hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
c054e5df6525caa1e5b886eedf24790796e7312b
862
py
Python
WEEKS/CD_Sata-Structures/_RESOURCES/CODESIGNAL/first_duplicate.py
webdevhub42/Lambda
b04b84fb5b82fe7c8b12680149e25ae0d27a0960
[ "MIT" ]
null
null
null
WEEKS/CD_Sata-Structures/_RESOURCES/CODESIGNAL/first_duplicate.py
webdevhub42/Lambda
b04b84fb5b82fe7c8b12680149e25ae0d27a0960
[ "MIT" ]
null
null
null
WEEKS/CD_Sata-Structures/_RESOURCES/CODESIGNAL/first_duplicate.py
webdevhub42/Lambda
b04b84fb5b82fe7c8b12680149e25ae0d27a0960
[ "MIT" ]
null
null
null
def firstDuplicate(a): number_frequencies, number_indices, duplicate_index = {}, {}, {} # Iterate through list and increment frequency count # if number not in dict. Also, note the index asscoiated # with the value for i in range(len(a)): if a[i] not in number_frequencies: number_frequencies[a[i]] = 1 number_indices[a[i]] = i elif a[i] in number_frequencies: if number_frequencies[a[i]] < 2: number_frequencies[a[i]] += 1 number_indices[a[i]] = i for number in number_frequencies: if number_frequencies[number] == 2: duplicate_index[number] = number_indices[number] if not duplicate_index: return -1 else: minimal_index_key = min(duplicate_index, key=duplicate_index.get) return minimal_index_key
34.48
73
0.62413
0
0
0
0
0
0
0
0
124
0.143852
c0556573b1b396000e337b73f3de0c54b4d2d005
374
py
Python
src/viewer/abs/forms.py
ozacas/asxtrade
a3645ae526bfc7a546fdf2a39520feda99e3390a
[ "Apache-2.0" ]
8
2021-03-20T13:12:25.000Z
2022-02-07T11:17:40.000Z
src/viewer/abs/forms.py
ozacas/asxtrade
a3645ae526bfc7a546fdf2a39520feda99e3390a
[ "Apache-2.0" ]
8
2021-03-07T03:23:46.000Z
2021-06-01T10:49:56.000Z
src/viewer/abs/forms.py
ozacas/asxtrade
a3645ae526bfc7a546fdf2a39520feda99e3390a
[ "Apache-2.0" ]
3
2020-12-08T10:22:23.000Z
2021-08-04T01:59:24.000Z
from django import forms from django.core.exceptions import ValidationError from abs.models import dataflows class ABSDataflowForm(forms.Form): dataflow = forms.ChoiceField(choices=(), required=True) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields["dataflow"].choices = [(i.abs_id, i.name) for i in dataflows()]
31.166667
83
0.71123
262
0.700535
0
0
0
0
0
0
10
0.026738
c058a47a9fcf9cced343a8955317d5594bcf17a7
734
py
Python
pkgs/sdk-pkg/src/genie/libs/sdk/apis/iosxe/dot1x/clear.py
patrickboertje/genielibs
61c37aacf3dd0f499944555e4ff940f92f53dacb
[ "Apache-2.0" ]
1
2022-01-16T10:00:24.000Z
2022-01-16T10:00:24.000Z
pkgs/sdk-pkg/src/genie/libs/sdk/apis/iosxe/dot1x/clear.py
patrickboertje/genielibs
61c37aacf3dd0f499944555e4ff940f92f53dacb
[ "Apache-2.0" ]
null
null
null
pkgs/sdk-pkg/src/genie/libs/sdk/apis/iosxe/dot1x/clear.py
patrickboertje/genielibs
61c37aacf3dd0f499944555e4ff940f92f53dacb
[ "Apache-2.0" ]
null
null
null
# Python import logging # Unicon from unicon.core.errors import SubCommandFailure # Logger log = logging.getLogger(__name__) def clear_access_session_intf(device, intf): """ clear access-session interface {} Args: device (`obj`): Device object intf('str'): Name of the interface to clear access-session Returns: None Raises: SubCommandFailure """ try: device.execute('clear access-session interface {intf}'.format(intf=intf)) except SubCommandFailure as e: raise SubCommandFailure( "Could not clear access-session interface on {device}. Error:\n{error}" .format(device=device, error=e) )
24.466667
83
0.622616
0
0
0
0
0
0
0
0
386
0.525886
c059b518fc62b90809941f99c3bd5f94aa341ed5
9,713
py
Python
pipeline/forms.py
jnis77diver/django-pipeline
8bac57adae84615d9d79ad19b2b591c2e46879f9
[ "MIT" ]
null
null
null
pipeline/forms.py
jnis77diver/django-pipeline
8bac57adae84615d9d79ad19b2b591c2e46879f9
[ "MIT" ]
1
2021-09-20T22:02:21.000Z
2021-09-21T13:55:41.000Z
pipeline/forms.py
jnis77diver/django-pipeline
8bac57adae84615d9d79ad19b2b591c2e46879f9
[ "MIT" ]
1
2021-09-18T01:39:48.000Z
2021-09-18T01:39:48.000Z
"""Support for referencing Pipeline packages in forms and widgets.""" from __future__ import unicode_literals from django.contrib.staticfiles.storage import staticfiles_storage from django.utils.functional import cached_property try: from django.utils.six import iteritems, add_metaclass except ImportError: from .decorator import add_metaclass def iteritems(dictionary): return dictionary.items() from .collector import default_collector from .conf import settings from .packager import Packager class PipelineFormMediaProperty(object): """A property that converts Pipeline packages to lists of files. This is used behind the scenes for any Media classes that subclass :py:class:`PipelineFormMedia`. When accessed, it converts any Pipeline packages into lists of media files and returns or forwards on lookups to that list. """ def __init__(self, get_media_files_func, media_cls, extra_files): """Initialize the property. Args: get_media_files_func (callable): The function to call to generate the media files. media_cls (type): The Media class owning the property. extra_files (object): Files listed in the original ``css`` or ``js`` attribute on the Media class. """ self._get_media_files_func = get_media_files_func self._media_cls = media_cls self._extra_files = extra_files @cached_property def _media_files(self): """The media files represented by the property.""" return self._get_media_files_func(self._media_cls, self._extra_files) def __get__(self, *args, **kwargs): """Return the media files when accessed as an attribute. This is called when accessing the attribute directly through the Media class (for example, ``Media.css``). It returns the media files directly. Args: *args (tuple, unused): Unused positional arguments. **kwargs (dict, unused): Unused keyword arguments. Returns: object: The list or dictionary containing the media files definition. """ return self._media_files def __getattr__(self, attr_name): """Return an attribute on the media files definition. This is called when accessing an attribute that doesn't otherwise exist in the property's dictionary. The call is forwarded onto the media files definition. Args: attr_name (unicode): The attribute name. Returns: object: The attribute value. Raises: AttributeError: An attribute with this name could not be found. """ return getattr(self._media_files, attr_name) def __iter__(self): """Iterate through the media files definition. This is called when attempting to iterate over this property. It iterates over the media files definition instead. Yields: object: Each entry in the media files definition. """ return iter(self._media_files) class PipelineFormMediaMetaClass(type): """Metaclass for the PipelineFormMedia class. This is responsible for converting CSS/JavaScript packages defined in Pipeline into lists of files to include on a page. It handles access to the :py:attr:`css` and :py:attr:`js` attributes on the class, generating a list of files to return based on the Pipelined packages and individual files listed in the :py:attr:`css`/:py:attr:`css_packages` or :py:attr:`js`/:py:attr:`js_packages` attributes. """ def __new__(cls, name, bases, attrs): """Construct the class. Args: name (bytes): The name of the class. bases (tuple): The base classes for the class. attrs (dict): The attributes going into the class. Returns: type: The new class. """ new_class = super(PipelineFormMediaMetaClass, cls).__new__( cls, name, bases, attrs) # If we define any packages, we'll need to use our special # PipelineFormMediaProperty class. We use this instead of intercepting # in __getattribute__ because Django does not access them through # normal property access. Instead, grabs the Media class's __dict__ # and accesses them from there. By using these special properties, we # can handle direct access (Media.css) and dictionary-based access # (Media.__dict__['css']). if 'css_packages' in attrs: new_class.css = PipelineFormMediaProperty( cls._get_css_files, new_class, attrs.get('css') or {}) if 'js_packages' in attrs: new_class.js = PipelineFormMediaProperty( cls._get_js_files, new_class, attrs.get('js') or []) return new_class def _get_css_files(cls, extra_files): """Return all CSS files from the Media class. Args: extra_files (dict): The contents of the Media class's original :py:attr:`css` attribute, if one was provided. Returns: dict: The CSS media types and files to return for the :py:attr:`css` attribute. """ packager = Packager() css_packages = getattr(cls, 'css_packages', {}) return dict( (media_target, cls._get_media_files(packager=packager, media_packages=media_packages, media_type='css', extra_files=extra_files.get(media_target, []))) for media_target, media_packages in iteritems(css_packages) ) def _get_js_files(cls, extra_files): """Return all JavaScript files from the Media class. Args: extra_files (list): The contents of the Media class's original :py:attr:`js` attribute, if one was provided. Returns: list: The JavaScript files to return for the :py:attr:`js` attribute. """ return cls._get_media_files( packager=Packager(), media_packages=getattr(cls, 'js_packages', {}), media_type='js', extra_files=extra_files) def _get_media_files(cls, packager, media_packages, media_type, extra_files): """Return source or output media files for a list of packages. This will go through the media files belonging to the provided list of packages referenced in a Media class and return the output files (if Pipeline is enabled) or the source files (if not enabled). Args: packager (pipeline.packager.Packager): The packager responsible for media compilation for this type of package. media_packages (list of unicode): The list of media packages referenced in Media to compile or return. extra_files (list of unicode): The list of extra files to include in the result. This would be the list stored in the Media class's original :py:attr:`css` or :py:attr:`js` attributes. Returns: list: The list of media files for the given packages. """ source_files = list(extra_files) if (not settings.PIPELINE_ENABLED and settings.PIPELINE_COLLECTOR_ENABLED): default_collector.collect() for media_package in media_packages: package = packager.package_for(media_type, media_package) if settings.PIPELINE_ENABLED: source_files.append( staticfiles_storage.url(package.output_filename)) else: source_files += packager.compile(package.paths) return source_files @add_metaclass(PipelineFormMediaMetaClass) class PipelineFormMedia(object): """Base class for form or widget Media classes that use Pipeline packages. Forms or widgets that need custom CSS or JavaScript media on a page can define a standard :py:class:`Media` class that subclasses this class, listing the CSS or JavaScript packages in :py:attr:`css_packages` and :py:attr:`js_packages` attributes. These are formatted the same as the standard :py:attr:`css` and :py:attr:`js` attributes, but reference Pipeline package names instead of individual source files. If Pipeline is enabled, these will expand to the output files for the packages. Otherwise, these will expand to the list of source files for the packages. Subclasses can also continue to define :py:attr:`css` and :py:attr:`js` attributes, which will be returned along with the other output/source files. Example: from django import forms from pipeline.forms import PipelineFormMedia class MyForm(forms.Media): ... class Media(PipelineFormMedia): css_packages = { 'all': ('my-form-styles-package', 'other-form-styles-package'), 'print': ('my-form-print-styles-package',), } js_packages = ('my-form-scripts-package',) js = ('some-file.js',) """
34.81362
79
0.615258
9,141
0.94111
0
0
1,633
0.168125
0
0
6,478
0.666941
c05cbafe5128e838bdc6f0435f143a4bec7be43b
1,838
py
Python
api_user/views.py
archkwon/python-django-restful-mysql
a8097c08057de9656cb40266420fcffebb11bdb6
[ "MIT" ]
null
null
null
api_user/views.py
archkwon/python-django-restful-mysql
a8097c08057de9656cb40266420fcffebb11bdb6
[ "MIT" ]
null
null
null
api_user/views.py
archkwon/python-django-restful-mysql
a8097c08057de9656cb40266420fcffebb11bdb6
[ "MIT" ]
null
null
null
from django.http import QueryDict from django.http.response import JsonResponse from rest_framework import viewsets, status from rest_framework.views import APIView from .serializers import * class UserInfoViewSet(viewsets.ModelViewSet): queryset = UserInfoModel.objects.all() serializer_class = UserInfoSerializer def get_queryset(self): queryset = super().get_queryset() user_id = self.request.query_params.get('user_id', '') if user_id: queryset.get(user_id=user_id) return queryset class UserInfoSessionView(APIView): # noinspection PyMethodMayBeStatic def get(self, request, *args, **kwargs): user_id = request.GET['user_id'] user_model = UserInfoModel.objects.get(user_id=user_id) serializer = UserInfoSerializer(user_model) return JsonResponse({ 'code': True, 'status': status.HTTP_200_OK, 'response': serializer.data, 'message': 'SEARCH_SUCCESS'}, status=status.HTTP_200_OK) # 로그인 토큰 업데이트 class UpdateTokenAction(APIView): # noinspection PyMethodMayBeStatic def put(self, request): put = QueryDict(request.body) user_id = put.get('user_id') device_token = put.get('device_token') if UserInfoModel.objects.filter(user_id=user_id).exists(): user_detail = UserInfoModel.objects.get(user_id=user_id) user_detail.device_token = device_token user_detail.save() return JsonResponse({ 'code': True, 'status': status.HTTP_200_OK, 'message': 'UPDATE_SUCCESS'}, status=status.HTTP_200_OK) return JsonResponse({ 'code': False, 'status': status.HTTP_200_OK, 'message': 'FAIL'}, status=status.HTTP_200_OK)
31.152542
72
0.650707
1,624
0.875
0
0
0
0
0
0
259
0.139547
c05d4625afeae008646d224702597baba51c509c
5,043
py
Python
vms/create_kit_files.py
vmssoftware/python_3_8_2
06cdf3fc9ae103afc55cbd5657ba7c7d09120a81
[ "CNRI-Python-GPL-Compatible" ]
3
2020-11-30T22:36:38.000Z
2021-01-22T01:00:06.000Z
vms/create_kit_files.py
vmssoftware/python_3_8_2
06cdf3fc9ae103afc55cbd5657ba7c7d09120a81
[ "CNRI-Python-GPL-Compatible" ]
null
null
null
vms/create_kit_files.py
vmssoftware/python_3_8_2
06cdf3fc9ae103afc55cbd5657ba7c7d09120a81
[ "CNRI-Python-GPL-Compatible" ]
1
2021-04-13T13:17:02.000Z
2021-04-13T13:17:02.000Z
import os import re import sys def spec_replacer(match): if match.group(0) == ' ': return '^_' return '^' + match.group(0) def create_content(type, major, minor, level, edit): python_dir = '/python$root' python_dir_len = len(python_dir) all_dirs = [] all_files = [] spec_pattern = re.compile('([. ^+()])') for root, dirs, files in os.walk(python_dir): inner_dirs = list(filter(lambda x: x != '', spec_pattern.sub(spec_replacer, root[python_dir_len:]).split('/'))) kit_dir = '[' + '.'.join(['python'] + inner_dirs) + ']' all_dirs.append('directory "' + kit_dir + '" version limit 1;') for file in files: file_name, file_ext = os.path.splitext(file) if file_ext == '': file_ext = '.' file_name = spec_pattern.sub(spec_replacer, file_name) all_files.append('file "' + \ kit_dir + file_name + file_ext + \ '" source "' + \ kit_dir + file_name + file_ext + \ '";') # try: # dirs.remove('__pycache__') # except: # pass kit_template = '''-- -- (C) Copyright 2021 VMS Software Inc. -- product VSI I64VMS PYTHON {type}{major}.{minor}-{level}{edit} FULL ; -- -- Execute the preconfigure procedure -- execute preconfigure "@pcsi$source:[python]python$pcsi_preconfigure.com" uses [python]python$pcsi_preconfigure.com ; -- -- Make sure VMS V8.4 or above is installed -- if ((not <software VSI I64VMS VMS version minimum V8.4>) and (not <software HP I64VMS VMS version minimum V8.4>)) ; error NO_MIN_VMS abort ; end if ; -- -- ODS-5 Disk(s) should be available on this system -- if (<logical name PYTHON$ODS5_AVAIL equals 0 table LNM$JOB>) ; error NO_ODS5_DISKS ; end if ; -- -- Directories... -- {dirs} -- -- Files... -- {files} -- -- Start-up and shutdown scripts -- file "[sys$startup]python$define_root.com" source "[python]python$define_root.com"; file "[sys$startup]python$startup.com" source "[python]python$startup.com"; file "[sys$startup]python$shutdown.com" source "[python]python$shutdown.com"; -- -- Release notes -- -- (none) -- -- Do post-install tasks -- execute postinstall "@pcsi$source:[python]python$define_root.com" interactive uses "[python]python$define_root.com" ; -- -- Okay, done. Tell the user what to do next. -- information POST_INSTALL phase after with helptext; -- -- All done -- end product; ''' # type, major, minor, level, edit must be the same as in pythlib.pcsi$text kit_content = kit_template.format( type=type, major=major, minor=minor, level=level, edit=edit, dirs='\n '.join(all_dirs), files='\n '.join(all_files)) with open('python.pcsi$desc', 'w') as file: file.write(kit_content) text_template = '''=product VSI I64VMS PYTHON {type}{major}.{minor}-{level}{edit} full 1 'PRODUCT =prompt Python for OpenVMS is based on Python Version 3.8.2 1 'PRODUCER =prompt VSI Software Inc. 1 'NOTICE =prompt (C) Copyright 2021 VMS Software Inc. 1 NO_MIN_VMS =prompt Minimum OpenVMS software version not found on this system, abort instalation This kit requires a minimum of OpenVMS I64 V8.4. 1 NO_ODS5_DISKS =prompt ODS-5 disk(s) not found on this system, abort installation This kit requires an ODS-5 disk to be correctly installed in this system. 1 POST_INSTALL =prompt Post-installation tasks are required. To define the Python runtime at system boot time, add the following lines to SYS$MANAGER:SYSTARTUP_VMS.COM: $ file := SYS$STARTUP:PYTHON$STARTUP.COM $ if f$search("''file'") .nes. "" then @'file' To shutdown the Python runtime at system shutdown time, add the following lines to SYS$MANAGER:SYSHUTDWN.COM: $ file := SYS$STARTUP:PYTHON$SHUTDOWN.COM $ if f$search("''file'") .nes. "" then @'file' ''' text_content = text_template.format( type=type, major=major, minor=minor, level=level, edit=edit, dirs='\n '.join(all_dirs), files='\n '.join(all_files)) with open('python.pcsi$text', 'w') as file: file.write(text_content) if __name__ == "__main__": import getopt import datetime opts, args = getopt.getopt(sys.argv[1:], '', ['type=', 'major=', 'minor=', 'level=', 'edit=']) type = 'F' major = '3' minor = '8' level = '2' edit = '' # 'd' + datetime.date.today().strftime('%Y%m%d') for opt, optarg in opts: if opt in ['--type']: type = optarg elif opt in ['--major']: major = optarg elif opt in ['--minor']: minor = optarg elif opt in ['--level']: level = optarg elif opt in ['--edit']: edit = optarg else: print('Unknown option %s' % opt) create_content( type, major, minor, level, edit, )
26.265625
120
0.601229
0
0
0
0
0
0
0
0
2,887
0.572477
c05de0c488b3f0907732a9cffd73ea481b5c0be6
10,458
py
Python
dotfiles/config/feltnerm/bin/dots.py
feltnerm/dotfiles
0984ade31ecfcd003e1cce4f165fcd717e9b6317
[ "WTFPL" ]
4
2016-06-19T20:02:12.000Z
2017-02-27T19:55:49.000Z
dotfiles/config/feltnerm/bin/dots.py
feltnerm/dotfiles
0984ade31ecfcd003e1cce4f165fcd717e9b6317
[ "WTFPL" ]
6
2016-01-20T20:24:42.000Z
2016-08-17T02:31:43.000Z
dotfiles/config/feltnerm/bin/dots.py
feltnerm/dotfiles
0984ade31ecfcd003e1cce4f165fcd717e9b6317
[ "WTFPL" ]
null
null
null
#!/usr/bin/env python # .py # @TODO: # - fix the diffing # - use rsync across hosts or something fancy import argparse, difflib, functools, re, shutil, subprocess, sys, time, os from pprint import pprint __description__ = "Manage your dotfiles." ls = lambda path: os.listdir(path) ls_abs = lambda path: [os.path.join(path, x) for x in os.listdir(path)] ln = lambda src, dst: os.symlink(src, dst) unlink = lambda src: os.unlink(src) def rm(path): try: if os.path.isdir(path): os.rmdir(path) else: os.remove(path) except OSError, e: print(e) def diff(fromfile, tofile): if os.path.exists(tofile): fromdate = time.ctime(os.stat(fromfile).st_mtime) todate = time.ctime(os.stat(tofile).st_mtime) fromlines = open(fromfile, 'U').readlines() tolines = open(tofile, 'U').readlines() diff = difflib.unified_diff(fromlines, tolines, fromfile, tofile, fromdate, todate) return diff def parse_args(argv): DEFAULTS = { 'source_dir': os.path.join(os.getenv("HOME"), "dotfiles"), 'dest_dir': os.path.join(os.getenv("HOME")) } ap = argparse.ArgumentParser(prog='dots.py', description=__description__) ap.add_argument("-d", "--dest-dir", default=DEFAULTS['dest_dir'], help="Directory to process source files to.") ap.add_argument("-e", "--exclude", help="Regex of files to exclude") ap.add_argument("-f", "--force", help="Force the operation to continue.") ap.add_argument("-i", "--interactive", default=False, action='store_true', help="Run interactively.") ap.add_argument("-l", "--list-commands", default=False, action='store_true', help="List the possible commands.") ap.add_argument("-n", "--dry-run", default=False, action='store_true', help="Dry run.") ap.add_argument("--no-dot", help="Comma-separated list of files to not append a '.' to") ap.add_argument("-s", "--source-dir", default=DEFAULTS['source_dir'], help="Directory to process source files from.") ap.add_argument("-v", "--version", default=False, action='store_true', help="Print the version.") ap.add_argument("-V", "--verbose", default=False, action='store_true', help="Verbose mode.") ap.add_argument("commands", nargs="*", help="Command to run.") args = ap.parse_args(argv) return args def ask(msg): inp = raw_input(msg + " [Y]/n?").lower() while inp not in ('y','n'): inp = raw_input(msg + " [Y]/n?").lower() if inp == 'y': return True else: return False # # dotfiles command API # class Dotfiles(object): def __init__(self, opts): self.options = { "exclude": [ r'^\.' ], "exclude_list": [ 'README.md', 'LICENSE', 'dots.py', ], "nodot_list": ['bin'] } for key in opts.keys(): if opts.get(key, None): self.options[key] = (opts.get(key)) # Look for the source and destination directories self.src = self.options.get('source_dir', None) self.dst = self.options.get('dest_dir', None) if not (os.path.isdir(self.src) and os.path.isdir(self.dst)): raise Exception("BAD PATH: <Source: %s> <Dest: %s>" % (self.src, self.dst)) # Process files which to not add a '.' to _nodot = self.options.get('nodot', None) if _nodot: if "," in _nodot: self.options['nodot_list'].extend(_nodot.split(',')) else: self.options['nodot_list'].append(_nodot) # Process regex for excluding files _re_excludes = self.options.get('exclude', None) if _re_excludes: for _re_exclude in _re_excludes: _re_exclude = _re_exclude.decode('string_escape') re_exclude = re.compile(_re_exclude) self.options['exclude_list'].extend(filter(lambda x: re_exclude.match(x), ls(self.src))) #_re_exclude = self.options.get('exclude', None) #if _re_exclude: # _re_exclude = _re_exclude.decode('string_escape') # re_exclude = re.compile(_re_exclude) # self.options['exclude_list'].extend(filter(lambda x: re_exclude.match(x), ls(self.src))) # Pre-process (cache) these files for quick access #self.source_files = self._nodots(self._exclude(ls(self.src))() self.source_files = self._exclude(ls(self.src))() self.dest_files = ls(self.dst) self.verbose = self.options.get('verbose') self.interactive = self.options.get('interactive') self.dry_run = self.options.get('dry_run') if self.options.get('verbose', False): pprint(self.options) @property def commands(self): return filter(lambda method: method.startswith('cmd_'), dir(self)) def _nodots(self, l): def map_func(x): return x.lstrip('.') if x in self.options['nodot_list'] else x return functools.partial(map, map_func, l) def _exclude(self, l): def filter_func(x): return x not in [os.path.basename(a) for a in self.options['exclude_list']] return functools.partial(filter, filter_func, l) def _execute(self, cmd, func): if self.dry_run: self.verbose = True self.func = None if self.verbose: print("# Execute: %s" % cmd) if func: func() def run(self, command): cmd = 'cmd_' + command if hasattr(self, cmd): func = getattr(self, cmd) if callable(func): try: self._execute(cmd, func) except Exception, e: print(e) # # Commands API # def cmd_init(self): """ Task to initialize dotfiles in your $HOME for the first time. """ print(">> Initing ...") commands = ['update', 'diff', 'link'] for cmd in commands: self.run(cmd) def cmd_diff(self): """ Show the differences between $DOTFILES and $HOME. """ print(">> Diffing ...") for from_file in self.source_files: fromfile = os.path.join(self.options.get('source_dir'), from_file) if not os.path.isdir(fromfile): #to_file = os.path.join(self.options.get('dest_dir', from_file)) tofile = os.path.join(self.options.get('dest_dir'), "." + from_file) sys.stdout.writelines(diff(fromfile, tofile)) def cmd_link(self): """ Link files in $DOTFILES to corresponding files in $HOME. """ print(">> Linking ...") for from_file in self.source_files: fromfile = os.path.join(self.options.get('source_dir'), from_file) tofile = os.path.join(self.options.get('dest_dir'), "." + from_file) nodeExists = os.path.lexists(tofile) if nodeExists: print("\nFile %s exists already!" % tofile) if self.options.get('force', False): if self.interactive: if ask("Link %s->%s" % (fromfile, tofile)): if self.verbose: print("rm(%s)" % (tofile)) print("ln(%s, %s)" % (fromfile, tofile)) if os.path.islink(tofile): unlink(tofile) elif os.path.isdir(tofile): shutil.rmtree(tofile) ln(fromfile, tofile) else: rm(tofile) ln(fromfile, tofile) else: if self.verbose: print("rm(%s)" % (tofile)) print("ln(%s, %s)" % (fromfile, tofile)) rm(tofile) ln(fromfile, tofile) else: if self.interactive: if ask("Link %s->%s" % (fromfile, tofile)): if self.verbose: print("ln(%s, %s)" % (fromfile, tofile)) ln(fromfile, tofile) else: if self.verbose: print("ln(%s, %s)" % (fromfile, tofile)) ln(fromfile, tofile) def cmd_clean(self): """ Clean the dotfiles in $HOME. """ print(">> Cleaning ...") for from_file in self.source_files: fromfile = os.path.join(self.options.get('source_dir'), from_file) tofile = os.path.join(self.options.get('dest_dir'), "." + from_file) if os.path.lexists(tofile): if self.verbose: print("rm(%s)" % tofile) rm(tofile) def cmd_update(self): """ Update dotfiles and dependencies in $HOME with latest in the repo(s). """ print(">> Updating ...") cmd = "cd %s; git pull" % self.options.get('source_dir') output = subprocess.check_output( cmd, stderr=subprocess.STDOUT, shell=True) print(output) def cmd_status(self): """ Status of $DOTFILES. """ print(">> Status: ") cmd = "cd %s; git status" % self.options.get('source_dir') output = subprocess.check_output( cmd, stderr=subprocess.STDOUT, shell=True) print(output) def run(commands, opts): df = Dotfiles(opts) if not opts['commands'] or opts['list_commands']: for cmd in df.commands: print(cmd.split("_")[1]+":") docstring = getattr(getattr(df, cmd), '__doc__') print(docstring) else: for command in commands: df.run(command) # # main # def main(argv=None): args = parse_args(argv) run(args.commands, vars(args)) return 0 # success if __name__ == '__main__': status = main() sys.exit(status)
34.288525
104
0.52467
7,188
0.687321
0
0
108
0.010327
0
0
2,450
0.23427
c05e6da89d714cfca87531c2eed521c2ad804f17
246
py
Python
plot_log_population.py
catskillsresearch/openasr20
b9821c4ee6a51501e81103c1d6d4db0ea8aaa31e
[ "Apache-2.0" ]
null
null
null
plot_log_population.py
catskillsresearch/openasr20
b9821c4ee6a51501e81103c1d6d4db0ea8aaa31e
[ "Apache-2.0" ]
null
null
null
plot_log_population.py
catskillsresearch/openasr20
b9821c4ee6a51501e81103c1d6d4db0ea8aaa31e
[ "Apache-2.0" ]
1
2021-07-28T02:13:21.000Z
2021-07-28T02:13:21.000Z
import matplotlib.pylab as plt def plot_log_population(population, _title, _xlabel, _ylabel, _bins): plt.hist(population,bins=_bins) plt.xlabel(_xlabel) plt.ylabel(_ylabel) plt.title(_title) plt.yscale('log'); plt.show()
24.6
69
0.707317
0
0
0
0
0
0
0
0
5
0.020325
c05e9891a35e2b972d23578bd72644f77e52bb11
12,711
py
Python
src/stargazer/stargazer.py
magazino/stargazer
d350959b830b084d31656682721f68b22683ceba
[ "MIT" ]
1
2020-02-16T13:18:39.000Z
2020-02-16T13:18:39.000Z
src/stargazer/stargazer.py
magazino/stargazer
d350959b830b084d31656682721f68b22683ceba
[ "MIT" ]
3
2017-11-10T14:06:05.000Z
2020-04-10T08:27:00.000Z
src/stargazer/stargazer.py
magazino/stargazer
d350959b830b084d31656682721f68b22683ceba
[ "MIT" ]
null
null
null
""" Driver class for Hagisonic Stargazer, with no ROS dependencies. """ from serial import Serial from collections import deque import re import yaml import time import logging import rospy import numpy as np from threading import Thread, Event from tf import transformations # STX: char that represents the start of a properly formed message STX = '~' # ETX: char that represents the end of a properly formed message ETX = '`' # DELIM: char that splits data DELIM = '|' # CMD: char that indicates command CMD = '#' # CMD: char that indicates command RESPONSE = '!' # RESULT: char that indicates that the message contains result data RESULT = '^' # NOTIFY: char that indicates a notification message of some kind NOTIFY = '*' class StarGazer(object): def __init__(self, device, marker_map, callback_global=None, callback_local=None,callback_raw=None, callback_raw_reponse=None): """ Connect to a Hagisonic StarGazer device and receive poses. device: The device location for the serial connection. marker_map: dictionary of marker transforms, formatted: {marker_id: (4,4) matrix} callback_global: will be called whenever a new pose is received from the Stargazer, will be called with (n,4,4) matrix of poses of the location of the Stargazer in the global frame. These are computed from marker_map. callback_local: will be called whenever a new poses is received from the Stargazer, with a dict: {marker_id: [xyz, angle]} """ self.device = device self.marker_map = marker_map self.connection = None # chunk_size: how many characters to read from the serial bus in # between checking the buffer for the STX/ETX characters self._chunk_size = 80 self._callback_global = callback_global self._callback_local = callback_local self._callback_raw = callback_raw self._callback_raw_reponse = callback_raw_reponse self._stopped = Event() self._thread = None def __enter__(self): self.connect() return self def __exit__(self, type, value, traceback): if self.is_connected: self.disconnect() @property def is_connected(self): """ Returns whether the driver is currently connected to a serial port. """ return self.connection is not None def connect(self): """ Connect to the StarGazer over the specified RS-232 port. """ if self.is_connected: self.disconnect() self.connection = Serial(port=self.device, baudrate=115200, timeout=1.0) if self.connection is None: return False return True def disconnect(self): """ Disconnects from the StarGazer and closes the RS-232 port. """ if self.is_connected: self.connection.close() self.connection = None if self.connection is None: return True return False @property def is_streaming(self): """ Returns whether the driver is currently streaming pose data. """ return self._thread is not None def start_streaming(self): """ Begin streaming pose data from the StarGazer. """ assert self.is_connected and not self.is_streaming success = self._send_command('CalcStart') if success: self._thread = Thread(target=self._read, args=()).start() return success def stop_streaming(self): """ Stop streaming pose data from the StarGazer. """ assert self.is_connected if self.is_streaming: self._stopped.set() self._thread.join() success = self._send_command('CalcStop') return success def reset_parameters(self): """ Stop streaming pose data from the StarGazer. """ assert self.is_connected and not self.is_streaming success = self._send_command('Reset') return success def set_parameter(self, name, value): """ Set a StarGazer configuration parameter. This function can only be called while the StarGazer is connected, but not streaming. Arguments --------- name: string name of the parameter to set value: string value of the parameter to set Example ------- set_parameter('MarkType', 'HLD1L') """ assert self.is_connected and not self.is_streaming success = self._send_command(name, value) return success def get_parameter(self, name): pass def _send_command(self, *args): """ Send a command to the StarGazer. Arguments --------- command: string, or list. If string of single command, send just that. if list, reformat to add delimiter character Example ------- _send_command('CalcStop') _send_command('MarkType', 'HLD1L') """ success = True delimited = DELIM.join(str(i) for i in args) if 'SetEnd' in delimited: delimited = 'SetEnd' command_str = STX + CMD + delimited + ETX rospy.loginfo('Sending command to StarGazer: %s', command_str) # The StarGazer requires a 50 ms delay between each byte. for ch in command_str: self.connection.write(ch) time.sleep(0.05) response_expected = STX + RESPONSE + delimited + ETX success = self._read_response(response_expected) if success and ('SetEnd' in response_expected): response_expected = STX + RESPONSE + 'ParameterUpdate' + ETX time.sleep(1.0) success = self._read_response(response_expected) if(success): rospy.loginfo('Parameters update successful') return success def _read_response(self, response_expected): success = True try: response_actual = self.connection.read(len(response_expected)) except Exception as e: rospy.logwarn(str(e)) sucess = False return success # Scan for more incoming characters until we get a read timeout. # (This is useful if there is still some incoming data from previous # commands in intermediate serial buffers.) while response_actual[-len(response_expected):] != response_expected: c = None try: c = self.connection.read() except Exception as e: rospy.logwarn(str(e)) return success if c: # Add new characters to the response string. response_actual += c else: rospy.logwarn('Received invalid response {%s} expected "{%s}'% \ (response_actual, response_expected)) success = False break ''' # If we run out of characters and still don't match, report # the invalid response as an exception. raise Exception( 'Command "{:s}" received invalid response "{:s}"; ' 'expected "{:s}".' .format(command_str, response_actual, response_expected) ) ''' print response_actual if self._callback_raw_reponse: self._callback_raw_reponse(response_actual) return success def _read(self): """ Read from the serial connection to the StarGazer, process buffer, then execute callbacks. """ # Compute a regular expression that returns the last valid # message in a StarGazer stream. msg_pattern = ('.*' + STX + '(?P<type>.)(?P<payload>.+)' + ETX + '(?P<remainder>.*)$') msg_matcher = re.compile(msg_pattern) # Compute a regular expression that converts a StarGazer message # into a list of tuples containing parsed groups. delimiter = '\\' + DELIM number = '[\d\+\-\.]' tag_pattern = (r'(?P<id>\d+)' + delimiter + r'(?P<yaw>' + number + '+)' + delimiter + r'(?P<x>' + number + '+)' + delimiter + r'(?P<y>' + number + '+)' + delimiter + r'(?P<z>' + number + '+)') tag_matcher = re.compile(tag_pattern) def process_buffer(message_buffer): """ Looks at current message_buffer string for STX and ETX chars. Proper behavior is to process string found between STX/ETX for poses and remove everything in the buffer up the last observed ETX. Valid readings: ~^148|-175.91|+98.74|+7.10|182.39` ~^248|-176.67|+98.38|+8.39|181.91|370|-178.41|-37.05|+8.97|179.51` No valid readings: ~*DeadZone` """ # Look for a matching message, return the buffer if none are found. message = msg_matcher.match(message_buffer) if not message: return message_buffer if message.group('type') == RESULT: markers = tag_matcher.finditer(message.group('payload')) local_poses = {} raw_poses = [] for marker in markers: # Parse pose information for this marker. _id = marker.group('id') yaw = -np.radians(float(marker.group('yaw'))) x = 0.01 * float(marker.group('x')) y = 0.01 * float(marker.group('y')) # Note: this axis is negated. z = 0.0#-0.01 * float(marker.group('z')) raw_pose = [_id,x,y,0,-yaw] raw_poses.append(raw_pose) # Convert the pose to a transform and store it by ID. marker_to_stargazer = fourdof_to_matrix((x, y, z), yaw) local_poses[_id] = np.linalg.inv(marker_to_stargazer) if self._callback_raw: self._callback_raw(raw_poses) if self._callback_local: self._callback_local(local_poses) if self._callback_global: global_poses, unknown_ids = local_to_global(self.marker_map, local_poses) self._callback_global(global_poses, unknown_ids) elif message.group('type') == NOTIFY: # TODO: Report deadzone messages in here! pass else: pass # Return the rest of the message buffer. return message.group('remainder') rospy.loginfo('Entering read loop.') message_buffer = '' while not self._stopped.is_set() and self.connection: try: message_buffer += self.connection.read(self._chunk_size) message_buffer = process_buffer(message_buffer) except Exception as e: rospy.logwarn('Error processing current buffer: %s (content: "%s")', str(e), message_buffer ) message_buffer = '' break # For debugging purposes. rospy.loginfo('Exited read loop.') def close(self): self._stopped.set() self._send_command('CalcStop') self.connection.close() def local_to_global(marker_map, local_poses): """ Transform local marker coordinates to map coordinates. """ global_poses = dict() unknown_ids = set() for _id, pose in local_poses.iteritems(): if _id in marker_map: marker_to_map = marker_map[_id] local_to_marker = np.linalg.inv(pose) local_to_map = np.dot(marker_to_map, local_to_marker) global_poses[_id] = local_to_map else: unknown_ids.add(_id) return global_poses, unknown_ids def fourdof_to_matrix(translation, yaw): """ Convert from a Cartesian translation and yaw to a homogeneous transform. """ T = transformations.rotation_matrix(yaw, [0,0,1]) T[0:3,3] = translation return T def _callback_dummy(data): return def _callback_print(data): print(data)
33.274869
131
0.567855
11,119
0.874754
0
0
350
0.027535
0
0
5,010
0.394147
c06110be42afdd7912f3230ce0bb253e62f06b14
107
py
Python
example.py
karishmashuklaa/flatifyLists
af9c1cfc45c29756ff9e285dba65f3b4909dabab
[ "MIT" ]
null
null
null
example.py
karishmashuklaa/flatifyLists
af9c1cfc45c29756ff9e285dba65f3b4909dabab
[ "MIT" ]
null
null
null
example.py
karishmashuklaa/flatifyLists
af9c1cfc45c29756ff9e285dba65f3b4909dabab
[ "MIT" ]
null
null
null
from flatifylists import flatifyList example = [[[1,2], [3,[4,[5],6],7],8,9]] print(flatifyList(example))
21.4
40
0.672897
0
0
0
0
0
0
0
0
0
0
c0619baa743809ca6b4e84726f67140652acbe34
834
py
Python
pympeg/_probe.py
AP-Atul/pympeg
26d18883d528ce73c09982f61440d170661165ae
[ "Unlicense" ]
5
2021-01-18T03:19:32.000Z
2021-04-27T06:58:41.000Z
pympeg/_probe.py
AP-Atul/pympeg
26d18883d528ce73c09982f61440d170661165ae
[ "Unlicense" ]
null
null
null
pympeg/_probe.py
AP-Atul/pympeg
26d18883d528ce73c09982f61440d170661165ae
[ "Unlicense" ]
null
null
null
import os import json import subprocess from ._exceptions import ProbeException __all__ = ['probe'] def probe(filename, cmd='ffprobe', timeout=None): """Runs the ffprobe on the given file and outputs in json format """ if not os.path.isfile(filename): raise FileExistsError(f"Input file {filename} does not exists.") args = [cmd, '-show_format', '-show_streams', '-of', 'json'] args += [filename] p = subprocess.Popen( args, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) communicate_kwargs = dict() if timeout is not None: communicate_kwargs['timeout'] = timeout out, err = p.communicate(**communicate_kwargs) if p.returncode != 0: raise ProbeException('ffprobe', out, err) return json.loads(out.decode('utf-8'))
24.529412
72
0.640288
0
0
0
0
0
0
0
0
190
0.227818
c063c02a86fbd38bc9d19422a9222b6d2583e226
252
py
Python
example/func_doc.py
tinashime/Python27
b632918c7368a9bcfc5af8353e136247d954fb5e
[ "bzip2-1.0.6" ]
null
null
null
example/func_doc.py
tinashime/Python27
b632918c7368a9bcfc5af8353e136247d954fb5e
[ "bzip2-1.0.6" ]
null
null
null
example/func_doc.py
tinashime/Python27
b632918c7368a9bcfc5af8353e136247d954fb5e
[ "bzip2-1.0.6" ]
null
null
null
def printMax(x,y): '''prints the maximum of two numbers. The two values must be integers.''' x = int(x) y = int(y) if x > y: print x,'is maximun' else: print y,'is maximum' printMax(3,5) print printMax.__doc__
18
41
0.575397
0
0
0
0
0
0
0
0
102
0.404762
c064dd6092bc97df5e3082e40d12bf519228fd1e
16,602
py
Python
wifi_dos_own.py
Mr-Cracker-Pro/red-python-scripts
5bead83038aadf53fc868fb9a786cb37824b18eb
[ "MIT" ]
1,353
2021-01-07T17:12:01.000Z
2022-03-31T21:30:38.000Z
wifi_dos_own.py
deepahir/red-python-scripts
5deef698bf505de30735120e7c3bab34707ad32c
[ "MIT" ]
29
2021-01-30T21:12:16.000Z
2022-03-04T15:06:12.000Z
wifi_dos_own.py
deepahir/red-python-scripts
5deef698bf505de30735120e7c3bab34707ad32c
[ "MIT" ]
1,238
2021-01-07T17:05:18.000Z
2022-03-31T23:25:04.000Z
#!/usr/bin/env python3 # Disclaimer: # This script is for educational purposes only. # Do not use against any network that you don't own or have authorization to test. #!/usr/bin/python3 # We will be using the csv module to work with the data captured by airodump-ng. import csv # If we move csv files to a backup directory we will use the datetime module to create # to create a timestamp in the file name. from datetime import datetime # We will use the os module to get the current working directory and to list filenames in a directory. import os # We will use the regular expressions module to find wifi interface name, and also MAC Addresses. import re # We will use methods from the shutil module to move files. import shutil # We can use the subprocess module to run operating system commands. import subprocess # We will create a thread for each deauth sent to a MAC so that enough time doesn't elapse to allow a device back on the network. import threading # We use the sleep method in the menu. import time # Helper functions def in_sudo_mode(): """If the user doesn't run the program with super user privileges, don't allow them to continue.""" if not 'SUDO_UID' in os.environ.keys(): print("Try running this program with sudo.") exit() def find_nic(): """This function is used to find the network interface controllers on your computer.""" # We use the subprocess.run to run the "sudo iw dev" command we'd normally run to find the network interfaces. result = subprocess.run(["iw", "dev"], capture_output=True).stdout.decode() network_interface_controllers = wlan_code.findall(result) return network_interface_controllers def set_monitor_mode(controller_name): """This function needs the network interface controller name to put it into monitor mode. Argument: Network Controller Name""" # Put WiFi controller into monitor mode. # This is one way to put it into monitoring mode. You can also use iwconfig, or airmon-ng. subprocess.run(["ip", "link", "set", wifi_name, "down"]) # Killing conflicting processes makes sure that nothing interferes with putting controller into monitor mode. subprocess.run(["airmon-ng", "check", "kill"]) # Put the WiFi nic in monitor mode. subprocess.run(["iw", wifi_name, "set", "monitor", "none"]) # Bring the WiFi controller back online. subprocess.run(["ip", "link", "set", wifi_name, "up"]) def set_band_to_monitor(choice): """If you have a 5Ghz network interface controller you can use this function to put monitor either 2.4Ghz or 5Ghz bands or both.""" if choice == "0": # Bands b and g are 2.4Ghz WiFi Networks subprocess.Popen(["airodump-ng", "--band", "bg", "-w", "file", "--write-interval", "1", "--output-format", "csv", wifi_name], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) elif choice == "1": # Band a is for 5Ghz WiFi Networks subprocess.Popen(["airodump-ng", "--band", "a", "-w", "file", "--write-interval", "1", "--output-format", "csv", wifi_name], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) else: # Will use bands a, b and g (actually band n). Checks full spectrum. subprocess.Popen(["airodump-ng", "--band", "abg", "-w", "file", "--write-interval", "1", "--output-format", "csv", wifi_name], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) def backup_csv(): """Move all .csv files in the directory to a new backup folder.""" for file_name in os.listdir(): # We should only have one csv file as we delete them from the folder every time we run the program. if ".csv" in file_name: print("There shouldn't be any .csv files in your directory. We found .csv files in your directory.") # We get the current working directory. directory = os.getcwd() try: # We make a new directory called /backup os.mkdir(directory + "/backup/") except: print("Backup folder exists.") # Create a timestamp timestamp = datetime.now() # We copy any .csv files in the folder to the backup folder. shutil.move(file_name, directory + "/backup/" + str(timestamp) + "-" + file_name) def check_for_essid(essid, lst): """Will check if there is an ESSID in the list and then send False to end the loop.""" check_status = True # If no ESSIDs in list add the row if len(lst) == 0: return check_status # This will only run if there are wireless access points in the list. for item in lst: # If True don't add to list. False will add it to list if essid in item["ESSID"]: check_status = False return check_status def wifi_networks_menu(): """ Loop that shows the wireless access points. We use a try except block and we will quit the loop by pressing ctrl-c.""" active_wireless_networks = list() try: while True: # We want to clear the screen before we print the network interfaces. subprocess.call("clear", shell=True) for file_name in os.listdir(): # We should only have one csv file as we backup all previous csv files from the folder every time we run the program. # The following list contains the field names for the csv entries. fieldnames = ['BSSID', 'First_time_seen', 'Last_time_seen', 'channel', 'Speed', 'Privacy', 'Cipher', 'Authentication', 'Power', 'beacons', 'IV', 'LAN_IP', 'ID_length', 'ESSID', 'Key'] if ".csv" in file_name: with open(file_name) as csv_h: # We use the DictReader method and tell it to take the csv_h contents and then apply the dictionary with the fieldnames we specified above. # This creates a list of dictionaries with the keys as specified in the fieldnames. csv_h.seek(0) csv_reader = csv.DictReader(csv_h, fieldnames=fieldnames) for row in csv_reader: if row["BSSID"] == "BSSID": pass elif row["BSSID"] == "Station MAC": break elif check_for_essid(row["ESSID"], active_wireless_networks): active_wireless_networks.append(row) print("Scanning. Press Ctrl+C when you want to select which wireless network you want to attack.\n") print("No |\tBSSID |\tChannel|\tESSID |") print("___|\t___________________|\t_______|\t______________________________|") for index, item in enumerate(active_wireless_networks): # We're using the print statement with an f-string. # F-strings are a more intuitive way to include variables when printing strings, # rather than ugly concatenations. print(f"{index}\t{item['BSSID']}\t{item['channel'].strip()}\t\t{item['ESSID']}") # We make the script sleep for 1 second before loading the updated list. time.sleep(1) except KeyboardInterrupt: print("\nReady to make choice.") # Ensure that the input choice is valid. while True: net_choice = input("Please select a choice from above: ") if active_wireless_networks[int(net_choice)]: return active_wireless_networks[int(net_choice)] print("Please try again.") def set_into_managed_mode(wifi_name): """SET YOUR NETWORK CONTROLLER INTERFACE INTO MANAGED MODE & RESTART NETWORK MANAGER ARGUMENTS: wifi interface name """ # Put WiFi controller into monitor mode. # This is one way to put it into managed mode. You can also use iwconfig, or airmon-ng. subprocess.run(["ip", "link", "set", wifi_name, "down"]) # Put the WiFi nic in monitor mode. subprocess.run(["iwconfig", wifi_name, "mode", "managed"]) subprocess.run(["ip", "link", "set", wifi_name, "up"]) subprocess.run(["service", "NetworkManager", "start"]) def get_clients(hackbssid, hackchannel, wifi_name): subprocess.Popen(["airodump-ng", "--bssid", hackbssid, "--channel", hackchannel, "-w", "clients", "--write-interval", "1", "--output-format", "csv", wifi_name], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) def deauth_attack(network_mac, target_mac, interface): # We are using aireplay-ng to send a deauth packet. 0 means it will send it indefinitely. -a is used to specify the MAC address of the target router. -c is used to specify the mac we want to send the deauth packet. # Then we also need to specify the interface subprocess.Popen(["aireplay-ng", "--deauth", "0", "-a", network_mac, "-c", target_mac, interface]) # Regular Expressions to be used. mac_address_regex = re.compile(r'(?:[0-9a-fA-F]:?){12}') wlan_code = re.compile("Interface (wlan[0-9]+)") # Program Header # Basic user interface header print(r"""______ _ _ ______ _ _ | _ \ (_) | | | ___ \ | | | | | | | |__ ___ ___ __| | | |_/ / ___ _ __ ___ | |__ __ _| | | | | / _` \ \ / / |/ _` | | ___ \/ _ \| '_ ` _ \| '_ \ / _` | | | |/ / (_| |\ V /| | (_| | | |_/ / (_) | | | | | | |_) | (_| | | |___/ \__,_| \_/ |_|\__,_| \____/ \___/|_| |_| |_|_.__/ \__,_|_|""") print("\n****************************************************************") print("\n* Copyright of David Bombal, 2021 *") print("\n* https://www.davidbombal.com *") print("\n* https://www.youtube.com/davidbombal *") print("\n****************************************************************") # In Sudo Mode? in_sudo_mode() # Move any csv files to current working directory/backup backup_csv() # Lists to be populated macs_not_to_kick_off = list() # Menu to request Mac Addresses to be kept on network. while True: print("Please enter the MAC Address(es) of the device(s) you don't want to kick off the network.") macs = input("Please use a comma separated list if more than one, ie 00:11:22:33:44:55,11:22:33:44:55:66 :") # Use the MAC Address Regex to find all the MAC Addresses entered in the above input. macs_not_to_kick_off = mac_address_regex.findall(macs) # We reassign all the MAC address to the same variable as a list and make them uppercase using a list comprehension. macs_not_to_kick_off = [mac.upper() for mac in macs_not_to_kick_off] # If you entered a valid MAC Address the program flow will continue and break out of the while loop. if len(macs_not_to_kick_off) > 0: break print("You didn't enter valid Mac Addresses.") # Menu to ask which bands to scan with airmon-ng while True: wifi_controller_bands = ["bg (2.4Ghz)", "a (5Ghz)", "abg (Will be slower)"] print("Please select the type of scan you want to run.") for index, controller in enumerate(wifi_controller_bands): print(f"{index} - {controller}") # Check if the choice exists. If it doesn't it asks the user to try again. # We don't cast it to an integer at this stage as characters other than digits will cause the program to break. band_choice = input("Please select the bands you want to scan from the list above: ") try: if wifi_controller_bands[int(band_choice)]: # Since the choice exists and is an integer we can cast band choice as an integer. band_choice = int(band_choice) break except: print("Please make a valid selection.") # Find all the network interface controllers. network_controllers = find_nic() if len(network_controllers) == 0: # If no networks interface controllers connected to your computer the program will exit. print("Please connect a network interface controller and try again!") exit() # Select the network interface controller you want to put into monitor mode. while True: for index, controller in enumerate(network_controllers): print(f"{index} - {controller}") controller_choice = input("Please select the controller you want to put into monitor mode: ") try: if network_controllers[int(controller_choice)]: break except: print("Please make a valid selection!") # Assign the network interface controller name to a variable for easy use. wifi_name = network_controllers[int(controller_choice)] # Set network interface controller to monitor mode. set_monitor_mode(wifi_name) # Monitor the selected wifi band(s). set_band_to_monitor(band_choice) # Print WiFi Menu wifi_network_choice = wifi_networks_menu() hackbssid = wifi_network_choice["BSSID"] # We strip out all the extra white space to just get the channel. hackchannel = wifi_network_choice["channel"].strip() # backup_csv() # Run against only the network we want to kick clients off. get_clients(hackbssid, hackchannel, wifi_name) # We define a set, because it can only hold unique values. active_clients = set() # We would like to know the threads we've already started so that we don't start multiple threads running the same deauth. threads_started = [] # Make sure that airmon-ng is running on the correct channel. subprocess.run(["airmon-ng", "start", wifi_name, hackchannel]) try: while True: count = 0 # We want to clear the screen before we print the network interfaces. subprocess.call("clear", shell=True) for file_name in os.listdir(): # We should only have one csv file as we backup all previous csv files from the folder every time we run the program. # The following list contains the field names for the csv entries. fieldnames = ["Station MAC", "First time seen", "Last time seen", "Power", "packets", "BSSID", "Probed ESSIDs"] if ".csv" in file_name and file_name.startswith("clients"): with open(file_name) as csv_h: print("Running") # We use the DictReader method and tell it to take the csv_h contents and then apply the dictionary with the fieldnames we specified above. # This creates a list of dictionaries with the keys as specified in the fieldnames. csv_h.seek(0) csv_reader = csv.DictReader(csv_h, fieldnames=fieldnames) for index, row in enumerate(csv_reader): if index < 5: pass # We will not add the MAC Addresses we specified at the beginning of the program to the ones we will kick off. elif row["Station MAC"] in macs_not_to_kick_off: pass else: # Add all the active MAC Addresses. active_clients.add(row["Station MAC"]) print("Station MAC |") print("______________________|") for item in active_clients: # We're using the print statement with an f-string. # F-strings are a more intuitive way to include variables when printing strings, # rather than ugly concatenations. print(f"{item}") # Once a device is in the active clients set and not one of the threads running deauth attacks we start a new thread as a deauth attack. if item not in threads_started: # It's easier to work with the unique MAC Addresses in a list and add the MAC to the list of threads we started before we start running the deauth thread. threads_started.append(item) # We run the deauth_attack function in the thread with the argumenets hackbssid, item and wifi_name, we also specify it as a background daemon thread. # A daemon thread keeps running until the main thread stops. You can stop the main thread with ctrl + c. t = threading.Thread(target=deauth_attack, args=[hackbssid, item, wifi_name], daemon=True) t.start() except KeyboardInterrupt: print("\nStopping Deauth") # Set the network interface controller back into managed mode and restart network services. set_into_managed_mode(wifi_name)
50.1571
219
0.634743
0
0
0
0
0
0
0
0
9,946
0.599084
c0668c5403b0ea8527a26c2985cb37df3eafd6d0
597
py
Python
lightwood/mixers/helpers/debugging.py
ritwik12/lightwood
7975688355fba8b0f8349dd55a1b6cb625c3efd0
[ "MIT" ]
null
null
null
lightwood/mixers/helpers/debugging.py
ritwik12/lightwood
7975688355fba8b0f8349dd55a1b6cb625c3efd0
[ "MIT" ]
null
null
null
lightwood/mixers/helpers/debugging.py
ritwik12/lightwood
7975688355fba8b0f8349dd55a1b6cb625c3efd0
[ "MIT" ]
null
null
null
import subprocess def get_gpu_memory_map(): ''' Keys are device ids as integers. Values are memory usage as integers in MB. ''' result = subprocess.check_output( [ 'nvidia-smi', '--query-gpu=memory.used', '--format=csv,nounits,noheader' ], encoding='utf-8') # Convert lines into a dictionary gpu_memory = [int(x) for x in result.strip().split('\n')] gpu_memory_map = dict(zip(range(len(gpu_memory)), gpu_memory)) return gpu_memory_map def print_gpuutil_status(): import GPUtil GPUtil.showUtilization()
27.136364
66
0.631491
0
0
0
0
0
0
0
0
215
0.360134
c066f48fe0ef8d58aa4b19024e03a53d9943e528
2,010
py
Python
optimization/prac1/tests/test_ridge.py
shaandesai1/AIMS
fee0be214b393af2184d565eb1e9aebb4eb6eeec
[ "MIT" ]
null
null
null
optimization/prac1/tests/test_ridge.py
shaandesai1/AIMS
fee0be214b393af2184d565eb1e9aebb4eb6eeec
[ "MIT" ]
null
null
null
optimization/prac1/tests/test_ridge.py
shaandesai1/AIMS
fee0be214b393af2184d565eb1e9aebb4eb6eeec
[ "MIT" ]
null
null
null
import unittest from sys import argv import numpy as np import torch from objective.ridge import Ridge, Ridge_ClosedForm, Ridge_Gradient from .utils import Container, assert_all_close, assert_all_close_dict def _init_ridge(cls): np.random.seed(1234) torch.manual_seed(1234) n_features = 3 n_samples = 5 mu = 0.02 cls.hparams = Container(n_features=n_features, n_samples=n_samples, mu=mu) cls.w = torch.randn(n_features, 1, requires_grad=True) cls.x = torch.randn(n_samples, n_features) cls.y = torch.randn(n_samples) class TestObj_Ridge_ClosedForm(unittest.TestCase): def setUp(self): _init_ridge(self) self.obj = Ridge_ClosedForm(self.hparams) def test_error(self): error_test = self.obj.task_error(self.w, self.x, self.y) error_ref = torch.tensor(1.3251) assert_all_close(error_test, error_ref, "task_error returned value") def test_oracle(self): oracle_info_test = self.obj.oracle(self.w, self.x, self.y) oracle_info_ref = { 'sol': torch.tensor([[-0.2297], [-0.7944], [-0.5806]]), 'obj': torch.tensor(1.3370)} assert_all_close_dict(oracle_info_ref, oracle_info_test, "oracle_info") class TestObj_Ridge_Gradient(unittest.TestCase): def setUp(self): _init_ridge(self) self.obj = Ridge_Gradient(self.hparams) def test_error(self): error_test = self.obj.task_error(self.w, self.x, self.y) error_ref = torch.tensor(1.3251) assert_all_close(error_test, error_ref, "task_error returned value") def test_oracle(self): oracle_info_test = self.obj.oracle(self.w, self.x, self.y) oracle_info_ref = { 'dw': torch.tensor([[0.7323], [1.4816], [-0.3771]]), 'obj': torch.tensor(1.3370)} assert_all_close_dict(oracle_info_ref, oracle_info_test, "oracle_info") if __name__ == '__main__': unittest.main(argv=argv)
30.923077
79
0.656716
1,331
0.662189
0
0
0
0
0
0
109
0.054229
c0670360313a88da7a90013e4063946791935b2d
11,795
py
Python
app/parking/views.py
zollf/CITS3200
95fb7569dad325c057e441cd7265d3e85735c058
[ "CC0-1.0" ]
null
null
null
app/parking/views.py
zollf/CITS3200
95fb7569dad325c057e441cd7265d3e85735c058
[ "CC0-1.0" ]
null
null
null
app/parking/views.py
zollf/CITS3200
95fb7569dad325c057e441cd7265d3e85735c058
[ "CC0-1.0" ]
null
null
null
