.0 # threshold for power in the bus waveguide relative to the ring tm_thre = 1.0 # threshold for power in the TM mode ## tags for classification [eigenval_tag, TM_tag, pml_tag, ring_tag, bus_tag] = input_tags [pol_tag, ring_bus_tag, order_tag] = class_tags ## list of columns list_col = list(data_frame.columns) # columns names Neig = list_col.index(eigenval_tag) # index before list_par = list_col[:Neig] # list of parameters ## create wavelength or frequency colunm if frequency_tag not in list_col: data_frame[frequency_tag] = scipy.constants.c/data_frame[wavelength_tag] if wavelength_tag not in list_col: data_frame[wavelength_tag] = scipy.constants.c/data_frame[frequency_tag] ## setting frequency column as the standard for internal use if frequency_tag not in list_par: list_par.remove(wavelength_tag) list_par.append(frequency_tag) ## PML filtering data_frame = data_frame[data_frame[pml_tag] < pml_thre] # Filter the light that goes to the Pml ## TE and TM modes separation data_frame[pol_tag] = np.array(pandas.cut(np.array(data_frame[TM_tag]), [0, tm_thre, data_frame[TM_tag].max()], labels = ['TE', 'TM'])) list_tag = [pol_tag] ## waveguide and bus separation if bus_tag in list_col: data_frame[ring_bus_tag] = np.array(pandas.cut((np.array(data_frame[bus_tag])/np.array(data_frame[ring_tag]))**(1./4), [0, bus_thre, 1000000], labels = ['ring', 'bus'])) # data_frame[ring_bus_tag] = np.array(pandas.cut(np.array(data_frame[ring_tag]), [0, ring_thre, 100000], labels = ['','ring'])) list_tag = list_tag + [ring_bus_tag] ## transverse mode separation list_group = list_par + list_tag # list to filter the first time data_frame = data_frame.groupby(list_group, as_index = False).apply(set_transverse_mode, order_tag) # transverse order return data_frame, list_group + [order_tag] #### def find_idx_nearest_val(array, value): '''function to find the nearest index matching to the value given''' idx_sorted = np.argsort(array) sorted_array = np.array(array[idx_sorted]) idx = np.searchsorted(sorted_array, value, side="left") if idx >= len(array): idx_nearest = idx_sorted[len(array)-1] elif idx == 0: idx_nearest = idx_sorted[0] else: if abs(value - sorted_array[idx-1]) < abs(value - sorted_array[idx]): idx_nearest = idx_sorted[idx-1] else: idx_nearest = idx_sorted[idx] return idx_nearest ### def dispersion_calculation(data_frame, frequency_tag = 'freq', wavelength_tag = 'wlength', neff_tag = 'neff', wlength0 = None): """ functions for dispersion calculation """ ## initial definitions wlength = np.array(data_frame[wavelength_tag]) # wavelength omega = 2*np.pi*np.array(data_frame[frequency_tag]) # angular frequency beta = np.array(data_frame[neff_tag])*omega/scipy.constants.c # propagation constant ## dialing with circular waveguides if 'r0' in data_frame.columns: rad0 = np.array(data_frame['r0']) beta = beta/rad0 else: rad0 = 1.0 ## dispersion calculations beta1 = Df(beta*rad0, omega)/rad0 # beta 1 beta2 = Df(beta1*rad0, omega)/rad0 # beta 2 beta3 = Df(beta2*rad0, omega)/rad0 # beta 3 beta4 = Df(beta3*rad0, omega)/rad0 # beta 4 D = -2*np.pi*scipy.constants.c/wlength*beta2 # D parameter ## set up the wlength for phase matching wlength0 = 0.9e-6 if wlength0 == None: wlength0 = wlength[int(wlength.shape[0]/2)] elif wlength0 < min(wlength): wlength0 = min(wlength) elif wlength0 > max(wlength): wlength0 = max(wlength) omega0 = 2*np.pi*scipy.constants.c/wlength0 ## phase matching calculation idx0 = find_idx_nearest_val(omega, omega0) Dbeta = calculate_Dbeta(beta, idx0) # propagation constant in Dbeta2 = beta2[idx0]*(omega - omega[idx0])**2 + beta4[idx0]/12*(omega - omega[idx0])**4 norm_gain = calculate_gain(Dbeta, 1.0e4) ## outputs n_clad, n_core = 1.0, 3.5 output_tags = ['beta', 'beta1', 'beta2', 'beta3', 'beta4', 'D', 'Dbeta', 'Dbeta_approx', 'beta_norm', 'beta_clad', 'beta_core', 'n_clad', 'n_core', 'gain', 'ng', 'fsr'] outputs = [beta, beta1, beta2, beta3, beta4, D, Dbeta, Dbeta2, beta/scipy.constants.c, n_clad*omega/scipy.constants.c, n_core*omega/scipy.constants.c, n_clad, n_core, norm_gain, beta1*scipy.constants.c, 1/(2*np.pi*rad0*beta1)] for m, output in enumerate(outputs): data_frame[output_tags[m]] = output return data_frame ### def dispersion_analysis(data_frame, list0, frequency_tag = 'freq'): ## list of columns list0.remove(frequency_tag) ## remove short data_frames Lmin = 3 data_frame = data_frame.groupby(list0, as_index = False).filter(lambda x: len(x) >= Lmin) ## calculate dispersion data_frame = data_frame.groupby(list0, as_index = False).apply(dispersion_calculation) return data_frame ## def calculate_Dbeta(x, idx0): '''calculate Dbeta for a set of date with equally spaced frequencies''' d = x.shape[0] # array dimension Dx = np.full(d, np.nan) idxm = max(-idx0, idx0 - d + 1) # minimum index idxp = min(idx0 + 1, d - idx0) # maximum index for idx in range(idxm, idxp): xm, xp = np.roll(x, idx), np.roll(x, -idx) Dx[idx0 + idx] = xm[idx0] + xp[idx0] - 2*x[idx0] return Dx ## def calculate_gain(Dbeta, Pn): '''calculate the gain of the 4 wave mixing ** here Pn is normalized such as Pn = gamma*P0''' return np.sqrt(Pn**2 - (Dbeta/2 + Pn)**2)
48.77707
177
0.657482
0
0
0
0
0
0
0
0
2,536
0.331157
97f8adb75c2bfb4df0070282016a4be3b8f42059
1,280
py
Python
appname/predict.py
Lambda-ds-31/build_week_spotify
ba5c77b457f8180f80883c61a5011eb3b38ffc95
[ "MIT" ]
null
null
null
appname/predict.py
Lambda-ds-31/build_week_spotify
ba5c77b457f8180f80883c61a5011eb3b38ffc95
[ "MIT" ]
1
2021-10-20T20:50:04.000Z
2021-10-20T20:50:04.000Z
appname/predict.py
Lambda-ds-31/build_week_spotify
ba5c77b457f8180f80883c61a5011eb3b38ffc95
[ "MIT" ]
1
2022-02-18T13:51:29.000Z
2022-02-18T13:51:29.000Z
import numpy as np from data_prep import data import spotipy from spotipy.oauth2 import SpotifyClientCredentials from os import getenv client_id = getenv('CLIENT_ID') client_id_secret = getenv('CLIENT_ID_SECRET') manager = SpotifyClientCredentials( client_id = client_id, client_secret= client_id_secret) sp = spotipy.Spotify(client_credentials_manager=manager) def find_knn(track_id, df, k=6): """ Takes in the user input song's track_id, and the prep-ed dataframe. Outputs a list of k-1 nearest neighbors based on audio features """ features = sp.audio_features(track_id)[0] df = data() user_track = np.array( [ features['acousticness'], features['danceability'], features['duration_ms'], features['energy'], features['instrumentalness'], features['liveness'], features['loudness'], features['speechiness'], features['tempo'], features['valence'] ] ) df['distances'] = np.linalg.norm(df - user_track, axis=1) nn_ids = df.sort_values(by='distances').index.to_list()[:k] if nn_ids[0] == track_id: nn_ids = nn_ids[1:] else: nn_ids = nn_ids[:-1] return nn_ids
27.826087
71
0.630469
0
0
0
0
0
0
0
0
318
0.248438
97f988da234108443107eea262cb4a176c0459c9
176
py
Python
tests/cpydiff/modules_array_deletion.py
learnforpractice/micropython-cpp
004bc8382f74899e7b876cc29bfa6a9cc976ba10
[ "MIT" ]
692
2016-12-19T23:25:35.000Z
2022-03-31T14:20:48.000Z
tests/cpydiff/modules_array_deletion.py
learnforpractice/micropython-cpp
004bc8382f74899e7b876cc29bfa6a9cc976ba10
[ "MIT" ]
509
2017-03-28T19:37:18.000Z
2022-03-31T20:31:43.000Z
tests/cpydiff/modules_array_deletion.py
learnforpractice/micropython-cpp
004bc8382f74899e7b876cc29bfa6a9cc976ba10
[ "MIT" ]
228
2016-12-19T05:03:30.000Z
2022-03-22T18:13:00.000Z
""" categories: Modules,array description: Array deletion not implemented cause: Unknown workaround: Unknown """ import array a = array.array('b', (1, 2, 3)) del a[1] print(a)
16
43
0.715909
0
0
0
0
0
0
0
0
115
0.653409
97fa4f4535ac67853dbadcc3ffdf0124a1fb7efd
10,001
py
Python
jaysblog/models.py
cRiii/jaysblog
f96ecd82f17750a47147ae3c5e72cf1320be21e5
[ "MIT" ]
5
2019-10-14T01:51:02.000Z
2019-11-07T15:01:14.000Z
jaysblog/models.py
cRiii/jaysblog
f96ecd82f17750a47147ae3c5e72cf1320be21e5
[ "MIT" ]
1
2019-11-07T06:58:26.000Z
2019-11-07T06:58:26.000Z
jaysblog/models.py
cRiii/jaysblog
f96ecd82f17750a47147ae3c5e72cf1320be21e5
[ "MIT" ]
null
null
null
# !/usr/bin/env python3 # -*- coding: utf-8 -*- """ @Time : 2019/9/17 15:07 @Author : Jay Chen @FileName: models.py @GitHub : https://github.com/cRiii """ from datetime import datetime from werkzeug.security import generate_password_hash, check_password_hash from jaysblog.extensions import db from flask_login import UserMixin class BaseModel(object): # 模型基类 为所有模型添加创建和更新的时间 create_time = db.Column(db.DateTime, default=datetime.utcnow) update_time = db.Column(db.DateTime, default=datetime.utcnow, onupdate=datetime.utcnow) class User(BaseModel, db.Model, UserMixin): """ UserMixin表示通过认证的用户 is_authenticated 表示用户已通过认证 返回True 否则False is_active 表示允许用户登陆 返回True 否则False is_anonymous 表示如果当前未用户登陆(匿名用户) 返回True 否则False get_id() 以unicode形式返回用户唯一标识 """ __tablename__ = 'b_users' id = db.Column(db.Integer, primary_key=True) # 用户id nick_name = db.Column(db.String(32), nullable=False) # 用户名 password_hash = db.Column(db.String(128), nullable=False) # 用户密码 mobile = db.Column(db.String(11), unique=True) # 手机号码 email = db.Column(db.String(64), unique=True, nullable=True) # 邮箱 desc = db.Column(db.Text) # 个人简介 location = db.Column(db.String(128)) # 地址 avatar_url = db.Column(db.String(256)) # 用户头像路径 is_admin = db.Column(db.Boolean, default=False) # 是否为管理员 last_login_time = db.Column(db.DateTime, default=datetime.utcnow) # 最后一次登陆时间 is_delete = db.Column(db.Integer, default=1) # 用户是否被删除 1正常 0被删除 gender = db.Column( db.Enum( 'MAN', # 男 'WOMAN' # 女 ), default='MAN' ) @property def password(self): raise AttributeError(u'该属性不可读') @password.setter def password(self, value): """ generate_password_hash(password,method='pbkdf2:sha256',salt_length=8) method指定计算散列值的方法 salt_length 指定盐长度 """ self.password_hash = generate_password_hash(value) def check_password(self, password): """ 接收散列值 和 密码作比较 返回布尔类型 check_password_hash(pwhash,password) """ return check_password_hash(self.password_hash, password) def to_dict(self): res_dict = { "id": self.id, "nick_name": self.nick_name, "email": self.email, "desc": self.desc, "avatar_url": self.avatar_url, "gender": self.gender, "is_admin": self.is_admin, } return res_dict class Post(BaseModel, db.Model): __tablename__ = 'b_posts' id = db.Column(db.Integer, primary_key=True) # 文章编号 post_title = db.Column(db.String(256), nullable=False) # 文章标题 post_user_id = db.Column(db.Integer, nullable=False) # 创建文章用户 post_digest = db.Column(db.String(512), nullable=True) # 文章简介 post_content = db.Column(db.Text, nullable=False) # 文章内容 post_clicks = db.Column(db.Integer, default=0) # 点击量 post_like_num = db.Column(db.Integer, default=0) # 点赞数量 post_index_image_url = db.Column(db.String(256)) # 主页面列表图片地址 post_status = db.Column(db.Integer, default=1) # 文章状态 post_can_comment = db.Column(db.Integer, default=1) # 当前文章是否可以被评论 post_comments = db.relationship('Comment', backref='comment_post') # 当前文章的评论 post_category = db.relationship('Category', back_populates='cg_posts') post_category_id = db.Column(db.Integer, db.ForeignKey('b_category.id'), nullable=False) # 文章类型 def get_comment_length(self): comments = [] if self.post_comments is not []: for comment in self.post_comments: if comment.comment_status == 1: comments.append(comment) return len(comments) def to_dict(self): res_dict = { "id": self.id, "post_title": self.post_title, "post_user_id": self.post_user_id, "post_digest": self.post_digest if self.post_digest else "", "post_clicks": self.post_clicks, "post_like_num": self.post_like_num, "post_index_image_url": self.post_index_image_url if self.post_index_image_url else "", "post_category": self.post_category.to_dict() if self.post_category else None, "post_comments_count": self.get_comment_length(), "post_create_time": self.create_time, "post_update_time": self.update_time, } return res_dict def to_dict_details(self): res_dict = { "id": self.id, "post_title": self.post_title, "post_user_id": self.post_user_id, "post_content": self.post_content, "post_clicks": self.post_clicks, "post_like_num": self.post_like_num, "post_can_comment": self.post_can_comment, "post_create_time": self.create_time, "post_category": self.post_category.to_dict() if self.post_category else None, "post_comments_count": self.get_comment_length(), } return res_dict class Category(BaseModel, db.Model): __tablename__ = 'b_category' id = db.Column(db.Integer, primary_key=True) # 分类编号 cg_name = db.Column(db.String(64), nullable=False, unique=True) # 分类名称 cg_posts = db.relationship('Post', back_populates='post_category') # 分类下的文章 def to_dict(self): res_dict = { "id": self.id, "cg_name": self.cg_name, "cg_posts_count": len(self.cg_posts) if self.cg_posts else 0 } return res_dict class Comment(BaseModel, db.Model): __tablename__ = 'b_comments' id = db.Column(db.Integer, primary_key=True) # 评论编号 comment_user_id = db.Column(db.Integer, nullable=False) # 评论用户ID comment_content = db.Column(db.Text, nullable=False) # 评论内容 comment_from_admin = db.Column(db.Integer, default=0) # 是否为管理员评论 comment_status = db.Column(db.Integer, default=0) # 评论是否通过审核 -1不可用 0:审核中 1:审核通过 comment_post_id = db.Column(db.Integer, db.ForeignKey('b_posts.id'), nullable=False) # 当前评论属于的文章id comment_reply = db.relationship('Reply', backref='reply_comment') # 当前评论下的回复 def to_dict(self): comment_replies = [] if self.comment_reply is not []: for reply in self.comment_reply: if reply.reply_status == 1: comment_replies.append(reply.to_dict()) user = User.query.filter_by(id=self.comment_user_id).first() res_dict = { "id": self.id, "comment_user_name": user.nick_name, "comment_user_avatar_url": user.avatar_url, "comment_content": self.comment_content, "comment_from_admin": user.is_admin, "comment_post_id": self.comment_post_id, "comment_replies": comment_replies, "comment_create_time": self.create_time, "comment_update_time": self.update_time, } return res_dict class Reply(BaseModel, db.Model): __tablename__ = 'b_reply' id = db.Column(db.Integer, primary_key=True) # 回复的id reply_from_user = db.Column(db.String(32), nullable=False) # 谁回复的 reply_to_user = db.Column(db.String(32), nullable=False) # 回复给谁的 reply_content = db.Column(db.Text, nullable=False) # 回复的内容 reply_status = db.Column(db.Integer, default=0) # 回复是否通过审核 -1不可用 0:审核中 1:审核通过 reply_comment_id = db.Column(db.Integer, db.ForeignKey('b_comments.id'), nullable=False) # 当前回复属于的评论id def to_dict(self): user = User.query.filter_by(nick_name=self.reply_from_user).first() res_dict = { "id": self.id, "reply_from_user": self.reply_from_user, "reply_to_user": self.reply_to_user, "reply_content": self.reply_content, "reply_comment_id": self.reply_comment_id, "reply_create_time": self.create_time, "reply_update_time": self.update_time, "reply_user_is_admin": user.is_admin, "reply_user_avatar_url": user.avatar_url, } return res_dict class Journey(BaseModel, db.Model): __tablename__ = 'b_journey' id = db.Column(db.Integer, primary_key=True) # 历程id journey_title = db.Column(db.String(32), nullable=False) # 历程标题 journey_desc = db.Column(db.Text, nullable=False) # 历程详情 journey_time = db.Column(db.DateTime, default=datetime.utcnow) # 历程时间 def to_dict(self): res_dict = { "id": self.id, "journey_title": self.journey_title, "journey_desc": self.journey_desc, "journey_time": self.journey_time } return res_dict class MessageBoard(BaseModel, db.Model): __tablename__ = 'b_board' id = db.Column(db.Integer, primary_key=True) # 留言板id board_user = db.Column(db.String(32), nullable=False) # 留言用户 board_desc = db.Column(db.Text, nullable=False) # 留言内容 board_status = db.Column(db.Integer, nullable=False, default=0) # 留言状态 -1不可用 0:审核中 1:审核通过 board_email = db.Column(db.String(50), nullable=False) # 留言回复邮箱 def to_dict(self): res_dict = { "id": self.id, "board_user": self.board_user, "board_desc": self.board_desc, "board_status": self.board_status, "board_create_time": self.create_time, "board_update_time": self.update_time, "board_email": self.board_email, } return res_dict class UsersLikePosts(BaseModel, db.Model): __tablename__ = 'b_users_like_posts' id = db.Column(db.Integer, primary_key=True) # 主键 user_id = db.Column(db.Integer, nullable=False) user_like_post_id = db.Column(db.Integer, nullable=False) def to_dict(self): res_dict = { "id": self.id, "user_id": self.user_id, "user_like_post_id": self.user_like_post_id, } return res_dict
35.97482
107
0.633137
10,450
0.966072
0
0
404
0.037349
0
0
3,054
0.282333
97fa5c7d0604d6e2fc363a4c15650e9b99bf74f3
602
py
Python
112_Path Sum.py
Alvin1994/leetcode-python3-
ba2bde873c925554cc39f2bd13be81967713477d
[ "Apache-2.0" ]
null
null
null
112_Path Sum.py
Alvin1994/leetcode-python3-
ba2bde873c925554cc39f2bd13be81967713477d
[ "Apache-2.0" ]
null
null
null
112_Path Sum.py
Alvin1994/leetcode-python3-
ba2bde873c925554cc39f2bd13be81967713477d
[ "Apache-2.0" ]
null
null
null
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def hasPathSum(self, root: 'TreeNode', sum: 'int') -> 'bool': if not root: return False def helper(node,val): if not node: return False val -= node.val if node.left is None and node.right is None: return val == 0 return helper(node.left, val) or helper(node.right, val) return helper(root,sum)
28.666667
68
0.521595
429
0.712625
0
0
0
0
0
0
177
0.29402
97faabe77e17c6e2ce8553519c92f2c578ef3f08
1,509
py
Python
telemanom/_globals.py
tonyzeng2019/telemanom
ee1c9252c6ffc9581995aaf479f0d79cf0a2e914
[ "Apache-2.0" ]
null
null
null
telemanom/_globals.py
tonyzeng2019/telemanom
ee1c9252c6ffc9581995aaf479f0d79cf0a2e914
[ "Apache-2.0" ]
null
null
null
telemanom/_globals.py
tonyzeng2019/telemanom
ee1c9252c6ffc9581995aaf479f0d79cf0a2e914
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 import yaml import json import sys import os sys.path.append('../venv/lib/python3.5/site-packages') from elasticsearch import Elasticsearch sys.path.append('../telemanom') class Config: '''Loads parameters from config.yaml into global object''' def __init__(self, path_to_config): if os.path.isfile(path_to_config): pass else: path_to_config = '../%s' %path_to_config setattr(self, "path_to_config", path_to_config) dictionary = None with open(path_to_config, "r") as f: dictionary = yaml.load(f.read()) try: for k,v in dictionary.items(): setattr(self, k, v) except: for k,v in dictionary.iteritems(): setattr(self, k, v) def build_group_lookup(self, path_to_groupings): channel_group_lookup = {} with open(path_to_groupings, "r") as f: groupings = json.loads(f.read()) for subsystem in groupings.keys(): for subgroup in groupings[subsystem].keys(): for chan in groupings[subsystem][subgroup]: channel_group_lookup[chan["key"]] = {} channel_group_lookup[chan["key"]]["subsystem"] = subsystem channel_group_lookup[chan["key"]]["subgroup"] = subgroup return channel_group_lookup
27.944444
82
0.561299
1,294
0.857522
0
0
0
0
0
0
210
0.139165
97fbc7c518483b22e3bd3fb0a4313e038f0a4e05
508
py
Python
nanome/_internal/_network/_commands/_serialization/_open_url.py
rramji/nanome-lib
2806598af31cfb4bb6e16366f0b300d2ddcc9c13
[ "MIT" ]
null
null
null
nanome/_internal/_network/_commands/_serialization/_open_url.py
rramji/nanome-lib
2806598af31cfb4bb6e16366f0b300d2ddcc9c13
[ "MIT" ]
null
null
null
nanome/_internal/_network/_commands/_serialization/_open_url.py
rramji/nanome-lib
2806598af31cfb4bb6e16366f0b300d2ddcc9c13
[ "MIT" ]
null
null
null
from nanome._internal._util._serializers import _StringSerializer from nanome._internal._util._serializers import _TypeSerializer class _OpenURL(_TypeSerializer): def __init__(self): self.string = _StringSerializer() def version(self): return 0 def name(self): return "OpenURL" def serialize(self, version, value, context): context.write_using_serializer(self.string, value) def deserialize(self, version, context): raise NotImplementedError
25.4
65
0.720472
375
0.738189
0
0
0
0
0
0
9
0.017717
97fd1501d115786d6770847e5c0def668bf7ecbe
196
py
Python
questoes/questao1.py
raulbarcelos/Lista-de-Exercicios-PO
70933896108b5f9fbdbf541c389ab9354d6ceaf2
[ "MIT" ]
null
null
null
questoes/questao1.py
raulbarcelos/Lista-de-Exercicios-PO
70933896108b5f9fbdbf541c389ab9354d6ceaf2
[ "MIT" ]
null
null
null
questoes/questao1.py
raulbarcelos/Lista-de-Exercicios-PO
70933896108b5f9fbdbf541c389ab9354d6ceaf2
[ "MIT" ]
null
null
null
print("********************************") print("********** QUESTÃO 01 **********") print("********************************") print("******** RAUL BARCELOS *********") print() print("Olá mundo")
24.5
41
0.30102
0
0
0
0
0
0
0
0
149
0.752525
97fdbd42de4debdf4f69ae07026eb489c9f50129
2,772
py
Python
CorpusToolkit/ply_parser/test.py
howl-anderson/tools_for_corpus_of_people_daily
8178d9a62c356f83723d42ced60f8269eed84861
[ "Apache-2.0" ]
243
2018-09-12T01:05:03.000Z
2022-03-30T11:25:59.000Z
CorpusToolkit/ply_parser/test.py
nkkkyyy/tools_for_corpus_of_people_daily
8178d9a62c356f83723d42ced60f8269eed84861
[ "Apache-2.0" ]
3
2018-10-18T10:13:07.000Z
2020-09-10T06:34:40.000Z
CorpusToolkit/ply_parser/test.py
nkkkyyy/tools_for_corpus_of_people_daily
8178d9a62c356f83723d42ced60f8269eed84861
[ "Apache-2.0" ]
56
2018-09-11T12:56:20.000Z
2021-11-09T04:02:00.000Z
import logging from CorpusToolkit.ply_parser import make_parser, lexer logging.basicConfig( level=logging.DEBUG, filename="parselog.txt", filemode="w", format="%(filename)10s:%(lineno)4d:%(message)s" ) log = logging.getLogger() test_data = ( "19980101-01-001-002/m 中共中央/nt 总书记/n 、/wu 国家/n 主席/n 江/nrf 泽民/nrg", "19980101-01-001-006/m 在/p 1998年/t 来临/vi 之际/f ,/wd 我/rr 十分/dc 高兴/a 地/ui 通过/p [中央/n 人民/n 广播/vn 电台/n]nt 、/wu [中国/ns 国际/n 广播/vn 电台/n]nt 和/c [中央/n 电视台/n]nt ,/wd 向/p 全国/n 各族/rz 人民/n ,/wd 向/p [香港/ns 特别/a 行政区/n]ns 同胞/n 、/wu 澳门/ns 和/c 台湾/ns 同胞/n 、/wu 海外/s 侨胞/n ,/wd 向/p 世界/n 各国/rz 的/ud 朋友/n 们/k ,/wd 致以/vt 诚挚/a 的/ud 问候/vn 和/c 良好/a 的/ud 祝愿/vn !/wt", "19980131-04-013-024/m 那{na4}/rz 音韵/n 如/vt 轻柔/a 的/ud 夜风/n ,/wd ", "19980103-04-003-007/m 图文/n 兼/vt 重/a 的/ud 中国/ns 文明史/n ,/wd 就/p 方向/n 言/Vg 有利于/vt 历史学/n 和/c 考古学/n 的/ud 进一步/d 结合/vt 。/wj 考古学/n 本身/rz 是/vl 具有/vt 独立/a 的/ud 理论/n 和/c 方法/n 的/ud 学科/n ,/wd 然而/c 中国/ns 考古学/n 从/p 一/d 开始/vt 便/d 以/p 同/p 历史学/n 的/ud 密切/ad 结合/vt 为/vl 特点/n 。/wj 大家/rr 知道/vt ,/wd 王/nrf 国维/nrg 先生/n 二十/m 年代/n 在/p [清华/jn 国学/n 研究院/n]nt 的/ud 讲义/n 《/wkz 古史/n 新/a 证/n 》/wky 中/f 提出/vt 的/ud “/wyz 二/m 重/qc 证据法/n ”/wyy ,/wd 在/p 方法论/n 上{shang5}/f 为{wei4}/p 考古学/n 的/ud 建立/vn 发展/vn 开拓/vt 了/ul 道路/n 。/wj “/wyz 二/m 重/qc 证据法/n ”/wyy 指/vt 文献/n 同/p 文物/n 的/ud 互相/d 印证/vt ,/wd 即/vl 蕴涵/vt 着/uz 历史/n 、/wu 考古/n 的/ud 结合/vn 。/wj 亲手/d 在/p 中国/ns 开展/vt 考古学/n 工作/vn 的/ud 考古学家/n ,/wd 都/d 以/p 探索/vt 和/c 重建/vt 古史/n 为/vl 职/Ng 志/n 。/wj 最/dc 早/a 得到/vt 大规模/d 系统/ad 发掘/vt 的/ud 遗址/n 殷墟/ns ,/wd 其/rz 被/p 选定/vt 正是/vl 出于/vt 这样/rz 的/ud 要求/n 。/wj 长期/d 领导/vt [中国/ns 科学院/n (/wkz 后/f 属/vl [中国/ns 社会/n 科学院/n]nt )/wky 考古/vn 研究所/n]nt 的/ud 夏/nrf 鼐/nrg 先生/n ,/wd 1984年/t 在/p 《/wkz 什么/ryw 是/vl 考古学/n 》/wky 文/Ng 中/f 说/vt ,/wd 考古学/n 和/p 利用/vt 文献/n 记载/vn 进行/vx 研究/vn 的/ud 狭义/b 历史学/n 不/df 同/vt ,/wd 研究/vt 的/ud 对象/n 只/d 是/vl 物质/n 的/ud 遗存/vn ,/wd 但/c 两者/rz 同/d 以/p 恢复/vt 人类/n 历史/n 的/ud 本来面目/in 为/vl 目标/n ,/wd 如/vt 车{che1}/n 之/u 两/m 轮/Ng ,/wd 鸟/n 之/u 两翼/n 。/wj 对于/p 了解/vt 中国/ns 有着/vt 悠久/a 的/ud 文明/n 和/c 丰富/a 的/ud 文献/n 传统/n 的/ud 人们/n 来说/u ,/wd 中国/ns 考古学/n 的/ud 这种/r 特点/n 乃是/vl 自然/a 的/ud 。/wj" ) s = test_data[3] def test_lexer(): lexer.input(s) while True: tok = lexer.token() if not tok: break # No more input print(tok.type, tok.value, tok.lineno, tok.lexpos) def test_parser(): parser = make_parser() result = parser.parse(s) for token in result: print(token.token, token.pinyin, token.pos)
72.947368
1,579
0.533911
0
0
0
0
0
0
0
0
3,224
0.846639
97fdbe6160aa3872cb3be14af73e7667fe00624c
978
py
Python
homeassistant/components/hue/v2/helpers.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
30,023
2016-04-13T10:17:53.000Z
2020-03-02T12:56:31.000Z
homeassistant/components/hue/v2/helpers.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
24,710
2016-04-13T08:27:26.000Z
2020-03-02T12:59:13.000Z
homeassistant/components/hue/v2/helpers.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
11,956
2016-04-13T18:42:31.000Z
2020-03-02T09:32:12.000Z
"""Helper functions for Philips Hue v2.""" from __future__ import annotations def normalize_hue_brightness(brightness: float | None) -> float | None: """Return calculated brightness values.""" if brightness is not None: # Hue uses a range of [0, 100] to control brightness. brightness = float((brightness / 255) * 100) return brightness def normalize_hue_transition(transition: float | None) -> float | None: """Return rounded transition values.""" if transition is not None: # hue transition duration is in milliseconds and round them to 100ms transition = int(round(transition, 1) * 1000) return transition def normalize_hue_colortemp(colortemp: int | None) -> int | None: """Return color temperature within Hue's ranges.""" if colortemp is not None: # Hue only accepts a range between 153..500 colortemp = min(colortemp, 500) colortemp = max(colortemp, 153) return colortemp
32.6
76
0.682004
0
0
0
0
0
0
0
0
338
0.345603
97fe866f84f325af30eccf7ed7f76920a2b9b84a
186
py
Python
incapsula/__init__.py
zanachka/incapsula-cracker-py3
be1738d0e649e91de75583b694372bc04547fa85
[ "Unlicense" ]
null
null
null
incapsula/__init__.py
zanachka/incapsula-cracker-py3
be1738d0e649e91de75583b694372bc04547fa85
[ "Unlicense" ]
null
null
null
incapsula/__init__.py
zanachka/incapsula-cracker-py3
be1738d0e649e91de75583b694372bc04547fa85
[ "Unlicense" ]
null
null
null
from .errors import IncapBlocked, MaxRetriesExceeded, RecaptchaBlocked from .parsers import ResourceParser, WebsiteResourceParser, IframeResourceParser from .session import IncapSession
46.5
80
0.876344
0
0
0
0
0
0
0
0
0
0
97feddd1f63ca0959b0312d053d59692a6f28e9d
3,646
py
Python
sdk/python/pulumi_civo/get_network.py
dirien/pulumi-civo
f75eb1482bade0d21fb25c9e20e6838791518226
[ "ECL-2.0", "Apache-2.0" ]
3
2020-08-04T12:27:02.000Z
2022-03-14T13:16:43.000Z
sdk/python/pulumi_civo/get_network.py
dirien/pulumi-civo
f75eb1482bade0d21fb25c9e20e6838791518226
[ "ECL-2.0", "Apache-2.0" ]
85
2020-08-17T19:03:57.000Z
2022-03-25T19:17:57.000Z
sdk/python/pulumi_civo/get_network.py
dirien/pulumi-civo
f75eb1482bade0d21fb25c9e20e6838791518226
[ "ECL-2.0", "Apache-2.0" ]
5
2020-08-04T12:27:03.000Z
2022-03-24T00:56:24.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from . import _utilities __all__ = [ 'GetNetworkResult', 'AwaitableGetNetworkResult', 'get_network', ] @pulumi.output_type class GetNetworkResult: """ A collection of values returned by getNetwork. """ def __init__(__self__, default=None, id=None, label=None, name=None, region=None): if default and not isinstance(default, bool): raise TypeError("Expected argument 'default' to be a bool") pulumi.set(__self__, "default", default) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if label and not isinstance(label, str): raise TypeError("Expected argument 'label' to be a str") pulumi.set(__self__, "label", label) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if region and not isinstance(region, str): raise TypeError("Expected argument 'region' to be a str") pulumi.set(__self__, "region", region) @property @pulumi.getter def default(self) -> bool: """ If is the default network. """ return pulumi.get(self, "default") @property @pulumi.getter def id(self) -> Optional[str]: """ A unique ID that can be used to identify and reference a Network. """ return pulumi.get(self, "id") @property @pulumi.getter def label(self) -> Optional[str]: """ The label used in the configuration. """ return pulumi.get(self, "label") @property @pulumi.getter def name(self) -> str: """ The name of the network. """ return pulumi.get(self, "name") @property @pulumi.getter def region(self) -> Optional[str]: return pulumi.get(self, "region") class AwaitableGetNetworkResult(GetNetworkResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetNetworkResult( default=self.default, id=self.id, label=self.label, name=self.name, region=self.region) def get_network(id: Optional[str] = None, label: Optional[str] = None, region: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetNetworkResult: """ Use this data source to access information about an existing resource. :param str id: The unique identifier of an existing Network. :param str label: The label of an existing Network. :param str region: The region of an existing Network. """ __args__ = dict() __args__['id'] = id __args__['label'] = label __args__['region'] = region if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('civo:index/getNetwork:getNetwork', __args__, opts=opts, typ=GetNetworkResult).value return AwaitableGetNetworkResult( default=__ret__.default, id=__ret__.id, label=__ret__.label, name=__ret__.name, region=__ret__.region)
31.162393
120
0.620954
2,155
0.591059
242
0.066374
1,836
0.503566
0
0
1,167
0.320077
97ff07ce80697d0e69e6e48e82606287cb5eb7ee
744
py
Python
Hard/longest_valid_parentheses.py
BrynjarGeir/LeetCode
dbd57e645c5398dec538b6466215b61491c8d1d9
[ "MIT" ]
null
null
null
Hard/longest_valid_parentheses.py
BrynjarGeir/LeetCode
dbd57e645c5398dec538b6466215b61491c8d1d9
[ "MIT" ]
null
null
null
Hard/longest_valid_parentheses.py
BrynjarGeir/LeetCode
dbd57e645c5398dec538b6466215b61491c8d1d9
[ "MIT" ]
null
null
null
from collections import deque class Solution: def longestValidParentheses(self, s: str) -> int: if len(s) == 1 or s == '': return 0 opened = deque() for i,p in enumerate(s): if p == '(': opened.append(i) else: if opened: if s[opened[-1]] == '(': opened.pop() else: opened.append(i) else: opened.append(i) if not opened: return len(s) else: longest = 0 a, b = len(s), 0 while opened: b = opened.pop() longest = max(longest, a-b-1) a = b longest = max(longest, a) return longest
32.347826
57
0.424731
714
0.959677
0
0
0
0
0
0
8
0.010753
97ff3603368750b9661b92eb04ae9042db5bd4fc
2,358
py
Python
IMFlask/config.py
iml1111/IMFlask
96af28460365c305e92ca2720fe6b015713c578f
[ "MIT" ]
2
2020-09-07T11:33:41.000Z
2020-09-08T14:47:40.000Z
IMFlask/config.py
iml1111/IMFlask
96af28460365c305e92ca2720fe6b015713c578f
[ "MIT" ]
1
2020-09-07T11:29:00.000Z
2022-03-31T10:01:06.000Z
IMFlask/config.py
iml1111/IMFlask
96af28460365c305e92ca2720fe6b015713c578f
[ "MIT" ]
2
2020-10-06T18:25:46.000Z
2021-09-09T16:00:07.000Z
''' Flask Application Config ''' import os from logging.config import dictConfig BASEDIR = os.path.abspath(os.path.dirname(__file__)) class Config: '''공통 Config''' JWT_SECRET_KEY = os.environ.get('FLASK_JWT_SECRET_KEY') # test only TEST_ACCESS_TOKEN = os.environ.get('FLASK_TEST_ACCESS_TOKEN') ADMIN_ID = os.environ.get('FLASK_ADMIN_ID', "iml") ADMIN_PW = os.environ.get('FLASK_ADMIN_PW', "iml") # DB_PROXY: basic, mysql, mongodb, redis, all DB_PROXY = os.environ.get('FLASK_DB_PROXY') if DB_PROXY in ['mysql', 'all']: MYSQL_URI = os.environ.get('FLASK_MYSQL_URI') if DB_PROXY in ['mongodb', 'all']: MONGO_URI = os.environ.get('FLASK_MONGO_URI') MONGO_DB_NAME = os.environ.get('FLASK_MONGO_DB_NAME') if DB_PROXY == ['reids', 'all']: REDIS_HOST = os.environ.get('FLASK_REDIS_HOST') REDIS_PORT = os.environ.get('FLASK_REDIS_PORT') REDIS_PW = os.environ.get('FLASK_REDIS_PW') ALLOWED_EXTENSION = {'txt', 'docs', 'md', 'hwp', 'ppt', 'pptx'} SLOW_API_TIME = 0.5 @staticmethod def init_app(app): '''전역 init_app 함수''' class TestingConfig(Config): '''Test 전용 Config''' DEBUG = True TESTING = True class DevelopmentConfig(Config): '''개발 환경 전용 Config''' DEBUG = True TESTING = False class ProductionConfig(Config): ''' 상용환경 전용 Config''' DEBUG = False TESTING = False @staticmethod def init_app(app): '''로거 등록 및 설정''' dictConfig({ 'version': 1, 'formatters': { 'default': { 'format': '[%(asctime)s] %(levelname)s in %(module)s: %(message)s', } }, 'handlers': { 'file': { 'level': 'INFO', 'class': 'logging.handlers.RotatingFileHandler', 'filename': './server_error.log', 'maxBytes': 1024 * 1024 * 5, 'backupCount': 5, 'formatter': 'default', }, }, 'root': { 'level': 'INFO', 'handlers': ['file'] } }) config = { 'development':DevelopmentConfig, 'production':ProductionConfig, 'testing':TestingConfig, 'default':DevelopmentConfig, }
26.2
87
0.54665
2,115
0.876866
0
0
867
0.359453
0
0
855
0.354478
97ff714eac7c0cc920b3005424b8958af7aec6ce
1,066
py
Python
cnn/conv_average_pooling.py
nforesperance/Tensorflow-Keras
12fa74e01c7081b2f5ef899ee9123498ef541483
[ "MIT" ]
1
2021-01-07T11:05:07.000Z
2021-01-07T11:05:07.000Z
cnn/conv_average_pooling.py
nforesperance/Tensorflow-Keras
12fa74e01c7081b2f5ef899ee9123498ef541483
[ "MIT" ]
null
null
null
cnn/conv_average_pooling.py
nforesperance/Tensorflow-Keras
12fa74e01c7081b2f5ef899ee9123498ef541483
[ "MIT" ]
null
null
null
# example of average pooling from numpy import asarray from keras.models import Sequential from keras.layers import Conv2D from keras.layers import AveragePooling2D # define input data data = [[0, 0, 0, 1, 1, 0, 0, 0], [0, 0, 0, 1, 1, 0, 0, 0], [0, 0, 0, 1, 1, 0, 0, 0], [0, 0, 0, 1, 1, 0, 0, 0], [0, 0, 0, 1, 1, 0, 0, 0], [0, 0, 0, 1, 1, 0, 0, 0], [0, 0, 0, 1, 1, 0, 0, 0], [0, 0, 0, 1, 1, 0, 0, 0]] data = asarray(data) data = data.reshape(1, 8, 8, 1) # create model model = Sequential() model.add(Conv2D(1, (3,3), activation='relu', input_shape=(8, 8, 1))) model.add(AveragePooling2D()) # summarize model model.summary() # define a vertical line detector detector = [[[[0]],[[1]],[[0]]], [[[0]],[[1]],[[0]]], [[[0]],[[1]],[[0]]]] weights = [asarray(detector), asarray([0.0])] # store the weights in the model model.set_weights(weights) # apply filter to input data yhat = model.predict(data) # enumerate rows for r in range(yhat.shape[1]): # print each column in the row print([yhat[0,r,c,0] for c in range(yhat.shape[2])])
30.457143
69
0.594747
0
0
0
0
0
0
0
0
223
0.209193
3f000581137f7e8d12b07f946dab58d61d19c246
13,127
py
Python
acquisitions/models.py
18F/acqstackdb
7d939e7deb1cb8749f16fe6b6bc092f5db5c4469
[ "CC0-1.0" ]
2
2016-06-03T16:33:34.000Z
2016-07-22T12:10:31.000Z
acquisitions/models.py
18F/acqstackdb
7d939e7deb1cb8749f16fe6b6bc092f5db5c4469
[ "CC0-1.0" ]
26
2016-06-02T11:21:15.000Z
2016-07-18T14:10:03.000Z
acquisitions/models.py
18F/acqstackdb
7d939e7deb1cb8749f16fe6b6bc092f5db5c4469
[ "CC0-1.0" ]
2
2017-07-14T08:33:32.000Z
2021-02-15T10:16:18.000Z
