hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
โŒ€
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
โŒ€
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
โŒ€
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
โŒ€
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
โŒ€
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
โŒ€
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
โŒ€
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
โŒ€
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
โŒ€
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
58bb3bdee68016c8f1865176bbbb0531b4055727
855
py
Python
lintcode/1375.2.py
jianershi/algorithm
c3c38723b9c5f1cc745550d89e228f92fd4abfb2
[ "MIT" ]
1
2021-01-08T06:57:49.000Z
2021-01-08T06:57:49.000Z
lintcode/1375.2.py
jianershi/algorithm
c3c38723b9c5f1cc745550d89e228f92fd4abfb2
[ "MIT" ]
null
null
null
lintcode/1375.2.py
jianershi/algorithm
c3c38723b9c5f1cc745550d89e228f92fd4abfb2
[ "MIT" ]
1
2021-01-08T06:57:52.000Z
2021-01-08T06:57:52.000Z
""" 1375. Substring With At Least K Distinct Characters """ class Solution: """ @param s: a string @param k: an integer @return: the number of substrings there are that contain at least k distinct characters """ def kDistinctCharacters(self, s, k): # Write your code here n = len(s) left = 0 count = [0] * 256 distinct_count = 0 substring_count = 0 for right in range(n): count[ord(s[right])] += 1 if count[ord(s[right])] == 1: distinct_count += 1 while left <= right and distinct_count >= k: substring_count += n - right count[ord(s[left])] -= 1 if count[ord(s[left])] == 0: distinct_count -= 1 left += 1 return substring_count
28.5
91
0.512281
793
0.927485
0
0
0
0
0
0
232
0.271345
58bb7d04b96141208c9caee423f5f2553e1e7354
390
py
Python
ex29_half.py
youknowone/learn-python3-thw-code-ko
3b7fccaf3eed7427e437004cfe3c4908823f5e41
[ "MIT" ]
null
null
null
ex29_half.py
youknowone/learn-python3-thw-code-ko
3b7fccaf3eed7427e437004cfe3c4908823f5e41
[ "MIT" ]
null
null
null
ex29_half.py
youknowone/learn-python3-thw-code-ko
3b7fccaf3eed7427e437004cfe3c4908823f5e41
[ "MIT" ]
null
null
null
people = 20 cats = 30 dogs = 15 if people < cats: print("๊ณ ์–‘์ด๊ฐ€ ๋„ˆ๋ฌด ๋งŽ์•„์š”! ์„ธ์ƒ์€ ๋ฉธ๋งํ•ฉ๋‹ˆ๋‹ค!") if people > cats: print("๊ณ ์–‘์ด๊ฐ€ ๋งŽ์ง€ ์•Š์•„์š”! ์„ธ์ƒ์€ ์ง€์†๋ฉ๋‹ˆ๋‹ค!") if people < dogs: print("์„ธ์ƒ์€ ์นจ์— ์ –์Šต๋‹ˆ๋‹ค!") if people > dogs: print("์„ธ์ƒ์€ ๋ง๋ž์Šต๋‹ˆ๋‹ค!") dogs += 5 if people >= dogs: print("์‚ฌ๋žŒ์€ ๊ฐœ๋ณด๋‹ค ๋งŽ๊ฑฐ๋‚˜ ๊ฐ™์Šต๋‹ˆ๋‹ค") if people <= dogs: print("์‚ฌ๋žŒ์€ ๊ฐœ๋ณด๋‹ค ์ ๊ฑฐ๋‚˜ ๊ฐ™์Šต๋‹ˆ๋‹ค.") if people == dogs: print("์‚ฌ๋žŒ์€ ๊ฐœ์ž…๋‹ˆ๋‹ค.")
13
36
0.584615
0
0
0
0
0
0
0
0
292
0.523297
58bbe52ab96a55b367459bffd53e878ab429b0e4
1,019
py
Python
env/lib/python3.6/site-packages/traits/util/tests/test_import_symbol.py
Raniac/NEURO-LEARN
3c3acc55de8ba741e673063378e6cbaf10b64c7a
[ "Apache-2.0" ]
8
2019-05-29T09:38:30.000Z
2021-01-20T03:36:59.000Z
env/lib/python3.6/site-packages/traits/util/tests/test_import_symbol.py
Raniac/neurolearn_dev
3c3acc55de8ba741e673063378e6cbaf10b64c7a
[ "Apache-2.0" ]
12
2021-03-09T03:01:16.000Z
2022-03-11T23:59:36.000Z
env/lib/python3.6/site-packages/traits/util/tests/test_import_symbol.py
Raniac/NEURO-LEARN
3c3acc55de8ba741e673063378e6cbaf10b64c7a
[ "Apache-2.0" ]
1
2020-07-17T12:49:49.000Z
2020-07-17T12:49:49.000Z
""" Tests for the import manager. """ from traits.util.api import import_symbol from traits.testing.unittest_tools import unittest class TestImportSymbol(unittest.TestCase): """ Tests for the import manager. """ def test_import_dotted_symbol(self): """ import dotted symbol """ import tarfile symbol = import_symbol("tarfile.TarFile") self.assertEqual(symbol, tarfile.TarFile) return def test_import_nested_symbol(self): """ import nested symbol """ import tarfile symbol = import_symbol("tarfile:TarFile.open") self.assertEqual(symbol, tarfile.TarFile.open) return def test_import_dotted_module(self): """ import dotted module """ symbol = import_symbol("traits.util.import_symbol:import_symbol") self.assertEqual(symbol, import_symbol) return if __name__ == "__main__": unittest.main() #### EOF ######################################################################
22.644444
79
0.614328
753
0.73896
0
0
0
0
0
0
327
0.320903
58bc5c4ebc0423782cb9f4ff3dd73ea7e914bd8c
7,692
py
Python
cubecode/ไบŒ้˜ถๆฎต็ฎ—ๆณ•ๅˆ้›†/python็‰ˆ/RubiksCube-TwophaseSolver-master/client_gui.py
YuYuCong/Color-recognition-of-Rubik-s-Cube
35d5af5383ed56d38e596983aaeda98540fdb646
[ "CC0-1.0" ]
11
2018-07-28T03:20:26.000Z
2022-02-18T07:36:35.000Z
cubecode/ไบŒ้˜ถๆฎต็ฎ—ๆณ•ๅˆ้›†/python็‰ˆ/RubiksCube-TwophaseSolver-master/client_gui.py
technicianliu/Color-recognition-of-Rubik-s-Cube
35d5af5383ed56d38e596983aaeda98540fdb646
[ "CC0-1.0" ]
null
null
null
cubecode/ไบŒ้˜ถๆฎต็ฎ—ๆณ•ๅˆ้›†/python็‰ˆ/RubiksCube-TwophaseSolver-master/client_gui.py
technicianliu/Color-recognition-of-Rubik-s-Cube
35d5af5383ed56d38e596983aaeda98540fdb646
[ "CC0-1.0" ]
9
2018-07-28T03:20:29.000Z
2021-05-09T05:54:30.000Z
# ################ A simple graphical interface which communicates with the server ##################################### from tkinter import * import socket import face import cubie # ################################## some global variables and constants ############################################### DEFAULT_HOST = 'localhost' DEFAULT_PORT = '8080' width = 60 # width of a facelet in pixels facelet_id = [[[0 for col in range(3)] for row in range(3)] for face in range(6)] colorpick_id = [0 for i in range(6)] curcol = None t = ("U", "R", "F", "D", "L", "B") cols = ("yellow", "green", "red", "white", "blue", "orange") ######################################################################################################################## # ################################################ Diverse functions ################################################### def show_text(txt): """Displays messages.""" print(txt) display.insert(INSERT, txt) root.update_idletasks() def create_facelet_rects(a): """Initializes the facelet grid on the canvas.""" offset = ((1, 0), (2, 1), (1, 1), (1, 2), (0, 1), (3, 1)) for f in range(6): for row in range(3): y = 10 + offset[f][1] * 3 * a + row * a for col in range(3): x = 10 + offset[f][0] * 3 * a + col * a facelet_id[f][row][col] = canvas.create_rectangle(x, y, x + a, y + a, fill="grey") if row == 1 and col == 1: canvas.create_text(x + width // 2, y + width // 2, font=("", 14), text=t[f], state=DISABLED) for f in range(6): canvas.itemconfig(facelet_id[f][1][1], fill=cols[f]) def create_colorpick_rects(a): """Initializes the "paintbox" on the canvas""" global curcol global cols for i in range(6): x = (i % 3)*(a+5) + 7*a y = (i // 3)*(a+5) + 7*a colorpick_id[i] = canvas.create_rectangle(x, y, x + a, y + a, fill=cols[i]) canvas.itemconfig(colorpick_id[0], width=4) curcol = cols[0] def get_definition_string(): """Generates the cube definition string from the facelet colors.""" color_to_facelet = {} for i in range(6): color_to_facelet.update({canvas.itemcget(facelet_id[i][1][1], "fill"): t[i]}) s = '' for f in range(6): for row in range(3): for col in range(3): s += color_to_facelet[canvas.itemcget(facelet_id[f][row][col], "fill")] return s ######################################################################################################################## # ############################### Solve the displayed cube with a local or remote server ############################### def solve(): """Connects to the server and returns the solving maneuver.""" display.delete(1.0, END) # clear output window try: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) except socket.error: show_text('Failed to create socket') return # host = 'f9f0b2jt6zmzyo6b.myfritz.net' # my RaspberryPi, if online host = txt_host.get(1.0, END).rstrip() # default is localhost port = int(txt_port.get(1.0, END)) # default is port 8080 try: remote_ip = socket.gethostbyname(host) except socket.gaierror: show_text('Hostname could not be resolved.') return try: s.connect((remote_ip, port)) except: show_text('Cannot connect to server!') return show_text('Connected with ' + remote_ip + '\n') try: defstr = get_definition_string()+'\n' except: show_text('Invalid facelet configuration.\nWrong or missing colors.') return show_text(defstr) try: s.sendall((defstr+'\n').encode()) except: show_text('Cannot send cube configuration to server.') return show_text(s.recv(2048).decode()) ######################################################################################################################## # ################################# Functions to change the facelet colors ############################################# def clean(): """Restores the cube to a clean cube.""" for f in range(6): for row in range(3): for col in range(3): canvas.itemconfig(facelet_id[f][row][col], fill=canvas.itemcget(facelet_id[f][1][1], "fill")) def empty(): """Removes the facelet colors except the center facelets colors.""" for f in range(6): for row in range(3): for col in range(3): if row != 1 or col != 1: canvas.itemconfig(facelet_id[f][row][col], fill="grey") def random(): """Generates a random cube and sets the corresponding facelet colors.""" cc = cubie.CubieCube() cc.randomize() fc = cc.to_facelet_cube() idx = 0 for f in range(6): for row in range(3): for col in range(3): canvas.itemconfig(facelet_id[f][row][col], fill=cols[fc.f[idx]] ) idx += 1 ######################################################################################################################## # ################################### Edit the facelet colors ########################################################## def click(event): """Defines how to react on left mouse clicks""" global curcol idlist = canvas.find_withtag("current") if len(idlist) > 0: if idlist[0] in colorpick_id: curcol = canvas.itemcget("current", "fill") for i in range(6): canvas.itemconfig(colorpick_id[i], width=1) canvas.itemconfig("current", width=5) else: canvas.itemconfig("current", fill=curcol) ######################################################################################################################## # ###################################### Generate and display the TK_widgets ########################################## root = Tk() root.wm_title("Solver Client") canvas = Canvas(root, width=12 * width + 20, height=9 * width + 20) canvas.pack() bsolve = Button(text="Solve", height=2, width=10, relief=RAISED, command=solve) bsolve_window = canvas.create_window(10 + 10.5 * width, 10 + 6.5 * width, anchor=NW, window=bsolve) bclean = Button(text="Clean", height=1, width=10, relief=RAISED, command=clean) bclean_window = canvas.create_window(10 + 10.5 * width, 10 + 7.5 * width, anchor=NW, window=bclean) bempty = Button(text="Empty", height=1, width=10, relief=RAISED, command=empty) bempty_window = canvas.create_window(10 + 10.5 * width, 10 + 8 * width, anchor=NW, window=bempty) brandom = Button(text="Random", height=1, width=10, relief=RAISED, command=random) brandom_window = canvas.create_window(10 + 10.5 * width, 10 + 8.5 * width, anchor=NW, window=brandom) display = Text(height=7, width=39) text_window = canvas.create_window(10 + 6.5 * width, 10 + .5 * width, anchor=NW, window=display) hp = Label(text=' Hostname and Port') hp_window = canvas.create_window(10 + 0 * width, 10 + 0.6 * width, anchor=NW, window=hp) txt_host = Text(height=1, width=20) txt_host_window = canvas.create_window(10 + 0 * width, 10 + 1 * width, anchor=NW, window=txt_host) txt_host.insert(INSERT, DEFAULT_HOST) txt_port = Text(height=1, width=20) txt_port_window = canvas.create_window(10 + 0 * width, 10 + 1.5 * width, anchor=NW, window=txt_port) txt_port.insert(INSERT, DEFAULT_PORT) canvas.bind("<Button-1>", click) create_facelet_rects(width) create_colorpick_rects(width) root.mainloop() ########################################################################################################################
40.484211
120
0.518201
0
0
0
0
0
0
0
0
2,643
0.343604
58bc76fe979d8a17599711a8021f4425b357315a
1,159
py
Python
bootcamp/wiki/core/compat.py
basiltiger/easy_bootcamp
875b9ed287f1a7824bb38f142dbe2f3b1ce54389
[ "MIT" ]
null
null
null
bootcamp/wiki/core/compat.py
basiltiger/easy_bootcamp
875b9ed287f1a7824bb38f142dbe2f3b1ce54389
[ "MIT" ]
null
null
null
bootcamp/wiki/core/compat.py
basiltiger/easy_bootcamp
875b9ed287f1a7824bb38f142dbe2f3b1ce54389
[ "MIT" ]
null
null
null
"""Abstraction layer to deal with Django related changes in order to keep compatibility with several Django versions simultaneously.""" from __future__ import unicode_literals from django.conf import settings as django_settings USER_MODEL = getattr(django_settings, 'AUTH_USER_MODEL', 'auth.User') # Django 1.11 Widget.build_attrs has a different signature, designed for the new # template based rendering. The previous version was more useful for our needs, # so we restore that version. # When support for Django < 1.11 is dropped, we should look at using the # new template based rendering, at which point this probably won't be needed at all. class BuildAttrsCompat(object): def build_attrs_compat(self, extra_attrs=None, **kwargs): "Helper function for building an attribute dictionary." attrs = self.attrs.copy() if extra_attrs is not None: attrs.update(extra_attrs) if kwargs is not None: attrs.update(kwargs) return attrs try: # Python 3 from urllib.parse import urljoin # noqa except ImportError: # Python 2 from urlparse import urljoin # noqa @UnusedImport
36.21875
84
0.734254
350
0.301984
0
0
0
0
0
0
608
0.52459
58bd378d11da26df2129a68edbd47f10e2375dc5
10,649
py
Python
ethereum.py/ethereum/clients/ethereum.py
dixonwhitmire/connect-clients
09bf6f53f0a4fc923d1fb18f75ce86521880517c
[ "Apache-2.0" ]
null
null
null
ethereum.py/ethereum/clients/ethereum.py
dixonwhitmire/connect-clients
09bf6f53f0a4fc923d1fb18f75ce86521880517c
[ "Apache-2.0" ]
6
2021-07-13T19:58:58.000Z
2021-11-02T21:25:14.000Z
ethereum.py/ethereum/clients/ethereum.py
dixonwhitmire/connect-clients
09bf6f53f0a4fc923d1fb18f75ce86521880517c
[ "Apache-2.0" ]
1
2021-07-13T19:22:04.000Z
2021-07-13T19:22:04.000Z
""" ethereum.py ethereum.py contains an EthereumClient class that provides functions for interacting with the Coverage.sol solidity contract on an Ethereum blockchain network. """ import asyncio import datetime import json import logging import os from ethereum.clients.nats import get_nats_client from ethereum.config import get_settings, nats_eligibility_subject from ethereum.exceptions import EthereumNetworkConnectionError from hexbytes import HexBytes from typing import Optional, Any, List from web3 import Web3 logger = logging.getLogger(__name__) # client instance eth_client = None class EthereumClient: """ Ethereum client for LFH that utilizes the Web3 library for interacting with an Ethereum blockchain network. """ def __init__(self, **qwargs): logger.debug("Initializing EthereumClient") self.eth_network_uri = qwargs["eth_network_uri"] logger.debug("Initializing Web3") self.client: Optional[Web3] = Web3(Web3.HTTPProvider(self.eth_network_uri)) self.from_acct = {"from": self.client.eth.accounts[0]} if (self.client and self.client.isConnected()): logger.info(f"Connected to the Ethereum network at: {self.eth_network_uri}") self.contract = self.client.eth.contract(address=qwargs["contract_address"], abi=qwargs["contract_abi"]) event_filter = self.contract.events.EligibilityResult.createFilter(fromBlock="latest") self.cancelled = False contract_event_loop = asyncio.get_event_loop() contract_event_loop.create_task(self.event_loop(event_filter, qwargs["event_poll_interval"])) logger.info(f"Connected to the contract at: {qwargs['contract_address']}") else: error_msg = f"Failed to connect to the Ethereum network at: {self.eth_network_uri}" logger.error(error_msg) raise EthereumNetworkConnectionError(error_msg) def add_coverage_resource(self, path: str, fhir_json: Any, payor_ref: str, subscriber_ref: str, coverage_start: int, coverage_end: int): """ Send a Coverage FHIR resource to the Coverage.sol contract. :param path: FHIR path of the resource, e.g. /Coverage/001 :param fhir_json: The string representation of the FHIR resource :param payor_ref: coverage.payor[0].reference :param subscriber_ref: coverage.subscriber.reference :param coverage_start: coverage.period.start converted to a timestamp :param coverage_end: coverage.period.end converted to a timestamp :return: The hash of the submitted transaction or None """ if not self.client.isConnected(): error = f"Not connected to the Ethereum network" logger.error(error) return {"error": error} try: tx_hash = self.contract.functions.add_coverage_resource(path, json.dumps(fhir_json), payor_ref, subscriber_ref, coverage_start, coverage_end).transact(self.from_acct) tx_receipt = self.client.eth.waitForTransactionReceipt(tx_hash) receipt_dict = dict(tx_receipt) hash_str = receipt_dict["transactionHash"].hex() logger.info(f"tx hash: {hash_str}") return {"result": hash_str} except Exception as ex: error = f"Transaction error {ex}" logger.error(error) return {"error": error} def check_eligibility(self, path: str, fhir_json: Any, insurer_ref: str, patient_ref: str, coverage_ref: str, coverage_date: int): """ Send a CoverageEligibilityRequest FHIR resource to the Coverage.sol contract. :param path: FHIR path of the resource, e.g. /CoverageEligibilityRequest/001 :param fhir_json: The string representation of the FHIR resource :param insurer_ref: coverageeligibilityrequest.insurer.reference :param patient_ref: coverageeligibilityrequest.patient.reference :param coverage_ref: coverageeligibilityrequest.insurance[0].coverage :param coverage_date: coverageeligibilityrequest.created converted to a timestamp :return: The hash of the submitted transaction or None """ if not self.client.isConnected(): error = f"Not connected to the Ethereum network" logger.error(error) return {"error": error} try: tx_hash = self.contract.functions.check_eligibility(path, json.dumps(fhir_json), insurer_ref, patient_ref, coverage_ref, coverage_date).transact(self.from_acct) tx_receipt = self.client.eth.waitForTransactionReceipt(tx_hash) receipt_dict = dict(tx_receipt) hash_str = receipt_dict["transactionHash"].hex() logger.info(f"tx hash: {hash_str}") return {"result": hash_str} except Exception as ex: error = f"Transaction error {ex}" logger.error(error) return {"error": error} def add_fhir_resource(self, fhir_type: str, path: str, fhir_json: Any): """ Send a Patient or Organization FHIR resource to the Coverage.sol contract. :param fhir_type: FHIR type of the resource, e.g. Patient :param path: FHIR path of the resource, e.g. /Patient/001 :param fhir_json: The string representation of the FHIR resource :return: The hash of the submitted transaction or None """ if not self.client.isConnected(): error = f"Not connected to the Ethereum network" logger.error(error) return {"error": error} try: tx_hash = self.contract.functions.add_fhir_resource(fhir_type, path, json.dumps(fhir_json)).transact(self.from_acct) tx_receipt = self.client.eth.waitForTransactionReceipt(tx_hash) receipt_dict = dict(tx_receipt) hash_str = receipt_dict["transactionHash"].hex() logger.info(f"tx hash: {hash_str}") return {"result": hash_str} except Exception as ex: error = f"Transaction error {ex}" logger.error(error) return {"error": error} def close(self): self.cancelled = True async def event_loop(self, event_filter, poll_interval: int): while not self.cancelled: for event in event_filter.get_new_entries(): await self.handle_event(json.loads(Web3.toJSON(event))) await asyncio.sleep(poll_interval) async def handle_event(self, event: dict): """ Send a FHIR CoverageEligibilityResponse based on the eligibility decision from the contract. :param event: The JSON contract event containing the eligibility decision and supporting info. """ logger.trace(f"Received contract event: {event}") path: List[str] = event["args"]["path"].split("/") request_id: str = path[1] result: bool = event["args"]["result"] disposition: str = "Policy is currently in effect." if not result: disposition = "Policy is not in effect." today: str = datetime.date.today().isoformat() message: Any = { "resourceType": "CoverageEligibilityResponse", "id": request_id, "text": { "status": "generated", "div": "<div xmlns=\"http://www.w3.org/1999/xhtml\">A human-readable rendering of the CoverageEligibilityResponse.</div>" }, "identifier": [ { "system": "http://localhost:5000/fhir/coverageeligibilityresponse/" + request_id, "value": request_id } ], "status": "active", "purpose": [ "validation" ], "patient": { "reference": event["args"]["patient_ref"] }, "created": today, "request": { "reference": "http://www.BenefitsInc.com/fhir/coverageeligibilityrequest/" + request_id }, "outcome": "complete", "disposition": disposition, "insurer": { "reference": event["args"]["insurer_ref"] }, "insurance": [ { "coverage": { "reference": event["args"]["coverage_ref"] }, "inforce": result } ] }; nats_client = await get_nats_client() msg_str = json.dumps(message) logger.info(f"CoverageEligibilityResponse: {msg_str}") await nats_client.publish(nats_eligibility_subject, bytearray(msg_str, "utf-8")) logger.trace("Sent CoverageEligibilityResponse via NATS") def get_ethereum_client() -> Optional[EthereumClient]: """ :return: a connected EthereumClient instance """ global eth_client if not eth_client: settings = get_settings() # load ABI file abi_file: str = os.path.join(settings.ethereum_config_directory, settings.ethereum_contract_abi) contract_info = json.load(open(abi_file)) eth_client = EthereumClient( eth_network_uri=settings.ethereum_network_uri, contract_address=settings.ethereum_contract_address, contract_abi=contract_info["abi"], event_poll_interval=settings.ethereum_event_poll_seconds ) return eth_client def stop_ethereum_client(): client = get_ethereum_client() client.close() class HexJsonEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, HexBytes): return obj.hex() return super().default(obj)
42.426295
137
0.582966
9,273
0.870786
0
0
0
0
2,580
0.242276
3,673
0.344915
58bd44d4180b36c4fc8b719cc1462f1b22fa94a6
1,759
py
Python
cli/actions/mc_combination_action.py
daneshvar-amrollahi/polar
b72254e1a8354e6a10135cd3990b8edfda02559e
[ "MIT" ]
1
2021-11-14T05:52:21.000Z
2021-11-14T05:52:21.000Z
cli/actions/mc_combination_action.py
daneshvar-amrollahi/polar
b72254e1a8354e6a10135cd3990b8edfda02559e
[ "MIT" ]
null
null
null
cli/actions/mc_combination_action.py
daneshvar-amrollahi/polar
b72254e1a8354e6a10135cd3990b8edfda02559e
[ "MIT" ]
null
null
null
from argparse import Namespace from .action import Action from symengine.lib.symengine_wrapper import sympify from termcolor import colored from program.mc_comb_finder import MCCombFinder from cli.common import prepare_program class MCCombinationAction(Action): cli_args: Namespace def __init__(self, cli_args: Namespace): self.cli_args = cli_args def __call__(self, *args, **kwargs): benchmark = args[0] combination_deg = self.cli_args.mc_comb_deg program = prepare_program(benchmark, self.cli_args) if len(program.non_mc_variables) == 0: print(f"--mc_comb not applicable to {benchmark} since all variables are already moment computable.") return combination_vars = [] if len(combination_vars) == 0: for var in program.non_mc_variables: if var in program.original_variables: combination_vars.append(var) else: combination_vars = [sympify(v) for v in self.cli_args.mc_comb] print(colored("-------------------", "cyan")) print(colored("- Analysis Result -", "cyan")) print(colored("-------------------", "cyan")) print() combinations = MCCombFinder.find_good_combination( combination_vars, combination_deg, program, self.cli_args.numeric_roots, self.cli_args.numeric_croots, self.cli_args.numeric_eps ) if combinations is None: print(f"No combination found with degree {combination_deg}. Try using other degrees.") else: for combination in combinations: candidate, solution = combination[0], combination[1] print(f"E({candidate})[n] = {solution}")
37.425532
114
0.637862
1,529
0.869244
0
0
0
0
0
0
286
0.162592
58c073b6ae4e5dbeb4eb910c743f8e1c8773b328
494
py
Python
docker/gunicorn.py
admariner/madewithwagtail
a43b3263c0f151ece4994fccd561b0575db4979f
[ "MIT" ]
null
null
null
docker/gunicorn.py
admariner/madewithwagtail
a43b3263c0f151ece4994fccd561b0575db4979f
[ "MIT" ]
null
null
null
docker/gunicorn.py
admariner/madewithwagtail
a43b3263c0f151ece4994fccd561b0575db4979f
[ "MIT" ]
null
null
null
import gunicorn accesslog = "-" errorlog = "-" access_log_format = '%(h)s %(l)s %(u)s %(t)s "%(r)s" %(s)s %(b)s "%(f)s" "%(a)s" "%({X-Forwarded-For}i)s"' capture_output = True forwarded_allow_ips = "*" secure_scheme_headers = {"X-CLOUDFRONT": "yes"} workers = 2 worker_class = "gthread" worker_connections = 5 bind = ":8000" keep_alive = 75 chdir = "/madewithwagtail" # Obfuscate the Server header (to the md5sum of "Springload") gunicorn.SERVER_SOFTWARE = "04e96149a2f64d6135c82d199ab62122"
27.444444
106
0.690283
0
0
0
0
0
0
0
0
243
0.491903
58c135e6998a8525b0faabf5c07d8105ddf708e8
1,596
py
Python
Lista 2/Questao_1.py
flaviomelo10/Python-para-PLN
845da043c2618f3aace655cf065fca3d866342d5
[ "MIT" ]
null
null
null
Lista 2/Questao_1.py
flaviomelo10/Python-para-PLN
845da043c2618f3aace655cf065fca3d866342d5
[ "MIT" ]
null
null
null
Lista 2/Questao_1.py
flaviomelo10/Python-para-PLN
845da043c2618f3aace655cf065fca3d866342d5
[ "MIT" ]
null
null
null
# -- encoding:utf-8 -- # ''' Crie uma variรกvel com a string โ€œ instituto de ciรชncias matemรกticas e de computaรงรฃoโ€ e faรงa: a. Concatene (adicione) uma outra string chamada โ€œuspโ€ b. Concatene (adicione) uma outra informaรงรฃo: 2021 c. Verifique o tamanho da nova string (com as informaรงรตes adicionadas das questรตes a e b), com referรชncia a caracteres e espaรงos d. Transforme a string inteiramente em maiรบsculo e. Transforme a string inteiramente em minรบsculo f. Retire o espaรงo que estรก no inรญcio da string e imprima a string g. Substitua todas as letras โ€˜aโ€™ por โ€˜xโ€™ h. Separe a string em palavras รบnicas i. Verifique quantas palavras existem na string j. Separe a string por meio da palavra โ€œdeโ€ k. Verifique agora quantas palavras/frases foram formadas quando houve a separaรงรฃo pela palavra โ€œdeโ€ l. Junte as palavras que foram separadas (pode usar a separaรงรฃo resultante da questรฃo h ou j) m. Junte as palavras que foram separadas, mas agora separadas por uma barra invertida, nรฃo por espaรงos (pode usar a separaรงรฃo resultante da questรฃo h ou j) ''' texto = " instituto de ciรชncias matemรกticas e de computaรงรฃo" #a) texto = texto + " usp" print(texto) #b) texto = texto + " 2021" print(texto) #c) tamanho = len(texto) print(tamanho) #d) print(texto.upper()) #e) print(texto.lower()) #f) print(texto[1:]) print(texto.strip()) #g) print(texto.replace('a', 'x')) #h separar = texto.split() print(separar) #i) print(separar) #j) separar2 = texto.split('de') print(separar2) #k) print(len(separar2)) #l) juntar = " ".join(separar) print(juntar) #m) juntar2 = "/".join(separar) print(juntar2)
24.181818
155
0.734962
0
0
0
0
0
0
0
0
1,221
0.738657
58c1cf2e7948459916f7782bc8f6b76e361226be
753
py
Python
breadcrumbs/templatetags/breadcrumbs_tags.py
LinuxOSsk/Shakal-NG
c4091c7972cffd86f64aa9f9a058d2907a56e5eb
[ "MIT" ]
10
2016-02-06T15:40:30.000Z
2018-09-27T15:15:13.000Z
breadcrumbs/templatetags/breadcrumbs_tags.py
LinuxOSsk/Shakal-NG
c4091c7972cffd86f64aa9f9a058d2907a56e5eb
[ "MIT" ]
94
2016-02-04T18:39:36.000Z
2022-01-20T05:25:00.000Z
breadcrumbs/templatetags/breadcrumbs_tags.py
LinuxOSsk/Shakal-NG
c4091c7972cffd86f64aa9f9a058d2907a56e5eb
[ "MIT" ]
8
2016-05-10T20:29:53.000Z
2021-02-07T00:50:31.000Z
# -*- coding: utf-8 -*- from django.shortcuts import resolve_url from django.template.loader import render_to_string from django_jinja import library from jinja2 import contextfunction @contextfunction @library.global_function def breadcrumb(context, contents, *args, **kwargs): class_name = kwargs.pop('class', False) url = kwargs.pop('url', False) if url is not False: url = resolve_url(url, *args, **kwargs) breadcrumb_context = { 'contents': contents, 'url': url, 'class': class_name } context['breadcrumbs'].append(breadcrumb_context) return '' @library.global_function def render_breadcrumbs(breadcrumbs): breadcrumbs.reverse() ctx = {'breadcrumbs': breadcrumbs} return render_to_string('breadcrumbs/breadcrumbs.html', ctx)
25.1
61
0.755644
0
0
0
0
562
0.746348
0
0
115
0.152722
58c23fc6ab7f8d080ab7dfae6e27ec6257ea2869
1,334
py
Python
contrib/opencensus-ext-datadog/opencensus/ext/datadog/transport.py
Flared/opencensus-python
e2535e688a50c7a06be8af93ca3b987d387da605
[ "Apache-2.0" ]
650
2017-07-09T02:08:10.000Z
2022-03-22T20:39:54.000Z
contrib/opencensus-ext-datadog/opencensus/ext/datadog/transport.py
Flared/opencensus-python
e2535e688a50c7a06be8af93ca3b987d387da605
[ "Apache-2.0" ]
735
2017-07-26T01:15:16.000Z
2022-03-29T20:17:20.000Z
contrib/opencensus-ext-datadog/opencensus/ext/datadog/transport.py
Flared/opencensus-python
e2535e688a50c7a06be8af93ca3b987d387da605
[ "Apache-2.0" ]
256
2017-07-24T18:29:15.000Z
2022-03-15T15:33:03.000Z
import platform import requests class DDTransport(object): """ DDTransport contains all the logic for sending Traces to Datadog :type trace_addr: str :param trace_addr: trace_addr specifies the host[:port] address of the Datadog Trace Agent. """ def __init__(self, trace_addr): self._trace_addr = trace_addr self._headers = { "Datadog-Meta-Lang": "python", "Datadog-Meta-Lang-Interpreter": platform.platform(), # Following the example of the Golang version it is prefixed # OC for Opencensus. "Datadog-Meta-Tracer-Version": "OC/0.0.1", "Content-Type": "application/json", } @property def trace_addr(self): """ specifies the host[:port] address of the Datadog Trace Agent. """ return self._trace_addr @property def headers(self): """ specifies the headers that will be attached to HTTP request sent to DD. """ return self._headers def send_traces(self, trace): """ Sends traces to the Datadog Tracing Agent :type trace: dic :param trace: Trace dictionary """ requests.post("http://" + self.trace_addr + "/v0.4/traces", json=trace, headers=self.headers)
28.382979
83
0.595202
1,298
0.973013
0
0
310
0.232384
0
0
721
0.54048
58c4071d4471ff72fd95738a79b453160bfc2e4b
252
py
Python
credsweeper/file_handler/analysis_target.py
ARKAD97/CredSweeper
0f613cded13d6c28c19c57eac54dd245b2c318ea
[ "MIT" ]
null
null
null
credsweeper/file_handler/analysis_target.py
ARKAD97/CredSweeper
0f613cded13d6c28c19c57eac54dd245b2c318ea
[ "MIT" ]
null
null
null
credsweeper/file_handler/analysis_target.py
ARKAD97/CredSweeper
0f613cded13d6c28c19c57eac54dd245b2c318ea
[ "MIT" ]
null
null
null
from typing import List class AnalysisTarget: def __init__(self, line: str, line_num: int, lines: List[str], file_path: str): self.line = line self.line_num = line_num self.lines = lines self.file_path = file_path
25.2
83
0.650794
225
0.892857
0
0
0
0
0
0
0
0
58c4179e5713c05abfe6169f74df8cd9ca6987a4
5,558
py
Python
model/vgg_deeplab.py
ireina7/zero-shot-segmentation
870d08ad7ea3965f006d0eb44667f6ecd87ef205
[ "MIT" ]
null
null
null
model/vgg_deeplab.py
ireina7/zero-shot-segmentation
870d08ad7ea3965f006d0eb44667f6ecd87ef205
[ "MIT" ]
null
null
null
model/vgg_deeplab.py
ireina7/zero-shot-segmentation
870d08ad7ea3965f006d0eb44667f6ecd87ef205
[ "MIT" ]
null
null
null
import torchvision import torch import torch.nn as nn import torch.nn.functional as F class Vgg_Deeplab(nn.Module): def __init__(self,*args, **kwargs): super(Vgg_Deeplab, self).__init__() vgg16 = torchvision.models.vgg16() layers = [] layers.append(nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)) layers.append(nn.ReLU(inplace=True)) layers.append(nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)) layers.append(nn.ReLU(inplace=True)) layers.append(nn.MaxPool2d(3, stride=2, padding=1)) layers.append(nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)) layers.append(nn.ReLU(inplace=True)) layers.append(nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1)) layers.append(nn.ReLU(inplace=True)) layers.append(nn.MaxPool2d(3, stride=2, padding=1)) layers.append(nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)) layers.append(nn.ReLU(inplace=True)) layers.append(nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)) layers.append(nn.ReLU(inplace=True)) layers.append(nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)) layers.append(nn.ReLU(inplace=True)) layers.append(nn.MaxPool2d(3, stride=2, padding=1)) layers.append(nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)) layers.append(nn.ReLU(inplace=True)) layers.append(nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)) layers.append(nn.ReLU(inplace=True)) layers.append(nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)) layers.append(nn.ReLU(inplace=True)) layers.append(nn.MaxPool2d(3, stride=1, padding=1)) layers.append(nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=2, dilation=2)) layers.append(nn.ReLU(inplace=True)) layers.append(nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=2, dilation=2)) layers.append(nn.ReLU(inplace=True)) layers.append(nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=2, dilation=2)) layers.append(nn.ReLU(inplace=True)) layers.append(nn.MaxPool2d(3, stride=1, padding=1)) self.features = nn.Sequential(*layers) classifier = [] classifier.append(nn.AvgPool2d(3, stride=1, padding=1)) classifier.append(nn.Conv2d(512, 1024, kernel_size=3, stride=1, padding=12, dilation=12)) classifier.append(nn.ReLU(inplace=True)) classifier.append(nn.Dropout(p=0.5)) self.classifier = nn.Sequential(*classifier) self.init_weights() def forward(self, x): x = self.features(x) x = self.classifier(x) return x def init_weights(self): vgg = torchvision.models.vgg16(pretrained=True) state_vgg = vgg.features.state_dict() self.features.load_state_dict(state_vgg) for ly in self.classifier.children(): if isinstance(ly, nn.Conv2d): nn.init.kaiming_normal_(ly.weight, a=1) nn.init.constant_(ly.bias, 0) def get_1x_lr_params(self): """ This generator returns all the parameters for the last layer of the net, which does the classification of pixel into classes """ # b = [] # # b.append(self.conv1) # b.append(self.bn1) # b.append(self.layer1) # b.append(self.layer2) # b.append(self.layer3) # b.append(self.layer4) for i in self.features: #for j in self.features[i].modules(): jj = 0 for k in i.parameters(): jj += 1 if k.requires_grad: yield k def optim_parameters_1x(self, args): return [{"params": self.get_1x_lr_params(), "lr": 1 * args.learning_rate}] def get_10x_lr_params(self): """ This generator returns all the parameters for the last layer of the net, which does the classification of pixel into classes """ # b = [] # b.append(self.layer.parameters()) for i in self.classifier: #for j in self.classifier[i].modules(): jj = 0 for k in i.parameters(): jj += 1 if k.requires_grad: yield k def optim_parameters_10x(self, args): return [{"params": self.get_10x_lr_params(), "lr": 10 * args.learning_rate}] if __name__ == "__main__": net = Vgg_Deeplab(3, 10) in_ten = torch.randn(1, 3, 224, 224) out = net(in_ten) print(net) print(out.size()) in_ten = torch.randn(1, 3, 64, 64) mod = nn.Conv2d(3, 512, kernel_size=3, stride=1, padding=2, dilation=2) out = mod(in_ten) print(out.shape)
35.858065
84
0.526268
5,052
0.90896
1,119
0.201331
0
0
0
0
608
0.109392
58c5f8a4b5b023272ffe37f64fa23b186bdc1cd0
510
py
Python
web/app.py
erberlin/themepark-times-API
0b6a44224c3d5e1f98399ac30e96e35bad38849e
[ "MIT" ]
7
2019-04-19T16:32:24.000Z
2019-07-10T12:41:50.000Z
web/app.py
erberlin/themepark-times-API
0b6a44224c3d5e1f98399ac30e96e35bad38849e
[ "MIT" ]
null
null
null
web/app.py
erberlin/themepark-times-API
0b6a44224c3d5e1f98399ac30e96e35bad38849e
[ "MIT" ]
1
2019-07-10T04:36:43.000Z
2019-07-10T04:36:43.000Z
# -*- coding: utf-8 -*- """ This module defines a connexion app object and configures the API endpoints based the swagger.yml configuration file. copyright: ยฉ 2019 by Erik R Berlin. license: MIT, see LICENSE for more details. """ import connexion app = connexion.App(__name__, specification_dir="./") app.app.url_map.strict_slashes = False app.add_api("swagger.yml") if __name__ == "__main__": # FLASK_ENV=development & FLASK_DEBUG=1 w/ Docker don't seem to enable debug mode. app.run(debug=True)
25.5
86
0.731373
0
0
0
0
0
0
0
0
340
0.665362
58c6d6c03c23a334c302f4903855ceb65421ce9b
2,341
py
Python
CLIMATExScience/air-pollution-index/data-visualization/pollutant-freq.py
MY-Climate-Observatory/myco-data
5203fa63c7ce609bbc9bbc4186f55da78befdc50
[ "CC-BY-4.0" ]
null
null
null
CLIMATExScience/air-pollution-index/data-visualization/pollutant-freq.py
MY-Climate-Observatory/myco-data
5203fa63c7ce609bbc9bbc4186f55da78befdc50
[ "CC-BY-4.0" ]
null
null
null
CLIMATExScience/air-pollution-index/data-visualization/pollutant-freq.py
MY-Climate-Observatory/myco-data
5203fa63c7ce609bbc9bbc4186f55da78befdc50
[ "CC-BY-4.0" ]
1
2021-12-16T04:56:09.000Z
2021-12-16T04:56:09.000Z
# -*- coding: utf-8 -*- """ 17 June 2020 Author: Xiandi Ooi Visualizing the types of pollutants. """ import pandas as pd from plotly.offline import plot import plotly.graph_objects as go # Get the file from us df = pd.read_csv(https://www.dropbox.com/s/u0ymg0ufne0an60/api-20200713.csv?dl=1", sep = ";") # Make the selection selected_area = "Sandakan" df_select = df.loc[(df.Area == selected_area), ["Area", "Dominant", "Datetime"]] # Data wrangling for this particular visual df_update = df_select.set_index(pd.DatetimeIndex(df_select["Datetime"])) df_update.drop(df_update.columns[2], axis = 1, inplace = True) # Wrangling df_group_time = df_update.groupby(pd.Grouper(freq = "Q")).size().reset_index(name = "Total") df_group = df_update.groupby([pd.Grouper(freq = "Q"), pd.Grouper("Dominant")]).size().reset_index(name = "Count") df_output = df_group.set_index("Datetime").join(df_group_time.set_index("Datetime")) df_output["Frequency"] = df_output["Count"] / df_output["Total"] # Creating df subset for the stacked bars, here we are only dealing with the main dominant pollutants df_pm2_5 = df_output.loc[(df_output.Dominant == "**")] df_pm10 = df_output.loc[(df_output.Dominant == "*")] df_so2 = df_output.loc[(df_output.Dominant == "a")] df_no2 = df_output.loc[(df_output.Dominant == "b")] df_o3 = df_output.loc[(df_output.Dominant == "c")] df_co = df_output.loc[(df_output.Dominant == "d")] # Now comes the bar chart fig = go.Figure() fig.add_trace(go.Bar(x = df_pm2_5.index, y = df_pm2_5["Frequency"], name = "PM 2.5")) fig.add_trace(go.Bar(x = df_pm10.index, y = df_pm10["Frequency"], name = "PM 10")) fig.add_trace(go.Bar(x = df_so2.index, y = df_so2["Frequency"], name = "SO2")) fig.add_trace(go.Bar(x = df_no2.index, y = df_no2["Frequency"], name = "NO2")) fig.add_trace(go.Bar(x = df_o3.index, y = df_o3["Frequency"], name = "O3")) fig.add_trace(go.Bar(x = df_co.index, y = df_co["Frequency"], name = "CO")) fig.update_layout(barmode = "stack", title_text="Frequency of Detected Pollutants") plot(fig)
32.971831
101
0.612986
0
0
0
0
0
0
0
0
614
0.262281
58c6e236acba1419c8019e6e9d0019c26bbbfc7f
3,977
py
Python
tests/bs3/test_block_fields.py
rpkilby/django-template-forms
5099d87d661a6a313df49fa484afd94f145e65bc
[ "BSD-3-Clause" ]
1
2021-01-29T11:53:32.000Z
2021-01-29T11:53:32.000Z
tests/bs3/test_block_fields.py
rpkilby/django-template-forms
5099d87d661a6a313df49fa484afd94f145e65bc
[ "BSD-3-Clause" ]
5
2017-11-29T11:01:56.000Z
2018-02-05T23:34:08.000Z
tests/bs3/test_block_fields.py
rpkilby/django-template-forms
5099d87d661a6a313df49fa484afd94f145e65bc
[ "BSD-3-Clause" ]
null
null
null
