hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
42a9d7f0de1fb5aee832bc5e97c48ecbdecd3930
10,460
py
Python
scripts/pos_eval.py
ProKil/sparse-text-prototype
e7369dc981fb2c2a94ccb4edca4a7e7c7d7543cd
[ "MIT" ]
19
2020-11-05T12:17:45.000Z
2021-11-17T08:43:50.000Z
scripts/pos_eval.py
ProKil/sparse-text-prototype
e7369dc981fb2c2a94ccb4edca4a7e7c7d7543cd
[ "MIT" ]
1
2021-07-08T13:30:15.000Z
2021-07-08T13:30:15.000Z
scripts/pos_eval.py
ProKil/sparse-text-prototype
e7369dc981fb2c2a94ccb4edca4a7e7c7d7543cd
[ "MIT" ]
2
2020-12-20T13:19:14.000Z
2021-06-25T20:18:00.000Z
import os import argparse import subprocess import random import edlib from typing import List from collections import Counter import stanza class ExtractMetric(object): """used for precision recall""" def __init__(self, nume=0, denom_p=0, denom_r=0, precision=0, recall=0, f1=0): super(ExtractMetric, self).__init__() self.nume = nume self.denom_p = denom_p self.denom_r = denom_r self.precision = precision self.recall = recall self.f1 = f1 def read_file(fname, len_cut): res1, res2 = [], [] with open(fname) as fin: for line in fin: x, y = line.rstrip().split('\t') if len(x.split()) > len_cut or len(y.split()) > len_cut: continue res1.append(x) res2.append(y) return res1, res2 def write_file(fname: str, data: List[str]): with open(fname, 'w') as fout: for sent in data: if isinstance(sent, list): fout.write('{}\n'.format(' '.join(sent))) else: fout.write('{}\n'.format(sent)) def eval_edit(prototype, example): def flat_cigar(cigar): """flatten the result path returned by edlib.align """ r = [] pointer = 0 while pointer < len(cigar): num = [] while cigar[pointer].isdigit(): num.append(cigar[pointer]) pointer += 1 num = int(''.join(num)) r.extend([cigar[pointer]] * num) pointer += 1 return r res = {} for p_sent, e_sent in zip(prototype, example): p_pos = [x.upos for x in p_sent.words] e_pos = [x.upos for x in e_sent.words] p_text = [x.text for x in p_sent.words] e_text = [x.text for x in e_sent.words] edit_operation = edlib.align(e_text, p_text, task='path') edit_operation = flat_cigar(edit_operation['cigar']) new_p_text = [] new_e_text = [] new_p_pos = [] new_e_pos = [] src_cur = tgt_cur = 0 for edit in edit_operation: if edit == '=' or edit == 'X': new_p_text.append(p_text[src_cur]) new_p_pos.append(p_pos[src_cur]) new_e_text.append(e_text[tgt_cur]) new_e_pos.append(e_pos[tgt_cur]) src_cur += 1 tgt_cur += 1 elif edit == 'I': new_p_text.append(-1) new_p_pos.append(-1) new_e_text.append(e_text[tgt_cur]) new_e_pos.append(e_pos[tgt_cur]) tgt_cur += 1 elif edit == 'D': new_p_text.append(p_text[src_cur]) new_p_pos.append(p_pos[src_cur]) new_e_text.append(-1) new_e_pos.append(-1) src_cur += 1 else: raise ValueError('{} edit operation is invalid!'.format(edit)) for i, edit in enumerate(edit_operation): if edit not in res: res[edit] = Counter() if edit == '=': res[edit]['{}={}'.format(new_p_pos[i], new_e_pos[i])] += 1 elif edit == 'X': res[edit]['{}->{}'.format(new_p_pos[i], new_e_pos[i])] += 1 elif edit == 'I': res[edit]['+{}'.format(new_e_pos[i])] += 1 elif edit == 'D': res[edit]['-{}'.format(new_p_pos[i])] += 1 else: raise ValueError return res def eval_f1(prototype, example): res = {} for p_sent, e_sent in zip(prototype, example): p_pos = [x.upos for x in p_sent.words] e_pos = [x.upos for x in e_sent.words] p_text = [x.text for x in p_sent.words] e_text = [x.text for x in e_sent.words] e_word_counter = Counter(e_text) for word, pos in zip(p_text, p_pos): if pos not in res: res[pos] = ExtractMetric( nume=0, denom_p=0, denom_r=0, precision=0, recall=0, f1=0 ) res[pos].denom_r += 1 if e_word_counter[word] > 0: e_word_counter[word] -= 1 res[pos].nume += 1 e_pos_counter = Counter(e_pos) for k, v in e_pos_counter.items(): if k not in res: res[k] = ExtractMetric( nume=0, denom_p=0, denom_r=0, precision=0, recall=0, f1=0 ) res[k].denom_p += v for k, v in res.items(): if res[k].denom_p != 0 and res[k].denom_r != 0 and res[k].nume != 0: res[k].precision = res[k].nume / res[k].denom_p res[k].recall = res[k].nume / res[k].denom_r res[k].f1 = 2 * res[k].precision * res[k].recall / (res[k].precision + res[k].recall) return res def sentence_bleu(ref_path, hypo_path): sent_bleu = subprocess.getoutput( "fairseq-score --ref {} --sys {} --sentence-bleu".format(ref_path, hypo_path)) bleu_list = [float(line.split()[3].rstrip(',')) for line in sent_bleu.split('\n')[1:]] return sum(bleu_list) / len(bleu_list) def generate_rand_prototype(exp_dir, num): dataset_to_template = { "coco40k": "support_prototype/datasets/coco/coco.template.40k.txt", "yelp": "support_prototype/datasets/yelp_data/yelp.template.50k.lower.txt", "yelp_large": "support_prototype/datasets/yelp_large_data/yelp_large.template.100k.txt", } def parse_exp_dir(name): dataset = name.rstrip('/').split('/')[-1].split('_')[0] return dataset dataset = parse_exp_dir(exp_dir) return subprocess.getoutput( "shuf -n {} {}".format(num, dataset_to_template[dataset])).split('\n') parser = argparse.ArgumentParser(description='Evaluate analysis metrics') parser.add_argument('--prefix', type=str, choices=['inference', 'generation'], help='prediction file prefix') parser.add_argument('--exp-dir', type=str, help='output directory') args = parser.parse_args() fout = open(os.path.join(args.exp_dir, 'analysis_{}_res.txt'.format(args.prefix)), 'w') len_cut = 1000 prototypes, examples = read_file(os.path.join(args.exp_dir, '{}_analysis_input.txt'.format(args.prefix)), len_cut=len_cut) prototype_path = os.path.join(args.exp_dir, 'prototype.txt') prototype_pos_path = os.path.join(args.exp_dir, 'prototype_pos.txt') prototype_rand_path = os.path.join(args.exp_dir, 'prototype_rand.txt') prototype_pos_rand_path = os.path.join(args.exp_dir, 'prototype_pos_rand.txt') example_path = os.path.join(args.exp_dir, 'example.txt') example_pos_path = os.path.join(args.exp_dir, 'example_pos.txt') prototypes_rand = generate_rand_prototype(args.exp_dir, len(examples)) write_file(prototype_path, prototypes) write_file(example_path, examples) write_file(prototype_rand_path, prototypes_rand) # surface BLEU # bleu = subprocess.getoutput( # "./support_prototype/scripts/multi-bleu.perl {} < {}".format(prototype_path, example_rand_path)) bleu = sentence_bleu(prototype_rand_path, example_path) print('Regular BLEU (random baseline): \n{}'.format(bleu)) fout.write('Regular BLEU (random baseline): \n{}'.format(bleu)) fout.write('\n\n\n') # bleu = subprocess.getoutput( # "./support_prototype/scripts/multi-bleu.perl {} < {}".format(prototype_path, example_path)) bleu = sentence_bleu(prototype_path, example_path) print('Regular BLEU: \n{}'.format(bleu)) fout.write('Regular BLEU: \n{}'.format(bleu)) fout.write('\n\n\n') # POS tagging print('POS tagging') nlp = stanza.Pipeline(lang='en', processors='tokenize,mwt,pos', tokenize_pretokenized=True) prototype_doc = nlp('\n'.join(prototypes)) example_doc = nlp('\n'.join(examples)) prototype_rand_doc = nlp('\n'.join(prototypes_rand)) prototypes_pos = [[word.upos for word in sent.words] for sent in prototype_doc.sentences] examples_pos = [[word.upos for word in sent.words] for sent in example_doc.sentences] prototypes_pos_rand = [[word.upos for word in sent.words]for sent in prototype_rand_doc.sentences] write_file(prototype_pos_path, prototypes_pos) write_file(example_pos_path, examples_pos) write_file(prototype_pos_rand_path, prototypes_pos_rand) # POS BLEU # bleu = subprocess.getoutput( # "./support_prototype/scripts/multi-bleu.perl {} < {}".format(prototype_pos_path, example_pos_rand_path)) bleu = sentence_bleu(prototype_pos_rand_path, example_pos_path) print('POS BLEU (random baseline): \n{}'.format(bleu)) fout.write('POS BLEU (random baseline): \n{}'.format(bleu)) fout.write('\n\n\n') # bleu = subprocess.getoutput( # "./support_prototype/scripts/multi-bleu.perl {} < {}".format(prototype_pos_path, example_pos_path)) bleu = sentence_bleu(prototype_pos_path, example_pos_path) print('POS BLEU: \n{}'.format(bleu)) fout.write('POS BLEU: \n{}'.format(bleu)) fout.write('\n\n\n') # break down precision and recall print("compute precision, recall, f1") assert len(prototypes) == len(prototypes_pos) assert len(examples) == len(examples_pos) res = eval_f1(list(prototype_rand_doc.sentences), list(example_doc.sentences)) res = sorted(res.items(), key=lambda item: -item[1].f1) fout.write('random baseline precision-recall\n') fout.write('POS recall precision f1\n') for k, v in res: fout.write('{} {} {} {}\n'.format(k, v.recall, v.precision, v.f1)) fout.write('\n\n\n') res = eval_f1(list(prototype_doc.sentences), list(example_doc.sentences)) res = sorted(res.items(), key=lambda item: -item[1].f1) fout.write('precision-recall\n') fout.write('POS recall precision f1\n') for k, v in res: fout.write('{} {} {} {}\n'.format(k, v.recall, v.precision, v.f1)) fout.write('\n\n\n') # edit operations print("edit analysis") res = eval_edit(list(prototype_doc.sentences), list(example_doc.sentences)) total = sum([sum(v.values()) for k, v in res.items()]) fout.write('total: {}\n'.format(total)) res = sorted(res.items(), key=lambda item: (-sum(item[1].values()))) for k, v in res: fout.write('{}: {}\n'.format(k, sum(v.values()))) for k1, v1 in v.most_common(): fout.write('{}: {} ({:.3f}), '.format(k1, v1, v1 / sum(v.values()))) fout.write('\n\n') fout.close()
33.41853
122
0.603537
365
0.034895
0
0
0
0
0
0
1,949
0.186329
42aa82728f6722cbbdd0c68a0e10c8dd5f0958ee
582
py
Python
tests/rules/test_git_stash_pop.py
RogueScholar/thefuck-termux
cc33d5fa0077b2b2323b8a62f3478ff8efef3fba
[ "MIT" ]
null
null
null
tests/rules/test_git_stash_pop.py
RogueScholar/thefuck-termux
cc33d5fa0077b2b2323b8a62f3478ff8efef3fba
[ "MIT" ]
null
null
null
tests/rules/test_git_stash_pop.py
RogueScholar/thefuck-termux
cc33d5fa0077b2b2323b8a62f3478ff8efef3fba
[ "MIT" ]
null
null
null
import pytest from thefuck.rules.git_stash_pop import get_new_command from thefuck.rules.git_stash_pop import match from thefuck.types import Command @pytest.fixture def output(): return """error: Your local changes to the following files would be overwritten by merge:""" def test_match(output): assert match(Command("git stash pop", output)) assert not match(Command("git stash", "")) def test_get_new_command(output): assert (get_new_command( Command("git stash pop", output)) == "git add --update && git stash pop && git reset .")
26.454545
96
0.707904
0
0
0
0
126
0.216495
0
0
178
0.305842
42ab556174e9603454893f6f485c837afcd3bad8
3,642
py
Python
src/arima_model.py
SaharCarmel/ARIMA
c54e8554f1c4a95c25687bdf35b4296ed6bd78d6
[ "MIT" ]
null
null
null
src/arima_model.py
SaharCarmel/ARIMA
c54e8554f1c4a95c25687bdf35b4296ed6bd78d6
[ "MIT" ]
null
null
null
src/arima_model.py
SaharCarmel/ARIMA
c54e8554f1c4a95c25687bdf35b4296ed6bd78d6
[ "MIT" ]
null
null
null
""" The ARIMA model. """ import torch import numpy as np class ARIMA(torch.nn.Module): """ARIMA [summary] """ def __init__(self, p: int = 0, d: int = 0, q: int = 0) -> None: """__init__ General ARIMA model constructor. Args: p (int): The number of lag observations included in the model, also called the lag order. d (int): The number of times that the raw observations are differenced, also called the degree of differencing. q (int): The size of the moving average window, also called the order of moving average. """ super(ARIMA, self).__init__() self.p = p self.pWeights = torch.rand(p) self.pWeights.requires_grad = True self.q = q self.qWeights = torch.rand(q) self.qWeights.requires_grad = True self.d = d self.dWeights = torch.rand(d) self.dWeights.requires_grad = True self.drift = torch.rand(1) pass def forward(self, x: torch.Tensor, err: torch.Tensor) -> torch.Tensor: """forward the function that defines the ARIMA(0,1,1) model. It was written specifically for the case of ARIMA(0,1,1). Args: x (torch.Tensor): The input data. All the past observations err (torch.Tensor): The error term. A normal distribution vector. Returns: torch.Tensor: The output of the model. The current prediction. """ zData = torch.diff(x) zPred = self.dWeights*zData[-1] + \ self.qWeights*err[-2] + err[-1] + self.drift aPred = zPred + x[-1] return aPred def generateSample(self, length: int) -> torch.Tensor: """generateSample An helper function to generate a sample of data. Args: length (int): The length of the sample. Returns: torch.Tensor: The generated sample. """ sample = torch.zeros(length) noise = torch.tensor(np.random.normal( loc=0, scale=1, size=length), dtype=torch.float32) sample[0] = noise[0] with torch.no_grad(): for i in range(length-2): sample[i+2] = self.forward(sample[:i+2], noise[:i+2]) pass return sample def fit(self, trainData: torch.Tensor, epochs: int, learningRate: float) -> None: """fit A function to fit the model. It is a wrapper of the Args: trainData (torch.Tensor): The training data. epochs (int): The number of epochs. learningRate (float): The learning rate. """ dataLength = len(trainData) errors = torch.tensor(np.random.normal( loc=0, scale=1, size=dataLength), dtype=torch.float32) for epoch in range(epochs): prediction = torch.zeros(dataLength) for i in range(dataLength-2): prediction[i + 2] = self.forward(trainData[0:i+2], errors[0:i+2]) pass loss = torch.mean(torch.pow(trainData - prediction, 2)) print(f'Epoch {epoch} Loss {loss}') loss.backward() self.dWeights.data = self.dWeights.data - \ learningRate * self.dWeights.grad.data self.dWeights.grad.data.zero_() self.qWeights.data = self.qWeights.data - \ learningRate * self.qWeights.grad.data self.qWeights.grad.data.zero_() pass
34.358491
77
0.549149
3,581
0.983251
0
0
0
0
0
0
1,386
0.38056
42ab6fa034b5730a8c76b4b76e6056f1b558984c
687
py
Python
problems/slidingwindow/Solution1100.py
akalu/cs-problems-python
9b1bd8e3932be62135a38a77f955ded9a766b654
[ "MIT" ]
null
null
null
problems/slidingwindow/Solution1100.py
akalu/cs-problems-python
9b1bd8e3932be62135a38a77f955ded9a766b654
[ "MIT" ]
null
null
null
problems/slidingwindow/Solution1100.py
akalu/cs-problems-python
9b1bd8e3932be62135a38a77f955ded9a766b654
[ "MIT" ]
null
null
null
""" Sliding window Given a string S, return the number of substrings of length K with no repeated characters. Example 1: Input: S = "havefunonleetcode", K = 5 Output: 6 Explanation: There are 6 substrings they are : 'havef','avefu','vefun','efuno','etcod','tcode'. counter havefunonleetcode IDEA: 1) for each letter in the string setup a counter and 2) update unique counter each time when counter[let] hits 0, 1 or 2 (magic numbers) aaabac ||| 123 0) a:3 unique=0 1) a:2 b:1 unique=1 2) a:2 b:1 unique=1 3) a:2 b:1 c:1 unique=1+2=3 """ class Solution1100: pass
18.078947
86
0.58952
28
0.040757
0
0
0
0
0
0
656
0.954876
42ab8cf968e58717ef4f86c899c0440ef99114b5
26
py
Python
the_file_propagator/__init__.py
joeflack4/the-file-propagator
c72fdad7774c82c8bfa6bf5253b83f6bb1e4e713
[ "MIT" ]
null
null
null
the_file_propagator/__init__.py
joeflack4/the-file-propagator
c72fdad7774c82c8bfa6bf5253b83f6bb1e4e713
[ "MIT" ]
null
null
null
the_file_propagator/__init__.py
joeflack4/the-file-propagator
c72fdad7774c82c8bfa6bf5253b83f6bb1e4e713
[ "MIT" ]
null
null
null
"""The File Propagator"""
13
25
0.653846
0
0
0
0
0
0
0
0
25
0.961538
42ab9f264f4ecd8a53e0ce06b3bb77538b433100
4,681
py
Python
src/wa_kat/templates/static/js/Lib/site-packages/components/keyword_handler.py
WebArchivCZ/WA-KAT
719f7607222f5a4d917c535b2da6371184222101
[ "MIT" ]
3
2017-03-23T12:59:21.000Z
2017-11-22T08:23:14.000Z
src/wa_kat/templates/static/js/Lib/site-packages/components/keyword_handler.py
WebArchivCZ/WA-KAT
719f7607222f5a4d917c535b2da6371184222101
[ "MIT" ]
89
2015-06-28T22:10:28.000Z
2017-01-30T16:06:05.000Z
src/wa_kat/templates/static/js/Lib/site-packages/components/keyword_handler.py
WebarchivCZ/WA-KAT
719f7607222f5a4d917c535b2da6371184222101
[ "MIT" ]
1
2015-12-17T02:56:59.000Z
2015-12-17T02:56:59.000Z
#! /usr/bin/env python # -*- coding: utf-8 -*- # # Interpreter version: brython (http://brython.info) (like python3) # # Imports ===================================================================== from os.path import join from browser import window from browser import document # virtual filesystem / modules provided by REST API from virtual_fs import settings # Functions & classes ========================================================= class KeywordListHandler(object): """ This class is used to control the GUI for the list of keywords. It allows user to add new keyword, remove present keyword and get a list of defined keywords. """ def __init__(self, el_id, whole_id=None): if whole_id is None: whole_id = "whole_" + el_id self.el = document[el_id] self.whole_el = document[whole_id] self.all_lists_el = document["whole_keyword_list"] self.keywords = [] self._remover = """ <span class='kw_remover' title='Odstranit klíčové slovo.' id='kw_remover_id_%d'> ✖ </span> """ self._render() def _render(self): """ Render the HTML code for all the :attr:`keywords` stored in this class. This method is called after each change in :attr:`keywords`. """ # hide the list in case that there is no `keyword` to be displayed if self.keywords: self.whole_el.style.display = "block" self.all_lists_el.style.display = "block" else: self.whole_el.style.display = "none" if "<li>" not in self.all_lists_el.html: self.all_lists_el.style.display = "none" # construct the HTML code for each keyword html_lines = ( "<li class='kw_enum'>{0} {1}</li>\n".format( keyword, (self._remover % cnt) ) for cnt, keyword in enumerate(self.keywords) ) # put the keywords into the HTML code of the page self.el.innerHTML = "<ol>\n%s\n</ol>\n" % "\n".join(html_lines) # this function is used to bind the ✖ to function for removing the # keyword def keyword_remover(keyword): def remover(ev): self.remove_keyword(keyword) return remover # go thru all the keywords and bind them to keyword_remover() for cnt, keyword in enumerate(self.keywords): uid = "kw_remover_id_%d" % cnt el = document[uid] el.bind("click", keyword_remover(keyword)) def add_keyword(self, keyword): """ Add `keyword` to :attr:`keywords`. Args: keyword (str): New keyword. """ self.keywords.append(keyword) self._render() def remove_keyword(self, keyword): """ Remove `keyword` from :attr:`keywords`. Args: keyword (str): Keyword which should be removed. """ self.keywords.remove(keyword) self._render() def reset(self): """ Reset the widget to the default state. """ self.keywords = [] self._render() UserKeywordHandler = KeywordListHandler("user_keyword_list") AlephKeywordHandler = KeywordListHandler("aleph_keyword_list") AanalysisKeywordHandler = KeywordListHandler("analysis_keyword_list") class KeywordAdder(object): """ This class is here to controll typeahead input bar with keyword suggestion. Keywords selected from suggestions are then mapped to :class:`KeywordListHandler`. """ intput_el = document["keyword_adder"] @classmethod def on_select_callback(cls, selected_item): """ This method defines the action taken when user selects the keyword from suggestion engine. Args: selected_item (str): Keyword selected by the user. Returns: str: Value on which the <input> element will be set. """ UserKeywordHandler.add_keyword(selected_item) return "" @classmethod def set_kw_typeahead_input(cls): """ Map the typeahead input to remote dataset. """ # get reference to parent element parent_id = cls.intput_el.parent.id if "typeahead" not in parent_id.lower(): parent_id = cls.intput_el.parent.parent.id window.make_keyword_typeahead_tag( "#" + parent_id, join(settings.API_PATH, "kw_list.json"), cls.on_select_callback, ) KeywordAdder.set_kw_typeahead_input()
29.25625
79
0.580432
4,001
0.853456
0
0
911
0.194326
0
0
2,281
0.486561
42abdb34b5121a34132a5ff61f5b37cf1ca828bc
53
py
Python
scripts/rnn/gru/__init__.py
bfeng/CryptoGRU
65f6fe9eba981fea65fc665ff16938bf3a593001
[ "MIT" ]
1
2022-01-12T03:18:55.000Z
2022-01-12T03:18:55.000Z
scripts/rnn/gru/__init__.py
bfeng/CryptoGRU
65f6fe9eba981fea65fc665ff16938bf3a593001
[ "MIT" ]
null
null
null
scripts/rnn/gru/__init__.py
bfeng/CryptoGRU
65f6fe9eba981fea65fc665ff16938bf3a593001
[ "MIT" ]
null
null
null
from .grucell import MyGRUCell from .gru import MyGRU
26.5
30
0.830189
0
0
0
0
0
0
0
0
0
0
42b002236c965251bc510639be4dce4dd1300339
2,946
py
Python
ZZZ_OtherDemo/00-dyld-832.7.3/testing/kernel-cache-tests/kext-missing-weak-bind/test.py
1079278593/TreasureChest
8b1ebe04ed7c2ed399c4ecf3b75b3fee0a1aced8
[ "MIT" ]
null
null
null
ZZZ_OtherDemo/00-dyld-832.7.3/testing/kernel-cache-tests/kext-missing-weak-bind/test.py
1079278593/TreasureChest
8b1ebe04ed7c2ed399c4ecf3b75b3fee0a1aced8
[ "MIT" ]
null
null
null
ZZZ_OtherDemo/00-dyld-832.7.3/testing/kernel-cache-tests/kext-missing-weak-bind/test.py
1079278593/TreasureChest
8b1ebe04ed7c2ed399c4ecf3b75b3fee0a1aced8
[ "MIT" ]
null
null
null
#!/usr/bin/python2.7 import os import KernelCollection # Check that weak binds can be missing, so long as we check for the magic symbol def check(kernel_cache): kernel_cache.buildKernelCollection("arm64", "/kext-missing-weak-bind/main.kc", "/kext-missing-weak-bind/main.kernel", "/kext-missing-weak-bind/extensions", ["com.apple.foo", "com.apple.bar"], []) kernel_cache.analyze("/kext-missing-weak-bind/main.kc", ["-layout", "-arch", "arm64"]) assert kernel_cache.dictionary()["cache-segments"][3]["name"] == "__DATA_CONST" assert kernel_cache.dictionary()["cache-segments"][3]["vmAddr"] == "0x18000" assert len(kernel_cache.dictionary()["dylibs"]) == 3 assert kernel_cache.dictionary()["dylibs"][0]["name"] == "com.apple.kernel" assert kernel_cache.dictionary()["dylibs"][1]["name"] == "com.apple.bar" assert kernel_cache.dictionary()["dylibs"][2]["name"] == "com.apple.foo" # Symbols kernel_cache.analyze("/kext-missing-weak-bind/main.kc", ["-symbols", "-arch", "arm64"]) # kernel assert kernel_cache.dictionary()["dylibs"][0]["name"] == "com.apple.kernel" assert kernel_cache.dictionary()["dylibs"][0]["global-symbols"][2]["name"] == "_gOSKextUnresolved" assert kernel_cache.dictionary()["dylibs"][0]["global-symbols"][2]["vmAddr"] == "0x20000" # Check the fixups kernel_cache.analyze("/kext-missing-weak-bind/main.kc", ["-fixups", "-arch", "arm64"]) assert len(kernel_cache.dictionary()["fixups"]) == 4 assert kernel_cache.dictionary()["fixups"]["0x18000"] == "kc(0) + 0x20000" assert kernel_cache.dictionary()["fixups"]["0x18008"] == "kc(0) + 0x20000" assert kernel_cache.dictionary()["fixups"]["0x18010"] == "kc(0) + 0x20000" assert kernel_cache.dictionary()["fixups"]["0x18018"] == "kc(0) + 0x20000" assert len(kernel_cache.dictionary()["dylibs"]) == 3 assert kernel_cache.dictionary()["dylibs"][0]["name"] == "com.apple.kernel" assert kernel_cache.dictionary()["dylibs"][0]["fixups"] == "none" assert kernel_cache.dictionary()["dylibs"][1]["name"] == "com.apple.bar" assert kernel_cache.dictionary()["dylibs"][1]["fixups"] == "none" assert kernel_cache.dictionary()["dylibs"][2]["name"] == "com.apple.foo" assert kernel_cache.dictionary()["dylibs"][2]["fixups"] == "none" # [~]> xcrun -sdk iphoneos.internal cc -arch arm64 -Wl,-static -mkernel -nostdlib -Wl,-add_split_seg_info -Wl,-rename_section,__TEXT,__text,__TEXT_EXEC,__text -Wl,-e,__start -Wl,-pagezero_size,0x0 -Wl,-pie -Wl,-sectcreate,__LINKINFO,__symbolsets,SymbolSets.plist -Wl,-segprot,__LINKINFO,r--,r-- main.c -o main.kernel # [~]> xcrun -sdk iphoneos.internal cc -arch arm64 -Wl,-kext -mkernel -nostdlib -Wl,-add_split_seg_info foo.c -o extensions/foo.kext/foo # [~]> xcrun -sdk iphoneos.internal cc -arch arm64 -Wl,-kext -mkernel -nostdlib -Wl,-add_split_seg_info bar.c -o extensions/bar.kext/bar -Wl,-fixup_chains # [~]> rm -r extensions/*.kext/*.ld
62.680851
316
0.681942
0
0
0
0
0
0
0
0
1,686
0.572301
42b0f3205382f72fca408d985411165330e27a01
7,453
py
Python
datahub/search/investment/models.py
alixedi/data-hub-api-cd-poc
a5e5ea45bb496c0d2a06635864514af0c7d4291a
[ "MIT" ]
null
null
null
datahub/search/investment/models.py
alixedi/data-hub-api-cd-poc
a5e5ea45bb496c0d2a06635864514af0c7d4291a
[ "MIT" ]
16
2020-04-01T15:25:35.000Z
2020-04-14T14:07:30.000Z
datahub/search/investment/models.py
alixedi/data-hub-api-cd-poc
a5e5ea45bb496c0d2a06635864514af0c7d4291a
[ "MIT" ]
null
null
null
from elasticsearch_dsl import Boolean, Date, Double, Integer, Keyword, Long, Object, Text from datahub.search import dict_utils from datahub.search import fields from datahub.search.models import BaseESModel DOC_TYPE = 'investment_project' def _related_investment_project_field(): """Field for a related investment project.""" return Object(properties={ 'id': Keyword(), 'name': fields.NormalizedKeyword(), 'project_code': fields.NormalizedKeyword(), }) class InvestmentProject(BaseESModel): """Elasticsearch representation of InvestmentProject.""" id = Keyword() actual_land_date = Date() actual_uk_regions = fields.id_name_field() address_1 = Text() address_2 = Text() address_town = fields.NormalizedKeyword() address_postcode = Text() approved_commitment_to_invest = Boolean() approved_fdi = Boolean() approved_good_value = Boolean() approved_high_value = Boolean() approved_landed = Boolean() approved_non_fdi = Boolean() allow_blank_estimated_land_date = Boolean(index=False) allow_blank_possible_uk_regions = Boolean(index=False) anonymous_description = fields.EnglishText() archived = Boolean() archived_by = fields.contact_or_adviser_field() archived_on = Date() archived_reason = Text() associated_non_fdi_r_and_d_project = _related_investment_project_field() average_salary = fields.id_name_field() business_activities = fields.id_name_field() client_cannot_provide_foreign_investment = Boolean() client_cannot_provide_total_investment = Boolean() client_contacts = fields.contact_or_adviser_field() client_relationship_manager = fields.contact_or_adviser_field(include_dit_team=True) client_requirements = Text(index=False) comments = fields.EnglishText() country_investment_originates_from = fields.id_name_field() country_lost_to = Object( properties={ 'id': Keyword(index=False), 'name': Text(index=False), }, ) created_on = Date() created_by = fields.contact_or_adviser_field(include_dit_team=True) date_abandoned = Date() date_lost = Date() delivery_partners = fields.id_name_field() description = fields.EnglishText() estimated_land_date = Date() export_revenue = Boolean() fdi_type = fields.id_name_field() fdi_value = fields.id_name_field() foreign_equity_investment = Double() government_assistance = Boolean() intermediate_company = fields.id_name_field() investor_company = fields.id_name_partial_field() investor_company_country = fields.id_name_field() investment_type = fields.id_name_field() investor_type = fields.id_name_field() level_of_involvement = fields.id_name_field() likelihood_to_land = fields.id_name_field() project_assurance_adviser = fields.contact_or_adviser_field(include_dit_team=True) project_manager = fields.contact_or_adviser_field(include_dit_team=True) name = Text( fields={ 'keyword': fields.NormalizedKeyword(), 'trigram': fields.TrigramText(), }, ) new_tech_to_uk = Boolean() non_fdi_r_and_d_budget = Boolean() number_new_jobs = Integer() number_safeguarded_jobs = Long() modified_on = Date() project_arrived_in_triage_on = Date() project_code = fields.NormalizedKeyword( fields={ 'trigram': fields.TrigramText(), }, ) proposal_deadline = Date() other_business_activity = Text(index=False) quotable_as_public_case_study = Boolean() r_and_d_budget = Boolean() reason_abandoned = Text(index=False) reason_delayed = Text(index=False) reason_lost = Text(index=False) referral_source_activity = fields.id_name_field() referral_source_activity_event = fields.NormalizedKeyword() referral_source_activity_marketing = fields.id_name_field() referral_source_activity_website = fields.id_name_field() referral_source_adviser = Object( properties={ 'id': Keyword(index=False), 'first_name': Text(index=False), 'last_name': Text(index=False), 'name': Text(index=False), }, ) sector = fields.sector_field() site_decided = Boolean() some_new_jobs = Boolean() specific_programme = fields.id_name_field() stage = fields.id_name_field() status = fields.NormalizedKeyword() team_members = fields.contact_or_adviser_field(include_dit_team=True) total_investment = Double() uk_company = fields.id_name_partial_field() uk_company_decided = Boolean() uk_region_locations = fields.id_name_field() will_new_jobs_last_two_years = Boolean() level_of_involvement_simplified = Keyword() gross_value_added = Double() MAPPINGS = { 'actual_uk_regions': lambda col: [ dict_utils.id_name_dict(c) for c in col.all() ], 'archived_by': dict_utils.contact_or_adviser_dict, 'associated_non_fdi_r_and_d_project': dict_utils.investment_project_dict, 'average_salary': dict_utils.id_name_dict, 'business_activities': lambda col: [dict_utils.id_name_dict(c) for c in col.all()], 'client_contacts': lambda col: [dict_utils.contact_or_adviser_dict(c) for c in col.all()], 'client_relationship_manager': dict_utils.adviser_dict_with_team, 'country_lost_to': dict_utils.id_name_dict, 'country_investment_originates_from': dict_utils.id_name_dict, 'created_by': dict_utils.adviser_dict_with_team, 'delivery_partners': lambda col: [ dict_utils.id_name_dict(c) for c in col.all() ], 'fdi_type': dict_utils.id_name_dict, 'fdi_value': dict_utils.id_name_dict, 'intermediate_company': dict_utils.id_name_dict, 'investment_type': dict_utils.id_name_dict, 'investor_company': dict_utils.id_name_dict, 'investor_company_country': dict_utils.id_name_dict, 'investor_type': dict_utils.id_name_dict, 'level_of_involvement': dict_utils.id_name_dict, 'likelihood_to_land': dict_utils.id_name_dict, 'project_assurance_adviser': dict_utils.adviser_dict_with_team, 'project_code': str, 'project_manager': dict_utils.adviser_dict_with_team, 'referral_source_activity': dict_utils.id_name_dict, 'referral_source_activity_marketing': dict_utils.id_name_dict, 'referral_source_activity_website': dict_utils.id_name_dict, 'referral_source_adviser': dict_utils.contact_or_adviser_dict, 'sector': dict_utils.sector_dict, 'specific_programme': dict_utils.id_name_dict, 'stage': dict_utils.id_name_dict, 'team_members': lambda col: [ dict_utils.contact_or_adviser_dict(c.adviser, include_dit_team=True) for c in col.all() ], 'uk_company': dict_utils.id_name_dict, 'uk_region_locations': lambda col: [ dict_utils.id_name_dict(c) for c in col.all() ], } SEARCH_FIELDS = ( 'id', 'name', 'name.trigram', 'uk_company.name', 'uk_company.name.trigram', 'investor_company.name', 'investor_company.name.trigram', 'project_code.trigram', ) class Meta: """Default document meta data.""" doc_type = DOC_TYPE class Index: doc_type = DOC_TYPE
38.417526
99
0.70106
6,955
0.933181
0
0
0
0
0
0
1,047
0.14048
42b106aaf54e3b2c19e17572d5a63e648baf43b4
1,670
py
Python
robust_sleep_net/models/modulo_net/features_encoder/fully_connected.py
Dreem-Organization/RobustSleepNet
c8ff3f6f857299eb2bf2e9400483084d5ecd4106
[ "MIT" ]
16
2021-04-06T14:04:45.000Z
2022-03-11T14:37:08.000Z
robust_sleep_net/models/modulo_net/features_encoder/fully_connected.py
Dreem-Organization/RobustSleepNet
c8ff3f6f857299eb2bf2e9400483084d5ecd4106
[ "MIT" ]
null
null
null
robust_sleep_net/models/modulo_net/features_encoder/fully_connected.py
Dreem-Organization/RobustSleepNet
c8ff3f6f857299eb2bf2e9400483084d5ecd4106
[ "MIT" ]
4
2021-06-10T06:48:33.000Z
2022-03-26T22:29:07.000Z
from collections import OrderedDict import torch from torch import nn class FullyConnected(nn.Module): def __init__(self, features, layers=None, dropout=0.0): super(FullyConnected, self).__init__() print("Layers:", layers) input_channels = 0 for feature in features: input_channels += features[feature]["shape"][0] self.dropout = nn.Dropout(dropout) if isinstance(layers, list): self.layers = nn.ModuleList( [ nn.Sequential( OrderedDict( [ ( "linear_{}".format(i), nn.Linear( in_features=input_channels if i == 0 else layers[i - 1], out_features=n_dim, ), ), ("relu_{}".format(i), nn.ReLU()), ] ) ) for i, n_dim in enumerate(layers) ] ) self.out_features = layers[-1] elif layers is None: self.layers = [nn.Identity()] self.out_features = input_channels def forward(self, x): features = [] for feature in x: features += [x[feature]] features = torch.cat(features, -1) for layer in self.layers: features = self.dropout(features) features = layer(features) return features
32.115385
96
0.426946
1,596
0.955689
0
0
0
0
0
0
36
0.021557
35e91cbc49c53f3ff38da3a05748e14783d919ce
2,968
py
Python
data/rawdata_dataset.py
weiyw16/pytorch-CycleGAN-and-pix2pix
432a91ee6ca8dc606ba0116b27b0948abc48f295
[ "BSD-3-Clause" ]
null
null
null
data/rawdata_dataset.py
weiyw16/pytorch-CycleGAN-and-pix2pix
432a91ee6ca8dc606ba0116b27b0948abc48f295
[ "BSD-3-Clause" ]
null
null
null
data/rawdata_dataset.py
weiyw16/pytorch-CycleGAN-and-pix2pix
432a91ee6ca8dc606ba0116b27b0948abc48f295
[ "BSD-3-Clause" ]
null
null
null
#import import os #import torch #import torch.nn as nn import torch.utils.data as Data #import torchvision import matplotlib.pyplot as plt import h5py #from torch.autograd import Variable import numpy as np import torch class rawdataDataset(Data.Dataset): def __init__(self): super(rawdataDataset, self).__init__() #def __init__(self, filename, root_dir, transform=None): # self.frame = h5py.File(root_dir + filename, 'r') # self.root_dir = root_dir # self.transform = transform def name(self): return 'rawdataDataset' @staticmethod def modify_commandline_options(parser, is_train): return parser def initialize(self, opt): self.opt = opt self.root = opt.dataroot self.dir_AB = os.path.join(opt.dataroot, opt.phase) # phase: train test #self.AB_paths = sorted(make_dataset(self.dir_AB)) self.A_paths = self.dir_AB + "/A.h5" self.B_paths = self.dir_AB + "/B.h5" self.frameA = h5py.File(self.A_paths, 'r') self.frameB = h5py.File(self.B_paths, 'r') #assert(opt.resize_or_crop == 'resize_and_crop') def __len__(self): return len(self.frameA) def __getitem__(self, index): #img_name = torch.FloatTensor([[ self.frame["pic" + str(index)] ]]) #img_name = Variable(torch.FloatTensor([[ self.frame["pic" + str(index)] ]]) A = self.frameA["A" + str(index + 1)] B = self.frameB["B" + str(index + 1)] #A = torch.FloatTensor([[ self.frameA["A" + str(index)] ]]) #B = torch.FloatTensor([[ self.frameB["B" + str(index)] ]]) #AB_path = self.AB_paths[index] #AB = Image.open(AB_path).convert('RGB') #w, h = AB.size #w2 = int(w / 2) #A = AB.crop((0, 0, w2, h)).resize((self.opt.loadSize, self.opt.loadSize), Image.BICUBIC) #B = AB.crop((w2, 0, w, h)).resize((self.opt.loadSize, self.opt.loadSize), Image.BICUBIC) #A = transforms.ToTensor()(A) #B = transforms.ToTensor()(B) #w_offset = random.randint(0, max(0, self.opt.loadSize - self.opt.fineSize - 1)) #h_offset = random.randint(0, max(0, self.opt.loadSize - self.opt.fineSize - 1)) #A = A[:, h_offset:h_offset + self.opt.fineSize, w_offset:w_offset + self.opt.fineSize] #B = B[:, h_offset:h_offset + self.opt.fineSize, w_offset:w_offset + self.opt.fineSize] #A = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(A) #B = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(B) if self.opt.which_direction == 'BtoA': input_nc = self.opt.output_nc output_nc = self.opt.input_nc else: input_nc = self.opt.input_nc output_nc = self.opt.output_nc #return img_name return {'A' : A, 'B' : B, 'A_paths' : self.A_paths, 'B_paths' : self.B_paths} #%hist -f rawdata_dataset.py
38.545455
97
0.597035
2,718
0.915768
0
0
89
0.029987
0
0
1,561
0.525943
35eca7541efb5afc537b44ba4b6a0fc5cf5a30dd
310
py
Python
pythons/pythons/pythons_app/urls.py
BoyanPeychinov/python_web_framework
bb3a78c36790821d8b3a2b847494a1138d063193
[ "MIT" ]
null
null
null
pythons/pythons/pythons_app/urls.py
BoyanPeychinov/python_web_framework
bb3a78c36790821d8b3a2b847494a1138d063193
[ "MIT" ]
null
null
null
pythons/pythons/pythons_app/urls.py
BoyanPeychinov/python_web_framework
bb3a78c36790821d8b3a2b847494a1138d063193
[ "MIT" ]
null
null
null
from django.urls import path from . import views from .views import IndexView urlpatterns = [ # path('', views.index, name="index"), path('', IndexView.as_view(), name="index"), # path('create/', views.create, name="create"), path('create/', views.PythonCreateView.as_view(), name="create"), ]
31
69
0.66129
0
0
0
0
0
0
0
0
111
0.358065
35ed1f868aeb38f0c96a30ed7f9536e255837e20
356
py
Python
tests/python/text_utility.py
Noxsense/mCRL2
dd2fcdd6eb8b15af2729633041c2dbbd2216ad24
[ "BSL-1.0" ]
61
2018-05-24T13:14:05.000Z
2022-03-29T11:35:03.000Z
tests/python/text_utility.py
Noxsense/mCRL2
dd2fcdd6eb8b15af2729633041c2dbbd2216ad24
[ "BSL-1.0" ]
229
2018-05-28T08:31:09.000Z
2022-03-21T11:02:41.000Z
tests/python/text_utility.py
Noxsense/mCRL2
dd2fcdd6eb8b15af2729633041c2dbbd2216ad24
[ "BSL-1.0" ]
28
2018-04-11T14:09:39.000Z
2022-02-25T15:57:39.000Z
#~ Copyright 2014 Wieger Wesselink. #~ Distributed under the Boost Software License, Version 1.0. #~ (See accompanying file LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt) def read_text(filename): with open(filename, 'r') as f: return f.read() def write_text(filename, text): with open(filename, 'w') as f: f.write(text)
29.666667
82
0.691011
0
0
0
0
0
0
0
0
184
0.516854
35ed5dd8d0b8879efae47e20f5661656b1666fbb
159
py
Python
Dumper/temp.py
NeerajGulia/kafka-monitor
cfcd39a37d22c86d3cebffe289687a030bb84353
[ "Apache-2.0" ]
null
null
null
Dumper/temp.py
NeerajGulia/kafka-monitor
cfcd39a37d22c86d3cebffe289687a030bb84353
[ "Apache-2.0" ]
null
null
null
Dumper/temp.py
NeerajGulia/kafka-monitor
cfcd39a37d22c86d3cebffe289687a030bb84353
[ "Apache-2.0" ]
null
null
null
import datetime t1 = datetime.datetime(2019, 3, 9, 10, 55, 30, 991882) t2 = datetime.datetime(2019, 3, 10, 10, 55, 30, 991882) print((t2-t1).total_seconds())
26.5
55
0.685535
0
0
0
0
0
0
0
0
0
0
35ee497682f551e6df5ef747e053a1c6578b24fe
1,401
py
Python
listools/llogic/is_descending.py
jgarte/listools
17ef56fc7dde701890213f248971d8dc7a6e6b7c
[ "MIT" ]
2
2019-01-22T03:50:43.000Z
2021-04-22T16:12:17.000Z
listools/llogic/is_descending.py
jgarte/listools
17ef56fc7dde701890213f248971d8dc7a6e6b7c
[ "MIT" ]
2
2019-01-22T03:57:49.000Z
2021-04-22T22:03:47.000Z
listools/llogic/is_descending.py
jgarte/listools
17ef56fc7dde701890213f248971d8dc7a6e6b7c
[ "MIT" ]
1
2021-04-22T21:13:00.000Z
2021-04-22T21:13:00.000Z
def is_descending(input_list: list, step: int = -1) -> bool: r"""llogic.is_descending(input_list[, step]) This function returns True if the input list is descending with a fixed step, otherwise it returns False. Usage: >>> alist = [3, 2, 1, 0] >>> llogic.is_descending(alist) True The final value can be other than zero: >>> alist = [12, 11, 10] >>> llogic.is_descending(alist) True The list can also have negative elements: >>> alist = [2, 1, 0, -1, -2] >>> llogic.is_descending(alist) True It will return False if the list is not ascending: >>> alist = [6, 5, 9, 2] >>> llogic.is_descending(alist) False By default, the function uses steps of size 1 so the list below is not considered as ascending: >>> alist = [7, 5, 3, 1] >>> llogic.is_descending(alist) False But the user can set the step argument to any value less than one: >>> alist = [7, 5, 3, 1] >>> step = -2 >>> llogic.is_descending(alist, step) True """ if not isinstance(input_list, list): raise TypeError('\'input_list\' must be \'list\'') if not isinstance(step, int): raise TypeError('\'step\' must be \'int\'') if step > 1: raise ValueError('\'step\' must be < 0') aux_list = list(range(max(input_list), min(input_list)-1, step)) return input_list == aux_list
27.470588
75
0.608851
0
0
0
0
0
0
0
0
1,061
0.757316
35ef2ec3e738f6a7d680ddbb0d8cfed8a80181c4
384
py
Python
blazer/hpc/local/__init__.py
radiantone/blazer
4f369729a72a397a5a472f081002bf24cf22b69c
[ "CC0-1.0" ]
4
2022-02-11T13:37:03.000Z
2022-02-26T00:25:13.000Z
blazer/hpc/local/__init__.py
radiantone/blazer
4f369729a72a397a5a472f081002bf24cf22b69c
[ "CC0-1.0" ]
null
null
null
blazer/hpc/local/__init__.py
radiantone/blazer
4f369729a72a397a5a472f081002bf24cf22b69c
[ "CC0-1.0" ]
null
null
null
from functools import partial from pipe import select, where from pydash import chunk from pydash import filter_ as filter from pydash import flatten, get, omit from .primitives import parallel, pipeline, scatter __all__ = ( "parallel", "scatter", "pipeline", "partial", "select", "where", "flatten", "chunk", "omit", "get", "filter", )
16.695652
51
0.648438
0
0
0
0
0
0
0
0
88
0.229167
35f130f559ed7cd7af033555dccc66ba4d2035c4
304
py
Python
resumebuilder/resumebuilder.py
kinshuk4/ResumeBuilder
2c997f73b522c0668f3a66afb372bd91c6408b3c
[ "MIT" ]
1
2020-01-04T05:54:19.000Z
2020-01-04T05:54:19.000Z
resumebuilder/resumebuilder.py
kinshuk4/ResumeBuilder
2c997f73b522c0668f3a66afb372bd91c6408b3c
[ "MIT" ]
null
null
null
resumebuilder/resumebuilder.py
kinshuk4/ResumeBuilder
2c997f73b522c0668f3a66afb372bd91c6408b3c
[ "MIT" ]
null
null
null
import yaml def yaml2dict(filename): with open(filename, "r") as stream: resume_dict = yaml.load(stream) return resume_dict def main(): resumeFile = "../demo/sample-resume.yaml" resume_dict = yaml2dict(resumeFile) print(resume_dict) if __name__ == '__main__': main()
17.882353
45
0.664474
0
0
0
0
0
0
0
0
41
0.134868
35f16309c334902b0ed8ed87b8f07d61caa46a9a
6,025
py
Python
backend/tests/unittests/metric_source/test_report/junit_test_report_tests.py
ICTU/quality-report
f6234e112228ee7cfe6476c2d709fe244579bcfe
[ "Apache-2.0" ]
25
2016-11-25T10:41:24.000Z
2021-07-03T14:02:49.000Z
backend/tests/unittests/metric_source/test_report/junit_test_report_tests.py
ICTU/quality-report
f6234e112228ee7cfe6476c2d709fe244579bcfe
[ "Apache-2.0" ]
783
2016-09-19T12:10:21.000Z
2021-01-04T20:39:15.000Z
backend/tests/unittests/metric_source/test_report/junit_test_report_tests.py
ICTU/quality-report
f6234e112228ee7cfe6476c2d709fe244579bcfe
[ "Apache-2.0" ]
15
2015-03-25T13:52:49.000Z
2021-03-08T17:17:56.000Z
""" Copyright 2012-2019 Ministerie van Sociale Zaken en Werkgelegenheid Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import datetime import unittest from unittest.mock import Mock import urllib.error from dateutil.tz import tzutc, tzlocal from hqlib.metric_source import JunitTestReport class JunitTestReportTest(unittest.TestCase): """ Unit tests for the Junit test report class. """ # pylint: disable=protected-access def setUp(self): self.__junit = JunitTestReport() def test_test_report(self): """ Test retrieving a Junit test report. """ self.__junit._url_read = Mock( return_value='<testsuites>' ' <testsuite tests="12" failures="2" errors="0" skipped="1" disabled="0">' ' <testcase><failure/></testcase>' ' <testcase><failure/></testcase>' ' </testsuite>' '</testsuites>') self.assertEqual(2, self.__junit.failed_tests('url')) self.assertEqual(9, self.__junit.passed_tests('url')) self.assertEqual(1, self.__junit.skipped_tests('url')) def test_multiple_test_suites(self): """ Test retrieving a Junit test report with multiple suites. """ self.__junit._url_read = Mock( return_value='<testsuites>' ' <testsuite tests="5" failures="1" errors="0" skipped="1" disabled="1">' ' <testcase><failure/><failure/></testcase>' ' </testsuite>' ' <testsuite tests="3" failures="1" errors="1" skipped="0" disabled="0">' ' <testcase><failure/></testcase>' ' </testsuite>' '</testsuites>') self.assertEqual(3, self.__junit.failed_tests('url')) self.assertEqual(3, self.__junit.passed_tests('url')) self.assertEqual(2, self.__junit.skipped_tests('url')) def test_http_error(self): """ Test that the default is returned when a HTTP error occurs. """ self.__junit._url_read = Mock(side_effect=urllib.error.HTTPError(None, None, None, None, None)) self.assertEqual(-1, self.__junit.failed_tests('raise')) self.assertEqual(-1, self.__junit.passed_tests('raise')) self.assertEqual(-1, self.__junit.skipped_tests('raise')) def test_missing_url(self): """ Test that the default is returned when no urls are provided. """ self.assertEqual(-1, self.__junit.failed_tests()) self.assertEqual(-1, self.__junit.passed_tests()) self.assertEqual(-1, self.__junit.skipped_tests()) self.assertEqual(datetime.datetime.min, self.__junit.datetime()) def test_incomplete_xml(self): """ Test that the default is returned when the xml is incomplete. """ self.__junit._url_read = Mock(return_value='<testsuites></testsuites>') self.assertEqual(-1, self.__junit.failed_tests('url')) def test_faulty_xml(self): """ Test incorrect XML. """ self.__junit._url_read = Mock(return_value='<testsuites><bla>') self.assertEqual(-1, self.__junit.failed_tests('url')) def test_datetime_with_faulty_xml(self): """ Test incorrect XML. """ self.__junit._url_read = Mock(return_value='<testsuites><bla>') self.assertEqual(datetime.datetime.min, self.__junit.datetime('url')) def test_report_datetime(self): """ Test that the date and time of the test suite is returned. """ self.__junit._url_read = Mock( return_value='<testsuites>' ' <testsuite name="Art" timestamp="2016-07-07T12:26:44">' ' </testsuite>' '</testsuites>') self.assertEqual( datetime.datetime(2016, 7, 7, 12, 26, 44, tzinfo=tzutc()).astimezone(tzlocal()).replace(tzinfo=None), self.__junit.datetime('url')) def test_missing_report_datetime(self): """ Test that the minimum datetime is returned if the url can't be opened. """ self.__junit._url_read = Mock(side_effect=urllib.error.HTTPError(None, None, None, None, None)) self.assertEqual(datetime.datetime.min, self.__junit.datetime('url')) def test_incomplete_xml_datetime(self): """ Test that the minimum datetime is returned when the xml is incomplete. """ self.__junit._url_read = Mock(return_value='<testsuites></testsuites>') self.assertEqual(datetime.datetime.min, self.__junit.datetime('url')) def test_incomplete_xml_no_timestamp(self): """ Test that the minimum datetime is returned when the xml is incomplete. """ self.__junit._url_read = Mock(return_value='<testsuites><testsuite></testsuite></testsuites>') self.assertEqual(datetime.datetime.min, self.__junit.datetime('url')) def test_urls(self): """ Test that the urls point to the HTML versions of the reports. """ self.assertEqual(['http://server/html/htmlReport.html'], self.__junit.metric_source_urls('http://server/junit/junit.xml')) def test_url_regexp(self): """ Test that the default regular expression to generate the HTML version of the urls can be changed. """ junit = JunitTestReport(metric_source_url_re="junit.xml$", metric_source_url_repl="junit.html") self.assertEqual(['http://server/junit.html'], junit.metric_source_urls('http://server/junit.xml'))
47.81746
113
0.64249
5,249
0.871203
0
0
0
0
0
0
2,486
0.412614
35f24e93301e26ad076b53b869df2630d390d615
965
py
Python
lang/Python/compare-sorting-algorithms-performance-6.py
ethansaxenian/RosettaDecode
8ea1a42a5f792280b50193ad47545d14ee371fb7
[ "MIT" ]
1
2018-11-09T22:08:38.000Z
2018-11-09T22:08:38.000Z
lang/Python/compare-sorting-algorithms-performance-6.py
ethansaxenian/RosettaDecode
8ea1a42a5f792280b50193ad47545d14ee371fb7
[ "MIT" ]
null
null
null
lang/Python/compare-sorting-algorithms-performance-6.py
ethansaxenian/RosettaDecode
8ea1a42a5f792280b50193ad47545d14ee371fb7
[ "MIT" ]
1
2018-11-09T22:08:40.000Z
2018-11-09T22:08:40.000Z
sort_functions = [ builtinsort, # see implementation above insertion_sort, # see [[Insertion sort]] insertion_sort_lowb, # ''insertion_sort'', where sequential search is replaced # by lower_bound() function qsort, # see [[Quicksort]] qsortranlc, # ''qsort'' with randomly choosen ''pivot'' # and the filtering via list comprehension qsortranpart, # ''qsortranlc'' with filtering via ''partition'' function qsortranpartis, # ''qsortranpart'', where for a small input sequence lengths ] # ''insertion_sort'' is called if __name__=="__main__": import sys sys.setrecursionlimit(10000) write_timings(npoints=100, maxN=1024, # 1 <= N <= 2**10 an input sequence length sort_functions=sort_functions, sequence_creators = (ones, range, shuffledrange)) plot_timings()
50.789474
85
0.598964
0
0
0
0
0
0
0
0
450
0.466321
35f445a5ba07dee2c2143db897f87a8a3259db16
6,300
py
Python
server/organization/tests.py
NicholasNagy/ALTA
ca07627481ee91f2969b0fc8e8f15e2a37b3e992
[ "Apache-2.0" ]
3
2020-09-09T23:26:29.000Z
2020-10-17T22:58:34.000Z
server/organization/tests.py
NicholasNagy/ALTA
ca07627481ee91f2969b0fc8e8f15e2a37b3e992
[ "Apache-2.0" ]
294
2020-09-27T17:20:50.000Z
2021-06-23T01:44:09.000Z
server/organization/tests.py
NicholasNagy/ALTA
ca07627481ee91f2969b0fc8e8f15e2a37b3e992
[ "Apache-2.0" ]
10
2020-10-07T05:25:30.000Z
2021-05-01T05:32:59.000Z
from rest_framework import status from rest_framework.test import APITestCase from rest_framework.test import APIClient from django.db.models import signals import factory from user_account.models import CustomUser from .models import Organization class OrganizationTestCase(APITestCase): def setUp(self): self.client = APIClient() # Create each type of user self.system_admin = CustomUser.objects.create( user_name='system_admin1', email='system_admin1@email.com', password='password1', first_name='system1', last_name='admin1', role='SA', is_active=True) self.inventory_manager = CustomUser.objects.create( user_name='inventory_manager1', email='inventory_manager1@email.com', password='password1', first_name='inventory1', last_name='manager1', role='IM', is_active=True) self.stock_keeper = CustomUser.objects.create( user_name='stock_keeper1', email='stock_keeper1@email.com', password='password1', first_name='inventory1', last_name='keeper1', role='SK', is_active=True) @factory.django.mute_signals(signals.pre_save, signals.post_save) def test_create_organization_sys_admin_success(self): """ Organization was created correctly """ self.client.force_authenticate(user=self.system_admin) data = {'org_name': 'test_case', 'address': ['Florida']} response = self.client.post("/organization/", data, format='json') self.assertEqual(response.status_code, status.HTTP_201_CREATED) def test_create_organization_inventory_manager_success(self): """ Inventory manager and Stock Keeper is not allowed to create an organization """ self.client.force_authenticate(user=self.inventory_manager) data = {'org_name': 'test_case'} request = self.client.post("/organization/", data) self.assertEqual(request.status_code, status.HTTP_403_FORBIDDEN) self.client.force_authenticate(user=self.stock_keeper) new_request = self.client.post("/organization/", data) self.assertEqual(new_request.status_code, status.HTTP_403_FORBIDDEN) def test_create_organization_failure(self): """ User can't create organization if missing fields """ self.client.force_authenticate(user=self.system_admin) data = {} request = self.client.post("/organization/", data, format='json') self.assertEqual(request.status_code, status.HTTP_400_BAD_REQUEST) def test_organization_unauthorized_request(self): """ User can't access any of the method if token is not in header of request """ request = self.client.get("/organization/") self.assertEqual(request.status_code, status.HTTP_401_UNAUTHORIZED) def test_organization_unauthorized_clearence(self): """ IM and SK can't delete an organization """ self.client.force_authenticate(user=self.inventory_manager) request = self.client.delete("/organization/") self.assertEqual(request.status_code, status.HTTP_403_FORBIDDEN) self.client.force_authenticate(user=self.stock_keeper) new_request = self.client.delete("/organization/") self.assertEqual(new_request.status_code, status.HTTP_403_FORBIDDEN) def test_get_all_organization(self): """ IM can't get a list of organization """ self.client.force_authenticate(user=self.inventory_manager) request = self.client.get("/organization/") self.assertEqual(request.status_code, status.HTTP_403_FORBIDDEN) def test_unauthorized_get_all_organization(self): """ SK can't get a list of organization """ self.client.force_authenticate(user=self.stock_keeper) request = self.client.get("/organization/") self.assertEqual(request.status_code, status.HTTP_403_FORBIDDEN) class InventoryItemRefreshTestCase(APITestCase): fixtures = ["users.json", "organizations.json"] @factory.django.mute_signals(signals.pre_save, signals.post_save) def setUp(self): self.client = APIClient() self.organization = Organization.objects.get(pk=1).org_id self.system_admin = CustomUser.objects.get(pk=1) self.inventory_manager = CustomUser.objects.get(pk=2) self.stock_keeper = CustomUser.objects.get(pk=3) def test_org_inventory_item_refresh_time_sa(self): """ Timing has been updated correctly """ self.client.force_authenticate(user=self.system_admin) data = {'time': ['60'], 'new_job_interval': ['minutes'], 'ftp_location': ['ftp://host/inventory'], 'organization_id': ['1'], 'file': ['dummy_data.xlsx']} response = self.client.post("/InventoryItemRefreshTime/", data) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_org_inventory_item_refresh_time_im(self): """ Timing has been updated correctly """ self.client.force_authenticate(user=self.inventory_manager) data = {'time': ['60'], 'new_job_interval': ['minutes'], 'ftp_location': ['ftp://host/inventory'], 'organization_id': ['1'], 'file': ['dummy_data.xlsx']} response = self.client.post("/InventoryItemRefreshTime/", data) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_org_inventory_item_refresh_time_sk(self): """ Timing shall not be updated by SK """ self.client.force_authenticate(user=self.stock_keeper) data = {"organization": self.organization, "new_job_timing": "14"} request = self.client.post("/InventoryItemRefreshTime/", data, format='json') self.assertEqual(request.status_code, status.HTTP_403_FORBIDDEN) def test_org_item_refresh_time_fail(self): """ Timing can't be updated correctly for an organization that doesnt exist """ self.client.force_authenticate(user=self.system_admin) data = {"organization_id": "1234", "time": "14"} response = self.client.post("/InventoryItemRefreshTime/", data) self.assertEqual(response.status_code, status.HTTP_500_INTERNAL_SERVER_ERROR)
45.985401
161
0.686667
6,046
0.959683
0
0
811
0.12873
0
0
1,545
0.245238
35f470bfac10a58409ff19aa1d364eb85ab7359d
1,656
py
Python
src/mumblecode/convert.py
Mumbleskates/mumblecode
0221c33a09df154bf80ece73ff907c51d2a971f0
[ "MIT" ]
1
2016-05-17T23:07:38.000Z
2016-05-17T23:07:38.000Z
src/mumblecode/convert.py
Mumbleskates/mumblecode
0221c33a09df154bf80ece73ff907c51d2a971f0
[ "MIT" ]
null
null
null
src/mumblecode/convert.py
Mumbleskates/mumblecode
0221c33a09df154bf80ece73ff907c51d2a971f0
[ "MIT" ]
null
null
null
# coding=utf-8 from math import log2, ceil # valid chars for a url path component: a-z A-Z 0-9 .-_~!$&'()*+,;=:@ # For the default set here (base 72) we have excluded $'();:@ radix_alphabet = ''.join(sorted( "0123456789" "abcdefghijklmnopqrstuvwxyz" "ABCDEFGHIJKLMNOPQRSTUVWXYZ" ".-_~!&*+,=" )) radix = len(radix_alphabet) radix_lookup = {ch: i for i, ch in enumerate(radix_alphabet)} length_limit = ceil(128 / log2(radix)) # don't decode numbers much over 128 bits # TODO: add radix alphabet as parameter # TODO: fix format so length conveys m ore information (e.g. 0 and 00 and 000 are different with decimal alphabet) def int_to_natural(i): i *= 2 if i < 0: i = -i - 1 return i def natural_to_int(n): sign = n & 1 n >>= 1 return -n - 1 if sign else n def natural_to_url(n): """Accepts an int and returns a url-compatible string representing it""" # map from signed int to positive int url = "" while n: n, digit = divmod(n, radix) url += radix_alphabet[digit] return url or radix_alphabet[0] def url_to_natural(url): """Accepts a string and extracts the int it represents in this radix encoding""" if not url or len(url) > length_limit: return None n = 0 try: for ch in reversed(url): n = n * radix + radix_lookup[ch] except KeyError: return None return n def int_to_bytes(i, order='little'): byte_length = (i.bit_length() + 7 + (i >= 0)) >> 3 return i.to_bytes(byte_length, order, signed=True) def bytes_to_int(b, order='little'): return int.from_bytes(b, order, signed=True)
24.352941
114
0.634662
0
0
0
0
0
0
0
0
627
0.378623
35f52784cb920f6695ea0214e66ce046c4ba0969
961
py
Python
flaskapp/routes.py
vijay0707/Send-Email-Flask
3e8f981c5ef4c4051f61b5229eb3e56a35142bc7
[ "MIT" ]
null
null
null
flaskapp/routes.py
vijay0707/Send-Email-Flask
3e8f981c5ef4c4051f61b5229eb3e56a35142bc7
[ "MIT" ]
null
null
null
flaskapp/routes.py
vijay0707/Send-Email-Flask
3e8f981c5ef4c4051f61b5229eb3e56a35142bc7
[ "MIT" ]
null
null
null
from flaskapp import app, db, mail from flask import render_template, url_for from flask import request, flash, redirect # from flaskapp.model import User from flaskapp.form import SurveyForm from flask_mail import Message @app.route('/', methods = ['POST', 'GET']) def form(): form = SurveyForm() if form.validate_on_submit(): # user = User(name=form.name.data, email=form.email.data) # db.session.add(user) # db.session.commit() body = """ Thank you {} for filling the form!😊 """.format(form.name.data) msg = Message(subject="survey form", sender='', recipients=[form.email.data], body=body) mail.send(msg) flash('Your feedback is successfully submitted!!', 'success') return redirect(url_for('thank')) return render_template('form.html', form=form) @app.route('/thank') def thank(): return render_template('thank.html')
32.033333
97
0.632674
0
0
0
0
727
0.754149
0
0
320
0.33195
35f622ff3fa5187c3265b7d1252636eaf5af175d
5,708
py
Python
tests/test_camera.py
Gokender/kameramera
7ebd9a196809c1e7ab117bb11b90bcea8d1eb8e7
[ "MIT" ]
null
null
null
tests/test_camera.py
Gokender/kameramera
7ebd9a196809c1e7ab117bb11b90bcea8d1eb8e7
[ "MIT" ]
null
null
null
tests/test_camera.py
Gokender/kameramera
7ebd9a196809c1e7ab117bb11b90bcea8d1eb8e7
[ "MIT" ]
null
null
null
