hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
221ee83a279f586d62cd3b5b659bf72ceddc7c10
8,125
py
Python
VQVAE/main.py
bipashasen/How2Sign-Blob
6e2af881d96d477fdb93104b8e53d943765c64ff
[ "MIT" ]
null
null
null
VQVAE/main.py
bipashasen/How2Sign-Blob
6e2af881d96d477fdb93104b8e53d943765c64ff
[ "MIT" ]
null
null
null
VQVAE/main.py
bipashasen/How2Sign-Blob
6e2af881d96d477fdb93104b8e53d943765c64ff
[ "MIT" ]
null
null
null
import os import numpy as np import torch import torch.nn as nn import torch.optim as optim import argparse from tqdm import tqdm import sys import distributed as dist import utils from models.vqvae import VQVAE, VQVAE_Blob2Full from models.discriminator import discriminator visual_folder = '/home2/bipasha31/python_scripts/CurrentWork/samples/VQVAE' os.makedirs(visual_folder, exist_ok=True) verbose = False save_idx_global = 0 save_at = 100 did = 0 models = { 'gan': 0, 'vae': 1 } model_to_train = models['vae'] results = { 'n_updates': 0, 'recon_errors': [], 'loss_vals': [], 'perplexities': [], 'd_loss': [] } device = 'cuda:0' def main(args): """ Set up VQ-VAE model with components defined in ./models/ folder """ model = VQVAE(args.n_hiddens, args.n_residual_hiddens, args.n_residual_layers, args.n_embeddings, args.embedding_dim, args.beta, device) if args.ckpt: model.load_state_dict(torch.load(args.ckpt)['model']) model = model.to(device) if args.test: loader = utils.load_data_and_data_loaders(args.dataset, args.batch_size, test=True) test(loader, model) return """ Load data and define batch data loaders """ items = utils.load_data_and_data_loaders(args.dataset, args.batch_size) training_loader, validation_loader = items[2], items[3] x_train_var = items[4] """ Set up optimizer and training loop """ optimizer = optim.Adam(model.parameters(), lr=args.learning_rate, amsgrad=True) model.train() if model_to_train == models['gan']: train_vqgan(args, training_loader, validation_loader, x_train_var, model, optimizer) else: train(args, training_loader, validation_loader, x_train_var, model, optimizer) def test(loader, model): for i, data in enumerate(tqdm(loader)): x, _ = data x = x.to(device) with torch.no_grad(): _ = model(x, save_idx=f'{i}', visual_folder=visual_folder) def train(args, training_loader, validation_loader, x_train_var, model, optimizer): global save_idx_global for i in range(args.n_updates): (x, _) = next(iter(training_loader)) x = x.to(device) optimizer.zero_grad() save_idx = None embedding_loss, x_hat, perplexity = model(x) recon_loss = torch.mean((x_hat - x)**2) / x_train_var loss = recon_loss + embedding_loss loss.backward() optimizer.step() results["recon_errors"].append(recon_loss.cpu().detach().numpy()) results["perplexities"].append(perplexity.cpu().detach().numpy()) results["loss_vals"].append(loss.cpu().detach().numpy()) results["n_updates"] = i if i % save_at == 0: save_idx = save_idx_global save_idx_global += 1 model.eval() with torch.no_grad(): for vi in tqdm(range(10)): (x, _) = next(iter(validation_loader)) x = x.to(device) _, _, _ = model(x, verbose=verbose, save_idx=f'{save_idx}_{vi}', visual_folder=visual_folder) model.train() if i % args.log_interval == 0 and dist.is_primary(): """ save model and print values """ if args.save: hyperparameters = args.__dict__ utils.save_model_and_results( model, optimizer, results, hyperparameters, args.filename) print('Update #', i, 'Recon Error:', np.mean(results["recon_errors"][-args.log_interval:]), 'Loss', np.mean(results["loss_vals"][-args.log_interval:]), 'Perplexity:', np.mean(results["perplexities"][-args.log_interval:])) def train_vqgan(args, training_loader, validation_loader, x_train_var, model, optimizer): global save_idx_global c_mse = nn.MSELoss() disc = discriminator().to(device) optim_D = optim.Adam(disc.parameters(), lr=args.learning_rate, amsgrad=True) for i in range(args.n_updates): (x, _) = next(iter(training_loader)) x = x.to(device) optimizer.zero_grad() optim_D.zero_grad() save_idx = None if i % save_at == 0 and i > 0: save_idx = save_idx_global save_idx_global += 1 embedding_loss, x_hat, perplexity = \ model(x, verbose=verbose, save_idx=save_idx, visual_folder=visual_folder) recon_loss = torch.mean((x_hat - x)**2) / x_train_var loss = recon_loss + embedding_loss ''' adding the perceptual loss here - patch loss of real and fake ''' B = args.batch_size D = 16 * 16 ones = torch.ones((B, D), dtype=torch.float32, device=device) zeros = torch.zeros((B, D), dtype=torch.float32, device=device) if i % 2 == 0: fake = disc(x_hat).view(B, D) loss += c_mse(fake, ones) else: fake = disc(x_hat.clone().detach()).view(B, D) real = disc(x).view(B, D) d_loss = c_mse(real, ones) + c_mse(fake, zeros) results["d_loss"].append(d_loss.cpu().detach().numpy()) d_loss.backward() optim_D.step() loss.backward() optimizer.step() results["recon_errors"].append(recon_loss.cpu().detach().numpy()) results["perplexities"].append(perplexity.cpu().detach().numpy()) results["loss_vals"].append(loss.cpu().detach().numpy()) results["n_updates"] = i if i % args.log_interval == 0: """ save model and print values """ if args.save: hyperparameters = args.__dict__ utils.save_model_and_results( model, optimizer, results, hyperparameters, args.filename) print('Update #', i, 'Recon Error:', np.mean(results["recon_errors"][-args.log_interval:]), 'Loss', np.mean(results["loss_vals"][-args.log_interval:]), 'Discriminator Loss', np.mean(results['d_loss'][-args.log_interval:]), 'Perplexity:', np.mean(results["perplexities"][-args.log_interval:]), flush=True) if __name__ == "__main__": # train_vqgan() # train_blob2full() parser = argparse.ArgumentParser() """ Hyperparameters """ timestamp = utils.readable_timestamp() parser.add_argument("--batch_size", type=int, default=64) parser.add_argument("--n_updates", type=int, default=50000) parser.add_argument("--n_hiddens", type=int, default=128) parser.add_argument("--n_residual_hiddens", type=int, default=32) parser.add_argument("--n_residual_layers", type=int, default=2) parser.add_argument("--embedding_dim", type=int, default=64) parser.add_argument("--n_embeddings", type=int, default=512) parser.add_argument("--beta", type=float, default=.25) parser.add_argument("--learning_rate", type=float, default=3e-4) parser.add_argument("--ckpt", type=str) parser.add_argument("--log_interval", type=int, default=3) parser.add_argument("--save_at", type=int, default=100) parser.add_argument("--device_id", type=int, default=0) parser.add_argument("--dataset", type=str, default='HandGestures') parser.add_argument("--test", action='store_true') # whether or not to save model parser.add_argument("-save", action="store_true") parser.add_argument("--filename", type=str, default=timestamp) args = parser.parse_args() args.save = True if args.save and dist.is_primary(): print('Results will be saved in ./results/vqvae_' + args.filename + '.pth') args.n_gpu = torch.cuda.device_count() port = ( 2 ** 15 + 2 ** 14 + hash(os.getuid() if sys.platform != "win32" else 1) % 2 ** 14 )+1 print(f'port: {port}') print(args) dist.launch(main, args.n_gpu, 1, 0, f"tcp://127.0.0.1:{port}", args=(args,))
30.204461
113
0.606769
0
0
0
0
0
0
0
0
1,329
0.163569
2221af1a0ee8e71a36084e82816e4e484658018d
1,245
py
Python
api/voters/tests/test_models.py
citizenlabsgr/voter-engagement
2d33eac1531471988543c6c3781b95ac73ec6dd9
[ "MIT" ]
6
2017-11-10T00:50:17.000Z
2018-03-25T02:26:19.000Z
api/voters/tests/test_models.py
citizenlabsgr/voter-engagement
2d33eac1531471988543c6c3781b95ac73ec6dd9
[ "MIT" ]
40
2017-10-25T16:16:55.000Z
2018-08-15T05:27:36.000Z
api/voters/tests/test_models.py
citizenlabsgr/voter-engagement
2d33eac1531471988543c6c3781b95ac73ec6dd9
[ "MIT" ]
3
2017-11-22T01:50:41.000Z
2018-04-17T23:33:08.000Z
# pylint: disable=unused-variable,unused-argument,expression-not-assigned from django.forms.models import model_to_dict import arrow import pytest from expecter import expect from api.elections.models import Election from .. import models @pytest.fixture def info(): return models.Identity( first_name="John", last_name="Doe", birth_date=arrow.get("1985-06-19"), ) @pytest.fixture def voter(info): return models.Voter( email="john@example.com", **model_to_dict(info), ) @pytest.fixture def status(voter): return models.Status( voter=voter, election=Election(name="Sample Election"), ) def describe_registration_info(): def describe_birth_month(): def is_parsed_from_date(info): expect(info.birth_month) == "June" def describe_birth_year(): def is_parsed_from_date(info): expect(info.birth_year) == 1985 def describe_voter(): def describe_str(): def is_based_on_name(voter): expect(str(voter)) == "John Doe" def describe_status(): def describe_str(): def is_based_on_voter_and_election(status): expect(str(status)) == "Sample Election: John Doe"
18.863636
73
0.658635
0
0
0
0
423
0.339759
0
0
174
0.139759
22231fc92c2080f08011cca9cc3a336ee11e707e
404
py
Python
leetcode/easy/strobogrammatic-number.py
vtemian/interviews-prep
ddef96b5ecc699a590376a892a804c143fe18034
[ "Apache-2.0" ]
8
2019-05-14T12:50:29.000Z
2022-03-01T09:08:27.000Z
leetcode/easy/strobogrammatic-number.py
vtemian/interviews-prep
ddef96b5ecc699a590376a892a804c143fe18034
[ "Apache-2.0" ]
46
2019-03-24T20:59:29.000Z
2019-04-09T16:28:43.000Z
leetcode/easy/strobogrammatic-number.py
vtemian/interviews-prep
ddef96b5ecc699a590376a892a804c143fe18034
[ "Apache-2.0" ]
1
2022-01-28T12:46:29.000Z
2022-01-28T12:46:29.000Z
class Solution: def isStrobogrammatic(self, num: str) -> bool: strobogrammatic = { '1': '1', '0': '0', '6': '9', '9': '6', '8': '8' } for idx, digit in enumerate(num): if digit not in strobogrammatic or strobogrammatic[digit] != num[len(num) - idx -1]: return False return True
25.25
96
0.445545
403
0.997525
0
0
0
0
0
0
30
0.074257
22259d4822670697f3a83a96fc5c76baa093e86f
992
py
Python
app/main/helpers/direct_award_helpers.py
uk-gov-mirror/alphagov.digitalmarketplace-buyer-frontend
ec3751b6d24842cc53febb20391ae340c0fea756
[ "MIT" ]
4
2017-10-12T16:15:01.000Z
2020-11-28T03:41:15.000Z
app/main/helpers/direct_award_helpers.py
uk-gov-mirror/alphagov.digitalmarketplace-buyer-frontend
ec3751b6d24842cc53febb20391ae340c0fea756
[ "MIT" ]
615
2015-02-27T15:45:43.000Z
2021-07-01T10:09:55.000Z
app/main/helpers/direct_award_helpers.py
uk-gov-mirror/alphagov.digitalmarketplace-buyer-frontend
ec3751b6d24842cc53febb20391ae340c0fea756
[ "MIT" ]
15
2015-06-30T14:35:20.000Z
2021-04-10T18:06:36.000Z
from operator import itemgetter def is_direct_award_project_accessible(project, user_id): return any([user['id'] == user_id for user in project['users']]) def get_direct_award_projects(data_api_client, user_id, return_type="all", sort_by_key=None, latest_first=None): projects = data_api_client.find_direct_award_projects(user_id, latest_first=latest_first).get('projects', []) res = { "open_projects": [], "closed_projects": [], } for project in projects: if project['lockedAt'] is None: res['open_projects'].append(project) else: res['closed_projects'].append(project) if return_type == "all": if sort_by_key: res['open_projects'].sort(key=itemgetter(sort_by_key)) res['closed_projects'].sort(key=itemgetter(sort_by_key)) return res else: if sort_by_key: res[return_type].sort(key=itemgetter(sort_by_key)) return res[return_type]
31
113
0.658266
0
0
0
0
0
0
0
0
137
0.138105
2225c8037c0f830751bb9a95f4a1c6bd17ba29de
824
py
Python
403-Frog-Jump/solution.py
Tanych/CodeTracking
86f1cb98de801f58c39d9a48ce9de12df7303d20
[ "MIT" ]
null
null
null
403-Frog-Jump/solution.py
Tanych/CodeTracking
86f1cb98de801f58c39d9a48ce9de12df7303d20
[ "MIT" ]
null
null
null
403-Frog-Jump/solution.py
Tanych/CodeTracking
86f1cb98de801f58c39d9a48ce9de12df7303d20
[ "MIT" ]
null
null
null
class Solution(object): def dfs(self,stones,graph,curpos,lastjump): if curpos==stones[-1]: return True # since the jump need based on lastjump # only forward,get rid of the stay at the same pos rstart=max(curpos+lastjump-1,curpos+1) rend=min(curpos+lastjump+1,stones[-1])+1 for nextpos in xrange(rstart,rend): if nextpos in graph and self.dfs(stones,graph,nextpos,nextpos-curpos): return True return False def canCross(self, stones): """ :type stones: List[int] :rtype: bool """ if not stones: return True if stones[1]!=1: return False graph={val:idx for idx,val in enumerate(stones)} return self.dfs(stones,graph,1,1)
32.96
82
0.566748
815
0.989078
0
0
0
0
0
0
157
0.190534
2227aded77b3fc2c225e7b80658dcf4702936914
2,261
py
Python
daemon/api/endpoints/partial/pod.py
vishalbelsare/jina
ae72cc5ce1f7e7f4c662e72e96ea21dddc28bf43
[ "Apache-2.0" ]
2
2021-06-28T16:25:09.000Z
2021-06-28T16:26:41.000Z
daemon/api/endpoints/partial/pod.py
vishalbelsare/jina
ae72cc5ce1f7e7f4c662e72e96ea21dddc28bf43
[ "Apache-2.0" ]
null
null
null
daemon/api/endpoints/partial/pod.py
vishalbelsare/jina
ae72cc5ce1f7e7f4c662e72e96ea21dddc28bf43
[ "Apache-2.0" ]
null
null
null
from typing import Optional, Dict, Any from fastapi import APIRouter from jina.helper import ArgNamespace from jina.parsers import set_pod_parser from ....excepts import PartialDaemon400Exception from ....models import PodModel from ....models.partial import PartialStoreItem from ....stores import partial_store as store router = APIRouter(prefix='/pod', tags=['pod']) @router.get( path='', summary='Get status of a running Pod', response_model=PartialStoreItem, ) async def _status(): """ .. #noqa: DAR101 .. #noqa: DAR201""" return store.item @router.post( path='', summary='Create a Pod', description='Create a Pod and add it to the store', status_code=201, response_model=PartialStoreItem, ) async def _create(pod: 'PodModel'): """ .. #noqa: DAR101 .. #noqa: DAR201""" try: args = ArgNamespace.kwargs2namespace(pod.dict(), set_pod_parser()) return store.add(args) except Exception as ex: raise PartialDaemon400Exception from ex @router.put( path='/rolling_update', summary='Run a rolling_update operation on the Pod object', response_model=PartialStoreItem, ) async def rolling_update(uses_with: Optional[Dict[str, Any]] = None): """ .. #noqa: DAR101 .. #noqa: DAR201 """ try: return await store.rolling_update(uses_with=uses_with) except ValueError as ex: raise PartialDaemon400Exception from ex @router.put( path='/scale', summary='Run a scale operation on the Pod object', response_model=PartialStoreItem, ) async def scale(replicas: int): """ .. #noqa: DAR101 .. #noqa: DAR201 """ try: return await store.scale(replicas=replicas) except ValueError as ex: raise PartialDaemon400Exception from ex @router.delete( path='', summary='Terminate the running Pod', description='Terminate a running Pod and release its resources', ) async def _delete(): """ .. #noqa: DAR101 .. #noqa: DAR201""" try: store.delete() except Exception as ex: raise PartialDaemon400Exception from ex @router.on_event('shutdown') def _shutdown(): """ .. #noqa: DAR101 .. #noqa: DAR201""" store.delete()
21.951456
74
0.657231
0
0
0
0
1,871
0.82751
1,063
0.470146
616
0.272446
2227e03ea94ec70b6e6c0445734948d8034414f4
708
py
Python
runehistory_api/app/config.py
RuneHistory/runehistory-api
4e857c7fdbdf585d57cf4c7fe6214b565ac37a22
[ "MIT" ]
null
null
null
runehistory_api/app/config.py
RuneHistory/runehistory-api
4e857c7fdbdf585d57cf4c7fe6214b565ac37a22
[ "MIT" ]
6
2018-06-14T13:58:43.000Z
2018-07-16T14:02:24.000Z
runehistory_api/app/config.py
RuneHistory/runehistory-api
4e857c7fdbdf585d57cf4c7fe6214b565ac37a22
[ "MIT" ]
null
null
null
import yaml class Config: def __init__(self, path: str): self.path = path self.cfg = {} self.parse() def parse(self): with open(self.path, 'r') as f: self.cfg = yaml.load(f) @property def secret(self) -> str: return self.cfg.get('secret') @property def db_connection_string(self) -> str: return self.cfg.get('db_connection_string') @property def db_host(self) -> str: return self.cfg.get('db_host', '127.0.0.1') @property def db_port(self) -> int: return self.cfg.get('db_port', 27017) @property def db_name(self) -> int: return self.cfg.get('db_name', 'runehistory')
21.454545
53
0.572034
693
0.978814
0
0
449
0.634181
0
0
84
0.118644
222831d9b44232f8e0bea417d43c813b4bde54d1
4,379
py
Python
csv_filter/__init__.py
mooore-digital/csv_filter
80afed0e4b366d195c5a90fb96ab2bf01620e3bf
[ "MIT" ]
1
2018-08-13T05:51:21.000Z
2018-08-13T05:51:21.000Z
csv_filter/__init__.py
mooore-digital/csv_filter
80afed0e4b366d195c5a90fb96ab2bf01620e3bf
[ "MIT" ]
null
null
null
csv_filter/__init__.py
mooore-digital/csv_filter
80afed0e4b366d195c5a90fb96ab2bf01620e3bf
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import argparse import csv import logging import os import re import sys DELIMITER = ',' class CsvFilter: def __init__( self, file=None, deduplicate=False, filter_query=None, filter_inverse=False, ignore_case=False, verbose=False, delimiter=DELIMITER ): self.file = file self.deduplicate = deduplicate self.filter = filter_query self.filter_inverse = filter_inverse self.ignore_case = ignore_case self.verbose = verbose self.delimiter = delimiter self.logger = logging.getLogger('deduplicate') if self.verbose: self.logger.setLevel(logging.DEBUG) def apply(self): base_path = os.getcwd() source_path = base_path + '/' + self.file destination_path = source_path.replace('.csv', '.filtered.csv') filtered_items = self.filter_items(source_path) self.store_items(destination_path, filtered_items) def filter_items(self, file_path): result = [] deduplicate_column_index = False deduplicate_key_values = [] filter_column = False filter_column_index = False filter_pattern = False counter = 0 re_flags = 0 if self.ignore_case: re_flags = re.IGNORECASE if self.verbose: print('* Filtering file', file_path) if self.filter: filter_match = re.match('^(.+)=(.+)$', self.filter) if filter_match: filter_column = filter_match.group(1) filter_pattern = filter_match.group(2) with open(file_path, 'rt') as csv_file: for row in csv.reader(csv_file, delimiter=self.delimiter): if counter == 0: if self.deduplicate: deduplicate_column_index = row.index(self.deduplicate) if filter_column: filter_column_index = row.index(filter_column) counter += 1 result.append(row) continue valid = False if self.deduplicate and deduplicate_column_index is not False: value = row[deduplicate_column_index] if self.ignore_case: value = value.lower() if value in deduplicate_key_values: valid = False else: deduplicate_key_values.append(value) if filter_column_index is not False: value = row[filter_column_index] if bool(re.match(filter_pattern, value, re_flags)) is not self.filter_inverse: valid = True if valid: result.append(row) counter += 1 if self.verbose: print('* Filtered', counter, 'items to', len(result)) return result def store_items(self, file_path, items): if self.verbose: print('* Storing items to', file_path) with open(file_path, 'wt') as csv_file: writer = csv.writer(csv_file, delimiter=self.delimiter) for row in items: writer.writerow(row) def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument('--file', '-f', help='File to filter') parser.add_argument('--deduplicate', help='Deduplication column to be applied', default=False) parser.add_argument('--filter', help='Filter to be applied', default=False) parser.add_argument('--filter_inverse', action='store_true', help='Inverse filter matches', default=False) parser.add_argument('--ignore_case', '-i', action='store_true', help='Match values case insensitive', default=False) parser.add_argument('--verbose', '-v', action='store_true', help='Enable verbose') return parser.parse_args() def main(): args = parse_arguments() CsvFilter( file=args.file, deduplicate=args.deduplicate, filter_query=args.filter, filter_inverse=args.filter_inverse, ignore_case=args.ignore_case, verbose=args.verbose ).apply() return 0 if __name__ == '__main__': sys.exit(main())
31.731884
120
0.577529
3,265
0.745604
0
0
0
0
0
0
423
0.096597
2228fe251332d78679abc83f54675d08f42975f5
1,435
py
Python
scientist/__init__.py
boxed/scientist
aadaf5713a4092abc51f1978474ce74d94e56799
[ "BSD-3-Clause" ]
null
null
null
scientist/__init__.py
boxed/scientist
aadaf5713a4092abc51f1978474ce74d94e56799
[ "BSD-3-Clause" ]
null
null
null
scientist/__init__.py
boxed/scientist
aadaf5713a4092abc51f1978474ce74d94e56799
[ "BSD-3-Clause" ]
null
null
null
def check_candidate(a, candidate, callback_when_different, *args, **kwargs): control_result = None candidate_result = None control_exception = None candidate_exception = None reason = None try: control_result = a(*args, **kwargs) except BaseException as e: control_exception = e try: candidate_result = candidate(*args, **kwargs) if control_exception is not None: reason = 'old code raised, new did not' elif control_result != candidate_result: reason = 'different results' except BaseException as e: candidate_exception = e if control_exception is None: reason = 'new code raised, old did not' else: if type(control_exception) != type(candidate_exception): reason = 'new and old both raised exception, but different types' elif control_exception.args != candidate_exception.args: reason = 'new and old both raised exception, but with different data' if reason is not None: callback_when_different( control_result=control_result, candidate_result=candidate_result, control_exception=control_exception, candidate_exception=candidate_exception, reason=reason, ) if control_exception is not None: raise control_exception return control_result
32.613636
85
0.643206
0
0
0
0
0
0
0
0
195
0.135889
22298775a674168a052235a68913e1eaa95ece94
9,883
py
Python
bluebottle/impact/tests/test_api.py
terrameijar/bluebottle
b4f5ba9c4f03e678fdd36091b29240307ea69ffd
[ "BSD-3-Clause" ]
10
2015-05-28T18:26:40.000Z
2021-09-06T10:07:03.000Z
bluebottle/impact/tests/test_api.py
terrameijar/bluebottle
b4f5ba9c4f03e678fdd36091b29240307ea69ffd
[ "BSD-3-Clause" ]
762
2015-01-15T10:00:59.000Z
2022-03-31T15:35:14.000Z
bluebottle/impact/tests/test_api.py
terrameijar/bluebottle
b4f5ba9c4f03e678fdd36091b29240307ea69ffd
[ "BSD-3-Clause" ]
9
2015-02-20T13:19:30.000Z
2022-03-08T14:09:17.000Z
# coding=utf-8 from builtins import str import json from django.contrib.auth.models import Group, Permission from django.urls import reverse from rest_framework import status from bluebottle.impact.models import ImpactGoal from bluebottle.impact.tests.factories import ( ImpactTypeFactory, ImpactGoalFactory ) from bluebottle.time_based.tests.factories import DateActivityFactory from bluebottle.members.models import MemberPlatformSettings from bluebottle.test.factory_models.accounts import BlueBottleUserFactory from bluebottle.test.utils import BluebottleTestCase, JSONAPITestClient class ImpactTypeListAPITestCase(BluebottleTestCase): def setUp(self): super(ImpactTypeListAPITestCase, self).setUp() self.client = JSONAPITestClient() self.types = ImpactTypeFactory.create_batch(10) self.url = reverse('impact-type-list') self.user = BlueBottleUserFactory() def test_get(self): response = self.client.get(self.url, user=self.user) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(len(response.json()['data']), len(self.types)) resource = response.json()['data'][0]['attributes'] self.assertTrue('slug' in resource) self.assertTrue('name' in resource) self.assertTrue('unit' in resource) self.assertTrue('text' in resource) self.assertTrue('text-with-target' in resource) self.assertTrue('text-passed' in resource) resource_type = response.json()['data'][0]['type'] self.assertEqual(resource_type, 'activities/impact-types') def test_get_anonymous(self): response = self.client.get(self.url) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(len(response.json()['data']), len(self.types)) def test_get_only_active(self): self.types[0].active = False self.types[0].save() response = self.client.get(self.url) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(len(response.json()['data']), len(self.types) - 1) def test_get_closed(self): MemberPlatformSettings.objects.update(closed=True) response = self.client.get(self.url, user=self.user) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_get_closed_anonymous(self): MemberPlatformSettings.objects.update(closed=True) response = self.client.get(self.url) self.assertEqual(response.status_code, status.HTTP_401_UNAUTHORIZED) def test_post(self): response = self.client.post(self.url, user=self.user) self.assertEqual(response.status_code, status.HTTP_405_METHOD_NOT_ALLOWED) class ImpactGoalListAPITestCase(BluebottleTestCase): def setUp(self): super(ImpactGoalListAPITestCase, self).setUp() self.client = JSONAPITestClient() self.activity = DateActivityFactory.create() self.type = ImpactTypeFactory.create() self.url = reverse('impact-goal-list') self.data = { 'data': { 'type': 'activities/impact-goals', 'attributes': { 'target': 1.5 }, 'relationships': { 'activity': { 'data': { 'type': 'activities/time-based/dates', 'id': self.activity.pk }, }, 'type': { 'data': { 'type': 'activities/impact-types', 'id': self.type.pk }, } } } } def test_create(self): response = self.client.post( self.url, json.dumps(self.data), user=self.activity.owner ) self.assertEqual(response.status_code, status.HTTP_201_CREATED) resource_type = response.json()['data']['type'] self.assertEqual(resource_type, 'activities/impact-goals') goal = ImpactGoal.objects.get(pk=response.json()['data']['id']) self.assertEqual( goal.target, self.data['data']['attributes']['target'] ) self.assertEqual(goal.type, self.type) self.assertEqual(goal.activity, self.activity) def test_create_no_target(self): del self.data['data']['attributes']['target'] response = self.client.post( self.url, json.dumps(self.data), user=self.activity.owner ) self.assertEqual(response.status_code, status.HTTP_201_CREATED) resource_type = response.json()['data']['type'] self.assertEqual(resource_type, 'activities/impact-goals') goal = ImpactGoal.objects.get(pk=response.json()['data']['id']) self.assertEqual( goal.target, None ) self.assertEqual(goal.type, self.type) self.assertEqual(goal.activity, self.activity) def test_create_non_owner(self): response = self.client.post( self.url, json.dumps(self.data), user=BlueBottleUserFactory.create() ) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) def test_create_anonymous(self): response = self.client.post( self.url, json.dumps(self.data), ) self.assertEqual(response.status_code, status.HTTP_401_UNAUTHORIZED) class ImpactGoalDetailsAPITestCase(BluebottleTestCase): def setUp(self): super(ImpactGoalDetailsAPITestCase, self).setUp() self.client = JSONAPITestClient() self.activity = DateActivityFactory.create() self.type = ImpactTypeFactory.create() self.goal = ImpactGoalFactory(type=self.type, activity=self.activity) self.url = reverse('impact-goal-details', args=(self.goal.pk, )) self.data = { 'data': { 'type': 'activities/impact-goals', 'id': self.goal.pk, 'attributes': { 'target': 1.5 }, } } def test_get(self): response = self.client.get( self.url, user=self.activity.owner ) self.assertEqual(response.status_code, status.HTTP_200_OK) data = response.json()['data'] self.assertEqual(data['type'], 'activities/impact-goals') self.assertEqual( data['attributes']['target'], self.goal.target ) self.assertEqual( data['relationships']['type']['data']['id'], str(self.goal.type.pk) ) self.assertEqual( data['relationships']['activity']['data']['id'], str(self.goal.activity.pk) ) def test_get_incomplete(self): self.goal.target = None self.goal.save() response = self.client.get( self.url, user=self.activity.owner ) self.assertEqual(response.status_code, status.HTTP_200_OK) data = response.json()['data'] self.assertEqual(data['meta']['required'], []) def test_get_non_owner(self): response = self.client.get( self.url, user=BlueBottleUserFactory.create() ) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_get_anonymous(self): response = self.client.get(self.url) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_get_closed_anonymous(self): anonymous = Group.objects.get(name='Anonymous') anonymous.permissions.remove( Permission.objects.get(codename='api_read_dateactivity') ) MemberPlatformSettings.objects.update(closed=True) response = self.client.get(self.url) self.assertEqual(response.status_code, status.HTTP_401_UNAUTHORIZED) def test_update(self): response = self.client.patch( self.url, data=json.dumps(self.data), user=self.activity.owner ) self.assertEqual(response.status_code, status.HTTP_200_OK) data = response.json()['data'] self.assertEqual(data['type'], 'activities/impact-goals') self.assertEqual( data['attributes']['target'], self.data['data']['attributes']['target'] ) self.goal.refresh_from_db() self.assertEqual( self.goal.target, self.data['data']['attributes']['target'] ) def test_update_other_user(self): response = self.client.patch( self.url, data=json.dumps(self.data), user=BlueBottleUserFactory.create() ) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) def test_update_anonymous(self): response = self.client.patch( self.url, data=json.dumps(self.data) ) self.assertEqual(response.status_code, status.HTTP_401_UNAUTHORIZED) def test_delete(self): response = self.client.delete( self.url, user=self.activity.owner ) self.assertEqual(response.status_code, status.HTTP_204_NO_CONTENT) with self.assertRaises(ImpactGoal.DoesNotExist): ImpactGoal.objects.get(pk=self.goal.pk) def test_delete_other_user(self): response = self.client.delete( self.url, user=BlueBottleUserFactory.create() ) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) def test_delete_anonymous(self): response = self.client.delete(self.url) self.assertEqual(response.status_code, status.HTTP_401_UNAUTHORIZED)
33.16443
82
0.610746
9,281
0.939087
0
0
0
0
0
0
868
0.087828
222b145f8daf822353fc31ee9861239abfadffb3
11,613
py
Python
dotmotif/parsers/v2/test_v2_parser.py
aplbrain/dotmotif
db093ddad7308756e9cf7ee01199f0dca1369872
[ "Apache-2.0" ]
28
2020-06-12T20:46:15.000Z
2022-02-05T18:33:46.000Z
dotmotif/parsers/v2/test_v2_parser.py
aplbrain/dotmotif
db093ddad7308756e9cf7ee01199f0dca1369872
[ "Apache-2.0" ]
26
2020-06-09T20:09:32.000Z
2022-02-01T18:22:20.000Z
dotmotif/parsers/v2/test_v2_parser.py
aplbrain/dotmotif
db093ddad7308756e9cf7ee01199f0dca1369872
[ "Apache-2.0" ]
4
2021-03-08T02:47:49.000Z
2021-09-13T19:16:29.000Z
from . import ParserV2 import dotmotif import unittest _THREE_CYCLE = """A -> B\nB -> C\nC -> A\n""" _THREE_CYCLE_NEG = """A !> B\nB !> C\nC !> A\n""" _THREE_CYCLE_INH = """A -| B\nB -| C\nC -| A\n""" _THREE_CYCLE_NEG_INH = """A !| B\nB !| C\nC !| A\n""" _ABC_TO_D = """\nA -> D\nB -> D\nC -> D\n""" _THREE_CYCLE_CSV = """\nA,B\nB,C\nC,A\n""" _THREE_CYCLE_NEG_CSV = """\nA,B\nB,C\nC,A\n""" class TestDotmotif_Parserv2_DM(unittest.TestCase): def test_sanity(self): self.assertEqual(1, 1) def test_dm_parser(self): dm = dotmotif.Motif(_THREE_CYCLE) self.assertEqual(len(dm._g.edges()), 3) self.assertEqual(len(dm._g.nodes()), 3) def test_dm_parser_actions(self): dm = dotmotif.Motif(_THREE_CYCLE) self.assertEqual([e[2]["action"] for e in dm._g.edges(data=True)], ["SYN"] * 3) dm = dotmotif.Motif(_THREE_CYCLE_INH) self.assertEqual([e[2]["action"] for e in dm._g.edges(data=True)], ["INH"] * 3) def test_dm_parser_edge_exists(self): dm = dotmotif.Motif(_THREE_CYCLE) self.assertEqual([e[2]["exists"] for e in dm._g.edges(data=True)], [True] * 3) dm = dotmotif.Motif(_THREE_CYCLE_NEG) self.assertEqual([e[2]["exists"] for e in dm._g.edges(data=True)], [False] * 3) dm = dotmotif.Motif(_THREE_CYCLE_NEG_INH) self.assertEqual([e[2]["exists"] for e in dm._g.edges(data=True)], [False] * 3) class TestDotmotif_Parserv2_DM_Macros(unittest.TestCase): def test_macro_not_added(self): exp = """\ edge(A, B) { A -> B } """ dm = dotmotif.Motif(exp) self.assertEqual(len(dm._g.edges()), 0) def test_simple_macro(self): exp = """\ edge(A, B) { A -> B } edge(C, D) """ dm = dotmotif.Motif(exp) self.assertEqual(len(dm._g.edges()), 1) def test_simple_macro_construction(self): exp = """\ edge(A, B) { A -> B } edge(C, D) """ dm = dotmotif.Motif(exp) exp_edge = list(dm._g.edges(data=True))[0] self.assertEqual(exp_edge[0], "C") self.assertEqual(exp_edge[1], "D") def test_multiline_macro_construction(self): exp = """\ dualedge(A, B) { A -> B B -> A } dualedge(C, D) """ dm = dotmotif.Motif(exp) exp_edge = list(dm._g.edges(data=True))[0] self.assertEqual(exp_edge[0], "C") self.assertEqual(exp_edge[1], "D") def test_undefined_macro(self): exp = """\ dualedge(A, B) { A -> B B -> A } foo(C, D) """ # with self.assertRaises(ValueError): with self.assertRaises(Exception): dotmotif.Motif(exp) def test_wrong_args_macro(self): exp = """\ edge(A, B) { A -> B B -> A } edge(C, D, E) """ # with self.assertRaises(ValueError): with self.assertRaises(Exception): dotmotif.Motif(exp) def test_more_complex_macro(self): exp = """\ tri(A, B, C) { A -> B B -> C C -> A } tri(C, D, E) """ dm = dotmotif.Motif(exp) edges = list(dm._g.edges(data=True)) self.assertEqual(len(edges), 3) def test_macro_reuse(self): exp = """\ tri(A, B, C) { A -> B B -> C C -> A } tri(C, D, E) tri(F, G, H) """ dm = dotmotif.Motif(exp) edges = list(dm._g.edges(data=True)) self.assertEqual(len(edges), 6) def test_conflicting_macro_invalid_edge_throws(self): exp = """\ tri(A, B, C) { A -> B B -> C C -> A } nontri(A, B, C) { A !> B B !> C C !> A } tri(C, D, E) nontri(D, E, F) """ # with self.assertRaises(dotmotif.validators.DisagreeingEdgesValidatorError): with self.assertRaises(Exception): dotmotif.Motif(exp) def test_nested_macros(self): exp = """\ dualedge(A, B) { A -> B B -> A } dualtri(A, B, C) { dualedge(A, B) dualedge(B, C) dualedge(C, A) } dualtri(foo, bar, baz) """ dm = dotmotif.Motif(exp) edges = list(dm._g.edges(data=True)) self.assertEqual(len(edges), 6) def test_deeply_nested_macros(self): exp = """\ edge(A, B) { A -> B } dualedge(A, B) { edge(A, B) edge(B, A) } dualtri(A, B, C) { dualedge(A, B) dualedge(B, C) dualedge(C, A) } dualtri(foo, bar, baz) """ dm = dotmotif.Motif(exp) edges = list(dm._g.edges(data=True)) self.assertEqual(len(edges), 6) def test_clustercuss_macros_no_repeats(self): exp = """\ edge(A, B) { A -> B } dualedge(A, B) { edge(A, B) edge(B, A) } dualtri(A, B, C) { dualedge(A, B) dualedge(B, C) dualedge(C, A) } dualtri(foo, bar, baz) dualtri(foo, bar, baf) """ dm = dotmotif.Motif(exp) edges = list(dm._g.edges(data=True)) self.assertEqual(len(edges), 10) def test_comment_in_macro(self): exp = """\ # Outside comment edge(A, B) { # Inside comment A -> B } dualedge(A, B) { # Nested-inside comment edge(A, B) edge(B, A) } dualedge(foo, bar) """ dm = dotmotif.Motif(exp) edges = list(dm._g.edges(data=True)) self.assertEqual(len(edges), 2) def test_combo_macro(self): exp = """\ edge(A, B) { A -> B } dualedge(A, B) { # Nested-inside comment! edge(A, B) B -> A } dualedge(foo, bar) """ dm = dotmotif.Motif(exp) edges = list(dm._g.edges(data=True)) self.assertEqual(len(edges), 2) def test_comment_macro_inline(self): exp = """\ edge(A, B) { A -> B } dualedge(A, B) { # Nested-inside comment! edge(A, B) # inline comment B -> A } dualedge(foo, bar) # inline comment # standalone comment foo -> bar # inline comment """ dm = dotmotif.Motif(exp) edges = list(dm._g.edges(data=True)) self.assertEqual(len(edges), 2) def test_alphanumeric_variables(self): exp = """\ edge(A, B) { A -> B } dualedge(A1, B) { # Nested-inside comment! edge(A1, B) # inline comment B -> A1 } dualedge(foo_1, bar_2) # inline comment # standalone comment foo_1 -> bar_2 # inline comment """ dm = dotmotif.Motif(exp) edges = list(dm._g.edges(data=True)) self.assertEqual(len(edges), 2) self.assertEqual(list(dm._g.nodes()), ["foo_1", "bar_2"]) self.assertEqual(type(list(dm._g.nodes())[0]), str) new_exp = """ L1 -> Mi1 L1 -> Tm3 L3 -> Mi9 """ dm = dotmotif.Motif(new_exp) self.assertEqual(list(dm._g.nodes()), ["L1", "Mi1", "Tm3", "L3", "Mi9"]) class TestDotmotif_Parserv2_DM_EdgeAttributes(unittest.TestCase): def test_basic_edge_attr(self): exp = """\ Aa -> Ba [type == 1] """ dm = dotmotif.Motif(exp) self.assertEqual(len(dm._g.edges()), 1) u, v, d = list(dm._g.edges(["Aa", "Bb"], data=True))[0] self.assertEqual(type(list(dm._g.nodes())[0]), str) self.assertEqual(type(list(dm._g.nodes())[1]), str) self.assertEqual(d["constraints"]["type"], {"==": [1]}) def test_edge_multi_attr(self): exp = """\ Aa -> Ba [type != 1, type != 12] """ dm = dotmotif.Motif(exp) self.assertEqual(len(dm._g.edges()), 1) u, v, d = list(dm._g.edges(data=True))[0] self.assertEqual(d["constraints"]["type"], {"!=": [1, 12]}) def test_edge_macro_attr(self): exp = """\ macro(Aa, Ba) { Aa -> Ba [type != 1, type != 12] } macro(X, Y) """ dm = dotmotif.Motif(exp) self.assertEqual(len(dm._g.edges()), 1) u, v, d = list(dm._g.edges(data=True))[0] self.assertEqual(d["constraints"]["type"], {"!=": [1, 12]}) class TestDotmotif_Parserv2_DM_NodeAttributes(unittest.TestCase): def test_basic_node_attr(self): exp = """\ Aa -> Ba Aa.type = "excitatory" """ dm = dotmotif.Motif(exp) self.assertEqual(len(dm.list_node_constraints()), 1) self.assertEqual(list(dm.list_node_constraints().keys()), ["Aa"]) def test_node_multi_attr(self): exp = """\ Aa -> Ba Aa.type = "excitatory" Aa.size = 4.5 """ dm = dotmotif.Motif(exp) self.assertEqual(len(dm.list_node_constraints()), 1) self.assertEqual(len(dm.list_node_constraints()["Aa"]), 2) self.assertEqual(dm.list_node_constraints()["Aa"]["type"]["="], ["excitatory"]) self.assertEqual(dm.list_node_constraints()["Aa"]["size"]["="], [4.5]) self.assertEqual(list(dm.list_node_constraints().keys()), ["Aa"]) def test_multi_node_attr(self): exp = """\ Aa -> Ba Aa.type = "excitatory" Ba.size=4.0 """ dm = dotmotif.Motif(exp) self.assertEqual(len(dm.list_node_constraints()), 2) self.assertEqual(list(dm.list_node_constraints().keys()), ["Aa", "Ba"]) def test_node_macro_attr(self): exp = """\ macro(A) { A.type = "excitatory" A.size >= 4.0 } Aaa -> Ba macro(Aaa) """ dm = dotmotif.Motif(exp) self.assertEqual(len(dm.list_node_constraints()), 1) self.assertEqual(list(dm.list_node_constraints().keys()), ["Aaa"]) exp = """\ macro(A) { A.type = "excitatory" A.size >= 4.0 } Aaa -> Ba macro(Aaa) macro(Ba) """ dm = dotmotif.Motif(exp) self.assertEqual(len(dm.list_node_constraints()), 2) self.assertEqual(list(dm.list_node_constraints().keys()), ["Aaa", "Ba"]) class TestDynamicNodeConstraints(unittest.TestCase): def test_dynamic_constraints(self): """ Test that comparisons may be made between variables, e.g.: A.type != B.type """ exp = """\ A -> B A.radius < B.radius """ dm = dotmotif.Motif(exp) self.assertEqual(len(dm.list_dynamic_node_constraints()), 1) def test_dynamic_constraints_in_macro(self): """ Test that comparisons may be made between variables in a macro, e.g.: A.type != B.type """ exp = """\ macro(A, B) { A.radius > B.radius } macro(A, B) A -> B """ dm = dotmotif.Motif(exp) self.assertEqual(len(dm.list_dynamic_node_constraints()), 1)
26.819861
87
0.490313
11,205
0.964867
0
0
0
0
0
0
4,870
0.419358
222b699bb098dde76e50ecba30e5ab86e3537dcc
1,382
py
Python
examples/classification_mnist/main.py
yassersouri/fandak
2bbadb6d78fcf73dc39f5342aa34c53fa3341c5a
[ "MIT" ]
15
2019-07-12T14:04:46.000Z
2020-08-04T12:30:30.000Z
examples/classification_mnist/main.py
yassersouri/fandak
2bbadb6d78fcf73dc39f5342aa34c53fa3341c5a
[ "MIT" ]
2
2019-07-12T17:06:56.000Z
2019-07-17T12:05:32.000Z
examples/classification_mnist/main.py
yassersouri/fandak
2bbadb6d78fcf73dc39f5342aa34c53fa3341c5a
[ "MIT" ]
null
null
null
from typing import List import click import torch from fandak.utils import common_config from fandak.utils import set_seed from fandak.utils.config import update_config from proj.config import get_config_defaults from proj.datasets import MNISTClassification from proj.evaluators import ValidationEvaluator from proj.models import MLPModel from proj.trainers import SimpleTrainer @click.command() @common_config @click.option("--exp-name", default="") def main(file_configs: List[str], set_configs: List[str], exp_name: str): cfg = update_config( default_config=get_config_defaults(), file_configs=file_configs, set_configs=set_configs, ) if exp_name != "": cfg.defrost() cfg.experiment_name = exp_name cfg.freeze() print(cfg) # set_seed(cfg.system.seed) device = torch.device(cfg.system.device) train_db = MNISTClassification(cfg, train=True) test_db = MNISTClassification(cfg, train=False) if cfg.model.name == "MLP": model = MLPModel(cfg) else: raise Exception("Invalid model name (%s)" % cfg.model.name) evaluators = [ValidationEvaluator(cfg, test_db, model, device)] trainer = SimpleTrainer( cfg, cfg.experiment_name, train_db, model, device, evaluators ) trainer.train() trainer.save_training() if __name__ == "__main__": main()
26.075472
73
0.708394
0
0
0
0
957
0.692475
0
0
83
0.060058
222b80300db760788fdc862f944935f9de93f40f
864
py
Python
tests/test_problem_solving_algorithms_sorting.py
mxdzi/hackerrank
4455f73e4479a4204b2e1167253f6a02351aa5b7
[ "MIT" ]
null
null
null
tests/test_problem_solving_algorithms_sorting.py
mxdzi/hackerrank
4455f73e4479a4204b2e1167253f6a02351aa5b7
[ "MIT" ]
null
null
null
tests/test_problem_solving_algorithms_sorting.py
mxdzi/hackerrank
4455f73e4479a4204b2e1167253f6a02351aa5b7
[ "MIT" ]
null
null
null
from problem_solving.algorithms.sorting import * def test_q1_big_sorting(capsys, monkeypatch): inputs = ["6", "31415926535897932384626433832795", "1", "3", "10", "3", "5"] monkeypatch.setattr('builtins.input', lambda: inputs.pop(0)) q1_big_sorting.main() captured = capsys.readouterr() output = ("1\n" "3\n" "3\n" "5\n" "10\n" "31415926535897932384626433832795\n") assert captured.out == output def test_q12_find_the_median(capsys, monkeypatch): inputs = ["7", "0 1 2 4 6 5 3"] monkeypatch.setattr('builtins.input', lambda: inputs.pop(0)) q12_find_the_median.main() captured = capsys.readouterr() output = "3\n" assert captured.out == output
25.411765
64
0.545139
0
0
0
0
0
0
0
0
170
0.196759
222dd53901bfb2ab9baf636ea45e6459defef6a1
9,975
py
Python
runOtakuBot.py
Eagleheardt/otakuBot
6f8576423bb1b0701d5a60095bed7552b2711bab
[ "Unlicense" ]
null
null
null
runOtakuBot.py
Eagleheardt/otakuBot
6f8576423bb1b0701d5a60095bed7552b2711bab
[ "Unlicense" ]
null
null
null
runOtakuBot.py
Eagleheardt/otakuBot
6f8576423bb1b0701d5a60095bed7552b2711bab
[ "Unlicense" ]
null
null
null
import sqlite3 from sqlite3 import Error import os import time import datetime import re import random import schedule import cryptography from apscheduler.schedulers.background import BackgroundScheduler from slackclient import SlackClient from cryptography.fernet import Fernet conn = sqlite3.connect('/home/ubuntu/otakuBot/data/anime.db') serverCursor = conn.cursor() keyFile = open('/home/ubuntu/otakuBot/data/otakubot_token.key', 'rb') key = keyFile.read() keyFile.close() f = Fernet(key) encryptedTokenFile = open('/home/ubuntu/otakuBot/data/otakubot_token.encrypted', 'rb') encryptedToken = encryptedTokenFile.read() decryptedToken = f.decrypt(encryptedToken) SLACK_BOT_TOKEN = decryptedToken.decode() # instantiate Slack client slack_client = SlackClient(SLACK_BOT_TOKEN) # starterbot's user ID in Slack: value is assigned after the bot starts up otakuBotID = None # constants RTM_READ_DELAY = 0.5 # 0.5 second delay in reading events def stdOut(s): curDate = datetime.datetime.today().strftime('%Y-%m-%d') curTime = datetime.datetime.now().strftime('%H:%M:%S') logFile = open((("/home/ubuntu/logs/{0}.log").format(curDate)),"a") logFile.write(("{0}: {1}\n").format(curTime,s)) logFile.close() return def logIt(): curDate = datetime.datetime.today().strftime('%Y-%m-%d') curTime = datetime.datetime.now().strftime('%H:%M:%S') logFile = open((("/home/ubuntu/logs/{0}.log").format(curDate)),"a") logFile.write(("{0}: Otaku 15 minute check in!\n").format(curTime)) logFile.close() return schedule.every(15).minutes.do(logIt) def SQLReturn(aConn,sqlCmd): reportCur = aConn.cursor() reportCur.execute(sqlCmd) SQLResults = reportCur.fetchall() reportCur.close() return SQLResults def insertQuote (aUser,theQuote): newCur = conn.cursor() newCur.execute((""" INSERT INTO Quotes (User, Words) VALUES ('{0}','{1}'); """).format(aUser,theQuote)) newCur.close() conn.commit() return def insertAniMusic (aUser,theLink): newCur = conn.cursor() newCur.execute((""" INSERT INTO Music (Category, User, Link) VALUES ('Anime','{0}','{1}'); """).format(aUser,theLink)) newCur.close() conn.commit() return def insertEngMusic (aUser,theLink): newCur = conn.cursor() newCur.execute((""" INSERT INTO Music (Category, User, Link) VALUES ('English','{0}','{1}'); """).format(aUser,theLink)) newCur.close() conn.commit() return def insertIcon (aUser,theLink): newCur = conn.cursor() newCur.execute((""" INSERT INTO Music (Category, User, Link) VALUES ('Iconic','{0}','{1}'); """).format(aUser,theLink)) newCur.close() conn.commit() return def deleteQuote (quoteID): newCur = conn.cursor() newCur.execute((""" DELETE FROM Quotes WHERE ID == {0}; """).format(quoteID)) newCur.close() conn.commit() return def getQuote(aConn): sqlCmd = "SELECT Words FROM Quotes;" results = SQLReturn(aConn,sqlCmd) allQuotes = [] for quote in results: allQuotes.append(quote) return (random.choice(allQuotes)) def getAniMusic(aConn): sqlCmd = "SELECT Link FROM Music WHERE Category = 'Anime';" results = SQLReturn(aConn,sqlCmd) allQuotes = [] for quote in results: allQuotes.append(quote) return (random.choice(allQuotes)) def getEngMusic(aConn): sqlCmd = "SELECT Link FROM Music WHERE Category = 'English';" results = SQLReturn(aConn,sqlCmd) allQuotes = [] for quote in results: allQuotes.append(quote) return (random.choice(allQuotes)) def getIconic(aConn): sqlCmd = "SELECT Link FROM Music WHERE Category = 'Iconic';" results = SQLReturn(aConn,sqlCmd) allQuotes = [] for quote in results: allQuotes.append(quote) return (random.choice(allQuotes)) def getAllQuotes(aConn): sqlCmd = "SELECT ID, Words FROM Quotes;" results = SQLReturn(aConn,sqlCmd) allQuotes = [] for quote in results: allQuotes.append(quote) newStr = "All the Quotes\n" for item in allQuotes: i = 1 for place in item: if i == 1: newStr += "ID: " + str(place) + "\n" if i == 2: newStr += "Words: " + str(place) + "\n\n" i += 1 return newStr def EODReportRange (date1, date2): # Gets a range summary of the VM number and status reported cmd = ((""" SELECT ServerNumber as [Server] , ServerStatus as [Status] , count(ServerStatus) as [Amount] FROM Status WHERE date(TimeStamp) BETWEEN '{0}' AND '{1}' AND ServerNumber IN('1','2','3','4','17') GROUP BY ServerNumber ,ServerStatus """).format(date1, date2)) results = SQLReturn(conn,cmd) newStr = "Report for: " + date1 + " to " + date2 + "\n" for row in results: i = 1 for item in row: if i == 1: newStr += "VM" + str(item) + " - " if i == 2: newStr += "Status: " + str(item) + " - " if i == 3: if item != 1: newStr += "Reported: " + str(item) + " times" else: newStr += "Reported: " + str(item) + " time" i += 1 newStr += "\n" return newStr def parseSlackInput(aText): if aText and len(aText) > 0: item = aText[0] if 'text' in item: msg = item['text'].strip(' ') chn = item['channel'] usr = item['user'] stp = item['ts'] return [str(msg),str(chn),str(usr),str(stp)] else: return [None,None,None,None] def inChannelResponse(channel,response): slack_client.api_call( "chat.postMessage", channel=channel, text=response, as_user=True ) return def threadedResponse(channel,response,stamp): slack_client.api_call( "chat.postMessage", channel=channel, text=response, thread_ts=stamp, as_user=True ) return def directResponse(someUser,text): slack_client.api_call( "chat.postMessage", channel=someUser, text=text, as_user=True ) return def parseQuote(someMsg): starter,theQuote = someMsg.split(' ', 1) return theQuote def handle_command(command, channel, aUser, tStamp): """ Executes bot command if the command is known """ #command = command.lower() response = None # This is where you start to implement more commands! if command.lower().startswith("!help"): response = """I'm Otaku Bot! I don't do a lot yet. But watch out! I'm just getting started! !addquote[SPACE][A quote of your choice!] - I will remember your quote! !quote - I will reply with a random quote! !addAniMusic[SPACE][Link to a Japanese anime song] - I will remember your music! !addEngMusic[SPACE][Link to an English anime song] - I will remember your music! !addIconic[SPACE][Link to an iconic anime moment] - I will remember your moment! !animusic - I will reply with a Japanese anime song from memory! !engmusic - I will reply with an English anime song from memory! !iconic - I will show you an iconic anime moment! """ inChannelResponse(channel,response) return if command.lower().startswith("!addquote"): newQuote = str(command[10:]) insertQuote(aUser,newQuote) threadedResponse(channel,"I'll try to remember: " + newQuote ,tStamp) stdOut("Quote Added: " + newQuote) return if command.lower().startswith("!quote"): aQuote = getQuote(conn) inChannelResponse(channel,aQuote) return if command.lower().startswith("!animusic"): aQuote = getAniMusic(conn) inChannelResponse(channel,aQuote) return if command.lower().startswith("!engmusic"): aQuote = getEngMusic(conn) inChannelResponse(channel,aQuote) return if command.lower().startswith("!iconic"): aQuote = getIconic(conn) inChannelResponse(channel,aQuote) return if command.lower().startswith("!onepunch"): inChannelResponse(channel,"https://www.youtube.com/watch?v=_TUTJ0klnKk") return if command.lower().startswith("!addanimusic"): newQuote = str(command[13:]) insertAniMusic(aUser,newQuote) threadedResponse(channel,"I'll add this to the Anime music section: " + newQuote ,tStamp) stdOut("Anime Music Added: " + newQuote) return if command.lower().startswith("!addengmusic"): newQuote = str(command[13:]) insertEngMusic(aUser,newQuote) threadedResponse(channel,"I'll add this to the English music section: " + newQuote ,tStamp) stdOut("English Music Added: " + newQuote) return if command.lower().startswith("!addiconic"): newQuote = str(command[11:]) insertIcon(aUser,newQuote) threadedResponse(channel,"I'll add this to the Iconic moments section: " + newQuote ,tStamp) stdOut("Iconic Moment Added: " + newQuote) return if command.lower().startswith("!delquote"): if aUser == "UC176R92M": num = command[10:] deleteQuote(num) inChannelResponse(channel,"You have removed a quote.") else: inChannelResponse(channel,"You don't have permission to do that!") return if command.lower().startswith("!getquotes"): if aUser == "UC176R92M": inChannelResponse(channel,getAllQuotes(conn)) else: inChannelResponse(channel,"You don't have permission to do that!") return if command.startswith("!test"): return response = (("""Text:{0} Channel:{1} TS:{2} User:{3} """).format(command,channel,tStamp,aUser)) inChannelResponse(channel,response) return return # Sends the response back to the channel if __name__ == "__main__": if slack_client.rtm_connect(with_team_state=False): stdOut("Otaku Bot connected and running!") # Read bot's user ID by calling Web API method `auth.test` otakuBotID = slack_client.api_call("auth.test")["user_id"] while True: try: command, channel,usr,stp = parseSlackInput(slack_client.rtm_read()) if command: handle_command(command, channel,usr,stp) except: pass schedule.run_pending() time.sleep(RTM_READ_DELAY) else: stdOut("Connection failed. Exception traceback printed above.")