from django import forms from django.test import TestCase from template_forms import bs3 def startswith_a(value): if value.startswith('a'): return value raise forms.ValidationError('Value must start with "a".') def not_now(value): if value: raise forms.ValidationError('I cannot let you do that right now.') class StandardFieldTests(TestCase): class Form(bs3.BlockForm, forms.Form): field = forms.CharField(required=False, validators=[startswith_a], help_text='Example text.', ) def get_attrs(self, bf): return { 'name': bf.html_name, 'id': bf.auto_id, 'label': bf.label, } def test_field(self): form = self.Form() field = form['field'] template = """ <div class="form-group"> <label for="{id}" class="control-label">{label}:</label> <input id="{id}" name="{name}" type="text" class="form-control"> <small class="help-block">Example text.</small> </div> """ self.assertHTMLEqual( template.format(**self.get_attrs(field)), form.render_field(field, field.errors) ) def test_field_bound(self): form = self.Form({'field': 'a value'}) field = form['field'] template = """ <div class="form-group"> <label for="{id}" class="control-label">{label}:</label> <input id="{id}" name="{name}" type="text" class="form-control" value="a value"> <small class="help-block">Example text.</small> </div> """ self.assertHTMLEqual( template.format(**self.get_attrs(field)), form.render_field(field, field.errors) ) def test_field_error(self): form = self.Form({'field': 'error'}) field = form['field'] template = """ <div class="form-group has-error"> <label for="{id}" class="control-label">{label}:</label> <input id="{id}" name="{name}" type="text" class="form-control has-error" value="error"> <small class="help-block">Value must start with &quot;a&quot;.</small> <small class="help-block">Example text.</small> </div> """ self.assertHTMLEqual( template.format(**self.get_attrs(field)), form.render_field(field, field.errors) ) class CheckboxFieldTests(TestCase): class Form(bs3.BlockForm, forms.Form): field = forms.BooleanField(required=False, validators=[not_now], help_text='Example text.') def get_attrs(self, bf): return { 'name': bf.html_name, 'id': bf.auto_id, 'label': bf.label, } def test_field(self): form = self.Form() field = form['field'] template = """ <div class="form-group"> <div class="checkbox"> <label> <input id="{id}" name="{name}" type="checkbox"> {label} </label> </div> <small class="help-block">Example text.</small> </div> """ self.assertHTMLEqual( template.format(**self.get_attrs(field)), form.render_field(field, field.errors) ) def test_field_error(self): form = self.Form({'field': 'on'}) field = form['field'] template = """ <div class="form-group has-error"> <div class="checkbox"> <label> <input id="{id}" name="{name}" type="checkbox" checked> {label} </label> </div> <small class="help-block">I cannot let you do that right now.</small> <small class="help-block">Example text.</small> </div> """ self.assertHTMLEqual( template.format(**self.get_attrs(field)), form.render_field(field, field.errors) )
30.829457
103
0.538094
3,629
0.912497
0
0
0
0
0
0
1,852
0.465678
58c773feba3d980c07a404541fff29ea0e07df10
19,463
py
Python
bzt/modules/java.py
3dgiordano/taurus
77cb31b6f0e5c27545094f600ac2b595fa76d992
[ "Apache-2.0" ]
1
2018-02-17T16:00:34.000Z
2018-02-17T16:00:34.000Z
bzt/modules/java.py
3dgiordano/taurus
77cb31b6f0e5c27545094f600ac2b595fa76d992
[ "Apache-2.0" ]
5
2018-03-10T20:50:24.000Z
2021-08-20T15:07:32.000Z
bzt/modules/java.py
3dgiordano/taurus
77cb31b6f0e5c27545094f600ac2b595fa76d992
[ "Apache-2.0" ]
1
2018-05-04T23:06:15.000Z
2018-05-04T23:06:15.000Z
""" Copyright 2017 BlazeMeter Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import json import os import shutil import subprocess import time from os import listdir from os.path import join from bzt import ToolError, TaurusConfigError from bzt.engine import HavingInstallableTools, Scenario from bzt.modules import SubprocessedExecutor from bzt.utils import get_full_path, shell_exec, TclLibrary, JavaVM, RequiredTool, MirrorsManager SELENIUM_DOWNLOAD_LINK = "http://selenium-release.storage.googleapis.com/3.6/" \ "selenium-server-standalone-3.6.0.jar" SELENIUM_VERSION = "3.6" # FIXME: unused, remove it JUNIT_DOWNLOAD_LINK = "http://search.maven.org/remotecontent?filepath=junit/junit/" \ "{version}/junit-{version}.jar" JUNIT_VERSION = "4.12" JUNIT_MIRRORS_SOURCE = "http://search.maven.org/solrsearch/select?q=g%3A%22junit%22%20AND%20a%3A%22" \ "junit%22%20AND%20v%3A%22{version}%22&rows=20&wt=json".format(version=JUNIT_VERSION) TESTNG_VERSION = "6.8.5" TESTNG_DOWNLOAD_LINK = "http://search.maven.org/remotecontent?filepath=org/testng/testng/" \ "{version}/testng-{version}.jar".format(version=TESTNG_VERSION) HAMCREST_DOWNLOAD_LINK = "http://search.maven.org/remotecontent?filepath=org/hamcrest/hamcrest-core" \ "/1.3/hamcrest-core-1.3.jar" JSON_JAR_DOWNLOAD_LINK = "http://search.maven.org/remotecontent?filepath=org/json/json/20160810/json-20160810.jar" class JavaTestRunner(SubprocessedExecutor, HavingInstallableTools): """ Allows to test java and jar files :type script: str """ def __init__(self): super(JavaTestRunner, self).__init__() self.working_dir = os.getcwd() self.target_java = "1.8" self.props_file = None self.base_class_path = [] def path_lambda(self, x): return os.path.abspath(self.engine.find_file(x)) def install_required_tools(self): self.hamcrest_path = self.path_lambda(self.settings.get("hamcrest-core", "~/.bzt/selenium-taurus/tools/junit/hamcrest-core.jar")) self.json_jar_path = self.path_lambda( self.settings.get("json-jar", "~/.bzt/selenium-taurus/tools/junit/json.jar")) self.selenium_server_jar_path = self.path_lambda(self.settings.get("selenium-server", "~/.bzt/selenium-taurus/selenium-server.jar")) def prepare(self): """ make jar. """ self.script = self.get_scenario().get(Scenario.SCRIPT, TaurusConfigError("Script not passed to runner %s" % self)) self.script = self.engine.find_file(self.script) self.install_required_tools() self.working_dir = self.engine.create_artifact(self.settings.get("working-dir", "classes"), "") self.target_java = str(self.settings.get("compile-target-java", self.target_java)) self.base_class_path.extend(self.settings.get("additional-classpath", [])) self.base_class_path.extend(self.get_scenario().get("additional-classpath", [])) self.base_class_path.extend([self.hamcrest_path, self.json_jar_path, self.selenium_server_jar_path]) self.props_file = self.engine.create_artifact("runner", ".properties") if not os.path.exists(self.working_dir): os.makedirs(self.working_dir) self.reporting_setup(suffix=".ldjson") def resource_files(self): resources = super(JavaTestRunner, self).resource_files() resources.extend(self.get_scenario().get("additional-classpath", [])) global_additional_classpath = self.settings.get("additional-classpath", []) execution_files = self.execution.get('files', []) # later we need to fix path for sending into cloud execution_files.extend(global_additional_classpath) return resources def _collect_script_files(self, extensions): file_list = [] if self.script is not None and os.path.isdir(self.script): for root, _, files in os.walk(self.script): for test_file in files: if os.path.splitext(test_file)[1].lower() in extensions: path = get_full_path(join(root, test_file)) file_list.append(path) else: if os.path.splitext(self.script)[1].lower() in extensions: file_list.append(get_full_path(self.script)) return file_list def compile_scripts(self): """ Compile .java files """ self.log.debug("Compiling .java files started") jar_path = join(self.engine.artifacts_dir, self.working_dir, self.settings.get("jar-name", "compiled.jar")) if os.path.exists(jar_path): self.log.debug(".java files are already compiled, skipping") return compile_cl = ["javac", "-source", self.target_java, "-target", self.target_java, "-d", self.working_dir, ] compile_cl.extend(["-cp", os.pathsep.join(self.base_class_path)]) compile_cl.extend(self._collect_script_files({".java"})) with open(self.engine.create_artifact("javac", ".out"), 'ab') as javac_out: with open(self.engine.create_artifact("javac", ".err"), 'ab') as javac_err: self.log.debug("running javac: %s", compile_cl) self.process = shell_exec(compile_cl, stdout=javac_out, stderr=javac_err) ret_code = self.process.poll() while ret_code is None: self.log.debug("Compiling .java files...") time.sleep(1) ret_code = self.process.poll() if ret_code != 0: self.log.debug("javac exit code: %s", ret_code) with open(javac_err.name) as err_file: out = err_file.read() raise ToolError("Javac exited with code: %s\n %s" % (ret_code, out.strip())) self.log.info("Compiling .java files completed") self.make_jar() def make_jar(self): """ move all .class files to compiled.jar """ self.log.debug("Making .jar started") with open(join(self.engine.artifacts_dir, "jar.out"), 'ab') as jar_out: with open(join(self.engine.artifacts_dir, "jar.err"), 'ab') as jar_err: class_files = [java_file for java_file in listdir(self.working_dir) if java_file.endswith(".class")] jar_name = self.settings.get("jar-name", "compiled.jar") if class_files: compile_jar_cl = ["jar", "-cf", jar_name] compile_jar_cl.extend(class_files) else: compile_jar_cl = ["jar", "-cf", jar_name, "."] self.process = shell_exec(compile_jar_cl, cwd=self.working_dir, stdout=jar_out, stderr=jar_err) ret_code = self.process.poll() while ret_code is None: self.log.debug("Making jar file...") time.sleep(1) ret_code = self.process.poll() if ret_code != 0: with open(jar_err.name) as err_file: out = err_file.read() raise ToolError("Jar exited with code %s\n%s" % (ret_code, out.strip())) self.log.info("Making .jar file completed") class JUnitTester(JavaTestRunner, HavingInstallableTools): """ Allows to test java and jar files """ def __init__(self): super(JUnitTester, self).__init__() self.junit_path = None self.junit_listener_path = None def prepare(self): super(JUnitTester, self).prepare() self.install_required_tools() self.base_class_path += [self.junit_path, self.junit_listener_path] self.base_class_path = [self.path_lambda(x) for x in self.base_class_path] if any(self._collect_script_files({'.java'})): self.compile_scripts() def install_required_tools(self): super(JUnitTester, self).install_required_tools() self.junit_path = self.path_lambda(self.settings.get("path", "~/.bzt/selenium-taurus/tools/junit/junit.jar")) self.junit_listener_path = join(get_full_path(__file__, step_up=2), "resources", "taurus-junit-1.0.jar") tools = [] # only check javac if we need to compile. if we have JAR as script - we don't need javac if self.script and any(self._collect_script_files({'.java'})): tools.append(JavaC(self.log)) tools.append(TclLibrary(self.log)) tools.append(JavaVM(self.log)) link = SELENIUM_DOWNLOAD_LINK.format(version=SELENIUM_VERSION) tools.append(SeleniumServerJar(self.selenium_server_jar_path, link, self.log)) tools.append(JUnitJar(self.junit_path, self.log, JUNIT_VERSION)) tools.append(HamcrestJar(self.hamcrest_path, HAMCREST_DOWNLOAD_LINK)) tools.append(JsonJar(self.json_jar_path, JSON_JAR_DOWNLOAD_LINK)) tools.append(JUnitListenerJar(self.junit_listener_path, "")) self._check_tools(tools) def startup(self): # java -cp junit.jar:selenium-test-small.jar: # selenium-2.46.0/selenium-java-2.46.0.jar:./../selenium-server.jar # taurusjunit.CustomRunner runner.properties jar_list = [join(self.working_dir, jar) for jar in listdir(self.working_dir) if jar.endswith(".jar")] jar_list.extend(self._collect_script_files({".jar"})) self.base_class_path.extend(jar_list) with open(self.props_file, 'wt') as props: props.write("report_file=%s\n" % self.report_file) load = self.get_load() if load.iterations: props.write("iterations=%s\n" % load.iterations) if load.hold: props.write("hold_for=%s\n" % load.hold) for index, item in enumerate(jar_list): props.write("target_%s=%s\n" % (index, item.replace(os.path.sep, '/'))) class_path = os.pathsep.join(self.base_class_path) junit_cmd_line = ["java", "-cp", class_path, "-Djna.nosys=true", "taurusjunit.CustomRunner", self.props_file] self._start_subprocess(junit_cmd_line) class TestNGTester(JavaTestRunner, HavingInstallableTools): """ Allows to test java and jar files with TestNG """ __test__ = False # Hello, nosetests discovery mechanism def __init__(self): super(TestNGTester, self).__init__() self.testng_path = None self.testng_plugin_path = None def prepare(self): super(TestNGTester, self).prepare() self.install_required_tools() self.base_class_path += [self.testng_path, self.testng_plugin_path] if any(self._collect_script_files({'.java'})): self.compile_scripts() def detected_testng_xml(self): script_path = self.get_script_path() if script_path and self.settings.get("autodetect-xml", True): script_dir = get_full_path(script_path, step_up=1) testng_xml = os.path.join(script_dir, 'testng.xml') if os.path.exists(testng_xml): return testng_xml return None def resource_files(self): resources = super(TestNGTester, self).resource_files() testng_xml = self.execution.get('testng-xml', None) if not testng_xml: testng_xml = self.detected_testng_xml() if testng_xml: self.log.info("Detected testng.xml file at %s", testng_xml) self.execution['testng-xml'] = testng_xml if testng_xml: resources.append(testng_xml) return resources def install_required_tools(self): super(TestNGTester, self).install_required_tools() self.testng_path = self.path_lambda(self.settings.get("path", "~/.bzt/selenium-taurus/tools/testng/testng.jar")) self.testng_plugin_path = join(get_full_path(__file__, step_up=2), "resources", "taurus-testng-1.0.jar") tools = [] if self.script and any(self._collect_script_files({'.java'})): tools.append(JavaC(self.log)) tools.append(TclLibrary(self.log)) tools.append(JavaVM(self.log)) link = SELENIUM_DOWNLOAD_LINK.format(version=SELENIUM_VERSION) tools.append(SeleniumServerJar(self.selenium_server_jar_path, link, self.log)) tools.append(TestNGJar(self.testng_path, TESTNG_DOWNLOAD_LINK)) tools.append(HamcrestJar(self.hamcrest_path, HAMCREST_DOWNLOAD_LINK)) tools.append(JsonJar(self.json_jar_path, JSON_JAR_DOWNLOAD_LINK)) tools.append(TestNGPluginJar(self.testng_plugin_path, "")) self._check_tools(tools) def startup(self): # java -classpath # testng.jar:selenium-server.jar:taurus-testng-1.0.jar:json.jar:compiled.jar # taurustestng.TestNGRunner runner.properties jar_list = [join(self.working_dir, jar) for jar in listdir(self.working_dir) if jar.endswith(".jar")] jar_list.extend(self._collect_script_files({".jar"})) self.base_class_path.extend(jar_list) with open(self.props_file, 'wt') as props: props.write("report_file=%s\n" % self.report_file) load = self.get_load() if load.iterations: props.write("iterations=%s\n" % load.iterations) if load.hold: props.write("hold_for=%s\n" % load.hold) for index, item in enumerate(jar_list): props.write("target_%s=%s\n" % (index, item.replace(os.path.sep, '/'))) testng_xml = self.execution.get('testng-xml', None) or self.detected_testng_xml() if testng_xml: props.write('testng_config=%s\n' % testng_xml.replace(os.path.sep, '/')) cmdline = ["java", "-cp", os.pathsep.join(self.base_class_path), "taurustestng.TestNGRunner", self.props_file] self._start_subprocess(cmdline) class TestNGJar(RequiredTool): def __init__(self, tool_path, download_link): super(TestNGJar, self).__init__("TestNG", tool_path, download_link) class HamcrestJar(RequiredTool): def __init__(self, tool_path, download_link): super(HamcrestJar, self).__init__("HamcrestJar", tool_path, download_link) class JsonJar(RequiredTool): def __init__(self, tool_path, download_link): super(JsonJar, self).__init__("JsonJar", tool_path, download_link) class JavaC(RequiredTool): def __init__(self, parent_logger, tool_path='javac', download_link=''): super(JavaC, self).__init__("JavaC", tool_path, download_link) self.log = parent_logger.getChild(self.__class__.__name__) def check_if_installed(self): try: output = subprocess.check_output([self.tool_path, '-version'], stderr=subprocess.STDOUT) self.log.debug("%s output: %s", self.tool_name, output) return True except (subprocess.CalledProcessError, OSError): return False def install(self): raise ToolError("The %s is not operable or not available. Consider installing it" % self.tool_name) class SeleniumServerJar(RequiredTool): def __init__(self, tool_path, download_link, parent_logger): super(SeleniumServerJar, self).__init__("Selenium server", tool_path, download_link) self.log = parent_logger.getChild(self.__class__.__name__) def check_if_installed(self): self.log.debug("%s path: %s", self.tool_name, self.tool_path) selenium_launch_command = ["java", "-jar", self.tool_path, "-help"] selenium_subproc = shell_exec(selenium_launch_command, stderr=subprocess.STDOUT) output = selenium_subproc.communicate() self.log.debug("%s output: %s", self.tool_name, output) if selenium_subproc.returncode == 0: self.already_installed = True return True else: return False class JUnitJar(RequiredTool): def __init__(self, tool_path, parent_logger, junit_version): super(JUnitJar, self).__init__("JUnit", tool_path) self.log = parent_logger.getChild(self.__class__.__name__) self.version = junit_version self.mirror_manager = JUnitMirrorsManager(self.log, self.version) def install(self): dest = get_full_path(self.tool_path, step_up=1) self.log.info("Will install %s into %s", self.tool_name, dest) junit_dist = self._download(suffix=".jar") if not os.path.exists(dest): os.makedirs(dest) shutil.move(junit_dist, self.tool_path) self.log.info("Installed JUnit successfully") if not self.check_if_installed(): raise ToolError("Unable to run %s after installation!" % self.tool_name) class JUnitListenerJar(RequiredTool): def __init__(self, tool_path, download_link): super(JUnitListenerJar, self).__init__("JUnitListener", tool_path, download_link) def install(self): raise ToolError("Automatic installation of JUnitListener isn't implemented") class TestNGPluginJar(RequiredTool): def __init__(self, tool_path, download_link): super(TestNGPluginJar, self).__init__("TestNGPlugin", tool_path, download_link) def install(self): raise ToolError("TestNG plugin should be bundled with Taurus distribution") class JUnitMirrorsManager(MirrorsManager): def __init__(self, parent_logger, junit_version): self.junit_version = junit_version super(JUnitMirrorsManager, self).__init__(JUNIT_MIRRORS_SOURCE, parent_logger) def _parse_mirrors(self): links = [] if self.page_source is not None: self.log.debug('Parsing mirrors...') try: resp = json.loads(self.page_source) objects = resp.get("response", {}).get("docs", []) if objects: obj = objects[0] group = obj.get("g") artifact = obj.get("a") version = obj.get("v") ext = obj.get("p") link_template = "http://search.maven.org/remotecontent?filepath={group}/{artifact}/" \ "{version}/{artifact}-{version}.{ext}" link = link_template.format(group=group, artifact=artifact, version=version, ext=ext) links.append(link) except BaseException as exc: self.log.error("Error while parsing mirrors %s", exc) default_link = JUNIT_DOWNLOAD_LINK.format(version=self.junit_version) if default_link not in links: links.append(default_link) self.log.debug('Total mirrors: %d', len(links)) return links
41.946121
121
0.640138
17,451
0.896624
0
0
0
0
0
0
4,120
0.211684
58c8432548a967e56cf908c27cbcc2cdbca067b8
1,434
py
Python
various_modules/interface_segregation_principle.py
Neykah/design_patterns_python
6f801fc4fc60f2d34002e4fe435feb6111a2cd23
[ "MIT" ]
null
null
null
various_modules/interface_segregation_principle.py
Neykah/design_patterns_python
6f801fc4fc60f2d34002e4fe435feb6111a2cd23
[ "MIT" ]
null
null
null
various_modules/interface_segregation_principle.py
Neykah/design_patterns_python
6f801fc4fc60f2d34002e4fe435feb6111a2cd23
[ "MIT" ]
null
null
null
""" Maybe not so relevant in Python due to the possibility to use multiple inheritance... """ from abc import ABC, abstractmethod class CloudHostingProvider(ABC): @abstractmethod def create_server(region): ... @abstractmethod def list_servers(region): ... class CDNProvider(ABC): @abstractmethod def get_cdna_address(): ... class CloudStorageProvider(ABC): @abstractmethod def store_file(name): ... @abstractmethod def get_file(name): ... class Amazon(CloudHostingProvider, CDNProvider, CloudStorageProvider): def store_file(self, name: str): print(f"Storing the file {name} in AWS...") def get_file(self, name: str): print(f"Getting the file {name} from AWS...") def create_server(self, region: str): print(f"Creating a new server in the following region: {region}...") def list_servers(self, region: str): print(f"List all servers available in {region}...") def get_cdna_address(self): print("AWS CDNA address: ...") class Dropbox(CloudStorageProvider): def store_file(self, name: str): print(f"Storing the file {name} in Dropbox...") def get_file(self, name: str): print(f"Getting the file {name} from Dropbox...") if __name__ == "__main__": amazon = Amazon() dropbox = Dropbox() amazon.get_file("Baba") dropbox.store_file("Baba")
22.40625
85
0.642259
1,154
0.804742
0
0
274
0.191074
0
0
399
0.278243
58c8441bd96dbfec3988f61c1477017eb7ba3344
3,536
py
Python
SCSCons/Variables/PackageVariable.py
Relintai/pandemonium_engine
3de05db75a396b497f145411f71eb363572b38ae
[ "MIT", "Apache-2.0", "CC-BY-4.0", "Unlicense" ]
1,403
2017-11-23T14:24:01.000Z
2022-03-30T20:59:39.000Z
nuitka/build/inline_copy/lib/scons-4.3.0/SCons/Variables/PackageVariable.py
lps1333/Nuitka
02e8d59a275cd7fe482cbc8100e753ff5abe39d7
[ "Apache-2.0" ]
3,708
2017-11-27T13:47:12.000Z
2022-03-29T17:21:17.000Z
nuitka/build/inline_copy/lib/scons-4.3.0/SCons/Variables/PackageVariable.py
lps1333/Nuitka
02e8d59a275cd7fe482cbc8100e753ff5abe39d7
[ "Apache-2.0" ]
281
2017-12-01T23:48:38.000Z
2022-03-31T15:25:44.000Z
# MIT License # # Copyright The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """Variable type for package Variables. To be used whenever a 'package' may be enabled/disabled and the package path may be specified. Given these options :: x11=no (disables X11 support) x11=yes (will search for the package installation dir) x11=/usr/local/X11 (will check this path for existence) Can be used as a replacement for autoconf's ``--with-xxx=yyy`` :: opts = Variables() opts.Add( PackageVariable( key='x11', help='use X11 installed here (yes = search some places)', default='yes' ) ) ... if env['x11'] == True: dir = ... # search X11 in some standard places ... env['x11'] = dir if env['x11']: ... # build with x11 ... """ from typing import Tuple, Callable import SCons.Errors __all__ = ['PackageVariable',] ENABLE_STRINGS = ('1', 'yes', 'true', 'on', 'enable', 'search') DISABLE_STRINGS = ('0', 'no', 'false', 'off', 'disable') def _converter(val): """ """ lval = val.lower() if lval in ENABLE_STRINGS: return True if lval in DISABLE_STRINGS: return False return val def _validator(key, val, env, searchfunc) -> None: """ """ # NB: searchfunc is currently undocumented and unsupported # TODO write validator, check for path import os if env[key] is True: if searchfunc: env[key] = searchfunc(key, val) elif env[key] and not os.path.exists(val): raise SCons.Errors.UserError( 'Path does not exist for option %s: %s' % (key, val)) def PackageVariable(key, help, default, searchfunc=None) -> Tuple[str, str, str, Callable, Callable]: """Return a tuple describing a package list SCons Variable. The input parameters describe a 'package list' option. Returns a tuple including the correct converter and validator appended. The result is usable as input to :meth:`Add` . A 'package list' option may either be 'all', 'none' or a pathname string. This information is appended to *help*. """ # NB: searchfunc is currently undocumented and unsupported help = '\n '.join( (help, '( yes | no | /path/to/%s )' % key)) return (key, help, default, lambda k, v, e: _validator(k, v, e, searchfunc), _converter) # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
32.740741
101
0.669683
0
0
0
0
0
0
0
0
2,643
0.747455
58c98a83a2ec15c194e9ea24edc51018cb47644a
8,351
py
Python
tests/test_protocol.py
kwikiel/edgedb
dac3f0c408bcf3fe9159b7f844d0186c54aaa3fd
[ "Apache-2.0" ]
null
null
null
tests/test_protocol.py
kwikiel/edgedb
dac3f0c408bcf3fe9159b7f844d0186c54aaa3fd
[ "Apache-2.0" ]
null
null
null
tests/test_protocol.py
kwikiel/edgedb
dac3f0c408bcf3fe9159b7f844d0186c54aaa3fd
[ "Apache-2.0" ]
null
null
null
# # This source file is part of the EdgeDB open source project. # # Copyright 2020-present MagicStack Inc. and the EdgeDB authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import asyncio import edgedb from edb.server import compiler from edb import protocol from edb.testbase.protocol.test import ProtocolTestCase class TestProtocol(ProtocolTestCase): async def test_proto_executescript_01(self): # Test that ExecuteScript returns ErrorResponse immediately. await self.con.connect() await self.con.send( protocol.ExecuteScript( headers=[], script='SELECT 1/0' ) ) await self.con.recv_match( protocol.ErrorResponse, message='division by zero' ) await self.con.recv_match( protocol.ReadyForCommand, transaction_state=protocol.TransactionState.NOT_IN_TRANSACTION, ) # Test that the protocol has recovered. await self.con.send( protocol.ExecuteScript( headers=[], script='SELECT 1' ) ) await self.con.recv_match( protocol.CommandComplete, status='SELECT' ) await self.con.recv_match( protocol.ReadyForCommand, transaction_state=protocol.TransactionState.NOT_IN_TRANSACTION, ) async def test_proto_executescript_02(self): # Test ReadyForCommand.transaction_state await self.con.connect() await self.con.send( protocol.ExecuteScript( headers=[], script='START TRANSACTION; SELECT 1/0' ) ) await self.con.recv_match( protocol.ErrorResponse, message='division by zero' ) await self.con.recv_match( protocol.ReadyForCommand, transaction_state=protocol.TransactionState.IN_FAILED_TRANSACTION, ) # Test that the protocol is still in a failed transaction await self.con.send( protocol.ExecuteScript( headers=[], script='SELECT 1/0' ) ) await self.con.recv_match( protocol.ErrorResponse, message='current transaction is aborted' ) await self.con.recv_match( protocol.ReadyForCommand, transaction_state=protocol.TransactionState.IN_FAILED_TRANSACTION, ) # Test recovery await self.con.send( protocol.ExecuteScript( headers=[], script='ROLLBACK' ) ) await self.con.recv_match( protocol.CommandComplete, status='ROLLBACK' ) await self.con.recv_match( protocol.ReadyForCommand, transaction_state=protocol.TransactionState.NOT_IN_TRANSACTION, ) async def test_proto_flush_01(self): await self.con.connect() await self.con.send( protocol.Prepare( headers=[], io_format=protocol.IOFormat.BINARY, expected_cardinality=compiler.Cardinality.AT_MOST_ONE, statement_name=b'', command='SEL ECT 1', ) ) # Should come through even without an explicit 'flush' await self.con.recv_match( protocol.ErrorResponse, message="Unexpected 'SEL'" ) # Recover the protocol state from the error self.assertEqual( await self.con.sync(), protocol.TransactionState.NOT_IN_TRANSACTION) # This Prepare should be handled alright await self.con.send( protocol.Prepare( headers=[], io_format=protocol.IOFormat.BINARY, expected_cardinality=compiler.Cardinality.AT_MOST_ONE, statement_name=b'', command='SELECT 1', ), protocol.Flush() ) await self.con.recv_match( protocol.PrepareComplete, cardinality=compiler.Cardinality.AT_MOST_ONE, ) # Test that Flush has completed successfully -- the # command should be executed and no exception should # be received. # While at it, rogue ROLLBACK should be allowed. await self.con.send( protocol.ExecuteScript( headers=[], script='ROLLBACK' ) ) await self.con.recv_match( protocol.CommandComplete, status='ROLLBACK' ) await self.con.recv_match( protocol.ReadyForCommand, transaction_state=protocol.TransactionState.NOT_IN_TRANSACTION, ) async def test_proto_connection_lost_cancel_query(self): # This test is occasionally hanging - adding a timeout to find out why await asyncio.wait_for( self._test_proto_connection_lost_cancel_query(), 30 ) async def _test_proto_connection_lost_cancel_query(self): # Prepare the test data con2 = await edgedb.async_connect(**self.get_connect_args()) try: await con2.execute( 'CREATE TYPE tclcq { CREATE PROPERTY p -> str }' ) try: await con2.execute("INSERT tclcq { p := 'initial' }") # Ready the nested connection await self.con.connect() # Use an implicit transaction in the nested connection: lock # the row with an UPDATE, and then hold the transaction for 10 # seconds, which is long enough for the upcoming cancellation await self.con.send( protocol.ExecuteScript( headers=[], script="""\ UPDATE tclcq SET { p := 'inner' }; SELECT sys::_sleep(10); """, ) ) # Sanity check - we shouldn't get anything here with self.assertRaises(asyncio.TimeoutError): await asyncio.wait_for( self.con.recv_match( protocol.CommandComplete, status='UPDATE' ), 0.1, ) # Close the nested connection without waiting for the result; # the server is supposed to cancel the pending query. await self.con.aclose() # In the outer connection, let's wait until the lock is # released by either an expected cancellation, or an unexpected # commit after 10 seconds. tx = con2.raw_transaction() await tx.start() try: await tx.execute("UPDATE tclcq SET { p := 'lock' }") except edgedb.TransactionSerializationError: # In case the nested transaction succeeded, we'll meet an # concurrent update error here, which can be safely ignored pass finally: await tx.rollback() # Let's check what's in the row - if the cancellation didn't # happen, the test will fail with value "inner". val = await con2.query_single('SELECT tclcq.p LIMIT 1') self.assertEqual(val, 'initial') finally: # Clean up await con2.execute( "DROP TYPE tclcq" ) finally: await con2.aclose()
33.138889
79
0.554305
7,524
0.90097
0
0
0
0
7,457
0.892947
2,557
0.306191
58cc1d434d0ca910c890148d1eb3817d02e4f5af
278
py
Python
210125/homework_re_3.py
shadowsmain/pyton-adv
9562097b2d34c1b286c13cf0930fa06079532a67
[ "MIT" ]
null
null
null
210125/homework_re_3.py
shadowsmain/pyton-adv
9562097b2d34c1b286c13cf0930fa06079532a67
[ "MIT" ]
null
null
null
210125/homework_re_3.py
shadowsmain/pyton-adv
9562097b2d34c1b286c13cf0930fa06079532a67
[ "MIT" ]
null
null
null
import re RE_NUMBER_VALIDATOR = re.compile(r'^\d+[.,]\d+$') def number_is_valid(number): return RE_NUMBER_VALIDATOR.match(number) assert number_is_valid('1.32') assert number_is_valid('1,32') assert not number_is_valid('asdasd1234') assert not number_is_valid('22,a44')
21.384615
49
0.755396
0
0
0
0
0
0
0
0
47
0.169065
58cc767b16ca728bd586a1ff7e220380c8ce5e1a
3,529
py
Python
shp_code/prec_reformat.py
anahm/inferring-population-preferences
1eec9c6966e65c615f3cf5bd769ab121369b926d
[ "Unlicense" ]
4
2016-10-29T12:10:48.000Z
2016-11-06T02:25:09.000Z
shp_code/prec_reformat.py
anahm/inferring-population-preferences
1eec9c6966e65c615f3cf5bd769ab121369b926d
[ "Unlicense" ]
null
null
null
shp_code/prec_reformat.py
anahm/inferring-population-preferences
1eec9c6966e65c615f3cf5bd769ab121369b926d
[ "Unlicense" ]
null
null
null
""" prec_reformat.py Taking state data and having each line be a precinct's voting results and candidate cf-scores (rather than each line be each candidate per precinct. | prec_id | cf_score_0 | num_votes_0 | cf_score_1 | num_votes_1 | """ import math import numpy as np import pandas as pd from prec_cd import prec_cd_main from check_data import check_main def convert_by_prec(old_df, state, year, dirname): precs = [] years = [] cf_score_0 = [] num_votes_0 = [] cf_score_1 = [] num_votes_1 = [] # group by precinct (year assumed) for key, group in old_df.groupby(['geoid']): cf_iter = iter(group['cf_score']) votes_iter = iter(group['num_votes']) nxt_score = cf_iter.next() if math.isnan(nxt_score): nxt_score = 0 cf_0 = nxt_score nv_0 = votes_iter.next() try: nxt_score = cf_iter.next() if math.isnan(nxt_score): nxt_score = 0 cf_1 = nxt_score nv_1 = votes_iter.next() # enforcing the idea that cfscore0 < cfscore1 precs.append(key) if cf_1 < cf_0: cf_score_0.append(cf_1) num_votes_0.append(nv_1) cf_score_1.append(cf_0) num_votes_1.append(nv_0) else: cf_score_0.append(cf_0) num_votes_0.append(nv_0) cf_score_1.append(cf_1) num_votes_1.append(nv_1) except StopIteration: # get rid of pass # use arrays to create dataframe new_df = pd.DataFrame({ 'cf_score_0': cf_score_0, 'num_votes_0': num_votes_0, 'cf_score_1': cf_score_1, 'num_votes_1': num_votes_1, 'geoid': precs}, index=None) new_df['tot_votes'] = new_df['num_votes_0'] + new_df['num_votes_1'] new_df['midpoint'] = (new_df['cf_score_0'] + new_df['cf_score_1']) / 2.0 # write new dataframe out to csv outfile = '%s/precline_%s_house_%s.csv' % (dirname, state, year) new_df.to_csv(outfile) return outfile """ data_clean() Function to parse out certain types of data that are not useful in our results. # NOTE: overwrites the old file, since it is unnecessary """ def data_clean(precline_file): df = pd.read_csv(precline_file, index_col = 0) # remove all precincts with tot_votes == 0 df = df[df['tot_votes'] > 0] # remove all uncontested candidates (cf_score_1 == 0) df = df[df['cf_score_1'] != 0] df.to_csv(precline_file, index=False) """ prec_reformat_main() Function that does the bulk of the original main function and can be called by the commandline. @param: state, year @return: location of new precline file """ def prec_reformat_main(state, year): prec_cd_main(state, year) csv_dir = '../data/%s_data/%s_%s' % (state, state, year) infile = '%s/%s_house_%s_final.csv' % (csv_dir, state, year) outfile = '%s/precline_%s_house_%s.csv' % (csv_dir, state, year) # read in file old_df = pd.read_csv(infile) convert_by_prec(old_df, state, year, csv_dir) data_clean(outfile) print 'Precinct data written to: %s' % outfile rep_col = 't_USH_R_%s' % year dem_col = 't_USH_D_%s' % year check_main(outfile, state, year, rep_col, dem_col) def main(): state = raw_input('State: ') year = raw_input('Year: ') prec_reformat_main(state, year) if __name__ == "__main__": main()
26.140741
83
0.616322
0
0
0
0
0
0
0
0
1,244
0.352508
58ce3480a9b43387f9f12525806c69631b6a2afa
1,668
py
Python
scripts/make_fasta.py
orionzhou/snk-rnaseq
5ead8aebf5ed00a2aec15363b8023c9b75b0ed4a
[ "MIT" ]
null
null
null
scripts/make_fasta.py
orionzhou/snk-rnaseq
5ead8aebf5ed00a2aec15363b8023c9b75b0ed4a
[ "MIT" ]
null
null
null
scripts/make_fasta.py
orionzhou/snk-rnaseq
5ead8aebf5ed00a2aec15363b8023c9b75b0ed4a
[ "MIT" ]
null
null
null
from snakemake import shell input, output, params, threads, w, config = snakemake.input, snakemake.output, snakemake.params, snakemake.threads, snakemake.wildcards, snakemake.config genome = w.genome params.hybrid = config['x'][genome]['hybrid'] opt = params.opt shell(""" rm -rf {output.fna}* {output.fai}* rm -rf {output.chrom_bed} {output.chrom_size} {output.gap} mkdir -p {params.wdir}/{params.odir} cd {params.wdir}/{params.odir} rm -rf raw.fna.* renamed* map* raw.sizes """) merge_tag = '--merge_short' if w.genome != 'Mt_R108' else '' if params.hybrid: shell(""" cat {input} > {params.wdir}/{params.odir}/renamed.fna cd {params.wdir}/{params.odir} fasta.py size renamed.fna > renamed.sizes touch mapf.chain mapb.chain """) else: params.gap = int(config['x'][genome]['gap']) params.prefix = config['x'][genome]['prefix'] shell(""" cd {params.wdir}/{params.odir} ln -sf ../download/raw.fna raw.fna fasta.py size raw.fna > raw.sizes fasta.py rename raw.fna renamed.fna mapf.bed mapb.bed \ --opt {params.opt} {merge_tag} \ --gap {params.gap} --prefix_chr {params.prefix} fasta.py size renamed.fna > renamed.sizes chain.py fromBed mapf.bed raw.sizes renamed.sizes > mapf.chain chainSwap mapf.chain mapb.chain """) shell(""" cd {params.wdir} ln -sf {params.odir}/renamed.fna 10_genome.fna cd .. samtools faidx {output.fna} fasta.py size --bed {output.fna} > {output.chrom_bed} cut -f1,3 {output.chrom_bed} > {output.chrom_size} fasta.py gaps {output.fna} > {output.gap} """)
32.076923
153
0.631894
0
0
0
0
0
0
0
0
1,233
0.739209
58ceaafc2d2819124d87eef37b783e73dcf0c336
2,358
py
Python
HanderCode/aidaiwangApp/aidaiwangApp/Login_aidaiwangApp.py
mocne/PycharmProjects
b009e530f4f01e5b1826bbe2364d86b65bcd66e3
[ "MIT" ]
null
null
null
HanderCode/aidaiwangApp/aidaiwangApp/Login_aidaiwangApp.py
mocne/PycharmProjects
b009e530f4f01e5b1826bbe2364d86b65bcd66e3
[ "MIT" ]
null
null
null
HanderCode/aidaiwangApp/aidaiwangApp/Login_aidaiwangApp.py
mocne/PycharmProjects
b009e530f4f01e5b1826bbe2364d86b65bcd66e3
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import time import xlrd import Register_aidaiwangApp import LogOut_aidiawangApp def start_to_login(filename): print(u'login') driver = Register_aidaiwangApp.driver driver.launch_app() time.sleep(3) try: driver.find_element_by_id('cn.phaidai.loan:id/rb_mine') print('id') except: try: driver.find_element_by_android_uiautomator('new UiSelector().text(u"ๆˆ‘็š„")') except: return 'can not jump to mine' else: driver.find_element_by_android_uiautomator('new UiSelector().text(u"ๆˆ‘็š„")').click() print('text') else: driver.find_element_by_id('cn.phaidai.loan:id/rb_mine').click() try: driver.find_element_by_id('cn.phaidai.loan:id/tv_click') except: try: driver.find_element_by_id('cn.phaidai.loan:id/iv_avatar') except: return 'can not check status' else: driver.find_element_by_id('cn.phaidai.loan:id/iv_avatar').click() else: usernameLabel = driver.find_element_by_id('cn.phaidai.loan:id/tv_click') loginfo = usernameLabel.text while loginfo != u'็ซ‹ๅณ็™ปๅฝ•': LogOut_aidiawangApp.start_to_logout() usernameLabel.click() currentAC = driver.current_activity print(currentAC) print(filename) userData = xlrd.open_workbook(r'%s' % filename) print('open user file success') userSheet = userData.sheet_by_name('login') loginName = str(userSheet.cell_value(1, 0)) loginPassword = str(userSheet.cell_value(1, 1)) print(loginName.split('.')[0], loginPassword) try: userNameLabel = driver.find_element_by_id('cn.phaidai.loan:id/et_login_name') userNameLabel.clear() userNameLabel.send_keys(loginName.split('.')[0]) except: return 'can not input username : %s' % loginName.split('.')[0] driver.find_element_by_id('cn.phaidai.loan:id/et_login_password').send_keys(loginPassword) driver.find_element_by_id('cn.phaidai.loan:id/bt_login_into').click() try: driver.find_element_by_android_uiautomator('new UiSelector().text(u"้ฆ–้กต")').click() except: driver.find_element_by_id('cn.phaidai.loan:id/rb_home').click()
33.685714
98
0.636556
0
0
0
0
0
0
0
0
584
0.245585
58cf4798257428d881df3e8a39b178b627d7c8dd
389
py
Python
Python/Learning/Language/arg_ex.py
prynix/learning-programming
85aea40a61fb824a2b4e142331d9ac7971fef263
[ "MIT" ]
2
2017-03-14T16:02:08.000Z
2017-05-02T13:48:18.000Z
Python/Learning/Language/arg_ex.py
CajetanP/learning-programming
85aea40a61fb824a2b4e142331d9ac7971fef263
[ "MIT" ]
4
2021-05-20T21:10:13.000Z
2022-02-26T09:50:19.000Z
Python/Learning/Language/arg_ex.py
CajetanP/learning-programming
85aea40a61fb824a2b4e142331d9ac7971fef263
[ "MIT" ]
1
2021-06-18T01:31:24.000Z
2021-06-18T01:31:24.000Z
from sys import argv script, user_name = argv prompt = '>' print(user_name, script) print("Do you like me " + user_name + "?") likes = input(prompt) print("Where do you live " + user_name + "?") lives = input(prompt) print(""" So you said {:s} about liking me. You live in {:s}. """.format(likes, lives)) print("Script: ", script) age = int(input("Age? ")) print("Age*2: ", age*2)
16.208333
45
0.62982
0
0
0
0
0
0
0
0
131
0.336761
58cf698a07fcbc7df1f0d9ad44c0aa4f953a79ab
2,565
py
Python
tests/functional/test_uploads.py
jounile/nollanet
7bea20934d3f5e09658a9d31c3b05c15416398a0
[ "MIT" ]
3
2019-10-13T08:37:13.000Z
2020-02-16T12:24:11.000Z
tests/functional/test_uploads.py
jounile/nollanet
7bea20934d3f5e09658a9d31c3b05c15416398a0
[ "MIT" ]
5
2019-11-13T15:56:52.000Z
2021-04-30T20:58:19.000Z
tests/functional/test_uploads.py
jounile/nollanet