from django.shortcuts import redirect from django.http.response import JsonResponse from django.http import HttpResponse from django.views.decorators.csrf import csrf_protect from django.contrib.auth.decorators import login_required from rest_framework.response import Response from rest_framework.decorators import api_view from rest_framework import status from rest_framework.parsers import JSONParser from .models import CarPark, CarBay from app.authentication.models import User from .serializers import * from ..emails.send import log_and_send_mail @login_required(login_url="/login") @csrf_protect @api_view(['GET', 'POST']) def carparks_list(request): if request.method == 'GET': data = CarPark.objects.all() serializer = CarParkSerializer(data, context={'request': request}, many=True) return Response(serializer.data) elif request.method == 'POST': if 'pk' in request.data: carpark = CarPark.objects.get(pk=request.data['pk']) serializer = CarParkSerializer(carpark, data=request.data) else: serializer = CarParkSerializer(data=request.data) if not serializer.is_valid(): if 'redirect' in request.data: errors = [str(error[1][0]).replace("this field", error[0]) for error in serializer.errors.items()] if 'pk' in request.data: request.session["edit_carpark_errors"] = errors return redirect(f"/admin/carparks/view/{request.data.get('pk', '')}") else: request.session["new_carpark_errors"] = errors return redirect(f"/admin/carparks/add") return JsonResponse(serializer.errors, status=status.HTTP_400_BAD_REQUEST) serializer.save() if 'redirect' in request.data: return redirect(request.data['redirect']) return JsonResponse(serializer.data, status=status.HTTP_201_CREATED) @login_required(login_url="/login") @csrf_protect @api_view(['GET', 'PUT', 'DELETE']) def carpark_detail(request, pk): try: carpark = CarPark.objects.get(pk=pk) except CarPark.DoesNotExist: return HttpResponse(status=status.HTTP_404_NOT_FOUND) if request.method == 'GET': serializer = CarParkSerializer(carpark) return JsonResponse(serializer.data) elif request.method == 'PUT': carpark_data = JSONParser().parse(request) serializer = CarParkSerializer(carpark, data=carpark_data) if serializer.is_valid(): serializer.save() return JsonResponse(serializer.data) return JsonResponse(serializer.errors, status=status.HTTP_400_BAD_REQUEST) elif request.method == 'DELETE': carpark.delete() return HttpResponse(status=status.HTTP_204_NO_CONTENT) @login_required(login_url="/login") @csrf_protect @api_view(['GET', 'POST']) def carbay_list(request): if request.method == 'GET': data = CarBay.objects.all() serializer = CarBaySerializer(data, context={'request': request}, many=True) return Response(serializer.data) elif request.method == 'POST': if 'pk' in request.data: carpark = CarBay.objects.get(pk=request.data['pk']) serializer = CarBaySerializer(carpark, data=request.data) else: serializer = CarBaySerializer(data=request.data) if not serializer.is_valid(): if 'redirect' in request.data: request.session["bay_errors"] = [str(error[1][0]).replace("this field", error[0]) for error in serializer.errors.items()] return redirect(f"/admin/carparks/{request.data.get('carpark', '')}/bay/add") return JsonResponse(serializer.errors, status=status.HTTP_400_BAD_REQUEST) serializer.save() if 'redirect' in request.data: return redirect(request.data['redirect']) return JsonResponse(serializer.data, status=status.HTTP_201_CREATED) @login_required(login_url="/login") @csrf_protect @api_view(['GET', 'PUT', 'DELETE']) def carbay_detail(request, pk): try: carbay: CarBay = CarBay.objects.get(pk=pk) except CarBay.DoesNotExist: return HttpResponse(status=status.HTTP_404_NOT_FOUND) if request.method == 'GET': serializer = CarBaySerializer(carbay) return JsonResponse(serializer.data) elif request.method == 'PUT': carbay_data = JSONParser().parse(request) serializer = CarBaySerializer(carbay, data=carbay_data) if serializer.is_valid(): serializer.save() return JsonResponse(serializer.data) return JsonResponse(serializer.errors, status=status.HTTP_400_BAD_REQUEST) elif request.method == 'DELETE': carbay.delete() return HttpResponse(status=status.HTTP_204_NO_CONTENT) @login_required(login_url="/login") @csrf_protect @api_view(['GET']) def carbays_list(request, pk): if request.method == 'GET': data = CarBay.objects.all().filter(carpark=pk) serializer = CarBaySerializer(data, context={'request': request}, many=True) return Response(serializer.data) @login_required(login_url="/login") @csrf_protect @api_view(['POST']) def bays_booked(request): if request.method == 'POST': """ { "date": "2000-01-01", "carpark": 1 } """ if 'date' not in request.data and 'carpark' not in request.data: return JsonResponse({ 'error': 'Please supply what carpark and date you want.' }, status=status.HTTP_400_BAD_REQUEST) bays = BaysBooked.objects.filter(booking__date=request.data['date'], bay__carpark=request.data['carpark']) baysBookedSerializer = BaysBookedSerializer(bays, context={'request': request}, many=True) baysCleaned = [] # Do not return any information on bookings for bay in baysBookedSerializer.data: baysCleaned.append({ 'pk': bay['pk'], 'bay': bay['bay'], 'start_time': bay['start_time'], 'end_time': bay['end_time'], }) return JsonResponse({'success': True, 'bays': baysCleaned}, status=status.HTTP_200_OK) @login_required(login_url="/login") @csrf_protect @api_view(['GET', 'POST']) def bookings(request): if request.method == 'GET': bookings = Bookings.objects.all() bookingsSerializer = BookingsSerializer(bookings, context={'request': request}, many=True) return Response(bookingsSerializer.data) elif request.method == 'POST': """ { "booking": { "carpark": 1, "date": "2000-01-01", # YYYY-MM-DD "name": "uniart", "email": "test@test.com", "rego": "1234", "company": "uni", "phone": 1234, "user": 1 }, "bays": [ { "bay": 1, "start_time": "00:00", "end_time": "12:00" }, { "bay": 2, "start_time": "00:00", "end_time": "12:00" } ] } """ if 'booking' not in request.data: return JsonResponse({ 'error': 'Please supply booking details.' }, status=status.HTTP_400_BAD_REQUEST) if 'bays' not in request.data: return JsonResponse({ 'error': 'Please supply bays to be booked.' }, status=status.HTTP_400_BAD_REQUEST) booking = request.data['booking'] # Find carpark for booking try: carpark = CarPark.objects.get(pk=booking['carpark']) except CarPark.DoesNotExist: return JsonResponse({ 'error': 'No carpark could be found given the id.' }, status=status.HTTP_400_BAD_REQUEST) booking['carpark_id'] = carpark.pk # Find user for booking try: user = User.objects.get(pk=booking['user']) except User.DoesNotExist: return JsonResponse({ 'error': 'No user could be found given the id.' }, status=status.HTTP_400_BAD_REQUEST) booking['user_id'] = user.pk bookingsSerializer = BookingsSerializer(data=request.data['booking']) if not bookingsSerializer.is_valid(): return JsonResponse({ 'errors': bookingsSerializer.errors }, status=status.HTTP_400_BAD_REQUEST) bookingsSerializer.save() # Save Bays for bay in request.data['bays']: try: CarBay.objects.get(pk=bay['bay']) except CarBay.DoesNotExist: return JsonResponse({ 'error': 'No Carpark bay could be found given the id.' }, status=status.HTTP_400_BAD_REQUEST) bayBooked = bay bayBooked['booking_id'] = bookingsSerializer.data['pk'] bayBooked['bay_id'] = bay['bay'] baysBookedSerializer = BaysBookedSerializer(data=bayBooked) if not baysBookedSerializer.is_valid(): return JsonResponse({ 'errors': baysBookedSerializer.errors }, status=status.HTTP_400_BAD_REQUEST) baysBookedSerializer.save() # Send email booking = bookingsSerializer.data if log_and_send_mail( subject="Your UniPark Booking", to_email=[request.data['booking']['email']], category="EmailBooking", template="emails/booking.html", data={ "booking": booking, "carpark": booking['carpark'], "bays": BaysBooked.objects.filter(booking__id=booking['pk']), "user": booking['user'], }, ): return JsonResponse({'success': True, 'booking_id': bookingsSerializer.data['pk']}, status=status.HTTP_201_CREATED) else: return JsonResponse({ 'error': 'Something went wrong when sending email.' }, status=status.HTTP_500_INTERNAL_SERVER_ERROR) @login_required(login_url="/login") @csrf_protect @api_view(['GET', 'DELETE']) def booking(request, pk): if request.method == 'GET': try: booking = Bookings.objects.get(pk=pk) except Bookings.DoesNotExist: return JsonResponse({'error': 'Booking cannot be found.'}, status=status.HTTP_400_BAD_REQUEST) bookingsSerializer = BookingsSerializer(booking, context={'request': request}) try: bays = BaysBooked.objects.filter(booking__id=pk) except Bookings.DoesNotExist: return JsonResponse({'error': 'No bays can be found for this booking.'}, status=status.HTTP_400_BAD_REQUEST) baysBookedSerializer = BaysBookedSerializer(bays, context={'request': request}, many=True) baysCleaned = [] for bay in baysBookedSerializer.data: baysCleaned.append({ 'pk': bay['pk'], 'bay': bay['bay'], 'start_time': bay['start_time'], 'end_time': bay['end_time'], }) return JsonResponse({'booking': bookingsSerializer.data, 'bays': baysCleaned}, status=status.HTTP_200_OK) if request.method == 'DELETE': booking = Bookings.objects.get(pk=pk) booking.delete() bays = BaysBooked.objects.filter(booking__id=pk) for bay in bays: bay.delete() return HttpResponse(status=status.HTTP_204_NO_CONTENT)
36.292308
120
0.603815
0
0
0
0
11,222
0.95142
0
0
2,271
0.192539
c068ebb6bccce46da01fec0d1da4f714e0e2357e
33,949
py
Python
utils.py
eepLearning/learn2learn
4ed48e69f1ca5c9508331e15fd4a8f65c3cae750
[ "MIT" ]
null
null
null
utils.py
eepLearning/learn2learn
4ed48e69f1ca5c9508331e15fd4a8f65c3cae750
[ "MIT" ]
null
null
null
utils.py
eepLearning/learn2learn
4ed48e69f1ca5c9508331e15fd4a8f65c3cae750
[ "MIT" ]
null
null
null
import numpy as np import torch from torch.autograd import grad from learn2learn.utils import clone_module, update_module from torch import nn, optim def maml_update(model, lr, grads=None): """ [[Source]](https://github.com/learnables/learn2learn/blob/master/learn2learn/algorithms/maml.py) **Description** Performs a MAML update on model using grads and lr. The function re-routes the Python object, thus avoiding in-place operations. NOTE: The model itself is updated in-place (no deepcopy), but the parameters' tensors are not. **Arguments** * **model** (Module) - The model to update. * **lr** (float) - The learning rate used to update the model. * **grads** (list, *optional*, default=None) - A list of gradients for each parameter of the model. If None, will use the gradients in .grad attributes. **Example** ~~~python maml = l2l.algorithms.MAML(Model(), lr=0.1) model = maml.clone() # The next two lines essentially implement model.adapt(loss) grads = autograd.grad(loss, model.parameters(), create_graph=True) maml_update(model, lr=0.1, grads) ~~~ """ if grads is not None: params = list(model.parameters()) if not len(grads) == len(list(params)): msg = 'WARNING:maml_update(): Parameters and gradients have different length. (' msg += str(len(params)) + ' vs ' + str(len(grads)) + ')' print(msg) for p, g in zip(params, grads): if g is not None: p.update = - lr * g return update_module(model) def accuracy(predictions, targets): predictions = predictions.argmax(dim=1).view(targets.shape) return (predictions == targets).sum().float() / targets.size(0) def fast_adapt(batch, learner, loss, adaptation_steps, shots, ways, device): data, labels = batch data, labels = data.to(device), labels.to(device) # Separate data into adaptation/evalutation sets adaptation_indices = np.zeros(data.size(0), dtype=bool) adaptation_indices[np.arange(shots * ways) * 2] = True evaluation_indices = torch.from_numpy(~adaptation_indices) adaptation_indices = torch.from_numpy(adaptation_indices) # print("evaluation_indices",evaluation_indices) # print("adaptation_indices", adaptation_indices) adaptation_data, adaptation_labels = data[adaptation_indices], labels[adaptation_indices] evaluation_data, evaluation_labels = data[evaluation_indices], labels[evaluation_indices] # Adapt the model #support loss for step in range(adaptation_steps): train_error = loss(learner(adaptation_data), adaptation_labels) learner.adapt(train_error) # update # Evaluate the adapted model predictions = learner(evaluation_data) # query loss valid_error = loss(predictions, evaluation_labels) valid_accuracy = accuracy(predictions, evaluation_labels) return valid_error, valid_accuracy # Adapt the model #support loss def fake_adopt_debug2(batch, learner, loss, adaptation_steps, shots, ways, device, error_dict, error_data, task): data, labels = batch data, labels = data.to(device), labels.to(device) # Separate data into adaptation/evalutation sets adaptation_indices = np.zeros(data.size(0), dtype=bool) adaptation_indices[np.arange(shots * ways) * 2] = True evaluation_indices = torch.from_numpy(~adaptation_indices) adaptation_indices = torch.from_numpy(adaptation_indices) # print("evaluation_indices",evaluation_indices) # print("adaptation_indices", adaptation_indices) adaptation_data, adaptation_labels = data[adaptation_indices], labels[adaptation_indices] evaluation_data, evaluation_labels = data[evaluation_indices], labels[evaluation_indices] loss2 = nn.CrossEntropyLoss(reduction='none') # Adapt the model #support loss for step in range(adaptation_steps): train_error = loss2(learner(adaptation_data), adaptation_labels) # learner.adapt(train_error) #update mean_seperate_error = torch.mean(train_error) grads = grad(mean_seperate_error, learner.parameters(), create_graph=True) updates = [-learner.lr * g for g in grads] update_module(learner, updates=updates) # Evaluate the adapted model predictions = learner(evaluation_data) # query loss valid_error = loss(predictions, evaluation_labels) valid_accuracy = accuracy(predictions, evaluation_labels) return valid_error, valid_accuracy,{"2":[3]},{"2":[3]} def fake_adopt_before(batch, learner, loss, adaptation_steps, shots, ways, device, error_dict, error_data, task): datas, labels = batch datas, labels = datas.to(device), labels.to(device) # Separate data into adaptation/evalutation sets adaptation_indices = np.zeros(datas.size(0), dtype=bool) adaptation_indices[np.arange(shots * ways) * 2] = True evaluation_indices = torch.from_numpy(~adaptation_indices) adaptation_indices = torch.from_numpy(adaptation_indices) # print("evaluation_indices",evaluation_indices) # print("adaptation_indices", adaptation_indices) adaptation_data, adaptation_labels = datas[adaptation_indices], labels[adaptation_indices] evaluation_data, evaluation_labels = datas[evaluation_indices], labels[evaluation_indices] # Adapt the model train_error = 0 print("adaptation_labels)", adaptation_labels) for step in range(adaptation_steps): for (one_class_data, one_class_label) in zip(adaptation_data, adaptation_labels): print("one_class_label: ", one_class_label) one_class_data = one_class_data.unsqueeze(0) one_class_label = one_class_label.unsqueeze(0) print("one_class_label:(unsquzee) ", one_class_label) one_class_loss = loss(learner(one_class_data), one_class_label) grads = grad(one_class_loss / 5, learner.parameters(), allow_unused=False) error_dict[task].append(grads) train_error += one_class_loss # print("one class label loss :",one_class_loss) # print("mean train error :",train_error/5) original_error = loss(learner(adaptation_data), adaptation_labels) # print("original train error : ",original_error) # print("@@@@@@@@@@@@@@@@@@@debug loss") # fine-tune # learner.adapt(train_error) for g in error_dict[task]: learner = maml_update(learner, learner.lr, g) # Evaluate the adapted model error_data[task] = evaluation_data, evaluation_labels predictions = learner(evaluation_data) # query loss evaluation_error = loss(predictions, evaluation_labels) evaluation_accuracy = accuracy(predictions, evaluation_labels) return evaluation_error, evaluation_accuracy, error_dict, error_data def fake_adopt_now(learner, fake_grads, loss, error_data, task): for g in fake_grads: learner = maml_update(learner, learner.lr, g) query_data, query_label = error_data[task] predictions = learner(query_data) # query loss evaluation_error = loss(predictions, query_label) return evaluation_error def fake_adopt_debug(batch, learner, loss, adaptation_steps, shots, ways, device, error_dict, error_data, task): datas, labels = batch datas, labels = datas.to(device), labels.to(device) # Separate data into adaptation/evalutation sets adaptation_indices = np.zeros(datas.size(0), dtype=bool) adaptation_indices[np.arange(shots * ways) * 2] = True evaluation_indices = torch.from_numpy(~adaptation_indices) adaptation_indices = torch.from_numpy(adaptation_indices) # print("evaluation_indices",evaluation_indices) # print("adaptation_indices", adaptation_indices) adaptation_data, adaptation_labels = datas[adaptation_indices], labels[adaptation_indices] evaluation_data, evaluation_labels = datas[evaluation_indices], labels[evaluation_indices] # Adapt the model train_error = [] # print("adaptation_labels)", adaptation_labels) for step in range(adaptation_steps): for (one_class_data, one_class_label) in zip(adaptation_data, adaptation_labels): # print("one_class_label: ", one_class_label) # print("one_class_label:(unsquzee) ", one_class_label) # 주석처리 one_class_data = one_class_data.unsqueeze(0) one_class_label = one_class_label.unsqueeze(0) one_class_loss = loss(learner(one_class_data), one_class_label) grads = grad(one_class_loss / 5, learner.parameters(), create_graph=True) updates = [-learner.lr * g for g in grads] error_dict[task].append(updates) train_error.append(one_class_loss) # print("one class label loss :",one_class_loss) # print("mean train error :",train_error/5) # original_error = loss(learner(adaptation_data), adaptation_labels) # print("original train error : ",original_error) # print("@@@@@@@@@@@@@@@@@@@debug loss") # fine-tune # learner.adapt(train_error) # 1차 시도 # for g in error_dict[task]: # learner = maml_update(learner, learner.lr, g) # 2차 시도 # for u in error_dict[task]: # update_module(learner,updates = u) # 3차 시도 # grads = grad(train_error, learner.parameters(), create_graph=True) # updates = [-learner.lr * g for g in grads] # update_module(learner, updates=updates) # 4차 시도 # grads = grad(original_error, learner.parameters(), create_graph=True) # updates = [-learner.lr * g for g in grads] # update_module(learner, updates=updates) # 5차 시도 # mean_error = torch.mean(torch.stack(train_error)) # grads = grad(mean_error, learner.parameters(), create_graph=True) # updates = [-learner.lr * g for g in grads] # update_module(learner, updates=updates) # 6차 시도 # mean_error = torch.mean(torch.stack(train_error)) # grads = grad(mean_error, learner.parameters(), create_graph=True) # updates = [-learner.lr * g for g in grads] # update_module(learner, updates=updates) # Evaluate the adapted model error_data[task] = evaluation_data, evaluation_labels predictions = learner(evaluation_data) # query loss evaluation_error = loss(predictions, evaluation_labels) evaluation_accuracy = accuracy(predictions, evaluation_labels) return evaluation_error, evaluation_accuracy, error_dict, error_data def evaluate(test_iteration, maml, task_information): tasksets, meta_batch_size, loss, adaptation_steps, shots, ways, device = task_information test_error = [] test_accuracy = [] for i in range(test_iteration): meta_test_error = 0.0 meta_test_accuracy = 0.0 # Compute meta-testing loss learner = maml.clone() batch = tasksets.test.sample() # print("batch",len(batch)) evaluation_error, evaluation_accuracy = fast_adapt(batch, learner, loss, adaptation_steps, shots, ways, device) meta_test_error += evaluation_error.item() meta_test_accuracy += evaluation_accuracy.item() test_error.append(meta_test_error) test_accuracy.append(meta_test_accuracy) # print('Meta Test Error', meta_test_error / meta_batch_size) # print('Meta Test Accuracy', meta_test_accuracy / meta_batch_size) test_error_mean = np.mean(test_error) test_accuracy_mean = np.mean(test_accuracy) test_error_std = np.std(test_error) test_accuracy_std = np.std(test_accuracy) print('Meta Test Error(Iteration Record)', test_error_mean) print('Meta Test Accuracy(Iteration Record)', test_accuracy_mean) return test_error_mean, test_error_std, test_accuracy_mean, test_accuracy_std ####new fake adopt 1 def fake_adopt_1_before(batch, learner, loss, adaptation_steps, shots, ways, device, error_dict, error_data, task): datas, labels = batch datas, labels = datas.to(device), labels.to(device) # Separate data into adaptation/evalutation sets adaptation_indices = np.zeros(datas.size(0), dtype=bool) adaptation_indices[np.arange(shots * ways) * 2] = True evaluation_indices = torch.from_numpy(~adaptation_indices) adaptation_indices = torch.from_numpy(adaptation_indices) # print("evaluation_indices",evaluation_indices) # print("adaptation_indices", adaptation_indices) adaptation_data, adaptation_labels = datas[adaptation_indices], labels[adaptation_indices] evaluation_data, evaluation_labels = datas[evaluation_indices], labels[evaluation_indices] # Adapt the model loss2 = nn.CrossEntropyLoss(reduction='none') for step in range(adaptation_steps): individual_loss = loss2(learner(adaptation_data), adaptation_labels) for il in individual_loss: grads = grad(il, learner.parameters(), retain_graph=True) # 이거 안하면 끝나고 free되서 오류남 updates = [-learner.lr * g for g in grads] error_dict[task].append(updates) train_error = loss(learner(adaptation_data), adaptation_labels) learner.adapt(train_error) error_data[task] = evaluation_data, evaluation_labels # Evaluate the adapted model predictions = learner(evaluation_data) # query loss evaluation_error = loss(predictions, evaluation_labels) evaluation_accuracy = accuracy(predictions, evaluation_labels) return evaluation_error, evaluation_accuracy, error_dict, error_data def fake_adopt_1_now(learner, fake_grads, loss, error_data, task): for updates in fake_grads: update_module(learner, updates=updates) query_data, query_label = error_data[task] predictions = learner(query_data) # query loss evaluation_error = loss(predictions, query_label) return evaluation_error #####fake_adopt 3 def fake_adopt_3_before(batch, learner, loss, adaptation_steps, shots, ways, device, error_dict, error_data, task, iteration): data, labels = batch data, labels = data.to(device), labels.to(device) adaptation_indices = np.zeros(data.size(0), dtype=bool) adaptation_indices[np.arange(shots * ways) * 2] = True evaluation_indices = torch.from_numpy(~adaptation_indices) adaptation_indices = torch.from_numpy(adaptation_indices) adaptation_data, adaptation_labels = data[adaptation_indices], labels[adaptation_indices] evaluation_data, evaluation_labels = data[evaluation_indices], labels[evaluation_indices] # Adapt the model #support loss if iteration % 49 == 0: loss2 = nn.CrossEntropyLoss(reduction='none') for step in range(adaptation_steps): individual_loss = loss2(learner(adaptation_data), adaptation_labels) for il in individual_loss: grads = grad(il, learner.parameters(), retain_graph=True) # 이거 안하면 끝나고 free되서 오류남 updates = [-learner.lr * g for g in grads] error_dict[task].append(updates) error_data[task] = evaluation_data, evaluation_labels # train_error = torch.mean(individual_loss) # learner.adapt(train_error) valid_error = torch.tensor([0]) valid_accuracy = torch.tensor([0]) else: for step in range(adaptation_steps): train_error = loss(learner(adaptation_data), adaptation_labels) learner.adapt(train_error) predictions = learner(evaluation_data) valid_error = loss(predictions, evaluation_labels) valid_accuracy = accuracy(predictions, evaluation_labels) return valid_error, valid_accuracy, error_dict, error_data def fake_adopt_3_now(learner, fake_grads, loss, error_data, task): for updates in fake_grads: update_module(learner, updates=updates) query_data, query_label = error_data[task] predictions = learner(query_data) # query loss evaluation_error = loss(predictions, query_label) return evaluation_error #############fake adopt 4 def fake_adopt_4_before(batch, learner, loss, adaptation_steps, shots, ways, device, error_dict, error_data, task, iteration): data, labels = batch data, labels = data.to(device), labels.to(device) adaptation_indices = np.zeros(data.size(0), dtype=bool) adaptation_indices[np.arange(shots * ways) * 2] = True evaluation_indices = torch.from_numpy(~adaptation_indices) adaptation_indices = torch.from_numpy(adaptation_indices) adaptation_data, adaptation_labels = data[adaptation_indices], labels[adaptation_indices] evaluation_data, evaluation_labels = data[evaluation_indices], labels[evaluation_indices] # Adapt the model #support loss if iteration % 9 == 0: loss2 = nn.CrossEntropyLoss(reduction='none') for step in range(adaptation_steps): individual_loss = loss2(learner(adaptation_data), adaptation_labels) for il in individual_loss: #grads = grad(il, learner.parameters(), retain_graph=True) # 이거 안하면 끝나고 free되서 오류남 #updates = [-learner.lr * g for g in grads] error_dict[task].append(il) error_data[task] = evaluation_data, evaluation_labels # train_error = torch.mean(individual_loss) # learner.adapt(train_error) valid_error = torch.tensor([0]) valid_accuracy = torch.tensor([0]) else: for step in range(adaptation_steps): train_error = loss(learner(adaptation_data), adaptation_labels) learner.adapt(train_error) predictions = learner(evaluation_data) valid_error = loss(predictions, evaluation_labels) valid_accuracy = accuracy(predictions, evaluation_labels) return valid_error, valid_accuracy, error_dict, error_data def fake_adopt_4_now(learner, fake_grads, loss, error_data, task): #for in fake_grads: #update_module(learner, updates=updates) for updates in fake_grads: update_module(learner, updates=updates) query_data, query_label = error_data[task] predictions = learner(query_data) # query loss evaluation_error = loss(predictions, query_label) return evaluation_error #############fake adopt 5 def fake_adopt_5_before(batch, learner, loss, adaptation_steps, shots, ways, device, error_dict, error_data, task, iteration,split_meta_batch_size): data, labels = batch data, labels = data.to(device), labels.to(device) adaptation_indices = np.zeros(data.size(0), dtype=bool) adaptation_indices[np.arange(shots * ways) * 2] = True evaluation_indices = torch.from_numpy(~adaptation_indices) adaptation_indices = torch.from_numpy(adaptation_indices) adaptation_data, adaptation_labels = data[adaptation_indices], labels[adaptation_indices] evaluation_data, evaluation_labels = data[evaluation_indices], labels[evaluation_indices] # Adapt the model #support loss if task >= split_meta_batch_size: loss2 = nn.CrossEntropyLoss(reduction='none') for step in range(adaptation_steps): individual_loss = loss2(learner(adaptation_data), adaptation_labels) for il in individual_loss: grads = grad(il, learner.parameters(), retain_graph=True) # 이거 안하면 끝나고 free되서 오류남 updates = [-learner.lr * g for g in grads] error_dict[task].append(updates) error_data[task] = evaluation_data, evaluation_labels # train_error = torch.mean(individual_loss) # learner.adapt(train_error) valid_error = torch.tensor([0]) valid_accuracy = torch.tensor([0]) else: for step in range(adaptation_steps): train_error = loss(learner(adaptation_data), adaptation_labels) learner.adapt(train_error) predictions = learner(evaluation_data) valid_error = loss(predictions, evaluation_labels) valid_accuracy = accuracy(predictions, evaluation_labels) return valid_error, valid_accuracy, error_dict, error_data def fake_adopt_5_now(learner, fake_grads, loss, error_data, task): # for in fake_grads: # update_module(learner, updates=updates) for updates in fake_grads: update_module(learner, updates=updates) query_data, query_label = error_data[task] predictions = learner(query_data) # query loss evaluation_error = loss(predictions, query_label) return evaluation_error #############fake adopt 6 def fake_adopt_6_before(batch, learner, loss, adaptation_steps, shots, ways, device, error_dict, error_data, task, iteration,split_meta_batch_size): data, labels = batch data, labels = data.to(device), labels.to(device) adaptation_indices = np.zeros(data.size(0), dtype=bool) adaptation_indices[np.arange(shots * ways) * 2] = True evaluation_indices = torch.from_numpy(~adaptation_indices) adaptation_indices = torch.from_numpy(adaptation_indices) adaptation_data, adaptation_labels = data[adaptation_indices], labels[adaptation_indices] evaluation_data, evaluation_labels = data[evaluation_indices], labels[evaluation_indices] # Adapt the model #support loss if task >= split_meta_batch_size: loss2 = nn.CrossEntropyLoss(reduction='none') for step in range(adaptation_steps): individual_loss = loss2(learner(adaptation_data), adaptation_labels) for il in individual_loss: grads = grad(il, learner.parameters(), retain_graph=True) # 이거 안하면 끝나고 free되서 오류남 updates = [-learner.lr * g for g in grads] error_dict[task].append(updates) error_data[task] = evaluation_data, evaluation_labels # train_error = torch.mean(individual_loss) # learner.adapt(train_error) valid_error = torch.tensor([0]) valid_accuracy = torch.tensor([0]) else: for step in range(adaptation_steps): train_error = loss(learner(adaptation_data), adaptation_labels) learner.adapt(train_error) predictions = learner(evaluation_data) valid_error = loss(predictions, evaluation_labels) valid_accuracy = accuracy(predictions, evaluation_labels) return valid_error, valid_accuracy, error_dict, error_data def fake_adopt_6_now(learner, fake_grads, loss, error_data, task): # for in fake_grads: # update_module(learner, updates=updates) for updates in fake_grads: update_module(learner, updates=updates) query_data, query_label = error_data[task] predictions = learner(query_data) # query loss evaluation_error = loss(predictions, query_label) return evaluation_error #############fake adopt 7 (랩미팅 피드백) # 50% 정상 + 50% fake # 50 % 전반 client 정상적 진행 # 50 % 후반 client 가지고 fake 진행행 def fake_adopt_7_before(batch, learner, loss, adaptation_steps, shots, ways, device, error_dict, error_data, task, iteration, split_meta_batch_size): data, labels = batch data, labels = data.to(device), labels.to(device) adaptation_indices = np.zeros(data.size(0), dtype=bool) adaptation_indices[np.arange(shots * ways) * 2] = True evaluation_indices = torch.from_numpy(~adaptation_indices) adaptation_indices = torch.from_numpy(adaptation_indices) adaptation_data, adaptation_labels = data[adaptation_indices], labels[adaptation_indices] evaluation_data, evaluation_labels = data[evaluation_indices], labels[evaluation_indices] # Adapt the model #support loss if task >= split_meta_batch_size: #후반 50% client fake 진행 loss2 = nn.CrossEntropyLoss(reduction='none') for step in range(adaptation_steps): individual_loss = loss2(learner(adaptation_data), adaptation_labels) for il in individual_loss: grads = grad(il, learner.parameters(), retain_graph=True) # 이거 안하면 끝나고 free되서 오류남 updates = [-learner.lr * g for g in grads] error_dict[task].append(updates) error_data[task] = evaluation_data, evaluation_labels # train_error = torch.mean(individual_loss) # learner.adapt(train_error) valid_error = torch.tensor([0]) valid_accuracy = torch.tensor([0]) else: #정상적인 진행 :전반 50% client for step in range(adaptation_steps): train_error = loss(learner(adaptation_data), adaptation_labels) learner.adapt(train_error) predictions = learner(evaluation_data) valid_error = loss(predictions, evaluation_labels) valid_accuracy = accuracy(predictions, evaluation_labels) return valid_error, valid_accuracy, error_dict, error_data def fake_adopt_7_now(learner, fake_grads, loss, error_data, task,label_index,client_index): # for in fake_grads: # update_module(learner, updates=updates) for updates in fake_grads: update_module(learner, updates=updates) #일단 fake adaptation loss2 = nn.CrossEntropyLoss(reduction='none') #Client로 접근 error_list = [] for idx,client in enumerate(client_index): query_data, query_label = error_data[client] label = label_index[idx] individual_query_loss = loss2(learner(query_data),query_label)[label] error_list.append(individual_query_loss) evaluation_error = torch.mean(torch.stack(error_list)) return evaluation_error #fake7 : 1차 시도 #그냥 지금까지 실패했던 것처럼 로직만 짜고 러프하게 loss 일일이 구해서 그것들을 평균내는 방식으로 #산출 , 실패 예상 => 사실 이게 되면 제일 깔끔 #엥 돌아가버리네 이게?? #############fake adopt 8 (랩미팅 피드백) # 50% 정상 + 50% fake # 50 % 전반 client 정상적 진행 # 50 % 전반 client 가지고 fake 진행행 def fake_adopt_8_before(batch, learner, loss, adaptation_steps, shots, ways, device, error_dict, error_data, task, iteration, split_meta_batch_size): data, labels = batch data, labels = data.to(device), labels.to(device) adaptation_indices = np.zeros(data.size(0), dtype=bool) adaptation_indices[np.arange(shots * ways) * 2] = True evaluation_indices = torch.from_numpy(~adaptation_indices) adaptation_indices = torch.from_numpy(adaptation_indices) adaptation_data, adaptation_labels = data[adaptation_indices], labels[adaptation_indices] evaluation_data, evaluation_labels = data[evaluation_indices], labels[evaluation_indices] # Adapt the model #support loss #초반 50% client를 가지고 grads 저장 + 정상적인 진행 loss2 = nn.CrossEntropyLoss(reduction='none') for step in range(adaptation_steps): individual_loss = loss2(learner(adaptation_data), adaptation_labels) for il in individual_loss: grads = grad(il, learner.parameters(), retain_graph=True) # 이거 안하면 끝나고 free되서 오류남 updates = [-learner.lr * g for g in grads] error_dict[task].append(updates) train_error = loss(learner(adaptation_data), adaptation_labels) learner.adapt(train_error) error_data[task] = evaluation_data, evaluation_labels # train_error = torch.mean(individual_loss) # learner.adapt(train_error) predictions = learner(evaluation_data) valid_error = loss(predictions, evaluation_labels) valid_accuracy = accuracy(predictions, evaluation_labels) return valid_error, valid_accuracy, error_dict, error_data def fake_adopt_8_now(learner, fake_grads, loss, error_data, task, label_index, client_index): # for in fake_grads: # update_module(learner, updates=updates) for updates in fake_grads: update_module(learner, updates=updates) # 일단 fake adaptation loss2 = nn.CrossEntropyLoss(reduction='none') # Client로 접근 error_list = [] for idx, client in enumerate(client_index): query_data, query_label = error_data[client] label = label_index[idx] individual_query_loss = loss2(learner(query_data), query_label)[label] error_list.append(individual_query_loss) evaluation_error = torch.mean(torch.stack(error_list)) return evaluation_error ##0812에 구현 #############fake adopt 9 (공동 랩미팅 피드백) # 50% 정상 + 50% fake # 50 % 전반 client 정상적 진행 # 50 % 후반 client 가지고 fake 진행행 # + 인덱싱 (support grad / query loss) # + class 비복원추출 def fake_adopt_9_before(batch, learner, loss, adaptation_steps, shots, ways, device, error_dict, error_data, task, iteration, split_meta_batch_size): data, labels = batch data, labels = data.to(device), labels.to(device) adaptation_indices = np.zeros(data.size(0), dtype=bool) adaptation_indices[np.arange(shots * ways) * 2] = True evaluation_indices = torch.from_numpy(~adaptation_indices) adaptation_indices = torch.from_numpy(adaptation_indices) adaptation_data, adaptation_labels = data[adaptation_indices], labels[adaptation_indices] evaluation_data, evaluation_labels = data[evaluation_indices], labels[evaluation_indices] # Adapt the model #support loss if task >= split_meta_batch_size: # 후반 50% client fake 진행 loss2 = nn.CrossEntropyLoss(reduction='none') for step in range(adaptation_steps): individual_loss = loss2(learner(adaptation_data), adaptation_labels) for il in individual_loss: grads = grad(il, learner.parameters(), retain_graph=True) # 이거 안하면 끝나고 free되서 오류남 updates = [-learner.lr * g for g in grads] error_dict[task].append(updates) error_data[task] = evaluation_data, evaluation_labels # train_error = torch.mean(individual_loss) # learner.adapt(train_error) valid_error = torch.tensor([0]) valid_accuracy = torch.tensor([0]) else: # 정상적인 진행 :전반 50% client for step in range(adaptation_steps): train_error = loss(learner(adaptation_data), adaptation_labels) learner.adapt(train_error) predictions = learner(evaluation_data) valid_error = loss(predictions, evaluation_labels) valid_accuracy = accuracy(predictions, evaluation_labels) return valid_error, valid_accuracy, error_dict, error_data def fake_adopt_9_now(learner, fake_grads, loss, error_data, task, label_index, client_index): # for in fake_grads: # update_module(learner, updates=updates) for updates in fake_grads: update_module(learner, updates=updates) # 일단 fake adaptation loss2 = nn.CrossEntropyLoss(reduction='none') # Client로 접근 error_list = [] for idx, client in enumerate(client_index): query_data, query_label = error_data[client] label = label_index[idx] individual_query_loss = loss2(learner(query_data), query_label)[label] error_list.append(individual_query_loss) evaluation_error = torch.mean(torch.stack(error_list)) return evaluation_error # fake7 : 1차 시도 # 그냥 지금까지 실패했던 것처럼 로직만 짜고 러프하게 loss 일일이 구해서 그것들을 평균내는 방식으로 # 산출 , 실패 예상 => 사실 이게 되면 제일 깔끔 # 엥 돌아가버리네 이게?? #############fake adopt 8 (랩미팅 피드백) # 50% 정상 + 50% fake # 50 % 전반 client 정상적 진행 # 50 % 전반 client 가지고 fake 진행행 def fake_adopt_10_before(batch, learner, loss, adaptation_steps, shots, ways, device, error_dict, error_data, task, iteration, split_meta_batch_size): data, labels = batch data, labels = data.to(device), labels.to(device) adaptation_indices = np.zeros(data.size(0), dtype=bool) adaptation_indices[np.arange(shots * ways) * 2] = True evaluation_indices = torch.from_numpy(~adaptation_indices) adaptation_indices = torch.from_numpy(adaptation_indices) adaptation_data, adaptation_labels = data[adaptation_indices], labels[adaptation_indices] evaluation_data, evaluation_labels = data[evaluation_indices], labels[evaluation_indices] # Adapt the model #support loss # 초반 50% client를 가지고 grads 저장 + 정상적인 진행 loss2 = nn.CrossEntropyLoss(reduction='none') for step in range(adaptation_steps): individual_loss = loss2(learner(adaptation_data), adaptation_labels) for il in individual_loss: grads = grad(il, learner.parameters(), retain_graph=True) # 이거 안하면 끝나고 free되서 오류남 updates = [-learner.lr * g for g in grads] error_dict[task].append(updates) train_error = loss(learner(adaptation_data), adaptation_labels) learner.adapt(train_error) error_data[task] = evaluation_data, evaluation_labels # train_error = torch.mean(individual_loss) # learner.adapt(train_error) predictions = learner(evaluation_data) valid_error = loss(predictions, evaluation_labels) valid_accuracy = accuracy(predictions, evaluation_labels) return valid_error, valid_accuracy, error_dict, error_data def fake_adopt_10_now(learner, fake_grads, loss, error_data, task, label_index, client_index): # for in fake_grads: # update_module(learner, updates=updates) for updates in fake_grads: update_module(learner, updates=updates) # 일단 fake adaptation loss2 = nn.CrossEntropyLoss(reduction='none') # Client로 접근 error_list = [] for idx, client in enumerate(client_index): query_data, query_label = error_data[client] label = label_index[idx] individual_query_loss = loss2(learner(query_data), query_label)[label] error_list.append(individual_query_loss) evaluation_error = torch.mean(torch.stack(error_list)) return evaluation_error ### 검증용 (FP 9,10과 제대로 된 연산 성능을 비교해서 문제점을 파악) # 당연히 CLIENT는 32이고 DISJOINT 하지도 않다. # 다만 첫 16개는 정상진행 # 이후 16개는 사제연산으로 진행하도록 한다. def fake_adopt_11_before(batch, learner, loss, adaptation_steps, shots, ways, device, error_dict, error_data, task, iteration, split_meta_batch_size): data, labels = batch data, labels = data.to(device), labels.to(device) adaptation_indices = np.zeros(data.size(0), dtype=bool) adaptation_indices[np.arange(shots * ways) * 2] = True evaluation_indices = torch.from_numpy(~adaptation_indices) adaptation_indices = torch.from_numpy(adaptation_indices) adaptation_data, adaptation_labels = data[adaptation_indices], labels[adaptation_indices] evaluation_data, evaluation_labels = data[evaluation_indices], labels[evaluation_indices] # Adapt the model #support loss if task >= split_meta_batch_size: # 후반 50% client fake 진행 loss2 = nn.CrossEntropyLoss(reduction='none') for step in range(adaptation_steps): individual_loss = loss2(learner(adaptation_data), adaptation_labels) for il in individual_loss: grads = grad(il, learner.parameters(), retain_graph=True) # 이거 안하면 끝나고 free되서 오류남 updates = [-learner.lr * g for g in grads] error_dict[task].append(updates) error_data[task] = evaluation_data, evaluation_labels # train_error = torch.mean(individual_loss) # learner.adapt(train_error) valid_error = torch.tensor([0]) valid_accuracy = torch.tensor([0]) else: # 정상적인 진행 :전반 50% client for step in range(adaptation_steps): train_error = loss(learner(adaptation_data), adaptation_labels) learner.adapt(train_error) predictions = learner(evaluation_data) valid_error = loss(predictions, evaluation_labels) valid_accuracy = accuracy(predictions, evaluation_labels) return valid_error, valid_accuracy, error_dict, error_data def fake_adopt_11_now(learner, fake_grads, loss, error_data, task, label_index, client_index): # for in fake_grads: # update_module(learner, updates=updates) for updates in fake_grads: update_module(learner, updates=updates) # 일단 fake adaptation loss2 = nn.CrossEntropyLoss(reduction='none') # Client로 접근 error_list = [] for idx, client in enumerate(client_index): query_data, query_label = error_data[client] label = label_index[idx] individual_query_loss = loss2(learner(query_data), query_label)[label] error_list.append(individual_query_loss) evaluation_error = torch.mean(torch.stack(error_list)) return evaluation_error
34.855236
113
0.745353
0
0
0
0
0
0
0
0
8,314
0.237319
c06a8301008200b139bb039c709d82f05d2164d7
1,602
py
Python
sigda/test/graylog.py
yangluoshen/sigda
83a2149d07edfbe56be95d5dc2a316c044bee54e
[ "BSD-2-Clause" ]
null
null
null
sigda/test/graylog.py
yangluoshen/sigda
83a2149d07edfbe56be95d5dc2a316c044bee54e
[ "BSD-2-Clause" ]
3
2017-08-21T07:26:11.000Z
2017-11-09T02:19:23.000Z
sigda/test/graylog.py
yangluoshen/sigda
83a2149d07edfbe56be95d5dc2a316c044bee54e
[ "BSD-2-Clause" ]
null
null
null
#coding:utf-8 #from graypy import GELFHandler import logging.config import logging ''' handler = GELFHandler(host='0.0.0.0', port=12201) logger = logging.getLogger() logger.addHandler(handler) logger.error('catch error') ''' LOG_LEVEL = 'DEBUG' def get_log_config(category): log_file = "{}.log".format(category) return { 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'default': { 'format': '%(asctime)s %(levelname)s %(message)s' }, 'console': { 'format': "%(asctime)s [%(thread)d] %(levelname)s %(funcName)s\t%(message)s" }, }, 'handlers': { 'graylog2': { 'level': LOG_LEVEL, 'formatter': 'default', 'class': 'graypy.GELFHandler', 'host': '0.0.0.0', 'port': 12201, 'debugging_fields': False, 'facility': category }, 'console': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', 'formatter': 'console' }, 'file': { 'level': 'INFO', 'class': 'logging.FileHandler', 'formatter': 'console', 'filename': log_file } }, 'root': { 'handlers': ['graylog2', 'file'], 'level': LOG_LEVEL } } LOG_CONFIG = get_log_config('sigda') logging.config.dictConfig(LOG_CONFIG) logging.error('catch error again2')
23.910448
92
0.473159
0
0
0
0
0
0
0
0
726
0.453184
c06b4470ee6ba272de73e528bcb01060567707f9
142
py
Python
instanotifier/fetcher/scripts/fetcher.py
chaudbak/instanotifier
d29bc6bd9b7a003403886bfff1376b2c1925cc74
[ "MIT" ]
null
null
null
instanotifier/fetcher/scripts/fetcher.py
chaudbak/instanotifier
d29bc6bd9b7a003403886bfff1376b2c1925cc74
[ "MIT" ]
6
2020-06-06T01:27:17.000Z
2022-02-10T11:20:17.000Z
instanotifier/fetcher/scripts/fetcher.py
chaudbak/instanotifier
d29bc6bd9b7a003403886bfff1376b2c1925cc74
[ "MIT" ]
null
null
null
from instanotifier.fetcher import tests def run(): # is executed when ran with 'manage.py runscript tests' tests.test_rss_fetcher()
20.285714
59
0.739437
0
0
0
0
0
0
0
0
55
0.387324
c06b5a0da650cb5b7106dc53e3294c6abe96376c
676
py
Python
clase_4/populate_alumnos.py
noctilukkas/python-programming
0ced5e1390e5501bae79fd30dd2baefd7bc09040
[ "Apache-2.0" ]
null
null
null
clase_4/populate_alumnos.py
noctilukkas/python-programming
0ced5e1390e5501bae79fd30dd2baefd7bc09040
[ "Apache-2.0" ]
null
null
null
clase_4/populate_alumnos.py
noctilukkas/python-programming
0ced5e1390e5501bae79fd30dd2baefd7bc09040
[ "Apache-2.0" ]
null
null
null
import sqlite3 def main(): # se establece conexion con la BD y abro cursor conn = sqlite3.connect("alumnos.db") cursor = conn.cursor() # creo una tupla de tuplas para agregar registros a la tabla alumnos = ( (1, "Juan", "Granizado", 8, 25), (2, "Esteban", "Quito", 2, 19), (3, "Marina", "Cordoba", 10, 25), ) for alumno in alumnos: cursor.execute("INSERT INTO alumnos VALUES (?, ?, ?, ?, ?)", alumno) # Para que se agreguen los registros efectivamente tenemos que hacer commit conn.commit() print("Datos cargados!") # Cerramos conexion conn.close() if __name__ == '__main__': main()
22.533333
79
0.597633
0
0
0
0
0
0
0
0
334
0.494083
fbe36d61bbb46c7d89d9f7a7b5921b3928eef150
366
py
Python
cap11/main.py
felipesch92/livroPython
061b1c095c3ec2d25fb1d5fdfbf9e9dbe10b3307
[ "MIT" ]
null
null
null
cap11/main.py
felipesch92/livroPython
061b1c095c3ec2d25fb1d5fdfbf9e9dbe10b3307
[ "MIT" ]
null
null
null
cap11/main.py
felipesch92/livroPython
061b1c095c3ec2d25fb1d5fdfbf9e9dbe10b3307
[ "MIT" ]
null
null
null
import sqlite3 con = sqlite3.connect('agenda.db') cursor = con.cursor() cursor.execute(''' create table if not exists agenda( nome text, telefone text) ''') cursor.execute(''' insert into agenda(nome, telefone) values(?, ?) ''', ("Tamara", "51-98175-0510")) con.commit() cursor.close() con.close()
22.875
42
0.562842
0
0
0
0
0
0
0
0
225
0.614754
fbe380b10e29919d567688beee1e5f00654464f3
4,298
py
Python
falconcv/data/scraper/flickr_scraper.py
haruiz/FalconCV
0c9444451a60c8f6375c30426811160ae79b02ba
[ "Apache-2.0" ]
16
2020-06-05T01:26:04.000Z
2020-09-18T23:56:14.000Z
falconcv/data/scraper/flickr_scraper.py
haruiz/FalconCV
0c9444451a60c8f6375c30426811160ae79b02ba
[ "Apache-2.0" ]
13
2020-06-01T17:35:22.000Z
2020-09-22T23:19:27.000Z
falconcv/data/scraper/flickr_scraper.py
haruiz/FalconCV
0c9444451a60c8f6375c30426811160ae79b02ba
[ "Apache-2.0" ]
2
2020-06-06T06:10:58.000Z
2020-06-08T07:19:24.000Z
import logging import math import re import time import dask import numpy as np import requests import json import xml.etree.ElementTree as ET from falconcv.data.scraper.scraper import ImagesScraper from falconcv.util import ImageUtil logger = logging.getLogger(__name__) FLICKR_ENDPOINT = "https://www.flickr.com/services/rest" # List of sizes: # url_o: Original (4520 × 3229) # url_k: Large 2048 (2048 × 1463) # url_h: Large 1600 (1600 × 1143) # url_l=: Large 1024 (1024 × 732) # url_c: Medium 800 (800 × 572) # url_z: Medium 640 (640 × 457) # url_m: Medium 500 (500 × 357) # url_n: Small 320 (320 × 229) # url_s: Small 240 (240 × 171) # url_t: Thumbnail (100 × 71) # url_q: Square 150 (150 × 150) # url_sq: Square 75 (75 × 75) class FlickrScraper(ImagesScraper): def __init__(self, api_key): super(FlickrScraper, self).__init__() self.api_key = api_key def _authenticate(self): pass def _get_total_matches(self, q): total_matches = 0 try: response = requests.get(url=FLICKR_ENDPOINT, params={ "api_key": self.api_key, "method": "flickr.photos.search", "tags": ",".join(q), "tag_mode": "any", # "privacy_filter": "1" "content_type": 1, "media": "photos", "per_page": 0, "format": "json" }) if response.status_code == 200: json_text = re.search(r'\((.*?)\)', response.text).group(1) json_object = json.loads(json_text) if json_object["stat"] == "ok": total_matches = int(json_object["photos"]["total"]) # total_matches = json_object["photos"] except Exception as ex: logger.error("Error making the request : {}".format(ex)) return total_matches def _request_photos(self, q, count, page): images = [] try: response = requests.get(url=FLICKR_ENDPOINT, params={ "api_key": self.api_key, "method": "flickr.photos.search", "tags": ",".join(q), "tag_mode": "any", # "privacy_filter": "1" "content_type": 1, "media": "photos", "per_page": count, "page": page, "extras": ",".join(["url_o", "url_k", "url_h", "url_l", "url_c", "url_m"]) }) if response.status_code == 200: try: # print(response.text) root: ET.Element = ET.fromstring(response.text) stat = root.get("stat") if stat == "ok": for photo in root.iterfind("photos/photo"): photo: ET.Element images.append(photo.attrib) except Exception as ex: logger.error("error gathering the response: {}".format(ex)) except Exception as ex: logger.error("Error making the request : {}".format(ex)) return images @dask.delayed def _fetch_image(self, image_info, sz): try: if sz in image_info: url = image_info[sz] return ImageUtil.url2img(url) except Exception as ex: logger.error("Error fetching the image: " % ex) return None def fetch(self, q, batch_size: int = 100, timestamp=1, sz="url_m"): try: assert batch_size <= 500, "invalid count parameter" total_matches = self._get_total_matches(q) logger.debug("{} images found ".format(total_matches)) number_of_pages = math.ceil(total_matches / batch_size) for page in range(1, number_of_pages): photos = self._request_photos(q, batch_size, page) delayed_tasks = list(map(lambda img: self._fetch_image(img, sz), photos)) compute_result = dask.compute(*delayed_tasks) yield [img for img in compute_result if isinstance(img, np.ndarray)] time.sleep(timestamp) except Exception as ex: logger.error("error fetching the images: {}".format(ex))
37.701754
90
0.543509
3,566
0.827378
829
0.192343
299
0.069374
0
0
1,090
0.2529
fbe3b3f30ddf6f664ac393236c6cc50652de4531
9,893
py
Python
argparser.py
geoff-smith/MCplotscripts
16dd5fd849671bb082a71f08492676be876209d3
[ "MIT" ]
null
null
null
argparser.py
geoff-smith/MCplotscripts
16dd5fd849671bb082a71f08492676be876209d3
[ "MIT" ]
null
null
null
argparser.py
geoff-smith/MCplotscripts
16dd5fd849671bb082a71f08492676be876209d3
[ "MIT" ]
null
null
null
# argParser # this class generates a RunParams object from the args passed to the script from runparams import * import os.path import string ## handles args passed to the program # class ArgParser(object): def parsePtCutString(self, ptCutString): return map(float, string.split(ptCutString,',') ) def parseEventsString(self, eventsString): return map(int, string.split(eventsString,',') ) def displayUserInfo(self): print "" print "o------------------o" print "|Extracthistos Info|" print "o------------------o" print "" print "[example usage]" print "" print "extracthistos inputFile.root" print "" print "extracthistos inputFile.root /intputDir/*.root --visualize --output outputfile-extracted.root --ptcuts 20,30,50,100 --etacut 2.5 --limit 100" print "" print "extracthistos inputFile.root /intputDir/*.root -v -o outputfile-extracted.root -p 20,30,50,100 -e 2.5 -l 100" print "" print "[switches]" print " -d | --debug: Show debug information" print " -e | --etacut: Set etaCut (double)" print " -f | --force: Force overwriting of output file" print " -i | --info: Shows this info" print " -l | --limit: Limit maximum # of events processed" print " -o | --output: Set output file (string)" print " -od | --output-outputdirectory: Set output directory (string)" print " -p | --ptcuts: Set pTcuts (list of doubles seperated by ',')" print " -# | --events: Specify events to processed (list of ints seperated by ',')" print " -m | --multi-processing: create n (int) subprocesses" print " -% | --modulo: process only every nth event (int)" print " -%r | --modulo-rest: process only every nth + r event (int)" print " -v | --visualize: Create visualization(s)" print " -vs | --visualize-skip-copies: Do not render non-physical particle copies" print " -vnu | --visualize-no-underlying-event: Do not visualize the underlying event" print " -vni | --visualize-no-main-interaction: Do not visualize the main interaction" print " -vsj | --visualize-color-special-jets: Color special particle jets" print " -vce | --visualize-cutoff-energy: Specify Visualization energy cutoff (double)" print " -vcs | --visualize-cutoff-special-jets: Cutoff Special Jets" print " -vcr | --visualize-cutoff-radiation: Cutoff ISR/FSR Jets" print " -vme | --visualize-mode-energy: Color particles by their energy" print " -vmp | --visualize-mode-pt: Color particles by their pT" print " -vr | --visualize-renderer: Specify GraphViz renderer (string), defaults to 'dot'" print "" def __init__(self, args): self.runParams = RunParams() lenArgs = len(args) skip = False forceOutputOverride = False for i in range (0, lenArgs): # skip first arg as it's the script's name if i == 0 or skip: skip = False continue # provide arg and nextArg (if possible) arg = args[i] nextArg = None if (i < lenArgs - 1): nextArg = args[i+1] # parse switches if ( arg == "-d" ) or ( arg == "--debug" ) : self.runParams.useDebugOutput = True continue if ( arg == "-e" ) or ( arg == "--etacut" ) : if nextArg is None or nextArg[0] == '-': raise Exception("'" + arg + "': Parse Error after '"+arg+"'!") self.runParams.eta = float(nextArg) skip = True continue if ( arg == "-f" ) or ( arg == "--force" ) : forceOutputOverride = True continue if ( arg == "-i" ) or ( arg == "--info" ) : self.displayUserInfo() self.runParams.run = False break if ( arg == "-l" ) or ( arg == "--limit" ) : if nextArg is None or nextArg[0] == '-': raise Exception("'" + arg + "': Parse Error after '"+arg+"'!") self.runParams.maxEvents = int(nextArg) skip = True continue if ( arg == "-o" ) or ( arg == "--output" ) : if nextArg is None or nextArg[0] == '-': raise Exception("'" + arg + "': Parse Error after '"+arg+"'!") if nextArg [-15:] <> '-extracted.root': raise Exception("'" + arg + "': Output file must end with '-extracted.root'!") self.runParams.outputFile = nextArg skip = True continue if ( arg == "-p" ) or ( arg == "--ptcuts" ) : if nextArg is None or nextArg[0] == '-': raise Exception("'" + arg + "': Parse Error after '"+arg+"'!") ptCutString = nextArg self.runParams.pTCuts = self.parsePtCutString(ptCutString) skip = True continue if ( arg == "-v" ) or ( arg == "--visualize" ) : self.runParams.useVisualization = True continue if ( arg == "-vs" ) or ( arg == "--visualize-skip-copies" ) : self.runParams.visualizationSkipCopies = True continue if ( arg == "-vnu" ) or ( arg == "--visualize-no-underlying-event" ) : self.runParams.visualizationShowUnderlyingEvent = False continue if ( arg == "-vni" ) or ( arg == "--visualize-no-main-interaction" ) : self.runParams.visualizationShowMainInteraction = False continue if ( arg == "-vsj" ) or ( arg == "--visualize-color-special-jets" ) : self.runParams.visualizationColorSpecialJets = True continue if ( arg == "-vme" ) or ( arg == "--visualize-mode-energy" ) : self.runParams.visualizationEnergyMode = True continue if ( arg == "-vmp" ) or ( arg == "--visualize-mode-pt" ) : self.runParams.visualizationPtMode = True continue if ( arg == "-vce" ) or ( arg == "--visualize-cutoff-energy" ) : if nextArg is None or nextArg[0] == '-': raise Exception("'" + arg + "': Parse Error after '"+arg+"'!") self.runParams.visualizationEnergyCutoff = int(nextArg) skip = True continue if ( arg == "-vcr" ) or ( arg == "--visualize-cutoff-radiation" ) : self.runParams.visualizationCutoffRadiation = True continue if ( arg == "-vcs" ) or ( arg == "--visualize-cutoff-special-jets" ) : self.runParams.visualizationCutSpecialJets = True continue #if ( arg == "-vp" ) or ( arg == "--visualize-pt-cutoff" ) : #if nextArg is None or nextArg[0] == '-': #raise Exception("'" + arg + "': Parse Error after '"+arg+"'!") #self.runParams.visualizationPtCutoff = int(nextArg) #skip = True #continue if ( arg == "-vr" ) or ( arg == "--visualize-renderer:" ) : if nextArg is None or nextArg[0] == '-': raise Exception("'" + arg + "': Parse Error after '"+arg+"'!") self.runParams.visualizationRenderer = nextArg skip = True continue #if ( arg == "-z" ) or ( arg == "--zero-jets" ) : #self.runParams.zeroAdditionalJets = True #continue if ( arg == "-#" ) or ( arg == "--events" ) : if nextArg is None or nextArg[0] == '-': raise Exception("'" + arg + "': Parse Error after '"+arg+"'!") eventsString = nextArg self.runParams.events = self.parseEventsString(eventsString) skip = True continue if ( arg == "-od" ) or ( arg == "--output-outputdirectory" ) : if nextArg is None or nextArg[0] == '-': raise Exception("'" + arg + "': Parse Error after '"+arg+"'!") self.runParams.outputDir = nextArg skip = True continue if ( arg == "-m" ) or ( arg == "--multi-processing" ) : if nextArg is None or nextArg[0] == '-': raise Exception("'" + arg + "': Parse Error after '"+arg+"'!") self.runParams.multiProcessing = int(nextArg) skip = True continue if ( arg == "-%" ) or ( arg == "--modulo" ) : if nextArg is None or nextArg[0] == '-': raise Exception("'" + arg + "': Parse Error after '"+arg+"'!") self.runParams.modulo = int(nextArg) skip = True continue if ( arg == "-%r" ) or ( arg == "--modulo-rest" ) : if nextArg is None or nextArg[0] == '-': raise Exception("'" + arg + "': Parse Error after '"+arg+"'!") self.runParams.moduloRest = int(nextArg) skip = True continue if (arg[0] == '-'): raise Exception("'" + arg + "' is not a valid switch!") # deny input files ending with '-extracted.root', as this is our signature for output files: if arg[-15:] == '-extracted.root': print "Warning: File '" + arg + "' is being skipped." continue # parse input files: if arg[-5:] == '.root': thisFile = arg if thisFile[:7] == "/store/": if not os.path.isfile(thisFile): thisFile = "root://xrootd.ba.infn.it/" + thisFile else: if not os.path.isfile(thisFile): raise Exception("File '" + thisFile + "' does not exist!") self.runParams.inputFileList.append(thisFile) continue raise Exception("'" + arg + "' is not a valid root file!") if self.runParams.useVisualization and len(self.runParams.inputFileList) > 1: raise Exception("Visualization is allowed only for exactly one input file.") if self.runParams.run: if os.path.isfile(self.runParams.outputFile) and not forceOutputOverride: raise Exception("'" + self.runParams.outputFile + "' exists. Use the --force switch to force overriding.") if len(self.runParams.outputDir) <> 0: if not os.path.exists(self.runParams.outputDir): os.makedirs(self.runParams.outputDir) self.runParams.outputFilePath = self.runParams.outputDir + "/" + self.runParams.outputFile else: self.runParams.outputFilePath = self.runParams.outputFile #self.displayInfo()
39.730924
153
0.574548
9,707
0.981199
0
0
0
0
0
0
4,143
0.418781
fbe4f5813f57f07bcd01eac89fa0f4bcc8abfeac
1,326
py
Python
floppy/_surf-garbage.py
hillscott/windows
ba32cd43db1bd1495f0150ab0c32ee63b5a5d415
[ "Apache-2.0" ]
null
null
null
floppy/_surf-garbage.py
hillscott/windows
ba32cd43db1bd1495f0150ab0c32ee63b5a5d415
[ "Apache-2.0" ]
null
null
null
floppy/_surf-garbage.py
hillscott/windows
ba32cd43db1bd1495f0150ab0c32ee63b5a5d415
[ "Apache-2.0" ]
null
null
null
# pip install -U pywinauto from pywinauto.application import Application import subprocess import time subprocess.run('SCHTASKS /DELETE /TN BuildTasks\\Sites /f') app = Application(backend='uia') app.start('C:\\Program Files\\Google\\Chrome\\Application\\chrome.exe --force-renderer-accessibility ') window = app.top_window() # Allow the registry installed extensions to load... time.sleep(45) ch_window = window.child_window(title="Address and search bar", control_type="Edit") ch_window.type_keys('^a') ch_window.type_keys('{BACKSPACE}chrome://extensions/{ENTER}') time.sleep(3) # Enable Honey (or disable google drive offline) dlg = window.button6 try: dlg.click() except Exception: dlg.close() # Enable Soccer wallpapers (or Soccer wallpapers) dlg = window.button9 try: dlg.click() except Exception: dlg.close() # Enable Soccer wallpapers (if it exists) dlg = window.button12 try: dlg.click() except Exception: dlg.close() time.sleep(5) ch_window.type_keys('^a') ch_window.type_keys('{BACKSPACE}https://thepiratebay.org{ENTER}') time.sleep(10) # Allow notifications dlg = window.AllowButton try: dlg.wait_not('visible', timeout=2) dlg.click() except Exception: dlg.close() ch_window.type_keys('^a') ch_window.type_keys('{BACKSPACE}{BACKSPACE}https://yts.mx{ENTER}') time.sleep(3) window.close()
27.625
103
0.748115
0
0
0
0
0
0
0
0
557
0.42006
fbe52989054e585791a8f893935e850e1910b673
992
py
Python
sla/migrations/0005_slaprobe_workflow.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
84
2017-10-22T11:01:39.000Z
2022-02-27T03:43:48.000Z
sla/migrations/0005_slaprobe_workflow.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
22
2017-12-11T07:21:56.000Z
2021-09-23T02:53:50.000Z
sla/migrations/0005_slaprobe_workflow.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
23
2017-12-06T06:59:52.000Z
2022-02-24T00:02:25.000Z
# ---------------------------------------------------------------------- # Migrate SLAProbe to workflow # ---------------------------------------------------------------------- # Copyright (C) 2007-2021 The NOC Project # See LICENSE for details # ---------------------------------------------------------------------- # Third-party modules from pymongo import UpdateMany from bson import ObjectId # NOC modules from noc.core.migration.base import BaseMigration class Migration(BaseMigration): depends_on = [("wf", "0005_slaprobe_default")] def migrate(self): coll = self.mongo_db["noc.sla_probes"] coll.bulk_write( [ # "Planned" UpdateMany({}, {"$set": {"state": ObjectId("607a7e1d3d18d4fb3c12032a")}}), ] ) # Service Profile Workflow self.mongo_db["noc.sla_profiles"].bulk_write( [UpdateMany({}, {"$set": {"workflow": ObjectId("607a7dddff3a857a47600b9b")}})] )
31
90
0.484879
525
0.529234
0
0
0
0
0
0
525
0.529234
fbe699dad305df809951dcf85f4ec36f0f78ab23
2,640
py
Python
seqpos/lib/python2.7/site-packages/mercurial/dirstateguard.py