27.631579
95
0.665063
0
0
0
0
0
0
0
0
3,305
0.331328
222fcf6d9b65f24912507aa874036c0ee4a1261b
1,555
py
Python
ocr.py
tunc2112/uet-img-processing
6a191fe6927d7d0844742240cf4a39587c965d16
[ "MIT" ]
null
null
null
ocr.py
tunc2112/uet-img-processing
6a191fe6927d7d0844742240cf4a39587c965d16
[ "MIT" ]
null
null
null
ocr.py
tunc2112/uet-img-processing
6a191fe6927d7d0844742240cf4a39587c965d16
[ "MIT" ]
null
null
null
from PIL import Image import cv2 import pytesseract import tesserocr from pyocr import pyocr from pyocr import builders import sys import os def get_image_filename(img_id): filename = "img_src/src{0:0>3}".format(img_id) for ext in [".png", ".jpg", ".jpeg"]: if os.path.exists(os.path.join(os.getcwd(), filename + ext)): return filename + ext def write_output(libname, img_id, text): filename = "./output/output_{1}_{0:0>3}.txt".format(img_id, libname) with open(filename, "w") as f: f.write(text) def ocr_pytesseract(img_id): img_filename = './' + get_image_filename(img_id) img = cv2.imread(img_filename, cv2.IMREAD_COLOR) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray = cv2.bilateralFilter(gray, 11, 17, 17) original = pytesseract.image_to_string(gray, config='') write_output(img, original) def ocr_pyocr(img_id): img_filename = './' + get_image_filename(img_id) img = cv2.imread(img_filename, cv2.IMREAD_COLOR) tools = pyocr.get_available_tools() if len(tools) == 0: print("No OCR tool found") sys.exit(1) tool = tools[0] langs = tool.get_available_languages() lang = langs[0] txt = tool.image_to_string( Image.open(img_filename), lang=lang, builder=pyocr.tesseract.builders.TextBuilder() ) write_output(img_id, txt) def ocr_tesseract(img_id): img_filename = './' + get_image_filename(img_id) txt = tesserocr.image_to_text(Image.open(img_filename)) write_output(img_id, txt)
27.280702
72
0.674598
0
0
0
0
0
0
0
0
108
0.069453
2230323f70e41224c93df8ff861946c38acbb05d
6,718
py
Python
object_detection/det_heads/retinaNet_head/retinanet_head.py
no-name-xiaosheng/PaddleViT
50226a3be5095b3727d3c62d2eab23ef1e9612ec
[ "Apache-2.0" ]
993
2021-08-30T01:58:57.000Z
2022-03-31T14:03:07.000Z
object_detection/det_heads/retinaNet_head/retinanet_head.py
Dongsheng-Bi/PaddleViT
c90a6c8dc3787e69cef3a37b9a260bd59eeff1f7
[ "Apache-2.0" ]
120
2021-09-03T13:05:32.000Z
2022-03-29T02:08:22.000Z
object_detection/det_heads/retinaNet_head/retinanet_head.py
Dongsheng-Bi/PaddleViT
c90a6c8dc3787e69cef3a37b9a260bd59eeff1f7
[ "Apache-2.0" ]
253
2021-08-30T08:50:27.000Z
2022-03-26T09:21:08.000Z
# Copyright (c) 2021 PPViT Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import paddle import paddle.nn as nn from paddle.nn.initializer import Normal, Constant from retinanet_loss import RetinaNetLoss from post_process import RetinaNetPostProcess from det_utils.generator_utils import AnchorGenerator class RetinaNetHead(nn.Layer): ''' The head used in RetinaNet for object classification and box regression. It has two subnets for the two tasks, with a common structure but separate parameters. ''' def __init__(self, config): ''' Args: input_shape (List[ShapeSpec]): input shape. num_classes (int): number of classes. Used to label background proposals. num_anchors (int): number of generated anchors. conv_dims (List[int]): dimensions for each convolution layer. norm (str or callable): Normalization for conv layers except for the two output layers. See :func:`detectron2.layers.get_norm` for supported types. loss_func (class): the class is used to compute loss. prior_prob (float): Prior weight for computing bias. ''' super(RetinaNetHead, self).__init__() num_convs = config.RETINANET.NUM_CONVS input_channels = config.RETINANET.INPUT_CHANNELS norm = config.RETINANET.NORM prior_prob = config.RETINANET.PRIOR_PROB self.num_classes = config.RETINANET.NUM_CLASSES self.get_loss = RetinaNetLoss( focal_loss_alpha=config.RETINANET.FOCAL_LOSS_ALPHA, focal_loss_gamma=config.RETINANET.FOCAL_LOSS_GAMMA, smoothl1_loss_delta=config.RETINANET.SMOOTHL1_LOSS_DELTA, positive_thresh=config.RETINANET.POSITIVE_THRESH, negative_thresh=config.RETINANET.NEGATIVE_THRESH, allow_low_quality=config.RETINANET.ALLOW_LOW_QUALITY, num_classes=config.RETINANET.NUM_CLASSES, weights=config.RETINANET.WEIGHTS ) self.postprocess = RetinaNetPostProcess( score_threshold=config.RETINANET.SCORE_THRESH, keep_top_k=config.RETINANET.KEEP_TOPK, nms_top_k=config.RETINANET.NMS_TOPK, nms_threshold=config.RETINANET.NMS_THRESH, bbox_reg_weights=config.RETINANET.WEIGHTS ) self.anchor_generator = AnchorGenerator(anchor_sizes=config.RETINANET.ANCHOR_SIZE, aspect_ratios=config.RETINANET.ASPECT_RATIOS, strides=config.RETINANET.STRIDES, offset=config.RETINANET.OFFSET) num_anchors = self.anchor_generator.num_anchors conv_dims = [input_channels] * num_convs cls_net = [] reg_net = [] for in_channels, out_channels in zip( [input_channels] + list(conv_dims), conv_dims ): cls_net.append( nn.Conv2D(in_channels, out_channels, kernel_size=3, stride=1, padding=1, weight_attr=paddle.ParamAttr(initializer=Normal(mean=0., std=0.01))) ) if norm == "bn": cls_net.append(nn.BatchNorm2D(out_channels)) cls_net.append(nn.ReLU()) reg_net.append( nn.Conv2D(in_channels, out_channels, kernel_size=3, stride=1, padding=1, weight_attr=paddle.ParamAttr(initializer=Normal(mean=0., std=0.01))) ) if norm == "bn": reg_net.append(nn.BatchNorm2D(out_channels)) reg_net.append(nn.ReLU()) self.cls_net = nn.Sequential(*cls_net) self.reg_net = nn.Sequential(*reg_net) bias_value = -math.log((1 - prior_prob) / prior_prob) self.cls_score = nn.Conv2D( conv_dims[-1], num_anchors * self.num_classes, kernel_size=3, stride=1, padding=1, weight_attr=paddle.ParamAttr(initializer=Normal(mean=0., std=0.01)), bias_attr=paddle.ParamAttr(initializer=Constant(bias_value)) ) self.bbox_pred = nn.Conv2D( conv_dims[-1], num_anchors * 4, kernel_size=3, stride=1, padding=1, weight_attr=paddle.ParamAttr(initializer=Normal(mean=0., std=0.01)) ) def forward(self, feats, inputs): ''' Returns: loss_dict (dict) | pred_result(tensor), bbox_num(tensor): loss_dict: contains cls_losses and reg_losses. pred_result: the shape is [M, 6], M is the number of final preds, Each row has 6 values: [label, score, xmin, ymin, xmax, ymax] bbox_num: the shape is [N], N is the num of batch_size, bbox_num[i] means the i'th img have bbox_num[i] boxes. ''' anchors = self.anchor_generator(feats) pred_scores = [] pred_boxes = [] for feat in feats: pred_scores.append(self.cls_score(self.cls_net(feat))) pred_boxes.append(self.bbox_pred(self.reg_net(feat))) pred_scores_list = [ transpose_to_bs_hwa_k(s, self.num_classes) for s in pred_scores ] pred_boxes_list = [ transpose_to_bs_hwa_k(s, 4) for s in pred_boxes ] if self.training: anchors = paddle.concat(anchors) loss_dict = self.get_loss(anchors, [pred_scores_list, pred_boxes_list], inputs) return loss_dict else: img_whwh = paddle.concat([inputs["imgs_shape"][:, 1:2], inputs["imgs_shape"][:, 0:1]], axis=-1) pred_result, bbox_num = self.postprocess( pred_scores_list, pred_boxes_list, anchors, inputs["scale_factor_wh"], img_whwh ) return pred_result, bbox_num def transpose_to_bs_hwa_k(tensor, k): assert tensor.dim() == 4 bs, _, h, w = tensor.shape tensor = tensor.reshape([bs, -1, k, h, w]) tensor = tensor.transpose([0, 3, 4, 1, 2]) return tensor.reshape([bs, -1, k])
40.227545
94
0.620125
5,631
0.838196
0
0
0
0
0
0
1,915
0.285055
223135074d80c82a77c3e9b47c439c7c3abe7792
632
py
Python
brp/formutils.py
chop-dbhi/biorepo-portal
7db13c40b2b9d62af43a28e4af08c2472b98fc96
[ "BSD-2-Clause" ]
6
2016-10-26T19:51:11.000Z
2021-03-18T16:05:55.000Z
brp/formutils.py
chop-dbhi/biorepo-portal
7db13c40b2b9d62af43a28e4af08c2472b98fc96
[ "BSD-2-Clause" ]
207
2015-09-24T17:41:37.000Z
2021-05-18T18:14:08.000Z
brp/formutils.py
chop-dbhi/biorepo-portal
7db13c40b2b9d62af43a28e4af08c2472b98fc96
[ "BSD-2-Clause" ]
8
2016-04-27T19:04:50.000Z
2020-08-24T02:33:05.000Z
from django import template from django.forms import widgets register = template.Library() @register.inclusion_tag('formfield.html') def formfield(field): widget = field.field.widget type_ = None if isinstance(widget, widgets.Input): type_ = 'input' elif isinstance(widget, widgets.Textarea): type_ = 'textarea' elif isinstance(widget, widgets.Select): type_ = 'select' elif isinstance(widget, widgets.CheckboxInput): type_ = 'checkbox' elif isinstance(widget, widgets.RadioInput): type_ = 'radio' return {'field': field, 'form': field.form, 'type': type_}
28.727273
62
0.675633
0
0
0
0
538
0.851266
0
0
77
0.121835
2231aae6662593f94c1874f0078bab296c0ac96f
2,104
py
Python
SGE/src/configs/rng_seeds.py
dabingrosewood/MasterThesisProj
7e40fa2395468a1bccef429362a61ed8515ecc11
[ "MIT" ]
null
null
null
SGE/src/configs/rng_seeds.py
dabingrosewood/MasterThesisProj
7e40fa2395468a1bccef429362a61ed8515ecc11
[ "MIT" ]
null
null
null
SGE/src/configs/rng_seeds.py
dabingrosewood/MasterThesisProj
7e40fa2395468a1bccef429362a61ed8515ecc11
[ "MIT" ]
null
null
null
# CONFIG seeds = [6598903756360202179, 2908409715321502665, 6126375328734039552, 1447957147463681860, 8611858271322161001, 1129180857020570158, 6362222119948958210, 7116573423379052515, 6183551438103583226, 4025455056998962241, 3253052445978017587, 8447055112402476503, 5958072666039141800, 704315598608973559, 1273141716491599966, 8030825590436937002, 6692768176035969914, 8405559442957414941, 5375803109627817298, 1491660193757141856, 3436611086188602011, 3271002097187013328, 4006294871837743001, 7473817498436254932, 7891796310200224764, 3130952787727334893, 697469171142516880, 133987617360269051, 1978176412643604703, 3541943493395593807, 5679145832406031548, 5942005640162452699, 5170695982942106620, 3168218038949114546, 9211443340810713278, 675545486074597116, 3672488441186673791, 6678020899892900267, 2416379871103035344, 8662874560817543122, 2122645477319220395, 2405200782555244715, 6145921643610737337, 5436563232962849112, 8616414727199277108, 3514934091557929937, 6828532625327352397, 4198622582999611227, 1404664771100695607, 2109913995355226572, 7499239331133290294, 1663854912663070382, 8773050872378084951, 847059168652279875, 2080440852605950627, 842456810578794799, 2969610112218411619, 8028963261673713765, 8849431138779094918, 6906452636298562639, 8279891918456160432, 3007521703390185509, 7384090506069372457, 2587992914778556505, 7951640286729988102, 812903075765965116, 4795333953396378316, 1140497104356211676, 8624839892588303806, 5867085452069993348, 8978621560802611959, 8687506047153117100, 1433098622112610322, 2329673189788559167, 1697681906179453583, 1151871187140419944, 7331838985682630168, 2010690807327394179, 8961362099735442061, 3782928183186245068, 8730275423842935904, 2250089307129376711, 6729072114456627667, 6426359511845339057, 1543504526754215874, 6764758859303816569, 438430728757175362, 850249168946095159, 7241624624529922339, 633139235530929889, 8443344843613690342, 5097223086273121, 3838826661110586915, 7425568686759148634, 5814866864074983273, 5375799982976616117, 6540402714944055605, 448708351215739494, 5101380446889426970, 8035666378249198606]
701.333333
2,094
0.901616
0
0
0
0
0
0
0
0
8
0.003802
223331808a66e2aa15f291c872b40388de56a8a3
2,793
py
Python
learning/modules/visitation_softmax.py
esteng/guiding-multi-step
3f0db0ba70b5851cc83878f4ed48cf82342a2ddf
[ "BSD-2-Clause" ]
null
null
null
learning/modules/visitation_softmax.py
esteng/guiding-multi-step
3f0db0ba70b5851cc83878f4ed48cf82342a2ddf
[ "BSD-2-Clause" ]
null
null
null
learning/modules/visitation_softmax.py
esteng/guiding-multi-step
3f0db0ba70b5851cc83878f4ed48cf82342a2ddf
[ "BSD-2-Clause" ]
null
null
null
import torch import torch.nn as nn import numpy as np class VisitationSoftmax(nn.Module): def __init__(self, log=False): super(VisitationSoftmax, self).__init__() self.log = log self.logsoftmax = nn.LogSoftmax() self.softmax = nn.Softmax(dim=1) def forward(self, visitation_distributions, goal_outside_score=None): """ Applies softmax on visitation distributions, while handling the case where we assign additional probability of the goal being outside of the observed map region. :param visitation_distributions: :return: Nx3xHxW tensor where first channel is probability over visited locations, second channel is probability of stop locations, third channel is a copy of the same value indicating the probability that goal location is not visible """ batch_size = visitation_distributions.size(0) num_channels = visitation_distributions.size(1) assert num_channels == 2, "Must have 2 channels: visitation distribution scores and goal distribution scores" height = visitation_distributions.size(2) width = visitation_distributions.size(3) visitation_dist_scores = visitation_distributions[:, 0, :, :] goal_inside_dist_scores = visitation_distributions[:, 1, :, :] softmax_func = self.log_softmax if self.log else self.softmax # Visitation distribution: Flatten, softmax, reshape back visitation_dist = softmax_func(visitation_dist_scores.view(batch_size, width*height)).view(visitation_dist_scores.size()) # We are modelling OOB probability if goal_outside_score is not None: # Goal distribution: Flatten, append outside score, softmax, split off outside score, reshape back goal_scores_full = torch.cat([goal_inside_dist_scores.view(batch_size, width*height),goal_outside_score[:, np.newaxis]], dim=1) goal_dist_full = softmax_func(goal_scores_full) goal_inside_partial_dist = goal_dist_full[:, :-1].view(goal_inside_dist_scores.size()) goal_outside_prob_or_logprob = goal_dist_full[:, -1] # Re-assemble back into the Bx2xHxW tensor representation visitation_prob_or_log_prob_out = torch.stack([visitation_dist, goal_inside_partial_dist], dim=1) return visitation_prob_or_log_prob_out, goal_outside_prob_or_logprob else: goal_dist = softmax_func(goal_inside_dist_scores.view(batch_size, width * height)).view( goal_inside_dist_scores.size()) # Re-assemble back into the Bx2xHxW tensor representation visitation_prob_or_log_prob_out = torch.stack([visitation_dist, goal_dist], dim=1) return visitation_prob_or_log_prob_out
52.698113
139
0.713928
2,737
0.97995
0
0
0
0
0
0
871
0.311851
223355bd5379be3ac4c24bf1261412562ebdf029
96
py
Python
baekjoon/easy-math/17362-finger.py
honux77/algorithm
2ed8cef1fbee7ad96d8f2ae583666d52bd8892ee
[ "MIT" ]
2
2019-02-08T01:23:07.000Z
2020-11-19T12:23:52.000Z
baekjoon/easy-math/17362-finger.py
honux77/algorithm
2ed8cef1fbee7ad96d8f2ae583666d52bd8892ee
[ "MIT" ]
null
null
null
baekjoon/easy-math/17362-finger.py
honux77/algorithm
2ed8cef1fbee7ad96d8f2ae583666d52bd8892ee
[ "MIT" ]
null
null
null
n = int(input()) % 8 if n == 0: print(2) elif n <= 5: print(n) else: print(10 - n)
12
20
0.458333
0
0
0
0
0
0
0
0
0
0
22350d67f0af834116a7d33c446043e6c69e8a30
908
py
Python
Module/nikodou_information.py
RyoTozawa/LineBot
14b34094f9a27650d412128334c3f09c7444ffc9
[ "MIT" ]
1
2018-10-16T07:50:59.000Z
2018-10-16T07:50:59.000Z
Module/nikodou_information.py
RyoTozawa/LineBot
14b34094f9a27650d412128334c3f09c7444ffc9
[ "MIT" ]
1
2018-04-09T11:03:25.000Z
2018-04-09T11:03:25.000Z
Module/nikodou_information.py
tozastation/Line-Bot
14b34094f9a27650d412128334c3f09c7444ffc9
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # coding:utf-8 import urllib from xml.etree import ElementTree import xml.dom.minidom as md class Niko(object): def __init__(self): self.url_ranking = 'http://www.nicovideo.jp/ranking/fav/hourly/sing?rss=2.0&lang=ja-jp' self.url_news = 'http://news.nicovideo.jp/categories/10?rss=2.0' def send_niko_list(self, tag, category): if category in 'ranking': response = urllib.request.urlopen(self.url_ranking) elif category in 'news': response = urllib.request.urlopen(self.url_news) root = ElementTree.fromstring(response.read()) document = md.parseString(ElementTree.tostring(root, 'utf-8')) send_list = [] for a in document.getElementsByTagName(tag): send_list.append(a.toxml().rstrip('</'+tag+'>').lstrip('</'+tag+'>')) del send_list[0] return send_list
29.290323
95
0.643172
787
0.86674
0
0
0
0
0
0
188
0.207048
2235a02d239f6f03f7a8b8fc3826bf3189e27e0c
927
py
Python
climbing/add_new_climbs.py
JiriKalvoda/slama.dev
4856d246858dd98a1852365b028873b61f5a6775
[ "MIT" ]
7
2019-09-15T19:55:11.000Z
2021-12-27T11:40:20.000Z
climbing/add_new_climbs.py
JiriKalvoda/slama.dev
4856d246858dd98a1852365b028873b61f5a6775
[ "MIT" ]
38
2020-05-18T12:49:13.000Z
2022-03-23T12:51:28.000Z
climbing/add_new_climbs.py
JiriKalvoda/slama.dev
4856d246858dd98a1852365b028873b61f5a6775
[ "MIT" ]
17
2020-02-16T19:49:25.000Z
2022-02-06T14:28:35.000Z
#!/usr/bin/env python3 import os import shutil from subprocess import Popen, PIPE from datetime import date import yaml os.chdir(os.path.dirname(os.path.realpath(__file__))) CLIMBING_FOLDER = "." CLIMBING_VIDEOS_FOLDER = os.path.join(CLIMBING_FOLDER, "videos") CLIMBING_INFO = os.path.join(CLIMBING_FOLDER, "videos.yaml") config = {} if os.path.exists(CLIMBING_INFO): with open(CLIMBING_INFO, "r") as f: config = yaml.safe_load(f.read()) files = os.listdir(CLIMBING_VIDEOS_FOLDER) for file in files: if file.lower().endswith(".mp4") and file not in config: print(f"adding new file {file}.") config[file] = { "color": "TODO", "date": date.today(), "zone": "TODO", "new": None, "rotate": "left", "encode": None, "trim": "TODO", } with open(CLIMBING_INFO, "w") as f: f.write(yaml.dump(config))
24.394737
64
0.614887
0
0
0
0
0
0
0
0
154
0.166127
22369660633e2973cf659ea963259b0f27b54f98
952
py
Python
posts/models.py
dnetochaves/blog
e04fda385490b671540b671631726584a533369c
[ "MIT" ]
null
null
null
posts/models.py
dnetochaves/blog
e04fda385490b671540b671631726584a533369c
[ "MIT" ]
null
null
null
posts/models.py
dnetochaves/blog
e04fda385490b671540b671631726584a533369c
[ "MIT" ]
null
null
null
from django.db import models from categorias.models import Categoria from django.contrib.auth.models import User from django.utils import timezone # Create your models here. class Post(models.Model): titulo_post = models.CharField(max_length=50, verbose_name='Titulo') autor_post = models.ForeignKey(User, on_delete=models.DO_NOTHING, verbose_name='Autor') data_post = models.DateTimeField(default=timezone.now, verbose_name='Data') conteudo_post = models.TextField(verbose_name='Conteudo') exerto_post = models.TextField(verbose_name='Exerto') categoria_post = models.ForeignKey( Categoria, on_delete=models.DO_NOTHING, blank=True, null=True, verbose_name='Categoria') imagem_post = models.ImageField(upload_to='post_img', blank=True, null=True, verbose_name='Imagem') publicacao_post = models.BooleanField(default=False, verbose_name='Publicado') def __str__(self): return self.titulo_post
43.272727
103
0.765756
774
0.813025
0
0
0
0
0
0
105
0.110294
2237660edc2b315c6d1a8e947bbdd55091f794e0
2,765
py
Python
src/ros_vision_interaction/examples/example_interaction.py
HaaaO/vision-project
72256af07834195cfe52ac344aee5effcd0da978
[ "MIT" ]
null
null
null
src/ros_vision_interaction/examples/example_interaction.py
HaaaO/vision-project
72256af07834195cfe52ac344aee5effcd0da978
[ "MIT" ]
21
2020-09-09T18:55:58.000Z
2021-07-26T19:42:46.000Z
src/ros_vision_interaction/examples/example_interaction.py
HaaaO/vision-project
72256af07834195cfe52ac344aee5effcd0da978
[ "MIT" ]
6
2020-12-20T17:19:29.000Z
2021-08-09T22:33:04.000Z
#!/usr/bin/env python import datetime import logging import os import random import rospy import schedule from interaction_engine.cordial_interface import CordialInterface from interaction_engine.database import Database from interaction_engine.int_engine import InteractionEngine from interaction_engine.message import Message from interaction_engine.state import State from interaction_engine.state_collection import StateCollection from cordial_msgs.msg import AskOnGuiAction, AskOnGuiGoal, MouseEvent from std_msgs.msg import Bool logging.basicConfig(level=logging.INFO) class Keys: GREETING = "greeting" HOW_ARE_YOU = "how are you" TAKE_CARE = "take care" WHEN_TO_TALK = "when to talk" greeting = State( name=Keys.GREETING, message_type=Message.Type.MULTIPLE_CHOICE_ONE_COLUMN, content="Hello!", next_states=[Keys.HOW_ARE_YOU], transitions={"Hello!": Keys.HOW_ARE_YOU, "Hi!": Keys.HOW_ARE_YOU} ) how_are_you = State( name=Keys.HOW_ARE_YOU, message_type=Message.Type.MULTIPLE_CHOICE_ONE_COLUMN, content="How are you doing today?", next_states=[Keys.TAKE_CARE], transitions={ "Pretty good.": Keys.TAKE_CARE, "Great!": Keys.TAKE_CARE, "Not too good.": Keys.TAKE_CARE } ) take_care = State( name=Keys.TAKE_CARE, message_type=Message.Type.MULTIPLE_CHOICE_ONE_COLUMN, content="Don't forget to drink enough water and get enough sleep!", next_states=[Keys.WHEN_TO_TALK], transitions={"Next": Keys.WHEN_TO_TALK} ) when_to_talk = State( name=Keys.WHEN_TO_TALK, message_type=Message.Type.TIME_ENTRY, content="When would you like to talk tomorrow?", next_states=["exit"], args=["15", "15:15"] ) state_collection = StateCollection( name="example interaction", init_state_name=Keys.WHEN_TO_TALK, states=[ greeting, how_are_you, take_care, when_to_talk ] ) cwd = os.getcwd() database_file = os.path.join( os.path.dirname(os.path.realpath(__file__)), "example_interaction_database.json" ) default_database_keys = [ Keys.GREETING, Keys.HOW_ARE_YOU, Keys.TAKE_CARE, Keys.WHEN_TO_TALK ] database_manager = Database( database_file_name=database_file, default_database_keys=default_database_keys ) interface = CordialInterface( action_name="cordial/say_and_ask_on_gui", seconds_until_timeout=None ) interaction_engine = InteractionEngine( state_collection=state_collection, database_manager=database_manager, interface=interface ) if __name__ == "__main__": while not rospy.is_shutdown(): rospy.logdebug("Scheduled interaction running") interaction_engine.run() rospy.sleep(5)
24.469027
71
0.725859
131
0.047378
0
0
0
0
0
0
398
0.143942
2237956981da3e82e0d6350f1b78b20897718d48
2,441
py
Python
explicalib/distribution/multiclass_distribution.py
euranova/estimating_eces
9bfa81dd7a39ebe069c5b11b8e7a9bf9017e9350
[ "MIT" ]
2
2021-11-30T18:44:11.000Z
2021-11-30T18:44:19.000Z
explicalib/distribution/multiclass_distribution.py
euranova/estimating_eces
9bfa81dd7a39ebe069c5b11b8e7a9bf9017e9350
[ "MIT" ]
null
null
null
explicalib/distribution/multiclass_distribution.py
euranova/estimating_eces
9bfa81dd7a39ebe069c5b11b8e7a9bf9017e9350
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ @author: nicolas.posocco """ from abc import ABC import numpy as np class MulticlassDistribution(ABC): def __init__(self): """ Initializes the distribution, allowing later sampling and posterior probabilities calculations. """ pass def sample(self, n_samples, return_posterior=True, reproducible=None): """ Samples n_samples times from the distribution, and their label. Returns also the array of posterior probabilities if return_posterior=True. """ # n_samples assert type(n_samples) is int, "n_samples should be an integer." assert n_samples > 0, "n_samples should be positive." # return_posterior assert type(return_posterior) is bool, "return_posterior should be a boolean." # reproducible assert type(reproducible) is np.random.RandomState, "reproducible should be a np.random.RandomState object." raise NotImplementedError def posteriors(self, X): # X assert type(X) is np.ndarray, "X should be a numpy array." assert X.ndim == 2, "X should be of shape (n_samples, n_features), here is of shape {}".format(X.shape) raise NotImplementedError def get_bayes_classifier(self): """ Instanciates the optimal Bayes classifier for this distribution. """ return BayesClassifier(distribution=self) class BayesClassifier(ABC): def __init__(self, distribution): # distribution assert isinstance(distribution, MulticlassDistribution), "distribution should inherit from MulticlassDistribution." self.distribution = distribution def fit(self, X): pass def predict_proba(self, X): # X assert type(X) is np.ndarray, "X should be a numpy array, here is a {}.".format(type(X)) assert X.ndim == 2, "X should be of shape (n_samples, n_features), here is of shape {}".format(X.shape) posteriors = self.distribution.posteriors(X) return posteriors def predict(self, X): # X assert type(X) is np.ndarray, "X should be a numpy array, here is a {}.".format(type(X)) assert X.ndim == 2, "X should be of shape (n_samples, n_features), here is of shape {}".format(X.shape) posteriors = self.predict_proba(X) return np.argmax(posteriors, axis=0)
29.059524
116
0.643179
2,339
0.958214
0
0
0
0
0
0
1,029
0.421549
22386109daaa28a3082c4a5bbbaea3c931eb1b4c
3,169
py
Python
test.py
JulioPDX/ci_cd_dev
e9b72c1b16e9f05a5e93e22f045fda605aac509f
[ "MIT" ]
6
2021-10-31T18:36:49.000Z
2022-03-14T02:26:37.000Z
test.py
JulioPDX/ci_cd_dev
e9b72c1b16e9f05a5e93e22f045fda605aac509f
[ "MIT" ]
null
null
null
test.py
JulioPDX/ci_cd_dev
e9b72c1b16e9f05a5e93e22f045fda605aac509f
[ "MIT" ]
2
2022-02-10T16:58:46.000Z
2022-03-07T05:00:57.000Z
#!/usr/bin/env python """Script used to test the network with batfish""" from pybatfish.client.commands import * from pybatfish.question import load_questions from pybatfish.client.asserts import ( assert_no_duplicate_router_ids, assert_no_incompatible_bgp_sessions, assert_no_incompatible_ospf_sessions, assert_no_unestablished_bgp_sessions, assert_no_undefined_references, ) from rich.console import Console console = Console(color_system="truecolor") def test_duplicate_rtr_ids(snap): """Testing for duplicate router IDs""" console.print( ":white_exclamation_mark: [bold yellow]Testing for duplicate router IDs[/bold yellow] :white_exclamation_mark:" ) assert_no_duplicate_router_ids( snapshot=snap, protocols={"ospf", "bgp"}, ) console.print( ":green_heart: [bold green]No duplicate router IDs found[/bold green] :green_heart:" ) def test_bgp_compatibility(snap): """Testing for incompatible BGP sessions""" console.print( ":white_exclamation_mark: [bold yellow]Testing for incompatible BGP sessions[/bold yellow] :white_exclamation_mark:" ) assert_no_incompatible_bgp_sessions( snapshot=snap, ) console.print( ":green_heart: [bold green]All BGP sessions compatible![/bold green] :green_heart:" ) def test_ospf_compatibility(snap): """Testing for incompatible OSPF sessions""" console.print( ":white_exclamation_mark: [bold yellow]Testing for incompatible OSPF sessions[/bold yellow] :white_exclamation_mark:" ) assert_no_incompatible_ospf_sessions( snapshot=snap, ) console.print( ":green_heart: [bold green]All OSPF sessions compatible![/bold green] :green_heart:" ) def test_bgp_unestablished(snap): """Testing for BGP sessions that are not established""" console.print( ":white_exclamation_mark: [bold yellow]Testing for unestablished BGP sessions[/bold yellow] :white_exclamation_mark:" ) assert_no_unestablished_bgp_sessions( snapshot=snap, ) console.print( ":green_heart: [bold green]All BGP sessions are established![/bold green] :green_heart:" ) def test_undefined_references(snap): """Testing for any undefined references""" console.print( ":white_exclamation_mark: [bold yellow]Testing for undefined references[/bold yellow] :white_exclamation_mark:" ) assert_no_undefined_references( snapshot=snap, ) console.print( ":green_heart: [bold green]No undefined refences found![/bold green] :green_heart:" ) def main(): """init all the things""" NETWORK_NAME = "PDX_NET" SNAPSHOT_NAME = "snapshot00" SNAPSHOT_DIR = "./snapshots" bf_session.host = "192.168.10.193" bf_set_network(NETWORK_NAME) init_snap = bf_init_snapshot(SNAPSHOT_DIR, name=SNAPSHOT_NAME, overwrite=True) load_questions() test_duplicate_rtr_ids(init_snap) test_bgp_compatibility(init_snap) test_ospf_compatibility(init_snap) test_bgp_unestablished(init_snap) test_undefined_references(init_snap) if __name__ == "__main__": main()
30.471154
125
0.716945
0
0
0
0
0
0
0
0
1,394
0.439886
22386711171a0a872717803582d333bc6bde0602
1,176
py
Python
algs15_priority_queue/circular_queue.py
zhubaiyuan/learning-algorithms
ea9ee674878d535a9e9987c0d948c0357e0ed4da
[ "MIT" ]
null
null
null
algs15_priority_queue/circular_queue.py
zhubaiyuan/learning-algorithms
ea9ee674878d535a9e9987c0d948c0357e0ed4da
[ "MIT" ]
null
null
null
algs15_priority_queue/circular_queue.py
zhubaiyuan/learning-algorithms
ea9ee674878d535a9e9987c0d948c0357e0ed4da
[ "MIT" ]
null
null
null
""" A fixed-capacity queue implemented as circular queue. Queue can become full. * enqueue is O(1) * dequeue is O(1) """ class Queue: """ Implementation of a Queue using a circular buffer. """ def __init__(self, size): self.size = size self.storage = [None] * size self.first = 0 self.last = 0 self.N = 0 def is_empty(self): """ Determine if queue is empty. """ return self.N == 0 def is_full(self): """ Determine if queue is full. """ return self.N == self.size def enqueue(self, item): """ Enqueue new item to end of queue. """ if self.is_full(): raise RuntimeError('Queue is full') self.storage[self.last] = item self.N += 1 self.last = (self.last + 1) % self.size def dequeue(self): """ Remove and return first item from queue. """ if self.is_empty(): raise RuntimeError('Queue is empty') val = self.storage[self.first] self.N -= 1 self.first = (self.first + 1) % self.size return val
22.188679
54
0.519558
1,052
0.894558
0
0
0
0
0
0
441
0.375
223a35394d8e357d916a263b18714241694b5330
4,300
py
Python
pos_evaluation/create_train_dev_old.py
ayyoobimani/GNN-POSTAG
47eb4bc6d64de565e87ee7cb8e9c5020d936138c
[ "MIT" ]
null
null
null
pos_evaluation/create_train_dev_old.py
ayyoobimani/GNN-POSTAG
47eb4bc6d64de565e87ee7cb8e9c5020d936138c
[ "MIT" ]
null
null
null
pos_evaluation/create_train_dev_old.py
ayyoobimani/GNN-POSTAG
47eb4bc6d64de565e87ee7cb8e9c5020d936138c
[ "MIT" ]
null
null
null
""" Create train and dev set from bronze data Example call: $ python3 create_train_dev.py --pos /mounts/work/ayyoob/results/gnn_align/yoruba/pos_tags_tam-x-bible-newworld_posfeatFalse_transformerFalse_trainWEFalse_maskLangTrue.pickle --bible tam-x-bible-newworld.txt --bronze 1 --lang tam $ python3 create_train_dev.py --pos /mounts/work/ayyoob/results/gnn_align/yoruba/pos_tags_fin-x-bible-helfi_posfeatFalse_transformerFalse_trainWEFalse_maskLangTrue.pickle --bible fin-x-bible-helfi.txt --bronze 1 --lang fin """ import torch import random import argparse def load_bible(filename): bible = {} with open(filename) as f: for line in f: if line.startswith("#"): continue l = line.strip().split("\t") if len(l)<2: continue bible[l[0]] = l[1] print("Len bible "+filename+" = "+str(len(bible))) # print(bible) return bible def get_sets(pos_tags_file, bible_file, bronze, lang): postag_map = {"ADJ": 0, "ADP": 1, "ADV": 2, "AUX": 3, "CCONJ": 4, "DET": 5, "INTJ": 6, "NOUN": 7, "NUM": 8, "PART": 9, "PRON": 10, "PROPN": 11, "PUNCT": 12, "SCONJ": 13, "SYM": 14, "VERB": 15, "X": 16} inv_postag_map = {v: k for k, v in postag_map.items()} # pos_tags = torch.load('/mounts/work/ayyoob/results/gnn_align/yoruba/pos_tags_freeze-embedding_noLang.pickle') # bronze 1 # pos_tags = torch.load('/mounts/work/ayyoob/results/gnn_align/yoruba/pos_tags_posfeatFalse_transformerFalse_trainWEFalse_maskLangTrue.pickle') # bronze 2 # pos_tags = torch.load('/mounts/work/ayyoob/results/gnn_align/yoruba/pos_tags_posfeatTrue_transformerFalse_trainWEFalse_maskLangTrue.pickle') # bronze 3 pos_tags = torch.load(pos_tags_file) # bible = load_bible("/nfs/datc/pbc/"+bible_file) bible = load_bible("/mounts/Users/student/ayyoob/Dokumente/code/pbc_utils/data/helfi/"+bible_file) # train = open("yoruba_silver_train.txt", "w+") # dev = open("yoruba_a_silver_train.txt", "w+") # train = open("yoruba_bronze1_train.txt", "w+") # dev = open("yoruba_bronze1_dev.txt", "w+") train = open(lang+"_bronze"+bronze+"_train.txt", "w+") dev = open(lang+"_bronze"+bronze+"_dev.txt", "w+") ids_file = open(lang+"_ids.txt", "w+") ### To Fix: USE SAME IDS print(len(pos_tags)) # shuffle pos_tags file and take 80% train, 10% dev ids = list(pos_tags.keys()) random.shuffle(ids) n_train = int(len(ids)*90/100) print("Len dev: ", len(ids)-n_train) ids = ids[0:n_train] print("Len train: ", n_train) for verse_id in pos_tags: # print(verse_id) if verse_id in ids: flag = 1 ids_file.write(verse_id+"\n") else: flag = 0 bible_verse = bible[verse_id].split(" ") # get pairs word-tag for i in range(len(bible_verse)): if i in pos_tags[verse_id]: if flag: train.write(verse_id+"\t"+bible_verse[i]+"\t"+inv_postag_map[pos_tags[verse_id][i]]+"\n") else: dev.write(verse_id+"\t"+bible_verse[i]+"\t"+inv_postag_map[pos_tags[verse_id][i]]+"\n") else: if flag: train.write(verse_id+"\t"+bible_verse[i]+"\t"+"X"+"\n") else: dev.write(verse_id+"\t"+bible_verse[i]+"\t"+"X"+"\n") if flag: # add space in between sentences train.write("\n") else: dev.write("\n") train.close() dev.close() ids_file.close() def main(): parser = argparse.ArgumentParser() parser.add_argument("--pos", default=None, type=str, required=True, help="Bronze pickle") parser.add_argument("--bible", default=None, type=str, required=True, help="Bible file") parser.add_argument("--bronze", default=None, type=int, required=True, help="Specify bronze number [1,2,3]") parser.add_argument("--lang", default=None, type=str, required=True, help="Language (3 letters)") args = parser.parse_args() pos_tags_file = args.pos bible_file = args.bible bronze = str(args.bronze) lang = args.lang get_sets(pos_tags_file, bible_file, bronze, lang) if __name__ == "__main__": main()
38.738739
228
0.621163
0
0
0
0
0
0
0
0
1,803
0.419302
223b3e8319f85381a1c34694d9c35926bb3d9b11
1,076
py
Python
lib/spack/spack/test/permissions.py
SimeonEhrig/spack
7fe0230492ecf0e497a84d578ea163570cf460eb
[ "ECL-2.0", "Apache-2.0", "MIT" ]
2
2016-01-12T20:14:40.000Z
2017-06-16T07:03:46.000Z
lib/spack/spack/test/permissions.py
SimeonEhrig/spack
7fe0230492ecf0e497a84d578ea163570cf460eb
[ "ECL-2.0", "Apache-2.0", "MIT" ]
75
2016-07-27T11:43:00.000Z
2020-12-08T15:56:53.000Z
lib/spack/spack/test/permissions.py
SimeonEhrig/spack
7fe0230492ecf0e497a84d578ea163570cf460eb
[ "ECL-2.0", "Apache-2.0", "MIT" ]
8
2015-10-16T13:51:49.000Z
2021-10-18T13:58:03.000Z
# Copyright 2013-2019 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import os import pytest import stat from spack.hooks.permissions_setters import ( chmod_real_entries, InvalidPermissionsError ) import llnl.util.filesystem as fs def test_chmod_real_entries_ignores_suid_sgid(tmpdir): path = str(tmpdir.join('file').ensure()) mode = stat.S_ISUID | stat.S_ISGID | stat.S_ISVTX os.chmod(path, mode) mode = os.stat(path).st_mode # adds a high bit we aren't concerned with perms = stat.S_IRWXU chmod_real_entries(path, perms) assert os.stat(path).st_mode == mode | perms & ~stat.S_IXUSR def test_chmod_rejects_group_writable_suid(tmpdir): path = str(tmpdir.join('file').ensure()) mode = stat.S_ISUID | stat.S_ISGID | stat.S_ISVTX fs.chmod_x(path, mode) perms = stat.S_IRWXU | stat.S_IRWXG | stat.S_IRWXO with pytest.raises(InvalidPermissionsError): chmod_real_entries(path, perms)
29.888889
76
0.736059
0
0
0
0
0
0
0
0
247
0.229554
223b618424ceff584aa410ff8121dcf69f5567f4
323
py
Python
data_statistics/variable_statistics.py
go-jugo/ml_event_prediction_trainer
0d644b737afdef078ad5b6fc2b7e2549b964b56f
[ "Apache-2.0" ]
null
null
null
data_statistics/variable_statistics.py
go-jugo/ml_event_prediction_trainer
0d644b737afdef078ad5b6fc2b7e2549b964b56f
[ "Apache-2.0" ]
null
null
null
data_statistics/variable_statistics.py
go-jugo/ml_event_prediction_trainer
0d644b737afdef078ad5b6fc2b7e2549b964b56f
[ "Apache-2.0" ]
null
null
null
import dask.dataframe as dd def descibe_dataframe(df): error_cols = [col for col in df.columns if 'errorCode' in col] df = df.categorize(columns=error_cols) statistics = df.describe(include='all').compute() statistics = statistics.T statistics.to_excel('../statistics/variables_statistics.xlsx')
40.375
67
0.718266
0
0
0
0
0
0
0
0
57
0.176471
223b7dfcfebf8324a056e2a31a6551d0d0397ac2
393
py
Python
code/com/caicongyang/python/study/base/pandas_sql.py
caicongyang/python-study
e5db4d1b033d183da7e9af6a8c930bcaba2962f7
[ "Apache-2.0" ]
null
null
null
code/com/caicongyang/python/study/base/pandas_sql.py
caicongyang/python-study
e5db4d1b033d183da7e9af6a8c930bcaba2962f7
[ "Apache-2.0" ]
null
null
null
code/com/caicongyang/python/study/base/pandas_sql.py
caicongyang/python-study
e5db4d1b033d183da7e9af6a8c930bcaba2962f7
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # -*- coding: UTF-8 -*- import numpy as np import pandas as pd ''' 如何用sql的方式打开pandas ''' from pandas import DataFrame, Series from pandasql import sqldf, load_meat, load_births df1 = DataFrame({'name': ['jack', 'tony', 'pony'], 'data1': range(3)}) print(df1) sql = "select * from df1 where name = 'jack'" pysqldf = lambda sql: sqldf(sql, globals()); print(pysqldf(sql))
19.65
70
0.676845
0
0
0
0
0
0
0
0
151
0.369193
223ccb03fea812be5bc8d09d17bc6aa157ee7449
5,016
py
Python
tests/test_publish_parq.py
jacobtobias/s3parq
0a56fbc7d93168c68e823f05b073b8d03e67a665
[ "MIT" ]
null
null
null
tests/test_publish_parq.py
jacobtobias/s3parq
0a56fbc7d93168c68e823f05b073b8d03e67a665
[ "MIT" ]
null
null
null
tests/test_publish_parq.py
jacobtobias/s3parq
0a56fbc7d93168c68e823f05b073b8d03e67a665
[ "MIT" ]
null
null
null
import pytest from mock import patch import pandas as pd import pyarrow as pa import pyarrow.parquet as pq import boto3 from string import ascii_lowercase import random from dfmock import DFMock import s3parq.publish_parq as parq import s3fs from moto import mock_s3 @mock_s3 class Test: def setup_s3(self): def rand_string(): return ''.join([random.choice(ascii_lowercase) for x in range(0, 10)]) bucket = rand_string() key = rand_string() s3_client = boto3.client('s3') s3_client.create_bucket(Bucket=bucket) return bucket, key def setup_df(self): df = DFMock(count=100) df.columns = {"grouped_col": {"option_count": 4, "option_type": "string"}, "text_col": "string", "int_col": "integer", "float_col": "float"} df.generate_dataframe() df.dataframe return tuple(df.columns.keys()), df.dataframe def test_works_without_partitions(self): columns, dataframe = self.setup_df() bucket, key = self.setup_s3() partitions = [] parq.publish(bucket=bucket, key=key, dataframe=dataframe, partitions=partitions) def test_accepts_valid_partitions(self): columns, dataframe = self.setup_df() parq.check_partitions(columns, dataframe) def test_reject_non_column_partitions(self): columns, dataframe = self.setup_df() with pytest.raises(ValueError): parq.check_partitions(('banana',), dataframe) def test_reject_timedelta_dataframes(self): columns, dataframe = self.setup_df() bucket, key = self.setup_s3() partitions = ['text_col'] dataframe['time_col'] = pd.Timedelta('1 days') with pytest.raises(NotImplementedError): parq.publish(bucket=bucket, key=key, dataframe=dataframe, partitions=partitions) def test_reject_protected_name_partitions(self): assert parq._check_partition_compatibility("shoe") assert parq._check_partition_compatibility("all") is False def test_generates_partitions_in_order(self): columns, dataframe = self.setup_df() bucket, key = self.setup_s3() partitions = columns[:1] with patch('s3parq.publish_parq.boto3', return_value=True) as mock_boto3: with patch('s3parq.publish_parq.pq.write_to_dataset', return_value=None) as mock_method: parq._gen_parquet_to_s3(bucket, key, dataframe, partitions) arg, kwarg = mock_method.call_args assert kwarg['partition_cols'] == partitions def test_input_equals_output(self): columns, dataframe = self.setup_df() bucket, key = self.setup_s3() s3_path = f"s3://{bucket}/{key}" partitions = [columns[0]] parq.publish(bucket=bucket, key=key, dataframe=dataframe, partitions=partitions) from_s3 = pq.ParquetDataset(s3_path, filesystem=s3fs.S3FileSystem()) s3pd = from_s3.read().to_pandas() pre_df = dataframe assert set(zip(s3pd.int_col, s3pd.float_col, s3pd.text_col, s3pd.grouped_col)) - \ set(zip(dataframe.int_col, dataframe.float_col, dataframe.text_col, dataframe.grouped_col)) == set() def test_reject_empty_dataframe(self): dataframe = pd.DataFrame() bucket, key = self.setup_s3() s3_path = f"s3://{bucket}/{key}" with pytest.raises(ValueError): parq.publish(bucket=bucket, key=key, dataframe=dataframe, partitions=[]) def test_set_metadata_correctly(self): columns, dataframe = self.setup_df() bucket, key = self.setup_s3() s3_client = boto3.client('s3') partitions = ['grouped_col'] parq.publish(bucket=bucket, key=key, dataframe=dataframe, partitions=partitions) for obj in s3_client.list_objects(Bucket=bucket)['Contents']: if obj['Key'].endswith(".parquet"): meta = s3_client.get_object( Bucket=bucket, Key=obj['Key'])['Metadata'] assert meta['partition_data_types'] == str( {"grouped_col": "string"}) ''' ## timedeltas no good def test_timedeltas_rejected(self): bucket = MockHelper().random_name() key = MockHelper().random_name() s3_client = boto3.client('s3') s3_client.create_bucket(Bucket=bucket) df = DFMock(count=100) df.columns = {"timedelta_col": "timedelta", "int_col": "int", "float_col": "float", "bool_col": "boolean", "grouped_col": {"option_count": 4, "option_type": "string"}} df.generate_dataframe() with pytest.raises(NotImplementedError): parq = pub_parq.S3PublishParq( dataframe=df.dataframe, bucket=bucket, key=key, partitions=['grouped_col']) '''
36.347826
105
0.622608
4,737
0.944378
0
0
4,746
0.946172
0
0
1,077
0.214713
223dcc250b1cfb0dc6bb2a2c2757035efcba4a73
2,936
py
Python
docs/examples/examplesCategorization.py
benstear/pyiomica
bc26032b610fc911cc03b54115d6abdf53a56fce
[ "MIT" ]
12
2019-11-22T21:44:13.000Z
2022-03-06T21:46:31.000Z
docs/examples/examplesCategorization.py
benstear/pyiomica
bc26032b610fc911cc03b54115d6abdf53a56fce
[ "MIT" ]
null
null
null
docs/examples/examplesCategorization.py
benstear/pyiomica
bc26032b610fc911cc03b54115d6abdf53a56fce
[ "MIT" ]
5
2019-07-25T21:03:42.000Z
2021-06-09T02:14:30.000Z
#import sys #sys.path.append("../..") import pyiomica as pio from pyiomica import categorizationFunctions as cf if __name__ == '__main__': # Unzip example data with pio.zipfile.ZipFile(pio.os.path.join(pio.ConstantPyIOmicaExamplesDirectory, 'SLV.zip'), "r") as zipFile: zipFile.extractall(path=pio.ConstantPyIOmicaExamplesDirectory) # Process sample dataset SLV_Hourly1 # Name of the fisrt data set dataName = 'SLV_Hourly1TimeSeries' # Define a directory name where results are be saved saveDir = pio.os.path.join('results', dataName, '') # Directory name where example data is (*.csv files) dataDir = pio.os.path.join(pio.ConstantPyIOmicaExamplesDirectory, 'SLV') # Read the example data into a DataFrame df_data = pio.pd.read_csv(pio.os.path.join(dataDir, dataName + '.csv'), index_col=[0,1,2], header=0) # Calculate time series categorization cf.calculateTimeSeriesCategorization(df_data, dataName, saveDir, NumberOfRandomSamples = 10**5) # Cluster the time series categorization results cf.clusterTimeSeriesCategorization(dataName, saveDir) # Make plots of the clustered time series categorization cf.visualizeTimeSeriesCategorization(dataName, saveDir) # Process sample dataset SLV_Hourly2, in the same way as SLV_Hourly1 above dataName = 'SLV_Hourly2TimeSeries' saveDir = pio.os.path.join('results', dataName, '') dataDir = pio.os.path.join(pio.ConstantPyIOmicaExamplesDirectory, 'SLV') df_data = pio.pd.read_csv(pio.os.path.join(dataDir, dataName + '.csv'), index_col=[0,1,2], header=0) cf.calculateTimeSeriesCategorization(df_data, dataName, saveDir, NumberOfRandomSamples = 10**5) cf.clusterTimeSeriesCategorization(dataName, saveDir) cf.visualizeTimeSeriesCategorization(dataName, saveDir) # Import data storage submodule to read results of processing sample datasets SLV_Hourly1 and SLV_Hourly2 from pyiomica import dataStorage as ds # Use results from processing sample datasets SLV_Hourly1 and SLV_Hourly2 to calculate "Delta" dataName = 'SLV_Hourly1TimeSeries' df_data_processed_H1 = ds.read(dataName+'_df_data_transformed', hdf5fileName=pio.os.path.join('results',dataName,dataName+'.h5')) dataName = 'SLV_Hourly2TimeSeries' df_data_processed_H2 = ds.read(dataName+'_df_data_transformed', hdf5fileName=pio.os.path.join('results',dataName,dataName+'.h5')) dataName = 'SLV_Delta' saveDir = pio.os.path.join('results', dataName, '') df_data = df_data_processed_H2.compareTwoTimeSeries(df_data_processed_H1, compareAllLevelsInIndex=False, mergeFunction=pio.np.median).fillna(0.) cf.calculateTimeSeriesCategorization(df_data, dataName, saveDir, NumberOfRandomSamples = 10**5) cf.clusterTimeSeriesCategorization(dataName, saveDir) cf.visualizeTimeSeriesCategorization(dataName, saveDir)
47.354839
149
0.742166
0
0
0
0
0
0
0
0
947
0.322548
223df95481a53841ba1260a2ab6e7adbdff16f31
2,612
py
Python
tworaven_apps/eventdata_queries/initialization/icews_unique_count.py
TwoRavens/TwoRavens
e5f820557d6646df525ceed15e17d79f4159cf0a
[ "Apache-2.0" ]
20
2017-12-11T07:26:06.000Z
2021-11-22T16:16:20.000Z
tworaven_apps/eventdata_queries/initialization/icews_unique_count.py
TwoRavens/TwoRavens
e5f820557d6646df525ceed15e17d79f4159cf0a
[ "Apache-2.0" ]
849
2017-10-20T18:21:18.000Z
2022-02-18T02:45:44.000Z
tworaven_apps/eventdata_queries/initialization/icews_unique_count.py
TwoRavens/TwoRavens
e5f820557d6646df525ceed15e17d79f4159cf0a
[ "Apache-2.0" ]
1
2020-05-18T06:02:13.000Z
2020-05-18T06:02:13.000Z
