hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
6707dd7b43e33c316be804768ef020a089466983
14,107
py
Python
visionpack/stable_baselines3/common/off_policy_algorithm.py
joeljosephjin/gvgai-rl
57281629c313abb43312950b22d043a3d67639cf
[ "Apache-2.0" ]
null
null
null
visionpack/stable_baselines3/common/off_policy_algorithm.py
joeljosephjin/gvgai-rl
57281629c313abb43312950b22d043a3d67639cf
[ "Apache-2.0" ]
null
null
null
visionpack/stable_baselines3/common/off_policy_algorithm.py
joeljosephjin/gvgai-rl
57281629c313abb43312950b22d043a3d67639cf
[ "Apache-2.0" ]
null
null
null
import time import os import pickle import warnings from typing import Union, Type, Optional, Dict, Any, Callable import gym import torch as th import numpy as np from stable_baselines3.common import logger from stable_baselines3.common.base_class import BaseAlgorithm from stable_baselines3.common.policies import BasePolicy from stable_baselines3.common.utils import safe_mean from stable_baselines3.common.vec_env import VecEnv from stable_baselines3.common.type_aliases import GymEnv, RolloutReturn from stable_baselines3.common.callbacks import BaseCallback from stable_baselines3.common.noise import ActionNoise from stable_baselines3.common.buffers import ReplayBuffer class OffPolicyAlgorithm(BaseAlgorithm): """ The base for Off-Policy algorithms (ex: SAC/TD3) :param policy: Policy object :param env: The environment to learn from (if registered in Gym, can be str. Can be None for loading trained models) :param policy_base: The base policy used by this method :param learning_rate: (float or callable) learning rate for the optimizer, it can be a function of the current progress remaining (from 1 to 0) :param buffer_size: (int) size of the replay buffer :param learning_starts: (int) how many steps of the model to collect transitions for before learning starts :param batch_size: (int) Minibatch size for each gradient update :param policy_kwargs: Additional arguments to be passed to the policy on creation :param tensorboard_log: (str) the log location for tensorboard (if None, no logging) :param verbose: The verbosity level: 0 none, 1 training information, 2 debug :param device: Device on which the code should run. By default, it will try to use a Cuda compatible device and fallback to cpu if it is not possible. :param support_multi_env: Whether the algorithm supports training with multiple environments (as in A2C) :param create_eval_env: Whether to create a second environment that will be used for evaluating the agent periodically. (Only available when passing string for the environment) :param monitor_wrapper: When creating an environment, whether to wrap it or not in a Monitor wrapper. :param seed: Seed for the pseudo random generators :param use_sde: Whether to use State Dependent Exploration (SDE) instead of action noise exploration (default: False) :param sde_sample_freq: Sample a new noise matrix every n steps when using gSDE Default: -1 (only sample at the beginning of the rollout) :param use_sde_at_warmup: (bool) Whether to use gSDE instead of uniform sampling during the warm up phase (before learning starts) :param sde_support: (bool) Whether the model support gSDE or not """ def __init__(self, policy: Type[BasePolicy], env: Union[GymEnv, str], policy_base: Type[BasePolicy], learning_rate: Union[float, Callable], buffer_size: int = int(1e6), learning_starts: int = 100, batch_size: int = 256, policy_kwargs: Dict[str, Any] = None, tensorboard_log: Optional[str] = None, verbose: int = 0, device: Union[th.device, str] = 'auto', support_multi_env: bool = False, create_eval_env: bool = False, monitor_wrapper: bool = True, seed: Optional[int] = None, use_sde: bool = False, sde_sample_freq: int = -1, use_sde_at_warmup: bool = False, sde_support: bool = True): super(OffPolicyAlgorithm, self).__init__(policy=policy, env=env, policy_base=policy_base, learning_rate=learning_rate, policy_kwargs=policy_kwargs, tensorboard_log=tensorboard_log, verbose=verbose, device=device, support_multi_env=support_multi_env, create_eval_env=create_eval_env, monitor_wrapper=monitor_wrapper, seed=seed, use_sde=use_sde, sde_sample_freq=sde_sample_freq) self.buffer_size = buffer_size self.batch_size = batch_size self.learning_starts = learning_starts self.actor = None # type: Optional[th.nn.Module] self.replay_buffer = None # type: Optional[ReplayBuffer] # Update policy keyword arguments if sde_support: self.policy_kwargs['use_sde'] = self.use_sde self.policy_kwargs['device'] = self.device # For gSDE only self.use_sde_at_warmup = use_sde_at_warmup def _setup_model(self): self._setup_lr_schedule() self.set_random_seed(self.seed) self.replay_buffer = ReplayBuffer(self.buffer_size, self.observation_space, self.action_space, self.device) self.policy = self.policy_class(self.observation_space, self.action_space, self.lr_schedule, **self.policy_kwargs) self.policy = self.policy.to(self.device) def save_replay_buffer(self, path: str): """ Save the replay buffer as a pickle file. :param path: (str) Path to a log folder """ assert self.replay_buffer is not None, "The replay buffer is not defined" with open(os.path.join(path, 'replay_buffer.pkl'), 'wb') as file_handler: pickle.dump(self.replay_buffer, file_handler) def load_replay_buffer(self, path: str): """ Load a replay buffer from a pickle file. :param path: (str) Path to the pickled replay buffer. """ with open(path, 'rb') as file_handler: self.replay_buffer = pickle.load(file_handler) assert isinstance(self.replay_buffer, ReplayBuffer), 'The replay buffer must inherit from ReplayBuffer class' def collect_rollouts(self, # noqa: C901 env: VecEnv, # Type hint as string to avoid circular import callback: 'BaseCallback', n_episodes: int = 1, n_steps: int = -1, action_noise: Optional[ActionNoise] = None, learning_starts: int = 0, replay_buffer: Optional[ReplayBuffer] = None, log_interval: Optional[int] = None) -> RolloutReturn: """ Collect experiences and store them into a ReplayBuffer. :param env: (VecEnv) The training environment :param callback: (BaseCallback) Callback that will be called at each step (and at the beginning and end of the rollout) :param n_episodes: (int) Number of episodes to use to collect rollout data You can also specify a ``n_steps`` instead :param n_steps: (int) Number of steps to use to collect rollout data You can also specify a ``n_episodes`` instead. :param action_noise: (Optional[ActionNoise]) Action noise that will be used for exploration Required for deterministic policy (e.g. TD3). This can also be used in addition to the stochastic policy for SAC. :param learning_starts: (int) Number of steps before learning for the warm-up phase. :param replay_buffer: (ReplayBuffer) :param log_interval: (int) Log data every ``log_interval`` episodes :return: (RolloutReturn) """ episode_rewards, total_timesteps = [], [] total_steps, total_episodes = 0, 0 assert isinstance(env, VecEnv), "You must pass a VecEnv" assert env.num_envs == 1, "OffPolicyAlgorithm only support single environment" if n_episodes > 0 and n_steps > 0: # Note we are refering to the constructor arguments # that are named `train_freq` and `n_episodes_rollout` # but correspond to `n_steps` and `n_episodes` here warnings.warn("You passed a positive value for `train_freq` and `n_episodes_rollout`." "Please make sure this is intended. " "The agent will collect data by stepping in the environment " "until both conditions are true: " "`number of steps in the env` >= `train_freq` and " "`number of episodes` > `n_episodes_rollout`") if self.use_sde: self.actor.reset_noise() callback.on_rollout_start() continue_training = True while total_steps < n_steps or total_episodes < n_episodes: done = False episode_reward, episode_timesteps = 0.0, 0 while not done: if self.use_sde and self.sde_sample_freq > 0 and total_steps % self.sde_sample_freq == 0: # Sample a new noise matrix self.actor.reset_noise() # Select action randomly or according to policy if self.num_timesteps < learning_starts and not (self.use_sde and self.use_sde_at_warmup): # Warmup phase unscaled_action = np.array([self.action_space.sample()]) else: # Note: we assume that the policy uses tanh to scale the action # We use non-deterministic action in the case of SAC, for TD3, it does not matter unscaled_action, _ = self.predict(self._last_obs, deterministic=False) # Rescale the action from [low, high] to [-1, 1] if isinstance(self.action_space, gym.spaces.Box): scaled_action = self.policy.scale_action(unscaled_action) # Add noise to the action (improve exploration) if action_noise is not None: # NOTE: in the original implementation of TD3, the noise was applied to the unscaled action # Update(October 2019): Not anymore scaled_action = np.clip(scaled_action + action_noise(), -1, 1) # We store the scaled action in the buffer buffer_action = scaled_action action = self.policy.unscale_action(scaled_action) else: # Discrete case, no need to normalize or clip buffer_action = unscaled_action action = buffer_action # Rescale and perform action new_obs, reward, done, infos = env.step(action) # Only stop training if return value is False, not when it is None. if callback.on_step() is False: return RolloutReturn(0.0, total_steps, total_episodes, continue_training=False) episode_reward += reward # Retrieve reward and episode length if using Monitor wrapper self._update_info_buffer(infos, done) # Store data in replay buffer if replay_buffer is not None: # Store only the unnormalized version if self._vec_normalize_env is not None: new_obs_ = self._vec_normalize_env.get_original_obs() reward_ = self._vec_normalize_env.get_original_reward() else: # Avoid changing the original ones self._last_original_obs, new_obs_, reward_ = self._last_obs, new_obs, reward replay_buffer.add(self._last_original_obs, new_obs_, buffer_action, reward_, done) self._last_obs = new_obs # Save the unnormalized observation if self._vec_normalize_env is not None: self._last_original_obs = new_obs_ self.num_timesteps += 1 episode_timesteps += 1 total_steps += 1 if 0 < n_steps <= total_steps: break if done: total_episodes += 1 self._episode_num += 1 episode_rewards.append(episode_reward) total_timesteps.append(episode_timesteps) if action_noise is not None: action_noise.reset() # Log training infos if log_interval is not None and self._episode_num % log_interval == 0: fps = int(self.num_timesteps / (time.time() - self.start_time)) logger.record("time/episodes", self._episode_num, exclude="tensorboard") if len(self.ep_info_buffer) > 0 and len(self.ep_info_buffer[0]) > 0: logger.record('rollout/ep_rew_mean', safe_mean([ep_info['r'] for ep_info in self.ep_info_buffer])) logger.record('rollout/ep_len_mean', safe_mean([ep_info['l'] for ep_info in self.ep_info_buffer])) logger.record("time/fps", fps) logger.record('time/time_elapsed', int(time.time() - self.start_time), exclude="tensorboard") logger.record("time/total timesteps", self.num_timesteps, exclude="tensorboard") if self.use_sde: logger.record("train/std", (self.actor.get_std()).mean().item()) if len(self.ep_success_buffer) > 0: logger.record('rollout/success rate', safe_mean(self.ep_success_buffer)) # Pass the number of timesteps for tensorboard logger.dump(step=self.num_timesteps) mean_reward = np.mean(episode_rewards) if total_episodes > 0 else 0.0 callback.on_rollout_end() return RolloutReturn(mean_reward, total_steps, total_episodes, continue_training)
50.382143
122
0.607571
13,426
0.951726
0
0
0
0
0
0
5,290
0.374991
6707dda4f20fd2cb10f818588c5b114047a6d11c
2,743
py
Python
src/oscar/apps/dashboard/app.py
frmdstryr/django-oscar
32bf8618ebb688df6ba306dc7703de8e61b4e78c
[ "BSD-3-Clause" ]
null
null
null
src/oscar/apps/dashboard/app.py
frmdstryr/django-oscar
32bf8618ebb688df6ba306dc7703de8e61b4e78c
[ "BSD-3-Clause" ]
null
null
null
src/oscar/apps/dashboard/app.py
frmdstryr/django-oscar
32bf8618ebb688df6ba306dc7703de8e61b4e78c
[ "BSD-3-Clause" ]
null
null
null
from django.conf.urls import url from django.contrib.auth import views as auth_views from django.contrib.auth.forms import AuthenticationForm from oscar.core.application import ( DashboardApplication as BaseDashboardApplication) from oscar.core.loading import get_class class DashboardApplication(BaseDashboardApplication): name = 'dashboard' permissions_map = { 'index': (['is_staff'], ['partner.dashboard_access']), } index_view = get_class('dashboard.views', 'IndexView') reports_app = get_class('dashboard.reports.app', 'application') orders_app = get_class('dashboard.orders.app', 'application') users_app = get_class('dashboard.users.app', 'application') catalogue_app = get_class('dashboard.catalogue.app', 'application') promotions_app = get_class('dashboard.promotions.app', 'application') pages_app = get_class('dashboard.pages.app', 'application') partners_app = get_class('dashboard.partners.app', 'application') offers_app = get_class('dashboard.offers.app', 'application') ranges_app = get_class('dashboard.ranges.app', 'application') reviews_app = get_class('dashboard.reviews.app', 'application') vouchers_app = get_class('dashboard.vouchers.app', 'application') comms_app = get_class('dashboard.communications.app', 'application') shipping_app = get_class('dashboard.shipping.app', 'application') system_app = get_class('dashboard.system.app', 'application') def get_urls(self): urls = [ url(r'^$', self.index_view.as_view(), name='index'), url(r'^catalogue/', self.catalogue_app.urls), url(r'^reports/', self.reports_app.urls), url(r'^orders/', self.orders_app.urls), url(r'^users/', self.users_app.urls), url(r'^content-blocks/', self.promotions_app.urls), url(r'^pages/', self.pages_app.urls), url(r'^partners/', self.partners_app.urls), url(r'^offers/', self.offers_app.urls), url(r'^ranges/', self.ranges_app.urls), url(r'^reviews/', self.reviews_app.urls), url(r'^vouchers/', self.vouchers_app.urls), url(r'^comms/', self.comms_app.urls), url(r'^shipping/', self.shipping_app.urls), url(r'^system/', self.system_app.urls), url(r'^login/$', auth_views.LoginView.as_view(template_name='dashboard/login.html', authentication_form=AuthenticationForm), name='login'), url(r'^logout/$', auth_views.LogoutView.as_view(next_page='/'), name='logout'), ] return self.post_process_urls(urls) application = DashboardApplication()
44.967213
91
0.654028
2,426
0.884433
0
0
0
0
0
0
838
0.305505
67081cebddc67151d15ce739da186891614e2d4d
4,783
py
Python
wedding/migrations/0004_auto_20170407_2017.py
chadgates/thetravelling2
3646d64acb0fbf5106066700f482c9013f5fb7d0
[ "MIT" ]
null
null
null
wedding/migrations/0004_auto_20170407_2017.py
chadgates/thetravelling2
3646d64acb0fbf5106066700f482c9013f5fb7d0
[ "MIT" ]
null
null
null
wedding/migrations/0004_auto_20170407_2017.py
chadgates/thetravelling2
3646d64acb0fbf5106066700f482c9013f5fb7d0
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2017-04-07 20:17 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion import uuid class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('wedding', '0003_auto_20170214_1543'), ] operations = [ migrations.CreateModel( name='Cart', fields=[ ('created', models.DateTimeField(auto_now_add=True)), ('modified', models.DateTimeField(auto_now=True)), ('id', models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='CartItem', fields=[ ('created', models.DateTimeField(auto_now_add=True)), ('modified', models.DateTimeField(auto_now=True)), ('id', models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('amount', models.PositiveIntegerField(verbose_name='Item count')), ('buyer', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Gift', fields=[ ('created', models.DateTimeField(auto_now_add=True)), ('modified', models.DateTimeField(auto_now=True)), ('id', models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('name', models.CharField(max_length=300, verbose_name='Name')), ('description', models.TextField(blank=True, null=True, verbose_name='Description')), ('link', models.TextField(blank=True, null=True, verbose_name='Link')), ('price', models.DecimalField(decimal_places=2, max_digits=7, verbose_name='Price')), ('gift_is_part', models.BooleanField(default=False, verbose_name='Gift is part')), ('max_parts', models.PositiveIntegerField(verbose_name='Maximum number of parts')), ('taken_parts', models.PositiveIntegerField(default=0, verbose_name='Number of parts taken')), ('img', models.ImageField(blank=True, null=True, upload_to='')), ], options={ 'verbose_name': 'Gift', 'verbose_name_plural': 'Gifts', }, ), migrations.CreateModel( name='GiftOrder', fields=[ ('created', models.DateTimeField(auto_now_add=True)), ('modified', models.DateTimeField(auto_now=True)), ('id', models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('voucher_from', models.CharField(max_length=300, verbose_name='Voucher is from')), ('voucher_greeting', models.TextField(blank=True, null=True, verbose_name='Voucher Greeting')), ('voucher_senddirect', models.BooleanField(default=False, verbose_name='Send voucher directly')), ('buyer', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='GiftOrderItem', fields=[ ('created', models.DateTimeField(auto_now_add=True)), ('modified', models.DateTimeField(auto_now=True)), ('id', models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('quantity', models.PositiveIntegerField(verbose_name='Item count')), ('gift', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='wedding.Gift')), ('giftorder', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='wedding.GiftOrder')), ], options={ 'abstract': False, }, ), migrations.AlterModelOptions( name='rsvp', options={'permissions': (('view_list', 'Can see the RSVP list'),), 'verbose_name': 'RSVP', 'verbose_name_plural': 'RSVPs'}, ), migrations.AddField( model_name='cartitem', name='gift', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='wedding.Gift'), ), ]
46.892157
135
0.582061
4,547
0.950659
0
0
0
0
0
0
874
0.182731
6708d69bfe7f1ec1d25240a2e512900542ce4a78
820
py
Python
taskonomy/utils/log_utils.py
shikhar-srivastava/hover_net
d4e8e129a4ad72f5d574a78c036449b496421529
[ "MIT" ]
null
null
null
taskonomy/utils/log_utils.py
shikhar-srivastava/hover_net
d4e8e129a4ad72f5d574a78c036449b496421529
[ "MIT" ]
null
null
null
taskonomy/utils/log_utils.py
shikhar-srivastava/hover_net
d4e8e129a4ad72f5d574a78c036449b496421529
[ "MIT" ]
null
null
null
import pandas as pd import pickle def read_metric_logs(bucket_type): metrics = pd.DataFrame(columns=['source_type', 'target_type', 'stats']) type_list_path = f'/l/users/shikhar.srivastava/data/pannuke/{bucket_type}/selected_types.csv' type_list = pd.read_csv(type_list_path)['0'] for source_type in type_list: for target_type in type_list: logs_path = f'/l/users/shikhar.srivastava/workspace/hover_net/logs/test/second_order/{bucket_type}/ckpts/{source_type}-{target_type}/per_image_stat.pkl' # Read pickle file with open(logs_path, 'rb') as f: stats = pickle.load(f) metrics = metrics.append({'source_type': source_type, 'target_type': target_type, 'stats': stats}, ignore_index=True) return metrics, type_list
43.157895
164
0.684146
0
0
0
0
0
0
0
0
307
0.37439
6709a543eab8bce61601cfd76117d243faac013b
5,373
py
Python
train_DEU.py
JosephineRabbit/MLMSNet
755e07afd1c19797b02cf88b7bbb195112ffec77
[ "MIT" ]
61
2019-04-23T15:17:36.000Z
2021-08-20T15:48:11.000Z
train_DEU.py
zhuxinang/MLMSNet
a824a70fa37aeb4536bc72d8032e871328c687e8
[ "MIT" ]
8
2019-05-04T04:38:26.000Z
2020-08-16T15:15:15.000Z
train_DEU.py
JosephineRabbit/MLMSNet
755e07afd1c19797b02cf88b7bbb195112ffec77
[ "MIT" ]
7
2019-06-12T07:02:06.000Z
2020-09-20T02:37:36.000Z
from D_E_U import * D_E = DSS(*extra_layer(vgg(base['dss'], 3), extra['dss']),config.BATCH_SIZE).cuda() U = D_U().cuda() U.cuda() data_dirs = [ ("/home/rabbit/Datasets/DUTS/DUT-train/DUT-train-Image", "/home/rabbit/Datasets/DUTS/DUT-train/DUT-train-Mask"), ] test_dirs = [("/home/rabbit/Datasets/SED1/SED1-Image", "/home/rabbit/Datasets/SED1/SED1-Mask")] D_E.base.load_state_dict(torch.load('/home/rabbit/Desktop/DUT_train/weights/vgg16_feat.pth')) initialize_weights(U) DE_optimizer = optim.Adam(D_E.parameters(), lr=config.D_LEARNING_RATE, betas=(0.5, 0.999)) U_optimizer = optim.Adam(U.parameters(), lr=config.U_LEARNING_RATE, betas=(0.5, 0.999)) BCE_loss = torch.nn.BCELoss().cuda() def process_data_dir(data_dir): files = os.listdir(data_dir) files = map(lambda x: os.path.join(data_dir, x), files) return sorted(files) batch_size =BATCH_SIZE DATA_DICT = {} IMG_FILES = [] GT_FILES = [] IMG_FILES_TEST = [] GT_FILES_TEST = [] for dir_pair in data_dirs: X, y = process_data_dir(dir_pair[0]), process_data_dir(dir_pair[1]) IMG_FILES.extend(X) GT_FILES.extend(y) for dir_pair in test_dirs: X, y = process_data_dir(dir_pair[0]), process_data_dir(dir_pair[1]) IMG_FILES_TEST.extend(X) GT_FILES_TEST.extend(y) IMGS_train, GT_train = IMG_FILES, GT_FILES train_folder = DataFolder(IMGS_train, GT_train, True) train_data = DataLoader(train_folder, batch_size=BATCH_SIZE, num_workers=NUM_WORKERS, shuffle=True, drop_last=True) test_folder = DataFolder(IMG_FILES_TEST, GT_FILES_TEST, trainable=False) test_data = DataLoader(test_folder, batch_size=1, num_workers=NUM_WORKERS, shuffle=False) def cal_DLoss(out_m,out_e, mask, edge): # if l == 0: # 0 f 1 t # ll = Variable(torch.ones(mask.shape())) D_masks_loss = 0 D_edges_loss = 0 for i in range(6): #print(out_m[i].size()) #print(mask.size()) D_masks_loss += F.binary_cross_entropy(out_m[i], mask) for i in range(6): D_edges_loss += F.binary_cross_entropy(out_e[i], edge) return ( D_masks_loss, D_edges_loss) best_eval = None x = 0 ma = 1 for epoch in range(1, config.NUM_EPOCHS + 1): sum_train_mae = 0 sum_train_loss = 0 sum_train_gan = 0 ##train for iter_cnt, (img_batch, label_batch, edges, shape, name) in enumerate(train_data): D_E.train() x = x + 1 # print(img_batch.size()) label_batch = Variable(label_batch).cuda() # print(torch.typename(label_batch)) print('training start!!') # for iter, (x_, _) in enumerate(train_data): img_batch = Variable(img_batch.cuda()) # ,Variable(z_.cuda()) edges = Variable(edges).cuda() ##########DSS######################### ######train dis ##fake f,y1,y2 = D_E(img_batch) m_l_1,e_l_1 = cal_DLoss(y1,y2,label_batch,edges) DE_optimizer.zero_grad() DE_l_1 = m_l_1 +e_l_1 DE_l_1.backward() DE_optimizer.step() w = [2,2,3,3] f, y1, y2 = D_E(img_batch) masks,DIC = U(f) pre_ms_l = 0 ma = torch.abs(label_batch-masks[4]).mean() pre_m_l = F.binary_cross_entropy(masks[4],label_batch) for i in range(4): pre_ms_l +=w[i] * F.binary_cross_entropy(masks[i],label_batch) DE_optimizer.zero_grad() DE_l_1 = pre_ms_l/20+30*pre_m_l DE_l_1.backward() DE_optimizer.step() f, y1, y2 = D_E(img_batch) masks,DIC = U(f) pre_ms_l = 0 ma = torch.abs(label_batch-masks[4]).mean() pre_m_l = F.binary_cross_entropy(masks[4], label_batch) for i in range(4): pre_ms_l += w[i] * F.binary_cross_entropy(masks[i], label_batch) U_optimizer.zero_grad() U_l_1 = pre_ms_l/20+30*pre_m_l U_l_1.backward() U_optimizer.step() sum_train_mae += ma.data.cpu() print("Epoch:{}\t {}/{}\ \t mae:{}".format(epoch, iter_cnt + 1, len(train_folder) / config.BATCH_SIZE, sum_train_mae / (iter_cnt + 1))) ##########save model # torch.save(D.state_dict(), './checkpoint/DSS/with_e_2/D15epoch%d.pkl' % epoch) torch.save(D_E.state_dict(), './checkpoint/DSS/with_e_2/D_Eepoch%d.pkl' % epoch) torch.save(U.state_dict(), './checkpoint/DSS/with_e_2/Uis.pkl') print('model saved') ###############test eval1 = 0 eval2 = 0 t_mae = 0 for iter_cnt, (img_batch, label_batch, edges, shape, name) in enumerate(test_data): D_E.eval() U.eval() label_batch = Variable(label_batch).cuda() print('val!!') # for iter, (x_, _) in enumerate(train_data): img_batch = Variable(img_batch.cuda()) # ,Variable(z_.cuda()) f,y1,y2 = D_E(img_batch) masks, DIC = U(f) mae_v2 = torch.abs(label_batch - masks[4]).mean().data[0] # eval1 += mae_v1 eval2 += mae_v2 # m_eval1 = eval1 / (iter_cnt + 1) m_eval2 = eval2 / (iter_cnt + 1) print("test mae", m_eval2) with open('results1.txt', 'a+') as f: f.write(str(epoch) + " 2:" + str(m_eval2) + "\n")
24.760369
116
0.594826
0
0
0
0
0
0
0
0
972
0.180905
670ac7303b14fc10b0803485c55a62a568d00950
445
py
Python
solutions/1497_check_if_array_pairs_are_divisible_by_k.py
YiqunPeng/leetcode_pro
7e6376984f9baec49a5e827d98330fe3d1b656f0
[ "MIT" ]
null
null
null
solutions/1497_check_if_array_pairs_are_divisible_by_k.py
YiqunPeng/leetcode_pro
7e6376984f9baec49a5e827d98330fe3d1b656f0
[ "MIT" ]
null
null
null
solutions/1497_check_if_array_pairs_are_divisible_by_k.py
YiqunPeng/leetcode_pro
7e6376984f9baec49a5e827d98330fe3d1b656f0
[ "MIT" ]
null
null
null
class Solution: def canArrange(self, arr: List[int], k: int) -> bool: """Hash table. Running time: O(n) where n == len(arr). """ d = collections.defaultdict(int) for a in arr: d[a % k] += 1 for key, v in d.items(): if key == 0 and v % 2 == 1: return False elif key != 0 and v != d[k - key]: return False return True
27.8125
57
0.442697
444
0.997753
0
0
0
0
0
0
75
0.168539
670bfcaeeccc178a263df62b6b3d972d4904cdc0
5,122
py
Python
machine-learning-ex2/ex2/ex2.py
DuffAb/coursera-ml-py
efcfb0847ac7d1e181cb6b93954b0176ce6162d4
[ "MIT" ]
null
null
null
machine-learning-ex2/ex2/ex2.py
DuffAb/coursera-ml-py
efcfb0847ac7d1e181cb6b93954b0176ce6162d4
[ "MIT" ]
null
null
null
machine-learning-ex2/ex2/ex2.py
DuffAb/coursera-ml-py
efcfb0847ac7d1e181cb6b93954b0176ce6162d4
[ "MIT" ]
null
null
null
# Machine Learning Online Class - Exercise 2: Logistic Regression # # Instructions # ------------ # # This file contains code that helps you get started on the logistic # regression exercise. You will need to complete the following functions # in this exericse: # # sigmoid.py # costFunction.py # predict.py # costFunctionReg.py # # For this exercise, you will not need to change any code in this file, # or any other files other than those mentioned above. import matplotlib.pyplot as plt import numpy as np import scipy.optimize as opt from plotData import * import costFunction as cf import plotDecisionBoundary as pdb import predict as predict from sigmoid import * plt.ion() # Load data # The first two columns contain the exam scores and the third column contains the label. data = np.loadtxt('ex2data1.txt', delimiter=',') print('plot_decision_boundary data[0, 0:1] = \n{}'.format(data[0, 0:1])) print('plot_decision_boundary data[0, 0:2] = \n{}'.format(data[0, 0:2])) print('plot_decision_boundary data[0, 0:3] = \n{}'.format(data[0, 0:3])) print('plot_decision_boundary data[0, 1:1] = \n{}'.format(data[0, 1:1])) print('plot_decision_boundary data[0, 1:2] = \n{}'.format(data[0, 1:2])) print('plot_decision_boundary data[0, 1:3] = \n{}'.format(data[0, 1:3])) print('plot_decision_boundary data[0, 2:1] = \n{}'.format(data[0, 2:1])) print('plot_decision_boundary data[0, 2:2] = \n{}'.format(data[0, 2:2])) print('plot_decision_boundary data[0, 2:3] = \n{}'.format(data[0, 2:3])) X = data[:, 0:2] y = data[:, 2] # ===================== Part 1: Plotting ===================== # We start the exercise by first plotting the data to understand the # the problem we are working with. print('Plotting Data with + indicating (y = 1) examples and o indicating (y = 0) examples.') plot_data(X, y) plt.axis([30, 100, 30, 100]) # Specified in plot order. 按绘图顺序指定 plt.legend(['Admitted', 'Not admitted'], loc=1) plt.xlabel('Exam 1 score') plt.ylabel('Exam 2 score') input('Program paused. Press ENTER to continue') # ===================== Part 2: Compute Cost and Gradient ===================== # In this part of the exercise, you will implement the cost and gradient # for logistic regression. You need to complete the code in # costFunction.py # Setup the data array appropriately, and add ones for the intercept term (m, n) = X.shape # Add intercept term X = np.c_[np.ones(m), X] # Initialize fitting parameters initial_theta = np.zeros(n + 1) # 初始化权重theta # Compute and display initial cost and gradient cost, grad = cf.cost_function(initial_theta, X, y) np.set_printoptions(formatter={'float': '{: 0.4f}\n'.format}) print('Cost at initial theta (zeros): {:0.3f}'.format(cost)) print('Expected cost (approx): 0.693') print('Gradient at initial theta (zeros): \n{}'.format(grad)) print('Expected gradients (approx): \n-0.1000\n-12.0092\n-11.2628') # Compute and display cost and gradient with non-zero theta test_theta = np.array([-24, 0.2, 0.2]) cost, grad = cf.cost_function(test_theta, X, y) print('Cost at test theta (zeros): {:0.3f}'.format(cost)) print('Expected cost (approx): 0.218') print('Gradient at test theta: \n{}'.format(grad)) print('Expected gradients (approx): \n0.043\n2.566\n2.647') input('Program paused. Press ENTER to continue') # ===================== Part 3: Optimizing using fmin_bfgs ===================== # In this exercise, you will use a built-in function (opt.fmin_bfgs) to find the # optimal parameters theta def cost_func(t): return cf.cost_function(t, X, y)[0] def grad_func(t): return cf.cost_function(t, X, y)[1] # Run fmin_bfgs to obtain the optimal theta theta, cost, *unused = opt.fmin_bfgs(f=cost_func, fprime=grad_func, x0=initial_theta, maxiter=400, full_output=True, disp=False) print('Cost at theta found by fmin: {:0.4f}'.format(cost)) print('Expected cost (approx): 0.203') print('theta: \n{}'.format(theta)) print('Expected Theta (approx): \n-25.161\n0.206\n0.201') # Plot boundary 画出二分边界 pdb.plot_decision_boundary(theta, X, y) plt.xlabel('Exam 1 score') plt.ylabel('Exam 2 score') input('Program paused. Press ENTER to continue') # ===================== Part 4: Predict and Accuracies ===================== # After learning the parameters, you'll like to use it to predict the outcomes # on unseen data. In this part, you will use the logistic regression model # to predict the probability that a student with score 45 on exam 1 and # score 85 on exam 2 will be admitted # # Furthermore, you will compute the training and test set accuracies of our model. # # Your task is to complete the code in predict.py # Predict probability for a student with score 45 on exam 1 # and score 85 on exam 2 prob = sigmoid(np.array([1, 45, 85]).dot(theta)) print('For a student with scores 45 and 85, we predict an admission probability of {:0.4f}'.format(prob)) print('Expected value : 0.775 +/- 0.002') # Compute the accuracy on our training set p = predict.predict(theta, X) print('Train accuracy: {}'.format(np.mean(y == p) * 100)) print('Expected accuracy (approx): 89.0') input('ex2 Finished. Press ENTER to exit')
34.608108
128
0.689184
0
0
0
0
0
0
0
0
3,497
0.677976
670c1bac34e09541ccb5d179f3199b3e5c901751
2,866
py
Python
tests/test_apiFunc.py
Reid1923/py-GoldsberryTest
3c7e9e2f4ef75720e1a13c4c41018a2072487ddd
[ "MIT" ]
null
null
null
tests/test_apiFunc.py
Reid1923/py-GoldsberryTest
3c7e9e2f4ef75720e1a13c4c41018a2072487ddd
[ "MIT" ]
null
null
null
tests/test_apiFunc.py
Reid1923/py-GoldsberryTest
3c7e9e2f4ef75720e1a13c4c41018a2072487ddd
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import pytest import goldsberry test_data = [ (goldsberry._nbaLeague, 'NBA', '00'), (goldsberry._nbaLeague, 'WNBA', '10'), (goldsberry._nbaLeague, 'NBADL', '20'), (goldsberry._nbaSeason, 1999, '1999-00'), (goldsberry._nbaSeason, 2000, '2000-01'), (goldsberry._seasonID, 1999, '21999'), (goldsberry._measureType, 1, 'Base'), (goldsberry._measureType, 2, 'Advanced'), (goldsberry._Scope, 1, ''), (goldsberry._PerModeSmall48, 1, 'Totals'), (goldsberry._PerModeSmall36, 1, 'Totals'), (goldsberry._PerModeMini, 1, 'Totals'), (goldsberry._PerModeLarge, 1, 'Totals'), (goldsberry._AheadBehind, 1, 'Ahead or Behind'), (goldsberry._ClutchTime, 1, 'Last 5 Minutes'), (goldsberry._GameScope, 2, 'Yesterday'), (goldsberry._PlayerExperience, 2, 'Rookie'), (goldsberry._PlayerPosition, 2, 'F'), (goldsberry._StarterBench, 2, 'Starters'), (goldsberry._PlusMinus, 2, 'Y'), (goldsberry._PaceAdjust, 2, 'Y'), (goldsberry._Rank, 2, 'Y'), (goldsberry._SeasonType, 1, 'Regular Season'), (goldsberry._SeasonType4, 1, 'Regular Season'), (goldsberry._Outcome, 2, 'W'), (goldsberry._Location, 2, 'Home'), (goldsberry._SeasonSegment, 2, 'Post All-Star'), (goldsberry._VsConference, 2, 'East'), (goldsberry._VsDivision, 2, 'Atlantic'), (goldsberry._GameSegment, 2, 'First Half'), (goldsberry._DistanceRange, 1, '5ft Range'), (goldsberry._valiDate, '', ''), (goldsberry._valiDate, '2015-01-02', '2015-01-02'), (goldsberry._ContextMeasure, 1, 'FGM'), (goldsberry._Position, 2, 'Guard'), (goldsberry._StatCategory, 1, 'MIN'), ] @pytest.mark.parametrize("func,key,response", test_data) def test_api_func(func, key, response): assert func(key) == response @pytest.mark.parametrize('func,key', [ (goldsberry._nbaLeague, 'BAD VALUE'), (goldsberry._nbaSeason, -1), (goldsberry._seasonID, -1), (goldsberry._measureType, -1), (goldsberry._Scope, -1), (goldsberry._PerModeSmall48, -1), (goldsberry._PerModeSmall36, -1), (goldsberry._PerModeMini, -1), (goldsberry._PerModeLarge, -1), (goldsberry._AheadBehind, -1), (goldsberry._ClutchTime, -1), (goldsberry._GameScope, -1), (goldsberry._PlayerExperience, -1), (goldsberry._PlayerPosition, -1), (goldsberry._StarterBench, -1), (goldsberry._PlusMinus, 0), (goldsberry._PaceAdjust, 0), (goldsberry._Rank, 0), (goldsberry._SeasonType, 0), (goldsberry._SeasonType4, 0), (goldsberry._Outcome, 0), (goldsberry._Location, 0), (goldsberry._SeasonSegment, 0), (goldsberry._VsConference, 0), (goldsberry._VsDivision, 0), (goldsberry._GameSegment, 0), (goldsberry._DistanceRange, 0), (goldsberry._valiDate, 'date'), (goldsberry._ContextMeasure, 0), (goldsberry._Position, 0), (goldsberry._StatCategory, 0) ]) def test_api_func_raises_valueerror(func, key): with pytest.raises(ValueError): func(key)
33.717647
56
0.691207
0
0
0
0
1,338
0.466853
0
0
388
0.13538
670d0a8e1a1197c9ec69df947dabd43d08e4160b
4,295
py
Python
sasmodels/models/poly_gauss_coil.py
zattala/sasmodels
a547aa73d43145b3bd34770b0ea27ba8882170a3
[ "BSD-3-Clause" ]
null
null
null
sasmodels/models/poly_gauss_coil.py
zattala/sasmodels
a547aa73d43145b3bd34770b0ea27ba8882170a3
[ "BSD-3-Clause" ]
null
null
null
sasmodels/models/poly_gauss_coil.py
zattala/sasmodels
a547aa73d43145b3bd34770b0ea27ba8882170a3
[ "BSD-3-Clause" ]
null
null
null
#poly_gauss_coil model #conversion of Poly_GaussCoil.py #converted by Steve King, Mar 2016 r""" This empirical model describes the scattering from *polydisperse* polymer chains in theta solvents or polymer melts, assuming a Schulz-Zimm type molecular weight distribution. To describe the scattering from *monodisperse* polymer chains, see the :ref:`mono-gauss-coil` model. Definition ---------- .. math:: I(q) = \text{scale} \cdot I_0 \cdot P(q) + \text{background} where .. math:: I_0 &= \phi_\text{poly} \cdot V \cdot (\rho_\text{poly}-\rho_\text{solv})^2 \\ P(q) &= 2 [(1 + UZ)^{-1/U} + Z - 1] / [(1 + U) Z^2] \\ Z &= [(q R_g)^2] / (1 + 2U) \\ U &= (Mw / Mn) - 1 = \text{polydispersity ratio} - 1 \\ V &= M / (N_A \delta) Here, $\phi_\text{poly}$, is the volume fraction of polymer, $V$ is the volume of a polymer coil, $M$ is the molecular weight of the polymer, $N_A$ is Avogadro's Number, $\delta$ is the bulk density of the polymer, $\rho_\text{poly}$ is the sld of the polymer, $\rho_\text{solv}$ is the sld of the solvent, and $R_g$ is the radius of gyration of the polymer coil. The 2D scattering intensity is calculated in the same way as the 1D, but where the $q$ vector is redefined as .. math:: q = \sqrt{q_x^2 + q_y^2} References ---------- .. [#] O Glatter and O Kratky (editors), *Small Angle X-ray Scattering*, Academic Press, (1982) Page 404 .. [#] J S Higgins, H C Benoit, *Polymers and Neutron Scattering*, Oxford Science Publications, (1996) .. [#] S M King, *Small Angle Neutron Scattering* in *Modern Techniques for Polymer Characterisation*, Wiley, (1999) .. [#] http://www.ncnr.nist.gov/staff/hammouda/distance_learning/chapter_28.pdf Authorship and Verification ---------------------------- * **Author:** * **Last Modified by:** * **Last Reviewed by:** """ import numpy as np from numpy import inf, expm1, power name = "poly_gauss_coil" title = "Scattering from polydisperse polymer coils" description = """ Evaluates the scattering from polydisperse polymer chains. """ category = "shape-independent" # pylint: disable=bad-whitespace, line-too-long # ["name", "units", default, [lower, upper], "type", "description"], parameters = [ ["i_zero", "1/cm", 70.0, [0.0, inf], "", "Intensity at q=0"], ["rg", "Ang", 75.0, [0.0, inf], "", "Radius of gyration"], ["polydispersity", "None", 2.0, [1.0, inf], "", "Polymer Mw/Mn"], ] # pylint: enable=bad-whitespace, line-too-long # NB: Scale and Background are implicit parameters on every model def Iq(q, i_zero, rg, polydispersity): # pylint: disable = missing-docstring u = polydispersity - 1.0 z = q**2 * (rg**2 / (1.0 + 2.0*u)) # need to trap the case of the polydispersity being 1 (ie, monodisperse!) if polydispersity == 1.0: result = 2.0 * (expm1(-z) + z) index = q != 0. result[index] /= z[index]**2 result[~index] = 1.0 else: # Taylor series around z=0 of (2*(1+uz)^(-1/u) + z - 1) / (z^2(u+1)) p = [ #(-1 - 20*u - 155*u**2 - 580*u**3 - 1044*u**4 - 720*u**5) / 2520., #(+1 + 14*u + 71*u**2 + 154*u**3 + 120*u**4) / 360., #(-1 - 9*u - 26*u**2 - 24*u**3) / 60., (+1 + 5*u + 6*u**2) / 12., (-1 - 2*u) / 3., (+1), ] result = 2.0 * (power(1.0 + u*z, -1.0/u) + z - 1.0) / (1.0 + u) index = z > 1e-4 result[index] /= z[index]**2 result[~index] = np.polyval(p, z[~index]) return i_zero * result Iq.vectorized = True # Iq accepts an array of q values def random(): """Return a random parameter set for the model.""" rg = 10**np.random.uniform(0, 4) #rg = 1e3 polydispersity = 10**np.random.uniform(0, 3) pars = dict( #scale=1, background=0, i_zero=1e7, # i_zero is a simple scale rg=rg, polydispersity=polydispersity, ) return pars demo = dict(scale=1.0, i_zero=70.0, rg=75.0, polydispersity=2.0, background=0.0) # these unit test values taken from SasView 3.1.2 tests = [ [{'scale': 1.0, 'i_zero': 70.0, 'rg': 75.0, 'polydispersity': 2.0, 'background': 0.0}, [0.0106939, 0.469418], [57.6405, 0.169016]], ]
32.293233
116
0.584633
0
0
0
0
0
0
0
0
2,890
0.672875
670fa5323287fc9c400ddc9fd03e291ab3a5896f
4,939
py
Python
examples/information_extraction/msra_ner/eval.py
BenfengXu/PaddleNLP
eca87fde4a1814a8f028e0e900d1792cbaa5c700
[ "Apache-2.0" ]
1
2021-07-22T08:33:53.000Z
2021-07-22T08:33:53.000Z
examples/information_extraction/msra_ner/eval.py
BenfengXu/PaddleNLP
eca87fde4a1814a8f028e0e900d1792cbaa5c700
[ "Apache-2.0" ]
null
null
null
examples/information_extraction/msra_ner/eval.py
BenfengXu/PaddleNLP
eca87fde4a1814a8f028e0e900d1792cbaa5c700
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import ast import random import time import math from functools import partial import numpy as np import paddle from paddle.io import DataLoader import paddlenlp as ppnlp from paddlenlp.datasets import load_dataset from paddlenlp.data import Stack, Tuple, Pad, Dict from paddlenlp.transformers import BertForTokenClassification, BertTokenizer from paddlenlp.metrics import ChunkEvaluator parser = argparse.ArgumentParser() # yapf: disable parser.add_argument("--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(list(BertTokenizer.pretrained_init_configuration.keys()))) parser.add_argument("--init_checkpoint_path", default=None, type=str, required=True, help="The model checkpoint path.", ) parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument("--batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.", ) parser.add_argument("--device", default="gpu", type=str, choices=["cpu", "gpu", "xpu"] ,help="The device to select to train the model, is must be cpu/gpu/xpu.") # yapf: enable def tokenize_and_align_labels(example, tokenizer, no_entity_id, max_seq_len=512): labels = example['labels'] example = example['tokens'] tokenized_input = tokenizer( example, return_length=True, is_split_into_words=True, max_seq_len=max_seq_len) # -2 for [CLS] and [SEP] if len(tokenized_input['input_ids']) - 2 < len(labels): labels = labels[:len(tokenized_input['input_ids']) - 2] tokenized_input['labels'] = [no_entity_id] + labels + [no_entity_id] tokenized_input['labels'] += [no_entity_id] * ( len(tokenized_input['input_ids']) - len(tokenized_input['labels'])) return tokenized_input def do_eval(args): paddle.set_device(args.device) # Create dataset, tokenizer and dataloader. train_ds, eval_ds = load_dataset( 'msra_ner', splits=('train', 'test'), lazy=False) tokenizer = BertTokenizer.from_pretrained(args.model_name_or_path) label_list = train_ds.label_list label_num = len(label_list) no_entity_id = label_num - 1 trans_func = partial( tokenize_and_align_labels, tokenizer=tokenizer, no_entity_id=no_entity_id, max_seq_len=args.max_seq_length) ignore_label = -100 batchify_fn = lambda samples, fn=Dict({ 'input_ids': Pad(axis=0, pad_val=tokenizer.pad_token_id), # input 'token_type_ids': Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # segment 'seq_len': Stack(), 'labels': Pad(axis=0, pad_val=ignore_label) # label }): fn(samples) eval_ds = eval_ds.map(trans_func) eval_data_loader = DataLoader( dataset=eval_ds, collate_fn=batchify_fn, num_workers=0, batch_size=args.batch_size, return_list=True) # Define the model netword and its loss model = BertForTokenClassification.from_pretrained( args.model_name_or_path, num_classes=label_num) if args.init_checkpoint_path: model_dict = paddle.load(args.init_checkpoint_path) model.set_dict(model_dict) loss_fct = paddle.nn.loss.CrossEntropyLoss(ignore_index=ignore_label) metric = ChunkEvaluator(label_list=label_list) model.eval() metric.reset() for step, batch in enumerate(eval_data_loader): input_ids, token_type_ids, length, labels = batch logits = model(input_ids, token_type_ids) loss = loss_fct(logits, labels) avg_loss = paddle.mean(loss) preds = logits.argmax(axis=2) num_infer_chunks, num_label_chunks, num_correct_chunks = metric.compute( length, preds, labels) metric.update(num_infer_chunks.numpy(), num_label_chunks.numpy(), num_correct_chunks.numpy()) precision, recall, f1_score = metric.accumulate() print("eval loss: %f, precision: %f, recall: %f, f1: %f" % (avg_loss, precision, recall, f1_score)) if __name__ == "__main__": args = parser.parse_args() do_eval(args)
39.512
226
0.70905
0
0
0
0
0
0
0
0
1,409
0.28528
670fb8129b5e60d52265e167fb8a005a31688d39
14,814
py
Python
src/python/module/z5py/util.py
constantinpape/z5
20e364cc614b744a0ee3cb733531c4b872839721
[ "MIT" ]
82
2018-02-02T04:03:49.000Z
2022-03-25T07:41:08.000Z
src/python/module/z5py/util.py
constantinpape/z5
20e364cc614b744a0ee3cb733531c4b872839721
[ "MIT" ]
152
2017-09-18T15:49:05.000Z
2022-03-16T21:07:07.000Z
src/python/module/z5py/util.py
constantinpape/z5
20e364cc614b744a0ee3cb733531c4b872839721
[ "MIT" ]
27
2017-09-19T14:52:56.000Z
2021-11-25T14:43:47.000Z
import os from itertools import product from concurrent import futures from contextlib import closing from datetime import datetime import numpy as np from . import _z5py from .file import File, S3File from .dataset import Dataset from .shape_utils import normalize_slices def product1d(inrange): for ii in inrange: yield ii def blocking(shape, block_shape, roi=None, center_blocks_at_roi=False): """ Generator for nd blocking. Args: shape (tuple): nd shape block_shape (tuple): nd block shape roi (tuple[slice]): region of interest (default: None) center_blocks_at_roi (bool): if given a roi, whether to center the blocks being generated at the roi's origin (default: False) """ assert len(shape) == len(block_shape), "Invalid number of dimensions." if roi is None: # compute the ranges for the full shape ranges = [range(sha // bsha if sha % bsha == 0 else sha // bsha + 1) for sha, bsha in zip(shape, block_shape)] min_coords = [0] * len(shape) max_coords = shape else: # make sure that the roi is valid roi, _ = normalize_slices(roi, shape) ranges = [range(rr.start // bsha, rr.stop // bsha if rr.stop % bsha == 0 else rr.stop // bsha + 1) for rr, bsha in zip(roi, block_shape)] min_coords = [rr.start for rr in roi] max_coords = [rr.stop for rr in roi] need_shift = False if roi is not None and center_blocks_at_roi: shift = [rr.start % bsha for rr, bsha in zip(roi, block_shape)] need_shift = sum(shift) > 0 # product raises memory error for too large ranges, # because input iterators are cast to tuple # so far I have only seen this for 1d "open-ended" datasets # and hence just implemented a workaround for this case, # but it should be fairly easy to implement an nd version of product # without casting to tuple for our use case using the imglib loop trick, see also # https://stackoverflow.com/questions/8695422/why-do-i-get-a-memoryerror-with-itertools-product try: start_points = product(*ranges) except MemoryError: assert len(ranges) == 1 start_points = product1d(ranges) for start_point in start_points: positions = [sp * bshape for sp, bshape in zip(start_point, block_shape)] if need_shift: positions = [pos + sh for pos, sh in zip(positions, shift)] if any(pos > maxc for pos, maxc in zip(positions, max_coords)): continue yield tuple(slice(max(pos, minc), min(pos + bsha, maxc)) for pos, bsha, minc, maxc in zip(positions, block_shape, min_coords, max_coords)) def copy_dataset_impl(f_in, f_out, in_path_in_file, out_path_in_file, n_threads, chunks=None, block_shape=None, dtype=None, roi=None, fit_to_roi=False, **new_compression): """ Implementation of copy dataset. Used to implement `copy_dataset`, `convert_to_h5` and `convert_from_h5`. Can also be used for more flexible use cases, like copying from a zarr/n5 cloud dataset to a filesytem dataset. Args: f_in (File): input file object. f_out (File): output file object. in_path_in_file (str): name of input dataset. out_path_in_file (str): name of output dataset. n_threads (int): number of threads used for copying. chunks (tuple): chunks of the output dataset. By default same as input dataset's chunks. (default: None) block_shape (tuple): block shape used for copying. Must be a multiple of ``chunks``, which are used by default (default: None) dtype (str): datatype of the output dataset, default does not change datatype (default: None). roi (tuple[slice]): region of interest that will be copied. (default: None) fit_to_roi (bool): if given a roi, whether to set the shape of the output dataset to the roi's shape and align chunks with the roi's origin. (default: False) **new_compression: compression library and options for output dataset. If not given, the same compression as in the input is used. """ ds_in = f_in[in_path_in_file] # check if we can copy chunk by chunk in_is_z5 = isinstance(f_in, (File, S3File)) out_is_z5 = isinstance(f_out, (File, S3File)) copy_chunks = (in_is_z5 and out_is_z5) and (chunks is None or chunks == ds_in.chunks) and (roi is None) # get dataset metadata from input dataset if defaults were given chunks = ds_in.chunks if chunks is None else chunks dtype = ds_in.dtype if dtype is None else dtype # zarr objects may not have compression attribute. if so set it to the settings sent to this function if not hasattr(ds_in, "compression"): ds_in.compression = new_compression compression = new_compression.pop("compression", ds_in.compression) compression_opts = new_compression same_lib = in_is_z5 == out_is_z5 if same_lib and compression == ds_in.compression: compression_opts = compression_opts if compression_opts else ds_in.compression_opts if out_is_z5: compression = None if compression == 'raw' else compression compression_opts = {} if compression_opts is None else compression_opts else: compression_opts = {'compression_opts': None} if compression_opts is None else compression_opts # if we don't have block-shape explitictly given, use chunk size # otherwise check that it's a multiple of chunks if block_shape is None: block_shape = chunks else: assert all(bs % ch == 0 for bs, ch in zip(block_shape, chunks)),\ "block_shape must be a multiple of chunks" shape = ds_in.shape # we need to create the blocking here, before the shape is potentially altered # if fit_to_roi == True blocks = blocking(shape, block_shape, roi, fit_to_roi) if roi is not None: roi, _ = normalize_slices(roi, shape) if fit_to_roi: shape = tuple(rr.stop - rr.start for rr in roi) ds_out = f_out.require_dataset(out_path_in_file, dtype=dtype, shape=shape, chunks=chunks, compression=compression, **compression_opts) def write_single_block(bb): data_in = ds_in[bb].astype(dtype, copy=False) if np.sum(data_in) == 0: return if fit_to_roi and roi is not None: bb = tuple(slice(b.start - rr.start, b.stop - rr.start) for b, rr in zip(bb, roi)) ds_out[bb] = data_in def write_single_chunk(bb): chunk_id = tuple(b.start // ch for b, ch in zip(bb, chunks)) chunk_in = ds_in.read_chunk(chunk_id) if chunk_in is None: return # check if this is a varlen chunk varlen = tuple(chunk_in.shape) != tuple(b.stop - b.start for b in bb) ds_out.write_chunk(chunk_id, chunk_in.astype(dtype, copy=False), varlen) write_single = write_single_chunk if copy_chunks else write_single_block with futures.ThreadPoolExecutor(max_workers=n_threads) as tp: tasks = [tp.submit(write_single, bb) for bb in blocks] [t.result() for t in tasks] # copy attributes in_attrs = ds_in.attrs out_attrs = ds_out.attrs for key, val in in_attrs.items(): out_attrs[key] = val def copy_dataset(in_path, out_path, in_path_in_file, out_path_in_file, n_threads, chunks=None, block_shape=None, dtype=None, use_zarr_format=None, roi=None, fit_to_roi=False, **new_compression): """ Copy dataset, optionally change metadata. The input dataset will be copied to the output dataset chunk by chunk. Allows to change chunks, datatype, file format and compression. Can also just copy a roi. Args: in_path (str): path to the input file. out_path (str): path to the output file. in_path_in_file (str): name of input dataset. out_path_in_file (str): name of output dataset. n_threads (int): number of threads used for copying. chunks (tuple): chunks of the output dataset. By default same as input dataset's chunks. (default: None) block_shape (tuple): block shape used for copying. Must be a multiple of ``chunks``, which are used by default (default: None) dtype (str): datatype of the output dataset, default does not change datatype (default: None). use_zarr_format (bool): file format of the output file, default does not change format (default: None). roi (tuple[slice]): region of interest that will be copied. (default: None) fit_to_roi (bool): if given a roi, whether to set the shape of the output dataset to the roi's shape and align chunks with the roi's origin. (default: False) **new_compression: compression library and options for output dataset. If not given, the same compression as in the input is used. """ f_in = File(in_path) # check if the file format was specified # if not, keep the format of the input file # otherwise set the file format is_zarr = f_in.is_zarr if use_zarr_format is None else use_zarr_format f_out = File(out_path, use_zarr_format=is_zarr) copy_dataset_impl(f_in, f_out, in_path_in_file, out_path_in_file, n_threads, chunks=chunks, block_shape=block_shape, dtype=dtype, roi=roi, fit_to_roi=fit_to_roi, **new_compression) def copy_group(in_path, out_path, in_path_in_file, out_path_in_file, n_threads): """ Copy group recursively. Copy the group recursively, using copy_dataset. Metadata of datasets that are copied cannot be changed and rois cannot be applied. Args: in_path (str): path to the input file. out_path (str): path to the output file. in_path_in_file (str): name of input group. out_path_in_file (str): name of output group. n_threads (int): number of threads used to copy datasets. """ f_in = File(in_path) f_out = File(out_path) def copy_attrs(gin, gout): in_attrs = gin.attrs out_attrs = gout.attrs for key, val in in_attrs.items(): out_attrs[key] = val g_in = f_in[in_path_in_file] g_out = f_out.require_group(out_path_in_file) copy_attrs(g_in, g_out) def copy_object(name, obj): abs_in_key = os.path.join(in_path_in_file, name) abs_out_key = os.path.join(out_path_in_file, name) if isinstance(obj, Dataset): copy_dataset(in_path, out_path, abs_in_key, abs_out_key, n_threads) else: g = f_out.require_group(abs_out_key) copy_attrs(obj, g) g_in.visititems(copy_object) class Timer: def __init__(self): self.start_time = None self.stop_time = None @property def elapsed(self): try: return (self.stop_time - self.start_time).total_seconds() except TypeError as e: if "'NoneType'" in str(e): raise RuntimeError("{} either not started, or not stopped".format(self)) def start(self): self.start_time = datetime.utcnow() def stop(self): self.stop_time = datetime.utcnow() return self.elapsed def __enter__(self): self.start() return self def __exit__(self, exc_type, exc_val, exc_tb): self.stop() def fetch_test_data_stent(): from imageio import volread data_i16 = volread('imageio:stent.npz') return (data_i16 / data_i16.max() * 255).astype(np.uint8) def fetch_test_data(): try: from urllib.request import urlopen except ImportError: from urllib2 import urlopen try: from io import BytesIO as Buffer except ImportError: from StringIO import StringIO as Buffer import zipfile from imageio import volread im_url = "https://imagej.nih.gov/ij/images/t1-head-raw.zip" with closing(urlopen(im_url)) as response: if response.status != 200: raise RuntimeError("Test data could not be found at {}, status code {}".format( im_url, response.status )) zip_buffer = Buffer(response.read()) with zipfile.ZipFile(zip_buffer) as zf: tif_buffer = Buffer(zf.read('JeffT1_le.tif')) return np.asarray(volread(tif_buffer, format='tif'), dtype=np.uint8) def remove_trivial_chunks(dataset, n_threads, remove_specific_value=None): """ Remove chunks that only contain a single value. The input dataset will be copied to the output dataset chunk by chunk. Allows to change datatype, file format and compression as well. Args: dataset (z5py.Dataset) n_threads (int): number of threads remove_specific_value (int or float): only remove chunks that contain (only) this specific value (default: None) """ dtype = dataset.dtype function = getattr(_z5py, 'remove_trivial_chunks_%s' % dtype) remove_specific = remove_specific_value is not None value = remove_specific_value if remove_specific else 0 function(dataset._impl, n_threads, remove_specific, value) def remove_dataset(dataset, n_threads): """ Remvoe dataset multi-threaded. """ _z5py.remove_dataset(dataset._impl, n_threads) def remove_chunk(dataset, chunk_id): """ Remove a chunk """ dataset._impl.remove_chunk(dataset._impl, chunk_id) def remove_chunks(dataset, bounding_box): """ Remove all chunks overlapping the bounding box """ shape = dataset.shape chunks = dataset.chunks blocks = blocking(shape, chunks, roi=bounding_box) for block in blocks: chunk_id = tuple(b.start // ch for b, ch in zip(block, chunks)) remove_chunk(dataset, chunk_id) def unique(dataset, n_threads, return_counts=False): """ Find unique values in dataset. Args: dataset (z5py.Dataset) n_threads (int): number of threads return_counts (bool): return counts of unique values (default: False) """ dtype = dataset.dtype if return_counts: function = getattr(_z5py, 'unique_with_counts_%s' % dtype) else: function = getattr(_z5py, 'unique_%s' % dtype) return function(dataset._impl, n_threads)
37.887468
120
0.645876
674
0.045498
2,561
0.172877
274
0.018496
0
0
5,755
0.388484
671044f92c1e2bb7a547bce5cdc307d31e50194b
8,485
py
Python
custom_components/waste_collection_schedule/sensor.py
trstns/hacs_waste_collection_schedule
f8f297b43c8e87510e17a558347a88a95f790d7b
[ "MIT" ]
null
null
null
custom_components/waste_collection_schedule/sensor.py
trstns/hacs_waste_collection_schedule
f8f297b43c8e87510e17a558347a88a95f790d7b
[ "MIT" ]
null
null
null
custom_components/waste_collection_schedule/sensor.py
trstns/hacs_waste_collection_schedule
f8f297b43c8e87510e17a558347a88a95f790d7b
[ "MIT" ]
null
null
null