import unittest from kameramera import camera class Camera(unittest.TestCase): def setUp(self): self.camera = camera.Camera(camera_id='canon_ae1') def test_general_manufacturer(self): self.assertEqual(self.camera.general.manufacturer, 'Canon') def test_general_name(self): self.assertEqual(self.camera.general.name, 'Canon AE-1') def test_general_type(self): self.assertEqual(self.camera.general.type, 'SLR') def test_general_format(self): self.assertEqual(self.camera.general.format, '24x35') def test_general_made_in(self): self.assertEqual(self.camera.general.made_in, 'Japan') def test_general_date(self): self.assertEqual(self.camera.general.date, '1976-1984') def test_general_body_construction(self): self.assertEqual(self.camera.general.body_construction, 'metal') def test_general_mount_threads(self): self.assertEqual(self.camera.general.mount_threads, '1/4"') def test_general_dimension(self): self.assertEqual(self.camera.general.dimension, '141x87x47.5 mm') def test_general_weight(self): self.assertEqual(self.camera.general.weight, '620g') def test_optics_lenses(self): self.assertEqual(self.camera.optics.lenses, 'interchangeable') def test_optics_lenses_mount(self): self.assertEqual(self.camera.optics.lenses_mount, 'Canon FD') def test_sighting_type(self): self.assertEqual(self.camera.sighting.type, 'fixed eye-level pentaprism') def test_sighting_display(self): self.assertEqual(self.camera.sighting.display, False) def test_sighting_viewfinder_rangefinder(self): self.assertEqual(self.camera.sighting.viewfinder.rangefinder, ['split_image', 'microprism']) def test_sighting_viewfinder_aperture(self): self.assertEqual(self.camera.sighting.viewfinder.aperture, True) def test_sighting_viewfinder_exposure_indicator(self): self.assertEqual(self.camera.sighting.viewfinder.exposure_indicator, True) def test_sighting_viewfinder_flash_indicator(self): self.assertEqual(self.camera.sighting.viewfinder.flash_indicator, True) def test_focus_manual(self): self.assertEqual(self.camera.focus.manual, True) def test_focus_autofocus(self): self.assertEqual(self.camera.focus.autofocus, False) def test_focus_stabilization(self): self.assertEqual(self.camera.focus.stabilization, False) def test_focus_depth_of_field(self): self.assertEqual(self.camera.focus.depth_of_field, True) def test_shutter_type(self): self.assertEqual(self.camera.shutter.type, None) def test_shutter_shutter_speeds(self): self.assertEqual(self.camera.shutter.shutter_speeds, [ '2', '1', '1/2', '1/4', '1/8', '1/15', '1/30', '1/60', '1/125', '1/250', '1/500', '1/1000' ]) def test_shutter_pose(self): self.assertEqual(self.camera.shutter.pose, 'B') def test_shutter_self_timer(self): self.assertEqual(self.camera.shutter.self_timer, 10) def test_exposure_mode(self): self.assertEqual(self.camera.exposure.mode, ['M','S']) def test_exposure_correction(self): self.assertEqual(self.camera.exposure.correction, 1.5) def test_exposure_measure_type(self): self.assertEqual(self.camera.exposure.measure.type, 'TTL') def test_exposure_measure_light_sensor(self): self.assertEqual(self.camera.exposure.measure.light_sensor, 'silicon photon cell') def test_exposure_measure_metering_mode(self): self.assertEqual(self.camera.exposure.measure.metering_mode, 'center-weighted average metering') def test_exposure_measure_memory(self): self.assertEqual(self.camera.exposure.measure.memory, True) def test_film_format(self): self.assertEqual(self.camera.film.format, 135) def test_film_advance(self): self.assertEqual(self.camera.film.advance, 'manual') def test_film_frame_counter(self): self.assertEqual(self.camera.film.frame_counter, True) def test_film_film_speed(self): self.assertEqual(self.camera.film.film_speed, [ 25, 32, 40, 50, 64, 80, 100, 125, 160, 200, 250, 320, 400, 500, 640, 800, 1000, 1250, 1600, 2000, 2500, 3200 ]) def test_flash_built_in(self): self.assertEqual(self.camera.flash.built_in, False) def test_flash_hot_shoe(self): self.assertEqual(self.camera.flash.hot_shoe, True) def test_flash_synchronization(self): self.assertEqual(self.camera.flash.synchronization, '1/60') def test_power_required(self): self.assertEqual(self.camera.power.required, True) def test_power_source_number(self): self.assertEqual(self.camera.power.source[0].number, 1) def test_power_source_voltage(self): self.assertEqual(self.camera.power.source[0].voltage, 6) def test_power_source_type(self): self.assertEqual(self.camera.power.source[0].type, [ 'alkaline-manganese', 'silver oxyde', 'lithium' ])
31.711111
82
0.637176
5,659
0.991416
0
0
0
0
0
0
369
0.064646
35f678cde08c5ff864121819c46adfa1fdba45f0
887
py
Python
app/coordinates.py
krasch/simply_landmarks
8a5c3f2ff476377e44646a00e61b8287a53260e3
[ "MIT" ]
14
2020-02-03T22:30:48.000Z
2021-11-01T09:41:34.000Z
app/coordinates.py
krasch/simply_landmarks
8a5c3f2ff476377e44646a00e61b8287a53260e3
[ "MIT" ]
3
2020-11-28T17:24:28.000Z
2022-01-26T19:56:35.000Z
app/coordinates.py
krasch/simply_landmarks
8a5c3f2ff476377e44646a00e61b8287a53260e3
[ "MIT" ]
4
2020-10-11T21:26:53.000Z
2021-09-14T03:59:20.000Z
from pathlib import Path from PIL import Image # coordinates are sent as slightly weird URL parameters (e.g. 0.png?214,243) # parse them, will crash server if they are coming in unexpected format def parse_coordinates(args): keys = list(args.keys()) assert len(keys) == 1 coordinates = keys[0] assert len(coordinates.split(",")) == 2 x, y = coordinates.split(",") x = int(x) y = int(y) return x, y # image was not displayed in original size -> need to convert the coordinates def init_scale_coordinates(image_dir: str, scaled_height: int): image_dir = Path(image_dir) def perform_scaling(image: str, x: int, y: int): image = Image.open(str(image_dir / image)) original_width, original_height = image.size scale = original_height / scaled_height return int(x*scale), int(y*scale) return perform_scaling
27.71875
77
0.67982
0
0
0
0
0
0
0
0
230
0.259301
35f6bdfd466ccfcc3ec731821bd0d70b92cb5b92
2,851
py
Python
lib/tool_images.py
KTingLee/image-training
c02c7caa81a55b61e935d07ead27bcaed468eb0a
[ "MIT" ]
null
null
null
lib/tool_images.py
KTingLee/image-training
c02c7caa81a55b61e935d07ead27bcaed468eb0a
[ "MIT" ]
2
2021-01-22T09:10:33.000Z
2021-01-22T14:22:09.000Z
lib/tool_images.py
KTingLee/image-training
c02c7caa81a55b61e935d07ead27bcaed468eb0a
[ "MIT" ]
1
2021-01-22T08:56:34.000Z
2021-01-22T08:56:34.000Z
import matplotlib.pyplot as plt import numpy as np import math import cv2 kernel = np.ones((3, 3), np.int8) # 去除雜訊 def eraseImage (image): return cv2.erode(image, kernel, iterations = 1) # 模糊圖片 def blurImage (image): return cv2.GaussianBlur(image, (5, 5), 0) # 銳利化圖片 # threshold1,2,較小的值為作為偵測邊界的最小值 def edgedImage (image, threshold1 = 30, threshold2 = 150): return cv2.Canny(image, threshold1, threshold2) # 圖片膨脹 def dilateImage (image, level = (3, 3)): level = np.ones(level, np.int8) return cv2.dilate(image, level, iterations = 1) # 獲得字元外盒 def getCharBox (image, minW = 15, minH = 15): def setBoundingBox (contours): box = [] for cnt in contours: (x, y, w, h) = cv2.boundingRect(cnt) # NOTE: 字元有一定大小,所以其盒子寬高也有基本門檻值 if w > minW and h > minH: box.append((x, y, w, h)) # cv2.rectangle(image, (x, y), (x + w, y + h), (127, 255, 0), 2) # 依照contour畫邊界 # cv2.imshow('test', image) return box def removeInnerBox (boxes): # 對各個字元的外盒,依照 x 大小排列 boxes.sort(key = lambda e: e[0]) results = [boxes[0]] for i in range(len(boxes) - 1): x1, y1, w1, h1 = boxes[i] x2, y2, w2, h2 = boxes[i+1] if (x2 > x1 and x2 + w2 > x1 + w1): results.append(boxes[i+1]) return results contours, hierarchy = cv2.findContours(image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) boundingBox = setBoundingBox(contours) boundingBox = removeInnerBox(boundingBox) return boundingBox def showCharBox (image, boxes): for x, y, w, h in boxes: cv2.rectangle(image, (x, y), (x + w, y + h), (127, 255, 0), 2) # 依照contour畫邊界 cv2.imshow('charBox', image) cv2.waitKey(0) def showCountour (contours): row = 2 col = math.ceil(len(contours)/row) for i, cnt in enumerate(contours, start = 1): x = [] y = [] # plt.subplot(row, col, i) for point in cnt: x.append(point[0][0]) y.append(point[0][1]) plt.plot(x, y) plt.show() def resizeImage (image, charBox, size = (50, 50)): results = [] for (x, y, w, h) in charBox: char = image[y:y+h, x:x+w] char = cv2.resize(char, size) results.append(char) return results def diffPictures (picA, picB): err = np.sum( (picA.astype('float') - picB.astype('float')) ** 2 ) err /= float(picA.shape[0] * picA.shape[1]) return err if __name__ == '__main__': pic = cv2.imread('../captcha_Images/0.png') print(pic) cv2.imshow('pic', pic) cv2.waitKey(0) erosion = eraseImage(pic) blured = blurImage(erosion) edged = edgedImage(blured) dilated = dilateImage(edged) charBox = getCharBox(dilated) showCharBox(dilated, charBox) dilated = dilateImage(edged, (4, 4)) chars = resizeImage(dilated, charBox) # input("Press Enter to continue.") # c = result[0][0][0][0] # print(c) # plt.plot(c) cv2.waitKey(0) cv2.destroyAllWindows()
25.684685
88
0.62785
0
0
0
0
0
0
0
0
581
0.192193
35f6e6f91f9e05d76fd7957364cd9c3157a56978
2,965
py
Python
Code/geneset_testing.py
dylkot/EbolaSC
d363f9d2c10911f01c7b1d22fec2b192df2569b1
[ "MIT" ]
2
2020-09-28T09:27:33.000Z
2021-01-04T09:16:42.000Z
Code/geneset_testing.py
dylkot/SC-Ebola
d363f9d2c10911f01c7b1d22fec2b192df2569b1
[ "MIT" ]
null
null
null
Code/geneset_testing.py
dylkot/SC-Ebola
d363f9d2c10911f01c7b1d22fec2b192df2569b1
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np from scipy.stats import mannwhitneyu, fisher_exact, ranksums def load_geneset(gmtfn, genes=None, minsize=0): ''' Load genesets stored in gmt format (e.g. as provided by msigdb) gmtfn : str path to gmt file genes : list, optional only include genes in this input minsize : int, optional minimum geneset size to keep Returns ------- gsets : dict gene_set_name : set of genes allsetgenes : set set of genes found in all genesets combined ''' allsetgenes = set() if genes is not None: genes = set(genes) gsets = {} effect_min_size = minsize+2 # account for gset name cols with open(gmtfn) as F: for l in F.readlines(): words = [x for x in l.rstrip().split('\t')] gsetname = words[0] setgenes = words[2:] if genes is not None: setgenes = set(setgenes).intersection(genes) else: setgenes = set(setgenes[2:]) if len(setgenes) >= effect_min_size: gsets[gsetname] = setgenes allsetgenes = allsetgenes.union(setgenes) return(gsets, allsetgenes) def fishertestbygep(gsets, signatures): cols = [] for sig in signatures.columns: cols.append((sig, 'OR')) cols.append((sig, 'P')) res = pd.DataFrame(index=list(gsets.keys()), columns=pd.MultiIndex.from_tuples(cols)) total = res.shape[0] N = signatures.shape[0] for sig in signatures.columns: print(sig) siggenes = set(signatures.index[signatures[sig]]) for (count,gs) in enumerate(res.index): (OR,P, table) = run_fisher_exact(siggenes, gsets[gs], N) res.at[gs,(sig,'OR')]=OR res.at[gs,(sig,'P')]=P return(res) def run_fisher_exact(siggenes, setgenes, num_total): numinter = len(setgenes.intersection(siggenes)) numunion = len(setgenes.union(siggenes)) table = [[numinter, len(siggenes) - numinter], [len(setgenes)-numinter, num_total-numunion]] (OR,P) = fisher_exact(table, alternative='two-sided') return(OR, P, table) def ranksumtestbygep(gsets, signatures): cols = [] for sig in signatures.columns: cols.append((sig, 'H')) cols.append((sig, 'P')) res = pd.DataFrame(index=list(gsets.keys()), columns=pd.MultiIndex.from_tuples(cols)) total = res.shape[0] for (count,gs) in enumerate(res.index): if (count % 100) == 0: print('%d out of %d' % (count, total)) ind = signatures.index.isin(gsets[gs]) for sig in signatures.columns: x1 = signatures.loc[ind, sig].dropna() x2 = signatures.loc[~ind, sig].dropna() (H,P) = ranksums(x1, x2) res.at[gs,(sig,'H')]=H res.at[gs,(sig,'P')]=P return(res)
29.949495
89
0.57774
0
0
0
0
0
0
0
0
518
0.174705
35f85f5cb5fab6226fab7a5a01b0882ca5ca7ca9
54
py
Python
tests/src/import_func.py
bayashi-cl/expander
b3623b656a71801233797e05781295a6101fefd8
[ "CC0-1.0" ]
null
null
null
tests/src/import_func.py
bayashi-cl/expander
b3623b656a71801233797e05781295a6101fefd8
[ "CC0-1.0" ]
1
2022-03-12T20:41:21.000Z
2022-03-13T06:34:30.000Z
tests/src/import_func.py
bayashi-cl/expander
b3623b656a71801233797e05781295a6101fefd8
[ "CC0-1.0" ]
null
null
null
from testlib_a.main_a import print_name print_name()
13.5
39
0.833333
0
0
0
0
0
0
0
0
0
0
35f901a5b14d9bb965c94938ad6cacba20eb8f77
2,167
py
Python
nn_wtf/parameter_optimizers/brute_force_optimizer.py
lene/nn-wtf
4696f143d936e0c0c127847e3bb1e93a6e756d35
[ "Apache-2.0" ]
null
null
null
nn_wtf/parameter_optimizers/brute_force_optimizer.py
lene/nn-wtf
4696f143d936e0c0c127847e3bb1e93a6e756d35
[ "Apache-2.0" ]
20
2016-02-20T12:43:04.000Z
2016-12-23T13:57:25.000Z
nn_wtf/parameter_optimizers/brute_force_optimizer.py
lene/nn-wtf
4696f143d936e0c0c127847e3bb1e93a6e756d35
[ "Apache-2.0" ]
null
null
null
import pprint from nn_wtf.parameter_optimizers.neural_network_optimizer import NeuralNetworkOptimizer __author__ = 'Lene Preuss <lene.preuss@gmail.com>' class BruteForceOptimizer(NeuralNetworkOptimizer): DEFAULT_LAYER_SIZES = ( (32, 48, 64), # (32, 48, 64, 80, 96, 128), (32, 48, 64, 80, 96, 128), (None, 16, 32, 48) ) # self, tested_network, input_size, output_size, desired_training_precision, def __init__( self, tested_network, input_size, output_size, desired_training_precision, layer_sizes=None, learning_rate=None, verbose=False, batch_size=100 ): super().__init__( tested_network, input_size, output_size, desired_training_precision, verbose=verbose, batch_size=batch_size ) self.learning_rate = learning_rate if learning_rate else self.DEFAULT_LEARNING_RATE self.layer_sizes = self.DEFAULT_LAYER_SIZES if layer_sizes is None else layer_sizes def best_parameters(self, data_sets, max_steps): results = self.time_all_tested_geometries(data_sets, max_steps) return results[0].optimization_parameters def brute_force_optimal_network_geometry(self, data_sets, max_steps): return self.best_parameters(data_sets, max_steps).geometry def time_all_tested_geometries(self, data_sets, max_steps): results = [] for geometry in self.get_network_geometries(): run_info = self.timed_run_training( data_sets, NeuralNetworkOptimizer.OptimizationParameters(geometry, self.learning_rate), max_steps=max_steps ) results.append(run_info) results = sorted(results, key=lambda r: r.cpu_time) if self.verbose: pprint.pprint(results, width=100) return results def get_network_geometries(self): return ((l1, l2, l3) for l1 in self.layer_sizes[0] for l2 in self.layer_sizes[1] if l2 <= l1 for l3 in self.layer_sizes[2] if l3 is None or l3 <= l2) def brute_force_optimize_learning_rate(self): raise NotImplementedError()
38.696429
119
0.677434
2,008
0.926627
0
0
0
0
0
0
152
0.070143
35f926086eaca9043bf3f10e9c0ac0804430ebb4
1,856
py
Python
tests/test_get_value.py
mdpiper/bmi-example-python
e6b1e9105daef44fe1f0adba5b857cde1bbd032a
[ "MIT" ]
3
2020-10-20T08:59:19.000Z
2021-10-18T17:57:06.000Z
tests/test_get_value.py
mdpiper/bmi-example-python
e6b1e9105daef44fe1f0adba5b857cde1bbd032a
[ "MIT" ]
4
2019-04-19T20:07:15.000Z
2021-01-28T23:34:35.000Z
tests/test_get_value.py
mdpiper/bmi-example-python
e6b1e9105daef44fe1f0adba5b857cde1bbd032a
[ "MIT" ]
7
2020-08-05T17:25:34.000Z
2021-09-08T21:38:33.000Z
#!/usr/bin/env python from numpy.testing import assert_array_almost_equal, assert_array_less import numpy as np from heat import BmiHeat def test_get_initial_value(): model = BmiHeat() model.initialize() z0 = model.get_value_ptr("plate_surface__temperature") assert_array_less(z0, 1.0) assert_array_less(0.0, z0) def test_get_value_copy(): model = BmiHeat() model.initialize() dest0 = np.empty(model.get_grid_size(0), dtype=float) dest1 = np.empty(model.get_grid_size(0), dtype=float) z0 = model.get_value("plate_surface__temperature", dest0) z1 = model.get_value("plate_surface__temperature", dest1) assert z0 is not z1 assert_array_almost_equal(z0, z1) def test_get_value_pointer(): model = BmiHeat() model.initialize() dest1 = np.empty(model.get_grid_size(0), dtype=float) z0 = model.get_value_ptr("plate_surface__temperature") z1 = model.get_value("plate_surface__temperature", dest1) assert z0 is not z1 assert_array_almost_equal(z0.flatten(), z1) for _ in range(10): model.update() assert z0 is model.get_value_ptr("plate_surface__temperature") def test_get_value_at_indices(): model = BmiHeat() model.initialize() dest = np.empty(3, dtype=float) z0 = model.get_value_ptr("plate_surface__temperature") z1 = model.get_value_at_indices("plate_surface__temperature", dest, [0, 2, 4]) assert_array_almost_equal(z0.take((0, 2, 4)), z1) def test_value_size(): model = BmiHeat() model.initialize() z = model.get_value_ptr("plate_surface__temperature") assert model.get_grid_size(0) == z.size def test_value_nbytes(): model = BmiHeat() model.initialize() z = model.get_value_ptr("plate_surface__temperature") assert model.get_var_nbytes("plate_surface__temperature") == z.nbytes
24.746667
82
0.715517
0
0
0
0
0
0
0
0
329
0.177263
35fac5891884a7fafbd906447065470f94dbe9cf
9,158
py
Python
tensorflow/dgm/exp.py
goldfarbDave/vcl
24fb33a1dcadfa6c6cf5e9e9838b64f4fd23143a
[ "Apache-2.0" ]
null
null
null
tensorflow/dgm/exp.py
goldfarbDave/vcl
24fb33a1dcadfa6c6cf5e9e9838b64f4fd23143a
[ "Apache-2.0" ]
null
null
null
tensorflow/dgm/exp.py
goldfarbDave/vcl
24fb33a1dcadfa6c6cf5e9e9838b64f4fd23143a
[ "Apache-2.0" ]
null
null
null
import numpy as np import tensorflow as tf import sys, os sys.path.extend(['alg/', 'models/']) from visualisation import plot_images from encoder_no_shared import encoder, recon from utils import init_variables, save_params, load_params, load_data from eval_test_ll import construct_eval_func dimZ = 50 dimH = 500 n_channel = 128 batch_size = 50 lr = 1e-4 K_mc = 10 checkpoint = -1 def main(data_name, method, dimZ, dimH, n_channel, batch_size, K_mc, checkpoint, lbd): # set up dataset specific stuff from config import config labels, n_iter, dimX, shape_high, ll = config(data_name, n_channel) if data_name == 'mnist': from mnist import load_mnist if data_name == 'notmnist': from notmnist import load_notmnist # import functionalities if method == 'onlinevi': from bayesian_generator import generator_head, generator_shared, \ generator, construct_gen from onlinevi import construct_optimizer, init_shared_prior, \ update_shared_prior, update_q_sigma if method in ['ewc', 'noreg', 'laplace', 'si']: from generator import generator_head, generator_shared, generator, construct_gen if method in ['ewc', 'noreg']: from vae_ewc import construct_optimizer, lowerbound if method == 'ewc': from vae_ewc import update_ewc_loss, compute_fisher if method == 'laplace': from vae_laplace import construct_optimizer, lowerbound from vae_laplace import update_laplace_loss, compute_fisher, init_fisher_accum if method == 'si': from vae_si import construct_optimizer, lowerbound, update_si_reg # then define model n_layers_shared = 2 batch_size_ph = tf.placeholder(tf.int32, shape=(), name='batch_size') dec_shared = generator_shared(dimX, dimH, n_layers_shared, 'sigmoid', 'gen') # initialise sessions config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) string = method if method in ['ewc', 'laplace', 'si']: string = string + '_lbd%.1f' % lbd if method == 'onlinevi' and K_mc > 1: string = string + '_K%d' % K_mc path_name = data_name + '_%s/' % string if not os.path.isdir('save/'): os.mkdir('save/') if not os.path.isdir('save/'+path_name): os.mkdir('save/'+path_name) print('create path save/' + path_name) filename = 'save/' + path_name + 'checkpoint' if checkpoint < 0: print('training from scratch') old_var_list = init_variables(sess) else: load_params(sess, filename, checkpoint) checkpoint += 1 # visualise the samples N_gen = 10**2 path = 'figs/' + path_name if not os.path.isdir('figs/'): os.mkdir('figs/') if not os.path.isdir(path): os.mkdir(path) print('create path ' + path) X_ph = tf.placeholder(tf.float32, shape=(batch_size, dimX), name = 'x_ph') # now start fitting N_task = len(labels) gen_ops = [] X_valid_list = [] X_test_list = [] eval_func_list = [] result_list = [] if method == 'onlinevi': shared_prior_params = init_shared_prior() if method in ['ewc', 'noreg']: ewc_loss = 0.0 if method == 'laplace': F_accum = init_fisher_accum() laplace_loss = 0.0 if method == 'si': old_params_shared = None si_reg = None n_layers_head = 2 n_layers_enc = n_layers_shared + n_layers_head - 1 for task in range(1, N_task+1): # first load data if data_name == 'mnist': X_train, X_test, _, _ = load_mnist(digits = labels[task-1], conv = False) if data_name == 'notmnist': X_train, X_test, _, _ = load_notmnist(digits = labels[task-1], conv = False) N_train = int(X_train.shape[0] * 0.9) X_valid_list.append(X_train[N_train:]) X_train = X_train[:N_train] X_test_list.append(X_test) # define the head net and the generator ops dec = generator(generator_head(dimZ, dimH, n_layers_head, 'gen_%d' % task), dec_shared) enc = encoder(dimX, dimH, dimZ, n_layers_enc, 'enc_%d' % task) gen_ops.append(construct_gen(dec, dimZ, sampling=False)(N_gen)) print('construct eval function...') eval_func_list.append(construct_eval_func(X_ph, enc, dec, ll, \ batch_size_ph, K = 100, sample_W = False)) # then construct loss func and fit func print('construct fit function...') if method == 'onlinevi': fit = construct_optimizer(X_ph, enc, dec, ll, X_train.shape[0], batch_size_ph, \ shared_prior_params, task, K_mc) if method in ['ewc', 'noreg']: bound = lowerbound(X_ph, enc, dec, ll) fit = construct_optimizer(X_ph, batch_size_ph, bound, X_train.shape[0], ewc_loss) if method == 'ewc': fisher, var_list = compute_fisher(X_ph, batch_size_ph, bound, X_train.shape[0]) if method == 'laplace': bound = lowerbound(X_ph, enc, dec, ll) fit = construct_optimizer(X_ph, batch_size_ph, bound, X_train.shape[0], laplace_loss) fisher, var_list = compute_fisher(X_ph, batch_size_ph, bound, X_train.shape[0]) if method == 'si': bound = lowerbound(X_ph, enc, dec, ll) fit, shared_var_list = construct_optimizer(X_ph, batch_size_ph, bound, X_train.shape[0], si_reg, old_params_shared, lbd) if old_params_shared is None: old_params_shared = sess.run(shared_var_list) # initialise all the uninitialised stuff old_var_list = init_variables(sess, old_var_list) # start training for each task if method == 'si': new_params_shared, w_params_shared = fit(sess, X_train, n_iter, lr) else: fit(sess, X_train, n_iter, lr) # plot samples x_gen_list = sess.run(gen_ops, feed_dict={batch_size_ph: N_gen}) for i in range(len(x_gen_list)): plot_images(x_gen_list[i], shape_high, path, \ data_name+'_gen_task%d_%d' % (task, i+1)) x_list = [x_gen_list[i][:1] for i in range(len(x_gen_list))] x_list = np.concatenate(x_list, 0) tmp = np.zeros([10, dimX]) tmp[:task] = x_list if task == 1: x_gen_all = tmp else: x_gen_all = np.concatenate([x_gen_all, tmp], 0) # print test-ll on all tasks tmp_list = [] for i in range(len(eval_func_list)): print('task %d' % (i+1), end=' ') test_ll = eval_func_list[i](sess, X_valid_list[i]) tmp_list.append(test_ll) result_list.append(tmp_list) # save param values save_params(sess, filename, checkpoint) checkpoint += 1 # update regularisers/priors if method == 'ewc': # update EWC loss print('update ewc loss...') X_batch = X_train[np.random.permutation(list(range(X_train.shape[0])))[:batch_size]] ewc_loss = update_ewc_loss(sess, ewc_loss, var_list, fisher, lbd, X_batch) if method == 'laplace': # update EWC loss print('update laplace loss...') X_batch = X_train[np.random.permutation(list(range(X_train.shape[0])))[:batch_size]] laplace_loss, F_accum = update_laplace_loss(sess, F_accum, var_list, fisher, lbd, X_batch) if method == 'onlinevi': # update prior print('update prior...') shared_prior_params = update_shared_prior(sess, shared_prior_params) # reset the variance of q update_q_sigma(sess) if method == 'si': # update regularisers/priors print('update SI big omega matrices...') si_reg, _ = update_si_reg(sess, si_reg, new_params_shared, \ old_params_shared, w_params_shared) old_params_shared = new_params_shared plot_images(x_gen_all, shape_high, path, data_name+'_gen_all') for i in range(len(result_list)): print(result_list[i]) # save results if not os.path.isdir("results/"): os.mkdir("results/") fname = 'results/' + data_name + '_%s.pkl' % string import pickle with open(fname, 'wb') as f: pickle.dump(result_list, f) print('test-ll results saved in', fname) if __name__ == '__main__': data_name = str(sys.argv[1]) method = str(sys.argv[2]) assert method in ['noreg', 'laplace', 'ewc', 'si', 'onlinevi'] if method == 'onlinevi': lbd = 1.0 # some placeholder, doesn't matter else: lbd = float(sys.argv[3]) main(data_name, method, dimZ, dimH, n_channel, batch_size, K_mc, checkpoint, lbd)
40.166667
102
0.597183
0
0
0
0
0
0
0
0
1,298
0.141734
35fb641cc4c232d5e95579ae3bf4fec4904fbdf7
1,663
py
Python
src/cltl/combot/infra/config/k8config.py
leolani/cltl-combot
7008742ba9db782166f79322658a8cb49890d61b
[ "MIT" ]
1
2020-11-21T18:53:22.000Z
2020-11-21T18:53:22.000Z
src/cltl/combot/infra/config/k8config.py
leolani/cltl-combot
7008742ba9db782166f79322658a8cb49890d61b
[ "MIT" ]
null
null
null
src/cltl/combot/infra/config/k8config.py
leolani/cltl-combot
7008742ba9db782166f79322658a8cb49890d61b
[ "MIT" ]
null
null
null
import logging import os import cltl.combot.infra.config.local as local_config logger = logging.getLogger(__name__) K8_CONFIG_DIR = "/cltl_k8_config" K8_CONFIG = "config/k8.config" class K8LocalConfigurationContainer(local_config.LocalConfigurationContainer): @staticmethod def load_configuration(config_file=local_config.CONFIG, additional_config_files=local_config.ADDITIONAL_CONFIGS, k8_configs=K8_CONFIG_DIR, k8_config_file=K8_CONFIG): configs = additional_config_files try: copy_k8_config(k8_configs, k8_config_file) configs += [k8_config_file] except OSError: logger.warning("Could not load kubernetes config map from %s to %s", k8_configs, k8_config_file) local_config.LocalConfigurationContainer.load_configuration(config_file, configs) def copy_k8_config(k8_config_dir, k8_config_file): k8_configs = tuple(file for file in os.listdir(k8_config_dir) if not file.startswith(".")) logger.debug("Found kubernetes config maps %s in %s", k8_configs, k8_config_dir) k8_sections = {section: _read_config(k8_config_dir, section) for section in k8_configs} with open(k8_config_file, 'w') as k8_cfg: logger.info("Writing %s", k8_cfg) for section_name, section_values in k8_sections.items(): k8_cfg.write(f"[{section_name}]\n") k8_cfg.write(section_values) k8_cfg.write("\n") def _read_config(k8_configs, config_file): logger.info("Loading %s/%s", k8_configs, config_file) with open(os.path.join(k8_configs, config_file)) as cfg: return cfg.read()
36.955556
116
0.710764
667
0.401082
0
0
584
0.351173
0
0
184
0.110643
35fb6a7aec8441ab62bd7a834d5a31a1a31bbbcf
17,640
py
Python
act_map/scripts/exp_compare_diff_maps.py
debugCVML/rpg_information_field
56f9ffba83aaee796502116e1cf651c5bc405bf6
[ "MIT" ]
149
2020-06-23T12:08:47.000Z
2022-03-31T08:18:52.000Z
act_map/scripts/exp_compare_diff_maps.py
debugCVML/rpg_information_field
56f9ffba83aaee796502116e1cf651c5bc405bf6
[ "MIT" ]
4
2020-08-28T07:51:15.000Z
2021-04-09T13:18:49.000Z
act_map/scripts/exp_compare_diff_maps.py
debugCVML/rpg_information_field
56f9ffba83aaee796502116e1cf651c5bc405bf6
[ "MIT" ]
34
2020-06-26T14:50:34.000Z
2022-03-04T06:45:55.000Z
#!/usr/bin/env python import os import argparse import yaml import numpy as np from colorama import init, Fore, Style from matplotlib import rc import matplotlib.pyplot as plt import plot_utils as pu init(autoreset=True) rc('font', **{'serif': ['Cardo'], 'size': 20}) rc('text', usetex=True) kMetrics = ['det', 'mineig', 'trace'] kMetricsLabels = ['$\det$', '$\lambda_{min}$', '${Tr}$'] kSecToUs = 1.0e6 kPallete = [ 'blue', 'green', 'red', 'gold', 'purple', 'gray', 'cyan', 'midnightblue', 'lime', 'lightcoral', 'darkgoldenrod', 'violet', 'dimgray', 'darkorange', 'black' ] def normalize(data, min_val=0.0, max_val=1.0): data_valid = [v for v in data if v is not None] dmax = np.max(data_valid) dmin = np.min(data_valid) ddata = dmax - dmin ddes = max_val - min_val return [(v - dmin) / ddata * ddes + min_val if v is not None else v for v in data] def logAndNormalize(data, min_val=0.0, max_val=1.0): data_log = [np.log(v) if v > 0 else None for v in data] return normalize(data_log) def readResults(res_dir, nm): file_nms = sorted([v for v in os.listdir(res_dir) if v.endswith('.txt') and nm in v]) print("- Found files for map {}:\n - {}".format(nm, '\n - '.join(file_nms))) print("- read general info") gen_nm = "general_info_{}.txt".format(nm) general_info = {} if gen_nm in file_nms: data = np.loadtxt(os.path.join(res_dir, gen_nm)) assert data.shape == (4,) general_info['n_vox'] = data[0] general_info['t_construct'] = data[1] general_info['ker_mem_kb'] = data[2] general_info['pc_mem_kb'] = data[3] print("- read fim") fim_vox_c_nm = 'fim_vox_c_{}.txt'.format(nm) fim = {} if fim_vox_c_nm in file_nms: fim_vox_c_fn = os.path.join(res_dir, fim_vox_c_nm) fim_map_fn = os.path.join(res_dir, "fim_map_{}.txt".format(nm)) fim_pc_fn = os.path.join(res_dir, "fim_pc_{}.txt".format(nm)) fim_vox_centers = np.loadtxt(fim_vox_c_fn) assert fim_vox_centers.shape[1] == 3 n_fim = fim_vox_centers.shape[0] print(Style.DIM + "Found {} FIM".format(n_fim)) fim_map = np.loadtxt(fim_map_fn) assert fim_map.shape[1] == 36 assert n_fim == fim_map.shape[0] fim_pc = np.loadtxt(fim_pc_fn) assert fim_pc.shape[1] == 36 assert n_fim == fim_pc.shape[0] fim['vox_c'] = fim_vox_centers fim['map'] = [v.reshape((6, 6)) for v in fim_map] fim['pc'] = [v.reshape((6, 6)) for v in fim_pc] fim_time_map_fn = os.path.join(res_dir, "fim_time_map_{}.txt".format(nm)) fim_time_map = np.loadtxt(fim_time_map_fn) fim_time_pc_fn = os.path.join(res_dir, "fim_time_pc_{}.txt".format(nm)) fim_time_pc = np.loadtxt(fim_time_pc_fn) fim['map_time'] = fim_time_map fim['map_time_mean'] = np.mean(fim_time_map) fim['pc_time'] = fim_time_pc fim['pc_time_mean'] = np.mean(fim_time_pc) print(Style.DIM + "Aver. Map: {}. Aver. PC: {}".format( fim['map_time_mean'], fim['pc_time_mean'])) else: print(Fore.RED + "Nothing found.") print("- read query time") t_query = {} for m in kMetrics: t_map_fn = os.path.join(res_dir, 't_query_map_{}_{}.txt'.format(m, nm)) if not os.path.exists(t_map_fn): print(Fore.RED + "* metric {} does not exist for query time".format(m)) continue t_pc_fn = os.path.join(res_dir, 't_query_pc_{}_{}.txt'.format(m, nm)) assert os.path.exists(t_pc_fn) t_map = np.loadtxt(t_map_fn) t_map_mean = np.mean(t_map) t_pc = np.loadtxt(t_pc_fn) t_pc_mean = np.mean(t_pc) assert t_map.size == t_pc.size print(Style.DIM + "* metric {}: {} samples, map aver. {}, pc aver. {}".format( m, t_map.size, t_map_mean, t_pc_mean)) t_query[m] = {} t_query[m]['map'] = t_map.ravel().tolist() t_query[m]['map_mean'] = t_map_mean t_query[m]['pc'] = t_pc.ravel().tolist() t_query[m]['pc_mean'] = t_pc_mean print("- read optimal orientations") optim_orient = {} oo_vox_c_fn = os.path.join(res_dir, 'optim_orient_vox_c_{}.txt'.format(nm)) assert os.path.exists(oo_vox_c_fn), oo_vox_c_fn oo_vox_c = np.loadtxt(oo_vox_c_fn) assert oo_vox_c.shape[1] == 3 n_oo = oo_vox_c.shape[0] optim_orient['vox_c'] = oo_vox_c print(Style.DIM + "Total {} samples".format(n_oo)) for m in kMetrics: oo_map_fn = os.path.join(res_dir, 'optim_orient_map_{}_{}.txt'.format(m, nm)) if not os.path.exists(oo_map_fn): print(Fore.RED + "* metric {} does not exist for optimal orientations".format(m)) continue else: print(Style.DIM + "* metric {}".format(m)) oo_pc_fn = os.path.join(res_dir, 'optim_orient_pc_{}_{}.txt'.format(m, nm)) assert os.path.exists(oo_pc_fn) optim_orient[m] = {} oo_map = np.loadtxt(oo_map_fn) assert oo_map.shape == (n_oo, 3) oo_pc = np.loadtxt(oo_pc_fn) assert oo_pc.shape == (n_oo, 3) optim_orient[m]['map'] = oo_map optim_orient[m]['pc'] = oo_pc print("- read metrics for continous motion") cont_metrics = {} cont_rot_fn = os.path.join(res_dir, 'metric_cont_rot_{}.txt'.format(nm)) if os.path.exists(cont_rot_fn): cont_trans_fn = os.path.join(res_dir, 'metric_cont_trans_{}.txt'.format(nm)) assert os.path.exists(cont_trans_fn) cont_metrics['rot'] = {} cont_rot = np.loadtxt(cont_rot_fn) assert cont_rot.shape[0] == 2 print(Style.DIM + "{} rotations.".format(cont_rot.shape[1])) cont_metrics['rot']['map'] = cont_rot[0].ravel().tolist() cont_metrics['rot']['pc'] = cont_rot[1].ravel().tolist() cont_metrics['trans'] = {} cont_trans = np.loadtxt(cont_trans_fn) assert cont_trans.shape[0] == 2 print(Style.DIM + "{} translations.".format(cont_trans.shape[1])) cont_metrics['trans']['map'] = cont_trans[0].ravel().tolist() cont_metrics['trans']['pc'] = cont_trans[1].ravel().tolist() else: print(Fore.RED + "Nothing found.") return {"general_info": general_info, 'fim': fim, 't_query': t_query, 'optim_orient': optim_orient, 'cont_metrics': cont_metrics} def _writeComplexityTable(nm_to_res, pc_res_key, selected_nms, nm_to_label, complexity_table_fn): sel_labels = [nm_to_label[v] for v in selected_nms] with open(complexity_table_fn, 'w') as f: f.write('# PC {}\n'.format(' '.join(sel_labels))) # construction time f.write('t_construct (sec) ') f.write('- ') for nm in selected_nms: f.write('{} '.format(nm_to_res[nm]['general_info']['t_construct'])) f.write('\n') # memory f.write('memory (MB) ') f.write('{:.2f} '.format(nm_to_res[pc_res_key]['general_info']['pc_mem_kb'] / 1024.0)) for nm in selected_nms: f.write('{:.2f} '.format(nm_to_res[nm]['general_info']['ker_mem_kb'] / 1024.0)) f.write('\n') # query # fim f.write('# query (us)\n') f.write('fim ') f.write('{:.1f} '.format(nm_to_res[pc_res_key]['fim']['pc_time_mean'] * kSecToUs)) for nm in selected_nms: fim_res = nm_to_res[nm]['fim'] if 'map_time' not in fim_res: f.write('- ') else: f.write('{:.1f} '.format(fim_res['map_time_mean'] * kSecToUs)) f.write('\n') # metrics for m in kMetrics: f.write('{} '.format(m)) f.write('{:.1f} '.format(nm_to_res[pc_res_key]['t_query'][m]['pc_mean'] * kSecToUs)) for nm in selected_nms: t_query = nm_to_res[nm]['t_query'] if m not in t_query: f.write('- ') else: f.write('{:.1f} '.format(t_query[m]['map_mean'] * kSecToUs)) f.write('\n') def _computeAndWriteFIMDiff(nm_to_res, selected_nms, nm_to_label, top_save_dir=None): fim_fro_diff = {} sel_labels = [nm_to_label[v] for v in selected_nms] for nm in selected_nms: print('- calculating {}'.format(nm)) fim_pc = nm_to_res[nm]['fim']['pc'] fim_map = nm_to_res[nm]['fim']['map'] fim_diff_perc = [] for fim_pc_i, fim_map_i in zip(fim_pc, fim_map): fro_pc_i = np.linalg.norm(fim_pc_i) fro_dfim_i = np.linalg.norm(fim_map_i - fim_pc_i) fim_diff_perc.append(fro_dfim_i / fro_pc_i * 100) if top_save_dir: with open(os.path.join(top_save_dir, 'fim_fro_diff_perc_{}.txt'.format(nm)), 'w') as f: f.write('# each item is one percentage of FIM difference w.r.t. point cloud\n') f.write('{}'.format(' '.join(['{:.2f}'.format(v) for v in fim_diff_perc]))) fim_fro_diff[nm] = fim_diff_perc print(Style.DIM + "* {}: {} ({})".format(nm, np.median(fim_diff_perc), np.std(fim_diff_perc))) if top_save_dir: print('- writing table') with open(os.path.join(top_save_dir, 'fim_fro_diff_table.txt'), 'w') as f: f.write('# Median (std): {}\n'.format(' '.join(sel_labels))) for nm in selected_nms: diff_perc = fim_fro_diff[nm] f.write("{} ({}) ".format(np.median(diff_perc), np.std(diff_perc))) return fim_fro_diff def _boxplotFIMDiffs(nm_to_fim_diff_perc, names, nm_to_label, top_save_dir): xlabels = [nm_to_label[v] for v in names] data_labels = ['FIM Diff'] colors = [kPallete[0]] data = [] for nm in names: data.append(nm_to_fim_diff_perc[nm]) fig = plt.figure(figsize=(12, 6)) ax = fig.add_subplot(111) pu.boxplot_compare(ax, xlabels, [data], data_labels, colors, legend=False) ax.set_ylabel("FIM diff. (\%)") plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor") plt.tight_layout() fig.savefig(os.path.join(top_save_dir, 'fim_diffs_boxplot.png'), bbox_inches='tight') def _computeAndWriteOptimalOrientDiff(nm_to_res, selected_nms, nm_to_label, top_save_dir=None): orient_diffs = {} for nm in selected_nms: print('- calculating {} ...'.format(nm)) orient_diff_per_metric = {} oo_results = nm_to_res[nm]['optim_orient'] for m in kMetrics: diffs_i = [] for o_map, o_pc in zip(oo_results[m]['map'], oo_results[m]['pc']): cos_val = max(-1.0, min(1.0, np.dot(o_map, o_pc) / (np.linalg.norm(o_map) * np.linalg.norm(o_pc)))) diffs_i.append(np.rad2deg(np.arccos(cos_val))) print(Style.DIM + "{}: {} ({})".format(m, np.median(diffs_i), np.std(diffs_i))) orient_diff_per_metric[m] = diffs_i orient_diffs[nm] = orient_diff_per_metric if top_save_dir: with open(os.path.join(top_save_dir, 'orient_diffs_{}.txt'.format(nm)), 'w') as f: for m in kMetrics: f.write('{} {}\n'.format(m, ' '.join([str(v) for v in orient_diff_per_metric[m]]))) return orient_diffs def _boxplotOrientDiffs(orient_diffs, names, nm_to_label, top_save_dir): xlabels = kMetricsLabels data_labels = [nm_to_label[v] for v in names] colors = [kPallete[i] for i, v in enumerate(names)] data = [] for nm in names: data_i = [] for m in kMetrics: data_i.append(orient_diffs[nm][m]) data.append(data_i) fig = plt.figure(figsize=(12, 6)) ax = fig.add_subplot(111) pu.boxplot_compare(ax, xlabels, data, data_labels, colors) ax.set_ylabel("Orientation diff. (deg)") plt.tight_layout() fig.savefig(os.path.join(top_save_dir, 'orient_diffs_boxplot.png'), bbox_inches='tight') def _compareContinuousMotion(nm_to_res, selected_nms, nm_to_label, top_save_dir): pc_cont_motion_res = nm_to_res[selected_nms[0]] pc_rot_metrics = logAndNormalize(pc_cont_motion_res['cont_metrics']['rot']['pc']) pc_trans_metrics = logAndNormalize(pc_cont_motion_res['cont_metrics']['trans']['pc']) fig_rot = plt.figure(figsize=(8, 6)) ax_rot = fig_rot.add_subplot(111) ax_rot.plot(pc_rot_metrics, label='Point Cloud') for nm_i in selected_nms: ax_rot.plot(logAndNormalize(nm_to_res[nm_i]['cont_metrics'] ['rot']['map']), label=nm_to_label[nm_i]) ax_rot.set_xticks([]) ax_rot.set_xlabel('Continuous Rotation') ax_rot.set_ylabel('Normalized Det.') plt.legend() plt.tight_layout() fig_rot.savefig(os.path.join(top_save_dir, 'continuous_rotation.png'), bbox_inches='tight') fig_trans = plt.figure(figsize=(8, 6)) ax_trans = fig_trans.add_subplot(111) ax_trans.plot(pc_trans_metrics, label='Point Cloud') for nm_i in selected_nms: ax_trans.plot(logAndNormalize(nm_to_res[nm_i] ['cont_metrics']['trans']['map']), label=nm_to_label[nm_i]) ax_trans.set_xticks([]) ax_trans.set_xlabel('Continuous Translation') # ax_trans.set_ylabel('Normalized Det.') # plt.legend() plt.tight_layout() fig_trans.savefig(os.path.join(top_save_dir, 'continuous_translation.png'), bbox_inches='tight') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--res_dir', required=True) parser.add_argument('--analyze_config', required=True) parser.add_argument('--save_dir', type=str, default='analysis_results') parser.add_argument('--pc_res_key', type=str, default='quad_info_0p5') parser.set_defaults(map_names=['quad_info', 'quad_trace', 'gp_info', 'gp_trace']) args = parser.parse_args() print(Fore.YELLOW + args.__dict__.__str__()) with open(args.analyze_config, 'r') as f: cfg = yaml.load(f, Loader=yaml.FullLoader) print("Read configurations:\n{}".format(cfg)) map_names = [] map_nm_to_label = {} for d in cfg['all_maps']: map_nm_to_label.update(d) for k in d: map_names.append(k) print(Fore.GREEN + "Maps to compare:\n- {}".format('\n- '.join(map_names))) print(Fore.GREEN + "Labels:\n{}".format(map_nm_to_label)) fim_map_nms = [v for v in map_names if 'info' in v] compare_orient_map_nms = [v for v in map_names if 'info' in v] compare_cont_motion_map_nms = [v for v in map_names if 'info' in v] print("Will analyze FIM for {}".format(fim_map_nms)) print("Will compare orientations for {}".format(compare_orient_map_nms)) print("Will compare cont. motion for {}".format(compare_cont_motion_map_nms)) save_dir = os.path.join(args.res_dir, args.save_dir) if not os.path.exists(save_dir): os.makedirs(save_dir) else: print(Fore.RED + "Save folder exists, will re-use and overwrite.") print("Going to save to {}".format(save_dir)) map_nm_to_res = {} for map_nm in map_names: print(Fore.GREEN + "====> Reading {}...".format(map_nm)) map_nm_to_res[map_nm] = readResults(args.res_dir, map_nm) print(Fore.YELLOW + Style.BRIGHT + "Start analysis.") print(Fore.GREEN + "1. Table of complexity.") _writeComplexityTable(map_nm_to_res, args.pc_res_key, map_names, map_nm_to_label, os.path.join(save_dir, 'complexity_table.txt')) print(Fore.GREEN + "2. FIM difference.") map_nm_to_fim_diff_perc = _computeAndWriteFIMDiff( map_nm_to_res, fim_map_nms, map_nm_to_label, save_dir) _boxplotFIMDiffs(map_nm_to_fim_diff_perc, fim_map_nms, map_nm_to_label, save_dir) print(Fore.GREEN + "3. Optimal views.") map_nm_to_orient_diff = _computeAndWriteOptimalOrientDiff( map_nm_to_res, compare_orient_map_nms, map_nm_to_label, save_dir) _boxplotOrientDiffs(map_nm_to_orient_diff, compare_orient_map_nms, map_nm_to_label, save_dir) print(Fore.GREEN + "4. Continous motion.") _compareContinuousMotion(map_nm_to_res, compare_cont_motion_map_nms, map_nm_to_label, save_dir) print(Fore.GREEN + Style.BRIGHT + "Start processing specified subsets...") sel_dir = os.path.join(save_dir, 'selected_results') if not os.path.exists(sel_dir): os.makedirs(sel_dir) if 'sel_complexity_table_entries' in cfg: print(Fore.GREEN + "- complexity table") _writeComplexityTable(map_nm_to_res, args.pc_res_key, cfg['sel_complexity_table_entries'], map_nm_to_label, os.path.join( sel_dir, 'complexity_table.txt')) if 'sel_fro_norm_table_entries' in cfg: print(Fore.GREEN + "- FIM diff. table") sel_fim_nms = cfg['sel_fro_norm_table_entries'] sel_nm_to_fim_diff = _computeAndWriteFIMDiff( map_nm_to_res, sel_fim_nms, map_nm_to_label, sel_dir) _boxplotFIMDiffs(sel_nm_to_fim_diff, sel_fim_nms, map_nm_to_label, sel_dir) if 'sel_hist_orient_entries' in cfg: sel_orient_nms = cfg['sel_hist_orient_entries'] print(Fore.GREEN + "- Orientation diff.") sel_nm_to_orient_diff = _computeAndWriteOptimalOrientDiff( map_nm_to_res, sel_orient_nms, map_nm_to_label, sel_dir) _boxplotOrientDiffs(sel_nm_to_orient_diff, sel_orient_nms, map_nm_to_label, sel_dir) if 'sel_cont_motion_plot' in cfg: print(Fore.GREEN + "- continuous motion") _compareContinuousMotion( map_nm_to_res, cfg['sel_cont_motion_plot'], map_nm_to_label, sel_dir)
41.505882
129
0.626361
0
0
0
0
0
0
0
0
3,335
0.189059
35fbe8e8b4f1e1aa102f85306945ce878960b4de
52
py
Python
tests/conftest.py
grintor/Hello-Wolrd-CI
1f1b8c40f55d0b35cd73601ed90567a84abf03db
[ "Apache-2.0" ]
null
null
null
tests/conftest.py
grintor/Hello-Wolrd-CI
1f1b8c40f55d0b35cd73601ed90567a84abf03db
[ "Apache-2.0" ]
null
null
null
tests/conftest.py
grintor/Hello-Wolrd-CI
1f1b8c40f55d0b35cd73601ed90567a84abf03db
[ "Apache-2.0" ]
null
null
null
# see: https://stackoverflow.com/a/34520971/3238695
26
51
0.769231
0
0
0
0
0
0
0
0
51
0.980769
35fc69cf4551ec557452a3db41e67d9efead2ebf
1,318
py
Python
Files/SpeechRecognition/speechDandR.py
JahnaviDoneria/HomeAutomationSystem
0419ba4a0fefd16b9a5c7a19fef7897d76850dc2
[ "MIT" ]
null
null
null
Files/SpeechRecognition/speechDandR.py
JahnaviDoneria/HomeAutomationSystem
0419ba4a0fefd16b9a5c7a19fef7897d76850dc2
[ "MIT" ]
null
null
null
Files/SpeechRecognition/speechDandR.py
JahnaviDoneria/HomeAutomationSystem
0419ba4a0fefd16b9a5c7a19fef7897d76850dc2
[ "MIT" ]
1
2020-01-20T13:04:55.000Z
2020-01-20T13:04:55.000Z
import json import apiai import speech_recognition as sr def speechRecognition(): recog = sr.Recognizer() with sr.Microphone() as source: print("It's your cue") audio = recog.listen(source) i = True while i is True: try: text = recog.recognize_google(audio) i = False speechPrediction(text) except sr.UnknownValueError: print("Please speak again") except sr.RequestError: print("Please check your connection") def speechPrediction(text): CLIENT_ACCESS_TOKEN = "6bcf8d38ee7344989af9aee9b0ffee11" DEVELOPER_ACCESS_TOKEN = "cae24c147f4d4af0b58ebbed1d97ad1b" ai = apiai.ApiAI(CLIENT_ACCESS_TOKEN) requests = ai.text_request() requests.query = text requests.lang = "en" response = requests.getresponse() print(response) intent,room = JSONresponse(response) return intent,room def JSONresponse(response): json_response = json.loads(response.read().decode('utf-8')) intent= [] room= [] print(json_response) print('...') result = json_response['result'] intent = result['action'] print(intent) room_result = result['parameters'] room = room_result['room'] print(room) return intent,room #speechRecognition()
23.122807
63
0.651745
0
0
0
0
0
0
0
0
203
0.154021
35fcbb05f8e3b57b8ab5311822807b3114647a9f
4,667
py
Python
mylib/dataset/coco.py
duducheng/deeplabv3p_gluon
fd8e3e8d834838a9a221785b825499c62cee578f
[ "Apache-2.0" ]
66
2018-07-20T04:01:41.000Z
2021-11-08T10:40:49.000Z
mylib/dataset/coco.py
duducheng/deeplabv3p_gluon
fd8e3e8d834838a9a221785b825499c62cee578f
[ "Apache-2.0" ]
6
2018-08-16T08:06:39.000Z
2020-11-28T13:07:21.000Z
mylib/dataset/coco.py
duducheng/deeplabv3p_gluon
fd8e3e8d834838a9a221785b825499c62cee578f
[ "Apache-2.0" ]
11
2018-07-20T18:00:29.000Z
2020-04-28T15:21:58.000Z
# raise NotImplementedError("Did not check!") """MSCOCO Semantic Segmentation pretraining for VOC.""" import os from tqdm import trange from PIL import Image, ImageOps, ImageFilter import numpy as np import pickle from gluoncv.data.segbase import SegmentationDataset class COCOSegmentation(SegmentationDataset): CAT_LIST = [0, 5, 2, 16, 9, 44, 6, 3, 17, 62, 21, 67, 18, 19, 4, 1, 64, 20, 63, 7, 72] NUM_CLASS = 21 def __init__(self, root=os.path.expanduser('~/.mxnet/datasets/coco'), split='train', mode=None, transform=None): super(COCOSegmentation, self).__init__(root, split, mode, transform) from pycocotools.coco import COCO from pycocotools import mask if split == 'train': print('train set') ann_file = os.path.join(root, 'annotations/instances_train2017.json') ids_file = os.path.join(root, 'annotations/train_ids.mx') self.root = os.path.join(root, 'train2017') else: print('val set') ann_file = os.path.join(root, 'annotations/instances_val2017.json') ids_file = os.path.join(root, 'annotations/val_ids.mx') self.root = os.path.join(root, 'val2017') self.coco = COCO(ann_file) self.coco_mask = mask if os.path.exists(ids_file): with open(ids_file, 'rb') as f: self.ids = pickle.load(f) else: ids = list(self.coco.imgs.keys()) self.ids = self._preprocess(ids, ids_file) self.transform = transform # self.root = os.path.join(root, 'train2017') if split == 'train' else \ # os.path.join(root, 'val2017') def __getitem__(self, index): coco = self.coco img_id = self.ids[index] img_metadata = coco.loadImgs(img_id)[0] path = img_metadata['file_name'] img = Image.open(os.path.join(self.root, path)).convert('RGB') cocotarget = coco.loadAnns(coco.getAnnIds(imgIds=img_id)) mask = Image.fromarray(self._gen_seg_mask(cocotarget, img_metadata['height'], img_metadata['width'])) # synchrosized transform if self.mode == 'train': img, mask = self._sync_transform(img, mask) elif self.mode == 'val': img, mask = self._val_sync_transform(img, mask) else: assert self.mode == 'testval' mask = self._mask_transform(mask) # general resize, normalize and toTensor if self.transform is not None: img = self.transform(img) return img, mask def __len__(self): return len(self.ids) def _gen_seg_mask(self, target, h, w): mask = np.zeros((h, w), dtype=np.uint8) coco_mask = self.coco_mask for instance in target: rle = coco_mask.frPyObjects(instance['segmentation'], h, w) m = coco_mask.decode(rle) cat = instance['category_id'] if cat in self.CAT_LIST: c = self.CAT_LIST.index(cat) else: continue if len(m.shape) < 3: mask[:, :] += (mask == 0) * (m * c) else: mask[:, :] += (mask == 0) * (((np.sum(m, axis=2)) > 0) * c).astype(np.uint8) return mask def _preprocess(self, ids, ids_file): print("Preprocessing mask, this will take a while." + \ "But don't worry, it only run once for each split.") tbar = trange(len(ids)) new_ids = [] for i in tbar: img_id = ids[i] cocotarget = self.coco.loadAnns(self.coco.getAnnIds(imgIds=img_id)) img_metadata = self.coco.loadImgs(img_id)[0] mask = self._gen_seg_mask(cocotarget, img_metadata['height'], img_metadata['width']) # more than 1k pixels if (mask > 0).sum() > 1000: new_ids.append(img_id) tbar.set_description('Doing: {}/{}, got {} qualified images'. \ format(i, len(ids), len(new_ids))) print('Found number of qualified images: ', len(new_ids)) with open(ids_file, 'wb') as f: pickle.dump(new_ids, f) return new_ids @property def classes(self): """Category names.""" return ('background', 'airplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorcycle', 'person', 'potted-plant', 'sheep', 'sofa', 'train', 'tv')
40.582609
92
0.555817
4,395
0.941718
0
0
329
0.070495
0
0
948
0.203128
35fd4da34b0954ed2f821de46d87379191733efa
1,045
py
Python
find_other_news_sources.py
sr33/OtherNewsSources
17857381a5690d5e89d4a034f1fc60f61c2377dc
[ "MIT" ]
10
2015-07-17T09:57:38.000Z
2020-05-24T20:09:20.000Z
find_other_news_sources.py
sr33/OtherNewsSources
17857381a5690d5e89d4a034f1fc60f61c2377dc
[ "MIT" ]
null
null
null
find_other_news_sources.py
sr33/OtherNewsSources
17857381a5690d5e89d4a034f1fc60f61c2377dc
[ "MIT" ]
null
null
null
# __author__ = 'sree' import urllib2 from lxml import html import requests def get_page_tree(url=None): page = requests.get(url=url, verify=False) return html.fromstring(page.text) def get_title(url=None): tree = get_page_tree(url=url) return tree.xpath('//title//text()')[0].strip().split(' -')[0] def find_other_news_sources(url=None, title=None): # Google forwards the url using <google_domain>/url?q=<actual_link>. This might change over time forwarding_identifier = '/url?q=' if not title: title = get_title(url=url) parent_url_exclude = '-site:' + url google_news_search_url = 'http://www.google.com/search?q=' + urllib2.quote(title) + parent_url_exclude + '&tbm=nws' google_news_search_tree = get_page_tree(url=google_news_search_url) other_news_sources_links = [a_link.replace(forwarding_identifier, '').split('&')[0] for a_link in google_news_search_tree.xpath('//a//@href') if forwarding_identifier in a_link] return other_news_sources_links
40.192308
119
0.702392
0
0
0
0
0
0
0
0
215
0.205742
35fda7f9b73a414c879824f59fa81da72f267f5a
35,235
py
Python
code/client/munkilib/adobeutils/adobeinfo.py
Rippling/munki
115832687d4411ca825202ec82d9a27053fef7c8
[ "Apache-2.0" ]
1
2021-10-06T12:56:14.000Z
2021-10-06T12:56:14.000Z
code/client/munkilib/adobeutils/adobeinfo.py
Rippling/munki
115832687d4411ca825202ec82d9a27053fef7c8
[ "Apache-2.0" ]
null
null
null
code/client/munkilib/adobeutils/adobeinfo.py
Rippling/munki
115832687d4411ca825202ec82d9a27053fef7c8
[ "Apache-2.0" ]
null
null
null