# returns number of unique records for icews with different filtering: # -by rounded lat/lon (100,000) # -by country, district, province, city (100,000) # -by lat/lon, filtered by 2 or more matches (70,000) from pymongo import MongoClient import os mongo_client = MongoClient(host='localhost', port=27017) # Default port db = mongo_client.event_data def icews_coordinates_rounded(): print(list(db.icews.aggregate([ { "$project": { "_id": 0, "lat_rounded": { "$divide": [ { "$subtract": [ { "$multiply": [ "$Latitude", 100 ] }, { "$mod": [ { "$multiply": [ "$Latitude", 100 ] }, 1 ] } ] }, 100 ] }, "lon_rounded": { "$divide": [ { "$subtract": [ { "$multiply": [ "$Longitude", 100 ] }, { "$mod": [ { "$multiply": [ "$Longitude", 100 ] }, 1 ] } ] }, 100 ] } } }, { "$group": { "_id": { "latitude": "$lat_rounded", "longitude": "$lon_rounded" } } }, { "$count": "uniques" } ]))) def icews_coordinates(): print(list(db.icews.aggregate([ { "$group": { "_id": { "lat": "$Latitude", "lon": "$Longitude" } } }, { "$count": "uniques" } ]))) def icews_names(): print(list(db.icews.aggregate([ { "$project": { "country": {"$toLower": "$Country"}, "district": {"$toLower": "$District"}, "province": {"$toLower": "$Province"}, "city": {"$toLower": "$City"} } }, { "$group": { "_id": { "Country": "$country", "District": "$district", "Province": "$province", "City": "$city" }, "total": {"$sum": 1} } }, { "$match": {"total": {"$gt": 1}} }, { "$count": "uniques" } ]))) # icews_coordinates_rounded() icews_coordinates() # icews_names()
20.092308
72
0.343415
0
0
0
0
0
0
0
0
858
0.328484
223edb2e5970e591f491deb0d0fde065371aadb5
7,576
py
Python
OcCo_Torch/models/pointnet_util.py
sun-pyo/OcCo
e2e12dbaa8f9b98fb8c42fc32682f49e99be302f
[ "MIT" ]
158
2020-08-19T18:13:28.000Z
2022-03-30T13:55:32.000Z
OcCo_Torch/models/pointnet_util.py
sun-pyo/OcCo
e2e12dbaa8f9b98fb8c42fc32682f49e99be302f
[ "MIT" ]
28
2020-05-30T04:02:33.000Z
2022-03-30T15:46:38.000Z
OcCo_Torch/models/pointnet_util.py
sun-pyo/OcCo
e2e12dbaa8f9b98fb8c42fc32682f49e99be302f
[ "MIT" ]
18
2020-08-19T19:52:38.000Z
2022-02-06T11:42:26.000Z
# Copyright (c) 2020. Hanchen Wang, hw501@cam.ac.uk # Ref: https://github.com/fxia22/pointnet.pytorch/pointnet/model.py import torch, torch.nn as nn, numpy as np, torch.nn.functional as F from torch.autograd import Variable def feature_transform_regularizer(trans): d = trans.size()[1] I = torch.eye(d)[None, :, :] if trans.is_cuda: I = I.cuda() loss = torch.mean(torch.norm(torch.bmm(trans, trans.transpose(2, 1) - I), dim=(1, 2))) return loss # STN -> Spatial Transformer Network class STN3d(nn.Module): def __init__(self, channel): super(STN3d, self).__init__() self.conv1 = nn.Conv1d(channel, 64, 1) # in-channel, out-channel, kernel size self.conv2 = nn.Conv1d(64, 128, 1) self.conv3 = nn.Conv1d(128, 1024, 1) self.fc1 = nn.Linear(1024, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, 9) self.relu = nn.ReLU() self.bn1 = nn.BatchNorm1d(64) self.bn2 = nn.BatchNorm1d(128) self.bn3 = nn.BatchNorm1d(1024) self.bn4 = nn.BatchNorm1d(512) self.bn5 = nn.BatchNorm1d(256) def forward(self, x): B = x.size()[0] x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = F.relu(self.bn3(self.conv3(x))) x = torch.max(x, 2, keepdim=False)[0] # global descriptors x = F.relu(self.bn4(self.fc1(x))) x = F.relu(self.bn5(self.fc2(x))) x = self.fc3(x) iden = Variable(torch.from_numpy(np.eye(3).flatten().astype(np.float32))).view(1, 9).repeat(B, 1) if x.is_cuda: iden = iden.cuda() x = x + iden x = x.view(-1, 3, 3) return x class STNkd(nn.Module): def __init__(self, k=64): super(STNkd, self).__init__() self.conv1 = nn.Conv1d(k, 64, 1) self.conv2 = nn.Conv1d(64, 128, 1) self.conv3 = nn.Conv1d(128, 1024, 1) self.fc1 = nn.Linear(1024, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, k * k) self.relu = nn.ReLU() self.bn1 = nn.BatchNorm1d(64) self.bn2 = nn.BatchNorm1d(128) self.bn3 = nn.BatchNorm1d(1024) self.bn4 = nn.BatchNorm1d(512) self.bn5 = nn.BatchNorm1d(256) self.k = k def forward(self, x): B = x.size()[0] x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = F.relu(self.bn3(self.conv3(x))) x = torch.max(x, 2, keepdim=False)[0] x = F.relu(self.bn4(self.fc1(x))) x = F.relu(self.bn5(self.fc2(x))) x = self.fc3(x) iden = Variable(torch.from_numpy(np.eye(self.k).flatten().astype(np.float32))).view( 1, self.k ** 2).repeat(B, 1) if x.is_cuda: iden = iden.cuda() x = x + iden x = x.view(-1, self.k, self.k) return x class PointNetEncoder(nn.Module): def __init__(self, global_feat=True, feature_transform=False, channel=3, detailed=False): # when input include normals, it super(PointNetEncoder, self).__init__() self.stn = STN3d(channel) # Batch * 3 * 3 self.conv1 = nn.Conv1d(channel, 64, 1) self.conv2 = nn.Conv1d(64, 128, 1) self.conv3 = nn.Conv1d(128, 1024, 1) self.bn1 = nn.BatchNorm1d(64) self.bn2 = nn.BatchNorm1d(128) self.bn3 = nn.BatchNorm1d(1024) self.global_feat = global_feat self.feature_transform = feature_transform if self.feature_transform: self.fstn = STNkd(k=64) self.detailed = detailed def forward(self, x): _, D, N = x.size() # Batch Size, Dimension of Point Features, Num of Points trans = self.stn(x) x = x.transpose(2, 1) if D > 3: # pdb.set_trace() x, feature = x.split([3, D-3], dim=2) x = torch.bmm(x, trans) # feature = torch.bmm(feature, trans) # feature -> normals if D > 3: x = torch.cat([x, feature], dim=2) x = x.transpose(2, 1) out1 = self.bn1(self.conv1(x)) x = F.relu(out1) if self.feature_transform: trans_feat = self.fstn(x) x = x.transpose(2, 1) x = torch.bmm(x, trans_feat) x = x.transpose(2, 1) else: trans_feat = None pointfeat = x out2 = self.bn2(self.conv2(x)) x = F.relu(out2) out3 = self.bn3(self.conv3(x)) # x = self.bn3(self.conv3(x)) x = torch.max(out3, 2, keepdim=False)[0] if self.global_feat: return x, trans, trans_feat elif self.detailed: return out1, out2, out3, x else: # concatenate global and local feature together x = x.view(-1, 1024, 1).repeat(1, 1, N) return torch.cat([x, pointfeat], 1), trans, trans_feat class PointNetPartSegEncoder(nn.Module): def __init__(self, feature_transform=True, channel=3): super(PointNetPartSegEncoder, self).__init__() self.stn = STN3d(channel) self.conv1 = nn.Conv1d(channel, 64, 1) self.conv2 = nn.Conv1d(64, 128, 1) self.conv3 = nn.Conv1d(128, 128, 1) self.conv4 = nn.Conv1d(128, 512, 1) self.conv5 = nn.Conv1d(512, 2048, 1) self.bn1 = nn.BatchNorm1d(64) self.bn2 = nn.BatchNorm1d(128) self.bn3 = nn.BatchNorm1d(128) self.bn4 = nn.BatchNorm1d(512) self.bn5 = nn.BatchNorm1d(2048) self.feature_transform = feature_transform if self.feature_transform: self.fstn = STNkd(k=128) def forward(self, point_cloud, label): B, D, N = point_cloud.size() trans = self.stn(point_cloud) point_cloud = point_cloud.transpose(2, 1) if D > 3: point_cloud, feature = point_cloud.split(3, dim=2) point_cloud = torch.bmm(point_cloud, trans) if D > 3: point_cloud = torch.cat([point_cloud, feature], dim=2) point_cloud = point_cloud.transpose(2, 1) out1 = F.relu(self.bn1(self.conv1(point_cloud))) out2 = F.relu(self.bn2(self.conv2(out1))) out3 = F.relu(self.bn3(self.conv3(out2))) if self.feature_transform: trans_feat = self.fstn(out3) net_transformed = torch.bmm(out3.transpose(2, 1), trans_feat) out3 = net_transformed.transpose(2, 1) out4 = F.relu(self.bn4(self.conv4(out3))) out5 = self.bn5(self.conv5(out4)) out_max = torch.max(out5, 2, keepdim=False)[0] out_max = torch.cat([out_max, label.squeeze(1)], 1) expand = out_max.view(-1, 2048 + 16, 1).repeat(1, 1, N) concat = torch.cat([expand, out1, out2, out3, out4, out5], 1) if self.feature_transform: return concat, trans_feat return concat class encoder(nn.Module): def __init__(self, num_channel=3, **kwargs): super(encoder, self).__init__() self.feat = PointNetEncoder(global_feat=True, channel=num_channel) def forward(self, x): feat, _, _ = self.feat(x) return feat class detailed_encoder(nn.Module): def __init__(self, num_channel=3, **kwargs): super(detailed_encoder, self).__init__() self.feat = PointNetEncoder(global_feat=False, channel=num_channel, detailed=True) def forward(self, x): out1, out2, out3, x = self.feat(x) return out1, out2, out3, x
33.522124
105
0.567318
7,044
0.929778
0
0
0
0
0
0
469
0.061906
2241d0bcc483df8ae598bcac2ffa98c9d73b4660
747
py
Python
Week#3__Assignment#3/join.py
P7h/IntroToDataScience__Coursera_Course
4f3d4073e552c7e6f5d1e31c0391eccec32d3786
[ "Apache-2.0" ]
1
2015-10-26T00:32:09.000Z
2015-10-26T00:32:09.000Z
Week#3__Assignment#3/join.py
P7h/IntroToDataScience__Coursera_Course
4f3d4073e552c7e6f5d1e31c0391eccec32d3786
[ "Apache-2.0" ]
null
null
null
Week#3__Assignment#3/join.py
P7h/IntroToDataScience__Coursera_Course
4f3d4073e552c7e6f5d1e31c0391eccec32d3786
[ "Apache-2.0" ]
null
null
null
import MapReduce import sys """ SQL style Joins in MapReduce """ mr = MapReduce.MapReduce() # ============================= # Do not modify above this line def mapper(record): # key: document identifier # value: document contents value = str(record[0]) num = str(record[1]) mr.emit_intermediate(num, (value, record)) def reducer(key, list_of_values): # key: word # value: list of occurrence counts x,y = list_of_values[0] for val in range(len(list_of_values)): f = [] a,b = list_of_values[val] if a == 'line_item': f += y f += b mr.emit(f) # Do not modify below this line # ============================= if __name__ == '__main__': inputdata = open(sys.argv[1]) mr.execute(inputdata, mapper, reducer)
20.189189
44
0.609103
0
0
0
0
0
0
0
0
278
0.372155
224336ed5538a9d61b10299e07b1b099064fc032
823
py
Python
tests/test_testresources.py
sjoerdk/anonapi
ade94da2b8eb2fb94f831ef77e563f750f88d0ba
[ "MIT" ]
null
null
null
tests/test_testresources.py
sjoerdk/anonapi
ade94da2b8eb2fb94f831ef77e563f750f88d0ba
[ "MIT" ]
408
2018-11-24T19:41:10.000Z
2022-03-31T23:48:54.000Z
tests/test_testresources.py
sjoerdk/anonapi
ade94da2b8eb2fb94f831ef77e563f750f88d0ba
[ "MIT" ]
2
2018-11-11T12:56:03.000Z
2021-08-09T01:53:07.000Z
from anonapi.testresources import ( MockAnonClientTool, JobInfoFactory, RemoteAnonServerFactory, JobStatus, ) def test_mock_anon_client_tool(): some_responses = [ JobInfoFactory(status=JobStatus.DONE), JobInfoFactory(status=JobStatus.ERROR), JobInfoFactory(status=JobStatus.INACTIVE), ] tool = MockAnonClientTool(responses=some_responses) server = RemoteAnonServerFactory() assert tool.get_job_info(server=server, job_id=1).status == JobStatus.DONE assert [x.status for x in tool.get_job_info_list(server, [1, 2, 3])] == [ JobStatus.ERROR, JobStatus.INACTIVE, JobStatus.DONE, ] # job id returned will always match whatever was requested assert [x.job_id for x in tool.get_job_info_list(server, [1, 4, 6])] == [1, 4, 6]
30.481481
85
0.690158
0
0
0
0
0
0
0
0
58
0.070474
2243b6cc5ce377cffdd91e6609c4b0155421a8c1
13,442
py
Python
homeassistant/components/mikrotik/hub.py
jvitkauskas/home-assistant
3718b25bd9528188530f291f0810a1c7970abcdb
[ "Apache-2.0" ]
null
null
null
homeassistant/components/mikrotik/hub.py
jvitkauskas/home-assistant
3718b25bd9528188530f291f0810a1c7970abcdb
[ "Apache-2.0" ]
7
2016-04-09T20:56:30.000Z
2016-04-19T21:28:46.000Z
homeassistant/components/mikrotik/hub.py
jvitkauskas/home-assistant
3718b25bd9528188530f291f0810a1c7970abcdb
[ "Apache-2.0" ]
null
null
null
"""The Mikrotik router class.""" from datetime import timedelta import logging import socket import ssl import librouteros from librouteros.login import plain as login_plain, token as login_token from homeassistant.const import CONF_HOST, CONF_PASSWORD, CONF_USERNAME, CONF_VERIFY_SSL from homeassistant.exceptions import ConfigEntryNotReady from homeassistant.helpers.dispatcher import async_dispatcher_send from homeassistant.util import slugify import homeassistant.util.dt as dt_util from .const import ( ARP, ATTR_DEVICE_TRACKER, ATTR_FIRMWARE, ATTR_MODEL, ATTR_SERIAL_NUMBER, CAPSMAN, CONF_ARP_PING, CONF_DETECTION_TIME, CONF_FORCE_DHCP, DEFAULT_DETECTION_TIME, DHCP, IDENTITY, INFO, IS_WIRELESS, MIKROTIK_SERVICES, NAME, WIRELESS, ) from .errors import CannotConnect, LoginError _LOGGER = logging.getLogger(__name__) class Device: """Represents a network device.""" def __init__(self, mac, params): """Initialize the network device.""" self._mac = mac self._params = params self._last_seen = None self._attrs = {} self._wireless_params = None @property def name(self): """Return device name.""" return self._params.get("host-name", self.mac) @property def mac(self): """Return device mac.""" return self._mac @property def last_seen(self): """Return device last seen.""" return self._last_seen @property def attrs(self): """Return device attributes.""" attr_data = self._wireless_params if self._wireless_params else self._params for attr in ATTR_DEVICE_TRACKER: if attr in attr_data: self._attrs[slugify(attr)] = attr_data[attr] self._attrs["ip_address"] = self._params.get("active-address") return self._attrs def update(self, wireless_params=None, params=None, active=False): """Update Device params.""" if wireless_params: self._wireless_params = wireless_params if params: self._params = params if active: self._last_seen = dt_util.utcnow() class MikrotikData: """Handle all communication with the Mikrotik API.""" def __init__(self, hass, config_entry, api): """Initialize the Mikrotik Client.""" self.hass = hass self.config_entry = config_entry self.api = api self._host = self.config_entry.data[CONF_HOST] self.all_devices = {} self.devices = {} self.available = True self.support_wireless = bool(self.command(MIKROTIK_SERVICES[IS_WIRELESS])) self.hostname = None self.model = None self.firmware = None self.serial_number = None @staticmethod def load_mac(devices=None): """Load dictionary using MAC address as key.""" if not devices: return None mac_devices = {} for device in devices: if "mac-address" in device: mac = device["mac-address"] mac_devices[mac] = device return mac_devices @property def arp_enabled(self): """Return arp_ping option setting.""" return self.config_entry.options[CONF_ARP_PING] @property def force_dhcp(self): """Return force_dhcp option setting.""" return self.config_entry.options[CONF_FORCE_DHCP] def get_info(self, param): """Return device model name.""" cmd = IDENTITY if param == NAME else INFO data = list(self.command(MIKROTIK_SERVICES[cmd])) return data[0].get(param) if data else None def get_hub_details(self): """Get Hub info.""" self.hostname = self.get_info(NAME) self.model = self.get_info(ATTR_MODEL) self.firmware = self.get_info(ATTR_FIRMWARE) self.serial_number = self.get_info(ATTR_SERIAL_NUMBER) def connect_to_hub(self): """Connect to hub.""" try: self.api = get_api(self.hass, self.config_entry.data) self.available = True return True except (LoginError, CannotConnect): self.available = False return False def get_list_from_interface(self, interface): """Get devices from interface.""" result = list(self.command(MIKROTIK_SERVICES[interface])) return self.load_mac(result) if result else {} def restore_device(self, mac): """Restore a missing device after restart.""" self.devices[mac] = Device(mac, self.all_devices[mac]) def update_devices(self): """Get list of devices with latest status.""" arp_devices = {} wireless_devices = {} device_list = {} try: self.all_devices = self.get_list_from_interface(DHCP) if self.support_wireless: _LOGGER.debug("wireless is supported") for interface in [CAPSMAN, WIRELESS]: wireless_devices = self.get_list_from_interface(interface) if wireless_devices: _LOGGER.debug("Scanning wireless devices using %s", interface) break if self.support_wireless and not self.force_dhcp: device_list = wireless_devices else: device_list = self.all_devices _LOGGER.debug("Falling back to DHCP for scanning devices") if self.arp_enabled: arp_devices = self.get_list_from_interface(ARP) # get new hub firmware version if updated self.firmware = self.get_info(ATTR_FIRMWARE) except (CannotConnect, socket.timeout, socket.error): self.available = False return if not device_list: return for mac, params in device_list.items(): if mac not in self.devices: self.devices[mac] = Device(mac, self.all_devices.get(mac, {})) else: self.devices[mac].update(params=self.all_devices.get(mac, {})) if mac in wireless_devices: # if wireless is supported then wireless_params are params self.devices[mac].update( wireless_params=wireless_devices[mac], active=True ) continue # for wired devices or when forcing dhcp check for active-address if not params.get("active-address"): self.devices[mac].update(active=False) continue # ping check the rest of active devices if arp ping is enabled active = True if self.arp_enabled and mac in arp_devices: active = self.do_arp_ping( params.get("active-address"), arp_devices[mac].get("interface") ) self.devices[mac].update(active=active) def do_arp_ping(self, ip_address, interface): """Attempt to arp ping MAC address via interface.""" _LOGGER.debug("pinging - %s", ip_address) params = { "arp-ping": "yes", "interval": "100ms", "count": 3, "interface": interface, "address": ip_address, } cmd = "/ping" data = list(self.command(cmd, params)) if data is not None: status = 0 for result in data: if "status" in result: status += 1 if status == len(data): _LOGGER.debug( "Mikrotik %s - %s arp_ping timed out", ip_address, interface ) return False return True def command(self, cmd, params=None): """Retrieve data from Mikrotik API.""" try: _LOGGER.info("Running command %s", cmd) if params: response = self.api(cmd=cmd, **params) else: response = self.api(cmd=cmd) except ( librouteros.exceptions.ConnectionClosed, socket.error, socket.timeout, ) as api_error: _LOGGER.error("Mikrotik %s connection error %s", self._host, api_error) raise CannotConnect except librouteros.exceptions.ProtocolError as api_error: _LOGGER.warning( "Mikrotik %s failed to retrieve data. cmd=[%s] Error: %s", self._host, cmd, api_error, ) return None return response if response else None def update(self): """Update device_tracker from Mikrotik API.""" if not self.available or not self.api: if not self.connect_to_hub(): return _LOGGER.debug("updating network devices for host: %s", self._host) self.update_devices() class MikrotikHub: """Mikrotik Hub Object.""" def __init__(self, hass, config_entry): """Initialize the Mikrotik Client.""" self.hass = hass self.config_entry = config_entry self._mk_data = None self.progress = None @property def host(self): """Return the host of this hub.""" return self.config_entry.data[CONF_HOST] @property def hostname(self): """Return the hostname of the hub.""" return self._mk_data.hostname @property def model(self): """Return the model of the hub.""" return self._mk_data.model @property def firmware(self): """Return the firware of the hub.""" return self._mk_data.firmware @property def serial_num(self): """Return the serial number of the hub.""" return self._mk_data.serial_number @property def available(self): """Return if the hub is connected.""" return self._mk_data.available @property def option_detection_time(self): """Config entry option defining number of seconds from last seen to away.""" return timedelta(seconds=self.config_entry.options[CONF_DETECTION_TIME]) @property def signal_update(self): """Event specific per Mikrotik entry to signal updates.""" return f"mikrotik-update-{self.host}" @property def api(self): """Represent Mikrotik data object.""" return self._mk_data async def async_add_options(self): """Populate default options for Mikrotik.""" if not self.config_entry.options: options = { CONF_ARP_PING: self.config_entry.data.pop(CONF_ARP_PING, False), CONF_FORCE_DHCP: self.config_entry.data.pop(CONF_FORCE_DHCP, False), CONF_DETECTION_TIME: self.config_entry.data.pop( CONF_DETECTION_TIME, DEFAULT_DETECTION_TIME ), } self.hass.config_entries.async_update_entry( self.config_entry, options=options ) async def request_update(self): """Request an update.""" if self.progress is not None: await self.progress return self.progress = self.hass.async_create_task(self.async_update()) await self.progress self.progress = None async def async_update(self): """Update Mikrotik devices information.""" await self.hass.async_add_executor_job(self._mk_data.update) async_dispatcher_send(self.hass, self.signal_update) async def async_setup(self): """Set up the Mikrotik hub.""" try: api = await self.hass.async_add_executor_job( get_api, self.hass, self.config_entry.data ) except CannotConnect: raise ConfigEntryNotReady except LoginError: return False self._mk_data = MikrotikData(self.hass, self.config_entry, api) await self.async_add_options() await self.hass.async_add_executor_job(self._mk_data.get_hub_details) await self.hass.async_add_executor_job(self._mk_data.update) self.hass.async_create_task( self.hass.config_entries.async_forward_entry_setup( self.config_entry, "device_tracker" ) ) return True def get_api(hass, entry): """Connect to Mikrotik hub.""" _LOGGER.debug("Connecting to Mikrotik hub [%s]", entry[CONF_HOST]) _login_method = (login_plain, login_token) kwargs = {"login_methods": _login_method, "port": entry["port"]} if entry[CONF_VERIFY_SSL]: ssl_context = ssl.create_default_context() ssl_context.check_hostname = False ssl_context.verify_mode = ssl.CERT_NONE _ssl_wrapper = ssl_context.wrap_socket kwargs["ssl_wrapper"] = _ssl_wrapper try: api = librouteros.connect( entry[CONF_HOST], entry[CONF_USERNAME], entry[CONF_PASSWORD], **kwargs, ) _LOGGER.debug("Connected to %s successfully", entry[CONF_HOST]) return api except ( librouteros.exceptions.LibRouterosError, socket.error, socket.timeout, ) as api_error: _LOGGER.error("Mikrotik %s error: %s", entry[CONF_HOST], api_error) if "invalid user name or password" in str(api_error): raise LoginError raise CannotConnect
32.468599
88
0.602515
11,467
0.853072
0
0
2,510
0.186728
1,887
0.140381
2,319
0.172519
22441b73e069c3528a08a1ed36f4c0850e6085f0
4,137
py
Python
gemlog_from_rss/spip/page.py
Hookz/Gemlog-from-RSS
b57a311db3008e8b0df2442236c4729a06d9b74d
[ "MIT" ]
1
2021-02-19T16:06:07.000Z
2021-02-19T16:06:07.000Z
gemlog_from_rss/spip/page.py
Hookz/Gemlog-from-RSS
b57a311db3008e8b0df2442236c4729a06d9b74d
[ "MIT" ]
null
null
null
gemlog_from_rss/spip/page.py
Hookz/Gemlog-from-RSS
b57a311db3008e8b0df2442236c4729a06d9b74d
[ "MIT" ]
null
null
null
from bs4 import BeautifulSoup import requests import re from lxml.html import fromstring from lxml.etree import ParserError from gemlog_from_rss.spip import SinglePost def localize(lang): if lang == "pl": return { "our_articles": "Nasze artykuły" } if lang == "fr": return { "our_articles": "Nos articles" } else: return { "our_articles": "Our articles" } class Page: def __init__(self, title=None, content_class="article-texte"): self.content = None self.url = None self.title = title self.content_class = content_class def download_html(self, url): self.url = url req = requests.get(self.url) open(f'resources/{self.url.split("/")[-1].split("?")[0]}.html', 'wb').write(req.content) def fetch_content(self): file_content = open(f'resources/{self.url.split("/")[-1].split("?")[0]}.html', 'r').read()\ .replace("<strong>", "\n**").replace("</strong>", "**") soup = BeautifulSoup(file_content, 'html.parser') if self.title is None: self.title = soup.title.get_text() self.content = soup.find("div", class_=re.compile(self.content_class)).get_text().split("Credits")[0] def output_gemini(self): uit = f""" ##{self.title} {self.content} """ class MainPage: def __init__(self, post_list=None, root_dir="blog", title=None, pages_list=None, feed=None, lang="en"): if post_list is None: post_list = [] if pages_list is None: pages_list = [] if root_dir[-1] == "/": root_dir = root_dir[:-1] self.post_list = post_list self.title = title self.root_dir = root_dir self.pages_list = pages_list self.feed = feed if self.feed is not None: self.parse_feed() if self.title is None: import xml.etree.ElementTree as ET self.title = ET.parse("resources/all_posts.xml").getroot()[0].find("title").text self.lang = lang self.dict = localize(lang) self.root = None def parse_feed(self): req = requests.get(self.feed) open("resources/all_posts.xml", "wb").write(req.content) return req.content def add_posts(self): for child in self.root[0].findall('item'): if child.find('{http://purl.org/rss/1.0/modules/content/}encoded') is not None: substituting = re.sub(' class=".*?"', '', child.find('{http://purl.org/rss/1.0/modules/content/}encoded').text) substituting = re.sub('<h3>', '\n### ', substituting) substituting = re.sub('</h3>', '\n', substituting) substituting = re.sub('<img.*?>', '', substituting) try: self.post_list.append(SinglePost( child.find("title").text, fromstring(substituting).text_content(), child.find('{http://purl.org/dc/elements/1.1/}creator').text, child.find('{http://purl.org/dc/elements/1.1/}date').text.split("T")[0]) ) except ParserError: continue def create_files(self): for post in self.post_list: with open(f'{self.root_dir}/{post.link}', 'w') as f: f.write(post.get_gemini(blog_name=self.title)) def add_page(self, page): self.pages_list.append(page) def add_pages(self, pages): for page in pages: self.add_page(page) def add_pages_to_main(self): content = f"" for page in self.pages_list: content += f"## {page.title}\n\n" \ f"{page.content}\n\n" return content def make_main_page(self): content = f""" # {self.title} {self.add_pages_to_main()} ## {self.dict["our_articles"]}: """ for post in self.post_list: content += f"=> {post.link} {post.title}\n\n" return content
32.069767
109
0.547982
3,677
0.888594
0
0
0
0
0
0
854
0.20638
2245fe03d22e27328780ecdf4fb5f3ecb80912ed
1,421
py
Python
simulation/aivika/modeler/arrival_timer.py
dsorokin/aivika-modeler
5c112015f9af6ba1974a3b208842da01e705f9ac
[ "BSD-3-Clause" ]
null
null
null
simulation/aivika/modeler/arrival_timer.py
dsorokin/aivika-modeler
5c112015f9af6ba1974a3b208842da01e705f9ac
[ "BSD-3-Clause" ]
null
null
null
simulation/aivika/modeler/arrival_timer.py
dsorokin/aivika-modeler
5c112015f9af6ba1974a3b208842da01e705f9ac
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2017 David Sorokin <david.sorokin@gmail.com> # # Licensed under BSD3. See the LICENSE.txt file in the root of this distribution. from simulation.aivika.modeler.model import * from simulation.aivika.modeler.port import * def create_arrival_timer(model, name, descr = None): """Return a new timer that allows measuring the processing time of transacts.""" y = ArrivalTimerPort(model, name = name, descr = descr) code = 'newArrivalTimer' y.write(code) return y def arrival_timer_stream(arrival_timer_port, stream_port): """Measure the processing time of transacts from the specified stream within the resulting stream.""" t = arrival_timer_port s = stream_port expect_arrival_timer(t) expect_stream(s) expect_same_model([t, s]) model = t.get_model() item_data_type = s.get_item_data_type() code = 'return $ runProcessor (arrivalTimerProcessor ' + t.read() + ') ' + s.read() y = StreamPort(model, item_data_type) y.write(code) y.bind_to_input() s.bind_to_output() return y def reset_arrival_timer(arrival_timer_port, reset_time): """Reset the arrival timer statistics at the specified modeling time.""" t = arrival_timer_port expect_arrival_timer(t) model = t.get_model() code = 'runEventInStartTime $ enqueueEvent ' + str(reset_time) code += ' $ resetArrivalTimer ' + t.read() model.add_action(code)
36.435897
105
0.712878
0
0
0
0
0
0
0
0
523
0.368051
2246b2f969806313a587b3933434d8a9f94f2b5f
106
py
Python
mundo 1/aula 7/exer8.py
jonatan098/cursopython
6e4cbaef6229e230fdbc66d80ec1b5a089887b0d
[ "MIT" ]
null
null
null
mundo 1/aula 7/exer8.py
jonatan098/cursopython
6e4cbaef6229e230fdbc66d80ec1b5a089887b0d
[ "MIT" ]
null
null
null
mundo 1/aula 7/exer8.py
jonatan098/cursopython
6e4cbaef6229e230fdbc66d80ec1b5a089887b0d
[ "MIT" ]
1
2020-02-22T17:21:05.000Z
2020-02-22T17:21:05.000Z
m = float(input('digite o metro ')) print(f'{m} metros e igual {m*100} centimetros e {m*1000} milimetros')
53
70
0.688679
0
0
0
0
0
0
0
0
80
0.754717
2246b7989fa46d68e0d0a29597a7a6170e8898d9
859
py
Python
ros/src/airsim_ros_pkgs/scripts/readscan.py
juwangvsu/AirSim
fcf8c7d89821a9067d53f0d083c7bc6efac1776c
[ "MIT" ]
null
null
null
ros/src/airsim_ros_pkgs/scripts/readscan.py
juwangvsu/AirSim
fcf8c7d89821a9067d53f0d083c7bc6efac1776c
[ "MIT" ]
null
null
null
ros/src/airsim_ros_pkgs/scripts/readscan.py
juwangvsu/AirSim
fcf8c7d89821a9067d53f0d083c7bc6efac1776c
[ "MIT" ]
1
2021-03-23T23:11:02.000Z
2021-03-23T23:11:02.000Z
#!/usr/bin/env python import rospy import rosbag import os import sys import textwrap import yaml lidarmsg=None ################# read the lidar msg from yaml file and return ############## def readlidardummy(): global lidarmsg if lidarmsg==None: lidarmsg= doreadlidar() return lidarmsg def doreadlidar(): global lidarmsg print('lidardummy do read') with open(r'/media/student/data5/AirSim/ros/src/airsim_ros_pkgs/scripts/lidar_dummy.txt') as file: # The FullLoader parameter handles the conversion from YAML # scalar values to Python the dictionary format lidarmsg = yaml.load(file) #print(fruits_list) #print(lidarmsg['range_max']+20) #print(lidarmsg['header']['stamp']['secs']) ranges=lidarmsg['ranges'] #print(len(ranges), ranges) return lidarmsg if __name__ == '__main__': readlidardummy()
23.861111
100
0.694994
0
0
0
0
0
0
0
0
441
0.513388
2247d6e5fabfa0bfb68bd37d1e8736537d83e496
4,375
py
Python
flytekit/models/qubole.py
slai/flytekit
9d73d096b748d263a638e6865d15db4880845305
[ "Apache-2.0" ]
null
null
null
flytekit/models/qubole.py
slai/flytekit
9d73d096b748d263a638e6865d15db4880845305
[ "Apache-2.0" ]
2
2021-06-26T04:32:43.000Z
2021-07-14T04:47:52.000Z
flytekit/models/qubole.py
slai/flytekit
9d73d096b748d263a638e6865d15db4880845305
[ "Apache-2.0" ]
null
null
null
from flyteidl.plugins import qubole_pb2 as _qubole from flytekit.models import common as _common class HiveQuery(_common.FlyteIdlEntity): def __init__(self, query, timeout_sec, retry_count): """ Initializes a new HiveQuery. :param Text query: The query string. :param int timeout_sec: :param int retry_count: """ self._query = query self._timeout_sec = timeout_sec self._retry_count = retry_count @property def query(self): """ The query string. :rtype: str """ return self._query @property def timeout_sec(self): """ :rtype: int """ return self._timeout_sec @property def retry_count(self): """ :rtype: int """ return self._retry_count def to_flyte_idl(self): """ :rtype: _qubole.HiveQuery """ return _qubole.HiveQuery(query=self.query, timeout_sec=self.timeout_sec, retryCount=self.retry_count) @classmethod def from_flyte_idl(cls, pb2_object): """ :param _qubole.HiveQuery pb2_object: :return: HiveQuery """ return cls( query=pb2_object.query, timeout_sec=pb2_object.timeout_sec, retry_count=pb2_object.retryCount, ) class HiveQueryCollection(_common.FlyteIdlEntity): def __init__(self, queries): """ Initializes a new HiveQueryCollection. :param list[HiveQuery] queries: Queries to execute. """ self._queries = queries @property def queries(self): """ :rtype: list[HiveQuery] """ return self._queries def to_flyte_idl(self): """ :rtype: _qubole.HiveQueryCollection """ return _qubole.HiveQueryCollection( queries=[query.to_flyte_idl() for query in self.queries] if self.queries else None ) @classmethod def from_flyte_idl(cls, pb2_object): """ :param _qubole.HiveQuery pb2_object: :rtype: HiveQueryCollection """ return cls(queries=[HiveQuery.from_flyte_idl(query) for query in pb2_object.queries]) class QuboleHiveJob(_common.FlyteIdlEntity): def __init__(self, query, cluster_label, tags, query_collection=None): """ Initializes a HiveJob. :param HiveQuery query: Single query to execute :param Text cluster_label: The qubole cluster label to execute the query on :param list[Text] tags: User tags for the queries :param HiveQueryCollection query_collection: Deprecated Queries to execute. """ self._query = query self._cluster_label = cluster_label self._tags = tags self._query_collection = query_collection @property def query_collection(self): """ The queries to be executed :rtype: HiveQueryCollection """ return self._query_collection @property def query(self): """ The query to be executed :rtype: HiveQuery """ return self._query @property def cluster_label(self): """ The cluster label where the query should be executed :rtype: Text """ return self._cluster_label @property def tags(self): """ User tags for the queries :rtype: list[Text] """ return self._tags def to_flyte_idl(self): """ :rtype: _qubole.QuboleHiveJob """ return _qubole.QuboleHiveJob( query_collection=self._query_collection.to_flyte_idl() if self._query_collection else None, query=self._query.to_flyte_idl() if self._query else None, cluster_label=self._cluster_label, tags=self._tags, ) @classmethod def from_flyte_idl(cls, p): """ :param _qubole.QuboleHiveJob p: :rtype: QuboleHiveJob """ return cls( query_collection=HiveQueryCollection.from_flyte_idl(p.query_collection) if p.HasField("query_collection") else None, query=HiveQuery.from_flyte_idl(p.query) if p.HasField("query") else None, cluster_label=p.cluster_label, tags=p.tags, )
26.355422
109
0.597257
4,268
0.975543
0
0
2,140
0.489143
0
0
1,580
0.361143
224b518501a4fc21242f8b7e19fdfbb05fcec01d
1,583
py
Python
app/app.py
SogoKato/mecab-parser
402f22b4da283dfc74935fc66f092452158beb56
[ "MIT" ]
null
null
null
app/app.py
SogoKato/mecab-parser
402f22b4da283dfc74935fc66f092452158beb56
[ "MIT" ]
null
null
null
app/app.py
SogoKato/mecab-parser
402f22b4da283dfc74935fc66f092452158beb56
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from dataclasses import asdict from logging import DEBUG import os from flask import Flask, jsonify, request from werkzeug.exceptions import HTTPException from mecab_parser import MecabParserFactory app = Flask(__name__) app.config["JSON_AS_ASCII"] = False @app.route("/parse", methods=["POST"]) def parse(): if not request.is_json: return jsonify({ "ok": False, "code": 400, "name": "Invalid Content-Type", "description": "Content-Type must be application/json.", }) content = request.get_json() if ( content is None or not isinstance(content, dict) or "texts" not in content.keys() or not isinstance(content["texts"], list) or [x for x in content["texts"] if not isinstance(x, str)] ): return jsonify({ "ok": False, "code": 400, "name": "Invalid JSON Format", "description": 'Valid JSON format is {"texts": ["Ipsum dolore eirmod autem et"]}', }) parser = MecabParserFactory.create("mecab-ipadic-neologd") results = [[asdict(dc)for dc in parser(t)] for t in content["texts"]] return jsonify({"ok": True, "results": results}) @app.errorhandler(HTTPException) def handle_exception(e): return jsonify({ "ok": False, "code": e.code, "name": e.name, "description": e.description, }) if __name__ == "__main__": port = int(os.getenv("PORT", 5000)) app.logger.level = DEBUG app.run(host="0.0.0.0", port=port)
27.77193
94
0.599495
0
0
0
0
1,156
0.730259
0
0
376
0.237524
224e634019de5a0413838cff34d92fa96b8463fb
1,402
py
Python
src/data_migrator/emitters/__init__.py
schubergphilis/data-migrator
b5ced9abd6bc2c60e9c115951fee38c2fd08923f
[ "MIT" ]
18
2017-04-27T08:57:40.000Z
2021-04-01T22:39:40.000Z
src/data_migrator/emitters/__init__.py
schubergphilis/data-migrator
b5ced9abd6bc2c60e9c115951fee38c2fd08923f
[ "MIT" ]
1,077
2017-04-13T20:56:44.000Z
2022-03-31T01:23:50.000Z
src/data_migrator/emitters/__init__.py
schubergphilis/data-migrator
b5ced9abd6bc2c60e9c115951fee38c2fd08923f
[ "MIT" ]
6
2017-04-17T14:14:45.000Z
2020-05-05T10:05:23.000Z
#!/usr/bin/env python # -*- coding: UTF-8 -*- """Emitters are used to export models to output format. This module contains all classes for emitters: base and actuals. Currently the system has two emitters: :class:`~.CSVEmitter` and :class:`~.MySQLEmitter` implemented, of which the last is the default emitter. An emitter provides the export format for the scanned and cleaned datasets. It also provides preambles and postambles in the output files, for example to clean the target table before loading it. The following classes are defined in this module: * :class:`~.BaseEmitter` * :class:`~.MySQLEmitter` * :class:`~.CSVEmitter` * :class:`~.JSONEmitter` * :class:`~.UpdateEmitter` The basic structure for emitting is a combination between :class:`~.BaseManager` and :class:`~.BaseEmitter`: .. code-block:: python e = Emitter(manager=Model.objects) print e.preamble(header=[..my header lines to add..]) for l in Model.objects.all(): print e.emit(l) # emit is returning a list of strings! .. note:: At this moment *data-migrator* does not an actively take part in schema migrations of any sort. It is purely about cleaning, anonymizing and transforming data (yet!). """ from .update import UpdateEmitter # noqa from .mysql import MySQLEmitter # noqa from .csv import CSVEmitter # noqa from .json_emit import JSONEmitter # noqa from .singer import SingerEmitter # noqa
32.604651
78
0.738231
0
0
0
0
0
0
0
0
1,229
0.876605
22529ca1da0ceee85ccd01a18946c0340e79ffbb
330
py
Python
cycleshare/migrations/0013_remove_cycle_toprofile.py
vasundhara7/College-EWallet
0a4c32bc08218650635a04fb9a9e28446fd4f3e1
[ "Apache-2.0" ]
2
2019-07-28T00:34:09.000Z
2020-06-18T11:58:03.000Z
cycleshare/migrations/0013_remove_cycle_toprofile.py
vasundhara7/College-EWallet
0a4c32bc08218650635a04fb9a9e28446fd4f3e1
[ "Apache-2.0" ]
null
null
null
cycleshare/migrations/0013_remove_cycle_toprofile.py
vasundhara7/College-EWallet
0a4c32bc08218650635a04fb9a9e28446fd4f3e1
[ "Apache-2.0" ]
null
null
null
# Generated by Django 2.0.9 on 2018-12-12 08:18 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('cycleshare', '0012_cycle_toprofile'), ] operations = [ migrations.RemoveField( model_name='cycle', name='toprofile', ), ]
18.333333
47
0.593939
245
0.742424
0
0
0
0
0
0
99
0.3
2252c6b7f19070373e0889abae519f050d93b6aa
5,495
py
Python
projects/aFPGA/10_python/npu/generate_npu_sram_init_file.py
helloworld1983/NPU_on_FPGA
1d0626dbed463cfacd47805a3214a43662f5b28c
[ "BSD-2-Clause" ]
63
2018-08-05T14:30:47.000Z
2022-03-31T09:41:55.000Z
projects/aFPGA/10_python/npu/generate_npu_sram_init_file.py
cxdzyq1110/NPU_on_FPGA
1d0626dbed463cfacd47805a3214a43662f5b28c
[ "BSD-2-Clause" ]
null
null
null
projects/aFPGA/10_python/npu/generate_npu_sram_init_file.py
cxdzyq1110/NPU_on_FPGA
1d0626dbed463cfacd47805a3214a43662f5b28c
[ "BSD-2-Clause" ]
22
2018-11-06T13:01:28.000Z
2022-03-09T08:52:27.000Z
import math import numpy as np from scipy import signal #%% 全自动的数据生成 M = 16; N = 100; AddImm = 1000; MAT_M = 3; MAT_N = 5; MAT_P = 7; Pm = 5; Pn = 5; Km = 5; Kn = 5; MODE = 1; fpp = open("./npu_verification_para.list", "w") fpp.write("%d\n"%(M)) fpp.write("%d\n"%(N)) fpp.write("%d\n"%(AddImm)) fpp.write("%d\n"%(MAT_M)) fpp.write("%d\n"%(MAT_N)) fpp.write("%d\n"%(MAT_P)) fpp.write("%d\n"%(Km)) fpp.write("%d\n"%(Kn)) fpp.write("%d\n"%(Pm)) fpp.write("%d\n"%(Pn)) fpp.write("%d\n"%(MODE)) fpp.close() #%% fpd = open("./source_sram_dq.list", "w") #%% 首先是原始的图像数据 Dollar1 = np.random.randint(-50,-1, size=(M,N))*2**16 fpd.write("@%X\n"%(2*0x010000)) for i in range(0, M): for j in range(0, N): tmp_v = int(Dollar1[i, j]) if tmp_v<0: tmp_v = tmp_v + 0x100000000 fpd.write("%04X\n"%((tmp_v >> 0)&0xFFFF)) fpd.write("%04X\n"%((tmp_v >> 16)&0xFFFF)) #%% 另一张图像的数据 Dollar22 = np.random.randint(-15,-10, size=(M,N))*2**16 fpd.write("@%X\n"%(2*0x020000)) for i in range(0, M): for j in range(0, N): tmp_v = int(Dollar22[i, j]) if tmp_v<0: tmp_v = tmp_v + 0x100000000 fpd.write("%04X\n"%((tmp_v >> 0)&0xFFFF)) fpd.write("%04X\n"%((tmp_v >> 16)&0xFFFF)) #%% 然后是图像的加减乘 fp_add = open("./fp_add_test.txt", "w") fp_addi = open("./fp_addi_test.txt", "w") fp_sub = open("./fp_sub_test.txt", "w") fp_dot = open("./fp_dot_test.txt", "w") # 输出到文本 for i in range(0, len(Dollar1)): for j in range(0, len(Dollar1[0])): add_value = int((Dollar1[i, j]+Dollar22[i, j])) addi_value = int((Dollar1[i, j]+AddImm)) sub_value = int((Dollar1[i, j]-Dollar22[i, j])) dot_value = int((Dollar1[i, j]/2**16*Dollar22[i, j])) fp_add.write("%d\n"%(add_value)) fp_sub.write("%d\n"%(sub_value)) fp_dot.write("%d\n"%(dot_value)) fp_addi.write("%d\n"%(addi_value)) fp_add.close() fp_addi.close() fp_sub.close() fp_dot.close() #%% 矩阵转置变换 fp_tran = open("./fp_tran_test.txt", "w") # 输出到文本 for j in range(0, len(Dollar1[0])): for i in range(0, len(Dollar1)): tran_value = int((Dollar1[i, j])) fp_tran.write("%d\n"%(tran_value)) fp_tran.close() #%% 卷机运算卷积核 kernel = np.random.randint(-15,10, size=(Km,Kn))*2**16 fpd.write("@%X\n"%(2*0x030000)) for i in range(0, len(kernel)): for j in range(0, len(kernel[0])): tmp_v = int(kernel[i, j]) if tmp_v<0: tmp_v = tmp_v + 0x100000000 fpd.write("%04X\n"%((tmp_v >> 0)&0xFFFF)) fpd.write("%04X\n"%((tmp_v >> 16)&0xFFFF)) d1 = Dollar1 d2 = kernel d1x = d1/2**16; d2x = d2/2**16; dcx = (signal.convolve2d(d1x, d2x, 'valid') * 2**16).astype(np.int) # 输出到文本 fp_conv = open("./fp_conv_test.txt", "w") for i in range(0, len(dcx)): for j in range(0, len(dcx[0])): conv_value = int(dcx[i, j]) fp_conv.write("%d\n"%(conv_value)) fp_conv.close() #%% 然后是计算pooling fp_pool = open("./fp_pool_test.txt", "w") dpx = np.zeros((M//Pm, N//Pn)) for i in range(0, M//Pm): for j in range(0, N//Pn): if MODE==0: dpx[i, j] = np.mean(d1x[Pm*i:Pm*i+Pm, Pn*j:Pn*j+Pn]) elif MODE==1: dpx[i, j] = np.max(d1x[Pm*i:Pm*i+Pm, Pn*j:Pn*j+Pn]) pool_value = int(2**16*dpx[i, j]) fp_pool.write("%d\n"%(pool_value)) fp_pool.close() #%% 然后是要验证MULT矩阵乘法指令 mat1 = np.random.randint(-1,2, size=(MAT_M,MAT_N)) mat2 = np.random.randint(-2,-1, size=(MAT_N,MAT_P)) mat1_216 = 2**16*mat1 mat2_216 = 2**16*mat2 mat3 = np.dot(mat1, mat2) fpd.write("@%X\n"%(2*0x040000)) # 矩阵乘法的源数据 for i in range(0, len(mat1)): for j in range(0, len(mat1[0])): mult_value = int(2**16*mat1[i, j]) fpd.write("%04X\n"%((mult_value >> 0)&0xFFFF)) fpd.write("%04X\n"%((mult_value >> 16)&0xFFFF)) fpd.write("@%X\n"%(2*0x050000)) for i in range(0, len(mat2)): for j in range(0, len(mat2[0])): mult_value = int(2**16*mat2[i, j]) fpd.write("%04X\n"%((mult_value >> 0)&0xFFFF)) fpd.write("%04X\n"%((mult_value >> 16)&0xFFFF)) # 输出到文本 fp_mult = open("./fp_mult_test.txt", "w") for i in range(0, len(mat3)): for j in range(0, len(mat3[0])): mult_value = int(2**16*mat3[i, j]) fp_mult.write("%d\n"%(mult_value)) fp_mult.close() #%% ###################### fp_tanh = open("./fp_tanh_test.txt", "w") Dollar2 = np.random.randn(M,N)*2**16 fpd.write("@%X\n"%(2*0x060000)) for i in range(0, M): for j in range(0, N): tmp_v = int(Dollar2[i, j]) if tmp_v<0: tmp_v = tmp_v + 0x100000000 fpd.write("%04X\n"%((tmp_v >> 0)&0xFFFF)) fpd.write("%04X\n"%((tmp_v >> 16)&0xFFFF)) tanh_value = int(2**16*math.tanh(Dollar2[i, j]/(2**16))) fp_tanh.write("%d\n"%(tanh_value)) fp_tanh.close() #%% 矩阵±标量的运算 fp_adds = open("./fp_adds_test.txt", "w") Dollar2_ini = Dollar2[0, 0] # 输出到文本 for i in range(0, len(Dollar1)): for j in range(0, len(Dollar1[0])): adds_value = int((Dollar1[i, j] + Dollar2_ini)) fp_adds.write("%d\n"%(adds_value)) fp_adds.close() #%% RGB565转灰度图函数变换 fp_gray = open("./fp_gray_test.txt", "w") fpd.write("@%X\n"%(2*0x070000)) red = np.random.randint(0,2**5, size=(M,N)) green = np.random.randint(0,2**6, size=(M,N)) blue = np.random.randint(0,2**5, size=(M,N)) rgb565 = red*2**11 + green*2**5 + blue # 输出到文本 for i in range(0, len(rgb565)): for j in range(0, len(rgb565[0])): r = ((rgb565[i][j]>>11) & 0x1F) *8 g = ((rgb565[i][j]>>5) & 0x3F) *4 b = ((rgb565[i][j]>>0) & 0x1F) *8 gray_value = int((r*66 + g*129 + b*25)/256) + 16 if gray_value<16: gray_value = 16 elif gray_value>235: gray_value = 235 # 吸入文件中 fpd.write("%04X\n"%((rgb565[i][j] >> 0)&0xFFFF)) fpd.write("%04X\n"%((rgb565[i][j] >> 16)&0xFFFF)) fp_gray.write("%d\n"%(gray_value)) fp_gray.close() #%% 关闭所有文件 fpd.close()
25.67757
67
0.601274
0
0
0
0
0
0
0
0
1,106
0.192214
225438e5c2b8551e69ccb321df71b6704ae2b4d5
17
py
Python
2.py
modianor/git_project
21d664bfa31d6f3e584ffc594514ea4342b6bc3f
[ "MIT" ]
null
null
null
2.py
modianor/git_project
21d664bfa31d6f3e584ffc594514ea4342b6bc3f
[ "MIT" ]
null
null
null
2.py
modianor/git_project
21d664bfa31d6f3e584ffc594514ea4342b6bc3f
[ "MIT" ]
null
null
null
A = 1 B = 2 C = 4
5.666667
5
0.352941
0
0
0
0
0
0
0
0
0
0
2255fb2ff207d881f927e1b321a4dc62c8ca610a
17
py
Python
src/ixu/commands/server/__init__.py
luanguimaraesla/ixu
f213bdf27fc7336a76110cf3f89e30ae1d5a64fb
[ "Apache-2.0" ]
2
2021-05-14T17:14:09.000Z
2021-06-13T21:35:04.000Z
src/ixu/commands/server/__init__.py
luanguimaraesla/ixu
f213bdf27fc7336a76110cf3f89e30ae1d5a64fb
[ "Apache-2.0" ]
null
null
null
src/ixu/commands/server/__init__.py
luanguimaraesla/ixu
f213bdf27fc7336a76110cf3f89e30ae1d5a64fb
[ "Apache-2.0" ]
null
null
null
from . import up
8.5
16
0.705882
0
0
0
0
0
0
0
0
0
0
225632b6786bc6319f8c49ffcd364075da52275b
247
py
Python
pythoncev/exercicios/ex096.py
gustavobelloni/Python
156a99d10f460f0fcaea18a87d35d4b0e3dba493
[ "MIT" ]
null
null
null
pythoncev/exercicios/ex096.py
gustavobelloni/Python
156a99d10f460f0fcaea18a87d35d4b0e3dba493
[ "MIT" ]
null
null
null
pythoncev/exercicios/ex096.py
gustavobelloni/Python
156a99d10f460f0fcaea18a87d35d4b0e3dba493
[ "MIT" ]
null
null
null
def área(larg, comp): a = larg * comp print(f'A área de um terreno {larg}x{comp} é de {a}m²') print('Controle de Terrenos') print('--------------------') l = float(input('Largura (m): ')) c = float(input('Comprimento (m): ')) área(l, c)
22.454545
59
0.554656
0
0
0
0
0
0
0
0
129
0.511905
22567858f90706f357ad018d732e41ca1cb74961
2,678
py
Python
readthedocs/proxito/views/decorators.py
tkoyama010/readthedocs.org
aac8fb39586db902d9fbb51b639dd281c819dae2
[ "MIT" ]
2
2021-05-16T06:57:15.000Z
2021-05-16T06:57:18.000Z
readthedocs/proxito/views/decorators.py
tkoyama010/readthedocs.org
aac8fb39586db902d9fbb51b639dd281c819dae2
[ "MIT" ]
12
2021-03-21T13:16:50.000Z
2022-03-12T00:55:05.000Z
readthedocs/proxito/views/decorators.py
mondeja/readthedocs.org
fb01c6d9d78272e3f4fd146697e8760c04e4fbb6
[ "MIT" ]
1
2021-07-09T14:02:39.000Z
2021-07-09T14:02:39.000Z