"""Sensor platform support for Waste Collection Schedule.""" import collections import datetime import logging from enum import Enum import homeassistant.helpers.config_validation as cv import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import CONF_NAME, CONF_VALUE_TEMPLATE, STATE_UNKNOWN from homeassistant.core import callback from homeassistant.helpers.dispatcher import async_dispatcher_connect from homeassistant.helpers.entity import Entity from .const import DOMAIN, UPDATE_SENSORS_SIGNAL _LOGGER = logging.getLogger(__name__) CONF_SOURCE_INDEX = "source_index" CONF_DETAILS_FORMAT = "details_format" CONF_COUNT = "count" CONF_LEADTIME = "leadtime" CONF_DATE_TEMPLATE = "date_template" CONF_APPOINTMENT_TYPES = "types" class DetailsFormat(Enum): """Values for CONF_DETAILS_FORMAT.""" upcoming = "upcoming" # list of "<date> <type1, type2, ...>" appointment_types = "appointment_types" # list of "<type> <date>" generic = "generic" # all values in separate attributes PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_NAME): cv.string, vol.Optional(CONF_SOURCE_INDEX, default=0): cv.positive_int, vol.Optional(CONF_DETAILS_FORMAT, default="upcoming"): cv.enum(DetailsFormat), vol.Optional(CONF_COUNT): cv.positive_int, vol.Optional(CONF_LEADTIME): cv.positive_int, vol.Optional(CONF_APPOINTMENT_TYPES): cv.ensure_list, vol.Optional(CONF_VALUE_TEMPLATE): cv.template, vol.Optional(CONF_DATE_TEMPLATE): cv.template, } ) async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): value_template = config.get(CONF_VALUE_TEMPLATE) if value_template is not None: value_template.hass = hass date_template = config.get(CONF_DATE_TEMPLATE) if date_template is not None: date_template.hass = hass entities = [] entities.append( ScheduleSensor( hass=hass, api=hass.data[DOMAIN], name=config[CONF_NAME], source_index=config[CONF_SOURCE_INDEX], details_format=config[CONF_DETAILS_FORMAT], count=config.get(CONF_COUNT), leadtime=config.get(CONF_LEADTIME), appointment_types=config.get(CONF_APPOINTMENT_TYPES), value_template=value_template, date_template=date_template, ) ) async_add_entities(entities) class ScheduleSensor(Entity): """Base for sensors.""" def __init__( self, hass, api, name, source_index, details_format, count, leadtime, appointment_types, value_template, date_template, ): """Initialize the entity.""" self._api = api self._name = name self._source_index = source_index self._details_format = details_format self._count = count self._leadtime = leadtime self._appointment_types = appointment_types self._value_template = value_template self._date_template = date_template self._state = STATE_UNKNOWN self._icon = None self._picture = None self._attributes = [] async_dispatcher_connect(hass, UPDATE_SENSORS_SIGNAL, self._update_sensor) @property def name(self): return self._name @property def unique_id(self): return self._name @property def should_poll(self): return False @property def icon(self): return "mdi:trash-can" if self._icon is None else self._icon @property def entity_picture(self): return self._picture @property def state(self): """Return the state of the entity.""" return self._state @property def device_state_attributes(self): """Return attributes for the entity.""" return self._attributes async def async_added_to_hass(self): """Entities have been added to hass.""" self._update_sensor() @property def _scraper(self): return self._api.get_scraper(self._source_index) @property def _separator(self): """Return separator string used to join waste types.""" return self._api.separator @property def _include_today(self): """Return true if appointments for today shall be included in the results.""" return datetime.datetime.now().time() < self._api._day_switch_time def _add_refreshtime(self): """Add refresh-time (= last fetch time) to device-state-attributes.""" refreshtime = "" if self._scraper.refreshtime is not None: refreshtime = self._scraper.refreshtime.strftime("%x %X") self._attributes["attribution"] = f"Last update: {refreshtime}" def _set_state(self, upcoming): """Set entity state with default format.""" if len(upcoming) == 0: self._state = "" self._icon = None self._picture = None return appointment = upcoming[0] # appointment::=CollectionAppointmentGroup{date=2020-04-01, types=['Type1', 'Type2']} if self._value_template is not None: self._state = self._value_template.async_render_with_possible_json_value( appointment, None ) else: self._state = f"{self._separator.join(appointment.types)} in {appointment.daysTo} days" self._icon = appointment.icon self._picture = appointment.picture def _render_date(self, appointment): if self._date_template is not None: return self._date_template.async_render_with_possible_json_value( appointment, None ) else: return appointment.date.isoformat() @callback def _update_sensor(self): """Update the state and the device-state-attributes of the entity. Called if a new data has been fetched from the scraper source. """ if self._scraper is None: _LOGGER.error(f"source_index {self._source_index} out of range") return None self._set_state( self._scraper.get_upcoming_group_by_day( count=1, types=self._appointment_types, include_today=self._include_today, ) ) attributes = collections.OrderedDict() appointment_types = ( sorted(self._scraper.get_types()) if self._appointment_types is None else self._appointment_types ) if self._details_format == DetailsFormat.upcoming: # show upcoming events list in details upcoming = self._scraper.get_upcoming_group_by_day( count=self._count, leadtime=self._leadtime, types=self._appointment_types, include_today=self._include_today, ) for appointment in upcoming: attributes[self._render_date(appointment)] = self._separator.join( appointment.types ) elif self._details_format == DetailsFormat.appointment_types: # show list of appointments in details for t in appointment_types: appointments = self._scraper.get_upcoming( count=1, types=[t], include_today=self._include_today ) date = ( "" if len(appointments) == 0 else self._render_date(appointments[0]) ) attributes[t] = date elif self._details_format == DetailsFormat.generic: # insert generic attributes into details attributes["types"] = appointment_types attributes["upcoming"] = self._scraper.get_upcoming( count=self._count, leadtime=self._leadtime, types=self._appointment_types, include_today=self._include_today, ) refreshtime = "" if self._scraper.refreshtime is not None: refreshtime = self._scraper.refreshtime.isoformat(timespec="seconds") attributes["last_update"] = refreshtime self._attributes = attributes self._add_refreshtime() if self.hass is not None: self.async_schedule_update_ha_state()
32.140152
99
0.635357
6,263
0.738126
0
0
3,594
0.423571
1,000
0.117855
1,307
0.154037
671186e2f94db3759070c3a35c61ae043b2efdd5
2,622
py
Python
qidian.py
kivson/qidian-dl
9b42f4c530b7938ff80f160ef32aa51cc43671f6
[ "MIT" ]
null
null
null
qidian.py
kivson/qidian-dl
9b42f4c530b7938ff80f160ef32aa51cc43671f6
[ "MIT" ]
null
null
null
qidian.py
kivson/qidian-dl
9b42f4c530b7938ff80f160ef32aa51cc43671f6
[ "MIT" ]
null
null
null
from concurrent.futures import ThreadPoolExecutor from functools import partial from json import JSONDecodeError import requests from funcy.calc import cache from funcy.debug import print_calls from funcy.simple_funcs import curry HEADERS = { "Accept": "application/json, text/javascript, */*; q=0.01", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) " "Chrome/58.0.3029.110 Safari/537.36", "X-Requested-With": "XMLHttpRequest" } HOME_URL = "https://www.webnovel.com/" class QidianException(Exception): pass @cache(60) def _get_csrftoken(): response = requests.get(HOME_URL) return response.cookies.get('_csrfToken', None) def novels(): for page in range(1, 10000): response = requests.get("https://www.webnovel.com/apiajax/listing/popularAjax", headers=HEADERS, params={ '_csrfToken': _get_csrftoken(), 'category': '', 'pageIndex': page }) data = _response_to_json(response) if 'data' not in data or 'items' not in data['data'] or 'isLast' not in data['data']: raise QidianException('Expected data not found') yield from data['data']['items'] if data['data']['isLast'] == 1: break def _response_to_json(response): try: data = response.json() except JSONDecodeError: raise QidianException('Json parse Error') return data def charpters_list(bookId): response = requests.get('https://www.webnovel.com/apiajax/chapter/GetChapterList', headers=HEADERS, params={ '_csrfToken': _get_csrftoken(), 'bookId': bookId }) data = _response_to_json(response) if 'data' not in data or 'chapterItems' not in data['data']: raise QidianException('Expected data not found') yield from data['data']['chapterItems'] def chapter(bookId, chapterId): response = requests.get('https://www.webnovel.com/apiajax/chapter/GetContent', headers=HEADERS, params={ '_csrfToken': _get_csrftoken(), 'bookId': bookId, 'chapterId': chapterId }) data = _response_to_json(response) if 'data' not in data or 'chapterInfo' not in data['data']: raise QidianException('Expected data not found') return data['data']['chapterInfo'] def all_chapters(bookId, poolsize=10): charpters = charpters_list(bookId=bookId) with ThreadPoolExecutor(max_workers=poolsize) as executor: chapter_getter = partial(chapter, bookId) yield from executor.map(chapter_getter, (c['chapterId'] for c in charpters))
29.133333
113
0.666667
42
0.016018
1,276
0.486651
122
0.046529
0
0
764
0.291381
6712802d8a80e0d4a1dc7de07b3fd9bb724b208d
4,398
py
Python
srcWatteco/TICs/_poubelle/TIC_ICEp.py
OStephan29/Codec-Python
76d651bb23daf1d9307c8b84533d9f24a59cea28
[ "BSD-3-Clause" ]
1
2022-01-12T15:46:58.000Z
2022-01-12T15:46:58.000Z
srcWatteco/TICs/_poubelle/TIC_ICEp.py
OStephan29/Codec-Python
76d651bb23daf1d9307c8b84533d9f24a59cea28
[ "BSD-3-Clause" ]
null
null
null
srcWatteco/TICs/_poubelle/TIC_ICEp.py
OStephan29/Codec-Python
76d651bb23daf1d9307c8b84533d9f24a59cea28
[ "BSD-3-Clause" ]
1
2021-10-05T08:40:15.000Z
2021-10-05T08:40:15.000Z
# -*- coding: utf-8 -*- # Pour passer de TICDataXXXFromBitfields @ TICDataBatchXXXFromFieldIndex # Expressions régulière notepad++ # Find : TICDataSelectorIfBit\( ([0-9]*), Struct\("([^\"]*)"\/([^\)]*).* # Replace: \1 : \3, # \2 from ._TIC_Tools import * from ._TIC_Types import * TICDataICEpFromBitfields = Struct( TICDataSelectorIfBit( 0, Struct("DEBUTp"/TYPE_DMYhms) ), TICDataSelectorIfBit( 1, Struct("FINp"/TYPE_DMYhms)), TICDataSelectorIfBit( 2, Struct("CAFp"/Int16ub) ), TICDataSelectorIfBit( 3, Struct("DATE_EAp"/TYPE_DMYhms) ), TICDataSelectorIfBit( 4, Struct("EApP"/Int24ub) ), TICDataSelectorIfBit( 5, Struct("EApPM"/Int24ub) ), TICDataSelectorIfBit( 6, Struct("EApHCE"/Int24ub) ), TICDataSelectorIfBit( 7, Struct("EApHCH"/Int24ub) ), TICDataSelectorIfBit( 8, Struct("EApHH"/Int24ub) ), TICDataSelectorIfBit( 9, Struct("EApHCD"/Int24ub) ), TICDataSelectorIfBit( 10, Struct("EApHD"/Int24ub) ), TICDataSelectorIfBit( 11, Struct("EApJA"/Int24ub) ), TICDataSelectorIfBit( 12, Struct("EApHPE"/Int24ub) ), TICDataSelectorIfBit( 13, Struct("EApHPH"/Int24ub) ), TICDataSelectorIfBit( 14, Struct("EApHPD"/Int24ub) ), TICDataSelectorIfBit( 15, Struct("EApSCM"/Int24ub) ), TICDataSelectorIfBit( 16, Struct("EApHM"/Int24ub) ), TICDataSelectorIfBit( 17, Struct("EApDSM"/Int24ub) ), TICDataSelectorIfBit( 18, Struct("DATE_ERPp"/TYPE_DMYhms) ), TICDataSelectorIfBit( 19, Struct("ERPpP"/Int24ub) ), TICDataSelectorIfBit( 20, Struct("ERPpPM"/Int24ub) ), TICDataSelectorIfBit( 21, Struct("ERPpHCE"/Int24ub) ), TICDataSelectorIfBit( 22, Struct("ERPpHCH"/Int24ub) ), TICDataSelectorIfBit( 23, Struct("ERPpHH"/Int24ub) ), TICDataSelectorIfBit( 24, Struct("ERPpHCD"/Int24ub) ), TICDataSelectorIfBit( 25, Struct("ERPpHD"/Int24ub) ), TICDataSelectorIfBit( 26, Struct("ERPpJA"/Int24ub) ), TICDataSelectorIfBit( 27, Struct("ERPpHPE"/Int24ub) ), TICDataSelectorIfBit( 28, Struct("ERPpHPH"/Int24ub) ), TICDataSelectorIfBit( 29, Struct("ERPpHPD"/Int24ub) ), TICDataSelectorIfBit( 30, Struct("ERPpSCM"/Int24ub) ), TICDataSelectorIfBit( 31, Struct("ERPpHM"/Int24ub) ), TICDataSelectorIfBit( 32, Struct("ERPpDSM"/Int24ub) ), TICDataSelectorIfBit( 33, Struct("DATE_ERNp"/TYPE_DMYhms) ), TICDataSelectorIfBit( 34, Struct("ERNpP"/Int24ub) ), TICDataSelectorIfBit( 35, Struct("ERNpPM"/Int24ub) ), TICDataSelectorIfBit( 36, Struct("ERNpHCE"/Int24ub) ), TICDataSelectorIfBit( 37, Struct("ERNpHCH"/Int24ub) ), TICDataSelectorIfBit( 38, Struct("ERNpHH"/Int24ub) ), TICDataSelectorIfBit( 39, Struct("ERNpHCD"/Int24ub) ), TICDataSelectorIfBit( 40, Struct("ERNpHD"/Int24ub) ), TICDataSelectorIfBit( 41, Struct("ERNpJA"/Int24ub) ), TICDataSelectorIfBit( 42, Struct("ERNpHPE"/Int24ub) ), TICDataSelectorIfBit( 43, Struct("ERNpHPH"/Int24ub) ), TICDataSelectorIfBit( 44, Struct("ERNpHPD"/Int24ub) ), TICDataSelectorIfBit( 45, Struct("ERNpSCM"/Int24ub) ), TICDataSelectorIfBit( 46, Struct("ERNpHM"/Int24ub) ), TICDataSelectorIfBit( 47, Struct("ERNpDSM"/Int24ub) ) ) # NOTE: For Batch only scalar/numeric values are accepeted TICDataBatchICEpFromFieldIndex = Switch( FindFieldIndex, { #0 : TYPE_DMYhms, # DEBUTp #1 : TYPE_DMYhms, # FINp 2 : Int16ub, # CAFp #3 : TYPE_DMYhms, # DATE_EAp 4 : Int24ub, # EApP 5 : Int24ub, # EApPM 6 : Int24ub, # EApHCE 7 : Int24ub, # EApHCH 8 : Int24ub, # EApHH 9 : Int24ub, # EApHCD 10 : Int24ub, # EApHD 11 : Int24ub, # EApJA 12 : Int24ub, # EApHPE 13 : Int24ub, # EApHPH 14 : Int24ub, # EApHPD 15 : Int24ub, # EApSCM 16 : Int24ub, # EApHM 17 : Int24ub, # EApDSM #18 : TYPE_DMYhms, # DATE_ERPp 19 : Int24ub, # ERPpP 20 : Int24ub, # ERPpPM 21 : Int24ub, # ERPpHCE 22 : Int24ub, # ERPpHCH 23 : Int24ub, # ERPpHH 24 : Int24ub, # ERPpHCD 25 : Int24ub, # ERPpHD 26 : Int24ub, # ERPpJA 27 : Int24ub, # ERPpHPE 28 : Int24ub, # ERPpHPH 29 : Int24ub, # ERPpHPD 30 : Int24ub, # ERPpSCM 31 : Int24ub, # ERPpHM 32 : Int24ub, # ERPpDSM #33 : TYPE_DMYhms, # DATE_ERNp 34 : Int24ub, # ERNpP 35 : Int24ub, # ERNpPM 36 : Int24ub, # ERNpHCE 37 : Int24ub, # ERNpHCH 38 : Int24ub, # ERNpHH 39 : Int24ub, # ERNpHCD 40 : Int24ub, # ERNpHD 41 : Int24ub, # ERNpJA 42 : Int24ub, # ERNpHPE 43 : Int24ub, # ERNpHPH 44 : Int24ub, # ERNpHPD 45 : Int24ub, # ERNpSCM 46 : Int24ub, # ERNpHM 47 : Int24ub, # ERNpDSM }, default = TICUnbatchableFieldError() )
33.572519
74
0.698272
0
0
0
0
0
0
0
0
1,169
0.265682
6714f1b0e63e554da53c6d95c385058b29428db0
2,095
py
Python
tests/test_check_types.py
oliel/python-ovirt-engine-sdk4
c0b13982b45dee664ebc063bda7686124b402c14
[ "Apache-2.0" ]
3
2022-01-14T00:37:58.000Z
2022-03-26T12:26:32.000Z
tests/test_check_types.py
oliel/python-ovirt-engine-sdk4
c0b13982b45dee664ebc063bda7686124b402c14
[ "Apache-2.0" ]
29
2021-07-20T12:42:44.000Z
2022-03-28T13:01:33.000Z
tests/test_check_types.py
oliel/python-ovirt-engine-sdk4
c0b13982b45dee664ebc063bda7686124b402c14
[ "Apache-2.0" ]
12
2021-07-20T12:27:07.000Z
2022-02-24T11:10:12.000Z
# -*- coding: utf-8 -*- # # Copyright (c) 2016 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import ovirtsdk4.services as services import ovirtsdk4.types as types import unittest from nose.tools import ( assert_in, assert_raises, ) from .server import TestServer class CheckTypesTest(unittest.TestCase): def test_service_type_error(self): """ Test that calling a method with multiple wrong parameter types generates an informative exception. """ vm_service = services.VmService(None, None) with assert_raises(TypeError) as context: vm_service.start( use_cloud_init='true', vm=types.Disk(), ) message = str(context.exception) assert_in( "The 'use_cloud_init' parameter should be of type 'bool', " "but it is of type 'str'", message ) assert_in( "The 'vm' parameter should be of type 'Vm', but it is of " "type 'Disk'", message ) def test_locator_type_error(self): """ Test that calling a service locator with a wrong parameter type generates an informative exception. """ vms_service = services.VmsService(None, None) with assert_raises(TypeError) as context: vms_service.vm_service(types.Vm()) message = str(context.exception) assert_in( "The 'id' parameter should be of type 'str', but it is of " "type 'Vm'.", message )
30.362319
74
0.630072
1,304
0.622434
0
0
0
0
0
0
1,084
0.517422
6715015a823d4efe629d554c1f06e22bd2b8c5e4
7,518
py
Python
nsi/shell.py
NextStepInnovation/nsi-tools
ee4c9a9e512a2fb4942699d88920bc8210a3d701
[ "MIT" ]
null
null
null
nsi/shell.py
NextStepInnovation/nsi-tools
ee4c9a9e512a2fb4942699d88920bc8210a3d701
[ "MIT" ]
null
null
null
nsi/shell.py
NextStepInnovation/nsi-tools
ee4c9a9e512a2fb4942699d88920bc8210a3d701
[ "MIT" ]
null
null
null
import os import io import sys import subprocess import shlex import logging from threading import Timer from typing import Callable, Any, List from pathlib import Path # noqa: for doctest import tempfile # noqa: for doctest from .toolz import ( merge, map, pipe, curry, do, cprint ) log = logging.getLogger(__name__) log.addHandler(logging.NullHandler()) def start_timeout(command: List[str], process: subprocess.Popen, timeout: int): # https://www.blog.pythonlibrary.org/2016/05/17/python-101-how-to-timeout-a-subprocess/ def kill(): log.warning(f'Process ({command[0]}) timeout expired.') return process.kill() timer = Timer(timeout, kill) timer.start() return timer @curry def shell_iter(command, *, echo: bool = True, echo_func: Callable[[Any], None] = cprint(file=sys.stderr, end=''), timeout: int = None, **popen_kw): '''Execute a shell command, yield lines of output as they come possibly echoing command output to a given echo_func, and finally yields the status code of the process. This will run the shell command, yielding each line of output as it runs. When the process terminates, it will then yield the remainder of output, then finally the integer status code. It can also be terminated early via a timeout parameter. By default, the command will also echo to stderr. Args: command (str): Shell command to execute. Tilde (~) and shell variable completion provided echo (bool): Should the output be echoed to echo_func in addition to yielding lines of output? echo_func (Callable[[Any], None]): Function to use when echoing output. **Be warned**, this function is called __for each character__ of output. By default, this is `cprint(end='')` (i.e. print with end='') timeout (int): If set, the process will be killed after this many seconds (kill -9). Returns: generator of the form *output_lines, status_code = shell_iter(...) where output_lines is a sequence of strings of output and status_code is an integer status code Examples: >>> with tempfile.TemporaryDirectory() as tempdir: ... root = Path(tempdir) ... _ = Path(root, 'a.txt').write_text('') ... _ = Path(root, 'b.txt').write_text('') ... # FYI, this echos to stderr, which doctests won't capture ... *lines, status = shell_iter(f'ls {root}') >>> lines ['a.txt', 'b.txt'] >>> status 0 >>> with tempfile.TemporaryDirectory() as tempdir: ... root = Path(tempdir) ... _ = Path(root, 'c.txt').write_text('') ... _ = Path(root, 'd.txt').write_text('') ... *lines, _ = shell_iter(f'ls {root}', echo=False) >>> lines ['c.txt', 'd.txt'] >>> *lines, status = shell_iter( ... f'sleep 5', echo=False, timeout=0.01 ... ) >>> lines [] >>> status -9 ''' popen_kw = merge({ 'stdout': subprocess.PIPE, 'stderr': subprocess.STDOUT, }, popen_kw) command_split = pipe( shlex.split(command), map(os.path.expanduser), map(os.path.expandvars), tuple, ) process = subprocess.Popen(command_split, **popen_kw) timer = None if timeout: timer = start_timeout(command_split, process, timeout) def process_running(): return process.poll() is None line = '' while process_running(): char = process.stdout.read(1).decode('utf-8', errors='ignore') if char: echo_func(char) if echo else '' if char == '\n': yield line line = '' else: line += char if timer: timer.cancel() rest = process.stdout.read().decode('utf-8', errors='ignore') for char in rest: echo_func(char) if echo else '' if char == '\n': yield line line = '' else: line += char if line: echo_func(char) if echo else '' yield line yield process.poll() @curry def shell(command, **kw): '''Execute a shell command and return status code as an int and command output as a string, possibly echoing command output to a given echo_func. Args: command (str): Shell command to execute. Tilde (~) and shell variable completion provided echo (bool): Should the output be echoed to echo_func in addition to yielding lines of output? echo_func (Callable[[Any], None]): Function to use when echoing output. **Be warned**, this funciton is called __for each character__ of output. By default, this is `cprint(end='')` (i.e. print with end='') timeout (int): If set, the process will be killed after this many seconds (kill -9). Examples: >>> with tempfile.TemporaryDirectory() as tempdir: ... root = Path(tempdir) ... _ = Path(root, 'a.txt').write_text('') ... _ = Path(root, 'b.txt').write_text('') ... # FYI, this echos to stderr, which doctests won't capture ... status, output = shell(f'ls {root}') >>> output == "a.txt\\nb.txt" True >>> status 0 >>> with tempfile.TemporaryDirectory() as tempdir: ... root = Path(tempdir) ... _ = Path(root, 'c.txt').write_text('') ... _ = Path(root, 'd.txt').write_text('') ... _, output = shell(f'ls {root}', echo=False) >>> output == 'c.txt\\nd.txt' True >>> status, output = shell( ... f'sleep 5', echo=False, timeout=0.01 ... ) >>> output == "" True >>> status -9 ''' *lines, status = shell_iter(command, **kw) return status, '\n'.join(lines) @curry def getoutput(command, **kw): status, content = shell(command, **kw) return content @curry def shell_pipe(command, stdin, *, timeout: int = None, **popen_kw): '''Execute a shell command with stdin content and return command output as a string. Args: command (str): Shell command to execute. Tilde (~) and shell variable completion provided stdin (str): String content to provide to process stdin timeout (int): If set, the process will be killed after this many seconds (kill -9). Examples: >>> with tempfile.TemporaryDirectory() as tempdir: ... root = Path(tempdir) ... _ = Path(root, 'a.txt').write_text('') ... _ = Path(root, 'b.txt').write_text('') ... _ = Path(root, 'ab.txt').write_text('') ... output = pipe( ... getoutput(f'ls {root}'), ... shell_pipe('grep a') ... ) >>> sorted(output.strip().split()) == ["a.txt", "ab.txt"] True ''' popen_kw = merge({ 'stdout': subprocess.PIPE, 'stderr': subprocess.PIPE, 'stdin': subprocess.PIPE, }, popen_kw) command_split = pipe( shlex.split(command), map(os.path.expanduser), map(os.path.expandvars), tuple, ) process = subprocess.Popen(command_split, **popen_kw) timer = None if timeout: timer = start_timeout() stdout, stderr = process.communicate( stdin.encode('utf-8', errors='ignore') ) if timer: timer.cancel() return stdout.decode('utf-8', errors='ignore')
28.477273
91
0.580607
0
0
3,482
0.463155
6,757
0.898776
0
0
4,742
0.630753
6715fb7acc45572b00524312f06dff2708091d1d
8,934
py
Python
ICLR_2022/Cubic_10D/PIVEN/DataGen.py
streeve/PI3NN
f7f08a195096e0388bb9230bc67c6acd6f41581a
[ "Apache-2.0" ]
11
2021-11-08T20:38:50.000Z
2022-01-30T02:46:39.000Z
ICLR_2022/Cubic_10D/PIVEN/DataGen.py
streeve/PI3NN
f7f08a195096e0388bb9230bc67c6acd6f41581a
[ "Apache-2.0" ]
1
2022-01-13T19:46:32.000Z
2022-02-09T16:23:56.000Z
ICLR_2022/Cubic_10D/PIVEN/DataGen.py
streeve/PI3NN
f7f08a195096e0388bb9230bc67c6acd6f41581a
[ "Apache-2.0" ]
1
2021-12-17T18:38:26.000Z
2021-12-17T18:38:26.000Z
""" Data creation: Load the data, normalize it, and split into train and test. """ ''' Added the capability of loading pre-separated UCI train/test data function LoadData_Splitted_UCI ''' import numpy as np import os import pandas as pd import tensorflow as tf DATA_PATH = "../UCI_Datasets" class DataGenerator: def __init__(self, dataset_name): self.dataset_name = dataset_name # used for metrics calculation self.scale_c = None # std self.shift_c = None # mean def create_cubic_10D_data(self): Npar = 10 Ntrain = 5000 Nout = 1 Ntest = 1000 # x_train = tf.random.uniform(shape=(Ntrain, Npar))*4.0-2.0 x_train = tf.random.normal(shape=(Ntrain, Npar)) y_train = x_train ** 3 y_train = tf.reduce_sum(y_train, axis=1, keepdims=True)/10.0 + 1.0*tf.random.normal([x_train.shape[0], 1]) # x_test = tf.random.uniform(shape=(Ntest, Npar)) # x_test[:,1] = x_test[:,1] + 4.0 # x_test = np.random.uniform(size=(Ntest,Npar)) # x_test[:,1] = x_test[:,1] + 4.0 x_test = np.random.normal(size=(Ntest,Npar)) + 2.0 x_test = tf.convert_to_tensor(x_test, dtype=tf.float32) scale_c = np.std(x_test.eval(session=tf.compat.v1.Session())) y_test = x_test ** 3 y_test = tf.reduce_sum(y_test, axis=1, keepdims=True)/10.0 + 1.0*tf.random.normal([x_test.shape[0], 1]) ### to Numpy array in TF1 compat environment using TF2 x_train = x_train.eval(session=tf.compat.v1.Session()) y_train = y_train.eval(session=tf.compat.v1.Session()) x_test = x_test.eval(session=tf.compat.v1.Session()) y_test = y_test.eval(session=tf.compat.v1.Session()) ### normalization x_mean = np.mean(x_train, axis=0) x_std = np.std(x_train,axis=0) xtrain_normal = (x_train - x_mean)/x_std y_mean = np.mean(y_train,axis=0) y_std = np.std(y_train,axis=0) ytrain_normal = (y_train - y_mean)/y_std xvalid_normal = (x_test - x_mean) / x_std yvalid_normal = (y_test - y_mean) / y_std X_train = xtrain_normal y_train = ytrain_normal X_val = xvalid_normal y_val = yvalid_normal self.scale_c = scale_c return X_train, y_train, X_val, y_val def create_data(self, seed_in=5, train_prop=0.9): """ @param seed_in: seed for numpy random seed @param train_prop: train proportion """ np.random.seed(seed_in) # load UCI data dataset = self.dataset_name dataset_path = f"{DATA_PATH}/{dataset}.txt" if dataset == 'YearPredictionMSD': data = np.loadtxt(dataset_path, delimiter=',') elif dataset == 'naval': data = np.loadtxt(dataset_path) data = data[:, :-1] # have 2 y as GT, ignore last else: data = np.loadtxt(dataset_path) # save normalization constants (used for calculating results) if dataset == 'YearPredictionMSD': scale_c = np.std(data[:, 0]) # in YearPredictionMSD, label's index = 0 shift_c = np.mean(data[:, 0]) else: scale_c = np.std(data[:, -1]) shift_c = np.mean(data[:, -1]) # normalize data for i in range(data.shape[1]): sdev_norm = np.std(data[:, i]) sdev_norm = 0.001 if sdev_norm == 0 else sdev_norm # avoid zero variance features data[:, i] = (data[:, i] - np.mean(data[:, i])) / sdev_norm # split train test if dataset == 'YearPredictionMSD': # train: first 463,715 examples # test: last 51,630 examples train = data[:463715, :] test = data[-51630:, :] else: # split into train/test in random perm = np.random.permutation(data.shape[0]) train_size = int(round(train_prop * data.shape[0])) train = data[perm[:train_size], :] test = data[perm[train_size:], :] # split to target and data if dataset == 'YearPredictionMSD': y_train = train[:, 0].reshape(-1, 1) X_train = train[:, 1:] y_val = test[:, 0].reshape(-1, 1) X_val = test[:, 1:] else: y_train = train[:, -1].reshape(-1, 1) X_train = train[:, :-1] y_val = test[:, -1].reshape(-1, 1) X_val = test[:, :-1] self.scale_c = scale_c self.shift_c = shift_c return X_train, y_train, X_val, y_val def LoadData_Splitted_UCI(self, loadCSVName, original_data_path, splitted_data_path, split_seed, **kwargs): ## (1) Load the original data for the normalization purpose # current_dir = os.path.dirname(__file__) # uci_dir = os.path.join(current_dir, 'UCI_datasets') uci_dir = original_data_path if loadCSVName == 'boston': data = np.loadtxt(os.path.join(uci_dir, 'boston-housing/boston_housing.txt')) if loadCSVName == 'concrete': data_df = pd.read_excel(os.path.join(uci_dir, 'concrete/Concrete_Data.xls')) data = data_df.values if loadCSVName == 'energy': data_df = pd.read_excel(os.path.join(uci_dir, 'energy-efficiency/ENB2012_data.xlsx'), engine='openpyxl') data_df = data_df.dropna(how='all', axis='columns') data_df = data_df.dropna(how='all', axis='rows') data = data_df.values if loadCSVName == 'kin8nm': data_df = pd.read_csv(os.path.join(uci_dir, 'kin8nm/dataset_2175_kin8nm.csv'), sep=',') data = data_df.values if loadCSVName == 'naval': data = np.loadtxt(os.path.join(uci_dir, 'naval/data.txt')) if loadCSVName == 'power': data_df = pd.read_excel(os.path.join(uci_dir, 'power-plant/Folds5x2_pp.xlsx'), engine='openpyxl') data = data_df.values if loadCSVName == 'protein': data_df = pd.read_csv(os.path.join(uci_dir, 'protein/CASP.csv'), sep=',') # print(data_df) '''Move the Y data (originally located at the first column) to last column in order to keep consistency with the normalization process''' col_names = data_df.columns.tolist() col_names.append(col_names[0]) del col_names[col_names.index(col_names[0])] # print(col_names) data_df = data_df[col_names] # print(data_df) data = data_df.values if loadCSVName == 'wine': data_df = pd.read_csv(os.path.join(uci_dir, 'wine-quality/winequality-red.csv'), sep=';') data = data_df.values if loadCSVName == 'yacht': data = np.loadtxt(os.path.join(uci_dir, 'yacht/yacht_hydrodynamics.data')) if loadCSVName == 'MSD': with open(os.path.join(uci_dir, 'song/YearPredictionMSD.npy'), 'rb') as f: data = np.load(f) ## (2) Load the pre-splitted train/test data ## xyTrain_load = np.loadtxt(splitted_data_path+'xyTrain_'+loadCSVName+'_seed_'+str(split_seed)+'.csv', delimiter=',') xyTest_load = np.loadtxt(splitted_data_path+'xyTest_'+loadCSVName+'_seed_'+str(split_seed)+'.csv', delimiter=',') xyTrain_load = xyTrain_load.astype(np.float32) # xyValid_load = xyValid_load.astype(np.float32) xyTest_load = xyTest_load.astype(np.float32) # original normalization functions # work out normalisation constants (need when unnormalising later) scale_c = np.std(data[:, -1]) shift_c = np.mean(data[:, -1]) # normalise data num_cols = xyTrain_load.shape[1] print('num cols: {}'.format(num_cols)) for i in range(0, num_cols): # get the sdev_norm from original data sdev_norm = np.std(data[:, i]) sdev_norm = 0.001 if sdev_norm == 0 else sdev_norm # apply on the pre-splitted data xyTrain_load[:, i] = (xyTrain_load[:, i] - np.mean(data[:, i]) )/sdev_norm xyTest_load[:, i] = (xyTest_load[:, i] - np.mean(data[:, i]) )/sdev_norm # xyValid_load[:, i] = (xyValid_load[:, i] - np.mean(data[:, i]) )/sdev_norm if loadCSVName == 'energy' or loadCSVName == 'naval': xTrain = xyTrain_load[:, :-2] ## all columns except last two columns as inputs yTrain = xyTrain_load[:, -1] ## last column as output xTest = xyTest_load[:, :-2] yTest = xyTest_load[:, -1] else: xTrain = xyTrain_load[:, :-1] yTrain = xyTrain_load[:, -1] xTest = xyTest_load[:, :-1] yTest = xyTest_load[:, -1] self.scale_c = scale_c self.shift_c = shift_c return xTrain, yTrain, xTest, yTest
36.317073
123
0.580479
8,630
0.965973
0
0
0
0
0
0
2,376
0.26595
67161d52650aa2e5bc2f66de7b2914c066936052
362
py
Python
after/config.py
mauvilsa/2021-config
870fd832bda269a1be7bfba32dd327df9987e74a
[ "MIT" ]
5
2021-12-25T15:16:16.000Z
2022-03-19T09:04:39.000Z
after/config.py
ArjanCodes/2021-config
7c2c3babb0fb66d69eac81590356fae512c5e784
[ "MIT" ]
1
2022-01-14T08:02:13.000Z
2022-01-14T08:02:13.000Z
after/config.py
mauvilsa/2021-config
870fd832bda269a1be7bfba32dd327df9987e74a
[ "MIT" ]
1
2022-01-14T06:32:44.000Z
2022-01-14T06:32:44.000Z
from dataclasses import dataclass @dataclass class Paths: log: str data: str @dataclass class Files: train_data: str train_labels: str test_data: str test_labels: str @dataclass class Params: epoch_count: int lr: float batch_size: int @dataclass class MNISTConfig: paths: Paths files: Files params: Params
12.066667
33
0.679558
272
0.751381
0
0
316
0.872928
0
0
0
0
671650e9876f386bef01f59b8d08f601fc6d3ed8
14,103
py
Python
lab7/lab7.py
cudaczek/nlp-labs-2020
8e40fe04d2350c6e43a36b29f4428a34aedb6dea
[ "MIT" ]
null
null
null
lab7/lab7.py
cudaczek/nlp-labs-2020
8e40fe04d2350c6e43a36b29f4428a34aedb6dea
[ "MIT" ]
null
null
null
lab7/lab7.py
cudaczek/nlp-labs-2020
8e40fe04d2350c6e43a36b29f4428a34aedb6dea
[ "MIT" ]
null
null
null
import pprint import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn import manifold from gensim.models import KeyedVectors # Download polish word embeddings for word2vec github/Google drive: # https://github.com/sdadas/polish-nlp-resources # with 100 dimensionality word2vec_100 = KeyedVectors.load("word2vec/word2vec_100_3_polish.bin") # with 300 dimensionality word2vec_300 = KeyedVectors.load("word2vec_300_3_polish/word2vec_300_3_polish.bin") # Using the downloaded models find the most similar words for the following expressions... # And display 5 most similar words according to each model: # kpk # szkoda # wypadek # kolizja # nieszczęście # rozwód words = ['kpk', 'szkoda', 'wypadek', 'kolizja', 'nieszczęście', 'rozwód'] def get_most_similar_words(expression): print(f"--------- Most similar words for {expression} ---------") print("word2vec_100:") result = word2vec_100.most_similar(positive=[expression]) pprint.pprint(result[:5]) print("word2vec_300:") result = word2vec_300.most_similar(positive=[expression]) pprint.pprint(result[:5]) print() for word in words: get_most_similar_words(word) # --------- Most similar words for kpk --------- # word2vec_100: # [('kilopond', 0.6665806770324707), # ('kpzs', 0.6363496780395508), # ('kpu', 0.6300562024116516), # ('sownarkomu', 0.6254925727844238), # ('wcik', 0.6224358677864075)] # word2vec_300: # [('ksh', 0.5774794220924377), # ('cywilnego', 0.5498510599136353), # ('postępowania', 0.5285828113555908), # ('kilopond', 0.5151568055152893), # ('kkkw', 0.48344212770462036)] # # --------- Most similar words for szkoda --------- # word2vec_100: # [('krzywda', 0.6817898750305176), # ('pożytek', 0.6121943593025208), # ('strata', 0.5968126654624939), # ('ryzyko', 0.5745570659637451), # ('uszczerbek', 0.5639551877975464)] # word2vec_300: # [('uszczerbek', 0.6027276515960693), # ('krzywda', 0.5920778512954712), # ('strata', 0.550269365310669), # ('despekt', 0.5382484197616577), # ('pożytek', 0.531347393989563)] # # --------- Most similar words for wypadek --------- # word2vec_100: # [('przypadek', 0.7544811964035034), # ('okoliczności', 0.7268072366714478), # ('padku', 0.6788284182548523), # ('incydent', 0.6418948173522949), # ('zdarzenie', 0.6114422082901001)] # word2vec_300: # [('przypadek', 0.7066895961761475), # ('okoliczności', 0.6121077537536621), # ('padku', 0.6056742072105408), # ('padki', 0.5596078634262085), # ('incydent', 0.5496981143951416)] # # --------- Most similar words for kolizja --------- # word2vec_100: # [('zderzenie', 0.8431548476219177), # ('awaria', 0.7090569734573364), # ('kraksa', 0.6777161359786987), # ('turbulencja', 0.6613468527793884), # ('poślizg', 0.6391660571098328)] # word2vec_300: # [('zderzenie', 0.7603178024291992), # ('awaria', 0.611009955406189), # ('kraksa', 0.5939033031463623), # ('turbulencja', 0.5664489269256592), # ('poślizg', 0.5569967031478882)] # # --------- Most similar words for nieszczęście --------- # word2vec_100: # [('niebezpieczeństwo', 0.7519958019256592), # ('cierpienia', 0.7408335208892822), # ('strapienie', 0.7345459461212158), # ('cierpienie', 0.7262567281723022), # ('utrapienie', 0.7251379489898682)] # word2vec_300: # [('utrapienie', 0.6610732674598694), # ('cierpienia', 0.6526124477386475), # ('niedola', 0.6478177309036255), # ('strapienie', 0.6300181150436401), # ('cierpienie', 0.6248573064804077)] # # --------- Most similar words for rozwód --------- # word2vec_100: # [('małżeństwo', 0.7646843194961548), # ('separacja', 0.7547168135643005), # ('adopcja', 0.7333694696426392), # ('ślub', 0.7324203848838806), # ('unieważnienie', 0.7096400856971741)] # word2vec_300: # [('separacja', 0.7053208351135254), # ('małżeństwo', 0.6689504384994507), # ('ślub', 0.6553219556808472), # ('rozwodowy', 0.614338219165802), # ('unieważnienie', 0.6127183437347412)] # Find the most similar words for the following expressions (average the representations for each word): # sąd najwyższy # trybunał konstytucyjny # szkoda majątkowy # kodeks cywilny # sąd rejonowy # Display 7 most similar words according to each model. expressions = ['sąd najwyższy', 'trybunał konstytucyjny', 'szkoda majątkowy', 'kodeks cywilny', 'sąd rejonowy'] def get_most_similiar_words_for_expression_avg(expressions): for expr in expressions: print(f"--------- Most similar words for {expr} ---------") print("word2vec_100:") word_1, word_2 = tuple(expr.split()) result = np.array([np.mean(k) for k in zip(np.array(word2vec_100[word_1]), np.array(word2vec_100[word_2]))]) pprint.pprint(word2vec_100.similar_by_vector(result)[:7]) print("word2vec_300:") result = np.array([np.mean(k) for k in zip(np.array(word2vec_300[word_1]), np.array(word2vec_300[word_2]))]) pprint.pprint(word2vec_300.similar_by_vector(result)[:7]) print() get_most_similiar_words_for_expression_avg(expressions) # --------- Most similar words for sąd najwyższy --------- # word2vec_100: # [('sąd', 0.8644266128540039), # ('trybunał', 0.7672435641288757), # ('najwyższy', 0.7527138590812683), # ('trybunat', 0.6843459010124207), # ('sędzia', 0.6718415021896362), # ('areopag', 0.6571060419082642), # ('sprawiedliwość', 0.6562486886978149)] # word2vec_300: # [('sąd', 0.8261206150054932), # ('trybunał', 0.711520791053772), # ('najwyższy', 0.7068409323692322), # ('sędzia', 0.6023203730583191), # ('sądowy', 0.5670486688613892), # ('trybunat', 0.5525928735733032), # ('sprawiedliwość', 0.5319530367851257)] # # --------- Most similar words for trybunał konstytucyjny --------- # word2vec_100: # [('trybunał', 0.9073251485824585), # ('konstytucyjny', 0.7998723387718201), # ('sąd', 0.7972990274429321), # ('bunał', 0.7729247808456421), # ('senat', 0.7585273385047913), # ('bunału', 0.7441976070404053), # ('trybunat', 0.7347140908241272)] # word2vec_300: # [('trybunał', 0.8845913410186768), # ('konstytucyjny', 0.7739969491958618), # ('sąd', 0.7300779819488525), # ('trybunat', 0.6758428812026978), # ('senat', 0.6632090210914612), # ('parlament', 0.6614581346511841), # ('bunału', 0.6404117941856384)] # # --------- Most similar words for szkoda majątkowy --------- # word2vec_100: # [('szkoda', 0.8172438144683838), # ('majątkowy', 0.7424530386924744), # ('krzywda', 0.6498408317565918), # ('świadczenie', 0.6419471502304077), # ('odszkodowanie', 0.6392182111740112), # ('dochód', 0.637932538986206), # ('wydatek', 0.6325603127479553)] # word2vec_300: # [('szkoda', 0.7971925735473633), # ('majątkowy', 0.7278684973716736), # ('uszczerbek', 0.5841633081436157), # ('korzyść', 0.5474051237106323), # ('krzywda', 0.5431190729141235), # ('majątek', 0.525060772895813), # ('strata', 0.5228629112243652)] # # --------- Most similar words for kodeks cywilny --------- # word2vec_100: # [('kodeks', 0.8756389617919922), # ('cywilny', 0.8532464504241943), # ('pasztunwali', 0.6438998579978943), # ('deksu', 0.6374959945678711), # ('teodozjańskim', 0.6283917427062988), # ('pozakodeksowy', 0.6153194904327393), # ('sądowo', 0.6136723160743713)] # word2vec_300: # [('kodeks', 0.8212110996246338), # ('cywilny', 0.7886406779289246), # ('amiatyński', 0.5660314559936523), # ('cywilnego', 0.5531740188598633), # ('deksu', 0.5472918748855591), # ('isps', 0.5369160175323486), # ('jōei', 0.5361183881759644)] # # --------- Most similar words for sąd rejonowy --------- # word2vec_100: # [('sąd', 0.8773891925811768), # ('prokuratura', 0.8396657705307007), # ('rejonowy', 0.7694871425628662), # ('trybunał', 0.755321204662323), # ('sądowy', 0.7153753042221069), # ('magistrat', 0.7151126861572266), # ('prokurator', 0.7081375122070312)] # word2vec_300: # [('sąd', 0.8507211208343506), # ('rejonowy', 0.7344856262207031), # ('prokuratura', 0.711697518825531), # ('trybunał', 0.6748420596122742), # ('sądowy', 0.6426382064819336), # ('okręgowy', 0.6349465847015381), # ('apelacyjny', 0.599929690361023)] # Find the result of the following equations (5 top results, both models): # sąd + konstytucja - kpk # pasażer + kobieta - mężczyzna # pilot + kobieta - mężczyzna # lekarz + kobieta - mężczyzna # nauczycielka + mężczyzna - kobieta # przedszkolanka + mężczyzna - 'kobieta # samochód + rzeka - droga equations = [(['sąd', 'konstytucja'], ['kpk']), (['pasażer', 'kobieta'], ['mężczyzna']), (['pilot', 'kobieta'], ['mężczyzna']), (['lekarz', 'kobieta'], ['mężczyzna']), (['nauczycielka', 'mężczyzna'], ['kobieta']), (['przedszkolanka', 'mężczyzna'], ['kobieta']), (['samochód', 'rzeka'], ['droga'])] def get_result_of_equation(positive, negative): print(f"--------- Result for + {positive} and - {negative} ---------") print("word2vec_100:") result = word2vec_100.most_similar(positive=positive, negative=negative) pprint.pprint(result[:5]) print("word2vec_300:") result = word2vec_300.most_similar(positive=positive, negative=negative) pprint.pprint(result[:5]) print() for equa in equations: get_result_of_equation(equa[0], equa[1]) # --------- Result for + ['sąd', 'konstytucja'] and - ['kpk'] --------- # word2vec_100: # [('trybunał', 0.6436409950256348), # ('ustawa', 0.6028786897659302), # ('elekcja', 0.5823959112167358), # ('deklaracja', 0.5771891474723816), # ('dekret', 0.5759621262550354)] # word2vec_300: # [('trybunał', 0.5860734581947327), # ('senat', 0.5112544298171997), # ('ustawa', 0.5023636817932129), # ('dekret', 0.48704710602760315), # ('władza', 0.4868926703929901)] # # --------- Result for + ['pasażer', 'kobieta'] and - ['mężczyzna'] --------- # word2vec_100: # [('pasażerka', 0.7234811186790466), # ('stewardessa', 0.6305270195007324), # ('stewardesa', 0.6282645463943481), # ('taksówka', 0.619726300239563), # ('podróżny', 0.614517092704773)] # word2vec_300: # [('pasażerka', 0.6741673946380615), # ('stewardesa', 0.5810248255729675), # ('stewardessa', 0.5653151273727417), # ('podróżny', 0.5060371160507202), # ('pasażerski', 0.4896503686904907)] # # --------- Result for + ['pilot', 'kobieta'] and - ['mężczyzna'] --------- # word2vec_100: # [('nawigator', 0.6925703287124634), # ('oblatywacz', 0.6686224937438965), # ('lotnik', 0.6569937467575073), # ('pilotka', 0.6518791913986206), # ('awionetka', 0.6428645849227905)] # word2vec_300: # [('pilotka', 0.6108255386352539), # ('lotnik', 0.6020804047584534), # ('stewardesa', 0.5943204760551453), # ('nawigator', 0.5849766731262207), # ('oblatywacz', 0.5674178600311279)] # # --------- Result for + ['lekarz', 'kobieta'] and - ['mężczyzna'] --------- # word2vec_100: # [('lekarka', 0.7690489292144775), # ('ginekolog', 0.7575511336326599), # ('pediatra', 0.7478542923927307), # ('psychiatra', 0.732271671295166), # ('położna', 0.7268943786621094)] # word2vec_300: # [('lekarka', 0.7388788461685181), # ('pielęgniarka', 0.6719920635223389), # ('ginekolog', 0.658279299736023), # ('psychiatra', 0.6389409303665161), # ('chirurg', 0.6305986642837524)] # # --------- Result for + ['nauczycielka', 'mężczyzna'] and - ['kobieta'] --------- # word2vec_100: # [('uczennica', 0.7441667318344116), # ('studentka', 0.7274973392486572), # ('nauczyciel', 0.7176114916801453), # ('wychowawczyni', 0.7153530120849609), # ('koleżanka', 0.678418755531311)] # word2vec_300: # [('nauczyciel', 0.6561620235443115), # ('wychowawczyni', 0.6211140155792236), # ('uczennica', 0.6142012476921082), # ('koleżanka', 0.5501158237457275), # ('przedszkolanka', 0.5497692823410034)] # # --------- Result for + ['przedszkolanka', 'mężczyzna'] and - ['kobieta'] --------- # word2vec_100: # [('stażysta', 0.6987776756286621), # ('wychowawczyni', 0.6618361473083496), # ('kreślarka', 0.6590923070907593), # ('pielęgniarz', 0.6492814421653748), # ('siedmiolatek', 0.6483469009399414)] # word2vec_300: # [('stażysta', 0.5117638111114502), # ('pierwszoklasista', 0.49398648738861084), # ('wychowawczyni', 0.49037522077560425), # ('praktykant', 0.48884207010269165), # ('pielęgniarz', 0.4795262813568115)] # # --------- Result for + ['samochód', 'rzeka'] and - ['droga'] --------- # word2vec_100: # [('jeep', 0.6142987608909607), # ('buick', 0.5962571501731873), # ('dżip', 0.5938510894775391), # ('ponton', 0.580719530582428), # ('landrower', 0.5799552202224731)] # word2vec_300: # [('dżip', 0.5567235946655273), # ('jeep', 0.5533617734909058), # ('auto', 0.5478508472442627), # ('ciężarówka', 0.5461742281913757), # ('wóz', 0.5204571485519409)] # Using the t-SNE algorithm compute the projection of the random 1000 words with the following words highlighted (both models): # szkoda # strata # uszczerbek # krzywda # niesprawiedliwość # nieszczęście # kobieta # mężczyzna # pasażer # pasażerka # student # studentka # lekarz # lekarka words = np.array(['szkoda', 'strata', 'uszczerbek', 'krzywda', 'niesprawiedliwość', 'nieszczęście', 'kobieta', 'mężczyzna', 'pasażer', 'pasażerka', 'student', 'studentka', 'lekarz', 'lekarka']) def scatter_points(hue, point_labels, principal_components): x = np.transpose(principal_components)[0] y = np.transpose(principal_components)[1] plt.scatter(x, y, c=hue, s=100, marker='o', alpha=0.2) for i, text in enumerate(point_labels): plt.annotate(text, (x[i], y[i]), ha="center", size=8) def plot_with_tsne(wv, words, perplexity=30, learning_rate=100.0, iterations=1000, filename='slowa300'): random_words = np.random.choice(list(wv.wv.vocab), 1000) words = np.concatenate((words, random_words)) vecs = [wv[word] for word in words] tsne = manifold.TSNE(2, perplexity=perplexity, learning_rate=learning_rate, n_iter=iterations) results = tsne.fit_transform(vecs) hue = [0 for _ in range(14)] + [1 for _ in range(1000)] plt.figure(figsize=(30, 30)) scatter_points(hue, words, results) plt.savefig(filename + '.png') plt.show() plt.clf() wv = word2vec_300 plot_with_tsne(wv, words) wv = word2vec_100 plot_with_tsne(wv, words)
33.901442
127
0.667801
0
0
0
0
0
0
0
0
11,121
0.7796
671762a970ef464f89d67b583ec5b5c7d9146820
1,427
py
Python
Nimbus-Controller/sqs-fastreader.py
paulfdoyle/NIMBUS
0f309b620c00a9438c55404e685bb1cafc44d200
[ "MIT" ]
null
null
null
Nimbus-Controller/sqs-fastreader.py
paulfdoyle/NIMBUS
0f309b620c00a9438c55404e685bb1cafc44d200
[ "MIT" ]
null
null
null
Nimbus-Controller/sqs-fastreader.py
paulfdoyle/NIMBUS
0f309b620c00a9438c55404e685bb1cafc44d200
[ "MIT" ]
null
null
null
# This script adds a new message to a specific SQS queue # # Author - Paul Doyle Aug 2013 # # #from __future__ import print_function import sys import Queue import boto.sqs import argparse import socket import datetime import sys import time from boto.sqs.attributes import Attributes parser = argparse.ArgumentParser() parser.add_argument('queuearg',help='name of the sqs queue to use',metavar="myQueueName") parser.add_argument('experiment',help='name of the experiment queue to use') args = parser.parse_args() from boto.sqs.message import Message import threading conn = boto.sqs.connect_to_region("us-east-1", aws_access_key_id='AKIAINWVSI3MIXIB5N3Q', aws_secret_access_key='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') sqs_queue = conn.get_queue(args.queuearg) class Sender(threading.Thread): def __init__(self): threading.Thread.__init__(self) def run(self): global sqs_queue,queue name = args.experiment+str(queue.get())+"-"+args.queuearg+".csv" f = open(name,'w') while True: try: m = sqs_queue.get_messages(num_messages=1,attributes='SentTimestamp') f.write(str(m[0].attributes)+","+str(m[0].get_body())+"\n") sqs_queue.delete_message(m[0]) except: if sqs_queue.count() < 1: f.write(args.queuearg + " is empty\n") return queue = Queue.Queue(0) threads = [] for n in xrange(40): queue.put(n) t = Sender() t.start() threads.append(t) for t in threads: t.join()
24.603448
154
0.733006
511
0.358094
0
0
0
0
0
0
351
0.245971
6718237fd3891c8aa0d6df664410cd0f7651353e
1,547
py
Python
dero/ml/results/reformat.py
whoopnip/dero
62e081b341cc711ea8e1578e7c65b581eb74fa3f
[ "MIT" ]
null
null
null
dero/ml/results/reformat.py
whoopnip/dero
62e081b341cc711ea8e1578e7c65b581eb74fa3f
[ "MIT" ]
3
2020-03-24T17:57:46.000Z
2021-02-02T22:25:37.000Z
dero/ml/results/reformat.py
whoopnip/dero
62e081b341cc711ea8e1578e7c65b581eb74fa3f
[ "MIT" ]
null
null
null
from typing import Optional import pandas as pd from dero.ml.typing import ModelDict, AllModelResultsDict, DfDict def model_dict_to_df(model_results: ModelDict, model_name: Optional[str] = None) -> pd.DataFrame: df = pd.DataFrame(model_results).T df.drop('score', inplace=True) df['score'] = model_results['score'] if model_name is not None: df['model'] = model_name first_cols = ['model', 'score'] else: first_cols = ['score'] other_cols = [col for col in df.columns if col not in first_cols] return df[first_cols + other_cols] def all_model_results_dict_to_df(results: AllModelResultsDict) -> pd.DataFrame: df = pd.DataFrame() for model_type, instance_list in results.items(): for instance in instance_list: model_df = model_dict_to_df(instance, model_name=model_type) df = df.append(model_df) first_cols = ['model', 'score'] other_cols = [col for col in df.columns if col not in first_cols] return df[first_cols + other_cols].sort_values('score', ascending=False) def all_model_results_dict_to_model_df_dict(results: AllModelResultsDict) -> DfDict: out_dict = {} for model_type, instance_list in results.items(): model_df = pd.DataFrame() for instance in instance_list: model_instance_df = model_dict_to_df(instance, model_name=model_type) model_df = model_df.append(model_instance_df) out_dict[model_type] = model_df.sort_values('score', ascending=False) return out_dict
37.731707
97
0.700711
0
0
0
0
0
0
0
0
77
0.049774
67194761b98bb4ec0d555cbb6324bf54ba4345ac
663
py
Python
engine/view.py
amirgeva/py2d
88210240b71446d53ee85cf07ca8d253d522a265
[ "BSD-2-Clause" ]
null
null
null
engine/view.py
amirgeva/py2d
88210240b71446d53ee85cf07ca8d253d522a265
[ "BSD-2-Clause" ]
null
null
null
engine/view.py
amirgeva/py2d
88210240b71446d53ee85cf07ca8d253d522a265
[ "BSD-2-Clause" ]
null
null
null
import pygame from engine.utils import Rect from engine.app import get_screen_size # EXPORT class View(object): def __init__(self, rect=None): if rect: self.rect = rect else: res = get_screen_size() self.rect = Rect(0,0,res[0],res[1]) def offset(self, d): self.rect.move(d[0], d[1]) def get_position(self): return self.rect.tl def set_position(self, pos): self.rect = Rect(pos.x, pos.y, pos.x+self.rect.width(), pos.y+self.rect.height()) def relative_position(self, pos): return pos - self.rect.tl def get_rect(self): return Rect(self.rect)
23.678571
89
0.600302
569
0.85822
0
0
0
0
0
0
8
0.012066
67194cbd5bb79a7249d2ae1d8a3b2168422d756c
1,640
py
Python
oldplugins/coin.py
sonicrules1234/sonicbot
07a22d08bf86ed33dc715a800957aee3b45f3dde
[ "BSD-3-Clause" ]
1
2019-06-27T08:45:23.000Z
2019-06-27T08:45:23.000Z
oldplugins/coin.py
sonicrules1234/sonicbot
07a22d08bf86ed33dc715a800957aee3b45f3dde
[ "BSD-3-Clause" ]
null
null
null
oldplugins/coin.py
sonicrules1234/sonicbot
07a22d08bf86ed33dc715a800957aee3b45f3dde
[ "BSD-3-Clause" ]
null
null
null
import shelve, random arguments = ["self", "info", "args", "world"] minlevel = 2 helpstring = "coin <bet>" def main(connection, info, args, world) : """Decides heads or tails based on the coinchance variable. Adds or removes appropriate amount of money""" money = shelve.open("money-%s.db" % (connection.networkname), writeback=True) if money.has_key(info["sender"]) : bet = int(args[1]) if bet <= money[info["sender"]]["money"] and bet >= 1 : answer = random.choice(money[info["sender"]]["coinchance"]) if answer : money[info["sender"]]["money"] += bet money.sync() connection.msg(info["channel"], _("Congrats %(sender)s! You just won %(num)s dollars!") % dict(sender=info["sender"], num=args[1])) else : money[info["sender"]]["money"] -= bet money.sync() connection.msg(info["channel"], _("Sorry %(sender)s! You just lost %(num)s dollars!") % dict(sender=info["sender"], num=args[1])) if money[info["sender"]]["money"] > money[info["sender"]]["maxmoney"] : money[info["sender"]]["maxmoney"] = money[info["sender"]]["money"] money.sync() else : connection.msg(info["channel"], _("%(sender)s: You don't have enough money to do that!") % dict(sender=info["sender"])) else : connection.msg(info["channel"], _("%(sender)s: You have not set up a money account. If you aren't already, please register with me. Then, say moneyreset. After that you should be able to use this command.") % dict(sender=info["sender"]))
60.740741
251
0.587805
0
0
0
0
0
0
0
0
696
0.42439
6719b8a502c31dfe0118ee06e1a1b37092b216f3
13,562
py
Python
src/rbvfit/vfit_mcmc.py
manoranjan-s/rbvfit
a5c450f721c08dda02c431a5a079945a73a0cfc2
[ "MIT" ]
null
null
null
src/rbvfit/vfit_mcmc.py
manoranjan-s/rbvfit
a5c450f721c08dda02c431a5a079945a73a0cfc2
[ "MIT" ]
null
null
null
src/rbvfit/vfit_mcmc.py
manoranjan-s/rbvfit
a5c450f721c08dda02c431a5a079945a73a0cfc2
[ "MIT" ]
null
null
null
from __future__ import print_function import emcee from multiprocessing import Pool import numpy as np import corner import matplotlib.pyplot as plt import sys import scipy.optimize as op from rbvfit.rb_vfit import rb_veldiff as rb_veldiff from rbvfit import rb_setline as rb import pdb def plot_model(wave_obs,fnorm,enorm,fit,model,outfile= False,xlim=[-600.,600.],verbose=False): #This model only works if there are no nuissance paramteres theta_prime=fit.best_theta value1=fit.low_theta value2=fit.high_theta n_clump=model.nclump n_clump_total=np.int(len(theta_prime)/3) ntransition=model.ntransition zabs=model.zabs samples=fit.samples model_mcmc=fit.model wave_list=np.zeros( len(model.lambda_rest_original),) # Use the input lambda rest list to plot correctly for i in range(0,len(wave_list)): s=rb.rb_setline(model.lambda_rest_original[i],'closest') wave_list[i]=s['wave'] wave_rest=wave_obs/(1+zabs[0]) best_N = theta_prime[0:n_clump_total] best_b = theta_prime[n_clump_total:2 * n_clump_total] best_v = theta_prime[2 * n_clump_total:3 * n_clump_total] low_N = value1[0:n_clump_total] low_b = value1[n_clump_total:2 * n_clump_total] low_v = value1[2 * n_clump_total:3 * n_clump_total] high_N = value2[0:n_clump_total] high_b = value2[n_clump_total:2 * n_clump_total] high_v = value2[2 * n_clump_total:3 * n_clump_total] #Now extracting individual fitted components best_fit, f1 = model.model_fit(theta_prime, wave_obs) fig, axs = plt.subplots(ntransition, sharex=True, sharey=False,figsize=(12,18 ),gridspec_kw={'hspace': 0}) BIGGER_SIZE = 18 plt.rc('font', size=BIGGER_SIZE) # controls default text sizes plt.rc('axes', titlesize=BIGGER_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=BIGGER_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=BIGGER_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=BIGGER_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=BIGGER_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title index = np.random.randint(0, high=len(samples), size=100) if ntransition == 1: #When there are no nuissance parameter #Now loop through each transition and plot them in velocity space vel=rb_veldiff(wave_list[0],wave_rest) axs.step(vel, fnorm, 'k-', linewidth=1.) axs.step(vel, enorm, color='r', linewidth=1.) # Plotting a random sample of outputs extracted from posterior dis for ind in range(len(index)): axs.plot(vel, model_mcmc(samples[index[ind], :], wave_obs), color="k", alpha=0.1) axs.set_ylim([0, 1.6]) axs.set_xlim(xlim) axs.plot(vel, best_fit, color='b', linewidth=3) axs.plot([0., 0.], [-0.2, 2.5], 'k:', lw=0.5) # plot individual components for dex in range(0,np.shape(f1)[1]): axs.plot(vel, f1[:, dex], 'g:', linewidth=3) for iclump in range(0,n_clump): axs.plot([best_v[iclump],best_v[iclump]],[1.05,1.15],'k--',lw=4) text1=r'$logN \;= '+ np.str('%.2f' % best_N[iclump]) +'^{ + ' + np.str('%.2f' % (best_N[iclump]-low_N[iclump]))+'}'+ '_{ -' + np.str('%.2f' % (high_N[iclump]-best_N[iclump]))+'}$' axs.text(best_v[iclump],1.2,text1, fontsize=14,rotation=90, rotation_mode='anchor') text2=r'$b ='+np.str('%.0f' % best_b[iclump]) +'^{ + ' + np.str('%.0f' % (best_b[iclump]-low_b[iclump]))+'}'+ '_{ -' + np.str('%.0f' % (high_b[iclump]-best_b[iclump]))+'}$' axs.text(best_v[iclump]+30,1.2, text2,fontsize=14,rotation=90, rotation_mode='anchor') else: #Now loop through each transition and plot them in velocity space for i in range(0,ntransition): print(wave_list[i]) vel=rb_veldiff(wave_list[i],wave_rest) axs[i].step(vel, fnorm, 'k-', linewidth=1.) axs[i].step(vel, enorm, color='r', linewidth=1.) #pdb.set_trace() # Plotting a random sample of outputs extracted from posterior distribution for ind in range(len(index)): axs[i].plot(vel, model_mcmc(samples[index[ind], :], wave_obs), color="k", alpha=0.1) axs[i].set_ylim([0, 1.6]) axs[i].set_xlim(xlim) axs[i].plot(vel, best_fit, color='b', linewidth=3) axs[i].plot([0., 0.], [-0.2, 2.5], 'k:', lw=0.5) # plot individual components for dex in range(0,np.shape(f1)[1]): axs[i].plot(vel, f1[:, dex], 'g:', linewidth=3) for iclump in range(0,n_clump): axs[i].plot([best_v[iclump],best_v[iclump]],[1.05,1.15],'k--',lw=4) if i ==0: text1=r'$logN \;= '+ np.str('%.2f' % best_N[iclump]) +'^{ + ' + np.str('%.2f' % (best_N[iclump]-low_N[iclump]))+'}'+ '_{ -' + np.str('%.2f' % (high_N[iclump]-best_N[iclump]))+'}$' axs[i].text(best_v[iclump],1.2,text1, fontsize=14,rotation=90, rotation_mode='anchor') text2=r'$b ='+np.str('%.0f' % best_b[iclump]) +'^{ + ' + np.str('%.0f' % (best_b[iclump]-low_b[iclump]))+'}'+ '_{ -' + np.str('%.0f' % (high_b[iclump]-best_b[iclump]))+'}$' axs[i].text(best_v[iclump]+30,1.2, text2, fontsize=14,rotation=90, rotation_mode='anchor') if verbose==True: from IPython.display import display, Math samples = fit.sampler.get_chain(discard=100, thin=15, flat=True) nfit = int(fit.ndim / 3) N_tile = np.tile("logN", nfit) b_tile = np.tile("b", nfit) v_tile = np.tile("v", nfit) tmp = np.append(N_tile, b_tile) text_label = np.append(tmp, v_tile) for i in range(len(text_label)): mcmc = np.percentile(samples[:, i], [16, 50, 84]) q = np.diff(mcmc) txt = "\mathrm{{{3}}} = {0:.2f}_{{-{1:.2f}}}^{{{2:.2f}}}" txt = txt.format(mcmc[1], q[0], q[1], text_label[i]) display(Math(txt)) if outfile==False: plt.show() else: outfile_fig =outfile fig.savefig(outfile_fig, bbox_inches='tight') ######## Computing Likelihoods###### def lnprior(theta, lb, ub): for index in range(0, len(lb)): if (lb[index] > theta[index]) or (ub[index] < theta[index]): return -np.inf break return 0.0 def lnlike(theta, model, x, y, yerr): model = model(theta, x) inv_sigma2 = 1.0 / (yerr ** 2) return -0.5 * (np.sum((y - model) ** 2 * inv_sigma2 - np.log(inv_sigma2))) def lnprob(theta, lb, ub, model, x, y, yerr): lp = lnprior(theta, lb, ub) if not np.isfinite(lp): return -np.inf return lp + lnlike(theta, model, x, y, yerr) def optimize_guess(model, theta, lb, ub, x, y, yerr): nll = lambda *args: -lnprob(*args) result = op.minimize(nll, [theta], args=(lb, ub, model, x, y, yerr)) p = result["x"] return p def set_bounds(nguess,bguess,vguess): Nlow=np.zeros((len(nguess,))) blow=np.zeros((len(nguess,))) vlow=np.zeros((len(nguess,))) NHI=np.zeros((len(nguess,))) bHI=np.zeros((len(nguess,))) vHI=np.zeros((len(nguess,))) for i in range(0,len(nguess)): Nlow[i]=nguess[i]-2. blow[i]=bguess[i]-40. if blow[i] < 2.: blow[i] = 2. vlow[i]=vguess[i]-50. NHI[i]=nguess[i]+2. bHI[i]=bguess[i]+40. if bHI[i] > 200.: bHI[i] = 150. vHI[i]=vguess[i]+50. lb=np.concatenate((Nlow,blow,vlow)) ub=np.concatenate((NHI,bHI,vHI)) bounds=[lb,ub] return bounds, lb, ub class vfit(object): def __init__(self, model, theta, lb, ub, wave_obs, fnorm, enorm, no_of_Chain=50, no_of_steps=1000, perturbation=1e-6): # Main class that performs all the fitting self.wave_obs = wave_obs self.fnorm = fnorm self.enorm = enorm self.model = model self.lb = lb self.ub = ub self.theta = theta self.no_of_Chain = no_of_Chain self.no_of_steps = no_of_steps self.perturbation = perturbation def runmcmc(self, optimize=True,verbose=False): model = self.model theta = self.theta lb = self.lb ub = self.ub wave_obs = self.wave_obs fnorm = self.fnorm enorm = self.enorm no_of_Chain = self.no_of_Chain no_of_steps = self.no_of_steps perturbation = self.perturbation if optimize == True: print('Optimizing Guess ***********') # Now make a better guess popt = optimize_guess(model, theta, lb, ub, wave_obs, fnorm, enorm) print('Done ***********') else: print('Skipping Optimizing Guess ***********') print('Using input guess for mcmc ***********') popt = theta print('Preparing emcee ***********') ###### Define a lot of walkers length_of_lb = len(lb) ndim, nwalkers = length_of_lb, no_of_Chain guesses = [popt + perturbation * np.random.randn(ndim) for i in range(nwalkers)] print("Starting emcee ***********") burntime = np.round(no_of_steps * .2) with Pool() as pool: sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, pool=pool, args=(lb, ub, model, wave_obs, fnorm, enorm)) pos, prob, state = sampler.run_mcmc(guesses, no_of_steps,progress=True) #sampler.reset() print("Done!") #print("Now starting the Final Calculations:") print("*****************") #width = 30 # Now Running mcmc #for i, result in enumerate(sampler.sample(pos, iterations=no_of_steps)): # n = int((width + 1) * float(i) / no_of_steps) #sys.stdout.write("\r[{0}{1}]".format('#' * n, ' ' * (width - n))) #sys.stdout.write("\n") if verbose==True: from IPython.display import display, Math samples = sampler.get_chain(discard=100, thin=15, flat=True) nfit = int(ndim / 3) N_tile = np.tile("logN", nfit) b_tile = np.tile("b", nfit) v_tile = np.tile("v", nfit) tmp = np.append(N_tile, b_tile) text_label = np.append(tmp, v_tile) for i in range(len(text_label)): mcmc = np.percentile(samples[:, i], [16, 50, 84]) q = np.diff(mcmc) txt = "\mathrm{{{3}}} = {0:.2f}_{{-{1:.2f}}}^{{{2:.2f}}}" txt = txt.format(mcmc[1], q[0], q[1], text_label[i]) display(Math(txt)) self.sampler = sampler self.ndim = ndim self.nwalkers = nwalkers def plot_corner(self,outfile=False): ndim=self.ndim #samples = self.sampler.chain[:, 100:, :].reshape((-1, ndim)) # sampler.flatchain samples = self.sampler.get_chain(discard=100, thin=15, flat=True) st = np.percentile(samples, 50, axis=0) # =np.median(samples,axis=0)#np.median(sampler.flatchain, axis=0) # df = pd.DataFrame(samples) # temp=df.mode() # st=temp.values[0] nfit = int(ndim / 3) N_tile = np.tile("logN", nfit) b_tile = np.tile("b", nfit) v_tile = np.tile("v", nfit) tmp = np.append(N_tile, b_tile) text_label = np.append(tmp, v_tile) figure = corner.corner(samples, labels=text_label, truths=st) theta_prime = st value1 = np.percentile(samples, 10, axis=0) # This is the empirical mean of the sample: value2 = np.percentile(samples, 90, axis=0) # Extract the axes axes = np.array(figure.axes).reshape((ndim, ndim)) # Loop over the diagonal for i in range(ndim): ax = axes[i, i] ax.axvline(value1[i], color="aqua") ax.axvline(value2[i], color="aqua") # Loop over the histograms for yi in range(ndim): for xi in range(yi): ax = axes[yi, xi] ax.axvline(value1[xi], color="aqua") ax.axvline(value2[xi], color="aqua") # ax.axhline(value1[yi], color="g") # ax.axhline(value2[yi], color="r") # ax.plot(value1[xi], value1[yi], "sg") # ax.plot(value2[xi], value2[yi], "sr") self.best_theta=theta_prime self.low_theta=value1 self.high_theta=value2 self.samples=samples if outfile==False: plt.show() else: outfile_fig =outfile figure.savefig(outfile_fig, bbox_inches='tight')