from django.db import models from django.core.validators import RegexValidator, ValidationError from django.utils.translation import ugettext_lazy as _ from django.contrib.auth.models import User from smart_selects.db_fields import ChainedForeignKey, ChainedManyToManyField from ordered_model.models import OrderedModel # Create your models here. class Agency(models.Model): name = models.CharField(max_length=100, blank=False) abbreviation = models.CharField(max_length=10, null=True, blank=True) department = models.CharField(max_length=100, null=True, blank=True) omb_agency_code = models.IntegerField(null=True, blank=True) omb_bureau_code = models.IntegerField(null=True, blank=True) treasury_agency_code = models.IntegerField(null=True, blank=True) cgac_agency_code = models.IntegerField(null=True, blank=True) def __str__(self): return self.name class Meta: verbose_name_plural = "Agencies" ordering = ('name',) class Subagency(models.Model): name = models.CharField(max_length=100, blank=False) abbreviation = models.CharField(max_length=10, null=True, blank=True) agency = models.ForeignKey(Agency) def __str__(self): return "%s - %s" % (self.agency, self.name) class Meta: ordering = ('name',) verbose_name_plural = "Subagencies" class ContractingOffice(models.Model): name = models.CharField(max_length=100) def __str__(self): return self.name class Meta: verbose_name = "Contracting Office" verbose_name_plural = "Contracting Offices" class ContractingOfficer(models.Model): name = models.CharField(max_length=100) contracting_office = models.ForeignKey(ContractingOffice) def __str__(self): return "%s - %s" % (self.name, self.contracting_office) class Meta: ordering = ('name',) verbose_name = "Contracting Officer" verbose_name_plural = "Contracting Officers" class COR(models.Model): name = models.CharField(max_length=100) def __str__(self): return self.name class Meta: ordering = ('name',) verbose_name = "Contracting Officer Representative" verbose_name_plural = "Contracting Officer Representatives" # Is the acquisition internal or external? class Track(models.Model): name = models.CharField(max_length=50) def __str__(self): return "%s" % (self.name) class Stage(OrderedModel): name = models.CharField(max_length=50) wip_limit = models.IntegerField(default=0, verbose_name="WIP Limit") def __str__(self): return "%s" % (self.name) class Meta(OrderedModel.Meta): pass class Actor(models.Model): name = models.CharField(max_length=200, blank=False) def __str__(self): return "%s" % (self.name) class Step(models.Model): actor = models.ForeignKey( Actor, blank=False ) track = models.ManyToManyField( Track, blank=False, through="StepTrackThroughModel" ) stage = models.ForeignKey( Stage, blank=False ) def __str__(self): return "%s - %s" % (self.stage, self.actor,) class Meta: ordering = ('steptrackthroughmodel__order',) class StepTrackThroughModel(OrderedModel): track = models.ForeignKey(Track) step = models.ForeignKey(Step) wip_limit = models.IntegerField(default=0, verbose_name="WIP Limit") order_with_respect_to = 'track' class Meta(OrderedModel.Meta): unique_together = ('track', 'step') ordering = ('track', 'order') class Vendor(models.Model): name = models.CharField(max_length=200, blank=False) email = models.EmailField(blank=False) duns = models.CharField(max_length=9, blank=False, validators=[ RegexValidator(regex='^\d{9}$', message="DUNS number must be 9 digits") ]) def __str__(self): return self.name class Role(models.Model): description = models.CharField(max_length=100, choices=( ('P', 'Product Lead'), ('A', 'Acquisition Lead'), ('T', 'Technical Lead') ), null=True, blank=True) teammate = models.ForeignKey(User, blank=True, null=True) def __str__(self): return "%s - %s" % (self.get_description_display(), self.teammate) class Acquisition(models.Model): SET_ASIDE_CHOICES = ( ("AbilityOne", "AbilityOne"), ("HUBZone Small Business", "HUBZone Small Business"), ("Multiple Small Business Categories", "Multiple Small Business Categories"), ("Other Than Small", "Other Than Small"), ("Service Disabled Veteran-owned Small Business", "Service Disabled Veteran-owned Small Business"), ("Small Business", "Small Business"), ("Small Disadvantaged Business (includes Section 8a)", "Small Disadvantaged Business (includes Section 8a)"), ("To Be Determined-BPA", "To Be Determined-BPA"), ("To Be Determined-IDIQ", "To Be Determined-IDIQ"), ("Veteran-Owned Small Business", "Veteran-Owned Small Business"), ("Woman-Owned Small Business", "Woman-Owned Small Business"), ) CONTRACT_TYPE_CHOICES = ( ("Cost No Fee", "Cost No Fee"), ("Cost Plus Award Fee", "Cost Plus Award Fee"), ("Cost Plus Fixed Fee", "Cost Plus Fixed Fee"), ("Cost Plus Incentive Fee", "Cost Plus Incentive Fee"), ("Cost Sharing", "Cost Sharing"), ("Fixed Price Award Fee", "Fixed Price Award Fee"), ("Fixed Price Incentive", "Fixed Price Incentive"), ("Fixed Price Labor Hours", "Fixed Price Labor Hours"), ("Fixed Price Level of Effort", "Fixed Price Level of Effort"), ("Fixed Price Time and Materials", "Fixed Price Time and Materials"), ("Fixed Price with Economic Price Adjustment", "Fixed Price with Economic Price Adjustment"), ("Fixed Price", "Fixed Price"), ("Interagency Agreement", "Interagency Agreement"), ("Labor Hours and Time and Materials", "Labor Hours and Time and Materials"), ("Labor Hours", "Labor Hours"), ("Order Dependent", "Order Dependent"), ("Time and Materials", "Time and Materials"), ) COMPETITION_STRATEGY_CHOICES = ( ("A/E Procedures", "A/E Procedures"), ("Competed under SAP", "Competed under SAP"), ("Competitive Delivery Order Fair Opportunity Provided", "Competitive Delivery Order Fair Opportunity Provided"), ("Competitive Schedule Buy", "Competitive Schedule Buy"), ("Fair Opportunity", "Fair Opportunity"), ("Follow On to Competed Action (FAR 6.302-1)", "Follow On to Competed Action (FAR 6.302-1)"), ("Follow On to Competed Action", "Follow On to Competed Action"), ("Full and Open after exclusion of sources (competitive small business \ set-asides, competitive 8a)", "Full and Open after exclusion of sources (competitive small \ business set-asides, competitive 8a)"), ("Full and Open Competition Unrestricted", "Full and Open Competition Unrestricted"), ("Full and Open Competition", "Full and Open Competition"), ("Limited Sources FSS Order", "Limited Sources FSS Order"), ("Limited Sources", "Limited Sources"), ("Non-Competitive Delivery Order", "Non-Competitive Delivery Order"), ("Not Available for Competition (e.g., 8a sole source, HUBZone & \ SDVOSB sole source, Ability One, all > SAT)", "Not Available for Competition (e.g., 8a sole source, HUBZone & \ SDVOSB sole source, Ability One, all > SAT)"), ("Not Competed (e.g., sole source, urgency, etc., all > SAT)", "Not Competed (e.g., sole source, urgency, etc., all > SAT)"), ("Not Competed under SAP (e.g., Urgent, Sole source, Logical \ Follow-On, 8a, HUBZone & SDVOSB sole source, all < SAT)", "Not Competed under SAP (e.g., Urgent, Sole source, Logical \ Follow-On, 8a, HUBZone & SDVOSB sole source, all < SAT)"), ("Partial Small Business Set-Aside", "Partial Small Business Set-Aside"), ("Set-Aside", "Set-Aside"), ("Sole Source", "Sole Source"), ) PROCUREMENT_METHOD_CHOICES = ( ("Ability One", "Ability One"), ("Basic Ordering Agreement", "Basic Ordering Agreement"), ("Blanket Purchase Agreement-BPA", "Blanket Purchase Agreement-BPA"), ("BPA Call", "BPA Call"), ("Call Order under GSA Schedules BPA", "Call Order under GSA Schedules BPA"), ("Commercial Item Contract", "Commercial Item Contract"), ("Contract modification", "Contract modification"), ("Contract", "Contract"), ("Definitive Contract other than IDV", "Definitive Contract other than IDV"), ("Definitive Contract", "Definitive Contract"), ("Government-wide Agency Contract-GWAC", "Government-wide Agency Contract-GWAC"), ("GSA Schedule Contract", "GSA Schedule Contract"), ("GSA Schedule", "GSA Schedule"), ("GSA Schedules Program BPA", "GSA Schedules Program BPA"), ("Indefinite Delivery Indefinite Quantity-IDIQ", "Indefinite Delivery Indefinite Quantity-IDIQ"), ("Indefinite Delivery Vehicle (IDV)", "Indefinite Delivery Vehicle (IDV)"), ("Indefinite Delivery Vehicle Base Contract", "Indefinite Delivery Vehicle Base Contract"), ("Multi-Agency Contract", "Multi-Agency Contract"), ("Negotiated", "Negotiated"), ("Order under GSA Federal Supply Schedules Program", "Order under GSA Federal Supply Schedules Program"), ("Order under GSA Schedules Program BPA", "Order under GSA Schedules Program BPA"), ("Order under GSA Schedules Program", "Order under GSA Schedules Program"), ("Order under IDV", "Order under IDV"), ("Purchase Order", "Purchase Order"), ("Sealed Bid", "Sealed Bid"), ) subagency = models.ForeignKey(Subagency) task = models.CharField(max_length=100, blank=False) description = models.TextField(max_length=500, null=True, blank=True) track = models.ForeignKey( Track, blank=False, related_name="%(class)s_track" ) step = ChainedForeignKey( Step, chained_field="track", chained_model_field="track", blank=False ) dollars = models.DecimalField(decimal_places=2, max_digits=14, null=True, blank=True) period_of_performance = models.DateField(null=True, blank=True) product_owner = models.CharField(max_length=50, null=True, blank=True) roles = models.ManyToManyField(Role, blank=True) contracting_officer = models.ForeignKey(ContractingOfficer, null=True, blank=True) contracting_officer_representative = models.ForeignKey(COR, null=True, blank=True) contracting_office = models.ForeignKey(ContractingOffice, null=True, blank=True) vendor = models.ForeignKey(Vendor, null=True, blank=True) rfq_id = models.IntegerField(null=True, blank=True, verbose_name="RFQ ID") naics = models.IntegerField( null=True, blank=True, verbose_name="NAICS Code" ) set_aside_status = models.CharField(max_length=100, null=True, blank=True, choices=SET_ASIDE_CHOICES) amount_of_competition = models.IntegerField(null=True, blank=True) contract_type = models.CharField(max_length=100, null=True, blank=True, choices=CONTRACT_TYPE_CHOICES) competition_strategy = models.CharField( max_length=100, null=True, blank=True, choices=COMPETITION_STRATEGY_CHOICES) procurement_method = models.CharField( max_length=100, null=True, blank=True, choices=PROCUREMENT_METHOD_CHOICES) award_date = models.DateField(null=True, blank=True) delivery_date = models.DateField(null=True, blank=True) def clean(self): print(self.step.track.all()) print(self.track) if self.track not in self.step.track.all(): raise ValidationError(_('Tracks are not equal.')) def __str__(self): return "%s (%s)" % (self.task, self.subagency) class Evaluator(models.Model): name = models.CharField(max_length=100) acquisition = models.ManyToManyField(Acquisition) def __str__(self): return self.name class Meta: ordering = ('name',) class Release(models.Model): acquisition = models.ForeignKey(Acquisition) def __str__(self): return self.id class Meta: ordering = ('id',)
37.505714
80
0.63198
12,692
0.966862
0
0
0
0
0
0
5,010
0.381656
3f0006363bb84a90ae81c6bd90ba3b9c73aecdc7
714
py
Python
app/kobo/forms.py
wri/django_kobo
505d52fc0d49d875af068e58ad959b95d1464dd5
[ "MIT" ]
1
2018-12-20T07:59:55.000Z
2018-12-20T07:59:55.000Z
app/kobo/forms.py
wri/django_kobo
505d52fc0d49d875af068e58ad959b95d1464dd5
[ "MIT" ]
9
2018-11-06T01:51:28.000Z
2018-12-21T22:19:42.000Z
app/kobo/forms.py
wri/django_kobo
505d52fc0d49d875af068e58ad959b95d1464dd5
[ "MIT" ]
2
2018-11-21T15:13:32.000Z
2020-02-19T08:39:37.000Z
from django import forms from .models import Connection, KoboUser, KoboData from django.contrib.admin.widgets import FilteredSelectMultiple from django.db.models import Q class ConnectionForm(forms.ModelForm): class Meta: model = Connection exclude = [] widgets = { 'auth_pass': forms.PasswordInput(), } class KoboUserForm(forms.ModelForm): class Meta: model = KoboUser exclude = [] surveys = forms.ModelMultipleChoiceField(queryset=KoboData.objects.filter(Q(tags__contains=['bns']) | Q(tags__contains=['nrgt'])), widget=FilteredSelectMultiple( 'Surveys', is_stacked=False), label='')
31.043478
165
0.644258
537
0.752101
0
0
0
0
0
0
33
0.046218
3f01198a019097c1976dc940001aed540d4f3634
713
py
Python
old/dea/aws/__init__.py
robbibt/odc-tools
e2df2c9ef65dbd5652d97cd88617989b4b724814
[ "Apache-2.0" ]
null
null
null
old/dea/aws/__init__.py
robbibt/odc-tools
e2df2c9ef65dbd5652d97cd88617989b4b724814
[ "Apache-2.0" ]
null
null
null
old/dea/aws/__init__.py
robbibt/odc-tools
e2df2c9ef65dbd5652d97cd88617989b4b724814
[ "Apache-2.0" ]
null
null
null
from odc.aws import ( ec2_metadata, ec2_current_region, botocore_default_region, auto_find_region, make_s3_client, s3_url_parse, s3_fmt_range, s3_ls, s3_ls_dir, s3_find, get_boto_session, get_creds_with_retry, s3_fetch, ) from odc.aws._find import ( s3_file_info, norm_predicate, parse_query, ) __all__ = ( "ec2_metadata", "ec2_current_region", "botocore_default_region", "auto_find_region", "make_s3_client", "s3_url_parse", "s3_fmt_range", "s3_ls", "s3_ls_dir", "s3_find", "get_boto_session", "get_creds_with_retry", "s3_fetch", "s3_file_info", "norm_predicate", "parse_query", )
16.97619
30
0.647966
0
0
0
0
0
0
0
0
241
0.338008
3f0241d966136442d63f54ae450fa5bbf000c236
883
py
Python
systems/stage.py
will-nickson/starter_system
bce669250fc58c3966c71e84020e078871a79e4f
[ "MIT" ]
null
null
null
systems/stage.py
will-nickson/starter_system
bce669250fc58c3966c71e84020e078871a79e4f
[ "MIT" ]
null
null
null
systems/stage.py
will-nickson/starter_system
bce669250fc58c3966c71e84020e078871a79e4f
[ "MIT" ]
null
null
null
from log.logger import logger class SystemStage(object): """ Default stage object: creates a SystemStage for doing something """ @property def name(self): return "Need to replace name when inheriting" def __repr__(self): return "SystemStage '%s' Try %s.methods()" % ( self.name, self.name, ) def methods(self): return get_methods(self) def system_init(self, system: System): # method called once we have a system self._parent = system # and a log log = system.log.setup(stage=self.name) self._log = log @property def log(self) -> logger: log = getattr(self, "_log", logtoscreen("")) return log @property def parent(self) -> System: parent = getattr(self, "_parent", None) return parent
22.641026
71
0.571914
850
0.962627
0
0
304
0.344281
0
0
221
0.250283
3f02d35a7926f58cae17ffac0f474623fde43a2e
37,840
py
Python
pybind/slxos/v17r_2_00/mpls_state/rsvp/igp_sync/link/lsp/__init__.py
extremenetworks/pybind
44c467e71b2b425be63867aba6e6fa28b2cfe7fb
[ "Apache-2.0" ]
null
null
null
pybind/slxos/v17r_2_00/mpls_state/rsvp/igp_sync/link/lsp/__init__.py
extremenetworks/pybind
44c467e71b2b425be63867aba6e6fa28b2cfe7fb
[ "Apache-2.0" ]
null
null
null
pybind/slxos/v17r_2_00/mpls_state/rsvp/igp_sync/link/lsp/__init__.py
extremenetworks/pybind
44c467e71b2b425be63867aba6e6fa28b2cfe7fb
[ "Apache-2.0" ]
1
2021-11-05T22:15:42.000Z
2021-11-05T22:15:42.000Z
from operator import attrgetter import pyangbind.lib.xpathhelper as xpathhelper from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType from pyangbind.lib.base import PybindBase from decimal import Decimal from bitarray import bitarray import __builtin__ import hops class lsp(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module brocade-mpls-operational - based on the path /mpls-state/rsvp/igp-sync/link/lsp. Each member element of the container is represented as a class variable - with a specific YANG type. """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_rest_name', '_extmethods', '__lsp_name','__lsp_instance_id','__path_name','__cspf_enabled','__rro_enabled','__frr_enabled','__nbr_down_enabled','__link_count','__nbr_down_inprogress','__cspf_hop_count','__rro_hop_count','__hops',) _yang_name = 'lsp' _rest_name = 'lsp' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): path_helper_ = kwargs.pop("path_helper", None) if path_helper_ is False: self._path_helper = False elif path_helper_ is not None and isinstance(path_helper_, xpathhelper.YANGPathHelper): self._path_helper = path_helper_ elif hasattr(self, "_parent"): path_helper_ = getattr(self._parent, "_path_helper", False) self._path_helper = path_helper_ else: self._path_helper = False extmethods = kwargs.pop("extmethods", None) if extmethods is False: self._extmethods = False elif extmethods is not None and isinstance(extmethods, dict): self._extmethods = extmethods elif hasattr(self, "_parent"): extmethods = getattr(self._parent, "_extmethods", None) self._extmethods = extmethods else: self._extmethods = False self.__path_name = YANGDynClass(base=unicode, is_leaf=True, yang_name="path-name", rest_name="path-name", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='string', is_config=False) self.__cspf_hop_count = YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="cspf-hop-count", rest_name="cspf-hop-count", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='uint32', is_config=False) self.__hops = YANGDynClass(base=YANGListType("index hop_type",hops.hops, yang_name="hops", rest_name="hops", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='index hop-type', extensions={u'tailf-common': {u'callpoint': u'mpls-rsvp-igp-sync-hop-data', u'cli-suppress-show-path': None}}), is_container='list', yang_name="hops", rest_name="hops", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'mpls-rsvp-igp-sync-hop-data', u'cli-suppress-show-path': None}}, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='list', is_config=False) self.__lsp_name = YANGDynClass(base=unicode, is_leaf=True, yang_name="lsp-name", rest_name="lsp-name", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='string', is_config=False) self.__nbr_down_enabled = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="nbr-down-enabled", rest_name="nbr-down-enabled", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='boolean', is_config=False) self.__rro_enabled = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="rro-enabled", rest_name="rro-enabled", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='boolean', is_config=False) self.__cspf_enabled = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="cspf-enabled", rest_name="cspf-enabled", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='boolean', is_config=False) self.__nbr_down_inprogress = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="nbr-down-inprogress", rest_name="nbr-down-inprogress", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='boolean', is_config=False) self.__lsp_instance_id = YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="lsp-instance-id", rest_name="lsp-instance-id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='uint32', is_config=False) self.__rro_hop_count = YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="rro-hop-count", rest_name="rro-hop-count", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='uint32', is_config=False) self.__frr_enabled = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="frr-enabled", rest_name="frr-enabled", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='boolean', is_config=False) self.__link_count = YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="link-count", rest_name="link-count", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='uint32', is_config=False) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'mpls-state', u'rsvp', u'igp-sync', u'link', u'lsp'] def _rest_path(self): if hasattr(self, "_parent"): if self._rest_name: return self._parent._rest_path()+[self._rest_name] else: return self._parent._rest_path() else: return [u'mpls-state', u'rsvp', u'igp-sync', u'link', u'lsp'] def _get_lsp_name(self): """ Getter method for lsp_name, mapped from YANG variable /mpls_state/rsvp/igp_sync/link/lsp/lsp_name (string) YANG Description: LSP name """ return self.__lsp_name def _set_lsp_name(self, v, load=False): """ Setter method for lsp_name, mapped from YANG variable /mpls_state/rsvp/igp_sync/link/lsp/lsp_name (string) If this variable is read-only (config: false) in the source YANG file, then _set_lsp_name is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_lsp_name() directly. YANG Description: LSP name """ parent = getattr(self, "_parent", None) if parent is not None and load is False: raise AttributeError("Cannot set keys directly when" + " within an instantiated list") if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=unicode, is_leaf=True, yang_name="lsp-name", rest_name="lsp-name", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='string', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """lsp_name must be of a type compatible with string""", 'defined-type': "string", 'generated-type': """YANGDynClass(base=unicode, is_leaf=True, yang_name="lsp-name", rest_name="lsp-name", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='string', is_config=False)""", }) self.__lsp_name = t if hasattr(self, '_set'): self._set() def _unset_lsp_name(self): self.__lsp_name = YANGDynClass(base=unicode, is_leaf=True, yang_name="lsp-name", rest_name="lsp-name", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='string', is_config=False) def _get_lsp_instance_id(self): """ Getter method for lsp_instance_id, mapped from YANG variable /mpls_state/rsvp/igp_sync/link/lsp/lsp_instance_id (uint32) YANG Description: Instance id of the lsp instance """ return self.__lsp_instance_id def _set_lsp_instance_id(self, v, load=False): """ Setter method for lsp_instance_id, mapped from YANG variable /mpls_state/rsvp/igp_sync/link/lsp/lsp_instance_id (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_lsp_instance_id is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_lsp_instance_id() directly. YANG Description: Instance id of the lsp instance """ parent = getattr(self, "_parent", None) if parent is not None and load is False: raise AttributeError("Cannot set keys directly when" + " within an instantiated list") if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="lsp-instance-id", rest_name="lsp-instance-id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='uint32', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """lsp_instance_id must be of a type compatible with uint32""", 'defined-type': "uint32", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="lsp-instance-id", rest_name="lsp-instance-id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='uint32', is_config=False)""", }) self.__lsp_instance_id = t if hasattr(self, '_set'): self._set() def _unset_lsp_instance_id(self): self.__lsp_instance_id = YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="lsp-instance-id", rest_name="lsp-instance-id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='uint32', is_config=False) def _get_path_name(self): """ Getter method for path_name, mapped from YANG variable /mpls_state/rsvp/igp_sync/link/lsp/path_name (string) YANG Description: LSP Path name """ return self.__path_name def _set_path_name(self, v, load=False): """ Setter method for path_name, mapped from YANG variable /mpls_state/rsvp/igp_sync/link/lsp/path_name (string) If this variable is read-only (config: false) in the source YANG file, then _set_path_name is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_path_name() directly. YANG Description: LSP Path name """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=unicode, is_leaf=True, yang_name="path-name", rest_name="path-name", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='string', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """path_name must be of a type compatible with string""", 'defined-type': "string", 'generated-type': """YANGDynClass(base=unicode, is_leaf=True, yang_name="path-name", rest_name="path-name", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='string', is_config=False)""", }) self.__path_name = t if hasattr(self, '_set'): self._set() def _unset_path_name(self): self.__path_name = YANGDynClass(base=unicode, is_leaf=True, yang_name="path-name", rest_name="path-name", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='string', is_config=False) def _get_cspf_enabled(self): """ Getter method for cspf_enabled, mapped from YANG variable /mpls_state/rsvp/igp_sync/link/lsp/cspf_enabled (boolean) YANG Description: CSPF enabled for LSP """ return self.__cspf_enabled def _set_cspf_enabled(self, v, load=False): """ Setter method for cspf_enabled, mapped from YANG variable /mpls_state/rsvp/igp_sync/link/lsp/cspf_enabled (boolean) If this variable is read-only (config: false) in the source YANG file, then _set_cspf_enabled is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_cspf_enabled() directly. YANG Description: CSPF enabled for LSP """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGBool, is_leaf=True, yang_name="cspf-enabled", rest_name="cspf-enabled", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='boolean', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """cspf_enabled must be of a type compatible with boolean""", 'defined-type': "boolean", 'generated-type': """YANGDynClass(base=YANGBool, is_leaf=True, yang_name="cspf-enabled", rest_name="cspf-enabled", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='boolean', is_config=False)""", }) self.__cspf_enabled = t if hasattr(self, '_set'): self._set() def _unset_cspf_enabled(self): self.__cspf_enabled = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="cspf-enabled", rest_name="cspf-enabled", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='boolean', is_config=False) def _get_rro_enabled(self): """ Getter method for rro_enabled, mapped from YANG variable /mpls_state/rsvp/igp_sync/link/lsp/rro_enabled (boolean) YANG Description: RRO enabled for LSP """ return self.__rro_enabled def _set_rro_enabled(self, v, load=False): """ Setter method for rro_enabled, mapped from YANG variable /mpls_state/rsvp/igp_sync/link/lsp/rro_enabled (boolean) If this variable is read-only (config: false) in the source YANG file, then _set_rro_enabled is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_rro_enabled() directly. YANG Description: RRO enabled for LSP """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGBool, is_leaf=True, yang_name="rro-enabled", rest_name="rro-enabled", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='boolean', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """rro_enabled must be of a type compatible with boolean""", 'defined-type': "boolean", 'generated-type': """YANGDynClass(base=YANGBool, is_leaf=True, yang_name="rro-enabled", rest_name="rro-enabled", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='boolean', is_config=False)""", }) self.__rro_enabled = t if hasattr(self, '_set'): self._set() def _unset_rro_enabled(self): self.__rro_enabled = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="rro-enabled", rest_name="rro-enabled", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='boolean', is_config=False) def _get_frr_enabled(self): """ Getter method for frr_enabled, mapped from YANG variable /mpls_state/rsvp/igp_sync/link/lsp/frr_enabled (boolean) YANG Description: FRR enabled for LSP """ return self.__frr_enabled def _set_frr_enabled(self, v, load=False): """ Setter method for frr_enabled, mapped from YANG variable /mpls_state/rsvp/igp_sync/link/lsp/frr_enabled (boolean) If this variable is read-only (config: false) in the source YANG file, then _set_frr_enabled is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_frr_enabled() directly. YANG Description: FRR enabled for LSP """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGBool, is_leaf=True, yang_name="frr-enabled", rest_name="frr-enabled", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='boolean', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """frr_enabled must be of a type compatible with boolean""", 'defined-type': "boolean", 'generated-type': """YANGDynClass(base=YANGBool, is_leaf=True, yang_name="frr-enabled", rest_name="frr-enabled", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='boolean', is_config=False)""", }) self.__frr_enabled = t if hasattr(self, '_set'): self._set() def _unset_frr_enabled(self): self.__frr_enabled = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="frr-enabled", rest_name="frr-enabled", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='boolean', is_config=False) def _get_nbr_down_enabled(self): """ Getter method for nbr_down_enabled, mapped from YANG variable /mpls_state/rsvp/igp_sync/link/lsp/nbr_down_enabled (boolean) YANG Description: LSP Neighbour down is enabled """ return self.__nbr_down_enabled def _set_nbr_down_enabled(self, v, load=False): """ Setter method for nbr_down_enabled, mapped from YANG variable /mpls_state/rsvp/igp_sync/link/lsp/nbr_down_enabled (boolean) If this variable is read-only (config: false) in the source YANG file, then _set_nbr_down_enabled is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_nbr_down_enabled() directly. YANG Description: LSP Neighbour down is enabled """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGBool, is_leaf=True, yang_name="nbr-down-enabled", rest_name="nbr-down-enabled", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='boolean', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """nbr_down_enabled must be of a type compatible with boolean""", 'defined-type': "boolean", 'generated-type': """YANGDynClass(base=YANGBool, is_leaf=True, yang_name="nbr-down-enabled", rest_name="nbr-down-enabled", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='boolean', is_config=False)""", }) self.__nbr_down_enabled = t if hasattr(self, '_set'): self._set() def _unset_nbr_down_enabled(self): self.__nbr_down_enabled = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="nbr-down-enabled", rest_name="nbr-down-enabled", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='boolean', is_config=False) def _get_link_count(self): """ Getter method for link_count, mapped from YANG variable /mpls_state/rsvp/igp_sync/link/lsp/link_count (uint32) YANG Description: Total links used by the LSP """ return self.__link_count def _set_link_count(self, v, load=False): """ Setter method for link_count, mapped from YANG variable /mpls_state/rsvp/igp_sync/link/lsp/link_count (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_link_count is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_link_count() directly. YANG Description: Total links used by the LSP """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="link-count", rest_name="link-count", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='uint32', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """link_count must be of a type compatible with uint32""", 'defined-type': "uint32", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="link-count", rest_name="link-count", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='uint32', is_config=False)""", }) self.__link_count = t if hasattr(self, '_set'): self._set() def _unset_link_count(self): self.__link_count = YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="link-count", rest_name="link-count", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='uint32', is_config=False) def _get_nbr_down_inprogress(self): """ Getter method for nbr_down_inprogress, mapped from YANG variable /mpls_state/rsvp/igp_sync/link/lsp/nbr_down_inprogress (boolean) YANG Description: Neighbor down processing is in progress """ return self.__nbr_down_inprogress def _set_nbr_down_inprogress(self, v, load=False): """ Setter method for nbr_down_inprogress, mapped from YANG variable /mpls_state/rsvp/igp_sync/link/lsp/nbr_down_inprogress (boolean) If this variable is read-only (config: false) in the source YANG file, then _set_nbr_down_inprogress is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_nbr_down_inprogress() directly. YANG Description: Neighbor down processing is in progress """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGBool, is_leaf=True, yang_name="nbr-down-inprogress", rest_name="nbr-down-inprogress", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='boolean', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """nbr_down_inprogress must be of a type compatible with boolean""", 'defined-type': "boolean", 'generated-type': """YANGDynClass(base=YANGBool, is_leaf=True, yang_name="nbr-down-inprogress", rest_name="nbr-down-inprogress", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='boolean', is_config=False)""", }) self.__nbr_down_inprogress = t if hasattr(self, '_set'): self._set() def _unset_nbr_down_inprogress(self): self.__nbr_down_inprogress = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="nbr-down-inprogress", rest_name="nbr-down-inprogress", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='boolean', is_config=False) def _get_cspf_hop_count(self): """ Getter method for cspf_hop_count, mapped from YANG variable /mpls_state/rsvp/igp_sync/link/lsp/cspf_hop_count (uint32) YANG Description: CSPF hop count """ return self.__cspf_hop_count def _set_cspf_hop_count(self, v, load=False): """ Setter method for cspf_hop_count, mapped from YANG variable /mpls_state/rsvp/igp_sync/link/lsp/cspf_hop_count (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_cspf_hop_count is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_cspf_hop_count() directly. YANG Description: CSPF hop count """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="cspf-hop-count", rest_name="cspf-hop-count", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='uint32', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """cspf_hop_count must be of a type compatible with uint32""", 'defined-type': "uint32", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="cspf-hop-count", rest_name="cspf-hop-count", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='uint32', is_config=False)""", }) self.__cspf_hop_count = t if hasattr(self, '_set'): self._set() def _unset_cspf_hop_count(self): self.__cspf_hop_count = YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="cspf-hop-count", rest_name="cspf-hop-count", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='uint32', is_config=False) def _get_rro_hop_count(self): """ Getter method for rro_hop_count, mapped from YANG variable /mpls_state/rsvp/igp_sync/link/lsp/rro_hop_count (uint32) YANG Description: RRO hop rout """ return self.__rro_hop_count def _set_rro_hop_count(self, v, load=False): """ Setter method for rro_hop_count, mapped from YANG variable /mpls_state/rsvp/igp_sync/link/lsp/rro_hop_count (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_rro_hop_count is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_rro_hop_count() directly. YANG Description: RRO hop rout """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="rro-hop-count", rest_name="rro-hop-count", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='uint32', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """rro_hop_count must be of a type compatible with uint32""", 'defined-type': "uint32", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="rro-hop-count", rest_name="rro-hop-count", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='uint32', is_config=False)""", }) self.__rro_hop_count = t if hasattr(self, '_set'): self._set() def _unset_rro_hop_count(self): self.__rro_hop_count = YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="rro-hop-count", rest_name="rro-hop-count", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='uint32', is_config=False) def _get_hops(self): """ Getter method for hops, mapped from YANG variable /mpls_state/rsvp/igp_sync/link/lsp/hops (list) YANG Description: MPLS Rsvp IGP Synchronization Hop information """ return self.__hops def _set_hops(self, v, load=False): """ Setter method for hops, mapped from YANG variable /mpls_state/rsvp/igp_sync/link/lsp/hops (list) If this variable is read-only (config: false) in the source YANG file, then _set_hops is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_hops() directly. YANG Description: MPLS Rsvp IGP Synchronization Hop information """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGListType("index hop_type",hops.hops, yang_name="hops", rest_name="hops", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='index hop-type', extensions={u'tailf-common': {u'callpoint': u'mpls-rsvp-igp-sync-hop-data', u'cli-suppress-show-path': None}}), is_container='list', yang_name="hops", rest_name="hops", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'mpls-rsvp-igp-sync-hop-data', u'cli-suppress-show-path': None}}, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='list', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """hops must be of a type compatible with list""", 'defined-type': "list", 'generated-type': """YANGDynClass(base=YANGListType("index hop_type",hops.hops, yang_name="hops", rest_name="hops", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='index hop-type', extensions={u'tailf-common': {u'callpoint': u'mpls-rsvp-igp-sync-hop-data', u'cli-suppress-show-path': None}}), is_container='list', yang_name="hops", rest_name="hops", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'mpls-rsvp-igp-sync-hop-data', u'cli-suppress-show-path': None}}, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='list', is_config=False)""", }) self.__hops = t if hasattr(self, '_set'): self._set() def _unset_hops(self): self.__hops = YANGDynClass(base=YANGListType("index hop_type",hops.hops, yang_name="hops", rest_name="hops", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='index hop-type', extensions={u'tailf-common': {u'callpoint': u'mpls-rsvp-igp-sync-hop-data', u'cli-suppress-show-path': None}}), is_container='list', yang_name="hops", rest_name="hops", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'mpls-rsvp-igp-sync-hop-data', u'cli-suppress-show-path': None}}, namespace='urn:brocade.com:mgmt:brocade-mpls-operational', defining_module='brocade-mpls-operational', yang_type='list', is_config=False) lsp_name = __builtin__.property(_get_lsp_name) lsp_instance_id = __builtin__.property(_get_lsp_instance_id) path_name = __builtin__.property(_get_path_name) cspf_enabled = __builtin__.property(_get_cspf_enabled) rro_enabled = __builtin__.property(_get_rro_enabled) frr_enabled = __builtin__.property(_get_frr_enabled) nbr_down_enabled = __builtin__.property(_get_nbr_down_enabled) link_count = __builtin__.property(_get_link_count) nbr_down_inprogress = __builtin__.property(_get_nbr_down_inprogress) cspf_hop_count = __builtin__.property(_get_cspf_hop_count) rro_hop_count = __builtin__.property(_get_rro_hop_count) hops = __builtin__.property(_get_hops) _pyangbind_elements = {'lsp_name': lsp_name, 'lsp_instance_id': lsp_instance_id, 'path_name': path_name, 'cspf_enabled': cspf_enabled, 'rro_enabled': rro_enabled, 'frr_enabled': frr_enabled, 'nbr_down_enabled': nbr_down_enabled, 'link_count': link_count, 'nbr_down_inprogress': nbr_down_inprogress, 'cspf_hop_count': cspf_hop_count, 'rro_hop_count': rro_hop_count, 'hops': hops, }