7bea20934d3f5e09658a9d31c3b05c15416398a0
[ "MIT" ]
1
2020-04-08T21:09:52.000Z
2020-04-08T21:09:52.000Z
import io import pytest from requests import get from urllib.parse import urljoin def test_my_uploads_page(wait_for_api, login_user): """ GIVEN a user has logged in (login_user) WHEN the '/my/uploads' page is navigated to (GET) THEN check the response is valid and page title is correct """ request_session, api_url = wait_for_api response = request_session.get(urljoin(api_url, '/my/uploads')) assert response.status_code == 200 assert '<h1>My uploads</h1>' in response.text def test_valid_new_upload_page(wait_for_api, login_user): """ GIVEN a user has logged in (login_user) WHEN the '/media/newupload' page is navigated to (GET) THEN check the response is valid and page title is correct """ request_session, api_url = wait_for_api response = request_session.get(urljoin(api_url, '/media/newupload')) assert response.status_code == 200 assert '<h1>New upload</h1>' in response.text def test_invalid_new_upload_page(wait_for_api): """ GIVEN a user has not logged in WHEN the '/media/newupload' page is navigated to (GET) THEN check the response is valid and page title is correct """ request_session, api_url = wait_for_api response = request_session.get(urljoin(api_url, '/media/newupload')) assert response.status_code == 200 assert '<div class="flash">Please login first</div>' in response.text def test_new_upload(wait_for_api, login_user): """ GIVEN a user has logged in (login_user) WHEN the '/media/newupload' page is posted an example image (POST) THEN check the response is valid and the page title is correct """ example_file=open("./app/static/gfx/example.png","rb") files = { 'file': example_file } request_session, api_url = wait_for_api response = request_session.post(urljoin(api_url, '/media/newupload'), files=files, allow_redirects=True) assert response.status_code == 200 assert '<h1>My uploads</h1>' in response.text #def test_remove_upload(wait_for_api, login_user): # """ # GIVEN a user has logged in (login_user) # WHEN the '/blob/delete' page is posted (POST) # THEN check the response is valid and the user is logged in # """ # valid_blob = dict(blob_path='images/*example.png', upload_id=2) # request_session, api_url = wait_for_api # response = request_session.post(urljoin(api_url, '/blob/delete'), data=valid_blob, allow_redirects=True) # assert response.status_code == 200 # assert 'example.png was deleted successfully' in response.text
40.078125
109
0.71384
0
0
0
0
0
0
0
0
1,477
0.575828
58cfe77be2b1a529ec5b49496f3549cf64c84e22
1,107
py
Python
plugins/python/test/testCustomEntity.py
shotgunsoftware/cplusplus-api
576aab4ae266e37ba80da23f82fe9ed08b9894e4
[ "BSD-3-Clause" ]
3
2015-04-04T03:08:52.000Z
2021-01-09T00:09:25.000Z
plugins/python/test/testCustomEntity.py
shotgunsoftware/cplusplus-api
576aab4ae266e37ba80da23f82fe9ed08b9894e4
[ "BSD-3-Clause" ]
null
null
null
plugins/python/test/testCustomEntity.py
shotgunsoftware/cplusplus-api
576aab4ae266e37ba80da23f82fe9ed08b9894e4
[ "BSD-3-Clause" ]
4
2015-04-04T03:08:57.000Z
2021-10-03T14:59:23.000Z
#!/usr/bin/env python import sys from shotgun import * try: if len(sys.argv) > 1: sg = Shotgun(sys.argv[1]) else: sg = Shotgun() ################################################################# # Find CustomEntity01 entities ################################################################# print "*" * 40, "findEntities - CustomEntity01", "*" * 40 for entity in sg.findEntities("CustomEntity01", FilterBy(), 5): #print entity #print "-" * 40 print "%s : %s" % (entity.sgProjectCode(), entity.getAttrValue("code")) ################################################################# # Find CustomEntity02 entities ################################################################# print "*" * 40, "findEntities - CustomEntity02", "*" * 40 for entity in sg.findEntities("CustomEntity02", FilterBy(), 5): #print entity #print "-" * 40 print "%s : %s" % (entity.sgProjectCode(), entity.getAttrValue("code")) except SgError, e: print "SgError:", e except Exception, e: print "Error:", e
31.628571
79
0.443541
0
0
0
0
0
0
0
0
551
0.497742
58d09df8656249313c3aee99521da7185757d936
24,955
py
Python
word2vec_np/utils/data.py
mkserge/word2vec-np
6b53b7e3defd7c8333dcb9d9098e16502a9ce20f
[ "MIT" ]
1
2021-11-22T11:30:10.000Z
2021-11-22T11:30:10.000Z
word2vec_np/utils/data.py
mkserge/word2vec-np
6b53b7e3defd7c8333dcb9d9098e16502a9ce20f
[ "MIT" ]
null
null
null
word2vec_np/utils/data.py
mkserge/word2vec-np
6b53b7e3defd7c8333dcb9d9098e16502a9ce20f
[ "MIT" ]
null
null
null
import word2vec_np.utils.checks as checks import collections import numpy as np import math import time import logging def get_sentences_from_file(train_file): """ Returns a list of sentences from an input file. Args: train_file: A path to a file Returns: A list of sentences as they appear in the input. """ # Read the sentences from the input file (assumed to be a sentence per line) sentences = [line.rstrip('\n') for line in open(train_file)] return sentences def get_words_from_file(train_file): """ Returns a list of words from input sentences. Args: train_file: A path to a file Returns: A list of words as they appear in the input. """ words = [] sentences = get_sentences_from_file(train_file) for sentence in sentences: sentence_words = sentence.split() words.extend(sentence_words) return words def get_words_from_sentences(sentences): """ Returns a list of words from a list of sentences. Args: sentences: A list of sentences Returns: A list of words as they appear in the input. """ words = [] for sentence in sentences: sentence_words = sentence.split() words.extend(sentence_words) return words def get_indexed_sentences(sentences, dictionaries, downsample=True): logger = logging.getLogger('main') logger.info('Indexing input sentences...') start_time = time.time() num_words = 0 indexed_sentences = [] dictionary = dictionaries['dictionary'] keep_probs = dictionaries['keep_probs'] for sentence in sentences: indexed_sentence = [] sentence_words = sentence.split() for word in sentence_words: word_ind = dictionary.get(word, 1) # 'UNK' tokens are always removed as we don't train on them if word_ind == 1: continue if downsample: random_number = np.random.rand() if keep_probs[word_ind - 2] < random_number: continue indexed_sentence.append(word_ind) # Sentences consisting of a single word (or no words) # are ignored since we cannot build training examples from them. if len(indexed_sentence) > 1: indexed_sentences.append(indexed_sentence) num_words += len(indexed_sentence) elapsed_time = time.time() - start_time logger.info('Finished indexing input sentences in %d seconds' % elapsed_time) return indexed_sentences, num_words def save_word_counts(word_count, dict_file): """ Saves the dictionary into a file. The word_count and dictionary have the same ordering except that dictionary has extra 'PAD' symbol at index 0 Args: word_count: List of (word, count) tuples dict_file: Path to the output file. """ dict_file = open(dict_file, 'w+') for word, count in word_count: dict_file.write(word + ' ' + str(count) + '\n') dict_file.close() def save_dictionary(word_count, dict_file): """Saves the dictionary into a file. The word_count and dictionary have the same ordering except that dictionary has extra 'PAD' symbol at index 0 Args: word_count: List of (word, count) tuples dict_file: Path to the output file. """ # dict_file = open(dict_file, 'w+') for word, _ in word_count: dict_file.write(word + '\n') dict_file.close() def get_data(sentences, num_total_words, dictionaries, args): """ Gets data ready for training. Args: sentences: list of training sentences num_total_words: Total number of words in training corpus. dictionaries: Dictionary of dictionary (urgh) and word counts. args: Args passed to the script. """ logger = logging.getLogger('main') logger.info('Building train data...') # Get the relevant dictionaries dictionary = dictionaries['dictionary'] word_count = dictionaries['word_count'] # If we want to use word2vec's dictionary swap here. # This is for debugging only, to compare with embeddings # generated from original word2vec. if args.use_w2v_weights: dictionary_w2v, word_count_w2v = get_w2v_dictionaries(num_total_words, args) # Do some sanity checks checks.check_word_counts(word_count, word_count_w2v) checks.check_dictionaries(dictionary, dictionary_w2v) # Swap the dictionaries dictionary = dictionary_w2v reversed_dictionary = dict(zip(dictionary.values(), dictionary.keys())) word_count = word_count_w2v # See if we want to load pre-generated data instead of building it. if args.load_data: return np.load(args.x_file + '.npy'), np.load(args.y_file + '.npy'), np.load(args.yneg_file + '.npy') # Get the probabilities of keeping the words during downsampling keep_prob = get_keep_probs(word_count, num_total_words, args.ds_param) # Dump the dictionary into a file. save_word_counts(word_count, args.dict_file) # Get the training data. This returns a list of ([context], target, [negative samples]) tuples. train_data = get_train_data_with_sentence_downsampling(sentences, dictionaries, args) # Break training data into arrays of context words, targets and negative samples. x_train, y_train, y_neg = process_data(train_data, word_count, args) logger.info('Finished building train data...') # Dump the files to a file np.save(args.x_file, x_train) np.save(args.y_file, y_train) np.save(args.yneg_file, y_neg) return x_train, y_train, y_neg def get_w2v_dictionaries(n_words, args): # For comparison purposes, tracking w2v dictionary and word_counts here as well. dictionary = {'PAD': 0, 'UNK': 1} word_count = [('UNK', 0)] n_known_words = 0 # Load the dictionary and word counts from word2vec run. with open(args.w2v_dict_file) as vocab: for line in vocab: word, count = line.split() dictionary[word] = len(dictionary) word_count.append((word, int(count))) n_known_words += int(count) word_count[0] = ('UNK', n_words - n_known_words) return dictionary, word_count def get_dictionaries(words, args): """ Returns a dictionary of dictionaries used in training. Args: words: A list of words from the training file. args: The arguments passed on to the script. Returns: A dictionary of consisting of dictionary -- dictionary mapping words to indices. reversed_dictionary -- dictionary indices to words. word_count -- dictionary mapping words to the number of times they occur in the corpus keep_prob -- a list of probabilities of keeping them during down-sampling. ns_prob -- a list of probabilities of getting sampled during NS """ logger = logging.getLogger('main') logger.info('Building dictionaries...') start_time = time.time() # List of (word, word_count) tuples word_count = [('UNK', 0)] # Total number of the words in the corpus num_total_words = len(words) # Sort the list of words by frequency and pick the top vocab_size ones if args.vocab_size == 0: # noinspection PyArgumentList # vocab_size = 0 implies we take the entire vocabulary available from the corpus word_count.extend(collections.Counter(words).most_common()) else: # noinspection PyArgumentList word_count.extend(collections.Counter(words).most_common(args.vocab_size - 1)) # Build the dictionary dictionary = dict() dictionary['PAD'] = 0 # num_vocab_words stores the number of words in the corpus that exist in our dictionary. num_vocab_words = 0 for word, count in word_count: num_vocab_words += count dictionary[word] = len(dictionary) # Update word count list word_count[0] = ('UNK', num_total_words - num_vocab_words) # Get the reversed dictionary. reversed_dictionary = dict(zip(dictionary.values(), dictionary.keys())) # Get the negative sampling probabilities ns_probs = get_ns_probs(word_count, args.ns_param) # Get the probabilities of keeping the words during downsampling keep_probs = get_keep_probs(word_count, num_total_words, args.ds_param) dictionaries = {'dictionary': dictionary, 'reversed_dictionary': reversed_dictionary, 'word_count': word_count, 'ns_probs': ns_probs, 'keep_probs': keep_probs} elapsed_time = time.time() - start_time logger.info('Finished building dictionaries in %d seconds' % elapsed_time) return dictionaries def downsample_sentence(sentence_in, dictionaries): """ Downsamples the training sentences exactly as in word2vec. * Words not in the vocabulary are omitted. * EOS symbols are also omitted. Args: sentence_in: The input sentence that will be downsampled dictionaries: List of dictionaries Returns: The downsampled sentence """ dictionary = dictionaries['dictionary'] keep_probs = dictionaries['keep_probs'] sentence_out = [] sentence_words = sentence_in.split() for ind, word in enumerate(sentence_words): # Ignore the UNK words if dictionary.get(word, 1) == 1: continue # Ignore the EOS word if word == 'EOS': continue # Sub-sample the frequent words. random_number = np.random.rand() if keep_probs.get(word) < random_number: continue sentence_out.append(word) return ' '.join(sentence_out) def get_train_data_with_sentence_downsampling(sentences, dictionaries, args): """ This is the new implementation of get_train_data where the downsampling is done before building the context on each sentence. The main differences with get_train_data_with_context_downsampling implementation are * Downsampling is done before building context on each sentence. * Context window size is downsized randomly for each sentence. Args: sentences: list of sentences in the training data dictionaries: a list of dictionaries including dictionary: dictionary of the vocabulary words mapping words to indices reversed_dictionary: dictionary mapping indices to their corresponding words word_count: a list of (word, word_count) tuples ns_probs: dictionary of negative sampling probabilities keep_prob: a dictionary mapping words to their probability of staying during downsampling args: input args Returns: train_data: A list of (context, target, neg_samples) tuples """ logger = logging.getLogger('main') train_data = [] # Get the required dictionaries ns_probs = dictionaries['ns_probs'] dictionary = dictionaries['dictionary'] reversed_dictionary = dictionaries['reversed_dictionary'] num_processed_sentences = 0 num_total_sentences = len(sentences) logger.info('Number of sentences: %d' % num_total_sentences) for sentence in sentences: # Note that the downsampled sentence will not contain 'UNK' or 'EOS' symbols. sentence = downsample_sentence(sentence, dictionaries) sentence_words = sentence.split() num_processed_words = 0 num_total_words = len(sentence_words) for ind, word in enumerate(sentence_words): # Get the dictionary index for the given word. This is our target # W2 matrix does not contain 'PAD' or 'UNK', so we shift the target index by two target_ind = dictionary.get(word) - 2 # Build context for the current word in the sentence. # Shrink context window by a random number context_window = np.random.randint(1, args.context_window + 1) context = [] for cont_ind in range(ind - context_window, ind + context_window + 1): if cont_ind < 0: continue if cont_ind == ind: continue if cont_ind >= len(sentence_words): continue if dictionary.get(sentence_words[cont_ind], 1) == 1: continue context.append(dictionary.get(sentence_words[cont_ind])) if len(context) != 0: # If we are doing negative sampling, build a set of negative samples neg_samples = [] if args.ns_param != 0: # Pick neg_samples of negative samples. while len(neg_samples) < args.num_neg_samples: # Pick a random word from the dictionary (ignoring 'PAD', 'UNK' and 'EOS') # according to probabilities stored in ns_prob table. neg_ind = np.random.choice(np.arange(2, len(dictionary)), p=ns_probs) # Ignore if the random pick is the EOS symbol, or the target index if reversed_dictionary.get(neg_ind) == 'EOS' \ or neg_ind == target_ind \ or neg_ind in neg_samples: continue # W2 matrix does not contain 'PAD' or 'UNK', so we shift the dictionary by two neg_samples.append(neg_ind - 2) train_data.append((context, target_ind, neg_samples)) num_processed_words += 1 if num_processed_words % 1000 == 0: logger.info('Processed words for sentence: %.3f%%' % (float(num_processed_words * 100) / num_total_words)) num_processed_sentences += 1 if num_processed_sentences % 1000 == 0: logger.info('Processed sentences: %.3f%%' % (float(num_processed_sentences * 100) / num_total_sentences)) return train_data def process_data(train_data, word_count, args): # Find the size of the training examples M = len(train_data) # Get the dictionary size V = len(word_count) if args.num_neg_samples > 0: # We are doing negative sampling # x_train holds the entire training data, where each row represents context words for that training example. x_train = np.zeros((M, 2 * args.context_window), dtype=np.int32) # Each row in y_train represents the target label y_train = np.zeros((M, 1), dtype=np.int32) # each row in y_neg is a set of K negative examples for that training example. y_neg = np.zeros((M, args.num_neg_samples), dtype=np.int32) for index, (context, target, neg_samples) in enumerate(train_data): # Fill the corresponding column of the x_train matrix for cw_ind, cw in enumerate(context): x_train[index, cw_ind] = cw # Fill the corresponding column of the y_train matrix y_train[index, 0] = target # Fill the corresponding column of the y_neg matrix for ind, neg_sample in enumerate(neg_samples): y_neg[index, ind] = neg_sample else: # We are doing softmax # x_train holds the entire training data, where each row represents context for one training example x_train = np.zeros((M, V), dtype=np.float32) # Each column in y_train represents the one-hot encoding of the target word y_train = np.zeros((M, V), dtype=np.float32) # each column in y_neg is a set of K negative examples for that training example. y_neg = np.zeros((M, V), dtype=np.float32) for index, (context, target, neg_samples) in enumerate(train_data): # Fill the corresponding row of the x_train matrix for cw in context: x_train[index, cw] = 1 # Fill the corresponding row of the y_train matrix y_train[index, target] = 1 # Fill the corresponding row of the y_neg matrix for neg_sample in neg_samples: y_neg[index, neg_sample] = 1 return x_train, y_train, y_neg def get_ns_probs(word_count, ns_param): """ Returns a list of the probabilities of picking each word as a negative sample. List is ordered as word_count without the 'UNK' (this is not considered in any of these calculations). :param word_count: The dictionary containing mappings from words to their count in the corpus. :param ns_param: The negative sampling parameter used when building the probability distribution. :return: A list of probabilities for each word. """ ns_probs = [] # Compute normalization constant so that probabilities add up to 1. norm_const = 0 for word, count in word_count[1:]: # TODO: Think about this norm_const += np.power(count, ns_param) # Compute the probabilities for each word. for word, count in word_count[1:]: # <- Skip 'UNK' word_prob = np.power(count, ns_param) / norm_const ns_probs.append(word_prob) return ns_probs def get_keep_probs(word_count, num_total_words, ds_param): """ Returns a list of probabilities of keeping the corresponding words during downsampling :param word_count: A list containing tuples of (word, word_count) :param num_total_words: Total number of words in the corpus :param ds_param: The downsampling parameter, used in the distribution :return: A dictionary mapping words to their probabilities """ # Build the probabilities of keeping the words when downsampling keep_prob = [] for word, count in word_count[1:]: # <- Ignore 'UNK' # Compute the fraction of the words in the vocabulary that are the current word. word_frac = float(count) / num_total_words # Compute the probability of keeping the current word. word_prob = (np.sqrt(word_frac / ds_param) + 1) * ds_param / word_frac keep_prob.append(word_prob) return keep_prob def get_mini_batches(X, Y, YNEG, batch_size=64, shuffled=True): """Split the data into minibatches of batch_size :param X: array containing the context words at each row :param Y: array containing the target word at each row :param YNEG: array containing the negative samples at each row :param batch_size: size of the mini-batch :param shuffled: If true, training examples will be shuffled before building mini-batches :return: a list of mini-batches. """ logger = logging.getLogger('main') logger.info('Processing into mini-batches...') mini_batches = [] # Get the total number of training examples n_training_examples = X.shape[0] # If shuffled=True, shuffle X and Y if shuffled: permutation = list(np.random.permutation(n_training_examples)) X = X[permutation, :] Y = Y[permutation, :] YNEG = YNEG[permutation, :] num_full_batches = int(math.floor(n_training_examples / batch_size)) for k in range(0, num_full_batches): mini_batch_X = X[k * batch_size: (k + 1) * batch_size, :] mini_batch_Y = Y[k * batch_size: (k + 1) * batch_size, :] mini_batch_YNEG = YNEG[k * batch_size: (k + 1) * batch_size, :] mini_batch = (mini_batch_X, mini_batch_Y, mini_batch_YNEG) mini_batches.append(mini_batch) if n_training_examples % batch_size != 0: mini_batch_X = X[num_full_batches * batch_size:, :] mini_batch_Y = Y[num_full_batches * batch_size:, :] mini_batch_YNEG = YNEG[num_full_batches * batch_size:, :] mini_batch = (mini_batch_X, mini_batch_Y, mini_batch_YNEG) mini_batches.append(mini_batch) logger.info('Finished processing mini-batches.') return mini_batches def get_negative_samples(target, num_neg_samples, dictionaries): neg_samples = [] # Get the required dictionaries dictionary = dictionaries['dictionary'] reversed_dictionary = dictionaries['reversed_dictionary'] ns_probs = dictionaries['ns_probs'] # Pick negative samples. # * We do not want to pick 'PAD' or 'UNK' as negative samples from the dictionary. # * W2 matrix does not contain 'PAD' or 'UNK' symbols (which is where we get our # negative embeddings from), so our samples are shifted from the dictionary by two. samples = np.arange(len(dictionary) - 2) # Pick num_neg_samples of negative samples. while len(neg_samples) < num_neg_samples: # Pick a random word from the samples according # to probabilities stored in ns_prob table. neg_ind = np.random.choice(samples, p=ns_probs) # Ignore if the random pick is the target index or has already been picked # TODO: This is actually not strictly necessary. if neg_ind == target or neg_ind in neg_samples: continue neg_samples.append(neg_ind) # Alternatively, if we don't care about having target # in negative samples we could do something like this: # neg_samples = np.random.choice(samples, size=num_neg_samples, replace=False, p=ns_probs) return neg_samples sentence_index = 0 word_index = 0 def get_training_example(sentences, dictionaries, args): """ Generates a single training example from the input sentences sequentially (a.k.a. we keep track of positioning on the sentence and the target word) :param sentences: A list of sentences, where each sentence is a list of word indices :param dictionaries: The dictionaries built from corpus :param args: Scripts arguments :return: A tuple of ([context], target, [negative samples]) """ logger = logging.getLogger('main') global sentence_index global word_index current_sentence = sentences[sentence_index] target = current_sentence[word_index] - 2 # Shrink context window by random amount context_window = np.random.randint(1, args.context_window + 1) context = [] low = max(word_index - context_window, 0) high = min(word_index + context_window + 1, len(current_sentence)) for cont_ind in range(low, high): # Target word cannot be part of context if cont_ind == word_index: continue # Do not use 'UNK' words as context # TODO: Remove this check if downsampling is applied # if current_sentence[cont_ind] == 1: # continue context.append(current_sentence[cont_ind]) # Pad context with zeros while len(context) < 2 * args.context_window: context.append(0) neg_samples = get_negative_samples(target, args.num_neg_samples, dictionaries) # Advance the word_index to the next word word_index += 1 # If we reached the end of the sentence, advance to next sentence and reset word index if word_index >= len(current_sentence): sentence_index += 1 word_index = 0 # If we reached the end of the sentences, reset sentence_index back to the first one if sentence_index >= len(sentences): sentence_index = 0 logger.info('Epoch completed.') return context, target, neg_samples def get_training_batch(sentences, dictionaries, args): # Each row in x_train represent a context vector for a single training example x_train = np.zeros(shape=(args.batch_size, 2 * args.context_window), dtype=np.int32) # Each row in y_train represents the target label y_train = np.zeros(shape=(args.batch_size, 1), dtype=np.int32) # each row in y_neg is a set of K negative examples for that training example. y_neg = np.zeros(shape=(args.batch_size, args.num_neg_samples), dtype=np.int32) for i in range(args.batch_size): context, target, neg_samples = get_training_example(sentences, dictionaries, args) x_train[i, :] = context y_train[i, :] = target y_neg[i, :] = neg_samples return x_train, y_train, y_neg
40.909836
123
0.640232
0
0
0
0
0
0
0
0
11,317
0.453496
58d14d425be795bfa4409700edc4323d29494ae2
307
py
Python
nicegui/elements/row.py
florianwittkamp/nicegui
4c054f4e5b82e4ac56db93b73d5fb5ffcd480d06
[ "MIT" ]
30
2021-06-16T15:46:45.000Z
2022-03-27T03:14:18.000Z
nicegui/elements/row.py
florianwittkamp/nicegui
4c054f4e5b82e4ac56db93b73d5fb5ffcd480d06
[ "MIT" ]
11
2021-05-24T17:05:22.000Z
2022-02-19T07:13:18.000Z
nicegui/elements/row.py
florianwittkamp/nicegui
4c054f4e5b82e4ac56db93b73d5fb5ffcd480d06
[ "MIT" ]
7
2021-07-22T05:51:04.000Z
2022-01-31T19:39:37.000Z
import justpy as jp from .group import Group class Row(Group): def __init__(self): '''Row Element Provides a container which arranges its child in a row. ''' view = jp.QDiv(classes='row items-start', style='gap: 1em', delete_flag=False) super().__init__(view)
23.615385
86
0.628664
260
0.846906
0
0
0
0
0
0
118
0.384365
58d1b1562239fddc199cba78a4c7fd5ac432e0af
102
py
Python
src/mtvs/__init__.py
digsim/mtvs
d89d12d4cd65eafe732226e588a54874123db7f4
[ "Apache-2.0" ]
2
2017-11-19T05:51:31.000Z
2020-01-22T08:12:53.000Z
src/mtvs/__init__.py
digsim/mtvs
d89d12d4cd65eafe732226e588a54874123db7f4
[ "Apache-2.0" ]
3
2015-12-03T00:34:46.000Z
2016-01-04T15:49:14.000Z
src/mtvs/__init__.py
digsim/missingTvShows
f17660dc965c7a6eef1b0cfad9577d62087cba56
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import pkg_resources __version__ = pkg_resources.require("mtvs")[0].version
17
54
0.705882
0
0
0
0
0
0
0
0
29
0.284314
58d37fec96977e11aa6010c2276ce5434c4fc6f8
452
py
Python
tests/guinea-pigs/unittest/expected_failure.py
Tirzono/teamcity-messages
e7f7334e2956a9e707222e4c83de9ffeb15b8ac0
[ "Apache-2.0" ]
105
2015-06-24T15:40:41.000Z
2022-02-04T10:30:34.000Z
tests/guinea-pigs/unittest/expected_failure.py
Tirzono/teamcity-messages
e7f7334e2956a9e707222e4c83de9ffeb15b8ac0
[ "Apache-2.0" ]
145
2015-06-24T15:26:28.000Z
2022-03-22T20:04:19.000Z
tests/guinea-pigs/unittest/expected_failure.py
Tirzono/teamcity-messages
e7f7334e2956a9e707222e4c83de9ffeb15b8ac0
[ "Apache-2.0" ]
76
2015-07-20T08:18:21.000Z
2022-03-18T20:03:53.000Z
# coding=utf-8 import sys from teamcity.unittestpy import TeamcityTestRunner if sys.version_info < (2, 7): from unittest2 import main, TestCase, expectedFailure else: from unittest import main, TestCase, expectedFailure class TestSkip(TestCase): def test_expected_failure(self): self.fail("this should happen unfortunately") test_expected_failure = expectedFailure(test_expected_failure) main(testRunner=TeamcityTestRunner)
26.588235
66
0.783186
183
0.404867
0
0
0
0
0
0
48
0.106195
58d426717d52de8aec95bf782518c3dd7fa7dafe
877
py
Python
main.py
GabrielIFPB/wishlist-fastapi
1d39bf4c65dcc4491d0836487a218e67dbb07a80
[ "MIT" ]
null
null
null
main.py
GabrielIFPB/wishlist-fastapi
1d39bf4c65dcc4491d0836487a218e67dbb07a80
[ "MIT" ]
null
null
null
main.py
GabrielIFPB/wishlist-fastapi
1d39bf4c65dcc4491d0836487a218e67dbb07a80
[ "MIT" ]
null
null
null
import uvicorn from fastapi import FastAPI from database import Base, engine from routers.user import router as router_user from routers.product import router as router_product from routers.authentication import router as router_auth app = FastAPI( title="Wish List", description="Permita que seus clientes acompanhem seus produtos favoritos, adicionando-os a uma lista de desejos.", version="1.0.0", ) Base.metadata.create_all(engine) @app.get('/') def index(): """ "welcome": "Wish List", "documentation": "127.0.0.1:8000/docs ou 127.0.0.1:8000/redoc" """ return { "welcome": "Wish List", "documentation": "127.0.0.1:8000/docs ou 127.0.0.1:8000/redoc" } app.include_router(router_auth) app.include_router(router_product) app.include_router(router_user) if __name__ == "__main__": uvicorn.run("main:app", host="127.0.0.1", port=8000, reload=True)
21.925
116
0.735462
0
0
0
0
233
0.265678
0
0
332
0.378563
58d441702771292f5be7e698cfa7a42a16e08886
1,605
py
Python
libs/data_layers/transform.py
lsc25846/Wildlife-Recognition-System
81d8afdf4a50bc94bf5e1952bfce1b5a9c4c6bd2
[ "MIT" ]
null
null
null
libs/data_layers/transform.py
lsc25846/Wildlife-Recognition-System
81d8afdf4a50bc94bf5e1952bfce1b5a9c4c6bd2
[ "MIT" ]
null
null
null
libs/data_layers/transform.py
lsc25846/Wildlife-Recognition-System
81d8afdf4a50bc94bf5e1952bfce1b5a9c4c6bd2
[ "MIT" ]
null
null
null
# encoding: utf-8 import torch import cv2 import numpy as np import pdb def detection_collate(batch): """Custom collate fn for dealing with batches of images that have a different number of associated object annotations (bounding boxes). Arguments: batch: (tuple) A tuple of tensor images and lists of annotations Return: A tuple containing: 1) (tensor) batch of images stacked on their 0 dim 2) (tensor) [batch, num_gt, 5] batch of annotations stacked on their 0 dim annotations for a given image are stacked on 1 dim """ targets = [] imgs = [] # numpy array num_gts = [sample[1].shape[0] for sample in batch] max_num_gt = max(num_gts) for sample in batch: imgs.append(sample[0]) size_gt = sample[1].shape num_gt = size_gt[0] aug_size = list(size_gt[:]) aug_size[0] = max_num_gt aug_gt = np.zeros(aug_size, dtype=sample[1].dtype) aug_gt[:num_gt] = sample[1] targets.append(torch.FloatTensor(aug_gt)) return torch.stack(imgs, 0), torch.stack(targets, 0) def base_transform(image, size, mean): x = cv2.resize(image, (size, size)).astype(np.float32) x -= mean x = x.astype(np.float32) return x class BaseTransform: """ For evaluation and testing. """ def __init__(self, size, mean): self.size = size self.mean = np.array(mean, dtype=np.float32) def __call__(self, image, boxes=None, labels=None): return base_transform(image, self.size, self.mean), boxes, labels
29.181818
81
0.633022
313
0.195016
0
0
0
0
0
0
575
0.358255
58d6ba044f8814b989985c1b13e416f82125fe24
2,273
py
Python
rllab/torch/algos/base.py
NeurIPSPaperSubmission7934/code_submission
713fce673e8e3ba30b559d4eebe6d3e4891069ed
[ "Apache-2.0" ]
null
null
null
rllab/torch/algos/base.py
NeurIPSPaperSubmission7934/code_submission
713fce673e8e3ba30b559d4eebe6d3e4891069ed
[ "Apache-2.0" ]
null
null
null
rllab/torch/algos/base.py
NeurIPSPaperSubmission7934/code_submission
713fce673e8e3ba30b559d4eebe6d3e4891069ed
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2018 Copyright holder of the paper Generative Adversarial Model Learning # submitted to NeurIPS 2019 for review # All rights reserved. import numpy as np import torch class Optimizer(object): def __init__(self, policy, use_gpu=False): self.networks = self._init_networks(policy.input_dim, policy.output_dim) networks = self.networks.copy() networks['policy'] = policy self.optimizers = self._init_optimizers(networks) self.use_gpu = use_gpu if self.use_gpu: self.networks = {k: v.cuda() for k, v in self.networks.items()} @classmethod def _init_networks(cls, obs_dim, action_dim): raise NotImplementedError def process_batch(self, policy, batch, update_policy_args): states, actions, rewards, masks = unpack_batch(batch) if self.use_gpu: states, actions, rewards, masks = map( lambda x: x.cuda(), [states, actions, rewards, masks]) policy = self.update_networks( policy, actions, masks, rewards, states, batch["num_episodes"], *update_policy_args) return policy def update_networks(self, policy, actions, masks, rewards, states, num_episodes, *args, **step_kwargs): raise NotImplementedError @staticmethod def _init_optimizers(networks, lr_rates=None): return init_optimizers(networks, lr_rates=lr_rates) def init_optimizers(networks, lr_rates=None): args = {key: [network] for key, network in networks.items()} if lr_rates is not None: for key in args.keys(): args[key].append(lr_rates[key]) optimizers = {key: init_optimizer(*args[key]) for key in networks.keys()} return optimizers def unpack_batch(batch): states = torch.from_numpy(np.array(batch["states"], dtype=np.float32)) rewards = torch.from_numpy(np.array(batch["rewards"], dtype=np.float32)) masks = torch.from_numpy(np.array(batch["masks"], dtype=np.float32)) actions = torch.from_numpy(np.array(batch["actions"])) return states, actions, rewards, masks def init_optimizer(network, lr_rate=0.01): return torch.optim.Adam(network.parameters(), lr=lr_rate)
33.925373
88
0.661681
1,287
0.566212
0
0
220
0.096788
0
0
203
0.089309
58d6f86c63a774052533d60d46858c6d938085a4
915
py
Python
lab-4.py
PavelKovalets/python-reviewer-test
a4d489482f596570abd5d34677f7549e1b724c8e
[ "MIT" ]
null
null
null
lab-4.py
PavelKovalets/python-reviewer-test
a4d489482f596570abd5d34677f7549e1b724c8e
[ "MIT" ]
null
null
null
lab-4.py
PavelKovalets/python-reviewer-test
a4d489482f596570abd5d34677f7549e1b724c8e
[ "MIT" ]
null
null
null
#!/usr/bin/python3 import boto3 source_ddb = boto3.resource('dynamodb', 'us-east-1') dest_ddb = boto3.client('dynamodb', 'us-west-2') def sync(source_ddb, dest_ddb): table = source_ddb.Table("CodeGuru-MusicCollection") scan_kwargs = { 'ProjectionExpression': "Artist, SongTitle" } done = False start_key = None while not done: if start_key: scan_kwargs['ExclusiveStartKey'] = start_key response = table.scan(**scan_kwargs) for item in response['Items']: newItem = { 'Artist': {}, 'SongTitle': {} } newItem['Artist']['S'] = item['Artist'] newItem['SongTitle']['S'] = item['SongTitle'] dest_ddb.put_item(TableName="CodeGuru-MusicCollection", Item=newItem) print(item) start_key = response.get('LastEvaluatedKey', None) done = start_key is None sync(source_ddb, dest_ddb)
33.888889
81
0.619672
0
0
0
0
0
0
0
0
260
0.284153
58d7f0d0c28563ede738e4f0ad2b23de85fe0aac
2,492
py
Python
core/reports/views.py
jilbertozamorasaa/panda-bigmon-core
4e38411489e9ca538a000df43aed5280a72b4342
[ "Apache-2.0" ]
3
2017-07-19T18:29:23.000Z
2021-11-18T04:57:18.000Z
core/reports/views.py
jilbertozamorasaa/panda-bigmon-core
4e38411489e9ca538a000df43aed5280a72b4342
[ "Apache-2.0" ]
3
2021-09-01T15:20:21.000Z
2022-03-12T01:02:51.000Z
core/reports/views.py
jilbertozamorasaa/panda-bigmon-core
4e38411489e9ca538a000df43aed5280a72b4342
[ "Apache-2.0" ]
9
2015-11-17T15:52:23.000Z
2021-09-07T12:23:16.000Z
""" """ import json from django.views.decorators.cache import never_cache from django.http import HttpResponse from django.shortcuts import render_to_response from core.views import initRequest, DateEncoder from core.reports import MC16aCPReport, ObsoletedTasksReport, TitanProgressReport @never_cache def report(request): initRequest(request) step = 0 response = None if 'requestParams' in request.session and 'campaign' in request.session['requestParams'] and request.session['requestParams']['campaign'].upper() == 'MC16': reportGen = MC16aCPReport.MC16aCPReport() response = reportGen.prepareReportJEDI(request) return response if 'requestParams' in request.session and 'campaign' in request.session['requestParams'] and request.session['requestParams']['campaign'].upper() == 'MC16C': reportGen = MC16aCPReport.MC16aCPReport() response = reportGen.prepareReportJEDIMC16c(request) return response if 'requestParams' in request.session and 'campaign' in request.session['requestParams'] and request.session['requestParams']['campaign'].upper() == 'MC16A' and 'type' in request.session['requestParams'] and request.session['requestParams']['type'].upper() == 'DCC': reportGen = MC16aCPReport.MC16aCPReport() resp = reportGen.getDKBEventsSummaryRequestedBreakDownHashTag(request) dump = json.dumps(resp, cls=DateEncoder) return HttpResponse(dump, content_type='application/json') if 'requestParams' in request.session and 'obstasks' in request.session['requestParams']: reportGen = ObsoletedTasksReport.ObsoletedTasksReport() response = reportGen.prepareReport(request) return response if 'requestParams' in request.session and 'titanreport' in request.session['requestParams']: reportGen = TitanProgressReport.TitanProgressReport() response = reportGen.prepareReport(request) return response if 'requestParams' in request.session and 'step' in request.session['requestParams']: step = int(request.session['requestParams']['step']) if step == 0: response = render_to_response('reportWizard.html', {'nevents': 0}, content_type='text/html') else: if 'reporttype' in request.session['requestParams'] and request.session['requestParams']['reporttype'] == 'rep0': reportGen = MC16aCPReport.MC16aCPReport() response = reportGen.prepareReport() return response
43.719298
270
0.72191
0
0
0
0
2,197
0.881621
0
0
527
0.211477
58d8fe58ae3d14e3614960efa20628276cc29e39
4,594
py
Python
xain/fl/participant/participant.py
danieljanes/ox-msc-diss-code-freeze
20c6881cabdf1e3ed7a9ddb40bbdcc7a7fd22f78
[ "Apache-2.0" ]
1
2020-05-30T20:34:19.000Z
2020-05-30T20:34:19.000Z
xain/fl/participant/participant.py
danieljanes/ox-msc-diss-code-freeze
20c6881cabdf1e3ed7a9ddb40bbdcc7a7fd22f78
[ "Apache-2.0" ]
null
null
null
xain/fl/participant/participant.py
danieljanes/ox-msc-diss-code-freeze
20c6881cabdf1e3ed7a9ddb40bbdcc7a7fd22f78
[ "Apache-2.0" ]
null
null
null
