hexsha
stringlengths
40
40
size
int64
7
1.04M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
247
max_stars_repo_name
stringlengths
4
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
368k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
247
max_issues_repo_name
stringlengths
4
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
247
max_forks_repo_name
stringlengths
4
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.04M
avg_line_length
float64
1.77
618k
max_line_length
int64
1
1.02M
alphanum_fraction
float64
0
1
original_content
stringlengths
7
1.04M
filtered:remove_function_no_docstring
int64
-102
942k
filtered:remove_class_no_docstring
int64
-354
977k
filtered:remove_delete_markers
int64
0
60.1k
2617cb2e73b14895dfae1fd3fe2018b9394d74fd
825
py
Python
monapay/management/commands/initaccounts.py
monapayjp/monapay
c896b104b5bea328d119f009710589ffd174386a
[ "BSD-3-Clause" ]
4
2015-02-12T18:54:44.000Z
2021-04-15T05:21:06.000Z
monapay/management/commands/initaccounts.py
monapayjp/monapay
c896b104b5bea328d119f009710589ffd174386a
[ "BSD-3-Clause" ]
1
2018-02-03T17:35:36.000Z
2018-02-03T17:35:36.000Z
monapay/management/commands/initaccounts.py
monapayjp/monapay
c896b104b5bea328d119f009710589ffd174386a
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from django.conf import settings from django.core.management.base import BaseCommand, CommandError from monapay.rpc import make_rpc_connection
35.869565
72
0.646061
# -*- coding: utf-8 -*- from django.conf import settings from django.core.management.base import BaseCommand, CommandError from monapay.rpc import make_rpc_connection class Command(BaseCommand): def __init__(self, *args, **kwargs): super(Command, self).__init__(*args, **kwargs) def handle(self, *args, **kwargs): conn = make_rpc_connection() accounts = conn.listaccounts(as_dict=True) account_names = [ settings.PAYMENT_WALLET_ACCOUNT_NAME, settings.PAYMENT_FEE_ACCOUNT_NAME ] for account_name in account_names: if not account_name in accounts: address = conn.getnewaddress(account=account_name) print("create a new account '{0}'. address: {1}".format( account_name, address))
575
6
76
de7dbbbaf0bfc916c7c7f590fcfc3589933d6da2
163
py
Python
data/typing/pandas.api.types.py
vfdev-5/python-record-api
006faf0bba9cd4cb55fbacc13d2bbda365f5bf0b
[ "MIT" ]
67
2020-08-17T11:53:26.000Z
2021-11-08T20:16:06.000Z
data/typing/pandas.api.types.py
vfdev-5/python-record-api
006faf0bba9cd4cb55fbacc13d2bbda365f5bf0b
[ "MIT" ]
36
2020-08-17T11:09:51.000Z
2021-12-15T18:09:47.000Z
data/typing/pandas.api.types.py
pydata-apis/python-api-record
684cffbbb6dc6e81f9de4e02619c8b0ebc557b2b
[ "MIT" ]
7
2020-08-19T05:06:47.000Z
2020-11-04T05:10:38.000Z
from typing import * # usage.dask: 8 # usage.sklearn: 9 CategoricalDtype: object # usage.dask: 2 is_categorical_dtype: object # usage.dask: 3 is_sparse: object
13.583333
28
0.748466
from typing import * # usage.dask: 8 # usage.sklearn: 9 CategoricalDtype: object # usage.dask: 2 is_categorical_dtype: object # usage.dask: 3 is_sparse: object
0
0
0
ac8e698132504eb73e69452ac813966d0ee22822
8,425
py
Python
architect/orms/decorators.py
portcast/architect
0cc6374d718855837ab3073b708c9765feb046cb
[ "Apache-2.0" ]
null
null
null
architect/orms/decorators.py
portcast/architect
0cc6374d718855837ab3073b708c9765feb046cb
[ "Apache-2.0" ]
null
null
null
architect/orms/decorators.py
portcast/architect
0cc6374d718855837ab3073b708c9765feb046cb
[ "Apache-2.0" ]
null
null
null
""" Defines decorators that Architect provides. """ import inspect import functools from .bases import BaseFeature from .registry import registry, Registrar from ..exceptions import ( ORMError, FeatureInstallError, FeatureUninstallError, MethodAutoDecorateError ) from copy import deepcopy class install(object): """ Install decorator installs the requested feature for a model. All features are installed inside the "architect" namespace to avoid all possible naming conflicts. """ def __init__(self, feature, **options): """ :param string feature: (required). A feature to install. :param dictionary options: (optional). Feature options. """ # for backward compatibility options = set_list_vals('subtype', **options) options = set_list_vals('constraint', **options) options = set_list_vals('column', **options) self.features = {} self.feature = feature self.options = {'feature': options, 'global': dict((k, v) for k, v in options.items() if k in ('db',))} def __call__(self, model): """ :param class model: (required). A model class where feature will be installed. """ orm = self.options['feature'].pop('orm', None) or model.__class__.__module__.split('.')[0] if orm not in Registrar.orms: try: __import__('{0}.features'.format(orm), globals(), level=1, fromlist='*') except ImportError: import os import pkgutil raise ORMError( current=orm, model=model.__name__, allowed=[name for _, name, is_pkg in pkgutil.iter_modules([os.path.dirname(__file__)]) if is_pkg]) self.init_feature(self.feature, model, registry[orm]) # If a model already has some architect features installed, we need to # gather them and merge with the new feature that needs to be installed if hasattr(model, 'architect'): for name, obj in model.architect.__dict__.items(): if isinstance(obj, BaseFeature): if name not in self.features: self.features[name] = {'class': obj.__class__, 'options': obj.options} # Some ORMs disallow setting new attributes on model classes, we # have to fix this by providing the default __setattr__ behaviour type(model).__setattr__ = lambda o, n, v: type.__setattr__(o, n, v) # So what's going on here ? The idea is to create an "architect" namespace using the # Architect class which is a descriptor itself, which when accessed returns the # autogenerated class with all the requested features. The most important part here # is that because we're using a descriptor we can get access to the model class from # every feature class and all that absolutely correctly works even with the model # inheritance. While the same can be achieved using metaclasses, the problem is that # every ORM also uses metaclasses which produces the metaclass conflict because a # class can't have two metaclasses. This situation can also be solved but it requires # much more magical stuff to be written that is why this approach was chosen model.architect = Architect(self.features) return model def init_feature(self, feature, model, features_registry): """ Initializes the requested feature. :param string feature: (required). A feature to initialize. :param class model: (required). A model where feature will be initialized. :param dict features_registry: (required). A registry with available features for the current ORM. """ try: feature_cls = features_registry[feature] except KeyError: raise FeatureInstallError(current=feature, model=model.__name__, allowed=features_registry.keys()) for name in feature_cls.decorate: try: original = getattr(model, name) if getattr(original, 'is_decorated', False): # Handle the inheritance cases original = original.original except AttributeError: raise MethodAutoDecorateError(current=name, model=model.__name__) decorator = getattr(feature_cls, '_decorate_{0}'.format(name)) decorated = functools.wraps(original)(decorator(original)) decorated.original = original decorated.is_decorated = True setattr(model, name, decorated) self.features[feature] = { 'class': feature_cls, 'options': self.options['feature'] if feature == self.feature else self.options['global'] } if hasattr(feature_cls, 'register_hooks'): feature_cls.register_hooks(model) for dependency in feature_cls.dependencies: self.init_feature(dependency, model, features_registry) class uninstall(object): """ Uninstall decorator uninstalls the requested feature and all it's dependencies from a model. """ def __init__(self, feature): """ :param string feature: (required). A feature to uninstall. """ self.feature = feature def __call__(self, model): """ :param class model: (required). A model class to work with. """ self.deinit_feature(self.feature, model) return model def deinit_feature(self, feature, model): """ Deinitializes requested feature and it's dependencies. :param string feature: (required). A feature to deinitialize. :param class model: (required). A model class to work with. """ try: feature_obj = getattr(model.architect, feature) except AttributeError: raise FeatureUninstallError( current=feature, model=model.__name__, allowed=[name for name, obj in model.architect.__dict__.items() if isinstance(obj, BaseFeature)]) # The concept of "unbound methods" has been removed from Python 3. When accessing a method # from a class, we now get a plain function object. This is what the isfunction check for methods = inspect.getmembers(model, predicate=lambda m: inspect.isfunction(m) or inspect.ismethod(m)) for name, method in methods: if getattr(method, 'is_decorated', False): setattr(model, name, method.original) delattr(model.architect, feature) # TODO: prohibit uninstall if there are dependant features for dependency in feature_obj.dependencies: self.deinit_feature(dependency, model)
41.502463
118
0.622077
""" Defines decorators that Architect provides. """ import inspect import functools from .bases import BaseFeature from .registry import registry, Registrar from ..exceptions import ( ORMError, FeatureInstallError, FeatureUninstallError, MethodAutoDecorateError ) from copy import deepcopy def set_list_vals(key, **options): options = deepcopy(options) val = options.get(key) key_plural = '{}s'.format(key) list_vals = options.get(key_plural, []) if not list_vals: if val and type(val) == str: list_vals = [val] options[key_plural] = list_vals return options class install(object): """ Install decorator installs the requested feature for a model. All features are installed inside the "architect" namespace to avoid all possible naming conflicts. """ def __init__(self, feature, **options): """ :param string feature: (required). A feature to install. :param dictionary options: (optional). Feature options. """ # for backward compatibility options = set_list_vals('subtype', **options) options = set_list_vals('constraint', **options) options = set_list_vals('column', **options) self.features = {} self.feature = feature self.options = {'feature': options, 'global': dict((k, v) for k, v in options.items() if k in ('db',))} def __call__(self, model): """ :param class model: (required). A model class where feature will be installed. """ orm = self.options['feature'].pop('orm', None) or model.__class__.__module__.split('.')[0] if orm not in Registrar.orms: try: __import__('{0}.features'.format(orm), globals(), level=1, fromlist='*') except ImportError: import os import pkgutil raise ORMError( current=orm, model=model.__name__, allowed=[name for _, name, is_pkg in pkgutil.iter_modules([os.path.dirname(__file__)]) if is_pkg]) self.init_feature(self.feature, model, registry[orm]) # If a model already has some architect features installed, we need to # gather them and merge with the new feature that needs to be installed if hasattr(model, 'architect'): for name, obj in model.architect.__dict__.items(): if isinstance(obj, BaseFeature): if name not in self.features: self.features[name] = {'class': obj.__class__, 'options': obj.options} # Some ORMs disallow setting new attributes on model classes, we # have to fix this by providing the default __setattr__ behaviour type(model).__setattr__ = lambda o, n, v: type.__setattr__(o, n, v) # So what's going on here ? The idea is to create an "architect" namespace using the # Architect class which is a descriptor itself, which when accessed returns the # autogenerated class with all the requested features. The most important part here # is that because we're using a descriptor we can get access to the model class from # every feature class and all that absolutely correctly works even with the model # inheritance. While the same can be achieved using metaclasses, the problem is that # every ORM also uses metaclasses which produces the metaclass conflict because a # class can't have two metaclasses. This situation can also be solved but it requires # much more magical stuff to be written that is why this approach was chosen class Architect(object): def __init__(self, features): self.map = {} self.features = features def __get__(self, model_obj, model_cls): # If a model class accesses an architect namespace for the first # time, we need to put it inside a map for the future reference if model_cls not in self.map: self.map[model_cls] = {'features': {}} for feature, options in self.features.items(): self.map[model_cls]['features'][feature] = options['class']( model_obj, model_cls, **options['options']) self.map[model_cls]['architect'] = type('Architect', (object,), dict( self.map[model_cls]['features'], **{'__module__': 'architect'})) # We have to notify each feature object if a model object wants # to get access to it, otherwise it won't have an idea about it if model_obj is not None: for feature in self.map[model_cls]['features']: self.map[model_cls]['features'][feature].model_obj = model_obj return self.map[model_cls]['architect'] model.architect = Architect(self.features) return model def init_feature(self, feature, model, features_registry): """ Initializes the requested feature. :param string feature: (required). A feature to initialize. :param class model: (required). A model where feature will be initialized. :param dict features_registry: (required). A registry with available features for the current ORM. """ try: feature_cls = features_registry[feature] except KeyError: raise FeatureInstallError(current=feature, model=model.__name__, allowed=features_registry.keys()) for name in feature_cls.decorate: try: original = getattr(model, name) if getattr(original, 'is_decorated', False): # Handle the inheritance cases original = original.original except AttributeError: raise MethodAutoDecorateError(current=name, model=model.__name__) decorator = getattr(feature_cls, '_decorate_{0}'.format(name)) decorated = functools.wraps(original)(decorator(original)) decorated.original = original decorated.is_decorated = True setattr(model, name, decorated) self.features[feature] = { 'class': feature_cls, 'options': self.options['feature'] if feature == self.feature else self.options['global'] } if hasattr(feature_cls, 'register_hooks'): feature_cls.register_hooks(model) for dependency in feature_cls.dependencies: self.init_feature(dependency, model, features_registry) class uninstall(object): """ Uninstall decorator uninstalls the requested feature and all it's dependencies from a model. """ def __init__(self, feature): """ :param string feature: (required). A feature to uninstall. """ self.feature = feature def __call__(self, model): """ :param class model: (required). A model class to work with. """ self.deinit_feature(self.feature, model) return model def deinit_feature(self, feature, model): """ Deinitializes requested feature and it's dependencies. :param string feature: (required). A feature to deinitialize. :param class model: (required). A model class to work with. """ try: feature_obj = getattr(model.architect, feature) except AttributeError: raise FeatureUninstallError( current=feature, model=model.__name__, allowed=[name for name, obj in model.architect.__dict__.items() if isinstance(obj, BaseFeature)]) # The concept of "unbound methods" has been removed from Python 3. When accessing a method # from a class, we now get a plain function object. This is what the isfunction check for methods = inspect.getmembers(model, predicate=lambda m: inspect.isfunction(m) or inspect.ismethod(m)) for name, method in methods: if getattr(method, 'is_decorated', False): setattr(model, name, method.original) delattr(model.architect, feature) # TODO: prohibit uninstall if there are dependant features for dependency in feature_obj.dependencies: self.deinit_feature(dependency, model)
1,483
3
122
9c1d726650bd473804e5a039a8c9a56480255dc6
1,144
py
Python
Machine-Learning-A-Z-Udemy-master/Machine Learning A-Z Template Folder/Part 1 - Data Preprocessing/Mpython_working.py
CT83/Independent-Coursework
5c7f93a7e05e64b13cb821f603efc54c92ad96c6
[ "Apache-2.0" ]
null
null
null
Machine-Learning-A-Z-Udemy-master/Machine Learning A-Z Template Folder/Part 1 - Data Preprocessing/Mpython_working.py
CT83/Independent-Coursework
5c7f93a7e05e64b13cb821f603efc54c92ad96c6
[ "Apache-2.0" ]
null
null
null
Machine-Learning-A-Z-Udemy-master/Machine Learning A-Z Template Folder/Part 1 - Data Preprocessing/Mpython_working.py
CT83/Independent-Coursework
5c7f93a7e05e64b13cb821f603efc54c92ad96c6
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Importing the Libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the Data dataset=pd.read_csv('Data.csv') X = dataset.iloc[:,:-1].values y = dataset.iloc[:,3].values # Taking care of missing Data from sklearn.preprocessing import Imputer imputer = Imputer(missing_values='NaN', strategy='mean', axis=0) imputer = imputer.fit(X[:,1:3]) X[:,1:3] = imputer.transform(X[:,1:3]) # Encoding Categorical Data from sklearn.preprocessing import LabelEncoder, OneHotEncoder labelencoder_X = LabelEncoder() X[:,0] = labelencoder_X.fit_transform(X[:,0]) onehotencoder = OneHotEncoder(categorical_features=[0]) X = onehotencoder.fit_transform(X).toarray() labelencoder_y = LabelEncoder() y = labelencoder_y.fit_transform(y) #Splitting the Data into Training Set and Test Set from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) # Feature Scaling from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test)
30.918919
92
0.768357
# -*- coding: utf-8 -*- # Importing the Libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the Data dataset=pd.read_csv('Data.csv') X = dataset.iloc[:,:-1].values y = dataset.iloc[:,3].values # Taking care of missing Data from sklearn.preprocessing import Imputer imputer = Imputer(missing_values='NaN', strategy='mean', axis=0) imputer = imputer.fit(X[:,1:3]) X[:,1:3] = imputer.transform(X[:,1:3]) # Encoding Categorical Data from sklearn.preprocessing import LabelEncoder, OneHotEncoder labelencoder_X = LabelEncoder() X[:,0] = labelencoder_X.fit_transform(X[:,0]) onehotencoder = OneHotEncoder(categorical_features=[0]) X = onehotencoder.fit_transform(X).toarray() labelencoder_y = LabelEncoder() y = labelencoder_y.fit_transform(y) #Splitting the Data into Training Set and Test Set from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) # Feature Scaling from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test)
0
0
0
18411d6cbef85b0fa08f04f819e453cb8daf0028
13,542
py
Python
tzdealer/tzdealer/report/customer_age/customer_age.py
Lewinta/tzdealer
3e6a8f39e16029b217ae84bed806cb79bbc89dbf
[ "MIT" ]
null
null
null
tzdealer/tzdealer/report/customer_age/customer_age.py
Lewinta/tzdealer
3e6a8f39e16029b217ae84bed806cb79bbc89dbf
[ "MIT" ]
null
null
null
tzdealer/tzdealer/report/customer_age/customer_age.py
Lewinta/tzdealer
3e6a8f39e16029b217ae84bed806cb79bbc89dbf
[ "MIT" ]
null
null
null
# Copyright (c) 2013, TZCODE SRL and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe import _ from frappe.utils import cstr, flt, date_diff, nowdate def get_data(filters): """ Return the data that needs to be rendered """ fields = get_fields(filters) conditions = get_conditions(filters) results = [] pinv_date = " " sinv_date = " " if filters.get('from_date'): sinv_date = sinv_date + " AND `tabSales Invoice`.posting_date >= '{}' ".format(filters.get('from_date')) pinv_date = pinv_date + " AND `tabPayment Entry`.posting_date >= '{}' ".format(filters.get('from_date')) if filters.get('to_date'): sinv_date = sinv_date + " AND `tabSales Invoice`.posting_date <= '{}' ".format(filters.get('to_date')) pinv_date = pinv_date + " AND `tabPayment Entry`.posting_date <= '{}' ".format(filters.get('to_date')) data = frappe.db.sql(""" Select {fields} From `tabSales Invoice` Inner Join `tabSales Invoice Item` On `tabSales Invoice`.name = `tabSales Invoice Item`.parent And `tabSales Invoice`.docstatus = 1 {sinv_date} Inner Join `tabItem` On `tabSales Invoice Item`.item_code = `tabItem`.item_code Left Join `tabSales Taxes and Charges` On `tabSales Invoice`.name = `tabSales Taxes and Charges`.parent Left Join `tabTax Segment Item` On `tabSales Taxes and Charges`.account_head = `tabTax Segment Item`.tax Left Join `tabPayment Entry Reference` On `tabPayment Entry Reference`.reference_name = `tabSales Invoice`.name And `tabPayment Entry Reference`.docstatus = 1 Left Join `tabPayment Entry` On `tabPayment Entry Reference`.parent = `tabPayment Entry`.name And `tabPayment Entry`.docstatus = 1 {pinv_date} Left Join `tabAddress` On `tabItem`.location = `tabAddress`.name Left Join `tabDelivery Checklist` On `tabDelivery Checklist`.name = `tabItem`.name Where {conditions} Group By `tabSales Invoice`.name, `tabPayment Entry Reference`.name Order By `tabSales Invoice`.name, `tabPayment Entry`.name """.format( fields=fields, sinv_date=sinv_date, pinv_date=pinv_date, conditions=conditions or "1 = 1"), filters, as_dict=True, debug=False) last_inv = '' vim = '' entry = '' pay_date = '' mode = '' for row in data: total_costs = flt(row.pinv_price) + flt(row.fee) + flt(row.transport) + \ flt(row.delivery) + flt(row.parts) + flt(row.repair) + flt(row.others) vim_number = row.cont_vim.split('-')[0] if row.cont_vim and '-' in row.cont_vim else row.vim_number details = "-" if row.item_type == "Vehicles": details = "{} {} {} {}".format(row.make or "", row.model or "", row.exterior_color or "", row.year or "") if row.item_type == "Containers": details = "{} {}".format(row.booking_no or "", row.container_no or "") if row.item_type == "Vehicle Parts": details = row.part_type if row.item_type == "Services": details = row.item_type if last_inv != row.sinv_name or vim_number != vim or entry != row.payment_entry: paid_arr = [flt(x.allocated_amount) for x in filter(lambda x, n=row.sinv_name : x.get('sinv_name') == n and x.get("payment_type") == "Receive", data)] returns_arr = [flt(x.allocated_amount) for x in filter(lambda x, n=row.sinv_name : x.get('sinv_name') == n and x.get("payment_type") == "Pay", data)] total_paid = sum(paid_arr) if paid_arr else .00 total_return = sum(returns_arr) if returns_arr else .00 final_sale = flt(row.base_grand_total) + flt(row.credit_note) if filters.get('print_customer'): results.append( ( row.customer , vim_number, details, row.base_grand_total if last_inv != row.sinv_name else .00, row.credit_note if last_inv != row.sinv_name else '', final_sale if last_inv != row.sinv_name and row.is_return == 0 else 0, # Final Sale row.p_posting_date if entry != row.payment_entry or mode != row.mode_of_payment or pay_date != row.p_posting_date else '-', row.mode_of_payment if entry != row.payment_entry or mode != row.mode_of_payment or pay_date != row.p_posting_date else ' ', row.allocated_amount if last_inv != row.sinv_name or entry != row.payment_entry else .00, total_paid if last_inv != row.sinv_name else .00, total_return if last_inv != row.sinv_name else .00, #Refund row.outstanding_amount if last_inv != row.sinv_name else .00, ) ) else: results.append( ( row.company, row.location, row.item_code, row.item_type, #Item Type. row.customer , # row.customer if last_inv != row.sinv_name else '', vim_number, details, # row.due_date if last_inv != row.sinv_name else '', row.sinv_date if last_inv != row.sinv_name else '', date_diff(nowdate(), row.sinv_date) if last_inv != row.sinv_name else '', # row.net_total if last_inv != row.sinv_name else '', # row.gst_total if last_inv != row.sinv_name else '', # row.pst_total if last_inv != row.sinv_name else '', row.base_grand_total if last_inv != row.sinv_name else .00, row.credit_note if last_inv != row.sinv_name else '', final_sale if last_inv != row.sinv_name and row.is_return == 0 else 0, # Final Sale # row.grand_total if last_inv != row.sinv_name and row.currency == "USD" else .00, row.p_posting_date if entry != row.payment_entry or mode != row.mode_of_payment or pay_date != row.p_posting_date else '-', row.mode_of_payment if entry != row.payment_entry or mode != row.mode_of_payment or pay_date != row.p_posting_date else ' ', row.allocated_amount if last_inv != row.sinv_name or entry != row.payment_entry else .00, # flt(row.grand_total) - flt(row.outstanding_amount) if last_inv != row.sinv_name else .00, # Total Paid total_paid if last_inv != row.sinv_name else .00, total_return if last_inv != row.sinv_name else .00, #Refund row.outstanding_amount if last_inv != row.sinv_name else .00, row.item_code, # Notes row.payment_entry, row.sinv_name if last_inv != row.sinv_name else '', row.checklist, row.status, row.title_status, row.bl, ) ) else: if filters.get('customer_print'): results.append( ( "", # Customer "", # Vim Number "", # Details "", # Total Sale "", # Credit Note "", # Final Sale row.p_posting_date, # Pay Date row.mode_of_payment, # Payment Type row.allocated_amount, # Breakdown row.payment_entry, # Payment Entry row.bl ) ) else: results.append( ( "", # Company "", # Location "", # Stock No. "", #Item Type "", # Customer "", # Vim Number "", # Details # "", # Due Date "", # Inv Date "", # Age "", # Total Sale "", # Credit Note "", # Final Sale # "", # Sale N/ Total # "", # GST # "", # PST row.p_posting_date, # Pay Date row.mode_of_payment, # Payment Type row.allocated_amount, # Breakdown "", # Total Paid "", # Refund "", # Outstanding " ", # Notes row.payment_entry, # Payment Entry "", # Checklist "", # Status. "", # Title Status. # "", # GPrice row.bl ) ) last_inv = row.sinv_name vim = vim_number entry = row.payment_entry pay_date = row.p_posting_date mode = row.mode_of_payment return results def get_conditions(filters): """ Return sql conditions ready to use in query NOTE: Value is mandatory if condition_type == value """ company = frappe.get_value("User Permission", { "user":frappe.session.user, "allow":"Company", }, "for_value") conditions = [("Item", "item_type", "!=", "Services")] if filters.get('company'): conditions.append( ("Sales Invoice", "company", "=", filters.get('company')) ) if filters.get('customer'): conditions.append( ("Sales Invoice", "customer", "=", filters.get('customer')) ) if filters.get('payment_status') == "Unpaid Only": conditions.append( ("Sales Invoice", "outstanding_amount", ">", 0) ) if filters.get('payment_status') == "Paid Only": conditions.append( ("Sales Invoice", "outstanding_amount", "=", 0) ) if filters.get('item_code'): conditions.append( ("Sales Invoice Item", "item_code", "=", filters.get('item_code')) ) sql_conditions = [] if not conditions: return sql_conditions for doctype, fieldname, compare, value in conditions: if fieldname == '-': continue if value == "NULL": sql_condition = "`tab{doctype}`.`{fieldname}` {compare} {value}" \ .format(doctype=doctype, fieldname=fieldname, compare=compare, value=value) else: sql_condition = "`tab{doctype}`.`{fieldname}` {compare} '{value}'" \ .format(doctype=doctype, fieldname=fieldname, compare=compare, value=value) sql_conditions.append(sql_condition) # frappe.errprint(conditions) return " And ".join(sql_conditions) def get_fields(filters): """ Return sql fields ready to be used on query """ fields = ( ("Sales Invoice", "company"), ("CONCAT(`tabItem`._default_supplier, ' - ', `tabAddress`.city, ', ', `tabAddress`.state) as location"), ("Sales Invoice Item", "item_code"), ("Item", "vim_number"), ("Item", "make"), ("Item", "model"), ("Item", "item_type"), ("Item", "part_type"), ("Item", "year"), ("Item", "exterior_color"), ("Delivery Checklist", "status", "checklist"), ("Sales Invoice Item", "vim_number", "cont_vim"), ("Sales Invoice Item", "item_name"), ("Sales Invoice", "due_date", "due_date"), ("Sales Invoice", "posting_date", "sinv_date"), ("Sales Invoice", "customer"), ("Sales Invoice", "invoice_type"), ("Sales Invoice", "net_total"), (""" SUM( IF( `tabTax Segment Item`.parent = 'GST', IFNULL(`tabSales Taxes and Charges`.tax_amount, 0), 0 ) ) as gst_total """ ), (""" SUM( IF( `tabTax Segment Item`.parent = 'PST', IFNULL(`tabSales Taxes and Charges`.tax_amount, 0), 0 ) ) as pst_total """ ), ("Sales Invoice", "currency"), ("Sales Invoice", "base_grand_total"), ("Sales Invoice", "grand_total"), ("Sales Invoice", "is_return"), ("Payment Entry", "posting_date", "p_posting_date"), ("""(SELECT SUM(b.grand_total) FROM `tabSales Invoice` as b WHERE b.is_return = 1 and b.docstatus = 1 and b.return_against = `tabSales Invoice`.name ) as credit_note"""), ("Payment Entry", "mode_of_payment"), ("Payment Entry", "payment_type"), ("Payment Entry Reference", "allocated_amount"), ("Sales Invoice", "outstanding_amount"), ("Payment Entry Reference", "parent", "payment_entry"), ("Sales Invoice", "name", "sinv_name"), ("Sales Invoice Item", "gprice"), ("Item", "status"), ("Item", "title_status"), ("Item", "bl"), ) sql_fields = [] for args in fields: sql_field = get_field(args) sql_fields.append(sql_field) # frappe.errprint(", ".join(sql_fields)) return ", ".join(sql_fields)
30.431461
172
0.628563