# encoding: utf-8 # Copyright 2009-2020 Greg Neagle. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ adobeutils.adobeinfo Created by Greg Neagle on 2017-01-06. Utilities to get info about Adobe installers/uninstallers """ from __future__ import absolute_import, print_function import os import json import sqlite3 from glob import glob from xml.dom import minidom from .. import osutils from .. import pkgutils def find_install_app(dirpath): '''Searches dirpath and enclosed directories for Install.app. Returns the path to the actual executable.''' for (path, dummy_dirs, dummy_files) in os.walk(dirpath): if path.endswith("Install.app"): setup_path = os.path.join(path, "Contents", "MacOS", "Install") if os.path.exists(setup_path): return setup_path return '' def find_setup_app(dirpath): '''Search dirpath and enclosed directories for Setup.app. Returns the path to the actual executable.''' for (path, dummy_dirs, dummy_files) in os.walk(dirpath): if path.endswith("Setup.app"): setup_path = os.path.join(path, "Contents", "MacOS", "Setup") if os.path.exists(setup_path): return setup_path return '' def find_adobepatchinstaller_app(dirpath): '''Searches dirpath and enclosed directories for AdobePatchInstaller.app. Returns the path to the actual executable.''' for (path, dummy_dirs, dummy_files) in os.walk(dirpath): if path.endswith("AdobePatchInstaller.app"): setup_path = os.path.join( path, "Contents", "MacOS", "AdobePatchInstaller") if os.path.exists(setup_path): return setup_path return '' def find_adobe_deployment_manager(dirpath): '''Searches dirpath and enclosed directories for AdobeDeploymentManager. Returns path to the executable.''' for (path, dummy_dirs, dummy_files) in os.walk(dirpath): if path.endswith("pkg/Contents/Resources"): dm_path = os.path.join(path, "AdobeDeploymentManager") if os.path.exists(dm_path): return dm_path return '' def find_acrobat_patch_app(dirpath): '''Attempts to find an AcrobatPro patching application in dirpath. If found, returns the path to the bundled patching script.''' for (path, dummy_dirs, dummy_files) in os.walk(dirpath): if path.endswith(".app"): # look for Adobe's patching script patch_script_path = os.path.join( path, 'Contents', 'Resources', 'ApplyOperation.py') if os.path.exists(patch_script_path): return path return '' def get_payload_info(dirpath): '''Parses Adobe payloads, pulling out info useful to munki. .proxy.xml files are used if available, or for CC-era updates which do not contain one, the Media_db.db file, which contains identical XML, is instead used. CS3/CS4: contain only .proxy.xml CS5/CS5.5/CS6: contain both CC: contain only Media_db.db''' payloadinfo = {} # look for .proxy.xml file dir if os.path.isdir(dirpath): proxy_paths = glob(os.path.join(dirpath, '*.proxy.xml')) if proxy_paths: xmlpath = proxy_paths[0] dom = minidom.parse(xmlpath) # if there's no .proxy.xml we should hope there's a Media_db.db else: db_path = os.path.join(dirpath, 'Media_db.db') if os.path.exists(db_path): conn = sqlite3.connect(db_path) cur = conn.cursor() cur.execute("SELECT value FROM PayloadData WHERE " "PayloadData.key = 'PayloadInfo'") result = cur.fetchone() cur.close() if result: info_xml = result[0].encode('UTF-8') dom = minidom.parseString(info_xml) else: # no xml, no db, no payload info! return payloadinfo payload_info = dom.getElementsByTagName('PayloadInfo') if payload_info: installer_properties = payload_info[0].getElementsByTagName( 'InstallerProperties') if installer_properties: properties = installer_properties[0].getElementsByTagName( 'Property') for prop in properties: if 'name' in list(prop.attributes.keys()): propname = prop.attributes['name'].value.encode('UTF-8') propvalue = '' for node in prop.childNodes: propvalue += node.nodeValue if propname == 'AdobeCode': payloadinfo['AdobeCode'] = propvalue if propname == 'ProductName': payloadinfo['display_name'] = propvalue if propname == 'ProductVersion': payloadinfo['version'] = propvalue installmetadata = payload_info[0].getElementsByTagName( 'InstallDestinationMetadata') if installmetadata: totalsizes = installmetadata[0].getElementsByTagName( 'TotalSize') if totalsizes: installsize = '' for node in totalsizes[0].childNodes: installsize += node.nodeValue payloadinfo['installed_size'] = int(int(installsize)/1024) return payloadinfo def get_adobe_setup_info(installroot): '''Given the root of mounted Adobe DMG, look for info about the installer or updater''' info = {} payloads = [] # look for all the payloads folders for (path, dummy_dirs, dummy_files) in os.walk(installroot): if path.endswith('/payloads'): driverfolder = '' media_signature = '' setupxml = os.path.join(path, 'setup.xml') if os.path.exists(setupxml): dom = minidom.parse(setupxml) drivers = dom.getElementsByTagName('Driver') if drivers: driver = drivers[0] if 'folder' in list(driver.attributes.keys()): driverfolder = driver.attributes[ 'folder'].value.encode('UTF-8') if driverfolder == '': # look for mediaSignature (CS5 AAMEE install) setup_elements = dom.getElementsByTagName('Setup') if setup_elements: media_signature_elements = setup_elements[ 0].getElementsByTagName('mediaSignature') if media_signature_elements: element = media_signature_elements[0] for node in element.childNodes: media_signature += node.nodeValue for item in osutils.listdir(path): payloadpath = os.path.join(path, item) payloadinfo = get_payload_info(payloadpath) if payloadinfo: payloads.append(payloadinfo) if ((driverfolder and item == driverfolder) or (media_signature and payloadinfo['AdobeCode'] == media_signature)): info['display_name'] = payloadinfo['display_name'] info['version'] = payloadinfo['version'] info['AdobeSetupType'] = 'ProductInstall' if not payloads: # look for an extensions folder; almost certainly this is an Updater for (path, dummy_dirs, dummy_files) in os.walk(installroot): if path.endswith("/extensions"): for item in osutils.listdir(path): #skip LanguagePacks if item.find("LanguagePack") == -1: itempath = os.path.join(path, item) payloadinfo = get_payload_info(itempath) if payloadinfo: payloads.append(payloadinfo) # we found an extensions dir, # so no need to keep walking the install root break if payloads: if len(payloads) == 1: info['display_name'] = payloads[0]['display_name'] info['version'] = payloads[0]['version'] else: if 'display_name' not in info: info['display_name'] = "ADMIN: choose from payloads" if 'version' not in info: info['version'] = "ADMIN please set me" info['payloads'] = payloads installed_size = 0 for payload in payloads: installed_size = installed_size + payload.get('installed_size', 0) info['installed_size'] = installed_size return info def get_adobe_package_info(installroot): '''Gets the package name from the AdobeUberInstaller.xml file; other info from the payloads folder''' info = get_adobe_setup_info(installroot) info['description'] = "" installerxml = os.path.join(installroot, "AdobeUberInstaller.xml") if os.path.exists(installerxml): description = '' dom = minidom.parse(installerxml) installinfo = dom.getElementsByTagName("InstallInfo") if installinfo: packagedescriptions = \ installinfo[0].getElementsByTagName("PackageDescription") if packagedescriptions: prop = packagedescriptions[0] for node in prop.childNodes: description += node.nodeValue if description: description_parts = description.split(' : ', 1) info['display_name'] = description_parts[0] if len(description_parts) > 1: info['description'] = description_parts[1] else: info['description'] = "" return info else: installerxml = os.path.join(installroot, "optionXML.xml") if os.path.exists(installerxml): dom = minidom.parse(installerxml) installinfo = dom.getElementsByTagName("InstallInfo") if installinfo: pkgname_elems = installinfo[0].getElementsByTagName( "PackageName") if pkgname_elems: prop = pkgname_elems[0] pkgname = "" for node in prop.childNodes: pkgname += node.nodeValue info['display_name'] = pkgname if not info.get('display_name'): info['display_name'] = os.path.basename(installroot) return info def get_xml_text_element(dom_node, name): '''Returns the text value of the first item found with the given tagname''' value = None subelements = dom_node.getElementsByTagName(name) if subelements: value = '' for node in subelements[0].childNodes: value += node.nodeValue return value def parse_option_xml(option_xml_file): '''Parses an optionXML.xml file and pulls the items of interest, returning them in a dictionary''' info = {} dom = minidom.parse(option_xml_file) installinfo = dom.getElementsByTagName('InstallInfo') if installinfo: if 'id' in list(installinfo[0].attributes.keys()): info['packager_id'] = installinfo[0].attributes['id'].value if 'version' in list(installinfo[0].attributes.keys()): info['packager_version'] = installinfo[ 0].attributes['version'].value info['package_name'] = get_xml_text_element( installinfo[0], 'PackageName') info['package_id'] = get_xml_text_element(installinfo[0], 'PackageID') info['products'] = [] # CS5 to CC 2015.0-2015.2 releases use RIBS, and we retrieve a # display name, version and 'mediaSignature' for building installs # items. SAPCode is also stored so that we can later search by this # key across both RIBS and HyperDrive installer metadata. medias_elements = installinfo[0].getElementsByTagName('Medias') if medias_elements: media_elements = medias_elements[0].getElementsByTagName('Media') if media_elements: for media in media_elements: product = {} product['prodName'] = get_xml_text_element( media, 'prodName') product['prodVersion'] = get_xml_text_element( media, 'prodVersion') product['SAPCode'] = get_xml_text_element(media, 'SAPCode') setup_elements = media.getElementsByTagName('Setup') if setup_elements: media_signature_elements = setup_elements[ 0].getElementsByTagName('mediaSignature') if media_signature_elements: product['mediaSignature'] = '' element = media_signature_elements[0] for node in element.childNodes: product['mediaSignature'] += node.nodeValue info['products'].append(product) # HD (HyperDrive) media for new mid-June 2016 products. We need the # SAP codes, versions, and which ones are MediaType 'Product'. Support # payloads seem to all be 'STI', and are listed as STIDependencies under # the main product. hd_medias_elements = installinfo[0].getElementsByTagName('HDMedias') if hd_medias_elements: hd_media_elements = hd_medias_elements[0].getElementsByTagName( 'HDMedia') if hd_media_elements: for hd_media in hd_media_elements: product = {} product['hd_installer'] = True # productVersion is the 'full' version number # prodVersion seems to be the "customer-facing" version for # this update # baseVersion is the first/base version for this standalone # product/channel/LEID, # not really needed here so we don't copy it for elem in [ 'mediaLEID', 'prodVersion', 'productVersion', 'SAPCode', 'MediaType', 'TargetFolderName']: product[elem] = get_xml_text_element(hd_media, elem) info['products'].append(product) return info def get_hd_installer_info(hd_payload_root, sap_code): '''Attempts to extract some information from a HyperDrive payload application.json file and return a reduced set in a dict''' hd_app_info = {} app_json_path = os.path.join(hd_payload_root, sap_code, 'Application.json') json_info = json.loads(open(app_json_path, 'r').read()) # Copy some useful top-level keys, useful later for: # - Name: display_name pkginfo key # - ProductVersion: version pkginfo key and uninstall XML location # - SAPCode: an uninstallXml for an installs item if it's a 'core' Type # - BaseVersion and version: not currently used but may be useful once # there are more HD installers in the future for key in ['BaseVersion', 'Name', 'ProductVersion', 'SAPCode', 'version']: hd_app_info[key] = json_info[key] hd_app_info['SAPCode'] = json_info['SAPCode'] # Adobe puts an array of dicts in a dict with one key called 'Package' pkgs = [pkg for pkg in json_info['Packages']['Package']] hd_app_info['Packages'] = pkgs return hd_app_info def get_cs5_media_signature(dirpath): '''Returns the CS5 mediaSignature for an AAMEE CS5 install. dirpath is typically the root of a mounted dmg''' payloads_dir = "" # look for a payloads folder for (path, dummy_dirs, dummy_files) in os.walk(dirpath): if path.endswith('/payloads'): payloads_dir = path # return empty-handed if we didn't find a payloads folder if not payloads_dir: return '' # now look for setup.xml setupxml = os.path.join(payloads_dir, 'Setup.xml') if os.path.exists(setupxml) and os.path.isfile(setupxml): # parse the XML dom = minidom.parse(setupxml) setup_elements = dom.getElementsByTagName('Setup') if setup_elements: media_signature_elements = ( setup_elements[0].getElementsByTagName('mediaSignature')) if media_signature_elements: element = media_signature_elements[0] elementvalue = '' for node in element.childNodes: elementvalue += node.nodeValue return elementvalue return "" def get_cs5_uninstall_xml(option_xml_file): '''Gets the uninstall deployment data from a CS5 installer''' xml = '' dom = minidom.parse(option_xml_file) deployment_info = dom.getElementsByTagName('DeploymentInfo') if deployment_info: for info_item in deployment_info: deployment_uninstall = info_item.getElementsByTagName( 'DeploymentUninstall') if deployment_uninstall: deployment_data = deployment_uninstall[0].getElementsByTagName( 'Deployment') if deployment_data: deployment = deployment_data[0] xml += deployment.toxml('UTF-8') return xml def count_payloads(dirpath): '''Attempts to count the payloads in the Adobe installation item. Used for rough percent-done progress feedback.''' count = 0 for (path, dummy_dirs, files) in os.walk(dirpath): if path.endswith("/payloads"): # RIBS-style installers for subitem in osutils.listdir(path): subitempath = os.path.join(path, subitem) if os.path.isdir(subitempath): count = count + 1 elif "/HD/" in path and "Application.json" in files: # we're inside an HD installer directory. The payloads/packages # are .zip files zip_file_count = len( [item for item in files if item.endswith(".zip")]) count = count + zip_file_count return count def get_adobe_install_info(installdir): '''Encapsulates info used by the Adobe Setup/Install app.''' adobe_install_info = {} if installdir: adobe_install_info['media_signature'] = get_cs5_media_signature( installdir) adobe_install_info['payload_count'] = count_payloads(installdir) option_xml_file = os.path.join(installdir, "optionXML.xml") if os.path.exists(option_xml_file): adobe_install_info['uninstallxml'] = get_cs5_uninstall_xml( option_xml_file) return adobe_install_info # Disable PyLint complaining about 'invalid' camelCase names # pylint: disable=invalid-name def getAdobeCatalogInfo(mountpoint, pkgname=""): '''Used by makepkginfo to build pkginfo data for Adobe installers/updaters''' # look for AdobeDeploymentManager (AAMEE installer) deploymentmanager = find_adobe_deployment_manager(mountpoint) if deploymentmanager: dirpath = os.path.dirname(deploymentmanager) option_xml_file = os.path.join(dirpath, 'optionXML.xml') option_xml_info = {} if os.path.exists(option_xml_file): option_xml_info = parse_option_xml(option_xml_file) cataloginfo = get_adobe_package_info(dirpath) if cataloginfo: # add some more data if option_xml_info.get('packager_id') == u'CloudPackager': # CCP package cataloginfo['display_name'] = option_xml_info.get( 'package_name', 'unknown') cataloginfo['name'] = cataloginfo['display_name'].replace( ' ', '') cataloginfo['uninstallable'] = True cataloginfo['uninstall_method'] = "AdobeCCPUninstaller" cataloginfo['installer_type'] = "AdobeCCPInstaller" cataloginfo['minimum_os_version'] = "10.6.8" mediasignatures = [ item['mediaSignature'] for item in option_xml_info.get('products', []) if 'mediaSignature' in item] else: # AAMEE package cataloginfo['name'] = cataloginfo['display_name'].replace( ' ', '') cataloginfo['uninstallable'] = True cataloginfo['uninstall_method'] = "AdobeCS5AAMEEPackage" cataloginfo['installer_type'] = "AdobeCS5AAMEEPackage" cataloginfo['minimum_os_version'] = "10.5.0" cataloginfo['adobe_install_info'] = get_adobe_install_info( installdir=dirpath) mediasignature = cataloginfo['adobe_install_info'].get( "media_signature") mediasignatures = [mediasignature] # Determine whether we have HD media as well in this installer hd_metadata_dirs = [ product['TargetFolderName'] for product in option_xml_info['products'] if product.get('hd_installer')] hd_app_infos = [] for sap_code in hd_metadata_dirs: hd_app_info = get_hd_installer_info( os.path.join(dirpath, 'HD'), sap_code) hd_app_infos.append(hd_app_info) # 'installs' array will be populated if we have either RIBS # or HD installers, which may be mixed together in one # CCP package. # Acrobat Pro DC doesn't currently generate any useful installs # info if it's part of a CCP package. installs = [] # media signatures are used for RIBS (CS5 to CC mid-2015) if mediasignatures: # make a default <key>installs</key> array uninstalldir = "/Library/Application Support/Adobe/Uninstall" for mediasignature in mediasignatures: signaturefile = mediasignature + ".db" filepath = os.path.join(uninstalldir, signaturefile) installitem = {} installitem['path'] = filepath installitem['type'] = 'file' installs.append(installitem) # Custom installs items for HD installers seem to need only HDMedias # from optionXML.xml with a MediaType of 'Product' and their # 'core' packages (e.g. language packs are 'non-core') if hd_app_infos: if 'payloads' not in cataloginfo: cataloginfo['payloads'] = [] cataloginfo['payloads'].extend(hd_app_infos) # Calculate installed_size by counting packages in payloads # in these indexed HD medias. installed_size may exist already # if this package contained RIBS payloads, so try reading it # and default to 0. This will typically include several very # small packages (language or regional recommended settings) # which would not actually get installed. These seem to be # no larger than a few MB, so in practice it increases the # 'installed_size' value by only ~1%. installed_size = cataloginfo.get('installed_size', 0) for hd_payload in hd_app_infos: for package in hd_payload['Packages']: # Generally, all app installs will include 1-3 'core' # packages and then additional language/settings/color # packages which are regional or language-specific. # If we filter this by including both unconditional # installs and those which are language/region specific, # we get a rough approximation of the total size of # supplemental packages, as their equivalents for other # languages are very close to the same size. We also # get one included language package which would be the # case for any install. # # Because InDesign CC 2017 is not like any other package # and contains a 'Condition' key but as an empty # string, we explicitly test this case as well. if ('Condition' not in list(package.keys()) or package.get('Condition') == '' or '[installLanguage]==en_US' in package.get('Condition', '')): installed_size += int(package.get( 'ExtractSize', 0) / 1024) # We get much closer to Adobe's "HDSetup" calculated # install space requirement if we include both the # DownloadSize and ExtractSize data # (DownloadSize is just the zip file size) installed_size += int(package.get( 'DownloadSize', 0) / 1024) # Add another 300MB for the CC app and plumbing in case they've # never been installed on the system installed_size += 307200 cataloginfo['installed_size'] = installed_size uninstalldir = ( '/Library/Application Support/Adobe/Installers/uninstallXml' ) product_saps = [ prod['SAPCode'] for prod in option_xml_info['products'] if prod.get('MediaType') == 'Product' ] product_app_infos = [app for app in hd_app_infos if app['SAPCode'] in product_saps] # if we had only a single HD and no legacy apps, set a sane # version and display_name derived from the app's metadata if (len(product_app_infos) == 1) and not mediasignatures: cataloginfo.update({ 'display_name': product_app_infos[0]['Name'], 'version': product_app_infos[0]['ProductVersion'], }) for app_info in product_app_infos: for pkg in app_info['Packages']: # Don't assume 'Type' key always exists. At least the #'AdobeIllustrator20-Settings' # package doesn't have this key set. if pkg.get('Type') == 'core': # We can't use 'ProductVersion' from # Application.json for the part following the # SAPCode, because it's usually too specific and # won't match the "short" product version. # We can take 'prodVersion' from the optionXML.xml # instead. # We filter out any non-HD installers to avoid # matching up the wrong versions for packages that # may contain multiple different major versions of # a given SAPCode pkg_prod_vers = [ prod['prodVersion'] for prod in option_xml_info['products'] if prod.get('hd_installer') and prod['SAPCode'] == app_info['SAPCode']][0] uninstall_file_name = '_'.join([ app_info['SAPCode'], pkg_prod_vers.replace('.', '_'), pkg['PackageName'], pkg['PackageVersion']]) + '.pimx' filepath = os.path.join( uninstalldir, uninstall_file_name) installitem = {} installitem['path'] = filepath installitem['type'] = 'file' installs.append(installitem) if installs: cataloginfo['installs'] = installs return cataloginfo # Look for Install.app (Bare metal CS5 install) # we don't handle this type, but we'll report it # back so makepkginfo can provide an error message # installapp = find_install_app(mountpoint) # if installapp: # cataloginfo = {} # cataloginfo['installer_type'] = "AdobeCS5Installer" # return cataloginfo # Look for AdobePatchInstaller.app (CS5 updater) installapp = find_adobepatchinstaller_app(mountpoint) if os.path.exists(installapp): # this is a CS5 updater disk image cataloginfo = get_adobe_package_info(mountpoint) if cataloginfo: # add some more data cataloginfo['name'] = cataloginfo['display_name'].replace(' ', '') cataloginfo['uninstallable'] = False cataloginfo['installer_type'] = "AdobeCS5PatchInstaller" if pkgname: cataloginfo['package_path'] = pkgname # make some (hopefully functional) installs items from the payloads installs = [] uninstalldir = "/Library/Application Support/Adobe/Uninstall" # first look for a payload with a display_name matching the # overall display_name for payload in cataloginfo.get('payloads', []): if (payload.get('display_name', '') == cataloginfo['display_name']): if 'AdobeCode' in payload: dbfile = payload['AdobeCode'] + ".db" filepath = os.path.join(uninstalldir, dbfile) installitem = {} installitem['path'] = filepath installitem['type'] = 'file' installs.append(installitem) break if installs == []: # didn't find a payload with matching name # just add all of the non-LangPack payloads # to the installs list. for payload in cataloginfo.get('payloads', []): if 'AdobeCode' in payload: if ("LangPack" in payload.get("display_name") or "Language Files" in payload.get( "display_name")): # skip Language Packs continue dbfile = payload['AdobeCode'] + ".db" filepath = os.path.join(uninstalldir, dbfile) installitem = {} installitem['path'] = filepath installitem['type'] = 'file' installs.append(installitem) cataloginfo['installs'] = installs return cataloginfo # Look for AdobeUberInstaller items (CS4 install) pkgroot = os.path.join(mountpoint, pkgname) adobeinstallxml = os.path.join(pkgroot, "AdobeUberInstaller.xml") if os.path.exists(adobeinstallxml): # this is a CS4 Enterprise Deployment package cataloginfo = get_adobe_package_info(pkgroot) if cataloginfo: # add some more data cataloginfo['name'] = cataloginfo['display_name'].replace(' ', '') cataloginfo['uninstallable'] = True cataloginfo['uninstall_method'] = "AdobeUberUninstaller" cataloginfo['installer_type'] = "AdobeUberInstaller" if pkgname: cataloginfo['package_path'] = pkgname return cataloginfo # maybe this is an Adobe update DMG or CS3 installer # look for Adobe Setup.app setuppath = find_setup_app(mountpoint) if setuppath: cataloginfo = get_adobe_setup_info(mountpoint) if cataloginfo: # add some more data cataloginfo['name'] = cataloginfo['display_name'].replace(' ', '') cataloginfo['installer_type'] = "AdobeSetup" if cataloginfo.get('AdobeSetupType') == "ProductInstall": cataloginfo['uninstallable'] = True cataloginfo['uninstall_method'] = "AdobeSetup" else: cataloginfo['description'] = "Adobe updater" cataloginfo['uninstallable'] = False cataloginfo['update_for'] = ["PleaseEditMe-1.0.0.0.0"] return cataloginfo # maybe this is an Adobe Acrobat 9 Pro patcher? acrobatpatcherapp = find_acrobat_patch_app(mountpoint) if acrobatpatcherapp: cataloginfo = {} cataloginfo['installer_type'] = "AdobeAcrobatUpdater" cataloginfo['uninstallable'] = False plist = pkgutils.getBundleInfo(acrobatpatcherapp) cataloginfo['version'] = pkgutils.getVersionString(plist) cataloginfo['name'] = "AcrobatPro9Update" cataloginfo['display_name'] = "Adobe Acrobat Pro Update" cataloginfo['update_for'] = ["AcrobatPro9"] cataloginfo['RestartAction'] = 'RequireLogout' cataloginfo['requires'] = [] cataloginfo['installs'] = [ {'CFBundleIdentifier': 'com.adobe.Acrobat.Pro', 'CFBundleName': 'Acrobat', 'CFBundleShortVersionString': cataloginfo['version'], 'path': '/Applications/Adobe Acrobat 9 Pro/Adobe Acrobat Pro.app', 'type': 'application'} ] return cataloginfo # didn't find any Adobe installers/updaters we understand return None # pylint: enable=invalid-name if __name__ == '__main__': print('This is a library of support tools for the Munki Suite.')
44.657795
80
0.565319
0
0
0
0
0
0
0
0
12,245
0.347524
35fe055b65de9e34581ebd9b036ec7f195d41986
645
py
Python
mandrel/config/helpers.py
gf-atebbe/python-mandrel
64b90e3265a522ff72019960752bcc716533347f
[ "MIT" ]
null
null
null
mandrel/config/helpers.py
gf-atebbe/python-mandrel
64b90e3265a522ff72019960752bcc716533347f
[ "MIT" ]
null
null
null
mandrel/config/helpers.py
gf-atebbe/python-mandrel
64b90e3265a522ff72019960752bcc716533347f
[ "MIT" ]
null
null
null
from .. import util def configurable_class(setting_name, default_class_name=None): def getter(self): value = None try: value = self.configuration_get(setting_name) except KeyError: pass if not value: if not default_class_name: return None value = default_class_name return util.get_by_fqn(value) def setter(self, value): if value is not None: return self.configuration_set(setting_name, util.class_to_fqn(value)) return self.configuration_set(setting_name, None) return property(getter, setter)
25.8
81
0.626357
0
0
0
0
0
0
0
0
0
0
35ff001cebfbaa2f16c6208ca4d5a99ce422a736
1,606
py
Python
Components/MoveComponent.py
RuoxiQin/Unmanned-Aerial-Vehicle-Tracking
49a0a32abcce42fc6bf9e71f5b098ec708373153
[ "Apache-2.0" ]
13
2018-06-16T12:52:18.000Z
2021-08-14T02:43:24.000Z
Components/MoveComponent.py
RuoxiQin/Unmanned-Aerial-Vehicle-Tracking
49a0a32abcce42fc6bf9e71f5b098ec708373153
[ "Apache-2.0" ]
null
null
null
Components/MoveComponent.py
RuoxiQin/Unmanned-Aerial-Vehicle-Tracking
49a0a32abcce42fc6bf9e71f5b098ec708373153
[ "Apache-2.0" ]
6
2019-06-20T21:06:01.000Z
2021-08-14T02:43:28.000Z
#!/usr/bin/python #-*-coding:utf-8-*- from Component import Component class MoveComponent(Component): '''This is the moveable component.''' _name = 'MoveComponent' def move(self,cmd): '''Input L,R,U,D or S to move the component or stop. Rise exception if moving out of region.''' cmd = cmd.upper() if cmd == 'L': if self.position[0]-1 >= 0: self.position = (self.position[0]-1,self.position[1]) else: raise MoveOutOfRegion(self,cmd) elif cmd == 'R': if self.position[0]+1 < self._region_size[0]: self.position = (self.position[0]+1,self.position[1]) else: raise MoveOutOfRegion(self,cmd) elif cmd == 'U': if self.position[1]-1 >= 0: self.position = (self.position[0],self.position[1]-1) else: raise MoveOutOfRegion(self,cmd) elif cmd == 'D': if self.position[1]+1 < self._region_size[1]: self.position = (self.position[0],self.position[1]+1) else: raise MoveOutOfRegion(self,cmd) elif cmd == 'S': pass def moveable_direction(self): direction = ['S'] if self.position[0] > 0: direction.append('L') if self.position[0] < self._region_size[0]-1: direction.append('R') if self.position[1] > 0: direction.append('U') if self.position[1] < self._region_size[1]-1: direction.append('D') return direction
34.170213
104
0.52802
1,533
0.954545
0
0
0
0
0
0
214
0.13325
35ff5a9fe6f25456cafae5f86dcd151f7638267e
35,016
py
Python
poshc2/server/Tasks.py
slackr/PoshC2
d4804f1f534dac53b95dd6dd6578431beaf79360
[ "BSD-3-Clause" ]
1,504
2016-07-12T04:14:00.000Z
2022-03-31T02:59:30.000Z
poshc2/server/Tasks.py
PhilKeeble/PoshC2
498b30097e12e46b5aa454feaeaa4bbae3c04c0d
[ "BSD-3-Clause" ]
139
2016-10-13T10:41:18.000Z
2022-03-31T13:22:47.000Z
poshc2/server/Tasks.py
PhilKeeble/PoshC2
498b30097e12e46b5aa454feaeaa4bbae3c04c0d
[ "BSD-3-Clause" ]
377
2016-07-12T03:10:03.000Z
2022-03-31T10:04:13.000Z
import datetime, hashlib, base64, traceback, os, re import poshc2.server.database.DB as DB from poshc2.Colours import Colours from poshc2.server.Config import ModulesDirectory, DownloadsDirectory, ReportsDirectory from poshc2.server.Implant import Implant from poshc2.server.Core import decrypt, encrypt, default_response, decrypt_bytes_gzip, number_of_days, process_mimikatz, print_bad from poshc2.server.Core import load_module, load_module_sharp, encrypt, default_response from poshc2.server.payloads.Payloads import Payloads from poshc2.server.PowerStatus import translate_power_status from poshc2.Utils import randomuri def newTaskOutput(uriPath, cookieVal, post_data, wsclient=False): now = datetime.datetime.now() all_implants = DB.get_implants_all() if not all_implants: print_bad("Received post request but no implants in database... has the project been cleaned but you're using the same URLs?") return for implant in all_implants: implantID = implant.ImplantID RandomURI = implant.RandomURI Hostname = implant.Hostname encKey = implant.Key Domain = implant.Domain User = implant.User implant_type = implant.Pivot if RandomURI in uriPath and cookieVal: DB.update_implant_lastseen(now.strftime("%Y-%m-%d %H:%M:%S"), RandomURI) decCookie = decrypt(encKey, cookieVal) if implant_type == "JXA": rawoutput = decrypt(encKey, post_data[1500:]) else: rawoutput = decrypt_bytes_gzip(encKey, post_data[1500:]) if decCookie.startswith("Error"): print(Colours.RED) print("The multicmd errored: ") print(rawoutput) print(Colours.GREEN) return cookieMsg = "" if "-" in decCookie: decCookie = decCookie.strip('\x00') splt = decCookie.split("-") if not splt[0].isdigit(): print(Colours.RED + "[!] Cookie %s is invalid" % decCookie + Colours.GREEN) return else: taskId = str(int(splt[0])) cookieMsg = splt[1] else: taskId = str(int(decCookie.strip('\x00'))) taskIdStr = "0" * (5 - len(str(taskId))) + str(taskId) if taskId != "99999": executedCmd = DB.get_cmd_from_task_id(taskId) task_owner = DB.get_task_owner(taskId) else: print(Colours.END) timenow = now.strftime("%Y-%m-%d %H:%M:%S") print(f"Background task against implant {implantID} on host {Domain}\\{User} @ {Hostname} ({timenow}) (output appended to %sbackground-data.txt)" % ReportsDirectory) print(Colours.GREEN) print(rawoutput) miscData = open(("%sbackground-data.txt" % ReportsDirectory), "a+") miscData.write(rawoutput) return print(Colours.GREEN) if task_owner is not None: print("Task %s (%s) returned against implant %s on host %s\\%s @ %s (%s)" % (taskIdStr, task_owner, implantID, Domain, User, Hostname, now.strftime("%Y-%m-%d %H:%M:%S"))) else: print("Task %s returned against implant %s on host %s\\%s @ %s (%s)" % (taskIdStr, implantID, Domain, User, Hostname, now.strftime("%Y-%m-%d %H:%M:%S"))) try: outputParsed = re.sub(r'123456(.+?)654321', '', rawoutput) outputParsed = outputParsed.rstrip() except Exception: pass if cookieMsg is not None and cookieMsg.lower().startswith("pwrstatusmsg"): translate_power_status(outputParsed, RandomURI) return if "loadmodule" in executedCmd and len(outputParsed.split()) == 0: print("Module loaded successfully") DB.update_task(taskId, "Module loaded successfully") elif "pbind-connect " in executedCmd and "PBind-Connected" in outputParsed or "PBind PBind start" in executedCmd and "PBind-Connected" in outputParsed: outputParsed = re.search("PBind-Connected:.*", outputParsed) outputParsed = outputParsed[0].replace("PBind-Connected: ", "") Domain, User, Hostname, Arch, PID, Proxy = str(outputParsed).split(";") Proxy = Proxy.replace("\x00", "") if "\\" in User: User = User[User.index("\\") + 1:] PivotString = "C# PBind" if "pbind-command run-exe PBind PBind start" in executedCmd: PivotString = "C# PBind Pivot" newImplant = Implant(implantID, PivotString, str(Domain), str(User), str(Hostname), Arch, PID, None) newImplant.save() newImplant.display() newImplant.autoruns() if "pbind-command run-exe PBind PBind start" in executedCmd: DB.new_task("pbind-pivot-loadmodule Stage2-Core.exe", "autoruns", RandomURI) else: DB.new_task("pbind-loadmodule Stage2-Core.exe", "autoruns", RandomURI) elif "fcomm-connect " in executedCmd and "FComm-Connected" in outputParsed: outputParsed = re.search("FComm-Connected:.*", outputParsed) outputParsed = outputParsed[0].replace("FComm-Connected: ", "") Domain, User, Hostname, Arch, PID, Proxy = str(outputParsed).split(";") Proxy = Proxy.replace("\x00", "") if "\\" in User: User = User[User.index("\\") + 1:] newImplant = Implant(implantID, "C# FComm", str(Domain), str(User), str(Hostname), Arch, PID, None) newImplant.save() newImplant.display() newImplant.autoruns() DB.new_task("fcomm-loadmodule Stage2-Core.exe", "autoruns", RandomURI) elif executedCmd.lower().startswith("beacon "): new_sleep = executedCmd.replace('beacon ', '').strip() DB.update_sleep(new_sleep, RandomURI) elif "get-screenshot" in executedCmd.lower(): try: decoded = base64.b64decode(outputParsed) filename = implant.User + "-" + now.strftime("%m%d%Y%H%M%S_" + randomuri()) output_file = open('%s%s.png' % (DownloadsDirectory, filename), 'wb') print("Screenshot captured: %s%s.png" % (DownloadsDirectory, filename)) DB.update_task(taskId, "Screenshot captured: %s%s.png" % (DownloadsDirectory, filename)) output_file.write(decoded) output_file.close() except Exception: DB.update_task(taskId, "Screenshot not captured, the screen could be locked or this user does not have access to the screen!") print("Screenshot not captured, the screen could be locked or this user does not have access to the screen!") elif (executedCmd.lower().startswith("$shellcode64")) or (executedCmd.lower().startswith("$shellcode64")): DB.update_task(taskId, "Upload shellcode complete") print("Upload shellcode complete") elif (executedCmd.lower().startswith("run-exe core.program core inject-shellcode")) or (executedCmd.lower().startswith("pbind-command run-exe core.program core inject-shellcode")) or (executedCmd.lower().startswith("pbind-pivot-command run-exe core.program core inject-shellcode")): DB.update_task(taskId, "Upload shellcode complete") print(outputParsed) elif "download-file" in executedCmd.lower(): try: filename = executedCmd.lower().replace("download-files ", "") filename = filename.replace("download-file ", "") filename = filename.replace("-source ", "") filename = filename.replace("..", "") filename = filename.replace("'", "") filename = filename.replace('"', "") filename = filename.replace("\\", "/") directory, filename = filename.rsplit('/', 1) filename = filename.rstrip('\x00') original_filename = filename.strip() if not original_filename: directory = directory.rstrip('\x00') directory = directory.replace("/", "_").replace("\\", "_").strip() original_filename = directory try: if rawoutput.startswith("Error"): print("Error downloading file: ") print(rawoutput) break chunkNumber = rawoutput[:5] totalChunks = rawoutput[5:10] except Exception: chunkNumber = rawoutput[:5].decode("utf-8") totalChunks = rawoutput[5:10].decode("utf-8") if (chunkNumber == "00001") and os.path.isfile('%s%s' % (DownloadsDirectory, filename)): counter = 1 while(os.path.isfile('%s%s' % (DownloadsDirectory, filename))): if '.' in filename: filename = original_filename[:original_filename.rfind('.')] + '-' + str(counter) + original_filename[original_filename.rfind('.'):] else: filename = original_filename + '-' + str(counter) counter += 1 if (chunkNumber != "00001"): counter = 1 if not os.path.isfile('%s%s' % (DownloadsDirectory, filename)): print("Error trying to download part of a file to a file that does not exist: %s" % filename) while(os.path.isfile('%s%s' % (DownloadsDirectory, filename))): # First find the 'next' file would be downloaded to if '.' in filename: filename = original_filename[:original_filename.rfind('.')] + '-' + str(counter) + original_filename[original_filename.rfind('.'):] else: filename = original_filename + '-' + str(counter) counter += 1 if counter != 2: # Then actually set the filename to this file - 1 unless it's the first one and exists without a counter if '.' in filename: filename = original_filename[:original_filename.rfind('.')] + '-' + str(counter - 2) + original_filename[original_filename.rfind('.'):] else: filename = original_filename + '-' + str(counter - 2) else: filename = original_filename print("Download file part %s of %s to: %s" % (chunkNumber, totalChunks, filename)) DB.update_task(taskId, "Download file part %s of %s to: %s" % (chunkNumber, totalChunks, filename)) output_file = open('%s%s' % (DownloadsDirectory, filename), 'ab') try: output_file.write(rawoutput[10:]) except Exception: output_file.write(rawoutput[10:].encode("utf-8")) output_file.close() except Exception as e: DB.update_task(taskId, "Error downloading file %s " % e) print("Error downloading file %s " % e) traceback.print_exc() elif "safetydump" in executedCmd.lower(): rawoutput = decrypt_bytes_gzip(encKey, post_data[1500:]) if rawoutput.startswith("[-]") or rawoutput.startswith("ErrorCmd"): DB.update_task(taskId, rawoutput) print(rawoutput) else: dumpname = "SafetyDump-Task-%s.b64" % taskIdStr dumppath = "%s%s" % (DownloadsDirectory, dumpname) open(dumppath, 'w').write(rawoutput) message = "Dump written to: %s" % dumppath message = message + "\n The base64 blob needs decoding, e.g. on Windows to use Mimikatz:" message = message + "\n $filename = '.\\%s'" % dumpname message = message + "\n $b64 = Get-Content $filename" message = message + "\n $bytes = [System.Convert]::FromBase64String($b64)" message = message + "\n [io.file]::WriteAllBytes(((Get-Item -Path \".\\\").FullName) + '\\safetydump.dmp', $bytes)" message = message + "\n ./mimikatz.exe" message = message + "\n sekurlsa::minidump safetydump.dmp" message = message + "\n sekurlsa::logonpasswords" message = message + "\nOr to just decode on Linux:" message = message + f"\n base64 -id {dumpname} > dump.bin" DB.update_task(taskId, message) print(message) elif (executedCmd.lower().startswith("run-exe safetykatz") or "invoke-mimikatz" in executedCmd or executedCmd.lower().startswith("pbind-") or executedCmd.lower().startswith("fcomm-command") or executedCmd.lower().startswith("run-dll sharpsploit")) and "logonpasswords" in outputParsed.lower(): print("Parsing Mimikatz Output") DB.update_task(taskId, outputParsed) process_mimikatz(outputParsed) print(Colours.GREEN) print(outputParsed + Colours.END) else: DB.update_task(taskId, outputParsed) print(Colours.GREEN) print(outputParsed + Colours.END) def newTask(path): all_implants = DB.get_implants_all() commands = "" if all_implants: for i in all_implants: RandomURI = i.RandomURI Pivot = i.Pivot EncKey = i.Key tasks = DB.get_newtasks(RandomURI) if RandomURI in path and tasks: for task in tasks: command = task[2] user = task[3] user_command = command implant = DB.get_implantbyrandomuri(RandomURI) implant_type = DB.get_implanttype(RandomURI) now = datetime.datetime.now() if (command.lower().startswith("$shellcode64")) or (command.lower().startswith("$shellcode86") or command.lower().startswith("run-exe core.program core inject-shellcode") or command.lower().startswith("run-exe pbind pbind run-exe core.program core inject-shellcode") or command.lower().startswith("pbind-command run-exe core.program core inject-shellcode") or command.lower().startswith("pbind-pivot-command run-exe core.program core inject-shellcode")): user_command = "Inject Shellcode: %s" % command[command.index("#") + 1:] command = command[:command.index("#")] elif (command.lower().startswith("run-jxa ")) or (command.lower().startswith("clipboard-monitor ")) or (command.lower().startswith("cred-popper ")): user_command = command[:command.index("#")] command = "run-jxa " + command[command.index("#") + 1:] elif (command.lower().startswith('upload-file') or command.lower().startswith('pbind-command upload-file') or command.lower().startswith('fcomm-command upload-file')): PBind = False FComm = False if command.lower().startswith('pbind-command upload-file'): PBind = True if command.lower().startswith('fcomm-command upload-file'): FComm = True upload_args = command \ .replace('pbind-command upload-file', '') \ .replace('fcomm-command upload-file', '') \ .replace('upload-file', '') upload_file_args_split = upload_args.split() if len(upload_file_args_split) < 2: print(Colours.RED) print("Error parsing upload command: %s" % upload_args) print(Colours.GREEN) continue upload_file = upload_file_args_split[0] upload_file_destination = upload_file_args_split[1] upload_args = upload_args.replace(upload_file, '') upload_args = upload_args.replace(upload_file_destination, '') with open(upload_file, "rb") as f: upload_file_bytes = f.read() if not upload_file_bytes: print(Colours.RED + f"Error, no bytes read from the upload file, removing task: {upload_file}" + Colours.GREEN) DB.del_newtasks(str(task[0])) continue upload_file_bytes_b64 = base64.b64encode(upload_file_bytes).decode("utf-8") if implant_type.lower().startswith('c#'): command = f"upload-file {upload_file_bytes_b64};\"{upload_file_destination}\" {upload_args}" elif implant_type.lower().startswith('ps'): command = f"Upload-File -Destination \"{upload_file_destination}\" -Base64 {upload_file_bytes_b64} {upload_args}" elif implant_type.lower().startswith('py'): command = f"upload-file \"{upload_file_destination}\":{upload_file_bytes_b64} {upload_args}" elif implant_type.lower().startswith('jxa'): command = f"upload-file {upload_file_destination}:{upload_file_bytes_b64} {upload_args}" else: print(Colours.RED) print("Error parsing upload command: %s" % upload_args) print(Colours.GREEN) if PBind: command = f"pbind-command {command}" if FComm: command = f"fcomm-command {command}" filehash = hashlib.md5(base64.b64decode(upload_file_bytes_b64)).hexdigest() user_command = f"Uploading file: {upload_file} to {upload_file_destination} with md5sum: {filehash}" taskId = DB.insert_task(RandomURI, user_command, user) taskIdStr = "0" * (5 - len(str(taskId))) + str(taskId) if len(str(taskId)) > 5: raise ValueError('Task ID is greater than 5 characters which is not supported.') print(Colours.YELLOW) if user is not None and user != "": print("Task %s (%s) issued against implant %s on host %s\\%s @ %s (%s)" % (taskIdStr, user, implant.ImplantID, implant.Domain, implant.User, implant.Hostname, now.strftime("%Y-%m-%d %H:%M:%S"))) else: print("Task %s issued against implant %s on host %s\\%s @ %s (%s)" % (taskIdStr, implant.ImplantID, implant.Domain, implant.User, implant.Hostname, now.strftime("%Y-%m-%d %H:%M:%S"))) try: if (user_command.lower().startswith("run-exe sharpwmi.program sharpwmi action=execute") or user_command.lower().startswith("pbind-command run-exe sharpwmi.program sharpwmi action=execute") or user_command.lower().startswith("fcomm-command run-exe sharpwmi.program sharpwmi action=execute")): print(user_command[0:200]) print("----TRUNCATED----") else: print(user_command) print(Colours.END) except Exception as e: print("Cannot print output: %s" % e) if task[2].startswith("loadmodule "): try: module_name = (task[2]).replace("loadmodule ", "") if ".exe" in module_name: modulestr = load_module_sharp(module_name) elif ".dll" in module_name: modulestr = load_module_sharp(module_name) else: modulestr = load_module(module_name) command = "loadmodule%s" % modulestr except Exception as e: print("Cannot find module, loadmodule is case sensitive!") print(e) command="" elif task[2].startswith("run-exe Program PS "): try: cmd = (task[2]).replace("run-exe Program PS ", "") modulestr = base64.b64encode(cmd.encode("utf-8")).decode("utf-8") command = "run-exe Program PS %s" % modulestr except Exception as e: print("Cannot base64 the command for PS") print(e) traceback.print_exc() elif task[2].startswith("pbind-pivot-command run-exe Program PS "): try: cmd = (task[2]).replace("pbind-pivot-command run-exe Program PS ", "") base64string = base64.b64encode(cmd.encode("utf-8")).decode("utf-8") modulestr = base64.b64encode(f"run-exe Program PS {base64string}".encode("utf-8")).decode("utf-8") doublebase64string = base64.b64encode(f"run-exe PBind PBind {modulestr}".encode("utf-8")).decode("utf-8") command = "run-exe PBind PBind %s" % doublebase64string except Exception as e: print("Cannot base64 the command for PS") print(e) traceback.print_exc() elif task[2].startswith("pbind-command run-exe Program PS "): try: cmd = (task[2]).replace("pbind-command run-exe Program PS ", "") base64string = base64.b64encode(cmd.encode("utf-8")).decode("utf-8") modulestr = base64.b64encode(f"run-exe Program PS {base64string}".encode("utf-8")).decode("utf-8") command = "run-exe PBind PBind %s" % modulestr except Exception as e: print("Cannot base64 the command for PS") print(e) traceback.print_exc() elif task[2].startswith("fcomm-command run-exe Program PS "): try: cmd = (task[2]).replace("fcomm-command run-exe Program PS ", "") modulestr = base64.b64encode(cmd.encode("utf-8")).decode("utf-8") command = "run-exe FComm.FCClass FComm run-exe Program PS %s" % modulestr except Exception as e: print("Cannot base64 the command for PS") print(e) traceback.print_exc() elif task[2].startswith("pslo "): try: module_name = (task[2]).replace("pslo ", "") for modname in os.listdir(ModulesDirectory): if modname.lower() in module_name.lower(): module_name = modname modulestr = load_module_sharp(module_name) command = "run-exe Program PS loadmodule%s" % modulestr except Exception as e: print("Cannot find module, loadmodule is case sensitive!") print(e) traceback.print_exc() elif task[2].startswith("pbind-pslo"): try: module_name = (task[2]).replace("pbind-pslo ", "") for modname in os.listdir(ModulesDirectory): if modname.lower() in module_name.lower(): module_name = modname modulestr = load_module_sharp(module_name) command = "run-exe PBind PBind \"run-exe Program PS loadmodule%s\"" % modulestr except Exception as e: print("Cannot find module, loadmodule is case sensitive!") print(e) traceback.print_exc() elif task[2].startswith("pbind-pivot-loadmodule "): try: module_name = (task[2]).replace("pbind-pivot-loadmodule ", "") if ".exe" in module_name or ".dll" in module_name: for modname in os.listdir(ModulesDirectory): if modname.lower() in module_name.lower(): module_name = modname modulestr = load_module_sharp(module_name) base64string = base64.b64encode(f"run-exe PBind PBind \"loadmodule{modulestr}\"".encode("utf-8")).decode("utf-8") command = f"run-exe PBind PBind {base64string}" except Exception as e: print("Cannot find module, loadmodule is case sensitive!") print(e) traceback.print_exc() elif task[2].startswith("fcomm-pslo"): try: module_name = (task[2]).replace("fcomm-pslo ", "") for modname in os.listdir(ModulesDirectory): if modname.lower() in module_name.lower(): module_name = modname modulestr = load_module_sharp(module_name) command = "run-exe FComm.FCClass FComm \"run-exe Program PS loadmodule%s\"" % modulestr except Exception as e: print("Cannot find module, loadmodule is case sensitive!") print(e) traceback.print_exc() elif task[2].startswith("pbind-loadmodule "): try: module_name = (task[2]).replace("pbind-loadmodule ", "") if ".exe" in module_name: for modname in os.listdir(ModulesDirectory): if modname.lower() in module_name.lower(): module_name = modname modulestr = load_module_sharp(module_name) command = "run-exe PBind PBind \"loadmodule%s\"" % modulestr elif ".dll" in module_name: for modname in os.listdir(ModulesDirectory): if modname.lower() in module_name.lower(): module_name = modname modulestr = load_module_sharp(module_name) command = "run-exe PBind PBind \"loadmodule%s\"" % modulestr else: for modname in os.listdir(ModulesDirectory): if modname.lower() in module_name.lower(): module_name = modname modulestr = load_module(module_name) command = "run-exe PBind PBind \"`$mk = '%s';[System.Text.Encoding]::UTF8.GetString([System.Convert]::FromBase64String(`$mk))|iex\"" % base64.b64encode(bytes(modulestr, "utf-8")).decode('utf-8') except Exception as e: print("Cannot find module, loadmodule is case sensitive!") print(e) traceback.print_exc() elif task[2].startswith("pbind-command "): try: cmd = command.replace("pbind-command ", "") base64string = base64.b64encode(cmd.encode("utf-8")).decode("utf-8") command = "run-exe PBind PBind %s" % base64string except Exception as e: print("Cannot base64 the command for PS") print(e) traceback.print_exc() elif task[2].startswith("pbind-connect"): command = command.replace("pbind-connect ", "run-exe PBind PBind start ") elif task[2].startswith("pbind-kill"): command = command.replace("pbind-kill", "run-exe PBind PBind kill-implant") elif task[2].startswith("fcomm-loadmodule "): try: module_name = (task[2]).replace("fcomm-loadmodule ", "") if ".exe" in module_name: for modname in os.listdir(ModulesDirectory): if modname.lower() in module_name.lower(): module_name = modname modulestr = load_module_sharp(module_name) command = "run-exe FComm.FCClass FComm \"loadmodule%s\"" % modulestr elif ".dll" in module_name: for modname in os.listdir(ModulesDirectory): if modname.lower() in module_name.lower(): module_name = modname modulestr = load_module_sharp(module_name) command = "run-exe FComm.FCClass FComm \"loadmodule%s\"" % modulestr else: for modname in os.listdir(ModulesDirectory): if modname.lower() in module_name.lower(): module_name = modname modulestr = load_module(module_name) command = "run-exe FComm.FCClass FComm \"`$mk = '%s';[System.Text.Encoding]::UTF8.GetString([System.Convert]::FromBase64String(`$mk))|iex\"" % base64.b64encode(bytes(modulestr, "utf-8")).decode('utf-8') except Exception as e: print("Cannot find module, loadmodule is case sensitive!") print(e) traceback.print_exc() elif task[2].startswith("fcomm-command "): command = command.replace("fcomm-command ", "run-exe FComm.FCClass FComm ") elif task[2].startswith("fcomm-connect"): command = command.replace("fcomm-connect ", "run-exe FComm.FCClass FComm start ") elif task[2].startswith("fcomm-kill"): command = command.replace("fcomm-kill", "run-exe FComm.FCClass FComm kill-implant") elif task[2].startswith("pbind-pivot-command "): try: cmd = command.replace("pbind-pivot-command ", "") base64string1 = base64.b64encode(cmd.encode("utf-8")).decode("utf-8") base64string = base64.b64encode(f"run-exe PBind PBind {base64string1}".encode("utf-8")).decode("utf-8") command = "run-exe PBind PBind %s" % base64string except Exception as e: print("Cannot base64 the command for PS") print(e) traceback.print_exc() elif task[2].startswith("pbind-pivot-connect"): command = command.replace("pbind-pivot-connect ", "run-exe PBind PBind run-exe PBind PBind start ") elif task[2].startswith("pbind-pivot-kill"): command = command.replace("pbind-pivot-kill", "run-exe PBind PBind run-exe PBind PBind kill-implant") # Uncomment to print actual commands that are being sent # if "AAAAAAAAAAAAAAAAAAAA" not in command: # print(Colours.BLUE + "Issuing Command: " + command + Colours.GREEN) command = taskIdStr + command if commands: commands += "!d-3dion@LD!-d" + command else: commands += command DB.del_newtasks(str(task[0])) if commands is not None: multicmd = "multicmd%s" % commands try: responseVal = encrypt(EncKey, multicmd) except Exception as e: responseVal = "" print("Error encrypting value: %s" % e) now = datetime.datetime.now() DB.update_implant_lastseen(now.strftime("%Y-%m-%d %H:%M:%S"), RandomURI) return responseVal elif RandomURI in path and not tasks: # if there is no tasks but its a normal beacon send 200 now = datetime.datetime.now() DB.update_implant_lastseen(now.strftime("%Y-%m-%d %H:%M:%S"), RandomURI) return default_response()
64.486188
474
0.499714
0
0
0
0
0
0
0
0
7,882
0.225097
c4005a008048988474573247edb485bd20d1bb6d
1,029
py
Python
Leetcode/89.grayCode.py
Song2017/Leetcode_python
99d9f3cec0e47ddab6ec107392a6b33bf6c1d046
[ "MIT" ]
1
2019-05-14T00:55:30.000Z
2019-05-14T00:55:30.000Z
LeetcodeView/89.grayCode.md
Song2017/Leetcode_python
99d9f3cec0e47ddab6ec107392a6b33bf6c1d046
[ "MIT" ]
null
null
null
LeetcodeView/89.grayCode.md
Song2017/Leetcode_python
99d9f3cec0e47ddab6ec107392a6b33bf6c1d046
[ "MIT" ]
null
null
null
class Solution: ''' 格雷编码是一个二进制数字系统,在该系统中,两个连续的数值仅有一个位数的差异。 给定一个代表编码总位数的非负整数 n,打印其格雷编码序列。格雷编码序列必须以 0 开头。 输入: 2 输出: [0,1,3,2] 解释: 00 - 0, 01 - 1, 11 - 3, 10 - 2 ''' def grayCode(self, n: int): # 观察连续数值对应的格雷编码序列对应的关系 # 追加二进制位到首位, 0: 数值仍为前一个数组的值, 1: 前一个数组的每个元素 + 2的(n-1)次幂 ans, cnt = [0], 0 while cnt < n: ad = 2**cnt tmp = list(map(lambda x: x ^ ad, ans)) tmp.reverse() ans += tmp cnt += 1 return ans def grayCodeF(self, n: int): '''' 关键是搞清楚格雷编码的生成过程, G(i) = i ^ (i/2); 如 n = 3: G(0) = 000 G(1) = 1 ^ 0 = 001 ^ 000 = 001 G(2) = 2 ^ 1 = 010 ^ 001 = 011 G(3) = 3 ^ 1 = 011 ^ 001 = 010 G(4) = 4 ^ 2 = 100 ^ 010 = 110 G(5) = 5 ^ 2 = 101 ^ 010 = 111 G(6) = 6 ^ 3 = 110 ^ 011 = 101 G(7) = 7 ^ 3 = 111 ^ 011 = 100 ''' return [i ^ i >> 1 for i in range(2**n)] s = Solution() print(s.grayCode(3))
25.725
62
0.433431
1,294
0.970743
0
0
0
0
0
0
918
0.688672
c400620022eebd6f0df3a706d1f575d077a9ad78
6,781
py
Python
object/test.py
SkinLesionsResearch/NCPL
562e9664f77e14ed9b2655b82e8498b8a8ce5d2d
[ "MIT" ]
null
null
null
object/test.py
SkinLesionsResearch/NCPL
562e9664f77e14ed9b2655b82e8498b8a8ce5d2d
[ "MIT" ]
null
null
null
object/test.py
SkinLesionsResearch/NCPL
562e9664f77e14ed9b2655b82e8498b8a8ce5d2d
[ "MIT" ]
null
null
null
import argparse import os, sys os.chdir("/home/jackie/ResearchArea/SkinCancerResearch/semi_skin_cancer") sys.path.append("/home/jackie/ResearchArea/SkinCancerResearch/semi_skin_cancer") print(os.getcwd()) import os.path as osp import torchvision import numpy as np import torch # import torch.nn as nn # import torch.optim as optim # from itertools import cycle from torchvision import transforms # import network, loss from torch.utils.data import DataLoader from data_list import ImageList, ImageList_idx import random, pdb, math, copy from evaluation.draw import draw_ROC, draw_TSNE, draw_cm from evaluation.metrics import get_metrics, get_metrics_sev_class, get_test_data import matplotlib.pyplot as plt from transforms import image_test import utils plt.rc('font', family='Times New Roman') def op_copy(optimizer): for param_group in optimizer.param_groups: param_group['lr0'] = param_group['lr'] return optimizer def image_test(resize_size=256, crop_size=224, alexnet=False): if not alexnet: normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) else: normalize = Normalize(meanfile='./ilsvrc_2012_mean.npy') return transforms.Compose([ transforms.Resize((resize_size, resize_size)), # transforms.CenterCrop(crop_size), transforms.ToTensor(), normalize ]) def data_load(args): ## prepare data dsets = {} dset_loaders = {} test_txt = open(osp.join(args.dset_path, 'test.txt')).readlines() image_test_transform = image_test() if args.net[0:5] == "senet": image_test_transform = image_test(299) elif args.net[0:3] == "ran": image_test_transform = image_test(32) dsets["test"] = ImageList(test_txt, args, transform=image_test_transform) dset_loaders["test"] = DataLoader(dsets["test"], batch_size=args.batch_size, shuffle=True, num_workers=args.worker, drop_last=False) return dset_loaders def print_args(args): s = "==========================================\n" for arg, content in args.__dict__.items(): s += "{}:{}\n".format(arg, content) return s def test_target(args): SEED = args.seed torch.manual_seed(SEED) torch.cuda.manual_seed(SEED) np.random.seed(SEED) random.seed(SEED) ## set base network net = utils.get_model(args.net, args.num_classes) if args.num_classes == 2: args.modelpath = args.output_dir_train + '/best_params_auc.pt' else: args.modelpath = args.output_dir_train + '/best_params.pt' print(args.modelpath) net.load_state_dict(torch.load(args.modelpath)) net.eval() dset_loaders = data_load(args) features, logits, y_true, y_predict = get_test_data(dset_loaders['test'], net) if args.num_classes == 2: accuracy, kappa, report, sensitivity, specificity, roc_auc, f1, recall, precision = \ get_metrics_sev_class(logits, y_true, y_predict) else: accuracy, kappa, report, sensitivity, specificity, roc_auc, f1, recall, precision = \ get_metrics_sev_class(logits, y_true, y_predict) draw_ROC(logits, y_true, args.label_names, args.output_dir) draw_cm(y_true, y_predict, args.label_names, args.output_dir) draw_TSNE(features, y_true, args.label_names, args.output_dir) log_str = '\nAccuracy = {:.2f}%, Kappa = {:.4f},' \ ' Sensitivity = {:.4f}, Specificity = {:.4f}, AUROC = {:.4f}\n' \ ' F1 = {:.4f}, Recall = {:.4f}, Precision = {:.4f}' \ .format(accuracy, kappa, sensitivity, specificity, roc_auc, f1, recall, precision) args.out_file.write(log_str) args.out_file.write(report) args.out_file.flush() print(log_str) print(report) if __name__ == "__main__": parser = argparse.ArgumentParser(description='oral_cancer') parser.add_argument('--gpu_id', type=str, nargs='?', default='0', help="device id to run") parser.add_argument('--batch_size', type=int, default=32, help="batch_size") parser.add_argument('--num_classes', type=int, default=7, help="number of classes") parser.add_argument('--worker', type=int, default=12, help="number of workers") parser.add_argument('--dir', type=str, default='./ckps/') parser.add_argument('--subDir', type=str, default='resnet50_sev_cates_2500_0.99_naive_0_afm_0.7_u_0.3') parser.add_argument('--dset_path', type=str, default='./data/semi_processed') parser.add_argument('--seed', type=int, default=2021, help="random seed") parser.add_argument('--which', type=str, default='one', choices=['one', 'all']) parser.add_argument('--img_dir', type=str, default=None) parser.add_argument('--save_dir', type=str, default=None) parser.add_argument('--bin_class', type=str, default=None) args = parser.parse_args() if args.num_classes == 2: args.label_names = [("not " + args.bin_class), args.bin_class] else: args.label_names = ['akiec', 'bcc', 'bkl', 'df', 'mel', 'nv', 'vasc'] if args.which == 'one': args.net = osp.basename(args.subDir).split('_')[0] # torch.backends.cudnn.deterministic = True print(args.dir) args.output_dir_train = os.path.join(args.dir, args.subDir) print(args.output_dir_train) args.output_dir = os.path.join('test', args.output_dir_train) if not osp.exists(args.output_dir): os.system('mkdir -p ' + args.output_dir) if not osp.exists(args.output_dir): os.makedirs(args.output_dir) args.out_file = open(osp.join(args.output_dir, 'log.txt'), 'w') args.out_file.write(print_args(args) + '\n') args.out_file.flush() test_target(args) if args.which == 'all': for dir in os.listdir(args.dir): args.net = dir.split('_')[0] # torch.backends.cudnn.deterministic = True args.output_dir_train = os.path.join(args.dir, dir) args.output_dir = os.path.join('./test', args.output_dir_train) if not osp.exists(args.output_dir): os.system('mkdir -p ' + args.output_dir) if not osp.exists(args.output_dir): os.makedirs(args.output_dir) args.out_file = open(osp.join(args.output_dir, 'log.txt'), 'w') args.out_file.write(print_args(args) + '\n') args.out_file.flush() test_target(args)
38.971264
113
0.626309
0
0
0
0
0
0
0
0
1,208
0.178145
c4009ade7b5eb056201eed0338579ec28e08eb56
226
py
Python
countdownhype/urls.py
chri4354/BeeMe_platform
b73843d9146c5ba54a63a8839980ee7c8024e80d
[ "CC-BY-4.0" ]
null
null
null
countdownhype/urls.py
chri4354/BeeMe_platform
b73843d9146c5ba54a63a8839980ee7c8024e80d
[ "CC-BY-4.0" ]
8
2020-06-06T01:55:55.000Z
2022-03-12T00:31:52.000Z
countdownhype/urls.py
chri4354/BeeMe_platform
b73843d9146c5ba54a63a8839980ee7c8024e80d
[ "CC-BY-4.0" ]
null
null
null
from django.urls import path, re_path from . import views urlpatterns = [ path('', views.index, name='index'), path('countdown/', views.countdown, name='countdown'), #re_path(r'.+', views.redir, name='redir'), ]
22.6
58
0.650442
0
0
0
0
0
0
0
0
75
0.331858
c40260dc06f3a35df8d6b1598c7152ecade68c53
204
py
Python
argv.py
christoga/python
1395b3177e7baf46677a7a7a4ae89d2488c6f0fa
[ "MIT" ]
5
2015-11-15T19:08:31.000Z
2015-11-27T02:34:28.000Z
argv.py
christoga/python
1395b3177e7baf46677a7a7a4ae89d2488c6f0fa
[ "MIT" ]
null
null
null
argv.py
christoga/python
1395b3177e7baf46677a7a7a4ae89d2488c6f0fa
[ "MIT" ]
null
null
null
from sys import argv script, first, second, third = argv print "This script called", script print "The first variable :", first print "The second variable :", second print "The third variable :", third
22.666667
37
0.735294
0
0
0
0
0
0
0
0
87
0.426471
c402fd47d18c33d2119498b3bf7f8c6a643683c4
545
py
Python
featureflow/feature_registration.py
featureflow/featureflow-python-sdk
a84cf54812fdc65d9aa52d10b17325504e67057f
[ "Apache-2.0" ]
null
null
null
featureflow/feature_registration.py
featureflow/featureflow-python-sdk
a84cf54812fdc65d9aa52d10b17325504e67057f
[ "Apache-2.0" ]
null
null
null
featureflow/feature_registration.py
featureflow/featureflow-python-sdk
a84cf54812fdc65d9aa52d10b17325504e67057f
[ "Apache-2.0" ]
2
2020-06-01T05:37:16.000Z
2020-07-15T08:17:18.000Z
class FeatureRegistration: def __init__(self, key, failoverVariant, variants=[]): """docstring for __init__""" self.key = key self.failoverVariant = failoverVariant self.variants = [v.toJSON() for v in variants] def toJSON(self): """docstring for toJSON""" self.__dict__ class Variant: def __init__(self, key, name): """docstring for __init__""" self.key = key self.name = name def toJSON(self): """docstring for toJSON""" self.__dict__
24.772727
58
0.594495
541
0.992661
0
0
0
0
0
0
108
0.198165
c403737a02fdcf7c798629d6151ff7c1e4a813cf
913
py
Python
ryu/gui/views/topology.py
uiuc-srg/ryu
2a597f812270ea9690269a20bf659f334c323eb6
[ "Apache-2.0" ]
269
2015-03-08T11:32:45.000Z
2022-03-30T11:18:16.000Z
ryu/gui/views/topology.py
uiuc-srg/ryu
2a597f812270ea9690269a20bf659f334c323eb6
[ "Apache-2.0" ]
4
2017-03-07T11:51:24.000Z
2020-07-07T20:13:55.000Z
ryu/gui/views/topology.py
uiuc-srg/ryu
2a597f812270ea9690269a20bf659f334c323eb6
[ "Apache-2.0" ]
205
2015-01-13T04:52:25.000Z
2022-03-30T13:37:33.000Z
# Copyright (C) 2013 Nippon Telegraph and Telephone Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from flask import render_template, request import view_base class IndexView(view_base.ViewBase): def __init__(self): super(IndexView, self).__init__() def run(self): host, port = request.host.split(':') return render_template('topology.html', host=host, port=port)
33.814815
69
0.739321
237
0.259584
0
0
0
0
0
0
616
0.674699
c4038c43fba700001a9ef9e5ce94db202c34c7bb
2,247
py
Python
allennlp/tests/modules/token_embedders/bag_of_word_counts_token_embedder_test.py
urigoren/allennlp
236e1fd01ca30409cd736625901292609009f5c4
[ "Apache-2.0" ]
1
2020-03-30T14:07:02.000Z
2020-03-30T14:07:02.000Z
allennlp/tests/modules/token_embedders/bag_of_word_counts_token_embedder_test.py
urigoren/allennlp
236e1fd01ca30409cd736625901292609009f5c4
[ "Apache-2.0" ]
123
2020-04-26T02:41:30.000Z
2021-08-02T21:18:00.000Z
allennlp/tests/modules/token_embedders/bag_of_word_counts_token_embedder_test.py
urigoren/allennlp
236e1fd01ca30409cd736625901292609009f5c4
[ "Apache-2.0" ]
2
2019-12-21T05:58:44.000Z
2021-08-16T07:41:21.000Z
import numpy as np import pytest import torch from numpy.testing import assert_almost_equal from allennlp.common.checks import ConfigurationError from allennlp.common.testing import AllenNlpTestCase from allennlp.data import Vocabulary from allennlp.modules.token_embedders import BagOfWordCountsTokenEmbedder class TestBagOfWordCountsTokenEmbedder(AllenNlpTestCase): def setUp(self): super().setUp() self.vocab = Vocabulary() self.vocab.add_token_to_namespace("1") self.vocab.add_token_to_namespace("2") self.vocab.add_token_to_namespace("3") self.vocab.add_token_to_namespace("4") self.non_padded_vocab = Vocabulary(non_padded_namespaces=["tokens"]) def test_forward_calculates_bow_properly(self): embedder = BagOfWordCountsTokenEmbedder(self.vocab) numpy_tensor = np.array([[2, 0], [3, 0], [4, 4]]) inputs = torch.from_numpy(numpy_tensor) embedder_output = embedder(inputs) numpy_tensor = np.array([[0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 2, 0]]) manual_output = torch.from_numpy(numpy_tensor).float() assert_almost_equal(embedder_output.data.numpy(), manual_output.data.numpy()) def test_zeros_out_unknown_tokens(self): embedder = BagOfWordCountsTokenEmbedder(self.vocab, ignore_oov=True) numpy_tensor = np.array([[1, 5], [2, 0], [4, 4]]) inputs = torch.from_numpy(numpy_tensor) embedder_output = embedder(inputs) numpy_tensor = np.array([[0, 0, 0, 0, 0, 1], [0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2, 0]]) manual_output = torch.from_numpy(numpy_tensor).float() assert_almost_equal(embedder_output.data.numpy(), manual_output.data.numpy()) def test_ignore_oov_should_fail_on_non_padded_vocab(self): with pytest.raises(ConfigurationError): BagOfWordCountsTokenEmbedder(self.non_padded_vocab, ignore_oov=True) def test_projects_properly(self): embedder = BagOfWordCountsTokenEmbedder(vocab=self.vocab, projection_dim=50) numpy_tensor = np.array([[1, 0], [1, 0], [4, 4]]) inputs = torch.from_numpy(numpy_tensor) embedder_output = embedder(inputs) assert embedder_output.shape[1] == 50
44.94
93
0.696484
1,933
0.860258
0
0
0
0
0
0
20
0.008901
c404204e3c66a1ac63a04d196c9f1142497f7ef7
1,020
py
Python
dqn/ops.py
khurshedmemon/DQN-UN-TL
1a981feff66825b6c35aafd08aba29d3c08ed745
[ "Apache-2.0" ]
1
