hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
1507c96d9d4f256bc65da807cd5af86c8c25fb94
6,371
py
Python
dft/dft-hartree-hydrogen.py
marvinfriede/projects
7050cd76880c8ff0d9de17b8676e82f1929a68e0
[ "MIT" ]
null
null
null
dft/dft-hartree-hydrogen.py
marvinfriede/projects
7050cd76880c8ff0d9de17b8676e82f1929a68e0
[ "MIT" ]
3
2021-04-14T20:15:26.000Z
2021-04-14T20:20:54.000Z
dft/dft-hartree-hydrogen.py
marvinfriede/projects
7050cd76880c8ff0d9de17b8676e82f1929a68e0
[ "MIT" ]
null
null
null
#!/bin/env python3 # coding: utf8 ''' My implementation of DFT Assignment 5.1: Hartree energy for H-atom GS Taught by René Wirnata in 2019/2020. Links: https://tu-freiberg.de/fakultaet2/thph/lehre/density-functional-theory https://github.com/PandaScience/teaching-resources This script uses the last assignment's code to determine a solution of the radial Schrödinger equation for the hydrogen ground state (n=1, l=0). After normalizing, the Hartree potential energy w(r) = r*vh(r) is computed in a second "integration" step and numerically integrated to the Hartree energy (~0.3125 Ha). For hydrogen, the homogeneous solution w_hom(r) = beta * r is not required in order to match the boundary condition (--> beta = 0). Note, that the integration limits (tmin, tmax) and step size (h) need to be identical for solve_rseq() and solve_poisson() or you must use interpolated versions of the functions w(r) and u(r) when computing the Hartree energy. Further, tmin for solve_poisson() should not be smaller than tmin for solve_rseq(), because extrapolating u(r) beyond the computed data points may result in errors. ''' import time import numpy as np import matplotlib.pyplot as plt from scipy.integrate import solve_ivp, trapz from scipy.interpolate import interp1d nsteps = 10000 rmin = 0.000001 rmax = 20 def secant(f, x1=-12345, x2=6789, maxiter=10000, tol=1e-10): """secant method; x1 and x2 are crucial for finding the desired root""" for itr in range(maxiter): xnew = x2 - (x2 - x1) / (f(x2) - f(x1)) * f(x2) if abs(xnew - x2) < tol: break x1 = x2 x2 = xnew else: print("Calculation exceeded maximum number of iterations!") exit() return xnew, itr def trapezoidal(f, a, b, n=10000): """trapez method for numerical integration""" s = 0.0 h = (b - a) / n for i in range(0, n): s += f(a + i * h) return h * (s + 0.5 * (f(a) + f(b))) def rad_seq(t, y, energy): """returns radial SEQ as system of two 1st order differential equations""" # input: y = [y1, y2]; return y = [y1', y2'] # y1' = y2; y2' = (...)*y1 return [y[1], (- 2 * (1 / t + energy)) * y[0]] def initValues(r): """getting initial values for numeric intergration from correct solution""" u = 2 * r * np.exp(-r) uPrime = (1 - r) * 2 * np.exp(-r) return [u, uPrime] def solve_rad_seq(energy): """wrapper for ODE integration; energy and l as parameter, integration from rmax to rmin (inwards)""" sol = solve_ivp( lambda t, y: rad_seq(t, y, energy), t_span=[rmax, rmin], t_eval=np.linspace(rmax, rmin, nsteps), y0=initValues(rmax)) u = sol.y[0] r = sol.t return u[::-1], r[::-1] def u0(energy): """get first value of integrated Schrödinger equation; since the array is reversed, u[0] corresponds to the u-value at r = 0 (y-interscetion); different energies are passed in by secant method""" u, r = solve_rad_seq(energy) return u[0] def normalize(energy): """integrating with calculated energy eigenvalue and normalization""" u, r = solve_rad_seq(energy) norm = trapz(u * u, r) u_norm = u / np.sqrt(norm) return u_norm, r, norm def poisson(t, y, u): """returns poisson equation w''(t) = - u²(t) / t as system of two 1st order differential equations""" # input: y = [y1, y2]; return y = [y1', y2'] # y1' = y2; y2' = - u²(t) / t return [y[1], -u(t) ** 2 / t] def solve_poisson(f_int): """solve radial poisson equation; input is u(r) from interpolation""" sol = solve_ivp( lambda t, y: poisson(t, y, f_int), t_span=[rmin, rmax], t_eval=np.linspace(rmin, rmax, nsteps), y0=[0, 1]) return sol.y[0], sol.t def main(): # find lowest energy eigenvalue; corresponds to energy of hydrogen atom root_start_time = time.time() root, numIter = secant(u0, -0.6, -0.55) root_exec_time = round((time.time() - root_start_time), 2) print("Energy of hydrogen atom: {:.5f} Hartree\t\t ({:.2f}s)".format( root, root_exec_time)) # normalization norm_start_time = time.time() u_norm, r, norm = normalize(root) norm_exec_time = round((time.time() - norm_start_time), 2) print( "Normalization done ({:.5f} -> 1)\t\t\t ({:.2f}s)".format(norm, norm_exec_time)) # interpolation of radial SEQ u_norm_spline = interp1d(r, u_norm) # solving radial poisson equation result is w(r), the single orbital density w, r = solve_poisson(u_norm_spline) # adding homogeneous solution, so that boundary conditions are fulfilled addhom_start_time = time.time() qtot = 1 beta = (qtot - w[-1]) / r[-1] w += beta * r addhom_exec_time = round((time.time() - addhom_start_time), 2) print("Correction for boundary condition: beta = {:.5f}\t ({:.2f}s)".format( beta, addhom_exec_time)) # compute hartree energy: Z/2 * Int(dr v_h(r) u²(r)) with v_h(r) = w(r) / r hartree_start_time = time.time() e_hartree = 0.5 * trapz(w / r * u_norm * u_norm, r) hartree_exec_time = round((time.time() - hartree_start_time), 2) print("Hartree energy for hydrogen: E_h = {:.5f}\t\t ({:.2f}s)".format( e_hartree, hartree_exec_time)) # compute hartree energy with own trapezoidal method hartree2_start_time = time.time() spline = interp1d(r, w / r * u_norm * u_norm) eh = 0.5 * trapezoidal(spline, r[0], r[-1]) hartree2_exec_time = round((time.time() - hartree2_start_time), 2) print("Hartree energy for hydrogen: E_h = {:.5f}\t\t ({:.2f}s)".format( eh, hartree2_exec_time)) # plotting numerical solutions plt.plot(r, w, "g", lw=2, ls="--", label=r"$w_{\mathrm{num}}(r)$") plt.plot(r, w / r, "r", lw=2, ls="--", label=r"$v_{\mathrm{num}}(r)$") plt.plot(r, w / r * u_norm ** 2, "b", lw=2, ls="--", alpha=0.5, label=r"$v_{\mathrm{num}}(r) \, |u(r)|^2$") # plotting exact solutions def w_exact(r): return - (r + 1) * np.exp(- 2 * r) + 1 def v_exact(r): return w_exact(r) / r plt.plot(r, w_exact(r), "g", lw=4, alpha=0.5, ls="-", label=r"$w_{\mathrm{exact}}(r)$") plt.plot(r, v_exact(r), "r", lw=4, alpha=0.5, ls="-", label=r"$v_{\mathrm{exact}}(r)$") # plot styling plt.xlabel(r"$r$ in Bohr") plt.xlim(-0.3, 10) plt.axhline(y=0, color="k", ls="--", lw="0.5") plt.axvline(x=0, color="k", ls="--", lw="0.5") plt.legend(loc="best", fancybox=True, shadow=True) # plt.show() if __name__ == "__main__": main()
30.777778
86
0.644169
0
0
0
0
0
0
0
0
3,105
0.486906
1507f85202e8ecdff0fe986b123a48f1bb2bac41
18,714
py
Python
workflow & analyses notebooks/fukushima_telomere_methods.py
Jared-Luxton/Fukushima-Nuclear-Disaster-Humans
1cb84f63172005f3bd8947d2bca041deaeec90e8
[ "MIT" ]
null
null
null
workflow & analyses notebooks/fukushima_telomere_methods.py
Jared-Luxton/Fukushima-Nuclear-Disaster-Humans
1cb84f63172005f3bd8947d2bca041deaeec90e8
[ "MIT" ]
null
null
null
workflow & analyses notebooks/fukushima_telomere_methods.py
Jared-Luxton/Fukushima-Nuclear-Disaster-Humans
1cb84f63172005f3bd8947d2bca041deaeec90e8
[ "MIT" ]
1
2021-05-23T22:06:17.000Z
2021-05-23T22:06:17.000Z
import numpy as np import pandas as pd import os import matplotlib.pyplot as plt from sklearn import datasets, linear_model from difflib import SequenceMatcher import seaborn as sns from statistics import mean from ast import literal_eval from scipy import stats from sklearn.linear_model import LinearRegression from sklearn.linear_model import LogisticRegression from pygam import LinearGAM, s, l, f from matplotlib import lines import six def extract_boar_teloFISH_as_list(path): """ FUNCTION FOR PULLING KELLY'S TELOFISH DATA FOR 40 BOARS into a LIST.. TO BE MADE INTO A DATAFRAME & JOINED W/ MAIN DATAFRAME if possible These excel files take forever to load.. the objective here is to synthesize all the excel files for telomere FISH data into one dataframe, then save that dataframe to csv file to be retrieved later loading one whole csv file containing all the data will be much, much faster than loading the parts of the whole Along the way, we'll normalize the teloFISH data using controls internal to each excel file """ boar_teloFISH_list = [] for file in os.scandir(path): if 'Hyb' in file.name: print(f'Handling {file.name}...') full_name = path + file.name # making a dict of excel sheets, where KEY:VALUE pairs are SAMPLE ID:TELO DATA telo_excel_dict = pd.read_excel(full_name, sheet_name=None, skiprows=4, usecols=[3], nrows=5000) if 'Telomere Template' in telo_excel_dict.keys(): del telo_excel_dict['Telomere Template'] excel_file_list = [] for sample_id, telos in telo_excel_dict.items(): telos_cleaned = clean_individ_telos(telos) if sample_id != 'Control': excel_file_list.append([sample_id, telos_cleaned.values, np.mean(telos_cleaned)]) elif sample_id == 'Control': control_value = np.mean(telos_cleaned) #normalize teloFISH values by control value for sample in excel_file_list: sample_data = sample #normalize individual telos sample_data[1] = np.divide(sample_data[1], control_value) #normalize telo means sample_data[2] = np.divide(sample_data[2], control_value) boar_teloFISH_list.append(sample_data) print('Finished collecting boar teloFISH data') return boar_teloFISH_list def gen_missing_values_andimpute_or_randomsampledown(n_cells, telosPercell, df): max_telos = n_cells * telosPercell half_telos = (n_cells * telosPercell) / 2 if df.size > max_telos: df_sampled = df.sample(max_telos) return df_sampled if df.size > 25 and df.size <= half_telos: missing_data_difference = abs( (n_cells * telosPercell) - df.size ) rsampled = df.sample(missing_data_difference, replace=True, random_state=28) concat_ed = pd.concat([rsampled, df], sort=False) np.random.shuffle(concat_ed.to_numpy()) return concat_ed if df.size > 25 and df.size < max_telos: missing_data_difference = abs( (n_cells * telosPercell) - df.size ) rsampled = df.sample(missing_data_difference, random_state=28) concat_ed = pd.concat([rsampled, df], sort=False) np.random.shuffle(concat_ed.to_numpy()) return concat_ed else: return df def clean_individ_telos(telo_data): labels=[6, 172, 338, 504, 670, 836, 1002, 1168, 1334, 1500, 1666, 1832, 1998, 2164, 2330, 2496, 2662, 2828, 2994, 3160, 3326, 3492, 3658, 3824, 3990, 4156, 4322, 4488, 4654, 4820] labels_offset_by6 = [(x-6) for x in labels] telo_data = telo_data.drop(labels_offset_by6) telo_data = pd.to_numeric(telo_data.iloc[:,0], errors='coerce') telo_data = telo_data.dropna(axis=0, how='any') telo_data = telo_data.to_frame(name=None) telo_data = telo_data[(np.abs(stats.zscore(telo_data)) < 3).all(axis=1)] telo_data = pd.Series(telo_data.iloc[:,0]) telo_data = gen_missing_values_andimpute_or_randomsampledown(30, 160, telo_data) telo_data.reset_index(drop=True, inplace=True) return telo_data def remove_dashes_space_sampleIDs(row): if '-' in str(row): row = str(row).replace('-', '').replace(' ', '') if '_' in str(row): row = str(row).replace('_', '') if ' ' in str(row): row = str(row).replace(' ', '') if 'gps' in str(row): row = str(row).replace('gps', '') if 'GPS' in str(row): row = str(row).replace('GPS', '') if 'collar' in (row): row = str(row).replace('collar', '') if 'COLLAR' in str(row): row = str(row).replace('COLLAR', '') return str(row) def readable_snake_df_dummy_variables(snake_df): Exposure_Status = [] for row in snake_df['Sample ID']: if row.startswith('C'): Exposure_Status.append('Control') elif row.startswith('E'): Exposure_Status.append('Exposed') snake_df['Exposure Status'] = Exposure_Status ### making dummy variables for snake exposure status snake_dum = pd.get_dummies(snake_df['Exposure Status'], prefix='Encoded', drop_first=True) snake_df['Encoded Exposed'] = snake_dum return snake_df def count_shared_sample_IDs(df1, df2, print_names=None): df1_IDs = set(df1['Sample ID'].unique()) df2_IDs = set(df2['Sample ID'].unique()) # common_IDs = df1_list - (df1_list - df2_list) common_IDs = list(df1_IDs & df2_IDs) print(f'The number of sample IDs in common are: {len(common_IDs)}') if print_names == 'yes' or print_names == 'Yes': print(f'The sample IDs in common are:\n{common_IDs}') def average_age_weeks(row): if '-' in str(row): numbers = str(row).split('-') average = (int(numbers[1]) + int(numbers[0])) / len(numbers) return int(average) else: return int(row) def quartile_cts_rel_to_df1(df1, df2): df1 = pd.DataFrame(df1) df2 = pd.DataFrame(df2) # count how many instances in df2 are below the 0.25 quantile of df1 quartile_1 = df2[df2 <= df1.quantile(0.25)].count() # count how many instances in df2 are within the 0.25 - 0.75 range quantile of df1 quartile_2_3 = df2[(df2 > df1.quantile(0.25)) & (df2 < df1.quantile(0.75))].count() # count how many instances in df2 are above 0.75 range quantile of df1 quartile_4 = df2[df2 >= df1.quantile(0.75)].count() # return counts of values return int(quartile_1.values), int(quartile_2_3.values), int(quartile_4.values) def make_quartiles_columns(total_boar_telos, df): pos_1, pos_2, pos_3 = 17, 18, 19 sample_id, telo_data = 0, 1 for i, row in df.iterrows(): boar_sample_telos = row[telo_data] df.iat[i, pos_1], df.iat[i, pos_2], df.iat[i, pos_3] = (quartile_cts_rel_to_df1(total_boar_telos, boar_sample_telos)) return df def linear_regression_graphs_between_variables(x=None, y=None, data=None, hue=None, col=None, hue_order=None, col_order=None, snake=False): if 'Binary' in y: ax=sns.lmplot(x=x, y=y, hue=hue, col=col, data=data, logistic=True, height=5.5, aspect=1, scatter_kws={"s": 175, "edgecolor":'black'}) else: ax=sns.lmplot(x=x, y=y, hue=hue, col=col, data=data, height=5.5, aspect=1, scatter_kws={"s": 175, "edgecolor":'black'}) fig = ax.fig ax.set_xlabels(x, fontsize=18) ax.set_xticklabels(fontsize=14) ax.set_ylabels(y, fontsize=18) ax.set_yticklabels(fontsize=14) ax.set_titles(size=14) # if 'Cortisol' in y: # ax.set(ylim=(0, 40)) plt.subplots_adjust(top=0.88) if hue == None and col == None: fig.suptitle(f'{x} vs.\n {y} in Fukushima Wild Boar', fontsize=18, ) # ax.savefig(f"../graphs/{x} vs {y}.png", dpi=400) if snake: fig.suptitle(f'{x} vs.\n {y} in Fukushima Wild Snake', fontsize=18, ) # elif hue == 'Sex' and col == 'Sex': # fig.suptitle(f'{x} vs. {y}\nper Sex in Fukushima Wild Boar', fontsize=16, weight='bold') # fig.legend(fontsize='large') # ax.savefig(f"../graphs/{x} vs {y} per sex.png", dpi=400) def graph_dose_age_vs_telos(df=None, x=None, x2=None, y=None, hue=None,): f, axes = plt.subplots(1, 2, figsize=(12,5), sharey=False, sharex=False) # dose vs. telomeres sns.regplot(x=x, y=y, data=df, ax=axes[0], # hue=hue, scatter_kws={'alpha':0.8, 'linewidth':1, 'edgecolor':'black', 's':df['Age (months)']*12, }) axes[0].set_xlabel(x, fontsize=14) axes[0].set_ylabel(y, fontsize=14) axes[0].tick_params(labelsize=12) # age vs. telomeres sns.regplot(x=x2, y=y, data=df, ax=axes[1], # hue=hue, scatter_kws={'alpha':0.8, 'linewidth':1, 'edgecolor':'black', 's':175, }) axes[1].set_xlabel(x2, fontsize=14) axes[1].set_xlim(-4,55) axes[1].set_ylabel(y, fontsize=14) if y == 'Mean Telomere Length (FISH)': axes[1].set_ylim(0.2,1.6) if y == 'Mean Telomere Length (qPCR)': axes[1].set_ylim(0.6,1.8) axes[1].tick_params(labelsize=12) def score_linear_regressions(x=None, y=None, data=None, sexes=['Overall']): for sex in sexes: if sex == 'Overall': X_r = data[x].values.reshape(-1, len(x)) y_r = data[y].values.reshape(-1, 1) regression = LinearRegression().fit(X_r,y_r) print(f'Linear regression for {x} vs. {y}:\nOverall R2 is {regression.score(X_r, y_r):.4f}\n') return regression else: X_r = data[data['Sex'] == sex][x].values.reshape(-1, len(x)) y_r = data[data['Sex'] == sex][y].values.reshape(-1, 1) regression = LinearRegression().fit(X_r,y_r) print(f"Linear regression for {x} vs. {y}:\nR2 for {sex}s is {regression.score(X_r, y_r):.4f}") return regression def eval_number(x): if x > 15: x = 1 return x elif x < 15: x = 0 return x def score_logistic_regressions(x=None, y=None, data=None): # for y in y_cols: sexes = [ # 'Male', # 'Female', 'Overall'] for sex in sexes: if sex == 'Overall': X_r = data[x].values.reshape(-1, 1) y_r = data[y].values.reshape(-1, ) log_reg = LogisticRegression(solver='lbfgs') regression = log_reg.fit(X_r,y_r) print(f'Logistic regression for {x} vs. {y}:\nOverall R2 is {regression.score(X_r, y_r):.4f}\n') else: X_r = data[data['Sex'] == sex][x].values.reshape(-1, 1) y_r = data[data['Sex'] == sex][y].values.reshape(-1, ) regression = LinearRegression().fit(X_r,y_r) print(f"Logistic regression for {x} vs. {y}:\nR2 for {sex}s is {regression.score(X_r, y_r):.4f}") def encode_sex(row): if row == 'Male': return 0 elif row == 'Female': return 1 else: print(f'ERROR.. row == {row}') def merge_return_df_cols_interest(dose_df, cortisol_df, cols_of_interest): merge_dose_cortisol = dose_df.merge(cortisol_df, on=['Sample ID']) trim_dose_cortisol = merge_dose_cortisol[cols_of_interest].copy() return trim_dose_cortisol def enforce_col_types(df): for col in df.columns: if col == 'Sample ID' or col == 'Sex': df[col] = df[col].astype('str') elif col == 'Age (months)' or col == 'encode sex': df[col] = df[col].astype('int64') else: df[col] = df[col].astype('float64') def male_or_female(row): if row == 'M' or row == 'm' or row == 'Male': return 'Male' elif row == 'F' or row == 'f' or row == 'Female': return 'Female' else: print(f'error... row == {row}') return np.NaN def make_age_class(row): if row <= 12: return 'piglet' elif row > 12 and row < 24: return 'yearling' elif row >= 20: return 'adult' def linear_regression_scores_X_y(df, y, y_name, dose_types): """ specifically for EDA """ for Xn in dose_types: features_list = [[Xn], [Xn, 'Age (months)'], [Xn, 'Age (months)', 'encoded sex']] for features in features_list: X = df[features].values.reshape(-1, len(features)) fit_lm = LinearRegression().fit(X, y) print(f'OLS | {features} vs. {y_name} --> R2: {fit_lm.score(X, y):.4f}') print('') return fit_lm def fit_gam_plot_dependencies(df=None, features=None, target=None, basis_1=s, basis_2=False, summary=False): X = df[features] y = df[target] if basis_1 and basis_2: gam = LinearGAM(basis_1(0, lam=60) + basis_2(1, lam=60), fit_intercept=True).fit(X, y) elif basis_1: gam = LinearGAM(basis_1(0, lam=60), fit_intercept=True).fit(X, y) else: print('no basis called for features.. error') if summary: print(gam.summary()) plot_gam_partial_dependencies(gam, features, target) def plot_gam_partial_dependencies(gam, features, target): for i, term in enumerate(gam.terms): if term.isintercept: continue XX = gam.generate_X_grid(term=i) pdep, confi = gam.partial_dependence(term=i, X=XX, width=0.95) plt.figure() plt.plot(XX[:, term.feature], pdep) plt.plot(XX[:, term.feature], confi, c='r', ls='--') plt.xlabel(f'{features[i]}', fontsize=14) plt.ylabel(f'{target}', fontsize=14) plt.title(f'Functional dependence of Y on X', fontsize=14) plt.show() def graph_y_vs_dose_age_sex(df=None, x=None, x2=None, x3=None, y=None, hue=None, dose_x_size='Age (months)', multiplier=12): f, axes = plt.subplots(1, 3, figsize=(15,5), sharey=True, sharex=False) fontsize=16 colors = sns.color_palette('Paired', len(df['Sample ID'].unique())), t = (0.7,) test = [x + t for x in colors[0]] # DOSE vs. Y sns.regplot(x=x, y=y, data=df, ax=axes[0], color=test[4], scatter_kws={'alpha':.8, 'linewidth':1, 'edgecolor':'black', 's':df[dose_x_size]*multiplier}) # AGE vs. Y # male O markers sns.regplot(x=x2, y=y, data=df[df['Sex'] == 'Male'], ax=axes[1], color=test[8], marker='o', fit_reg=False, scatter_kws={'alpha':.8, 'linewidth':1, 'edgecolor':'black', 's':175,}) # female X markers sns.regplot(x=x2, y=y, data=df[df['Sex'] == 'Female'], ax=axes[1], color=test[8], marker='X', fit_reg=False, scatter_kws={'alpha':.8, 'linewidth':1, 'edgecolor':'black', 's':200,}) # plotting just the linear reg sns.regplot(x=x2, y=y, data=df, ax=axes[1], color=test[8], scatter_kws={'s':0,}) # creating custom legend handles, labels = [], [] line1 = lines.Line2D([], [], color=test[8], alpha=.8, marker='o', mew=1, mec='black') line2 = lines.Line2D([], [], color=test[8], alpha=.8, marker='X', mew=1, mec='black') handles.append(line1) handles.append(line2) labels.append('Male') labels.append('Female') axes[1].legend(handles, labels, loc='upper right',ncol=1, fancybox=True, fontsize=fontsize, markerscale=2) # SEX vs. Y palette_cust = {'Male':test[0], 'Female':test[10]} sns.boxplot(x=x3, y=y, dodge=True, palette=palette_cust, order=['Male', 'Female'], data=df, ax=axes[2],) for patch in axes[2].artists: r, g, b, a = patch.get_facecolor() patch.set_facecolor((r, g, b, .6)) sns.swarmplot(x=x3, y=y, dodge=True, palette=palette_cust, order=['Male', 'Female'], data=df, ax=axes[2], size=12, edgecolor='black', linewidth=1, **{'alpha':0.8}) x_name = 'Reasonable Total Life Time Dose (mGy)' axes[0].set_xlabel(x_name, fontsize=fontsize) axes[0].set_ylabel(y, fontsize=fontsize) axes[0].tick_params(labelsize=fontsize) axes[1].set_xlabel(x2, fontsize=fontsize) axes[1].set_ylabel('', fontsize=fontsize) axes[1].tick_params(labelsize=fontsize) axes[2].set_xlabel(x3, fontsize=fontsize) axes[2].set_ylabel('', fontsize=fontsize) axes[2].tick_params(labelsize=fontsize) # axes[0].set_xlim(-50,700) # axes[1].set_xlim(-4,55) if y == 'Mean Telomere Length (Telo-FISH)': axes[0].set_ylim(0.2,1.6) axes[1].set_ylim(0.2,1.6) y_name = y elif y == 'Mean Telomere Length (qPCR)': axes[0].set_ylim(0.6,1.8) axes[1].set_ylim(0.6,1.8) y_name = y elif y == 'Cortisol (pg/mg)': axes[0].set_ylim(-3, 35) y_name = y.replace('/', '') elif y == 'Average # of dicentrics per cell': axes[0].set_ylim(-0.005, .065) y_name = y plt.tight_layout() plt.savefig(f'graphs/main figures/{y_name} vs {x} and {x2}.png', dpi=600, bbox_inches='tight') def render_mpl_table(data, col_width=3.0, row_height=0.625, font_size=14, header_color='#40466e', row_colors=['#f1f1f2', 'w'], edge_color='black', bbox=[0, 0, 1, 1], header_columns=0, path=None, ax=None, **kwargs): if ax is None: size = (np.array(data.shape[::-1]) + np.array([0, 1])) * np.array([col_width, row_height]) fig, ax = plt.subplots(figsize=size) ax.axis('off') mpl_table = ax.table(cellText=data.values, bbox=bbox, colLabels=data.columns, **kwargs) mpl_table.auto_set_font_size(False) mpl_table.set_fontsize(font_size) for k, cell in six.iteritems(mpl_table._cells): cell.set_edgecolor(edge_color) if k[0] == 0 or k[1] < header_columns: cell.set_text_props(weight='bold', color='w') cell.set_facecolor(header_color) else: cell.set_facecolor(row_colors[k[0]%len(row_colors) ]) plt.tight_layout() if path != None: plt.savefig(path, dpi=600, bbox_inches='tight') plt.close()
35.850575
125
0.589879
0
0
0
0
0
0
0
0
3,958
0.211499
1508aa76e743b64f436cbb0a8c19cf6751c48d1b
4,684
py
Python
src/xia2/cli/report.py
graeme-winter/xia2
e00d688137d4ddb4b125be9a3f37ae00265886c2
[ "BSD-3-Clause" ]
10
2015-10-30T06:36:55.000Z
2021-12-10T20:06:22.000Z
src/xia2/cli/report.py
graeme-winter/xia2
e00d688137d4ddb4b125be9a3f37ae00265886c2
[ "BSD-3-Clause" ]
528
2015-11-24T08:20:12.000Z
2022-03-21T21:47:29.000Z
src/xia2/cli/report.py
graeme-winter/xia2
e00d688137d4ddb4b125be9a3f37ae00265886c2
[ "BSD-3-Clause" ]
14
2016-03-15T22:07:03.000Z
2020-12-14T07:13:35.000Z
import json import os import sys from collections import OrderedDict import iotbx.phil import xia2.Handlers.Streams from dials.util.options import OptionParser from jinja2 import ChoiceLoader, Environment, PackageLoader from xia2.Modules.Report import Report from xia2.XIA2Version import Version phil_scope = iotbx.phil.parse( """\ title = 'xia2 report' .type = str prefix = 'xia2' .type = str log_include = None .type = path include scope xia2.Modules.Analysis.phil_scope json { indent = None .type = int(value_min=0) } """, process_includes=True, ) help_message = """ """ def run(args): usage = "xia2.report [options] scaled_unmerged.mtz" parser = OptionParser( usage=usage, phil=phil_scope, check_format=False, epilog=help_message ) params, options, args = parser.parse_args( show_diff_phil=True, return_unhandled=True ) if len(args) == 0: parser.print_help() return unmerged_mtz = args[0] report = Report.from_unmerged_mtz(unmerged_mtz, params, report_dir=".") # xtriage xtriage_success, xtriage_warnings, xtriage_danger = None, None, None if params.xtriage_analysis: try: xtriage_success, xtriage_warnings, xtriage_danger = report.xtriage_report() except Exception as e: params.xtriage_analysis = False print("Exception runnning xtriage:") print(e) json_data = {} if params.xtriage_analysis: json_data["xtriage"] = xtriage_success + xtriage_warnings + xtriage_danger ( overall_stats_table, merging_stats_table, stats_plots, ) = report.resolution_plots_and_stats() json_data.update(stats_plots) json_data.update(report.batch_dependent_plots()) json_data.update(report.intensity_stats_plots(run_xtriage=False)) json_data.update(report.pychef_plots()) resolution_graphs = OrderedDict( (k, json_data[k]) for k in ( "cc_one_half", "i_over_sig_i", "second_moments", "wilson_intensity_plot", "completeness", "multiplicity_vs_resolution", ) if k in json_data ) if params.include_radiation_damage: batch_graphs = OrderedDict( (k, json_data[k]) for k in ( "scale_rmerge_vs_batch", "i_over_sig_i_vs_batch", "completeness_vs_dose", "rcp_vs_dose", "scp_vs_dose", "rd_vs_batch_difference", ) ) else: batch_graphs = OrderedDict( (k, json_data[k]) for k in ("scale_rmerge_vs_batch", "i_over_sig_i_vs_batch") ) misc_graphs = OrderedDict( (k, json_data[k]) for k in ("cumulative_intensity_distribution", "l_test", "multiplicities") if k in json_data ) for k, v in report.multiplicity_plots().items(): misc_graphs[k] = {"img": v} styles = {} for axis in ("h", "k", "l"): styles["multiplicity_%s" % axis] = "square-plot" loader = ChoiceLoader( [PackageLoader("xia2", "templates"), PackageLoader("dials", "templates")] ) env = Environment(loader=loader) if params.log_include: with open(params.log_include, "rb") as fh: log_text = fh.read().decode("utf-8") else: log_text = "" template = env.get_template("report.html") html = template.render( page_title=params.title, filename=os.path.abspath(unmerged_mtz), space_group=report.intensities.space_group_info().symbol_and_number(), unit_cell=str(report.intensities.unit_cell()), mtz_history=[h.strip() for h in report.mtz_object.history()], xtriage_success=xtriage_success, xtriage_warnings=xtriage_warnings, xtriage_danger=xtriage_danger, overall_stats_table=overall_stats_table, merging_stats_table=merging_stats_table, cc_half_significance_level=params.cc_half_significance_level, resolution_graphs=resolution_graphs, batch_graphs=batch_graphs, misc_graphs=misc_graphs, styles=styles, xia2_version=Version, log_text=log_text, ) with open("%s-report.json" % params.prefix, "w") as fh: json.dump(json_data, fh, indent=params.json.indent) with open("%s-report.html" % params.prefix, "wb") as fh: fh.write(html.encode("utf-8", "xmlcharrefreplace")) def run_with_log(): xia2.Handlers.Streams.setup_logging( logfile="xia2.report.txt", debugfile="xia2.report-debug.txt" ) run(sys.argv[1:])
28.216867
87
0.637916
0
0
0
0
0
0
0
0
850
0.181469
150bff7433b6fabe00d05feee353f17bc33f7d36
757
py
Python
minoan_project/minoan_project/urls.py
mtzirkel/minoan
3eadeb1f73acf261e2f550642432ea5c25557ecb
[ "MIT" ]
null
null
null
minoan_project/minoan_project/urls.py
mtzirkel/minoan
3eadeb1f73acf261e2f550642432ea5c25557ecb
[ "MIT" ]
null
null
null
minoan_project/minoan_project/urls.py
mtzirkel/minoan
3eadeb1f73acf261e2f550642432ea5c25557ecb
[ "MIT" ]
null
null
null
from django.conf.urls import patterns, include, url from django.conf.urls.static import static from django.conf import settings from django.views.generic import TemplateView from . import views # Uncomment the next two lines to enable the admin: from django.contrib import admin admin.autodiscover() urlpatterns = patterns('', url(r'^$', TemplateView.as_view(template_name='base.html')), url(r'^admin/', include(admin.site.urls)), #login url(r'^login/$', 'django.contrib.auth.views.login', {'template_name': 'login.html'}), #home url(r'^home/$', views.home), ) # Uncomment the next line to serve media files in dev. # urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
27.035714
89
0.698811
0
0
0
0
0
0
0
0
304
0.401585
150c07692f09dbc4c2bc2f82c96435eb48b056d8
324
py
Python
algorithm/__init__.py
sirCamp/bioinformatics
2609044c57eba1097263829f9db579cd1825b8bb
[ "MIT" ]
null
null
null
algorithm/__init__.py
sirCamp/bioinformatics
2609044c57eba1097263829f9db579cd1825b8bb
[ "MIT" ]
null
null
null
algorithm/__init__.py
sirCamp/bioinformatics
2609044c57eba1097263829f9db579cd1825b8bb
[ "MIT" ]
null
null
null
from algorithm.InsertionLengthAlgorithm import InsertionLengthAlgorithm from algorithm.PhysicalCoverageAlgorithm import PhysicalCoverageAlgorithm from algorithm.SequenceCoverageAlgorithm import SequenceCoverageAlgorithm from algorithm.CigarAlgorithm import CigarAlgorithm from algorithm.KmersAlgorithm import KmersAlgorithm
54
73
0.92284
0
0
0
0
0
0
0
0
0
0
150e69b2f9539045223d00d448f50c262f488903
1,874
py
Python
attackMain.py
saurabhK99/substitution-cipher
dcf69cd4866ce7408eda6faf03ddd9b601bc3fec
[ "MIT" ]
null
null
null
attackMain.py
saurabhK99/substitution-cipher
dcf69cd4866ce7408eda6faf03ddd9b601bc3fec
[ "MIT" ]
null
null
null
attackMain.py
saurabhK99/substitution-cipher
dcf69cd4866ce7408eda6faf03ddd9b601bc3fec
[ "MIT" ]
null
null
null
from tkinter import * from attack import * #calls letter frequency attack def attack(on, cipherTxt): plainTxt = str() attack = LetterFrequencyAttack(cipherTxt, on) for i in range(10): plainTxt = plainTxt + attack.attack() + '\n\n' answer.config(text = plainTxt) #defining main window root = Tk() root.title('Letter Frequency Attack') root.configure( background='#221b1b', ) root.option_add('*Font', 'helvatica 12') root.option_add('*Foreground', 'whitesmoke') root.option_add('*Background', '#221b1b') root.option_add('*Entry.HighlightColor', 'whitesmoke') #key value pairs for radio buttons types = [ ('MONOALPHABETIC_CIPHER', 'MONOALPHABETIC_CIPHER'), ('ADDITIVE_CIPHER', 'ADDITIVE_CIPHER') ] #variable to store current selection of radio button attackOn= StringVar() attackOn.set('MONOALPHABETIC_CIPHER') Label(root, text='ATTACK ON').grid(row=0, column=0, padx=20) #radio buttons for i in range(2): Radiobutton( root, text=types[i][0], value=types[i][1], variable=attackOn, highlightthickness=0, activebackground='#221b1b', activeforeground='whitesmoke' ).grid( row=0, column=i+1, padx=20, pady=20 ) #label to show the result answer = Label(root, text='ANSWER HERE', wraplength=700, justify=CENTER) answer.grid(row=1, column=0, columnspan=3, pady=20) #entry widget to input cipher text to crack Label(root, text='CIPHER TXT').grid(row=6, column=0) cipherTxt = Entry(root) cipherTxt.grid(row=6, column=1, columnspan=2, pady=20) #button to call attack() Button( root, text='DECRYPT', justify=CENTER, command=lambda: attack( attackOn.get(), cipherTxt.get() ) ).grid( row=7, column=0, columnspan=3, pady=20 ) #mainloop of tkinter window root.mainloop()
23.425
72
0.657417
0
0
0
0
0
0
0
0
583
0.311099
150ef1714addd55d364456c56a5bbe4b9e5b825d
12,703
py
Python
eden.py
nobesio/eden
c301abdc64647fde02e8117ea137db322a804739
[ "MIT" ]
null
null
null
eden.py
nobesio/eden
c301abdc64647fde02e8117ea137db322a804739
[ "MIT" ]
null
null
null
eden.py
nobesio/eden
c301abdc64647fde02e8117ea137db322a804739
[ "MIT" ]
null
null
null
from random import randint import copy # Auxiliary Function for rotating the DNA in each cycle. def rotate(l,n): return l[n:] + l[:n] # History is the object responsible for accounting all the organisms. class History: def __init__(self): self.orgs = [] def addOrganism(self, org): self.orgs.append(org) def getGenepool(self): genepool = [] genepooldetail = [] for organism in self.orgs: if not organism.dna in genepool: genepool.append(organism.dna) genepooldetail.append([[organism.name], organism.dna, 1]) else: for unit in genepooldetail: if unit[1] == organism.dna: unit[0].append(organism.name) unit[2] += 1 return genepooldetail # Organism is the structure for the living organisms. class Organism: def __init__(self, name, dna, energy): self.memory = 0 self.name = name self.dna = dna self.energy = energy self.size = len(dna) self.age = 0 self.sons = 0 self.parent = "" def __repr__(self): return self.name + " E:" + str(self.energy) + "Y:" + str(self.age) def toAge(self): self.age += 1 def reportStatus(self): print("Name: ", self.name) print("DNA: ", self.dna) print("Energy: ", self.energy) print("Size: ", self.size) print("Age: ", self.age) def divide(self): self.sons += 1 son = copy.deepcopy(self) son.sons = 0 son.parent = self.name son.name = son.name + "-" + str(self.sons) son.age = 0 son.energy = 5 self.energy += -5 for x in range(randint(0,10)): if randint(1,100) > 95: print("MUTACION!") if randint(0,1) == 0: # ADD GEN son.dna.insert(randint(0,len(son.dna)-1), randint(0,12)) else: # REMOVE GEN son.dna.pop(randint(0, len(son.dna)-1)) print(son.dna) return son def decreaseEnergy(self): print("Bajando de ", self.energy) self.energy = self.energy - 1 def increaseEnergy(self, energy): self.energy = energy + energy # QuantumPackages are the "food" of this simulation. The name comes from the concept used in operative systems. class QuantumPackage: def __init__(self, quantums): self.quantums = quantums def __repr__(self): return 'QP' # Enviroment is the class responsible for holding all the living organisms. class Enviroment: def __init__(self, size): self.size = size self.landscape = [[0 for x in range(size)] for x in range(size)] def reportStatus(self): print("LANDSCAPE:") for row in self.landscape: print(row) def getOrganismsCoor(self): organisms = [] fila = 0 columna = 0 for row in self.landscape: columna = 0 for element in row: if isinstance(element,Organism): organisms.append((fila, columna)) columna += 1 fila += 1 print("FOUND ", len(organisms)) return organisms def getOrganisms(self): orgs = [] for row in self.landscape: for element in row: if isinstance(element,Organism): orgs.append(element) return orgs def countOrgs(self): cont = 0 for row in self.landscape: for element in row: if isinstance(element, Organism): cont += 1 return cont # Time is the class responsible for aging the living organisms. class Time: def aging(self, enviroment): for row in enviroment.landscape: for element in row: if isinstance(element, Organism): element.toAge() # Death is the class responsible for killing old or starving organisms. class Death: def __init__(self): self.killed = [] def kill(self, enviroment): fila=0 for row in enviroment.landscape: columna = 0 for element in row: if isinstance(element, Organism): if element.energy <= 0 or element.age > 20: self.killed.append(element) print("Killing ", fila, columna) enviroment.landscape[fila][columna] = 0 columna +=1 fila +=1 # Interpreter is the class that gives life to the organism. It executes the code in their DNA. class Interpreter: def interprete(self, enviroment): def up(): enviroment.landscape[x][y].decreaseEnergy() print("Move Up" , x, y) if x > 0: if enviroment.landscape[x-1][y] == 0: enviroment.landscape[x-1][y] = enviroment.landscape[x][y] enviroment.landscape[x][y] = 0 elif isinstance(enviroment.landscape[x-1][y],QuantumPackage): enviroment.landscape[x][y].increaseEnergy(enviroment.landscape[x-1][y].quantums) enviroment.landscape[x-1][y] = enviroment.landscape[x][y] enviroment.landscape[x][y] = 0 def down(): enviroment.landscape[x][y].decreaseEnergy() print("Move Down", x, y) if x < enviroment.size-1: if enviroment.landscape[x+1][y] == 0: enviroment.landscape[x+1][y] = enviroment.landscape[x][y] enviroment.landscape[x][y] = 0 elif isinstance(enviroment.landscape[x+1][y],QuantumPackage): enviroment.landscape[x][y].increaseEnergy(enviroment.landscape[x+1][y].quantums) enviroment.landscape[x+1][y] = enviroment.landscape[x][y] enviroment.landscape[x][y] = 0 def right(): enviroment.landscape[x][y].decreaseEnergy() print("Move Right", x, y) if y < enviroment.size-1: if enviroment.landscape[x][y+1] == 0: enviroment.landscape[x][y+1] = enviroment.landscape[x][y] enviroment.landscape[x][y] = 0 elif isinstance(enviroment.landscape[x][y+1],QuantumPackage): enviroment.landscape[x][y].increaseEnergy(enviroment.landscape[x][y+1].quantums) enviroment.landscape[x][y+1] = enviroment.landscape[x][y] enviroment.landscape[x][y] = 0 def left(): enviroment.landscape[x][y].decreaseEnergy() print("Move Left", x, y) if y > 0: if enviroment.landscape[x][y-1] == 0: enviroment.landscape[x][y-1] = enviroment.landscape[x][y] enviroment.landscape[x][y] = 0 elif isinstance(enviroment.landscape[x][y-1],QuantumPackage): enviroment.landscape[x][y].increaseEnergy(enviroment.landscape[x][y-1].quantums) enviroment.landscape[x][y-1] = enviroment.landscape[x][y] enviroment.landscape[x][y] = 0 def divide(): if enviroment.landscape[x][y].energy > 7: enviroment.landscape[x][y].decreaseEnergy() sonX = randint(-1,1) sonY = randint(-1,1) if sonX != 0 or sonY != 0: if x + sonX > 0 and x + sonX < enviroment.size-1: if y + sonY > 0 and y + sonY < enviroment.size-1: if enviroment.landscape[x + sonX][y + sonY] == 0: enviroment.landscape[x + sonX][y + sonY] = enviroment.landscape[x][y].divide() else: enviroment.landscape[x][y].decreaseEnergy() def writeOne(): print("WRITE 1") enviroment.landscape[x][y].memory = 1 def writeCero(): print("WRITE 0") enviroment.landscape[x][y].memory = 0 def ifTrue(): print("CHECKING iF TRUE") if enviroment.landscape[x][y].memory != 1: enviroment.landscape[x][y].dna = rotate(enviroment.landscape[x][y].dna, 1) def checkUp(): print("CHECKING UP") if x > 0: if enviroment.landscape[x-1][y] != 0: enviroment.landscape[x][y].memory = 1 else: enviroment.landscape[x][y].memory = 0 else: enviroment.landscape[x][y].memory = 0 def checkDown(): print("CHECKING DOWN") if x < enviroment.size-1: if enviroment.landscape[x+1][y] != 0: enviroment.landscape[x][y].memory = 1 else: enviroment.landscape[x][y].memory = 0 else: enviroment.landscape[x][y].memory = 0 def checkRight(): print("CHECKING RIGHT") if y < enviroment.size-1: if enviroment.landscape[x][y+1] != 0: enviroment.landscape[x][y].memory = 1 else: enviroment.landscape[x][y].memory = 0 else: enviroment.landscape[x][y].memory = 0 def checkLeft(): print("CHECKING LEFT") if y > 0: if enviroment.landscape[x][y-1] != 0: enviroment.landscape[x][y].memory = 1 else: enviroment.landscape[x][y].memory = 0 else: enviroment.landscape[x][y].memory = 0 def checkEnergyDivide(): if enviroment.landscape[x][y].energy > 7: enviroment.landscape[x][y].memory = 1 else: enviroment.landscape[x][y].memory = 0 options = {0 : up, 1 : down, 2 : right, 3 : left, 4 : divide, 5 : writeOne, 6 : writeCero, 7 : ifTrue, 8 : checkUp, 9 : checkDown, 10 : checkRight, 11 : checkLeft, 12: checkEnergyDivide } for organismCoordinates in enviroment.getOrganismsCoor(): x = organismCoordinates[0] y = organismCoordinates[1] gen = enviroment.landscape[x][y].dna[0] enviroment.landscape[x][y].dna = rotate(enviroment.landscape[x][y].dna, 1) print("ejecutando en ", x, y, "gen ", gen) options[gen]() if __name__ == '__main__': book = History() earth = Enviroment(10) earth.reportStatus() earth.landscape[0][0] = QuantumPackage(10) earth.landscape[1][1] = Organism("Eva", [8,7,0,9,7,1,10,7,2,11,7,3,12,7,4], 15) #Poblemos Tierra for i in range(0,4): x = randint(0, earth.size-1) y = randint(0, earth.size-1) if earth.landscape[x][y] == 0: dna = [] for a in range(1,11): dna.append(randint(0,12)) earth.landscape[x][y] = Organism("Eva"+str(i), dna, 15) earth.reportStatus() chronos = Time() parca = Death() god = Interpreter() for i in range(0,200): if earth.countOrgs() > 0: print("ciclo: ", i) god.interprete((earth)) chronos.aging(earth) parca.kill(earth) earth.reportStatus() for i in range(1,4): x = randint(0,9) y = randint(0,9) if earth.landscape[x][y] == 0: earth.landscape[x][y] = QuantumPackage(randint(5,10)) for org in earth.getOrganisms(): if not org in book.orgs: book.addOrganism(org) else: print("SE MURIERON TODOS EN EL CICLO: ", i) break print("Living:", len(earth.getOrganisms())) print("GENEPOOL:", book.getGenepool())
37.919403
112
0.492954
10,457
0.823191
0
0
0
0
0
0
995
0.078328
1512acbfbf9725f996d722bba323e798347b6270
2,407
py
Python
examples/example_pipeline.py
madconsulting/datanectar
7177b907c72c92de31fb136740f33c509ed5d499
[ "Unlicense" ]
null
null
null
examples/example_pipeline.py
madconsulting/datanectar
7177b907c72c92de31fb136740f33c509ed5d499
[ "Unlicense" ]
null
null
null
examples/example_pipeline.py
madconsulting/datanectar
7177b907c72c92de31fb136740f33c509ed5d499
[ "Unlicense" ]
null
null
null
import os import datetime from pathlib import Path import pandas as pd import luigi PROCESSED_DIR = 'processed' ROLLUP_DIR = 'rollups' class PrepareDataTask(luigi.Task): def __init__(self): super().__init__() self.last_processed_id = 0 if os.path.exists('last_processed_id.txt'): try: with open('last_processed_id.txt', 'r') as f: self.last_processed_id = int(f.read()) except Exception as e: print('Error reading last_processed_id.txt') self.last_id = self.last_processed_id self.df = pd.read_json('test_data/trip_data.json') # Simulate only getting the latest (unprocessed). self.df = self.df[self.df['id'] > self.last_processed_id] if len(self.df): self.last_id = int(self.df.iloc[-1]['id']) def requires(self): return None def run(self): if not os.path.exists(PROCESSED_DIR): os.makedirs(PROCESSED_DIR) # Simulate work #import time #time.sleep(10) # Simulate error #import random #if random.random() > 0.5: # raise Exception('Fake error') output_path = f'{PROCESSED_DIR}/processed_{self.last_id}.parquet' self.df.to_parquet(output_path) with open('last_processed_id.txt', 'w') as f: f.write(f'{self.last_id}') def output(self): output_path = f'{PROCESSED_DIR}/processed_{self.last_id}.parquet' return luigi.LocalTarget(output_path) class RollupTask(luigi.Task): date_param = luigi.DateParameter(default=datetime.date.today()) rollup_dir = Path(ROLLUP_DIR) def _output_path(self): return f'{ROLLUP_DIR}/rollup_{self.date_param}.parquet' def requires(self): return PrepareDataTask() def run(self): if not os.path.exists(ROLLUP_DIR): os.makedirs(ROLLUP_DIR) data_dir = Path(PROCESSED_DIR) df = pd.concat( pd.read_parquet(parquet_file) for parquet_file in data_dir.glob('*.parquet') ) # Average travel times rollup = df.groupby(['origin_id', 'destination_id'])['travel_time'].mean().to_frame() rollup.to_parquet(self._output_path()) def output(self): return luigi.LocalTarget(self._output_path()) if __name__ == '__main__': luigi.run()
28.317647
93
0.617366
2,221
0.922725
0
0
0
0
0
0
597
0.248027
151306af1c1480903dd00ab70e45e88f683fbe48
2,463
py
Python
scripts/tflite_model_tools/tflite/Metadata.py
LaudateCorpus1/edgeai-tidl-tools
d98789769a711e5a3700dfdc20d877073bd87da7
[ "CNRI-Python" ]
15
2021-09-05T03:43:54.000Z
2022-03-29T14:17:29.000Z
scripts/tflite_model_tools/tflite/Metadata.py
LaudateCorpus1/edgeai-tidl-tools
d98789769a711e5a3700dfdc20d877073bd87da7
[ "CNRI-Python" ]
21
2021-09-01T06:58:31.000Z
2022-03-31T06:33:15.000Z
scripts/tflite_model_tools/tflite/Metadata.py
LaudateCorpus1/edgeai-tidl-tools
d98789769a711e5a3700dfdc20d877073bd87da7
[ "CNRI-Python" ]
6
2021-09-22T06:44:19.000Z
2022-02-07T06:28:35.000Z
# automatically generated by the FlatBuffers compiler, do not modify # namespace: tflite import flatbuffers from flatbuffers.compat import import_numpy np = import_numpy() class Metadata(object): __slots__ = ['_tab'] @classmethod def GetRootAsMetadata(cls, buf, offset): n = flatbuffers.encode.Get(flatbuffers.packer.uoffset, buf, offset) x = Metadata() x.Init(buf, n + offset) return x @classmethod def MetadataBufferHasIdentifier(cls, buf, offset, size_prefixed=False): return flatbuffers.util.BufferHasIdentifier(buf, offset, b"\x54\x46\x4C\x33", size_prefixed=size_prefixed) # Metadata def Init(self, buf, pos): self._tab = flatbuffers.table.Table(buf, pos) # Metadata def Name(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4)) if o != 0: return self._tab.String(o + self._tab.Pos) return None # Metadata def Buffer(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6)) if o != 0: return self._tab.Get(flatbuffers.number_types.Uint32Flags, o + self._tab.Pos) return 0 def MetadataStart(builder): builder.StartObject(2) def MetadataAddName(builder, name): builder.PrependUOffsetTRelativeSlot(0, flatbuffers.number_types.UOffsetTFlags.py_type(name), 0) def MetadataAddBuffer(builder, buffer): builder.PrependUint32Slot(1, buffer, 0) def MetadataEnd(builder): return builder.EndObject() class MetadataT(object): # MetadataT def __init__(self): self.name = None # type: str self.buffer = 0 # type: int @classmethod def InitFromBuf(cls, buf, pos): metadata = Metadata() metadata.Init(buf, pos) return cls.InitFromObj(metadata) @classmethod def InitFromObj(cls, metadata): x = MetadataT() x._UnPack(metadata) return x # MetadataT def _UnPack(self, metadata): if metadata is None: return self.name = metadata.Name() self.buffer = metadata.Buffer() # MetadataT def Pack(self, builder): if self.name is not None: name = builder.CreateString(self.name) MetadataStart(builder) if self.name is not None: MetadataAddName(builder, name) MetadataAddBuffer(builder, self.buffer) metadata = MetadataEnd(builder) return metadata
29.674699
131
0.657734
1,967
0.79862
0
0
676
0.274462
0
0
197
0.079984
15136d40366243c73182b9f6916a6c550042f55f
1,124
py
Python
kukur/config.py
timeseer-ai/kukur
28210ff0bde396d961b60828782fef56e326b319
[ "ECL-2.0", "Apache-2.0" ]
2
2021-09-12T08:29:30.000Z
2022-01-19T19:06:45.000Z
kukur/config.py
timeseer-ai/kukur
28210ff0bde396d961b60828782fef56e326b319
[ "ECL-2.0", "Apache-2.0" ]
34
2021-03-16T08:21:01.000Z
2022-03-21T07:30:28.000Z
kukur/config.py
timeseer-ai/kukur
28210ff0bde396d961b60828782fef56e326b319
[ "ECL-2.0", "Apache-2.0" ]
1
2021-09-12T08:29:34.000Z
2021-09-12T08:29:34.000Z
"""Read the Kukur configuration.""" # SPDX-FileCopyrightText: 2021 Timeseer.AI # # SPDX-License-Identifier: Apache-2.0 import glob import toml class InvalidIncludeException(Exception): """Raised when the include configuration is invalid.""" def __init__(self, message: str): Exception.__init__(self, f"invalid include: {message}") def from_toml(path): """Read the configuration from a TOML file, processing includes.""" config = toml.load(path) for include_options in config.get("include", []): if "glob" not in include_options: raise InvalidIncludeException('"glob" is required') for include_path in glob.glob(include_options["glob"]): include_config = toml.load(include_path) for k, v in include_config.items(): if k not in config: config[k] = v elif isinstance(config[k], list): config[k].append(v) elif isinstance(config[k], dict): config[k].update(v) else: config[k] = v return config
32.114286
71
0.598754
204
0.181495
0
0
0
0
0
0
307
0.273132
1514c4cab7976c14d2d2ff2686c1ed82e350d931
3,326
py
Python
scheduletest.py
ambimanus/appsim
8f60b3a736af8aa7f03435c28aef2685a3dbfbe3
[ "MIT" ]
null
null
null
scheduletest.py
ambimanus/appsim
8f60b3a736af8aa7f03435c28aef2685a3dbfbe3
[ "MIT" ]
null
null
null
scheduletest.py
ambimanus/appsim
8f60b3a736af8aa7f03435c28aef2685a3dbfbe3
[ "MIT" ]
null
null
null
import time from datetime import datetime import numpy as np from matplotlib import pyplot as plt from matplotlib.dates import epoch2num import device_factory if __name__ == '__main__': amount = 50 devices = [] for i in range(amount): device = device_factory.ecopower_4(i, i) devices.append(device) start = int(time.mktime(datetime(2010, 1, 2).timetuple()) // 60) end = int(time.mktime(datetime(2010, 1, 3).timetuple()) // 60) sample_time = start + 15 * 24 sample_dur = 16 P = [[] for d in devices] T = [[] for d in devices] Th = [[] for d in devices] for now in range(start, sample_time): for idx, device in enumerate(devices): device.step(now) P[idx].append(device.components.consumer.P) T[idx].append(device.components.storage.T) Th[idx].append(device.components.heatsink.in_heat) samples = [] for d in devices: # d.components.sampler.setpoint_density = 0.1 samples.append(d.components.sampler.sample(100, sample_dur)) # samples = [d.components.sampler.sample(100, sample_dur) for d in devices] schedule = np.zeros(sample_dur) for idx, device in enumerate(devices): # min_schedule_idx = np.argmin(np.sum(np.abs(samples[idx]), axis=1)) # device.components.scheduler.schedule = samples[idx][min_schedule_idx] # schedule += samples[idx][min_schedule_idx] max_schedule_idx = np.argmax(np.sum(np.abs(samples[idx]), axis=1)) device.components.scheduler.schedule = samples[idx][max_schedule_idx] schedule += samples[idx][max_schedule_idx] for now in range(sample_time, end): for idx, device in enumerate(devices): device.step(now) P[idx].append(device.components.consumer.P) T[idx].append(device.components.storage.T) Th[idx].append(device.components.heatsink.in_heat) P = np.sum(P, axis=0) Th = np.sum(Th, axis=0) T = np.mean(T, axis=0) ax = plt.subplot(2, 1, 1) ax.grid(True) tz = 60 # timezone deviation in minutes x = epoch2num(np.arange((start + tz) * 60, (end + tz) * 60, 60)) Th = np.reshape(Th, (len(x) // 15, 15)).mean(axis=1) ax.plot_date(x[::15], Th, color='magenta', label='P$_{th,out}$ (kW)', ls='-', marker=None) ax.legend() ax = plt.subplot(2, 1, 2, sharex=ax) ax.grid(True) l1 = ax.plot_date(x, P, label='P$_{el}$ (kW)', ls='-', marker=None) sched_x = epoch2num(np.arange( (sample_time + tz) * 60, ((sample_time + tz) + sample_dur * 15) * 60, 60)) l2 = ax.plot_date(sched_x[::15], schedule, color='r', label='Schedule', ls='-', marker=None) ax = plt.twinx() l3 = ax.plot_date(x, T, color='g', label='T (\\textdegree C)', ls='-', marker=None) lines = l1 + l2 + l3 labels = [l.get_label() for l in lines] ax.legend(lines, labels) plt.gcf().autofmt_xdate() # # Samples plot # fig, ax = plt.subplots(len(samples)) # if len(samples) == 1: # ax = [ax] # for i, sample in enumerate(samples): # t = np.arange(len(sample[0])) # for s in sample: # ax[i].plot(t, s) plt.show()
35.010526
88
0.585989
0
0
0
0
0
0
0
0
662
0.199038
15165694e2716645ea22f6406f0f303943c423b8
329
py
Python
src/genie/libs/parser/iosxe/tests/ShowInstallState/cli/equal/golden_output3_expected.py
ykoehler/genieparser
b62cf622c3d8eab77c7b69e932c214ed04a2565a
[ "Apache-2.0" ]
null
null
null
src/genie/libs/parser/iosxe/tests/ShowInstallState/cli/equal/golden_output3_expected.py
ykoehler/genieparser
b62cf622c3d8eab77c7b69e932c214ed04a2565a
[ "Apache-2.0" ]
null
null
null
src/genie/libs/parser/iosxe/tests/ShowInstallState/cli/equal/golden_output3_expected.py
ykoehler/genieparser
b62cf622c3d8eab77c7b69e932c214ed04a2565a
[ "Apache-2.0" ]
null
null
null
expected_output = { "location": { "R0 R1": { "auto_abort_timer": "inactive", "pkg_state": { 1: { "filename_version": "17.08.01.0.149429", "state": "U", "type": "IMG", } }, } } }
23.5
60
0.31307
0
0
0
0
0
0
0
0
114
0.346505
1516d58cc828bc371a33c9b4a9ca474fdb7eba79
8,637
py
Python
lite/tests/unittest_py/pass/test_conv_elementwise_fuser_pass.py
714627034/Paddle-Lite
015ba88a4d639db0b73603e37f83e47be041a4eb
[ "Apache-2.0" ]
808
2018-04-17T17:43:12.000Z
2019-08-18T07:39:13.000Z
lite/tests/unittest_py/pass/test_conv_elementwise_fuser_pass.py
714627034/Paddle-Lite
015ba88a4d639db0b73603e37f83e47be041a4eb
[ "Apache-2.0" ]
728
2018-04-18T08:15:25.000Z
2019-08-16T07:14:43.000Z
lite/tests/unittest_py/pass/test_conv_elementwise_fuser_pass.py
714627034/Paddle-Lite
015ba88a4d639db0b73603e37f83e47be041a4eb
[ "Apache-2.0" ]
364
2018-04-18T17:05:02.000Z
2019-08-18T03:25:38.000Z