from typing import Dict, List, Tuple import numpy as np import tensorflow as tf from absl import logging from xain.datasets import prep from xain.types import History, Metrics, Partition, Theta, VolumeByClass from .model_provider import ModelProvider class Participant: # pylint: disable-msg=too-many-arguments # pylint: disable=too-many-instance-attributes def __init__( self, cid: int, model_provider: ModelProvider, xy_train: Partition, xy_val: Partition, num_classes: int, batch_size: int, use_lr_fn: bool = True, ) -> None: assert xy_train[0].shape[0] == xy_train[1].shape[0] assert xy_val[0].shape[0] == xy_val[1].shape[0] self.cid = cid self.model_provider = model_provider self.num_classes: int = num_classes self.batch_size: int = batch_size self.use_lr_fn: bool = use_lr_fn self.num_examples = xy_train[0].shape[0] # Training set self.xy_train = xy_train self.steps_train: int = int(xy_train[0].shape[0] / batch_size) # Validation set self.xy_val = xy_val self.steps_val: int = 1 def train_round( self, theta: Theta, epochs: int, epoch_base: int ) -> Tuple[Tuple[Theta, int], History, Dict]: logging.info( f"Participant {self.cid}: train_round START (epoch_base: {epoch_base})" ) model = self.model_provider.init_model(epoch_base=epoch_base) # type:ignore model.set_weights(theta) callbacks: List = [] if self.use_lr_fn: lr_fn = self.model_provider.init_lr_fn(epoch_base=epoch_base) # type:ignore callback_lr = tf.keras.callbacks.LearningRateScheduler(lr_fn) callbacks = [callback_lr] hist: History = self.fit(model, epochs, callbacks) theta_prime = model.get_weights() opt_config = model.optimizer.get_config() opt_config = convert_numpy_types(opt_config) logging.info("Participant {}: train_round FINISH".format(self.cid)) return (theta_prime, self.num_examples), hist, opt_config def fit(self, model: tf.keras.Model, epochs: int, callbacks: List) -> History: ds_train = prep.init_ds_train(self.xy_train, self.num_classes, self.batch_size) ds_val = prep.init_ds_val(self.xy_val, self.num_classes) callback_logging = LoggingCallback(str(self.cid), logging.info) callbacks.append(callback_logging) hist = model.fit( ds_train, epochs=epochs, validation_data=ds_val, callbacks=callbacks, shuffle=False, # Shuffling is handled via tf.data.Dataset steps_per_epoch=self.steps_train, validation_steps=self.steps_val, verbose=0, ) return cast_to_float(hist.history) def evaluate(self, theta: Theta, xy_test: Partition) -> Tuple[float, float]: model = self.model_provider.init_model() model.set_weights(theta) ds_val = prep.init_ds_val(xy_test) # Assume the validation `tf.data.Dataset` to yield exactly one batch containing # all examples in the validation set loss, accuracy = model.evaluate(ds_val, steps=1, verbose=0) return loss, accuracy def metrics(self) -> Metrics: vol_by_class = xy_train_volume_by_class(self.num_classes, self.xy_train) return (self.cid, vol_by_class) def xy_train_volume_by_class(num_classes: int, xy_train) -> VolumeByClass: counts = [0] * num_classes _, y = xy_train classes, counts_actual = np.unique(y, return_counts=True) for i_ca, c in enumerate(classes): # Cast explicitly to int so its later JSON serializable # as other we will get a list of np objects of type int64 counts[c] = int(counts_actual[i_ca]) return counts def cast_to_float(hist) -> History: for key in hist: for index, number in enumerate(hist[key]): hist[key][index] = float(number) return hist def convert_numpy_types(opt_config: Dict) -> Dict: for key in opt_config: if isinstance(opt_config[key], np.float32): opt_config[key] = opt_config[key].item() return opt_config class LoggingCallback(tf.keras.callbacks.Callback): def __init__(self, cid: str, print_fn): tf.keras.callbacks.Callback.__init__(self) self.cid = cid self.print_fn = print_fn def on_epoch_end(self, epoch, logs=None): self.print_fn(f"CID {self.cid} epoch {epoch}")
35.068702
88
0.653243
3,532
0.768829
0
0
0
0
0
0
549
0.119504
58db0a434e3091024b2614aa6f89111b6536e4cd
1,380
py
Python
client/animation/qr_code.py
Nurgak/IoT-RGB-LED-Matrix-Socket
e03ce4c2e2d77a6939662aad4ac92fbf9bdea77c
[ "MIT" ]
1
2022-01-26T09:01:44.000Z
2022-01-26T09:01:44.000Z
client/animation/qr_code.py
Nurgak/IoT-RGB-LED-Matrix-Socket
e03ce4c2e2d77a6939662aad4ac92fbf9bdea77c
[ "MIT" ]
3
2021-12-28T10:29:02.000Z
2022-01-06T03:01:08.000Z
client/animation/qr_code.py
Nurgak/IoT-RGB-LED-Matrix-Socket
e03ce4c2e2d77a6939662aad4ac92fbf9bdea77c
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """! QR code generator animation script.""" import numpy as np import qrcode from src.animate import Animate class QRCode(Animate): """! QR code generator animation class. @image html qr_code.QRCode.png width=256px Animation displaying a static QR-code-encoded-text. """ __CODE_COLOR = (0xFF, 0xFF, 0xFF) def __init__(self, shape: tuple, *args: list, **kwargs: dict): super().__init__(shape) self.__text = kwargs["text"] assert self.__text != "", "Text is empty." def draw(self): qr_code = qrcode.QRCode( version=1, # error_correction=qrcode.constants.ERROR_CORRECT_L, box_size=1, border=0, ) qr_code.add_data(self.__text) qr_code.make(fit=True) qr_pil = qr_code.make_image(fill_color=self.__CODE_COLOR, back_color=(0, 0, 0)) qr_np = np.array(qr_pil) assert ( qr_np.shape <= self._screen.shape ), f"[{self.__class__.__name__}] QR code too large." # Center the code on the screen. offset_y = (self._screen.shape[0] - qr_np.shape[0]) // 2 offset_x = (self._screen.shape[1] - qr_np.shape[1]) // 2 self._screen[ offset_y : qr_np.shape[1] + offset_y, offset_x : qr_np.shape[0] + offset_x ] = qr_np yield self._screen
30
87
0.602899
1,245
0.902174
835
0.605072
0
0
0
0
372
0.269565
58db8c9e99f143cbab9455bc35570eeeb524d210
483
py
Python
tests/test_xiaochengtu.py
lamzuzuzu/yxf_yixue_py
90eb077f195b543f93a507f28b0a4c016cb0c92f
[ "MIT" ]
20
2019-01-08T08:13:39.000Z
2021-12-23T09:04:14.000Z
tests/test_xiaochengtu.py
lamzuzuzu/yxf_yixue_py
90eb077f195b543f93a507f28b0a4c016cb0c92f
[ "MIT" ]
null
null
null
tests/test_xiaochengtu.py
lamzuzuzu/yxf_yixue_py
90eb077f195b543f93a507f28b0a4c016cb0c92f
[ "MIT" ]
13
2019-04-22T03:25:13.000Z
2022-01-04T05:43:48.000Z
#!/usr/bin/python3 # -*- coding: utf-8 -*- import os import sys BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # ๅŸบๅœฐๅ€ๆ˜ฏๆœฌ้กน็›ฎๆ น็›ฎๅฝ• sys.path.append(BASE_DIR) import datetime from yxf_yixue.xiaochengtu import XiaochengtuApi if __name__ == '__main__': string = '1996/02/29 23:16' obj = datetime.datetime(2012, 3, 7, 17, 40) a = XiaochengtuApi() res1 = a.paipan(obj) print(res1) a.print_pan() res2 = a.get_chuantongfenxi() print(res2)
24.15
84
0.681159
0
0
0
0
0
0
0
0
101
0.200795
58dc98f64796c7f6f0664ca055829713dcb9192e
3,662
py
Python
_Dist/NeuralNetworks/b_TraditionalML/MultinomialNB.py
leoatchina/MachineLearning
071f2c0fc6f5af3d9550cfbeafe8d537c35a76d3
[ "MIT" ]
1,107
2016-09-21T02:18:36.000Z
2022-03-29T02:52:12.000Z
_Dist/NeuralNetworks/b_TraditionalML/MultinomialNB.py
leoatchina/MachineLearning
071f2c0fc6f5af3d9550cfbeafe8d537c35a76d3
[ "MIT" ]
18
2016-12-22T10:24:47.000Z
2022-03-11T23:18:43.000Z
_Dist/NeuralNetworks/b_TraditionalML/MultinomialNB.py
leoatchina/MachineLearning
071f2c0fc6f5af3d9550cfbeafe8d537c35a76d3
[ "MIT" ]
776
2016-12-21T12:08:08.000Z
2022-03-21T06:12:08.000Z
import numpy as np from sklearn.preprocessing import OneHotEncoder class MultinomialNB: """ Naive Bayes algorithm with discrete inputs Parameters ---------- alpha : float, optional (default=1.) Smooth parameter used in Naive Bayes, default is 1 (which indicates a laplace smoothing) Attributes ---------- enc : OneHotEncoder One-Hot encoder used to transform (discrete) inputs class_log_prior : np.ndarray of float Log class prior used to calculate (linear) prediction feature_log_prob : np.ndarray of float Feature log probability used to calculate (linear) prediction Examples -------- >>> import numpy as np >>> x = np.random.randint(0, 10, [1000, 10]) # Generate feature vectors >>> y = np.random.randint(0, 5, 1000) # Generate labels >>> nb = MultinomialNB().fit(x, y) # fit the model >>> nb.predict(x) # (linear) prediction >>> nb.predict_class(x) # predict labels """ def __init__(self, alpha=1.): self.alpha = alpha self.enc = self.class_log_prior = self.feature_log_prob = None def fit(self, x, y, do_one_hot=True): """ Fit the model with x & y Parameters ---------- x : {list of float, np.ndarray of float} Feature vectors used for training Note: features are assumed to be discrete y : {list of float, np.ndarray of float} Labels used for training do_one_hot : bool, optional (default=True) Whether do one-hot encoding on x Returns ------- self : MultinomialNB Returns self. """ if do_one_hot: self.enc = OneHotEncoder(dtype=np.float32) x = self.enc.fit_transform(x) else: self.enc = None x = np.array(x, np.float32) n = x.shape[0] y = np.array(y, np.int8) self.class_log_prior = np.log(np.bincount(y) / n) masks = [y == i for i in range(len(self.class_log_prior))] masked_xs = [x[mask] for mask in masks] feature_counts = np.array([np.asarray(masked_x.sum(0))[0] for masked_x in masked_xs]) smoothed_fc = feature_counts + self.alpha self.feature_log_prob = np.log(smoothed_fc / smoothed_fc.sum(1, keepdims=True)) return self def _predict(self, x): """ Internal method for calculating (linear) predictions Parameters ---------- x : {np.ndarray of float, scipy.sparse.csr.csr_matrix of float} One-Hot encoded feature vectors Returns ------- predictions : np.ndarray of float Returns (linear) predictions. """ return x.dot(self.feature_log_prob.T) + self.class_log_prior def predict(self, x): """ API for calculating (linear) predictions Parameters ---------- x : {list of float, np.ndarray of float} Target feature vectors Returns ------- predictions : np.ndarray of float Returns (linear) predictions. """ if self.enc is not None: x = self.enc.transform(x) return self._predict(x) def predict_class(self, x): """ API for predicting labels Parameters ---------- x : {list of float, np.ndarray of float} Target feature vectors Returns ------- labels : np.ndarray of int Returns labels. """ return np.argmax(self.predict(x), 1)
29.296
96
0.560896
3,592
0.980885
0
0
0
0
0
0
2,368
0.646641
58df035c2ab9c1b7f4e6cbacccfa792d055318cf
9,362
py
Python
Reinforcement-Learning/Python-Model/venv/lib/python3.8/site-packages/tensorflow/core/protobuf/graph_debug_info_pb2.py
lawrence910426/ProgrammingII_FinalProject
493183dc2a674310e65bffe3a5e00395e8bebb4b
[ "MIT" ]
null
null
null
Reinforcement-Learning/Python-Model/venv/lib/python3.8/site-packages/tensorflow/core/protobuf/graph_debug_info_pb2.py
lawrence910426/ProgrammingII_FinalProject
493183dc2a674310e65bffe3a5e00395e8bebb4b
[ "MIT" ]
null
null
null
Reinforcement-Learning/Python-Model/venv/lib/python3.8/site-packages/tensorflow/core/protobuf/graph_debug_info_pb2.py
lawrence910426/ProgrammingII_FinalProject
493183dc2a674310e65bffe3a5e00395e8bebb4b
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: tensorflow/core/protobuf/graph_debug_info.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='tensorflow/core/protobuf/graph_debug_info.proto', package='tensorflow', syntax='proto3', serialized_options=_b('\n\030org.tensorflow.frameworkB\024GraphDebugInfoProtosP\001ZUgithub.com/tensorflow/tensorflow/tensorflow/go/core/protobuf/for_core_protos_go_proto\370\001\001'), serialized_pb=_b('\n/tensorflow/core/protobuf/graph_debug_info.proto\x12\ntensorflow\"\xd5\x02\n\x0eGraphDebugInfo\x12\r\n\x05\x66iles\x18\x01 \x03(\t\x12\x36\n\x06traces\x18\x02 \x03(\x0b\x32&.tensorflow.GraphDebugInfo.TracesEntry\x1aX\n\x0b\x46ileLineCol\x12\x12\n\nfile_index\x18\x01 \x01(\x05\x12\x0c\n\x04line\x18\x02 \x01(\x05\x12\x0b\n\x03\x63ol\x18\x03 \x01(\x05\x12\x0c\n\x04\x66unc\x18\x04 \x01(\t\x12\x0c\n\x04\x63ode\x18\x05 \x01(\t\x1aL\n\nStackTrace\x12>\n\x0e\x66ile_line_cols\x18\x01 \x03(\x0b\x32&.tensorflow.GraphDebugInfo.FileLineCol\x1aT\n\x0bTracesEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\x34\n\x05value\x18\x02 \x01(\x0b\x32%.tensorflow.GraphDebugInfo.StackTrace:\x02\x38\x01\x42\x8c\x01\n\x18org.tensorflow.frameworkB\x14GraphDebugInfoProtosP\x01ZUgithub.com/tensorflow/tensorflow/tensorflow/go/core/protobuf/for_core_protos_go_proto\xf8\x01\x01\x62\x06proto3') ) _GRAPHDEBUGINFO_FILELINECOL = _descriptor.Descriptor( name='FileLineCol', full_name='tensorflow.GraphDebugInfo.FileLineCol', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='file_index', full_name='tensorflow.GraphDebugInfo.FileLineCol.file_index', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='line', full_name='tensorflow.GraphDebugInfo.FileLineCol.line', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='col', full_name='tensorflow.GraphDebugInfo.FileLineCol.col', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='func', full_name='tensorflow.GraphDebugInfo.FileLineCol.func', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='code', full_name='tensorflow.GraphDebugInfo.FileLineCol.code', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=153, serialized_end=241, ) _GRAPHDEBUGINFO_STACKTRACE = _descriptor.Descriptor( name='StackTrace', full_name='tensorflow.GraphDebugInfo.StackTrace', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='file_line_cols', full_name='tensorflow.GraphDebugInfo.StackTrace.file_line_cols', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=243, serialized_end=319, ) _GRAPHDEBUGINFO_TRACESENTRY = _descriptor.Descriptor( name='TracesEntry', full_name='tensorflow.GraphDebugInfo.TracesEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='tensorflow.GraphDebugInfo.TracesEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='tensorflow.GraphDebugInfo.TracesEntry.value', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=_b('8\001'), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=321, serialized_end=405, ) _GRAPHDEBUGINFO = _descriptor.Descriptor( name='GraphDebugInfo', full_name='tensorflow.GraphDebugInfo', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='files', full_name='tensorflow.GraphDebugInfo.files', index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='traces', full_name='tensorflow.GraphDebugInfo.traces', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_GRAPHDEBUGINFO_FILELINECOL, _GRAPHDEBUGINFO_STACKTRACE, _GRAPHDEBUGINFO_TRACESENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=64, serialized_end=405, ) _GRAPHDEBUGINFO_FILELINECOL.containing_type = _GRAPHDEBUGINFO _GRAPHDEBUGINFO_STACKTRACE.fields_by_name['file_line_cols'].message_type = _GRAPHDEBUGINFO_FILELINECOL _GRAPHDEBUGINFO_STACKTRACE.containing_type = _GRAPHDEBUGINFO _GRAPHDEBUGINFO_TRACESENTRY.fields_by_name['value'].message_type = _GRAPHDEBUGINFO_STACKTRACE _GRAPHDEBUGINFO_TRACESENTRY.containing_type = _GRAPHDEBUGINFO _GRAPHDEBUGINFO.fields_by_name['traces'].message_type = _GRAPHDEBUGINFO_TRACESENTRY DESCRIPTOR.message_types_by_name['GraphDebugInfo'] = _GRAPHDEBUGINFO _sym_db.RegisterFileDescriptor(DESCRIPTOR) GraphDebugInfo = _reflection.GeneratedProtocolMessageType('GraphDebugInfo', (_message.Message,), { 'FileLineCol' : _reflection.GeneratedProtocolMessageType('FileLineCol', (_message.Message,), { 'DESCRIPTOR' : _GRAPHDEBUGINFO_FILELINECOL, '__module__' : 'tensorflow.core.protobuf.graph_debug_info_pb2' # @@protoc_insertion_point(class_scope:tensorflow.GraphDebugInfo.FileLineCol) }) , 'StackTrace' : _reflection.GeneratedProtocolMessageType('StackTrace', (_message.Message,), { 'DESCRIPTOR' : _GRAPHDEBUGINFO_STACKTRACE, '__module__' : 'tensorflow.core.protobuf.graph_debug_info_pb2' # @@protoc_insertion_point(class_scope:tensorflow.GraphDebugInfo.StackTrace) }) , 'TracesEntry' : _reflection.GeneratedProtocolMessageType('TracesEntry', (_message.Message,), { 'DESCRIPTOR' : _GRAPHDEBUGINFO_TRACESENTRY, '__module__' : 'tensorflow.core.protobuf.graph_debug_info_pb2' # @@protoc_insertion_point(class_scope:tensorflow.GraphDebugInfo.TracesEntry) }) , 'DESCRIPTOR' : _GRAPHDEBUGINFO, '__module__' : 'tensorflow.core.protobuf.graph_debug_info_pb2' # @@protoc_insertion_point(class_scope:tensorflow.GraphDebugInfo) }) _sym_db.RegisterMessage(GraphDebugInfo) _sym_db.RegisterMessage(GraphDebugInfo.FileLineCol) _sym_db.RegisterMessage(GraphDebugInfo.StackTrace) _sym_db.RegisterMessage(GraphDebugInfo.TracesEntry) DESCRIPTOR._options = None _GRAPHDEBUGINFO_TRACESENTRY._options = None # @@protoc_insertion_point(module_scope)
39.838298
888
0.760735
0
0
0
0
0
0
0
0
2,811
0.300256
58df52412971e5d196be467f42346c84563d779e
1,376
py
Python
tests/inferfaces_tests/test_people.py
jmolinski/traktpy
e6ff22acaf273b7b45070a4f8938c210fe4d63d7
[ "MIT" ]
null
null
null
tests/inferfaces_tests/test_people.py
jmolinski/traktpy
e6ff22acaf273b7b45070a4f8938c210fe4d63d7
[ "MIT" ]
1
2019-04-13T10:15:48.000Z
2019-04-13T10:15:48.000Z
tests/inferfaces_tests/test_people.py
jmolinski/traktpy
e6ff22acaf273b7b45070a4f8938c210fe4d63d7
[ "MIT" ]
null
null
null
import pytest from tests.test_data.lists import LIST from tests.test_data.people import MOVIE_CREDITS, PERSON, SHOW_CREDITS from tests.utils import mk_mock_client from trakt.core.exceptions import ArgumentError from trakt.core.json_parser import parse_tree from trakt.core.models import Person def test_get_person(): client = mk_mock_client({r".*people.*": [PERSON, 200]}) person = parse_tree(PERSON, Person) with pytest.raises(ArgumentError): client.people.get_person(person=0.5) assert client.people.get_person(person=person.ids.trakt).name == PERSON["name"] assert client.people.get_person(person=person).name == PERSON["name"] def test_get_movie_credits(): client = mk_mock_client({r".*people.*": [MOVIE_CREDITS, 200]}) credits = client.people.get_movie_credits(person=123) assert credits.cast[0].character == MOVIE_CREDITS["cast"][0]["character"] def test_get_show_credits(): client = mk_mock_client({r".*people.*": [SHOW_CREDITS, 200]}) credits = client.people.get_show_credits(person=123) expected = SHOW_CREDITS["crew"]["production"][0]["job"] assert credits.crew.production[0].job == expected def test_get_lists(): client = mk_mock_client({r".*people.*": [[LIST], 200]}) lists = list(client.people.get_lists(person=123)) assert len(lists) == 1 assert lists[0].name == LIST["name"]
32
83
0.721657
0
0
0
0
0
0
0
0
110
0.079942
58e00459697805d8f1e7adbc2795e9616fc70667
3,717
py
Python
batch_score.py
Lufedi/reaper
bdf56b499e5b704c27b9f6c053d798c2a10fa4cf
[ "Apache-2.0" ]
106
2015-07-21T16:18:26.000Z
2022-03-31T06:45:34.000Z
batch_score.py
Lufedi/reaper
bdf56b499e5b704c27b9f6c053d798c2a10fa4cf
[ "Apache-2.0" ]
21
2015-07-11T03:48:28.000Z
2022-01-18T12:57:30.000Z
batch_score.py
Lufedi/reaper
bdf56b499e5b704c27b9f6c053d798c2a10fa4cf
[ "Apache-2.0" ]
26
2015-07-22T22:38:21.000Z
2022-03-14T10:11:56.000Z
#!/usr/bin/env python3 import argparse import os import sys import traceback from lib import core, utilities, run from lib.attributes import Attributes from lib.database import Database def process_arguments(): """ Uses the argparse module to parse commandline arguments. Returns: Dictionary of parsed commandline arguments. """ parser = argparse.ArgumentParser( description='Calculate the scores of a set of repositories.' ) parser.add_argument( '--cleanup', action='store_true', dest='cleanup', help='Delete cloned repositories from the disk when done.' ) parser.add_argument( '-c', '--config', type=argparse.FileType('r'), default='config.json', dest='config_file', help='Path to the configuration file.' ) parser.add_argument( '-m', '--manifest', type=argparse.FileType('r'), default='manifest.json', dest='manifest_file', help='Path to the manifest file.' ) parser.add_argument( '-r', '--repositories-root', dest='repositories_root', help='Path to the root of downloaded repositories.' ) parser.add_argument( '-s', '--repositories-sample', type=argparse.FileType('r'), dest='repositories_sample', help='A file containing newline-separated GHTorrent project ids' ) parser.add_argument( '-k', '--key-string', type=str, dest='key_string', default=None, required=False, help='String of attribute initials. Uppercase to persist data' ) parser.add_argument( '-n', '--num-processes', type=int, dest='num_processes', default=1, required=False, help=( 'Number of processes to spawn when processing repositories' ' from the samples file.' ) ) parser.add_argument( '--goldenset', action='store_true', dest='goldenset', help=( 'Indicate that the repositories sample file contains projects' ' from the Golden Set.' ) ) if len(sys.argv) < 2: parser.print_help() sys.exit(1) return parser.parse_args() def main(): """ Main execution flow. """ try: args = process_arguments() config = utilities.read(args.config_file) manifest = utilities.read(args.manifest_file) # TODO: Refactor core.config = config utilities.TOKENIZER = core.Tokenizer() database = Database(config['options']['datasource']) globaloptions = { 'today': config['options']['today'], 'timeout': config['options']['timeout'] } attributes = Attributes( manifest['attributes'], database, args.cleanup, args.key_string, **globaloptions ) if not os.path.exists(args.repositories_root): os.makedirs(args.repositories_root, exist_ok=True) table = 'reaper_results' if args.goldenset: table = 'reaper_goldenset' _run = run.Run( args.repositories_root, attributes, database, config['options']['threshold'], args.num_processes ) _run.run([int(line) for line in args.repositories_sample], table) except Exception as e: extype, exvalue, extrace = sys.exc_info() traceback.print_exception(extype, exvalue, extrace) if __name__ == '__main__': try: main() except KeyboardInterrupt: print('\rCaught interrupt, killing all children...')
26.361702
76
0.584073
0
0
0
0
0
0
0
0
1,218
0.327684
58e423e71414f032f22c45a5bedf02c030da3667
8,423
py
Python
behave/reporter/summary.py
fluendo/behave
eeffde083456dcf1a0ea9b6139b32091970118c0
[ "BSD-2-Clause" ]
null
null
null
behave/reporter/summary.py
fluendo/behave
eeffde083456dcf1a0ea9b6139b32091970118c0
[ "BSD-2-Clause" ]
2
2020-03-21T22:37:54.000Z
2021-10-04T17:14:14.000Z
behave/reporter/summary.py
fluendo/behave
eeffde083456dcf1a0ea9b6139b32091970118c0
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: UTF-8 -*- """ Provides a summary after each test run. """ from __future__ import absolute_import, division, print_function import sys from time import time as time_now from behave.model import Rule, ScenarioOutline # MAYBE: Scenario from behave.model_core import Status from behave.reporter.base import Reporter from behave.formatter.base import StreamOpener # --------------------------------------------------------------------------- # CONSTANTS: # --------------------------------------------------------------------------- # -- DISABLED: OPTIONAL_STEPS = ('untested', 'undefined') OPTIONAL_STEPS = (Status.untested,) # MAYBE: Status.undefined STATUS_ORDER = (Status.passed, Status.failed, Status.skipped, Status.undefined, Status.untested) # --------------------------------------------------------------------------- # UTILITY FUNCTIONS: # --------------------------------------------------------------------------- def pluralize(word, count=1, suffix="s"): if count == 1: return word # -- OTHERWISE: return "{0}{1}".format(word, suffix) def compute_summary_sum(summary): """Compute sum of all summary counts (except: all) :param summary: Summary counts (as dict). :return: Sum of all counts (as integer). """ counts_sum = 0 for name, count in summary.items(): if name == "all": continue # IGNORE IT. counts_sum += count return counts_sum def format_summary0(statement_type, summary): parts = [] for status in STATUS_ORDER: if status.name not in summary: continue counts = summary[status.name] if status in OPTIONAL_STEPS and counts == 0: # -- SHOW-ONLY: For relevant counts, suppress: untested items, etc. continue if not parts: # -- FIRST ITEM: Add statement_type to counter. label = statement_type if counts != 1: label += 's' part = u"%d %s %s" % (counts, label, status.name) else: part = u"%d %s" % (counts, status.name) parts.append(part) return ", ".join(parts) + "\n" def format_summary(statement_type, summary): parts = [] for status in STATUS_ORDER: if status.name not in summary: continue counts = summary[status.name] if status in OPTIONAL_STEPS and counts == 0: # -- SHOW-ONLY: For relevant counts, suppress: untested items, etc. continue name = status.name if status.name == "passed": statement = pluralize(statement_type, counts) name = u"%s passed" % statement part = u"%d %s" % (counts, name) parts.append(part) return ", ".join(parts) + "\n" # -- PREPARED: def format_summary2(statement_type, summary, end="\n"): """Format the summary line for one statement type. .. code-block:: 6 scenarios (passed: 5, failed: 1, skipped: 0, untested: 0) :param statement_type: :param summary: :return: """ parts = [] for status in STATUS_ORDER: if status.name not in summary: continue counts = summary[status.name] if status in OPTIONAL_STEPS and counts == 0: # -- SHOW-ONLY: For relevant counts, suppress: untested items, etc. continue parts.append((status.name, counts)) counts_sum = summary["all"] statement = pluralize(statement_type, sum) parts_text = ", ".join(["{0}: {1}".format(name, value) for name, value in parts]) return "{count:4} {statement:<9} ({parts}){end}".format( count=counts_sum, statement=statement, parts=parts_text, end=end) # --------------------------------------------------------------------------- # REPORTERS: # --------------------------------------------------------------------------- class SummaryReporter(Reporter): show_failed_scenarios = True output_stream_name = "stdout" def __init__(self, config): super(SummaryReporter, self).__init__(config) stream = getattr(sys, self.output_stream_name, sys.stderr) self.stream = StreamOpener.ensure_stream_with_encoder(stream) summary_zero_data = { "all": 0, Status.passed.name: 0, Status.failed.name: 0, Status.skipped.name: 0, Status.untested.name: 0 } self.feature_summary = summary_zero_data.copy() self.rule_summary = summary_zero_data.copy() self.scenario_summary = summary_zero_data.copy() self.step_summary = {Status.undefined.name: 0} self.step_summary.update(summary_zero_data) self.duration = 0.0 self.run_starttime = 0 self.run_endtime = 0 self.failed_scenarios = [] self.show_rules = True def testrun_started(self, timestamp=None): if timestamp is None: timestamp = time_now() self.run_starttime = timestamp def testrun_finished(self, timestamp=None): if timestamp is None: timestamp = time_now() self.run_endtime = timestamp def print_failing_scenarios(self, stream=None): if stream is None: stream = self.stream stream.write("\nFailing scenarios:\n") for scenario in self.failed_scenarios: # add the list of tags matching ###-### so we will show the issue identifier with the error OPE-1234 stream.write(u" %s %s %s\n" % (', '.join(t for t in scenario.tags if len(t.split('-'))==2 ), scenario.location, scenario.name)) def compute_summary_sums(self): """(Re)Compute summary sum of all counts (except: all).""" summaries = [ self.feature_summary, self.rule_summary, self.scenario_summary, self.step_summary ] for summary in summaries: summary["all"] = compute_summary_sum(summary) def print_summary(self, stream=None, with_duration=True): if stream is None: stream = self.stream self.compute_summary_sums() has_rules = (self.rule_summary["all"] > 0) stream.write(format_summary("feature", self.feature_summary)) if self.show_rules and has_rules: # -- HINT: Show only rules, if any exists. self.stream.write(format_summary("rule", self.rule_summary)) stream.write(format_summary("scenario", self.scenario_summary)) stream.write(format_summary("step", self.step_summary)) # -- DURATION: if with_duration: timings = (int(self.duration / 60.0), self.duration % 60) stream.write('Took %dm%02.3fs\n' % timings) # -- REPORTER-API: def feature(self, feature): if self.run_starttime == 0: # -- DISCOVER: TEST-RUN started. self.testrun_started() self.process_feature(feature) def end(self): self.testrun_finished() # -- SHOW FAILED SCENARIOS (optional): if self.show_failed_scenarios and self.failed_scenarios: self.print_failing_scenarios() self.stream.write("\n") # -- SHOW SUMMARY COUNTS: self.print_summary() def process_run_items_for(self, parent): for run_item in parent: if isinstance(run_item, Rule): self.process_rule(run_item) elif isinstance(run_item, ScenarioOutline): self.process_scenario_outline(run_item) else: # assert isinstance(run_item, Scenario) self.process_scenario(run_item) def process_feature(self, feature): self.duration += feature.duration self.feature_summary[feature.status.name] += 1 self.process_run_items_for(feature) def process_rule(self, rule): self.rule_summary[rule.status.name] += 1 self.process_run_items_for(rule) def process_scenario(self, scenario): if scenario.status == Status.failed: self.failed_scenarios.append(scenario) self.scenario_summary[scenario.status.name] += 1 for step in scenario: self.step_summary[step.status.name] += 1 def process_scenario_outline(self, scenario_outline): for scenario in scenario_outline.scenarios: self.process_scenario(scenario)
34.239837
141
0.581859
4,502
0.534489
0
0
0
0
0
0
1,959
0.232577
58e63151e272298d99abe2311270c00ae4f753a6
2,109
py
Python
tests/common/bridgecrew/vulnerability_scanning/conftest.py
vangundy-jason-pfg/checkov
2fb50908f62390c98dda665f1fa94fe24806b654
[ "Apache-2.0" ]
1
2021-02-13T15:24:42.000Z
2021-02-13T15:24:42.000Z
tests/common/bridgecrew/vulnerability_scanning/conftest.py
vangundy-jason-pfg/checkov
2fb50908f62390c98dda665f1fa94fe24806b654
[ "Apache-2.0" ]
7
2021-04-12T06:54:07.000Z
2022-03-21T14:04:14.000Z
tests/common/bridgecrew/vulnerability_scanning/conftest.py
vangundy-jason-pfg/checkov
2fb50908f62390c98dda665f1fa94fe24806b654
[ "Apache-2.0" ]
1
2021-12-16T03:09:55.000Z
2021-12-16T03:09:55.000Z
from typing import Dict, Any import pytest from checkov.common.bridgecrew.bc_source import SourceType from checkov.common.bridgecrew.platform_integration import BcPlatformIntegration, bc_integration @pytest.fixture() def mock_bc_integration() -> BcPlatformIntegration: bc_integration.bc_api_key = "abcd1234-abcd-1234-abcd-1234abcd1234" bc_integration.setup_bridgecrew_credentials( repo_id="bridgecrewio/checkov", skip_fixes=True, skip_suppressions=True, skip_policy_download=True, source=SourceType("Github", False), source_version="1.0", repo_branch="master", ) return bc_integration @pytest.fixture() def scan_result() -> Dict[str, Any]: return { "repository": "/abs_path/to/app/requirements.txt", "passed": True, "packages": {"type": "python", "name": "django", "version": "1.2", "path": "/abs_path/to/app/requirements.txt"}, "complianceIssues": None, "complianceDistribution": {"critical": 0, "high": 0, "medium": 0, "low": 0, "total": 0}, "vulnerabilities": [ { "id": "CVE-2019-19844", "status": "fixed in 3.0.1, 2.2.9, 1.11.27", "cvss": 9.8, "vector": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H", "description": "Django before 1.11.27, 2.x before 2.2.9, and 3.x before 3.0.1 allows account takeover.", "severity": "critical", "packageName": "django", "packageVersion": "1.2", "link": "https://nvd.nist.gov/vuln/detail/CVE-2019-19844", "riskFactors": ["Critical severity", "Has fix", "Attack complexity: low", "Attack vector: network"], "impactedVersions": ["\u003c1.11.27"], "publishedDate": "2019-12-18T20:15:00+01:00", "discoveredDate": "2019-12-18T19:15:00Z", "fixDate": "2019-12-18T20:15:00+01:00", } ], "vulnerabilityDistribution": {"critical": 1, "high": 0, "medium": 0, "low": 0, "total": 0}, }
40.557692
120
0.579896
0
0
0
0
1,902
0.901849
0
0
963
0.456615
58e6b8cbdb9f5deb8475e765553e3c1da2be8892
1,038
py
Python
image_matting/modules/trimap_generator/trimap_generator_application.py
image-matting/backend
bbf502539cf70822dadb5eded31529d5e66c6276
[ "Apache-2.0" ]
1
2022-01-22T04:12:48.000Z
2022-01-22T04:12:48.000Z
image_matting/modules/trimap_generator/trimap_generator_application.py
image-matting/backend
bbf502539cf70822dadb5eded31529d5e66c6276
[ "Apache-2.0" ]
4
2021-12-23T14:02:17.000Z
2022-01-26T18:44:06.000Z
image_matting/modules/trimap_generator/trimap_generator_application.py
image-matting/backend
bbf502539cf70822dadb5eded31529d5e66c6276
[ "Apache-2.0" ]
null
null
null
import argparse from pathlib import Path from cv2 import cv2 from trimap import generate_trimap from trimap_output_utils import save_trimap_output def main(): args = parse_args() image_path = args.image output_directory_path = args.output image_path = Path(image_path) if not image_path.is_file(): raise RuntimeError(f'The provided image path "{image_path}" does not exist!') image_filename = image_path.stem saliency_image_path = image_path.as_posix() trimap_image = generate_trimap(saliency_image_path, kernel_size=3, iterations=20) save_trimap_output(trimap_image, image_filename, output_directory_path) def parse_args(): parser = argparse.ArgumentParser(description='Trimap Generator Application') parser.add_argument('-i', '--image', required=True, type=str, help='path to input image') parser.add_argument('-o', '--output', required=False, default='.', type=str, help='path to output directory') return parser.parse_args() if __name__ == "__main__": main()
29.657143
113
0.739884
0
0
0
0
0
0
0
0
174
0.16763
58e6e3920ecb9bb8ae3ccc039500c2bfac35935a
2,102
py
Python
tests/test_views.py
Siecje/graphene-django-sentry
b82188f91717211896cc1dbfc1f0e86de3729734
[ "MIT" ]
20
2019-03-13T15:28:17.000Z
2022-03-23T09:52:26.000Z
tests/test_views.py
Siecje/graphene-django-sentry
b82188f91717211896cc1dbfc1f0e86de3729734
[ "MIT" ]
5
2019-06-29T06:41:16.000Z
2021-06-10T21:05:25.000Z
tests/test_views.py
Siecje/graphene-django-sentry
b82188f91717211896cc1dbfc1f0e86de3729734
[ "MIT" ]
2
2019-05-30T13:03:23.000Z
2019-06-17T16:08:39.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- from http.client import OK from unittest.mock import MagicMock, patch from urllib.parse import urlencode import graphene_django.views as views from django.urls import reverse from graphql import GraphQLError from graphql.error import GraphQLLocatedError class CustomException(Exception): """ Boom! """ def get_query_string(): path = reverse('graphql') query = urlencode({'query': 'query {test}'}) path = f'{path}?{query}' return path def test_view(client): result = client.get( get_query_string(), HTTP_ACCEPT="application/json;q=0.8, text/html;q=0.9", ) assert result.status_code == OK @patch.object(views.GraphQLView, 'execute_graphql_request') @patch('sentry_sdk.capture_exception') def test_execute_graphql_request( mocked_capture_exception, mocked_method, client, ): error = CustomException('Boom') errors = [GraphQLLocatedError([], error)] mocked_return_value = MagicMock() mocked_return_value.errors = errors mocked_method.return_value = mocked_return_value result = client.get( get_query_string(), HTTP_ACCEPT="application/json;q=0.8, text/html;q=0.9", ) assert result.status_code == 400 assert result.json()['errors'][0]['message'] == 'Boom' mocked_capture_exception.assert_called_with(error) @patch.object(views.GraphQLView, 'execute_graphql_request') @patch('sentry_sdk.capture_exception') def test_execute_graphql_request_raises_raw_graphql_exceptions( mocked_capture_exception, mocked_method, client, ): error = GraphQLError(message='Syntax error in GraphQL query') mocked_return_value = MagicMock() mocked_return_value.errors = [error] mocked_method.return_value = mocked_return_value result = client.get( reverse('graphql'), {'query': '{__schema{types{name}}}'}, ) assert result.status_code == 400 assert result.json()['errors'][0]['message'] == ( 'Syntax error in GraphQL query' ) mocked_capture_exception.assert_called_with(error)
26.948718
65
0.706946
51
0.024263
0
0
1,407
0.669363
0
0
445
0.211703
58e7d15456033fa62d2766b6d09f022fb1eb2ace
3,137
py
Python
spacy/lang/nl/stop_words.py
cedar101/spaCy
66e22098a8bb77cbe527b1a4a3c69ec1cfb56f95
[ "MIT" ]
12
2019-03-20T20:43:47.000Z
2020-04-13T11:10:52.000Z
spacy/lang/nl/stop_words.py
cedar101/spaCy
66e22098a8bb77cbe527b1a4a3c69ec1cfb56f95
[ "MIT" ]
13
2018-06-05T11:54:40.000Z
2019-07-02T11:33:14.000Z
spacy/lang/nl/stop_words.py
cedar101/spaCy
66e22098a8bb77cbe527b1a4a3c69ec1cfb56f95
[ "MIT" ]
1
2020-05-12T16:00:38.000Z
2020-05-12T16:00:38.000Z
# coding: utf8 from __future__ import unicode_literals # The original stop words list (added in f46ffe3) was taken from # http://www.damienvanholten.com/downloads/dutch-stop-words.txt # and consisted of about 100 tokens. # In order to achieve parity with some of the better-supported # languages, e.g., English, French, and German, this original list has been # extended with 200 additional tokens. The main source of inspiration was # https://raw.githubusercontent.com/stopwords-iso/stopwords-nl/master/stopwords-nl.txt. # However, quite a bit of manual editing has taken place as well. # Tokens whose status as a stop word is not entirely clear were admitted or # rejected by deferring to their counterparts in the stop words lists for English # and French. Similarly, those lists were used to identify and fill in gaps so # that -- in principle -- each token contained in the English stop words list # should have a Dutch counterpart here. STOP_WORDS = set(""" aan af al alle alles allebei alleen allen als altijd ander anders andere anderen aangaangde aangezien achter achterna afgelopen aldus alhoewel anderzijds ben bij bijna bijvoorbeeld behalve beide beiden beneden bent bepaald beter betere betreffende binnen binnenin boven bovenal bovendien bovenstaand buiten daar dan dat de der den deze die dit doch doen door dus daarheen daarin daarna daarnet daarom daarop des dezelfde dezen dien dikwijls doet doorgaand doorgaans een eens en er echter enige eerder eerst eerste eersten effe eigen elk elke enkel enkele enz erdoor etc even eveneens evenwel ff ge geen geweest gauw gedurende gegeven gehad geheel gekund geleden gelijk gemogen geven geweest gewoon gewoonweg geworden gij haar had heb hebben heeft hem het hier hij hoe hun hadden hare hebt hele hen hierbeneden hierboven hierin hoewel hun iemand iets ik in is idd ieder ikke ikzelf indien inmiddels inz inzake ja je jou jouw jullie jezelf jij jijzelf jouwe juist kan kon kunnen klaar konden krachtens kunnen kunt lang later liet liever maar me meer men met mij mijn moet mag mede meer meesten mezelf mijzelf min minder misschien mocht mochten moest moesten moet moeten mogelijk mogen na naar niet niets nog nu nabij nadat net nogal nooit nr nu of om omdat ons ook op over omhoog omlaag omstreeks omtrent omver onder ondertussen ongeveer onszelf onze ooit opdat opnieuw opzij over overigens pas pp precies prof publ reeds rond rondom sedert sinds sindsdien slechts sommige spoedig steeds โ€˜t 't te tegen toch toen tot tamelijk ten tenzij ter terwijl thans tijdens toe totdat tussen u uit uw uitgezonderd uwe uwen van veel voor vaak vanaf vandaan vanuit vanwege veeleer verder verre vervolgens vgl volgens vooraf vooral vooralsnog voorbij voordat voordien voorheen voorop voort voorts vooruit vrij vroeg want waren was wat we wel werd wezen wie wij wil worden waar waarom wanneer want weer weg wegens weinig weinige weldra welk welke welken werd werden wiens wier wilde wordt zal ze zei zelf zich zij zijn zo zonder zou zeer zeker zekere zelfde zelfs zichzelf zijnde zijne zoโ€™n zoals zodra zouden zoveel zowat zulk zulke zulks zullen zult """.split())
42.391892
120
0.808734
0
0
0
0
0
0
0
0
3,057
0.973257
58e841d7116f44d86fb300ae823c11eb893353a1
1,858
py
Python
liv_covid19/web/artic/opentrons_thread.py
neilswainston/liv-covid19
4842fccdca626caca50bd7c545e3f673660503d4
[ "MIT" ]
2
2020-03-31T12:59:13.000Z
2021-02-08T21:40:20.000Z
liv_covid19/web/artic/opentrons_thread.py
neilswainston/liv-covid19
4842fccdca626caca50bd7c545e3f673660503d4
[ "MIT" ]
null
null
null
liv_covid19/web/artic/opentrons_thread.py
neilswainston/liv-covid19
4842fccdca626caca50bd7c545e3f673660503d4
[ "MIT" ]
2
2020-06-23T16:49:20.000Z
2020-06-25T14:59:32.000Z
''' (c) University of Liverpool 2020 Licensed under the MIT License. To view a copy of this license, visit <http://opensource.org/licenses/MIT/>.. @author: neilswainston ''' # pylint: disable=broad-except import os.path import tempfile from liv_covid19.web.artic import opentrons from liv_covid19.web.job import JobThread, save_export class OpentronsThread(JobThread): '''Runs a Opentrons job.''' def __init__(self, query, out_dir): self.__filename, suffix = os.path.splitext(query['file_name']) tmpfile = tempfile.NamedTemporaryFile(delete=False, suffix=suffix) self.__in_filename = tmpfile.name with open(self.__in_filename, 'w') as fle: fle.write(query['file_content']) self.__temp_deck = query['temp_deck'] self.__vol_scale = float(query['vol_scale']) self.__out_dir = out_dir JobThread.__init__(self, query, 1) def run(self): '''Run.''' try: parent_dir = tempfile.mkdtemp() iteration = 0 self._fire_job_event('running', iteration, 'Running...') opentrons.run(in_filename=self.__in_filename, temp_deck=self.__temp_deck, vol_scale=self.__vol_scale, out_dir=parent_dir) iteration += 1 if self._cancelled: self._fire_job_event('cancelled', iteration, message='Job cancelled') else: save_export(parent_dir, self.__out_dir, self._job_id) self._result = self._job_id self._fire_job_event('finished', iteration, message='Job completed') except Exception as err: self._fire_job_event('error', iteration, message=str(err))
30.459016
77
0.595264
1,516
0.815931
0
0
0
0
0
0
372
0.200215
58e8cb21bea9ec496741309cc75c724289559dd8
838
py
Python
futuquant/common/ft_logger.py
hxhxhx88/futuquant
