hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
db08017fe044db65092dd00ed22dea1c4564f406
699
py
Python
test/module_dir/mymodule/__init__.py
honzajavorek/mkdocs_macros_plugin
c97c2e08e3c1cb9023b28a605784e0a7ac45b885
[ "MIT" ]
null
null
null
test/module_dir/mymodule/__init__.py
honzajavorek/mkdocs_macros_plugin
c97c2e08e3c1cb9023b28a605784e0a7ac45b885
[ "MIT" ]
null
null
null
test/module_dir/mymodule/__init__.py
honzajavorek/mkdocs_macros_plugin
c97c2e08e3c1cb9023b28a605784e0a7ac45b885
[ "MIT" ]
null
null
null
import os def define_env(env): """ This is the hook for the functions (new form) """ env.variables.cwd = os.getcwd() # use dot notation for adding env.variables.baz = env.variables.fix_url('foo') # Optional: a special function for making relative urls point to root fix_url = env.variables.fix_url @env.macro def button(label, url): "Add a button" url = fix_url(url) HTML = """<a class='md-button' href="%s">%s</a>""" return HTML % (url, label) env.variables.special_docs_dir = env.variables.config['docs_dir'] @env.macro def show_nav(): "Show the navigation" return env.conf['nav']
20.558824
73
0.602289
0
0
0
0
273
0.390558
0
0
257
0.367668
db086691881d363f79126af6b8d208d584242b29
114,519
py
Python
cisco-ios-xe/ydk/models/cisco_ios_xe/MPLS_LDP_STD_MIB.py
Maikor/ydk-py
b86c4a7c570ae3b2c5557d098420446df5de4929
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
cisco-ios-xe/ydk/models/cisco_ios_xe/MPLS_LDP_STD_MIB.py
Maikor/ydk-py
b86c4a7c570ae3b2c5557d098420446df5de4929
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
cisco-ios-xe/ydk/models/cisco_ios_xe/MPLS_LDP_STD_MIB.py
Maikor/ydk-py
b86c4a7c570ae3b2c5557d098420446df5de4929
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
""" MPLS_LDP_STD_MIB Copyright (C) The Internet Society (2004). The initial version of this MIB module was published in RFC 3815. For full legal notices see the RFC itself or see\: http\://www.ietf.org/copyrights/ianamib.html This MIB contains managed object definitions for the 'Multiprotocol Label Switching, Label Distribution Protocol, LDP' document. """ from collections import OrderedDict from ydk.types import Entity, EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64 from ydk.filters import YFilter from ydk.errors import YError, YModelError from ydk.errors.error_handler import handle_type_error as _handle_type_error class MPLSLDPSTDMIB(Entity): """ .. attribute:: mplsldplsrobjects **type**\: :py:class:`MplsLdpLsrObjects <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpLsrObjects>` .. attribute:: mplsldpentityobjects **type**\: :py:class:`MplsLdpEntityObjects <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpEntityObjects>` .. attribute:: mplsldpsessionobjects **type**\: :py:class:`MplsLdpSessionObjects <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpSessionObjects>` .. attribute:: mplsfecobjects **type**\: :py:class:`MplsFecObjects <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsFecObjects>` .. attribute:: mplsldpentitytable This table contains information about the MPLS Label Distribution Protocol Entities which exist on this Label Switching Router (LSR) or Label Edge Router (LER) **type**\: :py:class:`MplsLdpEntityTable <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpEntityTable>` .. attribute:: mplsldppeertable Information about LDP peers known by Entities in the mplsLdpEntityTable. The information in this table is based on information from the Entity\-Peer interaction during session initialization but is not appropriate for the mplsLdpSessionTable, because objects in this table may or may not be used in session establishment **type**\: :py:class:`MplsLdpPeerTable <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpPeerTable>` .. attribute:: mplsldphelloadjacencytable A table of Hello Adjacencies for Sessions **type**\: :py:class:`MplsLdpHelloAdjacencyTable <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpHelloAdjacencyTable>` .. attribute:: mplsinsegmentldplsptable A table of LDP LSP's which map to the mplsInSegmentTable in the MPLS\-LSR\-STD\-MIB module **type**\: :py:class:`MplsInSegmentLdpLspTable <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsInSegmentLdpLspTable>` .. attribute:: mplsoutsegmentldplsptable A table of LDP LSP's which map to the mplsOutSegmentTable in the MPLS\-LSR\-STD\-MIB **type**\: :py:class:`MplsOutSegmentLdpLspTable <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsOutSegmentLdpLspTable>` .. attribute:: mplsfectable This table represents the FEC (Forwarding Equivalence Class) Information associated with an LSP **type**\: :py:class:`MplsFecTable <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsFecTable>` .. attribute:: mplsldplspfectable A table which shows the relationship between LDP LSPs and FECs. Each row represents a single LDP LSP to FEC association **type**\: :py:class:`MplsLdpLspFecTable <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpLspFecTable>` .. attribute:: mplsldpsessionpeeraddrtable This table 'extends' the mplsLdpSessionTable. This table is used to store Label Address Information from Label Address Messages received by this LSR from Peers. This table is read\-only and should be updated when Label Withdraw Address Messages are received, i.e., Rows should be deleted as appropriate. NOTE\: since more than one address may be contained in a Label Address Message, this table 'sparse augments', the mplsLdpSessionTable's information **type**\: :py:class:`MplsLdpSessionPeerAddrTable <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpSessionPeerAddrTable>` """ _prefix = 'MPLS-LDP-STD-MIB' _revision = '2004-06-03' def __init__(self): super(MPLSLDPSTDMIB, self).__init__() self._top_entity = None self.yang_name = "MPLS-LDP-STD-MIB" self.yang_parent_name = "MPLS-LDP-STD-MIB" self.is_top_level_class = True self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("mplsLdpLsrObjects", ("mplsldplsrobjects", MPLSLDPSTDMIB.MplsLdpLsrObjects)), ("mplsLdpEntityObjects", ("mplsldpentityobjects", MPLSLDPSTDMIB.MplsLdpEntityObjects)), ("mplsLdpSessionObjects", ("mplsldpsessionobjects", MPLSLDPSTDMIB.MplsLdpSessionObjects)), ("mplsFecObjects", ("mplsfecobjects", MPLSLDPSTDMIB.MplsFecObjects)), ("mplsLdpEntityTable", ("mplsldpentitytable", MPLSLDPSTDMIB.MplsLdpEntityTable)), ("mplsLdpPeerTable", ("mplsldppeertable", MPLSLDPSTDMIB.MplsLdpPeerTable)), ("mplsLdpHelloAdjacencyTable", ("mplsldphelloadjacencytable", MPLSLDPSTDMIB.MplsLdpHelloAdjacencyTable)), ("mplsInSegmentLdpLspTable", ("mplsinsegmentldplsptable", MPLSLDPSTDMIB.MplsInSegmentLdpLspTable)), ("mplsOutSegmentLdpLspTable", ("mplsoutsegmentldplsptable", MPLSLDPSTDMIB.MplsOutSegmentLdpLspTable)), ("mplsFecTable", ("mplsfectable", MPLSLDPSTDMIB.MplsFecTable)), ("mplsLdpLspFecTable", ("mplsldplspfectable", MPLSLDPSTDMIB.MplsLdpLspFecTable)), ("mplsLdpSessionPeerAddrTable", ("mplsldpsessionpeeraddrtable", MPLSLDPSTDMIB.MplsLdpSessionPeerAddrTable))]) self._leafs = OrderedDict() self.mplsldplsrobjects = MPLSLDPSTDMIB.MplsLdpLsrObjects() self.mplsldplsrobjects.parent = self self._children_name_map["mplsldplsrobjects"] = "mplsLdpLsrObjects" self.mplsldpentityobjects = MPLSLDPSTDMIB.MplsLdpEntityObjects() self.mplsldpentityobjects.parent = self self._children_name_map["mplsldpentityobjects"] = "mplsLdpEntityObjects" self.mplsldpsessionobjects = MPLSLDPSTDMIB.MplsLdpSessionObjects() self.mplsldpsessionobjects.parent = self self._children_name_map["mplsldpsessionobjects"] = "mplsLdpSessionObjects" self.mplsfecobjects = MPLSLDPSTDMIB.MplsFecObjects() self.mplsfecobjects.parent = self self._children_name_map["mplsfecobjects"] = "mplsFecObjects" self.mplsldpentitytable = MPLSLDPSTDMIB.MplsLdpEntityTable() self.mplsldpentitytable.parent = self self._children_name_map["mplsldpentitytable"] = "mplsLdpEntityTable" self.mplsldppeertable = MPLSLDPSTDMIB.MplsLdpPeerTable() self.mplsldppeertable.parent = self self._children_name_map["mplsldppeertable"] = "mplsLdpPeerTable" self.mplsldphelloadjacencytable = MPLSLDPSTDMIB.MplsLdpHelloAdjacencyTable() self.mplsldphelloadjacencytable.parent = self self._children_name_map["mplsldphelloadjacencytable"] = "mplsLdpHelloAdjacencyTable" self.mplsinsegmentldplsptable = MPLSLDPSTDMIB.MplsInSegmentLdpLspTable() self.mplsinsegmentldplsptable.parent = self self._children_name_map["mplsinsegmentldplsptable"] = "mplsInSegmentLdpLspTable" self.mplsoutsegmentldplsptable = MPLSLDPSTDMIB.MplsOutSegmentLdpLspTable() self.mplsoutsegmentldplsptable.parent = self self._children_name_map["mplsoutsegmentldplsptable"] = "mplsOutSegmentLdpLspTable" self.mplsfectable = MPLSLDPSTDMIB.MplsFecTable() self.mplsfectable.parent = self self._children_name_map["mplsfectable"] = "mplsFecTable" self.mplsldplspfectable = MPLSLDPSTDMIB.MplsLdpLspFecTable() self.mplsldplspfectable.parent = self self._children_name_map["mplsldplspfectable"] = "mplsLdpLspFecTable" self.mplsldpsessionpeeraddrtable = MPLSLDPSTDMIB.MplsLdpSessionPeerAddrTable() self.mplsldpsessionpeeraddrtable.parent = self self._children_name_map["mplsldpsessionpeeraddrtable"] = "mplsLdpSessionPeerAddrTable" self._segment_path = lambda: "MPLS-LDP-STD-MIB:MPLS-LDP-STD-MIB" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(MPLSLDPSTDMIB, [], name, value) class MplsLdpLsrObjects(Entity): """ .. attribute:: mplsldplsrid The Label Switching Router's Identifier **type**\: str **length:** 4 .. attribute:: mplsldplsrloopdetectioncapable A indication of whether this Label Switching Router supports loop detection. none(1) \-\- Loop Detection is not supported on this LSR. other(2) \-\- Loop Detection is supported but by a method other than those listed below. hopCount(3) \-\- Loop Detection is supported by Hop Count only. pathVector(4) \-\- Loop Detection is supported by Path Vector only. hopCountAndPathVector(5) \-\- Loop Detection is supported by both Hop Count And Path Vector. Since Loop Detection is determined during Session Initialization, an individual session may not be running with loop detection. This object simply gives an indication of whether or not the LSR has the ability to support Loop Detection and which types **type**\: :py:class:`MplsLdpLsrLoopDetectionCapable <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpLsrObjects.MplsLdpLsrLoopDetectionCapable>` """ _prefix = 'MPLS-LDP-STD-MIB' _revision = '2004-06-03' def __init__(self): super(MPLSLDPSTDMIB.MplsLdpLsrObjects, self).__init__() self.yang_name = "mplsLdpLsrObjects" self.yang_parent_name = "MPLS-LDP-STD-MIB" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('mplsldplsrid', (YLeaf(YType.str, 'mplsLdpLsrId'), ['str'])), ('mplsldplsrloopdetectioncapable', (YLeaf(YType.enumeration, 'mplsLdpLsrLoopDetectionCapable'), [('ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB', 'MPLSLDPSTDMIB', 'MplsLdpLsrObjects.MplsLdpLsrLoopDetectionCapable')])), ]) self.mplsldplsrid = None self.mplsldplsrloopdetectioncapable = None self._segment_path = lambda: "mplsLdpLsrObjects" self._absolute_path = lambda: "MPLS-LDP-STD-MIB:MPLS-LDP-STD-MIB/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(MPLSLDPSTDMIB.MplsLdpLsrObjects, [u'mplsldplsrid', u'mplsldplsrloopdetectioncapable'], name, value) class MplsLdpLsrLoopDetectionCapable(Enum): """ MplsLdpLsrLoopDetectionCapable (Enum Class) A indication of whether this Label Switching Router supports loop detection. none(1) \-\- Loop Detection is not supported on this LSR. other(2) \-\- Loop Detection is supported but by a method other than those listed below. hopCount(3) \-\- Loop Detection is supported by Hop Count only. pathVector(4) \-\- Loop Detection is supported by Path Vector only. hopCountAndPathVector(5) \-\- Loop Detection is supported by both Hop Count And Path Vector. Since Loop Detection is determined during Session Initialization, an individual session may not be running with loop detection. This object simply gives an indication of whether or not the LSR has the ability to support Loop Detection and which types. .. data:: none = 1 .. data:: other = 2 .. data:: hopCount = 3 .. data:: pathVector = 4 .. data:: hopCountAndPathVector = 5 """ none = Enum.YLeaf(1, "none") other = Enum.YLeaf(2, "other") hopCount = Enum.YLeaf(3, "hopCount") pathVector = Enum.YLeaf(4, "pathVector") hopCountAndPathVector = Enum.YLeaf(5, "hopCountAndPathVector") class MplsLdpEntityObjects(Entity): """ .. attribute:: mplsldpentitylastchange The value of sysUpTime at the time of the most recent addition or deletion of an entry to/from the mplsLdpEntityTable/mplsLdpEntityStatsTable, or the most recent change in value of any objects in the mplsLdpEntityTable. If no such changes have occurred since the last re\-initialization of the local management subsystem, then this object contains a zero value **type**\: int **range:** 0..4294967295 .. attribute:: mplsldpentityindexnext This object contains an appropriate value to be used for mplsLdpEntityIndex when creating entries in the mplsLdpEntityTable. The value 0 indicates that no unassigned entries are available **type**\: int **range:** 0..4294967295 """ _prefix = 'MPLS-LDP-STD-MIB' _revision = '2004-06-03' def __init__(self): super(MPLSLDPSTDMIB.MplsLdpEntityObjects, self).__init__() self.yang_name = "mplsLdpEntityObjects" self.yang_parent_name = "MPLS-LDP-STD-MIB" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('mplsldpentitylastchange', (YLeaf(YType.uint32, 'mplsLdpEntityLastChange'), ['int'])), ('mplsldpentityindexnext', (YLeaf(YType.uint32, 'mplsLdpEntityIndexNext'), ['int'])), ]) self.mplsldpentitylastchange = None self.mplsldpentityindexnext = None self._segment_path = lambda: "mplsLdpEntityObjects" self._absolute_path = lambda: "MPLS-LDP-STD-MIB:MPLS-LDP-STD-MIB/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(MPLSLDPSTDMIB.MplsLdpEntityObjects, [u'mplsldpentitylastchange', u'mplsldpentityindexnext'], name, value) class MplsLdpSessionObjects(Entity): """ .. attribute:: mplsldppeerlastchange The value of sysUpTime at the time of the most recent addition or deletion to/from the mplsLdpPeerTable/mplsLdpSessionTable **type**\: int **range:** 0..4294967295 .. attribute:: mplsldplspfeclastchange The value of sysUpTime at the time of the most recent addition/deletion of an entry to/from the mplsLdpLspFecTable or the most recent change in values to any objects in the mplsLdpLspFecTable. If no such changes have occurred since the last re\-initialization of the local management subsystem, then this object contains a zero value **type**\: int **range:** 0..4294967295 """ _prefix = 'MPLS-LDP-STD-MIB' _revision = '2004-06-03' def __init__(self): super(MPLSLDPSTDMIB.MplsLdpSessionObjects, self).__init__() self.yang_name = "mplsLdpSessionObjects" self.yang_parent_name = "MPLS-LDP-STD-MIB" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('mplsldppeerlastchange', (YLeaf(YType.uint32, 'mplsLdpPeerLastChange'), ['int'])), ('mplsldplspfeclastchange', (YLeaf(YType.uint32, 'mplsLdpLspFecLastChange'), ['int'])), ]) self.mplsldppeerlastchange = None self.mplsldplspfeclastchange = None self._segment_path = lambda: "mplsLdpSessionObjects" self._absolute_path = lambda: "MPLS-LDP-STD-MIB:MPLS-LDP-STD-MIB/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(MPLSLDPSTDMIB.MplsLdpSessionObjects, [u'mplsldppeerlastchange', u'mplsldplspfeclastchange'], name, value) class MplsFecObjects(Entity): """ .. attribute:: mplsfeclastchange The value of sysUpTime at the time of the most recent addition/deletion of an entry to/from the mplsLdpFectTable or the most recent change in values to any objects in the mplsLdpFecTable. If no such changes have occurred since the last re\-initialization of the local management subsystem, then this object contains a zero value **type**\: int **range:** 0..4294967295 .. attribute:: mplsfecindexnext This object contains an appropriate value to be used for mplsFecIndex when creating entries in the mplsFecTable. The value 0 indicates that no unassigned entries are available **type**\: int **range:** 0..4294967295 """ _prefix = 'MPLS-LDP-STD-MIB' _revision = '2004-06-03' def __init__(self): super(MPLSLDPSTDMIB.MplsFecObjects, self).__init__() self.yang_name = "mplsFecObjects" self.yang_parent_name = "MPLS-LDP-STD-MIB" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('mplsfeclastchange', (YLeaf(YType.uint32, 'mplsFecLastChange'), ['int'])), ('mplsfecindexnext', (YLeaf(YType.uint32, 'mplsFecIndexNext'), ['int'])), ]) self.mplsfeclastchange = None self.mplsfecindexnext = None self._segment_path = lambda: "mplsFecObjects" self._absolute_path = lambda: "MPLS-LDP-STD-MIB:MPLS-LDP-STD-MIB/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(MPLSLDPSTDMIB.MplsFecObjects, [u'mplsfeclastchange', u'mplsfecindexnext'], name, value) class MplsLdpEntityTable(Entity): """ This table contains information about the MPLS Label Distribution Protocol Entities which exist on this Label Switching Router (LSR) or Label Edge Router (LER). .. attribute:: mplsldpentityentry An entry in this table represents an LDP entity. An entry can be created by a network administrator or by an SNMP agent as instructed by LDP **type**\: list of :py:class:`MplsLdpEntityEntry <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpEntityTable.MplsLdpEntityEntry>` """ _prefix = 'MPLS-LDP-STD-MIB' _revision = '2004-06-03' def __init__(self): super(MPLSLDPSTDMIB.MplsLdpEntityTable, self).__init__() self.yang_name = "mplsLdpEntityTable" self.yang_parent_name = "MPLS-LDP-STD-MIB" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("mplsLdpEntityEntry", ("mplsldpentityentry", MPLSLDPSTDMIB.MplsLdpEntityTable.MplsLdpEntityEntry))]) self._leafs = OrderedDict() self.mplsldpentityentry = YList(self) self._segment_path = lambda: "mplsLdpEntityTable" self._absolute_path = lambda: "MPLS-LDP-STD-MIB:MPLS-LDP-STD-MIB/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(MPLSLDPSTDMIB.MplsLdpEntityTable, [], name, value) class MplsLdpEntityEntry(Entity): """ An entry in this table represents an LDP entity. An entry can be created by a network administrator or by an SNMP agent as instructed by LDP. .. attribute:: mplsldpentityldpid (key) The LDP identifier **type**\: str .. attribute:: mplsldpentityindex (key) This index is used as a secondary index to uniquely identify this row. Before creating a row in this table, the 'mplsLdpEntityIndexNext' object should be retrieved. That value should be used for the value of this index when creating a row in this table. NOTE\: if a value of zero (0) is retrieved, that indicates that no rows can be created in this table at this time. A secondary index (this object) is meaningful to some but not all, LDP implementations. For example an LDP implementation which uses PPP would use this index to differentiate PPP sub\-links. Another way to use this index is to give this the value of ifIndex. However, this is dependant on the implementation **type**\: int **range:** 1..4294967295 .. attribute:: mplsldpentityprotocolversion The version number of the LDP protocol which will be used in the session initialization message. Section 3.5.3 in the LDP Specification specifies that the version of the LDP protocol is negotiated during session establishment. The value of this object represents the value that is sent in the initialization message **type**\: int **range:** 1..65535 .. attribute:: mplsldpentityadminstatus The administrative status of this LDP Entity. If this object is changed from 'enable' to 'disable' and this entity has already attempted to establish contact with a Peer, then all contact with that Peer is lost and all information from that Peer needs to be removed from the MIB. (This implies that the network management subsystem should clean up any related entry in the mplsLdpPeerTable. This further implies that a 'tear\-down' for that session is issued and the session and all information related to that session cease to exist). At this point the operator is able to change values which are related to this entity. When the admin status is set back to 'enable', then this Entity will attempt to establish a new session with the Peer **type**\: :py:class:`MplsLdpEntityAdminStatus <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpEntityTable.MplsLdpEntityEntry.MplsLdpEntityAdminStatus>` .. attribute:: mplsldpentityoperstatus The operational status of this LDP Entity. The value of unknown(1) indicates that the operational status cannot be determined at this time. The value of unknown should be a transient condition before changing to enabled(2) or disabled(3) **type**\: :py:class:`MplsLdpEntityOperStatus <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpEntityTable.MplsLdpEntityEntry.MplsLdpEntityOperStatus>` .. attribute:: mplsldpentitytcpport The TCP Port for LDP. The default value is the well\-known value of this port **type**\: int **range:** 0..65535 .. attribute:: mplsldpentityudpdscport The UDP Discovery Port for LDP. The default value is the well\-known value for this port **type**\: int **range:** 0..65535 .. attribute:: mplsldpentitymaxpdulength The maximum PDU Length that is sent in the Common Session Parameters of an Initialization Message. According to the LDP Specification [RFC3036] a value of 255 or less specifies the default maximum length of 4096 octets, this is why the value of this object starts at 256. The operator should explicitly choose the default value (i.e., 4096), or some other value. The receiving LSR MUST calculate the maximum PDU length for the session by using the smaller of its and its peer's proposals for Max PDU Length **type**\: int **range:** 256..65535 **units**\: octets .. attribute:: mplsldpentitykeepaliveholdtimer The 16\-bit integer value which is the proposed keep alive hold timer for this LDP Entity **type**\: int **range:** 1..65535 **units**\: seconds .. attribute:: mplsldpentityhelloholdtimer The 16\-bit integer value which is the proposed Hello hold timer for this LDP Entity. The Hello Hold time in seconds. An LSR maintains a record of Hellos received from potential peers. This object represents the Hold Time in the Common Hello Parameters TLV of the Hello Message. A value of 0 is a default value and should be interpretted in conjunction with the mplsLdpEntityTargetPeer object. If the value of this object is 0\: if the value of the mplsLdpEntityTargetPeer object is false(2), then this specifies that the Hold Time's actual default value is 15 seconds (i.e., the default Hold time for Link Hellos is 15 seconds). Otherwise if the value of the mplsLdpEntityTargetPeer object is true(1), then this specifies that the Hold Time's actual default value is 45 seconds (i.e., the default Hold time for Targeted Hellos is 45 seconds). A value of 65535 means infinite (i.e., wait forever). All other values represent the amount of time in seconds to wait for a Hello Message. Setting the hold time to a value smaller than 15 is not recommended, although not forbidden according to RFC3036 **type**\: int **range:** 0..65535 **units**\: seconds .. attribute:: mplsldpentityinitsessionthreshold When attempting to establish a session with a given Peer, the given LDP Entity should send out the SNMP notification, 'mplsLdpInitSessionThresholdExceeded', when the number of Session Initialization messages sent exceeds this threshold. The notification is used to notify an operator when this Entity and its Peer are possibly engaged in an endless sequence of messages as each NAKs the other's Initialization messages with Error Notification messages. Setting this threshold which triggers the notification is one way to notify the operator. The notification should be generated each time this threshold is exceeded and for every subsequent Initialization message which is NAK'd with an Error Notification message after this threshold is exceeded. A value of 0 (zero) for this object indicates that the threshold is infinity, thus the SNMP notification will never be generated **type**\: int **range:** 0..100 .. attribute:: mplsldpentitylabeldistmethod For any given LDP session, the method of label distribution must be specified **type**\: :py:class:`MplsLabelDistributionMethod <ydk.models.cisco_ios_xe.MPLS_TC_STD_MIB.MplsLabelDistributionMethod>` .. attribute:: mplsldpentitylabelretentionmode The LDP Entity can be configured to use either conservative or liberal label retention mode. If the value of this object is conservative(1) then advertized label mappings are retained only if they will be used to forward packets, i.e., if label came from a valid next hop. If the value of this object is liberal(2) then all advertized label mappings are retained whether they are from a valid next hop or not **type**\: :py:class:`MplsRetentionMode <ydk.models.cisco_ios_xe.MPLS_TC_STD_MIB.MplsRetentionMode>` .. attribute:: mplsldpentitypathvectorlimit If the value of this object is 0 (zero) then Loop Detection for Path Vectors is disabled. Otherwise, if this object has a value greater than zero, then Loop Dection for Path Vectors is enabled, and the Path Vector Limit is this value. Also, the value of the object, 'mplsLdpLsrLoopDetectionCapable', must be set to either 'pathVector(4)' or 'hopCountAndPathVector(5)', if this object has a value greater than 0 (zero), otherwise it is ignored **type**\: int **range:** 0..255 .. attribute:: mplsldpentityhopcountlimit If the value of this object is 0 (zero), then Loop Detection using Hop Counters is disabled. If the value of this object is greater than 0 (zero) then Loop Detection using Hop Counters is enabled, and this object specifies this Entity's maximum allowable value for the Hop Count. Also, the value of the object mplsLdpLsrLoopDetectionCapable must be set to either 'hopCount(3)' or 'hopCountAndPathVector(5)' if this object has a value greater than 0 (zero), otherwise it is ignored **type**\: int **range:** 0..255 .. attribute:: mplsldpentitytransportaddrkind This specifies whether the loopback or interface address is to be used as the transport address in the transport address TLV of the hello message. If the value is interface(1), then the IP address of the interface from which hello messages are sent is used as the transport address in the hello message. Otherwise, if the value is loopback(2), then the IP address of the loopback interface is used as the transport address in the hello message **type**\: :py:class:`MplsLdpEntityTransportAddrKind <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpEntityTable.MplsLdpEntityEntry.MplsLdpEntityTransportAddrKind>` .. attribute:: mplsldpentitytargetpeer If this LDP entity uses targeted peer then set this to true **type**\: bool .. attribute:: mplsldpentitytargetpeeraddrtype The type of the internetwork layer address used for the Extended Discovery. This object indicates how the value of mplsLdpEntityTargetPeerAddr is to be interpreted **type**\: :py:class:`InetAddressType <ydk.models.cisco_ios_xe.INET_ADDRESS_MIB.InetAddressType>` .. attribute:: mplsldpentitytargetpeeraddr The value of the internetwork layer address used for the Extended Discovery. The value of mplsLdpEntityTargetPeerAddrType specifies how this address is to be interpreted **type**\: str **length:** 0..255 .. attribute:: mplsldpentitylabeltype Specifies the optional parameters for the LDP Initialization Message. If the value is generic(1) then no optional parameters will be sent in the LDP Initialization message associated with this Entity. If the value is atmParameters(2) then a row must be created in the mplsLdpEntityAtmTable, which corresponds to this entry. If the value is frameRelayParameters(3) then a row must be created in the mplsLdpEntityFrameRelayTable, which corresponds to this entry **type**\: :py:class:`MplsLdpLabelType <ydk.models.cisco_ios_xe.MPLS_TC_STD_MIB.MplsLdpLabelType>` .. attribute:: mplsldpentitydiscontinuitytime The value of sysUpTime on the most recent occasion at which any one or more of this entity's counters suffered a discontinuity. The relevant counters are the specific instances associated with this entity of any Counter32 object contained in the 'mplsLdpEntityStatsTable'. If no such discontinuities have occurred since the last re\-initialization of the local management subsystem, then this object contains a zero value **type**\: int **range:** 0..4294967295 .. attribute:: mplsldpentitystoragetype The storage type for this conceptual row. Conceptual rows having the value 'permanent(4)' need not allow write\-access to any columnar objects in the row **type**\: :py:class:`StorageType <ydk.models.cisco_ios_xe.SNMPv2_TC.StorageType>` .. attribute:: mplsldpentityrowstatus The status of this conceptual row. All writable objects in this row may be modified at any time, however, as described in detail in the section entitled, 'Changing Values After Session Establishment', and again described in the DESCRIPTION clause of the mplsLdpEntityAdminStatus object, if a session has been initiated with a Peer, changing objects in this table will wreak havoc with the session and interrupt traffic. To repeat again\: the recommended procedure is to set the mplsLdpEntityAdminStatus to down, thereby explicitly causing a session to be torn down. Then, change objects in this entry, then set the mplsLdpEntityAdminStatus to enable, which enables a new session to be initiated **type**\: :py:class:`RowStatus <ydk.models.cisco_ios_xe.SNMPv2_TC.RowStatus>` .. attribute:: mplsldpentitystatssessionattempts A count of the Session Initialization messages which were sent or received by this LDP Entity and were NAK'd. In other words, this counter counts the number of session initializations that failed. Discontinuities in the value of this counter can occur at re\-initialization of the management system, and at other times as indicated by the value of mplsLdpEntityDiscontinuityTime **type**\: int **range:** 0..4294967295 .. attribute:: mplsldpentitystatssessionrejectednohelloerrors A count of the Session Rejected/No Hello Error Notification Messages sent or received by this LDP Entity. Discontinuities in the value of this counter can occur at re\-initialization of the management system, and at other times as indicated by the value of mplsLdpEntityDiscontinuityTime **type**\: int **range:** 0..4294967295 .. attribute:: mplsldpentitystatssessionrejectedaderrors A count of the Session Rejected/Parameters Advertisement Mode Error Notification Messages sent or received by this LDP Entity. Discontinuities in the value of this counter can occur at re\-initialization of the management system, and at other times as indicated by the value of mplsLdpEntityDiscontinuityTime **type**\: int **range:** 0..4294967295 .. attribute:: mplsldpentitystatssessionrejectedmaxpduerrors A count of the Session Rejected/Parameters Max Pdu Length Error Notification Messages sent or received by this LDP Entity. Discontinuities in the value of this counter can occur at re\-initialization of the management system, and at other times as indicated by the value of mplsLdpEntityDiscontinuityTime **type**\: int **range:** 0..4294967295 .. attribute:: mplsldpentitystatssessionrejectedlrerrors A count of the Session Rejected/Parameters Label Range Notification Messages sent or received by this LDP Entity. Discontinuities in the value of this counter can occur at re\-initialization of the management system, and at other times as indicated by the value of mplsLdpEntityDiscontinuityTime **type**\: int **range:** 0..4294967295 .. attribute:: mplsldpentitystatsbadldpidentifiererrors This object counts the number of Bad LDP Identifier Fatal Errors detected by the session(s) (past and present) associated with this LDP Entity. Discontinuities in the value of this counter can occur at re\-initialization of the management system, and at other times as indicated by the value of mplsLdpEntityDiscontinuityTime **type**\: int **range:** 0..4294967295 .. attribute:: mplsldpentitystatsbadpdulengtherrors This object counts the number of Bad PDU Length Fatal Errors detected by the session(s) (past and present) associated with this LDP Entity. Discontinuities in the value of this counter can occur at re\-initialization of the management system, and at other times as indicated by the value of mplsLdpEntityDiscontinuityTime **type**\: int **range:** 0..4294967295 .. attribute:: mplsldpentitystatsbadmessagelengtherrors This object counts the number of Bad Message Length Fatal Errors detected by the session(s) (past and present) associated with this LDP Entity. Discontinuities in the value of this counter can occur at re\-initialization of the management system, and at other times as indicated by the value of mplsLdpEntityDiscontinuityTime **type**\: int **range:** 0..4294967295 .. attribute:: mplsldpentitystatsbadtlvlengtherrors This object counts the number of Bad TLV Length Fatal Errors detected by the session(s) (past and present) associated with this LDP Entity. Discontinuities in the value of this counter can occur at re\-initialization of the management system, and at other times as indicated by the value of mplsLdpEntityDiscontinuityTime **type**\: int **range:** 0..4294967295 .. attribute:: mplsldpentitystatsmalformedtlvvalueerrors This object counts the number of Malformed TLV Value Fatal Errors detected by the session(s) (past and present) associated with this LDP Entity. Discontinuities in the value of this counter can occur at re\-initialization of the management system, and at other times as indicated by the value of mplsLdpEntityDiscontinuityTime **type**\: int **range:** 0..4294967295 .. attribute:: mplsldpentitystatskeepalivetimerexperrors This object counts the number of Session Keep Alive Timer Expired Errors detected by the session(s) (past and present) associated with this LDP Entity. Discontinuities in the value of this counter can occur at re\-initialization of the management system, and at other times as indicated by the value of mplsLdpEntityDiscontinuityTime **type**\: int **range:** 0..4294967295 .. attribute:: mplsldpentitystatsshutdownreceivednotifications This object counts the number of Shutdown Notifications received related to session(s) (past and present) associated with this LDP Entity. Discontinuities in the value of this counter can occur at re\-initialization of the management system, and at other times as indicated by the value of mplsLdpEntityDiscontinuityTime **type**\: int **range:** 0..4294967295 .. attribute:: mplsldpentitystatsshutdownsentnotifications This object counts the number of Shutdown Notfications sent related to session(s) (past and present) associated with this LDP Entity. Discontinuities in the value of this counter can occur at re\-initialization of the management system, and at other times as indicated by the value of mplsLdpEntityDiscontinuityTime **type**\: int **range:** 0..4294967295 """ _prefix = 'MPLS-LDP-STD-MIB' _revision = '2004-06-03' def __init__(self): super(MPLSLDPSTDMIB.MplsLdpEntityTable.MplsLdpEntityEntry, self).__init__() self.yang_name = "mplsLdpEntityEntry" self.yang_parent_name = "mplsLdpEntityTable" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['mplsldpentityldpid','mplsldpentityindex'] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('mplsldpentityldpid', (YLeaf(YType.str, 'mplsLdpEntityLdpId'), ['str'])), ('mplsldpentityindex', (YLeaf(YType.uint32, 'mplsLdpEntityIndex'), ['int'])), ('mplsldpentityprotocolversion', (YLeaf(YType.uint32, 'mplsLdpEntityProtocolVersion'), ['int'])), ('mplsldpentityadminstatus', (YLeaf(YType.enumeration, 'mplsLdpEntityAdminStatus'), [('ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB', 'MPLSLDPSTDMIB', 'MplsLdpEntityTable.MplsLdpEntityEntry.MplsLdpEntityAdminStatus')])), ('mplsldpentityoperstatus', (YLeaf(YType.enumeration, 'mplsLdpEntityOperStatus'), [('ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB', 'MPLSLDPSTDMIB', 'MplsLdpEntityTable.MplsLdpEntityEntry.MplsLdpEntityOperStatus')])), ('mplsldpentitytcpport', (YLeaf(YType.uint16, 'mplsLdpEntityTcpPort'), ['int'])), ('mplsldpentityudpdscport', (YLeaf(YType.uint16, 'mplsLdpEntityUdpDscPort'), ['int'])), ('mplsldpentitymaxpdulength', (YLeaf(YType.uint32, 'mplsLdpEntityMaxPduLength'), ['int'])), ('mplsldpentitykeepaliveholdtimer', (YLeaf(YType.uint32, 'mplsLdpEntityKeepAliveHoldTimer'), ['int'])), ('mplsldpentityhelloholdtimer', (YLeaf(YType.uint32, 'mplsLdpEntityHelloHoldTimer'), ['int'])), ('mplsldpentityinitsessionthreshold', (YLeaf(YType.int32, 'mplsLdpEntityInitSessionThreshold'), ['int'])), ('mplsldpentitylabeldistmethod', (YLeaf(YType.enumeration, 'mplsLdpEntityLabelDistMethod'), [('ydk.models.cisco_ios_xe.MPLS_TC_STD_MIB', 'MplsLabelDistributionMethod', '')])), ('mplsldpentitylabelretentionmode', (YLeaf(YType.enumeration, 'mplsLdpEntityLabelRetentionMode'), [('ydk.models.cisco_ios_xe.MPLS_TC_STD_MIB', 'MplsRetentionMode', '')])), ('mplsldpentitypathvectorlimit', (YLeaf(YType.int32, 'mplsLdpEntityPathVectorLimit'), ['int'])), ('mplsldpentityhopcountlimit', (YLeaf(YType.int32, 'mplsLdpEntityHopCountLimit'), ['int'])), ('mplsldpentitytransportaddrkind', (YLeaf(YType.enumeration, 'mplsLdpEntityTransportAddrKind'), [('ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB', 'MPLSLDPSTDMIB', 'MplsLdpEntityTable.MplsLdpEntityEntry.MplsLdpEntityTransportAddrKind')])), ('mplsldpentitytargetpeer', (YLeaf(YType.boolean, 'mplsLdpEntityTargetPeer'), ['bool'])), ('mplsldpentitytargetpeeraddrtype', (YLeaf(YType.enumeration, 'mplsLdpEntityTargetPeerAddrType'), [('ydk.models.cisco_ios_xe.INET_ADDRESS_MIB', 'InetAddressType', '')])), ('mplsldpentitytargetpeeraddr', (YLeaf(YType.str, 'mplsLdpEntityTargetPeerAddr'), ['str'])), ('mplsldpentitylabeltype', (YLeaf(YType.enumeration, 'mplsLdpEntityLabelType'), [('ydk.models.cisco_ios_xe.MPLS_TC_STD_MIB', 'MplsLdpLabelType', '')])), ('mplsldpentitydiscontinuitytime', (YLeaf(YType.uint32, 'mplsLdpEntityDiscontinuityTime'), ['int'])), ('mplsldpentitystoragetype', (YLeaf(YType.enumeration, 'mplsLdpEntityStorageType'), [('ydk.models.cisco_ios_xe.SNMPv2_TC', 'StorageType', '')])), ('mplsldpentityrowstatus', (YLeaf(YType.enumeration, 'mplsLdpEntityRowStatus'), [('ydk.models.cisco_ios_xe.SNMPv2_TC', 'RowStatus', '')])), ('mplsldpentitystatssessionattempts', (YLeaf(YType.uint32, 'mplsLdpEntityStatsSessionAttempts'), ['int'])), ('mplsldpentitystatssessionrejectednohelloerrors', (YLeaf(YType.uint32, 'mplsLdpEntityStatsSessionRejectedNoHelloErrors'), ['int'])), ('mplsldpentitystatssessionrejectedaderrors', (YLeaf(YType.uint32, 'mplsLdpEntityStatsSessionRejectedAdErrors'), ['int'])), ('mplsldpentitystatssessionrejectedmaxpduerrors', (YLeaf(YType.uint32, 'mplsLdpEntityStatsSessionRejectedMaxPduErrors'), ['int'])), ('mplsldpentitystatssessionrejectedlrerrors', (YLeaf(YType.uint32, 'mplsLdpEntityStatsSessionRejectedLRErrors'), ['int'])), ('mplsldpentitystatsbadldpidentifiererrors', (YLeaf(YType.uint32, 'mplsLdpEntityStatsBadLdpIdentifierErrors'), ['int'])), ('mplsldpentitystatsbadpdulengtherrors', (YLeaf(YType.uint32, 'mplsLdpEntityStatsBadPduLengthErrors'), ['int'])), ('mplsldpentitystatsbadmessagelengtherrors', (YLeaf(YType.uint32, 'mplsLdpEntityStatsBadMessageLengthErrors'), ['int'])), ('mplsldpentitystatsbadtlvlengtherrors', (YLeaf(YType.uint32, 'mplsLdpEntityStatsBadTlvLengthErrors'), ['int'])), ('mplsldpentitystatsmalformedtlvvalueerrors', (YLeaf(YType.uint32, 'mplsLdpEntityStatsMalformedTlvValueErrors'), ['int'])), ('mplsldpentitystatskeepalivetimerexperrors', (YLeaf(YType.uint32, 'mplsLdpEntityStatsKeepAliveTimerExpErrors'), ['int'])), ('mplsldpentitystatsshutdownreceivednotifications', (YLeaf(YType.uint32, 'mplsLdpEntityStatsShutdownReceivedNotifications'), ['int'])), ('mplsldpentitystatsshutdownsentnotifications', (YLeaf(YType.uint32, 'mplsLdpEntityStatsShutdownSentNotifications'), ['int'])), ]) self.mplsldpentityldpid = None self.mplsldpentityindex = None self.mplsldpentityprotocolversion = None self.mplsldpentityadminstatus = None self.mplsldpentityoperstatus = None self.mplsldpentitytcpport = None self.mplsldpentityudpdscport = None self.mplsldpentitymaxpdulength = None self.mplsldpentitykeepaliveholdtimer = None self.mplsldpentityhelloholdtimer = None self.mplsldpentityinitsessionthreshold = None self.mplsldpentitylabeldistmethod = None self.mplsldpentitylabelretentionmode = None self.mplsldpentitypathvectorlimit = None self.mplsldpentityhopcountlimit = None self.mplsldpentitytransportaddrkind = None self.mplsldpentitytargetpeer = None self.mplsldpentitytargetpeeraddrtype = None self.mplsldpentitytargetpeeraddr = None self.mplsldpentitylabeltype = None self.mplsldpentitydiscontinuitytime = None self.mplsldpentitystoragetype = None self.mplsldpentityrowstatus = None self.mplsldpentitystatssessionattempts = None self.mplsldpentitystatssessionrejectednohelloerrors = None self.mplsldpentitystatssessionrejectedaderrors = None self.mplsldpentitystatssessionrejectedmaxpduerrors = None self.mplsldpentitystatssessionrejectedlrerrors = None self.mplsldpentitystatsbadldpidentifiererrors = None self.mplsldpentitystatsbadpdulengtherrors = None self.mplsldpentitystatsbadmessagelengtherrors = None self.mplsldpentitystatsbadtlvlengtherrors = None self.mplsldpentitystatsmalformedtlvvalueerrors = None self.mplsldpentitystatskeepalivetimerexperrors = None self.mplsldpentitystatsshutdownreceivednotifications = None self.mplsldpentitystatsshutdownsentnotifications = None self._segment_path = lambda: "mplsLdpEntityEntry" + "[mplsLdpEntityLdpId='" + str(self.mplsldpentityldpid) + "']" + "[mplsLdpEntityIndex='" + str(self.mplsldpentityindex) + "']" self._absolute_path = lambda: "MPLS-LDP-STD-MIB:MPLS-LDP-STD-MIB/mplsLdpEntityTable/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(MPLSLDPSTDMIB.MplsLdpEntityTable.MplsLdpEntityEntry, [u'mplsldpentityldpid', u'mplsldpentityindex', u'mplsldpentityprotocolversion', u'mplsldpentityadminstatus', u'mplsldpentityoperstatus', u'mplsldpentitytcpport', u'mplsldpentityudpdscport', u'mplsldpentitymaxpdulength', u'mplsldpentitykeepaliveholdtimer', u'mplsldpentityhelloholdtimer', u'mplsldpentityinitsessionthreshold', u'mplsldpentitylabeldistmethod', u'mplsldpentitylabelretentionmode', u'mplsldpentitypathvectorlimit', u'mplsldpentityhopcountlimit', u'mplsldpentitytransportaddrkind', u'mplsldpentitytargetpeer', u'mplsldpentitytargetpeeraddrtype', u'mplsldpentitytargetpeeraddr', u'mplsldpentitylabeltype', u'mplsldpentitydiscontinuitytime', u'mplsldpentitystoragetype', u'mplsldpentityrowstatus', u'mplsldpentitystatssessionattempts', u'mplsldpentitystatssessionrejectednohelloerrors', u'mplsldpentitystatssessionrejectedaderrors', u'mplsldpentitystatssessionrejectedmaxpduerrors', u'mplsldpentitystatssessionrejectedlrerrors', u'mplsldpentitystatsbadldpidentifiererrors', u'mplsldpentitystatsbadpdulengtherrors', u'mplsldpentitystatsbadmessagelengtherrors', u'mplsldpentitystatsbadtlvlengtherrors', u'mplsldpentitystatsmalformedtlvvalueerrors', u'mplsldpentitystatskeepalivetimerexperrors', u'mplsldpentitystatsshutdownreceivednotifications', u'mplsldpentitystatsshutdownsentnotifications'], name, value) class MplsLdpEntityAdminStatus(Enum): """ MplsLdpEntityAdminStatus (Enum Class) The administrative status of this LDP Entity. If this object is changed from 'enable' to 'disable' and this entity has already attempted to establish contact with a Peer, then all contact with that Peer is lost and all information from that Peer needs to be removed from the MIB. (This implies that the network management subsystem should clean up any related entry in the mplsLdpPeerTable. This further implies that a 'tear\-down' for that session is issued and the session and all information related to that session cease to exist). At this point the operator is able to change values which are related to this entity. When the admin status is set back to 'enable', then this Entity will attempt to establish a new session with the Peer. .. data:: enable = 1 .. data:: disable = 2 """ enable = Enum.YLeaf(1, "enable") disable = Enum.YLeaf(2, "disable") class MplsLdpEntityOperStatus(Enum): """ MplsLdpEntityOperStatus (Enum Class) The operational status of this LDP Entity. The value of unknown(1) indicates that the operational status cannot be determined at this time. The value of unknown should be a transient condition before changing to enabled(2) or disabled(3). .. data:: unknown = 1 .. data:: enabled = 2 .. data:: disabled = 3 """ unknown = Enum.YLeaf(1, "unknown") enabled = Enum.YLeaf(2, "enabled") disabled = Enum.YLeaf(3, "disabled") class MplsLdpEntityTransportAddrKind(Enum): """ MplsLdpEntityTransportAddrKind (Enum Class) This specifies whether the loopback or interface address is to be used as the transport address in the transport address TLV of the hello message. If the value is interface(1), then the IP address of the interface from which hello messages are sent is used as the transport address in the hello message. Otherwise, if the value is loopback(2), then the IP address of the loopback interface is used as the transport address in the hello message. .. data:: interface = 1 .. data:: loopback = 2 """ interface = Enum.YLeaf(1, "interface") loopback = Enum.YLeaf(2, "loopback") class MplsLdpPeerTable(Entity): """ Information about LDP peers known by Entities in the mplsLdpEntityTable. The information in this table is based on information from the Entity\-Peer interaction during session initialization but is not appropriate for the mplsLdpSessionTable, because objects in this table may or may not be used in session establishment. .. attribute:: mplsldppeerentry Information about a single Peer which is related to a Session. This table is augmented by the mplsLdpSessionTable **type**\: list of :py:class:`MplsLdpPeerEntry <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpPeerTable.MplsLdpPeerEntry>` """ _prefix = 'MPLS-LDP-STD-MIB' _revision = '2004-06-03' def __init__(self): super(MPLSLDPSTDMIB.MplsLdpPeerTable, self).__init__() self.yang_name = "mplsLdpPeerTable" self.yang_parent_name = "MPLS-LDP-STD-MIB" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("mplsLdpPeerEntry", ("mplsldppeerentry", MPLSLDPSTDMIB.MplsLdpPeerTable.MplsLdpPeerEntry))]) self._leafs = OrderedDict() self.mplsldppeerentry = YList(self) self._segment_path = lambda: "mplsLdpPeerTable" self._absolute_path = lambda: "MPLS-LDP-STD-MIB:MPLS-LDP-STD-MIB/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(MPLSLDPSTDMIB.MplsLdpPeerTable, [], name, value) class MplsLdpPeerEntry(Entity): """ Information about a single Peer which is related to a Session. This table is augmented by the mplsLdpSessionTable. .. attribute:: mplsldpentityldpid (key) **type**\: str **refers to**\: :py:class:`mplsldpentityldpid <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpEntityTable.MplsLdpEntityEntry>` .. attribute:: mplsldpentityindex (key) **type**\: int **range:** 1..4294967295 **refers to**\: :py:class:`mplsldpentityindex <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpEntityTable.MplsLdpEntityEntry>` .. attribute:: mplsldppeerldpid (key) The LDP identifier of this LDP Peer **type**\: str .. attribute:: mplsldppeerlabeldistmethod For any given LDP session, the method of label distribution must be specified **type**\: :py:class:`MplsLabelDistributionMethod <ydk.models.cisco_ios_xe.MPLS_TC_STD_MIB.MplsLabelDistributionMethod>` .. attribute:: mplsldppeerpathvectorlimit If the value of this object is 0 (zero) then Loop Dection for Path Vectors for this Peer is disabled. Otherwise, if this object has a value greater than zero, then Loop Dection for Path Vectors for this Peer is enabled and the Path Vector Limit is this value **type**\: int **range:** 0..255 .. attribute:: mplsldppeertransportaddrtype The type of the Internet address for the mplsLdpPeerTransportAddr object. The LDP specification describes this as being either an IPv4 Transport Address or IPv6 Transport Address which is used in opening the LDP session's TCP connection, or if the optional TLV is not present, then this is the IPv4/IPv6 source address for the UPD packet carrying the Hellos. This object specifies how the value of the mplsLdpPeerTransportAddr object should be interpreted **type**\: :py:class:`InetAddressType <ydk.models.cisco_ios_xe.INET_ADDRESS_MIB.InetAddressType>` .. attribute:: mplsldppeertransportaddr The Internet address advertised by the peer in the Hello Message or the Hello source address. The type of this address is specified by the value of the mplsLdpPeerTransportAddrType object **type**\: str **length:** 0..255 .. attribute:: mplsldpsessionstatelastchange The value of sysUpTime at the time this Session entered its current state as denoted by the mplsLdpSessionState object **type**\: int **range:** 0..4294967295 .. attribute:: mplsldpsessionstate The current state of the session, all of the states 1 to 5 are based on the state machine for session negotiation behavior **type**\: :py:class:`MplsLdpSessionState <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpPeerTable.MplsLdpPeerEntry.MplsLdpSessionState>` .. attribute:: mplsldpsessionrole During session establishment the LSR/LER takes either the active role or the passive role based on address comparisons. This object indicates whether this LSR/LER was behaving in an active role or passive role during this session's establishment. The value of unknown(1), indicates that the role is not able to be determined at the present time **type**\: :py:class:`MplsLdpSessionRole <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpPeerTable.MplsLdpPeerEntry.MplsLdpSessionRole>` .. attribute:: mplsldpsessionprotocolversion The version of the LDP Protocol which this session is using. This is the version of the LDP protocol which has been negotiated during session initialization **type**\: int **range:** 1..65535 .. attribute:: mplsldpsessionkeepaliveholdtimerem The keep alive hold time remaining for this session **type**\: int **range:** 0..2147483647 .. attribute:: mplsldpsessionkeepalivetime The negotiated KeepAlive Time which represents the amount of seconds between keep alive messages. The mplsLdpEntityKeepAliveHoldTimer related to this Session is the value that was proposed as the KeepAlive Time for this session. This value is negotiated during session initialization between the entity's proposed value (i.e., the value configured in mplsLdpEntityKeepAliveHoldTimer) and the peer's proposed KeepAlive Hold Timer value. This value is the smaller of the two proposed values **type**\: int **range:** 1..65535 **units**\: seconds .. attribute:: mplsldpsessionmaxpdulength The value of maximum allowable length for LDP PDUs for this session. This value may have been negotiated during the Session Initialization. This object is related to the mplsLdpEntityMaxPduLength object. The mplsLdpEntityMaxPduLength object specifies the requested LDP PDU length, and this object reflects the negotiated LDP PDU length between the Entity and the Peer **type**\: int **range:** 1..65535 **units**\: octets .. attribute:: mplsldpsessiondiscontinuitytime The value of sysUpTime on the most recent occasion at which any one or more of this session's counters suffered a discontinuity. The relevant counters are the specific instances associated with this session of any Counter32 object contained in the mplsLdpSessionStatsTable. The initial value of this object is the value of sysUpTime when the entry was created in this table. Also, a command generator can distinguish when a session between a given Entity and Peer goes away and a new session is established. This value would change and thus indicate to the command generator that this is a different session **type**\: int **range:** 0..4294967295 .. attribute:: mplsldpsessionstatsunknownmestypeerrors This object counts the number of Unknown Message Type Errors detected by this LSR/LER during this session. Discontinuities in the value of this counter can occur at re\-initialization of the management system, and at other times as indicated by the value of mplsLdpSessionDiscontinuityTime **type**\: int **range:** 0..4294967295 .. attribute:: mplsldpsessionstatsunknowntlverrors This object counts the number of Unknown TLV Errors detected by this LSR/LER during this session. Discontinuities in the value of this counter can occur at re\-initialization of the management system, and at other times as indicated by the value of mplsLdpSessionDiscontinuityTime **type**\: int **range:** 0..4294967295 """ _prefix = 'MPLS-LDP-STD-MIB' _revision = '2004-06-03' def __init__(self): super(MPLSLDPSTDMIB.MplsLdpPeerTable.MplsLdpPeerEntry, self).__init__() self.yang_name = "mplsLdpPeerEntry" self.yang_parent_name = "mplsLdpPeerTable" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['mplsldpentityldpid','mplsldpentityindex','mplsldppeerldpid'] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('mplsldpentityldpid', (YLeaf(YType.str, 'mplsLdpEntityLdpId'), ['str'])), ('mplsldpentityindex', (YLeaf(YType.str, 'mplsLdpEntityIndex'), ['int'])), ('mplsldppeerldpid', (YLeaf(YType.str, 'mplsLdpPeerLdpId'), ['str'])), ('mplsldppeerlabeldistmethod', (YLeaf(YType.enumeration, 'mplsLdpPeerLabelDistMethod'), [('ydk.models.cisco_ios_xe.MPLS_TC_STD_MIB', 'MplsLabelDistributionMethod', '')])), ('mplsldppeerpathvectorlimit', (YLeaf(YType.int32, 'mplsLdpPeerPathVectorLimit'), ['int'])), ('mplsldppeertransportaddrtype', (YLeaf(YType.enumeration, 'mplsLdpPeerTransportAddrType'), [('ydk.models.cisco_ios_xe.INET_ADDRESS_MIB', 'InetAddressType', '')])), ('mplsldppeertransportaddr', (YLeaf(YType.str, 'mplsLdpPeerTransportAddr'), ['str'])), ('mplsldpsessionstatelastchange', (YLeaf(YType.uint32, 'mplsLdpSessionStateLastChange'), ['int'])), ('mplsldpsessionstate', (YLeaf(YType.enumeration, 'mplsLdpSessionState'), [('ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB', 'MPLSLDPSTDMIB', 'MplsLdpPeerTable.MplsLdpPeerEntry.MplsLdpSessionState')])), ('mplsldpsessionrole', (YLeaf(YType.enumeration, 'mplsLdpSessionRole'), [('ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB', 'MPLSLDPSTDMIB', 'MplsLdpPeerTable.MplsLdpPeerEntry.MplsLdpSessionRole')])), ('mplsldpsessionprotocolversion', (YLeaf(YType.uint32, 'mplsLdpSessionProtocolVersion'), ['int'])), ('mplsldpsessionkeepaliveholdtimerem', (YLeaf(YType.int32, 'mplsLdpSessionKeepAliveHoldTimeRem'), ['int'])), ('mplsldpsessionkeepalivetime', (YLeaf(YType.uint32, 'mplsLdpSessionKeepAliveTime'), ['int'])), ('mplsldpsessionmaxpdulength', (YLeaf(YType.uint32, 'mplsLdpSessionMaxPduLength'), ['int'])), ('mplsldpsessiondiscontinuitytime', (YLeaf(YType.uint32, 'mplsLdpSessionDiscontinuityTime'), ['int'])), ('mplsldpsessionstatsunknownmestypeerrors', (YLeaf(YType.uint32, 'mplsLdpSessionStatsUnknownMesTypeErrors'), ['int'])), ('mplsldpsessionstatsunknowntlverrors', (YLeaf(YType.uint32, 'mplsLdpSessionStatsUnknownTlvErrors'), ['int'])), ]) self.mplsldpentityldpid = None self.mplsldpentityindex = None self.mplsldppeerldpid = None self.mplsldppeerlabeldistmethod = None self.mplsldppeerpathvectorlimit = None self.mplsldppeertransportaddrtype = None self.mplsldppeertransportaddr = None self.mplsldpsessionstatelastchange = None self.mplsldpsessionstate = None self.mplsldpsessionrole = None self.mplsldpsessionprotocolversion = None self.mplsldpsessionkeepaliveholdtimerem = None self.mplsldpsessionkeepalivetime = None self.mplsldpsessionmaxpdulength = None self.mplsldpsessiondiscontinuitytime = None self.mplsldpsessionstatsunknownmestypeerrors = None self.mplsldpsessionstatsunknowntlverrors = None self._segment_path = lambda: "mplsLdpPeerEntry" + "[mplsLdpEntityLdpId='" + str(self.mplsldpentityldpid) + "']" + "[mplsLdpEntityIndex='" + str(self.mplsldpentityindex) + "']" + "[mplsLdpPeerLdpId='" + str(self.mplsldppeerldpid) + "']" self._absolute_path = lambda: "MPLS-LDP-STD-MIB:MPLS-LDP-STD-MIB/mplsLdpPeerTable/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(MPLSLDPSTDMIB.MplsLdpPeerTable.MplsLdpPeerEntry, [u'mplsldpentityldpid', u'mplsldpentityindex', u'mplsldppeerldpid', u'mplsldppeerlabeldistmethod', u'mplsldppeerpathvectorlimit', u'mplsldppeertransportaddrtype', u'mplsldppeertransportaddr', u'mplsldpsessionstatelastchange', u'mplsldpsessionstate', u'mplsldpsessionrole', u'mplsldpsessionprotocolversion', u'mplsldpsessionkeepaliveholdtimerem', u'mplsldpsessionkeepalivetime', u'mplsldpsessionmaxpdulength', u'mplsldpsessiondiscontinuitytime', u'mplsldpsessionstatsunknownmestypeerrors', u'mplsldpsessionstatsunknowntlverrors'], name, value) class MplsLdpSessionRole(Enum): """ MplsLdpSessionRole (Enum Class) During session establishment the LSR/LER takes either the active role or the passive role based on address comparisons. This object indicates whether this LSR/LER was behaving in an active role or passive role during this session's establishment. The value of unknown(1), indicates that the role is not able to be determined at the present time. .. data:: unknown = 1 .. data:: active = 2 .. data:: passive = 3 """ unknown = Enum.YLeaf(1, "unknown") active = Enum.YLeaf(2, "active") passive = Enum.YLeaf(3, "passive") class MplsLdpSessionState(Enum): """ MplsLdpSessionState (Enum Class) The current state of the session, all of the states 1 to 5 are based on the state machine for session negotiation behavior. .. data:: nonexistent = 1 .. data:: initialized = 2 .. data:: openrec = 3 .. data:: opensent = 4 .. data:: operational = 5 """ nonexistent = Enum.YLeaf(1, "nonexistent") initialized = Enum.YLeaf(2, "initialized") openrec = Enum.YLeaf(3, "openrec") opensent = Enum.YLeaf(4, "opensent") operational = Enum.YLeaf(5, "operational") class MplsLdpHelloAdjacencyTable(Entity): """ A table of Hello Adjacencies for Sessions. .. attribute:: mplsldphelloadjacencyentry Each row represents a single LDP Hello Adjacency. An LDP Session can have one or more Hello Adjacencies **type**\: list of :py:class:`MplsLdpHelloAdjacencyEntry <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpHelloAdjacencyTable.MplsLdpHelloAdjacencyEntry>` """ _prefix = 'MPLS-LDP-STD-MIB' _revision = '2004-06-03' def __init__(self): super(MPLSLDPSTDMIB.MplsLdpHelloAdjacencyTable, self).