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.append('..') sys.path.append('.') from auto_scan_test import FusePassAutoScanTest, IgnoreReasons from program_config import TensorConfig, ProgramConfig, OpConfig, CxxConfig, TargetType, PrecisionType, DataLayoutType, Place import numpy as np from functools import partial from typing import Optional, List, Callable, Dict, Any, Set from test_conv_util import UpdatePaddingAndDilation, ConvOutputSize, ConvTransposeOutputSize import unittest import hypothesis from hypothesis import given, settings, seed, example, assume, reproduce_failure import hypothesis.strategies as st class TestConvElementwiseFuse(FusePassAutoScanTest): def __init__(self, *args, **kwargs): FusePassAutoScanTest.__init__(self, *args, **kwargs) self.enable_testing_on_place( TargetType.ARM, [PrecisionType.FP32], DataLayoutType.NCHW, thread=[1, 4]) self.enable_testing_on_place( TargetType.X86, [PrecisionType.FP32], DataLayoutType.NCHW, thread=[1, 4]) opencl_places = [ Place(TargetType.OpenCL, PrecisionType.FP16, DataLayoutType.ImageDefault), Place( TargetType.OpenCL, PrecisionType.FP16, DataLayoutType.ImageFolder), Place(TargetType.OpenCL, PrecisionType.FP32, DataLayoutType.NCHW), Place(TargetType.OpenCL, PrecisionType.Any, DataLayoutType.ImageDefault), Place( TargetType.OpenCL, PrecisionType.Any, DataLayoutType.ImageFolder), Place(TargetType.OpenCL, PrecisionType.Any, DataLayoutType.NCHW), Place(TargetType.Host, PrecisionType.FP32) ] self.enable_testing_on_place(places=opencl_places) def is_program_valid(self, program_config: ProgramConfig, predictor_config: CxxConfig) -> bool: return True def sample_program_configs(self, draw): #conv or conv_transpose Transpose = draw(st.sampled_from([True, False])) #conv param or conv_transpose param in_shape = draw( st.lists( st.integers( min_value=3, max_value=128), min_size=3, max_size=3)) in_shape = [draw(st.integers(min_value=1, max_value=4))] + in_shape weight_shape = draw( st.lists( st.integers( min_value=1, max_value=8), min_size=4, max_size=4)) paddings = draw( st.lists( st.integers( min_value=0, max_value=2), min_size=2, max_size=2)) dilations = draw(st.sampled_from([[2, 2]])) groups = draw(st.sampled_from([1, 2, in_shape[1]])) padding_algorithm = draw(st.sampled_from(["VALID", "SAME"])) strides = draw(st.sampled_from([[1, 1], [2, 2]])) output_padding = draw( st.sampled_from([[], [ draw( st.integers( min_value=0, max_value=max(strides[0], dilations[0]) - 1)), draw( st.integers( min_value=0, max_value=max(strides[1], dilations[1]) - 1)) ]])) scale_in = draw(st.floats(min_value=0.001, max_value=0.1)) scale_out = draw(st.floats(min_value=0.001, max_value=0.1)) if Transpose: bias_sample_shape = weight_shape[1] * groups else: bias_sample_shape = weight_shape[0] elementwise_bias_shape = [bias_sample_shape] conv_out_shape = [] paddings_, dilations_ = UpdatePaddingAndDilation( in_shape, weight_shape, paddings, dilations, groups, padding_algorithm, strides) if Transpose: assume(in_shape[1] == weight_shape[0]) assume(in_shape[1] % groups == 0) #TODO if len(output_padding): assume(output_padding[0] < max(strides[0], dilations_[0])) assume(output_padding[1] < max(strides[1], dilations_[1])) conv_out_shape = [in_shape[0], weight_shape[1] * groups] oh, ow = ConvTransposeOutputSize(in_shape, weight_shape, dilations_, paddings_, strides) if len(output_padding): oh = oh + output_padding[0] ow = ow + output_padding[1] conv_out_shape = conv_out_shape + [int(oh), int(ow)] assume(oh > 0 and ow > 0) if len(output_padding): conv_output_h = (oh + output_padding[0] + paddings[0] + paddings[1] - (dilations[0] * (weight_shape[2] - 1) + 1)) / strides[0] + 1 conv_output_w = (oh + output_padding[1] + paddings[0] + paddings[1] - (dilations[1] * (weight_shape[3] - 1) + 1)) / strides[1] + 1 assume(in_shape[2] == (int)(conv_output_h)) assume(in_shape[3] == (int)(conv_output_w)) else: assume(in_shape[1] == weight_shape[1] * groups) assume(weight_shape[0] % groups == 0) conv_out_shape = [in_shape[0], weight_shape[0]] oh, ow = ConvOutputSize(in_shape, weight_shape, dilations_, paddings_, strides) conv_out_shape = conv_out_shape + [int(oh), int(ow)] assume(oh > 0 and ow > 0) conv_type = "" conv_attrs = {} if Transpose: conv_type = "conv2d_transpose" conv_attrs = { "data_format": 'nchw', "dilations": dilations, "padding_algorithm": padding_algorithm, "groups": groups, "paddings": paddings, "strides": strides, "Scale_in": scale_in, "Scale_out": scale_out, "output_size": [], "output_padding": output_padding } else: conv_type = "conv2d" conv_attrs = { "data_format": 'nchw', "dilations": dilations, "padding_algorithm": padding_algorithm, "groups": groups, "paddings": paddings, "strides": strides, "Scale_in": scale_in, "Scale_out": scale_out } conv_op = OpConfig( type=conv_type, inputs={"Input": ["input_data"], "Filter": ["filter_data"]}, outputs={"Output": ["conv_output_data"]}, attrs=conv_attrs) elementwise_add_op = OpConfig( type="elementwise_add", inputs={"X": ["conv_output_data"], "Y": ["add_bias_data"]}, outputs={"Out": ["output_data"]}, attrs={"axis": 1}) ops = [conv_op, elementwise_add_op] self.ops = ops program_config = ProgramConfig( ops=ops, weights={ "filter_data": TensorConfig(shape=weight_shape), "add_bias_data": TensorConfig(shape=elementwise_bias_shape) }, inputs={"input_data": TensorConfig(shape=in_shape)}, outputs=["output_data"]) return program_config def sample_predictor_configs(self): config = CxxConfig() return self.get_predictor_configs(), [self.ops[0].type], (1e-4, 1e-5) def add_ignore_pass_case(self): pass def test(self, *args, **kwargs): self.run_and_statis( quant=False, max_examples=500, passes=["lite_conv_elementwise_fuser_pass"]) if __name__ == "__main__": unittest.main(argv=[''])
40.359813
125
0.554706
7,369
0.85319
0
0
0
0
0
0
1,176
0.136158
151724d850402f50ae0bbd91cc2f5825d03ab2de
22,871
py
Python
cfn_policy_validator/tests/validation_tests/test_resource_validator.py
awslabs/aws-cloudformation-iam-policy-validator
52c1439e4d76d2c7d45c97563cc87f8458134e0b
[ "MIT-0" ]
41
2021-09-30T01:28:51.000Z
2022-03-24T09:42:09.000Z
cfn_policy_validator/tests/validation_tests/test_resource_validator.py
awslabs/aws-cloudformation-iam-policy-validator
52c1439e4d76d2c7d45c97563cc87f8458134e0b
[ "MIT-0" ]
10
2021-09-30T08:13:11.000Z
2022-03-22T07:34:41.000Z
cfn_policy_validator/tests/validation_tests/test_resource_validator.py
awslabs/aws-cloudformation-iam-policy-validator
52c1439e4d76d2c7d45c97563cc87f8458134e0b
[ "MIT-0" ]
3
2021-11-29T21:13:30.000Z
2022-02-04T12:49:40.000Z
""" Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-Identifier: MIT-0 """ import boto3 import copy import unittest from botocore.stub import ANY from cfn_policy_validator.tests import account_config, offline_only, only_run_for_end_to_end from cfn_policy_validator.tests.boto_mocks import mock_test_setup, BotoResponse, get_test_mode, TEST_MODE from cfn_policy_validator.tests.validation_tests import FINDING_TYPE, mock_access_analyzer_resource_setup, \ MockAccessPreviewFinding, MockNoFindings, MockInvalidConfiguration, MockUnknownError, \ MockTimeout, MockValidateResourcePolicyFinding from cfn_policy_validator.validation.validator import validate_parser_output, Validator from cfn_policy_validator.application_error import ApplicationError from cfn_policy_validator.parsers.output import Output, Policy, Resource resource_policy_with_no_findings = { 'Version': '2012-10-17', 'Statement': [ { 'Effect': 'Allow', 'Action': '*', 'Principal': { 'AWS': account_config.account_id }, 'Resource': f'arn:aws:sqs:{account_config.region}:{account_config.account_id}:resource1' } ] } lambda_permissions_policy_with_findings = { "Version": "2012-10-17", "Statement": [{ "Effect": "Allow", "Principal": {}, "Action": "lambda:InvokeFunction", "Resource": f"arn:aws:lambda:{account_config.region}:{account_config.account_id}:function:my-function" }] } class BaseResourcePolicyTest(unittest.TestCase): def setUp(self): self.output = Output(account_config) def add_resources_to_output(self, resource_type, resource_policy, resource_policy_2=None, configuration_1=None, configuration_2=None): if resource_policy_2 is None: resource_policy_2 = resource_policy policy1 = Policy('policy1', copy.deepcopy(resource_policy)) resource1 = Resource('resource1', resource_type, policy1, configuration_1) policy2 = Policy('policy2', copy.deepcopy(resource_policy_2)) resource2 = Resource('resource2', resource_type, policy2, configuration_2) self.output.Resources = [ resource1, resource2 ] @only_run_for_end_to_end def create_archive_rule(self, resource_type_to_archive): session = boto3.Session(region_name=account_config.region) self.client = session.client('accessanalyzer') response = self.client.list_analyzers(type='ACCOUNT') self.actual_analyzer_name = next((analyzer['name'] for analyzer in response['analyzers'] if analyzer['status'] == 'ACTIVE')) self.archive_rule_name = 'IgnoreRoleFindings' self.client.create_archive_rule( analyzerName=self.actual_analyzer_name, ruleName='IgnoreRoleFindings', filter={ 'resourceType': { 'eq': [resource_type_to_archive] } } ) @only_run_for_end_to_end def delete_archive_rule(self): self.client.delete_archive_rule(analyzerName=self.actual_analyzer_name, ruleName=self.archive_rule_name) def assert_finding_is_equal(self, actual_finding, expected_policy_name, expected_resource_name, expected_code): self.assertEqual(expected_policy_name, actual_finding.policyName) self.assertEqual(expected_resource_name, actual_finding.resourceName) self.assertEqual(expected_code, actual_finding.code) def assert_has_findings(self, findings, errors=0, security_warnings=0, warnings=0, suggestions=0): self.assertEqual(errors, len(findings.errors)) self.assertEqual(security_warnings, len(findings.security_warnings)) self.assertEqual(warnings, len(findings.warnings)) self.assertEqual(suggestions, len(findings.suggestions)) class WhenValidatingResources(BaseResourcePolicyTest): def setUp(self): self.output = Output(account_config) @mock_access_analyzer_resource_setup( MockUnknownError() ) @offline_only def test_unknown_access_preview_failure(self): policy = Policy('ResourcePolicy', copy.deepcopy(resource_policy_with_no_findings)) resources = [ Resource('resource1', 'AWS::SQS::Queue', policy) ] validator = Validator(account_config.account_id, account_config.region, account_config.partition) with self.assertRaises(ApplicationError) as cm: validator.validate_resources(resources) self.assertEqual('Failed to create access preview for resource1. Reason: UNKNOWN_ERROR', str(cm.exception)) @mock_access_analyzer_resource_setup( MockTimeout() ) @offline_only def test_unknown_access_preview_timeout(self): policy = Policy('ResourcePolicy', copy.deepcopy(resource_policy_with_no_findings)) resources = [ Resource('resource1', 'AWS::SQS::Queue', policy) ] validator = Validator(account_config.account_id, account_config.region, account_config.partition) validator.maximum_number_of_access_preview_attempts = 2 with self.assertRaises(ApplicationError) as cm: validator.validate_resources(resources) self.assertEqual('Timed out after 5 minutes waiting for access analyzer preview to create.', str(cm.exception)) @mock_test_setup( accessanalyzer=[ BotoResponse( method='list_analyzers', service_response={'analyzers': []}, expected_params={'type': 'ACCOUNT'} ), BotoResponse( method='create_analyzer', service_response={'arn': 'arn:aws:access-analyzer:us-east-1:123456789123:analyzer/MyAnalyzer'}, expected_params={'analyzerName': ANY, 'type': 'ACCOUNT'} ) ], assert_no_pending_responses=True ) def test_if_no_analyzer_exists_in_account(self): validator = Validator(account_config.account_id, account_config.region, account_config.partition) validator.validate_resources([]) @mock_access_analyzer_resource_setup( MockValidateResourcePolicyFinding(code='EMPTY_OBJECT_PRINCIPAL', finding_type=FINDING_TYPE.SUGGESTION) ) def test_with_resource_type_that_is_not_supported_by_access_previews(self): output = Output(account_config) policy = Policy('PermissionsPolicy', copy.deepcopy(lambda_permissions_policy_with_findings)) resource = Resource('resource1', 'Lambda', policy) output.Resources = [resource] findings = validate_parser_output(output) self.assert_has_findings(findings, suggestions=1) self.assert_finding_is_equal( actual_finding=findings.suggestions[0], expected_policy_name='PermissionsPolicy', expected_resource_name='resource1', expected_code='EMPTY_OBJECT_PRINCIPAL' ) class WhenValidatingResourcesWithNonActiveFindings(BaseResourcePolicyTest): def setUp(self): self.output = Output(account_config) self.create_archive_rule(resource_type_to_archive='AWS::KMS::Key') def tearDown(self): self.delete_archive_rule() @mock_access_analyzer_resource_setup( MockAccessPreviewFinding(), MockAccessPreviewFinding(finding_status='ARCHIVED') ) def test_output_only_includes_active_findings(self): self.add_resources_to_output('AWS::SQS::Queue', sqs_queue_policy_that_allows_external_access) policy1 = Policy('policy1', copy.deepcopy(sqs_queue_policy_that_allows_external_access)) resource1 = Resource('resource1', 'AWS::SQS::Queue', policy1) policy2 = Policy('policy2', copy.deepcopy(kms_key_policy_that_allows_external_access)) resource2 = Resource('resource2', 'AWS::KMS::Key', policy2) self.output.Resources = [resource1, resource2] findings = validate_parser_output(self.output) self.assert_has_findings(findings, security_warnings=1) self.assert_finding_is_equal( actual_finding=findings.security_warnings[0], expected_policy_name='policy1', expected_resource_name='resource1', expected_code='EXTERNAL_PRINCIPAL' ) @mock_access_analyzer_resource_setup( MockAccessPreviewFinding(finding_status='ARCHIVED'), MockAccessPreviewFinding(finding_status='ARCHIVED') ) def test_output_does_not_include_any_findings_when_all_are_archived(self): self.add_resources_to_output('AWS::KMS::Key', kms_key_policy_that_allows_external_access) findings = validate_parser_output(self.output) self.assert_has_findings(findings, security_warnings=0) sqs_queue_policy_that_allows_external_access = { "Version": "2012-10-17", "Statement": [{ "Effect": "Allow", "Principal": { "AWS": ["*"] }, "Action": "sqs:SendMessage", "Resource": "*" }] } sqs_queue_policy_with_findings = { "Version": "2012-10-17", "Statement": [{ "Effect": "Allow", "Principal": {}, "Action": "sqs:SendMessage", "Resource": "*" }] } sqs_queue_policy_with_no_findings = { "Version": "2012-10-17", "Statement": [{ "Effect": "Allow", "Principal": { "AWS": [f'{account_config.account_id}'] }, "Action": "sqs:SendMessage", "Resource": "*" }] } sqs_queue_invalid_policy = { "Version": "2012-10-17", "Statement": [{ "Effect": {"not": "valid"}, "Principal": { "AWS": [f'{account_config.account_id}'] }, "Action": "sqs:SendMessage", "Resource": "*" }] } class WhenValidatingSqsQueuePolicy(BaseResourcePolicyTest): @mock_access_analyzer_resource_setup( MockAccessPreviewFinding(), MockAccessPreviewFinding() ) def test_with_sqs_policy_that_allows_external_access(self): self.add_resources_to_output('AWS::SQS::Queue', sqs_queue_policy_that_allows_external_access) findings = validate_parser_output(self.output) self.assert_has_findings(findings, security_warnings=2) self.assert_finding_is_equal( actual_finding=findings.security_warnings[0], expected_policy_name='policy1', expected_resource_name='resource1', expected_code='EXTERNAL_PRINCIPAL' ) self.assert_finding_is_equal( actual_finding=findings.security_warnings[1], expected_policy_name='policy2', expected_resource_name='resource2', expected_code='EXTERNAL_PRINCIPAL' ) @mock_access_analyzer_resource_setup( MockValidateResourcePolicyFinding(code='EMPTY_OBJECT_PRINCIPAL', finding_type=FINDING_TYPE.SUGGESTION), MockValidateResourcePolicyFinding(code='EMPTY_OBJECT_PRINCIPAL', finding_type=FINDING_TYPE.SUGGESTION) ) def test_with_sqs_policy_with_findings(self): self.add_resources_to_output('AWS::SQS::Queue', sqs_queue_policy_with_findings) findings = validate_parser_output(self.output) self.assert_has_findings(findings, suggestions=2) self.assert_finding_is_equal( actual_finding=findings.suggestions[0], expected_policy_name='policy1', expected_resource_name='resource1', expected_code='EMPTY_OBJECT_PRINCIPAL' ) self.assert_finding_is_equal( actual_finding=findings.suggestions[1], expected_policy_name='policy2', expected_resource_name='resource2', expected_code='EMPTY_OBJECT_PRINCIPAL' ) @mock_access_analyzer_resource_setup( MockNoFindings(), MockNoFindings() ) def test_with_sqs_queue_policy_with_no_findings(self): self.add_resources_to_output('AWS::SQS::Queue', sqs_queue_policy_with_no_findings) findings = validate_parser_output(self.output) self.assert_has_findings(findings) @mock_access_analyzer_resource_setup( MockInvalidConfiguration(), MockInvalidConfiguration() ) def test_with_invalid_sqs_queue_policy(self): self.add_resources_to_output('AWS::SQS::Queue', sqs_queue_invalid_policy) with self.assertRaises(ApplicationError) as cm: validate_parser_output(self.output) self.assertIn("Failed to create access preview for resource1. Validate that your trust or resource " "policy's schema is correct.\nThe following validation findings were detected for this resource:", str(cm.exception)) kms_key_policy_that_allows_external_access = { "Version": "2012-10-17", "Statement": [{ "Effect": "Allow", "Principal": { "AWS": "*" }, "Action": "kms:*", "Resource": "*" }] } kms_key_policy_with_findings = { "Version": "2012-10-17", "Statement": [{ "Effect": "Allow", "Principal": {}, "Action": "kms:*", "Resource": "*" }] } kms_key_policy_with_no_findings = { "Version": "2012-10-17", "Statement": [{ "Effect": "Allow", "Principal": { "AWS": f"arn:aws:iam::{account_config.account_id}:root" }, "Action": "kms:*", "Resource": "*" }] } kms_key_invalid_policy = { "Version": "2012-10-17", "Statement": [{ "Effect": "Allow", "Principal": { "AWS": f"arn:aws:iam::{account_config.account_id}:root" }, "Action": {"not": "valid"}, "Resource": "*" }] } class WhenValidatingKmsKeyPolicy(BaseResourcePolicyTest): @mock_access_analyzer_resource_setup( MockAccessPreviewFinding(), MockAccessPreviewFinding() ) def test_with_kms_policy_that_allows_external_access(self): self.add_resources_to_output('AWS::KMS::Key', kms_key_policy_that_allows_external_access) findings = validate_parser_output(self.output) self.assert_has_findings(findings, security_warnings=2) self.assert_finding_is_equal( actual_finding=findings.security_warnings[0], expected_policy_name='policy1', expected_resource_name='resource1', expected_code='EXTERNAL_PRINCIPAL' ) self.assert_finding_is_equal( actual_finding=findings.security_warnings[1], expected_policy_name='policy2', expected_resource_name='resource2', expected_code='EXTERNAL_PRINCIPAL' ) @mock_access_analyzer_resource_setup( MockValidateResourcePolicyFinding(code='EMPTY_OBJECT_PRINCIPAL', finding_type=FINDING_TYPE.SUGGESTION), MockValidateResourcePolicyFinding(code='EMPTY_OBJECT_PRINCIPAL', finding_type=FINDING_TYPE.SUGGESTION) ) def test_with_kms_policy_with_findings(self): self.add_resources_to_output('AWS::KMS::Key', kms_key_policy_with_findings) findings = validate_parser_output(self.output) self.assert_has_findings(findings, suggestions=2) self.assert_finding_is_equal( actual_finding=findings.suggestions[0], expected_policy_name='policy1', expected_resource_name='resource1', expected_code='EMPTY_OBJECT_PRINCIPAL' ) self.assert_finding_is_equal( actual_finding=findings.suggestions[1], expected_policy_name='policy2', expected_resource_name='resource2', expected_code='EMPTY_OBJECT_PRINCIPAL' ) @mock_access_analyzer_resource_setup( MockNoFindings(), MockNoFindings() ) def test_with_kms_policy_with_no_findings(self): self.add_resources_to_output('AWS::KMS::Key', kms_key_policy_with_no_findings) findings = validate_parser_output(self.output) self.assert_has_findings(findings) @mock_access_analyzer_resource_setup( MockInvalidConfiguration(), MockInvalidConfiguration() ) def test_with_invalid_kms_policy(self): self.add_resources_to_output('AWS::KMS::Key', kms_key_invalid_policy) with self.assertRaises(ApplicationError) as cm: validate_parser_output(self.output) self.assertIn("Failed to create access preview for resource1. Validate that your trust or resource " "policy's schema is correct.\nThe following validation findings were detected for this resource:", str(cm.exception)) def build_s3_bucket_policy_that_allows_external_access(resource_name): return { "Version": "2012-10-17", "Statement": [{ "Effect": "Allow", "Principal": {'AWS': "arn:aws:iam::123456789123:role/MyOtherRole"}, "Action": "*", "Resource": [f"arn:aws:s3:::{resource_name}", f"arn:aws:s3:::{resource_name}/*"] }] } def build_s3_bucket_policy_with_findings(resource_name): return { "Version": "2012-10-17", "Statement": [{ "Effect": "Allow", "Principal": {}, "Action": ["s3:PutObject", "s3:PutObjectAcl"], "Resource": [f"arn:aws:s3:::{resource_name}/*"] }] } def build_s3_bucket_policy_with_no_findings(resource_name): return { "Version": "2012-10-17", "Statement": [{ "Effect": "Allow", "Principal": {"AWS": [f"arn:aws:iam::{account_config.account_id}:root"]}, "Action": ["s3:PutObject", "s3:PutObjectAcl"], "Resource": [f"arn:aws:s3:::{resource_name}", f"arn:aws:s3:::{resource_name}/*"] }] } s3_bucket_invalid_policy = { "Version": "2012-10-17", "Statement": [{ "Effect": "Allow", "Principal": {"AWS": [f"arn:aws:iam::{account_config.account_id}:root"]}, "Action": ["s3:PutObject", "s3:PutObjectAcl"], "Resource": {"not": "valid"} }] } class WhenValidatingS3BucketPolicy(BaseResourcePolicyTest): @mock_access_analyzer_resource_setup( MockAccessPreviewFinding(custom_validate_policy_type='AWS::S3::Bucket'), MockAccessPreviewFinding(custom_validate_policy_type='AWS::S3::Bucket') ) def test_with_s3_bucket_policy_that_allows_external_access(self): self.add_resources_to_output('AWS::S3::Bucket', build_s3_bucket_policy_that_allows_external_access('resource1'), build_s3_bucket_policy_that_allows_external_access('resource2')) findings = validate_parser_output(self.output) self.assert_has_findings(findings, security_warnings=2) self.assert_finding_is_equal( actual_finding=findings.security_warnings[0], expected_policy_name='policy1', expected_resource_name='resource1', expected_code='EXTERNAL_PRINCIPAL' ) self.assert_finding_is_equal( actual_finding=findings.security_warnings[1], expected_policy_name='policy2', expected_resource_name='resource2', expected_code='EXTERNAL_PRINCIPAL' ) @mock_access_analyzer_resource_setup( MockValidateResourcePolicyFinding(code='EMPTY_OBJECT_PRINCIPAL', finding_type=FINDING_TYPE.SUGGESTION, custom_resource_type='AWS::S3::Bucket'), MockValidateResourcePolicyFinding(code='EMPTY_OBJECT_PRINCIPAL', finding_type=FINDING_TYPE.SUGGESTION, custom_resource_type='AWS::S3::Bucket') ) def test_with_s3_bucket_policy_with_findings(self): self.add_resources_to_output('AWS::S3::Bucket', build_s3_bucket_policy_with_findings('resource1'), build_s3_bucket_policy_with_findings('resource2')) findings = validate_parser_output(self.output) self.assert_has_findings(findings, suggestions=2) self.assert_finding_is_equal( actual_finding=findings.suggestions[0], expected_policy_name='policy1', expected_resource_name='resource1', expected_code='EMPTY_OBJECT_PRINCIPAL' ) self.assert_finding_is_equal( actual_finding=findings.suggestions[1], expected_policy_name='policy2', expected_resource_name='resource2', expected_code='EMPTY_OBJECT_PRINCIPAL' ) @mock_access_analyzer_resource_setup( MockNoFindings(custom_validate_policy_type='AWS::S3::Bucket'), MockNoFindings(custom_validate_policy_type='AWS::S3::Bucket') ) def test_with_s3_bucket_policy_with_no_findings(self): self.add_resources_to_output('AWS::S3::Bucket', build_s3_bucket_policy_with_no_findings('resource1'), build_s3_bucket_policy_with_no_findings('resource2')) findings = validate_parser_output(self.output) self.assert_has_findings(findings) @mock_access_analyzer_resource_setup( MockInvalidConfiguration(), MockInvalidConfiguration() ) def test_with_invalid_s3_bucket_policy(self): self.add_resources_to_output('AWS::S3::Bucket', s3_bucket_invalid_policy) with self.assertRaises(ApplicationError) as cm: validate_parser_output(self.output) self.assertIn("Failed to create access preview for resource1. Validate that your trust or resource " "policy's schema is correct.\nThe following validation findings were detected for this resource:", str(cm.exception)) secrets_manager_resource_policy_that_allows_external_access = { "Version": "2012-10-17", "Statement": [{ "Effect": "Allow", "Principal": {"AWS": f"arn:aws:iam::777888999444:root"}, "Action": "secretsmanager:GetSecretValue", "Resource": "*" }] } secrets_manager_resource_policy_with_findings = { "Version": "2012-10-17", "Statement": [{ "Effect": "Allow", "Principal": {}, "Action": "secretsmanager:GetSecretValue", "Resource": "*" }] } secrets_manager_resource_policy_with_no_findings = { "Version": "2012-10-17", "Statement": [{ "Effect": "Allow", "Principal": { "AWS": f"arn:aws:iam::{account_config.account_id}:root" }, "Action": "secretsmanager:GetSecretValue", "Resource": "*" }] } secrets_manager_resource_invalid_policy = { "Version": "2012-10-17", "Statement": [{ "Effect": "Allow", "Principal": { "AWS": f"arn:aws:iam::{account_config.account_id}:root" }, "Action": {"not": "valid"}, "Resource": "*" }] } class WhenValidatingSecretsManagerResourcePolicy(BaseResourcePolicyTest): # This doesn't work because secrets manager uses the default KMS key if no KMS key is provided # the default KMS key is not publicly accessible, so the secret is therefore not publicly accessible. # To make this work, we'd need to look up the KMS key from the environment OR from the key policy if it had # yet to be created @unittest.skip("Skip until this is supported") def test_with_secrets_manager_resource_policy_that_allows_external_access(self): self.add_resources_to_output('AWS::SecretsManager::Secret', secrets_manager_resource_policy_that_allows_external_access) findings = validate_parser_output(self.output) self.assert_has_findings(findings, security_warnings=2) self.assert_finding_is_equal( actual_finding=findings.security_warnings[0], expected_policy_name='policy1', expected_resource_name='resource1', expected_code='EXTERNAL_PRINCIPAL' ) self.assert_finding_is_equal( actual_finding=findings.security_warnings[1], expected_policy_name='policy2', expected_resource_name='resource2', expected_code='EXTERNAL_PRINCIPAL' ) @mock_access_analyzer_resource_setup( MockValidateResourcePolicyFinding(code='EMPTY_OBJECT_PRINCIPAL', finding_type=FINDING_TYPE.SUGGESTION), MockValidateResourcePolicyFinding(code='EMPTY_OBJECT_PRINCIPAL', finding_type=FINDING_TYPE.SUGGESTION) ) def test_with_secrets_manager_resource_policy_with_findings(self): self.add_resources_to_output('AWS::SecretsManager::Secret', secrets_manager_resource_policy_with_findings) findings = validate_parser_output(self.output) self.assert_has_findings(findings, suggestions=2) self.assert_finding_is_equal( actual_finding=findings.suggestions[0], expected_policy_name='policy1', expected_resource_name='resource1', expected_code='EMPTY_OBJECT_PRINCIPAL' ) self.assert_finding_is_equal( actual_finding=findings.suggestions[1], expected_policy_name='policy2', expected_resource_name='resource2', expected_code='EMPTY_OBJECT_PRINCIPAL' ) @mock_access_analyzer_resource_setup( MockNoFindings(), MockNoFindings() ) def test_with_secrets_manager_resource_policy_with_no_findings(self): self.add_resources_to_output('AWS::SecretsManager::Secret', secrets_manager_resource_policy_with_no_findings) findings = validate_parser_output(self.output) self.assert_has_findings(findings) @mock_access_analyzer_resource_setup( MockInvalidConfiguration(), MockInvalidConfiguration() ) def test_with_invalid_secrets_manager_resource_policy(self): self.add_resources_to_output('AWS::SecretsManager::Secret', secrets_manager_resource_invalid_policy) with self.assertRaises(ApplicationError) as cm: validate_parser_output(self.output) self.assertIn("Failed to create access preview for resource1. Validate that your trust or resource " "policy's schema is correct.\nThe following validation findings were detected for this resource:", str(cm.exception))
33.437135
145
0.773425
17,605
0.769752
0
0
15,300
0.668969
0
0
5,963
0.260723
1518a255b1570670a775245440b45ebe73fe295d
6,672
py
Python
HDF4_H5_NETCDF/source2.7/h5py/tests/hl/test_datatype.py
Con-Mi/lambda-packs
b23a8464abdd88050b83310e1d0e99c54dac28ab
[ "MIT" ]
31
2018-10-19T15:28:36.000Z
2022-02-14T03:01:25.000Z
h5py/tests/hl/test_datatype.py
EnjoyLifeFund/Debian_py36_packages
1985d4c73fabd5f08f54b922e73a9306e09c77a5
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
13
2020-01-28T22:20:14.000Z
2022-03-11T23:20:14.000Z
h5py/tests/hl/test_datatype.py
EnjoyLifeFund/Debian_py36_packages
1985d4c73fabd5f08f54b922e73a9306e09c77a5
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
10
2019-01-10T04:02:12.000Z
2021-11-17T01:52:15.000Z
""" Tests for the h5py.Datatype class. """ from __future__ import absolute_import from itertools import count import numpy as np import h5py from ..common import ut, TestCase class TestVlen(TestCase): """ Check that storage of vlen strings is carried out correctly. """ def assertVlenArrayEqual(self, dset, arr, message=None, precision=None): self.assert_( dset.shape == arr.shape, "Shape mismatch (%s vs %s)%s" % (dset.shape, arr.shape, message) ) for (i, d, a) in zip(count(), dset, arr): self.assertArrayEqual(d, a, message, precision) def test_compound(self): fields = [] fields.append(('field_1', h5py.special_dtype(vlen=str))) fields.append(('field_2', np.int32)) dt = np.dtype(fields) self.f['mytype'] = np.dtype(dt) dt_out = self.f['mytype'].dtype.fields['field_1'][0] self.assertEqual(h5py.check_dtype(vlen=dt_out), str) def test_compound_vlen_bool(self): vidt = h5py.special_dtype(vlen=np.uint8) def a(items): return np.array(items, dtype=np.uint8) f = self.f dt_vb = np.dtype([ ('foo', vidt), ('logical', np.bool)]) vb = f.create_dataset('dt_vb', shape=(4,), dtype=dt_vb) data = np.array([(a([1,2,3]), True), (a([1 ]), False), (a([1,5 ]), True), (a([], ), False),], dtype=dt_vb) vb[:] = data actual = f['dt_vb'][:] self.assertVlenArrayEqual(data['foo'], actual['foo']) self.assertArrayEqual(data['logical'], actual['logical']) dt_vv = np.dtype([ ('foo', vidt), ('bar', vidt)]) f.create_dataset('dt_vv', shape=(4,), dtype=dt_vv) dt_vvb = np.dtype([ ('foo', vidt), ('bar', vidt), ('logical', np.bool)]) vvb = f.create_dataset('dt_vvb', shape=(2,), dtype=dt_vvb) dt_bvv = np.dtype([ ('logical', np.bool), ('foo', vidt), ('bar', vidt)]) bvv = f.create_dataset('dt_bvv', shape=(2,), dtype=dt_bvv) data = np.array([(True, a([1,2,3]), a([1,2]) ), (False, a([]), a([2,4,6])),], dtype=bvv) bvv[:] = data actual = bvv[:] self.assertVlenArrayEqual(data['foo'], actual['foo']) self.assertVlenArrayEqual(data['bar'], actual['bar']) self.assertArrayEqual(data['logical'], actual['logical']) def test_compound_vlen_enum(self): eidt = h5py.special_dtype(enum=(np.uint8, {'OFF': 0, 'ON': 1})) vidt = h5py.special_dtype(vlen=np.uint8) def a(items): return np.array(items, dtype=np.uint8) f = self.f dt_vve = np.dtype([ ('foo', vidt), ('bar', vidt), ('switch', eidt)]) vve = f.create_dataset('dt_vve', shape=(2,), dtype=dt_vve) data = np.array([(a([1,2,3]), a([1,2]), 1), (a([]), a([2,4,6]), 0),], dtype=dt_vve) vve[:] = data actual = vve[:] self.assertVlenArrayEqual(data['foo'], actual['foo']) self.assertVlenArrayEqual(data['bar'], actual['bar']) self.assertArrayEqual(data['switch'], actual['switch']) def test_vlen_enum(self): fname = self.mktemp() arr1 = [[1],[1,2]] dt1 = h5py.special_dtype(vlen=h5py.special_dtype( enum=('i', dict(foo=1, bar=2)))) with h5py.File(fname,'w') as f: df1 = f.create_dataset('test', (len(arr1),), dtype=dt1) df1[:] = np.array(arr1) with h5py.File(fname,'r') as f: df2 = f['test'] dt2 = df2.dtype arr2 = [e.tolist() for e in df2[:]] self.assertEqual(arr1, arr2) self.assertEqual(h5py.check_dtype(enum=h5py.check_dtype(vlen=dt1)), h5py.check_dtype(enum=h5py.check_dtype(vlen=dt2))) class TestOffsets(TestCase): """ Check that compound members with aligned or manual offsets are handled correctly. """ def test_compound_vlen(self): vidt = h5py.special_dtype(vlen=np.uint8) eidt = h5py.special_dtype(enum=(np.uint8, {'OFF': 0, 'ON': 1})) for np_align in (False, True): dt = np.dtype([ ('a', eidt), ('foo', vidt), ('bar', vidt), ('switch', eidt)], align=np_align) np_offsets = [dt.fields[i][1] for i in dt.names] for logical in (False, True): if logical and np_align: # Vlen types have different size in the numpy struct self.assertRaises(TypeError, h5py.h5t.py_create, dt, logical=logical) else: ht = h5py.h5t.py_create(dt, logical=logical) offsets = [ht.get_member_offset(i) for i in range(ht.get_nmembers())] if np_align: self.assertEqual(np_offsets, offsets) def test_aligned_offsets(self): dt = np.dtype('i2,i8', align=True) ht = h5py.h5t.py_create(dt) self.assertEqual(dt.itemsize, ht.get_size()) self.assertEqual( [dt.fields[i][1] for i in dt.names], [ht.get_member_offset(i) for i in range(ht.get_nmembers())] ) def test_aligned_data(self): dt = np.dtype('i2,f8', align=True) data = np.empty(10, dtype=dt) data['f0'] = np.array(np.random.randint(-100, 100, size=data.size), dtype='i2') data['f1'] = np.random.rand(data.size) fname = self.mktemp() with h5py.File(fname, 'w') as f: f['data'] = data with h5py.File(fname, 'r') as f: self.assertArrayEqual(f['data'], data) def test_out_of_order_offsets(self): dt = np.dtype({ 'names' : ['f1', 'f2', 'f3'], 'formats' : ['<f4', '<i4', '<f8'], 'offsets' : [0, 16, 8] }) data = np.empty(10, dtype=dt) data['f1'] = np.random.rand(data.size) data['f2'] = np.random.random_integers(-10, 10, data.size) data['f3'] = np.random.rand(data.size)*-1 fname = self.mktemp() with h5py.File(fname, 'w') as fd: fd.create_dataset('data', data=data) with h5py.File(fname, 'r') as fd: self.assertArrayEqual(fd['data'], data)
33.527638
78
0.508243
6,485
0.971972
0
0
0
0
0
0
772
0.115707
151937c4e4552fde0563a4d7a5da8405bfdf819f
2,278
py
Python
conmon/regex.py
flashdagger/conmon
c6e75f115ad104ea7ecc7b14618efadefadad2f8
[ "MIT" ]
null
null
null
conmon/regex.py
flashdagger/conmon
c6e75f115ad104ea7ecc7b14618efadefadad2f8
[ "MIT" ]
null
null
null
conmon/regex.py
flashdagger/conmon
c6e75f115ad104ea7ecc7b14618efadefadad2f8
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: UTF-8 -*- import re from typing import Pattern, Tuple, Iterator, Match, Union, Optional, List, Dict from conmon.conan import storage_path DECOLORIZE_REGEX = re.compile(r"[\u001b]\[\d{1,2}m", re.UNICODE) CONAN_DATA_PATH = re.compile( r"""(?x) (?P<path> ([a-zA-Z]:)? (?P<sep>[\\/]) (?:[\w\-.]+(?P=sep)){5,} # conservative choice of characters in path names (?:build|package)(?P=sep) [a-f0-9]{40} (?P=sep) ) """ ) REF_PART_PATTERN = r"\w[\w\+\.\-]{1,50}" REF_REGEX = re.compile( rf"""(?x) (?P<ref> (?P<name>{REF_PART_PATTERN})/ (?P<version>{REF_PART_PATTERN}) (?: @ (?: (?P<user>{REF_PART_PATTERN})/ (?P<channel>{REF_PART_PATTERN}) )? )? ) """ ) def shorten_conan_path(text: str, placeholder=r"...\g<sep>", count=0) -> str: storage = str(storage_path()) text = CONAN_DATA_PATH.sub(placeholder, text, count=count) if len(storage) > 20: text = text.replace(storage, "(storage)") return text def compact_pattern(regex: Pattern) -> Tuple[str, int]: """take verbose pattern and remove all whitespace and comments""" flags = regex.flags # remove inline flags pattern = re.sub(r"\(\?([aiLmsux])+\)", "", regex.pattern, flags=re.ASCII) # remove whitespace in verbose pattern if flags & re.VERBOSE: pattern = re.sub(r"(?<!\\)\s+|\\(?= )|#[^\n]+\n", "", pattern, flags=re.ASCII) flags -= re.VERBOSE return pattern, flags def finditer( pattern: Union[Pattern[str], str], string: str, flags=0 ) -> Iterator[Tuple[Optional[Match], str]]: span_end = 0 for match in re.finditer(pattern, string, flags): yield match, string[span_end : match.start()] span_end = match.end() yield None, string[span_end:] def filter_by_regex( string: str, mapping: Dict[str, List[Match]], **patterns: Union[Pattern[str], str] ) -> str: for name, pattern in patterns.items(): matches, strings = zip(*finditer(pattern, string)) string = "".join(strings) mapping.setdefault(name, []).extend(matches[:-1]) return string
28.475
87
0.565847
0
0
307
0.134767
0
0
0
0
838
0.367867
15195236d745c09ce968bf6af2311b1a616e1824
5,089
py
Python
src/north/cli/gscli/main.py
falcacicd/goldstone-mgmt
e7348011180e3c2dcd0558636ddc5c21779c7a3f
[ "Apache-2.0" ]
null
null
null
src/north/cli/gscli/main.py
falcacicd/goldstone-mgmt
e7348011180e3c2dcd0558636ddc5c21779c7a3f
[ "Apache-2.0" ]
null
null
null
src/north/cli/gscli/main.py
falcacicd/goldstone-mgmt
e7348011180e3c2dcd0558636ddc5c21779c7a3f
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import sysrepo as sr import argparse from prompt_toolkit import PromptSession from prompt_toolkit.key_binding import KeyBindings from prompt_toolkit.completion import Completer import sys import os import logging import asyncio from .base import Object, InvalidInput, BreakLoop from .onlp import Platform from .tai import Transponder logger = logging.getLogger(__name__) stdout = logging.getLogger('stdout') class Root(Object): XPATH = '/' def __init__(self, sess): self.session = sess super(Root, self).__init__(None) @self.command() def platform(line): if len(line) != 0: raise InvalidInput('usage: platform[cr]') return Platform(self.session, self) @self.command() def transponder(line): if len(line) != 0: raise InvalidInput('usage: transponder[cr]') return Transponder(self.session, self) def __str__(self): return '' class GoldstoneShellCompleter(Completer): def __init__(self, context): self.context = context def get_completions(self, document, complete_event): return self.context.completion(document, complete_event) class GoldstoneShell(object): def __init__(self, sess=None, default_prompt='> ', prefix=''): if sess == None: conn = sr.SysrepoConnection() sess = conn.start_session() self.context = Root(sess) self.completer = GoldstoneShellCompleter(self.context) self.default_input = '' self.default_prompt = default_prompt self.prefix = prefix #TODO subscribe to global error message bus def prompt(self): c = self.context l = [str(c)] while c.parent: l.insert(0, str(c.parent)) c = c.parent return self.prefix + ('/'.join(l)[1:] if len(l) > 1 else '') + self.default_prompt async def exec(self, cmd: list, no_fail=True): ret = await self.context.exec_async(cmd, no_fail=no_fail) if ret: self.context = ret self.completer.context = ret self.default_input = '' def bindings(self): b = KeyBindings() @b.add('?') def _(event): buf = event.current_buffer original_text = buf.text help_msg = event.app.shell.context.help(buf.text) buf.insert_text('?') buf.insert_line_below(copy_margin=False) buf.insert_text(help_msg) event.app.exit('') event.app.shell.default_input = original_text # @b.add(' ') # def _(event): # buf = event.current_buffer # if len(buf.text.strip()) > 0 and len(buf.text) == buf.cursor_position: # candidates = list(event.app.shell.context.completion(buf.document)) # if len(candidates) == 1: # c = candidates[0] # buf.insert_text(c.text[-c.start_position:]) # buf.cancel_completion() # buf.insert_text(' ') return b async def loop_async(shell): session = PromptSession() while True: c = shell.completer p = shell.prompt() b = shell.bindings() session.app.shell = shell line = await session.prompt_async(p, completer=c, key_bindings=b, default=shell.default_input) if len(line) > 0: await shell.exec(line) def main(): parser = argparse.ArgumentParser() parser.add_argument('-v', '--verbose', action='store_true') parser.add_argument('-c', '--command-string') parser.add_argument('-k', '--keep-open', action='store_true') parser.add_argument('-x', '--stdin', action='store_true') args = parser.parse_args() formatter = logging.Formatter('[%(asctime)s][%(levelname)-5s][%(name)s] %(message)s', datefmt='%Y-%m-%d %H:%M:%S') console = logging.StreamHandler() console.setLevel(logging.INFO) if args.verbose: console.setLevel(logging.DEBUG) log = sr.Logs() log.set_stderr(sr.SR_LL_DBG) console.setFormatter(formatter) sh = logging.StreamHandler() sh.setLevel(logging.DEBUG) shf = logging.Formatter('%(message)s') sh.setFormatter(shf) stdout.setLevel(logging.DEBUG) stdout.addHandler(sh) shell = GoldstoneShell() async def _main(): if args.stdin or args.command_string: stream = sys.stdin if args.stdin else args.command_string.split(';') for line in stream: try: await shell.exec(line, no_fail=False) except InvalidInput as e: stdout.info('failed to execute: {}'.format(line)) stdout.info(e) sys.exit(1) if not args.keep_open: return tasks = [loop_async(shell)] try: await asyncio.gather(*tasks) except BreakLoop: return asyncio.run(_main()) if __name__ == '__main__': main()
28.751412
118
0.592847
2,679
0.52643
0
0
753
0.147966
1,220
0.239733
834
0.163883
1519776f4ef0553b7494300ab7ab52a92881c3de
350
py
Python
InsertionSort/selectionSort/selectionsort/selectionSort.py
khaledshishani32/data-structures-and-algorithms-python
6397ef2467958b100747ef430ddfb3e691a97a0f
[ "MIT" ]
null
null
null
InsertionSort/selectionSort/selectionsort/selectionSort.py
khaledshishani32/data-structures-and-algorithms-python
6397ef2467958b100747ef430ddfb3e691a97a0f
[ "MIT" ]
null
null
null
InsertionSort/selectionSort/selectionsort/selectionSort.py
khaledshishani32/data-structures-and-algorithms-python
6397ef2467958b100747ef430ddfb3e691a97a0f
[ "MIT" ]
null
null
null
def selection_sort(my_list): for i in range(len(my_list)): min_index=i for j in range(i+1 , len(my_list)): if my_list[min_index]>my_list[j]: min_index= j my_list[i],my_list[min_index]= my_list[min_index] ,my_list[i] print(my_list) cus_list=[8,4,23,42,16,15] selection_sort(cus_list)
25
69
0.611429
0
0
0
0
0
0
0
0
0
0
1519b725bc8e51fd74703c95a095ecb5723fb0b3
437
py
Python
tests/creditcrawler_test.py
Mivinci/cqupt-piper
ce76a4334a2d7a7b75750d7bfac9efa747f968c7
[ "MIT" ]
3
2019-09-08T16:22:30.000Z
2021-01-23T02:54:10.000Z
tests/creditcrawler_test.py
Mivinci/cqupt-piper
ce76a4334a2d7a7b75750d7bfac9efa747f968c7
[ "MIT" ]
1
2020-01-11T05:13:43.000Z
2020-01-11T05:13:43.000Z
tests/creditcrawler_test.py
Mivinci/cqupt-piper
ce76a4334a2d7a7b75750d7bfac9efa747f968c7
[ "MIT" ]
null
null
null
import requests from bs4 import BeautifulSoup from prettytable import PrettyTable # html = requests.get( # 'http://jwzx.cqu.pt/student/xkxfTj.php', # cookies={'PHPSESSID': 'o2r2fpddrj892dp1ntqddcp2hv'}).text # soup = BeautifulSoup(html, 'html.parser') # for tr in soup.find('table', {'id': 'AxfTjTable'}).findAll('tr')[1:]: # tds = tr.findAll('td') # print(tds[1:5]) table = PrettyTable(['aaa', 'bbb']) print(table)
24.277778
71
0.665904
0
0
0
0
0
0
0
0
304
0.695652
1519c99cb202a036f7cd0c6cfb24bf58a516d62b
602
py
Python
ClassMethod.py
AdarshKvT/python-oop
b619226807c3a0b434fe9789952cc86dc8cde9b7
[ "Apache-2.0" ]
null
null
null
ClassMethod.py
AdarshKvT/python-oop
b619226807c3a0b434fe9789952cc86dc8cde9b7
[ "Apache-2.0" ]
null
null
null
ClassMethod.py
AdarshKvT/python-oop
b619226807c3a0b434fe9789952cc86dc8cde9b7
[ "Apache-2.0" ]
null
null
null
class Person: number_of_people = 0 def __init__(self, name): print("__init__ initiated") self.name = name print("calling add_person()") Person.add_person() @classmethod def num_of_people(cls): print("initiating num_of_person()") return cls.number_of_people @classmethod def add_person(cls): print("add_person(cls)") cls.number_of_people += 1 # create an object of person p1 = Person("KvT") # creating another instance p2 = Person("Shin") # accessing the class method directly print(Person.num_of_people())
20.066667
43
0.647841
433
0.719269
0
0
224
0.372093
0
0
190
0.315615
1519fb893e14d2984bb652c58400576b1b324256
1,117
py
Python
webpack_manifest/templatetags/webpack_manifest_tags.py
temoto/python-webpack-manifest
bb10dbb718f2b41d8356c983b375b064e220d521
[ "MIT" ]
55
2015-11-02T19:50:41.000Z
2022-03-06T21:48:36.000Z
webpack_manifest/templatetags/webpack_manifest_tags.py
temoto/python-webpack-manifest
bb10dbb718f2b41d8356c983b375b064e220d521
[ "MIT" ]
7
2015-09-16T05:24:37.000Z
2018-07-25T23:10:30.000Z
webpack_manifest/templatetags/webpack_manifest_tags.py
temoto/python-webpack-manifest
bb10dbb718f2b41d8356c983b375b064e220d521
[ "MIT" ]
10
2016-03-06T16:30:00.000Z
2020-08-12T01:41:51.000Z
from django import template from django.conf import settings from webpack_manifest import webpack_manifest if not hasattr(settings, 'WEBPACK_MANIFEST'): raise webpack_manifest.WebpackManifestConfigError('`WEBPACK_MANIFEST` has not been defined in settings') if 'manifests' not in settings.WEBPACK_MANIFEST: raise webpack_manifest.WebpackManifestConfigError( '`WEBPACK_MANIFEST[\'manifests\']` has not been defined in settings' ) register = template.Library() @register.simple_tag def load_webpack_manifest(name): if name not in settings.WEBPACK_MANIFEST['manifests']: raise webpack_manifest.WebpackManifestConfigError( '"%s" has not been defined in `WEBPACK_MANIFEST[\'manifests\']`' % name, ) conf = settings.WEBPACK_MANIFEST['manifests'][name] for prop in ('path', 'static_url', 'static_root'): if prop not in conf: raise webpack_manifest.WebpackManifestConfigError( '"%s" has not been defined in `WEBPACK_MANIFEST[\'manifests\'][\'%s\']`' % (prop, name), ) return webpack_manifest.load(**conf)
34.90625
108
0.706356
0
0
0
0
632
0.565801
0
0
339
0.303491
151a77fa24452704d617da768baec7d8f8f8b186
2,668
py
Python
utilities/jaccard_utilities.py
jjc2718/netreg
292540e911cdfbe18ff6fe0f9bfe8e055053d23c
[ "BSD-3-Clause" ]
null
null
null
utilities/jaccard_utilities.py
jjc2718/netreg
292540e911cdfbe18ff6fe0f9bfe8e055053d23c
[ "BSD-3-Clause" ]
6
2019-07-12T15:52:31.000Z
2020-01-13T18:14:41.000Z
utilities/jaccard_utilities.py
jjc2718/netreg
292540e911cdfbe18ff6fe0f9bfe8e055053d23c
[ "BSD-3-Clause" ]
1
2019-07-18T18:28:59.000Z
2019-07-18T18:28:59.000Z
import os import itertools as it import pandas as pd def compute_jaccard(v1, v2): v1, v2 = set(v1), set(v2) intersection = v1.intersection(v2) union = v1.union(v2) return ((len(intersection) / len(union) if len(union) != 0 else 0), len(intersection), len(union)) def get_inter_method_similarity(sk_coefs_folds, torch_coefs_folds, seeds, folds, signal='signal'): inter_method_sims = [] for seed in seeds: for fold in folds: sk_coefs = sk_coefs_folds[signal][seed][fold][0] sk_genes = sk_coefs_folds[signal][seed][fold][1] sk_nz_coefs = (sk_coefs != 0) sk_nz_genes = sk_genes[sk_nz_coefs] torch_coefs = torch_coefs_folds[signal][seed][fold][0] torch_genes = torch_coefs_folds[signal][seed][fold][1] torch_nz_coefs = (torch_coefs != 0) torch_nz_genes = torch_genes[torch_nz_coefs] inter_method_sims.append(compute_jaccard(set(sk_nz_genes), set(torch_nz_genes))[0]) return inter_method_sims def get_intra_method_similarity(sk_coefs_folds, torch_coefs_folds, seeds, folds, signal='signal'): intra_method_sims_sk = [] intra_method_sims_torch = [] for seed in seeds: for f1, f2 in it.combinations(folds, 2): # first for scikit-learn sk_coefs_f1 = sk_coefs_folds[signal][seed][f1][0] sk_genes_f1 = sk_coefs_folds[signal][seed][f1][1] sk_coefs_f2 = sk_coefs_folds[signal][seed][f2][0] sk_genes_f2 = sk_coefs_folds[signal][seed][f2][1] sk_nz_coefs_f1 = (sk_coefs_f1 != 0) sk_nz_genes_f1 = sk_genes_f1[sk_nz_coefs_f1] sk_nz_coefs_f2 = (sk_coefs_f2 != 0) sk_nz_genes_f2 = sk_genes_f2[sk_nz_coefs_f2] intra_method_sims_sk.append(compute_jaccard(set(sk_nz_genes_f1), set(sk_nz_genes_f2))[0]) # then for torch torch_coefs_f1 = torch_coefs_folds[signal][seed][f1][0] torch_genes_f1 = torch_coefs_folds[signal][seed][f1][1] torch_coefs_f2 = torch_coefs_folds[signal][seed][f2][0] torch_genes_f2 = torch_coefs_folds[signal][seed][f2][1] torch_nz_coefs_f1 = (torch_coefs_f1 != 0) torch_nz_genes_f1 = torch_genes_f1[torch_nz_coefs_f1] torch_nz_coefs_f2 = (torch_coefs_f2 != 0) torch_nz_genes_f2 = torch_genes_f2[torch_nz_coefs_f2] intra_method_sims_torch.append(compute_jaccard(set(torch_nz_genes_f1), set(torch_nz_genes_f2))[0]) return (intra_method_sims_sk, intra_method_sims_torch)
44.466667
110
0.642054
0
0
0
0
0
0
0
0
56
0.02099
151aa06c987c92f779a676ea9b8988f697c25f28
2,600
py
Python
CursoEmVideo/pythonProject/venv/Lib/site-packages/Interface/tests/unitfixtures.py
cassio645/Aprendendo-python
17a8b5a0e7abc3342d24841ed28093db13d2c130
[ "MIT" ]
null
null
null
CursoEmVideo/pythonProject/venv/Lib/site-packages/Interface/tests/unitfixtures.py
cassio645/Aprendendo-python
17a8b5a0e7abc3342d24841ed28093db13d2c130
[ "MIT" ]
null
null
null
CursoEmVideo/pythonProject/venv/Lib/site-packages/Interface/tests/unitfixtures.py
cassio645/Aprendendo-python
17a8b5a0e7abc3342d24841ed28093db13d2c130
[ "MIT" ]
null
null
null
############################################################################## # # Copyright (c) 2001, 2002 Zope Corporation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## from Interface import Interface from Interface.Attribute import Attribute class mytest(Interface): pass class C: def m1(self, a, b): "return 1" return 1 def m2(self, a, b): "return 2" return 2 # testInstancesOfClassImplements # YAGNI IC=Interface.impliedInterface(C) class IC(Interface): def m1(a, b): "return 1" def m2(a, b): "return 2" C.__implements__=IC class I1(Interface): def ma(): "blah" class I2(I1): pass class I3(Interface): pass class I4(Interface): pass class A(I1.deferred()): __implements__=I1 class B: __implements__=I2, I3 class D(A, B): pass class E(A, B): __implements__ = A.__implements__, C.__implements__ class FooInterface(Interface): """ This is an Abstract Base Class """ foobar = Attribute("fuzzed over beyond all recognition") def aMethod(foo, bar, bingo): """ This is aMethod """ def anotherMethod(foo=6, bar="where you get sloshed", bingo=(1,3,)): """ This is anotherMethod """ def wammy(zip, *argues): """ yadda yadda """ def useless(**keywords): """ useless code is fun! """ class Foo: """ A concrete class """ __implements__ = FooInterface, foobar = "yeah" def aMethod(self, foo, bar, bingo): """ This is aMethod """ return "barf!" def anotherMethod(self, foo=6, bar="where you get sloshed", bingo=(1,3,)): """ This is anotherMethod """ return "barf!" def wammy(self, zip, *argues): """ yadda yadda """ return "barf!" def useless(self, **keywords): """ useless code is fun! """ return "barf!" foo_instance = Foo() class Blah: pass new = Interface.__class__ FunInterface = new('FunInterface') BarInterface = new('BarInterface', [FunInterface]) BobInterface = new('BobInterface') BazInterface = new('BazInterface', [BobInterface, BarInterface])
22.033898
78
0.602308
1,517
0.583462
0
0
0
0
0
0
1,181
0.454231
151beeecee85f8f8f1854a4eb0eedf92f2702417
7,188
py
Python
noise_robust_cobras/noise_robust/datastructures/cycle.py
jonassoenen/noise_robust_cobras
0e5823dbba0263c3ccb3c2afb4267f2f542fc568
[ "Apache-2.0" ]
2
2020-07-30T15:09:53.000Z
2020-07-31T06:33:36.000Z
noise_robust_cobras/noise_robust/datastructures/cycle.py
magicalJohn/noise_robust_cobras
0e5823dbba0263c3ccb3c2afb4267f2f542fc568
[ "Apache-2.0" ]
null
null
null
noise_robust_cobras/noise_robust/datastructures/cycle.py
magicalJohn/noise_robust_cobras
0e5823dbba0263c3ccb3c2afb4267f2f542fc568
[ "Apache-2.0" ]
1
2021-12-12T11:11:25.000Z
2021-12-12T11:11:25.000Z
from collections import defaultdict from noise_robust_cobras.noise_robust.datastructures.constraint import Constraint from noise_robust_cobras.noise_robust.datastructures.constraint_index import ( ConstraintIndex, ) class Cycle: """ A class that represents a valid constraint cycle attributes: - constraints: a list of constraints the way they appear in the cycle (starts at a random point in the cycle) - sorted_constraints: a tuple of constraints that is sorted for __eq__ and __hash__ - number_of_CLs: the number of CL constraints in this cycle """ def __init__(self, constraints, composed_from=None, number_of_CLs=None): assert Cycle.is_valid_constraint_set_for_cycle(constraints) self.constraints = set(constraints) self.sorted_constraints = Cycle.sort_constraints(constraints) self.composed_from = set(composed_from) if composed_from is not None else {self} if number_of_CLs is None: self.number_of_CLs = sum( 1 for constraint in constraints if constraint.is_CL() ) else: self.number_of_CLs = number_of_CLs @staticmethod def compose_multiple_cycles_ordered(cycles): composed_cycle = cycles[0] for to_compose in cycles[1:]: composed_cycle = composed_cycle.compose_with(to_compose) if composed_cycle is None: break return composed_cycle @staticmethod def compose_multiple_cycles(cycles): composed_constraints = set(cycles[0].constraints) composed_from = set(cycles[0].composed_from) for to_compose in cycles[1:]: composed_constraints.symmetric_difference_update(to_compose.constraints) composed_from.symmetric_difference_update(to_compose.composed_from) if not Cycle.is_valid_constraint_set_for_cycle(composed_constraints): return None return Cycle(composed_constraints, composed_from=composed_from) @staticmethod def make_cycle_from_raw_cons(raw_constraints): constraints = Constraint.raw_constraints_to_constraints(raw_constraints) return Cycle(constraints) @staticmethod def cycle_from_instances(instances): instances = [int(i) for i in instances] raw_constraints = list(zip(instances[:-1], instances[1:])) + [ (instances[0], instances[-1]) ] return Cycle.make_cycle_from_raw_cons(raw_constraints) @staticmethod def cycle_from_instances_constraint_index(instances, constraint_index): instances = [int(i) for i in instances] raw_constraints = list(zip(instances[:-1], instances[1:])) + [ (instances[0], instances[-1]) ] return Cycle(constraint_index.instance_tuples_to_constraints(raw_constraints)) @staticmethod def is_valid_constraint_set_for_cycle(constraints): if len(constraints) == 0: return False # check if each instance occurs twice count = defaultdict(lambda: 0) for constraint in constraints: count[constraint.i1] += 1 count[constraint.i2] += 1 for key, value in count.items(): if value != 2: return False # check if all constraints are connected all_sets = [] for constraint in constraints: found_sets = [ s for s in all_sets if constraint.i1 in s or constraint.i2 in s ] if len(found_sets) == 0: all_sets.append({constraint.i1, constraint.i2}) elif len(found_sets) == 1: found_sets[0].update(constraint.get_instance_tuple()) elif len(found_sets) == 2: found_sets[0].update(found_sets[1]) all_sets.remove(found_sets[1]) return len(all_sets) == 1 def is_valid_cycle(self): return Cycle.is_valid_constraint_set_for_cycle(self.constraints) def get_sorted_constraint_list(self): """ :return: a list of all constraints in the order by which they appear in the cycle with an arbitrary starting constraints """ all_constraints = list(self.constraints) start_constraint = all_constraints[0] temp_index = ConstraintIndex() for constraint in all_constraints[1:]: temp_index.add_constraint(constraint) current_list = [(start_constraint.get_instance_tuple(), start_constraint)] current_instance = start_constraint.i2 while len(temp_index.constraints) > 0: matching_constraints = temp_index.find_constraints_for_instance( current_instance ) if len(matching_constraints) == 1: matching_constraint = list(matching_constraints)[0] else: raise Exception("Not a valid cycle!") other_instance = matching_constraint.get_other_instance(current_instance) current_list.append( ((current_instance, other_instance), matching_constraint) ) current_instance = other_instance temp_index.remove_constraint(matching_constraint) # check if the cycle is complete if start_constraint.i1 != current_instance: raise Exception("Not a valid cycle!") return current_list def compose_with(self, other_cycle): if len(self.constraints.intersection(other_cycle.constraints)) == 0: return None new_constraints = set(self.constraints).symmetric_difference( other_cycle.constraints ) if len(new_constraints) == 0: return None if not Cycle.is_valid_constraint_set_for_cycle(new_constraints): return None new_cycle = Cycle( new_constraints, other_cycle.composed_from.symmetric_difference(self.composed_from), ) return new_cycle def replace_constraint(self, old_constraint, new_constraint): assert old_constraint in self.constraints new_constraints = set(self.constraints) new_constraints.remove(old_constraint) new_constraints.add(new_constraint) return Cycle(new_constraints) @staticmethod def sort_constraints(constraints): return tuple(sorted(constraints)) def is_useful(self): return self.number_of_CLs <= 2 def is_inconsistent(self): return self.number_of_CLs == 1 def __iter__(self): return self.constraints.__iter__() def __len__(self): return len(self.constraints) def __eq__(self, other): if other == None: return False return self.sorted_constraints == other.sorted_constraints def __contains__(self, item): return item in self.constraints def __hash__(self): return hash(self.sorted_constraints) def __repr__(self): return str(self) def __str__(self): # return ",".join([str(constraint) for constraint in self.constraints]) return ",".join([str(con) for _, con in self.get_sorted_constraint_list()])