# Copyright (c) 2013, TZCODE SRL and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe import _ from frappe.utils import cstr, flt, date_diff, nowdate def execute(filters=None): return get_columns(filters), get_data(filters) def get_columns(filters): columns = '' if filters.get("print_customer"): columns = ( ("Customer", "Link/Customer", 130), ("Vim Number", "Data", 150), ("Details", "Data", 250), ("Total Sale", "Currency", 90), ("Credit Note", "Currency", 90), ("Final Sale", "Currency", 90), ("Pay Date", "Date", 90), ("Payment Type", "Data", 100), ("Breakdown", "Currency", 100), ("Total Paid", "Currency", 90), ("Refund", "Currency", 90), ("Outstanding", "Currency", 100), ) else: columns = ( ("Company", "Data", 120), ("S. Location", "Data", 230), ("Stock No.", "Link/Item", 110), ("Item Type", "Data", 100), ("Customer", "Link/Customer", 130), ("Vim Number", "Data", 150), ("Details", "Data", 250), # ("Model", "Data", 100), # ("Year", "Data", 60), # ("Color", "Data", 70), # ("Due Date", "Date", 90), ("Inv. Date", "Date", 90), ("Age", "Data", 90), # ("Sale N/Total", "Currency", 100), # ("GST", "Currency", 100), # ("PST", "Currency", 100), ("Total Sale", "Currency", 90), ("Credit Note", "Currency", 90), ("Final Sale", "Currency", 90), # ("Sale G/Total USD", "Currency", 150), ("Pay Date", "Date", 90), ("Payment Type", "Data", 100), ("Breakdown", "Currency", 100), ("Total Paid", "Currency", 90), ("Refund", "Currency", 90), ("Outstanding", "Currency", 100), ("Notes", "Data", 100), ("Payment Entry", "Link/Payment Entry", 100), ("Sales Inv.", "Link/Sales Invoice", 100), # ("G Price", "Currency", 100), ("Checklist", "Data", 90), ("VEH Status", "Data", 100), ("Title Status", "Data", 100), ("BL", "Data", 90), ) formatted_columns = [] for label, fieldtype, width in columns: formatted_columns.append( get_formatted_column(label, fieldtype, width) ) return formatted_columns def get_data(filters): """ Return the data that needs to be rendered """ fields = get_fields(filters) conditions = get_conditions(filters) results = [] pinv_date = " " sinv_date = " " if filters.get('from_date'): sinv_date = sinv_date + " AND `tabSales Invoice`.posting_date >= '{}' ".format(filters.get('from_date')) pinv_date = pinv_date + " AND `tabPayment Entry`.posting_date >= '{}' ".format(filters.get('from_date')) if filters.get('to_date'): sinv_date = sinv_date + " AND `tabSales Invoice`.posting_date <= '{}' ".format(filters.get('to_date')) pinv_date = pinv_date + " AND `tabPayment Entry`.posting_date <= '{}' ".format(filters.get('to_date')) data = frappe.db.sql(""" Select {fields} From `tabSales Invoice` Inner Join `tabSales Invoice Item` On `tabSales Invoice`.name = `tabSales Invoice Item`.parent And `tabSales Invoice`.docstatus = 1 {sinv_date} Inner Join `tabItem` On `tabSales Invoice Item`.item_code = `tabItem`.item_code Left Join `tabSales Taxes and Charges` On `tabSales Invoice`.name = `tabSales Taxes and Charges`.parent Left Join `tabTax Segment Item` On `tabSales Taxes and Charges`.account_head = `tabTax Segment Item`.tax Left Join `tabPayment Entry Reference` On `tabPayment Entry Reference`.reference_name = `tabSales Invoice`.name And `tabPayment Entry Reference`.docstatus = 1 Left Join `tabPayment Entry` On `tabPayment Entry Reference`.parent = `tabPayment Entry`.name And `tabPayment Entry`.docstatus = 1 {pinv_date} Left Join `tabAddress` On `tabItem`.location = `tabAddress`.name Left Join `tabDelivery Checklist` On `tabDelivery Checklist`.name = `tabItem`.name Where {conditions} Group By `tabSales Invoice`.name, `tabPayment Entry Reference`.name Order By `tabSales Invoice`.name, `tabPayment Entry`.name """.format( fields=fields, sinv_date=sinv_date, pinv_date=pinv_date, conditions=conditions or "1 = 1"), filters, as_dict=True, debug=False) last_inv = '' vim = '' entry = '' pay_date = '' mode = '' for row in data: total_costs = flt(row.pinv_price) + flt(row.fee) + flt(row.transport) + \ flt(row.delivery) + flt(row.parts) + flt(row.repair) + flt(row.others) vim_number = row.cont_vim.split('-')[0] if row.cont_vim and '-' in row.cont_vim else row.vim_number details = "-" if row.item_type == "Vehicles": details = "{} {} {} {}".format(row.make or "", row.model or "", row.exterior_color or "", row.year or "") if row.item_type == "Containers": details = "{} {}".format(row.booking_no or "", row.container_no or "") if row.item_type == "Vehicle Parts": details = row.part_type if row.item_type == "Services": details = row.item_type if last_inv != row.sinv_name or vim_number != vim or entry != row.payment_entry: paid_arr = [flt(x.allocated_amount) for x in filter(lambda x, n=row.sinv_name : x.get('sinv_name') == n and x.get("payment_type") == "Receive", data)] returns_arr = [flt(x.allocated_amount) for x in filter(lambda x, n=row.sinv_name : x.get('sinv_name') == n and x.get("payment_type") == "Pay", data)] total_paid = sum(paid_arr) if paid_arr else .00 total_return = sum(returns_arr) if returns_arr else .00 final_sale = flt(row.base_grand_total) + flt(row.credit_note) if filters.get('print_customer'): results.append( ( row.customer , vim_number, details, row.base_grand_total if last_inv != row.sinv_name else .00, row.credit_note if last_inv != row.sinv_name else '', final_sale if last_inv != row.sinv_name and row.is_return == 0 else 0, # Final Sale row.p_posting_date if entry != row.payment_entry or mode != row.mode_of_payment or pay_date != row.p_posting_date else '-', row.mode_of_payment if entry != row.payment_entry or mode != row.mode_of_payment or pay_date != row.p_posting_date else ' ', row.allocated_amount if last_inv != row.sinv_name or entry != row.payment_entry else .00, total_paid if last_inv != row.sinv_name else .00, total_return if last_inv != row.sinv_name else .00, #Refund row.outstanding_amount if last_inv != row.sinv_name else .00, ) ) else: results.append( ( row.company, row.location, row.item_code, row.item_type, #Item Type. row.customer , # row.customer if last_inv != row.sinv_name else '', vim_number, details, # row.due_date if last_inv != row.sinv_name else '', row.sinv_date if last_inv != row.sinv_name else '', date_diff(nowdate(), row.sinv_date) if last_inv != row.sinv_name else '', # row.net_total if last_inv != row.sinv_name else '', # row.gst_total if last_inv != row.sinv_name else '', # row.pst_total if last_inv != row.sinv_name else '', row.base_grand_total if last_inv != row.sinv_name else .00, row.credit_note if last_inv != row.sinv_name else '', final_sale if last_inv != row.sinv_name and row.is_return == 0 else 0, # Final Sale # row.grand_total if last_inv != row.sinv_name and row.currency == "USD" else .00, row.p_posting_date if entry != row.payment_entry or mode != row.mode_of_payment or pay_date != row.p_posting_date else '-', row.mode_of_payment if entry != row.payment_entry or mode != row.mode_of_payment or pay_date != row.p_posting_date else ' ', row.allocated_amount if last_inv != row.sinv_name or entry != row.payment_entry else .00, # flt(row.grand_total) - flt(row.outstanding_amount) if last_inv != row.sinv_name else .00, # Total Paid total_paid if last_inv != row.sinv_name else .00, total_return if last_inv != row.sinv_name else .00, #Refund row.outstanding_amount if last_inv != row.sinv_name else .00, row.item_code, # Notes row.payment_entry, row.sinv_name if last_inv != row.sinv_name else '', row.checklist, row.status, row.title_status, row.bl, ) ) else: if filters.get('customer_print'): results.append( ( "", # Customer "", # Vim Number "", # Details "", # Total Sale "", # Credit Note "", # Final Sale row.p_posting_date, # Pay Date row.mode_of_payment, # Payment Type row.allocated_amount, # Breakdown row.payment_entry, # Payment Entry row.bl ) ) else: results.append( ( "", # Company "", # Location "", # Stock No. "", #Item Type "", # Customer "", # Vim Number "", # Details # "", # Due Date "", # Inv Date "", # Age "", # Total Sale "", # Credit Note "", # Final Sale # "", # Sale N/ Total # "", # GST # "", # PST row.p_posting_date, # Pay Date row.mode_of_payment, # Payment Type row.allocated_amount, # Breakdown "", # Total Paid "", # Refund "", # Outstanding " ", # Notes row.payment_entry, # Payment Entry "", # Checklist "", # Status. "", # Title Status. # "", # GPrice row.bl ) ) last_inv = row.sinv_name vim = vim_number entry = row.payment_entry pay_date = row.p_posting_date mode = row.mode_of_payment return results def get_formatted_column(label, fieldtype, width): # [label]:[fieldtype/Options]:width parts = ( _(label), fieldtype, cstr(width) ) return ":".join(parts) def get_conditions(filters): """ Return sql conditions ready to use in query NOTE: Value is mandatory if condition_type == value """ company = frappe.get_value("User Permission", { "user":frappe.session.user, "allow":"Company", }, "for_value") conditions = [("Item", "item_type", "!=", "Services")] if filters.get('company'): conditions.append( ("Sales Invoice", "company", "=", filters.get('company')) ) if filters.get('customer'): conditions.append( ("Sales Invoice", "customer", "=", filters.get('customer')) ) if filters.get('payment_status') == "Unpaid Only": conditions.append( ("Sales Invoice", "outstanding_amount", ">", 0) ) if filters.get('payment_status') == "Paid Only": conditions.append( ("Sales Invoice", "outstanding_amount", "=", 0) ) if filters.get('item_code'): conditions.append( ("Sales Invoice Item", "item_code", "=", filters.get('item_code')) ) sql_conditions = [] if not conditions: return sql_conditions for doctype, fieldname, compare, value in conditions: if fieldname == '-': continue if value == "NULL": sql_condition = "`tab{doctype}`.`{fieldname}` {compare} {value}" \ .format(doctype=doctype, fieldname=fieldname, compare=compare, value=value) else: sql_condition = "`tab{doctype}`.`{fieldname}` {compare} '{value}'" \ .format(doctype=doctype, fieldname=fieldname, compare=compare, value=value) sql_conditions.append(sql_condition) # frappe.errprint(conditions) return " And ".join(sql_conditions) def get_fields(filters): """ Return sql fields ready to be used on query """ fields = ( ("Sales Invoice", "company"), ("CONCAT(`tabItem`._default_supplier, ' - ', `tabAddress`.city, ', ', `tabAddress`.state) as location"), ("Sales Invoice Item", "item_code"), ("Item", "vim_number"), ("Item", "make"), ("Item", "model"), ("Item", "item_type"), ("Item", "part_type"), ("Item", "year"), ("Item", "exterior_color"), ("Delivery Checklist", "status", "checklist"), ("Sales Invoice Item", "vim_number", "cont_vim"), ("Sales Invoice Item", "item_name"), ("Sales Invoice", "due_date", "due_date"), ("Sales Invoice", "posting_date", "sinv_date"), ("Sales Invoice", "customer"), ("Sales Invoice", "invoice_type"), ("Sales Invoice", "net_total"), (""" SUM( IF( `tabTax Segment Item`.parent = 'GST', IFNULL(`tabSales Taxes and Charges`.tax_amount, 0), 0 ) ) as gst_total """ ), (""" SUM( IF( `tabTax Segment Item`.parent = 'PST', IFNULL(`tabSales Taxes and Charges`.tax_amount, 0), 0 ) ) as pst_total """ ), ("Sales Invoice", "currency"), ("Sales Invoice", "base_grand_total"), ("Sales Invoice", "grand_total"), ("Sales Invoice", "is_return"), ("Payment Entry", "posting_date", "p_posting_date"), ("""(SELECT SUM(b.grand_total) FROM `tabSales Invoice` as b WHERE b.is_return = 1 and b.docstatus = 1 and b.return_against = `tabSales Invoice`.name ) as credit_note"""), ("Payment Entry", "mode_of_payment"), ("Payment Entry", "payment_type"), ("Payment Entry Reference", "allocated_amount"), ("Sales Invoice", "outstanding_amount"), ("Payment Entry Reference", "parent", "payment_entry"), ("Sales Invoice", "name", "sinv_name"), ("Sales Invoice Item", "gprice"), ("Item", "status"), ("Item", "title_status"), ("Item", "bl"), ) sql_fields = [] for args in fields: sql_field = get_field(args) sql_fields.append(sql_field) # frappe.errprint(", ".join(sql_fields)) return ", ".join(sql_fields) def get_field(args): if len(args) == 2: doctype, fieldname = args alias = fieldname elif len(args) == 3: doctype, fieldname, alias = args else: return args sql_field = "`tab{doctype}`.`{fieldname}` as {alias}" \ .format(doctype=doctype, fieldname=fieldname, alias=alias) return sql_field
2,287
0
92
6469e5d0d5c80ef3183e5f71c4afdb4b3f3f36a4
934
py
Python
setup.py
bertsky/ocrd_vandalize
0cb84fb387d0145d386c2a425f20beee5d355b3d
[ "Apache-2.0" ]
8
2021-12-15T14:45:11.000Z
2022-02-09T16:51:20.000Z
setup.py
bertsky/ocrd_vandalize
0cb84fb387d0145d386c2a425f20beee5d355b3d
[ "Apache-2.0" ]
1
2022-01-14T10:58:27.000Z
2022-01-14T10:58:27.000Z
setup.py
bertsky/ocrd_vandalize
0cb84fb387d0145d386c2a425f20beee5d355b3d
[ "Apache-2.0" ]
2
2022-01-14T11:06:54.000Z
2022-01-21T14:54:10.000Z
# -*- coding: utf-8 -*- import codecs import json from setuptools import setup, find_packages # with codecs.open('README.md', encoding='utf-8') as f: README = f.read() with open('./ocrd-tool.json', 'r') as f: version = json.load(f)['version'] setup( name='ocrd_vandalize', version=version, description='Demo processor to illustrate the OCR-D Pytonn API', long_description=README, long_description_content_type='text/markdown', author='OCR-D', author_email='info@ocr-d.de', url='https://github.com/OCR-D/ocrd_vandalize', license='Apache License 2.0', packages=find_packages(exclude=('tests', 'docs')), include_package_data=True, install_requires=open('requirements.txt').read().split('\n'), package_data={ '': ['*.json', '*.ttf'], }, entry_points={ 'console_scripts': [ 'ocrd-vandalize=ocrd_vandalize.ocrd_cli:cli', ] }, )
26.685714
68
0.638116
# -*- coding: utf-8 -*- import codecs import json from setuptools import setup, find_packages # with codecs.open('README.md', encoding='utf-8') as f: README = f.read() with open('./ocrd-tool.json', 'r') as f: version = json.load(f)['version'] setup( name='ocrd_vandalize', version=version, description='Demo processor to illustrate the OCR-D Pytonn API', long_description=README, long_description_content_type='text/markdown', author='OCR-D', author_email='info@ocr-d.de', url='https://github.com/OCR-D/ocrd_vandalize', license='Apache License 2.0', packages=find_packages(exclude=('tests', 'docs')), include_package_data=True, install_requires=open('requirements.txt').read().split('\n'), package_data={ '': ['*.json', '*.ttf'], }, entry_points={ 'console_scripts': [ 'ocrd-vandalize=ocrd_vandalize.ocrd_cli:cli', ] }, )
0
0
0
77f7cfaaa0a25a3602dcfef15eb55e962868b137
142
py
Python
exercise/test4.py
LeeBeral/python
9f0d360d69ee5245e3ef13a9dc9fc666374587a4
[ "MIT" ]
null
null
null
exercise/test4.py
LeeBeral/python
9f0d360d69ee5245e3ef13a9dc9fc666374587a4
[ "MIT" ]
null
null
null
exercise/test4.py
LeeBeral/python
9f0d360d69ee5245e3ef13a9dc9fc666374587a4
[ "MIT" ]
null
null
null
dic = {'name':'lili','age':12} print(dic) del dic['name'] print(dic) dic2 ={'name':'mam'} print(dic2) dic.update(dic2) print(dic)
12.909091
31
0.584507
dic = {'name':'lili','age':12} print(dic) del dic['name'] print(dic) dic2 ={'name':'mam'} print(dic2) dic.update(dic2) print(dic)
0
0
0
084a7a4364ba109593d9c831baac3d5b551aa8da
3,182
py
Python
hacktheback/rest/forms/serializers/form.py
hackthevalley/hack-the-back
a418f2d2751656fed76d0b8c95c8e2a060525e78
[ "MIT" ]
null
null
null
hacktheback/rest/forms/serializers/form.py
hackthevalley/hack-the-back
a418f2d2751656fed76d0b8c95c8e2a060525e78
[ "MIT" ]
null
null
null
hacktheback/rest/forms/serializers/form.py
hackthevalley/hack-the-back
a418f2d2751656fed76d0b8c95c8e2a060525e78
[ "MIT" ]
null
null
null
from django.db import transaction from rest_framework import serializers from hacktheback.forms.models import Form, Question, QuestionOption
29.738318
79
0.562539
from django.db import transaction from rest_framework import serializers from hacktheback.forms.models import Form, Question, QuestionOption class QuestionOptionSerializer(serializers.ModelSerializer): class Meta: model = QuestionOption exclude = ("question",) def create(self, validated_data): """ Create a new :model: `forms.QuestionOption` object. """ question = self.context["question"] return QuestionOption.objects.create( question=question, **validated_data ) class QuestionSerializer(serializers.ModelSerializer): options = QuestionOptionSerializer( many=True, required=False, read_only=True ) class Meta: model = Question fields = ( "id", "order", "label", "type", "description", "placeholder", "required", "default_answer", "options", ) def to_representation(self, instance): """ Set `options` to return a null value if the type of the instance is not an option type. """ ret = super().to_representation(instance) if instance.type not in Question.OPTION_TYPES: ret["options"] = None return ret def create(self, validated_data): """ Create a new :model: `forms.Question` object. """ form = self.context["form"] return Question.objects.create(form=form, **validated_data) def update(self, instance, validated_data): """ Update a :model: `forms.Question` object. """ with transaction.atomic(): # Save Question object instance.label = validated_data.get("label", instance.label) prev_type = instance.type instance.type = validated_data.get("type", instance.type) instance.description = validated_data.get( "description", instance.description ) instance.placeholder = validated_data.get( "placeholder", instance.placeholder ) instance.required = validated_data.get( "required", instance.required ) instance.default_answer = validated_data.get( "default_answer", instance.default_answer ) instance.save() if ( instance.type in Question.NON_OPTION_TYPES and prev_type in Question.OPTION_TYPES ): # Delete previous options if the question was an option # type but no longer is that type anymore QuestionOption.objects.filter(question=instance).delete() return class FormSerializer(serializers.ModelSerializer): questions = QuestionSerializer(many=True, read_only=True) class Meta: model = Form fields = ( "id", "title", "description", "type", "is_draft", "questions", "start_at", "end_at", "created_at", )
0
2,968
69
e49d30b97a80af7ec73993c80fa023f88465b849
298
py
Python
data/kids/nofz/delta_z_correlated_to_uncorrelated.py
KiDS-WL/Cat_to_Obs_K1000_P1
0de7f79cab150416859ffe58ac2d0f5659aedb5d
[ "MIT" ]
7
2020-11-18T12:58:03.000Z
2021-07-01T08:54:29.000Z
data/kids/nofz/delta_z_correlated_to_uncorrelated.py
KiDS-WL/Cat_to_Obs_K1000_P1
0de7f79cab150416859ffe58ac2d0f5659aedb5d
[ "MIT" ]
null
null
null
data/kids/nofz/delta_z_correlated_to_uncorrelated.py
KiDS-WL/Cat_to_Obs_K1000_P1
0de7f79cab150416859ffe58ac2d0f5659aedb5d
[ "MIT" ]
3
2020-12-09T13:30:22.000Z
2022-03-02T01:40:13.000Z
import numpy as np filename='deltaz.asc' file=open(filename) delta_z=np.loadtxt(file,comments='#') filename='SOM_cov_multiplied.asc' file=open(filename) cov_z=np.loadtxt(file,comments='#') L = np.linalg.cholesky(cov_z) inv_L = np.linalg.inv(L) delta_x = np.dot(inv_L,delta_z) print(delta_x)
16.555556
37
0.744966
import numpy as np filename='deltaz.asc' file=open(filename) delta_z=np.loadtxt(file,comments='#') filename='SOM_cov_multiplied.asc' file=open(filename) cov_z=np.loadtxt(file,comments='#') L = np.linalg.cholesky(cov_z) inv_L = np.linalg.inv(L) delta_x = np.dot(inv_L,delta_z) print(delta_x)
0
0
0
69d6b18ed07e94f12372de95034df57e7fe40895
12,986
py
Python
Main/fase_1.py
DouglasAndC/GAME-COLORANDO-PYGAME
b96cc8df2dcfeb5e8a2ed0abb72c7dfb5bde2a00
[ "MIT" ]
null
null
null
Main/fase_1.py
DouglasAndC/GAME-COLORANDO-PYGAME
b96cc8df2dcfeb5e8a2ed0abb72c7dfb5bde2a00
[ "MIT" ]
null
null
null
Main/fase_1.py
DouglasAndC/GAME-COLORANDO-PYGAME
b96cc8df2dcfeb5e8a2ed0abb72c7dfb5bde2a00
[ "MIT" ]
null
null
null
import pygame from pygame.locals import * from pygame import * import globals import pygame as pg from pygame.mixer import Sound import time pg.init() # definindo cores BLACK = (0, 0, 0) WHITE = (255, 255, 255) BLUE = (0, 0, 255) GREEN = (0, 255, 0) RED = (255, 0, 0) ROXO = (127,0,127) LARANJA = (255, 127, 0) AMARELO = (255,255,0) COR1 = (153, 0, 153) PELE = (251, 230, 226) CorSelecionada = (0, 255, 0) global cor1 cor1 = (0, 0, 0) cont = 1 fase = 0 pygame.init() pygame.mixer.init() fundo = pygame.mixer.music.load(globals.get_path() + '\\Sound\\gameplay.mpeg') click = pygame.mixer.Sound(globals.get_path() + '\\Sound\\click.wav') pygame.mixer.music.play() screen = pygame.display.set_mode((800, 700)) # carregando fonte font = pygame.font.SysFont(None, 55) pygame.display.set_caption('COLORANDO') # preenchendo o fundo com preto screen.fill(PELE) regras() menu() menu_botoes = menu() while True: if(cont == 1): menu() cor1 = primeiro() cont= cont + 1 elif(cont == 2): cor2 = segundo() cont= cont + 1 pygame.display.flip() elif(cont == 3): resultado = misturar(cor1,cor2) decisao = clicarConfirmarOuExcluir() if(decisao==1): if (fase == 0): if(resultado == GREEN): fase = fase + 1 cont = 1 else: cont = 1 elif(fase == 1): if(resultado == LARANJA): fase = 2 cont = 1 else: cont = 1 elif(fase == 2): if(resultado == ROXO): fase = 3 cont = 4 else: cont = 1 else: cont = 1 else: cont = 1 elif(cont == 4): break for event in pygame.event.get(): if event.type == QUIT: pygame.quit() exit() import main
38.306785
110
0.495303
import pygame from pygame.locals import * from pygame import * import globals import pygame as pg from pygame.mixer import Sound import time pg.init() # definindo cores BLACK = (0, 0, 0) WHITE = (255, 255, 255) BLUE = (0, 0, 255) GREEN = (0, 255, 0) RED = (255, 0, 0) ROXO = (127,0,127) LARANJA = (255, 127, 0) AMARELO = (255,255,0) COR1 = (153, 0, 153) PELE = (251, 230, 226) CorSelecionada = (0, 255, 0) global cor1 cor1 = (0, 0, 0) cont = 1 fase = 0 pygame.init() pygame.mixer.init() fundo = pygame.mixer.music.load(globals.get_path() + '\\Sound\\gameplay.mpeg') click = pygame.mixer.Sound(globals.get_path() + '\\Sound\\click.wav') pygame.mixer.music.play() screen = pygame.display.set_mode((800, 700)) # carregando fonte font = pygame.font.SysFont(None, 55) pygame.display.set_caption('COLORANDO') # preenchendo o fundo com preto screen.fill(PELE) def regras(): flag = True while True: if(flag== False): break else: for event in pygame.event.get(): pos = pygame.mouse.get_pos() pressed1,pressed2,pressed3 = pygame.mouse.get_pressed() btn0 = botoesMenu(BLACK,300,500,372/2,149/2) txtFase3 = pygame.image.load(globals.get_path()+'\\View\\fase1\\txtFase1.png').convert_alpha() screen.fill(PELE) novo_txtFase3 = pygame.transform.scale(txtFase3,(int(1363/2),int(541/2))) screen.blit(novo_txtFase3,(60,150)) screen.blit(botao_continuar('btnContinuar'),(300,500)) pygame.display.update() if event.type == QUIT: pygame.quit() exit() elif btn0.collidepoint(pos) and pressed1: click.play() flag = False break def botao_continuar(botao): btn = pygame.image.load(globals.get_path()+'\\View\\corrida\\'+botao+'.png').convert_alpha() novo_botao = pygame.transform.scale(btn,(int(372/2),int(149/2))) return novo_botao def dimensao_botao(botao): btn = pygame.image.load(globals.get_path()+'\\View\\fase1\\'+botao+'.png').convert_alpha() novo_botao = pygame.transform.scale(btn,(int(400),int(1500/2))) return novo_botao def titulo(): titulo = pygame.image.load(globals.get_path()+'\\View\\fase1\\titulo.png').convert_alpha() novo_titulo = pygame.transform.scale(titulo,(int(726/2), int(217/2))) screen.blit(novo_titulo,(210,50)) def torneira(): titulo = pygame.image.load(globals.get_path()+'\\View\\fase1\\torneira.png').convert_alpha() novo_titulo = pygame.transform.scale(titulo,(int(650), int(500))) screen.blit(novo_titulo,(-200,0)) def balde(): titulo = pygame.image.load(globals.get_path()+'\\View\\fase1\\balde.png').convert_alpha() novo_titulo = pygame.transform.scale(titulo,(int(500), int(700))) screen.blit(novo_titulo,(2,0)) def botoesMenu(color,x,y,width,height): return pygame.draw.rect(screen, color, [x, y, width, height]) def instrucao(): titulo = pygame.image.load(globals.get_path()+'\\View\\fase1\\txtCorFormada.png').convert_alpha() screen.blit(titulo,(50,40)) def btnConfirmar(): titulo = pygame.image.load(globals.get_path()+'\\View\\fase1\\btnConfirmar.png').convert_alpha() novo_titulo = pygame.transform.scale(titulo,(int(115), int(215))) screen.blit(novo_titulo,(500,495)) def menu(): btn1 = botoesMenu(BLACK,630,240,40,70)#azul btn2 = botoesMenu(BLACK,630,340,40,70)#amarelo btn3 = botoesMenu(BLACK,630,440,40,70)#vermelho btn4 = botoesMenu(BLACK,730,240,40,70)#verde btn5 = botoesMenu(BLACK,730,340,40,70)#laranja btn6 = botoesMenu(BLACK,730,440,40,70)#roxo btn7 = botoesMenu(BLACK,620,580,60,100)#juntar btn8 = botoesMenu(BLACK,720,560,60,130)#lixo btn9 = botoesMenu(BLACK,515,560,60,120)#confirma screen.fill(PELE) #titulo() instrucao() torneira() balde() #Quadrados que indicarão a cor a ser desenhada #screen.blit(dimensao_botao('quad_verde'),(460,-300)) #screen.blit(dimensao_botao('quad_laranja'),(460,-300)) #screen.blit(dimensao_botao('quad_roxo'),(460,-300)) if(fase ==0): screen.blit(dimensao_botao('quad_verde'),(460,-300)) elif(fase == 1): screen.blit(dimensao_botao('quad_laranja'),(460,-300)) else: screen.blit(dimensao_botao('quad_roxo'),(460,-300)) screen.blit(dimensao_botao('btnAzul'),(450,-100)) screen.blit(dimensao_botao('btnAmarelo'),(450,0)) screen.blit(dimensao_botao('btnVermelho'),(450,100)) if(fase >=1): screen.blit(dimensao_botao('btnVerde'),(550,-100)) if(fase >= 2): screen.blit(dimensao_botao('btnLaranja'),(550,0)) if(fase >= 3): screen.blit(dimensao_botao('btnRoxo'),(550,100)) pygame.display.update() return btn1,btn2,btn3,btn4,btn5,btn6,btn7,btn8,btn9 def derramando1(cor,x, y, widht,height): aux = 1 while(aux < 365): botoesMenu(cor,188,313,60,aux) pygame.display.flip() aux= aux + 1 botoesMenu(cor,x, y, widht,height) pygame.display.flip() def derramando2(cor,x, y, widht,height): aux = 1 while(aux!= 195): botoesMenu(cor,188,313,60,aux) pygame.display.flip() aux= aux + 1 botoesMenu(cor,x, y, widht,height) pygame.display.flip() def primeiro(): while True: for event in pygame.event.get(): pygame.display.update() pos = pygame.mouse.get_pos() pressed1, pressed2, pressed3 = pygame.mouse.get_pressed() if menu_botoes[0].collidepoint(pos) and pressed1: derramando1(BLUE,19, 508, 468, 170) botoesMenu(PELE,188,313,60,195) pygame.display.flip() return BLUE elif menu_botoes[1].collidepoint(pos) and pressed1: derramando1(AMARELO,19, 508, 468, 170) botoesMenu(PELE,188,313,60,195) pygame.display.flip() return AMARELO elif menu_botoes[2].collidepoint(pos) and pressed1: derramando1(RED,19, 508, 468, 170) botoesMenu(PELE,188,313,60,195) pygame.display.flip() return RED elif menu_botoes[3].collidepoint(pos) and pressed1: if(fase>= 1): derramando1(GREEN,19, 508, 468, 170) botoesMenu(PELE,188,313,60,195) pygame.display.flip() return GREEN elif menu_botoes[4].collidepoint(pos) and pressed1: if(fase>= 2): derramando1(LARANJA,19, 508, 468, 170) botoesMenu(PELE,188,313,60,195) pygame.display.flip() return LARANJA elif menu_botoes[5].collidepoint(pos) and pressed1: if(fase>= 3): derramando1(ROXO,19, 508, 468, 170) botoesMenu(PELE,188,313,60,195) pygame.display.flip() return ROXO if event.type == QUIT: pygame.quit() exit() def segundo(): while True: for event in pygame.event.get(): pygame.display.update() pos = pygame.mouse.get_pos() pressed1, pressed2, pressed3 = pygame.mouse.get_pressed() if menu_botoes[0].collidepoint(pos) and pressed1: derramando2(BLUE,19, 373, 468, 170) botoesMenu(PELE,188,313,60,60) pygame.display.flip() return BLUE elif menu_botoes[1].collidepoint(pos) and pressed1: derramando2(AMARELO,19, 373, 468, 170) botoesMenu(PELE,188,313,60,60) pygame.display.flip() return AMARELO elif menu_botoes[2].collidepoint(pos) and pressed1: derramando2(RED,19, 373, 468, 170) botoesMenu(PELE,188,313,60,60) pygame.display.flip() return RED elif menu_botoes[3].collidepoint(pos) and pressed1: if(fase>= 1): derramando2(GREEN,19, 373, 468, 170) botoesMenu(PELE,188,313,60,60) pygame.display.flip() return GREEN elif menu_botoes[4].collidepoint(pos) and pressed1: if(fase>= 2): derramando2(LARANJA,19, 373, 468, 170) botoesMenu(PELE,188,313,60,60) pygame.display.flip() return LARANJA elif menu_botoes[5].collidepoint(pos) and pressed1: if(fase>= 3): derramando2(ROXO,19, 373, 468, 170) botoesMenu(PELE,188,313,60,60) pygame.display.flip() return ROXO if event.type == QUIT: pygame.quit() exit() def misturar(cor1,cor2): screen.blit(dimensao_botao('btnMistura'),(450,250)) while True: for event in pygame.event.get(): pygame.display.update() pos = pygame.mouse.get_pos() pressed1, pressed2, pressed3 = pygame.mouse.get_pressed() if menu_botoes[6].collidepoint(pos) and pressed1: resultado = globals.misturar_cores(cor1,cor2) botoesMenu(resultado,19, 373, 468, 305) botoesMenu(PELE,620,560,70,120) pygame.display.update() return resultado if event.type == QUIT: pygame.quit() exit() def clicarConfirmarOuExcluir(): botoesMenu(PELE,620,560,70,120) pygame.display.update() btnConfirmar() screen.blit(dimensao_botao('btnExclui'),(550,250)) while True: for event in pygame.event.get(): pygame.display.update() pos = pygame.mouse.get_pos() pressed1, pressed2, pressed3 = pygame.mouse.get_pressed() if menu_botoes[7].collidepoint(pos) and pressed1: screen.fill(PELE) menu() return 0 elif menu_botoes[8].collidepoint(pos) and pressed1: screen.fill(PELE) menu() return 1 elif event.type == QUIT: pygame.quit() exit() regras() menu() menu_botoes = menu() while True: if(cont == 1): menu() cor1 = primeiro() cont= cont + 1 elif(cont == 2): cor2 = segundo() cont= cont + 1 pygame.display.flip() elif(cont == 3): resultado = misturar(cor1,cor2) decisao = clicarConfirmarOuExcluir() if(decisao==1): if (fase == 0): if(resultado == GREEN): fase = fase + 1 cont = 1 else: cont = 1 elif(fase == 1): if(resultado == LARANJA): fase = 2 cont = 1 else: cont = 1 elif(fase == 2): if(resultado == ROXO): fase = 3 cont = 4 else: cont = 1 else: cont = 1 else: cont = 1 elif(cont == 4): break for event in pygame.event.get(): if event.type == QUIT: pygame.quit() exit() import main
10,312
0
365
146fddc89ca4117d40b10362d56eec7e35ad4254
2,442
py
Python
rescale_baseline_density.py
sjforeman/RadioFisher
fe25f969de9a700c5697168ba9e0d2645c55ed81
[ "AFL-3.0" ]
3
2020-12-05T11:28:47.000Z
2021-07-09T02:42:21.000Z
rescale_baseline_density.py
sjforeman/RadioFisher
fe25f969de9a700c5697168ba9e0d2645c55ed81
[ "AFL-3.0" ]
null
null
null
rescale_baseline_density.py
sjforeman/RadioFisher
fe25f969de9a700c5697168ba9e0d2645c55ed81
[ "AFL-3.0" ]
2
2021-07-09T02:42:23.000Z
2021-11-30T06:37:47.000Z
#!/usr/bin/python """ Rescale baseline density files, Nring(u), into n(x) = n(u=d/lambda) / lambda^2, which is approx. const. with frequency (and x = u / nu). Phil Bull (2014) """ import numpy as np import pylab as P import scipy.integrate import os, sys try: Ndish = int(sys.argv[1]) infile = sys.argv[2] outfile = sys.argv[3] except: print "Expects 3 arguments: Ndish, infile, outfile" sys.exit(1) def process_baseline_file(fname): """ Process SKA N(u) files and output n(d), which can then be converted into a freq.-dep. n(u). """ # Extract info. about baseline file fname_end = fname.split("/")[-1] tmp = fname_end.split("_") freq = float(tmp[1]) / 1e6 # Freq., MHz dec = float(tmp[2][3:]) # Declination, degrees ts = float(tmp[3].split("sec")[0]) # Single baseline integ. time, in sec if len(tmp) == 6: du = float(tmp[5][2:-4]) # u bin width, ~1/sqrt(fov) else: du = float(tmp[4][2:-4]) # u bin width, ~1/sqrt(fov) # Output information about this datafile print "-"*50 print "Filename:", fname print "-"*50 print "Ndish: ", Ndish print "Freq.: ", freq, "MHz" print "Dec.: ", dec, "deg" print "t_s: ", ts, "sec" print "du: ", du print "-"*50 # Load datafile and convert to density (don't need bin centres; just use edges) u, Nring = np.genfromtxt(fname).T n = Nring / (2.*np.pi * u * du) / (24.*3600. / ts) # Eq. 18 of Mario's notes # Remove leading zeros (or other special values), if any, to ensure # interpolation has a sharp cut at u_min minidx = None; jj = -1 while minidx is None: jj += 1 if (n[jj] != 0.) and (not np.isnan(n[jj])) and (not np.isinf(n[jj])): minidx = jj u = u[minidx:] n = n[minidx:] # Integrate n(u) to find normalisation (should be N_dish^2) norm = scipy.integrate.simps(2.*np.pi*n*u, u) print "n(u) renorm. factor:", 0.5 * Ndish * (Ndish - 1) / norm, "(applied)" # (Renorm factor should be close to 1 if Ndish is correct) n *= 0.5 * Ndish * (Ndish - 1) / norm # Convert to freq.-independent expression, n(x) = n(u) * nu^2, # where nu is in MHz. n_x = n * freq**2. x = u / freq return x, n_x # Process input file x, n_x = process_baseline_file(infile) # Output to disk np.savetxt(outfile, np.column_stack((x, n_x))) print "Done."
30.148148
83
0.581081
#!/usr/bin/python """ Rescale baseline density files, Nring(u), into n(x) = n(u=d/lambda) / lambda^2, which is approx. const. with frequency (and x = u / nu). Phil Bull (2014) """ import numpy as np import pylab as P import scipy.integrate import os, sys try: Ndish = int(sys.argv[1]) infile = sys.argv[2] outfile = sys.argv[3] except: print "Expects 3 arguments: Ndish, infile, outfile" sys.exit(1) def process_baseline_file(fname): """ Process SKA N(u) files and output n(d), which can then be converted into a freq.-dep. n(u). """ # Extract info. about baseline file fname_end = fname.split("/")[-1] tmp = fname_end.split("_") freq = float(tmp[1]) / 1e6 # Freq., MHz dec = float(tmp[2][3:]) # Declination, degrees ts = float(tmp[3].split("sec")[0]) # Single baseline integ. time, in sec if len(tmp) == 6: du = float(tmp[5][2:-4]) # u bin width, ~1/sqrt(fov) else: du = float(tmp[4][2:-4]) # u bin width, ~1/sqrt(fov) # Output information about this datafile print "-"*50 print "Filename:", fname print "-"*50 print "Ndish: ", Ndish print "Freq.: ", freq, "MHz" print "Dec.: ", dec, "deg" print "t_s: ", ts, "sec" print "du: ", du print "-"*50 # Load datafile and convert to density (don't need bin centres; just use edges) u, Nring = np.genfromtxt(fname).T n = Nring / (2.*np.pi * u * du) / (24.*3600. / ts) # Eq. 18 of Mario's notes # Remove leading zeros (or other special values), if any, to ensure # interpolation has a sharp cut at u_min minidx = None; jj = -1 while minidx is None: jj += 1 if (n[jj] != 0.) and (not np.isnan(n[jj])) and (not np.isinf(n[jj])): minidx = jj u = u[minidx:] n = n[minidx:] # Integrate n(u) to find normalisation (should be N_dish^2) norm = scipy.integrate.simps(2.*np.pi*n*u, u) print "n(u) renorm. factor:", 0.5 * Ndish * (Ndish - 1) / norm, "(applied)" # (Renorm factor should be close to 1 if Ndish is correct) n *= 0.5 * Ndish * (Ndish - 1) / norm # Convert to freq.-independent expression, n(x) = n(u) * nu^2, # where nu is in MHz. n_x = n * freq**2. x = u / freq return x, n_x # Process input file x, n_x = process_baseline_file(infile) # Output to disk np.savetxt(outfile, np.column_stack((x, n_x))) print "Done."
