hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
c43704aafbacbc4c468d75623400e2f129cb8ef2
6,544
py
Python
panku/lambdaCollect.py
mccartney/panku-gdzie-jestes
50a677170162c5255a24eacdbf8062ad876bee3f
[ "MIT" ]
null
null
null
panku/lambdaCollect.py
mccartney/panku-gdzie-jestes
50a677170162c5255a24eacdbf8062ad876bee3f
[ "MIT" ]
null
null
null
panku/lambdaCollect.py
mccartney/panku-gdzie-jestes
50a677170162c5255a24eacdbf8062ad876bee3f
[ "MIT" ]
null
null
null
#!/usr/bin/python import requests import boto3 import time import geopy.distance import xml.etree.ElementTree as ET import itertools import sys import pickle S3_BUCKET = "panku-gdzie-jestes-latest-storage" class LatestPositionStorage(object): def __init__(self, service): self.objectName = "%s.latest" % service def getLatestPositionsForService(self): s3 = boto3.resource('s3') try: obj = s3.Object(S3_BUCKET, self.objectName) ret = pickle.loads(obj.get()['Body'].read()) print("Read %d positions from S3" % len(ret)) return ret except: print("Unexpected error:", sys.exc_info()) return {} def saveLatestPositionsForService(self, positions): s3 = boto3.resource('s3') print("Saving %d positions to S3" % (len(positions))) pickle_byte_obj = pickle.dumps(positions) s3.Object(S3_BUCKET, self.objectName).put(Body=pickle_byte_obj) class Service(object): def getSecretName(self): pass def getCredentials(self): secret_name = self.getSecretName() region_name = "eu-west-1" session = boto3.session.Session() client = session.client(service_name='secretsmanager', region_name=region_name) get_secret_value_response = client.get_secret_value(SecretId=secret_name) return get_secret_value_response["SecretString"].replace('"', '').replace("{","").replace("}", "").split(":") def identifierPerRegistration(self, registration): pass def serviceId(self): # TODO: reverse it, let subclasses override this, and implement `identifierPerRegistration` here in the superclass return self.identifierPerRegistration("").strip() def getLatestPositions(self): return LatestPositionStorage(self.serviceId()).getLatestPositionsForService() def saveLatestPositions(self, positions): return LatestPositionStorage(self.serviceId()).saveLatestPositionsForService(positions) def saveLocations(self, cars): now = int(time.time()) latestPositions = self.getLatestPositions() newPositions = latestPositions.copy() table = boto3.resource('dynamodb', region_name='eu-west-1').Table('cars') dynamodb = boto3.client('dynamodb', region_name='eu-west-1') for (registration, position) in cars: key = self.identifierPerRegistration(registration) latestPosition = latestPositions.get(key) shouldAdd = True existedBefore = latestPosition is not None if existedBefore: prevPosition = (latestPosition['long'], latestPosition['lat']) currentPosition = (position['lng'], position['lat']) distance = geopy.distance.vincenty(prevPosition, currentPosition).km if distance < 0.1: shouldAdd = False if shouldAdd: print("%s moved" % key) if existedBefore: r = table.put_item(Item = {'carId' : key, 'date' : now-1,'long': prevPosition[0], 'lat': prevPosition[1]}) r = table.put_item(Item = {'carId' : key, 'date' : now, 'long': "%8.6f" % position['lng'], 'lat': "%8.6f" % position['lat']}) newPositions[key] = {'long': "%8.6f" % position['lng'], 'lat': "%8.6f" % position['lat']} self.saveLatestPositions(newPositions) def getAndSaveLocations(self): self.saveLocations(self.getLocations()) class Panek(Service): def getSecretName(self): return "panek/login" def identifierPerRegistration(self, registration): return "PANEK " + registration def getLocations(self): s = requests.Session() s.headers.update({"User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.13; rv:64.0) Gecko/20100101 Firefox/64.0", "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8", "Accept-Language": "en-GB,en;q=0.7,en-US;q=0.3", "Upgrade-Insecure-Requests": "1", "DNT": "1", }) s.get("https://panel.panekcs.pl/security/login") username, password = self.getCredentials() r = s.post(url = "https://panel.panekcs.pl/security/login", data={"UserName": username, "Password": password}) assert r.status_code == 200 r = s.post(url = "https://panel.panekcs.pl/Home/GetLocations", data = {}) assert r.status_code == 200 locations = r.json() # Under Vehicles: [u'Category', u'FuelRange', u'Ids', u'Coordinates', u'RegistrationNumber', u'Fuel'] count = len(locations['Vehicles']['Ids']) coordinates = locations['Vehicles']['Coordinates'] registrations = locations['Vehicles']['RegistrationNumber'] return zip(registrations, coordinates) class Veturilo(Service): def identifierPerRegistration(self, registration): return "VETURILO " + registration def getLocations(self): s = requests.Session() s.headers.update({"User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.13; rv:64.0) Gecko/20100101 Firefox/64.0", "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8", "Accept-Language": "en-GB,en;q=0.7,en-US;q=0.3", "Upgrade-Insecure-Requests": "1", "DNT": "1", }) r = s.get("https://nextbike.net/maps/nextbike-official.xml?city=372,210,475") assert r.status_code == 200 root = ET.fromstring(r.content) ret = [] for place in root.findall(".//place"): for bike in place: ret.append((bike.get("number"), {"lng" : float(place.get("lng")), "lat": float(place.get("lat"))})) return ret class Traficar(Service): def identifierPerRegistration(self, registration): return "TRAFICAR " + registration def getLocations(self): s = requests.Session() s.headers.update({"User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.13; rv:64.0) Gecko/20100101 Firefox/64.0", "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8", "Accept-Language": "en-GB,en;q=0.7,en-US;q=0.3", "Upgrade-Insecure-Requests": "1", "DNT": "1", }) r = s.get("https://api.traficar.pl/eaw-rest-api/car?shapeId=2") data = r.json() return [(car['regNumber'], {"lng": car['longitude'], "lat":car['latitude']}) for car in data['cars']] def lambda_handler(event, context): services = [Traficar, Veturilo, Panek] for service in services: print("==== Service %s" % service) service().getAndSaveLocations() return "OK"
38.046512
137
0.636461
6,134
0.937347
0
0
0
0
0
0
1,850
0.282702
c4372286ca07457197e0279205b6dabde1342c8d
1,412
py
Python
data/migrations/0039_2_data_update_questionnaires_vmsettings.py
Duke-GCB/bespin-api
cea5c20fb2ff592adabe6ebb7ca934939aa11a34
[ "MIT" ]
null
null
null
data/migrations/0039_2_data_update_questionnaires_vmsettings.py
Duke-GCB/bespin-api
cea5c20fb2ff592adabe6ebb7ca934939aa11a34
[ "MIT" ]
137
2016-12-09T18:59:45.000Z
2021-06-10T18:55:47.000Z
data/migrations/0039_2_data_update_questionnaires_vmsettings.py
Duke-GCB/bespin-api
cea5c20fb2ff592adabe6ebb7ca934939aa11a34
[ "MIT" ]
3
2017-11-14T16:05:58.000Z
2018-12-28T18:07:43.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.10.1 on 2017-12-08 18:42 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion def update_questionnaires(apps, schema_editor): """ Forward migration function to normalize settings into VMSettings and CloudSettings models :param apps: Django apps :param schema_editor: unused :return: None """ VMSettings = apps.get_model("data", "VMSettings") CloudSettings = apps.get_model("data", "CloudSettings") JobQuestionnaire = apps.get_model("data", "JobQuestionnaire") Job = apps.get_model("data", "Job") for q in JobQuestionnaire.objects.all(): # Create a cloud settings object with the VM project from the questionnaire. # Object initially just has the project name as its name cloud_settings, _ = CloudSettings.objects.get_or_create(name=q.vm_project.name, vm_project=q.vm_project) vm_settings, _ = VMSettings.objects.get_or_create(name=q.vm_project.name, cloud_settings=cloud_settings) q.vm_settings = vm_settings q.save() class Migration(migrations.Migration): dependencies = [ ('data', '0039_1_schema_add_questionnare_vmsettings'), ] operations = [ # Populate VMSettings and CloudSettings objects from JobQuesetionnaire migrations.RunPython(update_questionnaires), ]
36.205128
112
0.71813
287
0.203258
0
0
0
0
0
0
581
0.411473
c438178586df87a3168fc1363cc17cdd53b3728e
4,872
py
Python
app/models.py
maxnovais/Flapy_Blog
e543faa4c8f99ef3a2cdb1470de507d9cfb330bf
[ "Apache-2.0" ]
null
null
null
app/models.py
maxnovais/Flapy_Blog
e543faa4c8f99ef3a2cdb1470de507d9cfb330bf
[ "Apache-2.0" ]
null
null
null
app/models.py
maxnovais/Flapy_Blog
e543faa4c8f99ef3a2cdb1470de507d9cfb330bf
[ "Apache-2.0" ]
null
null
null
from datetime import datetime from . import db from config import COMMENTS_INITIAL_ENABLED from flask.ext.security import UserMixin, RoleMixin from markdown import markdown import bleach # Define models roles_users = db.Table( 'roles_users', db.Column('user_id', db.Integer(), db.ForeignKey('user.id')), db.Column('role_id', db.Integer(), db.ForeignKey('role.id'))) class Role(db.Model, RoleMixin): id = db.Column(db.Integer(), primary_key=True) name = db.Column(db.String(80), unique=True) description = db.Column(db.String(255)) def __repr__(self): return '<Role %r>' % self.name class User(db.Model, UserMixin): id = db.Column(db.Integer, primary_key=True) email = db.Column(db.String(255), unique=True) password = db.Column(db.String(255)) first_name = db.Column(db.String(255)) last_name = db.Column(db.String(255)) about = db.Column(db.Text) about_html = db.Column(db.Text) location = db.Column(db.String(255)) active = db.Column(db.Boolean()) confirmed_at = db.Column(db.DateTime()) roles = db.relationship('Role', secondary=roles_users, backref=db.backref('users', lazy='dynamic')) last_login_at = db.Column(db.DateTime()) current_login_at = db.Column(db.DateTime()) last_login_ip = db.Column(db.String(40)) current_login_ip = db.Column(db.String(40)) login_count = db.Column(db.Integer()) objects = db.relationship('Object', backref='author', lazy='dynamic') def __repr__(self): return '<User %r>' % self.email @staticmethod def on_changed_body(target, value, oldvalue, initiator): allowed_tags = ['a', 'abbr', 'acronym', 'b', 'blockquote', 'code', 'em', 'i', 'li', 'ol', 'pre', 'strong', 'ul', 'h1', 'h2', 'h3', 'h4', 'h5', 'hr', 'p'] target.about_html = bleach.linkify(bleach.clean( markdown(value, output_format='html'), tags=allowed_tags, strip=True)) db.event.listen(User.about, 'set', User.on_changed_body) objects_tags = db.Table( 'object_tags', db.Column('object_id', db.Integer, db.ForeignKey('object.id')), db.Column('tag_id', db.Integer, db.ForeignKey('tag.id'))) class Tag(db.Model): id = db.Column(db.Integer(), primary_key=True) name = db.Column(db.String(80), unique=True) created_on = db.Column(db.DateTime, index=True, default=datetime.now) def __init__(self, name): self.name = name def __repr__(self): return '<Tag %r>' % self.name class Object(db.Model): id = db.Column(db.Integer(), primary_key=True) object_type = db.Column(db.String(30)) title = db.Column(db.String(100), unique=True) slug_title = db.Column(db.String(255), unique=True) headline = db.Column(db.String(255)) body = db.Column(db.Text) body_html = db.Column(db.Text) created_on = db.Column(db.DateTime, index=True, default=datetime.now) last_update = db.Column(db.DateTime, index=True) enabled = db.Column(db.Boolean, default=True) author_id = db.Column(db.Integer, db.ForeignKey('user.id')) comments = db.relationship('Comment', backref='object', lazy='dynamic') tags = db.relationship('Tag', secondary=objects_tags, backref=db.backref('object', lazy='dynamic')) @staticmethod def on_changed_body(target, value, oldvalue, initiator): allowed_tags = ['a', 'abbr', 'acronym', 'b', 'blockquote', 'code', 'em', 'i', 'li', 'ol', 'pre', 'strong', 'ul', 'h1', 'h2', 'h3', 'h4', 'h5', 'hr', 'p'] target.body_html = bleach.linkify(bleach.clean( markdown(value, output_format='html'), tags=allowed_tags, strip=True)) def __repr__(self): return '<Page %r, Tags %r>' % (self.title, self.tags) db.event.listen(Object.body, 'set', Object.on_changed_body) class Comment(db.Model): id = db.Column(db.Integer(), primary_key=True) name = db.Column(db.String(255)) email = db.Column(db.String(255)) publish_email = db.Column(db.Boolean) body = db.Column(db.Text) body_html = db.Column(db.Text) created_on = db.Column(db.DateTime, index=True, default=datetime.now) enabled = db.Column(db.Boolean, default=COMMENTS_INITIAL_ENABLED) object_id = db.Column(db.Integer, db.ForeignKey('object.id')) def __repr__(self): return '<Comment %r>' % (self.name) @staticmethod def on_changed_body(target, value, oldvalue, initiator): allowed_tags = ['a', 'b', 'blockquote', 'code', 'strong', 'i'] target.body_html = bleach.linkify(bleach.clean( markdown(value, output_format='html'), tags=allowed_tags, strip=True)) db.event.listen(Comment.body, 'set', Comment.on_changed_body)
36.909091
77
0.632389
4,118
0.845238
0
0
1,199
0.2461
0
0
560
0.114943
c43aafbe58eb02eba9cd936508eecb607d118824
751
py
Python
8.1-triple-step.py
rithvikp1998/ctci
52068e94449e61aef6bac9646a7863260acc7a05
[ "MIT" ]
null
null
null
8.1-triple-step.py
rithvikp1998/ctci
52068e94449e61aef6bac9646a7863260acc7a05
[ "MIT" ]
null
null
null
8.1-triple-step.py
rithvikp1998/ctci
52068e94449e61aef6bac9646a7863260acc7a05
[ "MIT" ]
null
null
null
''' If the child is currently on the nth step, then there are three possibilites as to how it reached there: 1. Reached (n-3)th step and hopped 3 steps in one time 2. Reached (n-2)th step and hopped 2 steps in one time 3. Reached (n-1)th step and hopped 2 steps in one time The total number of possibilities is the sum of these 3 ''' def count_possibilities(n, store): if store[n]!=0: return count_possibilities(n-1, store) count_possibilities(n-2, store) count_possibilities(n-3, store) store[n]=store[n-1]+store[n-2]+store[n-3] n=int(input()) store=[0 for i in range(n+1)] # Stores the number of possibilites for every i<n store[0]=0 store[1]=1 store[2]=2 store[3]=4 count_possibilities(n, store) print(store[n])
25.896552
79
0.701731
0
0
0
0
0
0
0
0
384
0.511318
c43e6b9c823f200efcc9e2b9380194f0c4a67a27
9,604
py
Python
terrain_relative_navigation/peak_extractor_algorithm.py
rschwa6308/Landmark-Based-TRN
5d712221138ec6250ed5bd19caed49810f17014e
[ "Apache-2.0" ]
null
null
null
terrain_relative_navigation/peak_extractor_algorithm.py
rschwa6308/Landmark-Based-TRN
5d712221138ec6250ed5bd19caed49810f17014e
[ "Apache-2.0" ]
null
null
null
terrain_relative_navigation/peak_extractor_algorithm.py
rschwa6308/Landmark-Based-TRN
5d712221138ec6250ed5bd19caed49810f17014e
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ /*************************************************************************** PeakExtractor A QGIS plugin This plugin procedurally extracts morphological peaks from a given DEM. Generated by Plugin Builder: http://g-sherman.github.io/Qgis-Plugin-Builder/ ------------------- begin : 2021-03-10 copyright : (C) 2021 by NASA JPL email : russells@jpl.nasa.gov ***************************************************************************/ """ __author__ = "NASA JPL" __date__ = "2021-03-10" __copyright__ = "(C) 2021 by NASA JPL" # This will get replaced with a git SHA1 when you do a git archive __revision__ = "$Format:%H$" from qgis.PyQt.QtCore import QCoreApplication from qgis.core import (QgsProcessing, QgsProcessingAlgorithm, QgsProcessingParameterRasterLayer, QgsProcessingParameterNumber, QgsProcessingParameterFeatureSink, QgsFields, QgsWkbTypes) import processing # import grass.script as grass import math def round_up_to_odd(x: float) -> int: """round the given float up to the nearest odd integer""" n = math.ceil(x) return n + (1 - n%2) class PeakExtractorAlgorithm(QgsProcessingAlgorithm): """ This is an example algorithm that takes a vector layer and creates a new identical one. It is meant to be used as an example of how to create your own algorithms and explain methods and variables used to do it. An algorithm like this will be available in all elements, and there is not need for additional work. All Processing algorithms should extend the QgsProcessingAlgorithm class. """ # Constants used to refer to parameters and outputs. They will be # used when calling the algorithm from another algorithm, or when # calling from the QGIS console. INPUT = "INPUT" ANALYSIS_WINDOW_SIZE = "ANALYSIS_WINDOW_SIZE" PEAK_SPACING = "PEAK_SPACING" OUTPUT = "OUTPUT" def initAlgorithm(self, config): """ Here we define the inputs and output of the algorithm, along with some other properties. """ # Elevation Map self.addParameter( QgsProcessingParameterRasterLayer( self.INPUT, self.tr("DEM"), ) ) self.addParameter( QgsProcessingParameterNumber( self.ANALYSIS_WINDOW_SIZE, self.tr("Size of analysis window, meters"), QgsProcessingParameterNumber.Double, defaultValue=500.0 ), ) self.addParameter( QgsProcessingParameterNumber( self.PEAK_SPACING, self.tr("Minimum distance between distinct peaks, meters"), QgsProcessingParameterNumber.Double, defaultValue=100.0 ) ) self.addParameter( QgsProcessingParameterFeatureSink( self.OUTPUT, self.tr("Extracted Peaks") ) ) def processAlgorithm(self, parameters, context, feedback): """ Here is where the processing itself takes place. """ dem = self.parameterAsRasterLayer(parameters, self.INPUT, context) x_size, y_size = dem.rasterUnitsPerPixelX(), dem.rasterUnitsPerPixelY() window_size_meters = self.parameterAsDouble(parameters, self.ANALYSIS_WINDOW_SIZE, context) window_size_pixels = round_up_to_odd(window_size_meters / x_size) # grass requires a "center" pixel feedback.pushInfo(f"Using analysis window of size {window_size_pixels}px") if window_size_pixels <= 1: raise ValueError(f"Analysis window must be >1px per side (given DEM has pixel size {x_size}m x {y_size}m)") dem_size = dem.width() * dem.height() if window_size_pixels >= 50 and dem_size >= 10**6: feedback.pushInfo("WARNING: large raster + large analysis window can be extremely slow. Consider downsampling the DEM first.") feedback.pushInfo("Classifying terrain. . .") morpho_param_layer_name = processing.run( "grass7:r.param.scale", { "input": parameters[self.INPUT], "size": window_size_pixels, 'method' : 9, # 'feature' "output": QgsProcessing.TEMPORARY_OUTPUT, # --- defaults --- '-c' : False, 'GRASS_RASTER_FORMAT_META': '', 'GRASS_RASTER_FORMAT_OPT': '', 'GRASS_REGION_CELLSIZE_PARAMETER': 0, 'GRASS_REGION_PARAMETER': None, 'curvature_tolerance' : 0.0001, 'exponent' : 0, 'slope_tolerance': 1, 'zscale': 1 }, context=context, feedback=feedback, is_child_algorithm=True )["output"] if feedback.isCanceled(): return {} feedback.pushInfo("Vectorizing. . .") polygons_layer_name = processing.run( "native:pixelstopolygons", { "INPUT_RASTER": morpho_param_layer_name, "FIELD_NAME" : "VALUE", "RASTER_BAND": 1, "OUTPUT": QgsProcessing.TEMPORARY_OUTPUT }, context=context, feedback=feedback, is_child_algorithm=True )["OUTPUT"] if feedback.isCanceled(): return {} feedback.pushInfo("Extracting peak pixels. . .") filtered_polygons_layer_name = processing.run( "native:extractbyattribute", { "INPUT": polygons_layer_name, "FIELD": "VALUE", "OPERATOR": 0, # '=' "VALUE": 6, # peaks "OUTPUT": QgsProcessing.TEMPORARY_OUTPUT }, context=context, feedback=feedback, is_child_algorithm=True )["OUTPUT"] if feedback.isCanceled(): return {} buffer_distance = self.parameterAsDouble(parameters, self.PEAK_SPACING, context) / 2.0 feedback.pushInfo("Buffering peaks. . .") buffered_polygons_layer_name = processing.run( "native:buffer", { "INPUT": filtered_polygons_layer_name, "DISTANCE": buffer_distance, "DISSOLVE": True, "OUTPUT": QgsProcessing.TEMPORARY_OUTPUT }, context=context, feedback=feedback, is_child_algorithm=True )["OUTPUT"] feedback.pushInfo("Dissolving peaks. . .") dissolved_polygons_layer_name = processing.run( "native:dissolve", { "INPUT": buffered_polygons_layer_name, "OUTPUT": QgsProcessing.TEMPORARY_OUTPUT }, context=context, feedback=feedback, is_child_algorithm=True )["OUTPUT"] if feedback.isCanceled(): return {} feedback.pushInfo("Computing peak centers. . .") centroids_layer_name = processing.run( "native:centroids", { "INPUT": dissolved_polygons_layer_name, "ALL_PARTS": True, "OUTPUT": QgsProcessing.TEMPORARY_OUTPUT }, context=context, feedback=feedback, is_child_algorithm=True )["OUTPUT"] centroids_layer = context.takeResultLayer(centroids_layer_name) if feedback.isCanceled(): return {} (sink, dest_id) = self.parameterAsSink( parameters, self.OUTPUT, context, QgsFields(), # no fields QgsWkbTypes.Point, dem.crs() ) n = 0 for p in centroids_layer.getFeatures(): if feedback.isCanceled(): return {} sink.addFeature(p) n += 1 feedback.pushInfo(f"Number of peaks detected: {n}") return { self.OUTPUT: dest_id } def name(self): """ Returns the algorithm name, used for identifying the algorithm. This string should be fixed for the algorithm, and must not be localised. The name should be unique within each provider. Names should contain lowercase alphanumeric characters only and no spaces or other formatting characters. """ return "Extract Peaks" def displayName(self): """ Returns the translated algorithm name, which should be used for any user-visible display of the algorithm name. """ return self.tr(self.name()) def group(self): """ Returns the name of the group this algorithm belongs to. This string should be localised. """ return self.tr(self.groupId()) def groupId(self): """ Returns the unique ID of the group this algorithm belongs to. This string should be fixed for the algorithm, and must not be localised. The group id should be unique within each provider. Group id should contain lowercase alphanumeric characters only and no spaces or other formatting characters. """ return "" def tr(self, string): return QCoreApplication.translate("Processing", string) def createInstance(self): return PeakExtractorAlgorithm()
32.890411
138
0.570596
8,233
0.857247
0
0
0
0
0
0
3,816
0.397334
c43f47ff2e792fe2c4acc6424f3c4c0fdde3ecb2
3,657
py
Python
manila/tests/api/views/test_quota_class_sets.py
openstack/manila
1ebae738c235c6f1874ac7b11307e0d5fb567dba
[ "Apache-2.0" ]
159
2015-01-02T09:35:15.000Z
2022-01-04T11:51:34.000Z
manila/tests/api/views/test_quota_class_sets.py
openstack/manila
1ebae738c235c6f1874ac7b11307e0d5fb567dba
[ "Apache-2.0" ]
5
2015-07-24T09:28:21.000Z
2020-11-20T04:33:51.000Z
manila/tests/api/views/test_quota_class_sets.py
openstack/manila
1ebae738c235c6f1874ac7b11307e0d5fb567dba
[ "Apache-2.0" ]
128
2015-01-05T22:52:28.000Z
2021-12-29T14:00:58.000Z
# Copyright (c) 2017 Mirantis, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import ddt from manila.api.openstack import api_version_request as api_version from manila.api.views import quota_class_sets from manila import test from manila.tests.api import fakes @ddt.ddt class ViewBuilderTestCase(test.TestCase): def setUp(self): super(ViewBuilderTestCase, self).setUp() self.builder = quota_class_sets.ViewBuilder() def test__collection_name(self): self.assertEqual('quota_class_set', self.builder._collection_name) @ddt.data( ("fake_quota_class", "2.40"), (None, "2.40"), ("fake_quota_class", "2.39"), (None, "2.39"), ("fake_quota_class", "2.53"), (None, "2.53"), ("fake_quota_class", "2.62"), (None, "2.62"), ) @ddt.unpack def test_detail_list_with_share_type(self, quota_class, microversion): req = fakes.HTTPRequest.blank('/quota-sets', version=microversion) quota_class_set = { "shares": 13, "gigabytes": 31, "snapshots": 14, "snapshot_gigabytes": 41, "share_groups": 15, "share_group_snapshots": 51, "share_networks": 16, } expected = {self.builder._collection_name: { "shares": quota_class_set["shares"], "gigabytes": quota_class_set["gigabytes"], "snapshots": quota_class_set["snapshots"], "snapshot_gigabytes": quota_class_set["snapshot_gigabytes"], "share_networks": quota_class_set["share_networks"], }} if quota_class: expected[self.builder._collection_name]['id'] = quota_class if (api_version.APIVersionRequest(microversion) >= ( api_version.APIVersionRequest("2.40"))): expected[self.builder._collection_name][ "share_groups"] = quota_class_set["share_groups"] expected[self.builder._collection_name][ "share_group_snapshots"] = quota_class_set[ "share_group_snapshots"] if req.api_version_request >= api_version.APIVersionRequest("2.53"): fake_share_replicas_value = 46 fake_replica_gigabytes_value = 100 expected[self.builder._collection_name]["share_replicas"] = ( fake_share_replicas_value) expected[self.builder._collection_name][ "replica_gigabytes"] = fake_replica_gigabytes_value quota_class_set['share_replicas'] = fake_share_replicas_value quota_class_set['replica_gigabytes'] = fake_replica_gigabytes_value if req.api_version_request >= api_version.APIVersionRequest("2.62"): fake_per_share_gigabytes = 10 expected[self.builder._collection_name][ "per_share_gigabytes"] = fake_per_share_gigabytes quota_class_set['per_share_gigabytes'] = fake_per_share_gigabytes result = self.builder.detail_list( req, quota_class_set, quota_class=quota_class) self.assertEqual(expected, result)
41.089888
79
0.654908
2,826
0.772765
0
0
2,835
0.775226
0
0
1,212
0.331419
c4401d23a46ea6a328e85a6fd337eb170ed7e08b
212
py
Python
P1480.py
Muntaha-Islam0019/Leetcode-Solutions
0bc56ce43a6d8ad10461b69078166a2a5b913e7f
[ "MIT" ]
null
null
null
P1480.py
Muntaha-Islam0019/Leetcode-Solutions
0bc56ce43a6d8ad10461b69078166a2a5b913e7f
[ "MIT" ]
null
null
null
P1480.py
Muntaha-Islam0019/Leetcode-Solutions
0bc56ce43a6d8ad10461b69078166a2a5b913e7f
[ "MIT" ]
null
null
null
class Solution: def runningSum(self, nums: List[int]) -> List[int]: for index in range(1, len(nums)): nums[index] = nums[index - 1] + nums[index] return nums
26.5
55
0.514151
211
0.995283
0
0
0
0
0
0
0
0
c441a8d53ebaea6e35e7d68f0992cf2efeee375b
2,429
py
Python
tests/sequence_utils_test.py
rmcolq/genofunk
ffa031fb361fc736e839d0e36d36f8ed7ade30dc
[ "MIT" ]
1
2021-01-09T23:25:02.000Z
2021-01-09T23:25:02.000Z
tests/sequence_utils_test.py
rmcolq/genofunk
ffa031fb361fc736e839d0e36d36f8ed7ade30dc
[ "MIT" ]
null
null
null
tests/sequence_utils_test.py
rmcolq/genofunk
ffa031fb361fc736e839d0e36d36f8ed7ade30dc
[ "MIT" ]
null
null
null
import os import unittest import json import filecmp from genofunk.sequence_utils import * this_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) class TestSequenceUtils(unittest.TestCase): def test_get_coordinates_from_json_simple_pairs(self): json_value = { "start": 30, "end": 40, "strand": 1 } coordinates = get_coordinates_from_json(json_value, pairs=True) expected = [[30, 40]] self.assertEqual(expected, coordinates) def test_get_coordinates_from_json_simple_no_pairs(self): json_value = { "start": 30, "end": 40, "strand": 1 } coordinates = get_coordinates_from_json(json_value, pairs=False) expected = [30, 40] self.assertEqual(expected, coordinates) def test_get_coordinates_from_json_join_pairs(self): json_value = { "join": [ { "start": 0, "end": 11, "strand": 1 }, { "start": 10, "end": 20, "strand": 1 } ] } coordinates = get_coordinates_from_json(json_value, pairs=True) expected = [[0,11],[10,20]] self.assertEqual(expected, coordinates) def test_get_coordinates_from_json_join_no_pairs(self): json_value = { "join": [ { "start": 0, "end": 11, "strand": 1 }, { "start": 10, "end": 20, "strand": 1 } ] } coordinates = get_coordinates_from_json(json_value, pairs=False) expected = [0,11,10,20] self.assertEqual(expected, coordinates) def test_is_open_reading_frame_wrong_start(self): amino_acid_sequence = "NATIL*" result = is_open_reading_frame(amino_acid_sequence) self.assertFalse(result) def test_is_open_reading_frame_wrong_end(self): amino_acid_sequence = "MNATIL*S" result = is_open_reading_frame(amino_acid_sequence) self.assertFalse(result) def test_is_open_reading_frame_stop_in_middle(self): amino_acid_sequence = "MNATIL*S*" result = is_open_reading_frame(amino_acid_sequence, allow_stop_codons_in_middle=False) self.assertFalse(result) def test_is_open_reading_frame_stop_in_middle_allowed(self): amino_acid_sequence = "MNATIL*S*" result = is_open_reading_frame(amino_acid_sequence, allow_stop_codons_in_middle=True) self.assertTrue(result)
34.211268
94
0.645533
2,264
0.932071
0
0
0
0
0
0
172
0.070811
c442b7615909101f05f7c648d2d237c13e312b98
1,630
py
Python
Modules/Biophotonics/python/iMC/msi/test/test_nrrdwriter.py
SVRTK/MITK
52252d60e42702e292d188e30f6717fe50c23962
[ "BSD-3-Clause" ]
5
2015-02-05T10:58:41.000Z
2019-04-17T15:04:07.000Z
Modules/Biophotonics/python/iMC/msi/test/test_nrrdwriter.py
wyyrepo/MITK
d0837f3d0d44f477b888ec498e9a2ed407e79f20
[ "BSD-3-Clause" ]
141
2015-03-03T06:52:01.000Z
2020-12-10T07:28:14.000Z
Modules/Biophotonics/python/iMC/msi/test/test_nrrdwriter.py
wyyrepo/MITK
d0837f3d0d44f477b888ec498e9a2ed407e79f20
[ "BSD-3-Clause" ]
4
2015-02-19T06:48:13.000Z
2020-06-19T16:20:25.000Z
# -*- coding: utf-8 -*- """ Created on Thu Aug 13 09:52:47 2015 @author: wirkert """ import unittest import os import numpy as np import msi.msimanipulations as msimani from msi.io.nrrdreader import NrrdReader from msi.io.nrrdwriter import NrrdWriter from msi.test import helpers class TestNrrdWriter(unittest.TestCase): def setUp(self): # setup file and the path where it shall be written to self.msi = helpers.getFakeMsi() self.fileUriToWrite = "testfile.nrrd" def tearDown(self): # remove the hopefully written file os.remove(self.fileUriToWrite) def test_imageWriterCreatesFile(self): writer = NrrdWriter(self.msi) writer.write(self.fileUriToWrite) self.assertTrue(os.path.isfile(self.fileUriToWrite), "file was written to disk") def test_imageWriterCreatesCorrectFile(self): writer = NrrdWriter(self.msi) writer.write(self.fileUriToWrite) reader = NrrdReader() msi = reader.read(self.fileUriToWrite) self.assertTrue(msi == helpers.getFakeMsi(), "image correctly written and read") def test_write_one_d_image_works(self): writer = NrrdWriter(self.msi) msimani.calculate_mean_spectrum(self.msi) writer.write(self.fileUriToWrite) reader = NrrdReader() msi = reader.read(self.fileUriToWrite) np.testing.assert_array_equal(msi.get_image(), np.array([1, 2, 3, 4, 5]), "1d image correctly written and read")
29.636364
76
0.633129
1,344
0.82454
0
0
0
0
0
0
285
0.174847
c4438dbc98a70b3fe8296d0282cdfe5e4623856b
3,369
py
Python
crossplatformshell/__init__.py
ryanpdwyer/crossplatformshell
d6239ae362cff42faffc85714f7a5e1b56dc6463
[ "MIT" ]
null
null
null
crossplatformshell/__init__.py
ryanpdwyer/crossplatformshell
d6239ae362cff42faffc85714f7a5e1b56dc6463
[ "MIT" ]
null
null
null
crossplatformshell/__init__.py
ryanpdwyer/crossplatformshell
d6239ae362cff42faffc85714f7a5e1b56dc6463
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ ============================ crossplatformshell ============================ """ from __future__ import (print_function, division, absolute_import, unicode_literals) import pathlib import io import os import shutil import distutils.dir_util import platform # Use subprocess32 if available try: import subprocess32 as subprocess except: import subprocess as subprocess def check_output(*args, **kwargs): """Subprocess check_output, but prints commands and output by default. Also allows printing of error message for helpful debugging. Use print_all=False to turn off all printing.""" print_all = kwargs.pop('print_all', None) if print_all is not None: print_in = print_all print_out = print_all else: print_in = kwargs.pop('print_in', True) print_out = kwargs.pop('print_out', True) if print_in: print('') print(' '.join(args[0])) try: out_bytes = subprocess.check_output(*args, **kwargs) out_lines = out_bytes.decode('utf-8').splitlines() except subprocess.CalledProcessError as e: # Wrap in try/except so that check_output can print raise e if print_out: for line in out_lines: print(line) return out_lines windows = platform.system() == 'Windows' def find_git_cmd(windows): git = 'git' if windows: try: check_output([git, '--version']) except subprocess.CalledProcessError: try: git = 'git.cmd' check_output([git, '--version']) except subprocess.CalledProcessError: msg = "git does not appear to be on your path." raise subprocess.CalledProcessError(msg) return git git = find_git_cmd(windows) def new_path(path_string): """Return pathlib.Path, expanding '~' to a user's HOME directory""" return pathlib.Path(os.path.expanduser(path_string)) def mkdir(*args): """Make directories for the specified paths.""" for arg in args: os.mkdir(str(arg)) def remove(path): """Remove the specified path.""" os.remove(str(path)) def rmtree(path): """Recursively remove paths.""" shutil.rmtree(str(path)) def copy(src_path, dst_path): shutil.copy(str(src_path), str(dst_path)) cp = copy def copy_tree(src_path, dst_path): """Recursively copy all files and folders from src_path to dst_path""" distutils.dir_util.copy_tree(str(src_path), str(dst_path)) cp_r = copy_tree def rm(*args): """Delete files, if they exist. Fail silently if a file doesn't exist.""" for path in args: try: os.remove(str(path)) except OSError: pass def rm_rf(*args): """Recursively delete directories, if they exist.""" for path in args: try: shutil.rmtree(str(path)) except OSError: pass def read_file(filename, encoding="utf-8"): with io.open(str(filename), encoding=encoding) as f: text = f.read() return text def write_file(filename, string, encoding="utf-8"): with io.open(str(filename), 'w', encoding=encoding) as f: f.write(string) # Versioneer versioning from ._version import get_versions __version__ = get_versions()['version'] del get_versions
23.234483
74
0.62808
0
0
0
0
0
0
0
0
933
0.276937
c444346fedeae3b1a36842a83b1d34e2d12fa382
28,857
py
Python
collections/nemo_nlp/nemo_nlp/data/data_layers.py
Giuseppe5/NeMo
f946aca100c9a1bf22e6bd25fba9f80299722112
[ "Apache-2.0" ]
2
2020-05-12T05:16:10.000Z
2021-12-01T02:30:45.000Z
collections/nemo_nlp/nemo_nlp/data/data_layers.py
Giuseppe5/NeMo
f946aca100c9a1bf22e6bd25fba9f80299722112
[ "Apache-2.0" ]
3
2020-11-13T17:45:41.000Z
2022-03-12T00:28:59.000Z
collections/nemo_nlp/nemo_nlp/data/data_layers.py
Giuseppe5/NeMo
f946aca100c9a1bf22e6bd25fba9f80299722112
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2019 NVIDIA Corporation # If you want to add your own data layer, you should put its name in # __all__ so that it can be imported with 'from text_data_layers import *' __all__ = ['TextDataLayer', 'BertSentenceClassificationDataLayer', 'BertJointIntentSlotDataLayer', 'BertJointIntentSlotInferDataLayer', 'LanguageModelingDataLayer', 'BertTokenClassificationDataLayer', 'BertTokenClassificationInferDataLayer', 'BertPretrainingDataLayer', 'BertPretrainingPreprocessedDataLayer', 'TranslationDataLayer', 'GlueDataLayerClassification', 'GlueDataLayerRegression'] # from abc import abstractmethod import sys import torch from torch.utils import data as pt_data import os import h5py import nemo from nemo.backends.pytorch.nm import DataLayerNM from nemo.core.neural_types import * import random import numpy as np from .datasets import * class TextDataLayer(DataLayerNM): """ Generic Text Data Layer NM which wraps PyTorch's dataset Args: dataset_type: type of dataset used for this datalayer dataset_params (dict): all the params for the dataset """ def __init__(self, dataset_type, dataset_params, **kwargs): super().__init__(**kwargs) if isinstance(dataset_type, str): dataset_type = getattr(sys.modules[__name__], dataset_type) self._dataset = dataset_type(**dataset_params) def __len__(self): return len(self._dataset) @property def dataset(self): return self._dataset @property def data_iterator(self): return None class BertSentenceClassificationDataLayer(TextDataLayer): """ Creates the data layer to use for the task of sentence classification with pretrained model. All the data processing is done BertSentenceClassificationDataset. Args: dataset (BertSentenceClassificationDataset): the dataset that needs to be converted to DataLayerNM """ @staticmethod def create_ports(): output_ports = { "input_ids": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "input_type_ids": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "input_mask": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "labels": NeuralType({ 0: AxisType(BatchTag), }), } return {}, output_ports def __init__(self, input_file, tokenizer, max_seq_length, num_samples=-1, shuffle=False, batch_size=64, dataset_type=BertSentenceClassificationDataset, **kwargs): kwargs['batch_size'] = batch_size dataset_params = {'input_file': input_file, 'tokenizer': tokenizer, 'max_seq_length': max_seq_length, 'num_samples': num_samples, 'shuffle': shuffle} super().__init__(dataset_type, dataset_params, **kwargs) class BertJointIntentSlotDataLayer(TextDataLayer): """ Creates the data layer to use for the task of joint intent and slot classification with pretrained model. All the data processing is done in BertJointIntentSlotDataset. input_mask: used to ignore some of the input tokens like paddings loss_mask: used to mask and ignore tokens in the loss function subtokens_mask: used to ignore the outputs of unwanted tokens in the inference and evaluation like the start and end tokens Args: dataset (BertJointIntentSlotDataset): the dataset that needs to be converted to DataLayerNM """ @staticmethod def create_ports(): output_ports = { "input_ids": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "input_type_ids": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "input_mask": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "loss_mask": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "subtokens_mask": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "intents": NeuralType({ 0: AxisType(BatchTag), }), "slots": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), } return {}, output_ports def __init__(self, input_file, slot_file, pad_label, tokenizer, max_seq_length, num_samples=-1, shuffle=False, batch_size=64, ignore_extra_tokens=False, ignore_start_end=False, dataset_type=BertJointIntentSlotDataset, **kwargs): kwargs['batch_size'] = batch_size dataset_params = {'input_file': input_file, 'slot_file': slot_file, 'pad_label': pad_label, 'tokenizer': tokenizer, 'max_seq_length': max_seq_length, 'num_samples': num_samples, 'shuffle': shuffle, 'ignore_extra_tokens': ignore_extra_tokens, 'ignore_start_end': ignore_start_end} super().__init__(dataset_type, dataset_params, **kwargs) class BertJointIntentSlotInferDataLayer(TextDataLayer): """ Creates the data layer to use for the task of joint intent and slot classification with pretrained model. This is for All the data processing is done in BertJointIntentSlotInferDataset. input_mask: used to ignore some of the input tokens like paddings loss_mask: used to mask and ignore tokens in the loss function subtokens_mask: used to ignore the outputs of unwanted tokens in the inference and evaluation like the start and end tokens Args: dataset (BertJointIntentSlotInferDataset): the dataset that needs to be converted to DataLayerNM """ @staticmethod def create_ports(): output_ports = { "input_ids": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "input_type_ids": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "input_mask": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "loss_mask": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "subtokens_mask": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), } return {}, output_ports def __init__(self, queries, tokenizer, max_seq_length, batch_size=1, dataset_type=BertJointIntentSlotInferDataset, **kwargs): kwargs['batch_size'] = batch_size dataset_params = {'queries': queries, 'tokenizer': tokenizer, 'max_seq_length': max_seq_length} super().__init__(dataset_type, dataset_params, **kwargs) class LanguageModelingDataLayer(TextDataLayer): """ Data layer for standard language modeling task. Args: dataset (str): path to text document with data tokenizer (TokenizerSpec): tokenizer max_seq_length (int): maximum allowed length of the text segments batch_step (int): how many tokens to skip between two successive segments of text when constructing batches """ @staticmethod def create_ports(): """ input_ids: indices of tokens which constitute batches of text segments input_mask: bool tensor with 0s in place of tokens to be masked labels: indices of tokens which should be predicted from each of the corresponding tokens in input_ids; for left-to-right language modeling equals to input_ids shifted by 1 to the right """ input_ports = {} output_ports = { "input_ids": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "input_mask": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "labels": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }) } return input_ports, output_ports def __init__(self, dataset, tokenizer, max_seq_length, batch_step=128, dataset_type=LanguageModelingDataset, **kwargs): dataset_params = {'dataset': dataset, 'tokenizer': tokenizer, 'max_seq_length': max_seq_length, 'batch_step': batch_step} super().__init__(dataset_type, dataset_params, **kwargs) class BertTokenClassificationDataLayer(TextDataLayer): @staticmethod def create_ports(): input_ports = {} output_ports = { "input_ids": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "input_type_ids": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "input_mask": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "loss_mask": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "subtokens_mask": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "labels": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }) } return input_ports, output_ports def __init__(self, text_file, label_file, tokenizer, max_seq_length, pad_label='O', label_ids=None, num_samples=-1, shuffle=False, batch_size=64, ignore_extra_tokens=False, ignore_start_end=False, use_cache=False, dataset_type=BertTokenClassificationDataset, **kwargs): kwargs['batch_size'] = batch_size dataset_params = {'text_file': text_file, 'label_file': label_file, 'max_seq_length': max_seq_length, 'tokenizer': tokenizer, 'num_samples': num_samples, 'shuffle': shuffle, 'pad_label': pad_label, 'label_ids': label_ids, 'ignore_extra_tokens': ignore_extra_tokens, 'ignore_start_end': ignore_start_end, 'use_cache': use_cache} super().__init__(dataset_type, dataset_params, **kwargs) class BertTokenClassificationInferDataLayer(TextDataLayer): @staticmethod def create_ports(): input_ports = {} output_ports = { "input_ids": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "input_type_ids": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "input_mask": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "loss_mask": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "subtokens_mask": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }) } return input_ports, output_ports def __init__(self, queries, tokenizer, max_seq_length, batch_size=1, dataset_type=BertTokenClassificationInferDataset, **kwargs): kwargs['batch_size'] = batch_size dataset_params = {'queries': queries, 'tokenizer': tokenizer, 'max_seq_length': max_seq_length} super().__init__(dataset_type, dataset_params, **kwargs) class BertPretrainingDataLayer(TextDataLayer): """ Data layer for masked language modeling task. Args: tokenizer (TokenizerSpec): tokenizer dataset (str): directory or a single file with dataset documents max_seq_length (int): maximum allowed length of the text segments mask_probability (float): probability of masking input sequence tokens batch_size (int): batch size in segments short_seeq_prob (float): Probability of creating sequences which are shorter than the maximum length. Defualts to 0.1. """ @staticmethod def create_ports(): """ input_ids: indices of tokens which constitute batches of text segments input_type_ids: indices of token types (e.g., sentences A & B in BERT) input_mask: bool tensor with 0s in place of tokens to be masked output_ids: indices of output tokens which should be predicted output_mask: bool tensor with 0s in place of tokens to be excluded from loss calculation labels: indices of classes to be predicted from [CLS] token of text segments (e.g, 0 or 1 in next sentence prediction task) """ input_ports = {} output_ports = { "input_ids": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "input_type_ids": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "input_mask": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "output_ids": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "output_mask": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "labels": NeuralType({0: AxisType(BatchTag)}), } return input_ports, output_ports def __init__(self, tokenizer, dataset, max_seq_length, mask_probability, short_seq_prob=0.1, batch_size=64, **kwargs): kwargs['batch_size'] = batch_size dataset_params = {'tokenizer': tokenizer, 'dataset': dataset, 'max_seq_length': max_seq_length, 'mask_probability': mask_probability, 'short_seq_prob': short_seq_prob} super().__init__(BertPretrainingDataset, dataset_params, **kwargs) class BertPretrainingPreprocessedDataLayer(DataLayerNM): """ Data layer for masked language modeling task. Args: tokenizer (TokenizerSpec): tokenizer dataset (str): directory or a single file with dataset documents max_seq_length (int): maximum allowed length of the text segments mask_probability (float): probability of masking input sequence tokens batch_size (int): batch size in segments short_seeq_prob (float): Probability of creating sequences which are shorter than the maximum length. Defualts to 0.1. """ @staticmethod def create_ports(): """ input_ids: indices of tokens which constitute batches of text segments input_type_ids: indices of token types (e.g., sentences A & B in BERT) input_mask: bool tensor with 0s in place of tokens to be masked output_ids: indices of output tokens which should be predicted output_mask: bool tensor with 0s in place of tokens to be excluded from loss calculation labels: indices of classes to be predicted from [CLS] token of text segments (e.g, 0 or 1 in next sentence prediction task) """ input_ports = {} output_ports = { "input_ids": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "input_type_ids": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "input_mask": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "output_ids": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "output_mask": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "labels": NeuralType({0: AxisType(BatchTag)}), } return input_ports, output_ports def __init__(self, dataset, max_pred_length, batch_size=64, training=True, **kwargs): if os.path.isdir(dataset): self.files = [os.path.join(dataset, f) for f in os.listdir(dataset) if os.path.isfile(os.path.join(dataset, f))] else: self.files = [dataset] self.files.sort() self.num_files = len(self.files) self.batch_size = batch_size self.max_pred_length = max_pred_length self.training = training total_length = 0 for f in self.files: fp = h5py.File(f, 'r') total_length += len(fp['input_ids']) fp.close() self.total_length = total_length super().__init__(**kwargs) def _collate_fn(self, x): num_components = len(x[0]) components = [[] for _ in range(num_components)] batch_size = len(x) for i in range(batch_size): for j in range(num_components): components[j].append(x[i][j]) src_ids, src_segment_ids, src_mask, tgt_ids, tgt_mask, sent_ids = \ [np.stack(x, axis=0) for x in components] src_ids = torch.Tensor(src_ids).long().to(self._device) src_segment_ids = torch.Tensor(src_segment_ids).long().to(self._device) src_mask = torch.Tensor(src_mask).float().to(self._device) tgt_ids = torch.Tensor(tgt_ids).long().to(self._device) tgt_mask = torch.Tensor(tgt_mask).float().to(self._device) sent_ids = torch.Tensor(sent_ids).long().to(self._device) return src_ids, src_segment_ids, src_mask, tgt_ids, tgt_mask, sent_ids def __len__(self): return self.total_length @property def dataset(self): return None @property def data_iterator(self): while True: if self.training: random.shuffle(self.files) for f_id in range(self.num_files): data_file = self.files[f_id] train_data = BertPretrainingPreprocessedDataset( input_file=data_file, max_pred_length=self.max_pred_length) train_sampler = pt_data.RandomSampler(train_data) train_dataloader = pt_data.DataLoader( dataset=train_data, batch_size=self.batch_size, collate_fn=self._collate_fn, shuffle=train_sampler is None, sampler=train_sampler) for x in train_dataloader: yield x class TranslationDataLayer(TextDataLayer): """ Data layer for neural machine translation from source (src) language to target (tgt) language. Args: tokenizer_src (TokenizerSpec): source language tokenizer tokenizer_tgt (TokenizerSpec): target language tokenizer dataset_src (str): path to source data dataset_tgt (str): path to target data tokens_in_batch (int): maximum allowed number of tokens in batches, batches will be constructed to minimize the use of <pad> tokens clean (bool): whether to use parallel data cleaning such as removing pairs with big difference in sentences length, removing pairs with the same tokens in src and tgt, etc; useful for training data layer and should not be used in evaluation data layer """ @staticmethod def create_ports(): """ src_ids: indices of tokens which correspond to source sentences src_mask: bool tensor with 0s in place of source tokens to be masked tgt_ids: indices of tokens which correspond to target sentences tgt_mask: bool tensor with 0s in place of target tokens to be masked labels: indices of tokens which should be predicted from each of the corresponding target tokens in tgt_ids; for standard neural machine translation equals to tgt_ids shifted by 1 to the right sent_ids: indices of the sentences in a batch; important for evaluation with external metrics, such as SacreBLEU """ input_ports = {} output_ports = { "src_ids": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "src_mask": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "tgt_ids": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "tgt_mask": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "labels": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "sent_ids": NeuralType({ 0: AxisType(BatchTag) }) } return input_ports, output_ports def __init__(self, tokenizer_src, tokenizer_tgt, dataset_src, dataset_tgt, tokens_in_batch=1024, clean=False, dataset_type=TranslationDataset, **kwargs): dataset_params = {'tokenizer_src': tokenizer_src, 'tokenizer_tgt': tokenizer_tgt, 'dataset_src': dataset_src, 'dataset_tgt': dataset_tgt, 'tokens_in_batch': tokens_in_batch, 'clean': clean} super().__init__(dataset_type, dataset_params, **kwargs) if self._placement == nemo.core.DeviceType.AllGpu: sampler = pt_data.distributed.DistributedSampler(self._dataset) else: sampler = None self._dataloader = pt_data.DataLoader(dataset=self._dataset, batch_size=1, collate_fn=self._collate_fn, shuffle=sampler is None, sampler=sampler) def _collate_fn(self, x): src_ids, src_mask, tgt_ids, tgt_mask, labels, sent_ids = x[0] src_ids = torch.Tensor(src_ids).long().to(self._device) src_mask = torch.Tensor(src_mask).float().to(self._device) tgt_ids = torch.Tensor(tgt_ids).long().to(self._device) tgt_mask = torch.Tensor(tgt_mask).float().to(self._device) labels = torch.Tensor(labels).long().to(self._device) sent_ids = torch.Tensor(sent_ids).long().to(self._device) return src_ids, src_mask, tgt_ids, tgt_mask, labels, sent_ids @property def dataset(self): return None @property def data_iterator(self): return self._dataloader class GlueDataLayerClassification(TextDataLayer): """ Creates the data layer to use for the GLUE classification tasks, more details here: https://gluebenchmark.com/tasks All the data processing is done in GLUEDataset. Args: dataset_type (GLUEDataset): the dataset that needs to be converted to DataLayerNM """ @staticmethod def create_ports(): output_ports = { "input_ids": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "input_type_ids": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "input_mask": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "labels": NeuralType({ 0: AxisType(CategoricalTag), }), } return {}, output_ports def __init__(self, data_dir, tokenizer, max_seq_length, processor, evaluate=False, token_params={}, num_samples=-1, shuffle=False, batch_size=64, dataset_type=GLUEDataset, **kwargs): kwargs['batch_size'] = batch_size dataset_params = {'data_dir': data_dir, 'output_mode': 'classification', 'processor': processor, 'evaluate': evaluate, 'token_params': token_params, 'tokenizer': tokenizer, 'max_seq_length': max_seq_length} super().__init__(dataset_type, dataset_params, **kwargs) class GlueDataLayerRegression(TextDataLayer): """ Creates the data layer to use for the GLUE STS-B regression task, more details here: https://gluebenchmark.com/tasks All the data processing is done in GLUEDataset. Args: dataset_type (GLUEDataset): the dataset that needs to be converted to DataLayerNM """ @staticmethod def create_ports(): output_ports = { "input_ids": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "input_type_ids": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "input_mask": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(TimeTag) }), "labels": NeuralType({ 0: AxisType(RegressionTag), }), } return {}, output_ports def __init__(self, data_dir, tokenizer, max_seq_length, processor, evaluate=False, token_params={}, num_samples=-1, shuffle=False, batch_size=64, dataset_type=GLUEDataset, **kwargs): kwargs['batch_size'] = batch_size dataset_params = {'data_dir': data_dir, 'output_mode': 'regression', 'processor': processor, 'evaluate': evaluate, 'token_params': token_params, 'tokenizer': tokenizer, 'max_seq_length': max_seq_length} super().__init__(dataset_type, dataset_params, **kwargs)
34.851449
79
0.537547
27,845
0.964931
901
0.031223
11,834
0.410091
0
0
8,924
0.309249
c446129e206d55ad3a8c2ed465762b2ddf662a3e
12,208
py
Python
h2o-py/h2o/automl/_base.py
vishalbelsare/h2o-3
9322fb0f4c0e2358449e339a434f607d524c69fa
[ "Apache-2.0" ]
null
null
null
h2o-py/h2o/automl/_base.py
vishalbelsare/h2o-3
9322fb0f4c0e2358449e339a434f607d524c69fa
[ "Apache-2.0" ]
58
2021-10-01T12:43:37.000Z
2021-12-08T22:58:43.000Z
h2o-py/h2o/automl/_base.py
vishalbelsare/h2o-3
9322fb0f4c0e2358449e339a434f607d524c69fa
[ "Apache-2.0" ]
null
null
null
import h2o from h2o.base import Keyed from h2o.exceptions import H2OValueError from h2o.job import H2OJob from h2o.model import ModelBase from h2o.utils.typechecks import assert_is_type, is_type class H2OAutoMLBaseMixin: def predict(self, test_data): """ Predict on a dataset. :param H2OFrame test_data: Data on which to make predictions. :returns: A new H2OFrame of predictions. :examples: >>> # Set up an H2OAutoML object >>> aml = H2OAutoML(max_runtime_secs=30) >>> # Launch an H2OAutoML run >>> aml.train(y=y, training_frame=train) >>> # Predict with top model from AutoML Leaderboard on a H2OFrame called 'test' >>> aml.predict(test) >>> >>> # Get AutoML object by `project_name` >>> get_aml = h2o.automl.get_automl(aml.project_name) >>> # Predict with top model from AutoML Leaderboard on a H2OFrame called 'test' >>> get_aml.predict(test) """ return self.leader.predict(test_data) # --------------------------------------------------------------------------- # Download POJO/MOJO with AutoML # --------------------------------------------------------------------------- def download_pojo(self, path="", get_genmodel_jar=False, genmodel_name=""): """ Download the POJO for the leader model in AutoML to the directory specified by path. If path is an empty string, then dump the output to screen. :param path: An absolute path to the directory where POJO should be saved. :param get_genmodel_jar: if True, then also download h2o-genmodel.jar and store it in folder ``path``. :param genmodel_name: Custom name of genmodel jar :returns: name of the POJO file written. """ return h2o.download_pojo(self.leader, path, get_jar=get_genmodel_jar, jar_name=genmodel_name) def download_mojo(self, path=".", get_genmodel_jar=False, genmodel_name=""): """ Download the leader model in AutoML in MOJO format. :param path: the path where MOJO file should be saved. :param get_genmodel_jar: if True, then also download h2o-genmodel.jar and store it in folder ``path``. :param genmodel_name: Custom name of genmodel jar :returns: name of the MOJO file written. """ return ModelBase.download_mojo(self.leader, path, get_genmodel_jar, genmodel_name) @property def project_name(self): """ Retrieve a string indicating the project_name of the automl instance to retrieve. :return: a string containing the project_name """ pass @property def leader(self): """ Retrieve the top model from an H2OAutoML object :return: an H2O model :examples: >>> # Set up an H2OAutoML object >>> aml = H2OAutoML(max_runtime_secs=30) >>> # Launch an AutoML run >>> aml.train(y=y, training_frame=train) >>> # Get the best model in the AutoML Leaderboard >>> aml.leader >>> >>> # Get AutoML object by `project_name` >>> get_aml = h2o.automl.get_automl(aml.project_name) >>> # Get the best model in the AutoML Leaderboard >>> get_aml.leader """ pass @property def leaderboard(self): """ Retrieve the leaderboard from an H2OAutoML object :return: an H2OFrame with model ids in the first column and evaluation metric in the second column sorted by the evaluation metric :examples: >>> # Set up an H2OAutoML object >>> aml = H2OAutoML(max_runtime_secs=30) >>> # Launch an AutoML run >>> aml.train(y=y, training_frame=train) >>> # Get the AutoML Leaderboard >>> aml.leaderboard >>> >>> # Get AutoML object by `project_name` >>> get_aml = h2o.automl.get_automl(aml.project_name) >>> # Get the AutoML Leaderboard >>> get_aml.leaderboard """ pass @property def training_info(self): """ Expose the name/value columns of `event_log` as a simple dictionary, for example `start_epoch`, `stop_epoch`, ... See :func:`event_log` to obtain a description of those key/value pairs. :return: a dictionary with event_log['name'] column as keys and event_log['value'] column as values. """ pass @property def event_log(self): """ Retrieve the backend event log from an H2OAutoML object :return: an H2OFrame with detailed events occurred during the AutoML training. """ pass def get_leaderboard(self, extra_columns=None): """ Retrieve the leaderboard. Contrary to the default leaderboard attached to the instance, this one can return columns other than the metrics. :param extra_columns: a string or a list of string specifying which optional columns should be added to the leaderboard. Defaults to None. Currently supported extensions are: - 'ALL': adds all columns below. - 'training_time_ms': column providing the training time of each model in milliseconds (doesn't include the training of cross validation models). - 'predict_time_per_row_ms`: column providing the average prediction time by the model for a single row. - 'algo': column providing the algorithm name for each model. :return: An H2OFrame representing the leaderboard. :examples: >>> aml = H2OAutoML(max_runtime_secs=30) >>> aml.train(y=y, training_frame=train) >>> lb_all = aml.get_leaderboard('ALL') >>> lb_custom = aml.get_leaderboard(['predict_time_per_row_ms', 'training_time_ms']) >>> lb_custom_sorted = lb_custom.sort(by='predict_time_per_row_ms') """ assert isinstance(self, Keyed) return _fetch_leaderboard(self.key, extra_columns) def get_best_model(self, algorithm=None, criterion=None): """ Get best model of a given family/algorithm for a given criterion from an AutoML object. :param algorithm: One of "basemodel", "deeplearning", "drf", "gbm", "glm", "stackedensemble", "xgboost". If None, pick the best model regardless of the algorithm. :param criterion: Criterion can be one of the metrics reported in leaderboard. If set to None, the same ordering as in the leaderboard will be used. Avaliable criteria: - Regression metrics: deviance, rmse, mse, mae, rmsle - Binomial metrics: auc, logloss, aucpr, mean_per_class_error, rmse, mse - Multinomial metrics: mean_per_class_error, logloss, rmse, mse The following additional leaderboard information can be also used as a criterion: - 'training_time_ms': column providing the training time of each model in milliseconds (doesn't include the training of cross validation models). - 'predict_time_per_row_ms`: column providing the average prediction time by the model for a single row. :return: An H2OModel or None if no model of a given family is present :examples: >>> # Set up an H2OAutoML object >>> aml = H2OAutoML(max_runtime_secs=30) >>> # Launch an AutoML run >>> aml.train(y=y, training_frame=train) >>> gbm = aml.get_best_model("gbm") """ from h2o.exceptions import H2OValueError def _get_models(leaderboard): return [m[0] for m in leaderboard["model_id"].as_data_frame(use_pandas=False, header=False)] higher_is_better = ["auc", "aucpr"] assert_is_type(algorithm, None, str) assert_is_type(criterion, None, str) if criterion is not None: criterion = criterion.lower() if "deviance" == criterion: criterion = "mean_residual_deviance" if algorithm is not None: if algorithm.lower() not in ("basemodel", "deeplearning", "drf", "gbm", "glm", "stackedensemble", "xgboost"): raise H2OValueError("Algorithm \"{}\" is not supported!".format(algorithm)) algorithm = algorithm.lower() extra_cols = ["algo"] if criterion in ("training_time_ms", "predict_time_per_row_ms"): extra_cols.append(criterion) leaderboard = h2o.automl.get_leaderboard(self, extra_columns=extra_cols) leaderboard = leaderboard if algorithm is None else ( leaderboard[leaderboard["algo"].tolower() == algorithm, :] if algorithm != "basemodel" else leaderboard[leaderboard["algo"].tolower() != "stackedensemble", :]) if leaderboard.nrow == 0: return None if criterion is None: return h2o.get_model(leaderboard[0, "model_id"]) if criterion not in leaderboard.columns: raise H2OValueError("Criterion \"{}\" is not present in the leaderboard!".format(criterion)) models_in_default_order = _get_models(leaderboard) sorted_lb = leaderboard.sort(by=criterion, ascending=criterion not in higher_is_better) selected_models = _get_models(sorted_lb[sorted_lb[criterion] == sorted_lb[0, criterion]]) picked_model = [model for model in models_in_default_order if model in selected_models][0] return h2o.get_model(picked_model) def _fetch_leaderboard(aml_id, extensions=None): assert_is_type(extensions, None, str, [str]) extensions = ([] if extensions is None else [extensions] if is_type(extensions, str) else extensions) resp = h2o.api("GET /99/Leaderboards/%s" % aml_id, data=dict(extensions=extensions)) dest_key = resp['project_name'].split('@', 1)[0]+"_custom_leaderboard" return _fetch_table(resp['table'], key=dest_key, progress_bar=False) def _fetch_table(table, key=None, progress_bar=True): try: # Intentionally mask the progress bar here since showing multiple progress bars is confusing to users. # If any failure happens, revert back to user's original setting for progress and display the error message. ori_progress_state = H2OJob.__PROGRESS_BAR__ H2OJob.__PROGRESS_BAR__ = progress_bar # Parse leaderboard H2OTwoDimTable & return as an H2OFrame fr = h2o.H2OFrame(table.cell_values, destination_frame=key, column_names=table.col_header, column_types=table.col_types) return h2o.assign(fr[1:], key) # removing index and reassign id to ensure persistence on backend finally: H2OJob.__PROGRESS_BAR__ = ori_progress_state def _fetch_state(aml_id, properties=None, verbosity=None): state_json = h2o.api("GET /99/AutoML/%s" % aml_id, data=dict(verbosity=verbosity)) project_name = state_json["project_name"] if project_name is None: raise H2OValueError("No AutoML instance with id {}.".format(aml_id)) leaderboard_list = [key["name"] for key in state_json['leaderboard']['models']] leader_id = leaderboard_list[0] if (leaderboard_list is not None and len(leaderboard_list) > 0) else None should_fetch = lambda prop: properties is None or prop in properties leader = None if should_fetch('leader'): leader = h2o.get_model(leader_id) if leader_id is not None else None leaderboard = None if should_fetch('leaderboard'): leaderboard = _fetch_table(state_json['leaderboard_table'], key=project_name+"_leaderboard", progress_bar=False) event_log = None if should_fetch('event_log'): event_log = _fetch_table(state_json['event_log_table'], key=project_name+"_eventlog", progress_bar=False) return dict( project_name=project_name, json=state_json, leader_id=leader_id, leader=leader, leaderboard=leaderboard, event_log=event_log, )
42.096552
173
0.63442
9,531
0.780718
0
0
2,236
0.183159
0
0
7,351
0.602146
c44725a87dd7a0e5d3208fe6f2ccd197531d2ad1
2,687
py
Python
Pistol.py
KRHS-GameProgramming-2014/survival-island
375b2710a2bc29551170b18638e2c00c6b2dc7c5
[ "BSD-3-Clause" ]
1
2015-04-01T12:46:26.000Z
2015-04-01T12:46:26.000Z
Pistol.py
KRHS-GameProgramming-2014/survival-island
375b2710a2bc29551170b18638e2c00c6b2dc7c5
[ "BSD-3-Clause" ]
null
null
null
Pistol.py
KRHS-GameProgramming-2014/survival-island
375b2710a2bc29551170b18638e2c00c6b2dc7c5
[ "BSD-3-Clause" ]
null
null
null
import math,sys,pygame class Pistol(pygame.sprite.Sprite): def __init__(self,player): self.facing = player.facing if self.facing == "up": self.image = pygame.image.load("rsc/Projectiles/gustu.png") self.speed = [0, -5] elif self.facing == "down": self.image = pygame.image.load("rsc/Projectiles/gustd.png") self.speed = [0, 5] elif self.facing == "right": self.image = pygame.image.load("rsc/Projectiles/gustr.png") self.speed = [5, 0] elif self.facing == "left": self.image = pygame.image.load("rsc/Projectiles/gustl.png") self.speed = [-5, 0] self.rect = self.image.get_rect() self.damage = 20 self.place(player.rect.center) self.radius = 20 self.move() self.living = True def move(self): self.rect = self.rect.move(self.speed) def collideWall(self, width, height): if self.rect.left < 0 or self.rect.right > width: self.speedx = 0 #print "hit xWall" if self.rect.top < 0 or self.rect.bottom > height: self.speedy = 0 def collidePistol(self, other): if self != other: if self.rect.right > other.rect.left and self.rect.left < other.rect.right: if self.rect.bottom > other.rect.top and self.rect.top < other.rect.bottom: if (self.radius + other.radius) > self.distance(other.rect.center): self.living = False def place(self, pt): self.rect.center = pt def update(self, width, height): #self.speed = [self.speedx, self.speedy] self.move() def distance(self, pt): x1 = self.rect.center[0] y1 = self.rect.center[1] x2 = pt[0] y2 = pt[1] return math.sqrt(((x2-x1)**2) + ((y2-y1)**2)) def animate(self): if self.waitCount < self.maxWait: self.waitCount += 1 else: self.waitCount = 0 self.facingChanged = True if self.frame < self.maxFrame: self.frame += 1 else: self.frame = 0 if self.changed: if self.facing == "up": self.images = self.upImages elif self.facing == "down": self.images = self.downImages elif self.facing == "right": self.images = self.rightImages elif self.facing == "left": self.images = self.leftImages self.image = self.images[self.frame]
33.17284
79
0.519166
2,662
0.990696
0
0
0
0
0
0
212
0.078898
c447c656ac034795409e4bb710eaaca13a84688c
3,388
py
Python
appdaemon/apps/common/common.py
Mithras/ha
d37f8673eed27a85f76c97ee3e924d2ddc033ee5
[ "MIT" ]
3
2019-10-27T06:10:26.000Z
2020-07-21T01:27:11.000Z
appdaemon/apps/common/common.py
Mithras/ha
d37f8673eed27a85f76c97ee3e924d2ddc033ee5
[ "MIT" ]
null
null
null
appdaemon/apps/common/common.py
Mithras/ha
d37f8673eed27a85f76c97ee3e924d2ddc033ee5
[ "MIT" ]
null
null
null
import hassapi as hass import csv from collections import namedtuple Profile = namedtuple( "Profile", ["profile", "x_color", "y_color", "brightness"]) with open("/config/light_profiles.csv") as profiles_file: profiles_reader = csv.reader(profiles_file) next(profiles_reader) LIGHT_PROFILES = [Profile(row[0], float(row[1]), float( row[2]), int(row[3])) for row in profiles_reader] class Common(hass.Hass): async def initialize(self): config = self.args["config"] self.telegram_mithras = config["telegram_mithras"] self.telegram_debug_chat = config["telegram_debug_chat"] self.telegram_state_chat_mithras = config["telegram_state_chat_mithras"] self.telegram_state_chat_diana = config["telegram_state_chat_diana"] self.telegram_alarm_chat = config["telegram_alarm_chat"] self.external_url = config["external_url"] async def is_sleep_async(self): return await self.get_state("input_boolean.sleep") == "on" async def send_state_async(self, person: str, message: str, **kwargs): if person == "person.mithras": target = self.telegram_state_chat_mithras elif person == "person.diana": target = self.telegram_state_chat_diana await self.call_service("telegram_bot/send_message", target=[target], message=message, **kwargs) async def send_alarm_async(self, message: str, **kwargs): await self.call_service("telegram_bot/send_message", target=[self.telegram_alarm_chat], message=message, **kwargs) async def send_debug_async(self, message: str, **kwargs): await self.call_service("telegram_bot/send_message", target=[self.telegram_debug_chat], message=message, **kwargs) async def turn_on_async(self, entity: str): [domain, _] = entity.split(".") await self.call_service(f"{domain}/turn_on", entity_id=entity) async def turn_off_async(self, entity: str): [domain, _] = entity.split(".") await self.call_service(f"{domain}/turn_off", entity_id=entity) async def light_turn_bright_async(self, light_group: str): await self.light_turn_profile_async(light_group, "bright") async def light_turn_dimmed_async(self, light_group: str): await self.light_turn_profile_async(light_group, "dimmed") async def light_turn_nightlight_async(self, light_group: str): await self.light_turn_profile_async(light_group, "nightlight") async def light_turn_profile_async(self, light_group: str, profile: str): if profile == "off": await self.turn_off_async(light_group) else: await self.call_service("light/turn_on", entity_id=light_group, profile=profile) # TODO: test async def light_flash(self, light_group: str, flash="short"): await self.call_service("light/turn_on", entity_id=light_group, flash=flash)
41.317073
80
0.602715
2,978
0.878985
0
0
0
0
2,866
0.845927
477
0.140791
c448522cb4d655aac706a30087c1d285bd8f1d0f
3,133
py
Python
src/mongo_model.py
zxteloiv/curated-geokb-subsearcher
8f42dca4cb293ccf3baf25bb31ba9b6cd6a76c8d
[ "MIT" ]
null
null
null
src/mongo_model.py
zxteloiv/curated-geokb-subsearcher
8f42dca4cb293ccf3baf25bb31ba9b6cd6a76c8d
[ "MIT" ]
null
null
null
src/mongo_model.py
zxteloiv/curated-geokb-subsearcher