36.262032
204
0.539891
4,997
0.368456
0
0
0
0
0
0
2,369
0.174679
671a19cd137db70202b7e3303f276604903cd2b5
6,409
py
Python
yolox/data/dataloading.py
XHYsdjkdsjsk2021/Yolox_xhy
a60f585d4d2bf36f9fa90b0a078efb7b315e0118
[ "Apache-2.0" ]
null
null
null
yolox/data/dataloading.py
XHYsdjkdsjsk2021/Yolox_xhy
a60f585d4d2bf36f9fa90b0a078efb7b315e0118
[ "Apache-2.0" ]
null
null
null
yolox/data/dataloading.py
XHYsdjkdsjsk2021/Yolox_xhy
a60f585d4d2bf36f9fa90b0a078efb7b315e0118
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # Copyright (c) Megvii, Inc. and its affiliates. import torch from torch.utils.data.dataloader import DataLoader as torchDataLoader from torch.utils.data.dataloader import default_collate import os import random from .samplers import YoloBatchSampler def get_yolox_datadir(): """ get dataset dir of YOLOX. If environment variable named `YOLOX_DATADIR` is set, this function will return value of the environment variable. Otherwise, use data """ yolox_datadir = os.getenv("YOLOX_DATADIR", None) if yolox_datadir is None: import yolox yolox_path = os.path.dirname(os.path.dirname(yolox.__file__)) yolox_datadir = os.path.join(yolox_path, "datasets") return yolox_datadir class DataLoader(torchDataLoader): """ Lightnet dataloader that enables on the fly resizing of the images. See :class:`torch.utils.data.DataLoader` for more information on the arguments. Check more on the following website: https://gitlab.com/EAVISE/lightnet/-/blob/master/lightnet/data/_dataloading.py Note: This dataloader only works with :class:`lightnet.data.Dataset` based datasets. Example: >>> class CustomSet(ln.data.Dataset): ... def __len__(self): ... return 4 ... @ln.data.Dataset.resize_getitem ... def __getitem__(self, index): ... # Should return (image, anno) but here we return (input_dim,) ... return (self.input_dim,) >>> dl = ln.data.DataLoader( ... CustomSet((200,200)), ... batch_size = 2, ... collate_fn = ln.data.list_collate # We want the data to be grouped as a list ... ) >>> dl.dataset.input_dim # Default input_dim (200, 200) >>> for d in dl: ... d [[(200, 200), (200, 200)]] [[(200, 200), (200, 200)]] >>> dl.change_input_dim(320, random_range=None) (320, 320) >>> for d in dl: ... d [[(320, 320), (320, 320)]] [[(320, 320), (320, 320)]] >>> dl.change_input_dim((480, 320), random_range=None) (480, 320) >>> for d in dl: ... d [[(480, 320), (480, 320)]] [[(480, 320), (480, 320)]] """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.__initialized = False shuffle = False batch_sampler = None if len(args) > 5: shuffle = args[2] sampler = args[3] batch_sampler = args[4] elif len(args) > 4: shuffle = args[2] sampler = args[3] if "batch_sampler" in kwargs: batch_sampler = kwargs["batch_sampler"] elif len(args) > 3: shuffle = args[2] if "sampler" in kwargs: sampler = kwargs["sampler"] if "batch_sampler" in kwargs: batch_sampler = kwargs["batch_sampler"] else: if "shuffle" in kwargs: shuffle = kwargs["shuffle"] if "sampler" in kwargs: sampler = kwargs["sampler"] if "batch_sampler" in kwargs: batch_sampler = kwargs["batch_sampler"] # Use custom BatchSampler if batch_sampler is None: if sampler is None: if shuffle: sampler = torch.utils.data.sampler.RandomSampler(self.dataset) # sampler = torch.utils.data.DistributedSampler(self.dataset) else: sampler = torch.utils.data.sampler.SequentialSampler(self.dataset) batch_sampler = YoloBatchSampler( sampler, self.batch_size, self.drop_last, input_dimension=self.dataset.input_dim, ) # batch_sampler = IterationBasedBatchSampler(batch_sampler, num_iterations = self.batch_sampler = batch_sampler self.__initialized = True def close_mosaic(self): self.batch_sampler.mosaic = False def change_input_dim(self, multiple=32, random_range=(10, 19)): """This function will compute a new size and update it on the next mini_batch. Args: multiple (int or tuple, optional): values to multiply the randomly generated range by. Default **32** random_range (tuple, optional): This (min, max) tuple sets the range for the randomisation; Default **(10, 19)** Return: tuple: width, height tuple with new dimension Note: The new size is generated as follows: |br| First we compute a random integer inside ``[random_range]``. We then multiply that number with the ``multiple`` argument, which gives our final new input size. |br| If ``multiple`` is an integer we generate a square size. If you give a tuple of **(width, height)**, the size is computed as :math:`rng * multiple[0], rng * multiple[1]`. Note: You can set the ``random_range`` argument to **None** to set an exact size of multiply. |br| See the example above for how this works. """ if random_range is None: size = 1 else: size = random.randint(*random_range) if isinstance(multiple, int): size = (size * multiple, size * multiple) else: size = (size * multiple[0], size * multiple[1]) self.batch_sampler.new_input_dim = size return size def list_collate(batch): """ Function that collates lists or tuples together into one list (of lists/tuples). Use this as the collate function in a Dataloader, if you want to have a list of items as an output, as opposed to tensors (eg. Brambox.boxes). """ items = list(zip(*batch)) for i in range(len(items)): if isinstance(items[i][0], (list, tuple)): items[i] = list(items[i]) else: items[i] = default_collate(items[i]) return items
35.804469
99
0.555469
5,075
0.791855
0
0
0
0
0
0
3,563
0.555937
671a1a30341f98dfd27e877827d5eea516829e2a
7,765
py
Python
env/lib/python3.9/site-packages/ansible/modules/cloud/amazon/_ec2_vpc_vpn_facts.py
unbounce/aws-name-asg-instances
e0379442e3ce71bf66ba9b8975b2cc57a2c7648d
[ "MIT" ]
17
2017-06-07T23:15:01.000Z
2021-08-30T14:32:36.000Z
env/lib/python3.9/site-packages/ansible/modules/cloud/amazon/_ec2_vpc_vpn_facts.py
unbounce/aws-name-asg-instances
e0379442e3ce71bf66ba9b8975b2cc57a2c7648d
[ "MIT" ]
9
2017-06-25T03:31:52.000Z
2021-05-17T23:43:12.000Z
env/lib/python3.9/site-packages/ansible/modules/cloud/amazon/_ec2_vpc_vpn_facts.py
unbounce/aws-name-asg-instances
e0379442e3ce71bf66ba9b8975b2cc57a2c7648d
[ "MIT" ]
3
2018-05-26T21:31:22.000Z
2019-09-28T17:00:45.000Z
#!/usr/bin/python # Copyright: Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type DOCUMENTATION = r''' --- module: ec2_vpc_vpn_info version_added: 1.0.0 short_description: Gather information about VPN Connections in AWS. description: - Gather information about VPN Connections in AWS. - This module was called C(ec2_vpc_vpn_facts) before Ansible 2.9. The usage did not change. requirements: [ boto3 ] author: Madhura Naniwadekar (@Madhura-CSI) options: filters: description: - A dict of filters to apply. Each dict item consists of a filter key and a filter value. See U(https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeVpnConnections.html) for possible filters. required: false type: dict vpn_connection_ids: description: - Get details of a specific VPN connections using vpn connection ID/IDs. This value should be provided as a list. required: false type: list elements: str extends_documentation_fragment: - amazon.aws.aws - amazon.aws.ec2 ''' EXAMPLES = r''' # # Note: These examples do not set authentication details, see the AWS Guide for details. - name: Gather information about all vpn connections community.aws.ec2_vpc_vpn_info: - name: Gather information about a filtered list of vpn connections, based on tags community.aws.ec2_vpc_vpn_info: filters: "tag:Name": test-connection register: vpn_conn_info - name: Gather information about vpn connections by specifying connection IDs. community.aws.ec2_vpc_vpn_info: filters: vpn-gateway-id: vgw-cbe66beb register: vpn_conn_info ''' RETURN = r''' vpn_connections: description: List of one or more VPN Connections. returned: always type: complex contains: category: description: The category of the VPN connection. returned: always type: str sample: VPN customer_gatway_configuration: description: The configuration information for the VPN connection's customer gateway (in the native XML format). returned: always type: str customer_gateway_id: description: The ID of the customer gateway at your end of the VPN connection. returned: always type: str sample: cgw-17a53c37 options: description: The VPN connection options. returned: always type: dict sample: { "static_routes_only": false } routes: description: List of static routes associated with the VPN connection. returned: always type: complex contains: destination_cidr_block: description: The CIDR block associated with the local subnet of the customer data center. returned: always type: str sample: 10.0.0.0/16 state: description: The current state of the static route. returned: always type: str sample: available state: description: The current state of the VPN connection. returned: always type: str sample: available tags: description: Any tags assigned to the VPN connection. returned: always type: dict sample: { "Name": "test-conn" } type: description: The type of VPN connection. returned: always type: str sample: ipsec.1 vgw_telemetry: description: Information about the VPN tunnel. returned: always type: complex contains: accepted_route_count: description: The number of accepted routes. returned: always type: int sample: 0 last_status_change: description: The date and time of the last change in status. returned: always type: str sample: "2018-02-09T14:35:27+00:00" outside_ip_address: description: The Internet-routable IP address of the virtual private gateway's outside interface. returned: always type: str sample: 13.127.79.191 status: description: The status of the VPN tunnel. returned: always type: str sample: DOWN status_message: description: If an error occurs, a description of the error. returned: always type: str sample: IPSEC IS DOWN certificate_arn: description: The Amazon Resource Name of the virtual private gateway tunnel endpoint certificate. returned: when a private certificate is used for authentication type: str sample: "arn:aws:acm:us-east-1:123456789101:certificate/c544d8ce-20b8-4fff-98b0-example" vpn_connection_id: description: The ID of the VPN connection. returned: always type: str sample: vpn-f700d5c0 vpn_gateway_id: description: The ID of the virtual private gateway at the AWS side of the VPN connection. returned: always type: str sample: vgw-cbe56bfb ''' import json try: from botocore.exceptions import ClientError, BotoCoreError except ImportError: pass # caught by AnsibleAWSModule from ansible_collections.amazon.aws.plugins.module_utils.core import AnsibleAWSModule from ansible_collections.amazon.aws.plugins.module_utils.ec2 import (ansible_dict_to_boto3_filter_list, boto3_tag_list_to_ansible_dict, camel_dict_to_snake_dict, ) def date_handler(obj): return obj.isoformat() if hasattr(obj, 'isoformat') else obj def list_vpn_connections(connection, module): params = dict() params['Filters'] = ansible_dict_to_boto3_filter_list(module.params.get('filters')) params['VpnConnectionIds'] = module.params.get('vpn_connection_ids') try: result = json.loads(json.dumps(connection.describe_vpn_connections(**params), default=date_handler)) except ValueError as e: module.fail_json_aws(e, msg="Cannot validate JSON data") except (ClientError, BotoCoreError) as e: module.fail_json_aws(e, msg="Could not describe customer gateways") snaked_vpn_connections = [camel_dict_to_snake_dict(vpn_connection) for vpn_connection in result['VpnConnections']] if snaked_vpn_connections: for vpn_connection in snaked_vpn_connections: vpn_connection['tags'] = boto3_tag_list_to_ansible_dict(vpn_connection.get('tags', [])) module.exit_json(changed=False, vpn_connections=snaked_vpn_connections) def main(): argument_spec = dict( vpn_connection_ids=dict(default=[], type='list', elements='str'), filters=dict(default={}, type='dict') ) module = AnsibleAWSModule(argument_spec=argument_spec, mutually_exclusive=[['vpn_connection_ids', 'filters']], supports_check_mode=True) if module._module._name == 'ec2_vpc_vpn_facts': module._module.deprecate("The 'ec2_vpc_vpn_facts' module has been renamed to 'ec2_vpc_vpn_info'", date='2021-12-01', collection_name='community.aws') connection = module.client('ec2') list_vpn_connections(connection, module) if __name__ == '__main__': main()
35.619266
157
0.642112
0
0
0
0
0
0
0
0
5,660
0.728912
671aa126c99ce28f4a40eb764f765d0b5bf6665c
10,454
py
Python
cogs/roleselector.py
YouGotSchott/tcs-discord-bot
696db5da129ef42f4c5047679d289aeb6ed122a9
[ "MIT" ]
1
2021-04-30T06:38:31.000Z
2021-04-30T06:38:31.000Z
cogs/roleselector.py
YouGotSchott/tcs-discord-bot
696db5da129ef42f4c5047679d289aeb6ed122a9
[ "MIT" ]
null
null
null
cogs/roleselector.py
YouGotSchott/tcs-discord-bot
696db5da129ef42f4c5047679d289aeb6ed122a9
[ "MIT" ]
1
2019-04-28T03:33:35.000Z
2019-04-28T03:33:35.000Z
import discord from discord.ext import commands from pathlib import Path from config import bot from collections import OrderedDict import json class RoleSelector(commands.Cog): def __init__(self, bot): self.bot = bot self.messages_path = str(Path('cogs/data/messages.json')) async def opener(self): with open(self.messages_path, 'r') as f: return json.load(f) async def closer(self, messages): with open(self.messages_path, 'w') as f: json.dump(messages, f) @commands.Cog.listener() async def on_ready(self): emojis = self.emoji_selector(self.bot.guilds[0].id) channel = discord.utils.get(self.bot.get_all_channels(), name='roles') text = await self.embeder(self.data(emojis)) messages = await self.opener() try: self.msg = await channel.fetch_message(messages['role_message']['id']) await self.msg.edit(embed=text) except: print("Role Message hasn't been added yet") self.msg = await channel.send(embed=text) messages['role_message'] = {} messages['role_message']['id'] = self.msg.id await self.closer(messages) for emoji in emojis.values(): await self.msg.add_reaction(emoji=emoji) @commands.Cog.listener(name='on_raw_reaction_add') async def role_reaction_add(self, payload): try: if payload.message_id != self.msg.id: return except AttributeError: return guild = self.bot.get_guild(payload.guild_id) user = guild.get_member(payload.user_id) if user.id == self.bot.user.id: return emojis = self.emoji_selector(guild.id) clean_emoji = str(payload.emoji).strip('<:>') for k, v in emojis.items(): if v in clean_emoji: role = discord.utils.get(user.guild.roles, name=k) if 'mission-maker' in k: results = await self.saturday_check() if user.id not in results: await self.msg.remove_reaction(v, user) return if 'auditor' in k: role_mm = discord.utils.get(user.guild.roles, name='mission-maker') if role_mm not in user.roles: await self.msg.remove_reaction(v, user) return if role in user.roles: await user.remove_roles(role) else: await user.add_roles(role) await self.msg.remove_reaction(v, user) async def saturday_check(self): results = await self.bot.conn.fetch(""" SELECT user_id FROM attendance""") id_list = [x["user_id"] for x in results] return id_list async def embeder(self, msg_embed): em = discord.Embed( title=self.msg_embed['title'], description=self.msg_embed['description'], color=0x008080) em.set_thumbnail(url=self.msg_embed['thumbnail']) for value in self.field_dict.values(): em.add_field(name=value['name'], value=value['value'], inline=False) em.set_footer(text=self.footer['footer']) return em def emoji_selector(self, guild): if 169696752461414401 == guild: emojis = OrderedDict([ ('mission-maker', 'feelscornman:485958281458876416'), ('auditor', '\U0001F913'), ('heretic', '\U0001f300'), ('liberation', 'finger_gun:300089586460131328'), ('r6siege', '\U0001f308'), ('ricefields', 'rice_fields:483791993370181632'), ('minecraft', '\U000026cf'), ('flight-sims', '\U0001f525'), ('vr', 'iron_uncle:548645154454765568'), ('zeus-op', '\U000026a1'), ('4x', '\U0001f3ed'), ('rts', 'smoothbrain:592115163390410783'), ('destiny-2', '\U0001f47e'), ('squad', 'CplChad:409868955239579649'), ('zomboid', 'the_devil:663562931681624081') ]) else: emojis = OrderedDict([ ('mission-maker', 'uncle:567728566540697635'), ('auditor', '\U0001F913'), ('heretic', '\U0001f300'), ('liberation', 'snek_uncle:567728565781528576'), ('r6siege', '\U0001f3c3'), ('ricefields', 'shadow_uncle:567728565248851989'), ('minecraft', '\U000026cf'), ('flight-sims', '\U0001f525'), ('vr', 'jensen_uncle:567728565391589399'), ('zeus-op', '\U000026a1'), ('4x', '\U0001f3ed'), ('rts', 'fast_uncle:567728565525807104'), ('destiny-2', '\U0001f47e'), ('squad', 'uncle_uncle:567728565785985025'), ('zomboid', 'uncle_hacker:567728565798567940') ]) return emojis def data(self, emojis): self.msg_embed = OrderedDict([ ('title', '**TCS Role Selector**'), ('description', '''Use this tool to select optional Discord roles.\n\n''' '''**DO NOT ABUSE THE BOT!**\n''' '''\u200B'''), ('thumbnail', 'https://s3.amazonaws.com/files.enjin.com/1015535/site_logo/2020_logo.png') ]) self.field_dict = OrderedDict([ ('mission_maker', OrderedDict([ ('name', '<:{}> @mission-maker'.format(emojis['mission-maker'])), ('value', '''Provides access to our mission making channels, which *MAY HAVE SPOILERS*.\n\n''' '''__**REQUIREMENTS**__\n''' '''**__1.)__** You **MUST** attend a Saturday Op before taking this role.\n''' '''**__2.)__** **ONLY** select this role if you plan on making missions for TCS.\n''' '''**__3.)__** **DO NOT** use this role to provide feedback or suggestions in the mission making channel, use **#debriefing**.\n''' '''**__4.)__** Understand that we make missions differently than other units.\n''' '''**__5.)__** Understand that this is not an easy job and you might not get it right the first time.\n''' '''\u200B''')]) ), ('auditor', OrderedDict([ ('name', '{} @auditor'.format(emojis['auditor'])), ('value', '''Allows other mission makers to ping you to check their missions for errors. *(requires @mission-maker tag)*\n''')]) ), ('heretic', OrderedDict([ ('name', '{} @heretic'.format(emojis['heretic'])), ('value', '''Provides access to the **#heresy** channel.\n''' '''*A place for Warhammer 40K discussion and shitposting.*''')]) ), ('liberation', OrderedDict([ ('name', '<:{}> @liberation'.format(emojis['liberation'])), ('value', '''Allows other members to ping you to play *Arma 3 Liberation* on our server.''')]) ), ('r6siege', OrderedDict([ ('name', '{} @r6siege'.format(emojis['r6siege'])), ('value', '''Allows other members to ping you to play *Rainbow Six Siege*.''')]) ), ('ricefields', OrderedDict([ ('name', '<:{}> @ricefields'.format(emojis['ricefields'])), ('value', '''Allows other members to ping you to play *Rising Storm 2: Vietnam*.''')]) ), ('minecraft', OrderedDict([ ('name', '{} @minecraft'.format(emojis['minecraft'])), ('value', '''Allows other members to ping you to play *Minecraft* on our server.''')]) ), ('flight_sims', OrderedDict([ ('name', '{} @flight-sims'.format(emojis['flight-sims'])), ('value', '''Allows other members to ping you to play *DCS* or *IL2*.''')]) ), ('vr', OrderedDict([ ('name', '<:{}> @vr'.format(emojis['vr'])), ('value', '''Allows other members to ping you to play any *Virtual Reality Games*.''')]) ), ('zeus-op', OrderedDict([ ('name', '{} @zeus-op'.format(emojis['zeus-op'])), ('value', '''Allows other members to ping you to play *Impromptu Zeus Missions*.\n\n''' '''__**RULES**__\n''' '''**__1.)__** Don't expect someone to step-up as Zeus.\n''' '''**__2.)__** Zeus has final say on what's allowed in their mission.\n''' '''\u200B''')]) ), ('4x', OrderedDict([ ('name', '{} @4x'.format(emojis['4x'])), ('value', '''Allows other members to ping you to play *4X Games*.\n\n''' '''__**Active Games**__\n''' '''> *Hearts of Iron 4*\n''' '''> *Stellaris*\n''' '''\u200B''')]) ), ('rts', OrderedDict([ ('name', '<:{}> @rts'.format(emojis['rts'])), ('value', '''Allows other members to ping you to play *RTS Games*.\n\n''' '''__**Active Games**__\n''' '''> *Wargame: Red Dragon*\n''' '''> *Wargame: War in the East*\n''' '''> *Men of War: Assault Squad 2*\n''' '''> *StarCraft 2*\n''' '''\u200B''')]) ), ('destiny-2', OrderedDict([ ('name', '{} @destiny-2'.format(emojis['destiny-2'])), ('value', '''Allows other members to ping you to play *Destiny 2*.\n\n''' )]) ), ('squad', OrderedDict([ ('name', '<:{}> @squad'.format(emojis['squad'])), ('value', '''Allows other members to ping you to play *Squad*.\n\n''' )]) ), ('zomboid', OrderedDict([ ('name', '<:{}> @zomboid'.format(emojis['zomboid'])), ('value', '''Allows other members to ping you to play organized *Project Zomboid*.\n\n''' )]) ) ]) self.footer = OrderedDict([ ('footer', '''React to toggle role on/off''') ]) def setup(bot): bot.add_cog(RoleSelector(bot))
46.052863
147
0.505931
10,255
0.980964
0
0
2,124
0.203176
2,875
0.275014
4,257
0.407213
671b9c9f7b2c7728391666847cc8f06a6c3abea1
468
py
Python
Bunnies.py
fatih-iver/Intro-to-Computer-Science-with-Python
7b8127681415dfd100a0e70fe8a672cec696bbb7
[ "MIT" ]
null
null
null
Bunnies.py
fatih-iver/Intro-to-Computer-Science-with-Python
7b8127681415dfd100a0e70fe8a672cec696bbb7
[ "MIT" ]
null
null
null
Bunnies.py
fatih-iver/Intro-to-Computer-Science-with-Python
7b8127681415dfd100a0e70fe8a672cec696bbb7
[ "MIT" ]
null
null
null
# Define a procedure, fibonacci, that takes a natural number as its input, and # returns the value of that fibonacci number. # Two Base Cases: # fibonacci(0) => 0 # fibonacci(1) => 1 # Recursive Case: # n > 1 : fibonacci(n) => fibonacci(n-1) + fibonacci(n-2) def fibonacci(n): return n if n == 0 or n == 1 else fibonacci(n-1) + fibonacci(n-2) print (fibonacci(0)) #>>> 0 print (fibonacci(1)) #>>> 1 print (fibonacci(15)) #>>> 610
24.631579
79
0.604701
0
0
0
0
0
0
0
0
290
0.619658
671bdca4dcc88d2670523ab9386ad959165e1bf4
1,876
py
Python
symphony/cli/graphql_compiler/tests/test_utils_codegen.py
remo5000/magma
1d1dd9a23800a8e07b1ce016776d93e12430ec15
[ "BSD-3-Clause" ]
1
2020-06-05T09:01:40.000Z
2020-06-05T09:01:40.000Z
symphony/cli/graphql_compiler/tests/test_utils_codegen.py
remo5000/magma
1d1dd9a23800a8e07b1ce016776d93e12430ec15
[ "BSD-3-Clause" ]
14
2019-11-15T12:01:18.000Z
2019-12-12T14:37:42.000Z
symphony/cli/graphql_compiler/tests/test_utils_codegen.py
remo5000/magma
1d1dd9a23800a8e07b1ce016776d93e12430ec15
[ "BSD-3-Clause" ]
3
2019-11-15T15:56:25.000Z
2019-11-21T10:34:59.000Z
#!/usr/bin/env python3 from .base_test import BaseTest from fbc.symphony.cli.graphql_compiler.gql.utils_codegen import CodeChunk class TestRendererDataclasses(BaseTest): def test_codegen_write_simple_strings(self): gen = CodeChunk() gen.write('def sum(a, b):') gen.indent() gen.write('return a + b') code = str(gen) m = self.load_module(code) assert m.sum(2, 3) == 5 def test_codegen_write_template_strings_args(self): gen = CodeChunk() gen.write('def {0}(a, b):', 'sum') gen.indent() gen.write('return a + b') code = str(gen) m = self.load_module(code) assert m.sum(2, 3) == 5 def test_codegen_write_template_strings_kwargs(self): gen = CodeChunk() gen.write('def {method}(a, b):', method='sum') gen.indent() gen.write('return a + b') code = str(gen) m = self.load_module(code) assert m.sum(2, 3) == 5 def test_codegen_block(self): gen = CodeChunk() gen.write('def sum(a, b):') with gen.block(): gen.write('return a + b') code = str(gen) m = self.load_module(code) assert m.sum(2, 3) == 5 def test_codegen_write_block(self): gen = CodeChunk() with gen.write_block('def {name}(a, b):', name='sum'): gen.write('return a + b') code = str(gen) m = self.load_module(code) assert m.sum(2, 3) == 5 def test_codegen_write_lines(self): lines = [ '@staticmethod', 'def sum(a, b):' ' return a + b' ] gen = CodeChunk() gen.write('class Math:') gen.indent() gen.write_lines(lines) code = str(gen) m = self.load_module(code) assert m.Math.sum(2, 3) == 5
24.363636
73
0.537846
1,743
0.929104
0
0
0
0
0
0
257
0.136994
671c056e5378258e43c069fd46366a89b0af73b7
202
py
Python
api/__init__.py
zhangyouliang/TencentComicBook
74d8e7e787f70554d5d982687540a6ac3225b9ed
[ "MIT" ]
null
null
null
api/__init__.py
zhangyouliang/TencentComicBook
74d8e7e787f70554d5d982687540a6ac3225b9ed
[ "MIT" ]
null
null
null
api/__init__.py
zhangyouliang/TencentComicBook
74d8e7e787f70554d5d982687540a6ac3225b9ed
[ "MIT" ]
null
null
null
from flask import Flask def create_app(): app = Flask(__name__) app.config['JSON_AS_ASCII'] = False from .views import app as main_app app.register_blueprint(main_app) return app
18.363636
39
0.70297
0
0
0
0
0
0
0
0
15
0.074257
671c98674cb5f008f240bb63dd21b79174a4ca79
898
py
Python
misc/pytorch_toolkit/chest_xray_screening/chest_xray_screening/utils/get_config.py
a-a-egorovich/training_extensions
e0bbdfa4266c6ccfebf23ef303204a4a62fc290d
[ "Apache-2.0" ]
null
null
null
misc/pytorch_toolkit/chest_xray_screening/chest_xray_screening/utils/get_config.py
a-a-egorovich/training_extensions
e0bbdfa4266c6ccfebf23ef303204a4a62fc290d
[ "Apache-2.0" ]
null
null
null
misc/pytorch_toolkit/chest_xray_screening/chest_xray_screening/utils/get_config.py
a-a-egorovich/training_extensions
e0bbdfa4266c6ccfebf23ef303204a4a62fc290d
[ "Apache-2.0" ]
1
2021-05-08T04:29:44.000Z
2021-05-08T04:29:44.000Z
import os import json def get_config(action, optimised = False): """ action: train, test, export or gdrive optimised: False --> DenseNet121 True --> DenseNet121Eff """ root_path = os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) config_path = os.path.join(root_path, 'configs') if action == 'download': with open(os.path.join(config_path, 'download_configs.json')) as f1: config = json.load(f1) else: if optimised: with open(os.path.join(config_path, 'densenet121eff_config.json')) as f1: config_file = json.load(f1) config = config_file[action] else: with open(os.path.join(config_path, 'densenet121_config.json')) as f1: config_file = json.load(f1) config = config_file[action] return config
33.259259
93
0.609131
0
0
0
0
0
0
0
0
228
0.253898
671d6732bc9abaae404bc6f0b8c59f26d23ca716
3,337
py
Python
src/udpa/annotations/versioning_pb2.py
pomerium/enterprise-client-python
366d72cc9cd6dc05fae704582deb13b1ccd20a32
[ "Apache-2.0" ]
1
2021-09-14T04:34:29.000Z
2021-09-14T04:34:29.000Z
src/udpa/annotations/versioning_pb2.py
pomerium/enterprise-client-python
366d72cc9cd6dc05fae704582deb13b1ccd20a32
[ "Apache-2.0" ]
3
2021-09-15T15:10:41.000Z
2022-01-04T21:03:03.000Z
src/udpa/annotations/versioning_pb2.py
pomerium/enterprise-client-python
366d72cc9cd6dc05fae704582deb13b1ccd20a32
[ "Apache-2.0" ]
1
2021-09-13T21:51:37.000Z
2021-09-13T21:51:37.000Z
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: udpa/annotations/versioning.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.protobuf import descriptor_pb2 as google_dot_protobuf_dot_descriptor__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='udpa/annotations/versioning.proto', package='udpa.annotations', syntax='proto3', serialized_options=b'Z\"github.com/cncf/xds/go/annotations', create_key=_descriptor._internal_create_key, serialized_pb=b'\n!udpa/annotations/versioning.proto\x12\x10udpa.annotations\x1a google/protobuf/descriptor.proto\"5\n\x14VersioningAnnotation\x12\x1d\n\x15previous_message_type\x18\x01 \x01(\t:^\n\nversioning\x12\x1f.google.protobuf.MessageOptions\x18\xd3\x88\xe1\x03 \x01(\x0b\x32&.udpa.annotations.VersioningAnnotationB$Z\"github.com/cncf/xds/go/annotationsb\x06proto3' , dependencies=[google_dot_protobuf_dot_descriptor__pb2.DESCRIPTOR,]) VERSIONING_FIELD_NUMBER = 7881811 versioning = _descriptor.FieldDescriptor( name='versioning', full_name='udpa.annotations.versioning', index=0, number=7881811, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key) _VERSIONINGANNOTATION = _descriptor.Descriptor( name='VersioningAnnotation', full_name='udpa.annotations.VersioningAnnotation', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='previous_message_type', full_name='udpa.annotations.VersioningAnnotation.previous_message_type', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=89, serialized_end=142, ) DESCRIPTOR.message_types_by_name['VersioningAnnotation'] = _VERSIONINGANNOTATION DESCRIPTOR.extensions_by_name['versioning'] = versioning _sym_db.RegisterFileDescriptor(DESCRIPTOR) VersioningAnnotation = _reflection.GeneratedProtocolMessageType('VersioningAnnotation', (_message.Message,), { 'DESCRIPTOR' : _VERSIONINGANNOTATION, '__module__' : 'udpa.annotations.versioning_pb2' # @@protoc_insertion_point(class_scope:udpa.annotations.VersioningAnnotation) }) _sym_db.RegisterMessage(VersioningAnnotation) versioning.message_type = _VERSIONINGANNOTATION google_dot_protobuf_dot_descriptor__pb2.MessageOptions.RegisterExtension(versioning) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
39.258824
374
0.802218
0
0
0
0
0
0
0
0
1,089
0.326341
671ef5ab0fb204c856b7864f6aaa3913e2ce45e8
2,787
py
Python
modules/action/scan_smbclient_nullsession.py
mrpnkt/apt2
542fb0593069c900303421f3f24a499ce8f3a6a8
[ "MIT" ]
37
2018-08-24T20:13:19.000Z
2022-02-22T08:41:24.000Z
modules/action/scan_smbclient_nullsession.py
zu3s/apt2-1
67325052d2713a363183c23188a67e98a379eec7
[ "MIT" ]
4
2020-06-14T23:16:45.000Z
2021-03-08T14:18:21.000Z
modules/action/scan_smbclient_nullsession.py
zu3s/apt2-1
67325052d2713a363183c23188a67e98a379eec7
[ "MIT" ]
23
2018-11-15T13:00:09.000Z
2021-08-07T18:53:04.000Z
import re from core.actionModule import actionModule from core.keystore import KeyStore as kb from core.utils import Utils class scan_smbclient_nullsession(actionModule): def __init__(self, config, display, lock): super(scan_smbclient_nullsession, self).__init__(config, display, lock) self.title = "Test for NULL Session" self.shortName = "NULLSessionSmbClient" self.description = "execute [smbclient -N -L <IP>] on each target" self.requirements = ["smbclient"] self.triggers = ["newPort_tcp_445", "newPort_tcp_139"] self.safeLevel = 5 def getTargets(self): # we are interested in all hosts self.targets = kb.get('port/tcp/139', 'port/tcp/445') def process(self): # load any targets we are interested in self.getTargets() # loop over each target for t in self.targets: # verify we have not tested this host before if not self.seentarget(t): # add the new IP to the already seen list self.addseentarget(t) self.display.verbose(self.shortName + " - Connecting to " + t) # get windows domain/workgroup temp_file2 = self.config["proofsDir"] + "nmblookup_" + t + "_" + Utils.getRandStr(10) command2 = self.config["nmblookup"] + " -A " + t result2 = Utils.execWait(command2, temp_file2) workgroup = "WORKGROUP" for line in result2.split('\n'): m = re.match(r'\s+(.*)\s+<00> - <GROUP>.*', line) if (m): workgroup = m.group(1).strip() self.display.debug("found ip [%s] is on the workgroup/domain [%s]" % (t, workgroup)) # make outfile outfile = self.config["proofsDir"] + self.shortName + "_" + t + "_" + Utils.getRandStr(10) # run rpcclient command = self.config["smbclient"] + " -N -W " + workgroup + " -L " + t result = Utils.execWait(command, outfile) # check to see if it worked if "Anonymous login successful" in result: # fire a new trigger self.fire("nullSession") self.addVuln(t, "nullSession", {"type": "smb", "output": outfile.replace("/", "%2F")}) self.display.error("VULN [NULLSession] Found on [%s]" % t) # TODO - process smbclient results # parse out put and store any new info and fire any additional triggers else: # do nothing self.display.verbose("Could not get NULL Session on %s" % t) return
42.227273
108
0.545748
2,660
0.954431
0
0
0
0
0
0
912
0.327234
67217c13d08aaa4cb02ed01fdfa62904c93ef245
2,652
py
Python
UserSpace/Python/Cosmo.py
dkaramit/MiMeS
a3c97a4877f181b54e880d7b144271c5659291b5
[ "MIT" ]
2
2022-01-27T20:10:19.000Z
2022-01-29T04:26:16.000Z
UserSpace/Python/Cosmo.py
dkaramit/MiMeS
a3c97a4877f181b54e880d7b144271c5659291b5
[ "MIT" ]
null
null
null
UserSpace/Python/Cosmo.py
dkaramit/MiMeS
a3c97a4877f181b54e880d7b144271c5659291b5
[ "MIT" ]
null
null
null
from numpy import logspace from sys import path as sysPath sysPath.append('../../src') #load the module from interfacePy import Cosmo cosmo=Cosmo('../../src/data/eos2020.dat',0,1e5) for T in logspace(-5,5,50): print( 'T=',T,'GeV\t', 'H=',cosmo.Hubble(T),'GeV\t', 'h_eff=',cosmo.heff(T),'\t', 'g_eff=',cosmo.geff(T),'\t', 's=',cosmo.s(T),'GeV^3\t', ) if False: import matplotlib.pyplot as plt #########-----g_eff and h_eff-----######### fig=plt.figure(figsize=(9,4)) fig.subplots_adjust(bottom=0.15, left=0.15, top = 0.95, right=0.9,wspace=0.0,hspace=0.0) fig.suptitle('') sub = fig.add_subplot(1,1,1) T=logspace(-5,5,500) gt=[cosmo.geff(i) for i in T] ht=[cosmo.heff(i) for i in T] sub.plot(T,gt,linestyle='--',c='xkcd:red',label=r"$g_{\rm eff} (T)$") sub.plot(T,ht,linestyle=':',c='xkcd:black',label=r"$h_{\rm eff} (T)$") sub.set_xlabel(r'$T ~ [{\rm GeV}]$') sub.set_ylabel(r'rel. dof') sub.legend(bbox_to_anchor=(1, 0.0),borderaxespad=0., borderpad=0.05,ncol=1,loc='lower right',fontsize=14,framealpha=0) sub.set_yscale('log') sub.set_xscale('log') fig.savefig('rdofs-T_examplePlot.pdf',bbox_inches='tight') #########-----dg_effdT and dh_effdT-----######### fig=plt.figure(figsize=(9,4)) fig.subplots_adjust(bottom=0.15, left=0.15, top = 0.95, right=0.9,wspace=0.0,hspace=0.0) fig.suptitle('') sub = fig.add_subplot(1,1,1) T=logspace(-5,5,500) dg=[cosmo.dgeffdT (i) for i in T] dh=[cosmo.dheffdT(i) for i in T] sub.plot(T,dg,linestyle='--',c='xkcd:red',label=r"$\dfrac{d g_{\rm eff}}{dT} (T)$") sub.plot(T,dh,linestyle=':',c='xkcd:black',label=r"$\dfrac{d h_{\rm eff}}{dT} (T)$") sub.set_xlabel(r'$T ~ [{\rm GeV}]$') sub.legend(bbox_to_anchor=(1, 0.5),borderaxespad=0., borderpad=0.05,ncol=1,loc='lower right',fontsize=14,framealpha=0) sub.set_yscale('symlog') sub.set_xscale('log') fig.savefig('drdofsdT-T_examplePlot.pdf',bbox_inches='tight') #########-----dh-----######### fig=plt.figure(figsize=(9,4)) fig.subplots_adjust(bottom=0.15, left=0.15, top = 0.95, right=0.9,wspace=0.0,hspace=0.0) fig.suptitle('') sub = fig.add_subplot(1,1,1) T=logspace(-5,5,500) dht=[cosmo.dh(i) for i in T] sub.plot(T,dht,linestyle='-',c='xkcd:black') sub.set_xlabel(r'$T ~ [{\rm GeV}]$') sub.set_ylabel(r'$\delta_h = 1 + \dfrac{1}{3} \dfrac{d \log h_{\rm eff} }{d \log T}$') sub.set_yscale('linear') sub.set_xscale('log') fig.savefig('dh-T_examplePlot.pdf',bbox_inches='tight')
28.212766
92
0.584465
0
0
0
0
0
0
0
0
722
0.272247
6721e6112f2f0c4cefe44686fc888d2b7c5c0f42
5,236
py
Python
src/psion/oauth2/endpoints/revocation.py
revensky/psion
dfe38a1a4f4d6a5029d0973dbe1326415df6d512
[ "MIT" ]
2
2021-02-22T22:12:23.000Z
2021-02-22T22:48:33.000Z
src/psion/oauth2/endpoints/revocation.py
revensky/psion
dfe38a1a4f4d6a5029d0973dbe1326415df6d512
[ "MIT" ]
null
null
null
src/psion/oauth2/endpoints/revocation.py
revensky/psion
dfe38a1a4f4d6a5029d0973dbe1326415df6d512
[ "MIT" ]
null
null
null
from __future__ import annotations from typing import Optional from psion.oauth2.exceptions import InvalidClient, OAuth2Error, UnsupportedTokenType from psion.oauth2.models import JSONResponse, Request from .base import BaseEndpoint class RevocationEndpoint(BaseEndpoint): """ Endpoint used by the `Client` to revoke a token in its possession. If the Client succeeds to authenticate but provides a token that was not issued to itself, the `Provider` **DOES NOT** revoke the token, since the Client is not authorized to operate the token. If the token is already invalid, does not exist within the Provider or is otherwise unknown or invalid, it is also considered "revoked". :cvar `__authentication_methods__`: Allowed Client Authentication methods. :cvar `__supported_tokens__`: Token types supported by the endpoint. """ __endpoint__: str = "revocation" __authentication_methods__: list[str] = None __supported_tokens__: list[str] = ["access_token", "refresh_token"] async def __call__(self, request: Request) -> JSONResponse: """ Revokes a previously issued Token. First it validates the `Revocation Request` of the `Client` by making sure the required parameter "token" is present, and that the `Client` can authenticate with the allowed authentication methods. From the specification at `<https://www.rfc-editor.org/rfc/rfc7009.html#section-2.1>`_:: The client constructs the request by including the following parameters using the "application/x-www-form-urlencoded" format in the HTTP request entity-body: token REQUIRED. The token that the client wants to get revoked. token_type_hint OPTIONAL. A hint about the type of the token submitted for revocation. Clients MAY pass this parameter in order to help the authorization server to optimize the token lookup. If the server is unable to locate the token using the given hint, it MUST extend its search across all of its supported token types. An authorization server MAY ignore this parameter, particularly if it is able to detect the token type automatically. This specification defines two such values: * access_token: An access token as defined in [RFC6749], Section 1.4 * refresh_token: A refresh token as defined in [RFC6749], Section 1.5 Specific implementations, profiles, and extensions of this specification MAY define other values for this parameter using the registry defined in Section 4.1.2. For example, a client may request the revocation of a refresh token with the following request: POST /revoke HTTP/1.1 Host: server.example.com Content-Type: application/x-www-form-urlencoded Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW token=45ghiukldjahdnhzdauz&token_type_hint=refresh_token It then returns an empty response with a HTTP Status 200 OK, signaling that the provided token has been revoked by the server. From the specification at `<https://www.rfc-editor.org/rfc/rfc7009.html#section-2.2>`_:: The authorization server responds with HTTP status code 200 if the token has been revoked successfully or if the client submitted an invalid token. Note: invalid tokens do not cause an error response since the client cannot handle such an error in a reasonable way. Moreover, the purpose of the revocation request, invalidating the particular token, is already achieved. The content of the response body is ignored by the client as all necessary information is conveyed in the response code. An invalid token type hint value is ignored by the authorization server and does not influence the revocation response. This endpoint does not return any errors, except when the provided `token_type_hint` is not supported by the Provider. :raises UnsupportedTokenType: The provided token_type_hint is not supported. """ try: client = await self.authenticate(request, self.__authentication_methods__) data = request.form() token: str = data.get("token") token_type_hint: Optional[str] = data.get("token_type_hint") if not token or not isinstance(token, str): return if token_type_hint: if token_type_hint not in self.__supported_tokens__: raise UnsupportedTokenType await self.adapter.revoke_token(client, token, token_type_hint) return JSONResponse() except InvalidClient as exc: return JSONResponse(401, exc.headers, exc.dump()) except OAuth2Error as exc: return JSONResponse(400, exc.headers, exc.dump())
41.228346
86
0.661383
4,997
0.954354
0
0
0
0
4,200
0.802139
3,995
0.762987
67221620473d936c0d65eea07a40a563dbd162cf
1,851
py
Python
experiments/Browser/browser.py
rajKarra69420/bento
1324189e26acfe3a372882519bd78e037d93997c
[ "BSD-3-Clause" ]
3
2021-12-01T02:11:15.000Z
2022-02-03T22:45:00.000Z
experiments/Browser/browser.py
rajKarra69420/bento
1324189e26acfe3a372882519bd78e037d93997c
[ "BSD-3-Clause" ]
4
2021-11-27T11:04:36.000Z
2022-02-17T02:53:21.000Z
experiments/Browser/browser.py
rajKarra69420/bento
1324189e26acfe3a372882519bd78e037d93997c
[ "BSD-3-Clause" ]
5
2021-07-01T20:23:43.000Z
2022-03-12T18:10:34.000Z
#!/usr/bin/env python3 import argparse import logging import sys import zlib sys.path.append("../..") from bento.client.api import ClientConnection from bento.common.protocol import * import bento.common.util as util function_name= "browser" function_code= """ import requests import zlib import os def browser(url, padding): body= requests.get(url, timeout=1).content compressed= zlib.compress(body) final= compressed if padding - len(final) > 0: final= final + (os.urandom(padding - len(final))) else: final= final + (os.urandom((len(final) + padding) % padding)) api.send(final) """ @util.timeit def main(): logging.basicConfig(format='%(levelname)s:\t%(message)s', level=logging.DEBUG) parser = argparse.ArgumentParser( description='Fetch a website and pad response with dummy bytes') parser.add_argument('host', help="server's IPv4 address") parser.add_argument('port', type=int, help="server's port") parser.add_argument('url', help="URL to fetch") parser.add_argument('padding', help="pad URL body to ne") args = parser.parse_args() conn= ClientConnection(args.host, args.port) token, errmsg= conn.send_store_request(function_name, function_code) if errmsg is not None: util.fatal(f"Error message from server {errmsg}") logging.debug(f"Got token: {token}") call= f"{function_name}('{args.url}', {args.padding})" session_id, errmsg= conn.send_execute_request(call, token) if errmsg is not None: util.fatal(f"Error message from server {errmsg}") logging.debug(f"Got session_id: {session_id}") logging.debug("Getting output...") conn.send_open_request(session_id) data, session_id, err= conn.get_sessionmsg() print(zlib.decompress(data)) if __name__ == '__main__': main()
27.626866
76
0.686116
0
0
0
0
1,178
0.636413
0
0
789
0.426256
67224f47630e980eac0b94abcd62dd84644278c0
3,429
py
Python
app/views/v1/search.py
daghan/Ostrich
b12057bee7b8b92aedf09ec40edc97a60340527b
[ "MIT" ]
null
null
null
app/views/v1/search.py
daghan/Ostrich
b12057bee7b8b92aedf09ec40edc97a60340527b
[ "MIT" ]
null
null
null
app/views/v1/search.py
daghan/Ostrich
b12057bee7b8b92aedf09ec40edc97a60340527b
[ "MIT" ]
null
null
null
from app import webapp, mysql from app.models import Search , Utils, Collection, WebUtils from flask import request, jsonify from flask.ext.jsonpify import jsonify as jsonp import json ''' Generic search call @params q: search query page: the page number of search results (default 0) type: type of search: {default: free(all fields), category, isbn} @response List of search result objects(ES) ''' @webapp.route('/search') def searchString(): response = {'status': 'False'} results = {} query = Utils.getParam(request.args, 'q') page = Utils.getParam(request.args, 'page', var_type='int', default=1) search_type = Utils.getParam(request.args, 'type', default='free') user_id = Utils.getParam(request.args, 'userId', 'int') flow = Utils.getParam(request.args, 'flow', default='borrow') gcm_id = Utils.getParam(request.args, 'gcm_id', default=None) uuid = Utils.getParam(request.args, 'distinct_id', default=None) ref = Utils.getParam(request.args, 'ref', default='mobile') if not query: return Utils.errorResponse(response, 'HTTP_STATUS_CODE_DATA_MISSING') if ref == 'web': return jsonify(WebUtils.fetchSearchResults(query, search_type, page)) user_info = {'user_id': user_id, 'gcm_id': gcm_id, 'uuid': uuid} search = Search(query, user_info, flow) if search_type == 'free': results = search.basicSearch(page=page-1) elif search_type == 'category': results = search.categorySearch(page=page-1) elif search_type == 'collections': results = search.collectionsSearch(page=page-1) elif search_type == 'isbn': results = search.isbnSearch(page=page-1) elif search_type == 'auto': results = search.autoComplete() elif search_type == 'custom': results = search.customQuery() return results #log if user_id not in Utils.getAdmins(): Search.logSearch({_:request.args.get(_) for _ in request.args}, search_type) return jsonify(results) if flow != 'admin' else jsonp(results) @webapp.route('/getCategories') def getCategories(): categories = Search.getSearchCategoriesForApp() return jsonify(categories) @webapp.route('/getCollectionCategory') def getCollectionCategory(): return jsonify(Collection.getByCategory()) @webapp.route('/searchFail', methods=['POST']) def searchFail(): #NOTE deprecated. Done directly from backend return jsonify(status='true') user_id = Utils.getParam(request.form, 'user_id', 'int') q = Utils.getParam(request.form, 'q') q_type = Utils.getParam(request.form,'type') flow = Utils.getParam(request.form, 'flow', default='borrow') Search(q, {'user_id': user_id}, flow).reportFail(True,True,q_type) return jsonify(status='true') @webapp.route('/recommended', methods=['GET']) def recommended(): return jsonify(Search([]).mostRecommended()) @webapp.route('/mostSearched', methods=['GET']) def mostSearched(): return jsonify(Search([]).mostSearched()) @webapp.route('/getMultiplePanels') def getMultiplePanels(): cursor = mysql.connect().cursor() cursor.execute("""SELECT collection_id FROM collections WHERE active = 1 AND partial_order = 1 ORDER BY collection_id DESC""") panels = [] for col_id in cursor.fetchall(): panels.append(Collection(col_id).getObj()) return jsonify(panels)
34.636364
84
0.680082
0
0
0
0
2,969
0.86585
0
0
826
0.240887
6722b1ddb17bb6d89f4ea39b1f185bec7d6cfcf6
555
py
Python
run.py
orest-d/pointcloud-viewer-rs
0d6d3f27e24d1783c4812a14457f8e20c4ef6f0b
[ "MIT" ]
null
null
null
run.py
orest-d/pointcloud-viewer-rs
0d6d3f27e24d1783c4812a14457f8e20c4ef6f0b
[ "MIT" ]
null
null
null
run.py
orest-d/pointcloud-viewer-rs
0d6d3f27e24d1783c4812a14457f8e20c4ef6f0b
[ "MIT" ]
null
null
null
from flask import Flask, make_response app = Flask(__name__) @app.route("/") @app.route("/index.html") def index(): html = open("assets/index.html").read() return html @app.route("/assets/<name>") def wasm(name): r = make_response(open(f"assets/{name}","rb").read()) if name.endswith(".wasm"): r.headers.set('Content-Type', "application/wasm") return r @app.route("/data.csv") def csv(): print("GET CSV") html = open("data.csv").read() return html if __name__ == "__main__": app.run(debug=True,port=8080)
20.555556
57
0.625225
0
0
0
0
425
0.765766
0
0
150
0.27027
6724bee4efbfb26d55e405a724ed5a24e2b08168
8,496
py
Python
engine/audio/audio_director.py
codehearts/pickles-fetch-quest
ca9b3c7fe26acb50e1e2d654d068f5bb953bc427
[ "MIT" ]
3
2017-12-07T19:17:36.000Z
2021-07-29T18:24:25.000Z
engine/audio/audio_director.py
codehearts/pickles-fetch-quest
ca9b3c7fe26acb50e1e2d654d068f5bb953bc427
[ "MIT" ]
41
2017-11-11T06:00:08.000Z
2022-03-28T23:27:25.000Z
engine/audio/audio_director.py
codehearts/pickles-fetch-quest
ca9b3c7fe26acb50e1e2d654d068f5bb953bc427
[ "MIT" ]
2
2018-08-31T23:49:00.000Z
2021-09-21T00:42:48.000Z
from .audio_source import AudioSource from engine import disk import pyglet.media class AudioDirector(object): """Director for loading audio and controlling playback. Attributes: attenuation_distance (int): The default attenuation distance for newly loaded audio. Existing audio will retain its attenuation distance, see :fn:`set_attenuation_distance` for setting distance on existing sources. master_volume (float): The master volume for audio playback. 0 for silence, 1 for nominal volume. A value of 1 disables audio attenuation and ignore the position of audio sources. To avoid this, set volume to 0.99 or lower. position (tuple of int): The location of the audio listener in two-dimensional space. Listeners close to this position will be louder than those further away. """ def __init__(self, master_volume=1, position=(0, 0)): """Creates a director for grouping and controlling audio playback. Kwargs: master_volume (float, optional): Master volume for audio playback. 0 for silence, 1 for nominal volume. A value of 1 will disable audio attenuation and ignore the position of audio sources. To avoid this, set volume to 0.99 or lower. Defaults to 1. position (tuple of int, optional): The location of the audio listener in two-dimensional space. Listeners close to this position will be louder than those farther. Defaults to (0, 0). """ super(AudioDirector, self).__init__() self.attenuation_distance = 1 self.master_volume = master_volume self.position = position # Cache of loaded resources from disk self._disk_cache = {} # Groupings for audio sources self._groups = { 'all': set() } def load(self, filepath, streaming=True): """Loads and audio file from disk. The loaded audio will be added to the 'all' group for this director. A cached object will be returned if the file has already been loaded. Streaming should be used for large audio sources, such as music. Only one instance of a streaming audio source can be played at a time. Args: filepath (str): Path to audio, relative to the resource directory. Kwargs: streaming (bool, optional): Streams the audio from disk rather than loading the entire file into memory. Defaults to True. Returns: An :obj:`audio.AudioSource` object for the resource on disk. """ # Load the file from disk and cache it if necessary if filepath not in self._disk_cache: disk_file = disk.DiskLoader.load_audio(filepath, streaming) new_source = AudioSource(disk_file, streaming) # Cache the new source self._disk_cache[filepath] = new_source # Apply the default attenuation distance new_source.attenuation_distance = self.attenuation_distance # Add this audio source to the default group self.add(new_source) return self._disk_cache[filepath] def add(self, audio_source, group='all'): """Adds an audio source to a group. Grouping audio allows you to control the playback of the entire group rather than an individual source instance. By default, the audio source is added to the 'all' group. Args: audio_source (:obj:`audio.AudioSource`): The audio source to add. Kwargs: group (str, optional): The group to add the audio to. Defaults to 'all'. """ self._groups.setdefault(group, set()).add(audio_source) def _filter_sources(self, group='all', states=None): """Returns all sources in the group matching the given states. Kwargs: group (str, optional): Name of group to filter. Defaults to 'all'. states (list of int, optional): List of :cls:`AudioSource` states to filter on. If the list is not empty and a source's state is not in the list, it will be excluded from the return value. Returns: An iterator containing sources in the group matching the states. """ # If the group does not exist, return an empty iterator if group not in self._groups: return iter(()) # If there are no states to filter on, return all sources in the group if not states: return iter(self._groups[group]) # Return sources in the group matching the states to filter on return filter(lambda src: src.state in states, self._groups[group]) def play(self, group='all'): """Plays all audio sources in a group. Kwargs: group (str, optional): Name of group to play. Defaults to 'all'. """ for audio_source in self._filter_sources(group=group): audio_source.play() def pause(self, group='all'): """Pauses all playing audio sources in a group. Audio sources which are not currently playing will be left alone. Kwargs: group (str, optional): Name of group to pause. Defaults to 'all'. """ states = [AudioSource.PLAY] for audio_source in self._filter_sources(group=group, states=states): audio_source.pause() def stop(self, group='all'): """Stops all audio sources in a group. Kwargs: group (str, optional): Name of group to stop. Defaults to 'all'. """ states = [AudioSource.PLAY, AudioSource.PAUSE] for audio_source in self._filter_sources(group=group, states=states): audio_source.stop() def resume(self, group='all'): """Resumes playback of all paused audio sources in a group. Audio sources which are not currently paused will be left alone. Kwargs: group (str, optional): Name of group to resume. Defaults to 'all'. """ states = [AudioSource.PAUSE] for audio_source in self._filter_sources(group=group, states=states): audio_source.play() def set_volume(self, level, group='all'): """Sets the volume of all audio sources in a group. Args: volume (float): 0 for silence, 1 for nominal volume. Kwargs: group (str, optional): Group to set volume of. Defaults to 'all'. """ for audio_source in self._filter_sources(group=group): audio_source.volume = level def set_attenuation_distance(self, distance, group='all'): """Sets the distance from the listener before player volumes attenuate. Args: distance (int): The distance from the listener before the source volume attenuates. Within this distance, the volume remains nominal. Outside this distance, the volume approaches zero. Kwargs: group (str, optional): Group to set distance of. Defaults to 'all'. """ for audio_source in self._filter_sources(group=group): audio_source.attenuation_distance = distance @property def position(self): """The position of the listener in 2d space as a tuple-like type.""" return self._position @position.setter def position(self, position): """Sets the listener location in 2d space with a tuple-like object.""" self._position = position # Pyglet uses 3d coordinates, convert 2d to a 3d tuple listener = pyglet.media.get_audio_driver().get_listener() listener.position = (position[0], position[1], 0) @property def master_volume(self): """Returns the master audio volume as a float between 0 and 1.""" listener = pyglet.media.get_audio_driver().get_listener() return listener.volume @master_volume.setter def master_volume(self, level): """Sets the master audio playback volume. 0 for silence, 1 for nominal volume. Setting this to 1 disables audio attenuation, ignoring the position of listeners. Set to 0.99 to allow for audio positioning. """ listener = pyglet.media.get_audio_driver().get_listener() listener.volume = level
38.27027
79
0.631474
8,411
0.989995
0
0
1,105
0.130061
0
0
5,463
0.643008
6726c80fc78ce012124f71d544ed59aef2223c32
2,858
py
Python
source/windows10 system repair tool.py
programmer24680/windows10-system-repair-tool
130e9c55a7448811994a4bc04f2c3362d96cf9c9
[ "MIT" ]
1
2021-01-25T06:44:45.000Z
2021-01-25T06:44:45.000Z
source/windows10 system repair tool.py
programmer24680/windows10-system-repair-tool
130e9c55a7448811994a4bc04f2c3362d96cf9c9
[ "MIT" ]
null
null
null
source/windows10 system repair tool.py
programmer24680/windows10-system-repair-tool
130e9c55a7448811994a4bc04f2c3362d96cf9c9
[ "MIT" ]
null
null
null
import os import time print("=====================================================================") print(" ") print(" STARTING SYSTEM REPAIR ") print(" ") print("=====================================================================") print(" ") print("These are the jobs this application can do for you.") print("1.Clean The DISM Component Store") print("2.Repair Corrupted Windows Files Using SFC") print("3.Repair Corrupted Windows Files Using DISM") choice = input("Enter the serial number of the job which you want this application to do (1/2/3): ") if choice == "1": print("Analyzing Component Store") os.system("dism.exe /Online /Cleanup-Image /AnalyzeComponentStore") time.sleep(3) print("Warning: You have to cleanup component store only if necessary.") time.sleep(3) Confirmation = input("Do you want to cleanup the component store?(y/n): ") if Confirmation.upper() == "Y": os.system("dism.exe /Online /Cleanup-Image /StartComponentCleanup") time.sleep(3) print("Now Exiting!") elif Confirmation.upper() == "N": print("Skipping Component Cleanup As Per The User's Instructions") time.sleep(3) print("Now Exiting!") time.sleep(1) else: print('You have to enter only "y" or "n"') time.sleep(3) print("Now Exiting!") time.sleep(1) elif choice == "2": print("Starting SFC Repair Job") os.system("SFC /SCANNOW") time.sleep(3) print("Operation Cpmpleted Successfully!") time.sleep(3) print("Now Exiting!") elif choice == "3": Internet_Connection = input("Do you have an active internet connection?(y/n): ") if Internet_Connection.upper() == "N": iso_file = input("Do you have windows10 wim file?(y/n): ") if iso_file.upper() == "Y": Location = input("Enter the location of the wim file: ") print("Starting DISM") os.system("dism.exe /Online /Cleanup-Image /RestoreHealth /Source:" + Location + " /LimitAccess") time.sleep(3) print("Now Exiting!") else: print("Sorry but you need either internet connection or wim file in order to run Dism") time.sleep(3) print("Now Exiting!") elif Internet_Connection.upper() == "Y": print("Starting DISM") os.system("dism.exe /Online /Cleanup-Image /RestoreHealth") time.sleep(3) print("Now Exiting") else: print("You have to enter only Y/N") time.sleep(3) else: print("Choice Not Valid") time.sleep(3) print("Now Exiting!")