66.737213
754
0.742072
37,434
0.989271
0
0
0
0
0
0
19,551
0.516675
3f042a0420967f88675a79d4f9cf3ecb5cca91b8
1,947
py
Python
vega/trainer/callbacks/horovod.py
zjzh/vega
aa6e7b8c69024262fc483ee06113b4d1bd5156d8
[ "Apache-2.0" ]
null
null
null
vega/trainer/callbacks/horovod.py
zjzh/vega
aa6e7b8c69024262fc483ee06113b4d1bd5156d8
[ "Apache-2.0" ]
null
null
null
vega/trainer/callbacks/horovod.py
zjzh/vega
aa6e7b8c69024262fc483ee06113b4d1bd5156d8
[ "Apache-2.0" ]
null
null
null
# -*- coding:utf-8 -*- # Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data parallel callback.""" import logging import vega from vega.common import ClassFactory, ClassType from .callback import Callback logger = logging.getLogger(__name__) @ClassFactory.register(ClassType.CALLBACK) class Horovod(Callback): """Callback that saves the evaluated Performance.""" def __init__(self): """Initialize ModelCheckpoint callback.""" super(Horovod, self).__init__() self.priority = 260 def before_train(self, logs=None): """Be called before the training process.""" if not self.trainer.horovod: return if vega.is_torch_backend(): self._init_torch() def _init_torch(self): import torch import horovod.torch as hvd hvd.broadcast_parameters(self.trainer.model.state_dict(), root_rank=0) hvd.broadcast_optimizer_state(self.trainer.optimizer, root_rank=0) self.trainer._average_metrics = self._average_metrics def _average_metrics(self, metrics_results): import torch import horovod.torch as hvd for key, value in metrics_results.items(): tensor = torch.tensor(value) avg_tensor = hvd.allreduce(tensor, name=key) metrics_results[key] = avg_tensor.item() return metrics_results
33.568966
78
0.698511
1,082
0.555727
0
0
1,125
0.577812
0
0
795
0.40832
3f0440a332e725d1be2b9f4d8bf41ca99082b5e6
5,580
py
Python
parse_doc.py
nprapps/idp-georgia
316eba6195b7f410567a7e11eb4811ff7cba54cc
[ "Unlicense" ]
1
2017-04-15T01:48:27.000Z
2017-04-15T01:48:27.000Z
parse_doc.py
nprapps/idp-georgia
316eba6195b7f410567a7e11eb4811ff7cba54cc
[ "Unlicense" ]
153
2017-04-14T18:06:26.000Z
2017-06-02T13:08:09.000Z
parse_doc.py
nprapps/idp-georgia
316eba6195b7f410567a7e11eb4811ff7cba54cc
[ "Unlicense" ]
1
2021-02-18T11:15:52.000Z
2021-02-18T11:15:52.000Z
# _*_ coding:utf-8 _*_ import logging import re import app_config from bs4 import BeautifulSoup from shortcode import process_shortcode logging.basicConfig(format=app_config.LOG_FORMAT) logger = logging.getLogger(__name__) logger.setLevel(app_config.LOG_LEVEL) end_doc_regex = re.compile(ur'^\s*[Ee][Nn][Dd]\s*$', re.UNICODE) new_section_marker_regex = re.compile(ur'^\s*\+{50,}\s*$', re.UNICODE) section_end_marker_regex = re.compile(ur'^\s*-{50,}\s*$', re.UNICODE) frontmatter_marker_regex = re.compile(ur'^\s*-{3}\s*$', re.UNICODE) extract_metadata_regex = re.compile(ur'^(.*?):(.*)$', re.UNICODE) shortcode_regex = re.compile(ur'^\s*\[%\s*.*\s*%\]\s*$', re.UNICODE) def is_section_marker(tag): """ Checks for the beginning of a new section """ text = tag.get_text() m = new_section_marker_regex.match(text) if m: return True else: return False def is_section_end_marker(tag): """ Checks for the beginning of a new section """ text = tag.get_text() m = section_end_marker_regex.match(text) if m: return True else: return False def process_headline(contents): logger.debug('--process_headline start--') headline = None for tag in contents: if tag.name == "h2": headline = tag.get_text() else: logger.warning('unexpected tag found: Ignore %s' % tag.get_text()) if not headline: logger.error('Did not find headline on post. Contents: %s' % contents) return headline def process_metadata(contents): logger.debug('--process_metadata start--') metadata = {} for tag in contents: text = tag.get_text() m = extract_metadata_regex.match(text) if m: key = m.group(1).strip().lower() value = m.group(2).strip().lower() metadata[key] = value else: logger.error('Could not parse metadata. Text: %s' % text) logger.debug("metadata: %s" % metadata) return metadata def process_section_contents(contents): """ Process episode copy content In particular parse and generate HTML from shortcodes """ logger.debug('--process_post_contents start--') parsed = [] for tag in contents: text = tag.get_text() m = shortcode_regex.match(text) if m: parsed.append(process_shortcode(tag)) else: parsed.append(unicode(tag)) episode_contents = ''.join(parsed) return episode_contents def parse_raw_sections(raw_sections): """ parse raw episodes into an array of section objects """ # Divide each episode into its subparts # - Headline # - FrontMatter # - Contents sections = [] for raw_section in raw_sections: section = {} marker_counter = 0 section_raw_headline = [] section_raw_metadata = [] section_raw_contents = [] for tag in raw_section: text = tag.get_text() m = frontmatter_marker_regex.match(text) if m: marker_counter += 1 else: if (marker_counter == 0): section_raw_headline.append(tag) elif (marker_counter == 1): section_raw_metadata.append(tag) else: section_raw_contents.append(tag) section[u'headline'] = process_headline(section_raw_headline) metadata = process_metadata(section_raw_metadata) for k, v in metadata.iteritems(): section[k] = v section[u'contents'] = process_section_contents(section_raw_contents) sections.append(section) return sections def split_sections(doc): """ split the raw document into an array of raw sections """ logger.debug('--split_sections start--') raw_sections = [] raw_episode_contents = [] ignore_orphan_text = True body = doc.soup.body for child in body.children: if is_section_marker(child): # Detected first post stop ignoring orphan text if ignore_orphan_text: ignore_orphan_text = False else: if ignore_orphan_text: continue elif is_section_end_marker(child): ignore_orphan_text = True raw_sections.append(raw_episode_contents) raw_episode_contents = [] else: raw_episode_contents.append(child) return raw_sections def find_section_id(sections, id): """ Find the section with a given id """ for idx, section in enumerate(sections): try: if section['id'] == id: return idx except KeyError: continue return None def process_extracted_contents(inline_intro): """ Remove html markup """ return inline_intro['contents'] def parse(doc): """ parse google doc files and extract markup """ try: parsed_document = {} logger.info('-------------start------------') raw_sections = split_sections(doc) sections = parse_raw_sections(raw_sections) logger.info('Number of sections: %s' % len(sections)) parsed_document['sections'] = sections finally: logger.info('-------------end------------') return parsed_document
28.040201
78
0.58405
0
0
0
0
0
0
0
0
1,137
0.203763
3f04bc07d2d8f73a71534912779c419ef2aa5148
2,162
py
Python
01_irc_bot/bot.py
pymug/ARJ_SpoonfeedingSockets_APR2021
ba741d4fbde11f8ab4ddda704340ab5892c19478
[ "MIT" ]
null
null
null
01_irc_bot/bot.py
pymug/ARJ_SpoonfeedingSockets_APR2021
ba741d4fbde11f8ab4ddda704340ab5892c19478
[ "MIT" ]
null
null
null
01_irc_bot/bot.py
pymug/ARJ_SpoonfeedingSockets_APR2021
ba741d4fbde11f8ab4ddda704340ab5892c19478
[ "MIT" ]
null
null
null
""" Abdur-Rahmaan Janhangeer Skeleton of https://github.com/pyhoneybot/honeybot/ """ import time import os import socket directory = "irc" if not os.path.exists(directory): os.makedirs(directory) target = open(os.path.join(directory, "log.txt"), "w") def message_checker(msgLine): sendvar = "" global mute mute = False completeLine = str(msgLine[1:]).replace("'b", "").split(":", 1) info = completeLine[0].split() message = (completeLine[1].split("\\r")[0]).replace("'b", "") sender = info[0][2:].split("!", 1)[0] refinedmsg = str(message.lower()) refinedmsgl = len(refinedmsg) print("Complete Line-->" + str(completeLine)) print("Info-->" + str(info)) print("Message-->" + str(message)) print("Sender-->" + str(sender) + "\n") def ping_checker(pingLine): if pingLine.find(bytes("PING", "utf8")) != -1: pingLine = pingLine.rstrip().split() if pingLine[0] == bytes("PING", "utf8"): irc.send(bytes("PONG ", "utf8") + pingLine[1] + bytes("\r\n", "utf8")) BOT_IRC_SERVER = "chat.freenode.net" BOT_IRC_CHANNEL = "##bottestingmu" # BOT_IRC_CHANNEL = "#python" BOT_IRC_PORT = 6667 BOT_NICKNAME = "appinventormuBot" # BOT_PASSWORD = '' irc = socket.socket() irc.connect((BOT_IRC_SERVER, BOT_IRC_PORT)) irc.recv(4096) irc.send(bytes("NICK " + BOT_NICKNAME + "\r\n", "utf8")) ping_checker(irc.recv(4096)) irc.send( bytes( "USER appinventormuBot appinventormuBot appinventormuBot : appinventormuBot IRC\r\n", "utf8", ) ) ping_checker(irc.recv(4096)) # irc.send(bytes('msg NickServ identify ' + BOT_PASSWORD + " \r\n" ,'utf8') ) # ping_checker(irc.recv(4096)) # irc.send(bytes('NICKSERV identify ' + BOT_NICKNAME+' '+BOT_PASSWORD+ '\r\n','utf8' ) ) # ping_checker(irc.recv(4096)) time.sleep(3) irc.send(bytes("JOIN " + BOT_IRC_CHANNEL + "\r\n", "utf8")) while 1: pass line = irc.recv(4096) print(line) ping_checker(line) if ( line.find(bytes("PRIVMSG", "utf8")) != -1 or line.find(bytes("NOTICE", "utf8")) != -1 ): message_checker(line) target.write(str(line)) target.flush()
25.738095
93
0.623497
0
0
0
0
0
0
0
0
717
0.331637
3f05790f911b335d2d94be5f242d22af72e43329
5,494
py
Python
xenia_python_client_library/models/attachments_list.py
DutchAnalytics/xenia-python-client-library
60dc3e21094086124b552ff5bed5895fee826b57
[ "Apache-2.0" ]
null
null
null
xenia_python_client_library/models/attachments_list.py
DutchAnalytics/xenia-python-client-library
60dc3e21094086124b552ff5bed5895fee826b57
[ "Apache-2.0" ]
null
null
null
xenia_python_client_library/models/attachments_list.py
DutchAnalytics/xenia-python-client-library
60dc3e21094086124b552ff5bed5895fee826b57
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Xenia Python Client Library Python Client Library to interact with the Xenia API. # noqa: E501 The version of the OpenAPI document: v2.1 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from xenia_python_client_library.configuration import Configuration class AttachmentsList(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'id': 'str', 'source_name': 'str', 'destination_name': 'str', 'mapping': 'list[AttachmentFieldsList]' } attribute_map = { 'id': 'id', 'source_name': 'source_name', 'destination_name': 'destination_name', 'mapping': 'mapping' } def __init__(self, id=None, source_name=None, destination_name=None, mapping=None, local_vars_configuration=None): # noqa: E501 """AttachmentsList - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._id = None self._source_name = None self._destination_name = None self._mapping = None self.discriminator = None if id is not None: self.id = id if source_name is not None: self.source_name = source_name if destination_name is not None: self.destination_name = destination_name if mapping is not None: self.mapping = mapping @property def id(self): """Gets the id of this AttachmentsList. # noqa: E501 :return: The id of this AttachmentsList. # noqa: E501 :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this AttachmentsList. :param id: The id of this AttachmentsList. # noqa: E501 :type: str """ self._id = id @property def source_name(self): """Gets the source_name of this AttachmentsList. # noqa: E501 :return: The source_name of this AttachmentsList. # noqa: E501 :rtype: str """ return self._source_name @source_name.setter def source_name(self, source_name): """Sets the source_name of this AttachmentsList. :param source_name: The source_name of this AttachmentsList. # noqa: E501 :type: str """ self._source_name = source_name @property def destination_name(self): """Gets the destination_name of this AttachmentsList. # noqa: E501 :return: The destination_name of this AttachmentsList. # noqa: E501 :rtype: str """ return self._destination_name @destination_name.setter def destination_name(self, destination_name): """Sets the destination_name of this AttachmentsList. :param destination_name: The destination_name of this AttachmentsList. # noqa: E501 :type: str """ self._destination_name = destination_name @property def mapping(self): """Gets the mapping of this AttachmentsList. # noqa: E501 :return: The mapping of this AttachmentsList. # noqa: E501 :rtype: list[AttachmentFieldsList] """ return self._mapping @mapping.setter def mapping(self, mapping): """Sets the mapping of this AttachmentsList. :param mapping: The mapping of this AttachmentsList. # noqa: E501 :type: list[AttachmentFieldsList] """ self._mapping = mapping def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, AttachmentsList): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, AttachmentsList): return True return self.to_dict() != other.to_dict()
27.60804
132
0.59028
5,144
0.936294
0
0
2,026
0.368766
0
0
2,472
0.449945
3f05ec3f00a5d7d90f5ef0232521b059bc84d999
672
py
Python
src/AuShadha/registry/icd10/aushadha.py
GosthMan/AuShadha
3ab48825a0dba19bf880b6ac6141ab7a6adf1f3e
[ "PostgreSQL" ]
46
2015-03-04T14:19:47.000Z
2021-12-09T02:58:46.000Z
src/AuShadha/registry/icd10/aushadha.py
aytida23/AuShadha
3ab48825a0dba19bf880b6ac6141ab7a6adf1f3e
[ "PostgreSQL" ]
2
2015-06-05T10:29:04.000Z
2015-12-06T16:54:10.000Z
src/AuShadha/registry/icd10/aushadha.py
aytida23/AuShadha
3ab48825a0dba19bf880b6ac6141ab7a6adf1f3e
[ "PostgreSQL" ]
24
2015-03-23T01:38:11.000Z
2022-01-24T16:23:42.000Z
################################################################################ # Create a Registration with the UI for a Role. # Each module's aushadha.py is screened for this # # Each Class is registered for a Role in UI # These can be used to generate Role based UI elements later. # # As of now string base role assignement is done. # This can be later extended to class based role ################################################################################ from .models import Chapter, Section,Diagnosis from AuShadha.apps.ui.ui import ui as UI UI.register('RegistryApp',Chapter ) UI.register('DiseaseCodes',Chapter) UI.register('ReferenceApp',Chapter)
37.333333
80
0.577381
0
0
0
0
0
0
0
0
504
0.75
3f075c7ec34c5ad02a052b425ce2675ad65347ca
973
py
Python
Etap 2/Logia03/Zad1.py
aszokalski/Logia
5e29745b01623df8a2f162f143656a76056af407
[ "MIT" ]
null
null
null
Etap 2/Logia03/Zad1.py
aszokalski/Logia
5e29745b01623df8a2f162f143656a76056af407
[ "MIT" ]
null
null
null
Etap 2/Logia03/Zad1.py
aszokalski/Logia
5e29745b01623df8a2f162f143656a76056af407
[ "MIT" ]
null
null
null
from turtle import * def rysuj(s): a = 720 / len(s) up = "bdfhklt" down = "gjpqy" numb = "0123456789" samogloski = "aeiouy" pu(); bk(360); pd() for elem in s: if elem in numb: prost(a, "green") elif elem in up: prost(a, "yellow") elif elem in down: col = "yellow" if elem in samogloski: col = "red" pu(); rt(90); fd(a); lt(90); pd() prost(a, col) pu(); lt(90); fd(a); rt(90); pd() else: col = "yellow" if elem in samogloski: col = "red" kwad(a, col) def prost(a, col): fillcolor(col) begin_fill() for i in range(2): fd(a) lt(90) fd(2 * a) lt(90) fd(a) end_fill() def kwad(a, col): fillcolor(col) begin_fill() for i in range(4): fd(a) lt(90) fd(a) end_fill()
20.702128
45
0.42446
0
0
0
0
0
0
0
0
77
0.079137
3f07c6d2135990949504b1e72bbaec00f43feafb
616
py
Python
server/src/models/movie.py
Rubilmax/netflux
9e79063b81e3dc78055fc683c230de511827f030
[ "MIT" ]
2
2019-06-17T08:28:03.000Z
2019-06-17T08:28:32.000Z
server/src/models/movie.py
Rubilmax/netflux
9e79063b81e3dc78055fc683c230de511827f030
[ "MIT" ]
3
2020-09-05T00:54:20.000Z
2021-05-07T15:34:58.000Z
server/src/models/movie.py
Rubilmax/netflux
9e79063b81e3dc78055fc683c230de511827f030
[ "MIT" ]
null
null
null
""" Define the Movie model """ from . import db from .abc import BaseModel, MetaBaseModel class Movie(db.Model, BaseModel, metaclass=MetaBaseModel): """ The Movie model """ __tablename__ = "movies" movie_id = db.Column(db.String(300), primary_key=True) title = db.Column(db.String(300)) author = db.Column(db.String(300)) release_year = db.Column(db.Integer) def __init__(self, movie_id, title, author, release_year): """ Create a new movie """ self.movie_id = movie_id self.title = title self.author = author self.release_year = release_year
25.666667
62
0.657468
523
0.849026
0
0
0
0
0
0
87
0.141234
3f07dc93b37cf1bf8c17deb226c77fdb8cc21bba
17,963
py
Python
wmt-shared-task/segment-level/segment_level_prism.py
chryssa-zrv/UA_COMET
527e7c86bd0a0d8ff90efda58e820108a5666b92
[ "Apache-2.0" ]
null
null
null
wmt-shared-task/segment-level/segment_level_prism.py
chryssa-zrv/UA_COMET
527e7c86bd0a0d8ff90efda58e820108a5666b92
[ "Apache-2.0" ]
null
null
null
wmt-shared-task/segment-level/segment_level_prism.py
chryssa-zrv/UA_COMET
527e7c86bd0a0d8ff90efda58e820108a5666b92
[ "Apache-2.0" ]
null
null
null
f""" Shell script tho reproduce results for BERTScores in data from WMT18/19 Metrics Shared task. """ import argparse import hashlib import logging import os import sys from typing import Any, Dict, Iterator, List import numpy as np import pandas as pd import sentencepiece as spm import torch from tqdm import tqdm from fairseq import utils from fairseq import checkpoint_utils from fairseq.data import LanguagePairDataset #!/usr/bin/env python3 logger = logging.getLogger('prism') logger.setLevel(logging.INFO) MODELS = { '8412b2044da4b9b2c0a8ce87b305d0d1': { 'name': 'm39v1', 'path': 'todo', 'date': '2020-04-30', 'description': 'model released with arXiv paper April 2020', 'langs': ['ar', 'bg', 'bn', 'ca', 'cs', 'da', 'de', 'el', 'en', 'es', 'et', 'eo', 'fi', 'fr', 'he', 'hr', 'hu', 'id', 'it', 'ja', 'kk', 'lt', 'lv', 'mk', 'nl', 'no', 'pl', 'pt', 'ro', 'ru', 'sk', 'sl', 'sq', 'sr', 'sv', 'tr', 'uk', 'vi', 'zh'], } } def hash_model(model_dir): md5 = hashlib.md5() block_size = 2 ** 20 for fname in ('checkpoint.pt', 'spm.model', 'dict.src.txt', 'dict.tgt.txt'): with open(os.path.join(model_dir, fname), "rb") as f: while True: data = f.read(block_size) if not data: break md5.update(data) md5.digest() return md5.hexdigest() """ Copy of https://github.com/pytorch/fairseq/blob/master/fairseq/sequence_scorer.py with softmax temperature control added """ class SequenceScorer(object): """Scores the target for a given source sentence.""" def __init__(self, tgt_dict, softmax_batch=None, temperature=1.0): self.pad = tgt_dict.pad() self.eos = tgt_dict.eos() self.softmax_batch = softmax_batch or sys.maxsize self.temperature = temperature assert self.softmax_batch > 0 @torch.no_grad() def generate(self, models, sample, **kwargs): """Score a batch of translations.""" net_input = sample['net_input'] def batch_for_softmax(dec_out, target): # assumes decoder_out[0] is the only thing needed (may not be correct for future models!) first, rest = dec_out[0], dec_out[1:] bsz, tsz, dim = first.shape if bsz * tsz < self.softmax_batch: yield dec_out, target, True else: flat = first.contiguous().view(1, -1, dim) flat_tgt = target.contiguous().view(flat.shape[:-1]) s = 0 while s < flat.size(1): e = s + self.softmax_batch yield (flat[:, s:e],) + rest, flat_tgt[:, s:e], False s = e def gather_target_probs(probs, target): probs = probs.gather( dim=2, index=target.unsqueeze(-1), ) return probs orig_target = sample['target'] # compute scores for each model in the ensemble avg_probs = None avg_attn = None for model in models: model.eval() decoder_out = model.forward(**net_input) attn = decoder_out[1] if type(attn) is dict: attn = attn.get('attn', None) batched = batch_for_softmax(decoder_out, orig_target) probs, idx = None, 0 for bd, tgt, is_single in batched: sample['target'] = tgt # divide the logits by temperature prior to softmax # for example, see https://github.com/pytorch/fairseq/blob/master/fairseq/sequence_generator.py: # decoder_out[0][:, -1:, :].div_(temperature) bd[0].div_(self.temperature) curr_prob = model.get_normalized_probs(bd, log_probs=len(models) == 1, sample=sample).data if is_single: probs = gather_target_probs(curr_prob, orig_target) else: if probs is None: probs = curr_prob.new(orig_target.numel()) step = curr_prob.size(0) * curr_prob.size(1) end = step + idx tgt_probs = gather_target_probs(curr_prob.view(tgt.shape + (curr_prob.size(-1),)), tgt) probs[idx:end] = tgt_probs.view(-1) idx = end sample['target'] = orig_target probs = probs.view(sample['target'].shape) if avg_probs is None: avg_probs = probs else: avg_probs.add_(probs) if attn is not None and torch.is_tensor(attn): attn = attn.data if avg_attn is None: avg_attn = attn else: avg_attn.add_(attn) if len(models) > 1: avg_probs.div_(len(models)) avg_probs.log_() if avg_attn is not None: avg_attn.div_(len(models)) bsz = avg_probs.size(0) hypos = [] start_idxs = sample['start_indices'] if 'start_indices' in sample else [0] * bsz for i in range(bsz): # remove padding from ref ref = utils.strip_pad(sample['target'][i, start_idxs[i]:], self.pad) \ if sample['target'] is not None else None tgt_len = ref.numel() avg_probs_i = avg_probs[i][start_idxs[i]:start_idxs[i] + tgt_len] score_i = avg_probs_i.sum() / tgt_len if avg_attn is not None: avg_attn_i = avg_attn[i] alignment = utils.extract_hard_alignment(avg_attn_i, sample['net_input']['src_tokens'][i], sample['target'][i], self.pad, self.eos) else: avg_attn_i = alignment = None hypos.append([{ 'tokens': ref, 'score': score_i, 'attention': avg_attn_i, 'alignment': alignment, 'positional_scores': avg_probs_i, }]) return hypos class Prism: def __init__(self, model_dir, lang, temperature): ''' model_dir should contain: 1) checkpoint.pt: the fairseq model 2) spm.model: the sentencepiece model 3) dict.src.txt: the fairseq source dictionary 4) dict.tgt.txt: the fairseq target dictionary (likely a copy of the source) lang: ISO 639-1 Code (e.g. "en"). Must be a language compatable with the model. ''' self.sp = spm.SentencePieceProcessor() self.sp.Load(model_dir + '/spm.model') self.lang = lang self.temperature = temperature # this prints things and I can't figure out how to disable it sys.stdout = open(os.devnull, 'w') self.models, self.args, self.task = checkpoint_utils.load_model_ensemble_and_task( [model_dir + '/checkpoint.pt', ], arg_overrides=dict(data=model_dir + '/'), ) sys.stdout = sys.__stdout__ self.use_cuda = torch.cuda.is_available() self.generator = SequenceScorer(self.task.target_dictionary, temperature=temperature) for model in self.models: if self.use_cuda: model.cuda() model.make_generation_fast_( beamable_mm_beam_size=None, need_attn=False, ) # if model.args.fp16: # model.half() # hash model self.model_hash = hash_model(model_dir) if self.model_hash in MODELS: model_langs = MODELS[self.model_hash]['langs'] if lang not in model_langs: model_name = MODELS[self.model_hash]['name'] logger.warning(f'Language "{lang}" is unsupported for model "{model_name}"') logger.warning(f'Supported languages for {model_name}: {", ".join(model_langs)}') else: logger.warning('unrecognized model, so cannot check language') def identifier(self): if self.model_hash in MODELS: model_name = MODELS[self.model_hash]['name'] else: logger.warning('unrecognized model, using hash to identify') model_name = self.model_hash return dict(version='0.1', model=model_name, seg_scores='avg_log_prob', sys_scores='avg_log_prob', log_base=2, temperature=self.temperature) def _binarize(self, sentence: str) -> torch.LongTensor: return self.task.source_dictionary.encode_line(sentence, add_if_not_exist=False).long() def _encode(self, sent, prepend=True): sent = ' '.join(self.sp.EncodeAsPieces(sent)) if prepend: sent = f'<{self.lang}> ' + sent return self._binarize(sent) def _build_batches(self, source_tokens: List[List[int]], target_tokens: List[List[int]], skip_invalid_size_inputs: bool) -> Iterator[Dict[str, Any]]: source_lengths = torch.LongTensor([t.numel() for t in source_tokens]) target_lengths = torch.LongTensor([t.numel() for t in target_tokens]) batch_iterator = self.task.get_batch_iterator( dataset=LanguagePairDataset(source_tokens, source_lengths, self.task.source_dictionary, tgt=target_tokens, tgt_sizes=target_lengths, tgt_dict=self.task.target_dictionary), max_tokens=self.args.max_tokens, max_sentences=self.args.max_sentences, max_positions=(2000, 2000), # ??? ignore_invalid_inputs=skip_invalid_size_inputs, ).next_epoch_itr(shuffle=False) return batch_iterator def _score_forward(self, tok_sents_in, tok_sents_out): assert len(tok_sents_in) == len(tok_sents_out) tok_level_scores = [None, ] * len(tok_sents_in) # for debug results = [None, ] * len(tok_sents_in) for batch in self._build_batches(tok_sents_in, tok_sents_out, skip_invalid_size_inputs=False): if self.use_cuda: # must be a better way batch['id'] = batch['id'].cuda() batch['net_input']['src_tokens'] = batch['net_input']['src_tokens'].cuda() batch['net_input']['src_lengths'] = batch['net_input']['src_lengths'].cuda() batch['net_input']['prev_output_tokens'] = batch['net_input']['prev_output_tokens'].cuda() batch['target'] = batch['target'].cuda() translations = self.task.inference_step(self.generator, self.models, batch) ids = batch['id'].cpu().numpy() tok_scores = [x[0]['positional_scores'].cpu().numpy() for x in translations] # [1:] to skip language tag log prob sent_scores = [np.mean(x[1:]) for x in tok_scores] for _id, sent_score, _tok_score in zip(ids, sent_scores, tok_scores): results[_id] = sent_score tok_level_scores[_id] = _tok_score if logger.level == logging.DEBUG: for ii, (sent_in, scores_out, sent_out) in enumerate(zip(tok_sents_in, tok_level_scores, tok_sents_out)): sent_in_str = ' '.join([self.task.source_dictionary[x] for x in sent_in]) logger.debug(f'Input[{ii}] = ' + sent_in_str) sent_out_tok = [self.task.source_dictionary[x] for x in sent_out] logger.debug(f'Output[{ii}] = ' + \ f' '.join([f'{a}[{b:.02f}]' for a, b in zip(sent_out_tok, scores_out)])) if None in results: raise Exception('Missing one or more sentence scores') return np.array(results) def score(self, cand, ref=None, src=None, segment_scores=False): if not (ref is None) ^ (src is None): raise Exception('Must provide exactly one of "ref" or "src"') tokenized_cand = [self._encode(sentence, prepend=False) for sentence in cand] tokenized_cand_prep = [self._encode(sentence, prepend=True) for sentence in cand] if src is not None: # Prism-src: score candidate given on source if len(cand) != len(src): raise Exception(f'Length of cand ({len(cand)}) does not match length of src ({len(src)})') tokenized_src = [self._encode(sentence, prepend=False) for sentence in src] scores = self._score_forward(tokenized_src, tokenized_cand_prep) else: # Prism-ref: average candidate given reference and reference given candidate if len(cand) != len(ref): raise Exception(f'Length of cand ({len(cand)}) does not match length of ref ({len(ref)})') tokenized_ref = [self._encode(sentence, prepend=False) for sentence in ref] tokenized_ref_prep = [self._encode(sentence, prepend=True) for sentence in ref] forward_scores = self._score_forward(tok_sents_in=tokenized_ref, tok_sents_out=tokenized_cand_prep) reverse_scores = self._score_forward(tok_sents_in=tokenized_cand, tok_sents_out=tokenized_ref_prep) scores = 0.5 * forward_scores + 0.5 * reverse_scores if not segment_scores: scores = np.mean(scores) return scores def compute_kendall( hyp1_scores: list, hyp2_scores: list, dataframe: pd.DataFrame ) -> (int, list): """ Computes the official WMT19 shared task Kendall correlation score. """ assert len(hyp1_scores) == len(hyp2_scores) == len(data) conc, disc = 0, 0 for i, row in tqdm(data.iterrows(), total=len(data), desc="Kendall eval..."): if hyp1_scores[i] > hyp2_scores[i]: conc += 1 else: disc += 1 return (conc - disc) / (conc + disc) def run_prism(mt: list, ref: list, language=False, temperature=1.0) -> list: prism = Prism(model_dir="m39v1", lang=language, temperature=temperature) scores = prism.score(cand=mt, ref=ref, segment_scores=True) return list(scores) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Evaluates BERTScores against relative preferences." ) parser.add_argument( "--test_path", default="wmt-metrics/wmt19/de-en/relative-ranks.csv", help="Path to the test dataframe with relative preferences.", type=str, ) parser.add_argument( "--language", default="en", help="Target language of the testset.", type=str, ) parser.add_argument( '--temperature', type=float, default=1.0, help='Softmax temperature: values >1.0 produce more uniform samples and values <1.0 produce sharper samples') parser.add_argument( "--run_wmt18", default=False, help="Runs entire WMT18 evaluation.", action="store_true", ) parser.add_argument( "--run_wmt19", default=False, help="Runs entire WMT19 evaluation.", action="store_true", ) args = parser.parse_args() if args.run_wmt18: lps = [ "en-cs", "en-de", "en-et", "en-fi", "en-ru", "en-tr", "en-zh", "cs-en", "de-en", "et-en", "fi-en", "ru-en", "tr-en", "zh-en", ] kendall_scores = {} for lp in lps: data = pd.read_csv(f"wmt-metrics/wmt18/{lp}/relative-ranks.csv") hyp1_scores = run_prism([str(s) for s in data.hyp1], list(data.ref), language=lp.split('-')[1], temperature=args.temperature) hyp2_scores = run_prism([str(s) for s in data.hyp2], list(data.ref), language=lp.split('-')[1], temperature=args.temperature) #hyp1_scores = run_prism([str(s) for s in data.hyp1], list(data.ref), list(data.src), language=lp.split('-')[1]) #hyp2_scores = run_prism([str(s) for s in data.hyp2], list(data.ref), list(data.src), language=lp.split('-')[1]) kendall = compute_kendall(hyp1_scores, hyp2_scores, data) print("Results for {}: {}".format(lp, kendall)) kendall_scores[lp] = kendall print(kendall_scores) elif args.run_wmt19: lps = [ "en-cs", "en-de", "en-fi", "en-gu", "en-kk", "en-lt", "en-ru", "en-zh", "de-en", "fi-en", "gu-en", "kk-en", "lt-en", "ru-en", "zh-en", "de-cs", "de-fr", "fr-de", ] kendall_scores = {} for lp in lps: data = pd.read_csv(f"wmt-metrics/wmt19/{lp}/relative-ranks.csv") hyp1_scores = run_prism([str(s) for s in data.hyp1], list(data.ref), language=lp.split('-')[1], temperature=args.temperature) hyp2_scores = run_prism([str(s) for s in data.hyp2], list(data.ref), language=lp.split('-')[1], temperature=args.temperature) kendall = compute_kendall(hyp1_scores, hyp2_scores, data) print("Results for {}: {}".format(lp, kendall)) kendall_scores[lp] = kendall print(kendall_scores) else: data = pd.read_csv(args.test_path) kendall_scores = {} hyp1_scores = run_prism([str(s) for s in data.hyp1], list(data.ref), language=lp.split('-')[1], temperature=args.temperature) hyp2_scores = run_prism([str(s) for s in data.hyp2], list(data.ref), language=lp.split('-')[1], temperature=args.temperature) kendall = compute_kendall(hyp1_scores, hyp2_scores, data) print("Results for {}: {}".format(args.test_path, kendall)) kendall_scores[lp] = kendall print(kendall_scores)