8f42dca4cb293ccf3baf25bb31ba9b6cd6a76c8d
[ "MIT" ]
null
null
null
# coding: utf-8 from pymongo import MongoClient import conf class MongoQuery(object): def __init__(self): self._conn = MongoClient(conf.mongodb_conn_str) self._db = self._conn.geokb def query(self, grounded, limit=15, sort_keys=None): col = self._db[grounded['from']] docs = col.find(grounded['where'], limit=limit, sort=([('popularity', -1)] + ['_sys_ranks.%s' % x[0] for x in sort_keys if x is not None]) ) if '*' in grounded['select']: res = [dict((k, v) for k, v in doc.iteritems() if k != '_id') for doc in docs] else: res = [] for doc in docs: selected = {} for k in grounded['select']: if k in doc: selected[k] = doc[k] res.append(selected) return res def coarse_query(self, grounded, limit=2000, sort_keys=None): col = self._db[grounded['from']] # docs = col.find(grounded['where'], limit=limit, sort=[('popularity', -1), ('_id', 1)]) docs = col.find(grounded['where'], limit=limit, sort=([('popularity', -1)] + [('_sys_ranks.%s' % x[0], -1) for x in sort_keys if x is not None]) ) return [dict((k, v) for k, v in doc.iteritems() if k != '_id') for doc in docs] def project(self, docs, grounded, limit=15): res = [] for doc in docs: if len(res) >= 15: break try: score = doc['_rerank']['TimeRanker'] if score < 1: continue except KeyError: pass if '*' in grounded['select']: doc = dict((k, v) if type(v) != type([]) else (k, self._merge_obj_array(v)) for k, v in doc.iteritems() if k != '_id') doc['src'] = 'geokb' doc['score'] = 2.0 # fixed high score for nginx blender, in another module res.append(doc) else: selected = {} for k in grounded['select']: if type(doc[k]) == type([]): selected[k] = self._merge_obj_array(doc[k]) else: selected[k] = doc[k] selected['_sys_ranks'] = doc['_sys_ranks'] selected['src'] = 'geokb' selected['score'] = 2.0 # fixed high score for nginx blender, in another module res.append(selected) return res @staticmethod def _merge_obj_array(arr): if len(arr) == 0 or type(arr) != type([]): return arr if type(arr[0]) != type(dict()): return arr # [{u'推荐菜': u'AA"}, {u'推荐菜': u'BB'}, ...] get_val_lst = lambda o: [v for _, v in o.iteritems()] lst = [] for obj in arr: lst += get_val_lst(obj) return lst
34.054348
99
0.452601
3,080
0.979332
0
0
405
0.128776
0
0
482
0.153259
c448639417746f765b5ac2d5c6459142e8c6a83b
8,809
py
Python
src/dcm/agent/plugins/builtin/configure_server.py
JPWKU/unix-agent
8f1278fc8c2768a8d4d54af642a881bace43652f
[ "Apache-2.0" ]
null
null
null
src/dcm/agent/plugins/builtin/configure_server.py
JPWKU/unix-agent
8f1278fc8c2768a8d4d54af642a881bace43652f
[ "Apache-2.0" ]
22
2015-09-15T20:52:34.000Z
2016-03-11T22:44:24.000Z
src/dcm/agent/plugins/builtin/configure_server.py
JPWKU/unix-agent
8f1278fc8c2768a8d4d54af642a881bace43652f
[ "Apache-2.0" ]
3
2015-09-11T20:21:33.000Z
2016-09-30T08:30:19.000Z
# # Copyright (C) 2014 Dell, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import configparser import json import logging import os import urllib.parse import dcm.agent.exceptions as exceptions import dcm.agent.logger as dcm_logger import dcm.agent.plugins.api.base as plugin_base import dcm.agent.plugins.api.exceptions as plugin_exceptions import dcm.agent.plugins.api.utils as plugin_utils import dcm.agent.utils as utils _g_logger = logging.getLogger(__name__) class ConfigureServer(plugin_base.Plugin): protocol_arguments = { "configType": ("Which configuration management software to use (chef or puppet)", True, str, None), "authId": ("", False, str, None), "configurationData": ("", False, plugin_utils.base64type_convertor, None), "encryptedConfigToken": ("", False, plugin_utils.base64type_convertor, None), "encryptedAuthSecret": ("", False, plugin_utils.base64type_convertor, None), "endpoint": ("", False, str, None), "providerRegionId": ("", False, str, None), "runAsUser": ("", False, str, None), "storageDelegate": ("", False, str, None), "storageEndpoint": ("", False, str, None), "storageAccount": ("", False, str, None), "scriptFiles": ("", False, list, None), "storagePublicKey": ("", False, plugin_utils.base64type_convertor, None), "storagePrivateKey": ("", False, plugin_utils.base64type_convertor, None), "environmentId": ("", False, str, None), "personalityFiles": ("", False, list, None), "configClientName": ("", False, str, None), "configCert": ("", False, plugin_utils.base64type_convertor, None), "configKey": ("", False, plugin_utils.base64type_convertor, None), "runListIds": ("", False, list, None), "parameterList": ("", False, plugin_utils.base64type_convertor, None), } def __init__(self, conf, job_id, items_map, name, arguments): super(ConfigureServer, self).__init__( conf, job_id, items_map, name, arguments) if not self.args.runAsUser: self.args.runAsUser = self.conf.system_user def configure_server_with_chef(self): chef_dir = self.conf.get_temp_file("chefconf", isdir=True) run_list_file_name = os.path.join(chef_dir, "runList.cfg") token_file_path = self.conf.get_temp_file("token.pem") try: if self.args.encryptedAuthSecret: token = self.args.encryptedAuthSecret else: token = "NULL" authId = self.args.authId if authId is None: authId = "NULL" endpoint = self.args.endpoint if endpoint is None: endpoint = "NULL" environmentId = self.args.environmentId if environmentId is None: environmentId = "NULL" chef_json = {"run_list": self.args.runListIds} with open(run_list_file_name, "w") as fptr: fptr.write(json.dumps(chef_json)) with open(token_file_path, "w") as fptr: fptr.write(token) fptr.write(os.linesep) exe = self.conf.get_script_location( "runConfigurationManagement-CHEF") cmd_list = [exe, self.args.runAsUser, self.args.configClientName, token_file_path, run_list_file_name, authId, endpoint, environmentId, self.conf.configuration_management_chef_client_version] return plugin_utils.run_command(self.conf, cmd_list) finally: plugin_utils.safe_delete(run_list_file_name) plugin_utils.safe_delete(token_file_path) def _edit_puppet_conf(self, template_path, new_location, endpoint): parser = configparser.SafeConfigParser() parser.read(template_path) if not parser.has_section("agent"): parser.add_section("agent") parser.set("agent", "certname", self.args.configClientName) parser.set("agent", "server", endpoint) with open(new_location, "w") as fptr: parser.write(fptr) def configure_server_with_puppet(self): if self.args.endpoint is None: raise exceptions.AgentOptionValueNotSetException("endpoint") # XXX it will only work with the default port. There is no way for # the user to configure anything else in the console endpoint = urllib.parse.urlparse(self.args.endpoint).hostname puppet_extras_base_path = os.path.join(self.conf.extra_base_path, "puppetconf") puppet_extras_bin = os.path.join(self.conf.extra_base_path, "bin/puppet") try: utils.install_extras( self.conf, package=self.conf.extra_package_name) except exceptions.AgentExtrasNotInstalledException as ex: _g_logger.exception("An error occurred trying to install puppet. " "Exception message is %s" % str(ex)) raise template_puppet_conf_path = os.path.join(puppet_extras_base_path, "puppet.conf.template") if not os.path.exists(template_puppet_conf_path): raise exceptions.AgentExtrasNotInstalledException( "The puppet.conf template did not install properly.") if not os.path.exists(puppet_extras_bin): raise exceptions.AgentExtrasNotInstalledException( "The puppet binary did not install properly.") puppet_conf_path = self.conf.get_temp_file("puppet.conf") self._edit_puppet_conf(template_puppet_conf_path, puppet_conf_path, endpoint) cert_file_path = self.conf.get_temp_file("cert.pem") key_file_path = self.conf.get_temp_file("key.pem") try: with open(cert_file_path, "w") as fptr: fptr.write(self.args.configCert) with open(key_file_path, "w") as fptr: fptr.write(self.args.configKey) exe = self.conf.get_script_location( "runConfigurationManagement-PUPPET") cmd = [exe, endpoint, cert_file_path, key_file_path, self.args.configClientName, self.conf.extra_base_path, puppet_conf_path] return plugin_utils.run_command(self.conf, cmd) finally: plugin_utils.safe_delete(cert_file_path) plugin_utils.safe_delete(key_file_path) plugin_utils.safe_delete(puppet_conf_path) def run(self): _g_logger.info("Running configuration management of type " + self.args.configType) if self.args.configType.upper() == "CHEF": (stdout, stderr, rc) = self.configure_server_with_chef() elif self.args.configType.upper() == "PUPPET": (stdout, stderr, rc) = self.configure_server_with_puppet() else: raise plugin_exceptions.AgentPluginParameterBadValueException( "configType", "CHEF or PUPPET") if stderr: dcm_logger.log_to_dcm_console_configuration_management_error( stderr=stderr) if stdout: dcm_logger.log_to_dcm_console_configuration_management_output( stdout=stdout) if rc != 0: return plugin_base.PluginReply(rc, message=stderr) else: return plugin_base.PluginReply( rc, reply_type="string", reply_object=stdout) def load_plugin(conf, job_id, items_map, name, arguments): return ConfigureServer(conf, job_id, items_map, name, arguments)
38.635965
79
0.595187
7,700
0.874106
0
0
0
0
0
0
1,661
0.188557
c44957a976ba959e51bd70f903dcac90438fe807
17,184
py
Python
phy/plot/interact.py
ycanerol/phy
7a247f926dd5bf5d8ab95fe138e8f4a0db11b068
[ "BSD-3-Clause" ]
118
2019-06-03T06:19:43.000Z
2022-03-25T00:05:26.000Z
phy/plot/interact.py
ycanerol/phy
7a247f926dd5bf5d8ab95fe138e8f4a0db11b068
[ "BSD-3-Clause" ]
761
2015-01-08T11:17:41.000Z
2019-05-27T16:12:08.000Z
phy/plot/interact.py
ycanerol/phy
7a247f926dd5bf5d8ab95fe138e8f4a0db11b068
[ "BSD-3-Clause" ]
70
2019-05-30T11:05:26.000Z
2022-03-30T11:51:23.000Z
# -*- coding: utf-8 -*- """Common layouts.""" #------------------------------------------------------------------------------ # Imports #------------------------------------------------------------------------------ import logging import numpy as np from phylib.utils import emit from phylib.utils.geometry import get_non_overlapping_boxes, get_closest_box from .base import BaseLayout from .transform import Scale, Range, Subplot, Clip, NDC from .utils import _get_texture, _in_polygon from .visuals import LineVisual, PolygonVisual logger = logging.getLogger(__name__) #------------------------------------------------------------------------------ # Grid #------------------------------------------------------------------------------ class Grid(BaseLayout): """Layout showing subplots arranged in a 2D grid. Constructor ----------- shape : tuple or str Number of rows, cols in the grid. shape_var : str Name of the GLSL uniform variable that holds the shape, when it is variable. box_var : str Name of the GLSL variable with the box index. has_clip : boolean Whether subplots should be clipped. Note ---- To be used in a grid, a visual must define `a_box_index` (by default) or another GLSL variable specified in `box_var`. """ margin = .075 n_dims = 2 active_box = (0, 0) _scaling = (1., 1.) def __init__(self, shape=(1, 1), shape_var='u_grid_shape', box_var=None, has_clip=True): super(Grid, self).__init__(box_var=box_var) self.shape_var = shape_var self._shape = shape ms = 1 - self.margin mc = 1 - self.margin # Define the GPU transforms of the Grid layout. # 1. Global scaling. self.gpu_transforms.add(Scale(self._scaling, gpu_var='u_grid_scaling')) # 2. Margin. self.gpu_transforms.add(Scale((ms, ms))) # 3. Clipping for the subplots. if has_clip: self.gpu_transforms.add(Clip([-mc, -mc, +mc, +mc])) # 4. Subplots. self.gpu_transforms.add(Subplot( # The parameters of the subplots are callable as they can be changed dynamically. shape=lambda: self._shape, index=lambda: self.active_box, shape_gpu_var=self.shape_var, index_gpu_var=self.box_var)) def attach(self, canvas): """Attach the grid to a canvas.""" super(Grid, self).attach(canvas) canvas.gpu_transforms += self.gpu_transforms canvas.inserter.insert_vert( """ attribute vec2 {}; uniform vec2 {}; uniform vec2 u_grid_scaling; """.format(self.box_var, self.shape_var), 'header', origin=self) def add_boxes(self, canvas, shape=None): """Show subplot boxes.""" shape = shape or self.shape assert isinstance(shape, tuple) n, m = shape n_boxes = n * m a = 1 - .0001 pos = np.array([[-a, -a, +a, -a], [+a, -a, +a, +a], [+a, +a, -a, +a], [-a, +a, -a, -a], ]) pos = np.tile(pos, (n_boxes, 1)) box_index = [] for i in range(n): for j in range(m): box_index.append([i, j]) box_index = np.vstack(box_index) box_index = np.repeat(box_index, 8, axis=0) boxes = LineVisual() # We exclude this interact when adding the visual. canvas.add_visual(boxes, clearable=False) boxes.set_data(pos=pos) boxes.set_box_index(box_index) canvas.update() def get_closest_box(self, pos): """Get the box index (i, j) closest to a given position in NDC coordinates.""" x, y = pos rows, cols = self.shape j = np.clip(int(cols * (1. + x) / 2.), 0, cols - 1) i = np.clip(int(rows * (1. - y) / 2.), 0, rows - 1) return i, j def update_visual(self, visual): """Update a visual.""" super(Grid, self).update_visual(visual) if self.shape_var in visual.program: visual.program[self.shape_var] = self._shape visual.program['u_grid_scaling'] = self._scaling @property def shape(self): """Return the grid shape.""" return self._shape @shape.setter def shape(self, value): self._shape = value self.update() @property def scaling(self): """Return the grid scaling.""" return self._scaling @scaling.setter def scaling(self, value): self._scaling = value self.update() #------------------------------------------------------------------------------ # Boxed #------------------------------------------------------------------------------ class Boxed(BaseLayout): """Layout showing plots in rectangles at arbitrary positions. Used by the waveform view. The boxes are specified via their center positions and optional sizes, in which case an iterative algorithm is used to find the largest box size that will not make them overlap. Constructor ---------- box_pos : array-like (2D, shape[1] == 2) Position of the centers of the boxes. box_var : str Name of the GLSL variable with the box index. keep_aspect_ratio : boolean Whether to keep the aspect ratio of the bounds. Note ---- To be used in a boxed layout, a visual must define `a_box_index` (by default) or another GLSL variable specified in `box_var`. """ margin = .1 n_dims = 1 active_box = 0 _box_scaling = (1., 1.) _layout_scaling = (1., 1.) _scaling_param_increment = 1.1 def __init__(self, box_pos=None, box_var=None, keep_aspect_ratio=False): super(Boxed, self).__init__(box_var=box_var) self._key_pressed = None self.keep_aspect_ratio = keep_aspect_ratio self.update_boxes(box_pos) self.gpu_transforms.add(Range( NDC, lambda: self.box_bounds[self.active_box], from_gpu_var='vec4(-1, -1, 1, 1)', to_gpu_var='box_bounds')) def attach(self, canvas): """Attach the boxed interact to a canvas.""" super(Boxed, self).attach(canvas) canvas.gpu_transforms += self.gpu_transforms canvas.inserter.insert_vert(""" #include "utils.glsl" attribute float {}; uniform sampler2D u_box_pos; uniform float n_boxes; uniform vec2 u_box_size; uniform vec2 u_layout_scaling; """.format(self.box_var), 'header', origin=self) canvas.inserter.insert_vert(""" // Fetch the box bounds for the current box (`box_var`). vec2 box_pos = fetch_texture({}, u_box_pos, n_boxes).xy; box_pos = (2 * box_pos - 1); // from [0, 1] (texture) to [-1, 1] (NDC) box_pos = box_pos * u_layout_scaling; vec4 box_bounds = vec4(box_pos - u_box_size, box_pos + u_box_size); """.format(self.box_var), 'start', origin=self) def update_visual(self, visual): """Update a visual.""" super(Boxed, self).update_visual(visual) box_pos = _get_texture(self.box_pos, (0, 0), self.n_boxes, [-1, 1]) box_pos = box_pos.astype(np.float32) if 'u_box_pos' in visual.program: logger.log(5, "Update visual with interact Boxed.") visual.program['u_box_pos'] = box_pos visual.program['n_boxes'] = self.n_boxes visual.program['u_box_size'] = np.array(self.box_size) * np.array(self._box_scaling) visual.program['u_layout_scaling'] = self._layout_scaling def update_boxes(self, box_pos): """Update the box positions and automatically-computed size.""" self.box_pos, self.box_size = get_non_overlapping_boxes(box_pos) def add_boxes(self, canvas): """Show the boxes borders.""" n_boxes = len(self.box_pos) a = 1 + .05 pos = np.array([[-a, -a, +a, -a], [+a, -a, +a, +a], [+a, +a, -a, +a], [-a, +a, -a, -a], ]) pos = np.tile(pos, (n_boxes, 1)) boxes = LineVisual() box_index = np.repeat(np.arange(n_boxes), 8) canvas.add_visual(boxes, clearable=False) boxes.set_data(pos=pos, color=(.5, .5, .5, 1)) boxes.set_box_index(box_index) canvas.update() # Change the box bounds, positions, or size #-------------------------------------------------------------------------- @property def n_boxes(self): """Total number of boxes.""" return len(self.box_pos) @property def box_bounds(self): """Bounds of the boxes.""" bs = np.array(self.box_size) return np.c_[self.box_pos - bs, self.box_pos + bs] def get_closest_box(self, pos): """Get the box closest to some position.""" return get_closest_box(pos, self.box_pos, self.box_size) # Box scaling #-------------------------------------------------------------------------- def _increment_box_scaling(self, cw=1., ch=1.): self._box_scaling = (self._box_scaling[0] * cw, self._box_scaling[1] * ch) self.update() @property def box_scaling(self): return self._box_scaling def expand_box_width(self): return self._increment_box_scaling(cw=self._scaling_param_increment) def shrink_box_width(self): return self._increment_box_scaling(cw=1. / self._scaling_param_increment) def expand_box_height(self): return self._increment_box_scaling(ch=self._scaling_param_increment) def shrink_box_height(self): return self._increment_box_scaling(ch=1. / self._scaling_param_increment) # Layout scaling #-------------------------------------------------------------------------- def _increment_layout_scaling(self, cw=1., ch=1.): self._layout_scaling = (self._layout_scaling[0] * cw, self._layout_scaling[1] * ch) self.update() @property def layout_scaling(self): return self._layout_scaling def expand_layout_width(self): return self._increment_layout_scaling(cw=self._scaling_param_increment) def shrink_layout_width(self): return self._increment_layout_scaling(cw=1. / self._scaling_param_increment) def expand_layout_height(self): return self._increment_layout_scaling(ch=self._scaling_param_increment) def shrink_layout_height(self): return self._increment_layout_scaling(ch=1. / self._scaling_param_increment) class Stacked(Boxed): """Layout showing a number of subplots stacked vertically. Parameters ---------- n_boxes : int Number of boxes to stack vertically. box_var : str Name of the GLSL variable with the box index. origin : str top or bottom Note ---- To be used in a boxed layout, a visual must define `a_box_index` (by default) or another GLSL variable specified in `box_var`. """ margin = 0 _origin = 'bottom' def __init__(self, n_boxes, box_var=None, origin=None): self._origin = origin or self._origin assert self._origin in ('top', 'bottom') box_pos = self.get_box_pos(n_boxes) super(Stacked, self).__init__(box_pos, box_var=box_var, keep_aspect_ratio=False) @property def n_boxes(self): """Number of boxes.""" return len(self.box_pos) @n_boxes.setter def n_boxes(self, n_boxes): if n_boxes >= 1: self.update_boxes(self.get_box_pos(n_boxes)) def get_box_pos(self, n_boxes): """Return the box bounds for a given number of stacked boxes.""" # Signal bounds. b = np.zeros((n_boxes, 2)) b[:, 1] = np.linspace(-1, 1, n_boxes) if self._origin == 'top': b = b[::-1, :] return b @property def origin(self): """Whether to show the channels from top to bottom (`top` option, the default), or from bottom to top (`bottom`).""" return self._origin @origin.setter def origin(self, value): self._origin = value self.update_boxes(self.get_box_pos(self.n_boxes)) self.update() def attach(self, canvas): """Attach the stacked interact to a canvas.""" BaseLayout.attach(self, canvas) canvas.gpu_transforms += self.gpu_transforms canvas.inserter.insert_vert(""" #include "utils.glsl" attribute float {}; uniform float n_boxes; uniform bool u_top_origin; uniform vec2 u_box_size; """.format(self.box_var), 'header', origin=self) canvas.inserter.insert_vert(""" float margin = .1 / n_boxes; float a = 1 - 2. / n_boxes + margin; float b = -1 + 2. / n_boxes - margin; float u = (u_top_origin ? (n_boxes - 1. - {bv}) : {bv}) / max(1., n_boxes - 1.); float y0 = -1 + u * (a + 1); float y1 = b + u * (1 - b); float ym = .5 * (y0 + y1); float yh = u_box_size.y * (y1 - ym); y0 = ym - yh; y1 = ym + yh; vec4 box_bounds = vec4(-1., y0, +1., y1); """.format(bv=self.box_var), 'before_transforms', origin=self) def update_visual(self, visual): """Update a visual.""" BaseLayout.update_visual(self, visual) if 'n_boxes' in visual.program: visual.program['n_boxes'] = self.n_boxes visual.program['u_box_size'] = self._box_scaling visual.program['u_top_origin'] = self._origin == 'top' #------------------------------------------------------------------------------ # Interactive tools #------------------------------------------------------------------------------ class Lasso(object): """Draw a polygon with the mouse and find the points that belong to the inside of the polygon.""" def __init__(self): self._points = [] self.canvas = None self.visual = None self.box = None def add(self, pos): """Add a point to the polygon.""" x, y = pos.flat if isinstance(pos, np.ndarray) else pos self._points.append((x, y)) logger.debug("Lasso has %d points.", len(self._points)) self.update_lasso_visual() @property def polygon(self): """Coordinates of the polygon vertices.""" l = self._points # Close the polygon. # l = l + l[0] if len(l) else l out = np.array(l, dtype=np.float64) out = np.reshape(out, (out.size // 2, 2)) assert out.ndim == 2 assert out.shape[1] == 2 return out def clear(self): """Reset the lasso.""" self._points = [] self.box = None self.update_lasso_visual() @property def count(self): """Number of vertices in the polygon.""" return len(self._points) def in_polygon(self, pos): """Return which points belong to the polygon.""" return _in_polygon(pos, self.polygon) def attach(self, canvas): """Attach the lasso to a canvas.""" canvas.attach_events(self) self.canvas = canvas self.create_lasso_visual() def create_lasso_visual(self): """Create the lasso visual.""" self.visual = PolygonVisual() self.canvas.add_visual(self.visual, clearable=False) def update_lasso_visual(self): """Update the lasso visual with the current polygon.""" if not self.visual and self.count > 0: return # The following call updates a_box_index with the active box in BaseLayout. self.visual.set_data(pos=self.polygon) self.canvas.update() def on_mouse_click(self, e): """Add a polygon point with ctrl+click.""" if 'Control' in e.modifiers: if e.button == 'Left': layout = getattr(self.canvas, 'layout', None) if hasattr(layout, 'box_map'): box, pos = layout.box_map(e.pos) # Only update the box for the first click, so that the box containing # the lasso is determined by the first click only. if self.box is None: self.box = box # Avoid clicks outside the active box (box of the first click). if box != self.box: return else: # pragma: no cover pos = self.canvas.window_to_ndc(e.pos) # Force the active box to be the box of the first click, not the box of the # current click. if layout: layout.active_box = self.box self.add(pos) # call update_lasso_visual emit("lasso_updated", self.canvas, self.polygon) else: self.clear() self.box = None def __repr__(self): return str(self.polygon)
33.694118
97
0.557437
16,076
0.935521
0
0
1,827
0.10632
0
0
6,447
0.375175
c44cda7d547bb9bf0fd8879defc0c14046119449
623
py
Python
AutocompleteHandler.py
codeforamerica/sheltraustin
a07ffd4b328a9d961347a85b49c95d8bf5ec1046
[ "BSD-3-Clause" ]
null
null
null
AutocompleteHandler.py
codeforamerica/sheltraustin
a07ffd4b328a9d961347a85b49c95d8bf5ec1046
[ "BSD-3-Clause" ]
1
2015-08-03T21:27:36.000Z
2015-08-03T21:27:36.000Z
AutocompleteHandler.py
codeforamerica/sheltraustin
a07ffd4b328a9d961347a85b49c95d8bf5ec1046
[ "BSD-3-Clause" ]
1
2021-04-17T10:13:29.000Z
2021-04-17T10:13:29.000Z
import tornado.httpserver import tornado.ioloop import tornado.options import tornado.web import simplejson from QueryHandler import QueryHandler class AutocompleteHandler(tornado.web.RequestHandler): @tornado.web.asynchronous def get(self): if not self.request.arguments or self.request.arguments=={}: self.render('index.html') return if not 'address' in self.request.arguments.keys(): self.render('index.html') return address = self.request.arguments['address'][0] data = { 'address': address } output = QueryHandler.get_addresses(data) self.write(output) self.flush() self.finish()
23.074074
62
0.746388
474
0.760835
0
0
418
0.670947
0
0
51
0.081862
c44d0eafae3c92e64f9041228d582ce1a1b6ed30
1,869
py
Python
mirari/SV/migrations/0052_auto_20190428_1522.py
gcastellan0s/mirariapp
24a9db06d10f96c894d817ef7ccfeec2a25788b7
[ "MIT" ]
null
null
null
mirari/SV/migrations/0052_auto_20190428_1522.py
gcastellan0s/mirariapp
24a9db06d10f96c894d817ef7ccfeec2a25788b7
[ "MIT" ]
18
2019-12-27T19:58:20.000Z
2022-02-27T08:17:49.000Z
mirari/SV/migrations/0052_auto_20190428_1522.py
gcastellan0s/mirariapp
24a9db06d10f96c894d817ef7ccfeec2a25788b7
[ "MIT" ]
null
null
null
# Generated by Django 2.0.5 on 2019-04-28 20:22 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('SV', '0051_ticketproducts_offerprice'), ] operations = [ migrations.AddField( model_name='product', name='bar_code', field=models.CharField(blank=True, help_text='(sugerido)', max_length=250, null=True, verbose_name='Código de Barras '), ), migrations.AddField( model_name='product', name='ieps', field=models.BooleanField(default=True, help_text='Graba IEPS? (sugerido)', verbose_name='IEPS. '), ), migrations.AddField( model_name='product', name='is_dynamic', field=models.BooleanField(default=False, help_text='Este producto tiene precio variable? (sugerido)', verbose_name='Precio dinámico '), ), migrations.AddField( model_name='product', name='is_favorite', field=models.BooleanField(default=False, help_text='Se muestra siempre este producto? (sugerido)', verbose_name='Es favorito? '), ), migrations.AddField( model_name='product', name='iva', field=models.BooleanField(default=True, help_text='Graba IVA? (sugerido)', verbose_name='I.V.A. '), ), migrations.AddField( model_name='product', name='price', field=models.FloatField(default=0, help_text='Graba IVA? (sugerido)', verbose_name='Precio en esta sucursal '), ), migrations.AlterField( model_name='ticketproducts', name='ticket', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='SV.Ticket'), ), ]
37.38
147
0.604066
1,745
0.932656
0
0
0
0
0
0
499
0.266702
c44d2937a78223f5c0f6b30adbd02a5949d5f2e6
3,339
py
Python
svl/compiler/plot_validators.py
timothyrenner/svl
a74c09c49f2e14046acd4b0eeb861f8fef6bca96
[ "MIT" ]
8
2019-03-27T12:49:21.000Z
2020-10-10T11:16:25.000Z
svl/compiler/plot_validators.py
timothyrenner/svl
a74c09c49f2e14046acd4b0eeb861f8fef6bca96
[ "MIT" ]
65
2018-08-26T14:48:45.000Z
2020-03-17T12:24:42.000Z
svl/compiler/plot_validators.py
timothyrenner/svl
a74c09c49f2e14046acd4b0eeb861f8fef6bca96
[ "MIT" ]
1
2019-09-13T19:39:07.000Z
2019-09-13T19:39:07.000Z
from toolz import get PLOT_VALIDATORS = [ ( {"line", "scatter", "bar"}, lambda x: ("x" not in x) or ("y" not in x), "XY plot does not have X and Y.", ), ( {"histogram"}, lambda x: ("step" in x) and ("bins" in x), "Histogram cannot have STEP and BINS.", ), ( {"line", "scatter", "bar"}, lambda x: ("agg" in x["x"]) and ("agg" in x["y"]), "XY plot cannot have an aggregation on X and Y.", ), ( {"histogram", "pie"}, lambda x: ("agg" in get("x", x, {})) or ("agg" in get("y", x, {})) or ("agg" in get("axis", x, {})), "Histograms and pie charts cannot have aggregations.", ), ( {"histogram", "pie"}, lambda x: ("temporal" in get("x", x, {})) or ("temporal" in get("y", x, {})) or ("temporal" in get("axis", x, {})), "Histograms and pie charts cannot have temporal axes.", ), ( {"histogram"}, lambda x: ("x" in x) and ("y" in x), "Histograms can have X or Y, not both.", ), ( {"histogram"}, lambda x: ("x" not in x) and ("y" not in x), "Histograms must have an X or Y.", ), ({"pie"}, lambda x: "axis" not in x, "Pie charts must have an axis."), ( {"line", "bar"}, # SORT is a no-op for scatter. lambda x: ("sort" in x["x"]) and ("sort" in x["y"]), "Cannot sort by two axes.", ), ( {"pie"}, lambda x: (get("hole", x, 0.0) < 0) or (get("hole", x, 0.0) > 1), "HOLE must be between zero and one.", ), ( {"histogram"}, lambda x: get("step", x, 1) <= 0, "STEP must be greater than zero.", ), ( {"histogram"}, lambda x: get("bins", x, 1) <= 0, "BINS must be greater than zero.", ), ( {"histogram", "pie"}, lambda x: "color_by" in x, "Histograms and pie charts cannot have COLOR BY.", ), ({"pie"}, lambda x: "split_by" in x, "Pie charts cannot have SPLIT BY."), ( {"line", "scatter", "bar"}, lambda x: ("split_by" in x) and ("color_by" in x), "Cannot have COLOR BY and SPLIT BY on same plot.", ), ( {"line", "scatter", "bar"}, lambda x: ( # If we don't include this it can throw exceptions for other # validators. ("x" in x) and ("y" in x) ) and (("agg" in x["x"]) or ("agg" in x["y"])) and (("color_by" in x) and ("agg" not in x["color_by"])), "If there's an aggregation on X or Y, COLOR BY must also aggregate.", ), ] def validate_plot(svl_plot): """ Validates the SVL plot. Parameters ---------- svl_plot : dict The SVL plot specifier. Returns ------- Tuple[bool, str] A boolean indicating whether the plot is valid and a message indicating that the plot is either valid or which validations it failed. """ ok = True failure_messages = [] for plots, validator, message in PLOT_VALIDATORS: if (svl_plot["type"] in plots) and validator(svl_plot): ok = False failure_messages.append(message) return ok, "\n".join(failure_messages)
29.289474
77
0.481881
0
0
0
0
0
0
0
0
1,590
0.47619
c44dbf415c5fb9329410760b9f9c0e517b6fdb6f
7,421
py
Python
decision_tree.py
cjbayron/ml-models
b3171c9a82fe5ecdcdc5abcdc20af7c18f9f8ec4
[ "MIT" ]
1
2018-12-15T16:36:41.000Z
2018-12-15T16:36:41.000Z
decision_tree.py
cjbayron/ml-models
b3171c9a82fe5ecdcdc5abcdc20af7c18f9f8ec4
[ "MIT" ]
null
null
null
decision_tree.py
cjbayron/ml-models
b3171c9a82fe5ecdcdc5abcdc20af7c18f9f8ec4
[ "MIT" ]
null
null
null
''' Building a Decision Tree using CART (from scratch) Note: Code was tested only on dataset with numerical features. Categorical features are not yet fully supported. ''' import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from scikitplot.metrics import plot_confusion_matrix import common.utils as ut # get data from: # https://www.kaggle.com/c/otto-group-product-classification-challenge TRN_DATA_PATH = 'datasets/otto-group-product-classification/train.csv' NUM_SAMPLES = 5000 NUM_FEATS = 93 def visualize_data(feats, true_labels, preds): '''Display labeled data and clustered data ''' print("Visualizing data...") red_feats = ut.reduce_to_2D_by_tsne(feats) label2col_map = ['red', 'orange', 'yellow', 'green', 'blue', 'violet', 'brown', 'gray', 'pink'] label_list = np.unique(true_labels) _, ax = plt.subplots(ncols=2, figsize=(10, 5)) graph_label_pair = zip(ax, [true_labels, preds]) for graph, labels in graph_label_pair: for label in label_list: # get samples with label == label idxs = np.where(labels == label) # get components pc1, pc2 = red_feats['pc1'].values[idxs], red_feats['pc2'].values[idxs] # scatter plot w/ color based on labels graph.scatter(x=pc1, y=pc2, color=label2col_map[label-1], alpha=0.5, label=label) graph.set_xlabel('PC1') graph.set_ylabel('PC2') ax[0].set_title('Labeled Products') ax[1].set_title('Predicted Labels') for graph in ax: graph.legend() # show legend graph.grid(True) # show gridlines plt.show() def get_impurity(labels): '''Calculate Gini impurity ''' num_labels = float(len(labels)) imp = 0.0 _, cnts = np.unique(labels, return_counts=True) for cnt in cnts: cnt = float(cnt) imp += float((cnt/num_labels)*(1-(cnt/num_labels))) return imp def get_best_split_along_column(data, labels, feat_idx, categorical=False): '''Get best split using features in a single column ''' feat_col = data[:, feat_idx] splitter_pool = np.unique(feat_col) # get splitters min_im = np.inf left_idxs = [] right_idxs = [] splitter = None for val in splitter_pool: if categorical: left_labels = labels[feat_col == val] right_labels = labels[feat_col != val] else: left_labels = labels[feat_col >= val] right_labels = labels[feat_col < val] # if all data is placed on only one side # then it is not a meaningful split so we skip if len(left_labels) == len(data) or len(right_labels) == len(data): continue avg_im = len(left_labels) * get_impurity(left_labels) + \ len(right_labels) * get_impurity(right_labels) if avg_im < min_im: min_im = avg_im left_idxs = (feat_col >= val) right_idxs = (feat_col < val) splitter = val if len(left_idxs) + len(right_idxs) > 0: min_im /= (len(left_idxs) + len(right_idxs)) return min_im, splitter, left_idxs, right_idxs class TreeNode(): '''Node for a Decision Tree ''' def __init__(self): self.labels = None self.left_node = None self.right_node = None self.is_leaf = False self.categorical = False self.splitter = None def build_tree(self, feats, labels): '''Build tree recursively ''' self.labels = labels best_gain = 0 best_left_idxs = [] best_right_idxs = [] best_splitter = None cur_imp = get_impurity(labels) for col in range(len(feats[0])): # Note: we assume all features are numerical instead of categorical imp, splitter, left_idxs, right_idxs = \ get_best_split_along_column(feats, labels, col, categorical=False) gain = cur_imp - imp if gain > best_gain: best_gain = gain best_left_idxs = left_idxs best_right_idxs = right_idxs best_splitter = {'col': col, 'val': splitter} self.splitter = best_splitter if self.splitter is None: self.is_leaf = True else: self.left_node = TreeNode() self.right_node = TreeNode() self.left_node.build_tree(feats[best_left_idxs], labels[best_left_idxs]) self.right_node.build_tree(feats[best_right_idxs], labels[best_right_idxs]) return def classify(self, feats): '''Classify sample according to built tree ''' if self.is_leaf is False and self.splitter is None: raise Exception("Decision tree not built!") if self.is_leaf: return np.random.choice(self.labels) else: val = self.splitter['val'] col = self.splitter['col'] if self.categorical: if feats[col] == val: label = self.left_node.classify(feats) else: label = self.right_node.classify(feats) else: if feats[col] >= val: label = self.left_node.classify(feats) else: label = self.right_node.classify(feats) return label def main(): '''Main ''' global TRN_DATA_PATH, NUM_SAMPLES, NUM_FEATS # no need to rescale for decision tree feats, labels = ut.get_data_from_csv(TRN_DATA_PATH, rescale=False) if NUM_SAMPLES < len(feats): feats, labels = ut.sample(feats, labels, NUM_SAMPLES) feats = feats.values if NUM_FEATS < len(feats[0]): idxs = np.random.choice(range(len(feats[0])), NUM_FEATS, replace=False) feats = feats[:, idxs] trn_feats, tst_feats, trn_labels, tst_labels = train_test_split(feats, labels, test_size=0.20, stratify=labels) # build tree print("Building decision tree...") decision_tree = TreeNode() decision_tree.build_tree(trn_feats, trn_labels.values) print("Done!") print("Checking accuracy on training set...") predictions = [] for sample in trn_feats: result = decision_tree.classify(sample) predictions.append(result) # for checking only. must be 100% accuracy on training set print("Training Set Results:\n", classification_report(trn_labels, predictions)) print("Using tree to predict labels...") predictions = [] for sample in tst_feats: result = decision_tree.classify(sample) predictions.append(result) print("Test Set Results:\n", classification_report(tst_labels, predictions)) visualize_data(pd.DataFrame(tst_feats), tst_labels, predictions) # display confusion matrix print("Plotting confusion matrix...") plot_confusion_matrix(tst_labels, predictions, normalize=True) plt.show() return 0 if __name__ == "__main__": main()
31.849785
87
0.597898
2,277
0.306832
0
0
0
0
0
0
1,392
0.187576
c44e49588a5ae8bdc21c7e3ab11388f043afd9f0
8,816
py
Python
codegen/codegen/fblas_routine.py
spcl/fblas
96425fbdbaeab6f43997d839836b8224a04f3b53
[ "BSD-3-Clause" ]
68
2019-02-07T21:30:21.000Z
2022-02-16T20:09:27.000Z
codegen/codegen/fblas_routine.py
spcl/fblas
96425fbdbaeab6f43997d839836b8224a04f3b53
[ "BSD-3-Clause" ]
2
2019-03-15T17:49:03.000Z
2019-07-24T14:05:35.000Z
codegen/codegen/fblas_routine.py
spcl/fblas
96425fbdbaeab6f43997d839836b8224a04f3b53
[ "BSD-3-Clause" ]
25
2019-03-15T03:00:15.000Z
2021-08-04T10:21:43.000Z
""" FBlas Routine class: it used to represent a routine definition, specified by the user using JSON file. It is used by the Host and Module Codegen (specified by the _codegen variable). Accordingly, some class members could be invalid. """ from codegen import fblas_types from codegen import generator_definitions class FBLASRoutine: # name of the routine according to blas (without indication of the precision) _blas_name = "" # user name for the routine _user_name = "" # spatial parallelism (vectorization width) _width = generator_definitions.DEFAULT_WIDTH # data type used in routine _type: fblas_types.RoutineType _type_str: str # if the routine has to use shift registers (e.g. double precision) or not # and in case how big they should be _uses_shift_registers = False _size_shift_registers = 0 # The type of codegen:Host/Modules _codegen = None # inx/incy _incx = 1 _incy = 1 # Level 2/3: tile sizes _tile_n_size = generator_definitions.DEFAULT_TILE_SIZE _tile_m_size = generator_definitions.DEFAULT_TILE_SIZE # Matrix characteristics _order = None _diag = None _transposeA = None _transposeB = None _side = None _uplo = None # input/output channels (useful for Module Codegen) # these are instance member dictionaries "required_channel_name" -> "user_name" _input_channels = None _output_channels = None # Tiles and element order (for level2/3 that works with matrices) # The order is RowMajor if tiles/element are row streamed # otherwise it is ColumnMajor _tiles_A_order: fblas_types.FblasOrder = fblas_types.FblasOrder.FblasRowMajor _elements_A_order: fblas_types.FblasOrder = fblas_types.FblasOrder.FblasRowMajor # Indicates whether or not this routines has a 2D computatioal tile (e.g. GEMM) _has_2D_computational_tile = False # If yes, there are the two vectorization width _width_x = 0 _width_y = 0 _tile_size = 0 _systolic = False _vect_size = 0 def __init__(self, blas_name: str, user_name: str, type: fblas_types.RoutineType, platform: fblas_types.Platform, codegen: fblas_types.FblasCodegen): self._blas_name = blas_name self._user_name = user_name self._type = type self._type_str = fblas_types.ROUTINE_TYPE_TO_TYPE_STR[type] self._platform = platform self._codegen = codegen self._width = generator_definitions.DEFAULT_WIDTH # Declare all the instance variables self._input_channels = {} self._output_channels = {} self._incx = 1 self._incy = 1 self._tile_n_size = generator_definitions.DEFAULT_TILE_SIZE self._tile_m_size = generator_definitions.DEFAULT_TILE_SIZE self._order = fblas_types.FblasOrder.FblasOrderUndef self._diag = fblas_types.FblasDiag.FblasDiagUndef self._transposeA = fblas_types.FblasTranspose.FblasTransUndef self._transposeB = fblas_types.FblasTranspose.FblasTransUndef self._side = fblas_types.FblasSide.FblasSideUndef self._uplo = fblas_types.FblasUpLo.FblasUpLoUndef if type == fblas_types.RoutineType.Double: self._uses_shift_registers = True self._size_shift_registers = fblas_types.SHIFT_REGISTER_SIZES[(type, platform)] else: self._uses_shift_registers = False self._has_2D_computational_tile = False self._width_x = self._width = generator_definitions.DEFAULT_2D_CTILE_WIDTH self._width_y = self._width = generator_definitions.DEFAULT_2D_CTILE_WIDTH self._tile_size = generator_definitions.DEFAULT_TILE_SIZE self._systolic = False self._vect_size = 4 def __str__(self): return """Routine {} implements {} with type {} Width: {} Incx: {} Incy: {}""".format(self._user_name, self._blas_name, self._type, self._width, self._incx, self._incy) #Getter/setter @property def blas_name(self): return self._blas_name @property def user_name(self): return self._user_name @property def type(self): return self._type @property def type_str(self): return self._type_str @property def uses_shift_registers(self): return self._uses_shift_registers @uses_shift_registers.setter def uses_shift_registers(self, value: bool): #if the routine uses shift register, set the size self._uses_shift_registers = value if value: self._size_shift_registers = fblas_types.SHIFT_REGISTER_SIZES[(self.type, self._platform)] @property def size_shift_registers(self): return self._size_shift_registers @property def width(self): return self._width @width.setter def width(self, width: int): self._width = width @property def incx(self): return self._incx @incx.setter def incx(self, incx: int): self._incx = incx @property def incy(self): return self._incy @incy.setter def incy(self, incy: int): self._incy = incy @property def tile_n_size(self): return self._tile_n_size @tile_n_size.setter def tile_n_size(self, tile_size: int): self._tile_n_size = tile_size @property def tile_m_size(self): return self._tile_m_size @tile_m_size.setter def tile_m_size(self, tile_size: int): self._tile_m_size = tile_size @property def tile_size(self): return self._tile_size @tile_size.setter def tile_size(self, tile_size: int): self._tile_size = tile_size @property def order(self): return self._order @order.setter def order(self, order: fblas_types.FblasOrder): self._order = order @property def uplo(self): return self._uplo @uplo.setter def uplo(self, uplo: fblas_types.FblasUpLo): self._uplo = uplo @property def transposedA(self): return self._transposeA @transposedA.setter def transposedA(self, trans: fblas_types.FblasTranspose): self._transposeA = trans @property def transposedB(self): return self._transposeB @transposedB.setter def transposedB(self, trans: fblas_types.FblasTranspose): self._transposeB = trans @property def input_channels(self): return self._input_channels @property def output_channels(self): return self._output_channels @property def tiles_A_order(self): return self._tiles_A_order @tiles_A_order.setter def tiles_A_order(self, order: fblas_types.FblasOrder): self._tiles_A_order = order @property def elements_A_order(self): return self._elements_A_order @elements_A_order.setter def elements_A_order(self, order : fblas_types.FblasOrder): self._elements_A_order = order @property def has_2D_computational_tile(self): return self._has_2D_computational_tile @has_2D_computational_tile.setter def has_2D_computational_tile(self, value: bool): self._has_2D_computational_tile = value @property def width_x(self): return self._width_x @width_x.setter def width_x(self, width: int): self._width_x = width @property def width_y(self): return self._width_y @width_y.setter def width_y(self, width: int): self._width_y = width @property def systolic(self): return self._systolic @systolic.setter def systolic(self, value: bool): self._systolic = value @property def vect_size(self): return self._vect_size @vect_size.setter def vect_size(self, value: int): self._vect_size = value def are_tiles_A_rowstreamed(self): """ :return: True if the tiles of A are rowstreamed """ return self._tiles_A_order == fblas_types.FblasOrder.FblasRowMajor def are_elements_A_rowstreamed(self): """ :return: True if the elements of A are rowstreamed """ return self._elements_A_order == fblas_types.FblasOrder.FblasRowMajor def add_input_channel(self, routine_channel_name, user_name): ''' Add the channel to the dictionary of input channels If already present, it will be overwritten ''' self._input_channels[routine_channel_name] = user_name def add_output_channel(self, routine_channel_name, user_name): ''' Add the channel to the dictionary of input channels If already present, it will be overwritten ''' self._output_channels[routine_channel_name] = user_name
27.810726
153
0.678993
8,484
0.962341
0
0
3,613
0.409823
0
0
1,614
0.183076
c450bd09aaf8a942b6ab2b24bef1d3ae022e6398
485
py
Python
lib/prefab/errors.py
lexsca/docker-prefab
bb34f1382e307346d0a0a95bde56861c28e56ec9
[ "MIT" ]
1
2021-04-06T21:37:59.000Z
2021-04-06T21:37:59.000Z
lib/prefab/errors.py
lexsca/docker-prefab
bb34f1382e307346d0a0a95bde56861c28e56ec9
[ "MIT" ]
1
2020-11-03T01:12:06.000Z
2020-11-03T03:55:28.000Z
lib/prefab/errors.py
lexsca/prefab
bb34f1382e307346d0a0a95bde56861c28e56ec9
[ "MIT" ]
null
null
null
class PrefabError(Exception): pass class HashAlgorithmNotFound(PrefabError): pass class ImageAccessError(PrefabError): pass class ImageBuildError(PrefabError): pass class ImageNotFoundError(PrefabError): pass class ImagePushError(PrefabError): pass class ImageValidationError(PrefabError): pass class InvalidConfigError(PrefabError): pass class TargetCyclicError(PrefabError): pass class TargetNotFoundError(PrefabError): pass
12.435897
41
0.756701
457
0.942268
0
0
0
0
0
0
0
0
c451451a751c9fd2575b893cf89c5f54e2fd8166
840
py
Python
test_hoyolab.py
c3kay/hoyolab-json-feed
43839194a253271c9c2fcbb564eb4b3e6179c01e
[ "Unlicense" ]
1
2021-09-17T12:40:40.000Z
2021-09-17T12:40:40.000Z
test_hoyolab.py
c3kay/hoyolab-json-feed
43839194a253271c9c2fcbb564eb4b3e6179c01e
[ "Unlicense" ]
null
null
null
test_hoyolab.py
c3kay/hoyolab-json-feed
43839194a253271c9c2fcbb564eb4b3e6179c01e
[ "Unlicense" ]
null
null
null
from hoyolab import main from os import environ from os.path import exists import atoma def init_environ(d): environ['HOYOLAB_JSON_PATH'] = '{}/hoyolab.json'.format(d) environ['HOYOLAB_ATOM_PATH'] = '{}/hoyolab.xml'.format(d) environ['HOYOLAB_JSON_URL'] = 'hoyolab.json' environ['HOYOLAB_ATOM_URL'] = 'hoyolab.xml' environ['HOYOLAB_ENTRIES'] = '1' def test_feeds(tmpdir): init_environ(tmpdir) json_path = environ['HOYOLAB_JSON_PATH'] atom_path = environ['HOYOLAB_ATOM_PATH'] num_entries = int(environ['HOYOLAB_ENTRIES']) * 3 main() assert exists(json_path) assert exists(atom_path) json_feed = atoma.parse_json_feed_file(json_path) assert len(json_feed.items) == num_entries atom_feed = atoma.parse_atom_file(atom_path) assert len(atom_feed.entries) == num_entries
24.705882
62
0.713095
0
0
0
0
0
0
0
0
209
0.24881
c453263bed6e1f5fabe0695622acd9caad9d7447
194,112
py
Python
thirdweb/abi/nft_collection/__init__.py
princetonwong/python-sdk
f35181d97620e29d055498fca75f3702f3bb2449
[ "Apache-2.0" ]
1
2022-02-18T16:59:12.000Z
2022-02-18T16:59:12.000Z
thirdweb/abi/nft_collection/__init__.py
princetonwong/python-sdk
f35181d97620e29d055498fca75f3702f3bb2449
[ "Apache-2.0" ]
null
null
null
thirdweb/abi/nft_collection/__init__.py
princetonwong/python-sdk
f35181d97620e29d055498fca75f3702f3bb2449
[ "Apache-2.0" ]
null
null
null
"""Generated wrapper for NFTCollection Solidity contract.""" # pylint: disable=too-many-arguments import json from typing import ( # pylint: disable=unused-import Any, List, Optional, Tuple, Union, ) from eth_utils import to_checksum_address from mypy_extensions import TypedDict # pylint: disable=unused-import from hexbytes import HexBytes from thirdweb_web3 import Web3 from thirdweb_web3.contract import ContractFunction from thirdweb_web3.datastructures import AttributeDict from thirdweb_web3.providers.base import BaseProvider from zero_ex.contract_wrappers.bases import ContractMethod, Validator from zero_ex.contract_wrappers.tx_params import TxParams # Try to import a custom validator class definition; if there isn't one, # declare one that we can instantiate for the default argument to the # constructor for NFTCollection below. try: # both mypy and pylint complain about what we're doing here, but this # works just fine, so their messages have been disabled here. from . import ( # type: ignore # pylint: disable=import-self NFTCollectionValidator, ) except ImportError: class NFTCollectionValidator(Validator): # type: ignore """No-op input validator.""" try: from .middleware import MIDDLEWARE # type: ignore except ImportError: pass class DefaultAdminRoleMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the DEFAULT_ADMIN_ROLE method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address) self._underlying_method = contract_function def call(self, tx_params: Optional[TxParams] = None) -> Union[bytes, str]: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method().call(tx_params.as_dict()) return Union[bytes, str](returned) def send_transaction( self, tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().transact(tx_params.as_dict()) def build_transaction(self, tx_params: Optional[TxParams] = None) -> dict: """Construct calldata to be used as input to the method.""" tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().buildTransaction(tx_params.as_dict()) def estimate_gas(self, tx_params: Optional[TxParams] = None) -> int: """Estimate gas consumption of method call.""" tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().estimateGas(tx_params.as_dict()) class MinterRoleMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the MINTER_ROLE method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address) self._underlying_method = contract_function def call(self, tx_params: Optional[TxParams] = None) -> Union[bytes, str]: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method().call(tx_params.as_dict()) return Union[bytes, str](returned) def send_transaction( self, tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().transact(tx_params.as_dict()) def build_transaction(self, tx_params: Optional[TxParams] = None) -> dict: """Construct calldata to be used as input to the method.""" tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().buildTransaction(tx_params.as_dict()) def estimate_gas(self, tx_params: Optional[TxParams] = None) -> int: """Estimate gas consumption of method call.""" tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().estimateGas(tx_params.as_dict()) class PauserRoleMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the PAUSER_ROLE method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address) self._underlying_method = contract_function def call(self, tx_params: Optional[TxParams] = None) -> Union[bytes, str]: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method().call(tx_params.as_dict()) return Union[bytes, str](returned) def send_transaction( self, tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().transact(tx_params.as_dict()) def build_transaction(self, tx_params: Optional[TxParams] = None) -> dict: """Construct calldata to be used as input to the method.""" tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().buildTransaction(tx_params.as_dict()) def estimate_gas(self, tx_params: Optional[TxParams] = None) -> int: """Estimate gas consumption of method call.""" tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().estimateGas(tx_params.as_dict()) class TransferRoleMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the TRANSFER_ROLE method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address) self._underlying_method = contract_function def call(self, tx_params: Optional[TxParams] = None) -> Union[bytes, str]: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method().call(tx_params.as_dict()) return Union[bytes, str](returned) def send_transaction( self, tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().transact(tx_params.as_dict()) def build_transaction(self, tx_params: Optional[TxParams] = None) -> dict: """Construct calldata to be used as input to the method.""" tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().buildTransaction(tx_params.as_dict()) def estimate_gas(self, tx_params: Optional[TxParams] = None) -> int: """Estimate gas consumption of method call.""" tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().estimateGas(tx_params.as_dict()) class ContractUri_Method(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the _contractURI method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address) self._underlying_method = contract_function def call(self, tx_params: Optional[TxParams] = None) -> str: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method().call(tx_params.as_dict()) return str(returned) def send_transaction( self, tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().transact(tx_params.as_dict()) def build_transaction(self, tx_params: Optional[TxParams] = None) -> dict: """Construct calldata to be used as input to the method.""" tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().buildTransaction(tx_params.as_dict()) def estimate_gas(self, tx_params: Optional[TxParams] = None) -> int: """Estimate gas consumption of method call.""" tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().estimateGas(tx_params.as_dict()) class BalanceOfMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the balanceOf method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs(self, account: str, _id: int): """Validate the inputs to the balanceOf method.""" self.validator.assert_valid( method_name="balanceOf", parameter_name="account", argument_value=account, ) account = self.validate_and_checksum_address(account) self.validator.assert_valid( method_name="balanceOf", parameter_name="id", argument_value=_id, ) # safeguard against fractional inputs _id = int(_id) return (account, _id) def call( self, account: str, _id: int, tx_params: Optional[TxParams] = None ) -> int: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (account, _id) = self.validate_and_normalize_inputs(account, _id) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(account, _id).call( tx_params.as_dict() ) return int(returned) def send_transaction( self, account: str, _id: int, tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (account, _id) = self.validate_and_normalize_inputs(account, _id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(account, _id).transact( tx_params.as_dict() ) def build_transaction( self, account: str, _id: int, tx_params: Optional[TxParams] = None ) -> dict: """Construct calldata to be used as input to the method.""" (account, _id) = self.validate_and_normalize_inputs(account, _id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(account, _id).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, account: str, _id: int, tx_params: Optional[TxParams] = None ) -> int: """Estimate gas consumption of method call.""" (account, _id) = self.validate_and_normalize_inputs(account, _id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(account, _id).estimateGas( tx_params.as_dict() ) class BalanceOfBatchMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the balanceOfBatch method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs( self, accounts: List[str], ids: List[int] ): """Validate the inputs to the balanceOfBatch method.""" self.validator.assert_valid( method_name="balanceOfBatch", parameter_name="accounts", argument_value=accounts, ) self.validator.assert_valid( method_name="balanceOfBatch", parameter_name="ids", argument_value=ids, ) return (accounts, ids) def call( self, accounts: List[str], ids: List[int], tx_params: Optional[TxParams] = None, ) -> List[int]: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (accounts, ids) = self.validate_and_normalize_inputs(accounts, ids) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(accounts, ids).call( tx_params.as_dict() ) return [int(element) for element in returned] def send_transaction( self, accounts: List[str], ids: List[int], tx_params: Optional[TxParams] = None, ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (accounts, ids) = self.validate_and_normalize_inputs(accounts, ids) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(accounts, ids).transact( tx_params.as_dict() ) def build_transaction( self, accounts: List[str], ids: List[int], tx_params: Optional[TxParams] = None, ) -> dict: """Construct calldata to be used as input to the method.""" (accounts, ids) = self.validate_and_normalize_inputs(accounts, ids) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(accounts, ids).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, accounts: List[str], ids: List[int], tx_params: Optional[TxParams] = None, ) -> int: """Estimate gas consumption of method call.""" (accounts, ids) = self.validate_and_normalize_inputs(accounts, ids) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(accounts, ids).estimateGas( tx_params.as_dict() ) class BurnMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the burn method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs( self, account: str, _id: int, value: int ): """Validate the inputs to the burn method.""" self.validator.assert_valid( method_name="burn", parameter_name="account", argument_value=account, ) account = self.validate_and_checksum_address(account) self.validator.assert_valid( method_name="burn", parameter_name="id", argument_value=_id, ) # safeguard against fractional inputs _id = int(_id) self.validator.assert_valid( method_name="burn", parameter_name="value", argument_value=value, ) # safeguard against fractional inputs value = int(value) return (account, _id, value) def call( self, account: str, _id: int, value: int, tx_params: Optional[TxParams] = None, ) -> None: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (account, _id, value) = self.validate_and_normalize_inputs( account, _id, value ) tx_params = super().normalize_tx_params(tx_params) self._underlying_method(account, _id, value).call(tx_params.as_dict()) def send_transaction( self, account: str, _id: int, value: int, tx_params: Optional[TxParams] = None, ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (account, _id, value) = self.validate_and_normalize_inputs( account, _id, value ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(account, _id, value).transact( tx_params.as_dict() ) def build_transaction( self, account: str, _id: int, value: int, tx_params: Optional[TxParams] = None, ) -> dict: """Construct calldata to be used as input to the method.""" (account, _id, value) = self.validate_and_normalize_inputs( account, _id, value ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(account, _id, value).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, account: str, _id: int, value: int, tx_params: Optional[TxParams] = None, ) -> int: """Estimate gas consumption of method call.""" (account, _id, value) = self.validate_and_normalize_inputs( account, _id, value ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(account, _id, value).estimateGas( tx_params.as_dict() ) class BurnBatchMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the burnBatch method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs( self, account: str, ids: List[int], values: List[int] ): """Validate the inputs to the burnBatch method.""" self.validator.assert_valid( method_name="burnBatch", parameter_name="account", argument_value=account, ) account = self.validate_and_checksum_address(account) self.validator.assert_valid( method_name="burnBatch", parameter_name="ids", argument_value=ids, ) self.validator.assert_valid( method_name="burnBatch", parameter_name="values", argument_value=values, ) return (account, ids, values) def call( self, account: str, ids: List[int], values: List[int], tx_params: Optional[TxParams] = None, ) -> None: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (account, ids, values) = self.validate_and_normalize_inputs( account, ids, values ) tx_params = super().normalize_tx_params(tx_params) self._underlying_method(account, ids, values).call(tx_params.as_dict()) def send_transaction( self, account: str, ids: List[int], values: List[int], tx_params: Optional[TxParams] = None, ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (account, ids, values) = self.validate_and_normalize_inputs( account, ids, values ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(account, ids, values).transact( tx_params.as_dict() ) def build_transaction( self, account: str, ids: List[int], values: List[int], tx_params: Optional[TxParams] = None, ) -> dict: """Construct calldata to be used as input to the method.""" (account, ids, values) = self.validate_and_normalize_inputs( account, ids, values ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(account, ids, values).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, account: str, ids: List[int], values: List[int], tx_params: Optional[TxParams] = None, ) -> int: """Estimate gas consumption of method call.""" (account, ids, values) = self.validate_and_normalize_inputs( account, ids, values ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(account, ids, values).estimateGas( tx_params.as_dict() ) class ContractUriMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the contractURI method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address) self._underlying_method = contract_function def call(self, tx_params: Optional[TxParams] = None) -> str: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method().call(tx_params.as_dict()) return str(returned) def send_transaction( self, tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().transact(tx_params.as_dict()) def build_transaction(self, tx_params: Optional[TxParams] = None) -> dict: """Construct calldata to be used as input to the method.""" tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().buildTransaction(tx_params.as_dict()) def estimate_gas(self, tx_params: Optional[TxParams] = None) -> int: """Estimate gas consumption of method call.""" tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().estimateGas(tx_params.as_dict()) class CreateNativeTokensMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the createNativeTokens method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs( self, to: str, nft_ur_is: List[str], nft_supplies: List[int], data: Union[bytes, str], ): """Validate the inputs to the createNativeTokens method.""" self.validator.assert_valid( method_name="createNativeTokens", parameter_name="to", argument_value=to, ) to = self.validate_and_checksum_address(to) self.validator.assert_valid( method_name="createNativeTokens", parameter_name="_nftURIs", argument_value=nft_ur_is, ) self.validator.assert_valid( method_name="createNativeTokens", parameter_name="_nftSupplies", argument_value=nft_supplies, ) self.validator.assert_valid( method_name="createNativeTokens", parameter_name="data", argument_value=data, ) return (to, nft_ur_is, nft_supplies, data) def call( self, to: str, nft_ur_is: List[str], nft_supplies: List[int], data: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> List[int]: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ ( to, nft_ur_is, nft_supplies, data, ) = self.validate_and_normalize_inputs( to, nft_ur_is, nft_supplies, data ) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method( to, nft_ur_is, nft_supplies, data ).call(tx_params.as_dict()) return [int(element) for element in returned] def send_transaction( self, to: str, nft_ur_is: List[str], nft_supplies: List[int], data: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ ( to, nft_ur_is, nft_supplies, data, ) = self.validate_and_normalize_inputs( to, nft_ur_is, nft_supplies, data ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method( to, nft_ur_is, nft_supplies, data ).transact(tx_params.as_dict()) def build_transaction( self, to: str, nft_ur_is: List[str], nft_supplies: List[int], data: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> dict: """Construct calldata to be used as input to the method.""" ( to, nft_ur_is, nft_supplies, data, ) = self.validate_and_normalize_inputs( to, nft_ur_is, nft_supplies, data ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method( to, nft_ur_is, nft_supplies, data ).buildTransaction(tx_params.as_dict()) def estimate_gas( self, to: str, nft_ur_is: List[str], nft_supplies: List[int], data: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> int: """Estimate gas consumption of method call.""" ( to, nft_ur_is, nft_supplies, data, ) = self.validate_and_normalize_inputs( to, nft_ur_is, nft_supplies, data ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method( to, nft_ur_is, nft_supplies, data ).estimateGas(tx_params.as_dict()) class CreatorMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the creator method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs(self, nft_id: int): """Validate the inputs to the creator method.""" self.validator.assert_valid( method_name="creator", parameter_name="_nftId", argument_value=nft_id, ) # safeguard against fractional inputs nft_id = int(nft_id) return nft_id def call(self, nft_id: int, tx_params: Optional[TxParams] = None) -> str: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (nft_id) = self.validate_and_normalize_inputs(nft_id) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(nft_id).call(tx_params.as_dict()) return str(returned) def send_transaction( self, nft_id: int, tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (nft_id) = self.validate_and_normalize_inputs(nft_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(nft_id).transact(tx_params.as_dict()) def build_transaction( self, nft_id: int, tx_params: Optional[TxParams] = None ) -> dict: """Construct calldata to be used as input to the method.""" (nft_id) = self.validate_and_normalize_inputs(nft_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(nft_id).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, nft_id: int, tx_params: Optional[TxParams] = None ) -> int: """Estimate gas consumption of method call.""" (nft_id) = self.validate_and_normalize_inputs(nft_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(nft_id).estimateGas(tx_params.as_dict()) class Erc20WrappedTokensMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the erc20WrappedTokens method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs(self, index_0: int): """Validate the inputs to the erc20WrappedTokens method.""" self.validator.assert_valid( method_name="erc20WrappedTokens", parameter_name="index_0", argument_value=index_0, ) # safeguard against fractional inputs index_0 = int(index_0) return index_0 def call( self, index_0: int, tx_params: Optional[TxParams] = None ) -> Tuple[str, int, int]: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (index_0) = self.validate_and_normalize_inputs(index_0) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(index_0).call(tx_params.as_dict()) return ( returned[0], returned[1], returned[2], ) def send_transaction( self, index_0: int, tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (index_0) = self.validate_and_normalize_inputs(index_0) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(index_0).transact(tx_params.as_dict()) def build_transaction( self, index_0: int, tx_params: Optional[TxParams] = None ) -> dict: """Construct calldata to be used as input to the method.""" (index_0) = self.validate_and_normalize_inputs(index_0) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(index_0).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, index_0: int, tx_params: Optional[TxParams] = None ) -> int: """Estimate gas consumption of method call.""" (index_0) = self.validate_and_normalize_inputs(index_0) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(index_0).estimateGas( tx_params.as_dict() ) class Erc721WrappedTokensMethod( ContractMethod ): # pylint: disable=invalid-name """Various interfaces to the erc721WrappedTokens method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs(self, index_0: int): """Validate the inputs to the erc721WrappedTokens method.""" self.validator.assert_valid( method_name="erc721WrappedTokens", parameter_name="index_0", argument_value=index_0, ) # safeguard against fractional inputs index_0 = int(index_0) return index_0 def call( self, index_0: int, tx_params: Optional[TxParams] = None ) -> Tuple[str, int]: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (index_0) = self.validate_and_normalize_inputs(index_0) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(index_0).call(tx_params.as_dict()) return ( returned[0], returned[1], ) def send_transaction( self, index_0: int, tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (index_0) = self.validate_and_normalize_inputs(index_0) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(index_0).transact(tx_params.as_dict()) def build_transaction( self, index_0: int, tx_params: Optional[TxParams] = None ) -> dict: """Construct calldata to be used as input to the method.""" (index_0) = self.validate_and_normalize_inputs(index_0) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(index_0).