37.243523
128
0.657763
6,964
0.968837
0
0
2,784
0.387312
0
0
734
0.102115
151d22605d16726325dce1205b7a8ba505f35329
525
py
Python
python3/hackerrank_leetcode/remove_duplicates_from_sorted_array/test.py
seLain/codesnippets
ae9a1fa05b67f4b3ac1703cc962fcf5f6de1e289
[ "MIT" ]
null
null
null
python3/hackerrank_leetcode/remove_duplicates_from_sorted_array/test.py
seLain/codesnippets
ae9a1fa05b67f4b3ac1703cc962fcf5f6de1e289
[ "MIT" ]
null
null
null
python3/hackerrank_leetcode/remove_duplicates_from_sorted_array/test.py
seLain/codesnippets
ae9a1fa05b67f4b3ac1703cc962fcf5f6de1e289
[ "MIT" ]
null
null
null
import unittest from main import Solution class TestSolutionMethods(unittest.TestCase): solution = Solution() def test_longestCommonPrefix(self): # leetcode test self.assertEqual(self.solution.removeDuplicates([1,1,2]), 2) # customized test self.assertEqual(self.solution.removeDuplicates([]), 0) self.assertEqual(self.solution.removeDuplicates([1]), 1) self.assertEqual(self.solution.removeDuplicates([1,1,2,3,3]), 3) if __name__ == '__main__': unittest.main()
30.882353
72
0.693333
434
0.826667
0
0
0
0
0
0
42
0.08
12772bd26a04aaf3f825acfbb2e6f63963b94d81
246
py
Python
7KYU/word_splitter.py
yaznasivasai/python_codewars
25493591dde4649dc9c1ec3bece8191a3bed6818
[ "MIT" ]
4
2021-07-17T22:48:03.000Z
2022-03-25T14:10:58.000Z
7KYU/word_splitter.py
yaznasivasai/python_codewars
25493591dde4649dc9c1ec3bece8191a3bed6818
[ "MIT" ]
null
null
null
7KYU/word_splitter.py
yaznasivasai/python_codewars
25493591dde4649dc9c1ec3bece8191a3bed6818
[ "MIT" ]
3
2021-06-14T14:18:16.000Z
2022-03-16T06:02:02.000Z
SEPARATOR: list = [':', ',', '*', ';', '#', '|', '+', '%', '>', '?', '&', '=', '!'] def word_splitter(string: str) -> list: for i in string: if i in SEPARATOR: string = string.replace(i, ' ') return string.split()
35.142857
83
0.426829
0
0
0
0
0
0
0
0
42
0.170732
12781452042b292ed356843d47c2a5e60478909f
7,998
py
Python
parsers/sales_order.py
njncalub/logistiko
74b1d17bc76538de6f5f70c7eca927780d6b4113
[ "MIT" ]
null
null
null
parsers/sales_order.py
njncalub/logistiko
74b1d17bc76538de6f5f70c7eca927780d6b4113
[ "MIT" ]
null
null
null
parsers/sales_order.py
njncalub/logistiko
74b1d17bc76538de6f5f70c7eca927780d6b4113
[ "MIT" ]
null
null
null
import csv from core.exceptions import InvalidFileException def load_so_item_from_file(path, db_service): with open(path) as csv_file: csv_reader = csv.reader(csv_file) error_msg = 'Missing required header: {}' for i, row in enumerate(csv_reader, 1): data = { 'id_sales_order_item': row[0], 'bob_id_sales_order_item': row[1], 'fk_sales_order': row[2], 'fk_sales_order_item_status': row[3], 'fk_delivery_type': row[4], 'unit_price': row[5], 'tax_amount': row[6], 'paid_price': row[7], 'name': row[8], 'sku': row[9], 'created_at': row[10], 'updated_at': row[11], 'last_status_change': row[12], 'original_unit_price': row[13], 'shipping_type': row[14], 'real_delivery_date': row[15], 'bob_id_supplier': row[16], 'is_marketplace': row[17], } if i == 1: # check if the header values line up if not data['id_sales_order_item'] == 'id_sales_order_item': raise InvalidFileException( error_msg.format('id_sales_order_item')) if not data['bob_id_sales_order_item'] == \ 'bob_id_sales_order_item': raise InvalidFileException( error_msg.format('bob_id_sales_order_item')) if not data['fk_sales_order'] == 'fk_sales_order': raise InvalidFileException( error_msg.format('fk_sales_order')) if not data['fk_sales_order_item_status'] == \ 'fk_sales_order_item_status': raise InvalidFileException( error_msg.format('fk_sales_order_item_status')) if not data['fk_delivery_type'] == 'fk_delivery_type': raise InvalidFileException( error_msg.format('fk_delivery_type')) if not data['unit_price'] == 'unit_price': raise InvalidFileException(error_msg.format('unit_price')) if not data['tax_amount'] == 'tax_amount': raise InvalidFileException(error_msg.format('tax_amount')) if not data['paid_price'] == 'paid_price': raise InvalidFileException(error_msg.format('paid_price')) if not data['name'] == 'name': raise InvalidFileException(error_msg.format('name')) if not data['sku'] == 'sku': raise InvalidFileException(error_msg.format('sku')) if not data['created_at'] == 'created_at': raise InvalidFileException(error_msg.format('created_at')) if not data['updated_at'] == 'updated_at': raise InvalidFileException(error_msg.format('updated_at')) if not data['last_status_change'] == 'last_status_change': raise InvalidFileException( error_msg.format('last_status_change')) if not data['original_unit_price'] == 'original_unit_price': raise InvalidFileException( error_msg.format('original_unit_price')) if not data['shipping_type'] == 'shipping_type': raise InvalidFileException( error_msg.format('shipping_type')) if not data['real_delivery_date'] == 'real_delivery_date': raise InvalidFileException( error_msg.format('real_delivery_date')) if not data['bob_id_supplier'] == 'bob_id_supplier': raise InvalidFileException( error_msg.format('bob_id_supplier')) if not data['is_marketplace'] == 'is_marketplace': raise InvalidFileException( error_msg.format('is_marketplace')) else: process_so_item_data(data=data, db_service=db_service) print(f'Processed {i} sales order item(s).') def load_so_item_status_from_file(path, db_service): with open(path) as csv_file: csv_reader = csv.reader(csv_file) error_msg = 'Missing required header: {}' for i, row in enumerate(csv_reader, 1): data = { 'id_sales_order_item_status': row[0], 'fk_oms_function': row[1], 'status': row[2], 'desc': row[3], 'deprecated': row[4], 'updated_at': row[5], } if i == 1: # check if the header values line up if not data['id_sales_order_item_status'] == \ 'id_sales_order_item_status': raise InvalidFileException( error_msg.format('id_sales_order_item_status')) if not data['fk_oms_function'] == 'fk_oms_function': raise InvalidFileException( error_msg.format('fk_oms_function')) if not data['status'] == 'status': raise InvalidFileException(error_msg.format('status')) if not data['desc'] == 'desc': raise InvalidFileException(error_msg.format('desc')) if not data['deprecated'] == 'deprecated': raise InvalidFileException(error_msg.format('deprecated')) if not data['updated_at'] == 'updated_at': raise InvalidFileException(error_msg.format('updated_at')) else: process_so_item_status_data(data=data, db_service=db_service) print(f'Processed {i} sales order item status.') def load_so_item_status_history_from_file(path, db_service): with open(path) as csv_file: csv_reader = csv.reader(csv_file) error_msg = 'Missing required header: {}' for i, row in enumerate(csv_reader, 1): data = { 'id_sales_order_item_status_history': row[0], 'fk_sales_order_item': row[1], 'fk_sales_order_item_status': row[2], 'created_at': row[3], } if i == 1: # check if the header values line up if not data['id_sales_order_item_status_history'] == \ 'id_sales_order_item_status_history': raise InvalidFileException( error_msg.format('id_sales_order_item_status_history')) if not data['fk_sales_order_item'] == 'fk_sales_order_item': raise InvalidFileException( error_msg.format('fk_sales_order_item')) if not data['fk_sales_order_item_status'] == \ 'fk_sales_order_item_status': raise InvalidFileException( error_msg.format('fk_sales_order_item_status')) if not data['created_at'] == 'created_at': raise InvalidFileException(error_msg.format('created_at')) else: process_so_item_status_history_data(data=data, db_service=db_service) print(f'Processed {i} sales order item status history.') def process_so_item_data(data, db_service): if data['real_delivery_date'] == 'NULL': data['real_delivery_date'] = None db_service.add_so_item(**data) def process_so_item_status_data(data, db_service): db_service.add_so_item_status(**data) def process_so_item_status_history_data(data, db_service): db_service.add_so_item_status_history(**data)
46.77193
79
0.542136
0
0
0
0
0
0
0
0
2,240
0.28007
1278169f69007b0aff65ad2222788f61228ad8d6
8,342
py
Python
maps.py
BouncyButton/places-simulator
a1f5fc385750af9968cc3c6216ba20f5de4719fd
[ "MIT" ]
null
null
null
maps.py
BouncyButton/places-simulator
a1f5fc385750af9968cc3c6216ba20f5de4719fd
[ "MIT" ]
null
null
null
maps.py
BouncyButton/places-simulator
a1f5fc385750af9968cc3c6216ba20f5de4719fd
[ "MIT" ]
null
null
null
import googlemaps import secret from datetime import datetime import requests import pickle import time gmaps = googlemaps.Client(key=secret.PLACES_API_KEY) # lat = 45.411400 # lon = 11.887491 coordinates = [ (45.411400, 11.887491), # torre archimede (45.409218, 11.877915), # piazza garibaldi (45.407698, 11.873351), # piazza dei signori (45.401403, 11.880813), # basilica di sant'antonio ] # def find_places(): # results = gmaps.places_nearby(location=(lat, lon), type='bar', radius=500) # print(len(results)) # return results def find_places(): place_types = ['bar|restaurant|cafe|night_club'] f = open('maps_data.pickle', "rb") data = pickle.load(f) # data = dict() # data['requests'] = [] f.close() for lat, lon in coordinates: for place_type in place_types: url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json?" \ "location={1},{2}&radius=500&type={3}&key={0}".format( # &keyword=xxx secret.PLACES_API_KEY, lat, lon, place_type) execute_request(url, data) print("Retrieved {0} item(s).".format(len(data['requests']))) save_changes(data) return data def save_changes(data): f = open('maps_data_tmp.pickle', "wb") pickle.dump(data, f) f.close() import os os.replace("maps_data_tmp.pickle", "maps_data.pickle") def execute_request(url, data): r = requests.get(url) if r.status_code == 200: pass else: print("Errore: ", r.status_code) raise r.status_code for item in r.json()['results']: if item['place_id'] not in [place['place_id'] for place in data['requests']]: data['requests'].append(item) if r.json().get('next_page_token') is not None \ and r.json()['next_page_token'] is not None \ and r.json()['next_page_token'] != "": time.sleep(5) # need to wait a bit.. print("new page!") execute_request("https://maps.googleapis.com/maps/api/place/nearbysearch/json?pagetoken={0}&key={1}".format( r.json()['next_page_token'], secret.PLACES_API_KEY), data) # else: # print(r.json(), "non ha next_page_token") return r.json() def reinitialize_data(): f = open('maps_data.pickle', "wb") data = dict() data['requests'] = [] pickle.dump(data, f) f.close() def read_data(): f = open('maps_data.pickle', "rb") data = pickle.load(f) # for item in data['requests']: # print(item['name']) print("Found {0} places.".format(len(data['requests']))) return data def get_details(place_id, data): url = "https://maps.googleapis.com/maps/api/place/details/json?place_id={0}&fields=address_component,adr_address," \ "business_status,formatted_address,geometry,icon,name,photo,place_id,plus_code,type,url,utc_offset,vicinity," \ "formatted_phone_number,international_phone_number,opening_hours,website,price_level,rating,review," \ "user_ratings_total&key={1}&language=it".format( place_id, secret.PLACES_API_KEY) r = requests.get(url) if r.status_code == 200: pass else: print("Errore: ", r.status_code) raise r.status_code data['details'][place_id] = r.json() def fill_details(data): if data.get('details') is None: data['details'] = dict() ids = [place['place_id'] for place in data['requests']] for place_id in ids: if data['details'].get(place_id) is None: # risparmio call, "cache"? get_details(place_id, data) save_changes(data) def word2vec_analysis(labels, weights=None, N=4, translate=True): import gensim import numpy as np print("loading dataset...") model = gensim.models.KeyedVectors.load_word2vec_format('GoogleNews-vectors-negative300.bin.gz', binary=True) print('dataset loaded :)') if translate: def find_longest_word(word_list): longest_word = max(word_list, key=len) return longest_word from googletrans import Translator translator = Translator() labels_en = [] new_weights = [] for label, weight in zip(labels, weights): translated = translator.translate(label, dest='en').text longest = find_longest_word(translated.split(" ")) try: _ = model[longest] labels_en.append(longest) new_weights.append(weight) except KeyError: continue print("Starting labels: ", labels) print("Translated labels: ", labels_en) labels = labels_en # labels = ['cat', 'dog', 'mouse', 'lately', 'seldom', 'somehow', 'this', 'pencil', 'suitcase', 'pen'] X = np.array([model[label] for label in labels]) print(X.shape) kmeans_analysis(X, labels, new_weights, N) def kmeans_analysis(X, labels, weights=None, N=5): from sklearn.cluster import KMeans import numpy as np kmeans = KMeans(n_clusters=N, random_state=0).fit(X, sample_weight=weights) # labels[X.tolist().index(x)[0]] clusters = [[] for x in kmeans.cluster_centers_] for i, label in enumerate(kmeans.labels_): clusters[label].append((labels[i], X[i])) for cluster, cluster_center in zip(clusters, kmeans.cluster_centers_): label_center = None for point in cluster: if (point[1] == cluster_center).all(): label_center = point[0] # else: # print(point[1], cluster_center) print("Cluster has {0} item(s):".format(len(cluster))) for point in cluster: print(point[0]) def text_analysis(data): precorpus = [] for item in data['details'].values(): if item['result'].get('reviews') is not None: reviews = item['result']['reviews'] reviews_text = [x['text'] for x in reviews] for text in reviews_text: precorpus.append(text) print("Found {0} reviews".format(len(precorpus))) import re # nltk.download('stopwords') from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer from nltk.tokenize import RegexpTokenizer # nltk.download('wordnet') from nltk.stem.wordnet import WordNetLemmatizer ##Creating a list of stop words and adding custom stopwords try: stop_words = set(stopwords.words("italian")) except LookupError: import nltk nltk.download('wordnet') nltk.download('stopwords') stop_words = set(stopwords.words("italian")) # Creating a list of custom stopwords # Creato dopo analisi grafica di word1.png new_words = ["bar", "molto", "ottimo", "locale", "posto", "ben", "volta", "po", "più", "sempre", "padova", "ottimi", "poco", "ottima"] stop_words = stop_words.union(new_words) corpus = [] for t in precorpus: # Remove punctuations text = re.sub('[^a-zA-Zùàèé]', ' ', t) # Convert to lowercase text = text.lower() # remove tags text = re.sub("&lt;/?.*?&gt;", " &lt;&gt; ", text) # remove special characters and digits text = re.sub("(\\d|\\W)+", " ", text) ##Convert to list from string text = text.split() ##Stemming ps = PorterStemmer() # Lemmatisation lem = WordNetLemmatizer() text = [lem.lemmatize(word) for word in text if not word in stop_words] text = " ".join(text) corpus.append(text) # Word cloud from os import path from PIL import Image from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator import matplotlib.pyplot as plt wordcloud = WordCloud( background_color='white', stopwords=stop_words, max_words=100, max_font_size=50, random_state=42 ).generate(str(corpus)) print(wordcloud) fig = plt.figure(1) plt.imshow(wordcloud) plt.axis('off') # plt.show() # plt.close() fig.savefig("word1.png", dpi=900) return wordcloud.words_ d = read_data() occ = text_analysis(d) word2vec_analysis(occ.keys(), list(occ.values()), N=12, translate=True)
29.167832
121
0.609686
0
0
0
0
0
0
0
0
2,455
0.294118
12785f321ec0fa0181c3a4c19bc2048854ea35ad
31,231
py
Python
azure-iot-device/tests/iothub/test_sync_handler_manager.py
dt-boringtao/azure-iot-sdk-python
35a09679bdf4d7a727391b265a8f1fbb99a30c45
[ "MIT" ]
null
null
null
azure-iot-device/tests/iothub/test_sync_handler_manager.py
dt-boringtao/azure-iot-sdk-python
35a09679bdf4d7a727391b265a8f1fbb99a30c45
[ "MIT" ]
null
null
null
azure-iot-device/tests/iothub/test_sync_handler_manager.py
dt-boringtao/azure-iot-sdk-python
35a09679bdf4d7a727391b265a8f1fbb99a30c45
[ "MIT" ]
null
null
null
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import logging import pytest import threading import time from azure.iot.device.common import handle_exceptions from azure.iot.device.iothub import client_event from azure.iot.device.iothub.sync_handler_manager import SyncHandlerManager, HandlerManagerException from azure.iot.device.iothub.sync_handler_manager import MESSAGE, METHOD, TWIN_DP_PATCH from azure.iot.device.iothub.inbox_manager import InboxManager from azure.iot.device.iothub.sync_inbox import SyncClientInbox logging.basicConfig(level=logging.DEBUG) # NOTE ON TEST IMPLEMENTATION: # Despite having significant shared implementation between the sync and async handler managers, # there are not shared tests. This is because while both have the same set of requirements and # APIs, the internal implementation is different to an extent that it simply isn't really possible # to test them to an appropriate degree of correctness with a shared set of tests. # This means we must be very careful to always change both test modules when a change is made to # shared behavior, or when shared features are added. # NOTE ON TIMING/DELAY # Several tests in this module have sleeps/delays in their implementation due to needing to wait # for things to happen in other threads. all_internal_receiver_handlers = [MESSAGE, METHOD, TWIN_DP_PATCH] all_internal_client_event_handlers = [ "_on_connection_state_change", "_on_new_sastoken_required", "_on_background_exception", ] all_internal_handlers = all_internal_receiver_handlers + all_internal_client_event_handlers all_receiver_handlers = [s.lstrip("_") for s in all_internal_receiver_handlers] all_client_event_handlers = [s.lstrip("_") for s in all_internal_client_event_handlers] all_handlers = all_receiver_handlers + all_client_event_handlers class ThreadsafeMock(object): """This class provides (some) Mock functionality in a threadsafe manner, specifically, it ensures that the 'call_count' attribute will be accurate when the mock is called from another thread. It does not cover ALL mock functionality, but more features could be added to it as necessary """ def __init__(self): self.call_count = 0 self.lock = threading.Lock() def __call__(self, *args, **kwargs): with self.lock: self.call_count += 1 @pytest.fixture def inbox_manager(mocker): return InboxManager(inbox_type=SyncClientInbox) @pytest.fixture def handler(): def some_handler_fn(arg): pass return some_handler_fn @pytest.mark.describe("SyncHandlerManager - Instantiation") class TestInstantiation(object): @pytest.mark.it("Initializes handler properties to None") @pytest.mark.parametrize("handler_name", all_handlers) def test_handlers(self, inbox_manager, handler_name): hm = SyncHandlerManager(inbox_manager) assert getattr(hm, handler_name) is None @pytest.mark.it("Initializes receiver handler runner thread references to None") @pytest.mark.parametrize( "handler_name", all_internal_receiver_handlers, ids=all_receiver_handlers ) def test_receiver_handler_runners(self, inbox_manager, handler_name): hm = SyncHandlerManager(inbox_manager) assert hm._receiver_handler_runners[handler_name] is None @pytest.mark.it("Initializes client event handler runner thread reference to None") def test_client_event_handler_runner(self, inbox_manager): hm = SyncHandlerManager(inbox_manager) assert hm._client_event_runner is None @pytest.mark.describe("SyncHandlerManager - .stop()") class TestStop(object): @pytest.fixture( params=[ "No handlers running", "Some receiver handlers running", "Some client event handlers running", "Some receiver and some client event handlers running", "All handlers running", ] ) def handler_manager(self, request, inbox_manager, handler): hm = SyncHandlerManager(inbox_manager) if request.param == "Some receiver handlers running": # Set an arbitrary receiver handler hm.on_message_received = handler elif request.param == "Some client event handlers running": # Set an arbitrary client event handler hm.on_connection_state_change = handler elif request.param == "Some receiver and some client event handlers running": # Set an arbitrary receiver and client event handler hm.on_message_received = handler hm.on_connection_state_change = handler elif request.param == "All handlers running": # NOTE: this sets all handlers to be the same fn, but this doesn't really # make a difference in this context for handler_name in all_handlers: setattr(hm, handler_name, handler) yield hm hm.stop() @pytest.mark.it("Stops all currently running handlers") def test_stop_all(self, handler_manager): handler_manager.stop() for handler_name in all_internal_receiver_handlers: assert handler_manager._receiver_handler_runners[handler_name] is None assert handler_manager._client_event_runner is None @pytest.mark.it( "Stops only the currently running receiver handlers if the 'receiver_handlers_only' parameter is True" ) def test_stop_only_receiver_handlers(self, handler_manager): if handler_manager._client_event_runner is not None: client_event_handlers_running = True else: client_event_handlers_running = False handler_manager.stop(receiver_handlers_only=True) # All receiver handlers have stopped for handler_name in all_internal_receiver_handlers: assert handler_manager._receiver_handler_runners[handler_name] is None # If the client event handlers were running, they are STILL running if client_event_handlers_running: assert handler_manager._client_event_runner is not None @pytest.mark.it("Completes all pending handler invocations before stopping the runner(s)") def test_completes_pending(self, mocker, inbox_manager): hm = SyncHandlerManager(inbox_manager) # NOTE: We use two handlers arbitrarily here to show this happens for all handler runners mock_msg_handler = ThreadsafeMock() mock_mth_handler = ThreadsafeMock() msg_inbox = inbox_manager.get_unified_message_inbox() mth_inbox = inbox_manager.get_method_request_inbox() for _ in range(200): # sufficiently many items so can't complete quickly msg_inbox.put(mocker.MagicMock()) mth_inbox.put(mocker.MagicMock()) hm.on_message_received = mock_msg_handler hm.on_method_request_received = mock_mth_handler assert mock_msg_handler.call_count < 200 assert mock_mth_handler.call_count < 200 hm.stop() time.sleep(0.1) assert mock_msg_handler.call_count == 200 assert mock_mth_handler.call_count == 200 assert msg_inbox.empty() assert mth_inbox.empty() @pytest.mark.describe("SyncHandlerManager - .ensure_running()") class TestEnsureRunning(object): @pytest.fixture( params=[ "All handlers set, all stopped", "All handlers set, receivers stopped, client events running", "All handlers set, all running", "Some receiver and client event handlers set, all stopped", "Some receiver and client event handlers set, receivers stopped, client events running", "Some receiver and client event handlers set, all running", "Some receiver handlers set, all stopped", "Some receiver handlers set, all running", "Some client event handlers set, all stopped", "Some client event handlers set, all running", "No handlers set", ] ) def handler_manager(self, request, inbox_manager, handler): # NOTE: this sets all handlers to be the same fn, but this doesn't really # make a difference in this context hm = SyncHandlerManager(inbox_manager) if request.param == "All handlers set, all stopped": for handler_name in all_handlers: setattr(hm, handler_name, handler) hm.stop() elif request.param == "All handlers set, receivers stopped, client events running": for handler_name in all_handlers: setattr(hm, handler_name, handler) hm.stop(receiver_handlers_only=True) elif request.param == "All handlers set, all running": for handler_name in all_handlers: setattr(hm, handler_name, handler) elif request.param == "Some receiver and client event handlers set, all stopped": hm.on_message_received = handler hm.on_method_request_received = handler hm.on_connection_state_change = handler hm.on_new_sastoken_required = handler hm.stop() elif ( request.param == "Some receiver and client event handlers set, receivers stopped, client events running" ): hm.on_message_received = handler hm.on_method_request_received = handler hm.on_connection_state_change = handler hm.on_new_sastoken_required = handler hm.stop(receiver_handlers_only=True) elif request.param == "Some receiver and client event handlers set, all running": hm.on_message_received = handler hm.on_method_request_received = handler hm.on_connection_state_change = handler hm.on_new_sastoken_required = handler elif request.param == "Some receiver handlers set, all stopped": hm.on_message_received = handler hm.on_method_request_received = handler hm.stop() elif request.param == "Some receiver handlers set, all running": hm.on_message_received = handler hm.on_method_request_received = handler elif request.param == "Some client event handlers set, all stopped": hm.on_connection_state_change = handler hm.on_new_sastoken_required = handler hm.stop() elif request.param == "Some client event handlers set, all running": hm.on_connection_state_change = handler hm.on_new_sastoken_required = handler yield hm hm.stop() @pytest.mark.it( "Starts handler runners for any handler that is set, but does not have a handler runner running" ) def test_starts_runners_if_necessary(self, handler_manager): handler_manager.ensure_running() # Check receiver handlers for handler_name in all_receiver_handlers: if getattr(handler_manager, handler_name) is not None: # NOTE: this assumes the convention of internal names being the name of a handler # prefixed with a "_". If this ever changes, you must change this test. assert handler_manager._receiver_handler_runners["_" + handler_name] is not None # Check client event handlers for handler_name in all_client_event_handlers: if getattr(handler_manager, handler_name) is not None: assert handler_manager._client_event_runner is not None # don't need to check the rest of the handlers since they all share a runner break # ############## # # PROPERTIES # # ############## class SharedHandlerPropertyTests(object): @pytest.fixture def handler_manager(self, inbox_manager): hm = SyncHandlerManager(inbox_manager) yield hm hm.stop() # NOTE: We use setattr() and getattr() in these tests so they're generic to all properties. # This is functionally identical to doing explicit assignment to a property, it just # doesn't read quite as well. @pytest.mark.it("Can be both read and written to") def test_read_write(self, handler_name, handler_manager, handler): assert getattr(handler_manager, handler_name) is None setattr(handler_manager, handler_name, handler) assert getattr(handler_manager, handler_name) is handler setattr(handler_manager, handler_name, None) assert getattr(handler_manager, handler_name) is None class SharedReceiverHandlerPropertyTests(SharedHandlerPropertyTests): # NOTE: If there is ever any deviation in the convention of what the internal names of handlers # are other than just a prefixed "_", we'll have to move this fixture to the child classes so # it can be unique to each handler @pytest.fixture def handler_name_internal(self, handler_name): return "_" + handler_name @pytest.mark.it( "Creates and starts a daemon Thread for the correpsonding handler runner when value is set to a function" ) def test_thread_created(self, handler_name, handler_name_internal, handler_manager, handler): assert handler_manager._receiver_handler_runners[handler_name_internal] is None setattr(handler_manager, handler_name, handler) assert isinstance( handler_manager._receiver_handler_runners[handler_name_internal], threading.Thread ) assert handler_manager._receiver_handler_runners[handler_name_internal].daemon is True @pytest.mark.it( "Stops the corresponding handler runner and completes any existing daemon Thread for it when the value is set back to None" ) def test_thread_removed(self, handler_name, handler_name_internal, handler_manager, handler): # Set handler setattr(handler_manager, handler_name, handler) # Thread has been created and is alive t = handler_manager._receiver_handler_runners[handler_name_internal] assert isinstance(t, threading.Thread) assert t.is_alive() # Set the handler back to None setattr(handler_manager, handler_name, None) # Thread has finished and the manager no longer has a reference to it assert not t.is_alive() assert handler_manager._receiver_handler_runners[handler_name_internal] is None @pytest.mark.it( "Does not delete, remove, or replace the Thread for the corresponding handler runner, when updated with a new function value" ) def test_thread_unchanged_by_handler_update( self, handler_name, handler_name_internal, handler_manager, handler ): # Set the handler setattr(handler_manager, handler_name, handler) # Thread has been crated and is alive t = handler_manager._receiver_handler_runners[handler_name_internal] assert isinstance(t, threading.Thread) assert t.is_alive() # Set new handler def new_handler(arg): pass setattr(handler_manager, handler_name, new_handler) assert handler_manager._receiver_handler_runners[handler_name_internal] is t assert t.is_alive() @pytest.mark.it( "Is invoked by the runner when the Inbox corresponding to the handler receives an object, passing that object to the handler" ) def test_handler_invoked(self, mocker, handler_name, handler_manager, inbox): # Set the handler mock_handler = mocker.MagicMock() setattr(handler_manager, handler_name, mock_handler) # Handler has not been called assert mock_handler.call_count == 0 # Add an item to corresponding inbox, triggering the handler mock_obj = mocker.MagicMock() inbox.put(mock_obj) time.sleep(0.1) # Handler has been called with the item from the inbox assert mock_handler.call_count == 1 assert mock_handler.call_args == mocker.call(mock_obj) @pytest.mark.it( "Is invoked by the runner every time the Inbox corresponding to the handler receives an object" ) def test_handler_invoked_multiple(self, mocker, handler_name, handler_manager, inbox): # Set the handler mock_handler = ThreadsafeMock() setattr(handler_manager, handler_name, mock_handler) # Handler has not been called assert mock_handler.call_count == 0 # Add 5 items to the corresponding inbox, triggering the handler for _ in range(5): inbox.put(mocker.MagicMock()) time.sleep(0.2) # Handler has been called 5 times assert mock_handler.call_count == 5 @pytest.mark.it( "Is invoked for every item already in the corresponding Inbox at the moment of handler removal" ) def test_handler_resolve_pending_items_before_handler_removal( self, mocker, handler_name, handler_manager, inbox ): # Use a threadsafe mock to ensure accurate counts mock_handler = ThreadsafeMock() assert inbox.empty() # Queue up a bunch of items in the inbox for _ in range(100): inbox.put(mocker.MagicMock()) # The handler has not yet been called assert mock_handler.call_count == 0 # Items are still in the inbox assert not inbox.empty() # Set the handler setattr(handler_manager, handler_name, mock_handler) # The handler has not yet been called for everything that was in the inbox # NOTE: I'd really like to show that the handler call count is also > 0 here, but # it's pretty difficult to make the timing work assert mock_handler.call_count < 100 # Immediately remove the handler setattr(handler_manager, handler_name, None) # Wait to give a chance for the handler runner to finish calling everything time.sleep(0.2) # Despite removal, handler has been called for everything that was in the inbox at the # time of the removal assert mock_handler.call_count == 100 assert inbox.empty() # Add some more items for _ in range(100): inbox.put(mocker.MagicMock()) # Wait to give a chance for the handler to be called (it won't) time.sleep(0.2) # Despite more items added to inbox, no further handler calls have been made beyond the # initial calls that were made when the original items were added assert mock_handler.call_count == 100 @pytest.mark.it( "Sends a HandlerManagerException to the background exception handler if any exception is raised during its invocation" ) def test_exception_in_handler( self, mocker, handler_name, handler_manager, inbox, arbitrary_exception ): background_exc_spy = mocker.spy(handle_exceptions, "handle_background_exception") # Handler will raise exception when called mock_handler = mocker.MagicMock() mock_handler.side_effect = arbitrary_exception # Set handler setattr(handler_manager, handler_name, mock_handler) # Handler has not been called assert mock_handler.call_count == 0 # Background exception handler has not been called assert background_exc_spy.call_count == 0 # Add an item to corresponding inbox, triggering the handler inbox.put(mocker.MagicMock()) time.sleep(0.1) # Handler has now been called assert mock_handler.call_count == 1 # Background exception handler was called assert background_exc_spy.call_count == 1 e = background_exc_spy.call_args[0][0] assert isinstance(e, HandlerManagerException) assert e.__cause__ is arbitrary_exception @pytest.mark.it( "Can be updated with a new value that the corresponding handler runner will immediately begin using for handler invocations instead" ) def test_handler_update_handler(self, mocker, handler_name, handler_manager, inbox): def handler(arg): # Invoking handler replaces the set handler with a mock setattr(handler_manager, handler_name, mocker.MagicMock()) setattr(handler_manager, handler_name, handler) inbox.put(mocker.MagicMock()) time.sleep(0.1) # Handler has been replaced with a mock, but the mock has not been invoked assert getattr(handler_manager, handler_name) is not handler assert getattr(handler_manager, handler_name).call_count == 0 # Add a new item to the inbox inbox.put(mocker.MagicMock()) time.sleep(0.1) # The mock was now called assert getattr(handler_manager, handler_name).call_count == 1 class SharedClientEventHandlerPropertyTests(SharedHandlerPropertyTests): @pytest.fixture def inbox(self, inbox_manager): return inbox_manager.get_client_event_inbox() @pytest.mark.it( "Creates and starts a daemon Thread for the Client Event handler runner when value is set to a function if the Client Event handler runner does not already exist" ) def test_no_client_event_runner(self, handler_name, handler_manager, handler): assert handler_manager._client_event_runner is None setattr(handler_manager, handler_name, handler) t = handler_manager._client_event_runner assert isinstance(t, threading.Thread) assert t.daemon is True @pytest.mark.it( "Does not modify the Client Event handler runner thread when value is set to a function if the Client Event handler runner already exists" ) def test_client_event_runner_already_exists(self, handler_name, handler_manager, handler): # Add a fake client event runner thread fake_runner_thread = threading.Thread() fake_runner_thread.daemon = True fake_runner_thread.start() handler_manager._client_event_runner = fake_runner_thread # Set handler setattr(handler_manager, handler_name, handler) # Fake thread was not changed assert handler_manager._client_event_runner is fake_runner_thread @pytest.mark.it( "Does not delete, remove, or replace the Thread for the Client Event handler runner when value is set back to None" ) def test_handler_removed(self, handler_name, handler_manager, handler): # Set handler setattr(handler_manager, handler_name, handler) # Thread has been created and is alive t = handler_manager._client_event_runner assert isinstance(t, threading.Thread) assert t.is_alive() # Set the handler back to None setattr(handler_manager, handler_name, None) # Thread is still maintained on the manager and alive assert handler_manager._client_event_runner is t assert t.is_alive() @pytest.mark.it( "Does not delete, remove, or replace the Thread for the Client Event handler runner when updated with a new function value" ) def test_handler_update(self, handler_name, handler_manager, handler): # Set handler setattr(handler_manager, handler_name, handler) # Thread has been created and is alive t = handler_manager._client_event_runner assert isinstance(t, threading.Thread) assert t.is_alive() # Set new handler def new_handler(arg): pass setattr(handler_manager, handler_name, new_handler) # Thread is still maintained on the manager and alive assert handler_manager._client_event_runner is t assert t.is_alive() @pytest.mark.it( "Is invoked by the runner only when the Client Event Inbox receives a matching Client Event, passing any arguments to the handler" ) def test_handler_invoked(self, mocker, handler_name, handler_manager, inbox, event): # Set the handler mock_handler = mocker.MagicMock() setattr(handler_manager, handler_name, mock_handler) # Handler has not been called assert mock_handler.call_count == 0 # Add the event to the client event inbox inbox.put(event) time.sleep(0.1) # Handler has been called with the arguments from the event assert mock_handler.call_count == 1 assert mock_handler.call_args == mocker.call(*event.args_for_user) # Add non-matching event to the client event inbox non_matching_event = client_event.ClientEvent("NON_MATCHING_EVENT") inbox.put(non_matching_event) time.sleep(0.1) # Handler has not been called again assert mock_handler.call_count == 1 @pytest.mark.it( "Is invoked by the runner every time the Client Event Inbox receives a matching Client Event" ) def test_handler_invoked_multiple(self, handler_name, handler_manager, inbox, event): # Set the handler mock_handler = ThreadsafeMock() setattr(handler_manager, handler_name, mock_handler) # Handler has not been called assert mock_handler.call_count == 0 # Add 5 matching events to the corresponding inbox, triggering the handler for _ in range(5): inbox.put(event) time.sleep(0.2) # Handler has been called 5 times assert mock_handler.call_count == 5 @pytest.mark.it( "Sends a HandlerManagerException to the background exception handler if any exception is raised during its invocation" ) def test_exception_in_handler( self, mocker, handler_name, handler_manager, inbox, event, arbitrary_exception ): background_exc_spy = mocker.spy(handle_exceptions, "handle_background_exception") # Handler will raise exception when called mock_handler = mocker.MagicMock() mock_handler.side_effect = arbitrary_exception # Set handler setattr(handler_manager, handler_name, mock_handler) # Handler has not been called assert mock_handler.call_count == 0 # Background exception handler has not been called assert background_exc_spy.call_count == 0 # Add the event to the client event inbox, triggering the handler inbox.put(event) time.sleep(0.1) # Handler has now been called assert mock_handler.call_count == 1 # Background exception handler was called assert background_exc_spy.call_count == 1 e = background_exc_spy.call_args[0][0] assert isinstance(e, HandlerManagerException) assert e.__cause__ is arbitrary_exception @pytest.mark.it( "Can be updated with a new value that the Client Event handler runner will immediately begin using for handler invocations instead" ) def test_updated_handler(self, mocker, handler_name, handler_manager, inbox, event): def handler(*args): # Invoking handler replaces the set handler with a mock setattr(handler_manager, handler_name, mocker.MagicMock()) setattr(handler_manager, handler_name, handler) inbox.put(event) time.sleep(0.1) # Handler has been replaced with a mock, but the mock has not been invoked assert getattr(handler_manager, handler_name) is not handler assert getattr(handler_manager, handler_name).call_count == 0 # Add a new event to the inbox inbox.put(event) time.sleep(0.1) # The mock was now called assert getattr(handler_manager, handler_name).call_count == 1 @pytest.mark.describe("SyncHandlerManager - PROPERTY: .on_message_received") class TestSyncHandlerManagerPropertyOnMessageReceived(SharedReceiverHandlerPropertyTests): @pytest.fixture def handler_name(self): return "on_message_received" @pytest.fixture def inbox(self, inbox_manager): return inbox_manager.get_unified_message_inbox() @pytest.mark.describe("SyncHandlerManager - PROPERTY: .on_method_request_received") class TestSyncHandlerManagerPropertyOnMethodRequestReceived(SharedReceiverHandlerPropertyTests): @pytest.fixture def handler_name(self): return "on_method_request_received" @pytest.fixture def inbox(self, inbox_manager): return inbox_manager.get_method_request_inbox() @pytest.mark.describe("SyncHandlerManager - PROPERTY: .on_twin_desired_properties_patch_received") class TestSyncHandlerManagerPropertyOnTwinDesiredPropertiesPatchReceived( SharedReceiverHandlerPropertyTests ): @pytest.fixture def handler_name(self): return "on_twin_desired_properties_patch_received" @pytest.fixture def inbox(self, inbox_manager): return inbox_manager.get_twin_patch_inbox() @pytest.mark.describe("SyncHandlerManager - PROPERTY: .on_connection_state_change") class TestSyncHandlerManagerPropertyOnConnectionStateChange(SharedClientEventHandlerPropertyTests): @pytest.fixture def handler_name(self): return "on_connection_state_change" @pytest.fixture def event(self): return client_event.ClientEvent(client_event.CONNECTION_STATE_CHANGE) @pytest.mark.describe("SyncHandlerManager - PROPERTY: .on_new_sastoken_required") class TestSyncHandlerManagerPropertyOnNewSastokenRequired(SharedClientEventHandlerPropertyTests): @pytest.fixture def handler_name(self): return "on_new_sastoken_required" @pytest.fixture def event(self): return client_event.ClientEvent(client_event.NEW_SASTOKEN_REQUIRED) @pytest.mark.describe("SyncHandlerManager - PROPERTY: .on_background_exception") class TestSyncHandlerManagerPropertyOnBackgroundException(SharedClientEventHandlerPropertyTests): @pytest.fixture def handler_name(self): return "on_background_exception" @pytest.fixture def event(self, arbitrary_exception): return client_event.ClientEvent(client_event.BACKGROUND_EXCEPTION, arbitrary_exception) @pytest.mark.describe("SyncHandlerManager - PROPERTY: .handling_client_events") class TestSyncHandlerManagerPropertyHandlingClientEvents(object): @pytest.fixture def handler_manager(self, inbox_manager): hm = SyncHandlerManager(inbox_manager) yield hm hm.stop() @pytest.mark.it("Is True if the Client Event Handler Runner is running") def test_client_event_runner_running(self, handler_manager): # Add a fake client event runner thread fake_runner_thread = threading.Thread() fake_runner_thread.daemon = True fake_runner_thread.start() handler_manager._client_event_runner = fake_runner_thread assert handler_manager.handling_client_events is True @pytest.mark.it("Is False if the Client Event Handler Runner is not running") def test_client_event_runner_not_running(self, handler_manager): assert handler_manager._client_event_runner is None assert handler_manager.handling_client_events is False
43.077241
170
0.700202
28,091
0.899459
3,839
0.122923
27,766
0.889053
0
0
10,436
0.334155
1278ee593e924b3273cd53898ff8735b235b993e
885
py
Python
src/python/Chameleon.Faas/demo/helloworld_grpc_client.py
sevenTiny/Seventiny.Cloud.ScriptEngine
dda66a7d2ec8c203823e07666314b9d0c8795768
[ "Apache-2.0" ]
2
2020-01-17T03:16:42.000Z
2020-08-28T04:23:06.000Z
src/python/Chameleon.Faas/demo/helloworld_grpc_client.py
sevenTiny/Seventiny.Cloud.ScriptEngine
dda66a7d2ec8c203823e07666314b9d0c8795768
[ "Apache-2.0" ]
null
null
null
src/python/Chameleon.Faas/demo/helloworld_grpc_client.py
sevenTiny/Seventiny.Cloud.ScriptEngine
dda66a7d2ec8c203823e07666314b9d0c8795768
[ "Apache-2.0" ]
1
2019-12-13T07:02:56.000Z
2019-12-13T07:02:56.000Z
import grpc import helloworld_pb2 import helloworld_pb2_grpc from grpc.beta import implementations def run(): # 连接 rpc 服务器 # TSL连接方式 >>> with open('G:\\DotNet\\SevenTiny.Cloud.FaaS\\Code\\Python\\SevenTiny.Cloud.FaaS.GRpc\\ca\\client.pem', 'rb') as f: pem = f.read() creds = implementations.ssl_channel_credentials( pem, None, None) channel = implementations.secure_channel('localhost', 5001, creds) # TSL连接方式 <<< # channel = grpc.insecure_channel('localhost:39901') # 调用 rpc 服务 stub = helloworld_pb2_grpc.GreeterStub(channel) response = stub.SayHello(helloworld_pb2.HelloRequest(name='czl')) print("Greeter client received: " + response.message) response = stub.SayHelloAgain(helloworld_pb2.HelloRequest(name='daydaygo')) print("Greeter client received: " + response.message) if __name__ == '__main__': run()
34.038462
118
0.701695
0
0
0
0
0
0
0
0
320
0.348205
1279a170c86c50a1d9aa504d29a7b4fbc15ef3a6
2,350
py
Python
tools/pca_outcore.py
escorciav/deep-action-proposals
c14f512febc1abd0ec40bd3188a83e4ee3913535
[ "MIT" ]
28
2017-03-19T12:02:22.000Z
2021-07-08T13:49:41.000Z
tools/pca_outcore.py
escorciav/deep-action-proposals
c14f512febc1abd0ec40bd3188a83e4ee3913535
[ "MIT" ]
2
2018-05-07T07:43:15.000Z
2018-12-14T16:06:48.000Z
tools/pca_outcore.py
escorciav/deep-action-proposals
c14f512febc1abd0ec40bd3188a83e4ee3913535
[ "MIT" ]
7
2017-03-19T11:51:21.000Z
2020-01-07T11:17:48.000Z
#!/usr/bin/env python """ PCA done via matrix multiplication out-of-core. """ import argparse import time import h5py import hickle as hkl import numpy as np def input_parse(): description = 'Compute PCA with A.T * A computation out of core' p = argparse.ArgumentParser(description=description) p.add_argument('dsfile', help='HDF5-file with features') p.add_argument('pcafile', help='HDF5-file with PCA results') p.add_argument('-ll', '--log_loop', default=500, type=int, help='Verbose in terms of number of videos') return p def main(dsfile, pcafile, t_size=16, t_stride=8, source='c3d_features', log_loop=100): print time.ctime(), 'start: loading hdf5' fid = h5py.File(dsfile, 'r') video_names = fid.keys() feat_dim = fid[video_names[0]][source].shape[1] print time.ctime(), 'finish: loading hdf5' print time.ctime(), 'start: compute mean' x_mean, n = np.zeros((1, feat_dim), dtype=np.float32), 0 for i, v in fid.iteritems(): feat = v[source][:] n += feat.shape[0] x_mean += feat.sum(axis=0) x_mean /= n print time.ctime(), 'finish: compute mean' def compute_ATA(chunk, f=fid, source=source, mean=x_mean): feat_dim = f[chunk[0]][source].shape[1] ATA_c = np.zeros((feat_dim, feat_dim), dtype=np.float32) for i in chunk: feat_c = f[i][source][:] feat_c_ = feat_c - mean ATA_c += np.dot(feat_c_.T, feat_c_) return ATA_c print time.ctime(), 'start: out-of-core matrix multiplication' j, n_videos = 0, len(video_names) ATA = np.zeros((feat_dim, feat_dim), dtype=np.float32) for i, v in fid.iteritems(): feat = v[source][:] feat_ = feat - x_mean ATA += np.dot(feat_.T, feat_) j += 1 if j % log_loop == 0: print time.ctime(), 'Iteration {}/{}'.format(j, n_videos) print time.ctime(), 'finish: out-of-core matrix multiplication' # SVD print time.ctime(), 'start: SVD in memory' U, S, _ = np.linalg.svd(ATA) print time.ctime(), 'finish: SVD in memory' print time.ctime(), 'serializing ...' hkl.dump({'x_mean': x_mean, 'U': U, 'S': S, 'n_samples': n}, pcafile) if __name__ == '__main__': p = input_parse() args = p.parse_args() main(**vars(args))
30.519481
73
0.609362
0
0
0
0
0
0
0
0
560
0.238298
127b202282fe9d7b819fac4de12d835378edbe4e
5,680
py
Python
azdev/params.py
marstr/azure-cli-dev-tools
8b82b1867a425a9a017868c6c1aef2f4bb5aa62b
[ "MIT" ]
null
null
null
azdev/params.py
marstr/azure-cli-dev-tools
8b82b1867a425a9a017868c6c1aef2f4bb5aa62b
[ "MIT" ]
null
null
null
azdev/params.py
marstr/azure-cli-dev-tools
8b82b1867a425a9a017868c6c1aef2f4bb5aa62b
[ "MIT" ]
null
null
null
# ----------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # ----------------------------------------------------------------------------- # pylint: disable=line-too-long import argparse from knack.arguments import ArgumentsContext from azdev.completer import get_test_completion class Flag(object): pass def load_arguments(self, _): with ArgumentsContext(self, '') as c: c.argument('modules', options_list=['--modules', '-m'], nargs='+', help='Space-separated list of modules to check. Omit to check all.') c.argument('ci_mode', options_list='--ci', action='store_true', help='Run in CI mode.') c.argument('private', action='store_true', help='Target the private repo.') with ArgumentsContext(self, 'setup') as c: c.argument('cli_path', options_list=['--cli', '-c'], nargs='?', const=Flag, help='Path to an existing Azure CLI repo. Omit value to search for the repo.') c.argument('ext_repo_path', options_list=['--repo', '-r'], nargs='+', help='Space-separated list of paths to existing Azure CLI extensions repos.') c.argument('ext', options_list=['--ext', '-e'], nargs='+', help='Space-separated list of extensions to install initially.') with ArgumentsContext(self, 'test') as c: c.argument('ci_mode', options_list='--ci', action='store_true', help='Run the tests in CI mode.') c.argument('discover', options_list='--discover', action='store_true', help='Build an index of test names so that you don\'t need to specify fully qualified test paths.') c.argument('xml_path', options_list='--xml-path', help='Path and filename at which to store the results in XML format. If omitted, the file will be saved as `test_results.xml` in your `.azdev` directory.') c.argument('in_series', options_list='--series', action='store_true', help='Disable test parallelization.') c.argument('run_live', options_list='--live', action='store_true', help='Run all tests live.') c.positional('tests', nargs='*', help='Space-separated list of tests to run. Can specify test filenames, class name or individual method names.', completer=get_test_completion) c.argument('profile', options_list='--profile', help='Run automation against a specific profile. If omit, the tests will run against current profile.') c.argument('pytest_args', nargs=argparse.REMAINDER, options_list=['--pytest-args', '-a'], help='Denotes the remaining args will be passed to pytest.') c.argument('last_failed', options_list='--lf', action='store_true', help='Re-run the last tests that failed.') with ArgumentsContext(self, 'coverage') as c: c.argument('prefix', type=str, help='Filter analysis by command prefix.') c.argument('report', action='store_true', help='Display results as a report.') c.argument('untested_params', nargs='+', help='Space-separated list of param dest values to search for (OR logic)') with ArgumentsContext(self, 'style') as c: c.positional('modules', nargs='*', help='Space-separated list of modules or extensions to check.') c.argument('pylint', action='store_true', help='Run pylint.') c.argument('pep8', action='store_true', help='Run flake8 to check PEP8.') for scope in ['history', 'version']: with ArgumentsContext(self, 'verify {}'.format(scope)) as c: c.positional('modules', nargs='*', help='Space-separated list of modules to check.') with ArgumentsContext(self, 'verify version') as c: c.argument('update', action='store_true', help='If provided, the command will update the versions in azure-cli\'s setup.py file.') with ArgumentsContext(self, 'linter') as c: c.positional('modules', nargs='*', help='Space-separated list of modules or extensions to check.') c.argument('rules', options_list=['--rules', '-r'], nargs='+', help='Space-separated list of rules to run. Omit to run all rules.') c.argument('rule_types', options_list=['--rule-types', '-t'], nargs='+', choices=['params', 'commands', 'command_groups', 'help_entries'], help='Space-separated list of rule types to run. Omit to run all.') with ArgumentsContext(self, 'perf') as c: c.argument('runs', type=int, help='Number of runs to average performance over.') for scope in ['extension add', 'extension remove']: with ArgumentsContext(self, scope) as c: c.positional('extensions', metavar='NAME', nargs='+', help='Space-separated list of extension names.') for scope in ['extension repo add', 'extension repo remove']: with ArgumentsContext(self, scope) as c: c.positional('repos', metavar='PATH', nargs='+', help='Space-separated list of paths to Git repositories.') with ArgumentsContext(self, 'extension update-index') as c: c.positional('extension', metavar='URL', help='URL to an extension WHL file.') with ArgumentsContext(self, 'group delete') as c: c.argument('product', help='Value for tag `product` to mark for deletion.', arg_group='Tag') c.argument('older_than', type=int, help='Minimum age (in hours) for tag `date` to mark for deletion.', arg_group='Tag') c.argument('cause', help='Value for tag `cause` to mark for deletion.', arg_group='Tag') c.argument('yes', options_list=['--yes', '-y'], help='Do not prompt.') c.argument('prefixes', options_list=['--prefixes', '-p'], nargs='+', help='Space-separated list of prefixes to filter by.')