2021-12-01T15:08:44.000Z
2021-12-01T15:08:44.000Z
dqn/ops.py
khurshedmemon/DQN-UN-TL
1a981feff66825b6c35aafd08aba29d3c08ed745
[ "Apache-2.0" ]
1
2021-12-02T06:09:05.000Z
2021-12-02T06:09:05.000Z
dqn/ops.py
khurshedmemon/DQN-UN-TL
1a981feff66825b6c35aafd08aba29d3c08ed745
[ "Apache-2.0" ]
null
null
null
import tensorflow as tf import numpy as np def clipped_error(x): # Huber loss try: return tf.select(tf.abs(x) < 1.0, 0.5 * tf.square(x), tf.abs(x) - 0.5 ) except: return tf.where(tf.abs(x) < 1.0, 0.5 * tf.square(x), tf.abs(x) - 0.5 ) def linear(input_, output_size, stddev=0.02, bias_start=0.0, activation_fn=None, name='linear', mask=None): shape = input_.get_shape().as_list() with tf.variable_scope(name): w = tf.get_variable('Matrix', [shape[1], output_size], tf.float32, tf.random_normal_initializer(stddev=stddev)) b = tf.get_variable('bias', [output_size], initializer=tf.constant_initializer(bias_start)) out = tf.nn.bias_add(tf.matmul(input_, w), b) #if mask is not None: #out = tf.minimum(out, (2.0 * mask - 1.0) * np.finfo(np.float32).max) if activation_fn is not None: return activation_fn(out), w, b else: return out, w, b
32.903226
107
0.582353
0
0
0
0
0
0
0
0
124
0.121569
c40422c343f9bc25ecff00b38032cd67afe03520
4,081
py
Python
cellsium/model/initialization.py
modsim/CellSium
8c3f4f5ccf84fa5555206d01cc3359c89071dcba
[ "BSD-2-Clause" ]
null
null
null
cellsium/model/initialization.py
modsim/CellSium
8c3f4f5ccf84fa5555206d01cc3359c89071dcba
[ "BSD-2-Clause" ]
null
null
null
cellsium/model/initialization.py
modsim/CellSium
8c3f4f5ccf84fa5555206d01cc3359c89071dcba
[ "BSD-2-Clause" ]
1
2021-12-29T23:19:17.000Z
2021-12-29T23:19:17.000Z
"""Cell parameter random initializations.""" from typing import Any, Dict import numpy as np from ..parameters import ( Height, NewCellBendLowerLower, NewCellBendLowerUpper, NewCellBendOverallLower, NewCellBendOverallUpper, NewCellBendUpperLower, NewCellBendUpperUpper, NewCellLength1Mean, NewCellLength1Std, NewCellLength2Mean, NewCellLength2Std, NewCellLengthAbsoluteMax, NewCellLengthAbsoluteMin, NewCellRadiusFromCenter, NewCellWidthAbsoluteMax, NewCellWidthAbsoluteMin, NewCellWidthMean, NewCellWidthStd, Width, ) from ..random import RRF, enforce_bounds RandomSequenceType = Dict[str, Any] class RandomWidthLength: """Random initializations for cell width/lengths.""" @staticmethod def random_sequences(sequence: RRF) -> RandomSequenceType: assert NewCellLength1Mean.value > NewCellWidthMean.value assert NewCellLength2Mean.value > NewCellWidthMean.value def ensure_length_greater_width(length, width): for inner_length, inner_width in zip(length, width): if inner_length > inner_width: yield [inner_length, inner_width] return dict( length__width=RRF.chain( ensure_length_greater_width, length=RRF.compose( lambda raw_lengths, choice: raw_lengths[choice], raw_lengths=RRF.chain( enforce_bounds, iterator=sequence.multivariate_normal( [NewCellLength1Mean.value, NewCellLength2Mean.value], [ [NewCellLength1Std.value, 0.0], [0.0, NewCellLength2Std.value], ], ), minimum=NewCellLengthAbsoluteMin.value, maximum=NewCellLengthAbsoluteMax.value, ), choice=sequence.integers(0, 1), ), width=RRF.chain( enforce_bounds, iterator=sequence.normal( NewCellWidthMean.value, NewCellWidthStd.value ), minimum=NewCellWidthAbsoluteMin.value, maximum=NewCellWidthAbsoluteMax.value, ), ) ) class RandomBentRod: """Random initializations for cell bent radii.""" @staticmethod def random_sequences(sequence: RRF) -> RandomSequenceType: return dict( bend_overall=sequence.uniform( NewCellBendOverallLower.value, NewCellBendOverallUpper.value, ), bend_upper=sequence.uniform( NewCellBendUpperLower.value, NewCellBendUpperUpper.value ), bend_lower=sequence.uniform( NewCellBendLowerLower.value, NewCellBendLowerUpper.value ), ) class RandomPosition: """Random initializations for cell positions.""" @staticmethod def random_sequences(sequence: RRF) -> RandomSequenceType: return dict( position=RRF.compose( lambda radius, angle: [ float(radius * np.cos(angle) + Width.value / 2), float(radius * np.sin(angle) + Height.value / 2), ], radius=sequence.uniform(0, NewCellRadiusFromCenter.value), angle=RRF.wrap(sequence.uniform(0, 360.0), np.radians), ) ) class RandomAngle: """Random initializations for cell angles.""" @staticmethod def random_sequences(sequence: RRF) -> RandomSequenceType: return dict(angle=RRF.wrap(sequence.uniform(0, 360.0), np.radians)) class RandomFluorescence: """Random initializations for fluorescences.""" @staticmethod def random_sequences(sequence: RRF) -> RandomSequenceType: return dict(fluorescences=sequence.uniform(0, 360.0, (1,)))
32.133858
81
0.589561
3,391
0.830924
1,656
0.405783
2,987
0.731928
0
0
285
0.069836
c4049f3019aff074a372d03e83e2c871a888286d
7,540
py
Python
QAOA_MaxClique.py
bernovie/QAOA-MaxClique
59b795480e019ae19d25ace274bdb86714ed49e2
[ "MIT" ]
2
2020-06-19T06:58:11.000Z
2021-05-18T07:17:22.000Z
QAOA_MaxClique.py
bernovie/QAOA-MaxClique
59b795480e019ae19d25ace274bdb86714ed49e2
[ "MIT" ]
1
2020-09-21T20:26:46.000Z
2020-09-21T20:26:46.000Z
QAOA_MaxClique.py
bernovie/QAOA-MaxClique
59b795480e019ae19d25ace274bdb86714ed49e2
[ "MIT" ]
1
2020-09-20T12:42:02.000Z
2020-09-20T12:42:02.000Z
import qiskit import numpy as np import matplotlib.pyplot as plt import json from graph import * # Random comment P =1 def makeCircuit(inbits, outbits): q = qiskit.QuantumRegister(inbits+outbits) c = qiskit.ClassicalRegister(inbits+outbits) qc = qiskit.QuantumCircuit(q, c) q_input = [q[i] for i in range(outbits,outbits+inbits)] q_output = [q[j] for j in range(outbits)] return qc, c, q_input, q_output # measure all qubits in q_input register, return dictionary of samples def measureInput(qc, q_input, c): for i in range(len(q_input)): qc.measure(q_input[i], c[i]) job = qiskit.execute(qc, backend='local_qasm_simulator', shots=1024) return job.result().get_counts(qc) def test5(qc, q_input, c): data = measureInput(qc, q_input, c) # assemble data from dictionary into list parsed = [] xticks = [] n = len(q_input) for i in range(2**n): bits = np.binary_repr(i, width=n) xticks.append(bits) bits += "00" if bits in data: parsed.append(data[bits]) else: parsed.append(0) plt.bar(range(2**n), parsed) plt.xticks(range(2**n),xticks,rotation="vertical") plt.xlabel('Outcomes') plt.ylabel('Counts') plt.title('Measurement Histogram') plt.show() def applyQAOA(gamma, beta, graph): ### INIT REGS qc, c, q_input, q_output = makeCircuit(graph.getNumNodes(), 1); PENALTY = graph.getMaxEdges() ### H on every input register for node in q_input: qc.h(node) complement = graph.getEdgesComp(); edges = graph.getEdges() ### APPLY V AND W ### APPLY V # EDGES IN THE GRAPH for edge in edges: nodeList = edge.getNodes() qc.cu1(-gamma, q_input[nodeList[0].name], q_input[nodeList[1].name]) # EDGES NOT IN THE GRAPH for edge in complement: nodeList = edge.getNodes() qc.cu1(PENALTY*gamma, q_input[nodeList[0].name], q_input[nodeList[1].name]) ### APPLY W for node in q_input: qc.h(node) qc.u1(2*beta, node) qc.h(node) ### Measure results = measureInput(qc, q_input, c) ### Compute the result expectation ### Parse the result list. # B/c we only care about counts associated with input register # we combine the counts of states with same input register bits counts = dict() for key in results: if key[1:] not in counts: counts[key[1:]] = results[key] else: counts[key[1:]] += results[key] #print(counts) eox = 0 eox2 = 0 for val in counts: cliqNum = 0 for edge in edges: nodeList = edge.getNodes() #print("Node 1:", nodeList[0].name,"Node 2:", nodeList[1].name) if val[nodeList[0].name] == '1' and val[nodeList[1].name] == '1': cliqNum += 1 for edge in complement: nodeList = edge.getNodes() if val[nodeList[0].name] == '1' and val[nodeList[1].name] == '1': cliqNum -= PENALTY eox += counts[val]/1024 * cliqNum eox2 += (cliqNum**2) * counts[val]/1024 std = np.sqrt((len(counts)/(len(counts) -1))*(eox2 - eox**2)) return eox, std ### gradient ascent optimizer # graph is graph to optimize over # epsilon controls how far out the delta is calculated # eta is learning rate # threshold is the average of gamma and beta that we will consider a max def optimize(graph, epsilon, eta, threshold): count = 0 gamma = 2 beta = 2 dgamma = (applyQAOA(gamma + epsilon, beta, graph) - applyQAOA(gamma - epsilon, beta, graph))/(2*epsilon) dbeta = (applyQAOA(gamma, beta + epsilon, graph) - applyQAOA(gamma, beta + epsilon, graph))/(2*epsilon) flipper = True #Alternate between maxing gamma and maxing beta while((abs(dgamma) + abs(dbeta))/2 > threshold): if(flipper): if (dgamma > 0): gamma = (gamma + (dgamma * eta)) % (2*np.pi) elif (dgamma < 0): gamma = (gamma - (dgamma * eta)) % (2*np.pi) dgamma = (applyQAOA(gamma + epsilon, beta, graph) - applyQAOA(gamma - epsilon, beta, graph))/(2*epsilon) else: if(dbeta > 0): beta = (beta + (dbeta * eta)) % np.pi elif (dbeta < 0): beta = (beta - (dbeta * eta)) % np.pi dbeta = (applyQAOA(gamma, beta + epsilon, graph) - applyQAOA(gamma, beta + epsilon, graph))/(2*epsilon) count+=1 print("Count", count, "dg", dgamma, "db", dbeta) flipper = not flipper print(count) return gamma, beta def main(): ###TESTING GRAPH #0---1 #| / | #3---2 myGraph = Graph(0, 0) nodes = [Node(i) for i in range(4)] edges = [] edges.append(Edge(nodes[0], nodes[1])) edges.append(Edge(nodes[1], nodes[2])) edges.append(Edge(nodes[2], nodes[3])) edges.append(Edge(nodes[3], nodes[0])) edges.append(Edge(nodes[3], nodes[1])) for n in nodes: myGraph.addNode(n) for e in edges: myGraph.addEdge(e) ### Run the algorithm #expect = applyQAOA(gamma, beta, myGraph) #print("Expectation Value:", expect) ### OPTIMIZE #bestGamma, bestBeta = optimize(myGraph, 0.1, 0.1, 0.05) #print("BestGamma: ", bestGamma, "bestBeta", bestBeta) #print("Optimized Expectation value", applyQAOA(bestGamma, bestBeta, myGraph)) #print("Optimal Gamma:", bestGamma, "Optimal Beta:", bestBeta) #BestGamma: 4.6015625 bestBeta 0.18702062766020688 #Optimized Expectation value -0.3115234375 ### Make graphs. # I'm thinking we hold one variable constant at its maxed value # and vary the other and vice versa. # Gamma has a larger range than beta. Do we want more data points for gamma than beta? # The last page of the worksheet says exactly which graphs we need in our report # so make sure we have at least those BestGamma = 4.6015625 BestBeta = 0.18702062766020688 betas = np.linspace(0, np.pi, 10) gammas = np.linspace(0, 2*np.pi, 100) varyingBeta = [] varyingGamma = [] betaSTD = [] gammaSTD = [] y = [] std = [] for gammaa in gammas: e, s = applyQAOA(gammaa, BestBeta, myGraph) y.append(e) std.append(s) with open("varyingGamma.txt", 'w') as f: json.dump(y, f) with open("gammaSTD.txt", 'w') as f: json.dump(std, f) """ y = [] std = [] for betaa in betas: e, s = applyQAOA(BestGamma, betaa, myGraph) y.append(e) std.append(s) with open("varyingBeta.txt", 'w') as f: json.dump(y, f) with open("betaSTD.txt", 'w') as f: json.dump(std, f) """ with open("varyingGamma.txt", 'r') as f: varyingGamma = json.load(f) #with open("varyingBeta.txt", 'r') as f: # varyingBeta = json.load(f) #with open("betaSTD.txt", 'r') as f: # betaSTD = json.load(f) with open("gammaSTD.txt", 'r') as f: gammaSTD = json.load(f) #betaG = plt.errorbar(betas, varyingBeta, betaSTD, ecolor='black', elinewidth = 0.5, capsize=3) gammaG = plt.errorbar(gammas, varyingGamma, gammaSTD, ecolor='black', elinewidth = 0.5, capsize=3) plt.legend(('Gamma Graph',)) plt.xlabel('Gamma values') plt.ylabel('Expectation Value') plt.title('Expectation Value vs Gamma holding Beta constant') plt.show() main()
31.157025
116
0.589125
0
0
0
0
0
0
0
0
2,395
0.317639
c406c0be47fb741172f1a8941c81701c0d28eb02
253
py
Python
yakut/cmd/file_server/__init__.py
pavel-kirienko/un
996e64668d8902bd876fab16b64e3361094a674d
[ "MIT" ]
1
2020-12-23T22:59:12.000Z
2020-12-23T22:59:12.000Z
yakut/cmd/file_server/__init__.py
pavel-kirienko/un
996e64668d8902bd876fab16b64e3361094a674d
[ "MIT" ]
null
null
null
yakut/cmd/file_server/__init__.py
pavel-kirienko/un
996e64668d8902bd876fab16b64e3361094a674d
[ "MIT" ]
null
null
null
# Copyright (c) 2021 OpenCyphal # This software is distributed under the terms of the MIT License. # Author: Pavel Kirienko <pavel@opencyphal.org> from ._app_descriptor import AppDescriptor as AppDescriptor from ._cmd import file_server as file_server
36.142857
66
0.810277
0
0
0
0
0
0
0
0
144
0.56917
c407355017835f143ce6a0c84504a53fa41a83ee
15,959
py
Python
src/learn_mtfixbmodel.py
ornithos/pytorch-mtds-mocap
3ec10387d3d897e9a20d789bd4a3782a047519f7
[ "MIT" ]
2
2022-02-09T17:53:31.000Z
2022-03-02T11:25:35.000Z
src/learn_mtfixbmodel.py
ornithos/pytorch-mtds-mocap
3ec10387d3d897e9a20d789bd4a3782a047519f7
[ "MIT" ]
null
null
null
src/learn_mtfixbmodel.py
ornithos/pytorch-mtds-mocap
3ec10387d3d897e9a20d789bd4a3782a047519f7
[ "MIT" ]
null
null
null
"""Simple code for training an RNN for motion prediction.""" import os import sys import time import numpy as np import torch import torch.optim as optim from torch.autograd import Variable import mtfixb_model import mtfixb_model2 import parseopts def create_model(args, total_num_batches): """Create MT model and initialize or load parameters in session.""" if len(args.load) > 0: print("Loading model") model = torch.load(args.load, map_location="cpu") if args.use_cpu else torch.load(args.load) return model if args.k == 0: return create_model_k0(args, total_num_batches) if args.dynamicsdict: return create_model_DD(args, total_num_batches) if args.biasonly: return create_model_BiasOnly(args, total_num_batches) if args.nobias: return create_model_NoMTBias(args, total_num_batches) model = mtfixb_model.MTGRU( args.seq_length_out, args.decoder_size, args.decoder_size2, args.batch_size, total_num_batches, args.k, args.size_psi_hidden, args.size_psi_lowrank, args.bottleneck, output_dim=args.human_size, input_dim=args.input_size, dropout=args.dropout_p, residual_output=args.residual_velocities, init_state_noise=args.init_state_noise, mt_rnn=args.mt_rnn, psi_affine=args.psi_affine, ) if len(args.load) <= 0: if len(args.load_layer1) > 0: print("Loading GRU2 model") model = load_layer1(model, args.load_layer1, args.use_cpu) return model print("Loading model") model = torch.load(args.load, map_location="cpu") if args.use_cpu else torch.load(args.load) return model def create_model_k0(args, total_num_batches): """Create MT model and initialize or load parameters in session.""" model = mtfixb_model.OpenLoopGRU( args.seq_length_out, args.decoder_size, args.batch_size, args.human_size, args.input_size, args.dropout_p, args.residual_velocities, args.init_state_noise, ) return model def create_model_DD(args, total_num_batches): """Create MT model and initialize or load parameters in session.""" if len(args.load_layer1) > 0: NotImplementedError("Layer 1 load not yet implemented for Dynamics Dict.") model = mtfixb_model.DynamicsDict( args.seq_length_out, args.decoder_size, total_num_batches, args.batch_size, args.k, args.size_psi_hidden, args.size_psi_lowrank, args.human_size, args.input_size, args.dropout_p, args.residual_velocities, args.init_state_noise, ) return model def create_model_BiasOnly(args, total_num_batches): """Create MT model and initialize or load parameters in session.""" if len(args.load_layer1) > 0: NotImplementedError("Layer 1 load not yet implemented for MT Bias Only.") model = mtfixb_model.MTGRU_BiasOnly( args.seq_length_out, args.decoder_size, args.decoder_size2, args.batch_size, total_num_batches, args.k, args.size_psi_hidden, args.size_psi_lowrank, args.bottleneck, output_dim=args.human_size, input_dim=args.input_size, dropout=args.dropout_p, residual_output=args.residual_velocities, init_state_noise=args.init_state_noise, ) return model def create_model_NoMTBias(args, total_num_batches): """Create MT model and initialize or load parameters in session.""" if len(args.load_layer1) > 0: NotImplementedError("Layer 1 load not yet implemented for MT Bias Only.") model = mtfixb_model2.MTGRU_NoBias( args.seq_length_out, args.decoder_size, args.decoder_size2, args.batch_size, total_num_batches, args.k, args.size_psi_hidden, args.size_psi_lowrank, args.bottleneck, output_dim=args.human_size, input_dim=args.input_size, dropout=args.dropout_p, residual_output=args.residual_velocities, init_state_noise=args.init_state_noise, mt_rnn=args.mt_rnn, psi_affine=args.psi_affine, ) return model def train(args): """Train a MT model on human motion""" train_iter = read_all_data(args) train_iter.shuffle() total_num_batches = train_iter.total_length() model = create_model(args, total_num_batches) model = model if args.use_cpu else model.cuda() has_weight = not np.isclose(args.first3_prec, 1.0) is_hard_em = args.hard_em_iters > 0 is_MT = args.k > 0 current_step = 0 previous_losses = [] step_time, loss = 0, 0 mt_lr = args.learning_rate_mt if args.learning_rate_mt >= 0 else args.learning_rate z_lr = args.learning_rate_z if args.learning_rate_z >= 0 else args.learning_rate zls_lr = 0 if is_hard_em else z_lr pars_lrs, zls_ix = model.get_params_optim_dicts(mt_lr, args.learning_rate, z_lr, zls_lr=zls_lr) if args.optimiser.upper() == "SGD": optimiser = optim.SGD(pars_lrs, weight_decay=args.weight_decay) elif args.optimiser.upper() == "NESTEROV": optimiser = optim.SGD(pars_lrs, momentum=0.8, nesterov=True, weight_decay=args.weight_decay) elif args.optimiser.upper() == "ADAM": optimiser = optim.Adam(pars_lrs, betas=(0.9, 0.999), weight_decay=args.weight_decay) else: Exception("Unknown optimiser type: {:d}. Try 'SGD', 'Nesterov' or 'Adam'") has_ar_noise = args.ar_coef > 0 device = "cpu" if args.use_cpu else "cuda" if has_ar_noise: assert args.ar_coef < 1, "ar_coef must be in [0, 1)." # Construct banded AR precision matrix (fn def below) Prec = ar_prec_matrix(args.ar_coef, args.seq_length_out).float().to(device) for _ in range(args.iterations): optimiser.zero_grad() model.train() start_time = time.time() # ------------------------------------------------------- TRAINING inputs, outputs, c_ids = model.get_batch(train_iter) inputs, outputs = torchify(inputs, outputs, device=device) if is_MT: mu = model.mt_net.Z_mu[c_ids, :] sd = torch.sigmoid(3 * model.mt_net.Z_logit_s[c_ids, :]) preds, _state = model(inputs, mu, sd) else: preds, _state = model(inputs) err = preds - outputs if has_weight: err = err * torch.cat( (torch.ones(1, 1, 3) * np.sqrt(args.first3_prec), torch.ones(1, 1, args.human_size - 3)), dim=2 ).to(err.device) if not has_ar_noise: sqerr = err ** 2 else: sqerr = (Prec @ err) * err step_loss = args.human_size * args.seq_length_out * sqerr.mean() / 2 # assume \sigma is const. wrt optimisation, and hence normalising constant can be ignored. # Now for KL term. Since we're descending *negative* L.B., we need to *ADD* KL to loss: if is_MT: logstd = torch.log(sd) KLD = -0.5 * torch.sum(1 + 2 * logstd - mu.pow(2) - torch.exp(2 * logstd)) step_loss = step_loss + KLD # Actual backpropagation step_loss.backward() optimiser.step() # ------------------------------------------------------- # Reporting / admin step_loss = step_loss.cpu().data.numpy() if current_step % 10 == 0: if is_MT: KLD_part = KLD.cpu().data.numpy() print( "step {0:04d}; step_loss: {1:.4f} ({2:.4f})".format(current_step, step_loss, step_loss - KLD_part) ) else: print("step {0:04d}; step_loss: {1:.4f}".format(current_step, step_loss)) step_time += (time.time() - start_time) / args.test_every loss += step_loss / args.test_every current_step += 1 if current_step % 20 == 0: sys.stdout.flush() # Decay learning rate (if appl.) if current_step % args.learning_rate_step == 0: for param_group in optimiser.param_groups: param_group["lr"] *= args.learning_rate_decay_factor print("Decay learning rate. New value at " + str(optimiser.param_groups[0]["lr"])) # remove Hard EM spec (if appl.) if is_hard_em and zls_ix is not None and current_step == args.hard_em_iters: optimiser.param_groups[zls_ix]["lr"] = z_lr model.standardise_aggregate_posterior() # Once in a while, we save checkpoint, print statistics, and run evals. if current_step % args.test_every == 0: model.eval() # === CANNOT DO TEST SET EVALUATION SINCE DONT KNOW LATENT Z === # inputs, outputs = model.get_test_batch(test_set_Y, test_set_U, -1) # inputs, outputs = torchify(inputs, outputs, device=device) # # if is_MT: # preds, state = model(inputs, mu, sd) # else: # preds = model(inputs) # # err = (preds - outputs) # if has_weight: # err = err * torch.cat((torch.ones(1, 1, 3) * np.sqrt(args.first3_prec), # torch.ones(1, 1, args.human_size - 3)), dim=2).to(err.device) # # if not has_ar_noise: # sqerr = err ** 2 # else: # Prec_test = ar_prec_matrix(args.ar_coef, err.size(1)).float().to(device) # sqerr = (Prec_test @ err) * err # # val_loss = args.human_size * args.seq_length_out * sqerr.mean() / 2 # # if is_MT: # logstd = torch.log(sd) # KLD = -0.5 * torch.sum(1 + 2 * logstd - mu.pow(2) - torch.exp(2 * logstd)) # val_loss = val_loss + KLD # # print() # print("{0: <16} |".format("milliseconds"), end="") # for ms in [60, 240, 480, 750, 990, 1500, 2010]: # print(" {0:5d} |".format(ms), end="") # print() # # avg_mse_tt = sqerr.detach().cpu().mean(dim=0).numpy().mean(axis=1) # Pretty print of the results for 60, 240, 480, 750, 990, 1500, 2010 ms # print("{0: <16} |".format(" "), end="") # for ms in [1, 7, 15, 24, 32, 49, 66]: # if args.seq_length_out >= ms + 1: # print(" {0:.3f} |".format(avg_mse_tt[ms]), end="") # else: # print(" n/a |", end="") # print() # # print() # print("============================\n" # "Global step: %d\n" # "Learning rate: %.4f\n" # "Step-time (ms): %.4f\n" # "Train loss avg: %.4f\n" # "--------------------------\n" # "Test loss: %.4f\n" # "============================" % (current_step, # args.learning_rate, step_time * 1000, loss, # val_loss)) torch.save(model, args.train_dir + "/model_" + str(current_step)) # print() previous_losses.append(loss) # Reset global time and loss step_time, loss = 0, 0 sys.stdout.flush() def sample(args): raise NotImplementedError("Sampling not yet implemented: unsure how to deal with unknown latent z.") train_set_Y, train_set_U, test_set_Y, test_set_U = read_all_data(args) model = create_model(args) model.eval() if not args.use_cpu: model = model.cuda() print("Model created") inputs, outputs = model.get_test_batch(test_set_Y, test_set_U, -1) inputs = Variable(torch.from_numpy(inputs).float()) outputs = Variable(torch.from_numpy(outputs).float()) if not args.use_cpu: inputs, outputs, inputs.cuda(), outputs.cuda() if args.k > 0: preds, mu, logstd, state = model(inputs, outputs) else: preds = model(inputs) loss = (preds - outputs) ** 2 loss.cpu().data.numpy() loss = loss.mean() preds = preds.cpu().data.numpy() preds = preds.transpose([1, 0, 2]) loss = loss.cpu().data.numpy() np.savez("mt_predictions_{0}.npz".format(args.style_ix), preds=preds, actual=outputs) return def ar_prec_matrix(rho, n): # Banded covariance construction Prec = np.zeros((n, n)) i, j = np.indices(Prec.shape) Prec[i == j] = 1 + rho ** 2 Prec[i == j - 1] = -rho Prec[i == j + 2] = -rho return torch.tensor(Prec) def load_layer1(model, layer1_filename, use_cpu): model_gru1 = torch.load(layer1_filename, map_location="cpu") if use_cpu else torch.load(layer1_filename) if isinstance(model_gru1, mtfixb_model.OpenLoopGRU): model.layer1_rnn = model_gru1.rnn # model.layer1_linear = model_gru2.emission else: model.layer1_rnn = model_gru1.rnn2 return model def read_all_data(args): """ Loads data for training/testing and normalizes it. Args data_dir: directory to load the data from style_ix: style index of the test set (and leave out from the training set) njoints: number of joints to model (0 or -1 = all) Returns train_set: dictionary with normalized training data test_set: dictionary with test data data_mean: d-long vector with the mean of the training data data_std: d-long vector with the standard dev of the training data dim_to_ignore: dimensions that are not used becaused stdev is too small dim_to_use: dimensions that we are actually using in the model """ # === Read training data === print("Reading training data (test index {0:d}).".format(args.style_ix)) njoints = args.human_size if not args.train_set_size == -1: style_lkp = { str(i): range(1 + args.train_set_size * (i - 1), 1 + args.train_set_size * i) for i in range(1, 8 + 1) } else: style_lkp = np.load(os.path.join(args.data_dir, args.stylelkp_fname)) train_set_Y = np.load(os.path.join(args.data_dir, args.output_fname)) train_set_U = np.load(os.path.join(args.data_dir, args.input_fname)) njoints = train_set_Y[str(0)].shape[1] if njoints <= 0 else njoints if args.train_set_size != 0: train_ixs = np.concatenate( [ style_lkp[str(i)] for i in range(1, len(style_lkp.keys()) + 1) if i != args.style_ix ] # CAREFUL: jl is 1-based! ) train_set_Y = [train_set_Y[str(i)][:, :njoints] for i in train_ixs] train_set_U = [train_set_U[str(i)] for i in train_ixs] else: assert args.style_ix not in range(1, 9), "no support for LOO experiments with max MTL data yet. Use style_ix=9" train_set_Y = [train_set_Y[str(i + 1)][:, :njoints] for i in range(len(train_set_Y))] train_set_U = [train_set_U[str(i + 1)] for i in range(len(train_set_U))] print("Using files {:s}; {:s}".format(args.input_fname, args.output_fname)) print("done reading data.") return mtfixb_model.DataIterator(train_set_Y, train_set_U, 64, min_size=64, overlap2=args.overlap_windows) def torchify(*args, device="cpu"): return [Variable(torch.from_numpy(arg).float()).to(device) for arg in args] def main(args=None): args = parseopts.parse_args(args) args = parseopts.initial_arg_transform(args) print(args.train_dir) os.makedirs(args.train_dir, exist_ok=True) if args.sample: sample(args) else: train(args) return args if __name__ == "__main__": main()
33.739958
119
0.59208
0
0
0
0
0
0
0
0
4,431
0.277649
c408095eb7ab9da191765321215bacfdbf223067
11,260
py
Python
python/tvm/topi/nn/conv2d_transpose.py
ccjoechou/tvm
779dc51e1332f417fa4c304b595ce76891dfc33a
[ "Apache-2.0" ]
4
2020-04-14T12:31:45.000Z
2020-11-02T14:20:59.000Z
python/tvm/topi/nn/conv2d_transpose.py
ccjoechou/tvm
779dc51e1332f417fa4c304b595ce76891dfc33a
[ "Apache-2.0" ]
null
null
null
python/tvm/topi/nn/conv2d_transpose.py
ccjoechou/tvm
779dc51e1332f417fa4c304b595ce76891dfc33a
[ "Apache-2.0" ]
1
2020-11-02T14:21:45.000Z
2020-11-02T14:21:45.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-variable, unused-argument """Transposed 2D convolution operators (sometimes called Deconvolution).""" import collections import tvm from tvm import relay, te from ..utils import simplify from .dilate import dilate from .pad import pad from .utils import get_pad_tuple def _ntuple(n): def parse(x): if isinstance(x, collections.abc.Iterable): assert len(x) == n, f"Input can only have {n} elements, but got {len(x)} instead: {x}." return x return tuple(repeat(x, n)) return parse _single = _ntuple(1) _pair = _ntuple(2) _triple = _ntuple(3) _quadruple = _ntuple(4) def conv2d_transpose_nchw(Input, Filter, strides, padding, out_dtype, output_padding): """Transposed 2D convolution nchw forward operator. Parameters ---------- Input : tvm.te.Tensor 4-D with shape [batch, in_channel, in_height, in_width] Filter : tvm.te.Tensor 4-D with shape [in_channel, num_filter, filter_height, filter_width] strides : tuple of two ints The spatial stride along height and width padding : int or str Padding size, or ['VALID', 'SAME'] out_dtype : str The output data type. This is used for mixed precision. output_padding : tuple of ints Used to get the right output shape for gradients Returns ------- Output : tvm.te.Tensor 4-D with shape [batch, out_channel, out_height, out_width] """ return declaration_conv2d_transpose_impl( Input, Filter, strides, padding, out_dtype, output_padding=output_padding ) def conv2d_transpose_nchw_preprocess(data, kernel, strides, padding, out_dtype, output_padding): """Preprocess data and kernel to make the compute pattern of conv2d_transpose the same as conv2d""" batch, in_c, in_h, in_w = data.shape _, out_c, filter_h, filter_w = kernel.shape stride_h, stride_w = strides opad_h, opad_w = output_padding assert opad_h < stride_h and opad_w < stride_w # dilate data data_dilate = dilate(data, [1, 1, stride_h, stride_w], name="data_dilate") # pad data fpad_top, fpad_left, fpad_bottom, fpad_right = get_pad_tuple(padding, (filter_h, filter_w)) bpad_top = filter_h - 1 - fpad_top bpad_bottom = filter_h - 1 - fpad_bottom + opad_h bpad_left = filter_w - 1 - fpad_left bpad_right = filter_w - 1 - fpad_right + opad_w data_pad = pad( data_dilate, [0, 0, bpad_top, bpad_left], [0, 0, bpad_bottom, bpad_right], name="data_pad" ) # transform kernel layout from IOHW to OIHW, and rotate kernel by 180 degrees kernel_transform = te.compute( (out_c, in_c, filter_h, filter_w), lambda o, i, h, w: kernel[i][o][filter_h - 1 - h][filter_w - 1 - w], name="kernel_transform", ) return data_pad, kernel_transform def declaration_conv2d_transpose_impl(data, kernel, strides, padding, out_dtype, output_padding): """Implementation of conv2d transpose""" data_pad, kernel_transform = conv2d_transpose_nchw_preprocess( data, kernel, strides, padding, out_dtype, output_padding ) batch, in_c, in_h, in_w = data_pad.shape out_c, _, filter_h, filter_w = kernel_transform.shape # convolution stage out_c = simplify(out_c) out_h = simplify(in_h - filter_h + 1) out_w = simplify(in_w - filter_w + 1) dc = te.reduce_axis((0, in_c), name="dc") dh = te.reduce_axis((0, filter_h), name="dh") dw = te.reduce_axis((0, filter_w), name="dw") Output = te.compute( (batch, out_c, out_h, out_w), lambda b, c, h, w: te.sum( data_pad[b, dc, h + dh, w + dw].astype(out_dtype) * kernel_transform[c, dc, dh, dw].astype(out_dtype), axis=[dc, dh, dw], ), tag="conv2d_transpose_nchw", ) return Output def group_conv2d_transpose_nchw(data, kernel, stride, padding, out_dtype, output_padding, groups): """Group convolution operator in NCHW layout. Parameters ---------- data : tvm.te.Tensor 4-D with shape [batch, in_channel, in_height, in_width] kernel : tvm.te.Tensor 4-D with shape [in_channel, out_channel // groups, filter_height, filter_width] stride : int or a list/tuple of two ints Stride size, or [stride_height, stride_width] padding : int or a list/tuple of 2 or 4 ints padding size, or [pad_height, pad_width] for 2 ints, or [pad_top, pad_left, pad_bottom, pad_right] for 4 ints out_dtype : str The output data type. This is used for mixed precision. output_padding : tuple of ints Used to get the right output shape for gradients groups : int number of groups out_dtype : str The output type. This is used for mixed precision. Returns ------- Output : tvm.te.Tensor 4-D with shape [batch, out_channel, out_height, out_width] """ if groups == 1: return conv2d_transpose_nchw(data, kernel, stride, padding, out_dtype, output_padding) # some pre-processing and prelimnary checks if out_dtype is None: out_dtype = data.dtype batch, in_channels, in_h, in_w = data.shape _, out_c, filter_h, filter_w = kernel.shape assert ( in_channels % groups == 0 ), f"input channels {in_channels} must divide group size {groups}" # assert out_c % groups == 0, f"output channels {in_c} must divide group size {groups}" strides = _pair(stride) # padding = _pair(padding) # output_padding = _pair(output_padding) # dilation = _pair(dilation) stride_h, stride_w = strides opad_h, opad_w = output_padding assert ( opad_h < stride_h and opad_w < stride_w ), f"[{output_padding}] opad_h:{opad_h} < stride_h:{stride_h} \ and opad_w:{opad_w} < stride_w:{stride_w} does not satisfy." # dilate data data_dilate = dilate(data, [1, 1, stride_h, stride_w], name="data_dilate") # pad data fpad_top, fpad_left, fpad_bottom, fpad_right = get_pad_tuple(padding, (filter_h, filter_w)) bpad_top = filter_h - 1 - fpad_top bpad_bottom = filter_h - 1 - fpad_bottom + opad_h bpad_left = filter_w - 1 - fpad_left bpad_right = filter_w - 1 - fpad_right + opad_w data_pad = pad( data_dilate, [0, 0, bpad_top, bpad_left], [0, 0, bpad_bottom, bpad_right], name="data_pad" ) # transform kernel layout from IOHW to OIHW, and rotate kernel by 180 degrees kernel_transform = te.compute( (out_c, in_channels, filter_h, filter_w), lambda i, o, h, w: kernel[o][i][filter_h - 1 - h][filter_w - 1 - w], name="kernel_transform", ) batch, in_channels, in_h, in_w = data_pad.shape out_c, _, filter_h, filter_w = kernel_transform.shape # convolution stage out_channels = simplify(out_c * groups) out_h = simplify(in_h - filter_h + 1) out_w = simplify(in_w - filter_w + 1) dc = te.reduce_axis((0, in_channels // groups), name="dc") dh = te.reduce_axis((0, filter_h), name="dh") dw = te.reduce_axis((0, filter_w), name="dw") # data: batch, in_channels, out_h, out_w # weight: out_channels // G, in_channels, out_h, out_w return te.compute( (batch, out_channels, out_h, out_w), lambda b, c, h, w: te.sum( data_pad[ b, c // (out_channels // groups) * (in_channels // groups) + dc, h + dh, w + dw ].astype(out_dtype) * kernel_transform[ c % (out_channels // groups), c // (out_channels // groups) * (in_channels // groups) + dc, dh, dw, ].astype(out_dtype), axis=[dc, dh, dw], ), tag="group_conv2d_transpose_nchw", ) def layout_transform(tensor: "relay.Expr", current_layout: str, desired_layout: str): """Transform a tensor with the current layout to the desired layout. E.g. layout_transform(t, "NCHW", "CNHW") --> relay.transpose(t, [1, 0, 2, 3]) Parameters ---------- tensor: relay.Expr The Tensor to transpose current_layout: str The current layout e.g. NCHW or OIHW desired_layout: str The desired layout, must be compatible with current_layout Returns ------- The layout_transformed tensor. """ if sorted(current_layout) != sorted(desired_layout): raise ValueError(f"Incompatible layouts: {current_layout} vs {desired_layout}") if current_layout == desired_layout: return tensor current_layout_map = {c: i for i, c in enumerate(current_layout)} desired_layout_map = {c: i for i, c in enumerate(desired_layout)} axes = [None] * len(current_layout) for c, i in desired_layout_map.items(): axes[i] = current_layout_map[c] return relay.transpose(tensor, axes=axes) @tvm.target.generic_func def conv2d_transpose_legalize(attrs, inputs, types): """Legalizes Transposed 2D convolution op. Parameters ---------- attrs : tvm.ir.Attrs Attributes of current Transposed 2D convolution inputs : list of tvm.relay.Expr The args of the Relay expr to be legalized types : list of types List of input and output types Returns ------- result : tvm.relay.Expr The legalized expr """ data, kernel = inputs kernel_layout = attrs["kernel_layout"] if attrs["data_layout"] == "NHWC": kernel = layout_transform(kernel, kernel_layout, "IOHW") # Set new attrs for conv2d_transpose. new_attrs = {k: attrs[k] for k in attrs.keys()} new_attrs["data_layout"] = "NCHW" # layout of kernel should be IOHW, but kernel_layout will be swapped - OIHW new_attrs["kernel_layout"] = "IOHW" # Convert data to NCHW. data = relay.transpose(data, axes=(0, 3, 1, 2)) deconv = relay.nn.conv2d_transpose(data, kernel, **new_attrs) # Convert back to original NHWC layout. out = relay.transpose(deconv, axes=(0, 2, 3, 1)) return out if attrs["data_layout"] == "NCHW": kernel = layout_transform(kernel, kernel_layout, "IOHW") new_attrs = {k: attrs[k] for k in attrs.keys()} # layout of kernel should be IOHW, but kernel_layout will be swapped - OIHW new_attrs["kernel_layout"] = "IOHW" return relay.nn.conv2d_transpose(data, kernel, **new_attrs) return None
34.329268
99
0.653819
0
0
0
0
1,580
0.14032
0
0
5,060
0.449378
c40810867a32dd051fe382d63b22b8bac17db49f
91,964
py
Python
econml/solutions/causal_analysis/_causal_analysis.py
huigangchen/EconML
9a56d651e2964ebd05144de52f577f9044a22a0b
[ "BSD-3-Clause" ]
1,846
2019-05-06T21:14:19.000Z
2022-03-31T11:52:21.000Z
econml/solutions/causal_analysis/_causal_analysis.py
cleeway/EconML
fb2d1139f6c271d4b9a24d9c6d122d4d0891afb0
[ "BSD-3-Clause" ]
393
2019-05-08T00:55:32.000Z
2022-03-31T14:26:16.000Z
econml/solutions/causal_analysis/_causal_analysis.py
cleeway/EconML
fb2d1139f6c271d4b9a24d9c6d122d4d0891afb0
[ "BSD-3-Clause" ]
414
2019-05-14T03:51:08.000Z
2022-03-31T09:32:17.000Z
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. """Module for assessing causal feature importance.""" import warnings from collections import OrderedDict, namedtuple import joblib import lightgbm as lgb from numba.core.utils import erase_traceback import numpy as np from numpy.lib.function_base import iterable import pandas as pd from sklearn.base import BaseEstimator, TransformerMixin from sklearn.compose import ColumnTransformer from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier, RandomForestRegressor from sklearn.linear_model import Lasso, LassoCV, LogisticRegression, LogisticRegressionCV from sklearn.pipeline import make_pipeline, Pipeline from sklearn.preprocessing import OneHotEncoder, PolynomialFeatures, StandardScaler from sklearn.tree import _tree from sklearn.utils.validation import column_or_1d from ...cate_interpreter import SingleTreeCateInterpreter, SingleTreePolicyInterpreter from ...dml import LinearDML, CausalForestDML from ...inference import NormalInferenceResults from ...sklearn_extensions.linear_model import WeightedLasso from ...sklearn_extensions.model_selection import GridSearchCVList from ...utilities import _RegressionWrapper, inverse_onehot # TODO: this utility is documented but internal; reimplement? from sklearn.utils import _safe_indexing # TODO: this utility is even less public... from sklearn.utils import _get_column_indices class _CausalInsightsConstants: RawFeatureNameKey = 'raw_name' EngineeredNameKey = 'name' CategoricalColumnKey = 'cat' TypeKey = 'type' PointEstimateKey = 'point' StandardErrorKey = 'stderr' ZStatKey = 'zstat' ConfidenceIntervalLowerKey = 'ci_lower' ConfidenceIntervalUpperKey = 'ci_upper' PValueKey = 'p_value' Version = 'version' CausalComputationTypeKey = 'causal_computation_type' ConfoundingIntervalKey = 'confounding_interval' ViewKey = 'view' InitArgsKey = 'init_args' RowData = 'row_data' # NOTE: RowData is mutually exclusive with the other data columns ALL = [RawFeatureNameKey, EngineeredNameKey, CategoricalColumnKey, TypeKey, PointEstimateKey, StandardErrorKey, ZStatKey, ConfidenceIntervalLowerKey, ConfidenceIntervalUpperKey, PValueKey, Version, CausalComputationTypeKey, ConfoundingIntervalKey, ViewKey, InitArgsKey, RowData] def _get_default_shared_insights_output(): """ Dictionary elements shared among all analyses. In case of breaking changes to this dictionary output, the major version of this dictionary should be updated. In case of a change to this dictionary, the minor version should be updated. """ return { _CausalInsightsConstants.RawFeatureNameKey: [], _CausalInsightsConstants.EngineeredNameKey: [], _CausalInsightsConstants.CategoricalColumnKey: [], _CausalInsightsConstants.TypeKey: [], _CausalInsightsConstants.Version: '1.0', _CausalInsightsConstants.CausalComputationTypeKey: "simple", _CausalInsightsConstants.ConfoundingIntervalKey: None, _CausalInsightsConstants.InitArgsKey: {} } def _get_default_specific_insights(view): # keys should be mutually exclusive with shared keys, so that the dictionaries can be cleanly merged return { _CausalInsightsConstants.PointEstimateKey: [], _CausalInsightsConstants.StandardErrorKey: [], _CausalInsightsConstants.ZStatKey: [], _CausalInsightsConstants.ConfidenceIntervalLowerKey: [], _CausalInsightsConstants.ConfidenceIntervalUpperKey: [], _CausalInsightsConstants.PValueKey: [], _CausalInsightsConstants.ViewKey: view } def _get_metadata_causal_insights_keys(): return [_CausalInsightsConstants.Version, _CausalInsightsConstants.CausalComputationTypeKey, _CausalInsightsConstants.ConfoundingIntervalKey, _CausalInsightsConstants.ViewKey] def _get_column_causal_insights_keys(): return [_CausalInsightsConstants.RawFeatureNameKey, _CausalInsightsConstants.EngineeredNameKey, _CausalInsightsConstants.CategoricalColumnKey, _CausalInsightsConstants.TypeKey] def _get_data_causal_insights_keys(): return [_CausalInsightsConstants.PointEstimateKey, _CausalInsightsConstants.StandardErrorKey, _CausalInsightsConstants.ZStatKey, _CausalInsightsConstants.ConfidenceIntervalLowerKey, _CausalInsightsConstants.ConfidenceIntervalUpperKey, _CausalInsightsConstants.PValueKey] def _first_stage_reg(X, y, *, automl=True, random_state=None, verbose=0): if automl: model = GridSearchCVList([LassoCV(random_state=random_state), RandomForestRegressor( n_estimators=100, random_state=random_state, min_samples_leaf=10), lgb.LGBMRegressor(num_leaves=32, random_state=random_state)], param_grid_list=[{}, {'min_weight_fraction_leaf': [.001, .01, .1]}, {'learning_rate': [0.1, 0.3], 'max_depth': [3, 5]}], cv=3, scoring='r2', verbose=verbose) best_est = model.fit(X, y).best_estimator_ if isinstance(best_est, LassoCV): return Lasso(alpha=best_est.alpha_, random_state=random_state) else: return best_est else: model = LassoCV(cv=5, random_state=random_state).fit(X, y) return Lasso(alpha=model.alpha_, random_state=random_state) def _first_stage_clf(X, y, *, make_regressor=False, automl=True, min_count=None, random_state=None, verbose=0): # use same Cs as would be used by default by LogisticRegressionCV cs = np.logspace(-4, 4, 10) if min_count is None: min_count = _CAT_LIMIT # we have at least this many instances if automl: # NOTE: we don't use LogisticRegressionCV inside the grid search because of the nested stratification # which could affect how many times each distinct Y value needs to be present in the data model = GridSearchCVList([LogisticRegression(max_iter=1000, random_state=random_state), RandomForestClassifier(n_estimators=100, min_samples_leaf=10, random_state=random_state), lgb.LGBMClassifier(num_leaves=32, random_state=random_state)], param_grid_list=[{'C': cs}, {'max_depth': [3, None], 'min_weight_fraction_leaf': [.001, .01, .1]}, {'learning_rate': [0.1, 0.3], 'max_depth': [3, 5]}], cv=min(3, min_count), scoring='neg_log_loss', verbose=verbose) est = model.fit(X, y).best_estimator_ else: model = LogisticRegressionCV( cv=min(5, min_count), max_iter=1000, Cs=cs, random_state=random_state).fit(X, y) est = LogisticRegression(C=model.C_[0], max_iter=1000, random_state=random_state) if make_regressor: return _RegressionWrapper(est) else: return est def _final_stage(*, random_state=None, verbose=0): return GridSearchCVList([WeightedLasso(random_state=random_state), RandomForestRegressor(n_estimators=100, random_state=random_state, verbose=verbose)], param_grid_list=[{'alpha': [.001, .01, .1, 1, 10]}, {'max_depth': [3, 5], 'min_samples_leaf': [10, 50]}], cv=3, scoring='neg_mean_squared_error', verbose=verbose) # simplification of sklearn's ColumnTransformer that encodes categoricals and passes through selected other columns # but also supports get_feature_names with expected signature class _ColumnTransformer(TransformerMixin): def __init__(self, categorical, passthrough): self.categorical = categorical self.passthrough = passthrough def fit(self, X): cat_cols = _safe_indexing(X, self.categorical, axis=1) if cat_cols.shape[1] > 0: self.has_cats = True # NOTE: set handle_unknown to 'ignore' so that we don't throw at runtime if given a novel value self.one_hot_encoder = OneHotEncoder(sparse=False, handle_unknown='ignore').fit(cat_cols) else: self.has_cats = False self.d_x = X.shape[1] return self def transform(self, X): rest = _safe_indexing(X, self.passthrough, axis=1) if self.has_cats: cats = self.one_hot_encoder.transform(_safe_indexing(X, self.categorical, axis=1)) # NOTE: we rely on the passthrough columns coming first in the concatenated X;W # when we pipeline scaling with our first stage models later, so the order here is important return np.hstack((rest, cats)) else: return rest def get_feature_names(self, names=None): if names is None: names = [f"x{i}" for i in range(self.d_x)] rest = _safe_indexing(names, self.passthrough, axis=0) if self.has_cats: cats = self.one_hot_encoder.get_feature_names( _safe_indexing(names, self.categorical, axis=0)) return np.concatenate((rest, cats)) else: return rest # Wrapper to make sure that we get a deep copy of the contents instead of clone returning an untrained copy class _Wrapper: def __init__(self, item): self.item = item class _FrozenTransformer(TransformerMixin, BaseEstimator): def __init__(self, wrapper): self.wrapper = wrapper def fit(self, X, y): return self def transform(self, X): return self.wrapper.item.transform(X) def _freeze(transformer): return _FrozenTransformer(_Wrapper(transformer)) # Convert python objects to (possibly nested) types that can easily be represented as literals def _sanitize(obj): if obj is None or isinstance(obj, (bool, int, str, float)): return obj elif isinstance(obj, dict): return {_sanitize(key): _sanitize(obj[key]) for key in obj} else: try: return [_sanitize(item) for item in obj] except Exception: raise ValueError(f"Could not sanitize input {obj}") # Convert SingleTreeInterpreter to a python dictionary def _tree_interpreter_to_dict(interp, features, leaf_data=lambda t, n: {}): tree = interp.tree_model_.tree_ node_dict = interp.node_dict_ def recurse(node_id): if tree.children_left[node_id] == _tree.TREE_LEAF: return {'leaf': True, 'n_samples': tree.n_node_samples[node_id], **leaf_data(tree, node_id, node_dict)} else: return {'leaf': False, 'feature': features[tree.feature[node_id]], 'threshold': tree.threshold[node_id], 'left': recurse(tree.children_left[node_id]), 'right': recurse(tree.children_right[node_id])} return recurse(0) class _PolicyOutput: """ A type encapsulating various information related to a learned policy. Attributes ---------- tree_dictionary:dict The policy tree represented as a dictionary, policy_value:float The average value of applying the recommended policy (over using the control), always_treat:dict of string to float A dictionary mapping each non-control treatment to the value of always treating with it (over control), control_name:string The name of the control treatment """ def __init__(self, tree_dictionary, policy_value, always_treat, control_name): self.tree_dictionary = tree_dictionary self.policy_value = policy_value self.always_treat = always_treat self.control_name = control_name # named tuple type for storing results inside CausalAnalysis class; # must be lifted to module level to enable pickling _result = namedtuple("_result", field_names=[ "feature_index", "feature_name", "feature_baseline", "feature_levels", "hinds", "X_transformer", "W_transformer", "estimator", "global_inference", "treatment_value"]) def _process_feature(name, feat_ind, verbose, categorical_inds, categories, heterogeneity_inds, min_counts, y, X, nuisance_models, h_model, random_state, model_y, cv, mc_iters): try: if verbose > 0: print(f"CausalAnalysis: Feature {name}") discrete_treatment = feat_ind in categorical_inds if discrete_treatment: cats = categories[categorical_inds.index(feat_ind)] else: cats = 'auto' # just leave the setting at the default otherwise # the transformation logic here is somewhat tricky; we always need to encode the categorical columns, # whether they end up in X or in W. However, for the continuous columns, we want to scale them all # when running the first stage models, but don't want to scale the X columns when running the final model, # since then our coefficients will have odd units and our trees will also have decisions using those units. # # we achieve this by pipelining the X scaling with the Y and T models (with fixed scaling, not refitting) hinds = heterogeneity_inds[feat_ind] WX_transformer = ColumnTransformer([('encode', OneHotEncoder(drop='first', sparse=False), [ind for ind in categorical_inds if ind != feat_ind]), ('drop', 'drop', feat_ind)], remainder=StandardScaler()) W_transformer = ColumnTransformer([('encode', OneHotEncoder(drop='first', sparse=False), [ind for ind in categorical_inds if ind != feat_ind and ind not in hinds]), ('drop', 'drop', hinds), ('drop_feat', 'drop', feat_ind)], remainder=StandardScaler()) X_cont_inds = [ind for ind in hinds if ind != feat_ind and ind not in categorical_inds] # Use _ColumnTransformer instead of ColumnTransformer so we can get feature names X_transformer = _ColumnTransformer([ind for ind in categorical_inds if ind != feat_ind and ind in hinds], X_cont_inds) # Controls are all other columns of X WX = WX_transformer.fit_transform(X) # can't use X[:, feat_ind] when X is a DataFrame T = _safe_indexing(X, feat_ind, axis=1) # TODO: we can't currently handle unseen values of the feature column when getting the effect; # we might want to modify OrthoLearner (and other discrete treatment classes) # so that the user can opt-in to allowing unseen treatment values # (and return NaN or something in that case) W = W_transformer.fit_transform(X) X_xf = X_transformer.fit_transform(X) # HACK: this is slightly ugly because we rely on the fact that DML passes [X;W] to the first stage models # and so we can just peel the first columns off of that combined array for rescaling in the pipeline # TODO: consider addding an API to DML that allows for better understanding of how the nuisance inputs are # built, such as model_y_feature_names, model_t_feature_names, model_y_transformer, etc., so that this # becomes a valid approach to handling this X_scaler = ColumnTransformer([('scale', StandardScaler(), list(range(len(X_cont_inds))))], remainder='passthrough').fit(np.hstack([X_xf, W])).named_transformers_['scale'] X_scaler_fixed = ColumnTransformer([('scale', _freeze(X_scaler), list(range(len(X_cont_inds))))], remainder='passthrough') if W.shape[1] == 0: # array checking routines don't accept 0-width arrays W = None if X_xf.shape[1] == 0: X_xf = None if verbose > 0: print("CausalAnalysis: performing model selection on T model") # perform model selection model_t = (_first_stage_clf(WX, T, automl=nuisance_models == 'automl', min_count=min_counts.get(feat_ind, None), random_state=random_state, verbose=verbose) if discrete_treatment else _first_stage_reg(WX, T, automl=nuisance_models == 'automl', random_state=random_state, verbose=verbose)) pipelined_model_t = Pipeline([('scale', X_scaler_fixed), ('model', model_t)]) pipelined_model_y = Pipeline([('scale', X_scaler_fixed), ('model', model_y)]) if X_xf is None and h_model == 'forest': warnings.warn(f"Using a linear model instead of a forest model for feature '{name}' " "because forests don't support models with no heterogeneity indices") h_model = 'linear' if h_model == 'linear': est = LinearDML(model_y=pipelined_model_y, model_t=pipelined_model_t, discrete_treatment=discrete_treatment, fit_cate_intercept=True, linear_first_stages=False, categories=cats, random_state=random_state, cv=cv, mc_iters=mc_iters) elif h_model == 'forest': est = CausalForestDML(model_y=pipelined_model_y, model_t=pipelined_model_t, discrete_treatment=discrete_treatment, n_estimators=4000, min_var_leaf_on_val=True, categories=cats, random_state=random_state, verbose=verbose, cv=cv, mc_iters=mc_iters) if verbose > 0: print("CausalAnalysis: tuning forest") est.tune(y, T, X=X_xf, W=W) if verbose > 0: print("CausalAnalysis: training causal model") est.fit(y, T, X=X_xf, W=W, cache_values=True) # Prefer ate__inference to const_marginal_ate_inference(X) because it is doubly-robust and not conservative if h_model == 'forest' and discrete_treatment: global_inference = est.ate__inference() else: # convert to NormalInferenceResults for consistency inf = est.const_marginal_ate_inference(X=X_xf) global_inference = NormalInferenceResults(d_t=inf.d_t, d_y=inf.d_y, pred=inf.mean_point, pred_stderr=inf.stderr_mean, mean_pred_stderr=None, inf_type='ate') # Set the dictionary values shared between local and global summaries if discrete_treatment: cats = est.transformer.categories_[0] baseline = cats[est.transformer.drop_idx_[0]] cats = cats[np.setdiff1d(np.arange(len(cats)), est.transformer.drop_idx_[0])] d_t = len(cats) insights = { _CausalInsightsConstants.TypeKey: ['cat'] * d_t, _CausalInsightsConstants.RawFeatureNameKey: [name] * d_t, _CausalInsightsConstants.CategoricalColumnKey: cats.tolist(), _CausalInsightsConstants.EngineeredNameKey: [ f"{name} (base={baseline}): {c}" for c in cats] } treatment_value = 1 else: d_t = 1 cats = ["num"] baseline = None insights = { _CausalInsightsConstants.TypeKey: ["num"], _CausalInsightsConstants.RawFeatureNameKey: [name], _CausalInsightsConstants.CategoricalColumnKey: [name], _CausalInsightsConstants.EngineeredNameKey: [name] } # calculate a "typical" treatment value, using the mean of the absolute value of non-zero treatments treatment_value = np.mean(np.abs(T[T != 0])) result = _result(feature_index=feat_ind, feature_name=name, feature_baseline=baseline, feature_levels=cats, hinds=hinds, X_transformer=X_transformer, W_transformer=W_transformer, estimator=est, global_inference=global_inference, treatment_value=treatment_value) return insights, result except Exception as e: return e # Unless we're opting into minimal cross-fitting, this is the minimum number of instances of each category # required to fit a discrete DML model _CAT_LIMIT = 10 class CausalAnalysis: """ Note: this class is experimental and the API may evolve over our next few releases. Gets causal importance of features. Parameters ---------- feature_inds: array-like of int, str, or bool The features for which to estimate causal effects, expressed as either column indices, column names, or boolean flags indicating which columns to pick categorical: array-like of int, str, or bool The features which are categorical in nature, expressed as either column indices, column names, or boolean flags indicating which columns to pick heterogeneity_inds: array-like of int, str, or bool, or None or list of array-like elements or None, default None If a 1d array, then whenever estimating a heterogeneous (local) treatment effect model, then only the features in this array will be used for heterogeneity. If a 2d array then its first dimension should be len(feature_inds) and whenever estimating a local causal effect for target feature feature_inds[i], then only features in heterogeneity_inds[i] will be used for heterogeneity. If heterogeneity_inds[i]=None, then all features are used for heterogeneity when estimating local causal effect for feature_inds[i], and likewise if heterogeneity_inds[i]=[] then no features will be used for heterogeneity. If heterogeneity_ind=None then all features are used for heterogeneity for all features, and if heterogeneity_inds=[] then no features will be. feature_names: list of str, default None The names for all of the features in the data. Not necessary if the input will be a dataframe. If None and the input is a plain numpy array, generated feature names will be ['X1', 'X2', ...]. upper_bound_on_cat_expansion: int, default 5 The maximum number of categorical values allowed, because they are expanded via one-hot encoding. If a feature has more than this many values, then a causal effect model is not fitted for that target feature and a warning flag is raised. The remainder of the models are fitted. classification: bool, default False Whether this is a classification (as opposed to regression) task TODO. Enable also multi-class classification (post-MVP) nuisance_models: one of {'linear', 'automl'}, optional (default='linear') What models to use for nuisance estimation (i.e. for estimating propensity models or models of how controls predict the outcome). If 'linear', then LassoCV (for regression) and LogisticRegressionCV (for classification) are used. If 'automl', then a kfold cross-validation and model selection is performed among several models and the best is chosen. TODO. Add other options, such as {'azure_automl', 'forests', 'boosting'} that will use particular sub-cases of models or also integrate with azure autoML. (post-MVP) heterogeneity_model: one of {'linear', 'forest'}, optional (default='linear') What type of model to use for treatment effect heterogeneity. 