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, index_0: int, tx_params: Optional[TxParams] = None ) -> int: """Estimate gas consumption of method call.""" (index_0) = self.validate_and_normalize_inputs(index_0) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(index_0).estimateGas( tx_params.as_dict() ) class GetRoleAdminMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the getRoleAdmin method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs(self, role: Union[bytes, str]): """Validate the inputs to the getRoleAdmin method.""" self.validator.assert_valid( method_name="getRoleAdmin", parameter_name="role", argument_value=role, ) return role def call( self, role: Union[bytes, str], tx_params: Optional[TxParams] = None ) -> Union[bytes, str]: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (role) = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(role).call(tx_params.as_dict()) return Union[bytes, str](returned) def send_transaction( self, role: Union[bytes, str], tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (role) = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role).transact(tx_params.as_dict()) def build_transaction( self, role: Union[bytes, str], tx_params: Optional[TxParams] = None ) -> dict: """Construct calldata to be used as input to the method.""" (role) = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, role: Union[bytes, str], tx_params: Optional[TxParams] = None ) -> int: """Estimate gas consumption of method call.""" (role) = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role).estimateGas(tx_params.as_dict()) class GetRoleMemberMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the getRoleMember method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs( self, role: Union[bytes, str], index: int ): """Validate the inputs to the getRoleMember method.""" self.validator.assert_valid( method_name="getRoleMember", parameter_name="role", argument_value=role, ) self.validator.assert_valid( method_name="getRoleMember", parameter_name="index", argument_value=index, ) # safeguard against fractional inputs index = int(index) return (role, index) def call( self, role: Union[bytes, str], index: int, tx_params: Optional[TxParams] = None, ) -> str: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (role, index) = self.validate_and_normalize_inputs(role, index) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(role, index).call( tx_params.as_dict() ) return str(returned) def send_transaction( self, role: Union[bytes, str], index: int, tx_params: Optional[TxParams] = None, ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (role, index) = self.validate_and_normalize_inputs(role, index) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role, index).transact( tx_params.as_dict() ) def build_transaction( self, role: Union[bytes, str], index: int, tx_params: Optional[TxParams] = None, ) -> dict: """Construct calldata to be used as input to the method.""" (role, index) = self.validate_and_normalize_inputs(role, index) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role, index).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, role: Union[bytes, str], index: int, tx_params: Optional[TxParams] = None, ) -> int: """Estimate gas consumption of method call.""" (role, index) = self.validate_and_normalize_inputs(role, index) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role, index).estimateGas( tx_params.as_dict() ) class GetRoleMemberCountMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the getRoleMemberCount method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs(self, role: Union[bytes, str]): """Validate the inputs to the getRoleMemberCount method.""" self.validator.assert_valid( method_name="getRoleMemberCount", parameter_name="role", argument_value=role, ) return role def call( self, role: Union[bytes, str], tx_params: Optional[TxParams] = None ) -> int: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (role) = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(role).call(tx_params.as_dict()) return int(returned) def send_transaction( self, role: Union[bytes, str], tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (role) = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role).transact(tx_params.as_dict()) def build_transaction( self, role: Union[bytes, str], tx_params: Optional[TxParams] = None ) -> dict: """Construct calldata to be used as input to the method.""" (role) = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, role: Union[bytes, str], tx_params: Optional[TxParams] = None ) -> int: """Estimate gas consumption of method call.""" (role) = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role).estimateGas(tx_params.as_dict()) class GrantRoleMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the grantRole method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs( self, role: Union[bytes, str], account: str ): """Validate the inputs to the grantRole method.""" self.validator.assert_valid( method_name="grantRole", parameter_name="role", argument_value=role, ) self.validator.assert_valid( method_name="grantRole", parameter_name="account", argument_value=account, ) account = self.validate_and_checksum_address(account) return (role, account) def call( self, role: Union[bytes, str], account: str, tx_params: Optional[TxParams] = None, ) -> None: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (role, account) = self.validate_and_normalize_inputs(role, account) tx_params = super().normalize_tx_params(tx_params) self._underlying_method(role, account).call(tx_params.as_dict()) def send_transaction( self, role: Union[bytes, str], account: str, tx_params: Optional[TxParams] = None, ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (role, account) = self.validate_and_normalize_inputs(role, account) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role, account).transact( tx_params.as_dict() ) def build_transaction( self, role: Union[bytes, str], account: str, tx_params: Optional[TxParams] = None, ) -> dict: """Construct calldata to be used as input to the method.""" (role, account) = self.validate_and_normalize_inputs(role, account) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role, account).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, role: Union[bytes, str], account: str, tx_params: Optional[TxParams] = None, ) -> int: """Estimate gas consumption of method call.""" (role, account) = self.validate_and_normalize_inputs(role, account) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role, account).estimateGas( tx_params.as_dict() ) class HasRoleMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the hasRole method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs( self, role: Union[bytes, str], account: str ): """Validate the inputs to the hasRole method.""" self.validator.assert_valid( method_name="hasRole", parameter_name="role", argument_value=role, ) self.validator.assert_valid( method_name="hasRole", parameter_name="account", argument_value=account, ) account = self.validate_and_checksum_address(account) return (role, account) def call( self, role: Union[bytes, str], account: str, tx_params: Optional[TxParams] = None, ) -> bool: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (role, account) = self.validate_and_normalize_inputs(role, account) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(role, account).call( tx_params.as_dict() ) return bool(returned) def send_transaction( self, role: Union[bytes, str], account: str, tx_params: Optional[TxParams] = None, ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (role, account) = self.validate_and_normalize_inputs(role, account) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role, account).transact( tx_params.as_dict() ) def build_transaction( self, role: Union[bytes, str], account: str, tx_params: Optional[TxParams] = None, ) -> dict: """Construct calldata to be used as input to the method.""" (role, account) = self.validate_and_normalize_inputs(role, account) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role, account).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, role: Union[bytes, str], account: str, tx_params: Optional[TxParams] = None, ) -> int: """Estimate gas consumption of method call.""" (role, account) = self.validate_and_normalize_inputs(role, account) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role, account).estimateGas( tx_params.as_dict() ) class IsApprovedForAllMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the isApprovedForAll method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs(self, account: str, operator: str): """Validate the inputs to the isApprovedForAll method.""" self.validator.assert_valid( method_name="isApprovedForAll", parameter_name="account", argument_value=account, ) account = self.validate_and_checksum_address(account) self.validator.assert_valid( method_name="isApprovedForAll", parameter_name="operator", argument_value=operator, ) operator = self.validate_and_checksum_address(operator) return (account, operator) def call( self, account: str, operator: str, tx_params: Optional[TxParams] = None ) -> bool: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (account, operator) = self.validate_and_normalize_inputs( account, operator ) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(account, operator).call( tx_params.as_dict() ) return bool(returned) def send_transaction( self, account: str, operator: str, tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (account, operator) = self.validate_and_normalize_inputs( account, operator ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(account, operator).transact( tx_params.as_dict() ) def build_transaction( self, account: str, operator: str, tx_params: Optional[TxParams] = None ) -> dict: """Construct calldata to be used as input to the method.""" (account, operator) = self.validate_and_normalize_inputs( account, operator ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(account, operator).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, account: str, operator: str, tx_params: Optional[TxParams] = None ) -> int: """Estimate gas consumption of method call.""" (account, operator) = self.validate_and_normalize_inputs( account, operator ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(account, operator).estimateGas( tx_params.as_dict() ) class IsTrustedForwarderMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the isTrustedForwarder method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs(self, forwarder: str): """Validate the inputs to the isTrustedForwarder method.""" self.validator.assert_valid( method_name="isTrustedForwarder", parameter_name="forwarder", argument_value=forwarder, ) forwarder = self.validate_and_checksum_address(forwarder) return forwarder def call( self, forwarder: str, tx_params: Optional[TxParams] = None ) -> bool: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (forwarder) = self.validate_and_normalize_inputs(forwarder) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(forwarder).call(tx_params.as_dict()) return bool(returned) def send_transaction( self, forwarder: str, tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (forwarder) = self.validate_and_normalize_inputs(forwarder) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(forwarder).transact(tx_params.as_dict()) def build_transaction( self, forwarder: str, tx_params: Optional[TxParams] = None ) -> dict: """Construct calldata to be used as input to the method.""" (forwarder) = self.validate_and_normalize_inputs(forwarder) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(forwarder).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, forwarder: str, tx_params: Optional[TxParams] = None ) -> int: """Estimate gas consumption of method call.""" (forwarder) = self.validate_and_normalize_inputs(forwarder) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(forwarder).estimateGas( tx_params.as_dict() ) class MintMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the mint method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs( self, to: str, _id: int, amount: int, data: Union[bytes, str] ): """Validate the inputs to the mint method.""" self.validator.assert_valid( method_name="mint", parameter_name="to", argument_value=to, ) to = self.validate_and_checksum_address(to) self.validator.assert_valid( method_name="mint", parameter_name="id", argument_value=_id, ) # safeguard against fractional inputs _id = int(_id) self.validator.assert_valid( method_name="mint", parameter_name="amount", argument_value=amount, ) # safeguard against fractional inputs amount = int(amount) self.validator.assert_valid( method_name="mint", parameter_name="data", argument_value=data, ) return (to, _id, amount, data) def call( self, to: str, _id: int, amount: int, data: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> None: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (to, _id, amount, data) = self.validate_and_normalize_inputs( to, _id, amount, data ) tx_params = super().normalize_tx_params(tx_params) self._underlying_method(to, _id, amount, data).call( tx_params.as_dict() ) def send_transaction( self, to: str, _id: int, amount: int, data: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (to, _id, amount, data) = self.validate_and_normalize_inputs( to, _id, amount, data ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(to, _id, amount, data).transact( tx_params.as_dict() ) def build_transaction( self, to: str, _id: int, amount: int, data: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> dict: """Construct calldata to be used as input to the method.""" (to, _id, amount, data) = self.validate_and_normalize_inputs( to, _id, amount, data ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(to, _id, amount, data).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, to: str, _id: int, amount: int, data: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> int: """Estimate gas consumption of method call.""" (to, _id, amount, data) = self.validate_and_normalize_inputs( to, _id, amount, data ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(to, _id, amount, data).estimateGas( tx_params.as_dict() ) class MintBatchMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the mintBatch method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs( self, to: str, ids: List[int], amounts: List[int], data: Union[bytes, str], ): """Validate the inputs to the mintBatch method.""" self.validator.assert_valid( method_name="mintBatch", parameter_name="to", argument_value=to, ) to = self.validate_and_checksum_address(to) self.validator.assert_valid( method_name="mintBatch", parameter_name="ids", argument_value=ids, ) self.validator.assert_valid( method_name="mintBatch", parameter_name="amounts", argument_value=amounts, ) self.validator.assert_valid( method_name="mintBatch", parameter_name="data", argument_value=data, ) return (to, ids, amounts, data) def call( self, to: str, ids: List[int], amounts: List[int], data: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> None: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (to, ids, amounts, data) = self.validate_and_normalize_inputs( to, ids, amounts, data ) tx_params = super().normalize_tx_params(tx_params) self._underlying_method(to, ids, amounts, data).call( tx_params.as_dict() ) def send_transaction( self, to: str, ids: List[int], amounts: List[int], data: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (to, ids, amounts, data) = self.validate_and_normalize_inputs( to, ids, amounts, data ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(to, ids, amounts, data).transact( tx_params.as_dict() ) def build_transaction( self, to: str, ids: List[int], amounts: List[int], data: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> dict: """Construct calldata to be used as input to the method.""" (to, ids, amounts, data) = self.validate_and_normalize_inputs( to, ids, amounts, data ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method( to, ids, amounts, data ).buildTransaction(tx_params.as_dict()) def estimate_gas( self, to: str, ids: List[int], amounts: List[int], data: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> int: """Estimate gas consumption of method call.""" (to, ids, amounts, data) = self.validate_and_normalize_inputs( to, ids, amounts, data ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(to, ids, amounts, data).estimateGas( tx_params.as_dict() ) class MulticallMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the multicall method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs(self, data: List[Union[bytes, str]]): """Validate the inputs to the multicall method.""" self.validator.assert_valid( method_name="multicall", parameter_name="data", argument_value=data, ) return data def call( self, data: List[Union[bytes, str]], tx_params: Optional[TxParams] = None, ) -> List[Union[bytes, str]]: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (data) = self.validate_and_normalize_inputs(data) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(data).call(tx_params.as_dict()) return [Union[bytes, str](element) for element in returned] def send_transaction( self, data: List[Union[bytes, str]], tx_params: Optional[TxParams] = None, ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (data) = self.validate_and_normalize_inputs(data) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(data).transact(tx_params.as_dict()) def build_transaction( self, data: List[Union[bytes, str]], tx_params: Optional[TxParams] = None, ) -> dict: """Construct calldata to be used as input to the method.""" (data) = self.validate_and_normalize_inputs(data) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(data).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, data: List[Union[bytes, str]], tx_params: Optional[TxParams] = None, ) -> int: """Estimate gas consumption of method call.""" (data) = self.validate_and_normalize_inputs(data) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(data).estimateGas(tx_params.as_dict()) class NextTokenIdMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the nextTokenId method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address) self._underlying_method = contract_function def call(self, tx_params: Optional[TxParams] = None) -> int: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method().call(tx_params.as_dict()) return int(returned) def send_transaction( self, tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().transact(tx_params.as_dict()) def build_transaction(self, tx_params: Optional[TxParams] = None) -> dict: """Construct calldata to be used as input to the method.""" tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().buildTransaction(tx_params.as_dict()) def estimate_gas(self, tx_params: Optional[TxParams] = None) -> int: """Estimate gas consumption of method call.""" tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().estimateGas(tx_params.as_dict()) class OnErc1155BatchReceivedMethod( ContractMethod ): # pylint: disable=invalid-name """Various interfaces to the onERC1155BatchReceived method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs( self, index_0: str, index_1: str, index_2: List[int], index_3: List[int], index_4: Union[bytes, str], ): """Validate the inputs to the onERC1155BatchReceived method.""" self.validator.assert_valid( method_name="onERC1155BatchReceived", parameter_name="index_0", argument_value=index_0, ) index_0 = self.validate_and_checksum_address(index_0) self.validator.assert_valid( method_name="onERC1155BatchReceived", parameter_name="index_1", argument_value=index_1, ) index_1 = self.validate_and_checksum_address(index_1) self.validator.assert_valid( method_name="onERC1155BatchReceived", parameter_name="index_2", argument_value=index_2, ) self.validator.assert_valid( method_name="onERC1155BatchReceived", parameter_name="index_3", argument_value=index_3, ) self.validator.assert_valid( method_name="onERC1155BatchReceived", parameter_name="index_4", argument_value=index_4, ) return (index_0, index_1, index_2, index_3, index_4) def call( self, index_0: str, index_1: str, index_2: List[int], index_3: List[int], index_4: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> Union[bytes, str]: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ ( index_0, index_1, index_2, index_3, index_4, ) = self.validate_and_normalize_inputs( index_0, index_1, index_2, index_3, index_4 ) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method( index_0, index_1, index_2, index_3, index_4 ).call(tx_params.as_dict()) return Union[bytes, str](returned) def send_transaction( self, index_0: str, index_1: str, index_2: List[int], index_3: List[int], index_4: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ ( index_0, index_1, index_2, index_3, index_4, ) = self.validate_and_normalize_inputs( index_0, index_1, index_2, index_3, index_4 ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method( index_0, index_1, index_2, index_3, index_4 ).transact(tx_params.as_dict()) def build_transaction( self, index_0: str, index_1: str, index_2: List[int], index_3: List[int], index_4: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> dict: """Construct calldata to be used as input to the method.""" ( index_0, index_1, index_2, index_3, index_4, ) = self.validate_and_normalize_inputs( index_0, index_1, index_2, index_3, index_4 ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method( index_0, index_1, index_2, index_3, index_4 ).buildTransaction(tx_params.as_dict()) def estimate_gas( self, index_0: str, index_1: str, index_2: List[int], index_3: List[int], index_4: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> int: """Estimate gas consumption of method call.""" ( index_0, index_1, index_2, index_3, index_4, ) = self.validate_and_normalize_inputs( index_0, index_1, index_2, index_3, index_4 ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method( index_0, index_1, index_2, index_3, index_4 ).estimateGas(tx_params.as_dict()) class OnErc1155ReceivedMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the onERC1155Received method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs( self, index_0: str, index_1: str, index_2: int, index_3: int, index_4: Union[bytes, str], ): """Validate the inputs to the onERC1155Received method.""" self.validator.assert_valid( method_name="onERC1155Received", parameter_name="index_0", argument_value=index_0, ) index_0 = self.validate_and_checksum_address(index_0) self.validator.assert_valid( method_name="onERC1155Received", parameter_name="index_1", argument_value=index_1, ) index_1 = self.validate_and_checksum_address(index_1) self.validator.assert_valid( method_name="onERC1155Received", parameter_name="index_2", argument_value=index_2, ) # safeguard against fractional inputs index_2 = int(index_2) self.validator.assert_valid( method_name="onERC1155Received", parameter_name="index_3", argument_value=index_3, ) # safeguard against fractional inputs index_3 = int(index_3) self.validator.assert_valid( method_name="onERC1155Received", parameter_name="index_4", argument_value=index_4, ) return (index_0, index_1, index_2, index_3, index_4) def call( self, index_0: str, index_1: str, index_2: int, index_3: int, index_4: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> Union[bytes, str]: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ ( index_0, index_1, index_2, index_3, index_4, ) = self.validate_and_normalize_inputs( index_0, index_1, index_2, index_3, index_4 ) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method( index_0, index_1, index_2, index_3, index_4 ).call(tx_params.as_dict()) return Union[bytes, str](returned) def send_transaction( self, index_0: str, index_1: str, index_2: int, index_3: int, index_4: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ ( index_0, index_1, index_2, index_3, index_4, ) = self.validate_and_normalize_inputs( index_0, index_1, index_2, index_3, index_4 ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method( index_0, index_1, index_2, index_3, index_4 ).transact(tx_params.as_dict()) def build_transaction( self, index_0: str, index_1: str, index_2: int, index_3: int, index_4: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> dict: """Construct calldata to be used as input to the method.""" ( index_0, index_1, index_2, index_3, index_4, ) = self.validate_and_normalize_inputs( index_0, index_1, index_2, index_3, index_4 ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method( index_0, index_1, index_2, index_3, index_4 ).buildTransaction(tx_params.as_dict()) def estimate_gas( self, index_0: str, index_1: str, index_2: int, index_3: int, index_4: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> int: """Estimate gas consumption of method call.""" ( index_0, index_1, index_2, index_3, index_4, ) = self.validate_and_normalize_inputs( index_0, index_1, index_2, index_3, index_4 ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method( index_0, index_1, index_2, index_3, index_4 ).estimateGas(tx_params.as_dict()) class OnErc721ReceivedMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the onERC721Received method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs( self, index_0: str, index_1: str, index_2: int, index_3: Union[bytes, str], ): """Validate the inputs to the onERC721Received method.""" self.validator.assert_valid( method_name="onERC721Received", parameter_name="index_0", argument_value=index_0, ) index_0 = self.validate_and_checksum_address(index_0) self.validator.assert_valid( method_name="onERC721Received", parameter_name="index_1", argument_value=index_1, ) index_1 = self.validate_and_checksum_address(index_1) self.validator.assert_valid( method_name="onERC721Received", parameter_name="index_2", argument_value=index_2, ) # safeguard against fractional inputs index_2 = int(index_2) self.validator.assert_valid( method_name="onERC721Received", parameter_name="index_3", argument_value=index_3, ) return (index_0, index_1, index_2, index_3) def call( self, index_0: str, index_1: str, index_2: int, index_3: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> Union[bytes, str]: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ ( index_0, index_1, index_2, index_3, ) = self.validate_and_normalize_inputs( index_0, index_1, index_2, index_3 ) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method( index_0, index_1, index_2, index_3 ).call(tx_params.as_dict()) return Union[bytes, str](returned) def send_transaction( self, index_0: str, index_1: str, index_2: int, index_3: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ ( index_0, index_1, index_2, index_3, ) = self.validate_and_normalize_inputs( index_0, index_1, index_2, index_3 ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method( index_0, index_1, index_2, index_3 ).transact(tx_params.as_dict()) def build_transaction( self, index_0: str, index_1: str, index_2: int, index_3: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> dict: """Construct calldata to be used as input to the method.""" ( index_0, index_1, index_2, index_3, ) = self.validate_and_normalize_inputs( index_0, index_1, index_2, index_3 ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method( index_0, index_1, index_2, index_3 ).buildTransaction(tx_params.as_dict()) def estimate_gas( self, index_0: str, index_1: str, index_2: int, index_3: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> int: """Estimate gas consumption of method call.""" ( index_0, index_1, index_2, index_3, ) = self.validate_and_normalize_inputs( index_0, index_1, index_2, index_3 ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method( index_0, index_1, index_2, index_3 ).estimateGas(tx_params.as_dict()) class PauseMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the pause method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address) self._underlying_method = contract_function def call(self, tx_params: Optional[TxParams] = None) -> None: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ tx_params = super().normalize_tx_params(tx_params) self._underlying_method().call(tx_params.as_dict()) def send_transaction( self, tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().transact(tx_params.as_dict()) def build_transaction(self, tx_params: Optional[TxParams] = None) -> dict: """Construct calldata to be used as input to the method.""" tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().buildTransaction(tx_params.as_dict()) def estimate_gas(self, tx_params: Optional[TxParams] = None) -> int: """Estimate gas consumption of method call.""" tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().estimateGas(tx_params.as_dict()) class PausedMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the paused method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address) self._underlying_method = contract_function def call(self, tx_params: Optional[TxParams] = None) -> bool: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method().call(tx_params.as_dict()) return bool(returned) def send_transaction( self, tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().transact(tx_params.as_dict()) def build_transaction(self, tx_params: Optional[TxParams] = None) -> dict: """Construct calldata to be used as input to the method.""" tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().buildTransaction(tx_params.as_dict()) def estimate_gas(self, tx_params: Optional[TxParams] = None) -> int: """Estimate gas consumption of method call.""" tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().estimateGas(tx_params.as_dict()) class RedeemErc20Method(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the redeemERC20 method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs(self, nft_id: int, amount: int): """Validate the inputs to the redeemERC20 method.""" self.validator.assert_valid( method_name="redeemERC20", parameter_name="_nftId", argument_value=nft_id, ) # safeguard against fractional inputs nft_id = int(nft_id) self.validator.assert_valid( method_name="redeemERC20", parameter_name="_amount", argument_value=amount, ) # safeguard against fractional inputs amount = int(amount) return (nft_id, amount) def call( self, nft_id: int, amount: int, tx_params: Optional[TxParams] = None ) -> None: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (nft_id, amount) = self.validate_and_normalize_inputs(nft_id, amount) tx_params = super().normalize_tx_params(tx_params) self._underlying_method(nft_id, amount).call(tx_params.as_dict()) def send_transaction( self, nft_id: int, amount: int, tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (nft_id, amount) = self.validate_and_normalize_inputs(nft_id, amount) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(nft_id, amount).transact( tx_params.as_dict() ) def build_transaction( self, nft_id: int, amount: int, tx_params: Optional[TxParams] = None ) -> dict: """Construct calldata to be used as input to the method.""" (nft_id, amount) = self.validate_and_normalize_inputs(nft_id, amount) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(nft_id, amount).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, nft_id: int, amount: int, tx_params: Optional[TxParams] = None ) -> int: """Estimate gas consumption of method call.""" (nft_id, amount) = self.validate_and_normalize_inputs(nft_id, amount) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(nft_id, amount).estimateGas( tx_params.as_dict() ) class RedeemErc721Method(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the redeemERC721 method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs(self, nft_id: int): """Validate the inputs to the redeemERC721 method.""" self.validator.assert_valid( method_name="redeemERC721", parameter_name="_nftId", argument_value=nft_id, ) # safeguard against fractional inputs nft_id = int(nft_id) return nft_id def call(self, nft_id: int, tx_params: Optional[TxParams] = None) -> None: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (nft_id) = self.validate_and_normalize_inputs(nft_id) tx_params = super().normalize_tx_params(tx_params) self._underlying_method(nft_id).call(tx_params.as_dict()) def send_transaction( self, nft_id: int, tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (nft_id) = self.validate_and_normalize_inputs(nft_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(nft_id).transact(tx_params.as_dict()) def build_transaction( self, nft_id: int, tx_params: Optional[TxParams] = None ) -> dict: """Construct calldata to be used as input to the method.""" (nft_id) = self.validate_and_normalize_inputs(nft_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(nft_id).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, nft_id: int, tx_params: Optional[TxParams] = None ) -> int: """Estimate gas consumption of method call.""" (nft_id) = self.validate_and_normalize_inputs(nft_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(nft_id).estimateGas(tx_params.as_dict()) class RenounceRoleMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the renounceRole method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs( self, role: Union[bytes, str], account: str ): """Validate the inputs to the renounceRole method.""" self.validator.assert_valid( method_name="renounceRole", parameter_name="role", argument_value=role, ) self.validator.assert_valid( method_name="renounceRole", parameter_name="account", argument_value=account, ) account = self.validate_and_checksum_address(account) return (role, account) def call( self, role: Union[bytes, str], account: str, tx_params: Optional[TxParams] = None, ) -> None: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (role, account) = self.validate_and_normalize_inputs(role, account) tx_params = super().normalize_tx_params(tx_params) self._underlying_method(role, account).call(tx_params.as_dict()) def send_transaction( self, role: Union[bytes, str], account: str, tx_params: Optional[TxParams] = None, ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (role, account) = self.validate_and_normalize_inputs(role, account) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role, account).transact( tx_params.as_dict() ) def build_transaction( self, role: Union[bytes, str], account: str, tx_params: Optional[TxParams] = None, ) -> dict: """Construct calldata to be used as input to the method.""" (role, account) = self.validate_and_normalize_inputs(role, account) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role, account).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, role: Union[bytes, str], account: str, tx_params: Optional[TxParams] = None, ) -> int: """Estimate gas consumption of method call.""" (role, account) = self.validate_and_normalize_inputs(role, account) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role, account).estimateGas( tx_params.as_dict() ) class RevokeRoleMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the revokeRole method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs( self, role: Union[bytes, str], account: str ): """Validate the inputs to the revokeRole method.""" self.validator.assert_valid( method_name="revokeRole", parameter_name="role", argument_value=role, ) self.validator.assert_valid( method_name="revokeRole", parameter_name="account", argument_value=account, ) account = self.validate_and_checksum_address(account) return (role, account) def call( self, role: Union[bytes, str], account: str, tx_params: Optional[TxParams] = None, ) -> None: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (role, account) = self.validate_and_normalize_inputs(role, account) tx_params = super().normalize_tx_params(tx_params) self._underlying_method(role, account).call(tx_params.as_dict()) def send_transaction( self, role: Union[bytes, str], account: str, tx_params: Optional[TxParams] = None, ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (role, account) = self.validate_and_normalize_inputs(role, account) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role, account).transact( tx_params.as_dict() ) def build_transaction( self, role: Union[bytes, str], account: str, tx_params: Optional[TxParams] = None, ) -> dict: """Construct calldata to be used as input to the method.""" (role, account) = self.validate_and_normalize_inputs(role, account) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role, account).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, role: Union[bytes, str], account: str, tx_params: Optional[TxParams] = None, ) -> int: """Estimate gas consumption of method call.""" (role, account) = self.validate_and_normalize_inputs(role, account) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role, account).estimateGas( tx_params.as_dict() ) class RoyaltyBpsMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the royaltyBps method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address) self._underlying_method = contract_function def call(self, tx_params: Optional[TxParams] = None) -> int: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method().call(tx_params.as_dict()) return int(returned) def send_transaction( self, tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().transact(tx_params.as_dict()) def build_transaction(self, tx_params: Optional[TxParams] = None) -> dict: """Construct calldata to be used as input to the method.""" tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().buildTransaction(tx_params.as_dict()) def estimate_gas(self, tx_params: Optional[TxParams] = None) -> int: """Estimate gas consumption of method call.""" tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().estimateGas(tx_params.as_dict()) class RoyaltyInfoMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the royaltyInfo method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs(self, index_0: int, sale_price: int): """Validate the inputs to the royaltyInfo method.""" self.validator.assert_valid( method_name="royaltyInfo", parameter_name="index_0", argument_value=index_0, ) # safeguard against fractional inputs index_0 = int(index_0) self.validator.assert_valid( method_name="royaltyInfo", parameter_name="salePrice", argument_value=sale_price, ) # safeguard against fractional inputs sale_price = int(sale_price) return (index_0, sale_price) def call( self, index_0: int, sale_price: int, tx_params: Optional[TxParams] = None, ) -> Tuple[str, int]: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (index_0, sale_price) = self.validate_and_normalize_inputs( index_0, sale_price ) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(index_0, sale_price).call( tx_params.as_dict() ) return ( returned[0], returned[1], ) def send_transaction( self, index_0: int, sale_price: int, tx_params: Optional[TxParams] = None, ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (index_0, sale_price) = self.validate_and_normalize_inputs( index_0, sale_price ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(index_0, sale_price).transact( tx_params.as_dict() ) def build_transaction( self, index_0: int, sale_price: int, tx_params: Optional[TxParams] = None, ) -> dict: """Construct calldata to be used as input to the method.""" (index_0, sale_price) = self.validate_and_normalize_inputs( index_0, sale_price ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(index_0, sale_price).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, index_0: int, sale_price: int, tx_params: Optional[TxParams] = None, ) -> int: """Estimate gas consumption of method call.""" (index_0, sale_price) = self.validate_and_normalize_inputs( index_0, sale_price ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(index_0, sale_price).estimateGas( tx_params.as_dict() ) class SafeBatchTransferFromMethod( ContractMethod ): # pylint: disable=invalid-name """Various interfaces to the safeBatchTransferFrom method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs( self, _from: str, to: str, ids: List[int], amounts: List[int], data: Union[bytes, str], ): """Validate the inputs to the safeBatchTransferFrom method.""" self.validator.assert_valid( method_name="safeBatchTransferFrom", parameter_name="from", argument_value=_from, ) _from = self.validate_and_checksum_address(_from) self.validator.assert_valid( method_name="safeBatchTransferFrom", parameter_name="to", argument_value=to, ) to = self.validate_and_checksum_address(to) self.validator.assert_valid( method_name="safeBatchTransferFrom", parameter_name="ids", argument_value=ids, ) self.validator.assert_valid( method_name="safeBatchTransferFrom", parameter_name="amounts", argument_value=amounts, ) self.validator.assert_valid( method_name="safeBatchTransferFrom", parameter_name="data", argument_value=data, ) return (_from, to, ids, amounts, data) def call( self, _from: str, to: str, ids: List[int], amounts: List[int], data: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> None: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (_from, to, ids, amounts, data) = self.validate_and_normalize_inputs( _from, to, ids, amounts, data ) tx_params = super().normalize_tx_params(tx_params) self._underlying_method(_from, to, ids, amounts, data).call( tx_params.as_dict() ) def send_transaction( self, _from: str, to: str, ids: List[int], amounts: List[int], data: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (_from, to, ids, amounts, data) = self.validate_and_normalize_inputs( _from, to, ids, amounts, data ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(_from, to, ids, amounts, data).transact( tx_params.as_dict() ) def build_transaction( self, _from: str, to: str, ids: List[int], amounts: List[int], data: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> dict: """Construct calldata to be used as input to the method.""" (_from, to, ids, amounts, data) = self.validate_and_normalize_inputs( _from, to, ids, amounts, data ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method( _from, to, ids, amounts, data ).buildTransaction(tx_params.as_dict()) def estimate_gas( self, _from: str, to: str, ids: List[int], amounts: List[int], data: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> int: """Estimate gas consumption of method call.""" (_from, to, ids, amounts, data) = self.validate_and_normalize_inputs( _from, to, ids, amounts, data ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method( _from, to, ids, amounts, data ).estimateGas(tx_params.as_dict()) class SafeTransferFromMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the safeTransferFrom method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs( self, _from: str, to: str, _id: int, amount: int, data: Union[bytes, str], ): """Validate the inputs to the safeTransferFrom method.""" self.validator.assert_valid( method_name="safeTransferFrom", parameter_name="from", argument_value=_from, ) _from = self.validate_and_checksum_address(_from) self.validator.assert_valid( method_name="safeTransferFrom", parameter_name="to", argument_value=to, ) to = self.validate_and_checksum_address(to) self.validator.assert_valid( method_name="safeTransferFrom", parameter_name="id", argument_value=_id, ) # safeguard against fractional inputs _id = int(_id) self.validator.assert_valid( method_name="safeTransferFrom", parameter_name="amount", argument_value=amount, ) # safeguard against fractional inputs amount = int(amount) self.validator.assert_valid( method_name="safeTransferFrom", parameter_name="data", argument_value=data, ) return (_from, to, _id, amount, data) def call( self, _from: str, to: str, _id: int, amount: int, data: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> None: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (_from, to, _id, amount, data) = self.validate_and_normalize_inputs( _from, to, _id, amount, data ) tx_params = super().normalize_tx_params(tx_params) self._underlying_method(_from, to, _id, amount, data).call( tx_params.as_dict() ) def send_transaction( self, _from: str, to: str, _id: int, amount: int, data: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (_from, to, _id, amount, data) = self.validate_and_normalize_inputs( _from, to, _id, amount, data ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(_from, to, _id, amount, data).transact( tx_params.as_dict() ) def build_transaction( self, _from: str, to: str, _id: int, amount: int, data: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> dict: """Construct calldata to be used as input to the method.""" (_from, to, _id, amount, data) = self.validate_and_normalize_inputs( _from, to, _id, amount, data ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method( _from, to, _id, amount, data ).buildTransaction(tx_params.as_dict()) def estimate_gas( self, _from: str, to: str, _id: int, amount: int, data: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> int: """Estimate gas consumption of method call.""" (_from, to, _id, amount, data) = self.validate_and_normalize_inputs( _from, to, _id, amount, data ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method( _from, to, _id, amount, data ).estimateGas(tx_params.as_dict()) class SetApprovalForAllMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the setApprovalForAll method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs(self, operator: str, approved: bool): """Validate the inputs to the setApprovalForAll method.""" self.validator.assert_valid( method_name="setApprovalForAll", parameter_name="operator", argument_value=operator, ) operator = self.validate_and_checksum_address(operator) self.validator.assert_valid( method_name="setApprovalForAll", parameter_name="approved", argument_value=approved, ) return (operator, approved) def call( self, operator: str, approved: bool, tx_params: Optional[TxParams] = None, ) -> None: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (operator, approved) = self.validate_and_normalize_inputs( operator, approved ) tx_params = super().normalize_tx_params(tx_params) self._underlying_method(operator, approved).call(tx_params.as_dict()) def send_transaction( self, operator: str, approved: bool, tx_params: Optional[TxParams] = None, ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (operator, approved) = self.validate_and_normalize_inputs( operator, approved ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(operator, approved).transact( tx_params.as_dict() ) def build_transaction( self, operator: str, approved: bool, tx_params: Optional[TxParams] = None, ) -> dict: """Construct calldata to be used as input to the method.""" (operator, approved) = self.validate_and_normalize_inputs( operator, approved ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(operator, approved).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, operator: str, approved: bool, tx_params: Optional[TxParams] = None, ) -> int: """Estimate gas consumption of method call.""" (operator, approved) = self.validate_and_normalize_inputs( operator, approved ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(operator, approved).estimateGas( tx_params.as_dict() ) class SetContractUriMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the setContractURI method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs(self, uri: str): """Validate the inputs to the setContractURI method.""" self.validator.assert_valid( method_name="setContractURI", parameter_name="_URI", argument_value=uri, ) return uri def call(self, uri: str, tx_params: Optional[TxParams] = None) -> None: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (uri) = self.validate_and_normalize_inputs(uri) tx_params = super().normalize_tx_params(tx_params) self._underlying_method(uri).call(tx_params.as_dict()) def send_transaction( self, uri: str, tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (uri) = self.validate_and_normalize_inputs(uri) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(uri).transact(tx_params.as_dict()) def build_transaction( self, uri: str, tx_params: Optional[TxParams] = None ) -> dict: """Construct calldata to be used as input to the method.""" (uri) = self.validate_and_normalize_inputs(uri) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(uri).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, uri: str, tx_params: Optional[TxParams] = None ) -> int: """Estimate gas consumption of method call.""" (uri) = self.validate_and_normalize_inputs(uri) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(uri).estimateGas(tx_params.as_dict()) class SetRestrictedTransferMethod( ContractMethod ): # pylint: disable=invalid-name """Various interfaces to the setRestrictedTransfer method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs(self, restricted_transfer: bool): """Validate the inputs to the setRestrictedTransfer method.""" self.validator.assert_valid( method_name="setRestrictedTransfer", parameter_name="_restrictedTransfer", argument_value=restricted_transfer, ) return restricted_transfer def call( self, restricted_transfer: bool, tx_params: Optional[TxParams] = None ) -> None: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (restricted_transfer) = self.validate_and_normalize_inputs( restricted_transfer ) tx_params = super().normalize_tx_params(tx_params) self._underlying_method(restricted_transfer).call(tx_params.as_dict()) def send_transaction( self, restricted_transfer: bool, tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (restricted_transfer) = self.validate_and_normalize_inputs( restricted_transfer ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(restricted_transfer).transact( tx_params.as_dict() ) def build_transaction( self, restricted_transfer: bool, tx_params: Optional[TxParams] = None ) -> dict: """Construct calldata to be used as input to the method.""" (restricted_transfer) = self.validate_and_normalize_inputs( restricted_transfer ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(restricted_transfer).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, restricted_transfer: bool, tx_params: Optional[TxParams] = None ) -> int: """Estimate gas consumption of method call.""" (restricted_transfer) = self.validate_and_normalize_inputs( restricted_transfer ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(restricted_transfer).estimateGas( tx_params.as_dict() ) class SetRoyaltyBpsMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the setRoyaltyBps method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs(self, royalty_bps: int): """Validate the inputs to the setRoyaltyBps method.""" self.validator.assert_valid( method_name="setRoyaltyBps", parameter_name="_royaltyBps", argument_value=royalty_bps, ) # safeguard against fractional inputs royalty_bps = int(royalty_bps) return royalty_bps def call( self, royalty_bps: int, tx_params: Optional[TxParams] = None ) -> None: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (royalty_bps) = self.validate_and_normalize_inputs(royalty_bps) tx_params = super().normalize_tx_params(tx_params) self._underlying_method(royalty_bps).call(tx_params.as_dict()) def send_transaction( self, royalty_bps: int, tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (royalty_bps) = self.validate_and_normalize_inputs(royalty_bps) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(royalty_bps).transact( tx_params.as_dict() ) def build_transaction( self, royalty_bps: int, tx_params: Optional[TxParams] = None ) -> dict: """Construct calldata to be used as input to the method.""" (royalty_bps) = self.validate_and_normalize_inputs(royalty_bps) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(royalty_bps).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, royalty_bps: int, tx_params: Optional[TxParams] = None ) -> int: """Estimate gas consumption of method call.""" (royalty_bps) = self.validate_and_normalize_inputs(royalty_bps) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(royalty_bps).estimateGas( tx_params.as_dict() ) class SupportsInterfaceMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the supportsInterface method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs(self, interface_id: Union[bytes, str]): """Validate the inputs to the supportsInterface method.""" self.validator.assert_valid( method_name="supportsInterface", parameter_name="interfaceId", argument_value=interface_id, ) return interface_id def call( self, interface_id: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> bool: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (interface_id) = self.validate_and_normalize_inputs(interface_id) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(interface_id).call( tx_params.as_dict() ) return bool(returned) def send_transaction( self, interface_id: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (interface_id) = self.validate_and_normalize_inputs(interface_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(interface_id).transact( tx_params.as_dict() ) def build_transaction( self, interface_id: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> dict: """Construct calldata to be used as input to the method.""" (interface_id) = self.validate_and_normalize_inputs(interface_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(interface_id).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, interface_id: Union[bytes, str], tx_params: Optional[TxParams] = None, ) -> int: """Estimate gas consumption of method call.""" (interface_id) = self.validate_and_normalize_inputs(interface_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(interface_id).estimateGas( tx_params.as_dict() ) class TokenStateMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the tokenState method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs(self, index_0: int): """Validate the inputs to the tokenState method.""" self.validator.assert_valid( method_name="tokenState", parameter_name="index_0", argument_value=index_0, ) # safeguard against fractional inputs index_0 = int(index_0) return index_0 def call( self, index_0: int, tx_params: Optional[TxParams] = None ) -> Tuple[str, str, int]: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (index_0) = self.validate_and_normalize_inputs(index_0) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(index_0).call(tx_params.as_dict()) return ( returned[0], returned[1], returned[2], ) def send_transaction( self, index_0: int, tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (index_0) = self.validate_and_normalize_inputs(index_0) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(index_0).transact(tx_params.as_dict()) def build_transaction( self, index_0: int, tx_params: Optional[TxParams] = None ) -> dict: """Construct calldata to be used as input to the method.""" (index_0) = self.validate_and_normalize_inputs(index_0) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(index_0).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, index_0: int, tx_params: Optional[TxParams] = None ) -> int: """Estimate gas consumption of method call.""" (index_0) = self.validate_and_normalize_inputs(index_0) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(index_0).estimateGas( tx_params.as_dict() ) class TokenUriMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the tokenURI method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs(self, nft_id: int): """Validate the inputs to the tokenURI method.""" self.validator.assert_valid( method_name="tokenURI", parameter_name="_nftId", argument_value=nft_id, ) # safeguard against fractional inputs nft_id = int(nft_id) return nft_id def call(self, nft_id: int, tx_params: Optional[TxParams] = None) -> str: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (nft_id) = self.validate_and_normalize_inputs(nft_id) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(nft_id).call(tx_params.as_dict()) return str(returned) def send_transaction( self, nft_id: int, tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (nft_id) = self.validate_and_normalize_inputs(nft_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(nft_id).transact(tx_params.as_dict()) def build_transaction( self, nft_id: int, tx_params: Optional[TxParams] = None ) -> dict: """Construct calldata to be used as input to the method.""" (nft_id) = self.validate_and_normalize_inputs(nft_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(nft_id).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, nft_id: int, tx_params: Optional[TxParams] = None ) -> int: """Estimate gas consumption of method call.""" (nft_id) = self.validate_and_normalize_inputs(nft_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(nft_id).estimateGas(tx_params.as_dict()) class TotalSupplyMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the totalSupply method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs(self, _id: int): """Validate the inputs to the totalSupply method.""" self.validator.assert_valid( method_name="totalSupply", parameter_name="id", argument_value=_id, ) # safeguard against fractional inputs _id = int(_id) return _id def call(self, _id: int, tx_params: Optional[TxParams] = None) -> int: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (_id) = self.validate_and_normalize_inputs(_id) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(_id).call(tx_params.as_dict()) return int(returned) def send_transaction( self, _id: int, tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (_id) = self.validate_and_normalize_inputs(_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(_id).transact(tx_params.as_dict()) def build_transaction( self, _id: int, tx_params: Optional[TxParams] = None ) -> dict: """Construct calldata to be used as input to the method.""" (_id) = self.validate_and_normalize_inputs(_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(_id).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, _id: int, tx_params: Optional[TxParams] = None ) -> int: """Estimate gas consumption of method call.""" (_id) = self.validate_and_normalize_inputs(_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(_id).estimateGas(tx_params.as_dict()) class TransfersRestrictedMethod( ContractMethod ): # pylint: disable=invalid-name """Various interfaces to the transfersRestricted method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address) self._underlying_method = contract_function def call(self, tx_params: Optional[TxParams] = None) -> bool: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method().call(tx_params.as_dict()) return bool(returned) def send_transaction( self, tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().transact(tx_params.as_dict()) def build_transaction(self, tx_params: Optional[TxParams] = None) -> dict: """Construct calldata to be used as input to the method.""" tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().buildTransaction(tx_params.as_dict()) def estimate_gas(self, tx_params: Optional[TxParams] = None) -> int: """Estimate gas consumption of method call.""" tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().estimateGas(tx_params.as_dict()) class UnpauseMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the unpause method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address) self._underlying_method = contract_function def call(self, tx_params: Optional[TxParams] = None) -> None: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ tx_params = super().normalize_tx_params(tx_params) self._underlying_method().call(tx_params.as_dict()) def send_transaction( self, tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().transact(tx_params.as_dict()) def build_transaction(self, tx_params: Optional[TxParams] = None) -> dict: """Construct calldata to be used as input to the method.""" tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().buildTransaction(tx_params.as_dict()) def estimate_gas(self, tx_params: Optional[TxParams] = None) -> int: """Estimate gas consumption of method call.""" tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().estimateGas(tx_params.as_dict()) class UriMethod(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the uri method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs(self, nft_id: int): """Validate the inputs to the uri method.""" self.validator.assert_valid( method_name="uri", parameter_name="_nftId", argument_value=nft_id, ) # safeguard against fractional inputs nft_id = int(nft_id) return nft_id def call(self, nft_id: int, tx_params: Optional[TxParams] = None) -> str: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (nft_id) = self.validate_and_normalize_inputs(nft_id) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(nft_id).call(tx_params.as_dict()) return str(returned) def send_transaction( self, nft_id: int, tx_params: Optional[TxParams] = None ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (nft_id) = self.validate_and_normalize_inputs(nft_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(nft_id).transact(tx_params.as_dict()) def build_transaction( self, nft_id: int, tx_params: Optional[TxParams] = None ) -> dict: """Construct calldata to be used as input to the method.""" (nft_id) = self.validate_and_normalize_inputs(nft_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(nft_id).buildTransaction( tx_params.as_dict() ) def estimate_gas( self, nft_id: int, tx_params: Optional[TxParams] = None ) -> int: """Estimate gas consumption of method call.""" (nft_id) = self.validate_and_normalize_inputs(nft_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(nft_id).estimateGas(tx_params.as_dict()) class WrapErc20Method(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the wrapERC20 method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs( self, token_contract: str, token_amount: int, num_of_nfts_to_mint: int, nft_uri: str, ): """Validate the inputs to the wrapERC20 method.""" self.validator.assert_valid( method_name="wrapERC20", parameter_name="_tokenContract", argument_value=token_contract, ) token_contract = self.validate_and_checksum_address(token_contract) self.validator.assert_valid( method_name="wrapERC20", parameter_name="_tokenAmount", argument_value=token_amount, ) # safeguard against fractional inputs token_amount = int(token_amount) self.validator.assert_valid( method_name="wrapERC20", parameter_name="_numOfNftsToMint", argument_value=num_of_nfts_to_mint, ) # safeguard against fractional inputs num_of_nfts_to_mint = int(num_of_nfts_to_mint) self.validator.assert_valid( method_name="wrapERC20", parameter_name="_nftURI", argument_value=nft_uri, ) return (token_contract, token_amount, num_of_nfts_to_mint, nft_uri) def call( self, token_contract: str, token_amount: int, num_of_nfts_to_mint: int, nft_uri: str, tx_params: Optional[TxParams] = None, ) -> None: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ ( token_contract, token_amount, num_of_nfts_to_mint, nft_uri, ) = self.validate_and_normalize_inputs( token_contract, token_amount, num_of_nfts_to_mint, nft_uri ) tx_params = super().normalize_tx_params(tx_params) self._underlying_method( token_contract, token_amount, num_of_nfts_to_mint, nft_uri ).call(tx_params.as_dict()) def send_transaction( self, token_contract: str, token_amount: int, num_of_nfts_to_mint: int, nft_uri: str, tx_params: Optional[TxParams] = None, ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ ( token_contract, token_amount, num_of_nfts_to_mint, nft_uri, ) = self.validate_and_normalize_inputs( token_contract, token_amount, num_of_nfts_to_mint, nft_uri ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method( token_contract, token_amount, num_of_nfts_to_mint, nft_uri ).transact(tx_params.as_dict()) def build_transaction( self, token_contract: str, token_amount: int, num_of_nfts_to_mint: int, nft_uri: str, tx_params: Optional[TxParams] = None, ) -> dict: """Construct calldata to be used as input to the method.""" ( token_contract, token_amount, num_of_nfts_to_mint, nft_uri, ) = self.validate_and_normalize_inputs( token_contract, token_amount, num_of_nfts_to_mint, nft_uri ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method( token_contract, token_amount, num_of_nfts_to_mint, nft_uri ).buildTransaction(tx_params.as_dict()) def estimate_gas( self, token_contract: str, token_amount: int, num_of_nfts_to_mint: int, nft_uri: str, tx_params: Optional[TxParams] = None, ) -> int: """Estimate gas consumption of method call.""" ( token_contract, token_amount, num_of_nfts_to_mint, nft_uri, ) = self.validate_and_normalize_inputs( token_contract, token_amount, num_of_nfts_to_mint, nft_uri ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method( token_contract, token_amount, num_of_nfts_to_mint, nft_uri ).estimateGas(tx_params.as_dict()) class WrapErc721Method(ContractMethod): # pylint: disable=invalid-name """Various interfaces to the wrapERC721 method.""" def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, contract_function: ContractFunction, validator: Validator = None, ): """Persist instance data.""" super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function def validate_and_normalize_inputs( self, nft_contract: str, token_id: int, nft_uri: str ): """Validate the inputs to the wrapERC721 method.""" self.validator.assert_valid( method_name="wrapERC721", parameter_name="_nftContract", argument_value=nft_contract, ) nft_contract = self.validate_and_checksum_address(nft_contract) self.validator.assert_valid( method_name="wrapERC721", parameter_name="_tokenId", argument_value=token_id, ) # safeguard against fractional inputs token_id = int(token_id) self.validator.assert_valid( method_name="wrapERC721", parameter_name="_nftURI", argument_value=nft_uri, ) return (nft_contract, token_id, nft_uri) def call( self, nft_contract: str, token_id: int, nft_uri: str, tx_params: Optional[TxParams] = None, ) -> None: """Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method. """ (nft_contract, token_id, nft_uri) = self.validate_and_normalize_inputs( nft_contract, token_id, nft_uri ) tx_params = super().normalize_tx_params(tx_params) self._underlying_method(nft_contract, token_id, nft_uri).call( tx_params.as_dict() ) def send_transaction( self, nft_contract: str, token_id: int, nft_uri: str, tx_params: Optional[TxParams] = None, ) -> Union[HexBytes, bytes]: """Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters """ (nft_contract, token_id, nft_uri) = self.validate_and_normalize_inputs( nft_contract, token_id, nft_uri ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method( nft_contract, token_id, nft_uri ).transact(tx_params.as_dict()) def build_transaction( self, nft_contract: str, token_id: int, nft_uri: str, tx_params: Optional[TxParams] = None, ) -> dict: """Construct calldata to be used as input to the method.""" (nft_contract, token_id, nft_uri) = self.validate_and_normalize_inputs( nft_contract, token_id, nft_uri ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method( nft_contract, token_id, nft_uri ).buildTransaction(tx_params.as_dict()) def estimate_gas( self, nft_contract: str, token_id: int, nft_uri: str, tx_params: Optional[TxParams] = None, ) -> int: """Estimate gas consumption of method call.""" (nft_contract, token_id, nft_uri) = self.validate_and_normalize_inputs( nft_contract, token_id, nft_uri ) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method( nft_contract, token_id, nft_uri ).estimateGas(tx_params.as_dict()) # pylint: disable=too-many-public-methods,too-many-instance-attributes class NFTCollection: """Wrapper class for NFTCollection Solidity contract. All method parameters of type `bytes`:code: should be encoded as UTF-8, which can be accomplished via `str.encode("utf_8")`:code:. """ default_admin_role: DefaultAdminRoleMethod """Constructor-initialized instance of :class:`DefaultAdminRoleMethod`. """ minter_role: MinterRoleMethod """Constructor-initialized instance of :class:`MinterRoleMethod`. """ pauser_role: PauserRoleMethod """Constructor-initialized instance of :class:`PauserRoleMethod`. """ transfer_role: TransferRoleMethod """Constructor-initialized instance of :class:`TransferRoleMethod`. """ contract_uri_: ContractUri_Method """Constructor-initialized instance of :class:`ContractUri_Method`. """ balance_of: BalanceOfMethod """Constructor-initialized instance of :class:`BalanceOfMethod`. """ balance_of_batch: BalanceOfBatchMethod """Constructor-initialized instance of :class:`BalanceOfBatchMethod`. """ burn: BurnMethod """Constructor-initialized instance of :class:`BurnMethod`. """ burn_batch: BurnBatchMethod """Constructor-initialized instance of :class:`BurnBatchMethod`. """ contract_uri: ContractUriMethod """Constructor-initialized instance of :class:`ContractUriMethod`. """ create_native_tokens: CreateNativeTokensMethod """Constructor-initialized instance of :class:`CreateNativeTokensMethod`. """ creator: CreatorMethod """Constructor-initialized instance of :class:`CreatorMethod`. """ erc20_wrapped_tokens: Erc20WrappedTokensMethod """Constructor-initialized instance of :class:`Erc20WrappedTokensMethod`. """ erc721_wrapped_tokens: Erc721WrappedTokensMethod """Constructor-initialized instance of :class:`Erc721WrappedTokensMethod`. """ get_role_admin: GetRoleAdminMethod """Constructor-initialized instance of :class:`GetRoleAdminMethod`. """ get_role_member: GetRoleMemberMethod """Constructor-initialized instance of :class:`GetRoleMemberMethod`. """ get_role_member_count: GetRoleMemberCountMethod """Constructor-initialized instance of :class:`GetRoleMemberCountMethod`. """ grant_role: GrantRoleMethod """Constructor-initialized instance of :class:`GrantRoleMethod`. """ has_role: HasRoleMethod """Constructor-initialized instance of :class:`HasRoleMethod`. """ is_approved_for_all: IsApprovedForAllMethod """Constructor-initialized instance of :class:`IsApprovedForAllMethod`. """ is_trusted_forwarder: IsTrustedForwarderMethod """Constructor-initialized instance of :class:`IsTrustedForwarderMethod`. """ mint: MintMethod """Constructor-initialized instance of :class:`MintMethod`. """ mint_batch: MintBatchMethod """Constructor-initialized instance of :class:`MintBatchMethod`. """ multicall: MulticallMethod """Constructor-initialized instance of :class:`MulticallMethod`. """ next_token_id: NextTokenIdMethod """Constructor-initialized instance of :class:`NextTokenIdMethod`. """ on_erc1155_batch_received: OnErc1155BatchReceivedMethod """Constructor-initialized instance of :class:`OnErc1155BatchReceivedMethod`. """ on_erc1155_received: OnErc1155ReceivedMethod """Constructor-initialized instance of :class:`OnErc1155ReceivedMethod`. """ on_erc721_received: OnErc721ReceivedMethod """Constructor-initialized instance of :class:`OnErc721ReceivedMethod`. """ pause: PauseMethod """Constructor-initialized instance of :class:`PauseMethod`. """ paused: PausedMethod """Constructor-initialized instance of :class:`PausedMethod`. """ redeem_erc20: RedeemErc20Method """Constructor-initialized instance of :class:`RedeemErc20Method`. """ redeem_erc721: RedeemErc721Method """Constructor-initialized instance of :class:`RedeemErc721Method`. """ renounce_role: RenounceRoleMethod """Constructor-initialized instance of :class:`RenounceRoleMethod`. """ revoke_role: RevokeRoleMethod """Constructor-initialized instance of :class:`RevokeRoleMethod`. """ royalty_bps: RoyaltyBpsMethod """Constructor-initialized instance of :class:`RoyaltyBpsMethod`. """ royalty_info: RoyaltyInfoMethod """Constructor-initialized instance of :class:`RoyaltyInfoMethod`. """ safe_batch_transfer_from: SafeBatchTransferFromMethod """Constructor-initialized instance of :class:`SafeBatchTransferFromMethod`. """ safe_transfer_from: SafeTransferFromMethod """Constructor-initialized