guanjue/seqpos
ab9308ad128547ca968a1d944490710e583703bc
[ "MIT" ]
null
null
null
seqpos/lib/python2.7/site-packages/mercurial/dirstateguard.py
guanjue/seqpos
ab9308ad128547ca968a1d944490710e583703bc
[ "MIT" ]
null
null
null
seqpos/lib/python2.7/site-packages/mercurial/dirstateguard.py
guanjue/seqpos
ab9308ad128547ca968a1d944490710e583703bc
[ "MIT" ]
null
null
null
# dirstateguard.py - class to allow restoring dirstate after failure # # Copyright 2005-2007 Matt Mackall <mpm@selenic.com> # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import absolute_import from .i18n import _ from . import ( error, narrowspec, util, ) class dirstateguard(util.transactional): '''Restore dirstate at unexpected failure. At the construction, this class does: - write current ``repo.dirstate`` out, and - save ``.hg/dirstate`` into the backup file This restores ``.hg/dirstate`` from backup file, if ``release()`` is invoked before ``close()``. This just removes the backup file at ``close()`` before ``release()``. ''' def __init__(self, repo, name): self._repo = repo self._active = False self._closed = False self._backupname = 'dirstate.backup.%s.%d' % (name, id(self)) self._narrowspecbackupname = ('narrowspec.backup.%s.%d' % (name, id(self))) repo.dirstate.savebackup(repo.currenttransaction(), self._backupname) narrowspec.savebackup(repo, self._narrowspecbackupname) self._active = True def __del__(self): if self._active: # still active # this may occur, even if this class is used correctly: # for example, releasing other resources like transaction # may raise exception before ``dirstateguard.release`` in # ``release(tr, ....)``. self._abort() def close(self): if not self._active: # already inactivated msg = (_("can't close already inactivated backup: %s") % self._backupname) raise error.Abort(msg) self._repo.dirstate.clearbackup(self._repo.currenttransaction(), self._backupname) narrowspec.clearbackup(self._repo, self._narrowspecbackupname) self._active = False self._closed = True def _abort(self): narrowspec.restorebackup(self._repo, self._narrowspecbackupname) self._repo.dirstate.restorebackup(self._repo.currenttransaction(), self._backupname) self._active = False def release(self): if not self._closed: if not self._active: # already inactivated msg = (_("can't release already inactivated backup: %s") % self._backupname) raise error.Abort(msg) self._abort()
34.736842
77
0.610227
2,260
0.856061
0
0
0
0
0
0
1,014
0.384091
fbe71debd90d8d660d1121d1807a3090d9eabd7b
2,061
py
Python
config.py
mF2C/UserManagement
0a44f8fbf86a140156da2f87a25490345f296cbb
[ "Apache-2.0" ]
null
null
null
config.py
mF2C/UserManagement
0a44f8fbf86a140156da2f87a25490345f296cbb
[ "Apache-2.0" ]
12
2017-10-25T08:05:32.000Z
2019-11-13T14:29:42.000Z
config.py
mF2C/UserManagement
0a44f8fbf86a140156da2f87a25490345f296cbb
[ "Apache-2.0" ]
1
2017-10-24T10:13:55.000Z
2017-10-24T10:13:55.000Z
""" CONFIGURATION FILE This is being developed for the MF2C Project: http://www.mf2c-project.eu/ Copyright: Roi Sucasas Font, Atos Research and Innovation, 2017. This code is licensed under an Apache 2.0 license. Please, refer to the LICENSE.TXT file for more information Created on 18 oct. 2018 @author: Roi Sucasas - ATOS """ #!/usr/bin/python dic = { "VERSION": "1.3.10", # USER MANAGEMENT MODULE MODE: "DEFAULT", "MF2C" , "STANDALONE" "UM_MODE": "MF2C", # CIMI "CIMI_URL": "http://cimi:8201/api", "DEVICE_USER": "rsucasas", # SERVER - REST API "SERVER_PORT": 46300, "HOST_IP": "localhost", "API_DOC_URL": "/api/v2/um", # working dir: "C://TMP/tmp/mf2c/um/" "/tmp/mf2c/um/" "UM_WORKING_DIR_VOLUME": "/tmp/mf2c/um/", # db "DB_SHARING_MODEL": "dbt1", "DB_USER_PROFILE": "dbt2", # VERIFY_SSL controls whether we verify the server's TLS certificate or not "VERIFY_SSL": False, # for testing the interaction with the lifecycle management "ENABLE_ASSESSMENT": True, # CIMI RESOURCES managed by this component "CIMI_PROFILES": "user-profile", "CIMI_SHARING_MODELS": "sharing-model", "SERVICE_CONSUMER": True, "RESOURCE_CONTRIBUTOR": True, "MAX_APPS": 2, "BATTERY_LIMIT": 50, "GPS_ALLOWED": True, "MAX_CPU_USAGE": 50, "MAX_MEM_USAGE": 50, "MAX_STO_USAGE": 50, "MAX_BANDWITH_USAGE": 50, # URLs / ports from other components: # LIFECYCLE "URL_PM_LIFECYCLE": "http://lifecycle:46000/api/v2/lm" } # APPS RUNNING APPS_RUNNING = 0
32.714286
109
0.501698
0
0
0
0
0
0
0
0
1,255
0.608928
fbe8a390825becc2ff9eab5332457693f2473fbc
3,606
py
Python
pysnmp-with-texts/IANA-MALLOC-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
8
2019-05-09T17:04:00.000Z
2021-06-09T06:50:51.000Z
pysnmp-with-texts/IANA-MALLOC-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
4
2019-05-31T16:42:59.000Z
2020-01-31T21:57:17.000Z
pysnmp-with-texts/IANA-MALLOC-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module IANA-MALLOC-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/IANA-MALLOC-MIB # Produced by pysmi-0.3.4 at Wed May 1 13:50:25 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, ObjectIdentifier, OctetString = mibBuilder.importSymbols("ASN1", "Integer", "ObjectIdentifier", "OctetString") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueRangeConstraint, ConstraintsIntersection, SingleValueConstraint, ConstraintsUnion, ValueSizeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueRangeConstraint", "ConstraintsIntersection", "SingleValueConstraint", "ConstraintsUnion", "ValueSizeConstraint") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") Integer32, iso, MibScalar, MibTable, MibTableRow, MibTableColumn, MibIdentifier, NotificationType, TimeTicks, mib_2, ObjectIdentity, Bits, Counter64, Gauge32, Unsigned32, ModuleIdentity, Counter32, IpAddress = mibBuilder.importSymbols("SNMPv2-SMI", "Integer32", "iso", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "MibIdentifier", "NotificationType", "TimeTicks", "mib-2", "ObjectIdentity", "Bits", "Counter64", "Gauge32", "Unsigned32", "ModuleIdentity", "Counter32", "IpAddress") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") ianaMallocMIB = ModuleIdentity((1, 3, 6, 1, 2, 1, 102)) ianaMallocMIB.setRevisions(('2014-05-22 00:00', '2003-01-27 12:00',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: ianaMallocMIB.setRevisionsDescriptions(('Updated contact info.', 'Initial version.',)) if mibBuilder.loadTexts: ianaMallocMIB.setLastUpdated('201405220000Z') if mibBuilder.loadTexts: ianaMallocMIB.setOrganization('IANA') if mibBuilder.loadTexts: ianaMallocMIB.setContactInfo(' Internet Assigned Numbers Authority Internet Corporation for Assigned Names and Numbers 12025 Waterfront Drive, Suite 300 Los Angeles, CA 90094-2536 Phone: +1 310-301-5800 EMail: iana&iana.org') if mibBuilder.loadTexts: ianaMallocMIB.setDescription('This MIB module defines the IANAscopeSource and IANAmallocRangeSource textual conventions for use in MIBs which need to identify ways of learning multicast scope and range information. Any additions or changes to the contents of this MIB module require either publication of an RFC, or Designated Expert Review as defined in the Guidelines for Writing IANA Considerations Section document. The Designated Expert will be selected by the IESG Area Director(s) of the Transport Area.') class IANAscopeSource(TextualConvention, Integer32): description = 'The source of multicast scope information.' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5)) namedValues = NamedValues(("other", 1), ("manual", 2), ("local", 3), ("mzap", 4), ("madcap", 5)) class IANAmallocRangeSource(TextualConvention, Integer32): description = 'The source of multicast address allocation range information.' status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3)) namedValues = NamedValues(("other", 1), ("manual", 2), ("local", 3)) mibBuilder.exportSymbols("IANA-MALLOC-MIB", IANAmallocRangeSource=IANAmallocRangeSource, IANAscopeSource=IANAscopeSource, ianaMallocMIB=ianaMallocMIB, PYSNMP_MODULE_ID=ianaMallocMIB)
100.166667
537
0.781475
663
0.18386
0
0
0
0
0
0
1,836
0.509151
fbe96376f6c7e8ea5a7177b454718260bda00d58
112
py
Python
api/base/views/__init__.py
simpsonw/atmosphere
3a5203ef0b563de3a0e8c8c8715df88186532d7a
[ "BSD-3-Clause" ]
197
2016-12-08T02:33:32.000Z
2022-03-23T14:27:47.000Z
api/base/views/__init__.py
simpsonw/atmosphere
3a5203ef0b563de3a0e8c8c8715df88186532d7a
[ "BSD-3-Clause" ]
385
2017-01-03T22:51:46.000Z
2020-12-16T16:20:42.000Z
api/base/views/__init__.py
benlazarine/atmosphere
38fad8e4002e510e8b4294f2bb5bc75e8e1817fa
[ "BSD-3-Clause" ]
50
2016-12-08T08:32:25.000Z
2021-12-10T00:21:39.000Z
from .version import VersionViewSet, DeployVersionViewSet __all__ = ["VersionViewSet", "DeployVersionViewSet"]
28
57
0.821429
0
0
0
0
0
0
0
0
38
0.339286
fbed4a160c462e80695d00929515e53d559a44ef
455
py
Python
amaranth/vendor/xilinx_spartan_3_6.py
psumesh/nmigen
7d611b8fc1d9e58853ff268ec38ff8f4131a9774
[ "BSD-2-Clause" ]
528
2020-01-28T18:21:00.000Z
2021-12-09T06:27:51.000Z
amaranth/vendor/xilinx_spartan_3_6.py
psumesh/nmigen
7d611b8fc1d9e58853ff268ec38ff8f4131a9774
[ "BSD-2-Clause" ]
360
2020-01-28T18:34:30.000Z
2021-12-10T08:03:32.000Z
amaranth/vendor/xilinx_spartan_3_6.py
psumesh/nmigen
7d611b8fc1d9e58853ff268ec38ff8f4131a9774
[ "BSD-2-Clause" ]
100
2020-02-06T21:55:46.000Z
2021-11-25T19:20:44.000Z
import warnings from .xilinx import XilinxPlatform __all__ = ["XilinxSpartan3APlatform", "XilinxSpartan6Platform"] XilinxSpartan3APlatform = XilinxPlatform XilinxSpartan6Platform = XilinxPlatform # TODO(amaranth-0.4): remove warnings.warn("instead of amaranth.vendor.xilinx_spartan_3_6.XilinxSpartan3APlatform and " ".XilinxSpartan6Platform, use amaranth.vendor.xilinx.XilinxPlatform", DeprecationWarning, stacklevel=2)
26.764706
90
0.782418
0
0
0
0
0
0
0
0
221
0.485714
fbee0d4e9115c00d9a52094547d27c43033ebffb
2,968
py
Python
spatialtis/_plotting/api/community_map.py
Mr-Milk/SpatialTis
bcdc6df5213b8b256cbe4c9a7c0f3b5e6d3c56b6
[ "Apache-2.0" ]
10
2020-07-14T13:27:35.000Z
2021-11-24T21:41:30.000Z
spatialtis/_plotting/api/community_map.py
Mr-Milk/SpatialTis
bcdc6df5213b8b256cbe4c9a7c0f3b5e6d3c56b6
[ "Apache-2.0" ]
21
2021-01-10T09:39:25.000Z
2022-03-12T01:04:52.000Z
spatialtis/_plotting/api/community_map.py
Mr-Milk/SpatialTis
bcdc6df5213b8b256cbe4c9a7c0f3b5e6d3c56b6
[ "Apache-2.0" ]
null
null
null
from ast import literal_eval from collections import Counter from typing import Dict, Optional from anndata import AnnData from spatialtis.config import Config, analysis_list from ...utils import doc from ..base import graph_position_interactive, graph_position_static from .utils import query_df @doc def community_map( data: AnnData, roi: Dict, min_cells: int = 10, use: str = "static", community_key: Optional[str] = None, centroid_key: Optional[str] = None, neighbors_key: Optional[str] = None, **plot_options, ): """Visualize cell communities in ROI Args: data: {adata_plotting} roi: {roi} min_cells: Show communities contain more than a number of cells use: "static" or "interactive" (Default: "static") community_key: {community_key} centroid_key: {centroid_key} neighbors_key: {neighbors_key} **plot_options: Pass to :class:`spatialtis._plotting.base.graph_position_static` or :class:`spatialtis._plotting.base.graph_position_interactive` {pyecharts_tips} """ if community_key is None: community_key = analysis_list["cell_community"].last_used_key if centroid_key is None: centroid_key = Config.centroid_key if neighbors_key is None: neighbors_key = Config.NEIGHBORS_KEY df = query_df(data.obs, roi) nodes_types = df[community_key].tolist() commus = [] for commu, count in Counter(nodes_types).items(): if count >= min_cells: commus.append(commu) df = df.reset_index(drop=True) xdf = df[df[community_key].isin(commus)] xdf = xdf.reset_index() if len(xdf) == 0: raise ValueError("Seems like there is no cells left to be drawn") need_eval_nodes = isinstance(xdf[centroid_key][0], str) need_eval_neighs = isinstance(xdf[neighbors_key][0], str) if need_eval_nodes: nodes = [literal_eval(n) for n in xdf[centroid_key]] else: nodes = [n for n in xdf[centroid_key]] if need_eval_neighs: neighs = [literal_eval(n) for n in xdf[neighbors_key]] else: neighs = [n for n in xdf[neighbors_key]] nodes_types = xdf[community_key] edges = [] edges_types = [] for i, n in zip(xdf.index, neighs): for x in n: new_x = xdf[xdf["index"] == x].index if len(new_x) == 1: new_x = new_x[0] if nodes_types[i] == nodes_types[new_x]: edges.append((i, new_x)) edges_types.append(nodes_types[i]) plot_options["saved_name"] = "community_map_" + ",".join( [f"{k}={v}" for k, v in roi.items()] ) if use == "interactive": return graph_position_interactive( nodes, edges, edges_types=edges_types, **plot_options ) else: return graph_position_static( nodes, edges, edges_types=edges_types, **plot_options )
31.242105
91
0.637466
0
0
0
0
2,665
0.897911
0
0
672
0.226415
fbef292579d80d2de80ed4ab24cb1a2133c269b6
7,209
py
Python
pynics/binparse/castep_bin_results.py
ThatPerson/pynics
ae9dd58fa4353c4907f6fd7d6ad368029a4288f1
[ "MIT" ]
2
2019-10-03T21:18:17.000Z
2019-10-05T13:08:36.000Z
pynics/binparse/castep_bin_results.py
ThatPerson/pynics
ae9dd58fa4353c4907f6fd7d6ad368029a4288f1
[ "MIT" ]
2
2021-06-25T15:11:27.000Z
2021-10-04T13:23:04.000Z
pynics/binparse/castep_bin_results.py
ThatPerson/pynics
ae9dd58fa4353c4907f6fd7d6ad368029a4288f1
[ "MIT" ]
1
2021-06-25T14:32:07.000Z
2021-06-25T14:32:07.000Z
# Python 2-to-3 compatibility code from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import collections from pynics.binparse.forbinfile import RecordError def cbin_results_parse(binfile, results_store, curr_version, params, current_cell, tolerant=False): # First, parse the elec results part (always present) results_store['elec'] = collections.OrderedDict() cbin_elec_parse(binfile, results_store[ 'elec'], curr_version, params, current_cell) # Then go for the optional stuff cbin_optional_parse(binfile, results_store, curr_version) def cbin_elec_parse(binfile, elec_store, curr_version, params, current_cell): # A few informations are stored elec_store['found_ground_state_wvfn'] = not ( binfile.read_record('i')[0] == 0) # Logical value elec_store['found_ground_state_den'] = not ( binfile.read_record('i')[0] == 0) # Logical value elec_store['total_energy'] = binfile.read_record('d')[0] elec_store['fermi_energy'] = binfile.read_record('d') # Fermi energy for both spins if we have two. This relies on param being # already parsed if params['nspins'] == 2: elec_store['fermi_energy'] = (elec_store['fermi_energy'][ 0], elec_store['fermi_energy'][0]) elec_store['wvfn_nbands'], elec_store[ 'wvfn_nspins'] = binfile.read_record('i') # Read occupation eigenvalues for the Kohn-Sham states. This relies on # cell being already parsed elec_store['occupation'] = {} for kp_i in range(0, current_cell['nkpts']): kp = binfile.read_record('d') elec_store['occupation'][kp] = {'occ': [], 'nrg': []} for ns_i in range(0, elec_store['wvfn_nspins']): elec_store['occupation'][kp]['occ'].append( binfile.read_record('d')) # Occupation elec_store['occupation'][kp]['nrg'].append( binfile.read_record('d')) # Energies # Why is this here again? Whatever. elec_store['found_ground_state_den'] = not ( binfile.read_record('i')[0] == 0) # Logical value # Read the fine grid size, keep the information because it is of use for # various other parsing operations elec_store['model_ngx_fine'], elec_store['model_ngy_fine'], elec_store[ 'model_ngz_fine'] = binfile.read_record('i') # Finally, dummy read of density for n in range(0, elec_store['model_ngx_fine'] * elec_store['model_ngy_fine']): dummy_int = binfile.read_record('i') def cbin_optional_parse(binfile, results_store, curr_version, tolerant=False): if (tolerant): # In this case, unknown sections will simply be ignored def skip_optional(): while True: header = self.binfile.read_string_record() if header.isalpha(): self.binfile.backspace() break try: while True: header = binfile.read_string_record() if (header == 'END'): break try: castep_bin_olist[header](binfile, results_store, curr_version) except KeyError: if (tolerant): print("Skipping unrecognized header " + header) skip_optional() else: # The default case, doesn't account for forward # compatibility for now raise CastepBinError('Unknown optional section found') except RecordError: raise CastepBinError( 'End of file reached while parsing optional blocks') # Utility routine def tensor_reshape(V): return tuple([ tuple([ tuple([V[i+j+k] for i in range(0, 3) ]) for j in range(0, 9, 3) ]) for k in range(0, len(V), 9)]) def opt_e_fermi_parse(binfile, results_store, curr_version): # Parse Fermi energy for second spin efermi_2 = binfile.read_record('d')[0] results_store['elec']['fermi_energy'] = ( results_store['elec']['fermi_energy'][0], efermi_2) def opt_oep_pot_parse(binfile, results_store, curr_version): # Parse optimized effective potential results_store['oep_pot'] = {} results_store['oep_pot']['found_oep_ground_state'] = not ( binfile.read_record('i') == 0) results_store['oep_pot']['oep_energy_difference'] = (binfile .read_record('d')[0]) # We need nspins, we get it indirectly nspins = len(results_store['elec']['fermi_energy']) ngx_fine = results_store['elec']['model_ngx_fine'] ngy_fine = results_store['elec']['model_ngy_fine'] ngz_fine = results_store['elec']['model_ngz_fine'] # Sort of necessary to initialize here results_store['oep_pot']['pot_fine'] = [[0.0 for s in range( 0, nspins)]]*ngx_fine*ngy_fine*ngz_fine for s_i in range(0, nspins): for nx1 in range(0, ngx_fine): for ny1 in range(0, ngy_fine): nx, ny, grid_charge_r, grid_charge_im = binfile.read_record( 'iidd') # Fortran convention needs to be used for nz in range(1, ngz_fine+1): # Back to Python convention, arrays count from 0 igrid = (nx-1)+(ny-1)*ngx_fine+(nz-1)*ngx_fine*ngy_fine results_store['oep_pot']['pot_fine'][igrid][ s_i] = (grid_charge_r, grid_charge_im) def opt_de_dloge_parse(binfile, results_store, curr_version): # Parse energy logarithmic derivative results_store['de_dloge'] = binfile.read_record('d')[0] def opt_forces_parse(binfile, results_store, curr_version): # Parse forces f = binfile.read_record('d') # Reshape results_store['forces'] = tuple( [tuple([f[i+j] for i in range(0, 3)]) for j in range(0, len(f), 3)]) def opt_stress_parse(binfile, results_store, curr_version): # Parse stress & strain tensors results_store['stress'] = {} stress = binfile.read_record('d') strain = binfile.read_record('d') results_store['stress']['stress'] = stress results_store['stress']['strain'] = tensor_reshape(strain) def opt_shielding_parse(binfile, results_store, curr_version): # Parse NMR shieldings results_store['shielding'] = {} results_store['shielding']['ms'] = binfile.read_record('d') results_store['shielding']['sus'] = binfile.read_record('d') # Reshape ms as a list of tensors results_store['shielding']['ms'] = tensor_reshape( results_store['shielding']['ms']) def opt_efg_parse(binfile, results_store, curr_version): results_store['efg'] = binfile.read_record('d') results_store['efg'] = tensor_reshape(results_store['efg']) castep_bin_olist = { 'E_FERMI': opt_e_fermi_parse, 'OEP_POT': opt_oep_pot_parse, 'DE_DLOGE': opt_de_dloge_parse, 'FORCES': opt_forces_parse, 'STRESS': opt_stress_parse, 'SHIELDING': opt_shielding_parse, 'EFG': opt_efg_parse, }
34.826087
78
0.629768
0
0
0
0
0
0
0
0
2,085
0.289222
fbef307f38bef0fc49bdcc1050b0a7022b885117
1,084
py
Python
epi-poc-demo/node-b/node-b.py
onnovalkering/epif-poc
0fac10ce59037fbf8725f09808813dbab71ff70a
[ "Apache-2.0" ]
null
null
null
epi-poc-demo/node-b/node-b.py
onnovalkering/epif-poc
0fac10ce59037fbf8725f09808813dbab71ff70a
[ "Apache-2.0" ]
null
null
null
epi-poc-demo/node-b/node-b.py
onnovalkering/epif-poc
0fac10ce59037fbf8725f09808813dbab71ff70a
[ "Apache-2.0" ]
null
null
null
import os import socket import threading HEADER = 64 PORT = 5053 FW = "192.168.101.2" ADDR = (FW, PORT) FORMAT = 'utf-8' DISCONNECT_MESSAGE = "!DISCONNECT" server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server.bind(ADDR) def handle_client(conn, addr): print(f"[FIREWALL CONNECTION] {addr} connected.") connected = True while connected: msg_length = conn.recv(HEADER).decode(FORMAT) if msg_length: msg_length = int(msg_length) msg = conn.recv(msg_length).decode(FORMAT) if msg == DISCONNECT_MESSAGE: connected = False print(f"[{addr}] {msg}") conn.send("Msg received".encode(FORMAT)) conn.close() def start(): server.listen() print(f"[LISTENING] firewall is running on {FW}") while True: conn, addr = server.accept() thread = threading.Thread(target=handle_client, args=(conn, addr)) thread.start() print(f"[ACTIVE CONNECTIONS] {threading.activeCount() - 1}") print("[STARTING] server is starting...") start()
23.565217
74
0.628229
0
0
0
0
0
0
0
0
237
0.218635
fbef8b98b95a0bd508e97ef365acd9e2c1cbd2ce
652
py
Python
sliding_window/equal_substring.py
sleebapaul/codeforces
50c8bff0b36e6ce7e8f89c7c827ae8845f80098e
[ "MIT" ]
null
null
null
sliding_window/equal_substring.py
sleebapaul/codeforces
50c8bff0b36e6ce7e8f89c7c827ae8845f80098e
[ "MIT" ]
null
null
null
sliding_window/equal_substring.py
sleebapaul/codeforces
50c8bff0b36e6ce7e8f89c7c827ae8845f80098e
[ "MIT" ]
null
null
null
""" 1208. Get Equal Substrings Within Budget Straight forward. Asked the max len, so count the max each time. """ class Solution: def equalSubstring(self, s: str, t: str, maxCost: int) -> int: cost = 0 window_start = 0 result = 0 for window_end in range(len(s)): cost += abs(ord(s[window_end]) - ord(t[window_end])) if cost > maxCost: cost -= abs(ord(s[window_start]) - ord(t[window_start])) window_start += 1 result = max(result, window_end - window_start+1) return result
27.166667
72
0.518405
534
0.819018
0
0
0
0
0
0
115
0.17638
fbef9d38a58cfa2a1c22c680025cec376e6993bf
13,836
py
Python
test/functional/esperanza_withdraw.py
frolosofsky/unit-e
d3d12508b915986841bd19c4dee9e50dd662a112
[ "MIT" ]
null
null
null
test/functional/esperanza_withdraw.py
frolosofsky/unit-e
d3d12508b915986841bd19c4dee9e50dd662a112
[ "MIT" ]
null
null
null
test/functional/esperanza_withdraw.py
frolosofsky/unit-e
d3d12508b915986841bd19c4dee9e50dd662a112
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2018-2019 The Unit-e developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from test_framework.test_framework import UnitETestFramework from test_framework.util import ( json, connect_nodes, disconnect_nodes, assert_equal, assert_finalizationstate, assert_raises_rpc_error, sync_blocks, wait_until, ) from decimal import Decimal import time LOGOUT_DYNASTY_DELAY = 3 WITHDRAW_EPOCH_DELAY = 12 class EsperanzaWithdrawTest(UnitETestFramework): def set_test_params(self): self.num_nodes = 3 esperanza_config = { 'dynastyLogoutDelay': LOGOUT_DYNASTY_DELAY, 'withdrawalEpochDelay': WITHDRAW_EPOCH_DELAY } json_params = json.dumps(esperanza_config) finalizer_node_params = ['-esperanzaconfig=' + json_params, '-validating=1'] proposer_node_params = ['-esperanzaconfig=' + json_params] self.extra_args = [ proposer_node_params, finalizer_node_params, finalizer_node_params, ] self.setup_clean_chain = True # create topology where arrows denote non-persistent connection # finalizer1 → proposer ← finalizer2 def setup_network(self): self.setup_nodes() proposer = self.nodes[0] finalizer1 = self.nodes[1] finalizer2 = self.nodes[2] connect_nodes(finalizer1, proposer.index) connect_nodes(finalizer2, proposer.index) def run_test(self): proposer = self.nodes[0] finalizer1 = self.nodes[1] finalizer2 = self.nodes[2] self.setup_stake_coins(*self.nodes) # Leave IBD proposer.generatetoaddress(1, proposer.getnewaddress('', 'bech32')) sync_blocks([proposer, finalizer1, finalizer2], timeout=10) finalizer1_address = finalizer1.getnewaddress('', 'legacy') # create deposits # F # e0 - e1 # d1 # d2 d1 = finalizer1.deposit(finalizer1_address, 1500) d2 = finalizer2.deposit(finalizer2.getnewaddress('', 'legacy'), 1500) self.wait_for_transaction(d1, timeout=10) self.wait_for_transaction(d2, timeout=10) proposer.generatetoaddress(1, proposer.getnewaddress('', 'bech32')) sync_blocks([proposer, finalizer1, finalizer2], timeout=10) disconnect_nodes(finalizer1, proposer.index) disconnect_nodes(finalizer2, proposer.index) assert_equal(proposer.getblockcount(), 2) assert_finalizationstate(proposer, {'currentDynasty': 0, 'currentEpoch': 1, 'lastJustifiedEpoch': 0, 'lastFinalizedEpoch': 0, 'validators': 0}) self.log.info('deposits are created') # Generate enough blocks to activate deposits # F F F F J # e0 - e1 - e2 - e3 - e4 - e5 - e6[26] # d1 # d2 proposer.generatetoaddress(3 + 5 + 5 + 5 + 5, proposer.getnewaddress('', 'bech32')) assert_equal(proposer.getblockcount(), 25) assert_finalizationstate(proposer, {'currentDynasty': 2, 'currentEpoch': 5, 'lastJustifiedEpoch': 4, 'lastFinalizedEpoch': 3, 'validators': 0}) proposer.generatetoaddress(1, proposer.getnewaddress('', 'bech32')) assert_equal(proposer.getblockcount(), 26) assert_finalizationstate(proposer, {'currentDynasty': 3, 'currentEpoch': 6, 'lastJustifiedEpoch': 4, 'lastFinalizedEpoch': 3, 'validators': 2}) self.log.info('finalizers are created') # Logout finalizer1 # F F F F J # e0 - e1 - e2 - e3 - e4 - e5 - e6[26] # d1 l1 # d2 self.wait_for_vote_and_disconnect(finalizer=finalizer1, node=proposer) self.wait_for_vote_and_disconnect(finalizer=finalizer2, node=proposer) # TODO UNIT-E: logout tx can't be created if its vote is not in the block # we should check that input of logout tx is in the mempool too proposer.generatetoaddress(1, proposer.getnewaddress('', 'bech32')) connect_nodes(finalizer1, proposer.index) sync_blocks([finalizer1, proposer], timeout=10) l1 = finalizer1.logout() wait_until(lambda: l1 in proposer.getrawmempool(), timeout=10) disconnect_nodes(finalizer1, proposer.index) proposer.generatetoaddress(3, proposer.getnewaddress('', 'bech32')) assert_equal(proposer.getblockcount(), 30) assert_finalizationstate(proposer, {'currentDynasty': 3, 'currentEpoch': 6, 'lastJustifiedEpoch': 5, 'lastFinalizedEpoch': 4, 'validators': 2}) self.log.info('finalizer1 logged out in dynasty=3') # During LOGOUT_DYNASTY_DELAY both finalizers can vote. # Since the finalization happens at every epoch, # number of dynasties is equal to number of epochs. for _ in range(LOGOUT_DYNASTY_DELAY): proposer.generatetoaddress(1, proposer.getnewaddress('', 'bech32')) self.wait_for_vote_and_disconnect(finalizer=finalizer1, node=proposer) self.wait_for_vote_and_disconnect(finalizer=finalizer2, node=proposer) proposer.generatetoaddress(4, proposer.getnewaddress('', 'bech32')) assert_equal(proposer.getblockcount(), 45) assert_finalizationstate(proposer, {'currentDynasty': 6, 'currentEpoch': 9, 'lastJustifiedEpoch': 8, 'lastFinalizedEpoch': 7, 'validators': 2}) self.log.info('finalizer1 voted during logout delay successfully') # During WITHDRAW_DELAY finalizer1 can't vote and can't withdraw proposer.generatetoaddress(1, proposer.getnewaddress('', 'bech32')) assert_finalizationstate(proposer, {'currentDynasty': 7, 'currentEpoch': 10, 'lastJustifiedEpoch': 8, 'lastFinalizedEpoch': 7, 'validators': 1}) self.wait_for_vote_and_disconnect(finalizer=finalizer2, node=proposer) proposer.generatetoaddress(1, proposer.getnewaddress('', 'bech32')) assert_finalizationstate(proposer, {'currentDynasty': 7, 'currentEpoch': 10, 'lastJustifiedEpoch': 9, 'lastFinalizedEpoch': 8, 'validators': 1}) # finalizer1 can't vote so we keep it connected connect_nodes(finalizer1, proposer.index) time.sleep(2) # ensure no votes from finalizer1 assert_equal(len(proposer.getrawmempool()), 0) proposer.generatetoaddress(3, proposer.getnewaddress('', 'bech32')) assert_equal(proposer.getblockcount(), 50) assert_finalizationstate(proposer, {'currentDynasty': 7, 'currentEpoch': 10, 'lastJustifiedEpoch': 9, 'lastFinalizedEpoch': 8, 'validators': 1}) # WITHDRAW_DELAY - 2 is because: # -1 as we checked the first loop manually # -1 as at this epoch we should be able to withdraw already for _ in range(WITHDRAW_EPOCH_DELAY - 2): proposer.generatetoaddress(1, proposer.getnewaddress('', 'bech32')) self.wait_for_vote_and_disconnect(finalizer=finalizer2, node=proposer) proposer.generatetoaddress(4, proposer.getnewaddress('', 'bech32')) assert_equal(proposer.getblockcount(), 100) assert_finalizationstate(proposer, {'currentDynasty': 17, 'currentEpoch': 20, 'lastJustifiedEpoch': 19, 'lastFinalizedEpoch': 18, 'validators': 1}) # last block that finalizer1 can't withdraw # TODO UNIT-E: allow to create a withdraw tx on checkpoint # as it will be added to the block on the next epoch only. # We have an known issue https://github.com/dtr-org/unit-e/issues/643 # that finalizer can't vote after checkpoint is processed, it looks that # finalizer can't create any finalizer commits at this point (and only at this point). assert_raises_rpc_error(-8, 'Cannot send withdraw transaction.', finalizer1.withdraw, finalizer1_address) self.log.info('finalizer1 could not withdraw during WITHDRAW_DELAY period') # test that deposit can be withdrawn # e0 - e1 - ... - e6 - ... - e21[101, 102] # d1 l1 w1 # d2 proposer.generatetoaddress(1, proposer.getnewaddress('', 'bech32')) self.wait_for_vote_and_disconnect(finalizer=finalizer2, node=proposer) assert_equal(proposer.getblockcount(), 101) assert_finalizationstate(proposer, {'currentDynasty': 18, 'currentEpoch': 21, 'lastJustifiedEpoch': 19, 'lastFinalizedEpoch': 18, 'validators': 1}) sync_blocks([proposer, finalizer1], timeout=10) w1 = finalizer1.withdraw(finalizer1_address) wait_until(lambda: w1 in proposer.getrawmempool(), timeout=10) proposer.generatetoaddress(1, proposer.getnewaddress('', 'bech32')) sync_blocks([proposer, finalizer1]) self.log.info('finalizer1 was able to withdraw deposit at dynasty=18') # test that withdraw commit can be spent # test that deposit can be withdrawn # e0 - e1 - ... - e6 - ... - e21[101, 102, 103] # d1 l1 w1 spent_w1 # d2 spent_w1_raw = finalizer1.createrawtransaction( [{'txid': w1, 'vout': 0}], {finalizer1_address: Decimal('1499.999')}) spent_w1_signed = finalizer1.signrawtransaction(spent_w1_raw) spent_w1 = finalizer1.sendrawtransaction(spent_w1_signed['hex']) self.wait_for_transaction(spent_w1, nodes=[proposer]) # mine block block_hash = proposer.generatetoaddress(1, proposer.getnewaddress('', 'bech32'))[0] assert spent_w1 in proposer.getblock(block_hash)['tx'] self.log.info('finalizer1 was able to spend withdraw commit') # Test that after withdraw the node can deposit again sync_blocks([proposer, finalizer1], timeout=10) assert_equal(proposer.getblockcount(), 103) wait_until(lambda: finalizer1.getvalidatorinfo()['validator_status'] == 'NOT_VALIDATING', timeout=5) deposit = finalizer1.deposit(finalizer1.getnewaddress('', 'legacy'), 1500) wait_until(lambda: finalizer1.getvalidatorinfo()['validator_status'] == 'WAITING_DEPOSIT_CONFIRMATION', timeout=5) self.wait_for_transaction(deposit, timeout=10, nodes=[proposer, finalizer1]) proposer.generate(1) sync_blocks([proposer, finalizer1], timeout=10) assert_equal(proposer.getblockcount(), 104) wait_until(lambda: finalizer1.getvalidatorinfo()['validator_status'] == 'WAITING_DEPOSIT_FINALIZATION', timeout=20) self.log.info('finalizer1 deposits again') disconnect_nodes(finalizer1, proposer.index) proposer.generate(2) self.wait_for_vote_and_disconnect(finalizer=finalizer2, node=proposer) assert_equal(proposer.getblockcount(), 106) proposer.generate(5) self.wait_for_vote_and_disconnect(finalizer=finalizer2, node=proposer) assert_equal(proposer.getblockcount(), 111) assert_finalizationstate(proposer, {'currentDynasty': 20, 'currentEpoch': 23, 'lastJustifiedEpoch': 21, 'lastFinalizedEpoch': 20, 'validators': 1}) proposer.generate(5) self.wait_for_vote_and_disconnect(finalizer=finalizer2, node=proposer) assert_equal(proposer.getblockcount(), 116) assert_finalizationstate(proposer, {'currentDynasty': 21, 'currentEpoch': 24, 'lastJustifiedEpoch': 22, 'lastFinalizedEpoch': 21, 'validators': 2}) self.wait_for_vote_and_disconnect(finalizer=finalizer1, node=proposer) self.log.info('finalizer1 votes again') if __name__ == '__main__': EsperanzaWithdrawTest().main()
46.901695
113
0.568661
13,215
0.954841
0
0
0
0
0
0
3,760
0.271676
fbf016290a6953a4fa95305b7831cd89ba6cb242
2,213
py
Python
test/geocoders/placefinder.py
gongso1st/geopy
9252f4b12197ff3c5e3fae50d9bae74974d5d20f
[ "MIT" ]
1
2019-07-17T14:38:52.000Z
2019-07-17T14:38:52.000Z
test/geocoders/placefinder.py
gongso1st/geopy
9252f4b12197ff3c5e3fae50d9bae74974d5d20f
[ "MIT" ]
null
null
null
test/geocoders/placefinder.py
gongso1st/geopy
9252f4b12197ff3c5e3fae50d9bae74974d5d20f
[ "MIT" ]
1
2021-06-28T01:20:12.000Z
2021-06-28T01:20:12.000Z
import unittest from geopy.compat import u from geopy.point import Point from geopy.geocoders import YahooPlaceFinder from test.geocoders.util import GeocoderTestBase, env class YahooPlaceFinderTestCaseUnitTest(GeocoderTestBase): # pylint: disable=R0904,C0111 def test_user_agent_custom(self): geocoder = YahooPlaceFinder( consumer_key='DUMMYKEY1234', consumer_secret='DUMMYSECRET', user_agent='my_user_agent/1.0' ) self.assertEqual(geocoder.headers['User-Agent'], 'my_user_agent/1.0') @unittest.skipUnless( # pylint: disable=R0904,C0111 bool(env.get('YAHOO_KEY')) and bool(env.get('YAHOO_SECRET')), "YAHOO_KEY and YAHOO_SECRET env variables not set" ) class YahooPlaceFinderTestCase(GeocoderTestBase): # pylint: disable=R0904,C0111 @classmethod def setUpClass(cls): cls.geocoder = YahooPlaceFinder( env['YAHOO_KEY'], env['YAHOO_SECRET'] ) def test_geocode(self): """ YahooPlaceFinder.geocode """ self.geocode_run( {"query": "nyc"}, {"latitude": 40.71455, "longitude": -74.00712}, ) def test_unicode_name(self): """ YahooPlaceFinder.geocode unicode """ self.geocode_run( {"query": u("\u6545\u5bab")}, {"latitude": 39.916, "longitude": 116.390}, ) def test_reverse_string(self): """ YahooPlaceFinder.reverse string """ self.reverse_run( {"query": "40.75376406311989, -73.98489005863667"}, {"latitude": 40.75376406311989, "longitude": -73.98489005863667} ) def test_reverse_point(self): """ YahooPlaceFinder.reverse Point """ self.reverse_run( {"query": Point(40.75376406311989, -73.98489005863667)}, {"latitude": 40.75376406311989, "longitude": -73.98489005863667} ) def test_timezone(self): """ YahooPlacefinder.with_timezone """ self.geocode_run( {"query": "nyc", "with_timezone": True}, {"latitude": 40.71455, "longitude": -74.00712}, )
28.371795
87
0.598735
1,857
0.839132
0
0
1,655
0.747854
0
0
749
0.338455
fbf1cd1a479f1f30a64fa316deccf90f2fde6080
1,151
py
Python
inetdxmlrpc.py
Leonidas-from-XIV/sandbox
ca1f53d4ba1c27be4397c18bf3d5a2ccf9db6a50
[ "WTFPL" ]
null
null
null
inetdxmlrpc.py
Leonidas-from-XIV/sandbox
ca1f53d4ba1c27be4397c18bf3d5a2ccf9db6a50
[ "WTFPL" ]
null
null
null
inetdxmlrpc.py
Leonidas-from-XIV/sandbox
ca1f53d4ba1c27be4397c18bf3d5a2ccf9db6a50
[ "WTFPL" ]
null
null
null
#!/usr/bin/env python2.4 # -*- encoding: latin-1 -*- """A small XML-RPC Server running under control of the internet superserver inetd. Configuring: Add this line to your inetd.conf embedxmlrpc stream tcp nowait user /usr/sbin/tcpd inetdxmlrpc.py Where user is the user to execute the script and inetdxmlprc.py the path to the script. and this line to your services.conf embedxmlrpc 7373/tcp # standalone XML-RPC server there 7373 will be the port You have to restart your inetd. """ import sys, xmlrpclib def sumAndDifference(a, b): return a + b funcs = {"sumAndDifference": sumAndDifference} def inetdcall(): while True: line = sys.stdin.readline().splitlines()[0] if "Content-Length:" in line: cl = line.split()[1] cl = int(cl) sys.stdin.readline() break request = sys.stdin.read(cl) params, method = xmlrpclib.loads(request) result = funcs[method](*params) response = xmlrpclib.dumps((result,), methodresponse=True) sys.stdout.write(response) if __name__ == '__main__': inetdcall()
25.577778
77
0.645526
0
0
0
0
0
0
0
0
570
0.495222
fbf23a32edea1c76b286e1eb5b7cddd3cfc77494
17,504
py
Python
examples/tensorflow/train/crnn_chinese/code_multi/tools/train_shadownet_multi.py
soar-zhengjian/uai-sdk
e195bd3fb2b97aca7dac6722d332c25b7070481f
[ "Apache-2.0" ]
38
2017-04-26T04:00:09.000Z
2022-02-10T02:51:05.000Z
examples/tensorflow/train/crnn_chinese/code_multi/tools/train_shadownet_multi.py
soar-zhengjian/uai-sdk
e195bd3fb2b97aca7dac6722d332c25b7070481f
[ "Apache-2.0" ]
17
2017-11-20T20:47:09.000Z
2022-02-09T23:48:46.000Z
examples/tensorflow/train/crnn_chinese/code_multi/tools/train_shadownet_multi.py
soar-zhengjian/uai-sdk
e195bd3fb2b97aca7dac6722d332c25b7070481f
[ "Apache-2.0" ]
28
2017-07-08T05:23:13.000Z
2020-08-18T03:12:27.000Z
""" Train shadow net script """ import argparse import functools import itertools import os import os.path as ops import sys import time import numpy as np import tensorflow as tf import pprint import shadownet import six from six.moves import xrange # pylint: disable=redefined-builtin sys.path.append('/data/') from crnn_model import crnn_model from local_utils import data_utils, log_utils, tensorboard_vis_summary from global_configuration import config from uaitrain.arch.tensorflow import uflag from typing import List from tensorflow.core.framework import node_def_pb2 from tensorflow.python.framework import device as pydev from tensorflow.python.training import device_setter tf.app.flags.DEFINE_string('dataset_dir','/data/data/tfrecords','data path') tf.app.flags.DEFINE_string('weights_path',None,'weight path') FLAGS = tf.app.flags.FLAGS logger = log_utils.init_logger() def local_device_setter(num_devices=1, ps_device_type='cpu', worker_device='/cpu:0', ps_ops=None, ps_strategy=None): if ps_ops == None: ps_ops = ['Variable', 'VariableV2', 'VarHandleOp'] if ps_strategy is None: ps_strategy = device_setter._RoundRobinStrategy(num_devices) if not six.callable(ps_strategy): raise TypeError("ps_strategy must be callable") def _local_device_chooser(op): current_device = pydev.DeviceSpec.from_string(op.device or "") node_def = op if isinstance(op, node_def_pb2.NodeDef) else op.node_def if node_def.op in ps_ops: ps_device_spec = pydev.DeviceSpec.from_string( '/{}:{}'.format(ps_device_type, ps_strategy(op))) ps_device_spec.merge_from(current_device) return ps_device_spec.to_string() else: worker_device_spec = pydev.DeviceSpec.from_string(worker_device or "") worker_device_spec.merge_from(current_device) return worker_device_spec.to_string() return _local_device_chooser def get_words_from_chars(characters_list: List[str], sequence_lengths: List[int], name='chars_conversion'): with tf.name_scope(name=name): def join_charcaters_fn(coords): return tf.reduce_join(characters_list[coords[0]:coords[1]]) def coords_several_sequences(): end_coords = tf.cumsum(sequence_lengths) start_coords = tf.concat([[0], end_coords[:-1]], axis=0) coords = tf.stack([start_coords, end_coords], axis=1) coords = tf.cast(coords, dtype=tf.int32) return tf.map_fn(join_charcaters_fn, coords, dtype=tf.string) def coords_single_sequence(): return tf.reduce_join(characters_list, keep_dims=True) words = tf.cond(tf.shape(sequence_lengths)[0] > 1, true_fn=lambda: coords_several_sequences(), false_fn=lambda: coords_single_sequence()) return words def get_shadownet_fn(num_gpus, variable_strategy, num_workers): """Returns a function that will build shadownet model.""" def _shadownet_fun(features, labels, mode, params): is_training = (mode == tf.estimator.ModeKeys.TRAIN) tower_features = features tower_labels = labels tower_losses = [] tower_gradvars = [] tower_preds = [] tower_tensor_dict = [] tower_seq_len = [] num_devices = num_gpus device_type = 'gpu' tower_batch_size = int(params.batch_size / num_devices) for i in range(num_devices): worker_device = '/{}:{}'.format(device_type, i) device_setter = local_device_setter(worker_device=worker_device) with tf.variable_scope('shadownet', reuse=bool(i != 0)): with tf.name_scope('tower_%d' % i) as name_scope: with tf.device(device_setter): loss, gradvars, preds, tensor_dict, seq_len = _tower_fn( is_training, tower_features[i], tower_labels[i], tower_batch_size, params.l_size) tower_losses.append(loss) tower_gradvars.append(gradvars) tower_preds.append(preds) tower_tensor_dict.append(tensor_dict) tower_seq_len.append(seq_len) if i == 0: # Only trigger batch_norm moving mean and variance update from # the 1st tower. Ideally, we should grab the updates from all # towers but these stats accumulate extremely fast so we can # ignore the other stats from the other towers without # significant detriment. update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, name_scope) # Now compute global loss and gradients. gradvars = [] with tf.name_scope('gradient_averaging'): all_grads = {} for grad, var in itertools.chain(*tower_gradvars): if grad is not None: all_grads.setdefault(var, []).append(grad) for var, grads in six.iteritems(all_grads): # Average gradients on the same device as the variables with tf.device(var.device): if len(grads) == 1: avg_grad = grads[0] else: avg_grad = tf.multiply(tf.add_n(grads), 1. / len(grads)) gradvars.append((avg_grad, var)) # Device that runs the ops to apply global gradient updates. consolidation_device = '/gpu:0' if variable_strategy == 'GPU' else '/cpu:0' with tf.device(consolidation_device): global_step = tf.train.get_global_step() starter_learning_rate = params.learning_rate learning_rate = tf.train.exponential_decay(starter_learning_rate, global_step, params.decay_steps, params.decay_rate, staircase=True) loss = tf.reduce_mean(tower_losses, name='loss') decoded, log_prob = tf.nn.ctc_beam_search_decoder(tower_preds[0], tower_seq_len[0]*np.ones(tower_batch_size), merge_repeated=False) sequence_dist = tf.reduce_mean(tf.edit_distance(tf.cast(decoded[0], tf.int32), tower_labels[0])) sequence_lengths_pred = tf.bincount(tf.cast(decoded[0].indices[:, 0], tf.int32), minlength=tf.shape(tower_labels[0])[1]) label_lengths_pred = tf.bincount(tf.cast(labels[0].indices[:, 0], tf.int32), minlength=tf.shape(tower_labels[0])[1]) tensors_to_log = {'global_step': global_step, 'learning_rate': learning_rate, 'loss': loss} dist_to_log = {'global_step': global_step, 'learning_rate': learning_rate, 'loss': loss, 'train_seq_dist': sequence_dist, 'sequence_lengths_pred': sequence_lengths_pred, 'label_lengths_pred': label_lengths_pred} logging_hook = tf.train.LoggingTensorHook( tensors=tensors_to_log, every_n_iter=10) dist_hook = tf.train.LoggingTensorHook( tensors=dist_to_log, every_n_iter=1000) train_hooks = [logging_hook, dist_hook] seq_dist_sum = tf.summary.scalar(name='Seq_Dist', tensor=sequence_dist) lr_sum = tf.summary.scalar(name='Learning_rate', tensor=learning_rate) summaries = [seq_dist_sum, lr_sum] summary_hook = tf.train.SummarySaverHook( save_steps=1000, output_dir='/data/output/', summary_op=summaries) optimizer = tf.train.AdadeltaOptimizer(learning_rate=learning_rate) if params.sync: optimizer = tf.train.SyncReplicasOptimizer( optimizer, replicas_to_aggregate=num_workers) sync_replicas_hook = optimizer.make_session_run_hook(params.is_chief) train_hooks.append(sync_replicas_hook) # Create single grouped train op train_op = [ optimizer.apply_gradients( gradvars, global_step=tf.train.get_global_step()) ] train_op.extend(update_ops) train_op = tf.group(*train_op) return tf.estimator.EstimatorSpec( mode=mode, loss=loss, train_op=train_op, training_hooks=train_hooks) return _shadownet_fun def _tower_fn(is_training, feature, label, batch_size, l_size): seq_len=l_size shadownet = crnn_model.ShadowNet(phase='Train', hidden_nums=256, layers_nums=2, seq_length=seq_len, num_classes=config.cfg.TRAIN.CLASSES_NUMS, rnn_cell_type='lstm') imgs = tf.image.resize_images(feature, (32, l_size*4), method=0) input_imgs = tf.cast(x=imgs, dtype=tf.float32) with tf.variable_scope('shadow', reuse=False): net_out, tensor_dict = shadownet.build_shadownet(inputdata=input_imgs) cost = tf.reduce_mean(tf.nn.ctc_loss(labels=label, inputs=net_out, sequence_length=seq_len*np.ones(batch_size))) #lstm l2 normalization loss lstm_tv = tf.trainable_variables(scope='LSTMLayers') r_lambda = 0.001 regularization_cost = r_lambda * tf.reduce_sum([tf.nn.l2_loss(v) for v in lstm_tv]) cost = cost + regularization_cost model_params = tf.trainable_variables() tower_grad = tf.gradients(cost, model_params) return cost, zip(tower_grad, model_params), net_out, tensor_dict, seq_len def input_fn(data_dir, subset, num_shards, batch_size, use_distortion_for_training=True): """Create input graph for model. Args: data_dir: Directory where TFRecords representing the dataset are located. subset: one of 'train', 'validate' and 'eval'. num_shards: num of towers participating in data-parallel training. batch_size: total batch size for training to be divided by the number of shards. use_distortion_for_training: True to use distortions. Returns: three """ with tf.device('/cpu:0'): use_distortion = subset == 'train' and use_distortion_for_training dataset = shadownet.ShadownetDataSet(data_dir, subset, use_distortion) inputdata, input_labels = dataset.make_batch(batch_size) if num_shards <= 1: # No GPU available or only 1 GPU. num_shards = 1 feature_shards = tf.split(inputdata, num_shards) label_shards = tf.sparse_split(sp_input=input_labels, num_split=num_shards, axis=0) return feature_shards, label_shards def get_experiment_fn(data_dir, num_gpus, use_distortion_for_training=True): def _experiment_fn(run_config, hparams): """Returns an Experiment.""" # Create estimator. train_input_fn = functools.partial( input_fn, data_dir, subset='train', num_shards=num_gpus, batch_size=hparams.batch_size, use_distortion_for_training=use_distortion_for_training) eval_input_fn = functools.partial( input_fn, data_dir, subset='validation', batch_size=hparams.batch_size, num_shards=num_gpus) train_steps = hparams.steps eval_steps = 2048 // hparams.batch_size variable_strategy = 'CPU' classifier = tf.estimator.Estimator( model_fn=get_shadownet_fn(num_gpus, variable_strategy, run_config.num_worker_replicas or 1), config=run_config, params=hparams) # Create experiment. return tf.contrib.learn.Experiment( classifier, train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, train_steps=train_steps, eval_steps=eval_steps, min_eval_frequency=100) return _experiment_fn def main(num_gpus, log_device_placement, num_intra_threads, data_dir, output_dir, tfrecord_dir, **hparams): # The env variable is on deprecation path, default is set to off. os.environ['TF_SYNC_ON_FINISH'] = '0' os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1' data_dir = os.path.join(data_dir, tfrecord_dir) # Session configuration. sess_config = tf.ConfigProto( allow_soft_placement=True, log_device_placement=log_device_placement, intra_op_parallelism_threads=num_intra_threads, gpu_options=tf.GPUOptions(force_gpu_compatible=True)) config = tf.contrib.learn.RunConfig(session_config=sess_config, model_dir=output_dir) tf.contrib.learn.learn_runner.run( get_experiment_fn(data_dir, num_gpus), run_config=config, hparams=tf.contrib.training.HParams( is_chief=config.is_chief, **hparams)) if __name__ == '__main__': # init args # args = init_args() #if not ops.exists(args.dataset_dir): # raise ValueError('{:s} doesn\'t exist'.format(args.dataset_dir)) #train_shadownet(args.dataset_dir, args.weights_path) # if args.weights_path is not None and 'two_stage' in args.weights_path: # train_shadownet(args.dataset_dir, args.weights_path, restore_from_cnn_subnet_work=False) # elif args.weights_path is not None and 'cnnsub' in args.weights_path: # train_shadownet(args.dataset_dir, args.weights_path, restore_from_cnn_subnet_work=True) # else: # train_shadownet(args.dataset_dir) parser = argparse.ArgumentParser() parser.add_argument( '--num_gpus', type=int, default=1, help='UAI-SDK related. The number of gpus used.') parser.add_argument( '--log-device-placement', action='store_true', default=False, help='Whether to log device placement.') parser.add_argument( '--num-intra-threads', type=int, default=0, help="""\ Number of threads to use for intra-op parallelism. When training on CPU set to 0 to have the system pick the appropriate number or alternatively set it to the number of physical CPU cores.\ """) parser.add_argument( '--num-inter-threads', type=int, default=0, help="""\ Number of threads to use for inter-op parallelism. If set to 0, the system will pick an appropriate number.\ """) parser.add_argument( '--sync', action='store_true', default=False, help="""\ If present when running in a distributed environment will run on sync mode.\ """) parser.add_argument( '--work_dir', type=str, default='/data/', help='UAI SDK related.') parser.add_argument( '--data_dir', type=str, required=True, help='UAI-SDK related. The directory where the CIFAR-10 input data is stored.') parser.add_argument( '--output_dir', type=str, required=True, help='UAI-SDK related. The directory where the model will be stored.') parser.add_argument( '--log_dir', type=str, default='/data/data/', help='UAI SDK related.') parser.add_argument( '--l_size', type=int, default=10, help="""l_batch_label, how many labels CNN net work will output into LSTM""") parser.add_argument( '--learning_rate', type=float, default=0.1) parser.add_argument( '--decay_rate', type=float, default=0.1) parser.add_argument( '--decay_steps', type=int, default=40000) parser.add_argument( '--steps', type=int, default=200000) parser.add_argument( '--batch_size', type=int, default=512) parser.add_argument( '--tfrecord_dir', type=str, default='tfrecords') args = parser.parse_args() main(**vars(args)) print('Done')
40.424942
159
0.584324
0
0
0
0
0
0
0
0
3,428
0.195841
fbf29fa665c3f19650fb43d520ce03961090f743
7,007
py
Python
ovs/extensions/hypervisor/hypervisors/vmware.py
mflu/openvstorage_centos
280a98d3e5d212d58297e0ffcecd325dfecef0f8
[ "Apache-2.0" ]
1
2015-08-29T16:36:40.000Z
2015-08-29T16:36:40.000Z
ovs/extensions/hypervisor/hypervisors/vmware.py
rootfs-analytics/openvstorage
6184822340faea1d2927643330a7aaa781d92d36
[ "Apache-2.0" ]
null
null
null
ovs/extensions/hypervisor/hypervisors/vmware.py
rootfs-analytics/openvstorage
6184822340faea1d2927643330a7aaa781d92d36
[ "Apache-2.0" ]
null
null
null
# Copyright 2014 CloudFounders NV # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Module for the VMware hypervisor client """ import os from ovs.extensions.hypervisor.apis.vmware.sdk import Sdk class VMware(object): """ Represents the hypervisor client for VMware """ def __init__(self, ip, username, password): """ Initializes the object with credentials and connection information """ self.sdk = Sdk(ip, username, password) self.state_mapping = {'poweredOn' : 'RUNNING', 'poweredOff': 'HALTED', 'suspended' : 'PAUSED'} def get_state(self, vmid): """ Get the current power state of a virtual machine @param vmid: hypervisor id of the virtual machine """ return self.state_mapping[self.sdk.get_power_state(vmid)] def create_vm_from_template(self, name, source_vm, disks, ip, mountpoint, wait=True): """ Create a new vmachine from an existing template """ task = self.sdk.create_vm_from_template(name, source_vm, disks, ip, mountpoint, wait) if wait is True: if self.sdk.validate_result(task): task_info = self.sdk.get_task_info(task) return task_info.info.result.value return None def clone_vm(self, vmid, name, disks, wait=False): """ Clone a vmachine @param vmid: hypervisor id of the virtual machine @param name: name of the virtual machine @param disks: list of disk information @param wait: wait for action to complete """ task = self.sdk.clone_vm(vmid, name, disks, wait) if wait is True: if self.sdk.validate_result(task): task_info = self.sdk.get_task_info(task) return task_info.info.result.value return None def delete_vm(self, vmid, storagedriver_mountpoint, storagedriver_storage_ip, devicename, disks_info=None, wait=False): """ Remove the vmachine from the hypervisor @param vmid: hypervisor id of the virtual machine @param wait: wait for action to complete """ if disks_info is None: disks_info = [] _ = disks_info self.sdk.delete_vm(vmid, storagedriver_mountpoint, storagedriver_storage_ip, devicename, wait) def get_vm_object(self, vmid): """ Gets the VMware virtual machine object from VMware by its identifier """ return self.sdk.get_vm(vmid) def get_vm_agnostic_object(self, vmid): """ Gets the VMware virtual machine object from VMware by its identifier """ return self.sdk.make_agnostic_config(self.sdk.get_vm(vmid)) def get_vm_object_by_devicename(self, devicename, ip, mountpoint): """ Gets the VMware virtual machine object from VMware by devicename and datastore identifiers """ return self.sdk.make_agnostic_config(self.sdk.get_nfs_datastore_object(ip, mountpoint, devicename)[0]) def get_vms_by_nfs_mountinfo(self, ip, mountpoint): """ Gets a list of agnostic vm objects for a given ip and mountpoint """ for vm in self.sdk.get_vms(ip, mountpoint): yield self.sdk.make_agnostic_config(vm) def is_datastore_available(self, ip, mountpoint): """ @param ip : hypervisor ip to query for datastore presence @param mountpoint: nfs mountpoint on hypervisor @rtype: boolean @return: True | False """ return self.sdk.is_datastore_available(ip, mountpoint) def set_as_template(self, vmid, disks, wait=False): """ Configure a vm as template This lets the machine exist on the hypervisor but configures all disks as "Independent Non-persistent" @param vmid: hypervisor id of the virtual machine """ return self.sdk.set_disk_mode(vmid, disks, 'independent_nonpersistent', wait) def mount_nfs_datastore(self, name, remote_host, remote_path): """ Mounts a given NFS export as a datastore """ return self.sdk.mount_nfs_datastore(name, remote_host, remote_path) def test_connection(self): """ Checks whether this node is a vCenter """ return self.sdk.test_connection() def clean_backing_disk_filename(self, path): """ Cleans a backing disk filename to the corresponding disk filename """ _ = self return path.replace('-flat.vmdk', '.vmdk').strip('/') def get_backing_disk_path(self, machinename, devicename): """ Builds the path for the file backing a given device/disk """ _ = self return '/{}/{}-flat.vmdk'.format(machinename.replace(' ', '_'), devicename) def get_disk_path(self, machinename, devicename): """ Builds the path for the file backing a given device/disk """ _ = self return '/{}/{}.vmdk'.format(machinename.replace(' ', '_'), devicename) def clean_vmachine_filename(self, path): """ Cleans a VM filename """ _ = self return path.strip('/') def get_vmachine_path(self, machinename, storagerouter_machineid): """ Builds the path for the file representing a given vmachine """ _ = self, storagerouter_machineid # For compatibility purposes only machinename = machinename.replace(' ', '_') return '/{}/{}.vmx'.format(machinename, machinename) def get_rename_scenario(self, old_name, new_name): """ Gets the rename scenario based on the old and new name """ _ = self if old_name.endswith('.vmx') and new_name.endswith('.vmx'): return 'RENAME' elif old_name.endswith('.vmx~') and new_name.endswith('.vmx'): return 'UPDATE' return 'UNSUPPORTED' def should_process(self, devicename, machine_ids=None): """ Checks whether a given device should be processed """ _ = self, devicename, machine_ids return True def file_exists(self, vpool, devicename): """ Check if devicename exists on the given vpool """ _ = self filename = '/mnt/{0}/{1}'.format(vpool.name, devicename) return os.path.exists(filename) and os.path.isfile(filename)
34.860697
123
0.628942
6,306
0.899957
252
0.035964
0
0
0
0
3,185
0.454545
fbf2ccc900304e6fa6940b6cc3e4418b5177231a
6,314
py
Python
fake_switches/dell10g/command_processor/config_interface.py
idjaw/fake-switches
9b481e17a26cca24bf3ef44466feebf9bff794f8
[ "Apache-2.0" ]
null
null
null
fake_switches/dell10g/command_processor/config_interface.py
idjaw/fake-switches
9b481e17a26cca24bf3ef44466feebf9bff794f8
[ "Apache-2.0" ]
1
2022-02-11T03:49:01.000Z
2022-02-11T03:49:01.000Z
fake_switches/dell10g/command_processor/config_interface.py
idjaw/fake-switches
9b481e17a26cca24bf3ef44466feebf9bff794f8
[ "Apache-2.0" ]
null
null
null
# Copyright 2015 Internap. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from fake_switches.dell.command_processor.config_interface import DellConfigInterfaceCommandProcessor, parse_vlan_list from fake_switches.switch_configuration import AggregatedPort class Dell10GConfigInterfaceCommandProcessor(DellConfigInterfaceCommandProcessor): def __init__(self, switch_configuration, terminal_controller, logger, piping_processor, port): super(DellConfigInterfaceCommandProcessor, self).__init__( switch_configuration, terminal_controller, logger, piping_processor, port) self.description_strip_chars = "\"'" def get_prompt(self): short_name = self.port.name.split(' ')[1] return "{}(config-if-{}{})#".format( self.switch_configuration.name, "Po" if isinstance(self.port, AggregatedPort) else "Te", short_name) def configure_lldp_port(self, args, target_value): if "transmit".startswith(args[0]): self.port.lldp_transmit = target_value elif "receive".startswith(args[0]): self.port.lldp_receive = target_value elif "med".startswith(args[0]): if len(args) == 1: self.port.lldp_med = target_value elif "transmit-tlv".startswith(args[1]): if "capabilities".startswith(args[2]): self.port.lldp_med_transmit_capabilities = target_value elif "network-policy".startswith(args[2]): self.port.lldp_med_transmit_network_policy = target_value def do_switchport(self, *args): if "access".startswith(args[0]) and "vlan".startswith(args[1]): self.set_access_vlan(int(args[2])) elif "mode".startswith(args[0]): self.set_switchport_mode(args[1]) elif ("general".startswith(args[0]) or "trunk".startswith(args[0])) and "allowed".startswith(args[1]): if "vlan".startswith(args[2]) and args[0] == "general": if len(args) > 5: self.write_line(" ^") self.write_line("% Invalid input detected at '^' marker.") else: operation = args[3] vlan_range = args[4] self.update_trunk_vlans(operation, vlan_range) return elif "vlan".startswith(args[2]) and args[0] == "trunk": if len(args) > 5: self.write_line(" ^") self.write_line("% Invalid input detected at '^' marker.") else: if args[0:4] == ("trunk", "allowed", "vlan", "add"): if self.port.trunk_vlans is not None: self.port.trunk_vlans = sorted(list(set(self.port.trunk_vlans + parse_vlan_list(args[4])))) elif args[0:4] == ("trunk", "allowed", "vlan", "remove"): if self.port.trunk_vlans is None: self.port.trunk_vlans = range(1, 4097) for v in parse_vlan_list(args[4]): if v in self.port.trunk_vlans: self.port.trunk_vlans.remove(v) if len(self.port.trunk_vlans) == 0: self.port.trunk_vlans = None elif args[0:4] == ("trunk", "allowed", "vlan", "none"): self.port.trunk_vlans = [] elif args[0:4] == ("trunk", "allowed", "vlan", "all"): self.port.trunk_vlans = None elif args[0:3] == ("trunk", "allowed", "vlan"): self.port.trunk_vlans = parse_vlan_list(args[3]) elif args[0:3] == ("trunk", "native", "vlan"): self.port.trunk_native_vlan = int(args[3]) elif "general".startswith(args[0]) and "pvid".startswith(args[1]): self.set_trunk_native_vlan(int(args[2])) self.write_line("") def do_no_switchport(self, *args): if "mode".startswith(args[0]): self.set_switchport_mode("access") elif "access".startswith(args[0]): if "vlan".startswith(args[1]): self.print_vlan_warning() self.port.access_vlan = None elif args[0] in ("trunk", "general") and args[1:3] == ("allowed", "vlan"): self.port.trunk_vlans = None elif "general".startswith(args[0]): if "pvid".startswith(args[1]): self.port.trunk_native_vlan = None self.write_line("") def do_mtu(self, *args): self.write_line(" ^") self.write_line("% Invalid input detected at '^' marker.") self.write_line("") def do_no_mtu(self, *args): self.write_line(" ^") self.write_line("% Invalid input detected at '^' marker.") self.write_line("") def set_switchport_mode(self, mode): if mode not in ("access", "trunk", "general"): self.write_line(" ^") self.write_line("% Invalid input detected at '^' marker.") else: self.port.mode = mode def set_trunk_native_vlan(self, native_vlan): vlan = self.switch_configuration.get_vlan(native_vlan) if vlan is None: self.write_line("Could not configure pvid.") else: self.port.trunk_native_vlan = vlan.number def print_vlan_warning(self): pass
46.77037