67.619048
214
0.659859
28
0.00493
0
0
0
0
0
0
3,171
0.558275
127b40e7a10ad49a4f232756467391a18976528f
1,968
py
Python
gamry_parser/cv.py
bcliang/gamry-parser
c1dfcf73d973c88ee496f0aa256d99f642ab6013
[ "MIT" ]
6
2019-03-14T21:21:13.000Z
2022-03-04T19:21:32.000Z
gamry_parser/cv.py
bcliang/gamry-parser
c1dfcf73d973c88ee496f0aa256d99f642ab6013
[ "MIT" ]
34
2019-03-11T04:21:51.000Z
2022-01-10T21:45:38.000Z
gamry_parser/cv.py
bcliang/gamry-parser
c1dfcf73d973c88ee496f0aa256d99f642ab6013
[ "MIT" ]
5
2019-08-11T15:38:30.000Z
2021-04-24T20:06:09.000Z
import gamry_parser as parser class CyclicVoltammetry(parser.GamryParser): """Load a Cyclic Voltammetry experiment generated in Gamry EXPLAIN format.""" def get_v_range(self): """retrieve the programmed voltage scan ranges Args: None Returns: tuple, containing: float: voltage limit 1, in V float: voltage limit 2, in V """ assert self.loaded, "DTA file not loaded. Run CyclicVoltammetry.load()" assert ( "VLIMIT1" in self.header.keys() ), "DTA header file missing VLIMIT1 specification" assert ( "VLIMIT2" in self.header.keys() ), "DTA header file missing VLIMIT2 specification" return self.header["VLIMIT1"], self.header["VLIMIT2"] def get_scan_rate(self): """retrieve the programmed scan rate Args: None Returns: float: the scan rate, in mV/s """ assert self.loaded, "DTA file not loaded. Run CyclicVoltammetry.load()" assert ( "SCANRATE" in self.header.keys() ), "DTA header file missing SCANRATE specification" return self.header["SCANRATE"] def get_curve_data(self, curve: int = 0): """retrieve relevant cyclic voltammetry experimental data Args: curve (int, optional): curve number to return. Defaults to 0. Returns: pandas.DataFrame: - Vf: potential, in V - Im: current, in A """ assert self.loaded, "DTA file not loaded. Run CyclicVoltammetry.load()" assert curve >= 0, "Invalid curve ({}). Indexing starts at 0".format(curve) assert ( curve < self.curve_count ), "Invalid curve ({}). File contains {} total curves.".format( curve, self.curve_count ) df = self.curves[curve] return df[["Vf", "Im"]]
29.373134
83
0.571646
1,935
0.983232
0
0
0
0
0
0
1,182
0.60061
127c2b5fae2468e39370fecece20d2e64788de00
11,609
py
Python
comps.py
matthewb66/bdconsole
edc9a03f93dd782d58ff274ebe5152f7eccecff7
[ "MIT" ]
null
null
null
comps.py
matthewb66/bdconsole
edc9a03f93dd782d58ff274ebe5152f7eccecff7
[ "MIT" ]
null
null
null
comps.py
matthewb66/bdconsole
edc9a03f93dd782d58ff274ebe5152f7eccecff7
[ "MIT" ]
null
null
null
import json import dash_bootstrap_components as dbc import dash_core_components as dcc import dash_html_components as html import pandas as pd import dash_table def get_comps_data(bd, projverurl): print('Getting components ...') # path = projverurl + "/components?limit=5000" # # custom_headers = {'Accept': 'application/vnd.blackducksoftware.bill-of-materials-6+json'} # resp = hub.execute_get(path, custom_headers=custom_headers) # if resp.status_code != 200: # print('component list response ' + str(resp.status_code)) # return None # # comps = resp.json() comps = bd.get_json(projverurl + "/components?limit=5000") df = pd.json_normalize(comps, record_path=['items']) for index, comp in enumerate(comps['items']): df.loc[index, 'json'] = json.dumps(comp) print('Found ' + str(len(df.index)) + ' Components') return df, comps['items'] col_data_comps = [ {"name": ['Component'], "id": "componentName"}, {"name": ['Version'], "id": "componentVersionName"}, {"name": ['Ignored'], "id": "ignored"}, # {"name": ['Ignored'], "id": "ignoreIcon"}, {"name": ['Reviewed'], "id": "reviewStatus"}, {"name": ['Policy Violation'], "id": "policyStatus"}, # {"name": ['Policy Status'], "id": "polIcon"}, {"name": ['Usage'], "id": "usages"}, {"name": ['Match Types'], "id": "matchTypes"}, ] def create_compstab(compdata, projname, vername): global col_data_comps for col, dtype in compdata.dtypes.items(): if dtype == 'bool': compdata[col] = compdata[col].astype('str') return [ dbc.Row( dbc.Col(html.H2("Components")), ), dbc.Row( [ dbc.Col(html.H5("Project: " + projname + " - Version: " + vername), width=8), dbc.Col( dcc.Dropdown( id="sel_comp_action", options=[ {'label': 'Select Action ...', 'value': 'NOTHING'}, {'label': 'Ignore', 'value': 'IGNORE'}, {'label': 'Unignore', 'value': 'UNIGNORE'}, {'label': 'Set Reviewed', 'value': 'REVIEW'}, {'label': 'Set Unreviewed', 'value': 'UNREVIEW'}, {'label': 'Usage - Source', 'value': 'USAGE_SOURCE'}, {'label': 'Usage - Statically Linked', 'value': 'USAGE_STATIC'}, {'label': 'Usage - Dynamically Linked', 'value': 'USAGE_DYNAMIC'}, {'label': 'Usage - Separate Work', 'value': 'USAGE_SEPARATE'}, {'label': 'Usage - Merely Aggregated', 'value': 'USAGE_AGGREGATED'}, {'label': 'Usage - Implement Standard', 'value': 'USAGE_STANDARD'}, {'label': 'Usage - Prerequisite', 'value': 'USAGE_PREREQUISITE'}, {'label': 'Usage - Dev Tool/Excluded', 'value': 'USAGE_EXCLUDED'}, ], multi=False, placeholder='Select Action ...' ), width=2, align='center', ), dbc.Col(dbc.Button("Selected Rows", id="button_comp_selected", className="mr-2", size='sm'), width=1), dbc.Col(dbc.Button("All Filtered Rows", id="button_comp_all", className="mr-2", size='sm'), width=1), ] ), dbc.Row( dbc.Col( dash_table.DataTable( id='compstable', columns=col_data_comps, style_cell={ 'overflow': 'hidden', 'textOverflow': 'ellipsis', 'maxWidth': 0, 'font_size': '12px', }, data=compdata.to_dict('records'), page_size=30, sort_action='native', filter_action='native', row_selectable="multi", cell_selectable=False, style_header={'backgroundColor': 'rgb(30, 30, 30)', 'color': 'white'}, tooltip_data=[ { column: {'value': str(value), 'type': 'markdown'} for column, value in row.items() } for row in compdata.to_dict('records') ], tooltip_duration=None, style_data_conditional=[ { 'if': {'column_id': 'componentName'}, 'width': '30%' }, { 'if': {'column_id': 'componentVersionName'}, 'width': '20%' }, { 'if': {'column_id': 'ignored'}, 'width': '10%' }, { 'if': {'column_id': 'reviewStatus'}, 'width': '10%' }, { 'if': {'column_id': 'policyStatus'}, 'width': '10%' }, { 'if': {'column_id': 'usages'}, 'width': '10%' }, { 'if': {'column_id': 'matchTypes'}, 'width': '10%' }, { 'if': { 'filter_query': '{policyStatus} = "IN_VIOLATION"', 'column_id': 'policyStatus' }, 'backgroundColor': 'maroon', 'color': 'white' }, { 'if': { 'filter_query': '{reviewStatus} = "REVIEWED"', 'column_id': 'reviewStatus' }, 'backgroundColor': 'blue', 'color': 'white' }, { 'if': { 'filter_query': '{ignored} eq "True"', 'column_id': 'ignored' }, 'backgroundColor': 'grey', 'color': 'white' }, ], sort_by=[{'column_id': 'componentName', 'direction': 'asc'}, {'column_id': 'componentVersionName', 'direction': 'asc'}] # merge_duplicate_headers=True ), width=12 ), ), ] def make_comp_toast(message): """ Helper function for making a toast. dict id for use in pattern matching callbacks. """ return dbc.Toast( message, id={"type": "toast", "id": "toast_comp"}, key='toast_comp', header="Component Processing", is_open=True, dismissable=False, icon="info", duration=8000, ) def compactions(bd, action, origdata, vdata, rows, projverurl): def do_comp_action(url, cdata): custom_headers = {'Accept': 'application/vnd.blackducksoftware.bill-of-materials-6+json', 'Content-Type': 'application/vnd.blackducksoftware.bill-of-materials-6+json'} # putresp = hub.execute_put(url, cdata, custom_headers=custom_headers) # if not putresp.ok: # print('Error - cannot update component ' + url) # return False # else: # print('Processed component ' + cdata['componentName']) # return True r = bd.session.put(url, json=cdata) if r.status_code == 200: print('Processed component ' + cdata['componentName']) return True else: print('Error - cannot update component ' + url) return False compaction_dict = { 'IGNORE': {'field': 'ignored', 'value': True, 'confirmation': 'Ignored', 'display': 'True'}, 'UNIGNORE': {'field': 'ignored', 'value': False, 'confirmation': 'Unignored', 'display': 'False'}, 'REVIEW': {'field': 'reviewStatus', 'value': 'REVIEWED', 'confirmation': 'Set Reviewed', 'display': 'REVIEWED'}, 'UNREVIEW': {'field': 'reviewStatus', 'value': 'NOT_REVIEWED', 'confirmation': 'Set Unreviewed', 'display': 'NOT_REVIEWED'}, 'USAGE_SOURCE': {'field': 'usages', 'value': ['SOURCE_CODE'], 'confirmation': 'Usage Changed', 'display': 'SOURCE_CODE'}, 'USAGE_STATIC': {'field': 'usages', 'value': ['STATICALLY_LINKED'], 'confirmation': 'Usage Changed', 'display': 'STATICALLY_LINKED'}, 'USAGE_DYNAMIC': {'field': 'usages', 'value': ['DYNAMICALLY_LINKED'], 'confirmation': 'Usage Changed', 'display': 'DYNAMICALLY_LINKED'}, 'USAGE_SEPARATE': {'field': 'usages', 'value': ['SEPARATE_WORK'], 'confirmation': 'Usage Changed', 'display': 'SEPARATE_WORK'}, 'USAGE_AGGREGATED': {'field': 'usages', 'value': ['MERELY_AGGREGATED'], 'confirmation': 'Usage Changed', 'display': 'MERELY_AGGREGATED'}, 'USAGE_STANDARD': {'field': 'usages', 'value': ['IMPLEMENTATION_OF_STANDARD'], 'confirmation': 'Usage Changed', 'display': 'IMPLEMENTATION_OF_STANDARD'}, 'USAGE_PREREQUISITE': {'field': 'usages', 'value': ['PREREQUISITE'], 'confirmation': 'Usage Changed', 'display': 'PREREQUISITE'}, 'USAGE_EXCLUDED': {'field': 'usages', 'value': ['DEV_TOOL_EXCLUDED'], 'confirmation': 'Usage Changed', 'display': 'DEV_TOOL_EXCLUDED'}, } count = 0 confirmation = '' for row in rows: thiscomp = vdata[row] compurl = thiscomp['componentVersion'] # # Find component in allcomps list # compdata = next(comp for comp in allcomps if comp["componentVersion"] == compurl) compdata = json.loads(thiscomp['json']) if action in compaction_dict.keys(): entry = compaction_dict[action] foundrow = -1 for origrow, origcomp in enumerate(origdata): if origcomp['componentVersion'] == vdata[row]['componentVersion']: foundrow = origrow break if foundrow >= 0: origdata[foundrow][entry['field']] = entry['display'] confirmation = entry['confirmation'] compdata[entry['field']] = entry['value'] thiscompurl = projverurl + '/' + '/'.join(compurl.split('/')[4:]) if do_comp_action(thiscompurl, compdata): count += 1 toast = '' if count > 0: toast = make_comp_toast("{} Components {}".format(count, confirmation)) return origdata, toast
41.460714
103
0.450168
0
0
0
0
0
0
0
0
4,606
0.396761
127c9e72b97842964045050d2c4c20f3d0a12a28
656
py
Python
CursoemVideoPython/Desafio 35.py
Beebruna/Python
bdbe10ea76acca1b417f5960db0aae8be44e0af3
[ "MIT" ]
null
null
null
CursoemVideoPython/Desafio 35.py
Beebruna/Python
bdbe10ea76acca1b417f5960db0aae8be44e0af3
[ "MIT" ]
null
null
null
CursoemVideoPython/Desafio 35.py
Beebruna/Python
bdbe10ea76acca1b417f5960db0aae8be44e0af3
[ "MIT" ]
null
null
null
''' Desenvolva um programa que leia o comprimento de três retas e diga ao usuário se elas podem ou não formar um triângulo. ''' reta1 = float(input('Digite o comprimento da primeira reta: ')) reta2 = float(input('Digite o comprimento da segunda reta: ')) reta3 = float(input('Digite o comprimento da terceira reta: ')) if reta1 < 0 or reta2 < 0 or reta3 < 0: print('\nValor Inválido!') print('Não EXISTE medida de lado NEGATIVA!') else: if reta1 + reta2 > reta3 and reta1 + reta3 > reta2 and reta2 + reta3 > reta1: print('\nAs três retas podem formar triângulo!') else: print('\nAs três retas NÃO podem formar triângulo!')
38.588235
85
0.689024
0
0
0
0
0
0
0
0
402
0.602699
127d60f439a2eeaeea97213b05b97e925b002613
15,790
py
Python
osprofiler/tests/unit/drivers/test_ceilometer.py
charliebr30/osprofiler
cffca4e29e373e3f09f2ffdd458761183a851569
[ "Apache-2.0" ]
null
null
null
osprofiler/tests/unit/drivers/test_ceilometer.py
charliebr30/osprofiler
cffca4e29e373e3f09f2ffdd458761183a851569
[ "Apache-2.0" ]
1
2017-04-15T22:16:06.000Z
2017-04-15T22:16:06.000Z
osprofiler/tests/unit/drivers/test_ceilometer.py
shwsun/osprofiler
46d29fc5ab8a4068217e399883f39cdd443a7500
[ "Apache-2.0" ]
1
2020-02-17T09:48:43.000Z
2020-02-17T09:48:43.000Z
# Copyright 2016 Mirantis Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from osprofiler.drivers.ceilometer import Ceilometer from osprofiler.tests import test class CeilometerParserTestCase(test.TestCase): def setUp(self): super(CeilometerParserTestCase, self).setUp() self.ceilometer = Ceilometer("ceilometer://", ceilometer_api_version="2") def test_build_empty_tree(self): self.assertEqual([], self.ceilometer._build_tree({})) def test_build_complex_tree(self): test_input = { "2": {"parent_id": "0", "trace_id": "2", "info": {"started": 1}}, "1": {"parent_id": "0", "trace_id": "1", "info": {"started": 0}}, "21": {"parent_id": "2", "trace_id": "21", "info": {"started": 6}}, "22": {"parent_id": "2", "trace_id": "22", "info": {"started": 7}}, "11": {"parent_id": "1", "trace_id": "11", "info": {"started": 1}}, "113": {"parent_id": "11", "trace_id": "113", "info": {"started": 3}}, "112": {"parent_id": "11", "trace_id": "112", "info": {"started": 2}}, "114": {"parent_id": "11", "trace_id": "114", "info": {"started": 5}} } expected_output = [ { "parent_id": "0", "trace_id": "1", "info": {"started": 0}, "children": [ { "parent_id": "1", "trace_id": "11", "info": {"started": 1}, "children": [ {"parent_id": "11", "trace_id": "112", "info": {"started": 2}, "children": []}, {"parent_id": "11", "trace_id": "113", "info": {"started": 3}, "children": []}, {"parent_id": "11", "trace_id": "114", "info": {"started": 5}, "children": []} ] } ] }, { "parent_id": "0", "trace_id": "2", "info": {"started": 1}, "children": [ {"parent_id": "2", "trace_id": "21", "info": {"started": 6}, "children": []}, {"parent_id": "2", "trace_id": "22", "info": {"started": 7}, "children": []} ] } ] result = self.ceilometer._build_tree(test_input) self.assertEqual(expected_output, result) def test_get_report_empty(self): self.ceilometer.client = mock.MagicMock() self.ceilometer.client.events.list.return_value = [] expected = { "info": { "name": "total", "started": 0, "finished": None, "last_trace_started": None }, "children": [], "stats": {}, } base_id = "10" self.assertEqual(expected, self.ceilometer.get_report(base_id)) def test_get_report(self): self.ceilometer.client = mock.MagicMock() results = [mock.MagicMock(), mock.MagicMock(), mock.MagicMock(), mock.MagicMock(), mock.MagicMock()] self.ceilometer.client.events.list.return_value = results results[0].to_dict.return_value = { "traits": [ { "type": "string", "name": "base_id", "value": "7253ca8c-33b3-4f84-b4f1-f5a4311ddfa4" }, { "type": "string", "name": "host", "value": "ubuntu" }, { "type": "string", "name": "method", "value": "POST" }, { "type": "string", "name": "name", "value": "wsgi-start" }, { "type": "string", "name": "parent_id", "value": "7253ca8c-33b3-4f84-b4f1-f5a4311ddfa4" }, { "type": "string", "name": "project", "value": "keystone" }, { "type": "string", "name": "service", "value": "main" }, { "type": "string", "name": "timestamp", "value": "2015-12-23T14:02:22.338776" }, { "type": "string", "name": "trace_id", "value": "06320327-2c2c-45ae-923a-515de890276a" } ], "raw": {}, "generated": "2015-12-23T10:41:38.415793", "event_type": "profiler.main", "message_id": "65fc1553-3082-4a6f-9d1e-0e3183f57a47"} results[1].to_dict.return_value = { "traits": [ { "type": "string", "name": "base_id", "value": "7253ca8c-33b3-4f84-b4f1-f5a4311ddfa4" }, { "type": "string", "name": "host", "value": "ubuntu" }, { "type": "string", "name": "name", "value": "wsgi-stop" }, { "type": "string", "name": "parent_id", "value": "7253ca8c-33b3-4f84-b4f1-f5a4311ddfa4" }, { "type": "string", "name": "project", "value": "keystone" }, { "type": "string", "name": "service", "value": "main" }, { "type": "string", "name": "timestamp", "value": "2015-12-23T14:02:22.380405" }, { "type": "string", "name": "trace_id", "value": "016c97fd-87f3-40b2-9b55-e431156b694b" } ], "raw": {}, "generated": "2015-12-23T10:41:38.406052", "event_type": "profiler.main", "message_id": "3256d9f1-48ba-4ac5-a50b-64fa42c6e264"} results[2].to_dict.return_value = { "traits": [ { "type": "string", "name": "base_id", "value": "7253ca8c-33b3-4f84-b4f1-f5a4311ddfa4" }, { "type": "string", "name": "db.params", "value": "[]" }, { "type": "string", "name": "db.statement", "value": "SELECT 1" }, { "type": "string", "name": "host", "value": "ubuntu" }, { "type": "string", "name": "name", "value": "db-start" }, { "type": "string", "name": "parent_id", "value": "06320327-2c2c-45ae-923a-515de890276a" }, { "type": "string", "name": "project", "value": "keystone" }, { "type": "string", "name": "service", "value": "main" }, { "type": "string", "name": "timestamp", "value": "2015-12-23T14:02:22.395365" }, { "type": "string", "name": "trace_id", "value": "1baf1d24-9ca9-4f4c-bd3f-01b7e0c0735a" } ], "raw": {}, "generated": "2015-12-23T10:41:38.984161", "event_type": "profiler.main", "message_id": "60368aa4-16f0-4f37-a8fb-89e92fdf36ff"} results[3].to_dict.return_value = { "traits": [ { "type": "string", "name": "base_id", "value": "7253ca8c-33b3-4f84-b4f1-f5a4311ddfa4" }, { "type": "string", "name": "host", "value": "ubuntu" }, { "type": "string", "name": "name", "value": "db-stop" }, { "type": "string", "name": "parent_id", "value": "06320327-2c2c-45ae-923a-515de890276a" }, { "type": "string", "name": "project", "value": "keystone" }, { "type": "string", "name": "service", "value": "main" }, { "type": "string", "name": "timestamp", "value": "2015-12-23T14:02:22.415486" }, { "type": "string", "name": "trace_id", "value": "1baf1d24-9ca9-4f4c-bd3f-01b7e0c0735a" } ], "raw": {}, "generated": "2015-12-23T10:41:39.019378", "event_type": "profiler.main", "message_id": "3fbeb339-55c5-4f28-88e4-15bee251dd3d"} results[4].to_dict.return_value = { "traits": [ { "type": "string", "name": "base_id", "value": "7253ca8c-33b3-4f84-b4f1-f5a4311ddfa4" }, { "type": "string", "name": "host", "value": "ubuntu" }, { "type": "string", "name": "method", "value": "GET" }, { "type": "string", "name": "name", "value": "wsgi-start" }, { "type": "string", "name": "parent_id", "value": "7253ca8c-33b3-4f84-b4f1-f5a4311ddfa4" }, { "type": "string", "name": "project", "value": "keystone" }, { "type": "string", "name": "service", "value": "main" }, { "type": "string", "name": "timestamp", "value": "2015-12-23T14:02:22.427444" }, { "type": "string", "name": "trace_id", "value": "016c97fd-87f3-40b2-9b55-e431156b694b" } ], "raw": {}, "generated": "2015-12-23T10:41:38.360409", "event_type": "profiler.main", "message_id": "57b971a9-572f-4f29-9838-3ed2564c6b5b"} expected = {"children": [ {"children": [{"children": [], "info": {"finished": 76, "host": "ubuntu", "meta.raw_payload.db-start": {}, "meta.raw_payload.db-stop": {}, "name": "db", "project": "keystone", "service": "main", "started": 56, "exception": "None"}, "parent_id": "06320327-2c2c-45ae-923a-515de890276a", "trace_id": "1baf1d24-9ca9-4f4c-bd3f-01b7e0c0735a"} ], "info": {"finished": 0, "host": "ubuntu", "meta.raw_payload.wsgi-start": {}, "name": "wsgi", "project": "keystone", "service": "main", "started": 0}, "parent_id": "7253ca8c-33b3-4f84-b4f1-f5a4311ddfa4", "trace_id": "06320327-2c2c-45ae-923a-515de890276a"}, {"children": [], "info": {"finished": 41, "host": "ubuntu", "meta.raw_payload.wsgi-start": {}, "meta.raw_payload.wsgi-stop": {}, "name": "wsgi", "project": "keystone", "service": "main", "started": 88, "exception": "None"}, "parent_id": "7253ca8c-33b3-4f84-b4f1-f5a4311ddfa4", "trace_id": "016c97fd-87f3-40b2-9b55-e431156b694b"}], "info": { "finished": 88, "name": "total", "started": 0, "last_trace_started": 88 }, "stats": {"db": {"count": 1, "duration": 20}, "wsgi": {"count": 2, "duration": -47}}, } base_id = "10" result = self.ceilometer.get_report(base_id) expected_filter = [{"field": "base_id", "op": "eq", "value": base_id}] self.ceilometer.client.events.list.assert_called_once_with( expected_filter, limit=100000) self.assertEqual(expected, result)
37.240566
79
0.338252
15,058
0.953642
0
0
0
0
0
0
5,559
0.352058
127dce97d99e34df63ba730d1cd14233e203885a
2,271
py
Python
threshold.py
jiep/unicode-similarity
a32a031f96dce2b8a52a8ff4b5365c768c016fc6
[ "MIT" ]
1
2019-02-22T10:31:51.000Z
2019-02-22T10:31:51.000Z
threshold.py
jiep/unicode-similarity
a32a031f96dce2b8a52a8ff4b5365c768c016fc6
[ "MIT" ]
null
null
null
threshold.py
jiep/unicode-similarity
a32a031f96dce2b8a52a8ff4b5365c768c016fc6
[ "MIT" ]
1
2020-12-15T15:34:43.000Z
2020-12-15T15:34:43.000Z
from pathlib import Path import numpy as np import pickle import argparse import errno import sys def file_exists(path): return Path(path).is_file() def dir_exists(path): return Path(path).is_dir() def remove_extension(x): return x.split('.')[0] def print_error(type, file): print(FileNotFoundError(errno.ENOENT, 'The {} {} does not exist'.format(type, file))) def calculate_threshold(similarity, output='confusables', threshold=0.8, verbose=False): lines = [line.rstrip('\n') for line in open(similarity)] unicode_characters = np.asarray(lines[0].split(' ')[1:]) data = {} data['threshold'] = threshold data['characters'] = {} for l in lines[1:]: line = l.split(' ') latin = line[0] del line[0] similarity_row = np.asarray(line, dtype=np.float) indexes = np.where(similarity_row >= threshold) data['characters'][latin] = unicode_characters[np.asarray(indexes[0])]\ .tolist() chars = unicode_characters[np.asarray(indexes[0])].tolist() if(verbose): print('[{}] {}: {}'.format(len(chars), latin, ','.join(chars))) output = '{}-{}.pickle'.format(output, int(threshold*100)) with open(output, 'wb') as f: pickle.dump(data, f) def main(): parser = argparse.ArgumentParser(description='Filter Unicode characters ' 'based on a given threshold ' 'between 0 and 1 ' 'and a similarity matrix') parser.add_argument('-s', '--similarity', default='similarities.txt') parser.add_argument('-t', '--threshold', default=0.8, type=float) parser.add_argument('-o', '--output', default='confusables') parser.add_argument('-v', '--verbose', action='store_true') args = parser.parse_args() similarity = args.similarity threshold = args.threshold output = args.output verbose = args.verbose if not file_exists(similarity): print_error('file', similarity) sys.exit(1) calculate_threshold(similarity, output, threshold, verbose) if __name__ == '__main__': main()
28.037037
79
0.589608
0
0
0
0
0
0
0
0
344
0.151475
127def7299a4b8a5f141ed18533a55c708f10769
1,813
py
Python
y2019/control_loops/python/wrist.py
Ewpratten/frc_971_mirror
3a8a0c4359f284d29547962c2b4c43d290d8065c
[ "BSD-2-Clause" ]
null
null
null
y2019/control_loops/python/wrist.py
Ewpratten/frc_971_mirror
3a8a0c4359f284d29547962c2b4c43d290d8065c
[ "BSD-2-Clause" ]
null
null
null
y2019/control_loops/python/wrist.py
Ewpratten/frc_971_mirror
3a8a0c4359f284d29547962c2b4c43d290d8065c
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/python from aos.util.trapezoid_profile import TrapezoidProfile from frc971.control_loops.python import control_loop from frc971.control_loops.python import angular_system from frc971.control_loops.python import controls import copy import numpy import sys from matplotlib import pylab import gflags import glog FLAGS = gflags.FLAGS try: gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.') except gflags.DuplicateFlagError: pass # Wrist alone # 0.1348 # Wrist with ball # 0.3007 # Wrist with hatch # 0.446 kWrist = angular_system.AngularSystemParams( name='Wrist', motor=control_loop.BAG(), G=(6.0 / 60.0) * (20.0 / 100.0) * (24.0 / 84.0), J=0.30, q_pos=0.20, q_vel=5.0, kalman_q_pos=0.12, kalman_q_vel=2.0, kalman_q_voltage=4.0, kalman_r_position=0.05) kWristBall = copy.copy(kWrist) kWristBall.J = 0.4007 kWristBall.q_pos = 0.55 kWristBall.q_vel = 5.0 kWristPanel = copy.copy(kWrist) kWristPanel.J = 0.446 kWristModel = copy.copy(kWrist) kWristModel.J = 0.1348 def main(argv): if FLAGS.plot: R = numpy.matrix([[numpy.pi / 2.0], [0.0]]) angular_system.PlotKick(kWristBall, R, plant_params=kWristBall) angular_system.PlotMotion(kWristBall, R, plant_params=kWristBall) # Write the generated constants out to a file. if len(argv) != 5: glog.fatal( 'Expected .h file name and .cc file name for the wrist and integral wrist.' ) else: namespaces = ['y2019', 'control_loops', 'superstructure', 'wrist'] angular_system.WriteAngularSystem([kWrist, kWristBall, kWristPanel], argv[1:3], argv[3:5], namespaces) if __name__ == '__main__': argv = FLAGS(sys.argv) glog.init() sys.exit(main(argv))
24.835616
87
0.674021
0
0
0
0
0
0
0
0
314
0.173194
12810e363b2fde4bb2f563894e88d9b033fc5d56
2,666
py
Python
utils/tools.py
alipay/Pyraformer
84af4dbd93b7b96975b5034f0dde412005260123
[ "Apache-2.0" ]
7
2022-03-24T03:42:14.000Z
2022-03-27T16:27:31.000Z
utils/tools.py
alipay/Pyraformer
84af4dbd93b7b96975b5034f0dde412005260123
[ "Apache-2.0" ]
1
2022-03-17T08:54:42.000Z
2022-03-17T08:54:42.000Z
utils/tools.py
alipay/Pyraformer
84af4dbd93b7b96975b5034f0dde412005260123
[ "Apache-2.0" ]
1
2022-03-29T16:33:44.000Z
2022-03-29T16:33:44.000Z
from torch.nn.modules import loss import torch import numpy as np def MAE(pred, true): return np.mean(np.abs(pred-true)) def MSE(pred, true): return np.mean((pred-true)**2) def RMSE(pred, true): return np.sqrt(MSE(pred, true)) def MAPE(pred, true): return np.mean(np.abs((pred - true) / true)) def MSPE(pred, true): return np.mean(np.square((pred - true) / true)) def metric(pred, true): mae = MAE(pred, true) mse = MSE(pred, true) rmse = RMSE(pred, true) mape = MAPE(pred, true) mspe = MSPE(pred, true) return mae,mse,rmse,mape,mspe class StandardScaler(): def __init__(self): self.mean = 0. self.std = 1. def fit(self, data): self.mean = data.mean(0) self.std = data.std(0) def transform(self, data): mean = torch.from_numpy(self.mean).type_as(data).to(data.device) if torch.is_tensor(data) else self.mean std = torch.from_numpy(self.std).type_as(data).to(data.device) if torch.is_tensor(data) else self.std return (data - mean) / std def inverse_transform(self, data): mean = torch.from_numpy(self.mean).type_as(data).to(data.device) if torch.is_tensor(data) else self.mean std = torch.from_numpy(self.std).type_as(data).to(data.device) if torch.is_tensor(data) else self.std return (data * std) + mean class TopkMSELoss(torch.nn.Module): def __init__(self, topk) -> None: super().__init__() self.topk = topk self.criterion = torch.nn.MSELoss(reduction='none') def forward(self, output, label): losses = self.criterion(output, label).mean(2).mean(1) losses = torch.topk(losses, self.topk)[0] return losses class SingleStepLoss(torch.nn.Module): """ Compute top-k log-likelihood and mse. """ def __init__(self, ignore_zero): super().__init__() self.ignore_zero = ignore_zero def forward(self, mu, sigma, labels, topk=0): if self.ignore_zero: indexes = (labels != 0) else: indexes = (labels >= 0) distribution = torch.distributions.normal.Normal(mu[indexes], sigma[indexes]) likelihood = -distribution.log_prob(labels[indexes]) diff = labels[indexes] - mu[indexes] se = diff * diff if 0 < topk < len(likelihood): likelihood = torch.topk(likelihood, topk)[0] se = torch.topk(se, topk)[0] return likelihood, se def AE_loss(mu, labels, ignore_zero): if ignore_zero: indexes = (labels != 0) else: indexes = (labels >= 0) ae = torch.abs(labels[indexes] - mu[indexes]) return ae
28.361702
112
0.62003
1,876
0.703676
0
0
0
0
0
0
51
0.01913
1282bd510ec173d21c0fd86f0dd67b09824e394a
2,772
py
Python
.venv/lib/python3.8/site-packages/pandas/tests/indexes/timedeltas/test_shift.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
115
2020-06-18T15:00:58.000Z
2022-03-02T10:13:19.000Z
.venv/lib/python3.8/site-packages/pandas/tests/indexes/timedeltas/test_shift.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
37
2020-10-20T08:30:53.000Z
2020-12-22T13:15:45.000Z
.venv/lib/python3.8/site-packages/pandas/tests/indexes/timedeltas/test_shift.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
60
2020-07-22T14:53:10.000Z
2022-03-23T10:17:59.000Z
import pytest from pandas.errors import NullFrequencyError import pandas as pd from pandas import TimedeltaIndex import pandas._testing as tm class TestTimedeltaIndexShift: # ------------------------------------------------------------- # TimedeltaIndex.shift is used by __add__/__sub__ def test_tdi_shift_empty(self): # GH#9903 idx = pd.TimedeltaIndex([], name="xxx") tm.assert_index_equal(idx.shift(0, freq="H"), idx) tm.assert_index_equal(idx.shift(3, freq="H"), idx) def test_tdi_shift_hours(self): # GH#9903 idx = pd.TimedeltaIndex(["5 hours", "6 hours", "9 hours"], name="xxx") tm.assert_index_equal(idx.shift(0, freq="H"), idx) exp = pd.TimedeltaIndex(["8 hours", "9 hours", "12 hours"], name="xxx") tm.assert_index_equal(idx.shift(3, freq="H"), exp) exp = pd.TimedeltaIndex(["2 hours", "3 hours", "6 hours"], name="xxx") tm.assert_index_equal(idx.shift(-3, freq="H"), exp) def test_tdi_shift_minutes(self): # GH#9903 idx = pd.TimedeltaIndex(["5 hours", "6 hours", "9 hours"], name="xxx") tm.assert_index_equal(idx.shift(0, freq="T"), idx) exp = pd.TimedeltaIndex(["05:03:00", "06:03:00", "9:03:00"], name="xxx") tm.assert_index_equal(idx.shift(3, freq="T"), exp) exp = pd.TimedeltaIndex(["04:57:00", "05:57:00", "8:57:00"], name="xxx") tm.assert_index_equal(idx.shift(-3, freq="T"), exp) def test_tdi_shift_int(self): # GH#8083 tdi = pd.to_timedelta(range(5), unit="d") trange = tdi._with_freq("infer") + pd.offsets.Hour(1) result = trange.shift(1) expected = TimedeltaIndex( [ "1 days 01:00:00", "2 days 01:00:00", "3 days 01:00:00", "4 days 01:00:00", "5 days 01:00:00", ], freq="D", ) tm.assert_index_equal(result, expected) def test_tdi_shift_nonstandard_freq(self): # GH#8083 tdi = pd.to_timedelta(range(5), unit="d") trange = tdi._with_freq("infer") + pd.offsets.Hour(1) result = trange.shift(3, freq="2D 1s") expected = TimedeltaIndex( [ "6 days 01:00:03", "7 days 01:00:03", "8 days 01:00:03", "9 days 01:00:03", "10 days 01:00:03", ], freq="D", ) tm.assert_index_equal(result, expected) def test_shift_no_freq(self): # GH#19147 tdi = TimedeltaIndex(["1 days 01:00:00", "2 days 01:00:00"], freq=None) with pytest.raises(NullFrequencyError, match="Cannot shift with no freq"): tdi.shift(2)
35.538462
82
0.544372
2,625
0.94697
0
0
0
0
0
0
658
0.237374
1282edeb2a30864dc3a5aa0e406d5fae2795f292
1,974
py
Python
webScraping/Instagram/2a_selenium_corriere.py
PythonBiellaGroup/MaterialeSerate
58b45ecda7b9a8a298b9ca966d2806618a277372
[ "MIT" ]
12
2021-12-12T22:19:52.000Z
2022-03-18T11:45:17.000Z
webScraping/Instagram/2a_selenium_corriere.py
PythonGroupBiella/MaterialeLezioni
58b45ecda7b9a8a298b9ca966d2806618a277372
[ "MIT" ]
1
2022-03-23T13:58:33.000Z
2022-03-23T14:05:08.000Z
webScraping/Instagram/2a_selenium_corriere.py
PythonGroupBiella/MaterialeLezioni
58b45ecda7b9a8a298b9ca966d2806618a277372
[ "MIT" ]
5
2021-11-30T19:38:41.000Z
2022-01-30T14:50:44.000Z
# use selenium to scrape headlines from corriere.it # pip install selenium from re import L from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By import pandas as pd import time import sys HOME = "https://corriere.it" # open Firefox driver = webdriver.Firefox() # navigate to corriere.it driver.get(HOME) # In order to extract the information that you’re looking to scrape, # you need to locate the element’s XPath. # An XPath is a syntax used for finding any element on a webpage. # We can see the headline #<a class="has-text-black" href="https://www.corriere.it/sport/calcio/coppa-italia/22_aprile_19/inter-milan-formazioni-news-risultato-f607f438-bfef-11ec-9f78-c9d279c21b38.shtml">Inter-Milan, doppio Lautaro e Gosens, nerazzurri in finale di Coppa Italia </a> # --> [@class=”name”] # all great but we need to sort out this coxokie pop-up #driver.find_element_by_xpath("//*[@id='_cpmt-accept']").click() #WebDriverWait(driver, 10).until(EC.element_to_be_clickable((By.ID, '_cpmt-accept'))).click() #WebDriverWait(driver, 10).until(EC.element_to_be_clickable((By.CSS_SELECTOR, "div#_cpmt-buttons button#_cpmt-accept"))).click() time.sleep(5) # carefully look at the env, we have an iframe here cookie_iframe = driver.find_element_by_xpath("//iframe[@id='_cpmt-iframe']") driver.switch_to.frame(cookie_iframe) print(cookie_iframe) #driver.switch_to.frame(driver.find_element(By.XPATH("//iframe[@id='_cpmt-iframe']"))) button = driver.find_element_by_id("_cpmt-accept").click() # back to the main class driver.get(HOME) # elements --> find_all headlines = driver.find_elements_by_xpath('//h4[@class="title-art-hp is-medium is-line-h-106"]') # here we get all the headlines from the corriere # we can get the text for headline in headlines: print(headline.text)
44.863636
258
0.766971
0
0
0
0
0
0
0
0
1,320
0.665994
1283922931293c1f0272600761d089b38ea78f4b
2,033
py
Python
stolos/tests/test_bin.py
sailthru/stolos
7b74da527033b2da7f3ccd6d19ed6fb0245ea0fc
[ "Apache-2.0" ]
121
2015-01-20T08:58:35.000Z
2021-08-08T15:13:11.000Z
stolos/tests/test_bin.py
sailthru/stolos
7b74da527033b2da7f3ccd6d19ed6fb0245ea0fc
[ "Apache-2.0" ]
3
2015-01-20T22:19:49.000Z
2016-02-10T10:48:11.000Z
stolos/tests/test_bin.py
sailthru/stolos
7b74da527033b2da7f3ccd6d19ed6fb0245ea0fc
[ "Apache-2.0" ]
20
2016-02-03T17:08:31.000Z
2021-04-19T10:43:28.000Z
import os from subprocess import check_output, CalledProcessError from nose import tools as nt from stolos import queue_backend as qb from stolos.testing_tools import ( with_setup, validate_zero_queued_task, validate_one_queued_task, validate_n_queued_task ) def run(cmd, tasks_json_tmpfile, **kwargs): cmd = ( "set -o pipefail ; STOLOS_TASKS_JSON={tasks_json} {cmd}").format( cmd=cmd, tasks_json=tasks_json_tmpfile, **kwargs) rv = check_output(cmd, shell=True, executable="bash", env=os.environ) return rv @with_setup def test_stolos_submit(app1, job_id1, tasks_json_tmpfile): with nt.assert_raises(CalledProcessError): run("stolos-submit -h", tasks_json_tmpfile) validate_zero_queued_task(app1) run("stolos-submit -a %s -j %s" % (app1, job_id1), tasks_json_tmpfile) validate_one_queued_task(app1, job_id1) run("stolos-submit -a %s -j %s" % (app1, job_id1), tasks_json_tmpfile) validate_one_queued_task(app1, job_id1) @with_setup def test_stolos_submit_readd(app1, job_id1, tasks_json_tmpfile): qb.set_state(app1, job_id1, failed=True) validate_zero_queued_task(app1) run("stolos-submit -a %s -j %s" % (app1, job_id1), tasks_json_tmpfile) validate_zero_queued_task(app1) run("stolos-submit -a %s -j %s --readd" % (app1, job_id1), tasks_json_tmpfile) validate_one_queued_task(app1, job_id1) @with_setup def test_stolos_submit_multiple_jobs(app1, app2, job_id1, job_id2, tasks_json_tmpfile): validate_zero_queued_task(app1) validate_zero_queued_task(app2) run("stolos-submit -a %s %s -j %s %s" % (app1, app2, job_id1, job_id2), tasks_json_tmpfile) validate_n_queued_task(app1, job_id1, job_id2) validate_n_queued_task(app2, job_id1, job_id2) run("stolos-submit -a %s %s -j %s %s" % (app1, app2, job_id1, job_id2), tasks_json_tmpfile) validate_n_queued_task(app1, job_id1, job_id2) validate_n_queued_task(app2, job_id1, job_id2)
36.303571
75
0.713724
0
0
0
0
1,474
0.725037
0
0
262
0.128874
1283e6ee8cf196eb827ab2c20c8605ca98bca840
12,442
py
Python
senlin/tests/unit/engine/actions/test_create.py
chenyb4/senlin
8b9ec31566890dc9989fe08e221172d37c0451b4
[ "Apache-2.0" ]
null
null
null
senlin/tests/unit/engine/actions/test_create.py
chenyb4/senlin
8b9ec31566890dc9989fe08e221172d37c0451b4
[ "Apache-2.0" ]
null
null
null
senlin/tests/unit/engine/actions/test_create.py
chenyb4/senlin
8b9ec31566890dc9989fe08e221172d37c0451b4
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from senlin.common import consts from senlin.engine.actions import base as ab from senlin.engine.actions import cluster_action as ca from senlin.engine import cluster as cm from senlin.engine import dispatcher from senlin.engine import node as nm from senlin.objects import action as ao from senlin.objects import cluster as co from senlin.objects import dependency as dobj from senlin.tests.unit.common import base from senlin.tests.unit.common import utils @mock.patch.object(cm.Cluster, 'load') class ClusterCreateTest(base.SenlinTestCase): def setUp(self): super(ClusterCreateTest, self).setUp() self.ctx = utils.dummy_context() @mock.patch.object(ao.Action, 'update') @mock.patch.object(ab.Action, 'create') @mock.patch.object(co.Cluster, 'get_next_index') @mock.patch.object(nm, 'Node') @mock.patch.object(dobj.Dependency, 'create') @mock.patch.object(dispatcher, 'start_action') @mock.patch.object(ca.ClusterAction, '_wait_for_dependents') def test__create_nodes_single(self, mock_wait, mock_start, mock_dep, mock_node, mock_index, mock_action, mock_update, mock_load): # prepare mocks cluster = mock.Mock(id='CLUSTER_ID', profile_id='FAKE_PROFILE', user='FAKE_USER', project='FAKE_PROJECT', domain='FAKE_DOMAIN', config={"node.name.format": "node-$3I"}) mock_index.return_value = 123 node = mock.Mock(id='NODE_ID') mock_node.return_value = node mock_load.return_value = cluster # cluster action is real action = ca.ClusterAction(cluster.id, 'CLUSTER_ACTION', self.ctx) action.id = 'CLUSTER_ACTION_ID' mock_wait.return_value = (action.RES_OK, 'All dependents completed') # node_action is faked mock_action.return_value = 'NODE_ACTION_ID' # do it res_code, res_msg = action._create_nodes(1) # assertions self.assertEqual(action.RES_OK, res_code) self.assertEqual('All dependents completed', res_msg) mock_index.assert_called_once_with(action.context, 'CLUSTER_ID') mock_node.assert_called_once_with('node-123', 'FAKE_PROFILE', 'CLUSTER_ID', context=action.context, user='FAKE_USER', project='FAKE_PROJECT', domain='FAKE_DOMAIN', index=123, metadata={}) node.store.assert_called_once_with(action.context) mock_action.assert_called_once_with(action.context, 'NODE_ID', 'NODE_CREATE', name='node_create_NODE_ID', cause='Derived Action') mock_dep.assert_called_once_with(action.context, ['NODE_ACTION_ID'], 'CLUSTER_ACTION_ID') mock_update.assert_called_once_with( action.context, 'NODE_ACTION_ID', {'status': ab.Action.READY}) mock_start.assert_called_once_with() mock_wait.assert_called_once_with() self.assertEqual({'nodes_added': ['NODE_ID']}, action.outputs) @mock.patch.object(co.Cluster, 'get') def test_create_nodes_zero(self, mock_get, mock_load): cluster = mock.Mock() cluster.id = 'FAKE_CLUSTER' mock_get.return_value = mock.Mock() mock_load.return_value = cluster action = ca.ClusterAction(cluster.id, 'CLUSTER_ACTION', self.ctx) res_code, res_msg = action._create_nodes(0) self.assertEqual(action.RES_OK, res_code) self.assertEqual('', res_msg) @mock.patch.object(ao.Action, 'update') @mock.patch.object(ab.Action, 'create') @mock.patch.object(co.Cluster, 'get_next_index') @mock.patch.object(nm, 'Node') @mock.patch.object(dobj.Dependency, 'create') @mock.patch.object(dispatcher, 'start_action') @mock.patch.object(ca.ClusterAction, '_wait_for_dependents') def test__create_nodes_multiple(self, mock_wait, mock_start, mock_dep, mock_node, mock_index, mock_action, mock_update, mock_load): cluster = mock.Mock(id='01234567-123434', config={"node.name.format": "node-$3I"}) node1 = mock.Mock(id='01234567-abcdef', data={'placement': {'region': 'regionOne'}}) node2 = mock.Mock(id='abcdefab-123456', data={'placement': {'region': 'regionTwo'}}) mock_node.side_effect = [node1, node2] mock_index.side_effect = [123, 124] mock_load.return_value = cluster # cluster action is real action = ca.ClusterAction(cluster.id, 'CLUSTER_ACTION', self.ctx) action.id = 'CLUSTER_ACTION_ID' action.data = { 'placement': { 'count': 2, 'placements': [ {'region': 'regionOne'}, {'region': 'regionTwo'} ] } } mock_wait.return_value = (action.RES_OK, 'All dependents completed') # node_action is faked mock_action.side_effect = ['NODE_ACTION_1', 'NODE_ACTION_2'] # do it res_code, res_msg = action._create_nodes(2) # assertions self.assertEqual(action.RES_OK, res_code) self.assertEqual('All dependents completed', res_msg) self.assertEqual(2, mock_index.call_count) self.assertEqual(2, mock_node.call_count) node1.store.assert_called_once_with(action.context) node2.store.assert_called_once_with(action.context) self.assertEqual(2, mock_action.call_count) self.assertEqual(1, mock_dep.call_count) update_calls = [ mock.call(action.context, 'NODE_ACTION_1', {'status': 'READY'}), mock.call(action.context, 'NODE_ACTION_2', {'status': 'READY'}) ] mock_update.assert_has_calls(update_calls) mock_start.assert_called_once_with() mock_wait.assert_called_once_with() self.assertEqual({'nodes_added': [node1.id, node2.id]}, action.outputs) self.assertEqual({'region': 'regionOne'}, node1.data['placement']) self.assertEqual({'region': 'regionTwo'}, node2.data['placement']) mock_node_calls = [ mock.call('node-123', mock.ANY, '01234567-123434', user=mock.ANY, project=mock.ANY, domain=mock.ANY, index=123, context=mock.ANY, metadata={}, data={'placement': {'region': 'regionOne'}}), mock.call('node-124', mock.ANY, '01234567-123434', user=mock.ANY, project=mock.ANY, domain=mock.ANY, index=124, context=mock.ANY, metadata={}, data={'placement': {'region': 'regionTwo'}}) ] mock_node.assert_has_calls(mock_node_calls) cluster.add_node.assert_has_calls([ mock.call(node1), mock.call(node2)]) @mock.patch.object(ao.Action, 'update') @mock.patch.object(co.Cluster, 'get') @mock.patch.object(nm, 'Node') @mock.patch.object(dobj.Dependency, 'create') @mock.patch.object(dispatcher, 'start_action') @mock.patch.object(ca.ClusterAction, '_wait_for_dependents') def test__create_nodes_multiple_failed_wait(self, mock_wait, mock_start, mock_dep, mock_node, mock_get, mock_update, mock_load): cluster = mock.Mock(id='01234567-123434', config={}) db_cluster = mock.Mock(next_index=1) mock_get.return_value = db_cluster node1 = mock.Mock(id='01234567-abcdef', data={}) node2 = mock.Mock(id='abcdefab-123456', data={}) mock_node.side_effect = [node1, node2] mock_load.return_value = cluster # cluster action is real action = ca.ClusterAction(cluster.id, 'CLUSTER_ACTION', self.ctx) action.id = 'CLUSTER_ACTION_ID' action.data = { 'placement': { 'count': 2, 'placements': [ {'region': 'regionOne'}, {'region': 'regionTwo'} ] } } mock_wait.return_value = (action.RES_ERROR, 'Waiting timed out') # node_action is faked n_action_1 = mock.Mock() n_action_2 = mock.Mock() self.patchobject(ab, 'Action', side_effect=[n_action_1, n_action_2]) # do it res_code, res_msg = action._create_nodes(2) # assertions self.assertEqual(action.RES_ERROR, res_code) self.assertEqual('Failed in creating nodes.', res_msg) def test_do_create_success(self, mock_load): cluster = mock.Mock(id='FAKE_CLUSTER', ACTIVE='ACTIVE') cluster.do_create.return_value = True mock_load.return_value = cluster action = ca.ClusterAction(cluster.id, 'CLUSTER_ACTION', self.ctx) x_create_nodes = self.patchobject(action, '_create_nodes', return_value=(action.RES_OK, 'OK')) # do it res_code, res_msg = action.do_create() self.assertEqual(action.RES_OK, res_code) self.assertEqual('Cluster creation succeeded.', res_msg) x_create_nodes.assert_called_once_with(cluster.desired_capacity) cluster.eval_status.assert_called_once_with( action.context, consts.CLUSTER_CREATE, created_at=mock.ANY) def test_do_create_failed_create_cluster(self, mock_load): cluster = mock.Mock(id='FAKE_CLUSTER') cluster.do_create.return_value = False mock_load.return_value = cluster action = ca.ClusterAction(cluster.id, 'CLUSTER_ACTION', self.ctx) # do it res_code, res_msg = action.do_create() self.assertEqual(action.RES_ERROR, res_code) self.assertEqual('Cluster creation failed.', res_msg) cluster.set_status.assert_called_once_with( action.context, 'ERROR', 'Cluster creation failed.') def test_do_create_failed_create_nodes(self, mock_load): cluster = mock.Mock(id='FAKE_ID',) cluster.do_create.return_value = True mock_load.return_value = cluster action = ca.ClusterAction(cluster.id, 'CLUSTER_ACTION', self.ctx) # do it for code in [action.RES_CANCEL, action.RES_TIMEOUT, action.RES_ERROR]: self.patchobject(action, '_create_nodes', return_value=(code, 'Really Bad')) res_code, res_msg = action.do_create() self.assertEqual(code, res_code) self.assertEqual('Really Bad', res_msg) cluster.eval_status.assert_called_once_with( action.context, consts.CLUSTER_CREATE) cluster.eval_status.reset_mock() def test_do_create_failed_for_retry(self, mock_load): cluster = mock.Mock(id='FAKE_ID', INIT='INIT') cluster.do_create.return_value = True mock_load.return_value = cluster action = ca.ClusterAction(cluster.id, 'CLUSTER_ACTION', self.ctx) self.patchobject(action, '_create_nodes', return_value=(action.RES_RETRY, 'retry')) # do it res_code, res_msg = action.do_create() self.assertEqual(action.RES_RETRY, res_code) self.assertEqual('retry', res_msg) cluster.eval_status.assert_called_once_with( action.context, consts.CLUSTER_CREATE)
43.201389
79
0.60987
11,379
0.914564
0
0
11,418
0.917698
0
0
2,553
0.205192
12848f59193336131bb837186f98da6abb8ba010
1,665
py
Python
tests/test_api.py
bh-chaker/wetterdienst
b0d51bb4c7392eb47834e4978e26882d74b22e35
[ "MIT" ]
155
2020-07-03T05:09:22.000Z
2022-03-28T06:57:39.000Z
tests/test_api.py
bh-chaker/wetterdienst