__init__() self.yang_name = "mplsLdpHelloAdjacencyTable" self.yang_parent_name = "MPLS-LDP-STD-MIB" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("mplsLdpHelloAdjacencyEntry", ("mplsldphelloadjacencyentry", MPLSLDPSTDMIB.MplsLdpHelloAdjacencyTable.MplsLdpHelloAdjacencyEntry))]) self._leafs = OrderedDict() self.mplsldphelloadjacencyentry = YList(self) self._segment_path = lambda: "mplsLdpHelloAdjacencyTable" self._absolute_path = lambda: "MPLS-LDP-STD-MIB:MPLS-LDP-STD-MIB/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(MPLSLDPSTDMIB.MplsLdpHelloAdjacencyTable, [], name, value) class MplsLdpHelloAdjacencyEntry(Entity): """ Each row represents a single LDP Hello Adjacency. An LDP Session can have one or more Hello Adjacencies. .. attribute:: mplsldpentityldpid (key) **type**\: str **refers to**\: :py:class:`mplsldpentityldpid <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpEntityTable.MplsLdpEntityEntry>` .. attribute:: mplsldpentityindex (key) **type**\: int **range:** 1..4294967295 **refers to**\: :py:class:`mplsldpentityindex <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpEntityTable.MplsLdpEntityEntry>` .. attribute:: mplsldppeerldpid (key) **type**\: str **refers to**\: :py:class:`mplsldppeerldpid <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpPeerTable.MplsLdpPeerEntry>` .. attribute:: mplsldphelloadjacencyindex (key) An identifier for this specific adjacency **type**\: int **range:** 1..4294967295 .. attribute:: mplsldphelloadjacencyholdtimerem If the value of this object is 65535, this means that the hold time is infinite (i.e., wait forever). Otherwise, the time remaining for this Hello Adjacency to receive its next Hello Message. This interval will change when the 'next' Hello Message which corresponds to this Hello Adjacency is received unless it is infinite **type**\: int **range:** 0..2147483647 **units**\: seconds .. attribute:: mplsldphelloadjacencyholdtime The Hello hold time which is negotiated between the Entity and the Peer. The entity associated with this Hello Adjacency issues a proposed Hello Hold Time value in the mplsLdpEntityHelloHoldTimer object. The peer also proposes a value and this object represents the negotiated value. A value of 0 means the default, which is 15 seconds for Link Hellos and 45 seconds for Targeted Hellos. A value of 65535 indicates an infinite hold time **type**\: int **range:** 0..65535 .. attribute:: mplsldphelloadjacencytype This adjacency is the result of a 'link' hello if the value of this object is link(1). Otherwise, it is a result of a 'targeted' hello, targeted(2) **type**\: :py:class:`MplsLdpHelloAdjacencyType <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpHelloAdjacencyTable.MplsLdpHelloAdjacencyEntry.MplsLdpHelloAdjacencyType>` """ _prefix = 'MPLS-LDP-STD-MIB' _revision = '2004-06-03' def __init__(self): super(MPLSLDPSTDMIB.MplsLdpHelloAdjacencyTable.MplsLdpHelloAdjacencyEntry, self).__init__() self.yang_name = "mplsLdpHelloAdjacencyEntry" self.yang_parent_name = "mplsLdpHelloAdjacencyTable" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['mplsldpentityldpid','mplsldpentityindex','mplsldppeerldpid','mplsldphelloadjacencyindex'] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('mplsldpentityldpid', (YLeaf(YType.str, 'mplsLdpEntityLdpId'), ['str'])), ('mplsldpentityindex', (YLeaf(YType.str, 'mplsLdpEntityIndex'), ['int'])), ('mplsldppeerldpid', (YLeaf(YType.str, 'mplsLdpPeerLdpId'), ['str'])), ('mplsldphelloadjacencyindex', (YLeaf(YType.uint32, 'mplsLdpHelloAdjacencyIndex'), ['int'])), ('mplsldphelloadjacencyholdtimerem', (YLeaf(YType.int32, 'mplsLdpHelloAdjacencyHoldTimeRem'), ['int'])), ('mplsldphelloadjacencyholdtime', (YLeaf(YType.uint32, 'mplsLdpHelloAdjacencyHoldTime'), ['int'])), ('mplsldphelloadjacencytype', (YLeaf(YType.enumeration, 'mplsLdpHelloAdjacencyType'), [('ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB', 'MPLSLDPSTDMIB', 'MplsLdpHelloAdjacencyTable.MplsLdpHelloAdjacencyEntry.MplsLdpHelloAdjacencyType')])), ]) self.mplsldpentityldpid = None self.mplsldpentityindex = None self.mplsldppeerldpid = None self.mplsldphelloadjacencyindex = None self.mplsldphelloadjacencyholdtimerem = None self.mplsldphelloadjacencyholdtime = None self.mplsldphelloadjacencytype = None self._segment_path = lambda: "mplsLdpHelloAdjacencyEntry" + "[mplsLdpEntityLdpId='" + str(self.mplsldpentityldpid) + "']" + "[mplsLdpEntityIndex='" + str(self.mplsldpentityindex) + "']" + "[mplsLdpPeerLdpId='" + str(self.mplsldppeerldpid) + "']" + "[mplsLdpHelloAdjacencyIndex='" + str(self.mplsldphelloadjacencyindex) + "']" self._absolute_path = lambda: "MPLS-LDP-STD-MIB:MPLS-LDP-STD-MIB/mplsLdpHelloAdjacencyTable/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(MPLSLDPSTDMIB.MplsLdpHelloAdjacencyTable.MplsLdpHelloAdjacencyEntry, [u'mplsldpentityldpid', u'mplsldpentityindex', u'mplsldppeerldpid', u'mplsldphelloadjacencyindex', u'mplsldphelloadjacencyholdtimerem', u'mplsldphelloadjacencyholdtime', u'mplsldphelloadjacencytype'], name, value) class MplsLdpHelloAdjacencyType(Enum): """ MplsLdpHelloAdjacencyType (Enum Class) This adjacency is the result of a 'link' hello if the value of this object is link(1). Otherwise, it is a result of a 'targeted' hello, targeted(2). .. data:: link = 1 .. data:: targeted = 2 """ link = Enum.YLeaf(1, "link") targeted = Enum.YLeaf(2, "targeted") class MplsInSegmentLdpLspTable(Entity): """ A table of LDP LSP's which map to the mplsInSegmentTable in the MPLS\-LSR\-STD\-MIB module. .. attribute:: mplsinsegmentldplspentry An entry in this table represents information on a single LDP LSP which is represented by a session's index triple (mplsLdpEntityLdpId, mplsLdpEntityIndex, mplsLdpPeerLdpId) AND the index for the mplsInSegmentTable (mplsInSegmentLdpLspLabelIndex) from the MPLS\-LSR\-STD\-MIB. The information contained in a row is read\-only **type**\: list of :py:class:`MplsInSegmentLdpLspEntry <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsInSegmentLdpLspTable.MplsInSegmentLdpLspEntry>` """ _prefix = 'MPLS-LDP-STD-MIB' _revision = '2004-06-03' def __init__(self): super(MPLSLDPSTDMIB.MplsInSegmentLdpLspTable, self).__init__() self.yang_name = "mplsInSegmentLdpLspTable" self.yang_parent_name = "MPLS-LDP-STD-MIB" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("mplsInSegmentLdpLspEntry", ("mplsinsegmentldplspentry", MPLSLDPSTDMIB.MplsInSegmentLdpLspTable.MplsInSegmentLdpLspEntry))]) self._leafs = OrderedDict() self.mplsinsegmentldplspentry = YList(self) self._segment_path = lambda: "mplsInSegmentLdpLspTable" self._absolute_path = lambda: "MPLS-LDP-STD-MIB:MPLS-LDP-STD-MIB/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(MPLSLDPSTDMIB.MplsInSegmentLdpLspTable, [], name, value) class MplsInSegmentLdpLspEntry(Entity): """ An entry in this table represents information on a single LDP LSP which is represented by a session's index triple (mplsLdpEntityLdpId, mplsLdpEntityIndex, mplsLdpPeerLdpId) AND the index for the mplsInSegmentTable (mplsInSegmentLdpLspLabelIndex) from the MPLS\-LSR\-STD\-MIB. The information contained in a row is read\-only. .. attribute:: mplsldpentityldpid (key) **type**\: str **refers to**\: :py:class:`mplsldpentityldpid <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpEntityTable.MplsLdpEntityEntry>` .. attribute:: mplsldpentityindex (key) **type**\: int **range:** 1..4294967295 **refers to**\: :py:class:`mplsldpentityindex <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpEntityTable.MplsLdpEntityEntry>` .. attribute:: mplsldppeerldpid (key) **type**\: str **refers to**\: :py:class:`mplsldppeerldpid <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpPeerTable.MplsLdpPeerEntry>` .. attribute:: mplsinsegmentldplspindex (key) This contains the same value as the mplsInSegmentIndex in the MPLS\-LSR\-STD\-MIB's mplsInSegmentTable **type**\: str **length:** 1..24 .. attribute:: mplsinsegmentldplsplabeltype The Layer 2 Label Type **type**\: :py:class:`MplsLdpLabelType <ydk.models.cisco_ios_xe.MPLS_TC_STD_MIB.MplsLdpLabelType>` .. attribute:: mplsinsegmentldplsptype The type of LSP connection **type**\: :py:class:`MplsLspType <ydk.models.cisco_ios_xe.MPLS_TC_STD_MIB.MplsLspType>` """ _prefix = 'MPLS-LDP-STD-MIB' _revision = '2004-06-03' def __init__(self): super(MPLSLDPSTDMIB.MplsInSegmentLdpLspTable.MplsInSegmentLdpLspEntry, self).__init__() self.yang_name = "mplsInSegmentLdpLspEntry" self.yang_parent_name = "mplsInSegmentLdpLspTable" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['mplsldpentityldpid','mplsldpentityindex','mplsldppeerldpid','mplsinsegmentldplspindex'] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('mplsldpentityldpid', (YLeaf(YType.str, 'mplsLdpEntityLdpId'), ['str'])), ('mplsldpentityindex', (YLeaf(YType.str, 'mplsLdpEntityIndex'), ['int'])), ('mplsldppeerldpid', (YLeaf(YType.str, 'mplsLdpPeerLdpId'), ['str'])), ('mplsinsegmentldplspindex', (YLeaf(YType.str, 'mplsInSegmentLdpLspIndex'), ['str'])), ('mplsinsegmentldplsplabeltype', (YLeaf(YType.enumeration, 'mplsInSegmentLdpLspLabelType'), [('ydk.models.cisco_ios_xe.MPLS_TC_STD_MIB', 'MplsLdpLabelType', '')])), ('mplsinsegmentldplsptype', (YLeaf(YType.enumeration, 'mplsInSegmentLdpLspType'), [('ydk.models.cisco_ios_xe.MPLS_TC_STD_MIB', 'MplsLspType', '')])), ]) self.mplsldpentityldpid = None self.mplsldpentityindex = None self.mplsldppeerldpid = None self.mplsinsegmentldplspindex = None self.mplsinsegmentldplsplabeltype = None self.mplsinsegmentldplsptype = None self._segment_path = lambda: "mplsInSegmentLdpLspEntry" + "[mplsLdpEntityLdpId='" + str(self.mplsldpentityldpid) + "']" + "[mplsLdpEntityIndex='" + str(self.mplsldpentityindex) + "']" + "[mplsLdpPeerLdpId='" + str(self.mplsldppeerldpid) + "']" + "[mplsInSegmentLdpLspIndex='" + str(self.mplsinsegmentldplspindex) + "']" self._absolute_path = lambda: "MPLS-LDP-STD-MIB:MPLS-LDP-STD-MIB/mplsInSegmentLdpLspTable/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(MPLSLDPSTDMIB.MplsInSegmentLdpLspTable.MplsInSegmentLdpLspEntry, [u'mplsldpentityldpid', u'mplsldpentityindex', u'mplsldppeerldpid', u'mplsinsegmentldplspindex', u'mplsinsegmentldplsplabeltype', u'mplsinsegmentldplsptype'], name, value) class MplsOutSegmentLdpLspTable(Entity): """ A table of LDP LSP's which map to the mplsOutSegmentTable in the MPLS\-LSR\-STD\-MIB. .. attribute:: mplsoutsegmentldplspentry An entry in this table represents information on a single LDP LSP which is represented by a session's index triple (mplsLdpEntityLdpId, mplsLdpEntityIndex, mplsLdpPeerLdpId) AND the index (mplsOutSegmentLdpLspIndex) for the mplsOutSegmentTable. The information contained in a row is read\-only **type**\: list of :py:class:`MplsOutSegmentLdpLspEntry <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsOutSegmentLdpLspTable.MplsOutSegmentLdpLspEntry>` """ _prefix = 'MPLS-LDP-STD-MIB' _revision = '2004-06-03' def __init__(self): super(MPLSLDPSTDMIB.MplsOutSegmentLdpLspTable, self).__init__() self.yang_name = "mplsOutSegmentLdpLspTable" self.yang_parent_name = "MPLS-LDP-STD-MIB" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("mplsOutSegmentLdpLspEntry", ("mplsoutsegmentldplspentry", MPLSLDPSTDMIB.MplsOutSegmentLdpLspTable.MplsOutSegmentLdpLspEntry))]) self._leafs = OrderedDict() self.mplsoutsegmentldplspentry = YList(self) self._segment_path = lambda: "mplsOutSegmentLdpLspTable" self._absolute_path = lambda: "MPLS-LDP-STD-MIB:MPLS-LDP-STD-MIB/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(MPLSLDPSTDMIB.MplsOutSegmentLdpLspTable, [], name, value) class MplsOutSegmentLdpLspEntry(Entity): """ An entry in this table represents information on a single LDP LSP which is represented by a session's index triple (mplsLdpEntityLdpId, mplsLdpEntityIndex, mplsLdpPeerLdpId) AND the index (mplsOutSegmentLdpLspIndex) for the mplsOutSegmentTable. The information contained in a row is read\-only. .. attribute:: mplsldpentityldpid (key) **type**\: str **refers to**\: :py:class:`mplsldpentityldpid <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpEntityTable.MplsLdpEntityEntry>` .. attribute:: mplsldpentityindex (key) **type**\: int **range:** 1..4294967295 **refers to**\: :py:class:`mplsldpentityindex <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpEntityTable.MplsLdpEntityEntry>` .. attribute:: mplsldppeerldpid (key) **type**\: str **refers to**\: :py:class:`mplsldppeerldpid <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpPeerTable.MplsLdpPeerEntry>` .. attribute:: mplsoutsegmentldplspindex (key) This contains the same value as the mplsOutSegmentIndex in the MPLS\-LSR\-STD\-MIB's mplsOutSegmentTable **type**\: str **length:** 1..24 .. attribute:: mplsoutsegmentldplsplabeltype The Layer 2 Label Type **type**\: :py:class:`MplsLdpLabelType <ydk.models.cisco_ios_xe.MPLS_TC_STD_MIB.MplsLdpLabelType>` .. attribute:: mplsoutsegmentldplsptype The type of LSP connection **type**\: :py:class:`MplsLspType <ydk.models.cisco_ios_xe.MPLS_TC_STD_MIB.MplsLspType>` """ _prefix = 'MPLS-LDP-STD-MIB' _revision = '2004-06-03' def __init__(self): super(MPLSLDPSTDMIB.MplsOutSegmentLdpLspTable.MplsOutSegmentLdpLspEntry, self).__init__() self.yang_name = "mplsOutSegmentLdpLspEntry" self.yang_parent_name = "mplsOutSegmentLdpLspTable" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['mplsldpentityldpid','mplsldpentityindex','mplsldppeerldpid','mplsoutsegmentldplspindex'] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('mplsldpentityldpid', (YLeaf(YType.str, 'mplsLdpEntityLdpId'), ['str'])), ('mplsldpentityindex', (YLeaf(YType.str, 'mplsLdpEntityIndex'), ['int'])), ('mplsldppeerldpid', (YLeaf(YType.str, 'mplsLdpPeerLdpId'), ['str'])), ('mplsoutsegmentldplspindex', (YLeaf(YType.str, 'mplsOutSegmentLdpLspIndex'), ['str'])), ('mplsoutsegmentldplsplabeltype', (YLeaf(YType.enumeration, 'mplsOutSegmentLdpLspLabelType'), [('ydk.models.cisco_ios_xe.MPLS_TC_STD_MIB', 'MplsLdpLabelType', '')])), ('mplsoutsegmentldplsptype', (YLeaf(YType.enumeration, 'mplsOutSegmentLdpLspType'), [('ydk.models.cisco_ios_xe.MPLS_TC_STD_MIB', 'MplsLspType', '')])), ]) self.mplsldpentityldpid = None self.mplsldpentityindex = None self.mplsldppeerldpid = None self.mplsoutsegmentldplspindex = None self.mplsoutsegmentldplsplabeltype = None self.mplsoutsegmentldplsptype = None self._segment_path = lambda: "mplsOutSegmentLdpLspEntry" + "[mplsLdpEntityLdpId='" + str(self.mplsldpentityldpid) + "']" + "[mplsLdpEntityIndex='" + str(self.mplsldpentityindex) + "']" + "[mplsLdpPeerLdpId='" + str(self.mplsldppeerldpid) + "']" + "[mplsOutSegmentLdpLspIndex='" + str(self.mplsoutsegmentldplspindex) + "']" self._absolute_path = lambda: "MPLS-LDP-STD-MIB:MPLS-LDP-STD-MIB/mplsOutSegmentLdpLspTable/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(MPLSLDPSTDMIB.MplsOutSegmentLdpLspTable.MplsOutSegmentLdpLspEntry, [u'mplsldpentityldpid', u'mplsldpentityindex', u'mplsldppeerldpid', u'mplsoutsegmentldplspindex', u'mplsoutsegmentldplsplabeltype', u'mplsoutsegmentldplsptype'], name, value) class MplsFecTable(Entity): """ This table represents the FEC (Forwarding Equivalence Class) Information associated with an LSP. .. attribute:: mplsfecentry Each row represents a single FEC Element **type**\: list of :py:class:`MplsFecEntry <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsFecTable.MplsFecEntry>` """ _prefix = 'MPLS-LDP-STD-MIB' _revision = '2004-06-03' def __init__(self): super(MPLSLDPSTDMIB.MplsFecTable, self).__init__() self.yang_name = "mplsFecTable" self.yang_parent_name = "MPLS-LDP-STD-MIB" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("mplsFecEntry", ("mplsfecentry", MPLSLDPSTDMIB.MplsFecTable.MplsFecEntry))]) self._leafs = OrderedDict() self.mplsfecentry = YList(self) self._segment_path = lambda: "mplsFecTable" self._absolute_path = lambda: "MPLS-LDP-STD-MIB:MPLS-LDP-STD-MIB/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(MPLSLDPSTDMIB.MplsFecTable, [], name, value) class MplsFecEntry(Entity): """ Each row represents a single FEC Element. .. attribute:: mplsfecindex (key) The index which uniquely identifies this entry **type**\: int **range:** 1..4294967295 .. attribute:: mplsfectype The type of the FEC. If the value of this object is 'prefix(1)' then the FEC type described by this row is an address prefix. If the value of this object is 'hostAddress(2)' then the FEC type described by this row is a host address **type**\: :py:class:`MplsFecType <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsFecTable.MplsFecEntry.MplsFecType>` .. attribute:: mplsfecaddrprefixlength If the value of the 'mplsFecType' is 'hostAddress(2)' then this object is undefined. If the value of 'mplsFecType' is 'prefix(1)' then the value of this object is the length in bits of the address prefix represented by 'mplsFecAddr', or zero. If the value of this object is zero, this indicates that the prefix matches all addresses. In this case the address prefix MUST also be zero (i.e., 'mplsFecAddr' should have the value of zero.) **type**\: int **range:** 0..2040 .. attribute:: mplsfecaddrtype The value of this object is the type of the Internet address. The value of this object, decides how the value of the mplsFecAddr object is interpreted **type**\: :py:class:`InetAddressType <ydk.models.cisco_ios_xe.INET_ADDRESS_MIB.InetAddressType>` .. attribute:: mplsfecaddr The value of this object is interpreted based on the value of the 'mplsFecAddrType' object. This address is then further interpretted as an being used with the address prefix, or as the host address. This further interpretation is indicated by the 'mplsFecType' object. In other words, the FEC element is populated according to the Prefix FEC Element value encoding, or the Host Address FEC Element encoding **type**\: str **length:** 0..255 .. attribute:: mplsfecstoragetype The storage type for this conceptual row. Conceptual rows having the value 'permanent(4)' need not allow write\-access to any columnar objects in the row **type**\: :py:class:`StorageType <ydk.models.cisco_ios_xe.SNMPv2_TC.StorageType>` .. attribute:: mplsfecrowstatus The status of this conceptual row. If the value of this object is 'active(1)', then none of the writable objects of this entry can be modified, except to set this object to 'destroy(6)'. NOTE\: if this row is being referenced by any entry in the mplsLdpLspFecTable, then a request to destroy this row, will result in an inconsistentValue error **type**\: :py:class:`RowStatus <ydk.models.cisco_ios_xe.SNMPv2_TC.RowStatus>` """ _prefix = 'MPLS-LDP-STD-MIB' _revision = '2004-06-03' def __init__(self): super(MPLSLDPSTDMIB.MplsFecTable.MplsFecEntry, self).__init__() self.yang_name = "mplsFecEntry" self.yang_parent_name = "mplsFecTable" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['mplsfecindex'] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('mplsfecindex', (YLeaf(YType.uint32, 'mplsFecIndex'), ['int'])), ('mplsfectype', (YLeaf(YType.enumeration, 'mplsFecType'), [('ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB', 'MPLSLDPSTDMIB', 'MplsFecTable.MplsFecEntry.MplsFecType')])), ('mplsfecaddrprefixlength', (YLeaf(YType.uint32, 'mplsFecAddrPrefixLength'), ['int'])), ('mplsfecaddrtype', (YLeaf(YType.enumeration, 'mplsFecAddrType'), [('ydk.models.cisco_ios_xe.INET_ADDRESS_MIB', 'InetAddressType', '')])), ('mplsfecaddr', (YLeaf(YType.str, 'mplsFecAddr'), ['str'])), ('mplsfecstoragetype', (YLeaf(YType.enumeration, 'mplsFecStorageType'), [('ydk.models.cisco_ios_xe.SNMPv2_TC', 'StorageType', '')])), ('mplsfecrowstatus', (YLeaf(YType.enumeration, 'mplsFecRowStatus'), [('ydk.models.cisco_ios_xe.SNMPv2_TC', 'RowStatus', '')])), ]) self.mplsfecindex = None self.mplsfectype = None self.mplsfecaddrprefixlength = None self.mplsfecaddrtype = None self.mplsfecaddr = None self.mplsfecstoragetype = None self.mplsfecrowstatus = None self._segment_path = lambda: "mplsFecEntry" + "[mplsFecIndex='" + str(self.mplsfecindex) + "']" self._absolute_path = lambda: "MPLS-LDP-STD-MIB:MPLS-LDP-STD-MIB/mplsFecTable/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(MPLSLDPSTDMIB.MplsFecTable.MplsFecEntry, [u'mplsfecindex', u'mplsfectype', u'mplsfecaddrprefixlength', u'mplsfecaddrtype', u'mplsfecaddr', u'mplsfecstoragetype', u'mplsfecrowstatus'], name, value) class MplsFecType(Enum): """ MplsFecType (Enum Class) The type of the FEC. If the value of this object is 'prefix(1)' then the FEC type described by this row is an address prefix. If the value of this object is 'hostAddress(2)' then the FEC type described by this row is a host address. .. data:: prefix = 1 .. data:: hostAddress = 2 """ prefix = Enum.YLeaf(1, "prefix") hostAddress = Enum.YLeaf(2, "hostAddress") class MplsLdpLspFecTable(Entity): """ A table which shows the relationship between LDP LSPs and FECs. Each row represents a single LDP LSP to FEC association. .. attribute:: mplsldplspfecentry An entry represents a LDP LSP to FEC association **type**\: list of :py:class:`MplsLdpLspFecEntry <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpLspFecTable.MplsLdpLspFecEntry>` """ _prefix = 'MPLS-LDP-STD-MIB' _revision = '2004-06-03' def __init__(self): super(MPLSLDPSTDMIB.MplsLdpLspFecTable, self).__init__() self.yang_name = "mplsLdpLspFecTable" self.yang_parent_name = "MPLS-LDP-STD-MIB" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("mplsLdpLspFecEntry", ("mplsldplspfecentry", MPLSLDPSTDMIB.MplsLdpLspFecTable.MplsLdpLspFecEntry))]) self._leafs = OrderedDict() self.mplsldplspfecentry = YList(self) self._segment_path = lambda: "mplsLdpLspFecTable" self._absolute_path = lambda: "MPLS-LDP-STD-MIB:MPLS-LDP-STD-MIB/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(MPLSLDPSTDMIB.MplsLdpLspFecTable, [], name, value) class MplsLdpLspFecEntry(Entity): """ An entry represents a LDP LSP to FEC association. .. attribute:: mplsldpentityldpid (key) **type**\: str **refers to**\: :py:class:`mplsldpentityldpid <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpEntityTable.MplsLdpEntityEntry>` .. attribute:: mplsldpentityindex (key) **type**\: int **range:** 1..4294967295 **refers to**\: :py:class:`mplsldpentityindex <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpEntityTable.MplsLdpEntityEntry>` .. attribute:: mplsldppeerldpid (key) **type**\: str **refers to**\: :py:class:`mplsldppeerldpid <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpPeerTable.MplsLdpPeerEntry>` .. attribute:: mplsldplspfecsegment (key) If the value is inSegment(1), then this indicates that the following index, mplsLdpLspFecSegmentIndex, contains the same value as the mplsInSegmentLdpLspIndex. Otherwise, if the value of this object is outSegment(2), then this indicates that following index, mplsLdpLspFecSegmentIndex, contains the same value as the mplsOutSegmentLdpLspIndex **type**\: :py:class:`MplsLdpLspFecSegment <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpLspFecTable.MplsLdpLspFecEntry.MplsLdpLspFecSegment>` .. attribute:: mplsldplspfecsegmentindex (key) This index is interpretted by using the value of the mplsLdpLspFecSegment. If the mplsLdpLspFecSegment is inSegment(1), then this index has the same value as mplsInSegmentLdpLspIndex. If the mplsLdpLspFecSegment is outSegment(2), then this index has the same value as mplsOutSegmentLdpLspIndex **type**\: str **length:** 1..24 .. attribute:: mplsldplspfecindex (key) This index identifies the FEC entry in the mplsFecTable associated with this session. In other words, the value of this index is the same as the value of the mplsFecIndex that denotes the FEC associated with this Session **type**\: int **range:** 1..4294967295 .. attribute:: mplsldplspfecstoragetype The storage type for this conceptual row. Conceptual rows having the value 'permanent(4)' need not allow write\-access to any columnar objects in the row **type**\: :py:class:`StorageType <ydk.models.cisco_ios_xe.SNMPv2_TC.StorageType>` .. attribute:: mplsldplspfecrowstatus The status of this conceptual row. If the value of this object is 'active(1)', then none of the writable objects of this entry can be modified. The Agent should delete this row when the session ceases to exist. If an operator wants to associate the session with a different FEC, the recommended procedure is (as described in detail in the section entitled, 'Changing Values After Session Establishment', and again described in the DESCRIPTION clause of the mplsLdpEntityAdminStatus object) is to set the mplsLdpEntityAdminStatus to down, thereby explicitly causing a session to be torn down. This will also cause this entry to be deleted. Then, set the mplsLdpEntityAdminStatus to enable which enables a new session to be initiated. Once the session is initiated, an entry may be added to this table to associate the new session with a FEC **type**\: :py:class:`RowStatus <ydk.models.cisco_ios_xe.SNMPv2_TC.RowStatus>` """ _prefix = 'MPLS-LDP-STD-MIB' _revision = '2004-06-03' def __init__(self): super(MPLSLDPSTDMIB.MplsLdpLspFecTable.MplsLdpLspFecEntry, self).__init__() self.yang_name = "mplsLdpLspFecEntry" self.yang_parent_name = "mplsLdpLspFecTable" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['mplsldpentityldpid','mplsldpentityindex','mplsldppeerldpid','mplsldplspfecsegment','mplsldplspfecsegmentindex','mplsldplspfecindex'] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('mplsldpentityldpid', (YLeaf(YType.str, 'mplsLdpEntityLdpId'), ['str'])), ('mplsldpentityindex', (YLeaf(YType.str, 'mplsLdpEntityIndex'), ['int'])), ('mplsldppeerldpid', (YLeaf(YType.str, 'mplsLdpPeerLdpId'), ['str'])), ('mplsldplspfecsegment', (YLeaf(YType.enumeration, 'mplsLdpLspFecSegment'), [('ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB', 'MPLSLDPSTDMIB', 'MplsLdpLspFecTable.MplsLdpLspFecEntry.MplsLdpLspFecSegment')])), ('mplsldplspfecsegmentindex', (YLeaf(YType.str, 'mplsLdpLspFecSegmentIndex'), ['str'])), ('mplsldplspfecindex', (YLeaf(YType.uint32, 'mplsLdpLspFecIndex'), ['int'])), ('mplsldplspfecstoragetype', (YLeaf(YType.enumeration, 'mplsLdpLspFecStorageType'), [('ydk.models.cisco_ios_xe.SNMPv2_TC', 'StorageType', '')])), ('mplsldplspfecrowstatus', (YLeaf(YType.enumeration, 'mplsLdpLspFecRowStatus'), [('ydk.models.cisco_ios_xe.SNMPv2_TC', 'RowStatus', '')])), ]) self.mplsldpentityldpid = None self.mplsldpentityindex = None self.mplsldppeerldpid = None self.mplsldplspfecsegment = None self.mplsldplspfecsegmentindex = None self.mplsldplspfecindex = None self.mplsldplspfecstoragetype = None self.mplsldplspfecrowstatus = None self._segment_path = lambda: "mplsLdpLspFecEntry" + "[mplsLdpEntityLdpId='" + str(self.mplsldpentityldpid) + "']" + "[mplsLdpEntityIndex='" + str(self.mplsldpentityindex) + "']" + "[mplsLdpPeerLdpId='" + str(self.mplsldppeerldpid) + "']" + "[mplsLdpLspFecSegment='" + str(self.mplsldplspfecsegment) + "']" + "[mplsLdpLspFecSegmentIndex='" + str(self.mplsldplspfecsegmentindex) + "']" + "[mplsLdpLspFecIndex='" + str(self.mplsldplspfecindex) + "']" self._absolute_path = lambda: "MPLS-LDP-STD-MIB:MPLS-LDP-STD-MIB/mplsLdpLspFecTable/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(MPLSLDPSTDMIB.MplsLdpLspFecTable.MplsLdpLspFecEntry, [u'mplsldpentityldpid', u'mplsldpentityindex', u'mplsldppeerldpid', u'mplsldplspfecsegment', u'mplsldplspfecsegmentindex', u'mplsldplspfecindex', u'mplsldplspfecstoragetype', u'mplsldplspfecrowstatus'], name, value) class MplsLdpLspFecSegment(Enum): """ MplsLdpLspFecSegment (Enum Class) If the value is inSegment(1), then this indicates that the following index, mplsLdpLspFecSegmentIndex, contains the same value as the mplsInSegmentLdpLspIndex. Otherwise, if the value of this object is outSegment(2), then this indicates that following index, mplsLdpLspFecSegmentIndex, contains the same value as the mplsOutSegmentLdpLspIndex. .. data:: inSegment = 1 .. data:: outSegment = 2 """ inSegment = Enum.YLeaf(1, "inSegment") outSegment = Enum.YLeaf(2, "outSegment") class MplsLdpSessionPeerAddrTable(Entity): """ This table 'extends' the mplsLdpSessionTable. This table is used to store Label Address Information from Label Address Messages received by this LSR from Peers. This table is read\-only and should be updated when Label Withdraw Address Messages are received, i.e., Rows should be deleted as appropriate. NOTE\: since more than one address may be contained in a Label Address Message, this table 'sparse augments', the mplsLdpSessionTable's information. .. attribute:: mplsldpsessionpeeraddrentry An entry in this table represents information on a session's single next hop address which was advertised in an Address Message from the LDP peer. The information contained in a row is read\-only **type**\: list of :py:class:`MplsLdpSessionPeerAddrEntry <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpSessionPeerAddrTable.MplsLdpSessionPeerAddrEntry>` """ _prefix = 'MPLS-LDP-STD-MIB' _revision = '2004-06-03' def __init__(self): super(MPLSLDPSTDMIB.MplsLdpSessionPeerAddrTable, self).__init__() self.yang_name = "mplsLdpSessionPeerAddrTable" self.yang_parent_name = "MPLS-LDP-STD-MIB" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("mplsLdpSessionPeerAddrEntry", ("mplsldpsessionpeeraddrentry", MPLSLDPSTDMIB.MplsLdpSessionPeerAddrTable.MplsLdpSessionPeerAddrEntry))]) self._leafs = OrderedDict() self.mplsldpsessionpeeraddrentry = YList(self) self._segment_path = lambda: "mplsLdpSessionPeerAddrTable" self._absolute_path = lambda: "MPLS-LDP-STD-MIB:MPLS-LDP-STD-MIB/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(MPLSLDPSTDMIB.MplsLdpSessionPeerAddrTable, [], name, value) class MplsLdpSessionPeerAddrEntry(Entity): """ An entry in this table represents information on a session's single next hop address which was advertised in an Address Message from the LDP peer. The information contained in a row is read\-only. .. attribute:: mplsldpentityldpid (key) **type**\: str **refers to**\: :py:class:`mplsldpentityldpid <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpEntityTable.MplsLdpEntityEntry>` .. attribute:: mplsldpentityindex (key) **type**\: int **range:** 1..4294967295 **refers to**\: :py:class:`mplsldpentityindex <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpEntityTable.MplsLdpEntityEntry>` .. attribute:: mplsldppeerldpid (key) **type**\: str **refers to**\: :py:class:`mplsldppeerldpid <ydk.models.cisco_ios_xe.MPLS_LDP_STD_MIB.MPLSLDPSTDMIB.MplsLdpPeerTable.MplsLdpPeerEntry>` .. attribute:: mplsldpsessionpeeraddrindex (key) An index which uniquely identifies this entry within a given session **type**\: int **range:** 1..4294967295 .. attribute:: mplsldpsessionpeernexthopaddrtype The internetwork layer address type of this Next Hop Address as specified in the Label Address Message associated with this Session. The value of this object indicates how to interpret the value of mplsLdpSessionPeerNextHopAddr **type**\: :py:class:`InetAddressType <ydk.models.cisco_ios_xe.INET_ADDRESS_MIB.InetAddressType>` .. attribute:: mplsldpsessionpeernexthopaddr The next hop address. The type of this address is specified by the value of the mplsLdpSessionPeerNextHopAddrType **type**\: str **length:** 0..255 """ _prefix = 'MPLS-LDP-STD-MIB' _revision = '2004-06-03' def __init__(self): super(MPLSLDPSTDMIB.MplsLdpSessionPeerAddrTable.MplsLdpSessionPeerAddrEntry, self).__init__() self.yang_name = "mplsLdpSessionPeerAddrEntry" self.yang_parent_name = "mplsLdpSessionPeerAddrTable" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['mplsldpentityldpid','mplsldpentityindex','mplsldppeerldpid','mplsldpsessionpeeraddrindex'] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('mplsldpentityldpid', (YLeaf(YType.str, 'mplsLdpEntityLdpId'), ['str'])), ('mplsldpentityindex', (YLeaf(YType.str, 'mplsLdpEntityIndex'), ['int'])), ('mplsldppeerldpid', (YLeaf(YType.str, 'mplsLdpPeerLdpId'), ['str'])), ('mplsldpsessionpeeraddrindex', (YLeaf(YType.uint32, 'mplsLdpSessionPeerAddrIndex'), ['int'])), ('mplsldpsessionpeernexthopaddrtype', (YLeaf(YType.enumeration, 'mplsLdpSessionPeerNextHopAddrType'), [('ydk.models.cisco_ios_xe.INET_ADDRESS_MIB', 'InetAddressType', '')])), ('mplsldpsessionpeernexthopaddr', (YLeaf(YType.str, 'mplsLdpSessionPeerNextHopAddr'), ['str'])), ]) self.mplsldpentityldpid = None self.mplsldpentityindex = None self.mplsldppeerldpid = None self.mplsldpsessionpeeraddrindex = None self.mplsldpsessionpeernexthopaddrtype = None self.mplsldpsessionpeernexthopaddr = None self._segment_path = lambda: "mplsLdpSessionPeerAddrEntry" + "[mplsLdpEntityLdpId='" + str(self.mplsldpentityldpid) + "']" + "[mplsLdpEntityIndex='" + str(self.mplsldpentityindex) + "']" + "[mplsLdpPeerLdpId='" + str(self.mplsldppeerldpid) + "']" + "[mplsLdpSessionPeerAddrIndex='" + str(self.mplsldpsessionpeeraddrindex) + "']" self._absolute_path = lambda: "MPLS-LDP-STD-MIB:MPLS-LDP-STD-MIB/mplsLdpSessionPeerAddrTable/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(MPLSLDPSTDMIB.MplsLdpSessionPeerAddrTable.MplsLdpSessionPeerAddrEntry, [u'mplsldpentityldpid', u'mplsldpentityindex', u'mplsldppeerldpid', u'mplsldpsessionpeeraddrindex', u'mplsldpsessionpeernexthopaddrtype', u'mplsldpsessionpeernexthopaddr'], name, value) def clone_ptr(self): self._top_entity = MPLSLDPSTDMIB() return self._top_entity
55.323188
1,407
0.642164
113,832
0.994001
0
0
0
0
0
0
80,009
0.698653
db098feaf4cd2fcd3ec50721e2eaf014b9b9cc97
892
py
Python
atlas/foundations_contrib/src/foundations_contrib/helpers/shell.py
DeepLearnI/atlas
8aca652d7e647b4e88530b93e265b536de7055ed
[ "Apache-2.0" ]
296
2020-03-16T19:55:00.000Z
2022-01-10T19:46:05.000Z
atlas/foundations_contrib/src/foundations_contrib/helpers/shell.py
DeepLearnI/atlas
8aca652d7e647b4e88530b93e265b536de7055ed
[ "Apache-2.0" ]
57
2020-03-17T11:15:57.000Z
2021-07-10T14:42:27.000Z
atlas/foundations_contrib/src/foundations_contrib/helpers/shell.py
DeepLearnI/atlas
8aca652d7e647b4e88530b93e265b536de7055ed
[ "Apache-2.0" ]
38
2020-03-17T21:06:05.000Z
2022-02-08T03:19:34.000Z
def find_bash(): import os if os.name == 'nt': return _find_windows_bash() return '/bin/bash' def _find_windows_bash(): winreg = _winreg_module() import csv StringIO = _get_string_io() from os.path import dirname sub_key = 'Directory\\shell\\git_shell\\command' value = winreg.QueryValue(winreg.HKEY_CLASSES_ROOT, sub_key) with StringIO(value) as file: reader = csv.reader(file, delimiter=' ', quotechar='"') git_bash_location = list(reader)[0][0] git_bash_directory = git_bash_location.split('\\git-bash.exe')[0] bash_location = git_bash_directory + '\\bin\\bash.exe' return bash_location def _get_string_io(): try: from StringIO import StringIO except ImportError: from io import StringIO return StringIO def _winreg_module(): import winreg return winreg
25.485714
73
0.659193
0
0
0
0
0
0
0
0
92
0.103139
db0ab3da5d70c76acedaa4a8af65bab398892ba2
9,104
py
Python
app/models/user.py
tonyngophd/dronest
f0976c31cbbf6fb032851bd42ac566bb381608f0
[ "MIT" ]
13
2021-02-03T13:26:59.000Z
2021-03-24T19:34:19.000Z
app/models/user.py
suasllc/dronest
f0976c31cbbf6fb032851bd42ac566bb381608f0
[ "MIT" ]
null
null
null
app/models/user.py
suasllc/dronest
f0976c31cbbf6fb032851bd42ac566bb381608f0
[ "MIT" ]
1
2021-06-07T17:56:58.000Z
2021-06-07T17:56:58.000Z
from .db import db from .userfollower import UserFollower from werkzeug.security import generate_password_hash, check_password_hash from flask_login import UserMixin from sqlalchemy import Table, Column, Integer, ForeignKey, or_ from .directmessage import DirectMessage from .userequipment import UserEquipment from .equipment import Equipment from .message import Message from .messagereceiver import MessageReceiver from sqlalchemy.orm import validates class User(db.Model, UserMixin): __tablename__ = 'Users' id = db.Column(db.Integer, primary_key = True) username = db.Column(db.String(40), nullable = False, unique = True) name = db.Column(db.String(100), nullable=True) email = db.Column(db.String(255), nullable = False, unique = True) hashed_password = db.Column(db.String(255), nullable = False) bio = db.Column(db.Text, nullable=True) websiteUrl = db.Column(db.Text, nullable=False, default="www.google.com") userType = db.Column(db.Integer, nullable=True, default=0) profilePicUrl = db.Column(db.Text, nullable=True) createdAt = db.Column(db.DateTime(timezone=True), server_default=db.func.now()) #func.sysdate()) updatedAt = db.Column(db.DateTime(timezone=True), server_default=db.func.now(), server_onupdate=db.func.now()) ownPosts = db.relationship('Post', foreign_keys='Post.userId') ownComments = db.relationship('Comment', foreign_keys='Comment.userId') taggedInPosts = db.relationship('Post', secondary='taggedusers') likedPosts = db.relationship('Post', secondary='likedposts') savedPosts = db.relationship('Post', secondary='savedposts') sentMessages = db.relationship('DirectMessage', foreign_keys='DirectMessage.senderId') receivedMessages = db.relationship('DirectMessage', foreign_keys='DirectMessage.receiverId') likedComments = db.relationship('Comment', secondary='commentlikes') taggedInComments = db.relationship('Comment', secondary='commenttaggedusers') followers = [] #db.relationship('User', secondary='userfollowers', foreign_keys='UserFollower.followerId') following = [] #db.relationship('User', secondary='userfollowers', foreign_keys='UserFollower.userId') allMessages = [] # equipmentList = [] equipmentList = db.relationship('Equipment', secondary="UserEquipments") # @validates('username', 'email') # def convert_lower(self, key, value): # return value.lower() @property def password(self): return self.hashed_password @password.setter def password(self, password): self.hashed_password = generate_password_hash(password) def check_password(self, password): return check_password_hash(self.password, password) def get_followers(self): ufs = UserFollower.query.filter(UserFollower.userId == self.id).all() self.followers = [uf.follower for uf in ufs] def get_following(self): ufs = UserFollower.query.filter(UserFollower.followerId == self.id).all() self.following = [uf.person for uf in ufs] def get_messages(self): msgs = DirectMessage.query\ .filter(or_(DirectMessage.senderId == self.id, \ DirectMessage.receiverId == self.id)).order_by(DirectMessage.id).all() self.allMessages = msgs def get_conversations(self): convos = MessageReceiver.query\ .filter(or_(MessageReceiver.senderId == self.id, \ MessageReceiver.receiverId == self.id)).order_by(MessageReceiver.id).all() uniqueConvos = [] if len(convos): messageIdSet = set() for convo in convos: if convo.senderId != self.id: uniqueConvos.append(convo) else: if convo.messageId not in messageIdSet: uniqueConvos.append(convo) messageIdSet.add(convo.messageId) self.allMessages = uniqueConvos def get_last_conversation(self): convo = MessageReceiver.query\ .filter(or_(MessageReceiver.senderId == self.id, \ MessageReceiver.receiverId == self.id)).order_by(-MessageReceiver.id).first() self.allMessages = [convo] def to_dict(self): return { "id": self.id, "name": self.name, "username": self.username, "email": self.email, "bio": self.bio, "websiteUrl": self.websiteUrl, "profilePicUrl": self.profilePicUrl, } def to_dict_with_posts_and_follows(self): self.get_followers() self.get_following() return { "id": self.id, "name": self.name, "username": self.username, "email": self.email, "bio": self.bio, "websiteUrl": self.websiteUrl, "profilePicUrl": self.profilePicUrl, "followers": [user.to_dict() for user in self.followers], "following": [user.to_dict() for user in self.following], "ownPosts": [post.to_dict() for post in self.ownPosts], "equipmentList": [equipment.to_dict() for equipment in self.equipmentList], } def to_dict_with_posts(self): return { "id": self.id, "name": self.name, "username": self.username, "email": self.email, "bio": self.bio, "websiteUrl": self.websiteUrl, "profilePicUrl": self.profilePicUrl, "ownPosts": [post.to_dict() for post in self.ownPosts], } def to_dict_with_posts_fast(self): user_as_dict_basic = { "id": self.id, "name": self.name, "username": self.username, "email": self.email, "bio": self.bio, "websiteUrl": self.websiteUrl, "profilePicUrl": self.profilePicUrl, } user_as_dict = user_as_dict_basic.copy() user_as_dict["ownPosts"] = [post.to_dict_fast_own_user(user_as_dict_basic) for post in self.ownPosts] return user_as_dict # "ownPosts": [post.to_dict_fast() for post in self.ownPosts], def to_dict_feed(self): self.get_following() return { "followingIds": [int(follow.id) for follow in self.following] } def to_dict_for_mentions(self): return { "id": self.id, "displayName": self.name, "name": self.username, "profilePicUrl": self.profilePicUrl, } def to_dict_no_posts(self): #no posts so if a post has this user, there is no infinite circular references return { "id": self.id, "username": self.username, "email": self.email, "bio": self.bio, "websiteUrl": self.websiteUrl, "profilePicUrl": self.profilePicUrl, } def to_dict_for_self(self): self.get_followers() self.get_following() # self.get_messages() self.get_conversations() return { "id": self.id, "username": self.username, "name": self.name, "email": self.email, "bio": self.bio, "websiteUrl": self.websiteUrl, "profilePicUrl": self.profilePicUrl, "userType": self.userType, "ownPosts": [post.to_dict() for post in self.ownPosts], "likedPosts": [post.to_dict() for post in self.likedPosts], "savedPosts": [post.to_dict() for post in self.savedPosts], "taggedInPosts": [post.to_dict() for post in self.taggedInPosts], "messages": [m.to_dict() for m in self.allMessages], #[sentMsg.to_dict() for sentMsg in self.sentMessages] + [recvdMsg.to_dict() for recvdMsg in self.receivedMessages], "followers": [user.to_dict() for user in self.followers], "following": [user.to_dict() for user in self.following], "likedComments": [comment.to_dict() for comment in self.likedComments], "taggedInComments": [comment.to_dict() for comment in self.taggedInComments], "equipmentList": [equipment.to_dict() for equipment in self.equipmentList], } def to_dict_as_generic_profile(self): ''' compared to "for_self" this does not include: - messages and more later ''' self.get_followers() self.get_following() return { "id": self.id, "username": self.username, "name": self.name, "email": self.email, "bio": self.bio, "websiteUrl": self.websiteUrl, "profilePicUrl": self.profilePicUrl, "ownPosts": [post.to_dict() for post in self.ownPosts], "likedPosts": [post.to_dict() for post in self.likedPosts], "savedPosts": [post.to_dict() for post in self.savedPosts], "taggedInPosts": [post.to_dict() for post in self.taggedInPosts], "followers": [user.to_dict() for user in self.followers], "following": [user.to_dict() for user in self.following], "likedComments": [comment.to_dict() for comment in self.likedComments], "taggedInComments": [comment.to_dict() for comment in self.taggedInComments], "equipmentList": [equipment.to_dict() for equipment in self.equipmentList], } ''' mapper( User, t_users, properties={ 'followers': relation( User, secondary=t_follows, primaryjoin=(t_follows.c.followee_id==t_users.c.id), secondaryjoin=(t_follows.c.follower_id==t_users.c.id), ), 'followees': relation( User, secondary=t_follows, primaryjoin=(t_follows.c.follower_id==t_users.c.id), secondaryjoin=(t_follows.c.followee_id==t_users.c.id), ), }, ) '''
35.286822
174
0.672781
8,133
0.893344
0
0
171
0.018783
0
0
2,259
0.248133
db0bae1eb24630016d687ec03ec4ffa465df2055
397
py
Python
pyflu/update/signals.py
flupke/pyflu
8856759ced5367fc8439a418b3ce6570b82707ce
[ "BSD-3-Clause" ]
1
2017-07-17T06:50:24.000Z
2017-07-17T06:50:24.000Z
pyflu/update/signals.py
flupke/pyflu
8856759ced5367fc8439a418b3ce6570b82707ce
[ "BSD-3-Clause" ]
null
null
null
pyflu/update/signals.py
flupke/pyflu
8856759ced5367fc8439a418b3ce6570b82707ce
[ "BSD-3-Clause" ]
null
null
null
from louie import Signal class update_finished(Signal): """ Sent by :class:`~pyflu.update.qt.UpdateDialogMixin` when an update finished successfully. It receives a single argument, containing the path of the patched files. """ class not_updated(Signal): """ Sent by :meth:`~pyflu.update.qt.UpdateDialogMixin.start_update` when no update was performed. """
22.055556
79
0.697733
366
0.921914
0
0
0
0
0
0
300
0.755668
db0cc1dc2ea1b2e1fa0e57ca089770ba09f4f7f8
9,443
py
Python
sentence_transformers/losses/BatchHardTripletLoss.py
zhangxieyang2/sentence-transformers
87847b86954f92d200fbb4351b0576f4778d9381
[ "Apache-2.0" ]
5
2021-08-10T02:31:51.000Z
2022-02-08T01:12:25.000Z
sentence_transformers/losses/BatchHardTripletLoss.py
zhangxieyang2/sentence-transformers
87847b86954f92d200fbb4351b0576f4778d9381
[ "Apache-2.0" ]
5
2021-07-02T04:37:04.000Z
2021-07-21T00:02:58.000Z
sentence_transformers/losses/BatchHardTripletLoss.py
zhangxieyang2/sentence-transformers
87847b86954f92d200fbb4351b0576f4778d9381
[ "Apache-2.0" ]
5
2021-07-04T06:02:02.000Z
2021-07-21T08:32:10.000Z
import torch from torch import nn, Tensor from typing import Union, Tuple, List, Iterable, Dict from sentence_transformers import util from sentence_transformers.SentenceTransformer import SentenceTransformer class BatchHardTripletLossDistanceFunction: """ This class defines distance functions, that can be used with Batch[All/Hard/SemiHard]TripletLoss """ @staticmethod def cosine_distance(embeddings): """ Compute the 2D matrix of cosine distances (1-cosine_similarity) between all embeddings. """ return 1 - util.pytorch_cos_sim(embeddings, embeddings) @staticmethod def eucledian_distance(embeddings, squared=False): """ Compute the 2D matrix of eucledian distances between all the embeddings. Args: embeddings: tensor of shape (batch_size, embed_dim) squared: Boolean. If true, output is the pairwise squared euclidean distance matrix. If false, output is the pairwise euclidean distance matrix. Returns: pairwise_distances: tensor of shape (batch_size, batch_size) """ dot_product = torch.matmul(embeddings, embeddings.t()) # Get squared L2 norm for each embedding. We can just take the diagonal of `dot_product`. # This also provides more numerical stability (the diagonal of the result will be exactly 0). # shape (batch_size,) square_norm = torch.diag(dot_product) # Compute the pairwise distance matrix as we have: # ||a - b||^2 = ||a||^2 - 2 <a, b> + ||b||^2 # shape (batch_size, batch_size) distances = square_norm.unsqueeze(0) - 2.0 * dot_product + square_norm.unsqueeze(1) # Because of computation errors, some distances might be negative so we put everything >= 0.0 distances[distances < 0] = 0 if not squared: # Because the gradient of sqrt is infinite when distances == 0.0 (ex: on the diagonal) # we need to add a small epsilon where distances == 0.0 mask = distances.eq(0).float() distances = distances + mask * 1e-16 distances = (1.0 - mask) * torch.sqrt(distances) return distances class BatchHardTripletLoss(nn.Module): """ BatchHardTripletLoss takes a batch with (label, sentence) pairs and computes the loss for all possible, valid triplets, i.e., anchor and positive must have the same label, anchor and negative a different label. It then looks for the hardest positive and the hardest negatives. The labels must be integers, with same label indicating sentences from the same class. You train dataset must contain at least 2 examples per label class. The margin is computed automatically. Source: https://github.com/NegatioN/OnlineMiningTripletLoss/blob/master/online_triplet_loss/losses.py Paper: In Defense of the Triplet Loss for Person Re-Identification, https://arxiv.org/abs/1703.07737 Blog post: https://omoindrot.github.io/triplet-loss :param model: SentenceTransformer model :param distance_metric: Function that returns a distance between two emeddings. The class SiameseDistanceMetric contains pre-defined metrices that can be used Example:: from sentence_transformers import SentenceTransformer, SentencesDataset, losses from sentence_transformers.readers import InputExample model = SentenceTransformer('distilbert-base-nli-mean-tokens') train_examples = [InputExample(texts=['Sentence from class 0'], label=0), InputExample(texts=['Another sentence from class 0'], label=0), InputExample(texts=['Sentence from class 1'], label=1), InputExample(texts=['Sentence from class 2'], label=2)] train_dataset = SentencesDataset(train_examples, model) train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=train_batch_size) train_loss = losses.BatchHardTripletLoss(model=model) """ def __init__(self, model: SentenceTransformer, distance_metric = BatchHardTripletLossDistanceFunction.eucledian_distance, margin: float = 5): super(BatchHardTripletLoss, self).__init__() self.sentence_embedder = model self.triplet_margin = margin self.distance_metric = distance_metric def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor): reps = [self.sentence_embedder(sentence_feature)['sentence_embedding'] for sentence_feature in sentence_features] return self.batch_hard_triplet_loss(labels, reps[0]) # Hard Triplet Loss # Source: https://github.com/NegatioN/OnlineMiningTripletLoss/blob/master/online_triplet_loss/losses.py # Paper: In Defense of the Triplet Loss for Person Re-Identification, https://arxiv.org/abs/1703.07737 # Blog post: https://omoindrot.github.io/triplet-loss def batch_hard_triplet_loss(self, labels: Tensor, embeddings: Tensor) -> Tensor: """Build the triplet loss over a batch of embeddings. For each anchor, we get the hardest positive and hardest negative to form a triplet. Args: labels: labels of the batch, of size (batch_size,) embeddings: tensor of shape (batch_size, embed_dim) margin: margin for triplet loss squared: Boolean. If true, output is the pairwise squared euclidean distance matrix. If false, output is the pairwise euclidean distance matrix. Returns: Label_Sentence_Triplet: scalar tensor containing the triplet loss """ # Get the pairwise distance matrix pairwise_dist = self.distance_metric(embeddings) # For each anchor, get the hardest positive # First, we need to get a mask for every valid positive (they should have same label) mask_anchor_positive = BatchHardTripletLoss.get_anchor_positive_triplet_mask(labels).float() # We put to 0 any element where (a, p) is not valid (valid if a != p and label(a) == label(p)) anchor_positive_dist = mask_anchor_positive * pairwise_dist # shape (batch_size, 1) hardest_positive_dist, _ = anchor_positive_dist.max(1, keepdim=True) # For each anchor, get the hardest negative # First, we need to get a mask for every valid negative (they should have different labels) mask_anchor_negative = BatchHardTripletLoss.get_anchor_negative_triplet_mask(labels).float() # We add the maximum value in each row to the invalid negatives (label(a) == label(n)) max_anchor_negative_dist, _ = pairwise_dist.max(1, keepdim=True) anchor_negative_dist = pairwise_dist + max_anchor_negative_dist * (1.0 - mask_anchor_negative) # shape (batch_size,) hardest_negative_dist, _ = anchor_negative_dist.min(1, keepdim=True) # Combine biggest d(a, p) and smallest d(a, n) into final triplet loss tl = hardest_positive_dist - hardest_negative_dist + self.triplet_margin tl[tl < 0] = 0 triplet_loss = tl.mean() return triplet_loss @staticmethod def get_triplet_mask(labels): """Return a 3D mask where mask[a, p, n] is True iff the triplet (a, p, n) is valid. A triplet (i, j, k) is valid if: - i, j, k are distinct - labels[i] == labels[j] and labels[i] != labels[k] Args: labels: tf.int32 `Tensor` with shape [batch_size] """ # Check that i, j and k are distinct indices_equal = torch.eye(labels.size(0), device=labels.device).bool() indices_not_equal = ~indices_equal i_not_equal_j = indices_not_equal.unsqueeze(2) i_not_equal_k = indices_not_equal.unsqueeze(1) j_not_equal_k = indices_not_equal.unsqueeze(0) distinct_indices = (i_not_equal_j & i_not_equal_k) & j_not_equal_k label_equal = labels.unsqueeze(0) == labels.unsqueeze(1) i_equal_j = label_equal.unsqueeze(2) i_equal_k = label_equal.unsqueeze(1) valid_labels = ~i_equal_k & i_equal_j return valid_labels & distinct_indices @staticmethod def get_anchor_positive_triplet_mask(labels): """Return a 2D mask where mask[a, p] is True iff a and p are distinct and have same label. Args: labels: tf.int32 `Tensor` with shape [batch_size] Returns: mask: tf.bool `Tensor` with shape [batch_size, batch_size] """ # Check that i and j are distinct indices_equal = torch.eye(labels.size(0), device=labels.device).bool() indices_not_equal = ~indices_equal # Check if labels[i] == labels[j] # Uses broadcasting where the 1st argument has shape (1, batch_size) and the 2nd (batch_size, 1) labels_equal = labels.unsqueeze(0) == labels.unsqueeze(1) return labels_equal & indices_not_equal @staticmethod def get_anchor_negative_triplet_mask(labels): """Return a 2D mask where mask[a, n] is True iff a and n have distinct labels. Args: labels: tf.int32 `Tensor` with shape [batch_size] Returns: mask: tf.bool `Tensor` with shape [batch_size, batch_size] """ # Check if labels[i] != labels[k] # Uses broadcasting where the 1st argument has shape (1, batch_size) and the 2nd (batch_size, 1) return ~(labels.unsqueeze(0) == labels.unsqueeze(1))
46.517241
162
0.684528
9,228
0.977232
0
0
4,181
0.442762
0
0
5,591
0.592079
db0cd377f76bee16bf9abd7de52027837704b690
2,505
py
Python
wedding/card/route.py
ackneal/wedday
b57b524e3aa237a2568bda4fadb2d5709773c507
[ "MIT" ]
null
null
null
wedding/card/route.py
ackneal/wedday
b57b524e3aa237a2568bda4fadb2d5709773c507
[ "MIT" ]
null
null
null
wedding/card/route.py
ackneal/wedday
b57b524e3aa237a2568bda4fadb2d5709773c507
[ "MIT" ]
null
null
null
from flask import Flask, Blueprint, request, make_response, jsonify from sqlalchemy.sql.expression import func from google.cloud import storage from .card import Cards from ..functions import valid_param, upload_file from .. import db bp = Blueprint('route', __name__, url_prefix = '/api') @bp.route('/cards') def getallphoto(): limit = request.args.get('limit', 8) offset = request.args.get('offset', 0) try: offset = int(offset) limit = int(limit) if 0 == limit: return jsonify({'error': True, 'message': 'limit 不行是 0'}), 400 except ValueError: return jsonify({'error': True, 'message': 'limt & offset need to be integer'}), 400 cards = Cards.query.order_by(Cards.id.desc()).limit(limit + 1).offset(offset) result = [] has_more = False for index, card in enumerate(cards): if index == (limit): has_more = True break; result.append(card.to_dict()) return jsonify({'data': result, 'has_more': has_more}) @bp.route('/cards', methods = ['POST']) def store(): image = request.files.get('image') if image is None: return jsonify({'error': True, 'message': '請上傳照片'}), 400 form = request.form if not valid_param(form, ['message', 'name']): return jsonify({'error': True, 'message': '參數不完整'}), 400 try: file_path = upload_file(image) print(file_path) except TypeError as error: return jsonify({'error': True, 'message': format(error)}), 400 except: return jsonify({'error': True, 'message': '檔案上傳失敗'}), 500 card = Cards(name = form['name'], message = form['message'], image = file_path) try: db.session.add(card) db.session.commit() except: return jsonify({'error': True, 'message': '留言失敗'}), 500 return jsonify({'error': False, 'data': card.to_dict()}) # 抽獎, 依 limit 決定抽幾個 @bp.route('/card', methods = ['GET']) def randomCard(): limit = request.args.get('limit', 0) try: limit = int(limit) if limit <= 0: return jsonify({'error': True, 'message': '參數不正確'}), 400 except ValueError: return jsonify({'error': True, 'message': '參數不正確'}), 400 cards = Cards.query.filter_by(status=0).order_by(func.rand()).limit(limit).all() result = [] for card in cards: # 更新 status card.status = 1 db.session.commit() result.append(card.to_dict()) return jsonify({'data': result})
29.127907
91
0.602395
0
0
0
0
2,258
0.871478
0
0
490
0.189116
db0de61b39c2d473b879ae1a407b8e263bd53ec2
6,804
py
Python
mudi/utils.py
getzlab/mudi
eda170119708e59920c23a03834af915ecca24ce
[ "MIT" ]
1
2021-11-04T00:08:00.000Z
2021-11-04T00:08:00.000Z
mudi/utils.py
getzlab/mudi
eda170119708e59920c23a03834af915ecca24ce
[ "MIT" ]
null
null
null
mudi/utils.py
getzlab/mudi
eda170119708e59920c23a03834af915ecca24ce
[ "MIT" ]
null
null
null