instance of :class:`SafeTransferFromMethod`. """ set_approval_for_all: SetApprovalForAllMethod """Constructor-initialized instance of :class:`SetApprovalForAllMethod`. """ set_contract_uri: SetContractUriMethod """Constructor-initialized instance of :class:`SetContractUriMethod`. """ set_restricted_transfer: SetRestrictedTransferMethod """Constructor-initialized instance of :class:`SetRestrictedTransferMethod`. """ set_royalty_bps: SetRoyaltyBpsMethod """Constructor-initialized instance of :class:`SetRoyaltyBpsMethod`. """ supports_interface: SupportsInterfaceMethod """Constructor-initialized instance of :class:`SupportsInterfaceMethod`. """ token_state: TokenStateMethod """Constructor-initialized instance of :class:`TokenStateMethod`. """ token_uri: TokenUriMethod """Constructor-initialized instance of :class:`TokenUriMethod`. """ total_supply: TotalSupplyMethod """Constructor-initialized instance of :class:`TotalSupplyMethod`. """ transfers_restricted: TransfersRestrictedMethod """Constructor-initialized instance of :class:`TransfersRestrictedMethod`. """ unpause: UnpauseMethod """Constructor-initialized instance of :class:`UnpauseMethod`. """ uri: UriMethod """Constructor-initialized instance of :class:`UriMethod`. """ wrap_erc20: WrapErc20Method """Constructor-initialized instance of :class:`WrapErc20Method`. """ wrap_erc721: WrapErc721Method """Constructor-initialized instance of :class:`WrapErc721Method`. """ def __init__( self, web3_or_provider: Union[Web3, BaseProvider], contract_address: str, validator: NFTCollectionValidator = None, ): """Get an instance of wrapper for smart contract. :param web3_or_provider: Either an instance of `web3.Web3`:code: or `web3.providers.base.BaseProvider`:code: :param contract_address: where the contract has been deployed :param validator: for validation of method inputs. """ # pylint: disable=too-many-statements self.contract_address = contract_address if not validator: validator = NFTCollectionValidator( web3_or_provider, contract_address ) web3 = None if isinstance(web3_or_provider, BaseProvider): web3 = Web3(web3_or_provider) elif isinstance(web3_or_provider, Web3): web3 = web3_or_provider else: raise TypeError( "Expected parameter 'web3_or_provider' to be an instance of either" + " Web3 or BaseProvider" ) # if any middleware was imported, inject it try: MIDDLEWARE except NameError: pass else: try: for middleware in MIDDLEWARE: web3.middleware_onion.inject( middleware["function"], layer=middleware["layer"], ) except ValueError as value_error: if value_error.args == ( "You can't add the same un-named instance twice", ): pass self._web3_eth = web3.eth functions = self._web3_eth.contract( address=to_checksum_address(contract_address), abi=NFTCollection.abi(), ).functions self.default_admin_role = DefaultAdminRoleMethod( web3_or_provider, contract_address, functions.DEFAULT_ADMIN_ROLE ) self.minter_role = MinterRoleMethod( web3_or_provider, contract_address, functions.MINTER_ROLE ) self.pauser_role = PauserRoleMethod( web3_or_provider, contract_address, functions.PAUSER_ROLE ) self.transfer_role = TransferRoleMethod( web3_or_provider, contract_address, functions.TRANSFER_ROLE ) self.contract_uri_ = ContractUri_Method( web3_or_provider, contract_address, functions._contractURI ) self.balance_of = BalanceOfMethod( web3_or_provider, contract_address, functions.balanceOf, validator ) self.balance_of_batch = BalanceOfBatchMethod( web3_or_provider, contract_address, functions.balanceOfBatch, validator, ) self.burn = BurnMethod( web3_or_provider, contract_address, functions.burn, validator ) self.burn_batch = BurnBatchMethod( web3_or_provider, contract_address, functions.burnBatch, validator ) self.contract_uri = ContractUriMethod( web3_or_provider, contract_address, functions.contractURI ) self.create_native_tokens = CreateNativeTokensMethod( web3_or_provider, contract_address, functions.createNativeTokens, validator, ) self.creator = CreatorMethod( web3_or_provider, contract_address, functions.creator, validator ) self.erc20_wrapped_tokens = Erc20WrappedTokensMethod( web3_or_provider, contract_address, functions.erc20WrappedTokens, validator, ) self.erc721_wrapped_tokens = Erc721WrappedTokensMethod( web3_or_provider, contract_address, functions.erc721WrappedTokens, validator, ) self.get_role_admin = GetRoleAdminMethod( web3_or_provider, contract_address, functions.getRoleAdmin, validator, ) self.get_role_member = GetRoleMemberMethod( web3_or_provider, contract_address, functions.getRoleMember, validator, ) self.get_role_member_count = GetRoleMemberCountMethod( web3_or_provider, contract_address, functions.getRoleMemberCount, validator, ) self.grant_role = GrantRoleMethod( web3_or_provider, contract_address, functions.grantRole, validator ) self.has_role = HasRoleMethod( web3_or_provider, contract_address, functions.hasRole, validator ) self.is_approved_for_all = IsApprovedForAllMethod( web3_or_provider, contract_address, functions.isApprovedForAll, validator, ) self.is_trusted_forwarder = IsTrustedForwarderMethod( web3_or_provider, contract_address, functions.isTrustedForwarder, validator, ) self.mint = MintMethod( web3_or_provider, contract_address, functions.mint, validator ) self.mint_batch = MintBatchMethod( web3_or_provider, contract_address, functions.mintBatch, validator ) self.multicall = MulticallMethod( web3_or_provider, contract_address, functions.multicall, validator ) self.next_token_id = NextTokenIdMethod( web3_or_provider, contract_address, functions.nextTokenId ) self.on_erc1155_batch_received = OnErc1155BatchReceivedMethod( web3_or_provider, contract_address, functions.onERC1155BatchReceived, validator, ) self.on_erc1155_received = OnErc1155ReceivedMethod( web3_or_provider, contract_address, functions.onERC1155Received, validator, ) self.on_erc721_received = OnErc721ReceivedMethod( web3_or_provider, contract_address, functions.onERC721Received, validator, ) self.pause = PauseMethod( web3_or_provider, contract_address, functions.pause ) self.paused = PausedMethod( web3_or_provider, contract_address, functions.paused ) self.redeem_erc20 = RedeemErc20Method( web3_or_provider, contract_address, functions.redeemERC20, validator, ) self.redeem_erc721 = RedeemErc721Method( web3_or_provider, contract_address, functions.redeemERC721, validator, ) self.renounce_role = RenounceRoleMethod( web3_or_provider, contract_address, functions.renounceRole, validator, ) self.revoke_role = RevokeRoleMethod( web3_or_provider, contract_address, functions.revokeRole, validator ) self.royalty_bps = RoyaltyBpsMethod( web3_or_provider, contract_address, functions.royaltyBps ) self.royalty_info = RoyaltyInfoMethod( web3_or_provider, contract_address, functions.royaltyInfo, validator, ) self.safe_batch_transfer_from = SafeBatchTransferFromMethod( web3_or_provider, contract_address, functions.safeBatchTransferFrom, validator, ) self.safe_transfer_from = SafeTransferFromMethod( web3_or_provider, contract_address, functions.safeTransferFrom, validator, ) self.set_approval_for_all = SetApprovalForAllMethod( web3_or_provider, contract_address, functions.setApprovalForAll, validator, ) self.set_contract_uri = SetContractUriMethod( web3_or_provider, contract_address, functions.setContractURI, validator, ) self.set_restricted_transfer = SetRestrictedTransferMethod( web3_or_provider, contract_address, functions.setRestrictedTransfer, validator, ) self.set_royalty_bps = SetRoyaltyBpsMethod( web3_or_provider, contract_address, functions.setRoyaltyBps, validator, ) self.supports_interface = SupportsInterfaceMethod( web3_or_provider, contract_address, functions.supportsInterface, validator, ) self.token_state = TokenStateMethod( web3_or_provider, contract_address, functions.tokenState, validator ) self.token_uri = TokenUriMethod( web3_or_provider, contract_address, functions.tokenURI, validator ) self.total_supply = TotalSupplyMethod( web3_or_provider, contract_address, functions.totalSupply, validator, ) self.transfers_restricted = TransfersRestrictedMethod( web3_or_provider, contract_address, functions.transfersRestricted ) self.unpause = UnpauseMethod( web3_or_provider, contract_address, functions.unpause ) self.uri = UriMethod( web3_or_provider, contract_address, functions.uri, validator ) self.wrap_erc20 = WrapErc20Method( web3_or_provider, contract_address, functions.wrapERC20, validator ) self.wrap_erc721 = WrapErc721Method( web3_or_provider, contract_address, functions.wrapERC721, validator ) def get_approval_for_all_event( self, tx_hash: Union[HexBytes, bytes] ) -> Tuple[AttributeDict]: """Get log entry for ApprovalForAll event. :param tx_hash: hash of transaction emitting ApprovalForAll event """ tx_receipt = self._web3_eth.getTransactionReceipt(tx_hash) return ( self._web3_eth.contract( address=to_checksum_address(self.contract_address), abi=NFTCollection.abi(), ) .events.ApprovalForAll() .processReceipt(tx_receipt) ) def get_erc20_redeemed_event( self, tx_hash: Union[HexBytes, bytes] ) -> Tuple[AttributeDict]: """Get log entry for ERC20Redeemed event. :param tx_hash: hash of transaction emitting ERC20Redeemed event """ tx_receipt = self._web3_eth.getTransactionReceipt(tx_hash) return ( self._web3_eth.contract( address=to_checksum_address(self.contract_address), abi=NFTCollection.abi(), ) .events.ERC20Redeemed() .processReceipt(tx_receipt) ) def get_erc20_wrapped_token_event( self, tx_hash: Union[HexBytes, bytes] ) -> Tuple[AttributeDict]: """Get log entry for ERC20WrappedToken event. :param tx_hash: hash of transaction emitting ERC20WrappedToken event """ tx_receipt = self._web3_eth.getTransactionReceipt(tx_hash) return ( self._web3_eth.contract( address=to_checksum_address(self.contract_address), abi=NFTCollection.abi(), ) .events.ERC20WrappedToken() .processReceipt(tx_receipt) ) def get_erc721_redeemed_event( self, tx_hash: Union[HexBytes, bytes] ) -> Tuple[AttributeDict]: """Get log entry for ERC721Redeemed event. :param tx_hash: hash of transaction emitting ERC721Redeemed event """ tx_receipt = self._web3_eth.getTransactionReceipt(tx_hash) return ( self._web3_eth.contract( address=to_checksum_address(self.contract_address), abi=NFTCollection.abi(), ) .events.ERC721Redeemed() .processReceipt(tx_receipt) ) def get_erc721_wrapped_token_event( self, tx_hash: Union[HexBytes, bytes] ) -> Tuple[AttributeDict]: """Get log entry for ERC721WrappedToken event. :param tx_hash: hash of transaction emitting ERC721WrappedToken event """ tx_receipt = self._web3_eth.getTransactionReceipt(tx_hash) return ( self._web3_eth.contract( address=to_checksum_address(self.contract_address), abi=NFTCollection.abi(), ) .events.ERC721WrappedToken() .processReceipt(tx_receipt) ) def get_native_tokens_event( self, tx_hash: Union[HexBytes, bytes] ) -> Tuple[AttributeDict]: """Get log entry for NativeTokens event. :param tx_hash: hash of transaction emitting NativeTokens event """ tx_receipt = self._web3_eth.getTransactionReceipt(tx_hash) return ( self._web3_eth.contract( address=to_checksum_address(self.contract_address), abi=NFTCollection.abi(), ) .events.NativeTokens() .processReceipt(tx_receipt) ) def get_paused_event( self, tx_hash: Union[HexBytes, bytes] ) -> Tuple[AttributeDict]: """Get log entry for Paused event. :param tx_hash: hash of transaction emitting Paused event """ tx_receipt = self._web3_eth.getTransactionReceipt(tx_hash) return ( self._web3_eth.contract( address=to_checksum_address(self.contract_address), abi=NFTCollection.abi(), ) .events.Paused() .processReceipt(tx_receipt) ) def get_restricted_transfer_updated_event( self, tx_hash: Union[HexBytes, bytes] ) -> Tuple[AttributeDict]: """Get log entry for RestrictedTransferUpdated event. :param tx_hash: hash of transaction emitting RestrictedTransferUpdated event """ tx_receipt = self._web3_eth.getTransactionReceipt(tx_hash) return ( self._web3_eth.contract( address=to_checksum_address(self.contract_address), abi=NFTCollection.abi(), ) .events.RestrictedTransferUpdated() .processReceipt(tx_receipt) ) def get_role_admin_changed_event( self, tx_hash: Union[HexBytes, bytes] ) -> Tuple[AttributeDict]: """Get log entry for RoleAdminChanged event. :param tx_hash: hash of transaction emitting RoleAdminChanged event """ tx_receipt = self._web3_eth.getTransactionReceipt(tx_hash) return ( self._web3_eth.contract( address=to_checksum_address(self.contract_address), abi=NFTCollection.abi(), ) .events.RoleAdminChanged() .processReceipt(tx_receipt) ) def get_role_granted_event( self, tx_hash: Union[HexBytes, bytes] ) -> Tuple[AttributeDict]: """Get log entry for RoleGranted event. :param tx_hash: hash of transaction emitting RoleGranted event """ tx_receipt = self._web3_eth.getTransactionReceipt(tx_hash) return ( self._web3_eth.contract( address=to_checksum_address(self.contract_address), abi=NFTCollection.abi(), ) .events.RoleGranted() .processReceipt(tx_receipt) ) def get_role_revoked_event( self, tx_hash: Union[HexBytes, bytes] ) -> Tuple[AttributeDict]: """Get log entry for RoleRevoked event. :param tx_hash: hash of transaction emitting RoleRevoked event """ tx_receipt = self._web3_eth.getTransactionReceipt(tx_hash) return ( self._web3_eth.contract( address=to_checksum_address(self.contract_address), abi=NFTCollection.abi(), ) .events.RoleRevoked() .processReceipt(tx_receipt) ) def get_royalty_updated_event( self, tx_hash: Union[HexBytes, bytes] ) -> Tuple[AttributeDict]: """Get log entry for RoyaltyUpdated event. :param tx_hash: hash of transaction emitting RoyaltyUpdated event """ tx_receipt = self._web3_eth.getTransactionReceipt(tx_hash) return ( self._web3_eth.contract( address=to_checksum_address(self.contract_address), abi=NFTCollection.abi(), ) .events.RoyaltyUpdated() .processReceipt(tx_receipt) ) def get_transfer_batch_event( self, tx_hash: Union[HexBytes, bytes] ) -> Tuple[AttributeDict]: """Get log entry for TransferBatch event. :param tx_hash: hash of transaction emitting TransferBatch event """ tx_receipt = self._web3_eth.getTransactionReceipt(tx_hash) return ( self._web3_eth.contract( address=to_checksum_address(self.contract_address), abi=NFTCollection.abi(), ) .events.TransferBatch() .processReceipt(tx_receipt) ) def get_transfer_single_event( self, tx_hash: Union[HexBytes, bytes] ) -> Tuple[AttributeDict]: """Get log entry for TransferSingle event. :param tx_hash: hash of transaction emitting TransferSingle event """ tx_receipt = self._web3_eth.getTransactionReceipt(tx_hash) return ( self._web3_eth.contract( address=to_checksum_address(self.contract_address), abi=NFTCollection.abi(), ) .events.TransferSingle() .processReceipt(tx_receipt) ) def get_uri_event( self, tx_hash: Union[HexBytes, bytes] ) -> Tuple[AttributeDict]: """Get log entry for URI event. :param tx_hash: hash of transaction emitting URI event """ tx_receipt = self._web3_eth.getTransactionReceipt(tx_hash) return ( self._web3_eth.contract( address=to_checksum_address(self.contract_address), abi=NFTCollection.abi(), ) .events.URI() .processReceipt(tx_receipt) ) def get_unpaused_event( self, tx_hash: Union[HexBytes, bytes] ) -> Tuple[AttributeDict]: """Get log entry for Unpaused event. :param tx_hash: hash of transaction emitting Unpaused event """ tx_receipt = self._web3_eth.getTransactionReceipt(tx_hash) return ( self._web3_eth.contract( address=to_checksum_address(self.contract_address), abi=NFTCollection.abi(), ) .events.Unpaused() .processReceipt(tx_receipt) ) @staticmethod def abi(): """Return the ABI to the underlying contract.""" return json.loads( '[{"inputs":[{"internalType":"address payable","name":"_controlCenter","type":"address"},{"internalType":"address","name":"_trustedForwarder","type":"address"},{"internalType":"string","name":"_uri","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"redeemer","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":true,"internalType":"address","name":"sourceOfUnderlying","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenAmountReceived","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"sharesRedeemed","type":"uint256"}],"name":"ERC20Redeemed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"creator","type":"address"},{"indexed":true,"internalType":"address","name":"sourceOfUnderlying","type":"address"},{"indexed":false,"internalType":"uint256","name":"totalAmountOfUnderlying","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"string","name":"tokenURI","type":"string"}],"name":"ERC20WrappedToken","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"redeemer","type":"address"},{"indexed":true,"internalType":"address","name":"sourceOfUnderlying","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenIdOfUnderlying","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC721Redeemed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"creator","type":"address"},{"indexed":true,"internalType":"address","name":"sourceOfUnderlying","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenIdOfUnderlying","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"string","name":"tokenURI","type":"string"}],"name":"ERC721WrappedToken","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"creator","type":"address"},{"indexed":false,"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"},{"indexed":false,"internalType":"string[]","name":"tokenURIs","type":"string[]"},{"indexed":false,"internalType":"uint256[]","name":"tokenSupplies","type":"uint256[]"}],"name":"NativeTokens","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"transferable","type":"bool"}],"name":"RestrictedTransferUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"royaltyBps","type":"uint256"}],"name":"RoyaltyUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"indexed":false,"internalType":"uint256[]","name":"values","type":"uint256[]"}],"name":"TransferBatch","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"id","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"TransferSingle","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"value","type":"string"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"URI","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MINTER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PAUSER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"TRANSFER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_contractURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"accounts","type":"address[]"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"}],"name":"balanceOfBatch","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"internalType":"uint256[]","name":"values","type":"uint256[]"}],"name":"burnBatch","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"contractURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"string[]","name":"_nftURIs","type":"string[]"},{"internalType":"uint256[]","name":"_nftSupplies","type":"uint256[]"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"createNativeTokens","outputs":[{"internalType":"uint256[]","name":"nftIds","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_nftId","type":"uint256"}],"name":"creator","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index_0","type":"uint256"}],"name":"erc20WrappedTokens","outputs":[{"internalType":"address","name":"source","type":"address"},{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"uint256","name":"underlyingTokenAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index_0","type":"uint256"}],"name":"erc721WrappedTokens","outputs":[{"internalType":"address","name":"source","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"getRoleMember","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleMemberCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"forwarder","type":"address"}],"name":"isTrustedForwarder","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"mintBatch","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes[]","name":"data","type":"bytes[]"}],"name":"multicall","outputs":[{"internalType":"bytes[]","name":"results","type":"bytes[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"nextTokenId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"index_0","type":"address"},{"internalType":"address","name":"index_1","type":"address"},{"internalType":"uint256[]","name":"index_2","type":"uint256[]"},{"internalType":"uint256[]","name":"index_3","type":"uint256[]"},{"internalType":"bytes","name":"index_4","type":"bytes"}],"name":"onERC1155BatchReceived","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"index_0","type":"address"},{"internalType":"address","name":"index_1","type":"address"},{"internalType":"uint256","name":"index_2","type":"uint256"},{"internalType":"uint256","name":"index_3","type":"uint256"},{"internalType":"bytes","name":"index_4","type":"bytes"}],"name":"onERC1155Received","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"index_0","type":"address"},{"internalType":"address","name":"index_1","type":"address"},{"internalType":"uint256","name":"index_2","type":"uint256"},{"internalType":"bytes","name":"index_3","type":"bytes"}],"name":"onERC721Received","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_nftId","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"redeemERC20","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_nftId","type":"uint256"}],"name":"redeemERC721","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"royaltyBps","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index_0","type":"uint256"},{"internalType":"uint256","name":"salePrice","type":"uint256"}],"name":"royaltyInfo","outputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"royaltyAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeBatchTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_URI","type":"string"}],"name":"setContractURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_restrictedTransfer","type":"bool"}],"name":"setRestrictedTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_royaltyBps","type":"uint256"}],"name":"setRoyaltyBps","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index_0","type":"uint256"}],"name":"tokenState","outputs":[{"internalType":"address","name":"creator","type":"address"},{"internalType":"string","name":"uri","type":"string"},{"internalType":"enum NFTCollection.UnderlyingType","name":"underlyingType","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_nftId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"transfersRestricted","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_nftId","type":"uint256"}],"name":"uri","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_tokenContract","type":"address"},{"internalType":"uint256","name":"_tokenAmount","type":"uint256"},{"internalType":"uint256","name":"_numOfNftsToMint","type":"uint256"},{"internalType":"string","name":"_nftURI","type":"string"}],"name":"wrapERC20","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_nftContract","type":"address"},{"internalType":"uint256","name":"_tokenId","type":"uint256"},{"internalType":"string","name":"_nftURI","type":"string"}],"name":"wrapERC721","outputs":[],"stateMutability":"nonpayable","type":"function"}]' # noqa: E501 (line-too-long) ) # pylint: disable=too-many-lines
37.684333
17,643
0.634865
192,613
0.992278
0
0
17,766
0.091524
0
0
56,492
0.291028
c45419a203ad566f8ae9d52cc297219542ecf9f1
237
py
Python
sausage_grinder/urls.py
jesseerdmann/audiobonsai
ec1edcdbadc6b2aff3b743b5c42515f4d5638830
[ "Apache-2.0" ]
null
null
null
sausage_grinder/urls.py
jesseerdmann/audiobonsai
ec1edcdbadc6b2aff3b743b5c42515f4d5638830
[ "Apache-2.0" ]
null
null
null
sausage_grinder/urls.py
jesseerdmann/audiobonsai
ec1edcdbadc6b2aff3b743b5c42515f4d5638830
[ "Apache-2.0" ]
null
null
null
from django.urls import path from . import views as sg urlpatterns = [ path('artist', sg.artist), path('genre', sg.genre), path('release', sg.release), path('track', sg.track), path('', sg.sausage_grinder_index), ]
19.75
39
0.637131
0
0
0
0
0
0
0
0
33
0.139241
c45577ce768212873fbaadfacdbe638ce864abf9
1,194
py
Python
sails/ui/mmck/parameters/string.py
metrasynth/solar-sails
3a10774dad29d85834d3acb38171741b3a11ef91
[ "MIT" ]
6
2016-11-22T14:32:55.000Z
2021-08-15T01:35:33.000Z
sails/ui/mmck/parameters/string.py
metrasynth/solar-sails
3a10774dad29d85834d3acb38171741b3a11ef91
[ "MIT" ]
2
2022-03-18T16:47:43.000Z
2022-03-18T16:47:44.000Z
sails/ui/mmck/parameters/string.py
metrasynth/solar-sails
3a10774dad29d85834d3acb38171741b3a11ef91
[ "MIT" ]
2
2019-07-09T23:44:08.000Z
2021-08-15T01:35:37.000Z
from PyQt5.QtCore import pyqtSlot from PyQt5.QtWidgets import QComboBox from PyQt5.QtWidgets import QLineEdit from sf.mmck.parameters import String from .manager import widget_class_for from .widget import ParameterWidget @widget_class_for(String) class StringParameterWidget(ParameterWidget): def setUp(self, ui): super().setUp(ui) if self.parameter.choices: self.combobox = QComboBox(self) self.combobox.setEditable(True) self.combobox.setCurrentText(self.value) self.combobox.insertItems(0, self.parameter.choices) self.combobox.currentTextChanged.connect(self.on_combobox_currentTextChanged) self.layout.addWidget(self.combobox) else: self.lineedit = QLineEdit(self) self.lineedit.setText(self.value) self.lineedit.textChanged.connect(self.on_lineedit_textChanged) self.layout.addWidget(self.lineedit) @pyqtSlot(str) def on_combobox_currentTextChanged(self, value): self.valueChanged.emit(value, self.name) @pyqtSlot(str) def on_lineedit_textChanged(self, value): self.valueChanged.emit(value, self.name)
35.117647
89
0.707705
943
0.789782
0
0
969
0.811558
0
0
0
0
c455ef3791cf634263613f0736425fbda6d62c4c
550
py
Python
plot_top_performers.py
jmphil09/mario_rl
6e93c1318e9957d679a5ec8d29687756ac7fc4b1
[ "MIT" ]
null
null
null
plot_top_performers.py
jmphil09/mario_rl
6e93c1318e9957d679a5ec8d29687756ac7fc4b1
[ "MIT" ]
null
null
null
plot_top_performers.py
jmphil09/mario_rl
6e93c1318e9957d679a5ec8d29687756ac7fc4b1
[ "MIT" ]
null
null
null
from FitnessPlot import FitnessPlot ''' for n in range(1,6): plot = FitnessPlot(folder_prefix='data_top{}'.format(n)) plot.plot_all_workers() plot.plot_workers_as_average() ''' plot = FitnessPlot(folder_prefix='data_top1', num_workers=16) worker_dict = plot.create_worker_dict() #plot.plot_all_workers() #plot.plot_workers_as_average() #print(worker_dict) for key,value in worker_dict.items(): dict_len = len(value) #if dict_len < 100: # print(key) # print(dict_len) print(key) print(value[len(value)-1])
23.913043
61
0.703636
0
0
0
0
0
0
0
0
291
0.529091
c456582b3a99628d95abc79fe354227dac957e3b
3,696
py
Python
test/PySrc/tests/test_code_tracer_width.py
lifubang/live-py-plugin
38a3cf447fd7d9c4e6014b71134e178b0d8a01de
[ "MIT" ]
224
2015-03-22T23:40:52.000Z
2022-03-01T21:45:51.000Z
test/PySrc/tests/test_code_tracer_width.py
lifubang/live-py-plugin
38a3cf447fd7d9c4e6014b71134e178b0d8a01de
[ "MIT" ]
371
2015-04-28T05:14:00.000Z
2022-03-28T01:31:22.000Z
test/PySrc/tests/test_code_tracer_width.py
lifubang/live-py-plugin
38a3cf447fd7d9c4e6014b71134e178b0d8a01de
[ "MIT" ]
53
2015-10-30T07:52:07.000Z
2022-02-28T12:56:35.000Z
from space_tracer.main import replace_input, TraceRunner def test_source_width_positive(): code = """\ i = 1 + 1 """ expected_report = """\ i = 1 + | i = 2""" with replace_input(code): report = TraceRunner().trace_command(['space_tracer', '--source_width', '8', '--traced_file', 'foo.py']) assert report == expected_report def test_source_width_negative(): code = """\ i = 1 + 1 """ expected_report = """\ i = 1 + | i = 2""" with replace_input(code): report = TraceRunner().trace_command(['space_tracer', '--source_width', '-2', '--traced_file', 'foo.py']) assert report == expected_report def test_source_indent(): code = """\ i = 1 + 1 """ expected_report = """\ i = 1 + 1 | i = 2""" with replace_input(code): report = TraceRunner().trace_command(['space_tracer', '--source_indent', '4', '--traced_file', 'foo.py']) assert report == expected_report def test_source_indent_small(): code = """\ i = 1 + 1 """ expected_report = """\ i = 1 + 1 | i = 2""" with replace_input(code): report = TraceRunner().trace_command(['space_tracer', '--source_indent', '2', '--traced_file', 'foo.py']) assert report == expected_report def test_source_indent_negative(): code = """\ i = 1 + 1 """ expected_report = """\ = 1 + 1 | i = 2""" with replace_input(code): report = TraceRunner().trace_command(['space_tracer', '--source_indent', '-2', '--traced_file', 'foo.py']) assert report == expected_report def test_trace_width(): code = """\ i = 1 + 1 """ expected_report = """\ i = 1 + 1 | i =""" with replace_input(code): report = TraceRunner().trace_command(['space_tracer', '--trace_width', '15', '--traced_file', 'foo.py']) assert report == expected_report def test_trace_width_negative(): code = """\ i = 1 + 1 s = 'a' * 10 """ expected_report = """\ i = 1 + 1 | i = 2 s = 'a' * 10 | s = 'aaaaaa""" with replace_input(code): report = TraceRunner().trace_command(['space_tracer', '--trace_width', '-5', '--traced_file', 'foo.py']) assert report == expected_report def test_trace_width_without_source(): code = """\ i = 1 + 1 s = 'a' * 10 """ expected_report = """\ i = 2 s = 'aaaaaa""" with replace_input(code): report = TraceRunner().trace_command(['space_tracer', '--source_width', '0', '--trace_width', '-5', '--traced_file', 'foo.py']) assert report == expected_report def test_trace_offset(): code = """\ i = 1 + 1 s = 'a' * 10 """ expected_report = """\ i = 1 + 1 | 2 s = 'a' * 10 | 'aaaaaaaaaa'""" with replace_input(code): report = TraceRunner().trace_command(['space_tracer', '--trace_offset', '3', '--traced_file', 'foo.py']) assert report == expected_report
25.666667
73
0.446699
0
0
0
0
0
0
0
0
1,012
0.27381
c45760cde68ead756aaeedf9a4958bde55f0fdc2
458
py
Python
benchmark/src/benchmark/bench_logging.py
lwanfuturewei/QFlock
90d6875d9adc8fe2968694904f8421d41e30e189
[ "Apache-2.0" ]
null
null
null
benchmark/src/benchmark/bench_logging.py
lwanfuturewei/QFlock
90d6875d9adc8fe2968694904f8421d41e30e189
[ "Apache-2.0" ]
null
null
null
benchmark/src/benchmark/bench_logging.py
lwanfuturewei/QFlock
90d6875d9adc8fe2968694904f8421d41e30e189
[ "Apache-2.0" ]
2
2022-03-03T15:28:23.000Z
2022-03-04T15:33:19.000Z
import logging def setup_logger(): formatter = logging.Formatter('%(asctime)s.%(msecs)03d %(levelname)s %(message)s', '%Y-%m-%d %H:%M:%S') logging.basicConfig(level=logging.INFO, format='%(asctime)s.%(msecs)03d %(levelname)-8s %(message)s', datefmt='%Y-%m-%d %H:%M:%S') root = logging.getLogger() hdlr = root.handlers[0] hdlr.setFormatter(formatter)
26.941176
86
0.530568
0
0
0
0
0
0
0
0
142
0.310044
c45814f676d4f4897bba48b176daa7d8a452554e
6,921
py
Python
tools/configure-gateway/threescale/proxies.py
jparsai/f8a-3scale-connect-api
a782753d662eee5d450da3c20e9ae9eb13b8b560
[ "Apache-2.0" ]
1
2018-09-14T05:18:52.000Z
2018-09-14T05:18:52.000Z
tools/configure-gateway/threescale/proxies.py
jparsai/f8a-3scale-connect-api
a782753d662eee5d450da3c20e9ae9eb13b8b560
[ "Apache-2.0" ]
48
2017-12-05T12:05:56.000Z
2021-03-25T22:09:29.000Z
tools/configure-gateway/threescale/proxies.py
jparsai/f8a-3scale-connect-api
a782753d662eee5d450da3c20e9ae9eb13b8b560
[ "Apache-2.0" ]
5
2018-01-29T04:53:13.000Z
2020-04-16T13:59:42.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ThreeScale Proxies Rule interface for APIs.""" from .base import ThreeScale import logging import requests import xmltodict import json logger = logging.getLogger(__name__) class Proxies(ThreeScale): """ThreeScale Proxies create, update.""" response = None def __init__(self): """Initialize object.""" super().__init__() self.service_id = None def update(self, tracker, service_id, api_backend, credentials_location='query', auth_app_key='user_key', endpoint=None, auth_app_id=None, auth_user_key=None, error_auth_failed=None, error_status_auth_failed=None, error_headers_auth_failed=None, error_auth_missing=None, error_status_auth_missing=None, error_headers_auth_missing=None, error_no_match=None, error_status_no_match=None, error_headers_no_match=None, oidc_issuer_endpoint=None, sandbox_endpoint=None ): """Update policy.""" self.service_id = service_id request_body = { 'access_token': self._access_token, "api_backend": api_backend, "credentials_location": credentials_location, "auth_app_key": auth_app_key, "endpoint": endpoint, "auth_app_id": auth_app_id, "auth_user_key": auth_user_key, "error_auth_failed": error_auth_failed, "error_status_auth_failed": error_status_auth_failed, "error_headers_auth_failed": error_headers_auth_failed, "error_auth_missing": error_auth_missing, "error_status_auth_missing": error_status_auth_missing, "error_headers_auth_missing": error_headers_auth_missing, "error_no_match": error_no_match, "error_status_no_match": error_status_no_match, "error_headers_no_match": error_headers_no_match, "oidc_issuer_endpoint": oidc_issuer_endpoint, "sandbox_endpoint": sandbox_endpoint, } request_body = {k: v for k, v in request_body.items() if v} _url = self._build_url( self._endpoints.proxy_update.format(service_id=service_id)) _resp = requests.patch(_url, data=request_body) logger.info("[PATCH] {} with STATUS CODE: {}".format( _url, _resp.status_code)) if _resp.ok: self.response = xmltodict.parse( _resp.content, dict_constructor=dict) logger.info( "Successfully Updated Proxy: {}".format(api_backend)) return self.response else: logger.error("Update Proxy FAILED {} with STATUS CODE {}".format( _url, _resp.status_code)) logger.error("FAILED RESPONSE: {}".format(_resp.content)) tracker._rollback() def _get_highest_version(self, service_id=None, environment='sandbox'): service_id = service_id or self.service_id params = { 'access_token': self._access_token, } _url = self._build_url( self._endpoints.proxy_config_list.format(service_id=service_id, environment=environment)) _resp = requests.get(_url, params=params) logger.info("[GET] {} with STATUS CODE: {}".format( _url, _resp.status_code)) if _resp.ok: output = _resp.json() if output: higest_version = max([conf.get('proxy_config', {}).get('version', 2) for conf in output.get('proxy_configs', {})]) logger.info("HIGHEST Version: {}".format(higest_version)) return higest_version else: logger.error("Unable to fetch the latest version.") return 2 def policy_update(self, tracker, headers, service_id=None): """Update the Proxy Policy Configuration.""" policies_config = [{ "name": "headers", "configuration": { "response": [], "request":headers}, "version": "builtin", "enabled": True }] service_id = service_id or self.service_id request_body = { 'access_token': self._access_token, 'service_id': service_id, 'policies_config': json.dumps(policies_config) } _url = self._build_url( self._endpoints.proxy_policy_update.format(service_id=service_id)) _resp = requests.put(_url, data=request_body) logger.info("[PUT] {} with STATUS CODE: {}".format( _url, _resp.status_code)) if _resp.ok: self.response = _resp logger.info("Successfully Updated Proxy Policy Config") return self.response else: logger.error("Update Proxy Policy Config FAILED {} with STATUS CODE {}".format( _url, _resp.status_code)) logger.error("FAILED RESPONSE: {}".format(_resp.content)) tracker._rollback() def proxy_promote(self, tracker, service_id=None, environment='sandbox', to='production'): """Promote Proxy to another environment.""" service_id = service_id or self.service_id version = self._get_highest_version() request_body = { 'access_token': self._access_token, 'to': to } _url = self._build_url( self._endpoints.proxy_config_promote.format(service_id=service_id, environment=environment, version=version)) _resp = requests.post(_url, data=request_body) logger.info("[POST] {} with STATUS CODE: {}".format( _url, _resp.status_code)) if _resp.ok: self.response = _resp logger.info("Successfully Promoted Proxy to {}".format(to)) return self.response else: logger.error("Promote Proxy FAILED {} with STATUS CODE {}".format( _url, _resp.status_code)) logger.error("FAILED RESPONSE: {}".format(_resp.content)) tracker._rollback() def find(self): """Find the Mapping.""" raise NotImplementedError("Method find Not Implemented.") def __repr__(self): """Representation of class.""" api_backend = self.response.get('proxy', {}).get('api_backend') return "Class Mappings(id={})".format(api_backend)
38.237569
91
0.566681
6,692
0.966912
0
0
0
0
0
0
1,482
0.214131
c458cb4e772b1e30729560fd59117cb1dab40b05
241
py
Python
src/__main__.py
Grox2006/Kayambot
a49cf7fd16fdc049500ae645784cc671b04edf87
[ "MIT" ]
null
null
null
src/__main__.py
Grox2006/Kayambot
a49cf7fd16fdc049500ae645784cc671b04edf87
[ "MIT" ]
null
null
null
src/__main__.py
Grox2006/Kayambot
a49cf7fd16fdc049500ae645784cc671b04edf87
[ "MIT" ]
null
null
null
import sys from __init__ import Bot MESSAGE_USAGE = "Usage is python %s [name] [token]" if __name__ == "__main__": if len(sys.argv) == 3: Bot(sys.argv[1], sys.argv[2]) else: print(MESSAGE_USAGE.format(sys.argv[0]))
21.909091
51
0.630705
0
0
0
0
0
0
0
0
45
0.186722
c45a35a45e18477dcb0c3a971fc4e41ecd533922
985
py
Python
app/__init__.py
logicalicy/flask-react-boilerplate
2a999c969a7fc7d244830ebba02a00f0feca79dd
[ "MIT" ]
2
2017-02-27T16:48:08.000Z
2019-05-10T11:22:07.000Z
app/__init__.py
logicalicy/flask-react-boilerplate
2a999c969a7fc7d244830ebba02a00f0feca79dd
[ "MIT" ]
null
null
null
app/__init__.py
logicalicy/flask-react-boilerplate
2a999c969a7fc7d244830ebba02a00f0feca79dd
[ "MIT" ]
null
null
null
# Created with tutorials: # https://www.digitalocean.com/community/tutorials/how-to-structure-large-flask-applications # http://flask.pocoo.org/docs/0.12/tutorial from flask import Flask, g, render_template from flask_sqlalchemy import SQLAlchemy import sqlite3 # Define WSGI application object. app = Flask(__name__) # Configurations app.config.from_object('config') app.config.from_envvar('CONFIG', silent=True) # Define database object. db = SQLAlchemy(app) @app.errorhandler(404) def not_found(error): return render_template('404.html'), 404 # Import a module / component using its blueprint handler variable (mod_auth) from app.api.entries.controllers import mod as entries_module from app.site.controllers import mod as site_module # Register blueprint(s) app.register_blueprint(entries_module) app.register_blueprint(site_module) # app.register_blueprint(xyz_module) # .. # Build the database: # This will create the database file using SQLAlchemy db.create_all()
25.921053
92
0.792893
0
0
0
0
88
0.08934
0
0
474
0.481218
c45c0b6aabc6d08c2689d66882739d5b4c1b5f06
19,075
py
Python
dumpcode/cpiter.py
gkfthddk/keras
46d96c65d69c39df298800336bbb4d867a2561fb
[ "MIT" ]
null
null
null
dumpcode/cpiter.py
gkfthddk/keras
46d96c65d69c39df298800336bbb4d867a2561fb
[ "MIT" ]
null
null
null
dumpcode/cpiter.py
gkfthddk/keras
46d96c65d69c39df298800336bbb4d867a2561fb
[ "MIT" ]
null
null
null
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import subprocess import numpy as np import datetime import random import warnings import ROOT as rt import math from keras.preprocessing.sequence import pad_sequences from keras.callbacks import Callback from array import array from sklearn.metrics import roc_auc_score, auc, roc_curve class AddVal(Callback): def __init__(self,valid_sets,savename): self.valid_sets = valid_sets self.epoch=[] self.history={} self.savename=savename def on_train_begin(self,logs=None): self.epoch=[] self.history={} def on_epoch_end(self, epoch, logs=None): logs=logs or {} self.epoch.append(epoch) print("validation") for i,j in logs.items(): self.history.setdefault(i,[]).append(j) for valid_set in self.valid_sets: valid,val_name=valid_set #valid.reset() #gen=valid.next() #tar_set=[] #pre_set=[] atar_set=[] apre_set=[] X,Y=valid #X=X[0] """for j in range(valid.totalnum()): data,target=next(gen) #print(target) #tar_set=np.append(tar_set,target[:,0]) #pre_set=np.append(pre_set,self.model.predict(data,verbose=0)[:,0]) try:atar_set.extend(target[:,0]) except:print(np.array(target).shape) apre_set.extend(self.model.predict(data,verbose=0)[:,0]) valid.reset()""" #tar_set=np.array(tar_set) #pre_set=np.array(pre_set) atar_set=np.array(Y)[:,0] apre_set=np.array(self.model.predict(X,verbose=0)[:,0]) #print(valid.totalnum(),valid.batch_size) #print("############") #print(tar_set) #print("AAAAAAAAAAAAAAAAAAAA") #print(atar_set) auc_val=roc_auc_score(atar_set,apre_set) results=self.model.evaluate(X,Y) print(results,auc_val) self.history.setdefault(val_name+"_auc",[]).append(auc_val) for i,result in enumerate(results): if(i==0): name=val_name+"_loss" else: name=val_name+"_"+self.model.metrics[i-1][:3] self.history.setdefault(name,[]).append(result) f=open(self.savename+'/history','w') f.write(str(self.history)) f.close() class wkiter(object): def __init__(self,data_path,data_names=['data'],label_names=['softmax_label'],batch_size=100,begin=0.0,end=1.0,rat=0.7,endcut=1,arnum=16,maxx=0.4,maxy=0.4,istrain=0, varbs=0,rc="rc",onehot=0,channel=64,order=1,eta=0.,etabin=2.4,pt=None,ptmin=0.,ptmax=2.,unscale=0): self.eta=eta self.pt=pt self.ptmin=ptmin self.ptmax=ptmax self.etabin=etabin self.channel=channel self.istrain=istrain self.unscale=unscale #if(batch_size<100): self.rand=0.5 # print("batch_size is small it might cause error") self.count=0 self.rc=rc self.onehot=onehot self.order=1 #self.file=rt.TFile(data_path,'read') dataname1=data_path[0] dataname2=data_path[1] self.qfile=rt.TFile(dataname1,'read') self.gfile=rt.TFile(dataname2,'read') print(dataname2) self.gjet=self.gfile.Get("jetAnalyser") self.gEntries=self.gjet.GetEntriesFast() if(begin>1): self.gBegin=int(begin) else: self.gBegin=int(begin*self.gEntries) if(end>1): self.gEnd=int(end) else: self.gEnd=int(self.gEntries*end) self.a=self.gBegin self.qjet=self.qfile.Get("jetAnalyser") self.qEntries=self.qjet.GetEntriesFast() if(begin>1): self.qBegin=int(begin) else: self.qBegin=int(begin*self.qEntries) if(end>1): self.qEnd=int(end) else: self.qEnd=int(self.qEntries*end) self.b=self.qBegin self.ratt=rat self.rat=sorted([1-rat,rat]) self.batch_size = batch_size if(varbs==0): self._provide_data = zip(data_names, [(self.batch_size, 3, 33, 33)]) else: data_names=['images','variables'] self._provide_data = zip(data_names, [(self.batch_size, 3, 33, 33),(self.batch_size,5)]) self.varbs=varbs self._provide_label = zip(label_names, [(self.batch_size,)]) self.arnum=arnum self.maxx=maxx self.maxy=maxy self.endfile=0 self.endcut=endcut qjetset=[] gjetset=[] qrnnset=[] grnnset=[] qptset=[] gptset=[] qetaset=[] getaset=[] qchadmultset=[] gchadmultset=[] qnhadmultset=[] gnhadmultset=[] qelectronmultset=[] gelectronmultset=[] qmuonmultset=[] gmuonmultset=[] qphotonmultset=[] gphotonmultset=[] qcmultset=[] gcmultset=[] qnmultset=[] gnmultset=[] qptdset=[] gptdset=[] qmajorset=[] gmajorset=[] qminorset=[] gminorset=[] for i in range(self.gEntries): if(self.a>=self.gEnd): self.a=self.gBegin break #if((self.a-self.gBegin)%int((self.gEnd-self.gBegin)/10)==0):print('.') self.gjet.GetEntry(self.a) ##label q=1 g=0 self.a+=1 if(self.eta>abs(self.gjet.eta) or self.eta+self.etabin<abs(self.gjet.eta)): continue if(self.pt!=None): if(self.pt*self.ptmin>self.gjet.pt or self.pt*self.ptmax<self.gjet.pt): continue gptset.append(self.gjet.pt) getaset.append(self.gjet.eta) gchadmultset.append(self.gjet.chad_mult) gnhadmultset.append(self.gjet.nhad_mult) gelectronmultset.append(self.gjet.electron_mult) gmuonmultset.append(self.gjet.muon_mult) gphotonmultset.append(self.gjet.photon_mult) gcmultset.append(self.gjet.chad_mult+self.gjet.electron_mult+self.gjet.muon_mult) gnmultset.append(self.gjet.nhad_mult+self.gjet.photon_mult) gptdset.append(self.gjet.ptd) gmajorset.append(self.gjet.major_axis) gminorset.append(self.gjet.minor_axis) if("c" in self.rc): maxchadpt=1.*max(self.gjet.image_chad_pt_33) maxnhadpt=1.*max(self.gjet.image_nhad_pt_33) maxelecpt=1.*max(self.gjet.image_electron_pt_33) maxmuonpt=1.*max(self.gjet.image_muon_pt_33) maxphotonpt=1.*max(self.gjet.image_photon_pt_33) maxchadmult=1.*max(self.gjet.image_chad_mult_33) maxnhadmult=1.*max(self.gjet.image_nhad_mult_33) maxelecmult=1.*max(self.gjet.image_electron_mult_33) maxmuonmult=1.*max(self.gjet.image_muon_mult_33) maxphotonmult=1.*max(self.gjet.image_photon_mult_33) if(self.unscale==1 or maxchadpt==0):maxchadpt=1. if(self.unscale==1 or maxnhadpt==0):maxnhadpt=1. if(self.unscale==1 or maxelecpt==0):maxelecpt=1. if(self.unscale==1 or maxmuonpt==0):maxmuonpt=1. if(self.unscale==1 or maxphotonpt==0):maxphotonpt=1. if(self.unscale==1 or maxchadmult==0):maxchadmult=1. if(self.unscale==1 or maxnhadmult==0):maxnhadmult=1. if(self.unscale==1 or maxelecmult==0):maxelecmult=1. if(self.unscale==1 or maxmuonmult==0):maxmuonmult=1. if(self.unscale==1 or maxphotonmult==0):maxphotonmult=1. gjetset.append([(np.array(self.gjet.image_chad_pt_33)/maxchadpt).reshape(2*arnum+1,2*arnum+1),(np.array(self.gjet.image_nhad_pt_33)/maxnhadpt).reshape(2*arnum+1,2*arnum+1),(np.array(self.gjet.image_electron_pt_33)/maxelecpt).reshape(2*arnum+1,2*arnum+1),(np.array(self.gjet.image_muon_pt_33)/maxmuonpt).reshape(2*arnum+1,2*arnum+1),(np.array(self.gjet.image_photon_pt_33)/maxphotonpt).reshape(2*arnum+1,2*arnum+1),(np.array(self.gjet.image_chad_mult_33)/maxchadmult).reshape(2*arnum+1,2*arnum+1),(np.array(self.gjet.image_nhad_mult_33)/maxnhadmult).reshape(2*arnum+1,2*arnum+1),(np.array(self.gjet.image_electron_mult_33)/maxelecmult).reshape(2*arnum+1,2*arnum+1),(np.array(self.gjet.image_muon_mult_33)/maxmuonmult).reshape(2*arnum+1,2*arnum+1),(np.array(self.gjet.image_photon_mult_33)/maxphotonmult).reshape(2*arnum+1,2*arnum+1)]) if("r" in self.rc): dau_pt=self.gjet.dau_pt dau_deta=self.gjet.dau_deta dau_dphi=self.gjet.dau_dphi dau_charge=self.gjet.dau_charge dau_pid=self.gjet.dau_pid dau_is_e=np.zeros(len(dau_pid)) dau_is_mu=np.zeros(len(dau_pid)) dau_is_r=np.zeros(len(dau_pid)) dau_is_chad=np.zeros(len(dau_pid)) dau_is_nhad=np.zeros(len(dau_pid)) for t in range(len(dau_pid)): if(abs(dau_pid[t])==11):dau_is_e[t]=1. elif(abs(dau_pid[t])==13):dau_is_mu[t]=1. elif(abs(dau_pid[t])==22):dau_is_r[t]=1. elif(dau_charge[t]==0):dau_is_nhad[t]=1. else:dau_is_chad[t]=1. dausort=sorted(range(len(dau_pt)),key=lambda k: dau_pt[k],reverse=True) if(self.order): maxdaupt=1.*max(dau_pt) maxdaudeta=1.*max(dau_deta) maxdaudphi=1.*max(dau_dphi) maxdaucharge=1.*max(dau_charge) maxdauc=1.*max(dau_is_chad) maxdaun=1.*max(dau_is_nhad) maxdaue=1.*max(dau_is_e) maxdaum=1.*max(dau_is_mu) maxdaup=1.*max(dau_is_r) if(self.unscale==1 or maxdaupt==0):maxdaupt=1. if(self.unscale==1 or maxdaudeta==0):maxdaudeta=1. if(self.unscale==1 or maxdaudphi==0):maxdaudphi=1. if(self.unscale==1 or maxdaucharge==0):maxdaucharge=1. if(self.unscale==1 or maxdauc==0):maxdauc=1. if(self.unscale==1 or maxdaun==0):maxdaun=1. if(self.unscale==1 or maxdaue==0):maxdaue=1. if(self.unscale==1 or maxdaum==0):maxdaum=1. if(self.unscale==1 or maxdaup==0):maxdaup=1. grnnset.append([[dau_pt[dausort[i]]/maxdaupt, dau_deta[dausort[i]]/maxdaudeta, dau_dphi[dausort[i]]/maxdaudphi, dau_charge[dausort[i]]/maxdaucharge, dau_is_e[dausort[i]]/maxdaue, dau_is_mu[dausort[i]]/maxdaum, dau_is_r[dausort[i]]/maxdaup, dau_is_chad[dausort[i]]/maxdauc, dau_is_nhad[dausort[i]]/maxdaun] if len(dau_pt)>i else [0.,0.,0.,0.,0.,0.,0.,0.,0.] for i in range(self.channel)]) self.gjetset=np.array(gjetset) del gjetset self.grnnset=np.array(grnnset) del grnnset self.gptset=np.array(gptset) del gptset self.getaset=np.array(getaset) del getaset self.gptdset=np.array(gptdset) del gptdset self.gchadmultset=np.array(gchadmultset) del gchadmultset self.gnhadmultset=np.array(gnhadmultset) del gnhadmultset self.gcmultset=np.array(gcmultset) del gcmultset self.gnmultset=np.array(gnmultset) del gnmultset self.gelectronmultset=np.array(gelectronmultset) del gelectronmultset self.gmuonmultset=np.array(gmuonmultset) del gmuonmultset self.gphotonmultset=np.array(gphotonmultset) del gphotonmultset self.gmajorset=np.array(gmajorset) del gmajorset self.gminorset=np.array(gminorset) del gminorset for i in range(self.qEntries): if(self.b>=self.qEnd): self.b=self.qBegin break #if((self.b-self.qBegin)%int((self.qEnd-self.qBegin)/10)==0):print(',') self.qjet.GetEntry(self.b) ##label q=1 g=0 self.b+=1 if(self.eta>abs(self.qjet.eta) or self.eta+self.etabin<abs(self.qjet.eta)): continue if(self.pt!=None): if(self.pt*self.ptmin>self.qjet.pt or self.pt*self.ptmax<self.qjet.pt): continue qptset.append(self.qjet.pt) qetaset.append(self.qjet.eta) qchadmultset.append(self.qjet.chad_mult) qnhadmultset.append(self.qjet.nhad_mult) qelectronmultset.append(self.qjet.electron_mult) qmuonmultset.append(self.qjet.muon_mult) qphotonmultset.append(self.qjet.photon_mult) qcmultset.append(self.qjet.chad_mult+self.qjet.electron_mult+self.qjet.muon_mult) qnmultset.append(self.qjet.nhad_mult+self.qjet.photon_mult) qptdset.append(self.qjet.ptd) qmajorset.append(self.qjet.major_axis) qminorset.append(self.qjet.minor_axis) if("c" in self.rc): maxchadpt=1.*max(self.qjet.image_chad_pt_33) maxnhadpt=1.*max(self.qjet.image_nhad_pt_33) maxelecpt=1.*max(self.qjet.image_electron_pt_33) maxmuonpt=1.*max(self.qjet.image_muon_pt_33) maxphotonpt=1.*max(self.qjet.image_photon_pt_33) maxchadmult=1.*max(self.qjet.image_chad_mult_33) maxnhadmult=1.*max(self.qjet.image_nhad_mult_33) maxelecmult=1.*max(self.qjet.image_electron_mult_33) maxmuonmult=1.*max(self.qjet.image_muon_mult_33) maxphotonmult=1.*max(self.qjet.image_photon_mult_33) if(self.unscale==1 or maxchadpt==0):maxchadpt=1. if(self.unscale==1 or maxnhadpt==0):maxnhadpt=1. if(self.unscale==1 or maxelecpt==0):maxelecpt=1. if(self.unscale==1 or maxmuonpt==0):maxmuonpt=1. if(self.unscale==1 or maxphotonpt==0):maxphotonpt=1. if(self.unscale==1 or maxchadmult==0):maxchadmult=1. if(self.unscale==1 or maxnhadmult==0):maxnhadmult=1. if(self.unscale==1 or maxelecmult==0):maxelecmult=1. if(self.unscale==1 or maxmuonmult==0):maxmuonmult=1. if(self.unscale==1 or maxphotonmult==0):maxphotonmult=1. qjetset.append([(np.array(self.qjet.image_chad_pt_33)/maxchadpt).reshape(2*arnum+1,2*arnum+1),(np.array(self.qjet.image_nhad_pt_33)/maxnhadpt).reshape(2*arnum+1,2*arnum+1),(np.array(self.qjet.image_electron_pt_33)/maxelecpt).reshape(2*arnum+1,2*arnum+1),(np.array(self.qjet.image_muon_pt_33)/maxmuonpt).reshape(2*arnum+1,2*arnum+1),(np.array(self.qjet.image_photon_pt_33)/maxphotonpt).reshape(2*arnum+1,2*arnum+1),(np.array(self.qjet.image_chad_mult_33)/maxchadmult).reshape(2*arnum+1,2*arnum+1),(np.array(self.qjet.image_nhad_mult_33)/maxnhadmult).reshape(2*arnum+1,2*arnum+1),(np.array(self.qjet.image_electron_mult_33)/maxelecmult).reshape(2*arnum+1,2*arnum+1),(np.array(self.qjet.image_muon_mult_33)/maxmuonmult).reshape(2*arnum+1,2*arnum+1),(np.array(self.qjet.image_photon_mult_33)/maxphotonmult).reshape(2*arnum+1,2*arnum+1)]) if("r" in self.rc): dau_pt=self.qjet.dau_pt dau_deta=self.qjet.dau_deta dau_dphi=self.qjet.dau_dphi dau_charge=self.qjet.dau_charge dau_pid=self.qjet.dau_pid dau_is_e=np.zeros(len(dau_pid)) dau_is_mu=np.zeros(len(dau_pid)) dau_is_r=np.zeros(len(dau_pid)) dau_is_chad=np.zeros(len(dau_pid)) dau_is_nhad=np.zeros(len(dau_pid)) for t in range(len(dau_pid)): if(abs(dau_pid[t])==11):dau_is_e[t]=1. elif(abs(dau_pid[t])==13):dau_is_mu[t]=1. elif(abs(dau_pid[t])==22):dau_is_r[t]=1. elif(dau_charge[t]==0):dau_is_nhad[t]=1. else:dau_is_chad[t]=1. dausort=sorted(range(len(dau_pt)),key=lambda k: dau_pt[k],reverse=True) #dauset.append([[dau_pt[dausort[i]], dau_deta[dausort[i]], dau_dphi[dausort[i]], dau_charge[dausort[i]]] if len(dau_pt)>i else [0.,0.,0.,0.] for i in range(20)]) if(self.order): maxdaupt=1.*max(dau_pt) maxdaudeta=1.*max(dau_deta) maxdaudphi=1.*max(dau_dphi) maxdaucharge=1.*max(dau_charge) maxdauc=1.*max(dau_is_chad) maxdaun=1.*max(dau_is_nhad) maxdaue=1.*max(dau_is_e) maxdaum=1.*max(dau_is_mu) maxdaup=1.*max(dau_is_r) if(self.unscale==1 or maxdaupt==0):maxdaupt=1. if(self.unscale==1 or maxdaudeta==0):maxdaudeta=1. if(self.unscale==1 or maxdaudphi==0):maxdaudphi=1. if(self.unscale==1 or maxdaucharge==0):maxdaucharge=1. if(self.unscale==1 or maxdauc==0):maxdauc=1. if(self.unscale==1 or maxdaun==0):maxdaun=1. if(self.unscale==1 or maxdaue==0):maxdaue=1. if(self.unscale==1 or maxdaum==0):maxdaum=1. if(self.unscale==1 or maxdaup==0):maxdaup=1. qrnnset.append([[dau_pt[dausort[i]]/maxdaupt, dau_deta[dausort[i]]/maxdaudeta, dau_dphi[dausort[i]]/maxdaudphi, dau_charge[dausort[i]]/maxdaucharge, dau_is_e[dausort[i]]/maxdaue, dau_is_mu[dausort[i]]/maxdaum, dau_is_r[dausort[i]]/maxdaup, dau_is_chad[dausort[i]]/maxdauc, dau_is_nhad[dausort[i]]/maxdaun] if len(dau_pt)>i else [0.,0.,0.,0.,0.,0.,0.,0.,0.] for i in range(self.channel)]) self.qjetset=np.array(qjetset) del qjetset self.qrnnset=np.array(qrnnset) del qrnnset self.qptset=np.array(qptset) del qptset self.qetaset=np.array(qetaset) del qetaset self.qptdset=np.array(qptdset) del qptdset self.qchadmultset=np.array(qchadmultset) del qchadmultset self.qnhadmultset=np.array(qnhadmultset) del qnhadmultset self.qcmultset=np.array(qcmultset) del qcmultset self.qnmultset=np.array(qnmultset) del qnmultset self.qelectronmultset=np.array(qelectronmultset) del qelectronmultset self.qmuonmultset=np.array(qmuonmultset) del qmuonmultset self.qphotonmultset=np.array(qphotonmultset) del qphotonmultset self.qmajorset=np.array(qmajorset) del qmajorset self.qminorset=np.array(qminorset) del qminorset """if("r" in self.rc): for c in range(channel): for i in range(3): #std=np.std(abs(np.append(self.qjetset[:,c,i],self.gjetset[:,c,i]))) #mean=np.mean(abs(np.append(self.qjetset[:,c,i],self.gjetset[:,c,i]))) self.qjetset[:,c,i]=(self.qjetset[:,c,i])#/mean self.gjetset[:,c,i]=(self.gjetset[:,c,i])#/mean """ self.reset() #print("length ",len(self.gjetset),len(self.qjetset)) def __iter__(self): return self def reset(self): self.rand=0.5 self.gjet.GetEntry(self.gBegin) self.qjet.GetEntry(self.qBegin) self.a=self.gBegin self.b=self.qBegin self.endfile = 0 self.count=0 def __next__(self): return self.next() @property def provide_data(self): return self._provide_data @property def provide_label(self): return self._provide_label def close(self): self.file.Close() def sampleallnum(self): return self.Entries def trainnum(self): return self.End-self.Begin def totalnum(self): return int(math.ceil(1.*(self.gEnd-self.gBegin+self.qEnd-self.qBegin)/(self.batch_size*1.00))) def next(self): while self.endfile==0: self.count+=1 arnum=self.arnum jetset=[] variables=[] labels=[] for i in range(self.batch_size): if(random.random()<0.5): if(self.a-self.gBegin>=len(self.gjetset)): self.a=self.gBegin self.endfile=1 break labels.append([0,1]) jetset.append(self.gjetset[self.a-self.gBegin]) self.a+=1 else: if(self.b-self.qBegin>=len(self.qjetset)): self.b=self.qBegin self.endfile=1 break labels.append([1,0]) jetset.append(self.qjetset[self.b-self.qBegin]) self.b+=1 data=[] data.append(np.array(jetset)) label=np.array(labels) #if(self.totalnum()<=self.count): # if(self.istrain==1):print "\nreset\n" # self.reset() if(self.endfile==1): #print "\nendd\n" self.reset() #print "\n",self.count,self.istrain,"\n" yield data, label #else: #if(self.istrain==1): # print "\n",datetime.datetime.now() #raise StopIteration
39.739583
841
0.654522
18,731
0.981966
1,151
0.060341
132
0.00692
0
0
1,874
0.098244
c45c12b0519ee7503fa9f8fb44c7b896a2082873
210
py
Python
tools/opt.py
hmtrii/tirg
e404020795bb46fb01b6bd82a2618f9370174012
[ "Apache-2.0" ]
null
null
null
tools/opt.py
hmtrii/tirg
e404020795bb46fb01b6bd82a2618f9370174012
[ "Apache-2.0" ]
null
null
null
tools/opt.py
hmtrii/tirg
e404020795bb46fb01b6bd82a2618f9370174012
[ "Apache-2.0" ]
null
null
null
class Opt: def __init__(self): self.dataset = "fashion200k" self.dataset_path = "./dataset/Fashion200k" self.batch_size = 32 self.embed_dim = 512 self.hashing = False self.retrieve_by_random = True
26.25
45
0.728571
210
1
0
0
0
0
0
0
36
0.171429
c45d9da847d632f929a40311d340ee5e03a9dfff
287
py
Python
addons/iap_crm/models/crm_lead.py
SHIVJITH/Odoo_Machine_Test
310497a9872db7844b521e6dab5f7a9f61d365a4
[ "Apache-2.0" ]
null
null
null
addons/iap_crm/models/crm_lead.py
SHIVJITH/Odoo_Machine_Test
310497a9872db7844b521e6dab5f7a9f61d365a4
[ "Apache-2.0" ]
null
null
null
addons/iap_crm/models/crm_lead.py
SHIVJITH/Odoo_Machine_Test
310497a9872db7844b521e6dab5f7a9f61d365a4
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from odoo import fields, models class Lead(models.Model): _inherit = 'crm.lead' reveal_id = fields.Char(string='Reveal ID', help="Technical ID of reveal request done by IAP.")
26.090909
99
0.703833
152
0.529617
0
0
0
0
0
0
163
0.567944
c45f0b40e801dd329eac9e771b4dd170e217817c
6,600
py
Python
vitrage/tests/unit/datasources/kubernetes/test_kubernetes_transformer.py
openstack/vitrage
95b33dbf39b040e23915882a2879c87aec239ca9
[ "Apache-2.0" ]
89
2015-09-30T21:42:17.000Z
2022-03-28T16:31:19.000Z
vitrage/tests/unit/datasources/kubernetes/test_kubernetes_transformer.py
openstack/vitrage
95b33dbf39b040e23915882a2879c87aec239ca9
[ "Apache-2.0" ]
4
2015-12-13T13:06:53.000Z
2016-01-03T19:51:28.000Z
vitrage/tests/unit/datasources/kubernetes/test_kubernetes_transformer.py
openstack/vitrage
95b33dbf39b040e23915882a2879c87aec239ca9
[ "Apache-2.0" ]
43
2015-11-04T15:54:27.000Z
2021-12-10T14:24:03.000Z
# Copyright 2018 - Nokia # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_config import cfg from oslo_log import log as logging from testtools import matchers from vitrage.common.constants import DatasourceAction from vitrage.common.constants import DatasourceOpts as DSOpts from vitrage.common.constants import DatasourceProperties as DSProps from vitrage.common.constants import EntityCategory from vitrage.common.constants import GraphAction from vitrage.common.constants import UpdateMethod from vitrage.common.constants import VertexProperties as VProps from vitrage.datasources.kubernetes.properties import KUBERNETES_DATASOURCE from vitrage.datasources.kubernetes.properties import KubernetesProperties \ as kubProp from vitrage.datasources.kubernetes.transformer import KubernetesTransformer from vitrage.datasources.nova.instance import NOVA_INSTANCE_DATASOURCE from vitrage.datasources.nova.instance.transformer import InstanceTransformer from vitrage.datasources import transformer_base as tbase from vitrage.datasources.transformer_base import TransformerBase from vitrage.tests import base from vitrage.tests.mocks import mock_driver as mock_sync from vitrage.tests.mocks import utils LOG = logging.getLogger(__name__) cluster_name = 'kubernetes' class KubernetesTransformerTest(base.BaseTest): OPTS = [ cfg.StrOpt(DSOpts.UPDATE_METHOD, default=UpdateMethod.PULL), cfg.StrOpt(DSOpts.CONFIG_FILE, default=utils.get_resources_dir() + '/kubernetes/kubernetes_config.yaml'), ] # noinspection PyAttributeOutsideInit,PyPep8Naming @classmethod def setUpClass(cls): super(KubernetesTransformerTest, cls).setUpClass() cls.transformers = {} cls.transformers[KUBERNETES_DATASOURCE] = KubernetesTransformer( cls.transformers) cls.transformers[NOVA_INSTANCE_DATASOURCE] = \ InstanceTransformer(cls.transformers) def setUp(self): super(KubernetesTransformerTest, self).setUp() self.conf_reregister_opts(self.OPTS, group=KUBERNETES_DATASOURCE) def test_snapshot_event_transform(self): LOG.debug('Test tactual transform action for ' 'snapshot and snapshot init events') k8s_spec_list = \ mock_sync.simple_k8s_nodes_generators(nodes_num=2, snapshot_events=1) nodes_events = mock_sync.generate_random_events_list(k8s_spec_list) for event in nodes_events: k8s_wrapper = self.transformers[KUBERNETES_DATASOURCE].transform( event) # Test assertions self.assertEqual(cluster_name, k8s_wrapper.vertex[VProps.NAME]) n_length = str(len(k8s_wrapper.neighbors)) self.assertThat(n_length, matchers.HasLength(1), 'Cluster vertex has one neighbor') self._validate_cluster_neighbors(k8s_wrapper.neighbors, event) datasource_action = event[DSProps.DATASOURCE_ACTION] if datasource_action == DatasourceAction.INIT_SNAPSHOT: self.assertEqual(GraphAction.CREATE_ENTITY, k8s_wrapper.action) elif datasource_action == DatasourceAction.SNAPSHOT: self.assertEqual(GraphAction.UPDATE_ENTITY, k8s_wrapper.action) def test_build_cluster_key(self): LOG.debug('Test build cluster key') # Test setup expected_key = 'RESOURCE:kubernetes:kubernetes' instance_transformer = self.transformers[NOVA_INSTANCE_DATASOURCE] # Test action key_fields = instance_transformer._key_values( KUBERNETES_DATASOURCE, cluster_name) # Test assertions observed_key = tbase.build_key(key_fields) self.assertEqual(expected_key, observed_key) def _validate_cluster_neighbors(self, neighbor, event): # Create expected neighbor time = event[DSProps.SAMPLE_DATE] external_id = event['resources'][0][kubProp.EXTERNALID] properties = { VProps.ID: external_id, VProps.VITRAGE_TYPE: NOVA_INSTANCE_DATASOURCE, VProps.VITRAGE_CATEGORY: EntityCategory.RESOURCE, VProps.VITRAGE_SAMPLE_TIMESTAMP: time } nova_instance_tran = self.transformers[NOVA_INSTANCE_DATASOURCE] expected_neighbor = \ nova_instance_tran.create_neighbor_placeholder_vertex(**properties) self.assertEqual(expected_neighbor, neighbor[0].vertex) # Validate neighbor edge edge = neighbor[0].edge entity_key = \ self.transformers[KUBERNETES_DATASOURCE]._create_entity_key(event) entity_uuid = \ TransformerBase.uuid_from_deprecated_vitrage_id(entity_key) self.assertEqual(edge.source_id, entity_uuid) self.assertEqual(edge.target_id, neighbor[0].vertex.vertex_id) def test_create_entity_key(self): LOG.debug('Test get key from kubernetes transformer') # Test setup spec_list = mock_sync.simple_k8s_nodes_generators(nodes_num=1, snapshot_events=1) nodes_events = mock_sync.generate_random_events_list(spec_list) kubernetes_transformer = self.transformers[KUBERNETES_DATASOURCE] for event in nodes_events: # Test action observed_key = kubernetes_transformer._create_entity_key(event) # Test assertions observed_key_fields = observed_key.split( TransformerBase.KEY_SEPARATOR) self.assertEqual(EntityCategory.RESOURCE, observed_key_fields[0]) self.assertEqual( KUBERNETES_DATASOURCE, observed_key_fields[1] ) key_values = kubernetes_transformer._key_values( KUBERNETES_DATASOURCE, cluster_name) expected_key = tbase.build_key(key_values) self.assertEqual(expected_key, observed_key)
39.759036
79
0.700455
4,820
0.730303
0
0
334
0.050606
0
0
1,021
0.154697
c45fabb5527e1d2513cfd056db4a65258232ae26
1,058
py
Python
two_children.py
daniel2019-max/HackerRank-preparation-month
400f8c0cfaa9fc8e13a683c15ecb5d2341d9c209
[ "MIT" ]
null
null
null
two_children.py
daniel2019-max/HackerRank-preparation-month
400f8c0cfaa9fc8e13a683c15ecb5d2341d9c209
[ "MIT" ]
null
null
null
two_children.py
daniel2019-max/HackerRank-preparation-month
400f8c0cfaa9fc8e13a683c15ecb5d2341d9c209
[ "MIT" ]
null
null
null
# Two children, Lily and Ron, want to share a chocolate bar. Each of the squares has an integer on it. # Lily decides to share a contiguous segment of the bar selected such that: # The length of the segment matches Ron's birth month, and, # The sum of the integers on the squares is equal to his birth day. # Determine how many ways she can divide the chocolate. # int s[n]: the numbers on each of the squares of chocolate # int d: Ron's birth day # int m: Ron's birth month # Two children def birthday(s, d, m): # Write your code here numberDiveded = 0 numberIteration = len(s)-(m-1) if(numberIteration == 0): numberIteration = 1 for k in range(0, numberIteration): newArray = s[k:k+m] sumArray = sum(newArray) if sumArray == d: numberDiveded += 1 return numberDiveded s = '2 5 1 3 4 4 3 5 1 1 2 1 4 1 3 3 4 2 1' caracteres = '18 7' array = list(map(int, s.split())) caracteresList = list(map(int, caracteres.split())) print(birthday(array, caracteresList[0], caracteresList[1]))
31.117647
102
0.670132
0
0
0
0
0
0
0
0
550
0.519849
c46046acfa73778c21a31da519b8cdbcc2cefaef
3,517
py
Python
sdk/python/pulumi_sonarqube/get_users.py
jshield/pulumi-sonarqube
53664a97903af3ecdf4f613117d83d0acae8e53e
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_sonarqube/get_users.py
jshield/pulumi-sonarqube
53664a97903af3ecdf4f613117d83d0acae8e53e
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_sonarqube/get_users.py
jshield/pulumi-sonarqube
53664a97903af3ecdf4f613117d83d0acae8e53e
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from . import _utilities __all__ = [ 'GetUsersResult', 'AwaitableGetUsersResult', 'get_users', 'get_users_output', ] @pulumi.output_type class GetUsersResult: """ A collection of values returned by getUsers. """ def __init__(__self__, email=None, id=None, is_local=None, login_name=None, name=None): if email and not isinstance(email, str): raise TypeError("Expected argument 'email' to be a str") pulumi.set(__self__, "email", email) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if is_local and not isinstance(is_local, bool): raise TypeError("Expected argument 'is_local' to be a bool") pulumi.set(__self__, "is_local", is_local) if login_name and not isinstance(login_name, str): raise TypeError("Expected argument 'login_name' to be a str") pulumi.set(__self__, "login_name", login_name) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) @property @pulumi.getter def email(self) -> str: return pulumi.get(self, "email") @property @pulumi.getter def id(self) -> str: """ The provider-assigned unique ID for this managed resource. """ return pulumi.get(self, "id") @property @pulumi.getter(name="isLocal") def is_local(self) -> bool: return pulumi.get(self, "is_local") @property @pulumi.getter(name="loginName") def login_name(self) -> str: return pulumi.get(self, "login_name") @property @pulumi.getter def name(self) -> str: return pulumi.get(self, "name") class AwaitableGetUsersResult(GetUsersResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetUsersResult( email=self.email, id=self.id, is_local=self.is_local, login_name=self.login_name, name=self.name) def get_users(login_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetUsersResult: """ Use this data source to access information about an existing resource. """ __args__ = dict() __args__['loginName'] = login_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('sonarqube:index/getUsers:getUsers', __args__, opts=opts, typ=GetUsersResult).value return AwaitableGetUsersResult( email=__ret__.email, id=__ret__.id, is_local=__ret__.is_local, login_name=__ret__.login_name, name=__ret__.name) @_utilities.lift_output_func(get_users) def get_users_output(login_name: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetUsersResult]: """ Use this data source to access information about an existing resource. """ ...
31.972727
119
0.644868
2,007
0.570657
250
0.071083
1,991
0.566107
0
0
946
0.268979
c460565d7c12782c020979637ad1d6a595e59cab
504
py
Python
rl/valuefunction/FeatureExtractor.py
nickswalker/counterpoint-reinforcement-learning
1d0481bd2c9976533175339e411a41f4eb1650aa
[ "MIT" ]
1
2016-12-09T18:29:30.000Z
2016-12-09T18:29:30.000Z
rl/valuefunction/FeatureExtractor.py
nickswalker/counterpoint-reinforcement-learning
1d0481bd2c9976533175339e411a41f4eb1650aa
[ "MIT" ]
null
null
null
rl/valuefunction/FeatureExtractor.py
nickswalker/counterpoint-reinforcement-learning
1d0481bd2c9976533175339e411a41f4eb1650aa
[ "MIT" ]
null
null
null
from abc import abstractmethod from typing import List from rl.action import Action from rl.state import State class StateActionFeatureExtractor: @abstractmethod def num_features(self) -> int: pass @abstractmethod def extract(self, state: State, action: Action) -> List[float]: pass class StateFeatureExtractor: @abstractmethod def num_features(self) -> int: pass @abstractmethod def extract(self, state: State) -> List[float]: pass
19.384615
67
0.684524
386
0.765873
0
0
302
0.599206
0
0
0
0
c4606fc8327fb668e73c4a4c899e2f956318eefb
563
py
Python
yxf_utils/jsonx.py
yanyaming/yxf_utils
c1e1f7012f089374088210e55a953548b3c4da8b
[ "MIT" ]
null
null
null
yxf_utils/jsonx.py
yanyaming/yxf_utils
c1e1f7012f089374088210e55a953548b3c4da8b
[ "MIT" ]
null
null
null
yxf_utils/jsonx.py
yanyaming/yxf_utils
c1e1f7012f089374088210e55a953548b3c4da8b
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 通用json处理接口 """ import json # 输入单引号为边界的类json字符串(内部可能还有双引号),返回单引号为边界的python字典or列表对象。 def singleQuoteJsonStr_to_PythonObj(strr): jsonObj = eval(strr) # 不能用内置函数解析。只能模拟执行。 return jsonObj # dict or list # 输入完全正规的json字符串(键-值边界为双引号),返回单引号为边界的python字典or列表对象。 def jsonStr_to_PythonObj(strr): jsonObj = json.loads(strr) return jsonObj # dict or list # 输入python列表或字典(边界为单引号的类json对象),返回边界为双引号的json字符串且双引号加斜杠转义。 def pythonObj_to_jsonStr(obj): jsonStr = json.dumps(obj) return jsonStr # str
20.851852
58
0.735346
0
0
0
0
0
0
0
0
566
0.666667
c4611f97e3d7c75a5d43b772cd3ffe6b29e5f96b
1,044
py
Python
ggshield/scan/scannable_errors.py
rgajason/gg-shield
45c3534bdd174880710b97aedac068f6ddd52eaf
[ "MIT" ]
null
null
null
ggshield/scan/scannable_errors.py
rgajason/gg-shield
45c3534bdd174880710b97aedac068f6ddd52eaf
[ "MIT" ]
1
2021-06-02T04:28:09.000Z
2021-06-02T04:28:09.000Z
ggshield/scan/scannable_errors.py
rgajason/gg-shield
45c3534bdd174880710b97aedac068f6ddd52eaf
[ "MIT" ]
null
null
null
from ast import literal_eval from typing import Dict, List import click from pygitguardian.models import Detail from ggshield.text_utils import STYLE, display_error, format_text, pluralize def handle_scan_error(detail: Detail, chunk: List[Dict[str, str]]) -> None: if detail.status_code == 401: raise click.UsageError(detail.detail) display_error("Error scanning. Results may be incomplete.") try: details = literal_eval(detail.detail) if isinstance(details, list) and details: display_error( f"Add the following {pluralize('file', len(details))}" " to your paths-ignore:" ) for i, inner_detail in enumerate(details): if inner_detail: click.echo( f"- {format_text(chunk[i]['filename'], STYLE['filename'])}:" f" {str(inner_detail)}", err=True, ) return except Exception: click.echo(f"Error {str(detail)}", err=True)
32.625
80
0.598659
0
0
0
0
0
0
0
0
227
0.217433
c461b7cff1ea76d96382e29fc4f6db6ef1e4b933
18,049
py
Python
Packs/Base/Scripts/DBotPreprocessTextData/DBotPreprocessTextData.py
matan-xmcyber/content
7f02301c140b35956af3cd20cb8dfc64f34afb3e
[ "MIT" ]
1