0
0
0
8adf03f135b35749475e53a47a588a4b9f8f0a62
1,275
py
Python
lesson26.py
pingstech/Opencv_Examples2
05327af3dbf40e2b8e9f651c8154f45e018518e4
[ "MIT" ]
1
2021-09-05T13:14:19.000Z
2021-09-05T13:14:19.000Z
lesson26.py
pingstech/Opencv_Examples2
05327af3dbf40e2b8e9f651c8154f45e018518e4
[ "MIT" ]
null
null
null
lesson26.py
pingstech/Opencv_Examples2
05327af3dbf40e2b8e9f651c8154f45e018518e4
[ "MIT" ]
null
null
null
import cv2 cap=cv2.VideoCapture(0) ret,frame1=cap.read() ret,frame2=cap.read() print(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) print(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) while (cap.isOpened()): diff=cv2.absdiff(frame1,frame2) diff=doContour(setFrame(diff),frame1) cv2.imshow('Detection',frame1) frame1=frame2 ret,frame2=cap.read() if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows()
30.357143
80
0.682353
import cv2 def setFrame(frame): grayFrame=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) blurFrame=cv2.GaussianBlur(grayFrame,(5,5),0) _,threshFrame=cv2.threshold(blurFrame,20,255,cv2.THRESH_BINARY) dilatedFrame=cv2.dilate(threshFrame,None,iterations=3) return dilatedFrame def doContour(frame,orgFrame,areaSize=1500): contours,_=cv2.findContours(frame,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) font=cv2.FONT_HERSHEY_SIMPLEX for contour in contours: (x,y,w,h)=cv2.boundingRect(contour) if cv2.contourArea(contour)<areaSize: continue cv2.rectangle(orgFrame,(x,y),(x+w,y+h),(0,0,255),2) cv2.putText(orgFrame,"x value :{}".format(x),(20,50),font,1,(0,255,0),1) cv2.putText(orgFrame,"y value :{}".format(y),(20,75),font,1,(0,255,0),1) return frame cap=cv2.VideoCapture(0) ret,frame1=cap.read() ret,frame2=cap.read() print(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) print(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) while (cap.isOpened()): diff=cv2.absdiff(frame1,frame2) diff=doContour(setFrame(diff),frame1) cv2.imshow('Detection',frame1) frame1=frame2 ret,frame2=cap.read() if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows()
785
0
46
6a9b4be7df6137a1ebf46f6a4b6479a4ae5b8614
3,444
py
Python
api/g6trayreturn.py
smu-iot20-g7/beocrescent-dashboard
93776c7cba76e5c57fc2eed8c35584e7541557fe
[ "MIT" ]
null
null
null
api/g6trayreturn.py
smu-iot20-g7/beocrescent-dashboard
93776c7cba76e5c57fc2eed8c35584e7541557fe
[ "MIT" ]
null
null
null
api/g6trayreturn.py
smu-iot20-g7/beocrescent-dashboard
93776c7cba76e5c57fc2eed8c35584e7541557fe
[ "MIT" ]
1
2020-12-05T06:48:25.000Z
2020-12-05T06:48:25.000Z
from flask import Flask, jsonify, request import pymongo from flask_cors import CORS from os import environ from bson.json_util import dumps import json app = Flask(__name__) client = pymongo.MongoClient( "mongodb+srv://iotadmin:iotadminpassword@cluster0.cowqf.mongodb.net/iotTest?retryWrites=true&w=majority&ssl=true&ssl_cert_reqs=CERT_NONE") CORS(app) db = client['iotTest'] positivetrayreturn = db['positivetrayreturn'] stall_distribution = db['stall_distribution'] empty_trayreturn = db['empty_trayreturn'] @app.route("/g6trayreturndistr/<stall_id>/<date_wanted>", methods=['GET']) @app.route("/g6trayclear/<date_wanted>", methods=['GET']) @app.route("/g6total/<stall_id>/<date_wanted>", methods=['GET']) if __name__ == '__main__': app.run(host='0.0.0.0', port=5002, debug=True)
33.764706
142
0.574042
from flask import Flask, jsonify, request import pymongo from flask_cors import CORS from os import environ from bson.json_util import dumps import json app = Flask(__name__) client = pymongo.MongoClient( "mongodb+srv://iotadmin:iotadminpassword@cluster0.cowqf.mongodb.net/iotTest?retryWrites=true&w=majority&ssl=true&ssl_cert_reqs=CERT_NONE") CORS(app) db = client['iotTest'] positivetrayreturn = db['positivetrayreturn'] stall_distribution = db['stall_distribution'] empty_trayreturn = db['empty_trayreturn'] @app.route("/g6trayreturndistr/<stall_id>/<date_wanted>", methods=['GET']) def g6trayreturndistr(stall_id, date_wanted): list_data = {"returns": {'06:00': 0, '07:00': 0, '08:00': 0, '09:00': 0, '10:00': 0, '11:00': 0, '12:00': 0, '13:00': 0, '14:00': 0, '15:00': 0, '16:00': 0, '17:00': 0, '18:00': 0, '19:00': 0, '20:00': 0, "21:00": 0, "22:00": 0, "23:00": 0}, "distr": {'06:00': 0, '07:00': 0, '08:00': 0, '09:00': 0, '10:00': 0, '11:00': 0, '12:00': 0, '13:00': 0, '14:00': 0, '15:00': 0, '16:00': 0, '17:00': 0, '18:00': 0, '19:00': 0, '20:00': 0, "21:00": 0, "22:00": 0, "23:00": 0}} data = positivetrayreturn.find({"stall_id": int(stall_id)}) for x in data: d = str(x["datetime"]) date = d[:10] if date == date_wanted: time = d[11:13] + ":00" counttime = list_data["returns"][time] counttime += 1 list_data["returns"][time] = counttime print(list_data) data2 = stall_distribution.find({"rasp_id": int(stall_id)}) for x in data2: d = str(x["datetime"]) date = d[:10] if date == date_wanted: time = d[11:13] + ":00" counttime = list_data["distr"][time] counttime += 1 list_data["distr"][time] = counttime print(list_data) return json.dumps(list_data), 200 @app.route("/g6trayclear/<date_wanted>", methods=['GET']) def g6trayclear(date_wanted): count = 0 data = empty_trayreturn.find() for x in data: datetime = str(x["datetime"]) d = datetime.replace(",", "-") date = d[:10] if date == date_wanted: count += 1 data = {"Cleared": count} print(data) return json.dumps(data), 200 @app.route("/g6total/<stall_id>/<date_wanted>", methods=['GET']) def g6total(stall_id, date_wanted): total_distr = 0 data = stall_distribution.find({"rasp_id": int(stall_id)}) for x in data: datetime = str(x["datetime"]) d = datetime.replace(",", "-") date = d[:10] if date == date_wanted: total_distr += 1 total_return = 0 data2 = positivetrayreturn.find({"stall_id": int(stall_id)}) for y in data2: datetime = str(y["datetime"]) d = datetime.replace(",", "-") date = d[:10] if date == date_wanted: total_return += 1 clear_count = 0 data3 = empty_trayreturn.find() for y in data3: datetime = str(y["datetime"]) d = datetime.replace(",", "-") date = d[:10] if date == date_wanted: clear_count += 1 not_returned = total_distr - total_return data = {"NotReturned": not_returned , "Returned": total_return, "Cleared": clear_count} print(data) return json.dumps(data), 200 if __name__ == '__main__': app.run(host='0.0.0.0', port=5002, debug=True)
2,578
0
66
374f44188164e9d4772b1935cff59220da10b3cd
4,782
py
Python
calc.py
bryli/AKParser
ebecc471458b54a272134dc0f9b35f5da35a6257
[ "MIT" ]
1
2020-03-01T15:14:18.000Z
2020-03-01T15:14:18.000Z
calc.py
bryli/AKParser
ebecc471458b54a272134dc0f9b35f5da35a6257
[ "MIT" ]
null
null
null
calc.py
bryli/AKParser
ebecc471458b54a272134dc0f9b35f5da35a6257
[ "MIT" ]
null
null
null
import json from collections import Counter ALLSKL = 'allSkillLvlup' # Key for character dictionary to get 2-7 level up mats LVCOST = 'lvlUpCost' MCOSTC = 'levelUpCostCond' # Key for mastery level cost upgrades. MCOST = 'levelUpCost' SKILLS = 'skills' ELITE = 'phases' PROMOTE = 'evolveCost' RARE = 'rarity' ID = 'id' CT = 'count' CHAR_LOC = "chardata.json" FORMULAS = "formulas.json" ITEMNAMES = "itemnames.json" ITEMIDS = "itemids.json" MASTERY = "masterylist.json" NM = 'name' COST = 'costs' if __name__ == '__main__': main()
37.069767
114
0.604559
import json from collections import Counter ALLSKL = 'allSkillLvlup' # Key for character dictionary to get 2-7 level up mats LVCOST = 'lvlUpCost' MCOSTC = 'levelUpCostCond' # Key for mastery level cost upgrades. MCOST = 'levelUpCost' SKILLS = 'skills' ELITE = 'phases' PROMOTE = 'evolveCost' RARE = 'rarity' ID = 'id' CT = 'count' CHAR_LOC = "chardata.json" FORMULAS = "formulas.json" ITEMNAMES = "itemnames.json" ITEMIDS = "itemids.json" MASTERY = "masterylist.json" NM = 'name' COST = 'costs' def main(): try: with open(CHAR_LOC, "r") as charfile: chardata = (json.loads(charfile.read())) with open(FORMULAS, "r") as fmfile: formulas = (json.loads(fmfile.read())) with open(ITEMNAMES, "r") as inmfile: itemnames = (json.loads(inmfile.read())) with open(ITEMIDS, "r") as iidfile: itemids = (json.loads(iidfile.read())) with open(MASTERY, "r") as mstrfile: masterylist = (json.loads(mstrfile.read())) except Exception: return IOError("Failed to read files.") compiled_mats = {} [chardata.pop(char) for char in list(chardata.keys()) if chardata[char][RARE] < 2] for char in chardata.keys(): compiled_mats.update(charCost(char, chardata, formulas, itemnames, itemids, masterylist.get(chardata[char][NM]))) return(compiled_mats) def charCost(char, chardata, formulas, itemnames, itemids, mastery = None, reduce = ['Loxic Kohl', 'Grindstone']): rarity = chardata[char][RARE] if mastery is None: if rarity < 5: mastery = [1, 2] else: mastery = [1, 2, 3] elitemats = eliteCost(char, chardata) skillmats = skillCost(char, chardata, mastery) if reduce is not None: if rarity > 2: elitemats = reduceMaterials(elitemats, formulas, itemnames, reduce) skillmats = reduceMaterials(skillmats, formulas, itemnames, reduce) elitemats = dict((itemids[itemid], count) for (itemid, count) in elitemats.items()) skillmats = dict((itemids[itemid], count) for (itemid, count) in skillmats.items()) # Combines elitemats and skillmats by adding the values corresponding to keys in both sets. totmats = Counter(elitemats) totmats.update(Counter(skillmats)) return {chardata[char][NM]:[mastery, elitemats, skillmats, totmats]} def skillCost(char, chardata, toMaster): # chardata[char] -> char info # chardata[char]['allSkillLvlup'] -> list of list of dictionaries of items for skill level up costs 2-7 # for sklv in chardata[char]['allSkillLvlup']: Unlock info and level up cost for each skill level # for mats in sklv['lvlUpCost']: mats for unlock # mats['id'] id of item # mats['count'] # of item rarity = chardata[char][RARE] skillmats = {} for sklv in chardata[char][ALLSKL]: for mats in sklv[LVCOST]: skillmats[mats[ID]] = mats[CT] if rarity > 2: for skill in toMaster: for sklv in chardata[char][SKILLS][skill - 1][MCOSTC]: for mats in sklv[MCOST]: if mats[ID] in skillmats: skillmats[mats[ID]] += mats[CT] else: skillmats[mats[ID]] = mats[CT] return skillmats def eliteCost(char, chardata): elitemats = {} rarity = chardata[char][RARE] if rarity > 2: for eliteStgNum in range(len(chardata[char][ELITE])): if eliteStgNum > 0: for mats in chardata[char][ELITE][eliteStgNum][PROMOTE]: if mats[ID] in elitemats: elitemats[mats[ID]] += mats[CT] else: elitemats[mats[ID]] = mats[CT] return elitemats else: return None def reduceMaterials(mats, formulas, itemnames, reducemats): toReduce = [] for item in reducemats: toReduce.append(itemnames[item]) result = {item:0 for item in toReduce} for mat in mats.keys(): reduced = reduce({mat:mats[mat]}, formulas, toReduce) for itemid in reduced.keys(): result[itemid] += reduced[itemid] return(result) def reduce(mat, formulas, reducemats): result = {item: 0 for item in reducemats} key = list(mat.keys())[0] if key in result: result[key] += mat[key] return result elif len(formulas[key][COST]) == 0: return result else: for item in formulas[key][COST]: reduced = reduce({item[ID]:item[CT]}, formulas, reducemats) for itemid in reduced.keys(): result[itemid] += reduced[itemid] * mat[key] return result if __name__ == '__main__': main()
4,108
0
138
dcb02e7452a985e2c94a463cfd5bbd8aea8b03f9
583
py
Python
backend/__init__.py
allenai/twentyquestions
48f0de26d2dca963cdae1263245d3b267ae7a771
[ "Apache-2.0" ]
9
2020-07-23T03:36:26.000Z
2022-03-03T15:20:36.000Z
backend/__init__.py
allenai/twentyquestions
48f0de26d2dca963cdae1263245d3b267ae7a771
[ "Apache-2.0" ]
null
null
null
backend/__init__.py
allenai/twentyquestions
48f0de26d2dca963cdae1263245d3b267ae7a771
[ "Apache-2.0" ]
2
2021-12-21T18:36:43.000Z
2022-03-30T07:28:52.000Z
"""A backend for playing twenty questions.""" import logging import flask from backend.views import ( twentyquestions, socketio) logger = logging.getLogger(__name__) app = flask.Flask(__name__) @app.route('/') def root(): """A root page for twentyquestions.""" return ( 'This server is used by the Allen Institute for Artificial' ' Intelligence to crowdsource common sense by playing 20' ' Questions.', 200 ) # register blueprints app.register_blueprint(twentyquestions) # set up the web socket socketio.init_app(app)
16.657143
67
0.682676
"""A backend for playing twenty questions.""" import logging import flask from backend.views import ( twentyquestions, socketio) logger = logging.getLogger(__name__) app = flask.Flask(__name__) @app.route('/') def root(): """A root page for twentyquestions.""" return ( 'This server is used by the Allen Institute for Artificial' ' Intelligence to crowdsource common sense by playing 20' ' Questions.', 200 ) # register blueprints app.register_blueprint(twentyquestions) # set up the web socket socketio.init_app(app)
0
0
0
6f2ae1ff62c113ac8412a10c9d0e89f76b2b9b99
1,665
py
Python
telegram_handler.py
anant-j/API-Toolkit
ced92c711fcb93f96b81a87e57bb4e5dd647224c
[ "CC0-1.0" ]
1
2019-12-27T17:05:52.000Z
2019-12-27T17:05:52.000Z
telegram_handler.py
anant-j/API-Toolkit
ced92c711fcb93f96b81a87e57bb4e5dd647224c
[ "CC0-1.0" ]
2
2021-02-09T03:25:59.000Z
2021-06-02T00:51:13.000Z
telegram_handler.py
anant-j/API-Toolkit
ced92c711fcb93f96b81a87e57bb4e5dd647224c
[ "CC0-1.0" ]
null
null
null
import json import requests import os my_directory = os.path.dirname(os.path.abspath(__file__)) with open(f'{my_directory}/secrets/keys.json') as f: api_keys = json.load(f) TGKEY = api_keys["Telegram"]["Key"] DEVID = api_keys["Telegram"]["DeviceID"] def send_analytics(req, fingerprint): """Sends analytics data to Telegram API Args: req (dict): Hashmap containing request information """ content = f'Someone from {req["city"]} , {req["country_name"]} visited your Website @ {req["Page"]} \nCarrier: {req["org"]} \nOS: {req["Operating System"]} \nBrowser: {req["Browser"]} \nDate-Time: {req["Date & Time"]} \nIP: {req["ip"]}\nFingerprint: {fingerprint}' push(content) def send_form(formData): """Sends Form data to Telegram API Args: formData (dict): Hashmap containing form data """ content = f'Someone sent you a message via contact form.\nName: {formData["name"]}\nEmail: {formData["email"]}\nAbout: {formData["about"]}\nMessage: {formData["message"]}' push(content) def send_performance(name, response_time, allowed): """Sends Performance data to Telegram API Args: name (string): The name of the endpoint that the alert is raised for response_time (float): The average response time for the alert allowed (float): The allowed response time for the service """ content = f'Perfomance Alert\nThe {name} endpoint took an average of : {response_time} to compute \n while the allowed time is : {allowed}' push(content)
36.195652
268
0.681081
import json import requests import os my_directory = os.path.dirname(os.path.abspath(__file__)) with open(f'{my_directory}/secrets/keys.json') as f: api_keys = json.load(f) TGKEY = api_keys["Telegram"]["Key"] DEVID = api_keys["Telegram"]["DeviceID"] def send_analytics(req, fingerprint): """Sends analytics data to Telegram API Args: req (dict): Hashmap containing request information """ content = f'Someone from {req["city"]} , {req["country_name"]} visited your Website @ {req["Page"]} \nCarrier: {req["org"]} \nOS: {req["Operating System"]} \nBrowser: {req["Browser"]} \nDate-Time: {req["Date & Time"]} \nIP: {req["ip"]}\nFingerprint: {fingerprint}' push(content) def send_form(formData): """Sends Form data to Telegram API Args: formData (dict): Hashmap containing form data """ content = f'Someone sent you a message via contact form.\nName: {formData["name"]}\nEmail: {formData["email"]}\nAbout: {formData["about"]}\nMessage: {formData["message"]}' push(content) def send_performance(name, response_time, allowed): """Sends Performance data to Telegram API Args: name (string): The name of the endpoint that the alert is raised for response_time (float): The average response time for the alert allowed (float): The allowed response time for the service """ content = f'Perfomance Alert\nThe {name} endpoint took an average of : {response_time} to compute \n while the allowed time is : {allowed}' push(content) def push(content): url = f'https://api.telegram.org/{TGKEY}/sendMessage?text={content}&chat_id={DEVID}' requests.post(url)
109
0
23
c46beeec7b11c4abe6e2db62dfaeed8601291fe1
73,322
py
Python
topobank/manager/views.py
ComputationalMechanics/TopoBank
3e598d4b98cbffa43764e335f026efcbe7580c8a
[ "MIT" ]
1
2020-06-04T23:18:53.000Z
2020-06-04T23:18:53.000Z
topobank/manager/views.py
ComputationalMechanics/TopoBank
3e598d4b98cbffa43764e335f026efcbe7580c8a
[ "MIT" ]
168
2020-06-02T14:46:45.000Z
2021-03-19T12:11:07.000Z
topobank/manager/views.py
ComputationalMechanics/TopoBank
3e598d4b98cbffa43764e335f026efcbe7580c8a
[ "MIT" ]
null
null
null
import datetime import logging import os.path import traceback from io import BytesIO import django_tables2 as tables import numpy as np from bokeh.embed import components from bokeh.models import DataRange1d, LinearColorMapper, ColorBar, LabelSet, FuncTickFormatter, TapTool, OpenURL from bokeh.plotting import figure, ColumnDataSource from django.conf import settings from django.contrib.auth.mixins import UserPassesTestMixin from django.core.exceptions import PermissionDenied from django.core.files import File from django.core.files.storage import FileSystemStorage from django.core.files.storage import default_storage from django.db.models import Q from django.db import transaction from django.http import HttpResponse, Http404 from django.shortcuts import redirect, render from django.urls import reverse, reverse_lazy from django.utils.decorators import method_decorator from django.utils.safestring import mark_safe from django.views.generic import DetailView, UpdateView, CreateView, DeleteView, TemplateView, ListView, FormView from django.views.generic.edit import FormMixin from django_tables2 import RequestConfig from django.contrib.staticfiles.storage import staticfiles_storage from formtools.wizard.views import SessionWizardView from guardian.decorators import permission_required_or_403 from guardian.shortcuts import get_users_with_perms, get_objects_for_user, get_anonymous_user from notifications.signals import notify from rest_framework.decorators import api_view from rest_framework.generics import ListAPIView, RetrieveAPIView from rest_framework.pagination import PageNumberPagination from rest_framework.response import Response from rest_framework.renderers import JSONRenderer from rest_framework.utils.urls import remove_query_param, replace_query_param from trackstats.models import Metric, Period from .forms import TopographyFileUploadForm, TopographyMetaDataForm, TopographyWizardUnitsForm, DEFAULT_LICENSE from .forms import TopographyForm, SurfaceForm, SurfaceShareForm, SurfacePublishForm from .models import Topography, Surface, TagModel, \ NewPublicationTooFastException, LoadTopographyException, PlotTopographyException from .serializers import SurfaceSerializer, TagSerializer from .utils import selected_instances, bandwidths_data, get_topography_reader, tags_for_user, get_reader_infos, \ mailto_link_for_reporting_an_error, current_selection_as_basket_items, filtered_surfaces, \ filtered_topographies, get_search_term, get_category, get_sharing_status, get_tree_mode, \ get_permission_table_data from ..usage_stats.utils import increase_statistics_by_date, increase_statistics_by_date_and_object from ..users.models import User from ..users.utils import get_default_group from ..publication.models import Publication, MAX_LEN_AUTHORS_FIELD from .containers import write_surface_container from ..taskapp.tasks import renew_squeezed_datafile, renew_topography_thumbnail, renew_analyses_related_to_topography # create dicts with labels and option values for Select tab CATEGORY_FILTER_CHOICES = {'all': 'All categories', **{cc[0]: cc[1] + " only" for cc in Surface.CATEGORY_CHOICES}} SHARING_STATUS_FILTER_CHOICES = { 'all': 'All accessible surfaces', 'own': 'Only own surfaces', 'shared': 'Only surfaces shared with you', 'published': 'Only surfaces published by anyone', } TREE_MODE_CHOICES = ['surface list', 'tag tree'] MAX_PAGE_SIZE = 100 DEFAULT_PAGE_SIZE = 10 DEFAULT_SELECT_TAB_STATE = { 'search_term': '', # empty string means: no search 'category': 'all', 'sharing_status': 'all', 'tree_mode': 'surface list', 'page_size': 10, 'current_page': 1, # all these values are the default if no filter has been applied # and the page is loaded the first time } MEASUREMENT_TIME_INFO_FIELD = 'acquisition_time' _log = logging.getLogger(__name__) surface_view_permission_required = method_decorator( permission_required_or_403('manager.view_surface', ('manager.Surface', 'pk', 'pk')) # translates to: # # In order to access, a specific permission is required. This permission # is 'view_surface' for a specific surface. Which surface? This is calculated # from view argument 'pk' (the last element in tuple), which is used to get a # 'manager.Surface' instance (first element in tuple) with field 'pk' with same value as # last element in tuple (the view argument 'pk'). # # Or in pseudocode: # # s = Surface.objects.get(pk=view.kwargs['pk']) # assert request.user.has_perm('view_surface', s) ) surface_update_permission_required = method_decorator( permission_required_or_403('manager.change_surface', ('manager.Surface', 'pk', 'pk')) ) surface_delete_permission_required = method_decorator( permission_required_or_403('manager.delete_surface', ('manager.Surface', 'pk', 'pk')) ) surface_share_permission_required = method_decorator( permission_required_or_403('manager.share_surface', ('manager.Surface', 'pk', 'pk')) ) surface_publish_permission_required = method_decorator( permission_required_or_403('manager.publish_surface', ('manager.Surface', 'pk', 'pk')) ) # # Using a wizard because we need intermediate calculations # # There are 3 forms, used in 3 steps (0,1, then 2): # # 0: loading of the topography file # 1: choosing the data source, add measurement date and a description # 2: adding physical size and units (for data which is not available in the file, for 1D or 2D) # # Maybe an alternative would be to use AJAX calls as described here (under "GET"): # # https://sixfeetup.com/blog/making-your-django-templates-ajax-y # def topography_plot(request, pk): """Render an HTML snippet with topography plot""" try: pk = int(pk) topo = Topography.objects.get(pk=pk) assert request.user.has_perm('view_surface', topo.surface) except (ValueError, Topography.DoesNotExist, AssertionError): raise PermissionDenied() # This should be shown independent of whether the surface exists errors = [] # list of dicts with keys 'message' and 'link' context = {} plotted = False try: plot = topo.get_plot() plotted = True except LoadTopographyException as exc: err_message = "Topography '{}' (id: {}) cannot be loaded unexpectedly.".format( topo.name, topo.id) _log.error(err_message) link = mailto_link_for_reporting_an_error(f"Failure loading topography (id: {topo.id})", "Plotting measurement", err_message, traceback.format_exc()) errors.append(dict(message=err_message, link=link)) except PlotTopographyException as exc: err_message = "Topography '{}' (id: {}) cannot be plotted.".format(topo.name, topo.id) _log.error(err_message) link = mailto_link_for_reporting_an_error(f"Failure plotting measurement (id: {topo.id})", "Plotting measurement", err_message, traceback.format_exc()) errors.append(dict(message=err_message, link=link)) if plotted: script, div = components(plot) context['image_plot_script'] = script context['image_plot_div'] = div context['errors'] = errors return render(request, 'manager/topography_plot.html', context=context) def download_surface(request, surface_id): """Returns a file comprised from topographies contained in a surface. :param request: :param surface_id: surface id :return: """ # # Check existence and permissions for given surface # try: surface = Surface.objects.get(id=surface_id) except Surface.DoesNotExist: raise PermissionDenied() if not request.user.has_perm('view_surface', surface): raise PermissionDenied() content_data = None # # If the surface has been published, there might be a container file already. # If yes: # Is there already a container? # Then it instead of creating a new container.from # If no, save the container in the publication later. # If no: create a container for this surface on the fly # renew_publication_container = False if surface.is_published: pub = surface.publication # noinspection PyBroadException try: with pub.container.open() as cf: content_data = cf.read() _log.debug(f"Read container for published surface {pub.short_url} from storage.") except Exception: # not interested here, why it fails renew_publication_container = True if content_data is None: container_bytes = BytesIO() _log.info(f"Preparing container of surface id={surface_id} for download..") write_surface_container(container_bytes, [surface], request=request) content_data = container_bytes.getvalue() if renew_publication_container: try: container_bytes.seek(0) _log.info(f"Saving container for publication with URL {pub.short_url} to storage for later..") pub.container.save(pub.container_storage_path, container_bytes) except (OSError, BlockingIOError) as exc: _log.error(f"Cannot save container for publication {pub.short_url} to storage. " f"Reason: {exc}") # Prepare response object. response = HttpResponse(content_data, content_type='application/x-zip-compressed') response['Content-Disposition'] = 'attachment; filename="{}"'.format('surface.zip') increase_statistics_by_date_and_object(Metric.objects.SURFACE_DOWNLOAD_COUNT, period=Period.DAY, obj=surface) return response def download_selection_as_surfaces(request): """Returns a file comprised from surfaces related to the selection. :param request: current request :return: """ from .utils import current_selection_as_surface_list surfaces = current_selection_as_surface_list(request) container_bytes = BytesIO() write_surface_container(container_bytes, surfaces, request=request) # Prepare response object. response = HttpResponse(container_bytes.getvalue(), content_type='application/x-zip-compressed') response['Content-Disposition'] = 'attachment; filename="{}"'.format('surface.zip') # increase download count for each surface for surf in surfaces: increase_statistics_by_date_and_object(Metric.objects.SURFACE_DOWNLOAD_COUNT, period=Period.DAY, obj=surf) return response ####################################################################################### # Views for REST interface ####################################################################################### class TagTreeView(ListAPIView): """ Generate tree of tags with surfaces and topographies underneath. """ serializer_class = TagSerializer pagination_class = SurfaceSearchPaginator class SurfaceListView(ListAPIView): """ List all surfaces with topographies underneath. """ serializer_class = SurfaceSerializer pagination_class = SurfaceSearchPaginator def set_surface_select_status(request, pk, select_status): """Marks the given surface as 'selected' in session or checks this. :param request: request :param pk: primary key of the surface :param select_status: True if surface should be selected, False if it should be unselected :return: JSON Response The response returns the current selection as suitable for the basket. """ try: pk = int(pk) surface = Surface.objects.get(pk=pk) assert request.user.has_perm('view_surface', surface) except (ValueError, Surface.DoesNotExist, AssertionError): raise PermissionDenied() # This should be shown independent of whether the surface exists surface_key = _surface_key(pk) selection = _selection_set(request) is_selected = surface_key in selection if request.method == 'POST': if select_status: # surface should be selected selection.add(surface_key) elif is_selected: selection.remove(surface_key) request.session['selection'] = list(selection) data = current_selection_as_basket_items(request) return Response(data) @api_view(['POST']) def select_surface(request, pk): """Marks the given surface as 'selected' in session. :param request: request :param pk: primary key of the surface :return: JSON Response The response returns the current selection as suitable for the basket. """ return set_surface_select_status(request, pk, True) @api_view(['POST']) def unselect_surface(request, pk): """Marks the given surface as 'unselected' in session. :param request: request :param pk: primary key of the surface :return: JSON Response The response returns the current selection as suitable for the basket. """ return set_surface_select_status(request, pk, False) def set_topography_select_status(request, pk, select_status): """Marks the given topography as 'selected' or 'unselected' in session. :param request: request :param pk: primary key of the surface :param select_status: True or False, True means "mark as selected", False means "mark as unselected" :return: JSON Response The response returns the current selection as suitable for the basket. """ try: pk = int(pk) topo = Topography.objects.get(pk=pk) assert request.user.has_perm('view_surface', topo.surface) except (ValueError, Topography.DoesNotExist, AssertionError): raise PermissionDenied() # This should be shown independent of whether the surface exists topography_key = _topography_key(pk) selection = _selection_set(request) is_selected = topography_key in selection if request.method == 'POST': if select_status: # topography should be selected selection.add(topography_key) elif is_selected: selection.remove(topography_key) request.session['selection'] = list(selection) data = current_selection_as_basket_items(request) return Response(data) @api_view(['POST']) def select_topography(request, pk): """Marks the given topography as 'selected' in session. :param request: request :param pk: primary key of the surface :return: JSON Response The response returns the current selection as suitable for the basket. """ return set_topography_select_status(request, pk, True) @api_view(['POST']) def unselect_topography(request, pk): """Marks the given topography as 'selected' in session. :param request: request :param pk: primary key of the surface :return: JSON Response The response returns the current selection as suitable for the basket. """ return set_topography_select_status(request, pk, False) def set_tag_select_status(request, pk, select_status): """Marks the given tag as 'selected' in session or checks this. :param request: request :param pk: primary key of the tag :param select_status: True if tag should be selected, False if it should be unselected :return: JSON Response The response returns the current selection as suitable for the basket. """ try: pk = int(pk) tag = TagModel.objects.get(pk=pk) except ValueError: raise PermissionDenied() if not tag in tags_for_user(request.user): raise PermissionDenied() tag_key = _tag_key(pk) selection = _selection_set(request) is_selected = tag_key in selection if request.method == 'POST': if select_status: # tag should be selected selection.add(tag_key) elif is_selected: selection.remove(tag_key) request.session['selection'] = list(selection) data = current_selection_as_basket_items(request) return Response(data) @api_view(['POST']) def select_tag(request, pk): """Marks the given tag as 'selected' in session. :param request: request :param pk: primary key of the tag :return: JSON Response The response returns the current selection as suitable for the basket. """ return set_tag_select_status(request, pk, True) @api_view(['POST']) def unselect_tag(request, pk): """Marks the given tag as 'unselected' in session. :param request: request :param pk: primary key of the tag :return: JSON Response The response returns the current selection as suitable for the basket. """ return set_tag_select_status(request, pk, False) @api_view(['POST']) def unselect_all(request): """Removes all selections from session. :param request: request :return: empty list as JSON Response """ request.session['selection'] = [] return Response([]) def thumbnail(request, pk): """Returns image data for a topography thumbail Parameters ---------- request Returns ------- HTML Response with image data """ try: pk = int(pk) except ValueError: raise Http404() try: topo = Topography.objects.get(pk=pk) except Topography.DoesNotExist: raise Http404() if not request.user.has_perm('view_surface', topo.surface): raise PermissionDenied() # okay, we have a valid topography and the user is allowed to see it image = topo.thumbnail response = HttpResponse(content_type="image/png") try: response.write(image.file.read()) except Exception as exc: _log.warning("Cannot load thumbnail for topography %d. Reason: %s", topo.id, exc) # return some default image so the client gets sth in any case with staticfiles_storage.open('images/thumbnail_unavailable.png', mode='rb') as img_file: response.write(img_file.read()) return response
37.485685
122
0.610526