import numpy as np import h5py import scipy import gc import pandas as pd import os import time import pkg_resources import scanpy as sc import scanpy.external as sce import sys import scrublet as scr # --------------------------------- # Scanpy Helpers # --------------------------------- def scanpy_adata_loader(path, genome='GRCh38', verbose=True): """ Loader function. ------------------ Can handle lists of file/dir paths, a file (.h5) or a directory format. Use this to load/aggregate immediately into a scanpy object. """ if isinstance(path, list): if verbose: print("Combining {} inputs.".format(len(path))) tmp = [scanpy_adata_loader(f, genome=genome) for f in path] return tmp[0].concatenate(tmp[1:]) if os.path.isfile(path): ad = sc.read_10x_h5(path, genome=genome) ad.var_names_make_unique() return ad elif os.path.isdir(path): ad = sc.read_10x_mtx(path) ad.var_names_make_unique() return ad else: raise FileError("Provide proper path.") def get_percent_expr(adata, groupby): """ Get percent expressed & mean expression. ------------------------------ Requires: * adata.layers['counts'] -> counting percent of cells with gene expressed * adata.raw.X -> for computing mean expression (log1p) """ from tqdm import tqdm groups = list(adata.obs[groupby].cat.categories) res_in = pd.DataFrame(columns=adata.var_names, index=groups) res_out = pd.DataFrame(columns=adata.var_names, index=groups) res_mean_in = pd.DataFrame(columns=adata.var_names, index=groups) res_mean_out = pd.DataFrame(columns=adata.var_names, index=groups) for group in tqdm(groups, desc="Computing metrics per group"): res_in.loc[group] = (adata[adata.obs[groupby].isin([group]),:].layers['counts'] > 0).mean(0) res_out.loc[group] = (adata[~adata.obs[groupby].isin([group]),:].layers['counts'] > 0).mean(0) res_mean_in.loc[group] = adata[adata.obs[groupby].isin([group]),:].raw.X.mean(0) res_mean_out.loc[group] = adata[~adata.obs[groupby].isin([group]),:].raw.X.mean(0) res_in = res_in.T res_out = res_out.T res_mean_in = res_mean_in.T res_mean_out = res_mean_out.T res_in = res_in.reset_index().melt(id_vars=['index']).rename(columns={'index':'names','variable':"group", 'value':'percent_in'}) res_out = res_out.reset_index().melt(id_vars=['index']).rename(columns={'index':'names','variable':"group", 'value':'percent_out'}) res_mean_in = res_mean_in.reset_index().melt(id_vars=['index']).rename(columns={'index':'names','variable':"group", 'value':'mean_expr_in'}) res_mean_out = res_mean_out.reset_index().melt(id_vars=['index']).rename(columns={'index':'names','variable':"group", 'value':'mean_expr_out'}) return pd.merge(pd.merge(res_in, res_out), pd.merge(res_mean_in, res_mean_out)) def aggr_markers(adata, uns='rank_genes_groups', expr_metrics=True): """ Aggregate markers. ------------------ Returns an easy to view marker list dataframe. Assumes 'rank_genes_groups' has already been called to find group markers in AnnData Object. * expr_metrics -> compute percent of cells expressed & mean expression for in/out groups. """ assert adata.uns[uns], 'Compute differentially expressed genes first.' aggr_df = sc.get.rank_genes_groups_df(adata, None) if expr_metrics: aggr_percent_expr = get_percent_expr(adata, adata.uns[uns]['params']['groupby']) return pd.merge(aggr_df, aggr_percent_expr) else: return aggr_df def get_de_genes_to_plot(markers_df, lfc_thresh=1, padj_thresh=0.1, n_to_plot=5): """ Top DiffExp Genes. Return as dict for easy plotting with sc.pl.dotplot. """ markers_df = markers_df[ (markers_df['logfoldchanges']>=lfc_thresh) & (markers_df['pvals_adj']<=padj_thresh) ].groupby("group").head(n_to_plot) return markers_df.groupby("group").agg(list)['names'].to_dict() def get_uns(adata, tag): """ Retrieve unstructured data stored in AnnData. ------------------------ Inputs: - adata: AnnData Object - tag: name of key in adata.uns Outputs: - pd.DataFrame: formatted information in adata.uns """ assert tag in adata.uns, "{} not found in adata.uns".format(tag) try: return pd.DataFrame(adata.uns[tag]['values'], index=adata.uns[tag]['rows'], columns=adata.uns[tag]['cols']) except: raise ValueError("Unable to return structured dataframe from data.uns[{}]".format(tag)) def get_a_by_b(adata, a, b, norm=False): """ Get A x B. ---------------- Number of each .obs b per .obs a returns pd.Dataframe """ hm = adata.obs.groupby([a,b]).size().reset_index().set_index(a).pivot(columns=b) if norm: hm = hm.div(hm.sum(1), 0) hm.columns = hm.columns.droplevel() hm.columns.name = None return hm # --------------------------------- # Utilities # --------------------------------- def score_cc_genes(adata, cc_genes_file=pkg_resources.resource_filename('mudi', './ref/cell_cycle_genes/Macosko_cell_cycle_genes.txt')): """ Score Cell-Cycle Genes ------------------------------------ How to run: score_cc_genes(adata) Loads cell cycle genes list (ex. Macosko et al 2015) and runs cycle-scoring on input anndata. Does everything in place. Stores the following in .obs: - S_score - G2M_score - phase """ cc_genes = pd.read_table(cc_genes_file, delimiter='\t') s_genes = cc_genes['S'].dropna() g2m_genes = cc_genes['G2.M'].dropna() s_genes_i = adata.var_names[np.in1d(adata.var_names, s_genes)] g2m_genes_i = adata.var_names[np.in1d(adata.var_names, g2m_genes)] sc.tl.score_genes_cell_cycle(adata, s_genes_i, g2m_genes_i) def score_doublets(adata, key='batch', n_prin_comps=20, verbose=False): """ Scrubber: wrapper for Scrublet. ------------------------------------ How to run: score_doublets(adata) Adds the following to anndata object: - adata.obs['scrublet_score'] --> float (0 - 1.0) - adata.obs['doublet'] --> bool """ doublet_scores, predicted_doublets = list(),list() for batch in adata.obs[key].drop_duplicates().values: scrub = scr.Scrublet(adata[adata.obs[key]==batch].X) _doublet_scores, _predicted_doublets = scrub.scrub_doublets(n_prin_comps=n_prin_comps, verbose=verbose) doublet_scores.append(_doublet_scores) predicted_doublets.append(_predicted_doublets) adata.obs['scrublet_score'] = np.concatenate(doublet_scores) adata.obs['doublet'] = np.concatenate(predicted_doublets)
36.191489
147
0.640212
0
0
0
0
0
0
0
0
2,654
0.390065
db0e44fa6d9ec7326e7caba29ef74b40e65149d4
1,518
py
Python
src/quacks/mypy.py
ariebovenberg/quacks
839d307b24f3f37d9a5318c16acb631b9a1153f0
[ "MIT" ]
11
2021-12-12T20:51:15.000Z
2022-02-02T12:08:32.000Z
src/quacks/mypy.py
ariebovenberg/quacks
839d307b24f3f37d9a5318c16acb631b9a1153f0
[ "MIT" ]
8
2021-12-14T12:53:51.000Z
2022-03-15T04:29:44.000Z
src/quacks/mypy.py
ariebovenberg/quacks
839d307b24f3f37d9a5318c16acb631b9a1153f0
[ "MIT" ]
1
2021-12-15T16:50:34.000Z
2021-12-15T16:50:34.000Z
from typing import Callable, Optional, Type from mypy.nodes import AssignmentStmt, NameExpr, Statement, TempNode, Var from mypy.plugin import ClassDefContext, Plugin READONLY_DECORATOR_NAME = "quacks.readonly" # this logic is mostly derived from the dataclasses plugin def make_statement_readonly(c: ClassDefContext, s: Statement) -> None: if not (isinstance(s, AssignmentStmt) and s.new_syntax): return lhs = s.lvalues[0] if not isinstance(lhs, NameExpr): return if not (isinstance(s.rvalue, TempNode) and s.rvalue.no_rhs): c.api.msg.fail( "@readonly doesn't support default values yet.", context=lhs ) return sym = c.cls.info.names.get(lhs.name) if sym is None: return node = sym.node assert isinstance(node, Var) if node.is_classvar: return node.is_property = True def make_readonly(c: ClassDefContext) -> None: if not c.cls.info.is_protocol: c.api.msg.fail( "@readonly decorator only supported on protocols.", context=c.cls ) for stmt in c.cls.defs.body: make_statement_readonly(c, stmt) class _QuacksPlugin(Plugin): def get_class_decorator_hook( self, fullname: str ) -> Optional[Callable[[ClassDefContext], None]]: if fullname == READONLY_DECORATOR_NAME: return make_readonly return None def plugin(version: str) -> Type[Plugin]: """Plugin's public API and entrypoint.""" return _QuacksPlugin
26.631579
77
0.667984
245
0.161397
0
0
0
0
0
0
213
0.140316
db0eabb87d8f110b34f799008d45115ae3494a8a
470
py
Python
tests/test_toolbar.py
WilliamMayor/django-mail-panel
2c41f808a645d5d7bad90510f44e53d29981cf22
[ "Apache-2.0" ]
null
null
null
tests/test_toolbar.py
WilliamMayor/django-mail-panel
2c41f808a645d5d7bad90510f44e53d29981cf22
[ "Apache-2.0" ]
null
null
null
tests/test_toolbar.py
WilliamMayor/django-mail-panel
2c41f808a645d5d7bad90510f44e53d29981cf22
[ "Apache-2.0" ]
null
null
null
from .context import * import unittest from mail_panel.panels import MailToolbarPanel class ToolbarSuite(unittest.TestCase): def test_panel(self): """ General 'does it run' test. """ p = MailToolbarPanel(None) assert(p.toolbar is None) def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(ToolbarSuite)) return suite if __name__ == "__main__": unittest.TextTestRunner().run(suite())
21.363636
51
0.668085
194
0.412766
0
0
0
0
0
0
61
0.129787
db0fa33383a316fc52554465b3c7c6c0aa5f9ac3
8,130
py
Python
tests/project/operations/operational_types/test_common_functions.py
anamileva/gridpath
e55eacb88ca5e6c034a90b18819e17cbd6f43854
[ "Apache-2.0" ]
44
2020-10-27T19:05:44.000Z
2022-03-22T17:17:37.000Z
tests/project/operations/operational_types/test_common_functions.py
anamileva/gridpath
e55eacb88ca5e6c034a90b18819e17cbd6f43854
[ "Apache-2.0" ]
67
2020-10-08T22:36:53.000Z
2022-03-22T22:58:33.000Z
tests/project/operations/operational_types/test_common_functions.py
anamileva/gridpath
e55eacb88ca5e6c034a90b18819e17cbd6f43854
[ "Apache-2.0" ]
21
2020-10-08T23:23:48.000Z
2022-03-28T01:21:21.000Z
# Copyright 2016-2020 Blue Marble Analytics LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from builtins import str from importlib import import_module import numpy as np import os.path import pandas as pd import sys import unittest from tests.common_functions import add_components_and_load_data from gridpath.project.operations.operational_types.common_functions import \ determine_relevant_timepoints TEST_DATA_DIRECTORY = \ os.path.join(os.path.dirname(__file__), "..", "..", "..", "test_data") # Import prerequisite modules PREREQUISITE_MODULE_NAMES = [ "temporal.operations.timepoints", "temporal.operations.horizons", "geography.load_zones", "project.__init__" ] IMPORTED_PREREQ_MODULES = list() for mdl in PREREQUISITE_MODULE_NAMES: try: imported_module = import_module("." + str(mdl), package='gridpath') IMPORTED_PREREQ_MODULES.append(imported_module) except ImportError: print("ERROR! Module " + str(mdl) + " not found.") sys.exit(1) class TestOperationalTypeCommonFunctions(unittest.TestCase): """ Test the common_functions module in the operational types package. """ def test_determine_relevant_timepoints(self): """ Check that the list of relevant timepoints is as expected based on the current timepoint and the minimum up/down time (and, on the data side, the duration of other timepoints). Add any other cases to check that the 'determine_relevant_timepoints' function gives the expected results. """ m, data = add_components_and_load_data( prereq_modules=IMPORTED_PREREQ_MODULES, module_to_test=None, # No need to name since not adding components test_data_dir=TEST_DATA_DIRECTORY, subproblem="", stage="" ) instance = m.create_instance(data) test_cases = { 1: {"min_time": 4, "g": "Gas_CCGT", "tmp": 20200103, "relevant_timepoints": [20200103, 20200102]}, 2: {"min_time": 5, "g": "Gas_CCGT", "tmp": 20200103, "relevant_timepoints": [20200103, 20200102, 20200101, 20200124, 20200123]}, 3: {"min_time": 8, "g": "Gas_CCGT", "tmp": 20200103, "relevant_timepoints": [20200103, 20200102, 20200101, 20200124, 20200123, 20200122, 20200121]}, 4: {"min_time": 1, "g": "Gas_CCGT", "tmp": 20200120, "relevant_timepoints": [20200120, 20200119, 20200118]}, 5: {"min_time": 2, "g": "Gas_CCGT", "tmp": 20200120, "relevant_timepoints": [20200120, 20200119, 20200118, 20200117]}, 6: {"min_time": 3, "g": "Gas_CCGT", "tmp": 20200120, "relevant_timepoints": [20200120, 20200119, 20200118, 20200117, 20200116]}, # Test min times of longer duration than the horizon in a # 'circular' horizon setting 7: {"min_time": 100, "g": "Gas_CCGT", "tmp": 20200101, "relevant_timepoints": [20200101, 20200124, 20200123, 20200122, 20200121, 20200120, 20200119, 20200118, 20200117, 20200116, 20200115, 20200114, 20200113, 20200112, 20200111, 20200110, 20200109, 20200108, 20200107, 20200106, 20200105, 20200104, 20200103, 20200102, 20200101]}, # If we're in the first timepoint of a linear horizon, test that # we only get that timepoint (i.e. that we break out of the loop # before adding any more timepoints) 8: {"min_time": 100, "g": "Gas_CCGT", "tmp": 20200201, "relevant_timepoints": [20200201]}, # Test that we break out of the loop with min times that reach the # first horizon timepoint in a 'linear' horizon setting 9: {"min_time": 100, "g": "Gas_CCGT", "tmp": 20200202, "relevant_timepoints": [20200202, 20200201]} } for test_case in test_cases.keys(): expected_list = test_cases[test_case]["relevant_timepoints"] actual_list, actual_linked_tmps = determine_relevant_timepoints( mod=instance, g=test_cases[test_case]["g"], tmp=test_cases[test_case]["tmp"], min_time=test_cases[test_case]["min_time"] ) self.assertListEqual(expected_list, actual_list) # No linked timepoints, so check that the list is empty in every # test case self.assertListEqual([], actual_linked_tmps) def test_determine_relevant_linked_timepoints(self): """ Check that the lists of relevant timepoints and relevant linked timepoints are as expected based on the current timepoint and the minimum up/down time (and, on the data side, the duration of other timepoints). """ m, data = add_components_and_load_data( prereq_modules=IMPORTED_PREREQ_MODULES, module_to_test=None, # No need to name since not adding components test_data_dir=os.path.join(TEST_DATA_DIRECTORY, "subproblems"), subproblem="202002", stage="" ) instance = m.create_instance(data) test_cases = { 1: {"min_time": 4, "g": "Gas_CCGT", "tmp": 20200203, "relevant_timepoints": [20200203, 20200202, 20200201], "relevant_linked_timepoints": [0]}, 2: {"min_time": 5, "g": "Gas_CCGT", "tmp": 20200203, "relevant_timepoints": [20200203, 20200202, 20200201], "relevant_linked_timepoints": [0, -1]}, # Stop at the last included linked timepoint if the min time is # longer than the total duration of the current timepoint to the # last linked timepoint 3: {"min_time": 24, "g": "Gas_CCGT", "tmp": 20200203, "relevant_timepoints": [20200203, 20200202, 20200201], "relevant_linked_timepoints": [0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11]}, # No linked timepoint if min time does not reach them 4: {"min_time": 1, "g": "Gas_CCGT", "tmp": 20200203, "relevant_timepoints": [20200203], "relevant_linked_timepoints": []}, # Starting in the first timepoint of the horizon 5: {"min_time": 4, "g": "Gas_CCGT", "tmp": 20200201, "relevant_timepoints": [20200201], "relevant_linked_timepoints": [0, -1, -2]}, } for test_case in test_cases.keys(): expected_rel_tmp_list = test_cases[test_case][ "relevant_timepoints"] expected_rel_linked_tmp_list = test_cases[test_case][ "relevant_linked_timepoints"] actual_rel_tmp_list, actual_rel_linked_tmp_list = \ determine_relevant_timepoints( mod=instance, g=test_cases[test_case]["g"], tmp=test_cases[test_case]["tmp"], min_time=test_cases[test_case]["min_time"] ) self.assertListEqual(expected_rel_tmp_list, actual_rel_tmp_list) self.assertListEqual(actual_rel_linked_tmp_list, expected_rel_linked_tmp_list) if __name__ == "__main__": unittest.main()
44.42623
79
0.605904
6,525
0.802583
0
0
0
0
0
0
3,211
0.394957
db0fa4a708c3b8da99f0eb3651ee65d3e1405fa0
338
py
Python
top_links.py
judge2020/crossover-viz
61fef8750f2b64a2e71b9737a3c992f99c47c300
[ "0BSD" ]
null
null
null
top_links.py
judge2020/crossover-viz
61fef8750f2b64a2e71b9737a3c992f99c47c300
[ "0BSD" ]
null
null
null
top_links.py
judge2020/crossover-viz
61fef8750f2b64a2e71b9737a3c992f99c47c300
[ "0BSD" ]
null
null
null
from main import extract_data if __name__ == '__main__': top = {} out = extract_data('CrossoverWiki.xml') for name in out: for link in name['links']: w = link['with'] top[w] = top[w] + 1 if w in top else 1 top = dict(reversed(sorted(top.items(), key=lambda item: item[1]))) print(top)
28.166667
71
0.573964
0
0
0
0
0
0
0
0
42
0.12426
db0fc2a14bd242c50cea5efa838e162798fc3772
316
py
Python
instance/settings.py
isaacjohnwesley/digfont
0f0a088151e52e972eec04dbc0b8c7fd6a30a52d
[ "MIT" ]
2
2017-01-27T03:22:21.000Z
2018-10-30T15:26:33.000Z
instance/settings.py
isaacjohnwesley/digfont
0f0a088151e52e972eec04dbc0b8c7fd6a30a52d
[ "MIT" ]
null
null
null
instance/settings.py
isaacjohnwesley/digfont
0f0a088151e52e972eec04dbc0b8c7fd6a30a52d
[ "MIT" ]
null
null
null
""" Flask application settings. """ import os DEBUG = True # Output un-merged files in debug mode. #ASSETS_DEBUG = DEBUG SECRET_KEY = os.environ.get('SECRET_KEY', None) MY_VAR = os.environ.get('MY_VAR', None) #: Mongodb settings MONGODB_SETTINGS = {'DB' : 'digfont'} #: CSRF key SECRET_KEY = "dig.font.s3cr3t"
15.8
47
0.702532
0
0
0
0
0
0
0
0
175
0.553797
db116d889b8b1d94133fabaa9ee920a870375f4b
839
py
Python
pangram.py
ZorbaTheStrange/pangram
f9fda95f119d328224f21f19690122e36be34482
[ "MIT" ]
null
null
null
pangram.py
ZorbaTheStrange/pangram
f9fda95f119d328224f21f19690122e36be34482
[ "MIT" ]
null
null
null
pangram.py
ZorbaTheStrange/pangram
f9fda95f119d328224f21f19690122e36be34482
[ "MIT" ]
null
null
null
#! /usr/bin/python3 ''' panogram.py - this program recongizes pangrams. by zorba ''' import sys def pangram_check(sentence_or_word): ''' checks the user input to see if it is a pangram. ''' letters = set('abcdefghijklmnopqrstuvwxyz') if sentence_or_word.lower() == 'done': z for letter in sentence_or_word.lower(): if letter in letters: letters.remove(letter) if len(letters) == 0: print('\nThe sentence or word is a panogram!') else: print('\nThis sentence or word is not a panogram.') def main(): ''' main ''' sentence_or_word = input('\nPlease enter a sentence or a word to check to see if it is a pangram: \nIf Done, Please type Done') pangram_check(sentence_or_word) if __name__ == '__main__': sys.exit(main())
19.511628
131
0.623361
0
0
0
0
0
0
0
0
396
0.47199
db13d0f32b95cfef64253a43f004918a6c18619d
232
py
Python
Chapter-4 Sequence/Dictionary.py
jaiswalIT02/pythonprograms
bc94e52121202b04c3e9112d9786f93ed6707f7a
[ "MIT" ]
null
null
null
Chapter-4 Sequence/Dictionary.py
jaiswalIT02/pythonprograms
bc94e52121202b04c3e9112d9786f93ed6707f7a
[ "MIT" ]
null
null
null
Chapter-4 Sequence/Dictionary.py
jaiswalIT02/pythonprograms
bc94e52121202b04c3e9112d9786f93ed6707f7a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Sat Oct 10 15:31:57 2020 @author: Tarun Jaiswal """ dictone = { "bookname": "Recursion Sutras", "subject": "Recursion", "author": "Champak Roy" } dicttwo = dict(dictone) print(dicttwo)
15.466667
35
0.633621
0
0
0
0
0
0
0
0
159
0.685345
db15276b717208ef752639b4aaf944577ef66238
1,032
py
Python
mportal/wsgi_start.py
auyeongwy/mportal
e406baea802093569c90c7206649c5afd9431dab
[ "Apache-2.0" ]
null
null
null
mportal/wsgi_start.py
auyeongwy/mportal
e406baea802093569c90c7206649c5afd9431dab
[ "Apache-2.0" ]
null
null
null
mportal/wsgi_start.py
auyeongwy/mportal
e406baea802093569c90c7206649c5afd9431dab
[ "Apache-2.0" ]
null
null
null
# Copyright 2014 Au Yeong Wing Yau # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/python # -*- coding: utf-8 -*- """ All start-up processes to be called when the WSGI process starts. """ from mportal_tools import mportal_log from mportal_tools import mportal_db import mportal_urls, template_mgr mportal_log.init_log() # Initializes logging file handler. mportal_db.init_db() # Initializes database connections. mportal_urls.init_urls() # Initializes URL list. template_mgr.init_templates() # Initializes HTML templates.
34.4
74
0.774225
0
0
0
0
0
0
0
0
799
0.774225
db16a58a234af950b25d6e13e770b9afd148413c
1,252
py
Python
lecture_04/312_plan_motion_ros_artist.py
farzanehesk/COMPAS-II-FS2022
857eb40000f0532d0c04689331eadefd38dce6b7
[ "MIT" ]
11
2022-01-24T15:07:15.000Z
2022-03-29T12:58:05.000Z
lecture_04/312_plan_motion_ros_artist.py
farzanehesk/COMPAS-II-FS2022
857eb40000f0532d0c04689331eadefd38dce6b7
[ "MIT" ]
4
2022-03-16T06:06:45.000Z
2022-03-29T22:59:11.000Z
lecture_04/312_plan_motion_ros_artist.py
farzanehesk/COMPAS-II-FS2022
857eb40000f0532d0c04689331eadefd38dce6b7
[ "MIT" ]
20
2022-03-02T10:36:41.000Z
2022-03-09T00:12:33.000Z
import math import time from compas_fab.backends import RosClient from compas.artists import Artist from compas.geometry import Frame with RosClient("localhost") as client: robot = client.load_robot(load_geometry=True) group = robot.main_group_name frame = Frame((0.4, 0.3, 0.05), (-1, 0, 0), (0, 1, 0)) tolerance_position = 0.001 tolerance_axes = [math.radians(1)] * 3 start_configuration = robot.zero_configuration() start_configuration.joint_values = (-0.106, 5.351, 2.231, -2.869, 4.712, 1.465) # create goal constraints from frame goal_constraints = robot.constraints_from_frame(frame, tolerance_position, tolerance_axes, group) trajectory = robot.plan_motion(goal_constraints, start_configuration, group, options=dict(planner_id="RRT")) print("Computed kinematic path with %d configurations." % len(trajectory.points)) print("Executing this path at full speed would take approx. %.3f seconds." % trajectory.time_from_start) artist = Artist(robot.model) for tp in trajectory.points: config = robot.zero_configuration() config.joint_values = tp.joint_values artist.update(config) artist.draw_visual() artist.redraw() time.sleep(0.02)
33.837838
112
0.713259
0
0
0
0
0
0
0
0
169
0.134984
db16e37393c0ecb2b013bb3800feb96ec755b22d
1,306
py
Python
awxkit/test/cli/test_client.py
vrevelas/awx
858f43fd2aeccacd3172b1efa44fb37c7a48e92e
[ "Apache-2.0" ]
null
null
null
awxkit/test/cli/test_client.py
vrevelas/awx
858f43fd2aeccacd3172b1efa44fb37c7a48e92e
[ "Apache-2.0" ]
null
null
null
awxkit/test/cli/test_client.py
vrevelas/awx
858f43fd2aeccacd3172b1efa44fb37c7a48e92e
[ "Apache-2.0" ]
null
null
null
from io import StringIO import pytest from requests.exceptions import ConnectionError from awxkit.cli import run, CLI class MockedCLI(CLI): def fetch_version_root(self): pass @property def v2(self): return MockedCLI() @property def json(self): return { 'users': None } @pytest.mark.parametrize('help_param', ['-h', '--help']) def test_help(capfd, help_param): with pytest.raises(SystemExit): run(['awx {}'.format(help_param)]) out, err = capfd.readouterr() assert "usage:" in out for snippet in ( '--conf.host https://example.awx.org]', '-v, --verbose' ): assert snippet in out def test_connection_error(capfd): cli = CLI() cli.parse_args(['awx']) with pytest.raises(ConnectionError): cli.connect() @pytest.mark.parametrize('resource', ['', 'invalid']) def test_list_resources(capfd, resource): # if a valid resource isn't specified, print --help cli = MockedCLI() cli.parse_args(['awx {}'.format(resource)]) cli.connect() cli.parse_resource() out, err = capfd.readouterr() assert "usage:" in out for snippet in ( '--conf.host https://example.awx.org]', '-v, --verbose' ): assert snippet in out
21.409836
56
0.608729
217
0.166156
0
0
953
0.729709
0
0
246
0.188361
db18a54ed6a35015f51619ef8bd59e64ab56a6ea
10,797
py
Python
tests/python/pants_test/tasks/test_what_changed.py
areitz/pants
9bfb3feb0272c05f36e190c9147091b97ee1950d
[ "Apache-2.0" ]
null
null
null
tests/python/pants_test/tasks/test_what_changed.py
areitz/pants
9bfb3feb0272c05f36e190c9147091b97ee1950d
[ "Apache-2.0" ]
null
null
null
tests/python/pants_test/tasks/test_what_changed.py
areitz/pants
9bfb3feb0272c05f36e190c9147091b97ee1950d
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2014 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) from textwrap import dedent from pants.backend.codegen.targets.java_protobuf_library import JavaProtobufLibrary from pants.backend.codegen.targets.java_thrift_library import JavaThriftLibrary from pants.backend.codegen.targets.python_thrift_library import PythonThriftLibrary from pants.backend.core.from_target import FromTarget from pants.backend.core.targets.resources import Resources from pants.backend.core.tasks.what_changed import WhatChanged from pants.backend.core.wrapped_globs import RGlobs from pants.backend.jvm.targets.jar_dependency import JarDependency from pants.backend.jvm.targets.jar_library import JarLibrary from pants.backend.jvm.targets.java_library import JavaLibrary from pants.backend.jvm.targets.unpacked_jars import UnpackedJars from pants.backend.python.targets.python_library import PythonLibrary from pants.base.build_file_aliases import BuildFileAliases from pants.base.source_root import SourceRoot from pants.goal.workspace import Workspace from pants_test.tasks.task_test_base import ConsoleTaskTestBase class BaseWhatChangedTest(ConsoleTaskTestBase): @property def alias_groups(self): return BuildFileAliases.create( targets={ 'java_library': JavaLibrary, 'python_library': PythonLibrary, 'jar_library': JarLibrary, 'unpacked_jars': UnpackedJars, 'resources': Resources, 'java_thrift_library': JavaThriftLibrary, 'java_protobuf_library': JavaProtobufLibrary, 'python_thrift_library': PythonThriftLibrary, }, context_aware_object_factories={ 'source_root': SourceRoot.factory, 'rglobs': RGlobs, 'from_target': FromTarget, }, objects={ 'jar': JarDependency, } ) @classmethod def task_type(cls): return WhatChanged def assert_console_output(self, *output, **kwargs): options = {'spec_excludes': [], 'exclude_target_regexp': []} if 'options' in kwargs: options.update(kwargs['options']) kwargs['options'] = options super(BaseWhatChangedTest, self).assert_console_output(*output, **kwargs) def workspace(self, files=None, parent=None, diffspec=None, diff_files=None): class MockWorkspace(Workspace): def touched_files(_, p): self.assertEqual(parent or 'HEAD', p) return files or [] def changes_in(_, ds): self.assertEqual(diffspec, ds) return diff_files or [] return MockWorkspace() class WhatChangedTestBasic(BaseWhatChangedTest): def test_nochanges(self): self.assert_console_output(workspace=self.workspace()) def test_parent(self): self.assert_console_output(options={'changes_since': '42'}, workspace=self.workspace(parent='42')) def test_files(self): self.assert_console_output( 'a/b/c', 'd', 'e/f', options={'files': True}, workspace=self.workspace(files=['a/b/c', 'd', 'e/f']) ) class WhatChangedTest(BaseWhatChangedTest): def setUp(self): super(WhatChangedTest, self).setUp() self.add_to_build_file('root', dedent(""" source_root('src/py', python_library, resources) source_root('resources/a1', resources) """)) self.add_to_build_file('root/src/py/a', dedent(""" python_library( name='alpha', sources=['b/c', 'd'], resources=['test.resources'] ) jar_library( name='beta', jars=[ jar(org='gamma', name='ray', rev='1.137.bruce_banner') ] ) """)) self.add_to_build_file('root/src/py/1', dedent(""" python_library( name='numeric', sources=['2'] ) """)) self.add_to_build_file('root/src/py/dependency_tree/a', dedent(""" python_library( name='a', sources=['a.py'], ) """)) self.add_to_build_file('root/src/py/dependency_tree/b', dedent(""" python_library( name='b', sources=['b.py'], dependencies=['root/src/py/dependency_tree/a'] ) """)) self.add_to_build_file('root/src/py/dependency_tree/c', dedent(""" python_library( name='c', sources=['c.py'], dependencies=['root/src/py/dependency_tree/b'] ) """)) self.add_to_build_file('root/src/thrift', dedent(""" java_thrift_library( name='thrift', sources=['a.thrift'] ) python_thrift_library( name='py-thrift', sources=['a.thrift'] ) """)) self.add_to_build_file('root/resources/a', dedent(""" resources( name='a_resources', sources=['a.resources'] ) """)) self.add_to_build_file('root/src/java/a', dedent(""" java_library( name='a_java', sources=rglobs("*.java"), ) """)) self.add_to_build_file('root/3rdparty/BUILD.twitter', dedent(""" jar_library( name='dummy', jars=[ jar(org='foo', name='ray', rev='1.45') ]) """)) self.add_to_build_file('root/3rdparty/BUILD', dedent(""" jar_library( name='dummy1', jars=[ jar(org='foo1', name='ray', rev='1.45') ]) """)) # This is a directory that might confuse case insensitive file systems (on macs for example). # It should not be treated as a BUILD file. self.create_dir('root/scripts/a/build') self.add_to_build_file('root/scripts/BUILD', dedent(""" java_library( name='scripts', sources=['a/build/scripts.java'], ) """)) def test_spec_excludes(self): self.assert_console_output( 'root/src/py/a:alpha', options={'spec_excludes': 'root/src/py/1'}, workspace=self.workspace(files=['root/src/py/a/b/c', 'root/src/py/a/d']) ) def test_owned(self): self.assert_console_output( 'root/src/py/a:alpha', 'root/src/py/1:numeric', workspace=self.workspace(files=['root/src/py/a/b/c', 'root/src/py/a/d', 'root/src/py/1/2']) ) def test_multiply_owned(self): self.assert_console_output( 'root/src/thrift:thrift', 'root/src/thrift:py-thrift', workspace=self.workspace(files=['root/src/thrift/a.thrift']) ) def test_build(self): self.assert_console_output( 'root/src/py/a:alpha', 'root/src/py/a:beta', workspace=self.workspace(files=['root/src/py/a/BUILD']) ) def test_resource_changed(self): self.assert_console_output( 'root/src/py/a:alpha', workspace=self.workspace(files=['root/src/py/a/test.resources']) ) def test_resource_changed_for_java_lib(self): self.assert_console_output( 'root/resources/a:a_resources', workspace=self.workspace(files=['root/resources/a/a.resources']) ) def test_build_sibling(self): self.assert_console_output( 'root/3rdparty:dummy', workspace=self.workspace(files=['root/3rdparty/BUILD.twitter']) ) def test_resource_type_error(self): self.add_to_build_file('root/resources/a1', dedent(""" java_library( name='a1', sources=['a1.test'], resources=[1] ) """)) self.assert_console_raises( Exception, workspace=self.workspace(files=['root/resources/a1/a1.test']) ) def test_build_directory(self): # This should ensure that a directory named the same as build files does not cause an exception. self.assert_console_output( 'root/scripts:scripts', workspace=self.workspace(files=['root/scripts/a/build', 'root/scripts/a/build/scripts.java']) ) def test_fast(self): self.assert_console_output( 'root/src/py/a:alpha', 'root/src/py/1:numeric', options={'fast': True}, workspace=self.workspace( files=['root/src/py/a/b/c', 'root/src/py/a/d', 'root/src/py/1/2'], ), ) def test_diffspec(self): self.assert_console_output( 'root/src/py/a:alpha', 'root/src/py/1:numeric', options={'diffspec': '42'}, workspace=self.workspace( diffspec='42', diff_files=['root/src/py/a/b/c', 'root/src/py/a/d', 'root/src/py/1/2'], ), ) def test_diffspec_removed_files(self): self.assert_console_output( 'root/src/java/a:a_java', options={'diffspec': '42'}, workspace=self.workspace( diffspec='42', diff_files=['root/src/java/a/b/c/Foo.java'], ), ) def test_include_dependees(self): self.assert_console_output( 'root/src/py/dependency_tree/a:a', workspace=self.workspace(files=['root/src/py/dependency_tree/a/a.py']) ) self.assert_console_output( 'root/src/py/dependency_tree/a:a', 'root/src/py/dependency_tree/b:b', options={'include_dependees': 'direct'}, workspace=self.workspace(files=['root/src/py/dependency_tree/a/a.py']) ) self.assert_console_output( 'root/src/py/dependency_tree/a:a', 'root/src/py/dependency_tree/b:b', 'root/src/py/dependency_tree/c:c', options={'include_dependees': 'transitive'}, workspace=self.workspace(files=['root/src/py/dependency_tree/a/a.py']) ) def test_exclude(self): self.assert_console_output( 'root/src/py/dependency_tree/a:a', 'root/src/py/dependency_tree/b:b', 'root/src/py/dependency_tree/c:c', options={'include_dependees': 'transitive'}, workspace=self.workspace(files=['root/src/py/dependency_tree/a/a.py']) ) self.assert_console_output( 'root/src/py/dependency_tree/a:a', 'root/src/py/dependency_tree/c:c', options={'include_dependees': 'transitive', 'exclude_target_regexp': [':b']}, workspace=self.workspace(files=['root/src/py/dependency_tree/a/a.py']) ) def test_deferred_sources(self): self.add_to_build_file('root/proto', dedent(""" java_protobuf_library(name='unpacked_jars', sources=from_target(':external-source'), ) unpacked_jars(name='external-source', libraries=[':external-source-jars'], include_patterns=[ 'com/squareup/testing/**/*.proto', ], ) jar_library(name='external-source-jars', jars=[ jar(org='com.squareup.testing.protolib', name='protolib-external-test', rev='0.0.2'), ], ) """)) self.assert_console_output( 'root/proto:unpacked_jars', 'root/proto:external-source', 'root/proto:external-source-jars', workspace=self.workspace(files=['root/proto/BUILD']) )
29.662088
100
0.643605
9,446
0.874873
0
0
707
0.065481
0
0
4,822
0.446606
db1c1956b75c3a0483a601da0add4f5327ce2ad0
364
py
Python
utils/image_utils.py
novicasarenac/car-racing-rl
5bb3b2c47fb6ceda3e8f2c149485652da5a079ba
[ "MIT" ]
10
2019-08-08T03:17:39.000Z
2021-12-15T08:43:29.000Z
utils/image_utils.py
novicasarenac/car-racing-rl
5bb3b2c47fb6ceda3e8f2c149485652da5a079ba
[ "MIT" ]
7
2019-11-29T04:00:22.000Z
2022-03-11T23:38:20.000Z
utils/image_utils.py
novicasarenac/car-racing-rl
5bb3b2c47fb6ceda3e8f2c149485652da5a079ba
[ "MIT" ]
4
2019-11-28T10:14:48.000Z
2020-04-08T08:10:37.000Z
import PIL import numpy as np def to_grayscale(img): return np.dot(img, [0.299, 0.587, 0.144]) def zero_center(img): return img - 127.0 def crop(img, bottom=12, left=6, right=6): height, width = img.shape return img[0: height - bottom, left: width - right] def save(img, path): pil_img = PIL.Image.fromarray(img) pil_img.save(path)
17.333333
55
0.653846
0
0
0
0
0
0
0
0
0
0
db1c1d0e4cd2adbba4dafd1f97c64d82fddfdf36
102
py
Python
sharing_groups/apps.py
sthagen/misp-hub
5b528b40796a74dc7e8367d75cb3c84920b87bfb
[ "BSD-3-Clause" ]
2
2020-10-08T18:35:04.000Z
2020-10-08T18:35:08.000Z
sharing_groups/apps.py
sthagen/misp-hub
5b528b40796a74dc7e8367d75cb3c84920b87bfb
[ "BSD-3-Clause" ]
null
null
null
sharing_groups/apps.py
sthagen/misp-hub
5b528b40796a74dc7e8367d75cb3c84920b87bfb
[ "BSD-3-Clause" ]
1
2020-10-08T18:35:17.000Z
2020-10-08T18:35:17.000Z
from django.apps import AppConfig class SharingGroupsConfig(AppConfig): name = 'sharing_groups'
17
37
0.784314
65
0.637255
0
0
0
0
0
0
16
0.156863
db1fd3d38056cafb0f7ff39c5a005804f923571f
5,310
py
Python
GoogleCloud/backend.py
ryanjsfx2424/HowToNFTs
f4cff7ad676d272815bd936eb142556f92540a32
[ "MIT" ]
null
null
null
GoogleCloud/backend.py
ryanjsfx2424/HowToNFTs
f4cff7ad676d272815bd936eb142556f92540a32
[ "MIT" ]
null
null
null
GoogleCloud/backend.py
ryanjsfx2424/HowToNFTs
f4cff7ad676d272815bd936eb142556f92540a32
[ "MIT" ]
null
null
null
## backend.py """ The purpose of this script is to continuously monitor the blockchain to 1) determine if a holder aquires or loses an NFT: 2) if they do, generate a new image/movie for the tokens they hold, 3) upload the new image/movie to the hosting service 4) update the metadata file Repeat :) (The above ordering matters!) """ ## use python3!!! import os import io import json from web3 import Web3 ## PARAMETERS DEPLOYER_ADDRESS = "0x01656d41e041b50fc7c1eb270f7d891021937436" INFURA_URL = "https://rinkeby.infura.io/v3/37de3193ccf345fe810932c3d0f103d8" EXT_IMG = ".mp4" EXT_METADATA = ".json" ADDRESS = "0xb552E0dDd94EA72DBc089619115c81529cd8CA70" # address for deployed smart contract ## web3 stuff w3 = Web3(Web3.HTTPProvider(INFURA_URL)) with open("../contract/abi_v020.json", "r") as fid: rl = "".join(fid.readlines()) abi = json.loads(rl) # end with open ## goal is to update token URI based on how many are held ## by that owner (but deployer doesn't count!) contract = w3.eth.contract(address=ADDRESS, abi=abi) totalSupply = contract.functions.totalSupply().call() print("total supply: ", totalSupply) for ii in range(totalSupply): token = contract.functions.tokenByIndex(ii).call() owner = contract.functions.ownerOf(token).call() tokenList = contract.functions.walletOfOwner(owner).call() ## string comparison fails for some mysterious reason if int(owner,16) == int(DEPLOYER_ADDRESS,16): tokenList = [ii+1] # end if print("token: ", token) print("owner: ", owner) print("tokenList: ", tokenList) newTokenName = str(token) for jj in range(len(tokenList)): if tokenList[jj] != token: newTokenName += "_" + str(tokenList[jj]) # end if # end for jj print("newTokenName: ", newTokenName) ## first, check if metadata on hosting service has newTokenName. ## if so, we're good! If not, update it! old_foos = [] metadata_correct = False os.system("gsutil ls gs://how-to-nfts-metadata/foo" + str(token) + ".txt" + " > foo_file0.txt") os.system("gsutil ls gs://how-to-nfts-metadata/foo" + str(token) + "_*.txt" + " > foo_file1.txt") for jj in range(2): with open("foo_file" + str(jj) + ".txt", "r") as fid: for line in fid: old_foos.append(line) if "foo" + newTokenName + ".txt" in line: metadata_correct = True # end if # end for # end with os.system("rm foo_file" + str(jj) + ".txt") # end for jj print("old_foos: ", old_foos) if metadata_correct: print("metadata correct (supposedly) so skipping") continue # end if if len(old_foos) > 1: print("error! only expected one old foo file.") raise # end if old_foo = old_foos[0][:-1] # strip trailing newline character old_foo = old_foo.split("metadata/")[1] print("old_foo: ", old_foo) ## evidently metadata is not correct... ## first, we generate a new movie (if needed) and rsync with ## the GCP bucket. ## then, we'll update the metadata file, remove the old foo ## file and touch a new one ## then we'll rsync the metadata folder with the bucket. target = "../nftmp4s/HowToKarate" + str(token) + ".mp4" destination = "../nftmp4s/HowToKarate" + newTokenName + ".mp4" if not os.path.exists(destination): os.system("cp " + target + " " + destination) for jj in range(len(tokenList)): if tokenList[jj] != token: print("destination: ", destination) print("tokenList[jj]: ", tokenList[jj]) os.system('ffmpeg -y -i ' + destination + ' -i nftmp4s/HowToKarate' + str(tokenList[jj]) + '.mp4' + \ ' -filter_complex "[0:v] [1:v]' + \ ' concat=n=2:v=1 [v]"' + \ ' -map "[v]" ' + "concat.mp4") os.system("mv concat.mp4 " + destination) # end if # end for jj ## note, can rsync in parallel via rsync -m... os.system("gsutil rsync ../nftmp4s/ gs://how-to-nfts-data/") # end if ## next, we'll update the metadata file, remove the old foo ## file and touch a new one ## then we'll rsync the metadata folder with the bucket. os.system("cp ../metadata/" + str(token) + ".json temp.json") with open("../metadata/" + str(token) + ".json", "w") as fid_write: with open("temp.json", "r") as fid_read: for line in fid_read: if '"image":' in line: line = line.split("HowToKarate")[0] + "HowToKarate" + \ str(newTokenName) + '.mp4",\n' # end i fid_write.write(line) # end for line # end with open write # end with open read os.system("rm temp.json") os.system("touch ../metadata/foo" + str(newTokenName) + ".txt") os.system("rm ../metadata/" + old_foo) ## last, we need to update the _metadata file and then rsync. with open("../metadata/_metadata.json", "w") as fid_write: fid_write.write("{\n") for jj in range(1,25): with open("../metadata/" + str(jj) + ".json", "r") as fid_read: for line in fid_read: if "}" in line and len(line) == 2 and jj != 24: line = "},\n" # end if fid_write.write(line) # end for # end with open fid_write.write("}") # end with open os.system("gsutil rsync -d ../metadata/ gs://how-to-nfts-metadata/") # end for ii ## end test.py
32.378049
109
0.628625
0
0
0
0
0
0
0
0
2,632
0.495669
db20e9e55635779f1f3c32e48206263757ae91d0
10,875
py
Python
dependencies/pyffi/formats/tga/__init__.py
korri123/fnv-blender-niftools-addon
ce8733e011c7d74c79be265832e1b06e85faf5ee
[ "BSD-3-Clause" ]
4
2021-09-27T09:58:44.000Z
2022-02-05T16:12:28.000Z
io_scene_niftools_updater/backup/dependencies/pyffi/formats/tga/__init__.py
korri123/fnv-blender-niftools-addon
ce8733e011c7d74c79be265832e1b06e85faf5ee
[ "BSD-3-Clause" ]
5
2019-11-10T16:20:09.000Z
2019-12-02T14:23:58.000Z
.venv/Lib/site-packages/pyffi/formats/tga/__init__.py
ndaley7/BodySlide-Group-Generator
3ed7b78c5f5ccec103b6bf06bc24398cfb6ad014
[ "BSD-3-Clause" ]
null
null
null
""" :mod:`pyffi.formats.tga` --- Targa (.tga) ========================================= Implementation -------------- .. autoclass:: TgaFormat :show-inheritance: :members: Regression tests ---------------- Read a TGA file ^^^^^^^^^^^^^^^ >>> # check and read tga file >>> import os >>> from os.path import dirname >>> dirpath = __file__ >>> for i in range(4): #recurse up to root repo dir ... dirpath = dirname(dirpath) >>> repo_root = dirpath >>> format_root = os.path.join(repo_root, 'tests', 'formats', 'tga') >>> file = os.path.join(format_root, 'test.tga').replace("\\\\", "/") >>> stream = open(file, 'rb') >>> data = TgaFormat.Data() >>> data.inspect(stream) >>> data.read(stream) >>> stream.close() >>> data.header.width 60 >>> data.header.height 20 Parse all TGA files in a directory tree ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ >>> for stream, data in TgaFormat.walkData(format_root): ... try: ... # the replace call makes the doctest also pass on windows ... os_path = stream.name ... split = (os_path.split(os.sep))[-4:] ... rejoin = os.path.join(*split).replace("\\\\", "/") ... print("reading %s" % rejoin) ... except Exception: ... print( ... "Warning: read failed due corrupt file," ... " corrupt format description, or bug.") # doctest: +REPORT_NDIFF reading tests/formats/tga/test.tga reading tests/formats/tga/test_footer.tga Create a TGA file from scratch and write to file ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ >>> data = TgaFormat.Data() >>> from tempfile import TemporaryFile >>> stream = TemporaryFile() >>> data.write(stream) >>> stream.close() """ # ***** BEGIN LICENSE BLOCK ***** # # Copyright (c) 2007-2012, Python File Format Interface # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # # * Neither the name of the Python File Format Interface # project nor the names of its contributors may be used to endorse # or promote products derived from this software without specific # prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # ***** END LICENSE BLOCK ***** import struct, os, re import pyffi.object_models.xml import pyffi.object_models.common import pyffi.object_models.xml.basic import pyffi.object_models.xml.struct_ import pyffi.object_models import pyffi.utils.graph from pyffi.utils.graph import EdgeFilter class TgaFormat(pyffi.object_models.xml.FileFormat): """This class implements the TGA format.""" xml_file_name = 'tga.xml' # where to look for tga.xml and in what order: # TGAXMLPATH env var, or TgaFormat module directory xml_file_path = [os.getenv('TGAXMLPATH'), os.path.dirname(__file__)] # filter for recognizing tga files by extension RE_FILENAME = re.compile(r'^.*\.tga$', re.IGNORECASE) # basic types int = pyffi.object_models.common.Int uint = pyffi.object_models.common.UInt byte = pyffi.object_models.common.Byte ubyte = pyffi.object_models.common.UByte char = pyffi.object_models.common.Char short = pyffi.object_models.common.Short ushort = pyffi.object_models.common.UShort float = pyffi.object_models.common.Float PixelData = pyffi.object_models.common.UndecodedData class FooterString(pyffi.object_models.xml.basic.BasicBase): """The Targa footer signature.""" def __str__(self): return 'TRUEVISION-XFILE.\x00' def read(self, stream, data): """Read signature from stream. :param stream: The stream to read from. :type stream: file """ signat = stream.read(18) if signat != self.__str__().encode("ascii"): raise ValueError( "invalid Targa signature: expected '%s' but got '%s'" %(self.__str__(), signat)) def write(self, stream, data): """Write signature to stream. :param stream: The stream to read from. :type stream: file """ stream.write(self.__str__().encode("ascii")) def get_value(self): """Get signature. :return: The signature. """ return self.__str__() def set_value(self, value): """Set signature. :param value: The value to assign. :type value: str """ if value != self.__str__(): raise ValueError( "invalid Targa signature: expected '%s' but got '%s'" %(self.__str__(), value)) def get_size(self, data=None): """Return number of bytes that the signature occupies in a file. :return: Number of bytes. """ return 18 def get_hash(self, data=None): """Return a hash value for the signature. :return: An immutable object that can be used as a hash. """ return self.__str__() class Image(pyffi.utils.graph.GlobalNode): def __init__(self): # children are either individual pixels, or RLE packets self.children = [] def read(self, stream, data): data = data if data.header.image_type in (TgaFormat.ImageType.INDEXED, TgaFormat.ImageType.RGB, TgaFormat.ImageType.GREY): self.children = [ TgaFormat.Pixel(argument=data.header.pixel_size) for i in range(data.header.width * data.header.height)] for pixel in self.children: pixel.read(stream, data) else: self.children = [] count = 0 while count < data.header.width * data.header.height: pixel = TgaFormat.RLEPixels( argument=data.header.pixel_size) pixel.read(stream, data) self.children.append(pixel) count += pixel.header.count + 1 def write(self, stream, data): data = data for child in self.children: child.arg = data.header.pixel_size child.write(stream, data) def get_detail_child_nodes(self, edge_filter=EdgeFilter()): for child in self.children: yield child def get_detail_child_names(self, edge_filter=EdgeFilter()): for i in range(len(self.children)): yield str(i) class Data(pyffi.object_models.FileFormat.Data): def __init__(self): self.header = TgaFormat.Header() self.image = TgaFormat.Image() self.footer = None # TgaFormat.Footer() is optional def inspect(self, stream): """Quick heuristic check if stream contains Targa data, by looking at the first 18 bytes. :param stream: The stream to inspect. :type stream: file """ # XXX todo: set some of the actual fields of the header pos = stream.tell() # read header try: id_length, colormap_type, image_type, \ colormap_index, colormap_length, colormap_size, \ x_origin, y_origin, width, height, \ pixel_size, flags = struct.unpack("<BBBHHBHHHHBB", stream.read(18)) except struct.error: # could not read 18 bytes # not a TGA file raise ValueError("Not a Targa file.") finally: stream.seek(pos) # check if tga type is valid # check pixel size # check width and height if not(image_type in (1, 2, 3, 9, 10, 11) and pixel_size in (8, 24, 32) and width <= 100000 and height <= 100000): raise ValueError("Not a Targa file.") # this looks like a tga file! def read(self, stream): """Read a tga file. :param stream: The stream from which to read. :type stream: ``file`` """ # read the file self.inspect(stream) # quick check # header self.header.read(stream, self) # image self.image.read(stream, self) # check if we are at the end of the file if not stream.read(1): self.footer = None return # footer stream.seek(-26, os.SEEK_END) self.footer = TgaFormat.Footer() self.footer.read(stream, self) def write(self, stream): """Write a tga file. :param stream: The stream to write to. :type stream: ``file`` """ self.header.write(stream, self) self.image.write(stream, self) if self.footer: self.footer.write(stream, self) def get_global_child_nodes(self, edge_filter=EdgeFilter()): yield self.header yield self.image if self.footer: yield self.footer def get_global_child_names(self, edge_filter=EdgeFilter()): yield "Header" yield "Image" if self.footer: yield "Footer" if __name__ == '__main__': import doctest doctest.testmod()
34.090909
80
0.57269
7,168
0.659126
614
0.05646
0
0
0
0
5,357
0.492598
db2348f24a291f4c0fb84c5876a92a0022f59eed
355
py
Python
python/push.py
swallowstalker/postopush
6ec7e791aff1e3d868711d62e6c702a231bc1d65
[ "MIT" ]
1
2020-02-11T03:41:49.000Z
2020-02-11T03:41:49.000Z
python/push.py
swallowstalker/postopush
6ec7e791aff1e3d868711d62e6c702a231bc1d65
[ "MIT" ]
null
null
null
python/push.py
swallowstalker/postopush
6ec7e791aff1e3d868711d62e6c702a231bc1d65
[ "MIT" ]
null
null
null
import telegram import os def main(): token = os.getenv("TOKEN", None) message = os.getenv("MESSAGE", "No message, please set MESSAGE env") chat_id = os.getenv("CHAT_ID", None) bot = telegram.Bot(token=token) bot.send_message(chat_id=chat_id, text=message, parse_mode=telegram.ParseMode.HTML) if __name__ == "__main__": main()
23.666667
87
0.687324
0
0
0
0
0
0
0
0
71
0.2
db23585c3e9e1de8759f993492930d5a53b54101
4,309
py
Python
advent-of-code-2018/day 13/main.py
gikf/advent-of-code
923b026ce87121b73093554734746c2ecb17c5e2
[ "MIT" ]
null
null
null
advent-of-code-2018/day 13/main.py
gikf/advent-of-code
923b026ce87121b73093554734746c2ecb17c5e2
[ "MIT" ]
null
null
null
advent-of-code-2018/day 13/main.py
gikf/advent-of-code
923b026ce87121b73093554734746c2ecb17c5e2
[ "MIT" ]
null
null
null
"""Advent of Code 2018 Day 13.""" from copy import deepcopy CARTS = '<>^v' INTERSECTION = '+' CURVES = '\\/' cart_to_direction = { '<': 180, '^': 90, '>': 0, 'v': 270, } direction_to_move = { 0: (0, 1), 90: (-1, 0), 180: (0, -1), 270: (1, 0), } direction_to_cart = { 0: '>', 90: '^', 180: '<', 270: 'v', } turns = { 0: 90, 1: 0, 2: -90, } next_direction = { 0: { '\\': 270, '/': 90, }, 90: { '\\': 180, '/': 0, }, 180: { '\\': 90, '/': 270, }, 270: { '\\': 0, '/': 180, }, } def main(file_input='input.txt'): lines = [[*line.strip('\n')] for line in get_file_contents(file_input)] carts = find_carts(lines) tracks = remove_carts(lines) collision = follow_tracks(tracks, deepcopy(carts)) print('First collision:', ','.join(str(num) for num in collision[::-1])) last_cart_location = follow_tracks(tracks, deepcopy(carts), True) print('Last cart position after all crashes:', ','.join(str(num) for num in last_cart_location[::-1])) def follow_tracks(tracks, carts, prevent_collision=False): """Follow tracks with carts. Optionally prevent ending with collision.""" while len(carts) > 1: carts, collisions = move_carts(tracks, carts) if collisions and not prevent_collision: return collisions[0] return carts[0][0] def find_repeated_position(carts): """Find position taken by two carts - colliding.""" repeated = [] seen_positions = set() for cur_position, *_ in carts: position = tuple(cur_position) if position in seen_positions: repeated.append(cur_position) seen_positions.add(position) return repeated def move_carts(tracks, carts): """Move carts by one on tracks.""" collisions = [] for cart in sorted(carts): position, direction, turn = cart move = direction_to_move[direction] next_position = [pos + change for pos, change in zip(position, move)] next_square = get_square(tracks, next_position) if next_square == INTERSECTION: next_direction, next_turn = turn_cart(direction, turn) cart[1] = next_direction cart[2] = next_turn elif is_curve(next_square): next_direction = curve_cart(direction, next_square) cart[1] = next_direction cart[0] = next_position repeated_position = find_repeated_position(carts) if repeated_position: collisions.extend(repeated_position) carts = remove_collided_carts(carts, repeated_position) return carts, collisions def remove_collided_carts(carts, repeated_position): """Remove carts colliding on the repeated_position.""" return [cart for cart in carts if cart[0] not in repeated_position] def curve_cart(direction, curve): """Move cart over the curve.""" return next_direction[direction][curve] def turn_cart(direction, turn): """Turn cart from direction, depending on the turn type.""" return (direction + turns[turn]) % 360, (turn + 1) % len(turns) def is_curve(square): """Check if square is one of the curves.""" return square in CURVES def get_square(tracks, position): """Get square from tracks with position.""" row, col = position return tracks[row][col] def remove_carts(lines): """Remove carts from lines, replacing them with normal tracks.""" for row_no, row in enumerate(lines): for col_no, square in enumerate(row): if square in '<>': lines[row_no][col_no] = '-' elif square in 'v^': lines[row_no][col_no] = '|' return lines def find_carts(lines): """Find carts in lines. Return list of lists with cart parameters.""" carts = [] for row_no, row in enumerate(lines): for col_no, square in enumerate(row): if square not in CARTS: continue carts.append([[row_no, col_no], cart_to_direction[square], 0]) return carts def get_file_contents(file): """Read all lines from file.""" with open(file) as f: return f.readlines() if __name__ == '__main__': main()
26.115152
77
0.598747
0
0
0
0
0
0
0
0
754
0.174983
db24a982814e1d245a07e054f71ca678690fe6ad
13,037
py
Python
goopylib/applications/custom_ease.py
YuvrajThorat/goopylib
b6bc593b7bcc92498a507f34b2190365a0ac51e7
[ "MIT" ]
null
null
null
goopylib/applications/custom_ease.py
YuvrajThorat/goopylib
b6bc593b7bcc92498a507f34b2190365a0ac51e7
[ "MIT" ]
null
null
null
goopylib/applications/custom_ease.py
YuvrajThorat/goopylib
b6bc593b7bcc92498a507f34b2190365a0ac51e7
[ "MIT" ]
null
null
null
from goopylib.imports import * from pathlib import Path as pathlib_Path # I kinda wanted to scrap this, it wasn't that good. def create_custom_ease(): window = Window(title="goopylib: Create Custom Ease", width=get_screen_size()[1] * 0.7, height=get_screen_size()[1] * 0.7, autoflush=False, bk_colour=DARKER_GREY) window.set_coords(0, 0, 1000, 1000) path = f"{pathlib_Path(__file__).parent.absolute()}/textures/" Image(Point(500, 500), f"{path}background.png").draw(window) add_button = Button(Image(Point(882, 219), f"{path}AddButton.png"), Image(Point(882, 219), f"{path}AddButton.png").resize_factor(1.03), Image(Point(882, 219), f"{path}AddButton.png").resize_factor(1.07), Image(Point(882, 219), f"{path}AddButton.png").convert_greyscale()).draw(window) clear_button = Button(Image(Point(882, 280), f"{path}ClearButton.png"), Image(Point(882, 280), f"{path}ClearButton.png").resize_factor(1.03), Image(Point(882, 280), f"{path}ClearButton.png").resize_factor(1.07)).draw(window) play_button = Button(Image(Point(256, 805), f"{path}PlayButton.png"), Image(Point(256, 805), f"{path}PlayButton.png").resize_factor(1.03), Image(Point(256, 805), f"{path}PlayButton.png").resize_factor(1.07)).draw(window) shape_button = CycleButton(0, Button(Image(Point(99, 805), f"{path}RectangleButton.png"), Image(Point(99, 805), f"{path}RectangleButton.png").resize_factor(1.03), Image(Point(99, 805), f"{path}RectangleButton.png").resize_factor(1.07)), Button(Image(Point(99, 805), f"{path}CircleButton.png"), Image(Point(99, 805), f"{path}CircleButton.png").resize_factor(1.03), Image(Point(99, 805), f"{path}CircleButton.png").resize_factor(1.07))) \ .draw(window) interpolation_button = CycleButton(0, Button(Image(Point(882, 109), f"{path}BezierButton.png"), Image(Point(882, 109), f"{path}BezierButton.png").resize_factor(1.03), Image(Point(882, 109), f"{path}BezierButton.png").resize_factor(1.07)), Button(Image(Point(882, 109), f"{path}CubicButton.png"), Image(Point(882, 109), f"{path}CubicButton.png").resize_factor(1.03), Image(Point(882, 109), f"{path}CubicButton.png").resize_factor(1.07)), Button(Image(Point(882, 109), f"{path}LinearButton.png"), Image(Point(882, 109), f"{path}LinearButton.png").resize_factor(1.03), Image(Point(882, 109), f"{path}LinearButton.png").resize_factor(1.07))) \ .draw(window) template_button = CycleButton(0, Button(Image(Point(882, 411), f"{path}LinearTemplate.png"), Image(Point(882, 411), f"{path}LinearTemplate.png").resize_factor(1.03), Image(Point(882, 411), f"{path}LinearTemplate.png").resize_factor(1.07)), Button(Image(Point(882, 411), f"{path}BackTemplate.png"), Image(Point(882, 411), f"{path}BackTemplate.png").resize_factor(1.03), Image(Point(882, 411), f"{path}BackTemplate.png").resize_factor(1.07)), Button(Image(Point(882, 411), f"{path}ExponentialTemplate.png"), Image(Point(882, 411), f"{path}ExponentialTemplate.png").resize_factor(1.03), Image(Point(882, 411), f"{path}ExponentialTemplate.png").resize_factor(1.07)), Button(Image(Point(882, 411), f"{path}PolynomialTemplate.png"), Image(Point(882, 411), f"{path}PolynomialTemplate.png").resize_factor(1.03), Image(Point(882, 411), f"{path}PolynomialTemplate.png").resize_factor(1.07)), Button(Image(Point(882, 411), f"{path}SineTemplate.png"), Image(Point(882, 411), f"{path}SineTemplate.png").resize_factor(1.03), Image(Point(882, 411), f"{path}SineTemplate.png").resize_factor(1.07)), Button(Image(Point(882, 411), f"{path}CircleTemplate.png"), Image(Point(882, 411), f"{path}CircleTemplate.png").resize_factor(1.03), Image(Point(882, 411), f"{path}CircleTemplate.png").resize_factor(1.07)), Button(Image(Point(882, 411), f"{path}ElasticTemplate.png"), Image(Point(882, 411), f"{path}ElasticTemplate.png").resize_factor(1.03), Image(Point(882, 411), f"{path}ElasticTemplate.png").resize_factor(1.07)), Button(Image(Point(882, 411), f"{path}BounceTemplate.png"), Image(Point(882, 411), f"{path}BounceTemplate.png").resize_factor(1.03), Image(Point(882, 411), f"{path}BounceTemplate.png").resize_factor(1.07)), disabled_graphic=Image(Point(882, 428), f"{path}CustomTemplate.png")).draw(window) save_button = Button(Image(Point(882, 647), f"{path}SaveButton.png"), Image(Point(882, 647), f"{path}SaveButton.png").resize_factor(1.03), Image(Point(882, 647), f"{path}SaveButton.png").resize_factor(1.07)).draw(window) open_button = Button(Image(Point(882, 708), f"{path}OpenButton.png"), Image(Point(882, 708), f"{path}OpenButton.png").resize_factor(1.03), Image(Point(882, 708), f"{path}OpenButton.png").resize_factor(1.07)).draw(window) simulation_graphic1 = CycleButton(0, Rectangle(Point(50, 875), Point(125, 950), fill=LIGHTER_BLUE, outline_width=0), Circle(Point(88, 913), 38, fill=LIGHTER_BLUE, outline_width=0), autoflush=False).draw(window) simulation_graphic2 = CycleButton(0, Rectangle(Point(845, 845), Point(920, 920), fill=LIGHTER_BLUE, outline_width=0), Circle(Point(883, 883), 37.5, fill=LIGHTER_BLUE, outline_width=0), autoflush=False).draw(window) graph = Image(Point(500, 500), f"{path}Graph.png").draw(window) delete_dropdown = Button(Image(Point(0, 0), f"{path}DeleteDropdown.png"), Image(Point(0, 0), f"{path}DeleteDropdownHover.png")) colour_grad = colour_gradient(LIGHTER_VIOLET, DARKEST_VIOLET, 100) resolution = 2 control_points = [Circle(p, radius=10, fill=VIOLET, outline_width=0).draw(window) for p in [Point(110, 673), Point(668, 118)]] last_control_points = control_points.copy() points = [] for obj in control_points: points.append(obj.anchor) curve = [] for t in range(int(10 ** resolution)): t /= 10 ** resolution curve.append(py_bezier_curve(t, points)) circle_objects = [] for i in range(int(10 ** resolution)): circle_objects.append(Circle(curve[i], radius=2, fill=colour_grad[i], outline_width=0).draw(window)) selected_point = None selected_curve_point = None def ease(time): points = [] for obj in control_points: points.append(obj.anchor) if interpolation_button.get_state() == 0: return 1 - (py_bezier_curve(time, points).y - 118) / 555 else: return 1 - (LinearInterpolation(time, points).y - 118) / 555 def update_curve(): nonlocal circle_objects, curve, point, last_control_points, t, i points = [] for obj in control_points: points.append(obj.anchor) curve = [] for t in range(int(10 ** resolution)): t /= 10 ** resolution if interpolation_button.get_state() == 0: curve.append(py_bezier_curve(t, points)) else: curve.append(LinearInterpolation(t, points)) for i in range(int(10 ** resolution)): circle_objects[i].move_to_y(curve[i].y) last_control_points = control_points.copy() while True: t = time.time() mouse_pos = window.check_left_mouse_click() if mouse_pos is not None: if open_button.is_clicked(mouse_pos): filename = openfilebrowser() elif save_button.is_clicked(mouse_pos): filename = openfilebrowser() elif interpolation_button.is_clicked(mouse_pos): update_curve() elif play_button.is_clicked(mouse_pos): play_button.disable() """ x = [] for t in range(int(10 ** resolution)): t /= 10 ** resolution x.append(ease(t)) plt.plot(x) plt.show()""" simulation_graphic1.glide_x(500, time=2, easing=ease) simulation_graphic2.animate_rotate(360, time=2, easing=ease) elif shape_button.is_clicked(mouse_pos): simulation_graphic1.set_state(shape_button.get_state()) simulation_graphic2.set_state(shape_button.get_state()) elif clear_button.is_clicked(mouse_pos): for point in control_points[1:-1]: point.undraw() control_points.remove(point) elif add_button.is_clicked(mouse_pos): add_button.disable() if selected_curve_point is None: i = int((10 ** resolution / 2) * 2 ** (2 - len(control_points))) control_points.insert(1, Circle(curve[i], radius=10, fill=colour_grad[i], outline_width=0).draw( window)) control_points[1].set_draggable(callback=update_curve) else: i = max( math.ceil(circle_objects.index(selected_curve_point) / (100 / (len(control_points) - 1))) - 1, 1) control_points.insert(i, Circle(selected_curve_point.get_anchor(), radius=10, fill=colour_grad[circle_objects.index(selected_curve_point)], outline_width=0).draw(window)) selected_curve_point = None control_points[i].set_draggable(callback=update_curve) add_button.enable() template_button.disable() elif delete_dropdown.is_clicked(mouse_pos): delete_dropdown.undraw() selected_point.undraw() control_points.remove(selected_point) if len(control_points) == 2: template_button.enable() else: for point in circle_objects: if point.is_clicked(mouse_pos): for i, p in enumerate(circle_objects): p.set_fill(colour_grad[i]) point.set_fill(WHITE) selected_curve_point = point break if last_control_points != control_points: update_curve() if play_button.is_disabled and not simulation_graphic1.is_gliding: play_button.enable() mouse_pos = window.check_right_mouse_click() for point in control_points[1:-1]: if point.is_clicked(mouse_pos): delete_dropdown.draw(window).move_to_point(point.anchor, align="topleft") selected_point = point window.update() def create_custom_ease2(): window = Window(title="goopylib_b: Create Custom Ease", width=get_screen_size()[1] * 0.7, height=get_screen_size()[1] * 0.7, autoflush=False, bk_colour=DARKER_GREY) window.set_coords(0, 0, 1000, 1000) path = f"{pathlib_Path(__file__).parent.absolute()}/textures/" while True: if window.is_closed(): break window.update() window.close()