'linear' means that a heterogeneity model of the form theta(X)=<a, X> will be used, while 'forest' means that a forest model will be trained instead. TODO. Add other options, such as {'automl'} for performing model selection for the causal effect, or {'sparse_linear'} for using a debiased lasso. (post-MVP) categories: 'auto' or list of ('auto' or list of values), default 'auto' What categories to use for the categorical columns. If 'auto', then the categories will be inferred for all categorical columns; otherwise this argument should have as many entries as there are categorical columns, and each entry should be either 'auto' to infer the values for that column or the list of values for the column. If explicit values are provided, the first value is treated as the "control" value for that column against which other values are compared. n_jobs: int, default -1 Degree of parallelism to use when training models via joblib.Parallel verbose : int, default=0 Controls the verbosity when fitting and predicting. cv: int, cross-validation generator or an iterable, default 5 Determines the strategy for cross-fitting used when training causal models for each feature. Possible inputs for cv are: - integer, to specify the number of folds. - :term:`CV splitter` - An iterable yielding (train, test) splits as arrays of indices. For integer inputs, if the treatment is discrete :class:`~sklearn.model_selection.StratifiedKFold` is used, else, :class:`~sklearn.model_selection.KFold` is used (with a random shuffle in either case). mc_iters: int, default 3 The number of times to rerun the first stage models to reduce the variance of the causal model nuisances. skip_cat_limit_checks: bool, default False By default, categorical features need to have several instances of each category in order for a model to be fit robustly. Setting this to True will skip these checks (although at least 2 instances will always be required for linear heterogeneity models, and 4 for forest heterogeneity models even in that case). random_state : int, RandomState instance or None, default=None Controls the randomness of the estimator. The features are always randomly permuted at each split. When ``max_features < n_features``, the algorithm will select ``max_features`` at random at each split before finding the best split among them. But the best found split may vary across different runs, even if ``max_features=n_features``. That is the case, if the improvement of the criterion is identical for several splits and one split has to be selected at random. To obtain a deterministic behaviour during fitting, ``random_state`` has to be fixed to an integer. Attributes ---------- nuisance_models_: string The nuisance models setting used for the most recent call to fit heterogeneity_model: string The heterogeneity model setting used for the most recent call to fit feature_names_: list of string The list of feature names from the data in the most recent call to fit trained_feature_indices_: list of int The list of feature indices where models were trained successfully untrained_feature_indices_: list of tuple of (int, string or Exception) The list of indices that were requested but not able to be trained succesfully, along with either a reason or caught Exception for each """ def __init__(self, feature_inds, categorical, heterogeneity_inds=None, feature_names=None, classification=False, upper_bound_on_cat_expansion=5, nuisance_models='linear', heterogeneity_model='linear', *, categories='auto', n_jobs=-1, verbose=0, cv=5, mc_iters=3, skip_cat_limit_checks=False, random_state=None): self.feature_inds = feature_inds self.categorical = categorical self.heterogeneity_inds = heterogeneity_inds self.feature_names = feature_names self.classification = classification self.upper_bound_on_cat_expansion = upper_bound_on_cat_expansion self.nuisance_models = nuisance_models self.heterogeneity_model = heterogeneity_model self.categories = categories self.n_jobs = n_jobs self.verbose = verbose self.cv = cv self.mc_iters = mc_iters self.skip_cat_limit_checks = skip_cat_limit_checks self.random_state = random_state def fit(self, X, y, warm_start=False): """ Fits global and local causal effect models for each feature in feature_inds on the data Parameters ---------- X : array-like Feature data y : array-like of shape (n,) or (n,1) Outcome. If classification=True, then y should take two values. Otherwise an error is raised that only binary classification is implemented for now. TODO. enable multi-class classification for y (post-MVP) warm_start : boolean, default False If False, train models for each feature in `feature_inds`. If True, train only models for features in `feature_inds` that had not already been trained by the previous call to `fit`, and for which neither the corresponding heterogeneity_inds, nor the automl flag have changed. If heterogeneity_inds have changed, then the final stage model of these features will be refit. If the automl flag has changed, then whole model is refit, despite the warm start flag. """ # Validate inputs assert self.nuisance_models in ['automl', 'linear'], ( "The only supported nuisance models are 'linear' and 'automl', " f"but was given {self.nuisance_models}") assert self.heterogeneity_model in ['linear', 'forest'], ( "The only supported heterogeneity models are 'linear' and 'forest' but received " f"{self.heterogeneity_model}") assert np.ndim(X) == 2, f"X must be a 2-dimensional array, but here had shape {np.shape(X)}" assert iterable(self.feature_inds), f"feature_inds should be array-like, but got {self.feature_inds}" assert iterable(self.categorical), f"categorical should be array-like, but got {self.categorical}" assert self.heterogeneity_inds is None or iterable(self.heterogeneity_inds), ( f"heterogeneity_inds should be None or array-like, but got {self.heterogeneity_inds}") assert self.feature_names is None or iterable(self.feature_names), ( f"feature_names should be None or array-like, but got {self.feature_names}") assert self.categories == 'auto' or iterable(self.categories), ( f"categories should be 'auto' or array-like, but got {self.categories}") # TODO: check compatibility of X and Y lengths if warm_start: if not hasattr(self, "_results"): # no previous fit, cancel warm start warm_start = False elif self._d_x != X.shape[1]: raise ValueError( f"Can't warm start: previous X had {self._d_x} columns, new X has {X.shape[1]} columns") # work with numeric feature indices, so that we can easily compare with categorical ones train_inds = _get_column_indices(X, self.feature_inds) if len(train_inds) == 0: raise ValueError( "No features specified. At least one feature index must be specified so that a model can be trained.") heterogeneity_inds = self.heterogeneity_inds if heterogeneity_inds is None: heterogeneity_inds = [None for ind in train_inds] # if heterogeneity_inds is 1D, repeat it if heterogeneity_inds == [] or isinstance(heterogeneity_inds[0], (int, str, bool)): heterogeneity_inds = [heterogeneity_inds for _ in train_inds] # heterogeneity inds should be a 2D list of length same as train_inds elif heterogeneity_inds is not None and len(heterogeneity_inds) != len(train_inds): raise ValueError("Heterogeneity indexes should have the same number of entries, but here " f" there were {len(heterogeneity_inds)} heterogeneity entries but " f" {len(train_inds)} feature indices.") # replace None elements of heterogeneity_inds and ensure indices are numeric heterogeneity_inds = {ind: list(range(X.shape[1])) if hinds is None else _get_column_indices(X, hinds) for ind, hinds in zip(train_inds, heterogeneity_inds)} if warm_start: train_y_model = False if self.nuisance_models != self.nuisance_models_: warnings.warn("warm_start will be ignored since the nuisance models have changed " f"from {self.nuisance_models_} to {self.nuisance_models} since the previous call to fit") warm_start = False train_y_model = True if self.heterogeneity_model != self.heterogeneity_model_: warnings.warn("warm_start will be ignored since the heterogeneity model has changed " f"from {self.heterogeneity_model_} to {self.heterogeneity_model} " "since the previous call to fit") warm_start = False # TODO: bail out also if categorical columns, classification, random_state changed? else: train_y_model = True # TODO: should we also train a new model_y under any circumstances when warm_start is True? if warm_start: new_inds = [ind for ind in train_inds if (ind not in self._cache or heterogeneity_inds[ind] != self._cache[ind][1].hinds)] else: new_inds = list(train_inds) self._cache = {} # store mapping from feature to insights, results # train the Y model if train_y_model: # perform model selection for the Y model using all X, not on a per-column basis allX = ColumnTransformer([('encode', OneHotEncoder( drop='first', sparse=False), self.categorical)], remainder=StandardScaler()).fit_transform(X) if self.verbose > 0: print("CausalAnalysis: performing model selection on overall Y model") if self.classification: self._model_y = _first_stage_clf(allX, y, automl=self.nuisance_models == 'automl', make_regressor=True, random_state=self.random_state, verbose=self.verbose) else: self._model_y = _first_stage_reg(allX, y, automl=self.nuisance_models == 'automl', random_state=self.random_state, verbose=self.verbose) if self.classification: # now that we've trained the classifier and wrapped it, ensure that y is transformed to # work with the regression wrapper # we use column_or_1d to treat pd.Series and pd.DataFrame objects the same way as arrays y = column_or_1d(y).reshape(-1, 1) # note that this needs to happen after wrapping to generalize to the multi-class case, # since otherwise we'll have too many columns to be able to train a classifier y = OneHotEncoder(drop='first', sparse=False).fit_transform(y) assert y.ndim == 1 or y.shape[1] == 1, ("Multiclass classification isn't supported" if self.classification else "Only a single outcome is supported") self._vec_y = y.ndim == 1 self._d_x = X.shape[1] # start with empty results and default shared insights self._results = [] self._shared = _get_default_shared_insights_output() self._shared[_CausalInsightsConstants.InitArgsKey] = { 'feature_inds': _sanitize(self.feature_inds), 'categorical': _sanitize(self.categorical), 'heterogeneity_inds': _sanitize(self.heterogeneity_inds), 'feature_names': _sanitize(self.feature_names), 'classification': _sanitize(self.classification), 'upper_bound_on_cat_expansion': _sanitize(self.upper_bound_on_cat_expansion), 'nuisance_models': _sanitize(self.nuisance_models), 'heterogeneity_model': _sanitize(self.heterogeneity_model), 'categories': _sanitize(self.categories), 'n_jobs': _sanitize(self.n_jobs), 'verbose': _sanitize(self.verbose), 'random_state': _sanitize(self.random_state) } # convert categorical indicators to numeric indices categorical_inds = _get_column_indices(X, self.categorical) categories = self.categories if categories == 'auto': categories = ['auto' for _ in categorical_inds] else: assert len(categories) == len(categorical_inds), ( "If categories is not 'auto', it must contain one entry per categorical column. Instead, categories" f"has length {len(categories)} while there are {len(categorical_inds)} categorical columns.") # check for indices over the categorical expansion bound invalid_inds = getattr(self, 'untrained_feature_indices_', []) # assume we'll be able to train former failures this time; we'll add them back if not invalid_inds = [(ind, reason) for (ind, reason) in invalid_inds if ind not in new_inds] self._has_column_names = True if self.feature_names is None: if hasattr(X, "iloc"): feature_names = X.columns else: self._has_column_names = False feature_names = [f"x{i}" for i in range(X.shape[1])] else: feature_names = self.feature_names self.feature_names_ = feature_names min_counts = {} for ind in new_inds: column_text = self._format_col(ind) if ind in categorical_inds: cats, counts = np.unique(_safe_indexing(X, ind, axis=1), return_counts=True) min_ind = np.argmin(counts) n_cat = len(cats) if n_cat > self.upper_bound_on_cat_expansion: warnings.warn(f"{column_text} has more than {self.upper_bound_on_cat_expansion} " f"values (found {n_cat}) so no heterogeneity model will be fit for it; " "increase 'upper_bound_on_cat_expansion' to change this behavior.") # can't remove in place while iterating over new_inds, so store in separate list invalid_inds.append((ind, 'upper_bound_on_cat_expansion')) elif counts[min_ind] < _CAT_LIMIT: if self.skip_cat_limit_checks and (counts[min_ind] >= 5 or (counts[min_ind] >= 2 and self.heterogeneity_model != 'forest')): # train the model, but warn warnings.warn(f"{column_text}'s value {cats[min_ind]} has only {counts[min_ind]} instances in " f"the training dataset, which is less than the lower limit ({_CAT_LIMIT}). " "A model will still be fit because 'skip_cat_limit_checks' is True, " "but this model may not be robust.") min_counts[ind] = counts[min_ind] elif counts[min_ind] < 2 or (counts[min_ind] < 5 and self.heterogeneity_model == 'forest'): # no model can be trained in this case since we need more folds warnings.warn(f"{column_text}'s value {cats[min_ind]} has only {counts[min_ind]} instances in " "the training dataset, but linear heterogeneity models need at least 2 and " "forest heterogeneity models need at least 5 instances, so no model will be fit " "for this column") invalid_inds.append((ind, 'cat_limit')) else: # don't train a model, but suggest workaround since there are enough instances of least # populated class warnings.warn(f"{column_text}'s value {cats[min_ind]} has only {counts[min_ind]} instances in " f"the training dataset, which is less than the lower limit ({_CAT_LIMIT}), " "so no heterogeneity model will be fit for it. This check can be turned off by " "setting 'skip_cat_limit_checks' to True, but that may result in an inaccurate " "model for this feature.") invalid_inds.append((ind, 'cat_limit')) for (ind, _) in invalid_inds: new_inds.remove(ind) # also remove from train_inds so we don't try to access the result later train_inds.remove(ind) if len(train_inds) == 0: raise ValueError("No features remain; increase the upper_bound_on_cat_expansion and ensure that there " "are several instances of each categorical value so that at least " "one feature model can be trained.") # extract subset of names matching new columns new_feat_names = _safe_indexing(feature_names, new_inds) cache_updates = dict(zip(new_inds, joblib.Parallel( n_jobs=self.n_jobs, verbose=self.verbose )(joblib.delayed(_process_feature)( feat_name, feat_ind, self.verbose, categorical_inds, categories, heterogeneity_inds, min_counts, y, X, self.nuisance_models, self.heterogeneity_model, self.random_state, self._model_y, self.cv, self.mc_iters) for feat_name, feat_ind in zip(new_feat_names, new_inds)))) # track indices where an exception was thrown, since we can't remove from dictionary while iterating inds_to_remove = [] for ind, value in cache_updates.items(): if isinstance(value, Exception): # don't want to cache this failed result inds_to_remove.append(ind) train_inds.remove(ind) invalid_inds.append((ind, value)) for ind in inds_to_remove: del cache_updates[ind] self._cache.update(cache_updates) for ind in train_inds: dict_update, result = self._cache[ind] self._results.append(result) for k in dict_update: self._shared[k] += dict_update[k] invalid_inds.sort() self.untrained_feature_indices_ = invalid_inds self.trained_feature_indices_ = train_inds self.nuisance_models_ = self.nuisance_models self.heterogeneity_model_ = self.heterogeneity_model return self def _format_col(self, ind): if self._has_column_names: return f"Column {ind} ({self.feature_names_[ind]})" else: return f"Column {ind}" # properties to return from effect InferenceResults @staticmethod def _point_props(alpha): return [(_CausalInsightsConstants.PointEstimateKey, 'point_estimate'), (_CausalInsightsConstants.StandardErrorKey, 'stderr'), (_CausalInsightsConstants.ZStatKey, 'zstat'), (_CausalInsightsConstants.PValueKey, 'pvalue'), (_CausalInsightsConstants.ConfidenceIntervalLowerKey, lambda inf: inf.conf_int(alpha=alpha)[0]), (_CausalInsightsConstants.ConfidenceIntervalUpperKey, lambda inf: inf.conf_int(alpha=alpha)[1])] # properties to return from PopulationSummaryResults @staticmethod def _summary_props(alpha): return [(_CausalInsightsConstants.PointEstimateKey, 'mean_point'), (_CausalInsightsConstants.StandardErrorKey, 'stderr_mean'), (_CausalInsightsConstants.ZStatKey, 'zstat'), (_CausalInsightsConstants.PValueKey, 'pvalue'), (_CausalInsightsConstants.ConfidenceIntervalLowerKey, lambda inf: inf.conf_int_mean(alpha=alpha)[0]), (_CausalInsightsConstants.ConfidenceIntervalUpperKey, lambda inf: inf.conf_int_mean(alpha=alpha)[1])] # Converts strings to property lookups or method calls as a convenience so that the # _point_props and _summary_props above can be applied to an inference object @staticmethod def _make_accessor(attr): if isinstance(attr, str): s = attr def attr(o): val = getattr(o, s) if callable(val): return val() else: return val return attr # Create a summary combining all results into a single output; this is used # by the various causal_effect and causal_effect_dict methods to generate either a dataframe # or a dictionary, respectively, based on the summary function passed into this method def _summarize(self, *, summary, get_inference, props, expand_arr, drop_sample): assert hasattr(self, "_results"), "This object has not been fit, so cannot get results" # ensure array has shape (m,y,t) def ensure_proper_dims(arr): if expand_arr: # population summary is missing sample dimension; add it for consistency arr = np.expand_dims(arr, 0) if self._vec_y: # outcome dimension is missing; add it for consistency arr = np.expand_dims(arr, axis=1) assert 2 <= arr.ndim <= 3 # add singleton treatment dimension if missing return arr if arr.ndim == 3 else np.expand_dims(arr, axis=2) # store set of inference results so we don't need to recompute per-attribute below in summary/coalesce infs = [get_inference(res) for res in self._results] # each attr has dimension (m,y) or (m,y,t) def coalesce(attr): """Join together the arrays for each feature""" attr = self._make_accessor(attr) # concatenate along treatment dimension arr = np.concatenate([ensure_proper_dims(attr(inf)) for inf in infs], axis=2) # for dictionary representation, want to remove unneeded sample dimension # in cohort and global results if drop_sample: arr = np.squeeze(arr, 0) return arr return summary([(key, coalesce(val)) for key, val in props]) def _pandas_summary(self, get_inference, *, props, n, expand_arr=False, keep_all_levels=False): """ Summarizes results into a dataframe. Parameters ---------- get_inference : lambda Method to get the relevant inference results from each result object props : list of (string, string or lambda) Set of column names and ways to get the corresponding values from the inference object n : int The number of samples in the dataset expand_arr : boolean, default False Whether to add a synthetic sample dimension to the result arrays when performing internal computations keep_all_levels : boolean, default False Whether to keep all levels, even when they don't take on more than one value; Note that regardless of this argument the "sample" level will only be present if expand_arr is False """ def make_dataframe(props): to_include = OrderedDict([(key, value.reshape(-1)) for key, value in props]) # TODO: enrich outcome logic for multi-class classification when that is supported index = pd.MultiIndex.from_tuples([(i, outcome, res.feature_name, f"{lvl}v{res.feature_baseline}" if res.feature_baseline is not None else lvl) for i in range(n) for outcome in ["y0"] for res in self._results for lvl in res.feature_levels], names=["sample", "outcome", "feature", "feature_value"]) if expand_arr: # There is no actual sample level in this data index = index.droplevel("sample") if not keep_all_levels: for lvl in index.levels: if len(lvl) == 1: if not isinstance(index, pd.MultiIndex): # can't drop only level index = pd.Index([self._results[0].feature_name], name="feature") else: index = index.droplevel(lvl.name) return pd.DataFrame(to_include, index=index) return self._summarize(summary=make_dataframe, get_inference=get_inference, props=props, expand_arr=expand_arr, drop_sample=False) # dropping the sample dimension is handled above instead def _dict_summary(self, get_inference, *, n, props, kind, drop_sample=False, expand_arr=False, row_wise=False): """ Summarizes results into a dictionary. Parameters ---------- get_inference : lambda Method to get the relevant inference results from each result object n : int The number of samples in the dataset props : list of (string, string or lambda) Set of column names and ways to get the corresponding values from the inference object kind : string The kind of inference results to get (e.g. 'global', 'local', or 'cohort') drop_sample : boolean, default False Whether to drop the sample dimension from each array expand_arr : boolean, default False Whether to add an initial sample dimension to the result arrays row_wise : boolean, default False Whether to return a list of dictionaries (one dictionary per row) instead of a dictionary of lists (one list per column) """ def make_dict(props): # should be serialization-ready and contain no numpy arrays res = _get_default_specific_insights(kind) shared = self._shared if row_wise: row_data = {} # remove entries belonging to row data, since we're including them in the list of nested dictionaries for k in _get_data_causal_insights_keys(): del res[k] shared = shared.copy() # copy so that we can modify without affecting shared state # TODO: Note that there's no column metadata for the sample number - should there be? for k in _get_column_causal_insights_keys(): # need to replicate the column info for each sample, then remove from the shared data row_data[k] = shared[k] * n del shared[k] # NOTE: the flattened order has the ouptut dimension before the feature dimension # which may need to be revisited once we support multiclass row_data.update([(key, value.flatten()) for key, value in props]) # get the length of the list corresponding to the first dictionary key # `list(row_data)` gets the keys as a list, since `row_data.keys()` can't be indexed into n_rows = len(row_data[list(row_data)[0]]) res[_CausalInsightsConstants.RowData] = [{key: row_data[key][i] for key in row_data} for i in range(n_rows)] else: res.update([(key, value.tolist()) for key, value in props]) return {**shared, **res} return self._summarize(summary=make_dict, get_inference=get_inference, props=props, expand_arr=expand_arr, drop_sample=drop_sample) def global_causal_effect(self, *, alpha=0.05, keep_all_levels=False): """ Get the global causal effect for each feature as a pandas DataFrame. Parameters ---------- alpha : float, default 0.05 The confidence level of the confidence interval keep_all_levels : bool, default False Whether to keep all levels of the output dataframe ('outcome', 'feature', and 'feature_level') even if there was only a single value for that level; by default single-valued levels are dropped. Returns ------- global_effects : pandas Dataframe DataFrame with the following structure: :Columns: ['point', 'stderr', 'zstat', 'pvalue', 'ci_lower', 'ci_upper'] :Index: ['feature', 'feature_value'] :Rows: For each feature that is numerical, we have an entry with index ['{feature_name}', 'num'], where 'num' is literally the string 'num' and feature_name is the input feature name. For each feature that is categorical, we have an entry with index ['{feature_name}', '{cat}v{base}'] where cat is the category value and base is the category used as baseline. If all features are numerical then the feature_value index is dropped in the dataframe, but not in the serialized dict. """ # a global inference indicates the effect of that one feature on the outcome return self._pandas_summary(lambda res: res.global_inference, props=self._point_props(alpha), n=1, expand_arr=True, keep_all_levels=keep_all_levels) def _global_causal_effect_dict(self, *, alpha=0.05, row_wise=False): """ Gets the global causal effect for each feature as dictionary. Dictionary entries for predictions, etc. will be nested lists of shape (d_y, sum(d_t)) Only for serialization purposes to upload to AzureML """ return self._dict_summary(lambda res: res.global_inference, props=self._point_props(alpha), kind='global', n=1, row_wise=row_wise, drop_sample=True, expand_arr=True) def _cohort_effect_inference(self, Xtest): assert np.ndim(Xtest) == 2 and np.shape(Xtest)[1] == self._d_x, ( "Shape of Xtest must be compatible with shape of X, " f"but got shape {np.shape(Xtest)} instead of (n, {self._d_x})" ) def inference_from_result(result): est = result.estimator X = result.X_transformer.transform(Xtest) if X.shape[1] == 0: X = None return est.const_marginal_ate_inference(X=X) return inference_from_result def cohort_causal_effect(self, Xtest, *, alpha=0.05, keep_all_levels=False): """ Gets the average causal effects for a particular cohort defined by a population of X's. Parameters ---------- Xtest : array-like The cohort samples for which to return the average causal effects within cohort alpha : float, default 0.05 The confidence level of the confidence interval keep_all_levels : bool, default False Whether to keep all levels of the output dataframe ('outcome', 'feature', and 'feature_level') even if there was only a single value for that level; by default single-valued levels are dropped. Returns ------- cohort_effects : pandas Dataframe DataFrame with the following structure: :Columns: ['point', 'stderr', 'zstat', 'pvalue', 'ci_lower', 'ci_upper'] :Index: ['feature', 'feature_value'] :Rows: For each feature that is numerical, we have an entry with index ['{feature_name}', 'num'], where 'num' is literally the string 'num' and feature_name is the input feature name. For each feature that is categorical, we have an entry with index ['{feature_name}', '{cat}v{base}'] where cat is the category value and base is the category used as baseline. If all features are numerical then the feature_value index is dropped in the dataframe, but not in the serialized dict. """ return self._pandas_summary(self._cohort_effect_inference(Xtest), props=self._summary_props(alpha), n=1, expand_arr=True, keep_all_levels=keep_all_levels) def _cohort_causal_effect_dict(self, Xtest, *, alpha=0.05, row_wise=False): """ Gets the cohort causal effects for each feature as dictionary. Dictionary entries for predictions, etc. will be nested lists of shape (d_y, sum(d_t)) Only for serialization purposes to upload to AzureML """ return self._dict_summary(self._cohort_effect_inference(Xtest), props=self._summary_props(alpha), kind='cohort', n=1, row_wise=row_wise, expand_arr=True, drop_sample=True) def _local_effect_inference(self, Xtest): assert np.ndim(Xtest) == 2 and np.shape(Xtest)[1] == self._d_x, ( "Shape of Xtest must be compatible with shape of X, " f"but got shape {np.shape(Xtest)} instead of (n, {self._d_x})" ) def inference_from_result(result): est = result.estimator X = result.X_transformer.transform(Xtest) if X.shape[1] == 0: X = None eff = est.const_marginal_effect_inference(X=X) if X is None: # need to reshape the output to match the input eff = eff._expand_outputs(Xtest.shape[0]) return eff return inference_from_result def local_causal_effect(self, Xtest, *, alpha=0.05, keep_all_levels=False): """ Gets the local causal effect for each feature as a pandas DataFrame. Parameters ---------- Xtest : array-like The samples for which to return the causal effects alpha : float, default 0.05 The confidence level of the confidence interval keep_all_levels : bool, default False Whether to keep all levels of the output dataframe ('sample', 'outcome', 'feature', and 'feature_level') even if there was only a single value for that level; by default single-valued levels are dropped. Returns ------- global_effect : pandas Dataframe DataFrame with the following structure: :Columns: ['point', 'stderr', 'zstat', 'pvalue', 'ci_lower', 'ci_upper'] :Index: ['sample', 'feature', 'feature_value'] :Rows: For each feature that is numeric, we have an entry with index ['{sampleid}', '{feature_name}', 'num'], where 'num' is literally the string 'num' and feature_name is the input feature name and sampleid is the index of the sample in Xtest. For each feature that is categorical, we have an entry with index ['{sampleid', '{feature_name}', '{cat}v{base}'] where cat is the category value and base is the category used as baseline. If all features are numerical then the feature_value index is dropped in the dataframe, but not in the serialized dict. """ return self._pandas_summary(self._local_effect_inference(Xtest), props=self._point_props(alpha), n=Xtest.shape[0], keep_all_levels=keep_all_levels) def _local_causal_effect_dict(self, Xtest, *, alpha=0.05, row_wise=False): """ Gets the local feature importance as dictionary Dictionary entries for predictions, etc. will be nested lists of shape (n_rows, d_y, sum(d_t)) Only for serialization purposes to upload to AzureML """ return self._dict_summary(self._local_effect_inference(Xtest), props=self._point_props(alpha), kind='local', n=Xtest.shape[0], row_wise=row_wise) def _safe_result_index(self, X, feature_index): assert hasattr(self, "_results"), "This instance has not yet been fitted" assert np.ndim(X) == 2 and np.shape(X)[1] == self._d_x, ( "Shape of X must be compatible with shape of the fitted X, " f"but got shape {np.shape(X)} instead of (n, {self._d_x})" ) (numeric_index,) = _get_column_indices(X, [feature_index]) bad_inds = dict(self.untrained_feature_indices_) if numeric_index in bad_inds: error = bad_inds[numeric_index] col_text = self._format_col(numeric_index) if error == 'cat_limit': msg = f"{col_text} had a value with fewer than {_CAT_LIMIT} occurences, so no model was fit for it" elif error == 'upper_bound_on_cat_expansion': msg = (f"{col_text} had more distinct values than the setting of 'upper_bound_on_cat_expansion', " "so no model was fit for it") else: msg = (f"{col_text} generated the following error during fitting, " f"so no model was fit for it:\n{str(error)}") raise ValueError(msg) if numeric_index not in self.trained_feature_indices_: raise ValueError(f"{self._format_col(numeric_index)} was not passed as a feature index " "so no model was fit for it") results = [res for res in self._results if res.feature_index == numeric_index] assert len(results) == 1 (result,) = results return result def _whatif_inference(self, X, Xnew, feature_index, y): assert not self.classification, "What-if analysis cannot be applied to classification tasks" assert np.shape(X)[0] == np.shape(Xnew)[0] == np.shape(y)[0], ( "X, Xnew, and y must have the same length, but have shapes " f"{np.shape(X)}, {np.shape(Xnew)}, and {np.shape(y)}" ) assert np.size(feature_index) == 1, f"Only one feature index may be changed, but got {np.size(feature_index)}" T0 = _safe_indexing(X, feature_index, axis=1) T1 = Xnew result = self._safe_result_index(X, feature_index) X = result.X_transformer.transform(X) if X.shape[1] == 0: X = None inf = result.estimator.effect_inference(X=X, T0=T0, T1=T1) # we want to offset the inference object by the baseline estimate of y inf.translate(y) return inf def whatif(self, X, Xnew, feature_index, y, *, alpha=0.05): """ Get counterfactual predictions when feature_index is changed to Xnew from its observational counterpart. Note that this only applies to regression use cases; for classification what-if analysis is not supported. Parameters ---------- X: array-like Features Xnew: array-like New values of a single column of X feature_index: int or string The index of the feature being varied to Xnew, either as a numeric index or the string name if the input is a dataframe y: array-like Observed labels or outcome of a predictive model for baseline y values alpha : float in [0, 1], default 0.05 Confidence level of the confidence intervals displayed in the leaf nodes. A (1-alpha)*100% confidence interval is displayed. Returns ------- y_new: DataFrame The predicted outputs that would have been observed under the counterfactual features """ return self._whatif_inference(X, Xnew, feature_index, y).summary_frame(alpha=alpha) def _whatif_dict(self, X, Xnew, feature_index, y, *, alpha=0.05, row_wise=False): """ Get counterfactual predictions when feature_index is changed to Xnew from its observational counterpart. Note that this only applies to regression use cases; for classification what-if analysis is not supported. Parameters ---------- X: array-like Features Xnew: array-like New values of a single column of X feature_index: int or string The index of the feature being varied to Xnew, either as a numeric index or the string name if the input is a dataframe y: array-like Observed labels or outcome of a predictive model for baseline y values alpha : float in [0, 1], default 0.05 Confidence level of the confidence intervals displayed in the leaf nodes. A (1-alpha)*100% confidence interval is displayed. row_wise : boolean, default False Whether to return a list of dictionaries (one dictionary per row) instead of a dictionary of lists (one list per column) Returns ------- dict : dict The counterfactual predictions, as a dictionary """ inf = self._whatif_inference(X, Xnew, feature_index, y) props = self._point_props(alpha=alpha) res = _get_default_specific_insights('whatif') if row_wise: row_data = {} # remove entries belonging to row data, since we're including them in the list of nested dictionaries for k in _get_data_causal_insights_keys(): del res[k] row_data.update([(key, self._make_accessor(attr)(inf).flatten()) for key, attr in props]) # get the length of the list corresponding to the first dictionary key # `list(row_data)` gets the keys as a list, since `row_data.keys()` can't be indexed into n_rows = len(row_data[list(row_data)[0]]) res[_CausalInsightsConstants.RowData] = [{key: row_data[key][i] for key in row_data} for i in range(n_rows)] else: res.update([(key, self._make_accessor(attr)(inf).tolist()) for key, attr in props]) return res def _tree(self, is_policy, Xtest, feature_index, *, treatment_costs=0, max_depth=3, min_samples_leaf=2, min_impurity_decrease=1e-4, include_model_uncertainty=False, alpha=0.05): result = self._safe_result_index(Xtest, feature_index) Xtest = result.X_transformer.transform(Xtest) if Xtest.shape[1] == 0: Xtest = None if result.feature_baseline is None: treatment_names = ['decrease', 'increase'] else: treatment_names = [f"{result.feature_baseline}"] + \ [f"{lvl}" for lvl in result.feature_levels] TreeType = SingleTreePolicyInterpreter if is_policy else SingleTreeCateInterpreter intrp = TreeType(include_model_uncertainty=include_model_uncertainty, uncertainty_level=alpha, max_depth=max_depth, min_samples_leaf=min_samples_leaf, min_impurity_decrease=min_impurity_decrease, random_state=self.random_state) if is_policy: intrp.interpret(result.estimator, Xtest, sample_treatment_costs=treatment_costs) if result.feature_baseline is None: # continuous treatment, so apply a treatment level 10% of typical treatment_level = result.treatment_value * 0.1 # NOTE: this calculation is correct only if treatment costs are marginal costs, # because then scaling the difference between treatment value and treatment costs is the # same as scaling the treatment value and subtracting the scaled treatment cost. # # Note also that unlike the standard outputs of the SinglePolicyTreeInterpreter, for # continuous treatments, the policy value should include the benefit of decreasing treatments # (rather than just not treating at all) # # We can get the total by seeing that if we restrict attention to units where we would treat, # 2 * policy_value - always_treat # includes exactly their contribution because policy_value and always_treat both include it # and likewise restricting attention to the units where we want to decrease treatment, # 2 * policy_value - always-treat # also computes the *benefit* of decreasing treatment, because their contribution to policy_value # is zero and the contribution to always_treat is negative treatment_total = (2 * intrp.policy_value_ - intrp.always_treat_value_.item()) * treatment_level always_totals = intrp.always_treat_value_ * treatment_level else: treatment_total = intrp.policy_value_ always_totals = intrp.always_treat_value_ policy_values = treatment_total, always_totals else: # no policy values for CATE trees intrp.interpret(result.estimator, Xtest) policy_values = None return intrp, result.X_transformer.get_feature_names(self.feature_names_), treatment_names, policy_values # TODO: it seems like it would be better to just return the tree itself rather than plot it; # however, the tree can't store the feature and treatment names we compute here... def plot_policy_tree(self, Xtest, feature_index, *, treatment_costs=0, max_depth=3, min_samples_leaf=2, min_value_increase=1e-4, include_model_uncertainty=False, alpha=0.05): """ Plot a recommended policy tree using matplotlib. Parameters ---------- X : array-like Features feature_index Index of the feature to be considered as treament treatment_costs: array-like, default 0 Cost of treatment, as a scalar value or per-sample. For continuous features this is the marginal cost per unit of treatment; for discrete features, this is the difference in cost between each of the non-default values and the default value (i.e., if non-scalar the array should have shape (n,d_t-1)) max_depth : int, default 3 maximum depth of the tree min_samples_leaf : int, default 2 minimum number of samples on each leaf min_value_increase : float, default 1e-4 The minimum increase in the policy value that a split needs to create to construct it include_model_uncertainty : bool, default False Whether to include confidence interval information when building a simplified model of the cate model. alpha : float in [0, 1], default 0.05 Confidence level of the confidence intervals displayed in the leaf nodes. A (1-alpha)*100% confidence interval is displayed. """ intrp, feature_names, treatment_names, _ = self._tree(True, Xtest, feature_index, treatment_costs=treatment_costs, max_depth=max_depth, min_samples_leaf=min_samples_leaf, min_impurity_decrease=min_value_increase, include_model_uncertainty=include_model_uncertainty, alpha=alpha) return intrp.plot(feature_names=feature_names, treatment_names=treatment_names) def _policy_tree_output(self, Xtest, feature_index, *, treatment_costs=0, max_depth=3, min_samples_leaf=2, min_value_increase=1e-4, alpha=0.05): """ Get a tuple of policy outputs. The first item in the tuple is the recommended policy tree expressed as a dictionary. The second item is the per-unit-average value of applying the learned policy; if the feature is continuous this means the gain from increasing the treatment by 10% of the typical amount for units where the treatment should be increased and decreasing the treatment by 10% of the typical amount when not. The third item is the value of always treating. This is a list, with one entry per non-control-treatment for discrete features, or just a single entry for continuous features, again increasing by 10% of a typical amount. Parameters ---------- X : array-like Features feature_index Index of the feature to be considered as treament treatment_costs: array-like, default 0 Cost of treatment, as a scalar value or per-sample. For continuous features this is the marginal cost per unit of treatment; for discrete features, this is the difference in cost between each of the non-default values and the default value (i.e., if non-scalar the array should have shape (n,d_t-1)) max_depth : int, default 3 maximum depth of the tree min_samples_leaf : int, default 2 minimum number of samples on each leaf min_value_increase : float, default 1e-4 The minimum increase in the policy value that a split needs to create to construct it alpha : float in [0, 1], default 0.05 Confidence level of the confidence intervals displayed in the leaf nodes. A (1-alpha)*100% confidence interval is displayed. Returns ------- output : _PolicyOutput """ (intrp, feature_names, treatment_names, (policy_val, always_trt)) = self._tree(True, Xtest, feature_index, treatment_costs=treatment_costs, max_depth=max_depth, min_samples_leaf=min_samples_leaf, min_impurity_decrease=min_value_increase, alpha=alpha) def policy_data(tree, node_id, node_dict): return {'treatment': treatment_names[np.argmax(tree.value[node_id])]} return _PolicyOutput(_tree_interpreter_to_dict(intrp, feature_names, policy_data), policy_val, {treatment_names[i + 1]: val for (i, val) in enumerate(always_trt.tolist())}, treatment_names[0]) # TODO: it seems like it would be better to just return the tree itself rather than plot it; # however, the tree can't store the feature and treatment names we compute here... def plot_heterogeneity_tree(self, Xtest, feature_index, *, max_depth=3, min_samples_leaf=2, min_impurity_decrease=1e-4, include_model_uncertainty=False, alpha=0.05): """ Plot an effect hetergoeneity tree using matplotlib. Parameters ---------- X : array-like Features feature_index Index of the feature to be considered as treament max_depth : int, default 3 maximum depth of the tree min_samples_leaf : int, default 2 minimum number of samples on each leaf min_impurity_decrease : float, default 1e-4 The minimum decrease in the impurity/uniformity of the causal effect that a split needs to achieve to construct it include_model_uncertainty : bool, default False Whether to include confidence interval information when building a simplified model of the cate model. alpha : float in [0, 1], default 0.05 Confidence level of the confidence intervals displayed in the leaf nodes. A (1-alpha)*100% confidence interval is displayed. """ intrp, feature_names, treatment_names, _ = self._tree(False, Xtest, feature_index, max_depth=max_depth, min_samples_leaf=min_samples_leaf, min_impurity_decrease=min_impurity_decrease, include_model_uncertainty=include_model_uncertainty, alpha=alpha) return intrp.plot(feature_names=feature_names, treatment_names=treatment_names) def _heterogeneity_tree_output(self, Xtest, feature_index, *, max_depth=3, min_samples_leaf=2, min_impurity_decrease=1e-4, include_model_uncertainty=False, alpha=0.05): """ Get an effect heterogeneity tree expressed as a dictionary. Parameters ---------- X : array-like Features feature_index Index of the feature to be considered as treament max_depth : int, optional (default=3) maximum depth of the tree min_samples_leaf : int, optional (default=2) minimum number of samples on each leaf min_impurity_decrease : float, optional (default=1e-4) The minimum decrease in the impurity/uniformity of the causal effect that a split needs to achieve to construct it include_model_uncertainty : bool, default False Whether to include confidence interval information when building a simplified model of the cate model. alpha : float in [0, 1], default 0.05 Confidence level of the confidence intervals displayed in the leaf nodes. A (1-alpha)*100% confidence interval is displayed. """ intrp, feature_names, _, _ = self._tree(False, Xtest, feature_index, max_depth=max_depth, min_samples_leaf=min_samples_leaf, min_impurity_decrease=min_impurity_decrease, include_model_uncertainty=include_model_uncertainty, alpha=alpha) def hetero_data(tree, node_id, node_dict): if include_model_uncertainty: return {'effect': _sanitize(tree.value[node_id]), 'ci': _sanitize(node_dict[node_id]['ci'])} else: return {'effect': _sanitize(tree.value[node_id])} return _tree_interpreter_to_dict(intrp, feature_names, hetero_data) def individualized_policy(self, Xtest, feature_index, *, n_rows=None, treatment_costs=0, alpha=0.05): """ Get individualized treatment policy based on the learned model for a feature, sorted by the predicted effect. Parameters ---------- Xtest: array-like Features feature_index: int or string Index of the feature to be considered as treatment n_rows: int, optional How many rows to return (all rows by default) treatment_costs: array-like, default 0 Cost of treatment, as a scalar value or per-sample. For continuous features this is the marginal cost per unit of treatment; for discrete features, this is the difference in cost between each of the non-default values and the default value (i.e., if non-scalar the array should have shape (n,d_t-1)) alpha: float in [0, 1], default 0.05 Confidence level of the confidence intervals A (1-alpha)*100% confidence interval is returned Returns ------- output: DataFrame Dataframe containing recommended treatment, effect, confidence interval, sorted by effect """ result = self._safe_result_index(Xtest, feature_index) # get dataframe with all but selected column orig_df = pd.DataFrame(Xtest, columns=self.feature_names_).rename( columns={self.feature_names_[result.feature_index]: 'Current treatment'}) Xtest = result.X_transformer.transform(Xtest) if Xtest.shape[1] == 0: x_rows = Xtest.shape[0] Xtest = None if result.feature_baseline is None: # apply 10% of a typical treatment for this feature effect = result.estimator.effect_inference(Xtest, T1=result.treatment_value * 0.1) else: effect = result.estimator.const_marginal_effect_inference(Xtest) if Xtest is None: # we got a scalar effect although our original X may have had more rows effect = effect._expand_outputs(x_rows) multi_y = (not self._vec_y) or self.classification if multi_y and result.feature_baseline is not None and np.ndim(treatment_costs) == 2: # we've got treatment costs of shape (n, d_t-1) so we need to add a y dimension to broadcast safely treatment_costs = np.expand_dims(treatment_costs, 1) effect.translate(-treatment_costs) est = effect.point_estimate est_lb = effect.conf_int(alpha)[0] est_ub = effect.conf_int(alpha)[1] if multi_y: # y was an array, not a vector est = np.squeeze(est, 1) est_lb = np.squeeze(est_lb, 1) est_ub = np.squeeze(est_ub, 1) if result.feature_baseline is None: rec = np.empty(est.shape[0], dtype=object) rec[est > 0] = "increase" rec[est <= 0] = "decrease" # set the effect bounds; for positive treatments these agree with # the estimates; for negative treatments, we need to invert the interval eff_lb, eff_ub = est_lb, est_ub eff_lb[est <= 0], eff_ub[est <= 0] = -eff_ub[est <= 0], -eff_lb[est <= 0] # the effect is now always positive since we decrease treatment when negative eff = np.abs(est) else: # for discrete treatment, stack a zero result in front for control zeros = np.zeros((est.shape[0], 1)) all_effs = np.hstack([zeros, est]) eff_ind = np.argmax(all_effs, axis=1) treatment_arr = np.array([result.feature_baseline] + [lvl for lvl in result.feature_levels], dtype=object) rec = treatment_arr[eff_ind] # we need to call effect_inference to get the correct CI between the two treatment options effect = result.estimator.effect_inference(Xtest, T0=orig_df['Current treatment'], T1=rec) # we now need to construct the delta in the cost between the two treatments and translate the effect current_treatment = orig_df['Current treatment'].values if np.ndim(treatment_costs) >= 2: # remove third dimenions potentially added if multi_y: # y was an array, not a vector treatment_costs = np.squeeze(treatment_costs, 1) assert treatment_costs.shape[1] == len(treatment_arr) - 1, ("If treatment costs are an array, " " they must be of shape (n, d_t-1)," " where n is the number of samples" " and d_t the number of treatment" " categories.") all_costs = np.hstack([zeros, treatment_costs]) # find cost of current treatment: equality creates a 2d array with True on each row, # only if its the location of the current treatment. Then we take the corresponding cost. current_cost = all_costs[current_treatment.reshape(-1, 1) == treatment_arr.reshape(1, -1)] target_cost = np.take_along_axis(all_costs, eff_ind.reshape(-1, 1), 1).reshape(-1) else: assert isinstance(treatment_costs, (int, float)), ("Treatments costs should either be float or " "a 2d array of size (n, d_t-1).") all_costs = np.array([0] + [treatment_costs] * (len(treatment_arr) - 1)) # construct index of current treatment current_ind = (current_treatment.reshape(-1, 1) == treatment_arr.reshape(1, -1)) @ np.arange(len(treatment_arr)) current_cost = all_costs[current_ind] target_cost = all_costs[eff_ind] delta_cost = current_cost - target_cost # add second dimension if needed for broadcasting during translation of effect if multi_y: delta_cost = np.expand_dims(delta_cost, 1) effect.translate(delta_cost) eff = effect.point_estimate eff_lb, eff_ub = effect.conf_int(alpha) if multi_y: # y was an array, not a vector eff = np.squeeze(eff, 1) eff_lb = np.squeeze(eff_lb, 1) eff_ub = np.squeeze(eff_ub, 1) df = pd.DataFrame({'Treatment': rec, 'Effect of treatment': eff, 'Effect of treatment lower bound': eff_lb, 'Effect of treatment upper bound': eff_ub}, index=orig_df.index) return df.join(orig_df).sort_values('Effect of treatment', ascending=False).head(n_rows) def _individualized_policy_dict(self, Xtest, feature_index, *, n_rows=None, treatment_costs=0, alpha=0.05): """ Get individualized treatment policy based on the learned model for a feature, sorted by the predicted effect. Parameters ---------- Xtest: array-like Features feature_index: int or string Index of the feature to be considered as treatment n_rows: int, optional How many rows to return (all rows by default) treatment_costs: array-like, default 0 Cost of treatment, as a scalar value or per-sample alpha: float in [0, 1], default 0.05 Confidence level of the confidence intervals A (1-alpha)*100% confidence interval is returned Returns ------- output: dictionary dictionary containing treatment policy, effects, and other columns """ return self.individualized_policy(Xtest, feature_index, n_rows=n_rows, treatment_costs=treatment_costs, alpha=alpha).to_dict('list') def typical_treatment_value(self, feature_index): """ Get the typical treatment value used for the specified feature Parameters ---------- feature_index: int or string The index of the feature to be considered as treatment Returns ------- treatment_value : float The treatment value considered 'typical' for this feature """ result = [res for res in self._results if res.feature_index == feature_index] if len(result) == 0: if self._has_column_names: result = [res for res in self._results if res.feature_name == feature_index] assert len(result) == 1, f"Could not find feature with index/name {feature_index}" return result[0].treatment_value else: raise ValueError(f"No feature with index {feature_index}") return result[0].treatment_value
51.319196
119
0.603562
73,135
0.795257
0
0
1,401
0.015234
0
0
42,148
0.45831
c4083724a00de9c5692943d43c6a11f16b96a31e
1,365
py
Python
problem solving/mini-max-sum.py
avnoor-488/hackerrank-solutions
b62315549c254d88104b70755e4dfcd43eba59bf
[ "MIT" ]
1
2020-10-01T16:54:52.000Z
2020-10-01T16:54:52.000Z
problem solving/mini-max-sum.py
avnoor-488/hackerrank-solutions
b62315549c254d88104b70755e4dfcd43eba59bf
[ "MIT" ]
2
2020-10-07T02:22:13.000Z
2020-10-22T06:15:50.000Z
problem solving/mini-max-sum.py
avnoor-488/hackerrank-solutions
b62315549c254d88104b70755e4dfcd43eba59bf
[ "MIT" ]
9
2020-10-01T12:30:56.000Z
2020-10-22T06:10:14.000Z
''' problem-- Given five positive integers, find the minimum and maximum values that can be calculated by summing exactly four of the five integers. Then print the respective minimum and maximum values as a single line of two space-separated long integers. For example, arr=[1,3,5,7,9]. Our minimum sum is 1+3+5+7=16 and our maximum sum is 3+5+7+9=24. We would print 16 24 Function Description-- Complete the miniMaxSum function in the editor below. It should print two space-separated integers on one line: the minimum sum and the maximum sum of 4 of 5 elements. miniMaxSum has the following parameter(s): arr: an array of 5 integers Input Format-- A single line of five space-separated integers. Constraints-- 1<arr[i]<=10^9 Output Format-- Print two space-separated long integers denoting the respective minimum and maximum values that can be calculated by summing exactly four of the five integers. (The output can be greater than a 32 bit integer.) Sample Input--- 1 2 3 4 5 Sample Output-- 10 14 ''' #code here #!/bin/python3 import math import os import random import re import sys def miniMaxSum(arr): l1=[] for i in arr: x=-i for j in arr: x+=j l1.append(x) print(min(l1),max(l1)) if __name__ == '__main__': arr = list(map(int, input().rstrip().split())) miniMaxSum(arr)
24.375
242
0.710623
0
0
0
0
0
0
0
0
1,048
0.767766
c40b63017932ee0022e50a1cd077dafbac537066
4,610
py
Python
19/network.py
jcsesznegi/advent-of-code-2017
9710e184e092b82aa798076b9ce3915c6e42758d
[ "MIT" ]
1
2020-04-12T17:54:52.000Z
2020-04-12T17:54:52.000Z
19/network.py
jcsesznegi/advent-of-code-2017
9710e184e092b82aa798076b9ce3915c6e42758d
[ "MIT" ]
null
null
null
19/network.py
jcsesznegi/advent-of-code-2017
9710e184e092b82aa798076b9ce3915c6e42758d
[ "MIT" ]
null
null
null
from pprint import pprint from enum import Enum class Direction(Enum): UP = 'up' DOWN = 'down' LEFT = 'left' RIGHT = 'right' class Network: def __init__(self, diagramRows): self.diagram = self.setDiagram(diagramRows) self.currentPosition = self.setCurrentPosition() self.currentDirection = Direction.DOWN self.route = [] self.steps = 1 def setDiagram(self, diagramRows): splitRows = [] for diagramRow in diagramRows: splitRows.append(list(diagramRow)) return splitRows def setCurrentPosition(self): startIndex = self.diagram[0].index('|') return (startIndex, 0) def getTraveledRoute(self): return ''.join(self.route) def getTraveledSteps(self): return self.steps def getForwardPosition(self): if self.currentDirection == Direction.UP: return (self.currentPosition[0], self.currentPosition[1] - 1) elif self.currentDirection == Direction.DOWN: return (self.currentPosition[0], self.currentPosition[1] + 1) elif self.currentDirection == Direction.LEFT: return (self.currentPosition[0] - 1, self.currentPosition[1]) elif self.currentDirection == Direction.RIGHT: return (self.currentPosition[0] + 1, self.currentPosition[1]) def getLeftPosition(self): if self.currentDirection == Direction.UP: return (self.currentPosition[0] - 1, self.currentPosition[1]) elif self.currentDirection == Direction.DOWN: return (self.currentPosition[0] + 1, self.currentPosition[1]) elif self.currentDirection == Direction.LEFT: return (self.currentPosition[0], self.currentPosition[1] + 1) elif self.currentDirection == Direction.RIGHT: return (self.currentPosition[0], self.currentPosition[1] - 1) def getRightPosition(self): if self.currentDirection == Direction.UP: return (self.currentPosition[0] + 1, self.currentPosition[1]) elif self.currentDirection == Direction.DOWN: return (self.currentPosition[0] - 1, self.currentPosition[1]) elif self.currentDirection == Direction.LEFT: return (self.currentPosition[0], self.currentPosition[1] - 1) elif self.currentDirection == Direction.RIGHT: return (self.currentPosition[0], self.currentPosition[1] + 1) def positionExists(self, position): return (position[1] > 0 and position[1] < len(self.diagram) and position[0] > 0 and position[0] < len(self.diagram[position[1]]) and self.diagram[position[1]][position[0]] is not ' ') def changeDirectionLeft(self): if self.currentDirection == Direction.UP: self.currentDirection = Direction.LEFT elif self.currentDirection == Direction.DOWN: self.currentDirection = Direction.RIGHT elif self.currentDirection == Direction.LEFT: self.currentDirection = Direction.DOWN elif self.currentDirection == Direction.RIGHT: self.currentDirection = Direction.UP def changeDirectionRight(self): if self.currentDirection == Direction.UP: self.currentDirection = Direction.RIGHT elif self.currentDirection == Direction.DOWN: self.currentDirection = Direction.LEFT elif self.currentDirection == Direction.LEFT: self.currentDirection = Direction.UP elif self.currentDirection == Direction.RIGHT: self.currentDirection = Direction.DOWN def getNextPosition(self): nextPosition = self.getForwardPosition() if self.positionExists(nextPosition): return nextPosition nextPosition = self.getLeftPosition() if self.positionExists(nextPosition): self.changeDirectionLeft() return nextPosition nextPosition = self.getRightPosition() if self.positionExists(nextPosition): self.changeDirectionRight() return nextPosition return False def run(self): hasNextPosition = True while hasNextPosition: nextPosition = self.getNextPosition() if not nextPosition: hasNextPosition = False else: self.currentPosition = nextPosition self.steps += 1 character = self.diagram[nextPosition[1]][nextPosition[0]] if character.isalpha(): self.route.append(character)
37.786885
74
0.632972
4,558
0.98872
0
0
0
0
0
0
31
0.006725
c40cb374c8f69dbfb3dd6a423d469c3fd1845232
2,639
py
Python
examples/gan.py
maxferrari/Torchelie
d133f227bebc3c4cbbb6167bd1fae815d2b5fa81
[ "MIT" ]
117
2019-07-14T20:39:48.000Z
2021-10-17T19:16:48.000Z
examples/gan.py
maxferrari/Torchelie
d133f227bebc3c4cbbb6167bd1fae815d2b5fa81
[ "MIT" ]
41
2019-12-06T23:56:44.000Z
2021-08-02T09:13:30.000Z
examples/gan.py
maxferrari/Torchelie
d133f227bebc3c4cbbb6167bd1fae815d2b5fa81
[ "MIT" ]
13
2019-09-22T00:46:54.000Z
2021-04-09T15:53:15.000Z
import argparse import copy import torch from torchvision.datasets import MNIST, CIFAR10 import torchvision.transforms as TF import torchelie as tch import torchelie.loss.gan.hinge as gan_loss from torchelie.recipes.gan import GANRecipe import torchelie.callbacks as tcb from torchelie.recipes import Recipe parser = argparse.ArgumentParser() parser.add_argument('--cpu', action='store_true') opts = parser.parse_args() device = 'cpu' if opts.cpu else 'cuda' BS = 32 tfms = TF.Compose([ TF.Resize(64), tch.transforms.AdaptPad((64, 64)), TF.RandomHorizontalFlip(), TF.ToTensor()]) ds = CIFAR10('~/.cache/torch/cifar10', download=True, transform=tfms) dl = torch.utils.data.DataLoader(ds, num_workers=4, batch_size=BS, shuffle=True) def train_net(Gen, Discr): G = Gen(in_noise=128, out_ch=3) G_polyak = copy.deepcopy(G).eval() D = Discr() print(G) print(D) def G_fun(batch): z = torch.randn(BS, 128, device=device) fake = G(z) preds = D(fake * 2 - 1).squeeze() loss = gan_loss.generated(preds) loss.backward() return {'loss': loss.item(), 'imgs': fake.detach()} def G_polyak_fun(batch): z = torch.randn(BS, 128, device=device) fake = G_polyak(z) return {'imgs': fake.detach()} def D_fun(batch): z = torch.randn(BS, 128, device=device) fake = G(z) fake_loss = gan_loss.fake(D(fake * 2 - 1)) fake_loss.backward() x = batch[0] real_loss = gan_loss.real(D(x * 2 - 1)) real_loss.backward() loss = real_loss.item() + fake_loss.item() return {'loss': loss, 'real_loss': real_loss.item(), 'fake_loss': fake_loss.item()} loop = GANRecipe(G, D, G_fun, D_fun, G_polyak_fun, dl, log_every=100).to(device) loop.register('polyak', G_polyak) loop.G_loop.callbacks.add_callbacks([ tcb.Optimizer(tch.optim.RAdamW(G.parameters(), lr=1e-4, betas=(0., 0.99))), tcb.Polyak(G, G_polyak), ]) loop.register('G_polyak', G_polyak) loop.callbacks.add_callbacks([ tcb.Log('batch.0', 'x'), tcb.WindowedMetricAvg('real_loss'), tcb.WindowedMetricAvg('fake_loss'), tcb.Optimizer(tch.optim.RAdamW(D.parameters(), lr=4e-4, betas=(0., 0.99))), ]) loop.test_loop.callbacks.add_callbacks([ tcb.Log('imgs', 'polyak_imgs'), tcb.VisdomLogger('main', prefix='test') ]) loop.to(device).run(100) train_net(tch.models.autogan_64, tch.models.snres_discr_4l)
29.322222
84
0.61349
0
0
0
0
0
0
0
0
183
0.069344
c40ce4ea8967938d11ba63e971d617289f172e0d
22
py
Python
Python/SCRIPT PYTHON/Hello.py
guimaraesalves/material-python
d56b6b24ae35a67d394b43cb1ef4420805c7bd9b
[ "MIT" ]
null
null
null
Python/SCRIPT PYTHON/Hello.py
guimaraesalves/material-python
d56b6b24ae35a67d394b43cb1ef4420805c7bd9b
[ "MIT" ]
null
null
null
Python/SCRIPT PYTHON/Hello.py
guimaraesalves/material-python
d56b6b24ae35a67d394b43cb1ef4420805c7bd9b
[ "MIT" ]
null
null
null
print ("Hello Word!")