2021-08-07T00:21:58.000Z
2021-08-07T00:21:58.000Z
Packs/Base/Scripts/DBotPreprocessTextData/DBotPreprocessTextData.py
matan-xmcyber/content
7f02301c140b35956af3cd20cb8dfc64f34afb3e
[ "MIT" ]
48
2022-03-08T13:45:00.000Z
2022-03-31T14:32:05.000Z
Packs/Base/Scripts/DBotPreprocessTextData/DBotPreprocessTextData.py
matan-xmcyber/content
7f02301c140b35956af3cd20cb8dfc64f34afb3e
[ "MIT" ]
2
2020-12-10T12:02:45.000Z
2020-12-15T09:20:01.000Z
# pylint: disable=no-member from CommonServerUserPython import * from CommonServerPython import * from sklearn.feature_extraction.text import TfidfVectorizer import pickle import uuid import spacy import string from html.parser import HTMLParser from html import unescape from re import compile as _Re import pandas as pd def hash_word(word, hash_seed): return str(hash_djb2(word, int(hash_seed))) def create_text_result(original_text, tokenized_text, original_words_to_tokens, hash_seed=None): text_result = { 'originalText': original_text, 'tokenizedText': tokenized_text, 'originalWordsToTokens': original_words_to_tokens, } if hash_seed is not None: hash_tokenized_text = ' '.join(hash_word(word, hash_seed) for word in tokenized_text.split()) words_to_hashed_tokens = {word: [hash_word(t, hash_seed) for t in tokens_list] for word, tokens_list in original_words_to_tokens.items()} text_result['hashedTokenizedText'] = hash_tokenized_text text_result['wordsToHashedTokens'] = words_to_hashed_tokens return text_result class Tokenizer: def __init__(self, clean_html=True, remove_new_lines=True, hash_seed=None, remove_non_english=True, remove_stop_words=True, remove_punct=True, remove_non_alpha=True, replace_emails=True, replace_numbers=True, lemma=True, replace_urls=True, language='English', tokenization_method='byWords'): self.number_pattern = "NUMBER_PATTERN" self.url_pattern = "URL_PATTERN" self.email_pattern = "EMAIL_PATTERN" self.reserved_tokens = set([self.number_pattern, self.url_pattern, self.email_pattern]) self.clean_html = clean_html self.remove_new_lines = remove_new_lines self.hash_seed = hash_seed self.remove_non_english = remove_non_english self.remove_stop_words = remove_stop_words self.remove_punct = remove_punct self.remove_non_alpha = remove_non_alpha self.replace_emails = replace_emails self.replace_urls = replace_urls self.replace_numbers = replace_numbers self.lemma = lemma self.language = language self.tokenization_method = tokenization_method self.max_text_length = 10 ** 5 self.html_patterns = [ re.compile(r"(?is)<(script|style).*?>.*?(</\1>)"), re.compile(r"(?s)<!--(.*?)-->[\n]?"), re.compile(r"(?s)<.*?>"), re.compile(r"&nbsp;"), re.compile(r" +") ] self.nlp = None self.html_parser = HTMLParser() self._unicode_chr_splitter = _Re('(?s)((?:[\ud800-\udbff][\udc00-\udfff])|.)').split self.languages_to_model_names = {'English': 'en_core_web_sm', 'German': 'de_core_news_sm', 'French': 'fr_core_news_sm', 'Spanish': 'es_core_news_sm', 'Portuguese': 'pt_core_news_sm', 'Italian': 'it_core_news_sm', 'Dutch': 'nl_core_news_sm' } self.spacy_count = 0 self.spacy_reset_count = 500 def handle_long_text(self): return '', '' def map_indices_to_words(self, text): original_text_indices_to_words = {} word_start = 0 while word_start < len(text) and text[word_start].isspace(): word_start += 1 for word in text.split(): for char_idx, char in enumerate(word): original_text_indices_to_words[word_start + char_idx] = word # find beginning of next word word_start += len(word) while word_start < len(text) and text[word_start].isspace(): word_start += 1 return original_text_indices_to_words def remove_line_breaks(self, text): return text.replace("\r", " ").replace("\n", " ") def remove_multiple_whitespaces(self, text): return re.sub(r"\s+", " ", text).strip() def clean_html_from_text(self, text): cleaned = text for pattern in self.html_patterns: cleaned = pattern.sub(" ", cleaned) return unescape(cleaned).strip() def handle_tokenizaion_method(self, text): language = self.language if language in self.languages_to_model_names: tokens_list, original_words_to_tokens = self.tokenize_text_spacy(text) else: tokens_list, original_words_to_tokens = self.tokenize_text_other(text) tokenized_text = ' '.join(tokens_list).strip() return tokenized_text, original_words_to_tokens def tokenize_text_other(self, text): tokens_list = [] tokenization_method = self.tokenization_method if tokenization_method == 'byWords': original_words_to_tokens = {} for t in text.split(): token_without_punct = ''.join([c for c in t if c not in string.punctuation]) if len(token_without_punct) > 0: tokens_list.append(token_without_punct) original_words_to_tokens[token_without_punct] = t elif tokenization_method == 'byLetters': for t in text: tokens_list += [chr for chr in self._unicode_chr_splitter(t) if chr and chr != ' '] original_words_to_tokens = {c: t for c in tokens_list} else: return_error('Unsupported tokenization method: when language is "Other" ({})'.format(tokenization_method)) return tokens_list, original_words_to_tokens def tokenize_text_spacy(self, text): if self.nlp is None or self.spacy_count % self.spacy_reset_count == 0: self.init_spacy_model(self.language) doc = self.nlp(text) # type: ignore self.spacy_count += 1 original_text_indices_to_words = self.map_indices_to_words(text) tokens_list = [] original_words_to_tokens = {} # type: ignore for word in doc: if word.is_space: continue elif self.remove_stop_words and word.is_stop: continue elif self.remove_punct and word.is_punct: continue elif self.replace_emails and '@' in word.text: tokens_list.append(self.email_pattern) elif self.replace_urls and word.like_url: tokens_list.append(self.url_pattern) elif self.replace_numbers and (word.like_num or word.pos_ == 'NUM'): tokens_list.append(self.number_pattern) elif self.remove_non_alpha and not word.is_alpha: continue elif self.remove_non_english and word.text not in self.nlp.vocab: # type: ignore continue else: if self.lemma and word.lemma_ != '-PRON-': token_to_add = word.lemma_ else: token_to_add = word.lower_ tokens_list.append(token_to_add) original_word = original_text_indices_to_words[word.idx] if original_word not in original_words_to_tokens: original_words_to_tokens[original_word] = [] original_words_to_tokens[original_word].append(token_to_add) return tokens_list, original_words_to_tokens def init_spacy_model(self, language): try: self.nlp = spacy.load(self.languages_to_model_names[language], disable=['tagger', 'parser', 'ner', 'textcat']) except Exception: return_error("The specified language is not supported in this docker. In order to pre-process text " "using this language, it's required to change this docker. Please check at the documentation " "or contact us for help.") def word_tokenize(self, text): if not isinstance(text, list): text = [text] result = [] for t in text: original_text = t if self.remove_new_lines: t = self.remove_line_breaks(t) if self.clean_html: t = self.clean_html_from_text(t) t = self.remove_multiple_whitespaces(t) if len(t) < self.max_text_length: tokenized_text, original_words_to_tokens = self.handle_tokenizaion_method(t) else: tokenized_text, original_words_to_tokens = self.handle_long_text() text_result = create_text_result(original_text, tokenized_text, original_words_to_tokens, hash_seed=self.hash_seed) result.append(text_result) if len(result) == 1: result = result[0] # type: ignore return result # define global parsers DBOT_TEXT_FIELD = 'dbot_text' DBOT_PROCESSED_TEXT_FIELD = 'dbot_processed_text' CONTEXT_KEY = 'DBotPreProcessTextData' HTML_PATTERNS = [ re.compile(r"(?is)<(script|style).*?>.*?(</\1>)"), re.compile(r"(?s)<!--(.*?)-->[\n]?"), re.compile(r"(?s)<.*?>"), re.compile(r"&nbsp;"), re.compile(r" +") ] html_parser = HTMLParser() tokenizer = None def read_file(input_data, input_type): data = [] # type: ignore if not input_data: return data if input_type.endswith("string"): if 'b64' in input_type: input_data = base64.b64decode(input_data) file_content = input_data.decode("utf-8") else: file_content = input_data else: res = demisto.getFilePath(input_data) if not res: return_error("Entry {} not found".format(input_data)) file_path = res['path'] if input_type.startswith('json'): with open(file_path, 'r') as f: file_content = f.read() if input_type.startswith('csv'): return pd.read_csv(file_path).fillna('').to_dict(orient='records') elif input_type.startswith('json'): return json.loads(file_content) elif input_type.startswith('pickle'): return pd.read_pickle(file_path, compression=None) else: return_error("Unsupported file type %s" % input_type) def concat_text_fields(data, target_field, text_fields): for d in data: text = '' for fields in text_fields: for field in fields.strip().split("|"): field = field.strip() if "." in field: value = demisto.dt(d, field) if type(value) is list and len(value) > 0: value = value[0] else: value = d.get(field) or d.get(field.lower(), '') if value and isinstance(value, str): text += value text += ' ' break text = text.strip() d[target_field] = text return data def clean_html(text): cleaned = text for pattern in HTML_PATTERNS: cleaned = pattern.sub(" ", cleaned) return unescape(cleaned).strip() def remove_line_breaks(text): return re.sub(r"\s+", " ", text.replace("\r", " ").replace("\n", " ")).strip() def pre_process_batch(data, source_text_field, target_text_field, remove_html_tags, pre_process_type, hash_seed): raw_text_data = [x[source_text_field] for x in data] if remove_html_tags: raw_text_data = [clean_html(x) for x in raw_text_data] raw_text_data = [remove_line_breaks(x) for x in raw_text_data] tokenized_text_data = [] for raw_text in raw_text_data: tokenized_text = pre_process_single_text(raw_text, hash_seed, pre_process_type) if hash_seed is None: tokenized_text_data.append(tokenized_text['tokenizedText']) else: tokenized_text_data.append(tokenized_text['hashedTokenizedText']) for d, tokenized_text in zip(data, tokenized_text_data): d[target_text_field] = tokenized_text return data def pre_process_single_text(raw_text, hash_seed, pre_process_type): pre_process_func = PRE_PROCESS_TYPES[pre_process_type] tokenized_text = pre_process_func(raw_text, hash_seed) return tokenized_text def pre_process_tokenizer(text, seed): global tokenizer if tokenizer is None: tokenizer = Tokenizer(tokenization_method=demisto.args()['tokenizationMethod'], language=demisto.args()['language'], hash_seed=seed) processed_text = tokenizer.word_tokenize(text) return processed_text def pre_process_none(text, seed): original_text = text tokenized_text = text original_words_to_tokens = {x: x for x in text.split()} return create_text_result(original_text, tokenized_text, original_words_to_tokens, seed) PRE_PROCESS_TYPES = { 'none': pre_process_none, 'nlp': pre_process_tokenizer, } def remove_short_text(data, text_field, target_text_field, remove_short_threshold): description = "" before_count = len(data) data = [x for x in data if len(x[text_field].split(" ")) > remove_short_threshold and len(x[target_text_field]) > 0] after_count = len(data) dropped_count = before_count - after_count if dropped_count > 0: description += "Dropped %d samples shorter than %d words" % (dropped_count, remove_short_threshold) + "\n" return data, description def get_tf_idf_similarity_arr(documents): tfidf = TfidfVectorizer(stop_words="english", min_df=1).fit_transform(documents) pairwise_similarity = tfidf * tfidf.T return pairwise_similarity.toarray() def find_duplicate_indices(texts, dedup_threshold): similarity_arr = get_tf_idf_similarity_arr(texts) indices_to_remove = [] for i in range(similarity_arr.shape[0]): for j in range(similarity_arr.shape[1]): if j > i and similarity_arr[i][j] > dedup_threshold: indices_to_remove.append(j) return set(indices_to_remove) def remove_duplicate_by_indices(data, duplicate_indices): description = "" data = [x for i, x in enumerate(data) if i not in duplicate_indices] dropped_count = len(duplicate_indices) if dropped_count > 0: description += "Dropped %d samples duplicate to other samples" % dropped_count + "\n" return data, description def whitelist_dict_fields(data, fields): fields = [x.strip() for x in fields] + [x.strip().lower() for x in fields] new_data = [] for d in data: new_data.append({k: v for k, v in d.items() if k in fields}) return new_data def main(): text_fields = demisto.args()['textFields'].split(",") input = demisto.args().get('input') input_type = demisto.args()['inputType'] hash_seed = int(demisto.args().get('hashSeed')) if demisto.args().get('hashSeed') else None remove_short_threshold = int(demisto.args().get('removeShortTextThreshold', 1)) de_dup_threshold = float(demisto.args()['dedupThreshold']) pre_process_type = demisto.args()['preProcessType'] remove_html_tags = demisto.args()['cleanHTML'] == 'true' whitelist_fields = demisto.args().get('whitelistFields').split(",") if demisto.args().get( 'whitelistFields') else None # if input is a snigle string (from DbotPredictPhishingWords): if input_type == 'string': res = pre_process_single_text(raw_text=demisto.args().get('input'), hash_seed=hash_seed, pre_process_type=pre_process_type) return res output_original_text_fields = demisto.args().get('outputOriginalTextFields', 'false') == 'true' description = "" # read data data = read_file(input, input_type) # concat text fields concat_text_fields(data, DBOT_TEXT_FIELD, text_fields) description += "Read initial %d samples" % len(data) + "\n" # clean text if pre_process_type not in PRE_PROCESS_TYPES: return_error('Pre-process type {} is not supported'.format(pre_process_type)) data = pre_process_batch(data, DBOT_TEXT_FIELD, DBOT_PROCESSED_TEXT_FIELD, remove_html_tags, pre_process_type, hash_seed) # remove short emails data, desc = remove_short_text(data, DBOT_TEXT_FIELD, DBOT_PROCESSED_TEXT_FIELD, remove_short_threshold) description += desc # remove duplicates try: if 0 < de_dup_threshold < 1: duplicate_indices = find_duplicate_indices([x[DBOT_PROCESSED_TEXT_FIELD] for x in data], de_dup_threshold) data, desc = remove_duplicate_by_indices(data, duplicate_indices) description += desc except Exception: pass if output_original_text_fields: for field in text_fields: whitelist_fields += [x.strip() for x in field.split('|')] if whitelist_fields and len(whitelist_fields) > 0: whitelist_fields.append(DBOT_PROCESSED_TEXT_FIELD) data = whitelist_dict_fields(data, whitelist_fields) description += "Done processing: %d samples" % len(data) + "\n" # output file_name = str(uuid.uuid4()) output_format = demisto.args()['outputFormat'] if output_format == 'pickle': data_encoded = pickle.dumps(data, protocol=2) elif output_format == 'json': data_encoded = json.dumps(data, default=str) # type: ignore else: return_error("Invalid output format: %s" % output_format) entry = fileResult(file_name, data_encoded) entry['Contents'] = data entry['HumanReadable'] = description entry['EntryContext'] = { CONTEXT_KEY: { 'Filename': file_name, 'FileFormat': output_format, 'TextField': DBOT_TEXT_FIELD, 'TextFieldProcessed': DBOT_PROCESSED_TEXT_FIELD, } } return entry if __name__ in ['builtins', '__main__']: entry = main() demisto.results(entry)
40.559551
120
0.633165
7,880
0.436589
0
0
0
0
0
0
2,134
0.118234
c464ae6c792d78df3c469e563d6a59248c7a5e64
2,799
py
Python
punc_recover/tester/punc_tester.py
Z-yq/audioSamples.github.io
53c474288f0db1a3acfe40ba57a4cd5f2aecbcd3
[ "Apache-2.0" ]
1
2022-03-03T02:51:55.000Z
2022-03-03T02:51:55.000Z
punc_recover/tester/punc_tester.py
RapidAI/TensorflowASR
084519b5a0464f465e1d72c24cba07c1ec55cd26
[ "Apache-2.0" ]
null
null
null
punc_recover/tester/punc_tester.py
RapidAI/TensorflowASR
084519b5a0464f465e1d72c24cba07c1ec55cd26
[ "Apache-2.0" ]
null
null
null
import logging import os import tensorflow as tf from punc_recover.models.punc_transformer import PuncTransformer from punc_recover.tester.base_tester import BaseTester from utils.text_featurizers import TextFeaturizer class PuncTester(BaseTester): """ Trainer for CTC Models """ def __init__(self, config, ): super(PuncTester, self).__init__(config['running_config']) self.model_config = config['model_config'] self.vocab_featurizer = TextFeaturizer(config['punc_vocab']) self.bd_featurizer = TextFeaturizer(config['punc_biaodian']) self.opt_config = config['optimizer_config'] self.eval_metrics = { "acc": tf.keras.metrics.Mean(), } def _eval_step(self, batch): x, labels = batch mask = self.creat_mask(x) pred_bd = self.model.inference(x, mask) acc=self.classes_acc(labels,pred_bd) self.eval_metrics["acc"].update_state(acc) def creat_mask(self, seq): seq_pad = tf.cast(tf.equal(seq, 0), tf.float32) return seq_pad[:, tf.newaxis, tf.newaxis, :] # (batch_size, 1, 1, seq_len) def classes_acc(self, real, pred): mask = tf.math.logical_not(tf.math.equal(real, 0)) accs = tf.keras.metrics.sparse_categorical_accuracy(real,pred) mask = tf.cast(mask, dtype=accs.dtype) accs *= mask final=tf.reduce_sum(accs,-1)/tf.reduce_sum(mask,-1) return tf.reduce_mean(final) def compile(self, ): self.model = PuncTransformer(num_layers=self.model_config['num_layers'], d_model=self.model_config['d_model'], enc_embedding_dim=self.model_config['enc_embedding_dim'], num_heads=self.model_config['num_heads'], dff=self.model_config['dff'], input_vocab_size=self.vocab_featurizer.num_classes, bd_vocab_size=self.bd_featurizer.num_classes, pe_input=self.model_config['pe_input'], rate=self.model_config['rate']) self.model._build() self.load_checkpoint() logging.info('trainer resume failed') self.model.summary(line_length=100) def run(self, ): self._eval_batches() def load_checkpoint(self, ): """Load checkpoint.""" self.checkpoint_dir = os.path.join(self.running_config["outdir"], "checkpoints") files = os.listdir(self.checkpoint_dir) files.sort(key=lambda x: int(x.split('_')[-1].replace('.h5', ''))) self.model.load_weights(os.path.join(self.checkpoint_dir, files[-1]))
36.350649
94
0.599857
2,577
0.920686
0
0
0
0
0
0
292
0.104323
c464fcd2cef62b8d92f36f587767dd193dd32e2a
13,293
py
Python
moztrap/model/core/migrations/0003_auto__add_field_productversion_cc_version__add_field_product.py
mbeko/moztrap
db75e1f8756ef2c0c39652a66302b19c8afa0256
[ "BSD-2-Clause" ]
null
null
null
moztrap/model/core/migrations/0003_auto__add_field_productversion_cc_version__add_field_product.py
mbeko/moztrap
db75e1f8756ef2c0c39652a66302b19c8afa0256
[ "BSD-2-Clause" ]
null
null
null
moztrap/model/core/migrations/0003_auto__add_field_productversion_cc_version__add_field_product.py
mbeko/moztrap
db75e1f8756ef2c0c39652a66302b19c8afa0256
[ "BSD-2-Clause" ]
null
null
null
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'ProductVersion.cc_version' db.add_column('core_productversion', 'cc_version', self.gf('django.db.models.fields.IntegerField')(default=0), keep_default=False) # Adding field 'Product.cc_version' db.add_column('core_product', 'cc_version', self.gf('django.db.models.fields.IntegerField')(default=0), keep_default=False) def backwards(self, orm): # Deleting field 'ProductVersion.cc_version' db.delete_column('core_productversion', 'cc_version') # Deleting field 'Product.cc_version' db.delete_column('core_product', 'cc_version') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'core.product': { 'Meta': {'ordering': "['name']", 'object_name': 'Product'}, 'cc_version': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 0, 59, 558711)'}), 'deleted_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'deleted_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'has_team': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'modified_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 0, 59, 558895)'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'own_team': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.User']", 'symmetrical': 'False', 'blank': 'True'}) }, 'core.productversion': { 'Meta': {'ordering': "['product', 'order']", 'object_name': 'ProductVersion'}, 'cc_version': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 0, 59, 559819)'}), 'deleted_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'deleted_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'environments': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'productversion'", 'symmetrical': 'False', 'to': "orm['environments.Environment']"}), 'has_team': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'latest': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'modified_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'modified_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 0, 59, 560004)'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'own_team': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.User']", 'symmetrical': 'False', 'blank': 'True'}), 'product': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'versions'", 'to': "orm['core.Product']"}), 'version': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'core.user': { 'Meta': {'object_name': 'User', 'db_table': "'auth_user'", '_ormbases': ['auth.User'], 'proxy': 'True'} }, 'environments.category': { 'Meta': {'ordering': "['name']", 'object_name': 'Category'}, 'cc_version': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 0, 59, 562776)'}), 'deleted_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'deleted_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'modified_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 0, 59, 562967)'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, 'environments.element': { 'Meta': {'ordering': "['name']", 'object_name': 'Element'}, 'category': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'elements'", 'to': "orm['environments.Category']"}), 'cc_version': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 0, 59, 561818)'}), 'deleted_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'deleted_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'modified_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 0, 59, 562003)'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, 'environments.environment': { 'Meta': {'object_name': 'Environment'}, 'cc_version': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 0, 59, 555711)'}), 'deleted_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'deleted_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'elements': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'environments'", 'symmetrical': 'False', 'to': "orm['environments.Element']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'modified_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 0, 59, 555910)'}), 'profile': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'environments'", 'null': 'True', 'to': "orm['environments.Profile']"}) }, 'environments.profile': { 'Meta': {'object_name': 'Profile'}, 'cc_version': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 0, 59, 557817)'}), 'deleted_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'deleted_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'modified_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 2, 25, 0, 0, 59, 558002)'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200'}) } } complete_apps = ['core']
85.76129
187
0.568871
13,166
0.990446
0
0
0
0
0
0
9,412
0.708042
c4667c374455b11e101ec3e8d25bd29cd21c3a81
3,965
py
Python
tests/downloader_test.py
jkawamoto/roadie-gcp
96394a47d375bd01e167f351fc86a03905e98395
[ "MIT" ]
1
2018-09-20T01:51:23.000Z
2018-09-20T01:51:23.000Z
tests/downloader_test.py
jkawamoto/roadie-gcp
96394a47d375bd01e167f351fc86a03905e98395
[ "MIT" ]
9
2016-01-31T11:28:12.000Z
2021-04-30T20:43:39.000Z
tests/downloader_test.py
jkawamoto/roadie-gcp
96394a47d375bd01e167f351fc86a03905e98395
[ "MIT" ]
null
null
null
#! /usr/bin/env python # # downloader_test.py # # Copyright (c) 2015-2016 Junpei Kawamoto # # This software is released under the MIT License. # # http://opensource.org/licenses/mit-license.php # """ Test for downloader module. """ import logging import shutil import sys import unittest import os from os import path import downloader # pylint: disable=import-error TARGET_FILE = "bin/entrypoint.sh" SAMPLE_FILE = "https://raw.githubusercontent.com/jkawamoto/roadie-gcp/master/bin/entrypoint.sh" ORIGINAL_FILE = path.normpath( path.join(path.dirname(__file__), "..", TARGET_FILE)) ARCHIVE_ROOT = "./roadie-gcp-20160618" ZIP_FILE = "https://github.com/jkawamoto/roadie-gcp/archive/v20160618.zip" TAR_FILE = "https://github.com/jkawamoto/roadie-gcp/archive/v20160618.tar.gz" class TestDownload(unittest.TestCase): """ Test case for download module. """ def test_download(self): """ Test downloading a file. """ downloader.download(SAMPLE_FILE) basename = path.basename(SAMPLE_FILE) self.evaluate_file(basename, ORIGINAL_FILE) os.remove(basename) def test_set_destination(self): """ Test downloading a file to another directory. """ downloader.download(SAMPLE_FILE + ":/tmp/") target = "/tmp/" + path.basename(SAMPLE_FILE) self.evaluate_file(target, ORIGINAL_FILE) os.remove(target) def test_rename(self): """ Test downloading a file and renaming it. """ target = "test.md" downloader.download(SAMPLE_FILE + ":" + target) self.evaluate_file(target, ORIGINAL_FILE) os.remove(target) def test_set_destination_and_rename(self): """ Test downloading a file to a directory and renaming it. """ target = "/tmp/test.md" downloader.download(SAMPLE_FILE + ":" + target) self.evaluate_file(target, ORIGINAL_FILE) os.remove(target) def test_download_zip(self): """ Test downloading a zip file. """ downloader.download(ZIP_FILE) target = path.join(ARCHIVE_ROOT, TARGET_FILE) self.evaluate_file(target, ORIGINAL_FILE) shutil.rmtree(ARCHIVE_ROOT) def test_set_destination_zip(self): """ Test downloading a zip file to a specified path. """ downloader.download(ZIP_FILE + ":/tmp/") target = path.join("/tmp/", ARCHIVE_ROOT, TARGET_FILE) self.evaluate_file(target, ORIGINAL_FILE) shutil.rmtree(path.join("/tmp/", ARCHIVE_ROOT)) def test_download_tarball(self): """ Test downloading a tarball file. """ downloader.download(TAR_FILE) target = path.join(ARCHIVE_ROOT, TARGET_FILE) self.evaluate_file(target, ORIGINAL_FILE) shutil.rmtree(ARCHIVE_ROOT) def test_set_destination_taball(self): """ Test downloading a tarball file to a specified path. """ downloader.download(TAR_FILE + ":/tmp/") target = path.join("/tmp/", ARCHIVE_ROOT, TARGET_FILE) self.evaluate_file(target, ORIGINAL_FILE) shutil.rmtree(path.join("/tmp/", ARCHIVE_ROOT)) def evaluate_file(self, target, original): """ Evaluate existence and contents of the target file. Args: target: target file to be checked. original: original file of which contetns will be compared of the ones of target. """ self.assertTrue(path.exists(target)) self.assertEqual( self.read_file(target), self.read_file(original)) @staticmethod def read_file(fpath): """ Open a file and read it. Args: fpath: Path for a file. Returns: Contents of the file. """ with open(fpath) as f: return f.read() if __name__ == "__main__": logging.basicConfig(level=logging.INFO, stream=sys.stderr) unittest.main()
30.037879
95
0.642371
3,066
0.773266
0
0
246
0.062043
0
0
1,477
0.372509
c466ca50010615bb02d62529ff22d41f7530666b
1,800
py
Python
ticle/plotters/plot_phase.py
muma7490/TICLE
bffa64ee488abac17809d02dfc176fe80128541a
[ "MIT" ]
null
null
null
ticle/plotters/plot_phase.py
muma7490/TICLE
bffa64ee488abac17809d02dfc176fe80128541a
[ "MIT" ]
null
null
null
ticle/plotters/plot_phase.py
muma7490/TICLE
bffa64ee488abac17809d02dfc176fe80128541a
[ "MIT" ]
null
null
null
import matplotlib.pyplot as pl import os import numpy as np from ticle.data.dataHandler import normalizeData,load_file from ticle.analysis.analysis import get_phases,normalize_phase pl.rc('xtick', labelsize='x-small') pl.rc('ytick', labelsize='x-small') pl.rc('font', family='serif') pl.rcParams.update({'font.size': 20}) pl.tight_layout() path = os.getcwd() phase_dir = f"{path}/results/phase_plots" try: os.makedirs(phase_dir) except FileExistsError: pass data_dir = f"{path}/data/" data_list_file = f"{data_dir}/dataList.txt" data_list = np.loadtxt(data_list_file) for data in data_list: star = f"0{int(data[0])}" file_name = f"{data_dir}/{star}/{star}_LC_destepped.txt" res_dir = f"{phase_dir}/{star}" try: os.mkdir(res_dir) except FileExistsError: pass t_series = load_file(file_name) t_series = normalizeData(t_series) p = [(f"Phaseplot {star} - literature","literature",data[2]), (f"Phaseplot {star} - P={data[1]} days",f"result",data[1])] for title,save_text,period in p: masks = get_phases(t_series,period) fig_phase = pl.figure(figsize=(10,7)) for i in masks: plot_data = normalize_phase(np.array((t_series[0][i],t_series[1][i]))) pl.plot(plot_data[0],plot_data[1],linewidth = 1) pl.xlabel("Phase") pl.ylabel("Flux") pl.title(title) fig_phase.savefig(f"{res_dir}/{star}_{save_text}_phase_.pdf") fig_lightcurve = pl.figure(figsize=(10,7)) for i in masks: pl.plot(t_series[0][i],t_series[1][i],linewidth = 1) pl.xlabel("Period(days)") pl.ylabel("Flux") pl.title(f"{star} Lightcurve {save_text}") fig_lightcurve.savefig(f"{res_dir}/{star}_{save_text}_lightcurve.pdf")
27.692308
82
0.648889
0
0
0
0
0
0
0
0
453
0.251667
c467d3e82cd1949de48c0e1eac654f4ecca276b3
7,267
py
Python
src/putil/rabbitmq/rabbit_util.py
scionrep/scioncc_new
086be085b69711ee24c4c86ed42f2109ca0db027
[ "BSD-2-Clause" ]
2
2015-10-05T20:36:35.000Z
2018-11-21T11:45:24.000Z
src/putil/rabbitmq/rabbit_util.py
scionrep/scioncc_new
086be085b69711ee24c4c86ed42f2109ca0db027
[ "BSD-2-Clause" ]
21
2015-03-18T14:39:32.000Z
2016-07-01T17:16:29.000Z
src/putil/rabbitmq/rabbit_util.py
scionrep/scioncc_new
086be085b69711ee24c4c86ed42f2109ca0db027
[ "BSD-2-Clause" ]
12
2015-03-18T10:53:49.000Z
2018-06-21T11:19:57.000Z
#!/usr/bin/python import shlex import simplejson from putil.rabbitmq.rabbitmqadmin import Management, make_parser, LISTABLE, DELETABLE class RabbitManagementUtil(object): def __init__(self, config, options=None, sysname=None): """ Given a config object (system CFG or rabbit mgmt config), extracts the correct config and prepares util for subsequent calls to RabbitMQ via management plugin REST API. """ self.mgmt_cfg = self.get_mgmt_config(config, sysname) self.connect_str = self.build_connect_str(self.mgmt_cfg) self.options = options self.sysname = sysname self.call_args = self.connect_str if self.options: self.call_args += "_" + self.options self.parser = make_parser() @staticmethod def get_mgmt_config(config, sysname=None): """ Returns the RabbitMq management config dict from indirect reference in container CFG or from given config dict. """ if not config: raise RuntimeError("Bad config argument") if "container" in config and hasattr(config, "get_safe"): mgmt_cfg_key = config.get_safe("container.messaging.management.server", "rabbit_manage") mgmt_cfg = config.get_safe("server." + mgmt_cfg_key) elif "host" in config: mgmt_cfg = config else: raise RuntimeError("Bad RabbitMQ management config") sysname = sysname or "scioncc" mgmt_cfg = mgmt_cfg.copy() mgmt_cfg["host"] = mgmt_cfg.get("host", None) or "localhost" mgmt_cfg["port"] = mgmt_cfg.get("port", None) or "15672" mgmt_cfg["username"] = mgmt_cfg.get("username", None) or "guest" mgmt_cfg["password"] = mgmt_cfg.get("password", None) or "guest" mgmt_cfg["vhost"] = mgmt_cfg.get("vhost", None) or "/" mgmt_cfg["system_exchange"] = mgmt_cfg.get("system_exchange", None) if not mgmt_cfg["system_exchange"] and "exchange" in config and hasattr(config, "get_safe"): mgmt_cfg["system_exchange"] = "%s.%s" % (sysname, config.get_safe('exchange.core.system_xs', 'system')) mgmt_cfg["events_xp"] = mgmt_cfg.get("events_xp", None) if not mgmt_cfg["events_xp"] and "exchange" in config and hasattr(config, "get_safe"): mgmt_cfg["events_xp"] = "%s.%s" % (mgmt_cfg["system_exchange"], config.get_safe('exchange.core.events', 'events')) return mgmt_cfg @staticmethod def build_connect_str(mgmt_cfg): connect_str = "-q -H {0} -P {1} -u {2} -p {3} -V {4}".format( mgmt_cfg["host"], mgmt_cfg["port"], mgmt_cfg["username"], mgmt_cfg["password"], mgmt_cfg["vhost"]) return connect_str @staticmethod def get_mgmt_url(config, feats=None): mgmt_cfg = RabbitManagementUtil.get_mgmt_config(config) feats = feats or [] url = "http://%s:%s/api/%s" % (mgmt_cfg["host"], mgmt_cfg["port"], "/".join(feats)) return url # ------------------------------------------------------------------------- # Util methods def clean_by_prefix(self, prefix): """ Utility method to clean (sysname) prefixed exchanges and queues on a broker. @param prefix The sysname / prefix to use to select exchanges and queues to delete. Must be the prefix to the exchange or queue or this will not be deleted. @returns A 2-tuple of (list of exchanges deleted, list of queues deleted). """ exchanges = self.list_names('exchanges') deleted_exchanges = self.delete_names_with_prefix('exchange', exchanges, prefix) queues = self.list_names('queues') deleted_queues = self.delete_names_with_prefix('queue', queues, prefix) return deleted_exchanges, deleted_queues def clean_by_sysname(self, sysname=None): sysname = sysname or self.sysname if not sysname: raise RuntimeError("Must provide sysname") return self.clean_by_prefix(sysname or self.sysname) def declare_exchange(self, xp): if xp == "events": ex_name = self.mgmt_cfg["events_xp"] else: ex_name = self.mgmt_cfg["system_exchange"] cmd_str = '{0} declare exchange name="{1}" durable=false auto_delete=true type=topic'.format(self.call_args, ex_name) (options, args) = self.parser.parse_args(shlex.split(cmd_str)) mgmt = Management(options, args[1:]) mgmt.invoke_declare() def declare_queue(self, xp, queue_name): if xp == "events": ex_name = self.mgmt_cfg["events_xp"] else: ex_name = self.mgmt_cfg["system_exchange"] if queue_name.startswith(self.sysname): qqueue_name = queue_name else: qqueue_name = ".".join([ex_name, queue_name]) cmd_str = '{0} declare queue name="{1}" durable=false auto_delete=false'.format(self.call_args, qqueue_name) (options, args) = self.parser.parse_args(shlex.split(cmd_str)) mgmt = Management(options, args[1:]) mgmt.invoke_declare() def bind_queue(self, xp, queue_name, binding): if xp == "events": ex_name = self.mgmt_cfg["events_xp"] else: ex_name = self.mgmt_cfg["system_exchange"] if queue_name.startswith(self.sysname): qqueue_name = queue_name else: qqueue_name = ".".join([ex_name, queue_name]) cmd_str = '{0} declare binding source="{1}" destination="{2}" destination_type=queue routing_key="{3}"'.format( self.call_args, ex_name, qqueue_name, binding) (options, args) = self.parser.parse_args(shlex.split(cmd_str)) mgmt = Management(options, args[1:]) mgmt.invoke_declare() # TODO: Move the management calls from pyon.ion.exchange here # ------------------------------------------------------------------------- # Helpers def list_names(self, listable_type): list_str = '%s list %s name' % (self.call_args, listable_type) (options, args) = self.parser.parse_args(shlex.split(list_str)) mgmt = Management(options, args[1:]) uri = mgmt.list_show_uri(LISTABLE, 'list', mgmt.args[1:]) output_json = mgmt.get(uri) listables = simplejson.loads(output_json) return listables def list_names_with_prefix(self, listables, name_prefix): return [l['name'] for l in listables if l['name'].startswith(name_prefix)] # This function works on exchange, queue, vhost, user def delete_names_with_prefix(self, deletable_type, deleteable, name_prefix): deleted = [] for d in deleteable: try: if d['name'].startswith(name_prefix): delete_cmd = '%s delete %s name="%s"' % (self.call_args, deletable_type, d['name']) (options, args) = self.parser.parse_args(shlex.split(delete_cmd)) mgmt = Management(options, args[1:]) mgmt.invoke_delete() deleted.append(d['name']) except KeyError: # Some has no key 'name' pass return deleted
42.00578
126
0.610706
7,125
0.98046
0
0
2,190
0.301362
0
0
2,144
0.295032
c4692b2cd0fdba89e13d15c53467b6b2f916be48
5,362
py
Python
gaternet/main.py
gunpowder78/google-research
d41bbaca1eb9bfd980ec2b3fd201c3ddb4d1f2e5
[ "Apache-2.0" ]
1
2022-03-13T21:48:52.000Z
2022-03-13T21:48:52.000Z
gaternet/main.py
gunpowder78/google-research
d41bbaca1eb9bfd980ec2b3fd201c3ddb4d1f2e5
[ "Apache-2.0" ]
null
null
null
gaternet/main.py
gunpowder78/google-research
d41bbaca1eb9bfd980ec2b3fd201c3ddb4d1f2e5
[ "Apache-2.0" ]
1
2022-03-30T07:20:29.000Z
2022-03-30T07:20:29.000Z
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Loads a GaterNet checkpoint and tests on Cifar-10 test set.""" import argparse import io import os from backbone_resnet import Network as Backbone from gater_resnet import Gater import torch import torch.nn as nn import torch.nn.functional as F from torchvision import datasets from torchvision import transforms def load_from_state(state_dict, model): """Loads the state dict of a checkpoint into model.""" tem_dict = dict() for k in state_dict.keys(): tem_dict[k.replace('module.', '')] = state_dict[k] state_dict = tem_dict ckpt_key = set(state_dict.keys()) model_key = set(model.state_dict().keys()) print('Keys not in current model: {}\n'.format(ckpt_key - model_key)) print('Keys not in checkpoint: {}\n'.format(model_key - ckpt_key)) model.load_state_dict(state_dict, strict=True) print('Successfully reload from state.') return model def test(backbone, gater, device, test_loader): """Tests the model on a test set.""" backbone.eval() gater.eval() loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) gate = gater(data) output = backbone(data, gate) loss += F.cross_entropy(output, target, size_average=False).item() pred = output.max(1, keepdim=True)[1] correct += pred.eq(target.view_as(pred)).sum().item() loss /= len(test_loader.dataset) acy = 100. * correct / len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.4f}%)\n'.format( loss, correct, len(test_loader.dataset), acy)) return acy def run(args, device, test_loader): """Loads checkpoint into GaterNet and runs test on the test data.""" with open(args.checkpoint_file, 'rb') as fin: inbuffer = io.BytesIO(fin.read()) state_dict = torch.load(inbuffer, map_location='cpu') print('Successfully load checkpoint file.\n') backbone = Backbone(depth=args.backbone_depth, num_classes=10) print('Loading checkpoint weights into backbone.') backbone = load_from_state(state_dict['backbone_state_dict'], backbone) backbone = nn.DataParallel(backbone).to(device) print('Backbone is ready after loading checkpoint and moving to device:') print(backbone) n_params_b = sum( [param.view(-1).size()[0] for param in backbone.parameters()]) print('Number of parameters in backbone: {}\n'.format(n_params_b)) gater = Gater(depth=20, bottleneck_size=8, gate_size=backbone.module.gate_size) print('Loading checkpoint weights into gater.') gater = load_from_state(state_dict['gater_state_dict'], gater) gater = nn.DataParallel(gater).to(device) print('Gater is ready after loading checkpoint and moving to device:') print(gater) n_params_g = sum( [param.view(-1).size()[0] for param in gater.parameters()]) print('Number of parameters in gater: {}'.format(n_params_g)) print('Total number of parameters: {}\n'.format(n_params_b + n_params_g)) print('Running test on test data.') test(backbone, gater, device, test_loader) def parse_flags(): """Parses input arguments.""" parser = argparse.ArgumentParser(description='GaterNet') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--backbone-depth', type=int, default=20, help='resnet depth of the backbone subnetwork') parser.add_argument('--checkpoint-file', type=str, default=None, help='checkpoint file to run test') parser.add_argument('--data-dir', type=str, default=None, help='the directory for storing data') args = parser.parse_args() return args def main(args): print('Input arguments:\n{}\n'.format(args)) use_cuda = not args.no_cuda and torch.cuda.is_available() print('use_cuda: {}'.format(use_cuda)) device = torch.device('cuda' if use_cuda else 'cpu') torch.backends.cudnn.benchmark = True print('device: {}'.format(device)) if not os.path.isdir(args.data_dir): os.mkdir(args.data_dir) kwargs = {'num_workers': 8, 'pin_memory': True} if use_cuda else {} normalize_mean = [0.4914, 0.4822, 0.4465] normalize_std = [0.2470, 0.2435, 0.2616] test_loader = torch.utils.data.DataLoader( datasets.CIFAR10( args.data_dir, train=False, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize(normalize_mean, normalize_std)]) ), batch_size=1000, shuffle=False, drop_last=False, **kwargs) print('Successfully get data loader.') run(args, device, test_loader) if __name__ == '__main__': main(parse_flags())
35.276316
79
0.693398
0
0
0
0
0
0
0
0
1,785
0.332898
c46ae74020d50b1e15aaa99acf255cf154208cb8
251
pyw
Python
client.pyw
thatfuckingbird/hydrus-websocket-server
b55454740dca5101448bf92224432f8bdbec7e77
[ "WTFPL" ]
1,417
2015-01-22T00:50:30.000Z
2022-03-30T18:44:55.000Z
client.pyw
thatfuckingbird/hydrus-websocket-server
b55454740dca5101448bf92224432f8bdbec7e77
[ "WTFPL" ]
975
2015-01-05T01:41:40.000Z
2022-03-31T06:01:50.000Z
client.pyw
thatfuckingbird/hydrus-websocket-server
b55454740dca5101448bf92224432f8bdbec7e77
[ "WTFPL" ]
163
2015-02-04T13:09:35.000Z
2022-03-23T01:00:05.000Z
#!/usr/bin/env python3 # Hydrus is released under WTFPL # You just DO WHAT THE FUCK YOU WANT TO. # https://github.com/sirkris/WTFPL/blob/master/WTFPL.md from hydrus import hydrus_client if __name__ == '__main__': hydrus_client.boot()
19.307692
55
0.709163
0
0
0
0
0
0
0
0
159
0.633466
c46b9bf38daa8aa62af17faaff944dc07ddd1de9
5,776
py
Python
fixEngine/fixEngine.py
HNGlez/ExchangeConnector
5176437963a3e9e671bb059c599c79f39439f4d4
[ "MIT" ]
null
null
null
fixEngine/fixEngine.py
HNGlez/ExchangeConnector
5176437963a3e9e671bb059c599c79f39439f4d4
[ "MIT" ]
null
null
null
fixEngine/fixEngine.py
HNGlez/ExchangeConnector
5176437963a3e9e671bb059c599c79f39439f4d4
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ ExchangeConnector fixEngine Copyright (c) 2020 Hugo Nistal Gonzalez Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import asyncio import simplefix import threading import logging import time import sys import configparser from fixClientMessages import FixClientMessages from connectionHandler import FIXConnectionHandler, SocketConnectionState class FixEngine(FIXConnectionHandler): def __init__(self, config, reader, writer, messageListener): FIXConnectionHandler.__init__(self, config, reader, writer, messageListener) self._config = config self._logout = False self._engineLogger.info(f"Socket Connection Open to {config['SocketHost']}:{config['SocketPort']}") self.clientMessage = FixClientMessages(config['SenderCompID'], config['TargetCompID'], config['SenderPassword'], config['BeginString'], config.getint('HeartBeatInterval')) asyncio.ensure_future(self._handleEngine()) def getConnectionState(self): return self._connectionState async def _sessionMessageHandler(self, message: simplefix.FixMessage) -> bool: """ Handle Session Message.""" assert isinstance(message, simplefix.FixMessage) # NEED TO ADD HANDLING OF BUSINESS REJECTS msgType = message.get(simplefix.TAG_MSGTYPE) if msgType == simplefix.MSGTYPE_LOGON: # Handle logon if self._connectionState == SocketConnectionState.LOGGED_IN: self._engineLogger.warning(f"{self._config['SenderCompID']} already looged in -> Ignoring Login Request.") else: self._connectionState = SocketConnectionState.LOGGED_IN self._engineLogger.info(f"{self._config['SenderCompID']} session -> LOGON") self._config['HeartBeatInterval'] = str(message.get(simplefix.TAG_HEARTBTINT).decode()) return True elif self._connectionState == SocketConnectionState.LOGGED_IN: if msgType == simplefix.MSGTYPE_TEST_REQUEST: # Send test heartbeat when requested msg = self.clientMessage.sendHeartbeat() msg.append_pair(simplefix.TAG_TESTREQID, message.get(simplefix.TAG_TESTREQID)) await self.sendMessage(msg) return True elif msgType == simplefix.MSGTYPE_LOGOUT: # Handle Logout self._connectionState = SocketConnectionState.LOGGED_OUT self._engineLogger.info(f"{self._config['SenderCompID']} session -> LOGOUT") self.handleClose() return True elif msgType == simplefix.MSGTYPE_HEARTBEAT: msg = self.clientMessage.sendHeartbeat() msg.append_pair(simplefix.TAG_TESTREQID, message.get(simplefix.TAG_TESTREQID)) await self.sendMessage(msg) return True elif message.get(simplefix.TAG_RESETSEQNUMFLAG) == simplefix.RESETSEQNUMFLAG_YES: # If ResetSeqNum = Y Then Reset sequence self._session.resetSeqNo() self._engineLogger.info("Resetting Sequence Number to 1") return True else: return False else: self._engineLogger.warning(f"Cannot process message. {self._config['SenderCompID']} is not logged in.") return False async def _handleEngine(self): await self.logon() while self._connectionState != SocketConnectionState.DISCONNECTED: if self._connectionState != SocketConnectionState.LOGGED_OUT: await self.readMessage() await self.expectedHeartbeat(self._config.getint('HeartBeatInterval')) else: await self.logon() class FIXClient: def __init__(self, configFile, gateway, listener): self._config = self.loadConfig(configFile, gateway) self._reader = None self._writer = None self._client = None self._messageListener = listener async def startClient(self, loop): """ Creates Socket Connection and Runs Main Loop.""" self._reader, self._writer = await asyncio.open_connection(self._config["SocketHost"], self._config["SocketPort"], loop=loop) self._connectionState = SocketConnectionState.CONNECTED self._client = FixEngine(self._config, self._reader, self._writer, self._messageListener) def loadConfig(self, filePath, gateway): parser = configparser.SafeConfigParser() parser.read(filePath) if parser.has_section(gateway): return parser[gateway] else: raise Exception(f"{gateway} section not found in configuration file {filePath}") def getClient(self): return self._client
46.208
179
0.691136
4,381
0.758483
0
0
0
0
3,082
0.533587
1,935
0.335007
c46bcfd7797c21307852fe37265fa68fac0dbbc3
570
py
Python
plugins/session_list/views.py
farazkhanfk7/ajenti
ff51635bea0d29bf9f35dd7912f145398040541d
[ "MIT" ]
1
2021-04-27T07:16:01.000Z
2021-04-27T07:16:01.000Z
plugins/session_list/views.py
farazkhanfk7/ajenti
ff51635bea0d29bf9f35dd7912f145398040541d
[ "MIT" ]
null
null
null
plugins/session_list/views.py
farazkhanfk7/ajenti
ff51635bea0d29bf9f35dd7912f145398040541d
[ "MIT" ]
null
null
null
from jadi import component from aj.api.http import url, HttpPlugin from aj.auth import authorize from aj.api.endpoint import endpoint, EndpointError import aj import gevent @component(HttpPlugin) class Handler(HttpPlugin): def __init__(self, context): self.context = context @url(r'/api/session_list/list') @endpoint(api=True) def handle_api_list_sessions(self, http_context): if http_context.method == 'GET': self.context.worker.update_sessionlist() gevent.sleep(1) return aj.sessions
25.909091
53
0.687719
358
0.62807
0
0
381
0.668421
0
0
30
0.052632
c46cb76d02d71b063cedf52c09eb7f327cd308da
10,606
py
Python
now/collection/prov_execution/argument_captors.py
CrystalMei/Prov_Build
695576c36b7d5615f1cc568954658f8a7ce9eeba
[ "MIT" ]
2
2017-11-10T16:17:11.000Z
2021-12-19T18:43:22.000Z
now/collection/prov_execution/argument_captors.py
CrystalMei/Prov_Build
695576c36b7d5615f1cc568954658f8a7ce9eeba
[ "MIT" ]
null
null
null
now/collection/prov_execution/argument_captors.py
CrystalMei/Prov_Build
695576c36b7d5615f1cc568954658f8a7ce9eeba
[ "MIT" ]
null
null
null
# Copyright (c) 2016 Universidade Federal Fluminense (UFF) # Copyright (c) 2016 Polytechnic Institute of New York University. # Copyright (c) 2018, 2019, 2020 President and Fellows of Harvard College. # This file is part of ProvBuild. """Capture arguments from calls""" from __future__ import (absolute_import, print_function, division, unicode_literals) import weakref import itertools import inspect from future.utils import viewitems from ...utils.functions import abstract from ..prov_definition.utils import ClassDef, Assert, With, Decorator WITHOUT_PARAMS = (ClassDef, Assert, With) class ArgumentCaptor(object): # pylint: disable=too-few-public-methods """Collect arguments during calls""" def __init__(self, provider): self.provider = weakref.proxy(provider) def capture(self, frame, activation): # pylint: disable=unused-argument, no-self-use """Abstract method for capture""" abstract() class ProfilerArgumentCaptor(ArgumentCaptor): # pylint: disable=too-few-public-methods """Collect arguments for profiler""" def __init__(self, *args, **kwargs): super(ProfilerArgumentCaptor, self).__init__(*args, **kwargs) self.f_locals = {} def capture(self, frame, activation): """Store argument object values Arguments: frame -- current frame, after trace call activation -- current activation """ provider = self.provider self.f_locals = values = frame.f_locals code = frame.f_code names = code.co_varnames nargs = code.co_argcount # Capture args for var in itertools.islice(names, 0, nargs): try: provider.object_values.add( var, provider.serialize(values[var]), "ARGUMENT", activation.id) activation.args.append(var) except Exception: # pylint: disable=broad-except # ignoring any exception during capture pass # Capture *args if code.co_flags & inspect.CO_VARARGS: # pylint: disable=no-member varargs = names[nargs] provider.object_values.add( varargs, provider.serialize(values[varargs]), "ARGUMENT", activation.id) activation.starargs.append(varargs) nargs += 1 # Capture **kwargs if code.co_flags & inspect.CO_VARKEYWORDS: # pylint: disable=no-member kwargs = values[names[nargs]] for key in kwargs: provider.object_values.add( key, provider.serialize(kwargs[key]), "ARGUMENT", activation.id) activation.kwargs.append(names[nargs]) class InspectProfilerArgumentCaptor(ArgumentCaptor): # pylint: disable=too-few-public-methods """This Argument Captor uses the inspect.getargvalues that is slower because it considers the existence of anonymous tuple """ def capture(self, frame, activation): """Store argument object values Arguments: frame -- current frame, after trace call activation -- current activation """ provider = self.provider # ToDo #75: inspect.getargvalues was deprecated on Python 3.5 # ToDo #75: use inspect.signature instead (args, varargs, keywords, values) = inspect.getargvalues(frame) for arg in args: try: provider.object_values.add( arg, provider.serialize(values[arg]), "ARGUMENT", activation.id) activation.args.append(arg) except Exception: # ignoring any exception during capture # pylint: disable=broad-except pass if varargs: provider.object_values.add( varargs, provider.serialize(values[varargs]), "ARGUMENT", activation.id) activation.starargs.append(varargs) if keywords: for key, value in viewitems(values[keywords]): provider.object_values.add( key, provider.serialize(value), "ARGUMENT", activation.id) activation.kwargs.append(key) class SlicingArgumentCaptor(ProfilerArgumentCaptor): """Create Slicing Variables for Arguments and dependencies between Parameters and Arguments""" def __init__(self, *args, **kwargs): super(SlicingArgumentCaptor, self).__init__(*args, **kwargs) self.caller, self.activation = None, None self.filename, self.line = "", 0 self.frame = None def match_arg(self, passed, arg): """Match passed arguments with param Arguments: passed -- Call Variable name arg -- Argument name """ provider = self.provider activation = self.activation context = activation.context if arg in context: act_var = context[arg] else: vid = provider.add_variable(activation.id, arg, self.line, self.f_locals, "param") act_var = provider.variables[vid] context[arg] = act_var if passed: caller = self.caller target = provider.find_variable(caller, passed, self.filename) if target is not None: provider.dependencies.add( act_var.activation_id, act_var.id, target.activation_id, target.id, "parameter" ) def match_args(self, params, arg): """Match passed argument with param Arguments: params -- Call Variable names arg -- Argument name """ for param in params: self.match_arg(param, arg) def _defined_call(self, activation): """Return a call extracted from AST if it has arguments or None, otherwise Arguments: activation -- current activation """ if not activation.with_definition or activation.is_main: return if activation.is_comprehension(): return provider = self.provider lineno, lasti = activation.line, activation.lasti filename = activation.filename function_name = activation.name if (function_name == "__enter__" and lasti in provider.with_enter_by_lasti[filename][lineno]): activation.has_parameters = False return if (function_name == "__exit__" and lasti in provider.with_exit_by_lasti[filename][lineno]): activation.has_parameters = False return if lasti in provider.iters[filename][lineno]: activation.has_parameters = False provider.next_is_iter = True return try: call = provider.call_by_lasti[filename][lineno][lasti] except (IndexError, KeyError): # call not found # ToDo: show in dev-mode return if (isinstance(call, WITHOUT_PARAMS) or (isinstance(call, Decorator) and not call.is_fn)): activation.has_parameters = False return return call def capture(self, frame, activation): # pylint: disable=too-many-locals """Match call parameters to function arguments Arguments: frame -- current frame, after trace call activation -- current activation """ super(SlicingArgumentCaptor, self).capture(frame, activation) provider = self.provider self.frame = frame call = self._defined_call(activation) if not call: return self.filename = activation.filename self.line = frame.f_lineno self.caller, self.activation = provider.current_activation, activation match_args, match_arg = self.match_args, self.match_arg act_args_index = activation.args.index # Check if it has starargs and kwargs sub = -[bool(activation.starargs), bool(activation.kwargs)].count(True) order = activation.args + activation.starargs + activation.kwargs activation_arguments = len(order) + sub used = [0 for _ in order] j = 0 # Match positional arguments for i, call_arg in enumerate(call.args): if call_arg: j = i if i < activation_arguments else sub act_arg = order[j] match_args(call_arg, act_arg) used[j] += 1 # Match keyword arguments for act_arg, call_arg in viewitems(call.keywords): try: i = act_args_index(act_arg) match_args(call_arg, act_arg) used[i] += 1 except ValueError: for kwargs in activation.kwargs: match_args(call_arg, kwargs) # Match kwargs, starargs # ToDo #75: Python 3.5 supports multiple keyword arguments and starargs # ToDo #75: improve matching # Ignore default params # Do not match f(**kwargs) with def(*args) args = [(k, order[k]) for k in range(len(used)) if not used[k]] for star in call.kwargs + call.starargs: for i, act_arg in args: match_args(star, act_arg) used[i] += 1 # Create variables for unmatched arguments args = [(k, order[k]) for k in range(len(used)) if not used[k]] for i, act_arg in args: match_arg(None, act_arg) # Create dependencies between all parameters # ToDo #35: improve dependencies to use references. # Do not create dependencies between all parameters all_args = list(provider.find_variables( self.caller, call.all_args(), activation.filename)) if all_args: graybox = provider.create_func_graybox(activation.id, activation.line) provider.add_dependencies(graybox, all_args) provider.add_inter_dependencies(frame.f_back.f_locals, all_args, self.caller, activation.line, [(graybox, graybox.name)])
36.826389
127
0.581463
9,973
0.940317
0
0
0
0
0
0
2,669
0.25165
c46dc4849d73685f3bf2bf7edc6ed45dee20d695
307
py
Python
Python/Day8 DictionariesAndMaps.py
codePerfectPlus/30-DaysOfCode-With-Python-And-JavaScript
570fa12ed30659fa394d86e12583b69f35a2e7a7
[ "MIT" ]
8
2020-08-03T01:53:13.000Z
2022-01-09T14:47:58.000Z
Python/Day8 DictionariesAndMaps.py
codePerfectPlus/30-DaysOfCode-With-Python-And-JavaScript
570fa12ed30659fa394d86e12583b69f35a2e7a7
[ "MIT" ]
null
null
null
Python/Day8 DictionariesAndMaps.py
codePerfectPlus/30-DaysOfCode-With-Python-And-JavaScript
570fa12ed30659fa394d86e12583b69f35a2e7a7
[ "MIT" ]
4
2020-09-29T11:28:53.000Z
2021-06-02T15:34:55.000Z
N = int(input()) entry = [input().split() for _ in range(N)] phoneBook = {name: number for name, number in entry} while True: try: name = input() if name in phoneBook: print(f"{name}={phoneBook[name]}") else: print("Not found") except: break
21.928571
52
0.534202
0
0
0
0
0
0
0
0
38
0.123779
c46f3c278fa8309cddd52d6eeccf2dae6ea924e2
1,850
py
Python
10. Recurrent Neural Network/10-1) Recurrent Neural Network, RNN.py
choijiwoong/-ROKA-torch-tutorial-files
c298fdf911cd64757895c3ab9f71ae7c3467c545
[ "Unlicense" ]
null
null
null
10. Recurrent Neural Network/10-1) Recurrent Neural Network, RNN.py
choijiwoong/-ROKA-torch-tutorial-files
c298fdf911cd64757895c3ab9f71ae7c3467c545
[ "Unlicense" ]
null
null
null
10. Recurrent Neural Network/10-1) Recurrent Neural Network, RNN.py
choijiwoong/-ROKA-torch-tutorial-files
c298fdf911cd64757895c3ab9f71ae7c3467c545
[ "Unlicense" ]
null
null
null
#Sequence model. != Recursive Neural Network #memory cell or RNN cell #hidden state #one-to-many_image captioning, many-to-one_sentiment classfication || spam detection, many-to-many_chat bot #2) create RNN in python import numpy as np timesteps=10#시점의 수 _문장의 길이 input_size=4#입력의 차원_단어벡터의 차원 hidden_size=8#메모리 셀의 용량(은닉상태의 크기) inputs=np.random.random((timesteps, input_size))#입력에 해당하는 2D텐서 hidden_state_t=np.zeros((hidden_size,))#jiddensize로 은닉상태 만들고 0초기화 print(hidden_state_t) Wx=np.random.random((hidden_size, input_size))#입력 가중치 Wh=np.random.random((hidden_size, hidden_size))#은닉 가중치 b=np.random.random((hidden_size,)) print(np.shape(Wx)) print(np.shape(Wh)) print(np.shape(b)) total_hidden_states=[] #memory cell work for input_t in inputs: output_t=np.tanh(np.dot(Wx,input_t)+np.dot(Wh,hidden_state_t)+b) total_hidden_states.append(list(output_t))#각 시점의 은닉상태값을 축적 print(np.shape(total_hidden_states)) hidden_state_t=output_t total_hidden_states=np.stack(total_hidden_states, axis=0)#깨끗한 출력 print(total_hidden_states) #3) nn.RNN() in pytorch import torch import torch.nn as nn input_size=5#입력 크기 hidden_size=8#은닉상태의 크기 inputs=torch.Tensor(1, 10, 5)#배치크기 1 10번의 시점동안 5차원의 입력벡터 cell=nn.RNN(input_size, hidden_size, batch_first=True)#입력텐서의 첫번째 차원이 배치크기 outputs, _status=cell(inputs)#2개의 입력을 리턴. 모든시점의 은닉상태들, 마시막시점의 은닉상태 print(outputs.shape) #4) Deep Recurrent Neural Network inputs=torch.Tensor(1, 10, 5) cell=nn.RNN(input_size=5, hidden_size=8, num_layers=2, batch_first=True)# 은닉층 2개(cell) print(outputs.shape) print(_status.shape)#층개수, 배치크기, 은닉상태의 크기 #5) Bidirectional Recurrent Neural Network inputs=torch.Tensor(1, 10, 5) cell=nn.RNN(input_size=5, hidden_size=8, num_layers=2, batch_first=True, bidirectional=True)#양방향순환 outputs, _status=cell(inputs) print(outputs.shape)#연결되었기에 은닉상태크기2배 print(_status.shape)#층의개수2배
30.327869
107
0.778378
0
0
0
0
0
0
0
0
1,001
0.447674
c46f42400056a3b7b9402bc800d3e92633345822
720
py
Python
WeLearn/M3-Python/L3-Python_Object/pet.py
munoz196/moonyosCSSIrep
cdfcd2ae061293471ecdf2d370a27f163efeba97
[ "Apache-2.0" ]
null
null
null
WeLearn/M3-Python/L3-Python_Object/pet.py
munoz196/moonyosCSSIrep
cdfcd2ae061293471ecdf2d370a27f163efeba97
[ "Apache-2.0" ]
null
null
null
WeLearn/M3-Python/L3-Python_Object/pet.py
munoz196/moonyosCSSIrep
cdfcd2ae061293471ecdf2d370a27f163efeba97
[ "Apache-2.0" ]
null
null
null
pet = { "name":"Doggo", "animal":"dog", "species":"labrador", "age":"5" } class Pet(object): def __init__(self, name, age, animal): self.name = name self.age = age self.animal = animal self.hungry = False self.mood= "happy" def eat(self): print("> %s is eating..." % self.name) if self.is_hungry: self.is_hungry = False else: print("> %s may have eaten too much." % self.name) self.mood = "lethargic " my_pet= Pet("Fido", 3, "dog") my_pet.is_hungry= True print("is my pet hungry? %s"% my_pet.is_hungry) my_pet.eat() print("how about now? %s" % my_pet.is_hungry) print ("My pet is feeling %s" % my_pet.mood)
22.5
62
0.566667
437
0.606944
0
0
0
0
0
0
196
0.272222
c470769346abfe53705868b77ccb1792faae0816
1,260
py
Python
src/repositories/example_repo.py
pybokeh/dagster-examples
459cfbe00585f1d123e49058685c74149efb867d
[ "MIT" ]
null
null
null
src/repositories/example_repo.py
pybokeh/dagster-examples
459cfbe00585f1d123e49058685c74149efb867d
[ "MIT" ]
null
null
null
src/repositories/example_repo.py
pybokeh/dagster-examples
459cfbe00585f1d123e49058685c74149efb867d
[ "MIT" ]
null
null
null
from dagster import job, repository from ops.sklearn_ops import ( fetch_freehand_text_to_generic_data, separate_features_from_target_label, label_encode_target, count_tfid_transform_train, count_tfid_transform_test, create_sgd_classifier_model, predict ) @ job( description="Scikit-Learn multi-class text classification: classify free-hand text computer skills descriptions to generic descriptions" ) def text_classify(): X_train, y_train = separate_features_from_target_label.alias("separate_features_from_target_train")( fetch_freehand_text_to_generic_data.alias("fetch_training_data")() ) df_test = fetch_freehand_text_to_generic_data.alias("fetch_test_data")() y_encoded_train, label_encoder_train = label_encode_target.alias("label_encode_train")(y_train) X_encoded_train, count_vect, tfid_vect = count_tfid_transform_train.alias("count_tfid_transform_train")(X_train) clf = create_sgd_classifier_model(X_encoded_train, y_encoded_train) X_encoded_test = count_tfid_transform_test(df_test, count_vect, tfid_vect) predict(X_encoded_test, clf, label_encoder_train) @repository def examples_repo(): return [ text_classify, ]
33.157895
141
0.768254
0
0
0
0
955
0.757937
0
0
247
0.196032
c4721b4a3c1999fdb50a16efbe7e2d5c42d79e86
551
py
Python
exercicios/Maior_e_Menor_Valores.py
jeversonneves/Python
c31779d8db64b22711fe612cc943da8c5e51788b
[ "MIT" ]
null
null
null
exercicios/Maior_e_Menor_Valores.py
jeversonneves/Python
c31779d8db64b22711fe612cc943da8c5e51788b
[ "MIT" ]
null
null
null
exercicios/Maior_e_Menor_Valores.py
jeversonneves/Python
c31779d8db64b22711fe612cc943da8c5e51788b
[ "MIT" ]
null
null
null
resposta = 'S' soma = quant = media = maior = menor = 0 while resposta in 'Ss': n = int(input('Digite um número: ')) soma += n quant += 1 if quant == 1: maior = menor = n else: if n > maior: maior = n elif n < menor: menor = n resposta = str(input('Quer continuar? [S/N]: ')).upper().strip()[0] media = soma / quant print('Você digitou {} números e a soma foi de {} e media de {}.'.format(quant, soma, media)) print('O maior número {} e o menor número {}.'.format(maior, menor))
30.611111
93
0.548094
0
0
0
0
0
0
0
0
156
0.280576
c472af02ddcb4584d404fd75d6b5093bc3a9b31d
554
py
Python
rbc/opening/opening.py
rebuildingcode/hardware
df38d4b955047fdea69dda6b662c56ac301799a2
[ "BSD-3-Clause" ]
null
null
null
rbc/opening/opening.py
rebuildingcode/hardware
df38d4b955047fdea69dda6b662c56ac301799a2
[ "BSD-3-Clause" ]
27
2019-09-04T06:29:34.000Z
2020-04-19T19:41:44.000Z
rbc/opening/opening.py
rebuildingcode/hardware
df38d4b955047fdea69dda6b662c56ac301799a2
[ "BSD-3-Clause" ]
2
2020-02-28T02:56:31.000Z
2020-02-28T03:12:07.000Z
from shapely.geometry import Polygon from ..point import Point class Opening(Polygon): """ Openings are rectangular only. """ def __init__(self, width, height): self.width = width self.height = height points = [ Point(0, 0), Point(0, height), Point(width, height), Point(width, 0) ] super().__init__(shell=[(pt.x, pt.y) for pt in points]) def plot(self): """ - [ ] plot plan view - [ ] plot elevation view """ pass # pragma: no cover
20.518519
80
0.539711
487
0.879061
0
0
0
0
0
0
142
0.256318
c47376723d72b33e6ef5ded0c99f0808db10a51e
4,252
py
Python
AI/Housing Prices Prediction/HousePricesNN.py
n0rel/self
f9f44af42aa652f9a72279e44ffd8d4387a4bdae
[ "MIT" ]
null
null
null
AI/Housing Prices Prediction/HousePricesNN.py
n0rel/self
f9f44af42aa652f9a72279e44ffd8d4387a4bdae
[ "MIT" ]
null
null
null
AI/Housing Prices Prediction/HousePricesNN.py
n0rel/self
f9f44af42aa652f9a72279e44ffd8d4387a4bdae
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder, MinMaxScaler from numpy.random import uniform import matplotlib.pyplot as plt def relu(x): return x * (x > 0) def relu_deriv(x): return 1 * (x > 0) class NeuralNetwork: """ Our NN will predict a housing price given 6 parameters, meaning: * Input Size: 6 * Error Function: MSE Hidden Layer: * Neurons: Param * Input: 6 * Output: Param * Activation: ReLU Output Layer: * Neurons: 1 * Input: Param * Output: 1 * Activation: Linear """ def __init__(self, hidden_neurons, alpha): self.hidden_neurons = hidden_neurons self.alpha = alpha self.hidden_weights = uniform(low=(-1) * np.sqrt(2 / 6), high=np.sqrt(2 / 6), size=(hidden_neurons, 6)) self.output_weights = uniform(low=-0.1, high=0.1, size=(1, hidden_neurons)) def f_propagate(self, x): z1 = x.dot(self.hidden_weights.transpose()) g = relu(z1) output = g.dot(self.output_weights.transpose()) return [g, output, z1] def fit(self, x, y, epochs): # ERROR CHECKING error = [] for epoch in range(epochs): print(epoch) # ERROR CHECKING error_sum = 0 # Arrays used to store incrementing weight changes hidden_w_sum = np.zeros(shape=self.hidden_weights.shape) output_w_sum = np.zeros(shape=self.output_weights.shape) for sample_x, sample_y in zip(x, y): forward_values = self.f_propagate(sample_x) output_delta = (forward_values[1] - sample_y) * forward_values[0] output_delta1 = forward_values[1] - sample_y # hidden_delta1 = (output_delta1 * self.output_weights).dot(np.outer(relu_deriv(forward_values[2]), sample_x)) # Shape: (Neurons,6) hidden_delta1 = np.outer(output_delta1 * self.output_weights * relu_deriv(forward_values[2]), sample_x) output_w_sum += output_delta hidden_w_sum += hidden_delta1 # ERROR CHECKING error_sum += abs(sample_y - forward_values[1]) # ERROR CHECKING error.append(error_sum / len(x)) self.output_weights -= self.alpha * output_w_sum / len(x) self.hidden_weights -= self.alpha * hidden_w_sum / len(x) plt.plot(error) plt.show() # Import Data training_amount = 4000 input_scaler = MinMaxScaler((-1, 1)) output_scaler = MinMaxScaler((-1, 1)) data = pd.read_csv('USA_Housing.csv').drop(columns=['Address']) data = np.insert(data.to_numpy(), 0, np.ones((1, len(data))), axis=1) x_scaled, y_scaled = input_scaler.fit_transform(data[:, :6]), output_scaler.fit_transform(data[:, 6:7]) x_train, y_train = x_scaled[:training_amount], y_scaled[:training_amount] x_test, y_test = x_scaled[training_amount:], y_scaled[training_amount:] hidden_neurons = 10 # Create NN & train it nn = NeuralNetwork(hidden_neurons, 0.7) nn.fit(x_train, y_train, epochs=75) error = 0 amount_to_check = 20 for x, y in zip(x_test[:amount_to_check, :], y_test[:amount_to_check]): error += abs(output_scaler.inverse_transform(y.reshape(-1, 1))[0][0] - output_scaler.inverse_transform(nn.f_propagate(x)[1].reshape(-1, 1))[0][0]) print( f"{output_scaler.inverse_transform(nn.f_propagate(x)[1].reshape(-1, 1))[0][0]} -> {output_scaler.inverse_transform(y.reshape(-1, 1))[0][0]}") print(f"{(error / len(x_test)):.9f}") """ # Keras Version of NN model = keras.models.Sequential() model.add(keras.layers.Dense(hidden_neurons, input_dim=5, activation='relu', kernel_initializer='he_normal')) model.add(keras.layers.Dense(1, input_dim=hidden_neurons, activation='linear')) model.compile(loss='mse', optimizer='adam', metrics=['mse']) history = model.fit(x_train, y_train, epochs=10, batch_size=10) plt.plot(history.history['mse']) plt.show() for x, y in zip(model.predict(x_test), y_test): print(f"{output_scaler.inverse_transform(y.reshape(-1, 1))[0][0]} -> {output_scaler.inverse_transform(x.reshape(-1, 1))[0][0]}") """
33.480315
149
0.63476
2,302
0.541392
0
0
0
0
0
0
1,480
0.348071
c4737a166e262dfedd58077027d802632dac9651
7,829
py
Python
tests/test_export_keyword_template_catalina_10_15_4.py
PabloKohan/osxphotos
2cf3b6bb674c312240c4b12c5d7b558f15be7c85
[ "MIT" ]
null
null
null
tests/test_export_keyword_template_catalina_10_15_4.py
PabloKohan/osxphotos
2cf3b6bb674c312240c4b12c5d7b558f15be7c85
[ "MIT" ]
null
null
null
tests/test_export_keyword_template_catalina_10_15_4.py
PabloKohan/osxphotos
2cf3b6bb674c312240c4b12c5d7b558f15be7c85
[ "MIT" ]
null
null
null