42.029412
109
0.537089
0
0
0
0
0
0
0
0
1,650
0.577327
6728b39bc11d9e4b1e1974a7a10fb1bb5d2f22d9
3,368
py
Python
tests/test_fid_score.py
jwblangley/pytorch-fid
3d604a25516746c3a4a5548c8610e99010b2c819
[ "Apache-2.0" ]
1,732
2018-03-05T19:20:48.000Z
2022-03-31T08:11:03.000Z
tests/test_fid_score.py
jwblangley/pytorch-fid
3d604a25516746c3a4a5548c8610e99010b2c819
[ "Apache-2.0" ]
70
2018-06-29T07:48:43.000Z
2022-03-29T13:14:07.000Z
tests/test_fid_score.py
jwblangley/pytorch-fid
3d604a25516746c3a4a5548c8610e99010b2c819
[ "Apache-2.0" ]
357
2018-03-14T06:35:24.000Z
2022-03-31T11:04:39.000Z
import numpy as np import pytest import torch from PIL import Image from pytorch_fid import fid_score, inception @pytest.fixture def device(): return torch.device('cpu') def test_calculate_fid_given_statistics(mocker, tmp_path, device): dim = 2048 m1, m2 = np.zeros((dim,)), np.ones((dim,)) sigma = np.eye(dim) def dummy_statistics(path, model, batch_size, dims, device, num_workers): if path.endswith('1'): return m1, sigma elif path.endswith('2'): return m2, sigma else: raise ValueError mocker.patch('pytorch_fid.fid_score.compute_statistics_of_path', side_effect=dummy_statistics) dir_names = ['1', '2'] paths = [] for name in dir_names: path = tmp_path / name path.mkdir() paths.append(str(path)) fid_value = fid_score.calculate_fid_given_paths(paths, batch_size=dim, device=device, dims=dim, num_workers=0) # Given equal covariance, FID is just the squared norm of difference assert fid_value == np.sum((m1 - m2)**2) def test_compute_statistics_of_path(mocker, tmp_path, device): model = mocker.MagicMock(inception.InceptionV3)() model.side_effect = lambda inp: [inp.mean(dim=(2, 3), keepdim=True)] size = (4, 4, 3) arrays = [np.zeros(size), np.ones(size) * 0.5, np.ones(size)] images = [(arr * 255).astype(np.uint8) for arr in arrays] paths = [] for idx, image in enumerate(images): paths.append(str(tmp_path / '{}.png'.format(idx))) Image.fromarray(image, mode='RGB').save(paths[-1]) stats = fid_score.compute_statistics_of_path(str(tmp_path), model, batch_size=len(images), dims=3, device=device, num_workers=0) assert np.allclose(stats[0], np.ones((3,)) * 0.5, atol=1e-3) assert np.allclose(stats[1], np.ones((3, 3)) * 0.25) def test_compute_statistics_of_path_from_file(mocker, tmp_path, device): model = mocker.MagicMock(inception.InceptionV3)() mu = np.random.randn(5) sigma = np.random.randn(5, 5) path = tmp_path / 'stats.npz' with path.open('wb') as f: np.savez(f, mu=mu, sigma=sigma) stats = fid_score.compute_statistics_of_path(str(path), model, batch_size=1, dims=5, device=device, num_workers=0) assert np.allclose(stats[0], mu) assert np.allclose(stats[1], sigma) def test_image_types(tmp_path): in_arr = np.ones((24, 24, 3), dtype=np.uint8) * 255 in_image = Image.fromarray(in_arr, mode='RGB') paths = [] for ext in fid_score.IMAGE_EXTENSIONS: paths.append(str(tmp_path / 'img.{}'.format(ext))) in_image.save(paths[-1]) dataset = fid_score.ImagePathDataset(paths) for img in dataset: assert np.allclose(np.array(img), in_arr)
32.699029
77
0.540974
0
0
0
0
60
0.017815
0
0
176
0.052257
6728f13a7364357219192b47721a96d415fff8dc
873
py
Python
run/client.py
withcouragetol/codebee-10l
2636b8fc1b456a85201b868201cf9c147d739031
[ "Apache-2.0" ]
6
2018-04-13T09:48:26.000Z
2020-06-22T13:42:10.000Z
run/client.py
withcouragetol/codebee-10l
2636b8fc1b456a85201b868201cf9c147d739031
[ "Apache-2.0" ]
null
null
null
run/client.py
withcouragetol/codebee-10l
2636b8fc1b456a85201b868201cf9c147d739031
[ "Apache-2.0" ]
2
2018-09-04T07:09:50.000Z
2019-08-18T15:11:00.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import socket import time class emsc_client: def __init__(self): self.host = "10.10.83.174" self.port = 5000 self.conn = socket.socket(socket.AF_INET, socket.SOCK_STREAM) def run(self): try: self.conn.connect((self.host, self.port)) while True: self.conn.send(("来自客户端发送的数据 : " + str(time.time())).encode()) data = self.conn.recv(1024).decode() print("来自服务端数据 :" + data + "|" + str(time.time())) time.sleep(100) except: print("服务器连接异常,尝试重新连接 (5s) ...") self.conn.close() time.sleep(5) # 断开连接后,每5s重新连接一次 emsc_client().run() finally: print("客户端已关闭 ...") if __name__=="__main__": emsc = emsc_client() emsc.run()
24.942857
77
0.514318
828
0.854489
0
0
0
0
0
0
247
0.254902
672a7017194500a70a969cf6e26d3c8f610f807f
2,765
py
Python
src/sonic_ax_impl/main.py
stepanblyschak/sonic-snmpagent
45edd7e689922ecf90697d099285f7cce99742c8
[ "Apache-2.0" ]
13
2016-03-09T20:38:16.000Z
2021-02-04T17:39:27.000Z
src/sonic_ax_impl/main.py
stepanblyschak/sonic-snmpagent
45edd7e689922ecf90697d099285f7cce99742c8
[ "Apache-2.0" ]
167
2017-02-01T23:16:11.000Z
2022-03-31T02:22:08.000Z
src/sonic_ax_impl/main.py
xumia/sonic-snmpagent
4e063e4ade89943f2413a767f24564aecfa2cd1c
[ "Apache-2.0" ]
89
2016-03-09T20:38:18.000Z
2022-03-09T09:16:13.000Z
""" SNMP subagent entrypoint. """ import asyncio import functools import os import signal import sys import ax_interface from sonic_ax_impl.mibs import ieee802_1ab from . import logger from .mibs.ietf import rfc1213, rfc2737, rfc2863, rfc3433, rfc4292, rfc4363 from .mibs.vendor import dell, cisco # Background task update frequency ( in seconds ) DEFAULT_UPDATE_FREQUENCY = 5 event_loop = asyncio.get_event_loop() shutdown_task = None class SonicMIB( rfc1213.InterfacesMIB, rfc1213.IpMib, rfc1213.SysNameMIB, rfc2737.PhysicalTableMIB, rfc3433.PhysicalSensorTableMIB, rfc2863.InterfaceMIBObjects, rfc4363.QBridgeMIBObjects, rfc4292.IpCidrRouteTable, ieee802_1ab.LLDPLocalSystemData, ieee802_1ab.LLDPLocalSystemData.LLDPLocPortTable, ieee802_1ab.LLDPLocalSystemData.LLDPLocManAddrTable, ieee802_1ab.LLDPRemTable, ieee802_1ab.LLDPRemManAddrTable, dell.force10.SSeriesMIB, cisco.bgp4.CiscoBgp4MIB, cisco.ciscoPfcExtMIB.cpfcIfTable, cisco.ciscoPfcExtMIB.cpfcIfPriorityTable, cisco.ciscoSwitchQosMIB.csqIfQosGroupStatsTable, cisco.ciscoEntityFruControlMIB.cefcFruPowerStatusTable, ): """ If SONiC was to create custom MIBEntries, they may be specified here. """ def shutdown(signame, agent): # FIXME: If the Agent dies, the background tasks will zombie. global event_loop, shutdown_task logger.info("Recieved '{}' signal, shutting down...".format(signame)) shutdown_task = event_loop.create_task(agent.shutdown()) def main(update_frequency=None): global event_loop try: # initialize handler and set update frequency (or use the default) agent = ax_interface.Agent(SonicMIB, update_frequency or DEFAULT_UPDATE_FREQUENCY, event_loop) # add "shutdown" signal handlers # https://docs.python.org/3.5/library/asyncio-eventloop.html#set-signal-handlers-for-sigint-and-sigterm for signame in ('SIGINT', 'SIGTERM'): event_loop.add_signal_handler(getattr(signal, signame), functools.partial(shutdown, signame, agent)) # start the agent, wait for it to come back. logger.info("Starting agent with PID: {}".format(os.getpid())) event_loop.run_until_complete(agent.run_in_event_loop()) except Exception: logger.exception("Uncaught exception in {}".format(__name__)) sys.exit(1) finally: if shutdown_task is not None: # make sure shutdown has completed completely before closing the loop event_loop.run_until_complete(shutdown_task) # the agent runtime has exited, close the event loop and exit. event_loop.close() logger.info("Goodbye!") sys.exit(0)
32.151163
111
0.718626
808
0.292224
0
0
0
0
0
0
726
0.262568
672a72c5fc5af6da05a603f68e577831d5bb4e8d
8,000
py
Python
btk_server.py
bedrin/keyboard_mouse_emulate_on_raspberry
2f1f0cff4b5c5b2e20159d0e91542ec8a5a48e3c
[ "MIT" ]
null
null
null
btk_server.py
bedrin/keyboard_mouse_emulate_on_raspberry
2f1f0cff4b5c5b2e20159d0e91542ec8a5a48e3c
[ "MIT" ]
null
null
null
btk_server.py
bedrin/keyboard_mouse_emulate_on_raspberry
2f1f0cff4b5c5b2e20159d0e91542ec8a5a48e3c
[ "MIT" ]
null
null
null
#!/usr/bin/python3 from __future__ import absolute_import, print_function from optparse import OptionParser, make_option import os import sys import uuid import dbus import dbus.service import dbus.mainloop.glib import time import socket from gi.repository import GLib from dbus.mainloop.glib import DBusGMainLoop import logging from logging import debug, info, warning, error import keymap logging.basicConfig(level=logging.DEBUG) class BTKbDevice(): # change these constants MY_ADDRESS = "B8:27:EB:87:15:DC" MY_DEV_NAME = "Raspberry_Keyboard" errorCount = 0 # define some constants P_CTRL = 17 # Service port - must match port configured in SDP record P_INTR = 19 # Service port - must match port configured in SDP record#Interrrupt port # dbus path of the bluez profile we will create # file path of the sdp record to load SDP_RECORD_PATH = sys.path[0] + "/sdp_record.xml" UUID = "00001124-0000-1000-8000-00805f9b34fb" def __init__(self): logging.info("2. Setting up BT device") self.init_bt_device() self.init_bluez_profile() self.set_bt_class() # configure the bluetooth hardware device def init_bt_device(self): logging.info("3. Configuring Device name " + BTKbDevice.MY_DEV_NAME) # set the device class to a keybord and set the name os.system("hciconfig hci0 up") os.system("hciconfig hci0 class 0x0025C0") os.system("hciconfig hci0 name " + BTKbDevice.MY_DEV_NAME) # make the device discoverable os.system("hciconfig hci0 piscan") def set_bt_class(self): logging.info("workaround. Setting bluetooth class again") os.system("hciconfig hci0 class 0x0025C0") # set up a bluez profile to advertise device capabilities from a loaded service record def init_bluez_profile(self): logging.info("4. Configuring Bluez Profile") # setup profile options service_record = self.read_sdp_service_record() opts = { "AutoConnect": True, "ServiceRecord": service_record } # retrieve a proxy for the bluez profile interface bus = dbus.SystemBus() manager = dbus.Interface(bus.get_object( "org.bluez", "/org/bluez"), "org.bluez.ProfileManager1") manager.RegisterProfile("/org/bluez/hci0", BTKbDevice.UUID, opts) logging.info("6. Profile registered ") os.system("hciconfig hci0 -a") # read and return an sdp record from a file def read_sdp_service_record(self): logging.info("5. Reading service record") try: fh = open(BTKbDevice.SDP_RECORD_PATH, "r") except: sys.exit("Could not open the sdp record. Exiting...") return fh.read() # listen for incoming client connections def listen(self): logging.info("\033[0;33m7. Waiting for connections\033[0m") self.scontrol = socket.socket( socket.AF_BLUETOOTH, socket.SOCK_SEQPACKET, socket.BTPROTO_L2CAP) # BluetoothSocket(L2CAP) self.sinterrupt = socket.socket( socket.AF_BLUETOOTH, socket.SOCK_SEQPACKET, socket.BTPROTO_L2CAP) # BluetoothSocket(L2CAP) self.scontrol.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.sinterrupt.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # bind these sockets to a port - port zero to select next available self.scontrol.bind((socket.BDADDR_ANY, self.P_CTRL)) self.sinterrupt.bind((socket.BDADDR_ANY, self.P_INTR)) # Start listening on the server sockets self.scontrol.listen(5) self.sinterrupt.listen(5) self.ccontrol, cinfo = self.scontrol.accept() print ( "\033[0;32mGot a connection on the control channel from %s \033[0m" % cinfo[0]) self.cinterrupt, cinfo = self.sinterrupt.accept() print ( "\033[0;32mGot a connection on the interrupt channel from %s \033[0m" % cinfo[0]) # send a string to the bluetooth host machine def send_string(self, message): global errorCount try: self.cinterrupt.send(bytes(message)) errorCount = 0 except OSError as err: error(err) errorCount += 1 if errorCount > 50 : sys.exit() class BTKbService(dbus.service.Object): def __init__(self): logging.info("1. Setting up service") # create and setup our device self.device = BTKbDevice() # start listening for connections self.device.listen() self.scancodes = { " ": "KEY_SPACE", "→": "KEY_RIGHT", "↵": "KEY_ENTER" } # the structure for a bt keyboard input report (size is 10 bytes) self.interimstate = [ 0xA1, # this is an input report 0x01, # Usage report = Keyboard # Bit array for Modifier keys [0x01, # Right GUI - Windows Key 0, # Right ALT 0, # Right Shift 0, # Right Control 0, # Left GUI 0, # Left ALT 0, # Left Shift 0], # Left Control 0x00, # Vendor reserved 0x00, # rest is space for 6 keys 0x00, 0x00, 0x00, 0x00, 0x00] # start infinite loop while True: for x in range(0,12): logging.info("sending ENTER (↵)") self.send_string(0, "↵") logging.info("sent ENTER (↵)") time.sleep(10) logging.info("sending RIGHT (→)") self.send_string(0, "→") logging.info("sent RIGHT (→)") time.sleep(1) logging.info("sending ENTER (↵)") self.send_string(0, "↵") logging.info("sent ENTER (↵)") time.sleep(10) logging.info("sending CTRL+R") self.send_string(0x01, "R") logging.info("sent CTRL+R") time.sleep(10) def send_key_state(self): """sends a single frame of the current key state to the emulator server""" bin_str = "" element = self.interimstate[2] for bit in element: bin_str += str(bit) self.send_keys(int(bin_str, 2), self.interimstate[4:10]) def send_key_down(self, modifier, scancode): """sends a key down event to the server""" self.interimstate[2] = [modifier, 0, 0, 0, 0, 0, 0, 0] self.interimstate[4] = scancode self.send_key_state() def send_key_up(self): """sends a key up event to the server""" self.interimstate[2] = [0,0,0,0,0,0,0,0] self.interimstate[4] = 0 self.send_key_state() def send_string(self, modifier, string_to_send): for c in string_to_send: cu = c.upper() if(cu in self.scancodes): scantablekey = self.scancodes[cu] else: scantablekey = "KEY_"+c.upper() logging.info(scantablekey) scancode = keymap.keytable[scantablekey] self.send_key_down(modifier, scancode) time.sleep(0.01) self.send_key_up() time.sleep(0.01) def send_keys(self, modifier_byte, keys): logging.info("Get send_keys request through dbus") logging.info("key msg: %s", keys) state = [ 0xA1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ] state[2] = int(modifier_byte) count = 4 for key_code in keys: if(count < 10): state[count] = int(key_code) count += 1 self.device.send_string(state) # main routine if __name__ == "__main__": try: DBusGMainLoop(set_as_default=True) myservice = BTKbService() loop = GLib.MainLoop() loop.run() except KeyboardInterrupt: sys.exit()
34.188034
103
0.59525
7,353
0.916604
0
0
0
0
0
0
2,432
0.303166
672b2fd274da4c3abef696a1ce2183fc11422e30
11,479
py
Python
ai2thor/util/visualize_3D_bbox.py
KuoHaoZeng/ai2thor-1
7cc3295f8ac7a272078159f44b74bf61d1d2bb56
[ "Apache-2.0" ]
null
null
null
ai2thor/util/visualize_3D_bbox.py
KuoHaoZeng/ai2thor-1
7cc3295f8ac7a272078159f44b74bf61d1d2bb56
[ "Apache-2.0" ]
null
null
null
ai2thor/util/visualize_3D_bbox.py
KuoHaoZeng/ai2thor-1
7cc3295f8ac7a272078159f44b74bf61d1d2bb56
[ "Apache-2.0" ]
null
null
null
import ai2thor.controller import numpy as np from PIL import Image, ImageDraw def get_rotation_matrix(agent_rot): ####### # Construct the rotation matrix. Ref: https://en.wikipedia.org/wiki/Rotation_matrix ####### r_y = np.array([[np.cos(np.radians(agent_rot["y"])), 0, np.sin(np.radians(agent_rot["y"]))], [0, 1, 0], [-np.sin(np.radians(agent_rot["y"])), 0, np.cos(np.radians(agent_rot["y"]))]]) r_x = np.array([[1, 0, 0], [0, np.cos(np.radians(agent_rot["x"])), -np.sin(np.radians(agent_rot["x"]))], [0, np.sin(np.radians(agent_rot["x"])), np.cos(np.radians(agent_rot["x"]))]]) r = r_x @ r_y return r def project_to_agent_coordinate(pos, agent_pos, r): ####### # Project a position from the world coordinate to the agent coordinate. ####### pos_diff = pos - agent_pos # since AI2THOR is left-handed coordinate system, we need to turn it to the right-handed to use the rotation matrix pos_diff[2] *= -1 new_pos = r @ pos_diff # turn back to the left-handed coordinate system new_pos[2] *= -1 return new_pos def project_to_2d(pos, half_fov, w, h): ####### # Project a given 3D position to 2D space. ####### pos_2d = [pos[0] / (pos[2] * np.tan(np.radians(half_fov))), pos[1] / (pos[2] * np.tan(np.radians(half_fov)))] # x-axis x = int(w * ((pos_2d[0] + 1.0) / 2.0)) # y-axis y = int(h * (1 - ((pos_2d[1] + 1.0) / 2.0))) return [x, y] def draw_3d_bbox(event): ####### # Draw the 3D bbox in 2D RGB image by first construct the rotation matrix and get agent position by the agent pose, # then filter out the objects which are not visible to the agent. # Finally, project the 3D bbox to 2D space and draw it on the 2D RGB image and return the event dict with image. ####### # get the 2D image width and height w, h = event.metadata["screenWidth"], event.metadata["screenHeight"] # get the FOV half_fov = event.metadata["fov"] / 2 # get the camera rotation matrix agent_rot = event.metadata["agent"]["rotation"] agent_rot["x"] = event.metadata["agent"]["cameraHorizon"] rotation_matrix = get_rotation_matrix(agent_rot) # get the camera 3D position agent_pos = np.array([event.metadata["cameraPosition"]["x"], event.metadata["cameraPosition"]["y"], event.metadata["cameraPosition"]["z"]]) # get the 2D RGB image and allocate a drawer img = Image.fromarray(event.frame, "RGB") draw = ImageDraw.Draw(img) # iterate over all objects in the scene # first classify if the object is in the view by rotated z position and instance segmentation # then draw the 3D bbox in the 2D RGB image for obj in event.metadata["objects"]: # get object 3D position and rotate it to the agent coordinate pos = np.array([obj["position"]["x"], obj["position"]["y"], obj["position"]["z"]]) new_pos = project_to_agent_coordinate(pos, agent_pos, rotation_matrix) # classify is the object is in front of the agent if new_pos[2] > 0: # classify if the object is seen by the agent (not occluded by other objects) if obj["objectId"] in event.instance_masks.keys(): # don't draw the floor and ceiling objects if "Floor" in obj["objectId"] or "Ceiling" in obj["objectId"]: if "Lamp" not in obj["objectId"]: continue # get the object color from the instance segmentation color = event.object_id_to_color[obj["objectId"]] # get the 3D bbox center and size vertices, valid = [], [] if not isinstance(obj["objectOrientedBoundingBox"], type(None)): # get the 3D bbox 8 vertices corner_points = obj["objectOrientedBoundingBox"]["cornerPoints"] # project vertices to 2D image coordinate for point in corner_points: new_point = project_to_agent_coordinate(point, agent_pos, rotation_matrix) if new_point[2] > 0: valid.append(True) else: valid.append(False) new_point_2d = project_to_2d(new_point, half_fov, w, h) vertices.append(new_point_2d) # get the 3D bbox 12 lines lines = [[vertices[0], vertices[1]], [vertices[2], vertices[3]], [vertices[0], vertices[3]], [vertices[1], vertices[2]], [vertices[4], vertices[5]], [vertices[6], vertices[7]], [vertices[4], vertices[7]], [vertices[5], vertices[6]], [vertices[2], vertices[6]], [vertices[3], vertices[7]], [vertices[1], vertices[5]], [vertices[0], vertices[4]]] valid_lines = [valid[0] * valid[1], valid[2] * valid[3], valid[0] * valid[3], valid[1] * valid[2], valid[4] * valid[5], valid[6] * valid[7], valid[4] * valid[7], valid[5] * valid[6], valid[2] * valid[6], valid[3] * valid[7], valid[1] * valid[5], valid[0] * valid[4]] else: if "cornerPoints" in obj["axisAlignedBoundingBox"].keys(): # get the 3D bbox 8 vertices corner_points = obj["axisAlignedBoundingBox"]["cornerPoints"] else: # get the 3D bbox 8 vertices from bbox center and size center = np.array([obj["axisAlignedBoundingBox"]["center"]["x"], obj["axisAlignedBoundingBox"]["center"]["y"], obj["axisAlignedBoundingBox"]["center"]["z"]]) size = np.array([obj["axisAlignedBoundingBox"]["size"]["x"], obj["axisAlignedBoundingBox"]["size"]["y"], obj["axisAlignedBoundingBox"]["size"]["z"]]) corner_points = [] for i in range(2): pos_x = np.array(center) pos_x[0] = pos_x[0] - (size[0] / 2) + (i * size[0]) for j in range(2): pos_y = np.array(pos_x) pos_y[1] = pos_y[1] - (size[1] / 2) + (j * size[1]) for k in range(2): pos_z = np.array(pos_y) pos_z[2] = pos_z[2] - (size[2] / 2) + (k * size[2]) corner_points.append(pos_z) # project vertices to 2D image coordinate for point in corner_points: new_point = project_to_agent_coordinate(point, agent_pos, rotation_matrix) if new_point[2] > 0: valid.append(True) else: valid.append(False) new_point_2d = project_to_2d(new_point, half_fov, w, h) vertices.append(new_point_2d) # get the 3D bbox 12 lines lines = [[vertices[0], vertices[1]], [vertices[2], vertices[3]], [vertices[0], vertices[2]], [vertices[1], vertices[3]], [vertices[4], vertices[5]], [vertices[6], vertices[7]], [vertices[4], vertices[6]], [vertices[5], vertices[7]], [vertices[2], vertices[6]], [vertices[3], vertices[7]], [vertices[1], vertices[5]], [vertices[0], vertices[4]]] valid_lines = [valid[0] * valid[1], valid[2] * valid[3], valid[0] * valid[2], valid[1] * valid[3], valid[4] * valid[5], valid[6] * valid[7], valid[4] * valid[6], valid[5] * valid[7], valid[2] * valid[6], valid[3] * valid[7], valid[1] * valid[5], valid[0] * valid[4]] lines = np.array(lines) lines = np.reshape(lines, (-1, 4)) valid_lines = np.array(valid_lines) valid_lines = np.reshape(valid_lines, (-1, 1)) # draw the 3D bbox 12 lines in the 2D RGB image for iii, line in enumerate(lines): if valid_lines[iii]: draw.line((line[0], line[1], line[2], line[3]), fill=color, width=2) # store the result back to the event bbox_frame = np.array(img) event.bbox_3d_frame = bbox_frame return event if __name__ == "__main__": # give the height and width of the 2D image and scene id w, h = 900, 900 scene = "FloorPlan2{:02d}_physics".format(1) # allocate controller and initialize the scene and agent # local_path = "src/ai2thor/unity/builds/thor-local-OSXIntel64.app/Contents/MacOS/AI2-Thor" local_path = "" controller = ai2thor.controller.Controller(local_path=local_path) _ = controller.start(width=w, height=h) _ = controller.reset(scene) event = controller.step(dict(action='Initialize', gridSize=0.25, renderClassImage=True, renderObjectImage=True, renderDepthImage=True, fieldOfView=90)) # do something then draw the 3D bbox in 2D image event = controller.step(dict(action="MoveAhead")) event = controller.step(dict(action="MoveAhead")) event = controller.step(dict(action="Rotate", rotation=dict(x=0, y=30, z=0))) event = draw_3d_bbox(event) img = Image.fromarray(event.bbox_3d_frame, "RGB") img.save("./output1.png") event = controller.step(dict(action="LookDown")) event = draw_3d_bbox(event) img = Image.fromarray(event.bbox_3d_frame, "RGB") img.save("./output2.png") event = controller.step(dict(action="LookDown")) event = draw_3d_bbox(event) img = Image.fromarray(event.bbox_3d_frame, "RGB") img.save("./output3.png")
46.100402
119
0.4787
0
0
0
0
0
0
0
0
2,732
0.238
672b4006ae24930b53edb66efd8fb73b92773911
3,754
py
Python
sa/profiles/ElectronR/KO01M/get_metrics.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
84
2017-10-22T11:01:39.000Z
2022-02-27T03:43:48.000Z
sa/profiles/ElectronR/KO01M/get_metrics.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
22
2017-12-11T07:21:56.000Z
2021-09-23T02:53:50.000Z
sa/profiles/ElectronR/KO01M/get_metrics.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
23
2017-12-06T06:59:52.000Z
2022-02-24T00:02:25.000Z
# --------------------------------------------------------------------- # ElectronR.KO01M.get_metrics # --------------------------------------------------------------------- # Copyright (C) 2007-2020 The NOC Project # See LICENSE for details # --------------------------------------------------------------------- # NOC modules from noc.sa.profiles.Generic.get_metrics import Script as GetMetricsScript, metrics class Script(GetMetricsScript): name = "ElectronR.KO01M.get_metrics" @metrics(["Environment | Sensor Status"], volatile=False, access="S") # SNMP version def get_sensor_status(self, metrics): for metric in metrics: value = 1 if metric.ifindex == 100: continue elif metric.ifindex == 140: temp = self.snmp.get("1.3.6.1.4.1.35419.20.1.140.0", cached=True) if -55 < temp < 600: value = 0 elif metric.ifindex == 160: impulse = self.snmp.get("1.3.6.1.4.1.35419.20.1.160.0", cached=True) if impulse != 0: value = 0 else: res = self.snmp.get("1.3.6.1.4.1.35419.20.1.10%s.0" % metric.ifindex) if res == 1: value = 0 port = metric.labels[0].rsplit("::", 1)[-1] self.set_metric( id=("Environment | Sensor Status", metric.labels), labels=[f"noc::sensor::{port}"], value=value, ) @metrics(["Environment | Temperature"], volatile=False, access="S") # SNMP version def get_temperature(self, metrics): for metric in metrics: if metric.ifindex == 140: value = self.snmp.get("1.3.6.1.4.1.35419.20.1.%s.0" % metric.ifindex, cached=True) port = metric.labels[0].rsplit("::", 1)[-1] self.set_metric( id=("Environment | Temperature", metric.labels), labels=[f"noc::module::{port}", f"noc::sensor::{port}"], value=value, multi=True, ) @metrics(["Environment | Voltage"], volatile=False, access="S") # SNMP version def get_voltage(self, metrics): for metric in metrics: value = self.snmp.get("1.3.6.1.4.1.35419.20.1.%s.0" % metric.ifindex) port = metric.labels[0].rsplit("::", 1)[-1] self.set_metric( id=("Environment | Voltage", metric.labels), labels=[f"noc::module::{port}", f"noc::sensor::{port}"], value=value, multi=True, ) @metrics(["Environment | Pulse"], volatile=False, access="S") # SNMP version def get_pulse(self, metrics): for metric in metrics: if metric.ifindex == 160: value = self.snmp.get("1.3.6.1.4.1.35419.20.1.%s.0" % metric.ifindex, cached=True) port = metric.labels[0].rsplit("::", 1)[-1] self.set_metric( id=("Environment | Pulse", metric.labels), labels=[f"noc::sensor::{port}"], value=value, ) @metrics(["Environment | Power | Input | Status"], volatile=False, access="S") # SNMP version def get_power_input_status(self, metrics): for metric in metrics: value = self.snmp.get("1.3.6.1.4.1.35419.20.1.10%s.0" % metric.ifindex, cached=True) port = metric.labels[0].rsplit("::", 1)[-1] self.set_metric( id=("Environment | Power | Input | Status", metric.labels), labels=[f"noc::sensor::{port}"], value=0 if value == 1 else 1, )
43.149425
98
0.485615
3,338
0.889185
0
0
3,236
0.862014
0
0
1,094
0.291422
672ca5a86d4634cb29b428fe498eec5d2e6591d7
17,041
py
Python
clustering.py
t20100/ccCluster
9645d80dcfe579c23b3d52e8d536a39d469b184a
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
clustering.py
t20100/ccCluster
9645d80dcfe579c23b3d52e8d536a39d469b184a
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
clustering.py
t20100/ccCluster
9645d80dcfe579c23b3d52e8d536a39d469b184a
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
from __future__ import print_function __author__ = "Gianluca Santoni" __copyright__ = "Copyright 20150-2019" __credits__ = ["Gianluca Santoni, Alexander Popov"] __license__ = "" __version__ = "1.0" __maintainer__ = "Gianluca Santoni" __email__ = "gianluca.santoni@esrf.fr" __status__ = "Beta" from scipy.cluster import hierarchy import scipy import matplotlib.pyplot as plt import os import numpy as np import subprocess import collections import operator import stat import json import random class Clustering(): """ parse cc_calc output and perform HCA at each call, it generates the distance matrix You get the dendrogram through Clustering.tree() """ def __init__(self, ccCalcOutput): self.ccFile= ccCalcOutput self.CurrentDir = os.getcwd() self.ccTable, self.Dimension = self.parseCCFile() self.createLabels() self.previousProcess() def previousProcess(self): """ Lists all the clusters which have already been processed from a log file. Updates the global variable alreadyDone """ self.alreadyDone= [] if os.path.isfile(os.getcwd()+'/.cc_cluster.log'): with open(os.getcwd()+'/.cc_cluster.log') as log: for line in log: L = line.split(',') self.alreadyDone.append([L[1], L[2].strip(), L[3].strip()]) def parseCCFile(self): """ Gets data from ccCalc ouput file and populates a numpy array with the distances """ with open(self.ccFile, 'r') as f: dataArr = None data=[] Index = [] for line in f: if line.strip() == 'Correlation coefficients': break for line in f: dataline= line.rstrip().split() data.append(dataline) Index.append(int(dataline[0])+1) Index.append(int(dataline[1])+1) Dimension=max(Index) dataArr = np.array(data,dtype=(float)) return dataArr, Dimension def createLabels(self): """ Gets the labels from the ccCalc output with the input file names """ self.labelList= [] with open(self.ccFile) as f: for line in f: if line.strip() == 'Labels': break for line in f: if line.strip() == 'Correlation coefficients': break goodLine = line.split() self.labelList.append("%s"%(goodLine[2].strip('\n'))) return self.labelList def inputType(self): """ return input file type. Either mtz or HLK """ element = self.labelList[0] extension = element.split('.')[-1] print(extension) return extension def tree(self): """ Returns the HCA dendrogrm, using the complete linkage method """ data = self.ccTable Matrix=np.zeros((self.Dimension,self.Dimension)) reducedArray=[] for line in data: #print line if line is not None and len(line) is not 0: Matrix[int(line[0]),int(line[1])]= line[2] Matrix[int(line[1]),int(line[0])]= line[2] for x in range(0,self.Dimension): for y in range(x+1,self.Dimension): reducedArray.append(Matrix[x,y]) Distances = np.array(reducedArray, dtype=(float)) self.Tree =hierarchy.linkage(Distances, 'complete') return self.Tree def avgTree(self): """ Returns the HCA dendrogrm, using the average linkage method """ data = self.ccTable Matrix=np.zeros((self.Dimension,self.Dimension)) reducedArray=[] for line in data: #print line if line is not None and len(line) is not 0: Matrix[int(line[0]),int(line[1])]= line[2] Matrix[int(line[1]),int(line[0])]= line[2] for x in range(0,self.Dimension): for y in range(x+1,self.Dimension): reducedArray.append(Matrix[x,y]) Distances = np.array(reducedArray, dtype=(float)) self.Tree =hierarchy.linkage(Distances, 'average') return self.Tree def flatClusterPrinter(self, thr, labelsList, anomFlag): """ Prints the flat cluster at a chosen threshold to a .json file """ FlatC=hierarchy.fcluster(self.Tree, thr, criterion='distance') counter=collections.Counter(FlatC) clusterToJson={} clusterToJson['HKL']=[] Best = max(counter.items(), key=operator.itemgetter(1))[0] clusterFile = open(self.CurrentDir+'/cc_Cluster_%.2f_%s_%s/flatCluster.json'%(float(thr),Best, anomFlag), 'w') for cluster, hkl in zip(FlatC, labelsList): clusterToJson['HKL'].append({ 'input_file':hkl, 'cluster':str(cluster) }) print(clusterToJson) j = json.dumps(clusterToJson, indent=4) print(j, file=clusterFile) def thrEstimation(self): """ Estimates the threshold for optimal clustering, based on the multiplicity of the biggest cluster """ x = 0.00 dx = 0.05 countsList = [] x_list = [] while x < 1: FlatC = hierarchy.fcluster(self.Tree, x, criterion='distance') counter=collections.Counter(FlatC) Best = max(counter.items(), key=operator.itemgetter(1))[0] countsList.append(counter[Best]) x+= dx x_list.append(x) dy = np.diff(countsList) for a, b in zip (x_list, dy): if b == max(dy): return a def checkMultiplicity(self, thr): """ Prints the multiplicity of the biggest cluster at a given threshold """ FlatC = hierarchy.fcluster(self.Tree, thr, criterion='distance') counter=collections.Counter(FlatC) Best = max(counter.items(), key=operator.itemgetter(1))[0] print('You are clustering with a threshold of %s'%(thr)) print('The biggest cluster contains %s datasets from a total of %s'%(counter[Best], len(self.labelList))) def completenessEstimation(self): x = 0.00 dx = 0.05 while x > 1: FlatC = hierarchy.fcluster(self.Tree, x, criterion='distance') counter=collections.Counter(FlatC) Best = max(counter.items(), key=operator.itemgetter(1))[0] # the list self.ToProcess is needed by the scaling routines # fix all this new mess! def whatToProcess(self): FlatC = hierarchy.fcluster(self.Tree, thr, criterion='distance') counter=collections.Counter(FlatC) Best = max(counter.items(), key=operator.itemgetter(1))[0] Process = True #change checkboxes to standard variables if Process: self.ToProcess = [Best] else: self.ToProcess = set(Clusters) for key in self.ToProcess: if counter[key]==1: self.ToProcess = [x for x in self.ToProcess if x != key] return self.ToProcess #Run XSCALE to merge the biggest cluster #input files #!!!! Will need to define the processes to run externally #renaming function! Edit the calls in ccCluster accordingly def prepareXSCALE(self, anomFlag, thr): FlatC = hierarchy.fcluster(self.Tree, thr, criterion='distance') counter=collections.Counter(FlatC) Best = max(counter.items(), key=operator.itemgetter(1))[0] Process = True #change checkboxes to standard variables if Process: self.ToProcess = [Best] else: self.ToProcess = set(Clusters) for key in self.ToProcess: if counter[key]==1: self.ToProcess = [x for x in self.ToProcess if x != key] for x in self.ToProcess: if [thr,x, anomFlag] not in self.alreadyDone: os.mkdir(self.CurrentDir+'/cc_Cluster_%.2f_%s_%s'%(float(thr),x, anomFlag)) Xscale=open(self.CurrentDir+'/cc_Cluster_%.2f_%s_%s/XSCALE.INP'%(float(thr),x, anomFlag), 'a') Pointless=open(self.CurrentDir+'/cc_Cluster_%.2f_%s_%s/launch_pointless.sh'%(float(thr),x,anomFlag ), 'a') print('OUTPUT_FILE=scaled.hkl',file=Xscale) print('MERGE= TRUE', file=Xscale) print('pointless hklout clustered.mtz << eof', file=Pointless) if anomFlag=='ano': print('FRIEDEL\'S_LAW= FALSE', file=Xscale) elif anomFlag=='no_ano': print('FRIEDEL\'S_LAW= TRUE', file=Xscale) Xscale.close() Pointless.close() for cluster, filename in zip(FlatC,self.labelList): if cluster in self.ToProcess: OUT = open(self.CurrentDir+'/cc_Cluster_%.2f_%s_%s/XSCALE.INP'%(float(thr),cluster,anomFlag), 'a') Pointless=open(self.CurrentDir+'/cc_Cluster_%.2f_%s_%s/launch_pointless.sh'%(float(thr),cluster,anomFlag), 'a') print ('INPUT_FILE= ../%s'%(filename), file=OUT) #print ('INCLUDE_RESOLUTION_RANGE=20, 1.8', file=OUT) print ('MINIMUM_I/SIGMA= 0', file=OUT) print ('XDSIN ../%s'%(filename), file= Pointless) OUT.close() Pointless.close() def preparePointless(self, anomFlag, thr): FlatC = hierarchy.fcluster(self.Tree, thr, criterion='distance') counter=collections.Counter(FlatC) Best = max(counter.items(), key=operator.itemgetter(1))[0] Process = True #change checkboxes to standard variables if Process: self.ToProcess = [Best] else: self.ToProcess = set(Clusters) for key in self.ToProcess: if counter[key]==1: self.ToProcess = [x for x in self.ToProcess if x != key] for x in self.ToProcess: if [thr,x, anomFlag] not in self.alreadyDone: os.mkdir(self.CurrentDir+'/cc_Cluster_%.2f_%s_%s'%(float(thr),x, anomFlag)) Pointless=open(self.CurrentDir+'/cc_Cluster_%.2f_%s_%s/launch_pointless.sh'%(float(thr),x,anomFlag ), 'a') print('pointless hklout clustered.mtz << eof', file=Pointless) print('XMLOUT pointlessLog.xml', file=Pointless) Pointless.close() for cluster, filename in zip(FlatC,self.labelList): if cluster in self.ToProcess: Pointless=open(self.CurrentDir+'/cc_Cluster_%.2f_%s_%s/launch_pointless.sh'%(float(thr),cluster,anomFlag), 'a') print ('HKLIN ../%s'%(filename), file= Pointless) Pointless.close() #Run XSCALE in the pre-determined folders. def scaleAndMerge(self, anomFlag, thr): newProcesses=[] for x in self.ToProcess: if [thr,x, anomFlag] not in self.alreadyDone: #self.createDendrogram(thr) #plt.savefig(self.CurrentDir+'/cc_Cluster_%.2f_%s_%s/Dendrogram.png'%(float(thr),x,anomFlag)) P= subprocess.Popen('xscale_par',cwd=self.CurrentDir+'/cc_Cluster_%.2f_%s_%s/'%(float(thr), x, anomFlag)) P.wait() # print('Cluster, %s , %s , %s'%(float(thr),x, anomFlag), file=Log) newProcesses.append([thr,x, anomFlag]) #run Pointless in each folder from the processing List def pointlessRun(self, anomFlag, thr): newProcesses=[] for x in self.ToProcess: if [thr,x, anomFlag] not in self.alreadyDone: Pointless=open(self.CurrentDir+'/cc_Cluster_%.2f_%s_%s/launch_pointless.sh'%(float(thr),x,anomFlag), 'a') print('COPY \n bg\n TOLERANCE 4 \n eof', file= Pointless) Pointless.close() st = os.stat(self.CurrentDir+'/cc_Cluster_%.2f_%s_%s/launch_pointless.sh'%(float(thr),x,anomFlag )) os.chmod(self.CurrentDir+'/cc_Cluster_%.2f_%s_%s/launch_pointless.sh'%(float(thr),x,anomFlag ), st.st_mode | 0o111) P = subprocess.Popen(self.CurrentDir+'/cc_Cluster_%.2f_%s_%s/launch_pointless.sh > pointless.log') P.wait() #run aimless on the output from pointless #will run in folders with clustered.mtz file available. #TBD: fix directories paths into the aimless.inp file #also set all the proper input values into the function call #path to aimless executable to be verified. def aimlessRun(self, anomFlag, thr): for x in self.toProcess: if [thr,x, anomFlag] not in self.alreadyDone: f1= open("aimless.inp", 'w') runScript='''#!/bin/bash source /opt/pxsoft/ccp4/vdefault/linux-x86_64/ccp4-7.0/setup-scripts/ccp4.setup-sh aimless HKLIN {infile} << EOF HKLOUT {setname}_aimless.mtz' RESOLUTION LOW {resLow} HIGH {resHigh} OUTPUT MERGED anomalous {anomflag} EOF #truncate: generate Fs truncate hklin {setname}_aimless.mtz hklout {setname}_tr.mtz <<EOF-trunc truncate yes EOF-trunc #unique: generate unique reflection set for rfree unique HKLOUT x_unq.mtz << EOF CELL {cell} SYMMETRY '{SpaceGroup}' LABOUT F=FUNI SIGF=SIGFUNI RESOLUTION {resHigh} EOF #freerflag: generate free reflections freerflag HKLIN x_unq.mtz HKLOUT x_FreeR_unq.mtz <<EOF FREERFRAC 0.05 END EOF #cad: combine free reflections with data cad HKLIN1 x_FreeR_unq.mtz HKLIN2 {setname}_tr.mtz HKLOUT {setname}_cad.mtz<<EOF LABI FILE 1 E1=FreeR_flag LABI FILE 2 ALLIN END EOF freerflag HKLIN {setname}_cad.mtz HKLOUT {setname}_scaled.mtz <<EOF COMPLETE FREE=FreeR_flag END EOF '''.format(infile = 'clustered.mtz', setname = 'clustered', resHigh = '1.0', resLow = '60', anomflag = 'ON', cell = cell, SpaceGroup = SpaceGroup) f1.write(runScript) f1.close() os.chmod(CurrentDir + '/aimless.inp', st.st_mode | 0o111) subprocess.call('./aimless.inp > aimless.log', cwd=CurrentDir, shell=True) # A function to investigate the influence of reference file in merging results def shuffleXscale(self, anomFlag, thr): FlatC = hierarchy.fcluster(self.Tree, thr, criterion='distance') Log = open(self.CurrentDir+'/.cc_cluster.log', 'a') counter=collections.Counter(FlatC) Best = max(counter.items(), key=operator.itemgetter(1))[0] print(Best) Process = True xscaleInputFiles=[] #change checkboxes to standard variables if Process: self.ToProcess = [Best] else: self.ToProcess = set(Clusters) for key in self.ToProcess: if counter[key]==1: self.ToProcess = [x for x in self.ToProcess if x != key] #Prepare list of filenames to shuffle over for cluster, filename in zip(FlatC, self.labelList): if cluster in self.ToProcess: xscaleInputFiles.append(filename) print(xscaleInputFiles) #run XSCALE with random ordered files 20 times for x in range(0,20): os.mkdir(self.CurrentDir+'/thr_%.2f_run_%s'%(float(thr),x)) Xscale=open(self.CurrentDir+'/thr_%.2f_run_%s/XSCALE.INP'%(float(thr),x), 'a') print('OUTPUT_FILE=scaled.hkl',file=Xscale) print('MERGE= TRUE', file=Xscale) print('FRIEDEL\'S_LAW=TRUE', file=Xscale ) random.shuffle(xscaleInputFiles) for hkl in xscaleInputFiles: print ('INPUT_FILE= ../%s'%(hkl), file=Xscale) print ('MINIMUM_I/SIGMA= 0', file=Xscale) P= subprocess.Popen('xscale_par',cwd=self.CurrentDir+'/thr_%.2f_run_%s'%(float(thr),x)) P.wait() def main(): from optparse import OptionParser parser = OptionParser(usage="%prog --XSCALEfile=<LP filename> --outname=<output dendogram>") parser.add_option("-o","--outname", dest="outname", default='Dendrogram', help="output dendogram file name") parser.add_option("-t", "--threshold", dest="threshold", default='0.4', help="Distance threshold for clustering") parser.add_option("-c", "--count",action="store_true", dest="count", default=False, help="Counts datasets in the biggest cluster and exit") (options, args) = parser.parse_args() thr = float(options.threshold) CC = Clustering('Cluster_log.txt') link = CC.tree() if options.count: CC.checkMultiplicity(thr) print(CC.thrEstimation()) else: CC.checkMultiplicity(thr) CC.merge('ano', thr) if __name__== '__main__': main()
38.123043
146
0.589813
15,621
0.916672
0
0
0
0
0
0
5,134
0.301273
672fde99dcb82eabf8b0425ec9a63d4e04194da7
9,992
py
Python
wrappaconda.py
nckz/wrappaconda
43203be36f2de17fdf8fe77c151c5628bd98321f
[ "BSD-2-Clause" ]
null
null
null
wrappaconda.py
nckz/wrappaconda
43203be36f2de17fdf8fe77c151c5628bd98321f
[ "BSD-2-Clause" ]
null
null
null
wrappaconda.py
nckz/wrappaconda
43203be36f2de17fdf8fe77c151c5628bd98321f
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python # Author: Nick Zwart # Date: 2015oct31 from __future__ import print_function import os import sys import stat import errno import shutil import optparse import traceback import subprocess wrappaconda_name_string = 'Wr[App]-A-Conda' class AppAtizer(object): def __init__(self): # tmp paths self._downloads_prefix = os.path.expanduser('~/Downloads') if not os.path.isdir(self._downloads_prefix): self._downloads_prefix = './' # use cwd # try for wget or curl self._get = self._getDownloaderCommand() # cli input self._parseUserInput() # .app paths self._apppath = '/Applications/'+self._name+'.app' self._contents_prefix = self._apppath + "/Contents" self._resource_prefix = self._contents_prefix + "/Resources" self._info_plist_path = self._contents_prefix + "/Info.plist" self._pkg_info_path = self._contents_prefix + "/PkgInfo" self._macos_prefix = self._contents_prefix + "/MacOS" self._cfbundle_icon_filename = 'app.icns' # Wr[App]-A-Conda paths self._id_file_path = self._resource_prefix + "/wrappaconda" # miniconda paths self._miniconda_prefix = self._resource_prefix + "/miniconda" self._python_path = self._miniconda_prefix + "/bin/python" self._conda_path = self._miniconda_prefix + "/bin/conda" def _parseUserInput(self): # get user input parser = optparse.OptionParser() parser.add_option("-n", "--name", dest='name', help="[REQUIRED] The name of this app.") parser.add_option("-t", "--target", dest='target', help="[REQUIRED] The binary or script found in Anaconda\'s $PREFIX/bin.") parser.add_option("-v", "--version", dest='version', help="The version of this app.", default='0.1') parser.add_option("-i", "--icon", dest='icon_file', help="Icon file to be used in the bundle.") parser.add_option("-c", "--channel", dest='channel', help="The Anaconda.org package channel(s), or url(s) separated by commas (e.g. nckz,https://conda.anaconda.org/gpi/channel/rc) (defaults to \'defaults\')", default='defaults') parser.add_option("-p", "--package", dest='package', help="The package name(s) separated by commas (e.g. scipy=0.15.0,curl=7.26.0,pip).") parser.add_option("-r", "--rootenv", dest='rootenv', help="A root environment file (created using: \'conda list --export\').") parser.add_option("--py", dest='py_ver', help="Choose the distro python version using the major and minor version numbers (defaults to 3.5).", default='3.5') parser.add_option("-o", "--overwrite", action="store_true", dest='overwrite', help="Overwrite an existing app with the same \'name\'. Use caution!!!") options, args = parser.parse_args() try: # check for input errors assert options.name is not None assert options.target is not None if options.icon_file is not None: assert os.path.isfile(options.icon_file) assert options.icon_file.endswith(".icns") if options.rootenv is not None: assert os.path.isfile(options.rootenv) except: parser.print_help() raise self._name = options.name self._version = options.version self._target = options.target self._icon_file = options.icon_file self._channel = options.channel self._package = options.package self._root_env = options.rootenv self._py_ver = options.py_ver self._overwrite = options.overwrite def _getDownloaderCommand(self): # check for installed utilities try: subprocess.check_output('command -v wget >/dev/null 2>&1;', shell=True) return 'wget --directory-prefix ' + self._downloads_prefix + ' -c {}' except: try: subprocess.check_output('command -v curl >/dev/null 2>&1;', shell=True) return 'cd '+self._downloads_prefix+' && curl --fail -O -C - {} ' except: print("This script requires \'wget\' or \'curl\' and neither were found.") raise def appPath(self): return self._apppath def deleteExistingApp(self): if os.path.exists(self._apppath): if self._overwrite: print("Removing existing path: "+self._apppath) try: with open(self._id_file_path, 'r') as f: assert f.read().count(wrappaconda_name_string) > 0 shutil.rmtree(self._apppath) except: print("The app \'"+self._apppath+"\' cannot be verified for deletion. You may have to remove it manually. Skipping...") else: print("The app \'"+self._apppath+"\' already exists, exiting...") def buildAppSkeleton(self): # build the .app directory and supporting files try: os.mkdir(self._apppath) os.mkdir(self._contents_prefix) os.mkdir(self._macos_prefix) os.mkdir(self._resource_prefix) except OSError as e: if e.errno == errno.EPERM: print("You must have root permissions to write to /Applications.") raise def copyIconFile(self): if self._icon_file is not None: shutil.copy(self._icon_file, self._resource_prefix + '/' + self._cfbundle_icon_filename) def writeInfoPList(self): # http://stackoverflow.com/questions/7404792/how-to-create-mac-application-bundle-for-python-script-via-python CFBundleName = self._name CFBundleVersion = self._version CFBundleIconFile = self._cfbundle_icon_filename CFBundleGetInfoString = CFBundleName + " " + CFBundleVersion CFBundleShortVersionString = CFBundleGetInfoString CFBundleIdentifier = "com.gpilab."+CFBundleName CFBundleExecutable = self._target info_plist = """<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd"> <plist version="1.0"> <dict> <key>CFBundleDevelopmentRegion</key> <string>English</string> <key>CFBundleExecutable</key> <string>%s</string> <key>CFBundleGetInfoString</key> <string>%s</string> <key>CFBundleIconFile</key> <string>%s</string> <key>CFBundleIdentifier</key> <string>%s</string> <key>CFBundleInfoDictionaryVersion</key> <string>6.0</string> <key>CFBundleName</key> <string>%s</string> <key>CFBundlePackageType</key> <string>APPL</string> <key>CFBundleShortVersionString</key> <string>%s</string> <key>CFBundleSignature</key> <string>????</string> <key>CFBundleVersion</key> <string>%s</string> <key>NSAppleScriptEnabled</key> <string>YES</string> <key>NSMainNibFile</key> <string>MainMenu</string> <key>NSPrincipalClass</key> <string>NSApplication</string> </dict> </plist> """ with open(self._info_plist_path, "w") as f: f.write(info_plist % (CFBundleExecutable, CFBundleGetInfoString, CFBundleIconFile, CFBundleIdentifier, CFBundleName, CFBundleShortVersionString, CFBundleVersion)) def writePkgInfo(self): with open(self._pkg_info_path, "w") as f: f.write("APPL????") def writeWrappacondaIDFile(self): with open(self._id_file_path, "w") as f: f.write("This app was generated by " + wrappaconda_name_string) def setupMiniconda(self): # anaconda website and miniconda package info # -python 3 is the default miniconda MINICONDA_NAME='Miniconda3' if float(self._py_ver) < 3: MINICONDA_NAME='Miniconda' MINICONDA_WEB='https://repo.continuum.io/miniconda/' MINICONDA_OSX=MINICONDA_NAME+'-latest-MacOSX-x86_64.sh' # download miniconda try: cmd = self._get.format(MINICONDA_WEB+MINICONDA_OSX) print(cmd) subprocess.check_output(cmd, shell=True) except: print("Failed to download miniconda.") # install miniconda try: os.chmod(self._downloads_prefix+'/'+MINICONDA_OSX, 0o777) cmd = self._downloads_prefix+'/'+MINICONDA_OSX+' -b -p '+self._miniconda_prefix print(cmd) subprocess.check_output(cmd, shell=True) except: print("Failed to run miniconda.") # install central conda package if self._package: try: python = ' python=='+self._py_ver+' ' conda_cmd = self._conda_path+' install -y -c '+' -c '.join(self._channel.split(','))+' '+' '.join(self._package.split(',')) + python if self._root_env: conda_cmd += ' --file '+self._root_env print(conda_cmd) subprocess.check_output(conda_cmd, shell=True) subprocess.check_output(self._conda_path+' clean -t -i -p -l -y', shell=True) except: print("Failed to run conda.") raise def linkTarget(self): # check for the existence of the target try: assert os.path.isfile(self._miniconda_prefix + '/bin/' + self._target) os.link(self._miniconda_prefix + '/bin/' + self._target, self._macos_prefix + '/' + self._target) except: print(self._target, ' doesn\'t exist in Miniconda bin.') raise def main(): make = AppAtizer() make.deleteExistingApp() make.buildAppSkeleton() make.writeWrappacondaIDFile() make.copyIconFile() make.setupMiniconda() make.linkTarget() make.writeInfoPList() make.writePkgInfo() print(make.appPath() + " has been created.") if __name__ == '__main__': main()
39.650794
236
0.618995
9,394
0.940152
0
0
0
0
0
0
3,503
0.35058
673174539407b646c8c0d2d08573c676c84a2fa0
557
py
Python
watchtower/wallet/wallet.py
paytaca/watchtower-py
a9a4fb83ba4a9a15379efdd41bb91546821b4be8
[ "MIT" ]
null
null
null
watchtower/wallet/wallet.py
paytaca/watchtower-py
a9a4fb83ba4a9a15379efdd41bb91546821b4be8
[ "MIT" ]
null
null
null
watchtower/wallet/wallet.py
paytaca/watchtower-py
a9a4fb83ba4a9a15379efdd41bb91546821b4be8
[ "MIT" ]
null
null
null
import requests class Wallet(object): def __init__(self, testnet=False): if testnet: self.base_url = 'https://testnet.watchtower.cash/api/' else: self.base_url = 'https://watchtower.cash/api/' def _get_utxos(self, wallet_hash, amount): url = self.base_url + f'utxo/wallet/{wallet_hash}' resp = requests.get(url) print(resp.status_code) print(resp.json()) def send(self, amount): self._get_utxos('abcd0123456', amount) print(f"Sending {amount} BCH...")