40.006682
137
0.571341
11,857
0.660079
4,235
0.235762
4,256
0.236931
0
0
3,890
0.216556
3f090c825452547dfa25b58d3c0bf2f6280faf90
826
py
Python
source_code/3-2-download.py
VickyMin1994/easy-scraping-tutorial
75b7ffc79da397afa95342022c29cd72520f155f
[ "MIT" ]
708
2017-12-29T05:32:34.000Z
2022-03-25T14:29:05.000Z
source_code/3-2-download.py
VickyMin1994/easy-scraping-tutorial
75b7ffc79da397afa95342022c29cd72520f155f
[ "MIT" ]
6
2018-01-06T07:58:31.000Z
2020-10-26T15:57:46.000Z
source_code/3-2-download.py
VickyMin1994/easy-scraping-tutorial
75b7ffc79da397afa95342022c29cd72520f155f
[ "MIT" ]
609
2017-12-29T10:04:20.000Z
2022-03-23T18:32:37.000Z
import os os.makedirs('./img/', exist_ok=True) IMAGE_URL = "https://mofanpy.com/static/img/description/learning_step_flowchart.png" def urllib_download(): from urllib.request import urlretrieve urlretrieve(IMAGE_URL, './img/image1.png') # whole document def request_download(): import requests r = requests.get(IMAGE_URL) with open('./img/image2.png', 'wb') as f: f.write(r.content) # whole document def chunk_download(): import requests r = requests.get(IMAGE_URL, stream=True) # stream loading with open('./img/image3.png', 'wb') as f: for chunk in r.iter_content(chunk_size=32): f.write(chunk) urllib_download() print('download image1') request_download() print('download image2') chunk_download() print('download image3')
23.6
84
0.670702
0
0
0
0
0
0
0
0
241
0.291768
3f09b543086a1b61bb8cf4a38db61dcd67d88667
5,787
py
Python
flare_classifier/cnn.py
Wingham1/hessidf
18e63e25f9989565f1f361458f7ff8e53f4579e9
[ "Unlicense" ]
null
null
null
flare_classifier/cnn.py
Wingham1/hessidf
18e63e25f9989565f1f361458f7ff8e53f4579e9
[ "Unlicense" ]
14
2020-01-28T23:15:48.000Z
2022-03-12T00:12:36.000Z
flare_classifier/cnn.py
Wingham1/hessidf
18e63e25f9989565f1f361458f7ff8e53f4579e9
[ "Unlicense" ]
null
null
null
from tensorflow.keras import Sequential from tensorflow.keras.layers import Conv2D, Flatten, Dense, Dropout import tensorflow.keras as keras import os import cv2 import numpy as np from sklearn.model_selection import train_test_split def data_prep(path, img_rows, img_cols, color): """ A function to preprocess the input data for a CNN. The images are resized, normalised to have pixel values between 0-1, converted into greyscale if required and put into a numpy array. Each class label is turned into a one hot pixel array and added to an ordered numpy array such that the order for the labels is the same as the images. The data is shuffled to make sure each batch is representative of the overall data during training which will reduce overfitting to each batch. This function requires that the images for each class are in a seperate directory. param: - path, a string of the path to the directory containing the images - img_rows, an integer for the number of rows the resized image should have - img_cols, an integer for the number of columns the resized image should have - color, a boolean that is set to true if the image should be in RGB colour space or false for greyscale return: - images, a numpy array of images with pixel values normalised to be between 0 and 1. numpy array dimensions are [number of images, number of rows, number of columns, number of chanels] - labels, a numpy array of labels associated with each image (labels are a one hot pixel numpy array [1, 0, 0, ...] or [0, 1, 0, ...], etc) """ images = [] labels = [] for image_class in os.listdir(path): print('image_class =', image_class) path_to_class_directory = os.path.join(path, image_class) for img_name in os.listdir(path_to_class_directory): true_path = os.path.join(path_to_class_directory, img_name) if color: images.append(cv2.imread(true_path, 1)/255.0) else: images.append(cv2.imread(true_path, 0)/255.0) # greyscale labels.append(os.listdir(path).index(image_class)) data = list(zip(images, labels)) np.random.shuffle(data) images, labels = zip(*data) images = [cv2.resize(img, (img_rows, img_cols), cv2.INTER_AREA) for img in images] # resize images to all be the same if color: images = np.array(images).reshape(len(images), img_rows, img_cols, 3) else: images = np.array(images).reshape(len(images), img_rows, img_cols, 1) labels = keras.utils.to_categorical(labels, num_classes=len(os.listdir(path))) return images, labels def build_CNN(img_rows, img_cols, color=False): model = Sequential() if color: model.add(Conv2D(20, kernel_size=(3, 3), strides=1, activation='relu', input_shape=(img_rows, img_cols, 3))) else: model.add(Conv2D(20, kernel_size=(3, 3), strides=1, activation='relu', input_shape=(img_rows, img_cols, 1))) model.add(Conv2D(20, kernel_size=(3, 3), strides=1, activation='relu')) model.add(Flatten()) #model.add(Dropout(0.25)) model.add(Dense(128, activation='relu')) model.add(Dense(num_classes, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy, optimizer='adam', metrics=['accuracy']) return model def decode_labels(coded, class_names): """ A funtion to get the name of the class by decoding a one hot pixel array. Uses a list comprehension and boolean indexing. The list comprehension returns the index of the variable with the highest value in each one hot pixel array. That list is then used for boolean indexing with a numpy array to get a list of class_names for each label in coded. Param: - coded, a numpy array of coded labels - class_names, a list of the class_names in the same order they were coded (alphabetical) Return: - numpy array of class names for each label in coded """ return np.array(class_names)[[np.argmax(example) for example in coded]] def calc_accuracy(pred, real): """ A function to calculate the accuracy of a CNN when given a list of predicted classes and a list of the real classes Param: - pred, a numpy array of predicted classes - real, a numpy array of the real classes Return: - Accuracy as a decimal """ return sum(pred==real) / len(pred) if __name__ == '__main__': path = 'data' img_rows = 150 img_cols = 150 is_color = True model_filename = 'flare_cnn' print('\nloading training data\n') num_classes = len(os.listdir(path)) x, y = data_prep(path, img_rows, img_cols, color=is_color) x_train, x_test, y_train, y_test = train_test_split(x, y) print('\nbuilding model\n') cnn = build_CNN(img_rows, img_cols, color=is_color) print('\ntraining model\n') cnn.fit(x_train, y_train, batch_size=50, epochs=1, validation_split=0.2) print('\nsaving model\n') if is_color: model_filename = model_filename + '_RGB' + '.h5' else: model_filename = model_filename + '_grey' + '.h5' cnn.save(model_filename) print('\nsaved model to file {}\n'.format(model_filename)) print('\nloading model\n') loaded_cnn = keras.models.load_model(model_filename) print('\ngenerating predictions\n') predictions = loaded_cnn.predict(x_test) dec_preds = decode_labels(predictions, os.listdir(path)) dec_ytest = decode_labels(y_test, os.listdir(path)) # F1 score would probably be a better metric due to skew of training expample (num B > num C) print('\naccuracy =', calc_accuracy(dec_preds, dec_ytest))
44.515385
155
0.683428
0
0
0
0
0
0
0
0
2,720
0.470019
3f0acb5cf9be9113370cabc267dfa5dafd6e50f5
895
py
Python
survol/sources_types/oracle/library/__init__.py
AugustinMascarelli/survol
7a822900e82d1e6f016dba014af5741558b78f15
[ "BSD-3-Clause" ]
null
null
null
survol/sources_types/oracle/library/__init__.py
AugustinMascarelli/survol
7a822900e82d1e6f016dba014af5741558b78f15
[ "BSD-3-Clause" ]
null
null
null
survol/sources_types/oracle/library/__init__.py
AugustinMascarelli/survol
7a822900e82d1e6f016dba014af5741558b78f15
[ "BSD-3-Clause" ]
null
null
null
""" Oracle library """ import lib_common from lib_properties import pc def Graphic_colorbg(): return "#CC99FF" def EntityOntology(): return ( ["Db", "Schema", "Library"], ) # Ambiguity with tables, oracle or normal users. def MakeUri(dbName,schemaName,libraryName): return lib_common.gUriGen.UriMakeFromDict("oracle/library", { "Db" : dbName, "Schema" : schemaName, "Library" : libraryName } ) def AddInfo(grph,node,entity_ids_arr): # TODO: SPECIAL. Imported here to avoid circular inclusions, see oracle/package_body/__init__.py from sources_types.oracle import schema as oracle_schema argDb = entity_ids_arr[0] argSchema = entity_ids_arr[1] node_oraschema = oracle_schema.MakeUri( argDb, argSchema ) grph.add( ( node_oraschema, pc.property_oracle_library, node ) ) def EntityName(entity_ids_arr): return entity_ids_arr[0] + "." + entity_ids_arr[1] + "." + entity_ids_arr[2]
28.870968
128
0.750838
0
0
0
0
0
0
0
0
239
0.267039
3f0adc8f234944eb3b185c95906a510034084c0d
4,104
py
Python
src/train.py
rnagumo/dgm_vae
ea9e1a39f0018c9ed55f13f0b88f4afc4657d7e4
[ "MIT" ]
5
2020-05-27T02:28:32.000Z
2021-03-27T08:07:50.000Z
src/train.py
rnagumo/dgmvae
ea9e1a39f0018c9ed55f13f0b88f4afc4657d7e4
[ "MIT" ]
null
null
null
src/train.py
rnagumo/dgmvae
ea9e1a39f0018c9ed55f13f0b88f4afc4657d7e4
[ "MIT" ]
null
null
null
"""Training method""" import argparse import json import os import pathlib from typing import Union import numpy as np import torch from torch.backends import cudnn import pytorch_lightning as pl import dgmvae.models as dvm from experiment import VAEUpdater def main(): # ------------------------------------------------------------------------- # 1. Settings # ------------------------------------------------------------------------- # Kwargs args = init_args() # Configs condig_path = os.getenv("CONFIG_PATH", "./src/config_ch1.json") with pathlib.Path(condig_path).open() as f: config = json.load(f) # Path root = pathlib.Path(os.getenv("DATA_ROOT", "./data/mnist/")) save_path = pathlib.Path(os.getenv("SAVE_PATH", "./logs/"), os.getenv("EVALUATION_NAME", "dev")) model_path = save_path / "representation" dataset = os.getenv("DATASET_NAME", "mnist") # Cuda setting use_cuda = torch.cuda.is_available() and args.cuda != "null" gpus = args.cuda if use_cuda else None # Random seed torch.manual_seed(args.seed) np.random.seed(args.seed) cudnn.deterministic = True cudnn.benchmark = False # ------------------------------------------------------------------------- # 2. Training # ------------------------------------------------------------------------- # VAE model model_dict = { "beta": dvm.BetaVAE, "factor": dvm.FactorVAE, "dipi": dvm.DIPVAE, "dipii": dvm.DIPVAE, "joint": dvm.JointVAE, "tcvae": dvm.TCVAE, "aae": dvm.AAE, "avb": dvm.AVB, } model = model_dict[args.model](**config[f"{args.model}_params"]) # Updater updater = VAEUpdater(model, args, dataset, root, args.batch_size) # Trainer params = { "default_save_path": save_path, "gpus": gpus, "early_stop_callback": None, "max_steps": args.steps, "log_save_interval": args.log_save_interval, } trainer = pl.Trainer(**params) # Run trainer.fit(updater) # Export model model_path.mkdir() ch_num = config[f"{args.model}_params"]["channel_num"] export_model(updater.model, str(model_path / "pytorch_model.pt"), input_shape=(1, ch_num, 64, 64)) def export_model(model: Union[torch.nn.Module, torch.jit.ScriptModule], path: Union[str, pathlib.Path], input_shape: tuple = (1, 3, 64, 64), use_script_module: bool = True ) -> Union[str, pathlib.Path]: """Exports model. Args: model (torch.nn.Module or torch.jit.ScriptModule): Saved model. path (str or pathlib.Path): Path to file. input_shape (tuple, optional): Tuple of input data shape. use_script_module (bool, optional): Boolean flag for using script module. Returns: path (str or pathlib.Path): Path to saved file. """ model = model.cpu().eval() if isinstance(model, torch.jit.ScriptModule): assert use_script_module, \ "Provided model is a ScriptModule, set use_script_module to True." if use_script_module: if not isinstance(model, torch.jit.ScriptModule): assert input_shape is not None traced_model = torch.jit.trace(model, torch.zeros(*input_shape)) else: traced_model = model torch.jit.save(traced_model, path) else: torch.save(model, path) # saves model as a nn.Module return path def init_args(): parser = argparse.ArgumentParser(description="VAE training") parser.add_argument("--model", type=str, default="beta") parser.add_argument("--cuda", type=str, default="0") parser.add_argument("--seed", type=int, default=0) parser.add_argument("--steps", type=int, default=100) parser.add_argument("--batch-size", type=int, default=64) parser.add_argument("--log-save-interval", type=int, default=100) return parser.parse_args() if __name__ == "__main__": main()
29.52518
79
0.576754
0
0
0
0
0
0
0
0
1,378
0.33577
3f0db4e9c999e9ae4b627b4d2fef5914dc26a29e
17,193
py
Python
kea/axi_lite_registers/_registers.py
SmartAcoustics/Kea
5790f18dafccfc01fe9dbe98de5bb1a5ce584c56
[ "BSD-3-Clause-Clear", "BSD-3-Clause" ]
3
2020-02-28T13:03:59.000Z
2020-09-20T06:33:04.000Z
kea/axi_lite_registers/_registers.py
SmartAcoustics/Kea
5790f18dafccfc01fe9dbe98de5bb1a5ce584c56
[ "BSD-3-Clause-Clear", "BSD-3-Clause" ]
null
null
null
kea/axi_lite_registers/_registers.py
SmartAcoustics/Kea
5790f18dafccfc01fe9dbe98de5bb1a5ce584c56
[ "BSD-3-Clause-Clear", "BSD-3-Clause" ]
3
2018-12-17T16:33:08.000Z
2020-01-21T14:10:25.000Z
from myhdl import Signal, intbv, block, always_comb, ConcatSignal import myhdl from collections import OrderedDict import keyword def _is_valid_name(ident: str) -> bool: '''Determine if ident is a valid register or bitfield name. ''' if not isinstance(ident, str): raise TypeError("expected str, but got {!r}".format(type(ident))) if not ident.isidentifier(): return False if keyword.iskeyword(ident): return False return True @block def assign_bitfield_from_register(reg, bitfield, offset): if isinstance(bitfield.val, bool): @always_comb def assignment(): bitfield.next = reg[offset] else: start = offset stop = offset + len(bitfield) @always_comb def assignment(): bitfield.next = reg[stop:start] return assignment class Bitfields: def __eq__(self, other): if not ((self._bitfields_config == other._bitfields_config) and (self._initial_values == other._initial_values) and (self._register_width == other._register_width) and (self._reg_type == other._reg_type)): return False else: # The values also need to be the same for bf_name in self._bitfields_config: if getattr(self, bf_name) != getattr(other, bf_name): return False if self.register != other.register: return False return True def __init__( self, register_width, register_type, bitfields_config, initial_values=None): ''' Creates a MyHDL interface representing a series of bitfields. `register_width` is the width of the register that the bitfields sit on top of. `register_type` is one of `axi_read_write`, `axi_read_only` or `axi_write_only`. `initial_values` is an optional lookup for each bitfield when the register type is `axis_read_write`. If a bitfield has an initial value set, then, assuming the register_type is `axis_read_write`, the bitfield will be set to the initial value. If the register type is not `axis_read_write`, then a ValueError will be raised if this argument is not `None`. `bitfields_config` is a dictionary that provides the configuration for each bitfield on a register. The keys are the names of the bitfields and each key should point to a configuration dict. Each configution should have the `type` key, which should have data which is one of: - `uint` - `bool` - `const-uint` - `const-bool` In addition, it should also have keys which depend on the type, as follows: - `uint`: - `length` giving the length in bits of the uint - `offset` giving the offset of the bitfield. - `bool`: - `offset` giving the offset of the boolean value. - `const-uint`: - `length` giving the length in bits of the uint - `offset` giving the offset of the bitfield. - `const-value` giving the value of the constant. - `const-bool`: - `offset` giving the offset of the boolean balue. - `const-value` giving the value of the constant. Extra keys are ignored. Other constraints are enforced and will cause an error: - All bitfields must fit within the register width. - A `const-uint` and `const-bool` can only be set on a read-only register. - Overlapping bitfields are invalid. - No bitfield can be called 'register'. This is reserved for the full register representation. - Only read-write registers can have an initial value. An example bitfield entry might look something like: {'foo':{'type': 'uint', 'length': 6, 'offset': 0}, 'bar': {'type': 'bool', 'offset': 6}, 'baz': {'type': 'const-uint', 'length': 5, 'offset': 7, 'const-value': 15}} ''' if len(bitfields_config) == 0: raise ValueError('bitfields_config cannot be empty') if register_type not in ( 'axi_read_write', 'axi_read_only', 'axi_write_only'): raise ValueError( 'The register type must be one of `axi_read_write`, ' '`axi_read_only` or `axi_write_only`') if initial_values != None and register_type != 'axi_read_write': raise ValueError( '`initial_values` must be `None` if the register type ' 'is not `axi_read_write`') if initial_values is None: initial_values = {} # We always create a register attribute register_initial_val = 0 for bitfield in bitfields_config: offset = bitfields_config[bitfield]['offset'] try: init_val = initial_values[bitfield] except KeyError: init_val = 0 register_initial_val += init_val << offset self._reg_type = register_type self._register_width = register_width self._bitfields_config = bitfields_config self._initial_values = initial_values bitfield_masks = {} bitfield_starts = {} bitfield_stops = {} self._constant_vals = {} for bitfield in bitfields_config: if not _is_valid_name(bitfield): raise ValueError( 'Bitfield names must be valid python identifiers: ' '{}'.format(bitfield)) if bitfield[0] == '_': raise ValueError( 'Bitfield names cannot begin with an underscore: ' '{}'.format(bitfield)) if bitfield == 'register': raise ValueError('Bitfields cannot be named `register`.') if bitfields_config[bitfield]['type'] == 'uint': length = bitfields_config[bitfield]['length'] offset = bitfields_config[bitfield]['offset'] bf_signal = Signal(intbv(0)[length:]) mask = (2**length - 1) << offset bitfield_starts[offset] = bitfield bitfield_stops[bitfield] = offset + length elif bitfields_config[bitfield]['type'] == 'bool': offset = bitfields_config[bitfield]['offset'] bf_signal = Signal(False) mask = 1 << offset bitfield_starts[offset] = bitfield bitfield_stops[bitfield] = offset + 1 elif bitfields_config[bitfield]['type'] == 'const-uint': if register_type != 'axi_read_only': raise ValueError( 'The bitfield `{}` is of type `const-uint` which ' 'requires the register is read-only, but the register ' 'has been configured to be `{}`'.format( bitfield, register_type)) length = bitfields_config[bitfield]['length'] offset = bitfields_config[bitfield]['offset'] const_val = int(bitfields_config[bitfield]['const-value']) if (const_val >= 2**length or const_val < 0): raise ValueError( 'The bitfield const value, {}, is invalid for ' 'bitfield {}'.format(const_val, bitfield)) bf_signal = intbv(const_val)[length:] self._constant_vals[bitfield] = const_val # We also set the initial value for constants register_initial_val += const_val << offset mask = (2**length - 1) << offset bitfield_starts[offset] = bitfield bitfield_stops[bitfield] = offset + length elif bitfields_config[bitfield]['type'] == 'const-bool': if register_type != 'axi_read_only': raise ValueError( 'The bitfield `{}` is of type `const-bool` which ' 'requires the register is read-only, but the register ' 'has been configured to be `{}`'.format( bitfield, register_type)) offset = bitfields_config[bitfield]['offset'] const_val = bitfields_config[bitfield]['const-value'] if not isinstance(const_val, bool): raise ValueError( 'The bitfield const value, {}, is invalid for ' 'bitfield {}'.format(const_val, bitfield)) bf_signal = const_val self._constant_vals[bitfield] = const_val # We also set the initial value for constants register_initial_val += const_val << offset mask = 1 << offset bitfield_starts[offset] = bitfield bitfield_stops[bitfield] = offset + 1 else: raise ValueError('A bitfield type must be one of `uint`, ' '`bool`, `const-uint` or `const-bool`: ' '{}'.format(bitfield)) if mask >= 2**register_width: raise ValueError( 'The bitfield `{}` is out of range for a register of ' 'width {}'.format(bitfield, register_width)) # Check the bitfield doesn't overlap with any others for other_bf in bitfield_masks: if (bitfield_masks[other_bf] & mask) != 0: raise ValueError( 'Bitfield `{}` overlaps with bitfield `{}`'.format( bitfield, other_bf)) bitfield_masks[bitfield] = mask setattr(self, bitfield, bf_signal) # We now need to construct the packed version of the bitfields, # including padding. rev_concat_list = [] bitfield_starts_list = list(bitfield_starts.keys()) bitfield_starts_list.sort() if bitfield_starts_list[0] != 0: padding = intbv(0)[bitfield_starts_list[0]:] rev_concat_list.append(padding) for i, start in enumerate(bitfield_starts_list): bitfield = bitfield_starts[start] rev_concat_list.append(getattr(self, bitfield)) try: next_start = bitfield_starts_list[i + 1] # The higher up checks make sure padding_len should never be # negative. padding_len = next_start - bitfield_stops[bitfield] if padding_len > 0: padding = intbv(0)[padding_len:] rev_concat_list.append(padding) except IndexError: if bitfield_stops[bitfield] < register_width: padding = intbv(0)[ register_width - bitfield_stops[bitfield]:] rev_concat_list.append(padding) self.register = Signal(intbv(register_initial_val)[register_width:]) self._concat_list = rev_concat_list[::-1] self._bitfield_starts = bitfield_starts self._bitfield_masks = bitfield_masks @block def bitfield_connector(self): if self._reg_type in ('axi_read_write', 'axi_write_only'): instances = [] for bitfield_start in self._bitfield_starts: bitfield = getattr(self, self._bitfield_starts[bitfield_start]) instances.append( assign_bitfield_from_register( self.register, bitfield, bitfield_start)) return instances elif self._reg_type in ('axi_read_only'): if len(self._concat_list) == 1: # This is a hack to allow a concat signal to work in # all cases. An alternative would be to special case single # signals, but that doesn't work well with constants, which # themselves would require a special case, and some hackery to # have the constant read (and requiring initial_values to be # turned on). keep = Signal(True) keep.driven = True reg_signal = ConcatSignal(keep, self._concat_list[0]) else: reg_signal = ConcatSignal(*self._concat_list) @always_comb def assign_register(): self.register.next = reg_signal[self._register_width:] return assign_register class RegisterSet(object): pass class Registers(object): ''' A general purpose register definition. ''' @property def register_types(self): return self._register_types def __eq__(self, other): return (self._bitfields == other._bitfields and self._register_types == other._register_types and self._register_width == other._register_width) def __init__( self, register_list, register_types=None, register_width=32, initial_values=None, bitfields=None): ''' Constructs a MyHDL interface that encapsulates each register name given in `register_list`. The order of the registers in the list is kept. If `register_types` is set, it should be a dictionary like object that provides data of the form `axi_read_write`, `axi_read_only` or `axi_write_only` for the register name given by its key. If a register name is missing from `register_types`, then the register type defaults to `axi_read_write`. If `register_types` is `None`, then all the registers are `axi_read_write`. `register_width` gives the width in bits of each register that is created, defaulting to 32. `initial_values` is an optional dictionary that sets the initial value of a read-write register. A `ValueError` will be raised if an initial value is set for a non read-write register. The default is for the initial values to be zero. If a register has bitfields set (see below), then the dictionary entry should itself be a dictionary to the initial values for each bitfield. `bitfields` is an optional dictionary argument in which each register that is included in the dictionary is populated as a Bitfield interface rather than a signal. Each data in bitfields is passed directly as the bitfields_config argument to the initialisation of a `Bitfield` class. See the documentation for that class to see what form the data should be. ''' for name in register_list: if not _is_valid_name(name): raise ValueError('Invalid register name: {}'.format(name)) if register_types is None: # Create a register types dictionary so that the system can handle # an empty register types argument. register_types = {} self._register_width = register_width # Create an ordered dictionary self._register_types = OrderedDict() for each in register_types: if each not in register_list: # Check that the register types have a corresponding register # in the register list. If not error. raise ValueError( 'Invalid register in register_types: %s' % each) if initial_values is None: initial_values = {} if bitfields is None: bitfields = {} for initial_val_key in initial_values: if (register_types.get(initial_val_key, 'axi_read_write') != 'axi_read_write'): raise ValueError( 'Only read-write registers can take initial values: %s' % initial_val_key + ': ' + str(register_types[initial_val_key])) for name in register_list: register_type = register_types.get(name, 'axi_read_write') if name in bitfields: initial_vals = initial_values.get(name, None) setattr( self, name, Bitfields(register_width, register_type, bitfields[name], initial_values=initial_vals)) else: # Create the registers setattr(self, name, Signal( intbv(initial_values.get(name, 0))[register_width:])) # Populate the ordered dictionary with the appropriate # register types, defaulting to 'axi_read_write' self._register_types[name] = ( register_types.get(name, 'axi_read_write')) self._bitfields = bitfields
36.89485
79
0.571163
16,324
0.949456
0
0
1,803
0.104868
0
0
6,839
0.397778
3f0e2d51a2df3a348d377cd1a32d06c17973e189
1,429
py
Python
tools/clear_from_n.py
ubercomrade/MultiDeNA
128f2963cf0a49f94c85744c5eaaf5c41f0e161c
[ "MIT" ]
null
null
null
tools/clear_from_n.py
ubercomrade/MultiDeNA
128f2963cf0a49f94c85744c5eaaf5c41f0e161c
[ "MIT" ]
null
null
null
tools/clear_from_n.py
ubercomrade/MultiDeNA
128f2963cf0a49f94c85744c5eaaf5c41f0e161c
[ "MIT" ]
null
null
null
import random def read_fasta(path_in, path_out): fasta = list() append = fasta.append fasta_in = open(path_in, 'r') fasta_out = open(path_out, 'w') for index, line in enumerate(fasta_in): if not line.startswith('>'): line = line.strip().upper() line = clear_n(line) if line != '': fasta_out.write('>{0}\n'.format(int(index / 2))) fasta_out.write(line + '\n') fasta_in.close() fasta_out.close() pass def longest(ss): if len(ss[0]) > len(ss[1]): return(ss[0]) else: return(ss[1]) def clear_n(string): while 1: position = string.find('N') if position == -1: break elif position == len(string) - 1: string = string[:position - 1] break elif string[position + 1] != 'N': string = string[:position] + random.choice('ACGT') + string[position + 1:] else: for index, n in enumerate(string[position:],position): if n != 'N': string = longest([string[:position], string[index:]]) break elif index == len(string) - 1: string = string[:position] break return(string) def clear_from_n(fasta_in, fasta_out): read_fasta(fasta_in, fasta_out) return(0)
28.019608
86
0.501749
0
0
0
0
0
0
0
0
38
0.026592
3f109ba5a82b80a619a2cca61182b7519ce6df9d
2,217
py
Python
tensorbank/tf/slices.py
pshved/tensorbank
6a1497b58cfac5e7218ec42c04dd62e17b7bb88c
[ "MIT" ]
1
2020-07-07T09:00:28.000Z
2020-07-07T09:00:28.000Z
tensorbank/tf/slices.py
pshved/tensorbank
6a1497b58cfac5e7218ec42c04dd62e17b7bb88c
[ "MIT" ]
null
null
null
tensorbank/tf/slices.py
pshved/tensorbank
6a1497b58cfac5e7218ec42c04dd62e17b7bb88c
[ "MIT" ]
null
null
null
"""Advanced Tensor slicing ========================== Utilities for advanced tensor slicing and batching operations. Reference --------- """ import tensorflow as tf def slice_within_stride(x, stride, si=0, ei=None, keepdims=True): """Select ``x[..., (i * stride + si):(i * stride + ei)]`` for each i. The tensor returned will have the last dimension shrunk by a factor of ``(ei-si)/stride``. As a natural special case, ``tb.multiple_within_stride(x, N)`` is equivalent to adding a dimension of ``N`` at the end, as in ``tf.expand_dims(x, (..., -1, N))``. Example: When predicting anchor positions in SSD, ``num_classes + num_offsets`` are predicted for each anchor. To get only the class confidence, this would be used:: logits = model(input) class_logits = tb.slice_within_stride( logits, 0, num_classes, num_classes + num_offsets) loss = softmax_cross_entropy_with_logits( class_preds, class_logits) Args: x (tf.Tensor): value to modify stride (int): stride for the last dimension si (int): starting index within stride. Negative indices are supported. Defaults to 0. ei (int): end index (1 element after the last) within stride. Negative indices are supported. Defaults to ``None``, which means "until the last element". keepdims (bool): if False, adds another dimension that iterates over each stride. This dimension will be of size ``ei-si``. Defaults to True. Returns: tf.Tensor: modified ``x`` with the last dimension sliced. """ step1 = tf.reshape(x, (-1, stride)) step2 = step1[..., si:ei] new_shape = list(x.shape) new_shape[-1] = -1 if not keepdims: if ei is None: ei = stride # Calculate the size of the slice. This is O(stride) which is # small. last_dim_len = len(list(range(stride)[si:ei])) new_shape.append(last_dim_len) print("NS: {}".format(new_shape)) step3 = tf.reshape(step2, new_shape) return step3
31.225352
74
0.592242
0
0
0
0
0
0
0
0
1,721
0.776274
3f1168ed05032f188730bcd06823c66a0ec28d77
5,168
py
Python
testfixtures/tests/test_roundcomparison.py
Alexhuszagh/XLDiscoverer
60937b1f7f2e23af4219eb26519d6b83fb4232d6
[ "Apache-2.0", "MIT" ]
null
null
null
testfixtures/tests/test_roundcomparison.py
Alexhuszagh/XLDiscoverer
60937b1f7f2e23af4219eb26519d6b83fb4232d6
[ "Apache-2.0", "MIT" ]
null
null
null
testfixtures/tests/test_roundcomparison.py
Alexhuszagh/XLDiscoverer
60937b1f7f2e23af4219eb26519d6b83fb4232d6
[ "Apache-2.0", "MIT" ]
null
null
null
# Copyright (c) 2014 Simplistix Ltd # See license.txt for license details. from decimal import Decimal from testfixtures import RoundComparison as R, compare, ShouldRaise from unittest import TestCase from ..compat import PY2, PY3 class Tests(TestCase): def test_equal_yes_rhs(self): self.assertTrue(0.123457 == R(0.123456, 5)) def test_equal_yes_lhs(self): self.assertTrue(R(0.123456, 5) == 0.123457) def test_equal_no_rhs(self): self.assertFalse(0.123453 == R(0.123456, 5)) def test_equal_no_lhs(self): self.assertFalse(R(0.123456, 5) == 0.123453) def test_not_equal_yes_rhs(self): self.assertFalse(0.123457 != R(0.123456, 5)) def test_not_equal_yes_lhs(self): self.assertFalse(R(0.123456, 5) != 0.123457) def test_not_equal_no_rhs(self): self.assertTrue(0.123453 != R(0.123456, 5)) def test_not_equal_no_lhs(self): self.assertTrue(R(0.123456, 5) != 0.123453) def test_equal_in_sequence_rhs(self): self.assertEqual((1, 2, 0.123457), (1, 2, R(0.123456, 5))) def test_equal_in_sequence_lhs(self): self.assertEqual((1, 2, R(0.123456, 5)), (1, 2, 0.123457)) def test_not_equal_in_sequence_rhs(self): self.assertNotEqual((1, 2, 0.1236), (1, 2, R(0.123456, 5))) def test_not_equal_in_sequence_lhs(self): self.assertNotEqual((1, 2, R(0.123456, 5)), (1, 2, 0.1236)) def test_not_numeric_rhs(self): with ShouldRaise(TypeError): 'abc' == R(0.123456, 5) def test_not_numeric_lhs(self): with ShouldRaise(TypeError): R(0.123456, 5) == 'abc' def test_repr(self): compare('<R:0.12346 to 5 digits>', repr(R(0.123456, 5))) def test_str(self): compare('<R:0.12346 to 5 digits>', repr(R(0.123456, 5))) def test_str_negative(self): if PY3: expected = '<R:123500 to -2 digits>' else: expected = '<R:123500.0 to -2 digits>' compare(expected, repr(R(123456, -2))) TYPE_ERROR_DECIMAL = TypeError( "Cannot compare <R:0.12346 to 5 digits> with <class 'decimal.Decimal'>" ) def test_equal_yes_decimal_to_float_rhs(self): with ShouldRaise(self.TYPE_ERROR_DECIMAL, unless=PY2): self.assertTrue(Decimal("0.123457") == R(0.123456, 5)) def test_equal_yes_decimal_to_float_lhs(self): with ShouldRaise(self.TYPE_ERROR_DECIMAL, unless=PY2): self.assertTrue(R(0.123456, 5) == Decimal("0.123457")) def test_equal_no_decimal_to_float_rhs(self): with ShouldRaise(self.TYPE_ERROR_DECIMAL, unless=PY2): self.assertFalse(Decimal("0.123453") == R(0.123456, 5)) def test_equal_no_decimal_to_float_lhs(self): with ShouldRaise(self.TYPE_ERROR_DECIMAL, unless=PY2): self.assertFalse(R(0.123456, 5) == Decimal("0.123453")) TYPE_ERROR_FLOAT = TypeError( "Cannot compare <R:0.12346 to 5 digits> with <class 'float'>" ) def test_equal_yes_float_to_decimal_rhs(self): with ShouldRaise(self.TYPE_ERROR_FLOAT, unless=PY2): self.assertTrue(0.123457 == R(Decimal("0.123456"), 5)) def test_equal_yes_float_to_decimal_lhs(self): with ShouldRaise(self.TYPE_ERROR_FLOAT, unless=PY2): self.assertTrue(R(Decimal("0.123456"), 5) == 0.123457) def test_equal_no_float_to_decimal_rhs(self): with ShouldRaise(self.TYPE_ERROR_FLOAT, unless=PY2): self.assertFalse(0.123453 == R(Decimal("0.123456"), 5)) def test_equal_no_float_to_decimal_lhs(self): with ShouldRaise(self.TYPE_ERROR_FLOAT, unless=PY2): self.assertFalse(R(Decimal("0.123456"), 5) == 0.123453) def test_integer_float(self): with ShouldRaise(TypeError, unless=PY2): 1 == R(1.000001, 5) def test_float_integer(self): with ShouldRaise(TypeError, unless=PY2): R(1.000001, 5) == 1 def test_equal_yes_integer_other_rhs(self): self.assertTrue(10 == R(11, -1)) def test_equal_yes_integer_lhs(self): self.assertTrue(R(11, -1) == 10) def test_equal_no_integer_rhs(self): self.assertFalse(10 == R(16, -1)) def test_equal_no_integer_lhs(self): self.assertFalse(R(16, -1) == 10) def test_equal_integer_zero_precision(self): self.assertTrue(1 == R(1, 0)) def test_equal_yes_negative_precision(self): self.assertTrue(149.123 == R(101.123, -2)) def test_equal_no_negative_precision(self): self.assertFalse(149.123 == R(150.001, -2)) def test_decimal_yes_rhs(self): self.assertTrue(Decimal('0.123457') == R(Decimal('0.123456'), 5)) def test_decimal_yes_lhs(self): self.assertTrue(R(Decimal('0.123456'), 5) == Decimal('0.123457')) def test_decimal_no_rhs(self): self.assertFalse(Decimal('0.123453') == R(Decimal('0.123456'), 5)) def test_decimal_no_lhs(self): self.assertFalse(R(Decimal('0.123456'), 5) == Decimal('0.123453'))
33.128205