b0d51bb4c7392eb47834e4978e26882d74b22e35
[ "MIT" ]
453
2020-07-02T21:21:52.000Z
2022-03-31T21:35:36.000Z
tests/test_api.py
bh-chaker/wetterdienst
b0d51bb4c7392eb47834e4978e26882d74b22e35
[ "MIT" ]
21
2020-09-07T12:13:27.000Z
2022-03-26T16:26:09.000Z
# -*- coding: utf-8 -*- # Copyright (c) 2018-2021, earthobservations developers. # Distributed under the MIT License. See LICENSE for more info. import pytest from wetterdienst import Wetterdienst @pytest.mark.remote @pytest.mark.parametrize( "provider,kind,kwargs", [ # German Weather Service (DWD) ( "dwd", "observation", {"parameter": "kl", "resolution": "daily", "period": "recent"}, ), ("dwd", "forecast", {"parameter": "large", "mosmix_type": "large"}), # Environment and Climate Change Canada ("eccc", "observation", {"parameter": "daily", "resolution": "daily"}), ], ) @pytest.mark.parametrize("si_units", (False, True)) def test_api(provider, kind, kwargs, si_units): """ Test main wetterdienst API """ # Build API api = Wetterdienst(provider, kind) # Discover parameters assert api.discover() # All stations request = api(**kwargs, si_units=si_units).all() stations = request.df # Check stations DataFrame columns assert set(stations.columns).issuperset( { "station_id", "from_date", "to_date", "height", "latitude", "longitude", "name", "state", } ) # Check that there are actually stations assert not stations.empty # Query first DataFrame from values values = next(request.values.query()).df # TODO: DWD Forecast has no quality assert set(values.columns).issuperset( {"station_id", "parameter", "date", "value", "quality"} ) assert not values.empty
26.015625
79
0.587988
0
0
0
0
1,464
0.879279
0
0
763
0.458258
128572fd0692d7bc47b673410cce38c578481632
5,803
py
Python
examples/sentence_embedding/task_sentence_embedding_sbert_unsupervised_TSDAE.py
Tongjilibo/bert4torch
71d5ffb3698730b16e5a252b06644a136787711e
[ "MIT" ]
49
2022-03-15T07:28:16.000Z
2022-03-31T07:16:15.000Z
examples/sentence_embedding/task_sentence_embedding_sbert_unsupervised_TSDAE.py
Tongjilibo/bert4torch
71d5ffb3698730b16e5a252b06644a136787711e
[ "MIT" ]
null
null
null
examples/sentence_embedding/task_sentence_embedding_sbert_unsupervised_TSDAE.py
Tongjilibo/bert4torch
71d5ffb3698730b16e5a252b06644a136787711e
[ "MIT" ]
null
null
null
#! -*- coding:utf-8 -*- # 语义相似度任务-无监督:训练集为网上pretrain数据, dev集为sts-b from bert4torch.tokenizers import Tokenizer from bert4torch.models import build_transformer_model, BaseModel from bert4torch.snippets import sequence_padding, Callback, ListDataset import torch.nn as nn import torch import torch.optim as optim from torch.utils.data import DataLoader from sklearn.metrics.pairwise import paired_cosine_distances from scipy.stats import pearsonr, spearmanr import copy import random import numpy as np random.seed(2022) np.random.seed(2002) maxlen = 256 batch_size = 8 config_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/bert_config.json' checkpoint_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/pytorch_model.bin' dict_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/vocab.txt' device = 'cuda' if torch.cuda.is_available() else 'cpu' # 建立分词器 tokenizer = Tokenizer(dict_path, do_lower_case=True) def collate_fn(batch): def add_noise(token_ids, del_ratio=0.6): n = len(token_ids) keep_or_not = np.random.rand(n) > del_ratio if sum(keep_or_not) == 0: keep_or_not[np.random.choice(n)] = True # guarantee that at least one word remains return list(np.array(token_ids)[keep_or_not]) texts_list = [[] for _ in range(3)] for text in batch: token_ids, _ = tokenizer.encode(text, maxlen=maxlen) texts_list[0].append([tokenizer._token_start_id] + add_noise(token_ids[1:-1]) + [tokenizer._token_end_id]) texts_list[1].append(token_ids[:-1]) texts_list[2].append(token_ids[1:]) for i, texts in enumerate(texts_list): texts_list[i] = torch.tensor(sequence_padding(texts), dtype=torch.long, device=device) return texts_list[:2], texts_list[2].flatten() # 加载数据集 def get_data(filename): train_data = [] with open(filename, encoding='utf-8') as f: for row, l in enumerate(f): if row == 0: # 跳过首行 continue text = l.strip().replace(' ', '') if len(text) > 0: train_data.append(text) return train_data train_data = get_data('F:/Projects/data/corpus/pretrain/film/film.txt') train_dataloader = DataLoader(ListDataset(data=train_data), batch_size=batch_size, shuffle=True, collate_fn=collate_fn) from task_sentence_embedding_sbert_sts_b__CosineSimilarityLoss import valid_dataloader # 定义bert上的模型结构 class Model(BaseModel): def __init__(self, pool_method='mean', scale=20.0): super().__init__() self.encoder, self.config = build_transformer_model(config_path=config_path, checkpoint_path=checkpoint_path, with_pool=True, with_mlm=True, return_model_config=True, segment_vocab_size=0) self.decoder = self.encoder # 这里可以通过使用copy和不使用copy来决定一个模型还是两个独立的模型 self.pool_method = pool_method self.scale = scale def forward(self, token_ids_list): token_ids1 = token_ids_list[0] hidden_state1, pool_cls1, _ = self.encoder([token_ids1]) embeddings_a = self.get_pool_emb(hidden_state1, pool_cls1, attention_mask=token_ids1.gt(0).long()) token_ids2 = token_ids_list[1] _, _, mlm_score2 = self.decoder([token_ids2, embeddings_a.unsqueeze(1), torch.ones_like(token_ids1)[:, 0:1]]) return mlm_score2.reshape(-1, mlm_score2.shape[-1]) def encode(self, token_ids): self.eval() with torch.no_grad(): hidden_state, pool_cls, _ = self.encoder([token_ids]) output = self.get_pool_emb(hidden_state, pool_cls, attention_mask=token_ids.gt(0).long()) return output def get_pool_emb(self, hidden_state, pool_cls, attention_mask): if self.pool_method == 'cls': return pool_cls elif self.pool_method == 'mean': hidden_state = torch.sum(hidden_state * attention_mask[:, :, None], dim=1) attention_mask = torch.sum(attention_mask, dim=1)[:, None] return hidden_state / attention_mask elif self.pool_method == 'max': seq_state = hidden_state * attention_mask[:, :, None] return torch.max(seq_state, dim=1) else: raise ValueError('pool_method illegal') model = Model().to(device) # 定义使用的loss和optimizer,这里支持自定义 model.compile( loss=nn.CrossEntropyLoss(ignore_index=0), optimizer=optim.Adam(model.parameters(), lr=2e-5), # 用足够小的学习率 ) # 定义评价函数 def evaluate(data): embeddings1, embeddings2, labels = [], [], [] for (batch_token1_ids, batch_token2_ids), label in data: embeddings1.append(model.encode(batch_token1_ids)) embeddings2.append(model.encode(batch_token2_ids)) labels.append(label) embeddings1 = torch.concat(embeddings1).cpu().numpy() embeddings2 = torch.concat(embeddings2).cpu().numpy() labels = torch.concat(labels).cpu().numpy() cosine_scores = 1 - (paired_cosine_distances(embeddings1, embeddings2)) eval_pearson_cosine, _ = pearsonr(labels, cosine_scores) return eval_pearson_cosine class Evaluator(Callback): """评估与保存 """ def __init__(self): self.best_val_consine = 0. def on_epoch_end(self, global_step, epoch, logs=None): val_consine = evaluate(valid_dataloader) if val_consine > self.best_val_consine: self.best_val_consine = val_consine # model.save_weights('best_model.pt') print(f'val_consine: {val_consine:.5f}, best_val_consine: {self.best_val_consine:.5f}\n') if __name__ == '__main__': evaluator = Evaluator() model.fit(train_dataloader, epochs=20, steps_per_epoch=100, callbacks=[evaluator] ) else: model.load_weights('best_model.pt')
37.681818
196
0.689988
2,319
0.385793
0
0
0
0
0
0
975
0.162203
12867ea275e82f412c64f544501dc211d18fb6b3
2,761
py
Python
crowd_anki/export/anki_exporter_wrapper.py
katrinleinweber/CrowdAnki
c78d837e082365d69bde5b1361b1dd4d11cd3d63
[ "MIT" ]
391
2016-08-31T21:55:07.000Z
2022-03-30T16:30:12.000Z
crowd_anki/export/anki_exporter_wrapper.py
katrinleinweber/CrowdAnki
c78d837e082365d69bde5b1361b1dd4d11cd3d63
[ "MIT" ]
150
2016-09-01T00:35:35.000Z
2022-03-30T23:26:48.000Z
crowd_anki/export/anki_exporter_wrapper.py
katrinleinweber/CrowdAnki
c78d837e082365d69bde5b1361b1dd4d11cd3d63
[ "MIT" ]
51
2016-09-04T17:02:39.000Z
2022-02-04T11:49:10.000Z
from pathlib import Path from .anki_exporter import AnkiJsonExporter from ..anki.adapters.anki_deck import AnkiDeck from ..config.config_settings import ConfigSettings from ..utils import constants from ..utils.notifier import AnkiModalNotifier, Notifier from ..utils.disambiguate_uuids import disambiguate_note_model_uuids EXPORT_FAILED_TITLE = "Export failed" class AnkiJsonExporterWrapper: """ Wrapper designed to work with standard export dialog in anki. """ key = "CrowdAnki JSON representation" ext = constants.ANKI_EXPORT_EXTENSION hideTags = True includeTags = True directory_export = True def __init__(self, collection, deck_id: int = None, json_exporter: AnkiJsonExporter = None, notifier: Notifier = None): self.includeMedia = True self.did = deck_id self.count = 0 # Todo? self.collection = collection self.anki_json_exporter = json_exporter or AnkiJsonExporter(collection, ConfigSettings.get_instance()) self.notifier = notifier or AnkiModalNotifier() # required by anki exporting interface with its non-PEP-8 names # noinspection PyPep8Naming def exportInto(self, directory_path): if self.did is None: self.notifier.warning(EXPORT_FAILED_TITLE, "CrowdAnki export works only for specific decks. " "Please use CrowdAnki snapshot if you want to export " "the whole collection.") return deck = AnkiDeck(self.collection.decks.get(self.did, default=False)) if deck.is_dynamic: self.notifier.warning(EXPORT_FAILED_TITLE, "CrowdAnki does not support export for dynamic decks.") return # Clean up duplicate note models. See # https://github.com/Stvad/CrowdAnki/wiki/Workarounds-%E2%80%94-Duplicate-note-model-uuids. disambiguate_note_model_uuids(self.collection) # .parent because we receive name with random numbers at the end (hacking around internals of Anki) :( export_path = Path(directory_path).parent self.anki_json_exporter.export_to_directory(deck, export_path, self.includeMedia, create_deck_subdirectory=ConfigSettings.get_instance().export_create_deck_subdirectory) self.count = self.anki_json_exporter.last_exported_count def get_exporter_id(exporter): return f"{exporter.key} (*{exporter.ext})", exporter def exporters_hook(exporters_list): exporter_id = get_exporter_id(AnkiJsonExporterWrapper) if exporter_id not in exporters_list: exporters_list.append(exporter_id)
40.014493
139
0.680913
2,122
0.768562
0
0
0
0
0
0
666
0.241217
1286fbd5f6c9f344c50efdbd092dd4dcc7eb7bc9
1,086
py
Python
shadow/apis/item.py
f1uzz/shadow
0c2a1308f8bbe77ce4be005153148aac8ea0b4b2
[ "MIT" ]
1
2020-09-10T22:31:54.000Z
2020-09-10T22:31:54.000Z
shadow/apis/item.py
f1uzz/shadow
0c2a1308f8bbe77ce4be005153148aac8ea0b4b2
[ "MIT" ]
1
2020-03-12T15:47:14.000Z
2020-09-11T18:46:44.000Z
shadow/apis/item.py
f1uzz/shadow
0c2a1308f8bbe77ce4be005153148aac8ea0b4b2
[ "MIT" ]
null
null
null
from functools import lru_cache from typing import Optional import requests from .patches import Patches class Item: """ Manipulation of static item data """ ITEM_URL = f"http://ddragon.leagueoflegends.com/cdn/{Patches.get_current_patch()}/data/en_US/item.json" items = requests.get(ITEM_URL).json() @classmethod @lru_cache() def id_for_name(cls, name: str) -> Optional[str]: """ Finds the id for an item given its name Returns the id, None if not found name - full name of item """ for item_id, item in cls.items["data"].items(): if item["name"].casefold() == name.casefold(): return item_id @classmethod @lru_cache() def name_for_id(cls, item_id: str) -> Optional[str]: """ Finds the name for an item given its id Returns the name, None if not found item_id - id of item """ for found_item_id, item in cls.items["data"].items(): if found_item_id == item_id: return item["name"]
25.255814
107
0.598527
977
0.899632
0
0
750
0.690608
0
0
440
0.405157
128751ef3f270c09dd8bfd854209616c9fbc00a9
2,694
py
Python
tests/test_lmdb_eager.py
rjpower/tensorflow-io
39aa0b46cfaa403121fdddbd491a03d2f3190a87
[ "Apache-2.0" ]
null
null
null
tests/test_lmdb_eager.py
rjpower/tensorflow-io
39aa0b46cfaa403121fdddbd491a03d2f3190a87
[ "Apache-2.0" ]
null
null
null
tests/test_lmdb_eager.py
rjpower/tensorflow-io
39aa0b46cfaa403121fdddbd491a03d2f3190a87
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for LMDBDataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import shutil import tempfile import numpy as np import tensorflow as tf if not (hasattr(tf, "version") and tf.version.VERSION.startswith("2.")): tf.compat.v1.enable_eager_execution() import tensorflow_io.lmdb as lmdb_io # pylint: disable=wrong-import-position def test_lmdb_read_from_file(): """test_read_from_file""" # Copy database out because we need the path to be writable to use locks. path = os.path.join( os.path.dirname(os.path.abspath(__file__)), "test_lmdb", "data.mdb") tmp_path = tempfile.mkdtemp() filename = os.path.join(tmp_path, "data.mdb") shutil.copy(path, filename) num_repeats = 2 lmdb_dataset = lmdb_io.LMDBDataset([filename]).repeat(num_repeats) ii = 0 for vv in lmdb_dataset: i = ii % 10 k, v = vv assert k.numpy() == str(i).encode() assert v.numpy() == str(chr(ord("a") + i)).encode() ii += 1 shutil.rmtree(tmp_path) def test_lmdb_read_from_file_with_batch(): """test_read_from_file""" # Copy database out because we need the path to be writable to use locks. path = os.path.join( os.path.dirname(os.path.abspath(__file__)), "test_lmdb", "data.mdb") tmp_path = tempfile.mkdtemp() filename = os.path.join(tmp_path, "data.mdb") shutil.copy(path, filename) lmdb_dataset = lmdb_io.LMDBDataset([filename], batch=3) i = 0 for vv in lmdb_dataset: k, v = vv if i < 9: assert np.alltrue(k.numpy() == [ str(i).encode(), str(i + 1).encode(), str(i + 2).encode()]) assert np.alltrue(v.numpy() == [ str(chr(ord("a") + i)).encode(), str(chr(ord("a") + i + 1)).encode(), str(chr(ord("a") + i + 2)).encode()]) else: assert k.numpy() == str(9).encode() assert v.numpy() == str('j').encode() i += 3 shutil.rmtree(tmp_path) if __name__ == "__main__": test.main()
33.259259
80
0.655902
0
0
0
0
0
0
0
0
1,039
0.385672
128792253fac3bfe35e8e9d68865a244469d6f80
5,211
py
Python
recbole/quick_start/quick_start.py
RuihongQiu/DuoRec
4ebc30d8b7d9465f854867887b127a0bbc38bc31
[ "MIT" ]
16
2021-11-03T02:12:49.000Z
2022-03-27T05:48:19.000Z
recbole/quick_start/quick_start.py
RuihongQiu/DuoRec
4ebc30d8b7d9465f854867887b127a0bbc38bc31
[ "MIT" ]
2
2021-11-21T14:12:25.000Z
2022-03-11T03:00:04.000Z
recbole/quick_start/quick_start.py
RuihongQiu/DuoRec
4ebc30d8b7d9465f854867887b127a0bbc38bc31
[ "MIT" ]
4
2021-11-25T09:23:41.000Z
2022-03-26T11:23:26.000Z
# @Time : 2020/10/6 # @Author : Shanlei Mu # @Email : slmu@ruc.edu.cn """ recbole.quick_start ######################## """ import logging from logging import getLogger from recbole.config import Config from recbole.data import create_dataset, data_preparation from recbole.utils import init_logger, get_model, get_trainer, init_seed from recbole.utils.utils import set_color def run_recbole(model=None, dataset=None, config_file_list=None, config_dict=None, saved=True): r""" A fast running api, which includes the complete process of training and testing a model on a specified dataset Args: model (str): model name dataset (str): dataset name config_file_list (list): config files used to modify experiment parameters config_dict (dict): parameters dictionary used to modify experiment parameters saved (bool): whether to save the model """ # configurations initialization config = Config(model=model, dataset=dataset, config_file_list=config_file_list, config_dict=config_dict) # init_seed(config['seed'], config['reproducibility']) # logger initialization init_logger(config) logger = getLogger() import os log_dir = os.path.dirname(logger.handlers[0].baseFilename) config['log_dir'] = log_dir logger.info(config) # dataset filtering dataset = create_dataset(config) logger.info(dataset) # dataset splitting train_data, valid_data, test_data = data_preparation(config, dataset) # model loading and initialization model = get_model(config['model'])(config, train_data).to(config['device']) logger.info(model) # trainer loading and initialization trainer = get_trainer(config['MODEL_TYPE'], config['model'])(config, model) # model training best_valid_score, best_valid_result = trainer.fit( train_data, valid_data, saved=saved, show_progress=config['show_progress'] ) import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn.decomposition import TruncatedSVD embedding_matrix = model.item_embedding.weight[1:].cpu().detach().numpy() svd = TruncatedSVD(n_components=2) svd.fit(embedding_matrix) comp_tr = np.transpose(svd.components_) proj = np.dot(embedding_matrix, comp_tr) cnt = {} for i in dataset['item_id']: if i.item() in cnt: cnt[i.item()] += 1 else: cnt[i.item()] = 1 freq = np.zeros(embedding_matrix.shape[0]) for i in cnt: freq[i-1] = cnt[i] # freq /= freq.max() sns.set(style='darkgrid') sns.set_context("notebook", font_scale=1.8, rc={"lines.linewidth": 3, 'lines.markersize': 20}) plt.figure(figsize=(6, 4.5)) plt.scatter(proj[:, 0], proj[:, 1], s=1, c=freq, cmap='viridis_r') plt.colorbar() plt.xlim(-2, 2) plt.ylim(-2, 2) # plt.axis('square') # plt.show() plt.savefig(log_dir + '/' + config['model'] + '-' + config['dataset'] + '.pdf', format='pdf', transparent=False, bbox_inches='tight') from scipy.linalg import svdvals svs = svdvals(embedding_matrix) svs /= svs.max() np.save(log_dir + '/sv.npy', svs) sns.set(style='darkgrid') sns.set_context("notebook", font_scale=1.8, rc={"lines.linewidth": 3, 'lines.markersize': 20}) plt.figure(figsize=(6, 4.5)) plt.plot(svs) # plt.show() plt.savefig(log_dir + '/svs.pdf', format='pdf', transparent=False, bbox_inches='tight') # model evaluation test_result = trainer.evaluate(test_data, load_best_model=saved, show_progress=config['show_progress']) logger.info(set_color('best valid ', 'yellow') + f': {best_valid_result}') logger.info(set_color('test result', 'yellow') + f': {test_result}') return { 'best_valid_score': best_valid_score, 'valid_score_bigger': config['valid_metric_bigger'], 'best_valid_result': best_valid_result, 'test_result': test_result } def objective_function(config_dict=None, config_file_list=None, saved=True): r""" The default objective_function used in HyperTuning Args: config_dict (dict): parameters dictionary used to modify experiment parameters config_file_list (list): config files used to modify experiment parameters saved (bool): whether to save the model """ config = Config(config_dict=config_dict, config_file_list=config_file_list) init_seed(config['seed'], config['reproducibility']) logging.basicConfig(level=logging.ERROR) dataset = create_dataset(config) train_data, valid_data, test_data = data_preparation(config, dataset) model = get_model(config['model'])(config, train_data).to(config['device']) trainer = get_trainer(config['MODEL_TYPE'], config['model'])(config, model) best_valid_score, best_valid_result = trainer.fit(train_data, valid_data, verbose=False, saved=saved) test_result = trainer.evaluate(test_data, load_best_model=saved) return { 'best_valid_score': best_valid_score, 'valid_score_bigger': config['valid_metric_bigger'], 'best_valid_result': best_valid_result, 'test_result': test_result }
35.209459
137
0.682978
0
0
0
0
0
0
0
0
1,749
0.335636
1287e0c57eb8a30f8e6d4ada3266d63abc50f722
4,947
py
Python
inferlo/generic/inference/bucket_renormalization.py
InferLO/inferlo
a65efce721d7f99d2f274dd94a1aaf7ca159e944
[ "Apache-2.0" ]
1
2022-01-27T18:44:07.000Z
2022-01-27T18:44:07.000Z
inferlo/generic/inference/bucket_renormalization.py
InferLO/inferlo
a65efce721d7f99d2f274dd94a1aaf7ca159e944
[ "Apache-2.0" ]
3
2022-01-23T18:02:30.000Z
2022-01-27T23:10:51.000Z
inferlo/generic/inference/bucket_renormalization.py
InferLO/inferlo
a65efce721d7f99d2f274dd94a1aaf7ca159e944
[ "Apache-2.0" ]
1
2021-09-03T06:12:57.000Z
2021-09-03T06:12:57.000Z
# Copyright (c) The InferLO authors. All rights reserved. # Licensed under the Apache License, Version 2.0 - see LICENSE. import warnings import numpy as np from sklearn.utils.extmath import randomized_svd from .bucket_elimination import BucketElimination from .factor import Factor, default_factor_name, product_over_ from .graphical_model import GraphicalModel from .mini_bucket_elimination import MiniBucketElimination class BucketRenormalization(MiniBucketElimination): """Bucket Renormalization algorithm.""" def __init__(self, model: GraphicalModel, **kwargs): super(BucketRenormalization, self).__init__(model, **kwargs) self._initialize_projectors() def _initialize_projectors(self): replications = dict() working_model = self.renormalized_model.copy() for var in self.elimination_order: main_rvar = self.variables_replicated_from_[var][-1] main_projectors = [] for (i, rvar) in enumerate(self.variables_replicated_from_[var]): if i < len(self.variables_replicated_from_[var]) - 1: fac = product_over_(*working_model.get_adj_factors(rvar)) replicated_projector = self._get_svd_projector(fac, rvar) replicated_projector.name = "RP_{}".format(rvar) projector = replicated_projector.copy() projector.variables = [main_rvar] projector.name = "P_{}".format(rvar) replications[rvar] = ( main_rvar, replicated_projector, projector) main_projectors.append(projector) working_model.add_factors_from( [replicated_projector.copy(), projector.copy()]) self.renormalized_model.add_factors_from( [replicated_projector, projector]) working_model.contract_variable(rvar) self.replications = replications def _optimize(self): for var in reversed(self.renormalized_elimination_order): if var in self.replications.keys(): mb_var, projector, mb_projector = self.replications[var] self.renormalized_model.remove_factors_from( [projector, mb_projector]) be = BucketElimination(self.renormalized_model) marginal_factor = be.get_marginal_factor( elimination_order_method="given", elimination_order=self.renormalized_elimination_order, exception_variables=[var, mb_var], ) new_mb_projector = self._get_svd_projector(marginal_factor, mb_var) new_projector = Factor( name=default_factor_name(), variables=[var], log_values=new_mb_projector.log_values, ) self.renormalized_model.add_factors_from( [new_projector, new_mb_projector]) self.replications[var] = ( mb_var, new_projector, new_mb_projector) def run(self, max_iter=10): """Runs the algorithm, returns log(Z).""" for _ in range(max_iter): self._optimize() def get_log_z(self): """Calculates log Z.""" be = BucketElimination(self.renormalized_model) logZ = self.base_logZ logZ += be.run( elimination_order_method="given", elimination_order=self.renormalized_elimination_order ) return logZ def _get_svd_projector(self, factor, variable): factor.transpose_by_( [variable, *sorted(set(factor.variables) - set([variable]))]) flattened_factor_log_values = factor.log_values.reshape( factor.get_cardinality_for_(variable), -1 ) max_log = np.max(flattened_factor_log_values) if np.isnan(max_log): warnings.warn('Got nan in flattened_factor_log_values') np.nan_to_num(flattened_factor_log_values, copy=False, nan=-np.inf) max_log = np.max(flattened_factor_log_values) if not np.isfinite(max_log): warnings.warn('Got infinite value in flattened_factor_log_values') max_log = 0.0 flattened_factor_values = np.exp(flattened_factor_log_values - max_log) U, _, _ = randomized_svd(flattened_factor_values, n_components=1) # U,_,_ = np.linalg.svd(flattened_factor_values) u = U[:, 0] if np.sum(u) < 0: u = -u u[u < 0] = 0.0 u /= np.linalg.norm(u) return Factor(name=default_factor_name(), variables=[variable], values=u)
41.571429
80
0.595512
4,506
0.910855
0
0
0
0
0
0
392
0.07924
1287eefddb9d27db413d1feaac4d915eb6887055
5,519
py
Python
oldcode/guestbook111013.py
mdreid/dinkylink
34370633c9361f6625227440d4aca6ed2b57bfab
[ "MIT" ]
1
2015-05-06T20:07:36.000Z
2015-05-06T20:07:36.000Z
oldcode/guestbook111013.py
mdreid/dinkylink
34370633c9361f6625227440d4aca6ed2b57bfab
[ "MIT" ]
null
null
null
oldcode/guestbook111013.py
mdreid/dinkylink
34370633c9361f6625227440d4aca6ed2b57bfab
[ "MIT" ]
null
null
null
import os import urllib from google.appengine.api import users from google.appengine.ext import ndb import jinja2 import webapp2 from sys import argv import datetime import pickle import sys sys.path.insert(0, 'libs') import BeautifulSoup from bs4 import BeautifulSoup import requests import json JINJA_ENVIRONMENT = jinja2.Environment( loader=jinja2.FileSystemLoader(os.path.dirname(__file__)), extensions=['jinja2.ext.autoescape', 'jinja2.ext.loopcontrols'], autoescape=True) url = 'http://www.njtransit.com/sf/sf_servlet.srv?hdnPageAction=TrainSchedulesFrom' pu_code = "124_PRIN" ny_code = "105_BNTN" prs = "Princeton" nyp = "New York Penn Station" # get date today = datetime.date.today() str_date = today.__format__("%m/%d/%Y") # trip info toNY_dict = {'selOrigin': pu_code, 'selDestination': ny_code, 'datepicker': str_date, 'OriginDescription': prs, 'DestDescription': nyp} toPU_dict = {'selOrigin': ny_code, 'selDestination': pu_code, 'datepicker': str_date, 'OriginDescription': nyp, 'DestDescription': prs} # get to webpage with data for the day with requests.Session() as re: toNY = re.post(url, data=toNY_dict) toPU = re.post(url, data=toPU_dict) toPUhtml = toPU.text toNYhtml = toNY.text #Reads in html file and name of destination and outputs csv file with comma spliced file of train information def scrape(html,destination): title = str(today) + str(destination) soup = BeautifulSoup(html) # Improvements: instead of being so hacky with 10 search for td # Gather all lines in table table1 = soup.find_all("tr") table2 = table1[10] #table1[10] contains the table of interest table3 = table2.find_all('span') # Create 7 lists origin = [] #Times for departure at origin origintrain = [] transferarrive = [] #Times for arrival at transfer transferdepart = [] #Time for departure at transfer transfertrain = [] #Train or bus number destination = [] #Time of arrival at destination total = [] #Total time of Travel #Create 3 Columns of Text File origin.append("Origin Departure") #Times for departure at origin origintrain.append("Origin Train") transferarrive.append("Transfer Arrival") #Times for arrival at transfer transferdepart.append("Transfer Departure") #Time for departure at transfer transfertrain.append("Transfer Train or Bus") destination.append("Destination Arrival") #Time of arrival at destination total.append("Total Travel Time") #Total time of Travel #Store 4 columns into 4 lists #Regex and pull approapriate data for i in range(4, len(table3)-3, 4): #origin.append(str(table3[i].text)[0:len(table3[i].text)]) origin.append(str(table3[i].text)[0:8]) origintrain.append(str(table3[i].text)[-5:]) transferarrive.append(str(table3[i+1].text)[7:15]) transferdepart.append(str(table3[i+1].text)[39:48]) transfertrain.append(str(table3[i+1].text)[-5:]) destination.append(str(table3[i+2].text)[0:len(table3[i+2].text)]) total.append(str(table3[i+3].text)[0:len(table3[i+3].text)]) #text_file = open(str(title) + ".csv", "w") Dict = {'origin': origin[1:], 'transferarrive' : transferarrive[1:], 'transferdepart': transferdepart[1:], 'destination':destination[1:]} return Dict #Create csv files for to Princeton and to New York toPUDict = scrape(toPUhtml, 'PU') toNYDict = scrape(toNYhtml, 'NY') class njdata(ndb.Model): """Models an individual Guestbook entry with author, content, and date.""" originstring = ndb.StringProperty(repeated = True) transferarrivestring = ndb.StringProperty(repeated = True) transferdepartstring = ndb.StringProperty(repeated = True) destinationstring = ndb.StringProperty(repeated = True) date = ndb.DateTimeProperty(auto_now_add=True) #Need date to get most recent data globalPUDict = {} class Test123(webapp2.RequestHandler): def get(self): toPUdata = njdata() #toNYdata = njdata() #toPUdata.content = pickle.dumps(toPUDict) toPUdata.originstring = toPUDict['origin'] toPUdata.transferarrivestring = toPUDict['transferarrive'] toPUdata.transferdepartstring = toPUDict['transferdepart'] toPUdata.destinationstring = toPUDict['destination'] #Save data into data models toPUdata.put() #toNYdata.put() toPUdata_query = toPUdata.query().order(-njdata.date) a = toPUdata_query.fetch(1) global globalPUDict globalPUDict = {'origin': a[0].originstring, 'transferarrive': a[0].transferarrivestring, 'transferdepart': a[0].transferdepartstring, 'destination': a[0].destinationstring} self.response.write(globalPUDict) self.response.write(toPUDict) class MainPage(webapp2.RequestHandler): def get(self): template = JINJA_ENVIRONMENT.get_template('index.html') self.response.write(template.render()) class ToNY(webapp2.RequestHandler): def get(self): template = JINJA_ENVIRONMENT.get_template('toNY.html') self.response.write(template.render(toNYDict)) class ToPU(webapp2.RequestHandler): def get(self): self.response.write(globalPUDict) template = JINJA_ENVIRONMENT.get_template('toPU.html') self.response.write(template.render(globalPUDict)) application = webapp2.WSGIApplication([ ('/', MainPage), ('/toNY', ToNY), ('/toPU', ToPU), ('/test', Test123), ], debug=True)
31.901734
181
0.698315
1,885
0.341547
0
0
0
0
0
0
1,792
0.324697
1289c37f5bf5c6f565d40cc79d0b3cb7b6862bc0
4,482
py
Python
is_core/tests/crawler.py
zzuzzy/django-is-core
3f87ec56a814738683c732dce5f07e0328c2300d
[ "BSD-3-Clause" ]
null
null
null
is_core/tests/crawler.py
zzuzzy/django-is-core
3f87ec56a814738683c732dce5f07e0328c2300d
[ "BSD-3-Clause" ]
null
null
null
is_core/tests/crawler.py
zzuzzy/django-is-core
3f87ec56a814738683c732dce5f07e0328c2300d
[ "BSD-3-Clause" ]
null
null
null
import json from django.utils.encoding import force_text from germanium.tools import assert_true, assert_not_equal from germanium.test_cases.client import ClientTestCase from germanium.decorators import login from germanium.crawler import Crawler, LinkExtractor, HtmlLinkExtractor as OriginalHtmlLinkExtractor def flatt_list(iterable_value): flatten_list = [] for val in iterable_value: if isinstance(val, list): flatten_list += val else: flatten_list.append(val) return flatten_list class JSONLinkExtractor(LinkExtractor): def _extract_web_links(self, data): return flatt_list(data.values()) def _extract_rest_links(self, data): links = [] for rest_link in data.values(): if 'GET' in rest_link['methods']: links += flatt_list([rest_link['url']]) return links def _extract_from_dict(self, data): links = [] for key, val in data.items(): if key == '_web_links': links += self._extract_web_links(val) elif key == '_rest_links': links += self._extract_rest_links(val) elif isinstance(val, (list, tuple)): links += self._extract_from_list(val) elif isinstance(val, dict): links += self._extract_from_dict(val) return links def _extract_from_list(self, data): links = [] for val in data: if isinstance(val, dict): links += self._extract_from_dict(val) elif isinstance(val, (list, tuple)): links += self._extract_from_list(val) return links def extract(self, content): data = json.loads(content) if isinstance(data, dict): links = self._extract_from_dict(data) elif isinstance(data, (list, tuple)): links = self._extract_from_list(data) return links class HTMLLinkExtractor(OriginalHtmlLinkExtractor): link_attr_names = ('href', 'src', 'data-resource') class TextPlainSnippetsExtractor(LinkExtractor): def extract(self, content): links = [] try: data = json.loads(content) html_extractor = HTMLLinkExtractor() for html in data.get('snippets', {}).values(): links += html_extractor.extract(html) except ValueError: # I text/plain is not snippet return empty links pass return links class CrawlerTestCase(ClientTestCase): REST_BASE = None exclude_urls = () def get_users(self): raise NotImplementedError def get_exlude_urls(self): return list(self.exclude_urls) + ['/logout/'] @login(users_generator='get_users') def test_crawler(self): self.logger.info('\n---------------------------') self.logger.info('Test crawling with logged user %s' % self.logged_user.user) tested_urls = [] failed_urls = [] def pre_request(url, referer, headers): if url.startswith('/api/'): headers['HTTP_X_FIELDS'] = '_rest_links,_web_links' if self.REST_BASE: headers['HTTP_X_BASE'] = str(self.REST_BASE) return url, headers def post_response(url, referer, resp, exception): tested_urls.append(url) assert_true(exception is None, msg='Received exception %s, url %s' % (force_text(exception), url)) if resp.status_code != 200: failed_urls.append(url) self.logger.warning('Response code for url %s from referer %s should be 200 but code is %s, user %s' % (url, referer, resp.status_code, self.logged_user.user)) assert_not_equal(resp.status_code, 500, msg='Response code for url %s from referer %s is 500, user %s' % (url, referer, self.logged_user.user)) Crawler(self.c, ('/',), self.get_exlude_urls(), pre_request, post_response, extra_link_extractors={'application/json; charset=utf-8': JSONLinkExtractor(), 'text/plain': TextPlainSnippetsExtractor(), 'default': HTMLLinkExtractor()}).run() self.logger.info('Completed with tested %s urls (warnings %s)' % (len(tested_urls), len(failed_urls))) self.logger.info('---------------------------')
34.744186
118
0.594378
3,929
0.876618
0
0
1,730
0.385988
0
0
574
0.128068
1289e9a1e3edba91a08623829d6f72757cbc5c8d
136
py
Python
example/geometry/admin.py
emelianovss-yandex-praktikum/07_pyplus_django_2
09bda00f9c8e9fd1ff0f3a483ecb210041d19a48
[ "MIT" ]
null
null
null
example/geometry/admin.py
emelianovss-yandex-praktikum/07_pyplus_django_2
09bda00f9c8e9fd1ff0f3a483ecb210041d19a48
[ "MIT" ]
null
null
null
example/geometry/admin.py
emelianovss-yandex-praktikum/07_pyplus_django_2
09bda00f9c8e9fd1ff0f3a483ecb210041d19a48
[ "MIT" ]
2
2021-11-27T08:06:35.000Z
2021-11-27T13:52:41.000Z
from django.contrib import admin from geometry.models import Shape @admin.register(Shape) class AdminShape(admin.ModelAdmin): ...
17
35
0.772059
43
0.316176
0
0
66
0.485294
0
0
0
0
128a2d7a634e13b30d2d38fc5ac9815e890ebcfe
943
py
Python
demo2/demo2_consume2.py
YuYanzy/kafka-python-demo
fc01ac29230b41fe1821f6e5a9d7226dea9688fe
[ "Apache-2.0" ]
3
2021-05-07T01:48:37.000Z
2021-09-24T20:53:51.000Z
demo2/demo2_consume2.py
YuYanzy/kafka-python-demo
fc01ac29230b41fe1821f6e5a9d7226dea9688fe
[ "Apache-2.0" ]
null
null
null
demo2/demo2_consume2.py
YuYanzy/kafka-python-demo
fc01ac29230b41fe1821f6e5a9d7226dea9688fe
[ "Apache-2.0" ]
1
2021-05-08T08:46:01.000Z
2021-05-08T08:46:01.000Z
# -*- coding: utf-8 -*- # @Author : Ecohnoch(xcy) # @File : demo2_consume.py # @Function : TODO import kafka demo2_config = { 'kafka_host': 'localhost:9092', 'kafka_topic': 'demo2', 'kafka_group_id': 'demo2_group1' } def consume(): consumer = kafka.KafkaConsumer(demo2_config['kafka_topic'], group_id=demo2_config['kafka_group_id'], bootstrap_servers=[demo2_config['kafka_host']]) print('link kafka ok.') for msg in consumer: this_key_bytes = msg.key this_val_bytes = msg.value this_key = str(this_key_bytes, encoding='utf-8') this_val = str(this_val_bytes, encoding='utf-8') # msg.key, msg.value, msg.topic, msg.partition, msg.offset print(this_key, this_val, 'topic: {}, partition: {}, offset: {}'.format(msg.topic, msg.partition, msg.offset)) if __name__ == '__main__': consume()
29.46875
118
0.604454
0
0
0
0
0
0
0
0
354
0.375398
128a56c54e5b4a6dbabdff93bd337ad93578a5cd
2,280
py
Python
autoscalingsim/scaling/scaling_model/scaling_model.py
Remit/autoscaling-simulator
091943c0e9eedf9543e9305682a067ab60f56def
[ "MIT" ]
6
2021-03-10T16:23:10.000Z
2022-01-14T04:57:46.000Z
autoscalingsim/scaling/scaling_model/scaling_model.py
Remit/autoscaling-simulator
091943c0e9eedf9543e9305682a067ab60f56def
[ "MIT" ]
null
null
null
autoscalingsim/scaling/scaling_model/scaling_model.py
Remit/autoscaling-simulator
091943c0e9eedf9543e9305682a067ab60f56def
[ "MIT" ]
1
2022-01-14T04:57:55.000Z
2022-01-14T04:57:55.000Z
import json import pandas as pd from .application_scaling_model import ApplicationScalingModel from .platform_scaling_model import PlatformScalingModel from autoscalingsim.deltarepr.group_of_services_delta import GroupOfServicesDelta from autoscalingsim.deltarepr.node_group_delta import NodeGroupDelta from autoscalingsim.utils.error_check import ErrorChecker class ScalingModel: """ Defines the scaling behaviour that does not depend upon the scaling policy. Scaling model captures unmanaged scaling characteristics such as booting times for virtual nodes or start-up times for service instances. Contains two parts related to different resource abstraction levels, viz, the application scaling model and the platform scaling model. """ def __init__(self, services_scaling_config : dict, simulation_step : pd.Timedelta, config_filename : str): with open(config_filename) as f: try: config = json.load(f) self.platform_scaling_model = PlatformScalingModel(simulation_step) platform_config = ErrorChecker.key_check_and_load('platform', config) for platform_i in platform_config: provider = ErrorChecker.key_check_and_load('provider', platform_i) nodes_scaling_infos_raw = ErrorChecker.key_check_and_load('nodes', platform_i, 'provider', provider) self.platform_scaling_model.add_provider(provider, nodes_scaling_infos_raw) app_config = ErrorChecker.key_check_and_load('application', config) service_scaling_infos_raw = ErrorChecker.key_check_and_load('services', app_config) self.application_scaling_model = ApplicationScalingModel(service_scaling_infos_raw, services_scaling_config) except json.JSONDecodeError: raise ValueError(f'An invalid JSON when parsing for {self.__class__.__name__}') def platform_delay(self, node_group_delta : NodeGroupDelta): return self.platform_scaling_model.delay(node_group_delta) def application_delay(self, services_group_delta : GroupOfServicesDelta, provider : str = None): return self.application_scaling_model.delay(services_group_delta, provider)
43.018868
124
0.744298
1,914
0.839474
0
0
0
0
0
0
502
0.220175
128b3b5e8ee085ddcb7d0e7d01778d05032f8030
1,662
py
Python
src/zojax/filefield/copy.py
Zojax/zojax.filefield
36d92242dffbd5a7b4ce3c6886d8d5898067245a
[ "ZPL-2.1" ]
null
null
null
src/zojax/filefield/copy.py
Zojax/zojax.filefield
36d92242dffbd5a7b4ce3c6886d8d5898067245a
[ "ZPL-2.1" ]
null
null
null
src/zojax/filefield/copy.py
Zojax/zojax.filefield
36d92242dffbd5a7b4ce3c6886d8d5898067245a
[ "ZPL-2.1" ]
null
null
null
############################################################################## # # Copyright (c) 2009 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """ $Id$ """ from zope import component, interface from zc.copy.interfaces import ICopyHook from data import File, Image from interfaces import IFile, IImage @component.adapter(IFile) @interface.implementer(ICopyHook) def fileCopyFactory(original): def factory(location, register): file = File() file.filename = original.filename file.mimeType = original.mimeType file.disablePreview = original.disablePreview file.disablePrint = original.disablePrint def afterCopy(translate): file.data = original.data register(afterCopy) return file return factory @component.adapter(IImage) @interface.implementer(ICopyHook) def imageCopyFactory(original): def factory(location, register): image = Image() image.filename = original.filename image.mimeType = original.mimeType def afterCopy(translate): image.data = original.data register(afterCopy) return image return factory
29.157895
78
0.642599
0
0
0
0
860
0.517449
0
0
636
0.382671
128cfb0881a4cb2a09e645ca55b7c92a498aaab7
192
py
Python
verbose.py
lowrey/myjsonstore
4d47f147fa5d86bea5d4e9b0bcab567583a794af
[ "MIT" ]
1
2018-07-30T14:17:25.000Z
2018-07-30T14:17:25.000Z
verbose.py
lowrey/myjsonstore
4d47f147fa5d86bea5d4e9b0bcab567583a794af
[ "MIT" ]
null
null
null
verbose.py
lowrey/myjsonstore
4d47f147fa5d86bea5d4e9b0bcab567583a794af
[ "MIT" ]
null
null
null
import sys verbose = False def set_v(v): global verbose verbose = v def print_v(s): if verbose: print(s) def write_v(s): if verbose: sys.stdout.write(s)
10.105263
27
0.583333
0
0
0
0
0
0
0
0
0
0
128d0ee6d357971754e6aa9345f8db462e223612
1,087
py
Python
app/component_b/command/services.py
mirevsky/django-grpc-cqrs-kafka-template
31af0bf5d15e393837f937cace90f82a7de26355
[ "MIT" ]
2
2022-01-10T19:52:36.000Z
2022-03-19T07:34:54.000Z
app/component_b/command/services.py
mirevsky/django-grpc-cqrs-kafka-template
31af0bf5d15e393837f937cace90f82a7de26355
[ "MIT" ]
null
null
null
app/component_b/command/services.py
mirevsky/django-grpc-cqrs-kafka-template
31af0bf5d15e393837f937cace90f82a7de26355
[ "MIT" ]
null
null
null
import grpc from google.protobuf import empty_pb2 from django_grpc_framework.services import Service from component_b.common.serializers import PersonProtoSerializer from component_b.common.models import PersonModel class PersonCommandService(Service): def get_object(self, pk): try: return PersonModel.objects.get(pk=pk) except PersonModel.DoesNotExist: self.context.abort(grpc.StatusCode.NOT_FOUND, 'Post:%s not found!' % pk) def Create(self, request, context): serializer = PersonProtoSerializer(message=request) serializer.is_valid(raise_exception=True) serializer.save() return serializer.message def Update(self, request, context): post = self.get_object(request.id) serializer = PersonProtoSerializer(post, message=request) serializer.is_valid(raise_exception=True) serializer.save() return serializer.message def Destroy(self, request, context): post = self.get_object(request.id) post.delete() return empty_pb2.Empty()
31.970588
84
0.706532
867
0.797608
0
0
0
0
0
0
20
0.018399
128d2e658f8131c779045c3cbeaae1830ec9ef68
485
py
Python
Lab 5/course_reader.py
kq4hy/CS3240-Lab-Files
2611c3185a405da95547434825da9052cd4c6cec
[ "MIT" ]
null
null
null
Lab 5/course_reader.py
kq4hy/CS3240-Lab-Files
2611c3185a405da95547434825da9052cd4c6cec
[ "MIT" ]
null
null
null
Lab 5/course_reader.py
kq4hy/CS3240-Lab-Files
2611c3185a405da95547434825da9052cd4c6cec
[ "MIT" ]
null
null
null
__author__ = 'kq4hy' import csv import sqlite3 def load_course_database(db_name, csv_filename): conn = sqlite3.connect(db_name) with conn: curs = conn.cursor() with open(csv_filename, 'rU') as csvfile: reader = csv.reader(csvfile) for row in reader: sql_cmd = "insert into coursedata values(?, ?, ?, ?, ?, ?, ?)" curs.execute(sql_cmd, row) load_course_database('course1.db', 'seas-courses-5years.csv')
28.529412
78
0.610309
0
0
0
0
0
0
0
0
100
0.206186
128e53da4b600437f498e3a40b34bc75e174bc07
117
py
Python
marshmallow_helpers/__init__.py
hilearn/marsh-enum
2003ed850b076cd9d29a340ee44abe1c73aadc66
[ "MIT" ]
null
null
null
marshmallow_helpers/__init__.py
hilearn/marsh-enum
2003ed850b076cd9d29a340ee44abe1c73aadc66
[ "MIT" ]
null
null
null
marshmallow_helpers/__init__.py
hilearn/marsh-enum
2003ed850b076cd9d29a340ee44abe1c73aadc66
[ "MIT" ]
null
null
null
from .enum_field import EnumField, RegisteredEnum # noqa from .marsh_schema import attr_with_schema, derive # noqa
39
58
0.811966
0
0
0
0
0
0
0
0
12
0.102564
128e7777e186dad8ff8ca443386abd102aa7f54e
1,492
py
Python
Weather Station using DHT Sensor with Raspberry Pi and ThingSpeak Platform/Weather Station - ThingSpeak - Raspberry Pi.py
MeqdadDev/ai-robotics-cv-iot-mini-projects
0c591bc495c95aa95d436e51f38e55bf510349ac
[ "MIT" ]
null
null
null
Weather Station using DHT Sensor with Raspberry Pi and ThingSpeak Platform/Weather Station - ThingSpeak - Raspberry Pi.py
MeqdadDev/ai-robotics-cv-iot-mini-projects
0c591bc495c95aa95d436e51f38e55bf510349ac
[ "MIT" ]
null
null
null
Weather Station using DHT Sensor with Raspberry Pi and ThingSpeak Platform/Weather Station - ThingSpeak - Raspberry Pi.py
MeqdadDev/ai-robotics-cv-iot-mini-projects
0c591bc495c95aa95d436e51f38e55bf510349ac
[ "MIT" ]
1
2022-03-29T07:41:23.000Z
2022-03-29T07:41:23.000Z
''' IoT Mini Project Weather Station using DHT Sensor and Raspberry Pi with ThingSpeak Platform Code Sample: Interfacing DHT22 with Raspberry Pi and sending the data to an IoT Platform (ThingSpeak Platform) ''' from time import sleep # import Adafruit_DHT # Not supported library import adafruit_dht from board import * import requests # After creating your account on ThingSpeak platform, put your channel id below channel_id = 12345 write_key = 'WriteYourKeyAsString.......' # Put your write key here # D4 = GPIO4 / D17 = GPIO17 ...etc. SENSOR_PIN = D17 def get_measurements(): dht22 = adafruit_dht.DHT22(SENSOR_PIN, use_pulseio=False) temperature = dht22.temperature humidity = dht22.humidity print(f"Humidity= {humidity:.2f}") print(f"Temperature= {temperature:.2f}°C") return temperature, humidity def sendData(temp, humidity): url = 'https://api.thingspeak.com/update' params = {'key': write_key, 'field1': temp, 'field2': humidity} res = requests.get(url, params=params) if __name__ == "__main__": while True: # 15 seconds is the minimum time for the free account on ThingSpeak sleep(15) try: temperature, humidity = get_measurements() except: print("Error: Can't get the sensor values, check out your wiring connection.") try: sendData(temperature, humidity) except: print("Error: Can't push the sensor values to ThingSpeak server.")