26.52381
66
0.606822
538
0.965889
0
0
0
0
0
0
135
0.24237
6733155cbc1b3ee12cbd1d7e111f38daa85f1326
858
py
Python
test/unit/test_finalize.py
phated/binaryen
50e66800dc28d67ea1cc88172f459df1ca96507d
[ "Apache-2.0" ]
5,871
2015-11-13T19:06:43.000Z
2022-03-31T17:40:21.000Z
test/unit/test_finalize.py
sthagen/binaryen
ce592cbdc8e58f36e7f39a3bd24b403f43adae34
[ "Apache-2.0" ]
2,743
2015-11-13T03:46:49.000Z
2022-03-31T20:27:05.000Z
test/unit/test_finalize.py
sthagen/binaryen
ce592cbdc8e58f36e7f39a3bd24b403f43adae34
[ "Apache-2.0" ]
626
2015-11-23T08:00:11.000Z
2022-03-17T01:58:18.000Z
from scripts.test import shared from . import utils class EmscriptenFinalizeTest(utils.BinaryenTestCase): def do_output_test(self, args): # without any output file specified, don't error, don't write the wasm, # but do emit metadata p = shared.run_process(shared.WASM_EMSCRIPTEN_FINALIZE + [ self.input_path('empty_lld.wat'), '--global-base=1024' ] + args, capture_output=True) # metadata is always present self.assertIn('{', p.stdout) self.assertIn('}', p.stdout) return p.stdout def test_no_output(self): stdout = self.do_output_test([]) # module is not present self.assertNotIn('(module', stdout) def test_text_output(self): stdout = self.do_output_test(['-S']) # module is present self.assertIn('(module', stdout)
33
79
0.637529
803
0.935897
0
0
0
0
0
0
226
0.263403
67351c5ed22ca30713ae796c8d4fe75b64c848ee
6,206
py
Python
mc/tools/TreeWidget.py
zy-sunshine/falkon-pyqt5
bc2b60aa21c9b136439bd57a11f391d68c736f99
[ "MIT" ]
1
2021-04-29T05:36:44.000Z
2021-04-29T05:36:44.000Z
mc/tools/TreeWidget.py
zy-sunshine/falkon-pyqt5
bc2b60aa21c9b136439bd57a11f391d68c736f99
[ "MIT" ]
1
2020-03-28T17:43:18.000Z
2020-03-28T17:43:18.000Z
mc/tools/TreeWidget.py
zy-sunshine/falkon-pyqt5
bc2b60aa21c9b136439bd57a11f391d68c736f99
[ "MIT" ]
1
2021-01-15T20:09:24.000Z
2021-01-15T20:09:24.000Z
from PyQt5.QtWidgets import QTreeWidget from PyQt5.Qt import pyqtSignal from PyQt5.QtWidgets import QTreeWidgetItem from PyQt5.Qt import Qt class TreeWidget(QTreeWidget): # enum ItemShowMode ItemsCollapsed = 0 ItemsExpanded = 1 def __init__(self, parent=None): super().__init__(parent) self._refreshAllItemsNeeded = True self._allTreeItems = [] # QList<QTreeWidgetItem> self._showMode = self.itemCollapsed # ItemShowMode self.itemChanged.connect(self._scheduleRefresh) def defaultItemShowMode(self): ''' @return: ItemShowMode ''' return self._showMode def setDefaultItemShowMode(self, mode): ''' @param: item ItemShowMode ''' self._showMode = mode def allItems(self): ''' @return: QList<QTreeWidgetItem> ''' if self._refreshAllItemsNeeded: self._allTreeItems.clear() self.iterateAllItems(None) self._refreshAllItemsNeeded = False return self._allTreeItems def appendToParentItemByText(self, parentText, item): ''' @param: parentText QString @param: item QTreeWidgetItem ''' list_ = self.findItems(parentText, Qt.MatchExactly) if len(list_) == 0: return False # QTreeWidgetItem parentItem = list_[0] if not parentItem: return False self._allTreeItems.append(item) parentItem.addChild(item) return True def appendToParentItemByItem(self, parent, item): if not parent or parent.treeWidget() != self: return False self._allTreeItems.append(item) parent.appendChild(item) return True def prependToParentItemByText(self, parentText, item): list_ = self.findItems(parentText, Qt.MatchExactly) if len(list_) == 0: return False # QTreeWidgetItem parentItem = list_[0] if not parentItem: return False self._allTreeItems.append(item) parentItem.insertChild(0, item) return True def prependToParentItemByItem(self, parent, item): if not parent or parent.treeWidget() != self: return False self._allTreeItems.append(item) parent.insertChild(0, item) return True def addTopLevelItem(self, item): ''' @param: item QTreeWidgetItem ''' self._allTreeItems.append(item) super().addTopLevelItem(item) def addTopLevelItems(self, items): ''' @param: items QList<QTreeWidgetItem> ''' self._allTreeItems.extend(items) super().addTopLevelItems(items) def insertTopLevelItem(self, index, item): ''' @param: index int @param: item QTreeWidgetItem ''' self._allTreeItems.append(item) super().insertTopLevelItem(index, item) def insertTopLevelItems(self, index, items): ''' @param: index int @param: items QList<QTreeWidgetItem> ''' self._allTreeItems.extend(items) super().insertTopLevelItems(index, items) def deleteItem(self, item): ''' @param: item QTreeWidgetItem ''' if item in self._allTreeItems: self._allTreeItems.remove(item) self._refreshAllItemsNeeded = True def deleteItems(self, items): ''' @param: items QList<QTreeWidgetItem> ''' for item in items: if item in self._allTreeItems: self._allTreeItems.remove(item) self._refreshAllItemsNeeded = True # Q_SIGNALS: itemControlClicked = pyqtSignal(QTreeWidgetItem) # item itemMiddleButtonClicked = pyqtSignal(QTreeWidgetItem) # item # public Q_SLOTS: def filterString(self, string): # QList<QTreeWidgetItem> _allItems = self.allItems() # QList<QTreeWidgetItem> parents = [] stringIsEmpty = not string strLower = string.lower() for item in _allItems: if stringIsEmpty: containsString = True else: text = item.text(0).lower() containsString = strLower in text if containsString: item.setHidden(False) itemParent = item.parent() if itemParent and itemParent not in parents: parents.append(itemParent) else: item.setHidden(True) itemParent = item.parent() if itemParent: itemParent.setHidden(True) for parentItem in parents: parentItem.setHidden(False) if stringIsEmpty: parentItem.setExpanded(self._showMode == self.itemExpanded) else: parentItem.setExpanded(True) parentOfParentItem = parentItem.parent() if parentOfParentItem and parentOfParentItem not in parents: parents.append(parentOfParentItem) def clear(self): super().clear() self._allTreeItems.clear() # private Q_SLOTS: def _scheduleRefresh(self): self._refreshAllItemsNeeded = True # private: def mousePressEvent(self, event): ''' @param: event QMouseEvent ''' if event.modifiers() == Qt.ControlModifier: self.itemControlClicked.emit(self.itemAt(event.pos())) if event.buttons() == Qt.MiddleButton: self.itemMiddleButtonClicked.emit(self.itemAt(event.pos())) super().mousePressEvent(event) def iterateAllItems(self, parent): ''' @param: parent QTreeWidgetItem ''' if parent: count = parent.childCount() else: count = self.topLevelItemCount() for idx in range(count): if parent: item = parent.child(idx) else: item = self.topLevelItem(idx) if item.childCount() == 0: self._allTreeItems.append(item) self.iterateAllItems(item)
28.731481
75
0.586046
6,064
0.977119
0
0
0
0
0
0
935
0.150661
673572261f6221c9f0594203352cc527924c075f
1,400
py
Python
app/api/v2/models/sales.py
danuluma/dannstore
e5b59f08542c1cacdac60e380b5c2945195ba64a
[ "MIT" ]
null
null
null
app/api/v2/models/sales.py
danuluma/dannstore
e5b59f08542c1cacdac60e380b5c2945195ba64a
[ "MIT" ]
21
2018-10-16T09:29:03.000Z
2022-03-11T23:31:35.000Z
app/api/v2/models/sales.py
danuluma/dannstore
e5b59f08542c1cacdac60e380b5c2945195ba64a
[ "MIT" ]
null
null
null
import os import sys LOCALPATH = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0, LOCALPATH + '/../../../../') from app.api.v2.db import Db def format_sale(sale): """Formats the results to a dictionary""" sale = { "id": sale[0], "books": sale[1], "total": sale[2], "created_by": sale[3], "attendant_name": sale[5], "created_at": str(sale[4]) } return sale class SalesModel(Db): """Sales Model. Sales Records stuff here""" def get_all_sales(self): """Gets all sales records from the db""" records = [] for sale in Db().get_query('sales'): details = format_sale(sale) records.append(details) return records def get_single_sale(self, param, this_col): """Gets a single sale record""" records = [row for row in Db().get_query( 'sales') if row[this_col] == param] if records: sale = records[0] return format_sale(sale) def add_new_record(self, new_sale): """Adds a new sale record to the db""" try: Db().db_query(f""" INSERT INTO sales (book_id, total, created_by, attendant) VALUES (ARRAY{new_sale[0]}, {new_sale[1]}, {new_sale[2]}, '{new_sale[3]}'); """) except: return "Failed to add", 500
25.454545
89
0.547143
959
0.685
0
0
0
0
0
0
479
0.342143
67366bf1792d0f436d2ce6181f326bfb3e3aea15
4,035
py
Python
ubirch/linux/bleManager.py
ubirch/ubirch-ble-tool
1399d018957e9a8424071296a71431c8ffa27e6f
[ "Apache-2.0" ]
4
2018-07-20T16:35:52.000Z
2020-11-12T13:38:58.000Z
ubirch/linux/bleManager.py
ubirch/ubirch-ble-tool
1399d018957e9a8424071296a71431c8ffa27e6f
[ "Apache-2.0" ]
1
2021-04-03T13:37:40.000Z
2021-04-03T13:37:40.000Z
ubirch/linux/bleManager.py
ubirch/ubirch-ble-tool
1399d018957e9a8424071296a71431c8ffa27e6f
[ "Apache-2.0" ]
null
null
null
from bleSuite import bleConnectionManager, bleServiceManager from bluepy.btle import Scanner from ubirch.linux.bleServiceManager import BLEServiceManager class BLEManager(object): """ BLE network manager """ def __init__(self, address, adapter, addressType, securityLevel, createRequester, psm=0, mtu=0): """ Create an instance of BLE Manager """ self.address = address self.cm = bleConnectionManager.BLEConnectionManager(address, adapter, addressType, securityLevel) self.sm = BLEServiceManager(self.cm, self.address) def connectDevice(self): """ conect tot he BLE device take manager object or mac address as a input variable """ self.cm.connect() def disconnectDevice(self): self.cm.disconnect() def discoverDevice(self, name, timeout=5): sm = BLEScanDevices() deviceList = sm.scan(timeout) for device in deviceList: for values in device.getScanData(): if values[2].rstrip('\x00') == name: return str(device.addr) raise Exception("NO DEVICE FOUND") def discoverServices(self): return bleServiceManager.bleServiceDiscovery(self.address, self.cm) def discoverCharacteristics(self): ignoreUUID = ["00001800-0000-1000-8000-00805f9b34fb", "00001801-0000-1000-8000-00805f9b34fb"] devServices = self.discoverServices() devCharList = [] for service in devServices.services: if not (service.uuid in ignoreUUID): for characteristics in service.characteristics: devCharList.append(characteristics.uuid) return devCharList raise Exception("No Services Found") def write(self, handle, data): bleServiceManager.bleServiceWriteToHandle(self.cm, handle, data) def read(self, handle): # TODO add a function getHandlebyUUID toget handle using uuid # helps to read data on both mac n linux with ease return bleServiceManager.bleServiceReadByHandle(self.cm, handle) def isConnected(self): return self.cm.isConnected() # Services and Characteristics def bleServiceWriteToHandle(self, handle, data): return bleServiceManager.bleServiceWriteToHandle(self.cm, handle, data) def bleServiceReadByHandle(self, handle): return bleServiceManager.bleServiceReadByHandle(self.cm, handle) def bleServiceReadByUUID(self, uuid): return bleServiceManager.bleServiceReadByUUID(self.cm, uuid) def bleDiscoverServices(self): return bleServiceManager.bleServiceDiscovery(self.address, self.cm) def showServices(self): bledevice = bleServiceManager.bleServiceDiscovery(self.address, self.cm) bledevice.printDeviceStructure() def bleGetHandlefromUUID(self, uuid): bledevice = bleServiceManager.bleServiceDiscovery(self.address, self.cm) for service in bledevice.services: # print service.uuid for characteristic in service.characteristics: # print characteristic.uuid if uuid == characteristic.uuid: return characteristic.valueHandle return -1 def bleServiceWriteByUUID(self, uuid, data): handle = self.bleGetHandlefromUUID(uuid) return self.bleServiceWriteToHandle(handle, data) class BLEScanDevices(object): def __init__(self): self.sm = Scanner() def scan(self, timeOut=10): return self.sm.scan(timeOut) def stopScan(self): pass def isScanning(self): pass def getDeviceAddress(self, deviceName, timeOut=10): """return a tuple containing DeviceName and DeiceAddress""" deviceList = self.scan(timeOut) for device in deviceList: for values in device.getScanData(): if values[2].rstrip('\x00') == deviceName: return str(device.addr) raise Exception("NO DEVICE FOUND")
34.487179
105
0.666419
3,875
0.960347
0
0
0
0
0
0
563
0.139529
67366ca8b5a32e45010c5e5c8a95158feb06f5b0
1,952
py
Python
sysinv/cgts-client/cgts-client/cgtsclient/v1/load.py
SidneyAn/config
d694cc5d79436ea7d6170881c23cbfc8441efc0f
[ "Apache-2.0" ]
null
null
null
sysinv/cgts-client/cgts-client/cgtsclient/v1/load.py
SidneyAn/config
d694cc5d79436ea7d6170881c23cbfc8441efc0f
[ "Apache-2.0" ]
null
null
null
sysinv/cgts-client/cgts-client/cgtsclient/v1/load.py
SidneyAn/config
d694cc5d79436ea7d6170881c23cbfc8441efc0f
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2015-2020 Wind River Systems, Inc. # # SPDX-License-Identifier: Apache-2.0 # from cgtsclient.common import base from cgtsclient import exc CREATION_ATTRIBUTES = ['software_version', 'compatible_version', 'required_patches'] IMPORT_ATTRIBUTES = ['path_to_iso', 'path_to_sig', 'active'] class Load(base.Resource): def __repr__(self): return "<loads %s>" % self._info class LoadManager(base.Manager): resource_class = Load def list(self): return self._list('/v1/loads/', "loads") def get(self, load_id): path = '/v1/loads/%s' % load_id try: return self._list(path)[0] except IndexError: return None def _create_load(self, load, path): if set(load.keys()) != set(CREATION_ATTRIBUTES): raise exc.InvalidAttribute() return self._create(path, load) def create(self, load): path = '/v1/loads/' self._create_load(load, path) def import_load_metadata(self, load): path = '/v1/loads/import_load_metadata' return self._create_load(load, path) def import_load(self, **kwargs): path = '/v1/loads/import_load' active = None load_info = {} for (key, value) in kwargs.items(): if key in IMPORT_ATTRIBUTES: if key == 'active': active = value else: load_info[key] = value else: raise exc.InvalidAttribute(key) json_data = self._upload_multipart( path, body=load_info, data={'active': active}, check_exceptions=True) return self.resource_class(self, json_data) def delete(self, load_id): path = '/v1/loads/%s' % load_id return self._delete(path) def update(self, load_id, patch): path = '/v1/loads/%s' % load_id return self._update(path, patch)
26.378378
81
0.589139
1,617
0.828381
0
0
0
0
0
0
335
0.171619
6736c3bf19a38443467bf3214084087a92e23009
10,984
py
Python
tests/keras_tests/feature_networks_tests/feature_networks/weights_mixed_precision_tests.py
haihabi/model_optimization
97372a9596378bb2287c59f1180b5059f741b2d6
[ "Apache-2.0" ]
null
null
null
tests/keras_tests/feature_networks_tests/feature_networks/weights_mixed_precision_tests.py
haihabi/model_optimization
97372a9596378bb2287c59f1180b5059f741b2d6
[ "Apache-2.0" ]
null
null
null
tests/keras_tests/feature_networks_tests/feature_networks/weights_mixed_precision_tests.py
haihabi/model_optimization
97372a9596378bb2287c59f1180b5059f741b2d6
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 Sony Semiconductors Israel, Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import numpy as np import tensorflow as tf from model_compression_toolkit.tpc_models.default_tp_model import get_op_quantization_configs from model_compression_toolkit.tpc_models.keras_tp_models.keras_default import generate_keras_default_tpc from tests.common_tests.helpers.generate_test_tp_model import generate_mixed_precision_test_tp_model from tests.keras_tests.feature_networks_tests.base_keras_feature_test import BaseKerasFeatureNetworkTest import model_compression_toolkit as mct from model_compression_toolkit.common.mixed_precision.kpi import KPI from model_compression_toolkit.common.mixed_precision.mixed_precision_quantization_config import \ MixedPrecisionQuantizationConfig from model_compression_toolkit.common.user_info import UserInformation from tests.common_tests.base_feature_test import BaseFeatureNetworkTest from tests.common_tests.helpers.tensors_compare import cosine_similarity keras = tf.keras layers = keras.layers tp = mct.target_platform class MixedPercisionBaseTest(BaseKerasFeatureNetworkTest): def __init__(self, unit_test): super().__init__(unit_test) def get_quantization_config(self): qc = mct.QuantizationConfig(mct.QuantizationErrorMethod.MSE, mct.QuantizationErrorMethod.MSE, relu_bound_to_power_of_2=True, weights_bias_correction=True, weights_per_channel_threshold=True, input_scaling=True, activation_channel_equalization=True) return MixedPrecisionQuantizationConfig(qc, num_of_images=1) def get_input_shapes(self): return [[self.val_batch_size, 224, 244, 3]] def create_networks(self): inputs = layers.Input(shape=self.get_input_shapes()[0][1:]) x = layers.Conv2D(30, 40)(inputs) x = layers.BatchNormalization()(x) x = layers.Conv2D(50, 40)(x) outputs = layers.ReLU()(x) model = keras.Model(inputs=inputs, outputs=outputs) return model def compare(self, quantized_model, float_model, input_x=None, quantization_info: UserInformation = None): # This is a base test, so it does not check a thing. Only actual tests of mixed precision # compare things to test. raise NotImplementedError class MixedPercisionManuallyConfiguredTest(MixedPercisionBaseTest): def get_tpc(self): base_config, _ = get_op_quantization_configs() mp_tp_model = generate_mixed_precision_test_tp_model(base_cfg=base_config, mp_bitwidth_candidates_list=[(8, 8), (2, 8), (3, 8)]) return generate_keras_default_tpc(name="mp_test", tp_model=mp_tp_model) def get_quantization_config(self): qc = mct.QuantizationConfig(mct.QuantizationErrorMethod.MSE, mct.QuantizationErrorMethod.MSE, relu_bound_to_power_of_2=True, weights_bias_correction=True, weights_per_channel_threshold=False, input_scaling=True, activation_channel_equalization=True) return MixedPrecisionQuantizationConfig(qc) def get_kpi(self): # Return some KPI (it does not really matter the value here as search_methods is not done, # and the configuration is # set manually) return KPI(1) def compare(self, quantized_model, float_model, input_x=None, quantization_info=None): assert quantization_info.mixed_precision_cfg == [2, 1] self.unit_test.assertTrue(np.unique(quantized_model.layers[2].weights[0]).flatten().shape[0] <= 4) self.unit_test.assertTrue(np.unique(quantized_model.layers[4].weights[0]).flatten().shape[0] <= 8) class MixedPercisionSearchTest(MixedPercisionBaseTest): def __init__(self, unit_test): super().__init__(unit_test) def get_kpi(self): # kpi is infinity -> should give best model - 8bits return KPI(np.inf) def compare(self, quantized_model, float_model, input_x=None, quantization_info=None): assert (quantization_info.mixed_precision_cfg == [0, 0]).all() # kpi is infinity -> should give best model - 8bits for i in range(30): # quantized per channel self.unit_test.assertTrue( np.unique(quantized_model.layers[2].weights[0][:, :, :, i]).flatten().shape[0] <= 256) for i in range(50): # quantized per channel self.unit_test.assertTrue( np.unique(quantized_model.layers[4].weights[0][:, :, :, i]).flatten().shape[0] <= 256) class MixedPercisionSearchKPI4BitsAvgTest(MixedPercisionBaseTest): def __init__(self, unit_test): super().__init__(unit_test) def get_kpi(self): # kpi is for 4 bits on average return KPI(2544140 * 4 / 8) def compare(self, quantized_model, float_model, input_x=None, quantization_info=None): assert (quantization_info.mixed_precision_cfg == [1, 1]).all() for i in range(30): # quantized per channel self.unit_test.assertTrue( np.unique(quantized_model.layers[2].weights[0][:, :, :, i]).flatten().shape[0] <= 16) for i in range(50): # quantized per channel self.unit_test.assertTrue( np.unique(quantized_model.layers[4].weights[0][:, :, :, i]).flatten().shape[0] <= 16) class MixedPercisionSearchKPI2BitsAvgTest(MixedPercisionBaseTest): def __init__(self, unit_test): super().__init__(unit_test) def get_kpi(self): # kpi is for 2 bits on average return KPI(2544200 * 2 / 8) def compare(self, quantized_model, float_model, input_x=None, quantization_info=None): assert (quantization_info.mixed_precision_cfg == [2, 2]).all() for i in range(30): # quantized per channel self.unit_test.assertTrue( np.unique(quantized_model.layers[2].weights[0][:, :, :, i]).flatten().shape[0] <= 4) for i in range(50): # quantized per channel self.unit_test.assertTrue( np.unique(quantized_model.layers[4].weights[0][:, :, :, i]).flatten().shape[0] <= 4) class MixedPercisionDepthwiseTest(MixedPercisionBaseTest): def __init__(self, unit_test): super().__init__(unit_test) def get_kpi(self): return KPI(np.inf) def create_networks(self): inputs = layers.Input(shape=self.get_input_shapes()[0][1:]) x = layers.DepthwiseConv2D(30)(inputs) x = layers.BatchNormalization()(x) x = layers.ReLU()(x) model = keras.Model(inputs=inputs, outputs=x) return model def compare(self, quantized_model, float_model, input_x=None, quantization_info=None): y = float_model.predict(input_x) y_hat = quantized_model.predict(input_x) cs = cosine_similarity(y, y_hat) self.unit_test.assertTrue(np.isclose(cs, 1), msg=f'fail cosine similarity check:{cs}') def get_tpc(self): base_config, _ = get_op_quantization_configs() base_config = base_config.clone_and_edit(weights_n_bits=16, activation_n_bits=16) mp_tp_model = generate_mixed_precision_test_tp_model(base_cfg=base_config, mp_bitwidth_candidates_list=[(8, 16), (2, 16), (4, 16), (16, 16)]) return generate_keras_default_tpc(name="mp_dw_test", tp_model=mp_tp_model) def get_quantization_config(self): qc = mct.QuantizationConfig(mct.QuantizationErrorMethod.MSE, mct.QuantizationErrorMethod.MSE, relu_bound_to_power_of_2=False, weights_bias_correction=False, weights_per_channel_threshold=True, input_scaling=False, activation_channel_equalization=False) return MixedPrecisionQuantizationConfig(qc) class MixedPrecisionActivationDisabled(MixedPercisionBaseTest): def __init__(self, unit_test): super().__init__(unit_test) def get_quantization_config(self): qc = mct.QuantizationConfig(mct.QuantizationErrorMethod.MSE, mct.QuantizationErrorMethod.MSE, relu_bound_to_power_of_2=True, weights_bias_correction=True, weights_per_channel_threshold=True, input_scaling=False, activation_channel_equalization=False) return MixedPrecisionQuantizationConfig(qc, num_of_images=1) def get_tpc(self): base_config, _ = get_op_quantization_configs() activation_disabled_config = base_config.clone_and_edit(enable_activation_quantization=False) mp_tp_model = generate_mixed_precision_test_tp_model(base_cfg=activation_disabled_config, mp_bitwidth_candidates_list=[(8, 8), (4, 8), (2, 8)]) return generate_keras_default_tpc(name="mp_weights_only_test", tp_model=mp_tp_model) def get_kpi(self): # kpi is infinity -> should give best model - 8bits return KPI(np.inf) def compare(self, quantized_model, float_model, input_x=None, quantization_info=None): assert (quantization_info.mixed_precision_cfg == [0, 0]).all() # kpi is infinity -> should give best model - 8bits for i in range(30): # quantized per channel self.unit_test.assertTrue( np.unique(quantized_model.layers[1].weights[0][:, :, :, i]).flatten().shape[0] <= 256) for i in range(50): # quantized per channel self.unit_test.assertTrue( np.unique(quantized_model.layers[2].weights[0][:, :, :, i]).flatten().shape[0] <= 256)
47.549784
120
0.638929
9,287
0.845503
0
0
0
0
0
0
1,456
0.132556
67379ede0d1ebb11453ed5424da8aed4d1402f30
33,494
py
Python
src/ansible_navigator/actions/run.py
NaincyKumariKnoldus/ansible-navigator
2ac043aea4ce897f30df3c47c1444a5747c9446c
[ "Apache-2.0" ]
null
null
null
src/ansible_navigator/actions/run.py
NaincyKumariKnoldus/ansible-navigator
2ac043aea4ce897f30df3c47c1444a5747c9446c
[ "Apache-2.0" ]
null
null
null
src/ansible_navigator/actions/run.py
NaincyKumariKnoldus/ansible-navigator
2ac043aea4ce897f30df3c47c1444a5747c9446c
[ "Apache-2.0" ]
null
null
null
""":run """ import curses import datetime import json import logging import os import re import shlex import shutil import time import uuid from math import floor from queue import Queue from typing import Any from typing import Callable from typing import Dict from typing import List from typing import Optional from typing import Tuple from typing import Union from ..action_base import ActionBase from ..action_defs import RunStdoutReturn from ..app_public import AppPublic from ..configuration_subsystem import ApplicationConfiguration from ..runner import CommandAsync from ..steps import Step from ..ui_framework import CursesLine from ..ui_framework import CursesLinePart from ..ui_framework import CursesLines from ..ui_framework import Interaction from ..ui_framework import dict_to_form from ..ui_framework import form_to_dict from ..ui_framework import nonblocking_notification from ..ui_framework import warning_notification from ..utils.functions import abs_user_path from ..utils.functions import human_time from ..utils.functions import remove_ansi from ..utils.functions import round_half_up from ..utils.serialize import json_dump from . import _actions as actions from . import run_action RESULT_TO_COLOR = [ ("(?i)^failed$", 9), ("(?i)^ok$", 10), ("(?i)^ignored$", 13), ("(?i)^skipped$", 14), ("(?i)^in_progress$", 8), ] get_color = lambda word: next( # noqa: E731 (x[1] for x in RESULT_TO_COLOR if re.match(x[0], word)), 0, ) def color_menu(_colno: int, colname: str, entry: Dict[str, Any]) -> Tuple[int, int]: # pylint: disable=too-many-branches """Find matching color for word :param colname: A word to match """ colval = entry[colname] color = 0 decoration = 0 if "__play_name" in entry: if not colval: color = 8 elif colname in ["__task_count", "__play_name", "__progress"]: failures = entry["__failed"] + entry["__unreachable"] if failures: color = 9 elif entry["__ok"]: color = 10 else: color = 8 elif colname == "__changed": color = 11 else: color = get_color(colname[2:]) if colname == "__progress" and entry["__progress"].strip().lower() == "complete": decoration = curses.A_BOLD elif "task" in entry: if entry["__result"].lower() == "__in_progress": color = get_color(entry["__result"]) elif colname in ["__result", "__host", "__number", "__task", "__task_action"]: color = get_color(entry["__result"]) elif colname == "__changed": if colval is True: color = 11 else: color = get_color(entry["__result"]) elif colname == "__duration": color = 12 return color, decoration def content_heading(obj: Any, screen_w: int) -> Union[CursesLines, None]: """create a heading for some piece of content showing :param obj: The content going to be shown :param screen_w: The current screen width :return: The heading """ if isinstance(obj, dict) and "task" in obj: detail = f"PLAY [{obj['play']}:{obj['__number']}] " stars = "*" * (screen_w - len(detail)) line_1 = CursesLine( (CursesLinePart(column=0, string=detail + stars, color=0, decoration=0),), ) detail = f"TASK [{obj['task']}] " stars = "*" * (screen_w - len(detail)) line_2 = CursesLine( (CursesLinePart(column=0, string=detail + stars, color=0, decoration=0),), ) if obj["__changed"] is True: color = 11 res = "CHANGED" else: color = next((x[1] for x in RESULT_TO_COLOR if re.match(x[0], obj["__result"])), 0) res = obj["__result"] if "res" in obj and "msg" in obj["res"]: msg = str(obj["res"]["msg"]).replace("\n", " ").replace("\r", "") else: msg = "" string = f"{res}: [{obj['__host']}] {msg}" string = string + (" " * (screen_w - len(string) + 1)) line_3 = CursesLine( (CursesLinePart(column=0, string=string, color=color, decoration=curses.A_UNDERLINE),), ) return CursesLines((line_1, line_2, line_3)) return None def filter_content_keys(obj: Dict[Any, Any]) -> Dict[Any, Any]: """when showing content, filter out some keys""" return {k: v for k, v in obj.items() if not (k.startswith("_") or k.endswith("uuid"))} PLAY_COLUMNS = [ "__play_name", "__ok", "__changed", "__unreachable", "__failed", "__skipped", "__ignored", "__in_progress", "__task_count", "__progress", ] TASK_LIST_COLUMNS = [ "__result", "__host", "__number", "__changed", "__task", "__task_action", "__duration", ] @actions.register class Action(ActionBase): # pylint: disable=too-many-instance-attributes """:run""" KEGEX = r"""(?x) ^ (?P<run>r(?:un)? (\s(?P<params_run>.*))?) $""" def __init__(self, args: ApplicationConfiguration): """Initialize the ``:run`` action. :param args: The current settings for the application """ super().__init__(args=args, logger_name=__name__, name="run") self._subaction_type: str self._msg_from_plays: Tuple[Optional[str], Optional[int]] = (None, None) self._queue: Queue = Queue() self.runner: CommandAsync self._runner_finished: bool self._auto_scroll = False #: Flag when the first message is received from runner self._first_message_received: bool = False self._plays = Step( name="plays", step_type="menu", columns=PLAY_COLUMNS, value=[], show_func=self._play_stats, select_func=self._task_list_for_play, ) self._task_list_columns: List[str] = TASK_LIST_COLUMNS self._content_key_filter: Callable = filter_content_keys @property def mode(self): """if mode == stdout and playbook artifact creation is enabled run in interactive mode, but print stdout""" if all( ( self._args.mode == "stdout", self._args.playbook_artifact_enable, self._args.app != "replay", ), ): return "stdout_w_artifact" return self._args.mode def run_stdout(self) -> RunStdoutReturn: """Execute the ``inventory`` request for mode stdout. :returns: The return code from the runner invocation, along with a message to review the logs if not 0. """ if self._args.app == "replay": successful: bool = self._init_replay() if successful: return RunStdoutReturn(message="", return_code=0) return RunStdoutReturn(message="Please review the log for errors.", return_code=1) self._logger.debug("playbook requested in interactive mode") self._subaction_type = "playbook" self._logger = logging.getLogger(f"{__name__}_{self._subaction_type}") self._run_runner() while True: self._dequeue() if self.runner.finished: if self._args.playbook_artifact_enable: self.write_artifact() self._logger.debug("runner finished") break # Sleep briefly to prevent 100% CPU utilization # in mode stdout, the delay introduced by the curses key read is not present time.sleep(0.01) return_code = self.runner.ansible_runner_instance.rc if return_code != 0: return RunStdoutReturn( message="Please review the log for errors.", return_code=return_code, ) return RunStdoutReturn(message="", return_code=return_code) def run(self, interaction: Interaction, app: AppPublic) -> Union[Interaction, None]: """run :run or :replay :param interaction: The interaction from the user :param app: The app instance :return: The pending interaction or none """ self._prepare_to_run(app, interaction) if interaction.action.match.groupdict().get("run"): self._logger.debug("run requested in interactive mode") self._subaction_type = "run" str_uuid = str(uuid.uuid4()) self._logger = logging.getLogger(f"{__name__}_{str_uuid[-4:]}") self._name = f"run_{str_uuid[-4:]}" initialized = self._init_run() elif interaction.action.match.groupdict().get("replay"): self._logger.debug("replay requested in interactive mode") self._subaction_type = "replay" self._name = "replay" self._logger = logging.getLogger(f"{__name__}_{self._subaction_type}") initialized = self._init_replay() if not initialized: self._prepare_to_exit(interaction) return None self.steps.append(self._plays) # Show a notification until the first the first message from the queue is processed if self._subaction_type == "run": messages = ["Preparing for automation, please wait..."] notification = nonblocking_notification(messages=messages) interaction.ui.show(notification) while not self._first_message_received: self.update() while True: self.update() self._take_step() if not self.steps: if not self._runner_finished: self._logger.error("Can not step back while playbook in progress, :q! to exit") self.steps.append(self._plays) else: self._logger.debug( "No steps remaining for '%s' returning to calling app", self._name, ) break if self.steps.current.name == "quit": if self._args.app == "replay": self._prepare_to_exit(interaction) return self.steps.current done = self._prepare_to_quit(self.steps.current) if done: self._prepare_to_exit(interaction) return self.steps.current self.steps.back_one() self._prepare_to_exit(interaction) return None # pylint: disable=too-many-branches def _init_run(self) -> bool: """in the case of :run, check the user input""" # Ensure the playbook and inventory are valid self._update_args( ["run"] + shlex.split(self._interaction.action.match.groupdict()["params_run"] or ""), ) if isinstance(self._args.playbook, str): playbook_valid = os.path.exists(self._args.playbook) else: playbook_valid = False if isinstance(self._args.inventory, list): inventory_valid = all((os.path.exists(inv) for inv in self._args.inventory)) else: # Permit running without an inventory inventory_valid = True if not all((playbook_valid, inventory_valid)): populated_form = self._prompt_for_playbook() if populated_form["cancelled"]: return False new_cmd = ["run"] new_cmd.append(populated_form["fields"]["playbook"]["value"]) for field in populated_form["fields"].values(): if field["name"].startswith("inv_") and field["value"] != "": new_cmd.extend(["-i", field["value"]]) if populated_form["fields"]["cmdline"]["value"]: new_cmd.extend(shlex.split(populated_form["fields"]["cmdline"]["value"])) # Parse as if provided from the cmdline self._update_args(new_cmd) self._run_runner() self._logger.info("Run initialized and playbook started.") return True def _init_replay(self) -> bool: """in the case of :replay, replay the artifact check for a version, to be safe copy the calling app args as our our so the can be updated safely with a uuid attached to the name """ self._logger.debug("Starting replay artifact request with mode %s", self.mode) if self.mode == "interactive": self._update_args( ["replay"] + shlex.split(self._interaction.action.match.groupdict()["params_replay"] or ""), ) artifact_file = self._args.playbook_artifact_replay if isinstance(self._args.playbook_artifact_replay, str): artifact_valid = os.path.exists(self._args.playbook_artifact_replay) else: artifact_valid = False if not artifact_valid and self.mode == "interactive": populated_form = self._prompt_for_artifact(artifact_file=artifact_file) if populated_form["cancelled"]: return False artifact_file = populated_form["fields"]["artifact_file"]["value"] try: with open(artifact_file, encoding="utf-8") as fh: data = json.load(fh) except json.JSONDecodeError as exc: self._logger.debug("json decode error: %s", str(exc)) self._logger.error("Unable to parse artifact file") return False version = data.get("version", "") if version.startswith("1."): try: stdout = data["stdout"] if self.mode == "interactive": self._plays.value = data["plays"] self._interaction.ui.update_status(data["status"], data["status_color"]) self.stdout = stdout else: for line in data["stdout"]: if self._args.display_color is True: print(line) else: print(remove_ansi(line)) except KeyError as exc: self._logger.debug("missing keys from artifact file") self._logger.debug("error was: %s", str(exc)) return False else: self._logger.error( "Incompatible artifact version, got '%s', compatible = '1.y.z'", version, ) return False self._runner_finished = True self._logger.debug("Completed replay artifact request with mode %s", self.mode) return True def _prompt_for_artifact(self, artifact_file: str) -> Dict[Any, Any]: """prompt for a valid artifact file""" if not isinstance(artifact_file, str): artifact_file = "" FType = Dict[str, Any] form_dict: FType = { "title": "Artifact file not found, please confirm the following", "fields": [], } form_field = { "name": "artifact_file", "prompt": "Path to artifact file", "type": "text_input", "validator": {"name": "valid_file_path"}, "pre_populate": artifact_file, } form_dict["fields"].append(form_field) form = dict_to_form(form_dict) self._interaction.ui.show(form) populated_form = form_to_dict(form, key_on_name=True) return populated_form def _prompt_for_playbook(self) -> Dict[Any, Any]: """prepopulate a form to confirm the playbook details""" self._logger.debug("Inventory/Playbook not set, provided, or valid, prompting") if isinstance(self._args.playbook, str): playbook = self._args.playbook else: playbook = "" if isinstance(self._args.inventory, list): inventory = self._args.inventory else: inventory = ["", "", ""] if isinstance(self._args.cmdline, list): cmdline = " ".join(self._args.cmdline) else: cmdline = "" FType = Dict[str, Any] form_dict: FType = { "title": "Inventory and/or playbook not found, please confirm the following", "fields": [], } form_field = { "name": "playbook", "pre_populate": playbook, "prompt": "Path to playbook", "type": "text_input", "validator": {"name": "valid_file_path"}, } form_dict["fields"].append(form_field) for idx, inv in enumerate(inventory): form_field = { "name": f"inv_{idx}", "pre_populate": inv, "prompt": "Inventory source", "type": "text_input", "validator": {"name": "none"}, } form_dict["fields"].append(form_field) form_field = { "name": "cmdline", "pre_populate": cmdline, "prompt": "Additional command line parameters", "type": "text_input", "validator": {"name": "none"}, } form_dict["fields"].append(form_field) form = dict_to_form(form_dict) self._interaction.ui.show(form) populated_form = form_to_dict(form, key_on_name=True) return populated_form def _take_step(self) -> None: """run the current step on the stack""" result = None if isinstance(self.steps.current, Interaction): result = run_action(self.steps.current.name, self.app, self.steps.current) elif isinstance(self.steps.current, Step): if self.steps.current.show_func: self.steps.current.show_func() if self.steps.current.type == "menu": new_scroll = len(self.steps.current.value) if self._auto_scroll: self._interaction.ui.scroll(new_scroll) result = self._interaction.ui.show( obj=self.steps.current.value, columns=self.steps.current.columns, color_menu_item=color_menu, ) if self._interaction.ui.scroll() < new_scroll and self._auto_scroll: self._logger.debug("autoscroll disabled") self._auto_scroll = False elif self._interaction.ui.scroll() >= new_scroll and not self._auto_scroll: self._logger.debug("autoscroll enabled") self._auto_scroll = True elif self.steps.current.type == "content": result = self._interaction.ui.show( obj=self.steps.current.value, index=self.steps.current.index, content_heading=content_heading, filter_content_keys=self._content_key_filter, ) if result is None: self.steps.back_one() else: self.steps.append(result) def _run_runner(self) -> None: """spin up runner""" executable_cmd: Optional[str] if self.mode == "stdout_w_artifact": mode = "interactive" else: mode = self.mode if isinstance(self._args.set_environment_variable, dict): set_env_vars = {**self._args.set_environment_variable} else: set_env_vars = {} if self._args.display_color is False: set_env_vars["ANSIBLE_NOCOLOR"] = "1" kwargs = { "container_engine": self._args.container_engine, "host_cwd": os.getcwd(), "execution_environment_image": self._args.execution_environment_image, "execution_environment": self._args.execution_environment, "inventory": self._args.inventory, "navigator_mode": mode, "pass_environment_variable": self._args.pass_environment_variable, "set_environment_variable": set_env_vars, "private_data_dir": self._args.ansible_runner_artifact_dir, "rotate_artifacts": self._args.ansible_runner_rotate_artifacts_count, "timeout": self._args.ansible_runner_timeout, } if isinstance(self._args.playbook, str): kwargs.update({"playbook": self._args.playbook}) if isinstance(self._args.execution_environment_volume_mounts, list): kwargs.update( {"container_volume_mounts": self._args.execution_environment_volume_mounts}, ) if isinstance(self._args.container_options, list): kwargs.update({"container_options": self._args.container_options}) if self._args.execution_environment: executable_cmd = "ansible-playbook" else: executable_cmd = shutil.which("ansible-playbook") if not executable_cmd: msg = "'ansible-playbook' executable not found" self._logger.error(msg) raise RuntimeError(msg) pass_through_arg = [] if self._args.help_playbook is True: pass_through_arg.append("--help") if isinstance(self._args.cmdline, list): pass_through_arg.extend(self._args.cmdline) kwargs.update({"cmdline": pass_through_arg}) self.runner = CommandAsync(executable_cmd=executable_cmd, queue=self._queue, **kwargs) self.runner.run() self._runner_finished = False self._logger.debug("runner requested to start") def _dequeue(self) -> None: """Drain the runner queue""" drain_count = 0 while not self._queue.empty(): if not self._first_message_received: self._first_message_received = True message = self._queue.get() self._handle_message(message) drain_count += 1 if drain_count: self._logger.debug("Drained %s events", drain_count) def _handle_message(self, message: dict) -> None: # pylint: disable=too-many-branches # pylint: disable=too-many-nested-blocks # pylint: disable=too-many-statements """Handle a runner message :param message: The message from runner :type message: dict """ try: event = message["event"] except KeyError: error = f"Unhandled message from runner queue, discarded: {message}" self._logger.critical(error) else: if "stdout" in message and message["stdout"]: self.stdout.extend(message["stdout"].splitlines()) if self.mode == "stdout_w_artifact": print(message["stdout"]) if event in ["verbose", "error"]: if "ERROR!" in message["stdout"]: self._msg_from_plays = ("ERROR", 9) if self.mode == "interactive": self._notify_error(message["stdout"]) elif "WARNING" in message["stdout"]: self._msg_from_plays = ("WARNINGS", 13) if event == "playbook_on_play_start": play = message["event_data"] play["__play_name"] = play["name"] play["tasks"] = [] self._plays.value.append(play) if event.startswith("runner_on_"): runner_event = event.split("_")[2] task = message["event_data"] play_id = next( idx for idx, p in enumerate(self._plays.value) if p["uuid"] == task["play_uuid"] ) if runner_event in ["ok", "skipped", "unreachable", "failed"]: if runner_event == "failed" and task["ignore_errors"]: result = "ignored" else: result = runner_event task["__task"] = task["task"] task["__result"] = result.upper() task["__changed"] = task.get("res", {}).get("changed", False) if isinstance(task["duration"], (int, float)): task["__duration"] = human_time(seconds=round_half_up(task["duration"])) else: msg = ( f"Task duration for '{task['task']}' was type {type(task['duration'])}," " set to 0" ) self._logger.debug(msg) task["__duration"] = 0 task_id = None for idx, play_task in enumerate(self._plays.value[play_id]["tasks"]): if task["task_uuid"] == play_task["task_uuid"]: if task["host"] == play_task["host"]: task_id = idx break if task_id is not None: self._plays.value[play_id]["tasks"][task_id].update(task) elif runner_event == "start": task["__host"] = task["host"] task["__result"] = "IN_PROGRESS" task["__changed"] = "unknown" task["__duration"] = None task["__number"] = len(self._plays.value[play_id]["tasks"]) task["__task"] = task["task"] task["__task_action"] = task["task_action"] self._plays.value[play_id]["tasks"].append(task) def _play_stats(self) -> None: """Calculate the play's stats based on it's tasks """ for idx, play in enumerate(self._plays.value): total = ["__ok", "__skipped", "__failed", "__unreachable", "__ignored", "__in_progress"] self._plays.value[idx].update( { tot: len([t for t in play["tasks"] if t["__result"].lower() == tot[2:]]) for tot in total }, ) self._plays.value[idx]["__changed"] = len( [t for t in play["tasks"] if t["__changed"] is True], ) task_count = len(play["tasks"]) self._plays.value[idx]["__task_count"] = task_count completed = task_count - self._plays.value[idx]["__in_progress"] if completed: new = floor((completed / task_count * 100)) current = self._plays.value[idx].get("__percent_complete", 0) self._plays.value[idx]["__percent_complete"] = max(new, current) self._plays.value[idx]["__progress"] = str(max(new, current)) + "%" else: self._plays.value[idx]["__progress"] = "0%" def _prepare_to_quit(self, interaction: Interaction) -> bool: """Looks like we're headed out of here :param interaction: the quit interaction :return: a bool indicating whether of not it's safe to exit """ self.update() if self.runner is not None and not self.runner.finished: if interaction.action.match.groupdict()["exclamation"]: self._logger.debug("shutting down runner") self.runner.cancelled = True while not self.runner.finished: pass self.write_artifact() return True self._logger.warning("Quit requested but playbook running, try q! or quit!") return False self._logger.debug("runner not running") return True def _task_list_for_play(self) -> Step: """generate a menu of task for the currently selected play :return: The menu step """ value = self.steps.current.selected["tasks"] step = Step( name="task_list", step_type="menu", columns=self._task_list_columns, select_func=self._task_from_task_list, value=value, ) return step def _task_from_task_list(self) -> Step: """generate task content for the selected task :return: content which show a task """ value = self.steps.current.value index = self.steps.current.index step = Step(name="task", step_type="content", index=index, value=value) return step def update(self) -> None: """Drain the queue, set the status and write the artifact if needed""" # let the calling app update as well self._calling_app.update() if hasattr(self, "runner"): self._dequeue() self._set_status() if self.runner.finished and not self._runner_finished: self._logger.debug("runner finished") self._logger.info("Playbook complete") self.write_artifact() self._runner_finished = True def _get_status(self) -> Tuple[str, int]: """Get the status and color :return: status string, status color """ status = "" status_color = 0 if self.runner.status: if self.runner and self.runner.finished and self.runner.status: status = self.runner.status if self.runner.status == "failed": status_color = 9 else: status_color = self._msg_from_plays[1] or 10 else: if self._msg_from_plays[0] is not None and self._msg_from_plays[1] is not None: status = self._msg_from_plays[0] status_color = self._msg_from_plays[1] else: status = self.runner.status status_color = 10 return status, status_color def _set_status(self) -> None: """Set the UI status""" status, status_color = self._get_status() self._interaction.ui.update_status(status, status_color) def write_artifact(self, filename: Optional[str] = None) -> None: """Write the artifact :param filename: The file to write to :type filename: str """ if ( filename or self._args.playbook_artifact_enable is True and self._args.help_playbook is not True ): filename = filename or self._args.playbook_artifact_save_as filename = filename.format( playbook_dir=os.path.dirname(self._args.playbook), playbook_name=os.path.splitext(os.path.basename(self._args.playbook))[0], ts_utc=datetime.datetime.now(tz=datetime.timezone.utc).isoformat(), ) self._logger.debug("Formatted artifact file name set to %s", filename) filename = abs_user_path(filename) self._logger.debug("Resolved artifact file name set to %s", filename) status, status_color = self._get_status() try: os.makedirs(os.path.dirname(filename), exist_ok=True) with open(filename, "w", encoding="utf-8") as fh: artifact = { "version": "1.0.0", "plays": self._plays.value, "stdout": self.stdout, "status": status, "status_color": status_color, } json_dump(artifact, fh) self._logger.info("Saved artifact as %s", filename) except (IOError, OSError) as exc: error = ( f"Saving the artifact file failed, resulted in the following error: f{str(exc)}" ) self._logger.error(error) def rerun(self) -> None: """rerun the current playbook since we're not reinstating run, drain the queue, clear the steps, reset the index, etc """ if self._subaction_type == "run": if self.runner.finished: self._plays.value = [] self._plays.index = None self._msg_from_plays = (None, None) self._queue.queue.clear() self.stdout = [] self._run_runner() self.steps.clear() self.steps.append(self._plays) self._logger.debug("Playbook rerun triggered") else: self._logger.warning("Playbook rerun ignored, current playbook not complete") elif self._subaction_type == "replay": self._logger.error("No rerun available when artifact is loaded") else: self._logger.error("sub-action type '%s' is invalid", self._subaction_type) def _notify_error(self, message: str): """show a blocking warning""" warn_msg = ["Errors were encountered while running the playbook:"] messages = remove_ansi(message).splitlines() messages[-1] += "..." warn_msg.extend(messages) warn_msg += ["[HINT] To see the full error message try ':stdout'"] warn_msg += ["[HINT] After it's fixed, try to ':rerun' the playbook"] warning = warning_notification(warn_msg) self._interaction.ui.show(warning)
37.091916
100
0.559921
28,553
0.852481
0
0
28,571
0.853018
0
0
8,042
0.240103
6738c6913f593e8f3489b3d849753c160556f231
480
py
Python
storagetest/pkgs/pts/__init__.py
liufeng-elva/storage-test2
5364cc00dbe71b106f1bb740bf391e6124788bf4
[ "MIT" ]
null
null
null
storagetest/pkgs/pts/__init__.py
liufeng-elva/storage-test2
5364cc00dbe71b106f1bb740bf391e6124788bf4
[ "MIT" ]
null
null
null
storagetest/pkgs/pts/__init__.py
liufeng-elva/storage-test2
5364cc00dbe71b106f1bb740bf391e6124788bf4
[ "MIT" ]
null
null
null
#!/usr/bin/python # -*- coding: UTF-8 -*- """ @file : __init__.py.py @Time : 2020/11/12 13:37 @Author: Tao.Xu @Email : tao.xu2008@outlook.com """ """ phoronix-test-suite: Main for Performance Test =================== https://github.com/phoronix-test-suite/phoronix-test-suite The Phoronix Test Suite is the most comprehensive testing and benchmarking platform available for Linux, Solaris, macOS, Windows, and BSD operating systems. """ if __name__ == '__main__': pass
22.857143
68
0.683333
0
0
0
0
0
0
0
0
448
0.933333
673a1a8a7022fbc7e3838045a6969aad19ff37aa
8,279
py
Python
owlbot.py
rahul2393/python-spanner
86d33905269accabfc6d68dae0f2b78bec96026a
[ "Apache-2.0" ]
null
null
null
owlbot.py
rahul2393/python-spanner
86d33905269accabfc6d68dae0f2b78bec96026a
[ "Apache-2.0" ]
null
null
null
owlbot.py
rahul2393/python-spanner
86d33905269accabfc6d68dae0f2b78bec96026a
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This script is used to synthesize generated parts of this library.""" from pathlib import Path from typing import List, Optional import synthtool as s from synthtool import gcp from synthtool.languages import python common = gcp.CommonTemplates() def get_staging_dirs( # This is a customized version of the s.get_staging_dirs() function # from synthtool to # cater for copying 3 different folders from # googleapis-gen: # spanner, spanner/admin/instance and spanner/admin/database. # Source: # https://github.com/googleapis/synthtool/blob/master/synthtool/transforms.py#L280 default_version: Optional[str] = None, sub_directory: Optional[str] = None, ) -> List[Path]: """Returns the list of directories, one per version, copied from https://github.com/googleapis/googleapis-gen. Will return in lexical sorting order with the exception of the default_version which will be last (if specified). Args: default_version (str): the default version of the API. The directory for this version will be the last item in the returned list if specified. sub_directory (str): if a `sub_directory` is provided, only the directories within the specified `sub_directory` will be returned. Returns: the empty list if no file were copied. """ staging = Path("owl-bot-staging") if sub_directory: staging /= sub_directory if staging.is_dir(): # Collect the subdirectories of the staging directory. versions = [v.name for v in staging.iterdir() if v.is_dir()] # Reorder the versions so the default version always comes last. versions = [v for v in versions if v != default_version] versions.sort() if default_version is not None: versions += [default_version] dirs = [staging / v for v in versions] for dir in dirs: s._tracked_paths.add(dir) return dirs else: return [] spanner_default_version = "v1" spanner_admin_instance_default_version = "v1" spanner_admin_database_default_version = "v1" for library in get_staging_dirs(spanner_default_version, "spanner"): # Work around gapic generator bug https://github.com/googleapis/gapic-generator-python/issues/902 s.replace( library / f"google/cloud/spanner_{library.name}/types/transaction.py", r""". Attributes:""", r""".\n Attributes:""", ) # Work around gapic generator bug https://github.com/googleapis/gapic-generator-python/issues/902 s.replace( library / f"google/cloud/spanner_{library.name}/types/transaction.py", r""". Attributes:""", r""".\n Attributes:""", ) # Remove headings from docstring. Requested change upstream in cl/377290854 due to https://google.aip.dev/192#formatting. s.replace( library / f"google/cloud/spanner_{library.name}/types/transaction.py", """\n ==.*?==\n""", ":", ) # Remove headings from docstring. Requested change upstream in cl/377290854 due to https://google.aip.dev/192#formatting. s.replace( library / f"google/cloud/spanner_{library.name}/types/transaction.py", """\n --.*?--\n""", ":", ) s.move( library, excludes=[ "google/cloud/spanner/**", "*.*", "docs/index.rst", "google/cloud/spanner_v1/__init__.py", ], ) for library in get_staging_dirs( spanner_admin_instance_default_version, "spanner_admin_instance" ): s.move( library, excludes=["google/cloud/spanner_admin_instance/**", "*.*", "docs/index.rst"], ) for library in get_staging_dirs( spanner_admin_database_default_version, "spanner_admin_database" ): s.move( library, excludes=["google/cloud/spanner_admin_database/**", "*.*", "docs/index.rst"], ) s.remove_staging_dirs() # ---------------------------------------------------------------------------- # Add templated files # ---------------------------------------------------------------------------- templated_files = common.py_library( microgenerator=True, samples=True, cov_level=99, split_system_tests=True, ) s.move(templated_files, excludes=[ ".coveragerc", ".github/workflows", # exclude gh actions as credentials are needed for tests ] ) # Ensure CI runs on a new instance each time s.replace( ".kokoro/build.sh", "# Remove old nox", """\ # Set up creating a new instance for each system test run export GOOGLE_CLOUD_TESTS_CREATE_SPANNER_INSTANCE=true # Remove old nox""", ) # Update samples folder in CONTRIBUTING.rst s.replace("CONTRIBUTING.rst", "samples/snippets", "samples/samples") # ---------------------------------------------------------------------------- # Samples templates # ---------------------------------------------------------------------------- python.py_samples() # ---------------------------------------------------------------------------- # Customize noxfile.py # ---------------------------------------------------------------------------- def place_before(path, text, *before_text, escape=None): replacement = "\n".join(before_text) + "\n" + text if escape: for c in escape: text = text.replace(c, "\\" + c) s.replace([path], text, replacement) open_telemetry_test = """ # XXX Work around Kokoro image's older pip, which borks the OT install. session.run("pip", "install", "--upgrade", "pip") session.install("-e", ".[tracing]", "-c", constraints_path) # XXX: Dump installed versions to debug OT issue session.run("pip", "list") # Run py.test against the unit tests with OpenTelemetry. session.run( "py.test", "--quiet", "--cov=google.cloud.spanner", "--cov=google.cloud", "--cov=tests.unit", "--cov-append", "--cov-config=.coveragerc", "--cov-report=", "--cov-fail-under=0", os.path.join("tests", "unit"), *session.posargs, ) """ place_before( "noxfile.py", "@nox.session(python=UNIT_TEST_PYTHON_VERSIONS)", open_telemetry_test, escape="()", ) skip_tests_if_env_var_not_set = """# Sanity check: Only run tests if the environment variable is set. if not os.environ.get("GOOGLE_APPLICATION_CREDENTIALS", "") and not os.environ.get( "SPANNER_EMULATOR_HOST", "" ): session.skip( "Credentials or emulator host must be set via environment variable" ) """ place_before( "noxfile.py", "# Install pyopenssl for mTLS testing.", skip_tests_if_env_var_not_set, escape="()", ) s.replace( "noxfile.py", """f"--junitxml=unit_{session.python}_sponge_log.xml", "--cov=google", "--cov=tests/unit",""", """\"--cov=google.cloud.spanner", "--cov=google.cloud", "--cov=tests.unit",""", ) s.replace( "noxfile.py", r"""session.install\("-e", "."\)""", """session.install("-e", ".[tracing]")""", ) s.replace( "noxfile.py", r"""# Install all test dependencies, then install this package into the # virtualenv's dist-packages. session.install\("mock", "pytest", "google-cloud-testutils", "-c", constraints_path\) session.install\("-e", ".", "-c", constraints_path\)""", """# Install all test dependencies, then install this package into the # virtualenv's dist-packages. session.install("mock", "pytest", "google-cloud-testutils", "-c", constraints_path) session.install("-e", ".[tracing]", "-c", constraints_path)""", ) s.shell.run(["nox", "-s", "blacken"], hide_output=False)
32.214008
125
0.613721
0
0
0
0
0
0
0
0
5,686
0.686798
673a564ceef3de9745d7d4bb80242204d7ba623d
1,843
py
Python
k_means.py
sokrutu/imagemean
680bab26a1841cd8d4e03beba020709a5cb434a2
[ "MIT" ]
null
null
null
k_means.py
sokrutu/imagemean
680bab26a1841cd8d4e03beba020709a5cb434a2
[ "MIT" ]
null
null
null
k_means.py
sokrutu/imagemean
680bab26a1841cd8d4e03beba020709a5cb434a2
[ "MIT" ]
null
null
null