import datetime import logging import os.path import traceback from io import BytesIO import django_tables2 as tables import numpy as np from bokeh.embed import components from bokeh.models import DataRange1d, LinearColorMapper, ColorBar, LabelSet, FuncTickFormatter, TapTool, OpenURL from bokeh.plotting import figure, ColumnDataSource from django.conf import settings from django.contrib.auth.mixins import UserPassesTestMixin from django.core.exceptions import PermissionDenied from django.core.files import File from django.core.files.storage import FileSystemStorage from django.core.files.storage import default_storage from django.db.models import Q from django.db import transaction from django.http import HttpResponse, Http404 from django.shortcuts import redirect, render from django.urls import reverse, reverse_lazy from django.utils.decorators import method_decorator from django.utils.safestring import mark_safe from django.views.generic import DetailView, UpdateView, CreateView, DeleteView, TemplateView, ListView, FormView from django.views.generic.edit import FormMixin from django_tables2 import RequestConfig from django.contrib.staticfiles.storage import staticfiles_storage from formtools.wizard.views import SessionWizardView from guardian.decorators import permission_required_or_403 from guardian.shortcuts import get_users_with_perms, get_objects_for_user, get_anonymous_user from notifications.signals import notify from rest_framework.decorators import api_view from rest_framework.generics import ListAPIView, RetrieveAPIView from rest_framework.pagination import PageNumberPagination from rest_framework.response import Response from rest_framework.renderers import JSONRenderer from rest_framework.utils.urls import remove_query_param, replace_query_param from trackstats.models import Metric, Period from .forms import TopographyFileUploadForm, TopographyMetaDataForm, TopographyWizardUnitsForm, DEFAULT_LICENSE from .forms import TopographyForm, SurfaceForm, SurfaceShareForm, SurfacePublishForm from .models import Topography, Surface, TagModel, \ NewPublicationTooFastException, LoadTopographyException, PlotTopographyException from .serializers import SurfaceSerializer, TagSerializer from .utils import selected_instances, bandwidths_data, get_topography_reader, tags_for_user, get_reader_infos, \ mailto_link_for_reporting_an_error, current_selection_as_basket_items, filtered_surfaces, \ filtered_topographies, get_search_term, get_category, get_sharing_status, get_tree_mode, \ get_permission_table_data from ..usage_stats.utils import increase_statistics_by_date, increase_statistics_by_date_and_object from ..users.models import User from ..users.utils import get_default_group from ..publication.models import Publication, MAX_LEN_AUTHORS_FIELD from .containers import write_surface_container from ..taskapp.tasks import renew_squeezed_datafile, renew_topography_thumbnail, renew_analyses_related_to_topography # create dicts with labels and option values for Select tab CATEGORY_FILTER_CHOICES = {'all': 'All categories', **{cc[0]: cc[1] + " only" for cc in Surface.CATEGORY_CHOICES}} SHARING_STATUS_FILTER_CHOICES = { 'all': 'All accessible surfaces', 'own': 'Only own surfaces', 'shared': 'Only surfaces shared with you', 'published': 'Only surfaces published by anyone', } TREE_MODE_CHOICES = ['surface list', 'tag tree'] MAX_PAGE_SIZE = 100 DEFAULT_PAGE_SIZE = 10 DEFAULT_SELECT_TAB_STATE = { 'search_term': '', # empty string means: no search 'category': 'all', 'sharing_status': 'all', 'tree_mode': 'surface list', 'page_size': 10, 'current_page': 1, # all these values are the default if no filter has been applied # and the page is loaded the first time } MEASUREMENT_TIME_INFO_FIELD = 'acquisition_time' _log = logging.getLogger(__name__) surface_view_permission_required = method_decorator( permission_required_or_403('manager.view_surface', ('manager.Surface', 'pk', 'pk')) # translates to: # # In order to access, a specific permission is required. This permission # is 'view_surface' for a specific surface. Which surface? This is calculated # from view argument 'pk' (the last element in tuple), which is used to get a # 'manager.Surface' instance (first element in tuple) with field 'pk' with same value as # last element in tuple (the view argument 'pk'). # # Or in pseudocode: # # s = Surface.objects.get(pk=view.kwargs['pk']) # assert request.user.has_perm('view_surface', s) ) surface_update_permission_required = method_decorator( permission_required_or_403('manager.change_surface', ('manager.Surface', 'pk', 'pk')) ) surface_delete_permission_required = method_decorator( permission_required_or_403('manager.delete_surface', ('manager.Surface', 'pk', 'pk')) ) surface_share_permission_required = method_decorator( permission_required_or_403('manager.share_surface', ('manager.Surface', 'pk', 'pk')) ) surface_publish_permission_required = method_decorator( permission_required_or_403('manager.publish_surface', ('manager.Surface', 'pk', 'pk')) ) class TopographyPermissionMixin(UserPassesTestMixin): redirect_field_name = None def has_surface_permissions(self, perms): if 'pk' not in self.kwargs: return True try: topo = Topography.objects.get(pk=self.kwargs['pk']) except Topography.DoesNotExist: raise Http404() return all(self.request.user.has_perm(perm, topo.surface) for perm in perms) def test_func(self): return NotImplementedError() class TopographyViewPermissionMixin(TopographyPermissionMixin): def test_func(self): return self.has_surface_permissions(['view_surface']) class TopographyUpdatePermissionMixin(TopographyPermissionMixin): def test_func(self): return self.has_surface_permissions(['view_surface', 'change_surface']) class ORCIDUserRequiredMixin(UserPassesTestMixin): def test_func(self): return not self.request.user.is_anonymous # # Using a wizard because we need intermediate calculations # # There are 3 forms, used in 3 steps (0,1, then 2): # # 0: loading of the topography file # 1: choosing the data source, add measurement date and a description # 2: adding physical size and units (for data which is not available in the file, for 1D or 2D) # # Maybe an alternative would be to use AJAX calls as described here (under "GET"): # # https://sixfeetup.com/blog/making-your-django-templates-ajax-y # class TopographyCreateWizard(ORCIDUserRequiredMixin, SessionWizardView): form_list = [TopographyFileUploadForm, TopographyMetaDataForm, TopographyWizardUnitsForm] template_name = 'manager/topography_wizard.html' file_storage = FileSystemStorage(location=os.path.join(settings.MEDIA_ROOT, 'topographies/wizard')) def get_form_initial(self, step): initial = {} if step in ['upload']: # # Pass surface in order to # - have it later in done() method (for upload) # # make sure that the surface exists and belongs to the current user try: surface = Surface.objects.get(id=int(self.kwargs['surface_id'])) except Surface.DoesNotExist: raise PermissionDenied() if not self.request.user.has_perm('change_surface', surface): raise PermissionDenied() initial['surface'] = surface if step in ['metadata', 'units']: # provide datafile attribute from first step step0_data = self.get_cleaned_data_for_step('upload') datafile = step0_data['datafile'] channel_infos = step0_data['channel_infos'] if step == 'metadata': initial['name'] = os.path.basename(datafile.name) # the original file name # Use the latest data available on all channels as initial measurement date, if any - see GH #433 measurement_dates = [] for ch in channel_infos: try: measurement_time_str = ch.info[MEASUREMENT_TIME_INFO_FIELD] measurement_time = datetime.datetime.strptime(measurement_time_str, '%Y-%m-%d %H:%M:%S') measurement_dates.append(measurement_time.date()) # timezone is not known an not taken into account except KeyError: # measurement time not available in channel pass except ValueError as exc: _log.info(f'Found measurement timestamp in file {datafile.name}, but could not parse: {exc}') initial['measurement_date'] = max(measurement_dates, default=None) if step in ['units']: step1_data = self.get_cleaned_data_for_step('metadata') or {'data_source': 0} # in case the form doesn't validate, the first data source is chosen, workaround for GH 691 channel = int(step1_data['data_source']) channel_info = channel_infos[channel] # # Set initial size # has_2_dim = channel_info.dim == 2 physical_sizes = channel_info.physical_sizes physical_sizes_is_None = (physical_sizes is None) or (physical_sizes == (None,)) \ or (physical_sizes == (None, None)) # workaround for GH 299 in PyCo and GH 446 in TopoBank if physical_sizes_is_None: initial_size_x, initial_size_y = None, None # both database fields are always set, also for 1D topographies elif has_2_dim: initial_size_x, initial_size_y = physical_sizes else: initial_size_x, = physical_sizes # size is always a tuple initial_size_y = None # needed for database field initial['size_x'] = initial_size_x initial['size_y'] = initial_size_y initial['size_editable'] = physical_sizes_is_None initial['is_periodic'] = False # so far, this is not returned by the readers # # Set unit # initial['unit'] = channel_info.unit initial['unit_editable'] = initial['unit'] is None # # Set initial height scale factor # height_scale_factor_missing = channel_info.height_scale_factor is None # missing in file initial['height_scale_editable'] = height_scale_factor_missing initial['height_scale'] = 1 if height_scale_factor_missing else channel_info.height_scale_factor # # Set initial detrend mode # initial['detrend_mode'] = 'center' # # Set resolution (only for having the data later in the done method) # # TODO Can this be passed to done() differently? Creating the reader again later e.g.? # if has_2_dim: initial['resolution_x'], initial['resolution_y'] = channel_info.nb_grid_pts else: initial['resolution_x'], = channel_info.nb_grid_pts initial['resolution_y'] = None return initial def get_form_kwargs(self, step=None): kwargs = super().get_form_kwargs(step) if step in ['metadata', 'units']: # provide datafile attribute and reader from first step step0_data = self.get_cleaned_data_for_step('upload') channel_infos = step0_data['channel_infos'] if step == 'metadata': def clean_channel_name(s): """Restrict data shown in the dropdown for the channel name. :param s: channel name as found in the file :return: string without NULL characters, 100 chars maximum """ if s is None: return "(unknown)" return s.strip('\0')[:100] # # Set data source choices based on file contents # kwargs['data_source_choices'] = [(k, clean_channel_name(channel_info.name)) for k, channel_info in enumerate(channel_infos) if not (('unit' in channel_info.info) and isinstance(channel_info.info['unit'], tuple))] # # Set surface in order to check for duplicate topography names # kwargs['surface'] = step0_data['surface'] kwargs['autocomplete_tags'] = tags_for_user(self.request.user) if step in ['units']: step1_data = self.get_cleaned_data_for_step('metadata') or {'data_source': 0} # in case the form doesn't validate, the first data source is chosen, workaround for GH 691 # TODO: why can this happen? handle differently? channel = int(step1_data['data_source']) channel_info = channel_infos[channel] has_2_dim = channel_info.dim == 2 no_sizes_given = channel_info.physical_sizes is None # only allow periodic topographies in case of 2 dimension kwargs['allow_periodic'] = has_2_dim and no_sizes_given # TODO simplify in 'no_sizes_given'? kwargs['has_size_y'] = has_2_dim # TODO find common term, now we have 'has_size_y' and 'has_2_dim' return kwargs def get_context_data(self, form, **kwargs): context = super().get_context_data(form, **kwargs) surface = Surface.objects.get(id=int(self.kwargs['surface_id'])) context['surface'] = surface redirect_in_get = self.request.GET.get("redirect") redirect_in_post = self.request.POST.get("redirect") if redirect_in_get: context.update({'cancel_action': redirect_in_get}) elif redirect_in_post: context.update({'cancel_action': redirect_in_post}) # # We want to display information about readers directly on upload page # if self.steps.current == "upload": context['reader_infos'] = get_reader_infos() # # Add context needed for tabs # context['extra_tabs'] = [ { 'title': f"{surface}", 'icon': "gem", 'icon_style_prefix': 'far', 'href': reverse('manager:surface-detail', kwargs=dict(pk=surface.pk)), 'active': False, 'tooltip': f"Properties of surface '{surface.label}'" }, { 'title': f"Add topography", 'icon': "plus-square", 'icon_style_prefix': 'far', 'href': self.request.path, 'active': True, 'tooltip': f"Adding a topography to surface '{surface.label}'" } ] return context def done(self, form_list, **kwargs): """Finally use the form data when after finishing the wizard. :param form_list: list of forms :param kwargs: :return: HTTPResponse """ # # collect all data from forms # d = dict((k, v) for form in form_list for k, v in form.cleaned_data.items()) # # Check whether given surface can be altered by this user # surface = d['surface'] if not self.request.user.has_perm('change_surface', surface): raise PermissionDenied() # # move file to the permanent storage (wizard's files will be deleted) # new_path = os.path.join(self.request.user.get_media_path(), os.path.basename(d['datafile'].name)) with d['datafile'].open(mode='rb') as datafile: d['datafile'] = default_storage.save(new_path, File(datafile)) # # Set the topography's creator to the current user uploading the file # d['creator'] = self.request.user # # Remove helper data # del d['channel_infos'] del d['resolution_value'] del d['resolution_unit'] del d['tip_radius_value'] del d['tip_radius_unit'] # # create topography in database # instance = Topography(**d) instance.save() # we save once so the member variables like "data_source" # have the correct type for the next step # try to load topography once in order to # check whether it can be loaded - we don't want a corrupt # topography file in the system: topo = Topography.objects.get(id=instance.id) try: # While loading we're also saving a squeezed form, so it # can be loaded faster the next time topo.renew_squeezed_datafile() except Exception as exc: _log.warning("Cannot read topography from file '{}', exception: {}".format( d['datafile'], str(exc) )) _log.warning("Topography {} was created, but will be deleted now.".format(topo.id)) topo.delete() # # Redirect to an error page # return redirect('manager:topography-corrupted', surface_id=surface.id) # # Ok, we can work with this data. # Trigger some calculations in background. # transaction.on_commit(lambda: renew_topography_thumbnail.delay(topo.id)) transaction.on_commit(lambda: renew_analyses_related_to_topography.delay(topo.id)) # # Notify other others with access to the topography # other_users = get_users_with_perms(topo.surface).filter(~Q(id=self.request.user.id)) for u in other_users: notify.send(sender=self.request.user, verb='create', target=topo, recipient=u, description=f"User '{self.request.user.name}' has created the topography '{topo.name}' " + \ f"in surface '{topo.surface.name}'.", href=reverse('manager:topography-detail', kwargs=dict(pk=topo.pk))) # # The topography could be correctly loaded and we show a page with details # return redirect('manager:topography-detail', pk=topo.pk) class CorruptedTopographyView(TemplateView): template_name = "manager/topography_corrupted.html" def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) surface = Surface.objects.get(id=kwargs['surface_id']) context['surface'] = surface # # Add context needed for tabs # context['extra_tabs'] = [ { 'title': f"{surface}", 'icon': "gem", 'icon_style_prefix': 'far', 'href': reverse('manager:surface-detail', kwargs=dict(pk=surface.pk)), 'active': False, 'tooltip': f"Properties of surface '{surface.label}'" }, { 'title': f"Corrupted File", 'icon': "flash", 'href': self.request.path, 'active': True, 'tooltip': f"Failure while uploading a new file" } ] return context class TopographyUpdateView(TopographyUpdatePermissionMixin, UpdateView): model = Topography form_class = TopographyForm def get_form_kwargs(self): kwargs = super().get_form_kwargs() topo = self.object kwargs['has_size_y'] = topo.size_y is not None kwargs['autocomplete_tags'] = tags_for_user(self.request.user) toporeader = get_topography_reader(topo.datafile, format=topo.datafile_format) channel_info = toporeader.channels[topo.data_source] has_2_dim = channel_info.dim == 2 no_sizes_given = channel_info.physical_sizes is None kwargs['allow_periodic'] = has_2_dim and no_sizes_given return kwargs def form_valid(self, form): topo = self.object user = self.request.user notification_msg = f"User {user} changed topography '{topo.name}'. Changed fields: {','.join(form.changed_data)}." # # If a significant field changes, renew squeezed datafile, all analyses, and also thumbnail # # changed_dict = topo.tracker.changed() # key: field name, value: previous field value changed_fields = form.changed_data _log.debug("These fields have been changed according to form: %s", changed_fields) significant_fields = {'size_x', 'size_y', 'unit', 'is_periodic', 'height_scale', 'detrend_mode', 'datafile', 'data_source', 'instrument_type', # , 'instrument_parameters' # 'tip_radius_value', 'tip_radius_unit', } significant_fields_with_changes = set(changed_fields).intersection(significant_fields) # check instrument_parameters manually, since this is not detected properly if form.cleaned_data['instrument_parameters'] != form.initial['instrument_parameters']: significant_fields_with_changes.add('instrument_parameters') _log.info("Instrument parameters changed:") _log.info(" before: %s", form.initial['instrument_parameters']) _log.info(" after: %s", form.cleaned_data['instrument_parameters']) if len(significant_fields_with_changes) > 0: _log.info(f"During edit of topography id={topo.id} some significant fields changed: " + f"{significant_fields_with_changes}.") _log.info("Renewing squeezed datafile...") topo.renew_squeezed_datafile() # cannot be done in background, other steps depend on this, see GH #590 _log.info("Triggering renewal of thumbnail in background...") transaction.on_commit(lambda: renew_topography_thumbnail.delay(topo.id)) _log.info("Triggering renewal of analyses in background...") transaction.on_commit(lambda: renew_analyses_related_to_topography.delay(topo.id)) notification_msg += f"\nBecause significant fields have changed, all related analyses are recalculated now." else: _log.info("Changes not significant for renewal of thumbnails or analysis results.") # # notify other users # other_users = get_users_with_perms(topo.surface).filter(~Q(id=user.id)) for u in other_users: notify.send(sender=user, verb='change', target=topo, recipient=u, description=notification_msg, href=reverse('manager:topography-detail', kwargs=dict(pk=topo.pk))) return super().form_valid(form) def get_success_url(self): if "save-stay" in self.request.POST: return reverse('manager:topography-update', kwargs=dict(pk=self.object.pk)) else: return reverse('manager:topography-detail', kwargs=dict(pk=self.object.pk)) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) topo = self.object try: context['topography_next'] = topo.get_next_by_measurement_date(surface=topo.surface).id except Topography.DoesNotExist: context['topography_next'] = topo.id try: context['topography_prev'] = topo.get_previous_by_measurement_date(surface=topo.surface).id except Topography.DoesNotExist: context['topography_prev'] = topo.id # # Add context needed for tabs # context['extra_tabs'] = [ { 'title': f"{topo.surface.label}", 'icon': "gem", 'icon_style_prefix': 'far', 'href': reverse('manager:surface-detail', kwargs=dict(pk=topo.surface.pk)), 'active': False, 'tooltip': f"Properties of surface '{topo.surface.label}'" }, { 'title': f"{topo.name}", 'icon': "file", 'icon_style_prefix': 'far', 'href': reverse('manager:topography-detail', kwargs=dict(pk=topo.pk)), 'active': False, 'tooltip': f"Properties of topography '{topo.name}'" }, { 'title': f"Edit Topography", 'icon': "pencil", 'href': self.request.path, 'active': True, 'tooltip': f"Editing topography '{topo.name}'" } ] return context def topography_plot(request, pk): """Render an HTML snippet with topography plot""" try: pk = int(pk) topo = Topography.objects.get(pk=pk) assert request.user.has_perm('view_surface', topo.surface) except (ValueError, Topography.DoesNotExist, AssertionError): raise PermissionDenied() # This should be shown independent of whether the surface exists errors = [] # list of dicts with keys 'message' and 'link' context = {} plotted = False try: plot = topo.get_plot() plotted = True except LoadTopographyException as exc: err_message = "Topography '{}' (id: {}) cannot be loaded unexpectedly.".format( topo.name, topo.id) _log.error(err_message) link = mailto_link_for_reporting_an_error(f"Failure loading topography (id: {topo.id})", "Plotting measurement", err_message, traceback.format_exc()) errors.append(dict(message=err_message, link=link)) except PlotTopographyException as exc: err_message = "Topography '{}' (id: {}) cannot be plotted.".format(topo.name, topo.id) _log.error(err_message) link = mailto_link_for_reporting_an_error(f"Failure plotting measurement (id: {topo.id})", "Plotting measurement", err_message, traceback.format_exc()) errors.append(dict(message=err_message, link=link)) if plotted: script, div = components(plot) context['image_plot_script'] = script context['image_plot_div'] = div context['errors'] = errors return render(request, 'manager/topography_plot.html', context=context) class TopographyDetailView(TopographyViewPermissionMixin, DetailView): model = Topography context_object_name = 'topography' def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) topo = self.object try: context['topography_next'] = topo.get_next_by_measurement_date(surface=topo.surface).id except Topography.DoesNotExist: context['topography_next'] = topo.id try: context['topography_prev'] = topo.get_previous_by_measurement_date(surface=topo.surface).id except Topography.DoesNotExist: context['topography_prev'] = topo.id # # Add context needed for tabs # context['extra_tabs'] = [ { 'title': f"{topo.surface.label}", 'icon': "gem", 'icon_style_prefix': 'far', 'href': reverse('manager:surface-detail', kwargs=dict(pk=topo.surface.pk)), 'active': False, 'login_required': False, 'tooltip': f"Properties of surface '{topo.surface.label}'" }, { 'title': f"{topo.name}", 'icon': "file", 'icon_style_prefix': 'far', 'href': self.request.path, 'active': True, 'login_required': False, 'tooltip': f"Properties of topography '{topo.name}'" } ] return context class TopographyDeleteView(TopographyUpdatePermissionMixin, DeleteView): model = Topography context_object_name = 'topography' success_url = reverse_lazy('manager:select') def get_success_url(self): user = self.request.user topo = self.object surface = topo.surface link = reverse('manager:surface-detail', kwargs=dict(pk=surface.pk)) # # notify other users # other_users = get_users_with_perms(surface).filter(~Q(id=user.id)) for u in other_users: notify.send(sender=user, verb="delete", recipient=u, description=f"User '{user.name}' deleted topography '{topo.name}' " + \ f"from surface '{surface.name}'.", href=link) return link def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) topo = self.object surface = topo.surface context['extra_tabs'] = [ { 'title': f"{topo.surface.label}", 'icon': "gem", 'icon_style_prefix': 'far', 'href': reverse('manager:surface-detail', kwargs=dict(pk=topo.surface.pk)), 'active': False, 'tooltip': f"Properties of surface '{topo.surface.label}'" }, { 'title': f"{topo.name}", 'icon': "file", 'icon_style_prefix': 'far', 'href': reverse('manager:topography-detail', kwargs=dict(pk=topo.pk)), 'active': False, 'tooltip': f"Properties of topography '{topo.name}'" }, { 'title': f"Delete Topography?", 'icon': "trash", 'href': self.request.path, 'active': True, 'tooltip': f"Conforming deletion of topography '{topo.name}'" } ] return context class SelectView(TemplateView): template_name = "manager/select.html" def dispatch(self, request, *args, **kwargs): # count this view event for statistics metric = Metric.objects.SEARCH_VIEW_COUNT increase_statistics_by_date(metric, period=Period.DAY) return super().dispatch(request, *args, **kwargs) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) session = self.request.session search_term = get_search_term(self.request) if search_term: # When searching, we want the default select tab state except for # the search term, which is taken from thr request parameters. # If not using the default select tab state, this can result # in "Load Error!" on the page (#543) because e.g. page 2 # is not available in the result. select_tab_state = DEFAULT_SELECT_TAB_STATE.copy() select_tab_state['search_term'] = search_term else: # .. otherwise keep search term from session variable 'select_tab_state' # and all other state settings select_tab_state = session.get('select_tab_state', default=DEFAULT_SELECT_TAB_STATE.copy()) # key: tree mode context['base_urls'] = { 'surface list': self.request.build_absolute_uri(reverse('manager:search')), 'tag tree': self.request.build_absolute_uri(reverse('manager:tag-list')), } context['category_filter_choices'] = CATEGORY_FILTER_CHOICES.copy() if self.request.user.is_anonymous: # Anonymous user have only one choice context['sharing_status_filter_choices'] = { 'published': SHARING_STATUS_FILTER_CHOICES['published'] } select_tab_state['sharing_status'] = 'published' # this only choice should be selected else: context['sharing_status_filter_choices'] = SHARING_STATUS_FILTER_CHOICES.copy() context['select_tab_state'] = select_tab_state.copy() # The session needs a default for the state of the select tab session['select_tab_state'] = select_tab_state return context class SurfaceCreateView(ORCIDUserRequiredMixin, CreateView): model = Surface form_class = SurfaceForm def get_form_kwargs(self): kwargs = super().get_form_kwargs() kwargs['autocomplete_tags'] = tags_for_user(self.request.user) return kwargs def get_initial(self, *args, **kwargs): initial = super(SurfaceCreateView, self).get_initial() initial = initial.copy() initial['creator'] = self.request.user return initial def get_success_url(self): return reverse('manager:surface-detail', kwargs=dict(pk=self.object.pk)) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['extra_tabs'] = [ { 'title': f"Create surface", 'icon': "plus-square", 'icon_style_prefix': 'far', 'href': self.request.path, 'active': True, 'tooltip': "Creating a new surface" } ] return context class SurfaceDetailView(DetailView): model = Surface context_object_name = 'surface' @surface_view_permission_required def dispatch(self, request, *args, **kwargs): return super().dispatch(request, *args, *kwargs) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) surface = self.object # # Count this event for statistics # increase_statistics_by_date_and_object(Metric.objects.SURFACE_VIEW_COUNT, period=Period.DAY, obj=surface) # # bandwidth data # bw_data = bandwidths_data(surface.topography_set.all()) # filter out all entries with errors and display error messages bw_data_with_errors = [x for x in bw_data if x['error_message'] is not None] bw_data_without_errors = [x for x in bw_data if x['error_message'] is None] context['bandwidths_data_with_errors'] = bw_data_with_errors # # Plot bandwidths with bokeh # if len(bw_data_without_errors) > 0: bar_height = 0.95 bw_left = [bw['lower_bound'] for bw in bw_data_without_errors] bw_right = [bw['upper_bound'] for bw in bw_data_without_errors] bw_center = np.exp((np.log(bw_left)+np.log(bw_right))/2) # we want to center on log scale bw_names = [bw['topography'].name for bw in bw_data_without_errors] bw_topography_links = [bw['link'] for bw in bw_data_without_errors] bw_thumbnail_links = [reverse('manager:topography-thumbnail', kwargs=dict(pk=bw['topography'].pk)) for bw in bw_data_without_errors] bw_y = range(0, len(bw_data_without_errors)) bw_source = ColumnDataSource(dict(y=bw_y, left=bw_left, right=bw_right, center=bw_center, name=bw_names, topography_link=bw_topography_links, thumbnail_link=bw_thumbnail_links)) x_range = (min(bw_left), max(bw_right)) TOOL_TIPS = """ <div class="bandwidth-hover-box"> <img src="@thumbnail_link" height="80" width="80" alt="Thumbnail is missing, sorry"> </img> <span>@name</span> </div> """ plot = figure(x_range=x_range, x_axis_label="Bandwidth", x_axis_type="log", sizing_mode='stretch_width', tools=["tap", "hover"], toolbar_location=None, tooltips=TOOL_TIPS) hbar_renderer = plot.hbar(y="y", left="left", right="right", height=bar_height, name='bandwidths', source=bw_source) hbar_renderer.nonselection_glyph = None # makes glyph invariant on selection plot.yaxis.visible = False plot.grid.visible = False plot.outline_line_color = None plot.xaxis.formatter = FuncTickFormatter(code="return siSuffixMeters(2)(tick)") # make that 1 single topography does not look like a block if len(bw_data_without_errors) == 1: plot.y_range.end = bar_height * 1.5 # make clicking a bar going opening a new page taptool = plot.select(type=TapTool) taptool.callback = OpenURL(url="@topography_link", same_tab=True) # include plot into response bw_plot_script, bw_plot_div = components(plot) context['plot_script'] = bw_plot_script context['plot_div'] = bw_plot_div # # permission data # ACTIONS = ['view', 'change', 'delete', 'share'] # defines the order of permissions in table surface_perms_table = get_permission_table_data(surface, self.request.user, ACTIONS) context['permission_table'] = { 'head': [''] + ACTIONS, 'body': surface_perms_table } # # Build tab information # context['extra_tabs'] = [ { 'title': surface.label, 'icon': "gem", 'icon_style_prefix': 'far', 'href': self.request.path, 'active': True, 'login_required': False, 'tooltip': f"Properties of surface '{surface.label}'" } ] # # Build urls for version selection in dropdown # def version_label_from_publication(pub): return f'Version {pub.version} ({pub.datetime.date()})' if pub else 'Work in progress' if surface.is_published: original_surface = surface.publication.original_surface context['this_version_label'] = version_label_from_publication(surface.publication) context['publication_url'] = self.request.build_absolute_uri(surface.publication.get_absolute_url()) context['license_info'] = settings.CC_LICENSE_INFOS[surface.publication.license] else: original_surface = surface context['this_version_label'] = version_label_from_publication(None) publications = Publication.objects.filter(original_surface=original_surface).order_by('version') version_dropdown_items = [] if self.request.user.has_perm('view_surface', original_surface): # Only add link to original surface if user is allowed to view version_dropdown_items.append({ 'label': version_label_from_publication(None), 'surface': original_surface, }) for pub in publications: version_dropdown_items.append({ 'label': version_label_from_publication(pub), 'surface': pub.surface, }) context['version_dropdown_items'] = version_dropdown_items version_badge_text = '' if surface.is_published: if context['this_version_label'] != version_dropdown_items[-1]['label']: version_badge_text += 'Newer version available' elif len(publications) > 0: version_badge_text += 'Published versions available' context['version_badge_text'] = version_badge_text # add formats to show citations for context['citation_flavors'] = [ ('Text format with link', 'html', False), # title, flavor, use <pre><code>...</code></pre> ('RIS format', 'ris', True), ('BibTeX format', 'bibtex', True), ('BibLaTeX format', 'biblatex', True), ] return context class SurfaceUpdateView(UpdateView): model = Surface form_class = SurfaceForm @surface_update_permission_required def dispatch(self, request, *args, **kwargs): return super().dispatch(request, *args, *kwargs) def get_form_kwargs(self): kwargs = super().get_form_kwargs() kwargs['autocomplete_tags'] = tags_for_user(self.request.user) return kwargs def form_valid(self, form): surface = self.object user = self.request.user notification_msg = f"User {user} changed surface '{surface.name}'. Changed fields: {','.join(form.changed_data)}." # # notify other users # other_users = get_users_with_perms(surface).filter(~Q(id=user.id)) for u in other_users: notify.send(sender=user, verb='change', target=surface, recipient=u, description=notification_msg, href=reverse('manager:surface-detail', kwargs=dict(pk=surface.pk))) return super().form_valid(form) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) surface = self.object context['extra_tabs'] = [ { 'title': f"{surface.label}", 'icon': "gem", 'icon_style_prefix': 'far', 'href': reverse('manager:surface-detail', kwargs=dict(pk=surface.pk)), 'active': False, 'tooltip': f"Properties of surface '{surface.label}'" }, { 'title': f"Edit surface", 'icon': "pencil", 'href': self.request.path, 'active': True, 'tooltip': f"Editing surface '{surface.label}'" } ] return context def get_success_url(self): return reverse('manager:surface-detail', kwargs=dict(pk=self.object.pk)) class SurfaceDeleteView(DeleteView): model = Surface context_object_name = 'surface' success_url = reverse_lazy('manager:select') @surface_delete_permission_required def dispatch(self, request, *args, **kwargs): return super().dispatch(request, *args, *kwargs) def get_success_url(self): user = self.request.user surface = self.object link = reverse('manager:select') # # notify other users # other_users = get_users_with_perms(surface).filter(~Q(id=user.id)) for u in other_users: notify.send(sender=user, verb="delete", recipient=u, description=f"User '{user.name}' deleted surface '{surface.name}'.", href=link) return link def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) surface = self.object # # Add context needed for tabs # context['extra_tabs'] = [ { 'title': f"{surface.label}", 'icon': "gem", 'icon_style_prefix': 'far', 'href': reverse('manager:surface-detail', kwargs=dict(pk=surface.pk)), 'active': False, 'tooltip': f"Properties of surface '{surface.label}'" }, { 'title': f"Delete Surface?", 'icon': "trash", 'href': self.request.path, 'active': True, 'tooltip': f"Conforming deletion of surface '{surface.label}'" } ] return context class SurfaceShareView(FormMixin, DetailView): model = Surface context_object_name = 'surface' template_name = "manager/share.html" form_class = SurfaceShareForm @surface_share_permission_required def dispatch(self, request, *args, **kwargs): return super().dispatch(request, *args, *kwargs) def get_success_url(self): return reverse('manager:surface-detail', kwargs=dict(pk=self.object.pk)) def post(self, request, *args, **kwargs): self.object = self.get_object() form = self.get_form() if form.is_valid(): return self.form_valid(form) else: return self.form_invalid(form) def form_valid(self, form): if 'save' in self.request.POST: users = form.cleaned_data.get('users', []) allow_change = form.cleaned_data.get('allow_change', False) surface = self.object for user in users: _log.info("Sharing surface {} with user {} (allow change? {}).".format( surface.pk, user.username, allow_change)) surface.share(user, allow_change=allow_change) # # Notify user about the shared surface # notification_message = f"{self.request.user} has shared surface '{surface.name}' with you" notify.send(self.request.user, recipient=user, verb="share", # TODO Does verb follow activity stream defintions? target=surface, public=False, description=notification_message, href=surface.get_absolute_url()) if allow_change: notify.send(self.request.user, recipient=user, verb="allow change", target=surface, public=False, description=f""" You are allowed to change the surface '{surface.name}' shared by {self.request.user} """, href=surface.get_absolute_url()) return super().form_valid(form) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) surface = self.object context['extra_tabs'] = [ { 'title': f"{surface.label}", 'icon': "gem", 'icon_style_prefix': 'far', 'href': reverse('manager:surface-detail', kwargs=dict(pk=surface.pk)), 'active': False, 'tooltip': f"Properties of surface '{surface.label}'" }, { 'title': f"Share surface?", 'icon': "share-alt", 'href': self.request.path, 'active': True, 'tooltip': f"Sharing surface '{surface.label}'" } ] context['surface'] = surface context['instance_label'] = surface.label context['instance_type_label'] = "surface" context['cancel_url'] = reverse('manager:surface-detail', kwargs=dict(pk=surface.pk)) return context class PublicationsTable(tables.Table): publication = tables.Column(linkify=True, verbose_name='Surface', order_by='surface__name') num_topographies = tables.Column(verbose_name='# Measurements') authors = tables.Column(verbose_name="Authors") license = tables.Column(verbose_name="License") datetime = tables.Column(verbose_name="Publication Date") version = tables.Column(verbose_name="Version") def render_publication(self, value): return value.surface.name def render_datetime(self, value): return value.date() def render_license(self, value, record): return mark_safe(f""" <a href="{settings.CC_LICENSE_INFOS[value]['description_url']}" target="_blank"> {record['publication'].get_license_display()}</a> """) class Meta: orderable = True class PublicationListView(ListView): template_name = "manager/publication_list.html" def get_queryset(self): return Publication.objects.filter(publisher=self.request.user) # TODO move to publication app? def get_context_data(self, *args, **kwargs): context = super().get_context_data(*args, **kwargs) # # Create table cells # data = [ { 'publication': pub, 'surface': pub.surface, 'num_topographies': pub.surface.num_topographies(), 'authors': pub.authors, 'license': pub.license, 'datetime': pub.datetime, 'version': pub.version } for pub in self.get_queryset() ] context['publication_table'] = PublicationsTable( data=data, empty_text="You haven't published any surfaces yet.", request=self.request) return context class SurfacePublishView(FormView): template_name = "manager/surface_publish.html" form_class = SurfacePublishForm @surface_publish_permission_required def dispatch(self, request, *args, **kwargs): return super().dispatch(request, *args, *kwargs) def _get_surface(self): surface_pk = self.kwargs['pk'] return Surface.objects.get(pk=surface_pk) def get_initial(self): initial = super().get_initial() initial['author_0'] = '' initial['num_author_fields'] = 1 return initial def get_form_kwargs(self): kwargs = super().get_form_kwargs() if self.request.method == 'POST': # The field 'num_author_fields' may have been increased by # Javascript (Vuejs) on the client in order to add new authors. # This should be sent to the form in order to know # how many fields the form should have and how many author names # should be combined. So this is passed here: kwargs['num_author_fields'] = int(self.request.POST.get('num_author_fields')) return kwargs def get_success_url(self): return reverse('manager:publications') def form_valid(self, form): license = form.cleaned_data.get('license') authors = form.cleaned_data.get('authors') surface = self._get_surface() try: surface.publish(license, authors) except NewPublicationTooFastException as exc: return redirect("manager:surface-publication-rate-too-high", pk=surface.pk) return super().form_valid(form) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) surface = self._get_surface() context['extra_tabs'] = [ { 'title': f"{surface.label}", 'icon': "gem", 'icon_style_prefix': 'far', 'href': reverse('manager:surface-detail', kwargs=dict(pk=surface.pk)), 'active': False, 'tooltip': f"Properties of surface '{surface.label}'" }, { 'title': f"Publish surface?", 'icon': "bullhorn", 'href': self.request.path, 'active': True, 'tooltip': f"Publishing surface '{surface.label}'" } ] context['surface'] = surface context['max_len_authors_field'] = MAX_LEN_AUTHORS_FIELD return context class PublicationRateTooHighView(TemplateView): template_name = "manager/publication_rate_too_high.html" def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['min_seconds'] = settings.MIN_SECONDS_BETWEEN_SAME_SURFACE_PUBLICATIONS surface_pk = self.kwargs['pk'] surface = Surface.objects.get(pk=surface_pk) context['extra_tabs'] = [ { 'title': f"{surface.label}", 'icon': "gem", 'icon_style_prefix': 'far', 'href': reverse('manager:surface-detail', kwargs=dict(pk=surface.pk)), 'active': False, 'tooltip': f"Properties of surface '{surface.label}'" }, { 'title': f"Publication rate too high", 'icon': "flash", 'href': self.request.path, 'active': True, } ] return context class SharingInfoTable(tables.Table): surface = tables.Column(linkify=lambda **kwargs: kwargs['record']['surface'].get_absolute_url(), accessor='surface__name') num_topographies = tables.Column(verbose_name='# Measurements') created_by = tables.Column(linkify=lambda **kwargs: kwargs['record']['created_by'].get_absolute_url(), accessor='created_by__name') shared_with = tables.Column(linkify=lambda **kwargs: kwargs['record']['shared_with'].get_absolute_url(), accessor='shared_with__name') allow_change = tables.BooleanColumn() selected = tables.CheckBoxColumn(attrs={ 'th__input': {'class': 'select-all-checkbox'}, 'td__input': {'class': 'select-checkbox'}, }) def __init__(self, *args, **kwargs): self._request = kwargs['request'] super().