a1b4a875604f1de451ddde4bfa3e713452482b0a
[ "Apache-2.0" ]
null
null
null
futuquant/common/ft_logger.py
hxhxhx88/futuquant
a1b4a875604f1de451ddde4bfa3e713452482b0a
[ "Apache-2.0" ]
null
null
null
futuquant/common/ft_logger.py
hxhxhx88/futuquant
a1b4a875604f1de451ddde4bfa3e713452482b0a
[ "Apache-2.0" ]
null
null
null
import logging from datetime import datetime import os logger = logging.getLogger('FT') log_level = logging.INFO is_file_log = True # ่ฎพ็ฝฎlogger็š„levelไธบDEBUG logger.setLevel(log_level) # ๅˆ›ๅปบไธ€ไธช่พ“ๅ‡บๆ—ฅๅฟ—ๅˆฐๆŽงๅˆถๅฐ็š„StreamHandler hdr = logging.StreamHandler() formatter = logging.Formatter( '%(asctime)s [%(filename)s] %(funcName)s:%(lineno)d: %(message)s') hdr.setFormatter(formatter) # ็ป™loggerๆทปๅŠ ไธŠhandler logger.addHandler(hdr) # ๆทปๅŠ ๆ–‡ไปถhandle if is_file_log: filename = 'ft_' + datetime.now().strftime('%Y%m%d') + '.log' tempPath = os.path.join(os.getcwd(), 'log') if not os.path.exists(tempPath): os.makedirs(tempPath) filepath = os.path.join(tempPath, filename) fileHandler = logging.FileHandler(filepath) fileHandler.setLevel(log_level) fileHandler.setFormatter(formatter) logger.addHandler(fileHandler)
24.647059
70
0.731504
0
0
0
0
0
0
0
0
224
0.252252
58ecb5c52b1dbb5c09611ce11efbdfb06b5edf51
3,946
py
Python
image_classification/cifar10/cifar10/networking/cifar10_vgg16_model.py
poncos/deeplearning
0874b22dab05117bcf39ccb4895d513ab6f87861
[ "MIT" ]
null
null
null
image_classification/cifar10/cifar10/networking/cifar10_vgg16_model.py
poncos/deeplearning
0874b22dab05117bcf39ccb4895d513ab6f87861
[ "MIT" ]
null
null
null
image_classification/cifar10/cifar10/networking/cifar10_vgg16_model.py
poncos/deeplearning
0874b22dab05117bcf39ccb4895d513ab6f87861
[ "MIT" ]
null
null
null
# Copyright 2018 Esteban Collado. # # Licensed under the MIT License import tensorflow as tf DEFAULT_VARIABLE_NAMES = ['conv1', 'conv2', 'conv3', 'conv4', 'fc1', 'fc2', 'softmax_linear'] BATCH_SIZE = 200 IMAGE_WIDTH = 32 IMAGE_HEIGHT = 32 IMAGE_DEPTH = 3 NUM_CLASSES = 10 INPUT_PLACEHOLDER = 'X_INPUT' LABELS_PLACEHOLDER = 'Y_LABELS' def create_placeholder(): x_placeholder = tf.placeholder(tf.float32, [None, IMAGE_WIDTH, IMAGE_HEIGHT, IMAGE_DEPTH], name=INPUT_PLACEHOLDER) y_placeholder = tf.placeholder(tf.int32, [None], name=LABELS_PLACEHOLDER) return x_placeholder, y_placeholder def initialize_parameters(): parameters = { "w1": tf.get_variable("w1", shape=[3, 3, 3, 64], initializer=tf.truncated_normal_initializer(stddev=5e-2, dtype=tf.float32)), "w2": tf.get_variable("w2", shape=[3, 3, 64, 64], initializer=tf.truncated_normal_initializer(stddev=5e-2, dtype=tf.float32)), "w3": tf.get_variable("w3", shape=[3, 3, 64, 64], initializer=tf.truncated_normal_initializer(stddev=5e-2, dtype=tf.float32)), "w4": tf.get_variable("w4", shape=[3, 3, 64, 64], initializer=tf.truncated_normal_initializer(stddev=5e-2, dtype=tf.float32)), "w5": tf.get_variable("w5", shape=[4096, 384], initializer=tf.truncated_normal_initializer(stddev=5e-2, dtype=tf.float32)), "w6": tf.get_variable("w6", shape=[384, 192], initializer=tf.truncated_normal_initializer(stddev=5e-2, dtype=tf.float32)), "w7": tf.get_variable("w7", shape=[192, 10], initializer=tf.truncated_normal_initializer(stddev=5e-2, dtype=tf.float32)), "b1": tf.get_variable('b1', [64], initializer=tf.constant_initializer(0.0), dtype=tf.float32), "b2": tf.get_variable('b2', [64], initializer=tf.constant_initializer(0.0), dtype=tf.float32), "b3": tf.get_variable('b3', [64], initializer=tf.constant_initializer(0.0), dtype=tf.float32), "b4": tf.get_variable('b4', [64], initializer=tf.constant_initializer(0.0), dtype=tf.float32), "b5": tf.get_variable('b5', [384], initializer=tf.constant_initializer(0.1), dtype=tf.float32), "b6": tf.get_variable('b6', [192], initializer=tf.constant_initializer(0.1), dtype=tf.float32), "b7": tf.get_variable('b7', [10], initializer=tf.constant_initializer(0.0), dtype=tf.float32) } return parameters def create_conv2d_layer(inputs, name, weight, bias, strides=[1, 1, 1, 1], padding='SAME'): with tf.variable_scope(name) as scope: conv = tf.nn.conv2d(inputs, weight, strides, padding) pre_activation = tf.nn.bias_add(conv, bias) activation = tf.nn.relu(pre_activation, name=scope.name) return activation def forward_propagation(input, parameters): conv1 = create_conv2d_layer(input, 'conv1', parameters['w1'], parameters['b1']) conv2 = create_conv2d_layer(conv1, 'conv2', parameters['w2'], parameters['b2']) pool1 = tf.nn.max_pool(conv2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool1') conv3 = create_conv2d_layer(pool1, 'conv3', parameters['w3'], parameters['b3']) conv4 = create_conv2d_layer(conv3, 'conv4', parameters['w4'], parameters['b4']) pool2 = tf.nn.max_pool(conv4, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool2') flattened_conv = tf.reshape(pool2, shape=[-1, parameters['w5'].get_shape().as_list()[0]]) fc1 = tf.nn.relu(tf.matmul(flattened_conv, parameters['w5']) + parameters['b5'], name='fc1') fc2 = tf.nn.relu(tf.matmul(fc1, parameters['w6']) + parameters['b6'], name='fc2') softmax_linear = tf.add(tf.matmul(fc2, parameters['w7']), parameters['b7'], name='softmax') return softmax_linear
43.362637
118
0.640902
0
0
0
0
0
0
0
0
390
0.098834
58eeedb6cd1adb5de820dbc349b434e1a3735952
425
py
Python
wrappers/Python/sbmlsolver/__init__.py
gitter-badger/sbmlsolver
c92936832297ea1d2ad7f17223b68ada43c8f0b2
[ "Apache-2.0" ]
null
null
null
wrappers/Python/sbmlsolver/__init__.py
gitter-badger/sbmlsolver
c92936832297ea1d2ad7f17223b68ada43c8f0b2
[ "Apache-2.0" ]
null
null
null
wrappers/Python/sbmlsolver/__init__.py
gitter-badger/sbmlsolver
c92936832297ea1d2ad7f17223b68ada43c8f0b2
[ "Apache-2.0" ]
null
null
null
""" The LibRoadRunner SBML Simulation Engine, (c) 2009-2014 Andy Somogyi and Herbert Sauro LibRoadRunner is an SBML JIT compiler and simulation engine with a variety of analysis functions. LibRoadRunner is a self contained library which is designed to be integrated into existing simulation platforms or may be used a stand alone simulation and analysis package. """ from sbmlsolver import * __version__ = getVersionStr()
32.692308
87
0.807059
0
0
0
0
0
0
0
0
367
0.863529
58f0ab77666277ac6d3ddc06e53dedb0c6d49f2b
1,573
py
Python
classification/tests/test_evidence_mixin.py
SACGF/variantgrid
515195e2f03a0da3a3e5f2919d8e0431babfd9c9
[ "RSA-MD" ]
5
2021-01-14T03:34:42.000Z
2022-03-07T15:34:18.000Z
classification/tests/test_evidence_mixin.py
SACGF/variantgrid
515195e2f03a0da3a3e5f2919d8e0431babfd9c9
[ "RSA-MD" ]
551
2020-10-19T00:02:38.000Z
2022-03-30T02:18:22.000Z
classification/tests/test_evidence_mixin.py
SACGF/variantgrid
515195e2f03a0da3a3e5f2919d8e0431babfd9c9
[ "RSA-MD" ]
null
null
null
from classification.models import EvidenceMixin from classification.models.evidence_mixin import VCStore class BasicEvidence(EvidenceMixin): def __init__(self, evidence: VCStore): self.evidence = evidence @property def _evidence(self) -> VCStore: return self.evidence # doesn't work without Transcripts loaded now # class EvidenceMixinTest(TestCase): # # @override_settings(VARIANT_ANNOTATION_TRANSCRIPT_PREFERENCES=['refseq_transcript_accession']) # def test_get_transcript(self): # # if transcript version is in c.hgvs use it # be = BasicEvidence({ # SpecialEKeys.C_HGVS: "NM_020975.5(RET):c.867+48A>G", # SpecialEKeys.REFSEQ_TRANSCRIPT_ID: "NM_020975", # SpecialEKeys.GENOME_BUILD: "GRCh37" # }) # self.assertEqual(be.transcript, "NM_020975.5") # # # if transcript version is in c.hgvs but transcript doesn't match # # value in transcript field, use the raw transcript value # be = BasicEvidence({ # SpecialEKeys.C_HGVS: "NM_020975.5(RET):c.867+48A>G", # SpecialEKeys.REFSEQ_TRANSCRIPT_ID: "NM_033333", # SpecialEKeys.GENOME_BUILD: "GRCh37" # }) # self.assertEqual(be.transcript, "NM_033333") # # # if there is no transcript field, use the contents of c.hgvs # be = BasicEvidence({ # SpecialEKeys.C_HGVS: "NM_020975.5(RET):c.867+48A>G", # SpecialEKeys.GENOME_BUILD: "GRCh37" # }) # self.assertEqual(be.transcript, "NM_020975.5")
37.452381
99
0.650985
192
0.12206
0
0
74
0.047044
0
0
1,244
0.790846
58f0dabb24cb5744c956fc257b97c051c5d3142b
674
py
Python
scronsole/widgets/main_screen.py
bastianh/screeps_console_mod
e093cc1e071fae5bdf106674b97e71902fbbb6ff
[ "MIT" ]
2
2017-10-08T19:39:27.000Z
2017-10-08T19:51:18.000Z
scronsole/widgets/main_screen.py
bastianh/screeps_console_mod
e093cc1e071fae5bdf106674b97e71902fbbb6ff
[ "MIT" ]
null
null
null
scronsole/widgets/main_screen.py
bastianh/screeps_console_mod
e093cc1e071fae5bdf106674b97e71902fbbb6ff
[ "MIT" ]
null
null
null
import urwid from scronsole.config_manager import ConfigManager from scronsole.plugin_manager import PluginManager from scronsole.widgets.main_menu import MainMenu from scronsole.widgets.server_screen import ServerScreen class MainScreen(urwid.WidgetPlaceholder): def __init__(self): super().__init__(urwid.SolidFill(u'/')) self.config = ConfigManager() self.show_main_menu() self.plugins = PluginManager(self) self.plugins.load_plugins() def show_server_screen(self, server_data): self.original_widget = ServerScreen(self, server_data) def show_main_menu(self): self.original_widget = MainMenu(self)
30.636364
62
0.746291
449
0.666172
0
0
0
0
0
0
4
0.005935
58f1e5bfcc6007b51ace335dfbea68c9b539583f
436
py
Python
sql/language.py
skylarkgit/sql2java
befd55180969b0ec68e242991c3260272d755cc9
[ "MIT" ]
2
2019-10-23T08:27:30.000Z
2019-10-23T09:58:45.000Z
sql/language.py
skylarkgit/sql2java
befd55180969b0ec68e242991c3260272d755cc9
[ "MIT" ]
null
null
null
sql/language.py
skylarkgit/sql2java
befd55180969b0ec68e242991c3260272d755cc9
[ "MIT" ]
null
null
null
import re from csv import reader def splitEscaped(str, by, escapeChar): infile = [str] return reader(infile, delimiter=by, quotechar=escapeChar) def removeComments(text): p = r'/\*[^*]*\*+([^/*][^*]*\*+)*/|("(\\.|[^"\\])*"|\'(\\.|[^\'\\])*\'|.[^/"\'\\]*)' return ''.join(m.group(2) for m in re.finditer(p, text, re.M|re.S) if m.group(2)) def escapeAnnotations(text): return re.sub(r'(/\*@)(.*)(\*/)',r'@\2',text)
31.142857
88
0.53211
0
0
0
0
0
0
0
0
106
0.243119
58f3c7c8febd7b51f53b623ee90e4c562e1d0bd1
659
py
Python
easy_ArrayAdditionI.py
GabrielGhe/CoderbyteChallenges
5601dbc24c95a65fed04896de2f534417c2e730d
[ "MIT" ]
1
2020-11-04T15:30:18.000Z
2020-11-04T15:30:18.000Z
easy_ArrayAdditionI.py
GabrielGhe/CoderbyteChallenges
5601dbc24c95a65fed04896de2f534417c2e730d
[ "MIT" ]
null
null
null
easy_ArrayAdditionI.py
GabrielGhe/CoderbyteChallenges
5601dbc24c95a65fed04896de2f534417c2e730d
[ "MIT" ]
null
null
null
import itertools ################################################# # This function will see if there is any # # possible combination of the numbers in # # the array that will give the largest number # ################################################# def ArrayAdditionI(arr): #sort, remove last element result = "false" arr.sort() large = arr[-1] arr = arr[:-1] #go through every combination and see if sum = large for x in range(2,len(arr) + 1): for comb in itertools.combinations(arr,x): if large == sum(comb): result = "true" break return result print ArrayAdditionI(raw_input())
26.36
54
0.53566
0
0
0
0
0
0
0
0
336
0.509863
58f4750834ad708c962b1818098008a6819ef467
1,994
py
Python
SVM.py
JAMJU/KernelMethod
e52f5a0cfaefa87073facd88220c311709e513e8
[ "MIT" ]
null
null
null
SVM.py
JAMJU/KernelMethod
e52f5a0cfaefa87073facd88220c311709e513e8
[ "MIT" ]
null
null
null
SVM.py
JAMJU/KernelMethod
e52f5a0cfaefa87073facd88220c311709e513e8
[ "MIT" ]
null
null
null
import numpy as np import quadprog def quadprog_solve_qp(P, q, G=None, h=None, A=None, b=None): """ Solve a QP of the form min 1/2xTPx + qTx st Gx < h st Ax=b""" #qp_G = .5 * (P + P.T) # make sure P is symmetric qp_G = P qp_a = -q if A is not None: qp_C = -np.vstack([A, G]).T qp_b = -np.hstack([b, h]) meq = A.shape[0] else: # no equality constraint qp_C = -G.T qp_b = -h meq = 0 return quadprog.solve_qp(qp_G, qp_a, qp_C, qp_b, meq)[0] def evaluate_alpha(alpha, K, label): """ Return success percent """ result = K.dot(alpha) success = [float(result[i,0]*label[i] > 0) for i in range(len(label))] return np.mean(success)*100 def compute_G_h(label, lamb): nb_spl = len(label) G = np.zeros([nb_spl*2, nb_spl]) h = np.zeros((nb_spl*2, )) for i in range(nb_spl): G[i,i] = - float(label[i]) G[nb_spl + i, i] = float(label[i]) h[nb_spl + i] = 1./(2.*lamb*float(nb_spl)) return G, h def svm_compute_label(data_in_kernel, alpha): """ Compute the label for the data given (in the form data[i,j] = K(x, xj) with x a new data, xj in the data set""" result = data_in_kernel.dot(alpha) return [int(result[i,0] > 0.) for i in range(data_in_kernel.shape[0])] def SVM(K, label, lamb, K_test, label_test): G, h = compute_G_h(label, lamb) alpha = quadprog_solve_qp(P=K, q = - np.asarray(label).reshape((len(label),)), G = G, h = h) alpha = alpha.reshape([alpha.shape[0], 1]) print("on train: ", evaluate_alpha(alpha, K, label)) print("on test: ", evaluate_alpha(alpha, K_test, label_test) ) return alpha """ Just an example of how quadprog works : M = np.array([[1., 2., 0.], [-8., 3., 2.], [0., 1., 1.]]) P = np.dot(M.T, M) q = np.dot(np.array([3., 2., 3.]), M).reshape((3,)) G = np.array([[1., 2., 1.], [2., 0., 1.], [-1., 2., -1.]]) h = np.array([3., 2., -2.]).reshape((3,)) al = quadprog_solve_qp(P, q, G, h) print(al)"""
33.79661
119
0.57322
0
0
0
0
0
0
0
0
629
0.315446
58f7245b5e8f50a694e2a4405f7daff21e842618
1,547
py
Python
util/MalShare.py
cclauss/ph0neutria
04b6a569d4e707c3de652ba7ad15c1b5223bebcb
[ "Apache-2.0" ]
null
null
null
util/MalShare.py
cclauss/ph0neutria
04b6a569d4e707c3de652ba7ad15c1b5223bebcb
[ "Apache-2.0" ]
null
null
null
util/MalShare.py
cclauss/ph0neutria
04b6a569d4e707c3de652ba7ad15c1b5223bebcb
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python from ConfigUtils import getBaseConfig from LogUtils import getModuleLogger from StringUtils import isValidUrl, randomString from urlparse import urlparse import json import os import requests import sys cDir = os.path.dirname(os.path.realpath(__file__)) rootDir = os.path.abspath(os.path.join(cDir, os.pardir)) baseConfig = getBaseConfig(rootDir) logging = getModuleLogger(__name__) def getMalShareList(): try: payload = {'action': 'getsourcesraw', 'api_key': baseConfig.malShareApiKey } userAgent = {'User-agent': baseConfig.userAgent} logging.info('Fetching latest MalShare list.') request = requests.get('http://malshare.com/api.php', params=payload, headers=userAgent) if request.status_code == 200: mal_list = [] for line in request.content.split('\n'): url = line.strip() if isValidUrl(url): mal_list.append(url) return mal_list else: logging.error('Problem connecting to MalShare. Status code:{0}. Please try again later.'.format(request.status_code)) except requests.exceptions.ConnectionError as e: logging.warning('Problem connecting to Malshare. Error: {0}'.format(e)) except Exception as e: logging.warning('Problem connecting to Malshare. Aborting task.') logging.exception(sys.exc_info()) logging.exception(type(e)) logging.exception(e.args) logging.exception(e) return []
29.75
129
0.661926
0
0
0
0
0
0
0
0
292
0.188752
58f785be1e5480e5359e098bb9e3ecdf8b2d4246
705
py
Python
attempt/runner.py
prstolpe/rrc_simulation
b430fe4e575641cdd64945cf57d0dd67a0eea17a
[ "BSD-3-Clause" ]
null
null
null
attempt/runner.py
prstolpe/rrc_simulation
b430fe4e575641cdd64945cf57d0dd67a0eea17a
[ "BSD-3-Clause" ]
null
null
null
attempt/runner.py
prstolpe/rrc_simulation
b430fe4e575641cdd64945cf57d0dd67a0eea17a
[ "BSD-3-Clause" ]
null
null
null
from attempt.ddpg import HERDDPG, DDPG import gym import os import matplotlib.pyplot as plt import numpy as np from tqdm import tqdm if __name__ == "__main__": os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' env = gym.make('FetchReach-v1') agent = HERDDPG(env) for epoch in range(2): for cycle in tqdm(range(10)): agent.gather_cycle() # target_agent.train() agent.test_env(10) env.close() plt.plot(np.vstack(agent.rewards)) plt.title('Rewards') plt.show() plt.plot(np.vstack(agent.policy_losses)) plt.title('Policy Losses') plt.show() plt.plot(np.vstack(agent.value_losses)) plt.title('Value Losses') plt.show()
20.735294
44
0.64539
0
0
0
0
0
0
0
0
110
0.156028
58f82c89b0b711b196471a3d0d54cc05fadd6ef6
8,187
py
Python
src/shogun/base/class_list.cpp.py
srgnuclear/shogun
33c04f77a642416376521b0cd1eed29b3256ac13
[ "Ruby", "MIT" ]
1
2015-11-05T18:31:14.000Z
2015-11-05T18:31:14.000Z
src/shogun/base/class_list.cpp.py
waderly/shogun
9288b6fa38e001d63c32188f7f847dadea66e2ae
[ "Ruby", "MIT" ]
null
null
null
src/shogun/base/class_list.cpp.py
waderly/shogun
9288b6fa38e001d63c32188f7f847dadea66e2ae
[ "Ruby", "MIT" ]
null
null
null
#!/usr/bin/env python # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # Written (W) 2008-2009 Soeren Sonnenburg # Copyright (C) 2008-2009 Fraunhofer Institute FIRST and Max Planck Society class_str='class' types=["BOOL", "CHAR", "INT8", "UINT8", "INT16", "UINT16", "INT32", "UINT32", "INT64", "UINT64", "FLOAT32", "FLOAT64", "FLOATMAX", "COMPLEX128"] config_tests=["HAVE_HDF5", "HAVE_JSON", "HAVE_XML", "HAVE_LAPACK", "USE_CPLEX", "USE_SVMLIGHT", "USE_GLPK", "USE_LZO", "USE_GZIP", "USE_BZIP2", "USE_LZMA", "USE_MOSEK", "HAVE_EIGEN3", "HAVE_COLPACK", "HAVE_NLOPT", "HAVE_PROTOBUF", "HAVE_VIENNACL"] SHOGUN_TEMPLATE_CLASS = "SHOGUN_TEMPLATE_CLASS" SHOGUN_BASIC_CLASS = "SHOGUN_BASIC_CLASS" def check_class(line): if not (line.find('public')==-1 and line.find('private')==-1 and line.find('protected')==-1): return True def check_abstract_class(line): line=line.replace(' ','').replace('\t','').strip() return line.endswith('=0;') def check_is_in_blacklist(c, lines, line_nr, blacklist): ifdef_cnt=0 for i in range(line_nr,0,-1): line=lines[i] if line.find('#endif')!=-1: ifdef_cnt-=1 if line.find('#ifdef')!=-1: ifdef_cnt+=1 for b in blacklist.keys(): if line.find(b)!=-1 and ifdef_cnt>0: return True if line.find('#ifndef')!=-1: ifdef_cnt+=1 return False def extract_class_name(lines, line_nr, line, blacklist): try: if not line: line=lines[line_nr] c=line[line.index(class_str)+len(class_str):] if not ':' in c: return if not check_class(line): if not check_class(lines[line_nr+1]): return c=c.split()[0] except: return c=c.strip(':').strip() if not c.startswith('C'): return if c.endswith(';'): return if '>' in c: return if not (len(c)>2 and c[1].isupper()): return if check_is_in_blacklist(c[1:], lines, line_nr, blacklist): return return c[1:] def get_includes(classes): class_headers = [] for c,t in classes: class_headers.append(c+".h") import os result = [] for root, dirs, files in os.walk("."): for f in files: if f in class_headers: result.append(os.path.join(root, f)) includes=[] for o in result: includes.append('#include <shogun/%s>' % o.strip().lstrip('./')) return includes def get_definitions(classes): definitions=[] definitions.append("#define %s" % SHOGUN_TEMPLATE_CLASS) definitions.append("#define %s" % SHOGUN_BASIC_CLASS) for c,t in classes: d="static %s CSGObject* __new_C%s(EPrimitiveType g) { return g == PT_NOT_GENERIC? new C%s(): NULL; }" % (SHOGUN_BASIC_CLASS,c,c) definitions.append(d) return definitions def get_template_definitions(classes, supports_complex): definitions=[] for c,t in classes: d=[] d.append("static %s CSGObject* __new_C%s(EPrimitiveType g)\n{\n\tswitch (g)\n\t{\n" % (SHOGUN_TEMPLATE_CLASS,c)) for t in types: if t in ('BOOL','CHAR'): suffix='' else: suffix='_t' if t=='COMPLEX128' and not supports_complex: d.append("\t\tcase PT_COMPLEX128: return NULL;\n") else: d.append("\t\tcase PT_%s: return new C%s<%s%s>();\n" % (t,c,t.lower(),suffix)) d.append("\t\tcase PT_SGOBJECT:\n") d.append("\t\tcase PT_UNDEFINED: return NULL;\n\t}\n\treturn NULL;\n}") definitions.append(''.join(d)) return definitions def get_struct(classes): struct=[] for c,template in classes: prefix = SHOGUN_BASIC_CLASS if template: prefix = SHOGUN_TEMPLATE_CLASS s='{"%s", %s __new_C%s},' % (c,prefix,c) struct.append(s) return struct def extract_block(c, lines, start_line, stop_line, start_sym, stop_sym): sym_cnt=0 block_start=-1; block_stop=-1; for line_nr in range(start_line, stop_line): line=lines[line_nr] if line.find(start_sym)!=-1: sym_cnt+=1 if block_start==-1: block_start=line_nr if line.find(stop_sym)!=-1: block_stop=line_nr+1 sym_cnt-=1 if sym_cnt==0 and block_start!=-1 and block_stop!=-1: return block_start,block_stop return block_start,block_stop def check_complex_supported_class(line): l=list(filter(lambda y:y if y!='' else None,\ line.strip().replace('\t',' ').split(' '))) supported=len(l)==3 and l[0]=='typedef' and l[1]=='bool'\ and l[2]=='supports_complex128_t;' return supported def test_candidate(c, lines, line_nr, supports_complex): start,stop=extract_block(c, lines, line_nr, len(lines), '{','}') if stop<line_nr: return False, line_nr+1 complex_supported=False for line_nr in range(start, stop): line=lines[line_nr] if line.find('virtual')!=-1: if check_abstract_class(line): return False, stop else: vstart,vstop=extract_block(c, lines, line_nr, stop, '(',')') for line_nr in range(vstart, vstop): line=lines[line_nr] if check_abstract_class(line): return False, stop if line.find('supports_complex128_t')!=-1: if check_complex_supported_class(line): complex_supported=True if not supports_complex: return False, stop if supports_complex and not complex_supported: return False, stop return True, stop def extract_classes(HEADERS, template, blacklist, supports_complex): """ Search in headers for non-template/non-abstract class-names starting with `C'. Does not support local nor multiple classes and drops classes with pure virtual functions """ classes=list() for fname in HEADERS: try: lines=open(fname).readlines() except: # python3 workaround lines=open(fname, encoding='utf-8', errors='ignore').readlines() line_nr=0 while line_nr<len(lines): line=lines[line_nr] if line.find('IGNORE_IN_CLASSLIST')!=-1: line_nr+=1 continue c=None if template: tp=line.find('template') if tp!=-1: line=line[tp:] cp=line.find('>') line=line[cp+1:] cp=line.find(class_str) if cp!=-1: c=extract_class_name(lines, line_nr, line, blacklist) else: if line.find(class_str)!=-1: c=extract_class_name(lines, line_nr, None, blacklist) if c: ok, line_nr=test_candidate(c, lines, line_nr, supports_complex) if ok: classes.append((c,template)) continue line_nr+=1 return classes def write_templated_file(fname, substitutes): template=open(fname).readlines() f=open(fname,'w') for line in template: l=line.strip() if l.startswith('REPLACE') and l.endswith('THIS'): l=line.split()[1] if sys.version_info >= (3,): for s in substitutes.keys(): if l==s: f.write('\n'.join(substitutes[s])) continue else: for s in substitutes.iterkeys(): if l==s: f.write('\n'.join(substitutes[s])) continue else: f.write(line) def read_config(): config=dict() for line in open('lib/config.h').readlines(): if line=='\n': continue l=[l.strip() for l in line.split()] config[l[1]]=1 return config def get_blacklist(): config=read_config() blacklist=dict() for cfg in config_tests: if not cfg in config: blacklist[cfg]=1 return blacklist if __name__=='__main__': import sys TEMPL_FILE=sys.argv[1] HEADERS=None if (sys.argv[2] == "-in"): # read header file list from file with open(sys.argv[3]) as f: content = f.readlines() HEADERS = [x.strip() for x in content] else: HEADERS=sys.argv[2:] blacklist = get_blacklist() classes = extract_classes(HEADERS, False, blacklist, False) template_classes = extract_classes(HEADERS, True, blacklist, False) complex_template_classes = extract_classes(HEADERS, True, blacklist, True) includes = get_includes(classes+template_classes+complex_template_classes) definitions = get_definitions(classes) template_definitions = get_template_definitions(template_classes, False) complex_template_definitions = get_template_definitions(complex_template_classes, True) struct = get_struct(classes+template_classes+complex_template_classes) substitutes = {'includes': includes, 'definitions' :definitions, 'template_definitions' : template_definitions, 'complex_template_definitions' : complex_template_definitions, 'struct' : struct } write_templated_file(TEMPL_FILE, substitutes)
27.109272
130
0.693416
0
0
0
0
0
0
0
0
1,801
0.219983
58f8d01058e75992d07c8d9e6c624ed7a5775471
771
py
Python
script/solr_unauthorized_access.py
5up3rc/Vxscan
0d2cae446f6502b51596853be3514c7c4c62809c
[ "Apache-2.0" ]
2
2019-12-05T01:58:22.000Z
2019-12-14T09:19:28.000Z
script/solr_unauthorized_access.py
5up3rc/Vxscan
0d2cae446f6502b51596853be3514c7c4c62809c
[ "Apache-2.0" ]
null
null
null
script/solr_unauthorized_access.py
5up3rc/Vxscan
0d2cae446f6502b51596853be3514c7c4c62809c
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # project = https://github.com/Xyntax/POC-T # author = i@cdxy.me """ Apache Solr ๆœชๆŽˆๆƒ่ฎฟ้—ฎPoC (iterate_pathๅ‡ฝๆ•ฐไฝฟ็”จๅœบๆ™ฏ็คบไพ‹) Usage python POC-T.py -s solr-unauth -iF target.txt python POC-T.py -s solr-unauth -aZ "solr country:cn" """ from lib.verify import verify from lib.random_header import get_ua import requests vuln = ['solr'] def check(ip, ports, apps): if verify(vuln, ports, apps): try: url = 'http://' + ip url = url + '/solr/' g = requests.get(url, headers=get_ua(), timeout=5) if g.status_code is 200 and 'Solr Admin' in g.content and 'Dashboard' in g.content: return 'Apache Solr Admin leask' except Exception: pass
24.09375
95
0.608301
0
0
0
0
0
0
0
0
368
0.461731
58f91a9f5c9302c8e95efa47c83b819f09e32089
1,248
py
Python
conanfile.py
midurk/conan-rapidxml
df93616a87ba41edd9def914f765fd8eae0007c5
[ "MIT" ]
null
null
null
conanfile.py
midurk/conan-rapidxml
df93616a87ba41edd9def914f765fd8eae0007c5
[ "MIT" ]
null
null
null
conanfile.py
midurk/conan-rapidxml
df93616a87ba41edd9def914f765fd8eae0007c5
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from conans import ConanFile, tools import os class RapiXMLConan(ConanFile): name = "rapidxml" version = "1.13" description = "RapidXml is an attempt to create the fastest XML parser possible" url = "https://github.com/bincrafters/conan-rapidxml" homepage = "http://rapidxml.sourceforge.net" author = "Bincrafters <bincrafters@gmail.com>" license = ("BSL-1.0", "MIT") exports = ["LICENSE.md"] exports_sources = ["CMakeLists.txt", "name_lookup_changes_fix.patch"] source_subfolder = "source_subfolder" no_copy_source = True def source(self): source_url = "https://cfhcable.dl.sourceforge.net/project/rapidxml/rapidxml/rapidxml%20" tools.get("{0}{1}/{2}-{3}.zip".format(source_url, self.version, self.name, self.version)) os.rename(self.name + "-" + self.version, self.source_subfolder) tools.patch(base_path=self.source_subfolder, patch_file="name_lookup_changes_fix.patch") def package(self): self.copy(pattern="license.txt", dst="licenses", src=self.source_subfolder) self.copy(pattern="*.hpp", dst="include", src=self.source_subfolder) def package_id(self): self.info.header_only()
37.818182
97
0.684295
1,152
0.923077
0
0
0
0
0
0
502
0.402244
58f92d8b76c80f99fb368b4b75fdb05787830601
2,772
py
Python
src_2d/help/compute_dice.py
xzluo97/MvMM-RegNet
c08d5df14b4a9c4a98c66973ff4950aba7f416e4
[ "MIT" ]
19
2020-07-14T02:23:58.000Z
2022-03-15T12:22:49.000Z
src_2d/help/compute_dice.py
xzluo97/MvMM-RegNet
c08d5df14b4a9c4a98c66973ff4950aba7f416e4
[ "MIT" ]
4
2020-09-25T22:42:40.000Z
2021-08-25T15:03:29.000Z
src_2d/help/compute_dice.py
xzluo97/MvMM-RegNet
c08d5df14b4a9c4a98c66973ff4950aba7f416e4
[ "MIT" ]
7
2020-08-29T15:46:13.000Z
2021-07-16T01:51:28.000Z
""" Compute Dice between test ground truth and predictions from groupwise registration. """ import os import nibabel as nib import glob import numpy as np from core import utils_2d from core.metrics_2d import OverlapMetrics def one_hot_label(label, label_intensity): gt = np.around(label) n_class = len(label_intensity) label = np.zeros((np.hstack((gt.shape, n_class))), dtype=np.float32) for k in range(1, n_class): label[..., k] = (gt == label_intensity[k]) label[..., 0] = np.logical_not(np.sum(label[..., 1:], axis=-1)) return label def load_nifty(name): img = nib.load(name) return np.asarray(img.get_fdata(), np.float32) if __name__ == '__main__': gt_path = '../../../../../../dataset/C0T2LGE/label_center_data/test/*label.nii.gz' pred_path = '../../../../../../results/MSCMR/test_predictions_1.5mm_group3_fusion15/*label.nii.gz' pred_names = utils_2d.strsort(glob.glob(pred_path)) gt_names = utils_2d.strsort([name for name in glob.glob(gt_path) if os.path.basename(name).split('_')[1] == 'DE']) pred_gt_names = dict(zip(pred_names, gt_names)) print(pred_gt_names) average_dice = [] myo_dice = [] LV_dice = [] RV_dice = [] for name in pred_names: pred_label = load_nifty(name) one_hot_pred = one_hot_label(pred_label, (0, 200, 500, 600)) gt_label = load_nifty(pred_gt_names[name]) gt_label = np.concatenate([gt for gt in np.dsplit(gt_label, gt_label.shape[-1]) if np.all([np.sum(gt==i) > 0 for i in [200, 500, 600]])], axis=-1) one_hot_gt = one_hot_label(gt_label, (0, 200, 500, 600)) Dice = OverlapMetrics(n_class=4, mode='np') dice = Dice.averaged_foreground_dice(one_hot_gt, one_hot_pred) m_dice = Dice.class_specific_dice(one_hot_gt, one_hot_pred, i=1) l_dice = Dice.class_specific_dice(one_hot_gt, one_hot_pred, i=2) r_dice = Dice.class_specific_dice(one_hot_gt, one_hot_pred, i=3) average_dice.append(dice) myo_dice.append(m_dice) LV_dice.append(l_dice) RV_dice.append(r_dice) print("Average foreground Dice for %s: %.4f" % (os.path.basename(name), dice)) print("Myocardium Dice for %s: %.4f" % (os.path.basename(name), m_dice)) print("LV Dice for %s: %.4f" % (os.path.basename(name), l_dice)) print("RV Dice for %s: %.4f" % (os.path.basename(name), r_dice)) print("Average prediction Dice: %.4f" % np.mean(average_dice)) print("Average myocardium Dice: %.4f" % np.mean(myo_dice)) print("Average LV Dice: %.4f" % np.mean(LV_dice)) print("Average RV Dice: %.4f" % np.mean(RV_dice))
35.538462
119
0.626623
0
0
0
0
0
0
0
0
496
0.178932
58f98f05dc6e23f4ee940bfbe966fafa9a03fa4c
14,359
py
Python
farmos_ext/farm.py
applecreekacres/farmos.py.ext
91db8a6d5532661650869d34c2ff94e1fed02f02
[ "MIT" ]
null
null
null
farmos_ext/farm.py
applecreekacres/farmos.py.ext
91db8a6d5532661650869d34c2ff94e1fed02f02
[ "MIT" ]
46
2021-02-21T21:05:07.000Z
2022-03-15T23:05:25.000Z
farmos_ext/farm.py
applecreekacres/farmos.py.ext
91db8a6d5532661650869d34c2ff94e1fed02f02
[ "MIT" ]
null
null
null
"""Main farm access.""" from __future__ import annotations import os from datetime import datetime from typing import Dict, Iterable, Iterator, List, Type, Union from farmos_ext.area import Area from farmos_ext.asset import Asset, Equipment, Planting from farmos_ext.log import (Activity, Birth, Harvest, Input, Log, Maintenance, Medical, Observation, Purchase, Sale, Seeding, SoilTest, Transplanting) from farmos_ext.others import Content, Quantity from farmos_ext.term import Crop, CropFamily, Season, Term, Unit from farmOS import farmOS # pylint: disable=wrong-import-order from farmOS.client import BaseAPI # pylint: disable=wrong-import-order class FarmTypeMissingError(Exception): pass def farm(): """Access to farm with provided credentials.""" return Farm() class FileAPI(BaseAPI): def __init__(self, session): # Define 'log' as the farmOS API entity endpoint super().__init__(session=session, entity_type='file') # pylint: disable=too-many-public-methods class Farm(farmOS): def __init__(self, local_resources="./resources"): self._host = None self._user = None self._pass = None self.local_resources = local_resources if os.path.exists("farmos.cfg"): with open('farmos.cfg') as cfg: for line in cfg.readlines(): if line.startswith("HOST"): self._host = line[line.index("=")+1:].strip() if line.startswith("USER"): self._user = line[line.index("=")+1:].strip() if line.startswith("PASS"): self._pass = line[line.index("=")+1:].strip() if not self._host: raise KeyError("HOST key is not defined in farmos.cfg") if not self._user: raise KeyError("USER key is not defined in farmos.cfg") if not self._pass: raise KeyError("PASS key is not defined in farmos.cfg") super().__init__(self._host) self._token = self.authorize(self._user, self._pass) else: raise Exception('farmos.cfg not found.') self.file = FileAPI(self.session) def assets(self, filters: Union[Dict, List[Dict], int, str] = None, asset_class: Type[Asset] = Asset) -> Iterator[Type[Asset]]: if isinstance(filters, list): for filt in filters: for asset in self.asset.get(filt)['list']: yield asset_class(self, keys=asset) else: for asset in self.asset.get(filters)['list']: yield asset_class(self, keys=asset) # def _get_assets(self, items: List[Dict], obj_class): # retitems = [] # for item in items: # rets = self.asset.get(item['id']) # if 'list' in rets: # self.extract(rets, obj_class) # else: # retitems.append(obj_class(self, rets)) # return retitems def logs(self, filters: Union[Dict, List[Dict], int, str] = None, log_class: Type[Log] = Log) -> Iterator[Type[Log]]: if isinstance(filters, list): for filt in filters: for log in self.log.get(filt): yield log_class(self, keys=log) elif isinstance(filters, int): yield log_class(self, keys=self.log.get(filters)) else: for log in self.log.get(filters): yield log_class(self, keys=log) def terms(self, filters: Union[str, List[Dict], Dict] = None, term_class: Type[Term] = Term) -> Iterator[Type[Term]]: if isinstance(filters, list): for item in filters: for term in self.term.get({"tid": item['id']})['list']: yield term_class(self, keys=term) else: rets = self.term.get(filters) yield term_class(self, keys=rets) def areas(self, filters: Union[Dict, List[Dict], int, str] = None) -> Iterator[Area]: if isinstance(filters, list): for filt in filters: for area in self.area.get(filt)['list']: yield Area(self, keys=area) else: for area in self.area.get(filters)['list']: yield Area(self, keys=area) def _create_log(self, name: str, date: datetime, category: str, fields: Dict, done=False): data = { "name": name, "timestamp": str(int(datetime.timestamp(date))), "log_category": [{ "name": category }], "type": "farm_observation" } data.update(fields) if 'done' not in data: data['done'] = '1' if done else '0' ret = self.log.send(data) return ret @property def content(self) -> Content: return Content(self, keys=self.info()) @property def seasons(self) -> Iterator[Season]: for season in self.term.get("farm_season")['list']: yield Season(self, season) @property def crop_families(self) -> Iterator[CropFamily]: for fam in self.term.get("farm_crop_families")['list']: yield CropFamily(self, keys=fam) @property def crops(self) -> Iterator[Crop]: for crop in self.term.get("farm_crops")['list']: yield Crop(self, crop) def equipment(self, filters: Dict = None) -> Iterable[Equipment]: if not filters: filters = {'type': 'equipment'} else: filters.update({'type': 'equipment'}) return self.assets(filters, Equipment) def plantings(self, filters: Dict = None) -> Iterable[Planting]: if not filters: filters = {'type': 'planting'} else: filters.update({'type': 'planting'}) return self.assets(filters, Planting) @property def units(self) -> Iterable[Unit]: for unit in self.term.get('farm_quantity_units')['list']: yield Unit(self, unit) def harvests(self, filters: Dict = None) -> Iterable[Harvest]: if 'farm_harvests' in self.content.resources['log']: if not filters: filters = {'type': 'farm_harvest'} else: filters.update({'type': 'farm_harvest'}) return self.logs(filters, Harvest) else: raise FarmTypeMissingError("Harvest logs not supported.") def seedings(self, filters: Dict = None) -> Iterable[Seeding]: if 'farm_seedings' in self.content.resources['log']: if not filters: filters = {'type': 'farm_seeding'} else: filters.update({'type': 'farm_seeding'}) return self.logs(filters, Seeding) else: raise FarmTypeMissingError("Seeding logs not supported.") def transplants(self, filters: Dict = None) -> Iterable[Transplanting]: if 'farm_transplanting' in self.content.resources['log']: if not filters: filters = {'type': 'farm_transplanting'} else: filters.update({'type': 'farm_transplanting'}) return self.logs(filters, Transplanting) else: raise FarmTypeMissingError("Transplanting logs not supported.") def observations(self, filters: Dict = None) -> Iterable[Observation]: if 'farm_observation' in self.content.resources['log']: if not filters: filters = {'type': 'farm_observation'} else: filters.update({'type': 'farm_observation'}) return self.logs(filters, Observation) else: raise FarmTypeMissingError("Observation logs not supported.") def maintenances(self, filters: Dict = None) -> Iterator[Maintenance]: if 'farm_maintenance' in self.content.resources['log']: if not filters: filters = {'type': 'farm_maintenance'} else: filters.update({'type': 'farm_maintenance'}) return self.logs(filters, Maintenance) else: raise FarmTypeMissingError("Maintenance logs not supported.") def purchases(self, filters: Dict = None) -> Iterator[Purchase]: if 'farm_purchase' in self.content.resources['log']: if not filters: filters = {'type': 'farm_purchase'} else: filters.update({'type': 'farm_purchase'}) return self.logs(filters, Purchase) else: raise FarmTypeMissingError("Purchase logs not supported.") def sales(self, filters: Dict = None) -> Iterator[Sale]: if 'farm_sale' in self.content.resources['log']: if not filters: filters = {'type': 'farm_sale'} else: filters.update({'type': 'farm_sale'}) return self.logs(filters, Sale) else: raise FarmTypeMissingError("Sale logs not supported.") def births(self, filters: Dict = None) -> Iterator[Birth]: if 'farm_birth' in self.content.resources['log']: if not filters: filters = {'type': 'farm_birth'} else: filters.update({'type': 'farm_birth'}) return self.logs(filters, Birth) else: raise FarmTypeMissingError("Birth logs not supported.") def inputs(self, filters: Dict = None) -> Iterator[Input]: if 'farm_input' in self.content.resources['input']: if not filters: filters = {'type': 'farm_input'} else: filters.update({'type': 'farm_input'}) return self.logs(filters, Input) else: raise FarmTypeMissingError("Input logs not supported.") def soil_tests(self, filters: Dict = None) -> Iterator[SoilTest]: if 'farm_soil_test' in self.content.resources['log']: if not filters: filters = {'type': 'farm_soil_test'} else: filters.update({'type': 'farm_soil_test'}) return self.logs(filters, SoilTest) else: raise FarmTypeMissingError("Soil test logs not supported.") def activities(self, filters: Dict = None) -> Iterator[Activity]: if 'farm_activity' in self.content.resources['log']: if not filters: filters = {'type': 'farm_activity'} else: filters.update({'type': 'farm_activity'}) return self.logs(filters, Activity) else: raise FarmTypeMissingError("Activity logs not supported.") def medicals(self, filters: Dict = None) -> Iterator[Medical]: if 'farm_medical' in self.content.resources['log']: if not filters: filters = {'type': 'farm_medical'} else: filters.update({'type': 'farm_medical'}) return self.logs(filters, Medical) else: raise FarmTypeMissingError("Medical logs are not supported.") def create_planting(self, crop: Crop, season: str, location: str) -> Planting: ret = self.asset.send({ "name": "{} {} {}".format(season, location, crop.name), "type": "planting", "crop": [ { "id": crop.tid } ], "season": [{"name": season}] }) plant = Planting(self, keys=ret) return plant def create_seeding(self, planting: Planting, location: Area, crop: Crop, date: datetime, seeds: int, source=None, done=False) -> Seeding: name = "Seed {} {} {}".format(date.year, location.name, crop.name) fields = { "type": "farm_seeding", "asset": [ { "id": planting.id, "resource": "taxonomy_term" } ], "seed_source": source, "movement": { "area": [ { "id": location.tid, "resource": "taxonomy_term" } ] }, "quantity": [ { "measure": "count", "value": str(seeds), "unit": { 'name': 'Seeds', "resource": "taxonomy_term" } } ] } ret = self._create_log(name, date, 'Plantings', fields, done=done) return Seeding(self, keys=ret) def create_transplant(self, planting: Planting, location: Area, date: datetime, fields=None, done=False): name = "Transplant {}".format(planting.name) data = { "type": "farm_transplanting", "movement": { "area": [ { "id": location.tid, "resource": "taxonomy_term" } ] }, "asset": [ { "id": planting.id, "resource": "taxonomy_term" } ] } if fields: data.update(fields) ret = self._create_log(name, date, 'Plantings', data, done=done) return Transplanting(self, ret) def create_harvest(self, planting: Planting, date: datetime, quantities: List[Quantity], done=False): name = "Harvest {} {}".format(date.year, planting.crop[0]['name']) data = { "type": "farm_harvest", "asset": [{ "id": planting.id, "resource": "taxonomy_term" }] } if quantities: data["quantity"] = [] for quantity in quantities: data["quantity"].append(quantity.to_dict()) ret = self._create_log(name, date, 'Plantings', data, done=done) return Harvest(self, ret) def create_log(self, name: str, date: datetime, category: str, fields: Dict, done=False): return Log(self, self._create_log(name, date, category, fields, done))