import logging from functools import wraps from django.http import Http404 from readthedocs.projects.models import Project, ProjectRelationship log = logging.getLogger(__name__) # noqa def map_subproject_slug(view_func): """ A decorator that maps a ``subproject_slug`` URL param into a Project. :raises: Http404 if the Project doesn't exist .. warning:: Does not take into account any kind of privacy settings. """ @wraps(view_func) def inner_view( # noqa request, subproject=None, subproject_slug=None, *args, **kwargs ): if subproject is None and subproject_slug: # Try to fetch by subproject alias first, otherwise we might end up # redirected to an unrelated project. # Depends on a project passed into kwargs rel = ProjectRelationship.objects.filter( parent=kwargs['project'], alias=subproject_slug, ).first() if rel: subproject = rel.child else: rel = ProjectRelationship.objects.filter( parent=kwargs['project'], child__slug=subproject_slug, ).first() if rel: subproject = rel.child else: log.warning( 'The slug is not subproject of project. subproject_slug=%s project_slug=%s', subproject_slug, kwargs['project'].slug ) raise Http404('Invalid subproject slug') return view_func(request, subproject=subproject, *args, **kwargs) return inner_view def map_project_slug(view_func): """ A decorator that maps a ``project_slug`` URL param into a Project. :raises: Http404 if the Project doesn't exist .. warning:: Does not take into account any kind of privacy settings. """ @wraps(view_func) def inner_view( # noqa request, project=None, project_slug=None, *args, **kwargs ): if project is None: # Get a slug from the request if it can't be found in the URL if not project_slug: project_slug = request.host_project_slug log.debug( 'Inserting project slug from request slug=[%s]', project_slug ) try: project = Project.objects.get(slug=project_slug) except Project.DoesNotExist: raise Http404('Project does not exist.') return view_func(request, project=project, *args, **kwargs) return inner_view
33.475
100
0.581404
0
0
0
0
1,929
0.720314
0
0
842
0.314414
2256a0c4684d099dc813eeba74a7fcc9133e772a
4,217
py
Python
tortue_geniale/tg_channel_events.py
vavalm/discord_bot_tortue_geniale
2fa2865166dd109b1138b77ed7f21d8e59efd8ab
[ "MIT" ]
null
null
null
tortue_geniale/tg_channel_events.py
vavalm/discord_bot_tortue_geniale
2fa2865166dd109b1138b77ed7f21d8e59efd8ab
[ "MIT" ]
null
null
null
tortue_geniale/tg_channel_events.py
vavalm/discord_bot_tortue_geniale
2fa2865166dd109b1138b77ed7f21d8e59efd8ab
[ "MIT" ]
null
null
null
import discord import asyncio import re import logging from data.groups_name import free_random_name logging.basicConfig(level=logging.INFO) client = discord.Client() class ClientEvents(discord.Client): ''' Classe initialization ''' def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # create the background task and run it in the background self.bg_task = self.loop.create_task(self.my_background_task()) async def my_background_task(self): await self.wait_until_ready() counter = 0 channel = self.get_channel(1234567) # channel ID goes here while not self.is_closed(): counter += 1 await channel.send(counter) await asyncio.sleep(60) # task runs every 60 seconds async def on_ready(self): print('Logged in as') print(self.user.name) print(self.user.id) print('------') ''' ############### EVENTS ABOUT CHANNELS AND SERVERS MANAGEMENT ###############''' async def on_member_join(self, member): guild = member.guild if guild.system_channel is not None: to_send = 'Welcome {0.mention} to {1.name}!'.format(member, guild) await guild.system_channel.send(to_send) ''' Permet la création et la suppression automatique de channels ''' async def on_voice_state_update(self, member: discord.Member, before: discord.VoiceState, after: discord.VoiceState): await self.wait_until_ready() after_channel: discord.VoiceChannel = after.channel before_channel: discord.VoiceChannel = before.channel # We enter in a channel if type(after_channel) is discord.VoiceChannel: category: discord.CategoryChannel = after_channel.category guild: discord.guild = member.guild if "Escouade".lower() in str(category.name).lower() and ( "Créer channel").lower() == after_channel.name.lower(): team_size = re.findall(r'\d+', category.name) if len(team_size) == 0: return else: team_size = int(re.findall(r'\d+', category.name)[0]) print("Création nouveau Channel") new_name = free_random_name(team_size, guild) new_channel: discord.VoiceChannel = await guild.create_voice_channel( new_name, category=category, user_limit=int(team_size)) await member.move_to(new_channel) # If we quit a channel and no one else is in, deletion of the channel if type(before_channel) is discord.VoiceChannel \ and ("Créer channel").lower() != before_channel.name.lower(): if len(before_channel.members) == 0: await before_channel.delete(reason="Channel empty") ''' ############### EVENTS ABOUT REPLIES ON MESSAGE ###############''' @client.event async def on_message(self, message): # we do not want the bot to reply to itself if message.author.id == self.user.id: return if message.content.startswith('!hello'): await message.channel.send('Hello {0.author.mention} sur le serveur {1.guild}'.format(message, message)) class CommandsClient(discord.Client): async def on_ready(self): print('Logged in as') print(self.user.name) print(self.user.id) print('------') async def on_member_join(self, member): guild = member.guild if guild.system_channel is not None: to_send = 'Welcome {0.mention} to {1.name}!'.format(member, guild) await guild.system_channel.send(to_send) async def on_message(message): if message.content.startswith('$greet'): channel = message.channel await channel.send('Say hello!') def check(m): return m.content == 'hello' and m.channel == channel msg = await client.wait_for('message', check=check) await channel.send('Hello {.author}!'.format(msg))
35.436975
116
0.596396
4,047
0.958778
0
0
338
0.080076
3,393
0.803838
834
0.197584
22574ae53ea97f421f17d51078183bbb695cb068
566
py
Python
middleware/login_required.py
ahmetelgun/flask-boilerplate
56bc0235b5f00a7aaca6a9536a1744442863b8b6
[ "Apache-2.0" ]
2
2021-12-01T20:48:44.000Z
2022-02-04T16:33:33.000Z
middleware/login_required.py
ahmetelgun/flask_authentication_boilerplate
56bc0235b5f00a7aaca6a9536a1744442863b8b6
[ "Apache-2.0" ]
null
null
null
middleware/login_required.py
ahmetelgun/flask_authentication_boilerplate
56bc0235b5f00a7aaca6a9536a1744442863b8b6
[ "Apache-2.0" ]
null
null
null
from flask import request, make_response, jsonify, g from datetime import datetime from functools import wraps import jwt from models import DBContext, User from settings import SECRET_KEY from service import is_token_valid def login_required(func): @wraps(func) def wrapper(*args, **kwargs): not_authenticated_response = make_response( jsonify({"message": "Login required"}), 401 ) if g.user: return func(g.user, *args, **kwargs) return not_authenticated_response return wrapper
22.64
52
0.681979
0
0
0
0
288
0.508834
0
0
25
0.04417
22574e100d92910a2acaa1fb84cd7d78b47e8242
2,189
py
Python
libs/sqlservice/utils.py
smartadvising/smartadvising-api
74cfcc336c87523fcb011a96bc4506ecdef93afe
[ "MIT" ]
null
null
null
libs/sqlservice/utils.py
smartadvising/smartadvising-api
74cfcc336c87523fcb011a96bc4506ecdef93afe
[ "MIT" ]
null
null
null
libs/sqlservice/utils.py
smartadvising/smartadvising-api
74cfcc336c87523fcb011a96bc4506ecdef93afe
[ "MIT" ]
null
null
null
""" Utilities --------- The utilities module. """ from collections.abc import Mapping, Sequence from functools import wraps import types class FrozenDict(Mapping): """A frozen dictionary implementation that prevents the object from being mutated. This is primarily used when defining a dict-like object as a class attribute that shouldn't be mutated by subclasses. """ def __init__(self, *args, **kwargs): self._dict = dict(*args, **kwargs) def copy(self): return self._dict.copy() def __getitem__(self, key): return self._dict.__getitem__(key) def __contains__(self, item): return self._dict.__contains__(item) def __iter__(self): return self._dict.__iter__() def __len__(self): return self._dict.__len__() def __repr__(self): return '<%s %r>' % (self.__class__.__name__, self._dict) def classonce(meth): """Decorator that executes a class method once, stores the results at the class level, and subsequently returns those results for every future method call. """ @wraps(meth) def decorated(cls, *args, **kargs): cached_attr = '__{0}'.format(meth.__name__) if not hasattr(cls, cached_attr): result = meth(cls, *args, **kargs) setattr(cls, cached_attr, result) return getattr(cls, cached_attr) return decorated def flatten(seq): """Flatten `seq` a single level deep.""" for item in seq: if is_sequence(item): for itm in item: yield itm else: yield item def is_sequence(value): """Test if `value` is a sequence but ``str``. This function is mainly used to determine if `value` can be treated like a ``list`` for iteration purposes. """ return (is_generator(value) or (isinstance(value, Sequence) and not isinstance(value, str))) def is_generator(value): """Return whether `value` is a generator or generator-like.""" return (isinstance(value, types.GeneratorType) or (hasattr(value, '__iter__') and hasattr(value, '__next__') and not hasattr(value, '__getitem__')))
27.708861
79
0.640018
753
0.343993
205
0.09365
280
0.127912
0
0
757
0.34582
2257918164befc9b4532377573ee36b973df3e73
1,817
py
Python
tests/test_normals.py
foobarbecue/trimesh
db2c649ebc577874702644248964b3295bd6ed5b
[ "MIT" ]
null
null
null
tests/test_normals.py
foobarbecue/trimesh
db2c649ebc577874702644248964b3295bd6ed5b
[ "MIT" ]
null
null
null
tests/test_normals.py
foobarbecue/trimesh
db2c649ebc577874702644248964b3295bd6ed5b
[ "MIT" ]
1
2019-05-31T03:37:21.000Z
2019-05-31T03:37:21.000Z
try: from . import generic as g except BaseException: import generic as g class NormalsTest(g.unittest.TestCase): def test_vertex_normal(self): mesh = g.trimesh.creation.icosahedron() # the icosahedron is centered at zero, so the true vertex # normal is just a unit vector of the vertex position truth = g.trimesh.util.unitize(mesh.vertices) # force fallback to loop normal summing by passing None as the sparse # matrix normals = g.trimesh.geometry.mean_vertex_normals(len(mesh.vertices), mesh.faces, mesh.face_normals, sparse=None) self.assertTrue(g.np.allclose(normals - truth, 0.0)) # make sure the automatic sparse matrix generation works as well normals = g.trimesh.geometry.mean_vertex_normals(len(mesh.vertices), mesh.faces, mesh.face_normals) self.assertTrue(g.np.allclose(normals - truth, 0.0)) # make sure the Trimesh normals- related attributes are wired correctly self.assertTrue(mesh.faces_sparse is not None) self.assertTrue(mesh.vertex_normals.shape == mesh.vertices.shape) self.assertTrue(g.np.allclose(mesh.vertex_normals - truth, 0.0)) def test_face_normals(self): mesh = g.trimesh.creation.icosahedron() self.assertTrue(mesh.face_normals.shape == mesh.faces.shape) mesh.face_normals = None self.assertTrue(mesh.face_normals.shape == mesh.faces.shape) if __name__ == '__main__': g.trimesh.util.attach_to_log() g.unittest.main()
41.295455
79
0.587782
1,646
0.905889
0
0
0
0
0
0
332
0.182719
2257acdf6a3fd8c165f7da9ebcd60fa9bce30be5
14,692
py
Python
flagmaker/settings.py
google/sa360-bigquery-bootstrapper
ca25e9d9f4d00f392970e5e942942f9acb21952b
[ "Apache-2.0" ]
4
2020-03-14T03:26:46.000Z
2020-12-13T14:43:22.000Z
flagmaker/settings.py
google/sa360-bigquery-bootstrapper
ca25e9d9f4d00f392970e5e942942f9acb21952b
[ "Apache-2.0" ]
1
2020-11-17T16:26:50.000Z
2020-11-17T16:26:50.000Z
flagmaker/settings.py
google/sa360-bigquery-bootstrapper
ca25e9d9f4d00f392970e5e942942f9acb21952b
[ "Apache-2.0" ]
1
2020-10-13T17:02:23.000Z
2020-10-13T17:02:23.000Z
# /*********************************************************************** # Copyright 2019 Google Inc. # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Note that these code samples being shared are not official Google # products and are not formally supported. # ************************************************************************/ import os from typing import Union import yaml from yaml.parser import ParserError from collections.abc import Iterable from enum import EnumMeta from typing import ClassVar from typing import Dict from typing import Generic from typing import List from typing import TypeVar from absl import flags from prompt_toolkit import ANSI from prompt_toolkit import prompt from prompt_toolkit.shortcuts import CompleteStyle from termcolor import colored from termcolor import cprint from flagmaker.building_blocks import list_to_string_list from flagmaker.exceptions import FlagMakerPromptInterruption from flagmaker.validators import ChoiceValidator from .building_blocks import SettingOptionInterface from .building_blocks import SettingsInterface from .building_blocks import Value from .exceptions import FlagMakerConfigurationError from .exceptions import FlagMakerInputError from .hints import StringKeyDict from .sanity import Validator FLAGS = flags.FLAGS T = TypeVar('T', bound=SettingsInterface) class SettingConfig(object): cache_file: str = '{}/.sa360bq'.format(os.environ['HOME']) cache_dict: dict = {} class SettingOption(SettingOptionInterface, Generic[T]): settings: T = None default = None cache = None help = None method: callable = None _value: Value = None required: bool = False validation: callable = None conditional: callable = None after: callable = None prompt: Union[callable, str] custom_data: StringKeyDict include_in_interactive: bool = True called: dict _options: EnumMeta = None _error: bool = False attrs: dict def __init__(self): self._value = Value() self.called = {} @classmethod def create(cls, settings: T, helptext=None, default=None, method=flags.DEFINE_string, required=True, validation=None, conditional=None, after=None, prompt=None, include_in_interactive=True, options=None, attrs=None): if options is None: options = [] fl = cls() fl.settings = settings fl.default = default fl.help = helptext fl.method = method fl.required = required fl.validation = validation fl.conditional = conditional fl.after = after fl.prompt = prompt fl.include_in_interactive = include_in_interactive fl._options = options fl.attrs = attrs or {} return fl @property def options(self): return (list(map(lambda x: x.value, self._options)) if self._options is not None else None) def get_prompt(self, k): d = self.get_default_or_cache() default = ' [default={0}]'.format( d if not isinstance(d, bool) else int(d) ) if d is not None else '' prompt_val = '' if self.prompt is not None: prompt_val += '\n' if self.prompt is str: prompt_val += self.prompt if callable(self.prompt): prompt_val += self.prompt(self) prompt_val += '\nInput' if self.method != flags.DEFINE_enum: method = self.get_basic_prompt else: method = self.get_option_prompt return method(k, default, prompt_val) def get_option_prompt(self, k, default, prompt_val): if not isinstance(self._options, EnumMeta): raise FlagMakerConfigurationError('Need to add options for ' + k) options = list_to_string_list(self.options) return ( '{0}\n' '{1}\n' '{2}\n' 'Choices{3}: ' ).format( k, colored('Options:', attrs=['underline']), options, default, prompt_val ) def get_basic_prompt(self, k, default, prompt_val): return '{}{}{}'.format(k, default, prompt_val) @property def value(self): return self._value.get_val() @value.setter def value(self, value): while True: try: self._set_value(value) break except FlagMakerConfigurationError as err: cprint(str(err), 'red') def _set_value(self, value): if value is None: self._value.set_val(None) return if self.method == flags.DEFINE_boolean: if value in ['1', 'true', 'True', True]: value = True elif value in ['0', 'false', 'False', False]: value = False elif self.method == flags.DEFINE_integer: value = int(value) elif self.method == flags.DEFINE_enum: options = self.options is_iterable = isinstance(options, Iterable) if not (is_iterable and value in options): raise FlagMakerInputError( 'Need to choose one of [{}]'.format(', '.join(options)) ) self._value.set_val(value) # perform actions if self.after is None: self._error = False return in_called = (self, self.after) not in self.called if in_called: self.called[(self, self.after)] = True self.after(self) def get_default_or_cache(self) -> str: if self.cache is not None: default_or_cache = self.cache else: default_or_cache = self.default return default_or_cache def set_value(self, key: str = '', value: str = '', ask: str = '', init: str = ''): while True: num_opts = int(value != '') + int(ask != '') + int(init != '') if num_opts != 1: raise FlagMakerInputError('Need to choose either ' 'init, value or ask') default_or_cache = self.get_default_or_cache() if init is None: return elif init != '': self.value = init return if ask != '': if ask is None: # we intentionally set ask to None. A conditional prompt # doesn't want this to continue return kwargs = { 'bottom_toolbar': ANSI(self.help) } if self.method == flags.DEFINE_enum: choices = [str(i[0]) for i in enumerate(self.options, start=1)] kwargs['validator'] = ChoiceValidator(choices) kwargs['complete_style'] = CompleteStyle.READLINE_LIKE selection = prompt(ANSI(ask), **kwargs) if selection == '': val = default_or_cache else: val = self.options[int(selection)-1] elif self.method == flags.DEFINE_multi_string: val = [] i = 0 while True: i += 1 res = prompt(ANSI( "{} #{} (Empty Value to finish): ".format(ask, i) ), **kwargs) if res == '': break val.append(res) else: val = prompt(ANSI(ask + ": "), **kwargs) if val == '' and default_or_cache is not None: self.value = default_or_cache else: self.value = val if self.value is not None: SettingConfig.cache_dict[key] = self.value else: self.value = value if not Validator.validate(self) or self._error: continue if self.value_explicitly_set() or not self.required: return else: cprint('Required Field', 'red') def value_explicitly_set(self) -> bool: return bool(self._value) def maybe_needs_input(self): return not self.value_explicitly_set() and ( self.conditional is None or self.conditional(self.settings)) def get_method(self): return self.method def __str__(self): return self.value or '' def __repr__(self): return '[{0}: {1}]'.format( self.default, str(self.value) if self.value else '', ) def __bool__(self): return bool(self.value) def __index__(self): return self.value def __getitem__(self, item) -> SettingOptionInterface: return self.value.__getitem__(item) class SettingBlock: def __init__(self, block: str, settings: Dict[str, SettingOption], conditional: callable = None): self.name = block self.settings = settings self.conditional = conditional def get(self): cprint('{}'.format(self.name), None, attrs=['bold']) cprint('==========================', attrs=['bold']) class AbstractSettings(SettingsInterface): """Settings Base Class Loaded from the Config class. Used to generate flags for an app. """ args: List[SettingBlock] = None flattened_args: dict = {} def start(self): """Bootstraps the settings loading process Called from load_settings. Should not be called directly. """ for block in self.args: for k, s in block.settings.items(): s.set_value(init=FLAGS.get_flag_value(k, None)) self.flattened_args[k] = s def load_settings(self): self.start() first = True interactive_mode = self.args[0].settings.pop('interactive') cache: dict = {} if os.path.exists(SettingConfig.cache_file): try: with open(SettingConfig.cache_file, 'r') as fh: cache = yaml.load( fh.read(), Loader=yaml.Loader ) or {} except ParserError: cache = {} os.remove(SettingConfig.cache_file) for block in self.args: header_shown = False if block.conditional is not None and not block.conditional(self): continue for k, setting in block.settings.items(): setting.cache = cache[k] if k in cache else None if setting.maybe_needs_input(): if not interactive_mode and setting.default: setting.set_value(k, init=setting.default) continue if first: cprint('Interactive Setup', attrs=['bold', 'underline']) cprint( '===============================', attrs=['bold'], ) first = False if not header_shown: cprint(block.name, attrs=['underline']) header_shown = True if setting.include_in_interactive: try: setting.set_value(k, ask=setting.get_prompt(k)) except FlagMakerPromptInterruption as err: setting.set_value(k, value=err.value) with open(SettingConfig.cache_file, 'w+') as fh: fh.write(yaml.dump( SettingConfig.cache_dict, Dumper=yaml.Dumper )) return self def assign_flags(self) -> flags: for block in self.args: for k, setting in block.settings.items(): kwargs = { 'default': None, } if not setting.include_in_interactive: kwargs['default'] = setting.default if setting.method == flags.DEFINE_enum: kwargs['enum_values'] = setting.options setting.method(k, help=setting.help, **kwargs) self.flattened_args[k] = setting return FLAGS def __getitem__(self, item): return self.flattened_args[item] def get_settings(self): # system settings settings = [SettingBlock('System Settings', { 'interactive': SettingOption.create( self, 'Enter Interactive Mode even to verify default values', default=False, include_in_interactive=False, method=flags.DEFINE_bool, ), })] settings += self.settings() return settings def install(self): self.args = self.get_settings() self.assign_flags() def __repr__(self): return str(self.args) def __enter__(self): return self def __exit__(self, err, value, traceback): with open(SettingConfig.cache_file, 'a+') as fh: fh.write(yaml.dump( SettingConfig.cache_dict, Dumper=yaml.Dumper )) AbstractSettingsClass = ClassVar[T] class Config(Generic[T]): """The entry point for setting the Settings class for an app. Example: Config(MySettingsClass) This will bootstrap the settings class correctly. """ def __init__(self, s: ClassVar[T]): self.s: ClassVar[T] = s self.instance = s() self.instance.install() def get(self) -> T: if not FLAGS.is_parsed(): raise FlagMakerConfigurationError( 'Do not call this ' 'method until after app.run()' ) with self.instance as instance: instance.load_settings() return self.instance
33.239819
80
0.544854
12,799
0.871154
0
0
1,207
0.082154
0
0
2,039
0.138783
225800b91896c420ce99d82a83f56df5a8a804aa
19,390
py
Python
cli/sub.py
mylovage/GolemQT
7560d4e67d564022fbbdc00c069a51c673bfe267
[ "MIT" ]
null
null
null
cli/sub.py
mylovage/GolemQT
7560d4e67d564022fbbdc00c069a51c673bfe267
[ "MIT" ]
null
null
null
cli/sub.py
mylovage/GolemQT
7560d4e67d564022fbbdc00c069a51c673bfe267
[ "MIT" ]
null
null
null
# coding:utf-8 # # The MIT License (MIT) # # Copyright (c) 2018-2020 azai/Rgveda/GolemQuant base on QUANTAXIS/yutiansut # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # import json import sys import websocket from datetime import datetime as dt, timezone, timedelta, date import datetime import time as timer import numba as nb import traceback try: import easyquotation easyquotation_not_install = False except: easyquotation_not_install = True try: import QUANTAXIS as QA from QUANTAXIS.QAUtil.QAParameter import ORDER_DIRECTION from QUANTAXIS.QAUtil.QASql import QA_util_sql_mongo_sort_ASCENDING from QUANTAXIS.QAUtil.QADate_trade import ( QA_util_if_tradetime, QA_util_get_pre_trade_date, QA_util_get_real_date, trade_date_sse ) from QUANTAXIS.QAData.QADataStruct import ( QA_DataStruct_Index_min, QA_DataStruct_Index_day, QA_DataStruct_Stock_day, QA_DataStruct_Stock_min ) from QUANTAXIS.QAIndicator.talib_numpy import * from QUANTAXIS.QAUtil.QADate_Adv import ( QA_util_timestamp_to_str, QA_util_datetime_to_Unix_timestamp, QA_util_print_timestamp ) from QUANTAXIS.QAUtil import ( DATABASE, QASETTING, QA_util_log_info, QA_util_log_debug, QA_util_log_expection, QA_util_to_json_from_pandas ) except: print('PLEASE run "pip install QUANTAXIS" before call GolemQ.cli.sub modules') pass try: from GolemQ.utils.parameter import ( AKA, INDICATOR_FIELD as FLD, TREND_STATUS as ST, ) except: class AKA(): """ 趋势状态常量,专有名称指标,定义成常量可以避免直接打字符串造成的拼写错误。 """ # 蜡烛线指标 CODE = 'code' NAME = 'name' OPEN = 'open' HIGH = 'high' LOW = 'low' CLOSE = 'close' VOLUME = 'volume' VOL = 'vol' DATETIME = 'datetime' LAST_CLOSE = 'last_close' PRICE = 'price' SYSTEM_NAME = 'GolemQuant' def __setattr__(self, name, value): raise Exception(u'Const Class can\'t allow to change property\' value.') return super().__setattr__(name, value) from GolemQ.utils.symbol import ( normalize_code ) def formater_l1_tick(code: str, l1_tick: dict) -> dict: """ 处理分发 Tick 数据,新浪和tdx l1 tick差异字段格式化处理 """ if ((len(code) == 6) and code.startswith('00')): l1_tick['code'] = normalize_code(code, l1_tick['now']) else: l1_tick['code'] = normalize_code(code) l1_tick['servertime'] = l1_tick['time'] l1_tick['datetime'] = '{} {}'.format(l1_tick['date'], l1_tick['time']) l1_tick['price'] = l1_tick['now'] l1_tick['vol'] = l1_tick['volume'] del l1_tick['date'] del l1_tick['time'] del l1_tick['now'] del l1_tick['name'] del l1_tick['volume'] # print(l1_tick) return l1_tick def formater_l1_ticks(l1_ticks: dict, codelist: list = None, stacks=None, symbol_list=None) -> dict: """ 处理 l1 ticks 数据 """ if (stacks is None): l1_ticks_data = [] symbol_list = [] else: l1_ticks_data = stacks for code, l1_tick_values in l1_ticks.items(): # l1_tick = namedtuple('l1_tick', l1_ticks[code]) # formater_l1_tick_jit(code, l1_tick) if (codelist is None) or \ (code in codelist): l1_tick = formater_l1_tick(code, l1_tick_values) if (l1_tick['code'] not in symbol_list): l1_ticks_data.append(l1_tick) symbol_list.append(l1_tick['code']) return l1_ticks_data, symbol_list @nb.jit(nopython=True) def formater_l1_ticks_jit(l1_ticks: dict) -> dict: """ 我是阿财,我专门挖坑,所以这个函数我未调试完成 处理分发 Tick 数据,新浪和tdx l1 tick差异字段格式化处理 因为l1 tick数据必须2秒内处理完毕,尝试优化可能性,Cython或者JIT """ l1_ticks_data = [] for code in l1_ticks: l1_tick = namedtuple('l1_tick', l1_ticks[code]) # formater_l1_tick_jit(code, l1_tick) # l1_tick = formater_l1_tick(code, l1_ticks[code]) # l1_data = pd.DataFrame(l1_tick, index=['datetime']) # l1_data['code'] = code # l1_data = l1_data.rename({'time':'servertime', 'now':'price'}) # l1_tick = namedtuple('l1_tick', l1_tick._fields+('code',)) l1_tick['code'] = code l1_tick['servertime'] = l1_tick['time'] l1_tick['datetime'] = '{} {}'.format(l1_tick['date'], l1_tick['time']) l1_tick['price'] = l1_tick['now'] l1_tick['vol'] = l1_tick['volume'] del l1_tick['date'] del l1_tick['time'] del l1_tick['now'] del l1_tick['name'] del l1_tick['volume'] # del l1_tick['name'] # print(l1_tick) # return l1_tick l1_ticks_data.append(l1_tick) return l1_ticks_data def sub_l1_from_sina(): """ 从新浪获取L1数据,3秒更新一次,建议mongodb数据库存放在企业级SSD上面 (我用Intel DC P3600 800GB SSD,锐龙 3600,每个tick 保存时间 < 0.6s) """ client = QASETTING.client['QAREALTIME'] if (easyquotation_not_install == True): print(u'PLEASE run "pip install easyquotation" before call GolemQ.cli.sub modules') return def collections_of_today(): database = client.get_collection('realtime_{}'.format(datetime.date.today())) database.create_index([('code', QA_util_sql_mongo_sort_ASCENDING)]) database.create_index([('datetime', QA_util_sql_mongo_sort_ASCENDING)]) database.create_index([("code", QA_util_sql_mongo_sort_ASCENDING), ("datetime", QA_util_sql_mongo_sort_ASCENDING)], # unique=True, ) return database quotation = easyquotation.use('sina') # 新浪 ['sina'] 腾讯 ['tencent', 'qq'] sleep_time = 2.0 sleep = int(sleep_time) _time1 = dt.now() database = collections_of_today() get_once = True # 开盘/收盘时间 end_time = dt.strptime(str(dt.now().date()) + ' 16:30', '%Y-%m-%d %H:%M') start_time = dt.strptime(str(dt.now().date()) + ' 09:15', '%Y-%m-%d %H:%M') day_changed_time = dt.strptime(str(dt.now().date()) + ' 01:00', '%Y-%m-%d %H:%M') while (dt.now() < end_time): # 开盘/收盘时间 end_time = dt.strptime(str(dt.now().date()) + ' 16:30', '%Y-%m-%d %H:%M') start_time = dt.strptime(str(dt.now().date()) + ' 09:15', '%Y-%m-%d %H:%M') day_changed_time = dt.strptime(str(dt.now().date()) + ' 01:00', '%Y-%m-%d %H:%M') _time = dt.now() if QA_util_if_tradetime(_time) and \ (dt.now() < day_changed_time): # 日期变更,写入表也会相应变更,这是为了防止用户永不退出一直执行 print(u'当前日期更新~! {} '.format(datetime.date.today())) database = collections_of_today() print(u'Not Trading time 现在是中国A股收盘时间 {}'.format(_time)) timer.sleep(sleep) continue symbol_list = [] l1_ticks_data = [] if QA_util_if_tradetime(_time) or \ (get_once): # 如果在交易时间 l1_ticks = quotation.market_snapshot(prefix=True) l1_ticks_data, symbol_list = formater_l1_ticks(l1_ticks) if (dt.now() < start_time) or \ ((len(l1_ticks_data) > 0) and \ (dt.strptime(l1_ticks_data[-1]['datetime'], '%Y-%m-%d %H:%M:%S') < dt.strptime(str(dt.now().date()) + ' 00:00', '%Y-%m-%d %H:%M'))): print(u'Not Trading time 现在是中国A股收盘时间 {}'.format(_time)) timer.sleep(sleep) continue # 获取第二遍,包含上证指数信息 l1_ticks = quotation.market_snapshot(prefix=False) l1_ticks_data, symbol_list = formater_l1_ticks(l1_ticks, stacks=l1_ticks_data, symbol_list=symbol_list) # 查询是否新 tick query_id = { "code": { '$in': list(set([l1_tick['code'] for l1_tick in l1_ticks_data])) }, "datetime": sorted(list(set([l1_tick['datetime'] for l1_tick in l1_ticks_data])))[-1] } # print(sorted(list(set([l1_tick['datetime'] for l1_tick in # l1_ticks_data])))[-1]) refcount = database.count_documents(query_id) if refcount > 0: if (len(l1_ticks_data) > 1): # 删掉重复数据 # print('Delete', refcount, list(set([l1_tick['datetime'] # for l1_tick in l1_ticks_data]))) database.delete_many(query_id) database.insert_many(l1_ticks_data) else: # 持续更新模式,更新单条记录 database.replace_one(query_id, l1_ticks_data[0]) else: # 新 tick,插入记录 # print('insert_many', refcount) database.insert_many(l1_ticks_data) if (get_once != True): print(u'Trading time now 现在是中国A股交易时间 {}\nProcessing ticks data cost:{:.3f}s'.format(dt.now(), ( dt.now() - _time).total_seconds())) if ((dt.now() - _time).total_seconds() < sleep): timer.sleep(sleep - (dt.now() - _time).total_seconds()) print('Program Last Time {:.3f}s'.format((dt.now() - _time1).total_seconds())) get_once = False else: print(u'Not Trading time 现在是中国A股收盘时间 {}'.format(_time)) timer.sleep(sleep) # 每天下午5点,代码就会执行到这里,如有必要,再次执行收盘行情下载,也就是 QUANTAXIS/save X save_time = dt.strptime(str(dt.now().date()) + ' 17:00', '%Y-%m-%d %H:%M') if (dt.now() > end_time) and \ (dt.now() < save_time): # 收盘时间 下午16:00到17:00 更新收盘数据 # 我不建议整合,因为少数情况会出现 程序执行阻塞 block, # 本进程被阻塞后无人干预第二天影响实盘行情接收。 pass # While循环每天下午5点自动结束,在此等待13小时,大概早上六点结束程序自动重启 print(u'While循环每天下午5点自动结束,在此等待13小时,大概早上六点结束程序自动重启,这样只要窗口不关,永远每天自动收取 tick') timer.sleep(40000) def sub_codelist_l1_from_sina(codelist: list = None): """ 从新浪获取L1数据,3秒更新一次,建议mongodb数据库存放在企业级SSD上面 (我用Intel DC P3600 800GB SSD,锐龙 3600,每个tick 保存时间 < 0.6s) """ def collections_of_today(): database = DATABASE.get_collection('realtime_{}'.format(datetime.date.today())) database.create_index([('code', QA_util_sql_mongo_sort_ASCENDING)]) database.create_index([('datetime', QA_util_sql_mongo_sort_ASCENDING)]) database.create_index([("code", QA_util_sql_mongo_sort_ASCENDING), ("datetime", QA_util_sql_mongo_sort_ASCENDING)], # unique=True, ) return database quotation = easyquotation.use('sina') # 新浪 ['sina'] 腾讯 ['tencent', 'qq'] sleep_time = 2.0 sleep = int(sleep_time) _time1 = dt.now() database = collections_of_today() get_once = True # 开盘/收盘时间 end_time = dt.strptime(str(dt.now().date()) + ' 16:30', '%Y-%m-%d %H:%M') start_time = dt.strptime(str(dt.now().date()) + ' 09:15', '%Y-%m-%d %H:%M') day_changed_time = dt.strptime(str(dt.now().date()) + ' 01:00', '%Y-%m-%d %H:%M') while (dt.now() < end_time): # 开盘/收盘时间 end_time = dt.strptime(str(dt.now().date()) + ' 16:30', '%Y-%m-%d %H:%M') start_time = dt.strptime(str(dt.now().date()) + ' 09:15', '%Y-%m-%d %H:%M') day_changed_time = dt.strptime(str(dt.now().date()) + ' 01:00', '%Y-%m-%d %H:%M') _time = dt.now() if QA_util_if_tradetime(_time) and \ (dt.now() < day_changed_time): # 日期变更,写入表也会相应变更,这是为了防止用户永不退出一直执行 print(u'当前日期更新~! {} '.format(datetime.date.today())) database = collections_of_today() print(u'Not Trading time 现在是中国A股收盘时间 {}'.format(_time)) timer.sleep(sleep) continue if QA_util_if_tradetime(_time) or \ (get_once): # 如果在交易时间 l1_ticks = quotation.market_snapshot(prefix=True) l1_ticks_data, symbol_list = formater_l1_ticks(l1_ticks, codelist=codelist) if (dt.now() < start_time) or \ ((len(l1_ticks_data) > 0) and \ (dt.strptime(l1_ticks_data[-1]['datetime'], '%Y-%m-%d %H:%M:%S') < dt.strptime(str(dt.now().date()) + ' 00:00', '%Y-%m-%d %H:%M'))): print(u'Not Trading time 现在是中国A股收盘时间 {}'.format(_time)) timer.sleep(sleep) continue # 获取第二遍,包含上证指数信息 l1_ticks = quotation.market_snapshot(prefix=False) l1_ticks_data, symbol_list = formater_l1_ticks(l1_ticks, codelist=codelist, stacks=l1_ticks_data, symbol_list=symbol_list) # 查询是否新 tick query_id = { "code": { '$in': list(set([l1_tick['code'] for l1_tick in l1_ticks_data])) }, "datetime": sorted(list(set([l1_tick['datetime'] for l1_tick in l1_ticks_data])))[-1] } # print(symbol_list, len(symbol_list)) refcount = database.count_documents(query_id) if refcount > 0: if (len(l1_ticks_data) > 1): # 删掉重复数据 database.delete_many(query_id) database.insert_many(l1_ticks_data) else: # 持续更新模式,更新单条记录 database.replace_one(query_id, l1_ticks_data[0]) else: # 新 tick,插入记录 database.insert_many(l1_ticks_data) if (get_once != True): print(u'Trading time now 现在是中国A股交易时间 {}\nProcessing ticks data cost:{:.3f}s'.format(dt.now(), ( dt.now() - _time).total_seconds())) if ((dt.now() - _time).total_seconds() < sleep): timer.sleep(sleep - (dt.now() - _time).total_seconds()) print('Program Last Time {:.3f}s'.format((dt.now() - _time1).total_seconds())) get_once = False else: print(u'Not Trading time 现在是中国A股收盘时间 {}'.format(_time)) timer.sleep(sleep) # 每天下午5点,代码就会执行到这里,如有必要,再次执行收盘行情下载,也就是 QUANTAXIS/save X save_time = dt.strptime(str(dt.now().date()) + ' 17:00', '%Y-%m-%d %H:%M') if (dt.now() > end_time) and \ (dt.now() < save_time): # 收盘时间 下午16:00到17:00 更新收盘数据 # 我不建议整合,因为少数情况会出现 程序执行阻塞 block, # 本进程被阻塞后无人干预第二天影响实盘行情接收。 # save_X_func() pass # While循环每天下午5点自动结束,在此等待13小时,大概早上六点结束程序自动重启 print(u'While循环每天下午5点自动结束,在此等待13小时,大概早上六点结束程序自动重启,这样只要窗口不关,永远每天自动收取 tick') timer.sleep(40000) def sub_1min_from_tencent_lru(): """ 我是阿财,我专门挖坑,所以这个函数我未调试完成 从腾讯获得当天交易日分钟K线数据 """ blockname = ['MSCI中国', 'MSCI成份', 'MSCI概念', '三网融合', '上证180', '上证380', '沪深300', '上证380', '深证300', '上证50', '上证电信', '电信等权', '上证100', '上证150', '沪深300', '中证100', '中证500', '全指消费', '中小板指', '创业板指', '综企指数', '1000可选', '国证食品', '深证可选', '深证消费', '深成消费', '中证酒', '中证白酒', '行业龙头', '白酒', '证券', '消费100', '消费电子', '消费金融', '富时A50', '银行', '中小银行', '证券', '军工', '白酒', '啤酒', '医疗器械', '医疗器械服务', '医疗改革', '医药商业', '医药电商', '中药', '消费100', '消费电子', '消费金融', '黄金', '黄金概念', '4G5G', '5G概念', '生态农业', '生物医药', '生物疫苗', '机场航运', '数字货币', '文化传媒'] all_stock_blocks = QA.QA_fetch_stock_block_adv() for blockname in blocks: if (blockname in all_stock_blocks.block_name): codelist_300 = all_stock_blocks.get_block(blockname).code print(u'QA预定义板块“{}”成分数据'.format(blockname)) print(codelist_300) else: print(u'QA默认无板块“{}”成分数据'.format(blockname)) quotation = easyquotation.use("timekline") data = quotation.real([codelist], prefix=False) while (True): l1_tick = quotation.market_snapshot(prefix=False) print(l1_tick) return True if __name__ == '__main__': # 从新浪财经获取tick数据,自动启停, # 无限轮询的任何程序都可能会断线,我没有处理异常,所以断线就会抛出异常退出, # 我认为这样最好,可以释放意外占用的TCP/IP半连接,避免无人值守的服务器耗尽 # 端口资源。建议使用我的土味无限循环脚本,等于3秒后自动重试: """ 举个例子,例如这个sub.py脚本保存在 D:\代码\QUANTAXIS\QUANTAXIS\cli 目录下面,并且创建一个空的 __init__.py,对同级2个文件__init__.py, 还有本 sub.py,没有你就新建一个。 创建一个PowerShell:sub_l1.ps1 D: CD D:\代码\QUANTAXIS\ $n = 1 while($n -lt 6) { python -m QUANTAXIS.cli.sub Start-Sleep -Seconds 3 } 创建一个Cmd/Batch:sub_l1.cmd D: CD D:\代码\QUANTAXIS\ :start python -m QUANTAXIS.cli.sub @ping 127.0.0.1 -n 3 >nul goto start pause Linux Bash脚本我不会,你们能用linux肯定会自己编写。 """ import sys sys.path.append('/root/ipython/') import CommonUtils as cu try: cu.sendDingMsg("Start realtime sub from sina_l1 progress start now.") sub_l1_from_sina() except: traceback.print_exc() cu.sendDingMsg("Realtime sub from sina_l1 progress has stopped. please check it soon.") # sub_l1_from_sina() # sub_1min_from_tencent_lru() pass
37.145594
143
0.545848
667
0.030346
0
0
1,308
0.059509
0
0
8,776
0.399272
225834b3b08a2a19311dda4b3b5c026b4df674f0
3,125
py
Python
setup.py
voxel51/eta
17fb1148e853704872ed50e0e30c7800272b8398
[ "Apache-2.0" ]
25
2018-07-21T02:37:34.000Z
2022-03-30T12:57:54.000Z
setup.py
voxel51/eta
17fb1148e853704872ed50e0e30c7800272b8398
[ "Apache-2.0" ]
183
2018-06-13T18:57:00.000Z
2022-02-24T14:35:49.000Z
setup.py
voxel51/eta
17fb1148e853704872ed50e0e30c7800272b8398
[ "Apache-2.0" ]
13
2018-09-10T18:46:58.000Z
2022-02-07T02:25:31.000Z
#!/usr/bin/env python """ Installs ETA. Copyright 2017-2021, Voxel51, Inc. voxel51.com """ import os from setuptools import setup, find_packages from wheel.bdist_wheel import bdist_wheel VERSION = "0.6.1" class BdistWheelCustom(bdist_wheel): def finalize_options(self): bdist_wheel.finalize_options(self) # Pure Python, so build a wheel for any Python version self.universal = True with open("README.md", "r") as fh: long_description = fh.read() def get_version(): if "RELEASE_VERSION" in os.environ: version = os.environ["RELEASE_VERSION"] if not version.startswith(VERSION): raise ValueError( "Release version does not match version: %s and %s" % (version, VERSION) ) return version return VERSION setup( name="voxel51-eta", version=get_version(), description="Extensible Toolkit for Analytics", author="Voxel51, Inc.", author_email="info@voxel51.com", url="https://github.com/voxel51/eta", license="Apache", long_description=long_description, long_description_content_type="text/markdown", packages=find_packages(), include_package_data=True, install_requires=[ "argcomplete", "dill", "future", "glob2", "importlib-metadata; python_version<'3.8'", "ndjson", "numpy", "opencv-python-headless<5,>=4.1", "packaging", "patool", "Pillow>=6.2", "python-dateutil", "pytz", "requests", "retrying", "six", "scikit-image", "sortedcontainers", "tabulate", "tzlocal", ], extras_require={ "pipeline": ["blockdiag", "Sphinx", "sphinxcontrib-napoleon"], "storage": [ "boto3>=1.15", "google-api-python-client", "google-cloud-storage>=1.36", "httplib2<=0.15", "pysftp", ], }, classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Topic :: Scientific/Engineering :: Artificial Intelligence", "Topic :: Scientific/Engineering :: Image Processing", "Topic :: Scientific/Engineering :: Image Recognition", "Topic :: Scientific/Engineering :: Information Analysis", "Topic :: Scientific/Engineering :: Visualization", "Operating System :: MacOS :: MacOS X", "Operating System :: POSIX :: Linux", "Operating System :: Microsoft :: Windows", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", ], entry_points={"console_scripts": ["eta=eta.core.cli:main"]}, python_requires=">=2.7", cmdclass={"bdist_wheel": BdistWheelCustom}, )
28.935185
70
0.58944
204
0.06528
0
0
0
0
0
0
1,630
0.5216
2258db01c670eb29b690517709324afbc74e8b71
8,582
py
Python
Kernel/kernel.py
y11en/BranchMonitoringProject
5d3ca533338da919a1757562f3810d49296ebf48
[ "MIT" ]
122
2017-03-08T00:45:03.000Z
2022-03-01T03:05:21.000Z
Kernel/kernel.py
y11en/BranchMonitoringProject
5d3ca533338da919a1757562f3810d49296ebf48
[ "MIT" ]
3
2017-03-08T01:16:54.000Z
2017-03-22T22:59:26.000Z
Kernel/kernel.py
y11en/BranchMonitoringProject
5d3ca533338da919a1757562f3810d49296ebf48
[ "MIT" ]
42
2017-03-08T21:28:48.000Z
2022-02-20T15:24:46.000Z
# Kernel introspection module to enrich branch collected data # This code is part of BranchMonitoring framework # Written by: Marcus Botacin - 2017 # Federal University of Parana (UFPR) from xml.etree.ElementTree import ElementTree # Parse XML import subprocess # Run dump tools import win32file as w # Use windows API import time # Wait for data import signal # Interrupt endless loop # Monitoring class - retrieves branch data class Monitor(): # class instantiation def __init__(self,save=None): self.save=save self.mods = None # No introspection data at this point signal.signal(signal.SIGINT,self.signal_handler) # Installing signal handler # debug print if __debug__: print("Starting Monitor") # open driver handle def __open_driver_handler(self): self.hdevice=w.CreateFile("\\\\.\\BranchMonitor",0x80000000|0x40000000,0,None,3,0x00000080,None) # close driver handle def __close_driver_handler(self): w.CloseHandle(self.hdevice) # get branch data from driver handle def __get_branch_data(self): # read bytes and string itself tam,string = w.ReadFile(self.hdevice,200,None) # if no data, return if len(string)==0: return None # case having data else: # interpret string as hex address branch=int(string[8:15][::-1].encode('hex'),16) return branch # signal handler def signal_handler(self,signal,frame): self.run=False # get offset from a given function address # mod: module to look into # offset: offset to look for def offset_to_func(self,mod,offset): # get pointer to given module funcs = self.exports[mod] # default: no offset found last_offset = 0 last_fname = "Unknown" # search whole exported symbols for f in funcs: name = f[0] # function name addr = f[1] # function offset rel_addr = f[2] # relative function offset # if we are looking for such offset if offset == addr or offset == rel_addr: # immediately returns return name # in case of a jump inside a given function # consider the closest exported symbol if offset > addr and addr > last_offset: last_offset = addr last_fname = name # return "unknown" or the closest symbol return last_fname # identifies to which module a given address refers def addr_to_module(self,branch): # consider only the meaningful bytes branch = branch & 0xFFFFFFFF # look into all loaded modules for m in self.mods: start_addr = mods[m][0] # lowest addr end_addr = mods[m][1] # highestaddr # if branch is inside if branch >= start_addr and branch <= end_addr: # if there are exported symbols, dig into it if(self.exports is not None): # return base_module+function_at_offset return m+"+"+self.offset_to_func(m,branch-start_addr) # otherwise, return just the name return m # nothing found return "Unknown" # polling loop def loop(self,mods=None,exports=None,save=False): if save: log = open(self.save,"w") # default definitions last = "" self.mods = mods self.exports = exports self.run = True # debug print if __debug__: print("Starting looping") # open handler self.__open_driver_handler() try: # infinite loop while(self.run): # try to get a branch tuple branch=self.__get_branch_data() # check if got if branch is not None: # no introspection, just print if self.mods is None: print("%x" % branch) else: # if there's introspection data, dig into it module_string = self.addr_to_module(branch) # do not print repeated entries if module_string != last: s = "%x <%s>" % (branch,module_string) print(s) if save: log.write(s+"\n") last = module_string else: # no data, sleep time.sleep(1) # signal received finally: # cleanup if save: log.close() self.__close_driver_handler() # Dumper: the introspection class class Dumper(): # instantiation def __init__(self): # set parser configs self.parse() # set parser configs def parse(self): # External tools are required # DriverView used to enumerate modules # DriverView binary path self.drvview_path = "driverview-x64\DriverView.exe" # DriverView Output file self.drvview_output = "driverview-x64\drv.xml" # DllView used to map function to offsets # DllView binary path self.dllview_path = "dllexp-x64\dllexp.exe" # DllView output self.dllview_output = "Downloads\dllexp-x64\dll.xml" # enumerate loaded modules def dump_modules(self): if __debug__: print("Dumping Modules") # using DriverView s = subprocess.Popen([self.drvview_path,"/sxml",self.drvview_output]) s.wait() # get offsets def dump_exports(self,bin): # using DllView s = subprocess.Popen([self.dllview_path,"/from_files",bin,"/sxml",self.dllview_output]) s.wait() # parse exported symbols def parse_exports(self): exp = [] self.dtree = ElementTree() self.dtree.parse(self.dllview_output) for p in self.dtree.findall("item"): # get function name fname = p.find('function_name').text # try to get address try: # address addr = int(p.find('address').text,16) except: # error, no meaningful address addr = 0xFFFFFFFF # also get relative addr rel_addr = int(p.find('relative_address').text,16) # add tuple to list exp.append((fname,addr,rel_addr)) # return list return exp # get offsets and parse def get_exports(self,bin): if __debug__: print("Getting Exports for: %s" % bin) self.dump_exports(bin) return self.parse_exports() # parse loaded modules/drivers def parse_modules(self): mods = dict() exports = dict() self.dtree = ElementTree() self.dtree.parse(self.drvview_output) for p in self.dtree.findall("item"): # module name mod_name = p.find('driver_name').text # initial addr mod_addr = int(p.find('address').text.replace("`",""),16) # end addr mod_end_addr = int(p.find('end_address').text.replace("`",""),16) # add to dict - no repeated modules mods[mod_name]=(mod_addr,mod_end_addr) # try to get exports for the module # returns a list exp = self.get_exports(p.find('filename').text) # map module to export list exports[mod_name] = exp # return module dict and exports dict return mods, exports # "main" if __name__ == '__main__': # introspect first d = Dumper() d.dump_modules() mods, exports = d.parse_modules() # then monitor m=Monitor(save="save.log") # infinite loop # introspected data as parameter to the monitor m.loop(mods,exports,True) # no module import else: print("No module import support yet!")