29.84
110
0.690349
0
0
0
0
0
0
0
0
749
0.501674
128e873ecfed93a46701bf97c5bfb7c6ee49fa55
931
py
Python
Demo2_PageObjectModel/features/steps/PageObject_Registration.py
imademethink/imademethink_python_selenium_demo
cc364bda00e75eb9115c680ddea5e2fbca1d7acb
[ "BSD-4-Clause" ]
2
2019-04-05T05:09:14.000Z
2020-07-21T16:06:53.000Z
Demo2_PageObjectModel/features/steps/PageObject_Registration.py
imademethink/Python_Selenium_Demo
cc364bda00e75eb9115c680ddea5e2fbca1d7acb
[ "BSD-4-Clause" ]
1
2020-01-08T08:15:42.000Z
2020-01-08T08:15:42.000Z
Demo2_PageObjectModel/features/steps/PageObject_Registration.py
imademethink/Python_Selenium_Demo
cc364bda00e75eb9115c680ddea5e2fbca1d7acb
[ "BSD-4-Clause" ]
4
2018-04-13T08:28:53.000Z
2018-12-30T20:35:19.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- import time from page_objects import PageObject, PageElement from selenium.webdriver.common.keys import Keys from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions from selenium.webdriver.common.by import By delay_min = 3 # sec delay_medium = 5 # sec delay_max = 9 # sec class RegistrationPage(PageObject): text_box_first_name = PageElement(id_='customer.firstName') button_submit_form = PageElement(css="input[value='Register']") form_submit_result_message = PageElement(id_='customer.lastName.errors') def method_registration_page_clean_database(self, current_web_driver,): self.text_box_first_name = 'name_first' self.button_submit_form.click() WebDriverWait(current_web_driver,delay_medium).until(expected_conditions.visibility_of(self.form_submit_result_message)) return
35.807692
128
0.784103
553
0.593985
0
0
0
0
0
0
138
0.148228
128eba5345a78af068fb819342cfe180d8d296fd
53
py
Python
Tests/TestData/HOSimulation/HOTrialWavefunction/config.py
McCoyGroup/RynLib
8d7e119ebbd3da4c8b0efb49facba9ff1cbaa09d
[ "MIT" ]
1
2019-05-04T00:34:11.000Z
2019-05-04T00:34:11.000Z
Tests/TestData/HOSimulation/HOTrialWavefunction/config.py
McCoyGroup/RynLib
8d7e119ebbd3da4c8b0efb49facba9ff1cbaa09d
[ "MIT" ]
null
null
null
Tests/TestData/HOSimulation/HOTrialWavefunction/config.py
McCoyGroup/RynLib
8d7e119ebbd3da4c8b0efb49facba9ff1cbaa09d
[ "MIT" ]
1
2020-03-04T22:47:09.000Z
2020-03-04T22:47:09.000Z
config = dict( module="HOTrialWavefunction.py" )
13.25
35
0.698113
0
0
0
0
0
0
0
0
24
0.45283
128f728bec79cfe03c54bf8f06695117449e7c5a
5,771
py
Python
python/ucloud/import_data.py
oldthreefeng/miscellany
8d3c7a14b53929d752c7356c85ae6681000cd526
[ "MIT" ]
1
2019-01-04T07:44:08.000Z
2019-01-04T07:44:08.000Z
python/ucloud/import_data.py
oldthreefeng/miscellany
8d3c7a14b53929d752c7356c85ae6681000cd526
[ "MIT" ]
null
null
null
python/ucloud/import_data.py
oldthreefeng/miscellany
8d3c7a14b53929d752c7356c85ae6681000cd526
[ "MIT" ]
2
2018-12-10T12:55:38.000Z
2019-01-04T07:43:55.000Z
#!/usr/bin/python2 import sys import os import redis import time import datetime string_keys = [] hash_keys = [] list_keys = [] set_keys = [] zset_keys = [] def import_string(source, dest): print "Begin Import String Type" keys_count = len(string_keys) print "String Key Count is:", keys_count pipeSrc = source.pipeline(transaction=False) pipeDst = dest.pipeline(transaction=False) index = 0 pipe_size = 1000 while index < keys_count: old_index = index num = 0 while (index < keys_count) and (num < pipe_size): pipeSrc.get(string_keys[index]) index += 1 num += 1 results = pipeSrc.execute() for value in results: pipeDst.set(string_keys[old_index], value) old_index += 1 pipeDst.execute() def import_hash(source, dest): print "Begin Import Hash Type" keys_count = len(hash_keys) print "Hash Key Count is:", keys_count pipeSrc = source.pipeline(transaction=False) pipeDst = dest.pipeline(transaction=False) for key in hash_keys: hkeys = source.hkeys(key) keys_count = len(hkeys) index = 0 pipe_size = 1000 while index < keys_count: old_index = index num = 0 while (index < keys_count) and (num < pipe_size): pipeSrc.hget(key, hkeys[index]) index += 1 num += 1 results = pipeSrc.execute() for value in results: pipeDst.hset(key, hkeys[old_index], value) old_index += 1 pipeDst.execute() def import_set(source, dest): print "Begin Import Set Type" keys_count = len(set_keys) print "Set Key Count is:", keys_count pipeDst = dest.pipeline(transaction=False) for key in set_keys: sValues = source.smembers(key) value_count = len(sValues) index = 0 pipe_size = 1000 while index < value_count: old_index = index num = 0 while (index < value_count) and (num < pipe_size): pipeDst.sadd(key, sValues.pop()) index += 1 num += 1 pipeDst.execute() def import_zset(source, dest): print "Begin Import ZSet Type" keys_count = len(zset_keys) print "ZSet Key Count is:", keys_count pipeSrc = source.pipeline(transaction=False) pipeDst = dest.pipeline(transaction=False) for key in zset_keys: zset_size = source.zcard(key) index = 0 pipe_size = 1000 while index < zset_size: members = source.zrange(key, index, index + pipe_size) index += len(members) for member in members: pipeSrc.zscore(key, member) scores = pipeSrc.execute() i = 0 for member in members: pipeDst.zadd(key, member, scores[i]) i += 1 pipeDst.execute() def import_list(source, dest): print "Begin Import List Type" keys_count = len(list_keys) print "List Key Count is:", keys_count pipeDst = dest.pipeline(transaction=False) for key in list_keys: list_size = source.llen(key) index = 0 pipe_size = 1000 while index < list_size: results = source.lrange(key, index, index + pipe_size) index += len(results) for value in results: pipeDst.rpush(key, value) pipeDst.execute() def read_type_keys(source): keys = source.keys() keys_count = len(keys) print "Key Count is:", keys_count pipe = source.pipeline(transaction=False) # for key in keys: index = 0 pipe_size = 5000 while index < keys_count: old_index = index num = 0 while (index < keys_count) and (num < pipe_size): pipe.type(keys[index]) index += 1 num += 1 results = pipe.execute() for type in results: if type == "string": string_keys.append(keys[old_index]) elif type == "list": list_keys.append(keys[old_index]) elif type == "hash": hash_keys.append(keys[old_index]) elif type == "set": set_keys.append(keys[old_index]) elif type == "zset": zset_keys.append(keys[old_index]) else: print keys[old_index], " is not find when TYPE" old_index += 1 if __name__ == '__main__': config = { "source": ['10.4.1.91:0', '10.4.13.124:0', '10.4.12.16:0', '10.4.2.250:0'], "dest": ['127.0.0.1:11', '127.0.0.1:12', '127.0.0.1:2', '127.0.0.1:1'] } start = datetime.datetime.now() for group in zip(config["source"], config["dest"]): print group SrcIP = group[0].split(':')[0] SrcPort = 6379 DstIP = group[1].split(':')[0] DstPort = 6379 DstDB = group[1].split(':')[1] source = redis.Redis(host=SrcIP, port=SrcPort) dest = redis.Redis(host=DstIP, port=DstPort, db=DstDB) print "Begin Read Keys" read_type_keys(source) print "String Key Count is:", len(string_keys) print "Set Key Count is:", len(set_keys) print "ZSet Key Count is:", len(zset_keys) print "List Key Count is:", len(list_keys) print "Hash Key Count is:", len(hash_keys) import_string(source, dest) import_hash(source, dest) import_list(source, dest) import_set(source, dest) import_zset(source, dest) stop = datetime.datetime.now() diff = stop - start print "Finish, token time:", str(diff)
30.21466
83
0.562468
0
0
0
0
0
0
0
0
624
0.108127
128ffa30d0305f7d87c64ef11d99dcfb6d3e311f
5,990
py
Python
kinlin/core/strategy.py
the-lay/kinlin
ce7c95d46d130049e356104ba77fad51bc59fb3f
[ "MIT" ]
null
null
null
kinlin/core/strategy.py
the-lay/kinlin
ce7c95d46d130049e356104ba77fad51bc59fb3f
[ "MIT" ]
null
null
null
kinlin/core/strategy.py
the-lay/kinlin
ce7c95d46d130049e356104ba77fad51bc59fb3f
[ "MIT" ]
null
null
null
import torch import torch.nn as nn import numpy as np from enum import Enum from typing import List, Callable, Any from tqdm import tqdm from .model import Model from .dataset import Dataset from .experiment import Experiment from .callback import Callback class TrainingEvents(Enum): START = 'on_start' FINISH = 'on_finish' TRAINING_EPOCH_START = 'on_training_epoch_start' TRAINING_EPOCH_FINISH = 'on_training_epoch_finish' TRAINING_BATCH_START = 'on_training_batch_start' TRAINING_BATCH_FINISH = 'on_training_batch_finish' VALIDATION_EPOCH_START = 'on_validation_epoch_start' VALIDATION_EPOCH_FINISH = 'on_validation_epoch_finish' VALIDATION_BATCH_START = 'on_validation_batch_start' VALIDATION_BATCH_FINISH = 'on_validation_batch_finish' TESTING_START = 'on_testing_start' TESTING_FINISH = 'on_testing_finish' TESTING_BATCH_START = 'on_testing_batch_start' TESTING_BATCH_FINISH = 'on_testing_batch_finish' class TrainingStrategy: def __init__(self, model: Model, dataset: Dataset, optimizer: torch.optim.Optimizer, experiment: Experiment = None, callbacks: List[Callback] = None): # properties self.model: Model = model self.dataset: Dataset = dataset self.optimizer: torch.optim.Optimizer = optimizer #self.experiment: Experiment = experiment self.callbacks: List[Callback] = callbacks # parallelize network depending on experiment settings # if len(self.experiment.devices) > 1: # self.network = nn.DataParallel(self.model.network, device_ids=self.experiment.devices) # else: self.network = self.model.network # event handler self.handlers = {k: [] for k in TrainingEvents} # register events for event in TrainingEvents: # model events self.on_event(event, getattr(self.model, event.value)) # callback events for c in self.callbacks: self.on_event(event, getattr(c, event.value)) def on_event(self, event: TrainingEvents, handler: Callable): self.handlers[event].append(handler) def emit(self, event: TrainingEvents, *args, **kwargs): for handler in self.handlers[event]: handler(*args, **kwargs) def training_epoch(self, epoch: int) -> None: raise NotImplementedError def validation_epoch(self, epoch: int) -> None: raise NotImplementedError def test(self) -> None: raise NotImplementedError def __call__(self, n_epochs: int = 1, validation: bool = True, verbose: bool = True): if verbose: print(f'Training{" and validating" if validation else ""}' f' for {n_epochs} {"epochs" if n_epochs > 1 else "epoch"}') self.model.print_summary() self.dataset.print_summary() print(f'Optimizer: {self.optimizer.__class__.__name__}\n' f'\tLearning rate: {self.optimizer.param_groups[0]["lr"]}') print(f'Callbacks: {", ".join(c.__class__.__name__ for c in self.callbacks)}') for epoch in range(n_epochs): print(f'\nEpoch {epoch}:') self.training_epoch(epoch) if validation: self.validation_epoch(epoch) class SupervisedTraining(TrainingStrategy): def training_epoch(self, epoch: int) -> None: self.model.network.train() self.emit(TrainingEvents.TRAINING_EPOCH_START, epoch, self.model) with tqdm(self.dataset.training_dataloader(), desc='Training', unit='batch') as t: for batch_id, batch in enumerate(t): self.emit(TrainingEvents.TRAINING_BATCH_START, batch, batch_id, epoch) loss, y_pred, y_true = self.model.training_fn(batch, batch_id, epoch) self.model.backprop_fn(loss, self.optimizer) self.emit(TrainingEvents.TRAINING_BATCH_FINISH, batch, batch_id, epoch, loss.detach(), y_pred.detach(), y_true) # update progress bar t.set_postfix(self.model.progressbar_metrics()) self.emit(TrainingEvents.TRAINING_EPOCH_FINISH, epoch, self.model) def validation_epoch(self, epoch: int) -> None: self.model.network.eval() self.model.network.train(False) with torch.no_grad(): self.emit(TrainingEvents.VALIDATION_EPOCH_START, epoch, self.model) with tqdm(self.dataset.validation_dataloader(), desc='Validation', unit='batch') as t: for batch_id, batch in enumerate(t): self.emit(TrainingEvents.VALIDATION_BATCH_START, batch, batch_id, epoch) loss, y_pred, y_true = self.model.validation_fn(batch, batch_id, epoch) self.emit(TrainingEvents.VALIDATION_BATCH_FINISH, batch, batch_id, epoch, loss.detach(), y_pred.detach(), y_true) # update progress bar t.set_postfix(self.model.progressbar_metrics()) self.emit(TrainingEvents.VALIDATION_EPOCH_FINISH, epoch, self.model) def test(self) -> None: self.model.network.eval() self.model.network.train(False) with torch.no_grad(): self.emit(TrainingEvents.TESTING_START) with tqdm(self.dataset.validation_dataloader(), desc='Testing', unit='batch') as t: for batch_id, batch in enumerate(t): self.emit(TrainingEvents.TESTING_BATCH_START, batch, batch_id) loss, y_pred, y_true = self.model.validation_fn(batch, batch_id, -1) self.emit(TrainingEvents.TESTING_BATCH_FINISH, batch, batch_id, loss.detach(), y_pred.detach(), y_true) # update progress bar t.set_postfix(self.model.progressbar_metrics()) self.emit(TrainingEvents.TESTING_FINISH)
40.748299
119
0.645576
5,724
0.955593
0
0
0
0
0
0
1,050
0.175292
1290da62e7e73de3c4c75ef861a9d5a9bcbe1f4b
2,924
py
Python
tests/test_utils.py
jamesmcclain/pystac
993b54f5a10b0d55db18dbda81c5ad7acc06d921
[ "Apache-2.0" ]
1
2018-08-04T05:24:58.000Z
2018-08-04T05:24:58.000Z
tests/test_utils.py
jamesmcclain/pystac
993b54f5a10b0d55db18dbda81c5ad7acc06d921
[ "Apache-2.0" ]
4
2017-12-11T22:15:44.000Z
2018-06-15T15:20:34.000Z
tests/test_utils.py
jamesmcclain/pystac
993b54f5a10b0d55db18dbda81c5ad7acc06d921
[ "Apache-2.0" ]
5
2018-06-15T14:51:50.000Z
2019-08-22T05:33:55.000Z
import unittest from pystac.utils import (make_relative_href, make_absolute_href, is_absolute_href) class UtilsTest(unittest.TestCase): def test_make_relative_href(self): # Test cases of (source_href, start_href, expected) test_cases = [ ('/a/b/c/d/catalog.json', '/a/b/c/catalog.json', './d/catalog.json'), ('/a/b/catalog.json', '/a/b/c/catalog.json', '../catalog.json'), ('/a/catalog.json', '/a/b/c/catalog.json', '../../catalog.json'), ('http://stacspec.org/a/b/c/d/catalog.json', 'http://stacspec.org/a/b/c/catalog.json', './d/catalog.json'), ('http://stacspec.org/a/b/catalog.json', 'http://stacspec.org/a/b/c/catalog.json', '../catalog.json'), ('http://stacspec.org/a/catalog.json', 'http://stacspec.org/a/b/c/catalog.json', '../../catalog.json'), ('http://stacspec.org/a/catalog.json', 'http://cogeo.org/a/b/c/catalog.json', 'http://stacspec.org/a/catalog.json'), ('http://stacspec.org/a/catalog.json', 'https://stacspec.org/a/b/c/catalog.json', 'http://stacspec.org/a/catalog.json') ] for source_href, start_href, expected in test_cases: actual = make_relative_href(source_href, start_href) self.assertEqual(actual, expected) def test_make_absolute_href(self): # Test cases of (source_href, start_href, expected) test_cases = [ ('item.json', '/a/b/c/catalog.json', '/a/b/c/item.json'), ('./item.json', '/a/b/c/catalog.json', '/a/b/c/item.json'), ('./z/item.json', '/a/b/c/catalog.json', '/a/b/c/z/item.json'), ('../item.json', '/a/b/c/catalog.json', '/a/b/item.json'), ('item.json', 'https://stacgeo.org/a/b/c/catalog.json', 'https://stacgeo.org/a/b/c/item.json'), ('./item.json', 'https://stacgeo.org/a/b/c/catalog.json', 'https://stacgeo.org/a/b/c/item.json'), ('./z/item.json', 'https://stacgeo.org/a/b/c/catalog.json', 'https://stacgeo.org/a/b/c/z/item.json'), ('../item.json', 'https://stacgeo.org/a/b/c/catalog.json', 'https://stacgeo.org/a/b/item.json') ] for source_href, start_href, expected in test_cases: actual = make_absolute_href(source_href, start_href) self.assertEqual(actual, expected) def test_is_absolute_href(self): # Test cases of (href, expected) test_cases = [('item.json', False), ('./item.json', False), ('../item.json', False), ('/item.json', True), ('http://stacgeo.org/item.json', True)] for href, expected in test_cases: actual = is_absolute_href(href) self.assertEqual(actual, expected)
46.412698
77
0.548906
2,794
0.95554
0
0
0
0
0
0
1,474
0.504104
1290db3be5d147e6281013adc1419767bcf94d89
1,322
py
Python
services/web/manage.py
EMBEDDIA/ULR_NER_REST
520accbced155a43543969f8a0a96a02c0b2d46d
[ "MIT" ]
null
null
null
services/web/manage.py
EMBEDDIA/ULR_NER_REST
520accbced155a43543969f8a0a96a02c0b2d46d
[ "MIT" ]
3
2020-04-24T11:38:40.000Z
2021-12-03T09:01:17.000Z
services/web/manage.py
EMBEDDIA/ULR_NER_REST
520accbced155a43543969f8a0a96a02c0b2d46d
[ "MIT" ]
null
null
null
# Copyright (c) 2020 Michael Herman # Copyright (c) 2020 Vid Podpečan # Permission is hereby granted, free of charge, to any person obtaining a copy of this # software and associated documentation files (the "Software"), to deal in the Software # without restriction, including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons # to whom the Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or # substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING # BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. from flask.cli import FlaskGroup from flask_cors import CORS from project import flask_app CORS(flask_app) cli = FlaskGroup(flask_app) if __name__ == "__main__": cli() #flask_app.run(debug=True)
45.586207
96
0.781392
0
0
0
0
0
0
0
0
1,140
0.861678
12916103d8a5f146e7baa8906defb115aac95a11
5,737
py
Python
GUI/PopUps/ExportPopUp.py
iagerogiannis/Image_to_plot
15c01c50dcd23dfd187069145b3f2fdc06ed73a9
[ "BSD-3-Clause" ]
null
null
null
GUI/PopUps/ExportPopUp.py
iagerogiannis/Image_to_plot
15c01c50dcd23dfd187069145b3f2fdc06ed73a9
[ "BSD-3-Clause" ]
null
null
null
GUI/PopUps/ExportPopUp.py
iagerogiannis/Image_to_plot
15c01c50dcd23dfd187069145b3f2fdc06ed73a9
[ "BSD-3-Clause" ]
null
null
null
from PyQt5.QtWidgets import QDialog, QPushButton, QVBoxLayout, QComboBox, QGroupBox, QCheckBox, QGridLayout, QMessageBox, QRadioButton from GUI.CustomWidgets.PathFileLineEdit import PathFileLineEdit from GUI.CustomWidgets.InputField import InputField class ExportPopUp(QDialog): def __init__(self, parent): super().__init__(parent) self.parent = parent self.selected_shape_ids = [] self.selected_shape_names = [] self.selected_axis_system_id = None self.dx_division = True self.filepath = "" self.setWindowTitle("Export Data") self.axis_group = QGroupBox(self) self.axis_group.setTitle("Axis System") axis_systems = [axis_system["Name"] for axis_system in self.parent.workspace.shapes_tree.get_axis_systems()] self.axis_system_ids = [axis_system["id"] for axis_system in self.parent.workspace.shapes_tree.get_axis_systems()] self.axis_systems = QComboBox(self.axis_group) self.axis_systems.addItem("(Choose Axis System)") for axis_system in axis_systems: self.axis_systems.addItem(axis_system) self.axis_layout = QVBoxLayout(self.axis_group) self.axis_layout.addWidget(self.axis_systems) self.axis_group.setLayout(self.axis_layout) self.shapes_group = QGroupBox(self) self.shapes_group.setTitle("Shapes") shapes = [shape["Name"] for shape in self.parent.workspace.shapes_tree.get_shapes()] self.shape_ids = [shape["id"] for shape in self.parent.workspace.shapes_tree.get_shapes()] self.shapes = [] for shape in shapes: self.add_shape(shape) self.shapes_layout = QGridLayout(self.shapes_group) self.arrange_shapes_layout() self.shapes_group.setLayout(self.shapes_layout) self.options_group = QGroupBox(self) self.options_group.setTitle("Spline Options") self.radio_buttons = [QRadioButton(self.options_group) for i in range(2)] self.radio_buttons[0].dx_division = True self.radio_buttons[0].setText("dx Division") self.radio_buttons[0].setChecked(True) self.radio_buttons[1].dx_division = False self.radio_buttons[1].setText("dt Division") for radio in self.radio_buttons: radio.toggled.connect(self.handle_radio_toggled) self.num_of_divisions_value = 200 self.num_of_divisions = InputField(self.options_group, "Number of Points", str(self.num_of_divisions_value), 10, [2, 1], 170) self.options_layout = QGridLayout(self.options_group) for i in range(2): self.options_layout.addWidget(self.radio_buttons[i], 0, i) self.options_layout.addWidget(self.num_of_divisions, 1, 0, 1, 2) self.options_group.setLayout(self.options_layout) self.export_group = QGroupBox(self) self.export_group.setTitle("File Export") self.filepath_line_edit = PathFileLineEdit(self.export_group, "Export File", filename="plot_data", filters="Excel Workbook (*.xlsx);; CSV (Comma Delimited) (*.csv)") self.export_layout = QVBoxLayout(self.export_group) self.export_layout.addWidget(self.filepath_line_edit) self.export_group.setLayout(self.export_layout) self.export_button = QPushButton(self) self.export_button.setText("Export") self.export_button.pressed.connect(self.handle_export) self.layout = QVBoxLayout(self) self.layout.addWidget(self.axis_group) self.layout.addWidget(self.shapes_group) self.layout.addWidget(self.options_group) self.layout.addWidget(self.export_group) self.layout.addWidget(self.export_button) self.setLayout(self.layout) self.setFixedSize(380, 300 + 10 * (len(self.shapes) + len(self.shapes) % 2)) self.show() def handle_radio_toggled(self): radio_button = self.sender() if radio_button.isChecked(): self.dx_division = radio_button.dx_division def arrange_shapes_layout(self): i = 0 n = len(self.shapes) rows = divmod(n + 1, 2)[0] for shape in self.shapes: col, row = divmod(i, rows) self.shapes_layout.addWidget(shape, row, col) i += 1 def add_shape(self, shape_name): self.shapes.append(QCheckBox(shape_name)) def handle_export(self): def is_int(s): try: int(s) return True except ValueError: return False self.selected_shape_ids = [self.shape_ids[i] for i in range(len(self.shapes)) if self.shapes[i].isChecked()] self.selected_shape_names = [shape.text() for shape in self.shapes if shape.isChecked()] if self.axis_systems.currentIndex() == 0: QMessageBox.warning(self, "Error", "Please select an Axis System!") elif len(self.selected_shape_ids) == 0: QMessageBox.warning(self, "Error", "Please select an least one graph for export!") elif self.filepath_line_edit.text() == "": QMessageBox.warning(self, "Error", "Please define file path!") elif not is_int(self.num_of_divisions.value): QMessageBox.warning(self, "Error", "Please define file path!") else: self.filepath = self.filepath_line_edit.text() self.num_of_divisions_value = int(self.num_of_divisions.value) self.selected_axis_system_id = self.axis_system_ids[self.axis_systems.currentIndex() - 1] self.accept() def closeEvent(self, a0): self.reject()
40.401408
134
0.656092
5,483
0.955726
0
0
0
0
0
0
399
0.069549
1291ab8aed0db6cb7b1e8e05e5e25b1e6da39aea
7,993
py
Python
cwltool/update.py
PlatformedTasks/PLAS-cwl-tes
5e66a5f9309906d1e8caa0f7148b8517a17f840d
[ "Apache-2.0" ]
null
null
null
cwltool/update.py
PlatformedTasks/PLAS-cwl-tes
5e66a5f9309906d1e8caa0f7148b8517a17f840d
[ "Apache-2.0" ]
null
null
null
cwltool/update.py
PlatformedTasks/PLAS-cwl-tes
5e66a5f9309906d1e8caa0f7148b8517a17f840d
[ "Apache-2.0" ]
null
null
null
from __future__ import absolute_import import copy import re from typing import (Any, Callable, Dict, List, MutableMapping, MutableSequence, Optional, Tuple, Union) from functools import partial from ruamel.yaml.comments import CommentedMap, CommentedSeq from schema_salad import validate from schema_salad.ref_resolver import Loader # pylint: disable=unused-import from six import string_types from six.moves import urllib from typing_extensions import Text from schema_salad.sourceline import SourceLine from .loghandler import _logger # move to a regular typing import when Python 3.3-3.6 is no longer supported from .utils import visit_class, visit_field, aslist def v1_0to1_1(doc, loader, baseuri): # pylint: disable=unused-argument # type: (Any, Loader, Text) -> Tuple[Any, Text] """Public updater for v1.0 to v1.1.""" doc = copy.deepcopy(doc) rewrite = { "http://commonwl.org/cwltool#WorkReuse": "WorkReuse", "http://arvados.org/cwl#ReuseRequirement": "WorkReuse", "http://commonwl.org/cwltool#TimeLimit": "ToolTimeLimit", "http://commonwl.org/cwltool#NetworkAccess": "NetworkAccess", "http://commonwl.org/cwltool#InplaceUpdateRequirement": "InplaceUpdateRequirement", "http://commonwl.org/cwltool#LoadListingRequirement": "LoadListingRequirement" } def rewrite_requirements(t): # type: (MutableMapping[Text, Union[Text, Dict[Text, Any]]]) -> None if "requirements" in t: for r in t["requirements"]: if isinstance(r, MutableMapping): if r["class"] in rewrite: r["class"] = rewrite[r["class"]] else: raise validate.ValidationException( "requirements entries must be dictionaries: {} {}.".format( type(r), r)) if "hints" in t: for r in t["hints"]: if isinstance(r, MutableMapping): if r["class"] in rewrite: r["class"] = rewrite[r["class"]] else: raise validate.ValidationException( "hints entries must be dictionaries: {} {}.".format( type(r), r)) if "steps" in t: for s in t["steps"]: if isinstance(s, MutableMapping): rewrite_requirements(s) else: raise validate.ValidationException( "steps entries must be dictionaries: {} {}.".format( type(s), s)) def update_secondaryFiles(t, top=False): # type: (Any, bool) -> Union[MutableSequence[MutableMapping[Text, Text]], MutableMapping[Text, Text]] if isinstance(t, CommentedSeq): new_seq = copy.deepcopy(t) for index, entry in enumerate(t): new_seq[index] = update_secondaryFiles(entry) return new_seq elif isinstance(t, MutableSequence): return CommentedSeq([update_secondaryFiles(p) for p in t]) elif isinstance(t, MutableMapping): return t elif top: return CommentedSeq([CommentedMap([("pattern", t)])]) else: return CommentedMap([("pattern", t)]) def fix_inputBinding(t): # type: (Dict[Text, Any]) -> None for i in t["inputs"]: if "inputBinding" in i: ib = i["inputBinding"] for k in list(ib.keys()): if k != "loadContents": _logger.warning(SourceLine(ib, k).makeError( "Will ignore field '{}' which is not valid in {} " "inputBinding".format(k, t["class"]))) del ib[k] visit_class(doc, ("CommandLineTool","Workflow"), rewrite_requirements) visit_class(doc, ("ExpressionTool","Workflow"), fix_inputBinding) visit_field(doc, "secondaryFiles", partial(update_secondaryFiles, top=True)) upd = doc if isinstance(upd, MutableMapping) and "$graph" in upd: upd = upd["$graph"] for proc in aslist(upd): proc.setdefault("hints", CommentedSeq()) proc["hints"].insert(0, CommentedMap([("class", "NetworkAccess"),( "networkAccess", True)])) proc["hints"].insert(0, CommentedMap([("class", "LoadListingRequirement"),("loadListing", "deep_listing")])) if "cwlVersion" in proc: del proc["cwlVersion"] return (doc, "v1.1") def v1_1_0dev1to1_1(doc, loader, baseuri): # pylint: disable=unused-argument # type: (Any, Loader, Text) -> Tuple[Any, Text] return (doc, "v1.1") UPDATES = { u"v1.0": v1_0to1_1, u"v1.1": None } # type: Dict[Text, Optional[Callable[[Any, Loader, Text], Tuple[Any, Text]]]] DEVUPDATES = { u"v1.0": v1_0to1_1, u"v1.1.0-dev1": v1_1_0dev1to1_1, u"v1.1": None } # type: Dict[Text, Optional[Callable[[Any, Loader, Text], Tuple[Any, Text]]]] ALLUPDATES = UPDATES.copy() ALLUPDATES.update(DEVUPDATES) INTERNAL_VERSION = u"v1.1" def identity(doc, loader, baseuri): # pylint: disable=unused-argument # type: (Any, Loader, Text) -> Tuple[Any, Union[Text, Text]] """Default, do-nothing, CWL document upgrade function.""" return (doc, doc["cwlVersion"]) def checkversion(doc, # type: Union[CommentedSeq, CommentedMap] metadata, # type: CommentedMap enable_dev # type: bool ): # type: (...) -> Tuple[CommentedMap, Text] """Check the validity of the version of the give CWL document. Returns the document and the validated version string. """ cdoc = None # type: Optional[CommentedMap] if isinstance(doc, CommentedSeq): if not isinstance(metadata, CommentedMap): raise Exception("Expected metadata to be CommentedMap") lc = metadata.lc metadata = copy.deepcopy(metadata) metadata.lc.data = copy.copy(lc.data) metadata.lc.filename = lc.filename metadata[u"$graph"] = doc cdoc = metadata elif isinstance(doc, CommentedMap): cdoc = doc else: raise Exception("Expected CommentedMap or CommentedSeq") version = metadata[u"cwlVersion"] cdoc["cwlVersion"] = version if version not in UPDATES: if version in DEVUPDATES: if enable_dev: pass else: keys = list(UPDATES.keys()) keys.sort() raise validate.ValidationException( u"Version '%s' is a development or deprecated version.\n " "Update your document to a stable version (%s) or use " "--enable-dev to enable support for development and " "deprecated versions." % (version, ", ".join(keys))) else: raise validate.ValidationException( u"Unrecognized version %s" % version) return (cdoc, version) def update(doc, loader, baseuri, enable_dev, metadata): # type: (Union[CommentedSeq, CommentedMap], Loader, Text, bool, Any) -> CommentedMap if isinstance(doc, CommentedMap): if metadata.get("http://commonwl.org/cwltool#original_cwlVersion") \ or doc.get("http://commonwl.org/cwltool#original_cwlVersion"): return doc (cdoc, version) = checkversion(doc, metadata, enable_dev) originalversion = copy.copy(version) nextupdate = identity # type: Optional[Callable[[Any, Loader, Text], Tuple[Any, Text]]] while nextupdate: (cdoc, version) = nextupdate(cdoc, loader, baseuri) nextupdate = ALLUPDATES[version] cdoc[u"cwlVersion"] = version metadata[u"cwlVersion"] = version metadata[u"http://commonwl.org/cwltool#original_cwlVersion"] = originalversion cdoc[u"http://commonwl.org/cwltool#original_cwlVersion"] = originalversion return cdoc
39.181373
116
0.600025
0
0
0
0
0
0
0
0
2,832
0.35431
129258b78096fc56ca7d44ecd92404b8c97448a2
2,072
py
Python
plottify/plottify.py
neutrinoceros/plottify
21f4858dabe1228559a8beb385f134ccfb25321e
[ "MIT" ]
null
null
null
plottify/plottify.py
neutrinoceros/plottify
21f4858dabe1228559a8beb385f134ccfb25321e
[ "MIT" ]
null
null
null
plottify/plottify.py
neutrinoceros/plottify
21f4858dabe1228559a8beb385f134ccfb25321e
[ "MIT" ]
null
null
null
import matplotlib.pyplot as plt from matplotlib import collections from matplotlib.lines import Line2D def autosize(fig=None, figsize=None): ## Take current figure if no figure provided if fig is None: fig = plt.gcf() if figsize is None: ## Get size of figure figsize = fig.get_size_inches() else: ## Set size of figure fig.set_size_inches(figsize) ## Make font sizes proportional to figure size fontsize_labels = figsize[0] * 5 fontsize_ticks = fontsize_labels / 2 scatter_size = (figsize[0] * 1.5) ** 2 linewidth = figsize[0] axes = fig.get_axes() for ax in axes: ## Set label font sizes for item in [ax.title, ax.xaxis.label, ax.yaxis.label]: item.set_fontsize(fontsize_labels) ## Set tick font sizes for item in ax.get_xticklabels() + ax.get_yticklabels(): item.set_fontsize(fontsize_ticks) ## Set line widths plot_objs = [child for child in ax.get_children() if isinstance(child, Line2D)] for plot_obj in plot_objs: plot_obj.set_linewidth(linewidth) ## Set scatter point sizes plot_objs = [ child for child in ax.get_children() if isinstance(child, collections.PathCollection) ] for plot_obj in plot_objs: plot_obj.set_sizes([scatter_size]) ## Set tight layout plt.tight_layout() if __name__ == "__main__": import numpy as np from plottify import autosize import matplotlib.pyplot as plt n = 100 x = np.random.uniform(low=-5, high=5, size=n) y = x + np.random.normal(scale=0.5, size=n) for size in [3, 10, 20]: plt.figure(figsize=(size, size)) plt.scatter(x, y) plt.xlabel("X") plt.ylabel("Y") plt.title("Default") plt.show() plt.figure(figsize=(size, size)) plt.scatter(x, y) plt.xlabel("X") plt.ylabel("Y") plt.title("Autosized") autosize() plt.show()
26.227848
87
0.598456
0
0
0
0
0
0
0
0
282
0.1361
12928ccd7dc4a56b7be40e6eb4668aed89dd266b
8,546
py
Python
ocular_algorithm/0x04_BasicRecurrenceAndRecursion.py
DistinctWind/ManimProjects
6318643afcc24574cbd9a0a45ff0d913d4711b13
[ "MIT" ]
2
2020-03-15T01:27:09.000Z
2020-03-20T02:08:09.000Z
ocular_algorithm/0x04_BasicRecurrenceAndRecursion.py
DistinctWind/ManimProjects
6318643afcc24574cbd9a0a45ff0d913d4711b13
[ "MIT" ]
null
null
null
ocular_algorithm/0x04_BasicRecurrenceAndRecursion.py
DistinctWind/ManimProjects
6318643afcc24574cbd9a0a45ff0d913d4711b13
[ "MIT" ]
null
null
null
from re import S from manimlib import * import sys import os from tqdm.std import tqdm sys.path.append(os.getcwd()) from utils.imports import * class Opening(Scene): def construct(self): title = Text("基础递推递归", font='msyh') self.play(Write(title), run_time=2) self.wait() self.play(FadeOut(title)) self.wait() return super().construct() class BeginningIntroduction(Scene): def construct(self): RecurrenceFormula = Tex( r"a_1=1 ,\quad a_n=a_{n-1}+1" ) GeneralFormula = Tex( r"a_n=n" ) VGroup(RecurrenceFormula, GeneralFormula).arrange(DOWN, buff=LARGE_BUFF) self.play(Write(RecurrenceFormula)) self.wait() self.play(Write(GeneralFormula)) self.wait() RecurrenceFormula.target = Tex( r"a_n=\begin{cases}1&{n=1,2,}\\a_{n-1}+a_{n-2}&n\geq3.\end{cases}" ).replace(RecurrenceFormula).scale(1.25).shift(UP*.5) GeneralFormula.target = Tex( r"a_n=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^n-\left(\frac{1-\sqrt{5}}{2}\right)^n\right]" ).next_to(RecurrenceFormula.target, DOWN, buff=LARGE_BUFF) self.play(MoveToTarget(RecurrenceFormula), MoveToTarget(GeneralFormula)) self.wait() self.play( FadeOut(GeneralFormula), RecurrenceFormula.animate.move_to(ORIGIN) ) self.wait() Fib = [1, 1] for i in range(2, 2022): Fib.append(Fib[i-1]+Fib[i-2]) Fib_eq = [] for i in tqdm(range(2021)): Fib_eq.append(Text("a["+str(i+1)+"]")) VGroup(*Fib_eq).arrange(DOWN).next_to(RecurrenceFormula, DOWN) self.play(*[Write(_Fib_eq) for _Fib_eq in Fib_eq], run_time=2) self.wait() self.play(self.camera.frame.animate.move_to(Fib_eq[-1].get_center()), run_time=10) self.wait() self.play(*[FadeOut(_mobjects) for _mobjects in self.mobjects]) self.wait() return super().construct() class RecurrenceFibIntroduction(Scene): def construct(self): title = Text("斐波那契数列", font='DengXian') self.play(Write(title)) self.wait() subtitle = Text("Fibonacci", font='DengXian') subtitle.next_to(title, DOWN) self.play(Write(subtitle)) subtitle.target = Text("Fib", font='DengXian').next_to(title, DOWN) self.play(MoveToTarget(subtitle)) self.wait() subtitle.target = Text("fib", font='DengXian').next_to(title, DOWN) self.play(MoveToTarget(subtitle)) self.wait() self.play(FadeOut(subtitle)) self.wait() self.play(title.animate.to_edge(UP).scale(0.75)) RecurrenceFormula = Tex( r"a_n=\begin{cases}1&{n=1,2,}\\a_{n-1}+a_{n-2}&n\geq3.\end{cases}" ).scale(1.25).shift(UP*.5) GeneralFormula = Tex( r"a_n=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^n-\left(\frac{1-\sqrt{5}}{2}\right)^n\right]" ).next_to(RecurrenceFormula, DOWN, buff=LARGE_BUFF) self.play(Write(RecurrenceFormula), Write(GeneralFormula)) self.wait() self.play(FadeOut(RecurrenceFormula), FadeOut(GeneralFormula)) self.wait() seq = Sequence([0 for i in range(10)]).move_to(ORIGIN) seq.on_show(self) seq.write(1, 1, self) seq.write(2, 1, self) for pos in range(3, 11): seq.activate(pos, self) seq.write(pos, seq.get_val(pos-1)+seq.get_val(pos-2), self) self.play(*[FadeOut(_mobject) for _mobject in self.mobjects]) return super().construct() class RecursionFibIntroduction(Scene): def construct(self): title = Text("斐波那契数列", font='DengXian') subtitle = Text("(递归解法)", font='DengXian') subtitle.scale(0.75).next_to(title, DOWN, buff=MED_SMALL_BUFF) self.play( Write(title), Write(subtitle) ) self.wait() self.play( FadeOut(title), FadeOut(subtitle) ) seq = Sequence([1, 1, 0, 0, 0]) main_call = seq.cells[rid(5)].copy().next_to(seq, DOWN, buff=MED_LARGE_BUFF) self.play(ShowCreation(seq)) self.wait() self.play(ShowCreation(main_call)) return super().construct() class trying1(Scene): def construct(self): tex = Tex("a=1") self.play(Write(tex)) return super().construct() class trying2(Scene): def construct(self): hello = Tex("1") rec = Rectangle() f_always(rec.move_to, hello.get_center) self.play(Write(hello)) self.play(ShowCreation(rec)) self.play(hello.animate.shift(2*RIGHT+UP)) class trying3(Scene): def construct(self): cell = Cell(1234567890, 7) self.play(ShowCreation(cell)) self.play(*cell.write(1)) return super().construct() class trying4(Scene): def construct(self): seq = Sequence([1, 3, 5, 2, 4, 6]) self.play(ShowCreation(seq), GrowArrow(seq.arrow)) seq.activate(4, self) seq.activate(6, self) seq.write(3, 123456, self) seq.write(6, 123456, self) seq.write(2, 1345, self) seq.write(3, 1, self) return super().construct() class trying5(Scene): def construct(self): depth_bar = DepthBar() self.play(ShowCreation(depth_bar)) self.play(depth_bar.deepen()) return super().construct() class trying6(Scene): def construct(self): self.camera.frame.shift(DOWN) seq = Sequence([1, 2, 3]).shift(UP) main_caller = seq.get_cell(3).copy() tree = CallTree(main_caller) self.play(ShowCreation(seq)) self.wait() self.play(ShowCreation(tree.depth_bar)) self.play(ShowCreation(tree)) to_caller = seq.get_cell(2).copy() to_caller.next_to(main_caller, DOWN) self.play(*tree.extent(main_caller, seq.get_cell(2).copy(), 2)) self.play(*tree.compose()) self.play(*tree.extent(main_caller, seq.get_cell(1).copy(), 2)) self.play(*tree.compose()) return super().construct() class trying7(Scene): def construct(self): rec = Rectangle() cir = Circle() rec.to_edge(LEFT) cir.move_to(UP*2, RIGHT*3) self.play(ShowCreation(rec), ShowCreation(cir)) self.play(cir.animate.align_to(rec, UP)) return super().construct() class trying8(Scene): def construct(self): rec = Rectangle().shift(DOWN) cir = Circle().shift(DOWN).to_edge(RIGHT) self.play(ShowCreation(cir)) self.wait() self.play(cir.animate.shift(x_shift(cir))) return super().construct() class trying9(Scene): def construct(self): rec = Rectangle().shift(LEFT*2) cir = Circle().shift(RIGHT*2) arrow = always_redraw(lambda :Arrow(rec.get_right(), cir.get_left())) self.play(ShowCreation(rec), ShowCreation(cir)) self.play(GrowArrow(arrow)) self.play(rec.animate.shift(UP)) self.play(cir.animate.shift(DOWN+RIGHT*2)) return super().construct() class trying10(Scene): def construct(self): seq = Sequence([1, 2, 3, 4, 5]).to_edge(UP) main_caller = seq.get_cell(3).copy() tree = CallTree(main_caller).next_to(seq, DOWN) tree.depth_bar.align_to(seq, UP) self.play(ShowCreation(seq)) self.wait() self.play(ShowCreation(tree.depth_bar)) self.play(ShowCreation(tree)) to_caller = seq.get_cell(2).copy() to_caller.next_to(main_caller, DOWN) self.play(*tree.extent(main_caller, seq.get_cell(2).copy(), 2)) self.play(*tree.compose()) self.play(*tree.extent(main_caller, seq.get_cell(1).copy(), 2)) self.play(*tree.compose()) self.play(self.camera.frame.animate.shift(DOWN)) self.play(*tree.extent(tree.get_cell(2, 1), seq.get_cell(4).copy(), 3)) self.play(*tree.compose()) self.play(*tree.extent(tree.get_cell(2, 1), seq.get_cell(5).copy(), 3)) self.play(*tree.compose()) self.play(*tree.extent(tree.get_cell(2, 2), seq.get_cell(4).copy(), 3)) self.play(*tree.compose()) self.play(*tree.extent(tree.get_cell(2, 2), seq.get_cell(5).copy(), 3)) self.play(*tree.compose()) return super().construct()
32.371212
121
0.589165
8,412
0.97905
0
0
0
0
0
0
567
0.065992
1292ffb60fd870f5e14b52506ec687c6761bed39
299
py
Python
utility.py
Ming-desu/POKEMING
2def3b47e7c08b71885f14944bffe105a63cc12a
[ "MIT" ]
null
null
null
utility.py
Ming-desu/POKEMING
2def3b47e7c08b71885f14944bffe105a63cc12a
[ "MIT" ]
null
null
null
utility.py
Ming-desu/POKEMING
2def3b47e7c08b71885f14944bffe105a63cc12a
[ "MIT" ]
null
null
null
# POKEMING - GON'NA CATCH 'EM ALL # -- A simple hack 'n slash game in console # -- This class is handles all utility related things class Utility: # This allows to see important message of the game def pause(message): print(message) input('Press any key to continue.')