79
0.629257
4,932
0.954334
0
0
0
0
0
0
477
0.092299
3f11b3d9455edd6883b563bf0cbd4035db741ccc
23,628
py
Python
config/usb_device_cdc.py
newbs/usb
5aeafc26849673a357a6110713524387f2f5f84d
[ "0BSD" ]
null
null
null
config/usb_device_cdc.py
newbs/usb
5aeafc26849673a357a6110713524387f2f5f84d
[ "0BSD" ]
null
null
null
config/usb_device_cdc.py
newbs/usb
5aeafc26849673a357a6110713524387f2f5f84d
[ "0BSD" ]
null
null
null
"""***************************************************************************** * Copyright (C) 2019 Microchip Technology Inc. and its subsidiaries. * * Subject to your compliance with these terms, you may use Microchip software * and any derivatives exclusively with Microchip products. It is your * responsibility to comply with third party license terms applicable to your * use of third party software (including open source software) that may * accompany Microchip software. * * THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES, WHETHER * EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE, INCLUDING ANY IMPLIED * WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A * PARTICULAR PURPOSE. * * IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, * INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND * WHATSOEVER RELATED TO THE SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS * BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE * FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN * ANY WAY RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, * THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE. *****************************************************************************""" currentQSizeRead = 1 currentQSizeWrite = 1 currentQSizeSerialStateNotification = 1 cdcInterfacesNumber = 2 cdcDescriptorSize = 58 cdcEndpointsPic32 = 2 cdcEndpointsSAM = 3 indexFunction = None configValue = None startInterfaceNumber = None numberOfInterfaces = None useIad = None epNumberInterrupt = None epNumberBulkOut = None epNumberBulkIn = None cdcEndpointNumber = None def handleMessage(messageID, args): global useIad if (messageID == "UPDATE_CDC_IAD_ENABLE"): useIad.setValue(args["iadEnable"]) return args def onAttachmentConnected(source, target): global cdcInterfacesNumber global cdcDescriptorSize global configValue global startInterfaceNumber global numberOfInterfaces global useIad global epNumberInterrupt global epNumberBulkOut global epNumberBulkIn global cdcEndpointsPic32 global cdcEndpointsSAM global currentQSizeRead global currentQSizeWrite global currentQSizeSerialStateNotification print ("CDC Function Driver: Attached") remoteComponent = target["component"] remoteComponentId = remoteComponent.getID() if (remoteComponentId == "usb_device"): dependencyID = source["id"] ownerComponent = source["component"] # Read number of functions from USB Device Layer nFunctions = Database.getSymbolValue("usb_device", "CONFIG_USB_DEVICE_FUNCTIONS_NUMBER") if nFunctions != None: #Log.writeDebugMessage ("USB Device CDC Function Driver: Attachment connected") # Update Number of Functions in USB Device, Increment the value by One. args = {"nFunction":nFunctions + 1} res = Database.sendMessage("usb_device", "UPDATE_FUNCTIONS_NUMBER", args) # If we have CDC function driver plus any function driver (no matter what Class), we enable IAD. if nFunctions > 0: args = {"nFunction":True} res = Database.sendMessage("usb_device", "UPDATE_IAD_ENABLE", args) iadEnableSymbol = ownerComponent.getSymbolByID("CONFIG_USB_DEVICE_FUNCTION_USE_IAD") iadEnableSymbol.clearValue() iadEnableSymbol.setValue(True, 1) isIadEnabled = Database.getSymbolValue("usb_device_cdc_0", "CONFIG_USB_DEVICE_FUNCTION_USE_IAD") if isIadEnabled == False: args = {"iadEnable":True} res = Database.sendMessage("usb_device_cdc_0", "UPDATE_CDC_IAD_ENABLE", args) nCDCInstances = Database.getSymbolValue("usb_device_cdc", "CONFIG_USB_DEVICE_CDC_INSTANCES") if nCDCInstances == 2: configDescriptorSize = Database.getSymbolValue("usb_device", "CONFIG_USB_DEVICE_CONFIG_DESCRPTR_SIZE") if configDescriptorSize != None: args = {"nFunction": configDescriptorSize + 8} res = Database.sendMessage("usb_device", "UPDATE_CONFIG_DESCRPTR_SIZE", args) configDescriptorSize = Database.getSymbolValue("usb_device", "CONFIG_USB_DEVICE_CONFIG_DESCRPTR_SIZE") if configDescriptorSize != None: iadEnableSymbol = ownerComponent.getSymbolByID("CONFIG_USB_DEVICE_FUNCTION_USE_IAD") if iadEnableSymbol.getValue() == True: descriptorSize = cdcDescriptorSize + 8 else: descriptorSize = cdcDescriptorSize args = {"nFunction": configDescriptorSize + descriptorSize} res = Database.sendMessage("usb_device", "UPDATE_CONFIG_DESCRPTR_SIZE", args) nInterfaces = Database.getSymbolValue("usb_device", "CONFIG_USB_DEVICE_INTERFACES_NUMBER") if nInterfaces != None: args = {"nFunction": nInterfaces + cdcInterfacesNumber} res = Database.sendMessage("usb_device", "UPDATE_INTERFACES_NUMBER", args) startInterfaceNumber.setValue(nInterfaces, 1) nEndpoints = Database.getSymbolValue("usb_device", "CONFIG_USB_DEVICE_ENDPOINTS_NUMBER") if nEndpoints != None: epNumberInterrupt.setValue(nEndpoints + 1, 1) epNumberBulkOut.setValue(nEndpoints + 2, 1) if any(x in Variables.get("__PROCESSOR") for x in ["PIC32MZ", "PIC32MX", "PIC32MK", "SAMD21", "SAMDA1","SAMD51", "SAME51", "SAME53", "SAME54", "SAML21", "SAML22", "SAMD11"]): epNumberBulkIn.setValue(nEndpoints + 2, 1) args = {"nFunction": nEndpoints + cdcEndpointsPic32} res = Database.sendMessage("usb_device", "UPDATE_ENDPOINTS_NUMBER", args) else: epNumberBulkIn.setValue(nEndpoints + 3, 1) args = {"nFunction": nEndpoints + cdcEndpointsSAM} res = Database.sendMessage("usb_device", "UPDATE_ENDPOINTS_NUMBER", args) def onAttachmentDisconnected(source, target): print ("CDC Function Driver: Detached") global cdcInterfacesNumber global cdcDescriptorSize global configValue global startInterfaceNumber global numberOfInterfaces global useIad global epNumberInterrupt global epNumberBulkOut global epNumberBulkIn global cdcEndpointsPic32 global cdcEndpointsSAM global cdcInstancesCount global currentQSizeRead global currentQSizeWrite global currentQSizeSerialStateNotification dependencyID = source["id"] ownerComponent = source["component"] remoteComponent = target["component"] remoteComponentId = remoteComponent.getID() if (remoteComponentId == "usb_device"): nFunctions = Database.getSymbolValue("usb_device", "CONFIG_USB_DEVICE_FUNCTIONS_NUMBER") if nFunctions != None: nFunctions = nFunctions - 1 args = {"nFunction":nFunctions} res = Database.sendMessage("usb_device", "UPDATE_FUNCTIONS_NUMBER", args) endpointNumber = Database.getSymbolValue("usb_device", "CONFIG_USB_DEVICE_ENDPOINTS_NUMBER") if endpointNumber != None: if any(x in Variables.get("__PROCESSOR") for x in ["PIC32MZ"]): args = {"nFunction":endpointNumber - cdcEndpointsPic32 } res = Database.sendMessage("usb_device", "UPDATE_ENDPOINTS_NUMBER", args) else: args = {"nFunction":endpointNumber - cdcEndpointsSAM } res = Database.sendMessage("usb_device", "UPDATE_ENDPOINTS_NUMBER", args) interfaceNumber = Database.getSymbolValue("usb_device", "CONFIG_USB_DEVICE_INTERFACES_NUMBER") if interfaceNumber != None: args = {"nFunction": interfaceNumber - 2} res = Database.sendMessage("usb_device", "UPDATE_INTERFACES_NUMBER", args) nCDCInstances = Database.getSymbolValue("usb_device_cdc", "CONFIG_USB_DEVICE_CDC_INSTANCES") if nCDCInstances != None: nCDCInstances = nCDCInstances - 1 args = {"cdcInstanceCount": nCDCInstances} res = Database.sendMessage("usb_device_cdc", "UPDATE_CDC_INSTANCES", args) if nCDCInstances == 1 and nFunctions != None and nFunctions == 1: args = {"iadEnable":False} res = Database.sendMessage("usb_device_cdc_0", "UPDATE_CDC_IAD_ENABLE", args) args = {"nFunction":False} res = Database.sendMessage("usb_device", "UPDATE_IAD_ENABLE", args) configDescriptorSize = Database.getSymbolValue("usb_device", "CONFIG_USB_DEVICE_CONFIG_DESCRPTR_SIZE") if configDescriptorSize != None: args = {"nFunction": configDescriptorSize - 8} res = Database.sendMessage("usb_device", "UPDATE_CONFIG_DESCRPTR_SIZE", args) configDescriptorSize = Database.getSymbolValue("usb_device", "CONFIG_USB_DEVICE_CONFIG_DESCRPTR_SIZE") if configDescriptorSize != None: if useIad.getValue() == True: descriptorSize = cdcDescriptorSize + 8 else: descriptorSize = cdcDescriptorSize args = {"nFunction": configDescriptorSize - descriptorSize} res = Database.sendMessage("usb_device", "UPDATE_CONFIG_DESCRPTR_SIZE", args) def destroyComponent(component): print ("CDC Function Driver: Destroyed") # This function is called when user modifies the CDC Queue Size. def usbDeviceCdcBufferQueueSize(usbSymbolSource, event): global currentQSizeRead global currentQSizeWrite global currentQSizeSerialStateNotification queueDepthCombined = Database.getSymbolValue("usb_device_cdc", "CONFIG_USB_DEVICE_CDC_QUEUE_DEPTH_COMBINED") if (event["id"] == "CONFIG_USB_DEVICE_FUNCTION_READ_Q_SIZE"): queueDepthCombined = queueDepthCombined - currentQSizeRead + event["value"] currentQSizeRead = event["value"] if (event["id"] == "CONFIG_USB_DEVICE_FUNCTION_WRITE_Q_SIZE"): queueDepthCombined = queueDepthCombined - currentQSizeWrite + event["value"] currentQSizeWrite = event["value"] if (event["id"] == "CONFIG_USB_DEVICE_FUNCTION_SERIAL_NOTIFIACATION_Q_SIZE"): queueDepthCombined = queueDepthCombined - currentQSizeSerialStateNotification + event["value"] currentQSizeSerialStateNotification = event["value"] # We have updated queueDepthCombined variable with current combined queue length. # Now send a message to USB_DEVICE_CDC_COMMON.PY to modify the Combined queue length. args = {"cdcQueueDepth": queueDepthCombined} res = Database.sendMessage("usb_device_cdc", "UPDATE_CDC_QUEUE_DEPTH_COMBINED", args) def instantiateComponent(usbDeviceCdcComponent, index): global cdcDescriptorSize global cdcInterfacesNumber global cdcDescriptorSize global configValue global startInterfaceNumber global numberOfInterfaces global useIad global currentQSizeRead global currentQSizeWrite global currentQSizeSerialStateNotification global epNumberInterrupt global epNumberBulkOut global epNumberBulkIn res = Database.activateComponents(["usb_device"]) if any(x in Variables.get("__PROCESSOR") for x in ["PIC32MZ"]): MaxEpNumber = 7 BulkInDefaultEpNumber = 2 elif any(x in Variables.get("__PROCESSOR") for x in ["PIC32MX", "PIC32MK"]): MaxEpNumber = 15 BulkInDefaultEpNumber = 2 elif any(x in Variables.get("__PROCESSOR") for x in ["SAMD21", "SAMDA1", "SAMD51", "SAME51", "SAME53", "SAME54", "SAML21", "SAML22", "SAMD11"]): MaxEpNumber = 7 BulkInDefaultEpNumber = 2 elif any(x in Variables.get("__PROCESSOR") for x in ["SAMA5D2", "SAM9X60"]): MaxEpNumber = 15 BulkInDefaultEpNumber = 3 elif any(x in Variables.get("__PROCESSOR") for x in ["SAME70", "SAMS70", "SAMV70", "SAMV71"]): MaxEpNumber = 9 BulkInDefaultEpNumber = 3 elif any(x in Variables.get("__PROCESSOR") for x in ["SAMG55"]): MaxEpNumber = 5 BulkInDefaultEpNumber = 3 # Index of this function indexFunction = usbDeviceCdcComponent.createIntegerSymbol("CONFIG_USB_DEVICE_FUNCTION_INDEX", None) indexFunction.setVisible(False) indexFunction.setMin(0) indexFunction.setMax(16) indexFunction.setDefaultValue(index) # Config name: Configuration number configValue = usbDeviceCdcComponent.createIntegerSymbol("CONFIG_USB_DEVICE_FUNCTION_CONFIG_VALUE", None) configValue.setLabel("Configuration Value") configValue.setVisible(False) configValue.setMin(1) configValue.setMax(16) configValue.setDefaultValue(1) configValue.setReadOnly(True) # Adding Start Interface number startInterfaceNumber = usbDeviceCdcComponent.createIntegerSymbol("CONFIG_USB_DEVICE_FUNCTION_INTERFACE_NUMBER", None) startInterfaceNumber.setLabel("Start Interface Number") helpText = '''Indicates the Interface Number of the first interfaces in the Communication Device Interface Group. This is provided here for indication purposes only and is automatically updated based on the function driver selection.''' startInterfaceNumber.setDescription(helpText) startInterfaceNumber.setVisible(True) startInterfaceNumber.setMin(0) startInterfaceNumber.setDefaultValue(0) startInterfaceNumber.setReadOnly(True) # Adding Number of Interfaces numberOfInterfaces = usbDeviceCdcComponent.createIntegerSymbol("CONFIG_USB_DEVICE_FUNCTION_NUMBER_OF_INTERFACES", None) numberOfInterfaces.setLabel("Number of Interfaces") helpText = '''Indicates the interfaces in the Communication Device Interface Group. This is provided here for indication purposes only.''' numberOfInterfaces.setDescription(helpText) numberOfInterfaces.setVisible(True) numberOfInterfaces.setMin(1) numberOfInterfaces.setMax(16) numberOfInterfaces.setDefaultValue(2) numberOfInterfaces.setReadOnly(True) # Use IAD useIad = usbDeviceCdcComponent.createBooleanSymbol("CONFIG_USB_DEVICE_FUNCTION_USE_IAD", None) useIad.setLabel("Use Interface Association Descriptor") helpText = '''Enable this option to generate a Interface Association Descriptor (IAD). This option should be enabled in case multiple CDC interfaces are included in the Device. Enabling the option will update the Class, Sublass fields in the Device Descriptor to indicate that that device uses IAD.''' useIad.setDescription(helpText) useIad.setVisible(True) useIad.setDefaultValue(False) useIad.setUseSingleDynamicValue(True) # CDC Function driver Read Queue Size queueSizeRead = usbDeviceCdcComponent.createIntegerSymbol("CONFIG_USB_DEVICE_FUNCTION_READ_Q_SIZE", None) queueSizeRead.setLabel("CDC Read Queue Size") helpText = '''Configure the size of the Read Queue. This configures the maximum number of Read Requests that can be queued before the Function Driver returns a queue full response. Using a queue increases memory consumption but also increases throughput. The driver will queue requests if the transfer request is currently being processed.''' queueSizeRead.setDescription(helpText) queueSizeRead.setVisible(True) queueSizeRead.setMin(1) queueSizeRead.setMax(32767) queueSizeRead.setDefaultValue(1) currentQSizeRead = queueSizeRead.getValue() # CDC Function driver Write Queue Size queueSizeWrite = usbDeviceCdcComponent.createIntegerSymbol("CONFIG_USB_DEVICE_FUNCTION_WRITE_Q_SIZE", None) helpText = '''Configure the size of the Write Queue. This configures the maximum number of Write Requests that can be queued before the Function Driver returns a queue full response. Using a queue increases memory consumption but also increases throughput. The driver will queue requests if the transfer request is currently being processed.''' queueSizeWrite.setDescription(helpText) queueSizeWrite.setLabel("CDC Write Queue Size") queueSizeWrite.setVisible(True) queueSizeWrite.setMin(1) queueSizeWrite.setMax(32767) queueSizeWrite.setDefaultValue(1) currentQSizeWrite = queueSizeWrite.getValue() # CDC Function driver Serial state notification Queue Size queueSizeSerialStateNotification = usbDeviceCdcComponent.createIntegerSymbol("CONFIG_USB_DEVICE_FUNCTION_SERIAL_NOTIFIACATION_Q_SIZE", None) queueSizeSerialStateNotification.setLabel("CDC Serial Notification Queue Size") helpText = '''Configure the size of the Serial State Notification Queue. This configures the maximum number of Serial State Notification Requests that can be queued before the Function Driver returns a queue full response. Using a queue increases memory consumption but also increases throughput. The driver will queue requests if the transfer request is currently being processed.''' queueSizeSerialStateNotification.setDescription(helpText) queueSizeSerialStateNotification.setVisible(True) queueSizeSerialStateNotification.setMin(1) queueSizeSerialStateNotification.setMax(32767) queueSizeSerialStateNotification.setDefaultValue(1) currentQSizeSerialStateNotification = queueSizeSerialStateNotification.getValue() # CDC Function driver Notification Endpoint Number epNumberInterrupt = usbDeviceCdcComponent.createIntegerSymbol("CONFIG_USB_DEVICE_FUNCTION_INT_ENDPOINT_NUMBER", None) helpText = '''Specify the endpoint number of Interrupt IN Endpoint to be used for this instance of the CDC Interface. Refer to Device Datasheet for details on available endpoints and limitations.''' epNumberInterrupt.setDescription(helpText) epNumberInterrupt.setLabel("Interrupt Endpoint Number") epNumberInterrupt.setVisible(True) epNumberInterrupt.setMin(1) epNumberInterrupt.setDefaultValue(1) epNumberInterrupt.setMax(MaxEpNumber) # CDC Function driver Data OUT Endpoint Number epNumberBulkOut = usbDeviceCdcComponent.createIntegerSymbol("CONFIG_USB_DEVICE_FUNCTION_BULK_OUT_ENDPOINT_NUMBER", None) helpText = '''Specify the endpoint number of Bulk Out Endpoint to be used for this instance of the CDC Interface. Refer to Device Datasheet for details on available endpoints and limitations.''' epNumberBulkOut.setDescription(helpText) epNumberBulkOut.setLabel("Bulk OUT Endpoint Number") epNumberBulkOut.setVisible(True) epNumberBulkOut.setMin(1) epNumberBulkOut.setDefaultValue(2) epNumberBulkOut.setMax(MaxEpNumber) # CDC Function driver Data IN Endpoint Number epNumberBulkIn = usbDeviceCdcComponent.createIntegerSymbol("CONFIG_USB_DEVICE_FUNCTION_BULK_IN_ENDPOINT_NUMBER", None) helpText = '''Specify the endpoint number of Bulk IN Endpoint to be used for this instance of the CDC Interface. Refer to Device Datasheet for details on available endpoints and limitations.''' epNumberBulkIn.setDescription(helpText) epNumberBulkIn.setLabel("Bulk IN Endpoint Number") epNumberBulkIn.setVisible(True) epNumberBulkIn.setMin(1) epNumberBulkIn.setMax(MaxEpNumber) epNumberBulkIn.setDefaultValue(BulkInDefaultEpNumber) usbDeviceCdcBufPool = usbDeviceCdcComponent.createBooleanSymbol("CONFIG_USB_DEVICE_CDC_BUFFER_POOL", None) usbDeviceCdcBufPool.setLabel("**** Buffer Pool Update ****") usbDeviceCdcBufPool.setDependencies(usbDeviceCdcBufferQueueSize, ["CONFIG_USB_DEVICE_FUNCTION_READ_Q_SIZE", "CONFIG_USB_DEVICE_FUNCTION_WRITE_Q_SIZE", "CONFIG_USB_DEVICE_FUNCTION_SERIAL_NOTIFIACATION_Q_SIZE"]) usbDeviceCdcBufPool.setVisible(False) ############################################################################ #### Dependency #### ############################################################################ # USB DEVICE CDC Common Dependency Log.writeDebugMessage ("Dependency Started") numInstances = Database.getSymbolValue("usb_device_cdc", "CONFIG_USB_DEVICE_CDC_INSTANCES") if (numInstances == None): numInstances = 0 args = {"cdcInstanceCount": index+1} res = Database.sendMessage("usb_device_cdc", "UPDATE_CDC_INSTANCES", args) ############################################################# # Function Init Entry for CDC ############################################################# usbDeviceCdcFunInitFile = usbDeviceCdcComponent.createFileSymbol(None, None) usbDeviceCdcFunInitFile.setType("STRING") usbDeviceCdcFunInitFile.setOutputName("usb_device.LIST_USB_DEVICE_FUNCTION_INIT_ENTRY") usbDeviceCdcFunInitFile.setSourcePath("templates/device/cdc/system_init_c_device_data_cdc_function_init.ftl") usbDeviceCdcFunInitFile.setMarkup(True) ############################################################# # Function Registration table for CDC ############################################################# usbDeviceCdcFunRegTableFile = usbDeviceCdcComponent.createFileSymbol(None, None) usbDeviceCdcFunRegTableFile.setType("STRING") usbDeviceCdcFunRegTableFile.setOutputName("usb_device.LIST_USB_DEVICE_FUNCTION_ENTRY") usbDeviceCdcFunRegTableFile.setSourcePath("templates/device/cdc/system_init_c_device_data_cdc_function.ftl") usbDeviceCdcFunRegTableFile.setMarkup(True) ############################################################# # HS Descriptors for CDC Function ############################################################# usbDeviceCdcDescriptorHsFile = usbDeviceCdcComponent.createFileSymbol(None, None) usbDeviceCdcDescriptorHsFile.setType("STRING") usbDeviceCdcDescriptorHsFile.setOutputName("usb_device.LIST_USB_DEVICE_FUNCTION_DESCRIPTOR_HS_ENTRY") usbDeviceCdcDescriptorHsFile.setSourcePath("templates/device/cdc/system_init_c_device_data_cdc_function_descrptr_hs.ftl") usbDeviceCdcDescriptorHsFile.setMarkup(True) ############################################################# # FS Descriptors for CDC Function ############################################################# usbDeviceCdcDescriptorFsFile = usbDeviceCdcComponent.createFileSymbol(None, None) usbDeviceCdcDescriptorFsFile.setType("STRING") usbDeviceCdcDescriptorFsFile.setOutputName("usb_device.LIST_USB_DEVICE_FUNCTION_DESCRIPTOR_FS_ENTRY") usbDeviceCdcDescriptorFsFile.setSourcePath("templates/device/cdc/system_init_c_device_data_cdc_function_descrptr_fs.ftl") usbDeviceCdcDescriptorFsFile.setMarkup(True) ############################################################# # Class code Entry for CDC Function ############################################################# usbDeviceCdcDescriptorClassCodeFile = usbDeviceCdcComponent.createFileSymbol(None, None) usbDeviceCdcDescriptorClassCodeFile.setType("STRING") usbDeviceCdcDescriptorClassCodeFile.setOutputName("usb_device.LIST_USB_DEVICE_DESCRIPTOR_CLASS_CODE_ENTRY") usbDeviceCdcDescriptorClassCodeFile.setSourcePath("templates/device/cdc/system_init_c_device_data_cdc_function_class_codes.ftl") usbDeviceCdcDescriptorClassCodeFile.setMarkup(True) ################################################ # USB CDC Function driver Files ################################################ usbDeviceCdcHeaderFile = usbDeviceCdcComponent.createFileSymbol(None, None) addFileName('usb_device_cdc.h', usbDeviceCdcComponent, usbDeviceCdcHeaderFile, "middleware/", "/usb/", True, None) usbCdcHeaderFile = usbDeviceCdcComponent.createFileSymbol(None, None) addFileName('usb_cdc.h', usbDeviceCdcComponent, usbCdcHeaderFile, "middleware/", "/usb/", True, None) usbDeviceCdcSourceFile = usbDeviceCdcComponent.createFileSymbol(None, None) addFileName('usb_device_cdc.c', usbDeviceCdcComponent, usbDeviceCdcSourceFile, "middleware/src/", "/usb/src", True, None) usbDeviceCdcAcmSourceFile = usbDeviceCdcComponent.createFileSymbol(None, None) addFileName('usb_device_cdc_acm.c', usbDeviceCdcComponent, usbDeviceCdcAcmSourceFile, "middleware/src/", "/usb/src", True, None) usbDeviceCdcLocalHeaderFile = usbDeviceCdcComponent.createFileSymbol(None, None) addFileName('usb_device_cdc_local.h', usbDeviceCdcComponent, usbDeviceCdcLocalHeaderFile, "middleware/src/", "/usb/src", True, None) # all files go into src/ def addFileName(fileName, component, symbol, srcPath, destPath, enabled, callback): configName1 = Variables.get("__CONFIGURATION_NAME") #filename = component.createFileSymbol(None, None) symbol.setProjectPath("config/" + configName1 + destPath) symbol.setSourcePath(srcPath + fileName) symbol.setOutputName(fileName) symbol.setDestPath(destPath) if fileName[-2:] == '.h': symbol.setType("HEADER") else: symbol.setType("SOURCE") symbol.setEnabled(enabled)
46.60355
210
0.752878
0
0
0
0
0
0
0
0
10,391
0.439775
3f147cdd3b7dfdb59f469f69eb27289609a80ec7
169
py
Python
quant_test/__init__.py
rgkimball/quant_test
efa74de02f6a65c2d61029d6e8a1c0b5ac34b0c2
[ "Apache-2.0" ]
null
null
null
quant_test/__init__.py
rgkimball/quant_test
efa74de02f6a65c2d61029d6e8a1c0b5ac34b0c2
[ "Apache-2.0" ]
1
2021-02-02T23:10:35.000Z
2021-02-02T23:10:35.000Z
quant_test/__init__.py
rgkimball/quant_test
efa74de02f6a65c2d61029d6e8a1c0b5ac34b0c2
[ "Apache-2.0" ]
null
null
null
""" quant_test ~~~~~~ The quant_test package - a Python package template project that is intended to be used as a cookie-cutter for developing new Python packages. """
21.125
75
0.745562
0
0
0
0
0
0
0
0
168
0.994083
3f14a246aafc9d9fb1bbbb14593c493646a1817d
5,189
py
Python
django_sql_dashboard/extensions/ExtendedParameter.py
ipamo/django-sql-dashboard
c976bb59db70df200bdc44f1598aab31a25d3930
[ "Apache-2.0" ]
null
null
null
django_sql_dashboard/extensions/ExtendedParameter.py
ipamo/django-sql-dashboard
c976bb59db70df200bdc44f1598aab31a25d3930
[ "Apache-2.0" ]
null
null
null
django_sql_dashboard/extensions/ExtendedParameter.py
ipamo/django-sql-dashboard
c976bb59db70df200bdc44f1598aab31a25d3930
[ "Apache-2.0" ]
null
null
null
import re from django.utils.html import escape from django.utils.safestring import mark_safe from ..utils import Parameter class ExtendedParameter(Parameter): extract_re = re.compile(r"\%\(([\w\-]+)(?:\:([\w\-]+))?\)(s|(?:0?\.(\d+))?d|b)") extract_name_re = lambda name: re.compile(rf"\%\({name}(?:\:[\w\-]+)?\)(?:s|(?:0?\.(\d+))?d|b)") number_re = re.compile(r"^\d+(?:\.\d+)?") def __init__(self, name, default_value, typecode, decimals): if decimals: typecode = "d" self.typecode = typecode # Adapt default value depending on the type if default_value == "": if self.typecode == "b": default_value = "false" if self.typecode == "d": default_value = "0" self.decimals = int(decimals) if len(decimals) >= 1 else 0 super().__init__(name, default_value) def ensure_consistency(self, previous): super().ensure_consistency(previous) if self.typecode != previous.typecode: raise ValueError("Invalid typecode specification '%s' for parameter '%s': previously registered with typecode '%s'" % (self.typecode, self.name, previous.typecode)) if self.decimals != 0 and self.decimals != previous.typecode: raise ValueError("Invalid decimals specification '%d' for parameter '%s': previously registered with %d decimals" % (self.decimals, self.name, previous.decimals)) def get_sanitized(self, value, for_default=False): value = super().get_sanitized(value, for_default=for_default) if value is None: return None if self.typecode == "s": # String parameter: no need to check sanity because we use psycopg2 parameter-passing feature return value # Need to check sanity if self.typecode == "b": value = value.lower() if not value in ["true", "false"]: raise ValueError("Invalid %svalue for bool parameter '%s': '%s'" % ("default " if for_default else "", self.name, value)) return value elif self.typecode == "d": if not ExtendedParameter.number_re.match(value): raise ValueError("Invalid %svalue for number parameter '%s': '%s'" % ("default " if for_default else "", self.name, value)) return value else: raise ValueError("Unsupported typecode '%s' for parameter '%s'" % (self.typecode, self.name)) @property def step(self): """ Determine "step" attribute for number inputs """ return pow(10, -1*self.decimals) def form_control(self): label = f"""<label for="qp_{escape(self.name)}">{escape(self.name)}</label>""" if self.typecode == 'd': control = f"""<input type="number" step="{str(self.step)}" id="qp_{escape(self.name)}" name="{escape(self.name)}" value="{escape(self.value) if self.value is not None else ""}">""" elif self.typecode == 'b': if self.default_value: control = f"""<input type="hidden" name="{escape(self.name)}" value="false"> <input type="checkbox" id="qp_{escape(self.name)}" name="{escape(self.name)}" value="true" {"checked" if self.value == "true" else ""}>""" else: control = f"""<div> <input type="radio" id="qp_{escape(self.name)}_null" name="{escape(self.name)}" value="" {"checked" if not self.value else ""}> <label for="qp_{escape(self.name)}_null">null</label> <input type="radio" id="qp_{escape(self.name)}_true" name="{escape(self.name)}" value="true" {"checked" if self.value == "true" else ""}> <label for="qp_{escape(self.name)}_true">true</label> <input type="radio" id="qp_{escape(self.name)}_false" name="{escape(self.name)}" value="false" {"checked" if self.value == "false" else ""}> <label for="qp_{escape(self.name)}_false">false</label> </div>""" else: control = f"""<input type="text" id="qp_{escape(self.name)}" name="{escape(self.name)}" value="{escape(self.value) if self.value is not None else ""}">""" return mark_safe(label + '\n' + control) @classmethod def execute(cls, cursor, sql: str, parameters: list=[]): string_values = {} for parameter in parameters: if parameter.typecode == 's': # For strings, we will use psycopg2 name parameter passing string_values[parameter.name] = parameter.value # If a default value has been specified, this needs to be removed from the SQL if parameter.default_value != "": sql = ExtendedParameter.extract_name_re(parameter.name).sub(f"%({parameter.name})s", sql) else: # For non-strings, we cannot use psycopg2 name parameter passing (not supported) value = parameter.value sql = ExtendedParameter.extract_name_re(parameter.name).sub(value if value is not None else "null", sql) cursor.execute(sql, string_values)
50.378641
192
0.586626
5,063
0.975718
0
0
1,024
0.197341
0
0
2,331
0.44922
3f159df489050cc9cb8053b59296d74b1792277e
3,644
py
Python
jiotc/models/bilstm_model.py
JHP4911/JioTC
be82159bdb0f2f10b1ac85966659626b5e8a7304
[ "MIT" ]
4
2020-06-17T03:32:23.000Z
2021-07-02T06:46:26.000Z
jiotc/models/bilstm_model.py
dongrixinyu/JioTC
be82159bdb0f2f10b1ac85966659626b5e8a7304
[ "MIT" ]
null
null
null
jiotc/models/bilstm_model.py
dongrixinyu/JioTC
be82159bdb0f2f10b1ac85966659626b5e8a7304
[ "MIT" ]
null
null
null
# -*- coding=utf-8 -*- # author: dongrixinyu # contact: dongrixinyu.89@163.com # blog: https://github.com/dongrixinyu/ # file: bare_embedding.py # time: 2020-06-12 11:27 import os import pdb import logging from typing import Union, Optional, Dict, Any, Tuple import torch import torch.nn as nn from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence from jiotc.embeddings.base_embedding import BaseEmbedding from .base_model import BaseModel # Bidirectional LSTM neural network (many-to-one) class BiLSTMModel(BaseModel): @classmethod def get_default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: return { 'layer_bi_lstm': { 'hidden_size': 128, 'num_layers': 1, 'dropout': 0.2, # 当 num_layers == 1 时失效 'bidirectional': True }, 'layer_dense': { 'activation': 'softmax' } } def __init__(self, embed_model: Optional[BaseEmbedding] = None, device: Union['cuda', 'cpu'] = None, hyper_parameters: Optional[Dict[str, Dict[str, Any]]] = None): ''' self.device self.embedding_layer self.embedding self.embedding_size self.num_classes 参数已知,可以直接使用 ''' super(BiLSTMModel, self).__init__(embed_model, device=device) self.hidden_size = hyper_parameters['layer_bi_lstm']['hidden_size'] self.num_layers = hyper_parameters['layer_bi_lstm']['num_layers'] self.dropout = hyper_parameters['layer_bi_lstm']['dropout'] self.lstm = nn.LSTM( self.embedding_size, self.hidden_size, self.num_layers, batch_first=True, bidirectional=True) self.fc = nn.Linear(self.hidden_size * 2, self.num_classes) # 2 for bidirection def forward(self, samples): masks = samples.gt(0) embeds = self.embedding_layer(samples) #.to(self.device) # 按长短调整样本顺序 seq_length = masks.sum(1) sorted_seq_length, perm_idx = seq_length.sort(descending=True) embeds = embeds[perm_idx, :] # 重新排序 pack_sequence = pack_padded_sequence( embeds, lengths=sorted_seq_length, batch_first=True) # Set initial states, involved with batch_size ''' h0 = torch.autograd.Variable(torch.randn( self.num_layers * 2, embeds.shape[0], self.hidden_size)).to(self.device) # 2 for bidirection c0 = torch.autograd.Variable(torch.randn( self.num_layers * 2, embeds.shape[0], self.hidden_size)).to(self.device) #''' # Forward propagate LSTM packed_output, _ = self.lstm(pack_sequence) #, (h0, c0)) # out: tensor of shape (batch_size, seq_length, hidden_size * 2) lstm_out, _ = pad_packed_sequence(packed_output, batch_first=True) _, unperm_idx = perm_idx.sort() lstm_out = lstm_out[unperm_idx, :] # dropout_layer lstm_out = lstm_out.permute(1, 0, 2) # [batch_size, seq_len, hidden_size * 2] => [seq_len, batch_size, hidden_size * 2] # disabled when not training lstm_out = F.dropout2d(lstm_out, p=self.dropout, training=self.training) lstm_out = lstm_out.permute(1, 0, 2) # [seq_len, batch_size, hidden_size * 2] => [batch_size, seq_len, hidden_size * 2] lstm_out_sum = torch.mean(lstm_out, dim=1) output = self.fc(lstm_out_sum) return output
33.431193
128
0.602634
3,178
0.858919
0
0
412
0.111351
0
0
1,380
0.372973
3f15b4889cdf171226bf2916a6b9994712b58560
56,576
py
Python
tests/learning/test_prediction_error_delta_function.py
mihaic/psyneulink
3d2fc3117c82bccc92fc585add330b0f9b35c830
[ "Apache-2.0" ]
null
null
null
tests/learning/test_prediction_error_delta_function.py
mihaic/psyneulink
3d2fc3117c82bccc92fc585add330b0f9b35c830
[ "Apache-2.0" ]
null
null
null
tests/learning/test_prediction_error_delta_function.py
mihaic/psyneulink
3d2fc3117c82bccc92fc585add330b0f9b35c830
[ "Apache-2.0" ]
null
null
null