37.393229
109
0.537503
13,514
0.941152
2,349
0.163591
701
0.04882
0
0
2,636
0.183578
58f9aedfba7b25435acbe41455b6f6873bd36f40
2,768
py
Python
tests/io/v3/base/test_csv_iterator.py
alpesh-te/pyTenable
4b5381a7757561f7ac1e79c2e2679356dd533540
[ "MIT" ]
null
null
null
tests/io/v3/base/test_csv_iterator.py
alpesh-te/pyTenable
4b5381a7757561f7ac1e79c2e2679356dd533540
[ "MIT" ]
25
2021-11-16T18:41:36.000Z
2022-03-25T05:43:31.000Z
tests/io/v3/base/test_csv_iterator.py
alpesh-te/pyTenable
4b5381a7757561f7ac1e79c2e2679356dd533540
[ "MIT" ]
2
2022-03-02T12:24:40.000Z
2022-03-29T05:12:04.000Z
''' Testing the CSV iterators ''' import responses from tenable.io.v3.base.iterators.explore_iterator import CSVChunkIterator USERS_BASE_URL = r'https://cloud.tenable.com/api/v3/assets/search' CSV_TEXT = ( 'created,display_ipv4_address,first_observed,id,' 'ipv4_addresses,ipv6_addresses,is_deleted,is_licensed,' 'is_public,last_observed,name,network.id,network.name,' 'observation_sources,sources,types,updated\n' '2021-11-24T13:43:56.709Z,192.12.13.7,2021-11-24T13:43:56.442Z,' '"0142df77-dbc4-4706-8456-b756c06ee8a2",192.12.13.7,,false,' 'false,true,2021-11-24T13:43:56.442Z,192.12.13.7,' '"00000000-0000-0000-0000-000000000000",Default,' '"test_v3;2021-11-24T13:43:56.442Z;2021-11-24T13:43:56.442Z",' 'test_v3,host,2021-11-24T13:43:56.709Z\n' ) CSV_TEXT_2 = ( 'created,display_ipv4_address,first_observed,id,ipv4_addresses,' 'ipv6_addresses,is_deleted,is_licensed,is_public,last_observed,' 'name,network.id,network.name,observation_sources,sources,' 'types,updated\ncreated,display_ipv4_address,first_observed,id,' 'ipv4_addresses,ipv6_addresses,is_deleted,is_licensed,' 'is_public,last_observed,name,network.id,network.name,' 'observation_sources,sources,types,updated\n' '2021-11-24T13:43:56.709Z,192.12.13.7,2021-11-24T13:43:56.442Z,' '"0142df77-dbc4-4706-8456-b756c06ee8a2",192.12.13.7,,' 'false,false,true,2021-11-24T13:43:56.442Z,192.12.13.7,' '"00000000-0000-0000-0000-000000000000",Default,' '"test_v3;2021-11-24T13:43:56.442Z;2021-11-24T13:43:56.442Z",' 'test_v3,host,2021-11-24T13:43:56.709Z\n' ) CSV_HEADERS = { 'Date': 'Wed, 08 Dec 2021 04:42:28 GMT', 'Content-Type': 'text/csv;charset=UTF-8', 'Content-Length': '508', 'Connection': 'keep-alive', 'Set-Cookie': 'nginx-cloud-site-id=qa-develop; path=/; ' 'HttpOnly; SameSite=Strict; Secure', 'X-Request-Uuid': '4d43db5bac4decd79fc198e06a8113bd', 'X-Continuation-Token': 'fasd563456fghfgfFGHFGHRT', 'X-Content-Type-Options': 'nosniff', 'X-Frame-Options': 'DENY', 'X-Xss-Protection': '1; mode=block', 'Cache-Control': 'no-store', 'Strict-Transport-Security': 'max-age=63072000; includeSubDomains', 'X-Gateway-Site-ID': 'nginx-router-jm8uw-us-east-1-eng', 'Pragma': 'no-cache', 'Expect-CT': 'enforce, max-age=86400', 'X-Path-Handler': 'tenable-io', } @responses.activate def test_csv_iterator(api): responses.add( method=responses.POST, url=USERS_BASE_URL, body=CSV_TEXT, headers=CSV_HEADERS ) csv_iterator = CSVChunkIterator( api=api, _path='api/v3/assets/search', _payload={} ) assert next(csv_iterator) == CSV_TEXT assert next(csv_iterator) == CSV_TEXT_2
35.948052
74
0.695087
0
0
0
0
387
0.139812
0
0
1,985
0.717124
58fae9bfd3e0a20200a7b3dc48f407ee12665c55
246
py
Python
import_new_tournaments/process_hh_files/process/hands/extract/position_info/extract_stack_from_seat_line.py
michaelcukier/Poker-Hand-Tracker
9adae42fab9f640e6939ba06bd588ab1a2feb90f
[ "MIT" ]
5
2021-02-28T18:33:02.000Z
2022-03-12T01:43:40.000Z
import_new_tournaments/process_hh_files/process/hands/extract/position_info/extract_stack_from_seat_line.py
michaelcukier/Poker-Hand-Tracker
9adae42fab9f640e6939ba06bd588ab1a2feb90f
[ "MIT" ]
null
null
null
import_new_tournaments/process_hh_files/process/hands/extract/position_info/extract_stack_from_seat_line.py
michaelcukier/Poker-Hand-Tracker
9adae42fab9f640e6939ba06bd588ab1a2feb90f
[ "MIT" ]
2
2021-03-01T03:08:04.000Z
2021-12-31T17:53:46.000Z
def extract_stack_from_seat_line(seat_line: str) -> float or None: # Seat 3: PokerPete24 (40518.00) if 'will be allowed to play after the button' in seat_line: return None return float(seat_line.split(' (')[1].split(')')[0])
35.142857
66
0.670732
0
0
0
0
0
0
0
0
81
0.329268
58fb3efb05d44bd1aa9c7179a47db0c343140765
3,716
py
Python
startt.py
OnyyMexicanCat/RinkoglionitoBot
12e48e679b46710bbeaa7e98f02b09a512609031
[ "MIT" ]
null
null
null
startt.py
OnyyMexicanCat/RinkoglionitoBot
12e48e679b46710bbeaa7e98f02b09a512609031
[ "MIT" ]
null
null
null
startt.py
OnyyMexicanCat/RinkoglionitoBot
12e48e679b46710bbeaa7e98f02b09a512609031
[ "MIT" ]
null
null
null
from telegram.ext import * from telegram import * import time def start(update, context): context.bot.send_message(chat_id=update.effective_chat.id, text="Hi ๐Ÿ‘‹ I'm Rinkoglionito and I'm here because @OnyyTheBest had nothing to do ;-;. \n that said do the /cmds command to see the available commands") chat_user_id = update.message.from_user.id more_lines = [str(chat_user_id)+"\n"] if str(chat_user_id)+"\n" not in open("users.txt", 'r'): with open('users.txt', 'a') as f: f.writelines('\n'.join(more_lines)) f.close() else: return def YAAA(update: Update, context: CallbackContext): context.bot.send_message(chat_id=update.effective_chat.id, text="Why you don't say YAAA?") context.bot.send_video(chat_id=update.effective_chat.id, video="https://onyymexicancat.github.io/RinkoglionitoBot/mediafile/video/meme/01.mp4") def BASTARDI(update: Update, context: CallbackContext): context.bot.send_message(chat_id=update.effective_chat.id, text="๐Ÿ—ฃ Bastardi, chiamo da ๐ŸŽน Reggio Emilia ๐Ÿ™‰๐ŸŒธ, sono un ๐Ÿ‘Œ assassino di ๐Ÿ…ฑ meridionali. Vi ๐Ÿ’ฐ ammazzo tutti bastardi pezzi di ๐Ÿ…ฑ merda ๐Ÿคฌ. Porcodio a tutti i ๐Ÿ‘ฅ napoletani romani di ๐Ÿ‘‰ merda ๐Ÿคฌ stronzi, siete ๐Ÿ”ฅ della gente ๐Ÿ‘จโ€๐Ÿ‘ฉโ€๐Ÿ‘งโ€๐Ÿ‘ฆ che โœ” viene schiacciata come ๐ŸšŒ topi ๐Ÿ’ฐ maledetti stronzi figli di ๐Ÿ…ฑ una ๐Ÿ‘Œ cagna in calore. Io ๐Ÿ…ฑ vi ๐Ÿ’ฐ sp โ˜ .. io ๐Ÿ…ฑ vi ๐Ÿ’ฐ spacco le ๐Ÿ…ฐ fighe, le ๐Ÿ…ฑ ovaie a tutte le ๐Ÿ…ฑ vostre donne sporche. venite su ๐Ÿ…ฑ, puttane, che โœ” vi ๐Ÿ’ฐ apro lo ๐Ÿ’œ sterno e ๐Ÿ‡น vi ๐Ÿ’ฐ mangio il ๐Ÿ™ cuore e ๐Ÿ‡น poi ve lo ๐Ÿ’œ cago nella figa, brutte merde che โœ” non โŒ siete ๐Ÿ”ฅ altro, sono un ๐Ÿ‘ฆ๐Ÿ‘ฒ๐Ÿฝ๐Ÿ‘Œ assassino di ๐Ÿ…ฑ fkghe.") context.bot.send_audio(chat_id=update.effective_chat.id, audio="https://onyymexicancat.github.io/RinkoglionitoBot/mediafile/audio/meme/01.mp3") def CMDS(update: Update, context: CallbackContext): context.bot.send_message(chat_id=update.effective_chat.id, text="comandi attualmente attivi nel bot sono i seguenti \n /Start (Avvia il Bot) \n /BASTARDI (Bastardi chiamo da reggio emilia) \n /YAAA (YAAA KID) \n /CHK (VIP Only CC Checker)\n /vip (pay me xD)\n") def oldupdate(update: Update, context: CallbackContext): context.bot.send_message(chat_id=update.effective_chat.id, text=""" -- โœ๏ธ@OnyyTheBest -- """, parse_mode="html") def update(update: Update, context: CallbackContext): context.bot.send_message(chat_id=update.effective_chat.id, text=""" -- โœ๏ธ@OnyyTheBest -- """, parse_mode="html") def commandnotfount(update, context): try: bot_msg = context.bot.send_message(chat_id=update.message.chat_id, text="<b>COMANDO NON TROVATO!</b> usa il comando /cmds per trovare il comando che stai cercando", parse_mode="html") time.sleep(10) context.bot.delete_message(chat_id=update.message.chat_id, message_id=bot_msg.message_id) except: pass def bcast(update: update,context: CallbackContext): if update.effective_chat.id == 476263382: if context.args == []: context.bot.send_message(update.effective_chat.id, text="<b>Please enter the message you want to broadcast to Bot users!</b>", parse_mode="html") else: porco = '' for char in context.args: if char !="[" + "'" + "]": porco += char ciccio = open("users.txt", 'r') for line in ciccio: content = line context.bot.send_message(chat_id=content, text=porco) update.message.reply_text(text="<b>DONE!</b>", parse_mode="html") else: context.bot.send_message(update.effective_chat.id, text="<b>NO PERMS</b>", parse_mode="html")
62.983051
655
0.660388
0
0
0
0
0
0
0
0
1,630
0.421297
58fb480ae327d41355b8b8179c7dede058c21b5b
222
py
Python
server/config.py
nikitinivan/Crypton
90db77f4066d763e55f55c0fb540dc99aa2495e3
[ "MIT" ]
null
null
null
server/config.py
nikitinivan/Crypton
90db77f4066d763e55f55c0fb540dc99aa2495e3
[ "MIT" ]
null
null
null
server/config.py
nikitinivan/Crypton
90db77f4066d763e55f55c0fb540dc99aa2495e3
[ "MIT" ]
null
null
null
import os class Configuration: APPLICATION_DIR = os.path.dirname(os.path.realpath(__file__)) DEBUG = True SECRET_KEY = 'thisissecretkeyforcrypton' # change it in production !!! MONGO_DBNAME = 'cryptondb'
24.666667
74
0.725225
209
0.941441
0
0
0
0
0
0
67
0.301802
58fc01c36853b26f8562e022eac13585ff61105f
69
py
Python
nbviewerbot/__main__.py
JohnPaton/nbviewerbot
a9564655ba041e53db9a6916fb424e9582704321
[ "MIT" ]
7
2018-08-06T20:02:13.000Z
2021-04-12T06:04:46.000Z
nbviewerbot/__main__.py
JohnPaton/nbviewerbot
a9564655ba041e53db9a6916fb424e9582704321
[ "MIT" ]
5
2018-09-13T20:53:32.000Z
2021-03-31T18:55:48.000Z
nbviewerbot/__main__.py
JohnPaton/nbviewerbot
a9564655ba041e53db9a6916fb424e9582704321
[ "MIT" ]
null
null
null
import nbviewerbot if __name__ == "__main__": nbviewerbot.cli()
13.8
26
0.710145
0
0
0
0
0
0
0
0
10
0.144928
58fd05c379e33e35d0b95e61f85e13decd24ff2f
1,571
py
Python
fetch_data.py
ASabryMazroua/Arabic-Dialect-Classification
e0e778379a321022d4d05b54b067ab6541793434
[ "MIT" ]
1
2022-03-19T04:40:27.000Z
2022-03-19T04:40:27.000Z
fetch_data.py
ASabryMazroua/Arabic-Dialect-Classification
e0e778379a321022d4d05b54b067ab6541793434
[ "MIT" ]
null
null
null
fetch_data.py
ASabryMazroua/Arabic-Dialect-Classification
e0e778379a321022d4d05b54b067ab6541793434
[ "MIT" ]
null
null
null
import json import math import requests import pandas as pd def fetch_data(ids): ''' A function to fetch data from the API. Parameters: ids (list): A list of ids (integrs) to fetch Returns: text (dict): A dictionary where keys are the ids and values are the text ''' results = {} # We'll loop over the ids to fetch the text data # We'll split ids into 1000 because of the limit of the API # Futrue work: # we can handle if the connection timed out or any other problem that would happen # we can add some assertion to make sure that ids are valid for i in range(math.ceil(len(ids)/1000)): sub_ids = json.dumps(ids[i*1000:1000*(i+1)]) while True: r = requests.post("https://recruitment.aimtechnologies.co/ai-tasks", sub_ids) # print(r.status_code) if r.status_code == 200: results.update(json.loads(r.text)) break; print(f"We managed to fetch {len(results)} samples of text.") return results if __name__ == '__main__': #Read the ids' file, then fetch data, and write the file to a csv source_data = pd.read_csv("files/dialect_dataset.csv") text_dict = fetch_data(list(source_data.loc[:,"id"].astype(str))) #We'll make sure that we managed to fetch all the ids if len(source_data) == len(text_dict): source_data.loc[:,"text"] = text_dict.values() source_data.to_csv("data/full_dialect_dataset.csv",encoding='utf-8-sig')
38.317073
89
0.624443
0
0
0
0
0
0
0
0
857
0.545512
58fd528adc4ec458f11e0462bce2b5ed5cc03175
2,305
py
Python
tests/test.py
daniel-sasu/roadwatch-data-processor
10317998a7f336bd1a26dc95b54e7bb7785cfd22
[ "MIT" ]
null
null
null
tests/test.py
daniel-sasu/roadwatch-data-processor
10317998a7f336bd1a26dc95b54e7bb7785cfd22
[ "MIT" ]
null
null
null
tests/test.py
daniel-sasu/roadwatch-data-processor
10317998a7f336bd1a26dc95b54e7bb7785cfd22
[ "MIT" ]
null
null
null
# tests/test.py from rw_data_proc.core import * import unittest def _dummyModifierFunction(row): row['adr'] = 'modified' return row['adr'] class TableTest(unittest.TestCase): def test_init(self): tb = Table('tests/test_file.csv') self.assertIsNotNone(tb) def test_add_modifier(self): tb = Table('tests/test_file.csv') modifiers = len(tb.modifiers) tb.addModifier('adr', _dummyModifierFunction) self.assertEqual(len(tb.modifiers), modifiers + 1) def test_col_rename(self): tb = Table('tests/test_file.csv', col_rename=[]) self.assertTrue('adr' in tb.dataFrame.columns.values.tolist()) tb.col_rename([{'adr': 'ADR'}]) self.assertTrue('ADR' in tb.dataFrame.columns.values.tolist()) def test_clean(self): tb = Table('tests/test_file.csv') self.assertTrue('adr' in tb.dataFrame.columns.values.tolist()) self.assertTrue('gps' in tb.dataFrame.columns.values.tolist()) tb.clean(['gps', 'adr']) self.assertFalse('adr' in tb.dataFrame.columns.values.tolist()) self.assertFalse('gps' in tb.dataFrame.columns.values.tolist()) def test_process(self): tb = Table('tests/test_file.csv') tb.addModifier('adr', _dummyModifierFunction) tb.process() self.assertTrue('modified' in tb.dataFrame['adr'].tolist()) def test_process_generic(self): df = process_generic_file('tests/test_file.csv', index='num_acc', encoding='latin-1', sep=',', dtype=None, col_rename=[{'Num_Acc': 'num_acc'}, {'adr': 'ADR'}, {'gps': 'GPS'}], cols_formatted=['ADR', 'GPS'], modifiers={'ADR': _dummyModifierFunction}, drop_cols=['int', 'lat', 'long']) self.assertIsNotNone(df) self.assertEqual(df.index.name, 'num_acc') self.assertTrue('ADR' in df.columns.values.tolist()) self.assertTrue('GPS' in df.columns.values.tolist()) self.assertTrue('modified' in df['ADR'].tolist()) self.assertFalse('int' in df.columns.values.tolist()) self.assertFalse('lat' in df.columns.values.tolist()) self.assertFalse('long' in df.columns.values.tolist())
39.741379
107
0.610846
2,153
0.934056
0
0
0
0
0
0
376
0.163124
58fdec912e446a48a537a766eb98ce253951af60
1,496
py
Python
booking_spaces/booking/forms.py
pvlvnk/booking
701c8e1d8ceefde03090cd93bf954874d9fe349e
[ "MIT" ]
null
null
null
booking_spaces/booking/forms.py
pvlvnk/booking
701c8e1d8ceefde03090cd93bf954874d9fe349e
[ "MIT" ]
null
null
null
booking_spaces/booking/forms.py
pvlvnk/booking
701c8e1d8ceefde03090cd93bf954874d9fe349e
[ "MIT" ]
null
null
null
from booking.models import Schedule, ParkingSpace from datetime import datetime as dt from django import forms class ReservingForm(forms.ModelForm): reserving_dates = forms.ModelMultipleChoiceField( queryset=Schedule.objects.filter(reserving_date__gte=dt.today()), widget=forms.CheckboxSelectMultiple(), ) class Meta: model = Schedule fields = ('reserving_dates',) class EditReservingForm(forms.ModelForm): reserving_dates = forms.ModelMultipleChoiceField( queryset=Schedule.objects.all(), widget=forms.CheckboxSelectMultiple(), ) class Meta: model = Schedule fields = ('reserving_dates',) class CreationScheduleForm(forms.ModelForm): class Meta: model = Schedule fields = ('space', 'reserving_date',) class DeletionScheduleForm(forms.ModelForm): deleting_dates = forms.ModelMultipleChoiceField( queryset=Schedule.objects.all(), widget=forms.CheckboxSelectMultiple(), ) class Meta: model = Schedule fields = ('deleting_dates',) class CreationSpaceForm(forms.ModelForm): class Meta: model = ParkingSpace fields = ('title', 'slug',) class DeletionSpaceForm(forms.ModelForm): deleting_spaces = forms.ModelMultipleChoiceField( queryset=ParkingSpace.objects.all(), widget=forms.CheckboxSelectMultiple(), ) class Meta: model = ParkingSpace fields = ('deleting_spaces',)
24.933333
73
0.68115
1,366
0.913102
0
0
0
0
0
0
103
0.06885
58ff16ed56b02ccd24c5cca15503e57704dd6fd0
20,793
py
Python
tests/unit/aiplatform/test_matching_engine_index_endpoint.py
kthytang/python-aiplatform
e82c1792293396045a1032df015a3700fc38609b
[ "Apache-2.0" ]
null
null
null
tests/unit/aiplatform/test_matching_engine_index_endpoint.py
kthytang/python-aiplatform
e82c1792293396045a1032df015a3700fc38609b
[ "Apache-2.0" ]
null
null
null
tests/unit/aiplatform/test_matching_engine_index_endpoint.py
kthytang/python-aiplatform
e82c1792293396045a1032df015a3700fc38609b
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import uuid from importlib import reload from unittest import mock from unittest.mock import patch from google.api_core import operation from google.cloud import aiplatform from google.cloud.aiplatform import base from google.cloud.aiplatform import initializer from google.cloud.aiplatform.compat.types import ( matching_engine_deployed_index_ref as gca_matching_engine_deployed_index_ref, index_endpoint as gca_index_endpoint, index as gca_index, ) from google.cloud.aiplatform.compat.services import ( index_endpoint_service_client, index_service_client, ) from google.protobuf import field_mask_pb2 import pytest # project _TEST_PROJECT = "test-project" _TEST_LOCATION = "us-central1" _TEST_PARENT = f"projects/{_TEST_PROJECT}/locations/{_TEST_LOCATION}" # index _TEST_INDEX_ID = "index_id" _TEST_INDEX_NAME = f"{_TEST_PARENT}/indexes/{_TEST_INDEX_ID}" _TEST_INDEX_DISPLAY_NAME = "index_display_name" # index_endpoint _TEST_INDEX_ENDPOINT_ID = "index_endpoint_id" _TEST_INDEX_ENDPOINT_NAME = f"{_TEST_PARENT}/indexEndpoints/{_TEST_INDEX_ENDPOINT_ID}" _TEST_INDEX_ENDPOINT_DISPLAY_NAME = "index_endpoint_display_name" _TEST_INDEX_ENDPOINT_DESCRIPTION = "index_endpoint_description" _TEST_INDEX_DESCRIPTION = "index_description" _TEST_INDEX_ENDPOINT_VPC_NETWORK = "projects/{}/global/networks/{}".format( "12345", "network" ) _TEST_LABELS = {"my_key": "my_value"} _TEST_DISPLAY_NAME_UPDATE = "my new display name" _TEST_DESCRIPTION_UPDATE = "my description update" _TEST_LABELS_UPDATE = {"my_key_update": "my_value_update"} # deployment _TEST_DEPLOYED_INDEX_ID = "deployed_index_id" _TEST_DEPLOYED_INDEX_DISPLAY_NAME = "deployed_index_display_name" _TEST_MIN_REPLICA_COUNT = 2 _TEST_MAX_REPLICA_COUNT = 2 _TEST_ENABLE_ACCESS_LOGGING = False _TEST_RESERVED_IP_RANGES = ["vertex-ai-ip-range-1", "vertex-ai-ip-range-2"] _TEST_DEPLOYMENT_GROUP = "prod" _TEST_AUTH_CONFIG_AUDIENCES = ["a", "b"] _TEST_AUTH_CONFIG_ALLOWED_ISSUERS = [ "service-account-name-1@project-id.iam.gserviceaccount.com", "service-account-name-2@project-id.iam.gserviceaccount.com", ] # deployment_updated _TEST_MIN_REPLICA_COUNT_UPDATED = 4 _TEST_MAX_REPLICA_COUNT_UPDATED = 4 # request_metadata _TEST_REQUEST_METADATA = () # Lists _TEST_INDEX_ENDPOINT_LIST = [ gca_index_endpoint.IndexEndpoint( name=_TEST_INDEX_ENDPOINT_NAME, display_name=_TEST_INDEX_ENDPOINT_DISPLAY_NAME, description=_TEST_INDEX_ENDPOINT_DESCRIPTION, ), gca_index_endpoint.IndexEndpoint( name=_TEST_INDEX_ENDPOINT_NAME, display_name=_TEST_INDEX_ENDPOINT_DISPLAY_NAME, description=_TEST_INDEX_ENDPOINT_DESCRIPTION, ), gca_index_endpoint.IndexEndpoint( name=_TEST_INDEX_ENDPOINT_NAME, display_name=_TEST_INDEX_ENDPOINT_DISPLAY_NAME, description=_TEST_INDEX_ENDPOINT_DESCRIPTION, ), ] # Match _TEST_QUERIES = [ [ -0.11333, 0.48402, 0.090771, -0.22439, 0.034206, -0.55831, 0.041849, -0.53573, 0.18809, -0.58722, 0.015313, -0.014555, 0.80842, -0.038519, 0.75348, 0.70502, -0.17863, 0.3222, 0.67575, 0.67198, 0.26044, 0.4187, -0.34122, 0.2286, -0.53529, 1.2582, -0.091543, 0.19716, -0.037454, -0.3336, 0.31399, 0.36488, 0.71263, 0.1307, -0.24654, -0.52445, -0.036091, 0.55068, 0.10017, 0.48095, 0.71104, -0.053462, 0.22325, 0.30917, -0.39926, 0.036634, -0.35431, -0.42795, 0.46444, 0.25586, 0.68257, -0.20821, 0.38433, 0.055773, -0.2539, -0.20804, 0.52522, -0.11399, -0.3253, -0.44104, 0.17528, 0.62255, 0.50237, -0.7607, -0.071786, 0.0080131, -0.13286, 0.50097, 0.18824, -0.54722, -0.42664, 0.4292, 0.14877, -0.0072514, -0.16484, -0.059798, 0.9895, -0.61738, 0.054169, 0.48424, -0.35084, -0.27053, 0.37829, 0.11503, -0.39613, 0.24266, 0.39147, -0.075256, 0.65093, -0.20822, -0.17456, 0.53571, -0.16537, 0.13582, -0.56016, 0.016964, 0.1277, 0.94071, -0.22608, -0.021106, ] ] _TEST_NUM_NEIGHBOURS = 1 def uuid_mock(): return uuid.UUID(int=1) # All index mocks @pytest.fixture def get_index_mock(): with patch.object( index_service_client.IndexServiceClient, "get_index" ) as get_index_mock: index = gca_index.Index( name=_TEST_INDEX_NAME, display_name=_TEST_INDEX_DISPLAY_NAME, description=_TEST_INDEX_DESCRIPTION, ) index.deployed_indexes = [ gca_matching_engine_deployed_index_ref.DeployedIndexRef( index_endpoint=index.name, deployed_index_id=_TEST_DEPLOYED_INDEX_ID, ) ] get_index_mock.return_value = index yield get_index_mock # All index_endpoint mocks @pytest.fixture def get_index_endpoint_mock(): with patch.object( index_endpoint_service_client.IndexEndpointServiceClient, "get_index_endpoint" ) as get_index_endpoint_mock: index_endpoint = gca_index_endpoint.IndexEndpoint( name=_TEST_INDEX_ENDPOINT_NAME, display_name=_TEST_INDEX_ENDPOINT_DISPLAY_NAME, description=_TEST_INDEX_ENDPOINT_DESCRIPTION, ) index_endpoint.deployed_indexes = [ gca_index_endpoint.DeployedIndex( id=_TEST_DEPLOYED_INDEX_ID, index=_TEST_INDEX_NAME, display_name=_TEST_DEPLOYED_INDEX_DISPLAY_NAME, enable_access_logging=_TEST_ENABLE_ACCESS_LOGGING, reserved_ip_ranges=_TEST_RESERVED_IP_RANGES, deployment_group=_TEST_DEPLOYMENT_GROUP, automatic_resources={ "min_replica_count": _TEST_MIN_REPLICA_COUNT, "max_replica_count": _TEST_MAX_REPLICA_COUNT, }, deployed_index_auth_config=gca_index_endpoint.DeployedIndexAuthConfig( auth_provider=gca_index_endpoint.DeployedIndexAuthConfig.AuthProvider( audiences=_TEST_AUTH_CONFIG_AUDIENCES, allowed_issuers=_TEST_AUTH_CONFIG_ALLOWED_ISSUERS, ) ), ), gca_index_endpoint.DeployedIndex( id=f"{_TEST_DEPLOYED_INDEX_ID}_2", index=f"{_TEST_INDEX_NAME}_2", display_name=_TEST_DEPLOYED_INDEX_DISPLAY_NAME, enable_access_logging=_TEST_ENABLE_ACCESS_LOGGING, reserved_ip_ranges=_TEST_RESERVED_IP_RANGES, deployment_group=_TEST_DEPLOYMENT_GROUP, automatic_resources={ "min_replica_count": _TEST_MIN_REPLICA_COUNT, "max_replica_count": _TEST_MAX_REPLICA_COUNT, }, deployed_index_auth_config=gca_index_endpoint.DeployedIndexAuthConfig( auth_provider=gca_index_endpoint.DeployedIndexAuthConfig.AuthProvider( audiences=_TEST_AUTH_CONFIG_AUDIENCES, allowed_issuers=_TEST_AUTH_CONFIG_ALLOWED_ISSUERS, ) ), ), ] get_index_endpoint_mock.return_value = index_endpoint yield get_index_endpoint_mock @pytest.fixture def deploy_index_mock(): with patch.object( index_endpoint_service_client.IndexEndpointServiceClient, "deploy_index", ) as deploy_index_mock: deploy_index_lro_mock = mock.Mock(operation.Operation) deploy_index_mock.return_value = deploy_index_lro_mock yield deploy_index_mock @pytest.fixture def undeploy_index_mock(): with patch.object( index_endpoint_service_client.IndexEndpointServiceClient, "undeploy_index", ) as undeploy_index_mock: undeploy_index_lro_mock = mock.Mock(operation.Operation) undeploy_index_mock.return_value = undeploy_index_lro_mock yield undeploy_index_mock @pytest.fixture def update_index_endpoint_mock(): with patch.object( index_endpoint_service_client.IndexEndpointServiceClient, "update_index_endpoint", ) as index_endpoint_mock: index_endpoint_mock.return_value = gca_index_endpoint.IndexEndpoint( name=_TEST_INDEX_ENDPOINT_NAME, display_name=_TEST_DISPLAY_NAME_UPDATE, description=_TEST_DESCRIPTION_UPDATE, labels=_TEST_LABELS_UPDATE, ) yield index_endpoint_mock @pytest.fixture def mutate_deployed_index_mock(): with patch.object( index_endpoint_service_client.IndexEndpointServiceClient, "mutate_deployed_index", ) as mutate_deployed_index_mock: mutate_deployed_index_lro_mock = mock.Mock(operation.Operation) update_index_endpoint_mock.return_value = mutate_deployed_index_lro_mock yield mutate_deployed_index_mock @pytest.fixture def list_index_endpoints_mock(): with patch.object( index_endpoint_service_client.IndexEndpointServiceClient, "list_index_endpoints" ) as list_index_endpoints_mock: list_index_endpoints_mock.return_value = _TEST_INDEX_ENDPOINT_LIST yield list_index_endpoints_mock @pytest.fixture def delete_index_endpoint_mock(): with patch.object( index_endpoint_service_client.IndexEndpointServiceClient, "delete_index_endpoint", ) as delete_index_endpoint_mock: delete_index_endpoint_lro_mock = mock.Mock(operation.Operation) delete_index_endpoint_mock.return_value = delete_index_endpoint_lro_mock yield delete_index_endpoint_mock @pytest.fixture def create_index_endpoint_mock(): with patch.object( index_endpoint_service_client.IndexEndpointServiceClient, "create_index_endpoint", ) as create_index_endpoint_mock: create_index_endpoint_lro_mock = mock.Mock(operation.Operation) create_index_endpoint_lro_mock.result.return_value = ( gca_index_endpoint.IndexEndpoint( name=_TEST_INDEX_ENDPOINT_NAME, display_name=_TEST_INDEX_ENDPOINT_DISPLAY_NAME, description=_TEST_INDEX_ENDPOINT_DESCRIPTION, ) ) create_index_endpoint_mock.return_value = create_index_endpoint_lro_mock yield create_index_endpoint_mock @pytest.mark.usefixtures("google_auth_mock") class TestMatchingEngineIndexEndpoint: def setup_method(self): reload(initializer) reload(aiplatform) def teardown_method(self): initializer.global_pool.shutdown(wait=True) @pytest.mark.parametrize( "index_endpoint_name", [_TEST_INDEX_ENDPOINT_ID, _TEST_INDEX_ENDPOINT_NAME] ) def test_init_index_endpoint(self, index_endpoint_name, get_index_endpoint_mock): aiplatform.init(project=_TEST_PROJECT) my_index_endpoint = aiplatform.MatchingEngineIndexEndpoint( index_endpoint_name=index_endpoint_name ) get_index_endpoint_mock.assert_called_once_with( name=my_index_endpoint.resource_name, retry=base._DEFAULT_RETRY ) @pytest.mark.usefixtures("get_index_endpoint_mock") def test_update_index_endpoint(self, update_index_endpoint_mock): aiplatform.init(project=_TEST_PROJECT) my_index_endpoint = aiplatform.MatchingEngineIndexEndpoint( index_endpoint_name=_TEST_INDEX_ENDPOINT_ID ) updated_endpoint = my_index_endpoint.update( display_name=_TEST_DISPLAY_NAME_UPDATE, description=_TEST_DESCRIPTION_UPDATE, labels=_TEST_LABELS_UPDATE, request_metadata=_TEST_REQUEST_METADATA, ) expected = gca_index_endpoint.IndexEndpoint( name=_TEST_INDEX_ENDPOINT_NAME, display_name=_TEST_DISPLAY_NAME_UPDATE, description=_TEST_DESCRIPTION_UPDATE, labels=_TEST_LABELS_UPDATE, ) update_index_endpoint_mock.assert_called_once_with( index_endpoint=expected, update_mask=field_mask_pb2.FieldMask( paths=["labels", "display_name", "description"] ), metadata=_TEST_REQUEST_METADATA, ) assert updated_endpoint.gca_resource == expected def test_list_index_endpoints(self, list_index_endpoints_mock): aiplatform.init(project=_TEST_PROJECT) my_index_endpoints_list = aiplatform.MatchingEngineIndexEndpoint.list() list_index_endpoints_mock.assert_called_once_with( request={"parent": _TEST_PARENT, "filter": None} ) assert len(my_index_endpoints_list) == len(_TEST_INDEX_ENDPOINT_LIST) for my_index_endpoint in my_index_endpoints_list: assert type(my_index_endpoint) == aiplatform.MatchingEngineIndexEndpoint @pytest.mark.parametrize("sync", [True, False]) @pytest.mark.usefixtures("get_index_endpoint_mock") def test_delete_index_endpoint(self, delete_index_endpoint_mock, sync): aiplatform.init(project=_TEST_PROJECT) my_index_endpoint = aiplatform.MatchingEngineIndexEndpoint( index_endpoint_name=_TEST_INDEX_ENDPOINT_ID ) my_index_endpoint.delete(sync=sync) if not sync: my_index_endpoint.wait() delete_index_endpoint_mock.assert_called_once_with( name=my_index_endpoint.resource_name ) @pytest.mark.usefixtures("get_index_endpoint_mock") @pytest.mark.parametrize("sync", [True, False]) def test_create_index_endpoint(self, create_index_endpoint_mock, sync): aiplatform.init(project=_TEST_PROJECT) my_index_endpoint = aiplatform.MatchingEngineIndexEndpoint.create( display_name=_TEST_INDEX_ENDPOINT_DISPLAY_NAME, network=_TEST_INDEX_ENDPOINT_VPC_NETWORK, description=_TEST_INDEX_ENDPOINT_DESCRIPTION, labels=_TEST_LABELS, ) if not sync: my_index_endpoint.wait() expected = gca_index_endpoint.IndexEndpoint( display_name=_TEST_INDEX_ENDPOINT_DISPLAY_NAME, network=_TEST_INDEX_ENDPOINT_VPC_NETWORK, description=_TEST_INDEX_ENDPOINT_DESCRIPTION, labels=_TEST_LABELS, ) create_index_endpoint_mock.assert_called_once_with( parent=_TEST_PARENT, index_endpoint=expected, metadata=_TEST_REQUEST_METADATA, ) @pytest.mark.usefixtures("get_index_endpoint_mock", "get_index_mock") def test_deploy_index(self, deploy_index_mock, undeploy_index_mock): aiplatform.init(project=_TEST_PROJECT) my_index_endpoint = aiplatform.MatchingEngineIndexEndpoint( index_endpoint_name=_TEST_INDEX_ENDPOINT_ID ) # Get index my_index = aiplatform.MatchingEngineIndex(index_name=_TEST_INDEX_NAME) my_index_endpoint = my_index_endpoint.deploy_index( index=my_index, deployed_index_id=_TEST_DEPLOYED_INDEX_ID, display_name=_TEST_DEPLOYED_INDEX_DISPLAY_NAME, min_replica_count=_TEST_MIN_REPLICA_COUNT, max_replica_count=_TEST_MAX_REPLICA_COUNT, enable_access_logging=_TEST_ENABLE_ACCESS_LOGGING, reserved_ip_ranges=_TEST_RESERVED_IP_RANGES, deployment_group=_TEST_DEPLOYMENT_GROUP, auth_config_audiences=_TEST_AUTH_CONFIG_AUDIENCES, auth_config_allowed_issuers=_TEST_AUTH_CONFIG_ALLOWED_ISSUERS, request_metadata=_TEST_REQUEST_METADATA, ) deploy_index_mock.assert_called_once_with( index_endpoint=my_index_endpoint.resource_name, deployed_index=gca_index_endpoint.DeployedIndex( id=_TEST_DEPLOYED_INDEX_ID, index=my_index.resource_name, display_name=_TEST_DEPLOYED_INDEX_DISPLAY_NAME, enable_access_logging=_TEST_ENABLE_ACCESS_LOGGING, reserved_ip_ranges=_TEST_RESERVED_IP_RANGES, deployment_group=_TEST_DEPLOYMENT_GROUP, automatic_resources={ "min_replica_count": _TEST_MIN_REPLICA_COUNT, "max_replica_count": _TEST_MAX_REPLICA_COUNT, }, deployed_index_auth_config=gca_index_endpoint.DeployedIndexAuthConfig( auth_provider=gca_index_endpoint.DeployedIndexAuthConfig.AuthProvider( audiences=_TEST_AUTH_CONFIG_AUDIENCES, allowed_issuers=_TEST_AUTH_CONFIG_ALLOWED_ISSUERS, ) ), ), metadata=_TEST_REQUEST_METADATA, ) my_index_endpoint = my_index_endpoint.undeploy_index( deployed_index_id=_TEST_DEPLOYED_INDEX_ID ) undeploy_index_mock.assert_called_once_with( index_endpoint=my_index_endpoint.resource_name, deployed_index_id=_TEST_DEPLOYED_INDEX_ID, metadata=_TEST_REQUEST_METADATA, ) @pytest.mark.usefixtures("get_index_endpoint_mock", "get_index_mock") def test_mutate_deployed_index(self, mutate_deployed_index_mock): aiplatform.init(project=_TEST_PROJECT) my_index_endpoint = aiplatform.MatchingEngineIndexEndpoint( index_endpoint_name=_TEST_INDEX_ENDPOINT_ID ) my_index_endpoint.mutate_deployed_index( deployed_index_id=_TEST_DEPLOYED_INDEX_ID, min_replica_count=_TEST_MIN_REPLICA_COUNT_UPDATED, max_replica_count=_TEST_MAX_REPLICA_COUNT_UPDATED, request_metadata=_TEST_REQUEST_METADATA, ) mutate_deployed_index_mock.assert_called_once_with( index_endpoint=_TEST_INDEX_ENDPOINT_NAME, deployed_index=gca_index_endpoint.DeployedIndex( id=_TEST_DEPLOYED_INDEX_ID, automatic_resources={ "min_replica_count": _TEST_MIN_REPLICA_COUNT_UPDATED, "max_replica_count": _TEST_MAX_REPLICA_COUNT_UPDATED, }, ), metadata=_TEST_REQUEST_METADATA, ) @pytest.mark.usefixtures("get_index_endpoint_mock") @pytest.mark.parametrize("sync", [True, False]) def test_delete_index_endpoint_without_force( self, undeploy_index_mock, delete_index_endpoint_mock, sync ): my_index_endpoint = aiplatform.MatchingEngineIndexEndpoint( index_endpoint_name=_TEST_INDEX_ENDPOINT_NAME ) my_index_endpoint.delete(sync=sync) if not sync: my_index_endpoint.wait() # undeploy_index_mock should not be called unless force is set to True undeploy_index_mock.assert_not_called() delete_index_endpoint_mock.assert_called_once_with( name=_TEST_INDEX_ENDPOINT_NAME ) @pytest.mark.usefixtures("get_index_endpoint_mock") @pytest.mark.parametrize("sync", [True, False]) def test_delete_index_endpoint_with_force( self, undeploy_index_mock, delete_index_endpoint_mock, sync ): my_index_endpoint = aiplatform.MatchingEngineIndexEndpoint( index_endpoint_name=_TEST_INDEX_ENDPOINT_NAME ) my_index_endpoint.delete(force=True, sync=sync) if not sync: my_index_endpoint.wait() # undeploy_index_mock should be called if force is set to True assert undeploy_index_mock.call_count == 2 delete_index_endpoint_mock.assert_called_once_with( name=_TEST_INDEX_ENDPOINT_NAME )
33.537097
90
0.67994
9,216
0.443226
5,980
0.287597
15,385
0.739912
0
0
2,238
0.107632
58ff85cb63e954368b68902aa3d1e1f0e1df7bef
1,440
py
Python
vrc_log_viewer.py
27Cobalter/vrc_log_viewer
00b5d106488fb95c605ef873a75fd26bd7d1d37f
[ "MIT" ]
2
2019-08-29T05:58:22.000Z
2019-09-09T15:29:16.000Z
vrc_log_viewer.py
27Cobalter/vrc_log_viewer
00b5d106488fb95c605ef873a75fd26bd7d1d37f
[ "MIT" ]
1
2022-03-20T08:11:00.000Z
2022-03-20T08:11:00.000Z
vrc_log_viewer.py
27Cobalter/vrc_log_viewer
00b5d106488fb95c605ef873a75fd26bd7d1d37f
[ "MIT" ]
2
2020-02-04T03:19:57.000Z
2021-02-08T15:17:22.000Z
import glob import os import re import sys import time import yaml def tail(thefile, past): if not past: thefile.seek(0, 2) while True: line = thefile.readline() if not line: time.sleep(0.5) continue line = line.rstrip("\n").rstrip("\r") if line != "": yield repr(line)[1:-1] if __name__ == "__main__": with open("config.yml", "r") as config: conf = yaml.load(config, Loader=yaml.SafeLoader) print("load config") reg = [] for pattern in conf["reg"]: print(" " + pattern) reg.append(re.compile(pattern)) vrcdir = os.environ["USERPROFILE"] + "\\AppData\\LocalLow\\VRChat\\VRChat\\" logfile = vrcdir + conf["logfile"] if len(sys.argv) > 1: logfile = sys.argv[1] if logfile == vrcdir: logfiles = glob.glob(vrcdir + "output_log_*.txt") logfiles.sort(key=os.path.getctime, reverse=True) logfile = logfiles[0] with open(logfile, "r", encoding="utf-8") as f: print("open logfile : ", logfile) loglines = tail(f, conf["past"]) for line in loglines: for pattern in reg: match = pattern.match(line) if not match: continue message = "" for group in match.groups(): message = message + group + " " print(message)
27.169811
80
0.532639
0
0
292
0.202778
0
0
0
0
174
0.120833
450019e12b1cc5c40f3f6bff8bbb906c38cceb65
9,032
py
Python
src/intermediate_representation/sem2sql/infer_from_clause.py
brunnurs/proton
057889e2bcefd2e7e6bc3b0fcdf418a2123767a0
[ "Apache-2.0" ]
null
null
null
src/intermediate_representation/sem2sql/infer_from_clause.py
brunnurs/proton
057889e2bcefd2e7e6bc3b0fcdf418a2123767a0
[ "Apache-2.0" ]
null
null
null
src/intermediate_representation/sem2sql/infer_from_clause.py
brunnurs/proton
057889e2bcefd2e7e6bc3b0fcdf418a2123767a0
[ "Apache-2.0" ]
null
null
null
def infer_from_clause(table_names, graph, columns): tables = list(table_names.keys()) if len(tables) == 1: # no JOINS needed - just return the simple "FROM" clause. return f"FROM {tables[0]} " else: # we have to deal with multiple tables - and find the shortest path between them join_clauses, cross_join_clauses = generate_path_by_graph(graph, table_names, tables) if len(_tables_in_join_clauses(join_clauses)) >= 3: join_clauses = _find_and_remove_star_table(columns, join_clauses) stringified_join_clauses = [] for idx, (start, start_alias, end, end_alias, entry_column, exit_column) in enumerate(join_clauses): # the first case is kind of an exception case, as we need to write two tables, for example: "A AS T1 JOIN B AS T2 ON ....". # All the following joins will only be "... JOIN T2 ON ...." if idx == 0: stringified_join_clauses.append( f"{start} JOIN {end} ON {start_alias}.{entry_column} = {end_alias}.{exit_column}") else: stringified_join_clauses.append(f"JOIN {end} ON {start_alias}.{entry_column} = {end_alias}.{exit_column}") # that's the cross-join exception cases. We have to add them for syntactical correctness, even though it will not result # in a good query at execution. for table, table_alias in cross_join_clauses: if len(stringified_join_clauses) == 0: stringified_join_clauses.append(f"{table}") else: stringified_join_clauses.append(f"JOIN {table}") return f'FROM {" ".join(stringified_join_clauses)}' def generate_path_by_graph(graph, table_names, tables): join_clause = list() cross_joins, tables_handled_by_cross_joins = _handle_standalone_tables(graph, table_names, tables) tables_cleaned = [table for table in tables if table not in tables_handled_by_cross_joins] idx = 0 edges = [] # We always deal with two tables at the time and try to find the shortest path between them. This might be over-simplified # as there could be a more optimal path between all tables (see Steiner Graph), but practically it doesn't matter so much. while idx < len(tables_cleaned) - 1: start_table = tables_cleaned[idx] end_table = tables_cleaned[idx + 1] edges_for_this_path = graph.dijkstra(start_table, end_table) if edges_for_this_path: edges.extend(edges_for_this_path) else: raise Exception(f"We could not find a path between table '${start_table}' and '${end_table}'. This query can" f"not work. Make sure you allow only questions in a fully connected schema!") idx += 1 # now there might be duplicates - as parts of the path from A to C might be the same as from A to B. # be aware that, as we only consider INNER JOINS, A <-> B is equal to B <-> A! So we also have to remove this edges. edges_deduplicated = _deduplicate_edges(edges) # now for each edge we now have to add both, the start table and the end table to the join_clause (including the PK/FK-columns). for edge in edges_deduplicated: if edge.start not in table_names: table_names[edge.start] = edge.start.replace(' ', '_') if edge.end not in table_names: table_names[edge.end] = edge.end.replace(' ', '_') join_clause.append((edge.start, table_names[edge.start], edge.end, table_names[edge.end], edge.entry_column, edge.exit_column)) return join_clause, cross_joins def _handle_standalone_tables(graph, table_names, tables): join_clause = [] tables_handled = [] # there is a few rare cases of tables without connections to others - which will then obviously not be part of the graph. # as we can't properly handle this cases, we just have to do a stupid cross-join with them for table in tables: if table not in graph.vertices: join_clause.append((table, table_names[table])) tables_handled.append(table) remaining_tables = [t for t in table_names if t not in tables_handled] # if there is only one table left after removing all the others, we can't use a graph anymore - so we need to do use a cross join as well. if len(remaining_tables) == 1: join_clause.append((remaining_tables[0], table_names[remaining_tables[0]])) tables_handled.append(remaining_tables[0]) return join_clause, tables_handled def _get_max_alias(table_names): max_key = 1 for t, k in table_names.items(): _k = int(k[1:]) if _k > max_key: max_key = _k return max_key + 10 def _find_and_remove_star_table(columns, join_clause): """ Starting from 3 tables we have to deal with the "star-table" effect - a join with a joining table where we only wanna know e.g. the count(*) of the third table. In that case we don't need to join the third table - we just do a count over the join with the joining table. In general, the additional join is not an issue - but is seen as incorrect by the spider-evaluation and therefore we have to remove it. Example: SELECT T2.concert_name , T2.theme , count(*) FROM singer_in_concert AS T1 JOIN concert AS T2 ON T1.concert_id = T2.concert_id GROUP BY T2.concert_id ---> GOOD SELECT T1.concert_Name, T1.Theme, count(*) FROM concert AS T1 JOIN singer_in_concert AS T3 JOIN singer AS T2 GROUP BY T1.concert_ID -----> BAD, REMOVE "singer" join. """ # unfortunately auto tuple unpacking doesn't work anymore in python 3, therefore this comment: a "column" contains the 3 elements "aggregator, "column name", "table". star_tables = list(map(lambda column: column[2], filter(lambda column: column[1] == '*', columns))) # remove duplicates star_tables = list(set(star_tables)) assert len(star_tables) <= 1, "The case of having multiple star-joins is currently not supported (and not part of the spider-dataset)" if len(star_tables) == 1: star_table = star_tables[0] # we need to make sure the table we try to remove is not used at any other place - e.g. in the SELECT or in the WHERE clause. # only then we can safely remove it if len(list(filter(lambda column: column[1] != '*' and column[2] == star_table, columns))) == 0: # we only remove star-tables if they are the start or end table in the graph. # remember, an join_clause tuple looks like this: (start, start_alias, end, end_alias, entry_column, exit_column) start_edge = join_clause[0] start_edge_from, _, start_edge_to, _, _, _ = start_edge end_edge = join_clause[len(join_clause) - 1] end_edge_from, _, end_edge_to, _, _, _ = end_edge if start_edge_from == star_table: if second_table_in_edge_is_availabe_elswhere(start_edge_to, join_clause[1:]): return join_clause[1:] if end_edge_to == star_table: if second_table_in_edge_is_availabe_elswhere(end_edge_from, join_clause[:-1]): return join_clause[:-1] return join_clause def second_table_in_edge_is_availabe_elswhere(second_table, remaining_edges): """ By removing an edge, we basically remove two tables. If there schema is a "normal" schema, where the edges are "A --> B", "B --> C" this is not an issue. We we though have a non-linear schema, like "A --> B", "A --> C" we can't just remove the first edge - we would loose B completely! To avoid this we make sure the second table in the edge we plan to remove is available in another edge. A schema where we have to deal with this issue is e.g. "flight_2", where two relations go from "flights" to "airports". """ for edge in remaining_edges: start, _, end, _, _, _ = edge if second_table == start or second_table == end: return True return False def _deduplicate_edges(edges): deduplicated = [] for e1 in edges: found_match = False for e2 in deduplicated: # make sure two edges do not match - while paying no attention to the direction of the edge! # more complex might make it necessary to also include the foreign key/primary key here, as you could theoretically have multiple relationships between two tables. if (e1.start == e2.start and e1.end == e2.end) or (e1.start == e2.end and e1.end == e2.start): found_match = True if not found_match: deduplicated.append(e1) return deduplicated def _tables_in_join_clauses(join_clauses): unique_tables = set() for clause in join_clauses: start_table, _, end_table, _, _, _ = clause unique_tables.add(start_table) unique_tables.add(end_table) return list(unique_tables)