37.375
55
0.665552
164
0.548495
0
0
0
0
0
0
211
0.705686
12932a6f23a6e9331d41a53f62dfc3d9f6482d92
2,057
py
Python
gpv2/data/lessons/mil.py
michalsr/gpv2
00a22b311dbaeefb04e1df676eb6ae3373d8d4b5
[ "Apache-2.0" ]
null
null
null
gpv2/data/lessons/mil.py
michalsr/gpv2
00a22b311dbaeefb04e1df676eb6ae3373d8d4b5
[ "Apache-2.0" ]
null
null
null
gpv2/data/lessons/mil.py
michalsr/gpv2
00a22b311dbaeefb04e1df676eb6ae3373d8d4b5
[ "Apache-2.0" ]
null
null
null
import logging import sys from typing import Union, Optional, Dict, Any, List from dataclasses import dataclass, replace from exp.ours import file_paths from exp.ours.boosting import MaskSpec from exp.ours.data.dataset import Dataset, Task from exp.ours.data.gpv_example import GPVExample from exp.ours.models.model import PredictionArg from os.path import join, exists from exp.ours.util.py_utils import int_to_str from utils.io import load_json_object, dump_json_object import numpy as np ID_LIST = set([0]) LAST_ID = 0 @dataclass class MILExample: """ Consists of positive and negative examples for different classes """ gpv_id: str image_id: Union[int, str] answer: str query: str correct_answer: str rel_query: str @property def task(self): return Task.MIL def get_gpv_id(self): return self.gpv_id @Dataset.register("mil") class MILDataset(Dataset): def __init__(self, split: str,): self.split = split def get_task(self) -> Task: return Task.MIL def load(self) -> List[MILExample]: instances = load_mil(self.split) return instances def _intern(x): if x is None: return None return sys.intern(x) def load_mil(split): #file = join(file_paths.WEBQA_DIR, split + "_image_info.json") #file = file_paths.IMAGECONTRAST_DIR+'/train_large_2.json' #file = '/data/michal5/gpv/text_contrast/train_large.json' if split == 'small': file = '/data/michal5/gpv/lessons/mil_small.json' else: file = '/data/michal5/gpv/lessons/mil_train.json' #file = '/data/michal5/gpv/lessons/mil_small.json' logging.info(f"Loading mil data from {file}") raw_instances = load_json_object(file) out = [] for i, x in enumerate(raw_instances): if isinstance(x["image"], dict): image_id = x["image"]["image_id"] else: image_id = x["image"] ex = MILExample(gpv_id=x['gpv_id'],image_id=image_id,answer=x['answer'], query=x['query'],correct_answer=x['correct'],rel_query=x['rel_query'] ) out.append(ex) return out
21.206186
76
0.701507
556
0.270297
0
0
592
0.287798
0
0
506
0.245989
12932d615b9cdc4848ccdf491cf3ec6f30e667d0
6,968
py
Python
creel_portal/api/filters/FN024_Filter.py
AdamCottrill/CreelPortal
5ec867c4f11b4231c112e8209116b6b96c2830ec
[ "MIT" ]
null
null
null
creel_portal/api/filters/FN024_Filter.py
AdamCottrill/CreelPortal
5ec867c4f11b4231c112e8209116b6b96c2830ec
[ "MIT" ]
null
null
null
creel_portal/api/filters/FN024_Filter.py
AdamCottrill/CreelPortal
5ec867c4f11b4231c112e8209116b6b96c2830ec
[ "MIT" ]
null
null
null
import django_filters from ...models import FN024 from .filter_utils import NumberInFilter, ValueInFilter class FN024SubFilter(django_filters.FilterSet): """A fitlerset that allows us to select subsets of net set objects by net set attributes.""" prd = ValueInFilter(field_name="prd") prd__not = ValueInFilter(field_name="prd", exclude=True) prdtm0 = django_filters.TimeFilter(field_name="prdtm0", help_text="format: HH:MM") prdtm0__gte = django_filters.TimeFilter( field_name="prdtm0", lookup_expr="gte", help_text="format: HH:MM" ) prdtm0__lte = django_filters.TimeFilter( field_name="prdtm0", lookup_expr="lte", help_text="format: HH:MM" ) prdtm1 = django_filters.TimeFilter(field_name="prdtm1", help_text="format: HH:MM") prdtm1__gte = django_filters.TimeFilter( field_name="prdtm1", lookup_expr="gte", help_text="format: HH:MM" ) prdtm1__lte = django_filters.TimeFilter( field_name="prdtm1", lookup_expr="lte", help_text="format: HH:MM" ) prd_dur__gte = django_filters.NumberFilter(field_name="prd_dur", lookup_expr="gte") prd_dur__lte = django_filters.NumberFilter(field_name="prd_dur", lookup_expr="lte") class Meta: model = FN024 fields = [ "prd", "prdtm0", "prdtm1", "prd_dur", ] class FN024Filter(FN024SubFilter): """Extends the FN024SubFilter to include additional fields that are associated with parent objects. """ # FN011 ATTRIBUTES year = django_filters.CharFilter( field_name="daytype__season__creel__year", lookup_expr="exact" ) year__gte = django_filters.NumberFilter( field_name="daytype__season__creel__year", lookup_expr="gte" ) year__lte = django_filters.NumberFilter( field_name="daytype__season__creel__year", lookup_expr="lte" ) year__gt = django_filters.NumberFilter( field_name="daytype__season__creel__year", lookup_expr="gt" ) year__lt = django_filters.NumberFilter( field_name="daytype__season__creel__year", lookup_expr="lt" ) prj_date0 = django_filters.DateFilter( field_name="daytype__season__creel__prj_date0", help_text="format: yyyy-mm-dd" ) prj_date0__gte = django_filters.DateFilter( field_name="daytype__season__creel__prj_date0", lookup_expr="gte", help_text="format: yyyy-mm-dd", ) prj_date0__lte = django_filters.DateFilter( field_name="daytype__season__creel__prj_date0", lookup_expr="lte", help_text="format: yyyy-mm-dd", ) prj_date1 = django_filters.DateFilter( field_name="daytype__season__creel__prj_date1", help_text="format: yyyy-mm-dd" ) prj_date1__gte = django_filters.DateFilter( field_name="daytype__season__creel__prj_date1", lookup_expr="gte", help_text="format: yyyy-mm-dd", ) prj_date1__lte = django_filters.DateFilter( field_name="daytype__season__creel__prj_date1", lookup_expr="lte", help_text="format: yyyy-mm-dd", ) prj_cd = ValueInFilter(field_name="daytype__season__creel__prj_cd") prj_cd__not = ValueInFilter( field_name="daytype__season__creel__prj_cd", exclude=True ) prj_cd__like = django_filters.CharFilter( field_name="daytype__season__creel__prj_cd", lookup_expr="icontains" ) prj_cd__not_like = django_filters.CharFilter( field_name="daytype__season__creel__prj_cd", lookup_expr="icontains", exclude=True, ) prj_cd__endswith = django_filters.CharFilter( field_name="daytype__season__creel__prj_cd", lookup_expr="endswith" ) prj_cd__not_endswith = django_filters.CharFilter( field_name="daytype__season__creel__prj_cd", lookup_expr="endswith", exclude=True, ) prj_nm__like = django_filters.CharFilter( field_name="daytype__season__creel__prj_nm", lookup_expr="icontains" ) prj_nm__not_like = django_filters.CharFilter( field_name="daytype__season__creel__prj_nm", lookup_expr="icontains", exclude=True, ) prj_ldr = django_filters.CharFilter( field_name="daytype__season__creel__prj_ldr__username", lookup_expr="iexact" ) contmeth = ValueInFilter(field_name="daytype__season__creel__contmeth") contmeth__not = ValueInFilter( field_name="daytype__season__creel__contmeth", exclude=True ) lake = ValueInFilter(field_name="daytype__season__creel__lake__abbrev") lake__not = ValueInFilter( field_name="daytype__season__creel__lake__abbrev", exclude=True ) ssn_date0 = django_filters.DateFilter( field_name="daytype__season__ssn_date0", help_text="format: yyyy-mm-dd" ) ssn_date0__gte = django_filters.DateFilter( field_name="daytype__season__ssn_date0", lookup_expr="gte", help_text="format: yyyy-mm-dd", ) ssn_date0__lte = django_filters.DateFilter( field_name="daytype__season__ssn_date0", lookup_expr="lte", help_text="format: yyyy-mm-dd", ) ssn_date1 = django_filters.DateFilter( field_name="daytype__season__ssn_date1", help_text="format: yyyy-mm-dd" ) ssn_date1__gte = django_filters.DateFilter( field_name="daytype__season__ssn_date1", lookup_expr="gte", help_text="format: yyyy-mm-dd", ) ssn_date1__lte = django_filters.DateFilter( field_name="daytype__season__ssn_date1", lookup_expr="lte", help_text="format: yyyy-mm-dd", ) ssn = ValueInFilter(field_name="daytype__season__ssn") ssn__not = ValueInFilter(field_name="daytype__season__ssn", exclude=True) ssn__like = django_filters.CharFilter( field_name="daytype__season__ssn", lookup_expr="icontains" ) ssn__not_like = django_filters.CharFilter( field_name="daytype__season__ssn", lookup_expr="icontains", exclude=True ) ssn_des = ValueInFilter(field_name="daytype__season__ssn_des") ssn_des__not = ValueInFilter(field_name="daytype__season__ssn_des", exclude=True) ssn_des__like = django_filters.CharFilter( field_name="daytype__season__ssn_des", lookup_expr="icontains" ) ssn_des__not_like = django_filters.CharFilter( field_name="daytype__season__ssn_des", lookup_expr="icontains", exclude=True ) dtp = ValueInFilter(field_name="daytype__dtp") dtp__not = ValueInFilter(field_name="daytype__dtp", exclude=True) dtp_nm__like = django_filters.CharFilter( field_name="daytype__dtp_nm", lookup_expr="icontains" ) dtp_nm__not_like = django_filters.CharFilter( field_name="daytype__dtp_nm", lookup_expr="icontains", exclude=True ) class Meta: model = FN024 fields = [ "prd", "prdtm0", "prdtm1", "prd_dur", ]
33.180952
87
0.695896
6,855
0.983783
0
0
0
0
0
0
2,149
0.30841
1295c606d9e77831f602309b8cf0e51374c22061
7,148
py
Python
modules/utils.py
PaulLerner/deep_parkinson_handwriting
806f34eaa6c5dde2a8230a07615c69e0873c0535
[ "MIT" ]
2
2021-01-19T02:47:32.000Z
2021-05-20T08:29:36.000Z
modules/utils.py
PaulLerner/deep_parkinson_handwriting
806f34eaa6c5dde2a8230a07615c69e0873c0535
[ "MIT" ]
null
null
null
modules/utils.py
PaulLerner/deep_parkinson_handwriting
806f34eaa6c5dde2a8230a07615c69e0873c0535
[ "MIT" ]
2
2021-01-23T18:20:19.000Z
2021-08-09T03:53:32.000Z
import numpy as np from time import time import matplotlib.pyplot as plt measure2index={"y-coordinate":0,"x-coordinate":1,"timestamp":2, "button_status":3,"tilt":4, "elevation":5,"pressure":6} index2measure=list(measure2index.keys()) task2index={"spiral":0,"l":1,"le":2 ,"les":3,"lektorka" :4,"porovnat":5,"nepopadnout":6, "tram":7} index2task=list(task2index.keys()) max_lengths=[16071, 4226, 6615, 6827, 7993, 5783, 4423, 7676]#max length per task token_lengths=[16071,1242,1649,1956]#max length per token stroke_lengths=[16071,752,1104,1476,3568,2057,2267,1231]#max length per stroke (either on paper or in air) stroke_avg_plus_std=[2904,277,363,411,484,346,324,218]#stroke avg length + stroke avg length std max_strokes=[25,15,15,21,29,43,35, 67]#max n° of strokes per task (in air + on paper) plot2index={"loss":0,"accuracy":1} index2plot= list(plot2index.keys()) on_paper_value=1.0#on_paper_stroke iff button_status==1.0 one_hot=np.identity(8) def downsample(task,factor=2): downsampled=[point for i,point in enumerate(task) if i%factor==0] downsampled=np.array(downsampled) return downsampled def upsample(task): upsampled=[] for i,point in enumerate(task[:-1]): upsampled.append(point) upsampled.append(np.mean(task[i:i+2],axis=0)) upsampled=np.array(upsampled) #/!\ np.aronud button_status after resampling !! upsampled[:,measure2index["button_status"]]=np.around(upsampled[:,measure2index["button_status"]]) return upsampled def get_significance(p): """used to print significance of a statistic test given p-value)""" if p<0.01: significance="***" elif p<0.05: significance="**" elif p<0.1: significance="*" else: significance="_" return significance def CorrectPool(out_size,current_pool): """makes convolved size divisible by pooling kernel""" ratio=out_size/current_pool if (ratio)%1==0:#whole number return int(current_pool) else: whole_ratio=round(ratio) if whole_ratio==0: whole_ratio+=1 return int(out_size/whole_ratio) def CorrectHyperparameters(input_size,seq_len,hidden_size,conv_kernel,pool_kernel ,padding=0, stride=1,dilation=1, dropout=0.0,output_size=1,n_seq=1): """makes convolved size divisible by pooling kernel and computes size of sequence after convolutions""" out_size=seq_len print("seq_len :",out_size) for i, (h,c,p,pad,d) in enumerate(list(zip(hidden_size,conv_kernel,pool_kernel,padding,dilation))): print("layer",i+1) in_size=out_size out_size=get_out_size(out_size,pad,d,c,stride=1) print("\tafter conv{} :{}".format(i+1,out_size)) if out_size<1: c=(in_size-1)//d+1 out_size=get_out_size(in_size,pad,d,c,stride=1) print("\t\tupdate c. after conv{} :{}".format(i+1,out_size)) conv_kernel[i]=c pool_kernel[i]=CorrectPool(out_size,p) out_size=get_out_size(out_size,padding=0,dilation=1,kernel_size=pool_kernel[i],stride=pool_kernel[i]) print("\tafter pool{} :{}".format(i+1,out_size)) out_size*=hidden_size[-1] print("after flatting",out_size) return input_size,out_size,hidden_size,conv_kernel,pool_kernel ,padding,stride,dilation, dropout,output_size def wrong_len_gen(data,good_len): """used for splitting tasks into tokens""" for i,s in enumerate(data): if len(s) != good_len: yield i def get_out_size(in_size,padding,dilation,kernel_size,stride): """computes output size after a conv or a pool layer""" return (in_size+2*padding-dilation*(kernel_size-1)-1)//stride +1 def min_max_scale(data,min_=0,max_=1): return (max_-min_)*(data-np.min(data)/(np.max(data)-np.min(data)))+min_ def count_params(model): """returns (total n° of parameters, n° of trainable parameters)""" total_params = sum(p.numel() for p in model.parameters()) trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) return total_params, trainable_params def plot_task(task,measure2index=measure2index): plt.plot(task[:,measure2index["x-coordinate"]],task[:,measure2index["y-coordinate"]]) plt.xlabel("x-coordinate") plt.ylabel("y-coordinate") def plot_measures(task,subplot=False,figsize=(6,4),index2measure=index2measure): plt.figure(figsize=figsize) for i,measure in enumerate(index2measure): if subplot: plt.subplot(3,3,i+1) plt.plot(task[:,i],label=measure) plt.xlabel("timesteps") plt.ylabel(measure) plt.legend() def return_metrics(tp,tn,fp,fn): accuracy= (tp+tn)/(tp+tn+fp+fn) sensitivity = tp/(tp+fn) if (tp+fn) != 0 else 0.0 #without condition positives the sensitivity should be 0 specificity = tn/(tn+fp) if (tn+fp)!= 0 else 0.0 #idem ppv = tp/(tp+fp) if tp+fp != 0 else 0.0 #without predicted positives the ppv should be 0 npv = tn/(tn+fn) if tn+fn !=0 else 0.0 #idem return accuracy,sensitivity,specificity,ppv,npv def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise ValueError('Boolean value expected.') def flat_list(list): return [item for sublist in list for item in sublist] def timeSince(since): now = time() s = now - since m = np.floor(s / 60) s -= m * 60 return '%dm %ds' % (m, s) def ReshapeAndVote(model_train_predictions,round_before_voting=True): """used to fuse the predictions of n_models models after n_CV CV""" n_CV=len(model_train_predictions[0]) n_models=len(model_train_predictions) if round_before_voting: reshaped_train_predictions=[[np.around(model_train_predictions[i][j]) for i in range(n_models)] for j in range(n_CV)] else: reshaped_train_predictions=[[model_train_predictions[i][j] for i in range(n_models)] for j in range(n_CV)] voted_train_predictions=[np.around(np.mean(reshaped_train_predictions[i],axis=0)) for i in range(n_CV)] return voted_train_predictions def confusion_matrix(y_true,y_pred): if len(y_true)!=len(y_pred): raise ValueError("y_true and y_pred should have the same shape, got {} and {}, respectively".format(len(y_true),len(y_pred))) tn, fp, fn, tp=0,0,0,0 false_i=[] for i, (target, pred) in enumerate(list(zip(y_true,y_pred))): if target==0:#condition negative if pred==0: tn+=1 elif pred==1: fp+=1 false_i.append(i) else: raise ValueError("model prediction should either be 0 or 1, got {}".format(pred)) elif target==1:#condition positive if pred==0: fn+=1 false_i.append(i) elif pred ==1: tp+=1 else: raise ValueError("model prediction should either be 0 or 1, got {}".format(pred)) else: raise ValueError("target should either be 0 or 1, got {}".format(target)) return tn, fp, fn, tp, false_i
42.047059
133
0.663123
0
0
163
0.022794
0
0
0
0
1,552
0.217033
1296326732d0f3f0616b1b674348b31dbce55859
574
py
Python
Mundo2/Desafio039.py
Marcoakira/Desafios_Python_do_Curso_Guanabara
c49b774148a2232f8f3c21b83e3dc97610480757
[ "MIT" ]
null
null
null
Mundo2/Desafio039.py
Marcoakira/Desafios_Python_do_Curso_Guanabara
c49b774148a2232f8f3c21b83e3dc97610480757
[ "MIT" ]
null
null
null
Mundo2/Desafio039.py
Marcoakira/Desafios_Python_do_Curso_Guanabara
c49b774148a2232f8f3c21b83e3dc97610480757
[ "MIT" ]
null
null
null
import datetime datenasc = int(input(f'insert you date of bit ')) atualdate = str(datetime.date.today())[0:4] datestr = int(atualdate) datefinal = datestr - datenasc print(datefinal) if datefinal < 18: print(f'voce esta com {datefinal}Faltam {18-datefinal} pra você se alistar ao exercito hahahah' ) elif datefinal == 18: print(f'Você completa 18 anos agora em {atualdate}' f'Chegou a hora ser servir seu país como bucha de canhão otario.\nPegue seus documentos ') else: print(f'Você escapou sabichão, ja esta com {datefinal}, se livrou né safadenho')
41
101
0.728223
0
0
0
0
0
0
0
0
329
0.566265
1296680de0a376242d8b5859461295d893d5f13c
4,180
py
Python
local_test/test_pullparser.py
rmoskal/e-springpad
d2c1dfbae63a29737d9cfdee571704b7a5e85bd5
[ "MIT" ]
1
2017-01-10T17:12:25.000Z
2017-01-10T17:12:25.000Z
local_test/test_pullparser.py
rmoskal/e-springpad
d2c1dfbae63a29737d9cfdee571704b7a5e85bd5
[ "MIT" ]
null
null
null
local_test/test_pullparser.py
rmoskal/e-springpad
d2c1dfbae63a29737d9cfdee571704b7a5e85bd5
[ "MIT" ]
null
null
null
__author__ = 'rob' import unittest import logging import evernotebookparser from xml.etree import ElementTree import re class TestNotebookParser(unittest.TestCase): def setUp(self): self.o = evernotebookparser.NotebookParser2("../Quotes.enex") def test_parsing2(self): results = []; self.o.get_items(lambda x: results.append(x)) self.assertEquals(32,len(results)) def test_re(self): data = """<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE en-note SYSTEM "http://xml.evernote.com/pub/enml2.dtd"> <en-note>Barthes, Roland<br clear="none"/> Sade, Fourier, Loyola: p.7.<br clear="none"/> <br clear="none"/>Motto: It is a matter of bringing into daily life a fragment of the unintelligible formulas that emanate from a text we admire. <br clear="none"/></en-note>""" self.assertEquals(data.find('<en-note>'),133) self.assertEquals(data.find('</en-note>'),410) self.assertEquals(data[133],'<') data = evernotebookparser.extract(data) self.assertTrue(data.startswith("Barthes")) def test_construction1(self): results = []; self.o.get_items(lambda x: results.append(x)) item = results[0]; self.assertEquals(["B"],item['tags']) self.assertTrue(item['content'].startswith("Barthes")) def test_construction2(self): results = []; self.o.get_items(lambda x: results.append(x)) item = results[1]; self.assertEquals(['O'],item['tags']) class TestNotebookParser2(unittest.TestCase): def setUp(self): self.o = evernotebookparser.NotebookParser2("../test.enex") def test_parsing2(self): results = []; self.o.get_items(lambda x: results.append(x)) self.assertEquals(2,len(results)) def test_construction1(self): results = []; self.o.get_items(lambda x: results.append(x)) item = results[0]; self.assertTrue(item['content'].startswith("<div>")) self.assertFalse("url" in item) def test_construction2(self): results = []; self.o.get_items(lambda x: results.append(x)) item = results[1]; self.assertTrue(item['content'].startswith("<div>")) self.assertTrue("url" in item) self.assertEquals(item['url'],"http://mostmedia.com") class TestNotebookMac(unittest.TestCase): def setUp(self): self.o = evernotebookparser.NotebookParser2("../Travel.enex") def test_parsing2(self): results = []; self.o.get_items(lambda x: results.append(x)) self.assertEquals(4,len(results)) def test_construction1(self): results = []; self.o.get_items(lambda x: results.append(x)) item = results[0]; self.assertTrue(item['content'].startswith("<div>")) self.assertFalse("url" in item) def test_construction2(self): results = []; self.o.get_items(lambda x: results.append(x)) item = results[1]; self.assertTrue(item['content'].startswith("<div>")) class TestDavids(unittest.TestCase): def setUp(self): self.o = evernotebookparser.NotebookParser2("../recipes.enex") def test_parsing2(self): results = []; self.o.get_items(lambda x: results.append(x)) self.assertEquals(49,len(results)) def test_construction1(self): results = []; self.o.get_items(lambda x: results.append(x)) item = results[0]; print item['content'] #self.assertTrue(item['content'].startswith("<div>")) #self.assertFalse("url" in item) def test_construction2(self): results = []; self.o.get_items(lambda x: results.append(x)) item = results[1]; #self.assertTrue(item['content'].startswith("<div>"))
32.403101
157
0.570335
4,039
0.966268
0
0
0
0
0
0
818
0.195694
1296f3adb86af7c4bde450922af6cd40c775ef6d
6,872
py
Python
test/test_sysroot_compiler.py
prajakta-gokhale/cross_compile
cbdc94ed5b25d6fc336aa5c0faa2838d9ce61db4
[ "Apache-2.0" ]
null
null
null
test/test_sysroot_compiler.py
prajakta-gokhale/cross_compile
cbdc94ed5b25d6fc336aa5c0faa2838d9ce61db4
[ "Apache-2.0" ]
null
null
null
test/test_sysroot_compiler.py
prajakta-gokhale/cross_compile
cbdc94ed5b25d6fc336aa5c0faa2838d9ce61db4
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for the `create_cc_sysroot.py` script.""" import getpass from pathlib import Path from typing import Tuple from cross_compile.sysroot_compiler import DockerConfig from cross_compile.sysroot_compiler import Platform from cross_compile.sysroot_compiler import QEMU_DIR_NAME from cross_compile.sysroot_compiler import ROS_DOCKERFILE_NAME from cross_compile.sysroot_compiler import SYSROOT_DIR_NAME from cross_compile.sysroot_compiler import SysrootCompiler import pytest def _default_docker_kwargs() -> dict: return { 'arch': 'aarch64', 'os': 'ubuntu', 'rosdistro': 'dashing', 'sysroot_base_image': '035662560449.dkr.ecr.us-east-2.amazonaws.com/cc-tool:' 'aarch64-bionic-dashing-fastrtps-prebuilt', 'docker_network_mode': 'host', 'sysroot_nocache': False, } @pytest.fixture def platform_config() -> Platform: return Platform( arch='aarch64', os='ubuntu', rosdistro='dashing', rmw='fastrtps') @pytest.fixture def docker_config() -> DockerConfig: return DockerConfig(**_default_docker_kwargs()) def setup_mock_sysroot(path: Path) -> Tuple[Path, Path]: """Create mock directories to correctly construct the SysrootCreator.""" sysroot_dir = path / SYSROOT_DIR_NAME sysroot_dir.mkdir() ros_workspace_dir = sysroot_dir / 'ros_ws' ros_workspace_dir.mkdir() qemu_dir = sysroot_dir / QEMU_DIR_NAME qemu_dir.mkdir() qemu_binary_mock = qemu_dir / 'qemu' qemu_binary_mock.ensure() docker_ws_dir = sysroot_dir / ROS_DOCKERFILE_NAME docker_ws_dir.ensure() return sysroot_dir, ros_workspace_dir def test_get_workspace_image_tag(platform_config): """Make sure the image tag is created correctly.""" image_tag = platform_config.get_workspace_image_tag() test_tag = '{}/{}:latest'.format(getpass.getuser(), str(platform_config)) assert isinstance(image_tag, str) assert image_tag == test_tag def test_docker_config_args(docker_config): """Make sure the Docker configuration is setup correctly.""" args = _default_docker_kwargs() test_config_string = ( 'Base Image: {}\n' 'Network Mode: {}\n' 'Caching: {}' ).format( args['sysroot_base_image'], args['docker_network_mode'], args['sysroot_nocache'] ) config_string = str(docker_config) assert isinstance(config_string, str) assert config_string == test_config_string def test_sysroot_compiler_constructor( platform_config, docker_config, tmpdir): """Test the SysrootCompiler constructor assuming valid path setup.""" # Create mock directories and files sysroot_dir, ros_workspace_dir = setup_mock_sysroot(tmpdir) sysroot_compiler = SysrootCompiler( str(tmpdir), 'ros_ws', platform_config, docker_config, None) assert isinstance(sysroot_compiler.get_build_setup_script_path(), Path) assert isinstance(sysroot_compiler.get_system_setup_script_path(), Path) def test_sysroot_compiler_tree_validation(platform_config, docker_config, tmpdir): """ Ensure that the SysrootCompiler constructor validates the workspace. Start with empty directory and add one piece at a time, expecting failures until all parts are present. """ kwargs = { 'cc_root_dir': str(tmpdir), 'ros_workspace_dir': 'ros_ws', 'platform': platform_config, 'docker_config': docker_config, 'custom_setup_script_path': None, } # There's no 'sysroot' at all yet with pytest.raises(FileNotFoundError): compiler = SysrootCompiler(**kwargs) sysroot_dir = tmpdir / SYSROOT_DIR_NAME sysroot_dir.mkdir() # ROS2 ws and qemu dirs are missing with pytest.raises(FileNotFoundError): compiler = SysrootCompiler(**kwargs) ros_workspace_dir = sysroot_dir / 'ros_ws' ros_workspace_dir.mkdir() # qemu dirs are missing with pytest.raises(FileNotFoundError): compiler = SysrootCompiler(**kwargs) qemu_dir = sysroot_dir / QEMU_DIR_NAME qemu_dir.mkdir() # the qemu binary is still missing with pytest.raises(FileNotFoundError): compiler = SysrootCompiler(**kwargs) qemu_binary_mock = qemu_dir / 'qemu' qemu_binary_mock.ensure() # everything is present now compiler = SysrootCompiler(**kwargs) assert compiler def verify_base_docker_images(arch, os, rosdistro, image_name): """Assert correct base image is generated.""" sysroot_base_image = None docker_network_mode = 'host' sysroot_nocache = 'False' assert DockerConfig( arch, os, rosdistro, sysroot_base_image, docker_network_mode, sysroot_nocache).base_image == image_name def test_get_docker_base_image(): """Test that the correct base docker image is used for all arguments.""" verify_base_docker_images('aarch64', 'ubuntu', 'dashing', 'arm64v8/ubuntu:bionic') verify_base_docker_images('aarch64', 'ubuntu', 'eloquent', 'arm64v8/ubuntu:bionic') verify_base_docker_images('aarch64', 'ubuntu', 'kinetic', 'arm64v8/ubuntu:xenial') verify_base_docker_images('aarch64', 'ubuntu', 'melodic', 'arm64v8/ubuntu:bionic') verify_base_docker_images('aarch64', 'debian', 'dashing', 'arm64v8/debian:stretch') verify_base_docker_images('aarch64', 'debian', 'eloquent', 'arm64v8/debian:buster') verify_base_docker_images('aarch64', 'debian', 'kinetic', 'arm64v8/debian:jessie') verify_base_docker_images('aarch64', 'debian', 'melodic', 'arm64v8/debian:stretch') verify_base_docker_images('armhf', 'ubuntu', 'dashing', 'arm32v7/ubuntu:bionic') verify_base_docker_images('armhf', 'ubuntu', 'eloquent', 'arm32v7/ubuntu:bionic') verify_base_docker_images('armhf', 'ubuntu', 'kinetic', 'arm32v7/ubuntu:xenial') verify_base_docker_images('armhf', 'ubuntu', 'melodic', 'arm32v7/ubuntu:bionic') verify_base_docker_images('armhf', 'debian', 'dashing', 'arm32v7/debian:stretch') verify_base_docker_images('armhf', 'debian', 'eloquent', 'arm32v7/debian:buster') verify_base_docker_images('armhf', 'debian', 'kinetic', 'arm32v7/debian:jessie') verify_base_docker_images('armhf', 'debian', 'melodic', 'arm32v7/debian:stretch')
37.551913
88
0.721478
0
0
0
0
273
0.039726
0
0
2,698
0.392608
1297e5fb738245835e074daab17948395423d0ba
2,083
py
Python
estimate.py
farr/galmassproxy
f4a1c7acc19d130a6f57030bceef03c993a7170c
[ "MIT" ]
null
null
null
estimate.py
farr/galmassproxy
f4a1c7acc19d130a6f57030bceef03c993a7170c
[ "MIT" ]
null
null
null
estimate.py
farr/galmassproxy
f4a1c7acc19d130a6f57030bceef03c993a7170c
[ "MIT" ]
null
null
null
#!/usr/bin/env python r"""estimate.py Use to estimate masses based on observed proxy values (and associated errors) from a pre-calibrated generative model for the mass-proxy relationship. The estimates will be returned as samples (fair draws) from the model's posterior on the mass given the proxy observation. This program expects the proxy data in a file with at least 'proxy' and 'dp' column headers, followed by observed proxy values and relative errors in those columns: proxy dp p1 dp1 ... The output will have one row for each proxy measurement, with one column for each draw from the mass posterior for that system: m1_draw m1_draw ... m2_draw m2_draw ... ... """ import argparse import bz2 import numpy as np import os.path as op import pickle import posterior as pos import plotutils.runner as pr if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--caldir', metavar='DIR', required=True, help='directory with calibration data') parser.add_argument('--proxyfile', metavar='FILE', required=True, help='proxy observations') parser.add_argument('--output', metavar='FILE', default='masses.dat.bz2', help='mass posterior draws') args = parser.parse_args() runner = pr.load_runner(args.caldir) with bz2.BZ2File(op.join(args.caldir, 'logpost.pkl.bz2'), 'r') as inp: logpost = pickle.load(inp) flatchain = runner.thin_chain[:,-16:,:].reshape((-1, runner.chain.shape[2])) data = np.genfromtxt(args.proxyfile, names=True) ms = [] for log_p, dp in zip(np.log(data['proxy']), data['dp']): mdraws = [] for p in flatchain: ((log_m, log_p_est), (var_log_m, var_log_p)) = \ logpost.mass_proxy_estimate(p, log_p, dp) mdraws.append(np.exp(np.random.normal(loc=log_m, scale=np.sqrt(var_log_m)))) ms.append(mdraws) ms = np.array(ms) fname = args.output fbase, fext = op.splitext(fname) if not (fext == '.bz2'): fname = fname + '.bz2' with bz2.BZ2File(fname, 'w') as out: np.savetxt(out, ms)
30.632353
106
0.683629
0
0
0
0
0
0
0
0
873
0.419107
129824738bfae0f0fbd02b667cf74972ac9ca42e
143
py
Python
scripts/python/printings.py
samk-ai/cmd-tools-course-materials
fa3615df7ae70bbc701661bdeef588cbbf17be97
[ "MIT" ]
null
null
null
scripts/python/printings.py
samk-ai/cmd-tools-course-materials
fa3615df7ae70bbc701661bdeef588cbbf17be97
[ "MIT" ]
null
null
null
scripts/python/printings.py
samk-ai/cmd-tools-course-materials
fa3615df7ae70bbc701661bdeef588cbbf17be97
[ "MIT" ]
null
null
null
str1 = "Python" str2 = "Python" print("\nMemory location of str1 =", hex(id(str1))) print("Memory location of str2 =", hex(id(str2))) print()
23.833333
51
0.657343
0
0
0
0
0
0
0
0
72
0.503497
12990c8712d2523d8e2f0753d7b1faee0bbfa287
353
py
Python
plots_lib/architecture_config.py
cmimprota/ASL-SIFT
e6e489e9cc06746e2ab8cd11193fc9fc0112e5df
[ "Zlib" ]
1
2021-12-30T14:59:43.000Z
2021-12-30T14:59:43.000Z
plots_lib/architecture_config.py
cmimprota/ASL-SIFT
e6e489e9cc06746e2ab8cd11193fc9fc0112e5df
[ "Zlib" ]
null
null
null
plots_lib/architecture_config.py
cmimprota/ASL-SIFT
e6e489e9cc06746e2ab8cd11193fc9fc0112e5df
[ "Zlib" ]
1
2021-04-12T11:13:32.000Z
2021-04-12T11:13:32.000Z
config = dict() config['fixed_cpu_frequency'] = "@ 3700 MHz" config['frequency'] = 3.7e9 config['maxflops_sisd'] = 2 config['maxflops_sisd_fma'] = 4 config['maxflops_simd'] = 16 config['maxflops_simd_fma'] = 32 config['roofline_beta'] = 64 # According to WikiChip (Skylake) config['figure_size'] = (20,9) config['save_folder'] = '../all_plots/'
29.416667
69
0.691218
0
0
0
0
0
0
0
0
201
0.569405
129b2012dab2f92bc6a116945f46ccc5481200f2
562
py
Python
telemetry_f1_2021/generate_dataset.py
jasperan/f1-telemetry-oracle
5b2d7efac265539931849863655a5f92d86c75a8
[ "MIT" ]
4
2022-02-21T16:36:09.000Z
2022-03-28T06:50:54.000Z
telemetry_f1_2021/generate_dataset.py
jasperan/f1-telemetry-oracle
5b2d7efac265539931849863655a5f92d86c75a8
[ "MIT" ]
null
null
null
telemetry_f1_2021/generate_dataset.py
jasperan/f1-telemetry-oracle
5b2d7efac265539931849863655a5f92d86c75a8
[ "MIT" ]
2
2022-02-17T19:25:04.000Z
2022-02-23T04:16:16.000Z
import cx_Oracle from oracledb import OracleJSONDatabaseConnection import json jsondb = OracleJSONDatabaseConnection() connection = jsondb.get_connection() connection.autocommit = True soda = connection.getSodaDatabase() x_collection = soda.createCollection('f1_2021_weather') all_data = list() for doc in x_collection.find().getCursor(): content = doc.getContent() all_data.append(content) print('Data length: {}'.format(len(all_data))) with open("weather.json", 'w') as outfile: outfile.write(json.dumps(all_data, indent=4)) outfile.close()
24.434783
55
0.765125
0
0
0
0
0
0
0
0
51
0.090747
129b447d8e3a2e21029c717a45661b4dd2311adc
8,257
py
Python
UserPage.py
muath22/BookStore
db5b30e540de311931b234e71937ace3db9750c8
[ "MIT" ]
9
2018-09-13T10:43:34.000Z
2021-05-05T08:51:52.000Z
UserPage.py
muath22/BookStore
db5b30e540de311931b234e71937ace3db9750c8
[ "MIT" ]
4
2018-09-13T10:09:32.000Z
2021-03-20T00:03:10.000Z
UserPage.py
muath22/BookStore
db5b30e540de311931b234e71937ace3db9750c8
[ "MIT" ]
5
2020-02-26T13:54:03.000Z
2021-01-06T09:38:56.000Z
from Tkinter import * import ttk import BuyBook import BookInformationPage import Message class UserPage(object): def __init__(self, root, color, font, dbConnection, userInfo): for child in root.winfo_children(): child.destroy() self.root = root self.color = color self.font = font self.dbConnection = dbConnection self.userInfo = userInfo self.screen_width = self.root.winfo_screenwidth() * 3 / 4 self.screen_height = self.root.winfo_screenheight() * 3 / 4 self.gui_init() def gui_init(self): self.up_frame = Frame( self.root, cursor='hand1', bg=self.color, height=self.screen_height / 8, width=self.screen_width) self.up_frame.grid_propagate(0) self.up_frame.pack(side=TOP, expand=True, fill=BOTH) self.down_frame = Frame( self.root, cursor='hand1', bg=self.color, height=self.screen_height * 7 / 8, width=self.screen_width) self.down_frame.grid_propagate(0) self.down_frame.pack(side=TOP, expand=True, fill=BOTH) self.profileFrame = ProfileFrame(self.up_frame, self.screen_width / 2, self.screen_height / 8, self.color, self.font, self.userInfo) self.logoutFrame = LogOutFrame( self.root, self.up_frame, self.screen_width / 2, self.screen_height / 8, self.color, self.font, self.dbConnection) self.booksInfoFrame = BuyedBooks( self.down_frame, self.screen_width, self.screen_height * 7 / 8, self.color, self.font, self.dbConnection, self.userInfo) class ProfileFrame(object): def __init__(self, root, width, height, color, font, userInfo): self.root = root self.width = width self.height = height self.color = color self.font = font self.userInfo = userInfo self.gui_init() def gui_init(self): self.frame = Frame( self.root, cursor='hand1', bg=self.color, bd=5, relief=RAISED, width=self.width, height=self.height) self.frame.pack(expand=True, side=LEFT, fill=BOTH) self.frame.grid_propagate(0) profile_info = self.extract_profile() self.profileLabel = Label( self.frame, text=profile_info, font=self.font, bg=self.color) self.profileLabel.place(relx=0.5, rely=0.5, anchor='center') def extract_profile(self): userInfo = "\n".join(self.userInfo.values()) return userInfo class LogOutFrame(object): def __init__(self, parent, root, width, height, color, font, dbConnection): self.root = root self.width = width self.height = height self.color = color self.font = font self.parent = parent self.dbConnection = dbConnection self.gui_init() def gui_init(self): self.frame = Frame( self.root, cursor='hand1', bd=5, relief=RAISED, bg=self.color, width=self.width, height=self.height) self.frame.pack(side=LEFT, expand=True, fill=BOTH) self.frame.grid_propagate(0) self.logout_button = Button( self.frame, text="LogOut", font=self.font, borderwidth=5) self.logout_button.place(relx=0.5, rely=0.5, anchor='center') self.logout_button.bind("<Button-1>", self.__logOutAction) def __logOutAction(self, event): self.dbConnection.close() for child in self.parent.winfo_children(): child.destroy() self.parent.destroy() class BuyedBooks(object): def __init__(self, root, width, height, color, font, dbConnection, userInfo): self.root = root self.width = width self.height = height self.color = color self.font = font self.dbConnection = dbConnection self.userInfo = userInfo self.gui_init() def gui_init(self): frame_up = Frame( self.root, cursor='hand1', bg=self.color, width=self.width, height=self.height * 1 / 12) frame_up.grid_propagate(0) frame_up.pack(side=TOP, expand=True, fill=BOTH) frame_middle = Frame( self.root, cursor='hand1', bg=self.color, width=self.width, height=self.height * 10 / 12) frame_middle.grid_propagate(0) frame_middle.pack(side=TOP, expand=True, fill=BOTH) frame_down = Frame( self.root, cursor='hand1', bg=self.color, width=self.width, height=self.height * 1 / 12) frame_down.grid_propagate(0) frame_down.pack(side=TOP, expand=True, fill=BOTH) self.uploadedFilesLabel = Label( frame_up, text="BuyedBooks", font=self.font, bg=self.color) self.uploadedFilesLabel.place(relx=0.5, rely=0.5, anchor='center') self.booksDisplay = ttk.Treeview( frame_middle, columns=('#1', '#2', '#3', '#4', '#5'), height=20, show='headings', padding=(1, 1, 1, 1)) self.booksDisplay.heading('#1', text='Title') self.booksDisplay.heading('#2', text='Author') self.booksDisplay.heading('#3', text='Genre') self.booksDisplay.heading('#4', text='Quantity') self.booksDisplay.heading('#5', text='Review Score') self.booksDisplay.column('#1', stretch=True, width=self.width / 5) self.booksDisplay.column('#2', stretch=True, width=self.width / 5) self.booksDisplay.column('#3', stretch=True, width=self.width / 5) self.booksDisplay.column('#4', stretch=True, width=self.width / 5) self.booksDisplay.column('#5', stretch=True, width=self.width / 5) self.booksDisplay.pack(side=TOP, fill=BOTH, expand=True) #self.booksDisplay.grid(row=5, columnspan=4, sticky='nw') #self.booksDisplay.place(relx=0.5, rely=0.5, anchor='center') self.booksDisplayStyle = ttk.Style() self.booksDisplayStyle.configure( "Treeview", font=self.font, rowheight=50) self.booksDisplayStyle.configure("Treeview.Heading", font=self.font) #bind treeview to mouse click self.booksDisplay.bind("<ButtonRelease-1>", self.__bookInfo) self.booksDisplay.tag_configure( "tagBook", background="white", foreground="red", font=self.font) self.addNewBookButton = Button( frame_down, text="Buy new book", font=self.font) self.addNewBookButton.place(relx=0.5, rely=0.5, anchor='center') self.addNewBookButton.bind("<Button-1>", self.__buyNewBook) self.__display_availableBooks() def __buyNewBook(self, event): new_window = Toplevel(self.root) BuyBook.BuyBook(new_window, self.color, self.font, self.dbConnection, self.userInfo) new_window.wait_window() self.__display_availableBooks() def __bookInfo(self, event): selectedItem = self.booksDisplay.focus() valueItem = self.booksDisplay.item(selectedItem)['values'] bookName=valueItem[0] new_window = Toplevel(self.root) newBookInfo = BookInformationPage.BookInformation( new_window, self.color, self.dbConnection, valueItem[0], self.userInfo) new_window.wait_window() self.__display_availableBooks() def __display_availableBooks(self): for child in self.booksDisplay.get_children(): self.booksDisplay.delete(child) cursor = self.dbConnection.cursor() args = (self.userInfo['userName'], ) cursor.callproc('getUsersBooks', args) for result in cursor.stored_results(): books = result.fetchall() for book in books: self.booksDisplay.insert( '', 'end', values=book, tags='tagBook') cursor.close()
32.128405
84
0.592588
8,155
0.987647
0
0
0
0
0
0
523
0.06334
129b4ea5990948782bef80ca4f25a0a104636e5b
775
py
Python
migrations/versions/1b57e397deea_initial_migration.py
sicness9/BugHub
2af45b0840757f7826927d4fefc0e626fef136e1
[ "FTL" ]
null
null
null
migrations/versions/1b57e397deea_initial_migration.py
sicness9/BugHub
2af45b0840757f7826927d4fefc0e626fef136e1
[ "FTL" ]
null
null
null
migrations/versions/1b57e397deea_initial_migration.py
sicness9/BugHub
2af45b0840757f7826927d4fefc0e626fef136e1
[ "FTL" ]
null
null
null
"""initial migration Revision ID: 1b57e397deea Revises: Create Date: 2021-12-20 20:57:14.696646 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '1b57e397deea' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_foreign_key(None, 'users', 'roles', ['role_id'], ['id']) op.create_foreign_key(None, 'users', 'teams', ['team_id'], ['id']) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_constraint(None, 'users', type_='foreignkey') op.drop_constraint(None, 'users', type_='foreignkey') # ### end Alembic commands ###
25
70
0.676129
0
0
0
0
0
0
0
0
430
0.554839
129b54403eb231e9102fbf7abe8cda7f3996ce5b
5,596
py
Python
app/utility/base_planning_svc.py
scottctaylor12/caldera
4e81aaaf0ed592232a0474dda36ea2fd505da0de
[ "Apache-2.0" ]
null
null
null
app/utility/base_planning_svc.py
scottctaylor12/caldera
4e81aaaf0ed592232a0474dda36ea2fd505da0de
[ "Apache-2.0" ]
null
null
null
app/utility/base_planning_svc.py
scottctaylor12/caldera
4e81aaaf0ed592232a0474dda36ea2fd505da0de
[ "Apache-2.0" ]
null
null
null
import copy import itertools import re from base64 import b64decode from app.utility.base_service import BaseService from app.utility.rule import RuleSet class BasePlanningService(BaseService): async def trim_links(self, operation, links, agent): """ Trim links in supplied list. Where 'trim' entails: - adding all possible test variants - removing completed links (i.e. agent has already completed) - removing links that did not have template fact variables replaced by fact values :param operation: :param links: :param agent: :return: trimmed list of links """ links[:] = await self.add_test_variants(links, agent, operation) links = await self.remove_completed_links(operation, agent, links) links = await self.remove_links_missing_facts(links) links = await self.remove_links_missing_requirements(links, operation.all_relationships()) self.log.debug('Created %d links for %s' % (len(links), agent.paw)) return links async def add_test_variants(self, links, agent, operation): """ Create a list of all possible links for a given phase :param links: :param agent: :param operation: :return: updated list of links """ group = agent.group for link in links: decoded_test = self.decode(link.command, agent, group) variables = re.findall(r'#{(.*?)}', decoded_test, flags=re.DOTALL) if variables: agent_facts = await self._get_agent_facts(operation, agent.paw) relevant_facts = await self._build_relevant_facts(variables, operation, agent_facts) valid_facts = await RuleSet(rules=operation.rules).apply_rules(facts=relevant_facts[0]) for combo in list(itertools.product(*valid_facts)): copy_test = copy.deepcopy(decoded_test) copy_link = copy.deepcopy(link) variant, score, used = await self._build_single_test_variant(copy_test, combo) copy_link.command = self.encode_string(variant) copy_link.score = score copy_link.used.extend(used) links.append(copy_link) else: link.command = self.encode_string(decoded_test) return links @staticmethod async def remove_completed_links(operation, agent, links): """ Remove any links that have already been completed by the operation for the agent :param operation: :param links: :param agent: :return: updated list of links """ completed_links = [l.command for l in operation.chain if l.paw == agent.paw and (l.finish or l.status == l.states["DISCARD"])] links[:] = [l for l in links if l.command not in completed_links] return links @staticmethod async def remove_links_missing_facts(links): """ Remove any links that did not have facts encoded into command :param links: :return: updated list of links """ links[:] = [l for l in links if not re.findall(r'#{(.*?)}', b64decode(l.command).decode('utf-8'), flags=re.DOTALL)] return links async def remove_links_missing_requirements(self, links, relationships): links[:] = [l for l in links if await self._do_enforcements(l, relationships)] return links """ PRIVATE """ @staticmethod async def _build_single_test_variant(copy_test, combo): """ Replace all variables with facts from the combo to build a single test variant """ score, used = 0, list() for var in combo: score += (score + var.score) used.append(var) copy_test = copy_test.replace('#{%s}' % var.trait, var.value.strip()) return copy_test, score, used @staticmethod def _is_fact_bound(fact): return not fact['link_id'] @staticmethod async def _build_relevant_facts(variables, operation, agent_facts): """ Create a list of ([fact, value, score]) tuples for each variable/fact """ facts = operation.all_facts() relevant_facts = [] for v in variables: variable_facts = [] for fact in [f for f in facts if f.trait == v]: if fact.trait.startswith('host'): if fact.unique in agent_facts: variable_facts.append(fact) else: variable_facts.append(fact) relevant_facts.append(variable_facts) return relevant_facts @staticmethod async def _get_agent_facts(operation, paw): """ get facts for given agent """ agent_facts = [] for link in [l for l in operation.chain if l.paw == paw]: for f in link.facts: agent_facts.append(f.unique) return agent_facts async def _do_enforcements(self, link, relationships): """ enforce any defined requirements on the link """ for req_inst in link.ability.requirements: requirements_info = dict(module=req_inst.module, enforcements=req_inst.relationships[0]) requirement = await self.load_module('Requirement', requirements_info) if not requirement.enforce(link.used, relationships): return False return True
38.593103
103
0.606862
5,438
0.971766
0
0
2,439
0.435847
5,150
0.9203
1,370
0.244818
129c2cba3840cfd8f3de73d2239ee04d334e5bc9
215
py
Python
pyclid/__init__.py
Kaundur/pyclid
c59865fed9120b76cba6e41a84653256ac3072ee
[ "MIT" ]
2
2019-02-12T11:31:04.000Z
2021-12-31T10:39:01.000Z
pyclid/__init__.py
Kaundur/pyclid
c59865fed9120b76cba6e41a84653256ac3072ee
[ "MIT" ]
null
null
null
pyclid/__init__.py
Kaundur/pyclid
c59865fed9120b76cba6e41a84653256ac3072ee
[ "MIT" ]
null
null
null
import math from pyclid.vector import * from pyclid.matrix import * from pyclid.quaternion import * #from pyclid.vector import vector #from pyclid.quaternion import quaternion #from pyclid.matrix import matrix
16.538462
41
0.8
0
0
0
0
0
0
0
0
107
0.497674
129c738a3288c017144786e45c751a99bdb4acea
2,939
py
Python
tools/gen_histograms.py
mistajuliax/pbrt-v3-IILE
afda605d92517d2396e494d81465ead22d0c25e1
[ "BSD-2-Clause" ]
16
2018-10-12T15:29:22.000Z
2022-03-16T11:24:10.000Z
tools/gen_histograms.py
mistajuliax/pbrt-v3-IILE
afda605d92517d2396e494d81465ead22d0c25e1
[ "BSD-2-Clause" ]
16
2018-02-02T11:49:36.000Z
2018-04-21T09:07:08.000Z
tools/gen_histograms.py
giuliojiang/pbrt-v3-IISPT
b9be01096293ab0f50b14b9043556c93ff9e07ec
[ "BSD-2-Clause" ]
2
2018-12-12T08:49:43.000Z
2019-12-03T12:20:04.000Z
import os rootdir = os.path.abspath(os.path.join(__file__, "..", "..")) mldir = os.path.join(rootdir, "ml") import sys sys.path.append(mldir) import pfm import iispt_transforms import math import plotly import plotly.plotly as py import plotly.graph_objs as go # ============================================================================= # Conf NUM_BUCKETS = 100 INPUTDIR = "/home/gj/git/pbrt-v3-IISPT-dataset-indirect/breakfast" SELECTOR = "p" GAMMA_VALUE = 1.8 NORMALIZATION_INTENSITY = 3.807115077972 # ============================================================================= # Script flist = [] for f in os.listdir(INPUTDIR): fpath = os.path.join(INPUTDIR, f) if f.startswith(SELECTOR) and f.endswith(".pfm"): flist.append(fpath) def histogram(images, plotname): valmax = None valmin = None vals = [] for img in images: height, width, _ = img.get_shape() for y in range(height): for x in range(width): pixel = img.get_rgb(x, y) for v in pixel: if (valmax is None) or (v > valmax): valmax = v if v > 0.0: if (valmin is None) or (v < valmin): valmin = v vals.append(v) print("min {} max {}".format(valmin, valmax)) # Create buckets data structures rng = valmax - valmin step = rng / NUM_BUCKETS buckets_starts = [0] * NUM_BUCKETS buckets = [0] * NUM_BUCKETS for i in range(NUM_BUCKETS): buckets_starts[i] = valmin + (i * step) # Populate buckets for v in vals: # Compute its bucket index bindex = int(math.floor((v - valmin)/(float(step)))) # Exclude left-end out of bounds but include right-end if bindex >= NUM_BUCKETS: bindex = NUM_BUCKETS - 1 if bindex >= 0: buckets[bindex] += 1 # Print buckets for i in range(len(buckets)): print("{} - {}".format(buckets_starts[i], buckets[i])) # Plot data = [ go.Bar( x=buckets_starts, y=buckets ) ] plotly.offline.plot( { "data": data, "layout": go.Layout(title=plotname) } ) # Generate histogram for raw data standard_imgs = [] for fpath in flist: standard_imgs.append(pfm.load(fpath)) histogram(standard_imgs, "Raw intensity") # Generate histogram after log transform log_imgs = [] for fpath in flist: img = pfm.load(fpath) img.map(iispt_transforms.LogTransform()) log_imgs.append(img) histogram(log_imgs, "Log transform") # GEnerate histogram after log + gamma transform lg_imgs = [] for fpath in flist: img = pfm.load(fpath) img.normalize_log_gamma(NORMALIZATION_INTENSITY, GAMMA_VALUE) lg_imgs.append(img) histogram(lg_imgs, "Log + Gamma transform")
25.780702
79
0.555971
0
0
0
0
0
0
0
0
611
0.207894
129ced52ad5bddf6d93136148de2d32cf2de02ec
4,762
py
Python
crownstone_uart/core/uart/UartBridge.py
RicArch97/crownstone-lib-python-uart
c0aaf1415936e5e622aa6395fdac4f88ebcf82bf
[ "MIT" ]
null
null
null
crownstone_uart/core/uart/UartBridge.py
RicArch97/crownstone-lib-python-uart
c0aaf1415936e5e622aa6395fdac4f88ebcf82bf
[ "MIT" ]
null
null
null
crownstone_uart/core/uart/UartBridge.py
RicArch97/crownstone-lib-python-uart
c0aaf1415936e5e622aa6395fdac4f88ebcf82bf
[ "MIT" ]
null
null
null
import logging import sys import threading import serial import serial.tools.list_ports from crownstone_uart.Constants import UART_READ_TIMEOUT, UART_WRITE_TIMEOUT from crownstone_uart.core.UartEventBus import UartEventBus from crownstone_uart.core.uart.UartParser import UartParser from crownstone_uart.core.uart.UartReadBuffer import UartReadBuffer from crownstone_uart.topics.SystemTopics import SystemTopics _LOGGER = logging.getLogger(__name__) class UartBridge(threading.Thread): def __init__(self, port, baudrate, writeChunkMaxSize=0): self.baudrate = baudrate self.port = port self.writeChunkMaxSize = writeChunkMaxSize self.serialController = None self.started = False self.running = True self.parser = UartParser() self.eventId = UartEventBus.subscribe(SystemTopics.uartWriteData, self.write_to_uart) threading.Thread.__init__(self) def __del__(self): self.stop() def run(self): self.start_serial() self.start_reading() def stop(self): self.running = False UartEventBus.unsubscribe(self.eventId) self.parser.stop() def start_serial(self): _LOGGER.debug(F"UartBridge: Initializing serial on port {self.port} with baudrate {self.baudrate}") try: self.serialController = serial.Serial() self.serialController.port = self.port self.serialController.baudrate = int(self.baudrate) self.serialController.timeout = UART_READ_TIMEOUT self.serialController._write_timeout = UART_WRITE_TIMEOUT self.serialController.open() except OSError or serial.SerialException or KeyboardInterrupt: self.stop() def start_reading(self): readBuffer = UartReadBuffer() self.started = True _LOGGER.debug(F"Read starting on serial port.{self.port} {self.running}") try: while self.running: bytesFromSerial = self.serialController.read() if bytesFromSerial: # clear out the entire read buffer if self.serialController.in_waiting > 0: additionalBytes = self.serialController.read(self.serialController.in_waiting) bytesFromSerial = bytesFromSerial + additionalBytes readBuffer.addByteArray(bytesFromSerial) # print("Cleaning up UartBridge") except OSError or serial.SerialException: _LOGGER.info("Connection to USB Failed. Retrying...") except KeyboardInterrupt: self.running = False _LOGGER.debug("Closing serial connection.") # close the serial controller self.serialController.close() self.serialController = None # remove the event listener pointing to the old connection UartEventBus.unsubscribe(self.eventId) self.started = False UartEventBus.emit(SystemTopics.connectionClosed, True) def write_to_uart(self, data): _LOGGER.debug(f"write_to_uart: {data}") if self.serialController is not None and self.started: try: if self.writeChunkMaxSize == 0: self.serialController.write(data) else: # writing in chunks solves issues writing to certain JLink chips. A max chunkSize of 64 was found to work well for our case. chunkSize = self.writeChunkMaxSize index = 0 while (index*chunkSize) < len(data): chunkedData = data[index*chunkSize:chunkSize*(index+1)] index += 1 self.serialController.write(chunkedData) UartEventBus.emit(SystemTopics.uartWriteSuccess, data) except serial.SerialTimeoutException as e: UartEventBus.emit(SystemTopics.uartWriteError, {"message":"Timeout on uart write.", "error": e}) except serial.SerialException as e: UartEventBus.emit(SystemTopics.uartWriteError, {"message":"SerialException occurred during uart write", "error": e}) except OSError as e: UartEventBus.emit(SystemTopics.uartWriteError, {"message":"OSError occurred during uart write.", "error": e}) except Exception as e: UartEventBus.emit(SystemTopics.uartWriteError, {"message": "Unknown Exception during uart write.", "error": e}) except: e = sys.exc_info()[0] UartEventBus.emit(SystemTopics.uartWriteError, {"message":"Unknown error during uart write.", "error": e}) else: self.stop()