__init__(*args, **kwargs) # def render_surface(self, value): # return value.label # def render_created_by(self, value): # return self._render_user(value) #def render_shared_with(self, value): # return self._render_user(value) #def _render_user(self, user): # if self._request.user == user: # return "You" # return user.name class Meta: orderable = True order_by = ('surface', 'shared_with') def sharing_info(request): if request.user.is_anonymous: raise PermissionDenied() # # Handle POST request if any # if (request.method == "POST") and ('selected' in request.POST): # only do sth if there is a selection unshare = 'unshare' in request.POST allow_change = 'allow_change' in request.POST for s in request.POST.getlist('selected'): # decode selection string surface_id, share_with_user_id = s.split(',') surface_id = int(surface_id) share_with_user_id = int(share_with_user_id) surface = Surface.objects.get(id=surface_id) share_with = User.objects.get(id=share_with_user_id) if request.user not in [share_with, surface.creator]: # we don't allow to change shares if the request user is not involved _log.warning(f"Changing share on surface {surface.id} not allowed for user {request.user}.") continue if unshare: surface.unshare(share_with) notify.send(sender=request.user, recipient=share_with, verb='unshare', public=False, description=f"Surface '{surface.name}' from {request.user} is no longer shared with you", href=reverse('manager:sharing-info')) elif allow_change and (request.user == surface.creator): # only allow change for surface creator surface.share(share_with, allow_change=True) notify.send(sender=request.user, recipient=share_with, verb='allow change', target=surface, public=False, description=f"{request.user} has given you permissions to change surface '{surface.name}'", href=surface.get_absolute_url()) # # Collect information to display # # Get all surfaces, which are visible, but exclude the published surfaces surfaces = get_objects_for_user(request.user, 'view_surface', klass=Surface).filter(publication=None) tmp = [] for s in surfaces: surface_perms = get_users_with_perms(s, attach_perms=True) # is now a dict of the form # <User: joe>: ['view_surface'], <User: dan>: ['view_surface', 'change_surface']} surface_users = sorted(surface_perms.keys(), key=lambda u: u.name if u else '') for u in surface_users: # Leave out these shares: # # - share of a user with himself as creator (trivial) # - ignore user if anonymous # - shares where the request user is not involved # if (u != s.creator) and (not u.is_anonymous) and \ ((u == request.user) or (s.creator == request.user)): allow_change = ('change_surface' in surface_perms[u]) tmp.append((s, u, allow_change)) # # Create table cells # data = [ { 'surface': surface, 'num_topographies': surface.num_topographies(), 'created_by': surface.creator, 'shared_with': shared_with, 'allow_change': allow_change, 'selected': "{},{}".format(surface.id, shared_with.id), } for surface, shared_with, allow_change in tmp ] # # Build table and render result # sharing_info_table = SharingInfoTable(data=data, empty_text="No surfaces shared by or with you.", request=request) RequestConfig(request).configure(sharing_info_table) # sharing_info_table.order_by('num_topographies') return render(request, template_name='manager/sharing_info.html', context={'sharing_info_table': sharing_info_table}) def download_surface(request, surface_id): """Returns a file comprised from topographies contained in a surface. :param request: :param surface_id: surface id :return: """ # # Check existence and permissions for given surface # try: surface = Surface.objects.get(id=surface_id) except Surface.DoesNotExist: raise PermissionDenied() if not request.user.has_perm('view_surface', surface): raise PermissionDenied() content_data = None # # If the surface has been published, there might be a container file already. # If yes: # Is there already a container? # Then it instead of creating a new container.from # If no, save the container in the publication later. # If no: create a container for this surface on the fly # renew_publication_container = False if surface.is_published: pub = surface.publication # noinspection PyBroadException try: with pub.container.open() as cf: content_data = cf.read() _log.debug(f"Read container for published surface {pub.short_url} from storage.") except Exception: # not interested here, why it fails renew_publication_container = True if content_data is None: container_bytes = BytesIO() _log.info(f"Preparing container of surface id={surface_id} for download..") write_surface_container(container_bytes, [surface], request=request) content_data = container_bytes.getvalue() if renew_publication_container: try: container_bytes.seek(0) _log.info(f"Saving container for publication with URL {pub.short_url} to storage for later..") pub.container.save(pub.container_storage_path, container_bytes) except (OSError, BlockingIOError) as exc: _log.error(f"Cannot save container for publication {pub.short_url} to storage. " f"Reason: {exc}") # Prepare response object. response = HttpResponse(content_data, content_type='application/x-zip-compressed') response['Content-Disposition'] = 'attachment; filename="{}"'.format('surface.zip') increase_statistics_by_date_and_object(Metric.objects.SURFACE_DOWNLOAD_COUNT, period=Period.DAY, obj=surface) return response def download_selection_as_surfaces(request): """Returns a file comprised from surfaces related to the selection. :param request: current request :return: """ from .utils import current_selection_as_surface_list surfaces = current_selection_as_surface_list(request) container_bytes = BytesIO() write_surface_container(container_bytes, surfaces, request=request) # Prepare response object. response = HttpResponse(container_bytes.getvalue(), content_type='application/x-zip-compressed') response['Content-Disposition'] = 'attachment; filename="{}"'.format('surface.zip') # increase download count for each surface for surf in surfaces: increase_statistics_by_date_and_object(Metric.objects.SURFACE_DOWNLOAD_COUNT, period=Period.DAY, obj=surf) return response ####################################################################################### # Views for REST interface ####################################################################################### class SurfaceSearchPaginator(PageNumberPagination): page_size = DEFAULT_PAGE_SIZE page_query_param = 'page' page_size_query_param = 'page_size' max_page_size = MAX_PAGE_SIZE def get_paginated_response(self, data): # # Save information about requested data in session # session = self.request.session select_tab_state = session.get('select_tab_state', DEFAULT_SELECT_TAB_STATE.copy()) # not using the keyword argument "default" here, because in some tests, # the session is a simple dict and no real session dict. A simple # dict's .get() has no keyword argument 'default', although it can be given # as second parameter. select_tab_state['search_term'] = get_search_term(self.request) select_tab_state['category'] = get_category(self.request) select_tab_state['sharing_status'] = get_sharing_status(self.request) select_tab_state['tree_mode'] = get_tree_mode(self.request) page_size = self.get_page_size(self.request) select_tab_state[self.page_size_query_param] = page_size select_tab_state['current_page'] = self.page.number _log.debug("Setting select tab state set in paginator: %s", select_tab_state) session['select_tab_state'] = select_tab_state return Response({ 'num_items': self.page.paginator.count, 'num_pages': self.page.paginator.num_pages, 'page_range': list(self.page.paginator.page_range), 'page_urls': list(self.get_page_urls()), 'current_page': self.page.number, 'num_items_on_current_page': len(self.page.object_list), 'page_size': page_size, 'search_term': select_tab_state['search_term'], 'category': select_tab_state['category'], 'sharing_status': select_tab_state['sharing_status'], 'tree_mode': select_tab_state['tree_mode'], 'page_results': data }) def get_page_urls(self): base_url = self.request.build_absolute_uri() urls = [] for page_no in self.page.paginator.page_range: if page_no == 1: url = remove_query_param(base_url, self.page_query_param) else: url = replace_query_param(base_url, self.page_query_param, page_no) # always add page size, so requests for other pages have it url = replace_query_param(url, self.page_size_query_param, self.get_page_size(self.request)) urls.append(url) return urls class TagTreeView(ListAPIView): """ Generate tree of tags with surfaces and topographies underneath. """ serializer_class = TagSerializer pagination_class = SurfaceSearchPaginator def get_queryset(self): surfaces = filtered_surfaces(self.request) topographies = filtered_topographies(self.request, surfaces) return tags_for_user(self.request.user, surfaces, topographies).filter(parent=None) # Only top level are collected, the children are added in the serializer. # # TODO The filtered surfaces and topographies are calculated twice here, not sure how to circumvent this. # Maybe by caching with request argument? def get_serializer_context(self): context = super().get_serializer_context() context['selected_instances'] = selected_instances(self.request) context['request'] = self.request surfaces = filtered_surfaces(self.request) topographies = filtered_topographies(self.request, surfaces) tags = tags_for_user(self.request.user, surfaces, topographies) context['tags_for_user'] = tags # # also pass filtered surfaces and topographies the user has access to # context['surfaces'] = surfaces context['topographies'] = topographies return context class SurfaceListView(ListAPIView): """ List all surfaces with topographies underneath. """ serializer_class = SurfaceSerializer pagination_class = SurfaceSearchPaginator def get_queryset(self): return filtered_surfaces(self.request) def get_serializer_context(self): context = super().get_serializer_context() context['selected_instances'] = selected_instances(self.request) context['request'] = self.request return context def _selection_set(request): return set(request.session.get('selection', [])) def _surface_key(pk): # TODO use such a function everywhere: instance_key_for_selection() return 'surface-{}'.format(pk) def _topography_key(pk): return 'topography-{}'.format(pk) def _tag_key(pk): return 'tag-{}'.format(pk) def set_surface_select_status(request, pk, select_status): """Marks the given surface as 'selected' in session or checks this. :param request: request :param pk: primary key of the surface :param select_status: True if surface should be selected, False if it should be unselected :return: JSON Response The response returns the current selection as suitable for the basket. """ try: pk = int(pk) surface = Surface.objects.get(pk=pk) assert request.user.has_perm('view_surface', surface) except (ValueError, Surface.DoesNotExist, AssertionError): raise PermissionDenied() # This should be shown independent of whether the surface exists surface_key = _surface_key(pk) selection = _selection_set(request) is_selected = surface_key in selection if request.method == 'POST': if select_status: # surface should be selected selection.add(surface_key) elif is_selected: selection.remove(surface_key) request.session['selection'] = list(selection) data = current_selection_as_basket_items(request) return Response(data) @api_view(['POST']) def select_surface(request, pk): """Marks the given surface as 'selected' in session. :param request: request :param pk: primary key of the surface :return: JSON Response The response returns the current selection as suitable for the basket. """ return set_surface_select_status(request, pk, True) @api_view(['POST']) def unselect_surface(request, pk): """Marks the given surface as 'unselected' in session. :param request: request :param pk: primary key of the surface :return: JSON Response The response returns the current selection as suitable for the basket. """ return set_surface_select_status(request, pk, False) def set_topography_select_status(request, pk, select_status): """Marks the given topography as 'selected' or 'unselected' in session. :param request: request :param pk: primary key of the surface :param select_status: True or False, True means "mark as selected", False means "mark as unselected" :return: JSON Response The response returns the current selection as suitable for the basket. """ try: pk = int(pk) topo = Topography.objects.get(pk=pk) assert request.user.has_perm('view_surface', topo.surface) except (ValueError, Topography.DoesNotExist, AssertionError): raise PermissionDenied() # This should be shown independent of whether the surface exists topography_key = _topography_key(pk) selection = _selection_set(request) is_selected = topography_key in selection if request.method == 'POST': if select_status: # topography should be selected selection.add(topography_key) elif is_selected: selection.remove(topography_key) request.session['selection'] = list(selection) data = current_selection_as_basket_items(request) return Response(data) @api_view(['POST']) def select_topography(request, pk): """Marks the given topography as 'selected' in session. :param request: request :param pk: primary key of the surface :return: JSON Response The response returns the current selection as suitable for the basket. """ return set_topography_select_status(request, pk, True) @api_view(['POST']) def unselect_topography(request, pk): """Marks the given topography as 'selected' in session. :param request: request :param pk: primary key of the surface :return: JSON Response The response returns the current selection as suitable for the basket. """ return set_topography_select_status(request, pk, False) def set_tag_select_status(request, pk, select_status): """Marks the given tag as 'selected' in session or checks this. :param request: request :param pk: primary key of the tag :param select_status: True if tag should be selected, False if it should be unselected :return: JSON Response The response returns the current selection as suitable for the basket. """ try: pk = int(pk) tag = TagModel.objects.get(pk=pk) except ValueError: raise PermissionDenied() if not tag in tags_for_user(request.user): raise PermissionDenied() tag_key = _tag_key(pk) selection = _selection_set(request) is_selected = tag_key in selection if request.method == 'POST': if select_status: # tag should be selected selection.add(tag_key) elif is_selected: selection.remove(tag_key) request.session['selection'] = list(selection) data = current_selection_as_basket_items(request) return Response(data) @api_view(['POST']) def select_tag(request, pk): """Marks the given tag as 'selected' in session. :param request: request :param pk: primary key of the tag :return: JSON Response The response returns the current selection as suitable for the basket. """ return set_tag_select_status(request, pk, True) @api_view(['POST']) def unselect_tag(request, pk): """Marks the given tag as 'unselected' in session. :param request: request :param pk: primary key of the tag :return: JSON Response The response returns the current selection as suitable for the basket. """ return set_tag_select_status(request, pk, False) @api_view(['POST']) def unselect_all(request): """Removes all selections from session. :param request: request :return: empty list as JSON Response """ request.session['selection'] = [] return Response([]) def thumbnail(request, pk): """Returns image data for a topography thumbail Parameters ---------- request Returns ------- HTML Response with image data """ try: pk = int(pk) except ValueError: raise Http404() try: topo = Topography.objects.get(pk=pk) except Topography.DoesNotExist: raise Http404() if not request.user.has_perm('view_surface', topo.surface): raise PermissionDenied() # okay, we have a valid topography and the user is allowed to see it image = topo.thumbnail response = HttpResponse(content_type="image/png") try: response.write(image.file.read()) except Exception as exc: _log.warning("Cannot load thumbnail for topography %d. Reason: %s", topo.id, exc) # return some default image so the client gets sth in any case with staticfiles_storage.open('images/thumbnail_unavailable.png', mode='rb') as img_file: response.write(img_file.read()) return response
45,573
8,545
782
bbd02b18aafbd116aa8ea088f0e6678bdd955802
851
py
Python
server/main.py
yuweiliandrew/openrtist
4b6b17e77587751593d5e529b154e60513de3236
[ "Apache-2.0" ]
null
null
null
server/main.py
yuweiliandrew/openrtist
4b6b17e77587751593d5e529b154e60513de3236
[ "Apache-2.0" ]
null
null
null
server/main.py
yuweiliandrew/openrtist
4b6b17e77587751593d5e529b154e60513de3236
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 from gabriel_server.network_engine import server_runner import logging import argparse import importlib DEFAULT_PORT = 9099 DEFAULT_NUM_TOKENS = 2 INPUT_QUEUE_MAXSIZE = 60 logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) if __name__ == "__main__": main()
25.029412
99
0.720329
#!/usr/bin/env python3 from gabriel_server.network_engine import server_runner import logging import argparse import importlib DEFAULT_PORT = 9099 DEFAULT_NUM_TOKENS = 2 INPUT_QUEUE_MAXSIZE = 60 logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def main(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument( "-t", "--tokens", type=int, default=DEFAULT_NUM_TOKENS, help="number of tokens") parser.add_argument( "-p", "--port", type=int, default=DEFAULT_PORT, help="Set port number") args = parser.parse_args() server_runner.run(websocket_port=args.port, zmq_address='tcp://*:5555', num_tokens=args.tokens, input_queue_maxsize=INPUT_QUEUE_MAXSIZE) if __name__ == "__main__": main()
512
0
23
4845208dc2008cff6748df7a14a9be766a0ca341
891
py
Python
tests/models/product/product_relation_types/test_model.py
simonsobs/acondbs
6ca11c2889d827ecdb2b54d0cf3b94b8cdd281e6
[ "MIT" ]
null
null
null
tests/models/product/product_relation_types/test_model.py
simonsobs/acondbs
6ca11c2889d827ecdb2b54d0cf3b94b8cdd281e6
[ "MIT" ]
24
2020-04-02T19:29:07.000Z
2022-03-08T03:05:43.000Z
tests/models/product/product_relation_types/test_model.py
simonsobs/acondbs
6ca11c2889d827ecdb2b54d0cf3b94b8cdd281e6
[ "MIT" ]
1
2020-04-08T15:48:28.000Z
2020-04-08T15:48:28.000Z
from acondbs.db.sa import sa from acondbs.models import ProductRelationType ##__________________________________________________________________|| ##__________________________________________________________________||
28.741935
74
0.65881
from acondbs.db.sa import sa from acondbs.models import ProductRelationType ##__________________________________________________________________|| def test_column(app_empty): app = app_empty with app.app_context(): model = ProductRelationType( name="parent", indef_article="a", singular="parent", plural="parents", ) sa.session.add(model) sa.session.commit() assert model.type_id type_id = model.type_id with app.app_context(): model = ProductRelationType.query.filter_by(type_id=type_id).one() assert model.type_id == type_id assert model.name == "parent" assert model.indef_article == "a" assert model.singular == "parent" assert model.plural == "parents" ##__________________________________________________________________||
647
0
22
1c9ae6c11296e6a1e6f7c38c20040bce04faf76f
2,330
py
Python
examples/my_line_rules.py
l0nax/gitlint
df84afed929af588191aa93534842fab80e117dd
[ "MIT" ]
null
null
null
examples/my_line_rules.py
l0nax/gitlint
df84afed929af588191aa93534842fab80e117dd
[ "MIT" ]
null
null
null
examples/my_line_rules.py
l0nax/gitlint
df84afed929af588191aa93534842fab80e117dd
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from gitlint.rules import LineRule, RuleViolation, CommitMessageTitle from gitlint.options import ListOption """ Full details on user-defined rules: https://jorisroovers.com/gitlint/user_defined_rules The SpecialChars class below is an example of a user-defined LineRule. Line rules are gitlint rules that only act on a single line at once. Once the rule is discovered, gitlint will automatically take care of applying this rule against each line of the commit message title or body (whether it is applied to the title or body is determined by the `target` attribute of the class). A LineRule contrasts with a CommitRule (see examples/my_commit_rules.py) in that a commit rule is only applied once on an entire commit. This allows commit rules to implement more complex checks that span multiple lines and/or checks that should only be done once per gitlint run. While every LineRule can be implemented as a CommitRule, it's usually easier and more concise to go with a LineRule if that fits your needs. """ class SpecialChars(LineRule): """ This rule will enforce that the commit message title does not contain any of the following characters: $^%@!*() """ # A rule MUST have a human friendly name name = "title-no-special-chars" # A rule MUST have a *unique* id, we recommend starting with UL (for User-defined Line-rule), but this can # really be anything. id = "UL1" # A line-rule MUST have a target (not required for CommitRules). target = CommitMessageTitle # A rule MAY have an option_spec if its behavior should be configurable. options_spec = [ListOption('special-chars', ['$', '^', '%', '@', '!', '*', '(', ')'], "Comma separated list of characters that should not occur in the title")]
44.807692
118
0.704292
# -*- coding: utf-8 -*- from gitlint.rules import LineRule, RuleViolation, CommitMessageTitle from gitlint.options import ListOption """ Full details on user-defined rules: https://jorisroovers.com/gitlint/user_defined_rules The SpecialChars class below is an example of a user-defined LineRule. Line rules are gitlint rules that only act on a single line at once. Once the rule is discovered, gitlint will automatically take care of applying this rule against each line of the commit message title or body (whether it is applied to the title or body is determined by the `target` attribute of the class). A LineRule contrasts with a CommitRule (see examples/my_commit_rules.py) in that a commit rule is only applied once on an entire commit. This allows commit rules to implement more complex checks that span multiple lines and/or checks that should only be done once per gitlint run. While every LineRule can be implemented as a CommitRule, it's usually easier and more concise to go with a LineRule if that fits your needs. """ class SpecialChars(LineRule): """ This rule will enforce that the commit message title does not contain any of the following characters: $^%@!*() """ # A rule MUST have a human friendly name name = "title-no-special-chars" # A rule MUST have a *unique* id, we recommend starting with UL (for User-defined Line-rule), but this can # really be anything. id = "UL1" # A line-rule MUST have a target (not required for CommitRules). target = CommitMessageTitle # A rule MAY have an option_spec if its behavior should be configurable. options_spec = [ListOption('special-chars', ['$', '^', '%', '@', '!', '*', '(', ')'], "Comma separated list of characters that should not occur in the title")] def validate(self, line, _commit): self.log.debug("SpecialChars: This line will be visible when running `gitlint --debug`") violations = [] # options can be accessed by looking them up by their name in self.options for char in self.options['special-chars'].value: if char in line: violation = RuleViolation(self.id, "Title contains the special character '{0}'".format(char), line) violations.append(violation) return violations
492
0
27
4581b4010635dca053e4b3dabc1023c2a4d1faf8
2,117
py
Python
src/subsystems/backarm.py
quis345/DeepSpace2019
917d120c4173e8085578c3fc7f98ecfffd8b6e5b
[ "MIT" ]
null
null
null
src/subsystems/backarm.py
quis345/DeepSpace2019
917d120c4173e8085578c3fc7f98ecfffd8b6e5b
[ "MIT" ]
null
null
null
src/subsystems/backarm.py
quis345/DeepSpace2019
917d120c4173e8085578c3fc7f98ecfffd8b6e5b
[ "MIT" ]
null
null
null
import ctre from wpilib import SmartDashboard as Dash from wpilib.command import Subsystem from constants import Constants from utils import singleton, units, lazytalonsrx, pidf class BackArm(Subsystem, metaclass=singleton.Singleton): """The back arm subsystem controls the back arm motors and encoders.""" def init(self): """Initialize the back arm motors. This is not in the constructor to make the calling explicit in the robotInit to the robot simulator.""" self.s_motor = lazytalonsrx.LazyTalonSRX(Constants.BS_MOTOR_ID) self.m_motor = lazytalonsrx.LazyTalonSRX(Constants.BM_MOTOR_ID) self.s_motor.initialize( inverted=True, encoder=True, phase=False, name="Back Arm Slave") self.m_motor.initialize( inverted=False, encoder=True, phase=False, name="Back Arm Master") self.s_motor.follow(self.m_motor) self.initPIDF() def initPIDF(self): """Initialize the arm motor pidf gains.""" self.m_motor.setMotionMagicConfig( Constants.BACK_ARM_CRUISE_VELOCITY * (192) * (10/360), Constants.BACK_ARM_ACCELERATION * (192) * (10/360)) self.m_motor.setPIDF(0, Constants.BACK_ARM_KP, Constants.BACK_ARM_KI, Constants.BACK_ARM_KD, Constants.BACK_ARM_KF) def zeroSensors(self): """Set the encoder positions to 0.""" self.m_motor.zero() def getAngle(self): """Get the angle of the arm in degrees.""" return self.m_motor.getPosition() / (192) / (10/360) def setAngle(self, angle): """Set the angle of the arm in degrees.""" ticks = angle * (192) * (10/360) self.m_motor.setMotionMagicSetpoint(ticks)
36.5
146
0.66462
import ctre from wpilib import SmartDashboard as Dash from wpilib.command import Subsystem from constants import Constants from utils import singleton, units, lazytalonsrx, pidf class BackArm(Subsystem, metaclass=singleton.Singleton): """The back arm subsystem controls the back arm motors and encoders.""" def __init__(self): super().__init__() def init(self): """Initialize the back arm motors. This is not in the constructor to make the calling explicit in the robotInit to the robot simulator.""" self.s_motor = lazytalonsrx.LazyTalonSRX(Constants.BS_MOTOR_ID) self.m_motor = lazytalonsrx.LazyTalonSRX(Constants.BM_MOTOR_ID) self.s_motor.initialize( inverted=True, encoder=True, phase=False, name="Back Arm Slave") self.m_motor.initialize( inverted=False, encoder=True, phase=False, name="Back Arm Master") self.s_motor.follow(self.m_motor) self.initPIDF() def initPIDF(self): """Initialize the arm motor pidf gains.""" self.m_motor.setMotionMagicConfig( Constants.BACK_ARM_CRUISE_VELOCITY * (192) * (10/360), Constants.BACK_ARM_ACCELERATION * (192) * (10/360)) self.m_motor.setPIDF(0, Constants.BACK_ARM_KP, Constants.BACK_ARM_KI, Constants.BACK_ARM_KD, Constants.BACK_ARM_KF) def zeroSensors(self): """Set the encoder positions to 0.""" self.m_motor.zero() def outputToDashboard(self): self.s_motor.outputToDashboard() self.m_motor.outputToDashboard() Dash.putNumber("Back Arm Angle", self.getAngle()) def getAngle(self): """Get the angle of the arm in degrees.""" return self.m_motor.getPosition() / (192) / (10/360) def setAngle(self, angle): """Set the angle of the arm in degrees.""" ticks = angle * (192) * (10/360) self.m_motor.setMotionMagicSetpoint(ticks) def periodic(self): self.outputToDashboard() def reset(self): self.m_motor.setPercentOutput(0) self.zeroSensors() self.initPIDF()
290
0
108
cd830753bb5761a968e2d3653e6ef40be79f29eb
11,760
py
Python
layers/densenet.py
IlikeBB/Object-Detection-for-M-NBI
650fa1ca7b8860785f0a838dab0301a9cba121d6
[ "MIT" ]
null
null
null
layers/densenet.py
IlikeBB/Object-Detection-for-M-NBI
650fa1ca7b8860785f0a838dab0301a9cba121d6
[ "MIT" ]
null
null
null
layers/densenet.py
IlikeBB/Object-Detection-for-M-NBI
650fa1ca7b8860785f0a838dab0301a9cba121d6
[ "MIT" ]
null
null
null
import re import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as cp from collections import OrderedDict import torch.utils.model_zoo as model_zoo __all__ = ['DenseNet', 'densenet50', 'densenet121', 'densenet169', 'densenet201', 'densenet161'] model_urls = { 'densenet121': 'https://download.pytorch.org/models/densenet121-a639ec97.pth', 'densenet169': 'https://download.pytorch.org/models/densenet169-b2777c0a.pth', 'densenet201': 'https://download.pytorch.org/models/densenet201-c1103571.pth', 'densenet161': 'https://download.pytorch.org/models/densenet161-8d451a50.pth', } class DenseNet(nn.Module): r"""Densenet-BC model class, based on `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: growth_rate (int) - how many filters to add each layer (`k` in paper) block_config (list of 4 ints) - how many layers in each pooling block num_init_features (int) - the number of filters to learn in the first convolution layer bn_size (int) - multiplicative factor for number of bottle neck layers (i.e. bn_size * k features in the bottleneck layer) drop_rate (float) - dropout rate after each dense layer num_classes (int) - number of classification classes memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ """ def densenet50(pretrained=False, progress=True, **kwargs): r"""Densenet-121 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ """ return _densenet('densenet50', 32, (6, 12, 24, 16), 64, pretrained, progress, **kwargs) def densenet121(pretrained=False, progress=True, **kwargs): r"""Densenet-121 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ """ return _densenet('densenet121', 32, (6, 12, 24, 16), 64, pretrained, progress, **kwargs) def densenet161(pretrained=False, progress=True, **kwargs): r"""Densenet-161 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ """ return _densenet('densenet161', 48, (6, 12, 36, 24), 96, pretrained, progress, **kwargs) def densenet169(pretrained=False, progress=True, **kwargs): r"""Densenet-169 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ """ return _densenet('densenet169', 32, (6, 12, 32, 32), 64, pretrained, progress, **kwargs) def densenet201(pretrained=False, progress=True, **kwargs): r"""Densenet-201 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ """ return _densenet('densenet201', 32, (6, 12, 48, 32), 64, pretrained, progress, **kwargs)
44.714829
192
0.63835