from random import randint def k_means(data, K): """ k-Means clustering TODO: Assumes values from 0-255 :param data: NxD array of numbers :param K: The number of clusters :return: Tuple of cluster means (KxD array) and cluster assignments (Nx1 with values from 1 to K) """ N = len(data) D = len(data[0]) means = [None]*K for i in range(0,K): means[i] = [randint(0, 255), randint(0, 255), randint(0, 255)] assignments = [None]*N changed = True while(changed): old_means = means # Find closest centroid for n in range(0, N): "max distance in RGB" min = 442.0 index = -1 for k in range(0,K): temp = __distance(data[n], means[k], D) if temp <= min: min = temp index = k assignments[n] = index # Calculate the new centers for k in range(0,K): # Aus assignments die Indizes mit Eintrag k finden indices = [i for i,x in enumerate(assignments) if x == k] # ... und dann anhand derer in Data die Werte schauen temp_data = [x for i,x in enumerate(data) if i in indices] # ... und mitteln means[k] = __mean(temp_data, D) # Check if something changed changed = False for k in range(0,K): if old_means[k] != means[k]: changed = True break return (means, assignments) def __distance(a, b, dim): sum = 0.0 for i in range(0,dim): sum += (a[i]-b[i])**2 return sum**(1/2.0) def __mean(a, dim): N = len(a) sum = [0.0]*dim for e in a: for d in range(0,dim): sum[d] += e[d] avg = [a/N for a in sum] return avg
25.597222
101
0.511666
0
0
0
0
0
0
0
0
468
0.253934
673ab82d9ec7dbd59a48086985188478a17a2fc5
756
py
Python
contrib/analysis_server/src/analysis_server/__init__.py
Kenneth-T-Moore/OpenMDAO-Framework
76e0ebbd6f424a03b547ff7b6039dea73d8d44dc
[ "Apache-2.0" ]
3
2015-06-02T00:36:28.000Z
2018-11-03T00:35:21.000Z
contrib/analysis_server/src/analysis_server/__init__.py
JustinSGray/OpenMDAO-Framework
7ebd7fda0b10fbe8a86ae938dc4f135396dd9759
[ "Apache-2.0" ]
null
null
null
contrib/analysis_server/src/analysis_server/__init__.py
JustinSGray/OpenMDAO-Framework
7ebd7fda0b10fbe8a86ae938dc4f135396dd9759
[ "Apache-2.0" ]
1
2020-07-15T02:45:54.000Z
2020-07-15T02:45:54.000Z
""" Support for interacting with ModelCenter via the AnalysisServer protocol. Client-mode access to an AnalysisServer is provided by the 'client', 'factory', and 'proxy' modules. Server-mode access by ModelCenter is provided by the 'server' and 'wrapper' modules. An extension to the protocol allows 'eggs' to pe 'published': the egg is sent to the server and made part of the server's set of supported components. """ from __future__ import absolute_import from .client import Client from .factory import ASFactory from .server import Server, start_server, stop_server, DEFAULT_PORT from .stream import Stream from .units import have_translation, get_translation, set_translation from .publish import publish_class, publish_object, publish_egg
36
79
0.797619
0
0
0
0
0
0
0
0
420
0.555556
673b17b5d8b3ab21d7358bca547447f1eb5fad33
24,476
py
Python
3rd party/YOLO_network.py
isaiasfsilva/ROLO
6612007e35edb73dac734e7a4dac2cd4c1dca6c1
[ "Apache-2.0" ]
962
2016-07-22T01:36:20.000Z
2022-03-30T01:34:35.000Z
3rd party/YOLO_network.py
isaiasfsilva/ROLO
6612007e35edb73dac734e7a4dac2cd4c1dca6c1
[ "Apache-2.0" ]
57
2016-08-12T15:33:31.000Z
2022-01-29T19:16:01.000Z
3rd party/YOLO_network.py
isaiasfsilva/ROLO
6612007e35edb73dac734e7a4dac2cd4c1dca6c1
[ "Apache-2.0" ]
342
2016-07-22T01:36:26.000Z
2022-02-26T23:00:25.000Z
import os import numpy as np import tensorflow as tf import cv2 import time import sys import pickle import ROLO_utils as util class YOLO_TF: fromfile = None tofile_img = 'test/output.jpg' tofile_txt = 'test/output.txt' imshow = True filewrite_img = False filewrite_txt = False disp_console = True weights_file = 'weights/YOLO_small.ckpt' alpha = 0.1 threshold = 0.08 iou_threshold = 0.5 num_class = 20 num_box = 2 grid_size = 7 classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train","tvmonitor"] w_img, h_img = [352, 240] num_feat = 4096 num_predict = 6 # final output of LSTM 6 loc parameters num_heatmap = 1024 def __init__(self,argvs = []): self.argv_parser(argvs) self.build_networks() if self.fromfile is not None: self.detect_from_file(self.fromfile) def argv_parser(self,argvs): for i in range(1,len(argvs),2): if argvs[i] == '-fromfile' : self.fromfile = argvs[i+1] if argvs[i] == '-tofile_img' : self.tofile_img = argvs[i+1] ; self.filewrite_img = True if argvs[i] == '-tofile_txt' : self.tofile_txt = argvs[i+1] ; self.filewrite_txt = True if argvs[i] == '-imshow' : if argvs[i+1] == '1' :self.imshow = True else : self.imshow = False if argvs[i] == '-disp_console' : if argvs[i+1] == '1' :self.disp_console = True else : self.disp_console = False def build_networks(self): if self.disp_console : print "Building YOLO_small graph..." self.x = tf.placeholder('float32',[None,448,448,3]) self.conv_1 = self.conv_layer(1,self.x,64,7,2) self.pool_2 = self.pooling_layer(2,self.conv_1,2,2) self.conv_3 = self.conv_layer(3,self.pool_2,192,3,1) self.pool_4 = self.pooling_layer(4,self.conv_3,2,2) self.conv_5 = self.conv_layer(5,self.pool_4,128,1,1) self.conv_6 = self.conv_layer(6,self.conv_5,256,3,1) self.conv_7 = self.conv_layer(7,self.conv_6,256,1,1) self.conv_8 = self.conv_layer(8,self.conv_7,512,3,1) self.pool_9 = self.pooling_layer(9,self.conv_8,2,2) self.conv_10 = self.conv_layer(10,self.pool_9,256,1,1) self.conv_11 = self.conv_layer(11,self.conv_10,512,3,1) self.conv_12 = self.conv_layer(12,self.conv_11,256,1,1) self.conv_13 = self.conv_layer(13,self.conv_12,512,3,1) self.conv_14 = self.conv_layer(14,self.conv_13,256,1,1) self.conv_15 = self.conv_layer(15,self.conv_14,512,3,1) self.conv_16 = self.conv_layer(16,self.conv_15,256,1,1) self.conv_17 = self.conv_layer(17,self.conv_16,512,3,1) self.conv_18 = self.conv_layer(18,self.conv_17,512,1,1) self.conv_19 = self.conv_layer(19,self.conv_18,1024,3,1) self.pool_20 = self.pooling_layer(20,self.conv_19,2,2) self.conv_21 = self.conv_layer(21,self.pool_20,512,1,1) self.conv_22 = self.conv_layer(22,self.conv_21,1024,3,1) self.conv_23 = self.conv_layer(23,self.conv_22,512,1,1) self.conv_24 = self.conv_layer(24,self.conv_23,1024,3,1) self.conv_25 = self.conv_layer(25,self.conv_24,1024,3,1) self.conv_26 = self.conv_layer(26,self.conv_25,1024,3,2) self.conv_27 = self.conv_layer(27,self.conv_26,1024,3,1) self.conv_28 = self.conv_layer(28,self.conv_27,1024,3,1) self.fc_29 = self.fc_layer(29,self.conv_28,512,flat=True,linear=False) self.fc_30 = self.fc_layer(30,self.fc_29,4096,flat=False,linear=False) #skip dropout_31 self.fc_32 = self.fc_layer(32,self.fc_30,1470,flat=False,linear=True) self.sess = tf.Session() self.sess.run(tf.initialize_all_variables()) self.saver = tf.train.Saver() self.saver.restore(self.sess,self.weights_file) if self.disp_console : print "Loading complete!" + '\n' def conv_layer(self,idx,inputs,filters,size,stride): channels = inputs.get_shape()[3] weight = tf.Variable(tf.truncated_normal([size,size,int(channels),filters], stddev=0.1)) biases = tf.Variable(tf.constant(0.1, shape=[filters])) pad_size = size//2 pad_mat = np.array([[0,0],[pad_size,pad_size],[pad_size,pad_size],[0,0]]) inputs_pad = tf.pad(inputs,pad_mat) conv = tf.nn.conv2d(inputs_pad, weight, strides=[1, stride, stride, 1], padding='VALID',name=str(idx)+'_conv') conv_biased = tf.add(conv,biases,name=str(idx)+'_conv_biased') if self.disp_console : print ' Layer %d : Type = Conv, Size = %d * %d, Stride = %d, Filters = %d, Input channels = %d' % (idx,size,size,stride,filters,int(channels)) return tf.maximum(self.alpha*conv_biased,conv_biased,name=str(idx)+'_leaky_relu') def pooling_layer(self,idx,inputs,size,stride): if self.disp_console : print ' Layer %d : Type = Pool, Size = %d * %d, Stride = %d' % (idx,size,size,stride) return tf.nn.max_pool(inputs, ksize=[1, size, size, 1],strides=[1, stride, stride, 1], padding='SAME',name=str(idx)+'_pool') def fc_layer(self,idx,inputs,hiddens,flat = False,linear = False): input_shape = inputs.get_shape().as_list() if flat: dim = input_shape[1]*input_shape[2]*input_shape[3] inputs_transposed = tf.transpose(inputs,(0,3,1,2)) inputs_processed = tf.reshape(inputs_transposed, [-1,dim]) else: dim = input_shape[1] inputs_processed = inputs weight = tf.Variable(tf.truncated_normal([dim,hiddens], stddev=0.1)) biases = tf.Variable(tf.constant(0.1, shape=[hiddens])) if self.disp_console : print ' Layer %d : Type = Full, Hidden = %d, Input dimension = %d, Flat = %d, Activation = %d' % (idx,hiddens,int(dim),int(flat),1-int(linear)) if linear : return tf.add(tf.matmul(inputs_processed,weight),biases,name=str(idx)+'_fc') ip = tf.add(tf.matmul(inputs_processed,weight),biases) return tf.maximum(self.alpha*ip,ip,name=str(idx)+'_fc') def detect_from_cvmat(self,img): s = time.time() self.h_img,self.w_img,_ = img.shape img_resized = cv2.resize(img, (448, 448)) img_RGB = cv2.cvtColor(img_resized,cv2.COLOR_BGR2RGB) img_resized_np = np.asarray( img_RGB ) inputs = np.zeros((1,448,448,3),dtype='float32') inputs[0] = (img_resized_np/255.0)*2.0-1.0 in_dict = {self.x: inputs} net_output = self.sess.run(self.fc_32,feed_dict=in_dict) self.result = self.interpret_output(net_output[0]) self.show_results(img,self.result) strtime = str(time.time()-s) if self.disp_console : print 'Elapsed time : ' + strtime + ' secs' + '\n' def detect_from_file(self,filename): if self.disp_console : print 'Detect from ' + filename img = cv2.imread(filename) #img = misc.imread(filename) self.detect_from_cvmat(img) def detect_from_crop_sample(self): self.w_img = 640 self.h_img = 420 f = np.array(open('person_crop.txt','r').readlines(),dtype='float32') inputs = np.zeros((1,448,448,3),dtype='float32') for c in range(3): for y in range(448): for x in range(448): inputs[0,y,x,c] = f[c*448*448+y*448+x] in_dict = {self.x: inputs} net_output = self.sess.run(self.fc_32,feed_dict=in_dict) self.boxes, self.probs = self.interpret_output(net_output[0]) img = cv2.imread('person.jpg') self.show_results(self.boxes,img) def interpret_output(self,output): probs = np.zeros((7,7,2,20)) class_probs = np.reshape(output[0:980],(7,7,20)) scales = np.reshape(output[980:1078],(7,7,2)) boxes = np.reshape(output[1078:],(7,7,2,4)) offset = np.transpose(np.reshape(np.array([np.arange(7)]*14),(2,7,7)),(1,2,0)) boxes[:,:,:,0] += offset boxes[:,:,:,1] += np.transpose(offset,(1,0,2)) boxes[:,:,:,0:2] = boxes[:,:,:,0:2] / 7.0 boxes[:,:,:,2] = np.multiply(boxes[:,:,:,2],boxes[:,:,:,2]) boxes[:,:,:,3] = np.multiply(boxes[:,:,:,3],boxes[:,:,:,3]) boxes[:,:,:,0] *= self.w_img boxes[:,:,:,1] *= self.h_img boxes[:,:,:,2] *= self.w_img boxes[:,:,:,3] *= self.h_img for i in range(2): for j in range(20): probs[:,:,i,j] = np.multiply(class_probs[:,:,j],scales[:,:,i]) filter_mat_probs = np.array(probs>=self.threshold,dtype='bool') filter_mat_boxes = np.nonzero(filter_mat_probs) boxes_filtered = boxes[filter_mat_boxes[0],filter_mat_boxes[1],filter_mat_boxes[2]] probs_filtered = probs[filter_mat_probs] classes_num_filtered = np.argmax(filter_mat_probs,axis=3)[filter_mat_boxes[0],filter_mat_boxes[1],filter_mat_boxes[2]] argsort = np.array(np.argsort(probs_filtered))[::-1] boxes_filtered = boxes_filtered[argsort] probs_filtered = probs_filtered[argsort] classes_num_filtered = classes_num_filtered[argsort] for i in range(len(boxes_filtered)): if probs_filtered[i] == 0 : continue for j in range(i+1,len(boxes_filtered)): if self.iou(boxes_filtered[i],boxes_filtered[j]) > self.iou_threshold : probs_filtered[j] = 0.0 filter_iou = np.array(probs_filtered>0.0,dtype='bool') boxes_filtered = boxes_filtered[filter_iou] probs_filtered = probs_filtered[filter_iou] classes_num_filtered = classes_num_filtered[filter_iou] result = [] for i in range(len(boxes_filtered)): result.append([self.classes[classes_num_filtered[i]],boxes_filtered[i][0],boxes_filtered[i][1],boxes_filtered[i][2],boxes_filtered[i][3],probs_filtered[i]]) return result def show_results(self,img,results): img_cp = img.copy() if self.filewrite_txt : ftxt = open(self.tofile_txt,'w') for i in range(len(results)): x = int(results[i][1]) y = int(results[i][2]) w = int(results[i][3])//2 h = int(results[i][4])//2 if self.disp_console : print ' class : ' + results[i][0] + ' , [x,y,w,h]=[' + str(x) + ',' + str(y) + ',' + str(int(results[i][3])) + ',' + str(int(results[i][4]))+'], Confidence = ' + str(results[i][5]) if self.filewrite_img or self.imshow: cv2.rectangle(img_cp,(x-w,y-h),(x+w,y+h),(0,255,0),2) cv2.rectangle(img_cp,(x-w,y-h-20),(x+w,y-h),(125,125,125),-1) cv2.putText(img_cp,results[i][0] + ' : %.2f' % results[i][5],(x-w+5,y-h-7),cv2.FONT_HERSHEY_SIMPLEX,0.5,(0,0,0),1) if self.filewrite_txt : ftxt.write(results[i][0] + ',' + str(x) + ',' + str(y) + ',' + str(w) + ',' + str(h)+',' + str(results[i][5]) + '\n') if self.filewrite_img : if self.disp_console : print ' image file writed : ' + self.tofile_img cv2.imwrite(self.tofile_img,img_cp) if self.imshow : cv2.imshow('YOLO_small detection',img_cp) cv2.waitKey(0) if self.filewrite_txt : if self.disp_console : print ' txt file writed : ' + self.tofile_txt ftxt.close() def iou(self,box1,box2): tb = min(box1[0]+0.5*box1[2],box2[0]+0.5*box2[2])-max(box1[0]-0.5*box1[2],box2[0]-0.5*box2[2]) lr = min(box1[1]+0.5*box1[3],box2[1]+0.5*box2[3])-max(box1[1]-0.5*box1[3],box2[1]-0.5*box2[3]) if tb < 0 or lr < 0 : intersection = 0 else : intersection = tb*lr return intersection / (box1[2]*box1[3] + box2[2]*box2[3] - intersection) # my addition def createFolder(self, path): if not os.path.exists(path): os.makedirs(path) def debug_location(self, img, location): img_cp = img.copy() x = int(location[1]) y = int(location[2]) w = int(location[3])//2 h = int(location[4])//2 cv2.rectangle(img_cp,(x-w,y-h),(x+w,y+h),(0,255,0),2) cv2.rectangle(img_cp,(x-w,y-h-20),(x+w,y-h),(125,125,125),-1) cv2.putText(img_cp, str(location[0]) + ' : %.2f' % location[5],(x-w+5,y-h-7),cv2.FONT_HERSHEY_SIMPLEX,0.5,(0,0,0),1) cv2.imshow('YOLO_small detection',img_cp) cv2.waitKey(1) def debug_locations(self, img, locations): img_cp = img.copy() for location in locations: x = int(location[1]) y = int(location[2]) w = int(location[3])//2 h = int(location[4])//2 cv2.rectangle(img_cp,(x-w,y-h),(x+w,y+h),(0,255,0),2) cv2.rectangle(img_cp,(x-w,y-h-20),(x+w,y-h),(125,125,125),-1) cv2.putText(img_cp, str(location[0]) + ' : %.2f' % location[5],(x-w+5,y-h-7),cv2.FONT_HERSHEY_SIMPLEX,0.5,(0,0,0),1) cv2.imshow('YOLO_small detection',img_cp) cv2.waitKey(1) def debug_gt_location(self, img, location): img_cp = img.copy() x = int(location[0]) y = int(location[1]) w = int(location[2]) h = int(location[3]) cv2.rectangle(img_cp,(x,y),(x+w,y+h),(0,255,0),2) cv2.imshow('gt',img_cp) cv2.waitKey(1) def file_to_img(self, filepath): img = cv2.imread(filepath) return img def file_to_video(self, filepath): try: video = cv2.VideoCapture(filepath) except IOError: print 'cannot open video file: ' + filepath else: print 'unknown error reading video file' return video def iou(self,box1,box2): tb = min(box1[0]+0.5*box1[2],box2[0]+0.5*box2[2])-max(box1[0]-0.5*box1[2],box2[0]-0.5*box2[2]) lr = min(box1[1]+0.5*box1[3],box2[1]+0.5*box2[3])-max(box1[1]-0.5*box1[3],box2[1]-0.5*box2[3]) if tb < 0 or lr < 0 : intersection = 0 else : intersection = tb*lr return intersection / (box1[2]*box1[3] + box2[2]*box2[3] - intersection) def find_iou_cost(self, pred_locs, gts): # for each element in the batch, find its iou. output a list of ious. cost = 0 batch_size= len(pred_locs) assert (len(gts)== batch_size) print("batch_size: ") ious = [] for i in range(batch_size): pred_loc = pred_locs[i] gt = gts[i] iou_ = self.iou(pred_loc, gt) ious.append(self, iou_) return ious def load_folder(self, path): paths = [os.path.join(path,fn) for fn in next(os.walk(path))[2]] #return paths return sorted(paths) def load_dataset_gt(self, gt_file): txtfile = open(gt_file, "r") lines = txtfile.read().split('\n') #'\r\n' return lines def find_gt_location(self, lines, id): line = lines[id] elems = line.split('\t') # for gt type 2 if len(elems) < 4: elems = line.split(',') #for gt type 1 x1 = elems[0] y1 = elems[1] w = elems[2] h = elems[3] gt_location = [int(x1), int(y1), int(w), int(h)] return gt_location def find_best_location(self, locations, gt_location): # locations (class, x, y, w, h, prob); (x, y) is the middle pt of the rect # gt_location (x1, y1, w, h) x1 = gt_location[0] y1 = gt_location[1] w = gt_location[2] h = gt_location[3] gt_location_revised= [x1 + w/2, y1 + h/2, w, h] max_ious= 0 for id, location in enumerate(locations): location_revised = location[1:5] print("location: ", location_revised) print("gt_location: ", gt_location_revised) ious = self.iou(location_revised, gt_location_revised) if ious >= max_ious: max_ious = ious index = id print("Max IOU: " + str(max_ious)) if max_ious != 0: best_location = locations[index] class_index = self.classes.index(best_location[0]) best_location[0]= class_index return best_location else: # it means the detection failed, no intersection with the ground truth return [0, 0, 0, 0, 0, 0] def save_yolo_output(self, out_fold, yolo_output, filename): name_no_ext= os.path.splitext(filename)[0] output_name= name_no_ext path = os.path.join(out_fold, output_name) np.save(path, yolo_output) def location_from_0_to_1(self, wid, ht, location): location[1] /= wid location[2] /= ht location[3] /= wid location[4] /= ht return location def gt_location_from_0_to_1(self, wid, ht, location): wid *= 1.0 ht *= 1.0 location[0] /= wid location[1] /= ht location[2] /= wid location[3] /= ht return location def locations_normal(self, wid, ht, locations): wid *= 1.0 ht *= 1.0 locations[1] *= wid locations[2] *= ht locations[3] *= wid locations[4] *= ht return locations def cal_yolo_loss(self, location, gt_location): # Translate yolo's box mid-point (x0, y0) to top-left point (x1, y1), in order to compare with gt location[0] = location[0] - location[2]/2 location[1] = location[1] - location[3]/2 loss= sum([(location[i] - gt_location[i])**2 for i in range(4)]) * 100 / 4 return loss def cal_yolo_IOU(self, location, gt_location): # Translate yolo's box mid-point (x0, y0) to top-left point (x1, y1), in order to compare with gt location[0] = location[0] - location[2]/2 location[1] = location[1] - location[3]/2 loss = self.iou(location, gt_location) return loss def prepare_training_data(self, img_fold, gt_file, out_fold): #[or]prepare_training_data(self, list_file, gt_file, out_fold): ''' Pass the data through YOLO, and get the fc_17 layer as features, and get the fc_19 layer as locations Save the features and locations into file for training LSTM''' # Reshape the input image paths= self.load_folder(img_fold) gt_locations= self.load_dataset_gt(gt_file) avg_loss = 0 total= 0 total_time= 0 for id, path in enumerate(paths): filename= os.path.basename(path) print("processing: ", id, ": ", filename) img = self.file_to_img(path) # Pass through YOLO layers self.h_img,self.w_img,_ = img.shape img_resized = cv2.resize(img, (448, 448)) img_RGB = cv2.cvtColor(img_resized,cv2.COLOR_BGR2RGB) img_resized_np = np.asarray( img_RGB ) inputs = np.zeros((1,448,448,3),dtype='float32') inputs[0] = (img_resized_np/255.0)*2.0-1.0 in_dict = {self.x : inputs} start_time = time.time() feature= self.sess.run(self.fc_30,feed_dict=in_dict) cycle_time = time.time() - start_time print('cycle time= ', cycle_time) total_time += cycle_time output = self.sess.run(self.fc_32,feed_dict=in_dict) # make sure it does not run conv layers twice locations = self.interpret_output(output[0]) gt_location = self.find_gt_location(gt_locations, id) location = self.find_best_location(locations, gt_location) # find the ROI that has the maximum IOU with the ground truth self.debug_location(img, location) self.debug_gt_location(img, gt_location) # change location into [0, 1] loss= self.cal_yolo_IOU(location[1:5], gt_location) location = self.location_from_0_to_1(self.w_img, self.h_img, location) avg_loss += loss total += 1 print("loss: ", loss) yolo_output= np.concatenate( ( np.reshape(feature, [-1, self.num_feat]), np.reshape(location, [-1, self.num_predict]) ), axis = 1) self.save_yolo_output(out_fold, yolo_output, filename) avg_loss = avg_loss/total print("YOLO avg_loss: ", avg_loss) print "Time Spent on Tracking: " + str(total_time) print "fps: " + str(id/total_time) return def loc_to_coordinates(self, loc): loc = [i * 32 for i in loc] x1= int(loc[0]- loc[2]/2) y1= int(loc[1]- loc[3]/2) x2= int(loc[0]+ loc[2]/2) y2= int(loc[1]+ loc[3]/2) return [x1, y1, x2, y2] def coordinates_to_heatmap_vec(self, coord): heatmap_vec = np.zeros(1024) print(coord) [classnum, x1, y1, x2, y2, prob] = coord [x1, y1, x2, y2]= self.loc_to_coordinates([x1, y1, x2, y2]) for y in range(y1, y2): for x in range(x1, x2): index = y*32 + x heatmap_vec[index] = 1.0 return heatmap_vec def prepare_training_data_heatmap(self, img_fold, gt_file, out_fold): #[or]prepare_training_data(self, list_file, gt_file, out_fold): ''' Pass the data through YOLO, and get the fc_17 layer as features, and get the fc_19 layer as locations Save the features and locations into file for training LSTM''' # Reshape the input image paths= self.load_folder(img_fold) gt_locations= self.load_dataset_gt(gt_file) avg_loss = 0 total= 0 for id, path in enumerate(paths): filename= os.path.basename(path) print("processing: ", id, ": ", filename) img = self.file_to_img(path) # Pass through YOLO layers self.h_img,self.w_img,_ = img.shape img_resized = cv2.resize(img, (448, 448)) img_RGB = cv2.cvtColor(img_resized,cv2.COLOR_BGR2RGB) img_resized_np = np.asarray( img_RGB ) inputs = np.zeros((1,448,448,3),dtype='float32') inputs[0] = (img_resized_np/255.0)*2.0-1.0 in_dict = {self.x : inputs} feature= self.sess.run(self.fc_30,feed_dict=in_dict) output = self.sess.run(self.fc_32,feed_dict=in_dict) # make sure it does not run conv layers twice locations = self.interpret_output(output[0]) gt_location = self.find_gt_location(gt_locations, id) location = self.find_best_location(locations, gt_location) # find the ROI that has the maximum IOU with the ground truth self.debug_location(img, location) self.debug_gt_location(img, gt_location) # change location into [0, 1] loss= self.cal_yolo_IOU(location[1:5], gt_location) location = self.location_from_0_to_1(self.w_img, self.h_img, location) heatmap_vec= self.coordinates_to_heatmap_vec(location) avg_loss += loss total += 1 print("loss: ", loss) yolo_output= np.concatenate( ( np.reshape(feature, [-1, self.num_feat]), np.reshape(heatmap_vec, [-1, self.num_heatmap]) ), axis = 1) self.save_yolo_output(out_fold, yolo_output, filename) avg_loss = avg_loss/total print("YOLO avg_loss: ", avg_loss) return def prepare_training_data_multiTarget(self, img_fold, out_fold): ''' Pass the data through YOLO, and get the fc_17 layer as features, and get the fc_19 layer as locations Save the features and locations into file for training LSTM''' # Reshape the input image print(img_fold) paths= self.load_folder(img_fold) avg_loss = 0 total= 0 for id, path in enumerate(paths): filename= os.path.basename(path) print("processing: ", id, ": ", filename) img = self.file_to_img(path) # Pass through YOLO layers self.h_img,self.w_img,_ = img.shape img_resized = cv2.resize(img, (448, 448)) img_RGB = cv2.cvtColor(img_resized,cv2.COLOR_BGR2RGB) img_resized_np = np.asarray( img_RGB ) inputs = np.zeros((1,448,448,3),dtype='float32') inputs[0] = (img_resized_np/255.0)*2.0-1.0 in_dict = {self.x : inputs} feature= self.sess.run(self.fc_30,feed_dict=in_dict) output = self.sess.run(self.fc_32,feed_dict=in_dict) # make sure it does not run conv layers twice locations = self.interpret_output(output[0]) self.debug_locations(img, locations) # change location into [0, 1] for i in range(0, len(locations)): class_index = self.classes.index(locations[i][0]) locations[i][0] = class_index locations[i] = self.location_from_0_to_1(self.w_img, self.h_img, locations[i]) if len(locations)== 1: print('len(locations)= 1\n') yolo_output = [[np.reshape(feature, [-1, self.num_feat])], [np.reshape(locations, [-1, self.num_predict]), [0,0,0,0,0,0]]] else: yolo_output = [[np.reshape(feature, [-1, self.num_feat])], [np.reshape(locations, [-1, self.num_predict])]] self.save_yolo_output(out_fold, yolo_output, filename) return '''----------------------------------------main-----------------------------------------------------''' def main(argvs): yolo = YOLO_TF(argvs) test = 4 heatmap= False#True ''' VOT30 0:'Human2' 1:'Human9' 2:'Gym' 3:'Human8' 4:'Skater' 5:'Suv' 6:'BlurBody' 7:'CarScale' 8:'Dancer2' 9:'BlurCar1' 10:'Dog' 11:'Jump' 12:'Singer2' 13:'Woman' 14:'David3' 15:'Dancer' 16:'Human7' 17:'Bird1' 18:'Car4' 19:'CarDark' 20:'Couple' 21:'Diving' 22:'Human3' 23:'Skating1' 24:'Human6' 25:'Singer1' 26:'Skater2' 27:'Walking2' 28:'BlurCar3' 29:'Girl2' MOT2016 30:'MOT16-02' 31:'MOT16-04' 32:'MOT16-05' 33:'MOT16-09' 34:'MOT16-10' 35:'MOT16-11' 36:'MOT16-13' 37:'MOT16-01' 38:'MOT16-03' 39:'MOT16-06' 40:'MOT16-07' 41:'MOT16-08' 42:'MOT16-12' 43:'MOT16-14' ''' [yolo.w_img, yolo.h_img, sequence_name, dummy_1, dummy_2]= util.choose_video_sequence(test) if (test >= 0 and test <= 29) or (test >= 90): root_folder = 'benchmark/DATA' img_fold = os.path.join(root_folder, sequence_name, 'img/') elif test<= 36: root_folder = 'benchmark/MOT/MOT2016/train' img_fold = os.path.join(root_folder, sequence_name, 'img1/') elif test<= 43: root_folder = 'benchmark/MOT/MOT2016/test' img_fold = os.path.join(root_folder, sequence_name, 'img1/') gt_file = os.path.join(root_folder, sequence_name, 'groundtruth_rect.txt') out_fold = os.path.join(root_folder, sequence_name, 'yolo_out/') heat_fold = os.path.join(root_folder, sequence_name, 'yolo_heat/') yolo.createFolder(out_fold) yolo.createFolder(heat_fold) if heatmap is True: yolo.prepare_training_data_heatmap(img_fold, gt_file, heat_fold) else: if (test >= 0 and test <= 29) or (test >= 90): yolo.prepare_training_data(img_fold,gt_file,out_fold) else: yolo.prepare_training_data_multiTarget(img_fold,out_fold) if __name__=='__main__': main(sys.argv)
35.6793
209
0.664774
22,168
0.905704
0
0
0
0
0
0
4,213
0.172128
673cf80cda7d6f2ddfed4ffa2f717379b2c4aa55
3,146
py
Python
pipenv/cmdparse.py
sthagen/pipenv
0924f75fd1004c848ea67d4272315eda4210b352
[ "MIT" ]
23
2017-01-20T01:18:31.000Z
2017-01-20T17:25:11.000Z
pipenv/cmdparse.py
sthagen/pipenv
0924f75fd1004c848ea67d4272315eda4210b352
[ "MIT" ]
1
2017-01-20T05:13:58.000Z
2017-01-20T05:13:58.000Z
pipenv/cmdparse.py
sthagen/pipenv
0924f75fd1004c848ea67d4272315eda4210b352
[ "MIT" ]
null
null
null
import itertools import re import shlex class ScriptEmptyError(ValueError): pass def _quote_if_contains(value, pattern): if next(iter(re.finditer(pattern, value)), None): return '"{0}"'.format(re.sub(r'(\\*)"', r'\1\1\\"', value)) return value class Script(object): """Parse a script line (in Pipfile's [scripts] section). This always works in POSIX mode, even on Windows. """ def __init__(self, command, args=None): self._parts = [command] if args: self._parts.extend(args) @classmethod def parse(cls, value): if isinstance(value, str): value = shlex.split(value) if not value: raise ScriptEmptyError(value) return cls(value[0], value[1:]) def __repr__(self): return "Script({0!r})".format(self._parts) @property def command(self): return self._parts[0] @property def args(self): return self._parts[1:] @property def cmd_args(self): return self._parts def extend(self, extra_args): self._parts.extend(extra_args) def cmdify(self): """Encode into a cmd-executable string. This re-implements CreateProcess's quoting logic to turn a list of arguments into one single string for the shell to interpret. * All double quotes are escaped with a backslash. * Existing backslashes before a quote are doubled, so they are all escaped properly. * Backslashes elsewhere are left as-is; cmd will interpret them literally. The result is then quoted into a pair of double quotes to be grouped. An argument is intentionally not quoted if it does not contain foul characters. This is done to be compatible with Windows built-in commands that don't work well with quotes, e.g. everything with `echo`, and DOS-style (forward slash) switches. Foul characters include: * Whitespaces. * Carets (^). (pypa/pipenv#3307) * Parentheses in the command. (pypa/pipenv#3168) Carets introduce a difficult situation since they are essentially "lossy" when parsed. Consider this in cmd.exe:: > echo "foo^bar" "foo^bar" > echo foo^^bar foo^bar The two commands produce different results, but are both parsed by the shell as `foo^bar`, and there's essentially no sensible way to tell what was actually passed in. This implementation assumes the quoted variation (the first) since it is easier to implement, and arguably the more common case. The intended use of this function is to pre-process an argument list before passing it into ``subprocess.Popen(..., shell=True)``. See also: https://docs.python.org/3/library/subprocess.html#converting-argument-sequence """ return " ".join( itertools.chain( [_quote_if_contains(self.command, r"[\s^()]")], (_quote_if_contains(arg, r"[\s^]") for arg in self.args), ) )
30.543689
96
0.62206
2,919
0.927845
0
0
399
0.126828
0
0
1,959
0.622695
673d6da7ddbe2f62dc10d702de83d4dd27b4df32
1,059
py
Python
msph/clients/ms_online.py
CultCornholio/solenya
583cb5f36825808c7cdc2de03f565723a32ae8d3
[ "MIT" ]
11
2021-09-01T05:04:08.000Z
2022-02-17T01:09:58.000Z
msph/clients/ms_online.py
CultCornholio/solenya
583cb5f36825808c7cdc2de03f565723a32ae8d3
[ "MIT" ]
null
null
null
msph/clients/ms_online.py
CultCornholio/solenya
583cb5f36825808c7cdc2de03f565723a32ae8d3
[ "MIT" ]
2
2021-09-08T19:12:53.000Z
2021-10-05T17:52:11.000Z
from .framework import Client, Resource from . import constants as const client = Client( base_url='https://login.microsoftonline.com', base_headers={ 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101 Firefox/60.0', 'Content-Type': 'application/x-www-form-urlencoded', } ) @client.endpoint def get_device_code(client_id:str) -> str: return Resource( uri='/organizations/oauth2/v2.0/devicecode', data={"client_id": client_id, "scope": const.DEVICE_CODE_SCOPE}, ) @client.endpoint def get_access_token(client_id:str, device_code:str) -> dict: return Resource( uri='/organizations/oauth2/v2.0/token', data={"grant_type": const.ACCESS_TOKEN_GRANT, "client_id": client_id, "code": device_code}, ) @client.endpoint def refresh_access_token(refresh_token:str, target_id:str) -> dict: return Resource( uri='/common/oauth2/v2.0/token', data={'grant_type': 'refresh_token', 'refresh_token': refresh_token, 'scope': const.DEVICE_CODE_SCOPE} )
32.090909
110
0.686497
0
0
0
0
728
0.687441
0
0
362
0.341832
673f2e75107755cce6965c485de6141329c56f72
1,868
py
Python
warn/platforms/job_center/cache.py
anikasikka/warn-scraper
13efac478ac06982bf68ce67e15db976ac07f101
[ "Apache-2.0" ]
12
2022-01-18T20:04:41.000Z
2022-03-24T21:26:31.000Z
warn/platforms/job_center/cache.py
anikasikka/warn-scraper
13efac478ac06982bf68ce67e15db976ac07f101
[ "Apache-2.0" ]
163
2022-01-14T19:30:23.000Z
2022-03-31T23:48:48.000Z
warn/platforms/job_center/cache.py
anikasikka/warn-scraper
13efac478ac06982bf68ce67e15db976ac07f101
[ "Apache-2.0" ]
4
2022-01-19T20:40:13.000Z
2022-02-22T21:36:34.000Z
import logging import re from warn.cache import Cache as BaseCache from .urls import urls logger = logging.getLogger(__name__) class Cache(BaseCache): """A custom cache for Job Center sites.""" def save(self, url, params, html): """Save file to the cache.""" cache_key = self.key_from_url(url, params) self.write(cache_key, html) logger.debug(f"Saved to cache: {cache_key}") def fetch(self, url, params): """Fetch file from the cache.""" cache_key = self.key_from_url(url, params) content = self.read(cache_key) logger.debug(f"Fetched from cache: {cache_key}") return content def key_from_url(self, url, params=None): """Convert a URL to a cache key.""" page_type = ( "records" if re.search(r"warn_lookups/\d+$", url) else "search_results" ) if page_type == "records": record_number = url.rsplit("/")[-1] cache_key = f"records/{record_number}.html" # Otherwise this is an initial search with params or a downstream page URL else: start_key = "q[notice_on_gteq]" end_key = "q[notice_on_lteq]" # For downstream pages, extract start/end dates + page number if "page" in url: parsed_params = urls.parse_url_query(url) page_num = urls.page_num_from_url(url) start = parsed_params[start_key][0] end = parsed_params[end_key][0] # For initial search page, get metadata from params else: if not params: params = {} start = params[start_key] end = params[end_key] page_num = 1 cache_key = f"search_results/{start}_{end}_page{page_num}.html" return cache_key
34.592593
83
0.579764
1,735
0.928801
0
0
0
0
0
0
571
0.305675
673f39d965787c5f1eaa35294c38eb2b5dda219c
7,312
py
Python
ebcli/core/abstractcontroller.py
senstb/aws-elastic-beanstalk-cli
ef27ae50e8be34ccbe29bc6dc421323bddc3f485
[ "Apache-2.0" ]
110
2020-01-15T22:58:46.000Z
2022-03-27T20:47:33.000Z
ebcli/core/abstractcontroller.py
senstb/aws-elastic-beanstalk-cli
ef27ae50e8be34ccbe29bc6dc421323bddc3f485
[ "Apache-2.0" ]
89
2020-01-15T23:18:34.000Z
2022-03-31T21:56:05.000Z
ebcli/core/abstractcontroller.py
senstb/aws-elastic-beanstalk-cli
ef27ae50e8be34ccbe29bc6dc421323bddc3f485
[ "Apache-2.0" ]
50
2020-01-15T22:58:53.000Z
2022-02-11T17:39:28.000Z
# Copyright 2014 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import textwrap import json import sys import os from cement.core import controller from ebcli import __version__ from ebcli.core.ebglobals import Constants from ebcli.lib import elasticbeanstalk, utils from ebcli.core import io, fileoperations from ebcli.objects.exceptions import ( NoEnvironmentForBranchError, PlatformWorkspaceNotSupportedError, ApplicationWorkspaceNotSupportedError, EBCLIException, NotInitializedError ) from ebcli.resources.strings import strings, flag_text from ebcli.objects import region from ebcli.operations import commonops class AbstractBaseController(controller.CementBaseController): """ This is an abstract base class that is useless on its own, but used by other classes to sub-class from and to share common commands and arguments. """ class Meta: label = 'abstract' stacked_on = 'base' stacked_type = 'nested' arguments = [ (['environment_name'], dict(action='store', nargs='?', default=[], help=flag_text['general.env'])), ] epilog = '' usage = 'eb {cmd} <environment_name> [options ...]' def do_command(self): pass @classmethod def validate_workspace(cls): workspace_type = fileoperations.get_workspace_type(None) is_platform_workspace_only_command = cls.Meta.__dict__.get( 'is_platform_workspace_only_command' ) requires_directory_initialization = cls.Meta.__dict__.get( 'requires_directory_initialization' ) if '--modules' in sys.argv: pass elif '--help' in sys.argv: pass elif cls.__name__ == 'PlatformListController' or cls.__name__ == 'EBPListController': pass elif requires_directory_initialization and not workspace_type: raise NotInitializedError(strings['exit.notsetup']) elif is_platform_workspace_only_command: if Constants.WorkSpaceTypes.APPLICATION == workspace_type: raise ApplicationWorkspaceNotSupportedError( strings['exit.applicationworkspacenotsupported'] ) @controller.expose(hide=True) def default(self): """ This command will be shared within all controllers that sub-class from here. It can also be overridden in the sub-class """ self.validate_workspace() self.do_command() self.check_for_cli_update(__version__) def check_workspace_type(self, expected_type): workspace_type = fileoperations.get_workspace_type() if workspace_type != expected_type: if Constants.WorkSpaceTypes.PLATFORM == workspace_type: raise PlatformWorkspaceNotSupportedError( strings['exit.platformworkspacenotsupported'] ) if Constants.WorkSpaceTypes.APPLICATION == workspace_type: raise ApplicationWorkspaceNotSupportedError( strings['exit.applicationworkspacenotsupported'] ) def check_for_cli_update(self, version): label = self.Meta.label if label in ('create', 'deploy', 'status', 'clone', 'config'): if cli_update_exists(version): if self.check_install_script_used(): io.log_alert(strings['base.update_available_script_install']) else: io.log_alert(strings['base.update_available']) def get_app_name(self): app_name = fileoperations.get_application_name() return app_name def get_env_name(self, cmd_example=None, noerror=False, varname='environment_name'): env_name = getattr(self.app.pargs, varname, None) if not env_name: env_name = commonops. \ get_current_branch_environment() workspace_type = fileoperations.get_workspace_type(Constants.WorkSpaceTypes.APPLICATION) if not env_name: if Constants.WorkSpaceTypes.PLATFORM == workspace_type: raise EBCLIException(strings['platform.nobuilderenv']) if noerror: return None if not cmd_example: message = strings['branch.noenv'].replace('{cmd}', self.Meta.label) else: message = strings['branch.noenv'].replace('eb {cmd}', cmd_example) io.log_error(message) raise NoEnvironmentForBranchError() return env_name def check_install_script_used(self): return '.ebcli-virtual-env' in os.path.abspath(__file__) @classmethod def _add_to_handler(cls, handler): handler.register(cls) @property def _help_text(self): """ Returns the help text displayed when for the commands of the type `eb <command> <subcommand>` except where <command> is "platform". """ longest = 0 def pad(label): padlength = longest - len(label) + 2 padding = ' ' if padlength < 0: for x in range(0, longest): padding += ' ' else: for x in range(0, padlength): padding += ' ' return padding help_txt = '' for label in self._visible_commands: if len(label) > longest: longest = len(label) for label in self._visible_commands: cmd = self._dispatch_map[label] cmd_txt = ' ' cmd_name = label cmd_aliases = cmd['aliases'] if len(cmd_aliases) > 0 and cmd['aliases_only']: cmd_name = cmd_aliases.pop(0) cmd_txt += '{}'.format(cmd_name) if cmd['help']: cmd_txt += '{}{}'.format(pad(cmd_txt), cmd['help']) if len(cmd_aliases) > 0: cmd_txt += '\n{}(alias: {})'.format(pad(''), ', '.join(cmd_aliases)) cmd_txt += '\n' help_txt += cmd_txt if len(help_txt) > 0: txt = '''{} commands: {} '''.format(self._meta.description, help_txt) else: txt = self._meta.description return textwrap.dedent(txt) def cli_update_exists(current_version): try: data = utils.get_data_from_url( 'https://pypi.python.org/pypi/awsebcli/json', timeout=5) data = json.loads(data) latest = data['info']['version'] return latest != current_version except: return False
33.085973
101
0.603665
5,865
0.802106
0
0
2,921
0.39948
0
0
1,787
0.244393
673f86c193b95f2ceb11fd09422584819f2d7221
346
py
Python
python/speaktest.py
kyle-cook/templates
f1047a8c31a42507acbd7a27e66db0825be811a6
[ "MIT" ]
null
null
null
python/speaktest.py
kyle-cook/templates
f1047a8c31a42507acbd7a27e66db0825be811a6
[ "MIT" ]
null
null
null
python/speaktest.py
kyle-cook/templates
f1047a8c31a42507acbd7a27e66db0825be811a6
[ "MIT" ]
null
null
null
import unittest import speak class SpeakTests(unittest.TestCase): """ Unit test for the speak library """ def testHello(self): self.assertEqual("Hello World!", speak.helloworld()) def testGoodbye(self): self.assertEqual("Goodbye World!", speak.goodbyeworld()) if __name__ == "__main__": unittest.main()
21.625
64
0.66474
267
0.771676
0
0
0
0
0
0
87
0.251445
674032fc8a912ba3dd53e6c5a60619d54e34cbd4
482
py
Python
c2f_loop.py
devopsprosiva/python
07311d7597c0895554efe8013b57f218a0f11bb5
[ "MIT" ]
null
null
null
c2f_loop.py
devopsprosiva/python
07311d7597c0895554efe8013b57f218a0f11bb5
[ "MIT" ]
null
null
null
c2f_loop.py
devopsprosiva/python
07311d7597c0895554efe8013b57f218a0f11bb5
[ "MIT" ]
null
null
null
#!/usr/local/bin/python import sys temperatures=[10,-20,-289,100] def c2f(cel_temp): if cel_temp < -273.15: return "The lowest possible temperature that physical matter can reach is -273.15C" else: fah_temp=(cel_temp*1.8)+32 return fah_temp for temp in temperatures: file = open('temperatures.txt','a+') if temp > -273.15: temp_output = c2f(temp) file.write(str(temp_output)) file.write("\n") file.close()
22.952381
91
0.620332
0
0
0
0
0
0
0
0
125
0.259336
67409afcdfe55eae6e448c076e01c6ac7a7788be
2,285
py
Python
problems/eggs/services/confirm_min_throws_server.py
giuliagalvan/TAlight
3471ea9c7f13ade595ae579db0713135da849f13
[ "MIT" ]
null
null
null
problems/eggs/services/confirm_min_throws_server.py
giuliagalvan/TAlight
3471ea9c7f13ade595ae579db0713135da849f13
[ "MIT" ]
null
null
null
problems/eggs/services/confirm_min_throws_server.py
giuliagalvan/TAlight
3471ea9c7f13ade595ae579db0713135da849f13
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # METADATA OF THIS TAL_SERVICE: problem="eggs" service="confirm_min_throws" args_list = [ ('min',int), ('n_eggs',int), ('n_floors',int), ('lang',str), ('ISATTY',bool), ] from sys import stderr, exit, argv from random import randrange from math import inf as IMPOSSIBLE from multilanguage import Env, Lang, TALcolors ENV =Env(problem, service, args_list) TAc =TALcolors(ENV) LANG=Lang(ENV, TAc, lambda fstring: eval(f"f'{fstring}'")) TAc.print(LANG.opening_msg, "green") # START CODING YOUR SERVICE: # INITIALIZATON: allocation, base cases, sentinels table = [ [0] + [IMPOSSIBLE] * ENV['n_floors'] ] for u in range(ENV['n_eggs']): table.append([0] + [None] * ENV['n_floors']) # INDUCTTVE STEP: the min-max recursion with nature playing against for u in range(1,1+ENV['n_eggs']): for f in range(1,1+ENV['n_floors']): table[u][f] = IMPOSSIBLE for first_launch_floor in range(1,1+f): table[u][f] = min(table[u][f],1+max(table[u][f-first_launch_floor],table[u-1][first_launch_floor-1])) if table[ENV['n_eggs']][ENV['n_floors']] < ENV['min']: print(f"No! When you are given {ENV['n_eggs']} eggs and the floors are {ENV['n_floors']} then there exists a policy that guarantees you to find out the truth in strictly less than {ENV['min']} launches, whatever will happen (worst case).") #English: print("No! When you are given {ENV['n_eggs']} eggs and the floors are {ENV['n_floors']} then there exists a policy that guarantees you to find out the truth in strictly less than {ENV['min']} launches, whatever will happen (worst case).") if table[ENV['n_eggs']][ENV['n_floors']] > ENV['min']: print(f"No! When you are given {ENV['n_eggs']} eggs and the floors are {ENV['n_floors']} then no policy guarantees you to find out the truth within {ENV['min']} launches in every possible scenario (aka, whathever the truth is).") #English: if table[ENV['n_eggs']][ENV['n_floors']] == ENV['min']: print(f"Yes! Indeed, {ENV['min']} is the smallest possible natural B such that, when you are given {ENV['n_eggs']} eggs and the floors are {ENV['n_floors']}, still there exists a policy that guarantees you to find out the truth within B launches in every possible scenario.") #English: exit(0)
46.632653
279
0.688403
0
0
0
0
0
0
0
0
1,389
0.607877
67416b98862ed94f8c8dd26ec4773d955430f943
460
py
Python
pylox/error_reporting.py
hculpan/pylox
a5bde624f289115575e9e01bd171b6271c2e899a
[ "MIT" ]
1
2018-05-18T08:16:02.000Z
2018-05-18T08:16:02.000Z
pylox/error_reporting.py
hculpan/pylox
a5bde624f289115575e9e01bd171b6271c2e899a
[ "MIT" ]
null
null
null
pylox/error_reporting.py
hculpan/pylox
a5bde624f289115575e9e01bd171b6271c2e899a
[ "MIT" ]
null
null
null
errorFound = False def hasError(): global errorFound return errorFound def clearError(): global errorFound errorFound = False def error(message, lineNo = 0): report(lineNo, "", message) def report(lineNo, where, message): global errorFound errorFound = True if lineNo == 0: print("Error {1}: {2}".format(lineNo, where, message)) else: print("[Line {0}] Error {1}: {2}".format(lineNo, where, message))
19.166667
73
0.630435
0
0
0
0
0
0
0
0
45
0.097826
674628d16822f8d4efcc764dcb583fc1ae5fb351
86
py
Python
tests/syntax/scripts/annotated_comments.py
toddrme2178/pyccel
deec37503ab0c5d0bcca1a035f7909f7ce8ef653
[ "MIT" ]
null
null
null
tests/syntax/scripts/annotated_comments.py
toddrme2178/pyccel
deec37503ab0c5d0bcca1a035f7909f7ce8ef653
[ "MIT" ]
null
null
null
tests/syntax/scripts/annotated_comments.py
toddrme2178/pyccel
deec37503ab0c5d0bcca1a035f7909f7ce8ef653
[ "MIT" ]
null
null
null
#$ header variable x :: int #$ acc parallel private(idx) #$ omp parallel private(idx)
21.5
28
0.697674
0
0
0
0
0
0
0
0
83
0.965116
6746ba919e9bbb1f397db2429492049488882aa8
1,361
py
Python
server/admin.py
allisto/allistic-server
848edb71b4709ad0734b83a43de4ac8c58e88fdf
[ "Apache-2.0" ]
5
2019-03-04T08:28:08.000Z
2019-03-05T05:55:55.000Z
server/admin.py
allisto/allistic-server
848edb71b4709ad0734b83a43de4ac8c58e88fdf
[ "Apache-2.0" ]
7
2019-03-03T19:45:02.000Z
2021-03-18T21:26:08.000Z
server/admin.py
allisto/allistic-server
848edb71b4709ad0734b83a43de4ac8c58e88fdf
[ "Apache-2.0" ]
1
2019-03-01T11:15:07.000Z
2019-03-01T11:15:07.000Z
from django.contrib import admin from .models import Doctor, ConsultationTime, Medicine, Allergy, Child, Parent admin.site.site_header = "Allisto - We Do Good" @admin.register(Doctor) class DoctorAdmin(admin.ModelAdmin): list_display = ('name', 'aadhar_number', 'specialization', 'email', 'phone_number') list_filter = ('specialization', 'consultation_fee', 'working_hours') search_fields = ('name', 'specialization', 'consultation_fee') @admin.register(Parent) class ParentAdmin(admin.ModelAdmin): list_display = ('name', 'aadhar_number', 'email', 'phone_number', 'address') list_filter = ('name', 'email', 'phone_number') search_fields = ('name', 'aadhar_number', 'email', 'phone_number', 'address') @admin.register(Child) class ChildAdmin(admin.ModelAdmin): list_display = ('name', 'autistic', 'birthday', 'gender') list_filter = ('name', 'autistic', 'birthday') search_fields = ('name', 'autistic', 'birthday') @admin.register(Allergy) class AllergyAdmin(admin.ModelAdmin): list_display = ('name', 'description') list_filter = ('name', 'description') search_fields = ('name',) @admin.register(Medicine) class MedicineAdmin(admin.ModelAdmin): list_display = ('name', 'description') list_filter = ('name', 'description') search_fields = ('name',) admin.site.register(ConsultationTime)
30.931818
87
0.702425
1,022
0.750918
0
0
1,144
0.840558
0
0
472
0.346804
67470f3c7a77e0bc298ea17e0cb678c91fe2570a
4,067
py
Python
backend/ir/ir.py
zengljnwpu/yaspc
5e85efb5fb8bee02471814b10e950dfb5b04c5d5
[ "MIT" ]
null
null
null
backend/ir/ir.py
zengljnwpu/yaspc
5e85efb5fb8bee02471814b10e950dfb5b04c5d5
[ "MIT" ]
null
null
null
backend/ir/ir.py
zengljnwpu/yaspc
5e85efb5fb8bee02471814b10e950dfb5b04c5d5
[ "MIT" ]
null
null
null
from backend.entity.entity import DefinedFuntion from backend.ir.dumper import Dumper from backend.ir.stmt import Assign from backend.ir.stmt import Return from backend.ir.expr import Bin from backend.ir.expr import Call from backend.entity.scope import * def import_ir(data, asm_file): def_vars = list() def_funs = list() for i in data["variablelist"]: t = DefinedVariable( name=i["name"], type=i["type"], priv=i["is_private"], init=i["value"]) def_vars.append(t) for i in data["functionlist"]: t = DefinedFuntion(priv=False, body=i["body"], name=i["name"], params=i["parameterlist"], type=i["type"], scope=LocalScope(i["variablelist"])) def_funs.append(t) ir = IR(source=asm_file, defuns=def_funs, defvars=def_vars, constant_table=None, funcdecls=None, scope=None) return ir def inst_factory(insn): if insn["name"] == "store": return Assign(loc=insn["line_number"], lhs=insn["address"], rhs=insn["value"]) elif insn["name"] == "return": return Return(loc=insn["line_number"], expr=insn["expr"]) elif insn["name"] == "bin": return Bin(left=insn["left"], right=insn["right"], op=insn["op"], type=insn["type"], value=insn["value"]) elif insn["name"] == "call": return Call(args=insn["args"], expr=insn["expr"], type=insn["type"]) else: raise Exception("Feature not implemented") # This class were used to import IR from json text class IR (): def __init__(self, source, defvars, defuns, funcdecls, constant_table, scope): self.source = source self.defvars = defvars self.defuns = defuns self.funcdecls = funcdecls self.scope = scope self.constant_table = constant_table self.gvars = [] self.comms = [] def file_name(self): return self.source def location(self): return self.source def defined_variables(self): return self.defvars def is_function_defined(self): if self.defuns: return True else: return False def defined_funcitons(self): return self.defuns def scope(self): return self.scope def all_functions(self): result = [] if self.defuns: result.extend(self.defuns) if self.funcdecls: result.extend(self.funcdecls) return result def init_variables(self): self.comms = [] self.comms = [] for var in self.scope.defined_glabal_scope_variables(): if var.has_initializer == True: self.gvars.append(var) else: self.comms.append(var) #a list of all defined/declared global-scope variables def all_global_variables(self): #return self.scope.all_global_variables() return self.defvars def is_global_variable_defined(self): if self.defined_global_variables: return True else: return False #Returns the list of global variables. def defined_global_variables(self): ''' if not self.gvars: self.init_variables() else: return self.gvars ''' return self.defvars def is_common_symbol_defined(self): if self.defined_common_symbols(): return True else: return False def defined_common_symbols(self): if not self.comms: self.init_variables() else: return self.comms def is_string_literal_defined(self): if self.constant_table: return True else: return False def const_table(self): return self.constant_table def dump(self): d = Dumper() d.print_class(self, self.source) d.print_vars("variables", self.defvars) d.print_funs("function", self.defuns)
27.856164
113
0.588149
2,560
0.629457
0
0
0
0
0
0
604
0.148512
67475ec9e070602cd855d1d0690b385ad1b9adb8
10,060
py
Python
forest/benchmarking/tests/test_superoperator_transformations.py
stjordanis/forest-benchmarking
f9ad9701c2d253de1a0c922d7220ed7de75ac685
[ "Apache-2.0" ]
40
2019-01-25T18:35:24.000Z
2022-03-13T11:21:18.000Z
forest/benchmarking/tests/test_superoperator_transformations.py
stjordanis/forest-benchmarking
f9ad9701c2d253de1a0c922d7220ed7de75ac685
[ "Apache-2.0" ]
140
2019-01-25T20:09:02.000Z
2022-03-12T01:08:01.000Z
forest/benchmarking/tests/test_superoperator_transformations.py
stjordanis/forest-benchmarking
f9ad9701c2d253de1a0c922d7220ed7de75ac685
[ "Apache-2.0" ]
22
2019-02-01T13:18:35.000Z
2022-01-12T15:03:13.000Z
import numpy as np from pyquil.gate_matrices import X, Y, Z, H from forest.benchmarking.operator_tools.superoperator_transformations import * # Test philosophy: # Using the by hand calculations found in the docs we check conversion # between one qubit channels with one Kraus operator (Hadamard) and two # Kraus operators (the amplitude damping channel). Additionally we check # a few two qubit channel conversions to get additional confidence. def amplitude_damping_kraus(p): Ad0 = np.asarray([[1, 0], [0, np.sqrt(1 - p)]]) Ad1 = np.asarray([[0, np.sqrt(p)], [0, 0]]) return [Ad0, Ad1] def amplitude_damping_chi(p): poly1 = (1 + np.sqrt(1 - p)) ** 2 poly2 = (-1 + np.sqrt(1 - p)) ** 2 ad_pro = 0.25 * np.asarray([[poly1, 0, 0, p], [0, p, -1j * p, 0], [0, 1j * p, p, 0], [p, 0, 0, poly2]]) return ad_pro def amplitude_damping_pauli(p): poly1 = np.sqrt(1 - p) ad_pau = np.asarray([[1, 0, 0, 0], [0, poly1, 0, 0], [0, 0, poly1, 0], [p, 0, 0, 1 - p]]) return ad_pau def amplitude_damping_super(p): poly1 = np.sqrt(1 - p) ad_sup = np.asarray([[1, 0, 0, p], [0, poly1, 0, 0], [0, 0, poly1, 0], [0, 0, 0, 1 - p]]) return ad_sup def amplitude_damping_choi(p): poly1 = np.sqrt(1 - p) ad_choi = np.asarray([[1, 0, 0, poly1], [0, 0, 0, 0], [0, 0, p, 0], [poly1, 0, 0, 1 - p]]) return ad_choi HADChi = 0.5 * np.asarray([[0, 0, 0, 0], [0, 1, 0, 1], [0, 0, 0, 0], [0, 1, 0, 1]]) HADPauli = 1.0 * np.asarray([[1, 0, 0, 0], [0, 0, 0, 1], [0, 0, -1, 0], [0, 1, 0, 0]]) HADSuper = 0.5 * np.asarray([[1, 1, 1, 1], [1, -1, 1, -1], [1, 1, -1, -1], [1, -1, -1, 1]]) HADChoi = 0.5 * np.asarray([[1, 1, 1, -1], [1, 1, 1, -1], [1, 1, 1, -1], [-1, -1, -1, 1]]) # Single Qubit Pauli Channel def one_q_pauli_channel_chi(px, py, pz): p = (px + py + pz) pp_chi = np.asarray([[1 - p, 0, 0, 0], [0, px, 0, 0], [0, 0, py, 0], [0, 0, 0, pz]]) return pp_chi # Pauli twirled Amplitude damping channel def analytical_pauli_twirl_of_AD_chi(p): # see equation 7 of https://arxiv.org/pdf/1701.03708.pdf poly1 = (2 + 2 * np.sqrt(1 - p) - p) / 4 poly2 = p / 4 poly3 = (2 - 2 * np.sqrt(1 - p) - p) / 4 pp_chi = np.asarray([[poly1, 0, 0, 0], [0, poly2, 0, 0], [0, 0, poly2, 0], [0, 0, 0, poly3]]) return pp_chi # I \otimes Z channel or gate (two qubits) two_qubit_paulis = n_qubit_pauli_basis(2) IZKraus = two_qubit_paulis.ops_by_label['IZ'] IZSuper = np.diag([1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1]) # one and zero state as a density matrix ONE_STATE = np.asarray([[0, 0], [0, 1]]) ZERO_STATE = np.asarray([[1, 0], [0, 0]]) # Amplitude damping Kraus operators with p = 0.1 AdKrausOps = amplitude_damping_kraus(.1) # Use Kraus operators to find output of channel i.e. # rho_out = A_0 rho A_0^\dag + A_1 rho A_1^\dag. rho_out = np.matmul(np.matmul(AdKrausOps[0], ONE_STATE), AdKrausOps[0].transpose().conj()) + \ np.matmul(np.matmul(AdKrausOps[1], ONE_STATE), AdKrausOps[1].transpose().conj()) def test_vec(): A = np.asarray([[1, 2], [3, 4]]) B = np.asarray([[1, 2, 5], [3, 4, 6]]) np.testing.assert_array_equal(np.array([[1], [3], [2], [4]]), vec(A)) np.testing.assert_array_equal(np.array([[1], [3], [2], [4], [5], [6]]), vec(B)) def test_unvec(): A = np.asarray([[1, 2], [3, 4]]) C = np.asarray([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) np.testing.assert_array_equal(A, unvec(vec(A))) np.testing.assert_array_equal(C, unvec(vec(C))) def test_kraus_ops_sum_to_identity(): # Check kraus ops sum to identity p = np.random.rand() Ad0, Ad1 = amplitude_damping_kraus(p) np.testing.assert_array_almost_equal_nulp(np.matmul(Ad0.transpose().conj(), Ad0) + np.matmul(Ad1.transpose().conj(), Ad1), np.eye(2)) def test_kraus2chi(): assert np.allclose(HADChi, kraus2chi(H)) p = np.random.rand() AdKraus = amplitude_damping_kraus(p) AdChi = amplitude_damping_chi(p) assert np.allclose(AdChi, kraus2chi(AdKraus)) assert np.allclose(superop2chi(IZSuper), kraus2chi(IZKraus)) def test_kraus2pauli_liouville(): p = np.random.rand() AdKraus = amplitude_damping_kraus(p) AdPauli = amplitude_damping_pauli(p) assert np.allclose(kraus2pauli_liouville(AdKraus), AdPauli) assert np.allclose(kraus2pauli_liouville(H), HADPauli) def test_kraus2superop(): p = np.random.rand() AdKraus = amplitude_damping_kraus(p) AdSuper = amplitude_damping_super(p) np.testing.assert_array_almost_equal_nulp(kraus2superop(AdKraus), AdSuper) # test application of super operator is the same as application of Kraus ops ONE_STATE_VEC = vec(ONE_STATE) np.testing.assert_array_almost_equal_nulp(unvec(np.matmul(kraus2superop(AdKrausOps), ONE_STATE_VEC)), rho_out) assert np.allclose(kraus2superop(H), HADSuper) assert np.allclose(kraus2superop(IZKraus), IZSuper) # Below here tests non square Kraus operators # In this example The Kraus operator is M_0 = I \otimes <0| where <0| = (1,0) Idd = np.asarray([[1, 0], [0, 1]]) M0 = np.kron(Idd, np.asarray([[1, 0]])) attempt = kraus2superop(M0) answer = np.kron(M0.conj(), M0) assert np.allclose(answer, attempt) def test_kraus2choi(): p = np.random.rand() AdKraus = amplitude_damping_kraus(p) AdChoi = amplitude_damping_choi(p) assert np.allclose(kraus2choi(AdKraus), AdChoi) assert np.allclose(kraus2choi(H), HADChoi) def test_chi2pauli_liouville(): p = np.random.rand() AdChi = amplitude_damping_chi(p) AdPauli = amplitude_damping_pauli(p) assert np.allclose(AdPauli, chi2pauli_liouville(AdChi)) assert np.allclose(HADPauli, chi2pauli_liouville(HADChi)) def test_basis_transform_p_to_c(): xz_pauli_basis = np.zeros((16, 1)) xz_pauli_basis[7] = [1.] assert np.allclose(unvec(pauli2computational_basis_matrix(4) @ xz_pauli_basis), np.kron(X, Z)) def test_basis_transform_c_to_p(): xz_pauli_basis = np.zeros((16, 1)) xz_pauli_basis[7] = [1.] assert np.allclose(computational2pauli_basis_matrix(4) @ vec(np.kron(X, Z)), xz_pauli_basis) def test_pl_to_choi(): for i, pauli in enumerate(n_qubit_pauli_basis(2)): pl = kraus2pauli_liouville(pauli[1]) choi = kraus2choi(pauli[1]) assert np.allclose(choi, pauli_liouville2choi(pl)) pl = kraus2pauli_liouville(H) choi = kraus2choi(H) assert np.allclose(choi, pauli_liouville2choi(pl)) def test_superop_to_kraus(): assert np.allclose(superop2kraus(IZSuper), IZKraus) p = np.random.rand() AdSuper = amplitude_damping_super(p) AdKraus = amplitude_damping_kraus(p) kraus_ops = superop2kraus(AdSuper) # the order of the Kraus ops matters # TODO: fix the sign problem in Kraus operators assert np.allclose([np.abs(kraus_ops[1]), np.abs(kraus_ops[0])], AdKraus) def test_superop_to_choi(): for i, pauli in enumerate(n_qubit_pauli_basis(2)): superop = kraus2superop(pauli[1]) choi = kraus2choi(pauli[1]) assert np.allclose(choi, superop2choi(superop)) p = np.random.rand() AdSuper = amplitude_damping_super(p) AdChoi = amplitude_damping_choi(p) assert np.allclose(AdChoi, superop2choi(AdSuper)) superop = kraus2superop(H) choi = kraus2choi(H) assert np.allclose(choi, superop2choi(superop)) def test_superop_to_pl(): p = np.random.rand() AdSuper = amplitude_damping_super(p) AdPauli = amplitude_damping_pauli(p) assert np.allclose(AdPauli, superop2pauli_liouville(AdSuper)) AdKraus = amplitude_damping_kraus(p) superop = kraus2superop(AdKraus) pauli = kraus2pauli_liouville(AdKraus) assert np.allclose(pauli, superop2pauli_liouville(superop)) def test_pauli_liouville_to_superop(): p = np.random.rand() AdSuper = amplitude_damping_super(p) AdPauli = amplitude_damping_pauli(p) assert np.allclose(AdSuper, pauli_liouville2superop(AdPauli)) AdKraus = amplitude_damping_kraus(p) superop = kraus2superop(AdKraus) pauli = kraus2pauli_liouville(AdKraus) assert np.allclose(superop, pauli_liouville2superop(pauli)) def test_choi_to_kraus(): for i, pauli in enumerate(n_qubit_pauli_basis(2)): choi = kraus2choi(pauli[1]) kraus = choi2kraus(choi) assert np.allclose(choi, kraus2choi(kraus)) id_choi = np.array([[1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1]]) assert np.allclose(kraus2choi(choi2kraus(id_choi)), id_choi) for kraus in choi2kraus(id_choi): assert np.allclose(abs(kraus), np.eye(2)) or np.allclose(kraus, np.zeros((2, 2))) def test_choi_to_super(): p = np.random.rand() AdSuper = amplitude_damping_super(p) AdChoi = amplitude_damping_choi(p) assert np.allclose(AdSuper, choi2superop(AdChoi)) def test_choi_pl_bijectivity(): assert np.allclose(choi2superop(choi2superop(np.eye(4))), np.eye(4)) assert np.allclose(superop2choi(superop2choi(np.eye(4))), np.eye(4)) h_choi = kraus2choi(H) h_superop = kraus2superop(H) assert np.allclose(choi2superop(choi2superop(h_choi)), h_choi) assert np.allclose(superop2choi(superop2choi(h_superop)), h_superop)