49.570342
120
0.535246
0
0
0
0
0
0
0
0
1,993
0.152873
db26ca941f83e142751cfd4f2744ef8039848b25
537
py
Python
app/lib/duplication_check/train.py
WHUT-XGP/ASoulCnki
98f29532e43e73f8e364d55b284558de5803b8b9
[ "Apache-2.0" ]
null
null
null
app/lib/duplication_check/train.py
WHUT-XGP/ASoulCnki
98f29532e43e73f8e364d55b284558de5803b8b9
[ "Apache-2.0" ]
null
null
null
app/lib/duplication_check/train.py
WHUT-XGP/ASoulCnki
98f29532e43e73f8e364d55b284558de5803b8b9
[ "Apache-2.0" ]
null
null
null
# -*- encoding: utf-8 -*- """ Filename :train.py Description :获取小作文摘要 Time :2021/06/22 15:21:08 Author :hwa Version :1.0 """ from app.lib.duplication_check.reply_database import ReplyDatabase import time def train_data(): start_time = time.time() db = ReplyDatabase.load_from_json("data/bilibili_cnki_reply.json") db.dump_to_image("database.dat") end_time = time.time() print("train cost {} s".format(end_time - start_time)) if __name__ == "__main__": train_data()
23.347826
70
0.646182
0
0
0
0
0
0
0
0
253
0.459165
db28a45f5705fff1d415e5578ed431780d73980b
5,837
py
Python
buildscripts/task_generation/evg_config_builder.py
benety/mongo
203430ac9559f82ca01e3cbb3b0e09149fec0835
[ "Apache-2.0" ]
null
null
null
buildscripts/task_generation/evg_config_builder.py
benety/mongo
203430ac9559f82ca01e3cbb3b0e09149fec0835
[ "Apache-2.0" ]
null
null
null
buildscripts/task_generation/evg_config_builder.py
benety/mongo
203430ac9559f82ca01e3cbb3b0e09149fec0835
[ "Apache-2.0" ]
null
null
null
"""Builder for generating evergreen configuration.""" from threading import Lock from typing import Set, List, Dict import inject from shrub.v2 import ShrubProject, BuildVariant, ExistingTask, Task from buildscripts.patch_builds.task_generation import validate_task_generation_limit from buildscripts.task_generation.constants import ACTIVATE_ARCHIVE_DIST_TEST_DEBUG_TASK from buildscripts.task_generation.gen_task_service import GenTaskService, \ GenTaskOptions, ResmokeGenTaskParams, FuzzerGenTaskParams from buildscripts.task_generation.generated_config import GeneratedFile, GeneratedConfiguration from buildscripts.task_generation.resmoke_proxy import ResmokeProxyService from buildscripts.task_generation.suite_split import SuiteSplitService, GeneratedSuite, \ SuiteSplitParameters from buildscripts.task_generation.task_types.fuzzer_tasks import FuzzerTask # pylint: disable=too-many-instance-attributes class EvgConfigBuilder: """A builder class for building evergreen configuration.""" @inject.autoparams() def __init__( self, resmoke_proxy: ResmokeProxyService, suite_split_service: SuiteSplitService, evg_config_gen_service: GenTaskService, gen_options: GenTaskOptions, ) -> None: """ Initialize a new builder. :param resmoke_proxy: Proxy to access resmoke data. :param suite_split_service: Service to split suites into sub-suites. :param evg_config_gen_service: Service to generate evergreen configuration. :param gen_options: Global options for generating evergreen configuration. """ self.resmoke_proxy = resmoke_proxy self.suite_split_service = suite_split_service self.evg_config_gen_service = evg_config_gen_service self.gen_options = gen_options self.shrub_config = ShrubProject.empty() self.build_variants: Dict[str, BuildVariant] = {} self.generated_files: List[GeneratedFile] = [] self.lock = Lock() def get_build_variant(self, build_variant: str) -> BuildVariant: """ Get the build variant object, creating it if it doesn't exist. NOTE: The `lock` should be held by any functions calling this one. :param build_variant: Name of build variant. :return: BuildVariant object being created. """ if build_variant not in self.build_variants: self.build_variants[build_variant] = BuildVariant(build_variant, activate=False) return self.build_variants[build_variant] def generate_suite(self, split_params: SuiteSplitParameters, gen_params: ResmokeGenTaskParams) -> None: """ Add configuration to generate a split version of the specified resmoke suite. :param split_params: Parameters of how resmoke suite should be split. :param gen_params: Parameters of how evergreen configuration should be generated. """ generated_suite = self.suite_split_service.split_suite(split_params) with self.lock: build_variant = self.get_build_variant(generated_suite.build_variant) resmoke_tasks = self.evg_config_gen_service.generate_task(generated_suite, build_variant, gen_params) self.generated_files.extend(self.resmoke_proxy.render_suite_files(resmoke_tasks)) def generate_fuzzer(self, fuzzer_params: FuzzerGenTaskParams) -> FuzzerTask: """ Add configuration to generate the specified fuzzer task. :param fuzzer_params: Parameters of how the fuzzer suite should generated. """ with self.lock: build_variant = self.get_build_variant(fuzzer_params.variant) return self.evg_config_gen_service.generate_fuzzer_task(fuzzer_params, build_variant) def add_display_task(self, display_task_name: str, execution_task_names: Set[str], build_variant: str) -> None: """ Add configuration to generate the specified display task. :param display_task_name: Name of display task to create. :param execution_task_names: Name of execution tasks to include in display task. :param build_variant: Name of build variant to add to. """ execution_tasks = {ExistingTask(task_name) for task_name in execution_task_names} with self.lock: build_variant = self.get_build_variant(build_variant) build_variant.display_task(display_task_name, execution_existing_tasks=execution_tasks) def generate_archive_dist_test_debug_activator_task(self, variant: str): """ Generate dummy task to activate the task that archives debug symbols. We can't activate it directly as it's not generated. """ with self.lock: build_variant = self.get_build_variant(variant) build_variant.add_existing_task(ExistingTask(ACTIVATE_ARCHIVE_DIST_TEST_DEBUG_TASK)) def build(self, config_file_name: str) -> GeneratedConfiguration: """ Build the specified configuration and return the files needed to create it. :param config_file_name: Filename to use for evergreen configuration. :return: Dictionary of files and contents that are needed to create configuration. """ for build_variant in self.build_variants.values(): self.shrub_config.add_build_variant(build_variant) if not validate_task_generation_limit(self.shrub_config): raise ValueError("Attempting to generate more than max tasks in single generator") self.generated_files.append(GeneratedFile(config_file_name, self.shrub_config.json())) return GeneratedConfiguration(self.generated_files)
46.325397
99
0.716807
4,912
0.841528
0
0
1,015
0.173891
0
0
2,002
0.342984
db299a97d65e80dbbfa712b50525b811276c7bff
4,424
py
Python
test/unit/vint/ast/plugin/scope_plugin/stub_node.py
mosheavni/vint
9078dd626415cfe37ddaf03032e714bbaca8b336
[ "MIT" ]
538
2015-01-03T18:54:53.000Z
2020-01-11T01:34:51.000Z
test/unit/vint/ast/plugin/scope_plugin/stub_node.py
mosheavni/vint
9078dd626415cfe37ddaf03032e714bbaca8b336
[ "MIT" ]
235
2015-01-01T06:20:01.000Z
2020-01-17T11:32:39.000Z
test/unit/vint/ast/plugin/scope_plugin/stub_node.py
mosheavni/vint
9078dd626415cfe37ddaf03032e714bbaca8b336
[ "MIT" ]
43
2015-01-23T16:59:49.000Z
2019-12-27T10:56:12.000Z
from vint.ast.node_type import NodeType from vint.ast.plugin.scope_plugin.identifier_attribute import ( IDENTIFIER_ATTRIBUTE, IDENTIFIER_ATTRIBUTE_DYNAMIC_FLAG, IDENTIFIER_ATTRIBUTE_DECLARATION_FLAG, IDENTIFIER_ATTRIBUTE_MEMBER_FLAG, IDENTIFIER_ATTRIBUTE_FUNCTION_FLAG, IDENTIFIER_ATTRIBUTE_AUTOLOAD_FLAG, IDENTIFIER_ATTRIBUTE_FUNCTION_ARGUMENT_FLAG, IDENTIFIER_ATTRIBUTE_LAMBDA_STRING_CONTEXT, ) def create_id(id_value, is_declarative=True, is_function=False, is_autoload=False, is_declarative_parameter=False, is_on_str_expr_context=False): return { 'type': NodeType.IDENTIFIER.value, 'value': id_value, IDENTIFIER_ATTRIBUTE: { IDENTIFIER_ATTRIBUTE_DECLARATION_FLAG: is_declarative, IDENTIFIER_ATTRIBUTE_DYNAMIC_FLAG: False, IDENTIFIER_ATTRIBUTE_MEMBER_FLAG: False, IDENTIFIER_ATTRIBUTE_FUNCTION_FLAG: is_function, IDENTIFIER_ATTRIBUTE_AUTOLOAD_FLAG: is_autoload, IDENTIFIER_ATTRIBUTE_FUNCTION_ARGUMENT_FLAG: is_declarative_parameter, IDENTIFIER_ATTRIBUTE_LAMBDA_STRING_CONTEXT: is_on_str_expr_context, }, } def create_env(env_value): return { 'type': NodeType.ENV.value, 'value': env_value, IDENTIFIER_ATTRIBUTE: { IDENTIFIER_ATTRIBUTE_DECLARATION_FLAG: True, IDENTIFIER_ATTRIBUTE_DYNAMIC_FLAG: False, IDENTIFIER_ATTRIBUTE_MEMBER_FLAG: False, IDENTIFIER_ATTRIBUTE_FUNCTION_FLAG: False, IDENTIFIER_ATTRIBUTE_AUTOLOAD_FLAG: False, IDENTIFIER_ATTRIBUTE_FUNCTION_ARGUMENT_FLAG: False, IDENTIFIER_ATTRIBUTE_LAMBDA_STRING_CONTEXT: False, }, } def create_option(opt_value): return { 'type': NodeType.OPTION.value, 'value': opt_value, IDENTIFIER_ATTRIBUTE: { IDENTIFIER_ATTRIBUTE_DECLARATION_FLAG: True, IDENTIFIER_ATTRIBUTE_DYNAMIC_FLAG: False, IDENTIFIER_ATTRIBUTE_MEMBER_FLAG: False, IDENTIFIER_ATTRIBUTE_FUNCTION_FLAG: False, IDENTIFIER_ATTRIBUTE_AUTOLOAD_FLAG: False, IDENTIFIER_ATTRIBUTE_FUNCTION_ARGUMENT_FLAG: False, IDENTIFIER_ATTRIBUTE_LAMBDA_STRING_CONTEXT: False, }, } def create_reg(reg_value): return { 'type': NodeType.REG.value, 'value': reg_value, IDENTIFIER_ATTRIBUTE: { IDENTIFIER_ATTRIBUTE_DECLARATION_FLAG: True, IDENTIFIER_ATTRIBUTE_DYNAMIC_FLAG: False, IDENTIFIER_ATTRIBUTE_MEMBER_FLAG: False, IDENTIFIER_ATTRIBUTE_FUNCTION_FLAG: False, IDENTIFIER_ATTRIBUTE_AUTOLOAD_FLAG: False, IDENTIFIER_ATTRIBUTE_FUNCTION_ARGUMENT_FLAG: False, IDENTIFIER_ATTRIBUTE_LAMBDA_STRING_CONTEXT: False, }, } def create_curlyname(is_declarative=True): """ Create a node as a `my_{'var'}` """ return { 'type': NodeType.CURLYNAME.value, 'value': [ { 'type': NodeType.CURLYNAMEPART.value, 'value': 'my_', }, { 'type': NodeType.CURLYNAMEEXPR.value, 'value': { 'type': NodeType.CURLYNAMEEXPR.value, 'value': 'var', }, } ], IDENTIFIER_ATTRIBUTE: { IDENTIFIER_ATTRIBUTE_DECLARATION_FLAG: is_declarative, IDENTIFIER_ATTRIBUTE_DYNAMIC_FLAG: True, IDENTIFIER_ATTRIBUTE_MEMBER_FLAG: False, IDENTIFIER_ATTRIBUTE_FUNCTION_FLAG: False, IDENTIFIER_ATTRIBUTE_AUTOLOAD_FLAG: False, IDENTIFIER_ATTRIBUTE_FUNCTION_ARGUMENT_FLAG: False, IDENTIFIER_ATTRIBUTE_LAMBDA_STRING_CONTEXT: False, }, } def create_subscript_member(is_declarative=True): return { 'type': NodeType.IDENTIFIER.value, 'value': 'member', IDENTIFIER_ATTRIBUTE: { IDENTIFIER_ATTRIBUTE_DECLARATION_FLAG: is_declarative, IDENTIFIER_ATTRIBUTE_DYNAMIC_FLAG: False, IDENTIFIER_ATTRIBUTE_MEMBER_FLAG: True, IDENTIFIER_ATTRIBUTE_FUNCTION_FLAG: False, IDENTIFIER_ATTRIBUTE_AUTOLOAD_FLAG: False, IDENTIFIER_ATTRIBUTE_FUNCTION_ARGUMENT_FLAG: False, IDENTIFIER_ATTRIBUTE_LAMBDA_STRING_CONTEXT: False, }, }
35.96748
82
0.667043
0
0
0
0
0
0
0
0
178
0.040235
db29c33820407f3d84d5b4458a06a85d146e75c7
1,130
py
Python
core/analyser.py
hryu/cpu_usage_analyser
bc870c4fd3be873033a7f43612c1a0379d5bf419
[ "MIT" ]
null
null
null
core/analyser.py
hryu/cpu_usage_analyser
bc870c4fd3be873033a7f43612c1a0379d5bf419
[ "MIT" ]
null
null
null
core/analyser.py
hryu/cpu_usage_analyser
bc870c4fd3be873033a7f43612c1a0379d5bf419
[ "MIT" ]
null
null
null
class Analyser: def __init__(self, callbacks, notifiers, state): self.cbs = callbacks self.state = state self.notifiers = notifiers def on_begin_analyse(self, timestamp): pass def on_end_analyse(self, timestamp): pass def analyse(self, event): event_name = event.name # for 'perf' tool split_event_name = event.name.split(':') if len(split_event_name) > 1: event_name = split_event_name[1].strip() if event_name in self.cbs: self.cbs[event_name](event) elif (event_name.startswith('sys_enter') or \ event_name.startswith('syscall_entry_')) and \ 'syscall_entry' in self.cbs: self.cbs['syscall_entry'](event) elif (event_name.startswith('sys_exit') or \ event_name.startswith('syscall_exit_')) and \ 'syscall_exit' in self.cbs: self.cbs['syscall_exit'](event) def notify(self, notification_id, **kwargs): if notification_id in self.notifiers: self.notifiers[notification_id](**kwargs)
32.285714
60
0.604425
1,129
0.999115
0
0
0
0
0
0
130
0.115044
db2cccb8706be958cee0c18ee9e554aac314a720
348
py
Python
grpr2-ch/maci/policies/__init__.py
saarcohen30/GrPR2-CH
ba8c32f5b4caeebfc93ca30fa1fcc8223176183f
[ "MIT" ]
null
null
null
grpr2-ch/maci/policies/__init__.py
saarcohen30/GrPR2-CH
ba8c32f5b4caeebfc93ca30fa1fcc8223176183f
[ "MIT" ]
null
null
null
grpr2-ch/maci/policies/__init__.py
saarcohen30/GrPR2-CH
ba8c32f5b4caeebfc93ca30fa1fcc8223176183f
[ "MIT" ]
null
null
null
from .nn_policy import NNPolicy # from .gmm import GMMPolicy # from .latent_space_policy import LatentSpacePolicy from .uniform_policy import UniformPolicy # from .gaussian_policy import GaussianPolicy from .stochastic_policy import StochasticNNPolicy, StochasticNNConditionalPolicy from .deterministic_policy import DeterministicNNPolicy
38.666667
81
0.850575
0
0
0
0
0
0
0
0
128
0.367816
db2d0faef6bb46b40a8c415250b0a2a6b57926d0
3,841
py
Python
sugarpidisplay/sugarpiconfig/views.py
szpaku80/SugarPiDisplay
793c288afaad1b1b6921b0d29ee0e6a537e42384
[ "MIT" ]
1
2022-02-12T20:39:20.000Z
2022-02-12T20:39:20.000Z
sugarpidisplay/sugarpiconfig/views.py
szpaku80/SugarPiDisplay
793c288afaad1b1b6921b0d29ee0e6a537e42384
[ "MIT" ]
null
null
null
sugarpidisplay/sugarpiconfig/views.py
szpaku80/SugarPiDisplay
793c288afaad1b1b6921b0d29ee0e6a537e42384
[ "MIT" ]
null
null
null
""" Routes and views for the flask application. """ import os import json from flask import Flask, redirect, request, render_template, flash from pathlib import Path from flask_wtf import FlaskForm from wtforms import StringField,SelectField,PasswordField,BooleanField from wtforms.validators import InputRequired,ValidationError from . import app source_dexcom = 'dexcom' source_nightscout = 'nightscout' LOG_FILENAME="sugarpidisplay.log" folder_name = '.sugarpidisplay' config_file = 'config.json' pi_sugar_path = os.path.join(str(Path.home()), folder_name) Path(pi_sugar_path).mkdir(exist_ok=True) def dexcom_field_check(form, field): if (form.data_source.data == source_dexcom): if (not field.data): raise ValidationError('Field cannot be empty') def nightscout_field_check(form, field): if (form.data_source.data == source_nightscout): if (not field.data): raise ValidationError('Field cannot be empty') class MyForm(FlaskForm): class Meta: csrf = False data_source = SelectField( 'Data Source', choices=[(source_dexcom, 'Dexcom'), (source_nightscout, 'Nightscout')] ) use_animation = BooleanField('Use Animation') dexcom_user = StringField('Dexcom UserName', validators=[dexcom_field_check]) dexcom_pass = PasswordField('Dexcom Password', validators=[dexcom_field_check]) ns_url = StringField('Nightscout URL', validators=[nightscout_field_check]) ns_token = StringField('Nightscout Access Token', validators=[nightscout_field_check]) @app.route('/hello') def hello_world(): return 'Hello, World!' @app.route('/success') def success(): return 'Your device is configured. Now cycle the power and it will use the new settings' @app.route('/', methods=('GET', 'POST')) def setup(): form = MyForm() if request.method == 'POST': if form.validate() == False: flash('Fields are missing.') return render_template('setup.html', form=form) else: handle_submit(form) return redirect('/success') #if form.is_submitted(): loadData(form) return render_template('setup.html', form=form) def handle_submit(form): config = { 'data_source': form.data_source.data } config['use_animation'] = form.use_animation.data if (form.data_source.data == source_dexcom): config['dexcom_username'] = form.dexcom_user.data config['dexcom_password'] = form.dexcom_pass.data else: config['nightscout_url'] = form.ns_url.data config['nightscout_access_token'] = form.ns_token.data #__location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) f = open(os.path.join(pi_sugar_path, config_file), "w") json.dump(config, f, indent = 4) f.close() def loadData(form): config_full_path = os.path.join(pi_sugar_path, config_file) if (not Path(config_full_path).exists()): return try: f = open(config_full_path, "r") config = json.load(f) f.close() if ('data_source' in config): form.data_source.data = config['data_source'] if (config['data_source'] == source_dexcom): if ('dexcom_username' in config): form.dexcom_user.data = config['dexcom_username'] if ('dexcom_password' in config): form.dexcom_pass.data = config['dexcom_password'] if (config['data_source'] == source_nightscout): if ('nightscout_url' in config): form.ns_url.data = config['nightscout_url'] if ('nightscout_access_token' in config): form.ns_token.data = config['nightscout_access_token'] form.use_animation.data = config['use_animation'] except: pass
35.564815
93
0.664931
587
0.152825
0
0
627
0.163239
0
0
916
0.23848
db2d5607d06728d0c91675bdab230c329ed3e400
2,001
py
Python
progressao_aritmeticav3.py
eduardobaltazarmarfim/PythonC
8e44b4f191582c73cca6df98120ab142145c4ba1
[ "MIT" ]
null
null
null
progressao_aritmeticav3.py
eduardobaltazarmarfim/PythonC
8e44b4f191582c73cca6df98120ab142145c4ba1
[ "MIT" ]
null
null
null
progressao_aritmeticav3.py
eduardobaltazarmarfim/PythonC
8e44b4f191582c73cca6df98120ab142145c4ba1
[ "MIT" ]
null
null
null
def retorno(): resp=input('Deseja executar o programa novamente?[s/n] ') if(resp=='S' or resp=='s'): verificar() else: print('Processo finalizado com sucesso!') pass def cabecalho(titulo): print('-'*30) print(' '*9+titulo+' '*15) print('-'*30) pass def mensagem_erro(): print('Dados inseridos são invalidos!') pass def verificar(): try: cabecalho('Progressão PA') num=int(input('Digite o primeiro termo: ')) numPA=int(input('Digite sua razão PA: ')) except: mensagem_erro() retorno() else: cont=1 loop=1 rept=1 contagem=0 while loop!=0: if(rept==1): while cont<=10: if(cont>=10): print('{} -> PAUSA\n'.format(num),end='') else: print('{} -> '.format(num),end='') cont+=1 num+=numPA contagem+=1 rept+=1 loop=int(input('Quantos termos deseja mostrar a mais? ')) if(loop<=0): print('Progressão finalizada com {} termos mostrados'.format(contagem)) break else: cont=1 while cont<=loop: if(cont>=loop): print('{} -> PAUSA\n'.format(num),end='') else: print('{} -> '.format(num),end='') cont+=1 num+=numPA contagem+=1 rept+=1 loop=int(input('Quantos termos deseja mostrar a mais? ')) if(loop<=0): print('Progressão finalizada com {} termos mostrados'.format(contagem)) break retorno() pass verificar()
17.4
91
0.410795
0
0
0
0
0
0
0
0
427
0.212861
db2d89c006750b429af0eb85221902cff310ad5b
3,278
py
Python
policies/plc_migrate_default.py
PaloAltoNetworks/pcs-migration-management
766c8c861befa92e593b23ad6d248e33f62054bb
[ "ISC" ]
1
2022-03-17T12:51:45.000Z
2022-03-17T12:51:45.000Z
policies/plc_migrate_default.py
PaloAltoNetworks/pcs-migration-management
766c8c861befa92e593b23ad6d248e33f62054bb
[ "ISC" ]
2
2021-11-03T15:34:40.000Z
2021-12-14T19:50:20.000Z
policies/plc_migrate_default.py
PaloAltoNetworks/pcs-migration-management
766c8c861befa92e593b23ad6d248e33f62054bb
[ "ISC" ]
4
2021-11-09T17:57:01.000Z
2022-01-24T17:41:21.000Z
from policies import plc_get, plc_add, plc_update from sdk.color_print import c_print from tqdm import tqdm def migrate_builtin_policies(tenant_sessions: list, logger): ''' Updates the default/built in policies of all clone tenants so they are the same as the source tenant. Default policies can not be added or deleted. ''' tenant_updated_policies = [] tenant_default_policies = [] for tenant_session in tenant_sessions: tenant_default_policies.append(plc_get.api_get_default(tenant_session, logger)) original_tenant = tenant_default_policies[0] clone_tenant_default_policies = tenant_default_policies[1:] for index, tenant in enumerate(clone_tenant_default_policies): added = 0 for plc in tqdm(tenant, desc='Syncing Default Policies', leave=False): for old_plc in original_tenant: if plc['name'] == old_plc['name']: #Compliance metadata is not apart of every policy so it has to be compared situationally complianceMetadata = [] if 'complianceMetadata' in plc: complianceMetadata = plc['complianceMetadata'] old_complianceMetadata = [] if 'complianceMetadata' in old_plc: old_complianceMetadata = old_plc['complianceMetadata'] compFlag = False for el in old_complianceMetadata: name = el['standardName'] if name not in [cmp['standardName'] for cmp in complianceMetadata]: compFlag = True break req_id = el['requirementId'] if req_id not in [cmp['requirementId'] for cmp in complianceMetadata]: compFlag = True break sec_id = el['sectionId'] if sec_id not in [cmp['sectionId'] for cmp in complianceMetadata]: compFlag = True break #Sort Labels labels = plc['labels'] o_labels = old_plc['labels'] labels.sort() o_labels.sort() #If there is a difference between the source tenant policy and the destination tenant policy, then update the policy # if plc['severity'] != old_plc['severity'] or plc['labels'] != old_plc['labels'] or plc['rule'] != old_plc['rule'] or compFlag: if plc['severity'] != old_plc['severity'] or labels != o_labels or plc['rule'] != old_plc['rule'] or compFlag: res = plc_add.update_default_policy(tenant_sessions[index + 1], old_plc, logger) if res != 'BAD': added += 1 tenant_updated_policies.append(added) logger.info('Finished migrating Default Policies') return tenant_updated_policies if __name__ == '__main__': from sdk.load_config import load_config_create_sessions tenant_sessions = load_config_create_sessions() migrate_builtin_policies(tenant_sessions)
46.169014
148
0.57352
0
0
0
0
0
0
0
0
809
0.246797
db2e05e89e1db86e733714d3d045b8d52021205c
8,158
py
Python
MAIN VERSION 2.py
HorridHanu/Notepad-Python
5c40ddf0cc01b88387bf3052117581cba6e8ab6f
[ "Apache-2.0" ]
1
2021-07-03T09:16:26.000Z
2021-07-03T09:16:26.000Z
MAIN VERSION 2.py
HorridHanu/Notepad-Python
5c40ddf0cc01b88387bf3052117581cba6e8ab6f
[ "Apache-2.0" ]
null
null
null
MAIN VERSION 2.py
HorridHanu/Notepad-Python
5c40ddf0cc01b88387bf3052117581cba6e8ab6f
[ "Apache-2.0" ]
null
null
null
######################################################################################## ######################################################################################## ## # CODE LANGUAGE IS PYHTON! ## ## ## ## # DATE: 1-JULY-2021 ## ## ######## ## ## ## ## ## # CODE BY HANU! ########## ## ######### ## ## ## ## # ONLY FOR EDUCATIONAL PURPOSE! ########## ####### ## ## ## ## ## ## # NOTEPAD COPY MAIN! ## ## ## ## ## ## ## ## ## ## # ITS ONLY DEMO! ## ## ####### ## ## ######## ## ######################################################################################## ######################################################################################## #Define Functions For Cammand! def fun(): print("yes work! \n" "PLEASE CHECK NEXT VERSION ON ->Github.com/HorridHanu<- .") # Define function for Files! # Define function for Newfile! import os.path import os def newfile(): global file root.title("Untitled - Notepad") file = None text.delete(1.0, END) # function for openfile! from tkinter.filedialog import askopenfilename, asksaveasfilename def openfile(): global file file = askopenfilename(defaultextension=".txt", filetypes=[("All Files", "*.*"), ("Text Documents", " *.txt")]) if file == "": file=None else: root.title(os.path.basename(file) + " - Notepad") text.delete(1.0, END) f= open(file, "r") text.insert(1.0, f.read()) f.close() # function for savefile! def savefile(): global file if file == None: file = asksaveasfilename(initialfile='Untitled.txt',defaultextension='.txt', filetypes=[("All Files", ".txt"), ("Text Documents", ".txt")]) if file =="": file =None else: #save the file! root.title(os.path.basename(file) + " - Notepad") f = open(file, "w") f.write(text.get(1.0, END)) f.close() # print("file save") else: # save the file! f = open(file, "w") f.write(text.get(1.0, END)) f.close() # Define function for Edits! # function for cut! def cut(): text.event_generate(("<<Cut>>")) # function for copy! def copy(): text.event_generate(("<<Copy>>")) # function for paste! def paste(): text.event_generate(("<<Paste>>")) # function for delete! def delete(): text.delete(1.0, END) # Define functions for ABOUT! # import the message box as tmsg import tkinter.messagebox as tmsg # function for help! def help(): # print("I will help you!") # showinfo help to show a messsage ! tmsg.showinfo("Help", "Tell Us Whats happen?\nContact Us On ->Github.com/HorridHanu<-") # print(a) return value (ok) # function for rate! def rate(): # askquestion help to to ask question in yes or no a= tmsg.askquestion("Rate us!", " Was Your Experince Good?") # print(a) return value is yes no or! if a == 'yes': msg = "Thanks Sir Please Rate Us On Appstore!" else: msg = "Tell Us Whats happen?\nContact Us On ->Github.com/HorridHanu<-" tmsg.showinfo("Experince..", msg) # function for joining! def join_us(): ans = tmsg.askquestion("Join", "Would You Join Us On Github") # print(ans) if ans =="no": msg = "Without Joining You Cann't Get Next Update!" else: msg ="Go To ->Github.com/HorridHanu<- \n For More Update And Versions...." tmsg.showwarning("Warning", msg) # define function for about! def about(): tmsg.showerror("About", "Notepad By Hanu.. \nVersion 2.0.." "\nCopy Right 2021 Hanu Corporation. " "All Right Reserved!" " For All OS {Windows}, {Linux}, {MacOS}" " User Interface Are Protected By Trademark" " And Other Pendings" " Or Existing Intellecutal Property Right In " " United State And Other Countries.") #BASIC TKINTER SETUP! from tkinter import * root=Tk() root.geometry("700x390") root.title("Untitled - Notpad") root.bell() #used to bell on opening! # root.iconphoto("1.ICON.png") # STATUS BAR! statusbar = StringVar() statusbar.set(" Be Happy....") sbar = Label(root, textvariable=statusbar, relief=SUNKEN, anchor="w").pack(fill=X, side=BOTTOM) # DEFINE FUNCTION FOR STATUS BAR! def status_bar(): statusbar.set(" Font Lucida, Size 19 And You Are Working Be Happy.....") # define function for font! def font(): statusbar.set(" Font Is Lucida And Size Is 17......") # define function for time! # IMPORT Datetime MODULE! from datetime import datetime now = datetime.now() Time = now.strftime("%H:%M") Date = now.strftime("%D") def time_now(): statusbar.set(f"{Time} {Date}") # SCROLLBAR AND TEXT AREA! # scrollbar using Scroll widget! sb = Scrollbar(root) sb.pack(fill=Y, side=RIGHT) # Text area using text widget and connect with scroll bar! text = Text(root, font="lucida 17", yscrollcommand=sb.set) # for taking the full geometry text.pack(fill=BOTH, expand=True) file = None sb.config(command=text.yview) #Main Menu! mainmenu=Menu(root) # Submenu File! m1 = Menu(mainmenu, tearoff=0) m1.add_separator() # to new file m1.add_command(label="New Ctrl+N", command=newfile) # m1.add_separator() # to open existing file m1.add_command(label="Open.. Ctrl+O", command=openfile) # m1.add_separator() # to save current file m1.add_command(label="save Ctrl+s", command=savefile) m1.add_separator() # to print m1.add_command(label="Print Ctrl+P", command=fun) # to Exit! m1.add_separator() m1.add_command(label="Exit", command=exit) #exit has pre-function to exit! mainmenu.add_cascade(label="File", menu=m1) # file menu END #Submenu Edit! m2 = Menu(mainmenu, tearoff = 0) m2.add_separator() # to cut m2.add_command(label="Cut Ctrl+X", command=cut) # to copy m2.add_command(label="Copy Ctrl+C", command=copy) # to paste m2.add_command(label="Paste Ctrl+V", command=paste) m2.add_separator() # to delete m2.add_command(label="Delete Del", command=delete) m2.add_separator() m2.add_command(label="Select Ctrl+A",command=fun) # to time m2.add_command(label="Time/Date F5",command=time_now) mainmenu.add_cascade(label="Edit", menu=m2) # edit menu END #Submenu Format m3 = Menu(mainmenu, tearoff = 0) m3.add_separator() m3.add_command(label="WordWrap", command=fun) # to font m3.add_command(label="font..", command=font) mainmenu.add_cascade(label="Format", menu=m3) #Submenu Veiw m4 = Menu(mainmenu, tearoff=0) m4.add_separator() # to view statusbar m4.add_command(label="Status Bar", command=status_bar) mainmenu.add_cascade(label="View", menu=m4) #Submenu View Help m5=Menu(mainmenu, tearoff = 0) m5.add_separator() # to view help m5.add_command(label="View Help", command=help) m5.add_separator() # m5.add_separator() # m5.add_separator() # to rate m5.add_command(label="Rate us!", command=rate) # m5.add_separator() # to join m5.add_command(label="Join us!", command=join_us) m5.add_separator() m5.add_separator() # about m5.add_command(label="About Notepad", command=about) mainmenu.add_cascade(label="Help", menu=m5) # View help menu END root.config(menu=mainmenu) #configure the mainmenu as menu root.mainloop() ######################################################################################## ########################################################################################
28.131034
95
0.539103
0
0
0
0
0
0
0
0
4,011
0.491665
db308acc7784941bed9244b19f0ab77519bcb972
512
py
Python
unfollow_parfum.py
AntonPukhonin/InstaPy
0c480474ec39e174fa4256b48bc25bc4ecf7b6aa
[ "MIT" ]
null
null
null
unfollow_parfum.py
AntonPukhonin/InstaPy
0c480474ec39e174fa4256b48bc25bc4ecf7b6aa
[ "MIT" ]
null
null
null
unfollow_parfum.py
AntonPukhonin/InstaPy
0c480474ec39e174fa4256b48bc25bc4ecf7b6aa
[ "MIT" ]
null
null
null
from instapy import InstaPy #insta_username = 'antonpuhonin' #insta_password = 'Bulbazavr36' insta_username = 'tonparfums' insta_password = 'ov9AN6NlnV' try: session = InstaPy(username=insta_username, password=insta_password, headless_browser=True, multi_logs=True) session.login() session.unfollow_users(amount=200, onlyInstapyFollowed = True, onlyInstapyMethod = 'FIFO', unfollow_after=6*24*60*60 ) finally: session.end()
24.380952
122
0.667969
0
0
0
0
0
0
0
0
93
0.181641
db30f2130ff4ed72860f0513ddb8d069dd812ef8
1,462
py
Python
portal/grading/serializers.py
LDSSA/portal
9561da1e262678fe68dcf51c66007c0fb13eb51a
[ "MIT" ]
2
2020-11-09T03:48:36.000Z
2021-07-02T14:30:09.000Z
portal/grading/serializers.py
LDSSA/portal
9561da1e262678fe68dcf51c66007c0fb13eb51a
[ "MIT" ]
132
2020-04-25T15:57:56.000Z
2022-03-10T19:15:51.000Z
portal/grading/serializers.py
LDSSA/portal
9561da1e262678fe68dcf51c66007c0fb13eb51a
[ "MIT" ]
1
2020-10-24T16:15:57.000Z
2020-10-24T16:15:57.000Z
from rest_framework import serializers from portal.academy import models from portal.applications.models import Submission, Challenge class GradeSerializer(serializers.ModelSerializer): notebook = serializers.FileField(source="feedback") class Meta: model = models.Grade fields = ( "score", "status", "message", "notebook", ) class ChecksumSerializer(serializers.ModelSerializer): unit = serializers.SlugField(source="code") class Meta: model = models.Unit fields = ( "unit", "checksum", ) def update(self, instance, validated_data): old_checksum = instance.checksum instance = super().update(instance, validated_data) if old_checksum != instance.checksum: for grade in models.Grade.objects.filter( unit=instance, status="graded" ): grade.status = "out-of-date" grade.save() return instance class AdmissionsGradeSerializer(serializers.ModelSerializer): notebook = serializers.FileField(source="feedback") class Meta(GradeSerializer.Meta): model = Submission class AdmissionsChecksumSerializer(serializers.ModelSerializer): unit = serializers.SlugField(source="code") class Meta: model = Challenge fields = ( "unit", "checksum", )
24.366667
64
0.613543
1,315
0.899453
0
0
0
0
0
0
119
0.081395
db3364ee622377b95d22e40cf02ce787e7812d16
323
py
Python
Funcoes/ex106-sistemaInterativoAjuda.py
ascaniopy/python
6d8892b7b9ff803b7422a61e68a383ec6ac7d62d
[ "MIT" ]
null
null
null
Funcoes/ex106-sistemaInterativoAjuda.py
ascaniopy/python
6d8892b7b9ff803b7422a61e68a383ec6ac7d62d
[ "MIT" ]
null
null
null
Funcoes/ex106-sistemaInterativoAjuda.py
ascaniopy/python
6d8892b7b9ff803b7422a61e68a383ec6ac7d62d
[ "MIT" ]
null
null
null
from time import sleep c = ('\033[m', # 0 - Sem cores '\033[0;30;41m', # 1 - Vermelho '\033[0;30;42m', # 2 - Verde '\033[0;30;43m', # 3 - Amarelo '\033[0;30;44m', # 4 - Azul '\033[0;30;45m', # 5 - Roxo '\033[0;30m' # 6 - Branco ) #Programa principal
19
40
0.439628
0
0
0
0
0
0
0
0
199
0.616099
db3369b101ea183c503c1fa561b47c91b9100d56
36
py
Python
deeptrack/extras/__init__.py
Margon01/DeepTrack-2.0_old
f4f4abc89ab1f63aeb4722f84dcfb93189c57ccf
[ "MIT" ]
65
2020-04-29T01:06:01.000Z
2022-03-28T12:44:02.000Z
deeptrack/extras/__init__.py
Margon01/DeepTrack-2.0_old
f4f4abc89ab1f63aeb4722f84dcfb93189c57ccf
[ "MIT" ]
41
2020-04-20T16:09:07.000Z
2022-03-29T15:40:08.000Z
deeptrack/extras/__init__.py
Margon01/DeepTrack-2.0_old
f4f4abc89ab1f63aeb4722f84dcfb93189c57ccf
[ "MIT" ]
31
2020-04-27T18:04:06.000Z
2022-03-18T17:24:50.000Z
from . import datasets, radialcenter
36
36
0.833333
0
0
0
0
0
0
0
0
0
0
db33adbcb92391813fa24af06e3df16ea1f77a19
236
py
Python
pyvisdk/enums/virtual_machine_ht_sharing.py
Infinidat/pyvisdk
f2f4e5f50da16f659ccc1d84b6a00f397fa997f8
[ "MIT" ]
null
null
null
pyvisdk/enums/virtual_machine_ht_sharing.py
Infinidat/pyvisdk
f2f4e5f50da16f659ccc1d84b6a00f397fa997f8
[ "MIT" ]
null
null
null
pyvisdk/enums/virtual_machine_ht_sharing.py
Infinidat/pyvisdk
f2f4e5f50da16f659ccc1d84b6a00f397fa997f8
[ "MIT" ]
null
null
null
######################################## # Automatically generated, do not edit. ######################################## from pyvisdk.thirdparty import Enum VirtualMachineHtSharing = Enum( 'any', 'internal', 'none', )
15.733333
40
0.440678
0
0
0
0
0
0
0
0
140
0.59322
db33d4b02c61194e50c6a9e8e0140a09b33f011f
1,710
py
Python
reo/migrations/0118_auto_20210715_2148.py
NREL/REopt_API
fbc70f3b0cdeec9ee220266d6b3b0c5d64f257a6
[ "BSD-3-Clause" ]
7
2022-01-29T12:10:10.000Z
2022-03-28T13:45:20.000Z
reo/migrations/0118_auto_20210715_2148.py
NREL/reopt_api
fbc70f3b0cdeec9ee220266d6b3b0c5d64f257a6
[ "BSD-3-Clause" ]
12
2022-02-01T18:23:18.000Z
2022-03-31T17:22:17.000Z
reo/migrations/0118_auto_20210715_2148.py
NREL/REopt_API
fbc70f3b0cdeec9ee220266d6b3b0c5d64f257a6
[ "BSD-3-Clause" ]
3
2022-02-08T19:44:40.000Z
2022-03-12T11:05:36.000Z
# Generated by Django 3.1.12 on 2021-07-15 21:48 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('reo', '0117_auto_20210715_2122'), ] operations = [ migrations.AddField( model_name='sitemodel', name='lifetime_emissions_cost_Health', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='sitemodel', name='lifetime_emissions_cost_Health_bau', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='sitemodel', name='lifetime_emissions_lb_NOx', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='sitemodel', name='lifetime_emissions_lb_NOx_bau', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='sitemodel', name='lifetime_emissions_lb_PM', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='sitemodel', name='lifetime_emissions_lb_PM_bau', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='sitemodel', name='lifetime_emissions_lb_SO2', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='sitemodel', name='lifetime_emissions_lb_SO2_bau', field=models.FloatField(blank=True, null=True), ), ]
31.666667
59
0.588304
1,616
0.945029
0
0
0
0
0
0
406
0.237427
db34a67ee55a1e9b0a17aba6120305fef0d0c936
16,287
py
Python
bpy_lambda/2.78/scripts/addons_contrib/io_scene_cod/__init__.py
resultant-gamedev/bpy_lambda
c8cf46c10c69e74a0892b621d76c62edaa5b04bc
[ "MIT" ]
null
null
null
bpy_lambda/2.78/scripts/addons_contrib/io_scene_cod/__init__.py
resultant-gamedev/bpy_lambda
c8cf46c10c69e74a0892b621d76c62edaa5b04bc
[ "MIT" ]
null
null
null
bpy_lambda/2.78/scripts/addons_contrib/io_scene_cod/__init__.py
resultant-gamedev/bpy_lambda
c8cf46c10c69e74a0892b621d76c62edaa5b04bc
[ "MIT" ]
1
2019-11-24T18:43:42.000Z
2019-11-24T18:43:42.000Z
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # <pep8 compliant> """ Blender-CoD: Blender Add-On for Call of Duty modding Version: alpha 3 Copyright (c) 2011 CoDEmanX, Flybynyt -- blender-cod@online.de http://code.google.com/p/blender-cod/ TODO - UI for xmodel and xanim import (planned for alpha 4/5) """ bl_info = { "name": "Blender-CoD - Add-On for Call of Duty modding (alpha 3)", "author": "CoDEmanX, Flybynyt", "version": (0, 3, 5), "blender": (2, 62, 0), "location": "File > Import | File > Export", "description": "Export models to *.XMODEL_EXPORT and animations to *.XANIM_EXPORT", "warning": "Alpha version, please report any bugs!", "wiki_url": "http://wiki.blender.org/index.php/Extensions:2.6/Py/" "Scripts/Import-Export/Call_of_Duty_IO", "tracker_url": "https://developer.blender.org/maniphest/task/edit/form/2/", "support": "TESTING", "category": "Import-Export" } # To support reload properly, try to access a package var, if it's there, reload everything if "bpy" in locals(): import imp if "import_xmodel" in locals(): imp.reload(import_xmodel) if "export_xmodel" in locals(): imp.reload(export_xmodel) if "import_xanim" in locals(): imp.reload(import_xanim) if "export_xanim" in locals(): imp.reload(export_xanim) import bpy from bpy.props import BoolProperty, IntProperty, FloatProperty, StringProperty, EnumProperty import bpy_extras.io_utils from bpy_extras.io_utils import ExportHelper, ImportHelper import time # Planned for alpha 4/5 class ImportXmodel(bpy.types.Operator, ImportHelper): """Load a CoD XMODEL_EXPORT File""" bl_idname = "import_scene.xmodel" bl_label = "Import XMODEL_EXPORT" bl_options = {'PRESET'} filename_ext = ".XMODEL_EXPORT" filter_glob = StringProperty(default="*.XMODEL_EXPORT", options={'HIDDEN'}) #use_meshes = BoolProperty(name="Meshes", description="Import meshes", default=True) #use_armature = BoolProperty(name="Armature", description="Import Armature", default=True) #use_bind_armature = BoolProperty(name="Bind Meshes to Armature", description="Parent imported meshes to armature", default=True) #use_split_objects = BoolProperty(name="Object", description="Import OBJ Objects into Blender Objects", default=True) #use_split_groups = BoolProperty(name="Group", description="Import OBJ Groups into Blender Objects", default=True) #use_image_search = BoolProperty(name="Image Search", description="Search subdirs for any associated images (Warning, may be slow)", default=True) def execute(self, context): from . import import_xmodel start_time = time.clock() result = import_xmodel.load(self, context, **self.as_keywords(ignore=("filter_glob", "check_existing"))) if not result: self.report({'INFO'}, "Import finished in %.4f sec." % (time.clock() - start_time)) return {'FINISHED'} else: self.report({'ERROR'}, result) return {'CANCELLED'} """ def draw(self, context): layout = self.layout col = layout.column() col.prop(self, "use_meshes") col.prop(self, "use_armature") row = layout.row() row.active = self.use_meshes and self.use_armature row.prop(self, "use_bind_armature") """ @classmethod def poll(self, context): return (context.scene is not None) class ImportXanim(bpy.types.Operator, ImportHelper): """Load a CoD XANIM_EXPORT File""" bl_idname = "import_scene.xanim" bl_label = "Import XANIM_EXPORT" bl_options = {'PRESET'} filename_ext = ".XANIM_EXPORT" filter_glob = StringProperty(default="*.XANIM_EXPORT;*.NT_EXPORT", options={'HIDDEN'}) def execute(self, context): # print("Selected: " + context.active_object.name) from . import import_xanim return import_xanim.load(self, context, **self.as_keywords(ignore=("filter_glob",))) class ExportXmodel(bpy.types.Operator, ExportHelper): """Save a CoD XMODEL_EXPORT File""" bl_idname = "export_scene.xmodel" bl_label = 'Export XMODEL_EXPORT' bl_options = {'PRESET'} filename_ext = ".XMODEL_EXPORT" filter_glob = StringProperty(default="*.XMODEL_EXPORT", options={'HIDDEN'}) # List of operator properties, the attributes will be assigned # to the class instance from the operator settings before calling. use_version = EnumProperty( name="Format Version", description="XMODEL_EXPORT format version for export", items=(('5', "Version 5", "vCoD, CoD:UO"), ('6', "Version 6", "CoD2, CoD4, CoD5, CoD7")), default='6', ) use_selection = BoolProperty( name="Selection only", description="Export selected meshes only (object or weight paint mode)", default=False ) use_vertex_colors = BoolProperty( name="Vertex colors", description="Export vertex colors (if disabled, white color will be used)", default=True ) use_vertex_colors_alpha = BoolProperty( name="As alpha", description="Turn RGB vertex colors into grayscale (average value) and use it as alpha transparency. White is 1 (opaque), black 0 (invisible)", default=False ) use_apply_modifiers = BoolProperty( name="Apply Modifiers", description="Apply all mesh modifiers except Armature (preview resolution)", default=True ) use_armature = BoolProperty( name="Armature", description="Export bones (if disabled, only a 'tag_origin' bone will be written)", default=True ) use_vertex_cleanup = BoolProperty( name="Clean up vertices", description="Try this if you have problems converting to xmodel. Skips vertices which aren't used by any face and updates references.", default=False ) use_armature_pose = BoolProperty( name="Pose animation to models", description="Export meshes with Armature modifier applied as a series of XMODEL_EXPORT files", default=False ) use_frame_start = IntProperty( name="Start", description="First frame to export", default=1, min=0 ) use_frame_end = IntProperty( name="End", description="Last frame to export", default=250, min=0 ) use_weight_min = BoolProperty( name="Minimum bone weight", description="Try this if you get 'too small weight' errors when converting", default=False, ) use_weight_min_threshold = FloatProperty( name="Threshold", description="Smallest allowed weight (minimum value)", default=0.010097, min=0.0, max=1.0, precision=6 ) def execute(self, context): from . import export_xmodel start_time = time.clock() result = export_xmodel.save(self, context, **self.as_keywords(ignore=("filter_glob", "check_existing"))) if not result: self.report({'INFO'}, "Export finished in %.4f sec." % (time.clock() - start_time)) return {'FINISHED'} else: self.report({'ERROR'}, result) return {'CANCELLED'} # Extend ExportHelper invoke function to support dynamic default values def invoke(self, context, event): #self.use_frame_start = context.scene.frame_start self.use_frame_start = context.scene.frame_current #self.use_frame_end = context.scene.frame_end self.use_frame_end = context.scene.frame_current return super().invoke(context, event) def draw(self, context): layout = self.layout row = layout.row(align=True) row.prop(self, "use_version", expand=True) # Calculate number of selected mesh objects if context.mode in {'OBJECT', 'PAINT_WEIGHT'}: meshes_selected = len([m for m in bpy.data.objects if m.type == 'MESH' and m.select]) else: meshes_selected = 0 col = layout.column(align=True) col.prop(self, "use_selection", "Selection only (%i meshes)" % meshes_selected) col.enabled = bool(meshes_selected) col = layout.column(align=True) col.prop(self, "use_apply_modifiers") col = layout.column(align=True) col.enabled = not self.use_armature_pose if self.use_armature and self.use_armature_pose: col.prop(self, "use_armature", "Armature (disabled)") else: col.prop(self, "use_armature") if self.use_version == '6': row = layout.row(align=True) row.prop(self, "use_vertex_colors") sub = row.split() sub.active = self.use_vertex_colors sub.prop(self, "use_vertex_colors_alpha") col = layout.column(align=True) col.label("Advanced:") col = layout.column(align=True) col.prop(self, "use_vertex_cleanup") box = layout.box() col = box.column(align=True) col.prop(self, "use_armature_pose") sub = box.column() sub.active = self.use_armature_pose sub.label(text="Frame range: (%i frames)" % (abs(self.use_frame_end - self.use_frame_start) + 1)) row = sub.row(align=True) row.prop(self, "use_frame_start") row.prop(self, "use_frame_end") box = layout.box() col = box.column(align=True) col.prop(self, "use_weight_min") sub = box.column() sub.enabled = self.use_weight_min sub.prop(self, "use_weight_min_threshold") @classmethod def poll(self, context): return (context.scene is not None) class ExportXanim(bpy.types.Operator, ExportHelper): """Save a XMODEL_XANIM File""" bl_idname = "export_scene.xanim" bl_label = 'Export XANIM_EXPORT' bl_options = {'PRESET'} filename_ext = ".XANIM_EXPORT" filter_glob = StringProperty(default="*.XANIM_EXPORT", options={'HIDDEN'}) # List of operator properties, the attributes will be assigned # to the class instance from the operator settings before calling. use_selection = BoolProperty( name="Selection only", description="Export selected bones only (pose mode)", default=False ) use_framerate = IntProperty( name="Framerate", description="Set frames per second for export, 30 fps is commonly used.", default=24, min=1, max=100 ) use_frame_start = IntProperty( name="Start", description="First frame to export", default=1, min=0 ) use_frame_end = IntProperty( name="End", description="Last frame to export", default=250, min=0 ) use_notetrack = BoolProperty( name="Notetrack", description="Export timeline markers as notetrack nodes", default=True ) use_notetrack_format = EnumProperty( name="Notetrack format", description="Notetrack format to use. Always set 'CoD 7' for Black Ops, even if not using notetrack!", items=(('5', "CoD 5", "Separate NT_EXPORT notetrack file for 'World at War'"), ('7', "CoD 7", "Separate NT_EXPORT notetrack file for 'Black Ops'"), ('1', "all other", "Inline notetrack data for all CoD versions except WaW and BO")), default='1', ) def execute(self, context): from . import export_xanim start_time = time.clock() result = export_xanim.save(self, context, **self.as_keywords(ignore=("filter_glob", "check_existing"))) if not result: self.report({'INFO'}, "Export finished in %.4f sec." % (time.clock() - start_time)) return {'FINISHED'} else: self.report({'ERROR'}, result) return {'CANCELLED'} # Extend ExportHelper invoke function to support dynamic default values def invoke(self, context, event): self.use_frame_start = context.scene.frame_start self.use_frame_end = context.scene.frame_end self.use_framerate = round(context.scene.render.fps / context.scene.render.fps_base) return super().invoke(context, event) def draw(self, context): layout = self.layout bones_selected = 0 armature = None # Take the first armature for ob in bpy.data.objects: if ob.type == 'ARMATURE' and len(ob.data.bones) > 0: armature = ob.data # Calculate number of selected bones if in pose-mode if context.mode == 'POSE': bones_selected = len([b for b in armature.bones if b.select]) # Prepare info string armature_info = "%s (%i bones)" % (ob.name, len(armature.bones)) break else: armature_info = "Not found!" if armature: icon = 'NONE' else: icon = 'ERROR' col = layout.column(align=True) col.label("Armature: %s" % armature_info, icon) col = layout.column(align=True) col.prop(self, "use_selection", "Selection only (%i bones)" % bones_selected) col.enabled = bool(bones_selected) layout.label(text="Frame range: (%i frames)" % (abs(self.use_frame_end - self.use_frame_start) + 1)) row = layout.row(align=True) row.prop(self, "use_frame_start") row.prop(self, "use_frame_end") col = layout.column(align=True) col.prop(self, "use_framerate") # Calculate number of markers in export range frame_min = min(self.use_frame_start, self.use_frame_end) frame_max = max(self.use_frame_start, self.use_frame_end) num_markers = len([m for m in context.scene.timeline_markers if frame_max >= m.frame >= frame_min]) col = layout.column(align=True) col.prop(self, "use_notetrack", text="Notetrack (%i nodes)" % num_markers) col = layout.column(align=True) col.prop(self, "use_notetrack_format", expand=True) @classmethod def poll(self, context): return (context.scene is not None) def menu_func_xmodel_import(self, context): self.layout.operator(ImportXmodel.bl_idname, text="CoD Xmodel (.XMODEL_EXPORT)") """ def menu_func_xanim_import(self, context): self.layout.operator(ImportXanim.bl_idname, text="CoD Xanim (.XANIM_EXPORT)") """ def menu_func_xmodel_export(self, context): self.layout.operator(ExportXmodel.bl_idname, text="CoD Xmodel (.XMODEL_EXPORT)") def menu_func_xanim_export(self, context): self.layout.operator(ExportXanim.bl_idname, text="CoD Xanim (.XANIM_EXPORT)") def register(): bpy.utils.register_module(__name__) bpy.types.INFO_MT_file_import.append(menu_func_xmodel_import) #bpy.types.INFO_MT_file_import.append(menu_func_xanim_import) bpy.types.INFO_MT_file_export.append(menu_func_xmodel_export) bpy.types.INFO_MT_file_export.append(menu_func_xanim_export) def unregister(): bpy.utils.unregister_module(__name__) bpy.types.INFO_MT_file_import.remove(menu_func_xmodel_import) #bpy.types.INFO_MT_file_import.remove(menu_func_xanim_import) bpy.types.INFO_MT_file_export.remove(menu_func_xmodel_export) bpy.types.INFO_MT_file_export.remove(menu_func_xanim_export) if __name__ == "__main__": register()
34.144654
151
0.647203
12,750
0.782833
0
0
252
0.015472
0
0
6,742
0.41395
db359edbcc421125b398c8492ccfbe1df5e59aa8
771
py
Python
pynpact/tests/steps/test_extract.py
NProfileAnalysisComputationalTool/npact
d4495f5cba2a936f2be2f2c821edd5429d1a58da
[ "BSD-3-Clause" ]
2
2015-09-18T02:01:19.000Z
2021-09-03T18:40:59.000Z
pynpact/tests/steps/test_extract.py
NProfileAnalysisComputationalTool/npact
d4495f5cba2a936f2be2f2c821edd5429d1a58da
[ "BSD-3-Clause" ]
null
null
null
pynpact/tests/steps/test_extract.py
NProfileAnalysisComputationalTool/npact
d4495f5cba2a936f2be2f2c821edd5429d1a58da
[ "BSD-3-Clause" ]
1
2015-09-25T18:58:21.000Z
2015-09-25T18:58:21.000Z
import os.path import pytest import py from pynpact.steps import extract def test_binfile_exists(): assert extract.BIN assert os.path.exists(extract.BIN) def test_plan(gbkconfig, executor): extract.plan(gbkconfig, executor) filename = gbkconfig[extract.OUTPUTKEY] assert filename p = py.path.local(filename) assert p.exists() # based on how many genes are in testgbk assert 3 == len(p.readlines()) def test_plan_async(gbkconfig, async_executor): extract.plan(gbkconfig, async_executor) filename = gbkconfig[extract.OUTPUTKEY] assert filename async_executor.result(filename, 1) p = py.path.local(filename) assert p.exists() # based on how many genes are in testgbk assert 3 == len(p.readlines())
23.363636
47
0.713359
0
0
0
0
0
0
0
0
80
0.103761
db3607c58d0cde5c1aa1bfb4ceddd2fc24ac1f1e
16,994
py
Python
dl_training/core.py
Duplums/SMLvsDL
b285717bd8d8e832b4bc9e2b42d18bd96b628def
[ "MIT" ]
null
null
null
dl_training/core.py
Duplums/SMLvsDL
b285717bd8d8e832b4bc9e2b42d18bd96b628def
[ "MIT" ]
null
null
null
dl_training/core.py
Duplums/SMLvsDL
b285717bd8d8e832b4bc9e2b42d18bd96b628def