45.616162
175
0.665633
0
0
0
0
0
0
0
0
4,066
0.450177
450109704aaa9e57ec8952a08e13c1c362e0340c
21
py
Python
test.py
AlanFnz/profiles-rest-api
c606999f86235ed74fd98421bd02bc598d5a5463
[ "MIT" ]
null
null
null
test.py
AlanFnz/profiles-rest-api
c606999f86235ed74fd98421bd02bc598d5a5463
[ "MIT" ]
null
null
null
test.py
AlanFnz/profiles-rest-api
c606999f86235ed74fd98421bd02bc598d5a5463
[ "MIT" ]
null
null
null
print('Test script')
10.5
20
0.714286
0
0
0
0
0
0
0
0
13
0.619048
45022a2b63c33a9252e7e2198671dfbcf5309e06
2,208
py
Python
src/markdown_storage/folder.py
stephanpoetschner/markdown_storage
69005db4484010e0d2282bdeb0d0bcc30a316932
[ "MIT" ]
null
null
null
src/markdown_storage/folder.py
stephanpoetschner/markdown_storage
69005db4484010e0d2282bdeb0d0bcc30a316932
[ "MIT" ]
null
null
null
src/markdown_storage/folder.py
stephanpoetschner/markdown_storage
69005db4484010e0d2282bdeb0d0bcc30a316932
[ "MIT" ]
null
null
null
import os from .exceptions import MarkdownError, MetadataError from .file import ContentFile class ContentFolder(object): def __init__(self, path): path = os.path.abspath(path) self._path = path self._files = [] self._folders = [] for filename in os.listdir(self._path): abspath = os.path.join(self._path, filename) if os.path.isfile(abspath): self._add_file(abspath) elif os.path.isdir(abspath): self._add_folder(abspath) def __repr__(self): return os.path.basename(self._path) def _add_file(self, filepath): if not ContentFile.is_valid(filepath): return dirname, filename = os.path.split(filepath) name, ext = os.path.splitext(filename) try: d = ContentFile(filepath) except (MetadataError, MarkdownError): return setattr(self, name, d) self._files.append(d) def _add_folder(self, dirpath): _, basename = os.path.split(dirpath) d = ContentFolder(dirpath) setattr(self, basename, d) self._folders.append(d) @property def folders(self): for folder in self._folders: yield folder @property def files(self): for file in self._files: yield file def __iter__(self): return iter(self._files) # def __next__(self): # import ipdb; ipdb.set_trace() # for file in self._files: # return file # raise StopIteration # def sort(self, key=None, reverse=False): # return ContentIterator(self._files, key, reverse) # # class ContentIterator(object): # def __init__(self, items, key=None, reverse=False): # self.items = sorted(items, key=key, reverse=reverse) # self.i = 0 # # def __iter__(self): # return self # # def next(self): # if self.i >= len(self.items): # raise StopIteration # # item = self.items[self.i] # self.i += 1 # # return item # # def sorted(self, sort_key): # return ContentIterator(self, self.items, sort_key) # #
24
62
0.579257
1,601
0.725091
152
0.068841
180
0.081522
0
0
717
0.324728
4506dc61f56a8eae8242703dae9838d15d5a49a2
2,327
py
Python
test/test_session.py
Sunmxt/UESTC-EAMS
760a7387a5d73967e45a0b9d211acb383bb50fe1
[ "Apache-2.0" ]
1
2020-07-25T13:53:35.000Z
2020-07-25T13:53:35.000Z
test/test_session.py
Sunmxt/UESTC-EAMS
760a7387a5d73967e45a0b9d211acb383bb50fe1
[ "Apache-2.0" ]
null
null
null
test/test_session.py
Sunmxt/UESTC-EAMS
760a7387a5d73967e45a0b9d211acb383bb50fe1
[ "Apache-2.0" ]
null
null
null
#! /usr/bin/python ''' Test for session module ''' import unittest import uestc_eams from .mock_server import LoginMockServer from .utils import HookedMethod, MakeResponse mock_login = LoginMockServer() class TestSession(unittest.TestCase): @mock_login.Patch def test_Session(self): self.__session = uestc_eams.EAMSSession() # Try login print('--> Login test <--') self.assertTrue(self.__session.Login('2015070804011', '104728')) self.assertTrue(mock_login.Logined) self.assertEqual(mock_login.GetIndexCount, 1) print('passed.', end = '\n\n') # Test expire session print('--> test expired cookies <--') test_url = 'http://eams.uestc.edu.cn/eams' mock_login.ExpireTestTiggered = False rep = self.__session.TryRequestGet(test_url) self.assertTrue(mock_login.ExpireTestTiggered) self.assertTrue(mock_login.Logined) self.assertNotEqual(-1, rep.url.find(test_url)) print('passed.', end = '\n\n') # Test expire session with no redirects following print('--> test expired cookies (no redirects following) <--') test_url = 'http://eams.uestc.edu.cn/eams/redirect_test' mock_login.ExpireTestTiggered = False rep = self.__session.TryRequestGet(test_url, allow_redirects = False) self.assertTrue(mock_login.ExpireTestTiggered) self.assertTrue(mock_login.Logined) self.assertNotEqual(-1, rep.url.find(test_url)) self.assertEqual(rep.status_code, 302) print('passed.', end = '\n\n') # Test expire session with HTTP 200 redirects. print('--> test expired cookies (200 redirect) <--') test_url = 'http://eams.uestc.edu.cn/eams/200redirect' mock_login.ExpireTestTiggered = False mock_login._200RedirectTiggered = False rep = self.__session.TryRequestGet(test_url) self.assertEqual(mock_login.ExpireTestTiggered, True) self.assertEqual(mock_login._200RedirectTiggered, True) print('passed.', end = '\n\n') # Test expire session with redirect inside page. print('--> test logout <--') self.assertTrue(self.__session.Logout()) self.assertFalse(mock_login.Logined) print('passed.', end = '\n\n')
34.731343
77
0.65578
2,107
0.905458
0
0
2,063
0.886549
0
0
618
0.265578
4507d40889bdeb2efc06f9fd94721d09e699f4c0
159
py
Python
Asignacion2/App/main.py
HarambeGeek/uip-iq-pc3
6e9a0678a90c4bfd7499dfb5c71c9a3ea9effe1e
[ "Apache-2.0" ]
null
null
null
Asignacion2/App/main.py
HarambeGeek/uip-iq-pc3
6e9a0678a90c4bfd7499dfb5c71c9a3ea9effe1e
[ "Apache-2.0" ]
null
null
null
Asignacion2/App/main.py
HarambeGeek/uip-iq-pc3
6e9a0678a90c4bfd7499dfb5c71c9a3ea9effe1e
[ "Apache-2.0" ]
null
null
null
from App.numeros import numeros if __name__ == "__main__": x = int(input("Ingrese el nรบmero que desea evaluar: \n")) pi = numeros(x) pi.parImpar()
26.5
61
0.660377
0
0
0
0
0
0
0
0
52
0.325
45085ba62031c2ca173669eca6938ca7aaf578c8
6,950
py
Python
tensorflow/python/distribute/test_util.py
TL-Rubick/tensorflow
6cf1ccf6060a95aad3ccc84544d0aa166990ec72
[ "Apache-2.0" ]
11
2018-01-03T15:11:09.000Z
2021-04-13T05:47:27.000Z
tensorflow/python/distribute/test_util.py
TL-Rubick/tensorflow
6cf1ccf6060a95aad3ccc84544d0aa166990ec72
[ "Apache-2.0" ]
88
2020-11-24T08:18:10.000Z
2022-03-25T20:28:30.000Z
tensorflow/python/distribute/test_util.py
TL-Rubick/tensorflow
6cf1ccf6060a95aad3ccc84544d0aa166990ec72
[ "Apache-2.0" ]
10
2018-07-31T10:56:21.000Z
2019-10-07T08:05:21.000Z
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test utilities.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import itertools from absl import app from tensorflow.python.compat import v2_compat from tensorflow.python.distribute import collective_all_reduce_strategy from tensorflow.python.distribute import multi_process_runner from tensorflow.python.distribute import values from tensorflow.python.eager import context from tensorflow.python.framework import config from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.util import nest def gather(strategy, value): """Gathers value from all workers. This is intended for tests before we implement an official all-gather API. Args: strategy: a `tf.distribute.Strategy`. value: a nested structure of n-dim `tf.distribute.DistributedValue` of `tf.Tensor`, or of a `tf.Tensor` if the strategy only has one replica. Cannot contain tf.sparse.SparseTensor. Returns: a (n+1)-dim `tf.Tensor`. """ return nest.map_structure(functools.partial(_gather, strategy), value) def _gather(strategy, value): """Gathers a single value.""" # pylint: disable=protected-access if not isinstance(value, values.DistributedValues): value = values.PerReplica([ops.convert_to_tensor(value)]) if not isinstance(strategy.extended, collective_all_reduce_strategy.CollectiveAllReduceExtended): return array_ops.stack(value._values) assert len(strategy.extended.worker_devices) == len(value._values) inputs = [array_ops.expand_dims_v2(v, axis=0) for v in value._values] return strategy.gather(values.PerReplica(inputs), axis=0) # pylint: enable=protected-access def set_logical_devices_to_at_least(device, num): """Create logical devices of at least a given number.""" if num < 1: raise ValueError("`num` must be at least 1 not %r" % (num,)) physical_devices = config.list_physical_devices(device) if not physical_devices: raise RuntimeError("No {} found".format(device)) if len(physical_devices) >= num: return # By default each physical device corresponds to one logical device. We create # multiple logical devices for the last physical device so that we have `num` # logical devices. num = num - len(physical_devices) + 1 logical_devices = [] for _ in range(num): if device.upper() == "GPU": logical_devices.append( context.LogicalDeviceConfiguration(memory_limit=2048)) else: logical_devices.append(context.LogicalDeviceConfiguration()) # Create logical devices from the last device since sometimes the first GPU # is the primary graphic card and may have less memory available. config.set_logical_device_configuration(physical_devices[-1], logical_devices) def _set_logical_devices(): if config.list_physical_devices("GPU"): set_logical_devices_to_at_least("GPU", 2) if config.list_physical_devices("CPU"): set_logical_devices_to_at_least("CPU", 2) def main(enable_v2_behavior=True, config_logical_devices=True): """All-in-one main function for tf.distribute tests.""" if config_logical_devices: app.call_after_init(_set_logical_devices) if enable_v2_behavior: v2_compat.enable_v2_behavior() else: v2_compat.disable_v2_behavior() # TODO(b/131360402): configure default logical devices. multi_process_runner.test_main() def _op_dependencies(op): """Returns the data and control dependencies of a tf.Operation combined.""" deps = [] for node in itertools.chain(op.inputs, op.control_inputs): if isinstance(node, ops.Tensor): node = node.op assert isinstance(node, ops.Operation) deps.append(node) return deps def topological_sort_operations(operations): """Topological sorts a list of operations. This does a topological sort of the operations in a graph. The edges include both data dependencies and control dependencies. Note that the edge goes from an operation to its dependencies. Args: operations: a list of tf.Operation in the same graph. Returns: A map from a tf.Operation to its topological order. """ in_degrees = {} for op in operations: if op not in in_degrees: in_degrees[op] = 0 for next_op in _op_dependencies(op): in_degrees[next_op] = in_degrees.get(next_op, 0) + 1 nexts = [] for op, in_degree in in_degrees.items(): if in_degree == 0: nexts.append(op) order = {} next_order = 0 while nexts: op, nexts = nexts[0], nexts[1:] order[op] = next_order next_order += 1 for next_op in _op_dependencies(op): in_degrees[next_op] -= 1 if in_degrees[next_op] == 0: nexts.append(next_op) assert len(order) == len(operations) return order def _exists_dependency(start, end): """Returns whether there exists a dependency chain from start to end.""" nexts = [start] while nexts: op, nexts = nexts[0], nexts[1:] for next_op in _op_dependencies(op): if next_op == end: return True nexts.append(next_op) return False def assert_sequential_execution(order, operations): """Asserts there's a deterministic execution order between the operations. Args: order: a map from a tf.Operation to its topological order. operations: a list of operations that should be executed sequentially. It can be given in any order. """ # Topological ordering guarantees that, if there's a dependency from N_a to # N_b, then order[N_a] < order[N_b]. If there do exist a path of dependencies # among the operations, it always goes from a operation with a smaller # topological order to one with a larger topological order. Therefore, we only # need to sort the operations by their topological orders, and verify that # there's a path of dependency between adjacent pairs. operations = sorted(operations, key=lambda op: order[op]) for i in range(len(operations) - 1): if not _exists_dependency(operations[i], operations[i + 1]): print(operations[i].graph.as_graph_def()) raise AssertionError( "No dependency between {} and {}. Graph is dumped to stdout.".format( operations[i].name, operations[i + 1].name))
36.010363
80
0.726475
0
0
0
0
0
0
0
0
3,027
0.43554
4508cb0373bf214606e00078a7d58793158e28a1
3,928
py
Python
experiment_data_handler.py
grdddj/Diploma-Thesis---Inverse-Heat-Transfer
636182fa4c57913002675ed3afca8c1b3dc35e1c
[ "MIT" ]
2
2019-09-09T18:49:14.000Z
2021-11-15T23:41:00.000Z
experiment_data_handler.py
grdddj/Diploma-Thesis---Inverse-Heat-Transfer
636182fa4c57913002675ed3afca8c1b3dc35e1c
[ "MIT" ]
null
null
null
experiment_data_handler.py
grdddj/Diploma-Thesis---Inverse-Heat-Transfer
636182fa4c57913002675ed3afca8c1b3dc35e1c
[ "MIT" ]
null
null
null
import csv class ExperimentDataCannotBeParsedError(Exception): """ Defining custom exception type that will be thrown when something fails here """ def __init__(self, msg: str = "ERROR"): self.message = msg def __str__(self): """ Defines what to show when exception is printed - giving some useful info """ return """ Experiment data cannot be processed. Please take a look at them. Column names should be: - Time - Temperature - HeatFlux - T_amb Issue: {} """.format(self.message) class Material: """ Class responsible for initializing and storing material data """ def __init__(self, rho, cp, lmbd): self.rho = rho # Mass density self.cp = cp # Specific heat capacity self.lmbd = lmbd # Heat conductivity class ExperimentalData: """ Class responsible for initializing and storing experimental data TODO: really agree on the parsing logic (indexes vs named columns) """ def __init__(self, csv_file_path="DATA.csv"): # Preparing lists for storing all the data self.t_data = [] # experimental data of time points self.T_data = [] # experimental data of temperature self.q_data = [] # experimental data of Measured HeatFluxes (might be missing) self.T_amb_data = [] # experimental data of ambient temperature # Defining the column names we are expecting self.t_column_name = "Time" self.T_column_name = "Temperature" self.q_column_name = "HeatFlux" self.T_amb_column_name = "T_amb" # Trying to parse the file with experimental data, in case of any error # relay it with our custom name try: with open(csv_file_path) as csv_file: # NOTE: when using DictReader, skipping first row is not necessary, # on the contrary, we would be losing one row of data by it csv_reader = csv.DictReader(csv_file) # Validating the correctness of CSV file self.check_CSV_file_correctness(csv_reader.fieldnames) # Filling the data row by row for row in csv_reader: self.t_data.append(float(row.get(self.t_column_name, 0))) self.T_data.append(float(row.get(self.T_column_name, 0))) self.q_data.append(float(row.get(self.q_column_name, 0))) self.T_amb_data.append(float(row.get(self.T_amb_column_name, 0))) except ExperimentDataCannotBeParsedError: raise except Exception as e: raise ExperimentDataCannotBeParsedError(e) def check_CSV_file_correctness(self, column_names: list) -> None: """ Making sure the CSV file contains the right columns. We need the time and ambient temperatures to be there all the time, and them at least one of the temperature and flux. In case of some problem throw our custom error. Args: column_names ... list of columns from the CSV file """ if self.t_column_name not in column_names: msg = "Time data is empty, please use 'Time' column for this data" raise ExperimentDataCannotBeParsedError(msg) if self.T_amb_column_name not in column_names: msg = "Ambient temperature data is empty, please use 'T_amb' column for this data" raise ExperimentDataCannotBeParsedError(msg) if self.T_column_name not in column_names and self.q_column_name not in column_names: msg = "Temperature and flux data are empty, please use 'Temperature' and 'HeatFlux' columns for this data" raise ExperimentDataCannotBeParsedError(msg)
38.509804
118
0.621436
3,908
0.994908
0
0
0
0
0
0
1,958
0.498473
450a6b5edd6e30d83bb61609d61f4702dee03bf9
23,457
py
Python
hybrideb/_bineb.py
beckermr/hybrideb
a72d712020943dbbed35cb244f9e7f13fc6b2d4d
[ "BSD-3-Clause" ]
null
null
null
hybrideb/_bineb.py
beckermr/hybrideb
a72d712020943dbbed35cb244f9e7f13fc6b2d4d
[ "BSD-3-Clause" ]
null
null
null
hybrideb/_bineb.py
beckermr/hybrideb
a72d712020943dbbed35cb244f9e7f13fc6b2d4d
[ "BSD-3-Clause" ]
null
null
null
import sys import numpy as np import scipy.integrate import scipy.special from ._dblquad import dblquad HAVE_PYGSL = False try: import pygsl.integrate import pygsl.sf HAVE_PYGSL = True except ImportError: pass class BinEB(object): def __init__( self, tmin, tmax, Nb, windows=None, linear=False, useArcmin=True, fname=None ): if fname is not None: self.read_data(fname) else: # set basic params if useArcmin: am2r = np.pi / 180.0 / 60.0 else: am2r = 1.0 self.Nb = Nb self.L = tmin * am2r self.H = tmax * am2r if linear: self.Lb = (self.H - self.L) / Nb * np.arange(Nb) + self.L self.Hb = (self.H - self.L) / Nb * (np.arange(Nb) + 1.0) + self.L else: self.Lb = np.exp(np.log(self.H / self.L) / Nb * np.arange(Nb)) * self.L self.Hb = ( np.exp(np.log(self.H / self.L) / Nb * (np.arange(Nb) + 1.0)) * self.L ) self.have_ell_win = False # make the bin window functions if windows is None: def _make_geomwin(L, H): return lambda x: 2.0 * x / (H * H - L * L) self.windows = [] for i in range(self.Nb): self.windows.append(_make_geomwin(self.Lb[i], self.Hb[i])) else: def _make_normwin(winf, norm): return lambda x: winf(x / am2r) / norm self.windows = [] assert ( len(windows) == Nb ), "binEB requires as many windows as angular bins!" for i in range(self.Nb): twin = _make_normwin(windows[i], 1.0) norm, err = scipy.integrate.quad(twin, self.Lb[i], self.Hb[i]) self.windows.append(_make_normwin(windows[i], norm)) # get fa and fb self.fa = np.zeros(self.Nb) self.fa[:] = 1.0 if HAVE_PYGSL: limit = 10 epsabs = 1e-8 epsrel = 1e-8 w = pygsl.integrate.workspace(limit) def fb_int(x, args): win = args[0] return win(x) * x * x self.fb = np.zeros(self.Nb) for i in range(self.Nb): args = [self.windows[i]] f = pygsl.integrate.gsl_function(fb_int, args) code, val, err = pygsl.integrate.qags( f, self.Lb[i], self.Hb[i], epsabs, epsrel, limit, w ) self.fb[i] = val else: def fb_int(x, win): return win(x) * x * x self.fb = np.zeros(self.Nb) for i in range(self.Nb): val, err = scipy.integrate.quad( fb_int, self.Lb[i], self.Hb[i], args=(self.windows[i],) ) self.fb[i] = val self.fa_on = self.fa / np.sqrt(np.sum(self.fa * self.fa)) self.fb_on = self.fb - self.fa * np.sum(self.fa * self.fb) / np.sum( self.fa * self.fa ) self.fb_on = self.fb_on / np.sqrt(np.sum(self.fb_on * self.fb_on)) # get Mplus matrix if HAVE_PYGSL: limit = 10 epsabs = 1e-8 epsrel = 1e-8 w = pygsl.integrate.workspace(limit) def knorm_int(x, args): win = args[0] return win(x) * win(x) / x knorm = np.zeros(self.Nb) for i in range(self.Nb): args = [self.windows[i]] f = pygsl.integrate.gsl_function(knorm_int, args) code, val, err = pygsl.integrate.qags( f, self.Lb[i], self.Hb[i], epsabs, epsrel, limit, w ) knorm[i] = val self.invnorm = knorm def inv2_int(x, args): win = args[0] return win(x) / x / x inv2 = np.zeros(self.Nb) for i in range(self.Nb): args = [self.windows[i]] f = pygsl.integrate.gsl_function(inv2_int, args) code, val, err = pygsl.integrate.qags( f, self.Lb[i], self.Hb[i], epsabs, epsrel, limit, w ) inv2[i] = val def inv4_int(x, args): win = args[0] return win(x) / x / x / x / x inv4 = np.zeros(self.Nb) for i in range(self.Nb): args = [self.windows[i]] f = pygsl.integrate.gsl_function(inv4_int, args) code, val, err = pygsl.integrate.qags( f, self.Lb[i], self.Hb[i], epsabs, epsrel, limit, w ) inv4[i] = val else: def knorm_int(x, win): return win(x) * win(x) / x knorm = np.zeros(self.Nb) for i in range(self.Nb): val, err = scipy.integrate.quad( knorm_int, self.Lb[i], self.Hb[i], args=(self.windows[i],) ) knorm[i] = val self.invnorm = knorm def inv2_int(x, win): return win(x) / x / x inv2 = np.zeros(self.Nb) for i in range(self.Nb): val, err = scipy.integrate.quad( inv2_int, self.Lb[i], self.Hb[i], args=(self.windows[i],) ) inv2[i] = val def inv4_int(x, win): return win(x) / x / x / x / x inv4 = np.zeros(self.Nb) for i in range(self.Nb): val, err = scipy.integrate.quad( inv4_int, self.Lb[i], self.Hb[i], args=(self.windows[i],) ) inv4[i] = val if HAVE_PYGSL: def _mp_int(p, args): t = args[0] k = args[1] i = args[2] if p > t: val = ( (4.0 / p / p - 12.0 * t * t / p / p / p / p) * self.windows[k](p) * self.windows[i](t) ) else: val = 0.0 return val else: def _mp_int(p, t, k, i): if p > t: return ( (4.0 / p / p - 12.0 * t * t / p / p / p / p) * self.windows[k](p) * self.windows[i](t) ) else: return 0.0 self.mp = np.zeros((self.Nb, self.Nb)) for k in range(self.Nb): # sys.stdout.write("|") for i in range(self.Nb): if windows is None: if i < k: self.mp[k, i] += ( 2.0 / (self.Hb[i] * self.Hb[i] - self.Lb[i] * self.Lb[i]) * ( 2.0 * ( self.Hb[i] * self.Hb[i] - self.Lb[i] * self.Lb[i] ) * np.log(self.Hb[k] / self.Lb[k]) + 3.0 / 2.0 * ( np.power(self.Hb[i], 4.0) - np.power(self.Lb[i], 4.0) ) * ( 1.0 / self.Hb[k] / self.Hb[k] - 1.0 / self.Lb[k] / self.Lb[k] ) ) ) if k == i: self.mp[k, i] += 1.0 self.mp[k, i] += ( 2.0 / (self.Hb[i] * self.Hb[i] - self.Lb[i] * self.Lb[i]) * ( -0.5 * ( self.Hb[k] * self.Hb[k] - self.Lb[k] * self.Lb[k] ) - 2.0 * self.Lb[i] * self.Lb[i] * np.log(self.Hb[k] / self.Lb[k]) - 3.0 / 2.0 * np.power(self.Lb[i], 4.0) * ( 1.0 / self.Hb[k] / self.Hb[k] - 1.0 / self.Lb[k] / self.Lb[k] ) ) ) else: if k == i: self.mp[k, i] += 1.0 val = dblquad( _mp_int, self.Lb[i], self.Hb[i], lambda x: self.Lb[k], lambda x: self.Hb[k], args=(k, i), ) self.mp[k, i] += val / knorm[k] if i < k: self.mp[k, i] = ( 4.0 * inv2[k] - 12.0 * inv4[k] * self.fb[i] ) / knorm[k] # sys.stdout.write("\n") if HAVE_PYGSL: def _mm_int(p, args): t = args[0] k = args[1] i = args[2] if t > p: val = ( (4.0 / t / t - 12.0 * p * p / t / t / t / t) * self.windows[k](p) * self.windows[i](t) ) else: val = 0.0 return val else: def _mm_int(p, t, k, i): if t > p: return ( (4.0 / t / t - 12.0 * p * p / t / t / t / t) * self.windows[k](p) * self.windows[i](t) ) else: return 0.0 self.mm = np.zeros((self.Nb, self.Nb)) for k in range(self.Nb): # sys.stdout.write("|") for i in range(self.Nb): if windows is None: if i > k: self.mm[k, i] += ( 2.0 / (self.Hb[i] * self.Hb[i] - self.Lb[i] * self.Lb[i]) * ( 2.0 * ( self.Hb[k] * self.Hb[k] - self.Lb[k] * self.Lb[k] ) * np.log(self.Hb[i] / self.Lb[i]) + 3.0 / 2.0 * ( np.power(self.Hb[k], 4.0) - np.power(self.Lb[k], 4.0) ) * ( 1.0 / self.Hb[i] / self.Hb[i] - 1.0 / self.Lb[i] / self.Lb[i] ) ) ) if k == i: self.mm[k, i] += 1.0 self.mm[k, i] += ( 2.0 / (self.Hb[i] * self.Hb[i] - self.Lb[i] * self.Lb[i]) * ( 0.5 * ( -1.0 * self.Hb[k] * self.Hb[k] + self.Lb[k] * self.Lb[k] * ( 4.0 - 3.0 * self.Lb[k] * self.Lb[k] / self.Hb[i] / self.Hb[i] - 4.0 * np.log(self.Hb[i] / self.Lb[k]) ) ) ) ) else: if k == i: self.mm[k, i] += 1.0 val = dblquad( _mm_int, self.Lb[i], self.Hb[i], lambda x: self.Lb[k], lambda x: self.Hb[k], args=(k, i), ) self.mm[k, i] += val / knorm[k] if i > k: self.mm[k, i] = ( 4.0 * inv2[i] - 12.0 * inv4[i] * self.fb[k] ) / knorm[k] # sys.stdout.write("\n") # compute the ell windows self.comp_ell_windows() def comp_ell_windows(self): # get the windows in ell self.have_ell_win = True if HAVE_PYGSL: def ellwin_int(theta, args): ell = args[0] win = args[1] n = args[2] return (pygsl.sf.bessel_Jn(n, ell * theta))[0] * win(theta) else: def ellwin_int(theta, ell, win, n): return scipy.special.jn(n, ell * theta) * win(theta) self.ellv = np.logspace(0.0, 5.5, 1500) self.ellwindowsJ0 = np.zeros((self.Nb, len(self.ellv))) self.ellwindowsJ4 = np.zeros((self.Nb, len(self.ellv))) for i in range(self.Nb): sys.stdout.write("|") sys.stdout.flush() if HAVE_PYGSL: epsabs = 1e-6 epsrel = 1e-6 limit = 1000 w = pygsl.integrate.workspace(limit) for j, ell in enumerate(self.ellv): args = [ell, self.windows[i], 0] f = pygsl.integrate.gsl_function(ellwin_int, args) # code,val,err = pygsl.integrate.qag( # f,self.Lb[i],self.Hb[i],epsabs,epsrel, # limit,pygsl.integrate.GAUSS61,w # ) code, val, err = pygsl.integrate.qags( f, self.Lb[i], self.Hb[i], epsabs, epsrel, limit, w ) self.ellwindowsJ0[i, j] = val for j, ell in enumerate(self.ellv): args = [ell, self.windows[i], 4] f = pygsl.integrate.gsl_function(ellwin_int, args) # code,val,err = pygsl.integrate.qag( # f,self.Lb[i],self.Hb[i],epsabs,epsrel,limit, # pygsl.integrate.GAUSS61,w # ) code, val, err = pygsl.integrate.qags( f, self.Lb[i], self.Hb[i], epsabs, epsrel, limit, w ) self.ellwindowsJ4[i, j] = val else: win0 = np.array( [ ( scipy.integrate.quad( ellwin_int, self.Lb[i], self.Hb[i], args=(ell, self.windows[i], 0), ) )[0] for ell in self.ellv ] ) win4 = np.array( [ ( scipy.integrate.quad( ellwin_int, self.Lb[i], self.Hb[i], args=(ell, self.windows[i], 4), ) )[0] for ell in self.ellv ] ) self.ellwindowsJ0[i, :] = win0 self.ellwindowsJ4[i, :] = win4 sys.stdout.write("\n") def write_data(self, fname): """ writes a simple text file with object info # N L H 100 1.0 400.0 # Lb 1.0 1.2 ... 398.0 # Hb 1.2 1.4 ... 400.0 # fa 1.0 1.0 .... 1.0 # fb blah blah ... blah # fa_on blah blah ... blah # fb_on blah blah ... blah # invnorm blah blah ... blah # Mplus blah blah ... blah blah blah ... blah . . . blah blah ... blah # Mminus blah blah ... blah blah blah ... blah . . . blah blah ... blah # ellv blah blah ... blah # ellwinJ0 blah blah ... blah blah blah ... blah . . . blah blah ... blah # ellwinJ4 blah blah ... blah blah blah ... blah . . . blah blah ... blah """ def write_vec(fp, vec): for val in vec: fp.write("%.20lg " % val) fp.write("\n#\n") def write_mat(fp, mat): shape = mat.shape for i in range(shape[0]): for val in mat[i, :]: fp.write("%.20lg " % val) fp.write("\n") fp.write("#\n") fp = open(fname, "w") fp.write("# N L H\n") fp.write("%ld %.20lg %.20lg\n" % (self.Nb, self.L, self.H)) fp.write("# Lb\n") write_vec(fp, self.Lb) fp.write("# Hb\n") write_vec(fp, self.Hb) fp.write("# fa\n") write_vec(fp, self.fa) fp.write("# fb\n") write_vec(fp, self.fb) fp.write("# fa_on\n") write_vec(fp, self.fa_on) fp.write("# fb_on\n") write_vec(fp, self.fb_on) fp.write("# invnorm\n") write_vec(fp, self.invnorm) fp.write("# Mplus\n") write_mat(fp, self.mp) fp.write("# Mminus\n") write_mat(fp, self.mm) fp.write("# ellv\n") write_vec(fp, self.ellv) fp.write("# ellwinJ0\n") write_mat(fp, self.ellwindowsJ0) fp.write("# ellwinJ4\n") write_mat(fp, self.ellwindowsJ4) fp.close() def read_data(self, fname): def read_vec(fp): line = fp.readline() line = line.strip() val = np.array([float(tag) for tag in line.split()]) line = fp.readline() return val def read_mat(fp): mat = [] line = fp.readline() while line[0] != "#": line = line.strip() mat.append([float(tag) for tag in line.split()]) line = fp.readline() mat = np.array(mat) return mat fp = open(fname, "r") line = fp.readline() line = fp.readline() line = line.strip() line = line.split() self.Nb = int(line[0]) self.L = float(line[1]) self.H = float(line[2]) line = fp.readline() self.Lb = read_vec(fp) line = fp.readline() self.Hb = read_vec(fp) line = fp.readline() self.fa = read_vec(fp) line = fp.readline() self.fb = read_vec(fp) line = fp.readline() self.fa_on = read_vec(fp) line = fp.readline() self.fb_on = read_vec(fp) line = fp.readline() self.invnorm = read_vec(fp) line = fp.readline() self.mp = read_mat(fp) line = fp.readline() self.mm = read_mat(fp) line = fp.readline() self.ellv = read_vec(fp) line = fp.readline() self.ellwindowsJ0 = read_mat(fp) line = fp.readline() self.ellwindowsJ4 = read_mat(fp) self.have_ell_win = True fp.close() def fplusminus(self, fptest): fp = fptest - np.sum(fptest * self.fa_on) * self.fa_on fp = fp - np.sum(fp * self.fb_on) * self.fb_on fm = np.dot(self.mp, fp) """ code to test fm = np.zeros(len(fp)) for i in range(len(fp)): for j in range(len(fp)): fm[i] += self.mp[i,j]*fp[j] print fm-np.dot(self.mp,fp) """ return fp, fm def wplus(self, fp, fm): if not self.have_ell_win: self.comp_ell_windows() psum = np.array( [np.sum(self.ellwindowsJ0[:, i] * fp) for i in range(len(self.ellv))] ) msum = np.array( [np.sum(self.ellwindowsJ4[:, i] * fm) for i in range(len(self.ellv))] ) return self.ellv.copy(), (psum + msum) * 0.5 def wminus(self, fp, fm): if not self.have_ell_win: self.comp_ell_windows() psum = np.array( [np.sum(self.ellwindowsJ0[:, i] * fp) for i in range(len(self.ellv))] ) msum = np.array( [np.sum(self.ellwindowsJ4[:, i] * fm) for i in range(len(self.ellv))] ) return self.ellv.copy(), (psum - msum) * 0.5 def wplusminus(self, fp, fm): if not self.have_ell_win: self.comp_ell_windows() psum = np.array( [np.sum(self.ellwindowsJ0[:, i] * fp) for i in range(len(self.ellv))] ) msum = np.array( [np.sum(self.ellwindowsJ4[:, i] * fm) for i in range(len(self.ellv))] ) return self.ellv.copy(), (psum + msum) * 0.5, (psum - msum) * 0.5
34.394428
87
0.336488
23,225
0.99011
0
0
0
0
0
0
1,891
0.080616
450a8b0c8c6133dd03a986ca11b5d16bc7850c24
9,945
py
Python
test_fast_ndimage.py
grlee77/skimage_accel_demos
96606ca27c8c622733958c01620bc55e616319db
[ "BSD-3-Clause" ]
null
null
null
test_fast_ndimage.py
grlee77/skimage_accel_demos
96606ca27c8c622733958c01620bc55e616319db
[ "BSD-3-Clause" ]
null
null
null
test_fast_ndimage.py
grlee77/skimage_accel_demos
96606ca27c8c622733958c01620bc55e616319db
[ "BSD-3-Clause" ]
null
null
null
import numpy as np from numpy.testing import assert_allclose, run_module_suite from fast_ndimage import ( median_filter, sobel, convolve, correlate, gaussian_filter, gaussian_filter1d, uniform_filter, uniform_filter1d) def test_median_filter(): rtol = atol = 1e-7 shape = (63, 64) rstate = np.random.RandomState(0) x = rstate.standard_normal(shape).astype(np.float32) for mode in ['reflect', ]: kwargs = dict(mode=mode, size=3) result_ndi = median_filter(x, backend='ndimage', **kwargs) result_opencv = median_filter(x, backend='opencv', **kwargs) assert_allclose(result_ndi, result_opencv, rtol=rtol, atol=atol) def test_sobel_filter(): rtol = atol = 1e-7 shape = (63, 64) rstate = np.random.RandomState(0) x = rstate.standard_normal(shape) # TODO: OpenCV 3.3 currently crashing for mode 'wrap': # error: ~/miniconda3/conda-bld/opencv_1513818334462/work/opencv-3.3.0/modules/imgproc/src/filter.cpp:127: error: (-215) columnBorderType != BORDER_WRAP in function init for axis in [0, 1]: for mode in ['reflect', 'mirror', 'constant', 'nearest']: kwargs = dict(mode=mode, axis=axis) result_ndi = sobel(x, backend='ndimage', **kwargs) result_opencv = sobel(x, backend='opencv', **kwargs) assert_allclose(result_ndi, result_opencv, rtol=rtol, atol=atol) axis = 0 mode = 'reflect' for scale in [0.5, 1, 2, None]: for delta in [0, 0.5, 2]: kwargs = dict(mode=mode, axis=axis, scale=scale, delta=delta) result_ndi = sobel(x[:, 0], backend='ndimage', **kwargs) result_opencv = sobel(x[:, 0], backend='opencv', **kwargs) assert_allclose(result_ndi, result_opencv, rtol=rtol, atol=atol) def test_uniform_filter(): rtol = atol = 1e-7 shape = (63, 64) rstate = np.random.RandomState(0) x = rstate.standard_normal(shape) # TODO: OpenCV 3.3 currently crashing for mode 'wrap': # error: ~/miniconda3/conda-bld/opencv_1513818334462/work/opencv-3.3.0/modules/imgproc/src/filter.cpp:127: error: (-215) columnBorderType != BORDER_WRAP in function init for mode in ['reflect', 'mirror', 'constant', 'nearest']: kwargs = dict(mode=mode, size=(2, 3)) result_ndi = uniform_filter(x, backend='ndimage', **kwargs) result_opencv = uniform_filter(x, backend='opencv', **kwargs) assert_allclose(result_ndi, result_opencv, rtol=rtol, atol=atol) for squared in [False, True]: for normalize in [False, True]: kwargs = dict(size=3, mode='reflect', normalize=normalize, squared=squared) result_ndi = uniform_filter(x, backend='ndimage', **kwargs) result_opencv = uniform_filter(x, backend='opencv', **kwargs) assert_allclose(result_ndi, result_opencv, rtol=rtol, atol=atol) for size in [5, (5, 6), (6, 5), 6]: for origin in [-2, -1, 0, 1, 2, (0, 0), (1, 1), (0, 1), (2, 1), (-1, -2)]: kwargs = dict(mode='reflect', size=size, origin=origin) result_ndi = uniform_filter(x, backend='ndimage', **kwargs) result_opencv = uniform_filter(x, backend='opencv', **kwargs) assert_allclose(result_ndi, result_opencv, rtol=rtol, atol=atol) def test_uniform_filter1d(): rtol = atol = 1e-7 shape = (63, 64) rstate = np.random.RandomState(0) x = rstate.standard_normal(shape) size = 3 for axis in [0, 1, -1]: for mode in ['reflect', 'mirror', 'constant', 'nearest']: kwargs = dict(mode=mode) result_ndi = uniform_filter1d(x, size, axis, backend='ndimage', **kwargs) result_opencv = uniform_filter1d(x, size, axis, backend='opencv', **kwargs) assert_allclose(result_ndi, result_opencv, rtol=rtol, atol=atol) for squared in [False, True]: for normalize in [False, True]: kwargs = dict(mode='reflect', normalize=normalize, squared=squared) result_ndi = uniform_filter1d(x, size, axis, backend='ndimage', **kwargs) result_opencv = uniform_filter1d(x, size, axis, backend='opencv', **kwargs) assert_allclose(result_ndi, result_opencv, rtol=rtol, atol=atol) for origin in [-1, 0, 1]: kwargs = dict(mode='reflect', origin=origin) result_ndi = uniform_filter1d(x, size, axis, backend='ndimage', **kwargs) result_opencv = uniform_filter1d(x, size, axis, backend='opencv', **kwargs) assert_allclose(result_ndi, result_opencv, rtol=rtol, atol=atol) def test_gaussian_filter(): rtol = atol = 1e-12 shape = (63, 64) sigma = (1.5, 3) rstate = np.random.RandomState(0) x = rstate.standard_normal(shape) # TODO: OpenCV 3.3 currently crashing for mode 'wrap': # error: ~/miniconda3/conda-bld/opencv_1513818334462/work/opencv-3.3.0/modules/imgproc/src/filter.cpp:127: error: (-215) columnBorderType != BORDER_WRAP in function init for mode in ['reflect', 'mirror', 'constant', 'nearest']: kwargs = dict(mode=mode) result_ndi = gaussian_filter(x, sigma, backend='ndimage', **kwargs) result_opencv = gaussian_filter(x, sigma, backend='opencv', **kwargs) assert_allclose(result_ndi, result_opencv, rtol=rtol, atol=atol) mode = 'reflect' for truncate in [1, 1.1, 1.5, 2, 4, 5]: kwargs = dict(mode=mode, truncate=truncate) result_ndi = gaussian_filter(x, sigma, backend='ndimage', **kwargs) result_opencv = gaussian_filter(x, sigma, backend='opencv', **kwargs) assert_allclose(result_ndi, result_opencv, rtol=rtol, atol=atol) def test_gaussian_filter1d(): rtol = atol = 1e-12 shape = (63, 64) sigma = 2.5 rstate = np.random.RandomState(0) x = rstate.standard_normal(shape) # TODO: OpenCV 3.3 currently crashing for mode 'wrap': # error: ~/miniconda3/conda-bld/opencv_1513818334462/work/opencv-3.3.0/modules/imgproc/src/filter.cpp:127: error: (-215) columnBorderType != BORDER_WRAP in function init for axis in [0, 1, -1]: for mode in ['reflect', 'mirror', 'constant', 'nearest']: kwargs = dict(mode=mode) result_ndi = gaussian_filter1d(x, sigma, axis, backend='ndimage', **kwargs) result_opencv = gaussian_filter1d(x, sigma, axis, backend='opencv', **kwargs) assert_allclose(result_ndi, result_opencv, rtol=rtol, atol=atol) mode = 'reflect' for truncate in [1, 2]: kwargs = dict(mode=mode, truncate=truncate, axis=axis) result_ndi = gaussian_filter1d(x, sigma, backend='ndimage', **kwargs) result_opencv = gaussian_filter1d(x, sigma, backend='opencv', **kwargs) assert_allclose(result_ndi, result_opencv, rtol=rtol, atol=atol) def test_convolve(): rtol = atol = 1e-12 shape = (63, 64) rstate = np.random.RandomState(0) x = rstate.standard_normal(shape) weights = rstate.standard_normal((3, 6)) func = convolve # TODO: OpenCV 3.3 currently crashing for mode 'wrap': # error: ~/miniconda3/conda-bld/opencv_1513818334462/work/opencv-3.3.0/modules/imgproc/src/filter.cpp:127: error: (-215) columnBorderType != BORDER_WRAP in function init for mode in ['reflect', 'mirror', 'constant', 'nearest']: kwargs = dict(mode=mode) result_ndi = func(x, weights, backend='ndimage', **kwargs) result_opencv = func(x, weights, backend='opencv', **kwargs) assert_allclose(result_ndi, result_opencv, rtol=rtol, atol=atol) for delta in [0, -0.5, 2]: kwargs = dict(mode='reflect', delta=delta) result_ndi = func(x, weights, backend='ndimage', **kwargs) result_opencv = func(x, weights, backend='opencv', **kwargs) assert_allclose(result_ndi, result_opencv, rtol=rtol, atol=atol) for origin in [-1, 0, 1, (0, 0), (1, 1)]: kwargs = dict(mode='reflect', origin=origin) result_ndi = func(x, weights, backend='ndimage', **kwargs) result_opencv = func(x, weights, backend='opencv', **kwargs) assert_allclose(result_ndi, result_opencv, rtol=rtol, atol=atol) # TODO: test threading def test_correlate(): rtol = atol = 1e-12 shape = (63, 64) rstate = np.random.RandomState(0) x = rstate.standard_normal(shape) weights = rstate.standard_normal((4, 4)) func = correlate # TODO: OpenCV 3.3 currently crashing for mode 'wrap': # error: ~/miniconda3/conda-bld/opencv_1513818334462/work/opencv-3.3.0/modules/imgproc/src/filter.cpp:127: error: (-215) columnBorderType != BORDER_WRAP in function init for mode in ['reflect', 'mirror', 'constant', 'nearest']: kwargs = dict(mode=mode) result_ndi = func(x, weights, backend='ndimage', **kwargs) result_opencv = func(x, weights, backend='opencv', **kwargs) assert_allclose(result_ndi, result_opencv, rtol=rtol, atol=atol) for delta in [0, -0.5, 2]: kwargs = dict(mode='reflect', delta=delta) result_ndi = func(x, weights, backend='ndimage', **kwargs) result_opencv = func(x, weights, backend='opencv', **kwargs) assert_allclose(result_ndi, result_opencv, rtol=rtol, atol=atol) for origin in [-1, 0, 1, (0, 0), (1, 1)]: kwargs = dict(mode='reflect', origin=origin) result_ndi = func(x, weights, backend='ndimage', **kwargs) result_opencv = func(x, weights, backend='opencv', **kwargs) assert_allclose(result_ndi, result_opencv, rtol=rtol, atol=atol) # TODO: assert_raises ValueError on origin=(-1, 1) etc. if __name__ == "__main__": run_module_suite()