34.930556
98
0.602485
0
0
0
0
0
0
0
0
976
0.097018
6748094d5dca0ac93c047a1471d4c4dfa641d3ad
112
py
Python
0702 In-Place Move Zeros to End of List.py
ansabgillani/binarysearchcomproblems
12fe8632f8cbb5058c91a55bae53afa813a3247e
[ "MIT" ]
1
2020-12-29T21:17:26.000Z
2020-12-29T21:17:26.000Z
0702 In-Place Move Zeros to End of List.py
ansabgillani/binarysearchcomproblems
12fe8632f8cbb5058c91a55bae53afa813a3247e
[ "MIT" ]
null
null
null
0702 In-Place Move Zeros to End of List.py
ansabgillani/binarysearchcomproblems
12fe8632f8cbb5058c91a55bae53afa813a3247e
[ "MIT" ]
4
2021-09-09T17:42:43.000Z
2022-03-18T04:54:03.000Z
class Solution: def solve(self, nums): return [num for num in nums if num != 0] + [0]*nums.count(0)
28
68
0.598214
111
0.991071
0
0
0
0
0
0
0
0
674979db2e403ec19a4fc12df3f2a373c9172b77
86
py
Python
OIL/__init__.py
vjdad4m/OIL
a664fe213723fe354796245632f58f31583bcba0
[ "MIT" ]
1
2021-06-22T22:14:16.000Z
2021-06-22T22:14:16.000Z
OIL/__init__.py
vjdad4m/OIL
a664fe213723fe354796245632f58f31583bcba0
[ "MIT" ]
null
null
null
OIL/__init__.py
vjdad4m/OIL
a664fe213723fe354796245632f58f31583bcba0
[ "MIT" ]
null
null
null
import OIL.color import OIL.label import OIL.parser import OIL.tools import OIL.errors
17.2
17
0.837209
0
0
0
0
0
0
0
0
0
0
6749e169faceb4050a87041472715faed2d19901
2,866
py
Python
lib/spack/spack/cmd/load.py
padamson/spack
d3f67a48552691b4846ccc4a10f76740b154090c
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
2
2021-03-05T10:54:32.000Z
2021-03-05T14:14:52.000Z
lib/spack/spack/cmd/load.py
padamson/spack
d3f67a48552691b4846ccc4a10f76740b154090c
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
32
2020-12-15T17:29:20.000Z
2022-03-21T15:08:31.000Z
lib/spack/spack/cmd/load.py
padamson/spack
d3f67a48552691b4846ccc4a10f76740b154090c
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
2
2021-07-19T20:31:27.000Z
2021-07-19T21:14:14.000Z
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import sys import spack.cmd import spack.cmd.common.arguments as arguments import spack.environment as ev import spack.store import spack.user_environment as uenv import spack.util.environment description = "add package to the user environment" section = "user environment" level = "short" def setup_parser(subparser): """Parser is only constructed so that this prints a nice help message with -h. """ arguments.add_common_arguments( subparser, ['recurse_dependencies', 'installed_specs']) shells = subparser.add_mutually_exclusive_group() shells.add_argument( '--sh', action='store_const', dest='shell', const='sh', help="print sh commands to load the package") shells.add_argument( '--csh', action='store_const', dest='shell', const='csh', help="print csh commands to load the package") shells.add_argument( '--fish', action='store_const', dest='shell', const='fish', help="print fish commands to load the package") subparser.add_argument( '--first', action='store_true', default=False, dest='load_first', help="load the first match if multiple packages match the spec" ) subparser.add_argument( '--only', default='package,dependencies', dest='things_to_load', choices=['package', 'dependencies'], help="""select whether to load the package and its dependencies the default is to load the package and all dependencies alternatively one can decide to load only the package or only the dependencies""" ) def load(parser, args): env = ev.get_env(args, 'load') specs = [spack.cmd.disambiguate_spec(spec, env, first=args.load_first) for spec in spack.cmd.parse_specs(args.specs)] if not args.shell: specs_str = ' '.join(args.specs) or "SPECS" spack.cmd.common.shell_init_instructions( "spack load", " eval `spack load {sh_arg} %s`" % specs_str, ) return 1 with spack.store.db.read_transaction(): if 'dependencies' in args.things_to_load: include_roots = 'package' in args.things_to_load specs = [dep for spec in specs for dep in spec.traverse(root=include_roots, order='post')] env_mod = spack.util.environment.EnvironmentModifications() for spec in specs: env_mod.extend(uenv.environment_modifications_for_spec(spec)) env_mod.prepend_path(uenv.spack_loaded_hashes_var, spec.dag_hash()) cmds = env_mod.shell_modifications(args.shell) sys.stdout.write(cmds)
34.119048
79
0.664689
0
0
0
0
0
0
0
0
1,047
0.365318
674ba1aa522d2bf108faa75b0291c6fcbe497e66
1,680
py
Python
poisson_image_editing.py
zishun/Poisson-EVA2019
de3dd88f4046f63575d02c9395b26a4b1d0b6258
[ "BSD-3-Clause" ]
null
null
null
poisson_image_editing.py
zishun/Poisson-EVA2019
de3dd88f4046f63575d02c9395b26a4b1d0b6258
[ "BSD-3-Clause" ]
null
null
null
poisson_image_editing.py
zishun/Poisson-EVA2019
de3dd88f4046f63575d02c9395b26a4b1d0b6258
[ "BSD-3-Clause" ]
null
null
null
import numpy as np import imageio from PoissonTemperature import FiniteDifferenceMatrixConstruction def ind_sub_conversion(img, ind2sub_fn, sub2ind_fn): rows, cols = img.shape[:2] num = rows*cols arange = np.arange(rows*cols, dtype=np.int32) ind2sub = np.empty((num, 2), dtype=np.int32) ind2sub[:, 0] = np.floor(arange/cols) ind2sub[:, 1] = np.remainder(arange, cols) sub2ind = arange.reshape((rows, cols)) np.save(ind2sub_fn, ind2sub) np.save(sub2ind_fn, sub2ind) def pie(FDMC, background, foreground): Lap, Lap_Solver_Array, Rhs, is_unknown, _, _ = \ FDMC.laplacian_matrix_construction(mask.ravel()) bg = background.reshape((-1, 3)) fg = foreground.reshape((-1, 3)) result = bg.copy() lap = Lap.dot(fg[is_unknown, :]) lap_rhs = Rhs.dot(fg) lap_unknown = lap - lap_rhs poisson_sol = Lap_Solver_Array[0](lap_unknown+Rhs.dot(bg)) result[is_unknown, :] = poisson_sol result = result.reshape(background.shape) result[result < 0] = 0.0 result[result > 1] = 1.0 return (result*255).astype(np.uint8) if __name__ == '__main__': folder = './data/pie/' mask = imageio.imread(folder+'mask.png')[:, :, 0].astype(np.float32) background = imageio.imread(folder+'mona.png')[:, :, :3]/255 foreground = imageio.imread(folder+'gine.png')[:, :, :3]/255 mask[mask > 0] = np.nan ind2sub_fn = folder+'ind2sub.npy' sub2ind_fn = folder+'sub2ind.npy' ind_sub_conversion(mask, ind2sub_fn, sub2ind_fn) FDMC = FiniteDifferenceMatrixConstruction(ind2sub_fn, sub2ind_fn) result = pie(FDMC, background, foreground) imageio.imwrite(folder+'result.png', result)
32.941176
72
0.671429
0
0
0
0
0
0
0
0
91
0.054167
674c93e05bb72036422e17078331287c9f481a64
10,343
py
Python
mindsdb/api/http/initialize.py
mindsdb/main
2c7c09a756c17a47f2ff4a38bf45203d706240ee
[ "MIT" ]
261
2018-09-28T02:32:17.000Z
2018-12-10T06:30:54.000Z
mindsdb/api/http/initialize.py
mindsdb/main
2c7c09a756c17a47f2ff4a38bf45203d706240ee
[ "MIT" ]
27
2018-09-26T08:49:11.000Z
2018-12-10T14:42:52.000Z
mindsdb/api/http/initialize.py
mindsdb/main
2c7c09a756c17a47f2ff4a38bf45203d706240ee
[ "MIT" ]
46
2018-10-06T10:11:18.000Z
2018-12-10T04:02:17.000Z
from distutils.version import LooseVersion import requests import os import shutil import threading import webbrowser from zipfile import ZipFile from pathlib import Path import traceback import tempfile # import concurrent.futures from flask import Flask, url_for, make_response from flask.json import dumps from flask_restx import Api from mindsdb.__about__ import __version__ as mindsdb_version from mindsdb.interfaces.datastore.datastore import DataStore from mindsdb.interfaces.model.model_interface import ModelInterface from mindsdb.interfaces.database.integrations import IntegrationController from mindsdb.utilities.ps import is_pid_listen_port, wait_func_is_true from mindsdb.utilities.telemetry import inject_telemetry_to_static from mindsdb.utilities.config import Config from mindsdb.utilities.log import get_log from mindsdb.interfaces.storage.db import session from mindsdb.utilities.json_encoder import CustomJSONEncoder class Swagger_Api(Api): """ This is a modification of the base Flask Restplus Api class due to the issue described here https://github.com/noirbizarre/flask-restplus/issues/223 """ @property def specs_url(self): return url_for(self.endpoint("specs"), _external=False) def custom_output_json(data, code, headers=None): resp = make_response(dumps(data), code) resp.headers.extend(headers or {}) return resp def get_last_compatible_gui_version() -> LooseVersion: log = get_log('http') try: res = requests.get('https://mindsdb-web-builds.s3.amazonaws.com/compatible-config.json', timeout=5) except (ConnectionError, requests.exceptions.ConnectionError) as e: print(f'Is no connection. {e}') return False except Exception as e: print(f'Is something wrong with getting compatible-config.json: {e}') return False if res.status_code != 200: print(f'Cant get compatible-config.json: returned status code = {res.status_code}') return False try: versions = res.json() except Exception as e: print(f'Cant decode compatible-config.json: {e}') return False current_mindsdb_lv = LooseVersion(mindsdb_version) try: gui_versions = {} max_mindsdb_lv = None max_gui_lv = None for el in versions['mindsdb']: if el['mindsdb_version'] is None: gui_lv = LooseVersion(el['gui_version']) else: mindsdb_lv = LooseVersion(el['mindsdb_version']) gui_lv = LooseVersion(el['gui_version']) if mindsdb_lv.vstring not in gui_versions or gui_lv > gui_versions[mindsdb_lv.vstring]: gui_versions[mindsdb_lv.vstring] = gui_lv if max_mindsdb_lv is None or max_mindsdb_lv < mindsdb_lv: max_mindsdb_lv = mindsdb_lv if max_gui_lv is None or max_gui_lv < gui_lv: max_gui_lv = gui_lv all_mindsdb_lv = [LooseVersion(x) for x in gui_versions.keys()] all_mindsdb_lv.sort() if current_mindsdb_lv.vstring in gui_versions: gui_version_lv = gui_versions[current_mindsdb_lv.vstring] elif current_mindsdb_lv > all_mindsdb_lv[-1]: gui_version_lv = max_gui_lv else: lower_versions = {key: value for key, value in gui_versions.items() if LooseVersion(key) < current_mindsdb_lv} if len(lower_versions) == 0: gui_version_lv = gui_versions[all_mindsdb_lv[0].vstring] else: all_lower_versions = [LooseVersion(x) for x in lower_versions.keys()] gui_version_lv = gui_versions[all_lower_versions[-1].vstring] except Exception as e: log.error(f'Error in compatible-config.json structure: {e}') return False return gui_version_lv def get_current_gui_version() -> LooseVersion: config = Config() static_path = Path(config['paths']['static']) version_txt_path = static_path.joinpath('version.txt') current_gui_version = None if version_txt_path.is_file(): with open(version_txt_path, 'rt') as f: current_gui_version = f.readline() current_gui_lv = None if current_gui_version is None else LooseVersion(current_gui_version) return current_gui_lv def download_gui(destignation, version): if isinstance(destignation, str): destignation = Path(destignation) log = get_log('http') dist_zip_path = str(destignation.joinpath('dist.zip')) bucket = "https://mindsdb-web-builds.s3.amazonaws.com/" resources = [{ 'url': bucket + 'dist-V' + version + '.zip', 'path': dist_zip_path }] def get_resources(resource): response = requests.get(resource['url']) if response.status_code != requests.status_codes.codes.ok: raise Exception(f"Error {response.status_code} GET {resource['url']}") open(resource['path'], 'wb').write(response.content) try: for r in resources: get_resources(r) except Exception as e: log.error(f'Error during downloading files from s3: {e}') return False static_folder = destignation static_folder.mkdir(mode=0o777, exist_ok=True, parents=True) ZipFile(dist_zip_path).extractall(static_folder) if static_folder.joinpath('dist').is_dir(): shutil.move(str(destignation.joinpath('dist').joinpath('index.html')), static_folder) shutil.move(str(destignation.joinpath('dist').joinpath('assets')), static_folder) shutil.rmtree(destignation.joinpath('dist')) os.remove(dist_zip_path) version_txt_path = destignation.joinpath('version.txt') # os.path.join(destignation, 'version.txt') with open(version_txt_path, 'wt') as f: f.write(version) return True ''' # to make downloading faster download each resource in a separate thread with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor: future_to_url = {executor.submit(get_resources, r): r for r in resources} for future in concurrent.futures.as_completed(future_to_url): res = future.result() if res is not None: raise res ''' def initialize_static(): success = update_static() session.close() return success def update_static(): ''' Update Scout files basing on compatible-config.json content. Files will be downloaded and updated if new version of GUI > current. Current GUI version stored in static/version.txt. ''' config = Config() log = get_log('http') static_path = Path(config['paths']['static']) last_gui_version_lv = get_last_compatible_gui_version() current_gui_version_lv = get_current_gui_version() if last_gui_version_lv is False: return False if current_gui_version_lv is not None: if current_gui_version_lv >= last_gui_version_lv: return True log.info(f'New version of GUI available ({last_gui_version_lv.vstring}). Downloading...') temp_dir = tempfile.mkdtemp(prefix='mindsdb_gui_files_') success = download_gui(temp_dir, last_gui_version_lv.vstring) if success is False: shutil.rmtree(temp_dir) return False temp_dir_for_rm = tempfile.mkdtemp(prefix='mindsdb_gui_files_') shutil.rmtree(temp_dir_for_rm) shutil.copytree(str(static_path), temp_dir_for_rm) shutil.rmtree(str(static_path)) shutil.copytree(temp_dir, str(static_path)) shutil.rmtree(temp_dir_for_rm) log.info(f'GUI version updated to {last_gui_version_lv.vstring}') return True def initialize_flask(config, init_static_thread, no_studio): # Apparently there's a bug that causes the static path not to work if it's '/' -- https://github.com/pallets/flask/issues/3134, I think '' should achieve the same thing (???) if no_studio: app = Flask( __name__ ) else: static_path = os.path.join(config['paths']['static'], 'static/') if os.path.isabs(static_path) is False: static_path = os.path.join(os.getcwd(), static_path) app = Flask( __name__, static_url_path='/static', static_folder=static_path ) app.config['SEND_FILE_MAX_AGE_DEFAULT'] = 60 app.config['SWAGGER_HOST'] = 'http://localhost:8000/mindsdb' app.json_encoder = CustomJSONEncoder authorizations = { 'apikey': { 'type': 'session', 'in': 'query', 'name': 'session' } } api = Swagger_Api( app, authorizations=authorizations, security=['apikey'], url_prefix=':8000', prefix='/api', doc='/doc/' ) api.representations['application/json'] = custom_output_json port = config['api']['http']['port'] host = config['api']['http']['host'] # NOTE rewrite it, that hotfix to see GUI link if not no_studio: log = get_log('http') if host in ('', '0.0.0.0'): url = f'http://127.0.0.1:{port}/' else: url = f'http://{host}:{port}/' log.info(f' - GUI available at {url}') pid = os.getpid() x = threading.Thread(target=_open_webbrowser, args=(url, pid, port, init_static_thread, config['paths']['static']), daemon=True) x.start() return app, api def initialize_interfaces(app): app.original_data_store = DataStore() app.original_model_interface = ModelInterface() app.original_integration_controller = IntegrationController() config = Config() app.config_obj = config def _open_webbrowser(url: str, pid: int, port: int, init_static_thread, static_folder): """Open webbrowser with url when http service is started. If some error then do nothing. """ init_static_thread.join() inject_telemetry_to_static(static_folder) logger = get_log('http') try: is_http_active = wait_func_is_true(func=is_pid_listen_port, timeout=10, pid=pid, port=port) if is_http_active: webbrowser.open(url) except Exception as e: logger.error(f'Failed to open {url} in webbrowser with exception {e}') logger.error(traceback.format_exc()) session.close()
34.591973
178
0.667601
299
0.028908
0
0
98
0.009475
0
0
2,473
0.239099
674df0520020cb5c060d141941c47d1d5a1e8c48
9,686
py
Python
pyrocov/io.py
corneliusroemer/pyro-cov
54e89d128293f9ff9e995c442f72fa73f5f99b76
[ "Apache-2.0" ]
22
2021-09-14T04:33:11.000Z
2022-02-01T21:33:05.000Z
pyrocov/io.py
corneliusroemer/pyro-cov
54e89d128293f9ff9e995c442f72fa73f5f99b76
[ "Apache-2.0" ]
7
2021-11-02T13:48:35.000Z
2022-03-23T18:08:35.000Z
pyrocov/io.py
corneliusroemer/pyro-cov
54e89d128293f9ff9e995c442f72fa73f5f99b76
[ "Apache-2.0" ]
6
2021-09-18T01:06:51.000Z
2022-01-10T02:22:06.000Z
# Copyright Contributors to the Pyro-Cov project. # SPDX-License-Identifier: Apache-2.0 import functools import io import logging import math import re import sys import torch import torch.multiprocessing as mp from Bio import AlignIO from Bio.Phylo.NewickIO import Parser from Bio.Seq import Seq from Bio.SeqRecord import SeqRecord from .phylo import Phylogeny logger = logging.getLogger(__name__) FILE_FORMATS = { "nex": "nexus", "nexus": "nexus", "fasta": "fasta", "xml": "beast", } def _print_dot(): sys.stdout.write(".") sys.stdout.flush() def _handle_translate(lines, context): map_lines = [line.rstrip(",").split() for line in lines[1:-1]] context["translate"] = {key: value for key, value in map_lines} def _handle_tree_count(lines, context): return 1 def _handle_tree_newick(lines, context): assert len(lines) == 1 tree, name, equal, newick = lines[0].split() assert tree == "tree" assert equal == "=" tree = next(Parser.from_string(newick).parse()) tree.name = name # Add translations as .comment attributes if "translate" in context: translate = context["translate"] for leaf in tree.get_terminals(): leaf.comment = translate[leaf.name] return tree def _handle_tree_torch(lines, context): assert len(lines) == 1 tree, name, equal, newick = lines[0].split() assert tree == "tree" assert equal == "=" tree = next(Parser.from_string(newick).parse()) tree = Phylogeny.from_bio_phylo(tree) _print_dot() return tree def _handle_raw(lines, context): return lines, context def _apply(fn, args): return fn(*args) def read_nexus_trees(filename, *, format="newick", max_num_trees=math.inf, processes=0): """ Parse and iterate over newick trees stored in a nexus file. This streams the file and thus can handle larger files than ``Bio.Phylo.read(..., format="nexus")``. Returns an iterator of ``Bio.Phylo`` tree objects. """ if format == "count": context = {} handlers = {"tree": _handle_tree_count} elif format == "newick": context = {"translate": {}} handlers = {"translate": _handle_translate, "tree": _handle_tree_newick} elif format == "_raw_newick": context = {"translate": {}} handlers = {"translate": _handle_translate, "tree": _handle_raw} elif format == "torch": context = None handlers = {"tree": _handle_tree_torch} elif format == "_raw_torch": context = None handlers = {"tree": _handle_raw} else: raise ValueError(f"unknown format: {format}") if processes != 0: trees = read_nexus_trees( filename, format="_raw_" + format, max_num_trees=max_num_trees ) with mp.Pool(processes) as pool: handler = functools.partial(_apply, handlers["tree"]) yield from pool.imap(handler, trees) return with open(filename) as f: lines = iter(f) for line in lines: if line.startswith("Begin trees;"): break part = [] for line in lines: line = line.strip() part.append(line) if not line.endswith(";"): continue type_ = part[0].split()[0].lower() handle = handlers.get(type_) if handle is not None: tree = handle(part, context) if tree is not None: yield tree max_num_trees -= 1 if max_num_trees <= 0: break part = [] def count_nexus_trees(filename): """ Counts the number of trees in a nexus file. """ return sum(read_nexus_trees(filename, format="count")) def stack_nexus_trees(filename, *, max_num_trees=math.inf, processes=0): """ Loads a batch of trees from a nexus file. """ trees = read_nexus_trees( filename, format="torch", max_num_trees=max_num_trees, processes=processes ) return Phylogeny.stack(trees) def read_newick_tree(filename): """ Parse a single newick tree and convert to a ``Phylogeny``. """ with open(filename) as f: line = f.read().strip() tree = next(Parser.from_string(line).parse()) return Phylogeny.from_bio_phylo(tree) def read_alignment( filename, format=None, *, max_taxa=math.inf, max_characters=math.inf ): """ Reads a single alignment file to a torch tensor of probabilites. :param str filename: Name of input file. :param str format: Optional input format, e.g. "nexus" or "fasta". :param int max_taxa: Optional number of taxa for truncation. :param int max_characters: Optional number of characters for truncation. :rtype: torch.Tensor :returns: A float tensor of shape ``(num_sequences, num_characters, num_bases)`` that is normalized along its rightmost dimension. Note that ``num_bases`` is 5 = 4 + 1, where the final base denots a gap or indel. """ # Load a Bio.Align.MultipleSeqAlignment object. logger.info(f"Loading data from {filename}") if format is None: suffix = filename.split(".")[-1].lower() format = FILE_FORMATS.get(suffix) if format is None: raise ValueError("Please specify a file format, e.g. 'nexus' or 'fasta'") elif format == "nexus": alignment = _read_alignment_nexus(filename) elif format == "beast": alignment = _read_alignment_beast(filename) else: alignment = AlignIO.read(filename, format) # Convert to a single torch.Tensor. num_taxa = min(len(alignment), max_taxa) if num_taxa < len(alignment): alignment = alignment[:num_taxa] num_characters = min(len(alignment[0]), max_characters) if num_characters < len(alignment[0]): alignment = alignment[:, :num_characters] logger.info(f"parsing {num_taxa} taxa x {num_characters} characters") codebook = _get_codebook() probs = torch.full((num_taxa, num_characters, 5), 1 / 5) for i in range(num_taxa): seq = alignment[i].seq if not VALID_CODES.issuperset(seq): raise ValueError(f"Invalid characters: {set(seq) - VALID_CODES}") # Replace gaps at ends with missing. beg, end = 0, probs.size(1) if seq[0] in "-.N": seq, old = seq.lstrip(seq[0]), seq beg += len(old) - len(seq) if seq[-1] in "-.N": seq, old = seq.rstrip(seq[-1]), seq end -= len(old) - len(seq) probs[i, beg:end] = codebook[list(map(ord, seq))] assert torch.isfinite(probs).all() return probs def _read_alignment_nexus(filename): # Work around bugs in Bio.Nexus reader. lines = [] section = None done = set() with open(filename) as f: for line in f: if line.startswith("BEGIN"): section = line.split()[-1].strip()[:-1] elif line.startswith("END;"): done.add(section) section = None if "TAXA" in done and "CHARACTERS" in done: lines.append(line) break elif section == "CHARACTERS": if "{" in line: line = re.sub("{([ATCG]+)}", _encode_ambiguity, line) lines.append(line) f = io.StringIO("".join(lines)) alignment = AlignIO.read(f, "nexus") return alignment def _read_alignment_beast(filename): result = [] with open(filename) as f: for line in f: line = line.strip() if not line.startswith("<sequence "): continue id_ = re.search(r'\bid="([^"]*)"', line).group(1) seq = re.search(r'\bvalue="([^"]*)"', line).group(1) result.append(SeqRecord(Seq(seq), id=id_)) return result # See https://www.bioinformatics.org/sms/iupac.html NUCLEOTIDE_CODES = { # [ A, C, G, T, gap] "?": [1 / 5, 1 / 5, 1 / 5, 1 / 5, 1 / 5], # missing "n": [1 / 5, 1 / 5, 1 / 5, 1 / 5, 1 / 5], # missing "A": [1 / 1, 0.0, 0.0, 0.0, 0.0], # adenine "C": [0.0, 1 / 1, 0.0, 0.0, 0.0], # cytosine "G": [0.0, 0.0, 1 / 1, 0.0, 0.0], # guanine "T": [0.0, 0.0, 0.0, 1 / 1, 0.0], # thymine "U": [0.0, 0.0, 0.0, 1 / 1, 0.0], # uracil "R": [1 / 2, 0.0, 1 / 2, 0.0, 0.0], "Y": [0.0, 1 / 2, 0.0, 1 / 2, 0.0], "S": [0.0, 1 / 2, 1 / 2, 0.0, 0.0], "W": [1 / 2, 0.0, 0.0, 1 / 2, 0.0], "K": [0.0, 0.0, 1 / 2, 1 / 2, 0.0], "M": [1 / 2, 1 / 2, 0.0, 0.0, 0.0], "B": [0.0, 1 / 3, 1 / 3, 1 / 3, 0.0], "D": [1 / 3, 0.0, 1 / 3, 1 / 3, 0.0], "H": [1 / 3, 1 / 3, 0.0, 1 / 3, 0.0], "V": [1 / 3, 1 / 3, 1 / 3, 0.0, 0.0], "N": [1 / 4, 1 / 4, 1 / 4, 1 / 4, 0.0], "-": [0.0, 0.0, 0.0, 0.0, 1 / 1], # gap ".": [0.0, 0.0, 0.0, 0.0, 1 / 1], # gap } VALID_CODES = set(NUCLEOTIDE_CODES) AMBIGUOUS_CODES = { frozenset("AG"): "R", frozenset("CT"): "Y", frozenset("CG"): "S", frozenset("AT"): "W", frozenset("GT"): "K", frozenset("AC"): "M", frozenset("CGT"): "B", frozenset("AGT"): "D", frozenset("ACT"): "H", frozenset("ACG"): "V", frozenset("ACGT"): "N", } assert len(AMBIGUOUS_CODES) == 6 + 4 + 1 def _encode_ambiguity(chars): return AMBIGUOUS_CODES[frozenset(chars.group(1))] def _get_codebook(): codes = torch.full((256, 5), math.nan) keys = list(map(ord, NUCLEOTIDE_CODES.keys())) values = torch.tensor(list(NUCLEOTIDE_CODES.values())) assert values.sum(-1).sub(1).abs().le(1e-6).all() codes[keys] = values return codes
31.044872
88
0.574024
0
0
1,984
0.204832
0
0
0
0
2,258
0.23312
674dfe34110c0256d54ed4a145016c108d5fa7fa
1,439
py
Python
core.py
mistifiedwarrior/house_price_prediction
c935650130ea6464f948706d057af6f044abbff6
[ "MIT" ]
null
null
null
core.py
mistifiedwarrior/house_price_prediction
c935650130ea6464f948706d057af6f044abbff6
[ "MIT" ]
null
null
null
core.py
mistifiedwarrior/house_price_prediction
c935650130ea6464f948706d057af6f044abbff6
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd from sklearn.linear_model import LinearRegression def convert_to_sqft(str): tokens = str.split(' - ') if len(tokens) == 2: return (float(tokens[0]) + float(tokens[1])) / 2 try: return float(tokens[0]) except Exception: return np.NAN def convert_to_num(num): tokens = str(num).split(' ') return float(tokens[0]) def train_model(X, Y): regression = LinearRegression() regression.fit(X, Y) return regression def get_training_data(): dataframe = pd.read_csv("./Bengaluru_House_Data.csv") df = dataframe.drop(columns=["area_type", "balcony", "society", "availability"], axis='columns') df['total_sqft'] = df['total_sqft'].apply(convert_to_sqft) df['size'] = df['size'].apply(convert_to_num) locations = pd.get_dummies(df["location"]) df_merge = pd.concat([df.drop(columns=["location"]), locations], axis='columns') df_merge = df_merge.drop(columns=["Unnamed: 9"], axis='columns') df_merge = df_merge.dropna() X = df_merge.drop(['price'], axis='columns') Y = df_merge['price'] return X, Y def predict_price(regression, X, location, bhk, total_sqft, bath): location_index = np.where(X.columns == location)[0][0] x = np.zeros(len(X.columns)) x[0] = bhk x[1] = total_sqft x[2] = bath if location_index >= 0: x[location_index] = 1 return regression.predict([x])[0]
31.977778
100
0.648367
0
0
0
0
0
0
0
0
197
0.136901
674e48cd30f8211b37cb1b97721c2c716552aabd
605
py
Python
Python/bank-robbers.py
JaredLGillespie/CodinGame
7e14078673300f66d56c8af4f66d9bf5d2229fa6
[ "MIT" ]
1
2020-01-05T17:44:57.000Z
2020-01-05T17:44:57.000Z
Python/bank-robbers.py
JaredLGillespie/CodinGame
7e14078673300f66d56c8af4f66d9bf5d2229fa6
[ "MIT" ]
null
null
null
Python/bank-robbers.py
JaredLGillespie/CodinGame
7e14078673300f66d56c8af4f66d9bf5d2229fa6
[ "MIT" ]
2
2020-09-27T16:02:53.000Z
2021-11-24T09:08:59.000Z
# https://www.codingame.com/training/easy/bank-robbers from heapq import * def calc_vault_time(c, n): return 10**n * 5**(c - n) def solution(): robbers = int(input()) vault = int(input()) vault_times = [] for i in range(vault): c, n = map(int, input().split()) vault_times.append(calc_vault_time(c, n)) active_robbers = [] for vt in vault_times: if len(active_robbers) < robbers: heappush(active_robbers, vt) else: heappush(active_robbers, vt + heappop(active_robbers)) print(max(active_robbers)) solution()
20.862069
66
0.609917
0
0
0
0
0
0
0
0
54
0.089256
674e497c1af4728fb031faf7f24fbf2bf5bd7b4b
576
py
Python
14Django/day04/BookManager/introduction1.py
HaoZhang95/PythonAndMachineLearning
b897224b8a0e6a5734f408df8c24846a98c553bf
[ "MIT" ]
937
2019-05-08T08:46:25.000Z
2022-03-31T12:56:07.000Z
14Django/day04/BookManager/introduction1.py
Sakura-gh/Python24
b97e18867264a0647d5645c7d757a0040e755577
[ "MIT" ]
47
2019-09-17T10:06:02.000Z
2022-03-11T23:46:52.000Z
14Django/day04/BookManager/introduction1.py
Sakura-gh/Python24
b97e18867264a0647d5645c7d757a0040e755577
[ "MIT" ]
354
2019-05-10T02:15:26.000Z
2022-03-30T05:52:57.000Z
""" 模板语言: {{ 变量 }} {% 代码段 %} {% 一个参数时:变量|过滤器, Book.id | add: 1 <= 2 当前id+1来和2比较 两个参数时:变量|过滤器:参数 %}, 过滤器最多只能传2个参数,过滤器用来对传入的变量进行修改 {% if book.name|length > 4 %} 管道|符号的左右不能有多余的空格,否则报错,其次并不是name.length而是通过管道来过滤 {{ book.pub_date|date:'Y年m月j日' }} 日期的转换管道 """ """ CSRF 跨站请求伪造, 盗用别人的信息,以你的名义进行恶意请求 比如:服务器返回一个表单进行转账操作,再把转账信息返回给服务器。 需要判断发送转账信息请求的客户端是不是刚才获取表单界面的客户端,防止回送请求的修改,和返回页面的修改(表单地址被修改为黑客地址,信息丢失) 防止CSRF需要服务器做安全验证 """ """ 验证码主要用来防止暴力请求,原理就是请求页面之前生成一个动态不同的验证码写入到session中 用户登录的时候,会拿着填写的验证码和session中的验证码比较进行验证 """
24
85
0.670139
0
0
0
0
0
0
0
0
1,210
0.996705
674eb289511fbd351f416105eb842fadb81a491d
291
py
Python
gammapy/maps/__init__.py
watsonjj/gammapy
8d2498c8f63f73d1fbe4ba81ab02d9e72552df67
[ "BSD-3-Clause" ]
null
null
null
gammapy/maps/__init__.py
watsonjj/gammapy
8d2498c8f63f73d1fbe4ba81ab02d9e72552df67
[ "BSD-3-Clause" ]
1
2020-10-29T19:55:46.000Z
2020-10-29T19:55:46.000Z
gammapy/maps/__init__.py
watsonjj/gammapy
8d2498c8f63f73d1fbe4ba81ab02d9e72552df67
[ "BSD-3-Clause" ]
null
null
null
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Sky maps.""" from .base import * from .geom import * from .hpx import * from .hpxnd import * from .hpxsparse import * from .hpxmap import * from .wcs import * from .wcsnd import * from .wcsmap import * from .sparse import *
22.384615
63
0.71134
0
0
0
0
0
0
0
0
78
0.268041
674ebc40e603703da0b0ddbc5fe2fad3846b9a69
3,305
py
Python
lhotse/dataset/sampling/utils.py
stachu86/lhotse
d5e78154db2d4d52f15aaadc8882f76eb5b77640
[ "Apache-2.0" ]
353
2020-10-31T10:38:51.000Z
2022-03-30T05:22:52.000Z
lhotse/dataset/sampling/utils.py
stachu86/lhotse
d5e78154db2d4d52f15aaadc8882f76eb5b77640
[ "Apache-2.0" ]
353
2020-10-27T23:25:12.000Z
2022-03-31T22:16:05.000Z
lhotse/dataset/sampling/utils.py
stachu86/lhotse
d5e78154db2d4d52f15aaadc8882f76eb5b77640
[ "Apache-2.0" ]
66
2020-11-01T06:08:08.000Z
2022-03-29T02:03:07.000Z
import warnings from typing import Dict, Tuple from lhotse import CutSet from lhotse.dataset.sampling.base import CutSampler def find_pessimistic_batches( sampler: CutSampler, batch_tuple_index: int = 0 ) -> Tuple[Dict[str, CutSet], Dict[str, float]]: """ Function for finding 'pessimistic' batches, i.e. batches that have the highest potential to blow up the GPU memory during training. We will fully iterate the sampler and record the most risky batches under several criteria: - single longest cut - single longest supervision - largest batch cuts duration - largest batch supervisions duration - max num cuts - max num supervisions .. note: It is up to the users to convert the sampled CutSets into actual batches and test them by running forward and backward passes with their model. Example of how this function can be used with a PyTorch model and a :class:`~lhotse.dataset.K2SpeechRecognitionDataset`:: sampler = SingleCutSampler(cuts, max_duration=300) dataset = K2SpeechRecognitionDataset() batches, scores = find_pessimistic_batches(sampler) for reason, cuts in batches.items(): try: batch = dset[cuts] outputs = model(batch) loss = loss_fn(outputs) loss.backward() except: print(f"Exception caught when evaluating pessimistic batch for: {reason}={scores[reason]}") raise :param sampler: An instance of a Lhotse :class:`.CutSampler`. :param batch_tuple_index: Applicable to samplers that return tuples of :class:`~lhotse.cut.CutSet`. Indicates which position in the tuple we should look up for the CutSet. :return: A tuple of dicts: the first with batches (as CutSets) and the other with criteria values, i.e.: ``({"<criterion>": <CutSet>, ...}, {"<criterion>": <value>, ...})`` """ criteria = { "single_longest_cut": lambda cuts: max(c.duration for c in cuts), "single_longest_supervision": lambda cuts: max( sum(s.duration for s in c.supervisions) for c in cuts ), "largest_batch_cuts_duration": lambda cuts: sum(c.duration for c in cuts), "largest_batch_supervisions_duration": lambda cuts: sum( s.duration for c in cuts for s in c.supervisions ), "max_num_cuts": len, "max_num_supervisions": lambda cuts: sum( 1 for c in cuts for _ in c.supervisions ), } try: sampler = iter(sampler) first_batch = next(sampler) if isinstance(first_batch, tuple): first_batch = first_batch[batch_tuple_index] except StopIteration: warnings.warn("Empty sampler encountered in find_pessimistic_batches()") return {}, {} top_batches = {k: first_batch for k in criteria} top_values = {k: fn(first_batch) for k, fn in criteria.items()} for batch in sampler: if isinstance(batch, tuple): batch = batch[batch_tuple_index] for crit, fn in criteria.items(): val = fn(batch) if val > top_values[crit]: top_values[crit] = val top_batches[crit] = batch return top_batches, top_values
39.345238
108
0.644781
0
0
0
0
0
0
0
0
1,893
0.572769
674f2806f73a13483671e5b0ce4735f88b2f1c4f
606
py
Python
book/migrations/0010_auto_20170603_1441.py
pyprism/Hiren-Mail-Notify
324583a2edd25da5d2077914a79da291e00c743e
[ "MIT" ]
null
null
null
book/migrations/0010_auto_20170603_1441.py
pyprism/Hiren-Mail-Notify
324583a2edd25da5d2077914a79da291e00c743e
[ "MIT" ]
144
2015-10-18T17:19:03.000Z
2021-06-27T07:05:56.000Z
book/migrations/0010_auto_20170603_1441.py
pyprism/Hiren-Mail-Notify
324583a2edd25da5d2077914a79da291e00c743e
[ "MIT" ]
1
2015-10-18T17:04:39.000Z
2015-10-18T17:04:39.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2017-06-03 08:41 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('book', '0009_book_folder'), ] operations = [ migrations.AddField( model_name='book', name='updated_at', field=models.DateTimeField(auto_now=True), ), migrations.AlterField( model_name='book', name='name', field=models.CharField(max_length=400, unique=True), ), ]
23.307692
64
0.587459
450
0.742574
0
0
0
0
0
0
123
0.20297
674faa0b694ce161c45416e214ad1d35c7eb77fc
1,218
py
Python
contrib/ComparisonStatistics/Test/test_1.py
xylar/cdat
8a5080cb18febfde365efc96147e25f51494a2bf
[ "BSD-3-Clause" ]
62
2018-03-30T15:46:56.000Z
2021-12-08T23:30:24.000Z
contrib/ComparisonStatistics/Test/test_1.py
xylar/cdat
8a5080cb18febfde365efc96147e25f51494a2bf
[ "BSD-3-Clause" ]
114
2018-03-21T01:12:43.000Z
2021-07-05T12:29:54.000Z
contrib/ComparisonStatistics/Test/test_1.py
CDAT/uvcdat
5133560c0c049b5c93ee321ba0af494253b44f91
[ "BSD-3-Clause" ]
14
2018-06-06T02:42:47.000Z
2021-11-26T03:27:00.000Z
#!/usr/bin/env python import ComparisonStatistics import cdutil import os,sys # Reference ref = os.path.join(cdutil.__path__[0],'..','..','..','..','sample_data','tas_dnm-95a.xml') Ref=cdutil.VariableConditioner(ref) Ref.var='tas' Ref.id='reference' # Test tst = os.path.join(cdutil.__path__[0],'..','..','..','..','sample_data','tas_ccsr-95a.xml') Tst=cdutil.VariableConditioner(tst) Tst.var='tas' Tst.id='test' # Final Grid FG=cdutil.WeightedGridMaker() FG.longitude.n=36 FG.longitude.first=0. FG.longitude.delta=10. FG.latitude.n=18 FG.latitude.first=-85. FG.latitude.delta=10. # Now the compall thing c=ComparisonStatistics.ComparisonStatistics(Tst,Ref,weightedGridMaker=FG) c.fracmin=.5 c.minyr=3 icall=19 # Let's force the indices to be the same c.variableConditioner1.cdmsKeywords['time']=('1979','1982','co') c.variableConditioner2.cdmsKeywords['time']=slice(0,36) print "Before computing:" print c.variableConditioner1 #print 'C printing:\n',c ## (test,tfr),(ref,reffrc)=c() (test,tfr),(ref,reffrc) = c.compute() print "Test:",test # Retrieve the rank for th etime_domain 19 (monthly space time) rank=c.rank(time_domain=19) print 'Result for Rank:',rank c.write('tmp.nc',comments='A simple example')
24.36
91
0.728243
0
0
0
0
0
0
0
0
448
0.367816
674fc8fb47108fcde4353966aaff882285b50e79
1,087
py
Python
mathipy/functions/linearithmic.py
BatiDyDx/maths-tools-python
e9a58aa669b5f36d7ee01402fe1f16a1db7b0e50
[ "MIT" ]
1
2021-02-02T02:58:38.000Z
2021-02-02T02:58:38.000Z
mathipy/functions/linearithmic.py
BatiDyDx/maths-tools-python
e9a58aa669b5f36d7ee01402fe1f16a1db7b0e50
[ "MIT" ]
null
null
null
mathipy/functions/linearithmic.py
BatiDyDx/maths-tools-python
e9a58aa669b5f36d7ee01402fe1f16a1db7b0e50
[ "MIT" ]
null
null
null
import math import numpy as np from mathipy.math import calculus class Linearithmic(calculus.Function): """ f(x) = (mx + h)log_b(kx + a) """ function_type = 'Linearithmic' def __init__(self, m = 1, h = 0, b = 10, a = 0, k = 1): self.m = m self.h = h self.b = b self.a = a self.k = k def find_roots(self) -> tuple: x1 = - self.h / self.m x2 = (1 - self.a) / self.k x1 = x1 if self(x1) == 0 else np.nan x2 = x2 if self(x2) == 0 else np.nan return (x1, x2) def plot_func(self, ax): ax.scatter(self.find_roots(), (0,0), color=calculus.Function.function_part['roots']) ax.scatter(0, self.get_yint(), color=calculus.Function.function_part['y-intercept']) def calculate_values(self, x): return (self.m * x + self.h) * math.log(self.k * x + self.a, self.b) def __str__(self): representation = '' representation += f'({self.m}x + {self.h})' representation += f'log_{self.b}({self.k}x + {self.a})' return representation
30.194444
92
0.554738
1,021
0.939282
0
0
0
0
0
0
142
0.130635
674feabbfb04fd43b656a2ee09e804a9db0cc338
11,479
py
Python
pivot_based_eccv2018/misc/expander/disambiguate.py
gujiuxiang/unpaired_im2text_iccv19
cf71b82b3d2616b0b1fb5c2dfd7f7832cd1e8ec2
[ "MIT" ]
18
2019-11-01T13:50:03.000Z
2022-03-14T03:07:34.000Z
pivot_based_eccv2018/misc/expander/disambiguate.py
gujiuxiang/unpaired_im2text_iccv19
cf71b82b3d2616b0b1fb5c2dfd7f7832cd1e8ec2
[ "MIT" ]
7
2020-01-03T13:53:26.000Z
2021-03-25T22:55:52.000Z
pivot_based_eccv2018/misc/expander/disambiguate.py
gujiuxiang/unpaired_im2text_iccv19
cf71b82b3d2616b0b1fb5c2dfd7f7832cd1e8ec2
[ "MIT" ]
3
2019-09-16T02:03:59.000Z
2021-06-12T07:03:03.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """ This module contains the necessary functions to load a text-corpus from NLTK, contract all possible sentences, applying POS-tags to the contracted sentences and compare that with the original text. The information about which contraction+pos-tag pair gets expanded to which full form will be saved in a dictionary for use in expander.py """ __author__ = "Yannick Couzinié" # standard library imports import pprint import yaml # third-party library imports import nltk # local library imports import utils # increase the allowed ram size that the models can use # nltk.internals.config_java(options='-xmx2G') def _find_sub_list(sublist, full_list): """ Args: - sublist is a list of words that are supposed to be found in the full list. - full list is a list of words that is supposed to be searched in. Returns: - List of tuples with the form (first_index_of_occurence, last_index_of_occurence) This function finds all occurences of sublist in the full_list. """ # this is the output list results = [] sublist_len = len(sublist) # loop over all ind if the word in full_list[ind] matches the first # word of the sublist for ind in (i for i, word in enumerate(full_list) if word == sublist[0]): # check that the complete sublist is matched if full_list[ind:ind+sublist_len] == sublist: # then append this to the results results.append((ind, ind+sublist_len-1)) return results def _contract_sentences(expansions, sent_lst, use_ner, ner_args): """ Args: - expansions is a dictionary containing the corresponding contractions to the expanded words - sent_lst is a list of sentences, which is itself a list of words, i.e. [["I", "am", "blue"], [...]]. - use_ner is boolean to decide whether to use named-entity-recognition for a potential increase in accuracy but with the obvious costs of performance. - ner_args is a list with an object of StanfordNERTagger and the tag to be used. This only needs to be supplied if use_ner is true. Returns: - yields tuples of the form (index of first word that was replaced, list of words that were replaced, contracted sentence). The above example would then give (0, ["I", "am"], ["I", "'m", "blue"]) Note that uncontractible sentences are not added to the output. Since yield is used, iterate over the results. Otherwise it takes too much time. This function checks a list of sentences for whether they can be contracted. It starts with the first two words, then the first three and then goes on to the second+third, then the second+third+fourth and so on. """ # first find the indices of the sentences that contain contractions for sent in sent_lst: if use_ner: # replace all named entities with the tag in ner_args[1] # throw away replacement info sent = utils.sent_to_ner(ner_args[0], sent, tag=ner_args[1])[0] # check whether any expansion is present then add the index # it has a True for every expansion that is present expansion_bool = [expansion in ' '.join(sent) for expansion in list(expansions.keys())] if not any(expansion_bool): # if no expansions present just continue continue # convert the boolean list to a list of indices expansion_idx = [i for i, boolean in enumerate(expansion_bool) if boolean] # the list of relevant expansions for the sentence relevant_exp = [list(expansions.keys())[i] for i in expansion_idx] for expansion in relevant_exp: # first split the contraction up into a list of the same # length as the expanded string if len(expansion.split()) in [2, 3, 4]: # if you contract three or two words, # just split at apostrophes contraction = expansions[expansion].split("'") assert len(contraction) == len(expansion.split()) # add the apostrophes again contraction[1] = "'" + contraction[1] if len(contraction) == 3: contraction[2] = "'" + contraction[2] if len(contraction) == 4: contraction[3] = "'" + contraction[3] else: # this case is only entered when there is only one word # input. So assert that this is the case. assert len(expansion) == 1 # this is a completely pathological case, since # ambiguous 1-word replacements are not in the common # list of replacements from wikipedia. But since one can # openly expand contractions.yaml it is checked. contraction = expansions[expansion] # find where the sublist occurs occurences = _find_sub_list(expansion.split(), sent) # loop over all first indices of occurences # and insert the contracted part for occurence in occurences: contr_sent = sent[:occurence[0]] + contraction contr_sent += sent[occurence[0]+len(contraction):] yield (occurence[0], sent[occurence[0]:occurence[0]+len(contraction)], contr_sent) def _invert_contractions_dict(): """ This is just a short function to return the inverted dictionary of the contraction dictionary. """ with open("contractions.yaml", "r") as stream: # load the dictionary containing all the contractions contractions = yaml.load(stream) # invert the dictionary for quicker finding of contractions expansions = dict() for key, value in contractions.items(): if len(value) == 1: continue for expansion in value: if expansion in expansions: print("WARNING: As an contraction to {}, {} is replaced with" " {}.".format(expansion, expansions[expansion], key)) expansions[expansion] = key return expansions def write_dictionary(pos_model, sent_lst, add_tags=0, use_ner=False, ner_args=None): """ Args: - pos_model is an instance of StanfordPOSTagger - sent-lst a list of sentences which themselves are lists of the single words. - add_tags is the amount of pos tags used after the relevant contraction, this can be used to further disambiguate but (of course) spreads out the data. - use_ner is boolean to decide whether to use named-entity-recognition for a potential increase in accuracy but with the obvious costs of performance. - ner_args is a list with an object of StanfordNERTagger and the tag to be used. This only needs to be supplied if use_ner is true. Returns: - None, but writes a disambiguations.yaml file with disambiguations for the ambiguous contractions in contractions.yaml. Raises: ValueError if use_ner is True but no ner_model is supplied. Using the provided list of sentences, contract them and pos-tag them. Using the pos-tags it is then possible to classify which (contraction, pos-tag) combinations get expanded to which ambiguous long form. """ # pylint: disable=too-many-locals if use_ner and (ner_args is None): raise ValueError("The use_ner flag is True but no NER" " model has been supplied!") expansions = _invert_contractions_dict() output_dict = dict() ambiguity_counter = 0 for tuple_rslt in _contract_sentences(expansions, sent_lst, use_ner=use_ner, ner_args=ner_args): # pos tag the sentence if use_ner: # first replace the NER tag with "it" pos_sent = [word.replace(ner_args[1], "it") for word in tuple_rslt[2]] # tag the sentence pos_sent = pos_model.tag(pos_sent) # and replace it with the tag again pos_sent = [(tuple_rslt[2][i], word_pos[1]) for i, word_pos in enumerate(pos_sent)] else: pos_sent = pos_model.tag(tuple_rslt[2]) # extract the pos tags on the contracted part contr_word_pos = pos_sent[tuple_rslt[0]:(tuple_rslt[0] + len(tuple_rslt[1]))] if add_tags == 0: contr_pos = tuple(contr_word_pos) else: add_pos_list = pos_sent[len(tuple_rslt[1]):(len(tuple_rslt[1]) + add_tags)] add_pos = [pos_word[1] for pos_word in add_pos_list] contr_pos = tuple(contr_word_pos + add_pos) # write a dictionary entry connecting the (words, pos) of the # contraction to the expanded part word = ' '.join(tuple_rslt[1]) if contr_pos not in output_dict: output_dict[contr_pos] = dict() output_dict[contr_pos][word] = 1 # keep track of the progress print("\n\n ---- \n\n") pprint.pprint(output_dict) print("Ambiguity counter is {}.".format(ambiguity_counter)) print("\n\n ---- \n\n") elif word in output_dict[contr_pos].keys(): # check whether the entry is already there output_dict[contr_pos][word] += 1 continue else: # if the combination of pos tags with words already occured # once then a list has to be made. Ideally this case doesn't # occur ambiguity_counter += 1 output_dict[contr_pos][word] = 1 print("\n\n ---- \n\n") print("AMBIGUITY ADDED!") pprint.pprint(output_dict) print("Ambiguity counter is {}.".format(ambiguity_counter)) print("\n\n ---- \n\n") with open("disambiguations.yaml", "w") as stream: yaml.dump(output_dict, stream) if __name__ == '__main__': # if you call this function directly just build the disambiguation # dictionary. # load a corpus that has the form of list of sentences which is # split up into a list of words SENT_LST = nltk.corpus.brown.sents() SENT_LST += nltk.corpus.gutenberg.sents() SENT_LST += nltk.corpus.reuters.sents() SENT_LST += nltk.corpus.inaugural.sents() POS_MODEL = utils.load_stanford('pos') NER_MODEL = utils.load_stanford('ner') write_dictionary(POS_MODEL, SENT_LST, add_tags=1, use_ner=False, ner_args=[NER_MODEL, "<NE>"])
40.850534
77
0.586811
0
0
4,207
0.366463
0
0
0
0
5,824
0.507317
675069879b1d492d1df7599b3ec43ea76978d06f
1,881
py
Python
setup.py
baye0630/paperai
717f6c5a6652d6bc1bdb70d4a248a4751f820ddb
[ "Apache-2.0" ]
null
null
null
setup.py
baye0630/paperai
717f6c5a6652d6bc1bdb70d4a248a4751f820ddb
[ "Apache-2.0" ]
null
null
null
setup.py
baye0630/paperai
717f6c5a6652d6bc1bdb70d4a248a4751f820ddb
[ "Apache-2.0" ]
null
null
null
# pylint: disable = C0111 from setuptools import find_packages, setup setup(name="paperai", # version="1.5.0", # author="NeuML", # description="AI-powered literature discovery and review engine for medical/scientific papers", # long_description=DESCRIPTION, # long_description_content_type="text/markdown", # url="https://github.com/neuml/paperai", # project_urls={ # "Documentation": "https://github.com/neuml/paperai", # "Issue Tracker": "https://github.com/neuml/paperai/issues", # "Source Code": "https://github.com/neuml/paperai", # }, # C:\Users\sxm\Desktop\paperai # project_urls={ # "Documentation": "C:\\Users\\sxm\\Desktop\\paperai", # "Source Code": "C:\\Users\\sxm\\Desktop\\paperai", #}, license="Apache 2.0: C:\\Users\\sxm\\Desktop\\paperai\\LICENSE", packages=find_packages(where="C:\\Users\\sxm\\Desktop\\paperai\\src\\python"), package_dir={"": "src\\python"}, keywords="search embedding machine-learning nlp covid-19 medical scientific papers", python_requires=">=3.6", entry_points={ "console_scripts": [ "paperai = paperai.shell:main", ], }, install_requires=[ "html2text>=2020.1.16", # "mdv>=1.7.4", "networkx>=2.4", "PyYAML>=5.3", "regex>=2020.5.14", "txtai>=1.4.0", "txtmarker>=1.0.0" ], classifiers=[ "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Programming Language :: Python :: 3", "Topic :: Scientific/Engineering :: Artificial Intelligence", "Topic :: Software Development", "Topic :: Text Processing :: Indexing", "Topic :: Utilities" ])
36.882353
102
0.569378
0
0
0
0
0
0
0
0
1,276
0.678363
6751ed6431d090ba5f0d7abc986bd5b1a678af78
3,295
py
Python
hit_analysis/image/cut_reconstruction.py
credo-science/credo-classify
1cc5e00a4df36c4069c0d0fbc19f579780b79ca5
[ "MIT" ]
null
null
null
hit_analysis/image/cut_reconstruction.py
credo-science/credo-classify
1cc5e00a4df36c4069c0d0fbc19f579780b79ca5
[ "MIT" ]
8
2021-03-30T12:52:01.000Z
2022-03-12T00:19:45.000Z
hit_analysis/image/cut_reconstruction.py
credo-science/credo-classify
1cc5e00a4df36c4069c0d0fbc19f579780b79ca5
[ "MIT" ]
1
2020-06-12T13:29:34.000Z
2020-06-12T13:29:34.000Z
from io import BytesIO from typing import List, Dict from PIL import Image from hit_analysis.commons.config import Config from hit_analysis.commons.consts import IMAGE, CROP_X, CROP_Y, CROP_SIZE, FRAME_DECODED, CLASSIFIED, CLASS_ARTIFACT, ORIG_IMAGE def append_to_frame(image: Image, detection: dict): hit_img = detection.get(IMAGE) cx = detection[CROP_X] cy = detection[CROP_Y] w, h = detection[CROP_SIZE] image.paste(hit_img, (cx, cy, cx + w, cy + h)) # fix bug in early CREDO Detector App: black filled boundary 1px too large image.paste(image.crop((cx + w - 1, cy, cx + w, cy + h)), (cx + w, cy, cx + w + 1, cy + h)) image.paste(image.crop((cx, cy + h - 1, cx + w, cy + h)), (cx, cy + h, cx + w, cy + h + 1)) image.paste(image.crop((cx + w - 1, cy + h - 1, cx + w, cy + h)), (cx + w, cy + h, cx + w + 1, cy + h + 1)) def replace_from_frame(image: Image, detection: dict): cx = detection.get(CROP_X) cy = detection.get(CROP_Y) w, h = detection.get(CROP_SIZE) hit_img = image.crop((cx, cy, cx + w, cy + h)) detection[ORIG_IMAGE] = detection[IMAGE] detection[IMAGE] = hit_img with BytesIO() as output: hit_img.save(output, format="png") # hit_img.save('/tmp/%d.png' % detection.get('id')) detection[FRAME_DECODED] = output.getvalue() def do_reconstruct(detections: List[dict], config: Config) -> None: """ Reconstruction the fill by black cropped frame in CREDO Detector app v2. The detection[x]['frame_decoded'] will be replaced by new value, old value will be stored in detection[x]['frame_decoded_orig']. No any changes when count of detections is less or equal 1 :param detections: should be sorted by detection_id :param config: config object """ if len(detections) <= 1: return sp = [str(detections[0].get('device_id')), str(detections[0].get('timestamp'))] image = Image.new('RGBA', (detections[0].get('width'), detections[0].get('height')), (0, 0, 0)) edge = 'no_edge' for d in detections: if d.get('edge'): edge = 'edge' for d in reversed(detections): append_to_frame(image, d) config.store_png(['recostruct', edge, *sp, 'orig'], d.get('id'), d.get(IMAGE)) for d in detections: replace_from_frame(image, d) config.store_png(['recostruct', edge, *sp], d.get('id'), d.get(IMAGE)) if config.out_dir: image.save('%s/recostruct/%s/%s/frame.png' % (config.out_dir, edge, "/".join(sp))) def check_all_artifacts(detections: List[dict]) -> bool: """ Check if all detections is just classified as artifacts :param detections: list of detections to check :return: True - all detections is artifacts """ for d in detections: if d.get(CLASSIFIED) != CLASS_ARTIFACT: return False return True def filter_unclassified(by_timestamp: Dict[int, List[dict]]) -> List[int]: """ Filter detections with one or more unclassified as artifact. :param by_timestamp: detections grouped by timestamp :return: list of filtered timestamp keys """ ret = [] for timestamp, detections in by_timestamp.items(): if not check_all_artifacts(detections): ret.append(timestamp) return ret
35.815217
132
0.643703
0
0
0
0
0
0
0
0
990
0.300455
67525ed3e9b1efee9050769baa49e34f54d058e4
7,215
py
Python
tests/st/fallback/control_flow/test_fallback_010_if_in_if.py
httpsgithu/mindspore
c29d6bb764e233b427319cb89ba79e420f1e2c64
[ "Apache-2.0" ]
1
2022-02-23T09:13:43.000Z
2022-02-23T09:13:43.000Z
tests/st/fallback/control_flow/test_fallback_010_if_in_if.py
949144093/mindspore
c29d6bb764e233b427319cb89ba79e420f1e2c64
[ "Apache-2.0" ]
null
null
null
tests/st/fallback/control_flow/test_fallback_010_if_in_if.py
949144093/mindspore
c29d6bb764e233b427319cb89ba79e420f1e2c64
[ "Apache-2.0" ]
null
null
null
# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test graph fallback control flow if in if scenario""" import pytest import numpy as np from mindspore import Tensor, ms_function, context context.set_context(mode=context.GRAPH_MODE) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_if_in_if_1(): """ Feature: JIT Fallback Description: Test fallback with control flow. Expectation: No exception. """ @ms_function def control_flow_if_in_if(): x = Tensor(1) y = Tensor(2) if x > Tensor(0): if y > Tensor(1): return y + 1 return x + 1 return x + y res = control_flow_if_in_if() assert res == 3 @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_if_in_if_2(): """ Feature: JIT Fallback Description: Test fallback with control flow. Expectation: No exception. """ @ms_function def control_flow_if_in_if(): x = Tensor(1) y = Tensor(0) if x > Tensor(0): if y > Tensor(1): return y + 1 return x + 1 return x + y res = control_flow_if_in_if() assert res == 2 @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_if_in_if_3(): """ Feature: JIT Fallback Description: Test fallback with control flow. Expectation: No exception. """ @ms_function def control_flow_if_in_if(): x = Tensor(-2) y = Tensor(-3) if x > Tensor(0): if y > Tensor(1): return y + 1 return x + 1 return x + y res = control_flow_if_in_if() assert res == -5 @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_if_in_if_4(): """ Feature: JIT Fallback Description: Test fallback with control flow. Expectation: No exception. """ @ms_function def control_flow_if_in_if(): x = np.array([1, 2, 3, 4, 5]) y = x % 2 z = Tensor(y) if (x >= y).all(): if sum(z) > Tensor(2): z = Tensor(x) + 1 return z res = control_flow_if_in_if() assert np.all(res.asnumpy() == np.array([2, 3, 4, 5, 6])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_if_in_if_5(): """ Feature: JIT Fallback Description: Test fallback with control flow. Expectation: No exception. """ @ms_function def control_flow_if_in_if(): x = list([1, 2, 3, 4]) if max(x) >= 4: y = Tensor(sum(x) + max(x)) if y < Tensor(10): return y return y - 10 return x res = control_flow_if_in_if() assert res == 4 @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_if_else_in_if_else_1(): """ Feature: JIT Fallback Description: Test fallback with control flow. Expectation: No exception. """ @ms_function def control_flow_if_in_if(): x = Tensor(10) y = Tensor(7) if x - y > Tensor(np.array([0])): x = x - Tensor(3) if x - y > Tensor(0): x = x - Tensor(4) else: x = x + Tensor(4) x = x * 2 return x - 1 res = control_flow_if_in_if() assert res == 21 @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_if_else_in_if_else_2(): """ Feature: JIT Fallback Description: Test fallback with control flow. Expectation: No exception. """ @ms_function def control_flow_if_in_if(): x = Tensor(10) y = Tensor(7) if x - y > Tensor(np.array([10])): x = x - Tensor(3) if x - y > Tensor(0): x = x - Tensor(4) else: x = x + Tensor(4) x = x * 2 else: if x > Tensor(15): m = np.array([1, 2, 3, 4, 5]) elif x < Tensor(-10): return Tensor(sum(np.array([5, 4, 3, 2, 1]))) else: m = np.array([-1, -2, -3, -4, -5]) x = Tensor(sum(m)) return x - 1 res = control_flow_if_in_if() assert res == -16 @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_if_in_if_multi_conds(): """ Feature: JIT Fallback Description: Test fallback with control flow. Expectation: No exception. """ @ms_function def control_flow_if_in_if(): x = np.array([1, 2, 3, 4]) y = np.array([4, 5, 6]) if max(x) <= min(y) and sum(x) == 10: x += 3 if max(x) <= max(y): m = Tensor(10) elif min(x) != max(y) or x.size > y.size: m = Tensor(20) else: m = Tensor(0) else: m = Tensor(1) return m res = control_flow_if_in_if() assert res == 20 @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_if_in_if_multi_conds_2(): """ Feature: JIT Fallback Description: Test fallback with control flow. Expectation: No exception. """ @ms_function def control_flow_if_in_if(): x = Tensor(10) y = Tensor(2) if x > y and x % y == Tensor(0): x -= Tensor(3) if x < y: m = Tensor(10) elif x > y or x % y == Tensor(0): m = Tensor(20) else: m = x + y else: m = Tensor(0) return m res = control_flow_if_in_if() assert res == 20