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- ########################################################################## # NSAp - Copyright (C) CEA, 2019 # Distributed under the terms of the CeCILL-B license, as published by # the CEA-CNRS-INRIA. Refer to the LICENSE file or to # http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.html # for details. ########################################################################## """ Core classes. """ # System import import os import pickle from copy import deepcopy import subprocess # Third party import import torch import torch.nn.functional as func from torch.nn import DataParallel from torch.utils.data import DataLoader from tqdm import tqdm import numpy as np # Package import from dl_training.utils import checkpoint from dl_training.history import History import dl_training.metrics as mmetrics import logging class Base(object): """ Class to perform classification. """ def __init__(self, optimizer_name="Adam", learning_rate=1e-3, loss_name="NLLLoss", metrics=None, use_cuda=False, pretrained=None, load_optimizer=True, use_multi_gpu=True, **kwargs): """ Class instantiation. Observers will be notified, allowed signals are: - 'before_epoch' - 'after_epoch' Parameters ---------- optimizer_name: str, default 'Adam' the name of the optimizer: see 'torch.optim' for a description of available optimizer. learning_rate: float, default 1e-3 the optimizer learning rate. loss_name: str, default 'NLLLoss' the name of the loss: see 'torch.nn' for a description of available loss. metrics: list of str a list of extra metrics that will be computed. use_cuda: bool, default False whether to use GPU or CPU. pretrained: path, default None path to the pretrained model or weights. load_optimizer: boolean, default True if pretrained is set, whether to also load the optimizer's weights or not use_multi_gpu: boolean, default True if several GPUs are available, use them during forward/backward pass kwargs: dict specify directly a custom 'model', 'optimizer' or 'loss'. Can also be used to set specific optimizer parameters. """ self.optimizer = kwargs.get("optimizer") self.logger = logging.getLogger("SMLvsDL") self.loss = kwargs.get("loss") self.device = torch.device("cuda" if use_cuda else "cpu") for name in ("optimizer", "loss"): if name in kwargs: kwargs.pop(name) if "model" in kwargs: self.model = kwargs.pop("model") if self.optimizer is None: if optimizer_name in dir(torch.optim): self.optimizer = getattr(torch.optim, optimizer_name)( self.model.parameters(), lr=learning_rate, **kwargs) else: raise ValueError("Optimizer '{0}' uknown: check available " "optimizer in 'pytorch.optim'.") if self.loss is None: if loss_name not in dir(torch.nn): raise ValueError("Loss '{0}' uknown: check available loss in " "'pytorch.nn'.") self.loss = getattr(torch.nn, loss_name)() self.metrics = {} for name in (metrics or []): if name not in mmetrics.METRICS: raise ValueError("Metric '{0}' not yet supported: you can try " "to fill the 'METRICS' factory, or ask for " "some help!".format(name)) self.metrics[name] = mmetrics.METRICS[name] if use_cuda and not torch.cuda.is_available(): raise ValueError("No GPU found: unset 'use_cuda' parameter.") if pretrained is not None: checkpoint = None try: checkpoint = torch.load(pretrained, map_location=lambda storage, loc: storage) except BaseException as e: self.logger.error('Impossible to load the checkpoint: %s' % str(e)) if checkpoint is not None: if hasattr(checkpoint, "state_dict"): self.model.load_state_dict(checkpoint.state_dict()) elif isinstance(checkpoint, dict): if "model" in checkpoint: try: for key in list(checkpoint['model'].keys()): if key.replace('module.', '') != key: checkpoint['model'][key.replace('module.', '')] = checkpoint['model'][key] del(checkpoint['model'][key]) ##### unexpected= self.model.load_state_dict(checkpoint["model"], strict=False) self.logger.info('Model loading info: {}'.format(unexpected)) self.logger.info('Model loaded') except BaseException as e: self.logger.error('Error while loading the model\'s weights: %s' % str(e)) raise ValueError("") if "optimizer" in checkpoint: if load_optimizer: try: self.optimizer.load_state_dict(checkpoint["optimizer"]) for state in self.optimizer.state.values(): for k, v in state.items(): if torch.is_tensor(v): state[k] = v.to(self.device) except BaseException as e: self.logger.error('Error while loading the optimizer\'s weights: %s' % str(e)) else: self.logger.warning("The optimizer's weights are not restored ! ") else: self.model.load_state_dict(checkpoint) if use_multi_gpu and torch.cuda.device_count() > 1: self.model = DataParallel(self.model) self.model = self.model.to(self.device) def training(self, manager, nb_epochs: int, checkpointdir=None, fold_index=None, scheduler=None, with_validation=True, nb_epochs_per_saving=1, exp_name=None, **kwargs_train): """ Train the model. Parameters ---------- manager: a dl_training DataManager a manager containing the train and validation data. nb_epochs: int, default 100 the number of epochs. checkpointdir: str, default None a destination folder where intermediate models/historues will be saved. fold_index: int or [int] default None the index(es) of the fold(s) to use for the training, default use all the available folds. scheduler: torch.optim.lr_scheduler, default None a scheduler used to reduce the learning rate. with_validation: bool, default True if set use the validation dataset. nb_epochs_per_saving: int, default 1, the number of epochs after which the model+optimizer's parameters are saved exp_name: str, default None the experience name that will be launched Returns ------- train_history, valid_history: History the train/validation history. """ train_history = History(name="Train_%s"%(exp_name or "")) if with_validation is not None: valid_history = History(name="Validation_%s"%(exp_name or "")) else: valid_history = None print(self.loss) print(self.optimizer) folds = range(manager.get_nb_folds()) if fold_index is not None: if isinstance(fold_index, int): folds = [fold_index] elif isinstance(fold_index, list): folds = fold_index init_optim_state = deepcopy(self.optimizer.state_dict()) init_model_state = deepcopy(self.model.state_dict()) if scheduler is not None: init_scheduler_state = deepcopy(scheduler.state_dict()) for fold in folds: # Initialize everything before optimizing on a new fold self.optimizer.load_state_dict(init_optim_state) self.model.load_state_dict(init_model_state) if scheduler is not None: scheduler.load_state_dict(init_scheduler_state) loader = manager.get_dataloader( train=True, validation=True, fold_index=fold) for epoch in range(nb_epochs): loss, values = self.train(loader.train, fold, epoch, **kwargs_train) train_history.log((fold, epoch), loss=loss, **values) train_history.summary() if scheduler is not None: scheduler.step() print('Scheduler lr: {}'.format(scheduler.get_lr()), flush=True) print('Optimizer lr: %f'%self.optimizer.param_groups[0]['lr'], flush=True) if checkpointdir is not None and (epoch % nb_epochs_per_saving == 0 or epoch == nb_epochs-1) \ and epoch > 0: if not os.path.isdir(checkpointdir): subprocess.check_call(['mkdir', '-p', checkpointdir]) self.logger.info("Directory %s created."%checkpointdir) checkpoint( model=self.model, epoch=epoch, fold=fold, outdir=checkpointdir, name=exp_name, optimizer=self.optimizer) train_history.save( outdir=checkpointdir, epoch=epoch, fold=fold) if with_validation: _, _, _, loss, values = self.test(loader.validation, **kwargs_train) valid_history.log((fold, epoch), validation_loss=loss, **values) valid_history.summary() if checkpointdir is not None and (epoch % nb_epochs_per_saving == 0 or epoch == nb_epochs-1) \ and epoch > 0: valid_history.save( outdir=checkpointdir, epoch=epoch, fold=fold) return train_history, valid_history def train(self, loader,fold=None, epoch=None, **kwargs): """ Train the model on the trained data. Parameters ---------- loader: a pytorch Dataloader Returns ------- loss: float the value of the loss function. values: dict the values of the metrics. """ self.model.train() nb_batch = len(loader) pbar = tqdm(total=nb_batch, desc="Mini-Batch") values = {} iteration = 0 losses = [] y_pred = [] y_true = [] for dataitem in loader: pbar.update() inputs = dataitem.inputs if isinstance(inputs, torch.Tensor): inputs = inputs.to(self.device) list_targets = [] _targets = [] for item in (dataitem.outputs, dataitem.labels): if item is not None: _targets.append(item.to(self.device)) if len(_targets) == 1: _targets = _targets[0] list_targets.append(_targets) self.optimizer.zero_grad() outputs = self.model(inputs) batch_loss = self.loss(outputs, *list_targets) batch_loss.backward() self.optimizer.step() losses.append(float(batch_loss)) y_pred.extend(outputs.detach().cpu().numpy()) y_true.extend(list_targets[0].detach().cpu().numpy()) aux_losses = (self.model.get_aux_losses() if hasattr(self.model, 'get_aux_losses') else dict()) aux_losses.update(self.loss.get_aux_losses() if hasattr(self.loss, 'get_aux_losses') else dict()) for name, aux_loss in aux_losses.items(): if name not in values: values[name] = 0 values[name] += float(aux_loss) / nb_batch iteration += 1 loss = np.mean(losses) for name, metric in self.metrics.items(): if name not in values: values[name] = 0 values[name] = float(metric(torch.tensor(y_pred), torch.tensor(y_true))) pbar.close() return loss, values def testing(self, loader: DataLoader, saving_dir=None, exp_name=None, **kwargs): """ Evaluate the model. Parameters ---------- loader: a pytorch DataLoader saving_dir: str path to the saving directory exp_name: str, name of the experiments that is used to derive the output file name of testing results. Returns ------- y: array-like the predicted data. X: array-like the input data. y_true: array-like the true data if available. loss: float the value of the loss function if true data availble. values: dict the values of the metrics if true data availble. """ y, y_true, X, loss, values = self.test(loader) if saving_dir is not None: if not os.path.isdir(saving_dir): subprocess.check_call(['mkdir', '-p', saving_dir]) self.logger.info("Directory %s created."%saving_dir) with open(os.path.join(saving_dir, (exp_name or 'test')+'.pkl'), 'wb') as f: pickle.dump({'y_pred': y, 'y_true': y_true, 'loss': loss, 'metrics': values}, f) return y, X, y_true, loss, values def test(self, loader): """ Evaluate the model on the tests or validation data. Parameter --------- loader: a pytorch Dataset the data loader. Returns ------- y: array-like the predicted data. y_true: array-like the true data X: array_like the input data loss: float the value of the loss function. values: dict the values of the metrics. """ self.model.eval() nb_batch = len(loader) pbar = tqdm(total=nb_batch, desc="Mini-Batch") loss = 0 values = {} visuals = [] with torch.no_grad(): y, y_true, X = [], [], [] for dataitem in loader: pbar.update() inputs = dataitem.inputs if isinstance(inputs, torch.Tensor): inputs = inputs.to(self.device) list_targets = [] targets = [] for item in (dataitem.outputs, dataitem.labels): if item is not None: targets.append(item.to(self.device)) y_true.extend(item.cpu().detach().numpy()) if len(targets) == 1: targets = targets[0] elif len(targets) == 0: targets = None if targets is not None: list_targets.append(targets) outputs = self.model(inputs) if len(list_targets) > 0: batch_loss = self.loss(outputs, *list_targets) loss += float(batch_loss) / nb_batch y.extend(outputs.cpu().detach().numpy()) if isinstance(inputs, torch.Tensor): X.extend(inputs.cpu().detach().numpy()) aux_losses = (self.model.get_aux_losses() if hasattr(self.model, 'get_aux_losses') else dict()) aux_losses.update(self.loss.get_aux_losses() if hasattr(self.loss, 'get_aux_losses') else dict()) for name, aux_loss in aux_losses.items(): name += " on validation set" if name not in values: values[name] = 0 values[name] += aux_loss / nb_batch # Now computes the metrics with (y, y_true) for name, metric in self.metrics.items(): name += " on validation set" values[name] = metric(torch.tensor(y), torch.tensor(y_true)) pbar.close() return y, y_true, X, loss, values
41.550122
114
0.530658
16,140
0.949747
0
0
0
0
0
0
5,352
0.314935
db36254aae8d66e15ff58a16dc04f7e0fdb0d51b
865
py
Python
python/two_pointers/1004_max_consecutive_ones_iii.py
linshaoyong/leetcode
ea052fad68a2fe0cbfa5469398508ec2b776654f
[ "MIT" ]
6
2019-07-15T13:23:57.000Z
2020-01-22T03:12:01.000Z
python/two_pointers/1004_max_consecutive_ones_iii.py
linshaoyong/leetcode
ea052fad68a2fe0cbfa5469398508ec2b776654f
[ "MIT" ]
null
null
null
python/two_pointers/1004_max_consecutive_ones_iii.py
linshaoyong/leetcode
ea052fad68a2fe0cbfa5469398508ec2b776654f
[ "MIT" ]
1
2019-07-24T02:15:31.000Z
2019-07-24T02:15:31.000Z
from collections import deque class Solution(object): def longestOnes(self, A, K): """ :type A: List[int] :type K: int :rtype: int """ start, res = 0, 0 zeros = deque() for i in range(len(A)): if A[i] == 0: zeros.append(i) if K == 0: res = max(res, i - start) start = zeros.popleft() + 1 else: K -= 1 res = max(res, len(A) - start) return res def test_long_ones(): s = Solution() assert 6 == s.longestOnes([1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0], 2) assert 10 == s.longestOnes( [0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1], 3) assert 3 == s.longestOnes([0, 0, 1, 1, 1, 0, 0], 0) assert 4 == s.longestOnes([0, 0, 0, 1], 4)
27.03125
69
0.419653
516
0.596532
0
0
0
0
0
0
83
0.095954
db3658941378a7367cc8947a67be394b0c932596
3,000
py
Python
student_files/lap_times_db.py
jstucken/DET-Python-Anki-Overdrive-v1-1
74cfcd9ea533cc0127fa2b8bd4ed26400da8a21b
[ "MIT" ]
null
null
null
student_files/lap_times_db.py
jstucken/DET-Python-Anki-Overdrive-v1-1
74cfcd9ea533cc0127fa2b8bd4ed26400da8a21b
[ "MIT" ]
null
null
null
student_files/lap_times_db.py
jstucken/DET-Python-Anki-Overdrive-v1-1
74cfcd9ea533cc0127fa2b8bd4ed26400da8a21b
[ "MIT" ]
null
null
null
# # This script allows the user to control an Anki car using Python # To control multiple cars at once, open a seperate Command Line Window for each car # and call this script with the approriate car mac address. # This script attempts to save lap times into local mysql db running on the pi # Author: jstucken # Created: 23-2-2021 # SCRIPT_TITLE="Lap timer saving to Mysql" # import required modules import loader.bootstrapper import time from overdrive import Overdrive from php_communicator import PhpCommunicator from network import Network # Setup our car car = Overdrive(12) # init overdrive object car.enableLocationData() # get car mac address from our class object car_mac = car.getMacAddress() car_id = car.getCarId() username = car.getUsername() student_id = car.getStudentId() # count number of laps completed lap_count = 0 # start the car off # usage: car.changeSpeed(speed, accel) car.changeSpeed(400, 800) last_lap_time = 0 last_lap_count = -1 # race 3 laps and time each one while lap_count !=3: time.sleep(0.1) # lap count is incremented when cars pass over the finish line lap_count = car.getLapCount() # count laps done if last_lap_count != lap_count: last_lap_count = lap_count print() print("lap_count: "+str(lap_count)) # get lap time prev_lap_time = car.getLapTime() if last_lap_time != prev_lap_time: print() print("prev_lap_time: "+str(prev_lap_time)) # if car has completed at least 1 lap if lap_count > 0: # Save last_lap_time time to database now # get cars current location and speed location = car.getLocation() speed = car.getSpeed() # data to be sent to API data = { 'student_id':student_id, 'car_id':car_id, 'lap_time':prev_lap_time, 'lap_count':lap_count, 'speed':speed } # get the local IP address of the server machine local_ip_address = Network.getLocalIPAddress() # build our PHP script URL where data will be sent to be saved # eg "http://192.168.0.10/lap_times_save.php" url = "http://"+local_ip_address+"/python_communicator/lap_times_save.php" # Send data to PHP to save to database php = PhpCommunicator() return_text = php.getResponse(url, data) # get the response from PHP # extracting response text print("Response from PHP script: %s"%return_text) # end if print() print("*****") last_lap_time = prev_lap_time # stop the car car.stopCarFast() print("Stopping as car has done the required number of laps") car.disconnect() quit()
28.037383
87
0.606333
0
0
0
0
0
0
0
0
1,333
0.444333
db377a3b2e18c647ed0d195a162511f6c719f4a5
9,992
py
Python
flatsat/opensatkit/cfs/apps/adcs_io/adcs-drivers/cubewheel-driver/test/code.py
cromulencellc/hackasat-final-2021
d01a1b5d7947b3e41ae2da3ec63d5f43278a5eac
[ "MIT" ]
4
2022-02-25T05:45:27.000Z
2022-03-10T01:05:27.000Z
flatsat/opensatkit/cfs/apps/adcs_io/adcs-drivers/cubewheel-driver/test/code.py
cromulencellc/hackasat-final-2021
d01a1b5d7947b3e41ae2da3ec63d5f43278a5eac
[ "MIT" ]
null
null
null
flatsat/opensatkit/cfs/apps/adcs_io/adcs-drivers/cubewheel-driver/test/code.py
cromulencellc/hackasat-final-2021
d01a1b5d7947b3e41ae2da3ec63d5f43278a5eac
[ "MIT" ]
2
2022-03-02T02:14:16.000Z
2022-03-05T07:36:18.000Z
import board from i2cperipheral import I2CPeripheral from analogio import AnalogOut from digitalio import DigitalInOut, Direction, Pull import struct import math import time regs = [0] * 16 index = 0 i2c_addr = 0x68 frame_id = 0 motor_control_mode = 0 backup_mode = 0 motor_switch_state = 0 hall_switch_state = 0 encoder_switch_state = 0 error_flag = 0 unused = 0 invalidTelemetryFlag = 0 invalidTelecommandFlag = 0 encoderError = 0 uartError = 0 i2cError = 0 canError = 0 configurationError = 0 speedError = 0 reference_speed = 0 wheel_current = 290 # mA wheel_speed = math.floor(100/2) #rpm wheel_duty = 5 wheel_speed_backup = wheel_speed def send_tlm_identification(): # print("Send TLM Identification") output = [] output += bytearray([8, 0, 9, 8]) + struct.pack("H", 1111) + struct.pack("H", 8888) return output def send_tlm_identification_ext(): # print("Send TLM Identification Ext") output = [] output += struct.pack("H", 1234) + bytearray([68, 0xFF]) return output def send_tlm_status(motor_control_mode, backup_mode, motor_switch_state, hall_switch_state, encoder_switch_state, error_flag): # print("Send TLM Status MCM:{0:d}, BM:{1:d}, MSS:{2:d} HSS:{3:d}, ESS:{4:d}, Error Flag: {5:d}".format(motor_control_mode, backup_mode, motor_switch_state, hall_switch_state, encoder_switch_state, error_flag)) status = 0 status |= (backup_mode & 0x1) << 7 status |= (motor_switch_state & 0x1) << 6 status |= (hall_switch_state & 0x1) << 5 status |= (encoder_switch_state & 0x1) << 4 status |= (error_flag & 0x1) << 3 status |= unused # print("Status byte: {0:d}:{1:08b}".format(status,status)) output = [] output = struct.pack("H", 1111) + struct.pack("H", 8888) + bytearray([0, 0, motor_control_mode, status]) return output def send_tlm_wheel_data_full(wheel_speed, wheel_reference_speed, wheel_current): # print("Send TLM Wheel Data Full") output = [] output += struct.pack("h", wheel_speed) + struct.pack("h", wheel_reference_speed) + struct.pack("h", wheel_current) return output def send_tlm_wheel_data_additional(wheel_duty, wheel_speed_backup): # print("Send TLM Wheel Data Additional") output = [] output += struct.pack("h", wheel_duty) + struct.pack("h", wheel_duty) return output def send_tlm_wheel_status_flags(invalidTelemetryFlag=0, invalidTelecommandFlag=0, encoderError=0, uartError=0, i2cError=0, canError=0, configurationError=0, speedError=0): status = 0 status |= (invalidTelemetryFlag & 0x01) status |= (invalidTelecommandFlag & 0x01) << 1 status |= (encoderError & 0x01) << 2 status |= (uartError & 0x01) << 3 status |= (i2cError & 0x01) << 4 status |= (canError & 0x01) << 5 status |= (configurationError & 0x01) << 6 status |= (speedError & 0x01) << 7 return bytearray([status]) def voltage_to_dac(voltage): return math.floor((voltage*1024)/3.3 * 64) vout = 0.95 dac_value = voltage_to_dac(vout) print("Set analog output for testing: {0:f} ({1:d}) V".format(vout, dac_value)) analog_out = AnalogOut(board.A0) analog_out.value = dac_value enable_pin = DigitalInOut(board.D8) enable_pin.direction = Direction.INPUT # enable_pin.pull = Pull.DOWN print("Waiting for wheel enable") while enable_pin.value == False: time.sleep(0.1) print("Starting I2C response") with I2CPeripheral(board.SCL, board.SDA, (i2c_addr,)) as device: while True: r = device.request() if not r: # Maybe do some housekeeping continue with r: # Closes the transfer if necessary by sending a NACK or feeding dummy bytes # print("Process request") # print("I2C Addr: 0x{0:02X}, Is Read {1:d}, Is Restart {2:d}".format(r.address, r.is_read, r.is_restart)) if r.address == i2c_addr: if not r.is_read: # Main write which is Selected read # print("Get Frame Id Byte") b = r.read(1) if b: frame_id = struct.unpack("B", b)[0] print("Recieved frame ID: " + str(frame_id)) if frame_id < 40: # print("Telecommand Recieved") if frame_id == 1: reset_id = struct.unpack("B", r.read(1))[0] # print("Reset telecommand recieved: {0:d}".format(reset_id)) elif frame_id == 2: reference_speed = struct.unpack("h", r.read(2))[0] reference_speed_rpm = float(reference_speed/2.0) wheel_speed = reference_speed + 5 # print("Reference speed telecommand recieved. Speed: {0:d}:{1:f}".format(reference_speed, reference_speed_rpm)) elif frame_id == 3: wheel_duty = struct.unpack("h", r.read(2))[0] # print("Duty cycle command recieved. Duty Cycle: {0:d}".format(wheel_duty)) elif frame_id == 7: motor_switch_state = r.read(1) # print("Recieved motor power state command. State: {}".format(motor_switch_state)) elif frame_id == 8: encoder_switch_state = r.read(1) # print("Recieved encoder power state command. State: {}".format(encoder_switch_state)) elif frame_id == 8: hall_switch_state = r.read(1) # print("Recieved hall power state command. State: {}".format(encoder_switch_state)) elif frame_id == 10: motor_control_mode = struct.unpack("B", r.read(1))[0] # print("Control mode telecommand recieved. Mode: {0:d}".format(motor_control_mode)) elif frame_id == 12: backup_mode = r.read(1) # print("Recieved back-up mode state command. State: {}".format(backup_mode)) elif frame_id == 20: clear_errors = r.read(1) if clear_errors == 85: invalidTelemetryFlag = 0 invalidTelecommandFlag = 0 encoderError = 0 uartError = 0 i2cError = 0 canError = 0 configurationError = 0 speedError = 0 elif frame_id == 31: new_i2c_addr = r.read(1) # print("Recieved set I2C addr command. I2C: {}".format(new_i2c_addr)) elif frame_id == 33: new_can_mask = r.read(1) # print("Recieved set CAN mask command. CAN Mask: {}".format(new_can_mask)) elif frame_id == 33: b = r.read(3) # print("Recieved PWM Gain Command: {0:s}".format(str(b))) elif frame_id == 34: b = r.read(6) # print("Recieved Main Speed Controller Gain Command: {0:s}".format(str(b))) elif frame_id == 35: b = r.read(6) # print("Recieved Backup Speed Controller Gain Command: {0:s}".format(str(b))) else: invalidTelecommandFlag = 1 else: # print("No data to read") continue elif r.is_restart: # Combined transfer: This is the Main read message # print("Recieved Telemetry Request") n = 0 if frame_id == 128: n = r.write(bytes(send_tlm_identification())) elif frame_id == 129: n = r.write(bytes(send_tlm_identification_ext())) elif frame_id == 130: n = r.write(bytes(send_tlm_status(motor_control_mode, backup_mode, motor_switch_state, hall_switch_state, encoder_switch_state, error_flag))) elif frame_id == 133: n = r.write(bytes(2)) elif frame_id == 134: n = r.write(bytes(2)) elif frame_id == 135: n = r.write(bytes(2)) elif frame_id == 137: n = r.write(bytes(send_tlm_wheel_data_full(wheel_speed, reference_speed, wheel_current))) elif frame_id == 138: n = r.write(bytes(send_tlm_wheel_data_additional(wheel_duty, wheel_speed_backup))) elif frame_id == 139: n = r.write(bytearray([9,8,7])) elif frame_id == 140: n = r.write(bytearray([1,2,3,4,5,6])) elif frame_id == 141: n = r.write(bytearray([10, 11, 12, 13, 14, 15])) elif frame_id == 145: n = r.write(bytes(send_tlm_wheel_status_flags(invalidTelemetryFlag, invalidTelecommandFlag, encoderError, uartError, i2cError, canError, configurationError, speedError))) else: invalidTelemetryFlag = 1 # print("Wrote " + str(n) + " bytes to master")
46.910798
214
0.522218
0
0
0
0
0
0
0
0
2,127
0.21287
db37c14354deeb12104130ebc747684e2912a561
360
py
Python
constants.py
tooreht/airstripmap
7a65e67e417870c6853fd1adb848cf91d724f566
[ "MIT" ]
null
null
null
constants.py
tooreht/airstripmap
7a65e67e417870c6853fd1adb848cf91d724f566
[ "MIT" ]
null
null
null
constants.py
tooreht/airstripmap
7a65e67e417870c6853fd1adb848cf91d724f566
[ "MIT" ]
null
null
null
GOV_AIRPORTS = { "Antananarivo/Ivato": "big", "Antsiranana/Diego": "small", "Fianarantsoa": "small", "Tolagnaro/Ft. Dauphin": "small", "Mahajanga": "medium", "Mananjary": "small", "Nosy Be": "medium", "Morondava": "small", "Sainte Marie": "small", "Sambava": "small", "Toamasina": "small", "Toliary": "small", }
24
37
0.561111
0
0
0
0
0
0
0
0
245
0.680556
db399ce2f0303a23e925d9d8085ddcee798d396a
608
py
Python
practical_0/fibonacci.py
BarracudaPff/code-golf-data-pythpn
42e8858c2ebc6a061012bcadb167d29cebb85c5e
[ "MIT" ]
null
null
null
practical_0/fibonacci.py
BarracudaPff/code-golf-data-pythpn
42e8858c2ebc6a061012bcadb167d29cebb85c5e
[ "MIT" ]
null
null
null
practical_0/fibonacci.py
BarracudaPff/code-golf-data-pythpn
42e8858c2ebc6a061012bcadb167d29cebb85c5e
[ "MIT" ]
null
null
null
def fibonacci(n): fibonacci = np.zeros(10, dtype=np.int32) fibonacci_pow = np.zeros(10, dtype=np.int32) fibonacci[0] = 0 fibonacci[1] = 1 for i in np.arange(2, 10): fibonacci[i] = fibonacci[i - 1] + fibonacci[i - 2] fibonacci[i] = int(fibonacci[i]) print(fibonacci) for i in np.arange(10): fibonacci_pow[i] = np.power(int(fibonacci[i]), int(n)) print(fibonacci_pow) print(np.vstack((fibonacci, fibonacci_pow))) np.savetxt("myfibonaccis.txt", np.hstack((fibonacci, fibonacci_pow)), fmt="%u") def main(n): fibonacci(n) if __name__ == "__main__": INPUT = sys.argv[1] print(INPUT) main(INPUT)
30.4
80
0.6875
0
0
0
0
0
0
0
0
32
0.052632
db3a4d55930ad8686d2de82e1838a1ca79a144ec
24,800
py
Python
UW_System/UW_System/UW_System/spiders/uw_system.py
Nouldine/MyCrawlerSystem
7bba8ba3ec76e10f70a35700602812ee6f039b63
[ "MIT" ]
null
null
null
UW_System/UW_System/UW_System/spiders/uw_system.py
Nouldine/MyCrawlerSystem
7bba8ba3ec76e10f70a35700602812ee6f039b63
[ "MIT" ]
null
null
null
UW_System/UW_System/UW_System/spiders/uw_system.py
Nouldine/MyCrawlerSystem
7bba8ba3ec76e10f70a35700602812ee6f039b63
[ "MIT" ]
null
null
null
from scrapy import Spider from scrapy.spiders import CrawlSpider, Rule from scrapy.selector import Selector from scrapy.contrib.spiders import CrawlSpider, Rule from scrapy.contrib.linkextractors.sgml import SgmlLinkExtractor from scrapy.linkextractors import LinkExtractor import scrapy from scrapy.spidermiddlewares.httperror import HttpError from twisted.internet.error import DNSLookupError from twisted.internet.error import TimeoutError, TCPTimedOutError from w3lib.html import remove_tags from UW_System.items import UwSystemItem class uw_system( scrapy.Spider ): name = 'uw_system' allowed_domains = ['wisconsin.edu'] start_urls = [ "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=0701&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=0502&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=1001&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=2211&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=2212&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=2202&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=1003&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=1002&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=1911&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=0517&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=0401&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=1905&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=2213&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=0863&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=0829&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=0877&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=1220&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=1506&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=1008&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=4957&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=0823&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=2204&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=0862&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=0821&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=0801&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=0802&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=1501&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=4955&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=1010&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=0504&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=1512&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=1102&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=4931&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=2206&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=1914&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=1103&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=0837&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=2205&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=4913&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=2210&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=0838&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=0601&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=1801&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=0855&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=4901&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=0506&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=0509&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=1701&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=0702&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=1005&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=0870&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=0876&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=1509&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=1902&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=2207&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=2001&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=2222&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=2103&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=1510&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=2208&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=2104&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=1105&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=0808&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=0865&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=1007&submitButton=Match+All+Courses", "https://www.wisconsin.edu/transfer/wizards/?tis=edu.uwsa.tis.Wizards.JSP%252FequivalencyReport.do%253Bjsessionid%253D310EE116C932F326F4DB0D473D13D51B&tispage=2&fromField=nothingChanged&fromInstitutionId=4684&reqType=C&toInstitutionId=4690&departmentId=4949&submitButton=Match+All+Courses", ] def start_requests( self ): for u in self.start_urls: yield scrapy.Request( u, callback = self.parse_httpbin, errback = self.errback_httpbin, dont_filter = True ) def parse_httpbin( self, response ): self.logger.info("Got successful response {}".format(response.url) ) #items = UwSystemItem() #course = response.css('#reportTable > tbody > tr > td.::text').extract() #course = response.css('tbody > tr > td::text').extract() #course = response.css('.campus-one-list::text').extract()[0]; course_1 = response.xpath('////tr/td[1][@class="campus-one-list"]/text()').extract() title_1 = response.xpath('////tr/td[2][@class="campus-one-list"]/text()').extract() course_2 = response.xpath('////tr/td[3][@class="campus-two-list"]/text()').extract() title_2 = response.xpath('////tr/td[4][@class="campus-two-list"]/text()').extract() credits = response.xpath('////tr/td[5][@class="campus-two-list"]/text()').extract() gen_ed = response.xpath('////tr/td[6][@class="campus-two-list"]').extract() level = response.xpath('////tr/td[7][@class="campus-two-list"]').extract() special = response.xpath('////tr/td[8][@class="special-list"]').extract() final_course_1 = [] final_title_1 = [] final_course_2 = [] final_title_2 = [] final_credits = [] final_gen_ed = [] final_level = [] final_special = [] for course_set1 in course_1: if course_set1 == '\n' or course_set1 == ' ': continue final_course_1.append(remove_tags(course_set1)) for title1 in title_1: if title1 == '\n' or title1 == ' ': continue final_title_1.append(remove_tags(title1)) for course_set2 in course_2: if course_set2 == '\n' or course_set2 == ' ': continue final_course_2.append(remove_tags(course_set2)) for title2 in title_2: if title2 == '\n' or title2 == ' ': continue final_title_2.append(remove_tags(title2)) for creditset in credits: if creditset == '\n' or creditset == ' ': continue final_credits.append(remove_tags(creditset)) for gen in gen_ed: if gen == '\n': continue final_gen_ed.append(remove_tags(gen)) for lev in level: if lev == '\n' or lev == ' ': continue final_level.append(remove_tags(lev)) for specia in special: if specia == '\n\n ': continue final_special.append(remove_tags(specia)) item = [] track_index = 0 course_size = len(final_course_1) while track_index < course_size: items = UwSystemItem() items['course_1'] = final_course_1[ track_index ] items['title_1'] = final_title_1[ track_index ] items['course_2'] = final_course_2[ track_index ] items['title_2'] = final_title_2[ track_index ] items['credits'] = final_credits[ track_index ] try: items['gen_ed'] = final_gen_ed[ track_index ] except IndexError: items['gen_ed'] = 'None' try: items['level'] = final_level[ track_index ] except IndexError: items['level'] = 'None' try: items['special'] = final_special[ track_index ] except IndexError: items['special'] = 'None' item.append(items) track_index += 1 return item def errback_httpbin( self, failure): # log all failures self.logger.error(repr(failure)) # in case you want to do something special for some errors, # you may need the failure's type: if failure.check(HttpError): # These exception come from HttpError spider middleware # you can get the non-200 response response = failure.value.response self.logger.error("HttpError on %s", response.url ) elif failure.check(DNSLookupError): # This is the original request request = failure.request self.logger.error('DNSLookupError on %s', request.url ) elif failure.check(TimeoutError, TCPTimeOutError ): request = failure.request self.logger.error('TimeoutError on %s', request.url)
90.510949
303
0.798185
24,240
0.977419
225
0.009073
0
0
0
0
20,166
0.813145
db3b169862361f20c4e85e1f3babf59d22b794c5
10,622
py
Python
src/lib/GL/glutbindings/glutbind.py
kokizzu/v8cgi
eafd3bd7a5dd1d60e2f1483701a52e7ac0ae0eba
[ "BSD-3-Clause" ]
4
2016-01-31T08:49:35.000Z
2021-07-12T17:31:42.000Z
src/lib/GL/glutbindings/glutbind.py
kokizzu/v8cgi
eafd3bd7a5dd1d60e2f1483701a52e7ac0ae0eba
[ "BSD-3-Clause" ]
null
null
null
src/lib/GL/glutbindings/glutbind.py
kokizzu/v8cgi
eafd3bd7a5dd1d60e2f1483701a52e7ac0ae0eba
[ "BSD-3-Clause" ]
1
2021-06-03T22:51:17.000Z
2021-06-03T22:51:17.000Z
import sys import re PATH_GLUT = 'glut.h' FILE_GLUT = 'glutbind.cpp' TEMPLATES = ['glutInit', 'glutTimerFunc'] def main(): """ Still some things have to be hand-made, like changing argv pargc values in the glutInit method definition Also change the TimerFunc method with some magic. """ make_glut() def make_glut(): constants = [] functions = [] void_stars = [] constant = re.compile(".+define[\s]+GLUT_([^\s]+).*") function = re.compile("[\s]*extern[\s]+([^\s]+)[\s]+APIENTRY[\s]+glut([A-Za-z0-9]+)\((.*)\);") text_out = [] fin = open(PATH_GLUT, 'r') for l in fin: mat = re.match(constant, l) if mat and not mat.group(1) in constants: name = mat.group(1) constants.append(name) text_out.append(make_constant("GLUT", name)) if name.find("STROKE") != -1 or name.find("BITMAP") != -1: void_stars.append(name) #print "GLUT_" + mat.group(1) + "\n" else: mat = re.match(function, l) if mat: prefix = "glut" return_val = mat.group(1) name = mat.group(2) params = mat.group(3) functions.append(name) #if has template then take the template code if (prefix + name) in TEMPLATES: t = open(prefix + name + '.template', 'r') text_out.append(t.read()) t.close() else: has_lambda, count, params_list = get_param_list(params) if has_lambda is True and count == 1: text_out.append(make_function_with_callback(prefix, name, params_list, return_val)) else: text_out.append(make_function(prefix, name, params_list, count, return_val)) #print return_val + " " + name + " " + params fin.close() fout = open(FILE_GLUT, 'w') fout.write(""" #include "glutbind.h" int* pargc_; char** argv_; map<const char*, void*> font_; Persistent<Context> GlutFactory::glut_persistent_context; """ + '\n'.join(text_out) + make_main_glut_function(constants, functions, void_stars)) fout.close() def make_main_glut_function(constants, functions, void_stars): text_out_begin = """ Handle<ObjectTemplate> GlutFactory::createGlut(int* pargc, char** argv) { pargc_ = pargc; argv_ = argv; HandleScope handle_scope; Handle<ObjectTemplate> Glut = ObjectTemplate::New(); Glut->SetInternalFieldCount(1); """ text_out_end = """ // Again, return the result through the current handle scope. return handle_scope.Close(Glut); } """ fnt = [bind_font(name) for name in void_stars] cts = [bind_accessor("Glut", name) for name in constants] fts = [bind_function("Glut", name) for name in functions] return text_out_begin + '\n'.join(fnt) + '\n'.join(cts) + '\n'.join(fts) + text_out_end def make_constant(prefix, name): if name.find("BITMAP") != -1 or name.find("STROKE") != -1: return_val = "return String::New(\""+ name +"\");\n" else: return_val = "return Uint32::New(GLUT_"+ name +");" text_out = """ Handle<Value> GetGLUT_%%(Local<String> property, const AccessorInfo &info) { ## } """ return multiple_replace({ '%%': name, '##': return_val }, text_out) def make_function(prefix, name, params_list, count, return_val): text_out = """ Handle<Value> GLUT<name>Callback(const Arguments& args) { //if less that nbr of formal parameters then do nothing if (args.Length() < <len_params>) return v8::Undefined(); //define handle scope HandleScope scope; //get arguments <args> //make call <call> return v8::Undefined(); } """ return multiple_replace({ '<name>': name, '<len_params>': str(count), '<args>': make_args(params_list, count), '<call>': make_call(prefix + name, params_list, count) }, text_out) def make_function_with_callback(prefix, name, params_list, return_val): text_out = """ Persistent<Function> persistent<name>; <prototype> { //define handle scope HandleScope scope; Handle<Value> valueArr[<nformalparams>]; <formalparamassignment> TryCatch try_catch; Handle<Value> result = persistent<name>->Call(GlutFactory::glut_persistent_context->Global(), <nformalparams>, valueArr); if (result.IsEmpty()) { String::Utf8Value error(try_catch.Exception()); fprintf(stderr, "Exception in <name>: %s\\n", *error); } } Handle<Value> GLUT<name>Callback(const Arguments& args) { //if less that nbr of formal parameters then do nothing if (args.Length() < 1 || !args[0]->IsFunction()) return v8::Undefined(); //get arguments //delete previous assigned function persistent<name>.Dispose(); Handle<Function> value0 = Handle<Function>::Cast(args[0]); persistent<name> = Persistent<Function>::New(value0); //make call glut<name>((<signature>) func<name>); return v8::Undefined(); } """ nformalparams, prototype = make_prototype(name, params_list[0]) signature = params_list[0].replace('func', '') formalparamassignment = formal_param_assignment(signature) return multiple_replace({ '<name>': name, '<nformalparams>': str(nformalparams), '<prototype>': prototype, '<formalparamassignment>': formalparamassignment, '<signature>': signature }, text_out) def make_prototype(name, signature): print 'prev ' + signature signature = signature.replace('(*func)', 'func' + name) ht = signature.split('(') hd, tail = ht[0], ht[1].replace(')', '') ans = [get_type(''.join(val), False) + ' arg' + str(i) for i, val in enumerate(tail.split(',')) if val.find('void') == -1] #.strip().split(' ')[:-1] print 'end ' + hd + ' ( ' + ','.join(ans) + ')' return len(ans), hd + ' ( ' + ','.join(ans) + ')' def formal_param_assignment(signature): print "signature" print signature pat = re.compile('[\s]*[a-zA-Z0-9\*]+[\s]*\(\*[\s]*\)\((.*)\)') pars = re.match(pat, signature) if pars: pars = pars.group(1).split(',') ans = [] for i, val in enumerate(pars): if val.find('int') != -1 or val.find('unsigned char') != -1: ans.append(" valueArr[" + str(i) + "] = Integer::New(arg" + str(i) + ");") elif val.find('float') != -1 or val.find('double') != -1: ans.append(" valueArr[" + str(i) + "] = Number::New(arg" + str(i) + ");") elif val.find('char*') != -1: ans.append(" valueArr[" + str(i) + "] = String::New(arg" + str(i) + ");") return '\n'.join(ans) else: return '' def get_param_list(params): params_list = [] params_aux = params.split(',') passed = False for par in params_aux: if passed and params_list[-1].count('(') != params_list[-1].count(')'): params_list[-1] += ',' + par else: params_list.append(par) passed = True aux = len(params_list) if aux == 1 and params_list[0].find('func') == -1 and len(params_list[0].strip().split(' ')) == 1: nb = 0 else: nb = aux return ' '.join(params_list).find('func') != -1, nb, params_list def make_args(params_list, count): ans = [] for i in range(count): el = params_list[i] type = get_type(el) #is function if type.find('(*') != -1: ans.append(" Handle<Function> value" + str(i) + " = Handle<Function>::Cast(args[" + str(i) + "]);\n void* arg" + str(i) + " = *value" + str(i) + ";\n") #print "function " + type #is string elif type.find('char*') != -1: ans.append(" String::Utf8Value value"+ str(i) +"(args["+ str(i) +"]);\n char* arg" + str(i) + " = *value"+ str(i) +";\n") #print "string " + type #is void* elif type.find('void*') != -1: ans.append(" String::Utf8Value value"+ str(i) +"(args["+ str(i) +"]);\n char* key" + str(i) + " = *value"+ str(i) +";\n void* arg" + str(i) + " = font_[key"+ str(i) +"];\n") #print "void " + type #is array elif type.find('*') != -1: ans.append(" Handle<Array> arg" + str(i) + " = Array::Cast(args[" + str(i) + "]);\n") #print "array " + type #is unsigned integer elif type.find('unsigned int') != -1: ans.append(" unsigned int arg" + str(i) + " = args["+ str(i) +"]->Uint32Value();\n") #print "unsigned int " + type #is integer elif type.find('int') != -1 or type.find('enum') != -1: ans.append(" int arg" + str(i) + " = args["+ str(i) +"]->IntegerValue();\n") #print "integer " + type #is double, float elif type.find('double') != -1 or type.find('float') != -1: ans.append(" double arg" + str(i) + " = args["+ str(i) +"]->NumberValue();\n") #print "double " + type else: print "don't know what this is " print type return ''.join(ans) def make_call(name, params_list, nb): return name + "(" + ", ".join([get_type(params_list[i]) + "arg" + str(i) for i in range(nb)]) + ");" def bind_accessor(prefix, name): return " " + prefix + "->SetAccessor(String::NewSymbol(\"" + name + "\"), GetGLUT_" + name + ");\n" def bind_function(prefix, name): return " " + prefix + "->Set(String::NewSymbol(\"" + name + "\"), FunctionTemplate::New(GLUT" + name + "Callback));\n" def bind_font(name): return " font_[\""+ name +"\"] = GLUT_" + name + ";\n" def get_type(t, parens=True): if t.find('(*') != -1 or t.find('func') != -1: ans = t.replace('func', '') else: ans = ' '.join(t.strip().split(' ')[:-1]) + '*' * (t.strip().split(' ')[-1].count('*')) return '(' + ans + ')' if parens else ans def multiple_replace(dict, text): """ Replace in 'text' all occurences of any key in the given dictionary by its corresponding value. Returns the new tring.""" # Create a regular expression from the dictionary keys regex = re.compile("(%s)" % "|".join(map(re.escape, dict.keys()))) # For each match, look-up corresponding value in dictionary return regex.sub(lambda mo: dict[mo.string[mo.start():mo.end()]], text) main()
33.828025
188
0.553568
0
0
0
0
0
0
0
0
4,278
0.402749
e1d196f613c2a1139ba07be80fda44073fa5c141
1,602
py
Python
clase_caballo.py
DorianAlbertoIbanezNanguelu/concurrencia-caballos
91b7f4818505183bd38923bc5b744fc04e83c2f3
[ "MIT" ]
null
null
null
clase_caballo.py
DorianAlbertoIbanezNanguelu/concurrencia-caballos
91b7f4818505183bd38923bc5b744fc04e83c2f3
[ "MIT" ]
null
null
null
clase_caballo.py
DorianAlbertoIbanezNanguelu/concurrencia-caballos
91b7f4818505183bd38923bc5b744fc04e83c2f3
[ "MIT" ]
null
null
null
import threading import time import random from multiprocessing.pool import ThreadPool from PyQt5 import QtCore, QtGui, QtWidgets bandera = False val1 = "" msg = 'Caballo ganador es: {}' # Clase Caballo class caballo(threading.Thread): def __init__(self, num, b1,resultado): global val1,bandera threading.Thread.__init__(self) bandera = False self.resultado = 20.0 self.tiempo_inicio = time.time() self.tiempo_final = "" self.tiempo_total = "" self.num = num self.valor = 0 self.boton = b1 self.eleccion= "" # Selecciona un valor aleatorio, 10 20 o 30 def aleatorio(self): mylist = ["10","20","30","40"] self.eleccion = random.choice(mylist) # Movimiento de los caballos def movimiento(self): self.p = self.boton.pos() self.p += QtCore.QPoint(int(self.eleccion), 0) self.valor += int(self.eleccion) self.boton.move(self.p) time.sleep(0.75) def retorno(self): self.resultado # Hilos def run(self): global bandera while(True): if bandera == True: break else: self.aleatorio() self.movimiento() if self.valor >= 600: self.tiempo_final = time.time() self.resultado = self.tiempo_final-self.tiempo_inicio print("\nEl caballo: " + str(self.num)+" cruzó la meta!!, Tiempo: "+str(self.resultado)) bandera=True break
22.25
101
0.558052
1,379
0.860262
0
0
0
0
0
0
190
0.118528
e1d33fe58f921e97b404a9c643f4793d56cc9818
10,353
py
Python
vwo/api/track.py
wingify/vwo-python-sdk
8b8e798a16c43012ca2c6c6c85dde66f4f3cb6a5
[ "Apache-2.0" ]
14
2019-08-06T06:57:46.000Z
2022-01-05T13:27:50.000Z
vwo/api/track.py
wingify/vwo-python-sdk
8b8e798a16c43012ca2c6c6c85dde66f4f3cb6a5
[ "Apache-2.0" ]
3
2019-08-19T10:29:17.000Z
2021-09-16T15:59:38.000Z
vwo/api/track.py
wingify/vwo-python-sdk
8b8e798a16c43012ca2c6c6c85dde66f4f3cb6a5
[ "Apache-2.0" ]
10
2019-08-08T12:38:50.000Z
2021-09-14T11:35:00.000Z
# Copyright 2019-2021 Wingify Software Pvt. Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..helpers import impression_util from ..constants import constants from ..constants.constants import API_METHODS from ..helpers import campaign_util, validate_util from ..enums.log_message_enum import LogMessageEnum from ..enums.file_name_enum import FileNameEnum from ..enums.log_level_enum import LogLevelEnum FILE = FileNameEnum.Api.Track def _track(vwo_instance, campaign_specifier, user_id, goal_identifier, **kwargs): """ This API method: Marks the conversion of the campaign(s) for a particular goal 1. validates the arguments being passed 2. retrieves the campaigns having the same global goal 3. calls track_campaign_goal for all the goals Args: campaign_specifier (None, list, string): Campaign key(s), it can be None in case of all campaigns, list in case of given campaigns and string in case of particular campaign should to be tracked. user_id (string): ID assigned to a user goal_identifier (string): campaign(s)'s unique goal identifier Keyword Args: revenue_value (int|float|string): Provide it through **kwargs. It is the revenue generated on triggering the goal custom_variables (dict): Custom variables required for segmentation variation_targeting_variables (dict): Whitelisting variables to target users Returns: dict|None: None if called for single campaign and no goal tracked or called for all campaigns and no goal tracked. Dict otherwise of campaign_key with True/False showing whether the goal has been tracked for the campaign or not """ vwo_instance.logger.set_api(API_METHODS.TRACK) # Retrive revenue value and custom_variables revenue_value = kwargs.get("revenue_value") custom_variables = kwargs.get("custom_variables") variation_targeting_variables = kwargs.get("variation_targeting_variables") valid_params = True # Check for valid args if ( not validate_util.is_valid_string(user_id) or not validate_util.is_valid_string(goal_identifier) or (custom_variables is not None and not validate_util.is_valid_dict(custom_variables)) or ( variation_targeting_variables is not None and not validate_util.is_valid_dict(variation_targeting_variables) ) or (revenue_value is not None and not validate_util.is_valid_basic_data_type(revenue_value)) ): valid_params = False goal_type_to_track = kwargs.get("goal_type_to_track") if goal_type_to_track is None: goal_type_to_track = vwo_instance.goal_type_to_track elif not validate_util.is_valid_goal_type(goal_type_to_track): valid_params = False if not valid_params: vwo_instance.logger.log( LogLevelEnum.ERROR, LogMessageEnum.ERROR_MESSAGES.TRACK_API_INVALID_PARAMS.format(file=FILE) ) return None campaigns_without_goal = [] no_campaign_found = False if type(campaign_specifier) is str: campaign = campaign_util.get_campaign(vwo_instance.settings_file, campaign_specifier) goal = campaign_util.get_campaign_goal(campaign, goal_identifier) if not goal: no_campaign_found = True else: campaign_goal_list = [(campaign, goal)] elif type(campaign_specifier) is list: campaigns = campaign_util.get_campaigns(vwo_instance.settings_file, campaign_specifier).values() (campaign_goal_list, campaigns_without_goal) = campaign_util.get_campaigns_with_goal_id( campaigns, goal_identifier ) for campaign in campaigns_without_goal: vwo_instance.logger.log( LogLevelEnum.ERROR, LogMessageEnum.ERROR_MESSAGES.TRACK_API_GOAL_NOT_FOUND.format( file=FILE, goal_identifier=goal_identifier, user_id=user_id, campaign_key=campaign.get("key") ), ) elif campaign_specifier is None: campaigns = vwo_instance.settings_file.get("campaigns") campaign_goal_list = campaign_util.get_campaigns_with_goal_id(campaigns, goal_identifier)[0] if not campaign_goal_list: no_campaign_found = True else: vwo_instance.logger.log( # Specific log for campaign_specifier type LogLevelEnum.ERROR, LogMessageEnum.ERROR_MESSAGES.TRACK_API_INVALID_PARAMS.format(file=FILE), ) return None if no_campaign_found: vwo_instance.logger.log( LogLevelEnum.ERROR, LogMessageEnum.ERROR_MESSAGES.NO_CAMPAIGN_FOUND.format(file=FILE, goal_identifier=goal_identifier), ) return None ret_value = {} campaign_goal_revenue_prop_list = [] for campaign, goal in campaign_goal_list: result = track_campaign_goal( vwo_instance, campaign, user_id, goal, revenue_value, custom_variables, variation_targeting_variables, goal_type_to_track, campaign_goal_revenue_prop_list, ) ret_value[campaign.get("key")] = result for campaign in campaigns_without_goal: ret_value[campaign.get("key")] = False if len(campaign_goal_revenue_prop_list) != 0 and ( not vwo_instance.is_event_batching_enabled and vwo_instance.is_event_arch_enabled is True ): params = impression_util.get_events_params(vwo_instance.settings_file, goal_identifier) impression = impression_util.create_track_goal_events_impression( vwo_instance.settings_file, user_id, goal_identifier, campaign_goal_revenue_prop_list, revenue=revenue_value ) vwo_instance.event_dispatcher.dispatch_events(params=params, impression=impression) return ret_value def track_campaign_goal( vwo_instance, campaign, user_id, goal, revenue_value, custom_variables, variation_targeting_variables, goal_type_to_track, campaign_goal_revenue_prop_list, ): """ It marks the conversion of given goal for the given campaign 1. Checks if user is eligible to get bucketed into the campaign, 2. Gets the assigned determinitic variation to the user(based on userId), if user becomes part of campaign 3. Sends an impression call to VWO server to track goal data if event arch is not enabled Args: campaign (dict): Campaign object user_id (string): ID assigned to a user goal (dict): Goal object revenue_value (int|float|string): It is the revenue generated on triggering the goal custom_variables (dict): Custom variables required for segmentation variation_targeting_variables (dict): Whitelisting variables to target users goal_type_to_track (vwo.GOAL_TYPES): Goal type that should be tracked in case of mixed global goal identifier campaign_goal_revenue_prop_list (list): list of campaign_id, goal_id & goal's revenueProp (if revenue goal else None) to build event arch impression Returns: bool: True if goal successfully tracked else False """ campaign_type = campaign.get("type") if campaign_type == constants.CAMPAIGN_TYPES.FEATURE_ROLLOUT: vwo_instance.logger.log( LogLevelEnum.ERROR, LogMessageEnum.ERROR_MESSAGES.INVALID_API.format( file=FILE, user_id=user_id, campaign_key=campaign.get("key"), campaign_type=campaign_type ), ) return False goal_type = goal.get("type") if (goal_type_to_track == constants.GOAL_TYPES.CUSTOM and goal_type == constants.GOAL_TYPES.REVENUE) or ( goal_type_to_track == constants.GOAL_TYPES.REVENUE and goal_type == constants.GOAL_TYPES.CUSTOM ): # We can log goal type didn't match in debug mode return False if goal_type == constants.GOAL_TYPES.REVENUE and not validate_util.is_valid_value(revenue_value): vwo_instance.logger.log( LogLevelEnum.ERROR, LogMessageEnum.ERROR_MESSAGES.TRACK_API_REVENUE_NOT_PASSED_FOR_REVENUE_GOAL.format( file=FILE, user_id=user_id, goal_identifier=goal.get("identifier"), campaign_key=campaign.get("key") ), ) return False if goal_type == constants.GOAL_TYPES.CUSTOM: revenue_value = None variation, _ = vwo_instance.variation_decider.get_variation( user_id, campaign, custom_variables=custom_variables, variation_targeting_variables=variation_targeting_variables, goal_data={"identifier": goal.get("identifier")}, api_method=constants.API_METHODS.TRACK, ) if variation: if not vwo_instance.is_event_arch_enabled or vwo_instance.is_event_batching_enabled is True: impression = impression_util.create_impression( vwo_instance.settings_file, campaign.get("id"), variation.get("id"), user_id, goal.get("id"), revenue_value, ) vwo_instance.event_dispatcher.dispatch(impression) vwo_instance.logger.log( LogLevelEnum.INFO, LogMessageEnum.INFO_MESSAGES.MAIN_KEYS_FOR_IMPRESSION.format( file=FILE, campaign_id=impression.get("experiment_id"), account_id=impression.get("account_id"), variation_id=impression.get("combination"), ), ) else: campaign_goal_revenue_prop_list.append((campaign.get("id"), goal.get("id"), goal.get("revenueProp"))) return True return False
40.127907
120
0.691297
0
0
0
0
0
0
0
0
3,283
0.317106
e1d379ffe45c72193de30757e4bad02874d4385a
2,687
py
Python
iMessSpam.py
fabiopigi/iMessageSpam
4d1984f5286f5cf0229d414470a4dc60e5ba12d2
[ "MIT" ]
null
null
null
iMessSpam.py
fabiopigi/iMessageSpam
4d1984f5286f5cf0229d414470a4dc60e5ba12d2
[ "MIT" ]
null
null
null
iMessSpam.py
fabiopigi/iMessageSpam
4d1984f5286f5cf0229d414470a4dc60e5ba12d2
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- #import some dope import sys import os import re import time from random import randrange from itertools import repeat numbers = { 'adam' :"+41111111111", 'bob' :"+41222222222", 'chris' :"+41333333333", 'dave' :"+41444444444", } print "Gespeicherte Empfänger: " for name in numbers: print "%10s - %s"%(name,numbers[name]) number = "" while number == "": numberID = raw_input("\nEmpfänger eingeben: ") if numberID in numbers: number = numbers[numberID] pause = int(raw_input("\nIntervall in Sekunden: ")) print """ Verfügbare Optionen: [1] Zeitansagen im Format 'Es ist 17:34:22' [2] Zufällige 'Chuck Norris' Jokes [3] Satz für Satz aus einem Buch (Twilight) [4] Fifty Shades of HEX [5] Fröhliches Flaggen raten """ option = int(raw_input("Option auswählen: ")) if option == 1: anzahl = int(raw_input("\nAnzahl Nachrichten: ")) start = 0 elif option == 2: anzahl = int(raw_input("\nAnzahl Nachrichten: ")) start = 0 replaceName = raw_input("\n'Chuck Norris' durch Namen ersetzen: ") if replaceName == "": replaceName = "Chuck Norris" elif option == 3: p = open('content/twilight.txt') book = p.read() pat = re.compile(r'([A-Z][^\.!?]*[\.!?])', re.M) sentences = pat.findall(book) anzahl = int(raw_input("\nAnzahl Nachrichten: ")) start = int(raw_input("\nBei n. Satz anfangen: "))-1 anzahl = anzahl + (start) elif option == 4: anzahl = 50 start = 0 elif option == 5: anzahl = 50 start = 0 import Countries else: anzahl = 0 start = 0 print "\n\nSenden beginnt...\n\n" #tunay bei 207 for i in range(start,anzahl,1): if option == 1: cmdCode = "date +'%H:%M:%S'" message = "Es ist jetzt " + os.popen(cmdCode).read() elif option == 2: curlCode = "curl 'http://api.icndb.com/jokes/random' -s | sed -e 's/.*joke\\\": \\\"//' -e 's/\\\", \\\".*//' -e 's/Chuck Norris/" + replaceName + "/g' -e 's/&quot;/\"/g'" message = os.popen(curlCode).read() elif option == 3: message = sentences[i] elif option == 4: message = "#%s" % "".join(list(repeat(hex(randrange(16, 255))[2:],3))).upper() elif option == 5: flags = os.listdir("content/flags") country = Countries.iso[flags[randrange(1,len(flags))][:2]] message = "Dies ist die Flagge von '%s'."%(country["Name"]) filePath = os.path.abspath("content/flags/%s.png"%country["ISO"]) osaCode = "osascript sendImage.scpt \"%s\" \"%s\""%(number,filePath) osaReturn = os.popen(osaCode).read() print message message = message.replace('"', r'\"') osaCode = "osascript sendText.scpt \"%s\" \"%s\""%(number,message) print "%3d > %s"%((i+1),message) osaReturn = os.popen(osaCode).read() time.sleep(pause)
23.163793
175
0.628582
0
0
0
0
0
0
0
0
1,056
0.391982
e1d4132df41823b278230500d5a9366ca4662b08
2,582
py
Python
mesh_to_tet.py
NVlabs/deformable_object_grasping
c39147c6ce525e90512f54c3c5386903a0e7f401
[ "MIT" ]
30
2020-12-18T22:05:10.000Z
2021-09-27T23:45:18.000Z
mesh_to_tet.py
NVlabs/DefGraspSim
e6c1a9760ded188e6986cc49d0298a2c8803830d
[ "MIT" ]
2
2021-12-09T18:05:22.000Z
2022-03-20T08:26:04.000Z
mesh_to_tet.py
NVlabs/deformable_object_grasping
c39147c6ce525e90512f54c3c5386903a0e7f401
[ "MIT" ]
7
2021-01-16T06:23:02.000Z
2021-09-02T16:32:19.000Z
# Copyright (c) 2020 NVIDIA Corporation # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. """Convert a .mesh file (fTetWild format) to .tet (IsaacGym format).""" def convert_mesh_to_tet(mesh_file_path, tet_output_path): """Convert a .mesh file to a .tet file.""" mesh_file = open(mesh_file_path, "r") tet_output = open(tet_output_path, "w") mesh_lines = list(mesh_file) mesh_lines = [line.strip('\n') for line in mesh_lines] vertices_start = mesh_lines.index('Vertices') num_vertices = mesh_lines[vertices_start + 1] vertices = mesh_lines[vertices_start + 2:vertices_start + 2 + int(num_vertices)] tetrahedra_start = mesh_lines.index('Tetrahedra') num_tetrahedra = mesh_lines[tetrahedra_start + 1] tetrahedra = mesh_lines[tetrahedra_start + 2:tetrahedra_start + 2 + int(num_tetrahedra)] print("# Vertices, # Tetrahedra:", num_vertices, num_tetrahedra) # Write to tet output tet_output.write("# Tetrahedral mesh generated using\n\n") tet_output.write("# " + num_vertices + " vertices\n") for v in vertices: tet_output.write("v " + v + "\n") tet_output.write("\n") tet_output.write("# " + num_tetrahedra + " tetrahedra\n") for t in tetrahedra: line = t.split(' 0')[0] line = line.split(" ") line = [str(int(k) - 1) for k in line] l_text = ' '.join(line) tet_output.write("t " + l_text + "\n") if __name__ == "__main__": convert_mesh_to_tet( "path/to/mesh", "path/to/tet")
40.984127
78
0.690937
0
0
0