11
21
0.636364
0
0
0
0
0
0
0
0
13
0.590909
c40e9360b8918f73e4cf97eef85c363173d03ce0
21,719
py
Python
hs_geo_raster_resource/serialization.py
tommac7/hydroshare
87c4543a55f98103d2614bf4c47f7904c3f9c029
[ "BSD-3-Clause" ]
1
2018-09-17T13:07:29.000Z
2018-09-17T13:07:29.000Z
hs_geo_raster_resource/serialization.py
tommac7/hydroshare
87c4543a55f98103d2614bf4c47f7904c3f9c029
[ "BSD-3-Clause" ]
100
2017-08-01T23:48:04.000Z
2018-04-03T13:17:27.000Z
hs_geo_raster_resource/serialization.py
tommac7/hydroshare
87c4543a55f98103d2614bf4c47f7904c3f9c029
[ "BSD-3-Clause" ]
2
2017-07-27T20:41:33.000Z
2017-07-27T22:40:57.000Z
import xml.sax import rdflib from django.db import transaction from hs_core.serialization import GenericResourceMeta class RasterResourceMeta(GenericResourceMeta): """ Lightweight class for representing metadata of RasterResource instances. """ def __init__(self): super(RasterResourceMeta, self).__init__() self.cell_info = None self.band_info = [] self.spatial_reference = None def _read_resource_metadata(self): super(RasterResourceMeta, self)._read_resource_metadata() print("--- RasterResourceMeta ---") # Also parse using SAX so that we can capture certain metadata elements # in the same order in which they appear in the RDF+XML serialization. SAX_parse_results = RasterResourceSAXHandler() xml.sax.parse(self.rmeta_path, SAX_parse_results) hsterms = rdflib.namespace.Namespace('http://hydroshare.org/terms/') # Get CellInformation for s, p, o in self._rmeta_graph.triples((None, hsterms.CellInformation, None)): self.cell_info = RasterResourceMeta.CellInformation() # Get name name_lit = self._rmeta_graph.value(o, hsterms.name) if name_lit is None: msg = "Name for CellInformation was not found for resource {0}".\ format(self.root_uri) raise GenericResourceMeta.ResourceMetaException(msg) self.cell_info.name = str(name_lit) # Get rows rows_lit = self._rmeta_graph.value(o, hsterms.rows) if rows_lit is None: msg = "Rows attribute was not found for CellInformation for resource {0}".\ format(self.root_uri) raise GenericResourceMeta.ResourceMetaException(msg) self.cell_info.rows = int(str(rows_lit)) # Get columns columns_lit = self._rmeta_graph.value(o, hsterms.columns) if columns_lit is None: msg = "Columns attribute was not found for CellInformation for resource {0}".\ format(self.root_uri) raise GenericResourceMeta.ResourceMetaException(msg) self.cell_info.columns = int(str(columns_lit)) # Get cellSizeXValue cellX_lit = self._rmeta_graph.value(o, hsterms.cellSizeXValue) if cellX_lit is None: msg = "cellSizeXValue attribute was not found for CellInformation " msg += "for resource {0}" msg = msg.format(self.root_uri) raise GenericResourceMeta.ResourceMetaException(msg) self.cell_info.cellSizeXValue = float(str(cellX_lit)) # Get cellSizeYValue cellY_lit = self._rmeta_graph.value(o, hsterms.cellSizeYValue) if cellY_lit is None: msg = "cellSizeYValue attribute was not found for CellInformation " msg += "for resource {0}" msg = msg.format(self.root_uri) raise GenericResourceMeta.ResourceMetaException(msg) self.cell_info.cellSizeYValue = float(str(cellY_lit)) # Get cellDataType celldt_lit = self._rmeta_graph.value(o, hsterms.cellDataType) if celldt_lit is None: msg = "cellDataType attribute was not found for CellInformation " msg += "for resource {0}" msg = msg.format(self.root_uri) raise GenericResourceMeta.ResourceMetaException(msg) self.cell_info.cellDataType = str(celldt_lit) # Get noDateValue nodata_lit = self._rmeta_graph.value(o, hsterms.noDataValue) if nodata_lit is not None: self.cell_info.noDataValue = float(str(nodata_lit)) print("\t\t{0}".format(self.cell_info)) # Get BandInformation if SAX_parse_results: # Use band info from SAX parser self.band_info = list(SAX_parse_results.band_info) else: # Get band info from RDF for s, p, o in self._rmeta_graph.triples((None, hsterms.BandInformation, None)): band_info = RasterResourceMeta.BandInformation() # Get name name_lit = self._rmeta_graph.value(o, hsterms.name) if name_lit is None: msg = "Name for BandInformation was not found for resource {0}".\ format(self.root_uri) raise GenericResourceMeta.ResourceMetaException(msg) band_info.name = str(name_lit) # Get variableName varname_lit = self._rmeta_graph.value(o, hsterms.variableName) if varname_lit is None: msg = "variableName for BandInformation was not found for resource {0}".\ format(self.root_uri) raise GenericResourceMeta.ResourceMetaException(msg) band_info.variableName = str(varname_lit) # Get variableUnit varunit_lit = self._rmeta_graph.value(o, hsterms.variableUnit) if varunit_lit is None: msg = "variableUnit for BandInformation was not found for resource {0}".\ format(self.root_uri) raise GenericResourceMeta.ResourceMetaException(msg) band_info.variableUnit = str(varunit_lit) # Get method method_lit = self._rmeta_graph.value(o, hsterms.method) if method_lit is not None: band_info.method = str(method_lit) # Get comment comment_lit = self._rmeta_graph.value(o, hsterms.comment) if comment_lit is not None: band_info.comment = str(comment_lit) self.band_info.append(band_info) for b in self.band_info: print("\t\t{0}".format(str(b))) # Get spatialReference for s, p, o in self._rmeta_graph.triples((None, hsterms.spatialReference, None)): spat_ref_lit = self._rmeta_graph.value(o, rdflib.namespace.RDF.value) if spat_ref_lit is None: msg = "Spatial reference value not found for {0}.".format(o) raise GenericResourceMeta.ResourceMetaException(msg) self.spatial_reference = RasterResourceMeta.SpatialReference(str(spat_ref_lit)) print("\t\t{0}".format(self.spatial_reference)) @transaction.atomic def write_metadata_to_resource(self, resource): """ Write metadata to resource :param resource: RasterResource instance """ super(RasterResourceMeta, self).write_metadata_to_resource(resource) if self.cell_info: resource.metadata.cellInformation.delete() resource.metadata.create_element('CellInformation', name=self.cell_info.name, rows=self.cell_info.rows, columns=self.cell_info.columns, cellSizeXValue=self.cell_info.cellSizeXValue, cellSizeYValue=self.cell_info.cellSizeYValue, cellDataType=self.cell_info.cellDataType, noDataValue=self.cell_info.noDataValue) if len(self.band_info) > 0: for band in resource.metadata.bandInformation: band.delete() for b in self.band_info: resource.metadata.create_element('BandInformation', name=b.name, variableName=b.variableName, variableUnit=b.variableUnit, method=b.method, comment=b.comment) if self.spatial_reference: resource.metadata.originalCoverage.delete() values = {'units': self.spatial_reference.units, 'northlimit': self.spatial_reference.northlimit, 'eastlimit': self.spatial_reference.eastlimit, 'southlimit': self.spatial_reference.southlimit, 'westlimit': self.spatial_reference.westlimit, 'projection': self.spatial_reference.projection} kwargs = {'value': values} resource.metadata.create_element('OriginalCoverage', **kwargs) class CellInformation(object): def __init__(self): self.name = None self.rows = None self.columns = None self.cellSizeXValue = None self.cellSizeYValue = None self.cellDataType = None self.noDataValue = None # Optional def __str__(self): msg = "CellInformation name: {name}, " msg += "rows: {rows}, columns: {columns}, " msg += "cellSizeXValue: {cellSizeXValue}, cellSizeYValue: {cellSizeYValue}, " msg += "cellDataType: {cellDataType}, noDataValue: {noDataValue}" msg = msg.format(name=self.name, rows=self.rows, columns=self.columns, cellSizeXValue=self.cellSizeXValue, cellSizeYValue=self.cellSizeYValue, cellDataType=self.cellDataType, noDataValue=self.noDataValue) return msg def __unicode__(self): return unicode(str(self)) class BandInformation(object): def __init__(self): self.name = None self.variableName = None self.variableUnit = None self.method = None # Optional self.comment = None # Optional def __str__(self): msg = "BandInformation name: {name}, " msg += "variableName: {variableName}, variableUnit: {variableUnit}, " msg += "method: {method}, comment: {comment}" msg = msg.format(name=self.name, variableName=self.variableName, variableUnit=self.variableUnit, method=self.method, comment=self.comment) return msg def __unicode__(self): return unicode(str(self)) class SpatialReference(object): def __init__(self): self.northlimit = None self.eastlimit = None self.southlimit = None self.westlimit = None self.units = None self.projection = None # Optional def __str__(self): msg = "SpatialReference northlimit: {northlimit}, " msg += "eastlimit: {eastlimit}, southlimit: {southlimit}, " msg += "westlimit: {westlimit}, units: {units}, projection: {projection}" msg = msg.format(northlimit=self.northlimit, eastlimit=self.eastlimit, southlimit=self.southlimit, westlimit=self.westlimit, units=self.units, projection=self.projection) return msg def __unicode__(self): return unicode(str(self)) def __init__(self, value_str): kvp = value_str.split(';') for pair in kvp: (key, value) = pair.split('=') key = key.strip() value = value.strip() if key == 'name': self.name = value elif key == 'eastlimit': try: self.eastlimit = float(value) except Exception as e: msg = "Unable to parse east limit {0}, error: {1}".format(value, str(e)) raise GenericResourceMeta.ResourceMetaException(msg) elif key == 'northlimit': try: self.northlimit = float(value) except Exception as e: msg = "Unable to parse north limit {0}, error: {1}".format(value, str(e)) raise GenericResourceMeta.ResourceMetaException(msg) elif key == 'southlimit': try: self.southlimit = float(value) except Exception as e: msg = "Unable to parse south limit {0}, error: {1}".format(value, str(e)) raise GenericResourceMeta.ResourceMetaException(msg) elif key == 'westlimit': try: self.westlimit = float(value) except Exception as e: msg = "Unable to parse west limit {0}, error: {1}".format(value, str(e)) raise GenericResourceMeta.ResourceMetaException(msg) elif key == 'units': self.units = value elif key == 'projection': self.projection = value class RasterResourceSAXHandler(xml.sax.ContentHandler): def __init__(self): xml.sax.ContentHandler.__init__(self) # Content self.band_info = [] # State variables self._get_bandinfo = False self._get_bandinfo_details = False self._get_bandinfo_name = False self._bandinfo_name = None self._get_bandinfo_var_name = False self._bandinfo_var_name = None self._get_bandinfo_var_unit = False self._bandinfo_var_unit = None self._get_bandinfo_method = False self._bandinfo_method = None self._get_bandinfo_comment = False self._bandinfo_comment = None def characters(self, content): if self._get_bandinfo_name: if len(self.band_info) < 1: msg = "Error: haven't yet encountered band information, " msg += "yet trying to store band information name." raise xml.sax.SAXException(msg) self._bandinfo_name.append(content) elif self._get_bandinfo_var_name: if len(self.band_info) < 1: msg = "Error: haven't yet encountered band information, " msg += "yet trying to store band information variable name." raise xml.sax.SAXException(msg) self._bandinfo_var_name.append(content) elif self._get_bandinfo_var_unit: if len(self.band_info) < 1: msg = "Error: haven't yet encountered band information, " msg += "yet trying to store band information variable unit." raise xml.sax.SAXException(msg) self._bandinfo_var_unit.append(content) elif self._get_bandinfo_method: if len(self.band_info) < 1: msg = "Error: haven't yet encountered band information, " msg += "yet trying to store band information method." raise xml.sax.SAXException(msg) self._bandinfo_method.append(content) elif self._get_bandinfo_comment: if len(self.band_info) < 1: msg = "Error: haven't yet encountered band information, " msg += "yet trying to store band information comment." raise xml.sax.SAXException(msg) self._bandinfo_comment.append(content) def startElement(self, name, attrs): if name == 'hsterms:BandInformation': if self._get_bandinfo: raise xml.sax.SAXException("Error: nested hsterms:BandInformation elements.") self._get_bandinfo = True elif name == 'rdf:Description': if self._get_bandinfo: if self._get_bandinfo_details: msg = "Error: nested rdf:Description elements " \ "within hsterms:BandInformation element." raise xml.sax.SAXException(msg) # Create new band info self.band_info.append(RasterResourceMeta.BandInformation()) self._get_bandinfo_details = True elif name == 'hsterms:name': if self._get_bandinfo_details: if self._get_bandinfo_name: raise xml.sax.SAXException("Error: nested hsterms:name elements " "within hsterms:BandInformation.") self._get_bandinfo_name = True self._bandinfo_name = [] elif name == 'hsterms:variableName': if self._get_bandinfo_details: if self._get_bandinfo_var_name: raise xml.sax.SAXException("Error: nested hsterms:variableName elements " "within hsterms:BandInformation.") self._get_bandinfo_var_name = True self._bandinfo_var_name = [] elif name == 'hsterms:variableUnit': if self._get_bandinfo_details: if self._get_bandinfo_var_unit: raise xml.sax.SAXException("Error: nested hsterms:variableUnit elements " "within hsterms:BandInformation.") self._get_bandinfo_var_unit = True self._bandinfo_var_unit = [] elif name == 'hsterms:method': if self._get_bandinfo_details: if self._get_bandinfo_method: raise xml.sax.SAXException("Error: nested hsterms:method elements " "within hsterms:BandInformation.") self._get_bandinfo_method = True self._bandinfo_method = [] elif name == 'hsterms:comment': if self._get_bandinfo_details: if self._get_bandinfo_comment: raise xml.sax.SAXException("Error: nested hsterms:comment elements " "within hsterms:BandInformation.") self._get_bandinfo_comment = True self._bandinfo_comment = [] def endElement(self, name): if name == 'hsterms:BandInformation': if not self._get_bandinfo: msg = "Error: close hsterms:BandInformation tag without corresponding open tag." raise xml.sax.SAXException(msg) self._get_bandinfo = False elif name == 'rdf:Description': if self._get_bandinfo: if not self._get_bandinfo_details: msg = "Error: close rdf:Description tag without corresponding open tag " msg += "within hsterms:BandInformation." raise xml.sax.SAXException(msg) self._get_bandinfo_details = False elif name == 'hsterms:name': if self._get_bandinfo_details: if not self._get_bandinfo_name: msg = "Error: close hsterms:name tag without corresponding open tag " msg += "within hsterms:BandInformation." raise xml.sax.SAXException(msg) self.band_info[-1].name = "".join(self._bandinfo_name) self._bandinfo_name = None self._get_bandinfo_name = False elif name == 'hsterms:variableName': if self._get_bandinfo_details: if not self._get_bandinfo_var_name: msg = "Error: close hsterms:variableName tag without corresponding open tag " msg += "within hsterms:BandInformation." raise xml.sax.SAXException(msg) self.band_info[-1].variableName = "".join(self._bandinfo_var_name) self._bandinfo_var_name = None self._get_bandinfo_var_name = False elif name == 'hsterms:variableUnit': if self._get_bandinfo_details: if not self._get_bandinfo_var_unit: msg = "Error: close hsterms:variableUnit tag without corresponding open tag " msg += "within hsterms:BandInformation." raise xml.sax.SAXException(msg) self.band_info[-1].variableUnit = "".join(self._bandinfo_var_unit) self._bandinfo_var_unit = None self._get_bandinfo_var_unit = False elif name == 'hsterms:method': if self._get_bandinfo_details: if not self._get_bandinfo_method: msg = "Error: close hsterms:method tag without corresponding open tag " msg += "within hsterms:BandInformation." raise xml.sax.SAXException(msg) self.band_info[-1].method = "".join(self._bandinfo_method) self._bandinfo_method = None self._get_bandinfo_method = False elif name == 'hsterms:comment': if self._get_bandinfo_details: if not self._get_bandinfo_comment: msg = "Error: close hsterms:comment tag without corresponding open tag " msg += "within hsterms:BandInformation." raise xml.sax.SAXException(msg) self.band_info[-1].comment = "".join(self._bandinfo_comment) self._bandinfo_comment = None self._get_bandinfo_comment = False
47.215217
97
0.55776
21,594
0.994245
0
0
2,033
0.093605
0
0
4,285
0.197293
c410261f2af66c058c52c7122ed945e7bc1bf8e8
857
py
Python
setup.py
mrocklin/pygdf
2de9407427da9497ebdf8951a12857be0fab31bb
[ "Apache-2.0" ]
5
2019-01-15T12:31:49.000Z
2021-03-05T21:17:13.000Z
setup.py
mrocklin/pygdf
2de9407427da9497ebdf8951a12857be0fab31bb
[ "Apache-2.0" ]
1
2019-06-18T20:58:21.000Z
2019-06-18T20:58:21.000Z
setup.py
mrocklin/pygdf
2de9407427da9497ebdf8951a12857be0fab31bb
[ "Apache-2.0" ]
null
null
null
from setuptools import setup import versioneer packages = ['pygdf', 'pygdf.tests', ] install_requires = [ 'numba', ] setup(name='pygdf', description="GPU Dataframe", version=versioneer.get_version(), classifiers=[ # "Development Status :: 4 - Beta", "Intended Audience :: Developers", # "Operating System :: OS Independent", "Programming Language :: Python", # "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3.5", ], # Include the separately-compiled shared library author="Continuum Analytics, Inc.", packages=packages, package_data={ 'pygdf.tests': ['data/*.pickle'], }, install_requires=install_requires, license="BSD", cmdclass=versioneer.get_cmdclass(), )
24.485714
54
0.588098
0
0
0
0
0
0
0
0
377
0.439907
c412a68b17b363d84e8cdaf62f22ff38191fc6e5
335
py
Python
pymarl/envs/__init__.py
twoodford/pymarl
c78e63e54ed772171fbcaea6c55c703cff0e9302
[ "Apache-2.0" ]
null
null
null
pymarl/envs/__init__.py
twoodford/pymarl
c78e63e54ed772171fbcaea6c55c703cff0e9302
[ "Apache-2.0" ]
null
null
null
pymarl/envs/__init__.py
twoodford/pymarl
c78e63e54ed772171fbcaea6c55c703cff0e9302
[ "Apache-2.0" ]
null
null
null
from functools import partial from .multiagentenv import MultiAgentEnv import sys import os def env_fn(env, **kwargs) -> MultiAgentEnv: return env(**kwargs) REGISTRY = {} #REGISTRY["sc2"] = partial(env_fn, env=StarCraft2Env) def register_env(nm, env_class): global REGISTRY REGISTRY[nm] = partial(env_fn, env=env_class)
22.333333
53
0.740299
0
0
0
0
0
0
0
0
53
0.158209
c415cf0f1a05df7a1ed0253bc2693cc05cb80cc0
4,938
py
Python
gumtree_watchdog/db.py
undeadparrot/gumtree-telegram-watchdog
48db6b37876c520bd5d2e0f9a97e19b04d70e12f
[ "MIT" ]
1
2019-03-04T15:38:01.000Z
2019-03-04T15:38:01.000Z
gumtree_watchdog/db.py
undeadparrot/gumtree-telegram-watchdog
48db6b37876c520bd5d2e0f9a97e19b04d70e12f
[ "MIT" ]
null
null
null
gumtree_watchdog/db.py
undeadparrot/gumtree-telegram-watchdog
48db6b37876c520bd5d2e0f9a97e19b04d70e12f
[ "MIT" ]
null
null
null
import os import os.path import sqlite3 import logging from typing import List from gumtree_watchdog.types import Listing, Contract, ListingWithChatId TConn = sqlite3.Connection DB_PATH = os.environ.get('GUMTREE_DB') def get_connection() -> TConn: if not DB_PATH: raise Exception("Please specify Sqlite3 db path as environment variable GUMTREE_DB") conn = sqlite3.connect(DB_PATH) conn.row_factory = sqlite3.Row return conn def initialize(): if os.path.isfile(DB_PATH): logging.info("Sqlite3 database found.") return logging.warning("Sqlite3 database not found, will initialize.") with get_connection() as conn: conn.execute(""" CREATE TABLE contract( contract_id integer primary key autoincrement, query text not null, chat_id integer not null, is_active bool default 0, UNIQUE(chat_id, query) ); """) conn.execute(""" CREATE TABLE listing( listing_id integer primary key autoincrement, contract_id integer not null, ad_id text not null, title text not null, description text not null, url text, must_notify_user bool default 1, FOREIGN KEY(contract_id) REFERENCES contract(contract_id), UNIQUE(contract_id, ad_id) ); """) conn.execute(""" CREATE TABLE inbound_msg( inbound_msg_id integer primary key autoincrement, chat_id integer not null, message text not null ); """) def insert_inbound_msg(conn: TConn, chat_id: int, message: str): conn.execute(""" INSERT INTO inbound_msg (chat_id, message) VALUES (:chat_id, :message) """, dict( chat_id=chat_id, message=message )) def insert_contract(conn: TConn, chat_id: int, query: str) -> int: cur = conn.cursor() cur.execute(""" INSERT INTO contract (chat_id, query) VALUES (:chat_id, :query) """, dict( chat_id=chat_id, query=query )) return cur.lastrowid def insert_listing(conn: TConn, record: Listing) -> bool: existing_results = conn.execute(""" SELECT listing_id FROM listing WHERE contract_id = :contract_id AND ad_id = :ad_id """, dict( contract_id=record.contract_id, ad_id=record.ad_id )).fetchall() if existing_results: return False conn.execute(""" INSERT INTO listing (contract_id, ad_id, url, title, description) VALUES (:contract_id, :ad_id, :url,:title, :description) """, dict( contract_id=record.contract_id, ad_id=record.ad_id, url=record.url, title=record.title, description=record.description )) return True def get_open_contracts(conn: TConn) -> List[Contract]: results = conn.execute(""" SELECT * FROM contract WHERE is_active = 1; """).fetchall() return [Contract(**_) for _ in results] def get_open_contracts_for_user(conn: TConn, chat_id: int) -> List[Contract]: results = conn.execute(""" SELECT * FROM contract WHERE is_active = 1 AND chat_id = :chat_id """, dict( chat_id=chat_id )).fetchall() return [Contract(**_) for _ in results] def get_unsent_listing_notifications(conn: TConn) -> List[ListingWithChatId]: results = conn.execute(""" SELECT listing_id, ad_id, chat_id, url, title, description FROM listing JOIN contract USING (contract_id) WHERE must_notify_user = 1 AND contract.is_active = 1 """).fetchall() return [ListingWithChatId(**_) for _ in results] def mark_listing_as_sent(conn: TConn, listing_id: int): return conn.execute(""" UPDATE listing SET must_notify_user = 0 WHERE listing_id = :listing_id """, dict(listing_id=listing_id)) def deactivate_contract(conn: TConn, chat_id: str, contract_id: int): conn.execute(""" UPDATE contract SET is_active = 0 WHERE contract_id = :contract_id AND chat_id = :chat_id """, dict(contract_id=contract_id, chat_id=chat_id)) def mark_contract_active(conn: TConn, contract_id: int): conn.execute(""" UPDATE listing SET must_notify_user = 0 WHERE contract_id = :contract_id """, dict(contract_id=contract_id)) conn.execute(""" UPDATE contract SET is_active = 1 WHERE contract_id = :contract_id """, dict(contract_id=contract_id))
28.37931
92
0.584447
0
0
0
0
0
0
0
0
2,636
0.533819
c4184af48713ebd40a957015c82bc531d4f8d4b7
3,601
py
Python
apps/1d/mhd/shock_tube/this_app_params.py
dcseal/finess
766e583ae9e84480640c7c3b3c157bf40ab87fe4
[ "BSD-3-Clause" ]
null
null
null
apps/1d/mhd/shock_tube/this_app_params.py
dcseal/finess
766e583ae9e84480640c7c3b3c157bf40ab87fe4
[ "BSD-3-Clause" ]
null
null
null
apps/1d/mhd/shock_tube/this_app_params.py
dcseal/finess
766e583ae9e84480640c7c3b3c157bf40ab87fe4
[ "BSD-3-Clause" ]
null
null
null
#section [initial] def _parameters_accessors_checks(): from finess.params import Parameter, Accessor, Check, \ CheckGreaterEqual, CheckGreaterThan, \ CheckOneOf, EnumParameterType parameters = [] checks = [] rhol = Parameter(variable_name = "rhol", section = "initial", name = "rhol", type_ = "double") parameters.append(rhol) checks.append(CheckGreaterThan(rhol, 0.0)) unl = Parameter(variable_name = "unl", section = "initial", name = "unl", type_ = "double") parameters.append(unl) utl = Parameter(variable_name = "utl", section = "initial", name = "utl", type_ = "double") parameters.append(utl) u3l = Parameter(variable_name = "u3l", section = "initial", name = "u3l", type_ = "double") parameters.append(u3l) pl = Parameter(variable_name = "pl", section = "initial", name = "pl", type_ = "double") parameters.append(pl) checks.append(CheckGreaterThan(pl, 0.0)) Bnl = Parameter(variable_name = "Bnl", section = "initial", name = "Bnl", type_ = "double") parameters.append(Bnl) Btl = Parameter(variable_name = "Btl", section = "initial", name = "Btl", type_ = "double") parameters.append(Btl) B3l = Parameter(variable_name = "B3l", section = "initial", name = "B3l", type_ = "double") parameters.append(B3l) rhor = Parameter(variable_name = "rhor", section = "initial", name = "rhor", type_ = "double") parameters.append(rhor) checks.append(CheckGreaterThan(rhor, 0.0)) unr = Parameter(variable_name = "unr", section = "initial", name = "unr", type_ = "double") parameters.append(unr) utr = Parameter(variable_name = "utr", section = "initial", name = "utr", type_ = "double") parameters.append(utr) u3r = Parameter(variable_name = "u3r", section = "initial", name = "u3r", type_ = "double") parameters.append(u3r) pr = Parameter(variable_name = "pr", section = "initial", name = "pr", type_ = "double") parameters.append(pr) checks.append(CheckGreaterThan(pr, 0.0)) Bnr = Parameter(variable_name = "Bnr", section = "initial", name = "Bnr", type_ = "double") parameters.append(Bnr) Btr = Parameter(variable_name = "Btr", section = "initial", name = "Btr", type_ = "double") parameters.append(Btr) B3r = Parameter(variable_name = "B3r", section = "initial", name = "B3r", type_ = "double") parameters.append(B3r) return parameters, map(Accessor, parameters), checks parameter_list, accessor_list, check_list = \ _parameters_accessors_checks()
31.587719
68
0.463482
0
0
0
0
0
0
0
0
450
0.124965
c418d7e5abef02bb7493320d6cd67da6e01f6114
1,142
py
Python
async-functions.py
cheezyy/python_scripts
9db713ca085c6f1fd5ec63d79762a470093e028a
[ "MIT" ]
null
null
null
async-functions.py
cheezyy/python_scripts
9db713ca085c6f1fd5ec63d79762a470093e028a
[ "MIT" ]
null
null
null
async-functions.py
cheezyy/python_scripts
9db713ca085c6f1fd5ec63d79762a470093e028a
[ "MIT" ]
null
null
null
''' Chad Meadowcroft Credit to Sentdex (https://pythonprogramming.net/) ''' import asyncio async def find_divisibles(inrange, div_by): # Define division function with async functionality print("finding nums in range {} divisible by {}".format(inrange, div_by)) located = [] for i in range(inrange): if i % div_by == 0: located.append(i) if i % 50000 == 0: await asyncio.sleep(0.00001) print("Done w/ nums in range {} divisible by {}".format(inrange, div_by)) return located async def main(): # Example functions to run concurrently divs1 = loop.create_task(find_divisibles(508000, 34113)) divs2 = loop.create_task(find_divisibles(10052, 3210)) divs3 = loop.create_task(find_divisibles(500, 3)) # Activate async operation await asyncio.wait([divs1, divs2, divs3]) return divs1, divs2, divs3 if __name__ == '__main__': try: loop = asyncio.get_event_loop() loop.set_debug(1) d1, d2, d3 = loop.run_until_complete(main()) print(d1.result()) except Exception as e: pass finally: loop.close()
29.282051
77
0.645359
0
0
0
0
0
0
790
0.691769
285
0.249562
c41996b81d3533341a720d569e52c1e49f5c467b
1,114
py
Python
setup.py
jackaraz/ma5_expert
4d359b5110874c2f44f81e10307bd1ea3f9e20d0
[ "MIT" ]
2
2021-04-06T08:37:41.000Z
2022-01-07T09:15:25.000Z
setup.py
jackaraz/ma5_expert
4d359b5110874c2f44f81e10307bd1ea3f9e20d0
[ "MIT" ]
null
null
null
setup.py
jackaraz/ma5_expert
4d359b5110874c2f44f81e10307bd1ea3f9e20d0
[ "MIT" ]
null
null
null
from setuptools import setup import os with open("README.md", "r", encoding="utf-8") as f: long_description = f.read() requirements = [] if os.path.isfile("./requirements.txt"): with open("requirements.txt", "r") as f: requirements = f.read() requirements = [x for x in requirements.split("\n") if x != ""] setup( name="ma5_expert", version="0.0.1", description=("MadAnalysis 5 interpreter for Expert mode"), long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/jackaraz/ma5_expert", author="Jack Y. Araz", author_email=("jack.araz@durham.ac.uk"), license="MIT", packages=[ "ma5_expert", "ma5_expert.CutFlow", "ma5_expert.tools", ], install_requires=requirements, python_requires=">=3.6", classifiers=[ "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python :: 3", "Topic :: Scientific/Engineering :: Physics", ], )
29.315789
67
0.630162
0
0
0
0
0
0
0
0
481
0.431777
c41a92320c98d0d79eebb92f7c12dfc1830b9325
4,977
py
Python
apitest/api_test/common/auth.py
willhuang1206/apitest
4b41855710ba8f21788027da83a830f631e11f26
[ "Apache-2.0" ]
null
null
null
apitest/api_test/common/auth.py
willhuang1206/apitest
4b41855710ba8f21788027da83a830f631e11f26
[ "Apache-2.0" ]
3
2020-06-06T01:57:41.000Z
2021-06-10T22:57:58.000Z
apitest/api_test/common/auth.py
willhuang1206/apitest
4b41855710ba8f21788027da83a830f631e11f26
[ "Apache-2.0" ]
null
null
null
from rest_framework.authentication import BaseAuthentication from rest_framework import exceptions from rest_framework.parsers import JSONParser from django.conf import settings import requests from api_test.common import MD5 from api_test.models import ProjectMember from django.contrib.auth.models import User,Group from rest_framework.authtoken.models import Token ssoLogin=settings.SSO_LOGIN ssoClientId=settings.SSO_CLIENTID ssoClientSecret=settings.SSO_CLIENTSECRET ssoRedirectUrl=settings.SSO_REDIRECTURL ssoNotifyUrl=settings.SSO_NOTIFYURL ssoGetTicketUrl=settings.SSO_GETTICKETURL #sso的token的校验地址 ssoValidateUrl=settings.SSO_VALIDATEURL ssoLoginUrl=settings.SSO_LOGINURL ssoLogoutUrl=settings.SSO_LOGOUTURL class Dict(dict): __setattr__ = dict.__setitem__ __getattr__ = dict.__getitem__ def dict_to_object(dictObj): if not isinstance(dictObj, dict): return dictObj inst=Dict() for k,v in dictObj.items(): inst[k] = dict_to_object(v) return inst class TokenAuthentication(BaseAuthentication): '''认证类''' def authenticate(self, request): ticket = request.META.get('HTTP_AUTHORIZATION') if ticket: if ssoLogin: params={"cmd":"80010002","data":{"ticket":ticket,"client_secret":ssoClientSecret,"secret_key":MD5.encrypt("%s-%s" % (ticket,ssoClientSecret))}} response=requests.post(url=ssoValidateUrl,json=params).json() if response["code"]==0: user_id=response["data"]["identifier"] expire=response["data"]["expire"] params={"cmd":"80010004","data":{"user_id":user_id,"client_secret":ssoClientSecret,"secret_key":MD5.encrypt("%s-%s" % (user_id,ssoClientSecret))}} response=requests.post(url=ssoValidateUrl,json=params).json() if response["code"]==0: user=User.objects.get(username=response["data"]["user_name"]) if not user: response["data"]["pk"]=user_id user=dict_to_object(response["data"]) return (user,ticket) else: raise exceptions.AuthenticationFailed('用户认证失败') else: token= Token.objects.get(key=ticket) if token: user=User.objects.get(id=token.user.id) return (user,ticket) else: raise exceptions.AuthenticationFailed('用户认证失败') else: token= Token.objects.get(key=ticket) if token: user=User.objects.get(id=token.user.id) return (user,ticket) else: raise exceptions.AuthenticationFailed('用户认证失败') else: secretKey=MD5.encrypt("%s-%s-%s-%s" % (ssoRedirectUrl,ssoNotifyUrl,ssoClientId,ssoClientSecret)) url="%s?redirect_uri=%s&notify_uri=%s&client_id=%s&secret_key=%s" % (ssoGetTicketUrl,ssoRedirectUrl,ssoNotifyUrl,ssoClientId,secretKey) requests.get(url=url) def authenticate_header(self, request): pass def permission_required(*permissions): '''自定义 权限验证 装饰器''' def wrapper(func): def check_permission(self,request): check=True if len(permissions)>0: project_id="" if request.method=="GET": project_id=request.GET.get("project_id","") if request.method=="POST": data = request.data project_id=data["project_id"] if "project_id" in data else "" if project_id: projectMember=ProjectMember.objects.filter(project_id=project_id,user_id=request.user.id) user=User.objects.get(id=request.user.id) if len(projectMember)>0: groupId=projectMember[0].group.id group=Group.objects.get(id=groupId) for permission in permissions: if permission and len(group.permissions.filter(codename=permission))==0: check=False break if not permission and not user.is_superuser: check=False break else: check=False else: user=User.objects.get(id=request.user.id) if not user: check=False elif not user.is_superuser: check=False if check: return func(self,request) else: raise exceptions.NotAcceptable('用户没有该权限!') return check_permission return wrapper
42.905172
166
0.569821
2,369
0.46772
0
0
0
0
0
0
515
0.101678
c41b88fc454a463ac7213753efc46174f0522ef0
12,745
py
Python
futu/common/pb/Qot_GetPriceReminder_pb2.py
Hason-Cheung/py-futu-api
caa2f136ee07a2b123c79b2d75bbb524d7873e53
[ "Apache-2.0" ]
858
2018-11-12T12:54:56.000Z
2022-03-10T17:35:43.000Z
futu/common/pb/Qot_GetPriceReminder_pb2.py
EricChengg/hongkong-futu-user-investment-report-generater
d450260a107f9e053036c31b05b8290b7b22c237
[ "Apache-2.0" ]
113
2018-11-12T01:52:31.000Z
2022-02-27T03:53:07.000Z
futu/common/pb/Qot_GetPriceReminder_pb2.py
EricChengg/hongkong-futu-user-investment-report-generater
d450260a107f9e053036c31b05b8290b7b22c237
[ "Apache-2.0" ]
201
2018-11-19T08:32:45.000Z
2022-03-23T06:39:02.000Z
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: Qot_GetPriceReminder.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() import Common_pb2 as Common__pb2 import Qot_Common_pb2 as Qot__Common__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='Qot_GetPriceReminder.proto', package='Qot_GetPriceReminder', syntax='proto2', serialized_pb=_b('\n\x1aQot_GetPriceReminder.proto\x12\x14Qot_GetPriceReminder\x1a\x0c\x43ommon.proto\x1a\x10Qot_Common.proto\"k\n\x11PriceReminderItem\x12\x0b\n\x03key\x18\x01 \x02(\x03\x12\x0c\n\x04type\x18\x02 \x02(\x05\x12\r\n\x05value\x18\x03 \x02(\x01\x12\x0c\n\x04note\x18\x04 \x02(\t\x12\x0c\n\x04\x66req\x18\x05 \x02(\x05\x12\x10\n\x08isEnable\x18\x06 \x02(\x08\"r\n\rPriceReminder\x12&\n\x08security\x18\x01 \x02(\x0b\x32\x14.Qot_Common.Security\x12\x39\n\x08itemList\x18\x02 \x03(\x0b\x32\'.Qot_GetPriceReminder.PriceReminderItem\"=\n\x03\x43\x32S\x12&\n\x08security\x18\x01 \x01(\x0b\x32\x14.Qot_Common.Security\x12\x0e\n\x06market\x18\x02 \x01(\x05\"E\n\x03S2C\x12>\n\x11priceReminderList\x18\x01 \x03(\x0b\x32#.Qot_GetPriceReminder.PriceReminder\"1\n\x07Request\x12&\n\x03\x63\x32s\x18\x01 \x02(\x0b\x32\x19.Qot_GetPriceReminder.C2S\"j\n\x08Response\x12\x15\n\x07retType\x18\x01 \x02(\x05:\x04-400\x12\x0e\n\x06retMsg\x18\x02 \x01(\t\x12\x0f\n\x07\x65rrCode\x18\x03 \x01(\x05\x12&\n\x03s2c\x18\x04 \x01(\x0b\x32\x19.Qot_GetPriceReminder.S2CBJ\n\x13\x63om.futu.openapi.pbZ3github.com/futuopen/ftapi4go/pb/qotgetpricereminder') , dependencies=[Common__pb2.DESCRIPTOR,Qot__Common__pb2.DESCRIPTOR,]) _PRICEREMINDERITEM = _descriptor.Descriptor( name='PriceReminderItem', full_name='Qot_GetPriceReminder.PriceReminderItem', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='Qot_GetPriceReminder.PriceReminderItem.key', index=0, number=1, type=3, cpp_type=2, label=2, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='type', full_name='Qot_GetPriceReminder.PriceReminderItem.type', index=1, number=2, type=5, cpp_type=1, label=2, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='Qot_GetPriceReminder.PriceReminderItem.value', index=2, number=3, type=1, cpp_type=5, label=2, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='note', full_name='Qot_GetPriceReminder.PriceReminderItem.note', index=3, number=4, type=9, cpp_type=9, label=2, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='freq', full_name='Qot_GetPriceReminder.PriceReminderItem.freq', index=4, number=5, type=5, cpp_type=1, label=2, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='isEnable', full_name='Qot_GetPriceReminder.PriceReminderItem.isEnable', index=5, number=6, type=8, cpp_type=7, label=2, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=84, serialized_end=191, ) _PRICEREMINDER = _descriptor.Descriptor( name='PriceReminder', full_name='Qot_GetPriceReminder.PriceReminder', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='security', full_name='Qot_GetPriceReminder.PriceReminder.security', index=0, number=1, type=11, cpp_type=10, label=2, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='itemList', full_name='Qot_GetPriceReminder.PriceReminder.itemList', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=193, serialized_end=307, ) _C2S = _descriptor.Descriptor( name='C2S', full_name='Qot_GetPriceReminder.C2S', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='security', full_name='Qot_GetPriceReminder.C2S.security', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='market', full_name='Qot_GetPriceReminder.C2S.market', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=309, serialized_end=370, ) _S2C = _descriptor.Descriptor( name='S2C', full_name='Qot_GetPriceReminder.S2C', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='priceReminderList', full_name='Qot_GetPriceReminder.S2C.priceReminderList', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=372, serialized_end=441, ) _REQUEST = _descriptor.Descriptor( name='Request', full_name='Qot_GetPriceReminder.Request', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='c2s', full_name='Qot_GetPriceReminder.Request.c2s', index=0, number=1, type=11, cpp_type=10, label=2, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=443, serialized_end=492, ) _RESPONSE = _descriptor.Descriptor( name='Response', full_name='Qot_GetPriceReminder.Response', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='retType', full_name='Qot_GetPriceReminder.Response.retType', index=0, number=1, type=5, cpp_type=1, label=2, has_default_value=True, default_value=-400, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='retMsg', full_name='Qot_GetPriceReminder.Response.retMsg', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='errCode', full_name='Qot_GetPriceReminder.Response.errCode', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='s2c', full_name='Qot_GetPriceReminder.Response.s2c', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=494, serialized_end=600, ) _PRICEREMINDER.fields_by_name['security'].message_type = Qot__Common__pb2._SECURITY _PRICEREMINDER.fields_by_name['itemList'].message_type = _PRICEREMINDERITEM _C2S.fields_by_name['security'].message_type = Qot__Common__pb2._SECURITY _S2C.fields_by_name['priceReminderList'].message_type = _PRICEREMINDER _REQUEST.fields_by_name['c2s'].message_type = _C2S _RESPONSE.fields_by_name['s2c'].message_type = _S2C DESCRIPTOR.message_types_by_name['PriceReminderItem'] = _PRICEREMINDERITEM DESCRIPTOR.message_types_by_name['PriceReminder'] = _PRICEREMINDER DESCRIPTOR.message_types_by_name['C2S'] = _C2S DESCRIPTOR.message_types_by_name['S2C'] = _S2C DESCRIPTOR.message_types_by_name['Request'] = _REQUEST DESCRIPTOR.message_types_by_name['Response'] = _RESPONSE _sym_db.RegisterFileDescriptor(DESCRIPTOR) PriceReminderItem = _reflection.GeneratedProtocolMessageType('PriceReminderItem', (_message.Message,), dict( DESCRIPTOR = _PRICEREMINDERITEM, __module__ = 'Qot_GetPriceReminder_pb2' # @@protoc_insertion_point(class_scope:Qot_GetPriceReminder.PriceReminderItem) )) _sym_db.RegisterMessage(PriceReminderItem) PriceReminder = _reflection.GeneratedProtocolMessageType('PriceReminder', (_message.Message,), dict( DESCRIPTOR = _PRICEREMINDER, __module__ = 'Qot_GetPriceReminder_pb2' # @@protoc_insertion_point(class_scope:Qot_GetPriceReminder.PriceReminder) )) _sym_db.RegisterMessage(PriceReminder) C2S = _reflection.GeneratedProtocolMessageType('C2S', (_message.Message,), dict( DESCRIPTOR = _C2S, __module__ = 'Qot_GetPriceReminder_pb2' # @@protoc_insertion_point(class_scope:Qot_GetPriceReminder.C2S) )) _sym_db.RegisterMessage(C2S) S2C = _reflection.GeneratedProtocolMessageType('S2C', (_message.Message,), dict( DESCRIPTOR = _S2C, __module__ = 'Qot_GetPriceReminder_pb2' # @@protoc_insertion_point(class_scope:Qot_GetPriceReminder.S2C) )) _sym_db.RegisterMessage(S2C) Request = _reflection.GeneratedProtocolMessageType('Request', (_message.Message,), dict( DESCRIPTOR = _REQUEST, __module__ = 'Qot_GetPriceReminder_pb2' # @@protoc_insertion_point(class_scope:Qot_GetPriceReminder.Request) )) _sym_db.RegisterMessage(Request) Response = _reflection.GeneratedProtocolMessageType('Response', (_message.Message,), dict( DESCRIPTOR = _RESPONSE, __module__ = 'Qot_GetPriceReminder_pb2' # @@protoc_insertion_point(class_scope:Qot_GetPriceReminder.Response) )) _sym_db.RegisterMessage(Response) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('\n\023com.futu.openapi.pbZ3github.com/futuopen/ftapi4go/pb/qotgetpricereminder')) # @@protoc_insertion_point(module_scope)
36.83526
1,141
0.748764
0
0
0
0
0
0
0
0
3,306
0.259396
c41bd740e3e0dc24d155a81087255bfae49c7719
903
py
Python
leave/models.py
shoaibsaikat/Django-Office-Management
952aa44c2d3c2f99e91c2ed1aada17ee15fc9eb0
[ "Apache-2.0" ]
null
null
null
leave/models.py
shoaibsaikat/Django-Office-Management
952aa44c2d3c2f99e91c2ed1aada17ee15fc9eb0
[ "Apache-2.0" ]
null
null
null
leave/models.py
shoaibsaikat/Django-Office-Management
952aa44c2d3c2f99e91c2ed1aada17ee15fc9eb0
[ "Apache-2.0" ]
null
null
null
from django.db import models from django.db.models.deletion import CASCADE from accounts.models import User class Leave(models.Model): title = models.CharField(max_length=255, default='', blank=False) user = models.ForeignKey(User, on_delete=CASCADE, blank=False, related_name='leaves') creationDate = models.DateTimeField(auto_now_add=True) approver = models.ForeignKey(User, on_delete=CASCADE, blank=False, related_name='leave_approvals') approved = models.BooleanField(default=False, blank=True) approveDate = models.DateTimeField(default=None, blank=True, null=True) startDate = models.DateTimeField(default=None, blank=False) endDate = models.DateTimeField(default=None, blank=False) dayCount = models.PositiveIntegerField(default=0, blank=False) comment = models.TextField(default='', blank=False) def __str__(self): return super().__str__()
45.15
102
0.75526
792
0.877076
0
0
0
0
0
0
29
0.032115
c41c16df2e1d607a9a0d2aad44ec758217ef96ce
22,021
py
Python
svtk/vtk_animation_timer_callback.py
SimLeek/pglsl-neural
8daaffded197cf7be4432754bc5941f1bca3239c
[ "MIT" ]
5
2018-03-25T23:43:32.000Z
2019-05-18T10:35:21.000Z
svtk/vtk_animation_timer_callback.py
PyGPAI/PyGPNeural
8daaffded197cf7be4432754bc5941f1bca3239c
[ "MIT" ]
11
2017-12-24T20:03:16.000Z
2017-12-26T00:18:34.000Z
svtk/vtk_animation_timer_callback.py
SimLeek/PyGPNeural
8daaffded197cf7be4432754bc5941f1bca3239c
[ "MIT" ]
null
null
null
import time import numpy as np import vtk from vtk.util import numpy_support from svtk.lib.toolbox.integer import minmax from svtk.lib.toolbox.idarray import IdArray from svtk.lib.toolbox.numpy_helpers import normalize import math as m class VTKAnimationTimerCallback(object): """This class is called every few milliseconds by VTK based on the set frame rate. This allows for animation. I've added several modification functions, such as adding and deleting lines/points, changing colors, etc.""" __slots__ = ["points", "point_colors", "timer_count", "points_poly", "lines", "lines_poly", "line_colors", "line_id_array" "last_velocity_update", "unused_locations", "last_color_velocity_update", "renderer", "last_bg_color_velocity_update", "last_velocity_update", "_loop_time", "remaining_lerp_fade_time", "lerp_multiplier", "line_id_array", "point_id_array", "point_vertices", "interactor_style", "renderer", "interactive_renderer", "_started" ] def __init__(self): self.timer_count = 0 self.last_velocity_update = time.clock() self.last_color_velocity_update = time.clock() self.last_bg_color_velocity_update = time.clock() self._loop_time = time.clock() self.unused_locations = [] self.remaining_lerp_fade_time = 0 self.lerp_multiplier = 1 self.line_id_array = IdArray() self.point_id_array = IdArray() self._started=False def add_lines(self, lines, line_colors): """ Adds multiple lines between any sets of points. Args: lines (list, tuple, np.ndarray, np.generic): An array in the format of [2, point_a, point_b, 2, point_c, point_d, ...]. The two is needed for VTK's lines. line_colors (list, tuple, np.ndarray, np.generic): An array in the format of [[r1, g1, b1], [r2, g2, b2], ...], with the same length as the number of lines. Returns: list: An array containing the memory locations of each of the newly inserted lines. """ assert (isinstance(lines, (list, tuple, np.ndarray, np.generic))) assert (isinstance(line_colors, (list, tuple, np.ndarray, np.generic))) np_line_data = numpy_support.vtk_to_numpy(self.lines.GetData()) np_line_color_data = numpy_support.vtk_to_numpy(self.line_colors) #todo: add lines in unused locations if possible mem_locations = range(int(len(np_line_data) / 3), int((len(np_line_data) + len(lines)) / 3)) np_line_data = np.append(np_line_data, lines) if len(np_line_color_data) > 0: np_line_color_data = np.append(np_line_color_data, line_colors, axis=0) else: np_line_color_data = line_colors vtk_line_data = numpy_support.numpy_to_vtkIdTypeArray(np_line_data, deep=True) self.lines.SetCells(int(len(np_line_data) / 3), vtk_line_data) vtk_line_color_data = numpy_support.numpy_to_vtk(num_array=np_line_color_data, deep=True, array_type=vtk.VTK_UNSIGNED_CHAR) self.line_colors.DeepCopy(vtk_line_color_data) self.lines_poly.Modified() self.line_id_array.add_ids(mem_locations) return mem_locations def del_all_lines(self): """ Deletes all lines. """ vtk_data = numpy_support.numpy_to_vtkIdTypeArray(np.array([], dtype=np.int64), deep=True) self.lines.SetCells(0, vtk_data) vtk_data = numpy_support.numpy_to_vtk(num_array=np.array([]), deep=True, array_type=vtk.VTK_UNSIGNED_CHAR) self.line_colors.DeepCopy(vtk_data) self.lines_poly.Modified() def del_lines(self, line_indices): #todo: change idarray to use tuples of (start,end) locations and set this to delete those partitions """ Delete specific lines. Args: line_indices (tuple, list, np.ndarray, np.generic): An array of integers or a single integer representing line memory locations(s) to delete. """ np_data = numpy_support.vtk_to_numpy(self.lines.GetData()) np_color_data = numpy_support.vtk_to_numpy(self.line_colors) if isinstance(line_indices, (tuple, list, np.ndarray, np.generic)): last_loc = -1 loc = 0 np_new_data = [] np_new_color_data = [] for i in range(len(line_indices)): loc = self.line_id_array.pop_id(line_indices[i]) if loc==None: #todo: put warning here continue if len(np_new_data) > 0: np_new_data = np.append(np_new_data, np_data[(last_loc + 1) * 3:loc * 3], axis=0) else: np_new_data = np_data[(last_loc + 1) * 3:loc * 3] if len(np_new_color_data) > 0: np_new_color_data = np.append(np_new_color_data, np_color_data[(last_loc + 1):loc], axis=0) else: np_new_color_data = np_color_data[(last_loc + 1):loc] last_loc = loc last_loc = loc loc = len(np_data) / 3 np_data = np.append(np_new_data, np_data[(last_loc + 1) * 3:loc * 3], axis=0) np_data = np_data.astype(np.int64) np_color_data = np.append(np_new_color_data, np_color_data[(last_loc + 1):loc], axis=0) else: raise TypeError("Deletion list should be tuple, list, np.ndarray, or np.generic") vtk_data = numpy_support.numpy_to_vtkIdTypeArray(np_data, deep=True) self.lines.SetCells(int(len(np_data) / 3), vtk_data) vtk_data = numpy_support.numpy_to_vtk(num_array=np_color_data, deep=True, array_type=vtk.VTK_UNSIGNED_CHAR) self.line_colors.DeepCopy(vtk_data) self.lines_poly.Modified() def del_points(self, point_indices): """ Delete specific points. Args: point_indices (tuple, list, np.ndarray, np.generic): An array of integers or a single integer representing point memory locations(s) to delete. """ np_point_data = numpy_support.vtk_to_numpy(self.points.GetData()) np_point_color_data = numpy_support.vtk_to_numpy(self.point_colors) np_vert_data = numpy_support.vtk_to_numpy(self.point_vertices.GetData())#1,1,1,2,1,3,1,4,1,5,1,6... print(len(np_vert_data), len(np_point_data), len(np_point_color_data)) if isinstance(point_indices, (tuple, list, np.ndarray, np.generic)): last_loc = -1 loc = 0 subtractor = 0 np_new_data = [] np_new_color_data = [] np_new_verts = [] for i in range(len(point_indices)): loc = self.point_id_array.pop_id(point_indices[i]) if loc == None: # todo: put warning here continue subtractor+=1 #I could just remove the end of the array, but this keeps the lines attached to the same points if len(np_new_verts) >0: np_new_verts = np.append(np_new_verts, np_vert_data[(last_loc+1)*2:loc*2], axis = 0) else: np_new_verts = np_vert_data[(last_loc+1)*2: loc*2] if len(np_new_data) > 0: np_new_data = np.append(np_new_data, np_point_data[(last_loc + 1):loc], axis=0) else: np_new_data = np_point_data[(last_loc + 1):loc] if len(np_new_color_data) > 0: np_new_color_data = np.append(np_new_color_data, np_point_color_data[(last_loc + 1)*3:loc*3], axis=0) else: np_new_color_data = np_point_color_data[(last_loc + 1):loc] last_loc = loc if loc == None: return last_loc = loc loc = len(np_point_data) np_point_data = np.append(np_new_data, np_point_data[(last_loc + 1):loc], axis=0) np_point_color_data = np.append(np_new_color_data, np_point_color_data[(last_loc + 1):loc], axis=0) np_vert_data = np.append(np_new_verts, np_vert_data[(last_loc + 1)*2:loc*2], axis = 0) else: raise TypeError("Deletion list should be tuple, list, np.ndarray, or np.generic") vtk_data = numpy_support.numpy_to_vtk(np_point_data, deep=True) self.points.SetData(vtk_data) vtk_data = numpy_support.numpy_to_vtk(num_array=np_point_color_data, deep=True, array_type=vtk.VTK_UNSIGNED_CHAR) self.point_colors.DeepCopy(vtk_data) vtk_data = numpy_support.numpy_to_vtkIdTypeArray(np_vert_data, deep=True) self.point_vertices.SetCells(int(len(np_vert_data) / 2), vtk_data) self.lines_poly.Modified() def add_points(self, points, point_colors): """ Adds points in 3d space. Args: points (tuple, list, np.ndarray, np.generic): An array in the format of [[x1,y1,z1], [x2,y2,x2], ..., [xn,yn,zn]] point_colors (tuple, list, np.ndarray, np.generic): An array in the format of [[r1, g1, b1], [r2, g2, b2], ...], with the same length as the number of points to be added. Returns: """ assert (isinstance(points, (list, tuple, np.ndarray, np.generic))) assert (isinstance(point_colors, (list, tuple, np.ndarray, np.generic))) np_point_data = numpy_support.vtk_to_numpy(self.points.GetData()) np_point_color_data = numpy_support.vtk_to_numpy(self.point_colors) np_vert_data = numpy_support.vtk_to_numpy(self.point_vertices.GetData()) print(np_vert_data) for i in range(len(points)): #todo: modify pointer_id_array to set free pointers to deleted data, not deleted data locations if len(self.point_id_array.free_pointers)>0: np_vert_data = np.append(np_vert_data, [1,self.point_id_array.free_pointers.pop()]) else: np_vert_data = np.append(np_vert_data,[1, len(np_vert_data)/2]) mem_locations = range(int(len(np_point_data)), int((len(np_point_data) + len(points)))) if len(np_point_data) > 0: np_point_data = np.append(np_point_data, points, axis=0) else: np_point_data = points if len(point_colors) ==1: points = np.array(points) point_colors = np.tile(point_colors, (points.shape[0], 1)) if len(np_point_color_data) > 0: np_point_color_data = np.append(np_point_color_data, point_colors, axis=0) else: np_point_color_data = point_colors vtk_point_data = numpy_support.numpy_to_vtk(num_array=np_point_data, deep=True, array_type=vtk.VTK_FLOAT) self.points.SetData(vtk_point_data) vtk_data = numpy_support.numpy_to_vtkIdTypeArray(np_vert_data.astype(np.int64), deep=True) self.point_vertices.SetCells(int(len(np_vert_data) / 2), vtk_data) vtk_point_color_data = numpy_support.numpy_to_vtk(num_array=np_point_color_data, deep=True, array_type=vtk.VTK_UNSIGNED_CHAR) self.point_colors.DeepCopy(vtk_point_color_data) self.points_poly.Modified() self.point_id_array.add_ids(mem_locations) #print(self.point_id_array) return mem_locations def add_point_field(self, widths, normal, center, color): """ Adds a rectangular field of points. Args: widths (tuple, list, np.ndarray, np.generic): an array defining the widths of each dimension of the field. normal (tuple, list, np.ndarray, np.generic): an array defining the normal to the field. Specifies angle. center (tuple, list, np.ndarray, np.generic): an array defining the central position of the field. color (tuple, list, np.ndarray, np.generic): An array in the format of [[r1, g1, b1], [r2, g2, b2], ...], with the same length as the number of points to be added, or a single color in the form of [[r1, g1, b1]]. Returns: A list of integers representing the memory locations where the points were added. """ true_normal = normalize(normal) if not np.allclose(true_normal, [1, 0, 0]): zn = np.cross(true_normal, [1, 0, 0]) xn = np.cross(true_normal, zn) else: xn = [1, 0, 0] zn = [0, 0, 1] point_field = np.array([]) #todo: replace for loops with numpy or gpu ops for z in range(-int(m.floor(widths[2] / 2.0)), int(m.ceil(widths[2] / 2.0))): for y in range(-int(m.floor(widths[1] / 2.0)), int(m.ceil(widths[1] / 2.0))): for x in range(-int(m.floor(widths[0] / 2.0)), int(m.ceil(widths[0] / 2.0))): vector_space_matrix = np.column_stack( (np.transpose(xn), np.transpose(true_normal), np.transpose(zn))) translation = np.matmul([x, y, z], vector_space_matrix) point_location = [center[0], center[1], center[2]] + translation point_location = [point_location] if len(point_field)>0: point_field = np.append(point_field, point_location, axis = 0) else: point_field = point_location return self.add_points(point_field, color) #returns ids def set_bg_color(self, color): """ Sets the background color of the viewport. Args: color (tuple, list, np.ndarray, np.generic): a single rgb color in the form of [[int, int, int]] """ r, g, b = color[0] r,g,b = (r/255.,g/255.,b/255.) self.renderer.SetBackground((minmax(r, 0, 1), minmax(g, 0, 1), minmax(b, 0, 1))) self.renderer.Modified() def set_all_point_colors(self, color): """ Sets the color of every point. Args: color (tuple, list, np.ndarray, np.generic): a single rgb color in the form of [[int, int, int]] """ np_color_data = numpy_support.vtk_to_numpy(self.point_colors) np_color_data = np.tile(color, (np_color_data.shape[0], 1)) vtk_data = numpy_support.numpy_to_vtk(num_array=np_color_data, deep=True, array_type=vtk.VTK_UNSIGNED_CHAR) self.point_colors.DeepCopy(vtk_data) def set_point_colors(self, colors, point_indices=None): if point_indices is None: if isinstance(colors, (list, tuple, np.ndarray, np.generic)): vtk_data = numpy_support.numpy_to_vtk(num_array=colors, deep=True, array_type=vtk.VTK_UNSIGNED_CHAR) self.point_colors.DeepCopy(vtk_data) elif isinstance(point_indices, (list, tuple, np.ndarray, np.generic)): np_color_data = numpy_support.vtk_to_numpy(self.point_colors) np_color_data[point_indices] = colors vtk_data = numpy_support.numpy_to_vtk(num_array=np_color_data, deep=True, array_type=vtk.VTK_UNSIGNED_CHAR) self.point_colors.DeepCopy(vtk_data) # self.points_poly.GetPointData().GetScalars().Modified() self.points_poly.Modified() def setup_lerp_all_point_colors(self, color, fade_time): """ Sets all points to the same color, but uses lerping to slowly change the colors. Args: color (): fade_time (): """ np_color_data = numpy_support.vtk_to_numpy(self.point_colors) self.next_colors = np.tile(color, (np_color_data.shape[0], 1)) self.prev_colors = numpy_support.vtk_to_numpy(self.point_colors) self.lerp_fade_time = fade_time self.remaining_lerp_fade_time = fade_time def lerp_point_colors(self, colors, fade_time, point_indices=None): """ Sets colors for specific points, but uses lerping to slowly change those colors. Args: colors (): fade_time (): point_indices (): """ if isinstance(self.next_colors, (np.ndarray, np.generic)): if isinstance(point_indices, (list, tuple, np.ndarray, np.generic)): self.next_colors[point_indices] = colors else: self.next_colors = colors self.next_color_indices = None elif isinstance(point_indices, (list, tuple, np.ndarray, np.generic)) or isinstance(colors, (list, tuple)): if self.lerp_fade_time > 0: self.next_colors = np.append(self.next_colors, colors) if point_indices is not None: self.next_color_indices = np.append(self.next_color_indices, point_indices) else: self.next_colors = colors self.next_color_indices = point_indices # must should not already be lerping self.prev_colors = numpy_support.vtk_to_numpy(self.point_colors) # fade time in seconds, float self.lerp_fade_time = fade_time self.remaining_lerp_fade_time = fade_time def set_lerp_remainder(self, lerp_remainder): """ Sets the portion of color from the previous color set remains after the lerp has been fully run. Args: lerp_remainder (): """ self.lerp_multiplier = 1 - lerp_remainder def _calculate_point_color_lerp(self): """ Linearly interpolates colors. In addition to making animation look smoother, it helps prevent seizures a little. Only a little though, and it has to be used correctly. Still, using it at all helps. """ if self.remaining_lerp_fade_time > 0: # print(self.lerp_fade_time, self.remaining_lerp_fade_time) lerp_val = self.lerp_multiplier * ( self.lerp_fade_time - self.remaining_lerp_fade_time) / self.lerp_fade_time # print(lerp_val) diff_array = (self.prev_colors - self.next_colors) lerp_diff_array = diff_array * lerp_val # print(lerp_diff_array) lerp_colors = self.prev_colors - lerp_diff_array # print(lerp_colors) if isinstance(lerp_colors, (np.ndarray, np.generic)): vtk_data = numpy_support.numpy_to_vtk(num_array=lerp_colors, deep=True, array_type=vtk.VTK_UNSIGNED_CHAR) self.point_colors.DeepCopy(vtk_data) # self.points_poly.GetPointData().GetScalars().Modified() self.points_poly.Modified() self.remaining_lerp_fade_time -= self.loop_change_in_time # print(self.remaining_lerp_fade_time) def position_points(self, positions, point_indices=None): #todo:unit test """ Untested with most recent changes. Sets the positions of specific points, all points, or one point. Args: positions (): point_indices (): """ if point_indices == None: vtk_data = numpy_support.numpy_to_vtk(num_array=positions, deep=True, array_type=vtk.VTK_FLOAT) self.points.DeepCopy(vtk_data) elif isinstance(point_indices, (list, tuple)): if isinstance(positions, (list, tuple)): for i in range(len(point_indices)): x, y, z = positions[i % len(positions)] self.points.SetPoint(point_indices[i], (x, y, z)) else: for i in range(len(point_indices)): x, y, z = positions self.points.SetPoint(point_indices[i], (x, y, z)) else: x, y, z = positions self.points.SetPoint(point_indices, (x, y, z)) self.points_poly.Modified() def add_key_input_functions(self, keydic): """ Sets functions to be called when specific keys are pressed, in order from shallowest to deepest dictionaries. If a key is already in the dictionary, it will be replaced. Args: keydic (): """ self.interactor_style.append_input_combinations(keydic) def at_start(self): """ Function to be run after class instantiation and vtk start up. Useful for setting things that can only be set after VTK is running. """ pass def loop(self, obj, event): """ Function called every few milliseconds when VTK is set to call. Variables that need updating like change_in_time can be set here. Args: obj (): event (): """ self.loop_change_in_time = time.clock() - self._loop_time self._loop_time = time.clock() self._calculate_point_color_lerp() pass def at_end(self): """ Function called when animation is ended. """ self.interactive_renderer.RemoveAllObservers() def exit(self): # needed to stop previous setups from being run on next class call # proper cleanup self.interactive_renderer.TerminateApp() def execute(self, obj, event): """ Function called to start animation. Args: obj (): event (): """ if not self._started: self.at_start() self._started = True self.loop(obj, event) self.points_poly.GetPointData().GetScalars().Modified() self.points_poly.Modified() self.interactive_renderer = obj self.interactive_renderer.GetRenderWindow().Render()
40.629151
121
0.608374
21,780
0.989056
0
0
0
0
0
0
6,148
0.279188
c41c57d2fe8c5d4f03096ac847acc8fe35f19ed2
3,679
py
Python
work/ArchitectureSearch.py
jialiasus2/AI-Studio-Contest-Quantum202103
350f20b8805e9696cacacc1339e71bf695571e74
[ "Apache-2.0" ]
null
null
null
work/ArchitectureSearch.py
jialiasus2/AI-Studio-Contest-Quantum202103
350f20b8805e9696cacacc1339e71bf695571e74
[ "Apache-2.0" ]
null
null
null
work/ArchitectureSearch.py
jialiasus2/AI-Studio-Contest-Quantum202103
350f20b8805e9696cacacc1339e71bf695571e74
[ "Apache-2.0" ]
null
null
null
import time import numpy as np from tqdm import tqdm from utils import RandomCNOT, RandomCNOTs def SimulatedAnnealing(quantum_count, layer_count, solver, epochs=100, save_path=None, global_best_score=0): #TODO: best_score = 0 cnot = RandomCNOTs(quantum_count, layer_count) sc, model = solver(cnot) if sc>best_score: best_score = sc cnot_seed = cnot best_model = model best_cnot = cnot if save_path is not None and best_score>global_best_score: with open(save_path, 'w') as f: f.write(best_model) start_time = time.time() for epoch in range(epochs): for i in range(layer_count): cnot_layers = cnot_seed.copy() cnot_layers[i] = RandomCNOT(quantum_count) sc, model = solver(cnot_layers) if sc>best_score or np.random.randint(epochs)>epoch: cnot_seed = cnot_layers if sc>best_score: best_score = sc best_model = model best_cnot = cnot_layers if save_path is not None and best_score>global_best_score: with open(save_path, 'w') as f: f.write(best_model) print('epoch %d, iter %d, Score = %g, best_score = %g, global_best_score = %g, time = %gs'%(epoch, i, sc, best_score, global_best_score, time.time()-start_time)) # print(best_model) return best_score, best_model, best_cnot def SequenceJitter(quantum_count, layer_count, solver, init_epochs=10, epochs=100, save_path=None, global_best_score=0): #TODO: best_score = 0 print('Init cnot seed.') for _ in tqdm(range(init_epochs)): cnot = RandomCNOTs(quantum_count, layer_count) sc, model = solver(cnot) if sc>best_score: best_score = sc cnot_seed = cnot best_model = model best_cnot = cnot if save_path is not None and best_score>global_best_score: with open(save_path, 'w') as f: f.write(best_model) start_time = time.time() for epoch in range(epochs): for i in range(layer_count): cnot_layers = cnot_seed.copy() cnot_layers[i] = RandomCNOT(quantum_count) sc, model = solver(cnot_layers) if sc>best_score: best_score = sc cnot_seed = cnot_layers best_model = model best_cnot = cnot_layers if save_path is not None and best_score>global_best_score: with open(save_path, 'w') as f: f.write(best_model) print('Score = %g, best_score = %g, global_best_score = %g, time = %gs'%(sc, best_score, global_best_score, time.time()-start_time)) # print(best_model) return best_score, best_model, best_cnot def RandomSearch(cnot_creater, solver, epochs=100, save_path=None): ''' 随机搜索 Parameters: cnot_creater: 生成CNOT层的可执行对象 solver: 一个可执行对象,给定网络结构后,求解网络参数的求解器 epochs: 随机搜索的轮数 save_path: 保存最佳结果的路径 ''' best_score = 0 start_time = time.time() for epoch in range(epochs): cnot_layers = cnot_creater() sc, model = solver(cnot_layers) if sc>best_score: best_score = sc best_model = model if save_path is not None: with open(save_path, 'w') as f: f.write(best_model) print('No_%d: score = %g, best_score = %g, time = %gs'%(epoch, sc, best_score, time.time()-start_time)) # print(best_model) return best_score, best_model
38.322917
173
0.59527
0
0
0
0
0
0
0
0
576
0.152019
c41c9ed8f0eeeb7bc96538ff09de8ee1da20fa88
4,113
py
Python
tests/localyaml/test_localyaml.py
sbussetti/jenkins-job-builder
fc63f1439816d9022a2d538614b0b7592f96b454
[ "Apache-2.0" ]
1
2021-07-30T04:03:53.000Z
2021-07-30T04:03:53.000Z
tests/localyaml/test_localyaml.py
sbussetti/jenkins-job-builder
fc63f1439816d9022a2d538614b0b7592f96b454
[ "Apache-2.0" ]
12
2020-05-29T05:33:48.000Z
2020-09-29T13:02:29.000Z
tests/localyaml/test_localyaml.py
sbussetti/jenkins-job-builder
fc63f1439816d9022a2d538614b0b7592f96b454
[ "Apache-2.0" ]
2
2020-05-15T08:29:33.000Z
2020-06-04T07:27:31.000Z
#!/usr/bin/env python # # Copyright 2013 Darragh Bailey # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os import yaml from testtools import ExpectedException from yaml.composer import ComposerError from jenkins_jobs.config import JJBConfig from jenkins_jobs.parser import YamlParser from tests import base def _exclude_scenarios(input_filename): return os.path.basename(input_filename).startswith("custom_") class TestCaseLocalYamlInclude(base.JsonTestCase): """ Verify application specific tags independently of any changes to modules XML parsing behaviour """ fixtures_path = os.path.join(os.path.dirname(__file__), "fixtures") scenarios = base.get_scenarios( fixtures_path, "yaml", "json", filter_func=_exclude_scenarios ) def test_yaml_snippet(self): if os.path.basename(self.in_filename).startswith("exception_"): with ExpectedException(ComposerError, "^found duplicate anchor .*"): super(TestCaseLocalYamlInclude, self).test_yaml_snippet() else: super(TestCaseLocalYamlInclude, self).test_yaml_snippet() class TestCaseLocalYamlAnchorAlias(base.YamlTestCase): """ Verify yaml input is expanded to the expected yaml output when using yaml anchors and aliases. """ fixtures_path = os.path.join(os.path.dirname(__file__), "fixtures") scenarios = base.get_scenarios(fixtures_path, "iyaml", "oyaml") class TestCaseLocalYamlIncludeAnchors(base.BaseTestCase): fixtures_path = os.path.join(os.path.dirname(__file__), "fixtures") def test_multiple_same_anchor_in_multiple_toplevel_yaml(self): """ Verify that anchors/aliases only span use of '!include' tag To ensure that any yaml loaded by the include tag is in the same space as the top level file, but individual top level yaml definitions are treated by the yaml loader as independent. """ files = [ "custom_same_anchor-001-part1.yaml", "custom_same_anchor-001-part2.yaml", ] jjb_config = JJBConfig() jjb_config.jenkins["url"] = "http://example.com" jjb_config.jenkins["user"] = "jenkins" jjb_config.jenkins["password"] = "password" jjb_config.builder["plugins_info"] = [] jjb_config.validate() j = YamlParser(jjb_config) j.load_files([os.path.join(self.fixtures_path, f) for f in files]) class TestCaseLocalYamlRetainAnchors(base.BaseTestCase): fixtures_path = os.path.join(os.path.dirname(__file__), "fixtures") def test_retain_anchors_default(self): """ Verify that anchors are NOT retained across files by default. """ files = ["custom_retain_anchors_include001.yaml", "custom_retain_anchors.yaml"] jjb_config = JJBConfig() # use the default value for retain_anchors jjb_config.validate() j = YamlParser(jjb_config) with ExpectedException(yaml.composer.ComposerError, "found undefined alias.*"): j.load_files([os.path.join(self.fixtures_path, f) for f in files]) def test_retain_anchors_enabled(self): """ Verify that anchors are retained across files if retain_anchors is enabled in the config. """ files = ["custom_retain_anchors_include001.yaml", "custom_retain_anchors.yaml"] jjb_config = JJBConfig() jjb_config.yamlparser["retain_anchors"] = True jjb_config.validate() j = YamlParser(jjb_config) j.load_files([os.path.join(self.fixtures_path, f) for f in files])
33.991736
87
0.699733
3,182
0.773645
0
0
0
0
0
0
1,784
0.433747
c41dbd4f1116c76a73c6b7f3a90d3a40a1fa6018
24,625
py
Python
seijibot.py
seiji56/bot-tac
b16b8a8a79d6ac2deb0476ab3a9a0e0b136b1d54
[ "MIT" ]
null
null
null
seijibot.py
seiji56/bot-tac
b16b8a8a79d6ac2deb0476ab3a9a0e0b136b1d54
[ "MIT" ]
null
null
null
seijibot.py
seiji56/bot-tac
b16b8a8a79d6ac2deb0476ab3a9a0e0b136b1d54
[ "MIT" ]
null
null
null