40.355932
144
0.640277
4,306
0.904242
0
0
0
0
0
0
768
0.161277
129d3359e74cfc680cc1a6d1b0edd803c1383270
20,753
py
Python
data-batch-treatment/test_agg_script/locations.py
coder-baymax/taxi-poc-aws
4be8021873ee6b58b2dba5a5d41df12cdd3b67fc
[ "MIT" ]
null
null
null
data-batch-treatment/test_agg_script/locations.py
coder-baymax/taxi-poc-aws
4be8021873ee6b58b2dba5a5d41df12cdd3b67fc
[ "MIT" ]
null
null
null
data-batch-treatment/test_agg_script/locations.py
coder-baymax/taxi-poc-aws
4be8021873ee6b58b2dba5a5d41df12cdd3b67fc
[ "MIT" ]
null
null
null
class Location: def __init__(self, location_id, borough, zone, lat, lng): self.location_id = location_id self.borough = borough self.zone = zone self.lat = lat self.lng = lng @property def json(self): return { "location_id": self.location_id, "borough": self.borough, "zone": self.zone, "lat": self.lat, "lng": self.lng } Locations = [ Location(1, "EWR", "Newark Airport", 40.6895314, -74.1744624), Location(2, "Queens", "Jamaica Bay", 40.6056632, -73.8713099), Location(3, "Bronx", "Allerton/Pelham Gardens", 40.8627726, -73.84343919999999), Location(4, "Manhattan", "Alphabet City", 40.7258428, -73.9774916), Location(5, "Staten Island", "Arden Heights", 40.556413, -74.1735044), Location(6, "Staten Island", "Arrochar/Fort Wadsworth", 40.6012117, -74.0579185), Location(7, "Queens", "Astoria", 40.7643574, -73.92346189999999), Location(8, "Queens", "Astoria Park", 40.7785364, -73.92283359999999), Location(9, "Queens", "Auburndale", 40.7577672, -73.78339609999999), Location(10, "Queens", "Baisley Park", 40.6737751, -73.786025), Location(11, "Brooklyn", "Bath Beach", 40.6038852, -74.0062078), Location(12, "Manhattan", "Battery Park", 40.703141, -74.0159996), Location(13, "Manhattan", "Battery Park City", 40.7115786, -74.0158441), Location(14, "Brooklyn", "Bay Ridge", 40.6263732, -74.0298767), Location(15, "Queens", "Bay Terrace/Fort Totten", 40.7920899, -73.7760996), Location(16, "Queens", "Bayside", 40.7585569, -73.7654367), Location(17, "Brooklyn", "Bedford", 40.6872176, -73.9417735), Location(18, "Bronx", "Bedford Park", 40.8700999, -73.8856912), Location(19, "Queens", "Bellerose", 40.7361769, -73.7137365), Location(20, "Bronx", "Belmont", 40.8534507, -73.88936819999999), Location(21, "Brooklyn", "Bensonhurst East", 40.6139307, -73.9921833), Location(22, "Brooklyn", "Bensonhurst West", 40.6139307, -73.9921833), Location(23, "Staten Island", "Bloomfield/Emerson Hill", 40.6074525, -74.0963115), Location(24, "Manhattan", "Bloomingdale", 40.7988958, -73.9697795), Location(25, "Brooklyn", "Boerum Hill", 40.6848689, -73.9844722), Location(26, "Brooklyn", "Borough Park", 40.6350319, -73.9921028), Location(27, "Queens", "Breezy Point/Fort Tilden/Riis Beach", 40.5597687, -73.88761509999999), Location(28, "Queens", "Briarwood/Jamaica Hills", 40.7109315, -73.81356099999999), Location(29, "Brooklyn", "Brighton Beach", 40.5780706, -73.9596565), Location(30, "Queens", "Broad Channel", 40.6158335, -73.8213213), Location(31, "Bronx", "Bronx Park", 40.8608544, -73.8706278), Location(32, "Bronx", "Bronxdale", 40.8474697, -73.8599132), Location(33, "Brooklyn", "Brooklyn Heights", 40.6959294, -73.9955523), Location(34, "Brooklyn", "Brooklyn Navy Yard", 40.7025634, -73.9697795), Location(35, "Brooklyn", "Brownsville", 40.665214, -73.9125304), Location(36, "Brooklyn", "Bushwick North", 40.6957755, -73.9170604), Location(37, "Brooklyn", "Bushwick South", 40.7043655, -73.9383476), Location(38, "Queens", "Cambria Heights", 40.692158, -73.7330753), Location(39, "Brooklyn", "Canarsie", 40.6402325, -73.9060579), Location(40, "Brooklyn", "Carroll Gardens", 40.6795331, -73.9991637), Location(41, "Manhattan", "Central Harlem", 40.8089419, -73.9482305), Location(42, "Manhattan", "Central Harlem North", 40.8142585, -73.9426617), Location(43, "Manhattan", "Central Park", 40.7812199, -73.9665138), Location(44, "Staten Island", "Charleston/Tottenville", 40.5083408, -74.23554039999999), Location(45, "Manhattan", "Chinatown", 40.7157509, -73.9970307), Location(46, "Bronx", "City Island", 40.8468202, -73.7874983), Location(47, "Bronx", "Claremont/Bathgate", 40.84128339999999, -73.9001573), Location(48, "Manhattan", "Clinton East", 40.7637581, -73.9918181), Location(49, "Brooklyn", "Clinton Hill", 40.6896834, -73.9661144), Location(50, "Manhattan", "Clinton West", 40.7628785, -73.9940134), Location(51, "Bronx", "Co-Op City", 40.8738889, -73.82944440000001), Location(52, "Brooklyn", "Cobble Hill", 40.686536, -73.9962255), Location(53, "Queens", "College Point", 40.786395, -73.8389657), Location(54, "Brooklyn", "Columbia Street", 40.6775239, -74.00634409999999), Location(55, "Brooklyn", "Coney Island", 40.5755438, -73.9707016), Location(56, "Queens", "Corona", 40.7449859, -73.8642613), Location(57, "Queens", "Corona", 40.7449859, -73.8642613), Location(58, "Bronx", "Country Club", 40.8391667, -73.8197222), Location(59, "Bronx", "Crotona Park", 40.8400367, -73.8953489), Location(60, "Bronx", "Crotona Park East", 40.8365344, -73.8933509), Location(61, "Brooklyn", "Crown Heights North", 40.6694022, -73.9422324), Location(62, "Brooklyn", "Crown Heights South", 40.6694022, -73.9422324), Location(63, "Brooklyn", "Cypress Hills", 40.6836873, -73.87963309999999), Location(64, "Queens", "Douglaston", 40.76401509999999, -73.7433727), Location(65, "Brooklyn", "Downtown Brooklyn/MetroTech", 40.6930987, -73.98566339999999), Location(66, "Brooklyn", "DUMBO/Vinegar Hill", 40.70371859999999, -73.98226830000002), Location(67, "Brooklyn", "Dyker Heights", 40.6214932, -74.00958399999999), Location(68, "Manhattan", "East Chelsea", 40.7465004, -74.00137370000002), Location(69, "Bronx", "East Concourse/Concourse Village", 40.8255863, -73.9184388), Location(70, "Queens", "East Elmhurst", 40.7737505, -73.8713099), Location(71, "Brooklyn", "East Flatbush/Farragut", 40.63751329999999, -73.9280797), Location(72, "Brooklyn", "East Flatbush/Remsen Village", 40.6511399, -73.9181602), Location(73, "Queens", "East Flushing", 40.7540534, -73.8086418), Location(74, "Manhattan", "East Harlem North", 40.7957399, -73.93892129999999), Location(75, "Manhattan", "East Harlem South", 40.7957399, -73.93892129999999), Location(76, "Brooklyn", "East New York", 40.6590529, -73.8759245), Location(77, "Brooklyn", "East New York/Pennsylvania Avenue", 40.65845729999999, -73.8904498), Location(78, "Bronx", "East Tremont", 40.8453781, -73.8909693), Location(79, "Manhattan", "East Village", 40.7264773, -73.98153370000001), Location(80, "Brooklyn", "East Williamsburg", 40.7141953, -73.9316461), Location(81, "Bronx", "Eastchester", 40.8859837, -73.82794710000002), Location(82, "Queens", "Elmhurst", 40.737975, -73.8801301), Location(83, "Queens", "Elmhurst/Maspeth", 40.7294018, -73.9065883), Location(84, "Staten Island", "Eltingville/Annadale/Prince's Bay", 40.52899439999999, -74.197644), Location(85, "Brooklyn", "Erasmus", 40.649649, -73.95287379999999), Location(86, "Queens", "Far Rockaway", 40.5998931, -73.74484369999999), Location(87, "Manhattan", "Financial District North", 40.7077143, -74.00827869999999), Location(88, "Manhattan", "Financial District South", 40.705123, -74.0049259), Location(89, "Brooklyn", "Flatbush/Ditmas Park", 40.6414876, -73.9593998), Location(90, "Manhattan", "Flatiron", 40.740083, -73.9903489), Location(91, "Brooklyn", "Flatlands", 40.6232714, -73.9321664), Location(92, "Queens", "Flushing", 40.7674987, -73.833079), Location(93, "Queens", "Flushing Meadows-Corona Park", 40.7400275, -73.8406953), Location(94, "Bronx", "Fordham South", 40.8592667, -73.8984694), Location(95, "Queens", "Forest Hills", 40.718106, -73.8448469), Location(96, "Queens", "Forest Park/Highland Park", 40.6960418, -73.8663024), Location(97, "Brooklyn", "Fort Greene", 40.6920638, -73.97418739999999), Location(98, "Queens", "Fresh Meadows", 40.7335179, -73.7801447), Location(99, "Staten Island", "Freshkills Park", 40.5772365, -74.1858183), Location(100, "Manhattan", "Garment District", 40.7547072, -73.9916342), Location(101, "Queens", "Glen Oaks", 40.7471504, -73.7118223), Location(102, "Queens", "Glendale", 40.7016662, -73.8842219), Location(103, "Manhattan", "Governor's Island/Ellis Island/Liberty Island", 40.6892494, -74.04450039999999), Location(104, "Manhattan", "Governor's Island/Ellis Island/Liberty Island", 40.6892494, -74.04450039999999), Location(105, "Manhattan", "Governor's Island/Ellis Island/Liberty Island", 40.6892494, -74.04450039999999), Location(106, "Brooklyn", "Gowanus", 40.6751161, -73.9879753), Location(107, "Manhattan", "Gramercy", 40.7367783, -73.9844722), Location(108, "Brooklyn", "Gravesend", 40.5918636, -73.9768653), Location(109, "Staten Island", "Great Kills", 40.5543273, -74.156292), Location(110, "Staten Island", "Great Kills Park", 40.5492367, -74.1238486), Location(111, "Brooklyn", "Green-Wood Cemetery", 40.6579777, -73.9940634), Location(112, "Brooklyn", "Greenpoint", 40.7304701, -73.95150319999999), Location(113, "Manhattan", "Greenwich Village North", 40.7335719, -74.0027418), Location(114, "Manhattan", "Greenwich Village South", 40.7335719, -74.0027418), Location(115, "Staten Island", "Grymes Hill/Clifton", 40.6189726, -74.0784785), Location(116, "Manhattan", "Hamilton Heights", 40.8252793, -73.94761390000001), Location(117, "Queens", "Hammels/Arverne", 40.5880813, -73.81199289999999), Location(118, "Staten Island", "Heartland Village/Todt Hill", 40.5975007, -74.10189749999999), Location(119, "Bronx", "Highbridge", 40.836916, -73.9271294), Location(120, "Manhattan", "Highbridge Park", 40.8537599, -73.9257492), Location(121, "Queens", "Hillcrest/Pomonok", 40.732341, -73.81077239999999), Location(122, "Queens", "Hollis", 40.7112203, -73.762495), Location(123, "Brooklyn", "Homecrest", 40.6004787, -73.9565551), Location(124, "Queens", "Howard Beach", 40.6571222, -73.8429989), Location(125, "Manhattan", "Hudson Sq", 40.7265834, -74.0074731), Location(126, "Bronx", "Hunts Point", 40.8094385, -73.8803315), Location(127, "Manhattan", "Inwood", 40.8677145, -73.9212019), Location(128, "Manhattan", "Inwood Hill Park", 40.8722007, -73.9255549), Location(129, "Queens", "Jackson Heights", 40.7556818, -73.8830701), Location(130, "Queens", "Jamaica", 40.702677, -73.7889689), Location(131, "Queens", "Jamaica Estates", 40.7179512, -73.783822), Location(132, "Queens", "JFK Airport", 40.6413111, -73.77813909999999), Location(133, "Brooklyn", "Kensington", 40.63852019999999, -73.97318729999999), Location(134, "Queens", "Kew Gardens", 40.705695, -73.8272029), Location(135, "Queens", "Kew Gardens Hills", 40.724707, -73.8207618), Location(136, "Bronx", "Kingsbridge Heights", 40.8711235, -73.8976328), Location(137, "Manhattan", "Kips Bay", 40.74232920000001, -73.9800645), Location(138, "Queens", "LaGuardia Airport", 40.7769271, -73.8739659), Location(139, "Queens", "Laurelton", 40.67764, -73.7447853), Location(140, "Manhattan", "Lenox Hill East", 40.7662315, -73.9602312), Location(141, "Manhattan", "Lenox Hill West", 40.7662315, -73.9602312), Location(142, "Manhattan", "Lincoln Square East", 40.7741769, -73.98491179999999), Location(143, "Manhattan", "Lincoln Square West", 40.7741769, -73.98491179999999), Location(144, "Manhattan", "Little Italy/NoLiTa", 40.7230413, -73.99486069999999), Location(145, "Queens", "Long Island City/Hunters Point", 40.7485587, -73.94964639999999), Location(146, "Queens", "Long Island City/Queens Plaza", 40.7509846, -73.9402762), Location(147, "Bronx", "Longwood", 40.8248438, -73.8915875), Location(148, "Manhattan", "Lower East Side", 40.715033, -73.9842724), Location(149, "Brooklyn", "Madison", 40.60688529999999, -73.947958), Location(150, "Brooklyn", "Manhattan Beach", 40.57815799999999, -73.93892129999999), Location(151, "Manhattan", "Manhattan Valley", 40.7966989, -73.9684247), Location(152, "Manhattan", "Manhattanville", 40.8169443, -73.9558333), Location(153, "Manhattan", "Marble Hill", 40.8761173, -73.9102628), Location(154, "Brooklyn", "Marine Park/Floyd Bennett Field", 40.58816030000001, -73.8969745), Location(155, "Brooklyn", "Marine Park/Mill Basin", 40.6055157, -73.9348698), Location(156, "Staten Island", "Mariners Harbor", 40.63677010000001, -74.1587547), Location(157, "Queens", "Maspeth", 40.7294018, -73.9065883), Location(158, "Manhattan", "Meatpacking/West Village West", 40.7342331, -74.0100622), Location(159, "Bronx", "Melrose South", 40.824545, -73.9104143), Location(160, "Queens", "Middle Village", 40.717372, -73.87425), Location(161, "Manhattan", "Midtown Center", 40.7314658, -73.9970956), Location(162, "Manhattan", "Midtown East", 40.7571432, -73.9718815), Location(163, "Manhattan", "Midtown North", 40.7649516, -73.9851039), Location(164, "Manhattan", "Midtown South", 40.7521795, -73.9875438), Location(165, "Brooklyn", "Midwood", 40.6204388, -73.95997779999999), Location(166, "Manhattan", "Morningside Heights", 40.8105443, -73.9620581), Location(167, "Bronx", "Morrisania/Melrose", 40.824545, -73.9104143), Location(168, "Bronx", "Mott Haven/Port Morris", 40.8022025, -73.9166051), Location(169, "Bronx", "Mount Hope", 40.8488863, -73.9051185), Location(170, "Manhattan", "Murray Hill", 40.7478792, -73.9756567), Location(171, "Queens", "Murray Hill-Queens", 40.7634996, -73.8073261), Location(172, "Staten Island", "New Dorp/Midland Beach", 40.5739937, -74.1159755), Location(173, "Queens", "North Corona", 40.7543725, -73.8669188), Location(174, "Bronx", "Norwood", 40.8810341, -73.878486), Location(175, "Queens", "Oakland Gardens", 40.7408584, -73.758241), Location(176, "Staten Island", "Oakwood", 40.563994, -74.1159754), Location(177, "Brooklyn", "Ocean Hill", 40.6782737, -73.9108212), Location(178, "Brooklyn", "Ocean Parkway South", 40.61287799999999, -73.96838620000001), Location(179, "Queens", "Old Astoria", 40.7643574, -73.92346189999999), Location(180, "Queens", "Ozone Park", 40.6794072, -73.8507279), Location(181, "Brooklyn", "Park Slope", 40.6710672, -73.98142279999999), Location(182, "Bronx", "Parkchester", 40.8382522, -73.8566087), Location(183, "Bronx", "Pelham Bay", 40.8505556, -73.83333329999999), Location(184, "Bronx", "Pelham Bay Park", 40.8670144, -73.81006339999999), Location(185, "Bronx", "Pelham Parkway", 40.8553279, -73.8639594), Location(186, "Manhattan", "Penn Station/Madison Sq West", 40.7505045, -73.9934387), Location(187, "Staten Island", "Port Richmond", 40.63549140000001, -74.1254641), Location(188, "Brooklyn", "Prospect-Lefferts Gardens", 40.6592355, -73.9533895), Location(189, "Brooklyn", "Prospect Heights", 40.6774196, -73.9668408), Location(190, "Brooklyn", "Prospect Park", 40.6602037, -73.9689558), Location(191, "Queens", "Queens Village", 40.7156628, -73.7419017), Location(192, "Queens", "Queensboro Hill", 40.7429383, -73.8251741), Location(193, "Queens", "Queensbridge/Ravenswood", 40.7556711, -73.9456723), Location(194, "Manhattan", "Randalls Island", 40.7932271, -73.92128579999999), Location(195, "Brooklyn", "Red Hook", 40.6733676, -74.00831889999999), Location(196, "Queens", "Rego Park", 40.72557219999999, -73.8624893), Location(197, "Queens", "Richmond Hill", 40.6958108, -73.8272029), Location(198, "Queens", "Ridgewood", 40.7043986, -73.9018292), Location(199, "Bronx", "Rikers Island", 40.79312770000001, -73.88601), Location(200, "Bronx", "Riverdale/North Riverdale/Fieldston", 40.89961830000001, -73.9088276), Location(201, "Queens", "Rockaway Park", 40.57978629999999, -73.8372237), Location(202, "Manhattan", "Roosevelt Island", 40.76050310000001, -73.9509934), Location(203, "Queens", "Rosedale", 40.6584068, -73.7389596), Location(204, "Staten Island", "Rossville/Woodrow", 40.5434385, -74.19764409999999), Location(205, "Queens", "Saint Albans", 40.6895283, -73.76436880000001), Location(206, "Staten Island", "Saint George/New Brighton", 40.6404369, -74.090226), Location(207, "Queens", "Saint Michaels Cemetery/Woodside", 40.7646761, -73.89850419999999), Location(208, "Bronx", "Schuylerville/Edgewater Park", 40.8235967, -73.81029269999999), Location(209, "Manhattan", "Seaport", 40.70722629999999, -74.0027431), Location(210, "Brooklyn", "Sheepshead Bay", 40.5953955, -73.94575379999999), Location(211, "Manhattan", "SoHo", 40.723301, -74.0029883), Location(212, "Bronx", "Soundview/Bruckner", 40.8247566, -73.8710929), Location(213, "Bronx", "Soundview/Castle Hill", 40.8176831, -73.8507279), Location(214, "Staten Island", "South Beach/Dongan Hills", 40.5903824, -74.06680759999999), Location(215, "Queens", "South Jamaica", 40.6808594, -73.7919103), Location(216, "Queens", "South Ozone Park", 40.6764003, -73.8124984), Location(217, "Brooklyn", "South Williamsburg", 40.7043921, -73.9565551), Location(218, "Queens", "Springfield Gardens North", 40.6715916, -73.779798), Location(219, "Queens", "Springfield Gardens South", 40.6715916, -73.779798), Location(220, "Bronx", "Spuyten Duyvil/Kingsbridge", 40.8833912, -73.9051185), Location(221, "Staten Island", "Stapleton", 40.6264929, -74.07764139999999), Location(222, "Brooklyn", "Starrett City", 40.6484272, -73.88236119999999), Location(223, "Queens", "Steinway", 40.7745459, -73.9037477), Location(224, "Manhattan", "Stuy Town/Peter Cooper Village", 40.7316903, -73.9778494), Location(225, "Brooklyn", "Stuyvesant Heights", 40.6824166, -73.9319933), Location(226, "Queens", "Sunnyside", 40.7432759, -73.9196324), Location(227, "Brooklyn", "Sunset Park East", 40.65272, -74.00933479999999), Location(228, "Brooklyn", "Sunset Park West", 40.65272, -74.00933479999999), Location(229, "Manhattan", "Sutton Place/Turtle Bay North", 40.7576281, -73.961698), Location(230, "Manhattan", "Times Sq/Theatre District", 40.759011, -73.9844722), Location(231, "Manhattan", "TriBeCa/Civic Center", 40.71625299999999, -74.0122396), Location(232, "Manhattan", "Two Bridges/Seward Park", 40.7149056, -73.98924699999999), Location(233, "Manhattan", "UN/Turtle Bay South", 40.7571432, -73.9718815), Location(234, "Manhattan", "Union Sq", 40.7358633, -73.9910835), Location(235, "Bronx", "University Heights/Morris Heights", 40.8540855, -73.9198498), Location(236, "Manhattan", "Upper East Side North", 40.7600931, -73.9598414), Location(237, "Manhattan", "Upper East Side South", 40.7735649, -73.9565551), Location(238, "Manhattan", "Upper West Side North", 40.7870106, -73.9753676), Location(239, "Manhattan", "Upper West Side South", 40.7870106, -73.9753676), Location(240, "Bronx", "Van Cortlandt Park", 40.8972233, -73.8860668), Location(241, "Bronx", "Van Cortlandt Village", 40.8837203, -73.89313899999999), Location(242, "Bronx", "Van Nest/Morris Park", 40.8459682, -73.8625946), Location(243, "Manhattan", "Washington Heights North", 40.852476, -73.9342996), Location(244, "Manhattan", "Washington Heights South", 40.8417082, -73.9393554), Location(245, "Staten Island", "West Brighton", 40.6270298, -74.10931409999999), Location(246, "Manhattan", "West Chelsea/Hudson Yards", 40.7542535, -74.0023331), Location(247, "Bronx", "West Concourse", 40.8316761, -73.9227554), Location(248, "Bronx", "West Farms/Bronx River", 40.8430609, -73.8816001), Location(249, "Manhattan", "West Village", 40.73468, -74.0047554), Location(250, "Bronx", "Westchester Village/Unionport", 40.8340447, -73.8531349), Location(251, "Staten Island", "Westerleigh", 40.616296, -74.1386767), Location(252, "Queens", "Whitestone", 40.7920449, -73.8095574), Location(253, "Queens", "Willets Point", 40.7606911, -73.840436), Location(254, "Bronx", "Williamsbridge/Olinville", 40.8787602, -73.85283559999999), Location(255, "Brooklyn", "Williamsburg (North Side)", 40.71492, -73.9528472), Location(256, "Brooklyn", "Williamsburg (South Side)", 40.70824229999999, -73.9571487), Location(257, "Brooklyn", "Windsor Terrace", 40.6539346, -73.9756567), Location(258, "Queens", "Woodhaven", 40.6901366, -73.8566087), Location(259, "Bronx", "Woodlawn/Wakefield", 40.8955885, -73.8627133), Location(260, "Queens", "Woodside", 40.7532952, -73.9068973), Location(261, "Manhattan", "World Trade Center", 40.7118011, -74.0131196), Location(262, "Manhattan", "Yorkville East", 40.7762231, -73.94920789999999), Location(263, "Manhattan", "Yorkville West", 40.7762231, -73.94920789999999) ]
72.562937
112
0.679131
451
0.021732
0
0
226
0.01089
0
0
7,271
0.350359
129d53076c9002e63bb6e233e94f66b83a1c9e37
114
py
Python
main.py
viniciuslimafernandes/interpolation
1aff08cba6026143fd267a0c648bad8975ae5d74
[ "MIT" ]
null
null
null
main.py
viniciuslimafernandes/interpolation
1aff08cba6026143fd267a0c648bad8975ae5d74
[ "MIT" ]
null
null
null
main.py
viniciuslimafernandes/interpolation
1aff08cba6026143fd267a0c648bad8975ae5d74
[ "MIT" ]
null
null
null
import math from utils import * def main(): showHome() option = chooseOption() handleOption(option) main()
12.666667
25
0.701754
0
0
0
0
0
0
0
0
0
0
129e3285af4caf68d1f91b717a406d9814f4383d
222
py
Python
tests/helper.py
blehers/PyViCare
e74b854afe6678f30c05bdef5e642ab66d1c0b6a
[ "Apache-2.0" ]
null
null
null
tests/helper.py
blehers/PyViCare
e74b854afe6678f30c05bdef5e642ab66d1c0b6a
[ "Apache-2.0" ]
null
null
null
tests/helper.py
blehers/PyViCare
e74b854afe6678f30c05bdef5e642ab66d1c0b6a
[ "Apache-2.0" ]
null
null
null
import os import simplejson as json def readJson(fileName): test_filename = os.path.join(os.path.dirname(__file__), fileName) with open(test_filename, mode='rb') as json_file: return json.load(json_file)
24.666667
69
0.72973
0
0
0
0
0
0
0
0
4
0.018018
129f44f6dc7578a9b45f3abd7e3b50f1fe3a4274
1,999
py
Python
examples/client-example.py
pkalemba/python-warp10client
25a9b446a217066a7d6c39aeb7d19d1be93a7688
[ "BSD-3-Clause" ]
8
2017-11-20T13:31:58.000Z
2021-07-13T08:34:52.000Z
examples/client-example.py
pkalemba/python-warp10client
25a9b446a217066a7d6c39aeb7d19d1be93a7688
[ "BSD-3-Clause" ]
2
2017-11-20T21:16:16.000Z
2017-12-11T13:56:44.000Z
examples/client-example.py
regel/python-warp10client
bee380513d899ae7c55a26e43a8914f8c29b5279
[ "BSD-3-Clause" ]
4
2017-11-21T07:51:01.000Z
2020-04-07T12:03:23.000Z
#! /usr/bin/env python # -*- coding: utf-8 -*- import daiquiri from time import time import warp10client LOG = daiquiri.getLogger(__name__) warp10_api_url = '' # Add here backend url where metrics are stored read_token = '' # Add here your metrics read token write_token = '' # Add here your metrics write token # To get metrics: metric_get = { 'name': 'cpu_util', 'tags': { 'resource_id': '18d94676-077c-4c13-b000-27fd603f3056', 'project_id': '8069f876e7d444249ef04b9a74090711', }, 'aggregate': { 'type': 'mean', 'span': 1000000 * 3600, }, 'timestamp': { 'start': "2017-01-01T00:00:00.000Z", 'end': "2018-01-01T00:00:00.000Z" } # 'timestamp': { 'end': "2018-01-01T00:00:00.000Z" } # 'timestamp': { 'start': None, 'end': None } } # To write metrics: metric_write = { 'name': 'cpu_util_mjozefcz', 'tags': { 'resource_id': '18d94676-077c-4c13-b000-27fd603f3056', 'project_id': '8069f876e7d444249ef04b9a74090711', 'unit': '%', }, 'position': { 'longitude': None, 'latitude': None, 'elevation': None, 'timestamp': time() * 1000 * 1000, }, 'value': 11, } # To check metrics metric_check = { 'name': 'cpu_util', 'tags': { 'resource_id': '18d94676-077c-4c13-b000-27fd603f3056', 'project_id': '8069f876e7d444249ef04b9a74090711', }, } # arguments need to authorize in metrics backend kwargs = { 'write_token': write_token, 'read_token': read_token, 'warp10_api_url': warp10_api_url, } client = warp10client.Warp10Client(**kwargs) # Consider to create timeseries, new object with included metrics as each point # Thats goooood idea. metric_get_test = client.get(metric_get) metric_exists = client.exists(metric_check) metric_obj = warp10client.Metric(**metric_write) metric_send = client.set(metric_write) # delete method is not yet implemented # metric_send = client.delete(metric_write)
24.9875
79
0.64032
0
0
0
0
0
0
0
0
1,127
0.563782
12a0170295fb80e383d69995765e135510da8362
3,094
py
Python
ports/stm32/boards/NUCLEO_WB55/rfcore_makefirmware.py
H-Grobben/micropython
fce96b11f3ff444c1ac24501db465dbe9e5902bf
[ "MIT" ]
null
null
null
ports/stm32/boards/NUCLEO_WB55/rfcore_makefirmware.py
H-Grobben/micropython
fce96b11f3ff444c1ac24501db465dbe9e5902bf
[ "MIT" ]
null
null
null
ports/stm32/boards/NUCLEO_WB55/rfcore_makefirmware.py
H-Grobben/micropython
fce96b11f3ff444c1ac24501db465dbe9e5902bf
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # # This file is part of the MicroPython project, http://micropython.org/ # # The MIT License (MIT) # # Copyright (c) 2020 Jim Mussared # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # This script obfuscates the ST wireless binaries so they can be safely copied # to the flash filesystem and not be accidentally discovered by the FUS during # an update. See more information (and the corresponding de-obfuscation) in # rfcore_firmware.py as well as instructions on how to use. import os import struct import sys # Must match rfcore_firmware.py. _OBFUSCATION_KEY = 0x0573B55AA _FIRMWARE_FILES = { "stm32wb5x_FUS_fw_1_0_2.bin": "fus_102.bin", "stm32wb5x_FUS_fw.bin": "fus_112.bin", "stm32wb5x_BLE_HCILayer_fw.bin": "ws_ble_hci.bin", } def main(src_path, dest_path): for src_file, dest_file in _FIRMWARE_FILES.items(): src_file = os.path.join(src_path, src_file) dest_file = os.path.join(dest_path, dest_file) if not os.path.exists(src_file): print("Unable to find: {}".format(src_file)) continue sz = 0 with open(src_file, "rb") as src: with open(dest_file, "wb") as dest: while True: b = src.read(4) if not b: break (v,) = struct.unpack("<I", b) v ^= _OBFUSCATION_KEY dest.write(struct.pack("<I", v)) sz += 4 print("Written {} ({} bytes)".format(dest_file, sz)) if __name__ == "__main__": if len(sys.argv) != 3: print("Usage: {} src_path dest_path".format(sys.argv[0])) print() print( '"src_path" should be the location of the ST binaries from https://github.com/STMicroelectronics/STM32CubeWB/tree/master/Projects/STM32WB_Copro_Wireless_Binaries/STM32WB5x' ) print( '"dest_path" will be where fus_102.bin, fus_110.bin, and ws_ble_hci.bin will be written to.' ) sys.exit(1) main(sys.argv[1], sys.argv[2])
38.675
184
0.671946
0
0
0
0
0
0
0
0
1,999
0.646089
12a080db56a168dea64d817c232a427dfdd87858
1,081
py
Python
universal/spiders/universalSpider.py
universalscraper/universal-spider
0b6d82ee0c749cf32dcf501e6d84f518ee2e8437
[ "MIT" ]
2
2017-01-14T20:09:24.000Z
2019-09-23T09:26:23.000Z
universal/spiders/universalSpider.py
scraperize/universal-spider
0b6d82ee0c749cf32dcf501e6d84f518ee2e8437
[ "MIT" ]
null
null
null
universal/spiders/universalSpider.py
scraperize/universal-spider
0b6d82ee0c749cf32dcf501e6d84f518ee2e8437
[ "MIT" ]
null
null
null
import scrapy import yaml class universalSpider(scrapy.Spider): name = "universal" parameters = None def __init__(self, *args, **kwargs): worker = kwargs.get("worker") if not worker: exit("You must specify worker name : -a worker=name") self.parameters = yaml.load(file("./workers/" + worker + ".yml", "r")) super(universalSpider, self).__init__(*args, **kwargs) self.start_urls = self.parameters["urls"] self.allowed_domains = self.parameters["domains"] def parse(self, response): wrapper = "html" if "wrapper" in self.parameters and "css" in self.parameters["wrapper"]: wrapper = self.parameters["wrapper"]["css"] for item in response.css(wrapper): data = {} for columnName in self.parameters["columns"]: columnOptions = self.parameters["columns"][columnName] data[columnName] = str(item.css(columnOptions["css"]).extract_first().strip().encode(self.parameters["charset"])), yield data
29.216216
130
0.60592
1,053
0.974098
541
0.500463
0
0
0
0
177
0.163737
12a0f3a1d45fe59fa067cf5c06c3bffbb58f6bd1
11,715
py
Python
environments/IPP_BO_Ypacarai.py
FedePeralta/ASVs_Deep_Reinforcement_Learning_with_CNNs
23b9b181499a4b06f2ca2951c002359c1959e727
[ "MIT" ]
null
null
null
environments/IPP_BO_Ypacarai.py
FedePeralta/ASVs_Deep_Reinforcement_Learning_with_CNNs
23b9b181499a4b06f2ca2951c002359c1959e727
[ "MIT" ]
null
null
null
environments/IPP_BO_Ypacarai.py
FedePeralta/ASVs_Deep_Reinforcement_Learning_with_CNNs
23b9b181499a4b06f2ca2951c002359c1959e727
[ "MIT" ]
null
null
null
import warnings import gym import matplotlib.pyplot as plt import numpy as np from skopt.acquisition import gaussian_ei from environments.groundtruthgenerator import GroundTruth warnings.simplefilter("ignore", UserWarning) from skopt.learning.gaussian_process import gpr, kernels class ContinuousBO(gym.Env): environment_name = "Continuous Informative Path Planning" def __init__(self, scenario_map, initial_position=None, battery_budget=100, resolution=1, seed=0): self.id = "Continuous BO Ypacarai" # Map of the environment # self.scenario_map = scenario_map # Environment boundaries self.map_size = self.scenario_map.shape self.map_lims = np.array(self.map_size) - 1 # Action space and sizes # self.action_space = gym.spaces.Box(low=np.array([0, 0]), high=np.array([1, 1])) self.action_size = 2 # Internal state of the Markov Decision Process # self.state = None self.next_state = None self.reward = None self.done = False # Create the ground truth object # self.gt = GroundTruth(1 - self.scenario_map, 1, max_number_of_peaks=5) # Initial position, referred as a [X,Y] vector # self.initial_position = initial_position self.step_count = 0 # Penalization for a collision in the reward funcion # self.collision_penalization = 10 # Seed for deterministic replication # self.seed = seed np.random.seed(self.seed) # Battery budget self.battery = battery_budget # Battery cost -> Cost of the battery per 1m movement # This is calculated approximately using the long size of the map ~ 15km in the Ypacarai case self.battery_cost = 100 / np.max(self.map_size) / resolution # Gaussian Process parameters # GP with RBF kernel of 10% long-size of the map lengthscale (in pixels) self.gp = gpr.GaussianProcessRegressor(kernel=kernels.RBF(0.1 * np.min(self.map_size)), alpha=1e-7) # Matrix de (num_muestra, features): num_muestra: numero de posiciones en la que se tomaron muestras # features: cada una de las dimenciones, i.e., features son y, x self.train_inputs = None # Solution vector: y = f(x) self.train_targets = None # Matrix de (num_pos, features): num_pos: numero de posiciones en la que puede encontrarse el ASV # features: cada una de las dimenciones, i.e., features son y, x # [[2 17] # [2 18] # ... # [y x] # ... # [54 31] # [54 32]] self.possible_locations = np.asarray(np.where(self.scenario_map == 1)).reshape(2, -1).T # Generate vector of possible gt (speeds up the reward MSE process) self.target_locations = None # Vector!! de dimension 1 fila x (mxn) columnas representando el mapa de incertidumbre anterior self.current_std = None # Vector!! de dimension 1 fila x (mxn) columnas representando el mapa de media anterior self.current_mu = None # Current MSE for reward self.previous_mse = None self._max_step_distance = np.min(self.map_size) # Initial position # # The initial position HAS PIXEL UNITS: # The action spaces translates to PIXEL UNITS TO FORM THE STATE self.position = None self.place_agent() self.reset() def max_step_distance(self): # esto se puede convertir en funcion del length scale return 0.2 * self._max_step_distance # return lambda * np.exp(self.gp.kernel_.theta[0]) def reset(self): """ Reset the internal parameters of the environment. """ # Place the agent in the initial point depending if it is defined a fixed initial position. self.place_agent() # Reset the battery self.battery = 100 # Reset the internal MPD variables self.reward = None self.done = False self.next_state = None self.step_count = 0 # Generate another gt -> changes internally self.gt.normalized_z # normalized_z is also achievable using self.gt.read() self.gt.reset() # Reset Gaussian Process parameters # # Generate the first input X self.train_inputs = np.array([self.position]).reshape(-1, 2) # Evaluate the environment in this particular initial point self.train_targets = np.array([self.gt.read(self.position)]) # Fit the Gaussian Process self.gp.fit(self.train_inputs, self.train_targets) # Generate the uncertainty map self.current_mu, self.current_std = self.gp.predict(self.possible_locations, return_std=True) # Fill vector of possible gt (speeds up the reward MSE process) self.target_locations = [self.gt.read(pos) for pos in self.possible_locations] # Calculate first MSE self.previous_mse = (np.square(self.current_mu - self.target_locations)).mean() # Process the state self.process_state() return self.state def place_agent(self): """ Place the agent in a random place. """ if self.initial_position is None: indx = np.random.randint(0, len(self.possible_locations)) self.position = self.possible_locations[indx] else: self.position = np.copy(self.initial_position) def process_state(self): """ Process the state """ """ state[0] -> position state[1] -> boundaries state[2] -> features """ state = np.zeros(shape=(4, self.scenario_map.shape[0], self.scenario_map.shape[1])).astype(float) # State - position # state[0, self.position[0], self.position[1]] = 1 # State - boundaries # state[1] = np.copy(self.scenario_map) # State - old standard deviation state[2][self.possible_locations[:, 0], self.possible_locations[:, 1]] = self.current_std # State - old standard deviation state[3][self.possible_locations[:, 0], self.possible_locations[:, 1]] = self.current_mu self.state = state def render(self, **kwargs): """ Render the state for visualization purposes. Outputs the stacked rgb resultant. """ red = np.copy(self.state[1]) + (1 - self.scenario_map) # todo: agregar state[3] green = np.copy(self.state[2]) + (1 - self.scenario_map) blue = np.copy(self.state[0]) + (1 - self.scenario_map) rgb = np.stack((red, green, blue), axis=-1) fig, axs = plt.subplots(1, 4, figsize=(15, 3)) axs[0].imshow(self.state[0]) axs[0].set_title('Position') axs[1].imshow(self.state[1]) axs[1].set_title('Navigation map') axs[2].imshow(self.state[2]) axs[2].plot(self.train_inputs[:, 1], self.train_inputs[:, 0], 'xr') axs[2].set_title('$\\sigma(x)$') axs[3].imshow(self.state[3]) axs[3].plot(self.train_inputs[:, 1], self.train_inputs[:, 0], 'xr') axs[3].set_title('$\\mu(x)$') plt.show() return rgb def action2vector(self, desired_action): """ Translate a desired action into a pixel velocity vector. """ desired_distance = self.max_step_distance() * desired_action[0] desired_angle = 2 * 3.141592 * desired_action[1] return np.array( [-desired_distance * np.sin(desired_angle), desired_distance * np.cos(desired_angle)] ) def step(self, desired_action): """ Process an action, generates the new state and the reward to that action. """ self.step_count += 1 next_position = self.action2vector(desired_action) + self.position # The next intended position next_position = np.clip(next_position, (0, 0), self.map_lims) # Clip the intended position to be inside the map next_position = np.floor(next_position).astype(int) # Discrete if self.scenario_map[next_position[0], next_position[1]] == 1: # If the next position is navigable ... valid = True else: valid = False if valid: distance = np.linalg.norm(next_position - self.position) # Compute the intended travel distance IN PIXELS self.position = next_position # Update the position self.battery -= distance * self.battery_cost # Compute the new battery level self.train_inputs = np.vstack([self.train_inputs, self.position]) # Store the new sampling point self.train_targets = np.append(self.train_targets, self.gt.read(self.position)) self.gp.fit(self.train_inputs, self.train_targets) # Fit the stored sampled points else: distance = np.linalg.norm(next_position - self.position) # If not valid, it consumes the intended battery self.battery -= distance * self.battery_cost self.compute_reward(valid) # Reward function evaluation self.process_state() # Generate the new state # Check the episodic-end condition self.done = self.battery <= self.battery_cost return self.state, self.reward, self.done, None def compute_reward(self, valid): r = 0 if not valid: r -= self.collision_penalization else: self.current_mu, self.current_std = self.gp.predict(self.possible_locations, return_std=True) r = (self.previous_mse - (np.square(self.current_mu - self.target_locations)).mean()) / self.previous_mse self.previous_mse = (np.square(self.current_mu - self.target_locations)).mean() self.reward = r def get_action_using_bo(_env): all_acq = gaussian_ei(_env.possible_locations, _env.gp, np.min(_env.train_targets), xi=1.0) best_loc = _env.possible_locations[np.where(all_acq == np.max(all_acq))][0] vect_dist = np.subtract(best_loc, _env.position) ang = (np.arctan2(vect_dist[0], -vect_dist[1]) + np.pi) / (2 * np.pi) # determina la distancia y luego encuentra el ratio con respecto al max dist (normaliza) dist_ = np.exp(_env.gp.kernel_.theta[0]) * 0.375 / _env.max_step_distance() if dist_ > 1.0: dist_ = 1.0 acq_state = np.zeros(_env.map_size) acq_state[_env.possible_locations[:, 0], _env.possible_locations[:, 1]] = all_acq # plt.figure() # plt.imshow(acq_state) # plt.plot(_env.train_inputs[:, 1], _env.train_inputs[:, 0], 'xr') # plt.plot(best_loc[1], best_loc[0], '^y') # plt.plot(_env.position[1], _env.position[0], 'xb') # action = _env.action2vector([dist_, ang]) + _env.position # print("best: ", best_loc, "pos : ", _env.position, "dist: ", vect_dist, "next: ", action) # plt.plot(action[1], action[0], '^b') return [dist_, ang] if __name__ == "__main__": """ Test to check the wall-time for an episode to run and the average number of steps per episode """ my_map = np.genfromtxt('YpacaraiMap_big.csv', delimiter=',').astype(int) / 255 env = ContinuousBO(scenario_map=my_map, resolution=1) # env.render() import time t0 = time.time() for i in range(100): env.reset() d = False print('Episode ', i) avg_r_ep = 0 while not d: a = get_action_using_bo(env) s, r_, d, _ = env.step(a) avg_r_ep += r_ if r_ == -10: print("collision") # env.render() print('Number of steps: ', env.step_count) print((time.time() - t0) / 100, ' segundos la iteracion')
38.284314
120
0.626376
9,525
0.81306
0
0
0
0
0
0
3,924
0.334955
12a151b9a4e765ed24ceecf3aa9bec0771ac3589
5,281
py
Python
utils/metrics.py
0b3d/Image-Map-Embeddings
a9fc65ac92094bcfcd0f19a3604f0b9d8bd3174f
[ "MIT" ]
2
2022-02-11T06:05:35.000Z
2022-03-14T02:10:31.000Z
utils/metrics.py
0b3d/Image-Map-Embeddings
a9fc65ac92094bcfcd0f19a3604f0b9d8bd3174f
[ "MIT" ]
null
null
null
utils/metrics.py
0b3d/Image-Map-Embeddings
a9fc65ac92094bcfcd0f19a3604f0b9d8bd3174f
[ "MIT" ]
null
null
null
import numpy as np from sklearn.metrics import pairwise_distances import matplotlib.pyplot as plt class NumpyMetrics(): def __init__(self, metric='euclidean'): self.metric = metric def rank(self, x,y, x_labels, y_labels): distances = pairwise_distances(x,y,self.metric) batch_size = x_labels.shape[0] sorted_distances_indices = np.argsort(distances, axis=1) labels_matrix = np.tile(x_labels, batch_size).reshape((batch_size, batch_size)) retrived_labels = np.take(labels_matrix, sorted_distances_indices) labels_equal = np.equal(np.expand_dims(y_labels,axis=1), retrived_labels) rank = np.argmax(labels_equal.astype(float), axis=1) + 1 return rank def elements_by_class(self, x_labels): '''Count the total of elements of each class in the eval set Return unique_labels -> A numpy array with the index of the labels count -> Number of elements of each class in the test set ''' unique_labels = np.unique(x_labels) # Make and array of unique labels label_matrix = np.equal(np.expand_dims(unique_labels, axis=1), np.expand_dims(x_labels, axis=0)) #shape [No.classes,1],[1,Eval_size] -> [No_classes,Eval_size] count = label_matrix.sum(axis=1) return unique_labels,count def true_positives(self, distances, x_labels, y_labels, k): ''' Find the k nearest y given x, then check if the label of y correnspond to x, and accumulate. ''' sorted_distances_indices = np.argsort(distances,axis=1) # batch_size = x_labels.shape[0] labels_matrix = np.tile(x_labels, batch_size).reshape((batch_size, batch_size)) # True label matrix retrieved_labels = np.take(labels_matrix,sorted_distances_indices) #The sorted retrieved labels matrix labels_equal = np.equal(np.expand_dims(y_labels, axis=1), retrieved_labels) # Where the retrieved label == true label tp = np.sum(labels_equal[:,0:k], axis=1) # Aparece cuando debe aparecer return tp def false_negative(self, distances, x_labels, y_labels, k): sorted_distances_indices = np.argsort(distances,axis=1) # batch_size = x_labels.shape[0] labels_matrix = np.tile(x_labels, batch_size).reshape((batch_size, batch_size)) # True label matrix retrieved_labels = np.take(labels_matrix,sorted_distances_indices) #The sorted retrieved labels matrix labels_equal = np.equal(np.expand_dims(y_labels, axis=1), retrieved_labels) # Where the retrieved label == true label fn = np.sum(labels_equal[:,k:], axis=1) return fn def false_positives(self, distances, x_labels, y_labels, k): 'Estan y no deberian estar' sorted_distances_indices = np.argsort(distances,axis=1) # batch_size = x_labels.shape[0] labels_matrix = np.tile(x_labels, batch_size).reshape((batch_size, batch_size)) # True label matrix retrieved_labels = np.take(labels_matrix,sorted_distances_indices) #The sorted retrieved labels matrix labels_equal = np.equal(np.expand_dims(y_labels, axis=1), retrieved_labels) # Where the retrieved label == true label labels_not_equal = np.logical_not(labels_equal) fp = np.sum(labels_not_equal[:,0:k], axis=1) return fp def precision_at_k(self, x,y, x_labels, y_labels, k): ''' The ability of a classificator model to identify only the relevant points. Precision = true_positives /(true_positives + false_positives) ''' distances = pairwise_distances(x,y,self.metric) tp = self.true_positives(distances, x_labels, y_labels, k) #fp = self.false_positives(distances, x_labels, y_labels, k) fn = self.false_negative(distances, x_labels, y_labels, k) fp = np.minimum(k - tp, fn) precision_at_k = tp / (tp + fp) return precision_at_k def recall_at_k(self, x, y, x_labels, y_labels, k): ''' Percentage of total relevant results correctly classified by the algorithm The ability of a model to find all relevant cases within a dataset. Recall = true_positives / (true_positives + false_negatives) The ability of the model to retrieve a relevenat pair of one domain given a query of the other domain ''' distances = pairwise_distances(x,y,self.metric) tp = self.true_positives(distances, x_labels, y_labels, k) fn = self.false_negative(distances, x_labels, y_labels, k) fn = np.minimum(fn,k-tp) recall_at_k = tp / (tp + fn) return recall_at_k def average_rank_at_k(self, x, y, labels): rank = self.rank(x,y,labels, labels) for k in [1,5,10,20,50,100,500,5000]: percentage = (rank <= k).sum() / x.shape[0] print(' Top {:.3f}, {:.3f}'.format(k,percentage)) def rank_curve(self, x, y, labels): rank = self.rank(x,y,labels,labels) print("Average rank", rank.mean()) count_percentage = np.zeros((x.shape[0]), dtype=float) for i in range(x.shape[0]): count_percentage[i] = (rank <= i+1).sum() / x.shape[0] plt.plot(count_percentage) plt.show() plt.waitforbuttonpress()
51.271845
166
0.667487
5,175
0.979928
0
0
0
0
0
0
1,389
0.263018
12a1ccdc2c994161fe55e1738031ece8631b2305
693
py
Python
tests/bugs/test-200908181430.py
eLBati/pyxb
14737c23a125fd12c954823ad64fc4497816fae3
[ "Apache-2.0" ]
123
2015-01-12T06:43:22.000Z
2022-03-20T18:06:46.000Z
tests/bugs/test-200908181430.py
eLBati/pyxb
14737c23a125fd12c954823ad64fc4497816fae3
[ "Apache-2.0" ]
103
2015-01-08T18:35:57.000Z
2022-01-18T01:44:14.000Z
tests/bugs/test-200908181430.py
eLBati/pyxb
14737c23a125fd12c954823ad64fc4497816fae3
[ "Apache-2.0" ]
54
2015-02-15T17:12:00.000Z
2022-03-07T23:02:32.000Z
# -*- coding: utf-8 -*- import logging if __name__ == '__main__': logging.basicConfig() _log = logging.getLogger(__name__) import pyxb.binding.generate import pyxb.binding.datatypes as xs import pyxb.binding.basis import pyxb.utils.domutils import os.path xsd='''<?xml version="1.0" encoding="UTF-8"?> <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> <xs:simpleType name="foo"/> </xs:schema>''' from pyxb.exceptions_ import * import unittest class TestTrac_200908181430 (unittest.TestCase): def testParsing (self): self.assertRaises(pyxb.SchemaValidationError, pyxb.binding.generate.GeneratePython, schema_text=xsd) if __name__ == '__main__': unittest.main()
25.666667
108
0.735931
185
0.266955
0
0
0
0
0
0
186
0.268398
12a26d1b84cfd62fa98cec13a5aa4a115ddadb78
779
py
Python
bin/print_data_structure.py
JohanComparat/pyEmerge
9b5bfa01959d48ea41221609b8f375f27e3e39ff
[ "Unlicense" ]
null
null
null
bin/print_data_structure.py
JohanComparat/pyEmerge
9b5bfa01959d48ea41221609b8f375f27e3e39ff
[ "Unlicense" ]
null
null
null
bin/print_data_structure.py
JohanComparat/pyEmerge
9b5bfa01959d48ea41221609b8f375f27e3e39ff
[ "Unlicense" ]
null
null
null
import sys ii = int(sys.argv[1]) env = sys.argv[2] # python3 print_data_structure.py 22 MD10 import glob import os import numpy as n import EmergeIterate iterate = EmergeIterate.EmergeIterate(ii, env) iterate.open_snapshots() def print_attr(h5item): for attr in h5item: print(attr, h5item[attr]) def print_all_key(h5item): for key in h5item.keys(): print('========================================') print(key, h5item[key]) print('- - - - - - - - - - - - - - - - - - - - ') print_attr(h5item[key]) def print_data_structure(h5item): print('+ + + + + + + HEADER + + + + + + + + +') print_attr(h5item.attrs) print('\n') print('+ + + + + + + DATA + + + + + + + + + +') print_all_key(h5item) print_data_structure(iterate.f0)
23.606061
55
0.56611
0
0
0
0
0
0
0
0
211
0.27086
12a383eaf645019cefa1dc9f3842290ed2752e23
1,999
py
Python
setup.py
ljdursi/mergevcf
b400385936417c6e517d3c7daec8b9ca6389c51f
[ "MIT" ]
25
2015-06-22T15:30:32.000Z
2021-05-13T14:59:18.000Z
setup.py
ljdursi/mergevcf
b400385936417c6e517d3c7daec8b9ca6389c51f
[ "MIT" ]
7
2015-08-14T11:20:35.000Z
2021-05-18T17:48:38.000Z
setup.py
ljdursi/mergevcf
b400385936417c6e517d3c7daec8b9ca6389c51f
[ "MIT" ]
6
2017-04-17T18:35:43.000Z
2018-05-15T21:47:13.000Z
# based on https://github.com/pypa/sampleproject from setuptools import setup, find_packages from codecs import open from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the relevant file with open(path.join(here, 'DESCRIPTION.rst'), encoding='utf-8') as f: long_description = f.read() setup( name='mergevcf', version='1.0.1', description='Merge VCF calls', long_description=long_description, # The project's main homepage. url='https://github.com/ljdursi/mergevcf', # Author details author='Jonathan Dursi', author_email='Jonathan.Dursi@oicr.on.ca', # Choose your license license='GPL', classifiers=[ # 5 - Production/Stable 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Science/Research', 'Topic :: Scientific/Engineering', 'License :: OSI Approved :: GNU General Public License v2 or later (GPLv2+)', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 2.8', # 'Programming Language :: Python :: 3', # 'Programming Language :: Python :: 3.2', # 'Programming Language :: Python :: 3.3', # 'Programming Language :: Python :: 3.4', ], keywords='merge vcfs', packages=find_packages(exclude=['contrib', 'docs', 'tests*']), install_requires=['pyvcf'], test_suite='tests', extras_require={ 'dev': ['check-manifest'], 'test': ['coverage'], }, # If there are data files included in your packages that need to be # installed, specify them here. If using Python 2.6 or less, then these # have to be included in MANIFEST.in as well. # package_data={ # 'sample': ['package_data.dat'], # }, entry_points={ 'console_scripts': [ 'mergevcf=mergevcf:main', ], }, )
26.653333
85
0.617309
0
0
0
0
0
0
0
0
1,250
0.625313
12a4188c00b7c8a1abdb2f2f512a6ed7085ea497
1,291
py
Python
tests/test_coders.py
GlobalFishingWatch/pipe-tools
34dff591997bb2c25e018df86d13a9d42972032b
[ "Apache-2.0" ]
1
2018-05-26T20:10:51.000Z
2018-05-26T20:10:51.000Z
tests/test_coders.py
GlobalFishingWatch/pipe-tools
34dff591997bb2c25e018df86d13a9d42972032b
[ "Apache-2.0" ]
37
2017-10-22T12:00:59.000Z
2022-02-08T19:17:58.000Z
tests/test_coders.py
GlobalFishingWatch/pipe-tools
34dff591997bb2c25e018df86d13a9d42972032b
[ "Apache-2.0" ]
null
null
null
import pytest import six import ujson import apache_beam as beam from apache_beam.testing.test_pipeline import TestPipeline as _TestPipeline from apache_beam.testing.util import assert_that from apache_beam.testing.util import equal_to from apache_beam.coders import typecoders from apache_beam.typehints import Dict, Union from pipe_tools.coders import JSONDictCoder from pipe_tools.coders import JSONDict from pipe_tools.generator import MessageGenerator class MyType(): pass @pytest.mark.filterwarnings('ignore:Using fallback coder:UserWarning') @pytest.mark.filterwarnings('ignore:The compiler package is deprecated and removed in Python 3.x.:DeprecationWarning') class TestCoders(): def test_JSONDictCoder(self): records = [ {}, {'a': 1, 'b': 2, 'c': None}, {"test":None}, ] coder = JSONDictCoder() for r in records: assert r == coder.decode(coder.encode(r)) def test_type_hints(self): messages = MessageGenerator() source = beam.Create(messages) assert source.get_output_type() == Dict[six.binary_type, Union[float, int]] with _TestPipeline() as p: result = ( p | beam.Create(messages) ) p.run()
26.346939
118
0.676995
635
0.491867
0
0
801
0.620449
0
0
145
0.112316