119
0.548939
5,556
0.879949
0
0
0
0
0
0
1,538
0.243586
fbf2e31cb815224097d8066fca9f33447d38f065
939
py
Python
setup.py
Spredzy/python-memsource
9624a1e93dab9cec874164fb390432c51ab0de31
[ "Apache-2.0" ]
null
null
null
setup.py
Spredzy/python-memsource
9624a1e93dab9cec874164fb390432c51ab0de31
[ "Apache-2.0" ]
null
null
null
setup.py
Spredzy/python-memsource
9624a1e93dab9cec874164fb390432c51ab0de31
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import setuptools from memsource import version with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name="memsource", version=version.__version__, author="Yanis Guenane", author_email="yguenane+opensource@gmail.com", description="Python bindings for Memsource", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/Spredzy/python-memsource", packages=setuptools.find_packages(), install_requires=[ "requests" ], classifiers=[ "Programming Language :: Python :: 3", "Environment :: Console", "Intended Audience :: Developers", "Intended Audience :: Information Technology", "License :: OSI Approved :: Apache Software License", "Operating System :: POSIX :: Linux", ], python_requires=">=3.6", )
27.617647
61
0.664537
0
0
0
0
0
0
0
0
434
0.462194
fbf375a6746c12699f7672902496fe49ba8773ae
5,637
py
Python
sktime/transformations/series/func_transform.py
marcio55afr/sktime
25ba2f470f037366ca6b0e529137d3d0a6191e2e
[ "BSD-3-Clause" ]
2
2021-12-28T10:48:11.000Z
2022-03-06T18:08:01.000Z
sktime/transformations/series/func_transform.py
marcio55afr/sktime
25ba2f470f037366ca6b0e529137d3d0a6191e2e
[ "BSD-3-Clause" ]
2
2021-04-19T17:38:33.000Z
2021-07-25T18:44:10.000Z
sktime/transformations/series/func_transform.py
marcio55afr/sktime
25ba2f470f037366ca6b0e529137d3d0a6191e2e
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 -u # -*- coding: utf-8 -*- """Implements FunctionTransformer, a class to create custom transformers.""" __author__ = ["Bouke Postma"] __all__ = ["FunctionTransformer"] import numpy as np from sktime.transformations.base import _SeriesToSeriesTransformer from sktime.utils.validation.series import check_series def _identity(X): """Return X.""" return X class FunctionTransformer(_SeriesToSeriesTransformer): r"""Constructs a transformer from an arbitrary callable. A FunctionTransformer forwards its y (and optionally X) arguments to a user-defined function or function object and returns the result of this function. This is useful for stateless transformations such as taking the log of frequencies, doing custom scaling, etc. Note: If a lambda is used as the function, then the resulting transformer will not be pickleable. Parameters ---------- func : callable, default=None The callable to use for the transformation. This will be passed the same arguments as transform, with args and kwargs forwarded. If func is None, then func will be the identity function. inverse_func : callable, default=None The callable to use for the inverse transformation. This will be passed the same arguments as inverse transform, with args and kwargs forwarded. If inverse_func is None, then inverse_func will be the identity function. check_inverse : bool, default=True Whether to check that or ``func`` followed by ``inverse_func`` leads to the original inputs. It can be used for a sanity check, raising a warning when the condition is not fulfilled. kw_args : dict, default=None Dictionary of additional keyword arguments to pass to func. inv_kw_args : dict, default=None Dictionary of additional keyword arguments to pass to inverse_func. See Also -------- sktime.transformations.series.boxcox.LogTransformer : Transformer input data using natural log. Can help normalize data and compress variance of the series. sktime.transformations.series.exponent.ExponentTransformer : Transform input data by raising it to an exponent. Can help compress variance of series if a fractional exponent is supplied. sktime.transformations.series.exponent.SqrtTransformer : Transform input data by taking its square root. Can help compress variance of input series. Examples -------- >>> import numpy as np >>> from sktime.transformations.series.func_transform import FunctionTransformer >>> transformer = FunctionTransformer(np.log1p, np.expm1) >>> X = np.array([[0, 1], [2, 3]]) >>> transformer.fit_transform(X) array([[0. , 0.69314718], [1.09861229, 1.38629436]]) """ _tags = { "handles-missing-data": True, "fit-in-transform": False, } def __init__( self, func=None, inverse_func=None, *, check_inverse=True, kw_args=None, inv_kw_args=None, ): self.func = func self.inverse_func = inverse_func self.check_inverse = check_inverse self.kw_args = kw_args self.inv_kw_args = inv_kw_args super(FunctionTransformer, self).__init__() def _check_inverse_transform(self, Z): """Check that func and inverse_func are each other's inverse.""" Z_round_trip = self.inverse_func(self.func(Z)) if not np.allclose(Z_round_trip, Z, equal_nan=True): raise UserWarning( "The provided functions are not strictly" " inverse of each other. If you are sure you" " want to proceed regardless, set" " 'check_inverse=False'." ) def fit(self, Z, X=None): """Fit data. Parameters ---------- Z : pd.Series / pd.DataFrame Series / DataFrame to fit. X : pd.DataFrame, optional (default=None) Exogenous data used in transformation. Returns ------- self """ if self.check_inverse and not (self.func is None or self.inverse_func is None): self._check_inverse_transform(Z) self._is_fitted = True return self def transform(self, Z, X=None): """Transform data. Parameters ---------- Z : pd.Series / pd.DataFrame Series / DataFrame to transform. X : pd.DataFrame, optional (default=None) Exogenous data used in transformation. Returns ------- Zt : pd.Series / pd.DataFrame Transformed data. """ self.check_is_fitted() Z = check_series(Z) return self._apply_function(Z, func=self.func, kw_args=self.kw_args) def inverse_transform(self, Z, X=None): """Inverse transform data. Parameters ---------- Z : pd.Series / pd.DataFrame Series / DataFrame to transform. X : pd.DataFrame, optional (default=None) Exogenous data used in transformation. Returns ------- Zt : pd.Series / pd.DataFrame Inverse transformed data. """ self.check_is_fitted() Z = check_series(Z) return self._apply_function(Z, func=self.inverse_func, kw_args=self.inv_kw_args) def _apply_function(self, Z, func=None, kw_args=None): if func is None: func = _identity return func(Z, **(kw_args if kw_args else {}))
33.553571
88
0.631896
5,244
0.930282
0
0
0
0
0
0
3,841
0.681391
fbf4288218731b27d1646ee39344ec7cc83f8d4a
13,963
py
Python
regparser/tree/xml_parser/reg_text.py
cfpb/regulations-parser
9b6e1ab2dbec93a915eb6da9a2d88c723b9ac424
[ "CC0-1.0" ]
36
2015-01-05T21:17:36.000Z
2020-04-28T21:02:55.000Z
regparser/tree/xml_parser/reg_text.py
DalavanCloud/regulations-parser
9b6e1ab2dbec93a915eb6da9a2d88c723b9ac424
[ "CC0-1.0" ]
49
2015-01-28T15:54:25.000Z
2018-08-20T20:20:08.000Z
regparser/tree/xml_parser/reg_text.py
DalavanCloud/regulations-parser
9b6e1ab2dbec93a915eb6da9a2d88c723b9ac424
[ "CC0-1.0" ]
23
2015-01-28T15:34:18.000Z
2021-02-20T10:53:34.000Z
# vim: set encoding=utf-8 import re from lxml import etree import logging from regparser import content from regparser.tree.depth import heuristics, rules, markers as mtypes from regparser.tree.depth.derive import derive_depths from regparser.tree.struct import Node from regparser.tree.paragraph import p_level_of from regparser.tree.xml_parser.appendices import build_non_reg_text from regparser.tree import reg_text from regparser.tree.xml_parser import tree_utils from settings import PARAGRAPH_HIERARCHY def get_reg_part(reg_doc): """ Depending on source, the CFR part number exists in different places. Fetch it, wherever it is. """ potential_parts = [] potential_parts.extend( # FR notice node.attrib['PART'] for node in reg_doc.xpath('//REGTEXT')) potential_parts.extend( # e-CFR XML, under PART/EAR node.text.replace('Pt.', '').strip() for node in reg_doc.xpath('//PART/EAR') if 'Pt.' in node.text) potential_parts.extend( # e-CFR XML, under FDSYS/HEADING node.text.replace('PART', '').strip() for node in reg_doc.xpath('//FDSYS/HEADING') if 'PART' in node.text) potential_parts.extend( # e-CFR XML, under FDSYS/GRANULENUM node.text.strip() for node in reg_doc.xpath('//FDSYS/GRANULENUM')) potential_parts = [p for p in potential_parts if p.strip()] if potential_parts: return potential_parts[0] def get_title(reg_doc): """ Extract the title of the regulation. """ parent = reg_doc.xpath('//PART/HD')[0] title = parent.text return title def preprocess_xml(xml): """This transforms the read XML through macros. Each macro consists of an xpath and a replacement xml string""" for path, replacement in content.Macros(): replacement = etree.fromstring('<ROOT>' + replacement + '</ROOT>') for node in xml.xpath(path): parent = node.getparent() idx = parent.index(node) parent.remove(node) for repl in replacement: parent.insert(idx, repl) idx += 1 def build_tree(reg_xml): if isinstance(reg_xml, str) or isinstance(reg_xml, unicode): doc = etree.fromstring(reg_xml) else: doc = reg_xml preprocess_xml(doc) reg_part = get_reg_part(doc) title = get_title(doc) tree = Node("", [], [reg_part], title) part = doc.xpath('//PART')[0] subpart_xmls = [c for c in part.getchildren() if c.tag == 'SUBPART'] if len(subpart_xmls) > 0: subparts = [build_subpart(reg_part, s) for s in subpart_xmls] tree.children = subparts else: section_xmls = [c for c in part.getchildren() if c.tag == 'SECTION'] sections = [] for section_xml in section_xmls: sections.extend(build_from_section(reg_part, section_xml)) empty_part = reg_text.build_empty_part(reg_part) empty_part.children = sections tree.children = [empty_part] non_reg_sections = build_non_reg_text(doc, reg_part) tree.children += non_reg_sections return tree def get_subpart_title(subpart_xml): hds = subpart_xml.xpath('./HD|./RESERVED') return [hd.text for hd in hds][0] def build_subpart(reg_part, subpart_xml): subpart_title = get_subpart_title(subpart_xml) subpart = reg_text.build_subpart(subpart_title, reg_part) sections = [] for ch in subpart_xml.getchildren(): if ch.tag == 'SECTION': sections.extend(build_from_section(reg_part, ch)) subpart.children = sections return subpart # @profile def get_markers(text): """ Extract all the paragraph markers from text. Do some checks on the collapsed markers.""" markers = tree_utils.get_paragraph_markers(text) collapsed_markers = tree_utils.get_collapsed_markers(text) # Check that the collapsed markers make sense (i.e. are at least one # level below the initial marker) if markers and collapsed_markers: initial_marker_levels = p_level_of(markers[-1]) final_collapsed_markers = [] for collapsed_marker in collapsed_markers: collapsed_marker_levels = p_level_of(collapsed_marker) if any(c > f for f in initial_marker_levels for c in collapsed_marker_levels): final_collapsed_markers.append(collapsed_marker) collapsed_markers = final_collapsed_markers markers_list = [m for m in markers] + [m for m in collapsed_markers] return markers_list def get_markers_and_text(node, markers_list): node_text = tree_utils.get_node_text(node, add_spaces=True) text_with_tags = tree_utils.get_node_text_tags_preserved(node) if len(markers_list) > 1: actual_markers = ['(%s)' % m for m in markers_list] plain_markers = [m.replace('<E T="03">', '').replace('</E>', '') for m in actual_markers] node_texts = tree_utils.split_text(node_text, plain_markers) tagged_texts = tree_utils.split_text(text_with_tags, actual_markers) node_text_list = zip(node_texts, tagged_texts) elif markers_list: node_text_list = [(node_text, text_with_tags)] else: node_text_list = [('', '')] return zip(markers_list, node_text_list) def next_marker(xml_node, remaining_markers): """Try to determine the marker following the current xml_node. Remaining markers is a list of other marks *within* the xml_node. May return None""" # More markers in this xml node if remaining_markers: return remaining_markers[0][0] # Check the next xml node; skip over stars sib = xml_node.getnext() while sib is not None and sib.tag in ('STARS', 'PRTPAGE'): sib = sib.getnext() if sib is not None: next_text = tree_utils.get_node_text(sib) next_markers = get_markers(next_text) if next_markers: return next_markers[0] def build_from_section(reg_part, section_xml): section_texts = [] nodes = [] section_no = section_xml.xpath('SECTNO')[0].text section_no_without_marker = re.search('[0-9]+\.[0-9]+', section_no).group(0) subject_xml = section_xml.xpath('SUBJECT') if not subject_xml: subject_xml = section_xml.xpath('RESERVED') subject_text = subject_xml[0].text manual_hierarchy = [] if (reg_part in PARAGRAPH_HIERARCHY and section_no_without_marker in PARAGRAPH_HIERARCHY[reg_part]): manual_hierarchy = PARAGRAPH_HIERARCHY[reg_part][ section_no_without_marker] # Collect paragraph markers and section text (intro text for the # section) i = 0 children = [ch for ch in section_xml.getchildren() if ch.tag in ['P', 'STARS']] for ch in children: text = tree_utils.get_node_text(ch, add_spaces=True) tagged_text = tree_utils.get_node_text_tags_preserved(ch) markers_list = get_markers(tagged_text.strip()) # If the child has a 'DEPTH' attribute, we're in manual # hierarchy mode, just constructed from the XML instead of # specified in configuration. # This presumes that every child in the section has DEPTH # specified, if not, things will break in and around # derive_depths below. if ch.get("depth") is not None: manual_hierarchy.append(int(ch.get("depth"))) if ch.tag == 'STARS': nodes.append(Node(label=[mtypes.STARS_TAG])) elif not markers_list and manual_hierarchy: # is this a bunch of definitions that don't have numbers next to # them? if len(nodes) > 0: if (subject_text.find('Definitions.') > -1 or nodes[-1].text.find( 'For the purposes of this section')): # TODO: create a grammar for definitions if text.find('means') > -1: def_marker = text.split('means')[0].strip().split() def_marker = ''.join([word[0].upper() + word[1:] for word in def_marker]) elif text.find('shall have the same meaning') > -1: def_marker = text.split('shall')[0].strip().split() def_marker = ''.join([word[0].upper() + word[1:] for word in def_marker]) else: def_marker = 'def{0}'.format(i) i += 1 n = Node(text, label=[def_marker], source_xml=ch) n.tagged_text = tagged_text nodes.append(n) else: section_texts.append((text, tagged_text)) else: if len(children) > 1: def_marker = 'def{0}'.format(i) n = Node(text, [], [def_marker], source_xml=ch) n.tagged_text = tagged_text i += 1 nodes.append(n) else: # this is the only node around section_texts.append((text, tagged_text)) elif not markers_list and not manual_hierarchy: # No manual heirarchy specified, append to the section. section_texts.append((text, tagged_text)) else: for m, node_text in get_markers_and_text(ch, markers_list): n = Node(node_text[0], [], [m], source_xml=ch) n.tagged_text = unicode(node_text[1]) nodes.append(n) if node_text[0].endswith('* * *'): nodes.append(Node(label=[mtypes.INLINE_STARS])) # Trailing stars don't matter; slightly more efficient to ignore them while nodes and nodes[-1].label[0] in mtypes.stars: nodes = nodes[:-1] m_stack = tree_utils.NodeStack() # Use constraint programming to figure out possible depth assignments if not manual_hierarchy: depths = derive_depths( [node.label[0] for node in nodes], [rules.depth_type_order([mtypes.lower, mtypes.ints, mtypes.roman, mtypes.upper, mtypes.em_ints, mtypes.em_roman])]) if not manual_hierarchy and depths: # Find the assignment which violates the least of our heuristics depths = heuristics.prefer_multiple_children(depths, 0.5) depths = sorted(depths, key=lambda d: d.weight, reverse=True) depths = depths[0] for node, par in zip(nodes, depths): if par.typ != mtypes.stars: last = m_stack.peek() node.label = [l.replace('<E T="03">', '').replace('</E>', '') for l in node.label] if len(last) == 0: m_stack.push_last((1 + par.depth, node)) else: m_stack.add(1 + par.depth, node) elif nodes and manual_hierarchy: logging.warning('Using manual depth hierarchy.') depths = manual_hierarchy if len(nodes) == len(depths): for node, spec in zip(nodes, depths): if isinstance(spec, int): depth = spec elif isinstance(spec, tuple): depth, marker = spec node.marker = marker last = m_stack.peek() node.label = [l.replace('<E T="03">', '').replace('</E>', '') for l in node.label] if len(last) == 0: m_stack.push_last((1 + depth, node)) else: m_stack.add(1 + depth, node) else: logging.error('Manual hierarchy length does not match node ' 'list length! ({0} nodes but {1} provided, ' '{2})'.format( len(nodes), len(depths), [x.label[0] for x in nodes])) elif nodes and not manual_hierarchy: logging.warning( 'Could not determine depth when parsing {0}:\n{1}'.format( section_no_without_marker, [node.label[0] for node in nodes])) for node in nodes: last = m_stack.peek() node.label = [l.replace('<E T="03">', '').replace('</E>', '') for l in node.label] if len(last) == 0: m_stack.push_last((3, node)) else: m_stack.add(3, node) nodes = [] section_nums = [] for match in re.finditer(r'%s\.(\d+)' % reg_part, section_no): section_nums.append(int(match.group(1))) # Span of section numbers if u'§§' == section_no[:2] and '-' in section_no: first, last = section_nums section_nums = [] for i in range(first, last + 1): section_nums.append(i) for section_number in section_nums: section_number = str(section_number) plain_sect_texts = [s[0] for s in section_texts] tagged_sect_texts = [s[1] for s in section_texts] section_title = u"§ " + reg_part + "." + section_number if subject_text: section_title += " " + subject_text section_text = ' '.join([section_xml.text] + plain_sect_texts) tagged_section_text = ' '.join([section_xml.text] + tagged_sect_texts) sect_node = Node(section_text, label=[reg_part, section_number], title=section_title) sect_node.tagged_text = tagged_section_text m_stack.add_to_bottom((1, sect_node)) while m_stack.size() > 1: m_stack.unwind() nodes.append(m_stack.pop()[0][1]) return nodes
37.840108
78
0.587911
0
0
0
0
0
0
0
0
2,321
0.166189
fbf49444e0f4679af981bbaa8faf8266920ca318
1,216
py
Python
setup.py
mark-dawn/stytra
be1d5be0a44aeb685d475240d056ef7adf60ed06
[ "MIT" ]
null
null
null
setup.py
mark-dawn/stytra
be1d5be0a44aeb685d475240d056ef7adf60ed06
[ "MIT" ]
null
null
null
setup.py
mark-dawn/stytra
be1d5be0a44aeb685d475240d056ef7adf60ed06
[ "MIT" ]
null
null
null
from distutils.core import setup from setuptools import find_packages setup( name="stytra", version="0.1", author="Vilim Stih, Luigi Petrucco @portugueslab", author_email="vilim@neuro.mpg.de", license="MIT", packages=find_packages(), install_requires=[ "pyqtgraph>=0.10.0", "numpy", "numba", "matplotlib", "pandas", "qdarkstyle", "qimage2ndarray", "deepdish", "param", "pims", "GitPython", "pymongo", "colorspacious", "arrayqueues", ], classifiers=[ "Development Status :: 3 - Alpha", "Intended Audience :: Science/Research", # Pick your license as you wish (should match "license" above) "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", ], keywords="tracking processing", description="A modular package to control stimulation and track behaviour in zebrafish experiments.", project_urls={ "Source": "https://github.com/portugueslab/stytra", "Tracker": "https://github.com/portugueslab/stytra/issues", }, )
28.27907
105
0.591283
0
0
0
0
0
0
0
0
697
0.573191
fbf4c0c322e799620006a7ec56b567282c3ba0ca
226
py
Python
checkTicTacToe/checkTicTacToe.py
nate-ar-williams/coding-questions
24baa901a786e6e2c4e8ea823a26416bc51e1f6a
[ "MIT" ]
null
null
null
checkTicTacToe/checkTicTacToe.py
nate-ar-williams/coding-questions
24baa901a786e6e2c4e8ea823a26416bc51e1f6a
[ "MIT" ]
null
null
null
checkTicTacToe/checkTicTacToe.py
nate-ar-williams/coding-questions
24baa901a786e6e2c4e8ea823a26416bc51e1f6a
[ "MIT" ]
null
null
null
#!/usr/bin/python3 # let board be 3x3 bool array def isWin(board): start = board[0][0] win = False next = [(0, 1), (1, 1), (1, 0)] while(!win): while return win def main(): pass if __name__ == '__main__': main()
12.555556
32
0.588496
0
0
0
0
0
0
0
0
57
0.252212
fbf52c7f3a9bab66d56f2bccbaf8974ecb5420d3
2,138
py
Python
openerp/exceptions.py
ntiufalara/openerp7
903800da0644ec0dd9c1dcd34205541f84d45fe4
[ "MIT" ]
3
2016-01-29T14:39:49.000Z
2018-12-29T22:42:00.000Z
openerp/exceptions.py
ntiufalara/openerp7
903800da0644ec0dd9c1dcd34205541f84d45fe4
[ "MIT" ]
2
2016-03-23T14:29:41.000Z
2017-02-20T17:11:30.000Z
openerp/exceptions.py
ntiufalara/openerp7
903800da0644ec0dd9c1dcd34205541f84d45fe4
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2011 OpenERP s.a. (<http://openerp.com>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## """ OpenERP core exceptions. This module defines a few exception types. Those types are understood by the RPC layer. Any other exception type bubbling until the RPC layer will be treated as a 'Server error'. """ class Warning(Exception): pass class AccessDenied(Exception): """ Login/password error. No message, no traceback. """ def __init__(self): super(AccessDenied, self).__init__('Access denied.') self.traceback = ('', '', '') class AccessError(Exception): """ Access rights error. """ class DeferredException(Exception): """ Exception object holding a traceback for asynchronous reporting. Some RPC calls (database creation and report generation) happen with an initial request followed by multiple, polling requests. This class is used to store the possible exception occuring in the thread serving the first request, and is then sent to a polling request. ('Traceback' is misleading, this is really a exc_info() triple.) """ def __init__(self, msg, tb): self.message = msg self.traceback = tb # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
37.508772
78
0.658092
868
0.405987
0
0
0
0
0
0
1,774
0.829747
fbf6f8315c8b89ca91d3b286cb9fd7bfaffd9e47
83,653
py
Python
MainUi.py
james646-hs/Fgo_teamup
f1e5c6f514818b68e9abb9eab3c6103fd000819a
[ "MIT" ]
18
2020-05-30T01:41:24.000Z
2021-03-04T08:07:35.000Z
MainUi.py
james646-hs/Fgo_teamup
f1e5c6f514818b68e9abb9eab3c6103fd000819a
[ "MIT" ]
1
2020-08-13T02:19:42.000Z
2020-08-13T02:19:42.000Z
MainUi.py
james646-hs/Fgo_teamup
f1e5c6f514818b68e9abb9eab3c6103fd000819a
[ "MIT" ]
2
2020-06-13T18:23:07.000Z
2020-08-13T02:08:54.000Z
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'MainUi.ui' # # Created by: PyQt5 UI code generator 5.13.0 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.setEnabled(True) MainWindow.resize(1070, 837) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Minimum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(MainWindow.sizePolicy().hasHeightForWidth()) MainWindow.setSizePolicy(sizePolicy) MainWindow.setMinimumSize(QtCore.QSize(0, 0)) MainWindow.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.verticalLayout_2 = QtWidgets.QVBoxLayout(self.centralwidget) self.verticalLayout_2.setContentsMargins(5, 10, 5, 5) self.verticalLayout_2.setSpacing(5) self.verticalLayout_2.setObjectName("verticalLayout_2") self.groupBox = QtWidgets.QGroupBox(self.centralwidget) self.groupBox.setTitle("") self.groupBox.setObjectName("groupBox") self.verticalLayout_3 = QtWidgets.QVBoxLayout(self.groupBox) self.verticalLayout_3.setContentsMargins(5, 5, 5, 5) self.verticalLayout_3.setSpacing(5) self.verticalLayout_3.setObjectName("verticalLayout_3") self.gridLayout_3 = QtWidgets.QGridLayout() self.gridLayout_3.setSizeConstraint(QtWidgets.QLayout.SetDefaultConstraint) self.gridLayout_3.setObjectName("gridLayout_3") self.label_costume_state_4 = QtWidgets.QLabel(self.groupBox) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_costume_state_4.sizePolicy().hasHeightForWidth()) self.label_costume_state_4.setSizePolicy(sizePolicy) self.label_costume_state_4.setMaximumSize(QtCore.QSize(16777215, 28)) self.label_costume_state_4.setObjectName("label_costume_state_4") self.gridLayout_3.addWidget(self.label_costume_state_4, 4, 4, 1, 1) self.label_servant_state_2 = QtWidgets.QLabel(self.groupBox) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_servant_state_2.sizePolicy().hasHeightForWidth()) self.label_servant_state_2.setSizePolicy(sizePolicy) self.label_servant_state_2.setMinimumSize(QtCore.QSize(110, 65)) self.label_servant_state_2.setMaximumSize(QtCore.QSize(16777215, 65)) self.label_servant_state_2.setObjectName("label_servant_state_2") self.gridLayout_3.addWidget(self.label_servant_state_2, 2, 1, 1, 1) self.line_7 = QtWidgets.QFrame(self.groupBox) self.line_7.setFrameShape(QtWidgets.QFrame.VLine) self.line_7.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_7.setObjectName("line_7") self.gridLayout_3.addWidget(self.line_7, 0, 7, 1, 1) self.label_costume_state_1 = QtWidgets.QLabel(self.groupBox) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_costume_state_1.sizePolicy().hasHeightForWidth()) self.label_costume_state_1.setSizePolicy(sizePolicy) self.label_costume_state_1.setMaximumSize(QtCore.QSize(16777212, 28)) self.label_costume_state_1.setObjectName("label_costume_state_1") self.gridLayout_3.addWidget(self.label_costume_state_1, 4, 0, 1, 1) self.box_skill_confirm = QtWidgets.QCheckBox(self.groupBox) self.box_skill_confirm.setObjectName("box_skill_confirm") self.gridLayout_3.addWidget(self.box_skill_confirm, 4, 8, 1, 1) self.horizontalLayout_29 = QtWidgets.QHBoxLayout() self.horizontalLayout_29.setObjectName("horizontalLayout_29") self.btn_select_servant_5 = QtWidgets.QPushButton(self.groupBox) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.btn_select_servant_5.sizePolicy().hasHeightForWidth()) self.btn_select_servant_5.setSizePolicy(sizePolicy) self.btn_select_servant_5.setMinimumSize(QtCore.QSize(92, 100)) self.btn_select_servant_5.setMaximumSize(QtCore.QSize(92, 100)) self.btn_select_servant_5.setText("") self.btn_select_servant_5.setIconSize(QtCore.QSize(92, 100)) self.btn_select_servant_5.setObjectName("btn_select_servant_5") self.horizontalLayout_29.addWidget(self.btn_select_servant_5) self.gridLayout_3.addLayout(self.horizontalLayout_29, 0, 5, 1, 1) self.horizontalLayout_3 = QtWidgets.QHBoxLayout() self.horizontalLayout_3.setObjectName("horizontalLayout_3") self.label = QtWidgets.QLabel(self.groupBox) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label.sizePolicy().hasHeightForWidth()) self.label.setSizePolicy(sizePolicy) self.label.setObjectName("label") self.horizontalLayout_3.addWidget(self.label) self.spinbox_required_prob = QtWidgets.QSpinBox(self.groupBox) self.spinbox_required_prob.setMaximum(100) self.spinbox_required_prob.setProperty("value", 100) self.spinbox_required_prob.setObjectName("spinbox_required_prob") self.horizontalLayout_3.addWidget(self.spinbox_required_prob) self.gridLayout_3.addLayout(self.horizontalLayout_3, 3, 8, 1, 1) self.horizontalLayout_24 = QtWidgets.QHBoxLayout() self.horizontalLayout_24.setObjectName("horizontalLayout_24") self.btn_select_servant_1 = QtWidgets.QPushButton(self.groupBox) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.btn_select_servant_1.sizePolicy().hasHeightForWidth()) self.btn_select_servant_1.setSizePolicy(sizePolicy) self.btn_select_servant_1.setMinimumSize(QtCore.QSize(92, 100)) self.btn_select_servant_1.setMaximumSize(QtCore.QSize(92, 100)) self.btn_select_servant_1.setText("") self.btn_select_servant_1.setIconSize(QtCore.QSize(92, 100)) self.btn_select_servant_1.setObjectName("btn_select_servant_1") self.horizontalLayout_24.addWidget(self.btn_select_servant_1) self.gridLayout_3.addLayout(self.horizontalLayout_24, 0, 0, 1, 1) self.label_costume_state_5 = QtWidgets.QLabel(self.groupBox) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_costume_state_5.sizePolicy().hasHeightForWidth()) self.label_costume_state_5.setSizePolicy(sizePolicy) self.label_costume_state_5.setMaximumSize(QtCore.QSize(16777215, 28)) self.label_costume_state_5.setObjectName("label_costume_state_5") self.gridLayout_3.addWidget(self.label_costume_state_5, 4, 5, 1, 1) self.label_costume_state_6 = QtWidgets.QLabel(self.groupBox) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_costume_state_6.sizePolicy().hasHeightForWidth()) self.label_costume_state_6.setSizePolicy(sizePolicy) self.label_costume_state_6.setMaximumSize(QtCore.QSize(16777215, 28)) self.label_costume_state_6.setObjectName("label_costume_state_6") self.gridLayout_3.addWidget(self.label_costume_state_6, 4, 6, 1, 1) self.horizontalLayout_26 = QtWidgets.QHBoxLayout() self.horizontalLayout_26.setObjectName("horizontalLayout_26") self.btn_select_servant_2 = QtWidgets.QPushButton(self.groupBox) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.btn_select_servant_2.sizePolicy().hasHeightForWidth()) self.btn_select_servant_2.setSizePolicy(sizePolicy) self.btn_select_servant_2.setMinimumSize(QtCore.QSize(92, 100)) self.btn_select_servant_2.setMaximumSize(QtCore.QSize(92, 100)) self.btn_select_servant_2.setText("") self.btn_select_servant_2.setIconSize(QtCore.QSize(92, 100)) self.btn_select_servant_2.setObjectName("btn_select_servant_2") self.horizontalLayout_26.addWidget(self.btn_select_servant_2) self.gridLayout_3.addLayout(self.horizontalLayout_26, 0, 1, 1, 1) self.horizontalLayout_23 = QtWidgets.QHBoxLayout() self.horizontalLayout_23.setObjectName("horizontalLayout_23") self.btn_select_master = QtWidgets.QPushButton(self.groupBox) self.btn_select_master.setMinimumSize(QtCore.QSize(92, 100)) self.btn_select_master.setMaximumSize(QtCore.QSize(92, 100)) self.btn_select_master.setText("") self.btn_select_master.setIconSize(QtCore.QSize(100, 100)) self.btn_select_master.setObjectName("btn_select_master") self.horizontalLayout_23.addWidget(self.btn_select_master) self.gridLayout_3.addLayout(self.horizontalLayout_23, 0, 8, 1, 1) self.label_servant_state_1 = QtWidgets.QLabel(self.groupBox) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_servant_state_1.sizePolicy().hasHeightForWidth()) self.label_servant_state_1.setSizePolicy(sizePolicy) self.label_servant_state_1.setMinimumSize(QtCore.QSize(110, 65)) self.label_servant_state_1.setMaximumSize(QtCore.QSize(16777215, 65)) self.label_servant_state_1.setObjectName("label_servant_state_1") self.gridLayout_3.addWidget(self.label_servant_state_1, 2, 0, 1, 1) self.label_master_state = QtWidgets.QLabel(self.groupBox) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_master_state.sizePolicy().hasHeightForWidth()) self.label_master_state.setSizePolicy(sizePolicy) self.label_master_state.setMinimumSize(QtCore.QSize(0, 0)) self.label_master_state.setMaximumSize(QtCore.QSize(16777215, 28)) self.label_master_state.setObjectName("label_master_state") self.gridLayout_3.addWidget(self.label_master_state, 2, 8, 1, 1) self.horizontalLayout_38 = QtWidgets.QHBoxLayout() self.horizontalLayout_38.setObjectName("horizontalLayout_38") self.btn_select_costume_3 = QtWidgets.QPushButton(self.groupBox) self.btn_select_costume_3.setMinimumSize(QtCore.QSize(100, 45)) self.btn_select_costume_3.setMaximumSize(QtCore.QSize(100, 45)) self.btn_select_costume_3.setText("") self.btn_select_costume_3.setIconSize(QtCore.QSize(100, 150)) self.btn_select_costume_3.setObjectName("btn_select_costume_3") self.horizontalLayout_38.addWidget(self.btn_select_costume_3) self.gridLayout_3.addLayout(self.horizontalLayout_38, 3, 2, 1, 1) self.label_costume_state_2 = QtWidgets.QLabel(self.groupBox) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_costume_state_2.sizePolicy().hasHeightForWidth()) self.label_costume_state_2.setSizePolicy(sizePolicy) self.label_costume_state_2.setMaximumSize(QtCore.QSize(16777215, 28)) self.label_costume_state_2.setObjectName("label_costume_state_2") self.gridLayout_3.addWidget(self.label_costume_state_2, 4, 1, 1, 1) self.horizontalLayout_28 = QtWidgets.QHBoxLayout() self.horizontalLayout_28.setObjectName("horizontalLayout_28") self.btn_select_servant_4 = QtWidgets.QPushButton(self.groupBox) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.btn_select_servant_4.sizePolicy().hasHeightForWidth()) self.btn_select_servant_4.setSizePolicy(sizePolicy) self.btn_select_servant_4.setMinimumSize(QtCore.QSize(92, 100)) self.btn_select_servant_4.setMaximumSize(QtCore.QSize(92, 100)) self.btn_select_servant_4.setText("") self.btn_select_servant_4.setIconSize(QtCore.QSize(92, 100)) self.btn_select_servant_4.setObjectName("btn_select_servant_4") self.horizontalLayout_28.addWidget(self.btn_select_servant_4) self.gridLayout_3.addLayout(self.horizontalLayout_28, 0, 4, 1, 1) self.horizontalLayout_36 = QtWidgets.QHBoxLayout() self.horizontalLayout_36.setObjectName("horizontalLayout_36") self.btn_select_costume_2 = QtWidgets.QPushButton(self.groupBox) self.btn_select_costume_2.setMinimumSize(QtCore.QSize(100, 45)) self.btn_select_costume_2.setMaximumSize(QtCore.QSize(100, 45)) self.btn_select_costume_2.setText("") self.btn_select_costume_2.setIconSize(QtCore.QSize(100, 150)) self.btn_select_costume_2.setObjectName("btn_select_costume_2") self.horizontalLayout_36.addWidget(self.btn_select_costume_2) self.gridLayout_3.addLayout(self.horizontalLayout_36, 3, 1, 1, 1) self.horizontalLayout_46 = QtWidgets.QHBoxLayout() self.horizontalLayout_46.setObjectName("horizontalLayout_46") self.btn_select_costume_1 = QtWidgets.QPushButton(self.groupBox) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.btn_select_costume_1.sizePolicy().hasHeightForWidth()) self.btn_select_costume_1.setSizePolicy(sizePolicy) self.btn_select_costume_1.setMinimumSize(QtCore.QSize(100, 45)) self.btn_select_costume_1.setMaximumSize(QtCore.QSize(100, 45)) self.btn_select_costume_1.setText("") self.btn_select_costume_1.setIconSize(QtCore.QSize(100, 150)) self.btn_select_costume_1.setObjectName("btn_select_costume_1") self.horizontalLayout_46.addWidget(self.btn_select_costume_1) self.gridLayout_3.addLayout(self.horizontalLayout_46, 3, 0, 1, 1) self.label_servant_state_3 = QtWidgets.QLabel(self.groupBox) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_servant_state_3.sizePolicy().hasHeightForWidth()) self.label_servant_state_3.setSizePolicy(sizePolicy) self.label_servant_state_3.setMinimumSize(QtCore.QSize(110, 65)) self.label_servant_state_3.setMaximumSize(QtCore.QSize(16777215, 65)) self.label_servant_state_3.setObjectName("label_servant_state_3") self.gridLayout_3.addWidget(self.label_servant_state_3, 2, 2, 1, 1) self.label_servant_state_5 = QtWidgets.QLabel(self.groupBox) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_servant_state_5.sizePolicy().hasHeightForWidth()) self.label_servant_state_5.setSizePolicy(sizePolicy) self.label_servant_state_5.setMinimumSize(QtCore.QSize(110, 65)) self.label_servant_state_5.setMaximumSize(QtCore.QSize(16777215, 65)) self.label_servant_state_5.setObjectName("label_servant_state_5") self.gridLayout_3.addWidget(self.label_servant_state_5, 2, 5, 1, 1) self.horizontalLayout_44 = QtWidgets.QHBoxLayout() self.horizontalLayout_44.setObjectName("horizontalLayout_44") self.btn_select_costume_6 = QtWidgets.QPushButton(self.groupBox) self.btn_select_costume_6.setMinimumSize(QtCore.QSize(100, 45)) self.btn_select_costume_6.setMaximumSize(QtCore.QSize(100, 45)) self.btn_select_costume_6.setText("") self.btn_select_costume_6.setIconSize(QtCore.QSize(100, 150)) self.btn_select_costume_6.setObjectName("btn_select_costume_6") self.horizontalLayout_44.addWidget(self.btn_select_costume_6) self.gridLayout_3.addLayout(self.horizontalLayout_44, 3, 6, 1, 1) self.horizontalLayout_27 = QtWidgets.QHBoxLayout() self.horizontalLayout_27.setObjectName("horizontalLayout_27") self.btn_select_servant_3 = QtWidgets.QPushButton(self.groupBox) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.btn_select_servant_3.sizePolicy().hasHeightForWidth()) self.btn_select_servant_3.setSizePolicy(sizePolicy) self.btn_select_servant_3.setMinimumSize(QtCore.QSize(92, 100)) self.btn_select_servant_3.setMaximumSize(QtCore.QSize(92, 100)) self.btn_select_servant_3.setText("") self.btn_select_servant_3.setIconSize(QtCore.QSize(92, 100)) self.btn_select_servant_3.setObjectName("btn_select_servant_3") self.horizontalLayout_27.addWidget(self.btn_select_servant_3) self.gridLayout_3.addLayout(self.horizontalLayout_27, 0, 2, 1, 1) self.label_costume_state_3 = QtWidgets.QLabel(self.groupBox) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_costume_state_3.sizePolicy().hasHeightForWidth()) self.label_costume_state_3.setSizePolicy(sizePolicy) self.label_costume_state_3.setMaximumSize(QtCore.QSize(16777215, 28)) self.label_costume_state_3.setObjectName("label_costume_state_3") self.gridLayout_3.addWidget(self.label_costume_state_3, 4, 2, 1, 1) self.label_servant_state_4 = QtWidgets.QLabel(self.groupBox) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_servant_state_4.sizePolicy().hasHeightForWidth()) self.label_servant_state_4.setSizePolicy(sizePolicy) self.label_servant_state_4.setMinimumSize(QtCore.QSize(110, 65)) self.label_servant_state_4.setMaximumSize(QtCore.QSize(16777215, 65)) self.label_servant_state_4.setObjectName("label_servant_state_4") self.gridLayout_3.addWidget(self.label_servant_state_4, 2, 4, 1, 1) self.line_8 = QtWidgets.QFrame(self.groupBox) self.line_8.setFrameShape(QtWidgets.QFrame.VLine) self.line_8.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_8.setObjectName("line_8") self.gridLayout_3.addWidget(self.line_8, 3, 7, 1, 1) self.horizontalLayout_40 = QtWidgets.QHBoxLayout() self.horizontalLayout_40.setObjectName("horizontalLayout_40") self.btn_select_costume_4 = QtWidgets.QPushButton(self.groupBox) self.btn_select_costume_4.setMinimumSize(QtCore.QSize(100, 45)) self.btn_select_costume_4.setMaximumSize(QtCore.QSize(100, 45)) self.btn_select_costume_4.setText("") self.btn_select_costume_4.setIconSize(QtCore.QSize(100, 150)) self.btn_select_costume_4.setObjectName("btn_select_costume_4") self.horizontalLayout_40.addWidget(self.btn_select_costume_4) self.gridLayout_3.addLayout(self.horizontalLayout_40, 3, 4, 1, 1) self.label_servant_state_6 = QtWidgets.QLabel(self.groupBox) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_servant_state_6.sizePolicy().hasHeightForWidth()) self.label_servant_state_6.setSizePolicy(sizePolicy) self.label_servant_state_6.setMinimumSize(QtCore.QSize(110, 65)) self.label_servant_state_6.setMaximumSize(QtCore.QSize(16777215, 65)) self.label_servant_state_6.setObjectName("label_servant_state_6") self.gridLayout_3.addWidget(self.label_servant_state_6, 2, 6, 1, 1) self.line_3 = QtWidgets.QFrame(self.groupBox) self.line_3.setFrameShape(QtWidgets.QFrame.VLine) self.line_3.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_3.setObjectName("line_3") self.gridLayout_3.addWidget(self.line_3, 0, 3, 1, 1) self.horizontalLayout_42 = QtWidgets.QHBoxLayout() self.horizontalLayout_42.setObjectName("horizontalLayout_42") self.btn_select_costume_5 = QtWidgets.QPushButton(self.groupBox) self.btn_select_costume_5.setMinimumSize(QtCore.QSize(100, 45)) self.btn_select_costume_5.setMaximumSize(QtCore.QSize(100, 45)) self.btn_select_costume_5.setText("") self.btn_select_costume_5.setIconSize(QtCore.QSize(100, 150)) self.btn_select_costume_5.setObjectName("btn_select_costume_5") self.horizontalLayout_42.addWidget(self.btn_select_costume_5) self.gridLayout_3.addLayout(self.horizontalLayout_42, 3, 5, 1, 1) self.horizontalLayout_30 = QtWidgets.QHBoxLayout() self.horizontalLayout_30.setObjectName("horizontalLayout_30") self.btn_select_servant_6 = QtWidgets.QPushButton(self.groupBox) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.btn_select_servant_6.sizePolicy().hasHeightForWidth()) self.btn_select_servant_6.setSizePolicy(sizePolicy) self.btn_select_servant_6.setMinimumSize(QtCore.QSize(92, 100)) self.btn_select_servant_6.setMaximumSize(QtCore.QSize(92, 100)) self.btn_select_servant_6.setText("") self.btn_select_servant_6.setIconSize(QtCore.QSize(92, 100)) self.btn_select_servant_6.setObjectName("btn_select_servant_6") self.horizontalLayout_30.addWidget(self.btn_select_servant_6) self.gridLayout_3.addLayout(self.horizontalLayout_30, 0, 6, 1, 1) self.line_4 = QtWidgets.QFrame(self.groupBox) self.line_4.setFrameShape(QtWidgets.QFrame.VLine) self.line_4.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_4.setObjectName("line_4") self.gridLayout_3.addWidget(self.line_4, 3, 3, 1, 1) self.verticalLayout_3.addLayout(self.gridLayout_3) self.horizontalLayout_4 = QtWidgets.QHBoxLayout() self.horizontalLayout_4.setObjectName("horizontalLayout_4") self.btn_set_progress = QtWidgets.QPushButton(self.groupBox) self.btn_set_progress.setObjectName("btn_set_progress") self.horizontalLayout_4.addWidget(self.btn_set_progress) self.btn_choose_level = QtWidgets.QPushButton(self.groupBox) self.btn_choose_level.setObjectName("btn_choose_level") self.horizontalLayout_4.addWidget(self.btn_choose_level) self.btn_confirm_team = QtWidgets.QPushButton(self.groupBox) self.btn_confirm_team.setObjectName("btn_confirm_team") self.horizontalLayout_4.addWidget(self.btn_confirm_team) self.btn_change_team = QtWidgets.QPushButton(self.groupBox) self.btn_change_team.setEnabled(False) self.btn_change_team.setObjectName("btn_change_team") self.horizontalLayout_4.addWidget(self.btn_change_team) self.btn_round_reset = QtWidgets.QPushButton(self.groupBox) self.btn_round_reset.setEnabled(False) self.btn_round_reset.setObjectName("btn_round_reset") self.horizontalLayout_4.addWidget(self.btn_round_reset) self.verticalLayout_3.addLayout(self.horizontalLayout_4) self.verticalLayout_2.addWidget(self.groupBox) self.horizontalLayout_15 = QtWidgets.QHBoxLayout() self.horizontalLayout_15.setObjectName("horizontalLayout_15") self.groupBox_2 = QtWidgets.QGroupBox(self.centralwidget) self.groupBox_2.setTitle("") self.groupBox_2.setObjectName("groupBox_2") self.verticalLayout_6 = QtWidgets.QVBoxLayout(self.groupBox_2) self.verticalLayout_6.setContentsMargins(5, 5, 5, 5) self.verticalLayout_6.setSpacing(5) self.verticalLayout_6.setObjectName("verticalLayout_6") self.verticalLayout_4 = QtWidgets.QVBoxLayout() self.verticalLayout_4.setObjectName("verticalLayout_4") self.gridLayout_7 = QtWidgets.QGridLayout() self.gridLayout_7.setObjectName("gridLayout_7") self.round1_enemy3_class = QtWidgets.QLabel(self.groupBox_2) self.round1_enemy3_class.setMinimumSize(QtCore.QSize(150, 0)) self.round1_enemy3_class.setMaximumSize(QtCore.QSize(150, 16777215)) self.round1_enemy3_class.setText("") self.round1_enemy3_class.setObjectName("round1_enemy3_class") self.gridLayout_7.addWidget(self.round1_enemy3_class, 1, 0, 1, 1) self.round3_enemy1_class = QtWidgets.QLabel(self.groupBox_2) self.round3_enemy1_class.setMinimumSize(QtCore.QSize(150, 0)) self.round3_enemy1_class.setMaximumSize(QtCore.QSize(150, 16777215)) self.round3_enemy1_class.setText("") self.round3_enemy1_class.setObjectName("round3_enemy1_class") self.gridLayout_7.addWidget(self.round3_enemy1_class, 7, 2, 1, 1) self.horizontalLayout_10 = QtWidgets.QHBoxLayout() self.horizontalLayout_10.setObjectName("horizontalLayout_10") self.round2_enemy1_pic = QtWidgets.QPushButton(self.groupBox_2) self.round2_enemy1_pic.setEnabled(False) self.round2_enemy1_pic.setMinimumSize(QtCore.QSize(64, 64)) self.round2_enemy1_pic.setMaximumSize(QtCore.QSize(64, 64)) self.round2_enemy1_pic.setText("") self.round2_enemy1_pic.setIconSize(QtCore.QSize(64, 64)) self.round2_enemy1_pic.setObjectName("round2_enemy1_pic") self.horizontalLayout_10.addWidget(self.round2_enemy1_pic) self.gridLayout_7.addLayout(self.horizontalLayout_10, 3, 2, 1, 1) self.round3_enemy1_health = QtWidgets.QLabel(self.groupBox_2) self.round3_enemy1_health.setMinimumSize(QtCore.QSize(150, 0)) self.round3_enemy1_health.setMaximumSize(QtCore.QSize(150, 16777215)) self.round3_enemy1_health.setText("") self.round3_enemy1_health.setObjectName("round3_enemy1_health") self.gridLayout_7.addWidget(self.round3_enemy1_health, 8, 2, 1, 1) self.horizontalLayout_20 = QtWidgets.QHBoxLayout() self.horizontalLayout_20.setObjectName("horizontalLayout_20") self.round3_enemy2_pic = QtWidgets.QPushButton(self.groupBox_2) self.round3_enemy2_pic.setEnabled(False) self.round3_enemy2_pic.setMinimumSize(QtCore.QSize(64, 64)) self.round3_enemy2_pic.setMaximumSize(QtCore.QSize(64, 64)) self.round3_enemy2_pic.setText("") self.round3_enemy2_pic.setIconSize(QtCore.QSize(64, 64)) self.round3_enemy2_pic.setObjectName("round3_enemy2_pic") self.horizontalLayout_20.addWidget(self.round3_enemy2_pic) self.gridLayout_7.addLayout(self.horizontalLayout_20, 6, 1, 1, 1) self.round2_enemy3_class = QtWidgets.QLabel(self.groupBox_2) self.round2_enemy3_class.setMinimumSize(QtCore.QSize(150, 0)) self.round2_enemy3_class.setMaximumSize(QtCore.QSize(150, 16777215)) self.round2_enemy3_class.setText("") self.round2_enemy3_class.setObjectName("round2_enemy3_class") self.gridLayout_7.addWidget(self.round2_enemy3_class, 4, 0, 1, 1) self.round2_enemy2_class = QtWidgets.QLabel(self.groupBox_2) self.round2_enemy2_class.setMinimumSize(QtCore.QSize(150, 0)) self.round2_enemy2_class.setMaximumSize(QtCore.QSize(150, 16777215)) self.round2_enemy2_class.setText("") self.round2_enemy2_class.setObjectName("round2_enemy2_class") self.gridLayout_7.addWidget(self.round2_enemy2_class, 4, 1, 1, 1) self.horizontalLayout_6 = QtWidgets.QHBoxLayout() self.horizontalLayout_6.setObjectName("horizontalLayout_6") self.round2_enemy3_pic = QtWidgets.QPushButton(self.groupBox_2) self.round2_enemy3_pic.setEnabled(False) self.round2_enemy3_pic.setMinimumSize(QtCore.QSize(64, 64)) self.round2_enemy3_pic.setMaximumSize(QtCore.QSize(64, 64)) self.round2_enemy3_pic.setText("") self.round2_enemy3_pic.setIconSize(QtCore.QSize(64, 64)) self.round2_enemy3_pic.setObjectName("round2_enemy3_pic") self.horizontalLayout_6.addWidget(self.round2_enemy3_pic) self.gridLayout_7.addLayout(self.horizontalLayout_6, 3, 0, 1, 1) self.horizontalLayout_7 = QtWidgets.QHBoxLayout() self.horizontalLayout_7.setObjectName("horizontalLayout_7") self.round2_enemy2_pic = QtWidgets.QPushButton(self.groupBox_2) self.round2_enemy2_pic.setEnabled(False) self.round2_enemy2_pic.setMinimumSize(QtCore.QSize(64, 64)) self.round2_enemy2_pic.setMaximumSize(QtCore.QSize(64, 64)) self.round2_enemy2_pic.setText("") self.round2_enemy2_pic.setIconSize(QtCore.QSize(64, 64)) self.round2_enemy2_pic.setObjectName("round2_enemy2_pic") self.horizontalLayout_7.addWidget(self.round2_enemy2_pic) self.gridLayout_7.addLayout(self.horizontalLayout_7, 3, 1, 1, 1) self.horizontalLayout_21 = QtWidgets.QHBoxLayout() self.horizontalLayout_21.setObjectName("horizontalLayout_21") self.round3_enemy3_pic = QtWidgets.QPushButton(self.groupBox_2) self.round3_enemy3_pic.setEnabled(False) self.round3_enemy3_pic.setMinimumSize(QtCore.QSize(64, 64)) self.round3_enemy3_pic.setMaximumSize(QtCore.QSize(64, 64)) self.round3_enemy3_pic.setText("") self.round3_enemy3_pic.setIconSize(QtCore.QSize(64, 64)) self.round3_enemy3_pic.setObjectName("round3_enemy3_pic") self.horizontalLayout_21.addWidget(self.round3_enemy3_pic) self.gridLayout_7.addLayout(self.horizontalLayout_21, 6, 0, 1, 1) self.horizontalLayout_2 = QtWidgets.QHBoxLayout() self.horizontalLayout_2.setObjectName("horizontalLayout_2") self.round1_enemy2_pic = QtWidgets.QPushButton(self.groupBox_2) self.round1_enemy2_pic.setEnabled(False) self.round1_enemy2_pic.setMinimumSize(QtCore.QSize(64, 64)) self.round1_enemy2_pic.setMaximumSize(QtCore.QSize(64, 64)) self.round1_enemy2_pic.setText("") self.round1_enemy2_pic.setIconSize(QtCore.QSize(64, 64)) self.round1_enemy2_pic.setObjectName("round1_enemy2_pic") self.horizontalLayout_2.addWidget(self.round1_enemy2_pic) self.gridLayout_7.addLayout(self.horizontalLayout_2, 0, 1, 1, 1) self.round3_enemy3_class = QtWidgets.QLabel(self.groupBox_2) self.round3_enemy3_class.setMinimumSize(QtCore.QSize(150, 0)) self.round3_enemy3_class.setMaximumSize(QtCore.QSize(150, 28)) self.round3_enemy3_class.setText("") self.round3_enemy3_class.setObjectName("round3_enemy3_class") self.gridLayout_7.addWidget(self.round3_enemy3_class, 7, 0, 1, 1) self.round1_enemy2_class = QtWidgets.QLabel(self.groupBox_2) self.round1_enemy2_class.setMinimumSize(QtCore.QSize(150, 0)) self.round1_enemy2_class.setMaximumSize(QtCore.QSize(150, 28)) self.round1_enemy2_class.setText("") self.round1_enemy2_class.setObjectName("round1_enemy2_class") self.gridLayout_7.addWidget(self.round1_enemy2_class, 1, 1, 1, 1) self.round3_enemy3_health = QtWidgets.QLabel(self.groupBox_2) self.round3_enemy3_health.setMinimumSize(QtCore.QSize(150, 0)) self.round3_enemy3_health.setMaximumSize(QtCore.QSize(150, 16777215)) self.round3_enemy3_health.setText("") self.round3_enemy3_health.setObjectName("round3_enemy3_health") self.gridLayout_7.addWidget(self.round3_enemy3_health, 8, 0, 1, 1) self.round1_enemy3_health = QtWidgets.QLabel(self.groupBox_2) self.round1_enemy3_health.setMinimumSize(QtCore.QSize(150, 0)) self.round1_enemy3_health.setMaximumSize(QtCore.QSize(150, 16777215)) self.round1_enemy3_health.setText("") self.round1_enemy3_health.setObjectName("round1_enemy3_health") self.gridLayout_7.addWidget(self.round1_enemy3_health, 2, 0, 1, 1) self.horizontalLayout = QtWidgets.QHBoxLayout() self.horizontalLayout.setObjectName("horizontalLayout") self.round1_enemy1_pic = QtWidgets.QPushButton(self.groupBox_2) self.round1_enemy1_pic.setEnabled(False) self.round1_enemy1_pic.setMinimumSize(QtCore.QSize(64, 64)) self.round1_enemy1_pic.setMaximumSize(QtCore.QSize(64, 64)) self.round1_enemy1_pic.setText("") self.round1_enemy1_pic.setIconSize(QtCore.QSize(64, 64)) self.round1_enemy1_pic.setObjectName("round1_enemy1_pic") self.horizontalLayout.addWidget(self.round1_enemy1_pic) self.gridLayout_7.addLayout(self.horizontalLayout, 0, 2, 1, 1) self.round2_enemy3_health = QtWidgets.QLabel(self.groupBox_2) self.round2_enemy3_health.setMinimumSize(QtCore.QSize(150, 0)) self.round2_enemy3_health.setMaximumSize(QtCore.QSize(150, 16777215)) self.round2_enemy3_health.setText("") self.round2_enemy3_health.setObjectName("round2_enemy3_health") self.gridLayout_7.addWidget(self.round2_enemy3_health, 5, 0, 1, 1) self.round2_enemy2_health = QtWidgets.QLabel(self.groupBox_2) self.round2_enemy2_health.setMinimumSize(QtCore.QSize(150, 0)) self.round2_enemy2_health.setMaximumSize(QtCore.QSize(150, 16777215)) self.round2_enemy2_health.setText("") self.round2_enemy2_health.setObjectName("round2_enemy2_health") self.gridLayout_7.addWidget(self.round2_enemy2_health, 5, 1, 1, 1) self.round3_enemy2_health = QtWidgets.QLabel(self.groupBox_2) self.round3_enemy2_health.setMinimumSize(QtCore.QSize(150, 0)) self.round3_enemy2_health.setMaximumSize(QtCore.QSize(150, 16777215)) self.round3_enemy2_health.setText("") self.round3_enemy2_health.setObjectName("round3_enemy2_health") self.gridLayout_7.addWidget(self.round3_enemy2_health, 8, 1, 1, 1) self.round1_enemy2_health = QtWidgets.QLabel(self.groupBox_2) self.round1_enemy2_health.setMinimumSize(QtCore.QSize(150, 0)) self.round1_enemy2_health.setMaximumSize(QtCore.QSize(150, 16777215)) self.round1_enemy2_health.setText("") self.round1_enemy2_health.setObjectName("round1_enemy2_health") self.gridLayout_7.addWidget(self.round1_enemy2_health, 2, 1, 1, 1) self.round2_enemy1_class = QtWidgets.QLabel(self.groupBox_2) self.round2_enemy1_class.setMinimumSize(QtCore.QSize(150, 0)) self.round2_enemy1_class.setMaximumSize(QtCore.QSize(150, 16777215)) self.round2_enemy1_class.setText("") self.round2_enemy1_class.setObjectName("round2_enemy1_class") self.gridLayout_7.addWidget(self.round2_enemy1_class, 4, 2, 1, 1) self.round1_enemy1_class = QtWidgets.QLabel(self.groupBox_2) self.round1_enemy1_class.setMinimumSize(QtCore.QSize(150, 0)) self.round1_enemy1_class.setMaximumSize(QtCore.QSize(150, 28)) self.round1_enemy1_class.setText("") self.round1_enemy1_class.setObjectName("round1_enemy1_class") self.gridLayout_7.addWidget(self.round1_enemy1_class, 1, 2, 1, 1) self.round1_enemy1_health = QtWidgets.QLabel(self.groupBox_2) self.round1_enemy1_health.setMinimumSize(QtCore.QSize(150, 0)) self.round1_enemy1_health.setMaximumSize(QtCore.QSize(150, 16777215)) self.round1_enemy1_health.setText("") self.round1_enemy1_health.setObjectName("round1_enemy1_health") self.gridLayout_7.addWidget(self.round1_enemy1_health, 2, 2, 1, 1) self.round2_enemy1_health = QtWidgets.QLabel(self.groupBox_2) self.round2_enemy1_health.setMinimumSize(QtCore.QSize(150, 0)) self.round2_enemy1_health.setMaximumSize(QtCore.QSize(150, 16777215)) self.round2_enemy1_health.setText("") self.round2_enemy1_health.setObjectName("round2_enemy1_health") self.gridLayout_7.addWidget(self.round2_enemy1_health, 5, 2, 1, 1) self.horizontalLayout_12 = QtWidgets.QHBoxLayout() self.horizontalLayout_12.setObjectName("horizontalLayout_12") self.round3_enemy1_pic = QtWidgets.QPushButton(self.groupBox_2) self.round3_enemy1_pic.setEnabled(False) self.round3_enemy1_pic.setMinimumSize(QtCore.QSize(64, 64)) self.round3_enemy1_pic.setMaximumSize(QtCore.QSize(64, 64)) self.round3_enemy1_pic.setText("") self.round3_enemy1_pic.setIconSize(QtCore.QSize(64, 64)) self.round3_enemy1_pic.setObjectName("round3_enemy1_pic") self.horizontalLayout_12.addWidget(self.round3_enemy1_pic) self.gridLayout_7.addLayout(self.horizontalLayout_12, 6, 2, 1, 1) self.horizontalLayout_5 = QtWidgets.QHBoxLayout() self.horizontalLayout_5.setObjectName("horizontalLayout_5") self.round1_enemy3_pic = QtWidgets.QPushButton(self.groupBox_2) self.round1_enemy3_pic.setEnabled(False) self.round1_enemy3_pic.setMinimumSize(QtCore.QSize(64, 64)) self.round1_enemy3_pic.setMaximumSize(QtCore.QSize(64, 64)) self.round1_enemy3_pic.setText("") self.round1_enemy3_pic.setIconSize(QtCore.QSize(64, 64)) self.round1_enemy3_pic.setObjectName("round1_enemy3_pic") self.horizontalLayout_5.addWidget(self.round1_enemy3_pic) self.gridLayout_7.addLayout(self.horizontalLayout_5, 0, 0, 1, 1) self.round3_enemy2_class = QtWidgets.QLabel(self.groupBox_2) self.round3_enemy2_class.setMinimumSize(QtCore.QSize(150, 0)) self.round3_enemy2_class.setMaximumSize(QtCore.QSize(150, 28)) self.round3_enemy2_class.setText("") self.round3_enemy2_class.setObjectName("round3_enemy2_class") self.gridLayout_7.addWidget(self.round3_enemy2_class, 7, 1, 1, 1) self.verticalLayout_4.addLayout(self.gridLayout_7) self.verticalLayout_6.addLayout(self.verticalLayout_4) self.horizontalLayout_15.addWidget(self.groupBox_2) self.groupBox_3 = QtWidgets.QGroupBox(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Minimum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.groupBox_3.sizePolicy().hasHeightForWidth()) self.groupBox_3.setSizePolicy(sizePolicy) self.groupBox_3.setTitle("") self.groupBox_3.setObjectName("groupBox_3") self.verticalLayout_7 = QtWidgets.QVBoxLayout(self.groupBox_3) self.verticalLayout_7.setContentsMargins(5, 5, 5, 5) self.verticalLayout_7.setSpacing(5) self.verticalLayout_7.setObjectName("verticalLayout_7") self.gridLayout_2 = QtWidgets.QGridLayout() self.gridLayout_2.setObjectName("gridLayout_2") self.verticalLayout_5 = QtWidgets.QVBoxLayout() self.verticalLayout_5.setObjectName("verticalLayout_5") self.round1_label_random = QtWidgets.QLabel(self.groupBox_3) self.round1_label_random.setEnabled(False) self.round1_label_random.setMaximumSize(QtCore.QSize(100, 16777215)) self.round1_label_random.setObjectName("round1_label_random") self.verticalLayout_5.addWidget(self.round1_label_random) self.round1_bar_random = QtWidgets.QSlider(self.groupBox_3) self.round1_bar_random.setEnabled(False) self.round1_bar_random.setMaximumSize(QtCore.QSize(100, 16777215)) self.round1_bar_random.setMinimum(90) self.round1_bar_random.setMaximum(110) self.round1_bar_random.setProperty("value", 90) self.round1_bar_random.setOrientation(QtCore.Qt.Horizontal) self.round1_bar_random.setObjectName("round1_bar_random") self.verticalLayout_5.addWidget(self.round1_bar_random) self.gridLayout_2.addLayout(self.verticalLayout_5, 1, 8, 1, 1) self.round1_servant2_np = QtWidgets.QPushButton(self.groupBox_3) self.round1_servant2_np.setEnabled(False) self.round1_servant2_np.setObjectName("round1_servant2_np") self.gridLayout_2.addWidget(self.round1_servant2_np, 4, 5, 1, 1) self.round1_servant3_np = QtWidgets.QPushButton(self.groupBox_3) self.round1_servant3_np.setEnabled(False) self.round1_servant3_np.setObjectName("round1_servant3_np") self.gridLayout_2.addWidget(self.round1_servant3_np, 4, 6, 1, 1) self.horizontalLayout_16 = QtWidgets.QHBoxLayout() self.horizontalLayout_16.setObjectName("horizontalLayout_16") self.round1_servant2_pic = QtWidgets.QPushButton(self.groupBox_3) self.round1_servant2_pic.setEnabled(False) self.round1_servant2_pic.setMinimumSize(QtCore.QSize(64, 70)) self.round1_servant2_pic.setMaximumSize(QtCore.QSize(64, 70)) self.round1_servant2_pic.setText("") self.round1_servant2_pic.setIconSize(QtCore.QSize(64, 70)) self.round1_servant2_pic.setObjectName("round1_servant2_pic") self.horizontalLayout_16.addWidget(self.round1_servant2_pic) self.gridLayout_2.addLayout(self.horizontalLayout_16, 1, 5, 1, 1) self.horizontalLayout_9 = QtWidgets.QHBoxLayout() self.horizontalLayout_9.setObjectName("horizontalLayout_9") self.round1_servant1_pic = QtWidgets.QPushButton(self.groupBox_3) self.round1_servant1_pic.setEnabled(False) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.round1_servant1_pic.sizePolicy().hasHeightForWidth()) self.round1_servant1_pic.setSizePolicy(sizePolicy) self.round1_servant1_pic.setMinimumSize(QtCore.QSize(64, 70)) self.round1_servant1_pic.setMaximumSize(QtCore.QSize(64, 70)) self.round1_servant1_pic.setText("") self.round1_servant1_pic.setIconSize(QtCore.QSize(64, 70)) self.round1_servant1_pic.setObjectName("round1_servant1_pic") self.horizontalLayout_9.addWidget(self.round1_servant1_pic) self.gridLayout_2.addLayout(self.horizontalLayout_9, 1, 4, 1, 1) self.horizontalLayout_19 = QtWidgets.QHBoxLayout() self.horizontalLayout_19.setObjectName("horizontalLayout_19") self.round1_master_pic = QtWidgets.QPushButton(self.groupBox_3) self.round1_master_pic.setEnabled(False) self.round1_master_pic.setMinimumSize(QtCore.QSize(64, 70)) self.round1_master_pic.setMaximumSize(QtCore.QSize(64, 70)) self.round1_master_pic.setText("") self.round1_master_pic.setIconSize(QtCore.QSize(64, 64)) self.round1_master_pic.setObjectName("round1_master_pic") self.horizontalLayout_19.addWidget(self.round1_master_pic) self.gridLayout_2.addLayout(self.horizontalLayout_19, 1, 7, 1, 1) self.horizontalLayout_11 = QtWidgets.QHBoxLayout() self.horizontalLayout_11.setObjectName("horizontalLayout_11") self.round1_servant1_skill1 = QtWidgets.QPushButton(self.groupBox_3) self.round1_servant1_skill1.setEnabled(False) self.round1_servant1_skill1.setMinimumSize(QtCore.QSize(30, 30)) self.round1_servant1_skill1.setMaximumSize(QtCore.QSize(30, 30)) self.round1_servant1_skill1.setText("") self.round1_servant1_skill1.setIconSize(QtCore.QSize(30, 30)) self.round1_servant1_skill1.setObjectName("round1_servant1_skill1") self.horizontalLayout_11.addWidget(self.round1_servant1_skill1) self.round1_servant1_skill2 = QtWidgets.QPushButton(self.groupBox_3) self.round1_servant1_skill2.setEnabled(False) self.round1_servant1_skill2.setMinimumSize(QtCore.QSize(30, 30)) self.round1_servant1_skill2.setMaximumSize(QtCore.QSize(30, 30)) self.round1_servant1_skill2.setText("") self.round1_servant1_skill2.setIconSize(QtCore.QSize(30, 30)) self.round1_servant1_skill2.setObjectName("round1_servant1_skill2") self.horizontalLayout_11.addWidget(self.round1_servant1_skill2) self.round1_servant1_skill3 = QtWidgets.QPushButton(self.groupBox_3) self.round1_servant1_skill3.setEnabled(False) self.round1_servant1_skill3.setMinimumSize(QtCore.QSize(30, 30)) self.round1_servant1_skill3.setMaximumSize(QtCore.QSize(30, 30)) self.round1_servant1_skill3.setText("") self.round1_servant1_skill3.setIconSize(QtCore.QSize(30, 30)) self.round1_servant1_skill3.setObjectName("round1_servant1_skill3") self.horizontalLayout_11.addWidget(self.round1_servant1_skill3) self.gridLayout_2.addLayout(self.horizontalLayout_11, 3, 4, 1, 1) self.horizontalLayout_17 = QtWidgets.QHBoxLayout() self.horizontalLayout_17.setObjectName("horizontalLayout_17") self.round1_servant3_pic = QtWidgets.QPushButton(self.groupBox_3) self.round1_servant3_pic.setEnabled(False) self.round1_servant3_pic.setMinimumSize(QtCore.QSize(64, 