27.43346
78
0.595981
0
0
0
0
6,333
0.877755
0
0
1,772
0.245599
6756dc638ee04975afad0eae2f92936de0c1062f
42,937
py
Python
EPOpt/SpectrumAnalysis.py
ruixueqingyang/GPOEO
8fe65ac3e0ae4d097fdd0d58878aa2cf3201a18c
[ "MIT" ]
5
2021-09-01T18:04:18.000Z
2022-02-25T04:48:21.000Z
EPOpt/SpectrumAnalysis.py
ruixueqingyang/GPOEO
8fe65ac3e0ae4d097fdd0d58878aa2cf3201a18c
[ "MIT" ]
null
null
null
EPOpt/SpectrumAnalysis.py
ruixueqingyang/GPOEO
8fe65ac3e0ae4d097fdd0d58878aa2cf3201a18c
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from scipy.fftpack import fft, fftshift, ifft from scipy.fftpack import fftfreq from scipy.signal import find_peaks from scipy import signal import numpy as np import matplotlib.pyplot as plt import pickle import warnings import sys from scipy.signal.filter_design import maxflat warnings.filterwarnings("ignore") MAPEMax = 1e4 MAPEStdMax = 1e4 FigCount = 0 TLowBoundBase = 0.4 TLowBound = TLowBoundBase TRound = 6 SetTLowBound = False GrpFigCount = 0 # 计算最小公倍数 def lcm(x, y): m = max(x, y) n = min(x, y) while m%n: m, n = n, m%n return x*y//n # wfr 20210107 求一组短周期的近似公倍数周期 def ApproximateLCM(arrayFactor, minALCM): arrayALCM = np.array([]) if np.round(minALCM/np.max(arrayFactor)) - minALCM/np.max(arrayFactor) < 0: ALCM = np.max(arrayFactor) * np.round(minALCM / np.max(arrayFactor)) else: ALCM = minALCM # tmpALCM = minALCM # maxErr = 1.0 # 最大百分比误差 while True: arrayTmp = ALCM / arrayFactor arrayInteger = np.round(arrayTmp) # 最接近的周期整数倍 arrayDecimal = np.abs(arrayTmp - arrayInteger) # 与最接近的周期整数倍, 相差的周期百分比 arrayErr = arrayDecimal / arrayInteger maxErr = np.max(arrayErr) if maxErr < 0.1: if len(arrayALCM) > 0: # 给出几个备选, 但也不能太多, 因为1倍周期和2倍周期无法区分, 因此备选不能接近2倍周期 if (ALCM / arrayALCM[0] > 1.3) \ or (len(arrayALCM) >= len(arrayFactor)) \ or (arrayALCM[-1]-arrayALCM[0] > 0.6 * np.max(arrayFactor)): break arrayALCM = np.append(arrayALCM, ALCM) ALCM += 0.2 * np.max(arrayFactor) return arrayALCM # wfr 20210130 先计算 N 位点, 在找出其中 附近采样点分布最密集的 N 位点 # PctRange 用来表征密集程度, 表示要求有 PctRange比例 的 采样点 在 N 位点附近 def FindClusterCenter(arrayP, N, PctRange): arrayTmpIndex = np.argsort(arrayP) # 将 arrayP 升序排列得到的 索引 PointCount = N - 1 # wfr 20210127 计算 N 位点 arrayPoint = np.linspace(0, 1, PointCount + 2)[1:-1] arrayPoint = np.floor(arrayPoint * len(arrayP)) arrayPoint = arrayP[arrayTmpIndex[arrayPoint.astype(int)]] arrayHalfRange = np.ones(PointCount) * (arrayP[arrayTmpIndex[-1]] - arrayP[arrayTmpIndex[0]]) # wfr 20210130 定义 N 位点的 附近 的范围, 0.3 表示 附近点的数量是采样点总数的 30% # 就是要找到满足该百分比的 对称区间 的范围 # PctRange = 0.3 SampleCount = len(arrayP) for i in range(PointCount): # 初始化区间半宽度上下限 HalfRangeMin = 0 HalfRangeMax = np.max([ arrayP[arrayTmpIndex[-1]] - arrayPoint[i], arrayPoint[i] - arrayP[arrayTmpIndex[0]] ]) # 半宽度范围小于一定阈值则不再循环 while HalfRangeMax - HalfRangeMin > 0.03 * (arrayP[arrayTmpIndex[-1]] - arrayP[arrayTmpIndex[0]]): # 二分搜索, 尝试半宽度范围的中点 HalfRange = (HalfRangeMin + HalfRangeMax) / 2 # 计算范围内采样点数量 SampleCountIn = np.sum( ((arrayPoint[i]-HalfRange) < arrayP) & (arrayP < (arrayPoint[i]+HalfRange)) ) # 更新半宽度范围 if SampleCountIn / SampleCount < PctRange: HalfRangeMin = HalfRange elif SampleCountIn / SampleCount >= PctRange: HalfRangeMax = HalfRange arrayHalfRange[i] = HalfRange arrayRangeIndex = np.argsort(arrayHalfRange) # wfr 20210130 返回附近采样点最密集的 N 位点 及 达到 PctRange 的 最小区间半宽度 return arrayPoint[arrayRangeIndex[0]], arrayHalfRange[arrayRangeIndex[0]] # wfr 20210126 聚类, 合并区间, 不至于有太多的区间 def GrpClustering(arrayP, GrpFactor): Mean = np.mean(arrayP) # wfr 20210130 从 N 位点中挑选聚类的初始中心点, 从其中挑选附近采样点最密集的 N 位点 Point, Diff = FindClusterCenter(arrayP, 5, 0.33) tmpLow = Point - Diff tmpUp = Point + Diff arrayIndexIn = np.argwhere((tmpLow <= arrayP) & (arrayP <= tmpUp)) # 在中位数附近邻域的点的 index arrayIndexIn = arrayIndexIn[:, 0] if len(arrayIndexIn) < 1: print("DistributionMAPE: ERROR: 在中位数邻域没找到采样点") elif len(arrayIndexIn) > 1: arrayTmp = (arrayIndexIn[1:] - arrayIndexIn[:(-1)]) > 1 # 后一个 indx 减 前一个 index 大于 1, 说明不连续, 是区间分界 arrayBeginFlag = np.insert(arrayTmp, 0, True) # 区间开始点的 flag 是 true arrayEndFlag = np.append(arrayTmp, True) # 区间结束点(包含)的 flag 是 true arrayIndexBegin = arrayIndexIn[arrayBeginFlag] # 区间开始点的 index arrayIndexEnd = arrayIndexIn[arrayEndFlag] + 1 # 区间结束点(不包含)的 index else: arrayIndexBegin = arrayIndexIn arrayIndexEnd = arrayIndexIn + 1 arrayIndexBeginOrigin = arrayIndexBegin arrayIndexEndOrigin = arrayIndexEnd # 一共有 len(arrayIndexBegin)+1 个空隙需要尝试合并(包括首尾两边的空隙) arrayIsolateFlag = np.zeros(len(arrayIndexBegin)).astype(bool) # 用来表示对应区间是否尝试过进行合并 stdP = np.std(arrayP) * 0.999 # 防止相等时的不确定情况 # wfr 20210202 修改误差种数 # MeanErrorShort = 0.04 # 待被合并的 区间 的 平均值的误差 MeanErrorGap = 0.04 # 待被合并的 间隙 的 平均值的误差 MeanErrorGrp = 0.03 # 合并后区间 的 平均值的误差 ShortGrpPct = 0.04 # 极小区间阈值, 小于阈值的区间将使用更大的误差 ScaleFactor = 2 # 误差增大系数 arrayIsolateIndex = np.argsort(-1 * (arrayIndexEnd - arrayIndexBegin)) i = arrayIsolateIndex[0] while 0 <= i and i <= len(arrayIndexBegin) - 1: meanGrp = np.mean(arrayP[arrayIndexBegin[i]: arrayIndexEnd[i]]) isMerged = True while isMerged == True: isMerged = False # wfr 20210127 尝试合并左侧 if i == 0: if arrayIndexBegin[0] != 0: # 尝试合并最左侧空隙 tmpStd = np.std(arrayP[0: arrayIndexEnd[0]]) tmpMean = np.mean(arrayP[0: arrayIndexEnd[0]]) tmpMeanGap = np.mean(arrayP[0: arrayIndexBegin[0]]) # wfr 20210202 判断 gap 是否极短, 若是则增大误差 if arrayIndexBegin[0] <= ShortGrpPct * len(arrayP): tmpMeanErrorGap = ScaleFactor * MeanErrorGap else: tmpMeanErrorGap = MeanErrorGap # wfr 20210202 判断 区间 是否极短, 若是则增大误差 if arrayIndexEnd[0] <= ShortGrpPct * len(arrayP): tmpMeanErrorGrp = ScaleFactor * MeanErrorGrp tmpStdP = ScaleFactor * stdP else: tmpMeanErrorGrp = MeanErrorGrp tmpStdP = stdP if tmpStd < tmpStdP and np.abs((meanGrp - tmpMean) / np.mean([meanGrp, tmpMean])) < tmpMeanErrorGrp \ and np.abs((meanGrp - tmpMeanGap) / np.mean([meanGrp, tmpMeanGap])) < tmpMeanErrorGap: # 合并成功 arrayIndexBegin[0] = 0 meanGrp = tmpMean isMerged = True elif True or arrayIsolateFlag[i-1] == False: # 尝试合并最左侧的 区间 和 空隙 tmpStd = np.std(arrayP[arrayIndexBegin[i - 1]: arrayIndexEnd[i]]) tmpMean = np.mean(arrayP[arrayIndexBegin[i - 1]: arrayIndexEnd[i]]) # tmpMeanPrev = np.mean(arrayP[arrayIndexBegin[i - 1]: arrayIndexBegin[i]]) tmpMeanGap = np.mean(arrayP[arrayIndexEnd[i - 1]: arrayIndexBegin[i]]) # wfr 20210202 判断 gap 是否极短, 若是则增大误差 if arrayIndexBegin[i] - arrayIndexEnd[i-1] <= ShortGrpPct * len(arrayP): tmpMeanErrorGap = ScaleFactor * MeanErrorGap else: tmpMeanErrorGap = MeanErrorGap # wfr 20210202 判断 区间 是否极短, 若是则增大误差 if arrayIndexEnd[i] - arrayIndexBegin[i-1] <= ShortGrpPct * len(arrayP): tmpMeanErrorGrp = ScaleFactor * MeanErrorGrp tmpStdP = ScaleFactor * stdP else: tmpMeanErrorGrp = MeanErrorGrp tmpStdP = stdP if tmpStd < tmpStdP and np.abs((meanGrp - tmpMean) / np.mean([meanGrp, tmpMean])) < tmpMeanErrorGrp \ and np.abs((meanGrp - tmpMeanGap) / np.mean([meanGrp, tmpMeanGap])) < tmpMeanErrorGap: # and np.abs((meanGrp - tmpMeanPrev) / np.mean([meanGrp, tmpMeanPrev])) < tmpMeanError1: # 合并成功 arrayIndexBegin = np.delete(arrayIndexBegin, i) arrayIndexEnd = np.delete(arrayIndexEnd, i - 1) arrayIsolateFlag = np.delete(arrayIsolateFlag, i - 1) meanGrp = tmpMean isMerged = True i -= 1 # wfr 20210127 尝试合并右侧 if i == len(arrayIndexBegin) - 1: if arrayIndexEnd[-1] != len(arrayP): # 尝试合并最右侧空隙 tmpStd = np.std(arrayP[arrayIndexBegin[i]:]) tmpMean = np.mean(arrayP[arrayIndexBegin[i]:]) tmpMeanGap = np.mean(arrayP[arrayIndexEnd[i]:]) # wfr 20210202 判断 gap 是否极短, 若是则增大误差 if len(arrayP) - arrayIndexEnd[i] <= ShortGrpPct * len(arrayP): tmpMeanErrorGap = ScaleFactor * MeanErrorGap else: tmpMeanErrorGap = MeanErrorGap # wfr 20210202 判断 区间 是否极短, 若是则增大误差 if len(arrayP) - arrayIndexBegin[i] <= ShortGrpPct * len(arrayP): tmpMeanErrorGrp = ScaleFactor * MeanErrorGrp tmpStdP = ScaleFactor * stdP else: tmpMeanErrorGrp = MeanErrorGrp tmpStdP = stdP if tmpStd < tmpStdP and np.abs((meanGrp - tmpMean) / np.mean([meanGrp, tmpMean])) < tmpMeanErrorGrp \ and np.abs((meanGrp - tmpMeanGap) / np.mean([meanGrp, tmpMeanGap])) < tmpMeanErrorGap: # 合并成功 arrayIndexEnd[-1] = len(arrayP) meanGrp = tmpMean isMerged = True elif True or arrayIsolateFlag[i+1] == False: # 尝试合并最右侧的 区间 和 空隙 tmpStd = np.std(arrayP[arrayIndexBegin[i]: arrayIndexEnd[i + 1]]) tmpMean = np.mean(arrayP[arrayIndexBegin[i]: arrayIndexEnd[i + 1]]) tmpMeanGap = np.mean(arrayP[arrayIndexEnd[i]: arrayIndexBegin[i + 1]]) # tmpMeanBack = np.mean(arrayP[arrayIndexEnd[i]: arrayIndexEnd[i + 1]]) # wfr 20210202 判断 gap 是否极短, 若是则增大误差 if arrayIndexBegin[i+1] - arrayIndexEnd[i] <= ShortGrpPct * len(arrayP): tmpMeanErrorGap = ScaleFactor * MeanErrorGap else: tmpMeanErrorGap = MeanErrorGap # wfr 20210202 判断 区间 是否极短, 若是则增大误差 if arrayIndexEnd[i+1] - arrayIndexBegin[i] <= ShortGrpPct * len(arrayP): tmpMeanErrorGrp = ScaleFactor * MeanErrorGrp tmpStdP = ScaleFactor * stdP else: tmpMeanErrorGrp = MeanErrorGrp tmpStdP = stdP if tmpStd < tmpStdP and np.abs((meanGrp - tmpMean) / np.mean([meanGrp, tmpMean])) < tmpMeanErrorGrp \ and np.abs((meanGrp - tmpMeanGap) / np.mean([meanGrp, tmpMeanGap])) < tmpMeanErrorGap: # and np.abs((meanGrp - tmpMeanBack) / np.mean([meanGrp, tmpMeanBack])) < tmpMeanErrorGap \ # 合并成功 arrayIndexBegin = np.delete(arrayIndexBegin, i + 1) arrayIndexEnd = np.delete(arrayIndexEnd, i) arrayIsolateFlag = np.delete(arrayIsolateFlag, i + 1) meanGrp = tmpMean isMerged = True # wfr 20210127 标记 i 为已经尝试过, 找到下一个没尝试过的长度最长的 区间 arrayIsolateFlag[i] = True i = -1 arrayIsolateIndex = np.argsort(-1 * (arrayIndexEnd - arrayIndexBegin)) if len(arrayIsolateIndex) > 0: tmp = np.argwhere(arrayIsolateFlag[arrayIsolateIndex] == False) tmp = tmp[:, 0] if len(tmp) > 0: i = arrayIsolateIndex[tmp[0]] # wfr 20210202 评估聚类结果, 如果有一个长度接近整个周期的区间, 则认为是不应该聚类, 因为聚类后会导致误差异常减小 arrayInterval = arrayIndexEnd - arrayIndexBegin for i in range(len(arrayInterval)): if arrayInterval[i] / len(arrayP) > 0.85: tmp0 = arrayIndexBegin[i] <= arrayIndexBeginOrigin tmp1 = arrayIndexEndOrigin <= arrayIndexEnd[i] tmp = np.argwhere(tmp0 & tmp1)[:, 0] arrayIndexBegin = np.delete(arrayIndexBegin, i) arrayIndexBegin = np.insert(arrayIndexBegin, i, arrayIndexBeginOrigin[tmp]) arrayIndexEnd = np.delete(arrayIndexEnd, i) arrayIndexEnd = np.insert(arrayIndexEnd, i, arrayIndexEndOrigin[tmp]) break # 开始点/结束点 index 交叉存放, 形成区间分界 index 序列 arrayGroupIndex = np.zeros(2 * len(arrayIndexBegin)).astype(int) arrayGroupIndex[2 * np.arange(0, len(arrayIndexBegin))] = arrayIndexBegin arrayGroupIndex[1 + 2 * np.arange(0, len(arrayIndexBegin))] = arrayIndexEnd # 补充 0 和 len(arrayP), 如果缺的话 if arrayGroupIndex[0] != 0: arrayGroupIndex = np.insert(arrayGroupIndex, 0, 0) if arrayGroupIndex[-1] != len(arrayP): arrayGroupIndex = np.append(arrayGroupIndex, len(arrayP)) # fig = plt.figure(figsize=(8, 4)) # 定义一个图像窗口 # ax = fig.add_subplot(111) # ax.plot(arrayP) # for v in arrayGroupIndex: # ax.axvline(x=v, color="black", linestyle="--", linewidth=0.5) # 横座标 v 画一条横线 # plt.show() # plt.close(fig) return arrayGroupIndex # 计算 周期为 T 时的功率分布情况的 MAPE(Mean Absolute Percentage Error) # 功率波形采样序列 arraySample # 采样时间序列 arrayTimeStamp # 周期 T # 该函数是执行热点, 且有优化空间, 可以更加向量化 # wfr 20210108 传入公倍数周期的最大因子 def DistributionMAPE(T, arraySample, arrayTimeStamp, algorithm = "mean", TInit = -1, TRef = -1): global MAPEMax, MAPEStdMax TMAPE = MAPEMax TMAPEStd = MAPEStdMax if T > 0.5 * arrayTimeStamp[-1]: # or T < 2: return TMAPE, TMAPEStd # 排除 长度 大于 测量区间一半的 周期 NumTRegion = int(arrayTimeStamp[-1] / T) # 采样时间内包含多少个周期 SampleInterval = arrayTimeStamp[1]; # 采样间隔 NumSample = int(T / (SampleInterval)) # 一个周期中的采样点数量 arrayTRegionMAPE = np.array([]) arrayIndex = np.arange(0, (NumTRegion + 0.1), 1) # 最后一个区间可能不是完整的, 所以不要最后一个 arrayIndex = arrayIndex * NumSample arrayIndex = arrayIndex.astype(np.int) # 每个 完整 周期区间的 开始和结束时间戳 的 index # tmpOffset = len(arraySample) - arrayIndex[-1] # arrayIndex += int(0.5 * tmpOffset) # wfr 20211015 1倍周期 / 多倍周期 应该使用不同的 分组聚类数量, # 这里以 TInit 为基准, 计算分组倍增系数, T > TInit, 则取倍增系数为: 2, 3, 4, ... # 分组聚类时, 会将每个分组 再拆分为 2, 3, 4 个分组 GrpFactor = int(1) if TInit > T: tmp = TInit / T GrpFactor = int(tmp) if tmp - GrpFactor > 0.75: GrpFactor += 1 for indexTRgn in range( NumTRegion - 1 ): # 对于每两个相邻的周期区间, 衡量其功率数据分布相似情况 # wfr 20210106 arrayP0 = arraySample[ arrayIndex[indexTRgn] : arrayIndex[indexTRgn+1] ] arrayP1 = arraySample[ arrayIndex[indexTRgn+1] : arrayIndex[indexTRgn+2] ] tmpMean0 = np.mean(arrayP0) tmpMean1 = np.mean(arrayP1) tmpStd0 = np.std(arrayP0) tmpStd1 = np.std(arrayP1) if tmpStd0 < tmpStd1: arrayGroupIndex = GrpClustering(arrayP1, GrpFactor) else: arrayGroupIndex = GrpClustering(arrayP0, GrpFactor) # 先取出对应的分组后的数组 NumGroup = len(arrayGroupIndex)-1 arrayGrouped0 = np.zeros( NumGroup ) arrayGrouped1 = np.zeros( NumGroup ) # 两个相邻周期区间分别分成 NumGroup 组, 计算每组中 功率与区间平均功率的差 的平均值 for indexGrp in range(NumGroup): # wfr 20210106 tmpArray0 = arraySample[ arrayIndex[indexTRgn]+arrayGroupIndex[indexGrp]: arrayIndex[indexTRgn]+arrayGroupIndex[indexGrp+1] ] tmpArray1 = arraySample[ arrayIndex[indexTRgn+1]+arrayGroupIndex[indexGrp]: arrayIndex[indexTRgn+1]+arrayGroupIndex[indexGrp+1] ] arrayGrouped0[indexGrp] = np.mean(tmpArray0) - tmpMean0 arrayGrouped1[indexGrp] = np.mean(tmpArray1) - tmpMean1 # 两个相邻周期区间的 对应组 分别两两 求 SMAPE arrayGroupMAPE = np.abs((arrayGrouped1 - arrayGrouped0) / np.mean([tmpMean0, tmpMean1]) * 100) if algorithm != "mean": # 临近搜索时, 不用均值, 而用最值, 这样才更能体现出波形的非周期性 TRegionMAPE = np.max( arrayGroupMAPE ) else: # wfr 这里改成根据区间采样点数量加权平均 arrayWeight = arrayGroupIndex[1:] - arrayGroupIndex[:-1] TRegionMAPE = np.average(arrayGroupMAPE, weights=arrayWeight) # TRegionMAPE = np.mean( arrayGroupMAPE ) arrayTRegionMAPE = np.append(arrayTRegionMAPE, TRegionMAPE) # end # wfr 20210828 对于 小备选周期, 划分的周期区间比较多, 很可能有误差非常小的区间, 不应该考虑这些区间, 因为可能处于一个大周期的平台上, # 因此考虑将 arrayTRegionMAPE 分成 TRef/T 组, 取出每组中的最大误差 重新组成 tmpArray if TRef < 0 or TRef / T < 1.7: TMAPE = np.mean(arrayTRegionMAPE) TMAPEStd = np.std(arrayTRegionMAPE) else: tmpEachCount = int(np.ceil(TRef / T)) # 每组中的区间个数 tmpGrpCount = int(np.ceil(len(arrayTRegionMAPE) / tmpEachCount)) # 组数 tmpAppendCount = int(tmpGrpCount * tmpEachCount - len(arrayTRegionMAPE)) # 需要填充的元素个数 tmpArray = np.append(arrayTRegionMAPE, np.zeros(tmpAppendCount)) # 为了 rashape 而填充 0.0 元素 tmpArray = tmpArray.reshape(tmpGrpCount, -1) # reshape 完成分组 [0,1,2], [3,4,5], ... tmpArray = np.max(tmpArray, axis=1).flatten() # 每组分别求最大值 TMAPE = np.mean(tmpArray) TMAPEStd = np.std(tmpArray) return TMAPE, TMAPEStd # wfr 20210116 这里使用新方法判断是否是无周期 def TCompute(arraySample, SampleInterval, TUpBound, isPlot = False, lastT=0.0, preference=0, TCandidateExtra=np.array([])): global MAPEMax, MAPEStdMax, TLowBoundBase, TLowBound, SetTLowBound fs = 1/(SampleInterval/1000) t = (SampleInterval/1000) * np.arange(0, len(arraySample), 1) # wfr 20210109 fft 算法采样倍率, 提高该值可以增大最大可以识别的周期, 提高频率/周期的分辨率 # 频率分辨率是不变的, 周期分辨率是变化的, 周期越大分辨率越低 FFTSampleRatio = 1 # wfr 20210109 动态调节 fft算法 采样点数量, 即 FFTSampleRatio # 若 fft变换 分析出的 周期 接近 能分辨的最大周期, 则 增大 FFTSampleRatio, 再重新 分析 for i in range(2): num_fft = FFTSampleRatio * t.size # 傅里叶变换 idx = fftfreq(num_fft, 1/fs) arrayX = idx[:num_fft//2] arrayY = fft(arraySample, num_fft) arrayY = np.abs(arrayY) arrayY = arrayY[:num_fft//2] # arrayLogY = np.log10(arrayY[:num_fft//2]) listPeakIndex, Properties = find_peaks( arrayY ) # 取出峰值处的 频率 和 幅值 arrayPeakX = arrayX[listPeakIndex] arrayPeak = arrayY[listPeakIndex] arrayPeakIndex = np.argsort(-1 * arrayPeak) # 将 arrayPeak 降序排列得到的 索引 # print("TCompute: len of arrayPeakX = {0}".format(len(arrayPeakX))) # print("arrayPeak = {0}".format(arrayPeak[arrayPeakIndex[:9]])) # print("Freq = {0}".format(arrayPeakX[arrayPeakIndex[:9]])) # print("T = {0}".format(1/arrayPeakX[arrayPeakIndex[:9]])) # 取出振幅最大的前几个周期, 且不大于周期上界 arrayT = 1 / arrayPeakX[arrayPeakIndex] # 先按照峰值大小 降序排列 arrayPeakOrder = arrayPeak[arrayPeakIndex] # 先排除大于周期上限的周期 tmpPeakOrder = arrayPeakOrder[(arrayT <= TUpBound)] arrayT = arrayT[(arrayT <= TUpBound)] # 再排除峰值不够大的周期 # arrayT = arrayT[(tmpPeakOrder > 0.65 * tmpPeakOrder[0])] arrayT = arrayT[(tmpPeakOrder > 0.60 * tmpPeakOrder[0])] arrayT = arrayT[:6] if len(arrayT) == 0: print("TCompute ERROR: 没有备选周期!") return TUpBound, MAPEMax if i == 0: # wfr 20210109 计算 能分辨的次最大周期, 常数 3 代表次最大周期, 常数 2 代表最大周期 TUpResolution = FFTSampleRatio * len(arraySample) / (0.5*fs) / 3 if np.max(arrayT) > TUpResolution: FFTSampleRatio = np.ceil( TUpBound / len(arraySample) * (0.5*fs) * 3 ) else: break print("arrayT = {0}".format(arrayT)) if isPlot == True: # plt.clf() # plt.ion() plt.figure(figsize=(14, 6)) ax = plt.subplot(211) ax.set_title('original signal') plt.plot(t, arraySample) ax = plt.subplot(212) ax.set_title('fft transform') plt.plot(arrayX, 20 * np.log10(arrayY)) ax.set_xlim(0, 2) # ax.set_xlim(0, 5) global FigCount import os WorkDir = "./" FigFile = os.path.join(WorkDir, "TCompute" + str(FigCount) + ".png") plt.savefig(FigFile) FigCount += 1 # plt.show() plt.close() if len(listPeakIndex) == 0: print("TCompute ERROR: 计算备选频率/周期出错") return TUpBound, MAPEMax # wfr 20210107 求近似最小公倍数周期, 以代替较小的(小于周期下限)周期 arrayFactor = arrayT[ (arrayT < TLowBound) ] if len(arrayFactor) > 0: # wfr 20210108 公倍数周期的最大因子, 后续 MAPE计算 以及 邻近搜索 会用到 FactorMax = np.max(arrayFactor) # wfr 20210107 小于阈值的备选周期 中的 最大值 # print("FactorMax = {0}".format(FactorMax)) arrayALCM = ApproximateLCM(arrayFactor, TLowBound) # print("ALCM = {0}".format(arrayALCM)) arrayScaleT = np.delete(arrayT, np.argwhere(arrayT < TLowBound).flatten()) # wfr 20210107 删除小于阈值的备选周期 # arrayScaleT = np.append(arrayScaleT, arrayFactor[0]) # arrayScaleT = np.insert(arrayScaleT, 0, arrayFactor[0]) # arrayScaleT = np.insert(arrayScaleT, 0, FactorMax) # wfr 20210107 保留 小于阈值的备选周期 中的 最大值 arrayScaleT = np.append(arrayScaleT, FactorMax) # wfr 20210107 保留 小于阈值的备选周期 中的 最大值 LenTNormal = len(arrayScaleT) # wfr 20210108 普通周期的数量 arrayScaleT = np.append(arrayScaleT, arrayALCM) else: arrayScaleT = arrayT LenTNormal = len(arrayScaleT) # wfr 20210108 普通周期的数量 FactorMax = 1e4 arrayScaleT = np.append(arrayScaleT, TCandidateExtra) print("arrayScaleT = {0}".format(arrayScaleT[:9])) if int(preference) == int(1): T_lower = lastT * 0.8 T_upper = lastT * 1.5 elif int(preference) == int(-1): T_lower = lastT * 0.66 T_upper = lastT * 1.25 if int(preference) != int(0): print("lastT = {:.2f}, set lowerT = {:.2f}, upperT = {:.2f}".format(lastT, T_lower, T_upper)) print("arrayScaleT remove: [", end="") tmpArr = arrayScaleT.tolist() for cand_T in arrayScaleT: if cand_T < T_lower or cand_T > T_upper: print("{:.2f}, ".format(cand_T), end="") tmpArr.remove(cand_T) arrayScaleT = np.array(tmpArr) print("]") if len(arrayScaleT) <= int(0): print("arrayScaleT add: [", end="") for cand_T in np.arange(T_lower, T_upper, (T_upper-T_lower-1e-15)/4): print("{:.2f}, ".format(cand_T), end="") arrayScaleT = np.append(arrayScaleT, cand_T) print("]") else: pass # print("==>no preference") sys.stdout.flush() arrayTMAPE = MAPEMax * np.ones(len(arrayScaleT)) arrayTMAPEStd = MAPEStdMax * np.ones(len(arrayScaleT)) TInit = arrayScaleT[0] for i in range( len(arrayScaleT) ): # 对于每个猜测的周期长度 arrayTMAPE[i], arrayTMAPEStd[i] = DistributionMAPE(arrayScaleT[i], arraySample, t, "mean", TInit, np.max(arrayScaleT)) print("arrayTMAPE = {0}".format(arrayTMAPE)) # 如果峰值最高的周期的 MAPE 没有被计算, 即测量时间不够长, 就直接返回不稳定 if sum(arrayTMAPE > MAPEMax - 1) > 0: # if arrayTMAPE[0] > MAPEMax - 1 or int(2 * sum(arrayTMAPE > MAPEMax - 1)) >= int(len(arrayTMAPE)): tmpT = np.max(arrayScaleT) # if int(2 * sum(arrayTMAPE > MAPEMax - 1)) >= int(len(arrayTMAPE)): # tmpT = np.max(arrayScaleT) # else: # tmpT = arrayScaleT[0] print("TCompute: 本次测量时间不够长") print("TCompute: TOpt = {0:.2f} s".format(arrayScaleT[0])) print("TCompute: MAPEOpt = {0:.2f}".format(arrayTMAPE[0])) # return arrayScaleT[0], arrayTMAPE[0] return tmpT, -1 # wfr 20210129 修改根据 arrayTMAPE 和 arrayTMAPEStd 判断最优周期的规则 # 先将 arrayTMAPEStdIndex 中的 0 都赋值成 其中的 非0最小值 if np.sum(arrayTMAPEStd < 1e-6) == len(arrayTMAPEStd): arrayTMAPEStd[:] = 1 elif np.sum(arrayTMAPEStd < 1e-6) > 0: arrayTMAPEStd[arrayTMAPEStd < 1e-6] = np.min(arrayTMAPEStd[arrayTMAPEStd > 1e-6]) # arrayTError = arrayTMAPE * arrayTMAPEStd # 将两数组相乘, 用乘积来评价 周期 的误差 arrayTIndex = np.argsort(arrayTMAPE) # 将 arrayTmp 升序排序 得到的 索引 IndexOpt = arrayTIndex[0] # # print("arrayTMAPE = {0}".format(arrayTMAPE[:9])) # arrayTMAPEIndex = np.argsort(arrayTMAPE) # 将 arrayDistributionErrPct 升序排序 得到的 索引 # arrayTMAPEStdIndex = np.argsort(arrayTMAPEStd) # 将 arrayTMAPEStdIndex 升序排序 得到的 索引 # # # wfr 20210127 如果最小 MAPE 和 最小 MAPEStd 对应的 T 相同 # if arrayTMAPEIndex[0] == arrayTMAPEStdIndex[0]: # IndexOpt = arrayTMAPEIndex[0] # else: # wfr 20210127 如果最小 MAPE 和 最小 MAPEStd 对应的 T 不相同 # arrayPartIndex = np.argwhere(arrayTMAPE - arrayTMAPE[arrayTMAPEIndex[0]] < 0.08 * np.max(arrayScaleT)) # # arrayPartIndex = np.argwhere(arrayTMAPE < 1.5 * arrayTMAPE[arrayTMAPEIndex[0]]) # arrayPartIndex = arrayPartIndex[:,0] # tmp = np.argsort(arrayTMAPEStd[arrayPartIndex]) # 将 arrayTMAPEStdIndex 升序排序 得到的 索引 # IndexOpt = arrayPartIndex[tmp[0]] # wfr 20210108 判断最优周期是 公倍数周期 还是 普通周期, 从而设置 公倍数周期的最大因子, 以支持后续 MAPE 计算 TOpt = arrayScaleT[IndexOpt] MAPEOpt = arrayTMAPE[IndexOpt] MAPEStdOpt = arrayTMAPEStd[IndexOpt] np.set_printoptions(precision=2, suppress=True) # print("TOpt = {0}".format(TOpt)) # print("arrayScaleT: {0}".format(arrayScaleT)) # # print("arrayTError: {0}".format(arrayTError)) # print("arrayTMAPE: {0}".format(arrayTMAPE)) # # print("arrayTMAPEStd: {0}".format(arrayTMAPEStd)) for i in range(3): # wfr 20210109 因为 fft变换 频率分辨率是不变的, 周期是频率的倒数, 其分辨率是变化的 # 频率越低/周期越长, 周期分辨率越低, 所以需要动态调节邻近搜索区间 # 频谱分析得到的周期可能有误差(因为周期分辨率的限制), 因此需要在此周期附近进行局部搜索, 得到更精确的周期 # wfr 20210109 中心频率 及 频率刻度 FreqCenter = 1 / TOpt FreqResolution = (0.5 * fs) / len(arraySample) # wfr 20210109 先计算频率邻近区间 FreqLow = FreqCenter - 0.7 * FreqResolution FreqUp = FreqCenter + 0.7 * FreqResolution # wfr 20210109 再计算周期邻近区间 TLow = 1 / FreqUp if FreqLow > 0: TUp = 1 / FreqLow else: TUp = 1.5 * TOpt # wfr 20210113 确保邻近搜索范围大于等于 +/-15% TLow = np.min([0.85 * TOpt, TLow]) TUp = np.max([1.15 * TOpt, TUp]) # wfr 20210109 用因子限制上下界, 防止对于公倍数周期过度搜索 TLow = np.max([(TOpt-0.5*FactorMax), TLow]) # TLow = np.max([TLowBound, TLow]) # wfr 20210121 搜索区间下限不小于 TUpBound TUp = np.min([(TOpt+0.5*FactorMax), TUp]) # wfr 20210109 区间最多分8份 TStep = (TUp - TLow) / 10 TStep = np.min([TStep, 1]) # wfr 20210113 步长的上限是 1s TStep = np.max([TStep, 1 * SampleInterval/1000]) if TUp - TLow <= TStep: return TOpt, MAPEOpt # wfr 20210109 生成邻近搜索序列, 要包括区间端点 arraySearchT = np.arange(TLow, TUp, TStep) arraySearchT = np.append(arraySearchT, TUp) arraySearchT = np.append(arraySearchT, TOpt) arraySearchTMAPE = MAPEMax * np.ones(len(arraySearchT)) arraySearchTMAPEStd = MAPEStdMax * np.ones(len(arraySearchT)) # 对于每个备选的周期, 计算 MAPE, MAPE越小越好, 越小说明功率变化/分布情况越一致 TInit = TOpt for i in range( len(arraySearchT) ): arraySearchTMAPE[i], arraySearchTMAPEStd[i] = DistributionMAPE(arraySearchT[i], arraySample, t, "mean", TInit, np.max(arrayScaleT)) # arrayTIndex = np.argsort(arraySearchTMAPE) # 将 arrayTmp 升序排序 得到的 索引 # IndexOpt = arrayTIndex[0] IndexOpt = np.argmin(arraySearchTMAPE) TOpt = arraySearchT[IndexOpt] MAPEOpt = arraySearchTMAPE[IndexOpt] if IndexOpt == len(arraySearchT) - 1 or (0.2 * (len(arraySearchT)-1) < IndexOpt and IndexOpt < 0.8 * (len(arraySearchT)-1)): break print("TCompute: arraySearchT: {0}".format(arraySearchT)) # print("TCompute: arrayTError: {0}".format(arrayTError)) print("TCompute: arraySearchTMAPE: {0}".format(arraySearchTMAPE)) # print("TCompute: arraySearchTMAPEStd: {0}".format(arraySearchTMAPEStd)) # wfr 20210108 放大太短的周期 if TOpt < TLowBound: # wfr 20210120 自适应调节周期下限, 保证不会相差一个周期, 或者相差一个周期, 但是仍然在 10% 以内 # if SetTLowBound == False and TLowBound / TOpt > 6: # TLowBound = np.ceil(10 * TOpt) # SetTLowBound = True TOpt = TOpt * np.round(TLowBound / TOpt) print("TCompute: TOpt = {0:.2f} s".format(TOpt)) # print("TCompute: MAPEOpt = {0:.2f}".format(MAPEOpt)) # print("") return TOpt, MAPEOpt def NotPeriodic(arraySample, SampleInterval, T): TFixed = 8 N = 4 SigmaMax = 1 SigmaPctMax = 0.04 MeanErrMax = 0.04 DiffErrMax = 0.20 arraySample = arraySample[5:-5] # 采样时间过短 直接返回 False if (len(arraySample)-1) * (SampleInterval/1000) < N * TFixed: if T < TFixed: TFixed = T if (len(arraySample)-1) * (SampleInterval/1000) < N * TFixed: return False Step = int(TFixed / (SampleInterval / 1000)) arrayRegion = np.array([]) arrayMean = np.array([]) arrayStd = np.array([]) arrayDiffMax = np.array([]) for i in range(N): begin = len(arraySample) - ((i+1) * Step) end = len(arraySample) - (i * Step) arrayTmp = np.array(arraySample[begin:end]) arrayRegion = np.append(arrayRegion, arrayTmp) arrayMean = np.append(arrayMean, np.mean(arrayTmp)) arrayStd = np.append(arrayStd, np.std(arrayTmp)) arrayDiffMax = np.append(arrayDiffMax, np.max(np.abs( arrayTmp - arrayMean[i] ))) # 如果相邻两区间平均功率相差过大则认为不是无周期 for i in range(N-1): if np.abs(arrayMean[i]-arrayMean[i+1]) / (np.mean(arrayMean[i:i+1])) > MeanErrMax: return False # 如果 标准差 过大则认为不是无周期 # if np.max(arrayStd) > SigmaMax: # return False if np.max(arrayStd/arrayMean) > SigmaPctMax: return False # 如果 最大/最小值 超限则认为不是无周期 if np.max(arrayDiffMax / arrayMean) > DiffErrMax: return False print("NotPeriodic: 无周期") return True # wfr 20201230 def T_SpectrumAnalysis(listSample, SampleInterval, TUpBound, MeasureTFactor, TraceFileName, StrictMode="normal", lastT=-1, preference=0, isPlot = False): global MAPEMax, FigCount, TLowBoundBase, TLowBound, SetTLowBound FigCount = 0 TLowBound = TLowBoundBase SetTLowBound = False # print("SpectrumAnalysis: 采样点数量 = {0}".format(len(listSample))) arraySample = np.array(listSample) # 去除刚开始的采样点, 因为可能异常偏低 MeasureDuration = (len(arraySample)-1) * (SampleInterval/1000) arrayT = np.array([]) arraySMAPE = np.array([]) isStable = False MeasureDurationNext = -1 # 保存原始数据到文件 if len(TraceFileName) > 0: FileDir = "./"+TraceFileName+".pkl" pickle.dump(listSample, open(FileDir, "wb")) # 低通滤波 # 采样频率 10Hz, 要滤除 Threshold Hz 以上的频率成分 # SampleFreq = 1/(SampleInterval/1000) # Threshold = 2 # Wn = 2 * Threshold / SampleFreq # b, a = signal.butter(8, Wn, 'lowpass') # SampleFilted = signal.filtfilt(b, a, arraySample) SampleFilted = arraySample tmpT, tmpSMAPE = TCompute(SampleFilted, SampleInterval, TUpBound, isPlot) # 如果测量时间不够长, 就直接返回不稳定 # wfr 20211027 尽早判断出是非周期应用, 尽早返回 if MeasureDuration >= 3 * TUpBound and tmpT > TUpBound: T = TUpBound isStable = False MeasureDurationNext = -1 return T, isStable, MeasureDurationNext elif MeasureDuration >= 3 * TUpBound: tmpIndex = int(1/(SampleInterval/1000) * 0.33 * TUpBound) tmpT1, tmpSMAPE1 = TCompute(SampleFilted[tmpIndex:], SampleInterval, TUpBound, isPlot) tmpIndex = int(1/(SampleInterval/1000) * 0.66 * TUpBound) tmpT2, tmpSMAPE2 = TCompute(SampleFilted[tmpIndex:], SampleInterval, TUpBound, isPlot) tmpArrayT = np.array([tmpT, tmpT1, tmpT2]) SMAPE = abs( (np.max(tmpArrayT)-np.min(tmpArrayT)) / np.mean(tmpArrayT) ) if SMAPE > 0.3: T = min(TUpBound, tmpT) isStable = False MeasureDurationNext = -1 return T, isStable, MeasureDurationNext elif tmpT > (0.5 * MeasureDuration): T = tmpT isStable = False if MeasureDuration < 3 * TUpBound: MeasureDurationNext = max(0.5 * tmpT, (3.1 * TUpBound - MeasureDuration)) # 测量够 3.1倍 周期 else: MeasureDurationNext = max(0.5 * tmpT, (MeasureTFactor * tmpT - MeasureDuration)) # 测量够 5倍 周期 print("T_SpectrumAnalysis: 本次测量时间不够长") print("T_SpectrumAnalysis: TOpt = {0:.2f} s".format(tmpT)) print("T_SpectrumAnalysis: isStable = {0}".format(isStable)) print("T_SpectrumAnalysis: MeasureDurationNext = {0}".format(MeasureDurationNext)) return T, isStable, MeasureDurationNext arrayT = np.append(arrayT, tmpT) arraySMAPE = np.append(arraySMAPE, tmpSMAPE) StepFactor = 0.5 MinStep = MeasureDuration / 10 tmpStep = np.max([tmpT * StepFactor, MinStep]) MeasureDurationLeft = MeasureDuration - tmpStep while MeasureDurationLeft / np.max(arrayT) >= 2.8: # 计算剩余采样点的起始 index tmpIndexBegin = int( (MeasureDuration-MeasureDurationLeft) / (SampleInterval/1000) ) arrayPart = SampleFilted[tmpIndexBegin:] # tmpT, tmpSMAPE = TCompute(arrayPart, SampleInterval, TUpBound, isPlot, lastT, int(preference), arrayT) # tmpT, tmpSMAPE = TCompute(arrayPart, SampleInterval, TUpBound, isPlot, lastT, int(preference), arrayT[-1]) tmpT, tmpSMAPE = TCompute(arrayPart, SampleInterval, TUpBound, isPlot, lastT, int(preference), []) arrayT = np.append(arrayT, tmpT) arraySMAPE = np.append(arraySMAPE, tmpSMAPE) if tmpT > (0.5 * MeasureDurationLeft): T = tmpT isStable = False if MeasureDuration < 3 * TUpBound: MeasureDurationNext = max(0.5 * tmpT, (3.1 * TUpBound - MeasureDuration)) # 测量够 3.1倍 周期 else: MeasureDurationNext = max(0.5 * tmpT, (MeasureTFactor * tmpT - MeasureDuration)) # 测量够 5倍 周期 print("T_SpectrumAnalysis: 本次测量时间不够长") print("T_SpectrumAnalysis: TOpt = {0:.2f} s".format(tmpT)) print("T_SpectrumAnalysis: isStable = {0}".format(isStable)) print("T_SpectrumAnalysis: MeasureDurationNext = {0}".format(MeasureDurationNext)) return T, isStable, MeasureDurationNext # 每次减去上次周期的长度, 且设置每次步长的下限, 防止步长太小 tmpStep = np.max([tmpT * StepFactor, MinStep]) MeasureDurationLeft = MeasureDurationLeft - tmpStep # MeasureDurationLeft = MeasureDurationLeft - np.mean(arrayT) print("T_SpectrumAnalysis: arrayT: {0}".format(arrayT)) print("T_SpectrumAnalysis: arraySMAPE: {0}".format(arraySMAPE)) # wfr 20210828 如果 测量区间长度 / 最好周期 < MeasureTFactor 则认为 测量时间不够长 tmpIndex = np.argwhere(arraySMAPE < 0).flatten() # SMAPE < 0 说明 TCompute 认为测量时间不够长 arraySMAPE[tmpIndex] = np.min(arraySMAPE) tmpIndex = np.argsort(arraySMAPE).flatten() # 将 tmpArraySMAPE 升序排列得到的 索引 # tmpT = np.max(arrayT[tmpIndex]) tmpT = arrayT[0] if MeasureDuration / tmpT < MeasureTFactor: T = tmpT isStable = False if MeasureDuration < 3 * TUpBound: MeasureDurationNext = max(0.5 * tmpT, (3.1 * TUpBound - MeasureDuration)) # 测量够 3.1倍 周期 else: MeasureDurationNext = max(0.5 * tmpT, (MeasureTFactor * tmpT - MeasureDuration)) # 测量够 5倍 周期 print("T_SpectrumAnalysis: 本次测量时间不够长") print("T_SpectrumAnalysis: TOpt = {0:.2f} s".format(T)) print("T_SpectrumAnalysis: isStable = {0}".format(isStable)) print("T_SpectrumAnalysis: MeasureDurationNext = {0}".format(MeasureDurationNext)) return T, isStable, MeasureDurationNext if StrictMode == "strict": tmpThreshold = 0.10 elif StrictMode == "relaxed": tmpThreshold = 0.30 else: tmpThreshold = 0.15 tmpThreshold1 = tmpThreshold + 0.05 LenT = len(arrayT) LenMin = 3 LenMax = 8 tmpIndex = np.argsort(arraySMAPE) # 将 tmpArraySMAPE 升序排列得到的 索引 T = arrayT[tmpIndex[0]] tmpIndex = np.argsort(arrayT) # 将 tmpArraySMAPE 升序排列得到的 索引 IndexMiddle = tmpIndex[round(len(tmpIndex)/2)] TMiddle = arrayT[IndexMiddle] if LenT < LenMin: # wfr 测量区间还比较短 T = np.mean(arrayT[(0.65*T<arrayT)&(arrayT<1.35*T)]) SMAPE = abs( (np.max(arrayT)-np.min(arrayT)) / np.mean(arrayT) ) print("T_SpectrumAnalysis: SMAPE = {0:.2f}".format(SMAPE)) isStable = False if MeasureDuration > 2.1 * TUpBound and SMAPE > tmpThreshold: MeasureDurationNext = -1 # 测量够 5倍 周期 elif MeasureDuration < MeasureTFactor * np.max(arrayT): # MeasureDurationNext = MeasureTFactor * np.max(arrayT) - MeasureDuration + 5 # MeasureDurationNext = np.ceil(MeasureDuration / np.max(arrayT)) * np.max(arrayT) - MeasureDuration + 5 tmpNext = np.max([np.max(arrayT), MinStep]) if tmpNext + MeasureDuration < MeasureTFactor * np.max(arrayT): MeasureDurationNext = tmpNext else: MeasureDurationNext = MeasureTFactor * np.max(arrayT) - MeasureDuration + 5 else: MeasureDurationNext = np.ceil(MeasureDuration / np.max(arrayT)) * np.max(arrayT) - MeasureDuration + 5 elif LenMin <= LenT: tmp = min(LenT, LenMax) if LenT > 8: tmpIndexBegin = int(round(0.2 * LenT)) tmpIndexEnd = int(round(0.8 * LenT)) - 1 tmpIndex = np.arange(tmpIndexBegin,tmpIndexEnd) elif LenT >= 4: # wfr 20211012 排除部分异常值 # tmpIndex = np.argwhere((0.65*T<arrayT) & (arrayT<1.35*T)).flatten() tmpIndex = np.argwhere((0.60*TMiddle<arrayT) & (arrayT<1.35*TMiddle)).flatten() else: tmpIndexBegin = max(0, LenT-tmp) tmpIndexEnd = LenT tmpIndex = np.arange(tmpIndexBegin,tmpIndexEnd) tmpArrayT = np.array(arrayT[tmpIndex]) print("T_SpectrumAnalysis: tmpArrayT = {}".format(tmpArrayT)) tmpArraySMAPE = np.array(arraySMAPE[tmpIndex]) SMAPE = abs( (np.max(tmpArrayT)-np.min(tmpArrayT)) / np.mean(tmpArrayT) ) print("T_SpectrumAnalysis: SMAPE = {0:.2f}".format(SMAPE)) tmpIndex = np.argsort(tmpArraySMAPE) # 将 tmpArraySMAPE 升序排列得到的 索引 T = tmpArrayT[tmpIndex[0]] T = np.mean(tmpArrayT[(0.65*T<tmpArrayT)&(tmpArrayT<1.35*T)]) if SMAPE < tmpThreshold: # wfr 20201231 对称平均百分误差较小则认为稳定, 停止测量 isStable = True MeasureDurationNext = -1 elif tmpThreshold <= SMAPE and SMAPE < tmpThreshold1: isStable = False if MeasureDuration > 2.1 * TUpBound: MeasureDurationNext = -1 # 测量够 MeasureTFactor倍 周期 elif MeasureDuration < MeasureTFactor * np.max(arrayT): # MeasureDurationNext = MeasureTFactor * np.max(arrayT) - MeasureDuration + 5 tmpNext = np.max([np.max(arrayT), MeasureDuration / 10]) if tmpNext + MeasureDuration < MeasureTFactor * np.max(arrayT): MeasureDurationNext = tmpNext else: MeasureDurationNext = MeasureTFactor * np.max(arrayT) - MeasureDuration + 5 else: MeasureDurationNext = np.ceil(MeasureDuration / np.max(arrayT)) * np.max(arrayT) - MeasureDuration + 5 elif tmpThreshold1 <= SMAPE: # 最近几次周期相差较大, 测量区间远大于最近的最大周期 isStable = False if MeasureDuration > 2.1 * TUpBound: MeasureDurationNext = -1 elif MeasureDuration > TUpBound and T < 0.5 * TUpBound: MeasureDurationNext = -1 elif MeasureDuration >= 1.3 * MeasureTFactor * np.max(arrayT): MeasureDurationNext = -1 else: tmpTMax = np.max(tmpArrayT) MeasureDurationNext = MeasureTFactor * tmpTMax - MeasureDuration if MeasureDurationNext < 0: MeasureDurationNext = tmpTMax * ( np.ceil(MeasureDuration/tmpTMax) + 1 - MeasureTFactor ) if 0 < MeasureDurationNext and MeasureDurationNext < 5: # wfr 20210110 下次等待测量时间要 > 5s MeasureDurationNext += 5 # wfr 20210116 这里使用新方法判断是否是无周期 5 * T if isStable == False and SMAPE > 0.4 and (LenT >= LenMax or MeasureDuration >= 5 * T or MeasureDuration > TUpBound): if True == NotPeriodic(arraySample, SampleInterval, T): # if T < TLowBound: # T = np.ceil(TLowBound / T) * T MeasureDurationNext = -1 if MeasureDurationNext > 0: MeasureDurationNext = np.max([MeasureDurationNext, 0.5 * tmpT, (MeasureTFactor * tmpT - MeasureDuration)]) # 测量够 5倍 周期 print("T_SpectrumAnalysis: TOpt = {0:.2f} s".format(T)) print("T_SpectrumAnalysis: isStable = {0}".format(isStable)) print("T_SpectrumAnalysis: MeasureDurationNext = {0}".format(MeasureDurationNext)) return T, isStable, MeasureDurationNext def TComputeFFT(arraySample, SampleInterval, TUpBound, isPlot = False): fs = 1/(SampleInterval/1000) t = (SampleInterval/1000) * np.arange(0, len(arraySample), 1) num_fft = t.size # 傅里叶变换 idx = fftfreq(num_fft, 1/fs) arrayX = idx[:num_fft//2] arrayY = fft(arraySample, num_fft) arrayY = np.abs(arrayY) arrayY = arrayY[:num_fft//2] # arrayLogY = np.log10(arrayY[:num_fft//2]) listPeakIndex, Properties = find_peaks( arrayY ) # 取出峰值处的 频率 和 幅值 arrayPeakX = arrayX[listPeakIndex] arrayPeak = arrayY[listPeakIndex] arrayPeakIndex = np.argsort(-1 * arrayPeak) # 将 arrayPeak 降序排列得到的 索引 # print("TCompute: len of arrayPeakX = {0}".format(len(arrayPeakX))) # print("arrayPeak = {0}".format(arrayPeak[arrayPeakIndex[:9]])) # print("Freq = {0}".format(arrayPeakX[arrayPeakIndex[:9]])) # print("T = {0}".format(1/arrayPeakX[arrayPeakIndex[:9]])) # 取出振幅最大的前几个周期 arrayT = 1 / arrayPeakX[arrayPeakIndex] # 先按照峰值大小 降序排列 arrayPeakOrder = arrayPeak[arrayPeakIndex] # 再排除峰值不够大的周期 arrayT = arrayT[(arrayPeakOrder > 0.65 * arrayPeakOrder[0])] print("TComputeFFT: T = {0:.2f} s".format(arrayT[0])) sys.stdout.flush return arrayT[0] def T_FFT(listSample, SampleInterval, TUpBound, MeasureTFactor, TraceFileName, isPlot = False): T = 1.0 arraySample = np.array(listSample) MeasureDuration = (len(arraySample)-1) * (SampleInterval/1000) MeasureDurationNext = -1 # 保存原始数据到文件 if len(TraceFileName) > 0: FileDir = "./"+TraceFileName+".pkl" pickle.dump(listSample, open(FileDir, "wb")) T = TComputeFFT(arraySample, SampleInterval, TUpBound, isPlot) # 如果测量时间不够长, 就直接返回不稳定 if MeasureTFactor * T > MeasureDuration: MeasureDurationNext = max(0.5 * T, (MeasureTFactor * T - MeasureDuration)) # 测量够 3倍 周期 print("T_FFT: 本次测量时间不够长") print("T_FFT: T = {0:.2f} s".format(T)) print("T_FFT: MeasureDurationNext = {}".format(MeasureDurationNext)) return T, MeasureDurationNext
42.851297
153
0.613038
0
0
0
0
0
0
0
0
15,859
0.329114
6757319350181b82afbdb20fa5b589436eb598b6
3,623
py
Python
slippy/core/tests/test_materials.py
KDriesen/slippy
816723fe6ab9f5ed26b14b4fe0f66423649b85e6
[ "MIT" ]
12
2020-12-06T15:30:06.000Z
2021-12-14T06:37:15.000Z
slippy/core/tests/test_materials.py
KDriesen/slippy
816723fe6ab9f5ed26b14b4fe0f66423649b85e6
[ "MIT" ]
null
null
null
slippy/core/tests/test_materials.py
KDriesen/slippy
816723fe6ab9f5ed26b14b4fe0f66423649b85e6
[ "MIT" ]
5
2021-03-18T05:53:11.000Z
2022-02-16T15:18:43.000Z
import numpy as np import numpy.testing as npt import slippy import slippy.core as core """ If you add a material you need to add the properties that it will be tested with to the material_parameters dict, the key should be the name of the class (what ever it is declared as after the class key word). The value should be a tuple of dicts: The first dict in the tuple will be unpacked to instantiate the class, The second will be used with the displacement from loads method The third will be used with the loads from displacement method to ensure that the methods are inverses of each other If there is a limit the applicability of the displacements from loads method (such as for a perfectly plastic material the _max_load key word should be set in the second dict. For more complex behaviour please also implement your own tests """ material_parameters = { 'Elastic': ({'name': 'steel_5', 'properties': {'E': 200e9, 'v': 0.3}}, {'grid_spacing': 0.01, 'simple': True}, {'grid_spacing': 0.01, 'simple': True, 'tol': 1e-9}), 'Rigid': ({}, {}, {}) } exceptions = [core.Rigid] def test_materials_basic(): # check that one of influence matrix or displacement from loading is given for material in core.materials._IMMaterial._subclass_registry: if material in exceptions: continue try: mat_params = material_parameters[material.material_type] except KeyError: raise AssertionError(f"Material test parameters are not specified, for material {material.material_type}") mat_instance = material(**mat_params[0]) max_load = mat_params[1].pop('_max_load', 1) np.random.seed(0) loads = np.random.rand(16, 16) * max_load # check that the loads and displacement functions are inverse of each other for direction in {'x', 'y', 'z'}: load_in_direction = {direction: loads} displacement = mat_instance.displacement_from_surface_loads(load_in_direction, **mat_params[1]) set_disp = displacement[direction] loads_calc = mat_instance.loads_from_surface_displacement(displacements={direction: set_disp}, **mat_params[2]) npt.assert_allclose(loads, slippy.asnumpy(loads_calc[direction]), atol=max_load * 0.02) def test_elastic_coupled(): mat = core.Elastic('steel_6', {'E': 200e9, 'v': 0.3}) np.random.seed(0) loads1 = np.random.rand(16, 16) loads2 = np.random.rand(16, 16) directions = 'xyzx' for i in range(3): dir_1 = directions[i] dir_2 = directions[i+1] loads_in_direction = {dir_1: loads1, dir_2: loads2} displacement = mat.displacement_from_surface_loads(loads_in_direction, grid_spacing=0.01, simple=True) loads_calc = mat.loads_from_surface_displacement(displacements=displacement, grid_spacing=0.01, simple=True) for direction in [dir_1, dir_2]: npt.assert_allclose(loads_in_direction[direction], slippy.asnumpy(loads_calc[direction]), atol=0.02) displacement = mat.displacement_from_surface_loads(loads_in_direction, grid_spacing=0.01, simple=False) loads_calc = mat.loads_from_surface_displacement(displacements=displacement, grid_spacing=0.01, simple=False) for direction in [dir_1, dir_2]: npt.assert_allclose(loads_in_direction[direction], slippy.asnumpy(loads_calc[direction]), atol=0.02)
43.650602
118
0.666299
0
0
0
0
0
0
0
0
1,121
0.309412
675790d51afdb63e5ecaf1442d2db56ff733f532
2,602
py
Python
python/dash_tools/restore_from_bup.py
Dash-Industry-Forum/media-tools
66be01ce09c8998d47d05729e0721857b2517017
[ "BSD-3-Clause" ]
60
2017-01-02T07:44:17.000Z
2022-03-29T07:39:53.000Z
media-tools/python/dash_tools/restore_from_bup.py
roolrz/ABR-Alg-Implementation
02ba8fbc804eeabeae1dcd51d359c6b0a2dc7566
[ "MIT" ]
4
2018-03-23T07:56:21.000Z
2021-11-22T06:45:12.000Z
media-tools/python/dash_tools/restore_from_bup.py
roolrz/ABR-Alg-Implementation
02ba8fbc804eeabeae1dcd51d359c6b0a2dc7566
[ "MIT" ]
36
2016-08-04T14:28:30.000Z
2022-03-20T09:41:17.000Z
#!/usr/bin/env python """Restore files with ending BACKUP_ENDING to original files.""" # The copyright in this software is being made available under the BSD License, # included below. This software may be subject to other third party and contributor # rights, including patent rights, and no such rights are granted under this license. # # Copyright (c) 2016, Dash Industry Forum. # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation and/or # other materials provided with the distribution. # * Neither the name of Dash Industry Forum nor the names of its # contributors may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS AS IS AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import os import sys from backup_handler import BACKUP_ENDING def main(): "Command-line function." from optparse import OptionParser parser = OptionParser() #pylint: disable=unused-variable (options, args) = parser.parse_args() if len(args) < 1: parser.error("Wrong number of arguments") sys.exit(1) for file_name in args: if file_name.endswith(BACKUP_ENDING): old_name = file_name[:-len(BACKUP_ENDING)] print("moving %s to %s" % (file_name, old_name)) if os.path.exists(old_name): os.unlink(old_name) os.rename(file_name, old_name) continue if __name__ == "__main__": main()
41.967742
85
0.737894
0
0
0
0
0
0
0
0
1,965
0.755188
67588c7659b325ae0aa6ae1b1ce63ec6f84fa51d
4,851
py
Python
src/opendr/simulation/human_model_generation/utilities/joint_extractor.py
makistsantekidis/opendr
07dee3b59d3487b9c5a93d6946317178a02c9890
[ "Apache-2.0" ]
3
2021-06-24T01:54:25.000Z
2021-12-12T16:21:24.000Z
src/opendr/simulation/human_model_generation/utilities/joint_extractor.py
makistsantekidis/opendr
07dee3b59d3487b9c5a93d6946317178a02c9890
[ "Apache-2.0" ]
79
2021-06-23T10:40:10.000Z
2021-12-16T07:59:42.000Z
src/opendr/simulation/human_model_generation/utilities/joint_extractor.py
makistsantekidis/opendr
07dee3b59d3487b9c5a93d6946317178a02c9890
[ "Apache-2.0" ]
5
2021-07-04T07:38:50.000Z
2021-12-12T16:18:47.000Z
# Copyright 2020-2021 OpenDR European Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pyglet import numpy as np import sklearn.preprocessing class Joint_extractor: def __init__(self, num_of_joints=18): self.num_of_joints = num_of_joints self.start_points = [] self.end_points = [] for j in range(18): self.start_points.append([]) self.end_points.append([]) def compute_rays(self, cv_kps, image_width, image_height): pmat = (pyglet.gl.GLdouble * 16)() mvmat = (pyglet.gl.GLdouble * 16)() view = (pyglet.gl.GLint * 4)() pyglet.gl.glGetDoublev(pyglet.gl.GL_MODELVIEW_MATRIX, mvmat) pyglet.gl.glGetDoublev(pyglet.gl.GL_PROJECTION_MATRIX, pmat) pyglet.gl.glGetIntegerv(pyglet.gl.GL_VIEWPORT, view) if cv_kps.size != 0: for i, cv_kp in enumerate(cv_kps): if cv_kp[0] != -1 and cv_kp[0] != -1: start_x = pyglet.gl.GLdouble() start_y = pyglet.gl.GLdouble() start_z = pyglet.gl.GLdouble() end_x = pyglet.gl.GLdouble() end_y = pyglet.gl.GLdouble() end_z = pyglet.gl.GLdouble() pyglet.gl.gluUnProject(cv_kp[0], image_height - cv_kp[1], 0, mvmat, pmat, view, start_x, start_y, start_z) pyglet.gl.gluUnProject(cv_kp[0], image_height - cv_kp[1], 1, mvmat, pmat, view, end_x, end_y, end_z) self.start_points[i].append(np.asarray([start_x.value, start_y.value, start_z.value])) self.end_points[i].append(np.asarray([end_x.value, end_y.value, end_z.value])) @property def compute_3D_positions(self): for i in range(self.num_of_joints): if len(self.start_points[i]) == 0 or len(self.end_points[i]) == 0: print("Failed to estimate the position of the joints...") return [[], []] points_3D = [] dists_3D = [] inds_sorted = None for i in range(self.num_of_joints): d = 100 first_time = True while d > 0.05: if first_time: s = np.asarray(self.start_points[i]) e = np.asarray(self.end_points[i]) else: s = s[inds_sorted[:-1]] e = e[inds_sorted[:-1]] v = e - s ni = sklearn.preprocessing.normalize(v, norm="l2") nx = ni[:, 0] ny = ni[:, 1] nz = ni[:, 2] sxx = np.sum(nx * nx - 1) syy = np.sum(ny * ny - 1) szz = np.sum(nz * nz - 1) sxy = np.sum(nx * ny) sxz = np.sum(nx * nz) syz = np.sum(ny * nz) S = np.asarray([np.asarray([sxx, sxy, sxz]), np.asarray([sxy, syy, syz]), np.asarray([sxz, syz, szz])]) cx = np.sum(s[:, 0] * (nx * nx - 1) + s[:, 1] * (nx * ny) + s[:, 2] * (nx * nz)) cy = np.sum(s[:, 0] * (nx * ny) + s[:, 1] * (ny * ny - 1) + s[:, 2] * (ny * nz)) cz = np.sum(s[:, 0] * (nx * nz) + s[:, 1] * (ny * nz) + s[:, 2] * (nz * nz - 1)) C = np.asarray([cx, cy, cz]) p_intersect = np.linalg.inv(np.asarray(S)).dot(C) N = s.shape[0] distances = np.zeros(N, dtype=np.float32) for j in range(N): ui = ((p_intersect - s[j, :]).dot(np.transpose(v[j, :]))) / (v[j, :].dot(v[j, :])) distances[j] = np.linalg.norm(p_intersect - s[j, :] - ui * v[j, :]) # for i=1:N %http://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html: # distances(i) = norm(cross(p_intersect-PA(i,:),p_intersect-PB(i,:))) / norm(Si(i,:)); inds_sorted = np.argsort(distances) d = distances[inds_sorted[-1]] first_time = False points_3D.append(p_intersect) dists_3D.append(distances) points_3D = np.asarray(points_3D, dtype=np.float32) dists_3D = np.asarray(dists_3D, dtype=object) return points_3D, dists_3D
46.644231
119
0.520305
4,193
0.864358
0
0
2,552
0.526077
0
0
798
0.164502
6758d510a825ee1d3b5115d43a4e119fa4dab901
956
py
Python
bluebottle/donations/migrations/0009_auto_20190130_1140.py
jayvdb/bluebottle
305fea238e6aa831598a8b227223a1a2f34c4fcc
[ "BSD-3-Clause" ]
null
null
null
bluebottle/donations/migrations/0009_auto_20190130_1140.py
jayvdb/bluebottle
305fea238e6aa831598a8b227223a1a2f34c4fcc
[ "BSD-3-Clause" ]
null
null
null
bluebottle/donations/migrations/0009_auto_20190130_1140.py
jayvdb/bluebottle
305fea238e6aa831598a8b227223a1a2f34c4fcc
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.8 on 2019-01-30 10:40 from __future__ import unicode_literals import bluebottle.utils.fields from decimal import Decimal from django.db import migrations, models import django.db.models.deletion import djmoney.models.fields class Migration(migrations.Migration): dependencies = [ ('donations', '0008_auto_20170927_1021'), ] operations = [ migrations.AddField( model_name='donation', name='payout_amount', field=bluebottle.utils.fields.MoneyField(currency_choices="[('EUR', u'Euro')]", decimal_places=2, default=Decimal('0.0'), max_digits=12, verbose_name='Payout amount'), ), migrations.AddField( model_name='donation', name='payout_amount_currency', field=djmoney.models.fields.CurrencyField(choices=[(b'EUR', 'Euro')], default='EUR', editable=False, max_length=3), ), ]
31.866667
179
0.66318
677
0.708159
0
0
0
0
0
0
223
0.233264
675926d38ebca3605bde9778baaa7d1ff647176f
95
py
Python
pickle_storage/tests/__init__.py
PyUnchained/pickle_storage
c0a978701ae59a9feeb3e14026ff0b2353b2e7f5
[ "MIT" ]
null
null
null
pickle_storage/tests/__init__.py
PyUnchained/pickle_storage
c0a978701ae59a9feeb3e14026ff0b2353b2e7f5
[ "MIT" ]
null
null
null
pickle_storage/tests/__init__.py
PyUnchained/pickle_storage
c0a978701ae59a9feeb3e14026ff0b2353b2e7f5
[ "MIT" ]
null
null
null
# import os # os.environ.setdefault('PICKLE_STORAGE_SETTINGS', 'pickle_storage.tests.settings')
47.5
83
0.810526
0
0
0
0
0
0
0
0
94
0.989474
6759d2fab349039ee4a85d50f2f8ff9d4646da91
6,592
py
Python
src/config.py
NicolasSommer/valuenet
1ce7e56956b378a8f281e9f9919e6aa98516a9d9
[ "Apache-2.0" ]
null
null
null
src/config.py
NicolasSommer/valuenet
1ce7e56956b378a8f281e9f9919e6aa98516a9d9
[ "Apache-2.0" ]
null
null
null
src/config.py
NicolasSommer/valuenet
1ce7e56956b378a8f281e9f9919e6aa98516a9d9
[ "Apache-2.0" ]
null
null
null
import argparse import json import os class Config: DATA_PREFIX = "data" EXPERIMENT_PREFIX = "experiments" def write_config_to_file(args, output_path): config_path = os.path.join(output_path, "args.json") with open(config_path, 'w', encoding='utf-8') as f: json.dump(args.__dict__, f, indent=2) def _add_model_configuration(parser): parser.add_argument('--cuda', default=True, action='store_true') # language model configuration parser.add_argument('--encoder_pretrained_model', default='facebook/bart-base', type=str) parser.add_argument('--max_seq_length', default=1024, type=int) # model configuration parser.add_argument('--column_pointer', action='store_true', default=True) parser.add_argument('--embed_size', default=300, type=int, help='size of word embeddings') parser.add_argument('--hidden_size', default=300, type=int, help='size of LSTM hidden states') parser.add_argument('--action_embed_size', default=128, type=int, help='size of word embeddings') parser.add_argument('--att_vec_size', default=300, type=int, help='size of attentional vector') parser.add_argument('--type_embed_size', default=128, type=int, help='size of word embeddings') parser.add_argument('--col_embed_size', default=300, type=int, help='size of word embeddings') parser.add_argument('--readout', default='identity', choices=['identity', 'non_linear']) parser.add_argument('--column_att', choices=['dot_prod', 'affine'], default='affine') parser.add_argument('--dropout', default=0.3, type=float, help='dropout rate') def _add_postgresql_configuration(parser): parser.add_argument('--database_host', default='localhost', type=str) parser.add_argument('--database_port', default='18001', type=str) parser.add_argument('--database_user', default='postgres', type=str) parser.add_argument('--database_password', default='dummy', type=str) parser.add_argument('--database_schema', default='unics_cordis', type=str) def read_arguments_train(): parser = argparse.ArgumentParser(description="Run training with following arguments") # model configuration _add_model_configuration(parser) # general configuration parser.add_argument('--exp_name', default='exp', type=str) parser.add_argument('--seed', default=90, type=int) parser.add_argument('--toy', default=False, action='store_true') parser.add_argument('--data_set', default='spider', type=str) # training & optimizer configuration parser.add_argument('--batch_size', default=1, type=int) parser.add_argument('--num_epochs', default=5.0, type=float) parser.add_argument('--lr_base', default=1e-3, type=float) parser.add_argument('--lr_connection', default=1e-4, type=float) parser.add_argument('--lr_transformer', default=2e-5, type=float) # parser.add_argument('--adam_eps', default=1e-8, type=float) parser.add_argument('--scheduler_gamma', default=0.5, type=int) parser.add_argument('--max_grad_norm', default=1.0, type=float) parser.add_argument('--clip_grad', default=5., type=float) parser.add_argument('--loss_epoch_threshold', default=50, type=int) parser.add_argument('--sketch_loss_weight', default=1.0, type=float) # prediction configuration (run after each epoch) parser.add_argument('--beam_size', default=5, type=int, help='beam size for beam search') parser.add_argument('--decode_max_time_step', default=40, type=int, help='maximum number of time steps used in decoding and sampling') args = parser.parse_args() args.data_dir = os.path.join(Config.DATA_PREFIX, args.data_set) args.model_output_dir = Config.EXPERIMENT_PREFIX print("*** parsed configuration from command line and combine with constants ***") for argument in vars(args): print("argument: {}={}".format(argument, getattr(args, argument))) return args def read_arguments_evaluation(): parser = argparse.ArgumentParser(description="Run evaluation with following arguments") # model configuration _add_model_configuration(parser) # evaluation parser.add_argument('--evaluation_type', default='spider', type=str) parser.add_argument('--model_to_load', type=str) parser.add_argument('--prediction_dir', type=str) parser.add_argument('--batch_size', default=1, type=int) # general configuration parser.add_argument('--seed', default=90, type=int) parser.add_argument('--data_set', default='spider', type=str) # prediction configuration parser.add_argument('--beam_size', default=1, type=int, help='beam size for beam search') parser.add_argument('--decode_max_time_step', default=40, type=int, help='maximum number of time steps used in decoding and sampling') # DB config is only needed in case evaluation is executed on PostgreSQL DB _add_postgresql_configuration(parser) parser.add_argument('--database', default='cordis_temporary', type=str) args = parser.parse_args() args.data_dir = os.path.join(Config.DATA_PREFIX, args.data_set) print("*** parsed configuration from command line and combine with constants ***") for argument in vars(args): print("argument: {}={}".format(argument, getattr(args, argument))) return args def read_arguments_manual_inference(): parser = argparse.ArgumentParser(description="Run manual inference with following arguments") # model configuration _add_model_configuration(parser) # manual_inference parser.add_argument('--model_to_load', type=str) parser.add_argument('--api_key', default='1234', type=str) parser.add_argument('--ner_api_secret', default='PLEASE_ADD_YOUR_OWN_GOOGLE_API_KEY_HERE', type=str) # database configuration (in case of PostgreSQL, not needed for sqlite) _add_postgresql_configuration(parser) # general configuration parser.add_argument('--seed', default=90, type=int) parser.add_argument('--batch_size', default=1, type=int) # prediction configuration parser.add_argument('--beam_size', default=1, type=int, help='beam size for beam search') parser.add_argument('--decode_max_time_step', default=40, type=int, help='maximum number of time steps used in decoding and sampling') args = parser.parse_args() print("*** parsed configuration from command line and combine with constants ***") for argument in vars(args): print("argument: {}={}".format(argument, getattr(args, argument))) return args
40.944099
104
0.715564
76
0.011529
0
0
0
0
0
0
2,476
0.375607
675abb614add4be960125080b494d7201adec0de
2,352
py
Python
aqg/utils/summarizer.py
Sicaida/Automatic_Question_Generation
a228c166d40103a194e1daa23ff37f73c9488a5d
[ "MIT" ]
134
2018-04-04T19:06:09.000Z
2022-02-24T03:24:36.000Z
aqg/utils/summarizer.py
Sicaida/Automatic_Question_Generation
a228c166d40103a194e1daa23ff37f73c9488a5d
[ "MIT" ]
22
2018-09-20T07:17:11.000Z
2022-03-11T23:45:15.000Z
aqg/utils/summarizer.py
sagarparikh2013/Automatic-Question-Generation-NLP
6a2cf5d90e47980676f57c67f2ed73be6f8d7fed
[ "MIT" ]
50
2018-07-09T16:29:15.000Z
2021-12-20T11:37:33.000Z
from __future__ import absolute_import from __future__ import division, print_function, unicode_literals from sumy.parsers.html import HtmlParser from sumy.parsers.plaintext import PlaintextParser from sumy.nlp.tokenizers import Tokenizer #from sumy.summarizers.lsa import LsaSummarizer as Summarizer from sumy.summarizers.lex_rank import LexRankSummarizer as Summarizer from sumy.nlp.stemmers import Stemmer from sumy.utils import get_stop_words class TextSummarizer: def __init__(self, count=10): self.LANGUAGE = "czech" self.SENTENCES_COUNT = count def summarize_from_url(self,url): parser = HtmlParser.from_url(url, Tokenizer(self.LANGUAGE)) stemmer = Stemmer(self.LANGUAGE) summarizer = Summarizer(stemmer) file_1 = open("summarizer_output.txt","w+") file_2 = open("summarizer_output2.txt","w+") for sentence in summarizer(parser.document, self.SENTENCES_COUNT): file_2.write(str(sentence)) file_1.write(str(sentence)) file_1.write("\n") file_1.close() file_2.close() def summarize_from_text(self,text): parser = PlaintextParser.from_string(text, Tokenizer(self.LANGUAGE)) stemmer = Stemmer(self.LANGUAGE) summarizer = Summarizer(stemmer) file_1 = open("summarizer_output.txt","w+") file_2 = open("summarizer_output2.txt","w+") for sentence in summarizer(parser.document, self.SENTENCES_COUNT): file_2.write(str(sentence)) file_1.write(str(sentence)) file_1.write("\n") file_1.close() file_2.close() def summarize_from_file(self,file_name): parser = PlaintextParser.from_file(file_name, Tokenizer(self.LANGUAGE)) stemmer = Stemmer(self.LANGUAGE) summarizer = Summarizer(stemmer) file_1 = open("summarizer_output.txt","w+") file_2 = open("summarizer_output2.txt","w+") for sentence in summarizer(parser.document, self.SENTENCES_COUNT): file_2.write(str(sentence)) file_1.write(str(sentence)) file_1.write("\n") file_1.close() file_2.close() # t = TextSummarizer() # t.summarize_from_file("obama_short.txt") # pdf = pdfgeneration() # pdf.generate_pdf_summarizer("summarizer_output2.txt")
31.783784
79
0.676446
1,748
0.743197
0
0
0
0
0
0
388
0.164966
675aeab4c1e2b9cf3c2dce4e2188f947ea6ee089
50
py
Python
tests/__init__.py
AdamRuddGH/super_json_normalize
4a3c77d0e0dce632678ffe40b37fbd98fd2b4be8
[ "MIT" ]
2
2021-10-03T02:43:41.000Z
2021-10-04T10:15:20.000Z
tests/__init__.py
AdamRuddGH/super_json_normalize
4a3c77d0e0dce632678ffe40b37fbd98fd2b4be8
[ "MIT" ]
null
null
null
tests/__init__.py
AdamRuddGH/super_json_normalize
4a3c77d0e0dce632678ffe40b37fbd98fd2b4be8
[ "MIT" ]
null
null
null
"""Unit test package for super_json_normalize."""
25
49
0.76
0
0
0
0
0
0
0
0
49
0.98