0
0
0
0
0
1,411
0.546476
e1d45c9d42dd76322a265a56bb903e40fa748ffe
3,601
py
Python
tests/policies_tests/test_deterministic_policy.py
xinyuewang1/chainerrl
49425d09cb0749968f4e364e281670e752a46791
[ "MIT" ]
2
2020-05-20T06:15:20.000Z
2020-05-20T06:15:27.000Z
tests/policies_tests/test_deterministic_policy.py
WhenTheyCry96/chainerrl
0f32aae2855dbb6288ae628be6271739ced6c42c
[ "MIT" ]
null
null
null
tests/policies_tests/test_deterministic_policy.py
WhenTheyCry96/chainerrl
0f32aae2855dbb6288ae628be6271739ced6c42c
[ "MIT" ]
1
2019-08-08T19:13:53.000Z
2019-08-08T19:13:53.000Z
from __future__ import unicode_literals from __future__ import print_function from __future__ import division from __future__ import absolute_import from builtins import * # NOQA from future import standard_library standard_library.install_aliases() # NOQA import unittest import chainer import chainer.functions as F from chainer import testing from chainer.testing import attr import numpy as np import chainerrl @testing.parameterize(*( testing.product({ 'n_input_channels': [1, 5], 'action_size': [1, 2], 'bound_action': [True, False], 'nonlinearity': ['relu', 'elu'], 'model_class': [chainerrl.policies.FCDeterministicPolicy], 'model_kwargs': testing.product({ 'n_hidden_layers': [0, 1, 2], 'n_hidden_channels': [1, 2], 'last_wscale': [1, 1e-3], }), }) + testing.product({ 'n_input_channels': [1, 5], 'action_size': [1, 2], 'bound_action': [True, False], 'nonlinearity': ['relu', 'elu'], 'model_class': [chainerrl.policies.FCBNDeterministicPolicy], 'model_kwargs': testing.product({ 'n_hidden_layers': [0, 1, 2], 'n_hidden_channels': [1, 2], 'normalize_input': [True, False], 'last_wscale': [1, 1e-3], }), }) + testing.product({ 'n_input_channels': [1, 5], 'action_size': [1, 2], 'bound_action': [True, False], 'nonlinearity': ['relu', 'elu'], 'model_class': [chainerrl.policies.FCLSTMDeterministicPolicy], 'model_kwargs': testing.product({ 'n_hidden_layers': [0, 1, 2], 'n_hidden_channels': [1, 2], 'last_wscale': [1, 1e-3], }), }) )) class TestDeterministicPolicy(unittest.TestCase): def _make_model(self, **kwargs): kwargs.update(self.model_kwargs) return self.model_class(**kwargs) def _test_call(self, gpu): # This method only check if a given model can receive random input # data and return output data with the correct interface. nonlinearity = getattr(F, self.nonlinearity) min_action = np.full((self.action_size,), -0.01, dtype=np.float32) max_action = np.full((self.action_size,), 0.01, dtype=np.float32) model = self._make_model( n_input_channels=self.n_input_channels, action_size=self.action_size, bound_action=self.bound_action, min_action=min_action, max_action=max_action, nonlinearity=nonlinearity, ) batch_size = 7 x = np.random.rand( batch_size, self.n_input_channels).astype(np.float32) if gpu >= 0: model.to_gpu(gpu) x = chainer.cuda.to_gpu(x) min_action = chainer.cuda.to_gpu(min_action) max_action = chainer.cuda.to_gpu(max_action) y = model(x) self.assertTrue(isinstance( y, chainerrl.distribution.ContinuousDeterministicDistribution)) a = y.sample() self.assertTrue(isinstance(a, chainer.Variable)) self.assertEqual(a.shape, (batch_size, self.action_size)) self.assertEqual(chainer.cuda.get_array_module(a), chainer.cuda.get_array_module(x)) if self.bound_action: self.assertTrue((a.array <= max_action).all()) self.assertTrue((a.array >= min_action).all()) def test_call_cpu(self): self._test_call(gpu=-1) @attr.gpu def test_call_gpu(self): self._test_call(gpu=0)
33.971698
75
0.608442
1,840
0.510969
0
0
3,178
0.882533
0
0
590
0.163843
e1d5174f8289f91757ffb47b8ef0788990d1f6b1
33,946
py
Python
freshmaker/handlers/botas/botas_shipped_advisory.py
mulaievaRH/freshmaker
809b435d7cab1907eb74ecd898693835a92db9d8
[ "MIT" ]
5
2020-06-17T11:29:16.000Z
2022-03-24T07:20:16.000Z
freshmaker/handlers/botas/botas_shipped_advisory.py
mulaievaRH/freshmaker
809b435d7cab1907eb74ecd898693835a92db9d8
[ "MIT" ]
96
2020-06-29T15:01:23.000Z
2022-03-30T08:07:06.000Z
freshmaker/handlers/botas/botas_shipped_advisory.py
mulaievaRH/freshmaker
809b435d7cab1907eb74ecd898693835a92db9d8
[ "MIT" ]
20
2020-06-16T01:30:08.000Z
2022-02-19T15:34:55.000Z
# -*- coding: utf-8 -*- # Copyright (c) 2020 Red Hat, Inc. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import copy import json from datetime import datetime import re import koji from kobo.rpmlib import parse_nvr import semver from freshmaker import db, conf, log from freshmaker.handlers import ContainerBuildHandler from freshmaker.events import BotasErrataShippedEvent, ManualBundleRebuild from freshmaker.lightblue import ContainerImage from freshmaker.models import ArtifactBuild, ArtifactType, Event from freshmaker.types import EventState, ArtifactBuildState, RebuildReason from freshmaker.pyxis import Pyxis from freshmaker.kojiservice import KojiService from freshmaker.errata import Errata class HandleBotasAdvisory(ContainerBuildHandler): """ Handles event that was created by transition of an advisory filed by BOTAS to SHIPPED_LIVE state """ name = "HandleBotasAdvisory" # This prefix should be added to event reason, when skipping the event. # Because Release Driver checks event's reason for certain prefixes, # to determine if there is an error in bundles processing. _no_bundle_prefix = "No bundles to rebuild: " def __init__(self, pyxis=None): super().__init__() if pyxis: self._pyxis = pyxis else: if not conf.pyxis_server_url: raise ValueError("'PYXIS_SERVER_URL' parameter should be set") self._pyxis = Pyxis(conf.pyxis_server_url) if not conf.freshmaker_root_url or "://" not in conf.freshmaker_root_url: raise ValueError("'FRESHMAKER_ROOT_URL' parameter should be set to " "a valid URL") # Currently processed event self.event = None def can_handle(self, event): if (isinstance(event, BotasErrataShippedEvent) and 'docker' in event.advisory.content_types): return True # This handler can handle manual bundle rebuilds too if isinstance(event, ManualBundleRebuild): return True return False def handle(self, event): if event.dry_run: self.force_dry_run() self.event = event db_event = Event.get_or_create_from_event(db.session, event) self.set_context(db_event) # Check if event is allowed by internal policies if not self.event.is_allowed(self): msg = ("This image rebuild is not allowed by internal policy. " f"message_id: {event.msg_id}") db_event.transition(EventState.SKIPPED, msg) self.log_info(msg) return [] if isinstance(event, ManualBundleRebuild) and \ hasattr(event, 'bundle_images'): bundles_to_rebuild = self._handle_release_driver_rebuild(db_event) # automatic rebuild and manual bundle rebuild(triggered by post request) else: bundles_to_rebuild = self._handle_bundle_rebuild(db_event) if not bundles_to_rebuild: return [] builds = self._prepare_builds(db_event, bundles_to_rebuild) # Reset context to db_event. self.set_context(db_event) self.start_to_build_images(builds) if all([b.state == ArtifactBuildState.FAILED.value for b in builds]): db_event.transition(EventState.FAILED, "All bundle rebuilds failed") else: msg = f"Advisory {db_event.search_key}: Rebuilding " \ f"{len(db_event.builds.all())} bundle images." db_event.transition(EventState.BUILDING, msg) return [] def _handle_bundle_rebuild(self, db_event): """ Handle auto rebuild for an advisory created by Botas OR manually triggered rebuild :param db_event: database event that represent rebuild event :rtype: list :return: list of advisories that should be rebuilt """ # Mapping of operators' original build nvrs to rebuilt nvrs in advisory nvrs_mapping = self._create_original_to_rebuilt_nvrs_map() original_nvrs = nvrs_mapping.keys() self.log_info( "Orignial nvrs of build in the advisory #{0} are: {1}".format( self.event.advisory.errata_id, " ".join(original_nvrs))) # Get image manifest_list_digest for all original images, manifest_list_digest is used # in pullspecs in bundle's related images original_digests_by_nvr = {} original_nvrs_by_digest = {} for nvr in original_nvrs: digest = self._pyxis.get_manifest_list_digest_by_nvr(nvr) if digest: original_digests_by_nvr[nvr] = digest original_nvrs_by_digest[digest] = nvr else: log.warning( f"Image manifest_list_digest not found for original image {nvr} in Pyxis, " "skip this image" ) if not original_digests_by_nvr: msg = f"None of the original images have digests in Pyxis: {','.join(original_nvrs)}" log.warning(msg) db_event.transition(EventState.SKIPPED, msg) return [] # Get image manifest_list_digest for all rebuilt images, manifest_list_digest is used # in pullspecs of bundle's related images rebuilt_digests_by_nvr = {} rebuilt_nvrs = nvrs_mapping.values() for nvr in rebuilt_nvrs: # Don't require that the manifest list digest be published in this case because # there's a delay from after an advisory is shipped and when the published repositories # entry is populated digest = self._pyxis.get_manifest_list_digest_by_nvr(nvr, must_be_published=False) if digest: rebuilt_digests_by_nvr[nvr] = digest else: log.warning( f"Image manifest_list_digest not found for rebuilt image {nvr} in Pyxis, " "skip this image" ) if not rebuilt_digests_by_nvr: msg = f"None of the rebuilt images have digests in Pyxis: {','.join(rebuilt_nvrs)}" log.warning(msg) db_event.transition(EventState.SKIPPED, msg) return [] index_images = self._pyxis.get_operator_indices() # get latest bundle images per channel per index image filtered # by the highest semantic version all_bundles = self._pyxis.get_latest_bundles(index_images) self.log_debug( "There are %d bundles that are latest in a channel in the found index images", len(all_bundles), ) # A mapping of digests to bundle metadata. This metadata is used to # for the CSV metadata updates. bundle_mds_by_digest = {} # get bundle digests for original images bundle_digests_by_related_nvr = {} for image_nvr, image_digest in original_digests_by_nvr.items(): bundles = self._pyxis.get_bundles_by_related_image_digest( image_digest, all_bundles ) if not bundles: log.info(f"No latest bundle image with the related image of {image_nvr}") continue for bundle in bundles: bundle_digest = bundle['bundle_path_digest'] bundle_mds_by_digest[bundle_digest] = bundle bundle_digests_by_related_nvr.setdefault(image_nvr, []).append(bundle_digest) if not bundle_digests_by_related_nvr: msg = "None of the original images have related bundles, skip." log.warning(msg) db_event.transition(EventState.SKIPPED, msg) return [] self.log_info( "Found %d bundles with relevant related images", len(bundle_digests_by_related_nvr) ) # Mapping of bundle digest to bundle data # { # digest: { # "images": [image_amd64, image_aarch64], # "nvr": NVR, # "auto_rebuild": True/False, # "osbs_pinning": True/False, # "pullspecs": [...], # } # } bundles_by_digest = {} default_bundle_data = { 'images': [], 'nvr': None, 'auto_rebuild': False, 'osbs_pinning': False, # CSV modifications for the rebuilt bundle image 'pullspec_replacements': [], 'update': {}, } # Get images for each bundle digest, a bundle digest can have multiple images # with different arches. for digest in bundle_mds_by_digest: bundles = self._pyxis.get_images_by_digest(digest) # If no bundle image found, just skip this bundle digest if not bundles: self.log_warn('The bundle digest %r was not found in Pyxis. Skipping.', digest) continue bundle_nvr = bundles[0]['brew']['build'] # If specific container images where requested to rebuild, process only them if (isinstance(self.event, ManualBundleRebuild) and self.event.container_images # noqa: W503 and bundle_nvr not in self.event.container_images): # noqa: W503 self.log_debug("Ignoring '%s', because it's not in requested rebuilds" " (container_images in request)", bundle_nvr) continue # Filter out builds from dependent event that were rebuilt recently done_build = db_event.get_artifact_build_from_event_dependencies( bundle_nvr) if done_build: self.log_debug("Ignoring '%s' bundle, because it was already rebuilt" " in dependent event", bundle_nvr) continue bundles_by_digest.setdefault(digest, copy.deepcopy(default_bundle_data)) bundles_by_digest[digest]['nvr'] = bundle_nvr bundles_by_digest[digest]['images'] = bundles # Unauthenticated koji session to fetch build info of bundles koji_api = KojiService(conf.koji_profile) # For each bundle, check whether it should be rebuilt by comparing the # auto_rebuild_tags of repository and bundle's tags for digest, bundle_data in bundles_by_digest.items(): bundle_nvr = bundle_data['nvr'] # Images are for different arches, just check against the first image image = bundle_data['images'][0] if self.image_has_auto_rebuild_tag(image): bundle_data['auto_rebuild'] = True # Fetch buildinfo buildinfo = koji_api.get_build(bundle_nvr) related_images = ( buildinfo.get('extra', {}) .get('image', {}) .get('operator_manifests', {}) .get('related_images', {}) ) bundle_data['osbs_pinning'] = related_images.get('created_by_osbs', False) # Save the original pullspecs bundle_data['pullspec_replacements'] = related_images.get('pullspecs', []) # Digests of bundles to be rebuilt to_rebuild_digests = set() # Now for each bundle, replace the original digest with rebuilt # digest (override pullspecs) for digest, bundle_data in bundles_by_digest.items(): # Override pullspecs only when auto_rebuild is enabled and OSBS-pinning # mechanism is used. if not (bundle_data['auto_rebuild'] and bundle_data['osbs_pinning']): self.log_info( 'The bundle %r does not have auto-rebuild tags (%r) and/or OSBS pinning (%r)', bundle_data['nvr'], bundle_data['auto_rebuild'], bundle_data['osbs_pinning'], ) continue csv_name = bundle_mds_by_digest[digest]['csv_name'] version = bundle_mds_by_digest[digest]['version_original'] bundle_data.update(self._get_csv_updates(csv_name, version)) for pullspec in bundle_data['pullspec_replacements']: # A pullspec item example: # { # 'new': 'registry.exampe.io/repo/example-operator@sha256:<sha256-value>', # 'original': 'registry.example.io/repo/example-operator:v2.2.0', # 'pinned': True, # # value used for internal purpose during manual rebuilds, it's an old pullspec that was replaced # '_old': 'registry.exampe.io/repo/example-operator@sha256:<previous-sha256-value>, # } # A pullspec path is in format of "registry/repository@digest" pullspec_elems = pullspec.get('new').split('@') old_digest = pullspec_elems[1] if old_digest not in original_nvrs_by_digest: # This related image is not one of the original images continue # This related image is one of our original images old_nvr = original_nvrs_by_digest[old_digest] new_nvr = nvrs_mapping[old_nvr] new_digest = rebuilt_digests_by_nvr[new_nvr] # save pullspec that image had before rebuild pullspec['_old'] = pullspec.get('new') # Replace the old digest with new digest pullspec_elems[1] = new_digest new_pullspec = '@'.join(pullspec_elems) pullspec['new'] = new_pullspec # Always set pinned to True when it was replaced by Freshmaker # since it indicates that the pullspec was modified from the # original pullspec pullspec['pinned'] = True # Once a pullspec in this bundle has been overrided, add this bundle # to rebuild list self.log_info( 'Changing pullspec %r to %r in the bundle %r', pullspec['_old'], pullspec['new'], bundle_data['nvr'], ) to_rebuild_digests.add(digest) if not to_rebuild_digests: msg = self._no_bundle_prefix + "No bundle images to rebuild for " \ f"advisory {self.event.advisory.name}" self.log_info(msg) db_event.transition(EventState.SKIPPED, msg) db.session.commit() return [] bundles_to_rebuild = list(map(lambda x: bundles_by_digest[x], to_rebuild_digests)) return bundles_to_rebuild def _handle_release_driver_rebuild(self, db_event): """ Handle manual rebuild submitted by Release Driver for an advisory created by Botas :param db_event: database event that represents a rebuild event :rtype: list :return: list of advisories that should be rebuilt """ old_to_new_pullspec_map = self._get_pullspecs_mapping() if not old_to_new_pullspec_map: msg = self._no_bundle_prefix + 'None of the bundle images have ' \ 'applicable pullspecs to replace' log.warning(msg) db_event.transition(EventState.SKIPPED, msg) return [] # Unauthenticated koji session to fetch build info of bundles koji_api = KojiService(conf.koji_profile) rebuild_nvr_to_pullspecs_map = dict() # compare replaced pullspecs with pullspecs in 'container_images' and # create map for bundles that should be rebuilt with their nvrs for container_image_nvr in self.event.container_images: artifact_build = db.session.query(ArtifactBuild).filter( ArtifactBuild.rebuilt_nvr == container_image_nvr, ArtifactBuild.type == ArtifactType.IMAGE.value, ).one_or_none() pullspecs = [] # Try to find build in FM database, if it's not there check in Brew if artifact_build: self.log_info( "%s in the container_images list was found in the database", container_image_nvr ) pullspecs = artifact_build.bundle_pullspec_overrides["pullspec_replacements"] else: self.log_info( "%s in the container_images list is not in the database. Searching in Brew " "instead.", container_image_nvr, ) # Fetch buildinfo from Koji buildinfo = koji_api.get_build(container_image_nvr) # Get the original pullspecs pullspecs = ( buildinfo.get('extra', {}) .get('image', {}) .get('operator_manifests', {}) .get('related_images', {}) .get('pullspecs', []) ) for pullspec in pullspecs: if pullspec.get('new') not in old_to_new_pullspec_map: self.log_debug("The pullspec %s is not getting replaced", pullspec.get('new')) continue # use newer pullspecs in the image self.log_info( "Replacing the pullspec %s with %s on %s", pullspec['new'], old_to_new_pullspec_map[pullspec['new']], container_image_nvr, ) pullspec['new'] = old_to_new_pullspec_map[pullspec['new']] rebuild_nvr_to_pullspecs_map[container_image_nvr] = pullspecs if not rebuild_nvr_to_pullspecs_map: msg = self._no_bundle_prefix + 'None of the container images have ' \ 'applicable pullspecs from the input bundle images' log.info(msg) db_event.transition(EventState.SKIPPED, msg) return [] # list with metadata about every bundle to do rebuild to_rebuild_bundles = [] # fill 'append' and 'update' fields for bundles to rebuild for nvr, pullspecs in rebuild_nvr_to_pullspecs_map.items(): self.log_debug("Getting the manifest list digest for %s", nvr) bundle_digest = self._pyxis.get_manifest_list_digest_by_nvr(nvr) if bundle_digest is not None: self.log_debug("The manifest list digest for %s is %s", nvr, bundle_digest) bundles = self._pyxis.get_bundles_by_digest(bundle_digest) if not bundles: self.log_error( "The manifest_list_digest %s is not available on the bundles API endpoint", bundle_digest, ) continue temp_bundle = bundles[0] csv_updates = (self._get_csv_updates(temp_bundle['csv_name'], temp_bundle['version_original'])) to_rebuild_bundles.append({ 'nvr': nvr, 'update': csv_updates['update'], 'pullspec_replacements': pullspecs, }) else: log.warning('Can\'t find manifest_list_digest for bundle ' f'"{nvr}" in Pyxis') if not to_rebuild_bundles: msg = 'Can\'t find digests for any of the bundles to rebuild' log.warning(msg) db_event.transition(EventState.FAILED, msg) return [] return to_rebuild_bundles def _get_pullspecs_mapping(self): """ Get map of all replaced pullspecs from 'bundle_images' provided in an event. :rtype: dict :return: map of all '_old' pullspecs that was replaced by 'new' pullspecs in previous Freshmaker rebuilds """ old_to_new_pullspec_map = dict() for bundle_nvr in self.event.bundle_images: artifact_build = db.session.query(ArtifactBuild).filter( ArtifactBuild.rebuilt_nvr == bundle_nvr, ArtifactBuild.type == ArtifactType.IMAGE.value, ).one_or_none() if artifact_build is None: log.warning( f'Can\'t find build for a bundle image "{bundle_nvr}"') continue pullspec_overrides = artifact_build.bundle_pullspec_overrides for pullspec in pullspec_overrides['pullspec_replacements']: old_pullspec = pullspec.get('_old', None) if old_pullspec is None: continue old_to_new_pullspec_map[old_pullspec] = pullspec['new'] return old_to_new_pullspec_map @classmethod def _get_csv_updates(cls, csv_name, version): """ Determine the CSV updates required for the bundle image. :param str csv_name: the name field in the bundle's ClusterServiceVersion file :param str version: the version of the bundle image being rebuilt :return: a dictionary of the CSV updates needed :rtype: dict """ csv_modifications = {} new_version, fm_suffix = cls._get_rebuild_bundle_version(version) new_csv_name = cls._get_csv_name(csv_name, version, new_version, fm_suffix) csv_modifications['update'] = { 'metadata': { # Update the name of the CSV to something uniquely identify the rebuild 'name': new_csv_name, # Declare that this rebuild is a substitute of the bundle being rebuilt 'annotations': {'olm.substitutesFor': csv_name} }, 'spec': { # Update the version of the rebuild to be unique and a newer version than the # the version of the bundle being rebuilt 'version': new_version, } } return csv_modifications @classmethod def _get_rebuild_bundle_version(cls, version): """ Get a bundle version for the Freshmaker rebuild of the bundle image. Examples: 1.2.3 => 1.2.3+0.$timestamp.p (no build ID and not a rebuild) 1.2.3+48273 => 1.2.3+48273.0.$timestamp.p (build ID and not a rebuild) 1.2.3+48273.0.1616457250.p => 1.2.3+48273.0.$timestamp.p (build ID and a rebuild) :param str version: the version of the bundle image being rebuilt :return: a tuple of the bundle version of the Freshmaker rebuild of the bundle image and the suffix that was added by Freshmaker :rtype: tuple(str, str) """ parsed_version = semver.VersionInfo.parse(version) # Strip off the microseconds of the timestamp timestamp = int(datetime.utcnow().timestamp()) new_fm_suffix = f'0.{timestamp}.p' if parsed_version.build: # Check if the bundle was a Freshmaker rebuild. Include .patched # for backwards compatibility with the old suffix. fm_suffix_search = re.search( r'(?P<fm_suffix>0\.\d+\.(?:p|patched))$', parsed_version.build ) if fm_suffix_search: fm_suffix = fm_suffix_search.groupdict()['fm_suffix'] # Get the build without the Freshmaker suffix. This may include a build ID # from the original build before Freshmaker rebuilt it or be empty. build_wo_fm_suffix = parsed_version.build[:- len(fm_suffix)] new_build = f"{build_wo_fm_suffix}{new_fm_suffix}" else: # This was not previously rebuilt by Freshmaker so just append the suffix # to the existing build ID with '.' separating it. new_build = f"{parsed_version.build}.{new_fm_suffix}" else: # If there is existing build ID, then make the Freshmaker suffix the build ID new_build = new_fm_suffix # Don't use the replace method in order to support semver 2.8.1 new_version_dict = parsed_version._asdict() new_version_dict["build"] = new_build new_version = str(semver.VersionInfo(**new_version_dict)) return new_version, new_fm_suffix @staticmethod def _get_csv_name(csv_name, version, rebuild_version, fm_suffix): """ Get a bundle CSV name for the Freshmaker rebuild of the bundle image. :param str csv_name: the name of the ClusterServiceVersion (CSV) file of the bundle image :param str version: the version of the bundle image being rebuilt :param str rebuild_version: the new version being assigned by Freshmaker for the rebuild :param str fm_suffix: the portion of rebuild_version that was generated by Freshmaker :return: the bundle ClusterServiceVersion (CSV) name of the Freshmaker rebuild of the bundle image :rtype: str """ # The CSV name must be in the format of a valid DNS name, which means the + from the # build ID must be replaced. In the event this was a previous Freshmaker rebuild, version # may have a build ID that would be the DNS safe version in the CSV name. dns_safe_version = version.replace('+', '-') if dns_safe_version in csv_name: dns_safe_rebuild_version = rebuild_version.replace('+', '-') return csv_name.replace(dns_safe_version, dns_safe_rebuild_version) else: return f'{csv_name}.{fm_suffix}' def get_published_original_nvr(self, rebuilt_nvr): """ Search for an original build, that has been built and published to a repository, and get original_nvr from it :param str rebuilt_nvr: rebuilt NVR to look build by :rtype: str or None :return: original NVR from the first published FM build for given NVR """ original_nvr = None # artifact build should be only one in database, or raise an error artifact_build = db.session.query(ArtifactBuild).filter( ArtifactBuild.rebuilt_nvr == rebuilt_nvr, ArtifactBuild.type == ArtifactType.IMAGE.value, ).one_or_none() # recursively search for original artifact build if artifact_build is not None: original_nvr = artifact_build.original_nvr # check if image is published request_params = {'include': 'data.repositories', 'page_size': 1} images = self._pyxis._pagination(f'images/nvr/{original_nvr}', request_params) if not images: return None # stop recursion if the image is published in some repo if any(repo['published'] for repo in images[0].get('repositories')): return original_nvr next_nvr = self.get_published_original_nvr(original_nvr) if next_nvr is not None: original_nvr = next_nvr return original_nvr def image_has_auto_rebuild_tag(self, image): """ Check if image has a tag enabled for auto rebuild. :param dict image: Dict representation of an image entity in Pyxis. :rtype: bool :return: True if image has a tag enabled for auto rebuild in repository, otherwise False. """ for repo in image['repositories']: # Skip unpublished repository if not repo['published']: continue auto_rebuild_tags = self._pyxis.get_auto_rebuild_tags( repo['registry'], repo['repository'] ) tags = [t['name'] for t in repo.get('tags', [])] if set(auto_rebuild_tags) & set(tags): return True # It'd be more efficient to do this check first, but the exceptions are edge cases # (e.g. testing) and it's best to not use it unless absolutely necessary nvr = image['brew']['build'] parsed_nvr = parse_nvr(nvr) nv = f'{parsed_nvr["name"]}-{parsed_nvr["version"]}' if nv in conf.bundle_autorebuild_tag_exceptions: self.log_info( 'The bundle %r has an exception for being tagged with an auto-rebuild tag', nvr ) return True return False def _create_original_to_rebuilt_nvrs_map(self): """ Creates mapping of original operator build NVRs to rebuilt NVRs in advisory. Including NVRs of the builds from the blocking advisories :rtype: dict :return: map of the original NVRs as keys and rebuilt NVRs as values """ nvrs_mapping = {} # Get builds from all blocking advisories blocking_advisories_builds = \ Errata().get_blocking_advisories_builds(self.event.advisory.errata_id) # Get builds NVRs from the advisory attached to the message/event and # then get original NVR for every build for product_info in self.event.advisory.builds.values(): for build in product_info['builds']: # Each build is a one key/value pair, and key is the build NVR build_nvr = next(iter(build)) # Search for the first build that triggered the chain of rebuilds # for every shipped NVR to get original NVR from it original_nvr = self.get_published_original_nvr(build_nvr) if original_nvr is None: continue nvrs_mapping[original_nvr] = build_nvr parsed_build_nvr = parse_nvr(build_nvr) # Check builds from blocking advisories and add to the mapping # all of them, that have overlapping package names for block_build in blocking_advisories_builds: block_build_nvr = parse_nvr(block_build) if (block_build_nvr['name'] == parsed_build_nvr['name'] and block_build_nvr['version'] == parsed_build_nvr['version']): # noqa: W503 nvrs_mapping[block_build] = build_nvr return nvrs_mapping def _prepare_builds(self, db_event, to_rebuild_bundles): """ Prepare models.ArtifactBuild instance for every bundle that will be rebuilt :param models.Event db_event: database event that will contain builds :param list to_rebuild_bundles: bundles to rebuild :return: builds that already in database and ready to be submitted to brew :rtype: list """ builds = [] csv_mod_url = conf.freshmaker_root_url + "/api/2/pullspec_overrides/{}" for bundle in to_rebuild_bundles: # Reset context to db_event for each iteration before # the ArtifactBuild is created. self.set_context(db_event) rebuild_reason = RebuildReason.DIRECTLY_AFFECTED.value bundle_name = koji.parse_NVR(bundle["nvr"])["name"] build = self.record_build( db_event, bundle_name, ArtifactType.IMAGE, state=ArtifactBuildState.PLANNED.value, original_nvr=bundle["nvr"], rebuild_reason=rebuild_reason) # Set context to particular build so logging shows this build # in case of error. self.set_context(build) build.transition(ArtifactBuildState.PLANNED.value, "") additional_data = ContainerImage.get_additional_data_from_koji(bundle["nvr"]) build.build_args = json.dumps({ "repository": additional_data["repository"], "commit": additional_data["commit"], "target": additional_data["target"], "branch": additional_data["git_branch"], "arches": additional_data["arches"], # The build system always enforces that bundle images build from # "scratch", so there is no parent image. See: # https://osbs.readthedocs.io/en/latest/users.html?#operator-manifest-bundle-builds "original_parent": None, "operator_csv_modifications_url": csv_mod_url.format(build.id), }) build.bundle_pullspec_overrides = { "pullspec_replacements": bundle["pullspec_replacements"], "update": bundle["update"], } db.session.commit() builds.append(build) return builds
44.607096
116
0.604018
32,227
0.949361
0
0
4,775
0.140665
0
0
14,209
0.418577
e1d6a7a8f00c138e84b26623fa12570b059d6d57
244
py
Python
src/masonite/contracts/AuthContract.py
holic-cl/masonite
c5eab7db5f87e389fe83a1f0f20a005035ada9d9
[ "MIT" ]
95
2018-02-22T23:54:00.000Z
2021-04-17T03:39:21.000Z
src/masonite/contracts/AuthContract.py
holic-cl/masonite
c5eab7db5f87e389fe83a1f0f20a005035ada9d9
[ "MIT" ]
840
2018-01-27T04:26:20.000Z
2021-01-24T12:28:58.000Z
src/masonite/contracts/AuthContract.py
holic-cl/masonite
c5eab7db5f87e389fe83a1f0f20a005035ada9d9
[ "MIT" ]
100
2018-02-23T00:19:55.000Z
2020-08-28T07:59:31.000Z
from abc import ABC as Contract, abstractmethod class AuthContract(Contract): @abstractmethod def user(self): pass @abstractmethod def save(self): pass @abstractmethod def delete(self): pass
14.352941
47
0.631148
193
0.790984
0
0
146
0.598361
0
0
0
0
e1d7080d35e6bb09847310ecab242b0c030ed469
2,202
py
Python
netblow/bin/netblow_cli.py
viniciusarcanjo/netblow
01a2c3a60c5f9eb7e6c199612dedcd01c5dc23ba
[ "Apache-2.0" ]
8
2018-10-07T17:44:46.000Z
2022-03-24T21:40:57.000Z
netblow/bin/netblow_cli.py
viniciusarcanjo/netblow
01a2c3a60c5f9eb7e6c199612dedcd01c5dc23ba
[ "Apache-2.0" ]
8
2018-04-29T20:47:28.000Z
2018-05-01T18:51:58.000Z
netblow/bin/netblow_cli.py
viniciusarcanjo/netblow
01a2c3a60c5f9eb7e6c199612dedcd01c5dc23ba
[ "Apache-2.0" ]
1
2019-04-27T08:48:50.000Z
2019-04-27T08:48:50.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """netblow_cli module.""" import argparse from netblow.netblow import NetBlow from netblow.version import __version__ def main(): """Entry function.""" parser = argparse.ArgumentParser( description="netblow. Vendor agnostic network testing framework to stress network failures." # noqa ) # to add required args. optional = parser._action_groups.pop() required = parser.add_argument_group('required arguments') m_group = optional.add_mutually_exclusive_group() m_group.add_argument( '-d', '--dryrun', default=False, action='store_true', help="show tests calls, won't connect to any devices") m_group.add_argument( '-c', '--concheck', default=False, action='store_true', help='check connectivity with all devices in the topology') m_group.add_argument( '-1', '--once', default=False, action='store_true', help="iterates only once and perfom napalm diffs") parser.add_argument( '-l', '--level', choices=['info', 'debug'], default='info', help='logging verbosity level (default: info)') parser.add_argument( '-v', '--version', action='version', version='{}'.format(__version__), help='show version') required.add_argument( '-f', '--topology', help='topology yml file') required.add_argument( '-t', '--tests', help='tests yml file') parser._action_groups.append(optional) args = parser.parse_args() if not args.topology: parser.error('You have to specify the topology yml file with -f') if not args.tests: if args.once or not args.dryrun and not args.concheck: parser.error('You have to specify the tests yml file with -t') NetBlow( topo_file=args.topology, test_file=args.tests, dry_run=args.dryrun, enable_salt=False, iter_once=args.once, auto_open=True, auto_test=True, con_check=args.concheck, level=args.level) if __name__ == "__main__": main()
29.36
108
0.609446
0
0
0
0
0
0
0
0
730
0.331517
e1d83fca2e1bb93962f5e57c6f7075495edf9d91
8,688
py
Python
src/06_tool/regular_expression.py
edgardeng/python-advance-interview
59fd7bee8e871acdc7fdfecf2a110db840c47ebb
[ "Apache-2.0" ]
1
2022-03-06T13:03:56.000Z
2022-03-06T13:03:56.000Z
src/06_tool/regular_expression.py
edgardeng/python-advance-interview
59fd7bee8e871acdc7fdfecf2a110db840c47ebb
[ "Apache-2.0" ]
null
null
null
src/06_tool/regular_expression.py
edgardeng/python-advance-interview
59fd7bee8e871acdc7fdfecf2a110db840c47ebb
[ "Apache-2.0" ]
null
null
null
''' ' Python Regular Expression 正则表达式 ' ''' import re def test_match(): s = 'hello python Hello' p = 'hello' o = re.match(p, s) print(o) print(dir(o)) print(o.group()) # 返回匹配的字符串 print(o.span()) # 范围 print(o.start()) # 开始处 print('*' * 30, 'flags参数的使用') o2 = re.match(p, s, re.L) print(o2.group()) # 返回匹配的字符串 # 常用字符的使用 def test_match_character(): print('-' * 30, ' . 匹配任意一个字符') print(re.match('.', 'abv')) print(re.match('.', '12')) print(re.match('.', '\n')) print('-' * 30, ' \d 匹配数字 0-9') print(re.match('\d', 'abc456')) print(re.match('\d', '234svd')) print('-' * 30, ' \D 匹配非数字 0-9') print(re.match('\D', 'abc456')) print(re.match('\D', '234svd')) print('-' * 30, ' \s 匹配空白字符') print(re.match('\s', '\n12\t')) print(re.match('\s', '\t')) print(re.match('\s', 'addd')) print('-' * 30, ' \S 匹配非空白字符') print(re.match('\S', '\n12\t')) print(re.match('\S', '\t')) print(re.match('\S', 'addd')) print('-' * 30, ' \w 匹配字母、数字') print(re.match('\w', 'AB')) print(re.match('\w', 'ab')) print(re.match('\w', '12')) print(re.match('\w', '__')) print(re.match('\w', '##')) print('-' * 30, ' \W 匹配非 字母、数字') print(re.match('\W', 'AB')) print(re.match('\W', 'ab')) print(re.match('\W', '12')) print(re.match('\W', '__')) print(re.match('\W', '##')) print('-' * 30, ' \[] 匹配列表中的字符') print(re.match('[2468]', '22')) print(re.match('[2468]', '33')) print(re.match('[2468]', '83')) print(re.match('[2468]', '38')) def test_match_phone(): print('-' * 30, ' 匹配手机号') patten = '\d\d\d\d\d\d\d\d\d\d\d' print(re.match(patten, '13466669999')) print(re.match('1[345789]\d\d\d\d\d\d\d\d\d', '13466669999')) # 限定符 def test_match_qualifier(): print('-' * 30, ' * 匹配零次或多次') print(re.match('\d*', '123abc')) # 匹配开头的数字 print(re.match('\d*', 'abc')) print('-' * 30, ' + |匹配一次或多次') print(re.match('\d+', '123abc')) # 匹配开头的数字 print(re.match('\d+', 'abc')) print('-' * 30, ' ? |匹配一次或零次') print(re.match('\d?', '1abc')) print(re.match('\d?', '123abc')) # 匹配开头的数字 print(re.match('\d?', 'abc')) print('-' * 30, ' {m} |重复m次') print(re.match('\d{2}', '123abc')) # 匹配开头2个数字 print(re.match('\d{2}', '12abc')) print(re.match('\d{2}', '1abc')) print(re.match('\d{2}', 'abc')) print('-' * 30, '{m,n}|重复m到n次') print(re.match('\d{1,3}', '1234abc')) # 匹配开头2个数字 print(re.match('\d{1,3}', '123abc')) print(re.match('\d{1,3}', '12abc')) print(re.match('\d{1,3}', '1abc')) print(re.match('\d{1,3}', 'abc')) print('-' * 30, '{m,}|至少m次') print(re.match('\d{2,}', '1234abc')) # 匹配开头2个数字 print(re.match('\d{2,}', '123abc')) print(re.match('\d{2,}', '12abc')) print(re.match('\d{2,}', '1abc')) print(re.match('\d{2,}', 'abc')) print('-' * 30, '案例1 首字母为大写字符,其他小写字符') print(re.match('[A-Z][a-z]*', 'abc')) print(re.match('[A-Z][a-z]*', 'ABC')) print(re.match('[A-Z][a-z]*', 'Abc')) print(re.match('[A-Z][a-z]*', 'AbC')) print('-' * 30, '案例2 有效变量名 字母数字下划线,数字不开头') print(re.match('[a-zA-Z_][a-zA-Z0-9_]*', 'abc')) print(re.match('[a-zA-Z_]\w*', 'abc')) print(re.match('[a-zA-Z_][a-zA-Z0-9_]*', 'abc123')) print(re.match('[a-zA-Z_]\w*', '123abc')) print(re.match('[a-zA-Z_]\w*', '_123abc')) print('-' * 30, '案例2 1-99的数字') print(re.match('[1-9]\d?', '23abc')) print(re.match('[1-9]\d?', '100')) print(re.match('[1-9]\d?', '11')) print(re.match('[1-9]\d?', '1')) print(re.match('[1-9]\d?', '0')) print(re.match('[1-9]\d?', '09')) print('-' * 30, '案例2 8-20随机密码 大写,小写,下划线,数字') print(re.match('\w{8,20}', '1234567')) print(re.match('\w{8,20}', '1234567$$')) print(re.match('\w{8,20}', '1234567abc_')) print(re.match('\w{8,20}', '1234567abc#')) print(re.match('\w{8,20}', '12345678901234567890zx')) # 转义字符 原生字符 def escape_character(): print('C:\t\d\e') print('C:\\t\\d\\e') print(r'C:\t\d\e') # 边界字符 def boundary(): print('-' * 30, '$ 匹配字符串结尾') print(re.match('[1-9]\d{4,9}@qq.com', '1234567@qq.com')) print(re.match('[1-9]\d{4,9}@qq.com', '1234567@qq.com.126.cn')) print(re.match(r'[1-9]\d{4,9}@qq.com$', '1234567@qq.com')) print(re.match(r'[1-9]\d{4,9}@qq.com$', '1234567@qq.com.126.cn')) print('-' * 30, ' ^ 匹配字符串开头') print(re.match(r'^hello.*', 'hello abc')) print(re.match(r'^hello.*', 'abc hello abc')) print('-' * 30, ' \b 匹配单词的边界') print(re.match(r'.*\bab', '123 aabc')) # 单词 ab 开始 print(re.match(r'.*\bab', '123 abcd')) print(re.match(r'.*\bab', '123 aaa')) print(re.match(r'.*\bab', '123 abcd cdab')) print(re.match(r'.*ab\b', '123 abc')) # 单词 ab 结尾 print(re.match(r'.*ab\b', '123 aaa')) print(re.match(r'.*ab\b', '123 ab')) print(re.match(r'.*ab\b', '123 cdab')) print(re.match(r'.*ab\b', '123 abcd cdab')) def test_search(): print(re.match(r'hello', 'hello python')) print(re.search(r'hello', 'hello python')) print(re.match(r'hello', 'python hello')) print(re.search(r'hello', 'python hello ')) print(re.match('aa|bb|cc', 'aa')) print(re.match('aa|bb|cc', 'bbb')) print(re.match('aa|bb|cc', 'ccc')) print(re.match('aa|bb|cc', 'a bb ccc')) print(re.search('aa|bb|cc', 'a bb ccc')) # 多个字符 def test_multi_character(): print('-' * 30, '案例 0-100之间的数字: 0-99 | 100') print(re.match('[1-9]?\d|100', '1')) print(re.match('[1-9]?\d|100', '11')) print(re.match('[1-9]?\d|100', '100')) print(re.match('[1-9]?\d$|100$', '100')) print(re.match('[1-9]?\d$|100$', '1000')) print('-' * 30, '案例 ') print(re.match('[ab][cd]', 'ab')) print(re.match('[ab][cd]', 'ac')) print(re.match('[ab][cd]', 'ad')) print(re.match('ab|cd', 'abc')) print(re.match('ab|cd', 'ac')) # 匹配分组 def test_group(): print('-' * 30, '座机号码 区号{3,4} 号码{5,8} 010-0000 0791-222222') print(re.match(r'\d{3,4}-[1-9]\d{4,7}', '010-10086')) print(re.match(r'\d{3,4}-[1-9]\d{4,7}', '010-88888888')) print(re.match(r'\d{3,4}-[1-9]\d{4,7}', '1111-10086')) print(re.match(r'\d{3,4}-[1-9]\d{4,7}', '1111-88888888')) print('-' * 30, ' 匹配分组') o = re.match(r'(\d{3,4})-([1-9]\d{4,7})', '1111-88888888') print(o) print(o.group(0), o.group(1), o.group(2)) print(o.groups(), o.groups()[0], o.groups()[1]) print('-' * 30, 'html 标签') print(re.match(r'<.+><.+>.+</.+></.+>', '<html><a>abc</a></html>')) print(re.match(r'<.+><.+>.+</.+></.+>', '<html><a>abc</b></html>')) print(re.match(r'<(.*)><(.*)>.*</\2></\1>', '<html><a>abc</b></html>')) print(re.match(r'<(.*)><(.*)>.*</\2></\1>', '<html><d>abc</d></html>')) print('-' * 30, 'html 标签 - 别名') print(re.match(r'<(?P<k_html>.+)><(?P<k_head>.+)>.*</(?P=k_head)></(?P=k_html)>', '<html><d>abc</d></html>')) ## 搜索与替换 def test_sub(): print('-' * 30, ' 替换') print(re.sub(r'#.*$', '', '2004-222-23322 # 这是个什么')) # 替换#开头的部分 print(re.sub(r'#\D*', '', '2004-222-23322 # 这是个什么')) print('-' * 30, ' 替换 subn') print(re.subn(r'#\D*', '', '2004-222-23322 # 这是个什么')) print(re.subn(r'#.*$', '', '2004-222-23322 # 这是个什么')) def test_compile(): print('-' * 30, ' compile的使用') regex = re.compile(r'\w+') # 匹配字母或数字 print(regex.match('1223dfdf')) print(regex.match('##1223dfdf')) def test_findall(): print('-' * 30, ' findall 返回数组') print(re.findall(r'\w', '##1223dfdf')) # 匹配字母或数字 f print(re.findall(r'\w+', '## 1223 df df 1')) print('-' * 30, ' finditer 返回迭代器') print(re.finditer(r'\w+', '## 1223 df df 1')) for i in re.finditer(r'\w+', '## 1223 df df 1'): print(i, i.group()) def test_split(): print('-' * 30, ' split 返回数组') print(re.split(r'\d+', '123abc123abc')) print(re.split(r'\d+', '123 abc 123 abc')) print(re.split(r'\d+', 'abc123 abc 123 abc')) print(re.split(r'\d+', 'abc 123 abc 123 abc',1)) def greedy_mode(): print('-' * 30, ' 贪婪模式') result = re.match(r'(.+)(\d+-\d+-\d+)', 'this is my tel: 122-1244-1242') print(result.group(1)) print(result.group(2)) print('-' * 30, ' 非贪婪模式 尽可能少的匹配') result = re.match(r'(.+?)(\d+-\d+-\d+)', 'this is my tel: 122-1244-1242') print(result.group(1)) print(result.group(2)) print('-' * 30, ' 贪婪模式') print(re.match(r'abc(\d+)', 'abc123456')) print(re.match(r'abc(\d+?)', 'abc123456')) if __name__ == '__main__': # test_match() # test_match_character() # test_match_phone() # test_match_qualifier() # escape_character() # boundary() # test_search() # test_multi_character() # test_group() # test_sub() # test_compile() # test_findall() # test_split() # greedy_mode() # <.+><.+>.+</.+></.+> s = '<link href="../assets/css/app.css?t=20112455" type="text/css" rel="stylesheet">' mathched = re.findall(r'\S+assets/css/\S+.css\S+"', s) for m in mathched: print(m, m.index('.css')) s = s.replace(m, m[:m.index('.css')] + '.css?t=00000"') print(s)
30.484211
111
0.536027
0
0
0
0
0
0
0
0
4,861
0.512872
e1da747be2e0ff514420a41a6547dfb4970c7ba6
166
py
Python
dot_dotfiles/mail/dot_offlineimap.py
TheRealOne78/dots
52c59dae1fccb7392ceeb16ac564f6a18ee4a159
[ "MIT" ]
758
2016-11-19T22:52:34.000Z
2022-03-29T00:43:57.000Z
dot_dotfiles/mail/dot_offlineimap.py
TheRealOne78/dots
52c59dae1fccb7392ceeb16ac564f6a18ee4a159
[ "MIT" ]
27
2017-02-09T23:28:58.000Z
2022-03-22T21:35:24.000Z
dot_dotfiles/mail/dot_offlineimap.py
TheRealOne78/dots
52c59dae1fccb7392ceeb16ac564f6a18ee4a159
[ "MIT" ]
82
2016-12-23T04:42:00.000Z
2022-03-29T19:25:16.000Z
#! /usr/bin/env python2 # -*- coding: utf8 -*- from subprocess import check_output def get_pass(): return check_output("pass gmail/me", shell=True).strip("\n")
20.75
64
0.680723
0
0
0
0
0
0
0
0
64
0.385542
e1dd3f3740e16e48cf7fbe8dce94d776bef908fd
1,139
py
Python
tests/encoding-utils/test_big_endian_integer.py
carver/ethereum-utils
7ec2495b25107776cb4e0e4a79af8a8c64f622c4
[ "MIT" ]
null
null
null
tests/encoding-utils/test_big_endian_integer.py
carver/ethereum-utils
7ec2495b25107776cb4e0e4a79af8a8c64f622c4
[ "MIT" ]
null
null
null
tests/encoding-utils/test_big_endian_integer.py
carver/ethereum-utils
7ec2495b25107776cb4e0e4a79af8a8c64f622c4
[ "MIT" ]
null
null
null
from __future__ import unicode_literals import pytest from hypothesis import ( strategies as st, given, ) from eth_utils.encoding import ( int_to_big_endian, big_endian_to_int, ) @pytest.mark.parametrize( 'as_int,as_big_endian', ( (0, b'\x00'), (1, b'\x01'), (7, b'\x07'), (8, b'\x08'), (9, b'\x09'), (256, b'\x01\x00'), (2**256 - 1, b'\xff' * 32), ), ) def test_big_endian_conversions(as_int, as_big_endian): as_int_result = big_endian_to_int(as_big_endian) assert as_int_result == as_int as_big_endian_result = int_to_big_endian(as_int) assert as_big_endian_result == as_big_endian @given(value=st.integers(min_value=0, max_value=2**256 - 1)) def test_big_endian_round_trip_from_int(value): result = big_endian_to_int(int_to_big_endian(value)) assert result == value @given( value=st.binary(min_size=1, max_size=32).map( lambda v: v.lstrip(b'\x00') or b'\x00' ) ) def test_big_endian_round_trip_from_big_endian(value): result = int_to_big_endian(big_endian_to_int(value)) assert result == value
22.78
60
0.665496
0
0
0
0
932
0.818262
0
0
89
0.078139
e1dd62f3dbffbbc08c5996a09c39db0640f82f31
1,086
py
Python
src/data/normalization.py
poly-ai/fluid-surface-estimation
b2e310f38c3cce3c13fbf0b8277ee4eb00755d36
[ "MIT" ]
2
2022-02-15T21:41:06.000Z
2022-02-16T04:54:51.000Z
src/data/normalization.py
poly-ai/fluid-surface-estimation
b2e310f38c3cce3c13fbf0b8277ee4eb00755d36
[ "MIT" ]
null
null
null
src/data/normalization.py
poly-ai/fluid-surface-estimation
b2e310f38c3cce3c13fbf0b8277ee4eb00755d36
[ "MIT" ]
null
null
null
import numpy as np # Normalize dataset such that all sequences have min value 0.0, max value 1.0 def normalize(dataset, lower_lim=0.0, upper_lim=1.0): seq_mins = dataset.min(axis=(1, 2, 3)) seq_maxes = dataset.max(axis=(1, 2, 3)) dataset -= seq_mins.reshape((-1, 1, 1, 1)) dataset /= (seq_maxes - seq_mins).reshape((-1, 1, 1, 1)) return dataset # Normalize only the sequences in the data that have value outside range [0, 1) # Normalizes these sequences to have min value 0.0, max value 1.0 def normalize_only_outliers(dataset, lower_lim=0.0, upper_lim=1.0): # Scale and offset each sequence so that all values are within [0,1) seq_mins = dataset.min(axis=(1, 2, 3)) seq_maxes = dataset.max(axis=(1, 2, 3)) # Limit normalization only to waves that are out of the range [0,1) active = np.logical_or( np.less(seq_mins, lower_lim), np.greater(seq_maxes, upper_lim) ) dataset[active] -= seq_mins[active].reshape((-1, 1, 1, 1)) dataset[active] /= (seq_maxes - seq_mins)[active].reshape((-1, 1, 1, 1)) return dataset
32.909091
79
0.669429
0
0
0
0
0
0
0
0
356
0.327808
e1de48b63ed82ddff16804877e556e037ff413c0
1,487
py
Python
setup.py
fwitte/PyPSA
fa2ca201a4f0b3b5f8705a5927475ebb021dbee5
[ "MIT" ]
null
null
null
setup.py
fwitte/PyPSA
fa2ca201a4f0b3b5f8705a5927475ebb021dbee5
[ "MIT" ]
null
null
null
setup.py
fwitte/PyPSA
fa2ca201a4f0b3b5f8705a5927475ebb021dbee5
[ "MIT" ]
null
null
null
from __future__ import absolute_import from setuptools import setup, find_packages from codecs import open with open('README.rst', encoding='utf-8') as f: long_description = f.read() setup( name='pypsa', version='0.19.1', author='PyPSA Developers, see https://pypsa.readthedocs.io/en/latest/developers.html', author_email='t.brown@tu-berlin.de', description='Python for Power Systems Analysis', long_description=long_description, long_description_content_type='text/x-rst', url='https://github.com/PyPSA/PyPSA', license='MIT', packages=find_packages(exclude=['doc', 'test']), include_package_data=True, python_requires='>=3.6', install_requires=[ 'numpy', 'scipy', 'pandas>=0.24.0', 'xarray', 'netcdf4', 'tables', 'pyomo>=5.7', 'matplotlib', 'networkx>=1.10', 'deprecation' ], extras_require = { "dev": ["pytest", "pypower", "pandapower", "scikit-learn"], "cartopy": ['cartopy>=0.16'], "docs": ["numpydoc", "sphinx", "sphinx_rtd_theme", "nbsphinx", "nbsphinx-link", "black"], 'gurobipy':['gurobipy'] }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Operating System :: OS Independent', ])
29.156863
97
0.604573
0
0
0
0
0
0
0
0
723
0.486214
e1de6c9ea1e78727fc2d5bc8690e68e41338f516
556
py
Python
quiz/urls.py
Hysham/Quiz-Hoster
19067e3d584cb97562e73d332fdfe74eb49524cc
[ "MIT" ]
1
2020-03-22T13:36:27.000Z
2020-03-22T13:36:27.000Z
quiz/urls.py
Hysham/Quiz-Hoster
19067e3d584cb97562e73d332fdfe74eb49524cc
[ "MIT" ]
null
null
null
quiz/urls.py
Hysham/Quiz-Hoster
19067e3d584cb97562e73d332fdfe74eb49524cc
[ "MIT" ]
1
2020-04-02T15:32:12.000Z
2020-04-02T15:32:12.000Z
from django.urls import path from . import views urlpatterns = [ path('', views.quiz_home, name='quiz-home'), path('page/<int:page_no>/', views.quiz_page, name='quiz-page' ), path('about/', views.quiz_about, name='quiz-about'), path('submit/', views.quiz_submit, name='quiz-submit'), ## after quiz end path('view_result/<int:page_no>/', views.quiz_view_result, name='quiz-view_result'), path('leaderboard/', views.quiz_leaderboard, name='quiz-leaderboard'), path('feedback/', views.quiz_feedback, name='quiz-feedback'), ]
37.066667
88
0.681655
0
0
0
0
0
0
0
0
208
0.374101
e1dfa37abe08ed294d2a701673731176a4e461e5
3,500
py
Python
jamf/setconfig.py
pythoninthegrass/python-jamf
f71a44f4565fc2824ce6daf536359d563ab75ea3
[ "MIT" ]
25
2020-11-02T18:16:22.000Z
2022-03-07T04:36:14.000Z
jamf/setconfig.py
pythoninthegrass/python-jamf
f71a44f4565fc2824ce6daf536359d563ab75ea3
[ "MIT" ]
17
2020-12-22T19:24:05.000Z
2022-03-02T22:39:04.000Z
jamf/setconfig.py
pythoninthegrass/python-jamf
f71a44f4565fc2824ce6daf536359d563ab75ea3
[ "MIT" ]
12
2020-10-28T19:03:29.000Z
2022-03-01T08:29:52.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Jamf Config """ __author__ = "Sam Forester" __email__ = "sam.forester@utah.edu" __copyright__ = "Copyright (c) 2020 University of Utah, Marriott Library" __license__ = "MIT" __version__ = "1.0.4" import argparse import getpass import jamf import logging import platform import pprint import sys from os import path class Parser: def __init__(self): myplatform = platform.system() if myplatform == "Darwin": default_pref = jamf.config.MACOS_PREFS_TILDA elif myplatform == "Linux": default_pref = jamf.config.LINUX_PREFS_TILDA self.parser = argparse.ArgumentParser() self.parser.add_argument( "-H", "--hostname", help="specify hostname (default: prompt)" ) self.parser.add_argument( "-u", "--user", help="specify username (default: prompt)" ) self.parser.add_argument( "-p", "--passwd", help="specify password (default: prompt)" ) self.parser.add_argument( "-C", "--config", dest="path", metavar="PATH", default=default_pref, help=f"specify config file (default {default_pref})", ) self.parser.add_argument( "-P", "--print", action="store_true", help="print existing config profile (except password!)", ) self.parser.add_argument( "-t", "--test", action="store_true", help="Connect to the Jamf server using the config file", ) def parse(self, argv): """ :param argv: list of arguments to parse :returns: argparse.NameSpace object """ return self.parser.parse_args(argv) def setconfig(argv): logger = logging.getLogger(__name__) args = Parser().parse(argv) logger.debug(f"args: {args!r}") if args.path: config_path = args.path else: myplatform = platform.system() if myplatform == "Darwin": default_pref = jamf.config.MACOS_PREFS_TILDA elif myplatform == "Linux": default_pref = jamf.config.LINUX_PREFS_TILDA config_path = default_pref if config_path[0] == "~": config_path = path.expanduser(config_path) if args.test: api = jamf.API(config_path=config_path) pprint.pprint(api.get("accounts")) elif args.print: conf = jamf.config.Config(prompt=False, explain=True, config_path=config_path) print(conf.hostname) print(conf.username) if conf.password: print("Password is set") else: print("Password is not set") else: if args.hostname: hostname = args.hostname else: hostname = jamf.config.prompt_hostname() if args.user: user = args.user else: user = input("username: ") if args.passwd: passwd = args.passwd else: passwd = getpass.getpass() conf = jamf.config.Config( hostname=hostname, username=user, password=passwd, prompt=False ) conf.save(config_path=config_path) def main(): fmt = "%(asctime)s: %(levelname)8s: %(name)s - %(funcName)s(): %(message)s" logging.basicConfig(level=logging.INFO, format=fmt) setconfig(sys.argv[1:]) if __name__ == "__main__": main()
28.225806
86
0.575429
1,466
0.418857
0
0
0
0
0
0
847
0.242
e1e00ce354ffc24242ad31b4a0c1c5120baf617a
979
py
Python
src/menuResponse/migrations/0001_initial.py
miguelaav/dev
5ade9d0b393f48c9cc3b160b6ede4a03c29addea
[ "bzip2-1.0.6" ]
null
null
null
src/menuResponse/migrations/0001_initial.py
miguelaav/dev
5ade9d0b393f48c9cc3b160b6ede4a03c29addea
[ "bzip2-1.0.6" ]
6
2020-06-05T20:02:33.000Z
2022-03-11T23:43:11.000Z
src/menuResponse/migrations/0001_initial.py
miguelaav/dev
5ade9d0b393f48c9cc3b160b6ede4a03c29addea
[ "bzip2-1.0.6" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.20 on 2019-03-12 17:41 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('menuCreate', '0001_initial'), ('menu', '0002_remove_menu_slug'), ] operations = [ migrations.CreateModel( name='MenuResponseModel', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('comments', models.CharField(max_length=200)), ('date', models.DateField(auto_now_add=True)), ('MenuID', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='menuCreate.MenuCreateModel')), ('option', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='menu.Menu')), ], ), ]
32.633333
124
0.622063
787
0.803882
0
0
0
0
0
0
225
0.229826
e1e2d0a67c83cc0cf6dbbc60b3dc2efff897636e
10,889
py
Python
datacube/drivers/s3/storage/s3aio/s3aio.py
Zac-HD/datacube-core
ebc2025b6fb9d22fb406cdf5f79eba6d144c57e3
[ "Apache-2.0" ]
2
2018-12-02T11:33:50.000Z
2021-04-24T11:42:42.000Z
datacube/drivers/s3/storage/s3aio/s3aio.py
Zac-HD/datacube-core
ebc2025b6fb9d22fb406cdf5f79eba6d144c57e3
[ "Apache-2.0" ]
103
2018-03-21T15:00:05.000Z
2020-06-04T05:40:25.000Z
datacube/drivers/s3/storage/s3aio/s3aio.py
roarmstrong/datacube-core
5e38638dabd9e5112e92b503fae6a83c8dcc4902
[ "Apache-2.0" ]
null
null
null
""" S3AIO Class Array access to a single S3 object """ from __future__ import absolute_import import SharedArray as sa import zstd from itertools import repeat, product import numpy as np from pathos.multiprocessing import ProcessingPool from six.moves import zip try: from StringIO import StringIO except ImportError: from io import StringIO from .s3io import S3IO, generate_array_name class S3AIO(object): def __init__(self, enable_compression=True, enable_s3=True, file_path=None, num_workers=30): """Initialise the S3 array IO interface. :param bool enable_s3: Flag to store objects in s3 or disk. True: store in S3 False: store on disk (for testing purposes) :param str file_path: The root directory for the emulated s3 buckets when enable_se is set to False. :param int num_workers: The number of workers for parallel IO. """ self.s3io = S3IO(enable_s3, file_path, num_workers) self.pool = ProcessingPool(num_workers) self.enable_compression = enable_compression def to_1d(self, index, shape): """Converts nD index to 1D index. :param tuple index: N-D Index to be converted. :param tuple shape: Shape to be used for conversion. :return: Returns the 1D index. """ return np.ravel_multi_index(index, shape) def to_nd(self, index, shape): """Converts 1D index to nD index. :param tuple index: 1D Index to be converted. :param tuple shape: Shape to be used for conversion. :return: Returns the ND index. """ return np.unravel_index(index, shape) def get_point(self, index_point, shape, dtype, s3_bucket, s3_key): """Gets a point in the nd array stored in S3. Only works if compression is off. :param tuple index_point: Index of the point to be retrieved. :param tuple shape: Shape of the stored data. :param numpy.dtype: dtype of the stored data. :param str s3_bucket: S3 bucket name :param str s3_key: S3 key name :return: Returns the point data. """ item_size = np.dtype(dtype).itemsize idx = self.to_1d(index_point, shape) * item_size if self.enable_compression: b = self.s3io.get_bytes(s3_bucket, s3_key) cctx = zstd.ZstdDecompressor() b = cctx.decompress(b)[idx:idx + item_size] else: b = self.s3io.get_byte_range(s3_bucket, s3_key, idx, idx + item_size) a = np.frombuffer(b, dtype=dtype, count=-1, offset=0) return a def cdims(self, slices, shape): return [sl.start == 0 and sl.stop == sh and (sl.step is None or sl.step == 1) for sl, sh in zip(slices, shape)] def get_slice(self, array_slice, shape, dtype, s3_bucket, s3_key): # pylint: disable=too-many-locals """Gets a slice of the nd array stored in S3. Only works if compression is off. :param tuple array_slice: tuple of slices to retrieve. :param tuple shape: Shape of the stored data. :param numpy.dtype: dtype of the stored data. :param str s3_bucket: S3 bucket name :param str s3_key: S3 key name :return: Returns the data slice. """ # convert array_slice into into sub-slices of maximum contiguous blocks # Todo: # - parallelise reads and writes # - option 1. get memory rows in parallel and merge # - option 2. smarter byte range subsets depending on: # - data size # - data contiguity if self.enable_compression: return self.get_slice_by_bbox(array_slice, shape, dtype, s3_bucket, s3_key) # truncate array_slice to shape # array_slice = [slice(max(0, s.start) - min(sh, s.stop)) for s, sh in zip(array_sliced, shape)] array_slice = [slice(max(0, s.start), min(sh, s.stop)) for s, sh in zip(array_slice, shape)] cdim = self.cdims(array_slice, shape) try: end = cdim[::-1].index(False) + 1 except ValueError: end = len(shape) start = len(shape) - end outer = array_slice[:-end] outer_ranges = [range(s.start, s.stop) for s in outer] outer_cells = list(product(*outer_ranges)) blocks = list(zip(outer_cells, repeat(array_slice[start:]))) item_size = np.dtype(dtype).itemsize results = [] for cell, sub_range in blocks: # print(cell, sub_range) s3_start = (np.ravel_multi_index(cell + tuple([s.start for s in sub_range]), shape)) * item_size s3_end = (np.ravel_multi_index(cell + tuple([s.stop - 1 for s in sub_range]), shape) + 1) * item_size # print(s3_start, s3_end) data = self.s3io.get_byte_range(s3_bucket, s3_key, s3_start, s3_end) results.append((cell, sub_range, data)) result = np.empty([s.stop - s.start for s in array_slice], dtype=dtype) offset = [s.start for s in array_slice] for cell, sub_range, data in results: t = [slice(x.start - o, x.stop - o) if isinstance(x, slice) else x - o for x, o in zip(cell + tuple(sub_range), offset)] if data.dtype != dtype: data = np.frombuffer(data, dtype=dtype, count=-1, offset=0) result[t] = data.reshape([s.stop - s.start for s in sub_range]) return result def get_slice_mp(self, array_slice, shape, dtype, s3_bucket, s3_key): # pylint: disable=too-many-locals """Gets a slice of the nd array stored in S3 in parallel. Only works if compression is off. :param tuple array_slice: tuple of slices to retrieve. :param tuple shape: Shape of the stored data. :param numpy.dtype: dtype of the stored data. :param str s3_bucket: S3 bucket name :param str s3_key: S3 key name :return: Returns the data slice. """ # pylint: disable=too-many-locals def work_get_slice(block, array_name, offset, s3_bucket, s3_key, shape, dtype): result = sa.attach(array_name) cell, sub_range = block item_size = np.dtype(dtype).itemsize s3_start = (np.ravel_multi_index(cell + tuple([s.start for s in sub_range]), shape)) * item_size s3_end = (np.ravel_multi_index(cell + tuple([s.stop - 1 for s in sub_range]), shape) + 1) * item_size data = self.s3io.get_byte_range(s3_bucket, s3_key, s3_start, s3_end) t = [slice(x.start - o, x.stop - o) if isinstance(x, slice) else x - o for x, o in zip(cell + tuple(sub_range), offset)] if data.dtype != dtype: data = np.frombuffer(data, dtype=dtype, count=-1, offset=0) # data = data.reshape([s.stop - s.start for s in sub_range]) result[t] = data.reshape([s.stop - s.start for s in sub_range]) if self.enable_compression: return self.get_slice_by_bbox(array_slice, shape, dtype, s3_bucket, s3_key) cdim = self.cdims(array_slice, shape) try: end = cdim[::-1].index(False) + 1 except ValueError: end = len(shape) start = len(shape) - end outer = array_slice[:-end] outer_ranges = [range(s.start, s.stop) for s in outer] outer_cells = list(product(*outer_ranges)) blocks = list(zip(outer_cells, repeat(array_slice[start:]))) offset = [s.start for s in array_slice] array_name = generate_array_name('S3AIO') sa.create(array_name, shape=[s.stop - s.start for s in array_slice], dtype=dtype) shared_array = sa.attach(array_name) self.pool.map(work_get_slice, blocks, repeat(array_name), repeat(offset), repeat(s3_bucket), repeat(s3_key), repeat(shape), repeat(dtype)) sa.delete(array_name) return shared_array def get_slice_by_bbox(self, array_slice, shape, dtype, s3_bucket, s3_key): # pylint: disable=too-many-locals """Gets a slice of the nd array stored in S3 by bounding box. :param tuple array_slice: tuple of slices to retrieve. :param tuple shape: Shape of the stored data. :param numpy.dtype: dtype of the stored data. :param str s3_bucket: S3 bucket name :param str s3_key: S3 key name :return: Returns the data slice. """ # Todo: # - parallelise reads and writes # - option 1. use get_byte_range_mp # - option 2. smarter byte range subsets depending on: # - data size # - data contiguity item_size = np.dtype(dtype).itemsize s3_begin = (np.ravel_multi_index(tuple([s.start for s in array_slice]), shape)) * item_size s3_end = (np.ravel_multi_index(tuple([s.stop - 1 for s in array_slice]), shape) + 1) * item_size # if s3_end-s3_begin <= 5*1024*1024: # d = self.s3io.get_byte_range(s3_bucket, s3_key, s3_begin, s3_end) # else: # d = self.s3io.get_byte_range_mp(s3_bucket, s3_key, s3_begin, s3_end, 5*1024*1024) d = self.s3io.get_bytes(s3_bucket, s3_key) if self.enable_compression: cctx = zstd.ZstdDecompressor() d = cctx.decompress(d) d = np.frombuffer(d, dtype=np.uint8, count=-1, offset=0) d = d[s3_begin:s3_end] cdim = self.cdims(array_slice, shape) try: end = cdim[::-1].index(False) + 1 except ValueError: end = len(shape) start = len(shape) - end outer = array_slice[:-end] outer_ranges = [range(s.start, s.stop) for s in outer] outer_cells = list(product(*outer_ranges)) blocks = list(zip(outer_cells, repeat(array_slice[start:]))) item_size = np.dtype(dtype).itemsize results = [] for cell, sub_range in blocks: s3_start = (np.ravel_multi_index(cell + tuple([s.start for s in sub_range]), shape)) * item_size s3_end = (np.ravel_multi_index(cell + tuple([s.stop - 1 for s in sub_range]), shape) + 1) * item_size data = d[s3_start - s3_begin:s3_end - s3_begin] results.append((cell, sub_range, data)) result = np.empty([s.stop - s.start for s in array_slice], dtype=dtype) offset = [s.start for s in array_slice] for cell, sub_range, data in results: t = [slice(x.start - o, x.stop - o) if isinstance(x, slice) else x - o for x, o in zip(cell + tuple(sub_range), offset)] if data.dtype != dtype: data = np.frombuffer(data, dtype=dtype, count=-1, offset=0) result[t] = data.reshape([s.stop - s.start for s in sub_range]) return result