34.465863
105
0.53519
7,599
0.885458
0
0
0
0
0
0
2,988
0.348171
2258e4decef3126cb93f24dd49680df54adc84dc
243
py
Python
config/environments/__init__.py
mihail-ivanov/flask-init
47f634f70bb8bd02db8f0a0a3a1955b08a249254
[ "MIT" ]
null
null
null
config/environments/__init__.py
mihail-ivanov/flask-init
47f634f70bb8bd02db8f0a0a3a1955b08a249254
[ "MIT" ]
null
null
null
config/environments/__init__.py
mihail-ivanov/flask-init
47f634f70bb8bd02db8f0a0a3a1955b08a249254
[ "MIT" ]
null
null
null
from .development import DevelopmentConfig from .testing import TestingConfig from .production import ProductionConfig app_config = { 'development': DevelopmentConfig, 'testing': TestingConfig, 'production': ProductionConfig, }
20.25
42
0.773663
0
0
0
0
0
0
0
0
34
0.139918
225b7caf45db6cf9057062f56f08950fb1b441f2
5,026
py
Python
dialogs.py
rdbende/Sun-Valley-messageboxes
d6f2b0849caf63c609fc22ecd3909491e2f3ffcf
[ "MIT" ]
5
2021-12-29T11:58:37.000Z
2022-03-06T15:13:08.000Z
dialogs.py
rdbende/Sun-Valley-messageboxes
d6f2b0849caf63c609fc22ecd3909491e2f3ffcf
[ "MIT" ]
1
2022-02-05T10:30:08.000Z
2022-02-05T16:04:06.000Z
dialogs.py
rdbende/Sun-Valley-messageboxes
d6f2b0849caf63c609fc22ecd3909491e2f3ffcf
[ "MIT" ]
null
null
null
import tkinter as tk from tkinter import ttk from functools import partial def popup(parent, title, details, icon, *, buttons): dialog = tk.Toplevel() result = None big_frame = ttk.Frame(dialog) big_frame.pack(fill="both", expand=True) big_frame.columnconfigure(0, weight=1) big_frame.rowconfigure(0, weight=1) info_frame = ttk.Frame(big_frame, padding=(10, 12), style="Dialog_info.TFrame") info_frame.grid(row=0, column=0, sticky="nsew") info_frame.columnconfigure(1, weight=1) info_frame.rowconfigure(1, weight=1) try: color = big_frame.tk.call("set", "themeColors::dialogInfoBg") except tk.TclError: color = big_frame.tk.call("ttk::style", "lookup", "TFrame", "-background") icon_label = ttk.Label(info_frame, image=icon, anchor="nw", background=color) if icon is not None: icon_label.grid( row=0, column=0, sticky="nsew", padx=(12, 0), pady=10, rowspan=2 ) title_label = ttk.Label( info_frame, text=title, anchor="nw", font=("", 14, "bold"), background=color ) title_label.grid(row=0, column=1, sticky="nsew", padx=(12, 17), pady=(10, 8)) detail_label = ttk.Label(info_frame, text=details, anchor="nw", background=color) detail_label.grid(row=1, column=1, sticky="nsew", padx=(12, 17), pady=(5, 10)) button_frame = ttk.Frame( big_frame, padding=(22, 22, 12, 22), style="Dialog_buttons.TFrame" ) button_frame.grid(row=2, column=0, sticky="nsew") def on_button(value): nonlocal result result = value dialog.destroy() for index, button_value in enumerate(buttons): style = None state = None default = False sticky = "nes" if len(buttons) == 1 else "nsew" if len(button_value) > 2: if button_value[2] == "accent": style = "Accent.TButton" default = True elif button_value[2] == "disabled": state = "disabled" elif button_value[2] == "default": default = True button = ttk.Button( button_frame, text=button_value[0], width=18, command=partial(on_button, button_value[1]), style=style, state=state, ) if default: button.bind("<Return>", button["command"]) button.focus() button.grid(row=0, column=index, sticky=sticky, padx=(0, 10)) button_frame.columnconfigure(index, weight=1) dialog.overrideredirect(True) dialog.update() dialog_width = dialog.winfo_width() dialog_height = dialog.winfo_height() if parent is None: parent_width = dialog.winfo_screenwidth() parent_height = dialog.winfo_screenheight() parent_x = 0 parent_y = 0 else: parent_width = parent.winfo_width() parent_height = parent.winfo_height() parent_x = parent.winfo_x() parent_y = parent.winfo_y() x_coord = int(parent_width / 2 + parent_x - dialog_width / 2) y_coord = int(parent_height / 2 + parent_y - dialog_height / 2) dialog.geometry("+{}+{}".format(x_coord, y_coord)) dialog.minsize(320, dialog_height) dialog.transient(parent) dialog.grab_set() dialog.wait_window() return result def show_message(title="Title", details="Description", *, parent=None, icon=None): return popup( parent, title, details, icon, buttons=[("Ok", None, "default")], ) def ask_ok_cancel(title="Title", details="Description", *, parent=None, icon=None): return popup( parent, title, details, icon, buttons=[("Ok", True, "accent"), ("Cancel", None)], ) def ask_yes_no(title="Title", details="Description", *, parent=None, icon=None): return popup( parent, title, details, icon, buttons=[("Yes", True, "accent"), ("No", False)], ) def ask_yes_no_cancel(title="Title", details="Description", *, parent=None, icon=None): return popup( parent, title, details, icon, buttons=[("Yes", True, "accent"), ("No", False), ("Cancel", None)], ) def ask_retry_cancel(title="Title", details="Description", *, parent=None, icon=None): return popup( parent, title, details, icon, buttons=[("Retry", True, "accent"), ("Cancel", None)], ) def ask_allow_block(title="Title", details="Description", *, parent=None, icon=None): return popup( parent, title, details, icon, buttons=[("Allow", True, "accent"), ("Block", False)], ) if __name__ == "__main__": window = tk.Tk() window.tk.call("source", "sun-valley.tcl") window.tk.call("set_theme", "dark") window.geometry("600x600") show_message("No WiFi connection", "Check your connection and try again.") window.mainloop()
27.615385
87
0.591922
0
0
0
0
0
0
0
0
621
0.123558
225c724f4896f9bddbbf401bf1a3929af43df247
94
py
Python
enthought/endo/docerror.py
enthought/etsproxy
4aafd628611ebf7fe8311c9d1a0abcf7f7bb5347
[ "BSD-3-Clause" ]
3
2016-12-09T06:05:18.000Z
2018-03-01T13:00:29.000Z
enthought/endo/docerror.py
enthought/etsproxy
4aafd628611ebf7fe8311c9d1a0abcf7f7bb5347
[ "BSD-3-Clause" ]
1
2020-12-02T00:51:32.000Z
2020-12-02T08:48:55.000Z
enthought/endo/docerror.py
enthought/etsproxy
4aafd628611ebf7fe8311c9d1a0abcf7f7bb5347
[ "BSD-3-Clause" ]
null
null
null
# proxy module from __future__ import absolute_import from etsdevtools.endo.docerror import *
23.5
39
0.840426
0
0
0
0
0
0
0
0
14
0.148936
225d1d06e227d6a8a3242fe225e574042e91441e
12,591
py
Python
troposphere/kendra.py
marinpurgar/troposphere
ec35854000ddfd5e2eecd251d5ecaf31979bd2d1
[ "BSD-2-Clause" ]
null
null
null
troposphere/kendra.py
marinpurgar/troposphere
ec35854000ddfd5e2eecd251d5ecaf31979bd2d1
[ "BSD-2-Clause" ]
null
null
null
troposphere/kendra.py
marinpurgar/troposphere
ec35854000ddfd5e2eecd251d5ecaf31979bd2d1
[ "BSD-2-Clause" ]
null
null
null
# Copyright (c) 2012-2020, Mark Peek <mark@peek.org> # All rights reserved. # # See LICENSE file for full license. # # *** Do not modify - this file is autogenerated *** # Resource specification version: 18.6.0 from . import AWSObject from . import AWSProperty from . import Tags from .validators import boolean from .validators import integer class AclConfiguration(AWSProperty): props = { 'AllowedGroupsColumnName': (basestring, True), } class ChangeDetectingColumns(AWSProperty): props = { 'ChangeDetectingColumns': ([basestring], False), } class DataSourceToIndexFieldMapping(AWSProperty): props = { 'DataSourceFieldName': (basestring, True), 'DateFieldFormat': (basestring, False), 'IndexFieldName': (basestring, True), } class DataSourceToIndexFieldMappingList(AWSProperty): props = { 'DataSourceToIndexFieldMappingList': ([DataSourceToIndexFieldMapping], False), } class ColumnConfiguration(AWSProperty): props = { 'ChangeDetectingColumns': (ChangeDetectingColumns, True), 'DocumentDataColumnName': (basestring, True), 'DocumentIdColumnName': (basestring, True), 'DocumentTitleColumnName': (basestring, False), 'FieldMappings': (DataSourceToIndexFieldMappingList, False), } class ConnectionConfiguration(AWSProperty): props = { 'DatabaseHost': (basestring, True), 'DatabaseName': (basestring, True), 'DatabasePort': (integer, True), 'SecretArn': (basestring, True), 'TableName': (basestring, True), } class DataSourceVpcConfiguration(AWSProperty): props = { 'SecurityGroupIds': ([basestring], True), 'SubnetIds': ([basestring], True), } class SqlConfiguration(AWSProperty): props = { 'QueryIdentifiersEnclosingOption': (basestring, False), } class DatabaseConfiguration(AWSProperty): props = { 'AclConfiguration': (AclConfiguration, False), 'ColumnConfiguration': (ColumnConfiguration, True), 'ConnectionConfiguration': (ConnectionConfiguration, True), 'DatabaseEngineType': (basestring, True), 'SqlConfiguration': (SqlConfiguration, False), 'VpcConfiguration': (DataSourceVpcConfiguration, False), } class DataSourceInclusionsExclusionsStrings(AWSProperty): props = { 'DataSourceInclusionsExclusionsStrings': ([basestring], False), } class OneDriveUserList(AWSProperty): props = { 'OneDriveUserList': ([basestring], False), } class S3Path(AWSProperty): props = { 'Bucket': (basestring, True), 'Key': (basestring, True), } class OneDriveUsers(AWSProperty): props = { 'OneDriveUserList': (OneDriveUserList, False), 'OneDriveUserS3Path': (S3Path, False), } class OneDriveConfiguration(AWSProperty): props = { 'ExclusionPatterns': (DataSourceInclusionsExclusionsStrings, False), 'FieldMappings': (DataSourceToIndexFieldMappingList, False), 'InclusionPatterns': (DataSourceInclusionsExclusionsStrings, False), 'OneDriveUsers': (OneDriveUsers, True), 'SecretArn': (basestring, True), 'TenantDomain': (basestring, True), } class AccessControlListConfiguration(AWSProperty): props = { 'KeyPath': (basestring, False), } class DocumentsMetadataConfiguration(AWSProperty): props = { 'S3Prefix': (basestring, False), } class S3DataSourceConfiguration(AWSProperty): props = { 'AccessControlListConfiguration': (AccessControlListConfiguration, False), 'BucketName': (basestring, True), 'DocumentsMetadataConfiguration': (DocumentsMetadataConfiguration, False), 'ExclusionPatterns': (DataSourceInclusionsExclusionsStrings, False), 'InclusionPrefixes': (DataSourceInclusionsExclusionsStrings, False), } class SalesforceChatterFeedIncludeFilterTypes(AWSProperty): props = { 'SalesforceChatterFeedIncludeFilterTypes': ([basestring], False), } class SalesforceChatterFeedConfiguration(AWSProperty): props = { 'DocumentDataFieldName': (basestring, True), 'DocumentTitleFieldName': (basestring, False), 'FieldMappings': (DataSourceToIndexFieldMappingList, False), 'IncludeFilterTypes': (SalesforceChatterFeedIncludeFilterTypes, False), } class SalesforceCustomKnowledgeArticleTypeConfiguration(AWSProperty): props = { 'DocumentDataFieldName': (basestring, True), 'DocumentTitleFieldName': (basestring, False), 'FieldMappings': (DataSourceToIndexFieldMappingList, False), 'Name': (basestring, True), } class SalesforceCustomKnowledgeArticleTypeConfigurationList(AWSProperty): props = { 'SalesforceCustomKnowledgeArticleTypeConfigurationList': ([SalesforceCustomKnowledgeArticleTypeConfiguration], False), } class SalesforceKnowledgeArticleStateList(AWSProperty): props = { 'SalesforceKnowledgeArticleStateList': ([basestring], False), } class SalesforceStandardKnowledgeArticleTypeConfiguration(AWSProperty): props = { 'DocumentDataFieldName': (basestring, True), 'DocumentTitleFieldName': (basestring, False), 'FieldMappings': (DataSourceToIndexFieldMappingList, False), } class SalesforceKnowledgeArticleConfiguration(AWSProperty): props = { 'CustomKnowledgeArticleTypeConfigurations': (SalesforceCustomKnowledgeArticleTypeConfigurationList, False), 'IncludedStates': (SalesforceKnowledgeArticleStateList, True), 'StandardKnowledgeArticleTypeConfiguration': (SalesforceStandardKnowledgeArticleTypeConfiguration, False), } class SalesforceStandardObjectAttachmentConfiguration(AWSProperty): props = { 'DocumentTitleFieldName': (basestring, False), 'FieldMappings': (DataSourceToIndexFieldMappingList, False), } class SalesforceStandardObjectConfiguration(AWSProperty): props = { 'DocumentDataFieldName': (basestring, True), 'DocumentTitleFieldName': (basestring, False), 'FieldMappings': (DataSourceToIndexFieldMappingList, False), 'Name': (basestring, True), } class SalesforceStandardObjectConfigurationList(AWSProperty): props = { 'SalesforceStandardObjectConfigurationList': ([SalesforceStandardObjectConfiguration], False), } class SalesforceConfiguration(AWSProperty): props = { 'ChatterFeedConfiguration': (SalesforceChatterFeedConfiguration, False), 'CrawlAttachments': (boolean, False), 'ExcludeAttachmentFilePatterns': (DataSourceInclusionsExclusionsStrings, False), 'IncludeAttachmentFilePatterns': (DataSourceInclusionsExclusionsStrings, False), 'KnowledgeArticleConfiguration': (SalesforceKnowledgeArticleConfiguration, False), 'SecretArn': (basestring, True), 'ServerUrl': (basestring, True), 'StandardObjectAttachmentConfiguration': (SalesforceStandardObjectAttachmentConfiguration, False), 'StandardObjectConfigurations': (SalesforceStandardObjectConfigurationList, False), } class ServiceNowKnowledgeArticleConfiguration(AWSProperty): props = { 'CrawlAttachments': (boolean, False), 'DocumentDataFieldName': (basestring, True), 'DocumentTitleFieldName': (basestring, False), 'ExcludeAttachmentFilePatterns': (DataSourceInclusionsExclusionsStrings, False), 'FieldMappings': (DataSourceToIndexFieldMappingList, False), 'IncludeAttachmentFilePatterns': (DataSourceInclusionsExclusionsStrings, False), } class ServiceNowServiceCatalogConfiguration(AWSProperty): props = { 'CrawlAttachments': (boolean, False), 'DocumentDataFieldName': (basestring, True), 'DocumentTitleFieldName': (basestring, False), 'ExcludeAttachmentFilePatterns': (DataSourceInclusionsExclusionsStrings, False), 'FieldMappings': (DataSourceToIndexFieldMappingList, False), 'IncludeAttachmentFilePatterns': (DataSourceInclusionsExclusionsStrings, False), } class ServiceNowConfiguration(AWSProperty): props = { 'HostUrl': (basestring, True), 'KnowledgeArticleConfiguration': (ServiceNowKnowledgeArticleConfiguration, False), 'SecretArn': (basestring, True), 'ServiceCatalogConfiguration': (ServiceNowServiceCatalogConfiguration, False), 'ServiceNowBuildVersion': (basestring, True), } class SharePointConfiguration(AWSProperty): props = { 'CrawlAttachments': (boolean, False), 'DocumentTitleFieldName': (basestring, False), 'ExclusionPatterns': (DataSourceInclusionsExclusionsStrings, False), 'FieldMappings': (DataSourceToIndexFieldMappingList, False), 'InclusionPatterns': (DataSourceInclusionsExclusionsStrings, False), 'SecretArn': (basestring, True), 'SharePointVersion': (basestring, True), 'Urls': ([basestring], True), 'UseChangeLog': (boolean, False), 'VpcConfiguration': (DataSourceVpcConfiguration, False), } class DataSourceConfiguration(AWSProperty): props = { 'DatabaseConfiguration': (DatabaseConfiguration, False), 'OneDriveConfiguration': (OneDriveConfiguration, False), 'S3Configuration': (S3DataSourceConfiguration, False), 'SalesforceConfiguration': (SalesforceConfiguration, False), 'ServiceNowConfiguration': (ServiceNowConfiguration, False), 'SharePointConfiguration': (SharePointConfiguration, False), } class DataSource(AWSObject): resource_type = "AWS::Kendra::DataSource" props = { 'DataSourceConfiguration': (DataSourceConfiguration, True), 'Description': (basestring, False), 'IndexId': (basestring, True), 'Name': (basestring, True), 'RoleArn': (basestring, True), 'Schedule': (basestring, False), 'Tags': (Tags, False), 'Type': (basestring, True), } class Faq(AWSObject): resource_type = "AWS::Kendra::Faq" props = { 'Description': (basestring, False), 'FileFormat': (basestring, False), 'IndexId': (basestring, True), 'Name': (basestring, True), 'RoleArn': (basestring, True), 'S3Path': (S3Path, True), 'Tags': (Tags, False), } class CapacityUnitsConfiguration(AWSProperty): props = { 'QueryCapacityUnits': (integer, True), 'StorageCapacityUnits': (integer, True), } class ValueImportanceItem(AWSProperty): props = { 'Key': (basestring, False), 'Value': (integer, False), } class ValueImportanceItems(AWSProperty): props = { 'ValueImportanceItems': ([ValueImportanceItem], False), } class Relevance(AWSProperty): props = { 'Duration': (basestring, False), 'Freshness': (boolean, False), 'Importance': (integer, False), 'RankOrder': (basestring, False), 'ValueImportanceItems': (ValueImportanceItems, False), } class Search(AWSProperty): props = { 'Displayable': (boolean, False), 'Facetable': (boolean, False), 'Searchable': (boolean, False), 'Sortable': (boolean, False), } class DocumentMetadataConfiguration(AWSProperty): props = { 'Name': (basestring, True), 'Relevance': (Relevance, False), 'Search': (Search, False), 'Type': (basestring, True), } class DocumentMetadataConfigurationList(AWSProperty): props = { 'DocumentMetadataConfigurationList': ([DocumentMetadataConfiguration], False), } class ServerSideEncryptionConfiguration(AWSProperty): props = { 'KmsKeyId': (basestring, False), } class Index(AWSObject): resource_type = "AWS::Kendra::Index" props = { 'CapacityUnits': (CapacityUnitsConfiguration, False), 'Description': (basestring, False), 'DocumentMetadataConfigurations': (DocumentMetadataConfigurationList, False), 'Edition': (basestring, True), 'Name': (basestring, True), 'RoleArn': (basestring, True), 'ServerSideEncryptionConfiguration': (ServerSideEncryptionConfiguration, False), 'Tags': (Tags, False), }
30.194245
76
0.669685
12,113
0.962036
0
0
0
0
0
0
3,144
0.249702
225fee4b672c69f3b564170c5c438a29025400e1
3,046
py
Python
cv2/wxPython-CV-widget/main.py
whitmans-max/python-examples
881a8f23f0eebc76816a0078e19951893f0daaaa
[ "MIT" ]
140
2017-02-21T22:49:04.000Z
2022-03-22T17:51:58.000Z
cv2/wxPython-CV-widget/main.py
whitmans-max/python-examples
881a8f23f0eebc76816a0078e19951893f0daaaa
[ "MIT" ]
5
2017-12-02T19:55:00.000Z
2021-09-22T23:18:39.000Z
cv2/wxPython-CV-widget/main.py
whitmans-max/python-examples
881a8f23f0eebc76816a0078e19951893f0daaaa
[ "MIT" ]
79
2017-01-25T10:53:33.000Z
2022-03-11T16:13:57.000Z
import wx import cv2 #---------------------------------------------------------------------- # Panel to display image from camera #---------------------------------------------------------------------- class WebcamPanel(wx.Window): # wx.Panel, wx.Control def __init__(self, parent, camera, fps=15, flip=False): wx.Window.__init__(self, parent) # remember arguments self.camera = camera self.fps = fps self.flip = flip # get frame size ret_value, frame = self.camera.read() height, width = frame.shape[:2] # resize panel with camera image self.SetSize( (width, height) ) #self.SetMinSize( (width, height) ) # resize main window self.GetParent().GetParent().SetSize( (width, height+37) ) # wymaga poprawki aby nie trzeba bylo dawac +37 #self.GetGrandParent().SetSize( (width, height+25) ) #self.GetTopLevelParent().SetSize( (width, height+25) ) # wrong parent frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) if self.flip: frame = cv2.flip(frame, 1) # create bitmap with frame self.bmp = wx.BitmapFromBuffer(width, height, frame) # timer to refresh frames self.timer = wx.Timer(self) self.timer.Start(1000./fps) # add functions to events self.Bind(wx.EVT_PAINT, self.OnPaint) # run when it is needed self.Bind(wx.EVT_TIMER, self.NextFrame) # run by timer def OnPaint(self, event): dc = wx.BufferedPaintDC(self) dc.DrawBitmap(self.bmp, 0, 0) def NextFrame(self, event): ret_value, frame = self.camera.read() if ret_value: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) if self.flip: frame = cv2.flip(frame, 1) self.bmp.CopyFromBuffer(frame) self.Refresh() #---------------------------------------------------------------------- # Main Window #---------------------------------------------------------------------- class MainWindow(wx.Frame): def __init__(self, camera, fps=10): wx.Frame.__init__(self, None) self.panel = wx.Panel(self, -1) # add sizer self.sizer = wx.BoxSizer(wx.VERTICAL) self.panel.SetSizer(self.sizer) # add button self.button = wx.Button(self.panel, label="CAPTURE") self.button.Bind(wx.EVT_BUTTON, self.OnButton) self.sizer.Add(self.button, 0, wx.EXPAND) # add panel with webcam image self.webcampanel = WebcamPanel(self.panel, camera) self.sizer.Add(self.webcampanel, 1, wx.EXPAND) #self.sizer.Layout() #self.webcampanel.Layout() #self.Fit() self.Show() def OnButton(self, event): print("TODO: save image in file") #---------------------------------------------------------------------- camera = cv2.VideoCapture(0) app = wx.App() MainWindow(camera) app.MainLoop()
30.158416
114
0.520026
2,512
0.824688
0
0
0
0
0
0
980
0.321733
2260413d47cac288ecaeb49a5d64f3b2f805bd94
580
py
Python
src/inputbox.py
creikey/nuked-dashboard
250f8af29570bca69394fd1328343917fa067543
[ "MIT" ]
1
2019-01-17T14:20:32.000Z
2019-01-17T14:20:32.000Z
src/inputbox.py
creikey/nuked-dashboard
250f8af29570bca69394fd1328343917fa067543
[ "MIT" ]
3
2019-01-19T01:33:10.000Z
2019-01-19T01:35:35.000Z
src/inputbox.py
creikey/doomsdash
250f8af29570bca69394fd1328343917fa067543
[ "MIT" ]
null
null
null
import pynk from pynk.nkpygame import NkPygame class InputBox: def __init__(self, max_len): # self.max_len = pynk.ffi.new("int *", max_len) self.len = pynk.ffi.new("int *", 0) self.max_len = max_len # self.len = 0 self.cur_text = pynk.ffi.new("char[{}]".format(max_len)) def show(self, nkpy: NkPygame): pynk.lib.nk_edit_string(nkpy.ctx, pynk.lib.NK_EDIT_SIMPLE, self.cur_text, self.len, self.max_len, pynk.ffi.addressof( pynk.lib, "nk_filter_default"))
34.117647
90
0.575862
530
0.913793
0
0
0
0
0
0
97
0.167241
226058992d51da3d32320a685665a445a8020b91
1,454
py
Python
01_demo/MLP_test.py
wwww666/Tensorflow2.0
4df3a3784482bb8db7943ffb402b5822d5111ab9
[ "Apache-2.0" ]
2
2020-04-24T10:20:18.000Z
2021-02-25T03:53:07.000Z
01_demo/MLP_test.py
wwww666/Tensorflow2.0
4df3a3784482bb8db7943ffb402b5822d5111ab9
[ "Apache-2.0" ]
null
null
null
01_demo/MLP_test.py
wwww666/Tensorflow2.0
4df3a3784482bb8db7943ffb402b5822d5111ab9
[ "Apache-2.0" ]
null
null
null
''' 自定义实现双层网络,实现Relu激活函数 ''' import tensorflow as tf import numpy as np import sys sys.path.append("..") from softmax_test import train_che3 from tensorflow.keras.datasets.fashion_mnist import load_data # 加载数据集;转换类型并做归一化处理 (x_train,y_train),(x_test,y_test)=load_data() batch_size=256 x_train=tf.cast(x_train,tf.float32) x_test=tf.cast(x_test,tf.float32) x_train=x_train/255. x_test=x_test/255. train_iter=tf.data.Dataset.from_tensor_slices((x_train,y_train)).batch(batch_size) test_iter=tf.data.Dataset.from_tensor_slices((x_test,y_test)).batch(batch_size) # 定义输入,输出,隐藏层大小;初始化权重W,偏差b num_inputs,num_outputs,num_hiddens=784,10,256 W1=tf.Variable(tf.random.normal(shape=(num_inputs,num_hiddens),mean=0.0,stddev=0.01,dtype=tf.float32)) b1=tf.Variable(tf.zeros(num_hiddens,dtype=tf.float32)) W2=tf.Variable(tf.random.normal(shape=(num_hiddens,num_outputs),mean=0.0,stddev=0.01,dtype=tf.float32)) b2=tf.Variable(tf.random.normal([num_outputs],stddev=0.1)) # 定义relu激活函数 def relu(X): return tf.math.maximum(X,0) # 定义网络结构,返回softmax的分类概率结果 def net(X): X=tf.reshape(X,shape=[-1,num_inputs]) h=relu(X) return tf.math.softmax(tf.matmul(h,W2)+b2) # 定义损失函数 def loss(y_hat,y_true): return tf.losses.sparse_categorical_crossentropy(y_true,y_hat) # 训练模型,定义参数 num_epochs,lr=5,0.1 params=[W1,b1,W2,b2] # 采用上一个文件中的方法直接训练 train_che3(net,train_iter,test_iter,loss,num_epochs,batch_size,params,lr)
29.08
104
0.751719
0
0
0
0
0
0
0
0
373
0.223621
22613f6d8ef797b79ce3c0bf426040fa5c8d5f9b
1,704
py
Python
ticketnum/ticket_numbering.py
phizzl3/PrintShopScripts
26cf12d189836907370fd8671ef0d8eba7cd3411
[ "MIT" ]
1
2021-01-19T20:36:35.000Z
2021-01-19T20:36:35.000Z
ticketnum/ticket_numbering.py
phizzl3/counter-calculator
26cf12d189836907370fd8671ef0d8eba7cd3411
[ "MIT" ]
null
null
null
ticketnum/ticket_numbering.py
phizzl3/counter-calculator
26cf12d189836907370fd8671ef0d8eba7cd3411
[ "MIT" ]
null
null
null
""" A simple script for numbering nUp tickets for the print shop. """ def numbering_main() -> None: """ Gets numbering sequences for nUp ticket numbering. Gets the total number of tickets requested along with now many will fit on a sheet (n_up) as well as the starting ticket number and prints the ticket number groupings to the console. """ print('[ Ticket Numbering Assist ]'.center(40)) # Get ticket, sheet and numbering info total_requested = int(input('\n How many tickets do you need in total?: ')) n_up = int(input(' How many tickets will fit on a sheet?: ')) starting_number = int(input(' What number should we start with?: ')) # Do math & round up if needed total_sheets = total_requested // n_up final_tickets = total_requested if total_requested % n_up > 0: total_sheets += 1 final_tickets = total_sheets * n_up # Print totals to the console print('\n Final totals...') print(f' Total tickets Printed: {final_tickets}') print(f' Tickets per sheet: {n_up}') print(f' Total Sheets needed: {total_sheets}\n') print(' Here are your numbers...\n') # Get ending ticket number and set initial display number ending_number = starting_number + total_sheets - 1 display_number = 1 # Display to console for i in range(n_up): print( f' #{display_number:2}: Starting Number - {starting_number:4} | Ending Number - {ending_number:4}') starting_number = ending_number + 1 ending_number = starting_number + total_sheets - 1 display_number += 1 input('\n Press ENTER to return...') if __name__ == '__main__': numbering_main()
33.411765
111
0.662559
0
0
0
0
0
0
0
0
958
0.562207
2261d6d71d2909cadfc80285de61e3b9d29b7970
2,539
py
Python
emergent ferromagnetism near three-quarters filling in twisted bilayer graphene/scripts/myTerrain.py
aaronsharpe/publication_archives
aabf1a7899b81c43fc27bdd05094f5a84e509e90
[ "MIT" ]
null
null
null
emergent ferromagnetism near three-quarters filling in twisted bilayer graphene/scripts/myTerrain.py
aaronsharpe/publication_archives
aabf1a7899b81c43fc27bdd05094f5a84e509e90
[ "MIT" ]
null
null
null
emergent ferromagnetism near three-quarters filling in twisted bilayer graphene/scripts/myTerrain.py
aaronsharpe/publication_archives
aabf1a7899b81c43fc27bdd05094f5a84e509e90
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Mon May 15 21:32:17 2017 @author: Aaron Sharpe """ import numpy as np import os from matplotlib.colors import LinearSegmentedColormap def igorTerrain(n): n1 = np.around(n*25/256) n2 = np.around(n*37/256) n3 = np.around(n*100/256) n4 = np.around(n*150/256) r = np.zeros((n,3)) g = np.zeros((n,3)) b = np.zeros((n,3)) r[0:int(n1),1] = np.linspace(0.2,0,n1) r[int(n1)-1:int(n2),1] = np.linspace(0,0,(n2-n1)+1) r[int(n2)-1:int(n3),1] = np.linspace(0,1,(n3-n2)+1) r[int(n3)-1:int(n4),1] = np.linspace(1,.535,(n4-n3)+1) r[int(n4)-1:int(n),1] = np.linspace(.535,1,(n-n4)+1) r[:,2] = r[:,1] g[0:int(n1),1] = np.linspace(.2,.6,n1) g[int(n1)-1:int(n2),1] = np.linspace(.6,.8,(n2-n1)+1) g[int(n2)-1:int(n3),1] = np.linspace(.8,1,(n3-n2)+1) g[int(n3)-1:int(n4),1] = np.linspace(1,.356,(n4-n3)+1) g[int(n4)-1:int(n),1] = np.linspace(.356,1,(n-n4)+1) g[:,2] = g[:,1] b[0:int(n1),1] = np.linspace(.6,1,n1) b[int(n1)-1:int(n2),1] = np.linspace(1,.375,(n2-n1)+1) b[int(n2)-1:int(n3),1] = np.linspace(.375,.6,(n3-n2)+1) b[int(n3)-1:int(n4),1] = np.linspace(.6,.3,(n4-n3)+1) b[int(n4)-1:int(n),1] = np.linspace(.3,1,(n-n4)+1) b[:,2] = b[:,1] x = np.linspace(0,1,n) r[:,0] = x g[:,0] = x b[:,0] = x r = tuple(map(tuple,r)) g = tuple(map(tuple,g)) b = tuple(map(tuple,b)) cdict = {'red':r,'green':g,'blue':b} myTerrain = LinearSegmentedColormap('my_colormap', cdict) #print(myTerrain) return myTerrain def coldHot(trunclo,trunchi): CURRENT_DIR = os.path.dirname(__file__) file_path = os.path.join(CURRENT_DIR,'coldwarm.txt') mat = np.loadtxt(file_path) n = np.shape(mat[int(trunclo):-int(trunchi)])[0] rdat = mat[int(trunclo):-int(trunchi),0]/np.max(mat[int(trunclo):-int(trunchi),0]) gdat = mat[int(trunclo):-int(trunchi),1]/np.max(mat[int(trunclo):-int(trunchi),1]) bdat = mat[int(trunclo):-int(trunchi),2]/np.max(mat[int(trunclo):-int(trunchi),2]) r = np.zeros((n,3)) g = np.zeros((n,3)) b = np.zeros((n,3)) r[:,1] = rdat; r[:,2] = rdat g[:,1] = gdat; g[:,2] = gdat b[:,1] = bdat; b[:,2] = bdat x = np.linspace(0,1,n) r[:,0] = x g[:,0] = x b[:,0] = x r = tuple(map(tuple,r)) g = tuple(map(tuple,g)) b = tuple(map(tuple,b)) cdict = {'red':r,'green':g,'blue':b} myColdhot = LinearSegmentedColormap('my_colormap', cdict) return myColdhot
30.590361
86
0.54549
0
0
0
0
0
0
0
0
182
0.071682
226279b24caaedae28347564e963c2b64e533cf3
217
py
Python
datapackage_pipelines/generators/utilities.py
gperonato/datapackage-pipelines
72b98918db1c19590586a3a85c5b087227cbbc3b
[ "MIT" ]
109
2016-09-01T08:41:55.000Z
2021-11-10T10:08:35.000Z
datapackage_pipelines/generators/utilities.py
gperonato/datapackage-pipelines
72b98918db1c19590586a3a85c5b087227cbbc3b
[ "MIT" ]
144
2016-08-30T16:26:50.000Z
2021-04-18T09:06:12.000Z
datapackage_pipelines/generators/utilities.py
gperonato/datapackage-pipelines
72b98918db1c19590586a3a85c5b087227cbbc3b
[ "MIT" ]
34
2016-09-05T12:46:53.000Z
2022-03-05T01:53:49.000Z
def arg_to_step(arg): if isinstance(arg, str): return {'run': arg} else: return dict(zip(['run', 'parameters', 'cache'], arg)) def steps(*args): return [arg_to_step(arg) for arg in args]
21.7
61
0.59447
0
0
0
0
0
0
0
0
29
0.133641
2262f6ba6d8c2278a63ea0e571aa7725d2647bf8
11,843
py
Python
plugin/taskmage2/project/projects.py
willjp/vim-taskmage
adcf809ccf1768753eca4dadaf6279b34e8d5699
[ "BSD-2-Clause" ]
1
2017-11-28T14:12:03.000Z
2017-11-28T14:12:03.000Z
plugin/taskmage2/project/projects.py
willjp/vim-taskmage
adcf809ccf1768753eca4dadaf6279b34e8d5699
[ "BSD-2-Clause" ]
16
2017-08-13T18:01:26.000Z
2020-11-17T04:55:43.000Z
plugin/taskmage2/project/projects.py
willjp/vim-taskmage
adcf809ccf1768753eca4dadaf6279b34e8d5699
[ "BSD-2-Clause" ]
null
null
null
import os import shutil import tempfile from taskmage2.utils import filesystem, functional from taskmage2.asttree import asttree, renderers from taskmage2.parser import iostream, parsers from taskmage2.project import taskfiles class Project(object): def __init__(self, root='.'): """ Constructor. Args: path (str, optional): ``(ex: None, '/src/project/subdir/file.mtask', '/src/project', '/src/project/.taskmage' )`` Path to your projectroot, or a file/directory within your taskmage project root. .. code-block:: python '/src/project' '/src/project/subdir/file.mtask' '/src/project/.taskmage' """ self._root = None if root: self.load(root) def __repr__(self): """ Returns: str: ``<Project(path/to/project) at 0x7ff6b33106a0>`` """ if self.root: relpath = os.path.relpath(self.root) else: relpath = 'None' repr_ = '<Project({}) at {}>'.format(relpath, hex(id(self))) return repr_ def __hash__(self): hashstr = '<taskmage2.project.projects.Project({})>'.format(str(self.root)) return hash(hashstr) @classmethod def from_path(cls, filepath): """ Instantiates a new Project, loaded using `filepath`. Args: path (str): ``(ex: '/src/project/subdir/file.mtask', '/src/project', '/src/project/.taskmage' )`` Path to your projectroot, or a file/directory within your taskmage project root. .. code-block:: python '/src/project' '/src/project/subdir/file.mtask' '/src/project/.taskmage' """ project = Project(root=None) project.load(filepath) return project @property def root(self): """ The root directory of a project. Contains ``.taskmage`` directory. Returns: .. code-block:: python '/src/project' """ return self._root @classmethod def create(cls, root): """ Create a new taksmage project in directory `rootdir` . Args: rootdir (str): Path to the root of your taskmage project. Returns: str: project root directory """ root = format_rootpath(root) if os.path.exists(root): if not os.path.isdir(root): raise OSError( 'unable to create taskmage project, provided ' 'path exists and is not a directory. "{}"'.format(root) ) taskmage_dir = '{}/.taskmage'.format(root) filesystem.make_directories(taskmage_dir) return root @staticmethod def find(path): """ Returns: str: absolute path to taskmage project root """ path = filesystem.format_path(os.path.abspath(path)) # is path root if os.path.isdir('{}/.taskmage'.format(path)): return path # /src/project/.taskmage if os.path.basename(path) == '.taskmage': return os.path.dirname(path) # /src/project # /src/project/sub-path for parent_dir in filesystem.walk_parents(path): if os.path.isdir('{}/.taskmage'.format(parent_dir)): return parent_dir raise RuntimeError('unable to find taskmage project from path: {}'.format(path)) def load(self, path): """ Loads a taskmage project from a path. Args: path (str): ``(ex: '/src/project/subdir/file.mtask', '/src/project', '/src/project/.taskmage' )`` Path to your projectroot, or a file/directory within your taskmage project root. .. code-block:: python '/src/project' '/src/project/subdir/file.mtask' '/src/project/.taskmage' """ path = os.path.abspath(path) projectroot = self.find(path) self._root = projectroot def archive_completed(self, filepath=None): """ Archives all completed task-branches. Example: .. code-block:: ReStructuredText ## a,b, and c will be archived ## (entire task-branch completed) x a x b x c ## nothing will be archived ## (task-branch is not entirely completed) x a x b * c Args: filepath (str, optional): ``(ex: '/src/project/file.mtask' )`` Optionally, archive completed tasks in a single target file. """ if filepath is not None: self._archive_completed(filepath) else: # for every mtask file in the entire project... raise NotImplementedError('todo - archive completed tasks from all mtask files') def is_project_path(self, filepath): """ Test if a file is within this project. """ if filepath.startswith('{}/'.format(self.root)): return True return False def is_archived_path(self, filepath): """ Test if file is an archived mtask file. """ if filepath.startswith('{}/.taskmage/'.format(self.root)): return True return False def is_active_path(self, filepath): """ Test if file is an active (non-archived) mtask file. """ if self.is_project_path(filepath) and not self.is_archived_path(filepath): return True return False def get_archived_path(self, filepath): """ Returns filepath to corresponding archived mtask file's (from un-archived mtask file). """ if not self.is_project_path(filepath): msg = ('filepath not within current taskmage project. \n' 'project "{}"\n' 'filepath "{}\n').format(self.root, filepath) raise RuntimeError(msg) if self.is_archived_path(filepath): return filepath filepath = filesystem.format_path(filepath) relpath = filepath[len(self.root) + 1:] archived_path = '{}/.taskmage/{}'.format(self.root, relpath) return archived_path def get_active_path(self, filepath): """ Returns filepath to corresponding un-archived mtask file (from archived mtask file). """ if not self.is_project_path(filepath): raise RuntimeError( ('filepath not within current taskmage project. \n' 'project "{}"\n' 'filepath "{}\n').format(self.root, filepath) ) if not self.is_archived_path(filepath): return filepath filepath = filesystem.format_path(filepath) taskdir = '{}/.taskmage'.format(self.root) relpath = filepath[len(taskdir) + 1:] active_path = '{}/{}'.format(self.root, relpath) return active_path def get_counterpart(self, filepath): """ Returns active-path if archived-path, or inverse. """ if not self.is_project_path(filepath): raise RuntimeError( ('filepath not within current taskmage project. \n' 'project "{}"\n' 'filepath "{}\n').format(self.root, filepath) ) if self.is_archived_path(filepath): return self.get_active_path(filepath) else: return self.get_archived_path(filepath) def filter_taskfiles(self, filters): """ Returns a list of all taskfiles in project, filtered by provided `filters` . Args: filters (list): List of functions that accepts a :py:obj:`taskmage2.project.taskfiles.TaskFile` as an argument, and returns True (keep) or False (remove) Returns: Iterable: iterable of project taskfiles (after all filters applied to them). .. code-block:: python [ TaskFile('/path/to/todos/file1.mtask'), TaskFile('/path/to/todos/file2.mtask'), TaskFile('/path/to/todos/file3.mtask'), ... ] """ return functional.multifilter(filters, self.iter_taskfiles()) def iter_taskfiles(self): """ Iterates over all `*.mtask` files in project (both completed and uncompleted). Returns: Iterable: iterable of all project taskfiles .. code-block:: python [ TaskFile('/path/to/todos/file1.mtask'), TaskFile('/path/to/todos/file2.mtask'), TaskFile('/path/to/todos/file3.mtask'), ... ] """ for (root, dirnames, filenames) in os.walk(self.root): for filename in filenames: if not filename.endswith('.mtask'): continue filepath = '{}/{}'.format(root, filename) yield taskfiles.TaskFile(filepath) def _archive_completed(self, filepath): """ Args: filepath (str): absolute path to a .mtask file. """ (active_ast, archive_ast) = self._archive_completed_as_ast(filepath) archive_path = self.get_archived_path(filepath) tempdir = tempfile.mkdtemp() try: # create tempfile objects active_taskfile = taskfiles.TaskFile('{}/active.mtask'.format(tempdir)) archive_taskfile = taskfiles.TaskFile('{}/archive.mtask'.format(tempdir)) # write tempfiles active_taskfile.write(active_ast) archive_taskfile.write(archive_ast) # (if successful) overwrite real files active_taskfile.copyfile(filepath) archive_taskfile.copyfile(archive_path) finally: # delete tempdir if os.path.isdir(tempdir): shutil.rmtree(tempdir) def _archive_completed_as_ast(self, filepath): """ Returns: .. code-block:: python ( asttree.AbstractSyntaxTree(), # new active AST asttree.AbstractSyntaxTree(), # new archive AST ) """ # get active AST active_ast = self._get_mtaskfile_ast(filepath) # get archive AST archive_path = self.get_archived_path(filepath) archive_ast = self._get_mtaskfile_ast(archive_path) # perform archive archive_ast = active_ast.archive_completed(archive_ast) return (active_ast, archive_ast) def _get_mtaskfile_ast(self, filepath): if not os.path.isfile(filepath): return asttree.AbstractSyntaxTree() with open(filepath, 'r') as fd_src: fd = iostream.FileDescriptor(fd_src) AST = parsers.parse(fd, 'mtask') return AST def format_rootpath(path): """ Formats a project-directory path. Ensures path ends with `.taskmage` dir, and uses forward slashes exclusively. Returns: str: a new formatted path """ return functional.pipeline( path, [ _ensure_path_ends_with_dot_taskmage, filesystem.format_path, ] ) def _ensure_path_ends_with_dot_taskmage(path): if os.path.basename(path): return path return '{}/.taskmage'.format(path)
31.248021
125
0.548679
11,094
0.936756
816
0.068901
2,283
0.192772
0
0
5,769
0.487123
2263a0daf4d65f69a2ef1044b98efa275d27150f
1,611
py
Python
discord/ext/vbu/cogs/utils/converters/filtered_user.py
6days9weeks/Novus
a21157f15d7a07669cb75b3f023bd9eedf40e40e
[ "MIT" ]
2
2022-01-22T16:05:42.000Z
2022-01-22T16:06:07.000Z
discord/ext/vbu/cogs/utils/converters/filtered_user.py
6days9weeks/Novus
a21157f15d7a07669cb75b3f023bd9eedf40e40e
[ "MIT" ]
null
null
null
discord/ext/vbu/cogs/utils/converters/filtered_user.py
6days9weeks/Novus
a21157f15d7a07669cb75b3f023bd9eedf40e40e
[ "MIT" ]
null
null
null
from discord.ext import commands class FilteredUser(commands.UserConverter): """ A simple :class:`discord.ext.commands.UserConverter` that doesn't allow bots or the author to be passed into the function. """ def __init__(self, *, allow_author: bool = False, allow_bots: bool = False): super().__init__() self.allow_author = allow_author self.allow_bots = allow_bots async def convert(self, ctx: commands.Context, argument: str): m = await super().convert(ctx, argument) if self.allow_author is False and ctx.author.id == m.id: raise commands.BadArgument("You can't run this command on yourself.") if self.allow_bots is False and m.bot: raise commands.BadArgument("You can't run this command on bots.") return m class FilteredMember(commands.MemberConverter): """ A simple :class:`discord.ext.commands.MemberConverter` that doesn't allow bots or the author to be passed into the function. """ def __init__(self, *, allow_author: bool = False, allow_bots: bool = False): super().__init__() self.allow_author = allow_author self.allow_bots = allow_bots async def convert(self, ctx: commands.Context, argument: str): m = await super().convert(ctx, argument) if self.allow_author is False and ctx.author.id == m.id: raise commands.BadArgument("You can't run this command on yourself.") if self.allow_bots is False and m.bot: raise commands.BadArgument("You can't run this command on bots.") return m
38.357143
82
0.664184
1,572
0.975791
0
0
0
0
800
0.496586
442
0.274364
226437962414de4509b79b7a803dd031ebb02932
361
py
Python
py/2017/3B.py
pedrotari7/advent_of_code
98d5bc8d903435624a019a5702f5421d7b4ef8c8
[ "MIT" ]
null
null
null
py/2017/3B.py
pedrotari7/advent_of_code
98d5bc8d903435624a019a5702f5421d7b4ef8c8
[ "MIT" ]
null
null
null
py/2017/3B.py
pedrotari7/advent_of_code
98d5bc8d903435624a019a5702f5421d7b4ef8c8
[ "MIT" ]
null
null
null
a = 289326 coords = [(1, 0), (1, -1), (0, -1), (-1, -1), (-1, 0), (-1, 1), (0, 1), (1, 1)] x,y = (0,0) dx,dy = (1,0) M = {(x,y):1} while M[(x, y)] < a: x, y = x+dx, y+dy M[(x, y)] = sum([M[(x+ox, y+oy)] for ox,oy in coords if (x+ox,y+oy) in M]) if (x == y) or (x > 0 and x == 1-y) or (x < 0 and x == -y): dx, dy = -dy, dx print M[(x, y)]
24.066667
79
0.382271
0
0
0
0
0
0
0
0
0
0
226749a06c765ec39cc633d7c553b9c567992420
811
py
Python
q.py
Akatsuki1910/tokuron
2f5b05dc1c1395f30e738a0d5749ac32d46e5379
[ "MIT" ]
null
null
null
q.py
Akatsuki1910/tokuron
2f5b05dc1c1395f30e738a0d5749ac32d46e5379
[ "MIT" ]
null
null
null
q.py
Akatsuki1910/tokuron
2f5b05dc1c1395f30e738a0d5749ac32d46e5379
[ "MIT" ]
null
null
null
""" Q learning """ import numpy as np import plot Q = np.array(np.zeros([11, 3])) GAMMA = 0.9 ALPHA = 0.1 def action_select(s_s): """ action select """ return np.random.choice([i for i in range(1, 4) if i + s_s < 11]) for i in range(10000): S_STATE = 0 while S_STATE != 10: a_state = action_select(S_STATE) R = 0.001 s_state_dash = S_STATE + a_state if s_state_dash == 10: R = -10 else: s_state_dash = action_select(s_state_dash)+s_state_dash if s_state_dash == 10: R = 10 Q[S_STATE, a_state-1] = Q[S_STATE, a_state-1]+ALPHA * \ (R+GAMMA * Q[s_state_dash, np.argmax(Q[s_state_dash, ])] - Q[S_STATE, a_state-1]) S_STATE = s_state_dash plot.plot_func(Q)
21.918919
69
0.557337
0
0
0
0
0
0
0
0
39
0.048089
226990cee4efe4dbfe653dc0472db81ab56d2396
390
py
Python
videogame_project/videogame_app/models.py
cs-fullstack-fall-2018/django-form-post1-R3coTh3Cod3r
3e44b737425fe347757a50f30aa5df021057bfde
[ "Apache-2.0" ]
null
null
null
videogame_project/videogame_app/models.py
cs-fullstack-fall-2018/django-form-post1-R3coTh3Cod3r
3e44b737425fe347757a50f30aa5df021057bfde
[ "Apache-2.0" ]
null
null
null
videogame_project/videogame_app/models.py
cs-fullstack-fall-2018/django-form-post1-R3coTh3Cod3r
3e44b737425fe347757a50f30aa5df021057bfde
[ "Apache-2.0" ]
null
null
null
from django.db import models from django.utils import timezone class GameIdea(models.Model): name=models.CharField(max_length=100) genre= models.CharField(max_length=100) currentdate= models.DateTimeField(blank=True, null=True) def __str__(self): return self.name, self.genre def displayed(self): self.currentdate = timezone.now() self.save()
26
60
0.707692
326
0.835897
0
0
0
0
0
0
0
0
226a5ca3cf4445179f1951c272dd77866530bcb2
4,296
py
Python
tests/test_estimate_r.py
lo-hfk/epyestim
ca2ca928b744f324dade248c24a40872b69a5222
[ "MIT" ]
11
2021-01-10T22:37:26.000Z
2022-03-14T10:46:21.000Z
tests/test_estimate_r.py
lo-hfk/epyestim
ca2ca928b744f324dade248c24a40872b69a5222
[ "MIT" ]
null
null
null
tests/test_estimate_r.py
lo-hfk/epyestim
ca2ca928b744f324dade248c24a40872b69a5222
[ "MIT" ]
4
2021-03-26T23:43:03.000Z
2021-11-21T15:16:05.000Z
import unittest from datetime import date import numpy as np import pandas as pd from numpy.testing import assert_array_almost_equal from scipy.stats import gamma from epyestim.estimate_r import overall_infectivity, sum_by_split_dates, estimate_r, gamma_quantiles class EstimateRTest(unittest.TestCase): def test_overall_infectivity(self): infections_ts = pd.Series( [1, 3, 4, 7, 10, 3], index=pd.date_range(start='2020-01-01', end='2020-01-06') ) gt_distribution = np.array([0.0, 0.3, 0.4, 0.2, 0.0]) infectivity = overall_infectivity(infections_ts, gt_distribution) self.assertTrue(infectivity.index.equals(infections_ts.index)) assert_array_almost_equal( np.array([0.0, 0.3, 1.3, 2.6, 4.3, 6.6]), infectivity.values ) def test_split_dates(self): """ day 1 2 3 4 5 6 7 8 9 a 1 2 3 4 5 6 7 8 9 b 9 8 7 6 5 4 3 2 1 splits ^-------^---------^ sum(a) 10 35 sum(b) 30 15 """ df = pd.DataFrame({ 'a': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'b': [9, 8, 7, 6, 5, 4, 3, 2, 1] }, index=pd.date_range(start='2020-01-01', end='2020-01-09')) split_dates = [date(2020, 1, 1), date(2020, 1, 5), date(2020,1, 10)] sums = sum_by_split_dates(df, split_dates) self.assertTrue(df.index.equals(sums.index)) assert_array_almost_equal(np.array([10, 10, 10, 10, 35, 35, 35, 35, 35]), sums['a']) assert_array_almost_equal(np.array([30, 30, 30, 30, 15, 15, 15, 15, 15]), sums['b']) def test_estimate_r_rolling(self): infections_ts = pd.Series( [1, 3, 4, 7, 10, 3], index=pd.date_range(start='2020-01-01', end='2020-01-06') ) gt_distribution = np.array([0.0, 0.3, 0.4, 0.2, 0.1]) r_df = estimate_r( infections_ts=infections_ts, gt_distribution=gt_distribution, a_prior=1, b_prior=5, window_size=3, ) self.assertTrue(r_df.index.equals(pd.date_range(start='2020-01-03', end='2020-01-06'))) assert_array_almost_equal(np.array([9, 15, 22, 21]), r_df['a_posterior']) assert_array_almost_equal(np.array([0.555556, 0.227273, 0.117647, 0.070922]), r_df['b_posterior']) def test_estimate_r_boundary(self): infections_ts = pd.Series( [1, 3, 4, 7, 10, 3], index=pd.date_range(start='2020-01-01', end='2020-01-06') ) gt_distribution = np.array([0.0, 0.3, 0.4, 0.2, 0.1]) r_df = estimate_r( infections_ts=infections_ts, gt_distribution=gt_distribution, a_prior=1, b_prior=5, boundary_dates=[date(2020, 1, 1), date(2020, 1, 3), date(2020, 1, 6)] ) self.assertTrue(r_df.index.equals(pd.date_range(start='2020-01-01', end='2020-01-05'))) assert_array_almost_equal(np.array([5, 5, 22, 22, 22]), r_df['a_posterior']) assert_array_almost_equal(np.array([2, 2, 0.117647, 0.117647, 0.117647]), r_df['b_posterior']) def test_estimate_r_none_fail(self): infections_ts = pd.Series( [1, 3, 4, 7, 10, 3], index=pd.date_range(start='2020-01-01', end='2020-01-06') ) gt_distribution = np.array([0.0, 0.3, 0.4, 0.2, 0.1]) self.assertRaises(ValueError, lambda: estimate_r( infections_ts=infections_ts, gt_distribution=gt_distribution, a_prior=1, b_prior=5, )) def test_gamma_quantiles_equivalent(self): a = np.array([1.0, 2.0, 1.5, 2.5, 17.0, 13.0]) b = np.array([2.0, 3.2, 5.1, 0.2, 34.6, 23.0]) q = 0.3 df = pd.DataFrame({'a_posterior': a, 'b_posterior': b}) def get_r_quantile(q): def getter(row): return gamma(a=row['a_posterior'], scale=row['b_posterior']).ppf(q) return getter quantiles_slow = df.apply(get_r_quantile(q), axis=1) quantiles_fast = gamma_quantiles(q, df.a_posterior, df.b_posterior) assert_array_almost_equal(quantiles_slow, quantiles_fast) if __name__ == '__main__': unittest.main()