import pytest from osxphotos._constants import _UNKNOWN_PERSON PHOTOS_DB = "./tests/Test-10.15.4.photoslibrary/database/photos.db" TOP_LEVEL_FOLDERS = ["Folder1"] TOP_LEVEL_CHILDREN = ["SubFolder1", "SubFolder2"] FOLDER_ALBUM_DICT = {"Folder1": [], "SubFolder1": [], "SubFolder2": ["AlbumInFolder"]} ALBUM_NAMES = ["Pumpkin Farm", "AlbumInFolder", "Test Album", "Test Album"] ALBUM_PARENT_DICT = { "Pumpkin Farm": None, "AlbumInFolder": "SubFolder2", "Test Album": None, } ALBUM_FOLDER_NAMES_DICT = { "Pumpkin Farm": [], "AlbumInFolder": ["Folder1", "SubFolder2"], "Test Album": [], } ALBUM_LEN_DICT = {"Pumpkin Farm": 3, "AlbumInFolder": 2, "Test Album": 1} ALBUM_PHOTO_UUID_DICT = { "Pumpkin Farm": [ "F12384F6-CD17-4151-ACBA-AE0E3688539E", "D79B8D77-BFFC-460B-9312-034F2877D35B", "1EB2B765-0765-43BA-A90C-0D0580E6172C", ], "Test Album": [ "F12384F6-CD17-4151-ACBA-AE0E3688539E", "D79B8D77-BFFC-460B-9312-034F2877D35B", ], "AlbumInFolder": [ "3DD2C897-F19E-4CA6-8C22-B027D5A71907", "E9BC5C36-7CD1-40A1-A72B-8B8FAC227D51", ], } UUID_DICT = { "two_albums": "F12384F6-CD17-4151-ACBA-AE0E3688539E", "in_album": "E9BC5C36-7CD1-40A1-A72B-8B8FAC227D51", "xmp": "F12384F6-CD17-4151-ACBA-AE0E3688539E", } def test_exiftool_json_sidecar_keyword_template_long(caplog): import osxphotos from osxphotos._constants import _MAX_IPTC_KEYWORD_LEN import json photosdb = osxphotos.PhotosDB(dbfile=PHOTOS_DB) photos = photosdb.photos(uuid=[UUID_DICT["in_album"]]) json_expected = json.loads( """ [{"_CreatedBy": "osxphotos, https://github.com/RhetTbull/osxphotos", "EXIF:ImageDescription": "Bride Wedding day", "XMP:Description": "Bride Wedding day", "XMP:TagsList": ["wedding", "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"], "IPTC:Keywords": ["wedding", "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"], "XMP:PersonInImage": ["Maria"], "XMP:Subject": ["wedding", "Maria"], "EXIF:DateTimeOriginal": "2019:04:15 14:40:24", "EXIF:OffsetTimeOriginal": "-04:00", "EXIF:ModifyDate": "2019:11:24 13:09:17"}] """ )[0] long_str = "x" * (_MAX_IPTC_KEYWORD_LEN + 1) json_got = photos[0]._exiftool_json_sidecar(keyword_template=[long_str]) json_got = json.loads(json_got)[0] assert "Some keywords exceed max IPTC Keyword length" in caplog.text # some gymnastics to account for different sort order in different pythons for k, v in json_got.items(): if type(v) in (list, tuple): assert sorted(json_expected[k]) == sorted(v) else: assert json_expected[k] == v for k, v in json_expected.items(): if type(v) in (list, tuple): assert sorted(json_got[k]) == sorted(v) else: assert json_got[k] == v for k, v in json_expected.items(): if type(v) in (list, tuple): assert sorted(json_got[k]) == sorted(v) else: assert json_got[k] == v def test_exiftool_json_sidecar_keyword_template(): import osxphotos import json photosdb = osxphotos.PhotosDB(dbfile=PHOTOS_DB) photos = photosdb.photos(uuid=[UUID_DICT["in_album"]]) json_expected = json.loads( """ [{"_CreatedBy": "osxphotos, https://github.com/RhetTbull/osxphotos", "EXIF:ImageDescription": "Bride Wedding day", "XMP:Description": "Bride Wedding day", "XMP:TagsList": ["wedding", "Folder1/SubFolder2/AlbumInFolder"], "IPTC:Keywords": ["wedding", "Folder1/SubFolder2/AlbumInFolder"], "XMP:PersonInImage": ["Maria"], "XMP:Subject": ["wedding", "Maria"], "EXIF:DateTimeOriginal": "2019:04:15 14:40:24", "EXIF:OffsetTimeOriginal": "-04:00", "EXIF:ModifyDate": "2019:11:24 13:09:17"}] """ )[0] json_got = photos[0]._exiftool_json_sidecar(keyword_template=["{folder_album}"]) json_got = json.loads(json_got)[0] # some gymnastics to account for different sort order in different pythons for k, v in json_got.items(): if type(v) in (list, tuple): assert sorted(json_expected[k]) == sorted(v) else: assert json_expected[k] == v for k, v in json_expected.items(): if type(v) in (list, tuple): assert sorted(json_got[k]) == sorted(v) else: assert json_got[k] == v # some gymnastics to account for different sort order in different pythons for k, v in json_got.items(): if type(v) in (list, tuple): assert sorted(json_expected[k]) == sorted(v) else: assert json_expected[k] == v for k, v in json_expected.items(): if type(v) in (list, tuple): assert sorted(json_got[k]) == sorted(v) else: assert json_got[k] == v for k, v in json_expected.items(): if type(v) in (list, tuple): assert sorted(json_got[k]) == sorted(v) else: assert json_got[k] == v def test_xmp_sidecar_keyword_template(): import osxphotos photosdb = osxphotos.PhotosDB(dbfile=PHOTOS_DB) photos = photosdb.photos(uuid=[UUID_DICT["xmp"]]) xmp_expected = """<!-- Created with osxphotos https://github.com/RhetTbull/osxphotos --> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 5.4.0"> <!-- mirrors Photos 5 "Export IPTC as XMP" option --> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:photoshop="http://ns.adobe.com/photoshop/1.0/"> <dc:description>Girls with pumpkins</dc:description> <dc:title>Can we carry this?</dc:title> <!-- keywords and persons listed in <dc:subject> as Photos does --> <dc:subject> <rdf:Seq> <rdf:li>Kids</rdf:li> <rdf:li>Suzy</rdf:li> <rdf:li>Katie</rdf:li> </rdf:Seq> </dc:subject> <photoshop:DateCreated>2018-09-28T15:35:49.063000-04:00</photoshop:DateCreated> </rdf:Description> <rdf:Description rdf:about="" xmlns:Iptc4xmpExt='http://iptc.org/std/Iptc4xmpExt/2008-02-29/'> <Iptc4xmpExt:PersonInImage> <rdf:Bag> <rdf:li>Suzy</rdf:li> <rdf:li>Katie</rdf:li> </rdf:Bag> </Iptc4xmpExt:PersonInImage> </rdf:Description> <rdf:Description rdf:about="" xmlns:digiKam='http://www.digikam.org/ns/1.0/'> <digiKam:TagsList> <rdf:Seq> <rdf:li>Kids</rdf:li> <rdf:li>Pumpkin Farm</rdf:li> <rdf:li>Test Album</rdf:li> <rdf:li>2018</rdf:li> </rdf:Seq> </digiKam:TagsList> </rdf:Description> <rdf:Description rdf:about="" xmlns:xmp='http://ns.adobe.com/xap/1.0/'> <xmp:CreateDate>2018-09-28T15:35:49</xmp:CreateDate> <xmp:ModifyDate>2018-09-28T15:35:49</xmp:ModifyDate> </rdf:Description> <rdf:Description rdf:about="" xmlns:exif='http://ns.adobe.com/exif/1.0/'> </rdf:Description> </rdf:RDF> </x:xmpmeta>""" xmp_expected_lines = [line.strip() for line in xmp_expected.split("\n")] xmp_got = photos[0]._xmp_sidecar( keyword_template=["{created.year}", "{folder_album}"] ) xmp_got_lines = [line.strip() for line in xmp_got.split("\n")] for line_expected, line_got in zip( sorted(xmp_expected_lines), sorted(xmp_got_lines) ): assert line_expected == line_got
35.107623
107
0.606463
0
0
0
0
0
0
0
0
4,434
0.566356
c47490ec669bdd7c9794f49ba2d2ebd89aed558a
32,808
py
Python
video_level_models.py
pomonam/youtube-8m
2d0b9b361785743ec397c6104feb30bb581700e5
[ "Apache-2.0" ]
43
2018-10-03T13:29:45.000Z
2020-10-12T09:33:44.000Z
video_level_models.py
pomonam/LearnablePoolingMethodsForVideoClassification
2d0b9b361785743ec397c6104feb30bb581700e5
[ "Apache-2.0" ]
1
2018-10-01T01:50:56.000Z
2019-01-07T17:53:37.000Z
video_level_models.py
pomonam/LearnablePoolingMethodsForVideoClassification
2d0b9b361785743ec397c6104feb30bb581700e5
[ "Apache-2.0" ]
3
2018-11-20T14:43:17.000Z
2019-07-26T13:25:14.000Z
# Copyright 2018 Deep Topology All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains model definitions.""" # noinspection PyUnresolvedReferences import pathmagic from tensorflow import flags import attention_modules import tensorflow as tf import tensorflow.contrib.slim as slim import models import math FLAGS = flags.FLAGS flags.DEFINE_integer( "moe_num_mixtures", 2, "The number of mixtures (excluding the dummy 'expert') used for MoeModel.") ############################################################################### # Baseline (Benchmark) models ################################################# ############################################################################### flags.DEFINE_float( "moe_l2", 1e-8, "L2 penalty for MoeModel.") flags.DEFINE_integer( "moe_low_rank_gating", -1, "Low rank gating for MoeModel.") flags.DEFINE_bool( "moe_prob_gating", False, "Prob gating for MoeModel.") flags.DEFINE_string( "moe_prob_gating_input", "prob", "input Prob gating for MoeModel.") class MoeModel(models.BaseModel): """A softmax over a mixture of logistic models (with L2 regularization).""" def create_model(self, model_input, vocab_size, is_training, num_mixtures=None, l2_penalty=1e-8, **unused_params): """Creates a Mixture of (Logistic) Experts model. It also includes the possibility of gating the probabilities The model consists of a per-class softmax distribution over a configurable number of logistic classifiers. One of the classifiers in the mixture is not trained, and always predicts 0. Args: model_input: 'batch_size' x 'num_features' matrix of input features. vocab_size: The number of classes in the dataset. is_training: Is this the training phase ? num_mixtures: The number of mixtures (excluding a dummy 'expert' that always predicts the non-existence of an entity). l2_penalty: How much to penalize the squared magnitudes of parameter values. Returns: A dictionary with a tensor containing the probability predictions of the model in the 'predictions' key. The dimensions of the tensor are batch_size x num_classes. """ num_mixtures = num_mixtures or FLAGS.moe_num_mixtures low_rank_gating = FLAGS.moe_low_rank_gating l2_penalty = FLAGS.moe_l2 gating_probabilities = FLAGS.moe_prob_gating gating_input = FLAGS.moe_prob_gating_input input_size = model_input.get_shape().as_list()[1] remove_diag = FLAGS.gating_remove_diag if low_rank_gating == -1: gate_activations = slim.fully_connected( model_input, vocab_size * (num_mixtures + 1), activation_fn=None, biases_initializer=None, weights_regularizer=slim.l2_regularizer(l2_penalty), scope="gates") else: gate_activations1 = slim.fully_connected( model_input, low_rank_gating, activation_fn=None, biases_initializer=None, weights_regularizer=slim.l2_regularizer(l2_penalty), scope="gates1") gate_activations = slim.fully_connected( gate_activations1, vocab_size * (num_mixtures + 1), activation_fn=None, biases_initializer=None, weights_regularizer=slim.l2_regularizer(l2_penalty), scope="gates2") expert_activations = slim.fully_connected( model_input, vocab_size * num_mixtures, activation_fn=None, weights_regularizer=slim.l2_regularizer(l2_penalty), scope="experts") gating_distribution = tf.nn.softmax(tf.reshape( gate_activations, [-1, num_mixtures + 1])) # (Batch * #Labels) x (num_mixtures + 1) expert_distribution = tf.nn.sigmoid(tf.reshape( expert_activations, [-1, num_mixtures])) # (Batch * #Labels) x num_mixtures probabilities_by_class_and_batch = tf.reduce_sum( gating_distribution[:, :num_mixtures] * expert_distribution, 1) probabilities = tf.reshape(probabilities_by_class_and_batch, [-1, vocab_size]) if gating_probabilities: if gating_input == 'prob': gating_weights = tf.get_variable("gating_prob_weights", [vocab_size, vocab_size], initializer=tf.random_normal_initializer( stddev=1 / math.sqrt(vocab_size))) gates = tf.matmul(probabilities, gating_weights) else: gating_weights = tf.get_variable("gating_prob_weights", [input_size, vocab_size], initializer=tf.random_normal_initializer( stddev=1 / math.sqrt(vocab_size))) gates = tf.matmul(model_input, gating_weights) if remove_diag: # removes diagonals coefficients diagonals = tf.matrix_diag_part(gating_weights) gates = gates - tf.multiply(diagonals, probabilities) gates = slim.batch_norm( gates, center=True, scale=True, is_training=is_training, scope="gating_prob_bn") gates = tf.sigmoid(gates) probabilities = tf.multiply(probabilities, gates) return {"predictions": probabilities} class FishMoeModel(models.BaseModel): """A softmax over a mixture of logistic models (with L2 regularization).""" def create_model(self, model_input, vocab_size, is_training, num_mixtures=None, l2_penalty=1e-8, filter_size=2, **unused_params): """Creates a Mixture of (Logistic) Experts model. It also includes the possibility of gating the probabilities The model consists of a per-class softmax distribution over a configurable number of logistic classifiers. One of the classifiers in the mixture is not trained, and always predicts 0. Args: model_input: 'batch_size' x 'num_features' matrix of input features. vocab_size: The number of classes in the dataset. is_training: Is this the training phase ? num_mixtures: The number of mixtures (excluding a dummy 'expert' that always predicts the non-existence of an entity). l2_penalty: How much to penalize the squared magnitudes of parameter values. Returns: A dictionary with a tensor containing the probability predictions of the model in the 'predictions' key. The dimensions of the tensor are batch_size x num_classes. """ num_mixtures = num_mixtures or FLAGS.moe_num_mixtures l2_penalty = FLAGS.moe_l2 gate_activations = slim.fully_connected( model_input, vocab_size * (num_mixtures + 1), activation_fn=None, biases_initializer=None, weights_regularizer=slim.l2_regularizer(l2_penalty), scope="gates") expert_activations = slim.fully_connected( model_input, vocab_size * num_mixtures, activation_fn=None, weights_regularizer=slim.l2_regularizer(l2_penalty), scope="experts") gating_distribution = tf.nn.softmax(tf.reshape( gate_activations, [-1, num_mixtures + 1])) # (Batch * #Labels) x (num_mixtures + 1) expert_distribution = tf.nn.sigmoid(tf.reshape( expert_activations, [-1, num_mixtures])) # (Batch * #Labels) x num_mixtures probabilities_by_class_and_batch = tf.reduce_sum( gating_distribution[:, :num_mixtures] * expert_distribution, 1) probabilities = tf.reshape(probabilities_by_class_and_batch, [-1, vocab_size]) probabilities = tf.layers.batch_normalization(probabilities, training=is_training) fish_gate = fish_modules.FishGate(hidden_size=vocab_size, k=2, dropout_rate=0.9, is_training=is_training) probabilities = fish_gate.forward(probabilities) probabilities = tf.contrib.layers.layer_norm(probabilities) probabilities = tf.layers.dense(probabilities, vocab_size, use_bias=True, activation=tf.nn.softmax) return {"predictions": probabilities} class FishMoeModel2(models.BaseModel): """A softmax over a mixture of logistic models (with L2 regularization).""" def create_model(self, model_input, vocab_size, is_training, num_mixtures=None, l2_penalty=1e-8, filter_size=2, **unused_params): """Creates a Mixture of (Logistic) Experts model. It also includes the possibility of gating the probabilities The model consists of a per-class softmax distribution over a configurable number of logistic classifiers. One of the classifiers in the mixture is not trained, and always predicts 0. Args: model_input: 'batch_size' x 'num_features' matrix of input features. vocab_size: The number of classes in the dataset. is_training: Is this the training phase ? num_mixtures: The number of mixtures (excluding a dummy 'expert' that always predicts the non-existence of an entity). l2_penalty: How much to penalize the squared magnitudes of parameter values. Returns: A dictionary with a tensor containing the probability predictions of the model in the 'predictions' key. The dimensions of the tensor are batch_size x num_classes. """ num_mixtures = num_mixtures or FLAGS.moe_num_mixtures l2_penalty = FLAGS.moe_l2 gate_activations = slim.fully_connected( model_input, vocab_size * (num_mixtures + 1), activation_fn=None, biases_initializer=None, weights_regularizer=slim.l2_regularizer(l2_penalty), scope="gates") expert_activations = slim.fully_connected( model_input, vocab_size * num_mixtures, activation_fn=None, weights_regularizer=slim.l2_regularizer(l2_penalty), scope="experts") gating_distribution = tf.nn.softmax(tf.reshape( gate_activations, [-1, num_mixtures + 1])) # (Batch * #Labels) x (num_mixtures + 1) expert_distribution = tf.nn.sigmoid(tf.reshape( expert_activations, [-1, num_mixtures])) # (Batch * #Labels) x num_mixtures probabilities_by_class_and_batch = tf.reduce_sum( gating_distribution[:, :num_mixtures] * expert_distribution, 1) probabilities = tf.reshape(probabilities_by_class_and_batch, [-1, vocab_size]) fish_gate = fish_modules.FishGate(hidden_size=vocab_size, k=filter_size, dropout_rate=0.8, is_training=is_training) probabilities = fish_gate.forward(probabilities) # probabilities = tf.layers.dense(probabilities, vocab_size, use_bias=True, activation=tf.nn.softmax) return {"predictions": probabilities} class FishMoeModel4(models.BaseModel): """A softmax over a mixture of logistic models (with L2 regularization).""" def create_model(self, model_input, vocab_size, is_training, num_mixtures=None, l2_penalty=1e-8, filter_size=2, **unused_params): """Creates a Mixture of (Logistic) Experts model. It also includes the possibility of gating the probabilities The model consists of a per-class softmax distribution over a configurable number of logistic classifiers. One of the classifiers in the mixture is not trained, and always predicts 0. Args: model_input: 'batch_size' x 'num_features' matrix of input features. vocab_size: The number of classes in the dataset. is_training: Is this the training phase ? num_mixtures: The number of mixtures (excluding a dummy 'expert' that always predicts the non-existence of an entity). l2_penalty: How much to penalize the squared magnitudes of parameter values. Returns: A dictionary with a tensor containing the probability predictions of the model in the 'predictions' key. The dimensions of the tensor are batch_size x num_classes. """ num_mixtures = num_mixtures or FLAGS.moe_num_mixtures l2_penalty = FLAGS.moe_l2 fc1 = tf.layers.dense(model_input, vocab_size, activation=tf.nn.relu, kernel_regularizer=slim.l2_regularizer(l2_penalty)) fc1 = tf.layers.batch_normalization(fc1, training=is_training) if is_training: fc1 = tf.nn.dropout(fc1, keep_prob=0.9) fc2 = tf.layers.dense(fc1, vocab_size, activation=tf.nn.relu, kernel_regularizer=slim.l2_regularizer(l2_penalty)) fc2 = tf.layers.batch_normalization(fc2, training=is_training) if is_training: fc2 = tf.nn.dropout(fc2, keep_prob=0.9) fc3 = tf.layers.dense(fc2, vocab_size, activation=tf.nn.sigmoid, kernel_regularizer=slim.l2_regularizer(l2_penalty)) fc3 = tf.layers.batch_normalization(fc3, training=is_training) if is_training: fc3 = tf.nn.dropout(fc3, keep_prob=0.9) fish_gate = fish_modules.FishGate(hidden_size=vocab_size, k=filter_size, dropout_rate=0.9, is_training=is_training) probabilities = fish_gate.forward(fc3) # probabilities = tf.layers.dense(probabilities, vocab_size, use_bias=True, activation=tf.nn.softmax) return {"predictions": probabilities} class FishMoeModel3(models.BaseModel): """A softmax over a mixture of logistic models (with L2 regularization).""" def create_model(self, model_input, vocab_size, is_training, num_mixtures=None, l2_penalty=1e-6, filter_size=2, **unused_params): """Creates a Mixture of (Logistic) Experts model. It also includes the possibility of gating the probabilities The model consists of a per-class softmax distribution over a configurable number of logistic classifiers. One of the classifiers in the mixture is not trained, and always predicts 0. Args: model_input: 'batch_size' x 'num_features' matrix of input features. vocab_size: The number of classes in the dataset. is_training: Is this the training phase ? num_mixtures: The number of mixtures (excluding a dummy 'expert' that always predicts the non-existence of an entity). l2_penalty: How much to penalize the squared magnitudes of parameter values. Returns: A dictionary with a tensor containing the probability predictions of the model in the 'predictions' key. The dimensions of the tensor are batch_size x num_classes. """ num_mixtures = num_mixtures or FLAGS.moe_num_mixtures l2_penalty = FLAGS.moe_l2 gate_activations = slim.fully_connected( model_input, vocab_size * (num_mixtures + 1), activation_fn=None, biases_initializer=None, weights_regularizer=slim.l2_regularizer(l2_penalty), scope="gates") expert_activations = slim.fully_connected( model_input, vocab_size * num_mixtures, activation_fn=None, weights_regularizer=slim.l2_regularizer(l2_penalty), scope="experts") gating_distribution = tf.nn.softmax(tf.reshape( gate_activations, [-1, num_mixtures + 1])) # (Batch * #Labels) x (num_mixtures + 1) expert_distribution = tf.nn.sigmoid(tf.reshape( expert_activations, [-1, num_mixtures])) # (Batch * #Labels) x num_mixtures probabilities_by_class_and_batch = tf.reduce_sum( gating_distribution[:, :num_mixtures] * expert_distribution, 1) probabilities0 = tf.reshape(probabilities_by_class_and_batch, [-1, vocab_size]) probabilities0 = tf.layers.batch_normalization(probabilities0, training=is_training) r_activation0 = tf.layers.dense(probabilities0, vocab_size * filter_size, use_bias=True, activation=tf.nn.relu) r_activation0 = tf.layers.batch_normalization(r_activation0, training=is_training) if is_training: r_activation0 = tf.layers.dropout(r_activation0, 0.9) r_activation1 = tf.layers.dense(r_activation0, vocab_size, use_bias=True, activation=None) probabilities1 = probabilities0 + r_activation1 probabilities1 = tf.contrib.layers.layer_norm(probabilities1) probabilities1 = tf.layers.batch_normalization(probabilities1, training=is_training) probabilities2 = tf.layers.dense(probabilities1, vocab_size, use_bias=True, activation=tf.nn.softmax) return {"predictions": probabilities2} class MoeModel2(models.BaseModel): """A softmax over a mixture of logistic models (with L2 regularization).""" def create_model(self, model_input, vocab_size, is_training, num_mixtures=None, l2_penalty=1e-8, **unused_params): """Creates a Mixture of (Logistic) Experts model. It also includes the possibility of gating the probabilities The model consists of a per-class softmax distribution over a configurable number of logistic classifiers. One of the classifiers in the mixture is not trained, and always predicts 0. Args: model_input: 'batch_size' x 'num_features' matrix of input features. vocab_size: The number of classes in the dataset. is_training: Is this the training phase ? num_mixtures: The number of mixtures (excluding a dummy 'expert' that always predicts the non-existence of an entity). l2_penalty: How much to penalize the squared magnitudes of parameter values. Returns: A dictionary with a tensor containing the probability predictions of the model in the 'predictions' key. The dimensions of the tensor are batch_size x num_classes. """ num_mixtures = 3 low_rank_gating = FLAGS.moe_low_rank_gating l2_penalty = FLAGS.moe_l2 gating_probabilities = FLAGS.moe_prob_gating gating_input = FLAGS.moe_prob_gating_input if low_rank_gating == -1: gate_activations = slim.fully_connected( model_input, vocab_size * (num_mixtures + 1), activation_fn=None, biases_initializer=None, weights_regularizer=slim.l2_regularizer(l2_penalty), scope="gates") else: gate_activations1 = slim.fully_connected( model_input, low_rank_gating, activation_fn=None, biases_initializer=None, weights_regularizer=slim.l2_regularizer(l2_penalty), scope="gates1") gate_activations = slim.fully_connected( gate_activations1, vocab_size * (num_mixtures + 1), activation_fn=None, biases_initializer=None, weights_regularizer=slim.l2_regularizer(l2_penalty), scope="gates2") expert_activations = slim.fully_connected( model_input, vocab_size * num_mixtures, activation_fn=None, weights_regularizer=slim.l2_regularizer(l2_penalty), scope="experts") gating_distribution = tf.nn.softmax(tf.reshape( gate_activations, [-1, num_mixtures + 1])) # (Batch * #Labels) x (num_mixtures + 1) expert_distribution = tf.nn.sigmoid(tf.reshape( expert_activations, [-1, num_mixtures])) # (Batch * #Labels) x num_mixtures probabilities_by_class_and_batch = tf.reduce_sum( gating_distribution[:, :num_mixtures] * expert_distribution, 1) probabilities = tf.reshape(probabilities_by_class_and_batch, [-1, vocab_size]) filter1 = tf.layers.dense(probabilities, vocab_size * 2, use_bias=True, activation=tf.nn.relu, name="v-filter1") filter1 = tf.layers.batch_normalization(filter1, training=is_training) if is_training: filter1 = tf.nn.dropout(filter1, 0.8) filter2 = tf.layers.dense(filter1, vocab_size, use_bias=False, activation=None, name="v-filter2") probabilities = probabilities + filter2 probabilities = tf.nn.relu(probabilities) probabilities = tf.layers.batch_normalization(probabilities, training=is_training) probabilities = tf.layers.dense(probabilities, vocab_size, use_bias=True, activation=tf.nn.sigmoid, name="v-final_output") return {"predictions": probabilities} class JuhanMoeModel(models.BaseModel): """A softmax over a mixture of logistic models (with L2 regularization).""" def create_model(self, model_input, vocab_size, is_training, num_mixtures=None, l2_penalty=1e-8, **unused_params): """Creates a Mixture of (Logistic) Experts model. The model consists of a per-class softmax distribution over a configurable number of logistic classifiers. One of the classifiers in the mixture is not trained, and always predicts 0. Args: model_input: 'batch_size' x 'num_features' matrix of input features. vocab_size: The number of classes in the dataset. num_mixtures: The number of mixtures (excluding a dummy 'expert' that always predicts the non-existence of an entity). l2_penalty: How much to penalize the squared magnitudes of parameter values. Returns: A dictionary with a tensor containing the probability predictions of the model in the 'predictions' key. The dimensions of the tensor are batch_size x num_classes. """ num_mixtures = 3 gate_activations = slim.fully_connected( model_input, vocab_size * (num_mixtures + 1), activation_fn=None, biases_initializer=None, weights_regularizer=slim.l2_regularizer(l2_penalty), scope="gates") expert_activations = slim.fully_connected( model_input, vocab_size * num_mixtures, activation_fn=None, weights_regularizer=slim.l2_regularizer(l2_penalty), scope="experts") gating_distribution = tf.nn.softmax(tf.reshape( gate_activations, [-1, num_mixtures + 1])) # (Batch * #Labels) x (num_mixtures + 1) expert_distribution = tf.nn.sigmoid(tf.reshape( expert_activations, [-1, num_mixtures])) # (Batch * #Labels) x num_mixtures final_probabilities_by_class_and_batch = tf.reduce_sum( gating_distribution[:, :num_mixtures] * expert_distribution, 1) probabilities = tf.reshape(final_probabilities_by_class_and_batch, [-1, vocab_size]) if is_training: probabilities = tf.nn.dropout(probabilities, 0.8) filter1 = tf.layers.dense(probabilities, vocab_size * 2, use_bias=True, activation=tf.nn.leaky_relu, name="v-filter1") filter1 = tf.layers.batch_normalization(filter1, training=is_training) if is_training: filter1 = tf.nn.dropout(filter1, 0.8) filter2 = tf.layers.dense(filter1, vocab_size, use_bias=False, activation=None, name="v-filter2") probabilities = probabilities + filter2 probabilities = tf.nn.leaky_relu(probabilities) probabilities = tf.layers.batch_normalization(probabilities, training=is_training) probabilities = tf.layers.dense(probabilities, vocab_size, use_bias=True, activation=tf.nn.sigmoid, name="v-final_output") return {"predictions": probabilities} class FourLayerBatchNeuralModel(models.BaseModel): def create_model(self, model_input, vocab_size, is_training, l2_penalty=1e-7, **unused_params): model_input_dim = model_input.get_shape().as_list()[1] fc1_weights = tf.get_variable("fc1_weights", [model_input_dim, vocab_size], initializer=tf.contrib.layers.xavier_initializer()) tf.summary.histogram("fc1_weights", fc1_weights) fc1_activation = tf.matmul(model_input, fc1_weights) fc1_activation = tf.nn.relu(fc1_activation) fc1_activation = slim.batch_norm( fc1_activation, center=True, scale=True, is_training=is_training, scope="fc1_activation_bn") fc2_weights = tf.get_variable("fc2_weights", [vocab_size, vocab_size], initializer=tf.contrib.layers.xavier_initializer()) tf.summary.histogram("fc2_weights", fc2_weights) fc2_activation = tf.matmul(fc1_activation, fc2_weights) fc2_activation = tf.nn.relu(fc2_activation) fc2_activation = slim.batch_norm( fc2_activation, center=True, scale=True, is_training=is_training, scope="fc2_activation_bn") fc3_weights = tf.get_variable("fc3_weights", [vocab_size, vocab_size], initializer=tf.contrib.layers.xavier_initializer()) tf.summary.histogram("fc3_weights", fc3_weights) fc3_activation = tf.matmul(fc2_activation, fc3_weights) fc3_activation = tf.nn.relu(fc3_activation) fc3_activation = slim.batch_norm( fc3_activation, center=True, scale=True, is_training=is_training, scope="fc3_activation_bn") fc4_weights = tf.get_variable("fc4_weights", [vocab_size, vocab_size], initializer=tf.contrib.layers.xavier_initializer()) fc4_activation = tf.matmul(fc3_activation, fc4_weights) cluster_biases = tf.get_variable("fc4_bias", [vocab_size], initializer=tf.constant_initializer(0.01)) tf.summary.histogram("fc4_bias", cluster_biases) fc4_activation += cluster_biases fc4_activation = tf.sigmoid(fc4_activation) return {"predictions": fc4_activation} class ClassLearningThreeNnModel(models.BaseModel): def create_model(self, model_input, vocab_size, is_training, l2_penalty=1e-8, ortho_reg=0, **unused_params): fc1 = slim.fully_connected( model_input, vocab_size, activation_fn=None, biases_initializer=None, weights_regularizer=slim.l2_regularizer(l2_penalty)) fc1 = tf.contrib.layers.layer_norm(inputs=fc1, center=True, scale=True, activation_fn=tf.nn.leaky_relu) if is_training: fc1 = tf.nn.dropout(fc1, keep_prob=0.5) fc2 = slim.fully_connected( fc1, vocab_size, activation_fn=None, biases_initializer=None, weights_regularizer=slim.l2_regularizer(l2_penalty)) fc2 = tf.contrib.layers.layer_norm(inputs=fc2, center=True, scale=True, activation_fn=tf.nn.leaky_relu) if is_training: fc2 = tf.nn.dropout(fc2, keep_prob=0.5) fc3 = slim.fully_connected( fc2, vocab_size, activation_fn=tf.nn.sigmoid, biases_initializer=tf.constant_initializer(0.1), weights_regularizer=slim.l2_regularizer(l2_penalty)) return {"predictions": fc3, "regularization_loss": ortho_reg} class ClassLearningFourNnModel(models.BaseModel): def create_model(self, model_input, vocab_size, is_training, l2_penalty=1e-8, ortho_reg=0, **unused_params): fc1 = slim.fully_connected( model_input, vocab_size, activation_fn=None, biases_initializer=None, weights_regularizer=slim.l2_regularizer(l2_penalty)) fc1 = tf.contrib.layers.layer_norm(inputs=fc1, center=True, scale=True, activation_fn=tf.nn.leaky_relu) # if is_training: # fc1 = tf.nn.dropout(fc1, keep_prob=0.5) fc2 = slim.fully_connected( fc1, vocab_size, activation_fn=None, biases_initializer=None, weights_regularizer=slim.l2_regularizer(l2_penalty)) fc2 = tf.contrib.layers.layer_norm(inputs=fc2, center=True, scale=True, activation_fn=tf.nn.leaky_relu) # if is_training: # fc2 = tf.nn.dropout(fc2, keep_prob=0.5) fc3 = slim.fully_connected( fc2, vocab_size, activation_fn=None, biases_initializer=None, weights_regularizer=slim.l2_regularizer(l2_penalty)) fc3 = tf.contrib.layers.layer_norm(inputs=fc3, center=True, scale=True, activation_fn=tf.nn.leaky_relu) fc4 = slim.fully_connected( fc3, vocab_size, activation_fn=tf.nn.sigmoid, biases_initializer=tf.constant_initializer(0.1), weights_regularizer=slim.l2_regularizer(l2_penalty)) return {"predictions": fc4, "regularization_loss": ortho_reg}
43.802403
119
0.596745
31,214
0.951414
0
0
0
0
0
0
9,976
0.304072
c474a170eb0e1f1c4fbbb4250190b02bde10d265
4,537
py
Python
tests/test_refinement.py
qfardet/Pandora2D
9b36d29a199f2acc67499d22b796c7dd6867bc5f
[ "Apache-2.0" ]
4
2022-02-09T10:07:03.000Z
2022-03-08T05:16:30.000Z
tests/test_refinement.py
qfardet/Pandora2D
9b36d29a199f2acc67499d22b796c7dd6867bc5f
[ "Apache-2.0" ]
null
null
null
tests/test_refinement.py
qfardet/Pandora2D
9b36d29a199f2acc67499d22b796c7dd6867bc5f
[ "Apache-2.0" ]
4
2022-02-03T09:21:28.000Z
2022-03-25T07:32:13.000Z
#!/usr/bin/env python # coding: utf8 # # Copyright (c) 2021 Centre National d'Etudes Spatiales (CNES). # # This file is part of PANDORA2D # # https://github.com/CNES/Pandora2D # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Test refinement step """ import unittest import numpy as np import xarray as xr import pytest from pandora2d import refinement, common class TestRefinement(unittest.TestCase): """ TestRefinement class allows to test the refinement module """ @staticmethod def test_check_conf(): """ Test the interpolation method """ refinement.AbstractRefinement(**{"refinement_method": "interpolation"}) # type: ignore with pytest.raises(KeyError): refinement.AbstractRefinement(**{"refinement_method": "wta"}) # type: ignore @staticmethod def test_refinement_method_subpixel(): """ test refinement """ cv = np.zeros((3, 3, 5, 5)) cv[:, :, 2, 2] = np.ones([3, 3]) cv[:, :, 2, 3] = np.ones([3, 3]) cv[:, :, 3, 2] = np.ones([3, 3]) cv[:, :, 3, 3] = np.ones([3, 3]) c_row = [0, 1, 2] c_col = [0, 1, 2] # First pixel in the image that is fully computable (aggregation windows are complete) row = np.arange(c_row[0], c_row[-1] + 1) col = np.arange(c_col[0], c_col[-1] + 1) disparity_range_col = np.arange(-2, 2 + 1) disparity_range_row = np.arange(-2, 2 + 1) cost_volumes_test = xr.Dataset( {"cost_volumes": (["row", "col", "disp_col", "disp_row"], cv)}, coords={"row": row, "col": col, "disp_col": disparity_range_col, "disp_row": disparity_range_row}, ) cost_volumes_test.attrs["measure"] = "zncc" cost_volumes_test.attrs["window_size"] = 1 cost_volumes_test.attrs["type_measure"] = "max" data = np.array( ([[0.4833878, 0.4833878, 0.4833878], [0.4833878, 0.4833878, 0.4833878], [0.4833878, 0.4833878, 0.4833878]]), dtype=np.float64, ) dataset_disp_map = common.dataset_disp_maps(data, data) test = refinement.AbstractRefinement(**{"refinement_method": "interpolation"}) # type: ignore delta_x, delta_y = test.refinement_method(cost_volumes_test, dataset_disp_map) np.testing.assert_allclose(data, delta_y, rtol=1e-06) np.testing.assert_allclose(data, delta_x, rtol=1e-06) @staticmethod def test_refinement_method_pixel(): """ test refinement """ cv = np.zeros((3, 3, 5, 5)) cv[:, :, 1, 3] = np.ones([3, 3]) c_row = [0, 1, 2] c_col = [0, 1, 2] # First pixel in the image that is fully computable (aggregation windows are complete) row = np.arange(c_row[0], c_row[-1] + 1) col = np.arange(c_col[0], c_col[-1] + 1) disparity_range_col = np.arange(-2, 2 + 1) disparity_range_row = np.arange(-2, 2 + 1) cost_volumes_test = xr.Dataset( {"cost_volumes": (["row", "col", "disp_col", "disp_row"], cv)}, coords={"row": row, "col": col, "disp_col": disparity_range_col, "disp_row": disparity_range_row}, ) cost_volumes_test.attrs["measure"] = "zncc" cost_volumes_test.attrs["window_size"] = 1 cost_volumes_test.attrs["type_measure"] = "max" gt_delta_y = np.array( ([[-1, -1, -1], [-1, -1, -1], [-1, -1, -1]]), dtype=np.float64, ) gt_delta_x = np.array( ([[1, 1, 1], [1, 1, 1], [1, 1, 1]]), dtype=np.float64, ) dataset_disp_map = common.dataset_disp_maps(gt_delta_y, gt_delta_x) test = refinement.AbstractRefinement(**{"refinement_method": "interpolation"}) # type: ignore delta_x, delta_y = test.refinement_method(cost_volumes_test, dataset_disp_map) np.testing.assert_allclose(gt_delta_y, delta_y, rtol=1e-06) np.testing.assert_allclose(gt_delta_x, delta_x, rtol=1e-06)
32.407143
120
0.60745
3,664
0.807582
0
0
3,528
0.777606
0
0
1,535
0.338329
c474f216680e6a9b4d600c4b0a1221fea638bba3
9,353
py
Python
goblet/tests/test_scheduler.py
Aaron-Gill/goblet
30c0dd73b2f39e443adb2ccda6f9009e980c53ee
[ "Apache-2.0" ]
null
null
null
goblet/tests/test_scheduler.py
Aaron-Gill/goblet
30c0dd73b2f39e443adb2ccda6f9009e980c53ee
[ "Apache-2.0" ]
null
null
null
goblet/tests/test_scheduler.py
Aaron-Gill/goblet
30c0dd73b2f39e443adb2ccda6f9009e980c53ee
[ "Apache-2.0" ]
null
null
null
from unittest.mock import Mock from goblet import Goblet from goblet.resources.scheduler import Scheduler from goblet.test_utils import ( get_responses, get_response, mock_dummy_function, dummy_function, ) class TestScheduler: def test_add_schedule(self, monkeypatch): app = Goblet(function_name="goblet_example") monkeypatch.setenv("GOOGLE_PROJECT", "TEST_PROJECT") monkeypatch.setenv("GOOGLE_LOCATION", "us-central1") app.schedule("* * * * *", description="test")(dummy_function) scheduler = app.handlers["schedule"] assert len(scheduler.resources) == 1 scheule_json = { "name": "projects/TEST_PROJECT/locations/us-central1/jobs/goblet_example-dummy_function", "schedule": "* * * * *", "timeZone": "UTC", "description": "test", "attemptDeadline": None, "retry_config": None, "httpTarget": { "body": None, "headers": { "X-Goblet-Type": "schedule", "X-Goblet-Name": "dummy_function", }, "httpMethod": "GET", "oidcToken": {}, }, } assert scheduler.resources["dummy_function"]["job_json"] == scheule_json assert scheduler.resources["dummy_function"]["func"] == dummy_function def test_multiple_schedules(self, monkeypatch): app = Goblet(function_name="goblet_example") monkeypatch.setenv("GOOGLE_PROJECT", "TEST_PROJECT") monkeypatch.setenv("GOOGLE_LOCATION", "us-central1") app.schedule("1 * * * *", description="test")(dummy_function) app.schedule("2 * * * *", headers={"test": "header"})(dummy_function) app.schedule("3 * * * *", httpMethod="POST")(dummy_function) scheduler = app.handlers["schedule"] assert len(scheduler.resources) == 3 scheule_json = { "name": "projects/TEST_PROJECT/locations/us-central1/jobs/goblet_example-dummy_function", "schedule": "1 * * * *", "timeZone": "UTC", "description": "test", "attemptDeadline": None, "retry_config": None, "httpTarget": { "body": None, "headers": { "X-Goblet-Type": "schedule", "X-Goblet-Name": "dummy_function", }, "httpMethod": "GET", "oidcToken": {}, }, } assert scheduler.resources["dummy_function"]["job_json"] == scheule_json assert ( scheduler.resources["dummy_function-2"]["job_json"]["httpTarget"][ "headers" ]["test"] == "header" ) assert ( scheduler.resources["dummy_function-2"]["job_json"]["httpTarget"][ "headers" ]["X-Goblet-Name"] == "dummy_function-2" ) assert ( scheduler.resources["dummy_function-3"]["job_json"]["httpTarget"][ "headers" ]["X-Goblet-Name"] == "dummy_function-3" ) assert ( scheduler.resources["dummy_function-3"]["job_json"]["httpTarget"][ "httpMethod" ] == "POST" ) def test_call_scheduler(self, monkeypatch): app = Goblet(function_name="goblet_example") monkeypatch.setenv("GOOGLE_PROJECT", "TEST_PROJECT") monkeypatch.setenv("GOOGLE_LOCATION", "us-central1") mock = Mock() app.schedule("* * * * *", description="test")(mock_dummy_function(mock)) headers = { "X-Goblet-Name": "dummy_function", "X-Goblet-Type": "schedule", "X-Cloudscheduler": True, } mock_event = Mock() mock_event.headers = headers app(mock_event, None) assert mock.call_count == 1 def test_deploy_schedule(self, monkeypatch): monkeypatch.setenv("GOOGLE_PROJECT", "goblet") monkeypatch.setenv("GOOGLE_LOCATION", "us-central1") monkeypatch.setenv("GOBLET_TEST_NAME", "schedule-deploy") monkeypatch.setenv("GOBLET_HTTP_TEST", "REPLAY") goblet_name = "goblet_example" scheduler = Scheduler(goblet_name) scheduler.register_job( "test-job", None, kwargs={"schedule": "* * * * *", "kwargs": {}} ) scheduler.deploy() responses = get_responses("schedule-deploy") assert goblet_name in responses[0]["body"]["name"] assert ( responses[1]["body"]["httpTarget"]["headers"]["X-Goblet-Name"] == "test-job" ) assert ( responses[1]["body"]["httpTarget"]["headers"]["X-Goblet-Type"] == "schedule" ) assert responses[1]["body"]["schedule"] == "* * * * *" def test_deploy_schedule_cloudrun(self, monkeypatch): monkeypatch.setenv("GOOGLE_PROJECT", "goblet") monkeypatch.setenv("GOOGLE_LOCATION", "us-central1") monkeypatch.setenv("GOBLET_TEST_NAME", "schedule-deploy-cloudrun") monkeypatch.setenv("GOBLET_HTTP_TEST", "REPLAY") scheduler = Scheduler("goblet", backend="cloudrun") cloudrun_url = "https://goblet-12345.a.run.app" service_account = "SERVICE_ACCOUNT@developer.gserviceaccount.com" scheduler.register_job( "test-job", None, kwargs={"schedule": "* * * * *", "kwargs": {}} ) scheduler._deploy(config={"scheduler": {"serviceAccount": service_account}}) responses = get_responses("schedule-deploy-cloudrun") assert responses[0]["body"]["status"]["url"] == cloudrun_url assert ( responses[1]["body"]["httpTarget"]["oidcToken"]["serviceAccountEmail"] == service_account ) assert ( responses[1]["body"]["httpTarget"]["oidcToken"]["audience"] == cloudrun_url ) assert responses[1]["body"]["schedule"] == "* * * * *" def test_deploy_multiple_schedule(self, monkeypatch): monkeypatch.setenv("GOOGLE_PROJECT", "goblet") monkeypatch.setenv("GOOGLE_LOCATION", "us-central1") monkeypatch.setenv("GOBLET_TEST_NAME", "schedule-deploy-multiple") monkeypatch.setenv("GOBLET_HTTP_TEST", "REPLAY") goblet_name = "goblet-test-schedule" scheduler = Scheduler(goblet_name) scheduler.register_job( "test-job", None, kwargs={"schedule": "* * 1 * *", "kwargs": {}} ) scheduler.register_job( "test-job", None, kwargs={"schedule": "* * 2 * *", "kwargs": {"httpMethod": "POST"}}, ) scheduler.register_job( "test-job", None, kwargs={ "schedule": "* * 3 * *", "kwargs": {"headers": {"X-HEADER": "header"}}, }, ) scheduler.deploy() post_job_1 = get_response( "schedule-deploy-multiple", "post-v1-projects-goblet-locations-us-central1-jobs_1.json", ) post_job_2 = get_response( "schedule-deploy-multiple", "post-v1-projects-goblet-locations-us-central1-jobs_2.json", ) post_job_3 = get_response( "schedule-deploy-multiple", "post-v1-projects-goblet-locations-us-central1-jobs_3.json", ) assert ( post_job_1["body"]["httpTarget"]["headers"]["X-Goblet-Name"] == "test-job" ) assert ( post_job_2["body"]["httpTarget"]["headers"]["X-Goblet-Name"] == "test-job-2" ) assert post_job_2["body"]["httpTarget"]["httpMethod"] == "POST" assert ( post_job_3["body"]["httpTarget"]["headers"]["X-Goblet-Name"] == "test-job-3" ) assert post_job_3["body"]["httpTarget"]["headers"]["X-HEADER"] == "header" def test_destroy_schedule(self, monkeypatch): monkeypatch.setenv("GOOGLE_PROJECT", "goblet") monkeypatch.setenv("GOOGLE_LOCATION", "us-central1") monkeypatch.setenv("GOBLET_TEST_NAME", "schedule-destroy") monkeypatch.setenv("GOBLET_HTTP_TEST", "REPLAY") goblet_name = "goblet_example" scheduler = Scheduler(goblet_name) scheduler.register_job( "test-job", None, kwargs={"schedule": "* * * * *", "kwargs": {}} ) scheduler.destroy() responses = get_responses("schedule-destroy") assert len(responses) == 1 assert responses[0]["body"] == {} def test_sync_schedule(self, monkeypatch): monkeypatch.setenv("GOOGLE_PROJECT", "goblet") monkeypatch.setenv("GOOGLE_LOCATION", "us-central1") monkeypatch.setenv("GOBLET_TEST_NAME", "schedule-sync") monkeypatch.setenv("GOBLET_HTTP_TEST", "REPLAY") goblet_name = "goblet" scheduler = Scheduler(goblet_name) scheduler.register_job( "scheduled_job", None, kwargs={"schedule": "* * * * *", "kwargs": {}} ) scheduler.sync(dryrun=True) scheduler.sync(dryrun=False) responses = get_responses("schedule-sync") assert len(responses) == 3 assert responses[1] == responses[2] assert responses[0]["body"] == {}
36.678431
101
0.5626
9,128
0.975944
0
0
0
0
0
0
3,303
0.353149
c475cdfc5c22b9c5d0eee35b59b44abcb5b1b364
1,027
py
Python
arachnado/rpc/sites.py
wigginzz/arachnado
8de92625262958e886263b4ccb189f4fc62d7400
[ "MIT" ]
2
2017-12-26T14:50:14.000Z
2018-06-12T07:04:08.000Z
arachnado/rpc/sites.py
wigginzz/arachnado
8de92625262958e886263b4ccb189f4fc62d7400
[ "MIT" ]
null
null
null
arachnado/rpc/sites.py
wigginzz/arachnado
8de92625262958e886263b4ccb189f4fc62d7400
[ "MIT" ]
null
null
null
import logging from functools import partial from arachnado.storages.mongotail import MongoTailStorage class Sites(object): """ 'Known sites' object exposed via JSON-RPC """ logger = logging.getLogger(__name__) def __init__(self, handler, site_storage, **kwargs): self.handler = handler self.storage = site_storage # type: MongoTailStorage def list(self): return self.storage.fetch() def post(self, site): self.storage.create(site) def patch(self, site): self.storage.update(site) def delete(self, site): self.storage.delete(site) def subscribe(self): for event_name in self.storage.available_events: self.storage.subscribe( event_name, partial(self._publish, event=event_name) ) def _on_close(self): self.storage.unsubscribe(self.storage.available_events) def _publish(self, event, data): self.handler.write_event('sites.{}'.format(event), data)
26.333333
64
0.650438
920
0.895813
0
0
0
0
0
0
83
0.080818
c476f31483a0cfb0e93a77ded50e7c656f3f727f
16,628
py
Python
src/players.py
deacona/the-ball-is-round
8e91a72084d13d754deb82e4852fa37a86a77084
[ "MIT" ]
null
null
null
src/players.py
deacona/the-ball-is-round
8e91a72084d13d754deb82e4852fa37a86a77084
[ "MIT" ]
null
null
null
src/players.py
deacona/the-ball-is-round
8e91a72084d13d754deb82e4852fa37a86a77084
[ "MIT" ]
null
null
null
"""players module. Used for players data processes """ import numpy as np import pandas as pd import src.config as config import src.utilities as utilities from src.utilities import logging pd.set_option("display.max_columns", 500) pd.set_option("display.expand_frame_repr", False) # master_file = config.MASTER_FILES["ftb_players"] # distance_columns = ["Age", "ChancesInvolved", "DefensiveActions", "FoulsCommited", "FoulsSuffered", "Height", "Minutes", "NPG+A", "Points", "Weight", "SuccessfulPasses"] def get_outfile(source_name): """Return outfile stub for given source. INPUT: source_name: String containing name of the data source OUTPUT: outfile_stub: Stub to use when saving output """ logging.info("Mapping {0} to outfile".format(source_name)) if source_name == "tmk_cnt": outfile_stub = "players_contract" elif source_name == "tmk_psm": outfile_stub = "players_performance" logging.debug(outfile_stub) return outfile_stub def clean_data(source_name, directory=config.MASTER_DIR): """Clean raw player data and save processed version. INPUT: source_name: String containing name of the data source directory: Directory to save output to OUTPUT: df: Dataframe containing the cleaned data """ logging.info("Loading {0} data".format(source_name)) if source_name == "tmk_cnt": source_header = [ "Shirt number", "Position", "Name", "Date of birth", "Nationality", "Height", "Foot", "Joined", "Signed from", "Contract expires", "Market value", ] drop_cols = ["Nationality", "Signed from", "Competition"] notna_cols = ["Market value"] elif source_name == "tmk_psm": source_header = [ "Shirt number", "Position", "Name", "Age", "Nationality", "In squad", "Games started", "Goals", "Assists", "Yellow cards", "Second yellow cards", "Red cards", "Substitutions on", "Substitutions off", "PPG", "Minutes played", ] drop_cols = ["Nationality"] notna_cols = ["In squad"] df = utilities.folder_loader( source_name[:3], source_name, "comp_season", source_header=source_header ) ## Name and Position are mis-aligned in the source files df["Name"].fillna(method="bfill", inplace=True) df["Position"] = df.Name.shift(-1) df.loc[df.Position == df.Name, "Position"] = df.Name.shift(-2) df.drop(axis=1, columns=drop_cols, inplace=True) df.dropna(subset=notna_cols, inplace=True) df = df.apply(lambda x: x.str.strip() if x.dtype == "object" else x) df = df.replace("-", np.nan) df = df.replace("Was not used during this season", np.nan) df = df.replace("Not in squad during this season", np.nan) df = df.replace("Not used during this season", np.nan) df["Shirt number"] = pd.to_numeric(df["Shirt number"], downcast="integer") df["Position group"] = None df.loc[ (df.Position.str.upper().str.contains("KEEPER")) | (df.Position.str.upper().str.contains("GOAL")), "Position group", ] = "G" df.loc[ (df.Position.str.upper().str.contains("BACK")) | (df.Position.str.upper().str.contains("DEF")), "Position group", ] = "D" df.loc[ (df.Position.str.upper().str.contains("MID")) | (df.Position.str.upper().str.contains("MIT")) | (df.Position.str.upper().str.contains("WING")), "Position group", ] = "M" df.loc[ (df.Position.str.upper().str.contains("STRIKER")) | (df.Position.str.upper().str.contains("FORW")), "Position group", ] = "F" if source_name == "tmk_cnt": df["Age"] = ( df["Date of birth"].str.extract(r".*([0-9]{2})", expand=False).astype("int") ) df["Date of birth"] = pd.to_datetime( df["Date of birth"].str.extract(r"(.*) \([0-9]{2}\)", expand=False), format="%b %d, %Y", ) df["Joined"] = pd.to_datetime(df.Joined, format="%b %d, %Y") df["Contract expires"] = pd.to_datetime( df["Contract expires"], format="%d.%m.%Y" ) df["Height"] = ( df["Height"] .str.strip() .str.replace(" ", "") .str.replace(",", "") .str.replace("m", "") .replace({"-": np.nan, "": np.nan}) .astype(float) ) df.loc[ df.Name.isin(df[df.Height.notna()].Name.values) & df.Name.isin(df[df.Height.isna()].Name.values), "Height", ] = ( df.loc[ df.Name.isin(df[df.Height.notna()].Name.values) & df.Name.isin(df[df.Height.isna()].Name.values) ] .sort_values(by=["Name", "Season"]) .Height.fillna(method="bfill") ) df.loc[ df.Name.isin(df[df.Foot.notna()].Name.values) & df.Name.isin(df[df.Foot.isna()].Name.values), "Foot", ] = ( df.loc[ df.Name.isin(df[df.Foot.notna()].Name.values) & df.Name.isin(df[df.Foot.isna()].Name.values) ] .sort_values(by=["Name", "Season"]) .Foot.fillna(method="bfill") ) df["Market value"] = ( df["Market value"] .str.strip() .replace({"-": np.nan}) .replace(r"[£kmTh\.]", "", regex=True) .astype(float) * df["Market value"] .str.extract(r"[\d\.]+([kmTh\.]+)", expand=False) .fillna(1) .replace(["k", "Th.", "m"], [10 ** 3, 10 ** 3, 10 ** 6]) .astype(int) / 10 ** 6 ) elif source_name == "tmk_psm": df["PPG"] = df["PPG"].str.strip().replace(r"[,]", ".", regex=True).astype(float) df["Minutes played"] = ( df["Minutes played"] .str.strip() .replace(r"[.\']", "", regex=True) .astype(float) ) df[ [ "In squad", "Games started", "Goals", "Assists", "Yellow cards", "Second yellow cards", "Red cards", "Substitutions on", "Substitutions off", "PPG", "Minutes played", ] ] = df[ [ "In squad", "Games started", "Goals", "Assists", "Yellow cards", "Second yellow cards", "Red cards", "Substitutions on", "Substitutions off", "PPG", "Minutes played", ] ].fillna( 0 ) df[ [ "In squad", "Games started", "Goals", "Assists", "Yellow cards", "Second yellow cards", "Red cards", "Substitutions on", "Substitutions off", "PPG", "Minutes played", ] ] = df[ [ "In squad", "Games started", "Goals", "Assists", "Yellow cards", "Second yellow cards", "Red cards", "Substitutions on", "Substitutions off", "PPG", "Minutes played", ] ].astype( float ) logging.debug(df.describe(include="all")) logging.info("Saving processed data to ") utilities.save_master(df, get_outfile(source_name), directory=directory) return df # def get_players(): # """ # INPUT: # None # OUTPUT: # df - Dataframe of aggregated player data # """ # logging.info("Fetching aggregated player data") # # fetch from master csv # # df = pd.read_csv(master_file, sep='|', encoding="ISO-8859-1") # df = utilities.get_master("players") # # filter unwanted records # df = df[(df["Season"] >= "s1314") & (df["Competition"].isin(["chm", "cpo", "prm"]))] # df.dropna(subset=["Name"], inplace=True) # # select columns # group_key = "Name" # max_cols = ["Age", "Height", "Weight"] # # p90_cols = ["AerialsWon", "ChancesInvolved", "DefensiveActions", "Dispossesed", "Dribbles", "FoulsCommited", "FoulsSuffered", "NPG+A", "SuccessfulPasses"] # p90_cols = [ # "AerialsWon", # "Assists", # "BadControl", # "Blocks", # "CalledOffside", # "Clearances", # "Crosses", # "Dispossesed", # "Dribbles", # "DribblesAgainst", # "FirstYellowCards", # "FoulsCommited", # "FoulsSuffered", # "GoalsConceded", # "Interceptions", # "KeyPasses", # "LongBalls", # "NonPenaltyGoals", # "OffsidesWon", # "OwnGoals", # "Passes", # "PenaltyGoals", # "RedCards", # "Saves", # "Shots", # "ShotsFaced", # "ShotsOnTarget", # "Tackles", # "ThroughBalls", # "YellowCards", # ] # pGm_cols = ["Appearances", "Minutes", "Points"] # sum_cols = p90_cols + pGm_cols # selected_columns = [group_key] + max_cols + sum_cols # df = df[selected_columns] # # aggregate to player level # df_max = df[[group_key] + max_cols].groupby(group_key).max() # df_sum = df[[group_key] + sum_cols].groupby(group_key).sum() # df = pd.concat([df_max, df_sum], axis=1) # df = df[(df["Minutes"] >= 900)] # # convert action totals to per90 # for col in p90_cols: # df[col + "P90"] = 90 * df[col] / df["Minutes"] # for col in pGm_cols: # df[col + "PGm"] = df[col] / df["Appearances"] # for col in sum_cols: # del df[col] # del df["AppearancesPGm"] # logging.debug(df.describe(include="all")) # return df # def find_similar(): # players = get_players() # # print players # print("\nNumber of players included: " + str(len(players))) # # Normalize all of the numeric columns # players_normalized = (players - players.mean()) / players.std() # players_normalized.fillna(0, inplace=True) # # players_normalized.info() # # print players_normalized.describe(include="all") # # print players_normalized.index.values # for ( # name # ) in ( # players_normalized.index.values # ): # ["Adam Clayton", "Ben Gibson", "Daniel Ayala", "Tomas Mejias"]: # # print "\n###############################" # print("\n" + name, end=" ") # # selected_player = players.loc[name] # # print selected_player.name # # print selected_player.to_frame().T #.name # # Normalize all of the numeric columns # selected_normalized = players_normalized.loc[name] # # print selected_normalized # # Find the distance between select player and everyone else. # euclidean_distances = players_normalized.apply( # lambda row: distance.euclidean(row, selected_normalized), axis=1 # ) # # Create a new dataframe with distances. # distance_frame = pd.DataFrame( # data={"dist": euclidean_distances, "idx": euclidean_distances.index} # ) # distance_frame.sort_values("dist", inplace=True) # most_similar_players = distance_frame.iloc[1:4]["idx"] # # most_similar_players = players.loc[nearest_neighbours] #["Name"] # # print most_similar_players # print("... is similar to... ", end=" ") # print(list(most_similar_players.index.values)) # def make_prediction(): # players = get_players() # pred_col = "AssistsP90" # x_columns = list(players.columns.values) # x_columns.remove(pred_col) # y_column = [pred_col] # # # The columns that we will be making predictions with. # # x_columns = ['Age', 'Height', 'Weight', 'AerialsWonP90', 'AssistsP90', 'BadControlP90', 'BlocksP90', 'CalledOffsideP90', 'ClearancesP90', 'CrossesP90', 'DispossesedP90', 'DribblesP90', 'DribblesAgainstP90', 'FirstYellowCardsP90', 'FoulsCommitedP90', 'FoulsSufferedP90', 'GoalsConcededP90', 'InterceptionsP90', 'KeyPassesP90', 'LongBallsP90', 'NonPenaltyGoalsP90', 'OffsidesWonP90', 'OwnGoalsP90', 'PassesP90', 'PenaltyGoalsP90', 'RedCardsP90', 'SavesP90', 'ShotsP90', 'ShotsFacedP90', 'ShotsOnTargetP90', 'TacklesP90', 'ThroughBallsP90', 'YellowCardsP90', 'MinutesPGm'] # # print x_columns # # # The column that we want to predict. # # y_column = [pred_col] # # print y_column # ###Generating training and testing sets # # Randomly shuffle the index of nba. # random_indices = permutation(players.index) # # Set a cutoff for how many items we want in the test set (in this case 1/3 of the items) # test_cutoff = math.floor(len(players) / 3) # # Generate the test set by taking the first 1/3 of the randomly shuffled indices. # test = players.loc[random_indices[1:test_cutoff]] # test.fillna(0, inplace=True) # # test.info() # # print test.describe(include="all") # # Generate the train set with the rest of the data. # train = players.loc[random_indices[test_cutoff:]] # train.fillna(0, inplace=True) # # train.info() # # print train.describe(include="all") # ###Using sklearn for k nearest neighbors # # print "Using sklearn for k nearest neighbors..." # from sklearn.neighbors import KNeighborsRegressor # # Create the knn model. # # Look at the five closest neighbors. # knn = KNeighborsRegressor(n_neighbors=5) # # print knn # # Fit the model on the training data. # knn.fit(train[x_columns], train[y_column]) # # print knn # # Make point predictions on the test set using the fit model. # predictions = knn.predict(test[x_columns]) # # print "\nPredicted PointsPGm:" # # print predictions.shape # ###Computing error # # Get the actual values for the test set. # actual = test[y_column].copy() # # Compute the mean squared error of our predictions. # mse = (((predictions - actual) ** 2).sum()) / len(predictions) # print("\nMean Squared Error:") # print(mse) # actual["Predicted" + pred_col] = predictions # actual["Diff"] = actual[pred_col] - actual["Predicted" + pred_col] # print("\nActual and Predicted " + pred_col + ":") # print(actual.sort_values(["Diff"], ascending=False)) # def test_opinions(): # players = get_players() # players = players.reset_index() # players = players[ # players["Name"].isin( # [ # "Alvaro Negredo", # "Patrick Bamford", # "Jordan Rhodes", # "Garcia Kike", # "Cristhian Stuani", # "David Nugent", # "Danny Graham", # "Jelle Vossen", # "Kei Kamara", # ] # ) # ] # # df_info(players) # players["ShotAccuracy"] = players["ShotsOnTargetP90"] / players["ShotsP90"] # players["ShotEfficiency"] = ( # players["NonPenaltyGoalsP90"] + players["PenaltyGoalsP90"].fillna(0) # ) / players["ShotsP90"] # players["ShotPercentage"] = ( # players["NonPenaltyGoalsP90"] + players["PenaltyGoalsP90"].fillna(0) # ) / players["ShotsOnTargetP90"] # players = players[ # [ # "Name", # "NonPenaltyGoalsP90", # "PenaltyGoalsP90", # "ShotsP90", # "ShotsOnTargetP90", # "ShotAccuracy", # "ShotEfficiency", # "ShotPercentage", # ] # ] # # df_info(players) # print(players.describe()) # print(players) def main(): """Use the Main for CLI usage.""" logging.info("Executing players module") clean_data("tmk_cnt") clean_data("tmk_psm") # get_players() # find_similar() # make_prediction() # test_opinions() if __name__ == "__main__": main()
31.793499
580
0.53446
0
0
0
0
0
0
0
0
10,830
0.651272
c47739874e06f42c7eb96ea82d6382fed8af2e9d
2,035
py
Python
Z_ALL_FILE/Py/code_qry.py
omikabir/omEngin
b8c04a5c2c12ffc3d0b67c2ceba9e5741d3f9195
[ "Apache-2.0" ]
null
null
null
Z_ALL_FILE/Py/code_qry.py
omikabir/omEngin
b8c04a5c2c12ffc3d0b67c2ceba9e5741d3f9195
[ "Apache-2.0" ]
null
null
null
Z_ALL_FILE/Py/code_qry.py
omikabir/omEngin
b8c04a5c2c12ffc3d0b67c2ceba9e5741d3f9195
[ "Apache-2.0" ]
1
2021-04-29T21:46:02.000Z
2021-04-29T21:46:02.000Z
import pandas as pd import os #opt = itertools.islice(ls, len(ls)) #st = map(lambda x : ) def parsecode(txt): df = pd.read_csv(os.getcwd() + '\\OMDB.csv') ls = df['Code'].to_list() code = [] q = 0 for i in range(len(ls)): text = txt if ls[i] in text: n = text.find(ls[i]) st = text[n:n+7] code.append(st) txt = txt.replace(ls[i],'') q = q + 1 else: if q == 0: return '' else: return code def qry_by_code(code, tbl = None, col = None): if tbl is None and col is None: a1 = "select Incident_Notification,Down_Time,Up_Time,Major_Cause,Action_Taken,Link_ID_Site_ID,Incident_ID from incident_tracker_v2 where (" a2 = " No_of_2G_Impacted_sites Like '%" + code + "%' or No_of_3G_Impacted_sites like '%" + code + "%' or No_of_4G_Impacted_Sites like '%" + code + "%' or Incident_Notification Like '%" + code a3 = "%') order by Down_Time desc" aa = a1 + a2 + a3 return aa else: return "" def codechk(txt): rs = parsecode(txt.upper()) st = 0 print('ret val', rs) if len(rs) == 1: code = rs[0] rn = 0 try: cd = int(code[6:7]) qry = qry_by_code(code) conn = pyodbc.connect(soc) df = pd.read(qry, con = conn) if df.shape[0] != 0: if df.shape[0] > 3: st = "last 3 incident out of " + df.shape[0] rn = 3 else: st = "incident found " + df.shape[0] + chr(10) rn = df.shape[0] for i in range(rn): tmp = chr(10) for j in df: tmp = tmp + chr(10) + df.loc[i,j] else: st = st + chr(10) + str(i) + tmp except: print('not code') return st else: return st
28.263889
200
0.456511
0
0
0
0
0
0
0
0
455
0.223587
c478a3bd10411c7f1ec8a901267dc3442748c724
1,463
py
Python
eats/tests/common/base_test_setup.py
Etiqa/eats
8c8e2da93d0014f6fbb208185712c5526dba1174
[ "BSD-2-Clause" ]
null
null
null
eats/tests/common/base_test_setup.py
Etiqa/eats
8c8e2da93d0014f6fbb208185712c5526dba1174
[ "BSD-2-Clause" ]
5
2021-03-18T21:34:44.000Z
2022-03-11T23:35:23.000Z
eats/tests/common/base_test_setup.py
Etiqa/eats
8c8e2da93d0014f6fbb208185712c5526dba1174
[ "BSD-2-Clause" ]
null
null
null
import socket import unittest from eats.webdriver import PytractorWebDriver from eats.tests.common import SimpleWebServerProcess as SimpleServer def _get_local_ip_addr(): s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(("gmail.com",80)) local_ip_addr = s.getsockname()[0] s.close() return local_ip_addr class PytractorTestBaseSetup(unittest.TestCase): @classmethod def setUpClass(cls): cls.process = SimpleServer() cls.process.run() def setUp(self): self.base_url = "http://{}:{}".format(_get_local_ip_addr(), SimpleServer.PORT) self.driver = self.get_driver() self.driver.ignore_synchronization = False @classmethod def tearDownClass(cls): cls.process.stop() def tearDown(self): self.driver.quit() class FirefoxRemoteWebDriverTest(object): def get_driver(self): return PytractorWebDriver( test_timeout=3000, command_executor='http://{}:4444/wd/hub'.format(_get_local_ip_addr()), desired_capabilities={'browserName': 'firefox', 'version': '', 'platform': 'ANY'} ) class ChromeRemoteWebDriverTest(object): def get_driver(self): return PytractorWebDriver( test_timeout=3000, command_executor='http://{}:4444/wd/hub'.format(_get_local_ip_addr()), desired_capabilities={'browserName': 'chrome', 'version': '', 'platform': 'ANY'} )
30.479167
93
0.663705
1,119
0.764867
0
0
167
0.114149
0
0
166
0.113465
c47907817d94beb66a4ec9f0e248f596065c0464
231
py
Python
autoprep/service/sqlite_project_service.py
haginot/auto-prep
b1de3eceba5b82432e7042e7e62270df467ed828
[ "Apache-2.0" ]
null
null
null
autoprep/service/sqlite_project_service.py
haginot/auto-prep
b1de3eceba5b82432e7042e7e62270df467ed828
[ "Apache-2.0" ]
4
2019-01-15T01:55:46.000Z
2019-02-21T04:15:25.000Z
autoprep/service/sqlite_project_service.py
haginot/auto-prep
b1de3eceba5b82432e7042e7e62270df467ed828
[ "Apache-2.0" ]
null
null
null
from autoprep.service.project_service import ProjectService class SQLiteProjectService(ProjectService): def get_projects(self): pass def get_project(self): pass def save_project(self): pass
16.5
59
0.69697
168
0.727273
0
0
0
0
0
0
0
0
c479ce0c9f3fb47a8ec7bf6ff4db304b73d1a05c
2,262
py
Python
p1_navigation/model.py
Alexandr0s93/deep-reinforcement-learning
02a508d25d2ba3c76c76a8410b3ae27f0d14e13f
[ "MIT" ]
null
null
null
p1_navigation/model.py
Alexandr0s93/deep-reinforcement-learning
02a508d25d2ba3c76c76a8410b3ae27f0d14e13f
[ "MIT" ]
null
null
null
p1_navigation/model.py
Alexandr0s93/deep-reinforcement-learning
02a508d25d2ba3c76c76a8410b3ae27f0d14e13f
[ "MIT" ]
null
null
null
import torch import torch.nn as nn class QNetwork(nn.Module): """Actor (Policy) Model using a Single DQN.""" def __init__(self, state_size, action_size, seed): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed """ super(QNetwork, self).__init__() self.seed = torch.manual_seed(seed) # Define Deep Q-Network Layers self.dqn_layers = nn.Sequential( nn.Linear(state_size, 128), nn.ReLU(), nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, action_size) ) def forward(self, state): """Build a network that maps state -> action values.""" q_values = self.dqn_layers(state) return q_values class DuelQNetwork(nn.Module): """Actor (Policy) Model using a Duel DQN.""" def __init__(self, state_size, action_size, seed): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed """ super(DuelQNetwork, self).__init__() self.seed = torch.manual_seed(seed) # Define Feature Layers self.feature_layers = nn.Sequential( nn.Linear(state_size, 128), nn.ReLU(), nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU() ) # Define Value Stream self.value_stream = nn.Sequential( nn.Linear(32, 1) ) # Define Advantage Layers self.advantage_stream = nn.Sequential( nn.Linear(32, action_size) ) def forward(self, state): """Build a network that maps state -> action values.""" x = self.feature_layers(state) values = self.value_stream(x) advantages = self.advantage_stream(x) q_values = values + (advantages - advantages.mean()) return q_values
30.16
63
0.545977
2,219
0.98099
0
0
0
0
0
0
757
0.33466
c479cee1b61267e6a98fae5c6efa9dd6f54fec33
74
py
Python
const.py
TakosukeGH/pmx_bone_importer
412cc066867cb0e0fd889101630277f9f9ba3a6a
[ "MIT" ]
null
null
null
const.py
TakosukeGH/pmx_bone_importer
412cc066867cb0e0fd889101630277f9f9ba3a6a
[ "MIT" ]
null
null
null
const.py
TakosukeGH/pmx_bone_importer
412cc066867cb0e0fd889101630277f9f9ba3a6a
[ "MIT" ]
1
2019-10-05T01:18:54.000Z
2019-10-05T01:18:54.000Z
ADDON_NAME = "pmx_bone_importer" LOG_FILE_NAME = "pmx_bone_importer.log"
18.5
39
0.810811
0
0
0
0
0
0
0
0
42
0.567568
c47bf0eadf4438f1d2983cdc88c09d3954cd62d8
17,789
py
Python
pox/lib/interfaceio/__init__.py
korrigans84/pox_network
cd58d95d97c94b3d139bc2026fd1be0a30987911
[ "Apache-2.0" ]
416
2015-01-05T18:16:36.000Z
2022-03-28T21:44:26.000Z
pox/lib/interfaceio/__init__.py
korrigans84/pox_network
cd58d95d97c94b3d139bc2026fd1be0a30987911
[ "Apache-2.0" ]
140
2015-01-18T23:32:34.000Z
2022-03-17T05:40:24.000Z
pox/lib/interfaceio/__init__.py
korrigans84/pox_network
cd58d95d97c94b3d139bc2026fd1be0a30987911
[ "Apache-2.0" ]
344
2015-01-08T06:44:23.000Z
2022-03-26T04:06:27.000Z