39.452899
113
0.612545
10,486
0.96299
0
0
0
0
0
0
3,451
0.316925
e1e4a6c549324fabd37261ecd95b7fc5b7e7bd39
5,447
py
Python
make_snapshot.py
trquinn/ICgen
0d7f05187a955be7fa3dee2f638cfcb074ebadcd
[ "MIT" ]
1
2021-09-14T12:03:03.000Z
2021-09-14T12:03:03.000Z
make_snapshot.py
trquinn/ICgen
0d7f05187a955be7fa3dee2f638cfcb074ebadcd
[ "MIT" ]
null
null
null
make_snapshot.py
trquinn/ICgen
0d7f05187a955be7fa3dee2f638cfcb074ebadcd
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Fri Mar 21 15:11:31 2014 @author: ibackus """ __version__ = "$Revision: 1 $" # $Source$ import pynbody SimArray = pynbody.array.SimArray import numpy as np import gc import os import isaac import calc_velocity import ICgen_utils import ICglobal_settings global_settings = ICglobal_settings.global_settings def snapshot_gen(ICobj): """ Generates a tipsy snapshot from the initial conditions object ICobj. Returns snapshot, param snapshot: tipsy snapshot param: dictionary containing info for a .param file """ print 'Generating snapshot...' # Constants G = SimArray(1.0,'G') # ------------------------------------ # Load in things from ICobj # ------------------------------------ print 'Accessing data from ICs' settings = ICobj.settings # filenames snapshotName = settings.filenames.snapshotName paramName = settings.filenames.paramName # particle positions r = ICobj.pos.r xyz = ICobj.pos.xyz # Number of particles nParticles = ICobj.pos.nParticles # molecular mass m = settings.physical.m # star mass m_star = settings.physical.M.copy() # disk mass m_disk = ICobj.sigma.m_disk.copy() m_disk = isaac.match_units(m_disk, m_star)[0] # mass of the gas particles m_particles = m_disk / float(nParticles) # re-scale the particles (allows making of lo-mass disk) m_particles *= settings.snapshot.mScale # ------------------------------------------------- # Assign output # ------------------------------------------------- print 'Assigning data to snapshot' # Get units all set up m_unit = m_star.units pos_unit = r.units if xyz.units != r.units: xyz.convert_units(pos_unit) # time units are sqrt(L^3/GM) t_unit = np.sqrt((pos_unit**3)*np.power((G*m_unit), -1)).units # velocity units are L/t v_unit = (pos_unit/t_unit).ratio('km s**-1') # Make it a unit v_unit = pynbody.units.Unit('{0} km s**-1'.format(v_unit)) # Other settings metals = settings.snapshot.metals star_metals = metals # ------------------------------------------------- # Initialize snapshot # ------------------------------------------------- # Note that empty pos, vel, and mass arrays are created in the snapshot snapshot = pynbody.new(star=1,gas=nParticles) snapshot['vel'].units = v_unit snapshot['eps'] = 0.01*SimArray(np.ones(nParticles+1, dtype=np.float32), pos_unit) snapshot['metals'] = SimArray(np.zeros(nParticles+1, dtype=np.float32)) snapshot['rho'] = SimArray(np.zeros(nParticles+1, dtype=np.float32)) snapshot.gas['pos'] = xyz snapshot.gas['temp'] = ICobj.T(r) snapshot.gas['mass'] = m_particles snapshot.gas['metals'] = metals snapshot.star['pos'] = SimArray([[ 0., 0., 0.]],pos_unit) snapshot.star['vel'] = SimArray([[ 0., 0., 0.]], v_unit) snapshot.star['mass'] = m_star snapshot.star['metals'] = SimArray(star_metals) # Estimate the star's softening length as the closest particle distance snapshot.star['eps'] = r.min() # Make param file param = isaac.make_param(snapshot, snapshotName) param['dMeanMolWeight'] = m gc.collect() # ------------------------------------------------- # CALCULATE VELOCITY USING calc_velocity.py. This also estimates the # gravitational softening length eps # ------------------------------------------------- print 'Calculating circular velocity' preset = settings.changa_run.preset max_particles = global_settings['misc']['max_particles'] calc_velocity.v_xy(snapshot, param, changa_preset=preset, max_particles=max_particles) gc.collect() # ------------------------------------------------- # Estimate time step for changa to use # ------------------------------------------------- # Save param file isaac.configsave(param, paramName, 'param') # Save snapshot snapshot.write(filename=snapshotName, fmt=pynbody.tipsy.TipsySnap) # est dDelta dDelta = ICgen_utils.est_time_step(paramName, preset) param['dDelta'] = dDelta # ------------------------------------------------- # Create director file # ------------------------------------------------- # largest radius to plot r_director = float(0.9 * r.max()) # Maximum surface density sigma_min = float(ICobj.sigma(r_director)) # surface density at largest radius sigma_max = float(ICobj.sigma.input_dict['sigma'].max()) # Create director dict director = isaac.make_director(sigma_min, sigma_max, r_director, filename=param['achOutName']) ## Save .director file #isaac.configsave(director, directorName, 'director') # ------------------------------------------------- # Wrap up # ------------------------------------------------- print 'Wrapping up' # Now set the star particle's tform to a negative number. This allows # UW ChaNGa treat it as a sink particle. snapshot.star['tform'] = -1.0 # Update params r_sink = isaac.strip_units(r.min()) param['dSinkBoundOrbitRadius'] = r_sink param['dSinkRadius'] = r_sink param['dSinkMassMin'] = 0.9 * isaac.strip_units(m_star) param['bDoSinks'] = 1 return snapshot, param, director
33.213415
98
0.572242
0
0
0
0
0
0
0
0
2,414
0.44318
e1e5f2d6ad3305b63d32e9bc867c960c34b149c1
8,243
py
Python
diag_rank_update.py
IPA-HD/ldaf_classification
e7cd08c59d3be2cf961cf6f546ef9b375c9d96c5
[ "MIT" ]
null
null
null
diag_rank_update.py
IPA-HD/ldaf_classification
e7cd08c59d3be2cf961cf6f546ef9b375c9d96c5
[ "MIT" ]
null
null
null
diag_rank_update.py
IPA-HD/ldaf_classification
e7cd08c59d3be2cf961cf6f546ef9b375c9d96c5
[ "MIT" ]
1
2022-02-23T16:13:04.000Z
2022-02-23T16:13:04.000Z
""" Diagonal Matrix with rank-1 updates. """ import itertools import torch from torch.functional import Tensor class DiagRankUpdate(object): """Diagonal Matrix with rank-1 updates""" def __init__(self, diag, rankUpdates): super(DiagRankUpdate, self).__init__() self.diag = diag self.rankUpdates = rankUpdates assert rankUpdates.ndim == 3 assert rankUpdates.shape[1] == 2 assert rankUpdates.shape[2] == diag.shape[0] assert rankUpdates.device == diag.device assert rankUpdates.dtype == diag.dtype @property def dtype(self): return self.diag.dtype @property def ndim(self): return 2 def __repr__(self) -> str: return "{0}×{0} DiagonalMatrix with {1} Rank-1 Update".format( self.diag.size()[0], len(self.rankUpdates) ) + ("s" if len(self.rankUpdates)!=1 else "") def tensor(self): return torch.diag(self.diag) + torch.matmul(self.rankUpdates[:,0,:].t(), self.rankUpdates[:,1,:]) def device(self): return self.diag.device def dim(self): return 2 def size(self): return torch.Size([ self.diag.size()[0], self.diag.size()[0] ]) def t(self): return DiagRankUpdate(self.diag.clone(), torch.flip(self.rankUpdates, (1,))) def add(self, other): if type(other) != DiagRankUpdate: return torch.add(self.tensor(), other) return DiagRankUpdate( self.diag + other.diag, torch.cat((self.rankUpdates, other.rankUpdates)) ) def __add__(self, other): return self.add(other) def __radd__(self, other): return other.add(self) def negative(self): return DiagRankUpdate( -self.diag, self.rankUpdates * torch.tensor([[-1, 1]]) ) def __sub__(self, other): return self.add(other.negative()) def __rsub__(self, other): return other.add(self.negative()) def matmul(self, other): if type(other) != DiagRankUpdate: return torch.mul(self.tensor(), other) return DiagRankUpdate( self.diag * other.diag, torch.cat(( torch.cat( ( self.diag[None, None, :] * other.rankUpdates[:, (0,), :], other.rankUpdates[:, (1,), :] ), dim = 1 ), torch.cat( ( self.rankUpdates[:, (0,), :], other.diag[None, None, :] * self.rankUpdates[:, (1,), :] ), dim=1 ), torch.stack([ torch.stack((s[1].dot(o[0]) * s[0], o[1])) for s, o in itertools.product( self.rankUpdates, other.rankUpdates )] ) )) ) def batchDot(self, v): """ Batched multiplication self @ v with batch of matrices v (batch_size, n, k) """ assert v.ndim == 3 assert v.shape[1] == self.rankUpdates.shape[2] n = v.shape[1] diag_bmm = self.diag.reshape((1, n, 1))*v inner_prod = torch.matmul(self.rankUpdates[:,1,:].unsqueeze(0), v) # inner_prod now has shape (batch_size, n_updates, k) outer_prod = torch.matmul( self.rankUpdates[:,0,:].t().unsqueeze(0), inner_prod ) # outer_prod now has shape (batch_size, n, k) return diag_bmm + outer_prod def batchDotTransposed(self, v): """ Batched multiplication self.t() @ v with batch of matrices v (batch_size, n, k) """ assert v.ndim == 3 assert v.shape[1] == self.rankUpdates.shape[2] n = v.shape[1] diag_bmm = self.diag.reshape((1, n, 1))*v inner_prod = torch.matmul(self.rankUpdates[:,0,:].unsqueeze(0), v) # inner_prod now has shape (batch_size, n_updates, k) outer_prod = torch.matmul( self.rankUpdates[:,1,:].t().unsqueeze(0), inner_prod ) # outer_prod now has shape (batch_size, n, k) return diag_bmm + outer_prod def dotRight(self, other): """ Multiply self @ other """ return self.diag * other + torch.matmul( torch.matmul( self.rankUpdates[:,1,:] , other ), self.rankUpdates[:,0,:] ) def dotLeft(self, other): """ Multiply other @ self """ return self.diag * other + torch.matmul( torch.matmul( self.rankUpdates[:,0,:] , other ), self.rankUpdates[:,1,:] ) def dotBoth(self, v, w): """ Let A be self and v, w ∈ ℝⁿ. Then `dotBoth` computes vᵀ A w """ return (self.diag * v * w).sum() + torch.dot( torch.matmul(self.rankUpdates[:, 0, :], v), torch.matmul(self.rankUpdates[:, 1, :], w) ) def trace(self): return self.diag.sum() + sum([torch.dot(r[0], r[1]) for r in self.rankUpdates]) def appendUpdate(self, other): return DiagRankUpdate( self.diag.clone(), torch.cat((self.rankUpdates, other[None, :, :])) ) def inverse(self): if self.rankUpdates.shape[0] == 0: return DiagRankUpdate( 1 / self.diag, torch.empty((0,2,self.size()[0]), device=self.device()) ) else: inv = DiagRankUpdate(self.diag, self.rankUpdates[0:-1, :, :]).inverse() v = self.rankUpdates[-1,0,:] w = self.rankUpdates[-1,1,:] return inv.appendUpdate( torch.stack(( inv.dotRight(v).negative(), inv.dotLeft(w) / ( 1 + inv.dotBoth(w, v) ) )) ) def det(self): if self.rankUpdates.shape[0] == 0: return self.diag.prod() else: reduced = DiagRankUpdate( self.diag, self.rankUpdates[0:-1, :, :] ) v = self.rankUpdates[-1, 0, :] w = self.rankUpdates[-1, 1, :] return (1 + reduced.inverse().dotBoth(w, v)) * reduced.det() def log_det(self): if self.rankUpdates.shape[0] == 0: return self.diag.log().sum() else: reduced = DiagRankUpdate( self.diag, self.rankUpdates[0:-1, :, :] ) v = self.rankUpdates[-1, 0, :] w = self.rankUpdates[-1, 1, :] return torch.log(1 + reduced.inverse().dotBoth(w, v)) + reduced.log_det() def kl_divergence(self, other, mu0=None, mu1=None): inv = other.inverse() if not mu0 is None: mu1mu0 = mu1 - mu0 return ( inv.matmul(self).trace() + inv.dotBoth(mu1mu0, mu1mu0) - self.size()[0] + other.log_det() - self.log_det() ) / 2 kl = ( inv.matmul(self).trace() - self.size()[0] + other.log_det() - self.log_det() ) / 2 if kl < 0: print("Warning, KL was < 0.", kl) return kl def projectionBoth(self): n = self.size()[0] ones = -torch.ones(n) / n a = self.rankUpdates[:,0,:] b = self.rankUpdates[:,1,:] a_sum = a.sum(dim=1) b_sum = b.sum(dim=1) return self.appendUpdate( torch.stack(( ones, self.diag + a_sum @ b )) ).appendUpdate( torch.stack(( self.diag + b_sum @ a, ones )) ).appendUpdate( torch.stack(( (self.diag.sum() + (a_sum * b_sum).sum()) * ones, ones, )) )
28.922807
105
0.474463
8,140
0.986428
0
0
109
0.013209
0
0
767
0.092947
e1e66cd3308883f2371baad138a10eed2eac4eff
4,074
py
Python
tests/garage/tf/policies/test_gaussian_mlp_policy_with_model.py
XavierJingfeng/starter
274566e491d5c7157f3c8deff136c56838022349
[ "MIT" ]
null
null
null
tests/garage/tf/policies/test_gaussian_mlp_policy_with_model.py
XavierJingfeng/starter
274566e491d5c7157f3c8deff136c56838022349
[ "MIT" ]
null
null
null
tests/garage/tf/policies/test_gaussian_mlp_policy_with_model.py
XavierJingfeng/starter
274566e491d5c7157f3c8deff136c56838022349
[ "MIT" ]
null
null
null
import pickle from unittest import mock from nose2.tools.params import params import numpy as np import tensorflow as tf from garage.tf.envs import TfEnv from garage.tf.policies import GaussianMLPPolicyWithModel from tests.fixtures import TfGraphTestCase from tests.fixtures.envs.dummy import DummyBoxEnv from tests.fixtures.models import SimpleGaussianMLPModel class TestGaussianMLPPolicyWithModel(TfGraphTestCase): @params( ((1, ), (1, )), ((1, ), (2, )), ((2, ), (2, )), ((1, 1), (1, 1)), ((1, 1), (2, 2)), ((2, 2), (2, 2)), ) def test_get_action(self, obs_dim, action_dim): env = TfEnv(DummyBoxEnv(obs_dim=obs_dim, action_dim=action_dim)) with mock.patch(('garage.tf.policies.' 'gaussian_mlp_policy_with_model.GaussianMLPModel'), new=SimpleGaussianMLPModel): policy = GaussianMLPPolicyWithModel(env_spec=env.spec) env.reset() obs, _, _, _ = env.step(1) action, prob = policy.get_action(obs) expected_action = np.full(action_dim, 0.75) expected_mean = np.full(action_dim, 0.5) expected_log_std = np.full(action_dim, 0.5) assert env.action_space.contains(action) assert np.array_equal(action, expected_action) assert np.array_equal(prob['mean'], expected_mean) assert np.array_equal(prob['log_std'], expected_log_std) actions, probs = policy.get_actions([obs, obs, obs]) for action, mean, log_std in zip(actions, probs['mean'], probs['log_std']): assert env.action_space.contains(action) assert np.array_equal(action, expected_action) assert np.array_equal(prob['mean'], expected_mean) assert np.array_equal(prob['log_std'], expected_log_std) @params( ((1, ), (1, )), ((1, ), (2, )), ((2, ), (2, )), ((1, 1), (1, 1)), ((1, 1), (2, 2)), ((2, 2), (2, 2)), ) def test_dist_info_sym(self, obs_dim, action_dim): env = TfEnv(DummyBoxEnv(obs_dim=obs_dim, action_dim=action_dim)) with mock.patch(('garage.tf.policies.' 'gaussian_mlp_policy_with_model.GaussianMLPModel'), new=SimpleGaussianMLPModel): policy = GaussianMLPPolicyWithModel(env_spec=env.spec) env.reset() obs, _, _, _ = env.step(1) obs_dim = env.spec.observation_space.flat_dim obs_ph = tf.placeholder(tf.float32, shape=(None, obs_dim)) dist1_sym = policy.dist_info_sym(obs_ph, name='p1_sym') expected_mean = np.full(action_dim, 0.5) expected_log_std = np.full(action_dim, 0.5) prob = self.sess.run(dist1_sym, feed_dict={obs_ph: [obs.flatten()]}) assert np.array_equal(prob['mean'], expected_mean) assert np.array_equal(prob['log_std'], expected_log_std) @params( ((1, ), (1, )), ((1, ), (2, )), ((2, ), (2, )), ((1, 1), (1, 1)), ((1, 1), (2, 2)), ((2, 2), (2, 2)), ) def test_is_pickleable(self, obs_dim, action_dim): env = TfEnv(DummyBoxEnv(obs_dim=obs_dim, action_dim=action_dim)) with mock.patch(('garage.tf.policies.' 'gaussian_mlp_policy_with_model.GaussianMLPModel'), new=SimpleGaussianMLPModel): policy = GaussianMLPPolicyWithModel(env_spec=env.spec) env.reset() obs, _, _, _ = env.step(1) obs_dim = env.spec.observation_space.flat_dim action1, prob1 = policy.get_action(obs) p = pickle.dumps(policy) with tf.Session(graph=tf.Graph()): policy_pickled = pickle.loads(p) action2, prob2 = policy_pickled.get_action(obs) assert env.action_space.contains(action1) assert np.array_equal(action1, action2) assert np.array_equal(prob1['mean'], prob2['mean']) assert np.array_equal(prob1['log_std'], prob2['log_std'])
35.736842
76
0.59352
3,707
0.909917
0
0
3,636
0.892489
0
0
308
0.075601
e1e7670f03c464a40b12de227929a84b71ca6496
3,015
py
Python
cloudify_gcp/monitoring/stackdriver_uptimecheck.py
cloudify-cosmo/cloudify-gcp-plugin
c70faee0555070f7fc67f0001395eaafb681b23c
[ "Apache-2.0" ]
4
2016-10-24T17:42:07.000Z
2020-05-31T00:34:07.000Z
cloudify_gcp/monitoring/stackdriver_uptimecheck.py
cloudify-cosmo/cloudify-gcp-plugin
c70faee0555070f7fc67f0001395eaafb681b23c
[ "Apache-2.0" ]
35
2015-04-30T20:14:01.000Z
2022-02-03T21:35:54.000Z
cloudify_gcp/monitoring/stackdriver_uptimecheck.py
cloudify-cosmo/cloudify-gcp-plugin
c70faee0555070f7fc67f0001395eaafb681b23c
[ "Apache-2.0" ]
13
2015-04-17T16:42:03.000Z
2021-06-24T04:12:14.000Z
# ####### # Copyright (c) 2018-2020 Cloudify Platform Ltd. All rights reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from cloudify import ctx from cloudify.decorators import operation from cloudify_gcp.gcp import check_response from .. import utils from .. import constants from ..monitoring import MonitoringBase class StackDriverUpTimeCheckConfig(MonitoringBase): def __init__(self, config, logger, project_id=None, uptime_check_config=None, name=None): super(StackDriverUpTimeCheckConfig, self).__init__( config, logger, project_id, None) self.project_id = project_id self.uptime_check_config = uptime_check_config self.name = name @check_response def create(self): return self.discovery_uptime_check.create( parent='projects/{}'.format(self.project_id), body=self.uptime_check_config).execute() @check_response def delete(self): return self.discovery_uptime_check.delete(name=self.name).execute() @check_response def update(self): return self.discovery_uptime_check.update( name=self.name, body=self.uptime_check_config).execute() @operation(resumable=True) @utils.throw_cloudify_exceptions def create(project_id, uptime_check_config, **kwargs): if utils.resource_created(ctx, constants.NAME): return gcp_config = utils.get_gcp_config() group = StackDriverUpTimeCheckConfig( gcp_config, ctx.logger, project_id=project_id, uptime_check_config=uptime_check_config) resource = utils.create(group) ctx.instance.runtime_properties[constants.NAME] = resource[constants.NAME] @operation(resumable=True) @utils.retry_on_failure('Retrying deleting stackdriver group') @utils.throw_cloudify_exceptions def delete(**kwargs): gcp_config = utils.get_gcp_config() props = ctx.instance.runtime_properties if props.get(constants.NAME): group = StackDriverUpTimeCheckConfig( gcp_config, ctx.logger, name=props[constants.NAME]) utils.delete_if_not_external(group) @operation(resumable=True) @utils.throw_cloudify_exceptions def update(project_id, uptime_check_config, **kwargs): gcp_config = utils.get_gcp_config() uptime_check = StackDriverUpTimeCheckConfig( gcp_config, ctx.logger, project_id, uptime_check_config, name=ctx.instance.runtime_properties[constants.NAME]) uptime_check.update()
33.5
78
0.725373
920
0.305141
0
0
1,737
0.576119
0
0
664
0.220232
e1e7fd1d9bbf595b4d131e3b6ac6e686c46e866f
2,041
py
Python
tests/test_database.py
penggan666/index_selection_evaluation
b6daf1f30c24a0675f4e3acfbd17304e5d91cfd6
[ "MIT" ]
37
2020-03-03T10:59:06.000Z
2022-03-29T11:51:37.000Z
tests/test_database.py
Jiachen-Shi/index_selection_evaluation
fb22b929cbab22377e90a12ae23ea4002d8eab7b
[ "MIT" ]
19
2020-03-10T14:55:56.000Z
2021-05-20T09:54:32.000Z
tests/test_database.py
Jiachen-Shi/index_selection_evaluation
fb22b929cbab22377e90a12ae23ea4002d8eab7b
[ "MIT" ]
14
2020-08-10T03:12:40.000Z
2022-02-28T06:08:16.000Z
import unittest from selection.dbms.postgres_dbms import PostgresDatabaseConnector from selection.index import Index from selection.table_generator import TableGenerator from selection.workload import Column, Query, Table class TestDatabase(unittest.TestCase): @classmethod def setUpClass(cls): cls.db_name = "tpch_test_db_database" db = PostgresDatabaseConnector(None, autocommit=True) TableGenerator("tpch", 0.001, db, explicit_database_name=cls.db_name) db.close() @classmethod def tearDownClass(cls): connector = PostgresDatabaseConnector(None, autocommit=True) if connector.database_exists(cls.db_name): connector.drop_database(cls.db_name) def test_postgres_index_simulation(self): db = PostgresDatabaseConnector(self.db_name, "postgres") self.assertTrue(db.supports_index_simulation()) db.close() def test_simple_statement(self): db = PostgresDatabaseConnector(self.db_name, "postgres") statement = "select count(*) from nation" result = db.exec_fetch(statement) self.assertEqual(result[0], 25) db.close() def test_runtime_data_logging(self): db = PostgresDatabaseConnector(self.db_name, "postgres") query = Query(17, "SELECT count(*) FROM nation;") db.get_cost(query) self.assertEqual(db.cost_estimations, 1) self.assertGreater(db.cost_estimation_duration, 0) column_n_name = Column("n_name") nation_table = Table("nation") nation_table.add_column(column_n_name) index = Index([column_n_name]) index_oid = db.simulate_index(index)[0] self.assertGreater(db.index_simulation_duration, 0) self.assertEqual(db.simulated_indexes, 1) previou_simulation_duration = db.index_simulation_duration db.drop_simulated_index(index_oid) self.assertGreater(db.index_simulation_duration, previou_simulation_duration) if __name__ == "__main__": unittest.main()
34.016667
85
0.707496
1,766
0.865262
0
0
451
0.22097
0
0
144
0.070554
e1e8c509d815e0208974db78a033ef909fdca7d8
2,012
py
Python
aljson/__init__.py
hrzp/aljson
83cab23f9466c8ca5803dba7d5ec998646ff0436
[ "MIT" ]
1
2020-02-02T11:33:29.000Z
2020-02-02T11:33:29.000Z
aljson/__init__.py
hrzp/aljson
83cab23f9466c8ca5803dba7d5ec998646ff0436
[ "MIT" ]
null
null
null
aljson/__init__.py
hrzp/aljson
83cab23f9466c8ca5803dba7d5ec998646ff0436
[ "MIT" ]
null
null
null
from sqlalchemy.orm.collections import InstrumentedList class BaseMixin: caller_stack = list() def extract_relations(self): return self.__mapper__.relationships.keys() def extract_columns(self): return self.__mapper__.columns.keys() def get_columns(self): result = dict() result['relationships'] = self.extract_relations() result['columns'] = self.extract_columns() return result def convert_columns_to_dict(self, columns): result = dict() for item in columns: result[item] = getattr(self, item) return result def convert_instrumented_list(self, items): result = list() for item in items: result.append(item.to_json(self.caller_stack)) return result def detect_class_name(self, item): if item.__class__.__name__ == 'InstrumentedList': return item[0].__class__.__name__.lower() return item.__class__.__name__.lower() def convert_relations_to_dict(self, relations): result = dict() me = self.__class__.__name__.lower() self.caller_stack.append(me) for relation in relations: obj = getattr(self, relation) if self.detect_class_name(obj) in self.caller_stack: continue if type(obj) == InstrumentedList: result[relation] = self.convert_instrumented_list(obj) continue result[relation] = obj.to_json(self.caller_stack) return result def to_json(self, caller_stack=None): ''' Convert a SqlAlchemy query object to a dict(json) ''' self.caller_stack = [] if not caller_stack else caller_stack final_obj = dict() columns = self.get_columns() final_obj.update(self.convert_columns_to_dict(columns['columns'])) final_obj.update(self.convert_relations_to_dict( columns['relationships'])) return final_obj
31.936508
74
0.630716
1,953
0.970676
0
0
0
0
0
0
143
0.071074
e1e8ce55d278ecec5ff0a778a7af4a2bbb524f3a
1,274
py
Python
src/robotide/context/coreplugins.py
veryl-technologies/t24-tests-ide
16cd803895916a785c0e1fec3f71f9388c21edc9
[ "ECL-2.0", "Apache-2.0" ]
1
2019-06-27T08:48:24.000Z
2019-06-27T08:48:24.000Z
src/robotide/context/coreplugins.py
veryl-technologies/t24-tests-ide
16cd803895916a785c0e1fec3f71f9388c21edc9
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
src/robotide/context/coreplugins.py
veryl-technologies/t24-tests-ide
16cd803895916a785c0e1fec3f71f9388c21edc9
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# Copyright 2008-2012 Nokia Siemens Networks Oyj # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. def get_core_plugins(): from robotide.run import RunAnything from robotide.recentfiles import RecentFilesPlugin from robotide.ui.preview import PreviewPlugin from robotide.ui.keywordsearch import KeywordSearch from robotide.editor import EditorPlugin from robotide.editor.texteditor import TextEditorPlugin from robotide.log import LogPlugin from robotide.searchtests.searchtests import TestSearchPlugin from robotide.spec.specimporter import SpecImporterPlugin return [RunAnything, RecentFilesPlugin, PreviewPlugin, SpecImporterPlugin, EditorPlugin, TextEditorPlugin, KeywordSearch, LogPlugin, TestSearchPlugin]
42.466667
87
0.78022
0
0
0
0
0
0
0
0
592
0.464678
e1e993089a256f12c7dadf856a619e12a83973e8
918
py
Python
backend/apps/api/system/v1/serializers/groups.py
offurface/smsta
b8a1f2e6efe6c71703c8d57e8aae255ad213863c
[ "MIT" ]
null
null
null
backend/apps/api/system/v1/serializers/groups.py
offurface/smsta
b8a1f2e6efe6c71703c8d57e8aae255ad213863c
[ "MIT" ]
null
null
null
backend/apps/api/system/v1/serializers/groups.py
offurface/smsta
b8a1f2e6efe6c71703c8d57e8aae255ad213863c
[ "MIT" ]
null
null
null
from rest_framework import serializers from ... import models class DepartmentSerializers(serializers.ModelSerializer): """ Сериализатор кафедр """ class Meta: model = models.Department fields = ["short_name", "full_name"] class StudentSerializers(serializers.ModelSerializer): """ Сериализатор студентов """ class Meta: model = models.Student fields = ["pk", "name", "surname", "patronymic", "gender"] class AcademicGroupsDetailSerializers(serializers.ModelSerializer): """ Сериализатор Академических Групп """ department = DepartmentSerializers() students = StudentSerializers(many=True, read_only=True) class Meta: model = models.AcademicGroup fields = [ "pk", "start_date", "department", "name", "students", "course", ]
21.348837
67
0.606754
916
0.928065
0
0
0
0
0
0
304
0.308004
e1ea50469b885baae0f3ea29526541040d09f40f
6,629
py
Python
cinebot_mini/web_utils/blender_client.py
cheng-chi/cinebot_mini
708a7c80d2f203dfe3b52bf84d9cbafac7673d27
[ "MIT" ]
null
null
null
cinebot_mini/web_utils/blender_client.py
cheng-chi/cinebot_mini
708a7c80d2f203dfe3b52bf84d9cbafac7673d27
[ "MIT" ]
null
null
null
cinebot_mini/web_utils/blender_client.py
cheng-chi/cinebot_mini
708a7c80d2f203dfe3b52bf84d9cbafac7673d27
[ "MIT" ]
null
null
null
from cinebot_mini import SERVERS import requests import numpy as np import json def base_url(): blender_dict = SERVERS["blender"] url = "http://{}:{}".format( blender_dict["host"], blender_dict["port"]) return url def handshake(): url = base_url() + "/api/ping" for i in range(5): try: r = requests.get(url, timeout=1.0) r_data = r.json() assert(r_data["url"] == "/api/ping") return True except Exception as e: continue return False def create_object(name, type="CAMERA"): url = base_url() + "/api/create" data = { "type": type, "name": name } r = requests.put(url, data=json.dumps(data)) r_data = r.json() obj_dict = r_data['result'] if "name" in obj_dict: return obj_dict["name"] else: print("Creating {} failed!", obj_name) def create_objects(type="CAMERA", num=4, base_name="screen_camera_"): url = base_url() + "/api/create" obj_names = [] for i in range(num): obj_name = base_name + str(i) data = { "type": type, "name": obj_name } r = requests.put(url, data=json.dumps(data)) r_data = r.json() obj_dict = r_data['result'] if "name" in obj_dict: obj_names.append(obj_dict["name"]) else: print("Creating {} failed!", obj_name) return obj_names def set_transform_euler(obj_name, loc, rot, degree=True): url = base_url() + "/api/object/" + obj_name + "/property" rot_data = list(rot) if degree: rot_data = (np.array(rot) / 180.0 * np.pi).tolist() data = { "properties": { "location": list(loc), "rotation_euler": list(rot_data) } } r = requests.put(url, data=json.dumps(data)) r_data = r.json() return r_data["result"] def set_transform_matrix(obj_name, matrix): url = base_url() + "/api/object/" + obj_name + "/property" data = { "properties": { "matrix_world": matrix.tolist() } } r = requests.put(url, data=json.dumps(data)) r_data = r.json() return r_data["result"] def set_transform_matrix(obj_name, matrix): url = base_url() + "/api/object/" + obj_name + "/property" data = { "properties": { "matrix_world": matrix.tolist() } } r = requests.put(url, data=json.dumps(data)) r_data = r.json() return r_data["result"] def set_property(obj_name, key, val, prop_type="properties"): url = base_url() + "/api/object/" + obj_name + "/property" data = { prop_type: { key: val } } r = requests.put(url, data=json.dumps(data)) r_data = r.json() return r_data["result"] def get_property(obj_name): url = base_url() + "/api/object/" + obj_name + "/property" r = requests.get(url) r_data = r.json() return r_data["result"] def test_object_exist(obj_name): url = base_url() + "/api/object/" + obj_name + "/property" data = dict() r = requests.get(url, data=json.dumps(data)) return r.status_code != 404 def set_animation_euler(obj_name, locs, rots, degree=True): url = base_url() + "/api/object/" + obj_name + "/animation" rot_data = rots if degree: rot_data = rots / 180.0 * np.pi transforms = [] for t in range(len(locs)): tf_data = dict() tf_data["frame_number"] = t tf_data["location"] = locs[t].tolist() tf_data["rotation_euler"] = rot_data[t].tolist() transforms.append(tf_data) data = { "transforms": transforms } r = requests.put(url, data=json.dumps(data)) r_data = r.json() return r_data["result"] def set_animation_matrix(obj_name, matrices): url = base_url() + "/api/object/" + obj_name + "/animation" transforms = [] for t in range(len(matrices)): tf_data = dict() tf_data["frame_number"] = t tf_data["matrix_world"] = matrices[t].tolist() transforms.append(tf_data) data = { "transforms": transforms } r = requests.put(url, data=json.dumps(data)) r_data = r.json() return r_data["result"] def get_animation_dict(obj_name): url = base_url() + "/api/object/" + obj_name + "/animation" r = requests.get(url) r_data = r.json() animation = r_data["result"] result = dict() for frame in animation: t = frame["frame_number"] arr = np.array(frame["matrix_world"]) result[t] = arr return result def get_animation(obj_name): url = base_url() + "/api/object/" + obj_name + "/animation" r = requests.get(url) r_data = r.json() animation = r_data["result"] result = [] for frame in animation: arr = np.array(frame["matrix_world"]) result.append(arr) return result def delete_animation(obj_name): url = base_url() + "/api/object/" + obj_name + "/animation" r = requests.delete(url) r_data = r.json() return r_data["result"] def delete_object(obj_name): url = base_url() + "/api/object/" + obj_name r = requests.delete(url) r_data = r.json() return r_data["result"] def render_animation(file_name, frame_start, frame_end): url = base_url() + "/api/render/animation" data = { "output_file_path": file_name, "frame_start": frame_start, "frame_end": frame_end } r = requests.put(url, data=json.dumps(data)) r_data = r.json() return r_data["result"] def set_render_resolution(pixel_dim): url = base_url() + "/api/render/property" x, y = pixel_dim data = { "properties": { "resolution_x": x, "resolution_y": y } } r = requests.put(url, data=json.dumps(data)) r_data = r.json() return r_data["result"] == "SUCCESS" def set_camera_properties(cam_name, focal_length_m, sensor_dims_m): url = base_url() + "/api/object/" + cam_name + "/property" lens = focal_length_m * 1000 w, h = np.array(sensor_dims_m) * 1000 data = { "data_properties": { "lens": lens, "sensor_width": w, "sensor_height": h } } r = requests.put(url, data=json.dumps(data)) r_data = r.json() return r_data["result"] == "SUCCESS" def set_active_camera(cam_name): url = base_url() + "/api/render/active_camera" data = { "name": cam_name } r = requests.put(url, data=json.dumps(data)) r_data = r.json() return r_data["result"] == "SUCCESS"
25.996078
69
0.577312
0
0
0
0
0
0
0
0
1,140
0.171972
e1eb5b5cf0257ffeb6de52c29326fb2195c7a273
6,733
py
Python
gem5-configs/configs-microbench-tests/run_controlbenchmarks.py
TCHERNET/parsec-tests2
775b299a890d0d552877ed510240aa59c630eaa3
[ "BSD-3-Clause" ]
5
2020-05-20T12:24:29.000Z
2021-07-20T01:49:30.000Z
gem5-configs/configs-microbench-tests/run_controlbenchmarks.py
TCHERNET/parsec-tests2
775b299a890d0d552877ed510240aa59c630eaa3
[ "BSD-3-Clause" ]
26
2020-04-03T15:01:48.000Z
2021-06-09T19:08:31.000Z
gem5-configs/configs-microbench-tests/run_controlbenchmarks.py
TCHERNET/parsec-tests2
775b299a890d0d552877ed510240aa59c630eaa3
[ "BSD-3-Clause" ]
3
2020-07-04T14:51:29.000Z
2021-09-16T04:33:45.000Z
# -*- coding: utf-8 -*- # Copyright (c) 2018 The Regents of the University of California # All Rights Reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Jason Lowe-Power from __future__ import print_function import argparse import m5 from m5.objects import TimingSimpleCPU, DerivO3CPU from m5.objects import SimpleIndirectPredictor, LocalBP, BiModeBP, TournamentBP, LTAGE, SimpleMemory from m5.objects import Root from m5.objects import * from system import BaseTestSystem from system import InfMemory, SingleCycleMemory, SlowMemory # Branch predictor params # If indirect Predictor is disabled use BTB with these params btbEntries = 512 btbTagSize = 19 class IndirectPred(SimpleIndirectPredictor): indirectSets = 256 # Cache sets for indirect predictor indirectWays = 2 # Ways for indirect predictor indirectTagSize = 16 # Indirect target cache tag bits indirectPathLength = 3 # Previous indirect targets to use for path history indirectGHRBits = 13 # Indirect GHR number of bits ipred = SimpleIndirectPredictor() #CPU Configs class Simple_LocalBP(TimingSimpleCPU): branchPred = LocalBP() branchPred.BTBEntries = btbEntries branchPred.BTBTagSize = btbTagSize branchPred.indirectBranchPred = ipred # set this to null to disable indirect predictior branchPred.localPredictorSize = 2048 branchPred.localCtrBits = 2 class DefaultO3_LocalBP(DerivO3CPU): branchPred = LocalBP() branchPred.BTBEntries = btbEntries branchPred.BTBTagSize = btbTagSize branchPred.indirectBranchPred = ipred # set this to null to disable indirect predictior branchPred.localPredictorSize = 2048 branchPred.localCtrBits = 2 class Simple_BiModeBP(TimingSimpleCPU): branchPred = BiModeBP() branchPred.BTBEntries = btbEntries branchPred.BTBTagSize = btbTagSize branchPred.indirectBranchPred = ipred # set this to null to disable indirect predictior branchPred.globalPredictorSize = 8192 branchPred.globalCtrBits = 2 branchPred.choicePredictorSize = 8192 branchPred.choiceCtrBits = 2 class DefaultO3_BiModeBP(DerivO3CPU): branchPred = BiModeBP() branchPred.BTBEntries = btbEntries branchPred.BTBTagSize = btbTagSize branchPred.indirectBranchPred = ipred # set this to null to disable indirect predictior branchPred.globalPredictorSize = 8192 branchPred.globalCtrBits = 2 branchPred.choicePredictorSize = 8192 branchPred.choiceCtrBits = 2 class Simple_TournamentBP(TimingSimpleCPU): branchPred = TournamentBP() branchPred.BTBEntries = btbEntries branchPred.BTBTagSize = btbTagSize branchPred.indirectBranchPred = ipred # set this to null to disable indirect predictior branchPred.localPredictorSize = 2048 branchPred.localCtrBits = 2 branchPred.localHistoryTableSize = 2048 branchPred.globalPredictorSize = 8192 branchPred.globalCtrBits = 2 branchPred.choicePredictorSize = 8192 branchPred.choiceCtrBits = 2 class DefaultO3_TournamentBP(DerivO3CPU): branchPred = TournamentBP() branchPred.BTBEntries = btbEntries branchPred.BTBTagSize = btbTagSize branchPred.indirectBranchPred = ipred # set this to null to disable indirect predictior branchPred.localPredictorSize = 2048 branchPred.localCtrBits = 2 branchPred.localHistoryTableSize = 2048 branchPred.globalPredictorSize = 8192 branchPred.globalCtrBits = 2 branchPred.choicePredictorSize = 8192 branchPred.choiceCtrBits = 2 class Simple_LTAGEBP(TimingSimpleCPU): branchPred = LTAGE() branchPred.BTBEntries = btbEntries branchPred.BTBTagSize = btbTagSize branchPred.indirectBranchPred = ipred # set this to null to disable indirect predictior class DefaultO3_LTAGEBP(DerivO3CPU): branchPred = LTAGE() branchPred.BTBEntries = btbEntries branchPred.BTBTagSize = btbTagSize branchPred.indirectBranchPred = ipred # set this to null to disable indirect predictior # Add more CPUs Configs under test before this valid_configs = [Simple_LocalBP, Simple_BiModeBP, Simple_TournamentBP, Simple_LTAGEBP, DefaultO3_LocalBP, DefaultO3_BiModeBP, DefaultO3_TournamentBP, DefaultO3_LTAGEBP] valid_configs = {cls.__name__[:-2]:cls for cls in valid_configs} # Add more Memories under test before this valid_memories = [InfMemory, SingleCycleMemory, SlowMemory] valid_memories = {cls.__name__[:-6]:cls for cls in valid_memories} parser = argparse.ArgumentParser() parser.add_argument('config', choices = valid_configs.keys()) parser.add_argument('memory_model', choices = valid_memories.keys()) parser.add_argument('binary', type = str, help = "Path to binary to run") args = parser.parse_args() class MySystem(BaseTestSystem): _CPUModel = valid_configs[args.config] _MemoryModel = valid_memories[args.memory_model] system = MySystem() system.setTestBinary(args.binary) root = Root(full_system = False, system = system) m5.instantiate() exit_event = m5.simulate() if exit_event.getCause() != 'exiting with last active thread context': print("Benchmark failed with bad exit cause.") print(exit_event.getCause()) exit(1) if exit_event.getCode() != 0: print("Benchmark failed with bad exit code.") print("Exit code {}".format(exit_event.getCode())) exit(1) print("{} ms".format(m5.curTick()/1e9))
40.077381
168
0.776771
3,345
0.496807
0
0
0
0
0
0
2,521
0.374424
e1ebe5e056a585344fff7992dae1cbba59732df5
1,273
py
Python
poezio/args.py
hrnciar/poezio
12b8af11df35dda535412b0c02ba792890095a7d
[ "Zlib" ]
null
null
null
poezio/args.py
hrnciar/poezio
12b8af11df35dda535412b0c02ba792890095a7d
[ "Zlib" ]
null
null
null
poezio/args.py
hrnciar/poezio
12b8af11df35dda535412b0c02ba792890095a7d
[ "Zlib" ]
null
null
null
""" Module related to the argument parsing There is a fallback to the deprecated optparse if argparse is not found """ from pathlib import Path from argparse import ArgumentParser, SUPPRESS from poezio.version import __version__ def parse_args(CONFIG_PATH: Path): """ Parse the arguments from the command line """ parser = ArgumentParser('poezio') parser.add_argument( "-c", "--check-config", dest="check_config", action='store_true', help='Check the config file') parser.add_argument( "-d", "--debug", dest="debug", help="The file where debug will be written", metavar="DEBUG_FILE") parser.add_argument( "-f", "--file", dest="filename", default=CONFIG_PATH / 'poezio.cfg', type=Path, help="The config file you want to use", metavar="CONFIG_FILE") parser.add_argument( '-v', '--version', action='version', version='Poezio v%s' % __version__, ) parser.add_argument( "--custom-version", dest="custom_version", help=SUPPRESS, metavar="VERSION", default=__version__ ) options = parser.parse_args() return options
24.480769
71
0.593087
0
0
0
0
0
0
0
0
482
0.378633
e1ed3b48fe37cb69350c8b6542e4845c264e91f2
1,125
py
Python
src/mist/api/poller/schedulers.py
vladimir-ilyashenko/mist.api
f77c451679732ac1cfdafa85ad023c7c170faec4
[ "Apache-2.0" ]
null
null
null
src/mist/api/poller/schedulers.py
vladimir-ilyashenko/mist.api
f77c451679732ac1cfdafa85ad023c7c170faec4
[ "Apache-2.0" ]
null
null
null
src/mist/api/poller/schedulers.py
vladimir-ilyashenko/mist.api
f77c451679732ac1cfdafa85ad023c7c170faec4
[ "Apache-2.0" ]
null
null
null
from celerybeatmongo.schedulers import MongoScheduler from mist.api.sharding.mixins import ShardManagerMixin from mist.api.poller.models import PollingSchedule from mist.api.poller.models import OwnerPollingSchedule from mist.api.poller.models import CloudPollingSchedule from mist.api.poller.models import MachinePollingSchedule import datetime class PollingScheduler(MongoScheduler): Model = PollingSchedule UPDATE_INTERVAL = datetime.timedelta(seconds=20) class OwnerPollingScheduler(MongoScheduler): Model = OwnerPollingSchedule UPDATE_INTERVAL = datetime.timedelta(seconds=20) class CloudPollingScheduler(MongoScheduler): Model = CloudPollingSchedule UPDATE_INTERVAL = datetime.timedelta(seconds=20) class MachinePollingScheduler(MongoScheduler): Model = MachinePollingSchedule UPDATE_INTERVAL = datetime.timedelta(seconds=20) class ShardedOwnerScheduler(ShardManagerMixin, OwnerPollingScheduler): pass class ShardedCloudScheduler(ShardManagerMixin, CloudPollingScheduler): pass class ShardedMachineScheduler(ShardManagerMixin, MachinePollingScheduler): pass
26.162791
74
0.826667
755
0.671111
0
0
0
0
0
0
0
0
e1ee5eb16b3e9a592172165671953d6cc3271d6d
13,939
py
Python
datasets/hdd_classif.py
valeoai/BEEF
f1c5f3708ba91f6402dd05814b76dca1d9012942
[ "Apache-2.0" ]
4
2021-05-31T16:53:35.000Z
2021-11-30T03:03:34.000Z
datasets/hdd_classif.py
valeoai/BEEF
f1c5f3708ba91f6402dd05814b76dca1d9012942
[ "Apache-2.0" ]
3
2022-02-02T20:41:56.000Z
2022-02-24T11:47:44.000Z
datasets/hdd_classif.py
valeoai/BEEF
f1c5f3708ba91f6402dd05814b76dca1d9012942
[ "Apache-2.0" ]
null
null
null
from collections import Counter import json from pathlib import Path from PIL import Image import numpy as np import torch import torch.utils.data as data import torchvision.transforms as transforms from bootstrap.lib.logger import Logger from bootstrap.datasets import transforms as bootstrap_tf try: from .hdd import HDD except: from hdd import HDD class HDDClassif(HDD): def __init__(self, dir_data, split, win_size, im_size, layer, # "goal" or "cause" frame_position, traintest_mode, fps=10, horizon=2, # in seconds extract_mode=False, batch_size=2, debug=False, shuffle=False, pin_memory=False, nb_threads=0): self.win_size = win_size self.frame_position = frame_position super(HDDClassif, self).__init__(dir_data, split, im_size, fps, horizon, # in seconds batch_size, debug, shuffle, pin_memory, nb_threads) self.layer = layer if self.layer == "cause": self.layer_id = '1' self.classid_to_ix = [-1, 16, 17, 18, 19, 20, 22] elif self.layer == "goal": self.layer_id = '0' self.classid_to_ix = [-1, 0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 12] else: raise ValueError(self.layer) # The classid 0 is the background class self.ix_to_classid = dict((ix, classid) for classid, ix in enumerate(self.classid_to_ix)) self.class_freq = self.get_class_freq() self.collate_fn = bootstrap_tf.Compose([ bootstrap_tf.ListDictsToDictLists(), bootstrap_tf.StackTensors() ]) self.dir_navig_features = self.dir_processed_annot self.im_transform = transforms.Compose([transforms.Resize((self.im_h, self.im_w)), transforms.ToTensor(), transforms.Normalize(mean = [0.43216, 0.394666, 0.37645], std = [0.22803, 0.22145, 0.216989])]) self.traintest_mode = traintest_mode if self.traintest_mode: self.make_batch_loader = self._make_batch_loader_traintest else: self.make_batch_loader = self._make_batch_loader def classid_to_classname(self, classid): ix = self.classid_to_ix[classid] if ix == -1: return '__background__' else: return self.ix_to_event[ix] def _make_batch_loader(self, batch_size=None, shuffle=None, num_samples=200000): nb_threads = self.nb_threads batch_size = self.batch_size if batch_size is None else batch_size shuffle = self.shuffle if shuffle is None else shuffle if shuffle: sampler = data.RandomSampler(self, replacement=True, num_samples=min(num_samples, len(self))) shuffle = None else: sampler = None batch_loader = data.DataLoader( dataset=self, batch_size=batch_size, shuffle=shuffle, pin_memory=self.pin_memory, num_workers=nb_threads, collate_fn=self.collate_fn, sampler=sampler) return batch_loader def _make_batch_loader_traintest(self, batch_size=None, shuffle=None): nb_threads = self.nb_threads batch_size = self.batch_size if batch_size is None else batch_size num_samples = batch_size*70000 shuffle = self.shuffle if shuffle is None else shuffle if shuffle: sampler = data.RandomSampler(self, replacement=True, num_samples=num_samples) shuffle = None else: sampler = None batch_loader = data.DataLoader( dataset=self, batch_size=batch_size, shuffle=shuffle, pin_memory=self.pin_memory, num_workers=nb_threads, collate_fn=self.collate_fn, sampler=sampler) return batch_loader def build_index(self): Logger()('Building index for %s split...' % self.split) split_file = self.dir_data.joinpath(self.split+'.txt') index = [] session_template = "{0}-{1}-{2}-{3}-{4}" self.vid_to_index = [] self.vidname_to_vidid = {} for idx, session_id in enumerate(open(split_file)): name = session_template.format(session_id[:4], session_id[4:6], session_id[6:8], session_id[8:10], session_id[10:12]) annot_paths = list(filter(lambda x:name in x.as_posix(), self.dir_processed_annot.iterdir())) if len(annot_paths) == 0: continue assert len(annot_paths) == 1 annot_path = annot_paths[0] if annot_path.exists(): frame_annots = sorted(annot_path.iterdir()) frame_annots = [None]*self.frame_position + frame_annots + [None]*(self.win_size-self.frame_position-1) # Zero-padding of the full video, such that each frame can get a context L = [frame_annots[i:i+self.win_size] for i in range(0, len(frame_annots)-self.win_size+1)] self.vid_to_index.append((len(index), len(index)+len(L))) self.vidname_to_vidid[annot_path.name] = len(index) index += L # if self.debug: # index += frame_annots[5000:7000] # break # else: # index += frame_annots if self.debug and idx==1: break Logger()('Done') return index def get_class_freq(self): class_freq_path = self.dir_processed_annot.joinpath('%s_class_freq.json' % self.layer) if class_freq_path.exists(): Logger()('Loading class frequency') class_freq = json.load(open(class_freq_path)) Logger()('Loaded class frequency') else: Logger()('Computing class frequency') if self.split != "train": raise NotImplementedError('Extract class weigths on train set first') class_freq = self.compute_class_freq() with open(class_freq_path, 'w') as F: F.write(json.dumps(class_freq)) return class_freq def compute_class_freq(self): class_freq = Counter() S = 0 for paths in self.index: annot_path = paths[-1] if annot_path is None: continue annot = json.load(open(annot_path)) event = annot['labels'][self.layer_id] classid = self.ix_to_classid.get(event, 0) class_freq[classid] += 1 S += 1 for classid in class_freq: class_freq[classid] = class_freq[classid] / S return class_freq def get_navig(self, annot): item = {} if len(annot['prev_xy']) == self.length: prev_xy = torch.Tensor(annot['prev_xy']) r_prev_xy = torch.Tensor(annot['r_prev_xy']) else: # should be padded before n = len(annot['prev_xy']) prev_xy = torch.Tensor(self.length,2).zero_() r_prev_xy = torch.Tensor(self.length,2).zero_() if n>0: prev_xy[self.length - n:] = torch.Tensor(annot['prev_xy']) r_prev_xy[self.length - n:] = torch.Tensor(annot['r_prev_xy']) item['prev_xy'] = prev_xy item['r_prev_xy'] = r_prev_xy if len(annot['next_xy']) == self.length: next_xy = torch.Tensor(annot['next_xy']) r_next_xy = torch.Tensor(annot['r_next_xy']) else: # should be padded after n = len(annot['next_xy']) next_xy = torch.Tensor(self.length,2).zero_() r_next_xy = torch.Tensor(self.length,2).zero_() if n>0: next_xy[:n] = torch.Tensor(annot['next_xy']) r_next_xy[:n] = torch.Tensor(annot['r_next_xy']) item['next_xy'] = next_xy item['r_next_xy'] = r_next_xy item['blinkers'] = torch.LongTensor([self.blinkers_to_ix[annot['blinkers']]]) return item def get_navig_path(self, annot_path): # Sometimes, due to sampling considerations, the navig annotation doesn't exist. # We simply take the navig annotation for the closest existing sample annot_navig_path = self.dir_navig_features.joinpath(annot_path.parent.name, annot_path.name) if not annot_navig_path.exists(): annot_num = int(annot_path.stem) annot_navig_path = self.dir_navig_features.joinpath(annot_path.parent.name, f"{annot_num-1:06d}.json") if not annot_navig_path.exists(): annot_navig_path = self.dir_navig_features.joinpath(annot_path.parent.name, f"{annot_num+1:06d}.json") if not annot_navig_path.exists(): annot_navig_path = self.dir_navig_features.joinpath(annot_path.parent.name, f"{annot_num-2:06d}.json") return annot_navig_path def __getitem__(self, idx): paths = self.index[idx] y_true = torch.LongTensor(self.win_size).zero_() -1 frames = None navig = None item = {} for frame_id, annot_path in enumerate(paths): if annot_path is None: continue frame_number = int(annot_path.stem) + 1 frames_folder = self.dir_processed_img.joinpath(annot_path.parent.name) frame_path = frames_folder.joinpath(f"{frame_number:06d}.jpg") im = Image.open(frame_path) im = self.im_transform(im) if frames is None: frames = torch.Tensor(self.win_size, 3, self.im_h, self.im_w).zero_() frames[frame_id] = im annot = json.load(open(annot_path)) event = annot['labels'][self.layer_id] y_true[frame_id] = self.ix_to_classid.get(event, 0) if navig is None: navig = {'prev_xy':torch.Tensor(self.win_size, self.length, 2).zero_() - 1, 'next_xy':torch.Tensor(self.win_size, self.length, 2).zero_() - 1, 'r_prev_xy':torch.Tensor(self.win_size, self.length, 2).zero_() - 1, 'r_next_xy':torch.Tensor(self.win_size, self.length, 2).zero_() - 1, 'xy_polynom':torch.Tensor(self.win_size, 5, 2).zero_() - 1, 'blinkers':torch.LongTensor(self.win_size).zero_() - 1} annot_navig_path = self.get_navig_path(annot_path) annot_navig = json.load(open(annot_navig_path)) _navig = self.get_navig(annot_navig) for k in _navig: navig[k][frame_id] = _navig[k] item.update(navig) item['frames'] = frames item['idx'] = idx item['paths'] = paths item['frame_path'] = paths[self.frame_position] item['y_true_all'] = y_true item['y_true'] = y_true[self.frame_position] for k in navig: item[k+'_all'] = item[k] item[k] = item[k+'_all'][self.frame_position] item['frame_position'] = torch.LongTensor([self.frame_position]) return item if __name__ == "__main__": split = "val" fps = 3 dir_data = Path("/datasets_local/HDD") nb_threads = 0 horizon = 2 win_size = 21 layer = "goal" batch_size = 12 use_navig = False im_size = "small" dataset = HDDClassif(dir_data, split, win_size, im_size, layer, # "goal" or "cause" use_navig=use_navig, fps=fps, horizon=horizon, # in seconds batch_size=batch_size, debug=False, shuffle=False, pin_memory=False, nb_threads=0) vidname_to_index = {} for idx, sequence in enumerate(dataset.index): vid_name = sequence[0].parent.name if vid_name not in vidname_to_index: vidname_to_index[vid_name] = [] vidname_to_index[vid_name].append(idx) batch_sampler = SequentialBatchSampler(vidname_to_index, batch_size) N = 0 for batch in batch_sampler: print(batch) N += 1 # item = dataset[5] # loader = dataset.make_batch_loader(batch_size, # shuffle=False) # for idx, batch in enumerate(loader): # break
38.084699
193
0.522204
12,208
0.875816
0
0
0
0
0
0
1,400
0.100438
e1f01e5ef61eacab7ab09c6ac2aca35cf6f0b034
921
py
Python
1W/6/3.py
allenalvin333/Hackerrank_Prep
26ed5b874daba4775d006824d36f9e82ea5ff1ea
[ "MIT" ]
2
2021-11-25T13:38:36.000Z
2021-11-25T13:42:56.000Z
1W/6/3.py
allenalvin333/Hackerrank_Prep
26ed5b874daba4775d006824d36f9e82ea5ff1ea
[ "MIT" ]
null
null
null
1W/6/3.py
allenalvin333/Hackerrank_Prep
26ed5b874daba4775d006824d36f9e82ea5ff1ea
[ "MIT" ]
1
2021-11-25T13:38:43.000Z
2021-11-25T13:38:43.000Z
# https://www.hackerrank.com/challenges/one-week-preparation-kit-jesse-and-cookies/problem #!/bin/python3 import math import os import random import re import sys import heapq # # Complete the 'cookies' function below. # # The function is expected to return an INTEGER. # The function accepts following parameters: # 1. INTEGER k # 2. INTEGER_ARRAY A # def cookies(k, A, z=0): heapq.heapify(A) while True: a = heapq.heappop(A) if(a>=k): return z if(len(A)==0): return -1 b = heapq.heappop(A) heapq.heappush(A,(a+2*b)) z+=1 if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') first_multiple_input = input().rstrip().split() n = int(first_multiple_input[0]) k = int(first_multiple_input[1]) A = list(map(int, input().rstrip().split())) result = cookies(k, A) fptr.write(str(result) + '\n') fptr.close()
20.021739
90
0.633008
0
0
0
0
0
0
0
0
305
0.331162
e1f029d6dec3a3f66d804dec3fb860fb4b271b25
3,895
py
Python
toughio/capillarity/_base.py
keurfonluu/toughio
1db0600ee5ad1abb5ca858c81c8ac5226c9dbb4f
[ "BSD-3-Clause-LBNL" ]
21
2020-03-05T20:03:58.000Z
2022-03-14T23:17:42.000Z
toughio/capillarity/_base.py
keurfonluu/toughio
1db0600ee5ad1abb5ca858c81c8ac5226c9dbb4f
[ "BSD-3-Clause-LBNL" ]
60
2020-02-14T22:53:01.000Z
2022-03-26T07:24:19.000Z
toughio/capillarity/_base.py
keurfonluu/toughio
1db0600ee5ad1abb5ca858c81c8ac5226c9dbb4f
[ "BSD-3-Clause-LBNL" ]
6
2020-02-28T08:15:36.000Z
2022-03-13T23:26:24.000Z