44.2
173
0.627954
0
0
0
0
0
0
0
0
2,108
0.211966
450aba433942ebcf2d5698d6bec5bdbf826e634d
628
py
Python
RecamanSequence/recaman_sequence.py
urosjevremovic/Recamans-Sequence
ab6a90c363271dc842f26ccd1b69168a9764de9e
[ "MIT" ]
null
null
null
RecamanSequence/recaman_sequence.py
urosjevremovic/Recamans-Sequence
ab6a90c363271dc842f26ccd1b69168a9764de9e
[ "MIT" ]
null
null
null
RecamanSequence/recaman_sequence.py
urosjevremovic/Recamans-Sequence
ab6a90c363271dc842f26ccd1b69168a9764de9e
[ "MIT" ]
null
null
null
import sys from itertools import count, islice def sequence(): """Generate Recaman's sequence""" seen = set() a = 0 for n in count(1): yield a seen.add(a) c = a - n if c < 0 or c in seen: c = a + n a = c def write_sequence(num): """Write Recaman's sequence to a text file""" filename = "recaman.txt" with open(filename, mode="wt", encoding="utf-8") as f: f.writelines(f"{r}\n" for r in islice(sequence(), num)) def main(): write_sequence(num=int(sys.argv[1])) if __name__ == '__main__': write_sequence(num=int(sys.argv[1]))
20.258065
63
0.565287
0
0
224
0.356688
0
0
0
0
120
0.191083
450b1dc0c660308c26a032b98dc820700aea0504
533
py
Python
2018/aoc/d8/test.py
lukaselmer/adventofcode
b96ffc9040b63b338bca653830ba4ff7e90a8b2a
[ "MIT" ]
1
2018-12-12T22:59:44.000Z
2018-12-12T22:59:44.000Z
2018/aoc/d8/test.py
lukaselmer/adventofcode
b96ffc9040b63b338bca653830ba4ff7e90a8b2a
[ "MIT" ]
null
null
null
2018/aoc/d8/test.py
lukaselmer/adventofcode
b96ffc9040b63b338bca653830ba4ff7e90a8b2a
[ "MIT" ]
null
null
null
import unittest from unittest.mock import mock_open, patch from aoc.d8.main import metadata_sum, supervalue DATA = "2 3 0 3 10 11 12 1 1 0 1 99 2 1 1 2\n" class TestCase(unittest.TestCase): def test_metadata_sum(self): with patch("builtins.open", mock_open(read_data=DATA)): self.assertEqual(138, metadata_sum()) def test_supervalue(self): with patch("builtins.open", mock_open(read_data=DATA)): self.assertEqual(66, supervalue()) if __name__ == "__main__": unittest.main()
25.380952
63
0.682927
324
0.60788
0
0
0
0
0
0
79
0.148218
450b884de08b19e1126451db4abb472fc660d42a
955
py
Python
tests/calculators/openbabel/test_obabel_calculators.py
stevenbennett96/stko
ee340af4fc549d5a2c3e9cba8360661335efe0fd
[ "MIT" ]
null
null
null
tests/calculators/openbabel/test_obabel_calculators.py
stevenbennett96/stko
ee340af4fc549d5a2c3e9cba8360661335efe0fd
[ "MIT" ]
null
null
null
tests/calculators/openbabel/test_obabel_calculators.py
stevenbennett96/stko
ee340af4fc549d5a2c3e9cba8360661335efe0fd
[ "MIT" ]
2
2020-05-08T17:51:25.000Z
2020-05-11T09:03:24.000Z
import stko import pytest try: from openbabel import openbabel except ImportError: openbabel = None def test_open_babel_energy(unoptimized_mol): if openbabel is None: with pytest.raises(stko.WrapperNotInstalledException): calculator = stko.OpenBabelEnergy('uff') else: calculator = stko.OpenBabelEnergy('uff') test_energy = calculator.get_energy(unoptimized_mol) assert test_energy == 141.44622279628743 calculator = stko.OpenBabelEnergy('gaff') test_energy = calculator.get_energy(unoptimized_mol) assert test_energy == 66.47095418890525 calculator = stko.OpenBabelEnergy('ghemical') test_energy = calculator.get_energy(unoptimized_mol) assert test_energy == 86.59956589041794 calculator = stko.OpenBabelEnergy('mmff94') test_energy = calculator.get_energy(unoptimized_mol) assert test_energy == 7.607999187460175
29.84375
62
0.709948
0
0
0
0
0
0
0
0
34
0.035602
450c6f3fc4e2b60e9dc2c7675ce23445e63cfa2b
1,773
py
Python
psono/restapi/views/membership_decline.py
dirigeant/psono-server
a18c5b3c4d8bbbe4ecf1615b210d99fb77752205
[ "Apache-2.0", "CC0-1.0" ]
48
2018-04-19T15:50:58.000Z
2022-01-23T15:58:11.000Z
psono/restapi/views/membership_decline.py
dirigeant/psono-server
a18c5b3c4d8bbbe4ecf1615b210d99fb77752205
[ "Apache-2.0", "CC0-1.0" ]
9
2018-09-13T14:56:18.000Z
2020-01-17T16:44:33.000Z
psono/restapi/views/membership_decline.py
dirigeant/psono-server
a18c5b3c4d8bbbe4ecf1615b210d99fb77752205
[ "Apache-2.0", "CC0-1.0" ]
11
2019-09-20T11:53:47.000Z
2021-07-18T22:41:31.000Z
from rest_framework import status from rest_framework.response import Response from rest_framework.generics import GenericAPIView from ..permissions import IsAuthenticated from django.core.cache import cache from django.conf import settings from ..authentication import TokenAuthentication from ..app_settings import ( MembershipDeclineSerializer, ) class MembershipDeclineView(GenericAPIView): authentication_classes = (TokenAuthentication, ) permission_classes = (IsAuthenticated,) allowed_methods = ('POST', 'OPTIONS', 'HEAD') def get(self, *args, **kwargs): return Response({}, status=status.HTTP_405_METHOD_NOT_ALLOWED) def put(self, *args, **kwargs): return Response({}, status=status.HTTP_405_METHOD_NOT_ALLOWED) def post(self, request, *args, **kwargs): """ Marks a membership as declined. In addition deletes now unnecessary information. :param request: :param uuid: share_right_id :param args: :param kwargs: :return: 200 / 403 """ serializer = MembershipDeclineSerializer(data=request.data, context=self.get_serializer_context()) if not serializer.is_valid(): return Response( serializer.errors, status=status.HTTP_400_BAD_REQUEST ) membership_obj = serializer.validated_data.get('membership_obj') membership_obj.accepted = False membership_obj.save() if settings.CACHE_ENABLE: cache_key = 'psono_user_status_' + str(membership_obj.user.id) cache.delete(cache_key) return Response(status=status.HTTP_200_OK) def delete(self, *args, **kwargs): return Response({}, status=status.HTTP_405_METHOD_NOT_ALLOWED)
30.568966
106
0.693739
1,414
0.797518
0
0
0
0
0
0
293
0.165257
450c825cc3c91a3ffe9479b87c3868422b01ed4b
5,350
py
Python
tests/data/samplers/bucket_batch_sampler_test.py
MSLars/allennlp
2cdb8742c8c8c3c38ace4bdfadbdc750a1aa2475
[ "Apache-2.0" ]
11,433
2017-06-27T03:08:46.000Z
2022-03-31T18:14:33.000Z
tests/data/samplers/bucket_batch_sampler_test.py
MSLars/allennlp
2cdb8742c8c8c3c38ace4bdfadbdc750a1aa2475
[ "Apache-2.0" ]
4,006
2017-06-26T21:45:43.000Z
2022-03-31T02:11:10.000Z
tests/data/samplers/bucket_batch_sampler_test.py
MSLars/allennlp
2cdb8742c8c8c3c38ace4bdfadbdc750a1aa2475
[ "Apache-2.0" ]
2,560
2017-06-26T21:16:53.000Z
2022-03-30T07:55:46.000Z
from allennlp.common import Params from allennlp.data import Instance, Token, Batch from allennlp.data.fields import TextField from allennlp.data.samplers import BucketBatchSampler from allennlp.data.data_loaders import MultiProcessDataLoader from .sampler_test import SamplerTest class TestBucketSampler(SamplerTest): def test_create_batches_groups_correctly(self): sampler = BucketBatchSampler(batch_size=2, padding_noise=0, sorting_keys=["text"]) grouped_instances = [] for indices in sampler.get_batch_indices(self.instances): grouped_instances.append([self.instances[idx] for idx in indices]) expected_groups = [ [self.instances[4], self.instances[2]], [self.instances[0], self.instances[1]], [self.instances[3]], ] for group in grouped_instances: assert group in expected_groups expected_groups.remove(group) assert expected_groups == [] def test_disable_shuffle(self): sampler = BucketBatchSampler(batch_size=2, sorting_keys=["text"], shuffle=False) grouped_instances = [] for indices in sampler.get_batch_indices(self.instances): grouped_instances.append([self.instances[idx] for idx in indices]) expected_groups = [ [self.instances[4], self.instances[2]], [self.instances[0], self.instances[1]], [self.instances[3]], ] for idx, group in enumerate(grouped_instances): assert group == expected_groups[idx] def test_guess_sorting_key_picks_the_longest_key(self): sampler = BucketBatchSampler(batch_size=2, padding_noise=0) instances = [] short_tokens = [Token(t) for t in ["what", "is", "this", "?"]] long_tokens = [Token(t) for t in ["this", "is", "a", "not", "very", "long", "passage"]] instances.append( Instance( { "question": TextField(short_tokens, self.token_indexers), "passage": TextField(long_tokens, self.token_indexers), } ) ) instances.append( Instance( { "question": TextField(short_tokens, self.token_indexers), "passage": TextField(long_tokens, self.token_indexers), } ) ) instances.append( Instance( { "question": TextField(short_tokens, self.token_indexers), "passage": TextField(long_tokens, self.token_indexers), } ) ) assert sampler.sorting_keys is None sampler._guess_sorting_keys(instances) assert sampler.sorting_keys == ["passage"] def test_from_params(self): params = Params({}) sorting_keys = ["s1", "s2"] params["sorting_keys"] = sorting_keys params["batch_size"] = 32 sampler = BucketBatchSampler.from_params(params=params) assert sampler.sorting_keys == sorting_keys assert sampler.padding_noise == 0.1 assert sampler.batch_size == 32 params = Params( { "sorting_keys": sorting_keys, "padding_noise": 0.5, "batch_size": 100, "drop_last": True, } ) sampler = BucketBatchSampler.from_params(params=params) assert sampler.sorting_keys == sorting_keys assert sampler.padding_noise == 0.5 assert sampler.batch_size == 100 assert sampler.drop_last def test_drop_last_works(self): sampler = BucketBatchSampler( batch_size=2, padding_noise=0, sorting_keys=["text"], drop_last=True, ) # We use a custom collate_fn for testing, which doesn't actually create tensors, # just the allennlp Batches. def collate_fn(x, **kwargs): return Batch(x) data_loader = MultiProcessDataLoader( self.get_mock_reader(), "fake_path", batch_sampler=sampler, ) data_loader.collate_fn = collate_fn data_loader.index_with(self.vocab) batches = [batch for batch in iter(data_loader)] stats = self.get_batches_stats(batches) # all batches have length batch_size assert all(batch_len == 2 for batch_len in stats["batch_lengths"]) # we should have lost one instance by skipping the last batch assert stats["total_instances"] == len(self.instances) - 1 def test_batch_count(self): sampler = BucketBatchSampler(batch_size=2, padding_noise=0, sorting_keys=["text"]) data_loader = MultiProcessDataLoader( self.get_mock_reader(), "fake_path", batch_sampler=sampler ) data_loader.index_with(self.vocab) assert len(data_loader) == 3 def test_batch_count_with_drop_last(self): sampler = BucketBatchSampler( batch_size=2, padding_noise=0, sorting_keys=["text"], drop_last=True, ) data_loader = MultiProcessDataLoader( self.get_mock_reader(), "fake_path", batch_sampler=sampler ) assert len(data_loader) == 2
35.90604
95
0.601121
5,065
0.946729
0
0
0
0
0
0
510
0.095327
45112f2abb035e911415cb428c007f107a543914
3,332
py
Python
tests/test_sphere.py
dkirkby/batoid
734dccc289eb7abab77a62cdc14563ed5981753b
[ "BSD-2-Clause" ]
null
null
null
tests/test_sphere.py
dkirkby/batoid
734dccc289eb7abab77a62cdc14563ed5981753b
[ "BSD-2-Clause" ]
null
null
null
tests/test_sphere.py
dkirkby/batoid
734dccc289eb7abab77a62cdc14563ed5981753b
[ "BSD-2-Clause" ]
null
null
null
import batoid import numpy as np import math from test_helpers import timer, do_pickle, all_obj_diff @timer def test_properties(): import random random.seed(5) for i in range(100): R = random.gauss(0.7, 0.8) sphere = batoid.Sphere(R) assert sphere.R == R do_pickle(sphere) @timer def test_sag(): import random random.seed(57) for i in range(100): R = random.gauss(4.2, 0.3) sphere = batoid.Sphere(R) for j in range(10): x = random.uniform(-0.7*R, 0.7*R) y = random.uniform(-0.7*R, 0.7*R) result = sphere.sag(x, y) np.testing.assert_allclose(result, R*(1-math.sqrt(1.0-(x*x + y*y)/R/R))) # Check that it returned a scalar float and not an array assert isinstance(result, float) # Check vectorization x = np.random.uniform(-0.7*R, 0.7*R, size=(10, 10)) y = np.random.uniform(-0.7*R, 0.7*R, size=(10, 10)) np.testing.assert_allclose(sphere.sag(x, y), R*(1-np.sqrt(1.0-(x*x + y*y)/R/R))) # Make sure non-unit stride arrays also work np.testing.assert_allclose( sphere.sag(x[::5,::2], y[::5,::2]), (R*(1-np.sqrt(1.0-(x*x + y*y)/R/R)))[::5, ::2] ) @timer def test_intersect(): import random random.seed(577) for i in range(100): R = random.gauss(10.0, 0.1) sphere = batoid.Sphere(R) for j in range(10): x = random.gauss(0.0, 1.0) y = random.gauss(0.0, 1.0) # If we shoot rays straight up, then it's easy to predict the # intersection points. r0 = batoid.Ray(x, y, -1000, 0, 0, 1, 0) r = sphere.intersect(r0) np.testing.assert_allclose(r.r[0], x) np.testing.assert_allclose(r.r[1], y) np.testing.assert_allclose(r.r[2], sphere.sag(x, y), rtol=0, atol=1e-9) # Check normal for R=0 paraboloid (a plane) sphere = batoid.Sphere(0.0) np.testing.assert_array_equal(sphere.normal(0.1,0.1), [0,0,1]) @timer def test_intersect_vectorized(): import random random.seed(5772) r0s = [batoid.Ray([random.gauss(0.0, 0.1), random.gauss(0.0, 0.1), random.gauss(10.0, 0.1)], [random.gauss(0.0, 0.1), random.gauss(0.0, 0.1), random.gauss(-1.0, 0.1)], random.gauss(0.0, 0.1)) for i in range(1000)] r0s = batoid.RayVector(r0s) for i in range(100): R = random.gauss(0.05, 0.01) sphere = batoid.Sphere(R) r1s = sphere.intersect(r0s) r2s = batoid.RayVector([sphere.intersect(r0) for r0 in r0s]) assert r1s == r2s @timer def test_ne(): objs = [ batoid.Sphere(1.0), batoid.Sphere(2.0), batoid.Plane() ] all_obj_diff(objs) @timer def test_fail(): sphere = batoid.Sphere(1.0) ray = batoid.Ray([0,0,-1], [0,0,-1]) ray = sphere.intersect(ray) assert ray.failed ray = batoid.Ray([0,0,-1], [0,0,-1]) sphere.intersectInPlace(ray) assert ray.failed if __name__ == '__main__': test_properties() test_sag() test_intersect() test_intersect_vectorized() test_ne() test_fail()
28.237288
88
0.545618
0
0
0
0
3,064
0.919568
0
0
257
0.077131
4511821928e83d509f748b6119d6ba8794c26a88
2,678
py
Python
site_stats/middlewares.py
ganlvtech/blueking-django-startup-project
042aa36b0757c0d3929d88bc23534f54963d333e
[ "MIT" ]
1
2018-11-22T21:13:25.000Z
2018-11-22T21:13:25.000Z
site_stats/middlewares.py
ganlvtech/blueking-django-startup-project
042aa36b0757c0d3929d88bc23534f54963d333e
[ "MIT" ]
null
null
null
site_stats/middlewares.py
ganlvtech/blueking-django-startup-project
042aa36b0757c0d3929d88bc23534f54963d333e
[ "MIT" ]
null
null
null
from django.http.response import HttpResponseForbidden from .models import Counter, VisitLog from .utils import get_client_ip class SiteStatistics(object): visit_log = None def process_request(self, request): if request.path_info.startswith('/admin/'): return counter = Counter.objects.first() counter.value += 1 counter.save() try: self.visit_log = VisitLog() self.visit_log.user_id = request.session.get('openid', '')[:128] user_info = '' openkey = request.session.get('openkey', '') nick_name = request.session.get('nick_name', '') if openkey or nick_name: user_info = nick_name + ' ' + openkey self.visit_log.user_info = user_info[:255] self.visit_log.path = request.path[:1024] self.visit_log.method = request.method self.visit_log.ip = get_client_ip(request) self.visit_log.user_agent = request.META['HTTP_USER_AGENT'][:1024] self.visit_log.query = request.META['QUERY_STRING'][:1024] self.visit_log.body = request.body[:4096] self.visit_log.response_length = -1 self.visit_log.save() except Exception as e: print(e) def process_response(self, request, response): try: if self.visit_log: self.visit_log.response_code = response.status_code if hasattr(response, 'content'): self.visit_log.response_length = len(response.content) self.visit_log.response_body = response.content[:4096] elif 'Content-Length' in response: self.visit_log.response_length = response['Content-Length'] else: self.visit_log.response_length = -2 self.visit_log.save() except Exception as e: print(e) return response class BanUser(object): ban_openid_list = ( "144115212352913603", ) ban_nick_name_list = ( "453413024", ) ban_ip_list = ( "116.228.88.252", ) def process_request(self, request): ip = get_client_ip(request) if ip in self.ban_ip_list: return HttpResponseForbidden('Banned IP') openid = request.session.get('openid') if openid and openid in self.ban_openid_list: return HttpResponseForbidden('Banned openid') nick_name = request.session.get('nick_name') if nick_name and nick_name in self.ban_nick_name_list: return HttpResponseForbidden('Banned QQ')
34.779221
79
0.596341
2,545
0.950336
0
0
0
0
0
0
223
0.083271
4511a28651e9a1abc5a51540a0f550556e34f6c9
1,753
py
Python
gpu_bdb/bdb_tools/q24_utils.py
VibhuJawa/gpu-bdb
13987b4ef8b92db3b9d2905dec7bd2fd81f42ae9
[ "Apache-2.0" ]
62
2020-05-14T13:33:02.000Z
2020-10-29T13:28:26.000Z
gpu_bdb/bdb_tools/q24_utils.py
VibhuJawa/gpu-bdb
13987b4ef8b92db3b9d2905dec7bd2fd81f42ae9
[ "Apache-2.0" ]
104
2020-07-01T21:07:42.000Z
2020-11-13T16:36:04.000Z
gpu_bdb/bdb_tools/q24_utils.py
VibhuJawa/gpu-bdb
13987b4ef8b92db3b9d2905dec7bd2fd81f42ae9
[ "Apache-2.0" ]
21
2020-05-14T14:44:40.000Z
2020-11-07T12:08:28.000Z
# # Copyright (c) 2019-2022, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from bdb_tools.readers import build_reader ws_cols = ["ws_item_sk", "ws_sold_date_sk", "ws_quantity"] item_cols = ["i_item_sk", "i_current_price"] imp_cols = [ "imp_item_sk", "imp_competitor_price", "imp_start_date", "imp_end_date", "imp_sk", ] ss_cols = ["ss_item_sk", "ss_sold_date_sk", "ss_quantity"] def read_tables(config, c=None): table_reader = build_reader( data_format=config["file_format"], basepath=config["data_dir"], split_row_groups=config["split_row_groups"], backend=config["backend"], ) ### read tables ws_df = table_reader.read("web_sales", relevant_cols=ws_cols) item_df = table_reader.read("item", relevant_cols=item_cols) imp_df = table_reader.read("item_marketprices", relevant_cols=imp_cols) ss_df = table_reader.read("store_sales", relevant_cols=ss_cols) if c: c.create_table("web_sales", ws_df, persist=False) c.create_table("item", item_df, persist=False) c.create_table("item_marketprices", imp_df, persist=False) c.create_table("store_sales", ss_df, persist=False) return ws_df, item_df, imp_df, ss_df
34.372549
75
0.714775
0
0
0
0
0
0
0
0
930
0.530519
451235b4dc66c44ae6da7b46c7877673b9a0d562
8,175
py
Python
tests/test_compare.py
mys-lang/mys
070431fdedd7a6bf537f3a30583cd44f644cdbf4
[ "MIT" ]
59
2021-01-06T14:21:40.000Z
2022-02-22T21:49:39.000Z
tests/test_compare.py
mys-lang/mys
070431fdedd7a6bf537f3a30583cd44f644cdbf4
[ "MIT" ]
31
2021-01-05T00:32:36.000Z
2022-02-23T13:34:33.000Z
tests/test_compare.py
mys-lang/mys
070431fdedd7a6bf537f3a30583cd44f644cdbf4
[ "MIT" ]
7
2021-01-03T11:53:03.000Z
2022-02-22T17:49:42.000Z
from .utils import TestCase from .utils import build_and_test_module from .utils import transpile_source class Test(TestCase): def test_compare(self): with self.assertRaises(SystemExit): build_and_test_module('compare') def test_assert_between(self): self.assert_transpile_raises( 'def foo():\n' ' a = 2\n' ' assert 1 <= a < 3\n', ' File "", line 3\n' " assert 1 <= a < 3\n" ' ^\n' "CompileError: can only compare two values\n") def test_between(self): self.assert_transpile_raises( 'def foo():\n' ' a = 2\n' ' print(1 <= a < 3)\n', ' File "", line 3\n' " print(1 <= a < 3)\n" ' ^\n' "CompileError: can only compare two values\n") def test_i64_and_bool(self): self.assert_transpile_raises( 'def foo() -> bool:\n' ' return 1 == True', ' File "", line 2\n' ' return 1 == True\n' ' ^\n' "CompileError: cannot convert 'i64/i32/i16/i8/u64/u32/u16/u8' " "to 'bool'\n") def test_mix_of_literals_and_known_types_1(self): source = transpile_source('def foo():\n' ' k: u64 = 1\n' ' v: i64 = 1\n' ' if 0xffffffffffffffff == k:\n' ' pass\n' ' print(v)\n') self.assert_in('18446744073709551615ull', source) def test_wrong_types_1(self): self.assert_transpile_raises( 'def foo() -> bool:\n' ' return 1 == [""]\n', ' File "", line 2\n' ' return 1 == [""]\n' ' ^\n' "CompileError: cannot convert 'i64/i32/i16/i8/u64/u32/u16/u8' to " "'[string]'\n") def test_wrong_types_2(self): self.assert_transpile_raises( 'def foo() -> bool:\n' ' return [""] in 1\n', ' File "", line 2\n' ' return [""] in 1\n' ' ^\n' "CompileError: not an iterable\n") def test_wrong_types_3(self): self.assert_transpile_raises( 'def foo() -> bool:\n' ' return [""] not in 1\n', ' File "", line 2\n' ' return [""] not in 1\n' ' ^\n' "CompileError: not an iterable\n") def test_wrong_types_4(self): self.assert_transpile_raises( 'def foo() -> bool:\n' ' return 2.0 == 1\n', ' File "", line 2\n' ' return 2.0 == 1\n' ' ^\n' "CompileError: cannot convert 'f64/f32' to " "'i64/i32/i16/i8/u64/u32/u16/u8'\n") def test_wrong_types_5(self): self.assert_transpile_raises( 'def foo() -> bool:\n' ' return 1.0 == [""]\n', ' File "", line 2\n' ' return 1.0 == [""]\n' ' ^\n' "CompileError: cannot convert 'f64/f32' to '[string]'\n") def test_wrong_types_6(self): self.assert_transpile_raises( 'def foo(a: i32) -> bool:\n' ' return a in [""]\n', ' File "", line 2\n' ' return a in [""]\n' ' ^\n' "CompileError: types 'i32' and 'string' differs\n") def test_wrong_types_7(self): self.assert_transpile_raises( 'def foo(a: i32) -> bool:\n' ' return a in a\n', ' File "", line 2\n' ' return a in a\n' ' ^\n' "CompileError: not an iterable\n") def test_wrong_types_8(self): self.assert_transpile_raises( 'def foo(a: i32) -> bool:\n' ' return 1 in a\n', ' File "", line 2\n' ' return 1 in a\n' ' ^\n' "CompileError: not an iterable\n") def test_wrong_types_9(self): self.assert_transpile_raises( 'def foo(a: i32) -> bool:\n' ' return "" == a\n', ' File "", line 2\n' ' return "" == a\n' ' ^\n' "CompileError: types 'string' and 'i32' differs\n") def test_wrong_types_10(self): self.assert_transpile_raises( 'def foo():\n' ' print(1 is None)\n', ' File "", line 2\n' ' print(1 is None)\n' ' ^\n' "CompileError: 'i64' cannot be None\n") def test_wrong_types_11(self): self.assert_transpile_raises( 'def foo():\n' ' print(1.0 is None)\n', ' File "", line 2\n' ' print(1.0 is None)\n' ' ^\n' "CompileError: 'f64' cannot be None\n") def test_wrong_types_12(self): self.assert_transpile_raises( 'def foo(a: i32):\n' ' print(a is None)\n', ' File "", line 2\n' ' print(a is None)\n' ' ^\n' "CompileError: 'i32' cannot be None\n") def test_wrong_types_13(self): self.assert_transpile_raises( 'def foo(a: i32):\n' ' print(None is a)\n', ' File "", line 2\n' ' print(None is a)\n' ' ^\n' "CompileError: 'i32' cannot be None\n") def test_wrong_types_14(self): self.assert_transpile_raises( 'def foo():\n' ' print(True is None)\n', ' File "", line 2\n' ' print(True is None)\n' ' ^\n' "CompileError: 'bool' cannot be None\n") def test_wrong_types_15(self): self.assert_transpile_raises( 'def foo(a: bool):\n' ' print(None is a)\n', ' File "", line 2\n' ' print(None is a)\n' ' ^\n' "CompileError: 'bool' cannot be None\n") def test_wrong_types_16(self): self.assert_transpile_raises( 'def foo(a: bool):\n' ' print(a is not 1)\n', ' File "", line 2\n' ' print(a is not 1)\n' ' ^\n' "CompileError: cannot convert 'bool' to " "'i64/i32/i16/i8/u64/u32/u16/u8'\n") def test_wrong_types_17(self): self.assert_transpile_raises( 'def foo():\n' ' print(None in [1, 5])\n', ' File "", line 2\n' ' print(None in [1, 5])\n' ' ^\n' "CompileError: 'i64' cannot be None\n") def test_wrong_types_18(self): self.assert_transpile_raises( 'def foo():\n' ' print(None == "")\n', ' File "", line 2\n' ' print(None == "")\n' ' ^\n' "CompileError: use 'is' and 'is not' to compare to None\n") def test_wrong_types_20(self): self.assert_transpile_raises( 'def foo():\n' ' if (1, ("", True)) == (1, ("", 1)):\n' ' pass\n', # ToDo: Marker in wrong place. ' File "", line 2\n' ' if (1, ("", True)) == (1, ("", 1)):\n' ' ^\n' "CompileError: cannot convert 'bool' to " "'i64/i32/i16/i8/u64/u32/u16/u8'\n") def test_bare_compare(self): self.assert_transpile_raises( 'def foo():\n' ' 1 == 2\n', ' File "", line 2\n' ' 1 == 2\n' ' ^\n' "CompileError: bare comparision\n")
34.493671
78
0.416147
8,067
0.986789
0
0
0
0
0
0
3,998
0.489052
4512ba1f9249887e49626300dacbdb0fac5b7fbe
170
py
Python
epidemioptim/environments/cost_functions/costs/__init__.py
goodhamgupta/EpidemiOptim
a4fe3fcfc2d82a10db16a168526982c03ca2c8d3
[ "MIT" ]
null
null
null
epidemioptim/environments/cost_functions/costs/__init__.py
goodhamgupta/EpidemiOptim
a4fe3fcfc2d82a10db16a168526982c03ca2c8d3
[ "MIT" ]
null
null
null
epidemioptim/environments/cost_functions/costs/__init__.py
goodhamgupta/EpidemiOptim
a4fe3fcfc2d82a10db16a168526982c03ca2c8d3
[ "MIT" ]
null
null
null
from epidemioptim.environments.cost_functions.costs.death_toll_cost import DeathToll from epidemioptim.environments.cost_functions.costs.gdp_recess_cost import GdpRecess
56.666667
84
0.905882
0
0
0
0
0
0
0
0
0
0
451354227c3d203ff804c452ae15b439b4e8924c
1,587
py
Python
BFS/70.py
wilbertgeng/LintCode_exercise
e7a343b746e98ca3b4bc7b36655af7291f3150db
[ "MIT" ]
null
null
null
BFS/70.py
wilbertgeng/LintCode_exercise
e7a343b746e98ca3b4bc7b36655af7291f3150db
[ "MIT" ]
null
null
null
BFS/70.py
wilbertgeng/LintCode_exercise
e7a343b746e98ca3b4bc7b36655af7291f3150db
[ "MIT" ]
null
null
null
"""70 ยท Binary Tree Level Order Traversal II""" """ Definition of TreeNode: class TreeNode: def __init__(self, val): self.val = val self.left, self.right = None, None """ class Solution: """ @param root: A tree @return: buttom-up level order a list of lists of integer """ def levelOrderBottom(self, root): # write your code here if not root: return [] res = [] queue = collections.deque([root]) while queue: temp = [] for _ in range(len(queue)): node = queue.popleft() temp.append(node.val) if node.left: queue.append(node.left) if node.right: queue.append(node.right) res.append(temp) return res[::-1] ### if not root: return [] queue = [[root]] index = 0 res = [[root.val]] while index < len(queue): curr_level = queue[index] index += 1 next_level = [] next_level_vals = [] for node in curr_level: if node.left: next_level.append(node.left) next_level_vals.append(node.left.val) if node.right: next_level.append(node.right) next_level_vals.append(node.right.val) if next_level: queue.append(next_level) res.append(next_level_vals) return res[::-1]
24.415385
61
0.477001
1,394
0.877834
0
0
0
0
0
0
312
0.196474
451370b67d994c4274e51949234d8fd9c7be285d
2,554
py
Python
yuque_py/clients/client.py
kingJiaYouwen/yuque-py
451ec6b88860a984de9456d48c0af341676513a3
[ "MIT" ]
null
null
null
yuque_py/clients/client.py
kingJiaYouwen/yuque-py
451ec6b88860a984de9456d48c0af341676513a3
[ "MIT" ]
null
null
null
yuque_py/clients/client.py
kingJiaYouwen/yuque-py
451ec6b88860a984de9456d48c0af341676513a3
[ "MIT" ]
null
null
null
import typing import requests from urllib.parse import urlencode from .abstract_client import AbstractClient from yuque_py.exceptions.request_error import RequestError class Client(AbstractClient): api_host: str user_token: str def __init__(self, api_host: str, user_token: str) -> None: self.api_host = api_host self.user_token = user_token def request( self, api: str, method: str, requests_data: typing.Optional[typing.Dict[str, typing.Any]] = None, user_agent: str = "@yuque/sdk", ) -> typing.Dict: request_url = f"{self.api_host}/{api}" request_header = {"User-Agent": user_agent, "X-Auth-Token": self.user_token} if method == "GET": func = self._get_request elif method == "POST": request_header["Content-Type"] = "application/json" func = self._post_request elif method == "PUT": request_header["Content-Type"] = "application/json" func = self._put_request elif method == "DELETE": func = self._delete_request else: raise ValueError response = func(request_url, requests_data, request_header) if response.status_code != 200: raise RequestError(response.status_code, response.text) return response.json() @staticmethod def _get_request( request_url: str, requests_data: typing.Dict[str, typing.Any], request_header: typing.Dict[str, str], ) -> requests.Response: if requests_data: request_url = f"{request_url}&{urlencode(requests_data)}" return requests.get(request_url, headers=request_header) @staticmethod def _post_request( request_url: str, requests_data: typing.Dict[str, typing.Any], request_header: typing.Dict[str, str], ) -> requests.Response: return requests.post(request_url, json=requests_data, headers=request_header) @staticmethod def _put_request( request_url: str, requests_data: typing.Dict[str, typing.Any], request_header: typing.Dict[str, str], ) -> requests.Response: return requests.put(request_url, json=requests_data, headers=request_header) @staticmethod def _delete_request( request_url: str, requests_data: typing.Dict[str, typing.Any], request_header: typing.Dict[str, str], ) -> requests.Response: return requests.delete(request_url, headers=request_header)
32.74359
85
0.643696
2,381
0.932263
0
0
1,161
0.454581
0
0
193
0.075568
45138db5ed51843c9a5afaaec91f905c3ac8de23
671
py
Python
results/views/sports.py
JukkaKarvonen/sal-kiti
3dcff71552ab323e3c97eccf502c0d72eb683967
[ "MIT" ]
1
2021-06-12T08:46:32.000Z
2021-06-12T08:46:32.000Z
results/views/sports.py
JukkaKarvonen/sal-kiti
3dcff71552ab323e3c97eccf502c0d72eb683967
[ "MIT" ]
8
2020-07-01T15:06:52.000Z
2022-02-20T09:11:23.000Z
results/views/sports.py
JukkaKarvonen/sal-kiti
3dcff71552ab323e3c97eccf502c0d72eb683967
[ "MIT" ]
3
2020-03-01T17:02:24.000Z
2020-07-05T14:37:59.000Z
from dry_rest_permissions.generics import DRYPermissions from rest_framework import viewsets from results.models.sports import Sport from results.serializers.sports import SportSerializer class SportViewSet(viewsets.ModelViewSet): """API endpoint for sports. list: Returns a list of all the existing sports. retrieve: Returns the given sport. create: Creates a new sport instance. update: Updates a given sport. partial_update: Updates a given sport. destroy: Removes the given sport. """ permission_classes = (DRYPermissions,) queryset = Sport.objects.all() serializer_class = SportSerializer
20.96875
56
0.728763
479
0.71386
0
0
0
0
0
0
315
0.469449
45148079bc72efab4e9fdeacd43d659e9726c7f1
1,332
py
Python
tests/pvsystemprofiler/test_equation_of_time.py
slacgismo/pv-system-profiler
5ab663cd186511605bbb1e6aa387c8b897e47d83
[ "BSD-2-Clause" ]
4
2020-08-18T14:28:44.000Z
2021-10-14T13:17:03.000Z
tests/pvsystemprofiler/test_equation_of_time.py
slacgismo/pv-system-profiler
5ab663cd186511605bbb1e6aa387c8b897e47d83
[ "BSD-2-Clause" ]
10
2020-04-14T18:57:03.000Z
2021-09-14T15:26:24.000Z
tests/pvsystemprofiler/test_equation_of_time.py
slacgismo/pv-system-profiler
5ab663cd186511605bbb1e6aa387c8b897e47d83
[ "BSD-2-Clause" ]
null
null
null
import unittest import os from pathlib import Path import numpy as np path = Path.cwd().parent.parent os.chdir(path) from pvsystemprofiler.utilities.equation_of_time import eot_da_rosa, eot_duffie class TestEquationOfTime(unittest.TestCase): # importing input for both eot tests filepath = Path(__file__).parent.parent input_data_file_path = filepath / 'fixtures' / 'longitude' / 'eot_input.csv' with open(input_data_file_path) as file: input_data = np.genfromtxt(file, delimiter=',') def test_eot_duffie(self): expected_data_file_path = self.filepath / 'fixtures' / 'longitude' / 'eot_duffie_output.csv' with open(expected_data_file_path) as file: expected_output = np.genfromtxt(file, delimiter=',') actual_output = eot_duffie(self.input_data) np.testing.assert_array_almost_equal(actual_output, expected_output) def test_eot_da_rosa(self): expected_data_file_path = self.filepath / 'fixtures' / 'longitude' / 'eot_da_rosa_output.csv' with open(expected_data_file_path) as file: expected_output = np.genfromtxt(file, delimiter=',') actual_output = eot_da_rosa(self.input_data) np.testing.assert_array_almost_equal(actual_output, expected_output) if __name__ == '__main__': unittest.main()
32.487805
101
0.722973
1,083
0.813063
0
0
0
0
0
0
180
0.135135
4514a6b0a130ee0e5e4417b6086e78904e058a13
1,942
py
Python
raiden/tests/unit/transfer/test_node.py
gasparmedina/raiden
649c43b7233b9e95f13831e61d5db187d583367a
[ "MIT" ]
null
null
null
raiden/tests/unit/transfer/test_node.py
gasparmedina/raiden
649c43b7233b9e95f13831e61d5db187d583367a
[ "MIT" ]
null
null
null
raiden/tests/unit/transfer/test_node.py
gasparmedina/raiden
649c43b7233b9e95f13831e61d5db187d583367a
[ "MIT" ]
4
2019-01-24T14:45:06.000Z
2019-04-01T16:12:40.000Z
from raiden.constants import EMPTY_MERKLE_ROOT from raiden.tests.utils.factories import HOP1, HOP2, UNIT_SECRETHASH, make_block_hash from raiden.transfer.events import ContractSendChannelBatchUnlock from raiden.transfer.node import is_transaction_effect_satisfied from raiden.transfer.state_change import ContractReceiveChannelBatchUnlock def test_is_transaction_effect_satisfied( chain_state, token_network_state, token_network_id, netting_channel_state, ): transaction = ContractSendChannelBatchUnlock( token_address=token_network_state.token_address, token_network_identifier=token_network_id, channel_identifier=netting_channel_state.identifier, participant=HOP2, triggered_by_block_hash=make_block_hash(), ) state_change = ContractReceiveChannelBatchUnlock( transaction_hash=UNIT_SECRETHASH, token_network_identifier=token_network_id, participant=HOP1, partner=HOP2, locksroot=EMPTY_MERKLE_ROOT, unlocked_amount=0, returned_tokens=0, block_number=1, block_hash=make_block_hash(), ) # unlock for a channel in which this node is not a participant must return False assert not is_transaction_effect_satisfied(chain_state, transaction, state_change) # now call normally with us being the partner and not the participant state_change.partner = netting_channel_state.our_state.address state_change.participant = netting_channel_state.partner_state.address assert not is_transaction_effect_satisfied(chain_state, transaction, state_change) # finally call with us being the participant and not the partner which should check out state_change.participant = netting_channel_state.our_state.address state_change.partner = netting_channel_state.partner_state.address assert is_transaction_effect_satisfied(chain_state, transaction, state_change)
45.162791
91
0.785273
0
0
0
0
0
0
0
0
236
0.121524
451505779ddfa18b109340abfbe8b097a645a054
2,826
py
Python
tfx/utils/channel_test.py
HassanDayoub/tfx
dc9221abbb8dad991d1ae22fb91876da1290efae
[ "Apache-2.0" ]
2
2019-07-08T20:56:13.000Z
2020-08-04T17:07:26.000Z
tfx/utils/channel_test.py
HassanDayoub/tfx
dc9221abbb8dad991d1ae22fb91876da1290efae
[ "Apache-2.0" ]
null
null
null
tfx/utils/channel_test.py
HassanDayoub/tfx
dc9221abbb8dad991d1ae22fb91876da1290efae
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tfx.utils.channel.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals # Standard Imports import tensorflow as tf from tfx.utils import channel from tfx.utils import types class ChannelTest(tf.test.TestCase): def test_valid_channel(self): instance_a = types.TfxArtifact('MyTypeName') instance_b = types.TfxArtifact('MyTypeName') chnl = channel.Channel( 'MyTypeName', static_artifact_collection=[instance_a, instance_b]) self.assertEqual(chnl.type_name, 'MyTypeName') self.assertItemsEqual(chnl.get(), [instance_a, instance_b]) def test_invalid_channel_type(self): instance_a = types.TfxArtifact('MyTypeName') instance_b = types.TfxArtifact('MyTypeName') with self.assertRaises(ValueError): channel.Channel( 'AnotherTypeName', static_artifact_collection=[instance_a, instance_b]) def test_artifact_collection_as_channel(self): instance_a = types.TfxArtifact('MyTypeName') instance_b = types.TfxArtifact('MyTypeName') chnl = channel.as_channel([instance_a, instance_b]) self.assertEqual(chnl.type_name, 'MyTypeName') self.assertItemsEqual(chnl.get(), [instance_a, instance_b]) def test_channel_as_channel_success(self): instance_a = types.TfxArtifact('MyTypeName') instance_b = types.TfxArtifact('MyTypeName') chnl_original = channel.Channel( 'MyTypeName', static_artifact_collection=[instance_a, instance_b]) chnl_result = channel.as_channel(chnl_original) self.assertEqual(chnl_original, chnl_result) def test_empty_artifact_collection_as_channel_fail(self): with self.assertRaises(ValueError): channel.as_channel([]) def test_invalid_source_as_channel_fail(self): with self.assertRaises(ValueError): channel.as_channel(source='invalid source') def test_type_check_success(self): chnl = channel.Channel('MyTypeName') chnl.type_check('MyTypeName') def test_type_check_fail(self): chnl = channel.Channel('MyTypeName') with self.assertRaises(TypeError): chnl.type_check('AnotherTypeName') if __name__ == '__main__': tf.test.main()
34.888889
74
0.754777
1,893
0.669851
0
0
0
0
0
0
875
0.309625
45154cfb764af63ed99ff0eaf6a51b8393aa6827
1,870
py
Python
lyrics.py
samiraafreen/lyrics-generator
37f894bdb8986c153985104af83e12ef8d6dac07
[ "MIT" ]
null
null
null
lyrics.py
samiraafreen/lyrics-generator
37f894bdb8986c153985104af83e12ef8d6dac07
[ "MIT" ]
null
null
null
lyrics.py
samiraafreen/lyrics-generator
37f894bdb8986c153985104af83e12ef8d6dac07
[ "MIT" ]
null
null
null
import configparser import requests from bs4 import BeautifulSoup def getAccessToken(): config = configparser.ConfigParser() config.read('config.ini') return config['Client_Access_Token']['token'] token = getAccessToken() def searchMusicArtist(name): api_url = "https://api.genius.com/search?q={}".format(name) headers = {'authorization':token} r = requests.get(api_url, headers=headers) return r.json() #searchMusicArtist("drake") def getArtistID(name): r = searchMusicArtist(name) id = r['response']['hits'][0]['result']['primary_artist']['id'] return id #print(getArtistID('drake')) def getTopTenSongs(name): id = getArtistID(name) #api_url = "https://api.genius.com/artists/{}/songs?sort=popularity&per_page=10".format(id) api_url = "https://api.genius.com/artists/{}/songs".format(id) headers = { 'authorization':token } params={ 'sort':'popularity', 'per_page':10 } r = requests.get(api_url, headers=headers, params=params) return r.json() #print(getTopTenSongs('drake')) def getSongURLs(name): topTenSongs = getTopTenSongs(name) songs = topTenSongs['response']['songs'] song_urls = [] for song in songs: song_urls.append(song['url']) return song_urls def scrapeLyricText(name): links = getSongURLs(name) song_lyrics = [] for link in links: page = requests.get(link) soup = BeautifulSoup(page.content, 'html.parser') lyrics_div = soup.find(class_='lyrics') anchor_tags = lyrics_div.find_all('a') current_lyrics = [] for anchor in anchor_tags: text = anchor.text if len(text) > 0 and text[0] != '[': current_lyrics.append(text) song_lyrics.append(current_lyrics) return song_lyrics #print(scrapeLyricText('drake'))
28.333333
95
0.648128
0
0
0
0
0
0
0
0
477
0.25508