import numpy as np from psyneulink import PredictionErrorDeltaFunction np.set_printoptions(suppress=True) def test_prediction_error_delta_first_run(): learning_rate = 0.3 stimulus_onset = 41 sample = np.zeros(60) sample[stimulus_onset:] = 1 reward_onset = 54 target = np.zeros(60) target[reward_onset] = 1 delta_function = PredictionErrorDeltaFunction() delta_vals = np.zeros((60, 60)) weights = np.zeros(60) for t in range(60): print("Timestep {}".format(t)) new_sample = sample * weights # print("sample = {}".format(new_sample)) delta_vals[t] = delta_function.function(variable=[new_sample, target]) print("delta: {}".format(delta_vals[t])) for i in range(59): weights[i] = weights[i] + learning_rate * sample[i] * \ delta_vals[t][i + 1] validation_array = np.array([[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3, 0.7, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.09, 0.42000000000000004, 0.49, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.027, 0.189, 0.44100000000000006, 0.34299999999999997, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0081, 0.0756, 0.2646, 0.4116, 0.24009999999999998, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00243, 0.02835, 0.1323, 0.3087, 0.3601500000000001, 0.16806999999999994, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0007289999999999999, 0.010206, 0.05953499999999999, 0.18522, 0.32413500000000006, 0.30252599999999996, 0.117649, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00021869999999999998, 0.0035721, 0.025004699999999998, 0.09724049999999998, 0.2268945, 0.31765230000000005, 0.24706289999999997, 0.08235429999999999, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 6.560999999999999e-05, 0.0012247199999999999, 0.01000188, 0.04667544, 0.1361367, 0.25412184, 0.29647548, 0.19765032000000005, 0.05764800999999997, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.9682999999999998e-05, 0.000413343, 0.003857868, 0.021003947999999998, 0.073513818, 0.171532242, 0.26682793199999993, 0.2668279320000001, 0.15564962699999996, 0.040353607000000014, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.904899999999999e-06, 0.000137781, 0.0014467005, 0.009001692, 0.036756909000000004, 0.1029193452, 0.200120949, 0.26682793199999993, 0.2334744405000001, 0.12106082099999993, 0.028247524900000043, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.7714699999999997e-06, 4.5467729999999994e-05, 0.00053045685, 0.0037131979500000002, 0.0173282571, 0.05660563986, 0.13207982633999998, 0.2201330439, 0.25682188454999993, 0.19975035465000013, 0.09321683216999987, 0.019773267430000074, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.314409999999999e-07, 1.4880347999999997e-05, 0.00019096446599999996, 0.00148527918, 0.0077977156950000005, 0.029111471928000003, 0.07924789580399999, 0.15849579160799998, 0.23113969609499996, 0.23970042558000004, 0.16779029790600009, 0.07118376274799987, 0.013841287201000085, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.5943229999999994e-07, 4.8361131e-06, 6.770558339999998e-05, 0.0005792588802, 0.0033790101345, 0.014191842564900003, 0.044152399090799994, 0.1030222645452, 0.18028896295409996, 0.23370791494049992, 0.21812738727780012, 0.1388083373586, 0.05398102008389993, 0.009688901040700082, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.61026623e-06, 2.3696954189999994e-05, 0.00022117157244, 0.00141918425649, 0.006622859863620001, 0.023180009522670002, 0.06181335872711999, 0.12620227406787, 0.19631464855001995, 0.22903375664168996, 0.19433167230204007, 0.11336014217619006, 0.040693384370939945, 0.006782230728490046, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 8.719352486999997e-06, 8.2939339665e-05, 0.000580575377655, 0.002980286938629, 0.011590004761335003, 0.034770014284004995, 0.08113003332934499, 0.14723598641251498, 0.20613038097752096, 0.218623131339795, 0.1700402132642851, 0.09156011483461501, 0.03052003827820493, 0.0047475615099430435, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.3601154386499996e-05, 0.00023223015106199995, 0.0013004888459472001, 0.0055632022854408, 0.018544007618136, 0.048678019997607, 0.100961819254296, 0.16490430478201676, 0.20987820608620322, 0.20404825591714193, 0.1464961837353841, 0.07324809186769199, 0.02278829524772641, 0.0033232930569601082, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00010327019970509998, 0.0005527077595275599, 0.0025793028777952804, 0.00945744388524936, 0.0275842113319773, 0.0643631597746137, 0.12014456491261222, 0.17839647517327273, 0.2081292210354848, 0.18678263426261454, 0.12452175617507655, 0.05811015288170229, 0.016948794590496474, 0.002326305139872087, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00026908252756336796, 0.0011606862950078762, 0.004642745180031503, 0.014895474119267742, 0.038617895864768215, 0.08109758131601326, 0.13762013799081035, 0.18731629893193635, 0.2017252450036237, 0.1681043708363532, 0.10459827518706422, 0.045761745394340525, 0.012562047755309225, 0.0016284135979104386, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0006172884160657308, 0.002205303960514964, 0.007718563861802375, 0.022012200642917885, 0.05136180150014173, 0.09805434831845238, 0.15252898627314818, 0.1916389827534426, 0.1916389827534425, 0.1490525421415665, 0.08694731624924712, 0.03580183610263121, 0.009281957508089578, 0.0011398895185372737, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00127887960422022, 0.0038592819309011877, 0.012006654896137028, 0.030817080900085034, 0.06536956554563493, 0.11439673970486111, 0.1642619852172365, 0.1916389827534426, 0.1788630505698796, 0.13042097437387068, 0.07160367220526243, 0.027845872524268733, 0.006839337111223864, 0.0007979226629760694, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0024366641834905763, 0.006303493820471939, 0.01764978269732143, 0.04118282629375, 0.08007771779340278, 0.12935631335857373, 0.17247508447809834, 0.1878062030983737, 0.16433042771107698, 0.11277578372328811, 0.058476332300964384, 0.021543911900355206, 0.005026912776749604, 0.0005585458640832153, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0043277123296321576, 0.009707380483526788, 0.024709695776250002, 0.05285129374364584, 0.09486129646295406, 0.1422919446944311, 0.17707442006418095, 0.18076347048218466, 0.1488640345147404, 0.09648594829659096, 0.047396606180781564, 0.01658881216327357, 0.0036864027029497315, 0.0003909821048582174, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.007239926474690194, 0.014208075071343751, 0.03315217516646875, 0.06545429455943831, 0.10909049093239716, 0.15272668730535605, 0.17818113518958212, 0.17119363969195134, 0.13315060864929562, 0.08175914566184805, 0.03815426797552923, 0.012718089325176374, 0.0026977765235223217, 0.00027368747340072996, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.011502348996093318, 0.01989130509988125, 0.04284281098435962, 0.07854515347132598, 0.1221813498442848, 0.16036302167062388, 0.17608488654029292, 0.15978073037915452, 0.11773316975306136, 0.0686776823559524, 0.030523414380423386, 0.009711995484680158, 0.0019705498084858775, 0.00019158123138052208, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.017469740526057695, 0.02677675686522476, 0.053553513730449524, 0.09163601238321362, 0.13363585139218653, 0.1650795811315246, 0.17119363969195145, 0.14716646219132656, 0.10301652353392865, 0.05723140196329368, 0.02427998871170045, 0.0073895617818218184, 0.0014368592353543042, 0.00013410686196635435, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.02550276758562512, 0.03480978392479219, 0.06497826332627876, 0.10423596408590546, 0.14306897031398796, 0.16691379869965267, 0.16398548644176403, 0.13392148059410713, 0.08928098706273813, 0.0473459779878157, 0.01921286063273686, 0.005603751017881575, 0.0010460335233379858, 9.387480337641474e-05, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.035945702763062776, 0.04386032774523817, 0.07675557355416678, 0.1158858659543302, 0.1502224188296874, 0.16603530502228608, 0.15496628468746698, 0.12052933253469633, 0.07670048434026144, 0.03890604278129206, 0.015130127748280264, 0.004236435769518487, 0.0007603859073495034, 6.571236236352362e-05, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.04910380108663422, 0.05372890148791675, 0.0884946612742158, 0.12618683181693738, 0.15496628468746698, 0.16271459892184037, 0.1446351990416358, 0.10738067807636587, 0.06536215187257055, 0.0317732682713886, 0.011862020154651653, 0.0031936208108678255, 0.0005519838438536873, 4.5998653654510946e-05, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.06522247153300925, 0.06415862942380646, 0.09980231243703228, 0.13482066767809628, 0.157290778957779, 0.157290778957779, 0.13345884275205488, 0.09477512021522716, 0.05528548679221601, 0.025799893836367493, 0.009261500351516516, 0.002401129720763562, 0.000400188286794001, 3.219905755813546e-05, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.08447006036015119, 0.07485173432777421, 0.1103078190093515, 0.14156170106200106, 0.157290778957779, 0.15014119809606175, 0.12185372599100663, 0.08292823018832374, 0.04643980890546151, 0.02083837579091219, 0.007203389162290574, 0.0018008472905727269, 0.0002897915180232191, 2.2539340290728127e-05, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.10692558065848345, 0.0854885597322474, 0.11968398362514637, 0.1462804244307344, 0.15514590469926381, 0.14165495646454518, 0.11017607725020184, 0.07198170380346502, 0.038759378971096714, 0.016747879802325727, 0.005582626600775242, 0.0013475305588078745, 0.00020961586470347182, 1.5777538203476382e-05, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.13257214857815766, 0.0957471869001171, 0.12766291586682277, 0.14894006851129327, 0.15109862022884823, 0.13221129270024212, 0.09871776521618081, 0.062015006353754565, 0.032155929220465396, 0.013398303841860582, 0.0043120977881849765, 0.0010061561505766425, 0.00015146436675339547, 1.1044276742477876e-05, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.16129630464819278, 0.10532190559012883, 0.13404606166016392, 0.14958763402655972, 0.1454324219702664, 0.12216323445502375, 0.08770693755745296, 0.05305728321376779, 0.02652864160688395, 0.0106724420257579, 0.003320315296902465, 0.0007497486154296462, 0.0001093383397501313, 7.730993719756718e-06, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.19289287632523142, 0.11393915241113936, 0.13870853337008265, 0.1483410704096717, 0.13845166571569367, 0.11182634538575253, 0.07731204125434732, 0.045098690731702695, 0.021771781732546125, 0.008466804007101203, 0.0025491452924606417, 0.0005576255327258695, 7.885613594094121e-05, 5.411695603863009e-06, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.22707462204857323, 0.12136996669882236, 0.14159829448195937, 0.14537424900147833, 0.1304640696167113, 0.10147205414633098, 0.06764803609755388, 0.038100618031955746, 0.017780288414912637, 0.00669150639270899, 0.0019516893645402655, 0.0004139947136904132, 5.682280383978444e-05, 3.7881869227041065e-06, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.26348561205821996, 0.12743846503376344, 0.14273108083781505, 0.14090119518604827, 0.12176646497559718, 0.09132484873169788, 0.058783810677874415, 0.03200451914684277, 0.014453653808251588, 0.005269561284258373, 0.001490380969285332, 0.00030684314073514685, 4.091241876469365e-05, 2.6517308459039768e-06, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.301717151568349, 0.1320262497749789, 0.14218211514228507, 0.13516077612291288, 0.11263398010242742, 0.08156253731555085, 0.05075002321856492, 0.026739259545265348, 0.011698426051053645, 0.004135807189766472, 0.001135319620720332, 0.00022706392414395538, 2.9434212389101155e-05, 1.856211592099477e-06, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3413250265008427, 0.13507300938517075, 0.14007571343647335, 0.12840273731676732, 0.10331254726636441, 0.07231878308645512, 0.04354679411657503, 0.02222700949700185, 0.009429640392667471, 0.0032356609190525853, 0.0008628429117474301, 0.000167775010617488, 2.116081215008947e-05, 1.2993481144363273e-06, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3818469293163939, 0.1365738206005615, 0.13657382060056156, 0.12087568030164642, 0.09401441801239163, 0.06368718639549109, 0.03715085873070312, 0.018387798765701513, 0.00757144655058295, 0.0025238155168610943, 0.0006543225414084031, 0.00012379075107726845, 1.5202372939393527e-05, 9.09543680149838e-07, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4228190754965624, 0.13657382060056145, 0.13186437851088706, 0.11281730161487002, 0.08491624852732138, 0.05572628809605473, 0.031521940741202625, 0.01514289310116601, 0.006057157240466293, 0.0019629676242253202, 0.0004951630043090738, 9.121423763591707e-05, 1.0914524161576011e-05, 6.366805761492955e-07, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4637912216767308, 0.13516098797365916, 0.12615025544208192, 0.10444698568860544, 0.07615926039794141, 0.04846498388959908, 0.026608226449191696, 0.012417172342956029, 0.0048289003555940235, 0.0015226262382503908, 0.0003739783743071934, 6.712432359357035e-05, 7.831171085936894e-06, 4.4567640333781355e-07, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5043395180688286, 0.13245776821418598, 0.11963927451603895, 0.09596066810140624, 0.06785097744543866, 0.04190795665747693, 0.02235091021732094, 0.010140690746747505, 0.003837018120390834, 0.0011780318790675093, 0.00028192215909306206, 4.933637784132472e-05, 5.6155226810794545e-06, 3.119734823808784e-07, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5440768485330844, 0.12861222010474194, 0.11253569259164908, 0.087527760904616, 0.06006807120905011, 0.03604084272543018, 0.0186878443761489, 0.008249588958840537, 0.0030393222479937476, 0.0009091989630751751, 0.00021214642471756306, 3.6220121293228935e-05, 4.024457921469882e-06, 2.183814377110238e-07, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.582660514564507, 0.12378926185081407, 0.1050333130855392, 0.07928985399594612, 0.05285990266396423, 0.030834943220645727, 0.015556367750956368, 0.006686508945586533, 0.0024002852625182314, 0.0007000832015678915, 0.00015936853369025172, 2.6561422281634606e-05, 2.8826349763866332e-06, 1.5286700638661443e-07, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6197972931197512, 0.11816247722123163, 0.09731027535866121, 0.0713608685963516, 0.04625241483096865, 0.02625137057973892, 0.012895410109345473, 0.005400641840666021, 0.0018902246442331627, 0.0005378688012045441, 0.00011952640026768879, 1.9457786090026907e-05, 2.0637045854421388e-06, 1.0700690444842564e-07, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6552460362861207, 0.1119068166624605, 0.08952545332996831, 0.0638283324667368, 0.04025210155559966, 0.02224458243862093, 0.010646979628741615, 0.004347516681736163, 0.0014845178913245327, 0.000412366080923543, 8.950581601441243e-05, 1.4239561638595966e-05, 1.4766952811662293e-06, 7.490483311389795e-08, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6888180812848588, 0.10519240766271287, 0.0818163170709989, 0.05675546319339564, 0.03484984582050599, 0.018765301595657147, 0.008757140744639957, 0.003488617044612674, 0.0011628723482043357, 0.0003155080014507483, 6.69259397017008e-05, 1.0410701731355942e-05, 1.0561581467172232e-06, 5.2433383190830796e-08, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7203758035836726, 0.0981795804851987, 0.07429806090771796, 0.05018377798152873, 0.030024482553051346, 0.01576285334035199, 0.007176583634631806, 0.0027908936356900726, 0.0009086630441783594, 0.00024093338292596744, 4.997136831064175e-05, 7.604338655986531e-06, 7.550407176148966e-07, 3.670336823358156e-08, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7498296777292321, 0.09101512461195449, 0.06706377602986124, 0.04413598935298546, 0.025745993789241584, 0.013186972428635979, 0.005860876634949275, 0.002226224458236503, 0.0007083441458026751, 0.00018364477854138084, 3.726125941427849e-05, 5.549549274452836e-06, 5.395395127338887e-07, 2.569235779681378e-08, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7771342151128184, 0.08382972003732658, 0.06018544002679849, 0.03861899068386232, 0.02197828738105989, 0.010989143690529946, 0.004770480981935443, 0.0017708603645063548, 0.0005509343356242535, 0.00013972972280329454, 2.7747746372375204e-05, 4.046546345892743e-06, 3.853853662860729e-07, 1.7984650435565186e-08, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8022831311240164, 0.07673643603416813, 0.05371550522391766, 0.033626779693021636, 0.018681544273900896, 0.009123544877951528, 0.0038705947967068166, 0.0014048825558417022, 0.00042757295177797694, 0.00010613512987400764, 2.0637386364374954e-05, 2.9481980520218443e-06, 2.7516515155312504e-07, 1.258925530489563e-08, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8253040619342669, 0.06983015679109295, 0.04768888756464884, 0.029143209067285403, 0.015814144455116086, 0.0075476598535781925, 0.00313088112444726, 0.0011116896746226068, 0.00033114160520675284, 8.048580682107342e-05, 1.5330629870691226e-05, 2.146288181847922e-06, 1.9639238268975845e-07, 8.812478746733632e-09, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8462531089715948, 0.06318777602315973, 0.04212518401543974, 0.025144489683634585, 0.013334199074654718, 0.006222626234838935, 0.002525123689499864, 0.0008775252537979172, 0.0002559448656910268, 6.0939253735958765e-05, 1.1375327364060439e-05, 1.5613194420671661e-06, 1.401184115401577e-07, 6.168735078304621e-09, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8652094417785428, 0.0568689984208437, 0.037030975715898196, 0.02160140250094056, 0.011200727222710039, 0.005113375471237247, 0.002030844158789291, 0.0006910511373657835, 0.000197443182104462, 4.607007582446698e-05, 8.431124987495764e-06, 1.1349591328979614e-06, 9.993350857939731e-08, 4.3181145326087744e-09, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8822701413047959, 0.05091759160936005, 0.03240210375141095, 0.018481199917471325, 0.009374521697268268, 0.004188616077502871, 0.0016289062523622277, 0.0005429687507872982, 0.0001520312502205634, 3.4778390573309004e-05, 6.242275231160832e-06, 8.244514455579832e-07, 7.124889034315629e-08, 3.022680217235063e-09, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8975454187876039, 0.04536294525197537, 0.028225832601229017, 0.015749196451410374, 0.007818750011338693, 0.0034207031299606783, 0.0013031250018897822, 0.00042568750061722227, 0.00011685539232642039, 2.621755597065345e-05, 4.616928095502182e-06, 5.984906790157396e-07, 5.078102727207323e-08, 2.115876140962314e-09, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9111543023631965, 0.04022181145675141, 0.024482841756283458, 0.013370062519388881, 0.006499335946925311, 0.0027854296915393872, 0.0010398937515080364, 0.0003330378681299928, 8.96640414196348e-05, 1.9737367608074763e-05, 3.411396870545147e-06, 4.341777835037419e-07, 3.6181481921637726e-08, 1.4811133430825407e-09, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9232208458002219, 0.035500120546611, 0.02114900798521513, 0.011308844547649799, 0.005385164070309534, 0.002261768909530004, 0.0008278369864945789, 0.0002600257201169631, 6.868603927612238e-05, 1.4839576386815878e-05, 2.5182311443883165e-06, 3.1477889306241735e-07, 2.577137137027563e-08, 1.0367793290555483e-09, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9338708819642052, 0.031194786778192207, 0.018196958953945574, 0.009531740404447708, 0.0044481455220757304, 0.0018315893326192878, 0.0006574936065812942, 0.0002026238158647775, 5.253210040934153e-05, 1.1143172814032098e-05, 1.8571954689683423e-06, 2.280766365769793e-07, 1.8350993724602915e-08, 7.257455747478048e-10, 0.0, 0.0, 0.0, 0.0, 0.0], ]) for i in range(len(delta_vals)): deltas = delta_vals[i] validation_deltas = validation_array[i] np.testing.assert_allclose(deltas, validation_deltas, atol=1e-08, err_msg="mismatch on timestep {}".format(i))
72.255428
80
0.352128
0
0
0
0
0
0
0
0
90
0.001591
3f18a598378fac5606353de6db627c25234fa321
22,823
py
Python
jts/backend/jobapps/views.py
goupaz/babylon
4e638d02705469061e563fec349676d8faa9f648
[ "MIT" ]
1
2019-08-08T09:03:17.000Z
2019-08-08T09:03:17.000Z
backend/jobapps/views.py
goupaz/website
ce1bc8b6c52ee0815a7b98842ec3bde0c20e0add
[ "Apache-2.0" ]
2
2020-10-09T19:16:09.000Z
2020-10-10T20:40:41.000Z
jts/backend/jobapps/views.py
goupaz/babylon-hackathon
4e638d02705469061e563fec349676d8faa9f648
[ "MIT" ]
1
2019-07-21T01:42:21.000Z
2019-07-21T01:42:21.000Z
from datetime import datetime as dt from django.utils import timezone import uuid from django.contrib.auth import get_user_model from django.http import JsonResponse from django.views.decorators.csrf import csrf_exempt from rest_framework.decorators import api_view from company.utils import get_or_create_company from position.utils import get_or_insert_position from utils import utils from utils.error_codes import ResponseCodes from utils.generic_json_creator import create_response from .models import JobApplication, Contact, ApplicationStatus, StatusHistory from .models import JobApplicationNote, JobApplicationFile from .models import Source from alumni.serializers import AlumniSerializer from .serializers import ApplicationStatusSerializer from .serializers import JobApplicationNoteSerializer, JobApplicationFileSerializer from .serializers import JobApplicationSerializer, ContactSerializer from .serializers import SourceSerializer from .serializers import StatusHistorySerializer User = get_user_model() @csrf_exempt @api_view(["GET", "POST", "PUT", "PATCH", "DELETE"]) def job_applications(request): body = request.data if 'recaptcha_token' in body and utils.verify_recaptcha(None, body['recaptcha_token'], 'add_job') == ResponseCodes.verify_recaptcha_failed: return JsonResponse(create_response(data=None, success=False, error_code=ResponseCodes.verify_recaptcha_failed), safe=False) if request.method == "GET": timestamp = request.GET.get('timestamp') if timestamp is not None: timestamp = int(timestamp) / 1000 if timestamp is None: return JsonResponse(create_response(data=None, success=False, error_code=ResponseCodes.invalid_parameters)) profile = request.user time = dt.fromtimestamp(int(timestamp)) user_job_apps = JobApplication.objects.filter(created__gte=time) job_application_list = JobApplicationSerializer(instance=user_job_apps, many=True, context={ 'user': request.user}).data response = {'data': job_application_list, 'synching': profile.synching} return JsonResponse(create_response(data=response), safe=False) status_id = request.GET.get('status_id') if status_id is not None: user_job_apps = JobApplication.objects.filter( application_status__id=status_id, user__id=request.user.id, is_deleted=False).order_by('-apply_date') else: user_job_apps = JobApplication.objects.filter( user_id=request.user.id, is_deleted=False).order_by('-apply_date') job_applications_list = JobApplicationSerializer(instance=user_job_apps, many=True, context={ 'user': request.user}).data return JsonResponse(create_response(data=job_applications_list), safe=False) elif request.method == "POST": job_title = body['job_title'] company = body['company'] application_date = body['application_date'] status = int(body['status_id']) source = body['source'] jt = get_or_insert_position(job_title) jc = get_or_create_company(company) if Source.objects.filter(value__iexact=source).count() == 0: source = Source.objects.create(value=source) else: source = Source.objects.get(value__iexact=source) job_application = JobApplication(position=jt, company_object=jc, apply_date=application_date, msg_id='', app_source=source, user=request.user) job_application.application_status = ApplicationStatus.objects.get(pk=status) job_application.save() return JsonResponse( create_response( data=JobApplicationSerializer(instance=job_application, many=False, context={'user': request.user}).data), safe=False) elif request.method == "PUT": status_id = body.get('status_id') rejected = body.get('rejected') job_application_ids = [] if 'jobapp_ids' in body: job_application_ids = body['jobapp_ids'] if 'jobapp_id' in body: job_application_ids.append(body['jobapp_id']) if len(job_application_ids) == 0: return JsonResponse(create_response(success=False, error_code=ResponseCodes.record_not_found), safe=False) elif rejected is None and status_id is None: return JsonResponse(create_response(success=False, error_code=ResponseCodes.record_not_found), safe=False) else: user_job_apps = JobApplication.objects.filter(pk__in=job_application_ids) if user_job_apps.count() == 0: return JsonResponse(create_response(success=False, error_code=ResponseCodes.record_not_found), safe=False) else: for user_job_app in user_job_apps: if user_job_app.user == request.user: if status_id is None: user_job_app.is_rejected = rejected else: new_status = ApplicationStatus.objects.filter(pk=status_id) if new_status.count() == 0: return JsonResponse( create_response(data=None, success=False, error_code=ResponseCodes.invalid_parameters), safe=False) else: if rejected is None: user_job_app.application_status = new_status[0] else: user_job_app.application_status = new_status[0] user_job_app.is_rejected = rejected status_history = StatusHistory( job_post=user_job_app, application_status=new_status[0]) status_history.save() if rejected is not None: user_job_app.rejected_date = timezone.now() user_job_app.updated_date = timezone.now() user_job_app.save() return JsonResponse(create_response(data=None), safe=False) elif request.method == "PATCH": job_app_id = body.get('jobapp_id') if job_app_id is None: return JsonResponse(create_response(data=None, success=False, error_code=ResponseCodes.record_not_found), safe=False) user_job_app = JobApplication.objects.get(pk=job_app_id) if user_job_app.user != request.user: return JsonResponse(create_response(data=None, success=False, error_code=ResponseCodes.record_not_found), safe=False) if user_job_app.msg_id is not None and user_job_app.msg_id != '': return JsonResponse(create_response(data=None, success=False, error_code=ResponseCodes.record_not_found), safe=False) job_title = body.get('job_title') company = body.get('company') application_date = body.get('application_date') source = body.get('source') if application_date is not None: user_job_app.apply_date = application_date if job_title is not None: user_job_app.position = get_or_insert_position(job_title) if company is not None: user_job_app.company_object = get_or_create_company(company) if source is not None: if Source.objects.filter(value__iexact=source).count() == 0: source = Source.objects.create(value=source) else: source = Source.objects.get(value__iexact=source) user_job_app.app_source = source user_job_app.updated_date = timezone.now() user_job_app.save() return JsonResponse(create_response( data=JobApplicationSerializer(instance=user_job_app, many=False, context={'user': request.user}).data), safe=False) elif request.method == "DELETE": job_application_ids = [] if 'jobapp_ids' in body: job_application_ids = body['jobapp_ids'] if 'jobapp_id' in body: job_application_ids.append(body['jobapp_id']) if len(job_application_ids) == 0 or JobApplication.objects.filter(pk__in=job_application_ids).count() == 0: return JsonResponse(create_response(success=False, error_code=ResponseCodes.record_not_found), safe=False) else: user_job_apps = JobApplication.objects.filter(pk__in=job_application_ids) for user_job_app in user_job_apps: if user_job_app.user == request.user: user_job_app.deleted_date = timezone.now() user_job_app.is_deleted = True user_job_app.save() return JsonResponse(create_response(data=None), safe=False) @csrf_exempt @api_view(["GET"]) def statuses(request): statuses_list = ApplicationStatus.objects.all() statuses_list = ApplicationStatusSerializer(instance=statuses_list, many=True).data return JsonResponse(create_response(data=statuses_list), safe=False) @csrf_exempt @api_view(["GET"]) def sources(request): source_list = SourceSerializer(instance=Source.objects.all(), many=True).data return JsonResponse(create_response(data=source_list), safe=False) @csrf_exempt @api_view(["GET"]) def status_history(request, job_app_pk): if job_app_pk is None: return JsonResponse(create_response(data=None, success=False, error_code=ResponseCodes.invalid_parameters), safe=False) else: statuses_list = StatusHistory.objects.filter(job_post__pk=job_app_pk) statuses_list = StatusHistorySerializer(instance=statuses_list, many=True).data return JsonResponse(create_response(data=statuses_list), safe=False) @csrf_exempt @api_view(["GET", "POST", "PUT", "DELETE"]) def contacts(request, job_app_pk): body = request.data if request.method == "GET": data = {} if job_app_pk is None: return JsonResponse(create_response(data=None, success=False, error_code=ResponseCodes.invalid_parameters), safe=False) else: contacts_list = Contact.objects.filter(job_post__pk=job_app_pk) contacts_list = ContactSerializer(instance=contacts_list, many=True).data data['contacts'] = contacts_list user_profile = request.user if not user_profile.user_type.alumni_listing_enabled: alumni = [] else: jobapp = JobApplication.objects.get(pk=job_app_pk) alumni_list = User.objects.filter(college=user_profile.college, company=jobapp.company_object, user_type__name__iexact='Alumni', is_demo=False) alumni = AlumniSerializer( instance=alumni_list, many=True, context={'user': request.user}).data data['alumni'] = alumni return JsonResponse(create_response(data=data, success=True, error_code=ResponseCodes.success), safe=False) elif request.method == "POST": first_name = body.get('first_name') last_name = body.get('last_name') if job_app_pk is None or first_name is None or last_name is None: return JsonResponse(create_response(data=None, success=False, error_code=ResponseCodes.invalid_parameters), safe=False) user_job_app = JobApplication.objects.get(pk=job_app_pk) if user_job_app.user == request.user: phone_number = body.get('phone_number') linkedin_url = body.get('linkedin_url') description = body.get('description') email = body.get('email') job_title = body.get('job_title') jt = None jc = None if job_title is not None: jt = get_or_insert_position(job_title) company = body.get('company') if company is not None: jc = get_or_create_company(company) contact = Contact( job_post=user_job_app, first_name=first_name, last_name=last_name, phone_number=phone_number, linkedin_url=linkedin_url, description=description, email=email, position=jt, company=jc) contact.save() data = ContactSerializer( instance=contact, many=False).data return JsonResponse(create_response(data=data), safe=False) else: return JsonResponse( create_response(data=None, success=False, error_code=ResponseCodes.record_not_found), safe=False) elif request.method == "PUT": contact_id = body.get('contact_id') if contact_id is None: return JsonResponse(create_response(data=None, success=False, error_code=ResponseCodes.invalid_parameters), safe=False) contact = Contact.objects.get(pk=contact_id) if contact.job_post.user == request.user: first_name = body.get('first_name') if first_name is not None: contact.first_name = first_name last_name = body.get('last_name') if last_name is not None: contact.last_name = last_name email = body.get('email') if email is not None: contact.email = email phone_number = body.get('phone_number') if phone_number is not None: contact.phone_number = phone_number linkedin_url = body.get('linkedin_url') if linkedin_url is not None: contact.linkedin_url = linkedin_url description = body.get('description') if description is not None: contact.description = description job_title = body.get('job_title') if job_title is not None: contact.position = get_or_insert_position(job_title) company = body.get('company') if company is not None: contact.company = get_or_create_company(company) contact.update_date = timezone.now() contact.save() data = ContactSerializer( instance=contact, many=False).data return JsonResponse(create_response(data=data, success=True, error_code=ResponseCodes.success), safe=False) else: return JsonResponse( create_response(data=None, success=False, error_code=ResponseCodes.record_not_found), safe=False) elif request.method == "DELETE": contact_id = body.get('contact_id') if contact_id is None: return JsonResponse(create_response(data=None, success=False, error_code=ResponseCodes.invalid_parameters), safe=False) user_job_app_contact = Contact.objects.filter( pk=contact_id) if user_job_app_contact.count() == 0: return JsonResponse(create_response(data=None, success=False, error_code=ResponseCodes.record_not_found), safe=False) user_job_app_contact = user_job_app_contact[0] if user_job_app_contact.job_post.user == request.user: user_job_app_contact.delete() return JsonResponse(create_response(data=None, success=True, error_code=ResponseCodes.success), safe=False) else: return JsonResponse(create_response(data=None, success=False, error_code=ResponseCodes.record_not_found), safe=False) @csrf_exempt @api_view(["GET", "POST", "PUT", "DELETE"]) def notes(request, job_app_pk): body = request.data if 'recaptcha_token' in body and utils.verify_recaptcha(None, body['recaptcha_token'], 'jobapp_note') == ResponseCodes.verify_recaptcha_failed: return JsonResponse( create_response(data=None, success=False, error_code=ResponseCodes.verify_recaptcha_failed), safe=False) if request.method == "GET": if job_app_pk is None: return JsonResponse(create_response(data=None, success=False, error_code=ResponseCodes.invalid_parameters), safe=False) else: notes_list = JobApplicationNote.objects.filter( job_post__pk=job_app_pk).order_by('-update_date', '-created_date') notes_list = JobApplicationNoteSerializer( instance=notes_list, many=True).data return JsonResponse(create_response(data=notes_list, success=True, error_code=ResponseCodes.success), safe=False) elif request.method == "POST": description = body['description'] if job_app_pk is None or description is None: return JsonResponse(create_response(data=None, success=False, error_code=ResponseCodes.invalid_parameters), safe=False) else: user_job_app = JobApplication.objects.get(pk=job_app_pk) if user_job_app.user == request.user: note = JobApplicationNote( job_post=user_job_app, description=description) note.save() data = JobApplicationNoteSerializer( instance=note, many=False).data return JsonResponse(create_response(data=data, success=True, error_code=ResponseCodes.success), safe=False) else: return JsonResponse( create_response(data=None, success=False, error_code=ResponseCodes.record_not_found), safe=False) elif request.method == "PUT": jobapp_note_id = body['jobapp_note_id'] description = body['description'] if jobapp_note_id is None: return JsonResponse( create_response(data=None, success=False, error_code=ResponseCodes.invalid_parameters), safe=False) else: note = JobApplicationNote.objects.get(pk=jobapp_note_id) if note.job_post.user == request.user: note.description = description note.update_date = timezone.now() note.save() data = JobApplicationNoteSerializer( instance=note, many=False).data return JsonResponse(create_response(data=data, success=True, error_code=ResponseCodes.success), safe=False) else: return JsonResponse(create_response(data=None, success=False, error_code=ResponseCodes.record_not_found), safe=False) elif request.method == "DELETE": jobapp_note_id = body['jobapp_note_id'] if jobapp_note_id is None: return JsonResponse( create_response(data=None, success=False, error_code=ResponseCodes.invalid_parameters), safe=False) else: user_job_app_note = JobApplicationNote.objects.get( pk=jobapp_note_id) if user_job_app_note.job_post.user == request.user: user_job_app_note.delete() return JsonResponse(create_response(data=None, success=True, error_code=ResponseCodes.success), safe=False) else: return JsonResponse( create_response(data=None, success=False, error_code=ResponseCodes.record_not_found), safe=False) @csrf_exempt @api_view(["GET", "POST", "DELETE"]) def files(request, job_app_pk): body = request.data if request.method == "GET": if job_app_pk is None: return JsonResponse(create_response(data=None, success=False, error_code=ResponseCodes.invalid_parameters), safe=False) else: files_list = JobApplicationFile.objects.filter( job_post__pk=job_app_pk).order_by('-update_date', '-created_date') files_list = JobApplicationFileSerializer( instance=files_list, many=True).data return JsonResponse(create_response(data=files_list, success=True, error_code=ResponseCodes.success), safe=False) elif request.method == "POST": file = body['file'] if job_app_pk is None or file is None: return JsonResponse(create_response(data=None, success=False, error_code=ResponseCodes.invalid_parameters), safe=False) else: ext = file.name.split('.')[-1] filename = "%s.%s" % (uuid.uuid4(), ext) name = file.name.replace(('.' + ext), '') filename = name + '_' + filename user_job_app = JobApplication.objects.get(pk=job_app_pk) if user_job_app.user == request.user: jobapp_file = JobApplicationFile( job_post=user_job_app, name=name) jobapp_file.save() jobapp_file.file.save(filename, file, save=True) data = JobApplicationFileSerializer( instance=jobapp_file, many=False).data return JsonResponse(create_response(data=data, success=True, error_code=ResponseCodes.success), safe=False) else: return JsonResponse( create_response(data=None, success=False, error_code=ResponseCodes.record_not_found), safe=False) elif request.method == "DELETE": jobapp_file_id = body['jobapp_file_id'] if jobapp_file_id is None: return JsonResponse( create_response(data=None, success=False, error_code=ResponseCodes.invalid_parameters), safe=False) else: user_job_app_file = JobApplicationFile.objects.get( pk=jobapp_file_id) if user_job_app_file.job_post.user == request.user: user_job_app_file.delete() return JsonResponse(create_response(data=None, success=True, error_code=ResponseCodes.success), safe=False) else: return JsonResponse( create_response(data=None, success=False, error_code=ResponseCodes.record_not_found), safe=False)