from bot_interface import * import math class SeijiBot(BotBase): def __init__(self): self.initialized = False def initialize(self, gamestate): gamestate.log("Initializing...") #Getting UID self.uid = gamestate.bot.uid gamestate.log("This ship has uid " + str(self.uid)) #Getting time step self.step = gamestate.timestep gamestate.log("Initialized with timestep of " + str(self.step) + "s") gamestate.log("Ships have a " + str(gamestate.ships[self.uid].radius) + "m radius") #Setting Global constants self.mass = 1 self.main_thrust = 30 self.side_thrust = 15 self.side_thrust_offset = 2 self.laser_charge_time = .5 self.initialized = True #From here are some useful functions #Side functions def solveQuad(self, a, b, c): if a == 0: return None delta = b**2 - 4*a*c if delta < 0: return None if delta == 0: return (-b)/(2*a), (-b)/(2*a) delta = math.sqrt(delta) return (((-b)-delta)/(2*a), ((-b)+delta)/(2*a)) def dist(self, obj1, obj2): return math.sqrt((obj1.posx - obj2.posx)**2 + (obj1.posy - obj2.posy)**2) def toRad(self, angle): return (float(angle)/180)*math.pi def sign(self, n): if n == 0: return 0 return n/abs(n) def fmod(self, n, k): d = math.floor(n/k) return n - k*d def glob_loc(self, x1, y1, angle, x2, y2): rx, ry = x2 - x1, y2 - y1 tx, ty = math.cos(-angle) * rx - math.sin(-angle) * ry, math.cos(-angle) * ry + math.sin(-angle) * rx return tx, ty def normalize(self, vec): sqrl = 0 for i in vec: sqrl += i**2 l = math.sqrt(sqrl) if l == 0.0: return vec res = [] for i in vec: res.append(i/l) return res def invert(self, vec): return [-i for i in vec] #Movement functions #Change angular speed - It doesn't change linear velocity #Returns -> thruster value def angularSpeed(self, ship, final_speed): k = .1 vel = self.toRad(ship.velang) delta = final_speed - vel ret = delta*k if ret > 1: ret = 1 elif ret < -1: ret = -1 return -ret def angDelta(self, ship, angle): delta = self.fmod(angle + 2*math.pi, 2*math.pi) - self.fmod(self.fmod(self.toRad(ship.ang), 2*math.pi) + 2*math.pi, 2*math.pi) if abs(delta) > math.pi: delta = (2*math.pi - abs(delta))*self.sign(-delta) return delta #Control ship rotation to certain angle - It doesn't change linear velocity #Returns -> thruster value def lookAt(self, ship, final_ang): kP, kD = .6, 3.5 out = -kP*self.angDelta(ship, final_ang) + kD*self.toRad(ship.velang)*self.step if out > 1: out = 1 elif out < -1: out = -1 return out #Accelerate ship towards certain coordinate - It doesn't change velang #Returns -> main thruster value, frontal thruster value, back thruster value def accelerateTo(self, ship, towx, towy, pot = 1): tstep = self.step fmax = self.main_thrust/self.mass angles = self.toRad(ship.ang) x, y = self.glob_loc(ship.posx, ship.posy, angles, towx, towy) res = [0, 0, 0] cx, cy = self.normalize([x, y]) res[0] = -cy*pot res[1] = cx*pot res[2] = cx*pot return res #Estimating objects def estimateObj(self, obj, time = None): if time == None: time = self.step objest = obj objest.posx += objest.velx*time objest.posy += objest.vely*time return objest def estimateRock(self, obj, time = None): if time == None: time = self.step objest = obj objest.posx += objest.velx*time objest.posy += objest.vely*time return objest def estimateShip(self, obj, time = None): if time == None: time = self.step objest = obj objest.posx += objest.velx*time objest.posy += objest.vely*time objest.ang += objest.velang*time return objest def estimateLaser(self, obj, time = None): if time == None: time = self.step objest = obj objest.posx += objest.velx*time objest.posy += objest.vely*time objest.lifetime -= time return objest #Estimating Time of Collision #Returns -> Time(seconds) for collision of obj1 and obj2: MIN, MAX def toC(self, obj1, obj2, error_margin): A = obj1.posx a = obj1.velx B = obj2.posx b = obj2.velx C = obj1.posy c = obj1.vely D = obj2.posy d = obj2.vely R = obj1.radius + error_margin/2 r = obj2.radius + error_margin/2 Asq = A**2 asq = a**2 Bsq = B**2 bsq = b**2 Csq = C**2 csq = c**2 Dsq = D**2 dsq = d**2 Rsq = R**2 rsq = r**2 div = asq - 2*a*b + bsq + csq - 2*c*d + dsq delta = (-Asq*csq + 2*Asq*c*d - Asq*dsq + 2*A*B*csq - 4*A*B*c*d + 2*A*B*dsq + 2*A*C*a*c - 2*A*C*a*d - 2*A*C*b*c + 2*A*C*b*d - 2*A*D*a*c + 2*A*D*a*d + 2*A*D*b*c - 2*A*D*b*d - Bsq*csq + 2*Bsq*c*d - Bsq*dsq - 2*B*C*a*c + 2*B*C*a*d + 2*B*C*b*c - 2*B*C*b*d + 2*B*D*a*c - 2*B*D*a*d - 2*B*D*b*c + 2*B*D*b*d - Csq*asq + 2*Csq*a*b - Csq*bsq + 2*C*D*asq - 4*C*D*a*b + 2*C*D*bsq - Dsq*asq + 2*Dsq*a*b - Dsq*bsq + Rsq*asq - 2*Rsq*a*b + Rsq*bsq + Rsq*csq - 2*Rsq*c*d + Rsq*dsq + 2*R*asq*r - 4*R*a*b*r + 2*R*bsq*r + 2*R*csq*r - 4*R*c*d*r + 2*R*dsq*r + asq*rsq - 2*a*b*rsq + bsq*rsq + csq*rsq - 2*c*d*rsq + dsq*rsq) minusb = (-A*a + A*b + B*a - B*b - C*c + C*d + D*c - D*d) if div == 0 or delta < 0: return None else: res0 = (minusb - math.sqrt(delta))/(div) res1 = (minusb + math.sqrt(delta))/(div) return res0, res1 #Predictive shooting of moving target #Returns -> Time(seconds) for shoot to reach target on line, coordinates x and y for the shoot to be 'centered' def predShoot(self, ship, target, speed, gamestate): tx = target.posx - ship.posx ty = target.posy - ship.posy tvx = target.velx - ship.velx tvy = target.vely - ship.vely a = tvx**2 + tvy**2 - speed**2 b = 2*(tvx*tx + tvy * ty) c = tx**2 + ty**2 r = self.solveQuad(a, b, c) if r == None: return None else: r0, r1 = r if r1 < 0 and r0 < 0: return None elif r0 < 0: coords = (target.posx + tvx*r1, target.posy + tvy*r1) return r1, coords else: coords = (target.posx + tvx*r0, target.posy + tvy*r0) return r0, coords target = None ok = False ltick = 0 def process(self, gamestate): if not self.initialized: self.initialize(gamestate) return Action(0, .1, .1, 0) try: sgargs = gamestate.ships[self.target] except: self.target = None self.ok = False if len(gamestate.ships) > 1 and not self.ok: for i in gamestate.ships: if i is not self.uid: self.ok = True self.target = i gamestate.log("Following ship " + str(i)) break s_ship = gamestate.ships[self.uid] zero = 0 out = [0, 0, 0] avoid = [0, 0, 0] rotation_out = 0 rot_mean = 0 out_s = 0 self.ltick = gamestate.tick #Targeting and shooting for ship_uid in gamestate.ships: if self.uid == ship_uid: continue ship = gamestate.ships[ship_uid] if self.dist(ship, s_ship) < self.dist(gamestate.ships[self.target], s_ship): self.target = ship_uid if(self.target is not None): targetp = self.estimateShip(gamestate.ships[self.target], self.step) shipp = self.estimateShip(s_ship, self.step) prediction0 = None prediction1 = None prediction2 = None shoot_type = 0 min_time = 9999 if shipp.charge >= 3: predictiont = self.predShoot(shipp, targetp, 75, gamestate) if predictiont is not None: time, coords = predictiont time += self.step if time < .8: prediction2 = predictiont if shipp.charge >= 2: predictiont = self.predShoot(shipp, targetp, 50, gamestate) if predictiont is not None: time, coords = predictiont time += self.step if time < .6: prediction1 = predictiont if shipp.charge >= 1: predictiont = self.predShoot(shipp, targetp, 25, gamestate) if predictiont is not None: time, coords = predictiont time += self.step if time < .4: prediction0 = predictiont time, coords = None, None if prediction2 is not None: time, coords = prediction2 time += self.step if abs(self.angDelta(shipp, math.atan2(shipp.posx - coords[0],coords[1] - shipp.posy))) < .1: out_s = 3 if prediction1 is not None: time, coords = prediction1 time += self.step if abs(self.angDelta(shipp, math.atan2(shipp.posx - coords[0],coords[1] - shipp.posy))) < .1: out_s = 2 if prediction0 is not None: time, coords = prediction0 time += self.step if abs(self.angDelta(shipp, math.atan2(shipp.posx - coords[0],coords[1] - shipp.posy))) < .1: out_s = 1 if time is not None: rotation_out += self.lookAt(shipp, math.atan2(shipp.posx - coords[0],coords[1] - shipp.posy )) rot_mean += 1 else: rotation_out += self.lookAt(shipp, math.atan2(shipp.posx - targetp.posx,targetp.posy - shipp.posy )) #Avoidance code #Avoid rocks rock_repel_r = 15 rock_repel_t = 5 rock_less = 9999 rock_less_uid = None for rock_uid in gamestate.rocks: rock = gamestate.rocks[rock_uid] dist = self.dist(s_ship, rock) final = [0, 0, 0] if dist <= rock_repel_r: tmp = self.accelerateTo(s_ship, 2*s_ship.posx - rock.posx, 2*s_ship.posy - rock.posy, math.sqrt((rock_repel_r-dist)/rock_repel_r)) avoid[0] += tmp[0] avoid[1] += tmp[1] avoid[2] += tmp[2] toc = self.toC(rock, s_ship, .1) if not toc == None: if toc[0] > 0: gamestate.log("Rock of uid " + str(rock_uid) + ": Will collide in " + ('%.2f' % toc[0]) + " seconds") shp = self.estimateShip(s_ship, toc[0]) rck = self.estimateRock(rock, toc[0]) if toc[0] <= rock_repel_t: tmp = self.accelerateTo(shp, 2*shp.posx - rck.posx, 2*shp.posy - rck.posy, math.sqrt((rock_repel_t-toc[0])/rock_repel_t)) final[0] += tmp[0] final[1] += tmp[1] final[2] += tmp[2] if rock_less > toc[0]: rock_less = toc[0] rock_less_uid = rock_uid out[0] += final[0] out[1] += final[1] out[2] += final[2] #Avoid lasers laser_repel_r = 15 laser_repel_t = 3 laser_less = 9999 laser_less_uid = None for laser_uid in gamestate.lasers: laser = gamestate.lasers[laser_uid] dist = self.dist(s_ship, laser) final = [0, 0, 0] if dist <= laser_repel_r: tmp = self.accelerateTo(s_ship, 2*s_ship.posx - laser.posx, 2*s_ship.posy - laser.posy, math.sqrt((laser_repel_r-dist)/laser_repel_r)) avoid[0] += tmp[0] avoid[1] += tmp[1] avoid[2] += tmp[2] toc = self.toC(laser, s_ship, .1) if not toc == None: if toc[0] > 0: if toc[0] <= laser.lifetime: gamestate.log("Shot of uid " + str(laser_uid) + " from " + str(laser.owner) + ": Will hit in " + ('%.2f' % toc[0]) + " seconds") shp = self.estimateShip(s_ship, toc[0]) lsr = self.estimateLaser(laser, toc[0]) shipp = self.estimateShip(s_ship, self.step) las = self.estimateLaser(laser, self.step) prediction = self.predShoot(shipp, las, 75, gamestate) if prediction is not None: time, coords = prediction time += self.step gamestate.log(str()) if abs(self.angDelta(shipp, math.atan2(shipp.posx - coords[0],coords[1] - shipp.posy))) < .1: out_s = 3 prediction = self.predShoot(shipp, las, 50, gamestate) if prediction is not None: time, coords = prediction time += self.step if abs(self.angDelta(shipp, math.atan2(shipp.posx - coords[0],coords[1] - shipp.posy))) < .1: out_s = 2 prediction = self.predShoot(shipp, las, 25, gamestate) if prediction is not None: time, coords = prediction time += self.step if abs(self.angDelta(shipp, math.atan2(shipp.posx - coords[0],coords[1] - shipp.posy))) < .1: out_s = 1 if toc[0] <= laser_repel_t: tmp = self.accelerateTo(s_ship, 2*shp.posx - lsr.posx, 2*shp.posy - lsr.posy, math.sqrt((laser_repel_t-toc[0])/laser_repel_t)) final[0] += tmp[0] final[1] += tmp[1] final[2] += tmp[2] if laser_less > toc[0]: laser_less = toc[0] laser_less_uid = laser_uid else: gamestate.log("Shot of uid " + str(laser_uid) + " from " + str(laser.owner) + ": Will not hit. Just " + ('%.2f' % laser.lifetime) + " seconds remaining.") out[0] += final[0] out[1] += final[1] out[2] += final[2] #Try not to collide with the arena arenac = 1 if math.sqrt(s_ship.posx**2 + s_ship.posy**2) > gamestate.arenaRadius - 5: tmp = self.accelerateTo(s_ship, 0, 0, (math.sqrt(s_ship.posx**2 + s_ship.posy**2) - (gamestate.arenaRadius - 5))/5) out[0] += tmp[0]*arenac out[1] += tmp[1]*arenac out[2] += tmp[2]*arenac #Stay at a distance from target attrcnt = .3 if self.target is not None: target_r = 30 dist = self.dist(s_ship, gamestate.ships[self.target]) linpot = 0 if target_r-dist is not zero: linpot = target_r/(dist - target_r) tmp = self.accelerateTo(s_ship, gamestate.ships[self.target].posx, gamestate.ships[self.target].posy, (linpot**8)*self.sign(linpot)) tmp = self.normalize(tmp) mx = max(abs(tmp[0]), abs(tmp[1]), abs(tmp[2])) if mx != 0: mx = 1/mx avoid[0] += tmp[0]*mx*attrcnt avoid[1] += tmp[1]*mx*attrcnt avoid[2] += tmp[2]*mx*attrcnt #Keep track of ship headings/ships targeting self predeyesight = .5 for ship_uid in gamestate.ships: if ship_uid is self.uid: continue ship = gamestate.ships[ship_uid] targetp = self.estimateShip(s_ship, self.step) shipp = self.estimateShip(ship, self.step) prediction = None shoot_type = 0 if shipp.charge < 2 and shipp.charge >= 1: prediction0 = self.predShoot(shipp, targetp, 25, gamestate) prediction1 = None prediction2 = None elif shipp.charge < 3: prediction0 = self.predShoot(shipp, targetp, 25, gamestate) prediction1 = self.predShoot(shipp, targetp, 50, gamestate) prediction2 = None else: prediction0 = self.predShoot(shipp, targetp, 25, gamestate) prediction1 = self.predShoot(shipp, targetp, 50, gamestate) prediction2 = self.predShoot(shipp, targetp, 75, gamestate) if prediction2 is not None: time, coords = prediction2 time += self.step laser = Laser(0) laser.lifetime = 3 laser.owner = ship_uid laser.posx = shipp.posx laser.posy = shipp.posy laser.velx = shipp.velx + 75*math.sin(self.toRad(shipp.ang)) laser.vely = shipp.posy + 75*math.cos(self.toRad(shipp.ang)) if abs(self.angDelta(shipp, math.atan2(shipp.posx - coords[0],coords[1] - shipp.posy))) < 2: if time < 1: shp = self.estimateShip(s_ship, time) lsr = self.estimateLaser(laser, time) tmp = self.accelerateTo(s_ship, 2*shp.posx - lsr.posx, 2*shp.posy - lsr.posy, math.sqrt((laser_repel_t-time)/laser_repel_t)) avoid[0] += tmp[0]*predeyesight avoid[1] += tmp[1]*predeyesight avoid[2] += tmp[2]*predeyesight gamestate.log("Ship " + str(ship_uid) + " is targeting at 75m/s...") elif prediction1 is not None: time, coords = prediction1 time += self.step laser = Laser(0) laser.lifetime = 3 laser.owner = ship_uid laser.posx = shipp.posx laser.posy = shipp.posy laser.velx = shipp.velx + 50*math.sin(self.toRad(shipp.ang)) laser.vely = shipp.posy + 50*math.cos(self.toRad(shipp.ang)) if abs(self.angDelta(shipp, math.atan2(shipp.posx - coords[0],coords[1] - shipp.posy))) < 2: if time < 1: shp = self.estimateShip(s_ship, time) lsr = self.estimateLaser(laser, time) tmp = self.accelerateTo(s_ship, 2*shp.posx - lsr.posx, 2*shp.posy - lsr.posy, math.sqrt((laser_repel_t-time)/laser_repel_t)) avoid[0] += tmp[0]*predeyesight avoid[1] += tmp[1]*predeyesight avoid[2] += tmp[2]*predeyesight gamestate.log("Ship " + str(ship_uid) + " is targeting at 50m/s...") if prediction0 is not None: time, coords = prediction0 time += self.step laser = Laser(0) laser.lifetime = 3 laser.owner = ship_uid laser.posx = shipp.posx laser.posy = shipp.posy laser.velx = shipp.velx + 25*math.sin(self.toRad(shipp.ang)) laser.vely = shipp.posy + 25*math.cos(self.toRad(shipp.ang)) if abs(self.angDelta(shipp, math.atan2(shipp.posx - coords[0],coords[1] - shipp.posy))) < 2: if time < 1: shp = self.estimateShip(s_ship, time) lsr = self.estimateLaser(laser, time) tmp = self.accelerateTo(s_ship, 2*shp.posx - lsr.posx, 2*shp.posy - lsr.posy, math.sqrt((laser_repel_t-time)/laser_repel_t)) avoid[0] += tmp[0]*predeyesight avoid[1] += tmp[1]*predeyesight avoid[2] += tmp[2]*predeyesight gamestate.log("Ship " + str(ship_uid) + " is targeting at 25m/s...") #apply rotations and final weight calculation peravd = 2 out[0] += avoid[0]*peravd out[1] += avoid[1]*peravd out[2] += avoid[2]*peravd mx = 1 #out = self.normalize(out) #mx = max(abs(out[0]), abs(out[1]), abs(out[2])) #if mx != 0: # mx = 1/mx #mx = 1 rotmulti = 1 #out[0] = 0 out[1] += rotation_out*rotmulti out[2] += -rotation_out*rotmulti #out_s = 0 #out = [0, 0, 0] #virtual 'friction' '''kF = .5 vel = [s_ship.posx-s_ship.velx, s_ship.posy-s_ship.vely] mvel = math.sqrt(s_ship.velx**2 + s_ship.vely**2) vel = self.normalize(vel) tmp = self.accelerateTo(s_ship, vel[0], vel[1], kF) out[0] += tmp[0]*(mvel/30) out[1] += tmp[1]*(mvel/30) out[2] += tmp[2]*(mvel/30)''' #Emergency overwrite - in case of iminent danger rotation_out = 0 if rock_less <= 1: out_s = 1 gamestate.log("Overwriting controls: rock 1s of ID " + str(laser_less_uid)) shipp = self.estimateShip(s_ship, self.step) targetp = self.estimateRock(gamestate.rocks[rock_less_uid], self.step) prediction = self.predShoot(shipp, targetp, 25, gamestate) if prediction is not None: time, coords = prediction rotation_out = self.lookAt(shipp, math.atan2(shipp.posx - coords[0],coords[1] - shipp.posy )) if rock_less <= .5: gamestate.log("Overwriting controls: rock .5 of ID " + str(rock_less_uid)) shp = self.estimateShip(s_ship, rock_less) rck = self.estimateRock(gamestate.rocks[rock_less_uid], rock_less) out = self.accelerateTo(shp, 2*shp.posx - rck.posx, 2*shp.posy - rck.posy) out = self.normalize(out) out = self.invert(out) out[1] += rotation_out*rotmulti out[2] += -rotation_out*rotmulti mx = max(abs(out[0]), abs(out[1]), abs(out[2])) if mx != 0: mx = 1/mx if laser_less <= 1.5: out_s = 1 gamestate.log("Overwriting controls: laser 1s of ID " + str(laser_less_uid)) shipp = self.estimateShip(s_ship, self.step) targetp = self.estimateLaser(gamestate.lasers[laser_less_uid], self.step) prediction = self.predShoot(shipp, targetp, 25, gamestate) if prediction is not None: time, coords = prediction rotation_out = self.lookAt(shipp, math.atan2(shipp.posx - coords[0],coords[1] - shipp.posy )) if laser_less <= .5: gamestate.log("Overwriting controls: laser .5 of ID " + str(laser_less_uid)) shp = self.estimateShip(s_ship, laser_less) lsr = self.estimateLaser(gamestate.lasers[laser_less_uid], laser_less) out = self.accelerateTo(s_ship, 2*shp.posx - lsr.posx, 2*shp.posy - lsr.posy) out = self.normalize(out) out = self.invert(out) #@out[0] = -out[0] out[1] += rotation_out*rotmulti out[2] += -rotation_out*rotmulti mx = max(abs(out[0]), abs(out[1]), abs(out[2])) if mx != 0: mx = 1/mx return Action(-out[0]*mx, out[1]*mx, out[2]*mx, out_s) gamestate.log(str(s_ship.vely)) return Action(1, 0, 0, 0) GameState(SeijiBot()).connect()
37.884615
608
0.496853
24,550
0.996954
0
0
0
0
0
0
2,049
0.083208
c41f3f30efc1128fe0e35981a452b93b464ce15f
304
py
Python
configs/gdrn/ycbvPbrSO/resnest50d_AugCosyAAEGray_BG05_visib10_mlBCE_DoubleMask_ycbvPbr100e_SO/resnest50d_AugCosyAAEGray_BG05_visib10_mlBCE_DoubleMask_ycbvPbr100e_SO_09_10PottedMeatCan.py
THU-DA-6D-Pose-Group/self6dpp
c267cfa55e440e212136a5e9940598720fa21d16
[ "Apache-2.0" ]
33
2021-12-15T07:11:47.000Z
2022-03-29T08:58:32.000Z
configs/gdrn/ycbvPbrSO/resnest50d_AugCosyAAEGray_BG05_visib10_mlBCE_DoubleMask_ycbvPbr100e_SO/resnest50d_AugCosyAAEGray_BG05_visib10_mlBCE_DoubleMask_ycbvPbr100e_SO_09_10PottedMeatCan.py
THU-DA-6D-Pose-Group/self6dpp
c267cfa55e440e212136a5e9940598720fa21d16
[ "Apache-2.0" ]
3
2021-12-15T11:39:54.000Z
2022-03-29T07:24:23.000Z
configs/gdrn/ycbvPbrSO/resnest50d_AugCosyAAEGray_BG05_visib10_mlBCE_DoubleMask_ycbvPbr100e_SO/resnest50d_AugCosyAAEGray_BG05_visib10_mlBCE_DoubleMask_ycbvPbr100e_SO_09_10PottedMeatCan.py
THU-DA-6D-Pose-Group/self6dpp
c267cfa55e440e212136a5e9940598720fa21d16
[ "Apache-2.0" ]
null
null
null
_base_ = "./resnest50d_AugCosyAAEGray_BG05_visib10_mlBCE_DoubleMask_ycbvPbr100e_SO_01_02MasterChefCan.py" OUTPUT_DIR = ( "output/gdrn/ycbvPbrSO/resnest50d_AugCosyAAEGray_BG05_visib10_mlBCE_DoubleMask_ycbvPbr100e_SO/09_10PottedMeatCan" ) DATASETS = dict(TRAIN=("ycbv_010_potted_meat_can_train_pbr",))
50.666667
117
0.871711
0
0
0
0
0
0
0
0
245
0.805921
c41fd9dec58d9f797e213eba1e8064f8aba14576
682
py
Python
days/01-03-datetimes/code/100day_calc.py
rhelmstedter/100daysofcode-with-python-course
076c99939b5641be541023f61c10ff30a7f05524
[ "MIT" ]
null
null
null
days/01-03-datetimes/code/100day_calc.py
rhelmstedter/100daysofcode-with-python-course
076c99939b5641be541023f61c10ff30a7f05524
[ "MIT" ]
null
null
null
days/01-03-datetimes/code/100day_calc.py
rhelmstedter/100daysofcode-with-python-course
076c99939b5641be541023f61c10ff30a7f05524
[ "MIT" ]
null
null
null
from datetime import date, datetime, timedelta import time START_DATE = date(2021, 5, 25) duration = timedelta(days=100) def countdown(): event_delta = LAST_DAY_OF_SCHOOL - datetime.now() print() print("\tTime until school is out for summer 2021:", end="\n\n") while event_delta.seconds > 0: hours, remaining_delta = divmod(event_delta.seconds, 3600) mins, secs = divmod(remaining_delta, 60) timer = f"\t{event_delta.days:02d} days {hours:02d} hours {mins:02d} minutes {secs:02d} seconds" print(timer, end="\r") time.sleep(1) event_delta = LAST_DAY_OF_SCHOOL - datetime.now() print("School's out for summer!")
32.47619
104
0.668622
0
0
0
0
0
0
0
0
169
0.247801
c42001c4593f0af28c9a44cdd561459d12ab258c
195
py
Python
output/copilot/python/timeout/palindrome-partitioning.py
nhtnhan/CMPUT663-copilot-eval
896711d006eb37a78e010cd1b9f79dc285ad054d
[ "Apache-2.0" ]
null
null
null
output/copilot/python/timeout/palindrome-partitioning.py
nhtnhan/CMPUT663-copilot-eval
896711d006eb37a78e010cd1b9f79dc285ad054d
[ "Apache-2.0" ]
null
null
null
output/copilot/python/timeout/palindrome-partitioning.py
nhtnhan/CMPUT663-copilot-eval
896711d006eb37a78e010cd1b9f79dc285ad054d
[ "Apache-2.0" ]
null
null
null
# https://leetcode.com/problems/palindrome-partitioning/ class Solution(object): def partition(self, s): """ :type s: str :rtype: List[List[str]] """
21.666667
56
0.54359
128
0.65641
0
0
0
0
0
0
124
0.635897
c42012e1044d2e28166a8361142bd8a07f4789f3
6,071
py
Python
aggregathor/ea_datasource.py
big-data-lab-umbc/autodist
c8514b27cf5608f35254b63c4ac8093c7295a8e7
[ "Apache-2.0" ]
null
null
null
aggregathor/ea_datasource.py
big-data-lab-umbc/autodist
c8514b27cf5608f35254b63c4ac8093c7295a8e7
[ "Apache-2.0" ]
null
null
null
aggregathor/ea_datasource.py
big-data-lab-umbc/autodist
c8514b27cf5608f35254b63c4ac8093c7295a8e7
[ "Apache-2.0" ]
null
null
null
import numpy as np import keras import random from keras.datasets import mnist from keras import backend as K K.set_floatx('float64') class DataSource(object): def __init__(self): raise NotImplementedError() def partitioned_by_rows(self, num_workers, test_reserve=.3): raise NotImplementedError() def sample_single_non_iid(self, weight=None): raise NotImplementedError() class Mnist(DataSource): IID = True MAX_NUM_CLASSES_PER_CLIENT = 10 TRAIN_VALID_DATA_RANGE = np.array([800,800]) CLASSES = range(10) # def __init__(self, train_range = (0.7 * TRAIN_VALID_DATA_RANGE).astype(int), # valid_range = (0.3 * TRAIN_VALID_DATA_RANGE).astype(int), # test_range = [80,120]): # train:valid:test = 800:400:100 def __init__(self, train_range = (TRAIN_VALID_DATA_RANGE).astype(int), valid_range = (0.5 * TRAIN_VALID_DATA_RANGE).astype(int), test_range = [100,100]): train_size = random.randint(train_range[0], train_range[1]) test_size = random.randint(test_range[0], test_range[1]) valid_size = random.randint(valid_range[0], valid_range[1]) #(x_train, y_train), (x_test, y_test) = mnist.load_data() mnistdata = np.load('./mnist.npz') x_train = mnistdata['x_train'].astype('float64') y_train = mnistdata['y_train'].astype('float64') x_test = mnistdata['x_test'].astype('float64') y_test = mnistdata['y_test'].astype('float64') total_train_size, total_test_size = x_train.shape[0], x_test.shape[0] total_valid_size = int(total_train_size * .3) total_train_size = int(total_train_size * .7) if Mnist.IID: train_sample_idx = np.random.choice(total_train_size, train_size,replace=True) valid_sample_idx = np.random.choice(range(total_train_size, total_train_size + total_valid_size), valid_size, replace=True) test_sample_idx = np.random.choice(total_test_size, test_size, replace=True) else: label_w = self.gen_dummy_non_iid_weights() # print('label_w', label_w) train_weights = self.gen_sample_weights(y_train, label_w) valid_weights = train_weights[total_train_size:] / np.sum(train_weights[total_train_size:]) train_weights = train_weights[0:total_train_size] / np.sum(train_weights[0:total_train_size]) test_weights = self.gen_sample_weights(y_test, label_w) train_sample_idx = np.random.choice(total_train_size, train_size, replace=True, p=train_weights) valid_sample_idx = np.random.choice(range(total_train_size, total_train_size + total_valid_size), valid_size, replace=True, p=valid_weights) test_sample_idx = np.random.choice(total_test_size, test_size, replace=True, p=test_weights) self.x_train, self.y_train = Mnist.post_process( x_train[train_sample_idx], y_train[train_sample_idx]) self.x_valid, self.y_valid= Mnist.post_process( x_train[valid_sample_idx], y_train[valid_sample_idx]) self.x_test, self.y_test = Mnist.post_process( x_test[test_sample_idx], y_test[test_sample_idx]) print('train', self.x_train.shape, self.y_train.shape, 'valid', self.x_valid.shape, 'test', self.x_test.shape) def gen_sample_weights(self,labels, label_w): size_per_class = np.array([np.sum(labels == i) for i in Mnist.CLASSES]) label_w = np.divide(label_w, size_per_class) sample_w = np.zeros(labels.shape[0]) sample_w[labels] = label_w sample_w /= np.sum(sample_w) return sample_w def gen_dummy_non_iid_weights(self): num_classes_this_client = random.randint(1, Mnist.MAX_NUM_CLASSES_PER_CLIENT + 1) classes_this_client = np.random.choice(Mnist.CLASSES, num_classes_this_client) w = np.random.rand(num_classes_this_client) weights = np.zeros(len(Mnist.CLASSES)) weights[classes_this_client] = w return weights # assuming client server already agreed on data format def post_process(x, y): if K.image_data_format() == 'channels_first': sample_shape = (1, ) + x.shape[1:] else: sample_shape = x.shape[1:] + (1, ) x = x.reshape((x.shape[0],) + sample_shape) y_vec = keras.utils.to_categorical(y, len(Mnist.CLASSES)) return x / 255., y_vec # split evenly into exact num_workers chunks, with test_reserve globally def partitioned_by_rows(self, num_workers, test_reserve=.3): n_test = int(self.x.shape[0] * test_reserve) n_train = self.x.shape[0] - n_test nums = [n_train // num_workers] * num_workers nums[-1] += n_train % num_workers idxs = np.array([np.random.choice(np.arange(n_train), num, replace=False) for num in nums]) return { # (size_partition * 28 * 28, size_partition * 1) * num_partitions "train": [post_process(self.x[idx], self.y[idx]) for idx in idxs], # (n_test * 28 * 28, n_test * 1) "test": post_process(self.x[np.arange(n_train, n_train + n_test)], self.y[np.arange(n_train, n_train + n_test)]) } # generate t, t, v dataset given distribution and split def fake_non_iid_data(self, min_train=100, max_train=1000, data_split=(.6,.3,.1)): return ((self.x_train, self.y_train), (self.x_test, self.y_test), (self.x_valid, self.y_valid)) if __name__ == "__main__": # m = Mnist() # # res = m.partitioned_by_rows(9) # # print(res["test"][1].shape) # for _ in range(10): # print(m.gen_dummy_non_iid_weights()) fake_data = Mnist().fake_non_iid_data(min_train=10,max_train=10,data_split=(0.6, 0.3, 0.1)) train_data, test_data, valid_data = fake_data x_train, y_train = train_data x_test, y_test = test_data x_valid, y_valid = valid_data print(y_valid)
43.056738
135
0.653434
5,472
0.901334
0
0
0
0
0
0
864
0.142316
c42094cad42afee256fee1fad8338f794ac45419
255
py
Python
proxySTAR_V3/certbot/venv/lib/python2.7/site-packages/pylint/test/functional/pygtk_enum_crash.py
mami-project/lurk
98c293251e9b1e9c9a4b02789486c5ddaf46ba3c
[ "Apache-2.0" ]
2
2017-07-05T09:57:33.000Z
2017-11-14T23:05:53.000Z
Libraries/Python/pylint/v1.4.4/pylint/test/functional/pygtk_enum_crash.py
davidbrownell/Common_Environment
4015872aeac8d5da30a6aa7940e1035a6aa6a75d
[ "BSL-1.0" ]
1
2019-01-17T14:26:22.000Z
2019-01-17T22:56:26.000Z
Libraries/Python/pylint/v1.4.4/pylint/test/functional/pygtk_enum_crash.py
davidbrownell/Common_Environment
4015872aeac8d5da30a6aa7940e1035a6aa6a75d
[ "BSL-1.0" ]
1
2017-08-31T14:33:03.000Z
2017-08-31T14:33:03.000Z
# pylint: disable=C0121 """http://www.logilab.org/ticket/124337""" import gtk def print_some_constant(arg=gtk.BUTTONS_OK): """crash because gtk.BUTTONS_OK, a gtk enum type, is returned by astroid as a constant """ print(arg)
21.25
69
0.662745
0
0
0
0
0
0
0
0
166
0.65098
c4231b8d3eab02f60fcc36025477bf600813aa38
1,519
py
Python
py_at/OrderItem.py
kanghua309/at_py
8fa7943a9de52cd81d235f06b57a25aa07fb715b
[ "Apache-2.0" ]
null
null
null
py_at/OrderItem.py
kanghua309/at_py
8fa7943a9de52cd81d235f06b57a25aa07fb715b
[ "Apache-2.0" ]
null
null
null
py_at/OrderItem.py
kanghua309/at_py
8fa7943a9de52cd81d235f06b57a25aa07fb715b
[ "Apache-2.0" ]
2
2018-09-19T16:07:26.000Z
2019-11-09T15:46:21.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """ __title__ = '' __author__ = 'HaiFeng' __mtime__ = '2016/8/16' """ import time from py_at.EnumDefine import * ######################################################################## class OrderItem(object): """策略信号""" #---------------------------------------------------------------------- def __init__(self): """Constructor""" self.Instrument = '' self.DateTime = time.strftime('%Y%m%d %H:%Mm:%S', time.localtime(time.time())) self.Direction = Direction.Buy self.Offset = Offset.Open self.Price = 0.0 self.Volume = 0 self.Remark = '' self.RelationOpenOrders = [] #策略相关 self.AvgEntryPriceShort = 0.0 self.AvgEntryPriceLong = 0.0 self.PositionLong = 0 self.PositionShort = 0 self.EntryDateLong = '' self.EntryPriceLong = 0.0 self.ExitDateShort = '' self.ExitPriceShort = 0.0 self.EntryDateShort = '' self.EntryPriceShort = 0.0 self.ExitDateLong = '' self.ExitPriceLong = 0.0 self.LastEntryDateShort = '' self.LastEntryPriceShort = 0.0 self.LastEntryDateLong = '' self.LastEntryPriceLong = 0.0 self.IndexEntryLong = -1 self.IndexEntryShort = -1 self.IndexLastEntryLong = -1 self.IndexLastEntryShort = -1 self.IndexExitLong = -1 self.IndexExitShort = -1 #---------------------------------------------------------------------- def __str__(self): """""" return '{self.Instrument}, {self.DateTime}, {self.Direction}, {self.Offset}, {self.Price}, {self.Volume}, {self.Remark}'.format(self = self)
26.649123
142
0.578012
1,301
0.847557
0
0
0
0
0
0
528
0.343974
c4246529ebfd4899aa1216798277f3b74d90b3f5
547
py
Python
pyscf/nao/m_rf_den.py
mfkasim1/pyscf
7be5e015b2b40181755c71d888449db936604660
[ "Apache-2.0" ]
3
2021-02-28T00:52:53.000Z
2021-03-01T06:23:33.000Z
pyscf/nao/m_rf_den.py
mfkasim1/pyscf
7be5e015b2b40181755c71d888449db936604660
[ "Apache-2.0" ]
36
2018-08-22T19:44:03.000Z
2020-05-09T10:02:36.000Z
pyscf/nao/m_rf_den.py
mfkasim1/pyscf
7be5e015b2b40181755c71d888449db936604660
[ "Apache-2.0" ]
4
2018-02-14T16:28:28.000Z
2019-08-12T16:40:30.000Z
from __future__ import print_function, division import numpy as np from numpy import identity, dot, zeros, zeros_like def rf_den_via_rf0(self, rf0, v): """ Whole matrix of the interacting response via non-interacting response and interaction""" rf = zeros_like(rf0) I = identity(rf0.shape[1]) for ir,r in enumerate(rf0): rf[ir] = dot(np.linalg.inv(I-dot(r,v)), r) return rf def rf_den(self, ww): """ Full matrix interacting response from NAO GW class""" rf0 = self.rf0(ww) return rf_den_via_rf0(self, rf0, self.kernel_sq)
28.789474
94
0.718464
0
0
0
0
0
0
0
0
149
0.272395
c4253c3edd906a40552637d516df1601047e0dd5
669
py
Python
app/model/compare_users.py
dwdraugr/YADS
c8036d8196a3158636aaa4f1910033e70ec8ecb4
[ "Apache-2.0" ]
3
2019-09-02T11:26:58.000Z
2019-12-06T15:54:38.000Z
app/model/compare_users.py
dwdraugr/YADS
c8036d8196a3158636aaa4f1910033e70ec8ecb4
[ "Apache-2.0" ]
null
null
null
app/model/compare_users.py
dwdraugr/YADS
c8036d8196a3158636aaa4f1910033e70ec8ecb4
[ "Apache-2.0" ]
null
null
null
from app.model.model import Model class CompareUsers(Model): def get_compare_users(self, uid): cursor = self.matchadb.cursor() cursor.execute('SELECT whomid FROM likes WHERE whoid = %s', (uid,)) whomids = [item[0] for item in cursor.fetchall()] if len(whomids) == 0: raise ValueError('Likes not found') result = list() for whomid in whomids: cursor.execute('SELECT whomid FROM likes WHERE whoid = %s AND ' 'whomid = %s', (uid, whomid)) r = cursor.fetchone() if cursor.rowcount > 0: result.append(r[0]) return result
35.210526
75
0.560538
632
0.944694
0
0
0
0
0
0
121
0.180867
c425a0389a78978ea2d9dbb437a26224ad54fcc9
9,004
py
Python
venv/Lib/site-packages/sklearn/ensemble/_hist_gradient_boosting/tests/test_histogram.py
mokshagna517/recommendation_sys
bc8ced225dff3c93d619ff5da363f42d0aa0676c
[ "MIT" ]
25
2019-03-08T01:03:03.000Z
2022-02-14T17:38:32.000Z
venv/Lib/site-packages/sklearn/ensemble/_hist_gradient_boosting/tests/test_histogram.py
mokshagna517/recommendation_sys
bc8ced225dff3c93d619ff5da363f42d0aa0676c
[ "MIT" ]
9
2020-09-25T22:32:02.000Z
2022-02-09T23:45:10.000Z
venv/Lib/site-packages/sklearn/ensemble/_hist_gradient_boosting/tests/test_histogram.py
mokshagna517/recommendation_sys
bc8ced225dff3c93d619ff5da363f42d0aa0676c
[ "MIT" ]
31
2019-01-15T20:16:50.000Z
2022-03-01T05:47:38.000Z
import numpy as np import pytest from numpy.testing import assert_allclose from numpy.testing import assert_array_equal from sklearn.ensemble._hist_gradient_boosting.histogram import ( _build_histogram_naive, _build_histogram, _build_histogram_no_hessian, _build_histogram_root_no_hessian, _build_histogram_root, _subtract_histograms ) from sklearn.ensemble._hist_gradient_boosting.types import HISTOGRAM_DTYPE from sklearn.ensemble._hist_gradient_boosting.types import G_H_DTYPE from sklearn.ensemble._hist_gradient_boosting.types import X_BINNED_DTYPE @pytest.mark.parametrize( 'build_func', [_build_histogram_naive, _build_histogram]) def test_build_histogram(build_func): binned_feature = np.array([0, 2, 0, 1, 2, 0, 2, 1], dtype=X_BINNED_DTYPE) # Small sample_indices (below unrolling threshold) ordered_gradients = np.array([0, 1, 3], dtype=G_H_DTYPE) ordered_hessians = np.array([1, 1, 2], dtype=G_H_DTYPE) sample_indices = np.array([0, 2, 3], dtype=np.uint32) hist = np.zeros((1, 3), dtype=HISTOGRAM_DTYPE) build_func(0, sample_indices, binned_feature, ordered_gradients, ordered_hessians, hist) hist = hist[0] assert_array_equal(hist['count'], [2, 1, 0]) assert_allclose(hist['sum_gradients'], [1, 3, 0]) assert_allclose(hist['sum_hessians'], [2, 2, 0]) # Larger sample_indices (above unrolling threshold) sample_indices = np.array([0, 2, 3, 6, 7], dtype=np.uint32) ordered_gradients = np.array([0, 1, 3, 0, 1], dtype=G_H_DTYPE) ordered_hessians = np.array([1, 1, 2, 1, 0], dtype=G_H_DTYPE) hist = np.zeros((1, 3), dtype=HISTOGRAM_DTYPE) build_func(0, sample_indices, binned_feature, ordered_gradients, ordered_hessians, hist) hist = hist[0] assert_array_equal(hist['count'], [2, 2, 1]) assert_allclose(hist['sum_gradients'], [1, 4, 0]) assert_allclose(hist['sum_hessians'], [2, 2, 1]) def test_histogram_sample_order_independence(): # Make sure the order of the samples has no impact on the histogram # computations rng = np.random.RandomState(42) n_sub_samples = 100 n_samples = 1000 n_bins = 256 binned_feature = rng.randint(0, n_bins - 1, size=n_samples, dtype=X_BINNED_DTYPE) sample_indices = rng.choice(np.arange(n_samples, dtype=np.uint32), n_sub_samples, replace=False) ordered_gradients = rng.randn(n_sub_samples).astype(G_H_DTYPE) hist_gc = np.zeros((1, n_bins), dtype=HISTOGRAM_DTYPE) _build_histogram_no_hessian(0, sample_indices, binned_feature, ordered_gradients, hist_gc) ordered_hessians = rng.exponential(size=n_sub_samples).astype(G_H_DTYPE) hist_ghc = np.zeros((1, n_bins), dtype=HISTOGRAM_DTYPE) _build_histogram(0, sample_indices, binned_feature, ordered_gradients, ordered_hessians, hist_ghc) permutation = rng.permutation(n_sub_samples) hist_gc_perm = np.zeros((1, n_bins), dtype=HISTOGRAM_DTYPE) _build_histogram_no_hessian(0, sample_indices[permutation], binned_feature, ordered_gradients[permutation], hist_gc_perm) hist_ghc_perm = np.zeros((1, n_bins), dtype=HISTOGRAM_DTYPE) _build_histogram(0, sample_indices[permutation], binned_feature, ordered_gradients[permutation], ordered_hessians[permutation], hist_ghc_perm) hist_gc = hist_gc[0] hist_ghc = hist_ghc[0] hist_gc_perm = hist_gc_perm[0] hist_ghc_perm = hist_ghc_perm[0] assert_allclose(hist_gc['sum_gradients'], hist_gc_perm['sum_gradients']) assert_array_equal(hist_gc['count'], hist_gc_perm['count']) assert_allclose(hist_ghc['sum_gradients'], hist_ghc_perm['sum_gradients']) assert_allclose(hist_ghc['sum_hessians'], hist_ghc_perm['sum_hessians']) assert_array_equal(hist_ghc['count'], hist_ghc_perm['count']) @pytest.mark.parametrize("constant_hessian", [True, False]) def test_unrolled_equivalent_to_naive(constant_hessian): # Make sure the different unrolled histogram computations give the same # results as the naive one. rng = np.random.RandomState(42) n_samples = 10 n_bins = 5 sample_indices = np.arange(n_samples).astype(np.uint32) binned_feature = rng.randint(0, n_bins - 1, size=n_samples, dtype=np.uint8) ordered_gradients = rng.randn(n_samples).astype(G_H_DTYPE) if constant_hessian: ordered_hessians = np.ones(n_samples, dtype=G_H_DTYPE) else: ordered_hessians = rng.lognormal(size=n_samples).astype(G_H_DTYPE) hist_gc_root = np.zeros((1, n_bins), dtype=HISTOGRAM_DTYPE) hist_ghc_root = np.zeros((1, n_bins), dtype=HISTOGRAM_DTYPE) hist_gc = np.zeros((1, n_bins), dtype=HISTOGRAM_DTYPE) hist_ghc = np.zeros((1, n_bins), dtype=HISTOGRAM_DTYPE) hist_naive = np.zeros((1, n_bins), dtype=HISTOGRAM_DTYPE) _build_histogram_root_no_hessian(0, binned_feature, ordered_gradients, hist_gc_root) _build_histogram_root(0, binned_feature, ordered_gradients, ordered_hessians, hist_ghc_root) _build_histogram_no_hessian(0, sample_indices, binned_feature, ordered_gradients, hist_gc) _build_histogram(0, sample_indices, binned_feature, ordered_gradients, ordered_hessians, hist_ghc) _build_histogram_naive(0, sample_indices, binned_feature, ordered_gradients, ordered_hessians, hist_naive) hist_naive = hist_naive[0] hist_gc_root = hist_gc_root[0] hist_ghc_root = hist_ghc_root[0] hist_gc = hist_gc[0] hist_ghc = hist_ghc[0] for hist in (hist_gc_root, hist_ghc_root, hist_gc, hist_ghc): assert_array_equal(hist['count'], hist_naive['count']) assert_allclose(hist['sum_gradients'], hist_naive['sum_gradients']) for hist in (hist_ghc_root, hist_ghc): assert_allclose(hist['sum_hessians'], hist_naive['sum_hessians']) for hist in (hist_gc_root, hist_gc): assert_array_equal(hist['sum_hessians'], np.zeros(n_bins)) @pytest.mark.parametrize("constant_hessian", [True, False]) def test_hist_subtraction(constant_hessian): # Make sure the histogram subtraction trick gives the same result as the # classical method. rng = np.random.RandomState(42) n_samples = 10 n_bins = 5 sample_indices = np.arange(n_samples).astype(np.uint32) binned_feature = rng.randint(0, n_bins - 1, size=n_samples, dtype=np.uint8) ordered_gradients = rng.randn(n_samples).astype(G_H_DTYPE) if constant_hessian: ordered_hessians = np.ones(n_samples, dtype=G_H_DTYPE) else: ordered_hessians = rng.lognormal(size=n_samples).astype(G_H_DTYPE) hist_parent = np.zeros((1, n_bins), dtype=HISTOGRAM_DTYPE) if constant_hessian: _build_histogram_no_hessian(0, sample_indices, binned_feature, ordered_gradients, hist_parent) else: _build_histogram(0, sample_indices, binned_feature, ordered_gradients, ordered_hessians, hist_parent) mask = rng.randint(0, 2, n_samples).astype(np.bool) sample_indices_left = sample_indices[mask] ordered_gradients_left = ordered_gradients[mask] ordered_hessians_left = ordered_hessians[mask] hist_left = np.zeros((1, n_bins), dtype=HISTOGRAM_DTYPE) if constant_hessian: _build_histogram_no_hessian(0, sample_indices_left, binned_feature, ordered_gradients_left, hist_left) else: _build_histogram(0, sample_indices_left, binned_feature, ordered_gradients_left, ordered_hessians_left, hist_left) sample_indices_right = sample_indices[~mask] ordered_gradients_right = ordered_gradients[~mask] ordered_hessians_right = ordered_hessians[~mask] hist_right = np.zeros((1, n_bins), dtype=HISTOGRAM_DTYPE) if constant_hessian: _build_histogram_no_hessian(0, sample_indices_right, binned_feature, ordered_gradients_right, hist_right) else: _build_histogram(0, sample_indices_right, binned_feature, ordered_gradients_right, ordered_hessians_right, hist_right) hist_left_sub = np.zeros((1, n_bins), dtype=HISTOGRAM_DTYPE) hist_right_sub = np.zeros((1, n_bins), dtype=HISTOGRAM_DTYPE) _subtract_histograms(0, n_bins, hist_parent, hist_right, hist_left_sub) _subtract_histograms(0, n_bins, hist_parent, hist_left, hist_right_sub) for key in ('count', 'sum_hessians', 'sum_gradients'): assert_allclose(hist_left[key], hist_left_sub[key], rtol=1e-6) assert_allclose(hist_right[key], hist_right_sub[key], rtol=1e-6)
44.35468
79
0.691804
0
0
0
0
6,359
0.706242
0
0
729
0.080964
c425a78347ab246234b9b4acc34bdb1ab5a3665b
349
py
Python
dgpolygon/gmappolygons/urls.py
mariohmol/django-google-polygon
9d9448e540a4d100d925d7170425143f126e2174
[ "MIT" ]
1
2018-04-28T17:06:23.000Z
2018-04-28T17:06:23.000Z
dgpolygon/gmappolygons/urls.py
mariohmol/django-google-polygon
9d9448e540a4d100d925d7170425143f126e2174
[ "MIT" ]
null
null
null
dgpolygon/gmappolygons/urls.py
mariohmol/django-google-polygon
9d9448e540a4d100d925d7170425143f126e2174
[ "MIT" ]
null
null
null
from django.conf.urls import patterns, include, url from django.contrib import admin from gmappolygons import views urlpatterns = patterns('', url(r'^$', views.index, name='index'), url(r'^search', views.search, name='search'), url(r'^submit/$', views.submit, name='submit'), url(r'^show/(?P<area_id>\d+)/', views.show, name='show'), )
31.727273
60
0.673352
0
0
0
0
0
0
0
0
84
0.240688
c4263856e2d9e9e21750aa2037ab8e37b21086eb
2,407
py
Python
apps/user/models.py
mrf-foundation/ckios_v1
3556a99ba5e01f00e137fd124903ace77d2cba28
[ "Apache-2.0" ]
null
null
null
apps/user/models.py
mrf-foundation/ckios_v1
3556a99ba5e01f00e137fd124903ace77d2cba28
[ "Apache-2.0" ]
null
null
null
apps/user/models.py
mrf-foundation/ckios_v1
3556a99ba5e01f00e137fd124903ace77d2cba28
[ "Apache-2.0" ]
null
null
null
from django.db import models from django import forms from django.contrib.auth.models import User from PIL import Image from django.utils.timezone import now class Profile(models.Model): user = models.OneToOneField(User, null=True, blank=True, on_delete=models.CASCADE) image = models.ImageField(upload_to="uploads",default="default/user.png") def __str__(self): return f'{self.user.username} Profile' # Override the save method of the model def save(self, *args, **kwargs): super().save() img = Image.open(self.image.path) # Open image # resize image if img.height > 300 or img.width > 300: output_size = (300, 300) img.thumbnail(output_size) # Resize image img.save(self.image.path) # Save it again and override the larger image ## User Update Profile class UpdateProfileForm(forms.ModelForm): avatar = forms.ImageField(widget=forms.FileInput(attrs={'class': 'form-control-file'})) bio = forms.CharField(widget=forms.Textarea(attrs={'class': 'form-control', 'rows': 5})) website_url = forms.CharField(widget=forms.TextInput(attrs={'class': 'form-control', 'rows': 1})) facebook_url = forms.CharField(widget=forms.TextInput(attrs={'class': 'form-control', 'rows': 1})) instagram_url = forms.CharField(widget=forms.TextInput(attrs={'class': 'form-control', 'rows': 1})) twitter_url = forms.CharField(widget=forms.TextInput(attrs={'class': 'form-control', 'rows': 1})) class Meta: model = Profile fields = ['avatar', 'bio', 'website_url', 'facebook_url', 'twitter_url', 'instagram_url' ] class UpdateUserForm(forms.ModelForm): username = forms.CharField(max_length=100, required=True, widget=forms.TextInput(attrs={'class': 'form-control'})) email = forms.EmailField(required=True, widget=forms.TextInput(attrs={'class': 'form-control'})) website_url = forms.CharField(widget=forms.TextInput(attrs={'class': 'form-control', 'rows': 1})) facebook_url = forms.CharField(widget=forms.TextInput(attrs={'class': 'form-control', 'rows': 1})) instagram_url = forms.CharField(widget=forms.TextInput(attrs={'class': 'form-control', 'rows': 1})) class Meta: model = User fields = ['username', 'email', 'instagram_url','facebook_url']
44.574074
103
0.658912
2,218
0.921479
0
0
0
0
0
0
602
0.250104
c429c3cef7b7daf43f4b36c099ac1e6ca683a4ff
19,880
py
Python
slt/chmm/train.py
paper-submit-account/Sparse-CHMM
8a33dfe375a012cc0cc3324907135b74606a7b5d
[ "Apache-2.0" ]
null
null
null
slt/chmm/train.py
paper-submit-account/Sparse-CHMM
8a33dfe375a012cc0cc3324907135b74606a7b5d
[ "Apache-2.0" ]
null
null
null
slt/chmm/train.py
paper-submit-account/Sparse-CHMM
8a33dfe375a012cc0cc3324907135b74606a7b5d
[ "Apache-2.0" ]
null
null
null
import os import logging import numpy as np from typing import Optional import torch from torch.utils.data import DataLoader from ..eval import Metric from .dataset import CHMMBaseDataset from .dataset import collate_fn as default_collate_fn logger = logging.getLogger(__name__) OUT_RECALL = 0.9 OUT_PRECISION = 0.8 class CHMMBaseTrainer: def __init__(self, config, collate_fn=None, training_dataset=None, valid_dataset=None, test_dataset=None, pretrain_optimizer=None, optimizer=None): self._model = None self._config = config self._training_dataset = training_dataset self._valid_dataset = valid_dataset self._test_dataset = test_dataset self._collate_fn = collate_fn self._pretrain_optimizer = pretrain_optimizer self._optimizer = optimizer self._init_state_prior = None self._init_trans_mat = None self._init_emiss_mat = None @property def config(self): return self._config @config.setter def config(self, x): logger.warning("Updating DirCHMMTrainer.config") self._config = x @property def model(self): return self._model def initialize_trainer(self): """ Initialize necessary components for training Note: Better not change the order Returns ------- the initialized trainer """ self.initialize_matrices() self.initialize_model() self.initialize_optimizers() return self def initialize_model(self): raise NotImplementedError def initialize_matrices(self): """ Initialize <HMM> transition and emission matrices Returns ------- self """ assert self._training_dataset and self._valid_dataset # inject prior knowledge about transition and emission self._init_state_prior = torch.zeros(self._config.d_hidden, device=self._config.device) + 1e-2 self._init_state_prior[0] += 1 - self._init_state_prior.sum() intg_obs = list(map(np.array, self._training_dataset.obs + self._valid_dataset.obs)) # construct/load initial transition matrix dataset_dir = os.path.split(self._config.train_path)[0] transmat_path = os.path.join(dataset_dir, "init_transmat.pt") if getattr(self._config, "load_init_mat", False): if os.path.isfile(transmat_path): logger.info("Loading initial transition matrix from disk") self._init_trans_mat = torch.load(transmat_path) # if the loaded transmat does not have the proper shape, re-calculate it. s0_transmat, s1_transmat = self._init_trans_mat.shape if not (s0_transmat == s1_transmat == self.config.d_obs): self._init_trans_mat = None if self._init_trans_mat is None: self._init_trans_mat = torch.tensor(initialise_transmat( observations=intg_obs, label_set=self._config.bio_label_types )[0], dtype=torch.float) if getattr(self._config, "save_init_mat", False): logger.info("Saving initial transition matrix") torch.save(self._init_trans_mat, transmat_path) # construct/load initial emission matrix emissmat_path = os.path.join(dataset_dir, "init_emissmat.pt") if getattr(self._config, "load_init_mat", False): if os.path.isfile(emissmat_path): logger.info("Loading initial emission matrix from disk") self._init_emiss_mat = torch.load(emissmat_path) # if the loaded emissmat does not have the proper shape, re-calculate it. s0_emissmat, s1_emissmat, s2_emissmat = self._init_emiss_mat.shape if not (s0_emissmat == self.config.n_src) and (s1_emissmat == s2_emissmat == self.config.d_obs): self._init_emiss_mat = None if self._init_emiss_mat is None: self._init_emiss_mat = torch.tensor(initialise_emissions( observations=intg_obs, label_set=self._config.bio_label_types, sources=self._config.sources, src_priors=self._config.src_priors )[0], dtype=torch.float) if getattr(self._config, "save_init_mat", False): logger.info("Saving initial emission matrix") torch.save(self._init_emiss_mat, emissmat_path) return self def initialize_optimizers(self, optimizer=None, pretrain_optimizer=None): self._optimizer = self.get_optimizer() if optimizer is None else optimizer self._pretrain_optimizer = self.get_pretrain_optimizer() if pretrain_optimizer is None else pretrain_optimizer def get_dataloader(self, dataset, shuffle=False): if dataset is not None: dataloader = DataLoader( dataset=dataset, batch_size=self._config.lm_batch_size, collate_fn=self._collate_fn if self._collate_fn is not None else default_collate_fn, shuffle=shuffle, drop_last=False ) return dataloader else: logger.error('Dataset is not defined') raise ValueError("Dataset is not defined!") def pretrain_step(self, data_loader, optimizer, trans_, emiss_): raise NotImplementedError def training_step(self, data_loader, optimizer): raise NotImplementedError def train(self): raise NotImplementedError def valid(self) -> Metric: self._model.to(self._config.device) valid_metrics = self.evaluate(self._valid_dataset) logger.info("Validation results:") for k, v in valid_metrics.items(): logger.info(f" {k}: {v:.4f}") return valid_metrics def test(self) -> Metric: self._model.to(self._config.device) test_metrics = self.evaluate(self._test_dataset) logger.info("Test results:") for k, v in test_metrics.items(): logger.info(f" {k}: {v:.4f}") return test_metrics def evaluate(self, dataset: CHMMBaseDataset): raise NotImplementedError def predict(self, dataset: CHMMBaseDataset): raise NotImplementedError def get_pretrain_optimizer(self): raise NotImplementedError def get_optimizer(self): # ----- initialize optimizer ----- raise NotImplementedError def save(self, output_dir: Optional[str] = None, save_optimizer: Optional[bool] = False, model_name: Optional[str] = 'chmm', optimizer_name: Optional[str] = 'chmm-optimizer', pretrain_optimizer_name: Optional[str] = 'chmm-pretrain-optimizer'): """ Save model parameters as well as trainer parameters Parameters ---------- output_dir: model directory save_optimizer: whether to save optimizer model_name: model name (suffix free) optimizer_name: optimizer name (suffix free) pretrain_optimizer_name: pretrain optimizer name (suffix free) Returns ------- None """ output_dir = output_dir if output_dir is not None else self._config.output_dir logger.info(f"Saving model to {output_dir}") model_state_dict = self._model.state_dict() torch.save(model_state_dict, os.path.join(output_dir, f'{model_name}.bin')) self._config.save(output_dir) if save_optimizer: logger.info("Saving optimizer and scheduler") torch.save(self._optimizer.state_dict(), os.path.join(output_dir, f"{optimizer_name}.bin")) torch.save(self._pretrain_optimizer.state_dict(), os.path.join(output_dir, f"{pretrain_optimizer_name}.bin")) return None def load(self, input_dir: Optional[str] = None, load_optimizer: Optional[bool] = False, model_name: Optional[str] = 'chmm', optimizer_name: Optional[str] = 'chmm-optimizer', pretrain_optimizer_name: Optional[str] = 'chmm-pretrain-optimizer'): """ Load model parameters. Parameters ---------- input_dir: model directory load_optimizer: whether load other trainer parameters model_name: model name (suffix free) optimizer_name: optimizer name (suffix free) pretrain_optimizer_name: pretrain optimizer name (suffix free) Returns ------- self """ input_dir = input_dir if input_dir is not None else self._config.output_dir if self._model is not None: logger.warning(f"The original model {type(self._model)} in {type(self)} is not None. " f"It will be overwritten by the loaded model!") logger.info(f"Loading model from {input_dir}") self.initialize_model() self._model.load_state_dict(torch.load(os.path.join(input_dir, f'{model_name}.bin'))) self._model.to(self.config.device) if load_optimizer: logger.info("Loading optimizer and scheduler") if self._optimizer is None: self.initialize_optimizers() if os.path.isfile(os.path.join(input_dir, f"{optimizer_name}.bin")): self._optimizer.load_state_dict( torch.load(os.path.join(input_dir, f"{optimizer_name}.bin"), map_location=self.config.device) ) else: logger.warning("Optimizer file does not exist!") if os.path.isfile(os.path.join(input_dir, f"{pretrain_optimizer_name}.bin")): self._pretrain_optimizer.load_state_dict( torch.load(os.path.join(input_dir, f"{pretrain_optimizer_name}.bin")) ) else: logger.warning("Pretrain optimizer file does not exist!") return self def save_results(self, output_dir: str, valid_results: Optional[Metric] = None, file_name: Optional[str] = 'results', disable_final_valid: Optional[bool] = False, disable_test: Optional[bool] = False, disable_inter_results: Optional[bool] = False) -> None: """ Save training (validation) results Parameters ---------- output_dir: output directory, should be a folder valid_results: validation results during the training process file_name: file name disable_final_valid: disable final validation process (getting validation results of the trained model) disable_test: disable test process disable_inter_results: do not save inter-results Returns ------- None """ if not disable_final_valid: logger.info("Getting final validation metrics") valid_metrics = self.valid() else: valid_metrics = None if not disable_test: logger.info("Getting test metrics.") test_metrics = self.test() else: test_metrics = None # write validation and test results result_file = os.path.join(output_dir, f'{file_name}.txt') logger.info(f"Writing results to {result_file}") self.write_result(file_path=result_file, valid_results=valid_results, final_valid_metrics=valid_metrics, test_metrics=test_metrics) if not disable_inter_results: # save validation inter results logger.info(f"Saving inter results") inter_result_file = os.path.join(output_dir, f'{file_name}-inter.pt') torch.save(valid_results.__dict__, inter_result_file) return None @staticmethod def write_result(file_path: str, valid_results: Optional[Metric] = None, final_valid_metrics: Optional[Metric] = None, test_metrics: Optional[Metric] = None) -> None: """ Support functions for saving training results Parameters ---------- file_path: where to save results valid_results: validation results during the training process final_valid_metrics: validation results of the trained model test_metrics Returns ------- """ with open(file_path, 'w') as f: if valid_results is not None: for i in range(len(valid_results)): f.write(f"[Epoch {i + 1}]\n") for k in ['precision', 'recall', 'f1']: f.write(f" {k}: {valid_results[k][i]:.4f}") f.write("\n") if final_valid_metrics is not None: f.write(f"[Best Validation]\n") for k in ['precision', 'recall', 'f1']: f.write(f" {k}: {final_valid_metrics[k]:.4f}") f.write("\n") if test_metrics is not None: f.write(f"[Test]\n") for k in ['precision', 'recall', 'f1']: f.write(f" {k}: {test_metrics[k]:.4f}") f.write("\n") return None def initialise_startprob(observations, label_set, src_idx=None): """ calculate initial hidden states (not used in our setup since our sequences all begin from [CLS], which corresponds to hidden state "O". :param src_idx: source index :param label_set: a set of all possible label_set :param observations: n_instances X seq_len X n_src X d_obs :return: probabilities for the initial hidden states """ n_src = observations[0].shape[1] logger.info("Constructing start distribution prior...") init_counts = np.zeros((len(label_set),)) if src_idx is not None: for obs in observations: init_counts[obs[0, src_idx].argmax()] += 1 else: for obs in observations: for z in range(n_src): init_counts[obs[0, z].argmax()] += 1 for i, label in enumerate(label_set): if i == 0 or label.startswith("B-"): init_counts[i] += 1 startprob_prior = init_counts + 1 startprob_ = np.random.dirichlet(init_counts + 1E-10) return startprob_, startprob_prior # TODO: try to use a more reliable source to start the transition and emission def initialise_transmat(observations, label_set, src_idx=None): """ initialize transition matrix :param src_idx: the index of the source of which the transition statistics is computed. If None, use all sources :param label_set: a set of all possible label_set :param observations: n_instances X seq_len X n_src X d_obs :return: initial transition matrix and transition counts """ logger.info("Constructing transition matrix prior...") n_src = observations[0].shape[1] trans_counts = np.zeros((len(label_set), len(label_set))) if src_idx is not None: for obs in observations: for k in range(0, len(obs) - 1): trans_counts[obs[k, src_idx].argmax(), obs[k + 1, src_idx].argmax()] += 1 else: for obs in observations: for k in range(0, len(obs) - 1): for z in range(n_src): trans_counts[obs[k, z].argmax(), obs[k + 1, z].argmax()] += 1 # update transition matrix with prior knowledge for i, label in enumerate(label_set): if label.startswith("B-") or label.startswith("I-"): trans_counts[i, label_set.index("I-" + label[2:])] += 1 elif i == 0 or label.startswith("I-"): for j, label2 in enumerate(label_set): if j == 0 or label2.startswith("B-"): trans_counts[i, j] += 1 transmat_prior = trans_counts + 1 # initialize transition matrix with dirichlet distribution transmat_ = np.vstack([np.random.dirichlet(trans_counts2 + 1E-10) for trans_counts2 in trans_counts]) return transmat_, transmat_prior def initialise_emissions(observations, label_set, sources, src_priors, strength=1000): """ initialize emission matrices :param sources: source names :param src_priors: source priors :param label_set: a set of all possible label_set :param observations: n_instances X seq_len X n_src X d_obs :param strength: Don't know what this is for :return: initial emission matrices and emission counts? """ logger.info("Constructing emission probabilities...") obs_counts = np.zeros((len(sources), len(label_set)), dtype=np.float64) # extract the total number of observations for each prior for obs in observations: obs_counts += obs.sum(axis=0) for source_index, source in enumerate(sources): # increase p(O) obs_counts[source_index, 0] += 1 # increase the "reasonable" observations for pos_index, pos_label in enumerate(label_set[1:]): if pos_label[2:] in src_priors[source]: obs_counts[source_index, pos_index] += 1 # construct probability distribution from counts obs_probs = obs_counts / (obs_counts.sum(axis=1, keepdims=True) + 1E-3) # initialize emission matrix matrix = np.zeros((len(sources), len(label_set), len(label_set))) for source_index, source in enumerate(sources): for pos_index, pos_label in enumerate(label_set): # Simple case: set P(O=x|Y=x) to be the recall recall = 0 if pos_index == 0: recall = OUT_RECALL elif pos_label[2:] in src_priors[source]: _, recall = src_priors[source][pos_label[2:]] matrix[source_index, pos_index, pos_index] = recall for pos_index2, pos_label2 in enumerate(label_set): if pos_index2 == pos_index: continue elif pos_index2 == 0: precision = OUT_PRECISION elif pos_label2[2:] in src_priors[source]: precision, _ = src_priors[source][pos_label2[2:]] else: precision = 1.0 # Otherwise, we set the probability to be inversely proportional to the precision # and the (unconditional) probability of the observation error_prob = (1 - recall) * (1 - precision) * (0.001 + obs_probs[source_index, pos_index2]) # We increase the probability for boundary errors (i.e. I-ORG -> B-ORG) if pos_index > 0 and pos_index2 > 0 and pos_label[2:] == pos_label2[2:]: error_prob *= 5 # We increase the probability for errors with same boundary (i.e. I-ORG -> I-GPE) if pos_index > 0 and pos_index2 > 0 and pos_label[0] == pos_label2[0]: error_prob *= 2 matrix[source_index, pos_index, pos_index2] = error_prob error_indices = [i for i in range(len(label_set)) if i != pos_index] error_sum = matrix[source_index, pos_index, error_indices].sum() matrix[source_index, pos_index, error_indices] /= (error_sum / (1 - recall) + 1E-5) emission_priors = matrix * strength emission_probs = matrix return emission_probs, emission_priors
38.452611
118
0.604326
13,235
0.665744
0
0
1,678
0.084406
0
0
5,679
0.285664
c42c480ac786f98d925a893f66e8658af5b8de1c
6,881
py
Python
flask_obfuscateids/lib.py
mlenzen/flask-obfuscateids
22319633b2685f2969bd67eae3fd09d2db6567f1
[ "BSD-3-Clause" ]
null
null
null
flask_obfuscateids/lib.py
mlenzen/flask-obfuscateids
22319633b2685f2969bd67eae3fd09d2db6567f1
[ "BSD-3-Clause" ]
1
2015-01-26T06:23:12.000Z
2015-01-26T06:23:12.000Z
flask_obfuscateids/lib.py
mlenzen/flask-obfuscateids
22319633b2685f2969bd67eae3fd09d2db6567f1
[ "BSD-3-Clause" ]
null
null
null
from random import Random from collections_extended import setlist # The version of seeding to use for random SEED_VERSION = 2 # Common alphabets to use ALPHANUM = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' BASE58 = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz' def shuffle(key, x): random = Random(key) random.shuffle(x) def key_gen(key, base): '''Generate values from the key. This will indefinitely generate integers in [0, base). key is used to initialize random, so that the "random" number generated are the same each time for a given key. This turns a key of any length into an "infinitely" long key without simply cycling over the key. ''' random = Random(key) while True: value = random.randint(0, base-1) yield value def encode_base_n(num, base, min_length=0): '''Convert an integer into a list of integers storing the number in base base. If a minimum length is specified, the result will be 0-padded. ''' out = [] while num > 0 or len(out) < min_length: num, remainder = divmod(num, base) out.append(remainder) return out def decode_base_n(int_list, base): '''Convert a list of numbers representing a number in base base to an integer.''' out = 0 for index, num in enumerate(int_list): if num >= base or num < 0: raise ValueError out += (base ** index) * num return out def calc_check_digits(int_list, base, num_check_chars): checksum_base = base ** num_check_chars checksum_value = sum(int_list) % checksum_base return encode_base_n(checksum_value, base, min_length=num_check_chars) def add_check_digits(int_list, base, num_check_chars): '''Calculate a checksum for int_list and translate into a number of base base made up of num_check_chars digits. Args: int_list: A list of integers >= 0 and < base base: The number of characters in the alphabet num_check_chars: The number of check characters to return Returns: A list of integers that represent the checksum in base base. ''' check_digits = calc_check_digits(int_list, base, num_check_chars) return int_list + check_digits def eval_check_digits(decrypted_ints, base, num_check_chars): '''Evaluate the check digits in decrypted_ints. Args: decrypted_ints: A list of integers >=0 and < base (the result of add_check_digits) Returns: The decrypted_ints without the check digits Raises: ValueError: if the check digits don't match ''' if num_check_chars == 0: return decrypted_ints int_list = decrypted_ints[:-num_check_chars] check_digits = decrypted_ints[-num_check_chars:] if calc_check_digits(int_list, base, num_check_chars) != check_digits: raise ValueError() return int_list def encode(int_list, alphabet): '''Encode ints using alphabet.''' char_list = [] for i in int_list: if i > len(alphabet) or i < 0: raise ValueError char_list.append(alphabet[i]) return ''.join(char_list) def decode(s, alphabet): '''Decode a string s using alphabet returning a list of ints.''' try: return [alphabet.index(c) for c in s] except (TypeError, IndexError): raise ValueError def encrypt(int_list, key, base): encrypted_ints = [] moving_value = 0 for char_index, key_value in zip(int_list, key_gen(key, base)): encrypted_int = (char_index + key_value + moving_value) % base encrypted_ints.append(encrypted_int) moving_value += encrypted_int return encrypted_ints def decrypt(int_list, key, base): decrypted_ints = [] moving_value = 0 for char_index, key_value in zip(int_list, key_gen(key, base)): decrypted_int = (char_index - key_value - moving_value) % base decrypted_ints.append(decrypted_int) moving_value += char_index return decrypted_ints def obfuscate(num, key, alphabet, min_chars=0, num_check_chars=1): ''' Obfuscate num using key. This does some minor encryption by adding values to a key and a moving value. The moving value is so that one small change makes all of the resulting characters change. Args: num: The integer to obfuscate key: An int, string or bytes to generate key values (anything that can be passed to random.seed) alphabet: A list of characters to use for the alphabet min_chars: A minimum number of chars for the resulting string num_check_chars: The number of chars to use as a check Returns: A string encoding the number in the passed alphabet and encrypted with key. Raises: ValueError: if num is not a number or < 0 ''' try: if num < 0: raise ValueError() except TypeError: raise ValueError() base = len(alphabet) num_as_ints = encode_base_n(num, base, min_chars) unencrypted_digits = add_check_digits(num_as_ints, base, num_check_chars) encrypted_digits = encrypt(unencrypted_digits, key, base) return encode(encrypted_digits, alphabet) def deobfuscate(s, key, alphabet, num_check_chars=1): '''Deobfuscate a string using key and alphabet. key, alphabet and num_check_chars must be identical to the values used to obfuscate. Args: s: The string to deobfuscate key: The key used to obfuscate alphabet: The alphabet used to obfuscate num_check_chars: The number of chars to use as a check Returns: The deobfuscated integer. Raises: ValueError: if s isn't a string, s doesn't use alphabet or the checksum doesn't match ''' base = len(alphabet) encrypted_ints = decode(s, alphabet) decrypted_ints = decrypt(encrypted_ints, key, base) num_as_ints = eval_check_digits(decrypted_ints, base, num_check_chars) return decode_base_n(num_as_ints, base) class Obfuscator(): def __init__(self, key, alphabet=None, min_length=0, num_check_chars=1, version=1): ''' This accepts a version number in case the algorithm changes at some point in the future. Args: key: The key. alphabet: Optionally, specify an alternative alphabet to use. min_length: An encoded value will always be at least min_length characters (including the check characters) num_check_chars: The number of chars used for the check version: The version of the algorithm to use. ''' if isinstance(num_check_chars, int) and num_check_chars >= 0: self.num_check_chars = num_check_chars else: raise ValueError('num_check_chars must be an int >= 0') if isinstance(min_length, int) and min_length >= 0: self.min_length = min_length - num_check_chars else: raise ValueError('min_length must be an int >= 0') self.key = key alphabet = list(alphabet or ALPHANUM) shuffle(key, alphabet) self.alphabet = setlist(alphabet) def obfuscate(self, num, salt=None, min_length=None): if salt: key = self.key + salt else: key = self.key if min_length is None: min_length = self.min_length return obfuscate(num, key, self.alphabet, min_length, self.num_check_chars) def deobfuscate(self, s, salt=None): if salt: key = self.key + salt else: key = self.key return deobfuscate(s, key, self.alphabet, self.num_check_chars)
30.312775
98
0.748874
1,402
0.203749
416
0.060456
0
0
0
0
3,031
0.440488
c42c74470081e712e5a554684e5bb789162adcd2
377
py
Python
lib/response.py
dpla/akara
432f14782152dd19931bdbd8f9fad19b5932426d
[ "Apache-2.0" ]
5
2015-01-30T03:50:37.000Z
2015-09-23T00:46:11.000Z
lib/response.py
dpla/akara
432f14782152dd19931bdbd8f9fad19b5932426d
[ "Apache-2.0" ]
null
null
null
lib/response.py
dpla/akara
432f14782152dd19931bdbd8f9fad19b5932426d
[ "Apache-2.0" ]
3
2015-03-09T19:16:56.000Z
2019-09-19T02:41:29.000Z
"""Information for the outgoing response code - the HTTP response code (default is "200 Ok") headers - a list of key/value pairs used for the WSGI start_response """ code = None headers = [] def add_header(key, value): """Helper function to append (key, value) to the list of response headers""" headers.append( (key, value) ) # Eventually add cookie support?