34.926829
106
0.571927
3,978
0.925978
0
0
0
0
0
0
514
0.119646
226bbbb2f75ccc059e2118af7b3e40bfe68eb6e9
3,355
py
Python
tests/imagenet_classification_test.py
SanggunLee/edgetpu
d3cf166783265f475c1ddba5883e150ee84f7bfe
[ "Apache-2.0" ]
2
2020-05-07T22:34:16.000Z
2020-09-03T20:30:37.000Z
tests/imagenet_classification_test.py
SanggunLee/edgetpu
d3cf166783265f475c1ddba5883e150ee84f7bfe
[ "Apache-2.0" ]
null
null
null
tests/imagenet_classification_test.py
SanggunLee/edgetpu
d3cf166783265f475c1ddba5883e150ee84f7bfe
[ "Apache-2.0" ]
1
2020-01-08T05:55:58.000Z
2020-01-08T05:55:58.000Z
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests image classification accuracy with ImageNet validation data set. Please download the validation image data from to edgetpu/test_data/imagenet/ """ import unittest from edgetpu.classification.engine import ClassificationEngine from PIL import Image from . import test_utils class TestImagenetClassification(unittest.TestCase): def _crop_image(self, image, cropping_fraction=0.75): """Crops an image in the center. Args: image: PIL image object. cropping_fraction: Fraction of cropped image. Returns: Cropped image as PIL image object. """ init_width, init_height = image.size new_width = round(init_width * cropping_fraction) new_height = round(init_height * cropping_fraction) width_offset = round((init_width - init_width * cropping_fraction) / 2.0) height_offset = round((init_height - init_height * cropping_fraction) / 2.0) return image.crop((width_offset, height_offset, width_offset + new_width, height_offset + new_height)) def _test_model(self, model_name, expected_top_1=None, expected_top_5=None): engine = ClassificationEngine(test_utils.test_data_path(model_name)) with open(test_utils.test_data_path('imagenet/val.txt'), 'r') as gt_file: gt = [line .strip().split(' ') for line in gt_file.readlines()] top_1_count = 0 top_5_count = 0 print('Running inference for model %s...' % model_name) for i in range(50000): label = int(gt[i][1]) + 1 image_name = 'imagenet/ILSVRC2012_val_%s.JPEG' % str(i + 1).zfill(8) with test_utils.test_image(image_name) as image: image = self._crop_image(image.convert('RGB')) prediction = engine.classify_with_image(image, threshold=0.0, top_k=5) if prediction[0][0] == label: top_1_count += 1 top_5_count += 1 else: for j in range(1, len(prediction)): if prediction[j][0] == label: top_5_count += 1 top_1_accuracy = top_1_count / 50000.0 top_5_accuracy = top_5_count / 50000.0 print('Top 1 accuracy: %.2f%%' % (top_1_accuracy * 100)) print('Top 5 accuracy: %.2f%%' % (top_5_accuracy * 100)) if expected_top_1 is not None: self.assertAlmostEqual(top_1_accuracy, expected_top_1, places=4) if expected_top_5 is not None: self.assertAlmostEqual(top_5_accuracy, expected_top_5, places=4) def test_mobilenet_v1(self): self._test_model('mobilenet_v1_1.0_224_quant_edgetpu.tflite', expected_top_1=0.6854, expected_top_5=0.8772) def test_mobilenet_v2(self): self._test_model('mobilenet_v2_1.0_224_quant_edgetpu.tflite', expected_top_1=0.6912, expected_top_5=0.8829) if __name__ == '__main__': unittest.main()
37.696629
80
0.701937
2,443
0.728167
0
0
0
0
0
0
1,147
0.341878
226d9e6adcc58d1700424bf4cff15de32eb71005
1,781
py
Python
11_testing_best_practices/generate_maze_faster.py
krother/maze_run
2860198a2af7d05609d043de1b582cc0070aac09
[ "MIT" ]
7
2017-05-02T12:23:03.000Z
2020-04-07T07:01:52.000Z
11_testing_best_practices/generate_maze_faster.py
fengshao007P/maze_run
2860198a2af7d05609d043de1b582cc0070aac09
[ "MIT" ]
null
null
null
11_testing_best_practices/generate_maze_faster.py
fengshao007P/maze_run
2860198a2af7d05609d043de1b582cc0070aac09
[ "MIT" ]
21
2016-02-26T10:26:16.000Z
2021-12-04T23:38:00.000Z
# Improved version of the code from chapter 03 # created in chapter 11 to accelerate execution import random XMAX, YMAX = 19, 16 def create_grid_string(dots, xsize, ysize): """ Creates a grid of size (xx, yy) with the given positions of dots. """ grid = "" for y in range(ysize): for x in range(xsize): grid += "." if (x, y) in dots else "#" grid += "\n" return grid def get_all_dot_positions(xsize, ysize): """Returns a list of (x, y) tuples covering all positions in a grid""" return [(x,y) for x in range(1, xsize-1) for y in range(1, ysize-1)] def get_neighbors(x, y): """Returns a list with the 8 neighbor positions of (x, y)""" return [ (x, y-1), (x, y+1), (x-1, y), (x+1, y), (x-1, y-1), (x+1, y-1), (x-1, y+1), (x+1, y+1) ] def generate_dot_positions(xsize, ysize): """Creates positions of dots for a random maze""" positions = get_all_dot_positions(xsize, ysize) random.shuffle(positions) dots = set() for x, y in positions: neighbors = get_neighbors(x, y) free = [nb in dots for nb in neighbors] if free.count(True) < 5: dots.add((x, y)) return dots def create_maze(xsize, ysize): """Returns a xsize*ysize maze as a string""" dots = generate_dot_positions(xsize, ysize) maze = create_grid_string(dots, xsize, ysize) return maze if __name__ == '__main__': dots = set(((1,1), (1,2), (1,3), (2,2), (3,1), (3,2), (3,3))) print(create_grid_string(dots, 5, 5)) positions = get_all_dot_positions(5, 5) print(create_grid_string(positions, 5, 5)) neighbors = get_neighbors(3, 2) print(create_grid_string(neighbors, 5, 5)) maze = create_maze(12, 7) print(maze)
25.811594
74
0.601909
0
0
0
0
0
0
0
0
424
0.238069
226ee0a94d2c674c5419d2b1671a6c420a52ce80
98
py
Python
flask-backend/create_database.py
amlannandy/OpenMF
da5f474bb3002084f3e5bc9ceb18b32efdf34107
[ "Apache-2.0" ]
null
null
null
flask-backend/create_database.py
amlannandy/OpenMF
da5f474bb3002084f3e5bc9ceb18b32efdf34107
[ "Apache-2.0" ]
null
null
null
flask-backend/create_database.py
amlannandy/OpenMF
da5f474bb3002084f3e5bc9ceb18b32efdf34107
[ "Apache-2.0" ]
null
null
null
from api.models.models import User from api import db, create_app db.create_all(app=create_app())
24.5
34
0.806122
0
0
0
0
0
0
0
0
0
0
226f3f6717063fd8afff828ee410784d07c44bf7
1,820
py
Python
src/UQpy/Distributions/baseclass/DistributionContinuous1D.py
marrov/UQpy
b04a267b3080e3d4d38e876547ba0d3b979734f3
[ "MIT" ]
132
2018-03-13T13:56:33.000Z
2022-03-21T13:59:17.000Z
src/UQpy/Distributions/baseclass/DistributionContinuous1D.py
marrov/UQpy
b04a267b3080e3d4d38e876547ba0d3b979734f3
[ "MIT" ]
140
2018-05-21T13:40:01.000Z
2022-03-29T14:18:01.000Z
src/UQpy/Distributions/baseclass/DistributionContinuous1D.py
marrov/UQpy
b04a267b3080e3d4d38e876547ba0d3b979734f3
[ "MIT" ]
61
2018-05-02T13:40:05.000Z
2022-03-06T11:31:21.000Z
import numpy as np import scipy.stats as stats from UQpy.Distributions.baseclass.Distribution import Distribution class DistributionContinuous1D(Distribution): """ Parent class for univariate continuous probability distributions. """ def __init__(self, **kwargs): super().__init__(**kwargs) @staticmethod def _check_x_dimension(x): """ Check the dimension of input x - must be an ndarray of shape (npoints,) or (npoints, 1) """ x = np.atleast_1d(x) if len(x.shape) > 2 or (len(x.shape) == 2 and x.shape[1] != 1): raise ValueError('Wrong dimension in x.') return x.reshape((-1,)) def _construct_from_scipy(self, scipy_name=stats.rv_continuous): self.cdf = lambda x: scipy_name.cdf(x=self._check_x_dimension(x), **self.params) self.pdf = lambda x: scipy_name.pdf(x=self._check_x_dimension(x), **self.params) self.log_pdf = lambda x: scipy_name.logpdf(x=self._check_x_dimension(x), **self.params) self.icdf = lambda x: scipy_name.ppf(q=self._check_x_dimension(x), **self.params) self.moments = lambda moments2return='mvsk': scipy_name.stats(moments=moments2return, **self.params) self.rvs = lambda nsamples=1, random_state=None: scipy_name.rvs( size=nsamples, random_state=random_state, **self.params).reshape((nsamples, 1)) def tmp_fit(dist, data): data = self._check_x_dimension(data) fixed_params = {} for key, value in dist.params.items(): if value is not None: fixed_params['f' + key] = value params_fitted = scipy_name.fit(data=data, **fixed_params) return dict(zip(dist.order_params, params_fitted)) self.fit = lambda data: tmp_fit(self, data)
45.5
108
0.647253
1,704
0.936264
0
0
351
0.192857
0
0
224
0.123077
226fb3b836b4a323bba46bf26d01dbf892dfb882
1,666
py
Python
bridge/models/basic/layers.py
JTT94/schrodinger_bridge
71841f2789c180a23d4b4641f160da5c0288a337
[ "MIT" ]
null
null
null
bridge/models/basic/layers.py
JTT94/schrodinger_bridge
71841f2789c180a23d4b4641f160da5c0288a337
[ "MIT" ]
null
null
null
bridge/models/basic/layers.py
JTT94/schrodinger_bridge
71841f2789c180a23d4b4641f160da5c0288a337
[ "MIT" ]
null
null
null
import torch from torch import nn import torch.nn.functional as F import math from functools import partial class MLP(torch.nn.Module): def __init__(self, input_dim, layer_widths, activate_final = False, activation_fn=F.relu): super(MLP, self).__init__() layers = [] prev_width = input_dim for layer_width in layer_widths: layers.append(torch.nn.Linear(prev_width, layer_width)) # # same init for everyone # torch.nn.init.constant_(layers[-1].weight, 0) prev_width = layer_width self.input_dim = input_dim self.layer_widths = layer_widths self.layers = torch.nn.ModuleList(layers) self.activate_final = activate_final self.activation_fn = activation_fn def forward(self, x): for i, layer in enumerate(self.layers[:-1]): x = self.activation_fn(layer(x)) x = self.layers[-1](x) if self.activate_final: x = self.activation_fn(x) return x class ConvEncoder(torch.nn.Module): def __init__(self, hidden_size=16, num_pixels=24, kernel_size=3, in_channels=3, out_channels=3, padding=0, stride=1): super().__init__() self.out_dim = ((num_pixels+2*padding-(kernel_size-1) - 1)//stride+1) self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size, padding=padding, stride=stride) self.linear1= torch.nn.Linear(self.out_dim**2*out_channels, hidden_size) def forward(self, x): x = self.conv1(x) x = x.flatten(start_dim=1) x = self.linear1(x) out = F.relu(x) return out
34.708333
121
0.630852
1,552
0.931573
0
0
0
0
0
0
73
0.043818
2270789e36e09bf77f3225fa068413436f325de3
10,920
py
Python
chessbot.py
UbiLabsChessbot/tensorflow_chessbot
5112d9213d0224dc7acc373a7048167b7e6da6ce
[ "MIT" ]
null
null
null
chessbot.py
UbiLabsChessbot/tensorflow_chessbot
5112d9213d0224dc7acc373a7048167b7e6da6ce
[ "MIT" ]
null
null
null
chessbot.py
UbiLabsChessbot/tensorflow_chessbot
5112d9213d0224dc7acc373a7048167b7e6da6ce
[ "MIT" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- # Finds submissions with chessboard images in them, # use a tensorflow convolutional neural network to predict pieces and return # a lichess analysis link and FEN diagram of chessboard import praw import collections import os import time from datetime import datetime from praw.helpers import submission_stream import requests import socket import re from helper_functions_chessbot import * import auth_config # for PRAW import tensorflow_chessbot # For neural network model ######################################################### # Setup # Set up praw chess_fen_bot = "ChessFenBot" # Login r = praw.Reddit(auth_config.USER_AGENT) # Login old-style due to Reddit politics r.login(auth_config.USERNAME, auth_config.PASSWORD, disable_warning=True) # Get accessor to subreddit subreddit = r.get_subreddit('chess+chessbeginners+AnarchyChess+betterchess') # How many submissions to read from initially submission_read_limit = 100 # How long to wait after replying to a post before continuing reply_wait_time = 10 # minimum seconds to wait between replies, will also rate-limit safely # Filename containing list of submission ids that # have already been processed, updated at end of program processed_filename = "submissions_already_processed.txt" # Submissions computer vision or prediction failed on failures_filename = "submission_failures.txt" # All responses id, fen + certainty responses_filename = "submission_responses.txt" # Response message template message_template = """[◕ _ ◕]^* I attempted to generate a [chessboard layout]({unaligned_fen_img_link}) from the posted image, with a certainty of **{certainty:.3f}%**. *{pithy_message}* - ◇ White to play : [Analysis]({lichess_analysis_w}) | [Editor]({lichess_editor_w}) `{fen_w}` - ◆ Black to play : [Analysis]({lichess_analysis_b}) | [Editor]({lichess_editor_b}) `{fen_b}` - > ▾ Links for when pieces are inverted on the board: > > White to play : [Analysis]({inverted_lichess_analysis_w}) | [Editor]({inverted_lichess_editor_w}) > `{inverted_fen_w}` > > Black to play : [Analysis]({inverted_lichess_analysis_b}) | [Editor]({inverted_lichess_editor_b}) > `{inverted_fen_b}` - --- ^(Yes I am a machine learning bot | ) [^(`How I work`)](http://github.com/Elucidation/tensorflow_chessbot 'Must go deeper') ^( | Reply with a corrected FEN to add to my next training dataset) """ ######################################################### # ChessBot Message Generation Functions def isPotentialChessboardTopic(sub): """if url is imgur link, or url ends in .png/.jpg/.gif""" if sub.url == None: return False return ('imgur' in sub.url or any([sub.url.lower().endswith(ending) for ending in ['.png', '.jpg', '.gif']])) def invert(fen): return ''.join(reversed(fen)) def generateMessage(fen, certainty, side): """Generate response message using FEN, certainty and side for flipping link order""" vals = {} # Holds template responses # Things that don't rely on black/white to play # FEN image link is aligned with screenshot, not side to play vals['unaligned_fen_img_link'] = 'http://www.fen-to-image.com/image/30/%s.png' % fen vals['certainty'] = certainty*100.0 # to percentage vals['pithy_message'] = getPithyMessage(certainty) if side == 'b': # Flip FEN if black to play, assumes image is flipped fen = invert(fen) inverted_fen = invert(fen) # Get castling status based on pieces being in initial positions or not castle_status = getCastlingStatus(fen) inverted_castle_status = getCastlingStatus(inverted_fen) # Fill out template and return vals['fen_w'] = "%s w %s -" % (fen, castle_status) vals['fen_b'] = "%s b %s -" % (fen, castle_status) vals['inverted_fen_w'] = "%s w %s -" % (inverted_fen, inverted_castle_status) vals['inverted_fen_b'] = "%s b %s -" % (inverted_fen, inverted_castle_status) vals['lichess_analysis_w'] = 'http://www.lichess.org/analysis/%s_w_%s' % (fen, castle_status) vals['lichess_analysis_b'] = 'http://www.lichess.org/analysis/%s_b_%s' % (fen, castle_status) vals['lichess_editor_w'] = 'http://www.lichess.org/editor/%s_w_%s' % (fen, castle_status) vals['lichess_editor_b'] = 'http://www.lichess.org/editor/%s_b_%s' % (fen, castle_status) vals['inverted_lichess_analysis_w'] = 'http://www.lichess.org/analysis/%s_w_%s' % (inverted_fen, inverted_castle_status) vals['inverted_lichess_analysis_b'] = 'http://www.lichess.org/analysis/%s_b_%s' % (inverted_fen, inverted_castle_status) vals['inverted_lichess_editor_w'] = 'http://www.lichess.org/editor/%s_w_%s' % (inverted_fen, inverted_castle_status) vals['inverted_lichess_editor_b'] = 'http://www.lichess.org/editor/%s_b_%s' % (inverted_fen, inverted_castle_status) return message_template.format(**vals) ######################################################### # PRAW Helper Functions def waitWithComments(sleep_time, segment=60): """Sleep for sleep_time seconds, printing to stdout every segment of time""" print("\t%s - %s seconds to go..." % (datetime.now(), sleep_time)) while sleep_time > segment: time.sleep(segment) # sleep in increments of 1 minute sleep_time -= segment print("\t%s - %s seconds to go..." % (datetime.now(), sleep_time)) time.sleep(sleep_time) def logInfoPerSubmission(submission, count, count_actual, is_processed=False): if ((time.time() - logInfoPerSubmission.last) > 120): print("\n\t---\n\t%s - %d processed submissions, %d read\n" % (datetime.now(), count_actual, count)) logInfoPerSubmission.last = time.time() is_proc = '' if is_processed: is_proc = ' P' try: print("#%d Submission(%s%s): %s" % (count, submission.id, is_proc, submission)) except UnicodeDecodeError as e: print("#%d Submission(%s%s): <ignoring unicode>" % (count, submission.id, is_proc)) logInfoPerSubmission.last = time.time() # 'static' variable def loadProcessed(processed_filename=processed_filename): if not os.path.isfile(processed_filename): print("%s - Starting new processed file" % datetime.now()) return set() else: print("Loading existing processed file...") with open(processed_filename,'r') as f: return set([x.strip() for x in f.readlines()]) def saveProcessed(already_processed, processed_filename=processed_filename): with open(processed_filename,'w') as f: for submission_id in already_processed: f.write("%s\n" % submission_id) print("%s - Saved processed ids to file" % datetime.now()) def addSubmissionToFailures(submission, failures_filename=failures_filename): with open(failures_filename,'a') as f: f.write("%s : %s | %s\n" % (submission.id, submission.title, submission.url)) print("%s - Saved failure to file" % datetime.now()) def addSubmissionToResponses(submission, fen, certainty, side, responses_filename=responses_filename): # Reverse fen if it's black to play, assumes board is flipped if side == 'b': fen = ''.join(reversed(fen)) with open(responses_filename,'a') as f: f.write("%s : %s | %s | %s %s %g\n" % (submission.id, submission.title, submission.url, fen, side, certainty)) print("%s - Saved response to file" % datetime.now()) ######################################################### # Main Script # Track commend ids that have already been processed successfully # Load list of already processed comment ids already_processed = loadProcessed() print("%s - Starting with %d already processed\n==========\n\n" % (datetime.now(), len(already_processed))) count = 0 count_actual = 0 running = True # Start up Tensorflow CNN with trained model predictor = tensorflow_chessbot.ChessboardPredictor() while running: # get submission stream try: submissions = submission_stream(r, subreddit, limit=submission_read_limit) # for each submission for submission in submissions: count += 1 # print out some debug info is_processed = submission.id in already_processed logInfoPerSubmission(submission, count, count_actual, is_processed) # Skip if already processed if is_processed: continue # check if submission title is a question if isPotentialChessboardTopic(submission): # Use CNN to make a prediction print("\n---\nImage URL: %s" % submission.url) fen, certainty = predictor.makePrediction(submission.url) if fen is None: print("> %s - Couldn't generate FEN, skipping..." % datetime.now()) # update & save list already_processed.add(submission.id) saveProcessed(already_processed) addSubmissionToFailures(submission) print("\n---\n") continue fen = shortenFEN(fen) # ex. '111pq11r' -> '3pq2r' print("Predicted FEN: %s" % fen) print("Certainty: %.4f%%" % (certainty*100)) # Get side from title or fen side = getSideToPlay(submission.title, fen) # Generate response message msg = generateMessage(fen, certainty, side) print("fen: %s\nside: %s\n" % (fen, side)) # respond, keep trying till success while True: try: print("> %s - Responding to %s: %s" % (datetime.now(), submission.id, submission)) # Reply with comment submission.add_comment(msg) # update & save list already_processed.add(submission.id) saveProcessed(already_processed) addSubmissionToResponses(submission, fen, certainty, side) count_actual += 1 print("\n---\n") # Wait after submitting to not overload waitWithComments(reply_wait_time) break except praw.errors.AlreadySubmitted as e: print("> %s - Already submitted skipping..." % datetime.now()) break except praw.errors.RateLimitExceeded as e: print("> {} - Rate Limit Error for commenting on {}, sleeping for {} before retrying...".format(datetime.now(), submission.id, e.sleep_time)) waitWithComments(e.sleep_time) # Handle errors except (socket.error, requests.exceptions.ReadTimeout, requests.packages.urllib3.exceptions.ReadTimeoutError, requests.exceptions.ConnectionError) as e: print("> %s - Connection error, resetting accessor, waiting 30 and trying again: %s" % (datetime.now(), e)) # saveProcessed(already_processed) time.sleep(30) continue except Exception as e: print("Unknown Error, continuing after 30:",e) time.sleep(30) continue except KeyboardInterrupt: print("Exiting...") running = False finally: saveProcessed(already_processed) print("%s - %d Processed total." % (datetime.now(),len(already_processed))) print("%s - Program Ended. %d replied / %d read in this session" % (datetime.now(), count_actual, count))
36.891892
154
0.677747
0
0
0
0
0
0
0
0
4,995
0.456999
2271553668c1d9c135110d311fde305c56e23bd6
1,557
py
Python
Tools/english_word/src/spider.py
pynickle/awesome-python-tools
e405fb8d9a1127ae7cd5bcbd6481da78f6f1fb07
[ "BSD-2-Clause" ]
21
2019-06-02T01:55:14.000Z
2022-01-08T22:35:31.000Z
Tools/english_word/src/spider.py
code-nick-python/awesome-daily-tools
e405fb8d9a1127ae7cd5bcbd6481da78f6f1fb07
[ "BSD-2-Clause" ]
3
2019-06-02T01:55:17.000Z
2019-06-14T12:32:06.000Z
Tools/english_word/src/spider.py
code-nick-python/awesome-daily-tools
e405fb8d9a1127ae7cd5bcbd6481da78f6f1fb07
[ "BSD-2-Clause" ]
16
2019-06-23T13:00:04.000Z
2021-09-18T06:09:58.000Z
import requests import re import time import random import pprint import os headers = {"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/77.0.3858.0 Safari/537.36"} def youdict(threadName, q): res = [] index = 0 url = q.get(timeout = 2) index += 1 r = requests.get(url, headers = headers, timeout = 5) html = str(r.content, encoding="utf-8").replace("\n", "").replace(" ", "").replace('<span class="yd-kw-suffix">[英语单词大全]</span>', "") words = re.findall('<div class="caption"><h3 style="margin-top: 10px;"><a style="color:#333;" target="_blank" href="/w/.*?">(.*?)</a>[ ]?</h3><p>(.*?)</p></div>', html) for word in words: res.append(word) if index%5 == 0: time.sleep(3 + random.random()) else: time.sleep(1 + random.random()) return res def hujiang(threadName, q): res = [] index = 0 url = q.get(timeout = 2) index += 1 r = requests.get(url, headers=headers, timeout=5) html = str(r.content, encoding="utf-8").replace("\n", "").replace(" ", "").replace('<span class="yd-kw-suffix">[英语单词大全]</span>', "") words = re.findall('<li class="clearfix"><a href="/ciku/(.*?)/" target="_blank">.*?</a><span>(.*?)</span></li>', html) for word in words: res.append(word) if index%5 == 0: time.sleep(3 + random.random()) else: time.sleep(1 + random.random()) return res if __name__ == "__main__": main()
32.4375
173
0.552987
0
0
0
0
0
0
0
0
529
0.334598
22727c318ff129b6243d715f6523dbfa7a528208
769
py
Python
NFCow/malls/migrations/0001_initial.py
jojoriveraa/titulacion-NFCOW
643f7f2cbe9c68d9343f38d12629720b12e9ce1e
[ "Apache-2.0" ]
null
null
null
NFCow/malls/migrations/0001_initial.py
jojoriveraa/titulacion-NFCOW
643f7f2cbe9c68d9343f38d12629720b12e9ce1e
[ "Apache-2.0" ]
11
2016-01-09T06:27:02.000Z
2016-01-10T05:21:05.000Z
NFCow/malls/migrations/0001_initial.py
jojoriveraa/titulacion-NFCOW
643f7f2cbe9c68d9343f38d12629720b12e9ce1e
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.9 on 2015-12-23 08:44 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Mall', fields=[ ('id', models.PositiveIntegerField(primary_key=True, serialize=False)), ('name', models.CharField(max_length=255)), ('address', models.CharField(max_length=255)), ('group', models.CharField(max_length=255)), ('image', models.ImageField(upload_to='malls')), ('postcode', models.PositiveIntegerField()), ], ), ]
27.464286
87
0.572172
614
0.79844
0
0
0
0
0
0
124
0.161248
22749bf06e02c8354fb9677be5d2215d3d9afe0c
16,406
py
Python
mmdnn/conversion/examples/tensorflow/extractor.py
ferriswym/MMdnn
dc204cdba58a6cba079816715ac766d94bd87732
[ "MIT" ]
null
null
null
mmdnn/conversion/examples/tensorflow/extractor.py
ferriswym/MMdnn
dc204cdba58a6cba079816715ac766d94bd87732
[ "MIT" ]
null
null
null
mmdnn/conversion/examples/tensorflow/extractor.py
ferriswym/MMdnn
dc204cdba58a6cba079816715ac766d94bd87732
[ "MIT" ]
null
null
null
#---------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. #---------------------------------------------------------------------------------------------- from __future__ import absolute_import import os import tensorflow as tf from tensorflow.contrib.slim.nets import vgg from tensorflow.contrib.slim.nets import inception from tensorflow.contrib.slim.nets import resnet_v1 from tensorflow.contrib.slim.nets import resnet_v2 from mmdnn.conversion.examples.tensorflow.models import inception_resnet_v2 from mmdnn.conversion.examples.tensorflow.models import mobilenet_v1 from mmdnn.conversion.examples.tensorflow.models import nasnet from mmdnn.conversion.examples.tensorflow.models.mobilenet import mobilenet_v2 from mmdnn.conversion.examples.tensorflow.models import inception_resnet_v1 from mmdnn.conversion.examples.tensorflow.models import test_rnn slim = tf.contrib.slim from mmdnn.conversion.examples.imagenet_test import TestKit from mmdnn.conversion.examples.extractor import base_extractor from mmdnn.conversion.common.utils import download_file # https://github.com/tensorflow/tensorflow/issues/24496 config = tf.ConfigProto() config.gpu_options.allow_growth = True class tensorflow_extractor(base_extractor): MMDNN_BASE_URL = 'http://mmdnn.eastasia.cloudapp.azure.com:89/models/' architecture_map = { 'vgg16' : { 'url' : 'http://download.tensorflow.org/models/vgg_16_2016_08_28.tar.gz', 'filename' : 'vgg_16.ckpt', 'builder' : lambda : vgg.vgg_16, 'arg_scope' : vgg.vgg_arg_scope, 'input' : lambda : tf.placeholder(name='input', dtype=tf.float32, shape=[None, 224, 224, 3]), 'num_classes' : 1000, }, 'vgg19' : { 'url' : 'http://download.tensorflow.org/models/vgg_19_2016_08_28.tar.gz', 'filename' : 'vgg_19.ckpt', 'builder' : lambda : vgg.vgg_19, 'arg_scope' : vgg.vgg_arg_scope, 'input' : lambda : tf.placeholder(name='input', dtype=tf.float32, shape=[None, 224, 224, 3]), 'num_classes' : 1000, }, 'inception_v1' : { 'url' : 'http://download.tensorflow.org/models/inception_v1_2016_08_28.tar.gz', 'filename' : 'inception_v1.ckpt', 'builder' : lambda : inception.inception_v1, 'arg_scope' : inception.inception_v3_arg_scope, 'input' : lambda : tf.placeholder(name='input', dtype=tf.float32, shape=[None, 224, 224, 3]), 'num_classes' : 1001, }, 'inception_v1_frozen' : { 'url' : 'https://storage.googleapis.com/download.tensorflow.org/models/inception_v1_2016_08_28_frozen.pb.tar.gz', 'filename' : 'inception_v1_2016_08_28_frozen.pb', 'tensor_out' : ['InceptionV1/Logits/Predictions/Reshape_1:0'], 'tensor_in' : ['input:0'], 'input_shape' : [[224, 224, 3]], # input_shape of the elem in tensor_in 'feed_dict' :lambda img: {'input:0':img}, 'num_classes' : 1001, }, 'inception_v3' : { 'url' : 'http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz', 'filename' : 'inception_v3.ckpt', 'builder' : lambda : inception.inception_v3, 'arg_scope' : inception.inception_v3_arg_scope, 'input' : lambda : tf.placeholder(name='input', dtype=tf.float32, shape=[None, 299, 299, 3]), 'num_classes' : 1001, }, 'inception_v3_frozen' : { 'url' : 'https://storage.googleapis.com/download.tensorflow.org/models/inception_v3_2016_08_28_frozen.pb.tar.gz', 'filename' : 'inception_v3_2016_08_28_frozen.pb', 'tensor_out' : ['InceptionV3/Predictions/Softmax:0'], 'tensor_in' : ['input:0'], 'input_shape' : [[299, 299, 3]], # input_shape of the elem in tensor_in 'feed_dict' :lambda img: {'input:0':img}, 'num_classes' : 1001, }, 'resnet_v1_50' : { 'url' : 'http://download.tensorflow.org/models/resnet_v1_50_2016_08_28.tar.gz', 'filename' : 'resnet_v1_50.ckpt', 'builder' : lambda : resnet_v1.resnet_v1_50, 'arg_scope' : resnet_v2.resnet_arg_scope, 'input' : lambda : tf.placeholder(name='input', dtype=tf.float32, shape=[None, 224, 224, 3]), 'num_classes' : 1000, }, 'resnet_v1_152' : { 'url' : 'http://download.tensorflow.org/models/resnet_v1_152_2016_08_28.tar.gz', 'filename' : 'resnet_v1_152.ckpt', 'builder' : lambda : resnet_v1.resnet_v1_152, 'arg_scope' : resnet_v2.resnet_arg_scope, 'input' : lambda : tf.placeholder(name='input', dtype=tf.float32, shape=[None, 224, 224, 3]), 'num_classes' : 1000, }, 'resnet_v2_50' : { 'url' : 'http://download.tensorflow.org/models/resnet_v2_50_2017_04_14.tar.gz', 'filename' : 'resnet_v2_50.ckpt', 'builder' : lambda : resnet_v2.resnet_v2_50, 'arg_scope' : resnet_v2.resnet_arg_scope, 'input' : lambda : tf.placeholder(name='input', dtype=tf.float32, shape=[None, 299, 299, 3]), 'num_classes' : 1001, }, 'resnet_v2_101' : { 'url' : 'http://download.tensorflow.org/models/resnet_v2_101_2017_04_14.tar.gz', 'filename' : 'resnet_v2_101.ckpt', 'builder' : lambda : resnet_v2.resnet_v2_101, 'arg_scope' : resnet_v2.resnet_arg_scope, 'input' : lambda : tf.placeholder(name='input', dtype=tf.float32, shape=[None, 299, 299, 3]), 'num_classes' : 1001, }, 'resnet_v2_152' : { 'url' : 'http://download.tensorflow.org/models/resnet_v2_152_2017_04_14.tar.gz', 'filename' : 'resnet_v2_152.ckpt', 'builder' : lambda : resnet_v2.resnet_v2_152, 'arg_scope' : resnet_v2.resnet_arg_scope, 'input' : lambda : tf.placeholder(name='input', dtype=tf.float32, shape=[None, 299, 299, 3]), 'num_classes' : 1001, }, 'resnet_v2_200' : { 'url' : 'http://download.tensorflow.org/models/resnet_v2_200_2017_04_14.tar.gz', 'filename' : 'resnet_v2_200.ckpt', 'builder' : lambda : resnet_v2.resnet_v2_200, 'arg_scope' : resnet_v2.resnet_arg_scope, 'input' : lambda : tf.placeholder(name='input', dtype=tf.float32, shape=[None, 299, 299, 3]), 'num_classes' : 1001, }, 'mobilenet_v1_1.0' : { 'url' : 'http://download.tensorflow.org/models/mobilenet_v1_1.0_224_2017_06_14.tar.gz', 'filename' : 'mobilenet_v1_1.0_224.ckpt', 'builder' : lambda : mobilenet_v1.mobilenet_v1, 'arg_scope' : mobilenet_v1.mobilenet_v1_arg_scope, 'input' : lambda : tf.placeholder(name='input', dtype=tf.float32, shape=[None, 224, 224, 3]), 'num_classes' : 1001, }, 'mobilenet_v1_1.0_frozen' : { 'url' : 'https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_1.0_224_frozen.tgz', 'filename' : 'mobilenet_v1_1.0_224/frozen_graph.pb', 'tensor_out' : ['MobilenetV1/Predictions/Softmax:0'], 'tensor_in' : ['input:0'], 'input_shape' : [[224, 224, 3]], # input_shape of the elem in tensor_in 'feed_dict' :lambda img: {'input:0':img}, 'num_classes' : 1001, }, 'mobilenet_v2_1.0_224':{ 'url' : 'https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_1.0_224.tgz', 'filename' : 'mobilenet_v2_1.0_224.ckpt', 'builder' : lambda : mobilenet_v2.mobilenet, 'arg_scope' : mobilenet_v2.training_scope, 'input' : lambda : tf.placeholder(name='input', dtype=tf.float32, shape=[None, 224, 224, 3]), 'num_classes' : 1001, }, 'inception_resnet_v2' : { 'url' : 'http://download.tensorflow.org/models/inception_resnet_v2_2016_08_30.tar.gz', 'filename' : 'inception_resnet_v2_2016_08_30.ckpt', 'builder' : lambda : inception_resnet_v2.inception_resnet_v2, 'arg_scope' : inception_resnet_v2.inception_resnet_v2_arg_scope, 'input' : lambda : tf.placeholder(name='input', dtype=tf.float32, shape=[None, 299, 299, 3]), 'num_classes' : 1001, }, 'nasnet-a_large' : { 'url' : 'https://storage.googleapis.com/download.tensorflow.org/models/nasnet-a_large_04_10_2017.tar.gz', 'filename' : 'model.ckpt', 'builder' : lambda : nasnet.build_nasnet_large, 'arg_scope' : nasnet.nasnet_large_arg_scope, 'input' : lambda : tf.placeholder(name='input', dtype=tf.float32, shape=[None, 331, 331, 3]), 'num_classes' : 1001, }, 'facenet' : { 'url' : MMDNN_BASE_URL + 'tensorflow/facenet/20180408-102900.zip', 'filename' : '20180408-102900/model-20180408-102900.ckpt-90', 'builder' : lambda : inception_resnet_v1.inception_resnet_v1, 'arg_scope' : inception_resnet_v1.inception_resnet_v1_arg_scope, 'input' : lambda : tf.placeholder(name='input', dtype=tf.float32, shape=[None, 160, 160, 3]), 'feed_dict' : lambda img: {'input:0':img,'phase_train:0':False}, 'num_classes' : 0, }, 'facenet_frozen' : { 'url' : MMDNN_BASE_URL + 'tensorflow/facenet/20180408-102900.zip', 'filename' : '20180408-102900/20180408-102900.pb', 'tensor_out' : ['InceptionResnetV1/Logits/AvgPool_1a_8x8/AvgPool:0'], 'tensor_in' : ['input:0','phase_train:0'], 'input_shape' : [[160, 160, 3],1], # input_shape of the elem in tensor_in 'feed_dict' : lambda img: {'input:0':img,'phase_train:0':False}, 'num_classes' : 0, }, 'rnn_lstm_gru_stacked': { 'url' : MMDNN_BASE_URL + 'tensorflow/tf_rnn/tf_rnn.zip', # Note this is just a model used for test, not a standard rnn model. 'filename' :'tf_rnn/tf_lstm_gru_stacked.ckpt', 'builder' :lambda: test_rnn.create_symbol, 'arg_scope' :test_rnn.dummy_arg_scope, 'input' :lambda: tf.placeholder(name='input', dtype=tf.int32, shape=[None, 150]), 'feed_dict' :lambda x:{'input:0': x}, 'num_classes' : 0 } } @classmethod def handle_checkpoint(cls, architecture, path): with slim.arg_scope(cls.architecture_map[architecture]['arg_scope']()): data_input = cls.architecture_map[architecture]['input']() logits, endpoints = cls.architecture_map[architecture]['builder']()( data_input, num_classes=cls.architecture_map[architecture]['num_classes'], is_training=False) if logits.op.type == 'Squeeze': labels = tf.identity(logits, name='MMdnn_Output') else: labels = tf.squeeze(logits, name='MMdnn_Output') init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) saver = tf.train.Saver() saver.restore(sess, path + cls.architecture_map[architecture]['filename']) save_path = saver.save(sess, path + "imagenet_{}.ckpt".format(architecture)) print("Model saved in file: %s" % save_path) import tensorflow.contrib.keras as keras keras.backend.clear_session() @classmethod def handle_frozen_graph(cls, architecture, path): return # raise NotImplementedError() @classmethod def get_frozen_para(cls, architecture): frozenname = architecture + '_frozen' tensor_in = list(map(lambda x:x.split(':')[0], cls.architecture_map[frozenname]['tensor_in'])) tensor_out = list(map(lambda x:x.split(':')[0], cls.architecture_map[frozenname]['tensor_out'])) return cls.architecture_map[frozenname]['filename'], cls.architecture_map[frozenname]['input_shape'], tensor_in, tensor_out @classmethod def download(cls, architecture, path="./"): if cls.sanity_check(architecture): architecture_file = download_file(cls.architecture_map[architecture]['url'], directory=path, auto_unzip=True) if not architecture_file: return None tf.reset_default_graph() if 'ckpt' in cls.architecture_map[architecture]['filename']: cls.handle_checkpoint(architecture, path) elif cls.architecture_map[architecture]['filename'].endswith('pb'): cls.handle_frozen_graph(architecture, path) else: raise ValueError("Unknown file name [{}].".format(cls.architecture_map[architecture]['filename'])) return architecture_file else: return None @classmethod def inference(cls, architecture, files, path, test_input_path, is_frozen=False): if is_frozen: architecture_ = architecture + "_frozen" else: architecture_ = architecture if cls.download(architecture_, path): import numpy as np if 'rnn' not in architecture_: func = TestKit.preprocess_func['tensorflow'][architecture] img = func(test_input_path) img = np.expand_dims(img, axis=0) input_data = img else: input_data = np.load(test_input_path) if is_frozen: tf_model_path = cls.architecture_map[architecture_]['filename'] with open(path + tf_model_path, 'rb') as f: serialized = f.read() tf.reset_default_graph() original_gdef = tf.GraphDef() original_gdef.ParseFromString(serialized) tf_output_name = cls.architecture_map[architecture_]['tensor_out'] tf_input_name = cls.architecture_map[architecture_]['tensor_in'] feed_dict = cls.architecture_map[architecture_]['feed_dict'] with tf.Graph().as_default() as g: tf.import_graph_def(original_gdef, name='') with tf.Session(graph = g, config=config) as sess: tf_out = sess.run(tf_output_name[0], feed_dict=feed_dict(input_data)) # temporarily think the num of out nodes is one predict = np.squeeze(tf_out) return predict else: with slim.arg_scope(cls.architecture_map[architecture]['arg_scope']()): data_input = cls.architecture_map[architecture]['input']() logits, endpoints = cls.architecture_map[architecture]['builder']()( data_input, num_classes=cls.architecture_map[architecture]['num_classes'], is_training=False) labels = tf.squeeze(logits) init = tf.global_variables_initializer() with tf.Session(config=config) as sess: sess.run(init) saver = tf.train.Saver() saver.restore(sess, path + cls.architecture_map[architecture]['filename']) predict = sess.run(logits, feed_dict = {data_input : input_data}) import tensorflow.contrib.keras as keras keras.backend.clear_session() predict = np.squeeze(predict) return predict else: return None
50.018293
146
0.581007
15,028
0.916006
0
0
5,199
0.316896
0
0
5,022
0.306108
22752bc484df5df4799f2011d63b6f5871537908
2,546
py
Python
nostrint/command_line.py
zevtyardt/no-strint
47583d55e3c4cd12f00f46902d2fd7d5138c3275
[ "MIT" ]
13
2019-03-13T04:14:45.000Z
2020-04-05T09:13:21.000Z
nostrint/command_line.py
zevtyardt/no-strint
47583d55e3c4cd12f00f46902d2fd7d5138c3275
[ "MIT" ]
null
null
null
nostrint/command_line.py
zevtyardt/no-strint
47583d55e3c4cd12f00f46902d2fd7d5138c3275
[ "MIT" ]
6
2019-03-22T04:48:59.000Z
2020-08-07T17:09:20.000Z
from redat import __version__ import argparse as _argparse import sys as _sys def CLI(): _parser = _argparse.ArgumentParser( description='simple str & int obfuscator (c) zvtyrdt.id', formatter_class=_argparse.RawTextHelpFormatter, version=__version__) _parser.add_argument('txt', metavar='STR | INT', nargs='*', help='strings or integers') _parser.add_argument('-i', '--infile', metavar='FILE', help='specify the file name to process') _parser.add_argument('-o', '--outfile', metavar='FILE', help='save the results as a file') _parser.add_argument('-w', '--with-space', action='store_true', help='generate output strings with spaces') _parser.add_argument('--obf', action='store_true', help='same as --rand-if, --remove-blanks, --indent\n--ignore-comments, --only-variable and --only-strint\n* default indentation is 1...') _parser.add_argument('-V', '--only-variable', action='store_true', help='obfuscate all variables in the source code (beta)') _parser.add_argument('-O', '--only-strint', action='store_true', help='just obfuscate strings and integers') _parser.add_argument('-e', '--encode', action='store_true', help='convert string to integer before obfuscate') _parser.add_argument('-s', '--stdout', action='store_true', help='add print function to output (string only)') _parser.add_argument('-x', '--exec', action='store_true', dest='_exec', help='make the output an executable script') _obfuscate = _parser.add_argument_group('additional', description='if the --only-string option is called') _obfuscate.add_argument('-r', '--rand-if', action='store_true', help='add a random if statement to the source code') _obfuscate.add_argument('-n', '--indent', help='Indentation to use', type=int) _obfuscate.add_argument('-b', '--remove-blanks', action='store_true', help='remove blank lines, instead of obfuscate') _obfuscate.add_argument('-c', '--ignore-comments', action='store_true', help='remove first block of comments as well') _verbosity = _parser.add_argument_group('verbosity / simulation') _verbosity.add_argument('-S', '--serialization', action='store_true', help='serialization of object data after being obscured') _verbosity.add_argument('-E', '--eval', action='store_true', dest='_eval', help='try running output (experimental)') _verbosity.add_argument('--verbose', action='store_true', help='verbose (debug)') _verbosity.add_argument('--debug', action='store_true', help='enable debug mode') return _parser
72.742857
193
0.710919
0
0
0
0
0
0
0
0
1,328
0.521603
22754cccad56e7c435e32fdb50e3fc9c09afbc92
15,435
py
Python
simple_lib.py
rcmorehead/simplanets
3d9b3d1273a4f1a32ce656bdf5e9d6c6c38e3f7b
[ "MIT" ]
null
null
null
simple_lib.py
rcmorehead/simplanets
3d9b3d1273a4f1a32ce656bdf5e9d6c6c38e3f7b
[ "MIT" ]
null
null
null
simple_lib.py
rcmorehead/simplanets
3d9b3d1273a4f1a32ce656bdf5e9d6c6c38e3f7b
[ "MIT" ]
null
null
null