70)) self.round1_servant3_pic.setMaximumSize(QtCore.QSize(64, 70)) self.round1_servant3_pic.setText("") self.round1_servant3_pic.setIconSize(QtCore.QSize(64, 70)) self.round1_servant3_pic.setObjectName("round1_servant3_pic") self.horizontalLayout_17.addWidget(self.round1_servant3_pic) self.gridLayout_2.addLayout(self.horizontalLayout_17, 1, 6, 1, 1) self.btn_round1_next = QtWidgets.QPushButton(self.groupBox_3) self.btn_round1_next.setEnabled(False) self.btn_round1_next.setMinimumSize(QtCore.QSize(0, 30)) self.btn_round1_next.setMaximumSize(QtCore.QSize(16777215, 30)) self.btn_round1_next.setObjectName("btn_round1_next") self.gridLayout_2.addWidget(self.btn_round1_next, 3, 8, 1, 1) self.round1_servant1_np = QtWidgets.QPushButton(self.groupBox_3) self.round1_servant1_np.setEnabled(False) self.round1_servant1_np.setObjectName("round1_servant1_np") self.gridLayout_2.addWidget(self.round1_servant1_np, 4, 4, 1, 1) self.horizontalLayout_14 = QtWidgets.QHBoxLayout() self.horizontalLayout_14.setObjectName("horizontalLayout_14") self.round1_servant3_skill1 = QtWidgets.QPushButton(self.groupBox_3) self.round1_servant3_skill1.setEnabled(False) self.round1_servant3_skill1.setMinimumSize(QtCore.QSize(30, 30)) self.round1_servant3_skill1.setMaximumSize(QtCore.QSize(30, 30)) self.round1_servant3_skill1.setText("") self.round1_servant3_skill1.setIconSize(QtCore.QSize(30, 30)) self.round1_servant3_skill1.setObjectName("round1_servant3_skill1") self.horizontalLayout_14.addWidget(self.round1_servant3_skill1) self.round1_servant3_skill2 = QtWidgets.QPushButton(self.groupBox_3) self.round1_servant3_skill2.setEnabled(False) self.round1_servant3_skill2.setMinimumSize(QtCore.QSize(30, 30)) self.round1_servant3_skill2.setMaximumSize(QtCore.QSize(30, 30)) self.round1_servant3_skill2.setText("") self.round1_servant3_skill2.setIconSize(QtCore.QSize(30, 30)) self.round1_servant3_skill2.setObjectName("round1_servant3_skill2") self.horizontalLayout_14.addWidget(self.round1_servant3_skill2) self.round1_servant3_skill3 = QtWidgets.QPushButton(self.groupBox_3) self.round1_servant3_skill3.setEnabled(False) self.round1_servant3_skill3.setMinimumSize(QtCore.QSize(30, 30)) self.round1_servant3_skill3.setMaximumSize(QtCore.QSize(30, 30)) self.round1_servant3_skill3.setText("") self.round1_servant3_skill3.setIconSize(QtCore.QSize(30, 30)) self.round1_servant3_skill3.setObjectName("round1_servant3_skill3") self.horizontalLayout_14.addWidget(self.round1_servant3_skill3) self.gridLayout_2.addLayout(self.horizontalLayout_14, 3, 6, 1, 1) self.horizontalLayout_18 = QtWidgets.QHBoxLayout() self.horizontalLayout_18.setObjectName("horizontalLayout_18") self.round1_master_skill1 = QtWidgets.QPushButton(self.groupBox_3) self.round1_master_skill1.setEnabled(False) self.round1_master_skill1.setMinimumSize(QtCore.QSize(30, 30)) self.round1_master_skill1.setMaximumSize(QtCore.QSize(30, 30)) self.round1_master_skill1.setText("") self.round1_master_skill1.setIconSize(QtCore.QSize(30, 30)) self.round1_master_skill1.setObjectName("round1_master_skill1") self.horizontalLayout_18.addWidget(self.round1_master_skill1) self.round1_master_skill2 = QtWidgets.QPushButton(self.groupBox_3) self.round1_master_skill2.setEnabled(False) self.round1_master_skill2.setMinimumSize(QtCore.QSize(30, 30)) self.round1_master_skill2.setMaximumSize(QtCore.QSize(30, 30)) self.round1_master_skill2.setText("") self.round1_master_skill2.setIconSize(QtCore.QSize(30, 30)) self.round1_master_skill2.setObjectName("round1_master_skill2") self.horizontalLayout_18.addWidget(self.round1_master_skill2) self.round1_master_skill3 = QtWidgets.QPushButton(self.groupBox_3) self.round1_master_skill3.setEnabled(False) self.round1_master_skill3.setMinimumSize(QtCore.QSize(30, 30)) self.round1_master_skill3.setMaximumSize(QtCore.QSize(30, 30)) self.round1_master_skill3.setText("") self.round1_master_skill3.setIconSize(QtCore.QSize(30, 30)) self.round1_master_skill3.setObjectName("round1_master_skill3") self.horizontalLayout_18.addWidget(self.round1_master_skill3) self.gridLayout_2.addLayout(self.horizontalLayout_18, 3, 7, 1, 1) self.horizontalLayout_13 = QtWidgets.QHBoxLayout() self.horizontalLayout_13.setObjectName("horizontalLayout_13") self.round1_servant2_skill1 = QtWidgets.QPushButton(self.groupBox_3) self.round1_servant2_skill1.setEnabled(False) self.round1_servant2_skill1.setMinimumSize(QtCore.QSize(30, 30)) self.round1_servant2_skill1.setMaximumSize(QtCore.QSize(30, 30)) self.round1_servant2_skill1.setText("") self.round1_servant2_skill1.setIconSize(QtCore.QSize(30, 30)) self.round1_servant2_skill1.setObjectName("round1_servant2_skill1") self.horizontalLayout_13.addWidget(self.round1_servant2_skill1) self.round1_servant2_skill2 = QtWidgets.QPushButton(self.groupBox_3) self.round1_servant2_skill2.setEnabled(False) self.round1_servant2_skill2.setMinimumSize(QtCore.QSize(30, 30)) self.round1_servant2_skill2.setMaximumSize(QtCore.QSize(30, 30)) self.round1_servant2_skill2.setText("") self.round1_servant2_skill2.setIconSize(QtCore.QSize(30, 30)) self.round1_servant2_skill2.setObjectName("round1_servant2_skill2") self.horizontalLayout_13.addWidget(self.round1_servant2_skill2) self.round1_servant2_skill3 = QtWidgets.QPushButton(self.groupBox_3) self.round1_servant2_skill3.setEnabled(False) self.round1_servant2_skill3.setMinimumSize(QtCore.QSize(30, 30)) self.round1_servant2_skill3.setMaximumSize(QtCore.QSize(30, 30)) self.round1_servant2_skill3.setText("") self.round1_servant2_skill3.setIconSize(QtCore.QSize(30, 30)) self.round1_servant2_skill3.setObjectName("round1_servant2_skill3") self.horizontalLayout_13.addWidget(self.round1_servant2_skill3) self.gridLayout_2.addLayout(self.horizontalLayout_13, 3, 5, 1, 1) self.verticalLayout_7.addLayout(self.gridLayout_2) self.gridLayout_4 = QtWidgets.QGridLayout() self.gridLayout_4.setObjectName("gridLayout_4") self.round2_servant3_np = QtWidgets.QPushButton(self.groupBox_3) self.round2_servant3_np.setEnabled(False) self.round2_servant3_np.setObjectName("round2_servant3_np") self.gridLayout_4.addWidget(self.round2_servant3_np, 3, 5, 1, 1) self.horizontalLayout_181 = QtWidgets.QHBoxLayout() self.horizontalLayout_181.setObjectName("horizontalLayout_181") self.round2_master_skill1 = QtWidgets.QPushButton(self.groupBox_3) self.round2_master_skill1.setEnabled(False) self.round2_master_skill1.setMinimumSize(QtCore.QSize(30, 30)) self.round2_master_skill1.setMaximumSize(QtCore.QSize(30, 30)) self.round2_master_skill1.setText("") self.round2_master_skill1.setIconSize(QtCore.QSize(30, 30)) self.round2_master_skill1.setObjectName("round2_master_skill1") self.horizontalLayout_181.addWidget(self.round2_master_skill1) self.round2_master_skill2 = QtWidgets.QPushButton(self.groupBox_3) self.round2_master_skill2.setEnabled(False) self.round2_master_skill2.setMinimumSize(QtCore.QSize(30, 30)) self.round2_master_skill2.setMaximumSize(QtCore.QSize(30, 30)) self.round2_master_skill2.setText("") self.round2_master_skill2.setIconSize(QtCore.QSize(30, 30)) self.round2_master_skill2.setObjectName("round2_master_skill2") self.horizontalLayout_181.addWidget(self.round2_master_skill2) self.round2_master_skill3 = QtWidgets.QPushButton(self.groupBox_3) self.round2_master_skill3.setEnabled(False) self.round2_master_skill3.setMinimumSize(QtCore.QSize(30, 30)) self.round2_master_skill3.setMaximumSize(QtCore.QSize(30, 30)) self.round2_master_skill3.setText("") self.round2_master_skill3.setIconSize(QtCore.QSize(30, 30)) self.round2_master_skill3.setObjectName("round2_master_skill3") self.horizontalLayout_181.addWidget(self.round2_master_skill3) self.gridLayout_4.addLayout(self.horizontalLayout_181, 1, 6, 1, 1) self.round2_servant1_np = QtWidgets.QPushButton(self.groupBox_3) self.round2_servant1_np.setEnabled(False) self.round2_servant1_np.setObjectName("round2_servant1_np") self.gridLayout_4.addWidget(self.round2_servant1_np, 3, 3, 1, 1) self.horizontalLayout_171 = QtWidgets.QHBoxLayout() self.horizontalLayout_171.setObjectName("horizontalLayout_171") self.round2_servant3_pic = QtWidgets.QPushButton(self.groupBox_3) self.round2_servant3_pic.setEnabled(False) self.round2_servant3_pic.setMinimumSize(QtCore.QSize(64, 70)) self.round2_servant3_pic.setMaximumSize(QtCore.QSize(64, 70)) self.round2_servant3_pic.setText("") self.round2_servant3_pic.setIconSize(QtCore.QSize(64, 70)) self.round2_servant3_pic.setObjectName("round2_servant3_pic") self.horizontalLayout_171.addWidget(self.round2_servant3_pic) self.gridLayout_4.addLayout(self.horizontalLayout_171, 0, 5, 1, 1) self.horizontalLayout_161 = QtWidgets.QHBoxLayout() self.horizontalLayout_161.setObjectName("horizontalLayout_161") self.round2_servant2_pic = QtWidgets.QPushButton(self.groupBox_3) self.round2_servant2_pic.setEnabled(False) self.round2_servant2_pic.setMinimumSize(QtCore.QSize(64, 70)) self.round2_servant2_pic.setMaximumSize(QtCore.QSize(64, 70)) self.round2_servant2_pic.setText("") self.round2_servant2_pic.setIconSize(QtCore.QSize(64, 70)) self.round2_servant2_pic.setObjectName("round2_servant2_pic") self.horizontalLayout_161.addWidget(self.round2_servant2_pic) self.gridLayout_4.addLayout(self.horizontalLayout_161, 0, 4, 1, 1) self.horizontalLayout_131 = QtWidgets.QHBoxLayout() self.horizontalLayout_131.setObjectName("horizontalLayout_131") self.round2_servant2_skill1 = QtWidgets.QPushButton(self.groupBox_3) self.round2_servant2_skill1.setEnabled(False) self.round2_servant2_skill1.setMinimumSize(QtCore.QSize(30, 30)) self.round2_servant2_skill1.setMaximumSize(QtCore.QSize(30, 30)) self.round2_servant2_skill1.setText("") self.round2_servant2_skill1.setIconSize(QtCore.QSize(30, 30)) self.round2_servant2_skill1.setObjectName("round2_servant2_skill1") self.horizontalLayout_131.addWidget(self.round2_servant2_skill1) self.round2_servant2_skill2 = QtWidgets.QPushButton(self.groupBox_3) self.round2_servant2_skill2.setEnabled(False) self.round2_servant2_skill2.setMinimumSize(QtCore.QSize(30, 30)) self.round2_servant2_skill2.setMaximumSize(QtCore.QSize(30, 30)) self.round2_servant2_skill2.setText("") self.round2_servant2_skill2.setIconSize(QtCore.QSize(30, 30)) self.round2_servant2_skill2.setObjectName("round2_servant2_skill2") self.horizontalLayout_131.addWidget(self.round2_servant2_skill2) self.round2_servant2_skill3 = QtWidgets.QPushButton(self.groupBox_3) self.round2_servant2_skill3.setEnabled(False) self.round2_servant2_skill3.setMinimumSize(QtCore.QSize(30, 30)) self.round2_servant2_skill3.setMaximumSize(QtCore.QSize(30, 30)) self.round2_servant2_skill3.setText("") self.round2_servant2_skill3.setIconSize(QtCore.QSize(30, 30)) self.round2_servant2_skill3.setObjectName("round2_servant2_skill3") self.horizontalLayout_131.addWidget(self.round2_servant2_skill3) self.gridLayout_4.addLayout(self.horizontalLayout_131, 1, 4, 1, 1) self.horizontalLayout_141 = QtWidgets.QHBoxLayout() self.horizontalLayout_141.setObjectName("horizontalLayout_141") self.round2_servant3_skill1 = QtWidgets.QPushButton(self.groupBox_3) self.round2_servant3_skill1.setEnabled(False) self.round2_servant3_skill1.setMinimumSize(QtCore.QSize(30, 30)) self.round2_servant3_skill1.setMaximumSize(QtCore.QSize(30, 30)) self.round2_servant3_skill1.setText("") self.round2_servant3_skill1.setIconSize(QtCore.QSize(30, 30)) self.round2_servant3_skill1.setObjectName("round2_servant3_skill1") self.horizontalLayout_141.addWidget(self.round2_servant3_skill1) self.round2_servant3_skill2 = QtWidgets.QPushButton(self.groupBox_3) self.round2_servant3_skill2.setEnabled(False) self.round2_servant3_skill2.setMinimumSize(QtCore.QSize(30, 30)) self.round2_servant3_skill2.setMaximumSize(QtCore.QSize(30, 30)) self.round2_servant3_skill2.setText("") self.round2_servant3_skill2.setIconSize(QtCore.QSize(30, 30)) self.round2_servant3_skill2.setObjectName("round2_servant3_skill2") self.horizontalLayout_141.addWidget(self.round2_servant3_skill2) self.round2_servant3_skill3 = QtWidgets.QPushButton(self.groupBox_3) self.round2_servant3_skill3.setEnabled(False) self.round2_servant3_skill3.setMinimumSize(QtCore.QSize(30, 30)) self.round2_servant3_skill3.setMaximumSize(QtCore.QSize(30, 30)) self.round2_servant3_skill3.setText("") self.round2_servant3_skill3.setIconSize(QtCore.QSize(30, 30)) self.round2_servant3_skill3.setObjectName("round2_servant3_skill3") self.horizontalLayout_141.addWidget(self.round2_servant3_skill3) self.gridLayout_4.addLayout(self.horizontalLayout_141, 1, 5, 1, 1) self.btn_round2_next = QtWidgets.QPushButton(self.groupBox_3) self.btn_round2_next.setEnabled(False) self.btn_round2_next.setMinimumSize(QtCore.QSize(0, 30)) self.btn_round2_next.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.btn_round2_next.setObjectName("btn_round2_next") self.gridLayout_4.addWidget(self.btn_round2_next, 1, 7, 1, 1) self.horizontalLayout_191 = QtWidgets.QHBoxLayout() self.horizontalLayout_191.setObjectName("horizontalLayout_191") self.round2_master_pic = QtWidgets.QPushButton(self.groupBox_3) self.round2_master_pic.setEnabled(False) self.round2_master_pic.setMinimumSize(QtCore.QSize(64, 70)) self.round2_master_pic.setMaximumSize(QtCore.QSize(64, 70)) self.round2_master_pic.setText("") self.round2_master_pic.setIconSize(QtCore.QSize(64, 64)) self.round2_master_pic.setObjectName("round2_master_pic") self.horizontalLayout_191.addWidget(self.round2_master_pic) self.gridLayout_4.addLayout(self.horizontalLayout_191, 0, 6, 1, 1) self.round2_servant2_np = QtWidgets.QPushButton(self.groupBox_3) self.round2_servant2_np.setEnabled(False) self.round2_servant2_np.setObjectName("round2_servant2_np") self.gridLayout_4.addWidget(self.round2_servant2_np, 3, 4, 1, 1) self.horizontalLayout_91 = QtWidgets.QHBoxLayout() self.horizontalLayout_91.setObjectName("horizontalLayout_91") self.round2_servant1_pic = QtWidgets.QPushButton(self.groupBox_3) self.round2_servant1_pic.setEnabled(False) self.round2_servant1_pic.setMinimumSize(QtCore.QSize(64, 70)) self.round2_servant1_pic.setMaximumSize(QtCore.QSize(64, 70)) self.round2_servant1_pic.setText("") self.round2_servant1_pic.setIconSize(QtCore.QSize(64, 70)) self.round2_servant1_pic.setObjectName("round2_servant1_pic") self.horizontalLayout_91.addWidget(self.round2_servant1_pic) self.gridLayout_4.addLayout(self.horizontalLayout_91, 0, 3, 1, 1) self.verticalLayout_12 = QtWidgets.QVBoxLayout() self.verticalLayout_12.setObjectName("verticalLayout_12") self.round2_label_random = QtWidgets.QLabel(self.groupBox_3) self.round2_label_random.setEnabled(False) self.round2_label_random.setObjectName("round2_label_random") self.verticalLayout_12.addWidget(self.round2_label_random) self.round2_bar_random = QtWidgets.QSlider(self.groupBox_3) self.round2_bar_random.setEnabled(False) self.round2_bar_random.setMaximumSize(QtCore.QSize(100, 16777215)) self.round2_bar_random.setMinimum(90) self.round2_bar_random.setMaximum(110) self.round2_bar_random.setProperty("value", 90) self.round2_bar_random.setOrientation(QtCore.Qt.Horizontal) self.round2_bar_random.setObjectName("round2_bar_random") self.verticalLayout_12.addWidget(self.round2_bar_random) self.gridLayout_4.addLayout(self.verticalLayout_12, 0, 7, 1, 1) self.horizontalLayout_111 = QtWidgets.QHBoxLayout() self.horizontalLayout_111.setObjectName("horizontalLayout_111") self.round2_servant1_skill1 = QtWidgets.QPushButton(self.groupBox_3) self.round2_servant1_skill1.setEnabled(False) self.round2_servant1_skill1.setMinimumSize(QtCore.QSize(30, 30)) self.round2_servant1_skill1.setMaximumSize(QtCore.QSize(30, 30)) self.round2_servant1_skill1.setText("") self.round2_servant1_skill1.setIconSize(QtCore.QSize(30, 30)) self.round2_servant1_skill1.setObjectName("round2_servant1_skill1") self.horizontalLayout_111.addWidget(self.round2_servant1_skill1) self.round2_servant1_skill2 = QtWidgets.QPushButton(self.groupBox_3) self.round2_servant1_skill2.setEnabled(False) self.round2_servant1_skill2.setMinimumSize(QtCore.QSize(30, 30)) self.round2_servant1_skill2.setMaximumSize(QtCore.QSize(30, 30)) self.round2_servant1_skill2.setText("") self.round2_servant1_skill2.setIconSize(QtCore.QSize(30, 30)) self.round2_servant1_skill2.setObjectName("round2_servant1_skill2") self.horizontalLayout_111.addWidget(self.round2_servant1_skill2) self.round2_servant1_skill3 = QtWidgets.QPushButton(self.groupBox_3) self.round2_servant1_skill3.setEnabled(False) self.round2_servant1_skill3.setMinimumSize(QtCore.QSize(30, 30)) self.round2_servant1_skill3.setMaximumSize(QtCore.QSize(30, 30)) self.round2_servant1_skill3.setText("") self.round2_servant1_skill3.setIconSize(QtCore.QSize(30, 30)) self.round2_servant1_skill3.setObjectName("round2_servant1_skill3") self.horizontalLayout_111.addWidget(self.round2_servant1_skill3) self.gridLayout_4.addLayout(self.horizontalLayout_111, 1, 3, 1, 1) self.verticalLayout_7.addLayout(self.gridLayout_4) self.gridLayout_5 = QtWidgets.QGridLayout() self.gridLayout_5.setObjectName("gridLayout_5") self.round3_servant3_np = QtWidgets.QPushButton(self.groupBox_3) self.round3_servant3_np.setEnabled(False) self.round3_servant3_np.setObjectName("round3_servant3_np") self.gridLayout_5.addWidget(self.round3_servant3_np, 3, 6, 1, 1) self.horizontalLayout_192 = QtWidgets.QHBoxLayout() self.horizontalLayout_192.setObjectName("horizontalLayout_192") self.round3_master_pic = QtWidgets.QPushButton(self.groupBox_3) self.round3_master_pic.setEnabled(False) self.round3_master_pic.setMinimumSize(QtCore.QSize(64, 70)) self.round3_master_pic.setMaximumSize(QtCore.QSize(64, 70)) self.round3_master_pic.setText("") self.round3_master_pic.setIconSize(QtCore.QSize(64, 64)) self.round3_master_pic.setObjectName("round3_master_pic") self.horizontalLayout_192.addWidget(self.round3_master_pic) self.gridLayout_5.addLayout(self.horizontalLayout_192, 0, 7, 1, 1) self.horizontalLayout_92 = QtWidgets.QHBoxLayout() self.horizontalLayout_92.setObjectName("horizontalLayout_92") self.round3_servant1_pic = QtWidgets.QPushButton(self.groupBox_3) self.round3_servant1_pic.setEnabled(False) self.round3_servant1_pic.setMinimumSize(QtCore.QSize(64, 70)) self.round3_servant1_pic.setMaximumSize(QtCore.QSize(64, 70)) self.round3_servant1_pic.setText("") self.round3_servant1_pic.setIconSize(QtCore.QSize(64, 70)) self.round3_servant1_pic.setObjectName("round3_servant1_pic") self.horizontalLayout_92.addWidget(self.round3_servant1_pic) self.gridLayout_5.addLayout(self.horizontalLayout_92, 0, 3, 1, 1) self.round3_servant1_np = QtWidgets.QPushButton(self.groupBox_3) self.round3_servant1_np.setEnabled(False) self.round3_servant1_np.setObjectName("round3_servant1_np") self.gridLayout_5.addWidget(self.round3_servant1_np, 3, 3, 1, 1) self.round3_servant2_np = QtWidgets.QPushButton(self.groupBox_3) self.round3_servant2_np.setEnabled(False) self.round3_servant2_np.setObjectName("round3_servant2_np") self.gridLayout_5.addWidget(self.round3_servant2_np, 3, 5, 1, 1) self.horizontalLayout_172 = QtWidgets.QHBoxLayout() self.horizontalLayout_172.setObjectName("horizontalLayout_172") self.round3_servant3_pic = QtWidgets.QPushButton(self.groupBox_3) self.round3_servant3_pic.setEnabled(False) self.round3_servant3_pic.setMinimumSize(QtCore.QSize(64, 70)) self.round3_servant3_pic.setMaximumSize(QtCore.QSize(64, 70)) self.round3_servant3_pic.setText("") self.round3_servant3_pic.setIconSize(QtCore.QSize(64, 70)) self.round3_servant3_pic.setObjectName("round3_servant3_pic") self.horizontalLayout_172.addWidget(self.round3_servant3_pic) self.gridLayout_5.addLayout(self.horizontalLayout_172, 0, 6, 1, 1) self.horizontalLayout_162 = QtWidgets.QHBoxLayout() self.horizontalLayout_162.setObjectName("horizontalLayout_162") self.round3_servant2_pic = QtWidgets.QPushButton(self.groupBox_3) self.round3_servant2_pic.setEnabled(False) self.round3_servant2_pic.setMinimumSize(QtCore.QSize(64, 70)) self.round3_servant2_pic.setMaximumSize(QtCore.QSize(64, 70)) self.round3_servant2_pic.setText("") self.round3_servant2_pic.setIconSize(QtCore.QSize(64, 70)) self.round3_servant2_pic.setObjectName("round3_servant2_pic") self.horizontalLayout_162.addWidget(self.round3_servant2_pic) self.gridLayout_5.addLayout(self.horizontalLayout_162, 0, 5, 1, 1) self.btn_output_strategy = QtWidgets.QPushButton(self.groupBox_3) self.btn_output_strategy.setEnabled(False) self.btn_output_strategy.setObjectName("btn_output_strategy") self.gridLayout_5.addWidget(self.btn_output_strategy, 2, 9, 1, 1) self.horizontalLayout_132 = QtWidgets.QHBoxLayout() self.horizontalLayout_132.setObjectName("horizontalLayout_132") self.round3_servant2_skill1 = QtWidgets.QPushButton(self.groupBox_3) self.round3_servant2_skill1.setEnabled(False) self.round3_servant2_skill1.setMinimumSize(QtCore.QSize(30, 30)) self.round3_servant2_skill1.setMaximumSize(QtCore.QSize(30, 30)) self.round3_servant2_skill1.setText("") self.round3_servant2_skill1.setIconSize(QtCore.QSize(30, 30)) self.round3_servant2_skill1.setObjectName("round3_servant2_skill1") self.horizontalLayout_132.addWidget(self.round3_servant2_skill1) self.round3_servant2_skill2 = QtWidgets.QPushButton(self.groupBox_3) self.round3_servant2_skill2.setEnabled(False) self.round3_servant2_skill2.setMinimumSize(QtCore.QSize(30, 30)) self.round3_servant2_skill2.setMaximumSize(QtCore.QSize(30, 30)) self.round3_servant2_skill2.setText("") self.round3_servant2_skill2.setIconSize(QtCore.QSize(30, 30)) self.round3_servant2_skill2.setObjectName("round3_servant2_skill2") self.horizontalLayout_132.addWidget(self.round3_servant2_skill2) self.round3_servant2_skill3 = QtWidgets.QPushButton(self.groupBox_3) self.round3_servant2_skill3.setEnabled(False) self.round3_servant2_skill3.setMinimumSize(QtCore.QSize(30, 30)) self.round3_servant2_skill3.setMaximumSize(QtCore.QSize(30, 30)) self.round3_servant2_skill3.setText("") self.round3_servant2_skill3.setIconSize(QtCore.QSize(30, 30)) self.round3_servant2_skill3.setObjectName("round3_servant2_skill3") self.horizontalLayout_132.addWidget(self.round3_servant2_skill3) self.gridLayout_5.addLayout(self.horizontalLayout_132, 2, 5, 1, 1) self.verticalLayout_13 = QtWidgets.QVBoxLayout() self.verticalLayout_13.setObjectName("verticalLayout_13") self.round3_label_random = QtWidgets.QLabel(self.groupBox_3) self.round3_label_random.setEnabled(False) self.round3_label_random.setObjectName("round3_label_random") self.verticalLayout_13.addWidget(self.round3_label_random) self.round3_bar_random = QtWidgets.QSlider(self.groupBox_3) self.round3_bar_random.setEnabled(False) self.round3_bar_random.setMaximumSize(QtCore.QSize(100, 16777215)) self.round3_bar_random.setMinimum(90) self.round3_bar_random.setMaximum(110) self.round3_bar_random.setProperty("value", 90) self.round3_bar_random.setOrientation(QtCore.Qt.Horizontal) self.round3_bar_random.setObjectName("round3_bar_random") self.verticalLayout_13.addWidget(self.round3_bar_random) self.gridLayout_5.addLayout(self.verticalLayout_13, 0, 9, 1, 1) self.horizontalLayout_182 = QtWidgets.QHBoxLayout() self.horizontalLayout_182.setObjectName("horizontalLayout_182") self.round3_master_skill1 = QtWidgets.QPushButton(self.groupBox_3) self.round3_master_skill1.setEnabled(False) self.round3_master_skill1.setMinimumSize(QtCore.QSize(30, 30)) self.round3_master_skill1.setMaximumSize(QtCore.QSize(30, 30)) self.round3_master_skill1.setText("") self.round3_master_skill1.setIconSize(QtCore.QSize(30, 30)) self.round3_master_skill1.setObjectName("round3_master_skill1") self.horizontalLayout_182.addWidget(self.round3_master_skill1) self.round3_master_skill2 = QtWidgets.QPushButton(self.groupBox_3) self.round3_master_skill2.setEnabled(False) self.round3_master_skill2.setMinimumSize(QtCore.QSize(30, 30)) self.round3_master_skill2.setMaximumSize(QtCore.QSize(30, 30)) self.round3_master_skill2.setText("") self.round3_master_skill2.setIconSize(QtCore.QSize(30, 30)) self.round3_master_skill2.setObjectName("round3_master_skill2") self.horizontalLayout_182.addWidget(self.round3_master_skill2) self.round3_master_skill3 = QtWidgets.QPushButton(self.groupBox_3) self.round3_master_skill3.setEnabled(False) self.round3_master_skill3.setMinimumSize(QtCore.QSize(30, 30)) self.round3_master_skill3.setMaximumSize(QtCore.QSize(30, 30)) self.round3_master_skill3.setText("") self.round3_master_skill3.setIconSize(QtCore.QSize(30, 30)) self.round3_master_skill3.setObjectName("round3_master_skill3") self.horizontalLayout_182.addWidget(self.round3_master_skill3) self.gridLayout_5.addLayout(self.horizontalLayout_182, 2, 7, 1, 1) self.horizontalLayout_142 = QtWidgets.QHBoxLayout() self.horizontalLayout_142.setObjectName("horizontalLayout_142") self.round3_servant3_skill1 = QtWidgets.QPushButton(self.groupBox_3) self.round3_servant3_skill1.setEnabled(False) self.round3_servant3_skill1.setMinimumSize(QtCore.QSize(30, 30)) self.round3_servant3_skill1.setMaximumSize(QtCore.QSize(30, 30)) self.round3_servant3_skill1.setText("") self.round3_servant3_skill1.setIconSize(QtCore.QSize(30, 30)) self.round3_servant3_skill1.setObjectName("round3_servant3_skill1") self.horizontalLayout_142.addWidget(self.round3_servant3_skill1) self.round3_servant3_skill2 = QtWidgets.QPushButton(self.groupBox_3) self.round3_servant3_skill2.setEnabled(False) self.round3_servant3_skill2.setMinimumSize(QtCore.QSize(30, 30)) self.round3_servant3_skill2.setMaximumSize(QtCore.QSize(30, 30)) self.round3_servant3_skill2.setText("") self.round3_servant3_skill2.setIconSize(QtCore.QSize(30, 30)) self.round3_servant3_skill2.setObjectName("round3_servant3_skill2") self.horizontalLayout_142.addWidget(self.round3_servant3_skill2) self.round3_servant3_skill3 = QtWidgets.QPushButton(self.groupBox_3) self.round3_servant3_skill3.setEnabled(False) self.round3_servant3_skill3.setMinimumSize(QtCore.QSize(30, 30)) self.round3_servant3_skill3.setMaximumSize(QtCore.QSize(30, 30)) self.round3_servant3_skill3.setText("") self.round3_servant3_skill3.setIconSize(QtCore.QSize(30, 30)) self.round3_servant3_skill3.setObjectName("round3_servant3_skill3") self.horizontalLayout_142.addWidget(self.round3_servant3_skill3) self.gridLayout_5.addLayout(self.horizontalLayout_142, 2, 6, 1, 1) self.horizontalLayout_112 = QtWidgets.QHBoxLayout() self.horizontalLayout_112.setObjectName("horizontalLayout_112") self.round3_servant1_skill1 = QtWidgets.QPushButton(self.groupBox_3) self.round3_servant1_skill1.setEnabled(False) self.round3_servant1_skill1.setMinimumSize(QtCore.QSize(30, 30)) self.round3_servant1_skill1.setMaximumSize(QtCore.QSize(30, 30)) self.round3_servant1_skill1.setText("") self.round3_servant1_skill1.setIconSize(QtCore.QSize(30, 30)) self.round3_servant1_skill1.setObjectName("round3_servant1_skill1") self.horizontalLayout_112.addWidget(self.round3_servant1_skill1) self.round3_servant1_skill2 = QtWidgets.QPushButton(self.groupBox_3) self.round3_servant1_skill2.setEnabled(False) self.round3_servant1_skill2.setMinimumSize(QtCore.QSize(30, 30)) self.round3_servant1_skill2.setMaximumSize(QtCore.QSize(30, 30)) self.round3_servant1_skill2.setText("") self.round3_servant1_skill2.setIconSize(QtCore.QSize(30, 30)) self.round3_servant1_skill2.setObjectName("round3_servant1_skill2") self.horizontalLayout_112.addWidget(self.round3_servant1_skill2) self.round3_servant1_skill3 = QtWidgets.QPushButton(self.groupBox_3) self.round3_servant1_skill3.setEnabled(False) self.round3_servant1_skill3.setMinimumSize(QtCore.QSize(30, 30)) self.round3_servant1_skill3.setMaximumSize(QtCore.QSize(30, 30)) self.round3_servant1_skill3.setText("") self.round3_servant1_skill3.setIconSize(QtCore.QSize(30, 30)) self.round3_servant1_skill3.setObjectName("round3_servant1_skill3") self.horizontalLayout_112.addWidget(self.round3_servant1_skill3) self.gridLayout_5.addLayout(self.horizontalLayout_112, 2, 3, 1, 1) self.verticalLayout_7.addLayout(self.gridLayout_5) self.horizontalLayout_15.addWidget(self.groupBox_3) self.verticalLayout_2.addLayout(self.horizontalLayout_15) MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 1070, 26)) self.menubar.setObjectName("menubar") self.menu = QtWidgets.QMenu(self.menubar) self.menu.setObjectName("menu") MainWindow.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.action_update = QtWidgets.QAction(MainWindow) self.action_update.setObjectName("action_update") self.action_mooncell = QtWidgets.QAction(MainWindow) self.action_mooncell.setObjectName("action_mooncell") self.action_support = QtWidgets.QAction(MainWindow) self.action_support.setObjectName("action_support") self.action_kazemai = QtWidgets.QAction(MainWindow) self.action_kazemai.setObjectName("action_kazemai") self.action_about = QtWidgets.QAction(MainWindow) self.action_about.setObjectName("action_about") self.menu.addAction(self.action_update) self.menu.addAction(self.action_support) self.menu.addAction(self.action_about) self.menu.addSeparator() self.menu.addAction(self.action_mooncell) self.menu.addAction(self.action_kazemai) self.menubar.addAction(self.menu.menuAction()) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "FGO周回组队器")) self.label_costume_state_4.setText(_translate("MainWindow", "等级: ")) self.label_servant_state_2.setText(_translate("MainWindow", "技能: \n" "宝具: \n" "等级: \n" "芙芙:")) self.label_costume_state_1.setText(_translate("MainWindow", "等级: ")) self.box_skill_confirm.setText(_translate("MainWindow", "技能提示")) self.label.setText(_translate("MainWindow", "概率阈值:")) self.label_costume_state_5.setText(_translate("MainWindow", "等级: ")) self.label_costume_state_6.setText(_translate("MainWindow", "等级: ")) self.label_servant_state_1.setText(_translate("MainWindow", "技能: \n" "宝具: \n" "等级: \n" "芙芙:")) self.label_master_state.setText(_translate("MainWindow", "等级:")) self.label_costume_state_2.setText(_translate("MainWindow", "等级: ")) self.label_servant_state_3.setText(_translate("MainWindow", "技能: \n" "宝具: \n" "等级: \n" "芙芙:")) self.label_servant_state_5.setText(_translate("MainWindow", "技能: \n" "宝具: \n" "等级: \n" "芙芙:")) self.label_costume_state_3.setText(_translate("MainWindow", "等级: ")) self.label_servant_state_4.setText(_translate("MainWindow", "技能: \n" "宝具: \n" "等级: \n" "芙芙:")) self.label_servant_state_6.setText(_translate("MainWindow", "技能: \n" "宝具: \n" "等级: \n" "芙芙:")) self.btn_set_progress.setText(_translate("MainWindow", "选择进度")) self.btn_choose_level.setText(_translate("MainWindow", "设置副本")) self.btn_confirm_team.setText(_translate("MainWindow", "确 认")) self.btn_change_team.setText(_translate("MainWindow", "修 改")) self.btn_round_reset.setText(_translate("MainWindow", "撤 销")) self.round1_label_random.setText(_translate("MainWindow", "随机数: 0.9")) self.round1_servant2_np.setText(_translate("MainWindow", "宝具: 0%")) self.round1_servant3_np.setText(_translate("MainWindow", "宝具: 0%")) self.btn_round1_next.setText(_translate("MainWindow", "下一回合")) self.round1_servant1_np.setText(_translate("MainWindow", "宝具: 0%")) self.round2_servant3_np.setText(_translate("MainWindow", "宝具: 0%")) self.round2_servant1_np.setText(_translate("MainWindow", "宝具: 0%")) self.btn_round2_next.setText(_translate("MainWindow", "下一回合")) self.round2_servant2_np.setText(_translate("MainWindow", "宝具: 0%")) self.round2_label_random.setText(_translate("MainWindow", "随机数: 0.9")) self.round3_servant3_np.setText(_translate("MainWindow", "宝具: 0%")) self.round3_servant1_np.setText(_translate("MainWindow", "宝具: 0%")) self.round3_servant2_np.setText(_translate("MainWindow", "宝具: 0%")) self.btn_output_strategy.setText(_translate("MainWindow", "输出操作")) self.round3_label_random.setText(_translate("MainWindow", "随机数: 0.9")) self.menu.setTitle(_translate("MainWindow", "选 项")) self.action_update.setText(_translate("MainWindow", "数据库更新")) self.action_mooncell.setText(_translate("MainWindow", "Mooncell")) self.action_support.setText(_translate("MainWindow", "软件更新")) self.action_kazemai.setText(_translate("MainWindow", "茹西教王的理想乡")) self.action_about.setText(_translate("MainWindow", "关于软件"))
64.746904
106
0.748927
83,713
0.997118
0
0
0
0
0
0
5,803
0.06912
fbf8146cd8db52170f45b639efbed1ee6e4abd99
1,177
py
Python
pyhutool/core/Io.py
kaysen820/PyHuTool
4de4c42a8dc499e22816ebbb3293897ee2b505f1
[ "BSD-3-Clause" ]
null
null
null
pyhutool/core/Io.py
kaysen820/PyHuTool
4de4c42a8dc499e22816ebbb3293897ee2b505f1
[ "BSD-3-Clause" ]
null
null
null
pyhutool/core/Io.py
kaysen820/PyHuTool
4de4c42a8dc499e22816ebbb3293897ee2b505f1
[ "BSD-3-Clause" ]
null
null
null
class File: @staticmethod def tail(self, file_path, lines=10): with open(file_path, 'rb') as f: total_lines_wanted = lines block_size = 1024 f.seek(0, 2) block_end_byte = f.tell() lines_to_go = total_lines_wanted block_number = -1 blocks = [] while lines_to_go > 0 and block_end_byte > 0: if block_end_byte - block_size > 0: f.seek(block_number * block_size, 2) block = f.read(block_size) else: f.seek(0, 0) block = f.read(block_end_byte) lines_found = block.count(b'\n') lines_to_go -= lines_found block_end_byte -= block_size block_number -= 1 blocks.append(block) all_read_text = b''.join(blocks) lines_found = all_read_text.count(b'\n') if lines_found > total_lines_wanted: return all_read_text.split(b'\n')[-total_lines_wanted:][:-1] else: return all_read_text.split(b'\n')[-lines_found:]
40.586207
76
0.507222
1,177
1
0
0
1,161
0.986406
0
0
27
0.02294
fbf8cddf274b4edc3f9ca19f3358df84f5395fdb
4,122
py
Python
utils/argparse.py
toytag/self-supervised-learning-for-semantic-segmentation
b3326df6d1fa045fabb27fc30542313adee00d30
[ "MIT" ]
null
null
null
utils/argparse.py
toytag/self-supervised-learning-for-semantic-segmentation
b3326df6d1fa045fabb27fc30542313adee00d30
[ "MIT" ]
null
null
null
utils/argparse.py
toytag/self-supervised-learning-for-semantic-segmentation
b3326df6d1fa045fabb27fc30542313adee00d30
[ "MIT" ]
null
null
null
import argparse class ArchParser(argparse.ArgumentParser): def __init__(self, model_names, *args, **kwargs): super().__init__(*args, **kwargs) self.add_argument('-a', '--arch', metavar='ARCH', choices=model_names, help='model architecture: ' + ' | '.join(model_names)) class BasicParser(argparse.ArgumentParser): def __init__(self, description='PyTorch Segmentation Pretraining', **kwargs): super().__init__(description=description, **kwargs) self.add_argument('data_root', metavar='DIR', help='path to dataset') self.add_argument('--work-dir', default='./', metavar='DIR', help='path to work directory (default: ./)') self.add_argument('--workers', default=32, type=int, metavar='N', help='number of data loading workers (default: 32)') self.add_argument('--epochs', default=200, type=int, metavar='N', help='number of total epochs to run (default: 200)') self.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') self.add_argument('--crop-size', default=512, type=int, help='augmentation crop size (default: 512)') self.add_argument('--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256), this is the total ' 'batch size of all GPUs on the current node when ' 'using Data Parallel or Distributed Data Parallel') self.add_argument('--base-lr', default=0.01, type=float, metavar='LR', help='initial learning rate', dest='base_lr') self.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum of SGD solver') self.add_argument('--wd', '--weight-decay', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)', dest='weight_decay') self.add_argument('--print-freq', default=10, type=int, metavar='N', help='print frequency (default: 10 iters)') self.add_argument('--checkpoint-freq', default=10, type=int, metavar='N', help='checkpoint frequency (default: 10 epochs)') self.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') self.add_argument('--pretrained', default='', type=str, metavar='PATH', help='path to init checkpoint (default: none)') self.add_argument('--world-size', default=-1, type=int, help='number of nodes for distributed training') self.add_argument('--rank', default=-1, type=int, help='node rank for distributed training') self.add_argument('--dist-url', default='tcp://localhost:29500', type=str, help='url used to set up distributed training') self.add_argument('--dist-backend', default='nccl', type=str, help='distributed backend') self.add_argument('--seed', default=None, type=int, help='seed for initializing training.') self.add_argument('--gpu', default=None, type=int, help='GPU id to use.') self.add_argument('--multiprocessing-distributed', action='store_true', help='Use multi-processing distributed training to launch ' 'N processes per node, which has N GPUs. This is the ' 'fastest way to use PyTorch for either single node or ' 'multi node data parallel training') self.add_argument('--fp16', action='store_true', help='mixed percision training') self.add_argument('--update-interval', default=1, type=int, help='gradient update interval')
64.40625
90
0.566715
4,100
0.994663
0
0
0
0
0
0
1,584
0.384279
fbf9c31021598e1cfc750b4e1fb2c63076b4d3ce
2,401
py
Python
finicky/schema.py
yaaminu/yaval
32f04ecfa092c978fc026f6b7f58d6cf2defd8c9
[ "MIT" ]
14
2021-02-12T19:04:21.000Z
2021-03-12T18:18:09.000Z
finicky/schema.py
yaaminu/yaval
32f04ecfa092c978fc026f6b7f58d6cf2defd8c9
[ "MIT" ]
5
2021-02-12T16:04:37.000Z
2021-04-14T12:05:02.000Z
finicky/schema.py
yaaminu/yaval
32f04ecfa092c978fc026f6b7f58d6cf2defd8c9
[ "MIT" ]
null
null
null
from finicky.validators import ValidationException def validate(schema, data, hook=None): """ Given an input named `data` validate it against `schema` returning errors encountered if any and the input data. It's important to note that, validation continues even if an error is encountered. :param schema: The schema against which the input should be validated. A schema is essentially a mapping of field names and their corresponding validators. The keys must match exactly to fields in the input data. Pyval comes with a set of standard validators defined in `finicky.validators` but you can write your own if your need a more customized one. A validator is a function which takes in a single argument and returns the validated data on success. On failure, it must raise a `finicky.validators.ValidationException`. To illustrate in code: ``` def my_custom_batch_no_validator(input): if not input: raise ValidationException("This field is required") elif not input.contains("prefix_") raise ValidationException("This field must start with `prefix_`") else: # you can modify the value, like striping off whitespace, rounding up the number etc return input.strip() ``` :param data: The input data to be validated, cannot be none :param hook: An optional custom hook function that shall be invoked when all fields have passed validation. It is especially useful in situations where the validity of the input also conditionally relies on multiple fields. it takes as an input, the newly validated data and must return the input on success or raise a `finicky.validators.ValidationException` on failure. This hook may modify the input before returning it. :return: A tuple of the form (errors:str[], validated_data) """ errors = {} validated_data = {} for key in schema: try: validated_data[key] = schema[key](data.get(key)) except ValidationException as e: errors[key] = e.errors if hook and not errors: try: validated_data = hook(validated_data) except ValidationException as e: errors["___hook"] = e.errors return errors, validated_data __all__ = ("validate",)
49
118
0.678051
0
0
0
0
0
0
0
0
1,877
0.781758
fbfb1bbd5566de1b6744d8dee7be28df74fd818c
3,194
py
Python
tests/unique_test.py
yohplala/vaex
ca7927a19d259576ca0403ee207a597aaef6adc2
[ "MIT" ]
null
null
null
tests/unique_test.py
yohplala/vaex
ca7927a19d259576ca0403ee207a597aaef6adc2
[ "MIT" ]
null
null
null
tests/unique_test.py
yohplala/vaex
ca7927a19d259576ca0403ee207a597aaef6adc2
[ "MIT" ]
null
null
null
from common import small_buffer import pytest import numpy as np import pyarrow as pa import vaex def test_unique_arrow(df_factory): ds = df_factory(x=vaex.string_column(['a', 'b', 'a', 'a', 'a', 'b', 'b', 'b', 'b', 'a'])) with small_buffer(ds, 2): assert set(ds.unique(ds.x)) == {'a', 'b'} values, index = ds.unique(ds.x, return_inverse=True) assert np.array(values)[index].tolist() == ds.x.tolist() def test_unique(df_factory): ds = df_factory(colors=['red', 'green', 'blue', 'green']) with small_buffer(ds, 2): assert set(ds.unique(ds.colors)) == {'red', 'green', 'blue'} values, index = ds.unique(ds.colors, return_inverse=True) assert np.array(values)[index].tolist() == ds.colors.tolist() ds = df_factory(x=['a', 'b', 'a', 'a', 'a', 'b', 'b', 'b', 'b', 'a']) with small_buffer(ds, 2): assert set(ds.unique(ds.x)) == {'a', 'b'} values, index = ds.unique(ds.x, return_inverse=True) assert np.array(values)[index].tolist() == ds.x.tolist() def test_unique_f4(df_factory): x = np.array([np.nan, 0, 1, np.nan, 2, np.nan], dtype='f4') df = df_factory(x=x) assert list(sorted(df.x.unique()))[1:] == [np.nan, 0, 1, 2][1:] def test_unique_nan(df_factory): x = [np.nan, 0, 1, np.nan, 2, np.nan] df = df_factory(x=x) assert list(sorted(df.x.unique()))[1:] == [np.nan, 0, 1, 2][1:] with small_buffer(df, 2): values, indices = df.unique(df.x, return_inverse=True) values = np.array(values) values = values[indices] mask = np.isnan(values) assert values[~mask].tolist() == df.x.to_numpy()[~mask].tolist() # assert indices.tolist() == [0, 1, 2, 0, 3, 0] def test_unique_missing(df_factory): # Create test databn x = np.array([None, 'A', 'B', -1, 0, 2, '', '', None, None, None, np.nan, np.nan, np.nan, np.nan]) df = df_factory(x=x) uniques = df.x.unique(dropnan=True) assert set(uniques) == set(['', 'A', 'B', -1, 0, 2, None]) def test_unique_missing_numeric(array_factory): df = vaex.from_arrays(x=array_factory([1, None])) values = df.x.unique() assert set(values) == {1, None} # assert list(sorted(df.x.unique()))[1:] == [np.nan, 0, 1, 2][1:] def test_unique_string_missing(df_factory): x = ['John', None, 'Sally', None, '0.0'] df = df_factory(x=x) result = df.x.unique() assert len(result) == 4 assert'John' in result assert None in result assert 'Sally' def test_unique_list(df_types): df = df_types assert set(df.string_list.unique()) == {'aap', 'noot', 'mies', None} assert set(df.int_list.unique()) == {1, 2, 3, 4, 5, None} @pytest.mark.parametrize("future", [False, True]) def test_unique_categorical(df_factory, future): df = df_factory(x=vaex.string_column(['a', 'c', 'b', 'a', 'a'])) df = df.ordinal_encode('x') df = df._future() if future else df if future: assert df.x.dtype == str assert set(df.x.unique()) == {'a', 'b', 'c'} assert df.x.nunique() == 3 else: assert df.x.dtype == int assert set(df.x.unique()) == {0, 1, 2} assert df.x.nunique() == 3
33.270833
102
0.584534
0
0
0
0
500
0.156544
0
0
352
0.110207
fbfb4b2b18ec51f6264b25bae8ef574c623943f4
810
py
Python
utils/utilsFreq.py
geobook2015/magPy
af0f31fc931786ac6f8d69a5290366418035859d
[ "Apache-2.0" ]
1
2021-05-19T18:29:15.000Z
2021-05-19T18:29:15.000Z
utils/utilsFreq.py
geobook2015/magPy
af0f31fc931786ac6f8d69a5290366418035859d
[ "Apache-2.0" ]
null
null
null
utils/utilsFreq.py
geobook2015/magPy
af0f31fc931786ac6f8d69a5290366418035859d
[ "Apache-2.0" ]
2
2021-06-03T01:59:02.000Z
2021-07-03T07:47:10.000Z
# utility functions for frequency related stuff import numpy as np import numpy.fft as fft import math def getFrequencyArray(fs, samples): # frequencies go from to nyquist nyquist = fs/2 return np.linspace(0, nyquist, samples) # use this function for all FFT calculations # then if change FFT later (i.e. FFTW), just replace one function def forwardFFT(data, **kwargs): if "norm" in kwargs and not kwargs["norm"]: return fft.rfft(data, axis=0) return fft.rfft(data, norm='ortho', axis=0) def inverseFFT(data, length, **kwargs): if "norm" in kwargs and not kwargs["norm"]: return fft.irfft(data, n=length) return fft.irfft(data, n=length, norm='ortho') def padNextPower2(size): next2Power = math.ceil(math.log(size,2)) next2Size = math.pow(2, int(next2Power)) return int(next2Size) - size
27.931034
65
0.728395
0
0
0
0
0
0
0
0
228
0.281481
fbfbfe77a095f3da5c436ccb64b9b59f084a3b2c
2,329
py
Python
tools/extract_keywords.py
bitdotioinc/pglast
da4c0b1c237aad98894179af9cd29e044d526ba8
[ "PostgreSQL" ]
null
null
null
tools/extract_keywords.py
bitdotioinc/pglast
da4c0b1c237aad98894179af9cd29e044d526ba8
[ "PostgreSQL" ]
null
null
null
tools/extract_keywords.py
bitdotioinc/pglast
da4c0b1c237aad98894179af9cd29e044d526ba8
[ "PostgreSQL" ]
null
null
null
# -*- coding: utf-8 -*- # :Project: pglast -- Extract keywords from PostgreSQL header # :Created: dom 06 ago 2017 23:34:53 CEST # :Author: Lele Gaifax <lele@metapensiero.it> # :License: GNU General Public License version 3 or later # :Copyright: © 2017, 2018 Lele Gaifax # from collections import defaultdict from os.path import basename from pprint import pformat from re import match import subprocess HEADER = """\ # -*- coding: utf-8 -*- # :Project: pglast -- DO NOT EDIT: automatically extracted from %s @ %s # :Author: Lele Gaifax <lele@metapensiero.it> # :License: GNU General Public License version 3 or later # :Copyright: © 2017 Lele Gaifax # """ def get_libpg_query_version(): result = subprocess.check_output(['git', 'describe', '--all', '--long'], cwd='libpg_query') return result.decode('utf-8').strip().split('/')[-1] def extract_keywords(source): for line in source.splitlines(): if line.startswith('PG_KEYWORD'): m = match(r'PG_KEYWORD\("([^"]+)",[^,]+,\s*([\w_]+)\)', line.strip()) if m: yield m.group(1), m.group(2) def workhorse(args): with open(args.header, encoding='utf-8') as f: source = f.read() bytype = defaultdict(set) for keyword, type in extract_keywords(source): bytype[type].add(keyword) with open(args.output, 'w', encoding='utf-8') as output: output.write(HEADER % (basename(args.header), get_libpg_query_version())) for type in sorted(bytype): output.write('\n') output.write(type + 'S') output.write(' = {') keywords = pformat(bytype[type], compact=True, indent=len(type)+5, width=95) output.write(keywords[1:].lstrip()) output.write('\n') def main(): from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter parser = ArgumentParser(description="PG keyword extractor", formatter_class=ArgumentDefaultsHelpFormatter) parser.add_argument('header', help="source header to be processed") parser.add_argument('output', help="Python source to be created") args = parser.parse_args() workhorse(args) if __name__ == '__main__': main()
30.246753
88
0.613568
0
0
253
0.108537
0
0
0
0
778
0.333762
fbfc768e9b9032e8d1b05f89ef3578bc75d58172
1,913
py
Python
tests/vi/test_indent_text_object.py
trishume/VintageousPlus
1dd62435138234979fe5bb413e1731119b017daf
[ "MIT" ]
6
2017-04-01T05:30:08.000Z
2017-04-05T14:17:40.000Z
tests/vi/test_indent_text_object.py
trishume/VintageousPlus
1dd62435138234979fe5bb413e1731119b017daf
[ "MIT" ]
1
2017-04-04T06:47:13.000Z
2017-04-04T14:26:32.000Z
tests/vi/test_indent_text_object.py
trishume/VintageousPlus
1dd62435138234979fe5bb413e1731119b017daf
[ "MIT" ]
null
null
null
from collections import namedtuple from sublime import Region as R from VintageousPlus.tests import set_text from VintageousPlus.tests import add_sel from VintageousPlus.tests import ViewTest from VintageousPlus.vi.text_objects import find_indent_text_object test = namedtuple('simple_test', 'content start expected expected_inclusive msg') # cursor is at "|" TESTS_INDENT = ( test(start=R(37, 37), expected=R(29, 62), expected_inclusive=R(29, 62), msg='should find indent', content=''' # a comment def a_ruby_block some_c|all another_one yerp end'''.lstrip()), test(start=R(37, 37), expected=R(29, 41), expected_inclusive=R(29, 80), msg='should find indent when there\'s a blank line', content=''' # a comment def a_ruby_block some_c|all another_one_with(blank_line) yerp end'''.lstrip()), test(start=R(42, 42), expected=R(34, 57), expected_inclusive=R(34, 58), msg='should work with pyhton-ey functions', content=''' # a python thing def a_python_fn: some_c|all() what() a_python_fn'''.lstrip()), test(start=R(57, 57), expected=R(57, 57), expected_inclusive=R(57, 57), msg='should ignore when triggered on a whitespace-only line', content=''' # a python thing def a_python_fn: some_call() what() a_python_fn'''.lstrip()), ) class Test_indent(ViewTest): def clear_selected_regions(self): self.view.sel().clear() def testAll(self): for (i, data) in enumerate(TESTS_INDENT): self.clear_selected_regions() self.write(data.content) for inclusive in [True, False]: start, end = find_indent_text_object(self.view, data.start, inclusive) actual = R(start, end) msg = "failed at test index {0}: {1}".format(i, data.msg) expected = data.expected_inclusive if inclusive else data.expected self.assertEqual(expected, actual, msg)
28.552239
149
0.681652
636
0.332462
0
0
0
0
0
0
587
0.306848
fbfd008303bf64141666afab184cb7b1413f62e6
1,417
py
Python
example_write_camera_frames_to_hdf5.py
mihsamusev/pytrl_demo
411a74cb5f3601f03438f608b4cf8e451a88345e
[ "MIT" ]
null
null
null
example_write_camera_frames_to_hdf5.py
mihsamusev/pytrl_demo
411a74cb5f3601f03438f608b4cf8e451a88345e
[ "MIT" ]
null
null
null
example_write_camera_frames_to_hdf5.py
mihsamusev/pytrl_demo
411a74cb5f3601f03438f608b4cf8e451a88345e
[ "MIT" ]
null
null
null
import cv2 from imutils.paths import list_images import imutils import re import datetime from datasets.hdf5datasetwriter import HDF5DatasetWriter import progressbar def get_frame_number(impath): return int(re.search(r"image data (\d+)", impath).group(1)) def get_timestamp(impath): "assuming that the timestamp is a part of the image name" date_str = impath.split(".")[0] date_str = re.split(r"image data \d+ ", date_str)[1] date = datetime.datetime.strptime(date_str, '%Y-%b-%d %H %M %S %f') return date # Load the data, sort by frame number basePath = "D:/create lidar trafik data/newer data/ImageData/" impaths = list(list_images(basePath)) impaths = sorted(impaths, key=get_frame_number) print("[INFO] building HDF5 dataset...") outputPath = basePath + "frames.hdf5" writer = HDF5DatasetWriter((len(impaths), 360, 640, 3), outputPath) # initialize the progress bar widgets = ["Building Dataset: ", progressbar.Percentage(), " ", progressbar.Bar(), " ", progressbar.ETA()] pbar = progressbar.ProgressBar(maxval=len(impaths), widgets=widgets).start() for i, impath in enumerate(impaths): date = get_timestamp(impath) ts = (date - datetime.datetime(1970, 1, 1)) / datetime.timedelta(seconds=1) image = cv2.imread(impath) image = imutils.resize(image, width=640) writer.add([image], [ts]) pbar.update(i) # close the HDF5 writer pbar.finish() writer.close()
31.488889
79
0.715596
0
0
0
0
0
0
0
0
331
0.233592
fbfd2e30f614a3b655c2662e8c6213275af8c2ac
4,378
py
Python
touch.py
mendelmaker/dipn
a4871ecf2e4eeb40ff3b7945150c255802694609
[ "BSD-2-Clause" ]
8
2020-11-17T16:55:34.000Z
2021-04-28T09:24:37.000Z
touch.py
mendelmaker/dipn
a4871ecf2e4eeb40ff3b7945150c255802694609
[ "BSD-2-Clause" ]
null
null
null
touch.py
mendelmaker/dipn
a4871ecf2e4eeb40ff3b7945150c255802694609
[ "BSD-2-Clause" ]
8
2021-07-05T05:10:17.000Z
2022-03-02T12:10:25.000Z
#!/usr/bin/env python import matplotlib.pyplot as plt import numpy as np import time import cv2 from real.camera import Camera from robot import Robot from subprocess import Popen, PIPE def get_camera_to_robot_transformation(camera): color_img, depth_img = camera.get_data() cv2.imwrite("real/temp.jpg", color_img) p = Popen(['./real/detect-from-file', "real/temp.jpg"], stdin=PIPE, stdout=PIPE, stderr=PIPE) output, err = p.communicate() tag_info = output.decode("utf-8") tag_info = tag_info.split("\n")[:4] for i, info in enumerate(tag_info): tag_info[i] = info.split(" ") print(tag_info) tag_info = np.array(tag_info, dtype=np.float32) assert(tag_info.shape == (4, 3)) tag_loc_camera = tag_info tag_loc_robot = { 22: (270.15 / 1000, -637.0 / 1000), 7: (255.35 / 1000, -247.6 / 1000), 4: (-272.7 / 1000, -660.9 / 1000), 2: (-289.8 / 1000, -274.2 / 1000) } camera_to_robot = cv2.getPerspectiveTransform( np.float32([tag[1:] for tag in tag_loc_camera]), np.float32([tag_loc_robot[tag[0]] for tag in tag_loc_camera])) return camera_to_robot # User options (change me) # --------------- Setup options --------------- tcp_host_ip = '100.127.7.223' # IP and port to robot arm as TCP client (UR5) tcp_host_ip = "172.19.97.157" tcp_port = 30002 rtc_host_ip = '100.127.7.223' # IP and port to robot arm as real-time client (UR5) rtc_host_ip = "172.19.97.157" rtc_port = 30003 # Cols: min max, Rows: x y z (define workspace limits in robot coordinates) workspace_limits = np.asarray([[0.3, 0.748], [-0.224, 0.224], [-0.255, -0.1]]) workspace_limits = np.asarray([[-0.237, 0.211], [-0.683, -0.235], [0.18, 0.4]]) # workspace_limits = np.asarray([[-0.224, 0.224], [-0.674, -0.226], [0.18, 0.4]]) # Cols: min max, Rows: x y z (define workspace limits in robot coordinates) tool_orientation = [2.22, -2.22, 0] tool_orientation = [0, -3.14, 0] # --------------------------------------------- # Move robot to home pose robot = Robot(False, None, None, workspace_limits, tcp_host_ip, tcp_port, rtc_host_ip, rtc_port, False, None, None) robot.open_gripper() transformation_matrix = get_camera_to_robot_transformation(robot.camera) # Slow down robot robot.joint_acc = 1.4 robot.joint_vel = 1.05 # Callback function for clicking on OpenCV window click_point_pix = () camera_color_img, camera_depth_img = robot.get_camera_data() def mouseclick_callback(event, x, y, flags, param): if event == cv2.EVENT_LBUTTONDOWN: global camera, robot, click_point_pix click_point_pix = (x, y) # Get click point in camera coordinates # click_z = camera_depth_img[y][x] * robot.cam_depth_scale # click_x = np.multiply(x-robot.cam_intrinsics[0][2],click_z/robot.cam_intrinsics[0][0]) # click_y = np.multiply(y-robot.cam_intrinsics[1][2],click_z/robot.cam_intrinsics[1][1]) # if click_z == 0: # return # click_point = np.asarray([click_x,click_y,click_z]) # click_point.shape = (3,1) # # Convert camera to robot coordinates # # camera2robot = np.linalg.inv(robot.cam_pose) # camera2robot = robot.cam_pose # target_position = np.dot(camera2robot[0:3,0:3],click_point) + camera2robot[0:3,3:] # target_position = target_position[0:3,0] # print(target_position) camera_pt = np.array([x, y, 1]) robot_pt = np.dot(transformation_matrix, camera_pt) robot_pt = np.array([robot_pt[0], robot_pt[1]]) / robot_pt[2] print([robot_pt[0], robot_pt[1], -0.1]) print(robot.parse_tcp_state_data(robot.get_state(), "cartesian_info")) robot.move_to([robot_pt[0], robot_pt[1], 0.3], tool_orientation) # Show color and depth frames cv2.namedWindow('color') cv2.setMouseCallback('color', mouseclick_callback) cv2.namedWindow('depth') while True: camera_color_img, camera_depth_img = robot.get_camera_data() bgr_data = cv2.cvtColor(camera_color_img, cv2.COLOR_RGB2BGR) if len(click_point_pix) != 0: bgr_data = cv2.circle(bgr_data, click_point_pix, 7, (0, 0, 255), 2) cv2.imshow('color', bgr_data) camera_depth_img[camera_depth_img < 0.19] = 0 cv2.imshow('depth', camera_depth_img) if cv2.waitKey(1) == ord('c'): break cv2.destroyAllWindows()
35.885246
97
0.653952
0
0
0
0
0
0
0
0
1,424
0.325263
fbfd539734cc022db7b79f3a3d092f8d88fe0ee4
3,708
py
Python
py/WB-Klein/5/5.4_cc.py
kassbohm/wb-snippets
f1ac5194e9f60a9260d096ba5ed1ce40b844a3fe
[ "MIT" ]
null
null
null
py/WB-Klein/5/5.4_cc.py
kassbohm/wb-snippets
f1ac5194e9f60a9260d096ba5ed1ce40b844a3fe
[ "MIT" ]
null
null
null
py/WB-Klein/5/5.4_cc.py
kassbohm/wb-snippets
f1ac5194e9f60a9260d096ba5ed1ce40b844a3fe
[ "MIT" ]
null
null
null
# Header starts here. from sympy.physics.units import * from sympy import * # Rounding: import decimal from decimal import Decimal as DX from copy import deepcopy def iso_round(obj, pv, rounding=decimal.ROUND_HALF_EVEN): import sympy """ Rounding acc. to DIN EN ISO 80000-1:2013-08 place value = Rundestellenwert """ assert pv in set([ # place value # round to: 1, # 1 0.1, # 1st digit after decimal 0.01, # 2nd 0.001, # 3rd 0.0001, # 4th 0.00001, # 5th 0.000001, # 6th 0.0000001, # 7th 0.00000001, # 8th 0.000000001, # 9th 0.0000000001, # 10th ]) objc = deepcopy(obj) try: tmp = DX(str(float(objc))) objc = tmp.quantize(DX(str(pv)), rounding=rounding) except: for i in range(len(objc)): tmp = DX(str(float(objc[i]))) objc[i] = tmp.quantize(DX(str(pv)), rounding=rounding) return objc # LateX: kwargs = {} kwargs["mat_str"] = "bmatrix" kwargs["mat_delim"] = "" # kwargs["symbol_names"] = {FB: "F^{\mathsf B}", } # Units: (k, M, G ) = ( 10**3, 10**6, 10**9 ) (mm, cm) = ( m/1000, m/100 ) Newton = kg*m/s**2 Pa = Newton/m**2 MPa = M*Pa GPa = G*Pa kN = k*Newton deg = pi/180 half = S(1)/2 # Header ends here. # EA, l, F1, F2 = var("EA, l, F1, F2") sub_list = [ ( EA, 2 *Pa*m**2 ), ( l, 1 *m ), ( F1, 1 *Newton /2 ), # due to symmetry ( F2, 2 *Newton /2 ), # due to symmetry ] def k(phi): """ element stiffness matrix """ # phi is angle between: # 1. vector along global x axis # 2. vector along 1-2-axis of truss # phi is counted positively about z. # pprint("phi / deg:") # pprint(N(deg(phi),3)) (c, s) = ( cos(phi), sin(phi) ) (cc, ss, sc) = ( c*c, s*s, s*c) return Matrix( [ [ cc, sc, -cc, -sc], [ sc, ss, -sc, -ss], [-cc, -sc, cc, sc], [-sc, -ss, sc, ss], ]) (p1, p2, p3) = (315*pi/180, 0 *pi/180, 45 *pi/180) # k2 uses only 1/2 A due to symmetry: (k1, k2, k3) = (EA/l*k(p1), EA/2/l*k(p2), EA/l*k(p3)) pprint("\nk1 / (EA / l): ") pprint(k1 / (EA/l) ) pprint("\nk2 / (EA / l): ") pprint(k2 / (EA/l) ) pprint("\nk3 / (EA / l): ") pprint(k3 / (EA/l) ) K = EA/l*Matrix([ [ 1 , -S(1)/2 ], [ -S(1)/2, 1 ] ]) u2x, u3x = var("u2x, u3x") u = Matrix([u2x , u3x ]) f = Matrix([F1 , F2 ]) u2x, u3x = var("u2x, u3x") eq = Eq(K*u , f) sol = solve(eq, [u2x, u3x]) pprint("\nSolution:") pprint(sol) u2x, u3x = sol[u2x], sol[u3x] pprint("\nu2x / m:") tmp = u2x.subs(sub_list) tmp /= m pprint(tmp) pprint("\nu3x / m:") tmp = u3x.subs(sub_list) tmp /= m pprint(tmp) pprint("\nF1x / N:") tmp = - EA/l * u2x/2 tmp = tmp.subs(sub_list) tmp /= Newton pprint(tmp) # k1 / (EA / l): # ⎡1/2 -1/2 -1/2 1/2 ⎤ # ⎢ ⎥ # ⎢-1/2 1/2 1/2 -1/2⎥ # ⎢ ⎥ # ⎢-1/2 1/2 1/2 -1/2⎥ # ⎢ ⎥ # ⎣1/2 -1/2 -1/2 1/2 ⎦ # # k2 / (EA / l): # ⎡1/2 0 -1/2 0⎤ # ⎢ ⎥ # ⎢ 0 0 0 0⎥ # ⎢ ⎥ # ⎢-1/2 0 1/2 0⎥ # ⎢ ⎥ # ⎣ 0 0 0 0⎦ # # k3 / (EA / l): # ⎡1/2 1/2 -1/2 -1/2⎤ # ⎢ ⎥ # ⎢1/2 1/2 -1/2 -1/2⎥ # ⎢ ⎥ # ⎢-1/2 -1/2 1/2 1/2 ⎥ # ⎢ ⎥ # ⎣-1/2 -1/2 1/2 1/2 ⎦ # # Solution: # ⎧ 2⋅l⋅(2⋅F₁ + F₂) 2⋅l⋅(F₁ + 2⋅F₂)⎫ # ⎨u2x: ───────────────, u3x: ───────────────⎬ # ⎩ 3⋅EA 3⋅EA ⎭ # # u2x / m: # 2/3 # # u3x / m: # 5/6 # # F1x / N: # -2/3
21.433526
66
0.432848
0
0
0
0
0
0
0
0
1,702
0.437757
fbfd7d6f8721ebc2b678a03f3cc15caf4d6fced6
870
py
Python
ucc_csv_create.py
MasonDMitchell/HackNC-2019
4656f9dcc15ee86c66885267006ed9f4f5b935e7
[ "MIT" ]
null
null
null
ucc_csv_create.py
MasonDMitchell/HackNC-2019
4656f9dcc15ee86c66885267006ed9f4f5b935e7
[ "MIT" ]
null
null
null
ucc_csv_create.py
MasonDMitchell/HackNC-2019
4656f9dcc15ee86c66885267006ed9f4f5b935e7
[ "MIT" ]
1
2019-10-12T15:09:06.000Z
2019-10-12T15:09:06.000Z
#!/usr/bin/python3 import csv ucc_dictionary_file_list = [ './downloads/diary08/diary08/uccd08.txt', './downloads/diary09/diary09/uccd09.txt', './downloads/diary11/diary11/uccd11.txt', './downloads/diary10/diary10/uccd10.txt', ] cleaned_ucc_dictionary = dict() for dictionary in ucc_dictionary_file_list: with open(dictionary) as file: line_list = file.read().splitlines() for line in line_list: ucc_tuple = tuple(line.split(" ", 1)) cleaned_ucc_dictionary[int(ucc_tuple[0])] = ucc_tuple[1] with open('cleaned_ucc_dictionary.csv', 'w', newline='') as csvfile: ucc_writer = csv.writer(csvfile, delimiter=',', quoting=csv.QUOTE_MINIMAL) for key, value in cleaned_ucc_dictionary.items(): ucc_writer.writerow([key, value]) # print(len(cleaned_ucc_dictionary.keys())) # print(line_list)
33.461538
78
0.688506
0
0
0
0
0
0
0
0
278
0.31954
fbff8e3dec4d22f8cf3a2af319e44b94680c5703
30,937
py
Python
eventsourcing/system/ray.py
gerbyzation/eventsourcing
a9e9ecf123af658762832cf97a9f00f8f7064393
[ "BSD-3-Clause" ]
null
null
null
eventsourcing/system/ray.py
gerbyzation/eventsourcing
a9e9ecf123af658762832cf97a9f00f8f7064393
[ "BSD-3-Clause" ]
null
null
null
eventsourcing/system/ray.py
gerbyzation/eventsourcing
a9e9ecf123af658762832cf97a9f00f8f7064393