50.605322
131
0.623056
0
0
0
0
21,781
0.954344
0
0
1,014
0.044429
3f18ab10027c8065766c8a8c8fb7ac830007c2ab
127
py
Python
reassign.py
Ca2Patton/PythonStuff
9d13f340296bcea41dfca87a4b36e445821703de
[ "Apache-2.0" ]
null
null
null
reassign.py
Ca2Patton/PythonStuff
9d13f340296bcea41dfca87a4b36e445821703de
[ "Apache-2.0" ]
null
null
null
reassign.py
Ca2Patton/PythonStuff
9d13f340296bcea41dfca87a4b36e445821703de
[ "Apache-2.0" ]
null
null
null
#!/Library/Frameworks/Python.framework/Versions/2.7/bin/python x=5 print x def reassign(b): x=6 print x reassign(x) print x
12.7
62
0.740157
0
0
0
0
0
0
0
0
62
0.488189
3f1926f6984e1a663e867e004da2e2a9429fe1d9
6,632
py
Python
python_modules/dagster/dagster/core/meta/config_types.py
Ramshackle-Jamathon/dagster
959037ab8d8fb7ed49fbc2daff9fa566f71766f2
[ "Apache-2.0" ]
null
null
null
python_modules/dagster/dagster/core/meta/config_types.py
Ramshackle-Jamathon/dagster
959037ab8d8fb7ed49fbc2daff9fa566f71766f2
[ "Apache-2.0" ]
null
null
null
python_modules/dagster/dagster/core/meta/config_types.py
Ramshackle-Jamathon/dagster
959037ab8d8fb7ed49fbc2daff9fa566f71766f2
[ "Apache-2.0" ]
null
null
null
from collections import namedtuple from dagster import check from dagster.config.config_type import ConfigType, ConfigTypeKind from dagster.config.field import Field from dagster.core.serdes import whitelist_for_serdes @whitelist_for_serdes class NonGenericTypeRefMeta(namedtuple('_NonGenericTypeRefMeta', 'key')): def __new__(cls, key): return super(NonGenericTypeRefMeta, cls).__new__(cls, check.str_param(key, 'key')) @whitelist_for_serdes class ConfigTypeMeta( namedtuple( '_ConfigTypeMeta', 'kind key given_name description ' 'type_param_refs ' # only valid for closed generics (Set, Tuple, List, Optional) 'enum_values ' # only valid for enums 'fields', # only valid for dicts and selectors ) ): def __new__( cls, kind, key, given_name, type_param_refs, enum_values, fields, description, ): return super(ConfigTypeMeta, cls).__new__( cls, kind=check.inst_param(kind, 'kind', ConfigTypeKind), key=check.str_param(key, 'key'), given_name=check.opt_str_param(given_name, 'given_name'), type_param_refs=None if type_param_refs is None else check.list_param(type_param_refs, 'type_param_refs', of_type=TypeRef), enum_values=None if enum_values is None else check.list_param(enum_values, 'enum_values', of_type=ConfigEnumValueMeta), fields=None if fields is None else check.list_param(fields, 'field', of_type=ConfigFieldMeta), description=check.opt_str_param(description, 'description'), ) @property def inner_type_refs(self): ''' This recurses through the type references with non-generic types as leaves. ''' def _doit(): next_level_refs = _get_next_level_refs(self) if next_level_refs: for next_level in next_level_refs: for inner_ref in _recurse_through_generics(next_level): yield inner_ref # there might be duplicate keys (esp for scalars) refs_by_key = {} for ref in _doit(): if ref.key not in refs_by_key: refs_by_key[ref.key] = ref return list(refs_by_key.values()) # This function is used by the recursive descent # through all the inner types. This does *not* # recursively descend through the type parameters # of generic types. It just gets the next level of # types. Either the direct type parameters of a # generic type. Or the type refs of all the fields # if it is a type with fields. def _get_next_level_refs(ref): # if a generic type, get type params # if a type with fields, get refs of the fields if ConfigTypeKind.is_closed_generic(ref.kind): return ref.type_param_refs elif ( ConfigTypeKind.has_fields(ref.kind) and ref.fields ): # still check fields because permissive return [field_meta.type_ref for field_meta in ref.fields] def _recurse_through_generics(ref): yield ref if isinstance(ref, ConfigTypeMeta) and ConfigTypeKind.is_closed_generic(ref.kind): for type_param_ref in ref.type_param_refs: for inner_ref in _recurse_through_generics(type_param_ref): yield inner_ref # A type reference in these serializable data structures are one of two things # 1) A closed generic type (e.g. List[Int] of Optional[Set[str]]) # 2) Or a reference to a non-generic type, such as Dict, Selector, or a Scalar. # Upon deserialization and when hydrated back to the graphql query, it will # be the responsibility of that module to maintain a dictionary of the # non-generic types and then do lookups into the dictionary in order to # to explode the entire type hierarchy requested by the client TypeRef = (ConfigTypeMeta, NonGenericTypeRefMeta) @whitelist_for_serdes class ConfigEnumValueMeta(namedtuple('_ConfigEnumValueMeta', 'value description')): def __new__(cls, value, description): return super(ConfigEnumValueMeta, cls).__new__( cls, value=check.str_param(value, 'value'), description=check.opt_str_param(description, 'description'), ) @whitelist_for_serdes class ConfigFieldMeta( namedtuple( '_ConfigFieldMeta', 'name type_ref is_required default_provided default_value_as_str description', ) ): def __new__( cls, name, type_ref, is_required, default_provided, default_value_as_str, description ): return super(ConfigFieldMeta, cls).__new__( cls, name=check.opt_str_param(name, 'name'), type_ref=check.inst_param(type_ref, 'type_ref', TypeRef), is_required=check.bool_param(is_required, 'is_required'), default_provided=check.bool_param(default_provided, 'default_provided'), default_value_as_str=check.opt_str_param(default_value_as_str, 'default_value_as_str'), description=check.opt_str_param(description, 'description'), ) def meta_from_field(name, field): check.str_param(name, 'name') check.inst_param(field, 'field', Field) return ConfigFieldMeta( name=name, type_ref=type_ref_of(field.config_type), is_required=field.is_required, default_provided=field.default_provided, default_value_as_str=field.default_value_as_str if field.default_provided else None, description=field.description, ) def type_ref_of(config_type): check.inst_param(config_type, 'config_type', ConfigType) if ConfigTypeKind.is_closed_generic(config_type.kind): return meta_from_config_type(config_type) else: return NonGenericTypeRefMeta(key=config_type.key) def type_refs_of(type_list): return list(map(type_ref_of, type_list)) if type_list is not None else None def meta_from_config_type(config_type): check.inst_param(config_type, 'config_type', ConfigType) return ConfigTypeMeta( key=config_type.key, given_name=config_type.given_name, kind=config_type.kind, description=config_type.description, type_param_refs=type_refs_of(config_type.type_params), enum_values=[ ConfigEnumValueMeta(ev.config_value, ev.description) for ev in config_type.enum_values ] if config_type.kind == ConfigTypeKind.ENUM else None, fields=[meta_from_field(name, field) for name, field in config_type.fields.items()] if ConfigTypeKind.has_fields(config_type.kind) else None, )
37.258427
99
0.692853
3,204
0.483112
945
0.142491
3,292
0.496381
0
0
1,684
0.25392
3f197e7a784ea8a0684cc88fb9aeb9e0486240f7
624
py
Python
database/migrations/2017_06_14_205530_create_users_table.py
emirbek/cope
be72b71e8045d1fe16d7ac6c680fc9f274af6c50
[ "MIT" ]
2
2017-06-21T09:26:51.000Z
2020-10-15T19:45:20.000Z
database/migrations/2017_06_14_205530_create_users_table.py
emirbek/cope
be72b71e8045d1fe16d7ac6c680fc9f274af6c50
[ "MIT" ]
11
2017-06-18T21:16:58.000Z
2021-06-12T18:34:20.000Z
database/migrations/2017_06_14_205530_create_users_table.py
emirbek/cope
be72b71e8045d1fe16d7ac6c680fc9f274af6c50
[ "MIT" ]
2
2017-10-27T06:53:57.000Z
2021-09-26T10:26:31.000Z
from orator.migrations import Migration class CreateUsersTable(Migration): def up(self): """ Run the migrations. """ with self.schema.create('users') as table: table.integer('id') table.string('name') table.string('gender', 1) table.tiny_integer('status').default(0) table.integer('chat_id').unique() table.string('lang', 2).default('ru') table.timestamps() table.primary('id') def down(self): """ Revert the migrations. """ self.schema.drop('users')
24
51
0.525641
581
0.93109
0
0
0
0
0
0
152
0.24359
3f1a06109933032a2467ac3c5a49cf17e45b67a0
387
py
Python
make_json.py
jfalcou/infra
97e05039a3f4f3d69b7c50233aed5e5d60a59605
[ "BSD-2-Clause" ]
135
2017-01-12T04:39:08.000Z
2020-05-08T17:08:52.000Z
make_json.py
jfalcou/infra
97e05039a3f4f3d69b7c50233aed5e5d60a59605
[ "BSD-2-Clause" ]
229
2017-01-23T12:45:44.000Z
2020-05-13T17:36:57.000Z
make_json.py
jfalcou/infra
97e05039a3f4f3d69b7c50233aed5e5d60a59605
[ "BSD-2-Clause" ]
106
2017-04-18T14:42:34.000Z
2020-05-07T14:24:34.000Z
from configparser import ConfigParser import os import json obj = {} config = ConfigParser() config.read(os.path.join(os.getenv("HOME"), ".aws", "credentials")) obj["MY_ACCESS_KEY"] = config.get("default", "aws_access_key_id", fallback="") obj["MY_SECRET_KEY"] = config.get("default", "aws_secret_access_key", fallback="") with open("config.json", "w") as out: json.dump(obj, out)
29.769231
82
0.710594
0
0
0
0
0
0
0
0
135
0.348837
3f1cf61b4a31d4bea3fa0897656382d3014a7dec
1,051
py
Python
ztest-type1.py
tochiji/ztest-type1
ca141d13a74708846cba414f2051200d162302a0
[ "MIT" ]
null
null
null
ztest-type1.py
tochiji/ztest-type1
ca141d13a74708846cba414f2051200d162302a0
[ "MIT" ]
null
null
null
ztest-type1.py
tochiji/ztest-type1
ca141d13a74708846cba414f2051200d162302a0
[ "MIT" ]
null
null
null
######################################################### # 母比率の差の検定/タイプ1 ######################################################### import sys import math def error_usage(): sys.stderr.write("usage: " + sys.argv[0] + "\n") sys.stderr.write("\tこのプログラムは、4つの引数が必要です。\n\n") sys.stderr.write( "\t1.属性1のn数 2.属性1における比率p 3.属性2のn数 4.属性2における比率p\n") sys.stderr.write("\t例: 200 0.6 100 0.48\n\n") sys.stderr.write("\tただし、それぞれn数は30以上かつ比率pは[0<=p<=1]を満たすこと\n") sys.exit(1) # 引数がちょうど4つあるか? if len(sys.argv[1:]) != 4: error_usage() n1,p1,n2,p2 = map(float, sys.argv[1:]) p = ((n1*p1) + (n2*p2))/(n1+n2) # n数が30以上か? if (n1 < 30) or (n2 < 30): error_usage() # 比率は0から1の間か? if not (0 <= p1 <= 1) or not (0 <= p2 <= 1): error_usage() T = math.fabs(p1 - p2) / math.sqrt((p * (1-p)) * ((1/n1) + (1/n2))) if T >= 2.58: print("1%有意 (検定統計量:" + str(T) + ")") elif T >= 1.96: print("5%有意 (検定統計量:" + str(T) + ")") elif T >= 1.65: print("10%有意 (検定統計量:" + str(T) + ")") else: print("有意差なし (検定統計量:" + str(T) + ")")
24.44186
67
0.488107
0
0
0
0
0
0
0
0
681
0.510112
3f1d2166206051864985cc1f8d2162c4a056737f
13,796
py
Python
flask_demo/main.py
yzj2019/database_learning
a9260799f96010674bb4077180ee45a51481e832
[ "MIT" ]
null
null
null
flask_demo/main.py
yzj2019/database_learning
a9260799f96010674bb4077180ee45a51481e832
[ "MIT" ]
null
null
null
flask_demo/main.py
yzj2019/database_learning
a9260799f96010674bb4077180ee45a51481e832
[ "MIT" ]
null
null
null
# coding=utf-8 import functools from flask import Flask, session from flask import redirect from flask import request, make_response from flask import render_template from flask import url_for from flask_bootstrap import Bootstrap # 数据库处理 from db import * # json import json # 生成一个app app = Flask(__name__, instance_relative_config=True) bootstrap=Bootstrap(app) app.secret_key = 'lab3' # 对app执行请求页面地址到函数的绑定 @app.route("/", methods=("GET", "POST")) @app.route("/login", methods=("GET", "POST")) def login(): """Log in a registered user by adding the user id to the session.""" if request.method == "POST": # 客户端在login页面发起的POST请求 username = request.form["username"] password = request.form["password"] ipaddr = request.form["ipaddr"] database = request.form["database"] db = MyDefSQL(username, password, ipaddr, database) err = db.login() if err != '0': return render_template("login_fail.html", err=err) else: #print(err) session['username'] = username session['password'] = password session['ipaddr'] = ipaddr session['database'] = database return redirect(url_for('home')) else : # 客户端GET 请求login页面时 return render_template("login.html") # 主页面 @app.route("/home", methods=(["GET", "POST"])) def home(): return render_template("home.html") # 请求url为host/table的页面返回结果 @app.route("/table", methods=(["GET", "POST"])) def table(): # 出于简单考虑,每次请求都需要连接数据库,可以尝试使用其它context保存数据库连接 if 'username' in session: db = MyDefSQL(session['username'], session['password'], session['ipaddr'], session['database']) err = db.login() else: return redirect(url_for('login')) tabs = db.showtablecnt() if request.method == "POST": if 'clear' in request.form: return render_template("table.html", rows = '', dbname=session['database']) elif 'search' in request.form: return render_template("table.html", rows = tabs, dbname=session['database']) else: return render_template("table.html", rows = tabs, dbname=session['database']) # 客户管理页面 @app.route("/customer", methods=(["GET", "POST"])) def customer(): if 'username' in session: db = MyDefSQL(session['username'], session['password'], session['ipaddr'], session['database']) err = db.login() else: return redirect(url_for('login')) tabs = db.showcustomer() if tabs==None: tabs="" if request.method == "POST": if 'search' in request.form: # 是由search表单提交的post请求 searchinfo = {} # print(len(request.form[u"客户身份证号"])) for key,value in request.form.items(): # 注意这里key和value仍然是unicode编码,统一在db.py中处理! if len(value) != 0 and key!='search': # 做第一层过滤,使得可以表单中某块信息不填 searchinfo[key] = value tabs = db.customer_search(searchinfo) return render_template("customer.html", rows = tabs, dbname=session['database']) # 其它删改查需求,是由Ajax提交的post datas = json.loads(request.get_data(as_text=True)) function = datas["function"] datas = datas["inputdata"] # print(function) # print(datas[0][u"客户身份证号"]) if function == "delete": res = {'info':'删除成功!', 'errs':[]} for data in datas: err = db.customer_del(data) if err != '0': res['errs'].append([data[u"客户身份证号"],err]) if len(res['errs']) != 0: res['info'] = "删除失败!" return json.dumps(res) elif function == "insert": res = {'info':'插入成功!', 'errs':[]} for data in datas: err = db.customer_insert(data) if err != '0': res['errs'].append([data[u"客户身份证号"],err]) if len(res['errs']) != 0: res['info'] = "插入失败!" return json.dumps(res) elif function == "update": res = {'info':'修改成功!', 'errs':[]} for data in datas: err = db.customer_update(data) if err != '0': res['errs'].append([data[u"客户身份证号"],err]) if len(res['errs']) != 0: res['info'] = "修改失败!" return json.dumps(res) else: return render_template("customer.html", rows = tabs, dbname=session['database']) # 账户管理页面 # 储蓄账户 @app.route("/account/saving", methods=(["GET", "POST"])) def saving(): if 'username' in session: db = MyDefSQL(session['username'], session['password'], session['ipaddr'], session['database']) err = db.login() else: return redirect(url_for('login')) tabs = db.showaccount(True) if tabs==None: tabs="" if request.method == "POST": if 'search' in request.form: # 是由search表单提交的post请求 searchinfo = {} for key,value in request.form.items(): # 注意这里key和value仍然是unicode编码,统一在db.py中处理! if len(value) != 0 and key!='search': # 做第一层过滤,使得可以表单中某块信息不填 searchinfo[key] = value tabs = db.account_search(searchinfo, True) return render_template("account_saving.html", rows = tabs, dbname=session['database']) # 其它删改查需求,是由Ajax提交的post datas = json.loads(request.get_data(as_text=True)) function = datas["function"] datas = datas["inputdata"] # print(function) if function == "delete": res = {'info':'删除成功!', 'errs':[]} for data in datas: err = db.account_del(data, True) if err != '0': res['errs'].append([data[u"账户.账户号"],err]) if len(res['errs']) != 0: res['info'] = "删除失败!" return json.dumps(res) elif function == "insert": res = {'info':'插入成功!', 'errs':[]} for data in datas: err = db.account_insert(data, True) if err != '0': res['errs'].append([data[u"账户.账户号"],err]) if len(res['errs']) != 0: res['info'] = "插入失败!" return json.dumps(res) elif function == "update": res = {'info':'修改成功!', 'errs':[]} for data in datas: err = db.account_update(data, True) if err != '0': res['errs'].append([data[u"账户.账户号"],err]) if len(res['errs']) != 0: res['info'] = "修改失败!" return json.dumps(res) else: return render_template("account_saving.html", rows = tabs, dbname=session['database']) # 支票账户 @app.route("/account/checking", methods=(["GET", "POST"])) def checking(): if 'username' in session: db = MyDefSQL(session['username'], session['password'], session['ipaddr'], session['database']) err = db.login() else: return redirect(url_for('login')) tabs = db.showaccount(False) if tabs==None: tabs="" if request.method == "POST": if 'search' in request.form: # 是由search表单提交的post请求 searchinfo = {} for key,value in request.form.items(): # 注意这里key和value仍然是unicode编码,统一在db.py中处理! if len(value) != 0 and key!='search': # 做第一层过滤,使得可以表单中某块信息不填 searchinfo[key] = value tabs = db.account_search(searchinfo, False) return render_template("account_checking.html", rows = tabs, dbname=session['database']) # 其它删改查需求,是由Ajax提交的post datas = json.loads(request.get_data(as_text=True)) function = datas["function"] datas = datas["inputdata"] # print(function) if function == "delete": res = {'info':'删除成功!', 'errs':[]} for data in datas: err = db.account_del(data, False) if err != '0': res['errs'].append([data[u"账户.账户号"],err]) if len(res['errs']) != 0: res['info'] = "删除失败!" return json.dumps(res) elif function == "insert": res = {'info':'插入成功!', 'errs':[]} for data in datas: err = db.account_insert(data, False) if err != '0': res['errs'].append([data[u"账户.账户号"],err]) if len(res['errs']) != 0: res['info'] = "插入失败!" return json.dumps(res) elif function == "update": res = {'info':'修改成功!', 'errs':[]} for data in datas: err = db.account_update(data, False) if err != '0': res['errs'].append([data[u"账户.账户号"],err]) if len(res['errs']) != 0: res['info'] = "修改失败!" return json.dumps(res) else: return render_template("account_checking.html", rows = tabs, dbname=session['database']) # 贷款管理页面 @app.route("/loan", methods=(["GET", "POST"])) def loan(): if 'username' in session: db = MyDefSQL(session['username'], session['password'], session['ipaddr'], session['database']) err = db.login() else: return redirect(url_for('login')) tabs = db.showloan() if tabs==None: tabs="" if request.method == "POST": if 'search' in request.form: # 是由search表单提交的post请求 searchinfo = {} for key,value in request.form.items(): # 注意这里key和value仍然是unicode编码,统一在db.py中处理! if len(value) != 0 and key!='search': # 做第一层过滤,使得可以表单中某块信息不填 searchinfo[key] = value tabs = db.loan_search(searchinfo) return render_template("loan.html", rows = tabs, dbname=session['database']) # 其它删改查需求,是由Ajax提交的post datas = json.loads(request.get_data(as_text=True)) function = datas["function"] datas = datas["inputdata"] # print(function) if function == "delete": res = {'info':'删除成功!', 'errs':[]} for data in datas: err = db.loan_del(data) if err != '0': res['errs'].append([data[u"贷款号"],err]) if len(res['errs']) != 0: res['info'] = "删除失败!" return json.dumps(res) elif function == "insert": res = {'info':'插入成功!', 'errs':[]} for data in datas: err = db.loan_insert(data) if err != '0': res['errs'].append([data[u"贷款号"],err]) if len(res['errs']) != 0: res['info'] = "插入失败!" return json.dumps(res) elif function == "release": res = {'info':'贷款发放成功!', 'errs':[]} for data in datas: err = db.loan_release(data) if err != '0': res['errs'].append([data[u"贷款号"],err]) if len(res['errs']) != 0: res['info'] = "贷款发放失败!" return json.dumps(res) else: return render_template("loan.html", rows = tabs, dbname=session['database']) # 业务统计 # 按月 @app.route("/statistic/month") def month(): if 'username' in session: db = MyDefSQL(session['username'], session['password'], session['ipaddr'], session['database']) err = db.login() else: return redirect(url_for('login')) tabs = db.statistic_month() return render_template("statistic.html", how = u'月份', rows = tabs, dbname=session['database']) # 按季度 @app.route("/statistic/quarter") def quarter(): if 'username' in session: db = MyDefSQL(session['username'], session['password'], session['ipaddr'], session['database']) err = db.login() else: return redirect(url_for('login')) tabs = db.statistic_quarter() return render_template("statistic.html", how = u'季度', rows = tabs, dbname=session['database']) # 按年 @app.route("/statistic/year") def year(): if 'username' in session: db = MyDefSQL(session['username'], session['password'], session['ipaddr'], session['database']) err = db.login() else: return redirect(url_for('login')) tabs = db.statistic_year() return render_template("statistic.html", how = u'年份', rows = tabs, dbname=session['database']) # 测试新html页面 @app.route("/test") def test(): if 'username' in session: db = MyDefSQL(session['username'], session['password'], session['ipaddr'], session['database']) err = db.login() else: return redirect(url_for('login')) tabs = db.showtablecnt() return render_template("test.html", rows = tabs) # 测试URL下返回html page @app.route("/hello") def hello(): return "hello world!" #返回不存在页面的处理 @app.errorhandler(404) def not_found(e): return render_template("404.html") if __name__ == "__main__": app.run(host = "0.0.0.0", debug=True)
34.318408
101
0.508771
0
0
0
0
14,054
0.938811
0
0
4,392
0.293387
3f1e42b52ec11496ab90f620e8e049e8cb9d426e
1,462
py
Python
tests/test_env.py
dmitrvk/mymusichere-app
02a6d5f60a72197e08c98da59b0ef7e7168dcf4b
[ "MIT" ]
null
null
null
tests/test_env.py
dmitrvk/mymusichere-app
02a6d5f60a72197e08c98da59b0ef7e7168dcf4b
[ "MIT" ]
14
2020-06-06T19:08:03.000Z
2020-12-03T12:07:04.000Z
tests/test_env.py
dmitrvk/mymusichere-app
02a6d5f60a72197e08c98da59b0ef7e7168dcf4b
[ "MIT" ]
null
null
null
# Licensed under the MIT License from mymusichere import env class TestEnv: def test_get_config_from_env(self, monkeypatch): monkeypatch.setenv('CONFIG', 'value') assert env.get_str_config('config') == 'value' def test_get_secret_from_env(self, monkeypatch): monkeypatch.setenv('SECRET', 'value') assert env.get_secret('secret') == 'value' def test_get_config_from_file(self, fs): fs.create_file('/config', contents='value') assert env.get_str_config('config') == 'value' def test_get_secret_from_file(self, fs): fs.create_file('/run/secrets/secret', contents='value') assert env.get_secret('secret') == 'value' def test_config_default(self): assert env.get_str_config('config', 'default') == 'default' def test_secret_default(self): assert env.get_secret('secret', 'default') == 'default' def test_bool_config(self, monkeypatch): monkeypatch.setenv('CONFIG_TRUE', '1') monkeypatch.setenv('CONFIG_FALSE', '0') assert env.get_bool_config('config_true') is True assert env.get_bool_config('config_false') is False assert env.get_bool_config('config_default', default=True) is True assert env.get_bool_config('config_default', default=False) is False def test_str_config(self, monkeypatch): monkeypatch.setenv('CONFIG', 'config') assert env.get_str_config('config') == 'config'
35.658537
76
0.678523
1,397
0.95554
0
0
0
0
0
0
342
0.233926
3f1f9aba8ecf3aa6254017a10062ec1345e2b069
2,943
py
Python
tests/factorys.py
2h4dl/pymilvus
6af6d4922242ae48d90ed5a1afb891d9e4d1540e
[ "Apache-2.0" ]
null
null
null
tests/factorys.py
2h4dl/pymilvus
6af6d4922242ae48d90ed5a1afb891d9e4d1540e
[ "Apache-2.0" ]
null
null
null
tests/factorys.py
2h4dl/pymilvus
6af6d4922242ae48d90ed5a1afb891d9e4d1540e
[ "Apache-2.0" ]
null
null
null
# STL imports import random import logging import string import time import datetime import random import struct import sys from functools import wraps # Third party imports import numpy as np import faker from faker.providers import BaseProvider logging.getLogger('faker').setLevel(logging.ERROR) sys.path.append('.') # grpc from milvus.grpc_gen import milvus_pb2 def gen_vectors(num, dim): return [[random.random() for _ in range(dim)] for _ in range(num)] def gen_single_vector(dim): return [[random.random() for _ in range(dim)]] def gen_vector(nb, d, seed=np.random.RandomState(1234)): xb = seed.rand(nb, d).astype("float32") return xb.tolist() def gen_unique_str(str=None): prefix = "".join(random.choice(string.ascii_letters + string.digits) for _ in range(8)) return prefix if str is None else str + "_" + prefix def get_current_day(): return time.strftime('%Y-%m-%d', time.localtime()) def get_last_day(day): tmp = datetime.datetime.now() - datetime.timedelta(days=day) return tmp.strftime('%Y-%m-%d') def get_next_day(day): tmp = datetime.datetime.now() + datetime.timedelta(days=day) return tmp.strftime('%Y-%m-%d') def gen_long_str(num): string = '' for _ in range(num): char = random.choice('tomorrow') string += char def gen_one_binary(topk): ids = [random.randrange(10000000, 99999999) for _ in range(topk)] distances = [random.random() for _ in range(topk)] return milvus_pb2.TopKQueryResult(struct.pack(str(topk) + 'l', *ids), struct.pack(str(topk) + 'd', *distances)) def gen_nq_binaries(nq, topk): return [gen_one_binary(topk) for _ in range(nq)] def fake_query_bin_result(nq, topk): return gen_nq_binaries(nq, topk) class FakerProvider(BaseProvider): def collection_name(self): return 'collection_names' + str(random.randint(1000, 9999)) def name(self): return 'name' + str(random.randint(1000, 9999)) def dim(self): return random.randint(0, 999) fake = faker.Faker() fake.add_provider(FakerProvider) def collection_name_factory(): return fake.collection_name() def records_factory(dimension, nq): return [[random.random() for _ in range(dimension)] for _ in range(nq)] def binary_records_factory(dimension, nq): def binary_record(bsize): s_m = "abcdefghijklmnopqrstuvwxyz" s_list = [s_m[random.randint(0, 25)] for _ in range(bsize)] s = "".join(s_list) return bytes(s, encoding="ASCII") bs = dimension // 8 return [binary_record(bs) for _ in range(nq)] def integer_factory(nq): return [random.randint(0, 128) for _ in range(nq)] def time_it(func): @wraps(func) def inner(*args, **kwrgs): pref = time.perf_counter() result = func(*args, **kwrgs) delt = time.perf_counter() - pref print(f"[{func.__name__}][{delt:.4}s]") return result return inner
23.357143
115
0.675841
269
0.091403
0
0
228
0.077472
0
0
205
0.069657
3f201da335b43cb8e7b8ff1ba5bda41dec4c38c6
524
py
Python
HACKERRANK_Regrex&Parsing/Matrix_Script.py
StefaniaSferragatta/ADM2020-HW1
8f85ac1c8dd4bff52c5c17987c9e96b209a93830
[ "MIT" ]
null
null
null
HACKERRANK_Regrex&Parsing/Matrix_Script.py
StefaniaSferragatta/ADM2020-HW1
8f85ac1c8dd4bff52c5c17987c9e96b209a93830
[ "MIT" ]
null
null
null
HACKERRANK_Regrex&Parsing/Matrix_Script.py
StefaniaSferragatta/ADM2020-HW1
8f85ac1c8dd4bff52c5c17987c9e96b209a93830
[ "MIT" ]
null
null
null
import math import os import random import re import sys first_multiple_input = input().rstrip().split() n = int(first_multiple_input[0]) m = int(first_multiple_input[1]) matrix = [] if (n>0 and m>0 and n<100 and m< 100): for _ in range(n): matrix_item = input() matrix.append(matrix_item) for _ in range(m): string = "" for cols in range (m): for rows in range (n): string += matrix[rows][cols] output = re.sub(r"\b[!@#$%& ]+\b"," ", string) print(output)
21.833333
50
0.59542
0
0
0
0
0
0
0
0
22
0.041985
3f203a9e4f2175047e23a90b2ce6f785f3b752e7
4,495
py
Python
smartsheet/models/filter.py
Funtimes-Smarts/Python-import-Smart
ffb99887d03e31d10da553c9ee8c7be1238816fc
[ "Apache-2.0" ]
null
null
null
smartsheet/models/filter.py
Funtimes-Smarts/Python-import-Smart
ffb99887d03e31d10da553c9ee8c7be1238816fc
[ "Apache-2.0" ]
null
null
null
smartsheet/models/filter.py
Funtimes-Smarts/Python-import-Smart
ffb99887d03e31d10da553c9ee8c7be1238816fc
[ "Apache-2.0" ]
null
null
null
# pylint: disable=C0111,R0902,R0904,R0912,R0913,R0915,E1101 # Smartsheet Python SDK. # # Copyright 2016 Smartsheet.com, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"): you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import absolute_import from .criteria import Criteria from ..types import TypedList from ..util import prep from datetime import datetime import json import logging import six class Filter(object): """Smartsheet Filter data model.""" def __init__(self, props=None, base_obj=None): """Initialize the Filter model.""" self._base = None if base_obj is not None: self._base = base_obj self._pre_request_filter = None self.allowed_values = { '_type': [ 'LIST', 'CUSTOM']} self._criteria = TypedList(Criteria) self._exclude_selected = None self.__type = None self._values = TypedList(str) if props: # account for alternate variable names from raw API response if 'criteria' in props: self.criteria = props['criteria'] if 'excludeSelected' in props: self.exclude_selected = props['excludeSelected'] if 'exclude_selected' in props: self.exclude_selected = props[ 'exclude_selected'] if 'type' in props: self._type = props['type'] if '_type' in props: self._type = props['_type'] if 'values' in props: self.values = props['values'] self.__initialized = True def __getattr__(self, key): if key == 'type': return self._type else: raise AttributeError(key) @property def criteria(self): return self._criteria @criteria.setter def criteria(self, value): if isinstance(value, list): self._criteria.purge() self._criteria.extend([ (Criteria(x, self._base) if not isinstance(x, Criteria) else x) for x in value ]) elif isinstance(value, TypedList): self._criteria.purge() self._criteria = value.to_list() elif isinstance(value, Criteria): self._criteria.purge() self._criteria.append(value) @property def exclude_selected(self): return self._exclude_selected @exclude_selected.setter def exclude_selected(self, value): if isinstance(value, bool): self._exclude_selected = value @property def _type(self): return self.__type @_type.setter def _type(self, value): if isinstance(value, six.string_types): if value not in self.allowed_values['_type']: raise ValueError( ("`{0}` is an invalid value for Filter`_type`," " must be one of {1}").format( value, self.allowed_values['_type'])) self.__type = value @property def values(self): return self._values @values.setter def values(self, value): if isinstance(value, list): self._values.purge() self._values.extend([ (str(x) if not isinstance(x, str) else x) for x in value ]) elif isinstance(value, TypedList): self._values.purge() self._values = value.to_list() elif isinstance(value, str): self._values.purge() self._values.append(value) def to_dict(self, op_id=None, method=None): obj = { 'criteria': prep(self._criteria), 'excludeSelected': prep(self._exclude_selected), 'type': prep(self.__type), 'values': prep(self._values)} return obj def to_json(self): return json.dumps(self.to_dict(), indent=2) def __str__(self): return json.dumps(self.to_dict())
30.787671
75
0.588654
3,629
0.807341
0
0
1,797
0.399778
0
0
1,064
0.236707
3f20478583f74a50977bf5b718f080efb96af674
5,524
py
Python
utils/train.py
danilonumeroso/MEG
86f2a664e22082b0ff5d01c8e0ad9618b64e9065
[ "Apache-2.0" ]
6
2020-10-26T13:53:01.000Z
2021-03-12T14:26:43.000Z
utils/train.py