import re import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as cp from collections import OrderedDict import torch.utils.model_zoo as model_zoo __all__ = ['DenseNet', 'densenet50', 'densenet121', 'densenet169', 'densenet201', 'densenet161'] model_urls = { 'densenet121': 'https://download.pytorch.org/models/densenet121-a639ec97.pth', 'densenet169': 'https://download.pytorch.org/models/densenet169-b2777c0a.pth', 'densenet201': 'https://download.pytorch.org/models/densenet201-c1103571.pth', 'densenet161': 'https://download.pytorch.org/models/densenet161-8d451a50.pth', } def _bn_function_factory(norm, relu, conv): def bn_function(*inputs): concated_features = torch.cat(inputs, 1) bottleneck_output = conv(relu(norm(concated_features))) return bottleneck_output return bn_function class _DenseLayer(nn.Sequential): def __init__(self, num_input_features, growth_rate, bn_size, drop_rate, memory_efficient=False): super(_DenseLayer, self).__init__() self.add_module('norm1', nn.BatchNorm2d(num_input_features)), self.add_module('relu1', nn.LeakyReLU(inplace=True)), self.add_module('conv1', nn.Conv2d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)), self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate)), self.add_module('relu2', nn.LeakyReLU(inplace=True)), self.add_module('conv2', nn.Conv2d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)), self.drop_rate = drop_rate self.memory_efficient = memory_efficient def forward(self, *prev_features): bn_function = _bn_function_factory(self.norm1, self.relu1, self.conv1) if self.memory_efficient and any(prev_feature.requires_grad for prev_feature in prev_features): bottleneck_output = cp.checkpoint(bn_function, *prev_features) else: bottleneck_output = bn_function(*prev_features) new_features = self.conv2(self.relu2(self.norm2(bottleneck_output))) if self.drop_rate > 0: new_features = F.dropout(new_features, p=self.drop_rate, training=self.training) return new_features class _DenseBlock(nn.Module): def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate, memory_efficient=False): super(_DenseBlock, self).__init__() for i in range(num_layers): layer = _DenseLayer( num_input_features + i * growth_rate, growth_rate=growth_rate, bn_size=bn_size, drop_rate=drop_rate, memory_efficient=memory_efficient, ) self.add_module('denselayer%d' % (i + 1), layer) def forward(self, init_features): features = [init_features] for name, layer in self.named_children(): new_features = layer(*features) features.append(new_features) return torch.cat(features, 1) class DenseNet(nn.Module): r"""Densenet-BC model class, based on `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: growth_rate (int) - how many filters to add each layer (`k` in paper) block_config (list of 4 ints) - how many layers in each pooling block num_init_features (int) - the number of filters to learn in the first convolution layer bn_size (int) - multiplicative factor for number of bottle neck layers (i.e. bn_size * k features in the bottleneck layer) drop_rate (float) - dropout rate after each dense layer num_classes (int) - number of classification classes memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ """ def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64, bn_size=4, drop_rate=0, num_classes=1000, memory_efficient=False): super(DenseNet, self).__init__() # First convolution self.features = nn.Sequential(OrderedDict([ ('conv0', nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)), ('norm0', nn.BatchNorm2d(num_init_features)), ('relu0', nn.LeakyReLU(inplace=True)), ('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)), ])) # Each denseblock num_features = num_init_features self.trans = [] self.layer1 = _DenseBlock(num_layers=block_config[0], num_input_features=num_features, bn_size=bn_size, growth_rate=growth_rate, drop_rate=drop_rate, memory_efficient=memory_efficient) num_features = num_features + block_config[0] * growth_rate self.bn1=nn.BatchNorm2d(num_features) self.relu1=nn.LeakyReLU(inplace=True) self.conv1=nn.Conv2d(num_features, num_features//2, kernel_size=1, stride=1, bias=False) self.avg1=nn.AvgPool2d(kernel_size=2, stride=2) num_features = num_features // 2 self.layer2 = _DenseBlock(num_layers=block_config[1], num_input_features=num_features, bn_size=bn_size, growth_rate=growth_rate, drop_rate=drop_rate, memory_efficient=memory_efficient) num_features = num_features + block_config[1] * growth_rate self.bn2=nn.BatchNorm2d(num_features) self.relu2=nn.LeakyReLU(inplace=True) self.conv2=nn.Conv2d(num_features, num_features//2, kernel_size=1, stride=1, bias=False) self.avg2=nn.AvgPool2d(kernel_size=2, stride=1) num_features = num_features // 2 self.layer3 = _DenseBlock(num_layers=block_config[2], num_input_features=num_features, bn_size=bn_size, growth_rate=growth_rate, drop_rate=drop_rate, memory_efficient=memory_efficient) num_features = num_features + block_config[2] * growth_rate self.bn3=nn.BatchNorm2d(num_features) self.relu3=nn.LeakyReLU(inplace=True) self.conv3=nn.Conv2d(num_features, num_features//2, kernel_size=1, stride=1, bias=False) self.avg3=nn.AvgPool2d(kernel_size=2, stride=2) num_features = num_features // 2 self.layer4 = _DenseBlock(num_layers=block_config[3], num_input_features=num_features, bn_size=bn_size, growth_rate=growth_rate, drop_rate=drop_rate, memory_efficient=memory_efficient) # Final batch norm self.bn4 = nn.BatchNorm2d(num_features) # Linear layer self.classifier = nn.Linear(num_features, num_classes) # Official init from torch repo. for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.constant_(m.bias, 0) def forward(self, x, out_inds=[2,4]): x = self.features(x) out = [] # import pdb # pdb.set_trace() for i,_layer in enumerate([self.layer1,self.layer2,self.layer3,self.layer4]): x = _layer(x) if i+1 in out_inds: out.append(x) if i == 0: x = self.bn1(x) x = self.relu1(x) x = self.conv1(x) x = self.avg1(x) elif i == 1: x = self.bn2(x) x = self.relu2(x) x = self.conv2(x) # x = self.avg2(x) elif i == 2: x = self.bn3(x) x = self.relu3(x) x = self.conv3(x) x = self.avg3(x) return out def _densenet(arch, growth_rate, block_config, num_init_features, pretrained, progress, **kwargs): model = DenseNet(growth_rate, block_config, num_init_features, **kwargs) if pretrained: _load_state_dict(model, model_urls[arch], progress) return model def densenet50(pretrained=False, progress=True, **kwargs): r"""Densenet-121 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ """ return _densenet('densenet50', 32, (6, 12, 24, 16), 64, pretrained, progress, **kwargs) def densenet121(pretrained=False, progress=True, **kwargs): r"""Densenet-121 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ """ return _densenet('densenet121', 32, (6, 12, 24, 16), 64, pretrained, progress, **kwargs) def densenet161(pretrained=False, progress=True, **kwargs): r"""Densenet-161 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ """ return _densenet('densenet161', 48, (6, 12, 36, 24), 96, pretrained, progress, **kwargs) def densenet169(pretrained=False, progress=True, **kwargs): r"""Densenet-169 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ """ return _densenet('densenet169', 32, (6, 12, 32, 32), 64, pretrained, progress, **kwargs) def densenet201(pretrained=False, progress=True, **kwargs): r"""Densenet-201 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_ """ return _densenet('densenet201', 32, (6, 12, 48, 32), 64, pretrained, progress, **kwargs)
6,645
20
260
4aae359bb47d841d355e338ca35c46c6de27cdca
2,782
py
Python
rfdmovie/models.py
Microndgt/rfdmovies
befba9ac7667d8234976b7fda7fa800beb5f05c7
[ "MIT" ]
18
2018-02-12T04:11:17.000Z
2019-10-10T01:44:31.000Z
rfdmovie/models.py
Microndgt/rfdmovies
befba9ac7667d8234976b7fda7fa800beb5f05c7
[ "MIT" ]
1
2021-06-01T21:46:26.000Z
2021-06-01T21:46:26.000Z
rfdmovie/models.py
tangzhoutz/rfdmovies-client
befba9ac7667d8234976b7fda7fa800beb5f05c7
[ "MIT" ]
null
null
null
from sqlalchemy import ARRAY from sqlalchemy import Column from sqlalchemy.types import String, Integer, BigInteger, Float, Date, Text from rfdmovie.db import BaseModel from rfdmovie.utils import generate_timestamp
33.518072
90
0.626887
from sqlalchemy import ARRAY from sqlalchemy import Column from sqlalchemy.types import String, Integer, BigInteger, Float, Date, Text from rfdmovie.db import BaseModel from rfdmovie.utils import generate_timestamp class Movie(BaseModel): __tablename__ = 'movie' id = Column(Integer, primary_key=True) name = Column(String) release_time = Column(Date) # "1999-09-09" rate = Column(Float) rate_num = Column(BigInteger) desc = Column(Text) countries = Column(ARRAY(String)) image_url = Column(String) types = Column(ARRAY(String)) director = Column(String) actors = Column(ARRAY(String)) douban_url = Column(String) keywords = Column(ARRAY(String)) comments = Column(ARRAY(String)) languages = Column(ARRAY(String)) duration = Column(Integer) grade_five = Column(Float, default=0) grade_four = Column(Float, default=0) grade_three = Column(Float, default=0) grade_two = Column(Float, default=0) grade_one = Column(Float, default=0) created_utc = Column(Integer, default=generate_timestamp) updated_utc = Column(Integer, default=generate_timestamp, onupdate=generate_timestamp) def to_dict(self): return { "id": self.id, "name": self.name, "release_time": self.release_time, "rate": self.rate, "rate_num": self.rate_num, "desc": self.desc, "countries": self.countries, "image_url": self.image_url, "types": self.types, "director": self.director, "actors": self.actors, "douban_url": self.douban_url, "keywords": self.keywords, "comments": self.comments, "languages": self.languages, "duration": self.duration, "grade_five": self.grade_five, "grade_four": self.grade_four, "grade_three": self.grade_three, "grade_two": self.grade_two, "grade_one": self.grade_one, "created_utc": self.created_utc, "updated_utc": self.updated_utc } class Download(BaseModel): __tablename__ = 'download' id = Column(Integer, primary_key=True) name = Column(String) page_link = Column(String) download_urls = Column(ARRAY(String), default=[]) created_utc = Column(Integer, default=generate_timestamp) updated_utc = Column(Integer, default=generate_timestamp, onupdate=generate_timestamp) def to_dict(self): return { "id": self.id, "name": self.name, "page_link": self.page_link, "download_urls": self.download_urls, "created_utc": self.created_utc, "updated_utc": self.updated_utc }
1,183
1,335
46
87fdd5cc0a847ca325cf3cc9964514e6fe985f25
5,539
py
Python
track/centroidtracker.py
yxtj/VideoServing
52d1c1c97021f11cc4d77c181ac1144fe3a789ce
[ "MIT" ]
null
null
null
track/centroidtracker.py
yxtj/VideoServing
52d1c1c97021f11cc4d77c181ac1144fe3a789ce
[ "MIT" ]
null
null
null
track/centroidtracker.py
yxtj/VideoServing
52d1c1c97021f11cc4d77c181ac1144fe3a789ce
[ "MIT" ]
null
null
null
# modified from: # https://www.pyimagesearch.com/2018/07/23/simple-object-tracking-with-opencv/ from scipy.spatial import distance as dist import numpy as np
40.727941
78
0.608955
# modified from: # https://www.pyimagesearch.com/2018/07/23/simple-object-tracking-with-opencv/ from scipy.spatial import distance as dist import numpy as np class CentroidTracker(): def __init__(self, maxDisappeared=50): # initialize the next unique object ID along with two ordered # dictionaries used to keep track of mapping a given object # ID to its centroid and number of consecutive frames it has # been marked as "disappeared", respectively self.nextObjectID = 0 self.objects = {} self.disappeared = {} # store the number of maximum consecutive frames a given # object is allowed to be marked as "disappeared" until we # need to deregister the object from tracking self.maxDisappeared = maxDisappeared def reset(self): self.nextObjectID = 0 self.objects = {} self.disappeared = {} def get_state(self): return self.nextObjectID, self.objects.copy(), self.disappeared.copy() def set_state(self, state): self.nextObjectID = state[0] self.objects = state[1] self.disappeared = state[2] def set_max_disappear(self, n): self.maxDisappeared = n def register(self, centroid, box): # when registering an object we use the next available object # ID to store the centroid self.objects[self.nextObjectID] = (centroid, box) self.disappeared[self.nextObjectID] = 0 self.nextObjectID += 1 def deregister(self, objectID): # to deregister an object ID we delete the object ID from # both of our respective dictionaries del self.objects[objectID] del self.disappeared[objectID] def bbox2centroid(self, rect): return (rect[:2]+rect[2:]) / 2 def bboxes2centroids(self, rects): return np.apply_along_axis(lambda r:(r[:2]+r[2:])/2, 1, rects) def get_result(self): return { id:b for id,(c,b) in self.objects.items() } def update(self, boxes): if len(boxes) == 0: for objectID in list(self.disappeared.keys()): self.disappeared[objectID] += 1 if self.disappeared[objectID] > self.maxDisappeared: self.deregister(objectID) return self.get_result() # initialize an array of input centroids for the current frame #inputCentroids = self.bboxes2centroids(boxes) if isinstance(boxes, list): boxes = np.array(boxes) inputCentroids = (boxes[:,:2] + boxes[:,2:]) / 2 if len(self.objects) == 0: for c,b in zip(inputCentroids, boxes): self.register(c, b) return self.get_result() # grab the set of object IDs and corresponding centroids objectIDs = list(self.objects.keys()) objectCentroids, objectBoxes = list(zip(*self.objects.values())) objectCentroids = np.array(objectCentroids) objectBoxes = np.array(objectBoxes) D = dist.cdist(np.array(objectCentroids), inputCentroids) # in order to perform this matching we must (1) find the # smallest value in each row and then (2) sort the row # indexes based on their minimum values so that the row # with the smallest value is at the *front* of the index # list rows = D.min(axis=1).argsort() # next, we perform a similar process on the columns by # finding the smallest value in each column and then # sorting using the previously computed row index list cols = D.argmin(axis=1)[rows] # in order to determine if we need to update, register, # or deregister an object we need to keep track of which # of the rows and column indexes we have already examined usedRows = set() usedCols = set() # loop over the combination of the (row, column) index tuples for (row, col) in zip(rows, cols): # if we have already examined either the row or # column value before, ignore it if row in usedRows or col in usedCols: continue # otherwise, grab the object ID for the current row, # set its new centroid, and reset the disappeared counter objectID = objectIDs[row] self.objects[objectID] = (inputCentroids[col], boxes[col]) self.disappeared[objectID] = 0 # indicate that we have examined each of the row and # column indexes, respectively usedRows.add(row) usedCols.add(col) # compute both the row and column index we have NOT yet examined unusedRows = set(range(0, D.shape[0])).difference(usedRows) unusedCols = set(range(0, D.shape[1])).difference(usedCols) # unmatched existing objects for row in unusedRows: objectID = objectIDs[row] self.disappeared[objectID] += 1 # check to see if the number of consecutive # frames the object has been marked "disappeared" # for warrants deregistering the object if self.disappeared[objectID] > self.maxDisappeared: self.deregister(objectID) # unmatched new objects for col in unusedCols: self.register(inputCentroids[col], boxes[col]) return self.get_result()
4,998
3
363
5e9c4f1b493d16c09e4c154dee47c2a179feb368
2,371
py
Python
trader/messaging/bus.py
9600dev/mmr
b08e63b7044f2b2061d8679b216822c82d309c86
[ "Apache-2.0" ]
12
2021-09-22T21:19:23.000Z
2022-01-03T21:38:47.000Z
trader/messaging/bus.py
9600dev/mmr
b08e63b7044f2b2061d8679b216822c82d309c86
[ "Apache-2.0" ]
null
null
null
trader/messaging/bus.py
9600dev/mmr
b08e63b7044f2b2061d8679b216822c82d309c86
[ "Apache-2.0" ]
3
2021-09-05T23:26:13.000Z
2022-03-25T01:01:22.000Z
import lightbus from lightbus.api import Api, Event from dataclasses import dataclass from ib_insync.objects import Position, PortfolioItem from ib_insync.contract import Contract from ib_insync.order import Order, Trade from trader.container import Container from trader.trading.trading_runtime import Action, Trader from trader.data.universe import Universe from trader.common.helpers import DictHelper from typing import List, Dict, Tuple, Optional bus = lightbus.create(config_file=Container().config()['lightbus_config_file']) bus.client.register_api(TraderServiceApi())
38.241935
101
0.716997
import lightbus from lightbus.api import Api, Event from dataclasses import dataclass from ib_insync.objects import Position, PortfolioItem from ib_insync.contract import Contract from ib_insync.order import Order, Trade from trader.container import Container from trader.trading.trading_runtime import Action, Trader from trader.data.universe import Universe from trader.common.helpers import DictHelper from typing import List, Dict, Tuple, Optional class TraderServiceApi(Api): # this resolves a singleton trader instance, which if instantiated from # the trader runtime, will have all the things needed to reflect on the current # state of the trading system. # If it's resolved from outside the runtime (i.e. from bus.py import *) it still # fires up properly. trader = Container().resolve(Trader) class Meta: name = 'service' # json can't encode Dict's with keys that aren't primitive and hashable # so we often have to convert to weird containers like List[Tuple] async def get_positions(self) -> List[Position]: return self.trader.portfolio.get_positions() async def get_portfolio(self) -> List[PortfolioItem]: return self.trader.client.ib.portfolio() # return self.trader.portfolio.get_portfolio_items() async def get_universes(self) -> Dict[str, int]: return self.trader.universe_accessor.list_universes_count() async def get_trades(self) -> Dict[int, List[Trade]]: return self.trader.book.get_trades() async def get_orders(self) -> Dict[int, List[Order]]: return self.trader.book.get_orders() async def cancel_order(self, order_id: int) -> Optional[Trade]: return self.trader.cancel_order(order_id) async def temp_place_order(self, contract: Contract, action: str, equity_amount: float) -> Trade: act = Action.BUY if 'BUY' in action else Action.SELL cached_observer = await self.trader.temp_handle_order( contract=contract, action=act, equity_amount=equity_amount, delayed=True, debug=True ) return await cached_observer.wait_value() async def reconnect(self): return self.trader.reconnect() bus = lightbus.create(config_file=Container().config()['lightbus_config_file']) bus.client.register_api(TraderServiceApi())
1,012
758
23
d5080d8c67c0d3338d1a3b44c3d780a559c00923
9,169
py
Python
sdk/tests/router/config/resource_request_test.py
LeonLnj/turing
93817f5cfb40d056a707bd85e9265b5cafdaeb94
[ "Apache-2.0" ]
1
2021-12-26T09:04:13.000Z
2021-12-26T09:04:13.000Z
sdk/tests/router/config/resource_request_test.py
LeonLnj/turing
93817f5cfb40d056a707bd85e9265b5cafdaeb94
[ "Apache-2.0" ]
null
null
null
sdk/tests/router/config/resource_request_test.py
LeonLnj/turing
93817f5cfb40d056a707bd85e9265b5cafdaeb94
[ "Apache-2.0" ]
null
null
null
import pytest from turing.generated.exceptions import ApiValueError from turing.router.config.resource_request import (ResourceRequest, InvalidReplicaCountException) @pytest.mark.parametrize( "min_replica,max_replica,cpu_request,memory_request,expected", [ pytest.param( 1, 3, "100m", "512Mi", "generic_resource_request" ) ]) @pytest.mark.parametrize( "min_replica,max_replica,cpu_request,memory_request,expected", [ pytest.param( ResourceRequest.min_allowed_replica - 1, 3, "100m", "512Mi", InvalidReplicaCountException ) ]) @pytest.mark.parametrize( "min_replica,max_replica,cpu_request,memory_request,expected", [ pytest.param( 1, ResourceRequest.max_allowed_replica + 1, "100m", "512Mi", InvalidReplicaCountException ) ]) @pytest.mark.parametrize( "min_replica,max_replica,cpu_request,memory_request,expected", [ pytest.param( 5, 4, "100m", "512Mi", InvalidReplicaCountException ) ]) @pytest.mark.parametrize( "min_replica,max_replica,cpu_request,memory_request,expected", [ pytest.param( 2, 5, "3m", "512Mi", ApiValueError ) ]) @pytest.mark.parametrize( "min_replica,max_replica,cpu_request,memory_request,expected", [ pytest.param( 2, 5, "33m", "512Ri", ApiValueError ) ]) @pytest.mark.parametrize( "new_min_replica,min_replica,max_replica,cpu_request,memory_request,expected", [ pytest.param( 1, 2, 3, "100m", "512Mi", "generic_resource_request" ) ]) @pytest.mark.parametrize( "new_max_replica,min_replica,max_replica,cpu_request,memory_request,expected", [ pytest.param( 3, 1, 6, "100m", "512Mi", "generic_resource_request" ) ]) @pytest.mark.parametrize( "new_min_replica,min_replica,max_replica,cpu_request,memory_request,expected", [ pytest.param( -1, 1, 3, "100m", "512Mi", InvalidReplicaCountException ) ]) @pytest.mark.parametrize( "new_max_replica,min_replica,max_replica,cpu_request,memory_request,expected", [ pytest.param( 50, 1, 3, "100m", "512Mi", InvalidReplicaCountException ) ]) @pytest.mark.parametrize( "new_min_replica,min_replica,max_replica,cpu_request,memory_request,expected", [ pytest.param( 5, 1, 3, "100m", "512Mi", InvalidReplicaCountException ) ]) @pytest.mark.parametrize( "new_max_replica,min_replica,max_replica,cpu_request,memory_request,expected", [ pytest.param( 4, 5, 10, "100m", "512Mi", InvalidReplicaCountException ) ]) @pytest.mark.parametrize( "min_replica,max_replica,cpu_request,memory_request,expected", [ pytest.param( 1, 3, "3m", "512Mi", ApiValueError ) ]) @pytest.mark.parametrize( "min_replica,max_replica,cpu_request,memory_request,expected", [ pytest.param( 1, 3, "100m", "512Ri", ApiValueError ) ])
23.450128
97
0.583815
import pytest from turing.generated.exceptions import ApiValueError from turing.router.config.resource_request import (ResourceRequest, InvalidReplicaCountException) @pytest.mark.parametrize( "min_replica,max_replica,cpu_request,memory_request,expected", [ pytest.param( 1, 3, "100m", "512Mi", "generic_resource_request" ) ]) def test_create_resource_request_with_valid_params( min_replica, max_replica, cpu_request, memory_request, expected, request ): actual = ResourceRequest( min_replica, max_replica, cpu_request, memory_request ).to_open_api() assert actual == request.getfixturevalue(expected) @pytest.mark.parametrize( "min_replica,max_replica,cpu_request,memory_request,expected", [ pytest.param( ResourceRequest.min_allowed_replica - 1, 3, "100m", "512Mi", InvalidReplicaCountException ) ]) def test_create_resource_request_with_min_replica_below_min_allowed( min_replica, max_replica, cpu_request, memory_request, expected, ): with pytest.raises(expected): ResourceRequest( min_replica, max_replica, cpu_request, memory_request ) @pytest.mark.parametrize( "min_replica,max_replica,cpu_request,memory_request,expected", [ pytest.param( 1, ResourceRequest.max_allowed_replica + 1, "100m", "512Mi", InvalidReplicaCountException ) ]) def test_create_resource_request_with_max_replica_above_max_allowed( min_replica, max_replica, cpu_request, memory_request, expected, ): with pytest.raises(expected): ResourceRequest( min_replica, max_replica, cpu_request, memory_request ) @pytest.mark.parametrize( "min_replica,max_replica,cpu_request,memory_request,expected", [ pytest.param( 5, 4, "100m", "512Mi", InvalidReplicaCountException ) ]) def test_create_resource_request_with_min_replica_greater_than_max_replica( min_replica, max_replica, cpu_request, memory_request, expected, ): with pytest.raises(expected): ResourceRequest( min_replica, max_replica, cpu_request, memory_request ) @pytest.mark.parametrize( "min_replica,max_replica,cpu_request,memory_request,expected", [ pytest.param( 2, 5, "3m", "512Mi", ApiValueError ) ]) def test_create_resource_request_with_invalid_cpu_request_string( min_replica, max_replica, cpu_request, memory_request, expected, ): with pytest.raises(expected): ResourceRequest( min_replica, max_replica, cpu_request, memory_request ).to_open_api() @pytest.mark.parametrize( "min_replica,max_replica,cpu_request,memory_request,expected", [ pytest.param( 2, 5, "33m", "512Ri", ApiValueError ) ]) def test_create_resource_request_with_invalid_memory_request_string( min_replica, max_replica, cpu_request, memory_request, expected, ): with pytest.raises(expected): ResourceRequest( min_replica, max_replica, cpu_request, memory_request ).to_open_api() @pytest.mark.parametrize( "new_min_replica,min_replica,max_replica,cpu_request,memory_request,expected", [ pytest.param( 1, 2, 3, "100m", "512Mi", "generic_resource_request" ) ]) def test_create_resource_request_with_valid_min_replica( new_min_replica, min_replica, max_replica, cpu_request, memory_request, expected, request ): actual = ResourceRequest( min_replica, max_replica, cpu_request, memory_request ) actual.min_replica = new_min_replica assert actual.to_open_api() == request.getfixturevalue(expected) @pytest.mark.parametrize( "new_max_replica,min_replica,max_replica,cpu_request,memory_request,expected", [ pytest.param( 3, 1, 6, "100m", "512Mi", "generic_resource_request" ) ]) def test_create_resource_request_with_valid_max_replica( new_max_replica, min_replica, max_replica, cpu_request, memory_request, expected, request ): actual = ResourceRequest( min_replica, max_replica, cpu_request, memory_request ) actual.max_replica = new_max_replica assert actual.to_open_api() == request.getfixturevalue(expected) @pytest.mark.parametrize( "new_min_replica,min_replica,max_replica,cpu_request,memory_request,expected", [ pytest.param( -1, 1, 3, "100m", "512Mi", InvalidReplicaCountException ) ]) def test_set_resource_request_with_min_replica_below_min_allowed( new_min_replica, min_replica, max_replica, cpu_request, memory_request, expected ): actual = ResourceRequest( min_replica, max_replica, cpu_request, memory_request ) with pytest.raises(expected): actual.min_replica = new_min_replica @pytest.mark.parametrize( "new_max_replica,min_replica,max_replica,cpu_request,memory_request,expected", [ pytest.param( 50, 1, 3, "100m", "512Mi", InvalidReplicaCountException ) ]) def test_set_resource_request_with_max_replica_above_max_allowed( new_max_replica, min_replica, max_replica, cpu_request, memory_request, expected ): actual = ResourceRequest( min_replica, max_replica, cpu_request, memory_request ) with pytest.raises(expected): actual.max_replica = new_max_replica @pytest.mark.parametrize( "new_min_replica,min_replica,max_replica,cpu_request,memory_request,expected", [ pytest.param( 5, 1, 3, "100m", "512Mi", InvalidReplicaCountException ) ]) def test_set_resource_request_with_min_replica_greater_than_max_replica( new_min_replica, min_replica, max_replica, cpu_request, memory_request, expected ): actual = ResourceRequest( min_replica, max_replica, cpu_request, memory_request ) with pytest.raises(expected): actual.min_replica = new_min_replica @pytest.mark.parametrize( "new_max_replica,min_replica,max_replica,cpu_request,memory_request,expected", [ pytest.param( 4, 5, 10, "100m", "512Mi", InvalidReplicaCountException ) ]) def test_set_resource_request_with_max_replica_below_min_replica( new_max_replica, min_replica, max_replica, cpu_request, memory_request, expected ): actual = ResourceRequest( min_replica, max_replica, cpu_request, memory_request ) with pytest.raises(expected): actual.max_replica = new_max_replica @pytest.mark.parametrize( "min_replica,max_replica,cpu_request,memory_request,expected", [ pytest.param( 1, 3, "3m", "512Mi", ApiValueError ) ]) def test_create_resource_request_with_invalid_cpu_request_string( min_replica, max_replica, cpu_request, memory_request, expected ): actual = ResourceRequest( min_replica, max_replica, cpu_request, memory_request ) with pytest.raises(expected): actual.to_open_api() @pytest.mark.parametrize( "min_replica,max_replica,cpu_request,memory_request,expected", [ pytest.param( 1, 3, "100m", "512Ri", ApiValueError ) ]) def test_create_resource_request_with_invalid_memory_request_string( min_replica, max_replica, cpu_request, memory_request, expected ): actual = ResourceRequest( min_replica, max_replica, cpu_request, memory_request ) with pytest.raises(expected): actual.to_open_api()
5,029
0
308
3bf7e94c85fcc3d67cebd0e19a84bfc00aa8605f
13,001
py
Python
bs_align/bs_align_utils.py
huboqiang/BSseeker2
385f88cf78b3efced75798c00f0e7185ac064047
[ "MIT" ]
null
null
null
bs_align/bs_align_utils.py
huboqiang/BSseeker2
385f88cf78b3efced75798c00f0e7185ac064047
[ "MIT" ]
null
null
null
bs_align/bs_align_utils.py
huboqiang/BSseeker2
385f88cf78b3efced75798c00f0e7185ac064047
[ "MIT" ]
1
2021-11-01T03:21:47.000Z
2021-11-01T03:21:47.000Z
from bs_utils.utils import * import re BAM_MATCH = 0 BAM_INS = 1 BAM_DEL = 2 BAM_SOFTCLIP = 4 CIGAR_OPS = {'M' : BAM_MATCH, 'I' : BAM_INS, 'D' : BAM_DEL, 'S' : BAM_SOFTCLIP} #---------------------------------------------------------------- """ Exmaple: ======== Read : ACCGCGTTGATCGAGTACGTACGTGGGTC Adapter : ....................ACGTGGGTCCCG ======== no_mismatch : the maximum number allowed for mismatches Algorithm: (allowing 1 mismatch) ======== -Step 1: ACCGCGTTGATCGAGTACGTACGTGGGTC ||XX ACGTGGGTCCCG -Step 2: ACCGCGTTGATCGAGTACGTACGTGGGTC X||X .ACGTGGGTCCCG -Step 3: ACCGCGTTGATCGAGTACGTACGTGGGTC XX ..ACGTGGGTCCCG -Step ... -Step N: ACCGCGTTGATCGAGTACGTACGTGGGTC ||||||||| ....................ACGTGGGTCCCG Success & return! ======== """ # Remove the adapter from 3' end def next_nuc(seq, pos, n): """ Returns the nucleotide that is n places from pos in seq. Skips gap symbols. """ i = pos + 1 while i < len(seq): if seq[i] != '-': n -= 1 if n == 0: break i += 1 if i < len(seq) : return seq[i] else : return 'N' def cigar_to_alignment(cigar, read_seq, genome_seq): """ Reconstruct the pairwise alignment based on the CIGAR string and the two sequences """ # reconstruct the alignment r_pos = cigar[0][1] if cigar[0][0] == BAM_SOFTCLIP else 0 g_pos = 0 r_aln = '' g_aln = '' for edit_op, count in cigar: if edit_op == BAM_MATCH: r_aln += read_seq[r_pos : r_pos + count] g_aln += genome_seq[g_pos : g_pos + count] r_pos += count g_pos += count elif edit_op == BAM_DEL: r_aln += '-'*count g_aln += genome_seq[g_pos : g_pos + count] g_pos += count elif edit_op == BAM_INS: r_aln += read_seq[r_pos : r_pos + count] g_aln += '-'*count r_pos += count return r_aln, g_aln # return sequence is [start, end), not include 'end'
32.748111
133
0.515576
from bs_utils.utils import * import re BAM_MATCH = 0 BAM_INS = 1 BAM_DEL = 2 BAM_SOFTCLIP = 4 CIGAR_OPS = {'M' : BAM_MATCH, 'I' : BAM_INS, 'D' : BAM_DEL, 'S' : BAM_SOFTCLIP} def N_MIS(r,g): mismatches = 0 if len(r)==len(g): for i in xrange(len(r)): if r[i] != g[i] and r[i] != "N" and g[i] != "N" and not(r[i] == 'T' and g[i] == 'C'): mismatches += 1 return mismatches #---------------------------------------------------------------- """ Exmaple: ======== Read : ACCGCGTTGATCGAGTACGTACGTGGGTC Adapter : ....................ACGTGGGTCCCG ======== no_mismatch : the maximum number allowed for mismatches Algorithm: (allowing 1 mismatch) ======== -Step 1: ACCGCGTTGATCGAGTACGTACGTGGGTC ||XX ACGTGGGTCCCG -Step 2: ACCGCGTTGATCGAGTACGTACGTGGGTC X||X .ACGTGGGTCCCG -Step 3: ACCGCGTTGATCGAGTACGTACGTGGGTC XX ..ACGTGGGTCCCG -Step ... -Step N: ACCGCGTTGATCGAGTACGTACGTGGGTC ||||||||| ....................ACGTGGGTCCCG Success & return! ======== """ # Remove the adapter from 3' end def RemoveAdapter ( read, adapter, no_mismatch, rm_back=0) : lr = len(read) la = len(adapter) # Check the empty adapter, namely, the reads start with the 2nd base of adapter, # not including the 'A' base in front of the adapter. if adapter[2:] == read[0:(la-1)] : return "" for i in xrange( lr - no_mismatch ) : read_pos = i adapter_pos = 0 count_no_mis = 0 while (adapter_pos < la) and (read_pos < lr) : if (read[read_pos] == adapter[adapter_pos]) : read_pos = read_pos + 1 adapter_pos = adapter_pos + 1 else : count_no_mis = count_no_mis + 1 if count_no_mis > no_mismatch : break else : read_pos = read_pos + 1 adapter_pos = adapter_pos + 1 # while_end # Cut the extra bases before the adapter # --C|CG G-- => --CNN+A+<adapter> # --G GC|C-- --GGC if adapter_pos == la or read_pos == lr : if i <= rm_back : return '' else : return read[:(i-rm_back)] # for_end return read def Remove_5end_Adapter ( read, adapter, no_mismatch) : lr = len(read) la = len(adapter) for i in xrange (la - no_mismatch) : read_pos = 0 adapter_pos = i count_no_mis = 0 while (adapter_pos < la) and (read_pos < lr) : if (read[read_pos] == adapter[adapter_pos]) : adapter_pos = adapter_pos + 1 read_pos = read_pos + 1 else : count_no_mis = count_no_mis + 1 if count_no_mis > no_mismatch : break else : read_pos = read_pos + 1 adapter_pos = adapter_pos + 1 # while_end if adapter_pos == la : return read[(la-i):] def next_nuc(seq, pos, n): """ Returns the nucleotide that is n places from pos in seq. Skips gap symbols. """ i = pos + 1 while i < len(seq): if seq[i] != '-': n -= 1 if n == 0: break i += 1 if i < len(seq) : return seq[i] else : return 'N' def methy_seq(read, genome): H = ['A', 'C', 'T'] m_seq = [] xx = "-" for i in xrange(len(read)): if genome[i] == '-': continue elif read[i] != 'C' and read[i] != 'T': xx = "-" elif read[i] == "T" and genome[i] == "C": #(unmethylated): nn1 = next_nuc(genome, i, 1) if nn1 == "G": xx = "x" elif nn1 in H : nn2 = next_nuc(genome, i, 2) if nn2 == "G": xx = "y" elif nn2 in H : xx = "z" elif read[i] == "C" and genome[i] == "C": #(methylated): nn1 = next_nuc(genome, i, 1) if nn1 == "G": xx = "X" elif nn1 in H : nn2 = next_nuc(genome, i, 2) if nn2 == "G": xx = "Y" elif nn2 in H: xx = "Z" else: xx = "-" m_seq.append(xx) return ''.join(m_seq) def mcounts(mseq, mlst, ulst): out_mlst=[mlst[0]+mseq.count("X"), mlst[1]+mseq.count("Y"), mlst[2]+mseq.count("Z")] out_ulst=[ulst[0]+mseq.count("x"), ulst[1]+mseq.count("y"), ulst[2]+mseq.count("z")] return out_mlst, out_ulst def process_aligner_output(filename, pair_end = False): #m = re.search(r'-('+'|'.join(supported_aligners) +')-TMP', filename) m = re.search(r'-('+'|'.join(supported_aligners) +')-.*TMP', filename) if m is None: error('The temporary folder path should contain the name of one of the supported aligners: ' + filename) format = m.group(1) try : input = open(filename) except IOError: print "[Error] Cannot open file %s" % filename exit(-1) QNAME, FLAG, RNAME, POS, MAPQ, CIGAR, RNEXT, PNEXT, TLEN, SEQ, QUAL = range(11) def parse_SAM(line): buf = line.split() # print buf flag = int(buf[FLAG]) # skip reads that are not mapped # skip reads that have probability of being non-unique higher than 1/10 if flag & 0x4 : # or int(buf[MAPQ]) < 10: return None, None, None, None, None, None # print "format = ", format if format == BOWTIE: mismatches = int([buf[i][5:] for i in xrange(11, len(buf)) if buf[i][:5] == 'NM:i:'][0]) # get the edit distance # --- bug fixed ------ elif format == BOWTIE2: if re.search(r'(.)*-e2e-TMP(.*)', filename) is None : # local model mismatches = 1-int([buf[i][5:] for i in xrange(11, len(buf)) if buf[i][:5] == 'AS:i:'][0]) # print "====local=====\n" ## bowtie2 use AS tag (score) to evaluate the mapping. The higher, the better. else : # end-to-end model # print "end-to-end\n" mismatches = int([buf[i][5:] for i in xrange(11, len(buf)) if buf[i][:5] == 'XM:i:'][0]) # --- Weilong --------- elif format == SOAP: mismatches = 1-buf[MAPQ] # mismatches = 1/float(buf[MAPQ]) ## downstream might round (0,1) to 0, so use integer instead ## fixed by Weilong elif format == RMAP: # chr16 75728107 75728147 read45 9 - # chr16 67934919 67934959 read45 9 - mismatches = buf[4] return (buf[QNAME], # read ID buf[RNAME], # reference ID int(buf[POS]) - 1, # position, 0 based (SAM is 1 based) mismatches, # number of mismatches parse_cigar(buf[CIGAR]), # the parsed cigar string flag & 0x40 # true if it is the first mate in a pair, false if it is the second mate ) SOAP_QNAME, SOAP_SEQ, SOAP_QUAL, SOAP_NHITS, SOAP_AB, SOAP_LEN, SOAP_STRAND, SOAP_CHR, SOAP_LOCATION, SOAP_MISMATCHES = range(10) def parse_SOAP(line): buf = line.split() return (buf[SOAP_QNAME], buf[SOAP_CHR], int(buf[SOAP_LOCATION]) - 1, int(buf[SOAP_MISMATCHES]), buf[SOAP_AB], buf[SOAP_STRAND], parse_cigar(buf[SOAP_LEN]+'M') ) # chr16 75728107 75728147 read45 9 - RMAP_CHR, RMAP_START, RMAP_END, RMAP_QNAME, RMAP_MISMATCH, RMAP_STRAND = range(6) def parse_RMAP(line): buf = line.split() return ( buf[RMAP_QNAME], buf[RMAP_CHR], int(buf[RMAP_START]), # to check -1 or not int(buf[RMAP_END]) - int(buf[RMAP_START]) + 1, int(buf[RMAP_MISMATCH]), buf[RMAP_STRAND] ) if format == BOWTIE or format == BOWTIE2: if pair_end: for line in input: header1, chr1, location1, no_mismatch1, cigar1, _ = parse_SAM(line) header2, _, location2, no_mismatch2, cigar2, mate_no2 = parse_SAM(input.next()) if header1 and header2: # flip the location info if the second mate comes first in the alignment file if mate_no2: location1, location2 = location2, location1 cigar1, cigar2 = cigar2, cigar1 yield header1, chr1, no_mismatch1 + no_mismatch2, location1, cigar1, location2, cigar2 else: for line in input: header, chr, location, no_mismatch, cigar, _ = parse_SAM(line) if header is not None: yield header, chr, location, no_mismatch, cigar elif format == SOAP: if pair_end: for line in input: header1, chr1, location1, no_mismatch1, mate1, strand1, cigar1 = parse_SOAP(line) header2, _ , location2, no_mismatch2, _, strand2, cigar2 = parse_SOAP(input.next()) if mate1 == 'b': location1, location2 = location2, location1 strand1, strand2 = strand2, strand1 ciga1, cigar2 = cigar2, cigar1 if header1 and header2 and strand1 == '+' and strand2 == '-': yield header1, chr1, no_mismatch1 + no_mismatch2, location1, cigar1, location2, cigar2 else: for line in input: header, chr, location, no_mismatch, _, strand, cigar = parse_SOAP(line) if header and strand == '+': yield header, chr, location, no_mismatch, cigar elif format == RMAP : if pair_end : todo = 0 # to do else : for line in input: header, chr, location, read_len, no_mismatch, strand = parse_RMAP(line) cigar = str(read_len) + "M" yield header, chr, location, no_mismatch, cigar input.close() def parse_cigar(cigar_string): i = 0 prev_i = 0 cigar = [] while i < len(cigar_string): if cigar_string[i] in CIGAR_OPS: cigar.append((CIGAR_OPS[cigar_string[i]], int(cigar_string[prev_i:i]))) prev_i = i + 1 i += 1 return cigar def get_read_start_end_and_genome_length(cigar): r_start = cigar[0][1] if cigar[0][0] == BAM_SOFTCLIP else 0 r_end = r_start g_len = 0 for edit_op, count in cigar: if edit_op == BAM_MATCH: r_end += count g_len += count elif edit_op == BAM_INS: r_end += count elif edit_op == BAM_DEL: g_len += count return r_start, r_end, g_len # return the start and end in the read and the length of the genomic sequence # r_start : start position on the read # r_end : end position on the read # g_len : length of the mapped region on genome def cigar_to_alignment(cigar, read_seq, genome_seq): """ Reconstruct the pairwise alignment based on the CIGAR string and the two sequences """ # reconstruct the alignment r_pos = cigar[0][1] if cigar[0][0] == BAM_SOFTCLIP else 0 g_pos = 0 r_aln = '' g_aln = '' for edit_op, count in cigar: if edit_op == BAM_MATCH: r_aln += read_seq[r_pos : r_pos + count] g_aln += genome_seq[g_pos : g_pos + count] r_pos += count g_pos += count elif edit_op == BAM_DEL: r_aln += '-'*count g_aln += genome_seq[g_pos : g_pos + count] g_pos += count elif edit_op == BAM_INS: r_aln += read_seq[r_pos : r_pos + count] g_aln += '-'*count r_pos += count return r_aln, g_aln # return sequence is [start, end), not include 'end' def get_genomic_sequence(genome, start, end, strand = '+'): if strand != '+' and strand != '-' : print "[Bug] get_genomic_sequence input should be \'+\' or \'-\'." exit(-1) if start > 1: prev = genome[start-2:start] elif start == 1: prev = 'N'+genome[0] else: prev = 'NN' if end < len(genome) - 1: next = genome[end: end + 2] elif end == len(genome) - 1: next = genome[end] + 'N' else: next = 'NN' origin_genome = genome[start:end] if strand == '-': # reverse complement everything if strand is '-' revc = reverse_compl_seq('%s%s%s' % (prev, origin_genome, next)) prev, origin_genome, next = revc[:2], revc[2:-2], revc[-2:] return origin_genome, next, '%s_%s_%s' % (prev, origin_genome, next) # next : next two nucleotides