from abc import ABCMeta, abstractmethod, abstractproperty import numpy __all__ = [ "BaseCapillarity", ] # See <https://stackoverflow.com/questions/35673474/using-abc-abcmeta-in-a-way-it-is-compatible-both-with-python-2-7-and-python-3-5> ABC = ABCMeta("ABC", (object,), {"__slots__": ()}) class BaseCapillarity(ABC): _id = None _name = "" def __init__(self, *args): """ Base class for capillarity models. Do not use. """ pass def __repr__(self): """Display capillarity model informations.""" out = ["{} capillarity model (ICP = {}):".format(self._name, self._id)] out += [ " CP({}) = {}".format(i + 1, parameter) for i, parameter in enumerate(self.parameters) ] return "\n".join(out) def __call__(self, sl): """Calculate capillary pressure given liquid saturation.""" if numpy.ndim(sl) == 0: if not (0.0 <= sl <= 1.0): raise ValueError() return self._eval(sl, *self.parameters) else: sl = numpy.asarray(sl) if not numpy.logical_and((sl >= 0.0).all(), (sl <= 1.0).all()): raise ValueError() return numpy.array([self._eval(sat, *self.parameters) for sat in sl]) @abstractmethod def _eval(self, sl, *args): raise NotImplementedError() def plot(self, n=100, ax=None, figsize=(10, 8), plt_kws=None): """ Plot capillary pressure curve. Parameters ---------- n : int, optional, default 100 Number of saturation points. ax : matplotlib.pyplot.Axes or None, optional, default None Matplotlib axes. If `None`, a new figure and axe is created. figsize : array_like or None, optional, default None New figure size if `ax` is `None`. plt_kws : dict or None, optional, default None Additional keywords passed to :func:`matplotlib.pyplot.semilogy`. """ try: import matplotlib.pyplot as plt except ImportError: raise ImportError( "Plotting capillary pressure curve requires matplotlib to be installed." ) if not (isinstance(n, int) and n > 1): raise ValueError() if not (ax is None or isinstance(ax, plt.Axes)): raise TypeError() if not (figsize is None or isinstance(figsize, (tuple, list, numpy.ndarray))): raise TypeError() if len(figsize) != 2: raise ValueError() if not (plt_kws is None or isinstance(plt_kws, dict)): raise TypeError() # Plot parameters plt_kws = plt_kws if plt_kws is not None else {} _kwargs = {"linestyle": "-", "linewidth": 2} _kwargs.update(plt_kws) # Initialize figure if ax: ax1 = ax else: figsize = figsize if figsize else (8, 5) fig = plt.figure(figsize=figsize, facecolor="white") ax1 = fig.add_subplot(1, 1, 1) # Calculate capillary pressure sl = numpy.linspace(0.0, 1.0, n) pcap = self(sl) # Plot ax1.semilogy(sl, numpy.abs(pcap), **_kwargs) ax1.set_xlim(0.0, 1.0) ax1.set_xlabel("Saturation (liquid)") ax1.set_ylabel("Capillary pressure (Pa)") ax1.grid(True, linestyle=":") plt.draw() plt.show() return ax1 @property def id(self): """Return capillarity model ID in TOUGH.""" return self._id @property def name(self): """Return capillarity model name.""" return self._name @abstractproperty def parameters(self): raise NotImplementedError() @parameters.setter def parameters(self, value): raise NotImplementedError()
29.507576
132
0.562773
3,596
0.923235
0
0
452
0.116046
0
0
1,266
0.325032
e1f08688ada9b36c08693a0c6eb7ff57ba0e5786
23,988
py
Python
gui.py
NejcHirci/material-addon
c08e2081413c3319b712c2f7193ac8013f601382
[ "MIT" ]
4
2022-01-31T14:26:39.000Z
2022-02-06T06:34:27.000Z
gui.py
NejcHirci/material-addon
c08e2081413c3319b712c2f7193ac8013f601382
[ "MIT" ]
2
2021-11-30T12:19:27.000Z
2021-11-30T12:42:10.000Z
gui.py
NejcHirci/material-addon
c08e2081413c3319b712c2f7193ac8013f601382
[ "MIT" ]
null
null
null
import bpy import glob from bpy.types import Panel, Operator from bpy.app.handlers import persistent import os import threading from queue import Queue from pathlib import Path from . mix_ops import * from . matgan_ops import * from . neural_ops import * cache_path = os.path.join(Path(__file__).parent.resolve(), '.cache') # Redraw all function def redraw_all(context): for area in context.screen.areas: if area.type in ['NODE_EDITOR']: area.tag_redraw() # Thread function for reading output def enqueue_output(out, queue): for line in iter(out.readline, b''): queue.put(line.decode('utf-8').strip()) out.close() @persistent def on_addon_save(dummy): for mat in bpy.data.materials: if "matgan" in mat.name: match = re.match(".+?(?=_matgan_mat)", mat.name) obj_name = match[0] if match else "" if obj_name in bpy.data.objects: obj = bpy.data.objects[obj_name] dir = os.path.join(obj["MaterialGAN_Path"], 'out') update_matgan(obj, dir) elif "neural" in mat.name: match = re.match(".+?(?=_neural_mat)", mat.name) obj_name = match[0] if match else "" if obj_name in bpy.data.objects: obj = bpy.data.objects[obj_name] dir = os.path.join(obj["Neural_Path"], 'out') update_neural(obj, dir) elif "mix" in mat.name: match = re.match(".+?(?=_mix_mat)", mat.name) obj_name = match[0] if match else "" if obj_name in bpy.data.objects: obj = bpy.data.objects[obj_name] dir = os.path.join(obj["Algorithmic_Path"], 'out') update_mix(obj, dir) @persistent def on_addon_load(dummy): MAT_OT_MATGAN_GetInterpolations._popen = None MAT_OT_MATGAN_Generator._popen = None MAT_OT_MATGAN_InputFromFlashImage._popen = None MAT_OT_MATGAN_SuperResolution._popen = None blender_path = os.path.join(Path(__file__).parent.resolve(), 'final.blend') with bpy.data.libraries.load(blender_path, link=False) as (data_from, data_to): data_to.materials = [mat for mat in data_from.materials] group_list = ['photo_to_pbr', 'Aluminium', 'Wood', 'Plastic', 'Plaster', 'Leather', 'Silk', 'Concrete', 'Marble'] data_to.node_groups = [n for n in data_from.node_groups if n in group_list] if not os.path.exists(cache_path): os.makedirs(cache_path) else: for root, dirs, files in os.walk(cache_path): for f in files: os.unlink(os.path.join(root, f)) for d in dirs: shutil.rmtree(os.path.join(root, d)) # Load mix images names = ['Aluminium', 'Wood', 'Plastic', 'Plaster', 'Leather', 'Silk', 'Concrete', 'Marble'] for i in names: img = bpy.data.images.load(os.path.join(Path(__file__).parent.resolve(), f'algorithmic/{i}.png')) img.name = i img.preview_ensure() def update_active_mat(self, context): active_obj = bpy.context.active_object if active_obj: if context.scene.SelectWorkflow == 'MatGAN': base_name = "matgan_mat" elif context.scene.SelectWorkflow == 'NeuralMAT': base_name = "neural_mat" elif context.scene.SelectWorkflow == 'MixMAT': base_name = "mix_mat" name = f"{active_obj.name}_{base_name}" if name not in bpy.data.materials: mat = bpy.data.materials[base_name].copy() mat.name = name else: mat = bpy.data.materials[name] active_obj.active_material = mat if context.scene.SelectWorkflow == 'MatGAN' and 'MaterialGAN_Path' in active_obj: bpy.context.scene.matgan_properties.directory = active_obj['MaterialGAN_Path'] elif context.scene.SelectWorkflow == 'NeuralMAT' and 'Neural_Path' in active_obj: bpy.context.scene.neural_properties.directory = active_obj['Neural_Path'] elif context.scene.SelectWorkflow == 'MixMAT' and 'Algorithmic_Path' in active_obj: bpy.context.scene.mixmat_properties.directory = active_obj['Algorithmic_Path'] # Copy files to .cache folder def copy_to_cache(src_path, name): dst_path = os.path.join(cache_path, name) if not os.path.exists(dst_path): os.makedirs(dst_path) if os.path.isdir(src_path): for file in os.listdir(os.fsencode(src_path)): f = os.fsdecode(file) if f.endswith(".png") or f.endswith(".pt") or f.endswith('.ckpt'): shutil.copyfile(os.path.join(src_path, f), os.path.join(dst_path, f)) def register(): if on_addon_load not in bpy.app.handlers.load_post: bpy.app.handlers.load_post.append(on_addon_load) if on_addon_save not in bpy.app.handlers.save_pre: bpy.app.handlers.save_pre.append(on_addon_save) bpy.types.Scene.SelectWorkflow = bpy.props.EnumProperty( name='Material System Select', description='Selected Material System for editing and generation.', items={ ('MatGAN', 'MaterialGAN + LIIF', 'Using MaterialGAN for generation and LIIF model for upscaling. ' \ + 'Editing implemented as vector space exploration.'), ('NeuralMAT', 'Neural Material', 'Using Neural Material model for generatiog. ' \ + 'Editing implemented as material interpolations.'), ('MixMAT', 'Algorithmic generation', 'Using a Blender shader nodes approach for ' \ + 'generating textures from albedo with mix blender shader nodes for editing.') }, default='MatGAN', update=update_active_mat ) def unregister(): if on_addon_load in bpy.app.handlers.load_post: bpy.app.handlers.load_post.remove(on_addon_load) if on_addon_save in bpy.app.handlers.save_pre: bpy.app.handlers.save_pre.remove(on_addon_save) class MAT_PT_GeneratorPanel(Panel): bl_space_type = "NODE_EDITOR" bl_region_type = "UI" bl_label = "Modifier operations" bl_category = "MaterialGenerator Util" thumb_scale = 8.0 check_existing = False mix_preview = None def draw_matgan(self, context): layout = self.layout matgan = bpy.context.scene.matgan_properties # ================================================ # Draw MaterialGAN props and operators # ================================================ row = layout.row() row.prop(matgan, "progress", emboss=False, text="Status") row = layout.row() col = row.column() col.prop(matgan, "num_rend", text="Num of images") col = row.column() col.prop(matgan, "epochs", text="Epochs") row = layout.row() row.prop(matgan, "directory", text="Directory") row.operator("matgan.file_browser", icon="FILE_FOLDER", text="") row = layout.row() col = row.column() col.operator("matgan.input_from_images", text="Format flash images") row = layout.row() col = row.column() col.operator("matgan.mat_from_images", text="Generate Material") col = row.column() col.operator("matgan.stop_generator", text="", icon="PAUSE") layout.separator() # ================================================ # Draw Upscale LIIF # ================================================ row = layout.row() col = row.column() col.prop(matgan, "h_res", text="Height resolution") col = row.column() col.prop(matgan, "w_res", text="Width resolution") row = layout.row() row.operator("matgan.super_res", text="Upscale material") layout.separator() row = layout.row() row.operator("matgan.get_interpolations", text="Get interpolations") layout.separator() # ================================================ # Draw Gallery view # ================================================ if MAT_OT_MATGAN_GetInterpolations._popen is None and MAT_OT_MATGAN_Generator._popen is None: row = layout.row() row.operator("matgan.revert_material", text="Revert material to previous") self.draw_gallery(context, matgan, "matgan") def draw_gallery(self, context, gan, mode): x = MAT_OT_GalleryDirection.direction interp_dir = os.path.join(gan.directory, 'interps') out_dir = os.path.join(gan.directory, 'out') rname = f"{bpy.context.active_object.name}_{mode}" if bpy.context.active_object else mode if f'7_{x}_render.png' in bpy.data.images and f"{rname}_render.png" in bpy.data.images: layout = self.layout row = layout.row() sign = '+' if MAT_OT_GalleryDirection.direction == 1 else '-' row.operator("wm.edit_direction_toggle", text="Toggle direction") box = layout.box() cols = box.column_flow(columns=3) # Get images dir_list = sorted(glob.glob(interp_dir + f'/*_{x}_render.png')) id = 0 for dir in dir_list: if id == 4: in_box = cols.box() col = in_box.column() img = bpy.data.images[f'{rname}_render.png'] img.preview_ensure() col.template_icon(icon_value=img.preview.icon_id, scale=10) col.label(text="Current material") name = os.path.split(dir)[1] img = bpy.data.images[name] img.preview_ensure() in_box = cols.box() col = in_box.column() col.template_icon(icon_value=img.preview.icon_id, scale=10) operator = col.operator(f'{mode}.edit_move', text=f"Semantic {sign}{name[0]}") operator.direction = name[0] id += 1 def draw_neural(self, context): layout = self.layout neural = bpy.context.scene.neural_properties # ================================================ # Draw NeuralMaterial props and operators # ================================================ row = layout.row() row.prop(neural, "progress", emboss=False, text="Status") row = layout.row() col = row.column() col.prop(neural, "num_rend", text="Images") col = row.column() col.prop(neural, "epochs", text="Epochs") col = row.column() col.prop(neural, "seed", text="Seed") row = layout.row() col = row.column() col.prop(neural, "h_res", text="Height resolution") col = row.column() col.prop(neural, "w_res", text="Width resolution") row = layout.row() row.prop(neural, "directory", text="Directory") row.operator("neural.file_browser", icon="FILE_FOLDER", text="") row = layout.row() col = row.column() col.operator("neural.generator", text="Generate Material") col = row.column() col.operator("neural.stop_generator", text="", icon="PAUSE") row = layout.row() col = row.column() col.operator("neural.reseed", text="Upscale Material") layout.separator() # ================================================ # Draw NeuralMaterial interpolations operator # ================================================ row = layout.row() row.operator("neural.get_interpolations", text="Get interpolations") layout.separator() # ================================================ # Draw Gallery view # ================================================ if MAT_OT_NEURAL_GetInterpolations._popen is None and MAT_OT_NEURAL_Generator._popen is None: row = layout.row() row.operator("neural.revert_material", text="Revert material to previous") self.draw_gallery(context, neural, "neural") def draw_mixmat(self, context): layout = self.layout mix = bpy.context.scene.mixmat_properties # ================================================ # Draw Mix Materials generator operator # ================================================ row = layout.row() row.prop(mix, "progress", emboss=False, text="Status") row = layout.row() row.prop(mix, "directory", text="Directory") row.operator("mixmat.file_browser", icon="FILE_FOLDER", text="") row = layout.row() row.operator("mixmat.generator", text="Generate") layout.separator() # ================================================ # Draw Mix material interpolations operator # ================================================ row = layout.row() row.prop(mix, "material", text="Select") if 'Material' in mix.progress: row.prop(mix, "value", text="Mix level") layout.separator() row = layout.row() img = bpy.data.images[mix.material] row.template_icon(icon_value=img.preview.icon_id, scale=10) def draw(self, context): self.layout.prop(context.scene, 'SelectWorkflow') if context.scene.SelectWorkflow == 'MatGAN': self.draw_matgan(context) elif context.scene.SelectWorkflow == 'NeuralMAT': self.draw_neural(context) elif context.scene.SelectWorkflow == 'MixMAT': self.draw_mixmat(context) class MAT_OT_StatusUpdater(Operator): """Operator which runs its self from a timer""" bl_idname = "wm.modal_status_updater" bl_label = "Modal Status Updater" _sTime = 0 _timer = None _thread = None _q = Queue() def modal(self, context, event): gan = bpy.context.scene.matgan_properties if event.type == 'TIMER': if MAT_OT_MATGAN_Generator._popen: if MAT_OT_MATGAN_Generator._popen.poll() is None: try: line = self._q.get_nowait() print(line) update_matgan(bpy.context.active_object, os.path.join(gan.directory, 'out')) gan.progress = line gan.progress += f" Elapsed time: {time.time()-self._sTime:.3f}" redraw_all(context) except: pass else: name = f"{bpy.context.active_object.name}_matgan" if bpy.context.active_object else "matgan" copy_to_cache(os.path.join(gan.directory, 'out'), name) update_matgan(bpy.context.active_object, os.path.join(cache_path, name)) gan.progress = "Material generated." redraw_all(context) MAT_OT_MATGAN_Generator._popen = None self.cancel(context) gan.progress += f" Elapsed time: {time.time()-self._sTime:.3f}" return {'CANCELLED'} elif MAT_OT_MATGAN_InputFromFlashImage._popen: if MAT_OT_MATGAN_InputFromFlashImage._popen.poll() is None: try: line = self._q.get_nowait() print(line) gan.progress = line gan.progress += f" Elapsed time: {time.time()-self._sTime:.3f}" redraw_all(context) except: pass else: gan.progress = "Input ready." gan.progress += f" Elapsed time: {time.time()-self._sTime:.3f}" redraw_all(context) MAT_OT_MATGAN_InputFromFlashImage._popen = None self.cancel(context) return {'CANCELLED'} elif MAT_OT_MATGAN_SuperResolution._popen: if MAT_OT_MATGAN_SuperResolution._popen.poll() is not None: gan.progress = "Material upscaled." name = f"{bpy.context.active_object.name}_matgan" if bpy.context.active_object else "matgan" copy_to_cache(os.path.join(gan.directory, 'out'), name) update_matgan(bpy.context.active_object, os.path.join(cache_path, name)) redraw_all(context) MAT_OT_MATGAN_SuperResolution._popen = None self._thread = None self.cancel(context) gan.progress += f" Elapsed time: {time.time()-self._sTime:.3f}" return {'CANCELLED'} elif MAT_OT_MATGAN_GetInterpolations._popen: if MAT_OT_MATGAN_GetInterpolations._popen.poll() is None: try: line = self._q.get_nowait() print(line) gan.progress = line gan.progress += f" Elapsed time: {time.time()-self._sTime:.3f}" redraw_all(context) except: pass else: name = f"{bpy.context.active_object.name}_matgan" if bpy.context.active_object else "matgan" check_remove_img(f'{name}_render.png') img = bpy.data.images.load(os.path.join(gan.directory, 'out') + '/render.png') img.name = f'{name}_render.png' interp_path = os.path.join(gan.directory, 'interps') dir_list = sorted(glob.glob(interp_path + '/*_*_render.png')) for dir in dir_list: check_remove_img(os.path.split(dir)[1]) img = bpy.data.images.load(dir) img.name = os.path.split(dir)[1] gan.progress = "Material interpolations generated." gan.progress += f" Elapsed time: {time.time()-self._sTime:.3f}" redraw_all(context) MAT_OT_MATGAN_GetInterpolations._popen = None self.cancel(context) return {'CANCELLED'} elif MAT_OT_NEURAL_Generator._popen: gan = bpy.context.scene.neural_properties if MAT_OT_NEURAL_Generator._popen.poll() is None: try: line = self._q.get_nowait() print(line) update_neural(bpy.context.active_object, os.path.join(gan.directory, 'out')) gan.progress = line gan.progress += f" Elapsed time: {time.time()-self._sTime:.3f}" redraw_all(context) except: pass else: name = f"{bpy.context.active_object.name}_neural" if bpy.context.active_object else "neural" copy_to_cache(os.path.join(gan.directory, 'out'), name) update_neural(bpy.context.active_object, os.path.join(cache_path, name)) gan.progress = "Material generated." gan.progress += f" Elapsed time: {time.time()-self._sTime:.3f}" redraw_all(context) MAT_OT_NEURAL_Generator._popen = None self.cancel(context) return {'CANCELLED'} elif MAT_OT_NEURAL_GetInterpolations._popen: gan = bpy.context.scene.neural_properties if MAT_OT_NEURAL_GetInterpolations._popen.poll() is None: try: line = self._q.get_nowait() print(line) gan.progress = line gan.progress += f" Elapsed time: {time.time()-self._sTime:.3f}" redraw_all(context) except: pass else: name = f"{bpy.context.active_object.name}_neural" if bpy.context.active_object else "neural" check_remove_img(f'{name}_render.png') img = bpy.data.images.load(os.path.join(gan.directory, 'out') + '/render.png') img.name = f'{name}_render.png' interp_path = os.path.join(gan.directory, 'interps') dir_list = sorted(glob.glob(interp_path + '/*_*_render.png')) for dir in dir_list: check_remove_img(os.path.split(dir)[1]) img = bpy.data.images.load(dir) img.name = os.path.split(dir)[1] gan.progress = "Material interpolations generated." gan.progress += f" Elapsed time: {time.time()-self._sTime:.3f}" copy_to_cache(os.path.join(gan.directory, 'out'), name) update_neural(bpy.context.active_object, os.path.join(cache_path, name)) redraw_all(context) MAT_OT_NEURAL_GetInterpolations._popen = None self.cancel(context) return {'CANCELLED'} else: self.cancel(context) return {'CANCELLED'} return {'PASS_THROUGH'} def execute(self, context): self._sTime = time.time() wm = context.window_manager self._timer = wm.event_timer_add(0.1, window=context.window) wm.modal_handler_add(self) if MAT_OT_MATGAN_Generator._popen: self._thread = threading.Thread(target=enqueue_output, args=(MAT_OT_MATGAN_Generator._popen.stdout, self._q), daemon=True) elif MAT_OT_MATGAN_InputFromFlashImage._popen: self._thread = threading.Thread(target=enqueue_output, args=(MAT_OT_MATGAN_InputFromFlashImage._popen.stdout, self._q), daemon=True) elif MAT_OT_MATGAN_GetInterpolations._popen: self._thread = threading.Thread(target=enqueue_output, args=(MAT_OT_MATGAN_GetInterpolations._popen.stdout, self._q), daemon=True) elif MAT_OT_MATGAN_SuperResolution._popen: self._thread = threading.Thread(target=enqueue_output, args=(MAT_OT_MATGAN_SuperResolution._popen.stdout, self._q), daemon=True) elif MAT_OT_NEURAL_Generator._popen: self._thread = threading.Thread(target=enqueue_output, args=(MAT_OT_NEURAL_Generator._popen.stdout, self._q), daemon=True) elif MAT_OT_NEURAL_GetInterpolations._popen: self._thread = threading.Thread(target=enqueue_output, args=(MAT_OT_NEURAL_GetInterpolations._popen.stdout, self._q), daemon=True) self._thread.start() return {'RUNNING_MODAL'} def cancel(self, context): wm = context.window_manager wm.event_timer_remove(self._timer) class MAT_OT_GalleryDirection(Operator): """Operator which switches gallery edit direction""" bl_idname = "wm.edit_direction_toggle" bl_label = "Direction switch operator" direction = 1 def execute(self, context): if MAT_OT_GalleryDirection.direction == 1: MAT_OT_GalleryDirection.direction = 2 bpy.context.scene.matgan_properties.direction = MAT_OT_GalleryDirection.direction = 2 bpy.context.scene.neural_properties.direction = MAT_OT_GalleryDirection.direction = 2 else: MAT_OT_GalleryDirection.direction = 1 bpy.context.scene.matgan_properties.direction = MAT_OT_GalleryDirection.direction = 1 bpy.context.scene.neural_properties.direction = MAT_OT_GalleryDirection.direction = 1 return {'FINISHED'}
42.306878
144
0.557654
17,980
0.749541
0
0
2,377
0.099091
0
0
5,039
0.210063
e1f180db019536ccc2e9f00c32c47da031376111
4,266
py
Python
run.py
kbeyer/RPi-LED-SpectrumAnalyzer
f5a5f1210f02188599eb308f5737392ce8c93218
[ "MIT" ]
14
2015-01-09T12:26:06.000Z
2021-03-22T22:16:53.000Z
run.py
kbeyer/RPi-LED-SpectrumAnalyzer
f5a5f1210f02188599eb308f5737392ce8c93218
[ "MIT" ]
4
2015-07-19T07:20:51.000Z
2017-02-01T16:11:22.000Z
run.py
kbeyer/RPi-LED-SpectrumAnalyzer
f5a5f1210f02188599eb308f5737392ce8c93218
[ "MIT" ]
4
2016-03-07T12:12:08.000Z
2018-03-04T21:57:13.000Z
""" Main entry point for running the demo. """ # Standard library import time import sys # Third party library import alsaaudio as aa # Local library from char import show_text from hs_logo import draw_logo from leds import ColumnedLEDStrip from music import calculate_levels, read_musicfile_in_chunks, calculate_column_frequency from shairplay import initialize_shairplay, shutdown_shairplay, RaopCallbacks COLUMNS = 12 GAP_LEDS = 0 TOTAL_LEDS = 100 SKIP_LEDS = 4 SAMPLE_RATE = 44100 NUM_CHANNELS = 2 FORMAT = aa.PCM_FORMAT_S16_LE PERIOD_SIZE = 2048 frequency_limits = calculate_column_frequency(200, 10000, COLUMNS) def analyze_airplay_input(led_strip): from os.path import join lib_path = join(sys.prefix, 'lib') initialize_shairplay(lib_path, get_shairplay_callback_class(led_strip)) while True: try: pass except KeyboardInterrupt: shutdown_shairplay() break def analyze_audio_file(led_strip, path): for chunk, sample_rate in read_musicfile_in_chunks(path, play_audio=True): data = calculate_levels(chunk, sample_rate, frequency_limits) led_strip.display_data(data) def analyze_line_in(led_strip, hacker_school=True): start_time = time.time() while True: if hacker_school and time.time() - start_time > 60 * 2: hacker_school_display() start_time = time.time() size, chunk = input.read() if size > 0: L = (len(chunk)/2 * 2) chunk = chunk[:L] data = calculate_levels(chunk, SAMPLE_RATE, frequency_limits) led_strip.display_data(data[::-1]) def get_audio_input(): input = aa.PCM(aa.PCM_CAPTURE, aa.PCM_NONBLOCK) input.setchannels(NUM_CHANNELS) input.setformat(aa.PCM_FORMAT_S16_BE) input.setrate(SAMPLE_RATE) input.setperiodsize(PERIOD_SIZE) return input def get_led_strip(): led = ColumnedLEDStrip( leds=TOTAL_LEDS, columns=COLUMNS, gap_leds=GAP_LEDS, skip_leds=SKIP_LEDS ) led.all_off() return led def get_shairplay_callback_class(led_strip): class SampleCallbacks(RaopCallbacks): def audio_init(self, bits, channels, samplerate): print "Initializing", bits, channels, samplerate self.bits = bits self.channels = channels self.samplerate = samplerate min_frequency = 500 max_frequency = samplerate / 30 * 10 # Abusing integer division self.frequency_limits = calculate_column_frequency( min_frequency, max_frequency, COLUMNS ) self.buffer = '' def audio_process(self, session, buffer): data = calculate_levels(buffer, self.samplerate, self.frequency_limits, self.channels, self.bits) led_strip.display_data(data[::-1]) def audio_destroy(self, session): print "Destroying" def audio_set_volume(self, session, volume): print "Set volume to", volume def audio_set_metadata(self, session, metadata): print "Got", len(metadata), "bytes of metadata" def audio_set_coverart(self, session, coverart): print "Got", len(coverart), "bytes of coverart" return SampleCallbacks def hacker_school_display(led_strip): draw_logo(led_strip) time.sleep(1) show_text(led_strip, 'NEVER GRADUATE!', x_offset=3, y_offset=1, sleep=0.5) if __name__ == '__main__': from textwrap import dedent input_types = ('local', 'linein', 'airplay') usage = dedent("""\ Usage: %s <input-type> [additional arguments] input-type: should be one of %s To play a local file, you can pass the path to the file as an additional argument. """) % (sys.argv[0], input_types) if len(sys.argv) == 1: print usage sys.exit(1) input_type = sys.argv[1] led_strip = get_led_strip() if input_type == 'local': path = sys.argv[2] if len(sys.argv) > 2 else 'sample.mp3' analyze_audio_file(led_strip, path) elif input_type == 'airplay': analyze_airplay_input(led_strip) elif input_type == 'linein': analyze_line_in(led_strip) else: print usage sys.exit(1)
28.44
109
0.665495
1,145
0.268401
0
0
0
0
0
0
502
0.117675
e1f1f1c95fd75ee0bf2a6e9603b88f2d439ebe8f
2,924
py
Python
2020/07/solution.py
dglmoore/advent-of-code
ca6e39a842a84ad5271891535c9323e057261d44
[ "MIT" ]
null
null
null
2020/07/solution.py
dglmoore/advent-of-code
ca6e39a842a84ad5271891535c9323e057261d44
[ "MIT" ]
null
null
null
2020/07/solution.py
dglmoore/advent-of-code
ca6e39a842a84ad5271891535c9323e057261d44
[ "MIT" ]
null
null
null
import re def part1(lines, yourbag="shiny gold"): # A nice little regex that will extract a list of all bags in a given line. # The first is the outermost bag, and the rest are inner bags. pattern = re.compile(r"(?:\d*)\s*(.*?)\s*bags?[.,]?(?: contain)?\s*") # We're going to use an adjacency list mapping each bag type to the bag # types that can contain it. contained_by = dict() for line in lines: outer, *innards = pattern.findall(line) for inner in innards: if inner != 'no other': if inner in contained_by: contained_by[inner].append(outer) else: contained_by[inner] = [outer] # We're going to start at our bag type. Ask which bag types can contain it, # add those to as stack, and then add our bag type to the set of all # "working" outer bag types. Then pop the top bag type of the stack and # repeat the above process. This continues until the stack is empty. # # The answer is then the number of bags in our set (less 1 for our inital # bag). # # This is an alternative to using recursion. Really, though, it's just # doing the recursion manually. The pushing and the popping off of the # stack is done for you when you use recursion... you just can't see the # stack... it's maintained internally. For more information google "call # stack". stack = [yourbag] works = set() while len(stack) != 0: bag = stack.pop() if bag not in works: if bag in contained_by: stack.extend(contained_by[bag]) works.add(bag) return len(works) - 1 def part2(lines, yourbag="shiny gold"): # This regex is similar to part 1 except it includes the number of times an # inner bag type must occur. pattern = re.compile(r"(\d*)\s*(.*?)\s*bags?[.,]?(?: contain)?\s*") # We'll be keeping an adjacency list mapping each outer bag type to a list # of the required inner bags and their multiplicies. must_contain = dict() for line in lines: (_, outer), *innards = pattern.findall(line) for (n, inner) in innards: if inner != 'no other': if outer in must_contain: must_contain[outer].append((inner, int(n))) else: must_contain[outer] = [(inner, int(n))] # I'll leave it to you to work this one out. ;-) stack = [(yourbag, 1)] numbags = 0 while len(stack) != 0: bag, n = stack.pop() numbags += n if bag in must_contain: for innerbag, m in must_contain[bag]: stack.append((innerbag, n * m)) return numbags - 1 if __name__ == '__main__': with open("test.txt") as handle: lines = handle.readlines() print("Part I: ", part1(lines)) print("Part II:", part2(lines))
35.658537
79
0.591313
0
0
0
0
0
0
0
0
1,346
0.460328
e1f2c620730a24383f1404677c275f4158ee87bb
1,981
py
Python
src/m6_your_turtles.py
polsteaj/01-IntroductionToPython
155f56f66a5746baa4d5319d4e79c14aa857199b
[ "MIT" ]
null
null
null
src/m6_your_turtles.py
polsteaj/01-IntroductionToPython
155f56f66a5746baa4d5319d4e79c14aa857199b
[ "MIT" ]
null
null
null
src/m6_your_turtles.py
polsteaj/01-IntroductionToPython
155f56f66a5746baa4d5319d4e79c14aa857199b
[ "MIT" ]
null
null
null
""" Your chance to explore Loops and Turtles! Authors: David Mutchler, Dave Fisher, Vibha Alangar, Amanda Stouder, their colleagues and Alec Polster. """ import rosegraphics as rg ############################################################################### # DONE: 1. # On Line 5 above, replace PUT_YOUR_NAME_HERE with your own name. ############################################################################### ############################################################################### # DONE: 2. # You should have RUN the m5e_loopy_turtles module and READ its code. # (Do so now if you have not already done so.) # # Below this comment, add ANY CODE THAT YOU WANT, as long as: # 1. You construct at least 2 rg.SimpleTurtle objects. # 2. Each rg.SimpleTurtle object draws something # (by moving, using its rg.Pen). ANYTHING is fine! # 3. Each rg.SimpleTurtle moves inside a LOOP. # # Be creative! Strive for way-cool pictures! Abstract pictures rule! # # If you make syntax (notational) errors, no worries -- get help # fixing them at either this session OR at the NEXT session. # # Don't forget to COMMIT-and-PUSH when you are done with this module. ############################################################################### window = rg.TurtleWindow() my_turtle = rg.SimpleTurtle('turtle') my_turtle.pen = rg.Pen('blue', 10) my_turtle.speed = 10 your_turtle = rg.SimpleTurtle() your_turtle.pen = rg.Pen('red', 5) your_turtle.speed = 10 your_turtle.pen_up() your_turtle.forward(3) your_turtle.pen_down() size = 300 for k in range(15): my_turtle.draw_square(size) my_turtle.pen_up() my_turtle.right(45) my_turtle.forward(10) my_turtle.left(45) my_turtle.pen_down() your_turtle.draw_square(size-100) your_turtle.pen_up() your_turtle.right(45) your_turtle.forward(10) your_turtle.left(45) your_turtle.pen_down() size = size - 20 window.close_on_mouse_click()
33.576271
79
0.594144
0
0
0
0
0
0
0
0
1,266
0.639071
e1f30a4f4d1925bf5687b7cf412adf4bd33cee9b
84
py
Python
docs/ResearchSession/manage.py
VoIlAlex/pytorchresearch
c4f08cd0ec6b78788e682005c099aef4582640cb
[ "MIT" ]
1
2020-12-13T20:25:27.000Z
2020-12-13T20:25:27.000Z
docs/ResearchSession/manage.py
VoIlAlex/pytorchresearch
c4f08cd0ec6b78788e682005c099aef4582640cb
[ "MIT" ]
null
null
null
docs/ResearchSession/manage.py
VoIlAlex/pytorchresearch
c4f08cd0ec6b78788e682005c099aef4582640cb
[ "MIT" ]
null
null
null
from backbone import entry_point if __name__ == '__main__': entry_point.main()
16.8
32
0.738095
0
0
0
0
0
0
0
0
10
0.119048
e1f4c12b169ff0fc2c245e310a2a7024653caedb
116
py
Python
base.py
chenzhangyu/WeiboOAuth
a00cc5983e989bb2ea8907b8d590a0a6c750d804
[ "MIT" ]
1
2019-10-10T08:26:08.000Z
2019-10-10T08:26:08.000Z
base.py
chenzhangyu/WeiboOAuth
a00cc5983e989bb2ea8907b8d590a0a6c750d804
[ "MIT" ]
null
null
null
base.py
chenzhangyu/WeiboOAuth
a00cc5983e989bb2ea8907b8d590a0a6c750d804
[ "MIT" ]
1
2019-04-12T09:42:03.000Z
2019-04-12T09:42:03.000Z
# encoding=utf-8 __author__ = 'lance' import tornado.web class BaseHandler(tornado.web.RequestHandler): pass
12.888889
46
0.75
55
0.474138
0
0
0
0
0
0
23
0.198276
e1f4f6334ab0ff9c96e987467be3ce874e28f3d7
2,958
py
Python
paddlers/custom_models/cd/cdnet.py
huilin16/PaddleRS
ca0d6223d8e56cd3bd3cbd3a033c89f1718ce26a
[ "Apache-2.0" ]
40
2022-02-28T02:07:28.000Z
2022-03-31T09:54:29.000Z
paddlers/custom_models/cd/cdnet.py
huilin16/PaddleRS
ca0d6223d8e56cd3bd3cbd3a033c89f1718ce26a
[ "Apache-2.0" ]
5
2022-03-15T12:13:33.000Z
2022-03-31T15:54:08.000Z
paddlers/custom_models/cd/cdnet.py
huilin16/PaddleRS
ca0d6223d8e56cd3bd3cbd3a033c89f1718ce26a
[ "Apache-2.0" ]
20
2022-02-28T02:07:31.000Z
2022-03-31T11:40:40.000Z
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn class CDNet(nn.Layer): def __init__(self, in_channels=6, num_classes=2): super(CDNet, self).__init__() self.conv1 = Conv7x7(in_channels, 64, norm=True, act=True) self.pool1 = nn.MaxPool2D(2, 2, return_mask=True) self.conv2 = Conv7x7(64, 64, norm=True, act=True) self.pool2 = nn.MaxPool2D(2, 2, return_mask=True) self.conv3 = Conv7x7(64, 64, norm=True, act=True) self.pool3 = nn.MaxPool2D(2, 2, return_mask=True) self.conv4 = Conv7x7(64, 64, norm=True, act=True) self.pool4 = nn.MaxPool2D(2, 2, return_mask=True) self.conv5 = Conv7x7(64, 64, norm=True, act=True) self.upool4 = nn.MaxUnPool2D(2, 2) self.conv6 = Conv7x7(64, 64, norm=True, act=True) self.upool3 = nn.MaxUnPool2D(2, 2) self.conv7 = Conv7x7(64, 64, norm=True, act=True) self.upool2 = nn.MaxUnPool2D(2, 2) self.conv8 = Conv7x7(64, 64, norm=True, act=True) self.upool1 = nn.MaxUnPool2D(2, 2) self.conv_out = Conv7x7(64, num_classes, norm=False, act=False) def forward(self, t1, t2): x = paddle.concat([t1, t2], axis=1) x, ind1 = self.pool1(self.conv1(x)) x, ind2 = self.pool2(self.conv2(x)) x, ind3 = self.pool3(self.conv3(x)) x, ind4 = self.pool4(self.conv4(x)) x = self.conv5(self.upool4(x, ind4)) x = self.conv6(self.upool3(x, ind3)) x = self.conv7(self.upool2(x, ind2)) x = self.conv8(self.upool1(x, ind1)) return [self.conv_out(x)] class Conv7x7(nn.Layer): def __init__(self, in_ch, out_ch, norm=False, act=False): super(Conv7x7, self).__init__() layers = [ nn.Pad2D(3), nn.Conv2D( in_ch, out_ch, 7, bias_attr=(False if norm else None)) ] if norm: layers.append(nn.BatchNorm2D(out_ch)) if act: layers.append(nn.ReLU()) self.layers = nn.Sequential(*layers) def forward(self, x): return self.layers(x) if __name__ == "__main__": t1 = paddle.randn((1, 3, 512, 512), dtype="float32") t2 = paddle.randn((1, 3, 512, 512), dtype="float32") model = CDNet(6, 2) pred = model(t1, t2)[0] print(pred.shape)
38.921053
75
0.610886
2,058
0.69574
0
0
0
0
0
0
637
0.215348
e1f4fb4322ad7bde9174a243c1005f58f9c30795
1,948
py
Python
contrib/make-leap-seconds.py
dmgerman/ntpsec
28dde8422e1a949e50663ae965d58c2fdbc782b9
[ "CC-BY-4.0", "BSD-2-Clause", "NTP", "MIT", "BSD-3-Clause" ]
null
null
null
contrib/make-leap-seconds.py
dmgerman/ntpsec
28dde8422e1a949e50663ae965d58c2fdbc782b9
[ "CC-BY-4.0", "BSD-2-Clause", "NTP", "MIT", "BSD-3-Clause" ]
null
null
null
contrib/make-leap-seconds.py
dmgerman/ntpsec
28dde8422e1a949e50663ae965d58c2fdbc782b9
[ "CC-BY-4.0", "BSD-2-Clause", "NTP", "MIT", "BSD-3-Clause" ]
1
2021-09-24T18:19:49.000Z
2021-09-24T18:19:49.000Z
#!/usr/bin/env python """\ make-leap-seconds.py - make leap second file for testing Optional args are date of leap second: YYYY-MM-DD and expiration date of file. Defaults are start of tomorrow (UTC), and 28 days after the leap. "Start of tomorow" is as soon as possible for testing. """ # SPDX-License-Identifier: BSD-2-Clause from __future__ import print_function, division import datetime import sha import sys import time JAN_1970 = 2208988800 # convert Unix/POSIX epoch to NTP epoch epoch = datetime.datetime.utcfromtimestamp(0) args = sys.argv[1:] leap = time.time() days = int(leap/86400) leap = (days+1)*86400 if len(args) > 0: leapdate = datetime.datetime.strptime(args[0], "%Y-%m-%d") leap = (leapdate - epoch).total_seconds() leap = int(leap) args = args[1:] expire = leap + 28*86400 if len(args) > 0: expiredate = datetime.datetime.strptime(args[0], "%Y-%m-%d") expire = (expiredate - epoch).total_seconds() expire = int(expire) args = args[1:] leap_txt = time.asctime(time.gmtime(leap)) leap = str(leap+JAN_1970) expire_txt = time.asctime(time.gmtime(expire)) expire = str(expire+JAN_1970) update = int(time.time()) update_txt = time.asctime(time.gmtime(update)) update = str(update+JAN_1970) tai = "40" # hardwired # File format # # # is comment # #$ xxx Update Date # #@ xxx Expiration Date # #h SHA1 hash of payload # # #$ 3676924800 # #@ 3707596800 # 2272060800 10 # 1 Jan 1972 # #h dacf2c42 2c4765d6 3c797af8 2cf630eb 699c8c67 # # All dates use NTP epoch of 1900-01-01 sha1 = sha.new() print("%s %s # %s" % (leap, tai, leap_txt)) sha1.update(leap) sha1.update(tai) print("#@ %s # %s" % (expire, expire_txt)) sha1.update(expire) print("#$ %s # %s" % (update, update_txt)) sha1.update(update) digest = sha1.hexdigest() print("#h %s %s %s %s %s" % (digest[0:8], digest[8:16], digest[16:24], digest[24:32], digest[32:40])) # end
24.35
79
0.664784
0
0
0
0
0
0
0
0
748
0.383984
e1f5bc34418af89095c0d30d7b41fe28a2137a99
695
py
Python
tests/profiling/test_scheduler.py
uniq10/dd-trace-py
ca9ce1fe552cf03c2828bcd160e537336aa275d5
[ "Apache-2.0", "BSD-3-Clause" ]
1
2020-10-17T14:55:46.000Z
2020-10-17T14:55:46.000Z
tests/profiling/test_scheduler.py
uniq10/dd-trace-py
ca9ce1fe552cf03c2828bcd160e537336aa275d5
[ "Apache-2.0", "BSD-3-Clause" ]
1
2020-12-22T16:56:55.000Z
2020-12-22T16:56:55.000Z
tests/profiling/test_scheduler.py
uniq10/dd-trace-py
ca9ce1fe552cf03c2828bcd160e537336aa275d5
[ "Apache-2.0", "BSD-3-Clause" ]
1
2020-12-22T16:54:02.000Z
2020-12-22T16:54:02.000Z
# -*- encoding: utf-8 -*- from ddtrace.profiling import event from ddtrace.profiling import exporter from ddtrace.profiling import recorder from ddtrace.profiling import scheduler class _FailExporter(exporter.Exporter): @staticmethod def export(events): raise Exception("BOO!") def test_exporter_failure(): r = recorder.Recorder() exp = _FailExporter() s = scheduler.Scheduler(r, [exp]) r.push_events([event.Event()] * 10) s.flush() def test_thread_name(): r = recorder.Recorder() exp = exporter.NullExporter() s = scheduler.Scheduler(r, [exp]) s.start() assert s._worker.name == "ddtrace.profiling.scheduler:Scheduler" s.stop()
23.965517
68
0.689209
113
0.16259
0
0
69
0.099281
0
0
70
0.100719
e1f73d543e655fe197f206bbd67ec8e450d4935c
5,546
py
Python
scrape_reviews/scrape_reviews/spiders/imdb_spider.py
eshwarkoka/sentiment_analysis_on_movie_reviews
16ad65904ea1446f0b5d2f432e48581414e12c04
[ "MIT" ]
null
null
null
scrape_reviews/scrape_reviews/spiders/imdb_spider.py
eshwarkoka/sentiment_analysis_on_movie_reviews
16ad65904ea1446f0b5d2f432e48581414e12c04
[ "MIT" ]
2
2020-09-09T16:48:28.000Z
2020-09-09T16:48:36.000Z
scrape_reviews/scrape_reviews/spiders/imdb_spider.py
eshwarkoka/sentiment_analysis_on_movie_reviews
16ad65904ea1446f0b5d2f432e48581414e12c04
[ "MIT" ]
null
null
null
import scrapy,json,re,time,os,glob from scrapy.exceptions import CloseSpider from selenium import webdriver from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By from selenium.common.exceptions import TimeoutException from selenium.webdriver.chrome.options import Options #get all the imdb xpaths from xpaths.json file with open('./locators/xpaths.json') as f: xpaths = json.load(f) imdb = xpaths["imdb"][0] #define all the required variables movie_name = '' project_path = r'/Users/eshwar/Documents/projects/sentiment_analysis_on_movie_reviews/' scraped_reviews_path = project_path + "data/scraped_reviews/" predicted_reviews_path = project_path + "data/predicted_reviews/" chrome_driver_path = project_path+"scrape_reviews/chrome_driver/chromedriver" class IMDBSpider(scrapy.Spider): name = 'imdb_spider' allowed_domains = ["imdb.com"] start_urls = [ 'https://www.imdb.com/find?ref_=nv_sr_fn&q=' ] def start_requests(self): for url in self.start_urls: yield scrapy.Request(url+self.ip+"&s=tt" , dont_filter=True) def parse(self, response): #get all the globally defined variables global movie_name, project_path, scraped_reviews_path, chrome_driver_path #get first title first_title = response.xpath(imdb["first_title"]).extract() #extract title id from first title for each_split in first_title[0].split("/"): if each_split.startswith("tt"): title_id = each_split #extract movie name from first title movie_name = str(re.search(r'">(.+?)</a>', str(first_title[0])).group(1)).replace(" ","_") temp_movie_name = movie_name #put timestamp epoch = time.time() movie_name+="$#$"+str(epoch) # create temp file to store movie name temporarily with open(scraped_reviews_path + "temp.txt", 'w') as f: f.write(movie_name) #check timestamp current_dir = os.getcwd() change_dir = scraped_reviews_path os.chdir(change_dir) temp = temp_movie_name+"$#$" old_file_name = glob.glob(temp+"*") diff = 0 #flag determines if searched movie is already searched within a week or not #flag = 0 (file available) #flag = 1 (new search) flag = 1 if len(old_file_name) > 0: old_file_name = old_file_name[0] old_timestamp = old_file_name.split("$#$")[1][:-5] diff = epoch - float(old_timestamp) if diff < 604800: flag = 0 with open(project_path+"flag.txt", "w") as f: f.write(str(flag)) raise CloseSpider('file available') else: os.remove(scraped_reviews_path+old_file_name) os.remove(predicted_reviews_path+old_file_name) os.chdir(current_dir) #form imdb reviews link reviews_link = imdb["urv_link_part_1"] + title_id + imdb["urv_link_part_2"] #get chrome driver executable options = Options() options.headless = True chrome_driver = webdriver.Chrome(chrome_driver_path, chrome_options=options) #go to reviews link chrome_driver.get(reviews_link) #click load more button until the button exists while True: try: WebDriverWait(chrome_driver, 10).until(EC.element_to_be_clickable((By.XPATH, imdb["load_more_button"]))).click() except TimeoutException as ex: break #get the number of reviews num_of_reviews = chrome_driver.find_element_by_xpath(imdb["number_of_reviews"]).text reviews_no = num_of_reviews.split()[0] print(reviews_no) #open all the spoilers spoiler_click = chrome_driver.find_elements_by_xpath(imdb["spoiler_open"]) for i in range(0, len(spoiler_click)): if spoiler_click[i].is_displayed(): spoiler_click[i].click() #get all the reviews reviews = chrome_driver.find_elements_by_xpath(imdb["reviews"]) #convert reviews to list reviews_list = [str(review.text).replace("\n"," ") for review in reviews] #get all the authors authors = chrome_driver.find_elements_by_xpath(imdb["authors"]) #convert authors to list authors_list = [a.text for a in authors] #get all the review dates review_dates = chrome_driver.find_elements_by_xpath(imdb["review_dates"]) #convert review dates to list review_dates_list = [rd.text for rd in review_dates] #get all the titles titles = chrome_driver.find_elements_by_xpath(imdb["titles"]) #convert titles to list titles_list = [str(t.text).replace("\n", " ") for t in titles] #create json_data variable with authors, review dates, titles and reviews json_data = [ { "author" : a, "review_date" : rd, "title" : t, "review" : re } for a, rd, t, re in zip(authors_list, review_dates_list, titles_list, reviews_list) ] output_filename = scraped_reviews_path + movie_name + ".json" with open(output_filename, 'w') as f: json.dump(json_data, f, ensure_ascii=False, indent=4) #close the chrome driver chrome_driver.close()
36.728477
128
0.638118
4,674
0.84277
134
0.024162
0
0
0
0
1,409
0.254057
e1f89f4c50e5d75fea57eee72158205ed8c1ffe8
423
py
Python
backend/notifications/admin.py
ProgrammingLanguageLeader/TutorsApp
f2d5968b5c29ce75f5f634d6076a6e66efc76801
[ "MIT" ]
3
2019-02-24T23:30:19.000Z
2019-03-27T20:06:53.000Z
backend/notifications/admin.py
ProgrammingLanguageLeader/TutorsApp
f2d5968b5c29ce75f5f634d6076a6e66efc76801
[ "MIT" ]
1
2019-03-30T08:58:06.000Z
2019-03-30T08:58:06.000Z
backend/notifications/admin.py
ProgrammingLanguageLeader/TutorsApp
f2d5968b5c29ce75f5f634d6076a6e66efc76801
[ "MIT" ]
1
2019-03-01T20:10:19.000Z
2019-03-01T20:10:19.000Z
from django.contrib import admin from notifications.models import Notification @admin.register(Notification) class NotificationAdmin(admin.ModelAdmin): list_display = ( 'sender', 'recipient', 'creation_time', 'verb', 'unread', ) list_filter = ( 'sender', 'recipient', 'unread', 'verb', ) search_fields = ( 'verb', )
17.625
45
0.553191
310
0.732861
0
0
340
0.803783
0
0
87
0.205674
e1f95d627c633bc21a45b92e2b2fbf936f530ed6
1,916
py
Python
logistic-regression/code.py
kalpeshsnaik09/ga-learner-dsmp-repo
b0b8b0b1e8f91d6462d1ea129f86595b5200a4c4
[ "MIT" ]
null
null
null
logistic-regression/code.py
kalpeshsnaik09/ga-learner-dsmp-repo
b0b8b0b1e8f91d6462d1ea129f86595b5200a4c4
[ "MIT" ]
null
null
null
logistic-regression/code.py
kalpeshsnaik09/ga-learner-dsmp-repo
b0b8b0b1e8f91d6462d1ea129f86595b5200a4c4
[ "MIT" ]
null
null
null
# -------------- # import the libraries import numpy as np import pandas as pd import seaborn as sns from sklearn.model_selection import train_test_split import warnings warnings.filterwarnings('ignore') # Code starts here df=pd.read_csv(path) print(df.head()) X=df.drop(columns='insuranceclaim') y=df['insuranceclaim'] X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=6) # Code ends here # -------------- import matplotlib.pyplot as plt # Code starts here plt.boxplot(X_train['bmi']) plt.show() q_value=X_train['bmi'].quantile(0.95) print(y_train.value_counts()) # Code ends here # -------------- import seaborn as sns # Code starts here relation=X_train.corr() print(relation) sns.pairplot(X_train) plt.show() # Code ends here # -------------- import seaborn as sns import matplotlib.pyplot as plt # Code starts here cols=['children','sex','region','smoker'] fig,axes=plt.subplots(2,2) for i in range(2): for j in range(2): col=cols[i*2+j] sns.countplot(X_train[col],hue=y_train,ax=axes[i,j]) # Code ends here # -------------- from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score # parameters for grid search parameters = {'C':[0.1,0.5,1,5]} # Code starts here lr=LogisticRegression(random_state=9) grid=GridSearchCV(estimator=lr,param_grid=parameters) grid.fit(X_train,y_train) y_pred=grid.predict(X_test) accuracy=accuracy_score(y_test,y_pred) print(accuracy) # Code ends here # -------------- from sklearn.metrics import roc_auc_score from sklearn import metrics # Code starts here score=roc_auc_score(y_test,y_pred) y_pred_proba=grid.predict_proba(X_test)[:,1] fpr,tpr,_=metrics.roc_curve(y_test,y_pred) roc_auc=roc_auc_score(y_test,y_pred_proba) plt.plot(fpr,tpr,label="Logistic model, auc="+str(roc_auc)) # Code ends here
20.602151
80
0.731733
0
0
0
0
0
0
0
0
456
0.237996
e1fa2fd607868b6a76f691220804b86d0b59aec1
2,227
py
Python
macro_benchmark/SSD_Tensorflow/caffe_to_tensorflow.py
songhappy/ai-matrix
901078e480c094235c721c49f8141aec7a84e70e
[ "Apache-2.0" ]
180
2018-09-20T07:27:40.000Z
2022-03-19T07:55:42.000Z
macro_benchmark/SSD_Tensorflow/caffe_to_tensorflow.py
songhappy/ai-matrix
901078e480c094235c721c49f8141aec7a84e70e
[ "Apache-2.0" ]
80
2018-09-26T18:55:56.000Z
2022-02-10T02:03:26.000Z
macro_benchmark/SSD_Tensorflow/caffe_to_tensorflow.py
songhappy/ai-matrix
901078e480c094235c721c49f8141aec7a84e70e
[ "Apache-2.0" ]
72
2018-08-30T00:49:15.000Z
2022-02-15T23:22:40.000Z
"""Convert a Caffe model file to TensorFlow checkpoint format. Assume that the network built is a equivalent (or a sub-) to the Caffe definition. """ import tensorflow as tf from nets import caffe_scope from nets import nets_factory slim = tf.contrib.slim # =========================================================================== # # Main flags. # =========================================================================== # tf.app.flags.DEFINE_string( 'model_name', 'ssd_300_vgg', 'Name of the model to convert.') tf.app.flags.DEFINE_string( 'num_classes', 21, 'Number of classes in the dataset.') tf.app.flags.DEFINE_string( 'caffemodel_path', None, 'The path to the Caffe model file to convert.') FLAGS = tf.app.flags.FLAGS # =========================================================================== # # Main converting routine. # =========================================================================== # def main(_): # Caffe scope... caffemodel = caffe_scope.CaffeScope() caffemodel.load(FLAGS.caffemodel_path) tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default(): global_step = slim.create_global_step() num_classes = int(FLAGS.num_classes) # Select the network. ssd_class = nets_factory.get_network(FLAGS.model_name) ssd_params = ssd_class.default_params._replace(num_classes=num_classes) ssd_net = ssd_class(ssd_params) ssd_shape = ssd_net.params.img_shape # Image placeholder and model. shape = (1, ssd_shape[0], ssd_shape[1], 3) img_input = tf.placeholder(shape=shape, dtype=tf.float32) # Create model. with slim.arg_scope(ssd_net.arg_scope_caffe(caffemodel)): ssd_net.net(img_input, is_training=False) init_op = tf.global_variables_initializer() with tf.Session() as session: # Run the init operation. session.run(init_op) # Save model in checkpoint. saver = tf.train.Saver() ckpt_path = FLAGS.caffemodel_path.replace('.caffemodel', '.ckpt') saver.save(session, ckpt_path, write_meta_graph=False) if __name__ == '__main__': tf.app.run()
33.238806
79
0.579704
0
0
0
0
0
0
0
0
836
0.375393
e1faa2d284c1670dec2da5bc75095f1370cf8e94
1,211
py
Python
setup.py
danihodovic/django-toolshed
78d559db662488bafbd3f701f4c0c5304ae151d9
[ "MIT" ]
3
2021-08-09T11:59:16.000Z
2021-08-09T12:44:54.000Z
setup.py
danihodovic/django-toolshed
78d559db662488bafbd3f701f4c0c5304ae151d9
[ "MIT" ]
null
null
null
setup.py
danihodovic/django-toolshed
78d559db662488bafbd3f701f4c0c5304ae151d9
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os import re from setuptools import find_packages, setup def get_version(*file_paths): filename = os.path.join(os.path.dirname(__file__), *file_paths) version_file = open(filename).read() version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M) if version_match: return version_match.group(1) raise RuntimeError("Unable to find version string.") version = get_version("django_toolshed", "__init__.py") readme = open("README.md").read() setup( name="django-toolshed", version=version, description="""Your project description goes here""", long_description=readme, author="Dani Hodovic", author_email="you@example.com", url="https://github.com/danihodovic/django-toolshed", packages=find_packages(), include_package_data=True, install_requires=[], license="MIT", keywords="django,app", classifiers=[ "Development Status :: 3 - Alpha", "Framework :: Django :: 2.0", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Natural Language :: English", "Programming Language :: Python :: 3", ], )
28.162791
88
0.652353
0
0
0
0
0
0
0
0
484
0.39967
e1fcd5a6b602e7b63e359f1c120e157503211aa4
5,686
py
Python
detection/models/roi_extractors/roi_align.py
waiiinta/object_detection_lab
6af56ab1c0f595181d87163c62e613398ac96af8
[ "MIT" ]
13
2020-01-04T07:37:38.000Z
2021-08-31T05:19:58.000Z
detection/models/roi_extractors/roi_align.py
waiiinta/object_detection_lab
6af56ab1c0f595181d87163c62e613398ac96af8
[ "MIT" ]
3
2020-06-05T22:42:53.000Z
2020-08-24T07:18:54.000Z
detection/models/roi_extractors/roi_align.py
waiiinta/object_detection_lab
6af56ab1c0f595181d87163c62e613398ac96af8
[ "MIT" ]
9
2020-10-19T04:53:06.000Z
2021-08-31T05:20:01.000Z
import tensorflow as tf from detection.utils.misc import * class PyramidROIAlign(tf.keras.layers.Layer): def __init__(self, pool_shape, **kwargs): ''' Implements ROI Pooling on multiple levels of the feature pyramid. Attributes --- pool_shape: (height, width) of the output pooled regions. Example: (7, 7) ''' super(PyramidROIAlign, self).__init__(**kwargs) self.pool_shape = tuple(pool_shape) def call(self, inputs, training=True): ''' Args --- rois_list: list of [num_rois, (y1, x1, y2, x2)] in normalized coordinates. feature_map_list: List of [batch, height, width, channels]. feature maps from different levels of the pyramid. img_metas: [batch_size, 11] Returns --- pooled_rois_list: list of [num_rois, pooled_height, pooled_width, channels]. The width and height are those specific in the pool_shape in the layer constructor. ''' rois_list, feature_map_list, img_metas = inputs # [2000 ,4], list:[P2, P3, P4, P5] pad_shapes = calc_pad_shapes(img_metas) pad_areas = pad_shapes[:, 0] * pad_shapes[:, 1] # 1216*1216 num_rois_list = [rois.shape.as_list()[0] for rois in rois_list] # data:[2000] roi_indices = tf.constant( [i for i in range(len(rois_list)) for _ in range(rois_list[i].shape.as_list()[0])], dtype=tf.int32 ) #[0.....], shape:[2000] areas = tf.constant(# range(1) range(2000) [pad_areas[i] for i in range(pad_areas.shape[0]) for _ in range(num_rois_list[i])], dtype=tf.float32 )#[1216*1216, 1216*1216,...], shape:[2000] rois = tf.concat(rois_list, axis=0) # [2000, 4] # Assign each ROI to a level in the pyramid based on the ROI area. y1, x1, y2, x2 = tf.split(rois, 4, axis=1) # 4 of [2000, 1] h = y2 - y1 # [2000, 1] w = x2 - x1 # [2000, 1] # Equation 1 in the Feature Pyramid Networks paper. Account for # the fact that our coordinates are normalized here. # e.g. a 224x224 ROI (in pixels) maps to P4 roi_level = tf.math.log( # [2000] tf.sqrt(tf.squeeze(h * w, 1)) / tf.cast((224.0 / tf.sqrt(areas * 1.0)), tf.float32) ) / tf.math.log(2.0) roi_level = tf.minimum(5, tf.maximum( # [2000], clamp to [2-5] 2, 4 + tf.cast(tf.round(roi_level), tf.int32))) # roi_level will indicates which level of feature to use # Loop through levels and apply ROI pooling to each. P2 to P5. pooled_rois = [] roi_to_level = [] for i, level in enumerate(range(2, 6)): # 2,3,4,5 ix = tf.where(tf.equal(roi_level, level)) # [1999, 1], means 1999 of 2000 select P2 level_rois = tf.gather_nd(rois, ix) # boxes to crop, [1999, 4] # ROI indices for crop_and_resize. level_roi_indices = tf.gather_nd(roi_indices, ix) # [19999], data:[0....0] # Keep track of which roi is mapped to which level roi_to_level.append(ix) # Stop gradient propogation to ROI proposals level_rois = tf.stop_gradient(level_rois) level_roi_indices = tf.stop_gradient(level_roi_indices) # Crop and Resize # From Mask R-CNN paper: "We sample four regular locations, so # that we can evaluate either max or average pooling. In fact, # interpolating only a single value at each bin center (without # pooling) is nearly as effective." # # Here we use the simplified approach of a single value per bin, # which is how it's done in tf.crop_and_resize() # Result: [batch * num_rois, pool_height, pool_width, channels] pooled_rois.append(tf.image.crop_and_resize( feature_map_list[i], level_rois, level_roi_indices, self.pool_shape, method="bilinear")) # [1, 304, 304, 256], [1999, 4], [1999], [2]=[7,7]=>[1999,7,7,256] # [1999, 7, 7, 256], [], [], [1,7,7,256] => [2000, 7, 7, 256] # Pack pooled features into one tensor pooled_rois = tf.concat(pooled_rois, axis=0) # Pack roi_to_level mapping into one array and add another # column representing the order of pooled rois roi_to_level = tf.concat(roi_to_level, axis=0) # [2000, 1], 1999 of P2, and 1 other P roi_range = tf.expand_dims(tf.range(tf.shape(roi_to_level)[0]), 1) # [2000, 1], 0~1999 roi_to_level = tf.concat([tf.cast(roi_to_level, tf.int32), roi_range], axis=1) # [2000, 2], (P, range) # Rearrange pooled features to match the order of the original rois # Sort roi_to_level by batch then roi indextf.Tensor([ 0 100001 200002 ... 199801997 199901998 20101999], shape=(2000,), dtype=int32) # TF doesn't have a way to sort by two columns, so merge them and sort. sorting_tensor = roi_to_level[:, 0] * 100000 + roi_to_level[:, 1] ix = tf.nn.top_k(sorting_tensor, k=tf.shape( # k=2000 roi_to_level)[0]).indices[::-1]# reverse the order ix = tf.gather(roi_to_level[:, 1], ix) # [2000] pooled_rois = tf.gather(pooled_rois, ix) # [2000, 7, 7, 256] # 2000 of [7, 7, 256] pooled_rois_list = tf.split(pooled_rois, num_rois_list, axis=0) return pooled_rois_list
45.854839
155
0.577559
5,624
0.989096
0
0
0
0
0
0
2,735
0.481006
e1ff64213edb5548904c05273b193883e930a827
150
py
Python
examples/simple_regex/routes/__init__.py
nekonoshiri/tiny-router
3bb808bcc9f9eb368ee390179dfc5e9d48cf8600
[ "MIT" ]
null
null
null
examples/simple_regex/routes/__init__.py
nekonoshiri/tiny-router
3bb808bcc9f9eb368ee390179dfc5e9d48cf8600
[ "MIT" ]
null
null
null
examples/simple_regex/routes/__init__.py
nekonoshiri/tiny-router
3bb808bcc9f9eb368ee390179dfc5e9d48cf8600
[ "MIT" ]
null
null
null
from ..router import Router from . import create_user, get_user router = Router() router.include(get_user.router) router.include(create_user.router)
21.428571
35
0.8
0
0
0
0
0
0
0
0
0
0
c0003725e83dcd344816d0f9a584c175d9cf972f
712
py
Python
poetry/packages/constraints/any_constraint.py
vanyakosmos/poetry
b218969107e49dc57e65dbc0d349e83cbe1f44a8
[ "MIT" ]
2
2019-06-19T15:07:58.000Z
2019-11-24T14:08:55.000Z
poetry/packages/constraints/any_constraint.py
vanyakosmos/poetry
b218969107e49dc57e65dbc0d349e83cbe1f44a8
[ "MIT" ]
18
2020-01-15T04:11:31.000Z
2020-06-30T13:24:27.000Z
poetry/packages/constraints/any_constraint.py
vanyakosmos/poetry
b218969107e49dc57e65dbc0d349e83cbe1f44a8
[ "MIT" ]
1
2021-04-08T03:26:23.000Z
2021-04-08T03:26:23.000Z
from .base_constraint import BaseConstraint from .empty_constraint import EmptyConstraint class AnyConstraint(BaseConstraint): def allows(self, other): return True def allows_all(self, other): return True def allows_any(self, other): return True def difference(self, other): if other.is_any(): return EmptyConstraint() return other def intersect(self, other): return other def union(self, other): return AnyConstraint() def is_any(self): return True def is_empty(self): return False def __str__(self): return "*" def __eq__(self, other): return other.is_any()
18.736842
45
0.622191
619
0.869382
0
0
0
0
0
0
3
0.004213