23.5625
80
0.700265
0
0
0
0
0
0
0
0
279
0.740053
c42d5c2686fc626989593bdff74f807903b98683
1,594
py
Python
parte 3/desafio93.py
BrunoSoares-DEV/Exercicios-python
fcfd0a7b3e2c6af2b7dd8e5a15ca6585c97f7c67
[ "MIT" ]
2
2021-02-24T20:05:24.000Z
2021-02-24T20:05:41.000Z
parte 3/desafio93.py
BrunoSoares-DEV/Exercicios-python
fcfd0a7b3e2c6af2b7dd8e5a15ca6585c97f7c67
[ "MIT" ]
null
null
null
parte 3/desafio93.py
BrunoSoares-DEV/Exercicios-python
fcfd0a7b3e2c6af2b7dd8e5a15ca6585c97f7c67
[ "MIT" ]
null
null
null
jog = {} #pegando dados jog['Nome do jogador'] = str(input('Digite o nome do jogador: ')).strip().title() jog['Total partidas'] = int(input('Quantas partidas jogou: ')) #lista de gol gols = [] #Quantos gols em cada partida for i in range(0, jog['Total partidas']): gols.append(int(input(f'Quantos gols na partida {i}°: '))) #total de gol totGols = 0 for g in gols: totGols += g #print(totGols) #adicionando dicionario jog['Total gols'] = totGols jog['Gols em partidas'] = gols #print(jog) #Mostrando resultados print(f'O jogador: {jog["Nome do jogador"]}, jogou {jog["Total partidas"]} partidas e ' f'marcou ao todo no campeonato {jog["Total gols"]} gols') print('Partidas:') for pos, v in enumerate(gols): print(f'Partida {pos}: {v} gols') ''' Esse programa vai analisar informações de um jogador Primeiro criamos um dicionário vazio, jog, e pedimos interações ao usuário como nome e total de partidas É criado uma lista vazia chamada gols, e assim entra no loop for para saber quantos gols em cada partida, usando o limite de 0 e o valor de total de partidas Para cada loop a lista gols da append() no valor Assim é criado uma variavel de controle totGols zerada, e dentro do loop for, onde g iria rodar sobre gols Onde totGols iria incrimentar g, somando todos os gols Em seguida adicionamos ao dicionário, com o indice total de gols e gols em partidas, pelo totGols e gols respectivamente No print será mostrado os resultados, e por fim um loop com pos e v rodando sobre o enumarete() de gols para mostrar cada gols nas partidas '''
37.952381
161
0.717064
0
0
0
0
0
0
0
0
1,317
0.820561
c42d617d9e6dd57810d5d84da656ddd4e8d82bf1
5,891
py
Python
b2sdk/v1/account_info.py
ehossack/b2-sdk-python
034bec38671c0862b6956915993061359dbd51f6
[ "MIT" ]
null
null
null
b2sdk/v1/account_info.py
ehossack/b2-sdk-python
034bec38671c0862b6956915993061359dbd51f6
[ "MIT" ]
null
null
null
b2sdk/v1/account_info.py
ehossack/b2-sdk-python
034bec38671c0862b6956915993061359dbd51f6
[ "MIT" ]
null
null
null
###################################################################### # # File: b2sdk/v1/account_info.py # # Copyright 2021 Backblaze Inc. All Rights Reserved. # # License https://www.backblaze.com/using_b2_code.html # ###################################################################### from abc import abstractmethod import inspect import logging import os from typing import Optional from b2sdk import _v2 as v2 from b2sdk.account_info.sqlite_account_info import DEFAULT_ABSOLUTE_MINIMUM_PART_SIZE from b2sdk.utils import limit_trace_arguments logger = logging.getLogger(__name__) # Retain legacy get_minimum_part_size and facilitate for optional s3_api_url class OldAccountInfoMethods: REALM_URLS = v2.REALM_URLS @limit_trace_arguments( only=[ 'self', 'api_url', 'download_url', 'minimum_part_size', 'realm', 's3_api_url', ] ) def set_auth_data( self, account_id, auth_token, api_url, download_url, minimum_part_size, application_key, realm, allowed=None, application_key_id=None, s3_api_url=None, ): if 's3_api_url' in inspect.getfullargspec(self._set_auth_data).args: s3_kwargs = dict(s3_api_url=s3_api_url) else: s3_kwargs = {} if allowed is None: allowed = self.DEFAULT_ALLOWED assert self.allowed_is_valid(allowed) self._set_auth_data( account_id=account_id, auth_token=auth_token, api_url=api_url, download_url=download_url, minimum_part_size=minimum_part_size, application_key=application_key, realm=realm, allowed=allowed, application_key_id=application_key_id, **s3_kwargs, ) # translate legacy "minimum_part_size" to new style "recommended_part_size" class MinimumPartSizeTranslator: def _set_auth_data( self, account_id, auth_token, api_url, download_url, minimum_part_size, application_key, realm, s3_api_url=None, allowed=None, application_key_id=None ): if 's3_api_url' in inspect.getfullargspec(super()._set_auth_data).args: s3_kwargs = dict(s3_api_url=s3_api_url) else: s3_kwargs = {} return super()._set_auth_data( account_id=account_id, auth_token=auth_token, api_url=api_url, download_url=download_url, recommended_part_size=minimum_part_size, absolute_minimum_part_size=DEFAULT_ABSOLUTE_MINIMUM_PART_SIZE, application_key=application_key, realm=realm, allowed=allowed, application_key_id=application_key_id, **s3_kwargs, ) def get_minimum_part_size(self): return self.get_recommended_part_size() class AbstractAccountInfo(OldAccountInfoMethods, v2.AbstractAccountInfo): def get_s3_api_url(self): """ Return s3_api_url or raises MissingAccountData exception. :rtype: str """ # Removed @abstractmethod decorators def get_bucket_name_or_none_from_bucket_id(self, bucket_id: str) -> Optional[str]: """ Look up the bucket name for the given bucket id. """ # Removed @abstractmethod decorator def get_recommended_part_size(self): """ Return the recommended number of bytes in a part of a large file. :return: number of bytes :rtype: int """ # Removed @abstractmethod decorator def get_absolute_minimum_part_size(self): """ Return the absolute minimum number of bytes in a part of a large file. :return: number of bytes :rtype: int """ # Removed @abstractmethod decorator @abstractmethod def get_minimum_part_size(self): """ Return the minimum number of bytes in a part of a large file. :return: number of bytes :rtype: int """ # This stays abstract in v1 @abstractmethod def _set_auth_data( self, account_id, auth_token, api_url, download_url, minimum_part_size, application_key, realm, s3_api_url, allowed, application_key_id ): """ Actually store the auth data. Can assume that 'allowed' is present and valid. All of the information returned by ``b2_authorize_account`` is saved, because all of it is needed at some point. """ # Keep the old signature class InMemoryAccountInfo(MinimumPartSizeTranslator, OldAccountInfoMethods, v2.InMemoryAccountInfo): pass class UrlPoolAccountInfo(OldAccountInfoMethods, v2.UrlPoolAccountInfo): pass class SqliteAccountInfo(MinimumPartSizeTranslator, OldAccountInfoMethods, v2.SqliteAccountInfo): def __init__(self, file_name=None, last_upgrade_to_run=None): """ If ``file_name`` argument is empty or ``None``, path from ``B2_ACCOUNT_INFO`` environment variable is used. If that is not available, a default of ``~/.b2_account_info`` is used. :param str file_name: The sqlite file to use; overrides the default. :param int last_upgrade_to_run: For testing only, override the auto-update on the db. """ # use legacy env var resolution, XDG not supported file_name = file_name or os.environ.get( v2.B2_ACCOUNT_INFO_ENV_VAR, v2.B2_ACCOUNT_INFO_DEFAULT_FILE ) super().__init__(file_name=file_name, last_upgrade_to_run=last_upgrade_to_run) class StubAccountInfo(MinimumPartSizeTranslator, OldAccountInfoMethods, v2.StubAccountInfo): REALM_URLS = {'production': 'http://production.example.com'}
30.523316
186
0.636904
5,127
0.870311
0
0
1,873
0.317943
0
0
2,019
0.342726
c42ddcb403bc1b33c57898bd141f1f505a69b04f
9,539
py
Python
src/pyrin/security/hashing/handlers/pbkdf2.py
wilsonGmn/pyrin
25dbe3ce17e80a43eee7cfc7140b4c268a6948e0
[ "BSD-3-Clause" ]
null
null
null
src/pyrin/security/hashing/handlers/pbkdf2.py
wilsonGmn/pyrin
25dbe3ce17e80a43eee7cfc7140b4c268a6948e0
[ "BSD-3-Clause" ]
null
null
null
src/pyrin/security/hashing/handlers/pbkdf2.py
wilsonGmn/pyrin
25dbe3ce17e80a43eee7cfc7140b4c268a6948e0
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ pbkdf2 hashing handler module. """ import hashlib import re import pyrin.configuration.services as config_services import pyrin.security.utils.services as security_utils_services from pyrin.security.hashing.decorators import hashing from pyrin.security.hashing.handlers.base import HashingBase from pyrin.security.hashing.handlers.exceptions import InvalidHashingRoundsCountError, \ InvalidPBKDF2InternalAlgorithmError, InvalidHashingSaltLengthError @hashing() class PBKDF2Hashing(HashingBase): """ pbkdf2 hashing class. """ # regular expression to validate format of full hashed values. # the following format will be matched: # `$handler_name$internal_algorithm$rounds$salt_length$salt-text_plus_salt_hash` FORMAT_REGEX = re.compile(r'^\$PBKDF2\$[^$]+\$[\d]+\$[\d]+\$(.+)$') def __init__(self, **options): """ initializes an instance of PBKDF2Hashing. """ super().__init__(**options) def _generate_hash(self, text, **options): """ gets the hash of input text using a random or specified salt. :param str text: text to be hashed. :keyword bytes salt: salt to be used for hashing. if not provided, a random salt will be generated considering `salt_length` option. :keyword str internal_algorithm: internal algorithm to be used for hashing. if not provided, default value from relevant config will be used. :keyword int rounds: rounds to perform for generating hash. if not provided, default value from relevant config will be used. :keyword int salt_length: salt length to be used for hashing. if `salt` option is provided, then this value will be ignored. if not provided, default value from relevant config will be used. :rtype: bytes """ internal_algorithm, rounds, salt_length = self._extract_attributes(**options) self._validate_attributes(internal_algorithm, rounds, salt_length) salt = options.get('salt', None) if salt is None: salt = self._generate_salt(length=salt_length) text_hash = hashlib.pbkdf2_hmac(internal_algorithm, text.encode(self._encoding), salt, rounds) return self._make_final_hash(internal_algorithm, rounds, salt, text_hash) def _generate_salt(self, **options): """ generates a valid salt for this handler and returns it. :keyword int length: length of generated salt in bytes. if not provided, default value from relevant config will be used. :rtype: bytes """ salt_length = options.get('length', config_services.get('security', 'hashing', 'pbkdf2_salt_length')) return security_utils_services.get_bytes(length=salt_length) def _is_match(self, text, hashed_value, **options): """ gets a value indicating that given text's hash is identical to given hashed value. :param str text: text to be hashed. :param bytes hashed_value: hashed value to compare with. :rtype: bool """ internal_algorithm, rounds, salt, text_hash = \ self._extract_parts_from_final_hash(hashed_value, **options) new_full_hashed_value = self._generate_hash(text, internal_algorithm=internal_algorithm, rounds=rounds, salt=salt) return hashed_value == new_full_hashed_value def _get_algorithm(self, **options): """ gets the hashing algorithm. :rtype: str """ return 'PBKDF2' def _get_separator_count(self): """ gets the separator count used between parts of this handler's hashed result. :rtype: int """ return 5 def _extract_attributes(self, **options): """ extracts the required attributes for this handler from input keyword arguments. if not available, gets the default values from relevant configs. :keyword str internal_algorithm: internal algorithm to be used for hashing. if not provided, default value from relevant config will be used. :keyword int rounds: rounds to perform for generating hash. if not provided, default value from relevant config will be used. :keyword int salt_length: salt length to be used for hashing. if not provided, default value from relevant config will be used. :returns: tuple[str internal_algorithm, int rounds, int salt_length] :rtype: tuple[str, int, int] """ internal_algorithm = options.get('internal_algorithm', config_services.get('security', 'hashing', 'pbkdf2_internal_algorithm')) rounds = options.get('rounds', config_services.get('security', 'hashing', 'pbkdf2_rounds')) salt_length = options.get('salt_length', config_services.get('security', 'hashing', 'pbkdf2_salt_length')) return internal_algorithm, rounds, salt_length def _validate_attributes(self, internal_algorithm, rounds, salt_length): """ validates the given inputs for hash generation. it will raise an error on invalid inputs. :param str internal_algorithm: internal algorithm to be used for hashing. :param int rounds: rounds to perform for generating hash. :param int salt_length: salt length to be used for hashing. :raises InvalidPBKDF2InternalAlgorithmError: invalid pbkdf2 internal algorithm error. :raises InvalidHashingRoundsCountError: invalid hashing rounds count error. :raises InvalidHashingSaltLengthError: invalid hashing salt length error. """ if internal_algorithm not in hashlib.algorithms_guaranteed: raise InvalidPBKDF2InternalAlgorithmError('Internal algorithm [{algorithm}] ' 'is invalid.' .format(algorithm=internal_algorithm)) if rounds < 1: raise InvalidHashingRoundsCountError('Hashing rounds [{rounds}] is invalid.' .format(rounds=rounds)) if salt_length < 1: raise InvalidHashingSaltLengthError('Salt length [{length}] is invalid.' .format(length=salt_length)) def _make_final_hash(self, internal_algorithm, rounds, salt, text_hash): """ makes final hash from input values and returns it. :param str internal_algorithm: internal algorithm to be used for hashing. :param int rounds: rounds to perform for generating hash. :param bytes salt: salt to be used for hashing. :param bytes text_hash: hash value of text and salt. :rtype: bytes """ return self._get_separator() + self._get_separator().join( (self._get_algorithm().encode(self._encoding), internal_algorithm.encode(self._encoding), str(rounds).encode(self._encoding), str(len(salt)).encode(self._encoding), self._encode_hash_part(salt + text_hash))) def _extract_parts_from_final_hash(self, full_hashed_value, **options): """ extracts different parts of given full hashed value. :param bytes full_hashed_value: full hashed value to extract it's parts. :returns: tuple[str internal_algorithm, int rounds, bytes salt, bytes text_hash] :rtype: tuple[str, int, bytes, bytes] """ empty, handler, internal_algorithm, rounds, salt_length, salt_plus_text_hash = \ full_hashed_value.split(self._get_separator(), self._get_separator_count()) salt_length = int(salt_length) raw_salt_plus_text_hash = self._decode_hash_part(salt_plus_text_hash) salt = raw_salt_plus_text_hash[:salt_length] text_hash = raw_salt_plus_text_hash[salt_length:] return internal_algorithm.decode(self._encoding), int(rounds), salt, text_hash def _get_hashed_part(self, full_hashed_value, **options): """ gets the hashed part from full hashed value which current handler understands it. this handler returns the same input value as result. :param bytes full_hashed_value: full hashed value to get hashed part from it. :rtype: bytes """ return full_hashed_value
39.094262
93
0.588636
9,040
0.947688
0
0
9,051
0.948842
0
0
5,117
0.536429
c42e18634a20b6733cded46ea5994450f7ae4da0
8,652
py
Python
src/steps/prepare_ner_data.py
allanwright/media-classifier
a0da0799cc0bd6ef7360012c362f9fab273286c6
[ "MIT" ]
2
2019-08-16T00:49:27.000Z
2021-08-15T16:37:45.000Z
src/steps/prepare_ner_data.py
allanwright/media-classifier
a0da0799cc0bd6ef7360012c362f9fab273286c6
[ "MIT" ]
1
2020-02-19T10:17:56.000Z
2020-07-26T09:42:49.000Z
src/steps/prepare_ner_data.py
allanwright/media-classifier
a0da0799cc0bd6ef7360012c362f9fab273286c6
[ "MIT" ]
1
2019-06-27T10:57:07.000Z
2019-06-27T10:57:07.000Z
'''Defines a pipeline step which prepares training and test data for named entity recognition. ''' import ast import json import pickle from mccore import EntityRecognizer from mccore import ner from mccore import persistence import pandas as pd from sklearn.utils import resample from src.step import Step class PrepareNerData(Step): '''Defines a pipeline step which prepares training and test data for named entity recognition. ''' def __init__(self): super(PrepareNerData, self).__init__() self.input = { 'processed': 'data/interim/processed.csv', 'ner_labelled_csv': 'data/interim/ner_labelled.csv', } self.output = { 'stacked': 'data/interim/stacked.csv', 'ner_labelled_tsv': 'data/interim/ner_labelled.tsv', 'ner_labelled_json': 'data/interim/ner_labelled.json', 'ner_labelled_pickle': 'data/processed/ner_labelled.pickle', } def run(self): '''Runs the pipeline step. ''' # Process data for named entity recognition labelling self.__process_data_for_ner() # Process labelled named entity recognition data (if any) self.__process_labelled_ner_data() def __process_data_for_ner(self): df = pd.read_csv(self.input['processed']) self.print('Processing data for named entity recognition ({rows} rows)', rows=df.shape[0]) # Drop anything other than movies and tv shows categories = [1, 2] df = df[df['category'].isin(categories)] # Drop subtitle files df.drop(df[df['ext'] == 'srt'].index, inplace=True) # Drop anything that contains unwanted words blacklist = [ 'tamilrockers', 'www', 'hindi', 'Ã', 'ita', 'french', 'spa', 'torrent9', 'torrentcounter', 'ssrmovies', 'rus', 'bengali', ] def contains_blacklisted_word(name): for word in name.split(): if word in blacklist: return True return False df['blacklisted'] = df['name'].apply(contains_blacklisted_word) df.drop(df[df['blacklisted']].index, inplace=True) # Downsample to a number of files that is reasonable enough for # human verification of the labels provided by the ner model self.print('Downsampling dataset ({rows} rows)', rows=df.shape[0]) categories = [df[df.category == c] for c in df.category.unique()] downsampled = [resample(c, replace=False, n_samples=250, random_state=123) for c in categories] df = pd.concat(downsampled) df['entities'] = '' nlp, _ = ner.get_model() nlp_bytes = persistence.bin_to_obj('models/ner_mdl.pickle') nlp.from_bytes(nlp_bytes) recognizer = EntityRecognizer(nlp) def get_entities(name): return str(list(recognizer.predict(name))) df['entities'] = df['name'].apply(get_entities) # Split the filename into individual words then stack the DataFrame self.print('Stacking dataset ({rows} rows)', rows=df.shape[0]) index = [df.index, df.name, df.category, df.entities] df = pd.DataFrame(df['name'].str.split().tolist(), index=index).stack() df = df.reset_index() df.columns = ['index', 'name', 'category', 'entities', 'pos', 'word'] # Add entity column df['entity'] = '' def get_entity(row): entities = ast.literal_eval(row['entities']) word = row['word'].upper() for i in entities: if word in (str(s).upper() for s in str(i[1]).split()): return i[0] return '' df['entity'] = df.apply(get_entity, axis=1) df.drop(columns=['category', 'entities'], inplace=True) # Save interim stacked output before processing further df.to_csv(self.output['stacked'], index=False) def __process_labelled_ner_data(self): df = pd.read_csv(self.input['ner_labelled_csv']) # Keep only word and corresponding label df = df[['word', 'entity']] # Save to tsv df.to_csv( self.output['ner_labelled_tsv'], sep='\t', header=False, index=False) # Convert from tsv to json self.__tsv_to_json_format( self.output['ner_labelled_tsv'], self.output['ner_labelled_json'], 'na') # Write out spacy file self.__write_spacy_file( self.output['ner_labelled_json'], self.output['ner_labelled_pickle']) def __tsv_to_json_format(self, input_path, output_path, unknown_label): try: input_file = open(input_path, 'r') # input file output_file = open(output_path, 'w') # output file data_dict = {} annotations = [] label_dict = {} words = '' start = 0 for line in input_file: word, entity = line.split('\t') words += word + " " entity = entity[:len(entity)-1] if entity != unknown_label: if len(entity) != 1: d = {} d['text'] = word d['start'] = start d['end'] = start+len(word) - 1 try: label_dict[entity].append(d) except: label_dict[entity] = [] label_dict[entity].append(d) start += len(word) + 1 if entity == 'extension': data_dict['content'] = words words = '' label_list = [] for ents in list(label_dict.keys()): for i in range(len(label_dict[ents])): if label_dict[ents][i]['text'] != '': l = [ents, label_dict[ents][i]] for j in range(i + 1, len(label_dict[ents])): if label_dict[ents][i]['text'] == label_dict[ents][j]['text']: di = {} di['start'] = label_dict[ents][j]['start'] di['end'] = label_dict[ents][j]['end'] di['text'] = label_dict[ents][i]['text'] l.append(di) label_dict[ents][j]['text'] = '' label_list.append(l) for entities in label_list: label = {} label['label'] = [entities[0]] label['points'] = entities[1:] annotations.append(label) data_dict['annotation'] = annotations annotations = [] json.dump(data_dict, output_file) output_file.write('\n') data_dict = {} start = 0 label_dict = {} except Exception as e: print("Unable to process file" + "\n" + "error = " + str(e)) return None def __write_spacy_file(self, input_file=None, output_file=None): try: training_data = [] lines = [] with open(input_file, 'r') as f: lines = f.readlines() for line in lines: data = json.loads(line) text = data['content'] entities = [] for annotation in data['annotation']: point = annotation['points'][0] labels = annotation['label'] if not isinstance(labels, list): labels = [labels] for label in labels: entities.append((point['start'], point['end'] + 1, label)) training_data.append((text, {"entities" : entities})) with open(output_file, 'wb') as fp: pickle.dump(training_data, fp) except Exception as e: print("Unable to process " + input_file + "\n" + "error = " + str(e)) return None
36.05
98
0.496417
8,340
0.963828
0
0
0
0
0
0
2,014
0.232752
c42e658ca9b791acfc8cc494fe87a5ee5b2f994f
1,006
py
Python
jubakit/test/__init__.py
vishalbelsare/jubakit
f6252ba627ce4e2e42eb9aafaaf05c882bc1c678
[ "MIT" ]
12
2016-04-11T04:49:08.000Z
2019-02-08T01:43:46.000Z
jubakit/test/__init__.py
vishalbelsare/jubakit
f6252ba627ce4e2e42eb9aafaaf05c882bc1c678
[ "MIT" ]
138
2016-04-11T05:57:48.000Z
2020-09-26T03:09:31.000Z
jubakit/test/__init__.py
vishalbelsare/jubakit
f6252ba627ce4e2e42eb9aafaaf05c882bc1c678
[ "MIT" ]
10
2016-04-11T03:18:45.000Z
2018-04-14T10:11:15.000Z
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals __all__ = ['requireSklearn'] from jubakit.compat import PYTHON3 try: import embedded_jubatus embedded_available = True except ImportError: embedded_available = False try: import numpy import scipy import sklearn sklearn_available = True except ImportError: sklearn_available = False try: from unittest import skipUnless def requireSklearn(target): return skipUnless(sklearn_available, 'requires scikit-learn')(target) def requirePython3(target): return skipUnless(PYTHON3, 'requires Python 3.x')(target) def requireEmbedded(target): return skipUnless(embedded_available, 'requires embedded_jubatus')(target) except ImportError: def requireSklearn(target): return target if sklearn_available else None def requirePython3(target): return target if PYTHON3 else None def requireEmbedded(target): return target if embedded_available else None
26.473684
82
0.777336
0
0
0
0
0
0
0
0
110
0.109344
c42e88219fc65a0c84a4b46fac98f1c167ea84ef
9,859
py
Python
YoLo2Net.py
zhouyc2002/yolo2-cntk
549cb46365d1750031eee90044b6262f9b94ff49
[ "Apache-2.0" ]
3
2017-07-27T00:05:39.000Z
2021-02-25T08:56:10.000Z
YoLo2Net.py
zhouyc2002/yolo2-cntk
549cb46365d1750031eee90044b6262f9b94ff49
[ "Apache-2.0" ]
1
2019-08-05T12:55:06.000Z
2019-08-06T00:43:58.000Z
YoLo2Net.py
zhouyc2002/yolo2-cntk
549cb46365d1750031eee90044b6262f9b94ff49
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed Jun 28 13:03:05 2017 @author: ZHOU Yuncheng """ import cntk as C import _cntk_py import cntk.layers import cntk.initializer import cntk.losses import cntk.metrics import cntk.logging import cntk.io.transforms as xforms import cntk.io import cntk.train import os import numpy as np import yolo2 import CloneModel # default Paths relative to current python file. abs_path = os.path.dirname(os.path.abspath(__file__)) model_path = os.path.join(abs_path, "Models") # model dimensions image_height = 416 image_width = 416 num_channels = 3 # RGB num_truth_boxes = 14 box_dim = 5 # centerX, centerY, Width, Height, class_type num_classes = 3 # object type count. i.e. tomato, flower, stem, et, al. num_anchors = 5 model_name = "Yolo2Net.model" # Create a minibatch source. def create_image_mb_source(image_file, rois_file, is_training, total_number_of_samples): if not os.path.exists(image_file): raise RuntimeError("File '%s' does not exist." %image_file) if not os.path.exists(rois_file): raise RuntimeError("File '%s' does not exist." %rois_file) # transformation pipeline for the features has jitter/crop only when training transforms = [xforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear')] if is_training: transforms += [ xforms.color(brightness_radius=0.2, contrast_radius=0.2, saturation_radius=0.2) ] # deserializer imageReader = cntk.io.ImageDeserializer(image_file, cntk.io.StreamDefs( features=cntk.io.StreamDef(field='image', transforms=transforms), ignored=cntk.io.StreamDef(field='label', shape=1))) txtReader = cntk.io.CTFDeserializer(rois_file, cntk.io.StreamDefs( rois=cntk.io.StreamDef(field='rois',shape=num_truth_boxes*box_dim))) return cntk.io.MinibatchSource([imageReader, txtReader], randomize=is_training, max_samples=total_number_of_samples, multithreaded_deserializer=True) # Create the network. def create_yolo2net(anchor_dims = None): # Input variables denoting the features and label data feature_var = C.input_variable((num_channels, image_height, image_width)) label_var = C.input_variable((num_truth_boxes, box_dim)) net = CloneModel.CloneModel('Models/DarkNet.model', 'mean_removed_input', 'bn6e', cntk.ops.functions.CloneMethod.clone, feature_var) det1 = cntk.layers.layers.Convolution2D((3,3), 1024, init=cntk.initializer.he_normal(), pad=True, activation=cntk.ops.leaky_relu, name='det1')(net) detbn1 = cntk.layers.BatchNormalization(map_rank=1, name='detbn1')(det1) det2 = cntk.layers.layers.Convolution2D((3,3), 1024, init=cntk.initializer.he_normal(), pad=True, activation=cntk.ops.leaky_relu, name='det2')(detbn1) detbn2 = cntk.layers.BatchNormalization(map_rank=1, name='detbn2')(det2) det3 = cntk.layers.layers.Convolution2D((3,3), 1024, init=cntk.initializer.he_normal(), pad = True, activation=cntk.ops.leaky_relu, name='det3')(detbn2) detbn3 = cntk.layers.BatchNormalization(map_rank=1, name='detbn3')(det3) z = cntk.layers.layers.Convolution2D((1,1), (5+num_classes) * num_anchors, init=cntk.initializer.normal(0.01), pad = True, name='output')(detbn3) # loss and metric ce = C.user_function(yolo2.Yolo2Error(z, label_var, class_size = num_classes, priors = anchor_dims)) pe = C.user_function(yolo2.Yolo2Metric(z, label_var, class_size = num_classes, priors = anchor_dims, metricMethod = yolo2.Yolo2MetricMethod.Avg_iou)) cntk.logging.log_number_of_parameters(z) ; print() return { 'feature': feature_var, 'label': label_var, 'ce' : ce, 'pe' : pe, 'output': z } # Create trainer def create_trainer(network, epoch_size, num_quantization_bits, printer, block_size, warm_up): # Set learning parameters lr_per_mb = [0.001]*25 + [0.0001]*25 + [0.00001]*25 + [0.000001]*25 + [0.0000001] lr_schedule = C.learning_rate_schedule(lr_per_mb, unit=C.learners.UnitType.minibatch, epoch_size=epoch_size) mm_schedule = C.learners.momentum_schedule(0.9) l2_reg_weight = 0.0005 # CNTK L2 regularization is per sample, thus same as Caffe if block_size != None and num_quantization_bits != 32: raise RuntimeError("Block momentum cannot be used with quantization, please remove quantized_bits option.") # Create learner local_learner = C.learners.momentum_sgd(network['output'].parameters, lr_schedule, mm_schedule, unit_gain=False, l2_regularization_weight=l2_reg_weight) # Since we reuse parameter settings (learning rate, momentum) from Caffe, we set unit_gain to False to ensure consistency # Create trainer if block_size != None: parameter_learner = cntk.train.distributed.block_momentum_distributed_learner(local_learner, block_size=block_size) else: parameter_learner = cntk.train.distributed.data_parallel_distributed_learner(local_learner, num_quantization_bits=num_quantization_bits, distributed_after=warm_up) return C.Trainer(network['output'], (network['ce'], network['pe']), parameter_learner, printer) # Train and test def train_and_test(network, trainer, train_source, test_source, minibatch_size, epoch_size, restore): # define mapping from intput streams to network inputs input_map = { network['feature']: train_source.streams.features, network['label']: train_source.streams.rois } # Train all minibatches cntk.train.training_session( trainer=trainer, mb_source = train_source, model_inputs_to_streams = input_map, mb_size = minibatch_size, progress_frequency=epoch_size, checkpoint_config = C.CheckpointConfig(filename=os.path.join(model_path, model_name), restore=restore), test_config= C.TestConfig(test_source, minibatch_size=minibatch_size) ).train() # Train and evaluate the network. def net_train_and_eval(train_data, train_rois, test_data, test_rois, priors = None, num_quantization_bits=32, block_size=3200, warm_up=0, minibatch_size=1, epoch_size = 1281167, max_epochs=1, restore=True, log_to_file=None, num_mbs_per_log=None, gen_heartbeat=True): _cntk_py.set_computation_network_trace_level(0) log_printer = cntk.logging.progress_print.ProgressPrinter( freq=1, tag='Training', log_to_file = os.path.join(model_path, log_to_file), num_epochs=max_epochs) progress_printer = cntk.logging.progress_print.ProgressPrinter(freq=1, tag='Training', num_epochs=max_epochs,test_freq=1) network = create_yolo2net(priors) trainer = create_trainer(network, epoch_size, num_quantization_bits, [progress_printer, log_printer], block_size, warm_up) train_source = create_image_mb_source(train_data, train_rois, True, total_number_of_samples=max_epochs * epoch_size) train_source test_source = create_image_mb_source(test_data, train_rois, False, total_number_of_samples=cntk.io.FULL_DATA_SWEEP) train_and_test(network, trainer, train_source, test_source, minibatch_size, epoch_size, restore) # # get train sample size evaluate sample size # def get_sample_counts(train_file, test_file): counts = [0, 0] if os.path.exists(train_file): ff = open(train_file) counts[0] = len(ff.readlines()) ff.close() if os.path.exists(test_file): ff = open(test_file) counts[1] = len(ff.readlines()) ff.close() return counts def open_anchor_file(anchor_file): anchors = [] file = open(anchor_file) lines = file.readlines() for line in lines: if len(line.strip()) > 0: dims = line.strip().split("\t") anchors.append([float(dims[0]), float(dims[1])]) file.close() return np.array(anchors).astype(np.float32) if __name__=='__main__': anchor_data = 'anchor.txt' if not os.path.exists(anchor_data): raise RuntimeError("File '%s' does not exist." %anchor_data) anchors = open_anchor_file(anchor_data) if anchors.shape[0] < num_anchors: raise RuntimeError("Anchor dimension is less than %s" %num_anchors) # network = create_yolo2net(anchors) # cntk.logging.graph.plot(network['output'], 'yolo2.png') train_data = 'train.txt' train_rois = 'train.rois.txt' test_data = 'train.txt' test_rois = 'train.rois.txt' sample_size = get_sample_counts(train_data, test_data) net_train_and_eval(train_data, train_rois, test_data, test_rois, priors = anchors, epoch_size=sample_size[0], block_size = None, minibatch_size = 32, max_epochs = 130, log_to_file = 'Yolo2Net.log') # Must call MPI finalize when process exit without exceptions cntk.train.distributed.Communicator.finalize()
39.436
171
0.647733
0
0
0
0
0
0
0
0
1,602
0.162491
c42f5f63c17465e80eb4449fa0bfca6ef5e47655
948
py
Python
hqq_tool/rongcloud/demo.py
yaoruda/DRFLearning
6b17ef0d557142e8563d80788351f8b7ab94f248
[ "MIT" ]
1
2018-09-21T09:42:02.000Z
2018-09-21T09:42:02.000Z
hqq_tool/rongcloud/demo.py
yaoruda/DRFLearning
6b17ef0d557142e8563d80788351f8b7ab94f248
[ "MIT" ]
null
null
null
hqq_tool/rongcloud/demo.py
yaoruda/DRFLearning
6b17ef0d557142e8563d80788351f8b7ab94f248
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # __author__= "Ruda" # Date: 2018/10/16 ''' import os from rongcloud import RongCloud app_key = os.environ['APP_KEY'] app_secret = os.environ['APP_SECRET'] rcloud = RongCloud(app_key, app_secret) r = rcloud.User.getToken(userId='userid1', name='username', portraitUri='http://www.rongcloud.cn/images/logo.png') print(r) {'token': 'P9YNVZ2cMQwwaADiNDVrtRZKF+J2pVPOWSNlYMA1yA1g49pxjZs58n4FEufsH9XMCHTk6nHR6unQTuRgD8ZS/nlbkcv6ll4x', 'userId': 'userid1', 'code': 200} r = rcloud.Message.publishPrivate( fromUserId='userId1', toUserId={"userId2","userid3","userId4"}, objectName='RC:VcMsg', content='{"content":"hello","extra":"helloExtra","duration":20}', pushContent='thisisapush', pushData='{"pushData":"hello"}', count='4', verifyBlacklist='0', isPersisted='0', isCounted='0') print(r) {'code': 200} ''' ''' More: https://github.com/rongcloud/server-sdk-python '''
27.085714
143
0.679325
0
0
0
0
0
0
0
0
943
0.994726
c4311123dd5258af551865a612948896d2a1bbc9
2,132
py
Python
registration/email.py
openstack-kr/openinfradays-2018
9eb0e284ab95e177dc4acca17d63ccbdaff67fb1
[ "Apache-2.0" ]
null
null
null
registration/email.py
openstack-kr/openinfradays-2018
9eb0e284ab95e177dc4acca17d63ccbdaff67fb1
[ "Apache-2.0" ]
1
2018-06-17T02:21:41.000Z
2018-06-17T02:21:41.000Z
registration/email.py
openstack-kr/openinfradays-2018
9eb0e284ab95e177dc4acca17d63ccbdaff67fb1
[ "Apache-2.0" ]
1
2018-05-31T11:39:02.000Z
2018-05-31T11:39:02.000Z
from django.core.mail import EmailMessage from django.conf import settings def send_email(name, date, email): txt = """ <html> <body> <table cellpadding='0' cellspacing='0' width='100%' border='0'> <tbody> <tr> <td style='word-wrap:break-word;font-size:0px;padding:0px;padding-bottom:10px' align='left'> <div style='color:#000000;font-family:Spoqa Han Sans,sans-serif;font-size:20px;line-height:22px;letter-spacing:-0.8px;text-align:left'> 안녕하세요 <span style='color:#3832D8'>{0}</span> 님, </div> </td> </tr> <tr> <td style='word-wrap:break-word;font-size:0px;padding:0px;padding-bottom:10px' align='left'> <div style='color:#000000;font-family:Spoqa Han Sans,sans-serif;font-size:30px;line-height:1.3;letter-spacing:-1.1px; text-align:left'> OpenInfra Days Korea 2018 </div> </td> </tr> <tr> <td style='word-wrap:break-word;font-size:0px;padding:0px;padding-bottom:30px' align='left'> <div style='color:#000000;font-family:Spoqa Han Sans,sans-serif;font-size:20px;line-height:22px;letter-spacing:-0.8px;text-align:left'> 초청 티켓 등록이 완료되었습니다. </div> </td> </tr> <tr> <td style='word-wrap:break-word;font-size:0px;padding:0px;padding-bottom:30px' align='left'> <div style='color:#000000;font-family:Spoqa Han Sans,sans-serif;font-size:20px;line-height:22px;letter-spacing:-0.8px;text-align:left'> 참가 일자 : {1} </div> </td> </tr> <tr> <td style='word-wrap:break-word;font-size:0px;padding:0px' align='left'> <div style='color:#000000;font-family:Spoqa Han Sans,sans-serif;font-size:20px;line-height:22px;letter-spacing:-0.8px;text-align:left'> <a href="http://invite.openinfradays.kr">티켓 확인</a> </div> </td> </tr> </tbody> </table> </body> </html> """.format(name, date) email = EmailMessage(settings.EMAIL_TITLE, txt, to=(email,)) email.content_subtype = "html" return email.send()
38.071429
147
0.60272
0
0
0
0
0
0
0
0
1,927
0.880713
c431a581714f033cba2ab3f52062e3fdddf8f0b8
5,767
py
Python
train_ema.py
qym7/WTALFakeLabels
139738025ab69f287c4fe3c97389a637f1a0b376
[ "MIT" ]
3
2021-12-24T09:27:42.000Z
2022-01-03T10:59:47.000Z
train_ema.py
qym7/WTALFakeLabels
139738025ab69f287c4fe3c97389a637f1a0b376
[ "MIT" ]
1
2021-12-26T02:40:40.000Z
2021-12-26T02:50:26.000Z
train_ema.py
qym7/WTALFakeLabels
139738025ab69f287c4fe3c97389a637f1a0b376
[ "MIT" ]
null
null
null
''' Author: your name Date: 2021-12-25 17:33:51 LastEditTime: 2021-12-29 10:10:14 LastEditors: Please set LastEditors Description: 打开koroFileHeader查看配置 进行设置: https://github.com/OBKoro1/koro1FileHeader/wiki/%E9%85%8D%E7%BD%AE FilePath: /yimingqin/code/WTAL-Uncertainty-Modeling/train.py ''' import torch import torch.nn as nn import numpy as np from collections import OrderedDict import utils class UM_loss(nn.Module): def __init__(self, alpha, beta, lmbd, gamma, margin, thres): super(UM_loss, self).__init__() self.alpha = alpha self.beta = beta self.lmbd = lmbd self.gamma = gamma self.margin = margin self.thres = thres self.ce_criterion = nn.BCELoss() self.l2_criterion = nn.MSELoss() def balanced_ce(self, gt, cas): loss = 0 count = 0 pmask = (gt > self.thres).float().cuda() for i in range(cas.shape[0]): for j in range(cas.shape[-1]): if pmask[i, :, j].sum() > 0: r = sum(pmask[i, :, j]==1) / float(pmask.shape[1]) coef_0 = 0.5 * r / (r - 1) coef_1 = coef_0 * (r - 1) # _loss = coef_1 * pmask[i, :, j] * torch.log(cas[i, :, j] + 0.00001) +\ # coef_0 * (1.0 - pmask[i, :, j]) * torch.log(1.0 - cas[i, :, j] + 0.00001) _loss = torch.norm(cas[i, :, j] - pmask[i, :, j], p=2) loss = loss + torch.mean(_loss) count += 1 loss = loss / count return loss def forward(self, score_act, score_bkg, feat_act, feat_bkg, label, gt, sup_cas, cas_s, cas_t): loss = {} label = label / torch.sum(label, dim=1, keepdim=True) loss_cls = self.ce_criterion(score_act, label) label_bkg = torch.ones_like(label).cuda() label_bkg /= torch.sum(label_bkg, dim=1, keepdim=True) loss_be = self.ce_criterion(score_bkg, label_bkg) loss_act = self.margin - torch.norm(torch.mean(feat_act, dim=1), p=2, dim=1) loss_act[loss_act < 0] = 0 loss_bkg = torch.norm(torch.mean(feat_bkg, dim=1), p=2, dim=1) loss_um = torch.mean((loss_act + loss_bkg) ** 2) loss_total = loss_cls + self.alpha * loss_um + self.beta * loss_be if sup_cas is not None: loss_sup = self.balanced_ce(gt, sup_cas) loss["loss_sup"] = loss_sup print("loss_sup", (self.lmbd*loss_sup).detach().cpu().item()) loss_total = loss_total + self.lmbd * loss_sup if cas_s is not None: # teacher student constrainte loss_st = self.l2_criterion(cas_s, cas_t) loss_total = loss_total + self.gamma * loss_st print("loss_st", (self.gamma*loss_st).detach().cpu().item()) loss["loss_st"] = loss_st loss["loss_cls"] = loss_cls loss["loss_be"] = loss_be loss["loss_um"] = loss_um loss["loss_total"] = loss_total print("loss_cls", loss_cls.detach().cpu().item()) print("loss_be", (self.beta * loss_be).detach().cpu().item()) print("loss_um", (self.alpha * loss_um).detach().cpu().item()) print("loss_total", loss_total.detach().cpu().item()) return loss_total, loss def train(net_student, net_teacher, loader_iter, optimizer, criterion, logger, step, m): net_student.train() _data, _label, _gt, _, _ = next(loader_iter) _data = _data.cuda() _label = _label.cuda() if _gt is not None: _gt = _gt.cuda() optimizer.zero_grad() score_act, score_bkg, feat_act, feat_bkg, _, cas_softmax_s, sup_cas_softmax = net_student(_data) _, _, _, _, _, cas_softmax_t, _ = net_student(_data) # cas = None # if net.self_train: # feat_magnitudes_act = torch.mean(torch.norm(feat_act, dim=2), dim=1) # feat_magnitudes_bkg = torch.mean(torch.norm(feat_bkg, dim=2), dim=1) # feat_magnitudes = torch.norm(features, p=2, dim=2) # feat_magnitudes = utils.minmax_norm(feat_magnitudes, # max_val=feat_magnitudes_act, # min_val=feat_magnitudes_bkg) # feat_magnitudes = feat_magnitudes.repeat((cas_softmax.shape[-1], 1, 1)).permute(1, 2, 0) # cas = utils.minmax_norm(cas_softmax * feat_magnitudes) # if step < 10: # cas_softmax_s = None cost, loss = criterion(score_act, score_bkg, feat_act, feat_bkg, _label, _gt, sup_cas_softmax, cas_softmax_s, cas_softmax_t) # update student parameters by backprapagation cost.backward() optimizer.step() # update teacher parameters by EMA student_params = OrderedDict(net_student.named_parameters()) teacher_params = OrderedDict(net_teacher.named_parameters()) # check if both model contains the same set of keys assert student_params.keys() == teacher_params.keys() for name, param in student_params.items(): # see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage # shadow_variable -= (1 - decay) * (shadow_variable - variable) teacher_params[name] = teacher_params[name] * m + (1 - m) * param student_buffers = OrderedDict(net_student.named_buffers()) teacher_buffers = OrderedDict(net_teacher.named_buffers()) # check if both model contains the same set of keys assert student_buffers.keys() == teacher_buffers.keys() for name, buffer in student_buffers.items(): teacher_buffers[name] = teacher_buffers[name] * m + (1 - m) * buffer for key in loss.keys(): logger.log_value(key, loss[key].cpu().item(), step)
38.704698
106
0.602393
2,945
0.508899
0
0
0
0
0
0
1,567
0.270779
c43395c47fe6f6295740535434326b1a38c6e0c8
3,597
py
Python
scan/fetchers/cli/cli_fetch_oteps_lxb.py
korenlev/calipso-cvim
39278a5cf09c40b26a8a143ccc0c8d437961abc2
[ "Apache-2.0" ]
null
null
null
scan/fetchers/cli/cli_fetch_oteps_lxb.py
korenlev/calipso-cvim
39278a5cf09c40b26a8a143ccc0c8d437961abc2
[ "Apache-2.0" ]
null
null
null
scan/fetchers/cli/cli_fetch_oteps_lxb.py
korenlev/calipso-cvim
39278a5cf09c40b26a8a143ccc0c8d437961abc2
[ "Apache-2.0" ]
null
null
null
############################################################################### # Copyright (c) 2017-2020 Koren Lev (Cisco Systems), # # Yaron Yogev (Cisco Systems), Ilia Abashin (Cisco Systems) and others # # # # All rights reserved. This program and the accompanying materials # # are made available under the terms of the Apache License, Version 2.0 # # which accompanies this distribution, and is available at # # http://www.apache.org/licenses/LICENSE-2.0 # ############################################################################### from scan.fetchers.cli.cli_fetcher import CliFetcher from scan.fetchers.db.db_access import DbAccess class CliFetchOtepsLxb(CliFetcher, DbAccess): def get(self, parent_id): vconnector = self.inv.get_by_id(self.get_env(), parent_id) if not vconnector: return [] configurations = vconnector['configurations'] tunneling_ip = configurations['tunneling_ip'] tunnel_types_used = configurations['tunnel_types'] if not tunnel_types_used: return [] tunnel_type = tunnel_types_used[0] if not tunnel_type: return [] # check only interfaces with name matching tunnel type ret = [i for i in vconnector['interfaces'].values() if i['name'].startswith(tunnel_type + '-')] for otep in ret: otep['ip_address'] = tunneling_ip otep['host'] = vconnector['host'] self.get_otep_ports(otep) otep['id'] = otep['host'] + '-otep-' + otep['name'] otep['name'] = otep['id'] otep['vconnector'] = vconnector['name'] otep['overlay_type'] = tunnel_type self.get_udp_port(otep) return ret """ fetch OTEP data from CLI command 'ip -d link show' """ def get_otep_ports(self, otep): cmd = 'ip -d link show' lines = self.run_fetch_lines(cmd, ssh_to_host=otep['host']) header_format = '[0-9]+: ' + otep['name'] + ':' interface_lines = self.get_section_lines(lines, header_format, '\S') otep['data'] = '\n'.join(interface_lines) regexps = [ {'name': 'state', 're': ',UP,', 'default': 'DOWN'}, {'name': 'mac_address', 're': '.*\slink/ether\s(\S+)\s'}, {'name': 'mtu', 're': '.*\smtu\s(\S+)\s'}, ] self.get_object_data(otep, interface_lines, regexps) cmd = 'bridge fdb show' dst_line_format = ' dev ' + otep['name'] + ' dst ' lines = self.run_fetch_lines(cmd, ssh_to_host=otep['host']) lines = [l for l in lines if dst_line_format in l] if lines: l = lines[0] otep['bridge dst'] = l[l.index(' dst ')+5:] return otep def get_udp_port(self, otep): table_name = "{}.ml2_{}_endpoints".format(self.neutron_db, otep['overlay_type']) results = None try: results = self.get_objects_list_for_id( """ SELECT udp_port FROM {} WHERE host = %s """.format(table_name), "vedge", otep['host']) except Exception as e: self.log.error('failed to fetch UDP port for OTEP: ' + str(e)) otep['udp_port'] = 0 for result in results: otep['udp_port'] = result['udp_port']
43.865854
79
0.512093
2,773
0.77092
0
0
0
0
0
0
1,449
0.402836
c433cd175dc051909207a6a2031e2dac3b9eff92
612
py
Python
appengine_config.py
ioriwitte/datavocab
5f99c679a23a164ab93ac1bcaf9a30a01728ee37
[ "Apache-2.0" ]
13
2019-12-03T15:25:55.000Z
2021-10-16T00:18:47.000Z
appengine_config.py
jesman/schemaorg
6649c41e56a9724eaeed25dedf67736258f922bf
[ "Apache-2.0" ]
11
2019-10-16T12:34:11.000Z
2021-02-04T11:23:03.000Z
appengine_config.py
jesman/schemaorg
6649c41e56a9724eaeed25dedf67736258f922bf
[ "Apache-2.0" ]
9
2017-12-13T08:07:48.000Z
2019-06-18T14:30:12.000Z
"""`appengine_config` gets loaded when starting a new application instance.""" import vendor # insert `lib` as a site directory so our `main` module can load # third-party libraries, and override built-ins with newer # versions. vendor.add('lib') import os # Called only if the current namespace is not set. def namespace_manager_default_namespace_for_request(): # The returned string will be used as the Google Apps domain. applicationVersion="Default" if "CURRENT_VERSION_ID" in os.environ: applicationVersion = os.environ["CURRENT_VERSION_ID"].split('.')[0] return applicationVersion
38.25
78
0.756536
0
0
0
0
0
0
0
0
379
0.619281
c433ed35cefab756913c6887caed7bdb03a9f9e5
270
py
Python
10_KNN_3D/main.py
ManMohan291/PyProgram
edcaa927bd70676bd14355acad7262ae2d32b8e5
[ "MIT" ]
2
2018-09-07T17:44:54.000Z
2018-09-07T17:44:57.000Z
10_KNN_3D/main.py
ManMohan291/PyProgram
edcaa927bd70676bd14355acad7262ae2d32b8e5
[ "MIT" ]
null
null
null
10_KNN_3D/main.py
ManMohan291/PyProgram
edcaa927bd70676bd14355acad7262ae2d32b8e5
[ "MIT" ]
null
null
null
import KNN as K K.clearScreen() dataTraining= K.loadData("dataTraining.txt") X=dataTraining[:,0:3] initial_centroids=K.listToArray([[3, 3,3],[6, 2,4],[8,5,7]]) idx=K.KMean_Run(X,initial_centroids,5) K.SaveData(K.concatenateVectors(X,idx)) K.plotKNN2(X,idx)
12.272727
60
0.703704
0
0
0
0
0
0
0
0
18
0.066667
c434ee7e49ec7f84e8ed989b7259f62a6d292fde
3,793
py
Python
hummingbird/graphics/state_plotbox.py
don4get/hummingbird
ec9da37b74f17702201f475d79b842f41694c095
[ "MIT" ]
null
null
null
hummingbird/graphics/state_plotbox.py
don4get/hummingbird
ec9da37b74f17702201f475d79b842f41694c095
[ "MIT" ]
null
null
null
hummingbird/graphics/state_plotbox.py
don4get/hummingbird
ec9da37b74f17702201f475d79b842f41694c095
[ "MIT" ]
null
null
null
#!/usr/bin/env python import pyqtgraph as pg from pyqtgraph import ViewBox from hummingbird.graphics.plotter_args import PlotBoxArgs from hummingbird.graphics.state_plot import StatePlot class StatePlotBox: def __init__(self, window, args): """ Create a new plotbox wrapper object Arguments: window (pg.GraphicsWindow): pyqtgraph window object in which to place this plotbox args (PlotboxArgs object): PlotboxArgs object which holds all the appropriate arguments for the plotbox """ if not isinstance(args, PlotBoxArgs): raise TypeError('\'args\' argument must be of type PlotboxArgs') # Initlialize plotbox if args.labels is not None: self.plotbox = window.addPlot(title=args.title, labels=args.labels) else: self.plotbox = window.addPlot(labels={'left': args.title}) # Handle dimension parameters self.dimension = len(args.plots[0].state_names) if self.dimension == 1: self.plotbox.setAutoVisible(y=True) else: self.plotbox.setAutoVisible(x=True, y=True) self.plotbox.setAspectLocked() # Lock x/y ratio to be 1 # Handle color parameters self.set_axis_color(args.axis_color, args.axis_width) self.distinct_plot_hues = args.plot_hues self.plot_min_hue = args.plot_min_hue self.plot_max_hue = args.plot_max_hue self.plot_min_value = args.plot_min_value self.plot_max_value = args.plot_max_value if args.legend: self.add_legend() # Plots related to this plotbox self.plots = {} for p in args.plots: self.add_plot(p) # Other args self.time_window = args.time_window def label_axes(self, x_label=None, y_label=None): if x_label is not None: self.plotbox.setLabel('bottom', x_label) if y_label is not None: self.plotbox.setLabel('left', y_label) def set_axis_color(self, color, width=1): self.axis_pen = pg.mkPen(color=color, width=width) self.plotbox.getAxis("left").setPen(self.axis_pen) self.plotbox.getAxis("bottom").setPen(self.axis_pen) def add_legend(self): self.plotbox.addLegend(size=(1, 1), offset=(1, 1)) def add_plot(self, plot_args): if plot_args.color is None: plot_args.set_color(self._get_color(len(self.plots))) self.plots[plot_args.name] = StatePlot(self.plotbox, plot_args) def get_states(self): states = {} for p in self.plots.values(): states.update(p.get_states()) return states def get_xrange(self): return self.plotbox.vb.targetRange()[0] def get_yrange(self): return self.plotbox.vb.targetRange()[1] def update(self, t): """ Update the plot data and adjust viewing range Arguments: t (float): the current time in seconds. Used to adjust the rolling time window appropriately """ for p in self.plots.values(): p.update() if self.dimension == 1: x_min = max(t - self.time_window, 0) x_max = t self.plotbox.setXRange(x_min, x_max) self.plotbox.enableAutoRange(axis=ViewBox.YAxis) else: self.plotbox.enableAutoRange(axis=ViewBox.XYAxes) # TODO: Add 3D support here def _get_color(self, index): """ Returns incremental plot colors based on index """ return pg.intColor(index, minValue=self.plot_min_value, maxValue=self.plot_max_value, hues=self.distinct_plot_hues, minHue=self.plot_min_hue, maxHue=self.plot_max_hue)
35.12037
108
0.627472
3,603
0.949908
0
0
0
0
0
0
842
0.221988
c4355d1898179dbc210d3d0618bca78d79edd5b7
348
py
Python
quizapp/jsonify_quiz_output.py
malgulam/100ProjectsOfCode
95026b15d858a6e97dfd847c5ec576bbc260ff61
[ "MIT" ]
8
2020-12-13T16:15:34.000Z
2021-11-13T22:45:28.000Z
quizapp/jsonify_quiz_output.py
malgulam/100ProjectsOfCode
95026b15d858a6e97dfd847c5ec576bbc260ff61
[ "MIT" ]
1
2021-06-02T03:42:39.000Z
2021-06-02T03:42:39.000Z
quizapp/jsonify_quiz_output.py
malgulam/100ProjectsOfCode
95026b15d858a6e97dfd847c5ec576bbc260ff61
[ "MIT" ]
1
2020-12-14T20:01:14.000Z
2020-12-14T20:01:14.000Z
import json #start print('start') with open('quizoutput.txt') as f: lines = f.readlines() print('loaded quiz data') print('changing to json') json_output = json.loads(lines[0]) print(json_output) with open('quizoutput.txt', 'w') as f: f.write(json_output) # for item in json_output: # print(item['question']) # print('done')
19.333333
38
0.666667
0
0
0
0
0
0
0
0
158
0.454023