# Copyright 2017 James McCauley # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Input and output from network interfaces. This wraps PCap, TunTap, etc., to provide a simple, universal, cooperative interface to network interfaces. Currently limited to Linux. """ from pox.lib.pxpcap import PCap from queue import Queue from pox.lib.revent import Event, EventMixin from pox.lib.ioworker.io_loop import ReadLoop from pox.core import core import struct from fcntl import ioctl import socket from pox.lib.addresses import EthAddr, IPAddr from pox.lib.addresses import parse_cidr, cidr_to_netmask import os import ctypes IFNAMESIZ = 16 IFREQ_SIZE = 40 # from linux/if_tun.h TUNSETIFF = 0x400454ca TUNGETIFF = 0x800454d2 IFF_TUN = 0x0001 IFF_TAP = 0x0002 IFF_NO_PI = 0x1000 IFF_ONE_QUEUE = 0x2000 IFF_VNET_HDR = 0x4000 IFF_TUN_EXCL = 0x8000 IFF_MULTI_QUEUE = 0x0100 IFF_ATTACH_QUEUE = 0x0200 IFF_DETACH_QUEUE = 0x0400 IFF_PERSIST = 0x0800 IFF_NOFILTER = 0x1000 #from linux/if.h (flags) IFF_UP = 1<<0 IFF_BROADCAST = 1<<1 IFF_DEBUG = 1<<2 IFF_LOOPBACK = 1<<3 IFF_POINTOPOINT = 1<<4 IFF_NOTRAILERS = 1<<5 IFF_RUNNING = 1<<6 IFF_NOARP = 1<<7 IFF_PROMISC = 1<<8 IFF_ALLMULTI = 1<<9 IFF_MASTER = 1<<10 IFF_SLAVE = 1<<11 IFF_MULTICAST = 1<<12 IFF_PORTSEL = 1<<13 IFF_AUTOMEDIA = 1<<14 IFF_DYNAMIC = 1<<15 IFF_LOWER_UP = 1<<16 IFF_DORMANT = 1<<17 IFF_ECHO = 1<<18 # Unless IFF_NO_PI, there's a header on packets: # 16 bits of flags # 16 bits (big endian?) protocol number # from /usr/include/linux/sockios.h SIOCGIFHWADDR = 0x8927 SIOCGIFMTU = 0x8921 SIOCSIFMTU = 0x8922 SIOCGIFFLAGS = 0x8913 SIOCSIFFLAGS = 0x8914 SIOCSIFHWADDR = 0x8924 SIOCGIFNETMASK = 0x891b SIOCSIFNETMASK = 0x891c SIOCGIFADDR = 0x8915 SIOCSIFADDR = 0x8916 SIOCGIFBRDADDR = 0x8919 SIOCSIFBRDADDR = 0x891a SIOCSIFNAME = 0x8923 SIOCADDRT = 0x890B # rtentry (route.h) for IPv4, in6_rtmsg for IPv6 SIOCDELRT = 0x890C # from /usr/include/linux/if_arp.h ARPHRD_ETHER = 1 ARPHRD_IEEE802 = 1 ARPHRD_IEEE1394 = 24 ARPHRD_EUI64 = 27 ARPHRD_LOOPBACK = 772 ARPHRD_IPGRE = 778 ARPHRD_IEE802_TR = 800 ARPHRD_IEE80211 = 801 ARPHRD_IEE80211_PRISM = 802 ARPHRD_IEE80211_RADIOTAP = 803 ARPHRD_IP6GRE = 823 class rtentry (object): """ Wrapper for Linux rtentry Only tries to capture IPv4 usage. Possibly better done with ctypes. """ # flags RTF_UP = 0x0001 # usable RTF_GATEWAY = 0x0002 # dst is gateway RTF_HOST = 0x0004 # host route RTF_REINSTATE = 0x0008 # reinstate after timeout RTF_DYNAMIC = 0x0010 # created dynamically (by redirect) RTF_MODIFIED = 0x0020 # modified dynamically (by redirect) RTF_MSS = 0x0040 # use specific MSS for this route RTF_WINDOW = 0x0080 # use per-route window clamping RTF_IRTT = 0x0100 # use initial RTT RTF_REJECT = 0x0200 # reject route # fields rt_hash = 0 rt_dst = IPAddr("0.0.0.0") rt_gateway = IPAddr("0.0.0.0") rt_genmask = IPAddr("0.0.0.0") rt_flags = 0 rt_refcnt = 0 rt_use = 0 rt_ifp = 0 # ptr to struct ifnet rt_metric = 0 rt_dev = None # device name rt_mss = 0 rt_window = 0 # window clamping rt_irtt = 0 # initial RTT def pack (self): if self.rt_dev: s = ctypes.c_char_p(self.rt_dev + "\0") # Null terminator necessary? dev = ctypes.cast(s, ctypes.c_void_p).value self._buf = s # You must use the resulting packed string before changing # rt_dev! else: dev = 0 return struct.pack("L16s16s16shhLPhPLLH", self.rt_hash, sockaddr_in(self.rt_dst).pack(), sockaddr_in(self.rt_gateway).pack(), sockaddr_in(self.rt_genmask).pack(), self.rt_flags, self.rt_refcnt, self.rt_use, self.rt_ifp, self.rt_metric, dev, self.rt_mss, self.rt_window, self.rt_irtt) class sockaddr_in (object): """ Wrapper for sockaddr_in """ sin_family = socket.AF_INET sin_port = 0 sin_addr = IPAddr("0.0.0.0") def __init__ (self, addr=None, port=None): if addr is not None: self.sin_addr = IPAddr(addr) if port is not None: self.sin_port = port def pack (self): r = struct.pack("hH", self.sin_family, self.sin_port) r += self.sin_addr.raw r += ("\0" * 8) return r class Interface (object): """ Simple interface to tun/tap driver Currently only for Linux. IIRC, shouldn't be too hard to adapt for BSD. Other OSes will probably need a fair amount of work. """ #TODO: Setters def __init__ (self, name): self._name = name def __str__ (self): return "%s('%s')" % (type(self).__name__, self.name) @property def name (self): return self._name.rstrip("\0") @name.setter def name (self, value): if len(value) > IFNAMESIZ: raise RuntimeError("Name too long") sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) ifr = struct.pack(str(IFNAMESIZ) + "s", self.name) ifr += value ifr += "\0" * (IFREQ_SIZE - len(ifr)) ret = ioctl(sock, SIOCSIFNAME, ifr) self._name = value @property def ipv6_enabled (self): f = file("/proc/sys/net/ipv6/conf/%s/disable_ipv6" % (self.name,), "r") with f: return f.read()[0] == "0" # Note inversion! @ipv6_enabled.setter def ipv6_enabled (self, value): f = file("/proc/sys/net/ipv6/conf/%s/disable_ipv6" % (self.name,), "w") with f: f.write("0" if value else "1") # Note inversion! @property def ip_forwarding (self): f = file("/proc/sys/net/ipv4/conf/%s/forwarding" % (self.name,), "r") with f: return f.read()[0] == "1" @ip_forwarding.setter def ip_forwarding (self, value): f = file("/proc/sys/net/ipv4/conf/%s/forwarding" % (self.name,), "w") with f: f.write("1" if value else "0") @property def mtu (self): sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) ifr = struct.pack(str(IFNAMESIZ) + "s", self.name) ifr += "\0" * (IFREQ_SIZE - len(ifr)) ret = ioctl(sock, SIOCGIFMTU, ifr) return struct.unpack("I", ret[IFNAMESIZ:][:4])[0] @mtu.setter def mtu (self, value): sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) ifr = struct.pack(str(IFNAMESIZ) + "sI", self.name, value) ifr += "\0" * (IFREQ_SIZE - len(ifr)) ret = ioctl(sock, SIOCSIFMTU, ifr) @property def flags (self): sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) ifr = struct.pack(str(IFNAMESIZ) + "s", self.name) ifr += "\0" * (IFREQ_SIZE - len(ifr)) ret = ioctl(sock, SIOCGIFFLAGS, ifr) return struct.unpack("H", ret[IFNAMESIZ:IFNAMESIZ+2])[0] @flags.setter def flags (self, value): sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) ifr = struct.pack(str(IFNAMESIZ) + "sH", self.name, value) ifr += "\0" * (IFREQ_SIZE - len(ifr)) ret = ioctl(sock, SIOCSIFFLAGS, ifr) def set_flags (self, flags, on=True): if on: self.flags |= flags else: self.unset_flags(flags) def unset_flags (self, flags): self.flags = self.flags & (flags ^ 0xffFF) @property def promiscuous (self): return bool(self.flags & IFF_PROMISC) @promiscuous.setter def promiscuous (self, value): self.set_flags(IFF_PROMISC, value) @property def is_up (self): return (self.flags & IFF_UP) != 0 @is_up.setter def is_up (self, value): self.set_flags(IFF_UP, value) @property def is_running (self): return (self.flags & IFF_RUNNING) != 0 @property def arp_enabled (self): return (self.flags & IFF_NOARP) == 0 @arp_enabled.setter def arp_enabled (self, value): self.set_flags(IFF_NOARP, not value) @property def ip_addr (self): try: return self._ioctl_get_ipv4(SIOCGIFADDR) except IOError as e: if e.errno == 99: return None raise @ip_addr.setter def ip_addr (self, value): return self._ioctl_set_ipv4(SIOCSIFADDR, value) @property def netmask (self): try: return self._ioctl_get_ipv4(SIOCGIFNETMASK) except IOError as e: if e.errno == 99: return None raise @netmask.setter def netmask (self, value): return self._ioctl_set_ipv4(SIOCSIFNETMASK, value) @property def broadcast_addr (self): try: return self._ioctl_get_ipv4(SIOCGIFBRDADDR) except IOError as e: if e.errno == 99: return None raise @broadcast_addr.setter def broadcast_addr (self, value): return self._ioctl_set_ipv4(SIOCSIFBRDADDR, value) @property def eth_addr (self): sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) ifr = struct.pack(str(IFNAMESIZ) + "s", self.name) ifr += "\0" * (IFREQ_SIZE - len(ifr)) ret = ioctl(sock, SIOCGIFHWADDR, ifr) sa = ret[IFNAMESIZ:] # sockaddr return self._get_eth(sa) @eth_addr.setter def eth_addr (self, value): value = EthAddr(value).raw sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) ifr = struct.pack(str(IFNAMESIZ) + "sH", self.name, ARPHRD_ETHER) ifr += value # Append to sockaddr ifr += "\0" * (IFREQ_SIZE - len(ifr)) ret = ioctl(sock, SIOCSIFHWADDR, ifr) def _ioctl_get_ipv4 (self, which): sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) ifr = struct.pack(str(IFNAMESIZ) + "s", self.name) ifr += "\0" * (IFREQ_SIZE - len(ifr)) ret = ioctl(sock, which, ifr) return self._get_ipv4(ret[IFNAMESIZ:]) def _ioctl_set_ipv4 (self, which, value): value = IPAddr(value) sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) ifr = struct.pack(str(IFNAMESIZ) + "sHHI", self.name, socket.AF_INET, 0, value.toUnsigned(networkOrder=True)) ifr += "\0" * (IFREQ_SIZE - len(ifr)) ret = ioctl(sock, which, ifr) @staticmethod def _get_ipv4 (sa): sa_family = struct.unpack("H", sa[:2])[0] if sa_family == socket.AF_INET: return IPAddr(sa[4:8]) else: raise RuntimeError("Unsupported hardware type %s for %s (expected %s)" % (sa_family, self, socket.AF_INET)) @staticmethod def _get_eth (sa): sa_family = struct.unpack("H", sa[:2])[0] if sa_family == ARPHRD_ETHER: return EthAddr(sa[2:8]) else: raise RuntimeError("Unsupported hardware type %s (expected %s)" % (sa_family, ARPHRD_ETHER)) def add_default_route (self, *args, **kw): return self.add_route("0.0.0.0/0", *args, **kw) def add_route (self, network, gateway=None, dev=(), metric=0): """ Add routing table entry If dev is unspecified, it defaults to this device """ return self._add_del_route(network, gateway, dev, metric, SIOCADDRT) def del_route (self, network, gateway=None, dev=(), metric=0): """ Remove a routing table entry If dev is unspecified, it defaults to this device """ return self._add_del_route(network, gateway, dev, metric, SIOCDELRT) def _add_del_route (self, network, gateway=None, dev=(), metric=0, command=None): """ Add or remove a routing table entry If dev is unspecified, it defaults to this device """ r = rtentry() if isinstance(network, tuple): addr,mask = network addr = str(addr) if isinstance(mask, int): mask = cidr_to_netmask(mask) mask = str(mask) network = "%s/%s" % (addr,mask) host = False if isinstance(network, IPAddr) or (isinstance(network, str) and "/" not in network): host = True network,bits = parse_cidr(network) r.rt_dst = network r.rt_genmask = cidr_to_netmask(bits) if gateway is not None: r.rt_gateway = IPAddr(gateway) r.rt_flags |= r.RTF_GATEWAY r.rt_metric = metric if dev is (): dev = self if isinstance(dev, Interface): dev = dev.name if dev: r.rt_dev = dev if host: r.rt_flags |= r.RTF_HOST r.rt_flags |= r.RTF_UP sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) rv = ioctl(sock, command, r.pack()) class TunTap (object): """ Simple wrapper for tun/tap interfaces Looks like a file-like object. You should be able to read/write it, select on it, etc. """ def __init__ (self, name=None, tun=False, raw=False): """ Create tun or tap By default, it creates a new tun or tap with a default name. If you specify a name, it will either try to create it (if it doesn't exist), or try to use an existing interface (for which you must have permission). Defaults to tap (Ethernet) mode. Specify tun=True for tun (IP) mode. Specify raw=True to skip the 32 bits of flag/protocol metadata. """ if name is None: name = "" openflags = os.O_RDWR try: openflow |= os.O_BINARY except: pass self._f = os.open("/dev/net/tun", openflags) # an ifreq is IFREQ_SIZE bytes long, starting with an interface name # (IFNAMESIZ bytes) followed by a big union. self.is_tun = tun self.is_tap = not tun self.is_raw = raw flags = 0 if tun: flags |= IFF_TUN else: flags |= IFF_TAP if raw: flags |= IFF_NO_PI ifr = struct.pack(str(IFNAMESIZ) + "sH", name, flags) ifr += "\0" * (IFREQ_SIZE - len(ifr)) ret = ioctl(self.fileno(), TUNSETIFF, ifr) self.name = ret[:IFNAMESIZ] iflags = flags ifr = struct.pack(str(IFNAMESIZ) + "sH", name, 0) ifr += "\0" * (IFREQ_SIZE - len(ifr)) ret = ioctl(self.fileno(), TUNGETIFF, ifr) flags = struct.unpack("H", ret[IFNAMESIZ:IFNAMESIZ+2])[0] self.is_tun = (flags & IFF_TUN) == IFF_TUN self.is_tap = not self.is_tun #self.is_raw = (flags & IFF_NO_PI) == IFF_NO_PI def fileno (self): return self._f def write (self, data): return os.write(self.fileno(), data) def read (self, n): return os.read(self.fileno(), n) def close (self): return os.close(self.fileno()) @property def eth_addr (self): return Interface(self.name).eth_addr class RXData (Event): """ Event fired when an interface receives data """ def __init__ (self, interface, data): self.interface = interface self.data = data class PCapInterface (Interface, EventMixin): _eventMixin_events = set([ RXData, ]) def __init__ (self, name): Interface.__init__(self, name) EventMixin.__init__(self) self._q = Queue() p = PCap(name, callback=self._pcap_cb, start=False) p.set_direction(True, False) # Incoming, not outgoing p.start() self.pcap = p core.add_listener(self._handle_GoingDownEvent) def _handle_GoingDownEvent (self, event): self.close() def send (self, data): if self.pcap is None: return self.pcap.inject(data) def _pcap_cb (self, obj, data, sec, usec, length): """ Handles incoming data from pcap This may not be on the right thread, so we just push it to a thread-safe queue and poke the cooperative thread, which will pop it later. """ do_read = self._q.empty() self._q.put((obj,data)) if do_read: core.callLater(self._queue_read) def _queue_read (self): anything = False for _ in range(10): # as most X at once try: data = self._q.get(False) self._q.task_done() anything = True except: break pcap,data = data self.raiseEventNoErrors(RXData, self, data) if anything: # Check for remainders later core.callLater(self._queue_read) def __del__ (self): self.close() def close (self): if self.pcap: self.pcap.close() self.pcap = None class TapInterface (Interface, EventMixin): _eventMixin_events = set([ RXData, ]) io_loop = None max_read_size = 1600 default_send_protocol = None def __init__ (self, name="", tun=False, raw=False, protocol=None): self.tap = None self.last_flags = None self.last_protocol = None if protocol: self.default_send_protocol = protocol self.io_loop = ReadLoop.singleton Interface.__init__(self, name) EventMixin.__init__(self) self.tap = TunTap(name, raw=raw, tun=tun) if not name: self._name = self.tap.name self.io_loop.add(self) @property def is_tap (self): return self.tap.is_tap @property def is_tun (self): return self.tap.is_tun def send (self, data, flags=0, protocol=None): if not self.tap.is_raw: if protocol is None: protocol = self.default_send_protocol or 0 #FIXME: In the "0" case above, should we fall back to using the Etherype # in the packet? if flags or protocol: flags = struct.pack("!HH", flags, protocol) # Flags reversed? else: flags = "\0\0\0\0" data = flags + data self.tap.write(data) def _do_rx (self): data = self.tap.read(self.max_read_size) if not self.tap.is_raw: flags,proto = struct.unpack("!HH", data[:4]) #FIXME: This may invert the flags... self.last_flags = flags self.last_protocol = proto data = data[4:] # Cut off header self.raiseEvent(RXData, self, data) def fileno (self): # Support fileno so that this can be used in IO loop directly return self.tap.fileno() def close (self): if self.tap: self.tap.close() self.tap = None self.io_loop.remove(self) def __del__ (self): self.close()
27.034954
78
0.652426
15,027
0.844736
0
0
4,902
0.275564
0
0
3,910
0.219799
c47c240782affe27a9180c58c326bd1012c03ca6
5,754
py
Python
icarus_simulator/strategies/atk_geo_constraint/geo_constr_strat.py
RubenFr/ICARUS-framework
e57a1f50c3bb9522b2a279fee6b625628afd056f
[ "MIT" ]
5
2021-08-31T08:07:41.000Z
2022-01-04T02:09:25.000Z
icarus_simulator/strategies/atk_geo_constraint/geo_constr_strat.py
RubenFr/ICARUS-framework
e57a1f50c3bb9522b2a279fee6b625628afd056f
[ "MIT" ]
3
2021-09-23T09:06:35.000Z
2021-12-08T04:53:01.000Z
icarus_simulator/strategies/atk_geo_constraint/geo_constr_strat.py
RubenFr/ICARUS-framework
e57a1f50c3bb9522b2a279fee6b625628afd056f
[ "MIT" ]
2
2022-01-19T17:50:56.000Z
2022-03-06T18:59:41.000Z
# 2020 Tommaso Ciussani and Giacomo Giuliari import os import json import numpy as np from typing import Set, List from geopy.distance import great_circle from scipy.spatial.ckdtree import cKDTree from shapely.geometry import Polygon, shape, Point from icarus_simulator.sat_core.coordinate_util import geo2cart from icarus_simulator.strategies.atk_geo_constraint.base_geo_constraint_strat import ( BaseGeoConstraintStrat, ) from icarus_simulator.structure_definitions import GridPos dirname = os.path.dirname(__file__) strategies_dirname = os.path.split(dirname)[0] library_dirname = os.path.split(strategies_dirname)[0] data_dirname = os.path.join(library_dirname, "data") COUNTRIES_FILE: str = os.path.join(data_dirname, "natural_earth_world_small.geo.json") class GeoConstrStrat(BaseGeoConstraintStrat): def __init__(self, geo_names: List[str], **kwargs): super().__init__() self.geo_names = geo_names if len(kwargs) > 0: pass # Appease the unused param inspection @property def name(self) -> str: return "geo" @property def param_description(self) -> str: return ",".join(self.geo_names) def compute(self, grid_pos: GridPos) -> Set[int]: allowed = set() geo_data = load_country_geojson() for s in self.geo_names: allowed.update(get_allowed_gridpoints(s, grid_pos, geo_data)) return allowed # noinspection PyTypeChecker def get_allowed_gridpoints(geo_location: str, grid_pos: GridPos, geo_data) -> Set[int]: # Get a list of all possible source points if geo_location in geo_data["countries"]: indices = [geo_data["countries"][geo_location]] elif geo_location in geo_data["subregions"]: indices = geo_data["subregions"][geo_location] elif geo_location in geo_data["continents"]: indices = geo_data["continents"][geo_location] else: raise ValueError("Invalid geographic constraint") geometries = [geo_data["geometries"][index] for index in indices] allowed_points = set() # Create a unique shape, union of all shapes in the region, and take the points include within shp = Polygon() for idx, geo in enumerate(geometries): shp = shp.union(shape(geo)) for idx, pos in grid_pos.items(): if Point(pos.lat, pos.lon).within(shp): allowed_points.add(idx) # Extract the border points x, y = [], [] if shp.geom_type == "MultiPolygon": for idx, shap in enumerate(shp.geoms): if True: x1, y1 = shap.exterior.xy x.extend(x1) y.extend(y1) else: x1, y1 = shp.exterior.xy x.extend(x1) y.extend(y1) # plotter.plot_points({idx: GeodeticPosInfo({"lat": x[idx], "lon": y[idx], "elev": 0.0}) # for idx in range(len(x))}, "GRID", "TEST", "aa", "asas",) grid_cart = np.zeros((len(grid_pos), 3)) grid_map = {} i = 0 for idx, pos in grid_pos.items(): grid_map[i] = idx grid_cart[i] = geo2cart({"elev": 0, "lon": pos.lon, "lat": pos.lat}) i += 1 # Put the homogeneous grid into a KD-tree and query the border points to include also point slightly in the sea kd = cKDTree(grid_cart) for idx in range(len(x)): _, closest_grid_idx = kd.query( geo2cart({"elev": 0, "lon": y[idx], "lat": x[idx]}), k=1 ) grid_id = grid_map[closest_grid_idx] if ( great_circle( (grid_pos[grid_id].lat, grid_pos[grid_id].lon), (x[idx], y[idx]) ).meters < 300000 ): # 300000 -> number elaborated to keep the out-of-coast values without including wrong points allowed_points.add(grid_map[closest_grid_idx]) return allowed_points # noinspection PyTypeChecker def load_country_geojson(): new_data = {"geometries": [], "countries": {}, "continents": {}, "subregions": {}} with open(COUNTRIES_FILE, encoding="utf-8") as f: data = json.load(f) new_data["geometries"] = [""] * len(data["features"]) for idx, feature in enumerate(data["features"]): props = feature["properties"] code = props["iso_a3"] if code == "-99": continue continent = props["continent"] subregion = props["region_wb"] subregion2 = props["subregion"] if continent not in new_data["continents"]: new_data["continents"][continent] = [] if subregion not in new_data["subregions"]: new_data["subregions"][subregion] = [] if subregion2 not in new_data["subregions"]: new_data["subregions"][subregion2] = [] new_data["continents"][continent].append(idx) new_data["subregions"][subregion].append(idx) new_data["subregions"][subregion2].append(idx) new_data["countries"][code] = idx new_data["geometries"][idx] = feature["geometry"] geom = new_data["geometries"][idx] if geom["type"] == "MultiPolygon": for l1 in range(len(geom["coordinates"])): for l2 in range(len(geom["coordinates"][l1])): for l3 in range(len(geom["coordinates"][l1][l2])): geom["coordinates"][l1][l2][l3] = geom["coordinates"][l1][l2][ l3 ][::-1] elif geom["type"] == "Polygon": for l1 in range(len(geom["coordinates"])): for l2 in range(len(geom["coordinates"][l1])): geom["coordinates"][l1][l2] = geom["coordinates"][l1][l2][::-1] print(f"Available subregions: {list(new_data['subregions'].keys())}") return new_data
38.36
115
0.616093
656
0.114008
0
0
146
0.025374
0
0
1,395
0.24244
c47c8df17ea394b09ef2defebfcd36f91bad20ef
8,861
py
Python
grafeas/models/deployable_deployment_details.py
nyc/client-python
e73eab8953abf239305080673f7c96a54b776f72
[ "Apache-2.0" ]
null
null
null
grafeas/models/deployable_deployment_details.py
nyc/client-python
e73eab8953abf239305080673f7c96a54b776f72
[ "Apache-2.0" ]
null
null
null
grafeas/models/deployable_deployment_details.py
nyc/client-python
e73eab8953abf239305080673f7c96a54b776f72
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Grafeas API An API to insert and retrieve annotations on cloud artifacts. # noqa: E501 OpenAPI spec version: v1alpha1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from grafeas.models.deployment_details_platform import DeploymentDetailsPlatform # noqa: F401,E501 class DeployableDeploymentDetails(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'user_email': 'str', 'deploy_time': 'datetime', 'undeploy_time': 'datetime', 'config': 'str', 'address': 'str', 'resource_uri': 'list[str]', 'platform': 'DeploymentDetailsPlatform' } attribute_map = { 'user_email': 'user_email', 'deploy_time': 'deploy_time', 'undeploy_time': 'undeploy_time', 'config': 'config', 'address': 'address', 'resource_uri': 'resource_uri', 'platform': 'platform' } def __init__(self, user_email=None, deploy_time=None, undeploy_time=None, config=None, address=None, resource_uri=None, platform=None): # noqa: E501 """DeployableDeploymentDetails - a model defined in Swagger""" # noqa: E501 self._user_email = None self._deploy_time = None self._undeploy_time = None self._config = None self._address = None self._resource_uri = None self._platform = None self.discriminator = None if user_email is not None: self.user_email = user_email if deploy_time is not None: self.deploy_time = deploy_time if undeploy_time is not None: self.undeploy_time = undeploy_time if config is not None: self.config = config if address is not None: self.address = address if resource_uri is not None: self.resource_uri = resource_uri if platform is not None: self.platform = platform @property def user_email(self): """Gets the user_email of this DeployableDeploymentDetails. # noqa: E501 Identity of the user that triggered this deployment. # noqa: E501 :return: The user_email of this DeployableDeploymentDetails. # noqa: E501 :rtype: str """ return self._user_email @user_email.setter def user_email(self, user_email): """Sets the user_email of this DeployableDeploymentDetails. Identity of the user that triggered this deployment. # noqa: E501 :param user_email: The user_email of this DeployableDeploymentDetails. # noqa: E501 :type: str """ self._user_email = user_email @property def deploy_time(self): """Gets the deploy_time of this DeployableDeploymentDetails. # noqa: E501 Beginning of the lifetime of this deployment. # noqa: E501 :return: The deploy_time of this DeployableDeploymentDetails. # noqa: E501 :rtype: datetime """ return self._deploy_time @deploy_time.setter def deploy_time(self, deploy_time): """Sets the deploy_time of this DeployableDeploymentDetails. Beginning of the lifetime of this deployment. # noqa: E501 :param deploy_time: The deploy_time of this DeployableDeploymentDetails. # noqa: E501 :type: datetime """ self._deploy_time = deploy_time @property def undeploy_time(self): """Gets the undeploy_time of this DeployableDeploymentDetails. # noqa: E501 End of the lifetime of this deployment. # noqa: E501 :return: The undeploy_time of this DeployableDeploymentDetails. # noqa: E501 :rtype: datetime """ return self._undeploy_time @undeploy_time.setter def undeploy_time(self, undeploy_time): """Sets the undeploy_time of this DeployableDeploymentDetails. End of the lifetime of this deployment. # noqa: E501 :param undeploy_time: The undeploy_time of this DeployableDeploymentDetails. # noqa: E501 :type: datetime """ self._undeploy_time = undeploy_time @property def config(self): """Gets the config of this DeployableDeploymentDetails. # noqa: E501 Configuration used to create this deployment. # noqa: E501 :return: The config of this DeployableDeploymentDetails. # noqa: E501 :rtype: str """ return self._config @config.setter def config(self, config): """Sets the config of this DeployableDeploymentDetails. Configuration used to create this deployment. # noqa: E501 :param config: The config of this DeployableDeploymentDetails. # noqa: E501 :type: str """ self._config = config @property def address(self): """Gets the address of this DeployableDeploymentDetails. # noqa: E501 Address of the runtime element hosting this deployment. # noqa: E501 :return: The address of this DeployableDeploymentDetails. # noqa: E501 :rtype: str """ return self._address @address.setter def address(self, address): """Sets the address of this DeployableDeploymentDetails. Address of the runtime element hosting this deployment. # noqa: E501 :param address: The address of this DeployableDeploymentDetails. # noqa: E501 :type: str """ self._address = address @property def resource_uri(self): """Gets the resource_uri of this DeployableDeploymentDetails. # noqa: E501 Output only. Resource URI for the artifact being deployed taken from the deployable field with the same name. # noqa: E501 :return: The resource_uri of this DeployableDeploymentDetails. # noqa: E501 :rtype: list[str] """ return self._resource_uri @resource_uri.setter def resource_uri(self, resource_uri): """Sets the resource_uri of this DeployableDeploymentDetails. Output only. Resource URI for the artifact being deployed taken from the deployable field with the same name. # noqa: E501 :param resource_uri: The resource_uri of this DeployableDeploymentDetails. # noqa: E501 :type: list[str] """ self._resource_uri = resource_uri @property def platform(self): """Gets the platform of this DeployableDeploymentDetails. # noqa: E501 Platform hosting this deployment. # noqa: E501 :return: The platform of this DeployableDeploymentDetails. # noqa: E501 :rtype: DeploymentDetailsPlatform """ return self._platform @platform.setter def platform(self, platform): """Sets the platform of this DeployableDeploymentDetails. Platform hosting this deployment. # noqa: E501 :param platform: The platform of this DeployableDeploymentDetails. # noqa: E501 :type: DeploymentDetailsPlatform """ self._platform = platform def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DeployableDeploymentDetails): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
31.091228
153
0.623632
8,473
0.956213
0
0
5,003
0.564609
0
0
5,055
0.570477
c47e515541dd250050db71c9315d649403e7ce2b
1,575
py
Python
lib/python/test/test_trans.py
qxo/cat
08170af3c8e2ae3724036833d67312964721c99b
[ "Apache-2.0" ]
5
2018-12-13T17:46:39.000Z
2022-03-29T02:07:47.000Z
lib/python/test/test_trans.py
qxo/cat
08170af3c8e2ae3724036833d67312964721c99b
[ "Apache-2.0" ]
42
2019-12-08T18:41:13.000Z
2021-08-28T13:08:55.000Z
lib/python/test/test_trans.py
qxo/cat
08170af3c8e2ae3724036833d67312964721c99b
[ "Apache-2.0" ]
8
2018-12-25T04:19:01.000Z
2021-03-24T17:02:44.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # Author: stdrickforce (Tengyuan Fan) # Email: <stdrickforce@gmail.com> <fantengyuan@baixing.com> import cat import time def ignore_exception(func): def wraps(*args, **kwargs): try: return func(*args, **kwargs) except Exception: pass return wraps @ignore_exception @cat.transaction("Trans", "T1") def test1(): ''' Use via decorator ''' print(1 / 0) # NOTE will cause ZeroDivisionException def test2(): ''' Use via context manager ''' def do_something(): import random if random.random() < 0.1: raise Exception("error occured!") with cat.Transaction("Trans", "T2") as t: cat.log_event("Event", "E2") try: do_something() except Exception: t.set_status(cat.CAT_ERROR) t.add_data("context-manager") t.add_data("foo", "bar") def test3(): try: trans = cat.Transaction("Trans", "T3") trans.add_data("content") trans.add_data("key", "val") trans.set_status("error") trans.set_duration(500) trans.set_duration_start(time.time() * 1000 - 30 * 1000) trans.set_timestamp(time.time() * 1000 - 30 * 1000) finally: # NOTE don't forget to complete the transaction! trans.complete() if __name__ == '__main__': cat.init("pycat", debug=True, logview=False) for i in range(100): test1() test2() test3() time.sleep(0.01) time.sleep(1)
22.183099
64
0.572698
0
0
0
0
158
0.100317
0
0
429
0.272381
c47eb0be6f206f7a309aab7d8baf760825081212
19,781
py
Python
src/ui/ui_hw_recovery_wdg.py
frosted97/dash-masternode-tool
d824740309ab878d745e41d39f274e952111542f
[ "MIT" ]
75
2017-03-20T06:33:14.000Z
2022-02-15T16:16:45.000Z
src/ui/ui_hw_recovery_wdg.py
frosted97/dash-masternode-tool
d824740309ab878d745e41d39f274e952111542f
[ "MIT" ]
42
2017-10-25T06:34:54.000Z
2022-02-10T20:53:46.000Z
src/ui/ui_hw_recovery_wdg.py
frosted97/dash-masternode-tool
d824740309ab878d745e41d39f274e952111542f
[ "MIT" ]
98
2017-03-20T05:27:36.000Z
2022-03-20T05:03:08.000Z
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file ui_hw_recovery_wdg.ui # # Created by: PyQt5 UI code generator # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets class Ui_WdgRecoverHw(object): def setupUi(self, WdgRecoverHw): WdgRecoverHw.setObjectName("WdgRecoverHw") WdgRecoverHw.resize(587, 352) self.verticalLayout_4 = QtWidgets.QVBoxLayout(WdgRecoverHw) self.verticalLayout_4.setContentsMargins(0, 0, 0, 0) self.verticalLayout_4.setSpacing(6) self.verticalLayout_4.setObjectName("verticalLayout_4") self.pages = QtWidgets.QStackedWidget(WdgRecoverHw) self.pages.setObjectName("pages") self.page0 = QtWidgets.QWidget() self.page0.setObjectName("page0") self.verticalLayout = QtWidgets.QVBoxLayout(self.page0) self.verticalLayout.setContentsMargins(0, 0, 0, 0) self.verticalLayout.setSpacing(6) self.verticalLayout.setObjectName("verticalLayout") self.label_2 = QtWidgets.QLabel(self.page0) self.label_2.setObjectName("label_2") self.verticalLayout.addWidget(self.label_2) self.gbSeedSource = QtWidgets.QGroupBox(self.page0) self.gbSeedSource.setTitle("") self.gbSeedSource.setFlat(False) self.gbSeedSource.setObjectName("gbSeedSource") self.verticalLayout_5 = QtWidgets.QVBoxLayout(self.gbSeedSource) self.verticalLayout_5.setContentsMargins(6, 6, 6, 6) self.verticalLayout_5.setSpacing(8) self.verticalLayout_5.setObjectName("verticalLayout_5") self.rbSeedSourceHwScreen = QtWidgets.QRadioButton(self.gbSeedSource) self.rbSeedSourceHwScreen.setChecked(False) self.rbSeedSourceHwScreen.setObjectName("rbSeedSourceHwScreen") self.verticalLayout_5.addWidget(self.rbSeedSourceHwScreen) self.rbSeedSourceAppWords = QtWidgets.QRadioButton(self.gbSeedSource) self.rbSeedSourceAppWords.setChecked(False) self.rbSeedSourceAppWords.setObjectName("rbSeedSourceAppWords") self.verticalLayout_5.addWidget(self.rbSeedSourceAppWords) self.rbSeedSourceAppEntropy = QtWidgets.QRadioButton(self.gbSeedSource) self.rbSeedSourceAppEntropy.setObjectName("rbSeedSourceAppEntropy") self.verticalLayout_5.addWidget(self.rbSeedSourceAppEntropy) self.verticalLayout.addWidget(self.gbSeedSource) self.lblActionTypeMessage = QtWidgets.QLabel(self.page0) self.lblActionTypeMessage.setWordWrap(True) self.lblActionTypeMessage.setObjectName("lblActionTypeMessage") self.verticalLayout.addWidget(self.lblActionTypeMessage) spacerItem = QtWidgets.QSpacerItem(20, 288, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.verticalLayout.addItem(spacerItem) self.pages.addWidget(self.page0) self.page1 = QtWidgets.QWidget() self.page1.setObjectName("page1") self.verticalLayout_2 = QtWidgets.QVBoxLayout(self.page1) self.verticalLayout_2.setContentsMargins(0, 0, 0, 0) self.verticalLayout_2.setSpacing(6) self.verticalLayout_2.setObjectName("verticalLayout_2") self.label = QtWidgets.QLabel(self.page1) self.label.setObjectName("label") self.verticalLayout_2.addWidget(self.label) self.gbNumberOfMnemonicWords = QtWidgets.QGroupBox(self.page1) self.gbNumberOfMnemonicWords.setTitle("") self.gbNumberOfMnemonicWords.setObjectName("gbNumberOfMnemonicWords") self.verticalLayout_8 = QtWidgets.QVBoxLayout(self.gbNumberOfMnemonicWords) self.verticalLayout_8.setContentsMargins(6, 6, 6, 6) self.verticalLayout_8.setSpacing(8) self.verticalLayout_8.setObjectName("verticalLayout_8") self.rbWordsCount24 = QtWidgets.QRadioButton(self.gbNumberOfMnemonicWords) self.rbWordsCount24.setChecked(True) self.rbWordsCount24.setObjectName("rbWordsCount24") self.verticalLayout_8.addWidget(self.rbWordsCount24) self.rbWordsCount18 = QtWidgets.QRadioButton(self.gbNumberOfMnemonicWords) self.rbWordsCount18.setObjectName("rbWordsCount18") self.verticalLayout_8.addWidget(self.rbWordsCount18) self.rbWordsCount12 = QtWidgets.QRadioButton(self.gbNumberOfMnemonicWords) self.rbWordsCount12.setObjectName("rbWordsCount12") self.verticalLayout_8.addWidget(self.rbWordsCount12) self.verticalLayout_2.addWidget(self.gbNumberOfMnemonicWords) self.lblPage1Message = QtWidgets.QLabel(self.page1) self.lblPage1Message.setText("") self.lblPage1Message.setWordWrap(True) self.lblPage1Message.setObjectName("lblPage1Message") self.verticalLayout_2.addWidget(self.lblPage1Message) spacerItem1 = QtWidgets.QSpacerItem(20, 310, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.verticalLayout_2.addItem(spacerItem1) self.pages.addWidget(self.page1) self.page2 = QtWidgets.QWidget() self.page2.setObjectName("page2") self.verticalLayout_6 = QtWidgets.QVBoxLayout(self.page2) self.verticalLayout_6.setContentsMargins(0, 0, 0, 0) self.verticalLayout_6.setSpacing(6) self.verticalLayout_6.setObjectName("verticalLayout_6") self.lblStep1HexEntropy = QtWidgets.QLabel(self.page2) self.lblStep1HexEntropy.setObjectName("lblStep1HexEntropy") self.verticalLayout_6.addWidget(self.lblStep1HexEntropy) self.edtHexEntropy = QtWidgets.QLineEdit(self.page2) self.edtHexEntropy.setObjectName("edtHexEntropy") self.verticalLayout_6.addWidget(self.edtHexEntropy) spacerItem2 = QtWidgets.QSpacerItem(20, 365, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.verticalLayout_6.addItem(spacerItem2) self.pages.addWidget(self.page2) self.page3 = QtWidgets.QWidget() self.page3.setObjectName("page3") self.verticalLayout_7 = QtWidgets.QVBoxLayout(self.page3) self.verticalLayout_7.setContentsMargins(0, 0, 0, 0) self.verticalLayout_7.setSpacing(6) self.verticalLayout_7.setObjectName("verticalLayout_7") self.lblStepWordListTitle = QtWidgets.QLabel(self.page3) self.lblStepWordListTitle.setWordWrap(True) self.lblStepWordListTitle.setOpenExternalLinks(True) self.lblStepWordListTitle.setObjectName("lblStepWordListTitle") self.verticalLayout_7.addWidget(self.lblStepWordListTitle) self.pages.addWidget(self.page3) self.page4 = QtWidgets.QWidget() self.page4.setObjectName("page4") self.verticalLayout_3 = QtWidgets.QVBoxLayout(self.page4) self.verticalLayout_3.setContentsMargins(0, 0, 0, 0) self.verticalLayout_3.setSpacing(6) self.verticalLayout_3.setObjectName("verticalLayout_3") self.lblStep1HexEntropy_2 = QtWidgets.QLabel(self.page4) self.lblStep1HexEntropy_2.setObjectName("lblStep1HexEntropy_2") self.verticalLayout_3.addWidget(self.lblStep1HexEntropy_2) self.gridLayout_2 = QtWidgets.QGridLayout() self.gridLayout_2.setSpacing(6) self.gridLayout_2.setObjectName("gridLayout_2") self.horizontalLayout_3 = QtWidgets.QHBoxLayout() self.horizontalLayout_3.setObjectName("horizontalLayout_3") self.lblPinMessage = QtWidgets.QLabel(self.page4) self.lblPinMessage.setText("") self.lblPinMessage.setWordWrap(False) self.lblPinMessage.setObjectName("lblPinMessage") self.horizontalLayout_3.addWidget(self.lblPinMessage) self.edtPrimaryPIN = QtWidgets.QLineEdit(self.page4) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.edtPrimaryPIN.sizePolicy().hasHeightForWidth()) self.edtPrimaryPIN.setSizePolicy(sizePolicy) self.edtPrimaryPIN.setLayoutDirection(QtCore.Qt.LeftToRight) self.edtPrimaryPIN.setEchoMode(QtWidgets.QLineEdit.Password) self.edtPrimaryPIN.setObjectName("edtPrimaryPIN") self.horizontalLayout_3.addWidget(self.edtPrimaryPIN) self.btnShowPIN = QtWidgets.QToolButton(self.page4) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.btnShowPIN.sizePolicy().hasHeightForWidth()) self.btnShowPIN.setSizePolicy(sizePolicy) self.btnShowPIN.setMinimumSize(QtCore.QSize(21, 21)) self.btnShowPIN.setMaximumSize(QtCore.QSize(21, 21)) self.btnShowPIN.setText("") self.btnShowPIN.setObjectName("btnShowPIN") self.horizontalLayout_3.addWidget(self.btnShowPIN) self.edtSecondaryPIN = QtWidgets.QLineEdit(self.page4) self.edtSecondaryPIN.setEchoMode(QtWidgets.QLineEdit.Password) self.edtSecondaryPIN.setObjectName("edtSecondaryPIN") self.horizontalLayout_3.addWidget(self.edtSecondaryPIN) self.btnShowSecondaryPIN = QtWidgets.QToolButton(self.page4) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.btnShowSecondaryPIN.sizePolicy().hasHeightForWidth()) self.btnShowSecondaryPIN.setSizePolicy(sizePolicy) self.btnShowSecondaryPIN.setMinimumSize(QtCore.QSize(21, 21)) self.btnShowSecondaryPIN.setMaximumSize(QtCore.QSize(21, 21)) self.btnShowSecondaryPIN.setText("") self.btnShowSecondaryPIN.setObjectName("btnShowSecondaryPIN") self.horizontalLayout_3.addWidget(self.btnShowSecondaryPIN) self.gridLayout_2.addLayout(self.horizontalLayout_3, 2, 1, 1, 1) self.chbUsePassphrase = QtWidgets.QCheckBox(self.page4) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.chbUsePassphrase.sizePolicy().hasHeightForWidth()) self.chbUsePassphrase.setSizePolicy(sizePolicy) self.chbUsePassphrase.setLayoutDirection(QtCore.Qt.RightToLeft) self.chbUsePassphrase.setText("Use passphrase") self.chbUsePassphrase.setObjectName("chbUsePassphrase") self.gridLayout_2.addWidget(self.chbUsePassphrase, 3, 0, 1, 1) self.chbUsePIN = QtWidgets.QCheckBox(self.page4) self.chbUsePIN.setLayoutDirection(QtCore.Qt.RightToLeft) self.chbUsePIN.setChecked(True) self.chbUsePIN.setObjectName("chbUsePIN") self.gridLayout_2.addWidget(self.chbUsePIN, 2, 0, 1, 1) self.horizontalLayout = QtWidgets.QHBoxLayout() self.horizontalLayout.setObjectName("horizontalLayout") self.edtDeviceLabel = QtWidgets.QLineEdit(self.page4) self.edtDeviceLabel.setPlaceholderText("") self.edtDeviceLabel.setObjectName("edtDeviceLabel") self.horizontalLayout.addWidget(self.edtDeviceLabel) self.gridLayout_2.addLayout(self.horizontalLayout, 1, 1, 1, 1) self.lblDeviceLabel = QtWidgets.QLabel(self.page4) self.lblDeviceLabel.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.lblDeviceLabel.setObjectName("lblDeviceLabel") self.gridLayout_2.addWidget(self.lblDeviceLabel, 1, 0, 1, 1) self.horizontalLayout_4 = QtWidgets.QHBoxLayout() self.horizontalLayout_4.setObjectName("horizontalLayout_4") self.lblPassphraseMessage = QtWidgets.QLabel(self.page4) self.lblPassphraseMessage.setText("") self.lblPassphraseMessage.setWordWrap(False) self.lblPassphraseMessage.setObjectName("lblPassphraseMessage") self.horizontalLayout_4.addWidget(self.lblPassphraseMessage) self.edtPassphrase = QtWidgets.QLineEdit(self.page4) self.edtPassphrase.setEchoMode(QtWidgets.QLineEdit.Password) self.edtPassphrase.setObjectName("edtPassphrase") self.horizontalLayout_4.addWidget(self.edtPassphrase) self.btnShowPassphrase = QtWidgets.QToolButton(self.page4) self.btnShowPassphrase.setMinimumSize(QtCore.QSize(21, 21)) self.btnShowPassphrase.setMaximumSize(QtCore.QSize(21, 21)) self.btnShowPassphrase.setText("") self.btnShowPassphrase.setObjectName("btnShowPassphrase") self.horizontalLayout_4.addWidget(self.btnShowPassphrase) spacerItem3 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_4.addItem(spacerItem3) self.gridLayout_2.addLayout(self.horizontalLayout_4, 3, 1, 1, 1) self.lblDeviceWordsInputType = QtWidgets.QLabel(self.page4) self.lblDeviceWordsInputType.setAlignment(QtCore.Qt.AlignCenter) self.lblDeviceWordsInputType.setObjectName("lblDeviceWordsInputType") self.gridLayout_2.addWidget(self.lblDeviceWordsInputType, 0, 0, 1, 1) self.gbDeviceWordsInputType = QtWidgets.QGroupBox(self.page4) self.gbDeviceWordsInputType.setObjectName("gbDeviceWordsInputType") self.horizontalLayout_2 = QtWidgets.QHBoxLayout(self.gbDeviceWordsInputType) self.horizontalLayout_2.setContentsMargins(0, 0, 0, 0) self.horizontalLayout_2.setObjectName("horizontalLayout_2") self.rbScrambledWords = QtWidgets.QRadioButton(self.gbDeviceWordsInputType) self.rbScrambledWords.setLayoutDirection(QtCore.Qt.LeftToRight) self.rbScrambledWords.setChecked(True) self.rbScrambledWords.setObjectName("rbScrambledWords") self.horizontalLayout_2.addWidget(self.rbScrambledWords) self.rbWordsMatrix = QtWidgets.QRadioButton(self.gbDeviceWordsInputType) self.rbWordsMatrix.setLayoutDirection(QtCore.Qt.LeftToRight) self.rbWordsMatrix.setChecked(False) self.rbWordsMatrix.setObjectName("rbWordsMatrix") self.horizontalLayout_2.addWidget(self.rbWordsMatrix) spacerItem4 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_2.addItem(spacerItem4) self.gridLayout_2.addWidget(self.gbDeviceWordsInputType, 0, 1, 1, 1) self.verticalLayout_3.addLayout(self.gridLayout_2) self.lblOptionsPageMessage = QtWidgets.QLabel(self.page4) self.lblOptionsPageMessage.setText("") self.lblOptionsPageMessage.setObjectName("lblOptionsPageMessage") self.verticalLayout_3.addWidget(self.lblOptionsPageMessage) spacerItem5 = QtWidgets.QSpacerItem(20, 293, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.verticalLayout_3.addItem(spacerItem5) self.lblOptionsEntropy = QtWidgets.QLabel(self.page4) self.lblOptionsEntropy.setStyleSheet("font-size:11px") self.lblOptionsEntropy.setWordWrap(True) self.lblOptionsEntropy.setOpenExternalLinks(True) self.lblOptionsEntropy.setTextInteractionFlags(QtCore.Qt.LinksAccessibleByMouse|QtCore.Qt.TextSelectableByKeyboard|QtCore.Qt.TextSelectableByMouse) self.lblOptionsEntropy.setObjectName("lblOptionsEntropy") self.verticalLayout_3.addWidget(self.lblOptionsEntropy) self.btnPreviewAddresses = QtWidgets.QPushButton(self.page4) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.btnPreviewAddresses.sizePolicy().hasHeightForWidth()) self.btnPreviewAddresses.setSizePolicy(sizePolicy) self.btnPreviewAddresses.setLayoutDirection(QtCore.Qt.LeftToRight) self.btnPreviewAddresses.setAutoDefault(False) self.btnPreviewAddresses.setObjectName("btnPreviewAddresses") self.verticalLayout_3.addWidget(self.btnPreviewAddresses) self.pages.addWidget(self.page4) self.verticalLayout_4.addWidget(self.pages) self.retranslateUi(WdgRecoverHw) self.pages.setCurrentIndex(4) QtCore.QMetaObject.connectSlotsByName(WdgRecoverHw) def retranslateUi(self, WdgRecoverHw): _translate = QtCore.QCoreApplication.translate WdgRecoverHw.setWindowTitle(_translate("WdgRecoverHw", "Form")) self.label_2.setText(_translate("WdgRecoverHw", "<b>Source of the recovery seed</b>")) self.rbSeedSourceHwScreen.setText(_translate("WdgRecoverHw", "Recover from seed words using hardware wallet screen (secure)")) self.rbSeedSourceAppWords.setText(_translate("WdgRecoverHw", "Recover from seed words using in-app editor (convenient but insecure)")) self.rbSeedSourceAppEntropy.setText(_translate("WdgRecoverHw", "Recover from hexadecimal entropy (insecure)")) self.lblActionTypeMessage.setText(_translate("WdgRecoverHw", "...")) self.label.setText(_translate("WdgRecoverHw", "<b>Number of words of the recovery seed</b>")) self.rbWordsCount24.setText(_translate("WdgRecoverHw", "24")) self.rbWordsCount18.setText(_translate("WdgRecoverHw", "18")) self.rbWordsCount12.setText(_translate("WdgRecoverHw", "12")) self.lblStep1HexEntropy.setText(_translate("WdgRecoverHw", "<b>Enter the hexadecimal entropy of the recovery seed</b>")) self.edtHexEntropy.setPlaceholderText(_translate("WdgRecoverHw", "32/24/16-byte hexadecimal string")) self.lblStepWordListTitle.setText(_translate("WdgRecoverHw", "<b>Enter the words of your recovery seed</b>")) self.lblStep1HexEntropy_2.setText(_translate("WdgRecoverHw", "<b>Tune hardware wallet options as needed</b>")) self.edtPrimaryPIN.setPlaceholderText(_translate("WdgRecoverHw", "PIN")) self.btnShowPIN.setToolTip(_translate("WdgRecoverHw", "Show PIN")) self.edtSecondaryPIN.setToolTip(_translate("WdgRecoverHw", "<html><head/><body><p>This PIN will be used to activate passphrase saved in your Ledger Nano S.</p></body></html>")) self.edtSecondaryPIN.setPlaceholderText(_translate("WdgRecoverHw", "Secondary PIN")) self.btnShowSecondaryPIN.setToolTip(_translate("WdgRecoverHw", "Show secondary PIN")) self.chbUsePassphrase.setWhatsThis(_translate("WdgRecoverHw", "<html><head/><body><p>Check the link attached &lt;a href=&quot;dash.org&quot;&gt;dash.org&lt;/a&gt;</p></body></html>")) self.chbUsePIN.setText(_translate("WdgRecoverHw", "Use PIN")) self.lblDeviceLabel.setText(_translate("WdgRecoverHw", "Device label")) self.edtPassphrase.setToolTip(_translate("WdgRecoverHw", "<html><head/><body><p>This passphrase (if used) will be saved in your Ledger Nano S device and will be secured with the secondary PIN .</p></body></html>")) self.edtPassphrase.setPlaceholderText(_translate("WdgRecoverHw", "Passphrase")) self.btnShowPassphrase.setToolTip(_translate("WdgRecoverHw", "Show passphrase")) self.lblDeviceWordsInputType.setText(_translate("WdgRecoverHw", "Tnput type on device")) self.rbScrambledWords.setText(_translate("WdgRecoverHw", "Scrambled words")) self.rbWordsMatrix.setText(_translate("WdgRecoverHw", "Word matrix")) self.lblOptionsEntropy.setText(_translate("WdgRecoverHw", "Entropy:")) self.btnPreviewAddresses.setText(_translate("WdgRecoverHw", "Show preview"))
64.016181
222
0.745008
19,443
0.982913
0
0
0
0
0
0
2,711
0.137051
c47ed8028e53c0742399199be9ea4ca791d59010
1,108
py
Python
datahandler/analyser.py
ameliecordier/IIK
57b40d6b851a1c2369604049d1820e5b572c6227
[ "MIT" ]
null
null
null
datahandler/analyser.py
ameliecordier/IIK
57b40d6b851a1c2369604049d1820e5b572c6227
[ "MIT" ]
null
null
null
datahandler/analyser.py
ameliecordier/IIK
57b40d6b851a1c2369604049d1820e5b572c6227
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import csv from matplotlib import pyplot as plt from matplotlib.backends.backend_pdf import PdfPages def isValid(p, ep): return p in ep.patterns # CLASS ANALYSER class Analyser: """ Représentation d'un résultat d'analyse """ def __init__(self): """ :param results: contient les résultats de l'analyse """ self.results = [] def addResult(self, result): """ Ajoute une liste de résultats à l'ensemble des résultats :param result: la ligne de résultats :return: None """ self.results.append(result) def __str__(self): """ Affichage des résultats sur la sortie standard """ return "Résultats : %r" % self.results def toFile(self, filename): with open(filename, "w") as outfile: fieldnames = ['idxExpert', 'idxMining', 'pattern expert', 'pattern mining' , 'full pattern'] w = csv.DictWriter(outfile, delimiter=";", fieldnames=fieldnames) w.writeheader() w.writerows(self.results)
25.181818
104
0.598375
921
0.82453
0
0
0
0
0
0
484
0.433303
c47ef70151ad606b1f9596045a1960c4c4dec6a6
1,948
py
Python
binary_trees/next_right.py
xxaxdxcxx/miscellaneous-code
cdb88783f39e1b9a89fdb12f7cddfe62619e4357
[ "MIT" ]
null
null
null
binary_trees/next_right.py
xxaxdxcxx/miscellaneous-code
cdb88783f39e1b9a89fdb12f7cddfe62619e4357
[ "MIT" ]
null
null
null
binary_trees/next_right.py
xxaxdxcxx/miscellaneous-code
cdb88783f39e1b9a89fdb12f7cddfe62619e4357
[ "MIT" ]
null
null
null
# Definition for binary tree with next pointer. class TreeLinkNode: def __init__(self, x): self.val = x self.left = None self.right = None self.next = None class Solution: # @param root, a tree link node # @return nothing def connect(self, root): node = root current = None candidate = None next_start = None if node is None: return while node is not None: # loop through nodes in this level, assigning nexts # assumption: previous level (node's level) # has all nexts assigned correctly # assign left's next to right if applicable if node.left is not None: # tells loop where to start for next level if next_start is None: next_start = node.left if node.right is not None: node.left.next = node.right current = node.right else: current = node.left else: if node.right is not None: if next_start is None: next_start = node.right current = node.right else: node = node.next continue while candidate is None: node = node.next if node is None: break if node.left is None: if node.right is None: continue else: candidate = node.right else: candidate = node.left current.next = candidate candidate = None # end of inner loop, through nodes in a level if node is None: node = next_start next_start = None
31.419355
63
0.464579
1,896
0.973306
0
0
0
0
0
0
353
0.181211
c47f26765a0cb339776a2ad95fc385826831ad79
982
py
Python
6.all_species/species_data/merge_species_data.py
oaxiom/episcan
b6616536d621ff02b92a7678f80b5bfbd38c6dc8
[ "MIT" ]
null
null
null
6.all_species/species_data/merge_species_data.py
oaxiom/episcan
b6616536d621ff02b92a7678f80b5bfbd38c6dc8
[ "MIT" ]
null
null
null
6.all_species/species_data/merge_species_data.py
oaxiom/episcan
b6616536d621ff02b92a7678f80b5bfbd38c6dc8
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import sys, os, glob from glbase3 import * all_species = glload('species_annotations/species.glb') newl = [] for file in glob.glob('pep_counts/*.txt'): oh = open(file, 'rt') count = int(oh.readline().split()[0]) oh.close() species_name = os.path.split(file)[1].split('.')[0].lower() # seems a simple rule assembly_name = os.path.split(file)[1].replace('.txt', '') if count < 5000: continue newl.append({'species': species_name, 'assembly_name': assembly_name, 'num_pep': count}) pep_counts = genelist() pep_counts.load_list(newl) all_species = all_species.map(genelist=pep_counts, key='species') all_species = all_species.removeDuplicates('name') print(all_species) all_species = all_species.getColumns(['name', 'species', 'division' ,'num_pep', 'assembly_name']) all_species.sort('name') all_species.saveTSV('all_species.tsv') all_species.save('all_species.glb') # and add the peptide counts for all species
25.179487
97
0.701629
0
0
0
0
0
0
0
0
290
0.295316
c481812f6f75096a79bbca57dd3f97e48ea22078
3,845
py
Python
modules/lex_managers/lex_intent_manager.py
adamhamden/lex-bot
3c21b8d60607950c707b97ff5ba8491d40e31592
[ "MIT" ]
null
null
null
modules/lex_managers/lex_intent_manager.py
adamhamden/lex-bot
3c21b8d60607950c707b97ff5ba8491d40e31592
[ "MIT" ]
null
null
null
modules/lex_managers/lex_intent_manager.py
adamhamden/lex-bot
3c21b8d60607950c707b97ff5ba8491d40e31592
[ "MIT" ]
null
null
null
import boto3 from prettytable import PrettyTable class LexIntentManager: def __init__(self): self.client = boto3.client('lex-models') def create_new_intent(self, intent_name, description="n/a", sample_utterances=[], slot_types=[]): intent_info = {'name': intent_name, 'description': description, 'sampleUtterances': sample_utterances, 'fulfillmentActivity': {'type':'ReturnIntent'}} try: response = self.client.get_slot_type(name=intent_name, version='$LATEST') intent_info['checksum'] = response['checksum'] except self.client.exceptions.NotFoundException: pass slots_info = self._slot_type_constructor(slot_types) intent_info['slots'] = slots_info self.client.put_intent(**intent_info) print("Successfully created intent {}".format(intent_name)) def get_intent_list(self): response = self.client.get_intents() intent_list = [] for intent in response['intents']: intent_list.append(intent['name']) def print_intents(self): response = self.client.get_intents() table = PrettyTable() table.field_names = ['intent_name', 'description', 'version'] for intent in response['intents']: try: table.add_row([intent['name'], intent['description'], intent['version']]) except KeyError: table.add_row([intent['name'], "n/a", intent['version']]) print(table) @staticmethod def _slot_type_constructor(slot_types): slots_info = [] for slot_type in slot_types: slot_name = "sample_" + slot_type slot_required = input("Will the slot {} be required [Required / Optional]: ".format(slot_type)) slot_version = '$LATEST' slot_prompt = str(input("Provide an elicitation prompt for slot {}: ".format(slot_type))) slot_max_attempts = int(input("What is the max attempts to allow when filling slot {}: ".format(slot_type))) slot_sample_utterances = [] while True: slot_sample_utterances.append( str(input("Please enter a sample utterance for slot {}: ".format(slot_type))).replace("this", "{" + slot_name + "}")) if input("Would you like to add another utterance [True / False]: ") == "False": break print("{} - req: {} - prompt: {} - max_attempt: {} - sampleUtterances {}".format(slot_type, slot_required, slot_prompt, slot_max_attempts, slot_sample_utterances)) slot_info = {'name': slot_name, 'slotConstraint': slot_required, 'slotType': slot_type, 'slotTypeVersion': slot_version, 'valueElicitationPrompt': { 'messages': [ { 'contentType': 'PlainText', 'content': slot_prompt, }, ], 'maxAttempts': slot_max_attempts, }, 'sampleUtterances': slot_sample_utterances } slots_info.append(slot_info) return slots_info
39.639175
129
0.490507
3,792
0.986216
0
0
2,255
0.586476
0
0
783
0.203641
c4819144b63cb938bdc3a631c3adcbd846e22f52
80
py
Python
src/__init__.py
Victorpc98/CE888-Project
99c20adc78eb53ac4d3c87543ef8da1ef4d10adc
[ "MIT" ]
1
2020-04-18T21:03:28.000Z
2020-04-18T21:03:28.000Z
src/__init__.py
Victorpc98/CE888-Project
99c20adc78eb53ac4d3c87543ef8da1ef4d10adc
[ "MIT" ]
null
null
null
src/__init__.py
Victorpc98/CE888-Project
99c20adc78eb53ac4d3c87543ef8da1ef4d10adc
[ "MIT" ]
null
null
null
import sys sys.path.append("..") # Adds higher directory to python modules path.
40
69
0.75
0
0
0
0
0
0
0
0
51
0.6375
c4821b9a95d728a178a666ea50065578f645972b
7,025
py
Python
wxtbx/wx4_compatibility.py
dperl-sol/cctbx_project
b9e390221a2bc4fd00b9122e97c3b79c632c6664
[ "BSD-3-Clause-LBNL" ]
155
2016-11-23T12:52:16.000Z
2022-03-31T15:35:44.000Z
wxtbx/wx4_compatibility.py
dperl-sol/cctbx_project
b9e390221a2bc4fd00b9122e97c3b79c632c6664
[ "BSD-3-Clause-LBNL" ]
590
2016-12-10T11:31:18.000Z
2022-03-30T23:10:09.000Z
wxtbx/wx4_compatibility.py
dperl-sol/cctbx_project
b9e390221a2bc4fd00b9122e97c3b79c632c6664
[ "BSD-3-Clause-LBNL" ]
115
2016-11-15T08:17:28.000Z
2022-02-09T15:30:14.000Z
from __future__ import absolute_import, division, print_function ''' Author : Lyubimov, A.Y. Created : 04/14/2014 Last Changed: 11/05/2018 Description : wxPython 3-4 compatibility tools The context managers, classes, and other tools below can be used to make the GUI code compatible with wxPython 3 and 4. Mostly, the tools convert the functions, enumerations, and classes which have been renamed in wxPython 4; the name mismatches result in exceptions. Use case 1: subclassing wx.PyControl or wx.Control: from wxtbx import wx4_compatibility as wx4c WxCtrl = wx4c.get_wx_mod(wx, wx.Control) class MyCustomControl(WxCtrl): ... Use case 2: brush style (NOTE: you can do that with fonts as well, but it doesn't seem to be necessary): from wxtbx import wx4_compatibility as wx4c bkgrd = self.GetBackgroundColour() with wx4c.set_brush_style(wx.BRUSHSTYLE_SOLID) as bstyle: brush = wx.Brush(bkgrd, bstyle) Use case 3: Toolbars from wxtbx import wx4_compatibility as wx4c, bitmaps class MyFrame(wx.Frame): def __init__(self, parent, id, title, *args, **kwargs): wx.Frame.__init__(self, parent, id, title, *args, **kwargs) self.toolbar = wx4c.ToolBar(self, style=wx.TB_TEXT) self.quit_button = self.toolbar.AddTool(toolId=wx.ID_ANY, label='Quit', kind=wx.ITEM_NORMAL, bitmap=bitmaps.fetch_icon_bitmap('actions', 'exit') shortHelp='Exit program') ... self.SetToolBar(self.toolbar) self.toolbar.Realize() ''' import wx from contextlib import contextmanager import importlib wx4 = wx.__version__[0] == '4' modnames = [ ('PyControl', 'Control'), ('PyDataObjectSimple', 'DataObjectSimple'), ('PyDropTarget', 'DropTarget'), ('PyEvtHandler', 'EvtHandler'), ('PyImageHandler', 'ImageHandler'), ('PyLocale', 'Locale'), ('PyLog', 'Log'), ('PyPanel', 'Panel'), ('PyPickerBase', 'PickerBase'), ('PyPreviewControlBar', 'PreviewControlBar'), ('PyPreviewFrame', 'PreviewFrame'), ('PyPrintPreview', 'PrintPreview'), ('PyScrolledWindow', 'ScrolledWindow'), ('PySimpleApp', 'App'), ('PyTextDataObject', 'TextDataObject'), ('PyTimer', 'Timer'), ('PyTipProvider', 'adv.TipProvider'), ('PyValidator', 'Validator'), ('PyWindow'', Window') ] font_families = [ (wx.DEFAULT, wx.FONTFAMILY_DEFAULT), (wx.DECORATIVE, wx.FONTFAMILY_DECORATIVE), (wx.ROMAN, wx.FONTFAMILY_ROMAN), (wx.SCRIPT, wx.FONTFAMILY_SCRIPT), (wx.SWISS, wx.FONTFAMILY_SWISS), (wx.MODERN, wx.FONTFAMILY_MODERN), (wx.TELETYPE, wx.FONTFAMILY_TELETYPE) ] font_weights = [ (wx.NORMAL, wx.FONTWEIGHT_NORMAL), (wx.LIGHT, wx.FONTWEIGHT_LIGHT), (wx.BOLD, wx.FONTWEIGHT_BOLD) ] font_styles = [ (wx.NORMAL, wx.FONTSTYLE_NORMAL), (wx.ITALIC, wx.FONTSTYLE_ITALIC), (wx.SLANT, wx.FONTSTYLE_SLANT) ] pen_styles = [ (wx.SOLID, wx.PENSTYLE_SOLID), (wx.DOT, wx.PENSTYLE_DOT), (wx.LONG_DASH, wx.PENSTYLE_LONG_DASH), (wx.SHORT_DASH, wx.PENSTYLE_SHORT_DASH), (wx.DOT_DASH, wx.PENSTYLE_DOT_DASH), (wx.USER_DASH, wx.PENSTYLE_USER_DASH), (wx.TRANSPARENT, wx.PENSTYLE_TRANSPARENT) ] brush_styles = [ (wx.SOLID, wx.BRUSHSTYLE_SOLID), (wx.TRANSPARENT, wx.BRUSHSTYLE_TRANSPARENT), (wx.STIPPLE_MASK_OPAQUE, wx.BRUSHSTYLE_STIPPLE_MASK_OPAQUE), (wx.STIPPLE_MASK, wx.BRUSHSTYLE_STIPPLE_MASK), (wx.STIPPLE, wx.BRUSHSTYLE_STIPPLE), (wx.BDIAGONAL_HATCH, wx.BRUSHSTYLE_BDIAGONAL_HATCH), (wx.CROSSDIAG_HATCH, wx.BRUSHSTYLE_CROSSDIAG_HATCH), (wx.FDIAGONAL_HATCH, wx.BRUSHSTYLE_FDIAGONAL_HATCH), (wx.CROSS_HATCH, wx.BRUSHSTYLE_CROSS_HATCH), (wx.HORIZONTAL_HATCH, wx.BRUSHSTYLE_HORIZONTAL_HATCH), (wx.VERTICAL_HATCH, wx.BRUSHSTYLE_VERTICAL_HATCH), ] def find_module(module): for m in modnames: if module.__name__ in m: return m def find_enum(enums, item): for en in enums: if item in en: value = en[1] if wx4 else en[0] return value def get_wx_mod(base, module): mname = find_module(module)[1] if wx4 else find_module(module)[0] bname = base.__name__ if '.' in mname: spl = [i for i in mname.split('.') if i != bname] modname = '.'.join(spl[:-1]) mod = importlib.import_module('{}.{}'.format(bname, modname)) return getattr(mod, spl[-1]) else: return getattr(base, mname) @contextmanager def wx_mod(base, module): ''' Identify and import the appropriate wxPython module ''' yield get_wx_mod(base, module) @contextmanager def set_font_style(style): yield find_enum(font_styles, style) @contextmanager def set_font_weight(weight): yield find_enum(font_weights, weight) @contextmanager def set_font_family(family): yield find_enum(font_families, family) @contextmanager def set_pen_style(style): yield find_enum(pen_styles, style) @contextmanager def set_brush_style(style): yield find_enum(brush_styles, style) @contextmanager def create_measuring_context(): dc = wx.GraphicsContext.Create() if wx4 else \ wx.GraphicsContext.CreateMeasuringContext() yield dc class Wx3ToolBar(wx.ToolBar): ''' Special toolbar class that accepts wxPython 4-style AddTool command and converts it to a wxPython 3-style AddLabelTool command ''' def __init__(self, parent, id=wx.ID_ANY, pos=wx.DefaultPosition, size=wx.DefaultSize, style=wx.TB_HORIZONTAL, name='toolbar'): wx.ToolBar.__init__(self, parent, id, pos, size, style, name) def AddTool(self, toolId, label, bitmap, bmpDisabled=wx.NullBitmap, kind=wx.ITEM_NORMAL, shortHelp='', longHelp='', clientData=None): ''' Override to make this a very thin wrapper for AddLabelTool, which in wxPython 3 is the same as AddTool in wxPython 4 ''' return self.AddLabelTool(id=toolId, label=label, bitmap=bitmap, bmpDisabled=bmpDisabled, kind=kind, shortHelp=shortHelp, longHelp=longHelp, clientData=clientData) class Wx4ToolBar(wx.ToolBar): ''' Special toolbar class that accepts wxPython 3-style AddLabelTool command and converts it to a wxPython 4-style AddTool command ''' def __init__(self, parent, id=wx.ID_ANY, pos=wx.DefaultPosition, size=wx.DefaultSize, style=wx.TB_HORIZONTAL, name='toolbar'): wx.ToolBar.__init__(self, parent, id, pos, size, style, name) def AddLabelTool(self, id, label, bitmap, bmpDisabled=wx.NullBitmap, kind=wx.ITEM_NORMAL, shortHelp='', longHelp='', clientData=None): ''' Override to make this a very thin wrapper for AddTool, which in wxPython 4 is the same as AddLabelTool in wxPython 3 ''' return self.AddTool(toolId=id, label=label, bitmap=bitmap, bmpDisabled=bmpDisabled, kind=kind, shortHelp=shortHelp, longHelp=longHelp, clientData=clientData) # Use this ToolBar class to create toolbars in frames ToolBar = Wx4ToolBar if wx4 else Wx3ToolBar
32.981221
96
0.691103
1,841
0.262064
588
0.083701
700
0.099644
0
0
2,739
0.389893
c483b92cbfbdabe1b45008c539e6179a5bd43a9f
1,548
py
Python
BMVC_version/utils.py
ZhengyuZhao/ACE
5065cde807fe689115849c55d440783d8a471901
[ "MIT" ]
19
2020-05-13T07:51:00.000Z
2021-06-13T11:03:47.000Z
BMVC_version/utils.py
ZhengyuZhao/AdvCF
5065cde807fe689115849c55d440783d8a471901
[ "MIT" ]
1
2020-09-09T09:39:28.000Z
2020-09-10T20:30:02.000Z
BMVC_version/utils.py
ZhengyuZhao/AdvCF
5065cde807fe689115849c55d440783d8a471901
[ "MIT" ]
3
2020-09-05T11:32:23.000Z
2021-03-30T01:41:07.000Z
import torch import torch.nn as nn import csv #image quantization def quantization(x): x_quan=torch.round(x*255)/255 return x_quan #picecwise-linear color filter def CF(img, param,pieces): param=param[:,:,None,None] color_curve_sum = torch.sum(param, 4) + 1e-30 total_image = img * 0 for i in range(pieces): total_image += torch.clamp(img - 1.0 * i /pieces, 0, 1.0 / pieces) * param[:, :, :, :, i] total_image *= pieces/ color_curve_sum return total_image #parsing the data annotation def load_ground_truth(csv_filename): image_id_list = [] label_ori_list = [] label_tar_list = [] with open(csv_filename) as csvfile: reader = csv.DictReader(csvfile, delimiter=',') for row in reader: image_id_list.append( row['ImageId'] ) label_ori_list.append( int(row['TrueLabel']) ) label_tar_list.append( int(row['TargetClass']) ) return image_id_list,label_ori_list,label_tar_list # simple Module to normalize an image class Normalize(nn.Module): def __init__(self, mean, std): super(Normalize, self).__init__() self.mean = torch.Tensor(mean) self.std = torch.Tensor(std) def forward(self, x): return (x - self.mean.type_as(x)[None,:,None,None]) / self.std.type_as(x)[None,:,None,None] # values are standard normalization for ImageNet images, # from https://github.com/pytorch/examples/blob/master/imagenet/main.py norm = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
29.769231
99
0.660207
306
0.197674
0
0
0
0
0
0
278
0.179587
c4844ed8e45f32c88606465081cf2391a8999d1d
4,849
py
Python
lemonpie/_nbdev.py
corazonlabs/ehr_preprocessing
5bf3be1f04d9dc6db002b58331800b30cf668e69
[ "Apache-2.0" ]
3
2021-04-03T01:16:18.000Z
2021-07-31T20:44:47.000Z
lemonpie/_nbdev.py
corazonlabs/ehr_preprocessing
5bf3be1f04d9dc6db002b58331800b30cf668e69
[ "Apache-2.0" ]
5
2021-03-30T21:23:47.000Z
2022-02-26T10:17:12.000Z
lemonpie/_nbdev.py
vin00d/lemonpie
5bf3be1f04d9dc6db002b58331800b30cf668e69
[ "Apache-2.0" ]
1
2020-11-26T00:35:28.000Z
2020-11-26T00:35:28.000Z
# AUTOGENERATED BY NBDEV! DO NOT EDIT! __all__ = ["index", "modules", "custom_doc_links", "git_url"] index = {"get_device": "00_basics.ipynb", "settings_template": "00_basics.ipynb", "read_settings": "00_basics.ipynb", "DEVICE": "00_basics.ipynb", "settings": "00_basics.ipynb", "DATA_STORE": "00_basics.ipynb", "LOG_STORE": "00_basics.ipynb", "MODEL_STORE": "00_basics.ipynb", "EXPERIMENT_STORE": "00_basics.ipynb", "PATH_1K": "00_basics.ipynb", "PATH_10K": "00_basics.ipynb", "PATH_20K": "00_basics.ipynb", "PATH_100K": "00_basics.ipynb", "FILENAMES": "00_basics.ipynb", "SYNTHEA_DATAGEN_DATES": "00_basics.ipynb", "CONDITIONS": "00_basics.ipynb", "LOG_NUMERICALIZE_EXCEP": "00_basics.ipynb", "read_raw_ehrdata": "01_preprocessing_clean.ipynb", "split_patients": "01_preprocessing_clean.ipynb", "split_ehr_dataset": "01_preprocessing_clean.ipynb", "cleanup_pts": "01_preprocessing_clean.ipynb", "cleanup_obs": "01_preprocessing_clean.ipynb", "cleanup_algs": "01_preprocessing_clean.ipynb", "cleanup_crpls": "01_preprocessing_clean.ipynb", "cleanup_meds": "01_preprocessing_clean.ipynb", "cleanup_img": "01_preprocessing_clean.ipynb", "cleanup_procs": "01_preprocessing_clean.ipynb", "cleanup_cnds": "01_preprocessing_clean.ipynb", "cleanup_immns": "01_preprocessing_clean.ipynb", "cleanup_dataset": "01_preprocessing_clean.ipynb", "extract_ys": "01_preprocessing_clean.ipynb", "insert_age": "01_preprocessing_clean.ipynb", "clean_raw_ehrdata": "01_preprocessing_clean.ipynb", "load_cleaned_ehrdata": "01_preprocessing_clean.ipynb", "load_ehr_vocabcodes": "01_preprocessing_clean.ipynb", "EhrVocab": "02_preprocessing_vocab.ipynb", "ObsVocab": "02_preprocessing_vocab.ipynb", "EhrVocabList": "02_preprocessing_vocab.ipynb", "get_all_emb_dims": "02_preprocessing_vocab.ipynb", "collate_codes_offsts": "03_preprocessing_transform.ipynb", "get_codenums_offsts": "03_preprocessing_transform.ipynb", "get_demographics": "03_preprocessing_transform.ipynb", "Patient": "03_preprocessing_transform.ipynb", "get_pckl_dir": "03_preprocessing_transform.ipynb", "PatientList": "03_preprocessing_transform.ipynb", "cpu_cnt": "03_preprocessing_transform.ipynb", "create_all_ptlists": "03_preprocessing_transform.ipynb", "preprocess_ehr_dataset": "03_preprocessing_transform.ipynb", "EHRDataSplits": "04_data.ipynb", "LabelEHRData": "04_data.ipynb", "EHRDataset": "04_data.ipynb", "EHRData": "04_data.ipynb", "accuracy": "05_metrics.ipynb", "null_accuracy": "05_metrics.ipynb", "ROC": "05_metrics.ipynb", "MultiLabelROC": "05_metrics.ipynb", "plot_rocs": "05_metrics.ipynb", "plot_train_valid_rocs": "05_metrics.ipynb", "auroc_score": "05_metrics.ipynb", "auroc_ci": "05_metrics.ipynb", "save_to_checkpoint": "06_learn.ipynb", "load_from_checkpoint": "06_learn.ipynb", "get_loss_fn": "06_learn.ipynb", "RunHistory": "06_learn.ipynb", "train": "06_learn.ipynb", "evaluate": "06_learn.ipynb", "fit": "06_learn.ipynb", "predict": "06_learn.ipynb", "plot_loss": "06_learn.ipynb", "plot_losses": "06_learn.ipynb", "plot_aurocs": "06_learn.ipynb", "plot_train_valid_aurocs": "06_learn.ipynb", "plot_fit_results": "06_learn.ipynb", "summarize_prediction": "06_learn.ipynb", "count_parameters": "06_learn.ipynb", "dropout_mask": "07_models.ipynb", "InputDropout": "07_models.ipynb", "linear_layer": "07_models.ipynb", "create_linear_layers": "07_models.ipynb", "init_lstm": "07_models.ipynb", "EHR_LSTM": "07_models.ipynb", "init_cnn": "07_models.ipynb", "conv_layer": "07_models.ipynb", "EHR_CNN": "07_models.ipynb", "get_data": "08_experiment.ipynb", "get_optimizer": "08_experiment.ipynb", "get_model": "08_experiment.ipynb", "Experiment": "08_experiment.ipynb"} modules = ["basics.py", "preprocessing/clean.py", "preprocessing/vocab.py", "preprocessing/transform.py", "data.py", "metrics.py", "learn.py", "models.py", "experiment.py"] doc_url = "https://corazonlabs.github.io/lemonpie/" git_url = "https://github.com/corazonlabs/lemonpie/tree/main/" def custom_doc_links(name): return None
44.486239
70
0.630852
0
0
0
0
0
0
0
0
3,500
0.721798
c4847cc6bababbdf22257962d4c32b15d776c5ed
8,277
py
Python
tensorboard/plugins/graph_edit/c2graph_util.py
qzhong0605/tensorboardplugins
92bfc7ca96b933cdbdf074a08f26f5c715d8421d
[ "Apache-2.0" ]
null
null
null
tensorboard/plugins/graph_edit/c2graph_util.py
qzhong0605/tensorboardplugins
92bfc7ca96b933cdbdf074a08f26f5c715d8421d
[ "Apache-2.0" ]
null
null
null
tensorboard/plugins/graph_edit/c2graph_util.py
qzhong0605/tensorboardplugins
92bfc7ca96b933cdbdf074a08f26f5c715d8421d
[ "Apache-2.0" ]
null
null
null
# Convert the caffe2 model into tensorboard GraphDef # # The details of caffe2 model is on the compat/proto/caffe2/caffe2.proto # And the details of GraphDef model is on the compat/proto/graph.proto # ################################################################################ from tensorboard.compat.proto import graph_pb2 from tensorboard.compat.proto import attr_value_pb2 from tensorboard.compat.proto import node_def_pb2 from tensorboard.compat.proto import tensor_shape_pb2 from tensorboard.compat.proto import tensor_pb2 from tensorboard.compat.proto import types_pb2 from tensorboard.compat.proto.caffe2 import caffe2_pb2 from tensorboard.util import tb_logging from tensorboard.plugins.graph_edit import tbgraph_base from google.protobuf import text_format logger = tb_logging.get_logger() class C2Graph(tbgraph_base.TBGraph): """ In order to visualize the caffe2 model graph, it converts the caffe2 format model graph into the tensoboard-format model graph. The information about caffe2 model is on the proto `compat/proto/caffe2/caffe2.proto`. And the tensorboard model is on the proto `compat/proto/graph.proto` In order to avoid the same tensor name and they are built from the different operators, we adopt the SSA form, which is used to differentiate different tensor """ def __init__(self, predict_net, init_net, predict_net_type="pb"): super(C2Graph, self).__init__() self._predict_net = caffe2_pb2.NetDef() if predict_net_type == "pb": with open(predict_net, "rb") as predict_stream: self._predict_net.ParseFromString(predict_stream.read()) logger.info("parse caffe2 predict net {} with protobuf format".format(predict_net)) elif predict_net_type == "txt": with open(predict_net, "r") as predict_stream: text_format.Parse(predict_stream.read(), self._predict_net) logger.info("parse caffe2 predict net {} with text format".format(predict_net)) else: raise NotImplementedError("The predict net type: {} doesn't support".format(predict_net_type)) self._init_net = caffe2_pb2.NetDef() with open(init_net, "rb") as init_stream: self._init_net.ParseFromString(init_stream.read()) logger.info("load caffe2 init net {} with protobuf format".format(init_net)) # a map from node key to node, where the node key is globaly unique self.nodes = {} # a map from caffe2 operator to output, which is a SSA-format self.c2_op_out = {} # record the blob version for inplace-change self.blob_version = {} # a map from node name to shape info self.shapes = {} # a map from node name to dtype self.types = {} def _build_nodes_shapetype(self): """ Build an inner node shape information given the weights information for network """ # add shape information if self._init_net is None: return for init_op in self._init_net.op: for init_arg in init_op.arg: if init_arg.name == "shape": self.shapes[init_op.output[0]] = init_arg.ints elif init_arg.name == "values": if len(init_arg.floats): self.types[init_op.output[0]] = types_pb2.DT_FLOAT elif len(init_arg.ints): self.types[init_op.output[0]] = types_pb2.DT_INT64 elif len(init_arg.strings): self.types[init_op.output[0]] = types_pb2.DT_STRING else: raise NotImplementedError("Not Supported Field: {}".format(init_arg)) def _add_node_shapetype(self, node, shape_name): """ build an internal node shape map if given the weights information """ if shape_name in self.shapes: tensor_shape = tensor_shape_pb2.TensorShapeProto() for shape_i in self.shapes[shape_name]: shape_dim = tensor_shape_pb2.TensorShapeProto.Dim() shape_dim.size = shape_i tensor_shape.dim.extend([shape_dim]) attr_value = attr_value_pb2.AttrValue() attr_value.shape.CopyFrom(tensor_shape) node.attr['shape'].CopyFrom(attr_value) # add optional dtype if shape_name in self.types: attr_value = attr_value_pb2.AttrValue() attr_value.type = self.types[shape_name] node.attr['dtype'].CopyFrom(attr_value) def _MakeSSAName(self, name): """ It's used to make a unique name through a ssa-based format for `name` """ if name not in self.blob_version: self.blob_version[name] = 0 else: self.blob_version[name] += 1 ret_name = "{}_{}".format(name, self.blob_version[name]) return ret_name def convert_to_nodes(self, c2_op): """ Convert a caffe2 OperatorDef into TB nodes The nodes for TensorBoard have only inputs and don't have outputs. Therefore a caffe2 operator maybe converted into muliple nodes Arg: c2_op: a caffe2 OperatorDef """ new_node = node_def_pb2.NodeDef() new_node.op = c2_op.type for c2_input in c2_op.input: if c2_input not in self.blob_version: # These inputs are weights or input data for current # tensorboard node. Therefore, the `op` is set to # `Initialization` in_node = node_def_pb2.NodeDef() self._add_node_shapetype(in_node, c2_input) self.blob_version[c2_input] = 0 in_node.name = '{}_{}'.format(c2_input, self.blob_version[c2_input]) in_node.op = "Initialization" self.nodes["{}_{}".format(c2_input, 0)] = in_node self._tb_graph.node.extend([in_node]) new_node.input.append('{}_{}'.format(c2_input, self.blob_version[c2_input])) if len(c2_op.output) == 0: # There are no outputs for current C2 operator. Therefore, the node # name is set to C2 operation type new_node.name = self._MakeSSAName(c2_op.type) else: new_node.name = self._MakeSSAName(c2_op.output[0]) # If more than one output, we build `Sibling` tensorboard node for # other outpouts for c2_output in c2_op.output[1:]: sibling_node = node_def_pb2.NodeDef() sibling_node.op = 'Sibling' sibling_node.name = self._MakeSSAName(c2_output) sibling_node.input.extend([new_node.name]) self._add_node_shapetype(sibling_node, c2_output) self.nodes[sibling_node.name] = sibling_node self._tb_graph.node.extend([sibling_node]) # add argument for c2_arg in c2_op.arg: attr = attr_value_pb2.AttrValue() if c2_arg.HasField('i'): attr.i = c2_arg.i elif c2_arg.HasField('f'): attr.f = c2_arg.f elif c2_arg.HasField('s'): attr.s = c2_arg.s elif len(c2_arg.floats): list_value = attr_value_pb2.AttrValue.ListValue() list_value.f.extend(c2_args.floats) attr.list = list_value elif len(c2_arg.ints): list_value = attr_value_pb2.AttrValue.ListValue() list_value.i.extend(c2_arg.ints) attr.list.CopyFrom(list_value) elif len(c2_arg.strings): list_value = attr_value_pb2.AttrValue.ListValue() list_value.s.extend(c2_arg.strings) attr.list.CopyFrom(list_value) new_node.attr[c2_arg.name].CopyFrom(attr) self._add_node_shapetype(new_node, c2_op.output[0]) self.nodes[new_node.name] = new_node self._tb_graph.node.extend([new_node]) def ConvertNet(self): """ Convert the full network of caffe2 into TB network """ self._build_nodes_shapetype() for c2_op in self._predict_net.op: self.convert_to_nodes(c2_op)
44.5
106
0.618461
7,467
0.902138
0
0
0
0
0
0
2,241
0.27075
c4852e08624ac34e2478471564d3403491679e03
1,251
py
Python
src/Homework2_1.py
alexaquino/TUM-AUTONAVx
95c6829fa2e31e1a11bf2c7726386593e7adbdce
[ "MIT" ]
null
null
null
src/Homework2_1.py
alexaquino/TUM-AUTONAVx
95c6829fa2e31e1a11bf2c7726386593e7adbdce
[ "MIT" ]
null
null
null
src/Homework2_1.py
alexaquino/TUM-AUTONAVx
95c6829fa2e31e1a11bf2c7726386593e7adbdce
[ "MIT" ]
null
null
null
#!/usr/bin/env python # The MIT License (MIT) # Copyright (c) 2014 Alex Aquino dos Santos # Technische Universität München (TUM) # Autonomous Navigation for Flying Robots # Homework 2.1 from plot import plot class UserCode: def __init__(self): # initialize data you want to store in this object between calls to the measurement_callback() method self.last_yaw_velocity = 0 self.max_roll_angle = 0 self.max_pitch_angle = 0 self.max_yaw_velocity = 0 def measurement_callback(self, t, dt, navdata): ''' :param t: time since simulation start :param dt: time since last call to measurement_callback :param navdata: measurements of the quadrotor ''' # add your plot commands here self.max_roll_angle = max(self.max_roll_angle, abs(navdata.rotX)) self.max_pitch_angle = max(self.max_pitch_angle, abs(navdata.rotY)) self.max_yaw_velocity = max(self.max_yaw_velocity, abs((navdata.rotZ - self.last_yaw_velocity) / dt)) self.last_yaw_velocity = navdata.rotZ plot("max_roll_angle", self.max_roll_angle) plot("max_pitch_angle", self.max_pitch_angle) plot("max_yaw_velocity", self.max_yaw_velocity)
34.75
109
0.686651
1,038
0.828412
0
0
0
0
0
0
542
0.432562
c4855377edb8f2377a14569ead5ae6f4b477315f
1,651
py
Python
src_tf/templates/tf_estimator_template/model/example.py
ashishpatel26/finch
bf2958c0f268575e5d51ad08fbc08b151cbea962
[ "MIT" ]
1
2019-02-12T09:22:00.000Z
2019-02-12T09:22:00.000Z
src_tf/templates/tf_estimator_template/model/example.py
loopzxl/finch
bf2958c0f268575e5d51ad08fbc08b151cbea962
[ "MIT" ]
null
null
null
src_tf/templates/tf_estimator_template/model/example.py
loopzxl/finch
bf2958c0f268575e5d51ad08fbc08b151cbea962
[ "MIT" ]
1
2020-10-15T21:34:17.000Z
2020-10-15T21:34:17.000Z