10,727
0
205
c3579c902cbdded2585c8b7a27020a60e348e6c2
160
py
Python
scripts/portal/evantalk02.py
G00dBye/YYMS
1de816fc842b6598d5b4b7896b6ab0ee8f7cdcfb
[ "MIT" ]
54
2019-04-16T23:24:48.000Z
2021-12-18T11:41:50.000Z
scripts/portal/evantalk02.py
G00dBye/YYMS
1de816fc842b6598d5b4b7896b6ab0ee8f7cdcfb
[ "MIT" ]
3
2019-05-19T15:19:41.000Z
2020-04-27T16:29:16.000Z
scripts/portal/evantalk02.py
G00dBye/YYMS
1de816fc842b6598d5b4b7896b6ab0ee8f7cdcfb
[ "MIT" ]
49
2020-11-25T23:29:16.000Z
2022-03-26T16:20:24.000Z
if not "mo02=o" in sm.getQRValue(22013): sm.avatarOriented("Effect/OnUserEff.img/guideEffect/evanTutorial/evanBalloon02") sm.addQRValue(22013, "mo02=o")
53.333333
84
0.75625
if not "mo02=o" in sm.getQRValue(22013): sm.avatarOriented("Effect/OnUserEff.img/guideEffect/evanTutorial/evanBalloon02") sm.addQRValue(22013, "mo02=o")
0
0
0
534e4c177b3b875055cf3bc8aa81353837994a24
1,285
py
Python
CS596/code04_lr/mglearn/plot_knn_regression.py
ko-takahashi/college
c333f1e1767f1206687f5e9b0fb3f0145b2d5d6a
[ "MIT" ]
52
2019-02-15T16:37:13.000Z
2022-02-17T18:34:30.000Z
Data Exploring/Data Exploring 12-25-17/mglearn/plot_knn_regression.py
RodeoBlues/Complete-Data-Science-Toolkits
c5e83889e24af825ec3baed6e8198debb135f1ff
[ "MIT" ]
2
2021-06-19T08:04:01.000Z
2021-06-20T16:01:21.000Z
Data Exploring/Data Exploring 12-25-17/mglearn/plot_knn_regression.py
RodeoBlues/Complete-Data-Science-Toolkits
c5e83889e24af825ec3baed6e8198debb135f1ff
[ "MIT" ]
35
2019-02-08T02:00:31.000Z
2022-03-01T23:17:00.000Z
import numpy as np import matplotlib.pyplot as plt from sklearn.neighbors import KNeighborsRegressor from sklearn.metrics import euclidean_distances from .datasets import make_wave from .plot_helpers import cm3
32.948718
76
0.60856
import numpy as np import matplotlib.pyplot as plt from sklearn.neighbors import KNeighborsRegressor from sklearn.metrics import euclidean_distances from .datasets import make_wave from .plot_helpers import cm3 def plot_knn_regression(n_neighbors=1): X, y = make_wave(n_samples=40) X_test = np.array([[-1.5], [0.9], [1.5]]) dist = euclidean_distances(X, X_test) closest = np.argsort(dist, axis=0) plt.figure(figsize=(10, 6)) reg = KNeighborsRegressor(n_neighbors=n_neighbors).fit(X, y) y_pred = reg.predict(X_test) for x, y_, neighbors in zip(X_test, y_pred, closest.T): for neighbor in neighbors[:n_neighbors]: plt.arrow(x[0], y_, X[neighbor, 0] - x[0], y[neighbor] - y_, head_width=0, fc='k', ec='k') train, = plt.plot(X, y, 'o', c=cm3(0)) test, = plt.plot(X_test, -3 * np.ones(len(X_test)), '*', c=cm3(2), markersize=20) pred, = plt.plot(X_test, y_pred, '*', c=cm3(0), markersize=20) plt.vlines(X_test, -3.1, 3.1, linestyle="--") plt.legend([train, test, pred], ["training data/target", "test data", "test prediction"], ncol=3, loc=(.1, 1.025)) plt.ylim(-3.1, 3.1) plt.xlabel("Feature") plt.ylabel("Target")
1,048
0
23
e5d4fa5bda36ea06fdffa442436c6a00ebf6be36
165
py
Python
gravis/_internal/plotting/__init__.py
robert-haas/gravis
3e63b606141bf78617b1247048a9e3ccca6d5824
[ "Apache-2.0" ]
3
2022-01-19T15:57:29.000Z
2022-03-06T02:36:44.000Z
gravis/_internal/plotting/__init__.py
robert-haas/gravis
3e63b606141bf78617b1247048a9e3ccca6d5824
[ "Apache-2.0" ]
2
2022-03-01T19:29:49.000Z
2022-03-01T19:31:08.000Z
gravis/_internal/plotting/__init__.py
robert-haas/gravis
3e63b606141bf78617b1247048a9e3ccca6d5824
[ "Apache-2.0" ]
null
null
null
"""A subpackage containing plotting functions.""" __all__ = [ 'd3', 'three', 'vis', ] from .d3 import d3 from .three import three from .vis import vis
13.75
49
0.636364
"""A subpackage containing plotting functions.""" __all__ = [ 'd3', 'three', 'vis', ] from .d3 import d3 from .three import three from .vis import vis
0
0
0
b74a21a3a4baee8e1ace1d4298da7847fa61cc93
68
py
Python
src/obfuscapk/obfuscators/random_manifest/__init__.py
Elyorbe/Obfuscapk
2ba18df4b5efe44b4fab271ab5ccfe51488fa693
[ "MIT" ]
688
2019-08-23T16:43:10.000Z
2022-03-29T19:35:07.000Z
src/obfuscapk/obfuscators/random_manifest/__init__.py
Ktm2590/Obfuscapk
4072b6dea88e91b75064a84c7d3adebe005e8207
[ "MIT" ]
124
2019-09-07T13:10:59.000Z
2022-03-17T16:47:29.000Z
src/obfuscapk/obfuscators/random_manifest/__init__.py
Ktm2590/Obfuscapk
4072b6dea88e91b75064a84c7d3adebe005e8207
[ "MIT" ]
204
2019-08-23T14:43:52.000Z
2022-03-30T21:04:50.000Z
#!/usr/bin/env python3 from .random_manifest import RandomManifest
17
43
0.808824
#!/usr/bin/env python3 from .random_manifest import RandomManifest
0
0
0
7fc69e8d42affa4c0554d5794c970f2092f0c828
2,152
py
Python
subtest/test_coal_mine.py
RuneSkovrupHansen/python-testing
318d082d1100877dea93cabca1c727199bc6416e
[ "MIT" ]
null
null
null
subtest/test_coal_mine.py
RuneSkovrupHansen/python-testing
318d082d1100877dea93cabca1c727199bc6416e
[ "MIT" ]
null
null
null
subtest/test_coal_mine.py
RuneSkovrupHansen/python-testing
318d082d1100877dea93cabca1c727199bc6416e
[ "MIT" ]
null
null
null
#!/bin/bash from mimetypes import init import unittest import coal_mine class TestCoalMine(unittest.TestCase): # Test that worker property sets values in range correctly # Test that worker property sets negative values to zero # Test that worker property sets values exceeding threshold to threshold """Test output for all number of workers The test is purposely set up to fail since it expects that the output scales linearly with the number of workers and the diminishing returns are not taken into accout Because subTest() is used the test will show all of the failed example with messages similar to ====================================================================== FAIL: test_output (__main__.TestCoalMine) (workers=6) ---------------------------------------------------------------------- Traceback (most recent call last): File "/home/rune/python_testing/subtest/test_coal_mine.py", line 34, in test_output self.assertEqual(self.cm.output, workers*self.cm.BASE_WORKER_OUTPUT) AssertionError: 87.0 != 90 This makes it easy to identify which sub tests are failing""" if __name__ == "__main__": main()
37.103448
95
0.640335
#!/bin/bash from mimetypes import init import unittest import coal_mine class TestCoalMine(unittest.TestCase): def setUp(self): self.cm = coal_mine.CoalMine() # Test that worker property sets values in range correctly def test_workers_in_range(self): for workers in range(self.cm.WORKER_THRESHOLD+1): with self.subTest(workers=workers): # Note that parameter and value name must match self.cm.workers = workers self.assertEqual(self.cm.workers, workers) # Test that worker property sets negative values to zero def test_workers_negative(self): self.cm.workers = -1 self.assertEqual(self.cm.workers, 0) # Test that worker property sets values exceeding threshold to threshold def test_workers_above_threshold(self): self.cm.workers = self.cm.WORKER_THRESHOLD+1 self.assertEqual(self.cm.workers, self.cm.WORKER_THRESHOLD) """Test output for all number of workers The test is purposely set up to fail since it expects that the output scales linearly with the number of workers and the diminishing returns are not taken into accout Because subTest() is used the test will show all of the failed example with messages similar to ====================================================================== FAIL: test_output (__main__.TestCoalMine) (workers=6) ---------------------------------------------------------------------- Traceback (most recent call last): File "/home/rune/python_testing/subtest/test_coal_mine.py", line 34, in test_output self.assertEqual(self.cm.output, workers*self.cm.BASE_WORKER_OUTPUT) AssertionError: 87.0 != 90 This makes it easy to identify which sub tests are failing""" def test_output(self): for workers in range(self.cm.WORKER_THRESHOLD+1): with self.subTest(workers=workers): self.cm.workers = workers self.assertEqual(self.cm.output, workers*self.cm.BASE_WORKER_OUTPUT) def main(): unittest.main() if __name__ == "__main__": main()
768
0
163
c2a7b745461abcec5d3d58cd180c360982e7bdb3
19,014
py
Python
testing/scripts/test_rolling_updates.py
pravingadakh/seldon-core
a72257fa851033ee09513a0b6b310087eb625e85
[ "Apache-2.0" ]
null
null
null
testing/scripts/test_rolling_updates.py
pravingadakh/seldon-core
a72257fa851033ee09513a0b6b310087eb625e85
[ "Apache-2.0" ]
null
null
null
testing/scripts/test_rolling_updates.py
pravingadakh/seldon-core
a72257fa851033ee09513a0b6b310087eb625e85
[ "Apache-2.0" ]
null
null
null
import os import time import logging import pytest from subprocess import run from seldon_e2e_utils import ( wait_for_status, wait_for_rollout, rest_request_ambassador, initial_rest_request, retry_run, API_AMBASSADOR, API_ISTIO_GATEWAY, ) with_api_gateways = pytest.mark.parametrize( "api_gateway", [API_AMBASSADOR, API_ISTIO_GATEWAY], ids=["ambas", "istio"] ) @pytest.mark.parametrize( "from_deployment,to_deployment", [ ("graph1.json", "graph8.json"), # From v1alpha2 to v1 ("graph7.json", "graph8.json"), # From v1alpha3 to v1 ], )
47.181141
88
0.591143
import os import time import logging import pytest from subprocess import run from seldon_e2e_utils import ( wait_for_status, wait_for_rollout, rest_request_ambassador, initial_rest_request, retry_run, API_AMBASSADOR, API_ISTIO_GATEWAY, ) def to_resources_path(file_name): return os.path.join("..", "resources", file_name) with_api_gateways = pytest.mark.parametrize( "api_gateway", [API_AMBASSADOR, API_ISTIO_GATEWAY], ids=["ambas", "istio"] ) class TestRollingHttp(object): @with_api_gateways # Test updating a model with a new image version as the only change def test_rolling_update1(self, namespace, api_gateway): if api_gateway == API_ISTIO_GATEWAY: retry_run( f"kubectl create -f ../resources/seldon-gateway.yaml -n {namespace}" ) retry_run(f"kubectl apply -f ../resources/graph1.json -n {namespace}") wait_for_status("mymodel", namespace) wait_for_rollout("mymodel", namespace) logging.warning("Initial request") r = initial_rest_request("mymodel", namespace, endpoint=api_gateway) assert r.status_code == 200 assert r.json()["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0] retry_run(f"kubectl apply -f ../resources/graph2.json -n {namespace}") r = initial_rest_request("mymodel", namespace, endpoint=api_gateway) assert r.status_code == 200 assert r.json()["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0] i = 0 for i in range(100): r = rest_request_ambassador("mymodel", namespace, api_gateway) assert r.status_code == 200 res = r.json() assert (res["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0]) or ( res["data"]["tensor"]["values"] == [5.0, 6.0, 7.0, 8.0] ) if (not r.status_code == 200) or ( res["data"]["tensor"]["values"] == [5.0, 6.0, 7.0, 8.0] ): break time.sleep(1) assert i < 100 logging.warning("Success for test_rolling_update1") run(f"kubectl delete -f ../resources/graph1.json -n {namespace}", shell=True) run(f"kubectl delete -f ../resources/graph2.json -n {namespace}", shell=True) @with_api_gateways # test changing the image version and the name of its container def test_rolling_update2(self, namespace, api_gateway): if api_gateway == API_ISTIO_GATEWAY: retry_run( f"kubectl create -f ../resources/seldon-gateway.yaml -n {namespace}" ) retry_run(f"kubectl apply -f ../resources/graph1.json -n {namespace}") wait_for_status("mymodel", namespace) wait_for_rollout("mymodel", namespace) logging.warning("Initial request") r = initial_rest_request("mymodel", namespace, endpoint=api_gateway) assert r.status_code == 200 assert r.json()["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0] retry_run(f"kubectl apply -f ../resources/graph3.json -n {namespace}") r = initial_rest_request("mymodel", namespace, endpoint=api_gateway) assert r.status_code == 200 assert r.json()["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0] i = 0 for i in range(100): r = rest_request_ambassador("mymodel", namespace, api_gateway) assert r.status_code == 200 res = r.json() assert (res["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0]) or ( res["data"]["tensor"]["values"] == [5.0, 6.0, 7.0, 8.0] ) if (not r.status_code == 200) or ( res["data"]["tensor"]["values"] == [5.0, 6.0, 7.0, 8.0] ): break time.sleep(1) assert i < 100 logging.warning("Success for test_rolling_update2") run(f"kubectl delete -f ../resources/graph1.json -n {namespace}", shell=True) run(f"kubectl delete -f ../resources/graph3.json -n {namespace}", shell=True) @with_api_gateways # Test updating a model with a new resource request but same image def test_rolling_update3(self, namespace, api_gateway): if api_gateway == API_ISTIO_GATEWAY: retry_run( f"kubectl create -f ../resources/seldon-gateway.yaml -n {namespace}" ) retry_run(f"kubectl apply -f ../resources/graph1.json -n {namespace}") wait_for_status("mymodel", namespace) wait_for_rollout("mymodel", namespace) logging.warning("Initial request") r = initial_rest_request("mymodel", namespace, endpoint=api_gateway) assert r.status_code == 200 assert r.json()["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0] retry_run(f"kubectl apply -f ../resources/graph4.json -n {namespace}") r = initial_rest_request("mymodel", namespace, endpoint=api_gateway) assert r.status_code == 200 assert r.json()["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0] i = 0 for i in range(50): r = rest_request_ambassador("mymodel", namespace, api_gateway) assert r.status_code == 200 res = r.json() assert res["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0] time.sleep(1) assert i == 49 logging.warning("Success for test_rolling_update3") run(f"kubectl delete -f ../resources/graph1.json -n {namespace}", shell=True) run(f"kubectl delete -f ../resources/graph4.json -n {namespace}", shell=True) @with_api_gateways # Test updating a model with a multi deployment new model def test_rolling_update4(self, namespace, api_gateway): if api_gateway == API_ISTIO_GATEWAY: retry_run( f"kubectl create -f ../resources/seldon-gateway.yaml -n {namespace}" ) retry_run(f"kubectl apply -f ../resources/graph1.json -n {namespace}") wait_for_status("mymodel", namespace) wait_for_rollout("mymodel", namespace) logging.warning("Initial request") r = initial_rest_request("mymodel", namespace, endpoint=api_gateway) assert r.status_code == 200 assert r.json()["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0] retry_run(f"kubectl apply -f ../resources/graph5.json -n {namespace}") r = initial_rest_request("mymodel", namespace, endpoint=api_gateway) assert r.status_code == 200 assert r.json()["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0] i = 0 for i in range(50): r = rest_request_ambassador("mymodel", namespace, api_gateway) assert r.status_code == 200 res = r.json() assert res["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0] time.sleep(1) assert i == 49 logging.warning("Success for test_rolling_update4") run(f"kubectl delete -f ../resources/graph1.json -n {namespace}", shell=True) run(f"kubectl delete -f ../resources/graph5.json -n {namespace}", shell=True) @with_api_gateways # Test updating a model to a multi predictor model def test_rolling_update5(self, namespace, api_gateway): if api_gateway == API_ISTIO_GATEWAY: retry_run( f"kubectl create -f ../resources/seldon-gateway.yaml -n {namespace}" ) retry_run(f"kubectl apply -f ../resources/graph1.json -n {namespace}") wait_for_status("mymodel", namespace) wait_for_rollout("mymodel", namespace) logging.warning("Initial request") r = initial_rest_request("mymodel", namespace, endpoint=api_gateway) assert r.status_code == 200 assert r.json()["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0] retry_run(f"kubectl apply -f ../resources/graph6.json -n {namespace}") r = initial_rest_request("mymodel", namespace, endpoint=api_gateway) assert r.status_code == 200 assert r.json()["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0] i = 0 for i in range(50): r = rest_request_ambassador("mymodel", namespace, api_gateway) assert r.status_code == 200 res = r.json() assert (res["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0]) or ( res["data"]["tensor"]["values"] == [5.0, 6.0, 7.0, 8.0] ) if (not r.status_code == 200) or ( res["data"]["tensor"]["values"] == [5.0, 6.0, 7.0, 8.0] ): break time.sleep(1) assert i < 100 logging.warning("Success for test_rolling_update5") run(f"kubectl delete -f ../resources/graph1.json -n {namespace}", shell=True) run(f"kubectl delete -f ../resources/graph6.json -n {namespace}", shell=True) @with_api_gateways # Test updating a model with a new image version as the only change def test_rolling_update6(self, namespace, api_gateway): if api_gateway == API_ISTIO_GATEWAY: retry_run( f"kubectl create -f ../resources/seldon-gateway.yaml -n {namespace}" ) retry_run(f"kubectl apply -f ../resources/graph1svc.json -n {namespace}") wait_for_status("mymodel", namespace) wait_for_rollout("mymodel", namespace, expected_deployments=2) logging.warning("Initial request") r = initial_rest_request("mymodel", namespace, endpoint=api_gateway) assert r.status_code == 200 assert r.json()["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0] retry_run(f"kubectl apply -f ../resources/graph2svc.json -n {namespace}") r = initial_rest_request("mymodel", namespace, endpoint=api_gateway) assert r.status_code == 200 assert r.json()["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0] i = 0 for i in range(100): r = rest_request_ambassador("mymodel", namespace, api_gateway) assert r.status_code == 200 res = r.json() assert (res["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0]) or ( res["data"]["tensor"]["values"] == [5.0, 6.0, 7.0, 8.0] ) if (not r.status_code == 200) or ( res["data"]["tensor"]["values"] == [5.0, 6.0, 7.0, 8.0] ): break time.sleep(1) assert i < 100 logging.warning("Success for test_rolling_update6") run(f"kubectl delete -f ../resources/graph1svc.json -n {namespace}", shell=True) run(f"kubectl delete -f ../resources/graph2svc.json -n {namespace}", shell=True) @with_api_gateways # test changing the image version and the name of its container def test_rolling_update7(self, namespace, api_gateway): if api_gateway == API_ISTIO_GATEWAY: retry_run( f"kubectl create -f ../resources/seldon-gateway.yaml -n {namespace}" ) retry_run(f"kubectl apply -f ../resources/graph1svc.json -n {namespace}") wait_for_status("mymodel", namespace) wait_for_rollout("mymodel", namespace, expected_deployments=2) logging.warning("Initial request") r = initial_rest_request("mymodel", namespace, endpoint=api_gateway) assert r.status_code == 200 assert r.json()["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0] retry_run(f"kubectl apply -f ../resources/graph3svc.json -n {namespace}") r = initial_rest_request("mymodel", namespace, endpoint=api_gateway) assert r.status_code == 200 assert r.json()["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0] i = 0 for i in range(100): r = rest_request_ambassador("mymodel", namespace, api_gateway) assert r.status_code == 200 res = r.json() assert (res["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0]) or ( res["data"]["tensor"]["values"] == [5.0, 6.0, 7.0, 8.0] ) if (not r.status_code == 200) or ( res["data"]["tensor"]["values"] == [5.0, 6.0, 7.0, 8.0] ): break time.sleep(1) assert i < 100 logging.warning("Success for test_rolling_update7") run(f"kubectl delete -f ../resources/graph1svc.json -n {namespace}", shell=True) run(f"kubectl delete -f ../resources/graph3svc.json -n {namespace}", shell=True) @with_api_gateways # Test updating a model with a new resource request but same image def test_rolling_update8(self, namespace, api_gateway): if api_gateway == API_ISTIO_GATEWAY: retry_run( f"kubectl create -f ../resources/seldon-gateway.yaml -n {namespace}" ) retry_run(f"kubectl apply -f ../resources/graph1svc.json -n {namespace}") wait_for_status("mymodel", namespace) wait_for_rollout("mymodel", namespace, expected_deployments=2) r = initial_rest_request("mymodel", namespace, endpoint=api_gateway) assert r.status_code == 200 assert r.json()["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0] retry_run(f"kubectl apply -f ../resources/graph4svc.json -n {namespace}") r = initial_rest_request("mymodel", namespace, endpoint=api_gateway) assert r.status_code == 200 assert r.json()["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0] i = 0 for i in range(50): r = rest_request_ambassador("mymodel", namespace, api_gateway) assert r.status_code == 200 res = r.json() assert res["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0] time.sleep(1) assert i == 49 logging.warning("Success for test_rolling_update8") run(f"kubectl delete -f ../resources/graph1svc.json -n {namespace}", shell=True) run(f"kubectl delete -f ../resources/graph4svc.json -n {namespace}", shell=True) @with_api_gateways # Test updating a model with a multi deployment new model def test_rolling_update9(self, namespace, api_gateway): if api_gateway == API_ISTIO_GATEWAY: retry_run( f"kubectl create -f ../resources/seldon-gateway.yaml -n {namespace}" ) retry_run(f"kubectl apply -f ../resources/graph1svc.json -n {namespace}") wait_for_status("mymodel", namespace) wait_for_rollout("mymodel", namespace, expected_deployments=2) r = initial_rest_request("mymodel", namespace, endpoint=api_gateway) assert r.status_code == 200 assert r.json()["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0] retry_run(f"kubectl apply -f ../resources/graph5svc.json -n {namespace}") r = initial_rest_request("mymodel", namespace, endpoint=api_gateway) assert r.status_code == 200 assert r.json()["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0] i = 0 for i in range(50): r = rest_request_ambassador("mymodel", namespace, api_gateway) assert r.status_code == 200 res = r.json() assert res["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0] time.sleep(1) assert i == 49 logging.warning("Success for test_rolling_update9") run(f"kubectl delete -f ../resources/graph1svc.json -n {namespace}", shell=True) run(f"kubectl delete -f ../resources/graph5svc.json -n {namespace}", shell=True) @with_api_gateways # Test updating a model to a multi predictor model def test_rolling_update10(self, namespace, api_gateway): if api_gateway == API_ISTIO_GATEWAY: retry_run( f"kubectl create -f ../resources/seldon-gateway.yaml -n {namespace}" ) retry_run(f"kubectl apply -f ../resources/graph1svc.json -n {namespace}") wait_for_status("mymodel", namespace) wait_for_rollout("mymodel", namespace, expected_deployments=2) r = initial_rest_request("mymodel", namespace, endpoint=api_gateway) assert r.status_code == 200 assert r.json()["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0] retry_run(f"kubectl apply -f ../resources/graph6svc.json -n {namespace}") r = initial_rest_request("mymodel", namespace, endpoint=api_gateway) assert r.status_code == 200 assert r.json()["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0] i = 0 for i in range(50): r = rest_request_ambassador("mymodel", namespace, api_gateway) assert r.status_code == 200 res = r.json() assert (res["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0]) or ( res["data"]["tensor"]["values"] == [5.0, 6.0, 7.0, 8.0] ) if (not r.status_code == 200) or ( res["data"]["tensor"]["values"] == [5.0, 6.0, 7.0, 8.0] ): break time.sleep(1) assert i < 100 logging.warning("Success for test_rolling_update10") run(f"kubectl delete -f ../resources/graph1svc.json -n {namespace}", shell=True) run(f"kubectl delete -f ../resources/graph6svc.json -n {namespace}", shell=True) @pytest.mark.parametrize( "from_deployment,to_deployment", [ ("graph1.json", "graph8.json"), # From v1alpha2 to v1 ("graph7.json", "graph8.json"), # From v1alpha3 to v1 ], ) def test_rolling_update_deployment(namespace, from_deployment, to_deployment): from_file_path = to_resources_path(from_deployment) retry_run(f"kubectl apply -f {from_file_path} -n {namespace}") # Note that this is not yet parametrised! wait_for_status("mymodel", namespace) wait_for_rollout("mymodel", namespace) logging.warning("Initial request") r = initial_rest_request("mymodel", namespace) assert r.status_code == 200 assert r.json()["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0] to_file_path = to_resources_path(to_deployment) retry_run(f"kubectl apply -f {to_file_path} -n {namespace}") r = initial_rest_request("mymodel", namespace) assert r.status_code == 200 assert r.json()["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0] i = 0 for i in range(100): r = rest_request_ambassador("mymodel", namespace, API_AMBASSADOR) assert r.status_code == 200 res = r.json() assert (res["data"]["tensor"]["values"] == [1.0, 2.0, 3.0, 4.0]) or ( res["data"]["tensor"]["values"] == [5.0, 6.0, 7.0, 8.0] ) if (not r.status_code == 200) or ( res["data"]["tensor"]["values"] == [5.0, 6.0, 7.0, 8.0] ): break time.sleep(1) assert i < 100 run(f"kubectl delete -f {from_file_path} -n {namespace}", shell=True) run(f"kubectl delete -f {to_file_path} -n {namespace}", shell=True)
17,179
1,164
68
4ce4e405b09d9027494a202ab8deb07dfb728805
1,078
py
Python
ingenico/connect/sdk/domain/mandates/definitions/create_mandate_with_return_url.py
festicket/connect-sdk-python3
c399c6443789dd978f319c89e1ebd387c812a77b
[ "MIT" ]
12
2016-09-26T21:46:31.000Z
2020-12-23T18:44:54.000Z
ingenico/connect/sdk/domain/mandates/definitions/create_mandate_with_return_url.py
festicket/connect-sdk-python3
c399c6443789dd978f319c89e1ebd387c812a77b
[ "MIT" ]
3
2020-05-02T16:53:02.000Z
2020-06-02T12:49:51.000Z
ingenico/connect/sdk/domain/mandates/definitions/create_mandate_with_return_url.py
festicket/connect-sdk-python3
c399c6443789dd978f319c89e1ebd387c812a77b
[ "MIT" ]
11
2017-07-16T00:55:28.000Z
2021-09-24T17:00:49.000Z
# -*- coding: utf-8 -*- # # This class was auto-generated from the API references found at # https://epayments-api.developer-ingenico.com/s2sapi/v1/ # from ingenico.connect.sdk.domain.mandates.definitions.create_mandate_base import CreateMandateBase
29.135135
98
0.681818
# -*- coding: utf-8 -*- # # This class was auto-generated from the API references found at # https://epayments-api.developer-ingenico.com/s2sapi/v1/ # from ingenico.connect.sdk.domain.mandates.definitions.create_mandate_base import CreateMandateBase class CreateMandateWithReturnUrl(CreateMandateBase): __return_url = None @property def return_url(self): """ | Return URL to use if the mandate signing requires redirection. Type: str """ return self.__return_url @return_url.setter def return_url(self, value): self.__return_url = value def to_dictionary(self): dictionary = super(CreateMandateWithReturnUrl, self).to_dictionary() if self.return_url is not None: dictionary['returnUrl'] = self.return_url return dictionary def from_dictionary(self, dictionary): super(CreateMandateWithReturnUrl, self).from_dictionary(dictionary) if 'returnUrl' in dictionary: self.return_url = dictionary['returnUrl'] return self
446
358
23
68a2657034c704483c93720e0fd358d8d19b0d25
13,534
py
Python
VIGA_METALICA_VERIFICA - Copy.py
wmpjrufg/RASD-ALGORITMOS
1bdc2c4271c8019733c34333e5e91b70bc3c7604
[ "MIT" ]
null
null
null
VIGA_METALICA_VERIFICA - Copy.py
wmpjrufg/RASD-ALGORITMOS
1bdc2c4271c8019733c34333e5e91b70bc3c7604
[ "MIT" ]
null
null
null
VIGA_METALICA_VERIFICA - Copy.py
wmpjrufg/RASD-ALGORITMOS
1bdc2c4271c8019733c34333e5e91b70bc3c7604
[ "MIT" ]
null
null
null
################################################################################ # UNIVERSIDADE FEDERAL DE CATALÃO (UFCAT) # WANDERLEI MALAQUIAS PEREIRA JUNIOR, ENG. CIVIL / PROF (UFCAT) # DONIZETTI SOUZA JUNIOR, ENG. CIVIL (UFCAT) ################################################################################ ################################################################################ # DESCRIÇÃO ALGORITMO: # BIBLIOTECA DE VERIFICAÇÃO DE ESTADO LIMITE EM VIGAS METÁLICAS DESENVOLVIDA # PELO GRUPO DE PESQUISAS E ESTUDOS EM ENGENHARIA (GPEE) ################################################################################ ################################################################################ # BIBLIOTECAS PYTHON import numpy as np ################################################################################ # BIBLIOTECAS DESENVOLVEDORES GPEE def DEFINICAO_SECAO(LAMBDA, LAMBDA_R, LAMBDA_P): """ Está função define se uma seção metálica é compacta, semi-compacta ou esbelta. Entrada: LAMBDA | Esbeltez calculada | - | Float LAMBDA_R | Esbeltez secao compacta calculada | - | Float LAMBDA_P | Esbeltez secao semicompacta calculada | - | Float Saída: TIPO_SEC | Tipo de secao calculada | - | String """ if LAMBDA <= LAMBDA_P: TIPO_SEC = "COMPACTA" elif (LAMBDA > LAMBDA_P) and (LAMBDA <= LAMBDA_R): TIPO_SEC = "SEMI-COMPACTA" elif LAMBDA > LAMBDA_R: TIPO_SEC = "ESBELTA" return TIPO_SEC def MOMENTO_MRD_ALMA(E_S, F_Y, H_W, T_W, Z, B_F, T_F, W_C, W_T, PARAMETRO_PERFIL, TIPO_PERFIL, GAMMA_A1): """ Esta função classifica e verifica o momento resistente na alma de um perfil metálico de acordo com a NBR 8800. Entrada: E_S | Módulo de elasticidade do aço | kN/m² | Float F_Y | Tensão de escoamento do aço | kN/m² | Float H_W | Altura da alma | m | Float T_W | Largura da alma | m | Float T_F | Altura da mesa | m | Float B_F | Largura da mesa | m | Float Z | Módulo plastico da seção | m³ | Float W_C | Módulo plastico da seção compressao | kN/m² | Float W_T | Módulo plastico da seção tracao | kN/m² | Float PERFIL | Caracteristica do perfil | | String GAMMA_A1 | Coeficiente de ponderação | | Float Saída: M_RD | Momento resistido de projeto | kN*m | Float """ Z = MODULO_PLASTICO(B_F, T_F, H_W, T_W) # Classificação perfil LAMBDA = H_W / T_W LAMBDA_R = 5.70 * (E_S / F_Y) ** 0.5 if PARAMETRO_PERFIL == "DUPLA SIMETRIA": D = 3.76 elif PARAMETRO_PERFIL == "MONO SIMETRIA": pass # depois tem que implementar o monosimentrico LAMBDA_P = D * (E_S / F_Y) ** 0.5 if LAMBDA_P >= LAMBDA_R: print('SEÇÃO COM λp > λr') # return Aqui tem que ver como vamos fazer para o código encerrar aqui TIPO_SEC = DEFINICAO_SECAO(LAMBDA, LAMBDA_R, LAMBDA_P) # Momento resistente if TIPO_SEC == "COMPACTA": M_P = Z * F_Y M_RD = M_P / GAMMA_A1 elif TIPO_SEC == "SEMI-COMPACTA": M_P = Z * F_Y W = min(W_C, W_T) M_R = W * F_Y AUX_0 = (LAMBDA - LAMBDA_P) / (LAMBDA_R - LAMBDA_P) M_RD = (M_P - AUX_0 * (M_P - M_R)) / GAMMA_A1 elif TIPO_SEC == "ESBELTA": pass # Momento máximo resistente W = min(W_C, W_T) M_RDMAX = 1.50 * W * F_Y / GAMMA_A1 if M_RD > M_RDMAX: M_RD = M_RDMAX return M_RD def MOMENTO_MRD_MESA(E_S, F_Y, H_W, T_W, B_F, T_F, Z, W_C, W_T, PARAMETRO_PERFIL, TIPO_PERFIL, GAMMA_A1): """ Esta função classifica e verifica o momento resistente na mesa de um perfil metálico de acordo com a NBR 8800. Entrada: E_S | Módulo de elasticidade do aço | kN/m² | Float F_Y | Tensão de escoamento do aço | kN/m² | Float H_W | Altura da alma | m | Float T_W | Largura da alma | m | Float T_F | Altura da mesa | m | Float B_F | Largura da mesa | m | Float Z | Módulo plastico da seção | m³ | Float W_C | Módulo plastico da seção compressao | kN/m² | Float W_T | Módulo plastico da seção tracao | kN/m² | Float PERFIL | Caracteristica do perfil | - | String GAMMA_A1 | Coeficiente de ponderação | - | Float Saída: M_RD | Momento fletor resistido | kN*m | Float """ Z = MODULO_PLASTICO(B_F, T_F, H_W, T_W) # Classificação perfil LAMBDA = B_F / (2 * T_F) LAMBDA_P = 0.38 * (E_S / F_Y) ** 0.5 if TIPO_PERFIL == "SOLDADO": C = 0.95 AUX_0 = 4 / (H_W / T_W) ** 0.50 K_C = np.clip(AUX_0, 0.35, 0.76) elif TIPO_PERFIL == "LAMINADO": C = 0.83 K_C = 1.00 AUX_1 = 0.70 * F_Y / K_C LAMBDA_R = C * (E_S / AUX_1) ** 0.5 TIPO_SEC = DEFINICAO_SECAO(LAMBDA, LAMBDA_R, LAMBDA_P) # Momento resistente if TIPO_SEC == "COMPACTA": M_P = Z * F_Y M_RD = M_P / GAMMA_A1 elif TIPO_SEC == "SEMI-COMPACTA": M_P = Z * F_Y SIGMA_R = 0.30 * F_Y M_R = W_C * (F_Y - SIGMA_R) M_RMAX = W_T * F_Y if M_R > M_RMAX: M_R = M_RMAX AUX_2 = (LAMBDA - LAMBDA_P) / (LAMBDA_R - LAMBDA_P) M_RD = (M_P - AUX_2 * (M_P - M_R)) / GAMMA_A1 elif TIPO_SEC == "ESBELTA": if PERFIL == "SOLDADO": M_N = (0.90 * E_S * K_C * W_C) / LAMDA ** 2 elif PERFIL == "LAMINADO": M_N = (0.69 * E_S * W_C) / LAMDA ** 2 M_RD = M_N / GAMMA_A1 W = min(W_C, W_T) # Momento máximo resistente M_RDMAX = 1.50 * W * F_Y / GAMMA_A1 if M_RD > M_RDMAX: M_RD = M_RDMAX return M_RD def CALCULO_CV(H_W, T_W, E_S, F_Y): """ Esta função determina o coeficiente de redução do cisalhamento resistente Cv. Entrada: E_S | Módulo de elasticidade do aço | kN/m² | Float F_Y | Tensão de escoamento do aço | kN/m² | Float H_W | Altura da alma | m | Float T_W | Largura da alma | m | Float Saída: C_V | Coeficiente de cisalhmento | - | Float """ LAMBDA = H_W / T_W LAMBDA_P = 2.46 * (E_S / F_Y) ** 0.5 LAMBDA_R = 3.06 * (E_S / F_Y) ** 0.5 if LAMBDA <= LAMBDA_P: C_V = 1 elif (LAMBDA_P < LAMBDA) and (LAMBDA <= LAMBDA_R): C_V = (2.46 / LAMBDA) * (E_S / F_Y) ** 0.5 elif LAMBDA > LAMBDA_R: C_V = (7.5 * E_S) / (F_Y * LAMBDA ** 2) return C_V def CORTANTE_VRD(H_W, T_W, E_S, F_Y, GAMMA_A1): """ Esta função determina o cortante de cálculo para seções metálicas segundo a NBR 8800. Entrada: E_S | Módulo de elasticidade do aço | kN/m² | Float F_Y | Tensão de escoamento do aço | kN/m² | Float H_W | Altura da alma | m | Float T_W | Largura da alma | m | Float GAMMA_A1 | Coeficiente de ponderação | - | Float Saída: V_RD | Esforco cortante resistido | kN | Float """ A_W = H_W * T_W C_V = CALCULO_CV(H_W, T_W, E_S, F_Y) V_RD = (C_V * 0.6 * F_Y * A_W) / GAMMA_A1 return V_RD def VERIFICACAO_VIGA_METALICA_MOMENTO_FLETOR(VIGA, ESFORCOS): """ Esta função verifica o momento fletor resistente de um perfil metálico de acordo com a NBR 8800. Entrada: VIGA | Tags dicionario | 'E_S' == Módulo de elasticidade do aço | Float | 'F_Y' == Tensão de escoamento do aço | Float | 'H_W' == Altura da alma | Float | 'T_W' == Largura da alma | Float | 'T_F' == Altura da mesa | Float | 'B_F' == Largura da mesa | Float | 'Z' == Módulo plastico da seção | Float | 'W_C' == Módulo plastico da seção compressao | Float | 'W_T' == Módulo plastico da seção tracao | Float | 'S1' == Erro de modelo 1 | Float | 'S2' == Erro de modelo 2 | Float | 'PARAMETRO_PERFIL' == Caracteristica do perfil | String | 'TIPO_PERFIL' == Tipo de perfil analisado | String | 'GAMMA_A1' == Coeficiente de ponderação | Float ESFORCOS | Tags dicionario | 'M_SD' == Momento fletor solicitante | Float Saída: R | Momento fletor resistente | Float S | Momento fletor solicitante | Float """ E_S = VIGA['E_S'] F_Y = VIGA['F_Y'] H_W = VIGA['H_W'] T_W = VIGA['T_W'] B_F = VIGA['B_F'] T_F = VIGA['T_F'] Z = MODULO_PLASTICO(B_F, T_F, H_W, T_W) #Z = VIGA['Z'] INERCIA = INERCIA_CALCULO(B_F, T_F, H_W, T_W) #INERCIA = VIGA['INERCIA'] S1 = VIGA['S1'] S2 = VIGA['S2'] Y_GC = (( T_F * 2) + H_W) / 2 W_C = INERCIA / Y_GC W_T = W_C PARAMETRO_PERFIL = VIGA['PARAMETRO_PERFIL'] TIPO_PERFIL = VIGA['TIPO_PERFIL'] GAMMA_A1 = VIGA['GAMMA_A1'] M_SD = ESFORCOS['M_SD'] #Resistencia momento fletor de projeto M_RDMESA = MOMENTO_MRD_MESA(E_S, F_Y, H_W, T_W, B_F, T_F, Z, W_C, W_T, PARAMETRO_PERFIL, TIPO_PERFIL, GAMMA_A1) M_RDALMA = MOMENTO_MRD_ALMA(E_S, F_Y, H_W, T_W, Z, B_F, T_F, W_C, W_T, PARAMETRO_PERFIL, TIPO_PERFIL, GAMMA_A1) M_RD = min(M_RDMESA, M_RDALMA) R = S1 * M_RD S = S2 * M_SD return(R, S) def VERIFICACAO_VIGA_METALICA_ESFORCO_CORTANTE(VIGA, ESFORCOS): """ Esta função verifica o esforco cortante de um perfil metálico de acordo com a NBR 8800. Entrada: VIGA | Tags dicionario | 'E_S' == Módulo de elasticidade do aço | Float | 'F_Y' == Tensão de escoamento do aço | Float | 'H_W' == Altura da alma | Float | 'T_W' == Largura da alma | Float | 'S1' == Erro de modelo 1 | Float | 'S2' == Erro de modelo 2 | Float | 'GAMMA_A1' == Coeficiente de ponderação | Float ESFORCOS | Tags dicionario | 'V_SD' == Esforco cortante solicitante | Float Saída: R | Esforco cortante resistente | Float S | Esforco cortante solicitante | Float """ E_S = VIGA['E_S'] F_Y = VIGA['F_Y'] H_W = VIGA['H_W'] T_W = VIGA['T_W'] S1 = VIGA['S1'] S2 = VIGA['S2'] V_SD = ESFORCOS['V_SD'] GAMMA_A1 = VIGA['GAMMA_A1'] #Resistencia esforco cortante de projeto V_RD = CORTANTE_VRD(H_W, T_W, E_S, F_Y, GAMMA_A1) R = S1 * V_RD S = S2 * V_SD return(R, S) def VERIFICACAO_VIGA_METALICA_DEFORMACAO(VIGA, ESFORCOS): """ Esta função verifica o deflexao maxima de um perfil metálico de acordo com a NBR 8800. Entrada: VIGA | Tags dicionario | 'L_MAX' == Largura do elemento | Float | 'S1' == Erro de modelo 1 | Float | 'S2' == Erro de modelo 2 | Float ESFORCOS | Tags dicionario | 'D_SD' == Deflexao solicitante | Float Saída: R | Esforco cortante resistente | Float S | Esforco cortante solicitante | Float """ D_SD = ESFORCOS['D_SD'] S1 = VIGA['S1'] S2 = VIGA['S2'] L_MAX = ESFORCOS['L_MAX'] D_MAX = L_MAX / 350 R = abs(S1 * D_MAX) S = abs(S2 * D_SD / 100) return(R, S)