[ "BSD-3-Clause" ]
null
null
null
import datetime import os import traceback from inspect import ismethod from queue import Empty, Queue from threading import Event, Lock, Thread from time import sleep from typing import Dict, Optional, Tuple, Type import ray from eventsourcing.application.process import ProcessApplication from eventsourcing.application.simple import ( ApplicationWithConcreteInfrastructure, Prompt, PromptToPull, is_prompt_to_pull, ) from eventsourcing.domain.model.decorators import retry from eventsourcing.domain.model.events import subscribe, unsubscribe from eventsourcing.exceptions import ( EventSourcingError, ExceptionWrapper, OperationalError, ProgrammingError, RecordConflictError, ) from eventsourcing.infrastructure.base import ( DEFAULT_PIPELINE_ID, RecordManagerWithNotifications, ) from eventsourcing.system.definition import ( AbstractSystemRunner, System, TProcessApplication, ) from eventsourcing.system.rayhelpers import RayDbJob, RayPrompt from eventsourcing.system.raysettings import ray_init_kwargs from eventsourcing.system.runner import DEFAULT_POLL_INTERVAL ray.init(**ray_init_kwargs) MAX_QUEUE_SIZE = 1 PAGE_SIZE = 20 MICROSLEEP = 0.000 PROMPT_WITH_NOTIFICATION_IDS = False PROMPT_WITH_NOTIFICATION_OBJS = False GREEDY_PULL_NOTIFICATIONS = True class RayRunner(AbstractSystemRunner): """ Uses actor model framework to run a system of process applications. """ def __init__( self, system: System, pipeline_ids=(DEFAULT_PIPELINE_ID,), poll_interval: Optional[int] = None, setup_tables: bool = False, sleep_for_setup_tables: int = 0, db_uri: Optional[str] = None, **kwargs ): super(RayRunner, self).__init__(system=system, **kwargs) self.pipeline_ids = list(pipeline_ids) self.poll_interval = poll_interval self.setup_tables = setup_tables or system.setup_tables self.sleep_for_setup_tables = sleep_for_setup_tables self.db_uri = db_uri self.ray_processes: Dict[Tuple[str, int], RayProcess] = {} def start(self): """ Starts all the actors to run a system of process applications. """ # Check we have the infrastructure classes we need. for process_class in self.system.process_classes.values(): if not isinstance(process_class, ApplicationWithConcreteInfrastructure): if not self.infrastructure_class: raise ProgrammingError("infrastructure_class is not set") elif not issubclass( self.infrastructure_class, ApplicationWithConcreteInfrastructure ): raise ProgrammingError( "infrastructure_class is not a subclass of {}".format( ApplicationWithConcreteInfrastructure ) ) # Get the DB_URI. # Todo: Support different URI for different application classes. env_vars = {} db_uri = self.db_uri or os.environ.get("DB_URI") if db_uri is not None: env_vars["DB_URI"] = db_uri # Start processes. for pipeline_id in self.pipeline_ids: for process_name, process_class in self.system.process_classes.items(): ray_process_id = RayProcess.remote( application_process_class=process_class, infrastructure_class=self.infrastructure_class, env_vars=env_vars, poll_interval=self.poll_interval, pipeline_id=pipeline_id, setup_tables=self.setup_tables, ) self.ray_processes[(process_name, pipeline_id)] = ray_process_id init_ids = [] for key, ray_process in self.ray_processes.items(): process_name, pipeline_id = key upstream_names = self.system.upstream_names[process_name] downstream_names = self.system.downstream_names[process_name] downstream_processes = { name: self.ray_processes[(name, pipeline_id)] for name in downstream_names } upstream_processes = {} for upstream_name in upstream_names: upstream_process = self.ray_processes[(upstream_name, pipeline_id)] upstream_processes[upstream_name] = upstream_process init_ids.append( ray_process.init.remote(upstream_processes, downstream_processes) ) ray.get(init_ids) def get_ray_process(self, process_name, pipeline_id=DEFAULT_PIPELINE_ID): assert isinstance(process_name, str) return self.ray_processes[(process_name, pipeline_id)] def close(self): super(RayRunner, self).close() for process in self.ray_processes.values(): process.stop.remote() def get( self, process_class: Type[TProcessApplication], pipeline_id=DEFAULT_PIPELINE_ID ) -> TProcessApplication: assert issubclass(process_class, ProcessApplication) process_name = process_class.create_name() ray_process = self.get_ray_process(process_name, pipeline_id) return ProxyApplication(ray_process) @ray.remote class RayProcess: def __init__( self, application_process_class: Type[ProcessApplication], infrastructure_class: Type[ApplicationWithConcreteInfrastructure], env_vars: dict = None, pipeline_id: int = DEFAULT_PIPELINE_ID, poll_interval: int = None, setup_tables: bool = False, ): # Process application args. self.application_process_class = application_process_class self.infrastructure_class = infrastructure_class self.daemon = True self.pipeline_id = pipeline_id self.poll_interval = poll_interval or DEFAULT_POLL_INTERVAL self.setup_tables = setup_tables if env_vars is not None: os.environ.update(env_vars) # Setup threads, queues, and threading events. self.readers_lock = Lock() self._has_been_prompted = Event() self.heads_lock = Lock() self.heads = {} self.positions_lock = Lock() self.positions = {} self.positions_initialised = Event() self.db_jobs_queue = Queue(maxsize=MAX_QUEUE_SIZE) self.upstream_event_queue = Queue(maxsize=MAX_QUEUE_SIZE) self.downstream_prompt_queue = Queue() # no maxsize, call() can put prompt self.has_been_stopped = Event() self.db_jobs_thread = Thread(target=self.db_jobs) self.db_jobs_thread.setDaemon(True) self.db_jobs_thread.start() self.process_prompts_thread = Thread(target=self._process_prompts) self.process_prompts_thread.setDaemon(True) self.process_prompts_thread.start() self.process_events_thread = Thread(target=self._process_events) self.process_events_thread.setDaemon(True) self.process_events_thread.start() self.push_prompts_thread = Thread(target=self._push_prompts) self.push_prompts_thread.setDaemon(True) self.push_prompts_thread.start() self._notification_rayids = {} self._prompted_notifications = {} def db_jobs(self): # print("Running do_jobs") while not self.has_been_stopped.is_set(): try: item = self.db_jobs_queue.get(timeout=1) self.db_jobs_queue.task_done() except Empty: if self.has_been_stopped.is_set(): break else: if item is None or self.has_been_stopped.is_set(): break db_job: RayDbJob = item # self.print_timecheck("Doing db job", item) try: db_job.execute() except Exception as e: if db_job.error is None: print(traceback.format_exc()) self._print_timecheck( "Continuing after error running DB job:", e ) sleep(1) # else: # self.print_timecheck("Done db job", item) @retry((OperationalError, RecordConflictError), max_attempts=100, wait=0.01) def do_db_job(self, method, args, kwargs): db_job = RayDbJob(method, args=args, kwargs=kwargs) self.db_jobs_queue.put(db_job) db_job.wait() if db_job.error: raise db_job.error # self.print_timecheck("db job delay:", db_job.delay) # self.print_timecheck("db job duration:", db_job.duration) # self.print_timecheck('db job result:', db_job.result) return db_job.result def init(self, upstream_processes: dict, downstream_processes: dict) -> None: """ Initialise with actor handles for upstream and downstream processes. Need to initialise after construction so that all handles exist. """ self.upstream_processes = upstream_processes self.downstream_processes = downstream_processes # Subscribe to broadcast prompts published by the process application. subscribe(handler=self._enqueue_prompt_to_pull, predicate=is_prompt_to_pull) # Construct process application object. process_class = self.application_process_class if not isinstance(process_class, ApplicationWithConcreteInfrastructure): if self.infrastructure_class: process_class = process_class.mixin(self.infrastructure_class) else: raise ProgrammingError("infrastructure_class is not set") class MethodWrapper(object): def __init__(self, method): self.method = method def __call__(self, *args, **kwargs): try: return self.method(*args, **kwargs) except EventSourcingError as e: return ExceptionWrapper(e) class ProcessApplicationWrapper(object): def __init__(self, process_application): self.process_application = process_application def __getattr__(self, item): attribute = getattr(self.process_application, item) if ismethod(attribute): return MethodWrapper(attribute) else: return attribute def construct_process(): return process_class( pipeline_id=self.pipeline_id, setup_table=self.setup_tables ) process_application = self.do_db_job(construct_process, (), {}) assert isinstance(process_application, ProcessApplication), process_application self.process_wrapper = ProcessApplicationWrapper(process_application) self.process_application = process_application for upstream_name, ray_notification_log in self.upstream_processes.items(): # Make the process follow the upstream notification log. self.process_application.follow(upstream_name, ray_notification_log) self._reset_positions() self.positions_initialised.set() def _reset_positions(self): self.do_db_job(self.__reset_positions, (), {}) def __reset_positions(self): with self.positions_lock: for upstream_name in self.upstream_processes: recorded_position = self.process_application.get_recorded_position( upstream_name ) self.positions[upstream_name] = recorded_position def add_downstream_process(self, downstream_name, ray_process_id): self.downstream_processes[downstream_name] = ray_process_id def call(self, method_name, *args, **kwargs): """ Method for calling methods on process application object. """ assert self.positions_initialised.is_set(), "Please call .init() first" # print("Calling", method_name, args, kwargs) if self.process_wrapper: method = getattr(self.process_wrapper, method_name) return self.do_db_job(method, args, kwargs) else: raise Exception( "Can't call method '%s' before process exists" % method_name ) def prompt(self, prompt: RayPrompt) -> None: assert isinstance(prompt, RayPrompt), "Not a RayPrompt: %s" % prompt for notification_id, rayid in prompt.notification_ids: # self._print_timecheck("Received ray notification ID:", notification_id, rayid) self._notification_rayids[(prompt.process_name, notification_id)] = rayid latest_head = prompt.head_notification_id upstream_name = prompt.process_name if PROMPT_WITH_NOTIFICATION_OBJS: for notification in prompt.notifications: self._prompted_notifications[ (upstream_name, notification["id"]) ] = notification if latest_head is not None: with self.heads_lock: # Update head from prompt. if upstream_name in self.heads: if latest_head > self.heads[upstream_name]: self.heads[upstream_name] = latest_head self._has_been_prompted.set() else: self.heads[upstream_name] = latest_head self._has_been_prompted.set() else: self._has_been_prompted.set() def _process_prompts(self) -> None: # Loop until stop event is set. self.positions_initialised.wait() while not self.has_been_stopped.is_set(): try: self.__process_prompts() except Exception as e: if not self.has_been_stopped.is_set(): print(traceback.format_exc()) print("Continuing after error in 'process prompts' thread:", e) print() sleep(1) def __process_prompts(self): # Wait until prompted. self._has_been_prompted.wait() if self.has_been_stopped.is_set(): return # self.print_timecheck('has been prompted') current_heads = {} with self.heads_lock: self._has_been_prompted.clear() for upstream_name in self.upstream_processes.keys(): current_head = self.heads.get(upstream_name) current_heads[upstream_name] = current_head for upstream_name in self.upstream_processes.keys(): with self.positions_lock: current_position = self.positions.get(upstream_name) first_id = current_position + 1 # request the next one current_head = current_heads[upstream_name] if current_head is None: last_id = None elif current_position < current_head: if GREEDY_PULL_NOTIFICATIONS: last_id = first_id + PAGE_SIZE - 1 else: last_id = min(current_head, first_id + PAGE_SIZE - 1) else: # self.print_timecheck( # "Up to date with", upstream_name, current_position, # current_head # ) continue # last_id = first_id + PAGE_SIZE - 1 # self.print_timecheck( # "Getting notifications in range:", # upstream_name, # "%s -> %s" % (first_id, last_id), # ) upstream_process = self.upstream_processes[upstream_name] # Works best without prompted head as last requested, # because there might be more notifications since. # Todo: However, limit the number to avoid getting too many, and # if we got full quota, then get again. notifications = [] if PROMPT_WITH_NOTIFICATION_IDS or PROMPT_WITH_NOTIFICATION_OBJS: if last_id is not None: for notification_id in range(first_id, last_id + 1): if PROMPT_WITH_NOTIFICATION_IDS: try: rayid = self._notification_rayids.pop( (upstream_name, notification_id) ) except KeyError: break else: notification = ray.get(rayid) # self._print_timecheck( # "Got notification from ray id", # notification_id, # rayid, # notification, # ) notifications.append(notification) elif PROMPT_WITH_NOTIFICATION_OBJS: try: notification = self._prompted_notifications.pop( (upstream_name, notification_id) ) # self._print_timecheck( # "Got notification from prompted notifications dict", # notification_id, # notification, # ) except KeyError: break else: notifications.append(notification) first_id += 1 # Pull the ones we don't have. if last_id is None or first_id <= last_id: # self._print_timecheck("Pulling notifications", first_id, last_id, # 'from', upstream_name) rayid = upstream_process.get_notifications.remote(first_id, last_id) _notifications = ray.get(rayid) # self._print_timecheck("Pulled notifications", _notifications) notifications += _notifications # self.print_timecheck( # "Obtained notifications:", len(notifications), 'from', # upstream_name # ) if len(notifications): if len(notifications) == PAGE_SIZE: # self._print_timecheck("Range limit reached, reprompting...") self._has_been_prompted.set() position = notifications[-1]["id"] with self.positions_lock: current_position = self.positions[upstream_name] if current_position is None or position > current_position: self.positions[upstream_name] = position queue_item = [] for notification in notifications: # Check causal dependencies. self.process_application.check_causal_dependencies( upstream_name, notification.get("causal_dependencies") ) # Get domain event from notification. event = self.process_application.event_from_notification( notification ) # self.print_timecheck("obtained event", event) # Put domain event on the queue, for event processing. queue_item.append((event, notification["id"], upstream_name)) self.upstream_event_queue.put(queue_item) sleep(MICROSLEEP) def get_notifications(self, first_notification_id, last_notification_id): """ Returns a list of notifications, with IDs from first_notification_id to last_notification_id, inclusive. IDs are 1-based sequence. This is called by the "process prompts" thread of a downstream process. """ return self.do_db_job( self._get_notifications, (first_notification_id, last_notification_id), {} ) def _get_notifications(self, first_notification_id, last_notification_id): record_manager = self.process_application.event_store.record_manager assert isinstance(record_manager, RecordManagerWithNotifications) start = first_notification_id - 1 stop = last_notification_id return list(record_manager.get_notifications(start, stop)) def _process_events(self): while not self.has_been_stopped.is_set(): try: self.__process_events() except Exception as e: print(traceback.format_exc()) print("Continuing after error in 'process events' thread:", e) sleep(1) def __process_events(self): try: queue_item = self.upstream_event_queue.get() # timeout=5) self.upstream_event_queue.task_done() except Empty: if self.has_been_stopped.is_set(): return else: if queue_item is None or self.has_been_stopped.is_set(): return for (domain_event, notification_id, upstream_name) in queue_item: # print("Processing upstream event:", (domain_event, # notification_id, upstream_name)) new_events, new_records = (), () while not self.has_been_stopped.is_set(): try: new_events, new_records = self.do_db_job( method=self.process_application.process_upstream_event, args=(domain_event, notification_id, upstream_name), kwargs={}, ) break except Exception as e: print(traceback.format_exc()) self._print_timecheck( "Retrying to reprocess event after error:", e ) sleep(1) # Todo: Forever? What if this is the wrong event? if self.has_been_stopped.is_set(): return # if new_events: # self._print_timecheck("new events", len(new_events), new_events) notifications = () notification_ids = () notifiable_events = [e for e in new_events if e.__notifiable__] if len(notifiable_events): if PROMPT_WITH_NOTIFICATION_IDS or PROMPT_WITH_NOTIFICATION_OBJS: manager = self.process_application.event_store.record_manager assert isinstance(manager, RecordManagerWithNotifications) notification_id_name = manager.notification_id_name notifications = [] for record in new_records: if isinstance( getattr(record, notification_id_name, None), int ): notifications.append( manager.create_notification_from_record(record) ) if len(notifications): head_notification_id = notifications[-1]["id"] if PROMPT_WITH_NOTIFICATION_IDS: notification_ids = self._put_notifications_in_ray_object_store( notifications ) # Clear the notifications, avoid sending with IDs. notifications = () else: head_notification_id = self._get_max_notification_id() else: head_notification_id = self._get_max_notification_id() prompt = RayPrompt( self.process_application.name, self.process_application.pipeline_id, head_notification_id, notification_ids, notifications, ) # self.print_timecheck( # "putting prompt on downstream " "prompt queue", # self.downstream_prompt_queue.qsize(), # ) self.downstream_prompt_queue.put(prompt) sleep(MICROSLEEP) # self.print_timecheck( # "put prompt on downstream prompt " "queue" # ) # sleep(0.1) def _put_notifications_in_ray_object_store(self, notifications): notification_ids = [(n["id"], ray.put(n)) for n in notifications] return notification_ids def _enqueue_prompt_to_pull(self, prompt): # print("Enqueing locally published prompt:", prompt) self.downstream_prompt_queue.put(prompt) sleep(MICROSLEEP) def _push_prompts(self) -> None: while not self.has_been_stopped.is_set(): try: self.__push_prompts() except Exception as e: print(traceback.format_exc()) print("Continuing after error in 'push prompts' thread:", e) sleep(1) def __push_prompts(self): try: item = self.downstream_prompt_queue.get() # timeout=1) self.downstream_prompt_queue.task_done() # Todo: Instead, drain the queue and consolidate prompts. except Empty: self._print_timecheck( "timed out getting item from downstream prompt " "queue" ) if self.has_been_stopped.is_set(): return else: # self.print_timecheck("task done on downstream prompt queue") if item is None or self.has_been_stopped.is_set(): return elif isinstance(item, PromptToPull): if item.head_notification_id: head_notification_id = item.head_notification_id else: head_notification_id = self._get_max_notification_id() prompt = RayPrompt( self.process_application.name, self.process_application.pipeline_id, head_notification_id, ) else: prompt = item # self._print_timecheck('pushing prompt with', prompt.notification_ids) prompt_response_ids = [] # self.print_timecheck("pushing prompts", prompt) for downstream_name, ray_process in self.downstream_processes.items(): prompt_response_ids.append(ray_process.prompt.remote(prompt)) if self.has_been_stopped.is_set(): return # self._print_timecheck("pushed prompt to", downstream_name) ray.get(prompt_response_ids) # self._print_timecheck("pushed prompts") def _get_max_notification_id(self): """ Returns the highest notification ID of this process application. :return: """ record_manager = self.process_application.event_store.record_manager assert isinstance(record_manager, RecordManagerWithNotifications) max_notification_id = self.do_db_job( record_manager.get_max_notification_id, (), {} ) # self.print_timecheck("MAX NOTIFICATION ID in DB:", max_notification_id) return max_notification_id def stop(self): """ Stops the process. """ # print("%s actor stopping %s" % (os.getpid(), datetime.datetime.now())) self.has_been_stopped.set() # print("%s actor joining db_jobs_thread %s" % (os.getpid(), # datetime.datetime.now())) self.db_jobs_queue.put(None) self.upstream_event_queue.put(None) self.downstream_prompt_queue.put(None) self._has_been_prompted.set() self.positions_initialised.set() self.db_jobs_thread.join(timeout=1) assert not self.db_jobs_thread.is_alive(), ( "DB jobs thread still alive" ) # print("%s actor joining process_events_thread %s" % (os.getpid(), # datetime.datetime.now())) self.process_events_thread.join(timeout=1) assert not self.process_events_thread.is_alive(), ( "Process events thread still alive" ) # print("%s actor joining process_prompts_thread %s" % (os.getpid(), # datetime.datetime.now())) self.process_prompts_thread.join(timeout=1) assert not self.process_prompts_thread.is_alive(), ( "Process prompts thread still alive" ) # print("%s actor joining push_prompts_thread %s" % (os.getpid(), # datetime.datetime.now())) self.push_prompts_thread.join(timeout=1) assert not self.push_prompts_thread.is_alive(), ( "Push prompts thread still alive" ) self.process_application.close() unsubscribe(handler=self._enqueue_prompt_to_pull, predicate=is_prompt_to_pull) # print("%s actor stopped %s" % (os.getpid(), datetime.datetime.now())) ray.actor.exit_actor() def _print_timecheck(self, activity, *args): # pass process_name = self.application_process_class.__name__.lower() print( "Timecheck", datetime.datetime.now(), self.pipeline_id, process_name, activity, *args ) class ProxyApplication: def __init__(self, ray_process: RayProcess): self.ray_process: RayProcess = ray_process def __getattr__(self, item): return ProxyMethod(self.ray_process, item) class ProxyMethod: def __init__(self, ray_process: RayProcess, attribute_name: str): self.ray_process: RayProcess = ray_process self.attribute_name = attribute_name def __call__(self, *args, **kwargs): ray_id = self.ray_process.call.remote(self.attribute_name, *args, **kwargs) return_value = ray.get(ray_id) if isinstance(return_value, ExceptionWrapper): raise return_value.e else: return return_value
41.030504
95
0.580761
29,594
0.956589
0
0
24,899
0.804829
0
0
5,374
0.173708
fbff951b3453445a7ed046dfadb09ce047c59a21
1,766
py
Python
authentik/stages/password/migrations/0007_app_password.py
BeryJu/passbook
350f0d836580f4411524614f361a76c4f27b8a2d
[ "MIT" ]
15
2020-01-05T09:09:57.000Z
2020-11-28T05:27:39.000Z
authentik/stages/password/migrations/0007_app_password.py
BeryJu/passbook
350f0d836580f4411524614f361a76c4f27b8a2d
[ "MIT" ]
302
2020-01-21T08:03:59.000Z
2020-12-04T05:04:57.000Z
authentik/stages/password/migrations/0007_app_password.py
BeryJu/passbook
350f0d836580f4411524614f361a76c4f27b8a2d
[ "MIT" ]
3
2020-03-04T08:21:59.000Z
2020-08-01T20:37:18.000Z
# Generated by Django 3.2.6 on 2021-08-23 14:34 import django.contrib.postgres.fields from django.apps.registry import Apps from django.db import migrations, models from django.db.backends.base.schema import BaseDatabaseSchemaEditor from authentik.stages.password import BACKEND_APP_PASSWORD, BACKEND_INBUILT def update_default_backends(apps: Apps, schema_editor: BaseDatabaseSchemaEditor): PasswordStage = apps.get_model("authentik_stages_password", "passwordstage") db_alias = schema_editor.connection.alias stages = PasswordStage.objects.using(db_alias).filter(name="default-authentication-password") if not stages.exists(): return stage = stages.first() stage.backends.append(BACKEND_APP_PASSWORD) stage.save() class Migration(migrations.Migration): dependencies = [ ("authentik_stages_password", "0006_passwordchange_rename"), ] operations = [ migrations.AlterField( model_name="passwordstage", name="backends", field=django.contrib.postgres.fields.ArrayField( base_field=models.TextField( choices=[ ("authentik.core.auth.InbuiltBackend", "User database + standard password"), ("authentik.core.auth.TokenBackend", "User database + app passwords"), ( "authentik.sources.ldap.auth.LDAPBackend", "User database + LDAP password", ), ] ), help_text="Selection of backends to test the password against.", size=None, ), ), migrations.RunPython(update_default_backends), ]
36.040816
100
0.625708
1,008
0.570781
0
0
0
0
0
0
463
0.262174
220006b165652d33b27e971f916a5a800cf16e0a
1,211
py
Python
article/tests/test_models.py
asb29/Redundant
ee816fd41f9217610bd11f757cf9175288723c70
[ "MIT" ]
null
null
null
article/tests/test_models.py
asb29/Redundant
ee816fd41f9217610bd11f757cf9175288723c70
[ "MIT" ]
null
null
null
article/tests/test_models.py
asb29/Redundant
ee816fd41f9217610bd11f757cf9175288723c70
[ "MIT" ]
null
null
null
from django.test import TestCase from django.contrib.auth.models import User from article.models import Article, Category class ArticleModelTestCase(TestCase): def setUp(self): self.category = Category.objects.create(name=u'Sports') self.user = User.objects.create(username=u'test', password=u'secret') def test_save(self): new_article = Article.objects.create( title=u'test', content=u'test', author=self.user, category=self.category ) self.assertEqual(new_article.title, u'test') self.assertEqual(new_article.content, u'test') self.assertEqual(new_article.author, self.user) self.assertEqual(new_article.category, self.category) def test_unique_slug(self): new_article1 = Article.objects.create( title=u'test', content=u'test', author=self.user, category=self.category ) new_article2 = Article.objects.create( title=u'test', content=u'test', author=self.user, category=self.category ) self.assertTrue(new_article1.slug != new_article2.slug)
29.536585
77
0.6218
1,085
0.895954
0
0
0
0
0
0
81
0.066887
2200800f734e84798d40a112ef14379650a7d44d
145
py
Python
tests/test_import.py
GoodManWEN/typehints_checker
36e2b2f27b4c392543972e8e466f8e48dfeff274
[ "MIT" ]
null
null
null
tests/test_import.py
GoodManWEN/typehints_checker
36e2b2f27b4c392543972e8e466f8e48dfeff274
[ "MIT" ]
null
null
null
tests/test_import.py
GoodManWEN/typehints_checker
36e2b2f27b4c392543972e8e466f8e48dfeff274
[ "MIT" ]
null
null
null
import os , sys sys.path.append(os.getcwd()) import pytest from typehints_checker import * @pytest.mark.asyncio async def test_import(): ...
18.125
31
0.737931
0
0
0
0
53
0.365517
32
0.22069
0
0
2200a38582a5987a8032f11e6758387289477471
2,240
py
Python
models/FlagAttachment.py
jeffg2k/RootTheBox
1bb971f98da96f66c868f5786c2405321b0be976
[ "Apache-2.0" ]
1
2020-02-28T16:23:12.000Z
2020-02-28T16:23:12.000Z
models/FlagAttachment.py
Warlockk/RootTheBox
e24f3e0350aec1b65be81cdc71ff09a5e1b8e587
[ "Apache-2.0" ]
null
null
null
models/FlagAttachment.py
Warlockk/RootTheBox
e24f3e0350aec1b65be81cdc71ff09a5e1b8e587
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Nov 24, 2014 @author: moloch Copyright 2014 Root the Box Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os from uuid import uuid4 from sqlalchemy import Column, ForeignKey from sqlalchemy.types import Unicode, String, Integer from models.BaseModels import DatabaseObject from libs.StringCoding import encode, decode from builtins import str from tornado.options import options class FlagAttachment(DatabaseObject): """ These are files that the administrator wants to distribute alongside a flag. """ uuid = Column(String(36), unique=True, nullable=False, default=lambda: str(uuid4())) flag_id = Column(Integer, ForeignKey("flag.id"), nullable=False) _file_name = Column(Unicode(64), nullable=False) @property def file_name(self): return self._file_name @file_name.setter def file_name(self, value): fname = value.replace("\n", "").replace("\r", "") self._file_name = str(os.path.basename(fname))[:64] @property def data(self): with open(options.flag_attachment_dir + "/" + self.uuid, "rb") as fp: return decode(fp.read(), "base64") @data.setter def data(self, value): if self.uuid is None: self.uuid = str(uuid4()) self.byte_size = len(value) with open(options.flag_attachment_dir + "/" + self.uuid, "wb") as fp: fp.write(str(encode(value, "base64")).encode()) def delete_data(self): """ Remove the file from the file system, if it exists """ fpath = options.flag_attachment_dir + "/" + self.uuid if os.path.exists(fpath) and os.path.isfile(fpath): os.unlink(fpath)
31.111111
88
0.672768
1,288
0.575
0
0
666
0.297321
0
0
873
0.389732
22016594c64927e9cac7fbe2989ffcfcf16a646f
1,278
py
Python
connman_dispatcher/detect.py
a-sk/connman-dispatcher
2561ae87ffd26d0f98bb1ab2b430e181be3d01c1
[ "0BSD" ]
4
2015-01-04T19:26:01.000Z
2017-06-06T21:04:01.000Z
connman_dispatcher/detect.py
a-sk/connman-dispatcher
2561ae87ffd26d0f98bb1ab2b430e181be3d01c1
[ "0BSD" ]
1
2015-04-04T13:19:15.000Z
2015-04-04T13:19:15.000Z
connman_dispatcher/detect.py
a-sk/connman-dispatcher
2561ae87ffd26d0f98bb1ab2b430e181be3d01c1
[ "0BSD" ]
null
null
null
import glib import dbus from dbus.mainloop.glib import DBusGMainLoop from pyee import EventEmitter import logbook logger = logbook.Logger('connman-dispatcher') __all__ = ['detector'] def property_changed(_, message): if message.get_member() == "PropertyChanged": _, state = message.get_args_list() if state == 'online' and detector.state == 'offline': logger.info('network state change: online' ) detector.emit('up') detector.state = 'online' elif state == 'idle': logger.info('network state change: offline' ) detector.emit('down') detector.state = 'offline' detector = EventEmitter() DBusGMainLoop(set_as_default=True) bus = dbus.SystemBus() bus.add_match_string_non_blocking("interface='net.connman.Manager'") bus.add_message_filter(property_changed) manager = dbus.Interface(bus.get_object('net.connman', "/"), 'net.connman.Manager') def is_online(): properties = manager.GetProperties() if properties['State'] == 'online': return True return False def run(): detector.state = 'offline' if is_online: detector.emit('up') detector.state = 'online' mainloop = glib.MainLoop() mainloop.run() detector.run = run
25.058824
83
0.661972
0
0
0
0
0
0
0
0
264
0.206573
2202355dec4485d79be0734da044b8e85dc7a3dc
4,294
py
Python
integration/test/test_profile_overflow.py
avilcheslopez/geopm
35ad0af3f17f42baa009c97ed45eca24333daf33
[ "MIT", "BSD-3-Clause" ]
null
null
null
integration/test/test_profile_overflow.py
avilcheslopez/geopm
35ad0af3f17f42baa009c97ed45eca24333daf33
[ "MIT", "BSD-3-Clause" ]
null
null
null
integration/test/test_profile_overflow.py
avilcheslopez/geopm
35ad0af3f17f42baa009c97ed45eca24333daf33
[ "MIT", "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # # Copyright (c) 2015 - 2022, Intel Corporation # SPDX-License-Identifier: BSD-3-Clause # """ Runs an application with a large number of short regions and checks that the controller successfully runs. """ import sys import unittest import os import subprocess import glob import geopmpy.io import geopmpy.agent import geopmdpy.error import geopmdpy.topo from integration.test import geopm_test_launcher from integration.test import check_trace class AppConf(object): """Class that is used by the test launcher in place of a geopmpy.io.BenchConf when running the profile_overflow benchmark. """ def write(self): """Called by the test launcher prior to executing the test application to write any files required by the application. """ pass def get_exec_path(self): """Path to benchmark filled in by template automatically. """ script_dir = os.path.dirname(os.path.realpath(__file__)) return os.path.join(script_dir, '.libs', 'test_profile_overflow') def get_exec_args(self): """Returns a list of strings representing the command line arguments to pass to the test-application for the next run. This is especially useful for tests that execute the test-application multiple times. """ return [] class TestIntegration_profile_overflow(unittest.TestCase): @classmethod def setUpClass(cls): """Create launcher, execute benchmark and set up class variables. """ sys.stdout.write('(' + os.path.basename(__file__).split('.')[0] + '.' + cls.__name__ + ') ...') test_name = 'test_profile_overflow' cls._report_path = '{}.report'.format(test_name) cls._trace_path = '{}.trace'.format(test_name) cls._log_path = '{}.log'.format(test_name) cls._agent_conf_path = test_name + '-agent-config.json' # Set the job size parameters such that we have a 3 level tree os.environ["GEOPM_MAX_FAN_OUT"] = "2" num_node = 4 num_rank = geopmdpy.topo.num_domain(geopmdpy.topo.DOMAIN_CORE) - 2 time_limit = 600 # Configure the test application app_conf = AppConf() # Configure the agent agent_conf = geopmpy.agent.AgentConf(cls._agent_conf_path) # Create the test launcher with the above configuration launcher = geopm_test_launcher.TestLauncher(app_conf, agent_conf, cls._report_path, cls._trace_path, time_limit=time_limit) launcher.set_num_node(num_node) launcher.set_num_rank(num_rank) # Run the test application try: launcher.run(test_name) except subprocess.CalledProcessError: sys.stderr.write('{} failed; check log for details.\n'.format(test_name)) raise @classmethod def tearDownClass(cls): os.environ.pop("GEOPM_MAX_FAN_OUT") def test_load_report(self): ''' Test that the report can be loaded. ''' report = geopmpy.io.RawReport(self._report_path) hosts = report.host_names() for hh in hosts: runtime = report.raw_totals(hh)['runtime (s)'] self.assertNotEqual(0, runtime) def test_short_region_count(self): ''' Test that the count for MPI_Barrier is as expected. ''' report = geopmpy.io.RawReport(self._report_path) hosts = report.host_names() for hh in hosts: region_data = report.raw_region(hh, 'MPI_Barrier') count = region_data['count'] self.assertEqual(count, 10000000) def test_sample_rate(self): ''' Test that the sample rate is regular. ''' traces = glob.glob(self._trace_path + "*") if len(traces) == 0: raise RuntimeError("No traces found with prefix: {}".format(self._trace_path_prefix)) for tt in traces: check_trace.check_sample_rate(tt, 0.005) if __name__ == '__main__': unittest.main()
32.778626
97
0.614578
3,766
0.877038
0
0
1,732
0.403354
0
0
1,555
0.362133
2203367508cf03902b996dcb408a29b0ce2106d4
13,627
py
Python
Objects/optAlignRNA.py
MooersLab/jupyterlabpymolpysnipsplus
b886750d63372434df53d4d6d7cdad6cb02ae4e7
[ "MIT" ]
null
null
null
Objects/optAlignRNA.py
MooersLab/jupyterlabpymolpysnipsplus
b886750d63372434df53d4d6d7cdad6cb02ae4e7
[ "MIT" ]
null
null
null
Objects/optAlignRNA.py
MooersLab/jupyterlabpymolpysnipsplus
b886750d63372434df53d4d6d7cdad6cb02ae4e7
[ "MIT" ]
null
null
null
# Description: OptiAlign.py by Jason Vertree modified for aligning multiple RNA structures. # Source: Generated while helping Miranda Adams at U of Saint Louis. """ cmd.do('python') cmd.do(' ##############################################################################') cmd.do('#') cmd.do('# @SUMMARY: -- QKabsch.py. A python implementation of the optimal superposition') cmd.do('# of two sets of vectors as proposed by Kabsch 1976 & 1978.') cmd.do('#') cmd.do('# @AUTHOR: Jason Vertrees') cmd.do('# @COPYRIGHT: Jason Vertrees (C), 2005-2007') cmd.do('# @LICENSE: Released under GPL:') cmd.do('# This program is free software; you can redistribute it and/or modify') cmd.do('# it under the terms of the GNU General Public License as published by') cmd.do('# the Free Software Foundation; either version 2 of the License, or') cmd.do('# (at your option) any later version.') cmd.do('# This program is distributed in the hope that it will be useful, but WITHOUT') cmd.do('# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS') cmd.do('# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.') cmd.do('#') cmd.do('# You should have received a copy of the GNU General Public License along with') cmd.do('# this program; if not, write to the Free Software Foundation, Inc., 51 Franklin') cmd.do('# Street, Fifth Floor, Boston, MA 02110-1301, USA ') cmd.do('#') cmd.do('# DATE : 2007-01-01') cmd.do('# REV : 2') cmd.do('# REQUIREMENTS: numpy') cmd.do('#') cmd.do('#') cmd.do('# Modified optAlign.py to use C1' carbon atoms of RNA for alignment.') cmd.do('# Jan. 29, 2020 ') cmd.do('# Blaine Mooers, PhD') cmd.do('# Univ. of Oklahoma Health Sciences Center') cmd.do('#') cmd.do('#############################################################################') cmd.do('from array import *') cmd.do(' ') cmd.do('# system stuff') cmd.do('import os') cmd.do('import copy') cmd.do(' ') cmd.do('# pretty printing') cmd.do('import pprint') cmd.do(' ') cmd.do('# for importing as a plugin into PyMol') cmd.do('from pymol import cmd') cmd.do('from pymol import stored') cmd.do('from pymol import selector') cmd.do(' ') cmd.do('# using numpy for linear algebra') cmd.do('import numpy') cmd.do(' ') cmd.do('def optAlignRNA( sel1, sel2 ):') cmd.do(' """') cmd.do(' optAlignRNA performs the Kabsch alignment algorithm upon the C1' carbons of two selections.') cmd.do(' Example: optAlignRNA 1JU7 and i. 1-16 and n. C1', 1CLL and i. 4-146 and n. C1'') cmd.do(' ') cmd.do(' Two RMSDs are returned. One comes from the Kabsch algorithm and the other from') cmd.do(' PyMOL based upon your selections.') cmd.do(' ') cmd.do(' This function can be run in a for loop to fit multiple structures with a common prefix name:') cmd.do(' ') cmd.do(' for x in cmd.get_names(): optAlignRNA(x, "1JU7_0001")') cmd.do(' ') cmd.do(' or get the rmsds for all combinations, do the following:') cmd.do(' ') cmd.do(' [[optAlignRNA(x, y) for x in cmd.get_names()] for y in cmd.get_names()]') cmd.do('') cmd.do(' """') cmd.do(' cmd.reset()') cmd.do(' ') cmd.do(' # make the lists for holding coordinates') cmd.do(' # partial lists') cmd.do(' stored.sel1 = []') cmd.do(' stored.sel2 = []') cmd.do(' # full lists') cmd.do(' stored.mol1 = []') cmd.do(' stored.mol2 = []') cmd.do(' ') cmd.do(' # -- CUT HERE') cmd.do(' sel1 += " and N. C1'"') cmd.do(' sel2 += " and N. C1'"') cmd.do(' # -- CUT HERE') cmd.do(' ') cmd.do(' # Get the selected coordinates. We') cmd.do(' # align these coords.') cmd.do(' cmd.iterate_state(1, selector.process(sel1), "stored.sel1.append([x,y,z])")') cmd.do(' cmd.iterate_state(1, selector.process(sel2), "stored.sel2.append([x,y,z])")') cmd.do(' ') cmd.do(' # get molecule name') cmd.do(' mol1 = cmd.identify(sel1,1)[0][0]') cmd.do(' mol2 = cmd.identify(sel2,1)[0][0]') cmd.do(' ') cmd.do(' # Get all molecule coords. We do this because') cmd.do(' # we have to rotate the whole molcule, not just') cmd.do(' # the aligned selection') cmd.do(' cmd.iterate_state(1, mol1, "stored.mol1.append([x,y,z])")') cmd.do(' cmd.iterate_state(1, mol2, "stored.mol2.append([x,y,z])")') cmd.do(' ') cmd.do(' # check for consistency') cmd.do(' assert len(stored.sel1) == len(stored.sel2)') cmd.do(' L = len(stored.sel1)') cmd.do(' assert L > 0') cmd.do(' ') cmd.do(' # must alway center the two proteins to avoid') cmd.do(' # affine transformations. Center the two proteins') cmd.do(' # to their selections.') cmd.do(' COM1 = numpy.sum(stored.sel1,axis=0) / float(L)') cmd.do(' COM2 = numpy.sum(stored.sel2,axis=0) / float(L)') cmd.do(' stored.sel1 -= COM1') cmd.do(' stored.sel2 -= COM2') cmd.do(' ') cmd.do(' # Initial residual, see Kabsch.') cmd.do(' E0 = numpy.sum( numpy.sum(stored.sel1 * stored.sel1,axis=0),axis=0) + numpy.sum( numpy.sum(stored.sel2 * stored.sel2,axis=0),axis=0)') cmd.do(' ') cmd.do(' #') cmd.do(' # This beautiful step provides the answer. V and Wt are the orthonormal') cmd.do(' # bases that when multiplied by each other give us the rotation matrix, U.') cmd.do(' # S, (Sigma, from SVD) provides us with the error! Isn't SVD great!') cmd.do(' V, S, Wt = numpy.linalg.svd( numpy.dot( numpy.transpose(stored.sel2), stored.sel1))') cmd.do(' ') cmd.do(' # we already have our solution, in the results from SVD.') cmd.do(' # we just need to check for reflections and then produce') cmd.do(' # the rotation. V and Wt are orthonormal, so their det's') cmd.do(' # are +/-1.') cmd.do(' reflect = float(str(float(numpy.linalg.det(V) * numpy.linalg.det(Wt))))') cmd.do(' ') cmd.do(' if reflect == -1.0:') cmd.do(' S[-1] = -S[-1]') cmd.do(' V[:,-1] = -V[:,-1]') cmd.do(' ') cmd.do(' RMSD = E0 - (2.0 * sum(S))') cmd.do(' RMSD = numpy.sqrt(abs(RMSD / L))') cmd.do(' ') cmd.do(' #U is simply V*Wt') cmd.do(' U = numpy.dot(V, Wt)') cmd.do(' ') cmd.do(' # rotate and translate the molecule') cmd.do(' stored.sel2 = numpy.dot((stored.mol2 - COM2), U)') cmd.do(' stored.sel2 = stored.sel2.tolist()') cmd.do(' # center the molecule') cmd.do(' stored.sel1 = stored.mol1 - COM1') cmd.do(' stored.sel1 = stored.sel1.tolist()') cmd.do(' ') cmd.do(' # let PyMol know about the changes to the coordinates') cmd.do(' cmd.alter_state(1,mol1,"(x,y,z)=stored.sel1.pop(0)")') cmd.do(' cmd.alter_state(1,mol2,"(x,y,z)=stored.sel2.pop(0)")') cmd.do(' ') cmd.do(' #print("Moved: %s Reference: %s RMSD = %f" % mol1, mol2, RMSD)') cmd.do(' print("% s, % s,% 5.3f" % (mol1, mol2, RMSD))') cmd.do(' ') cmd.do(' # make the alignment OBVIOUS') cmd.do(' cmd.hide("everything")') cmd.do(' cmd.show("ribbon", sel1 + " or " + sel2)') cmd.do(' cmd.color("gray70", mol1 )') cmd.do(' cmd.color("magenta", mol2 )') cmd.do(' cmd.color("red", "visible")') cmd.do(' cmd.show("ribbon", "not visible")') cmd.do(' cmd.center("visible")') cmd.do(' cmd.orient()') cmd.do(' cmd.zoom("visible")') cmd.do(' ') cmd.do('cmd.extend("optAlignRNA", optAlignRNA)') cmd.do('python end') """ cmd.do('python') cmd.do(' ##############################################################################') cmd.do('#') cmd.do('# @SUMMARY: -- QKabsch.py. A python implementation of the optimal superposition') cmd.do('# of two sets of vectors as proposed by Kabsch 1976 & 1978.') cmd.do('#') cmd.do('# @AUTHOR: Jason Vertrees') cmd.do('# @COPYRIGHT: Jason Vertrees (C), 2005-2007') cmd.do('# @LICENSE: Released under GPL:') cmd.do('# This program is free software; you can redistribute it and/or modify') cmd.do('# it under the terms of the GNU General Public License as published by') cmd.do('# the Free Software Foundation; either version 2 of the License, or') cmd.do('# (at your option) any later version.') cmd.do('# This program is distributed in the hope that it will be useful, but WITHOUT') cmd.do('# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS') cmd.do('# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.') cmd.do('#') cmd.do('# You should have received a copy of the GNU General Public License along with') cmd.do('# this program; if not, write to the Free Software Foundation, Inc., 51 Franklin') cmd.do('# Street, Fifth Floor, Boston, MA 02110-1301, USA ') cmd.do('#') cmd.do('# DATE : 2007-01-01') cmd.do('# REV : 2') cmd.do('# REQUIREMENTS: numpy') cmd.do('#') cmd.do('#') cmd.do('# Modified optAlign.py to use C1' carbon atoms of RNA for alignment.') cmd.do('# Jan. 29, 2020 ') cmd.do('# Blaine Mooers, PhD') cmd.do('# Univ. of Oklahoma Health Sciences Center') cmd.do('#') cmd.do('#############################################################################') cmd.do('from array import *') cmd.do(' ') cmd.do('# system stuff') cmd.do('import os') cmd.do('import copy') cmd.do(' ') cmd.do('# pretty printing') cmd.do('import pprint') cmd.do(' ') cmd.do('# for importing as a plugin into PyMol') cmd.do('from pymol import cmd') cmd.do('from pymol import stored') cmd.do('from pymol import selector') cmd.do(' ') cmd.do('# using numpy for linear algebra') cmd.do('import numpy') cmd.do(' ') cmd.do('def optAlignRNA( sel1, sel2 ):') cmd.do(' """') cmd.do(' optAlignRNA performs the Kabsch alignment algorithm upon the C1' carbons of two selections.') cmd.do(' Example: optAlignRNA 1JU7 and i. 1-16 and n. C1', 1CLL and i. 4-146 and n. C1'') cmd.do(' ') cmd.do(' Two RMSDs are returned. One comes from the Kabsch algorithm and the other from') cmd.do(' PyMOL based upon your selections.') cmd.do(' ') cmd.do(' This function can be run in a for loop to fit multiple structures with a common prefix name:') cmd.do(' ') cmd.do(' for x in cmd.get_names(): optAlignRNA(x, "1JU7_0001")') cmd.do(' ') cmd.do(' or get the rmsds for all combinations, do the following:') cmd.do(' ') cmd.do(' [[optAlignRNA(x, y) for x in cmd.get_names()] for y in cmd.get_names()]') cmd.do('') cmd.do(' """') cmd.do(' cmd.reset()') cmd.do(' ') cmd.do(' # make the lists for holding coordinates') cmd.do(' # partial lists') cmd.do(' stored.sel1 = []') cmd.do(' stored.sel2 = []') cmd.do(' # full lists') cmd.do(' stored.mol1 = []') cmd.do(' stored.mol2 = []') cmd.do(' ') cmd.do(' # -- CUT HERE') cmd.do(' sel1 += " and N. C1'"') cmd.do(' sel2 += " and N. C1'"') cmd.do(' # -- CUT HERE') cmd.do(' ') cmd.do(' # Get the selected coordinates. We') cmd.do(' # align these coords.') cmd.do(' cmd.iterate_state(1, selector.process(sel1), "stored.sel1.append([x,y,z])")') cmd.do(' cmd.iterate_state(1, selector.process(sel2), "stored.sel2.append([x,y,z])")') cmd.do(' ') cmd.do(' # get molecule name') cmd.do(' mol1 = cmd.identify(sel1,1)[0][0]') cmd.do(' mol2 = cmd.identify(sel2,1)[0][0]') cmd.do(' ') cmd.do(' # Get all molecule coords. We do this because') cmd.do(' # we have to rotate the whole molcule, not just') cmd.do(' # the aligned selection') cmd.do(' cmd.iterate_state(1, mol1, "stored.mol1.append([x,y,z])")') cmd.do(' cmd.iterate_state(1, mol2, "stored.mol2.append([x,y,z])")') cmd.do(' ') cmd.do(' # check for consistency') cmd.do(' assert len(stored.sel1) == len(stored.sel2)') cmd.do(' L = len(stored.sel1)') cmd.do(' assert L > 0') cmd.do(' ') cmd.do(' # must alway center the two proteins to avoid') cmd.do(' # affine transformations. Center the two proteins') cmd.do(' # to their selections.') cmd.do(' COM1 = numpy.sum(stored.sel1,axis=0) / float(L)') cmd.do(' COM2 = numpy.sum(stored.sel2,axis=0) / float(L)') cmd.do(' stored.sel1 -= COM1') cmd.do(' stored.sel2 -= COM2') cmd.do(' ') cmd.do(' # Initial residual, see Kabsch.') cmd.do(' E0 = numpy.sum( numpy.sum(stored.sel1 * stored.sel1,axis=0),axis=0) + numpy.sum( numpy.sum(stored.sel2 * stored.sel2,axis=0),axis=0)') cmd.do(' ') cmd.do(' #') cmd.do(' # This beautiful step provides the answer. V and Wt are the orthonormal') cmd.do(' # bases that when multiplied by each other give us the rotation matrix, U.') cmd.do(' # S, (Sigma, from SVD) provides us with the error! Isn't SVD great!') cmd.do(' V, S, Wt = numpy.linalg.svd( numpy.dot( numpy.transpose(stored.sel2), stored.sel1))') cmd.do(' ') cmd.do(' # we already have our solution, in the results from SVD.') cmd.do(' # we just need to check for reflections and then produce') cmd.do(' # the rotation. V and Wt are orthonormal, so their det's') cmd.do(' # are +/-1.') cmd.do(' reflect = float(str(float(numpy.linalg.det(V) * numpy.linalg.det(Wt))))') cmd.do(' ') cmd.do(' if reflect == -1.0:') cmd.do(' S[-1] = -S[-1]') cmd.do(' V[:,-1] = -V[:,-1]') cmd.do(' ') cmd.do(' RMSD = E0 - (2.0 * sum(S))') cmd.do(' RMSD = numpy.sqrt(abs(RMSD / L))') cmd.do(' ') cmd.do(' #U is simply V*Wt') cmd.do(' U = numpy.dot(V, Wt)') cmd.do(' ') cmd.do(' # rotate and translate the molecule') cmd.do(' stored.sel2 = numpy.dot((stored.mol2 - COM2), U)') cmd.do(' stored.sel2 = stored.sel2.tolist()') cmd.do(' # center the molecule') cmd.do(' stored.sel1 = stored.mol1 - COM1') cmd.do(' stored.sel1 = stored.sel1.tolist()') cmd.do(' ') cmd.do(' # let PyMol know about the changes to the coordinates') cmd.do(' cmd.alter_state(1,mol1,"(x,y,z)=stored.sel1.pop(0)")') cmd.do(' cmd.alter_state(1,mol2,"(x,y,z)=stored.sel2.pop(0)")') cmd.do(' ') cmd.do(' #print("Moved: %s Reference: %s RMSD = %f" % mol1, mol2, RMSD)') cmd.do(' print("% s, % s,% 5.3f" % (mol1, mol2, RMSD))') cmd.do(' ') cmd.do(' # make the alignment OBVIOUS') cmd.do(' cmd.hide("everything")') cmd.do(' cmd.show("ribbon", sel1 + " or " + sel2)') cmd.do(' cmd.color("gray70", mol1 )') cmd.do(' cmd.color("magenta", mol2 )') cmd.do(' cmd.color("red", "visible")') cmd.do(' cmd.show("ribbon", "not visible")') cmd.do(' cmd.center("visible")') cmd.do(' cmd.orient()') cmd.do(' cmd.zoom("visible")') cmd.do(' ') cmd.do('cmd.extend("optAlignRNA", optAlignRNA)') cmd.do('python end')
41.419453
143
0.634329
0
0
0
0
0
0
0
0
11,486
0.842885
220378f315f7e2f7d8cd6b8b856c000fc8a490f5
12,933
py
Python
2020/day11.py
asmeurer/advent-of-code
3ba3edb0c29994487f1b3344383dc41dfea9bfcb
[ "MIT" ]
null
null
null
2020/day11.py
asmeurer/advent-of-code
3ba3edb0c29994487f1b3344383dc41dfea9bfcb
[ "MIT" ]
null
null
null
2020/day11.py
asmeurer/advent-of-code
3ba3edb0c29994487f1b3344383dc41dfea9bfcb
[ "MIT" ]
null
null
null
test_input = """ L.LL.LL.LL LLLLLLL.LL L.L.L..L.. LLLL.LL.LL L.LL.LL.LL L.LLLLL.LL ..L.L..... LLLLLLLLLL L.LLLLLL.L L.LLLLL.LL """ test_input2 = """ .......#. ...#..... .#....... ......... ..#L....# ....#.... ......... #........ ...#..... """ test_input3 = """ ............. .L.L.#.#.#.#. ............. """ test_input4 = """ .##.##. #.#.#.# ##...## ...L... ##...## #.#.#.# .##.##. """ input = """ LL.LL.LLLLLL.LLLLLLLLLLLLLLLLLL.LLLLL..LLLLLLL.LLLLLLLLLLLL.LLLL.LLLLL.LL.LLLLLL.LLLL.LLLLL LLLLL.LLLLLL.LLLLLLLLLLLLL.LLLL.LL.LLLLLLLLLLLLLLLLLLLLLLLL.LLLL.LLLLLLLLLLLLLLLLLLLLLLLLLL LLLLL.LLLLLLLLLLLLLLL.LLLLLLLLL.LLLLLL.LLLLLLLLLLLLLLLLLLLL.LLLL.LLLLLLLLLLLLLLL.LLLL.LLLLL LLLLL.LLLLLL.LLLLLLLL.LLLLLLLLLLLLLLLLLLLLLLLL.LLLLL.LLLLLL.LLLLLLLLLLLLLLLLLLLL.LLLLLLLLLL LLLLL.LLLLLL.LLLLLLLLLLLLL.LLLL.LLLLLLLLLLLLLL.LLLLL.LLLLLL.LLLL.LLLLLLLL.LLLLLLLLLLLLLLLLL .LL...LL.L.L....LL..LL..L.L.L..L.....L...LL.....LLL..L..L..L.....L.L..LLLL...LL.LL.L....... LLLLLLLLLLLL.LLLLLLLLLLLLL.LLLLLLLLLLLLLLLLLLLLLLLL..LLLLLLLLLLLLLLLLLLLL.LLLLLL.LLLL.LLLLL LLLLL.LLLLLLLLLLLLLLL.LLLLLLLLL.LLLLLLLLLLLLLL.LLLLL.LLLLLLLLLLL.LLLLLLLL.LLLLLLLLLLL.LLLLL LLLLLLLLLLLL.LLLLLLLLLLLLL.LLLL.LLLLLL.LLLLLLLLLLLLLLLLLLLL.LLLL.LLLLLLLLLLLLLLLLLLLL.LLLLL LLLLL.LLLLLL.LLLLLLLL.LLLL.LLLL.LLLLLLLLLLLLLL.LL.LLLLLLLLL.LLLLLLLLLLLLL.LLLLLLLLLLLLLLLLL LLLLL.LLLLLL.LLLLLLLL.LLLLLLLLL.LLLLLL.LLLLLLL.LLLLLLLLLLLL.LLLL.LLLLLLLL.LLLLLLLLLLLLLLLLL LLLLLLLLLLLLLLLLLLLLL.LLLL.LLLLLLLLLLL.LLLLLLL.LLLLL.LLLLLL.LLLL.LLLLLLLLLLLLLLL.LLLL.LLLLL LL.L......L...LL....L...L.LL.L.....L.LL.L....L...LLL....LL.....LL.L.LLL...LL.L...LLL.L.L... LLLLLLLLLLLL.LLLLLLLL.L.LL.L.LLLLLLLLL.LLLLLLLLLLLLL.LLLLLL.LLLLLLLLLLLLL.LLLLLLLLLLL.LLLLL LLLLLLLLLLLL.LLLLLLLLLLLLLLLLLLLLLLLLL.LLLLLLL.LLLLL.LLLLLL.LLLL.LLLLLLLLLLLLLLL.LLLLLLLLLL LLLLL.LLLLLL.LLLLLLLLLLLLL.LLLL.LLLLLL.LLLLLLLLLL.LL.LLLLLLLLLLL.LLLLLLLLLLLLLLL.LLLL.LLLLL LLLLL.LLLLLLLLLLLLLLL.LLLL.LLLL.LLLLLL.L.LLLLL.LLLLLLLLLLLL.LLLL.LLLLLLL..LLLLLL.LLLL.LLLLL LLLLLLLLLLLLLLLLLLLLLLLLLL.LLLLLLLLLLL.LLLLLLL.LLLLLLLLLLLL.LLLL.LLLLLLLLLLLLLLL.L.LL.LLLLL .LLLL.LLLLLL.LLLLLLLL.LLLLLLLLLLLLLLLL.LLLLLLLLLLLLL.LLLLLLLLLLL.LLLLLLLL.LLLLLL.LLLL.LLLLL LLLLL.LLLLLL.LLLLLLL.LLLLLLLLLLLLLLLLLLLLLLLLL.LLLLL.LLLLLL.LLLL.LLLLLLLL.LLLLLL.LLLL.LLLLL ...L..L......L..L.L.......LL...L.LL.L...LL...L..LL....L....L.L..L...L...L.L.....LL.....L..L LLLLL.LLLLLL.LLLLLLLL.LLLLLLLLL.LLLLLL.LLLLLLL.LLLLLLLLLLLL.LLLL.LLLLLLLL.LLLLLLLLLLLLLL.LL LLLLL.LLLLLLLL.LL.LLLLLLLL.LLLL.LLLLLL.LLLLLLLLLLL.L.LLLLLL.LLLLLLLLLLLLLLLLLLLLLLLLL.LLLLL LLLLL.LLLLLL.LLLLLLLL.LLLL.LLLL.LLLLLL.LLL.LLL.LLLLL.LLLLLL.LLLL.LLLLLLLLLLLLLLL.LLLL.LLLLL LLLLLLLLLLLL.LLLLLLLL.LLLL.LLLL.LLLLLLLLLLLLLL.L.LLL.LLLLLL.LLLL.LLLLLLLL.LLLLLL.LLLLLLLLLL LLLLL.LLLLLL.LLLLLLLL.LLLL.LLLL.LLLLLL.LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL.LLLLLL.LLLLLLLLLL LLLLL.LLLLLL.LLLLLLLLLLLLL.LLLL.LLLLLL.LLLLLLL.LLLLL.LLLLLL.LLLLLLLLLLLLL.LLLLLL.LLLLLLLLLL LLLLLLLLLLLL.LLLLLLLL.LLLL.LLLL.LLLLLL.LLLLLLL.LLLLLLLLLLL.LLLLL.LLLLLLLLLLLLLLL.LLLLLLLLLL .......LL.L.L...LL..L....LL....L.L.L....L......L..LL...LL.LLL..L....L......L.LLL.L.....LLLL LLLLL.LLLLLLLLLLLLLLL.LLLL.LLLL.LLLLLL.LLLLLLLLLLLLL.LLLLLLLLLLL.LLLLLLLLLLLLLLL.LLLL.LLLLL LLLLL.LLLLLLLLLLLLLLL.LLLL.LLLL.LLLLLLLLLL.LLLLLLLLL.LLLL.L.LLLL.LLLLLLLL.LLLLLL.L.LLLLLLLL LLLLL.LLLLLL.LLLLLLLL.LLLL.LLLL.LLLLLL.LLLLLLL.LLLLL.LLLLLL.LLLL.LLLLLLLL.LLLLLL.LLLLLLLLL. LLLLL.LLLLLLLLLLLLLLL.LLLLLLLLLLLLLLLLLLLLLLLL.LLL.LLLLLLLL.LLLL.LLLLLLLL.LLLLLL.LLL..LLLLL LLLLL.LLLLLL.LLLLLLLL.LLLL.LLLL.LLLLLLLLLLLLLL.LLLLLLLLLLLL.LLLL.LLLLLLLL.LLLLLLLLLLLLLLLLL LLLLL.LLLLLLLLLLLLLLL.LLLLLLLLL.LLLLLLLLLLLLLL.LLLLL.LLLLLLLLLLL.LLLLLLLL.LLLLLLLLLLL.LLLLL LLLLLLLLLLLL.LLLLLLLLLLLLL.LLLL.LLLLLLLLLLLLLLLLLLLL.LLLLLLLLLLL.LLLLLLLLLLLLLLLLLL.LLLLLLL LLLLL.LLLLLL.LL.LLLLLLLLLL.LLLL.LLLLLL.LLLLLLLLLLLLL.LLLLLL.LLLL.LLLLLLLL.LLLLLL.LLLL.LLLLL LLLLL.LLLLLL.LLLLLLLL.LLLL.LLLL.LLLLLLLLLLLLLL.LLLLL.LLLLLLLLLLL.LLL.LLLL.LLLLLLLLLLLLLLLLL .L........L..L.L.LLLLL.......LL.......L..L.L..LL.L......L.......LLL..LLL.LL...L.L...L.LL.L. LLLLL.LLLLLL.LLLLLLLL.LLLLLLLLL.LLLLLL.LLLLLLL.LLLLLLLLLLLL.LLLLLLLLLLLLL.LLLLLL.LLLL.LLLLL LLLLLLLLLLLLLLLLLLLLL.LLLL.LLLL.LLLLLL.LLLLLLLLLLLLLLLLLLLL.LLLL.LLLLLLLLLLLLLLL.LLLL.LLLLL LLLLL..LLLLL.LLLLLLLL.LLLL.LLL..LLLLLL.LLLLLLL.LLLLL.LLLLLL.LLLL.LLLLLLLL.LLLLLL.LLLLLLLLLL LLLLL.LLLLLL.LLLLLLLL.LLLL.LLLL.LLLLLL.LLLLLLLLLLLLL.LLLLLL.LLLL.LLLLLLLL.LLLLLLLLLLLLLLLLL LLLLL.LLLLL..LLLLLLLL.LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL.LLLLLLLL.LLLLLL.LLLL.LLLLL LLLLL.LLLLLLLLLLLLLLL.LLLLLLLLL.LLLLLL.LLLLLLL.LLLLL.LLLLLLLLLLL.LLLLLLLL.LLLLLL.LLLL.LLLLL LLLLL.LLLLLL.LLLLLLLL.LLLL.LLLLLLLLLLLLLLLLLLL.LLLLL.LLLLLL.LLLL.LLLLLLLL.LLLLLLLLLLL.LLLLL LLLLL.LLLLLL.LLLLLLLLLLLLL.LLLL.LLLLLL.LLLLLLL.LLLLLLLLLLLL.LLLL.LLLLLLLL.LLLLLLLLLLL.LLLLL ..L..LL.......L.LLLL.L.....L...L.LL...LLLLL.L.....L..L...LL.LL..L..LLLLLL..........LL.....L LLLLL.LLLLLL.LLLLLLLL.LLLL.LLLLLLLLLLLLLLLLLLL.LLLLL.LLLLLL.LLLL.LLLLLLLLLLLLLLLLLLLL.LLLLL LLLLL.LLLLLL.LLLLLLLLLLLLL.LLLL.LLLLLLLLLLLLLL.LLLLLLLLLLLL.LLLLLLLLLLLLL.LLLLLLLLLLL.LLLLL LLLLLLLLLLLLLLLLLLLLLLLLLL.LLLLLLLLLLL.LLLLLLL.LLLLL.LLLLLLLLLLL.LLLLLLLLLLLLLLL.LLLLLLLLLL LLLLLLLLLLLL.LLLLLLLL.LLLL.LLLL.LLLLLLLLLLLLLL.LLLLLLLLLLLLLLLLLLLLLLLLLL.LLLLLLLLLLLLLLLLL LLLLL.LLLLLL.LLLLLLLL.LLLL.LLLL.LLLLLL.LLLLLLL.LLLLL.LLLLLL.LLLLLLLLLLLLLLLLLLLL.LLLL.LLLLL LLLLL..LLLLL.LLLLLLLL.LLLL.LLLLLLLLLLLLLLLLLLLLLLLLL.LLLLLLLLLLLLLLLLLLLL.LLLLLL.LLLL.LLLLL LLLLLLLLLLLL.LLLLLLLLLLLLL.LLLL.LLLLLL..LLLLLL.LLLLLLLLLLLLLLLLLLLLLLLLLL.LL.LLLLLLLL.LLLLL LLLLL.LLLLLLLLLLLLLLLLLLLL.LLLLLLLLLLL.LLLLLLL.LLLL..LLLLLL.LLLL.LLLLLLLL.LLLLLLLLLLL.LLLLL L...LL....L..L..LL.........L.L...LL..LL.L....L...........LL.L.......L.L.L.......L..L..LL..L LLLLL.LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL.LLLLLLL.LLLLL.LL.LLL.LLLL.LLLLLLLL.LLLLLL.LLLL.LLLLL LLLLL.LLLLLLLLLLLLLLL.LLLL.LLLL.LLLLLL.L.LLLLLLLLLLL.LL.LLL.LLLLLLLLLLLLL.LLLLLL.LLLL.LLLLL LLLLLLLLLLLLLLLLLLLLL.LLLL.LLLL.L.LLLL.LLLLLLLLLLLL..L.LLLL.L.LL.LLLLLLLL.LLLLLLLLLLLLLLLL. LLLLL.LLLLLL.LLLLLLLL.LLLL.LLLL.LLLLLLLLLLLLLL.LLLLL.LLLLLL.LLLL.LLLLLLLL.LLLLLLLLLLLLLLLLL LLLLL.LLLLLL.LLLLLLLLL.LLL.LLLL.LLLLLL.LLLLLLL.LLLLL.LLLLLL.LLLL.LLLLLLLL.LLLLLL.LLLL.LLLLL LLLLLLLLLLLL.LLLLLLLL.LLLLLLLLL.LLLLLLLLLLLLLLLLLLLL.LLLLLLLLLLL.LLLLLLLL.LLLLLL.LLLLLLLLLL LLLLL.LLLLLLLLLLLLLLL.LLLL.LLLLLLLLLLLLLLLLLLL.LLLLL.LLLLLLLLLLL.LLLLLLLLLLLLLLL.LLLLLLLLLL LLLLLLLLLLLL.LLLLLLLLLLLLLLLLLLLLLLLLL.LLLLLLL.LLLLL.LLLLLL.LLLLLLLLLLLLL.LLLLLLLLLLLLLLLLL .....L.LLL...LL..LL.....L....LL.......L...LL..L..L...L...L.LL.LL.LL...LL..LLL.L..LLL..LLLL. LLLLLLLLLLLLLLLLLLLLL.LLLL.LLLL.LLLLLL.LLLLLLLLLLLLLLLLLLLL.LLLLLLLLLLLLL.LLLLLL.LLLL.LLLLL LLLLLLLLLLLL.LLLLLLLL.LLLLLLLLL.LLLLLLLLLLLL.L.LLLLL.LLLLLL.LLLL.LLLLLLLL.LLLLLL.LLLL.LLLLL LLLLL.LLLLLLLLLLLLLLL.LLLL.LLLLLLLLL.LLLLLLLLL.LLLLLLLLLLLL.LLLLLLLLLLLLL.LLLLLLLLLLL.LLLLL LLLLL.LLLLLL.LLLLLLLL.LLLL.LLLL.LLLLLL.LLLLLLLLLLLLL.LLLLLL.LLLLLLLLLLLLL.LLLLLLLLLLLLLLLLL LLLLLLLLLLLLLLLLLLLLLLLLLL.LLLLLLLLLLL.LLLLLLLLLLLLL.LLLLLLLLLLL.LLLLLLLL.LLLLLLLLLLL.LLLLL LLLLL.LLLLLLLLLLLLLLL.LLLL..LLL.LLLLLLLLLLLLLL.LLLL..LLLLLLLLLLL.LLLLLLLL.LLLLLL.LLLLLLLLLL LLLLLLLLLLLL.LLLLLLLL.LLLL.LLLL.LLLLLL.LLLLLLL.LLLLL.LLLLLL.LLLLLLLLLLLLL.LLLLLL.LLLL.LLLLL LLLLL.LLLLLLLLLLLLLLL.LLLL.LLLLLLLL.LL.LLLLLLLLLLLLL.LL.LLL.LLLLLLLLLLLLL.LLLLLL.LLLL.LLLLL ..L..LL.........L....L.L.L.L...L....L...........LL....L..L...L.LL..L..LL.L..LL..L..L.L..L.L LLLLL.LLLLLL.LLLLLLLL.LLLL.LLLLLLLLLLLLLL.LLLL.LLLLLLLLLLLL.LLLL.LLLLLLLLLLLLLLL.LLLL.LLLLL LLLLL.LLLLLL.LLLLLLLL.LLLLLLLLLLLLLLLLLLLLLLLL.LLLLLLLLLLLL.LLLLLLLLLLLLL.LLLLLL.LLLLLLLLLL LLLLL.LLLLLLLLLLLLLLLLLLLL.LLLL.LLLLLL.LLLLLLL.LLLLLLLLLLLL.LLLL.LLLLLLLL.LLLLLL.LLLLLLLLLL LLLLL.LLLLLL.LLLLLLLLLLLLL.LLLL.LLLLLLLLLLLLLLLLLLLL.LLLLLL.LLLLLLLLLLLLLLLLLLLL.LLLLLLLLLL LLLLL.LLLLLLLLLLLLLLL.LLLLLLLLL.LLLLLL.LLLLLLLLLLLLL.LLLLLLLLLLL.LLLLLLLLLLLLLLL.LLLL.LLLLL ....L............L....LL......L.LLL.LLL....LL.....L..L.LL.L........L..L......L.LLL..LL..LL. LL.LLLLLLLLL.LLLLLLLL.LLLL.LLLL.LLLLLL.LLLLLLL.LLLLL.LLLLLL.LLLLLLLLLLLLLLLLLLLL.LLLLLLLLLL LLLLL.LLLLLL.LLLLLLLL.L.LLLLLLL.LLLLLLLLLLLLLL.LLLLLLLLLLLLLLLLL.LLLLLLLL..LLLLL.LLLL.LLLLL LLLLL.LLLLLL.LLLLLLLLLLLLL.LLLL.LLLLLL.LLLLLLL.LLLLLLLLLLLL.LLLLLLLLLLLLLLLLLLLL.LLLLLLLLLL LLLLLLLLLLLL.LLLLLLLL.LLLL.LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL..LLLLLLLLLLLLLLLLLLL.LLLLL LLLLL.LLLLLL.LLLLLLLL.LLLLLLLLLLLLL.LL.LLLLLLLLLLLLL.LLLLLL.LLLL.LLLLLLLL.LLLLLL.LLLL.LLLLL LLLLLLLLLLLL.LLLLLLLL.LLLLLLLLL.LLLLLL.LLLLLLLLLLLLL.LLLLLL.LLLLLLLLLLLLL.LLLLLL.LLLL.LLLLL LLLLL.L.LLLL.LLLLLLLL.LLLLLLLLL.LLLLLL.LLLLLLLLLLLLL.LLLLLL.LLLL.LLLLLLLL.LLLLLLLLLLL.LLLLL LLLLL.LLLLLL.LLLLLLLL.LLLL.LLLL.LLLLLLLLLLLLLL.LLLLL.LLLLLL.LLLL.LLLLLLLL.LLLLLLLLLLLLLLLLL LLLLL.LLLLLLLLLLLLLLL.LLLL.LLLL.LLLLLL.LLLLLLLLLLLLL.LLLLLLLLLLL.LLLLLLLL.LLLLLL.LLLLLLLLLL .L......LLL...L.L.LL.L.....LL.L..L.L.LLLLL....LL..L...L..L.....L.L...L...L.L.LL.LL.L....... LLLLLLLLLLLL.LLLLLLLL.LLLLLLLLL.LLLLLL.LLLLLLL.LLLLL.LLLLLL.LLLL.LLLLLLLLLLLLLLL.LLLL.LLLLL LLLLL.LLLLLL.LLLLLLLL.LLLL.LLLL.LLLLLL.LLLLLLL.LLLLL.LLLLLLLLLLL.LLLLLLLLLLLLLLLLLLLL.LLLLL LLLLL.LLLLLL.LLLLLLLL.LLLLLLLLL.LLLLLL.LLLLLLL.LLLLLLLLLLLL.LLLL.LLLLLLLL.LLLLLLLLLLL.LLLLL LLLLLLLLLLLLLLLLLLLLL.LLLLLLLLL.LLLLLL.LLLLLLLLLLLLL.LLLLLLLLLLL.LLLLLLLLLLLLLLL.LLLLLLLLLL LLLLL.LLLLLLLLLLLLLL..LLLLLLLLL.LLLLLL.LLLLLLL.LLLLL.LLLLL..LLLL.LLLLLLLLLLLLLLLLLLLLLLLLLL LLLLLLLLLLLLLLLLLLLLL.LLLL.LLLLLLLLLLLLLLLLLLL.LLLLL.LLLLLL.LLLL.LLLLLLLL.LLLLLL.LLLL.LLLLL """ import numpy as np val = {'L': -1, '#': 1, '.': 0} rval = {v: k for k, v in val.items()} def strtoarray(text): return np.array([[val[i] for i in line] for line in text.strip().splitlines()]) def arraytostr(a): if a.ndim == 1: a = a.reshape((1, a.size)) return '\n'.join([''.join([rval[i] for i in row]) for row in a]) def adjacent(a, i, j): rows, cols = a.shape adj = [] for newi in [i - 1, i, i + 1]: for newj in [j - 1, j, j + 1]: if (newi, newj) == (i, j): continue if newi < 0 or newj < 0: continue if newi >= rows or newj >= cols: continue adj.append(a[newi, newj]) return np.array(adj) def adjacent2(a, i, j): rows, cols = a.shape adj = [] for idir in [-1, 0, 1]: for jdir in [-1, 0, 1]: if idir == jdir == 0: continue for x in range(1, max(rows, cols)): newi = i + idir*x newj = j + jdir*x if newi < 0 or newi >= rows or newj < 0 or newj >= cols: break c = a[newi, newj] if c in [-1, 1]: adj.append(c) break return np.array(adj) def apply_rules(a): newa = a.copy() rows, cols = a.shape changed = False for i in range(rows): for j in range(cols): if a[i, j] == 0: continue adj = adjacent(a, i, j) if a[i, j] == -1 and np.sum(adj==1) == 0: changed = True newa[i, j] = 1 elif a[i, j] == 1 and np.sum(adj==1) >= 4: changed = True newa[i, j] = -1 return newa, changed def generations(a): n = 0 while True: print("Generation", n) print(arraytostr(a)) print() a, changed = apply_rules(a) if not changed: return a n += 1 def apply_rules2(a): newa = a.copy() rows, cols = a.shape changed = False for i in range(rows): for j in range(cols): if a[i, j] == 0: continue adj = adjacent2(a, i, j) if a[i, j] == -1 and np.sum(adj==1) == 0: changed = True newa[i, j] = 1 elif a[i, j] == 1 and np.sum(adj==1) >= 5: changed = True newa[i, j] = -1 return newa, changed def generations2(a): n = 0 while True: print("Generation", n) print(arraytostr(a)) print() a, changed = apply_rules2(a) if not changed: return a n += 1 print("Day 11") print("Part 1") print("Test input") testa = strtoarray(test_input) print(test_input) print(testa) print(arraytostr(testa)) print("Adjacent to 0, 0", arraytostr(adjacent(testa, 0, 0))) print("Adjacent to 2, 2", arraytostr(adjacent(testa, 2, 2))) test_finala = generations(testa) print(np.sum(test_finala == 1)) print("Puzzle input") a = strtoarray(input) finala = generations(a) print(np.sum(finala == 1)) print("Part 2") print("Test input") testa2 = strtoarray(test_input2) assert testa2[4, 3] == -1 print(adjacent2(testa2, 4, 3)) testa3 = strtoarray(test_input3) assert testa3[1, 3] == -1 print(adjacent2(testa3, 1, 3)) testa4 = strtoarray(test_input4) assert testa4[3, 3] == -1 print(adjacent2(testa4, 3, 3)) test_finala = generations2(testa) print(np.sum(test_finala==1)) print("Puzzle input") finala = generations2(a) print(np.sum(finala == 1))