from configs import args import tensorflow as tf def forward(x, mode): is_training = (mode == tf.estimator.ModeKeys.TRAIN) x = tf.contrib.layers.embed_sequence(x, args.vocab_size, args.embed_dim) x = tf.layers.dropout(x, 0.2, training=is_training) feat_map = [] for k_size in [3, 4, 5]: _x = tf.layers.conv1d(x, args.filters, k_size, activation=tf.nn.relu) _x = tf.layers.max_pooling1d(_x, _x.get_shape().as_list()[1], 1) _x = tf.reshape(_x, (tf.shape(x)[0], args.filters)) feat_map.append(_x) x = tf.concat(feat_map, -1) x = tf.layers.dense(x, args.filters, tf.nn.relu) logits = tf.layers.dense(x, args.n_class) return logits def model_fn(features, labels, mode): logits = forward(features, mode) if mode == tf.estimator.ModeKeys.PREDICT: preds = tf.argmax(logits, -1) return tf.estimator.EstimatorSpec(mode, predictions=preds) if mode == tf.estimator.ModeKeys.TRAIN: global_step = tf.train.get_global_step() LR = {'start': 5e-3, 'end': 5e-4, 'steps': 1500} lr_op = tf.train.exponential_decay( LR['start'], global_step, LR['steps'], LR['end']/LR['start']) loss_op = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=labels)) train_op = tf.train.AdamOptimizer(lr_op).minimize( loss_op, global_step=global_step) lth = tf.train.LoggingTensorHook({'lr': lr_op}, every_n_iter=100) return tf.estimator.EstimatorSpec( mode=mode, loss=loss_op, train_op=train_op, training_hooks=[lth])
34.395833
80
0.637795
0
0
0
0
0
0
0
0
49
0.029679
c485ee350fbe503865765122e5205b0c6d84fd8d
1,300
py
Python
{{cookiecutter.project_slug}}/core/management/commands/snippets/fastapi_project/core/security.py
claysllanxavier/django-cookiecutter
97de7ff4ed3dc94c32bf756a57aee0664a888cbc
[ "BSD-3-Clause" ]
8
2021-08-13T17:48:27.000Z
2022-02-22T02:34:15.000Z
{{cookiecutter.project_slug}}/core/management/commands/snippets/fastapi_project/core/security.py
claysllanxavier/django-cookiecutter
97de7ff4ed3dc94c32bf756a57aee0664a888cbc
[ "BSD-3-Clause" ]
2
2022-03-24T20:39:00.000Z
2022-03-24T20:39:48.000Z
{{cookiecutter.project_slug}}/core/management/commands/snippets/fastapi_project/core/security.py
claysllanxavier/django-cookiecutter
97de7ff4ed3dc94c32bf756a57aee0664a888cbc
[ "BSD-3-Clause" ]
2
2021-09-21T00:05:27.000Z
2022-01-03T10:50:05.000Z
from datetime import datetime, timedelta from typing import Any, Union from jose import jwt from passlib.context import CryptContext from .config import settings pwd_context = CryptContext( default="django_pbkdf2_sha256", schemes=["django_argon2", "django_bcrypt", "django_bcrypt_sha256", "django_pbkdf2_sha256", "django_pbkdf2_sha1", "django_disabled"]) ALGORITHM = "HS256" ACCESS_TOKEN_EXPIRE_MINUTES = 60 * 24 * 8 # 8 days ''' Arquivo de configuração de segurança dos tokens JWT - Métodos de verificação e criação de hash de senha - Método para criar o token jwt válido ''' def verify_password(plain_password: str, hashed_password: str) -> bool: return pwd_context.verify(plain_password, hashed_password) def get_password_hash(password: str) -> str: return pwd_context.hash(password) def create_access_token( subject: Union[str, Any], expires_delta: timedelta = None ) -> str: if expires_delta: expire = datetime.utcnow() + expires_delta else: expire = datetime.utcnow() + timedelta( minutes=ACCESS_TOKEN_EXPIRE_MINUTES ) to_encode = {"exp": expire, "sub": str(subject)} encoded_jwt = jwt.encode(to_encode, settings.app_secret, algorithm=ALGORITHM) return encoded_jwt
29.545455
81
0.713077
0
0
0
0
0
0
0
0
319
0.243511
c487c6e672ed0de9246b310bca5ef690e836e2e6
10,241
py
Python
margarita/main.py
w0de/margarita
50c7c07b8ee3d5d6c801833be7c147533c33fd70
[ "Unlicense" ]
3
2018-07-27T22:19:02.000Z
2019-09-06T18:08:58.000Z
margarita/main.py
w0de/margarita
50c7c07b8ee3d5d6c801833be7c147533c33fd70
[ "Unlicense" ]
null
null
null
margarita/main.py
w0de/margarita
50c7c07b8ee3d5d6c801833be7c147533c33fd70
[ "Unlicense" ]
1
2019-05-21T18:07:46.000Z
2019-05-21T18:07:46.000Z
#!/usr/bin/env python from flask import Flask from flask import jsonify, render_template, redirect from flask import request, Response from saml_auth import BaseAuth, SamlAuth import os, sys try: import json except ImportError: # couldn't find json, try simplejson library import simplejson as json import getopt from operator import itemgetter from distutils.version import LooseVersion from reposadolib import reposadocommon apple_catalog_version_map = { 'index-10.14-10.13-10.12-10.11-10.10-10.9-mountainlion-lion-snowleopard-leopard.merged-1.sucatalog': '10.14', 'index-10.13-10.12-10.11-10.10-10.9-mountainlion-lion-snowleopard-leopard.merged-1.sucatalog': '10.13', 'index-10.12-10.11-10.10-10.9-mountainlion-lion-snowleopard-leopard.merged-1.sucatalog': '10.12', 'index-10.11-10.10-10.9-mountainlion-lion-snowleopard-leopard.merged-1.sucatalog': '10.11', 'index-10.10-10.9-mountainlion-lion-snowleopard-leopard.merged-1.sucatalog': '10.10', 'index-10.9-mountainlion-lion-snowleopard-leopard.merged-1.sucatalog': '10.9', 'index-mountainlion-lion-snowleopard-leopard.merged-1.sucatalog': '10.8', 'index-lion-snowleopard-leopard.merged-1.sucatalog': '10.7', 'index-leopard-snowleopard.merged-1.sucatalog': '10.6', 'index-leopard.merged-1.sucatalog': '10.5', 'index-1.sucatalog': '10.4', 'index.sucatalog': '10.4', } BASE_AUTH_CLASS = BaseAuth def build_app(): app = Flask(__name__) app.config.update( { "DEBUG": os.environ.get('DEBUG', False), "LOCAL_DEBUG": os.environ.get('LOCAL_DEBUG', False), "SECRET_KEY": os.environ.get("SECRET_KEY", "insecure"), "SAML_PATH": os.environ.get( "SAML_PATH", os.path.join(os.path.dirname(os.path.dirname(__file__)), "saml"), ), "SAML_AUTH_ENABLED": bool(os.environ.get("SAML_AUTH_ENABLED", False)), } ) if app.config["SAML_AUTH_ENABLED"]: auth = SamlAuth(app, auth_path="saml2", exemptions=["/<name>", "/test", "/status"]) else: auth = BASE_AUTH_CLASS(app, is_admin=(lambda: LOCAL_DEBUG), is_auth=(lambda: True)) return app, auth app, auth = build_app() # cache the keys of the catalog version map dict apple_catalog_suffixes = apple_catalog_version_map.keys() def versions_from_catalogs(cats): '''Given an iterable of catalogs return the corresponding OS X versions''' versions = set() for cat in cats: # take the last portion of the catalog URL path short_cat = cat.split('/')[-1] if short_cat in apple_catalog_suffixes: versions.add(apple_catalog_version_map[short_cat]) return versions def json_response(r): '''Glue for wrapping raw JSON responses''' return Response(json.dumps(r), status=200, mimetype='application/json') @app.route('/') def index(): return render_template('margarita.html') @app.route('/branches', methods=['GET']) def list_branches(): '''Returns catalog branch names and associated updates''' catalog_branches = reposadocommon.getCatalogBranches() return json_response(catalog_branches.keys()) def get_description_content(html): if len(html) == 0: return None # in the interest of (attempted) speed, try to avoid regexps lwrhtml = html.lower() celem = 'p' startloc = lwrhtml.find('<' + celem + '>') if startloc == -1: startloc = lwrhtml.find('<' + celem + ' ') if startloc == -1: celem = 'body' startloc = lwrhtml.find('<' + celem) if startloc != -1: startloc += 6 # length of <body> if startloc == -1: # no <p> nor <body> tags. bail. return None endloc = lwrhtml.rfind('</' + celem + '>') if endloc == -1: endloc = len(html) elif celem != 'body': # if the element is a body tag, then don't include it. # DOM parsing will just ignore it anyway endloc += len(celem) + 3 return html[startloc:endloc] def product_urls(cat_entry): '''Retreive package URLs for a given reposado product CatalogEntry. Will rewrite URLs to be served from local reposado repo if necessary.''' packages = cat_entry.get('Packages', []) pkg_urls = [] for package in packages: pkg_urls.append({ 'url': reposadocommon.rewriteOneURL(package['URL']), 'size': package['Size'], }) return pkg_urls @app.route('/products', methods=['GET']) def products(): products = reposadocommon.getProductInfo() catalog_branches = reposadocommon.getCatalogBranches() prodlist = [] for prodid in products.keys(): if 'title' in products[prodid] and 'version' in products[prodid] and 'PostDate' in products[prodid]: prod = { 'title': products[prodid]['title'], 'version': products[prodid]['version'], 'PostDate': products[prodid]['PostDate'].strftime('%Y-%m-%d'), 'description': get_description_content(products[prodid]['description']), 'id': prodid, 'depr': len(products[prodid].get('AppleCatalogs', [])) < 1, 'branches': [], 'oscatalogs': sorted(versions_from_catalogs(products[prodid].get('OriginalAppleCatalogs')), key=LooseVersion, reverse=True), 'packages': product_urls(products[prodid]['CatalogEntry']), } for branch in catalog_branches.keys(): if prodid in catalog_branches[branch]: prod['branches'].append(branch) prodlist.append(prod) else: print 'Invalid update!' sprodlist = sorted(prodlist, key=itemgetter('PostDate'), reverse=True) return json_response({'products': sprodlist, 'branches': catalog_branches.keys()}) @app.route('/new_branch/<branchname>', methods=['POST']) def new_branch(branchname): catalog_branches = reposadocommon.getCatalogBranches() if branchname in catalog_branches: reposadocommon.print_stderr('Branch %s already exists!', branchname) abort(401) catalog_branches[branchname] = [] reposadocommon.writeCatalogBranches(catalog_branches) return jsonify(result='success') @app.route('/delete_branch/<branchname>', methods=['POST']) def delete_branch(branchname): catalog_branches = reposadocommon.getCatalogBranches() if not branchname in catalog_branches: reposadocommon.print_stderr('Branch %s does not exist!', branchname) return del catalog_branches[branchname] # this is not in the common library, so we have to duplicate code # from repoutil for catalog_URL in reposadocommon.pref('AppleCatalogURLs'): localcatalogpath = reposadocommon.getLocalPathNameFromURL(catalog_URL) # now strip the '.sucatalog' bit from the name if localcatalogpath.endswith('.sucatalog'): localcatalogpath = localcatalogpath[0:-10] branchcatalogpath = localcatalogpath + '_' + branchname + '.sucatalog' if os.path.exists(branchcatalogpath): reposadocommon.print_stdout( 'Removing %s', os.path.basename(branchcatalogpath)) os.remove(branchcatalogpath) reposadocommon.writeCatalogBranches(catalog_branches) return jsonify(result=True); @app.route('/add_all/<branchname>', methods=['POST']) def add_all(branchname): products = reposadocommon.getProductInfo() catalog_branches = reposadocommon.getCatalogBranches() catalog_branches[branchname] = products.keys() reposadocommon.writeCatalogBranches(catalog_branches) reposadocommon.writeAllBranchCatalogs() return jsonify(result=True) @app.route('/process_queue', methods=['POST']) def process_queue(): catalog_branches = reposadocommon.getCatalogBranches() for change in request.json: prodId = change['productId'] branch = change['branch'] if branch not in catalog_branches.keys(): print 'No such catalog' continue if change['listed']: # if this change /was/ listed, then unlist it if prodId in catalog_branches[branch]: print 'Removing product %s from branch %s' % (prodId, branch, ) catalog_branches[branch].remove(prodId) else: # if this change /was not/ listed, then list it if prodId not in catalog_branches[branch]: print 'Adding product %s to branch %s' % (prodId, branch, ) catalog_branches[branch].append(prodId) print 'Writing catalogs' reposadocommon.writeCatalogBranches(catalog_branches) reposadocommon.writeAllBranchCatalogs() return jsonify(result=True) @app.route('/dup_apple/<branchname>', methods=['POST']) def dup_apple(branchname): catalog_branches = reposadocommon.getCatalogBranches() if branchname not in catalog_branches.keys(): print 'No branch ' + branchname return jsonify(result=False) # generate list of (non-deprecated) updates products = reposadocommon.getProductInfo() prodlist = [] for prodid in products.keys(): if len(products[prodid].get('AppleCatalogs', [])) >= 1: prodlist.append(prodid) catalog_branches[branchname] = prodlist print 'Writing catalogs' reposadocommon.writeCatalogBranches(catalog_branches) reposadocommon.writeAllBranchCatalogs() return jsonify(result=True) @app.route('/dup/<frombranch>/<tobranch>', methods=['POST']) def dup(frombranch, tobranch): catalog_branches = reposadocommon.getCatalogBranches() if frombranch not in catalog_branches.keys() or tobranch not in catalog_branches.keys(): print 'No branch ' + branchname return jsonify(result=False) catalog_branches[tobranch] = catalog_branches[frombranch] print 'Writing catalogs' reposadocommon.writeCatalogBranches(catalog_branches) reposadocommon.writeAllBranchCatalogs() return jsonify(result=True) @app.route('/config_data', methods=['POST']) def config_data(): # catalog_branches = reposadocommon.getCatalogBranches() check_prods = request.json if len(check_prods) > 0: cd_prods = reposadocommon.check_or_remove_config_data_attribute(check_prods, suppress_output=True) else: cd_prods = [] response_prods = {} for prod_id in check_prods: response_prods.update({prod_id: True if prod_id in cd_prods else False}) print response_prods return json_response(response_prods) @app.route('/remove_config_data/<product>', methods=['POST']) def remove_config_data(product): # catalog_branches = reposadocommon.getCatalogBranches() check_prods = request.json products = reposadocommon.check_or_remove_config_data_attribute([product, ], remove_attr=True, suppress_output=True) return json_response(products) @app.route('/status') def status(): return jsonify(state='calmer than you')
31.804348
128
0.721023
0
0
0
0
6,308
0.615955
0
0
3,054
0.298213
c48919ef78498ed664eb6156c8117a86edb141da
3,344
py
Python
python/pato/transport/uart.py
kloper/pato
bfbbee4109227735934f990c5909616a6e8af0b9
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
python/pato/transport/uart.py
kloper/pato
bfbbee4109227735934f990c5909616a6e8af0b9
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
python/pato/transport/uart.py
kloper/pato
bfbbee4109227735934f990c5909616a6e8af0b9
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
# -*- python -*- """@file @brief pyserial transport for pato Copyright (c) 2014-2015 Dimitry Kloper <kloper@users.sf.net>. All rights reserved. @page License Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the Pato Project. """ import serial from util.protocol import ProtocolException class Uart(object): """ @brief Communication transport using any UART TTL cable (FTDI) A simple transport that allows python code running on PC to talk with Pato via UART (using any UART cable or dongle e.g. FTDI), while Pato is compiled with UART interface. This requires python pyserial package to be installed. """ def __init__(self, *args, **kwargs): """ @brief Constructor @param[in] args arguments for pyserial @param[in] kwargs keyword arguments for pyserial """ self.serial = serial.Serial(*args, **kwargs) def query(self, request): """ @brief Generic query (request/reply) method via pyserial interface. Send request packet to Pato via serial interface and wait for reply packet. If send and/or receive return unexpected result, @ref ProtocolException is thrown. @param[in] request regular list of bytes representing packet to be sent via the bridge. @returns Received reply packet @throws ProtocolException upon send or receive error """ bytes_written = self.serial.write(bytes(request)) if bytes_written != len(request): raise ProtocolException("Failed to send request") reply_size = 5 reply = self.serial.read(reply_size) if len(reply) != reply_size: raise ProtocolException("Failed to receive reply") reply = [ord(c) for c in reply] return reply def close(self): """ @brief Close serial line to bridge """ self.serial.close()
34.122449
79
0.712022
1,658
0.495813
0
0
0
0
0
0
2,707
0.80951
c489ac681275868dff6ed544c5b85d56c81ef128
4,072
py
Python
PYQT5/Games/RockPapperScissorsGame.py
Amara-Manikanta/Python-GUI
0356e7cae7f1c51d0781bf431c386ee7262608b1
[ "MIT" ]
null
null
null
PYQT5/Games/RockPapperScissorsGame.py
Amara-Manikanta/Python-GUI
0356e7cae7f1c51d0781bf431c386ee7262608b1
[ "MIT" ]
null
null
null
PYQT5/Games/RockPapperScissorsGame.py
Amara-Manikanta/Python-GUI
0356e7cae7f1c51d0781bf431c386ee7262608b1
[ "MIT" ]
null
null
null
import sys from PyQt5.QtWidgets import * from PyQt5.QtGui import QFont, QPixmap from PyQt5.QtCore import QTimer from random import randint font = QFont("Times", 14) buttonFont = QFont("Arial", 12) computerScore = 0 playerScore = 0 class Windows(QWidget): def __init__(self): super().__init__() self.setWindowTitle("Using Spinboxes") self.setGeometry(350, 150, 550, 500) self.UI() def UI(self): ############################Score Borad############################# self.scorecomputerText = QLabel("Computer Score : ", self) self.scorecomputerText.move(30, 20) self.scorecomputerText.setFont(font) self.scorePlayerText = QLabel("Your Score : ", self) self.scorePlayerText.setFont(font) self.scorePlayerText.move(330, 20) ##########################Images################################### self.imageComputer = QLabel(self) self.imageComputer.setPixmap(QPixmap("Images/rock.png")) self.imageComputer.move(50, 100) self.imagePlayer = QLabel(self) self.imagePlayer.setPixmap(QPixmap("Images/rock.png")) self.imagePlayer.move(330, 100) self.imagegame = QLabel(self) self.imagegame.setPixmap(QPixmap("Images/game.png")) self.imagegame.move(230, 145) ##################Buttons######################### startButton = QPushButton("Start", self) startButton.setFont(buttonFont) startButton.move(90, 250) startButton.clicked.connect(self.funcstart) stopButton = QPushButton("Stop", self) stopButton.setFont(buttonFont) stopButton.move(350, 250) stopButton.clicked.connect(self.funcstop) ######################Timer########################## self.timer = QTimer(self) self.timer.setInterval(50) self.timer.timeout.connect(self.playGame) self.show() def playGame(self): self.rndcomputer = randint(1, 3) if self.rndcomputer == 1: self.imageComputer.setPixmap(QPixmap("Images/rock.png")) elif self.rndcomputer == 2: self.imageComputer.setPixmap(QPixmap("Images/paper.png")) else: self.imageComputer.setPixmap(QPixmap("Images/scissors.png")) self.rndplayer = randint(1, 3) if self.rndplayer == 1: self.imagePlayer.setPixmap(QPixmap("Images/rock.png")) elif self.rndplayer == 2: self.imagePlayer.setPixmap(QPixmap("Images/paper.png")) else: self.imagePlayer.setPixmap(QPixmap("Images/scissors.png")) def funcstart(self): self.timer.start() def funcstop(self): global computerScore global playerScore self.timer.stop() if (self.rndcomputer == 1 and self.rndplayer == 1) or (self.rndcomputer == 2 and self.rndplayer == 2) or ( self.rndcomputer == 3 and self.rndplayer == 3): mbox = QMessageBox.information(self, "Information", "Draw Game") elif (self.rndcomputer == 1 and self.rndplayer == 2) or (self.rndcomputer == 2 and self.rndplayer == 3) or ( self.rndcomputer == 3 and self.rndplayer == 1): mbox = QMessageBox.information(self, "Information", "you win!") playerScore += 1 self.scorePlayerText.setText("Your Score:" + str(playerScore)) elif (self.rndcomputer == 1 and self.rndplayer == 3) or (self.rndcomputer == 2 and self.rndplayer == 1) or ( self.rndcomputer == 3 and self.rndplayer == 2): mbox = QMessageBox.information(self, "Information", "Computer wins!") computerScore += 1 self.scorecomputerText.setText("Computer Score:" + str(computerScore)) if computerScore == 5 or playerScore == 5: mbox = QMessageBox.information(self, "Information", "Game Over") sys.exit() def main(): App = QApplication(sys.argv) window = Windows() sys.exit(App.exec_()) if __name__ == '__main__': main()
34.218487
116
0.590128
3,699
0.908399
0
0
0
0
0
0
619
0.152014
c489f0bb6aee13c77e0b4caf8c6ecbaa282336f5
539
py
Python
services/neural/traindatabase.py
vitorecomp/hackaton-deep-learn
962eac133ac92d56d8a55136773c2afe4da2e0b5
[ "MIT" ]
null
null
null
services/neural/traindatabase.py
vitorecomp/hackaton-deep-learn
962eac133ac92d56d8a55136773c2afe4da2e0b5
[ "MIT" ]
null
null
null
services/neural/traindatabase.py
vitorecomp/hackaton-deep-learn
962eac133ac92d56d8a55136773c2afe4da2e0b5
[ "MIT" ]
null
null
null
from os import walk import h5py import numpy as np from config.Database import Base from config.Database import engine from config.Database import Session from models.Music import Music from kmeans.kmeans import Kmeans mypath = './dataset/datatr/' def main(): files = [] # 2 - generate database schema Base.metadata.create_all(engine) # 3 - create a new session session = Session() musics = session.query(Music).all() musics, distances = Kmeans.split(musics) session.commit() return if __name__ == "__main__": main()
15.852941
41
0.736549
0
0
0
0
0
0
0
0
85
0.157699
c48abebb839f713d689a09683874c38aef9511d6
1,128
py
Python
projects/TGS_salt/binary_classifier/model.py
liaopeiyuan/ml-arsenal-public
f8938ce3cb58b35fc7cc20d096c39a85ec9780b2
[ "Apache-2.0" ]
280
2018-10-21T01:07:18.000Z
2021-12-30T11:29:48.000Z
projects/TGS_salt/binary_classifier/model.py
liaopeiyuan/ml-arsenal-public
f8938ce3cb58b35fc7cc20d096c39a85ec9780b2
[ "Apache-2.0" ]
3
2018-11-13T08:04:48.000Z
2020-04-17T09:20:03.000Z
projects/TGS_salt/binary_classifier/model.py
liaopeiyuan/ml-arsenal-public
f8938ce3cb58b35fc7cc20d096c39a85ec9780b2
[ "Apache-2.0" ]
59
2018-10-21T04:38:23.000Z
2021-03-29T07:58:47.000Z
import torch.nn as nn import pretrainedmodels class classifier(nn.Module): def __init__(self, model_name='resnet32'): super(classifier, self).__init__() # Load pretrained ImageNet model self.model = pretrainedmodels.__dict__[model_name](num_classes=1000, pretrained='imagenet') print(model_name + ' model settings:') for var in pretrainedmodels.pretrained_settings[model_name]['imagenet']: print('\t' + var + ': '+ str(pretrainedmodels.pretrained_settings[model_name]['imagenet'][var])) # Define last layer for fine-tuning dim_feats = self.model.last_linear.in_features nb_classes = 1 self.model.last_linear = F.dropout2d(nn.Linear(dim_feats, nb_classes),p=0.50) def forward(self, input): return self.model(input) def set_mode(self, mode): self.mode = mode if 'validation' in mode or 'test' in mode: self.eval() elif 'train' in mode: self.train() else: raise NotImplementedError
31.333333
109
0.60461
1,074
0.952128
0
0
0
0
0
0
160
0.141844
6700a5bb5f070e2573ae2cc0040f1d1a36a7e4ca
13,050
py
Python
code/algorithm/assr.py
ShuhuaGao/bcn_opt_dc
93234f6b799670bc80daf83794c51841f1a24715
[ "MIT" ]
null
null
null
code/algorithm/assr.py
ShuhuaGao/bcn_opt_dc
93234f6b799670bc80daf83794c51841f1a24715
[ "MIT" ]
null
null
null
code/algorithm/assr.py
ShuhuaGao/bcn_opt_dc
93234f6b799670bc80daf83794c51841f1a24715
[ "MIT" ]
null
null
null
""" Given a Boolean function/network, get its algebraic state-space representation. A logical vector `\delta_n^i` is represented by an integer `i` for space efficiency. Consequently, a logical matrix is represented by a list, each element for one column, (also known as the "condensed form"). [1] Conversion from an infix expression to a postfix one: https://runestone.academy/runestone/books/published/pythonds/BasicDS/InfixPrefixandPostfixExpressions.html [2] Logical connectives: https://en.wikipedia.org/wiki/Logical_connective Author: Gao Shuhua """ import operator import os from typing import List, Union, Tuple, Iterable, Dict from .bcn import BooleanNetwork, BooleanControlNetwork _COMMENT = '#' _STATES = '[STATES]' _CONTROLS = '[CONTROLS]' class LogicalConnective: """ Represent a logical connective. https://en.wikipedia.org/wiki/Logical_connective """ def __init__(self, id: str, description: str, arity: int, precedence: int, function): """ Initialize a logical connective. :param id: a unique description :param description: a description text :param arity: number of operands :param precedence: operator precedence :param function: callable, the underlying operation which accepts *arity* argments """ self.id = id self.description = description self.arity = arity self.precedence = precedence # a smaller number means a higher precedence self.function = function def __str__(self): return self.id def __call__(self, *args): return self.function(*args) def _imply(a, b): if a: return b return 1 def _xnor(a, b): return a == b LOGICAL_CONNECTIVES = { 'NOT': LogicalConnective('NOT', 'not', 1, 0, operator.not_), 'XOR': LogicalConnective('XOR', 'exclusive disjunction', 2, 1, operator.xor), 'AND': LogicalConnective('AND', 'and', 2, 2, operator.and_), 'OR': LogicalConnective('OR', 'or', 2, 3, operator.or_), 'IMPLY': LogicalConnective('IMPLY', 'implication', 2, 4, _imply), 'EQUIV': LogicalConnective('EQUIV', 'equivalent', 2, 5, _xnor) } def _infix_to_postfix(expression: str) -> List[Union[LogicalConnective, str]]: """ Convert an infix expression to its postfix form. :param expression: infix, separated by spaces :return: postfix expression, a list, whose element is an operator (LogicalConnective) or a variable (str) """ # parse tokens: handle ( and ) specially, which may not be separated by spaces, e.g., 'A OR (B AND C)' items = expression.split() tokens = [] for item in items: token = '' for c in item: if c in '()': if token: tokens.append(token) token = '' tokens.append(c) else: token = token + c if token: tokens.append(token) # conversion op_stack = [] output = [] for token in tokens: if token.upper() in LOGICAL_CONNECTIVES: # an operator connective = LOGICAL_CONNECTIVES[token.upper()] while op_stack and isinstance(op_stack[-1], LogicalConnective) and \ op_stack[-1].precedence < connective.precedence: output.append(op_stack.pop()) op_stack.append(connective) elif token == '(': op_stack.append(token) elif token == ')': left_parenthesis_found = False while op_stack: top = op_stack.pop() if top == '(': left_parenthesis_found = True break else: output.append(top) if not left_parenthesis_found: raise RuntimeError("Unmatched parentheses are encountered: an extra ')'!") elif token.upper() in ['1', 'TRUE']: output.append('TRUE') elif token.upper() in ['0', 'FALSE']: output.append('FALSE') else: # a variable output.append(token) while op_stack: top = op_stack.pop() if top == '(': raise RuntimeError("Unmatched parentheses are encountered: an extra '('!") output.append(top) return output def _evaluate_postfix(expression, values: {}): """ Evaluate a postfix expression with the given parameter values. :param expression: postfix :param values: a dict: variable --> value (0/1 or False/True) :return: a Boolean variable, or 0/1 """ operand_stack = [] for token in expression: if isinstance(token, str): # a variable if token in values: val = values[token] operand_stack.append(val) elif token == 'TRUE': operand_stack.append(True) elif token == 'FALSE': operand_stack.append(False) else: raise RuntimeError(f"Unrecognized variable: '{token}'") else: # a logical connective arguments = [] for _ in range(token.arity): arguments.append(operand_stack.pop()) result = token(*arguments[::-1]) operand_stack.append(result) return operand_stack.pop() def _assr_function(pf_expr: List[Union[LogicalConnective, str]], states: List[str], controls: List[str]) -> List[int]: """ Compute the ASSR for a Boolean function. :param pf_expr: the postfix expression of a Boolean function :param states: the state variables :param controls: the control inputs. If `None`, then no inputs. :return: the structure matrix, a list of length MN """ n = len(states) m = len(controls) N = 2 ** n M = 2 ** m MN = M * N all_variables = controls + states structure_matrix = [None] * MN # enumerate the binary sequences to get the truth table for h in range(MN): bh = f'{h:0{m+n}b}' values = {var: int(val) for var, val in zip(all_variables, bh)} output = _evaluate_postfix(pf_expr, values) k = MN - h if output: # 1 (True) structure_matrix[k - 1] = 1 else: structure_matrix[k - 1] = 2 return structure_matrix def _tokenize(state_to_expr: Dict[str, str], controls: Iterable[str]=None) -> Tuple[Dict[str, List[Union[LogicalConnective, str]]], List[str]]: """ (1) Parse the `exprs` into postfix forms (2) Infer the control inputs, if `controls` is `None` :return: the tokenized expressions and the controls """ state_to_pf_expr = {s: _infix_to_postfix(e) for s, e in state_to_expr.items()} if controls is None: # infer controls controls = [] for pf_expr in state_to_pf_expr.values(): for t in pf_expr: if isinstance(t, str): # t is a variable, or 'TRUE' or 'FALSE' if t not in ['TRUE', 'FALSE'] and t not in state_to_pf_expr: # a control if t not in controls: controls.append(t) else: controls = list(controls) # validate for s, pf_expr in state_to_pf_expr.items(): for t in pf_expr: if isinstance(t, str): assert t in state_to_pf_expr or t in controls, f"Unrecognized variable: '{t}' in equation of {s}" return state_to_pf_expr, controls def _assr_network(state_to_pf_expr: Dict[str, List[Union[LogicalConnective, str]]], states: List[str], controls: List[str], verbose: bool=True) -> List[int]: """ Get the ASSR of a Boolean (control) network. :param state_to_pf_expr: state -> its postfix expression :param states: state variables :param controls: control inputs. :return: network transition matrix, each column is represented by an integer """ assert len(state_to_pf_expr) == len(states), 'The number of Boolean functions must be equal to the number of state states' # get the structure matrix of each state (i.e., its Boolean equation) state_to_sms = {} for s, pf_expr in state_to_pf_expr.items(): if verbose: print(f'\tComputing the structure matrix for state {s} ...') state_to_sms[s] = _assr_function(pf_expr, states, controls) n = len(states) m = len(controls) transition_matrix = [None] * (2 ** m * 2 ** n) stp = lambda i, j: (i - 1) * 2 + j if verbose: print('\tComposing the complete network transition matrix...') for k in range(len(transition_matrix)): # k-th column r = 1 for s in states: sm = state_to_sms[s] r = stp(r, sm[k]) transition_matrix[k] = r return transition_matrix def build_ASSR(source: Union[str, Iterable[str]], states: List[str]=None, controls: List[str]=None, verbose: bool=True) -> Union[BooleanNetwork, BooleanControlNetwork]: """ Build the ASSR for a given Boolean network in a string form. Each Boolean function is given by the form: state = f(states, controls). If a text file is given, each Boolean function is provided per line, and '#' starts a comment line :param source: str or a list of str. (1) str: a single Boolean function or a text file, which contains one or more Boolean functions (i.e., a network), each per line; (2) a list of str: multiple Boolean functions :param states: state variables. If `None`, then inferred automatically. :param controls: control inputs. If this a Boolean network with no inputs, then give it an empty List. If `None`, then inferred automatically. :param verbose: whether to print more information :return: a Boolean network if there are no inputs; otherwise, a Boolean control network .. note:: If the states and controls are inferred, the order of states corresponds to the line order, whereas the order of controls depend on their appearance order in the equations. To precisely control the order (especially for controls), two additional lines may be appended after the state equations that begin with "[STATES]" or "[CONTROLS]". For example, line "[STATES] AKT MKK EGFR" specifies the state order (AKT, MKK, EGFR). Of course, both "[STATES]" and "[CONTROLS]" lines are optional. The non-None arguments `states` and `controls` have higher precedence than "[STATES]" and "[CONTROLS]" lines respectively. """ # get the strings of a network net = [] if isinstance(source, str): if os.path.isfile(source): if verbose: print(f'User provided a network file: {source}\nParsing...') with open(source, 'r') as f: for line in f: line = line.strip() if line.startswith(_COMMENT): continue elif line.startswith(_STATES): if states is None: words = line.split() states = [w.strip() for w in words[1:]] elif line.startswith(_CONTROLS): if controls is None: words = line.split() controls = [w.strip() for w in words[1:]] else: if line: # skip empty lines if any net.append(line) else: if verbose: print(f'User provided a single Boolean equation.') net.append(source) else: if verbose: print(f'User provided a list of Boolean equations.') net = list(source) # extract the states and equations state_to_expr = {} inferred_states = [] for eq in net: state, expr = eq.split('=') state = state.strip() expr = expr.strip() if states is not None: assert state in states, f'Unexpected state {state} is encountered!' else: inferred_states.append(state) assert state not in state_to_expr, f'More than one equation is provided for state {state}' state_to_expr[state] = expr if states is not None: for s in states: assert s in state_to_expr, f'The equation for state {s} is missing' else: states = inferred_states if verbose: print('Tokenizing...') # tokenize state_to_pf_expr, controls = _tokenize(state_to_expr, controls) assert set(states).isdisjoint(controls), 'States and controls should be disjoint' if verbose: print(f'States are {states}') print(f'Controls are {controls}') print('Computing...') # get the ASSR the network L = _assr_network(state_to_pf_expr, states, controls, verbose) # wrap them into a Boolean (control) network m = len(controls) n = len(states) if m == 0: return BooleanNetwork(n, L, states) return BooleanControlNetwork(n, m, L, states, controls)
39.071856
144
0.604828
865
0.066284
0
0
0
0
0
0
5,316
0.407356
6701184b0bdf306dd90792d6a104891f22b55364
4,953
py
Python
datasets/voc_dataset.py
ming71/DAL
48cd29fdbf5eeea1b5b642bd1f04bbf1863b31e3
[ "Apache-2.0" ]
206
2020-09-12T06:17:00.000Z
2022-03-28T08:05:51.000Z
datasets/voc_dataset.py
JOOCHANN/DAL
0f379de70ba01c6c9162f4e980a8bd2491976e9c
[ "Apache-2.0" ]
47
2020-10-21T06:14:18.000Z
2022-03-16T01:54:28.000Z
datasets/voc_dataset.py
JOOCHANN/DAL
0f379de70ba01c6c9162f4e980a8bd2491976e9c
[ "Apache-2.0" ]
38
2020-10-22T10:39:51.000Z
2022-03-17T12:36:46.000Z
# -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # Extended by Linjie Deng # -------------------------------------------------------- import os import cv2 import numpy as np import torch import torch.utils.data as data import xml.etree.ElementTree as ET from utils.bbox import quad_2_rbox class VOCDataset(data.Dataset): """""" def __init__(self, dataset='trainval.txt', augment = False, level = 1, random_flip=True): self.image_set = dataset self.data_path = self.image_set.strip('/ImageSets/Main/trainval.txt') self.image_ext = [".jpg"] self.image_list = self._load_image_names() self.classes = ('__background__', 'aeroplane','bicycle','bird','boat', 'bottle','bus','car','cat','chair','cow','diningtable', 'dog','horse','motorbike','person','pottedplant', 'sheep','sofa','train','tvmonitor') self.num_classes = len(self.classes) self.class_to_ind = dict(zip(self.classes, range(self.num_classes))) self.random_flip = random_flip def __len__(self): return len(self.image_list) def __getitem__(self, index): im_path = self._image_path_from_index(self.image_list[index]) im = cv2.cvtColor(cv2.imread(im_path, cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB) roidb = self._load_pascal_annotation(self.image_list[index]) gt_inds = np.where(roidb['gt_classes'] != 0)[0] bboxes = roidb['boxes'][gt_inds, :] classes = roidb['gt_classes'][gt_inds] if self.random_flip and np.random.rand() >= 0.5: im = cv2.flip(im, 1, None) oldxs = bboxes[:, 0::2].copy() bboxes[:, 0::2] = im.shape[1] - oldxs - 1 gt_boxes = np.empty((len(gt_inds), 6), dtype=np.float32) for i, bbox in enumerate(bboxes): gt_boxes[i, :5] = quad_2_rbox(np.array(bbox)) gt_boxes[i, 5] = classes[i] return {'image': im, 'boxes': gt_boxes} def _load_image_names(self): """ Load the names listed in this dataset's image set file. """ image_set_file = self.image_set if not os.path.exists(image_set_file): 'Path does not exist: {}'.format(image_set_file) image_names = [] else: with open(image_set_file) as f: image_names = [x.strip() for x in f.readlines()] return image_names def _image_path_from_index(self, index): """ Construct an image path from the image's "index" identifier. """ image_path = None image_exist = False for image_ext in self.image_ext: image_path = os.path.join(self.data_path, 'JPEGImages', index + image_ext) if os.path.exists(image_path): image_exist = True break if not image_exist: raise Exception('Image path does not exist: {}'.format( os.path.join(self.data_path, 'JPEGImages', index)) ) return image_path def _load_pascal_annotation(self, index): """ Load image and bounding boxes info from XML file in the PASCAL VOC format. """ filename = os.path.join(self.data_path, 'Annotations', index + '.xml') tree = ET.parse(filename) objs = tree.findall('object') boxes, gt_classes = [], [] for _, obj in enumerate(objs): difficult = int(obj.find('difficult').text) is_latin = obj.find('language') is None or obj.find('language').text == 'Latin' bnd_box = obj.find('bndbox') box = [ float(bnd_box.find('xmin').text), float(bnd_box.find('ymin').text), float(bnd_box.find('xmax').text), float(bnd_box.find('ymin').text), float(bnd_box.find('xmax').text), float(bnd_box.find('ymax').text), float(bnd_box.find('xmin').text), float(bnd_box.find('ymax').text), ] label = self.class_to_ind[obj.find('name').text.lower().strip()] if difficult: continue # if self.only_latin and not is_latin: # continue boxes.append(box) gt_classes.append(label) return {'boxes': np.array(boxes, dtype=np.int32), 'gt_classes': np.array(gt_classes)} def image_path_at(self, i): """ Return the absolute path to image i in the image sequence. """ return self._image_path_from_index(self.image_list[i]) def return_class(self, id): id = int(id) return self.classes[id] if __name__ == '__main__': pass
37.240602
93
0.557238
4,484
0.90531
0
0
0
0
0
0
1,166
0.235413
67046e56ceee4d6e7815e597ff49d092a5c53d48
1,907
py
Python
neploid.py
GravityI/neploid
4b68e682fcda97a95d155bea288aa90740842b66
[ "MIT" ]
null
null
null
neploid.py
GravityI/neploid
4b68e682fcda97a95d155bea288aa90740842b66
[ "MIT" ]
null
null
null
neploid.py
GravityI/neploid
4b68e682fcda97a95d155bea288aa90740842b66
[ "MIT" ]
null
null
null
import discord import random import asyncio import logging import urllib.request from discord.ext import commands bot = commands.Bot(command_prefix='nep ', description= "Nep Nep") counter = 0 countTask = None @bot.event async def on_ready(): print('Logged in as') print(bot.user.name) # print(bot.user.id) print('------') @bot.command() async def nep(ctx): await ctx.send("NEP NEP") @bot.command(pass_context = True) async def guessWhat(ctx): await ctx.send(str(ctx.message.author.display_name) + " officially learned how to code a Discord bot") async def countdown(channel): global counter while not bot.is_closed(): counter += 1 await channel.send("Count is at " + str(counter)) await asyncio.sleep(3) @bot.command(pass_context = True, aliases = ["collect"]) async def sc(ctx): global countTask await ctx.send("Countdown Started!") countTask = bot.loop.create_task(countdown(ctx.message.channel)) @bot.command(pass_context = True, aliases = ["cancel", "stop"]) async def cc(ctx): global countTask await ctx.send("Countdown Cancelled!") countTask.cancel() @bot.command(pass_context = True) async def pm(ctx, *content): if ctx.author.dm_channel is not None: await ctx.author.dm_channel.send(content) else: await ctx.author.create_dm() sendString = '' for c in content: sendString += c + ' ' await ctx.author.dm_channel.send(sendString) @bot.command(aliases = ['nh']) async def nhentai(ctx): rurl = "https://nhentai.net/random/" headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36'} accessHurl = urllib.request.urlopen(urllib.request.Request(rurl, headers = headers)) await ctx.send(accessHurl.geturl()) token = "insert token here" bot.run(token)
28.893939
153
0.681699
0
0
0
0
1,448
0.759308
1,391
0.729418
387
0.202937
6706396f498d795e0d71e25c46fb2f83e80c424d
1,025
py
Python
odoo/base-addons/l10n_tr/__manifest__.py
LucasBorges-Santos/docker-odoo
53987bbd61f6119669b5f801ee2ad54695084a21
[ "MIT" ]
null
null
null
odoo/base-addons/l10n_tr/__manifest__.py
LucasBorges-Santos/docker-odoo
53987bbd61f6119669b5f801ee2ad54695084a21
[ "MIT" ]
null
null
null
odoo/base-addons/l10n_tr/__manifest__.py
LucasBorges-Santos/docker-odoo
53987bbd61f6119669b5f801ee2ad54695084a21
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. { 'name': 'Turkey - Accounting', 'version': '1.0', 'category': 'Localization', 'description': """ Türkiye için Tek düzen hesap planı şablonu Odoo Modülü. ========================================================== Bu modül kurulduktan sonra, Muhasebe yapılandırma sihirbazı çalışır * Sihirbaz sizden hesap planı şablonu, planın kurulacağı şirket, banka hesap bilgileriniz, ilgili para birimi gibi bilgiler isteyecek. """, 'author': 'Ahmet Altınışık, Can Tecim', 'maintainer':'https://launchpad.net/~openerp-turkey, http://www.cantecim.com', 'depends': [ 'account', ], 'data': [ 'data/l10n_tr_chart_data.xml', 'data/account.account.template.csv', 'data/l10n_tr_chart_post_data.xml', 'data/account_data.xml', 'data/account_tax_template_data.xml', 'data/account_chart_template_data.xml', ], 'license': 'LGPL-3', }
33.064516
82
0.61561
0
0
0
0
0
0
0
0
888
0.845714
6706ffad81c03f382360a4810c2bf16d4cc561bb
4,364
py
Python
Source Codes/SMF_Python/smf_main.py
mmaher22/iCV-SBR
72effab621a9f8f5cee0d584b5a2f0e98524ffd6
[ "MIT" ]
20
2020-08-25T06:10:14.000Z
2022-03-27T15:42:55.000Z
Source Codes/SMF_Python/smf_main.py
mmaher22/iCV-SBR
72effab621a9f8f5cee0d584b5a2f0e98524ffd6
[ "MIT" ]
null
null
null
Source Codes/SMF_Python/smf_main.py
mmaher22/iCV-SBR
72effab621a9f8f5cee0d584b5a2f0e98524ffd6
[ "MIT" ]
7
2020-09-25T15:12:53.000Z
2022-03-25T15:23:43.000Z
import os import time import argparse import pandas as pd from smf import SessionMF parser = argparse.ArgumentParser() parser.add_argument('--K', type=int, default=20, help="K items to be used in Recall@K and MRR@K") parser.add_argument('--factors', type=int, default=100, help="Number of latent factors.") parser.add_argument('--batch', type=int, default=32, help="Batch size for the training process") parser.add_argument('--momentum', type=float, default=0.0, help="Momentum of the optimizer adagrad_sub") parser.add_argument('--regularization', type=float, default=0.0001, help="Regularization Amount of the objective function") parser.add_argument('--dropout', type=float, default=0.0, help="Share of items that are randomly discarded from the current session while training") parser.add_argument('--skip', type=float, default=0.0, help="Probability that an item is skiped and the next one is used as the positive example") parser.add_argument('--neg_samples', type=int, default=2048, help="Number of items that are sampled as negative examples") parser.add_argument('--activation', type=str, default='linear', help="Final activation function (linear, sigmoid, uf_sigmoid, hard_sigmoid, relu, softmax, softsign, softplus, tanh)") parser.add_argument('--objective', type=str, default='bpr_max', help="Loss Function (bpr_max, top1_max, bpr, top1)") parser.add_argument('--epochs', type=int, default=10, help="Number of Epochs") parser.add_argument('--lr', type=float, default=0.001, help="Learning Rate") parser.add_argument('--itemid', default='ItemID', type=str) parser.add_argument('--sessionid', default='SessionID', type=str) parser.add_argument('--valid_data', default='recSys15Valid.txt', type=str) parser.add_argument('--train_data', default='recSys15TrainOnly.txt', type=str) parser.add_argument('--data_folder', default='/home/icvuser/Desktop/Recsys cleaned data/RecSys15 Dataset Splits', type=str) # Get the arguments args = parser.parse_args() train_data = os.path.join(args.data_folder, args.train_data) x_train = pd.read_csv(train_data) x_train.sort_values(args.sessionid, inplace=True) x_train = x_train.iloc[-int(len(x_train) / 64) :] #just take 1/64 last instances valid_data = os.path.join(args.data_folder, args.valid_data) x_valid = pd.read_csv(valid_data) x_valid.sort_values(args.sessionid, inplace=True) print('Finished Reading Data \nStart Model Fitting...') # Fitting Model t1 = time.time() model = SessionMF(factors = args.factors, session_key = args.sessionid, item_key = args.itemid, batch = args.batch, momentum = args.momentum, regularization = args.regularization, dropout = args.dropout, skip = args.skip, samples = args.neg_samples, activation = args.activation, objective = args.objective, epochs = args.epochs, learning_rate = args.lr) model.fit(x_train) t2 = time.time() print('End Model Fitting with total time =', t2 - t1, '\n Start Predictions...') # Test Set Evaluation test_size = 0.0 hit = 0.0 MRR = 0.0 cur_length = 0 cur_session = -1 last_items = [] t1 = time.time() index_item = x_valid.columns.get_loc(args.itemid) index_session = x_valid.columns.get_loc(args.sessionid) train_items = model.unique_items counter = 0 for row in x_valid.itertuples( index=False ): counter += 1 if counter % 10000 == 0: print('Finished Prediction for ', counter, 'items.') session_id, item_id = row[index_session], row[index_item] if session_id != cur_session: cur_session = session_id last_items = [] cur_length = 0 if item_id in model.item_map.keys(): if len(last_items) > cur_length: #make prediction cur_length += 1 test_size += 1 # Predict the most similar items to items predictions = model.predict_next(last_items, K = args.K) # Evaluation rank = 0 for predicted_item in predictions: #print(predicted_item, item_id, '###') rank += 1 if int(predicted_item) == item_id: hit += 1.0 MRR += 1/rank break last_items.append(item_id) t2 = time.time() print('Recall: {}'.format(hit / test_size)) print ('\nMRR: {}'.format(MRR / test_size)) print('End Model Predictions with total time =', t2 - t1)
47.956044
182
0.695921
0
0
0
0
0
0
0
0
1,353
0.310037
6707397442e36941efca1b5ee8ee3696d4dcdf31
25,163
py
Python
sdks/python/appcenter_sdk/models/Device.py
Brantone/appcenter-sdks
eeb063ecf79908b6e341fb00196d2cd9dc8f3262
[ "MIT" ]
null
null
null
sdks/python/appcenter_sdk/models/Device.py
Brantone/appcenter-sdks
eeb063ecf79908b6e341fb00196d2cd9dc8f3262
[ "MIT" ]
6
2019-10-23T06:38:53.000Z
2022-01-22T07:57:58.000Z
sdks/python/appcenter_sdk/models/Device.py
Brantone/appcenter-sdks
eeb063ecf79908b6e341fb00196d2cd9dc8f3262
[ "MIT" ]
2
2019-10-23T06:31:05.000Z
2021-08-21T17:32:47.000Z
# coding: utf-8 """ App Center Client Microsoft Visual Studio App Center API # noqa: E501 OpenAPI spec version: preview Contact: benedetto.abbenanti@gmail.com Project Repository: https://github.com/b3nab/appcenter-sdks """ import pprint import re # noqa: F401 import six class Device(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'sdk_name': 'string', 'sdk_version': 'string', 'wrapper_sdk_version': 'string', 'wrapper_sdk_name': 'string', 'model': 'string', 'oem_name': 'string', 'os_name': 'string', 'os_version': 'string', 'os_build': 'string', 'os_api_level': 'integer', 'locale': 'string', 'time_zone_offset': 'integer', 'screen_size': 'string', 'app_version': 'string', 'carrier_name': 'string', 'carrier_code': 'string', 'carrier_country': 'string', 'app_build': 'string', 'app_namespace': 'string', 'live_update_release_label': 'string', 'live_update_deployment_key': 'string', 'live_update_package_hash': 'string', 'wrapper_runtime_version': 'string' } attribute_map = { 'sdk_name': 'sdk_name', 'sdk_version': 'sdk_version', 'wrapper_sdk_version': 'wrapper_sdk_version', 'wrapper_sdk_name': 'wrapper_sdk_name', 'model': 'model', 'oem_name': 'oem_name', 'os_name': 'os_name', 'os_version': 'os_version', 'os_build': 'os_build', 'os_api_level': 'os_api_level', 'locale': 'locale', 'time_zone_offset': 'time_zone_offset', 'screen_size': 'screen_size', 'app_version': 'app_version', 'carrier_name': 'carrier_name', 'carrier_code': 'carrier_code', 'carrier_country': 'carrier_country', 'app_build': 'app_build', 'app_namespace': 'app_namespace', 'live_update_release_label': 'live_update_release_label', 'live_update_deployment_key': 'live_update_deployment_key', 'live_update_package_hash': 'live_update_package_hash', 'wrapper_runtime_version': 'wrapper_runtime_version' } def __init__(self, sdk_name=None, sdk_version=None, wrapper_sdk_version=None, wrapper_sdk_name=None, model=None, oem_name=None, os_name=None, os_version=None, os_build=None, os_api_level=None, locale=None, time_zone_offset=None, screen_size=None, app_version=None, carrier_name=None, carrier_code=None, carrier_country=None, app_build=None, app_namespace=None, live_update_release_label=None, live_update_deployment_key=None, live_update_package_hash=None, wrapper_runtime_version=None): # noqa: E501 """Device - a model defined in Swagger""" # noqa: E501 self._sdk_name = None self._sdk_version = None self._wrapper_sdk_version = None self._wrapper_sdk_name = None self._model = None self._oem_name = None self._os_name = None self._os_version = None self._os_build = None self._os_api_level = None self._locale = None self._time_zone_offset = None self._screen_size = None self._app_version = None self._carrier_name = None self._carrier_code = None self._carrier_country = None self._app_build = None self._app_namespace = None self._live_update_release_label = None self._live_update_deployment_key = None self._live_update_package_hash = None self._wrapper_runtime_version = None self.discriminator = None self.sdk_name = sdk_name self.sdk_version = sdk_version if wrapper_sdk_version is not None: self.wrapper_sdk_version = wrapper_sdk_version if wrapper_sdk_name is not None: self.wrapper_sdk_name = wrapper_sdk_name if model is not None: self.model = model if oem_name is not None: self.oem_name = oem_name self.os_name = os_name self.os_version = os_version if os_build is not None: self.os_build = os_build if os_api_level is not None: self.os_api_level = os_api_level self.locale = locale self.time_zone_offset = time_zone_offset if screen_size is not None: self.screen_size = screen_size self.app_version = app_version if carrier_name is not None: self.carrier_name = carrier_name if carrier_code is not None: self.carrier_code = carrier_code if carrier_country is not None: self.carrier_country = carrier_country self.app_build = app_build if app_namespace is not None: self.app_namespace = app_namespace if live_update_release_label is not None: self.live_update_release_label = live_update_release_label if live_update_deployment_key is not None: self.live_update_deployment_key = live_update_deployment_key if live_update_package_hash is not None: self.live_update_package_hash = live_update_package_hash if wrapper_runtime_version is not None: self.wrapper_runtime_version = wrapper_runtime_version @property def sdk_name(self): """Gets the sdk_name of this Device. # noqa: E501 Name of the SDK. Consists of the name of the SDK and the platform, e.g. "appcenter.ios", "hockeysdk.android". # noqa: E501 :return: The sdk_name of this Device. # noqa: E501 :rtype: string """ return self._sdk_name @sdk_name.setter def sdk_name(self, sdk_name): """Sets the sdk_name of this Device. Name of the SDK. Consists of the name of the SDK and the platform, e.g. "appcenter.ios", "hockeysdk.android". # noqa: E501 :param sdk_name: The sdk_name of this Device. # noqa: E501 :type: string """ if sdk_name is None: raise ValueError("Invalid value for `sdk_name`, must not be `None`") # noqa: E501 self._sdk_name = sdk_name @property def sdk_version(self): """Gets the sdk_version of this Device. # noqa: E501 Version of the SDK in semver format, e.g. "1.2.0" or "0.12.3-alpha.1". # noqa: E501 :return: The sdk_version of this Device. # noqa: E501 :rtype: string """ return self._sdk_version @sdk_version.setter def sdk_version(self, sdk_version): """Sets the sdk_version of this Device. Version of the SDK in semver format, e.g. "1.2.0" or "0.12.3-alpha.1". # noqa: E501 :param sdk_version: The sdk_version of this Device. # noqa: E501 :type: string """ if sdk_version is None: raise ValueError("Invalid value for `sdk_version`, must not be `None`") # noqa: E501 self._sdk_version = sdk_version @property def wrapper_sdk_version(self): """Gets the wrapper_sdk_version of this Device. # noqa: E501 Version of the wrapper SDK in semver format. When the SDK is embedding another base SDK (for example Xamarin.Android wraps Android), the Xamarin specific version is populated into this field while sdkVersion refers to the original Android SDK. # noqa: E501 :return: The wrapper_sdk_version of this Device. # noqa: E501 :rtype: string """ return self._wrapper_sdk_version @wrapper_sdk_version.setter def wrapper_sdk_version(self, wrapper_sdk_version): """Sets the wrapper_sdk_version of this Device. Version of the wrapper SDK in semver format. When the SDK is embedding another base SDK (for example Xamarin.Android wraps Android), the Xamarin specific version is populated into this field while sdkVersion refers to the original Android SDK. # noqa: E501 :param wrapper_sdk_version: The wrapper_sdk_version of this Device. # noqa: E501 :type: string """ self._wrapper_sdk_version = wrapper_sdk_version @property def wrapper_sdk_name(self): """Gets the wrapper_sdk_name of this Device. # noqa: E501 Name of the wrapper SDK. Consists of the name of the SDK and the wrapper platform, e.g. "appcenter.xamarin", "hockeysdk.cordova". # noqa: E501 :return: The wrapper_sdk_name of this Device. # noqa: E501 :rtype: string """ return self._wrapper_sdk_name @wrapper_sdk_name.setter def wrapper_sdk_name(self, wrapper_sdk_name): """Sets the wrapper_sdk_name of this Device. Name of the wrapper SDK. Consists of the name of the SDK and the wrapper platform, e.g. "appcenter.xamarin", "hockeysdk.cordova". # noqa: E501 :param wrapper_sdk_name: The wrapper_sdk_name of this Device. # noqa: E501 :type: string """ self._wrapper_sdk_name = wrapper_sdk_name @property def model(self): """Gets the model of this Device. # noqa: E501 Device model (example: iPad2,3). # noqa: E501 :return: The model of this Device. # noqa: E501 :rtype: string """ return self._model @model.setter def model(self, model): """Sets the model of this Device. Device model (example: iPad2,3). # noqa: E501 :param model: The model of this Device. # noqa: E501 :type: string """ self._model = model @property def oem_name(self): """Gets the oem_name of this Device. # noqa: E501 Device manufacturer (example: HTC). # noqa: E501 :return: The oem_name of this Device. # noqa: E501 :rtype: string """ return self._oem_name @oem_name.setter def oem_name(self, oem_name): """Sets the oem_name of this Device. Device manufacturer (example: HTC). # noqa: E501 :param oem_name: The oem_name of this Device. # noqa: E501 :type: string """ self._oem_name = oem_name @property def os_name(self): """Gets the os_name of this Device. # noqa: E501 OS name (example: iOS). The following OS names are standardized (non-exclusive): Android, iOS, macOS, tvOS, Windows. # noqa: E501 :return: The os_name of this Device. # noqa: E501 :rtype: string """ return self._os_name @os_name.setter def os_name(self, os_name): """Sets the os_name of this Device. OS name (example: iOS). The following OS names are standardized (non-exclusive): Android, iOS, macOS, tvOS, Windows. # noqa: E501 :param os_name: The os_name of this Device. # noqa: E501 :type: string """ if os_name is None: raise ValueError("Invalid value for `os_name`, must not be `None`") # noqa: E501 self._os_name = os_name @property def os_version(self): """Gets the os_version of this Device. # noqa: E501 OS version (example: 9.3.0). # noqa: E501 :return: The os_version of this Device. # noqa: E501 :rtype: string """ return self._os_version @os_version.setter def os_version(self, os_version): """Sets the os_version of this Device. OS version (example: 9.3.0). # noqa: E501 :param os_version: The os_version of this Device. # noqa: E501 :type: string """ if os_version is None: raise ValueError("Invalid value for `os_version`, must not be `None`") # noqa: E501 self._os_version = os_version @property def os_build(self): """Gets the os_build of this Device. # noqa: E501 OS build code (example: LMY47X). # noqa: E501 :return: The os_build of this Device. # noqa: E501 :rtype: string """ return self._os_build @os_build.setter def os_build(self, os_build): """Sets the os_build of this Device. OS build code (example: LMY47X). # noqa: E501 :param os_build: The os_build of this Device. # noqa: E501 :type: string """ self._os_build = os_build @property def os_api_level(self): """Gets the os_api_level of this Device. # noqa: E501 API level when applicable like in Android (example: 15). # noqa: E501 :return: The os_api_level of this Device. # noqa: E501 :rtype: integer """ return self._os_api_level @os_api_level.setter def os_api_level(self, os_api_level): """Sets the os_api_level of this Device. API level when applicable like in Android (example: 15). # noqa: E501 :param os_api_level: The os_api_level of this Device. # noqa: E501 :type: integer """ self._os_api_level = os_api_level @property def locale(self): """Gets the locale of this Device. # noqa: E501 Language code (example: en_US). # noqa: E501 :return: The locale of this Device. # noqa: E501 :rtype: string """ return self._locale @locale.setter def locale(self, locale): """Sets the locale of this Device. Language code (example: en_US). # noqa: E501 :param locale: The locale of this Device. # noqa: E501 :type: string """ if locale is None: raise ValueError("Invalid value for `locale`, must not be `None`") # noqa: E501 self._locale = locale @property def time_zone_offset(self): """Gets the time_zone_offset of this Device. # noqa: E501 The offset in minutes from UTC for the device time zone, including daylight savings time. # noqa: E501 :return: The time_zone_offset of this Device. # noqa: E501 :rtype: integer """ return self._time_zone_offset @time_zone_offset.setter def time_zone_offset(self, time_zone_offset): """Sets the time_zone_offset of this Device. The offset in minutes from UTC for the device time zone, including daylight savings time. # noqa: E501 :param time_zone_offset: The time_zone_offset of this Device. # noqa: E501 :type: integer """ if time_zone_offset is None: raise ValueError("Invalid value for `time_zone_offset`, must not be `None`") # noqa: E501 self._time_zone_offset = time_zone_offset @property def screen_size(self): """Gets the screen_size of this Device. # noqa: E501 Screen size of the device in pixels (example: 640x480). # noqa: E501 :return: The screen_size of this Device. # noqa: E501 :rtype: string """ return self._screen_size @screen_size.setter def screen_size(self, screen_size): """Sets the screen_size of this Device. Screen size of the device in pixels (example: 640x480). # noqa: E501 :param screen_size: The screen_size of this Device. # noqa: E501 :type: string """ self._screen_size = screen_size @property def app_version(self): """Gets the app_version of this Device. # noqa: E501 Application version name, e.g. 1.1.0 # noqa: E501 :return: The app_version of this Device. # noqa: E501 :rtype: string """ return self._app_version @app_version.setter def app_version(self, app_version): """Sets the app_version of this Device. Application version name, e.g. 1.1.0 # noqa: E501 :param app_version: The app_version of this Device. # noqa: E501 :type: string """ if app_version is None: raise ValueError("Invalid value for `app_version`, must not be `None`") # noqa: E501 self._app_version = app_version @property def carrier_name(self): """Gets the carrier_name of this Device. # noqa: E501 Carrier name (for mobile devices). # noqa: E501 :return: The carrier_name of this Device. # noqa: E501 :rtype: string """ return self._carrier_name @carrier_name.setter def carrier_name(self, carrier_name): """Sets the carrier_name of this Device. Carrier name (for mobile devices). # noqa: E501 :param carrier_name: The carrier_name of this Device. # noqa: E501 :type: string """ self._carrier_name = carrier_name @property def carrier_code(self): """Gets the carrier_code of this Device. # noqa: E501 Carrier country code (for mobile devices). # noqa: E501 :return: The carrier_code of this Device. # noqa: E501 :rtype: string """ return self._carrier_code @carrier_code.setter def carrier_code(self, carrier_code): """Sets the carrier_code of this Device. Carrier country code (for mobile devices). # noqa: E501 :param carrier_code: The carrier_code of this Device. # noqa: E501 :type: string """ self._carrier_code = carrier_code @property def carrier_country(self): """Gets the carrier_country of this Device. # noqa: E501 Carrier country. # noqa: E501 :return: The carrier_country of this Device. # noqa: E501 :rtype: string """ return self._carrier_country @carrier_country.setter def carrier_country(self, carrier_country): """Sets the carrier_country of this Device. Carrier country. # noqa: E501 :param carrier_country: The carrier_country of this Device. # noqa: E501 :type: string """ self._carrier_country = carrier_country @property def app_build(self): """Gets the app_build of this Device. # noqa: E501 The app's build number, e.g. 42. # noqa: E501 :return: The app_build of this Device. # noqa: E501 :rtype: string """ return self._app_build @app_build.setter def app_build(self, app_build): """Sets the app_build of this Device. The app's build number, e.g. 42. # noqa: E501 :param app_build: The app_build of this Device. # noqa: E501 :type: string """ if app_build is None: raise ValueError("Invalid value for `app_build`, must not be `None`") # noqa: E501 self._app_build = app_build @property def app_namespace(self): """Gets the app_namespace of this Device. # noqa: E501 The bundle identifier, package identifier, or namespace, depending on what the individual plattforms use, .e.g com.microsoft.example. # noqa: E501 :return: The app_namespace of this Device. # noqa: E501 :rtype: string """ return self._app_namespace @app_namespace.setter def app_namespace(self, app_namespace): """Sets the app_namespace of this Device. The bundle identifier, package identifier, or namespace, depending on what the individual plattforms use, .e.g com.microsoft.example. # noqa: E501 :param app_namespace: The app_namespace of this Device. # noqa: E501 :type: string """ self._app_namespace = app_namespace @property def live_update_release_label(self): """Gets the live_update_release_label of this Device. # noqa: E501 Label that is used to identify application code 'version' released via Live Update beacon running on device # noqa: E501 :return: The live_update_release_label of this Device. # noqa: E501 :rtype: string """ return self._live_update_release_label @live_update_release_label.setter def live_update_release_label(self, live_update_release_label): """Sets the live_update_release_label of this Device. Label that is used to identify application code 'version' released via Live Update beacon running on device # noqa: E501 :param live_update_release_label: The live_update_release_label of this Device. # noqa: E501 :type: string """ self._live_update_release_label = live_update_release_label @property def live_update_deployment_key(self): """Gets the live_update_deployment_key of this Device. # noqa: E501 Identifier of environment that current application release belongs to, deployment key then maps to environment like Production, Staging. # noqa: E501 :return: The live_update_deployment_key of this Device. # noqa: E501 :rtype: string """ return self._live_update_deployment_key @live_update_deployment_key.setter def live_update_deployment_key(self, live_update_deployment_key): """Sets the live_update_deployment_key of this Device. Identifier of environment that current application release belongs to, deployment key then maps to environment like Production, Staging. # noqa: E501 :param live_update_deployment_key: The live_update_deployment_key of this Device. # noqa: E501 :type: string """ self._live_update_deployment_key = live_update_deployment_key @property def live_update_package_hash(self): """Gets the live_update_package_hash of this Device. # noqa: E501 Hash of all files (ReactNative or Cordova) deployed to device via LiveUpdate beacon. Helps identify the Release version on device or need to download updates in future. # noqa: E501 :return: The live_update_package_hash of this Device. # noqa: E501 :rtype: string """ return self._live_update_package_hash @live_update_package_hash.setter def live_update_package_hash(self, live_update_package_hash): """Sets the live_update_package_hash of this Device. Hash of all files (ReactNative or Cordova) deployed to device via LiveUpdate beacon. Helps identify the Release version on device or need to download updates in future. # noqa: E501 :param live_update_package_hash: The live_update_package_hash of this Device. # noqa: E501 :type: string """ self._live_update_package_hash = live_update_package_hash @property def wrapper_runtime_version(self): """Gets the wrapper_runtime_version of this Device. # noqa: E501 Version of the wrapper technology framework (Xamarin runtime version or ReactNative or Cordova etc...). See wrapper_sdk_name to see if this version refers to Xamarin or ReactNative or other. # noqa: E501 :return: The wrapper_runtime_version of this Device. # noqa: E501 :rtype: string """ return self._wrapper_runtime_version @wrapper_runtime_version.setter def wrapper_runtime_version(self, wrapper_runtime_version): """Sets the wrapper_runtime_version of this Device. Version of the wrapper technology framework (Xamarin runtime version or ReactNative or Cordova etc...). See wrapper_sdk_name to see if this version refers to Xamarin or ReactNative or other. # noqa: E501 :param wrapper_runtime_version: The wrapper_runtime_version of this Device. # noqa: E501 :type: string """ self._wrapper_runtime_version = wrapper_runtime_version def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Device): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
32.21895
505
0.632953
24,862
0.988038
0
0
17,863
0.709892
0
0
14,871
0.590987
6707b1d92879723bb590b117c8481d4a309bdf74
5,591
py
Python
src/providers/snmp.py
tcuthbert/napi
12ea1a4fb1075749b40b2d93c3d4ab7fb75db8b5
[ "MIT" ]
null
null
null
src/providers/snmp.py
tcuthbert/napi
12ea1a4fb1075749b40b2d93c3d4ab7fb75db8b5
[ "MIT" ]
null
null
null
src/providers/snmp.py
tcuthbert/napi
12ea1a4fb1075749b40b2d93c3d4ab7fb75db8b5
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # author : Thomas Cuthbert import os, sys from providers.provider import Provider from config.config import Config sys.path.append('../') def _reverse_dict(d): ret = {} for key, val in d.items(): if ret.has_key(val): ret[val].append(key) else: ret[val] = [key] return ret def _parse_routes(routing_table): ret = {} for key, value in routing_table.items(): ret[key] = {} routes = [i.split('.') for i in value] for index, route in enumerate(routes): subnet = ".".join(route[0:4]) ret[key][subnet] = { "mask": ".".join(route[4:8]), "next_hop": ".".join(route[9:]) } return ret def _strip_oid_from_list(oids, strip): """Iterates through list of oids and strips snmp tree off index. Returns sorted list of indexes. Keyword Arguments: self -- oid -- Regular numeric oid index strip -- Value to be stripped off index """ sorted_oids = [] for index in oids: s = index[0].replace(strip, "") sorted_oids.append((s, index[1])) return sorted(sorted_oids) def _get_snmp(oid, hostname, community): """SNMP Wrapper function. Returns tuple of oid, value Keyword Arguments: oid -- community -- """ from pysnmp.entity.rfc3413.oneliner import cmdgen cmd_gen = cmdgen.CommandGenerator() error_indication, error_status, error_index, var_bind = cmd_gen.getCmd( cmdgen.CommunityData(community), cmdgen.UdpTransportTarget((hostname, 161)), oid) if error_indication: print(error_indication) else: if error_status: print ('%s at %s' % ( error_status.prettyPrint(), error_index and var_bind[int(error_index)-1] or '?') ) else: for name, value in var_bind: return (name.prettyPrint(), value.prettyPrint()) def _walk_snmp(oid, hostname, community): """SNMP getNext generator method. Yields each index to caller. Keyword Arguments: oid -- community -- """ from pysnmp.entity.rfc3413.oneliner import cmdgen cmd_gen = cmdgen.CommandGenerator() error_indication, error_status, error_index, var_bind_table = cmd_gen.nextCmd( cmdgen.CommunityData(community), cmdgen.UdpTransportTarget((hostname, 161)), oid) if error_indication: print(error_indication) else: if error_status: print ('%s at %s' % ( error_status.prettyPrint(), error_index and var_bind_table[int(error_index)-1] or '?') ) else: for var_bind_row in var_bind_table: for name, val in var_bind_row: yield name.prettyPrint(), val.prettyPrint() class SNMP(Provider): """docstring""" def __init__(self, *args, **kwargs): "docstring" self.snmp_params = Config.config_section_map("SNMP_PARAMS") self.snmp_oids = Config.config_section_map("OIDS") super(SNMP, self).__init__(*args, **kwargs) def __resolve_community_string(self): if self._device.device_type == "core": return self.snmp_params["community_core"] else: return self.snmp_params["community_remote"] def walk_tree_from_oid(self, oid): """Walks SNMP tree from rooted at oid. Oid must exist in the netlib configuration file else an exception is raised. :type oid: string :param oid: An SNMP oid index """ try: index = self.snmp_oids[oid] except KeyError as e: #TODO: Logging print "oid not present in config file" raise e return dict(_strip_oid_from_list(list(_walk_snmp(index, self._device.hostname, self.__resolve_community_string())), index + ".")) def __get_ipcidrrouteifindex(self): """Get routing table for use by Layer 3 object. This method gets the ipcidrrouteifindex routing table. """ return self.walk_tree_from_oid("ipcidrrouteifindex") def _build_layer3_prop_routing_table(self): "Build routing table from device" return _parse_routes(_reverse_dict(self.__get_ipcidrrouteifindex())) def _build_layer2_prop_cam_table(self): "Build cam table from device" return "ff-ff-ff-ff" def _build_device_prop_interfaces(self): intfs = self.__get_index("ifname") for key, val in intfs.items(): # intfs[key] = [intfs[key], self.__get_index("ifdesc")[key], self.__get_index("ifspeed")[key]] intfs[key] = { "intf_name": intfs[key], "intf_desc": self.__get_index("ifdesc")[key], "intf_speed": self.__get_index("ifspeed")[key] } return intfs def _wrapper_layer3_device_prop_interfaces(self, func): res = func() res.update({ "0": {"intf_name": "INTERNAL"} }) for key, value in _reverse_dict(self.walk_tree_from_oid("ipaddressifindex")).items(): res[key].update({"intf_ip": value.pop()}) return res def __get_index(self, index): "Gather interfaces for upstream device." oid = self.snmp_oids[index] hostname = self._device.hostname return dict(_strip_oid_from_list(list(_walk_snmp(oid, hostname, self.__resolve_community_string())), oid + "."))
31.587571
137
0.603291
2,652
0.474334
893
0.159721
0
0
0
0
1,411
0.25237