""" Useful classes and functions for SIMPLE. """ import numpy as np import warnings import math from scipy import integrate r_sun_au = 0.004649 r_earth_r_sun = 0.009155 day_hrs = 24.0 #@profile def impact_parameter(a, e, i, w, r_star): """ Compute the impact parameter at for a transiting planet. Parameters ---------- a : int, float or numpy array Semimajor axis of planet's orbit in AU e : int, float or numpy array Eccentricity of planet. WARNING! This function breaks down at high eccentricity (>> 0.9), so be careful! i : int, float or numpy array Inclination of planet in degrees. 90 degrees is edge-on. w : int, float or numpy array Longitude of ascending node defined with respect to sky-plane. r_star : int, float or numpy array Radius of star in solar radii. Returns ------- b : float or numpy array The impact parameter, ie transit latitude in units of stellar radius. Examples -------- >>> impact_parameter(1, 0, 90, 0, 1) 1.3171077641937547e-14 >>> a = np.linspace(.1, 1.5, 3) >>> e = np.linspace(0, .9, 3) >>> i = np.linspace(89, 91, 3) >>> w = np.linspace(0, 360, 3) >>> r_star = np.linspace(0.1, 10, 3) >>> impact_parameter(a, e, i, w, r_star) array([ 3.75401300e+00, 1.66398961e-15, 1.06989371e-01]) Notes ----- Using Eqn. (7), Chap. 4, Page 56 of Exoplanets, edited by S. Seager. Tucson, AZ: University of Arizona Press, 2011, 526 pp. ISBN 978-0-8165-2945-2. """ return abs(a/(r_star * r_sun_au) * np.cos(np.radians(i)) * (1 - e**2) / (1 + e * np.sin(np.radians(w)))) #@profile def inclination(fund_plane, mutual_inc, node): """ Compute the inclination of a planet. Uses the law a spherical cosines to compute the sky plane of a orbit given a reference plane inclination, angle from reference plane (ie mutual inclination) and a nodal angle. Parameters ---------- fund_plane: int, float or numpy array Inclination of of the fundamental plane of the system in degrees with respect to the sky plane 90 degrees is edge-on. mutual_inc : int, float or numpy array Angle in degrees of the orbital plane of the planet with respect to the fundamental plane of the system. node : int, float or numpy array Rotation in degrees of the planet's orbit about the perpendicular of the reference plane. I.e. the longitude of the node with respect to the reference plane. Returns ------- i : float or numpy array The inclination of the planet's orbit with respect to the sky plane. Examples -------- >>> inclination(90, 3, 0) 87.0 >>> fun_i = np.linspace(80, 110, 3) >>> mi = np.linspace(0, 10, 3) >>> node = np.linspace(30,100,3) >>> inclination(fun_i, mi, node) array([ 80. , 92.87347869, 111.41738591]) Notes ----- See eqn. () in """ fund_plane = np.radians(fund_plane) mutual_inc = np.radians(mutual_inc) node = np.radians(node) return np.degrees(np.arccos(np.cos(fund_plane) * np.cos(mutual_inc) + np.sin(fund_plane) * np.sin(mutual_inc) * np.cos(node))) #@profile def semimajor_axis(period, mass): """ Compute the semimajor axis of an object. This is a simple implementation of the general form Kepler's Third law. Parameters ---------- period : int, float or numpy array The orbital period of the orbiting body in units of days. mass : int, float or array-like The mass of the central body (or mass sum) in units of solar mass. Returns ------- a : float or numpy array The semimajor axis in AU. Examples -------- >>> semimajor_axis(365.256363,1.00) 0.999985270598628 >>> semimajor_axis(np.linspace(1, 1000, 5),np.linspace(0.08, 4, 5)) array([ 0.00843254, 0.7934587 , 1.56461631, 2.33561574, 3.10657426]) """ return (((2.959E-4*mass)/(4*np.pi**2))*period**2.0) ** (1.0/3.0) #@profile def transit_depth(r_star, r_planet): """ One-line description Full description Parameters ---------- Returns ------- Examples -------- """ return ((r_planet * r_earth_r_sun)/r_star)**2 * 1e6 #@profile def transit_duration(p, a, e, i, w, b, r_star, r_planet): """ Compute the full (Q1-Q4) transit duration. Full description Parameters ---------- p : int, float or numpy array Period of planet orbit in days a : int, float or numpy array Semimajor axis of planet's orbit in AU e : int, float or numpy array Eccentricity of planet. WARNING! This function breaks down at high eccentricity (>> 0.9), so be careful! i : int, float or numpy array Inclination of planet in degrees. 90 degrees is edge-on. w : int, float or numpy array Longitude of ascending node defined with respect to sky-plane. b : int, float or numpy array Impact parameter of planet. r_star : int, float or numpy array Radius of star in solar radii. r_planet : int, float or numpy array Radius of planet in Earth radii Returns ------- T : float or numpy array The Q1-Q4 (full) transit duration of the planet in hours. Examples -------- Notes ----- Using Eqns. (15) and (16), Chap. 4, Page 58 of Exoplanets, edited by S. Seager. Tucson, AZ: University of Arizona Press, 2011, 526 pp. ISBN 978-0-8165-2945-2. """ #TODO Make this robust against b > 1 #warnings.simplefilter("always") #print "pars", p, a, e, i, w, b, r_star, r_planet #print "" #print (1 - (r_planet * r_earth_r_sun) / r_star)**2 - b**2 #print (1 - e**2) #print "" duration = np.where(e < 1.0, (p / np.pi * np.arcsin((r_star * r_sun_au) / a * 1 / np.sin(np.radians(i)) * np.sqrt((1 - (r_planet * r_earth_r_sun) / r_star)**2 - b**2)) * 1 / (1 + e*np.sin(np.radians(w))) * np.sqrt(1 - e**2)) * day_hrs, 0) return duration #@profile def snr(catalog): """ Calculate Signal to Noise ratio for a planet transit Full description Parameters ---------- Returns ------- Examples -------- """ return catalog['depth']/catalog['cdpp6'] * np.sqrt((catalog['days_obs'] / catalog['period']) * catalog['T']/6.0) #@profile def xi(catalog): """ One-line description Full description Parameters ---------- Returns ------- Examples -------- """ catalog.sort(order=['ktc_kepler_id', 'period']) p_in = np.roll(catalog['period'], 1) t_in = np.roll(catalog['T'], 1) kic_id = np.roll(catalog['ktc_kepler_id'], 1) idx = np.where(catalog['ktc_kepler_id'] == kic_id) P_ratio = catalog['period'][idx]/p_in[idx] D_ratio = t_in[idx]/catalog['T'][idx] #idx = np.where(P_ratio >= 1.0) #print P_ratio logxi = np.log10(D_ratio * P_ratio**(1./3.)) if logxi.size < 1: xi_fraction = 0.0 else: xi_fraction = logxi[logxi >= 0.0].size/float(logxi.size) return logxi, xi_fraction #@profile def multi_count(catalog, stars): """ One-line description Full description Parameters ---------- Returns ------- Examples -------- """ count = np.zeros(stars['ktc_kepler_id'].size) bincount = np.bincount(catalog['ktc_kepler_id']) bincount = bincount[bincount > 0] count[:bincount.size] = bincount return count #@profile def multies_only(catalog): unq, unq_idx, unq_cnt = np.unique(catalog['ktc_kepler_id'], return_inverse=True, return_counts=True) cnt_mask = unq_cnt > 1 cnt_idx, = np.nonzero(cnt_mask) idx_mask = np.in1d(unq_idx, cnt_idx) return catalog[idx_mask] def duration_anomaly(catalog): """ Returns T/T_nu where T is the transit duration and T_nu is the duration for a e = 0, b = 0 transit. Full description Parameters ---------- Returns ------- Examples -------- """ catalog['T_nu'] = (catalog['T'] / ((catalog['radius'] * r_sun_au * catalog['period']) /(np.pi * catalog['a']) * day_hrs)) return catalog #@profile def normed_duration(catalog): """ One-line description Full description Parameters ---------- Returns ------- Examples -------- """ return (catalog['T']/day_hrs)/(catalog['period'])**(1/3.0) def _anderson_ksamp_midrank(samples, Z, Zstar, k, n, N): """ Compute A2akN equation 7 of Scholz and Stephens. Parameters ---------- samples : sequence of 1-D array_like Array of sample arrays. Z : array_like Sorted array of all observations. Zstar : array_like Sorted array of unique observations. k : int Number of samples. n : array_like Number of observations in each sample. N : int Total number of observations. Returns ------- A2aKN : float The A2aKN statistics of Scholz and Stephens 1987. """ A2akN = 0. Z_ssorted_left = Z.searchsorted(Zstar, 'left') if N == Zstar.size: lj = 1. else: lj = Z.searchsorted(Zstar, 'right') - Z_ssorted_left Bj = Z_ssorted_left + lj / 2. for i in np.arange(0, k): s = np.sort(samples[i]) s_ssorted_right = s.searchsorted(Zstar, side='right') Mij = s_ssorted_right.astype(np.float) fij = s_ssorted_right - s.searchsorted(Zstar, 'left') Mij -= fij / 2. inner = lj / float(N) * (N * Mij - Bj * n[i])**2 / \ (Bj * (N - Bj) - N * lj / 4.) A2akN += inner.sum() / n[i] A2akN *= (N - 1.) / N return A2akN def _anderson_ksamp_right(samples, Z, Zstar, k, n, N): """ Compute A2akN equation 6 of Scholz & Stephens. Parameters ---------- samples : sequence of 1-D array_like Array of sample arrays. Z : array_like Sorted array of all observations. Zstar : array_like Sorted array of unique observations. k : int Number of samples. n : array_like Number of observations in each sample. N : int Total number of observations. Returns ------- A2KN : float The A2KN statistics of Scholz and Stephens 1987. """ A2kN = 0. lj = Z.searchsorted(Zstar[:-1], 'right') - Z.searchsorted(Zstar[:-1], 'left') Bj = lj.cumsum() for i in np.arange(0, k): s = np.sort(samples[i]) Mij = s.searchsorted(Zstar[:-1], side='right') inner = lj / float(N) * (N * Mij - Bj * n[i])**2 / (Bj * (N - Bj)) A2kN += inner.sum() / n[i] return A2kN def anderson_ksamp(samples, midrank=True): """The Anderson-Darling test for k-samples. The k-sample Anderson-Darling test is a modification of the one-sample Anderson-Darling test. It tests the null hypothesis that k-samples are drawn from the same population without having to specify the distribution function of that population. The critical values depend on the number of samples. Parameters ---------- samples : sequence of 1-D array_like Array of sample data in arrays. midrank : bool, optional Type of Anderson-Darling test which is computed. Default (True) is the midrank test applicable to continuous and discrete populations. If False, the right side empirical distribution is used. Returns ------- A2 : float Normalized k-sample Anderson-Darling test statistic. critical : array The critical values for significance levels 25%, 10%, 5%, 2.5%, 1%. logp : float The log (ln) of an approximate significance level at which the null hypothesis for the provided samples can be rejected. Raises ------ ValueError If less than 2 samples are provided, a sample is empty, or no distinct observations are in the samples. See Also -------- ks_2samp : 2 sample Kolmogorov-Smirnov test anderson : 1 sample Anderson-Darling test Notes ----- [1]_ Defines three versions of the k-sample Anderson-Darling test: one for continuous distributions and two for discrete distributions, in which ties between samples may occur. The default of this routine is to compute the version based on the midrank empirical distribution function. This test is applicable to continuous and discrete data. If midrank is set to False, the right side empirical distribution is used for a test for discrete data. According to [1]_, the two discrete test statistics differ only slightly if a few collisions due to round-off errors occur in the test not adjusted for ties between samples. .. versionadded:: 0.14.0 References ---------- .. [1] Scholz, F. W and Stephens, M. A. (1987), K-Sample Anderson-Darling Tests, Journal of the American Statistical Association, Vol. 82, pp. 918-924. """ k = len(samples) if (k < 2): raise ValueError("anderson_ksamp needs at least two samples") samples = list(map(np.asarray, samples)) Z = np.sort(np.hstack(samples)) N = Z.size Zstar = np.unique(Z) if Zstar.size < 2: raise ValueError("anderson_ksamp needs more than one distinct " "observation") n = np.array([sample.size for sample in samples]) if any(n == 0): raise ValueError("anderson_ksamp encountered sample without " "observations") if midrank: A2kN = _anderson_ksamp_midrank(samples, Z, Zstar, k, n, N) else: A2kN = _anderson_ksamp_right(samples, Z, Zstar, k, n, N) h = (1. / np.arange(1, N)).sum() H = (1. / n).sum() g = 0 for l in np.arange(1, N-1): inner = np.array([1. / ((N - l) * m) for m in np.arange(l+1, N)]) g += inner.sum() a = (4*g - 6) * (k - 1) + (10 - 6*g)*H b = (2*g - 4)*k**2 + 8*h*k + (2*g - 14*h - 4)*H - 8*h + 4*g - 6 c = (6*h + 2*g - 2)*k**2 + (4*h - 4*g + 6)*k + (2*h - 6)*H + 4*h d = (2*h + 6)*k**2 - 4*h*k sigmasq = (a*N**3 + b*N**2 + c*N + d) / ((N - 1.) * (N - 2.) * (N - 3.)) m = k - 1 A2 = (A2kN - m) / math.sqrt(sigmasq) return A2 def hellinger_funct(x,P,Q): """ P,Q should be numpy stats gkde objects """ return np.sqrt(P(x) * Q(x)) def hellinger_cont(P,Q): """ P,Q should be numpy stats gkde objects F should be the hellinger_funct method """ return 1 - integrate.quad(hellinger_funct, -np.inf, np.inf, args=(P,Q))[0] def hellinger_disc(P,Q): """ P,Q should be numpy histogram objects that have density=True """ if P[0].size == Q[0].size: pass else: if P[0].size > Q[0].size: Q[0].resize(P[0].size) else: P[0].resize(Q[0].size) return 1 - np.sum(np.sqrt(P[0]*Q[0]))
27.464413
94
0.579981
0
0
0
0
0
0
0
0
9,866
0.639197
2275883293755489ec49ada67afba2a65cceb970
179
py
Python
y10m/join.lines.py
goodagood/story
99dd959f4be44070144fe87313cf51595d928a11
[ "Apache-2.0" ]
3
2019-12-03T02:08:55.000Z
2021-05-30T14:02:21.000Z
y10m/join.lines.py
goodagood/story
99dd959f4be44070144fe87313cf51595d928a11
[ "Apache-2.0" ]
null
null
null
y10m/join.lines.py
goodagood/story
99dd959f4be44070144fe87313cf51595d928a11
[ "Apache-2.0" ]
1
2020-08-07T23:09:45.000Z
2020-08-07T23:09:45.000Z
#inputFile = 'sand.407' inputFile = 'sand.407' outputFile= 'sand.out' def joinLine(): pass with open(inputFile) as OF: lines = OF.readlines() print(lines[0:3])
11.1875
27
0.631285
0
0
0
0
0
0
0
0
43
0.240223
227598bb20ab74c029eb76f22348999ce40f32c0
718
py
Python
web_programming/fetch_github_info.py
JB1959/Python
b6ca263983933c3ecc06ed0083dd11b6faf870c8
[ "MIT" ]
14
2020-10-03T05:43:48.000Z
2021-11-01T21:02:26.000Z
web_programming/fetch_github_info.py
JB1959/Python
b6ca263983933c3ecc06ed0083dd11b6faf870c8
[ "MIT" ]
3
2020-06-08T07:03:15.000Z
2020-06-08T08:41:22.000Z
web_programming/fetch_github_info.py
JB1959/Python
b6ca263983933c3ecc06ed0083dd11b6faf870c8
[ "MIT" ]
12
2020-10-03T05:44:19.000Z
2022-01-16T05:37:54.000Z
#!/usr/bin/env python3 """ Created by sarathkaul on 14/11/19 Basic authentication using an API password is deprecated and will soon no longer work. Visit https://developer.github.com/changes/2020-02-14-deprecating-password-auth for more information around suggested workarounds and removal dates. """ import requests _GITHUB_API = "https://api.github.com/user" def fetch_github_info(auth_user: str, auth_pass: str) -> dict: """ Fetch GitHub info of a user using the requests module """ return requests.get(_GITHUB_API, auth=(auth_user, auth_pass)).json() if __name__ == "__main__": for key, value in fetch_github_info("<USER NAME>", "<PASSWORD>").items(): print(f"{key}: {value}")
26.592593
86
0.71727
0
0
0
0
0
0
0
0
450
0.626741
2275d1ae20d552ba2f46265e141e463daa5307b3
1,362
py
Python
ACM ICPC/Sorting/Merge Sort/Python/Merge_Sort.py
shreejitverma/GeeksforGeeks
d7bcb166369fffa9a031a258e925b6aff8d44e6c
[ "MIT" ]
2
2022-02-18T05:14:28.000Z
2022-03-08T07:00:08.000Z
ACM ICPC/Sorting/Merge Sort/Python/Merge_Sort.py
shivaniverma1/Competitive-Programming-1
d7bcb166369fffa9a031a258e925b6aff8d44e6c
[ "MIT" ]
6
2022-01-13T04:31:04.000Z
2022-03-12T01:06:16.000Z
ACM ICPC/Sorting/Merge Sort/Python/Merge_Sort.py
shivaniverma1/Competitive-Programming-1
d7bcb166369fffa9a031a258e925b6aff8d44e6c
[ "MIT" ]
2
2022-02-14T19:53:53.000Z
2022-02-18T05:14:30.000Z
class MergeSort: def __init__(self, lst): self.lst = lst def mergeSort(self, a): midPoint = len(a) // 2 if a[len(a) - 1] < a[0]: left = self.mergeSort(a[:midPoint]) right = self.mergeSort(a[midPoint:]) return self.merge(left, right) else: return a def merge(self, left, right): output = list() leftCount, rightCount = 0, 0 while leftCount < len(left) or rightCount < len(right): if leftCount < len(left) and rightCount < len(right): if left[leftCount] < right[rightCount]: output.append(left[leftCount]) leftCount += 1 else: output.append(right[rightCount]) rightCount += 1 if leftCount == len(left) and rightCount < right(right): output.append(right[rightCount]) rightCount += 1 elif leftCount < len(left) and rightCount == len(right): output.append(left[leftCount]) leftCount += 1 return output def sort(self): temp = self.mergeSort(self.lst) self.lst = temp def show(self): return self.lst if __name__ == "__main__": i = MergeSort([5, 4, 3, 2, 1]) i.sort() print(i.show())
30.266667
68
0.509545
1,264
0.928047
0
0
0
0
0
0
10
0.007342
2277a209f052632755ba80cff0004cf66a4c0551
3,952
py
Python
nightly.py
insolar/insolar-jepsen
f95e05fdf0b3d28756f60de9aef1b8c44ef0d030
[ "Apache-2.0" ]
6
2019-03-26T10:02:54.000Z
2019-09-13T15:31:39.000Z
nightly.py
insolar/insolar-jepsen
f95e05fdf0b3d28756f60de9aef1b8c44ef0d030
[ "Apache-2.0" ]
17
2019-06-04T10:55:42.000Z
2020-03-10T09:22:52.000Z
nightly.py
insolar/insolar-jepsen
f95e05fdf0b3d28756f60de9aef1b8c44ef0d030
[ "Apache-2.0" ]
3
2019-11-22T10:41:00.000Z
2021-02-18T12:03:38.000Z
#!/usr/bin/env python3 # vim: set ai et ts=4 sw=4: import os import subprocess import argparse import time import calendar import re def run(cmd): code = subprocess.call(['/bin/bash', '-o', 'pipefail', '-c', cmd]) if code != 0: raise RuntimeError("Command `%s` returned non-zero status: %d" % (cmd, code)) def get_output(cmd): data = subprocess.check_output(cmd, shell=True) data = data.decode('utf-8').strip() return data parser = argparse.ArgumentParser( description='Run nightly Insolar Jepsen-like tests') parser.add_argument( '-b', '--branch', metavar='B', type=str, default='master', help='git branch name (default: master)') parser.add_argument( '-r', '--repeat', metavar='N', type=int, default=100, help='number of times to repeat tests (default: 100)') parser.add_argument( '-c', '--channel', metavar='C', type=str, default='#dev-backend', help='slack channel (default: #dev-backend)') parser.add_argument( '-e', '--emoji', metavar='E', type=str, default='aphyr', help='message emoji (default: aphyr)') parser.add_argument( '-s', '--slack', metavar='H', type=str, required=True, help='slack hook string (it looks like base64 string)') parser.add_argument( '-l', '--logdir', metavar='DIR', type=str, required=True, help='path to the directory where logfiles will be saved') parser.add_argument( '-u', '--url', metavar='URL', type=str, required=True, help='URL where saved logfiles will be accessible') args = parser.parse_args() tests_passed = False date = "FAILED_TO_GET_DATE" try: date = get_output('date +%Y%m%d%H%M00') except Exception as e: print("ERROR:") print(str(e)) logfile_name = 'jepsen-' + date + '.txt' logfile_fullname = args.logdir + '/' + logfile_name try: run('echo "=== BUILDING BRANCH '+args.branch + ' ===" | tee -a '+logfile_fullname) run('./build-docker.py '+args.branch+' 2>&1 | tee -a '+logfile_fullname) run('echo "==== RUNNING TESTS '+str(args.repeat) + ' TIMES ===" | tee -a '+logfile_fullname) run('./run-test.py -i insolar-jepsen:latest -r ' + str(args.repeat)+' 2>&1 | tee -a '+logfile_fullname) tests_passed = True except Exception as e: print("ERROR:") print(str(e)) podlogs_name = 'jepsen-' + date + '.tgz' podlogs_fullname = args.logdir + '/' + podlogs_name try: run('echo "=== AGGREGATING LOGS TO ' + podlogs_fullname+' ===" | tee -a '+logfile_fullname) run('./aggregate-logs.py /tmp/jepsen-'+date) run('gunzip /tmp/jepsen-'+date+'/*/*.log.gz || true') run('tar -cvzf '+podlogs_fullname+' /tmp/jepsen-'+date) run('rm -r /tmp/jepsen-'+date) run('echo "=== CLEANING UP '+args.logdir+' ===" | tee -a '+logfile_fullname) now = int(time.time()) os.chdir(args.logdir) for fname in os.listdir("."): m = re.search("jepsen-(\d{4}\d{2}\d{2})", fname) if m is None: run(' echo "File: ' + fname + ' - skipped" | tee -a '+logfile_fullname) continue ftime = calendar.timegm(time.strptime(m.group(1), "%Y%m%d")) ndays = int((now - ftime) / (60 * 60 * 24)) delete = ndays > 15 run(' echo "File: ' + fname + ', ndays: ' + str(ndays) + ', delete: ' + str(delete) + '" | tee -a '+logfile_fullname) if delete: os.unlink(fname) except Exception as e: print("ERROR:") print(str(e)) print("Test passed: "+str(tests_passed)) message = 'PASSED' if tests_passed else 'FAILED' message = 'Nightly Jepsen-like tests '+message +\ '. Log: '+args.url+'/'+logfile_name +\ ' Pod logs: '+args.url+'/'+podlogs_name cmd = 'curl -X POST --data-urlencode \'payload={"channel": "'+args.channel +\ '", "username": "aphyr", "text": "'+message +\ '", "icon_emoji": ":'+args.emoji +\ ':"}\' https://hooks.slack.com/services/'+args.slack print("EXECUTING: "+cmd) run(cmd)
34.365217
83
0.605263
0
0
0
0
0
0
0
0
1,499
0.379302
2277e005db07cac1472613b25b5759c8831551c6
7,195
py
Python
ecart/ecart.py
micael-grilo/E-Cart
76e86b4c7ea5bd2becda23ef8c69470c86630c5e
[ "MIT" ]
null
null
null
ecart/ecart.py
micael-grilo/E-Cart
76e86b4c7ea5bd2becda23ef8c69470c86630c5e
[ "MIT" ]
null
null
null
ecart/ecart.py
micael-grilo/E-Cart
76e86b4c7ea5bd2becda23ef8c69470c86630c5e
[ "MIT" ]
null
null
null
import redis import copy from functools import wraps from .exception import ErrorMessage from .decorators import raise_exception from .serializer import Serializer TTL = 604800 class Cart(object): """ Main Class for Cart, contains all functionality """ @raise_exception("E-Cart can't be initialized due to Error: ") def __init__(self, user_id, redis_connection, ttl=TTL): """ Constructor for the class, initializes user_id and checks whether the users' cart exists or not. """ self.__redis_user_hash_token = "E-CART" self.user_id = user_id self.user_redis_key = self.__get_user_redis_key(user_id) self.redis_connection = redis_connection self.ttl = ttl self.user_cart_exists = self.cart_exists(user_id) self.destroy = self.__del__ @raise_exception("ttl can't be set due to Error: ") def set_ttl(self): """ Update the ttl of the cart """ return self.redis_connection.expire(self.user_redis_key, self.ttl) @raise_exception("ttl can't be obtained due to Error: ") def get_ttl(self): ttl = self.redis_connection.ttl(self.user_redis_key) if ttl: return ttl else: raise ErrorMessage("User Cart does not exists") def __product_dict(self, unit_cost, quantity, extra_data_dict={}): """ Returns the dictionary for a product, with the argument values. """ product_dict = { "unit_cost": unit_cost, "quantity": quantity } product_dict.update(extra_data_dict) return product_dict @raise_exception("Cart exists can't return a value due to Error: ") def cart_exists(self, user_id): """ Confirm user's cart hash in Redis """ return self.redis_connection.exists(self.user_redis_key) def __get_user_redis_key_prefix(self): """ Generate the prefix for the user's redis key. """ return ":".join([self.__redis_user_hash_token, "USER_ID"]) def __get_user_redis_key(self, user_id): """ Generates the name of the Hash used for storing User cart in Redis """ if user_id: return self.__get_user_redis_key_prefix() + ":"+str(user_id) else: raise ErrorMessage("user_id can't be null") @raise_exception("Redis user key can't be obtained due to Error: ") def get_user_redis_key(self): """ Returns the name of the Hash used for storing User cart in Redis """ return self.user_redis_key @raise_exception("Product can't be added to the User cart due to Error: ") def add(self, product_id, unit_cost, quantity=1, **extra_data_dict): """ Returns True if the addition of the product of the given product_id and unit_cost with given quantity is succesful else False. Can also add extra details in the form of dictionary. """ product_dict = self.__product_dict( unit_cost, quantity, extra_data_dict) self.redis_connection.hset( self.user_redis_key, product_id, Serializer.dumps(product_dict)) self.user_cart_exists = self.cart_exists(self.user_id) self.set_ttl() @raise_exception("Product can't be obtained due to Error: ") def get_product(self, product_id): """ Returns the cart details as a Dictionary for the given product_id """ if self.user_cart_exists: product_string = self.redis_connection.hget( self.user_redis_key, product_id) if product_string: return Serializer.loads(product_string) else: return {} else: raise ErrorMessage("The user cart is Empty") @raise_exception("contains can't function due to Error: ") def contains(self, product_id): """ Checks whether the given product exists in the cart """ return self.redis_connection.hexists(self.user_redis_key, product_id) def __get_raw_cart(self): return self.redis_connection.hgetall( self.user_redis_key) @raise_exception("Cart can't be obtained due to Error: ") def get(self): """ Returns all the products and their details present in the cart as a dictionary """ return {key: Serializer.loads(value) for key, value in self.__get_raw_cart().items()} @raise_exception("count can't be obtained due to Error: ") def count(self): """ Returns the number of types of products in the carts """ return self.redis_connection.hlen(self.user_redis_key) @raise_exception("remove can't function due to Error: ") def remove(self, product_id): """ Removes the product from the cart """ if self.user_cart_exists: if self.redis_connection.hdel(self.user_redis_key, product_id): self.set_ttl() return True else: return False else: raise ErrorMessage("The user cart is Empty") @raise_exception("Product dictionaries can't be obatined due to Error: ") def get_product_dicts(self): """ Returns the list of all product details """ return [Serializer.loads(product_string) for product_string in self.redis_connection.hvals(self.user_redis_key)] def __quantities(self): return map(lambda product_dict: product_dict.get('quantity'), self.get_product_dicts()) @raise_exception("quantity can't be obtained due to Error: ") def quantity(self): """ Returns the total number of units of all products in the cart """ return reduce(lambda result, quantity: quantity + result, self.__quantities()) @raise_exception("total_cost can't be obatined due to Error: ") def total_cost(self): """ Returns the net total of all product cost from the cart """ return sum(self.__price_list()) @raise_exception("copy can't be made due to Error: ") def copy(self, target_user_id): """ Copies the cart of the user to the target_user_id """ is_copied = self.redis_connection.hmset( self.__get_user_redis_key(target_user_id), self.__get_raw_cart()) target_cart = Cart(target_user_id) target_cart.set_ttl() return target_cart if is_copied else None def __product_price(self, product_dict): """ Returns the product of product_quantity and its unit_cost """ return product_dict['quantity'] * product_dict['unit_cost'] def __price_list(self): """ Returns the list of product's total_cost """ return map(lambda product_dict: self.__product_price(product_dict), self.get_product_dicts()) def __del__(self): """ Deletes the user's cart """ self.redis_connection.delete(self.user_redis_key)
34.927184
120
0.624739
7,014
0.974844
0
0
5,184
0.7205
0
0
2,660
0.369701
2278e9e4e492d486947a4dea8110d0c980581f65
1,172
py
Python
app/tests/test_transaction.py
geometry-labs/icon-filter-registration
5ac93268465a529be453a51447805a65f2e23415
[ "Apache-2.0" ]
null
null
null
app/tests/test_transaction.py
geometry-labs/icon-filter-registration
5ac93268465a529be453a51447805a65f2e23415
[ "Apache-2.0" ]
1
2021-03-02T22:41:58.000Z
2021-03-11T16:44:26.000Z
app/tests/test_transaction.py
geometry-labs/icon-filter-registration
5ac93268465a529be453a51447805a65f2e23415
[ "Apache-2.0" ]
null
null
null
import pytest from app.main import app from app.models import TransactionRegistration from app.settings import settings from httpx import AsyncClient from tests.conftest import RequestCache registration = TransactionRegistration( to_address="cx0000000000000000000000000000000000000001", from_address="cx0000000000000000000000000000000000000002", ) @pytest.mark.asyncio async def test_logevent_register(): async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post( settings.API_ENDPOINT_PREFIX + "/transaction/register", data=registration.json(), ) RequestCache.tx_id = response.json()["reg_id"] assert response.status_code == 200 @pytest.mark.asyncio async def test_broadcaster_unregister(): tx_id = RequestCache.tx_id unregistration_object = registration unregistration_object.reg_id = tx_id async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post( settings.API_ENDPOINT_PREFIX + "/transaction/unregister", data=unregistration_object.json(), ) assert response.status_code == 200
28.585366
69
0.729522
0
0
0
0
809
0.690273
767
0.654437
170
0.145051
22793242be75fa797dece7e56ce733139032b7be
33,565
py
Python
oslo_messaging/tests/rpc/test_server.py
ox12345/oslo.messaging
bdb21c0bcddfb2dac1e0f4d926e7df53d975bf0c
[ "Apache-1.1" ]
null
null
null
oslo_messaging/tests/rpc/test_server.py
ox12345/oslo.messaging
bdb21c0bcddfb2dac1e0f4d926e7df53d975bf0c
[ "Apache-1.1" ]
null
null
null
oslo_messaging/tests/rpc/test_server.py
ox12345/oslo.messaging
bdb21c0bcddfb2dac1e0f4d926e7df53d975bf0c
[ "Apache-1.1" ]
null
null
null
# Copyright 2013 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import threading import warnings import eventlet import fixtures from oslo_config import cfg from six.moves import mock import testscenarios import oslo_messaging from oslo_messaging import rpc from oslo_messaging.rpc import dispatcher from oslo_messaging.rpc import server as rpc_server_module from oslo_messaging import server as server_module from oslo_messaging.tests import utils as test_utils load_tests = testscenarios.load_tests_apply_scenarios class ServerSetupMixin(object): class Server(object): def __init__(self, transport, topic, server, endpoint, serializer): self.controller = ServerSetupMixin.ServerController() target = oslo_messaging.Target(topic=topic, server=server) self.server = oslo_messaging.get_rpc_server(transport, target, [endpoint, self.controller], serializer=serializer) def wait(self): # Wait for the executor to process the stop message, indicating all # test messages have been processed self.controller.stopped.wait() # Check start() does nothing with a running server self.server.start() self.server.stop() self.server.wait() def start(self): self.server.start() class ServerController(object): def __init__(self): self.stopped = threading.Event() def stop(self, ctxt): self.stopped.set() class TestSerializer(object): def serialize_entity(self, ctxt, entity): return ('s' + entity) if entity else entity def deserialize_entity(self, ctxt, entity): return ('d' + entity) if entity else entity def serialize_context(self, ctxt): return dict([(k, 's' + v) for k, v in ctxt.items()]) def deserialize_context(self, ctxt): return dict([(k, 'd' + v) for k, v in ctxt.items()]) def __init__(self): self.serializer = self.TestSerializer() def _setup_server(self, transport, endpoint, topic=None, server=None): server = self.Server(transport, topic=topic or 'testtopic', server=server or 'testserver', endpoint=endpoint, serializer=self.serializer) server.start() return server def _stop_server(self, client, server, topic=None): if topic is not None: client = client.prepare(topic=topic) client.cast({}, 'stop') server.wait() def _setup_client(self, transport, topic='testtopic'): return oslo_messaging.RPCClient(transport, oslo_messaging.Target(topic=topic), serializer=self.serializer) class TestRPCServer(test_utils.BaseTestCase, ServerSetupMixin): def __init__(self, *args): super(TestRPCServer, self).__init__(*args) ServerSetupMixin.__init__(self) def setUp(self): super(TestRPCServer, self).setUp(conf=cfg.ConfigOpts()) @mock.patch('warnings.warn') def test_constructor(self, warn): transport = oslo_messaging.get_rpc_transport(self.conf, url='fake:') target = oslo_messaging.Target(topic='foo', server='bar') endpoints = [object()] serializer = object() access_policy = dispatcher.DefaultRPCAccessPolicy warnings.simplefilter("always", FutureWarning) server = oslo_messaging.get_rpc_server(transport, target, endpoints, serializer=serializer, access_policy=access_policy) self.assertIs(server.conf, self.conf) self.assertIs(server.transport, transport) self.assertIsInstance(server.dispatcher, oslo_messaging.RPCDispatcher) self.assertIs(server.dispatcher.endpoints, endpoints) self.assertIs(server.dispatcher.serializer, serializer) self.assertEqual('blocking', server.executor_type) self.assertEqual([ mock.call("blocking executor is deprecated. Executor default will " "be removed. Use explicitly threading or eventlet " "instead in version 'pike' and will be removed in " "version 'rocky'", category=FutureWarning, stacklevel=3) ], warn.mock_calls) @mock.patch('warnings.warn') def test_constructor_without_explicit_RPCAccessPolicy(self, warn): transport = oslo_messaging.get_rpc_transport(self.conf, url='fake:') target = oslo_messaging.Target(topic='foo', server='bar') endpoints = [object()] serializer = object() warnings.simplefilter("always", FutureWarning) oslo_messaging.get_rpc_server(transport, target, endpoints, serializer=serializer) self.assertEqual([ mock.call(mock.ANY, category=FutureWarning, stacklevel=3), mock.call("blocking executor is deprecated. Executor default will " "be removed. Use explicitly threading or eventlet " "instead in version 'pike' and will be removed in " "version 'rocky'", category=FutureWarning, stacklevel=3) ], warn.mock_calls) def test_server_wait_method(self): transport = oslo_messaging.get_rpc_transport(self.conf, url='fake:') target = oslo_messaging.Target(topic='foo', server='bar') endpoints = [object()] serializer = object() class MagicMockIgnoreArgs(mock.MagicMock): """MagicMock ignores arguments. A MagicMock which can never misinterpret the arguments passed to it during construction. """ def __init__(self, *args, **kwargs): super(MagicMockIgnoreArgs, self).__init__() server = oslo_messaging.get_rpc_server(transport, target, endpoints, serializer=serializer) # Mocking executor server._executor_cls = MagicMockIgnoreArgs server._create_listener = MagicMockIgnoreArgs() server.dispatcher = MagicMockIgnoreArgs() # Here assigning executor's listener object to listener variable # before calling wait method, because in wait method we are # setting executor to None. server.start() listener = server.listener server.stop() # call server wait method server.wait() self.assertEqual(1, listener.cleanup.call_count) def test_no_target_server(self): transport = oslo_messaging.get_rpc_transport(self.conf, url='fake:') server = oslo_messaging.get_rpc_server( transport, oslo_messaging.Target(topic='testtopic'), []) try: server.start() except Exception as ex: self.assertIsInstance(ex, oslo_messaging.InvalidTarget, ex) self.assertEqual('testtopic', ex.target.topic) else: self.assertTrue(False) def test_no_server_topic(self): transport = oslo_messaging.get_rpc_transport(self.conf, url='fake:') target = oslo_messaging.Target(server='testserver') server = oslo_messaging.get_rpc_server(transport, target, []) try: server.start() except Exception as ex: self.assertIsInstance(ex, oslo_messaging.InvalidTarget, ex) self.assertEqual('testserver', ex.target.server) else: self.assertTrue(False) def _test_no_client_topic(self, call=True): transport = oslo_messaging.get_rpc_transport(self.conf, url='fake:') client = self._setup_client(transport, topic=None) method = client.call if call else client.cast try: method({}, 'ping', arg='foo') except Exception as ex: self.assertIsInstance(ex, oslo_messaging.InvalidTarget, ex) self.assertIsNotNone(ex.target) else: self.assertTrue(False) def test_no_client_topic_call(self): self._test_no_client_topic(call=True) def test_no_client_topic_cast(self): self._test_no_client_topic(call=False) def test_client_call_timeout(self): transport = oslo_messaging.get_rpc_transport(self.conf, url='fake:') finished = False wait = threading.Condition() class TestEndpoint(object): def ping(self, ctxt, arg): with wait: if not finished: wait.wait() server_thread = self._setup_server(transport, TestEndpoint()) client = self._setup_client(transport) try: client.prepare(timeout=0).call({}, 'ping', arg='foo') except Exception as ex: self.assertIsInstance(ex, oslo_messaging.MessagingTimeout, ex) else: self.assertTrue(False) with wait: finished = True wait.notify() self._stop_server(client, server_thread) def test_unknown_executor(self): transport = oslo_messaging.get_rpc_transport(self.conf, url='fake:') try: oslo_messaging.get_rpc_server(transport, None, [], executor='foo') except Exception as ex: self.assertIsInstance(ex, oslo_messaging.ExecutorLoadFailure) self.assertEqual('foo', ex.executor) else: self.assertTrue(False) def test_cast(self): transport = oslo_messaging.get_rpc_transport(self.conf, url='fake:') class TestEndpoint(object): def __init__(self): self.pings = [] def ping(self, ctxt, arg): self.pings.append(arg) endpoint = TestEndpoint() server_thread = self._setup_server(transport, endpoint) client = self._setup_client(transport) client.cast({}, 'ping', arg='foo') client.cast({}, 'ping', arg='bar') self._stop_server(client, server_thread) self.assertEqual(['dsfoo', 'dsbar'], endpoint.pings) def test_call(self): transport = oslo_messaging.get_rpc_transport(self.conf, url='fake:') class TestEndpoint(object): def ping(self, ctxt, arg): return arg server_thread = self._setup_server(transport, TestEndpoint()) client = self._setup_client(transport) self.assertIsNone(client.call({}, 'ping', arg=None)) self.assertEqual(0, client.call({}, 'ping', arg=0)) self.assertFalse(client.call({}, 'ping', arg=False)) self.assertEqual([], client.call({}, 'ping', arg=[])) self.assertEqual({}, client.call({}, 'ping', arg={})) self.assertEqual('dsdsfoo', client.call({}, 'ping', arg='foo')) self._stop_server(client, server_thread) def test_direct_call(self): transport = oslo_messaging.get_rpc_transport(self.conf, url='fake:') class TestEndpoint(object): def ping(self, ctxt, arg): return arg server_thread = self._setup_server(transport, TestEndpoint()) client = self._setup_client(transport) direct = client.prepare(server='testserver') self.assertIsNone(direct.call({}, 'ping', arg=None)) self.assertEqual(0, client.call({}, 'ping', arg=0)) self.assertFalse(client.call({}, 'ping', arg=False)) self.assertEqual([], client.call({}, 'ping', arg=[])) self.assertEqual({}, client.call({}, 'ping', arg={})) self.assertEqual('dsdsfoo', direct.call({}, 'ping', arg='foo')) self._stop_server(client, server_thread) def test_context(self): transport = oslo_messaging.get_rpc_transport(self.conf, url='fake:') class TestEndpoint(object): def ctxt_check(self, ctxt, key): return ctxt[key] server_thread = self._setup_server(transport, TestEndpoint()) client = self._setup_client(transport) self.assertEqual('dsdsb', client.call({'dsa': 'b'}, 'ctxt_check', key='a')) self._stop_server(client, server_thread) def test_failure(self): transport = oslo_messaging.get_rpc_transport(self.conf, url='fake:') class TestEndpoint(object): def ping(self, ctxt, arg): raise ValueError(arg) debugs = [] errors = [] def stub_debug(msg, *a, **kw): if (a and len(a) == 1 and isinstance(a[0], dict) and a[0]): a = a[0] debugs.append(str(msg) % a) def stub_error(msg, *a, **kw): if (a and len(a) == 1 and isinstance(a[0], dict) and a[0]): a = a[0] errors.append(str(msg) % a) self.useFixture(fixtures.MockPatchObject( rpc_server_module.LOG, 'debug', stub_debug)) self.useFixture(fixtures.MockPatchObject( rpc_server_module.LOG, 'error', stub_error)) server_thread = self._setup_server(transport, TestEndpoint()) client = self._setup_client(transport) try: client.call({}, 'ping', arg='foo') except Exception as ex: self.assertIsInstance(ex, ValueError) self.assertEqual('dsfoo', str(ex)) self.assertTrue(len(debugs) == 0) self.assertGreater(len(errors), 0) else: self.assertTrue(False) self._stop_server(client, server_thread) def test_expected_failure(self): transport = oslo_messaging.get_rpc_transport(self.conf, url='fake:') debugs = [] errors = [] def stub_debug(msg, *a, **kw): if (a and len(a) == 1 and isinstance(a[0], dict) and a[0]): a = a[0] debugs.append(str(msg) % a) def stub_error(msg, *a, **kw): if (a and len(a) == 1 and isinstance(a[0], dict) and a[0]): a = a[0] errors.append(str(msg) % a) self.useFixture(fixtures.MockPatchObject( rpc_server_module.LOG, 'debug', stub_debug)) self.useFixture(fixtures.MockPatchObject( rpc_server_module.LOG, 'error', stub_error)) class TestEndpoint(object): @oslo_messaging.expected_exceptions(ValueError) def ping(self, ctxt, arg): raise ValueError(arg) server_thread = self._setup_server(transport, TestEndpoint()) client = self._setup_client(transport) try: client.call({}, 'ping', arg='foo') except Exception as ex: self.assertIsInstance(ex, ValueError) self.assertEqual('dsfoo', str(ex)) self.assertGreater(len(debugs), 0) self.assertTrue(len(errors) == 0) else: self.assertTrue(False) self._stop_server(client, server_thread) class TestMultipleServers(test_utils.BaseTestCase, ServerSetupMixin): _exchanges = [ ('same_exchange', dict(exchange1=None, exchange2=None)), ('diff_exchange', dict(exchange1='x1', exchange2='x2')), ] _topics = [ ('same_topic', dict(topic1='t', topic2='t')), ('diff_topic', dict(topic1='t1', topic2='t2')), ] _server = [ ('same_server', dict(server1=None, server2=None)), ('diff_server', dict(server1='s1', server2='s2')), ] _fanout = [ ('not_fanout', dict(fanout1=None, fanout2=None)), ('fanout', dict(fanout1=True, fanout2=True)), ] _method = [ ('call', dict(call1=True, call2=True)), ('cast', dict(call1=False, call2=False)), ] _endpoints = [ ('one_endpoint', dict(multi_endpoints=False, expect1=['ds1', 'ds2'], expect2=['ds1', 'ds2'])), ('two_endpoints', dict(multi_endpoints=True, expect1=['ds1'], expect2=['ds2'])), ] @classmethod def generate_scenarios(cls): cls.scenarios = testscenarios.multiply_scenarios(cls._exchanges, cls._topics, cls._server, cls._fanout, cls._method, cls._endpoints) # fanout call not supported def filter_fanout_call(scenario): params = scenario[1] fanout = params['fanout1'] or params['fanout2'] call = params['call1'] or params['call2'] return not (call and fanout) # listening multiple times on same topic/server pair not supported def filter_same_topic_and_server(scenario): params = scenario[1] single_topic = params['topic1'] == params['topic2'] single_server = params['server1'] == params['server2'] return not (single_topic and single_server) # fanout to multiple servers on same topic and exchange # each endpoint will receive both messages def fanout_to_servers(scenario): params = scenario[1] fanout = params['fanout1'] or params['fanout2'] single_exchange = params['exchange1'] == params['exchange2'] single_topic = params['topic1'] == params['topic2'] multi_servers = params['server1'] != params['server2'] if fanout and single_exchange and single_topic and multi_servers: params['expect1'] = params['expect1'][:] + params['expect1'] params['expect2'] = params['expect2'][:] + params['expect2'] return scenario # multiple endpoints on same topic and exchange # either endpoint can get either message def single_topic_multi_endpoints(scenario): params = scenario[1] single_exchange = params['exchange1'] == params['exchange2'] single_topic = params['topic1'] == params['topic2'] if single_topic and single_exchange and params['multi_endpoints']: params['expect_either'] = (params['expect1'] + params['expect2']) params['expect1'] = params['expect2'] = [] else: params['expect_either'] = [] return scenario for f in [filter_fanout_call, filter_same_topic_and_server]: cls.scenarios = [i for i in cls.scenarios if f(i)] for m in [fanout_to_servers, single_topic_multi_endpoints]: cls.scenarios = [m(i) for i in cls.scenarios] def __init__(self, *args): super(TestMultipleServers, self).__init__(*args) ServerSetupMixin.__init__(self) def setUp(self): super(TestMultipleServers, self).setUp(conf=cfg.ConfigOpts()) def test_multiple_servers(self): url1 = 'fake:///' + (self.exchange1 or '') url2 = 'fake:///' + (self.exchange2 or '') transport1 = oslo_messaging.get_rpc_transport(self.conf, url=url1) if url1 != url2: transport2 = oslo_messaging.get_rpc_transport(self.conf, url=url1) else: transport2 = transport1 class TestEndpoint(object): def __init__(self): self.pings = [] def ping(self, ctxt, arg): self.pings.append(arg) def alive(self, ctxt): return 'alive' if self.multi_endpoints: endpoint1, endpoint2 = TestEndpoint(), TestEndpoint() else: endpoint1 = endpoint2 = TestEndpoint() server1 = self._setup_server(transport1, endpoint1, topic=self.topic1, server=self.server1) server2 = self._setup_server(transport2, endpoint2, topic=self.topic2, server=self.server2) client1 = self._setup_client(transport1, topic=self.topic1) client2 = self._setup_client(transport2, topic=self.topic2) client1 = client1.prepare(server=self.server1) client2 = client2.prepare(server=self.server2) if self.fanout1: client1.call({}, 'alive') client1 = client1.prepare(fanout=True) if self.fanout2: client2.call({}, 'alive') client2 = client2.prepare(fanout=True) (client1.call if self.call1 else client1.cast)({}, 'ping', arg='1') (client2.call if self.call2 else client2.cast)({}, 'ping', arg='2') self._stop_server(client1.prepare(fanout=None), server1, topic=self.topic1) self._stop_server(client2.prepare(fanout=None), server2, topic=self.topic2) def check(pings, expect): self.assertEqual(len(expect), len(pings)) for a in expect: self.assertIn(a, pings) if self.expect_either: check(endpoint1.pings + endpoint2.pings, self.expect_either) else: check(endpoint1.pings, self.expect1) check(endpoint2.pings, self.expect2) TestMultipleServers.generate_scenarios() class TestServerLocking(test_utils.BaseTestCase): def setUp(self): super(TestServerLocking, self).setUp(conf=cfg.ConfigOpts()) def _logmethod(name): def method(self, *args, **kwargs): with self._lock: self._calls.append(name) return method executors = [] class FakeExecutor(object): def __init__(self, *args, **kwargs): self._lock = threading.Lock() self._calls = [] executors.append(self) submit = _logmethod('submit') shutdown = _logmethod('shutdown') self.executors = executors class MessageHandlingServerImpl(oslo_messaging.MessageHandlingServer): def _create_listener(self): return mock.Mock() def _process_incoming(self, incoming): pass self.server = MessageHandlingServerImpl(mock.Mock(), mock.Mock()) self.server._executor_cls = FakeExecutor def test_start_stop_wait(self): # Test a simple execution of start, stop, wait in order eventlet.spawn(self.server.start) self.server.stop() self.server.wait() self.assertEqual(1, len(self.executors)) self.assertEqual(['shutdown'], self.executors[0]._calls) self.assertTrue(self.server.listener.cleanup.called) def test_reversed_order(self): # Test that if we call wait, stop, start, these will be correctly # reordered eventlet.spawn(self.server.wait) # This is non-deterministic, but there's not a great deal we can do # about that eventlet.sleep(0) eventlet.spawn(self.server.stop) eventlet.sleep(0) eventlet.spawn(self.server.start) self.server.wait() self.assertEqual(1, len(self.executors)) self.assertEqual(['shutdown'], self.executors[0]._calls) def test_wait_for_running_task(self): # Test that if 2 threads call a method simultaneously, both will wait, # but only 1 will call the underlying executor method. start_event = threading.Event() finish_event = threading.Event() running_event = threading.Event() done_event = threading.Event() _runner = [None] class SteppingFakeExecutor(self.server._executor_cls): def __init__(self, *args, **kwargs): # Tell the test which thread won the race _runner[0] = eventlet.getcurrent() running_event.set() start_event.wait() super(SteppingFakeExecutor, self).__init__(*args, **kwargs) done_event.set() finish_event.wait() self.server._executor_cls = SteppingFakeExecutor start1 = eventlet.spawn(self.server.start) start2 = eventlet.spawn(self.server.start) # Wait until one of the threads starts running running_event.wait() runner = _runner[0] waiter = start2 if runner == start1 else start2 waiter_finished = threading.Event() waiter.link(lambda _: waiter_finished.set()) # At this point, runner is running start(), and waiter() is waiting for # it to complete. runner has not yet logged anything. self.assertEqual(0, len(self.executors)) self.assertFalse(waiter_finished.is_set()) # Let the runner log the call start_event.set() done_event.wait() # We haven't signalled completion yet, so submit shouldn't have run self.assertEqual(1, len(self.executors)) self.assertEqual([], self.executors[0]._calls) self.assertFalse(waiter_finished.is_set()) # Let the runner complete finish_event.set() waiter.wait() runner.wait() # Check that both threads have finished, start was only called once, # and execute ran self.assertTrue(waiter_finished.is_set()) self.assertEqual(1, len(self.executors)) self.assertEqual([], self.executors[0]._calls) def test_start_stop_wait_stop_wait(self): # Test that we behave correctly when calling stop/wait more than once. # Subsequent calls should be noops. self.server.start() self.server.stop() self.server.wait() self.server.stop() self.server.wait() self.assertEqual(len(self.executors), 1) self.assertEqual(['shutdown'], self.executors[0]._calls) self.assertTrue(self.server.listener.cleanup.called) def test_state_wrapping(self): # Test that we behave correctly if a thread waits, and the server state # has wrapped when it it next scheduled # Ensure that if 2 threads wait for the completion of 'start', the # first will wait until complete_event is signalled, but the second # will continue complete_event = threading.Event() complete_waiting_callback = threading.Event() start_state = self.server._states['start'] old_wait_for_completion = start_state.wait_for_completion waited = [False] def new_wait_for_completion(*args, **kwargs): if not waited[0]: waited[0] = True complete_waiting_callback.set() complete_event.wait() old_wait_for_completion(*args, **kwargs) start_state.wait_for_completion = new_wait_for_completion # thread1 will wait for start to complete until we signal it thread1 = eventlet.spawn(self.server.stop) thread1_finished = threading.Event() thread1.link(lambda _: thread1_finished.set()) self.server.start() complete_waiting_callback.wait() # The server should have started, but stop should not have been called self.assertEqual(1, len(self.executors)) self.assertEqual([], self.executors[0]._calls) self.assertFalse(thread1_finished.is_set()) self.server.stop() self.server.wait() # We should have gone through all the states, and thread1 should still # be waiting self.assertEqual(1, len(self.executors)) self.assertEqual(['shutdown'], self.executors[0]._calls) self.assertFalse(thread1_finished.is_set()) # Start again self.server.start() # We should now record 4 executors (2 for each server) self.assertEqual(2, len(self.executors)) self.assertEqual(['shutdown'], self.executors[0]._calls) self.assertEqual([], self.executors[1]._calls) self.assertFalse(thread1_finished.is_set()) # Allow thread1 to complete complete_event.set() thread1_finished.wait() # thread1 should now have finished, and stop should not have been # called again on either the first or second executor self.assertEqual(2, len(self.executors)) self.assertEqual(['shutdown'], self.executors[0]._calls) self.assertEqual([], self.executors[1]._calls) self.assertTrue(thread1_finished.is_set()) @mock.patch.object(server_module, 'DEFAULT_LOG_AFTER', 1) @mock.patch.object(server_module, 'LOG') def test_logging(self, mock_log): # Test that we generate a log message if we wait longer than # DEFAULT_LOG_AFTER log_event = threading.Event() mock_log.warning.side_effect = lambda _, __: log_event.set() # Call stop without calling start. We should log a wait after 1 second thread = eventlet.spawn(self.server.stop) log_event.wait() # Redundant given that we already waited, but it's nice to assert self.assertTrue(mock_log.warning.called) thread.kill() @mock.patch.object(server_module, 'LOG') def test_logging_explicit_wait(self, mock_log): # Test that we generate a log message if we wait longer than # the number of seconds passed to log_after log_event = threading.Event() mock_log.warning.side_effect = lambda _, __: log_event.set() # Call stop without calling start. We should log a wait after 1 second thread = eventlet.spawn(self.server.stop, log_after=1) log_event.wait() # Redundant given that we already waited, but it's nice to assert self.assertTrue(mock_log.warning.called) thread.kill() @mock.patch.object(server_module, 'LOG') def test_logging_with_timeout(self, mock_log): # Test that we log a message after log_after seconds if we've also # specified an absolute timeout log_event = threading.Event() mock_log.warning.side_effect = lambda _, __: log_event.set() # Call stop without calling start. We should log a wait after 1 second thread = eventlet.spawn(self.server.stop, log_after=1, timeout=2) log_event.wait() # Redundant given that we already waited, but it's nice to assert self.assertTrue(mock_log.warning.called) thread.kill() def test_timeout_wait(self): # Test that we will eventually timeout when passing the timeout option # if a preceding condition is not satisfied. self.assertRaises(server_module.TaskTimeout, self.server.stop, timeout=1) def test_timeout_running(self): # Test that we will eventually timeout if we're waiting for another # thread to complete this task # Start the server, which will also instantiate an executor self.server.start() self.server.stop() shutdown_called = threading.Event() # Patch the executor's stop method to be very slow def slow_shutdown(wait): shutdown_called.set() eventlet.sleep(10) self.executors[0].shutdown = slow_shutdown # Call wait in a new thread thread = eventlet.spawn(self.server.wait) # Wait until the thread is in the slow stop method shutdown_called.wait() # Call wait again in the main thread with a timeout self.assertRaises(server_module.TaskTimeout, self.server.wait, timeout=1) thread.kill() @mock.patch.object(server_module, 'LOG') def test_log_after_zero(self, mock_log): # Test that we do not log a message after DEFAULT_LOG_AFTER if the # caller gave log_after=1 # Call stop without calling start. self.assertRaises(server_module.TaskTimeout, self.server.stop, log_after=0, timeout=2) # We timed out. Ensure we didn't log anything. self.assertFalse(mock_log.warning.called) class TestRPCExposeDecorator(test_utils.BaseTestCase): def foo(self): pass @rpc.expose def bar(self): """bar docstring""" pass def test_undecorated(self): self.assertRaises(AttributeError, lambda: self.foo.exposed) def test_decorated(self): self.assertEqual(True, self.bar.exposed) self.assertEqual("""bar docstring""", self.bar.__doc__) self.assertEqual('bar', self.bar.__name__)
36.404555