45.861702
91
0.718163
0
0
0
0
0
0
0
0
9,408
0.727441
220420bd932e73713baed1135186d8fa37af4fd2
2,849
py
Python
final/runner_2.py
Pluriscient/sma2c-ipd
e6e4a5240930491a996afda4744714c5c4826ac2
[ "MIT" ]
null
null
null
final/runner_2.py
Pluriscient/sma2c-ipd
e6e4a5240930491a996afda4744714c5c4826ac2
[ "MIT" ]
null
null
null
final/runner_2.py
Pluriscient/sma2c-ipd
e6e4a5240930491a996afda4744714c5c4826ac2
[ "MIT" ]
null
null
null
from SMA2CAgent import SMA2CAgent from A2CAgent import A2CAgent from RandomAgent import RandomAgent # from .SMA2CAgent import SMA2CAgent import gym import numpy as np from IPD_fixed import IPDEnv import axelrod import time import argparse if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--rounds", help='number of rounds to play per episode', type=int, default=20) parser.add_argument("--episodes", help='number of episodes to play', type=int, default=1000) parser.add_argument("--seed", help='random seed, -1 if random', type=int, default=-1) parser.add_argument("--output", help="output folder", default=f'output-{time.time():.0f}') parser.add_argument("--pure-a2c", help="Don't use an encoder", action='store_true') parser.add_argument("--alpha", help='LR of encoder', type=float) parser.add_argument("--beta", help = 'LR of A2C agent', type=float) parser.add_argument("--lstm-dims", help='LSTM dimensions', type=int) parser.add_argument("--encoder-fc", help='dimensions of encoder dense layers',type=int, action='append') parser.add_argument("--a2c-fc", help='dimensions of a2c hidden layers', type=int, action='append') parser.add_argument("--latent-dims", help='dimensions of code', type=int) parser.add_argument("opponents", help='opponents that the bot should face', nargs="*") parser.add_argument("--random", help="Don't use an agent, just random", action='store_true') # parser.add_argument("") args = parser.parse_args() opponents = [] strats = dict([(s.name.lower(), s) for s in axelrod.all_strategies]) for opp in args.opponents: if opp not in strats: print(f'{opp} not found in strats') s = strats[opp] opponents.append(s) env = IPDEnv({'rounds': args.rounds, 'opponents' : opponents}) seed = args.seed if args.seed != -1 else None env.seed(seed=seed) # remove empty values config = {k: v for k, v in vars(args).items() if v is not None} if config['pure_a2c']: print("____USING PURE A2C_____") agent= A2CAgent(env, config) elif config['random']: print("__RANDOM AGENT___") agent = RandomAgent(env, config) else: print("____USING SMA2C______") agent = SMA2CAgent(env, config) # obs = env.reset() # action = agent.act(obs, 0, 0, 1) # print(f'resulting action: {action}') # encodings_before = np.array(agent.encode_run(axelrod.Cooperator())) # print(f'encodings before: {encodings_before}') agent.run(episodes=args.episodes) # encodings_after_c = np.array(agent.encode_run(axelrod.Cooperator())) # encodings_after_d = np.array(agent.encode_run(axelrod.Defector())) # print(f'encodings after: {encodings_after_c}') # print(encodings_after_d) agent.save()
43.830769
108
0.67708
0
0
0
0
0
0
0
0
1,193
0.418743
2204368a20f00021e6e644e58818806aeac0f4fc
876
py
Python
295-find-median-from-data-stream/295-find-median-from-data-stream.py
Dawit-Getachew/A2SV_Practice
2fe06d725e0acfe668c6dae98fe3ef6e6e26ef61
[ "MIT" ]
null
null
null
295-find-median-from-data-stream/295-find-median-from-data-stream.py
Dawit-Getachew/A2SV_Practice
2fe06d725e0acfe668c6dae98fe3ef6e6e26ef61
[ "MIT" ]
null
null
null
295-find-median-from-data-stream/295-find-median-from-data-stream.py
Dawit-Getachew/A2SV_Practice
2fe06d725e0acfe668c6dae98fe3ef6e6e26ef61
[ "MIT" ]
null
null
null
import heapq as h class MedianFinder: def __init__(self): self.rightHalf = [] self.leftHalf = [] def addNum(self, num: int) -> None: if len(self.leftHalf) > len(self.rightHalf): temp = h.heappush(self.leftHalf, -num) temp2 = h.heappop(self.leftHalf) h.heappush(self.rightHalf, -temp2) else: temp = h.heappush(self.rightHalf, num) temp2 = h.heappop(self.rightHalf) h.heappush(self.leftHalf, -temp2) def findMedian(self) -> float: if len(self.leftHalf) == len(self.rightHalf): temp = (-self.leftHalf[0] + self.rightHalf[0])/2 return temp else: return -self.leftHalf[0] # Your MedianFinder object will be instantiated and called as such: # obj = MedianFinder() # obj.addNum(num) # param_2 = obj.findMedian()
31.285714
67
0.586758
718
0.819635
0
0
0
0
0
0
134
0.152968
2204946bef0686b31437d34ea53f7a86c1f9035c
1,781
py
Python
mottak-arkiv-service/tests/routers/mappers/test_metadatafil.py
omBratteng/mottak
b7d2e1d063b31c2ad89c66e5414297612f91ebe9
[ "Apache-2.0" ]
4
2021-03-05T15:39:24.000Z
2021-09-15T06:11:45.000Z
mottak-arkiv-service/tests/routers/mappers/test_metadatafil.py
omBratteng/mottak
b7d2e1d063b31c2ad89c66e5414297612f91ebe9
[ "Apache-2.0" ]
631
2020-04-27T10:39:18.000Z
2022-03-31T14:51:38.000Z
mottak-arkiv-service/tests/routers/mappers/test_metadatafil.py
omBratteng/mottak
b7d2e1d063b31c2ad89c66e5414297612f91ebe9
[ "Apache-2.0" ]
3
2020-02-20T15:48:03.000Z
2021-12-16T22:50:40.000Z
import pytest from app.domain.models.Metadatafil import Metadatafil, MetadataType from app.exceptions import InvalidContentType from app.routers.mappers.metadafil import _get_file_content, metadatafil_mapper, _content_type2metadata_type def test__content_type2metadata_type__success(): """ GIVEN the string 'text/xml' as content_type WHEN calling the method _content_type2metadata_type THEN check that return value is MetadataType.XML_METS """ expected = MetadataType.XML_METS actual = _content_type2metadata_type('text/xml') assert actual == expected def test__content_type2metadata_type__failure(): """ GIVEN the string 'text' as content_type WHEN calling the method _content_type2metadata_type THEN check that a InvalidContentType Exception has been raised """ with pytest.raises(InvalidContentType): _content_type2metadata_type('text') def test__get_file_content(testfile, testfile_content): """ GIVEN a file with testdata where the content is an METS/XML file WHEN calling the method _get_file_content THEN check that the returned string is correct """ expected = testfile_content actual = _get_file_content(testfile) assert actual == expected def test_metadatafil_mapper(testfile, testfile_content): """ GIVEN a file with testdata where the content is an METS/XML file WHEN calling the method metadatafil_mapper THEN check that the returned Metadatafil object is correct """ expected = Metadatafil( filnavn="df53d1d8-39bf-4fea-a741-58d472664ce2.xml", type_=MetadataType.XML_METS, innhold=testfile_content) actual = metadatafil_mapper(testfile) assert vars(actual) == vars(expected)
34.25
108
0.742841
0
0
0
0
0
0
0
0
808
0.453678
2204c4afb63d7b851791357727ac0902218aab44
2,748
py
Python
src/niweb/apps/noclook/templatetags/rack_tags.py
emjemj/ni
a78e6d97d1e4610aad7698c4f0f459221c680b4f
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
src/niweb/apps/noclook/templatetags/rack_tags.py
emjemj/ni
a78e6d97d1e4610aad7698c4f0f459221c680b4f
[ "BSD-2-Clause-FreeBSD" ]
2
2019-07-24T12:41:11.000Z
2020-03-31T10:10:04.000Z
src/niweb/apps/noclook/templatetags/rack_tags.py
emjemj/ni
a78e6d97d1e4610aad7698c4f0f459221c680b4f
[ "BSD-2-Clause-FreeBSD" ]
1
2019-02-25T14:58:20.000Z
2019-02-25T14:58:20.000Z
from django import template register = template.Library() RACK_SIZE_PX = 20 MARGIN_HEIGHT = 2 def _rack_unit_to_height(units): # for every unit over 1 add a 2 px margin margin = (units - 1) * MARGIN_HEIGHT return units * RACK_SIZE_PX + margin def _equipment_spacer(units): return { 'units': units, 'spacer': True, 'height': "{}px".format(_rack_unit_to_height(units)), } def _rack_sort(item): # Sort by rack position, sencoded by unit size pos = int(item.get('node').data.get('rack_position', -1)) size = int(item.get('node').data.get('rack_units', 0)) * -1 return (pos, size) def _equipment(item): data = item.get('node').data units = int(data.get('rack_units', 1)) return { 'units': units, 'position': int(data.get('rack_position', 0) or 0), 'position_end': units + int(data.get('rack_position', 1)) - 1, 'height': "{}px".format(_rack_unit_to_height(units)), 'sub_equipment': [], 'is_back': data.get('rack_back'), 'data': data, } def place_equipment(view_data, current_idx, last_eq, result): spacing = view_data['position'] - current_idx if spacing < 0: # Equipment overlaps with previous last_eq['sub_equipment'].append(view_data) else: if spacing > 0: result.append(_equipment_spacer(spacing)) result.append(view_data) new_idx = view_data['position'] + view_data['units'] return new_idx, view_data return current_idx, last_eq @register.inclusion_tag('noclook/tags/rack.html') def noclook_rack(rack, equipment): if equipment: equipment.sort(key=_rack_sort) racked_equipment = [] racked_equipment_back = [] unracked_equipment = [] # mem front_idx = 1 front_last_eq = None back_idx = 1 back_last_eq = None for item in equipment: view_data = _equipment(item) is_rack_front = not view_data.get('is_back') if view_data['position'] > 0: if is_rack_front: front_idx, front_last_eq = place_equipment(view_data, front_idx, front_last_eq, racked_equipment) else: back_idx, back_last_eq = place_equipment(view_data, back_idx, back_last_eq, racked_equipment_back) else: unracked_equipment.append(item) return { 'rack_size': _rack_unit_to_height(rack.data.get('rack_units', 42)), 'racked_equipment': racked_equipment, 'racked_equipment_back': racked_equipment_back, 'unracked_equipment': unracked_equipment, } @register.filter def rack_sort(equipment): if equipment: equipment.sort(key=_rack_sort, reverse=True) return equipment
28.926316
114
0.643377
0
0
0
0
1,193
0.434134
0
0
497
0.180859
2205e64387c6f4c5a706049e6175c53d8453ff11
442
py
Python
Cryptography/Exp-1-Shamirs-Secret-Sharing/main.py
LuminolT/Cryptographic
87fffae591eee9644641a4c511972df0c2a44df7
[ "MIT" ]
null
null
null
Cryptography/Exp-1-Shamirs-Secret-Sharing/main.py
LuminolT/Cryptographic
87fffae591eee9644641a4c511972df0c2a44df7
[ "MIT" ]
null
null
null
Cryptography/Exp-1-Shamirs-Secret-Sharing/main.py
LuminolT/Cryptographic
87fffae591eee9644641a4c511972df0c2a44df7
[ "MIT" ]
1
2022-03-07T13:56:55.000Z
2022-03-07T13:56:55.000Z
import numpy as np import matplotlib.pyplot as plt from shamir import * from binascii import hexlify # img = plt.imread('cat.png') # plt.imshow(img) # plt.show() s = 'TEST_STRING'.encode() print("Original secret:", hexlify(s)) l = Shamir.split(3, 5, '12345'.encode()) for idx, item in l: print("Share {}: {}".format(str(idx), hexlify(item))) shares = l[1:4] secret = Shamir.combine(shares) print(f'Secret is : {secret.decode()}')
18.416667
57
0.669683
0
0
0
0
0
0
0
0
142
0.321267
2206a89728beed4abfd89a30818175cab85e95be
825
py
Python
P20-Stack Abstract Data Type/Stack - Reverse Stack.py
necrospiritus/Python-Working-Examples
075d410673e470fc7c4ffc262e92109a3032132f
[ "MIT" ]
null
null
null
P20-Stack Abstract Data Type/Stack - Reverse Stack.py
necrospiritus/Python-Working-Examples
075d410673e470fc7c4ffc262e92109a3032132f
[ "MIT" ]
null
null
null
P20-Stack Abstract Data Type/Stack - Reverse Stack.py
necrospiritus/Python-Working-Examples
075d410673e470fc7c4ffc262e92109a3032132f
[ "MIT" ]
null
null
null
"""Reverse stack is using a list where the top is at the beginning instead of at the end.""" class Reverse_Stack: def __init__(self): self.items = [] def is_empty(self): # test to see whether the stack is empty. return self.items == [] def push(self, item): # adds a new item to the base of the stack. self.items.insert(0, item) def pop(self): # removes the base item from the stack. return self.items.pop(0) def peek(self): # return the base item from the stack. return self.items[0] def size(self): # returns the number of items on the stack. return len(self.items) s = Reverse_Stack() print(s.is_empty()) s.push(4) s.push("Dog") print(s.peek()) s.push("Cat") print(s.size()) print(s.is_empty()) s.pop() print(s.peek()) print(s.size())
22.916667
92
0.632727
556
0.673939
0
0
0
0
0
0
306
0.370909
220737eae6a16eeacd5d110896be7e897b880d4e
101
py
Python
gerapy/cmd/server.py
awesome-archive/Gerapy
e9792d020397cd85b4d553b91b7829078b728b98
[ "MIT" ]
1
2018-12-07T02:05:32.000Z
2018-12-07T02:05:32.000Z
gerapy/cmd/server.py
Tilyp/Gerapy
e9792d020397cd85b4d553b91b7829078b728b98
[ "MIT" ]
null
null
null
gerapy/cmd/server.py
Tilyp/Gerapy
e9792d020397cd85b4d553b91b7829078b728b98
[ "MIT" ]
null
null
null
from gerapy.server.manage import manage import sys def server(): # Call django cmd manage()
14.428571
39
0.70297
0
0
0
0
0
0
0
0
17
0.168317
220739480d36f76e621c523e3b7cf2bdd8e3c62a
964
py
Python
client/walt/client/term.py
dia38/walt-python-packages
e6fa1f166f45e73173195d57840d22bef87b88f5
[ "BSD-3-Clause" ]
4
2020-01-14T09:12:56.000Z
2022-03-14T14:35:11.000Z
client/walt/client/term.py
dia38/walt-python-packages
e6fa1f166f45e73173195d57840d22bef87b88f5
[ "BSD-3-Clause" ]
73
2016-04-29T13:17:26.000Z
2022-03-01T15:06:48.000Z
client/walt/client/term.py
dia38/walt-python-packages
e6fa1f166f45e73173195d57840d22bef87b88f5
[ "BSD-3-Clause" ]
3
2019-03-18T14:27:56.000Z
2021-06-03T12:07:02.000Z
#!/usr/bin/env python import sys, tty, termios, array, fcntl, curses class TTYSettings(object): def __init__(self): self.tty_fd = sys.stdout.fileno() # save self.saved = termios.tcgetattr(self.tty_fd) self.win_size = self.get_win_size() self.rows, self.cols = self.win_size[0], self.win_size[1] curses.setupterm() self.num_colors = curses.tigetnum("colors") def set_raw_no_echo(self): # set raw mode tty.setraw(self.tty_fd, termios.TCSADRAIN) # disable echo new = termios.tcgetattr(self.tty_fd) new[3] &= ~termios.ECHO termios.tcsetattr(self.tty_fd, termios.TCSADRAIN, new) def restore(self): # return saved conf termios.tcsetattr(self.tty_fd, termios.TCSADRAIN, self.saved) def get_win_size(self): buf = array.array('h', [0, 0, 0, 0]) fcntl.ioctl(self.tty_fd, termios.TIOCGWINSZ, buf, True) return buf
35.703704
69
0.629668
893
0.926349
0
0
0
0
0
0
85
0.088174
22075aae320e407eb3fd67de73b37aec7dd0a0b3
25,123
py
Python
improver_tests/calibration/ensemble_calibration/test_CalibratedForecastDistributionParameters.py
cpelley/improver
ebf77fe2adc85ed7aec74c26671872a2e4388ded
[ "BSD-3-Clause" ]
null
null
null
improver_tests/calibration/ensemble_calibration/test_CalibratedForecastDistributionParameters.py
cpelley/improver
ebf77fe2adc85ed7aec74c26671872a2e4388ded
[ "BSD-3-Clause" ]
null
null
null
improver_tests/calibration/ensemble_calibration/test_CalibratedForecastDistributionParameters.py
cpelley/improver
ebf77fe2adc85ed7aec74c26671872a2e4388ded
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # (C) British Crown Copyright 2017-2021 Met Office. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """ Unit tests for the `ensemble_calibration.CalibratedForecastDistributionParameters` class. """ import unittest import numpy as np from iris.cube import CubeList from iris.tests import IrisTest from numpy.testing import assert_array_almost_equal from improver.calibration.ensemble_calibration import ( CalibratedForecastDistributionParameters as Plugin, ) from improver.calibration.ensemble_calibration import ( EstimateCoefficientsForEnsembleCalibration, ) from improver.metadata.constants.attributes import MANDATORY_ATTRIBUTE_DEFAULTS from improver.synthetic_data.set_up_test_cubes import set_up_variable_cube from improver.utilities.warnings_handler import ManageWarnings from .helper_functions import EnsembleCalibrationAssertions, SetupCubes from .test_EstimateCoefficientsForEnsembleCalibration import SetupExpectedCoefficients class SetupCoefficientsCubes(SetupCubes, SetupExpectedCoefficients): """Set up coefficients cubes for testing.""" @ManageWarnings( ignored_messages=[ "Collapsing a non-contiguous coordinate.", "invalid escape sequence", ], warning_types=[UserWarning, DeprecationWarning], ) def setUp(self): """Set up coefficients cubes for when either the ensemble mean or the ensemble realizations have been used as the predictor. The coefficients have been constructed from the same underlying set of ensemble realizations, so application of these coefficients would be expected to give similar results. The values for the coefficients used to construct the coefficients cubes are taken from the SetupExpectedCoefficients class. These coefficients are the expected outputs from the tests to estimate the coefficients.""" super().setUp() # Set up a coefficients cube when using the ensemble mean as the # predictor. estimator = EstimateCoefficientsForEnsembleCalibration( "norm", desired_units="Celsius" ) self.coeffs_from_mean = estimator.create_coefficients_cubelist( self.expected_mean_pred_norm, self.historic_temperature_forecast_cube, CubeList([self.historic_temperature_forecast_cube]), ) # Set up a timeshifted coefficients cube using the ensemble mean as a # predictor. forecast_timeshift_cube = self.historic_temperature_forecast_cube.copy() for coord_name in ["time", "forecast_period"]: forecast_timeshift_cube.coord(coord_name).points = [ _ + 3600 for _ in forecast_timeshift_cube.coord(coord_name).points ] self.coeffs_from_mean_timeshift = estimator.create_coefficients_cubelist( self.expected_mean_pred_norm, forecast_timeshift_cube, CubeList([forecast_timeshift_cube]), ) # Set up a coefficients cube when using the ensemble mean as the # predictor and separate coefficients at each point. estimator = EstimateCoefficientsForEnsembleCalibration( "norm", point_by_point=True, desired_units="Celsius" ) point_by_point_predictor = np.stack( [self.expected_mean_pred_norm] * 9 ).T.reshape(4, 3, 3) self.coeffs_from_mean_point_by_point = estimator.create_coefficients_cubelist( point_by_point_predictor, self.historic_temperature_forecast_cube, CubeList([self.historic_temperature_forecast_cube]), ) # Set up a coefficients cube when using the ensemble realization as the # predictor. estimator = EstimateCoefficientsForEnsembleCalibration( "norm", desired_units="Celsius", predictor="realizations" ) self.coeffs_from_realizations = estimator.create_coefficients_cubelist( self.expected_realizations_norm, self.historic_temperature_forecast_cube, CubeList([self.historic_temperature_forecast_cube]), ) # Set up a coefficients cube when using the ensemble realization as the # predictor and separate coefficients at each point. expected_realizations_each_site = [ array if array.ndim == 1 else np.squeeze(array) for array in list(self.expected_realizations_each_site.values()) ] estimator = EstimateCoefficientsForEnsembleCalibration( "norm", predictor="realizations", point_by_point=True ) self.coeffs_from_realizations_sites = estimator.create_coefficients_cubelist( expected_realizations_each_site, self.historic_forecast_spot_cube, CubeList([self.historic_temperature_forecast_cube]), ) # # Set up a coefficients cube when using an additional predictor. self.altitude = set_up_variable_cube( np.ones((3, 3), dtype=np.float32), name="surface_altitude", units="m" ) for coord in ["time", "forecast_reference_time", "forecast_period"]: self.altitude.remove_coord(coord) estimator = EstimateCoefficientsForEnsembleCalibration( "norm", desired_units="Celsius" ) self.coeffs_from_mean_alt = estimator.create_coefficients_cubelist( self.expected_mean_pred_norm_alt, self.historic_temperature_forecast_cube, CubeList([self.historic_temperature_forecast_cube, self.altitude]), ) # Some expected data that are used in various tests. self.expected_loc_param_mean = np.array( [ [273.7014, 274.6534, 275.4469], [276.9385, 277.7636, 278.5570], [279.6996, 280.1122, 281.2547], ], dtype=np.float32, ) self.expected_scale_param_mean = np.array( [ [0.2316, 0.2342, 0.0168], [0.0271, 0.0237, 0.0168], [0.0634, 0.1151, 0.0116], ], dtype=np.float32, ) self.expected_loc_param_realizations = np.array( [ [274.388, 275.3053, 275.4492], [277.1295, 277.3866, 278.4672], [280.2007, 280.3929, 281.2602], ], dtype=np.float32, ) self.expected_loc_param_realizations_sites = np.array( [277.7531, 277.4529, 277.553, 277.2528], dtype=np.float32, ) self.expected_scale_param_realizations_sites = np.array( [0, 0, 0, 0], dtype=np.float32 ) self.expected_loc_param_mean_alt = np.array( [ [275.18134, 276.18134, 277.01465], [278.58133, 279.44797, 280.2813], [281.48132, 281.91464, 283.11465], ], dtype=np.float32, ) self.expected_scale_param_mean_alt = np.array( [ [0.4347, 0.4396, 0.0308], [0.0503, 0.0438, 0.0308], [0.1184, 0.2157, 0.0211], ], dtype=np.float32, ) # Create output cubes with the expected data. self.expected_loc_param_mean_cube = set_up_variable_cube( self.expected_loc_param_mean, name="location_parameter", units="K", attributes=MANDATORY_ATTRIBUTE_DEFAULTS, ) self.expected_scale_param_mean_cube = set_up_variable_cube( self.expected_scale_param_mean, name="scale_parameter", units="Kelvin^2", attributes=MANDATORY_ATTRIBUTE_DEFAULTS, ) class Test__init__(IrisTest): """Test the __init__ method.""" def test_basic(self): """Test without specifying a predictor.""" plugin = Plugin() self.assertEqual(plugin.predictor, "mean") def test_with_predictor(self): """Test specifying the predictor.""" plugin = Plugin(predictor="realizations") self.assertEqual(plugin.predictor, "realizations") class Test__repr__(IrisTest): """Test the __repr__ method.""" def test_basic(self): """Test without the predictor.""" result = str(Plugin()) msg = "<CalibratedForecastDistributionParameters: " "predictor: mean>" self.assertEqual(result, msg) def test_with_predictor(self): """Test specifying the predictor.""" result = str(Plugin(predictor="realizations")) msg = "<CalibratedForecastDistributionParameters: " "predictor: realizations>" self.assertEqual(result, msg) class Test__spatial_domain_match(SetupCoefficientsCubes): """ Test the _spatial_domain_match method.""" def setUp(self): super().setUp() self.plugin = Plugin() def test_matching(self): """Test case in which spatial domains match.""" self.plugin.current_forecast = self.current_temperature_forecast_cube self.plugin.coefficients_cubelist = self.coeffs_from_mean self.plugin._spatial_domain_match() def test_unmatching_x_axis_points(self): """Test when the points of the x dimension do not match.""" self.current_temperature_forecast_cube.coord(axis="x").bounds = ( self.current_temperature_forecast_cube.coord(axis="x").bounds + 2.0 ) self.plugin.current_forecast = self.current_temperature_forecast_cube self.plugin.coefficients_cubelist = self.coeffs_from_mean msg = "The points or bounds of the x axis given by the current forecast" with self.assertRaisesRegex(ValueError, msg): self.plugin._spatial_domain_match() def test_unmatching_x_axis_bounds(self): """Test when the bounds of the x dimension do not match.""" self.current_temperature_forecast_cube.coord(axis="x").bounds = [ [-35, -5], [-5, 5], [5, 35], ] self.plugin.current_forecast = self.current_temperature_forecast_cube self.plugin.coefficients_cubelist = self.coeffs_from_mean msg = "The points or bounds of the x axis given by the current forecast" with self.assertRaisesRegex(ValueError, msg): self.plugin._spatial_domain_match() def test_unmatching_y_axis(self): """Test case in which the y-dimensions of the domains do not match.""" self.current_temperature_forecast_cube.coord(axis="y").bounds = ( self.current_temperature_forecast_cube.coord(axis="y").bounds + 2.0 ) self.plugin.current_forecast = self.current_temperature_forecast_cube self.plugin.coefficients_cubelist = self.coeffs_from_mean msg = "The points or bounds of the y axis given by the current forecast" with self.assertRaisesRegex(ValueError, msg): self.plugin._spatial_domain_match() def test_skipping_spot_forecast(self): """Test passing a spot forecast. In this case, the spatial domain is not checked.""" self.plugin.current_forecast = self.current_forecast_spot_cube self.plugin._spatial_domain_match() class Test__calculate_location_parameter_from_mean( SetupCoefficientsCubes, EnsembleCalibrationAssertions ): """Test the __calculate_location_parameter_from_mean method.""" def setUp(self): """Set-up coefficients and plugin for testing.""" super().setUp() self.plugin = Plugin() self.plugin.current_forecast = self.current_temperature_forecast_cube self.plugin.coefficients_cubelist = self.coeffs_from_mean @ManageWarnings(ignored_messages=["Collapsing a non-contiguous coordinate."]) def test_basic(self): """Test that the expected values for the location parameter are calculated when using the ensemble mean. These expected values are compared to the results when using the ensemble realizations to ensure that the results are similar.""" location_parameter = self.plugin._calculate_location_parameter_from_mean() self.assertCalibratedVariablesAlmostEqual( location_parameter, self.expected_loc_param_mean ) assert_array_almost_equal( location_parameter, self.expected_loc_param_realizations, decimal=0, ) @ManageWarnings(ignored_messages=["Collapsing a non-contiguous coordinate."]) def test_missing_additional_predictor(self): """Test that an error is raised if an additional predictor is expected based on the contents of the coefficients cube.""" self.plugin.coefficients_cubelist = self.coeffs_from_mean_alt msg = "The number of forecast predictors must equal the number" with self.assertRaisesRegex(ValueError, msg): self.plugin._calculate_location_parameter_from_mean() class Test__calculate_location_parameter_from_realizations( SetupCoefficientsCubes, EnsembleCalibrationAssertions ): """Test the _calculate_location_parameter_from_realizations method.""" @ManageWarnings(ignored_messages=["Collapsing a non-contiguous coordinate."]) def setUp(self): """Set-up coefficients and plugin for testing.""" super().setUp() self.plugin = Plugin() self.plugin.current_forecast = self.current_temperature_forecast_cube @ManageWarnings(ignored_messages=["Collapsing a non-contiguous coordinate."]) def test_basic(self): """Test that the expected values for the location parameter are calculated when using the ensemble realizations. These expected values are compared to the results when using the ensemble mean to ensure that the results are similar.""" self.plugin.coefficients_cubelist = self.coeffs_from_realizations location_parameter = ( self.plugin._calculate_location_parameter_from_realizations() ) self.assertCalibratedVariablesAlmostEqual( location_parameter, self.expected_loc_param_realizations ) assert_array_almost_equal( location_parameter, self.expected_loc_param_mean, decimal=0 ) class Test__calculate_scale_parameter( SetupCoefficientsCubes, EnsembleCalibrationAssertions ): """Test the _calculate_scale_parameter method.""" def setUp(self): """Set-up the plugin for testing.""" super().setUp() self.plugin = Plugin() self.plugin.current_forecast = self.current_temperature_forecast_cube @ManageWarnings(ignored_messages=["Collapsing a non-contiguous coordinate."]) def test_basic(self): """Test the scale parameter is calculated correctly.""" self.plugin.coefficients_cubelist = self.coeffs_from_mean scale_parameter = self.plugin._calculate_scale_parameter() self.assertCalibratedVariablesAlmostEqual( scale_parameter, self.expected_scale_param_mean ) class Test__create_output_cubes(SetupCoefficientsCubes, EnsembleCalibrationAssertions): """Test the _create_output_cubes method.""" def setUp(self): """Set-up the plugin for testing.""" super().setUp() self.plugin = Plugin() self.plugin.current_forecast = self.current_temperature_forecast_cube @ManageWarnings(ignored_messages=["Collapsing a non-contiguous coordinate."]) def test_basic(self): """Test that the cubes created containing the location and scale parameter are formatted as expected.""" ( location_parameter_cube, scale_parameter_cube, ) = self.plugin._create_output_cubes( self.expected_loc_param_mean, self.expected_scale_param_mean ) self.assertEqual(location_parameter_cube, self.expected_loc_param_mean_cube) self.assertEqual(scale_parameter_cube, self.expected_scale_param_mean_cube) class Test_process(SetupCoefficientsCubes, EnsembleCalibrationAssertions): """Test the process plugin.""" def setUp(self): """Set-up the plugin for testing.""" super().setUp() self.plugin = Plugin() @ManageWarnings(ignored_messages=["Collapsing a non-contiguous coordinate."]) def test_diagnostic_match(self): """Test that an error is raised if the diagnostic_standard_name does not match when comparing a forecast cube and coefficients cubelist.""" msg = "The forecast diagnostic" with self.assertRaisesRegex(ValueError, msg): self.plugin.process( self.current_wind_speed_forecast_cube, self.coeffs_from_mean ) @ManageWarnings(ignored_messages=["Collapsing a non-contiguous coordinate."]) def test_time_match(self): """Test that an error is raised if the time coordinates do not match when comparing a forecast cube and coefficients cubelist.""" msg = "rounded forecast_period hours" with self.assertRaisesRegex(ValueError, msg): self.plugin.process( self.current_temperature_forecast_cube, self.coeffs_from_mean_timeshift ) @ManageWarnings(ignored_messages=["Collapsing a non-contiguous coordinate."]) def test_time_match_tolerate(self): """Test that no error is raised when using a coefficients file with a mismatching forecast_period coordinate, if the tolerate_time_mismatch option is enabled.""" calibrated_forecast_predictor, calibrated_forecast_var = self.plugin.process( self.current_temperature_forecast_cube, self.coeffs_from_mean_timeshift, tolerate_time_mismatch=True, ) self.assertCalibratedVariablesAlmostEqual( calibrated_forecast_predictor.data, self.expected_loc_param_mean ) self.assertCalibratedVariablesAlmostEqual( calibrated_forecast_var.data, self.expected_scale_param_mean ) self.assertEqual(calibrated_forecast_predictor.dtype, np.float32) @ManageWarnings(ignored_messages=["Collapsing a non-contiguous coordinate."]) def test_variable_setting(self): """Test that the cubes passed into the plugin are allocated to plugin variables appropriately.""" _, _ = self.plugin.process( self.current_temperature_forecast_cube, self.coeffs_from_mean ) self.assertEqual( self.current_temperature_forecast_cube, self.plugin.current_forecast ) self.assertEqual(self.coeffs_from_mean, self.plugin.coefficients_cubelist) @ManageWarnings(ignored_messages=["Collapsing a non-contiguous coordinate."]) def test_end_to_end(self): """An example end-to-end calculation. This repeats the test elements above but all grouped together.""" calibrated_forecast_predictor, calibrated_forecast_var = self.plugin.process( self.current_temperature_forecast_cube, self.coeffs_from_mean ) self.assertCalibratedVariablesAlmostEqual( calibrated_forecast_predictor.data, self.expected_loc_param_mean ) self.assertCalibratedVariablesAlmostEqual( calibrated_forecast_var.data, self.expected_scale_param_mean ) self.assertEqual(calibrated_forecast_predictor.dtype, np.float32) @ManageWarnings(ignored_messages=["Collapsing a non-contiguous coordinate."]) def test_end_to_end_point_by_point(self): """An example end-to-end calculation when a separate set of coefficients are computed for each grid point. This repeats the test elements above but all grouped together.""" calibrated_forecast_predictor, calibrated_forecast_var = self.plugin.process( self.current_temperature_forecast_cube, self.coeffs_from_mean_point_by_point ) self.assertCalibratedVariablesAlmostEqual( calibrated_forecast_predictor.data, self.expected_loc_param_mean ) self.assertCalibratedVariablesAlmostEqual( calibrated_forecast_var.data, self.expected_scale_param_mean ) self.assertEqual(calibrated_forecast_predictor.dtype, np.float32) @ManageWarnings(ignored_messages=["Collapsing a non-contiguous coordinate."]) def test_end_to_end_point_by_point_sites_realizations(self): """An example end-to-end calculation when a separate set of coefficients are computed for each site using the realizations as the predictor. This repeats the test elements above but all grouped together.""" plugin = Plugin(predictor="realizations") calibrated_forecast_predictor, calibrated_forecast_var = plugin.process( self.current_forecast_spot_cube, self.coeffs_from_realizations_sites ) self.assertCalibratedVariablesAlmostEqual( calibrated_forecast_predictor.data, self.expected_loc_param_realizations_sites, ) self.assertCalibratedVariablesAlmostEqual( calibrated_forecast_var.data, self.expected_scale_param_realizations_sites ) self.assertEqual(calibrated_forecast_predictor.dtype, np.float32) @ManageWarnings(ignored_messages=["Collapsing a non-contiguous coordinate."]) def test_end_to_end_with_additional_predictor(self): """Test that the expected calibrated forecast is generated, if an additional predictor is provided.""" calibrated_forecast_predictor, calibrated_forecast_var = self.plugin.process( self.current_temperature_forecast_cube, self.coeffs_from_mean_alt, additional_fields=CubeList([self.altitude]), ) self.assertCalibratedVariablesAlmostEqual( calibrated_forecast_predictor.data, self.expected_loc_param_mean_alt ) self.assertCalibratedVariablesAlmostEqual( calibrated_forecast_var.data, self.expected_scale_param_mean_alt ) self.assertEqual(calibrated_forecast_predictor.dtype, np.float32) @ManageWarnings(ignored_messages=["Collapsing a non-contiguous coordinate."]) def test_end_to_end_with_mask(self): """An example end-to-end calculation, but making sure that the areas that are masked within the landsea mask, are masked at the end.""" # Construct a mask and encapsulate as a cube. mask = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) mask_cube = self.current_temperature_forecast_cube[0].copy(data=mask) # Convention for IMPROVER is that land points are ones and sea points # are zeros in land-sea masks. In this case we want to mask sea points. expected_mask = np.array( [[False, True, True], [True, False, True], [True, True, False]] ) calibrated_forecast_predictor, calibrated_forecast_var = self.plugin.process( self.current_temperature_forecast_cube, self.coeffs_from_mean, landsea_mask=mask_cube, ) self.assertCalibratedVariablesAlmostEqual( calibrated_forecast_predictor.data.data, self.expected_loc_param_mean ) self.assertArrayEqual(calibrated_forecast_predictor.data.mask, expected_mask) self.assertCalibratedVariablesAlmostEqual( calibrated_forecast_var.data.data, self.expected_scale_param_mean ) self.assertArrayEqual(calibrated_forecast_var.data.mask, expected_mask) if __name__ == "__main__": unittest.main()
42.294613
88
0.690841
22,536
0.897027
0
0
17,265
0.687219
0
0
7,823
0.311388
2207cb5f7d7e3d98709c2a6697f808bd842caf1c
2,897
py
Python
rendaz/tests/test_daztools.py
veselosky/rendaz
c81298cb9b8f142c4748c28b7e93549a56ee248d
[ "Apache-2.0" ]
null
null
null
rendaz/tests/test_daztools.py
veselosky/rendaz
c81298cb9b8f142c4748c28b7e93549a56ee248d
[ "Apache-2.0" ]
null
null
null
rendaz/tests/test_daztools.py
veselosky/rendaz
c81298cb9b8f142c4748c28b7e93549a56ee248d
[ "Apache-2.0" ]
null
null
null
"Test handling/parsing of various DAZ Studio files" from pathlib import Path from tempfile import NamedTemporaryFile from django.apps import apps from rendaz.daztools import ( DSONFile, ProductMeta, manifest_files, supplement_product_name, ) TEST_DIR = Path(__file__).parent def test_read_dson_compressed(): "Test reading compressed DSON files" fname = TEST_DIR / "Sphere-compressed.duf" duf = DSONFile(path=str(fname)) assert duf.path.name == "Sphere-compressed.duf" assert duf.is_compressed assert "asset_info" in duf.dson def test_read_dson_uncompressed(): "Test reading uncompressed DSON files" fname = TEST_DIR / "Sphere-uncompressed.duf" duf = DSONFile(path=str(fname)) assert duf.path.name == "Sphere-uncompressed.duf" assert duf.is_compressed is False assert "asset_info" in duf.dson def test_save_dson_compressed(): "Test write round trip, read uncompressed, write compressed, read back" fname = TEST_DIR / "Sphere-uncompressed.duf" duf = DSONFile(path=str(fname)) out = NamedTemporaryFile(mode="wt", delete=False) tmpname = out.name out.close() try: duf.save(tmpname, compress=True) new = DSONFile(tmpname) assert new.is_compressed assert "asset_info" in new.dson finally: Path(tmpname).unlink() def test_save_dson_uncompressed(): "Test write round trip, read compressed, write uncompressed, read back" fname = TEST_DIR / "Sphere-compressed.duf" duf = DSONFile(path=str(fname)) out = NamedTemporaryFile(mode="wt", delete=False) tmpname = out.name out.close() try: duf.save(tmpname, compress=False) new = DSONFile(tmpname) assert new.is_compressed is False assert "asset_info" in new.dson finally: Path(tmpname).unlink() def test_productmetafile_defaults(): production = apps.get_app_config("production") it = ProductMeta(product_id="THETHING", stem_product_name="THETHING") assert it.product_id == "THETHING" assert isinstance(it.cms_files, set) assert isinstance(it.dim_manifest_files, set) assert isinstance(it.included_files, set) def test_manifest_files(): expected = [ "Content/People/Genesis 8 Female/Characters/Aakash.duf", "Content/People/Genesis 8 Female/Characters/Aakash.duf.png", "Content/Runtime/Support/DAZ_3D_60599_Aakash_HD_for_Kala_8.dsa", "Content/Runtime/Support/DAZ_3D_60599_Aakash_HD_for_Kala_8.dsx", "Content/Runtime/Support/DAZ_3D_60599_Aakash_HD_for_Kala_8.jpg", ] fname = TEST_DIR / "Manifest.dsx" actual = list(manifest_files(fname)) assert actual == expected def test_supplement_product_name(): expected = "Aakash HD for Kala 8" fname = TEST_DIR / "Supplement.dsx" actual = supplement_product_name(fname) assert actual == expected
29.561224
75
0.705557
0
0
0
0
0
0
0
0
864
0.29824
2209880d39d84bdcf0ec5ef896046b892fe747ab
20,000
py
Python
src/core/models/graph2seq.py
talha1503/RL-based-Graph2Seq-for-NQG
1039e0b6231ae7029ea6e4073b1e55df5ad2e928
[ "Apache-2.0" ]
100
2019-08-18T21:56:24.000Z
2022-03-31T08:54:41.000Z
src/core/models/graph2seq.py
talha1503/RL-based-Graph2Seq-for-NQG
1039e0b6231ae7029ea6e4073b1e55df5ad2e928
[ "Apache-2.0" ]
7
2019-12-26T03:49:20.000Z
2021-11-26T19:11:19.000Z
src/core/models/graph2seq.py
talha1503/RL-based-Graph2Seq-for-NQG
1039e0b6231ae7029ea6e4073b1e55df5ad2e928
[ "Apache-2.0" ]
17
2020-02-02T06:41:21.000Z
2022-03-09T02:53:27.000Z
import random import string from typing import Union, List import torch import torch.nn as nn import torch.nn.functional as F from ..layers.common import EncoderRNN, DecoderRNN, dropout from ..layers.attention import * from ..layers.graphs import GraphNN from ..utils.generic_utils import to_cuda, create_mask from ..utils.constants import VERY_SMALL_NUMBER class Graph2SeqOutput(object): def __init__(self, encoder_outputs, encoder_state, decoded_tokens, \ loss=0, loss_value=0, enc_attn_weights=None, ptr_probs=None): self.encoder_outputs = encoder_outputs self.encoder_state = encoder_state self.decoded_tokens = decoded_tokens # (out seq len, batch size) self.loss = loss # scalar self.loss_value = loss_value # float value, excluding coverage loss self.enc_attn_weights = enc_attn_weights # (out seq len, batch size, src seq len) self.ptr_probs = ptr_probs # (out seq len, batch size) class Graph2Seq(nn.Module): def __init__(self, config, word_embedding, word_vocab): """ :param word_vocab: mainly for info about special tokens and word_vocab size :param config: model hyper-parameters :param max_dec_steps: max num of decoding steps (only effective at test time, as during training the num of steps is determined by the `target_tensor`); it is safe to change `self.max_dec_steps` as the network architecture is independent of src/tgt seq lengths Create the graph2seq model; its encoder and decoder will be created automatically. """ super(Graph2Seq, self).__init__() self.name = 'Graph2Seq' self.device = config['device'] self.word_dropout = config['word_dropout'] self.edge_dropout = config['edge_dropout'] self.bert_dropout = config['bert_dropout'] self.word_vocab = word_vocab self.vocab_size = len(word_vocab) self.f_case = config['f_case'] self.f_pos = config['f_pos'] self.f_ner = config['f_ner'] self.f_freq = config['f_freq'] self.f_dep = config['f_dep'] self.f_ans = config['f_ans'] self.dan_type = config.get('dan_type', 'all') self.max_dec_steps = config['max_dec_steps'] self.rnn_type = config['rnn_type'] self.enc_attn = config['enc_attn'] self.enc_attn_cover = config['enc_attn_cover'] self.dec_attn = config['dec_attn'] self.pointer = config['pointer'] self.pointer_loss_ratio = config['pointer_loss_ratio'] self.cover_loss = config['cover_loss'] self.cover_func = config['cover_func'] self.message_function = config['message_function'] self.use_bert = config['use_bert'] self.use_bert_weight = config['use_bert_weight'] self.use_bert_gamma = config['use_bert_gamma'] self.finetune_bert = config.get('finetune_bert', None) bert_dim = (config['bert_dim'] if self.use_bert else 0) enc_hidden_size = config['rnn_size'] if config['dec_hidden_size']: dec_hidden_size = config['dec_hidden_size'] if self.rnn_type == 'lstm': self.enc_dec_adapter = nn.ModuleList([nn.Linear(enc_hidden_size, dec_hidden_size) for _ in range(2)]) else: self.enc_dec_adapter = nn.Linear(enc_hidden_size, dec_hidden_size) else: dec_hidden_size = enc_hidden_size self.enc_dec_adapter = None enc_input_dim = config['word_embed_dim'] self.word_embed = word_embedding if config['fix_word_embed']: print('[ Fix word embeddings ]') for param in self.word_embed.parameters(): param.requires_grad = False self.edge_embed = nn.Embedding(config['num_edge_types'], config['edge_embed_dim'], padding_idx=0) if self.f_case: self.case_embed = nn.Embedding(3, config['case_embed_dim'], padding_idx=0) enc_input_dim += config['case_embed_dim'] if self.f_pos: self.pos_embed = nn.Embedding(config['num_features_f_pos'], config['pos_embed_dim'], padding_idx=0) enc_input_dim += config['pos_embed_dim'] if self.f_ner: self.ner_embed = nn.Embedding(config['num_features_f_ner'], config['ner_embed_dim'], padding_idx=0) enc_input_dim += config['ner_embed_dim'] if self.f_freq: self.freq_embed = nn.Embedding(4, config['freq_embed_dim'], padding_idx=0) enc_input_dim += config['freq_embed_dim'] if self.f_dep: self.edge_embed = nn.Embedding(config['num_edge_types'], config['edge_embed_dim'], padding_idx=0) enc_input_dim += config['edge_embed_dim'] if self.f_ans and self.dan_type in ('all', 'word'): enc_input_dim += config['word_embed_dim'] if self.use_bert: enc_input_dim += config['bert_dim'] if self.use_bert and self.use_bert_weight: num_bert_layers = config['bert_layer_indexes'][1] - config['bert_layer_indexes'][0] self.logits_bert_layers = nn.Parameter(nn.init.xavier_uniform_(torch.Tensor(1, num_bert_layers))) if self.use_bert_gamma: self.gamma_bert_layers = nn.Parameter(nn.init.constant_(torch.Tensor(1, 1), 1.)) config['gl_input_size'] = enc_input_dim self.ctx_rnn_encoder = EncoderRNN(enc_input_dim, enc_hidden_size, bidirectional=config['enc_bidi'], num_layers=config['num_enc_rnn_layers'], rnn_type=self.rnn_type, rnn_dropout=config['enc_rnn_dropout'], device=self.device) # Deep answer alignment if self.f_ans: if self.dan_type in ('all', 'word'): self.ctx2ans_attn_l1 = Context2AnswerAttention(config['word_embed_dim'], config['hidden_size']) if self.dan_type in ('all', 'hidden'): self.ans_rnn_encoder = EncoderRNN(config['word_embed_dim'] + bert_dim, enc_hidden_size, bidirectional=config['enc_bidi'], num_layers=config['num_enc_rnn_layers'], rnn_type=self.rnn_type, rnn_dropout=config['enc_rnn_dropout'], device=self.device) self.ctx2ans_attn_l2 = Context2AnswerAttention(config['word_embed_dim'] + config['hidden_size'] + bert_dim, config['hidden_size']) self.ctx_rnn_encoder_l2 = EncoderRNN(2 * enc_hidden_size, enc_hidden_size, bidirectional=config['enc_bidi'], num_layers=config['num_enc_rnn_layers'], rnn_type=self.rnn_type, rnn_dropout=config['enc_rnn_dropout'], device=self.device) print('[ Using Deep Answer Alignment Network: {} ]'.format(self.dan_type)) self.graph_encoder = GraphNN(config) self.decoder = DecoderRNN(self.vocab_size, config['word_embed_dim'], dec_hidden_size, rnn_type=self.rnn_type, enc_attn=config['enc_attn'], dec_attn=config['dec_attn'], pointer=config['pointer'], out_embed_size=config['out_embed_size'], tied_embedding=self.word_embed if config['tie_embed'] else None, in_drop=config['dec_in_dropout'], rnn_drop=config['dec_rnn_dropout'], out_drop=config['dec_out_dropout'], enc_hidden_size=enc_hidden_size, device=self.device) def filter_oov(self, tensor, ext_vocab_size): """Replace any OOV index in `tensor` with UNK""" if ext_vocab_size and ext_vocab_size > self.vocab_size: result = tensor.clone() result[tensor >= self.vocab_size] = self.word_vocab.UNK return result return tensor def get_coverage_vector(self, enc_attn_weights): """Combine the past attention weights into one vector""" if self.cover_func == 'max': coverage_vector, _ = torch.max(torch.cat(enc_attn_weights), dim=0) elif self.cover_func == 'sum': coverage_vector = torch.sum(torch.cat(enc_attn_weights), dim=0) else: raise ValueError('Unrecognized cover_func: ' + self.cover_func) return coverage_vector def forward(self, ex, target_tensor=None, criterion=None, criterion_reduction=True, criterion_nll_only=False, \ rl_loss=False, *, forcing_ratio=0, partial_forcing=True, \ ext_vocab_size=None, sample=False, saved_out: Graph2SeqOutput=None, \ visualize: bool=None, include_cover_loss: bool=False) -> Graph2SeqOutput: """ :param input_tensor: tensor of word indices, (batch size, src seq len) :param target_tensor: tensor of word indices, (batch size, tgt seq len) :param input_lengths: see explanation in `EncoderRNN` :param criterion: the loss function; if set, loss will be returned :param forcing_ratio: see explanation in `Params` (requires `target_tensor`, training only) :param partial_forcing: see explanation in `Params` (training only) :param ext_vocab_size: see explanation in `DecoderRNN` :param sample: if True, the returned `decoded_tokens` will be based on random sampling instead of greedily selecting the token of the highest probability at each step :param saved_out: the output of this function in a previous run; if set, the encoding step will be skipped and we reuse the encoder states saved in this object :param visualize: whether to return data for attention and pointer visualization; if None, return if no `criterion` is provided :param include_cover_loss: whether to include coverage loss in the returned `loss_value` Run the graph2seq model for training or testing. """ input_tensor = ex['context'] input_lengths = ex['context_lens'] batch_size, input_length = input_tensor.shape input_mask = create_mask(input_lengths, input_length, self.device) log_prob = not (sample or self.decoder.pointer) # don't apply log too soon in these cases if visualize is None: visualize = criterion is None if visualize and not (self.enc_attn or self.pointer): visualize = False # nothing to visualize if target_tensor is None: target_length = self.max_dec_steps target_mask = None else: target_tensor = target_tensor.transpose(1, 0) target_length = target_tensor.size(0) target_mask = create_mask(ex['target_lens'], target_length, self.device) if forcing_ratio == 1: # if fully teacher-forced, it may be possible to eliminate the for-loop over decoder steps # for generality, this optimization is not investigated use_teacher_forcing = True elif forcing_ratio > 0: if partial_forcing: use_teacher_forcing = None # decide later individually in each step else: use_teacher_forcing = random.random() < forcing_ratio else: use_teacher_forcing = False if saved_out: # reuse encoder states of a previous run encoder_outputs = saved_out.encoder_outputs encoder_state = saved_out.encoder_state assert input_length == encoder_outputs.size(0) assert batch_size == encoder_outputs.size(1) else: # run the encoder # encoder_embedded: (batch size, input len, embed size) encoder_embedded = self.word_embed(self.filter_oov(input_tensor, ext_vocab_size)) encoder_embedded = dropout(encoder_embedded, self.word_dropout, shared_axes=[-2], training=self.training) enc_input_cat = [encoder_embedded] if self.f_case: case_features = self.case_embed(ex['context_case']) enc_input_cat.append(case_features) if self.f_pos: pos_features = self.pos_embed(ex['context_pos']) enc_input_cat.append(pos_features) if self.f_ner: ner_features = self.ner_embed(ex['context_ner']) enc_input_cat.append(ner_features) if self.f_freq: freq_features = self.freq_embed(ex['context_freq']) enc_input_cat.append(freq_features) if self.f_dep: dep_features = self.edge_embed(ex['context_dep']) enc_input_cat.append(dep_features) if self.f_ans: answer_tensor = ex['answers'] answer_lengths = ex['answer_lens'] ans_mask = create_mask(answer_lengths, answer_tensor.size(1), self.device) ans_embedded = self.word_embed(self.filter_oov(answer_tensor, ext_vocab_size)) ans_embedded = dropout(ans_embedded, self.word_dropout, shared_axes=[-2], training=self.training) enc_answer_cat = [ans_embedded] if self.dan_type in ('all', 'word'): # Align answer info to passage at the word level ctx_aware_ans_emb = self.ctx2ans_attn_l1(encoder_embedded, ans_embedded, ans_embedded, ans_mask) enc_input_cat.append(ctx_aware_ans_emb) if self.use_bert: context_bert = ex['context_bert'] if not self.finetune_bert: assert context_bert.requires_grad == False if self.use_bert_weight: weights_bert_layers = torch.softmax(self.logits_bert_layers, dim=-1) if self.use_bert_gamma: weights_bert_layers = weights_bert_layers * self.gamma_bert_layers context_bert = torch.mm(weights_bert_layers, context_bert.view(context_bert.size(0), -1)).view(context_bert.shape[1:]) context_bert = dropout(context_bert, self.bert_dropout, shared_axes=[-2], training=self.training) enc_input_cat.append(context_bert) if self.f_ans and self.dan_type in ('all', 'hidden'): answer_bert = ex['answer_bert'] if not self.finetune_bert: assert answer_bert.requires_grad == False answer_bert = torch.mm(weights_bert_layers, answer_bert.view(answer_bert.size(0), -1)).view(answer_bert.shape[1:]) answer_bert = dropout(answer_bert, self.bert_dropout, shared_axes=[-2], training=self.training) enc_answer_cat.append(answer_bert) raw_input_vec = torch.cat(enc_input_cat, -1) encoder_outputs = self.ctx_rnn_encoder(raw_input_vec, input_lengths)[0].transpose(0, 1) if self.f_ans and self.dan_type in ('all', 'hidden'): # Align answer info to passage at the hidden state level enc_answer_cat = torch.cat(enc_answer_cat, -1) ans_encoder_outputs = self.ans_rnn_encoder(enc_answer_cat, answer_lengths)[0].transpose(0, 1) enc_cat_l2 = torch.cat([encoder_embedded, encoder_outputs], -1) ans_cat_l2 = torch.cat([ans_embedded, ans_encoder_outputs], -1) if self.use_bert: enc_cat_l2 = torch.cat([enc_cat_l2, context_bert], -1) ans_cat_l2 = torch.cat([ans_cat_l2, answer_bert], -1) ctx_aware_ans_emb = self.ctx2ans_attn_l2(enc_cat_l2, \ ans_cat_l2, ans_encoder_outputs, ans_mask) encoder_outputs = self.ctx_rnn_encoder_l2(torch.cat([encoder_outputs, ctx_aware_ans_emb], -1), \ input_lengths)[0].transpose(0, 1) input_graphs = ex['context_graphs'] if self.message_function == 'edge_mm': edge_vec = input_graphs['edge_features'] else: edge_vec = self.edge_embed(input_graphs['edge_features']) node_embedding, graph_embedding = self.graph_encoder(encoder_outputs, \ edge_vec, (input_graphs['node2edge'], input_graphs['edge2node']), \ node_mask=input_mask, raw_node_vec=raw_input_vec) encoder_outputs = node_embedding encoder_state = (graph_embedding, graph_embedding) if self.rnn_type == 'lstm' else graph_embedding # initialize return values r = Graph2SeqOutput(encoder_outputs, encoder_state, torch.zeros(target_length, batch_size, dtype=torch.long)) if visualize: r.enc_attn_weights = torch.zeros(target_length, batch_size, input_length) if self.pointer: r.ptr_probs = torch.zeros(target_length, batch_size) if self.enc_dec_adapter is None: decoder_state = encoder_state else: if self.rnn_type == 'lstm': decoder_state = tuple([self.enc_dec_adapter[i](x) for i, x in enumerate(encoder_state)]) else: decoder_state = self.enc_dec_adapter(encoder_state) decoder_hiddens = [] enc_attn_weights = [] enc_context = None dec_prob_ptr_tensor = [] decoder_input = to_cuda(torch.tensor([self.word_vocab.SOS] * batch_size), self.device) for di in range(target_length): decoder_embedded = self.word_embed(self.filter_oov(decoder_input, ext_vocab_size)) decoder_embedded = dropout(decoder_embedded, self.word_dropout, shared_axes=[-2], training=self.training) if enc_attn_weights: coverage_vector = self.get_coverage_vector(enc_attn_weights) else: coverage_vector = None decoder_output, decoder_state, dec_enc_attn, dec_prob_ptr, enc_context = \ self.decoder(decoder_embedded, decoder_state, encoder_outputs, torch.cat(decoder_hiddens) if decoder_hiddens else None, coverage_vector, input_mask=input_mask, encoder_word_idx=input_tensor, ext_vocab_size=ext_vocab_size, log_prob=log_prob, prev_enc_context=enc_context) dec_prob_ptr_tensor.append(dec_prob_ptr) if self.dec_attn: decoder_hiddens.append(decoder_state[0] if self.rnn_type == 'lstm' else decoder_state) # save the decoded tokens if not sample: _, top_idx = decoder_output.data.topk(1) # top_idx shape: (batch size, k=1) else: prob_distribution = torch.exp(decoder_output) if log_prob else decoder_output top_idx = torch.multinomial(prob_distribution, 1) top_idx = top_idx.squeeze(1).detach() # detach from history as input r.decoded_tokens[di] = top_idx # decide the next input if use_teacher_forcing or (use_teacher_forcing is None and random.random() < forcing_ratio): decoder_input = target_tensor[di] # teacher forcing else: decoder_input = top_idx # compute loss if criterion: if target_tensor is None: gold_standard = top_idx # for sampling else: gold_standard = target_tensor[di] if not rl_loss else decoder_input if not log_prob: decoder_output = torch.log(decoder_output + VERY_SMALL_NUMBER) # necessary for NLLLoss if criterion_reduction: nll_loss = criterion(decoder_output, gold_standard) r.loss += nll_loss r.loss_value += nll_loss.item() else: nll_loss = F.nll_loss(decoder_output, gold_standard, ignore_index=self.word_vocab.PAD, reduction='none') r.loss += nll_loss r.loss_value += nll_loss # update attention history and compute coverage loss if self.enc_attn_cover or (criterion and self.cover_loss > 0): if not criterion_nll_only and coverage_vector is not None and criterion and self.cover_loss > 0: if criterion_reduction: coverage_loss = torch.sum(torch.min(coverage_vector, dec_enc_attn)) / batch_size * self.cover_loss r.loss += coverage_loss if include_cover_loss: r.loss_value += coverage_loss.item() else: coverage_loss = torch.sum(torch.min(coverage_vector, dec_enc_attn), dim=-1) * self.cover_loss r.loss += coverage_loss if include_cover_loss: r.loss_value += coverage_loss enc_attn_weights.append(dec_enc_attn.unsqueeze(0)) # save data for visualization if visualize: r.enc_attn_weights[di] = dec_enc_attn.data if self.pointer: r.ptr_probs[di] = dec_prob_ptr.squeeze(1).data # compute pointer network loss if not criterion_nll_only and criterion and self.pointer_loss_ratio > 0 and target_tensor is not None: dec_prob_ptr_tensor = torch.cat(dec_prob_ptr_tensor, -1) pointer_loss = F.binary_cross_entropy(dec_prob_ptr_tensor, ex['target_copied'], reduction='none') if criterion_reduction: pointer_loss = torch.sum(pointer_loss * target_mask) / batch_size * self.pointer_loss_ratio r.loss += pointer_loss r.loss_value += pointer_loss.item() else: pointer_loss = torch.sum(pointer_loss * target_mask, dim=-1) * self.pointer_loss_ratio r.loss += pointer_loss r.loss_value += pointer_loss return r
46.948357
194
0.6892
19,634
0.9817
0
0
0
0
0
0
4,337
0.21685
220aabb343a26ce1e8cadcc4df4a8b3a8adedfdb
2,939
py
Python
towhee/engine/pipeline.py
jeffoverflow/towhee
c576d22a4cdfc3909a3323b0d1decab87e83d26c
[ "Apache-2.0" ]
null
null
null
towhee/engine/pipeline.py
jeffoverflow/towhee
c576d22a4cdfc3909a3323b0d1decab87e83d26c
[ "Apache-2.0" ]
null
null
null
towhee/engine/pipeline.py
jeffoverflow/towhee
c576d22a4cdfc3909a3323b0d1decab87e83d26c
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from towhee.engine.graph_context import GraphContext from towhee.dag.graph_repr import GraphRepr from towhee.dataframe.dataframe import DFIterator class Pipeline: """ The runtime pipeline context """ def __init__(self, engine: Engine, graph_repr: GraphRepr, parallelism: int = 1) -> None: """ Args: engine: the local engine to drive the Pipeline graph_repr: the graph representation parallelism: how many rows of inputs to be processed concurrently """ self._engine = engine self._graph_repr = graph_repr self._parallelism = parallelism def build(self): """ Create GraphContexts and set up input iterators. """ raise NotImplementedError def run(self, inputs: list) -> DFIterator: """ The Pipeline's main loop Agrs: inputs: the input data, organized as a list of DataFrame, feeding to the Pipeline. """ # while we still have pipeline inputs: # input = inputs.next() # for g in graph contexts: # if g.is_idle: # g.start_op.inputs = input # break # if all graphs contexts are busy: # wait for notification from _notify_run_loop raise NotImplementedError def on_start(self, handler: function): """ Set a custom handler that called before the execution of the graph. """ self._on_start_handler = handler raise NotImplementedError def on_finish(self, handler: function): """ Set a custom handler that called after the execution of the graph. """ self._on_finish_handler = handler raise NotImplementedError def _organize_outputs(self, graph_ctx: GraphContext): """ on_finish handler passing to GraphContext. The handler will organize the GraphContext's output into Pipeline's outputs. """ raise NotImplementedError def _notify_run_loop(self, graph_ctx: GraphContext): """ on_finish handler passing to GraphContext. The handler will notify the run loop that a GraphContext is in idle state. """ raise NotImplementedError
33.397727
92
0.638312
2,195
0.746853
0
0
0
0
0
0
1,834
0.624022
220ccdab937624a53d838d42a5f734ee87cb22a8
744
py
Python
portfolio/models.py
MrInternauta/Python-Django-Portafolio-web-administrable
0df6f76cb5bdc2f28eb691d21f3592f7f082ce80
[ "MIT" ]
null
null
null
portfolio/models.py
MrInternauta/Python-Django-Portafolio-web-administrable
0df6f76cb5bdc2f28eb691d21f3592f7f082ce80
[ "MIT" ]
null
null
null
portfolio/models.py
MrInternauta/Python-Django-Portafolio-web-administrable
0df6f76cb5bdc2f28eb691d21f3592f7f082ce80
[ "MIT" ]
null
null
null
from django.db import models # Create your models here. class Project(models.Model): title = models.CharField(max_length = 200, verbose_name = "Titulo") description = models.TextField(verbose_name="Descripcion") image = models.ImageField(verbose_name="Imagen", upload_to = "projects") link = models.URLField(null=True, blank=True, verbose_name="Direecion web") created = models.DateTimeField(auto_now_add=True, verbose_name="Fecha de creacion") updated = models.DateTimeField(auto_now=True, verbose_name="Fecha de actualizacion") class Meta: verbose_name = 'proyecto' verbose_name_plural = 'proyectos' ordering = ['-created'] def __str__(self): return self.title
43.764706
89
0.701613
684
0.919355
0
0
0
0
0
0
155
0.208333
220d1b0d3abc6c0db8d6bd13778e65f09dbb4290
231
py
Python
src/notifications/tests.py
kullo/webconfig
470839ed77fda11634d4e14a89bb5e7894aa707d
[ "BSD-3-Clause" ]
null
null
null
src/notifications/tests.py
kullo/webconfig
470839ed77fda11634d4e14a89bb5e7894aa707d
[ "BSD-3-Clause" ]
null
null
null
src/notifications/tests.py
kullo/webconfig
470839ed77fda11634d4e14a89bb5e7894aa707d
[ "BSD-3-Clause" ]
null
null
null
# Copyright 2015–2020 Kullo GmbH # # This source code is licensed under the 3-clause BSD license. See LICENSE.txt # in the root directory of this source tree for details. from django.test import TestCase # Create your tests here.