danilonumeroso/Explainer
e133c150738f09998d0350e58dece4824ee58a76
[ "Apache-2.0" ]
null
null
null
utils/train.py
danilonumeroso/Explainer
e133c150738f09998d0350e58dece4824ee58a76
[ "Apache-2.0" ]
1
2021-03-13T01:08:12.000Z
2021-03-13T01:08:12.000Z
import torch import torch.nn.functional as F import os.path as osp import json from torch_geometric.utils import precision, recall from torch_geometric.utils import f1_score, accuracy from torch.utils.tensorboard import SummaryWriter def train_epoch_classifier(model, train_loader, len_train, optimizer, device): model.train() loss_all = 0 for data in train_loader: data = data.to(device) optimizer.zero_grad() output, _ = model(data.x, data.edge_index, batch=data.batch) loss = F.nll_loss(F.log_softmax(output, dim=-1), data.y) loss.backward() loss_all += data.num_graphs * loss.item() optimizer.step() return loss_all / len_train def test_classifier(model, loader, device): model.eval() y = torch.tensor([]).long().to(device) yp = torch.tensor([]).long().to(device) loss_all = 0 for data in loader: data = data.to(device) pred, _ = model(data.x, data.edge_index, batch=data.batch) loss = F.nll_loss(F.log_softmax(pred, dim=-1), data.y) pred = pred.max(dim=1)[1] y = torch.cat([y, data.y]) yp = torch.cat([yp, pred]) loss_all += data.num_graphs * loss.item() return ( accuracy(y, yp), precision(y, yp, model.num_output).mean().item(), recall(y, yp, model.num_output).mean().item(), f1_score(y, yp, model.num_output).mean().item(), loss_all ) def train_cycle_classifier(task, train_loader, val_loader, test_loader, len_train, len_val, len_test, model, optimizer, device, base_path, epochs): best_acc = (0, 0) writer = SummaryWriter(base_path + '/plots') for epoch in range(epochs): loss = train_epoch_classifier(model, train_loader, len_train, optimizer, device) writer.add_scalar('Loss/train', loss, epoch) train_acc, train_prec, train_rec, train_f1, _ = test_classifier(model, train_loader, device) val_acc, val_prec, val_rec, val_f1, l = test_classifier(model, val_loader, device) writer.add_scalar('Accuracy/train', train_acc, epoch) writer.add_scalar('Accuracy/val', val_acc, epoch) writer.add_scalar('Loss/val', l / len_val, epoch) print(f'Epoch: {epoch}, Loss: {loss:.5f}') print(f'Train -> Acc: {train_acc:.5f} Rec: {train_rec:.5f} \ Prec: {train_prec:.5f} F1: {train_f1:.5f}') print(f'Val -> Acc: {val_acc:.5f} Rec: {val_rec:.5f} \ Prec: {val_prec:.5f} F1: {val_f1:.5f}') if best_acc[1] < val_acc: best_acc = train_acc, val_acc torch.save( model.state_dict(), osp.join(base_path + '/ckpt/', model.__class__.__name__ + ".pth") ) print("New best model saved!") with open(base_path + '/best_result.json', 'w') as outfile: json.dump({'train_acc': train_acc, 'val_acc': val_acc, 'train_rec': train_rec, 'val_rec': val_rec, 'train_f1': train_f1, 'val_f1': val_f1, 'train_prec': train_prec, 'val_prec': val_prec}, outfile) def train_epoch_regressor(model, train_loader, len_train, optimizer, device): model.train() loss_all = 0 for data in train_loader: data = data.to(device) optimizer.zero_grad() output, _ = model(data.x.float(), data.edge_index, batch=data.batch) loss = F.mse_loss(output, data.y) loss.backward() loss_all += data.num_graphs * loss.item() optimizer.step() return loss_all / len_train def test_regressor(model, loader, len_loader, device): model.eval() loss_all = 0 for data in loader: data = data.to(device) pred, _ = model(data.x.float(), data.edge_index, batch=data.batch) loss = F.mse_loss(pred, data.y).detach() loss_all += data.num_graphs * loss.item() return loss_all / len_loader def train_cycle_regressor(task, train_loader, val_loader, test_loader, len_train, len_val, len_test, model, optimizer, device, base_path, epochs): best_acc = (0, 0) writer = SummaryWriter(base_path + '/plots') best_error = (+10000, +10000) for epoch in range(epochs): loss = train_epoch_regressor(model, train_loader, len_train, optimizer, device) writer.add_scalar('Loss/train', loss, epoch) train_error = test_regressor(model, train_loader, len_train, device) val_error = test_regressor(model, val_loader, len_val, device) writer.add_scalar('MSE/train', train_error, epoch) writer.add_scalar('MSE/test', val_error, epoch) print(f'Epoch: {epoch}, Loss: {loss:.5f}') print(f'Training Error: {train_error:.5f}') print(f'Val Error: {val_error:.5f}') if best_error[1] > val_error: best_error = train_error, val_error torch.save( model.state_dict(), osp.join(base_path + '/ckpt/', model.__class__.__name__ + ".pth") ) print("New best model saved!") with open(base_path + '/best_result.json', 'w') as outfile: json.dump({'train_error': train_error, 'val_error': val_error}, outfile)
33.889571
101
0.589609
0
0
0
0
0
0
0
0
664
0.120203
3f221d9155ff841349fd18bfe1fa0dbaac313b9d
260
py
Python
Algorithms/LCP/29/math1.py
M-Quadra/LeetCode-problems
0cc100aa1e50b02df289f04fe2e0b97239eb9895
[ "MIT" ]
null
null
null
Algorithms/LCP/29/math1.py
M-Quadra/LeetCode-problems
0cc100aa1e50b02df289f04fe2e0b97239eb9895
[ "MIT" ]
null
null
null
Algorithms/LCP/29/math1.py
M-Quadra/LeetCode-problems
0cc100aa1e50b02df289f04fe2e0b97239eb9895
[ "MIT" ]
null
null
null
class Solution: def orchestraLayout(self, num: int, xPos: int, yPos: int) -> int: a, b = (min(xPos, num-1-yPos), 1) if yPos >= xPos else (min(yPos, num-1-xPos), -1) return (4*num*a - 4*a*a - 2*a + b*(xPos+yPos) + (b>>1&1)*4*(num-a-1))%9 + 1
65
90
0.546154
260
1
0
0
0
0
0
0
0
0
3f2291365a0ddde1dace00a736bbde9087e031ac
9,716
py
Python
python-sdk/nuimages/scripts/render_images.py
bjajoh/nuscenes-devkit
5bc5627801c3867de395a500a1905c24171cec7d
[ "Apache-2.0" ]
1,284
2018-09-12T14:08:06.000Z
2022-03-31T08:28:20.000Z
python-sdk/nuimages/scripts/render_images.py
bjajoh/nuscenes-devkit
5bc5627801c3867de395a500a1905c24171cec7d
[ "Apache-2.0" ]
518
2018-10-20T08:34:15.000Z
2022-03-31T08:16:08.000Z
python-sdk/nuimages/scripts/render_images.py
bjajoh/nuscenes-devkit
5bc5627801c3867de395a500a1905c24171cec7d
[ "Apache-2.0" ]
487
2018-09-13T20:03:21.000Z
2022-03-31T04:41:17.000Z
# nuScenes dev-kit. # Code written by Holger Caesar, 2020. import argparse import gc import os import random from typing import List from collections import defaultdict import cv2 import tqdm from nuimages.nuimages import NuImages def render_images(nuim: NuImages, mode: str = 'all', cam_name: str = None, log_name: str = None, sample_limit: int = 50, filter_categories: List[str] = None, out_type: str = 'image', out_dir: str = '~/Downloads/nuImages', cleanup: bool = True) -> None: """ Render a random selection of images and save them to disk. Note: The images rendered here are keyframes only. :param nuim: NuImages instance. :param mode: What to render: "image" for the image without annotations, "annotated" for the image with annotations, "trajectory" for a rendering of the trajectory of the vehice, "all" to render all of the above separately. :param cam_name: Only render images from a particular camera, e.g. "CAM_BACK'. :param log_name: Only render images from a particular log, e.g. "n013-2018-09-04-13-30-50+0800". :param sample_limit: Maximum number of samples (images) to render. Note that the mini split only includes 50 images. :param filter_categories: Specify a list of object_ann category names. Every sample that is rendered must contain annotations of any of those categories. :param out_type: The output type as one of the following: 'image': Renders a single image for the image keyframe of each sample. 'video': Renders a video for all images/pcls in the clip associated with each sample. :param out_dir: Folder to render the images to. :param cleanup: Whether to delete images after rendering the video. Not relevant for out_type == 'image'. """ # Check and convert inputs. assert out_type in ['image', 'video'], ' Error: Unknown out_type %s!' % out_type all_modes = ['image', 'annotated', 'trajectory'] assert mode in all_modes + ['all'], 'Error: Unknown mode %s!' % mode assert not (out_type == 'video' and mode == 'trajectory'), 'Error: Cannot render "trajectory" for videos!' if mode == 'all': if out_type == 'image': modes = all_modes elif out_type == 'video': modes = [m for m in all_modes if m not in ['annotated', 'trajectory']] else: raise Exception('Error" Unknown mode %s!' % mode) else: modes = [mode] if filter_categories is not None: category_names = [c['name'] for c in nuim.category] for category_name in filter_categories: assert category_name in category_names, 'Error: Invalid object_ann category %s!' % category_name # Create output folder. out_dir = os.path.expanduser(out_dir) if not os.path.isdir(out_dir): os.makedirs(out_dir) # Filter by camera. sample_tokens = [s['token'] for s in nuim.sample] if cam_name is not None: sample_tokens_cam = [] for sample_token in sample_tokens: sample = nuim.get('sample', sample_token) key_camera_token = sample['key_camera_token'] sensor = nuim.shortcut('sample_data', 'sensor', key_camera_token) if sensor['channel'] == cam_name: sample_tokens_cam.append(sample_token) sample_tokens = sample_tokens_cam # Filter by log. if log_name is not None: sample_tokens_cleaned = [] for sample_token in sample_tokens: sample = nuim.get('sample', sample_token) log = nuim.get('log', sample['log_token']) if log['logfile'] == log_name: sample_tokens_cleaned.append(sample_token) sample_tokens = sample_tokens_cleaned # Filter samples by category. if filter_categories is not None: # Get categories in each sample. sd_to_object_cat_names = defaultdict(lambda: set()) for object_ann in nuim.object_ann: category = nuim.get('category', object_ann['category_token']) sd_to_object_cat_names[object_ann['sample_data_token']].add(category['name']) # Filter samples. sample_tokens_cleaned = [] for sample_token in sample_tokens: sample = nuim.get('sample', sample_token) key_camera_token = sample['key_camera_token'] category_names = sd_to_object_cat_names[key_camera_token] if any([c in category_names for c in filter_categories]): sample_tokens_cleaned.append(sample_token) sample_tokens = sample_tokens_cleaned # Get a random selection of samples. random.shuffle(sample_tokens) # Limit number of samples. sample_tokens = sample_tokens[:sample_limit] print('Rendering %s for mode %s to folder %s...' % (out_type, mode, out_dir)) for sample_token in tqdm.tqdm(sample_tokens): sample = nuim.get('sample', sample_token) log = nuim.get('log', sample['log_token']) log_name = log['logfile'] key_camera_token = sample['key_camera_token'] sensor = nuim.shortcut('sample_data', 'sensor', key_camera_token) sample_cam_name = sensor['channel'] sd_tokens = nuim.get_sample_content(sample_token) # We cannot render a video if there are missing camera sample_datas. if len(sd_tokens) < 13 and out_type == 'video': print('Warning: Skipping video for sample token %s, as not all 13 frames exist!' % sample_token) continue for mode in modes: out_path_prefix = os.path.join(out_dir, '%s_%s_%s_%s' % (log_name, sample_token, sample_cam_name, mode)) if out_type == 'image': write_image(nuim, key_camera_token, mode, '%s.jpg' % out_path_prefix) elif out_type == 'video': write_video(nuim, sd_tokens, mode, out_path_prefix, cleanup=cleanup) def write_video(nuim: NuImages, sd_tokens: List[str], mode: str, out_path_prefix: str, cleanup: bool = True) -> None: """ Render a video by combining all the images of type mode for each sample_data. :param nuim: NuImages instance. :param sd_tokens: All sample_data tokens in chronological order. :param mode: The mode - see render_images(). :param out_path_prefix: The file prefix used for the images and video. :param cleanup: Whether to delete images after rendering the video. """ # Loop through each frame to create the video. out_paths = [] for i, sd_token in enumerate(sd_tokens): out_path = '%s_%d.jpg' % (out_path_prefix, i) out_paths.append(out_path) write_image(nuim, sd_token, mode, out_path) # Create video. first_im = cv2.imread(out_paths[0]) freq = 2 # Display frequency (Hz). fourcc = cv2.VideoWriter_fourcc(*'MJPG') video_path = '%s.avi' % out_path_prefix out = cv2.VideoWriter(video_path, fourcc, freq, first_im.shape[1::-1]) # Load each image and add to the video. for out_path in out_paths: im = cv2.imread(out_path) out.write(im) # Delete temporary image if requested. if cleanup: os.remove(out_path) # Finalize video. out.release() def write_image(nuim: NuImages, sd_token: str, mode: str, out_path: str) -> None: """ Render a single image of type mode for the given sample_data. :param nuim: NuImages instance. :param sd_token: The sample_data token. :param mode: The mode - see render_images(). :param out_path: The file to write the image to. """ if mode == 'annotated': nuim.render_image(sd_token, annotation_type='all', out_path=out_path) elif mode == 'image': nuim.render_image(sd_token, annotation_type='none', out_path=out_path) elif mode == 'trajectory': sample_data = nuim.get('sample_data', sd_token) nuim.render_trajectory(sample_data['sample_token'], out_path=out_path) else: raise Exception('Error: Unknown mode %s!' % mode) # Trigger garbage collection to avoid memory overflow from the render functions. gc.collect() if __name__ == '__main__': parser = argparse.ArgumentParser(description='Render a random selection of images and save them to disk.') parser.add_argument('--seed', type=int, default=42) # Set to 0 to disable. parser.add_argument('--version', type=str, default='v1.0-mini') parser.add_argument('--dataroot', type=str, default='/data/sets/nuimages') parser.add_argument('--verbose', type=int, default=1) parser.add_argument('--mode', type=str, default='all') parser.add_argument('--cam_name', type=str, default=None) parser.add_argument('--log_name', type=str, default=None) parser.add_argument('--sample_limit', type=int, default=50) parser.add_argument('--filter_categories', action='append') parser.add_argument('--out_type', type=str, default='image') parser.add_argument('--out_dir', type=str, default='~/Downloads/nuImages') args = parser.parse_args() # Set random seed for reproducible image selection. if args.seed != 0: random.seed(args.seed) # Initialize NuImages class. nuim_ = NuImages(version=args.version, dataroot=args.dataroot, verbose=bool(args.verbose), lazy=False) # Render images. render_images(nuim_, mode=args.mode, cam_name=args.cam_name, log_name=args.log_name, sample_limit=args.sample_limit, filter_categories=args.filter_categories, out_type=args.out_type, out_dir=args.out_dir)
42.614035
120
0.656546
0
0
0
0
0
0
0
0
3,789
0.389975
3f23c6741b5a4eb8f1708037600b9e1ee26ac16e
10,868
py
Python
version_info.py
sairam4123/GodotReleaseScriptPython
2fd2644b0301f20b89b6772a0c93cec6d012f080
[ "MIT" ]
null
null
null
version_info.py
sairam4123/GodotReleaseScriptPython
2fd2644b0301f20b89b6772a0c93cec6d012f080
[ "MIT" ]
null
null
null
version_info.py
sairam4123/GodotReleaseScriptPython
2fd2644b0301f20b89b6772a0c93cec6d012f080
[ "MIT" ]
null
null
null
import re from configparser import ConfigParser from constants import PROJECT_FOLDER, RELEASE_LEVEL_DICT from release_type import ReleaseLevel, ReleaseType, value_from_key class VersionInfo: def __init__( self, major: int = 0, minor: int = 0, bugfix: int = 0, hotfix: int = 0, release_level: ReleaseLevel = ReleaseLevel.public, serial: int = None, release_type: ReleaseType = None, short_version: bool = False, ): self.major = 0 if major is None else int(major) self.minor = 0 if minor is None else int(minor) self.bugfix = 0 if bugfix is None else int(bugfix) self.hotfix = 0 if hotfix is None else int(hotfix) self.short_version = short_version self.release_type = release_type if self.release_type is None: if self.hotfix == 0: if self.bugfix == 0: if self.minor == 0: if self.major != 0: self.release_type = ReleaseType.major else: self.release_type = ReleaseType.minor else: self.release_type = ReleaseType.bugfix else: self.release_type = ReleaseType.hotfix self.serial = (serial and int(serial)) or 0 self.release_level = value_from_key(RELEASE_LEVEL_DICT, release_level) or release_level or ReleaseLevel.public def __str__(self): version: str = f'v{self.major}.{self.minor}.{self.bugfix}' if self.release_type == ReleaseType.hotfix: version = f'{version}.{self.hotfix}' elif self.release_level != ReleaseLevel.public: version = f'{version}{RELEASE_LEVEL_DICT[self.release_level]}{self.serial}' return version def increment(self, release_level: ReleaseLevel, release_type: ReleaseType = None): sequel: bool = False if release_type == self.release_type and self.release_level == ReleaseLevel.public: sequel = True if self.release_type != release_type or sequel: if release_type == ReleaseType.hotfix: self.hotfix += 1 else: self.hotfix = 0 if release_type == ReleaseType.bugfix: self.bugfix += 1 else: self.bugfix = 0 if release_type == ReleaseType.minor: self.minor += 1 else: self.minor = 0 if release_type == ReleaseType.major: self.major += 1 self.serial = None self.release_type = release_type if release_level != ReleaseLevel.public: self.increase_serial(release_level) elif release_level == ReleaseLevel.public: self.serial = 0 self.release_level = release_level self.release_type = release_type def increase_serial(self, release_level: ReleaseLevel): if self.serial is not None and self.release_level != release_level: self.serial = 0 else: if self.serial is not None: self.serial += 1 else: self.serial = 0 self.release_level = release_level def convert_to_godot_format(self): return repr(str(self).lstrip("v")).replace("'", '"') @classmethod def start_version(cls): return cls(0, 1, 0) @classmethod def load_version(cls, version: str): pattern: re.Pattern = re.compile(r"(\d)\.(\d)\.?(\d)?\.?(\d)?\.?([a-z]{1,2})?(\d{1,3})?") match: re.Match = pattern.match(version.replace('"', '')) if match: return cls(*match.groups()) else: return cls.start_version() @classmethod def check_version(cls, version: str): pattern: re.Pattern = re.compile(r"(\d)\.(\d)\.?(\d)?\.?(\d)?\.?([a-z]{1,2})?(\d{1,3})?") match: re.Match = pattern.match(version.replace('"', '')) return bool(match) def set_version(new_version: VersionInfo) -> None: config = ConfigParser() with open(list(PROJECT_FOLDER.glob("export_presets.cfg"))[0], 'r') as exports_config: config.read_file(exports_config) for section_name, section in config.items(): for key, value in section.items(): if key.endswith('version'): config.set(section_name, key, new_version.convert_to_godot_format()) config_file = open(list(PROJECT_FOLDER.glob("export_presets.cfg"))[0], "w") config.write(config_file) config_file.close() with open(list(PROJECT_FOLDER.glob("version.txt"))[0], 'w') as version_file: version_file.write(str(new_version)) def get_version() -> VersionInfo: try: version_file = open(list(PROJECT_FOLDER.glob("version.txt"))[0], 'r') except IndexError: version_file = open(PROJECT_FOLDER/"version.txt", "w+") else: if not VersionInfo.check_version(version_file.read()): print("Falling back to export presets") config = ConfigParser() with open(list(PROJECT_FOLDER.glob("export_presets.cfg"))[0], 'r') as exports_config: config.read_file(exports_config) version: VersionInfo = VersionInfo.start_version() for section_name, section in config.items(): for key, value in section.items(): if key.endswith('version'): version = VersionInfo.load_version(value) return version else: return VersionInfo.load_version(version_file.read()) if __name__ == '__main__': # Test Script index = 0 version_info = VersionInfo(1, 0, 0, 0, ReleaseLevel.public, None, ReleaseType.major) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.alpha, release_type=ReleaseType.minor) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.alpha, release_type=ReleaseType.minor) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.beta, release_type=ReleaseType.minor) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.beta, release_type=ReleaseType.minor) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.beta, release_type=ReleaseType.minor) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.beta, release_type=ReleaseType.minor) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.release_candidate, release_type=ReleaseType.minor) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.release_candidate, release_type=ReleaseType.minor) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.release_candidate, release_type=ReleaseType.minor) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.release_candidate, release_type=ReleaseType.minor) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.release_candidate, release_type=ReleaseType.minor) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.public, release_type=ReleaseType.minor) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.public, release_type=ReleaseType.bugfix) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.public, release_type=ReleaseType.bugfix) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.public, release_type=ReleaseType.hotfix) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.alpha, release_type=ReleaseType.minor) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.release_candidate, release_type=ReleaseType.minor) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.public, release_type=ReleaseType.minor) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.alpha, release_type=ReleaseType.major) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.alpha, release_type=ReleaseType.major) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.alpha, release_type=ReleaseType.major) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.alpha, release_type=ReleaseType.major) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.beta, release_type=ReleaseType.major) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.beta, release_type=ReleaseType.major) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.beta, release_type=ReleaseType.major) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.beta, release_type=ReleaseType.major) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.beta, release_type=ReleaseType.major) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.beta, release_type=ReleaseType.major) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.release_candidate, release_type=ReleaseType.major) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.release_candidate, release_type=ReleaseType.major) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.release_candidate, release_type=ReleaseType.major) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.release_candidate, release_type=ReleaseType.major) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.public, release_type=ReleaseType.major) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.public, release_type=ReleaseType.hotfix) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.public, release_type=ReleaseType.hotfix) print(index, version_info) index += 1 version_info.increment(ReleaseLevel.alpha, release_type=ReleaseType.minor) print(index, version_info) index += 1 _version = version_info.convert_to_godot_format() print(_version) _pattern: re.Pattern = re.compile(r"(\d)\.(\d)\.?(\d)?\.?(\d)?\.?([a-z]{1,2})?(\d{1,3})?") _match: re.Match = _pattern.match(_version.replace('"', '')) print(index, VersionInfo(*_match.groups()))
39.234657
118
0.656054
3,929
0.36152
0
0
641
0.05898
0
0
514
0.047295
3f2514948f103576dc7043e1528909e26cdfc7f7
2,302
py
Python
test/test_create_json_items_from_embark_xml.py
ndlib/mellon-search
30f7eb267e35d77ee6d126789866d44d825c3e0c
[ "Apache-2.0" ]
null
null
null
test/test_create_json_items_from_embark_xml.py
ndlib/mellon-search
30f7eb267e35d77ee6d126789866d44d825c3e0c
[ "Apache-2.0" ]
null
null
null
test/test_create_json_items_from_embark_xml.py
ndlib/mellon-search
30f7eb267e35d77ee6d126789866d44d825c3e0c
[ "Apache-2.0" ]
null
null
null
# test_create_json_items_from_embark_xml.py 2/18/19 sm """ test create_json_items_from_embark_xml.py """ import sys import json import unittest import csv from xml.etree.ElementTree import ElementTree, tostring # add parent directory to path import os import inspect CURRENTDIR = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) PARENTDIR = os.path.dirname(CURRENTDIR) sys.path.insert(0, PARENTDIR) import create_json_items_from_embark_xml class Test(unittest.TestCase): """ Class for test fixtures """ def test_write_json_output(self): """ test writing json output """ json_data = '{"sample" : "test"}' create_json_items_from_embark_xml.write_json_output('.', 'test_write_json_output.json', json_data) with open('./test_write_json_output.json', 'r') as input_source: data = json.load(input_source) input_source.close() self.assertTrue(json_data == data) def test_everything(self): """ run test on whole process, verifying expected results """ create_json_items_from_embark_xml.create_json_items_from_embark_xml('./objects 01_18_19.xml', 'temp/pnx', csv_output_root_directory='temp') # verify one csv with open('temp/1976.057/main.csv', 'r') as read_actual: reader = csv.reader(read_actual) actual_csv = list(reader) with open('./expected_results/test_everything.csv', 'r') as read_expected: reader = csv.reader(read_expected) expected_csv = list(reader) self.assertTrue(actual_csv == expected_csv) # verify one pnx actual_results_file_name = 'temp/pnx/1976.057.xml' expected_results_file_name = 'expected_results/test_everything.xml' actual_results = ElementTree(file=actual_results_file_name) expected_results = ElementTree(file=expected_results_file_name) # print(ElementTree.tostring(xml_tree.getroot())) self.assertTrue(tostring(actual_results.getroot()) == tostring(expected_results.getroot())) def suite(): """ define test suite """ return unittest.TestLoader().loadTestsFromTestCase(Test) if __name__ == '__main__': suite() unittest.main()
36.539683
113
0.682884
1,664
0.72285
0
0
0
0
0
0
631
0.274109
3f272482b04c8aa1d417b0e37326c6eff1cef597
3,000
py
Python
plot/laikago/plot_task.py
MaxxWilson/ASE389Project
13c3c72887e27fbed2eef63c1e27b4a185036a39
[ "MIT" ]
17
2021-05-31T10:55:48.000Z
2022-03-30T10:09:37.000Z
plot/laikago/plot_task.py
MaxxWilson/ASE389Project
13c3c72887e27fbed2eef63c1e27b4a185036a39
[ "MIT" ]
2
2021-10-01T22:11:43.000Z
2021-12-06T02:34:33.000Z
plot/laikago/plot_task.py
MaxxWilson/ASE389Project
13c3c72887e27fbed2eef63c1e27b4a185036a39
[ "MIT" ]
3
2021-08-24T00:53:18.000Z
2022-03-31T17:29:07.000Z
import os import sys cwd = os.getcwd() sys.path.append(cwd) import pickle import numpy as np import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt from plot.helper import plot_task, plot_weights, plot_rf_z_max, plot_rf_quad, plot_vector_traj tasks = [ 'com_pos', 'com_vel', 'chassis_quat', 'chassis_ang_vel', 'toeFL_pos', 'toeFL_vel', 'toeFR_pos', 'toeFR_vel', 'toeRR_pos', 'toeRR_vel', 'toeRL_pos', 'toeRL_vel' ] weights = [ 'w_com', 'w_chassis_ori', 'w_toeFL', 'w_toeFR', 'w_toeRR', 'w_toeRL' ] rf_z = ['rf_z_max_toeFL', 'rf_z_max_toeFR', 'rf_z_max_toeRR', 'rf_z_max_toeRL'] time = [] phase = [] rf_cmd = [] des, act = dict(), dict() for topic in tasks: des[topic] = [] act[topic] = [] w = dict() for topic in weights: w[topic] = [] rf_z_max = dict() for topic in rf_z: rf_z_max[topic] = [] with open('data/pnc.pkl', 'rb') as file: while True: try: d = pickle.load(file) time.append(d['time']) phase.append(d['phase']) for topic in tasks: des[topic].append(d[topic + '_des']) act[topic].append(d[topic]) for topic in weights: w[topic].append(d[topic]) for topic in rf_z: rf_z_max[topic].append(d[topic]) rf_cmd.append(d['rf_cmd']) except EOFError: break for k, v in des.items(): des[k] = np.stack(v, axis=0) for k, v in act.items(): act[k] = np.stack(v, axis=0) rf_cmd = np.stack(rf_cmd, axis=0) phase = np.stack(phase, axis=0) ## ============================================================================= ## Plot Task ## ============================================================================= plot_task(time, des['com_pos'], act['com_pos'], des['com_vel'], act['com_vel'], phase, 'com lin') plot_task(time, des['chassis_quat'], act['chassis_quat'], des['chassis_ang_vel'], act['chassis_ang_vel'], phase, 'pelvis ori') plot_task(time, des['toeFL_pos'], act['toeFL_pos'], des['toeFL_vel'], act['toeFL_vel'], phase, 'left foot lin') plot_task(time, des['toeFR_pos'], act['toeFR_pos'], des['toeFR_vel'], act['toeFR_vel'], phase, 'left foot ori') plot_task(time, des['toeRR_pos'], act['toeRR_pos'], des['toeRR_vel'], act['toeRR_vel'], phase, 'right foot lin') plot_task(time, des['toeRL_pos'], act['toeRL_pos'], des['toeRL_vel'], act['toeRL_vel'], phase, 'right foot ori') ## ============================================================================= ## Plot WBC Solutions ## ============================================================================= plot_rf_quad(time, rf_cmd, phase) ## ============================================================================= ## Plot Weights and Max Reaction Force Z ## ============================================================================= plot_weights(time, w, phase) plot_rf_z_max(time, rf_z_max, phase) plt.show()
29.411765
94
0.515333
0
0
0
0
0
0
0
0
1,221
0.407
3f272ad913a6368c2dd0e9360ea0f0c8243524c5
3,504
py
Python
h/views/api/users.py
bibliotechie/h
16e275f79ef7d1086971bd30ef403501c6b93beb
[ "BSD-2-Clause" ]
null
null
null
h/views/api/users.py
bibliotechie/h
16e275f79ef7d1086971bd30ef403501c6b93beb
[ "BSD-2-Clause" ]
null
null
null
h/views/api/users.py
bibliotechie/h
16e275f79ef7d1086971bd30ef403501c6b93beb
[ "BSD-2-Clause" ]
null
null
null
from pyramid.httpexceptions import HTTPConflict from h.auth.util import client_authority from h.presenters import TrustedUserJSONPresenter from h.schemas import ValidationError from h.schemas.api.user import CreateUserAPISchema, UpdateUserAPISchema from h.services.user_unique import DuplicateUserError from h.views.api.config import api_config from h.views.api.exceptions import PayloadError @api_config( versions=["v1", "v2"], route_name="api.user_read", request_method="GET", link_name="user.read", description="Fetch a user", permission="read", ) def read(context, _request): """ Fetch a user. This API endpoint allows authorized clients (those able to provide a valid Client ID and Client Secret) to read users in their authority. """ return TrustedUserJSONPresenter(context.user).asdict() @api_config( versions=["v1", "v2"], route_name="api.users", request_method="POST", link_name="user.create", description="Create a new user", permission="create", ) def create(request): """ Create a user. This API endpoint allows authorised clients (those able to provide a valid Client ID and Client Secret) to create users in their authority. These users are created pre-activated, and are unable to log in to the web service directly. Note: the authority-enforcement logic herein is, by necessity, strange. The API accepts an ``authority`` parameter but the only valid value for the param is the client's verified authority. If the param does not match the client's authority, ``ValidationError`` is raised. :raises ValidationError: if ``authority`` param does not match client authority :raises HTTPConflict: if user already exists """ client_authority_ = client_authority(request) schema = CreateUserAPISchema() appstruct = schema.validate(_json_payload(request)) # Enforce authority match if appstruct["authority"] != client_authority_: raise ValidationError( "authority '{auth_param}' does not match client authority".format( auth_param=appstruct["authority"] ) ) user_unique_service = request.find_service(name="user_unique") try: user_unique_service.ensure_unique(appstruct, authority=client_authority_) except DuplicateUserError as err: raise HTTPConflict(str(err)) from err user_signup_service = request.find_service(name="user_signup") user = user_signup_service.signup(require_activation=False, **appstruct) presenter = TrustedUserJSONPresenter(user) return presenter.asdict() @api_config( versions=["v1", "v2"], route_name="api.user", request_method="PATCH", link_name="user.update", description="Update a user", permission="update", ) def update(user, request): """ Update a user. This API endpoint allows authorised clients (those able to provide a valid Client ID and Client Secret) to update users in their authority. """ schema = UpdateUserAPISchema() appstruct = schema.validate(_json_payload(request)) user_update_service = request.find_service(name="user_update") user = user_update_service.update(user, **appstruct) presenter = TrustedUserJSONPresenter(user) return presenter.asdict() def _json_payload(request): try: return request.json_body except ValueError as err: raise PayloadError() from err
31.567568
81
0.710616
0
0
0
0
2,961
0.845034
0
0
1,420
0.405251
3f2894b54d3e8597c52938f696795d8309755127
239
py
Python
controllers/social_auth/kivyauth/__init__.py
richierh/SalesKivyMD
f445adc701946ff38865b4a1a00a03529142613e
[ "MIT" ]
126
2020-06-12T15:02:19.000Z
2022-03-31T10:13:29.000Z
controllers/social_auth/kivyauth/__init__.py
richierh/SalesKivyMD
f445adc701946ff38865b4a1a00a03529142613e
[ "MIT" ]
13
2020-07-01T01:03:26.000Z
2022-02-21T02:21:24.000Z
controllers/social_auth/kivyauth/__init__.py
richierh/SalesKivyMD
f445adc701946ff38865b4a1a00a03529142613e
[ "MIT" ]
22
2020-06-12T22:24:27.000Z
2022-03-10T13:24:33.000Z
from kivy.logger import Logger from kivy.utils import platform __version__ = "2.3.2" _log_message = "KivyAuth:" + f" {__version__}" + f' (installed at "{__file__}")' __all__ = ("login_providers", "auto_login") Logger.info(_log_message)
23.9
80
0.723849
0
0
0
0
0
0
0
0
95
0.39749
3f28d1e2f76100adc00945a0759d254a0a1638b4
20
py
Python
RDS/circle3_central_services/research_manager/src/api/User/__init__.py
Sciebo-RDS/Sciebo-RDS
d71cf449ed045a2a7a049e2cb77c99fd5a9195bd
[ "MIT" ]
10
2020-06-24T08:22:24.000Z
2022-01-13T16:17:36.000Z
RDS/circle3_central_services/research_manager/src/api/User/__init__.py
Sciebo-RDS/Sciebo-RDS
d71cf449ed045a2a7a049e2cb77c99fd5a9195bd
[ "MIT" ]
78
2020-01-23T14:32:06.000Z
2022-03-07T14:11:16.000Z
RDS/circle3_central_services/research_manager/src/api/User/__init__.py
Sciebo-RDS/Sciebo-RDS
d71cf449ed045a2a7a049e2cb77c99fd5a9195bd
[ "MIT" ]
1
2020-06-24T08:33:48.000Z
2020-06-24T08:33:48.000Z
from .user import *
20
20
0.7
0
0
0
0
0
0
0
0
0
0