79
0.601847
32,444
0.966602
0
0
7,710
0.229704
0
0
5,870
0.174885
227a7fa4744296865be9c842b020f4d289542d47
3,683
py
Python
3.03-pdDataOps.py
pgiardiniere/notes-PythonDataScienceHandbook
ddb6662d2fbeedd5b6b09ce4d8ddee55813ec589
[ "MIT" ]
2
2019-05-01T02:23:02.000Z
2019-05-04T03:26:39.000Z
3.03-pdDataOps.py
pgiardiniere/notes-PythonDataScienceHandbook
ddb6662d2fbeedd5b6b09ce4d8ddee55813ec589
[ "MIT" ]
null
null
null
3.03-pdDataOps.py
pgiardiniere/notes-PythonDataScienceHandbook
ddb6662d2fbeedd5b6b09ce4d8ddee55813ec589
[ "MIT" ]
null
null
null
# Recall material on NP Universal Functions from Ch2 # PD builds on ufuncs functionality a few ways: # first, for unary operations (negation / trig funcs), ufuncs preserve # index and column labels in the output # second, for binary operations (addition / multiplication) PD aligns # indices when passing objects to the ufunc # the automatic handling of these makes error-prone NP ufuncs, PD-bulletproof # additionally, there are operations when crossing Series/DataFrame structs ############################## ### Ufuncs: Index Preservation # As PD designed to work with NP, NP Ufuncs work on PD Series/DataFrame import pandas as pd import numpy as np rng = np.random.RandomState(42) ser = pd.Series(rnd.randint(0, 10, 4)) ser df = pd.DataFrame(rng.randint(0, 10, (3, 4)), columns=['A', 'B', 'C', 'D']) df # applying a NP ufunc on either of these objects, # result with be another PD object with the indeces preserved: np.exp(ser) np.sin(df * np.pi / 4) ############################## ### UFuncs: Index Alignment ## Index Alignment in Series # suppose we are combining two differnce data sources, want top 3 us states # by area, and top 3 by population area = pd.Series({'Alaska': 1723337, 'Texas': 695662, 'California': 423967}, name='area') population = pd.Series({'California': 38332521, 'Texas': 26448193, 'New York': 19651127}, name='population') # now, divide to compute population density population / area # we see the resulting array contains the Union of indeces of two input arrs # we can verify that using standard Python set arithmetic on the indices area.index | population.index # any item for which one or the other doesn't have an entry is marked "NaN" A = pd.Series([2, 4, 6], index=[0, 1, 2]) B = pd.Series([1, 3, 5], index=[1, 2, 3]) A + B # if NaN vals isn't desired, fill val can be modified using object methods # in place of the operators (with attribute "fill_value" used) A.add(B, fill_value=0) ## Index Alignment in DataFrame # similar alignment on both columns AND indices when using DataFrames: A = pd.DataFrame(rng.randint(0, 20, (2, 2)), columns=list('AB')) A B = pd.DataFrame(rng.randint(0, 10, (3, 3)), columns=list('BAC')) B A + B # note that indices are aligned correctly irrespective of order in objects, # and indices in the result are sorted # as before, can use object method with "fill_value" attribute to replace NaN # here, we fill with the mean of all values stored in "A" instead of 0 fill = A.stack().mean() A.add(B, fill_value=fill) # Table: Python operators and equivalent PD Object methods: # + add() # - sub(), subtract() # * mul(), multiply() # / truediv(), div(), divide() # // floordiv() # % mod() # ** pow() ############################## ### Ufuncs: Operations Between DataFrame and Series # index & col alignment is similar when crossing DF and Series # Remember: as DF is to Series in Pandas # 1D arr is to 2d Arr in NumPy # Find difference between a two-dimensional array and one of its rows: A = rng.randint(10, size=(3, 4)) A A - A[0] # Per NP broadcasting rules, subtraction b/w 2D arr and row is done row-wise # In Pandas, convention similarly operates row-wise by default: df = pd.DataFrame(A, columns=list('QRST')) df - df.iloc[0] # to operate column-wise, use object methods and specify "axis" keywork df.subtract(df['R'], axis=0) # as before, indices are automatically aligned between 2 elements: halfrow = df.iloc[0, ::2] halfrow df - halfrow # as mentioned, automatic preservation + alignment of indices/cols means # operations on data in Pandas will maintain data context # more seamlessly than NP arrs
32.59292
77
0.688298
0
0
0
0
0
0
0
0
2,705
0.734456
227b1e1bc0c209d9e1b5a1176eb8edcc2f765f16
1,286
py
Python
cogs/feelings.py
Surice/dc_sophie
fa42f457b7b9d68a156a4b6db41e3d849238384c
[ "MIT" ]
null
null
null
cogs/feelings.py
Surice/dc_sophie
fa42f457b7b9d68a156a4b6db41e3d849238384c
[ "MIT" ]
null
null
null
cogs/feelings.py
Surice/dc_sophie
fa42f457b7b9d68a156a4b6db41e3d849238384c
[ "MIT" ]
null
null
null
from itertools import chain from components.config import getConfig from components.convert import fetchUser, pretRes import discord from discord import channel from discord.ext import commands class Feelings(commands.Cog): def __init__(self, client) -> None: self.client = client self.config = getConfig() @commands.command() async def love(self, msg: commands.Context, user: discord.User = None): user = await fetchUser(self.client, user) await msg.channel.send(f"> {self.client.user.mention} hat {user.mention} ganz dolle lieb ❤️"); @commands.command() async def arsch(self, msg: commands.Context, user: discord.User = None): user = await fetchUser(self.client, user) await msg.channel.send(f"> {user.display_name} ist ein Arsch! <:nani:663857832256471084>"); @commands.command() async def unimpressed(self, msg: commands.Context, user: discord.User = None): user = await fetchUser(self.client, user) userPropertie = "" if(user != None): userPropertie = f"von {user.mention} " await msg.channel.send(f"> {self.client.user.mention} ist {userPropertie}nicht beeindruckt... "); def setup(client: commands.Bot) -> None: client.add_cog(Feelings(client))
33.842105
105
0.681182
1,014
0.786047
0
0
863
0.668992
791
0.613178
235
0.182171
227bae7ab6f777a68303a1c49a615d5f64a02cfd
2,400
py
Python
Solutions/arrays/Median_of_Two_Sorted_Arrays.py
HuitingZhengAvery/Leetcode-solutions
ac21cef395717abab188e76895ad83cf212fd60f
[ "MIT" ]
1
2019-06-21T16:28:59.000Z
2019-06-21T16:28:59.000Z
Solutions/arrays/Median_of_Two_Sorted_Arrays.py
HuitingZhengAvery/Leetcode-solutions
ac21cef395717abab188e76895ad83cf212fd60f
[ "MIT" ]
null
null
null
Solutions/arrays/Median_of_Two_Sorted_Arrays.py
HuitingZhengAvery/Leetcode-solutions
ac21cef395717abab188e76895ad83cf212fd60f
[ "MIT" ]
null
null
null
''' There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). You may assume nums1 and nums2 cannot be both empty. ''' ### Nature: the meaning of MEDIAN, is that, the number of elements less than it, ### is equal to that is more than it. ### len(left) == len(right) ### It is NOT important that if these two parts are sorted. ## Time: O(log(min(m, n))), Space: O(1) --> we need fixed number of variables # Iterative approach # Central logics: there exists i, j where i+j = (m+n+1) // 2 AND # A[i-1] (leftmax of A) < B[j] (rightmin of B) AND B[j-1] < A[i] # (in general, all left <= all right) def findMedianSortedArrays(nums1, nums2): m, n = len(nums1), len(nums2) # To ensure j will not be negative if m > n: m, n = n, m nums1, nums2 = nums2, nums1 # (m+n+1) plus 1 makes sure i & j are the minimums of the right part, AND # that j-1 (which is left max) will not be negative imin, imax, half = 0, m, (m+n+1) / 2 while imin <= imax: # This will directly handle edge cases like len(A) == 0 etc i = (imin+imax) / 2 j = half - i # case one: i hasn't exceeded array 1 and is too small if i < m and nums2[j-1] > nums1[i]: imin = i+1 # case two: i-1 hasn't exceeded the smallest and i is too big elif i > 0 and nums1[i-1] > nums2[j]: imax = i-1 # case three: i is perfect else: # edge case 1: # all nums in nums1 is bigger than nums2 if i == 0: max_of_left = nums2[j-1] # j-1 >= 0 is ensured # edge case 2: # the opposite, AND m==n or m=n-1 elif j == 0: max_of_left = nums1[m-1] # general case: else: max_of_left = max(nums1[i-1], nums2[j-1]) if (m+n) % 2 == 1: return max_of_left # edge case: when A[i] would be out of index bound if i == m: min_of_right = nums2[j] # edge case: when B[j] would be out of index bound elif j == n: min_of_right = nums1[i] else: min_of_right = min(nums1[i], nums2[j]) return (max_of_left + min_of_right) / 2.0
36.923077
97
0.542083
0
0
0
0
0
0
0
0
1,295
0.539583
227c213f9c9f02d257d21830222edf425fe68721
781
py
Python
carl/envs/mario/mario_game.py
automl/genRL
b7382fec9006d7da768ad7252194c6c5f1b2bbd7
[ "Apache-2.0" ]
27
2021-09-13T21:50:10.000Z
2022-03-30T15:35:38.000Z
carl/envs/mario/mario_game.py
automl/genRL
b7382fec9006d7da768ad7252194c6c5f1b2bbd7
[ "Apache-2.0" ]
35
2021-09-15T07:20:29.000Z
2022-03-02T15:14:31.000Z
carl/envs/mario/mario_game.py
automl/genRL
b7382fec9006d7da768ad7252194c6c5f1b2bbd7
[ "Apache-2.0" ]
2
2022-01-13T11:13:12.000Z
2022-03-14T06:11:13.000Z
from abc import ABC, abstractmethod class MarioGame(ABC): @abstractmethod def getPort(self) -> int: pass @abstractmethod def initGame(self): pass @abstractmethod def stepGame(self, left: bool, right: bool, down: bool, speed: bool, jump: bool): pass @abstractmethod def resetGame(self, level: str, timer: int, mario_state: int, inertia: float): pass @abstractmethod def computeObservationRGB(self): pass @abstractmethod def computeReward(self) -> float: pass @abstractmethod def computeDone(self) -> bool: pass @abstractmethod def getCompletionPercentage(self) -> float: pass @abstractmethod def getFrameSize(self) -> int: pass
19.525
85
0.62484
742
0.950064
0
0
668
0.855314
0
0
0
0
227c29400ceb467de41b94027e6c73ad4c909b28
16,832
py
Python
sec5.2/train.py
Z-T-WANG/ConvergentDQN
1b7f1857e33bc0a41b16ed6fe3251cb78220c691
[ "MIT" ]
1
2021-08-20T11:38:58.000Z
2021-08-20T11:38:58.000Z
sec5.2/train.py
Z-T-WANG/ConvergentDQN
1b7f1857e33bc0a41b16ed6fe3251cb78220c691
[ "MIT" ]
null
null
null
sec5.2/train.py
Z-T-WANG/ConvergentDQN
1b7f1857e33bc0a41b16ed6fe3251cb78220c691
[ "MIT" ]
null
null
null
import torch import torch.optim as optim import torch.nn.functional as F import optimizers import time, os, random import numpy as np import math, copy from collections import deque from common.utils import epsilon_scheduler, beta_scheduler, update_target, print_log, load_model, print_args from model import DQN from common.replay_buffer import ReplayBuffer, PrioritizedReplayBuffer #from matplotlib import pyplot def train(env, args): image_shape = env.observation_space.shape[1:] current_model = DQN(env, args).to(args.device) target_model = DQN(env, args).to(args.device) print(' Total params: %.2fM' % (sum(p.numel() for p in current_model.parameters())/1000000.0)) for para in target_model.parameters(): para.requires_grad = False update_target(current_model, target_model) epsilon_by_frame = epsilon_scheduler(args.eps_start, args.eps_mid, args.eps_final) beta_by_frame = beta_scheduler(args.beta_start, args.beta_frames) if args.prioritized_replay: replay_buffer = PrioritizedReplayBuffer(args.buffer_size, args.alpha, args.IS_weight_only_smaller, allowed_avg_min_ratio = args.ratio_min_prio) else: replay_buffer = ReplayBuffer(args.buffer_size) #args.action_space = env.unwrapped.get_action_meanings() args.init_lives = env.unwrapped.ale.lives() print_args(args) args.do_update_target = False # specify the RL algorithm to use if args.algorithm != "DQN" and args.algorithm != "Residual" and args.algorithm != "CDQN" : currentTask = "DQN" args.currentTask = currentTask else: currentTask = args.algorithm args.currentTask = args.algorithm # prepare the optimizer lr = args.lr beta1 = args.beta1 beta2 = args.beta2 parameters = current_model.parameters args.optim = args.optim.lower() if args.optim=='sgd': optimizer = optim.SGD(parameters(), lr=lr, momentum=beta1) elif args.optim=='adam': optimizer = optimizers.AdamW(parameters(), lr=lr, eps = args.adam_eps, betas=(beta1,beta2), amsgrad=False) elif args.optim.startswith("adamb"): args.optim = "adambelief" optimizer = optimizers.AdamBelief(parameters(), lr=lr, eps = args.adam_eps, betas=(beta1,beta2), amsgrad=False) elif args.optim=='laprop': optimizer = optimizers.LaProp(parameters(), lr=lr, eps = args.adam_eps, betas=(beta1,beta2), amsgrad=False) else: assert False, "The specified optimizer name {} is non-existent".format(args.optim) print(currentTask) reward_list, length_list, loss_list, off_policy_rate_list, gen_loss_list = [], [], [], [], [] clip_reward = True ### state = env.reset() # the number of parallelized computation is maximally "arg.train_freq" to guarantee that the computation order is still consistent with the original method num_task = args.train_freq args.num_task = num_task episode_rewards = [0. for _i in range(num_task)] life_lengths = [0 for _i in range(num_task)] envs = [env] for _i in range(num_task-1): envs.append(copy.deepcopy(env)) for env in envs: env.seed(random.randrange(1000000)) states = [state for _i in range(num_task)] rewards = [0 for _i in range(num_task)] evaluation_interval = args.evaluation_interval data_to_store = [] prev_time = time.time() prev_step = 0 step_idx = 1 # initialization of step_idx image_shape = env.observation_space.shape[1:] if args.save_best: recent_performances = deque([], maxlen = 40) recent_models = deque([], maxlen = 20) best_performance = -float("inf") while step_idx <= args.max_steps: # decide the action epsilons = ( epsilon_by_frame(idx) for idx in range(step_idx, step_idx + num_task) ) if step_idx>args.learning_start else (1. for idx in range(num_task)) tensored_states = torch.from_numpy(np.array([state._frames for state in states]).reshape((num_task, -1) + image_shape)).to(args.device).float().div_(255.) actions, evaluateds, (Qss, bestActions) = current_model.act(tensored_states, epsilons) for _i, (env, state, action, Qs, bestAction, reward) in enumerate(zip(envs, states, actions, Qss, bestActions, rewards)): # the environment proceeds by one step (4 frames) next_state, reward, done, info = env.step(action) if clip_reward: raw_reward, reward = reward else: raw_reward = reward rewards[_i] = float(reward) episode_rewards[_i] += raw_reward life_lengths[_i] += 1 # store the transition into the memory replay if not args.randomly_discard_experience or (args.randomly_discard_experience and random.random()>=0.5): # the data may be randomly discarded data_to_store.append((state, action, reward, next_state, float(done))) if data_to_store: for data in data_to_store: replay_buffer.add(*data) if args.randomly_replace_memory and len(replay_buffer) >= args.buffer_size: # probably randomly choose an index to replace replay_buffer._next_idx = random.randrange(args.buffer_size) data_to_store.clear() # record the performance of a trajectory if done: length_list.append(life_lengths[_i]) life_lengths[_i] = 0 # only the reward of a real full episode is recorded if env.unwrapped.ale.game_over() or "TimeLimit.truncated" in info: reward_list.append(episode_rewards[_i]) if not args.silent: if not os.path.isdir(args.env): os.mkdir(args.env) with open(os.path.join(args.env, '{}_{}.txt'.format(currentTask, args.comment)), 'a') as f: f.write('{:.0f}\t{}\n'.format(step_idx*4, episode_rewards[_i])) if args.save_best and step_idx > args.learning_start: recent_performances.append(episode_rewards[_i]) mean_performance = np.mean(recent_performances) if best_performance < mean_performance and len(recent_performances)>=40: assert len(recent_models)==20 best_performance = mean_performance torch.save((recent_models[0], step_idx), os.path.join(args.env, '{}_{}.pth'.format(currentTask, args.comment))) recent_models.append(current_model.state_dict().copy()) episode_rewards[_i] = 0. states[_i] = env.reset() else: states[_i] = next_state # optimize if step_idx % args.train_freq == 0 and step_idx > max(args.learning_start, 2*args.batch_size): beta = beta_by_frame(step_idx) loss, off_policy_rate = compute_td_loss(current_model, target_model, replay_buffer, optimizer, args, beta) loss_list.append(loss); off_policy_rate_list.append(off_policy_rate) # update the target network if step_idx % args.update_target == 0 and currentTask != "Residual": # we defer the update of the target network to the optimization routine to ensure that the target network is not exactly equal to current network args.do_update_target = True #update_target(current_model, target_model) # print the statistics if step_idx % evaluation_interval == 0: # it works only if there is at least one episode to report; otherwise "evaluation_interval" is increased if len(reward_list) > 0: kwargs = {} kwargs["Off-Policy"] = off_policy_rate_list print_log(step_idx, prev_step, prev_time, reward_list, length_list, loss_list, args, '{}{:.0e}{}'.format(currentTask, args.lr, args.comment), **kwargs) reward_list.clear(); length_list.clear(); loss_list.clear() for v in kwargs.values(): if type(v)==list: v.clear() prev_step = step_idx prev_time = time.time() else: evaluation_interval += args.evaluation_interval step_idx += 1 i_count=0 accu1, accu2 = 0., 0. accu_loss = 0. def compute_td_loss(current_model, target_model, replay_buffer, optimizer, args, beta=None): """ Calculate loss and optimize """ global i_count, accu1, accu2, accu_loss # sample data if args.prioritized_replay: state_next_state, action_, reward_, done, weights_, true_weights, indices = replay_buffer.sample(args.batch_size, beta) weights = torch.from_numpy(weights_).to(args.device, non_blocking=True) else: state_next_state, action_, reward_, done, indices = replay_buffer.sample(args.batch_size) weights = torch.ones(args.batch_size); weights_ = weights.numpy(); true_weights = weights_ weights = weights.to(args.device, non_blocking=True) # we move data to GPU in chunks state_next_state = torch.from_numpy(state_next_state).to(args.device, non_blocking=True).float().div_(255) state, next_state = state_next_state action = torch.from_numpy(action_).to(args.device, non_blocking=True) gamma_mul_one_minus_done_ = (args.gamma * (1. - done)).astype(np.float32) if args.currentTask == "DQN": # in some cases these data do not really need to be copied to GPU reward, gamma_mul_one_minus_done = torch.from_numpy(np.stack((reward_, gamma_mul_one_minus_done_))).to(args.device, non_blocking=True) ##### start training ##### optimizer.zero_grad() # we use "values" to refer to Q values for all state-actions, and use "value" to refer to Q values for states if args.currentTask == "DQN": if args.double: with torch.no_grad(): next_q_values = current_model(next_state) next_q_action = next_q_values.max(1)[1].unsqueeze(1) # **unsqueeze target_next_q_values = target_model(next_state) next_q_value = target_next_q_values.gather(1, next_q_action).squeeze() next_q_action = next_q_action.squeeze() else: with torch.no_grad(): next_q_value, next_q_action = target_model(next_state).max(1) expected_q_value = torch.addcmul(reward, tensor1=next_q_value, tensor2=gamma_mul_one_minus_done) q_values = current_model(state) q_value = q_values.gather(1, action.unsqueeze(1)).squeeze(1) loss = F.mse_loss(q_value, expected_q_value, reduction='none') if args.prioritized_replay: diff = (q_value.detach() - expected_q_value).cpu().numpy() prios = np.abs(diff) + args.prio_eps # loss = (loss * weights).mean()/2. loss.backward() # we report the mean squared error instead of the Huber loss as the loss with torch.no_grad(): report_loss = (F.mse_loss(q_value, expected_q_value, reduction='none')*weights).mean().item() if args.currentTask == "CDQN": # compute the current and next state values in a single pass size = list(state_next_state.size()) current_and_next_states = state_next_state.view([-1]+size[2:]) # compute the q values and the gradient all_q_values = current_model(current_and_next_states) with torch.no_grad(): q_values, next_q_values = all_q_values[:args.batch_size], all_q_values[args.batch_size:2*args.batch_size] q_value = q_values.gather(1, action.unsqueeze(1)).squeeze(1) next_q_value, next_q_action = next_q_values.max(1) q_value, next_q_value = torch.stack((q_value, next_q_value)).cpu().numpy() next_q_values_target = target_model(next_state) if args.double: next_q_value_target = next_q_values_target.gather(1, next_q_action.unsqueeze(1)).squeeze().cpu().numpy() else: next_q_value_target = np.max(next_q_values_target.cpu().numpy(), axis=1) expected_q_value_self = reward_ + gamma_mul_one_minus_done_ * next_q_value expected_q_value_target = reward_ + gamma_mul_one_minus_done_ * next_q_value_target target_mask = (np.abs(q_value - expected_q_value_target) >= np.abs(q_value - expected_q_value_self)) expected_q_value = np.where(target_mask, expected_q_value_target, expected_q_value_self) target_mask = target_mask.astype(np.float32) diff = q_value - expected_q_value if args.prioritized_replay: prio_diff = diff prios = np.abs(prio_diff) + args.prio_eps # the Huber loss is used weighted_diff = weights_ * diff q_value_grad = 1./args.batch_size *weighted_diff all_grads = torch.zeros_like(all_q_values) # manually backpropagate the gradient through the term "expected_q_value" next_q_value_grad = - (1.-target_mask) * q_value_grad next_q_value_grad = next_q_value_grad * gamma_mul_one_minus_done_ grads = torch.from_numpy(np.concatenate([q_value_grad, next_q_value_grad], axis=0)).unsqueeze(1).to(args.device) all_grads.scatter_(1, torch.cat([action, next_q_action], dim=0).unsqueeze(1), grads) all_q_values.backward(all_grads) # this method makes it run faster report_loss = np.dot(diff, weights_ * diff)/args.batch_size if args.currentTask == "Residual": # compute the current and next state values in a single pass size = list(state_next_state.size()) current_and_next_states = state_next_state.view([-1]+size[2:]) # compute the q values and the gradient all_q_values = current_model(current_and_next_states) with torch.no_grad(): q_values, next_q_values = all_q_values[:args.batch_size], all_q_values[args.batch_size:2*args.batch_size] q_value = q_values.gather(1, action.unsqueeze(1)).squeeze(1) next_q_value, next_q_action = next_q_values.max(1) q_value, next_q_value = torch.stack((q_value, next_q_value)).cpu().numpy() expected_q_value = reward_ + gamma_mul_one_minus_done_ * next_q_value # then compute the q values and the loss diff = q_value - expected_q_value if args.prioritized_replay: prio_diff = diff prios = np.abs(prio_diff) + args.prio_eps # the Huber loss is used weighted_diff = weights_ * diff q_value_grad = 1./args.batch_size *weighted_diff all_grads = torch.zeros_like(all_q_values) # manually backpropagate the gradient through the term "expected_q_value" next_q_value_grad = - q_value_grad next_q_value_grad = next_q_value_grad * gamma_mul_one_minus_done_ grads = torch.from_numpy(np.concatenate([q_value_grad, next_q_value_grad], axis=0)).unsqueeze(1).to(args.device) all_grads.scatter_(1, torch.cat([action, next_q_action], dim=0).unsqueeze(1), grads) all_q_values.backward(all_grads) # this method makes it run faster report_loss = np.dot(diff, weights_ * diff)/args.batch_size if args.prioritized_replay: replay_buffer.update_priorities(indices, prios) # gradient clipping if args.grad_clip > 0.: grad_norm = torch.nn.utils.clip_grad_norm_(current_model.parameters(), max_norm = args.grad_clip) accu1 += grad_norm accu2 += grad_norm**2 if args.do_update_target: update_target(current_model, target_model); args.do_update_target=False optimizer.step() off_policy_rate = np.mean((np.argmax(q_values.detach().cpu().numpy(), axis=1)!=action_).astype(np.float)*true_weights) i_count += 1 accu_loss += report_loss report_period = math.ceil(args.evaluation_interval/args.train_freq) if i_count % report_period == 0 and accu1 != 0.: print("gradient norm {:.3f} +- {:.3f}".format(accu1/report_period, math.sqrt(accu2/report_period-(accu1/report_period)**2))) accu1, accu2 = 0., 0. if not args.silent: with open(os.path.join(args.env, '{}mse_{}.txt'.format(args.currentTask, args.comment)), 'a') as f: f.write('{:.0f}\t{}\n'.format((i_count*args.train_freq+args.learning_start)*4, accu_loss/report_period)) accu_loss = 0. return report_loss, off_policy_rate
49.798817
172
0.649774
0
0
0
0
0
0
0
0
2,208
0.131179
227d0c74c72ef68b3f928e3787684e5cdd3c8d18
6,290
py
Python
tests/broker/test_update_chassis.py
ned21/aquilon
6562ea0f224cda33b72a6f7664f48d65f96bd41a
[ "Apache-2.0" ]
7
2015-07-31T05:57:30.000Z
2021-09-07T15:18:56.000Z
tests/broker/test_update_chassis.py
ned21/aquilon
6562ea0f224cda33b72a6f7664f48d65f96bd41a
[ "Apache-2.0" ]
115
2015-03-03T13:11:46.000Z
2021-09-20T12:42:24.000Z
tests/broker/test_update_chassis.py
ned21/aquilon
6562ea0f224cda33b72a6f7664f48d65f96bd41a
[ "Apache-2.0" ]
13
2015-03-03T11:17:59.000Z
2021-09-09T09:16:41.000Z
#!/usr/bin/env python # -*- cpy-indent-level: 4; indent-tabs-mode: nil -*- # ex: set expandtab softtabstop=4 shiftwidth=4: # # Copyright (C) 2012,2013,2015,2016,2017,2018 Contributor # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module for testing the update chassis command.""" import unittest if __name__ == "__main__": import utils utils.import_depends() from brokertest import TestBrokerCommand from chassistest import VerifyChassisMixin class TestUpdateChassis(TestBrokerCommand, VerifyChassisMixin): def test_100_update_ut3c5(self): ip = self.net["unknown0"].usable[6] self.dsdb_expect_add("ut3c5.aqd-unittest.ms.com", ip, "oa", comments="Some new chassis comments") command = ["update", "chassis", "--chassis", "ut3c5.aqd-unittest.ms.com", "--rack", "ut3", "--serial", "ABC5678", "--model", "c-class", "--ip", ip, "--comments", "Some new chassis comments"] self.noouttest(command) def test_110_verify_ut3c5(self): self.verifychassis("ut3c5.aqd-unittest.ms.com", "hp", "c-class", "ut3", "a", "3", "ABC5678", comments="Some new chassis comments", ip=self.net["unknown0"].usable[6], grn="grn:/ms/ei/aquilon/aqd") def test_200_update_bad_ip(self): ip = self.net["unknown0"].usable[6] command = ["update", "chassis", "--ip", ip, "--chassis", "ut3c1.aqd-unittest.ms.com"] out = self.badrequesttest(command) self.matchoutput(out, "IP address %s is already in use by on-board admin " "interface oa of chassis " "ut3c5.aqd-unittest.ms.com." % ip, command) def test_200_update_bad_model(self): command = ["update", "chassis", "--model", "uttorswitch", "--chassis", "ut3c1.aqd-unittest.ms.com"] out = self.notfoundtest(command) self.matchoutput(out, "Not Found: Model uttorswitch, model type 'chassis' or 'aurora_chassis' not found.", command) def test_200_not_chassis(self): command = ["update", "chassis", "--chassis", "ut3gd1r01.aqd-unittest.ms.com", "--comments", "Not a chassis"] out = self.badrequesttest(command) self.matchoutput(out, "Switch ut3gd1r01.aqd-unittest.ms.com exists, but " "is not a chassis.", command) # Moving this test here from test_add_chassis so that # test_add_chassis can run before test_add_netdev def test_200_primary_reuse(self): command = ["add", "chassis", "--chassis", "ut3gd1r01.aqd-unittest.ms.com", "--rack", "ut3", "--model", "utchassis"] out = self.badrequesttest(command) self.matchoutput(out, "DNS Record ut3gd1r01.aqd-unittest.ms.com is already " "used as the primary name of switch ut3gd1r01.", command) def test_201_update_dsdb_fail(self): command = ["update", "chassis", "--comment", "TEST DSDB FAIL", "--chassis", "ut3c1.aqd-unittest.ms.com"] out, err = self.successtest(command) self.matchoutput(err, "Chassis ut3c1 update in DSDB failed!", command) self.matchoutput(err, "Update chassis ut3c1 in DSDB failed, " "proceeding in AQDB.", command) def test_202_update_dsdb_verify(self): command = ["show_chassis", "--chassis", "ut3c1.aqd-unittest.ms.com"] out = self.commandtest(command) self.matchoutput(out, "Comments: TEST DSDB FAIL", command) def test_300_update_chassis_grn(self): command = ["update_chassis", "--chassis", "ut3c5.aqd-unittest.ms.com", "--grn", "grn:/ms/ei/aquilon/ut2"] self.noouttest(command) def test_310_verify_update_chassis_grn(self): command = ["show_chassis", "--chassis", "ut3c5.aqd-unittest.ms.com"] out = self.commandtest(command) self.matchoutput(out, "Primary Name: ut3c5.aqd-unittest.ms.com", command) self.matchoutput(out, "Owned by GRN: grn:/ms/ei/aquilon/ut2", command) def test_320_update_chassis_eon_id(self): command = ["update_chassis", "--chassis", "ut3c5.aqd-unittest.ms.com", "--eon_id", "3"] self.noouttest(command) def test_330_verify_update_chassis_eon_id(self): command = ["show_chassis", "--chassis", "ut3c5.aqd-unittest.ms.com"] out = self.commandtest(command) self.matchoutput(out, "Primary Name: ut3c5.aqd-unittest.ms.com", command) self.matchoutput(out, "Owned by GRN: grn:/ms/ei/aquilon/unittest", command) def test_340_update_chassis_clear_grn(self): command = ["update_chassis", "--chassis", "ut3c5.aqd-unittest.ms.com", "--clear_grn"] self.noouttest(command) def test_350_verify_update_chassis_clear_grn(self): command = ["show_chassis", "--chassis", "ut3c5.aqd-unittest.ms.com"] out = self.commandtest(command) self.matchoutput(out, "Primary Name: ut3c5.aqd-unittest.ms.com", command) self.matchoutput(out, "Owned by GRN: grn:/ms/ei/aquilon/aqd", command) if __name__ == '__main__': suite = unittest.TestLoader().loadTestsFromTestCase(TestUpdateChassis) unittest.TextTestRunner(verbosity=2).run(suite)
43.082192
109
0.592687
5,173
0.822417
0
0
0
0
0
0
2,784
0.442607
97d3b4402a419951038455ac0b5764d606d2b2b1
11,289
py
Python
label_propagation/label_propagation.py
lujiaxuan0520/NAIC-ReID-2020-contest
51953a6927afb71733e39845fec9723210d37a1b
[ "MIT" ]
1
2020-12-13T12:39:30.000Z
2020-12-13T12:39:30.000Z
label_propagation/label_propagation.py
lujiaxuan0520/NAIC-ReID-2020-contest
51953a6927afb71733e39845fec9723210d37a1b
[ "MIT" ]
null
null
null
label_propagation/label_propagation.py
lujiaxuan0520/NAIC-ReID-2020-contest
51953a6927afb71733e39845fec9723210d37a1b
[ "MIT" ]
null
null
null
######################################################################################### # semi-supervised learning: use label propagation to make pseudo labels for no label data # This is not the parallel implement of label propagation, may requires a lot of time # Author: Jiaxuan Lu ######################################################################################### import time import numpy as np import math import os, sys import os.path as osp sys.path.append("..") sys.path.extend([os.path.join(root, name) for root, dirs, _ in os.walk("../") for name in dirs]) import torch import torch.nn as nn import torch.backends.cudnn as cudnn from torch.utils.data import DataLoader from torchreid.dataset_loader import ImageDataset from torchreid import transforms as T from torchreid import models from torchreid.utils.avgmeter import AverageMeter from torchreid.utils.torchtools import count_num_param gpu_devices = "7" # gpu devices extended_data = False # whether to use extended data model_weight = "./log/resnet50-xent/vmgn_hgnn13/checkpoint_ep65.pth.tar" arch = "vmgn_hgnn" test_batch = 500 dataset_name = "pclreid" global_branch = True dist_metric = "cosine" root = "./" height = 256 width = 128 seed = 1 workers = 4 # return k neighbors index def navie_knn(dataSet, query, k): numSamples = dataSet.shape[0] ## step 1: calculate Euclidean distance diff = np.tile(query, (numSamples, 1)) - dataSet squaredDiff = diff ** 2 squaredDist = np.sum(squaredDiff, axis=1) # sum is performed by row ## step 2: sort the distance sortedDistIndices = np.argsort(squaredDist) if k > len(sortedDistIndices): k = len(sortedDistIndices) return sortedDistIndices[0:k] # build a big graph (normalized weight matrix) def buildGraph(MatX, kernel_type, rbf_sigma=None, knn_num_neighbors=None): num_samples = MatX.shape[0] affinity_matrix = np.zeros((num_samples, num_samples), np.float32) if kernel_type == 'rbf': if rbf_sigma == None: raise ValueError('You should input a sigma of rbf kernel!') for i in range(num_samples): row_sum = 0.0 for j in range(num_samples): diff = MatX[i, :] - MatX[j, :] affinity_matrix[i][j] = np.exp(sum(diff ** 2) / (-2.0 * rbf_sigma ** 2)) row_sum += affinity_matrix[i][j] affinity_matrix[i][:] /= row_sum elif kernel_type == 'knn': if knn_num_neighbors == None: raise ValueError('You should input a k of knn kernel!') for i in range(num_samples): k_neighbors = navie_knn(MatX, MatX[i, :], knn_num_neighbors) affinity_matrix[i][k_neighbors] = 1.0 / knn_num_neighbors else: raise NameError('Not support kernel type! You can use knn or rbf!') return affinity_matrix # label propagation def labelPropagation(Mat_Label, Mat_Unlabel, labels, kernel_type='rbf', rbf_sigma=1.5, \ knn_num_neighbors=10, max_iter=500, tol=1e-3): # initialize num_label_samples = Mat_Label.shape[0] num_unlabel_samples = Mat_Unlabel.shape[0] num_samples = num_label_samples + num_unlabel_samples labels_list = np.unique(labels) num_classes = len(labels_list) MatX = np.vstack((Mat_Label, Mat_Unlabel)) clamp_data_label = np.zeros((num_label_samples, num_classes), np.float32) for i in range(num_label_samples): clamp_data_label[i][labels[i]] = 1.0 label_function = np.zeros((num_samples, num_classes), np.float32) label_function[0: num_label_samples] = clamp_data_label label_function[num_label_samples: num_samples] = -1 # graph construction print("start build graph.") affinity_matrix = buildGraph(MatX, kernel_type, rbf_sigma, knn_num_neighbors) print("build graph done.") # start to propagation iter = 0 pre_label_function = np.zeros((num_samples, num_classes), np.float32) changed = np.abs(pre_label_function - label_function).sum() while iter < max_iter and changed > tol: if iter % 1 == 0: print("---> Iteration %d/%d, changed: %f" % (iter, max_iter, changed)) pre_label_function = label_function iter += 1 # propagation label_function = np.dot(affinity_matrix, label_function) # clamp label_function[0: num_label_samples] = clamp_data_label # check converge changed = np.abs(pre_label_function - label_function).sum() # get terminate label of unlabeled data unlabel_data_labels = np.zeros(num_unlabel_samples) for i in range(num_unlabel_samples): unlabel_data_labels[i] = np.argmax(label_function[i + num_label_samples]) return unlabel_data_labels def process_dir_label(list_path,cam): with open(list_path, 'r') as txt: lines = txt.readlines() dataset = [] pid_container = set() for img_idx, img_info in enumerate(lines): img_path, pid = img_info.split(':') pid = int(pid) # no need to relabel camid = cam # img_path = osp.join(dir_path, img_path) dataset.append((img_path, pid, camid)) pid_container.add(pid) num_imgs = len(dataset) num_pids = len(pid_container) # check if pid starts from 0 and increments with 1 return dataset, num_pids, num_imgs def process_dir_unlabel(list_path,cam): with open(list_path, 'r') as txt: lines = txt.readlines() dataset = [] for img_idx, img_info in enumerate(lines): img_path = img_info.replace("\n","") camid = cam # img_path = osp.join(dir_path, img_path) dataset.append((img_path, camid)) num_imgs = len(dataset) return dataset, num_imgs def test(model, labelloader, unlabelloader, use_gpu): batch_time = AverageMeter() model.eval() with torch.no_grad(): label_feature, label_pids, q_camids = [], [], [] for batch_idx, (imgs, pids, camids) in enumerate(labelloader): if use_gpu: imgs = imgs.cuda() end = time.time() features = model(imgs) batch_time.update(time.time() - end) features = features.data.cpu() label_feature.append(features) label_pids.extend(pids) # q_camids.extend(camids) label_feature = torch.cat(label_feature, 0) label_pids = np.asarray(label_pids) # q_camids = np.asarray(q_camids) unlabel_feature, unlabel_img_path, g_camids = [], [], [] for batch_idx, (imgs, img_path, camids) in enumerate(unlabelloader): if use_gpu: imgs = imgs.cuda() end = time.time() features = model(imgs) batch_time.update(time.time() - end) features = features.data.cpu() unlabel_feature.append(features) unlabel_img_path.extend(img_path) # g_camids.extend(camids) unlabel_feature = torch.cat(unlabel_feature, 0) # unlabel_img_path = np.asarray(unlabel_img_path) # g_camids = np.asarray(g_camids) return label_feature, unlabel_feature, label_pids, unlabel_img_path # main function if __name__ == "__main__": torch.manual_seed(seed) os.environ['CUDA_VISIBLE_DEVICES'] = gpu_devices use_gpu = torch.cuda.is_available() if use_gpu: print("Currently using GPU {}".format(gpu_devices)) cudnn.benchmark = True torch.cuda.manual_seed_all(seed) else: print("Currently using CPU (GPU is highly recommended)") print("Initializing dataset {}".format(dataset_name)) dataset_dir = osp.join(root, 'PCL_ReID') list_label_path = osp.join(dataset_dir, 'train_extended_list.txt') if extended_data else \ osp.join(dataset_dir, 'train_list.txt') list_unlabel_path = osp.join(dataset_dir, 'no_label_extended_list.txt') if extended_data else \ osp.join(dataset_dir, 'no_label_list.txt') label_data, num_label_pids, num_label_imgs = process_dir_label(list_label_path, cam=0) unlabel_data, num_unlabel_imgs = process_dir_unlabel(list_unlabel_path, cam=1) transform_test = T.Compose([ T.Resize((height, width)), T.ToTensor(), # T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), T.Normalize(mean=[0.3495, 0.3453, 0.3941], std=[0.2755, 0.2122, 0.2563]), ]) pin_memory = True if use_gpu else False labelloader = DataLoader( ImageDataset(label_data, transform=transform_test), batch_size=test_batch, shuffle=False, num_workers=workers, pin_memory=pin_memory, drop_last=False ) unlabelloader = DataLoader( ImageDataset(unlabel_data, transform=transform_test, isFinal=True), batch_size=test_batch, shuffle=False, num_workers=workers, pin_memory=pin_memory, drop_last=False ) print("Initializing model: {}".format(arch)) ''' vmgn_hgnn model, arch chosen from {'resnet50','resnet101','resnet152'} efficientnet_hgnn model, arch chosen from {'efficientnet-b0', 'efficientnet-b1', 'efficientnet-b2', 'efficientnet-b3', 'efficientnet-b4', 'efficientnet-b5', 'efficientnet-b6', 'efficientnet-b7','efficientnet-b8'} ''' model = models.init_model(name=arch, num_classes=29626, # 29626 or 34394 # num_classes=19658, isFinal=False, global_branch=global_branch, arch="resnet101") print("Model size: {:.3f} M".format(count_num_param(model))) checkpoint = torch.load(model_weight) pretrain_dict = checkpoint['state_dict'] # model_dict = model.state_dict() # pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()} # model_dict.update(pretrain_dict) model.load_state_dict(pretrain_dict) if use_gpu: model = nn.DataParallel(model).cuda() print("Evaluate only") Mat_Label, Mat_Unlabel, labels, unlabel_img_path = test(model, labelloader, unlabelloader, use_gpu) # num_unlabel_samples = 800 # Mat_Label, labels, Mat_Unlabel = loadBandData(num_unlabel_samples) # Mat_Label, labels, Mat_Unlabel = loadCircleData(num_unlabel_samples) ## Notice: when use 'rbf' as our kernel, the choice of hyper parameter 'sigma' is very import! It should be ## chose according to your dataset, specific the distance of two data points. I think it should ensure that ## each point has about 10 knn or w_i,j is large enough. It also influence the speed of converge. So, may be ## 'knn' kernel is better! # unlabel_data_labels = labelPropagation(Mat_Label, Mat_Unlabel, labels, kernel_type = 'rbf', rbf_sigma = 0.2) print("start label propagation") unlabel_data_labels = labelPropagation(Mat_Label, Mat_Unlabel, labels, kernel_type='knn', knn_num_neighbors=5, max_iter=400) # show(Mat_Label, labels, Mat_Unlabel, unlabel_data_labels) for idx in range(len(unlabel_img_path)): unlabel_img_path[idx] += ':' + str(unlabel_data_labels[idx]) np.savetxt("pseudo_label_for_no_label.txt", unlabel_img_path)
37.257426
129
0.652582
0
0
0
0
0
0
0
0
3,071
0.272035