28.875
78
0.774892
0
0
0
0
0
0
0
0
194
0.832618
220da7c8db31ca8e3ea4491d39c1e1bb6b8b46fe
1,018
py
Python
examples/cam.py
jtme/button-shim
19b80a236866fad068e6d3aeb643a1270d6ae934
[ "MIT" ]
null
null
null
examples/cam.py
jtme/button-shim
19b80a236866fad068e6d3aeb643a1270d6ae934
[ "MIT" ]
null
null
null
examples/cam.py
jtme/button-shim
19b80a236866fad068e6d3aeb643a1270d6ae934
[ "MIT" ]
null
null
null
#!/usr/bin/env python import signal import buttonshim print(""" Button SHIM: rainbow.py Command on button press. Press Ctrl+C to exit. """) import commands @buttonshim.on_press(buttonshim.BUTTON_A) def button_a(button, pressed): buttonshim.set_pixel(0x94, 0x00, 0xd3) s=commands.getstatusoutput("raspistill -w 320 -h 240 -o IMG/snap.jpg") print s if s[0] != 0: self.output(s[1], s[0]) else: self.output("error occured", status[0]) @buttonshim.on_press(buttonshim.BUTTON_B) def button_b(button, pressed): buttonshim.set_pixel(0x00, 0x00, 0xff) @buttonshim.on_press(buttonshim.BUTTON_C) def button_c(button, pressed): buttonshim.set_pixel(0x00, 0xff, 0x00) @buttonshim.on_press(buttonshim.BUTTON_D) def button_d(button, pressed): buttonshim.set_pixel(0xff, 0xff, 0x00) @buttonshim.on_press(buttonshim.BUTTON_E) def button_e(button, pressed): buttonshim.set_pixel(0xff, 0x00, 0x00) signal.pause()
19.960784
74
0.681729
0
0
0
0
795
0.780943
0
0
160
0.157171
220e0c7e4d7e7b9e561c692a325977f16ecf70b4
153
py
Python
built-in/TensorFlow/Official/cv/image_classification/ResnetVariant_for_TensorFlow/automl/vega/algorithms/nas/sm_nas/mmdet_meta_cfgs/bbox_head/__init__.py
Huawei-Ascend/modelzoo
df51ed9c1d6dbde1deef63f2a037a369f8554406
[ "Apache-2.0" ]
12
2020-12-13T08:34:24.000Z
2022-03-20T15:17:17.000Z
built-in/TensorFlow/Official/cv/image_classification/ResnetVariant_for_TensorFlow/automl/vega/algorithms/nas/sm_nas/mmdet_meta_cfgs/bbox_head/__init__.py
Huawei-Ascend/modelzoo
df51ed9c1d6dbde1deef63f2a037a369f8554406
[ "Apache-2.0" ]
3
2021-03-31T20:15:40.000Z
2022-02-09T23:50:46.000Z
built-in/TensorFlow/Research/cv/image_classification/Darts_for_TensorFlow/automl/vega/algorithms/nas/sm_nas/mmdet_meta_cfgs/bbox_head/__init__.py
Huawei-Ascend/modelzoo
df51ed9c1d6dbde1deef63f2a037a369f8554406
[ "Apache-2.0" ]
2
2021-07-10T12:40:46.000Z
2021-12-17T07:55:15.000Z
from .cascade_head import CascadeFCBBoxHead from .convfc_bbox_head import SharedFCBBoxHead __all__ = [ 'CascadeFCBBoxHead', 'SharedFCBBoxHead']
21.857143
46
0.79085
0
0
0
0
0
0
0
0
37
0.24183
221167d3228359aec0ed9b72908eb095312e240f
3,146
py
Python
monzo/model/monzoaccount.py
elementechemlyn/pythonzo
ff6124119c7fe8c68c4bfa0e5d59b79ad442c1fc
[ "MIT" ]
null
null
null
monzo/model/monzoaccount.py
elementechemlyn/pythonzo
ff6124119c7fe8c68c4bfa0e5d59b79ad442c1fc
[ "MIT" ]
1
2021-06-01T22:01:40.000Z
2021-06-01T22:01:40.000Z
monzo/model/monzoaccount.py
elementechemlyn/pythonzo
ff6124119c7fe8c68c4bfa0e5d59b79ad442c1fc
[ "MIT" ]
null
null
null
import datetime from .monzobalance import MonzoBalance from .monzopagination import MonzoPaging from .monzotransaction import MonzoTransaction class MonzoAccount(object): def __init__(self,api,json_dict=None): self.api = api self.account_id = None self.created = None self.description = None self.account_type = None self.balance = None if json_dict: self.account_id = json_dict.get("id",None) self.description = json_dict.get("description",None) self.account_type = json_dict.get("type",None) self.created = json_dict.get("created",None) if self.created: self.created = datetime.datetime.strptime(self.created,"%Y-%m-%dT%H:%M:%S.%fZ") @classmethod def listAccounts(cls,api): accounts = [] accounts_json = api.listAccounts() for account_json in accounts_json["accounts"]: account = cls(api,account_json) accounts.append(account) return accounts @classmethod def getAccount(cls,api,account_id): accounts_json = api.listAccounts() for account_json in accounts_json["accounts"]: account = cls(api,account_json) if account.account_id == account_id: account.readBalance() return account return None def readBalance(self): balance_json = self.api.readBalance(self.account_id) self.balance = MonzoBalance(self.api,balance_json) return self.balance def listTransactionsThisMonth(self,expand=None): now = datetime.datetime.now() this_month = now.replace(day=1,hour=0,minute=0,second=0,microsecond=0) page = MonzoPaging() page.set_since_date(this_month) return self.listTransactions(page,expand) def listTransactionsToday(self,expland=None): now = datetime.datetime.now() today = now.replace(hour=0,minute=0,second=0,microsecond=0) page = MonzoPaging() page.set_since_date(today) return self.listTransactions(page,expand) def listTransactionSinceDate(self,from_dt,expand=None): page = MonzoPaging() page.set_since_date(from_dt) return self.listTransactions(page,expand) def listTransactionsSinceTransaction(self,trans_id,expand=None): page = MonzoPaging() page.set_since_trans(trans_id) return self.listTransactions(page,expand) def listTransactionsBetween(self,since_dt,to_dt,expand=None): page = MonzoPaging() page.set_since_date(since_dt) page.set_before(to_dt) return self.listTransactions(page,expand) def listTransactions(self,pagination=None,expand=None): transactions = [] transactions_json = self.api.listTransactions(self.account_id,pagination,expand) for transaction_json in transactions_json["transactions"]: transaction = MonzoTransaction(self.api,transaction_json) transactions.append(transaction) return transactions
35.75
95
0.651939
2,991
0.950731
0
0
600
0.190718
0
0
89
0.02829
22117a7dbdd2a79f096b01e929739e3fe71da985
3,718
py
Python
learninghouse/api/errors/__init__.py
DerOetzi/learninghouse-core
ece900b2a333b8ea9710609322cfefeeaf694cf8
[ "MIT" ]
1
2021-11-02T13:52:11.000Z
2021-11-02T13:52:11.000Z
learninghouse/api/errors/__init__.py
DerOetzi/learninghouse-core
ece900b2a333b8ea9710609322cfefeeaf694cf8
[ "MIT" ]
null
null
null
learninghouse/api/errors/__init__.py
DerOetzi/learninghouse-core
ece900b2a333b8ea9710609322cfefeeaf694cf8
[ "MIT" ]
1
2020-08-27T20:03:36.000Z
2020-08-27T20:03:36.000Z
from typing import Dict, Optional from fastapi import status, Request from fastapi.responses import JSONResponse from fastapi.exceptions import RequestValidationError from learninghouse.models import LearningHouseErrorMessage MIMETYPE_JSON = 'application/json' class LearningHouseException(Exception): STATUS_CODE = status.HTTP_500_INTERNAL_SERVER_ERROR UNKNOWN = 'UNKNOWN' DESCRIPTION = 'An unknown exception occurred ' +\ 'while handling your request.' def __init__(self, status_code: Optional[int] = None, key: Optional[str] = None, description: Optional[str] = None): super().__init__() self.http_status_code: int = status_code or self.STATUS_CODE self.error: LearningHouseErrorMessage = LearningHouseErrorMessage( error=key or self.UNKNOWN, description=description or self.DESCRIPTION ) def response(self) -> JSONResponse: return JSONResponse(content=self.error.dict(), status_code=self.http_status_code) @classmethod def api_description(cls) -> Dict: return { 'model': LearningHouseErrorMessage, 'description': 'An exception occured which is not handled by the service now. ' + 'Please write an issue on GitHub.', 'content': { MIMETYPE_JSON: { 'example': { 'error': cls.UNKNOWN, 'description': cls.DESCRIPTION } } } } class LearningHouseSecurityException(LearningHouseException): STATUS_CODE = status.HTTP_403_FORBIDDEN SECURITY_EXCEPTION = 'SECURITY_EXCEPTION' DESCRIPTION = 'A security violation occured while handling your request.' def __init__(self, description: str): super().__init__(self.STATUS_CODE, self.SECURITY_EXCEPTION, description or self.DESCRIPTION) @classmethod def api_description(cls) -> Dict: return { 'model': LearningHouseErrorMessage, 'description': 'The request didn\'t pass security checks.', 'content': { MIMETYPE_JSON: { 'example': { 'error': cls.SECURITY_EXCEPTION, 'description': cls.DESCRIPTION } } } } class LearningHouseValidationError(LearningHouseException): STATUS_CODE = status.HTTP_422_UNPROCESSABLE_ENTITY VALIDATION_ERROR = 'VALIDATION_ERROR' DESCRIPTION = 'A validation error occurred while handling your request.' def __init__(self, description: Optional[str] = None): super().__init__(self.STATUS_CODE, self.VALIDATION_ERROR, description or self.DESCRIPTION) @classmethod def api_description(cls) -> Dict: return { 'model': LearningHouseErrorMessage, 'description': 'The request didn\'t pass input validation', 'content': { MIMETYPE_JSON: { 'example': { 'error': cls.VALIDATION_ERROR, 'description': cls.DESCRIPTION } } } } async def validation_error_handler(request: Request, exc: RequestValidationError) -> JSONResponse: # pylint: disable=unused-argument return LearningHouseValidationError(str(exc)).response() async def learninghouse_exception_handler(request: Request, exc: LearningHouseException): # pylint: disable=unused-argument return exc.response()
34.747664
133
0.604088
3,095
0.832437
0
0
1,419
0.381657
344
0.092523
668
0.179666
2212ba611cd09cc95cb9831180998a6882517ddf
1,751
py
Python
moda/dataprep/create_dataset.py
Patte1808/moda
312c9594754ae0f6d17cbfafaa2c4c790c58efe5
[ "MIT" ]
null
null
null
moda/dataprep/create_dataset.py
Patte1808/moda
312c9594754ae0f6d17cbfafaa2c4c790c58efe5
[ "MIT" ]
null
null
null
moda/dataprep/create_dataset.py
Patte1808/moda
312c9594754ae0f6d17cbfafaa2c4c790c58efe5
[ "MIT" ]
null
null
null
import pandas as pd def get_windowed_ts(ranged_ts, window_size, with_actual=True): """ Creates a data frame where each row is a window of samples from the time series. Each consecutive row is a shift of 1 cell from the previous row. For example: [[1,2,3],[2,3,4],[3,4,5]] :param ranged_ts: a pd.DataFrame containing one column for values and one pd.DatetimeIndex for dates :param window_size: The number of timestamps to be used as features :param with_actual: Whether to increase window size by one, and treat the last column as the ground truth (relevant for forecasting scenarios). Returns the same output just with a window size bigger by 1. :return: """ windowed_ts = ranged_ts windowed_ts_copy = windowed_ts.copy() for i in range(window_size - 1 + int(with_actual)): windowed_ts = pd.concat([windowed_ts, windowed_ts_copy.shift(-(i + 1))], axis=1) windowed_ts = windowed_ts.dropna(axis=0) return windowed_ts def split_history_and_current(windowed_ts): """ Returns the first n-1 columns as X, and the last column as y. Useful mainly for forecasting scenarios :param windowed_ts: a pd.DataFrame with a date index and a column per timestamp. see get_windowed_ts :return: """ X = windowed_ts.iloc[:, :-1].values y = windowed_ts.iloc[:, -1].values return (X, y) if __name__ == "__main__": ranged_ts = pd.DataFrame({"date": range(6), "value": range(6)}) ranged_ts["date"] = pd.to_datetime(ranged_ts["date"]) ranged_ts = ranged_ts.set_index(pd.DatetimeIndex(ranged_ts["date"])) ranged_ts = ranged_ts.drop(columns="date") ranged_ts.head() windowed_df = get_windowed_ts(ranged_ts, window_size=3, with_actual=False)
38.065217
109
0.703027
0
0
0
0
0
0
0
0
894
0.510565
22135083df33d8282602ed03efa2652030de4212
1,310
py
Python
test/test_ufunc.py
tuwien-cms/xprec
8f213aa9475342000883a56c56d54bb5208eb930
[ "MIT" ]
6
2021-10-01T16:35:27.000Z
2022-01-05T18:21:39.000Z
test/test_ufunc.py
tuwien-cms/xprec
8f213aa9475342000883a56c56d54bb5208eb930
[ "MIT" ]
8
2022-01-20T20:33:26.000Z
2022-03-25T09:27:49.000Z
test/test_ufunc.py
tuwien-cms/xprec
8f213aa9475342000883a56c56d54bb5208eb930
[ "MIT" ]
1
2022-01-21T22:49:16.000Z
2022-01-21T22:49:16.000Z
# Copyright (C) 2021 Markus Wallerberger and others # SPDX-License-Identifier: MIT import numpy as np import xprec def _compare_ufunc(ufunc, *args, ulps=1): fx_d = ufunc(*args) fx_q = ufunc(*(a.astype(xprec.ddouble) for a in args)).astype(float) # Ensure relative accuracy of 2 ulps np.testing.assert_array_almost_equal_nulp(fx_d, fx_q, ulps) def test_log(): x = np.geomspace(1e-300, 1e300, 1953) _compare_ufunc(np.log, x) zeroq = xprec.ddouble.type(0) assert np.isinf(np.log(zeroq)) def test_sqrt(): x = np.geomspace(1e-300, 1e300, 1953) _compare_ufunc(np.sqrt, x) def test_exp(): x = np.geomspace(1e-300, 700, 4953) x = np.hstack([-x[::-1], 0, x]) _compare_ufunc(np.exp, x) # Unfortunately, on Windows expm1 is less precise, so we need to increase # the tolerance slightly _compare_ufunc(np.expm1, x, ulps=2) def test_cosh(): x = np.geomspace(1e-300, 700, 4953) x = np.hstack([-x[::-1], 0, x]) _compare_ufunc(np.cosh, x) _compare_ufunc(np.sinh, x) thousand = xprec.ddouble.type(1000) assert np.isinf(np.cosh(thousand)) assert np.isinf(np.cosh(-thousand)) def test_hypot(): x = np.geomspace(1e-300, 1e260, 47) x = np.hstack([-x[::-1], 0, x]) _compare_ufunc(np.hypot, x[:,None], x[None,:])
24.716981
77
0.650382
0
0
0
0
0
0
0
0
214
0.163359
22135b653bd172de4f59e045357620ffd83da98a
48
py
Python
echolect/millstone/__init__.py
ryanvolz/echolect
ec2594925f34fdaea69b64e725fccb0c99665a55
[ "BSD-3-Clause" ]
1
2022-03-24T22:48:12.000Z
2022-03-24T22:48:12.000Z
echolect/millstone/__init__.py
scivision/echolect
ec2594925f34fdaea69b64e725fccb0c99665a55
[ "BSD-3-Clause" ]
1
2015-03-25T20:41:24.000Z
2015-03-25T20:41:24.000Z
echolect/millstone/__init__.py
scivision/echolect
ec2594925f34fdaea69b64e725fccb0c99665a55
[ "BSD-3-Clause" ]
null
null
null
from .read_hdf5 import * from .hdf5_api import *
24
24
0.770833
0
0
0
0
0
0
0
0
0
0
2214b7a4b4680d12ebfcca09d05d0ee1ade6215e
932
py
Python
pyptoolz/transforms.py
embedio/pyplinez
14b2e84d0f0bd86870d492a78f02c0b19810d3f6
[ "MIT" ]
null
null
null
pyptoolz/transforms.py
embedio/pyplinez
14b2e84d0f0bd86870d492a78f02c0b19810d3f6
[ "MIT" ]
null
null
null
pyptoolz/transforms.py
embedio/pyplinez
14b2e84d0f0bd86870d492a78f02c0b19810d3f6
[ "MIT" ]
null
null
null
from pathlib import Path from toolz import itertoolz, curried import vaex transform_path_to_posix = lambda path: path.as_posix() def path_to_posix(): return curried.valmap(transform_path_to_posix) transform_xlsx_to_vaex = lambda path: vaex.from_ascii(path, seperator="\t") def xlsx_to_vaex(): return curried.valmap(transform_ascii_to_vaex) transform_ascii_to_vaex = lambda path: vaex.from_ascii(path, seperator="\t") def ascii_to_vaex(): return curried.valmap(transform_ascii_to_vaex) transform_ascii_to_vaex2 = lambda path: vaex.from_ascii(path) def ascii_to_vaex2(): return curried.valmap(transform_ascii_to_vaex2) transform_vaex_to_list = lambda df: [itertoolz.second(x) for x in df.iterrows()] def vaex_rows_to_list(): return curried.valmap(transform_vaex_to_list) transform_vaex_to_dict = lambda df: df.to_dict() def vaex_to_dict(): return curried.valmap(transform_vaex_to_dict)
20.26087
80
0.784335
0
0
0
0
0
0
0
0
8
0.008584
2214dd004a4a327669decd49302d44af0c040bf5
1,409
py
Python
experiments/s3-image-resize/chalicelib/s3_helpers.py
llamapope/chalice-experiments
f08fa0bade19c2659788a0678d89a4a63c2402d5
[ "MIT" ]
null
null
null
experiments/s3-image-resize/chalicelib/s3_helpers.py
llamapope/chalice-experiments
f08fa0bade19c2659788a0678d89a4a63c2402d5
[ "MIT" ]
2
2021-06-08T20:56:46.000Z
2022-01-13T02:15:29.000Z
experiments/s3-image-resize/chalicelib/s3_helpers.py
llamapope/chalice-experiments
f08fa0bade19c2659788a0678d89a4a63c2402d5
[ "MIT" ]
null
null
null
import PIL from PIL import Image from io import BytesIO import re def resize(s3_client, bucket, original_key, width, height, suffix): obj = s3_client.get_object(Bucket=bucket, Key=original_key) full_size_key = original_key.replace('__incoming/', '') ext = re.sub(r'.+\.([^.]+)$', r'\1', full_size_key) key = re.sub(r'\.[^.]+$', '', full_size_key) content_type = obj['ContentType'] if content_type == 'image/png': image_type = 'PNG' elif content_type == 'image/jpg' or content_type == 'image/jpeg': image_type = 'JPEG' else: raise Exception(f'Invalid image type: {content_type}') obj_body = obj['Body'].read() img = Image.open(BytesIO(obj_body)) img = img.resize((width, height), PIL.Image.ANTIALIAS) buffer = BytesIO() img.save(buffer, image_type) buffer.seek(0) resized_key=f"{key}-{suffix}.{ext}" # write the resized image obj = s3_client.put_object( Key=resized_key, Bucket=bucket, Body=buffer, ContentType=content_type, ACL='public-read') # move the original out of __incoming s3_client.copy_object( Bucket=bucket, Key=full_size_key, CopySource=f'{bucket}/{original_key}', ACL='public-read') s3_client.delete_object(Bucket=bucket, Key=original_key) app.log.debug("resized: %s, key: %s", bucket, key)
29.978723
69
0.628105
0
0
0
0
0
0
0
0
308
0.218595
221552a2a64bb10ef85638e3e31fd395fcf10fcf
4,792
py
Python
synapse/handlers/room_member_worker.py
lukaslihotzki/synapse
1dfdc87b9bb07cc3c958dde7f41f2af4322477e5
[ "Apache-2.0" ]
9,945
2015-01-02T07:41:06.000Z
2022-03-31T23:22:42.000Z
synapse/handlers/room_member_worker.py
lukaslihotzki/synapse
1dfdc87b9bb07cc3c958dde7f41f2af4322477e5
[ "Apache-2.0" ]
9,320
2015-01-08T14:09:03.000Z
2022-03-31T21:11:24.000Z
synapse/handlers/room_member_worker.py
lukaslihotzki/synapse
1dfdc87b9bb07cc3c958dde7f41f2af4322477e5
[ "Apache-2.0" ]
2,299
2015-01-31T22:16:29.000Z
2022-03-31T06:08:26.000Z
# Copyright 2018-2021 The Matrix.org Foundation C.I.C. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import TYPE_CHECKING, List, Optional, Tuple from synapse.api.errors import SynapseError from synapse.handlers.room_member import RoomMemberHandler from synapse.replication.http.membership import ( ReplicationRemoteJoinRestServlet as ReplRemoteJoin, ReplicationRemoteKnockRestServlet as ReplRemoteKnock, ReplicationRemoteRejectInviteRestServlet as ReplRejectInvite, ReplicationRemoteRescindKnockRestServlet as ReplRescindKnock, ReplicationUserJoinedLeftRoomRestServlet as ReplJoinedLeft, ) from synapse.types import JsonDict, Requester, UserID if TYPE_CHECKING: from synapse.server import HomeServer logger = logging.getLogger(__name__) class RoomMemberWorkerHandler(RoomMemberHandler): def __init__(self, hs: "HomeServer"): super().__init__(hs) self._remote_join_client = ReplRemoteJoin.make_client(hs) self._remote_knock_client = ReplRemoteKnock.make_client(hs) self._remote_reject_client = ReplRejectInvite.make_client(hs) self._remote_rescind_client = ReplRescindKnock.make_client(hs) self._notify_change_client = ReplJoinedLeft.make_client(hs) async def _remote_join( self, requester: Requester, remote_room_hosts: List[str], room_id: str, user: UserID, content: dict, ) -> Tuple[str, int]: """Implements RoomMemberHandler._remote_join""" if len(remote_room_hosts) == 0: raise SynapseError(404, "No known servers") ret = await self._remote_join_client( requester=requester, remote_room_hosts=remote_room_hosts, room_id=room_id, user_id=user.to_string(), content=content, ) return ret["event_id"], ret["stream_id"] async def remote_reject_invite( self, invite_event_id: str, txn_id: Optional[str], requester: Requester, content: dict, ) -> Tuple[str, int]: """ Rejects an out-of-band invite received from a remote user Implements RoomMemberHandler.remote_reject_invite """ ret = await self._remote_reject_client( invite_event_id=invite_event_id, txn_id=txn_id, requester=requester, content=content, ) return ret["event_id"], ret["stream_id"] async def remote_rescind_knock( self, knock_event_id: str, txn_id: Optional[str], requester: Requester, content: JsonDict, ) -> Tuple[str, int]: """ Rescinds a local knock made on a remote room Args: knock_event_id: the knock event txn_id: optional transaction ID supplied by the client requester: user making the request, according to the access token content: additional content to include in the leave event. Normally an empty dict. Returns: A tuple containing (event_id, stream_id of the leave event) """ ret = await self._remote_rescind_client( knock_event_id=knock_event_id, txn_id=txn_id, requester=requester, content=content, ) return ret["event_id"], ret["stream_id"] async def remote_knock( self, remote_room_hosts: List[str], room_id: str, user: UserID, content: dict, ) -> Tuple[str, int]: """Sends a knock to a room. Implements RoomMemberHandler.remote_knock """ ret = await self._remote_knock_client( remote_room_hosts=remote_room_hosts, room_id=room_id, user=user, content=content, ) return ret["event_id"], ret["stream_id"] async def _user_left_room(self, target: UserID, room_id: str) -> None: """Implements RoomMemberHandler._user_left_room""" await self._notify_change_client( user_id=target.to_string(), room_id=room_id, change="left" ) async def forget(self, target: UserID, room_id: str) -> None: raise RuntimeError("Cannot forget rooms on workers.")
33.746479
77
0.660267
3,497
0.729758
0
0
0
0
2,997
0.625417
1,540
0.321369
22159f4a1c6d6e72ce319e5cebbbcc4d51c13acd
2,205
py
Python
win/devkit/other/pymel/extras/completion/py/maya/app/edl/importExport.py
leegoonz/Maya-devkit
b81fe799b58e854e4ef16435426d60446e975871
[ "ADSL" ]
10
2018-03-30T16:09:02.000Z
2021-12-07T07:29:19.000Z
win/devkit/other/pymel/extras/completion/py/maya/app/edl/importExport.py
leegoonz/Maya-devkit
b81fe799b58e854e4ef16435426d60446e975871
[ "ADSL" ]
null
null
null
win/devkit/other/pymel/extras/completion/py/maya/app/edl/importExport.py
leegoonz/Maya-devkit
b81fe799b58e854e4ef16435426d60446e975871
[ "ADSL" ]
9
2018-06-02T09:18:49.000Z
2021-12-20T09:24:35.000Z
import tempfile import maya.OpenMaya as OpenMaya import maya.OpenMayaRender as OpenMayaRender import maya.OpenMayaMPx as OpenMayaMPx import maya.cmds as cmds import maya import re from maya.app.edl.fcp import * class ImportExport(OpenMayaMPx.MPxCommand): def __del__(self): pass def __init__(self): pass class Exporter(ImportExport): def __init__(self): pass def doIt(self, fileName): pass def setAllowPlayblast(self, allow): """ If true, will re-playblast of all shots whose clips are out of date or non-existent. """ pass class Importer(ImportExport): def __init__(self): pass def doIt(self, fileName): """ Reads an EDL file into Maya. Will generate shots, tracks and audio in Maya that corresponds to the tracks and clips in the EDL. """ pass def setStartFrameOverride(self, frame): pass def _setTimeCode(timecode): pass def doExport(fileName, allowPlayblast): """ Exports the Maya sequence using the EDL Exporter class. """ pass def doMel(*args, **kwargs): """ Takes as input a string containing MEL code, evaluates it, and returns the result. This function takes a string which contains MEL code and evaluates it using the MEL interpreter. The result is converted into a Python data type and is returned. If an error occurs during the execution of the MEL script, a Python exception is raised with the appropriate error message. """ pass def audioClipCompare(a, b): pass def _getValidClipObjectName(clipName, isVideo): pass def doImport(fileName, useStartFrameOverride, startFrame): """ Imports the specified file using the EDL Importer class. """ pass def _nameToNode(name): pass def getTimeCode(): pass def videoClipCompare(a, b): pass def getShotsResolution(): """ Returns the video resolution of the sequencer if all the shots have the same resolution Otherwise it returns False, 0, 0 """ pass mayaFrameRates = {}
17.64
92
0.647166
798
0.361905
0
0
0
0
0
0
976
0.44263
22189dbba6fcdc9b59fa2a428105a701aaaf4a2f
1,040
py
Python
packages/mcni/python/mcni/instrument_simulator/__init__.py
mcvine/mcvine
42232534b0c6af729628009bed165cd7d833789d
[ "BSD-3-Clause" ]
5
2017-01-16T03:59:47.000Z
2020-06-23T02:54:19.000Z
packages/mcni/python/mcni/instrument_simulator/__init__.py
mcvine/mcvine
42232534b0c6af729628009bed165cd7d833789d
[ "BSD-3-Clause" ]
293
2015-10-29T17:45:52.000Z
2022-01-07T16:31:09.000Z
packages/mcni/python/mcni/instrument_simulator/__init__.py
mcvine/mcvine
42232534b0c6af729628009bed165cd7d833789d
[ "BSD-3-Clause" ]
1
2019-05-25T00:53:31.000Z
2019-05-25T00:53:31.000Z
#!/usr/bin/env python # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Michael A.G. Aivazis # California Institute of Technology # (C) 2006-2010 All Rights Reserved # # <LicenseText> # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ## Note: ## 1. This package depends on dsm def copyright(): return "mcni.instrument_simulators module: Copyright (c) 2006-2010 Jiao Lin"; def simulator(neutron_coordinates_transformer): t = neutron_coordinates_transformer from .AbstractInstrumentSimulator import AbstractInstrumentSimulator as base class Simulator(base): neutron_coordinates_transformer = t pass return Simulator() from mcni.neutron_coordinates_transformers import default as default_neutron_coordinates_transformer default_simulator = simulator( default_neutron_coordinates_transformer ) # version __id__ = "$Id$" # End of file
26.666667
100
0.575
79
0.075962
0
0
0
0
0
0
524
0.503846
22199caafbe2cf83aa5b2f765370eb9a8ab49f37
169
py
Python
todolist/wsgi.py
HangeZoe/django-todo-list
8a3232916e57724d52f0f93124f346d82b72e0ce
[ "MIT" ]
null
null
null
todolist/wsgi.py
HangeZoe/django-todo-list
8a3232916e57724d52f0f93124f346d82b72e0ce
[ "MIT" ]
null
null
null
todolist/wsgi.py
HangeZoe/django-todo-list
8a3232916e57724d52f0f93124f346d82b72e0ce
[ "MIT" ]
null
null
null
import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'todolist.settings') application = get_wsgi_application()
21.125
68
0.828402
0
0
0
0
0
0
0
0
43
0.254438
221aaf010e11acc9785595a6c6873f1ea746ad9a
4,501
py
Python
cern_search_rest_api/modules/cernsearch/cli.py
inveniosoftware-contrib/citadel-search
736fdb3a5b32f750111bc846bc815c4671978fa1
[ "MIT" ]
6
2020-04-12T18:30:08.000Z
2021-09-15T05:53:40.000Z
cern_search_rest_api/modules/cernsearch/cli.py
inveniosoftware-contrib/cern-search
736fdb3a5b32f750111bc846bc815c4671978fa1
[ "MIT" ]
6
2020-03-19T13:28:38.000Z
2020-12-08T16:54:05.000Z
cern_search_rest_api/modules/cernsearch/cli.py
inveniosoftware-contrib/cern-search
736fdb3a5b32f750111bc846bc815c4671978fa1
[ "MIT" ]
2
2019-04-22T21:20:17.000Z
2019-05-16T08:50:38.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- # # This file is part of CERN Search. # Copyright (C) 2018-2021 CERN. # # Citadel Search is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """Click command-line utilities.""" import json import click from flask.cli import with_appcontext from invenio_pidstore.models import PersistentIdentifier, PIDStatus from invenio_records.models import RecordMetadata from invenio_search import current_search from invenio_search.cli import es_version_check from cern_search_rest_api.modules.cernsearch.indexer import CernSearchRecordIndexer from cern_search_rest_api.modules.cernsearch.indexer_tasks import process_bulk_queue def abort_if_false(ctx, param, value): """Abort command is value is False.""" if not value: ctx.abort() @click.group() def utils(): """Misc management commands.""" @utils.command("runindex") @click.option("--delayed", "-d", is_flag=True, help="Run indexing in background.") @click.option( "--chunk_size", "-s", default=500, type=int, help="Number of docs in one chunk sent to es (default: 500)", ) @click.option( "--max_chunk_bytes", "-b", default=int(99.9 * 1024 * 1024), type=int, help="The maximum size of the request in bytes (default: 100MB).", ) @click.option( "--concurrency", "-c", default=1, type=int, help="Number of concurrent indexing tasks to start.", ) @click.option( "--queue", "-q", type=str, help="Name of the celery queue used to put the tasks into.", ) @click.option("--version-type", help="Elasticsearch version type to use.") @click.option( "--raise-on-error/--skip-errors", default=True, help="Controls if Elasticsearch bulk indexing errors raise an exception.", ) @with_appcontext def run( delayed, chunk_size, max_chunk_bytes, concurrency, queue=None, version_type=None, raise_on_error=True, ): """Run bulk record indexing.""" es_bulk_kwargs = { "raise_on_error": raise_on_error, "chunk_size": chunk_size, "max_chunk_bytes": max_chunk_bytes, } if delayed: celery_kwargs = {"kwargs": {"version_type": version_type, "es_bulk_kwargs": es_bulk_kwargs}} click.secho("Starting {0} tasks for indexing records...".format(concurrency), fg="green") if queue is not None: celery_kwargs.update({"queue": queue}) for c in range(0, concurrency): process_bulk_queue.apply_async(**celery_kwargs) else: click.secho("Indexing records...", fg="green") CernSearchRecordIndexer(version_type=version_type).process_bulk_queue(es_bulk_kwargs=es_bulk_kwargs) @utils.command("reindex") @click.option( "--yes-i-know", is_flag=True, callback=abort_if_false, expose_value=False, prompt="Do you really want to reindex all records?", ) @click.option("-t", "--pid-type", multiple=True, required=True) @click.option("-i", "--id", "id_list", help="List of ids.", multiple=True) @click.option("-d", "--doc-type", required=False) @with_appcontext def reindex(pid_type, id_list, doc_type=None): """Reindex all records. :param pid_type: Pid type. :param id_list: List of ids. :param doc_type: Doc type """ click.secho("Sending records to indexing queue ...", fg="green") query = id_list if not query: query = ( PersistentIdentifier.query.filter_by(object_type="rec", status=PIDStatus.REGISTERED) .join(RecordMetadata, PersistentIdentifier.object_uuid == RecordMetadata.id) .filter(PersistentIdentifier.pid_type.in_(pid_type)) ) if doc_type: query = query.filter(RecordMetadata.json.op("->>")("$schema").contains(doc_type)) query = (x[0] for x in query.yield_per(100).values(PersistentIdentifier.object_uuid)) CernSearchRecordIndexer().bulk_index(query) click.secho('Execute "run" command to process the queue!', fg="yellow") @utils.command("index-init") @click.argument("index_name") @click.option("-f", "--force", is_flag=True, default=False) @click.option("-v", "--verbose", is_flag=True, default=False) @with_appcontext @es_version_check def index_init(index_name, force, verbose): """Init index by its name.""" results = list(current_search.create(index_list=[index_name], ignore_existing=force)) if verbose: click.echo(json.dumps(results))
30.412162
108
0.682959
0
0
0
0
3,626
0.805599
0
0
1,511
0.335703
221ac1f2a8c5526fcda12d6ed18346f9e5d9d58a
906
py
Python
kasaya/core/backend/redisstore.py
AYAtechnologies/Kasaya-esb
150fa96d4136641cd4632f3c9a09d4fc2610df07
[ "BSD-2-Clause" ]
1
2015-06-26T18:05:20.000Z
2015-06-26T18:05:20.000Z
kasaya/core/backend/redisstore.py
AYAtechnologies/Kasaya-esb
150fa96d4136641cd4632f3c9a09d4fc2610df07
[ "BSD-2-Clause" ]
null
null
null
kasaya/core/backend/redisstore.py
AYAtechnologies/Kasaya-esb
150fa96d4136641cd4632f3c9a09d4fc2610df07
[ "BSD-2-Clause" ]
null
null
null
__author__ = 'wektor' from generic import GenericBackend import redis class RedisBackend(GenericBackend): def __init__(self): pool = redis.ConnectionPool(host='localhost', port=6379, db=0) self.store = redis.Redis(connection_pool=pool) def get_typecode(self, value): typecode = str(type(value)).split("'")[1] return typecode def set(self, key, value): data = {} data["type"] = self.get_typecode(value) data["data"] = value self.store.hmset(key, data) # def update(self, key, value): def get(self, key): data = self.store.hgetall(key) print data try: if data["type"] != "str": return eval(data["data"]) else: return data["data"] except KeyError: return {} def delete(self, key): self.store.delete(key)
25.166667
71
0.562914
833
0.919426
0
0
0
0
0
0
88
0.09713
221b92eff3eb5754a23903956aeef1d20d52980f
11,288
py
Python
venv/lib/python3.6/site-packages/ansible_collections/amazon/aws/plugins/module_utils/rds.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
22
2021-07-16T08:11:22.000Z
2022-03-31T07:15:34.000Z
venv/lib/python3.6/site-packages/ansible_collections/amazon/aws/plugins/module_utils/rds.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
12
2020-02-21T07:24:52.000Z
2020-04-14T09:54:32.000Z
venv/lib/python3.6/site-packages/ansible_collections/amazon/aws/plugins/module_utils/rds.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
39
2021-07-05T02:31:42.000Z
2022-03-31T02:46:03.000Z
# Copyright: (c) 2018, Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type from collections import namedtuple from time import sleep try: from botocore.exceptions import BotoCoreError, ClientError, WaiterError except ImportError: pass from ansible.module_utils._text import to_text from ansible.module_utils.common.dict_transformations import snake_dict_to_camel_dict from .ec2 import AWSRetry from .ec2 import ansible_dict_to_boto3_tag_list from .ec2 import boto3_tag_list_to_ansible_dict from .ec2 import compare_aws_tags from .waiters import get_waiter Boto3ClientMethod = namedtuple('Boto3ClientMethod', ['name', 'waiter', 'operation_description', 'cluster', 'instance']) # Whitelist boto3 client methods for cluster and instance resources cluster_method_names = [ 'create_db_cluster', 'restore_db_cluster_from_db_snapshot', 'restore_db_cluster_from_s3', 'restore_db_cluster_to_point_in_time', 'modify_db_cluster', 'delete_db_cluster', 'add_tags_to_resource', 'remove_tags_from_resource', 'list_tags_for_resource', 'promote_read_replica_db_cluster' ] instance_method_names = [ 'create_db_instance', 'restore_db_instance_to_point_in_time', 'restore_db_instance_from_s3', 'restore_db_instance_from_db_snapshot', 'create_db_instance_read_replica', 'modify_db_instance', 'delete_db_instance', 'add_tags_to_resource', 'remove_tags_from_resource', 'list_tags_for_resource', 'promote_read_replica', 'stop_db_instance', 'start_db_instance', 'reboot_db_instance' ] def get_rds_method_attribute(method_name, module): readable_op = method_name.replace('_', ' ').replace('db', 'DB') if method_name in cluster_method_names and 'new_db_cluster_identifier' in module.params: cluster = True instance = False if method_name == 'delete_db_cluster': waiter = 'cluster_deleted' else: waiter = 'cluster_available' elif method_name in instance_method_names and 'new_db_instance_identifier' in module.params: cluster = False instance = True if method_name == 'delete_db_instance': waiter = 'db_instance_deleted' elif method_name == 'stop_db_instance': waiter = 'db_instance_stopped' else: waiter = 'db_instance_available' else: raise NotImplementedError("method {0} hasn't been added to the list of accepted methods to use a waiter in module_utils/rds.py".format(method_name)) return Boto3ClientMethod(name=method_name, waiter=waiter, operation_description=readable_op, cluster=cluster, instance=instance) def get_final_identifier(method_name, module): apply_immediately = module.params['apply_immediately'] if get_rds_method_attribute(method_name, module).cluster: identifier = module.params['db_cluster_identifier'] updated_identifier = module.params['new_db_cluster_identifier'] elif get_rds_method_attribute(method_name, module).instance: identifier = module.params['db_instance_identifier'] updated_identifier = module.params['new_db_instance_identifier'] else: raise NotImplementedError("method {0} hasn't been added to the list of accepted methods in module_utils/rds.py".format(method_name)) if not module.check_mode and updated_identifier and apply_immediately: identifier = updated_identifier return identifier def handle_errors(module, exception, method_name, parameters): if not isinstance(exception, ClientError): module.fail_json_aws(exception, msg="Unexpected failure for method {0} with parameters {1}".format(method_name, parameters)) changed = True error_code = exception.response['Error']['Code'] if method_name == 'modify_db_instance' and error_code == 'InvalidParameterCombination': if 'No modifications were requested' in to_text(exception): changed = False elif 'ModifyDbCluster API' in to_text(exception): module.fail_json_aws(exception, msg='It appears you are trying to modify attributes that are managed at the cluster level. Please see rds_cluster') else: module.fail_json_aws(exception, msg='Unable to {0}'.format(get_rds_method_attribute(method_name, module).operation_description)) elif method_name == 'promote_read_replica' and error_code == 'InvalidDBInstanceState': if 'DB Instance is not a read replica' in to_text(exception): changed = False else: module.fail_json_aws(exception, msg='Unable to {0}'.format(get_rds_method_attribute(method_name, module).operation_description)) elif method_name == 'create_db_instance' and exception.response['Error']['Code'] == 'InvalidParameterValue': accepted_engines = [ 'aurora', 'aurora-mysql', 'aurora-postgresql', 'mariadb', 'mysql', 'oracle-ee', 'oracle-se', 'oracle-se1', 'oracle-se2', 'postgres', 'sqlserver-ee', 'sqlserver-ex', 'sqlserver-se', 'sqlserver-web' ] if parameters.get('Engine') not in accepted_engines: module.fail_json_aws(exception, msg='DB engine {0} should be one of {1}'.format(parameters.get('Engine'), accepted_engines)) else: module.fail_json_aws(exception, msg='Unable to {0}'.format(get_rds_method_attribute(method_name, module).operation_description)) else: module.fail_json_aws(exception, msg='Unable to {0}'.format(get_rds_method_attribute(method_name, module).operation_description)) return changed def call_method(client, module, method_name, parameters): result = {} changed = True if not module.check_mode: wait = module.params['wait'] # TODO: stabilize by adding get_rds_method_attribute(method_name).extra_retry_codes method = getattr(client, method_name) try: if method_name == 'modify_db_instance': # check if instance is in an available state first, if possible if wait: wait_for_status(client, module, module.params['db_instance_identifier'], method_name) result = AWSRetry.jittered_backoff(catch_extra_error_codes=['InvalidDBInstanceState'])(method)(**parameters) else: result = AWSRetry.jittered_backoff()(method)(**parameters) except (BotoCoreError, ClientError) as e: changed = handle_errors(module, e, method_name, parameters) if wait and changed: identifier = get_final_identifier(method_name, module) wait_for_status(client, module, identifier, method_name) return result, changed def wait_for_instance_status(client, module, db_instance_id, waiter_name): def wait(client, db_instance_id, waiter_name, extra_retry_codes): retry = AWSRetry.jittered_backoff(catch_extra_error_codes=extra_retry_codes) try: waiter = client.get_waiter(waiter_name) except ValueError: # using a waiter in module_utils/waiters.py waiter = get_waiter(client, waiter_name) waiter.wait(WaiterConfig={'Delay': 60, 'MaxAttempts': 60}, DBInstanceIdentifier=db_instance_id) waiter_expected_status = { 'db_instance_deleted': 'deleted', 'db_instance_stopped': 'stopped', } expected_status = waiter_expected_status.get(waiter_name, 'available') if expected_status == 'available': extra_retry_codes = ['DBInstanceNotFound'] else: extra_retry_codes = [] for attempt_to_wait in range(0, 10): try: wait(client, db_instance_id, waiter_name, extra_retry_codes) break except WaiterError as e: # Instance may be renamed and AWSRetry doesn't handle WaiterError if e.last_response.get('Error', {}).get('Code') == 'DBInstanceNotFound': sleep(10) continue module.fail_json_aws(e, msg='Error while waiting for DB instance {0} to be {1}'.format(db_instance_id, expected_status)) except (BotoCoreError, ClientError) as e: module.fail_json_aws(e, msg='Unexpected error while waiting for DB instance {0} to be {1}'.format( db_instance_id, expected_status) ) def wait_for_cluster_status(client, module, db_cluster_id, waiter_name): try: waiter = get_waiter(client, waiter_name).wait(DBClusterIdentifier=db_cluster_id) except WaiterError as e: if waiter_name == 'cluster_deleted': msg = "Failed to wait for DB cluster {0} to be deleted".format(db_cluster_id) else: msg = "Failed to wait for DB cluster {0} to be available".format(db_cluster_id) module.fail_json_aws(e, msg=msg) except (BotoCoreError, ClientError) as e: module.fail_json_aws(e, msg="Failed with an unexpected error while waiting for the DB cluster {0}".format(db_cluster_id)) def wait_for_status(client, module, identifier, method_name): waiter_name = get_rds_method_attribute(method_name, module).waiter if get_rds_method_attribute(method_name, module).cluster: wait_for_cluster_status(client, module, identifier, waiter_name) elif get_rds_method_attribute(method_name, module).instance: wait_for_instance_status(client, module, identifier, waiter_name) else: raise NotImplementedError("method {0} hasn't been added to the whitelist of handled methods".format(method_name)) def get_tags(client, module, cluster_arn): try: return boto3_tag_list_to_ansible_dict( client.list_tags_for_resource(ResourceName=cluster_arn)['TagList'] ) except (BotoCoreError, ClientError) as e: module.fail_json_aws(e, msg="Unable to describe tags") def arg_spec_to_rds_params(options_dict): tags = options_dict.pop('tags') has_processor_features = False if 'processor_features' in options_dict: has_processor_features = True processor_features = options_dict.pop('processor_features') camel_options = snake_dict_to_camel_dict(options_dict, capitalize_first=True) for key in list(camel_options.keys()): for old, new in (('Db', 'DB'), ('Iam', 'IAM'), ('Az', 'AZ')): if old in key: camel_options[key.replace(old, new)] = camel_options.pop(key) camel_options['Tags'] = tags if has_processor_features: camel_options['ProcessorFeatures'] = processor_features return camel_options def ensure_tags(client, module, resource_arn, existing_tags, tags, purge_tags): if tags is None: return False tags_to_add, tags_to_remove = compare_aws_tags(existing_tags, tags, purge_tags) changed = bool(tags_to_add or tags_to_remove) if tags_to_add: call_method( client, module, method_name='add_tags_to_resource', parameters={'ResourceName': resource_arn, 'Tags': ansible_dict_to_boto3_tag_list(tags_to_add)} ) if tags_to_remove: call_method( client, module, method_name='remove_tags_from_resource', parameters={'ResourceName': resource_arn, 'TagKeys': tags_to_remove} ) return changed
47.830508
159
0.710578
0
0
0
0
0
0
0
0
3,193
0.282867
221baabdac2f34fa39aafcaa192dcd1f1b264104
176
py
Python
week06/lecture/examples/src6/2/uppercase0.py
uldash/CS50x
c3ee0f42ad514b57a13c3ffbb96238b3ca3730e1
[ "MIT" ]
null
null
null
week06/lecture/examples/src6/2/uppercase0.py
uldash/CS50x
c3ee0f42ad514b57a13c3ffbb96238b3ca3730e1
[ "MIT" ]
null
null
null
week06/lecture/examples/src6/2/uppercase0.py
uldash/CS50x
c3ee0f42ad514b57a13c3ffbb96238b3ca3730e1
[ "MIT" ]
null
null
null
# Uppercases string one character at a time from cs50 import get_string s = get_string("Before: ") print("After: ", end="") for c in s: print(c.upper(), end="") print()
17.6
43
0.653409
0
0
0
0
0
0
0
0
67
0.380682
221c5dbcccafcacd09ca66b22dfdff675d20b942
2,050
py
Python
tests/test_kobo.py
Donearm/kobuddy
9c55f2f94c3c949c4d8a5ba18704be92c055873c
[ "MIT" ]
75
2019-08-24T14:21:53.000Z
2022-02-21T17:20:20.000Z
tests/test_kobo.py
Donearm/kobuddy
9c55f2f94c3c949c4d8a5ba18704be92c055873c
[ "MIT" ]
9
2019-10-15T19:30:16.000Z
2021-08-17T15:24:00.000Z
tests/test_kobo.py
Donearm/kobuddy
9c55f2f94c3c949c4d8a5ba18704be92c055873c
[ "MIT" ]
4
2020-02-05T13:53:59.000Z
2021-08-17T14:50:39.000Z
from datetime import datetime from pathlib import Path import pytz import kobuddy def get_test_db(): # db = Path(__file__).absolute().parent.parent / 'KoboShelfes' / 'KoboReader.sqlite.0' db = Path(__file__).absolute().parent / 'data' / 'kobo_notes' / 'input' / 'KoboReader.sqlite' return db # a bit meh, but ok for now kobuddy.set_databases(get_test_db()) from kobuddy import _iter_events_aux, get_events, get_books_with_highlights, _iter_highlights def test_events(): for e in _iter_events_aux(): print(e) def test_hls(): for h in _iter_highlights(): print(h) def test_get_all(): events = get_events() assert len(events) > 50 for d in events: print(d) def test_books_with_highlights(): pages = get_books_with_highlights() g = pages[0] assert 'Essentialism' in g.book hls = g.highlights assert len(hls) == 273 [b] = [h for h in hls if h.eid == '520b7b13-dbef-4402-9a81-0f4e0c4978de'] # TODO wonder if there might be any useful info? StartContainerPath, EndContainerPath assert b.kind == 'bookmark' # TODO move to a more specific test? # TODO assert sorted by date or smth? assert hls[0].kind == 'highlight' # TODO assert highlights got no annotation? not sure if it's even necessary to distinguish.. [ann] = [h for h in hls if h.annotation is not None and len(h.annotation) > 0] assert ann.eid == 'eb264817-9a06-42fd-92ff-7bd38cd9ca79' assert ann.kind == 'annotation' assert ann.text == 'He does this by finding which machine has the biggest queue of materials waiting behind it and finds a way to increase its efficiency.' assert ann.annotation == 'Bottleneck' assert ann.dt == datetime(year=2017, month=8, day=12, hour=3, minute=49, second=13, microsecond=0, tzinfo=pytz.utc) assert ann.book.author == 'Greg McKeown' assert len(pages) == 7 def test_history(): kobuddy.print_progress() def test_annotations(): kobuddy.print_annotations() def test_books(): kobuddy.print_books()
28.472222
159
0.691707
0
0
0
0
0
0
0
0
692
0.337561
221edc811e6d0e0ea5e013272ed5a112078a3713
1,062
py
Python
tanks/views.py
BArdelean/djangostuff
b4b7b6bac5e1d8dbc73e2f5cb5a7e784a82c9519
[ "bzip2-1.0.6" ]
null
null
null
tanks/views.py
BArdelean/djangostuff
b4b7b6bac5e1d8dbc73e2f5cb5a7e784a82c9519
[ "bzip2-1.0.6" ]
null
null
null
tanks/views.py
BArdelean/djangostuff
b4b7b6bac5e1d8dbc73e2f5cb5a7e784a82c9519
[ "bzip2-1.0.6" ]
null
null
null
from django.shortcuts import render from .models import Tank from django.db import models from django.http import HttpResponse from django.views import View # Create your views here. # The view for the created model Tank def tank_view(request): queryset = Tank.objects.all() context = { 'object': queryset } return render(request, "tankbattle.html", context) def tank_1(request, pk): queryset = Tank.objects.get(pk=1) context = { 'object': queryset } return render(request, 'tankbattle.html', context) def tank_2(request, pk): queryset = Tank.objects.get(pk=2) context = { 'object': queryset } return render(request, 'tankbattle.html', context) def tank_3(request, pk): queryset = Tank.objects.get(pk=3) context = { 'object': queryset } return render(request, 'tankbattle.html', context) def tank_4(request, pk): queryset = Tank.objects.get(pk=4) context = { 'object': queryset } return render(request, 'tankbattle.html', context)
21.673469
54
0.65725
0
0
0
0
0
0
0
0
187
0.176083