36.479784
115
0.504064
################################################################################ # UNIVERSIDADE FEDERAL DE CATALÃO (UFCAT) # WANDERLEI MALAQUIAS PEREIRA JUNIOR, ENG. CIVIL / PROF (UFCAT) # DONIZETTI SOUZA JUNIOR, ENG. CIVIL (UFCAT) ################################################################################ ################################################################################ # DESCRIÇÃO ALGORITMO: # BIBLIOTECA DE VERIFICAÇÃO DE ESTADO LIMITE EM VIGAS METÁLICAS DESENVOLVIDA # PELO GRUPO DE PESQUISAS E ESTUDOS EM ENGENHARIA (GPEE) ################################################################################ ################################################################################ # BIBLIOTECAS PYTHON import numpy as np ################################################################################ # BIBLIOTECAS DESENVOLVEDORES GPEE def DEFINICAO_SECAO(LAMBDA, LAMBDA_R, LAMBDA_P): """ Está função define se uma seção metálica é compacta, semi-compacta ou esbelta. Entrada: LAMBDA | Esbeltez calculada | - | Float LAMBDA_R | Esbeltez secao compacta calculada | - | Float LAMBDA_P | Esbeltez secao semicompacta calculada | - | Float Saída: TIPO_SEC | Tipo de secao calculada | - | String """ if LAMBDA <= LAMBDA_P: TIPO_SEC = "COMPACTA" elif (LAMBDA > LAMBDA_P) and (LAMBDA <= LAMBDA_R): TIPO_SEC = "SEMI-COMPACTA" elif LAMBDA > LAMBDA_R: TIPO_SEC = "ESBELTA" return TIPO_SEC def MOMENTO_MRD_ALMA(E_S, F_Y, H_W, T_W, Z, B_F, T_F, W_C, W_T, PARAMETRO_PERFIL, TIPO_PERFIL, GAMMA_A1): """ Esta função classifica e verifica o momento resistente na alma de um perfil metálico de acordo com a NBR 8800. Entrada: E_S | Módulo de elasticidade do aço | kN/m² | Float F_Y | Tensão de escoamento do aço | kN/m² | Float H_W | Altura da alma | m | Float T_W | Largura da alma | m | Float T_F | Altura da mesa | m | Float B_F | Largura da mesa | m | Float Z | Módulo plastico da seção | m³ | Float W_C | Módulo plastico da seção compressao | kN/m² | Float W_T | Módulo plastico da seção tracao | kN/m² | Float PERFIL | Caracteristica do perfil | | String GAMMA_A1 | Coeficiente de ponderação | | Float Saída: M_RD | Momento resistido de projeto | kN*m | Float """ Z = MODULO_PLASTICO(B_F, T_F, H_W, T_W) # Classificação perfil LAMBDA = H_W / T_W LAMBDA_R = 5.70 * (E_S / F_Y) ** 0.5 if PARAMETRO_PERFIL == "DUPLA SIMETRIA": D = 3.76 elif PARAMETRO_PERFIL == "MONO SIMETRIA": pass # depois tem que implementar o monosimentrico LAMBDA_P = D * (E_S / F_Y) ** 0.5 if LAMBDA_P >= LAMBDA_R: print('SEÇÃO COM λp > λr') # return Aqui tem que ver como vamos fazer para o código encerrar aqui TIPO_SEC = DEFINICAO_SECAO(LAMBDA, LAMBDA_R, LAMBDA_P) # Momento resistente if TIPO_SEC == "COMPACTA": M_P = Z * F_Y M_RD = M_P / GAMMA_A1 elif TIPO_SEC == "SEMI-COMPACTA": M_P = Z * F_Y W = min(W_C, W_T) M_R = W * F_Y AUX_0 = (LAMBDA - LAMBDA_P) / (LAMBDA_R - LAMBDA_P) M_RD = (M_P - AUX_0 * (M_P - M_R)) / GAMMA_A1 elif TIPO_SEC == "ESBELTA": pass # Momento máximo resistente W = min(W_C, W_T) M_RDMAX = 1.50 * W * F_Y / GAMMA_A1 if M_RD > M_RDMAX: M_RD = M_RDMAX return M_RD def MOMENTO_MRD_MESA(E_S, F_Y, H_W, T_W, B_F, T_F, Z, W_C, W_T, PARAMETRO_PERFIL, TIPO_PERFIL, GAMMA_A1): """ Esta função classifica e verifica o momento resistente na mesa de um perfil metálico de acordo com a NBR 8800. Entrada: E_S | Módulo de elasticidade do aço | kN/m² | Float F_Y | Tensão de escoamento do aço | kN/m² | Float H_W | Altura da alma | m | Float T_W | Largura da alma | m | Float T_F | Altura da mesa | m | Float B_F | Largura da mesa | m | Float Z | Módulo plastico da seção | m³ | Float W_C | Módulo plastico da seção compressao | kN/m² | Float W_T | Módulo plastico da seção tracao | kN/m² | Float PERFIL | Caracteristica do perfil | - | String GAMMA_A1 | Coeficiente de ponderação | - | Float Saída: M_RD | Momento fletor resistido | kN*m | Float """ Z = MODULO_PLASTICO(B_F, T_F, H_W, T_W) # Classificação perfil LAMBDA = B_F / (2 * T_F) LAMBDA_P = 0.38 * (E_S / F_Y) ** 0.5 if TIPO_PERFIL == "SOLDADO": C = 0.95 AUX_0 = 4 / (H_W / T_W) ** 0.50 K_C = np.clip(AUX_0, 0.35, 0.76) elif TIPO_PERFIL == "LAMINADO": C = 0.83 K_C = 1.00 AUX_1 = 0.70 * F_Y / K_C LAMBDA_R = C * (E_S / AUX_1) ** 0.5 TIPO_SEC = DEFINICAO_SECAO(LAMBDA, LAMBDA_R, LAMBDA_P) # Momento resistente if TIPO_SEC == "COMPACTA": M_P = Z * F_Y M_RD = M_P / GAMMA_A1 elif TIPO_SEC == "SEMI-COMPACTA": M_P = Z * F_Y SIGMA_R = 0.30 * F_Y M_R = W_C * (F_Y - SIGMA_R) M_RMAX = W_T * F_Y if M_R > M_RMAX: M_R = M_RMAX AUX_2 = (LAMBDA - LAMBDA_P) / (LAMBDA_R - LAMBDA_P) M_RD = (M_P - AUX_2 * (M_P - M_R)) / GAMMA_A1 elif TIPO_SEC == "ESBELTA": if PERFIL == "SOLDADO": M_N = (0.90 * E_S * K_C * W_C) / LAMDA ** 2 elif PERFIL == "LAMINADO": M_N = (0.69 * E_S * W_C) / LAMDA ** 2 M_RD = M_N / GAMMA_A1 W = min(W_C, W_T) # Momento máximo resistente M_RDMAX = 1.50 * W * F_Y / GAMMA_A1 if M_RD > M_RDMAX: M_RD = M_RDMAX return M_RD def CALCULO_CV(H_W, T_W, E_S, F_Y): """ Esta função determina o coeficiente de redução do cisalhamento resistente Cv. Entrada: E_S | Módulo de elasticidade do aço | kN/m² | Float F_Y | Tensão de escoamento do aço | kN/m² | Float H_W | Altura da alma | m | Float T_W | Largura da alma | m | Float Saída: C_V | Coeficiente de cisalhmento | - | Float """ LAMBDA = H_W / T_W LAMBDA_P = 2.46 * (E_S / F_Y) ** 0.5 LAMBDA_R = 3.06 * (E_S / F_Y) ** 0.5 if LAMBDA <= LAMBDA_P: C_V = 1 elif (LAMBDA_P < LAMBDA) and (LAMBDA <= LAMBDA_R): C_V = (2.46 / LAMBDA) * (E_S / F_Y) ** 0.5 elif LAMBDA > LAMBDA_R: C_V = (7.5 * E_S) / (F_Y * LAMBDA ** 2) return C_V def CORTANTE_VRD(H_W, T_W, E_S, F_Y, GAMMA_A1): """ Esta função determina o cortante de cálculo para seções metálicas segundo a NBR 8800. Entrada: E_S | Módulo de elasticidade do aço | kN/m² | Float F_Y | Tensão de escoamento do aço | kN/m² | Float H_W | Altura da alma | m | Float T_W | Largura da alma | m | Float GAMMA_A1 | Coeficiente de ponderação | - | Float Saída: V_RD | Esforco cortante resistido | kN | Float """ A_W = H_W * T_W C_V = CALCULO_CV(H_W, T_W, E_S, F_Y) V_RD = (C_V * 0.6 * F_Y * A_W) / GAMMA_A1 return V_RD def VERIFICACAO_VIGA_METALICA_MOMENTO_FLETOR(VIGA, ESFORCOS): """ Esta função verifica o momento fletor resistente de um perfil metálico de acordo com a NBR 8800. Entrada: VIGA | Tags dicionario | 'E_S' == Módulo de elasticidade do aço | Float | 'F_Y' == Tensão de escoamento do aço | Float | 'H_W' == Altura da alma | Float | 'T_W' == Largura da alma | Float | 'T_F' == Altura da mesa | Float | 'B_F' == Largura da mesa | Float | 'Z' == Módulo plastico da seção | Float | 'W_C' == Módulo plastico da seção compressao | Float | 'W_T' == Módulo plastico da seção tracao | Float | 'S1' == Erro de modelo 1 | Float | 'S2' == Erro de modelo 2 | Float | 'PARAMETRO_PERFIL' == Caracteristica do perfil | String | 'TIPO_PERFIL' == Tipo de perfil analisado | String | 'GAMMA_A1' == Coeficiente de ponderação | Float ESFORCOS | Tags dicionario | 'M_SD' == Momento fletor solicitante | Float Saída: R | Momento fletor resistente | Float S | Momento fletor solicitante | Float """ E_S = VIGA['E_S'] F_Y = VIGA['F_Y'] H_W = VIGA['H_W'] T_W = VIGA['T_W'] B_F = VIGA['B_F'] T_F = VIGA['T_F'] Z = MODULO_PLASTICO(B_F, T_F, H_W, T_W) #Z = VIGA['Z'] INERCIA = INERCIA_CALCULO(B_F, T_F, H_W, T_W) #INERCIA = VIGA['INERCIA'] S1 = VIGA['S1'] S2 = VIGA['S2'] Y_GC = (( T_F * 2) + H_W) / 2 W_C = INERCIA / Y_GC W_T = W_C PARAMETRO_PERFIL = VIGA['PARAMETRO_PERFIL'] TIPO_PERFIL = VIGA['TIPO_PERFIL'] GAMMA_A1 = VIGA['GAMMA_A1'] M_SD = ESFORCOS['M_SD'] #Resistencia momento fletor de projeto M_RDMESA = MOMENTO_MRD_MESA(E_S, F_Y, H_W, T_W, B_F, T_F, Z, W_C, W_T, PARAMETRO_PERFIL, TIPO_PERFIL, GAMMA_A1) M_RDALMA = MOMENTO_MRD_ALMA(E_S, F_Y, H_W, T_W, Z, B_F, T_F, W_C, W_T, PARAMETRO_PERFIL, TIPO_PERFIL, GAMMA_A1) M_RD = min(M_RDMESA, M_RDALMA) R = S1 * M_RD S = S2 * M_SD return(R, S) def VERIFICACAO_VIGA_METALICA_ESFORCO_CORTANTE(VIGA, ESFORCOS): """ Esta função verifica o esforco cortante de um perfil metálico de acordo com a NBR 8800. Entrada: VIGA | Tags dicionario | 'E_S' == Módulo de elasticidade do aço | Float | 'F_Y' == Tensão de escoamento do aço | Float | 'H_W' == Altura da alma | Float | 'T_W' == Largura da alma | Float | 'S1' == Erro de modelo 1 | Float | 'S2' == Erro de modelo 2 | Float | 'GAMMA_A1' == Coeficiente de ponderação | Float ESFORCOS | Tags dicionario | 'V_SD' == Esforco cortante solicitante | Float Saída: R | Esforco cortante resistente | Float S | Esforco cortante solicitante | Float """ E_S = VIGA['E_S'] F_Y = VIGA['F_Y'] H_W = VIGA['H_W'] T_W = VIGA['T_W'] S1 = VIGA['S1'] S2 = VIGA['S2'] V_SD = ESFORCOS['V_SD'] GAMMA_A1 = VIGA['GAMMA_A1'] #Resistencia esforco cortante de projeto V_RD = CORTANTE_VRD(H_W, T_W, E_S, F_Y, GAMMA_A1) R = S1 * V_RD S = S2 * V_SD return(R, S) def VERIFICACAO_VIGA_METALICA_DEFORMACAO(VIGA, ESFORCOS): """ Esta função verifica o deflexao maxima de um perfil metálico de acordo com a NBR 8800. Entrada: VIGA | Tags dicionario | 'L_MAX' == Largura do elemento | Float | 'S1' == Erro de modelo 1 | Float | 'S2' == Erro de modelo 2 | Float ESFORCOS | Tags dicionario | 'D_SD' == Deflexao solicitante | Float Saída: R | Esforco cortante resistente | Float S | Esforco cortante solicitante | Float """ D_SD = ESFORCOS['D_SD'] S1 = VIGA['S1'] S2 = VIGA['S2'] L_MAX = ESFORCOS['L_MAX'] D_MAX = L_MAX / 350 R = abs(S1 * D_MAX) S = abs(S2 * D_SD / 100) return(R, S) def INERCIA_CALCULO(B_F, T_F, H_W, T_W): CG_A1 = B_F * T_F CG_Y1 = T_F/2 CG_PT1 = CG_A1 * CG_Y1 CG_A2 = H_W * T_W CG_Y2 = (T_F)+(H_W/2) CG_PT2 = CG_A2 * CG_Y2 CG_A3 = B_F * T_F CG_Y3 = (T_F/2)+(T_F+H_W) CG_PT3 = CG_A3 * CG_Y3 CG = (CG_PT1+CG_PT2+CG_PT3)/(CG_A1+CG_A2+CG_A3) INERCIA1_PT1 = (B_F * (T_F**3))/12 INERCIA1_PT2 = (CG - CG_Y1) ** 2 INERCIA1_PT3 = B_F * T_F INERCIA1 = INERCIA1_PT1 + INERCIA1_PT3 * INERCIA1_PT2 INERCIA2_PT1 = (T_W * (H_W **3))/12 INERCIA2_PT2 = (CG - CG_Y2) ** 2 INERCIA2_PT3 = H_W * T_W INERCIA2 = INERCIA2_PT1 + INERCIA2_PT3 * INERCIA2_PT2 INERCIA3_PT1 = (B_F * (T_F**3))/12 INERCIA3_PT2 = (CG - CG_Y3) ** 2 INERCIA3_PT3 = B_F * T_F INERCIA3 = INERCIA3_PT1 + INERCIA3_PT3 * INERCIA3_PT2 INERCIA_TOTAL = (INERCIA1 + INERCIA2 + INERCIA3) * 0.000000000001 #m4 return (INERCIA_TOTAL) def MODULO_PLASTICO(B_F, T_F, H_W, T_W): H = (H_W)+(2*T_F) PT1 = B_F * T_F * (H - T_F) PT2 = (T_W/4)*(H - 2 * T_F)**2 Z = (PT1 + PT2) * 0.000000001 #m3 return(Z)
1,056
0
46
368b9cd21ed0d5c389fc6e20d0fcc7a3b567992b
1,671
py
Python
main.py
unpamplemoussemignon/e314-music-visualization
38fe1f97bfd35751867a51af330148f65b6f21bf
[ "CC0-1.0" ]
null
null
null
main.py
unpamplemoussemignon/e314-music-visualization
38fe1f97bfd35751867a51af330148f65b6f21bf
[ "CC0-1.0" ]
null
null
null
main.py
unpamplemoussemignon/e314-music-visualization
38fe1f97bfd35751867a51af330148f65b6f21bf
[ "CC0-1.0" ]
null
null
null
#!/usr/bin/env python # ================================= # Music Visualizer # ------------ # Reference to -> [May 2020] - Mina PECHEUX # # Based on the work by Yu-Jie Lin # (Public Domain) # Github: https://gist.github.com/manugarri/1c0fcfe9619b775bb82de0790ccb88da import wave import click from compute import plt, compute, WIDTH, HEIGHT, \ SAMPLE_SIZE, CHANNELS, RATE, FPS @click.command(context_settings=dict(help_option_names=['-h', '--help'])) @click.argument('filename', type=str) @click.option('-m', '--method', help='Method to use for the video processing', required=True, type=click.Choice(['bars', 'spectrum', 'wave', 'rain'], case_sensitive=False)) @click.option('-c', '--color', help='An hex color or "hue_rotate" to auto-update the color throughout the film', type=str, default='hue_rotate', show_default=True) @click.option('--output/--no-output', help='Whether to save the result in a file or display it directly', default=False, show_default=True) if __name__ == '__main__': main()
32.764706
112
0.653501
#!/usr/bin/env python # ================================= # Music Visualizer # ------------ # Reference to -> [May 2020] - Mina PECHEUX # # Based on the work by Yu-Jie Lin # (Public Domain) # Github: https://gist.github.com/manugarri/1c0fcfe9619b775bb82de0790ccb88da import wave import click from compute import plt, compute, WIDTH, HEIGHT, \ SAMPLE_SIZE, CHANNELS, RATE, FPS @click.command(context_settings=dict(help_option_names=['-h', '--help'])) @click.argument('filename', type=str) @click.option('-m', '--method', help='Method to use for the video processing', required=True, type=click.Choice(['bars', 'spectrum', 'wave', 'rain'], case_sensitive=False)) @click.option('-c', '--color', help='An hex color or "hue_rotate" to auto-update the color throughout the film', type=str, default='hue_rotate', show_default=True) @click.option('--output/--no-output', help='Whether to save the result in a file or display it directly', default=False, show_default=True) def main(filename, method, color, output): dpi = plt.rcParams['figure.dpi'] plt.rcParams['savefig.dpi'] = 300 plt.rcParams['figure.figsize'] = (1.0 * WIDTH / dpi, 1.0 * HEIGHT / dpi) wf = wave.open(filename + '.wav', 'rb') assert wf.getnchannels() == CHANNELS assert wf.getsampwidth() == SAMPLE_SIZE # assert wf.getframerate() == RATE fig = plt.figure(facecolor='black', edgecolor='black') ani = compute(method, color, fig, wf) if ani is None: wf.close() return if output: ani.save(filename + '.mp4', fps=FPS, savefig_kwargs={'facecolor':'black'}) else: plt.show() wf.close() if __name__ == '__main__': main()
601
0
22
df2176e417c138b40a9dee3721b7d6cc7dbf0916
1,663
py
Python
gerar_inscricaoestadual.py
andrellmagalhaes/Open-development
718fb1815fbd6dd194f1ec2049f56aa2a533b88e
[ "MIT" ]
1
2021-09-13T00:55:08.000Z
2021-09-13T00:55:08.000Z
gerar_inscricaoestadual.py
andrellmagalhaes/Open-development
718fb1815fbd6dd194f1ec2049f56aa2a533b88e
[ "MIT" ]
null
null
null
gerar_inscricaoestadual.py
andrellmagalhaes/Open-development
718fb1815fbd6dd194f1ec2049f56aa2a533b88e
[ "MIT" ]
null
null
null
# IMPORTAÇÕES import random import string # FUNÇÃO QUE GERA NÚMEROS DE INSCRIÇÃO ESTADUAL
31.980769
79
0.629585
# IMPORTAÇÕES import random import string # FUNÇÃO QUE GERA NÚMEROS DE INSCRIÇÃO ESTADUAL def gerar_inscricaoestadual(quantidade=1, tamanho=9): # VERIFICA SE "QUANTIDADE" OU "TAMANHO" NÃO SÃO DO TIPO INTEIRO if not type(quantidade) == int or not type(tamanho) == int: raise TypeError("Os parâmetros fornecidos devem ser do tipo inteiro!") # VERIFICA SE "QUANTIDADE" É MENOR QUE 1 OU MAIOR QUE 1000 if quantidade < 1 or quantidade > 1000: raise ValueError("O valor de quantidade deve estar entre 1 e 1000!") # VERIFICA SE "TAMANHO" É DIFERENTE DE 8 E DE 9 if tamanho not in [8, 9]: raise ValueError("O valor de tamanho deve ser 8 ou 9!") # BASE DE CARACTERES PARA A GERAÇÃO DAS INSCRIÇÕES ESTADUAIS base_caracteres = string.digits # INSCRIÇÃO ESTADUAL GERADA ie = "" # LISTA DE INSCRIÇÕES ESTADUAIS GERADAS lista_ies = [] # QUANTIDADE DE INSCRIÇÕES ESTADUAIS A SEREM GERADAS quantidade_ies = quantidade # TAMANHO DAS INSCRIÇÕES ESTADUAIS A SEREM GERADAS tamanho_ies = tamanho # LOOP DE GERAÇÃO DAS INSCRIÇÕES ESTADUAIS for x in range(quantidade_ies): for y in range(tamanho_ies): ie = random.choice(base_caracteres) + ie # FORMATA A INSCRIÇÃO ESTADUAL GERADA if tamanho == 8: ie = ie[:6] + "-" + ie[6:] if tamanho == 9: ie = ie[:7] + "-" + ie[7:] # ADICIONA A INSCRIÇÃO ESTADUAL GERADA NA LISTA DE IES lista_ies.append(ie) # REDEFINE "IE" ie = "" # RETORNA A LISTA DE IES GERADAS return lista_ies
1,567
0
23
fa7b1e632b12afb4a0c70898ec7ee11e52a3402e
2,160
py
Python
tests/tests_unit/test_cdp_client.py
cognitedata/cognite-model-hosting
89f58e25f0e3c3a37006e60f52246da0b00a0066
[ "Apache-2.0" ]
4
2019-05-27T12:51:45.000Z
2020-02-26T08:16:30.000Z
tests/tests_unit/test_cdp_client.py
cognitedata/cognite-model-hosting
89f58e25f0e3c3a37006e60f52246da0b00a0066
[ "Apache-2.0" ]
26
2019-03-18T15:10:20.000Z
2021-06-21T05:47:24.000Z
tests/tests_unit/test_cdp_client.py
cognitedata/cognite-model-hosting
89f58e25f0e3c3a37006e60f52246da0b00a0066
[ "Apache-2.0" ]
null
null
null
import pandas as pd import pytest from cognite.client.data_classes import Datapoints, DatapointsList from cognite.client.testing import monkeypatch_cognite_client from cognite.model_hosting.data_fetcher._cdp_client import CdpClient, DatapointsFrameQuery @pytest.fixture @pytest.fixture @pytest.fixture
31.304348
110
0.659259
import pandas as pd import pytest from cognite.client.data_classes import Datapoints, DatapointsList from cognite.client.testing import monkeypatch_cognite_client from cognite.model_hosting.data_fetcher._cdp_client import CdpClient, DatapointsFrameQuery @pytest.fixture def mock_cogcli_datapoints_retrieve_single(): with monkeypatch_cognite_client() as cogmock: cogmock.datapoints.retrieve.return_value = Datapoints( id=1, external_id="1", value=[1, 2, 3], timestamp=[1000, 2000, 3000] ) yield def test_get_datapoints_frame_single(mock_cogcli_datapoints_retrieve_single): client = CdpClient() res = client.get_datapoints_frame_single(id=1, external_id=None, start=0, end=4000) assert (3, 1) == res.shape assert res.columns == ["value"] @pytest.fixture def mock_cogcli_datapoints_query(): with monkeypatch_cognite_client() as cogmock: cogmock.datapoints.query.return_value = [ DatapointsList([Datapoints(id=1, external_id="1", value=[1, 2, 3], timestamp=[1000, 2000, 3000])]) ] yield def test_get_datapoints_frame_multiple(mock_cogcli_datapoints_query): client = CdpClient() res = client.get_datapoints_frame_multiple( [ DatapointsFrameQuery( id=1, external_id=None, start=0, end=4000, aggregate=None, granularity=None, include_outside_points=False, ) ] ) assert (3, 1) == res[0].shape assert res[0].columns == ["value"] @pytest.fixture def mock_cogcli_retrieve_dataframe(): with monkeypatch_cognite_client() as cogmock: cogmock.datapoints.retrieve_dataframe.return_value = pd.DataFrame( [[1], [2], [3]], columns=["1"], index=[3000, 4000, 5000] ) yield def test_get_datapoints_frame(mock_cogcli_retrieve_dataframe): client = CdpClient() res = client.get_datapoints_frame( time_series=[{"id": 1, "aggregate": "avg"}], granularity="1s", start=0, end=150000 ) assert (3, 1) == res.shape assert res.columns == ["1"]
1,713
0
135
55d1d3e1e8c91e15987eee3a0c33503376cce60d
9,287
py
Python
pygame_project/split_balloon/split_balloon_game.py
bbjoite09/PythonProject
f0ab7a4e6b23758612012ebf7989029e88edf204
[ "MIT" ]
1
2021-04-29T08:18:50.000Z
2021-04-29T08:18:50.000Z
pygame_project/split_balloon/split_balloon_game.py
bbjoite09/PythonProject
f0ab7a4e6b23758612012ebf7989029e88edf204
[ "MIT" ]
1
2021-05-23T16:05:29.000Z
2021-05-23T16:05:29.000Z
pygame_project/split_balloon/split_balloon_game.py
bbjoite09/PythonProject
f0ab7a4e6b23758612012ebf7989029e88edf204
[ "MIT" ]
null
null
null
''' 오락실 pang 게임 만들기 [게임 조건] 1. 캐릭터는 화면 아래에 위치, 좌우로만 이동 가능 2. 스페이스를 누르면 무기를 쏘아 올림 3. 큰 공 1개가 나타나서 바운스 4. 무기에 닿으면 공은 작은 크기 2개로 분할, 가장 작은 크기의 공은 사라짐 5. 모든 공을 없애면 게임 종료(성공) 6. 캐릭터는 공에 닿으면 게임 종료(실패) 7. 시간 제한 99초 초과시 게임 종료(실패) 8. FPS는 30으로 고정(필요시 speed 값을 조정) [게임 이미지] 1. 배경 : 640 * 480(가로, 세로) - background.png 2. 무대 : 640 * 50 - stage.png 3. 캐릭터 : 33 * 60 - character.png 4. 무기 : 20 * 430 weapon.png 5. 풍선 : 160 * 160, 80 * 80, 40 * 40, 20 * 20 - ball1.png ~ ball4/png ''' import os import pygame # 기본 초기화(반드시 해야하는 것들) # pygame 을 import 하면 반드시 초기화를 해줘야한다. pygame.init() # 화면 크기 설정 screen_width = 640 screen_height = 480 screen = pygame.display.set_mode((screen_width, screen_height)) # 화면 타이틀 설정 pygame.display.set_caption("SPLIT BALLOON GAME") # 폰트 설정 game_font = pygame.font.Font(None, 40) total_time = 100 start_ticks = pygame.time.get_ticks() # 게임 종료 메시지 game_result = "GAME OVER" # 이동할 좌표 character_to_x = 0 # 이동 속도 character_speed = 0.6 # FPS clock = pygame.time.Clock() # 1. 사용자 게임 초기화 (배경 화면, 게임 이미지, 좌표, 속도, 폰트 등) life = 3 current_path = os.path.dirname(__file__) image_path = os.path.join(current_path, "images") background = pygame.image.load(os.path.join(image_path, "background.png")) stage = pygame.image.load(os.path.join(image_path, "stage.png")) stage_size = stage.get_rect().size stage_height = stage_size[1] stage_y_pos = screen_height - stage_height character = pygame.image.load(os.path.join(image_path, "character.png")) character_size = character.get_rect().size character_width = character_size[0] character_height = character_size[1] character_x_pos = screen_width / 2 - character_width / 2 character_y_pos = screen_height - character_height - stage_height weapon = pygame.image.load(os.path.join(image_path, "weapon.png")) weapon_size = weapon.get_rect().size weapon_width = weapon_size[0] # 무기는 한번에 여러 발 발사 가능 weapons = [] # 무기 이동 속도 weapon_speed = 10 # 풍선 만들기(4개 크기에 대해 따로 처리) balloon_images = [ pygame.image.load(os.path.join(image_path, "balloon1.png")), pygame.image.load(os.path.join(image_path, "balloon2.png")), pygame.image.load(os.path.join(image_path, "balloon3.png")), pygame.image.load(os.path.join(image_path, "balloon4.png")) ] # 풍선 크기에 따른 최초 스피드 balloon_speed_y = [-18, -15, -12, -9] # 풍선들 balloons = [] # 최초 발생 큰 풍선 추가 balloons.append({ "pos_x": 50, # 풍선의 x 좌표 "pos_y": 50, # 풍선의 y좌표 "img_idx": 0, "to_x": 3, # x축 이동 방향 "to_y": -6, # y축 이동 방향 "init_speed_y": balloon_speed_y[0] # y 최초 속도 }) # 사라질 무기와 공 정보 저장 변수 weapon_to_remove = -1 ballons_to_remove = -1 running = True while running: dt = clock.tick(30) # 게임화면의 초당 프레임 수 # 2. 이벤트 처리(키보드, 마우스 등) for event in pygame.event.get(): if event.type == pygame.QUIT: # 창이 닫히는 이벤트가 발생하였는가? running = False # 게임이 진행되지 않음 if event.type == pygame.KEYDOWN: if event.key == pygame.K_LEFT: character_to_x -= character_speed elif event.key == pygame.K_RIGHT: character_to_x += character_speed elif event.key == pygame.K_SPACE: # 무기 위치 정의 weapon_x_pos = character_x_pos + (character_width / 2) - (weapon_width / 2) weapon_y_pos = character_y_pos weapons.append([weapon_x_pos, weapon_y_pos]) if event.type == pygame.KEYUP: if event.key == pygame.K_LEFT or event.key == pygame.K_RIGHT: character_to_x = 0 character_x_pos += character_to_x * dt # 3. 게임 캐릭터 위치 정의 if character_x_pos < 0: character_x_pos = 0 elif character_x_pos > (screen_width - character_width): character_x_pos = screen_width - character_width # 무기 이동 조절 weapons = [[w[0], w[1] - weapon_speed] for w in weapons] # 천장에 닿은 무기 없애기 weapons = [[w[0], w[1]] for w in weapons if w[1] > 0] # 풍선 위치 정의 for balloon_idx, balloon_val in enumerate(balloons): balloon_pos_x = balloon_val["pos_x"] balloon_pos_y = balloon_val["pos_y"] balloon_img_idx = balloon_val["img_idx"] balloon_size = balloon_images[balloon_img_idx].get_rect().size balloon_width = balloon_size[0] balloon_height = balloon_size[1] # 좌,우 벽에 닿았을 때 공 위치 변경(튕겨나가는 효과) if balloon_pos_x < 0 or balloon_pos_x > screen_width - balloon_width: balloon_val["to_x"] = balloon_val["to_x"] * -1 # 스테이지에 튕겨서 올라가는 효과 if balloon_pos_y >= screen_height - stage_height - balloon_height: balloon_val["to_y"] = balloon_val["init_speed_y"] # 그 외의 경우에는 속도를 줄여나감(포물선 효과) else: balloon_val["to_y"] += 0.5 balloon_val["pos_x"] += balloon_val["to_x"] balloon_val["pos_y"] += balloon_val["to_y"] # 4. 충돌 처리 # 캐릭터 rect 정보 업데이트 character_rect = character.get_rect() character_rect.left = character_x_pos character_rect.top = character_y_pos for balloon_idx, balloon_val in enumerate(balloons): balloon_pos_x = balloon_val["pos_x"] balloon_pos_y = balloon_val["pos_y"] balloon_img_idx = balloon_val["img_idx"] # 공 rect 정보 업데이트 balloon_rect = balloon_images[balloon_img_idx].get_rect() balloon_rect.left = balloon_pos_x balloon_rect.top = balloon_pos_y # 공과 캐릭터 충돌 처리 if character_rect.colliderect(balloon_rect): if life == 0: running = False break life -= 1 character_x_pos = 10 character_y_pos = screen_height - character_height - stage_height # 공과 무기들 충돌 처리 for weapon_idx, weapon_val in enumerate(weapons): weapon_x_pos = weapon_val[0] weapon_y_pos = weapon_val[1] # 무기 rect 정보 업데이트 weapon_rect = weapon.get_rect() weapon_rect.left = weapon_x_pos weapon_rect.top = weapon_y_pos # 충돌 체크 if weapon_rect.colliderect(balloon_rect): weapon_to_remove = weapon_idx # 해당 무기를 없애기 위한 값 설정 ballons_to_remove = balloon_idx # 해당 풍선을 없애기 위한 값 설정 if balloon_img_idx < 3: # 현재 공 크기 정보를 가지고 옴 balloon_width = balloon_rect.size[0] balloon_height = balloon_rect.size[1] # 나눠진 공 정보 small_balloon_rect = balloon_images[balloon_img_idx + 1].get_rect() small_balloon_width = small_balloon_rect.size[0] small_balloon_height = small_balloon_rect.size[1] # 왼쪽으로 튕겨나가는 작은 공 balloons.append({ "pos_x": balloon_pos_x + (balloon_width / 2) - (small_balloon_width / 2), # 풍선의 x 좌표 "pos_y": balloon_pos_y + (balloon_height / 2) - (small_balloon_height / 2), # 풍선의 y좌표 "img_idx": balloon_img_idx + 1, "to_x": -3, # x축 이동 방향 "to_y": -6, # y축 이동 방향 "init_speed_y": balloon_speed_y[balloon_img_idx + 1] # y 최초 속도 }) # 오른쪽으로 튕겨나가는 작은 공 balloons.append({ "pos_x": balloon_pos_x + (balloon_width / 2) - (small_balloon_width / 2), # 풍선의 x 좌표 "pos_y": balloon_pos_y + (balloon_height / 2) - (small_balloon_height / 2), # 풍선의 y좌표 "img_idx": balloon_img_idx + 1, "to_x": +3, # x축 이동 방향 "to_y": -6, # y축 이동 방향 "init_speed_y": balloon_speed_y[balloon_img_idx + 1] }) break else : continue break if ballons_to_remove > -1: del balloons[ballons_to_remove] ballons_to_remove = -1 if weapon_to_remove > -1: del weapons[weapon_to_remove] weapon_to_remove = -1 # 모든 공을 없앤경우 게임 종료 if len(balloons) == 0: game_result = "Mission Complete" running = False # 5. 화면에 그리기 - screen.blit screen.blit(background, (0, 0)) for weapon_x_pos, weapon_y_pos in weapons: screen.blit(weapon, (weapon_x_pos, weapon_y_pos)) for idx, val in enumerate(balloons): balloon_pos_x = val["pos_x"] balloon_pos_y = val["pos_y"] balloon_img_idx = val["img_idx"] screen.blit(balloon_images[balloon_img_idx], (balloon_pos_x, balloon_pos_y)) screen.blit(stage, (0, stage_y_pos)) screen.blit(character, (character_x_pos, character_y_pos)) now_life = game_font.render(str(int(life)), True, (0, 0, 0)) screen.blit(now_life, (screen_width - 30, 10)) elapsed_time = (pygame.time.get_ticks() - start_ticks) / 1000 timer = game_font.render(f"Time : {int(total_time - elapsed_time)}", True, (0, 0, 0)) screen.blit(timer, (10, 10)) # 시간 초과 if total_time - elapsed_time <= 0: game_result = "Time Over" running = False pygame.display.update() # 게임 오버 메시지 저장 msg = game_font.render(game_result, True, (0, 0, 0)) msg_rect = msg.get_rect(center=(int(screen_width / 2), int(screen_height / 2))) screen.blit(msg, msg_rect) pygame.display.update() pygame.time.delay(2000) pygame.quit()
31.588435
110
0.604824
''' 오락실 pang 게임 만들기 [게임 조건] 1. 캐릭터는 화면 아래에 위치, 좌우로만 이동 가능 2. 스페이스를 누르면 무기를 쏘아 올림 3. 큰 공 1개가 나타나서 바운스 4. 무기에 닿으면 공은 작은 크기 2개로 분할, 가장 작은 크기의 공은 사라짐 5. 모든 공을 없애면 게임 종료(성공) 6. 캐릭터는 공에 닿으면 게임 종료(실패) 7. 시간 제한 99초 초과시 게임 종료(실패) 8. FPS는 30으로 고정(필요시 speed 값을 조정) [게임 이미지] 1. 배경 : 640 * 480(가로, 세로) - background.png 2. 무대 : 640 * 50 - stage.png 3. 캐릭터 : 33 * 60 - character.png 4. 무기 : 20 * 430 weapon.png 5. 풍선 : 160 * 160, 80 * 80, 40 * 40, 20 * 20 - ball1.png ~ ball4/png ''' import os import pygame # 기본 초기화(반드시 해야하는 것들) # pygame 을 import 하면 반드시 초기화를 해줘야한다. pygame.init() # 화면 크기 설정 screen_width = 640 screen_height = 480 screen = pygame.display.set_mode((screen_width, screen_height)) # 화면 타이틀 설정 pygame.display.set_caption("SPLIT BALLOON GAME") # 폰트 설정 game_font = pygame.font.Font(None, 40) total_time = 100 start_ticks = pygame.time.get_ticks() # 게임 종료 메시지 game_result = "GAME OVER" # 이동할 좌표 character_to_x = 0 # 이동 속도 character_speed = 0.6 # FPS clock = pygame.time.Clock() # 1. 사용자 게임 초기화 (배경 화면, 게임 이미지, 좌표, 속도, 폰트 등) life = 3 current_path = os.path.dirname(__file__) image_path = os.path.join(current_path, "images") background = pygame.image.load(os.path.join(image_path, "background.png")) stage = pygame.image.load(os.path.join(image_path, "stage.png")) stage_size = stage.get_rect().size stage_height = stage_size[1] stage_y_pos = screen_height - stage_height character = pygame.image.load(os.path.join(image_path, "character.png")) character_size = character.get_rect().size character_width = character_size[0] character_height = character_size[1] character_x_pos = screen_width / 2 - character_width / 2 character_y_pos = screen_height - character_height - stage_height weapon = pygame.image.load(os.path.join(image_path, "weapon.png")) weapon_size = weapon.get_rect().size weapon_width = weapon_size[0] # 무기는 한번에 여러 발 발사 가능 weapons = [] # 무기 이동 속도 weapon_speed = 10 # 풍선 만들기(4개 크기에 대해 따로 처리) balloon_images = [ pygame.image.load(os.path.join(image_path, "balloon1.png")), pygame.image.load(os.path.join(image_path, "balloon2.png")), pygame.image.load(os.path.join(image_path, "balloon3.png")), pygame.image.load(os.path.join(image_path, "balloon4.png")) ] # 풍선 크기에 따른 최초 스피드 balloon_speed_y = [-18, -15, -12, -9] # 풍선들 balloons = [] # 최초 발생 큰 풍선 추가 balloons.append({ "pos_x": 50, # 풍선의 x 좌표 "pos_y": 50, # 풍선의 y좌표 "img_idx": 0, "to_x": 3, # x축 이동 방향 "to_y": -6, # y축 이동 방향 "init_speed_y": balloon_speed_y[0] # y 최초 속도 }) # 사라질 무기와 공 정보 저장 변수 weapon_to_remove = -1 ballons_to_remove = -1 running = True while running: dt = clock.tick(30) # 게임화면의 초당 프레임 수 # 2. 이벤트 처리(키보드, 마우스 등) for event in pygame.event.get(): if event.type == pygame.QUIT: # 창이 닫히는 이벤트가 발생하였는가? running = False # 게임이 진행되지 않음 if event.type == pygame.KEYDOWN: if event.key == pygame.K_LEFT: character_to_x -= character_speed elif event.key == pygame.K_RIGHT: character_to_x += character_speed elif event.key == pygame.K_SPACE: # 무기 위치 정의 weapon_x_pos = character_x_pos + (character_width / 2) - (weapon_width / 2) weapon_y_pos = character_y_pos weapons.append([weapon_x_pos, weapon_y_pos]) if event.type == pygame.KEYUP: if event.key == pygame.K_LEFT or event.key == pygame.K_RIGHT: character_to_x = 0 character_x_pos += character_to_x * dt # 3. 게임 캐릭터 위치 정의 if character_x_pos < 0: character_x_pos = 0 elif character_x_pos > (screen_width - character_width): character_x_pos = screen_width - character_width # 무기 이동 조절 weapons = [[w[0], w[1] - weapon_speed] for w in weapons] # 천장에 닿은 무기 없애기 weapons = [[w[0], w[1]] for w in weapons if w[1] > 0] # 풍선 위치 정의 for balloon_idx, balloon_val in enumerate(balloons): balloon_pos_x = balloon_val["pos_x"] balloon_pos_y = balloon_val["pos_y"] balloon_img_idx = balloon_val["img_idx"] balloon_size = balloon_images[balloon_img_idx].get_rect().size balloon_width = balloon_size[0] balloon_height = balloon_size[1] # 좌,우 벽에 닿았을 때 공 위치 변경(튕겨나가는 효과) if balloon_pos_x < 0 or balloon_pos_x > screen_width - balloon_width: balloon_val["to_x"] = balloon_val["to_x"] * -1 # 스테이지에 튕겨서 올라가는 효과 if balloon_pos_y >= screen_height - stage_height - balloon_height: balloon_val["to_y"] = balloon_val["init_speed_y"] # 그 외의 경우에는 속도를 줄여나감(포물선 효과) else: balloon_val["to_y"] += 0.5 balloon_val["pos_x"] += balloon_val["to_x"] balloon_val["pos_y"] += balloon_val["to_y"] # 4. 충돌 처리 # 캐릭터 rect 정보 업데이트 character_rect = character.get_rect() character_rect.left = character_x_pos character_rect.top = character_y_pos for balloon_idx, balloon_val in enumerate(balloons): balloon_pos_x = balloon_val["pos_x"] balloon_pos_y = balloon_val["pos_y"] balloon_img_idx = balloon_val["img_idx"] # 공 rect 정보 업데이트 balloon_rect = balloon_images[balloon_img_idx].get_rect() balloon_rect.left = balloon_pos_x balloon_rect.top = balloon_pos_y # 공과 캐릭터 충돌 처리 if character_rect.colliderect(balloon_rect): if life == 0: running = False break life -= 1 character_x_pos = 10 character_y_pos = screen_height - character_height - stage_height # 공과 무기들 충돌 처리 for weapon_idx, weapon_val in enumerate(weapons): weapon_x_pos = weapon_val[0] weapon_y_pos = weapon_val[1] # 무기 rect 정보 업데이트 weapon_rect = weapon.get_rect() weapon_rect.left = weapon_x_pos weapon_rect.top = weapon_y_pos # 충돌 체크 if weapon_rect.colliderect(balloon_rect): weapon_to_remove = weapon_idx # 해당 무기를 없애기 위한 값 설정 ballons_to_remove = balloon_idx # 해당 풍선을 없애기 위한 값 설정 if balloon_img_idx < 3: # 현재 공 크기 정보를 가지고 옴 balloon_width = balloon_rect.size[0] balloon_height = balloon_rect.size[1] # 나눠진 공 정보 small_balloon_rect = balloon_images[balloon_img_idx + 1].get_rect() small_balloon_width = small_balloon_rect.size[0] small_balloon_height = small_balloon_rect.size[1] # 왼쪽으로 튕겨나가는 작은 공 balloons.append({ "pos_x": balloon_pos_x + (balloon_width / 2) - (small_balloon_width / 2), # 풍선의 x 좌표 "pos_y": balloon_pos_y + (balloon_height / 2) - (small_balloon_height / 2), # 풍선의 y좌표 "img_idx": balloon_img_idx + 1, "to_x": -3, # x축 이동 방향 "to_y": -6, # y축 이동 방향 "init_speed_y": balloon_speed_y[balloon_img_idx + 1] # y 최초 속도 }) # 오른쪽으로 튕겨나가는 작은 공 balloons.append({ "pos_x": balloon_pos_x + (balloon_width / 2) - (small_balloon_width / 2), # 풍선의 x 좌표 "pos_y": balloon_pos_y + (balloon_height / 2) - (small_balloon_height / 2), # 풍선의 y좌표 "img_idx": balloon_img_idx + 1, "to_x": +3, # x축 이동 방향 "to_y": -6, # y축 이동 방향 "init_speed_y": balloon_speed_y[balloon_img_idx + 1] }) break else : continue break if ballons_to_remove > -1: del balloons[ballons_to_remove] ballons_to_remove = -1 if weapon_to_remove > -1: del weapons[weapon_to_remove] weapon_to_remove = -1 # 모든 공을 없앤경우 게임 종료 if len(balloons) == 0: game_result = "Mission Complete" running = False # 5. 화면에 그리기 - screen.blit screen.blit(background, (0, 0)) for weapon_x_pos, weapon_y_pos in weapons: screen.blit(weapon, (weapon_x_pos, weapon_y_pos)) for idx, val in enumerate(balloons): balloon_pos_x = val["pos_x"] balloon_pos_y = val["pos_y"] balloon_img_idx = val["img_idx"] screen.blit(balloon_images[balloon_img_idx], (balloon_pos_x, balloon_pos_y)) screen.blit(stage, (0, stage_y_pos)) screen.blit(character, (character_x_pos, character_y_pos)) now_life = game_font.render(str(int(life)), True, (0, 0, 0)) screen.blit(now_life, (screen_width - 30, 10)) elapsed_time = (pygame.time.get_ticks() - start_ticks) / 1000 timer = game_font.render(f"Time : {int(total_time - elapsed_time)}", True, (0, 0, 0)) screen.blit(timer, (10, 10)) # 시간 초과 if total_time - elapsed_time <= 0: game_result = "Time Over" running = False pygame.display.update() # 게임 오버 메시지 저장 msg = game_font.render(game_result, True, (0, 0, 0)) msg_rect = msg.get_rect(center=(int(screen_width / 2), int(screen_height / 2))) screen.blit(msg, msg_rect) pygame.display.update() pygame.time.delay(2000) pygame.quit()
0
0
0
6738ee449dfe6c373584329dd36f71a082590223
1,845
py
Python
src/roadlr/vgg_post.py
deepguider/RoadGPS
7db4669a54da98a854886b89b6922fb8c7a60f33
[ "Apache-2.0", "BSD-3-Clause" ]
2
2019-05-22T12:47:34.000Z
2019-05-23T15:43:47.000Z
src/roadlr/vgg_post.py
deepguider/RoadGPS
7db4669a54da98a854886b89b6922fb8c7a60f33
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
src/roadlr/vgg_post.py
deepguider/RoadGPS
7db4669a54da98a854886b89b6922fb8c7a60f33
[ "Apache-2.0", "BSD-3-Clause" ]
1
2019-08-09T06:50:46.000Z
2019-08-09T06:50:46.000Z
'''VGG11/13/16/19 in Pytorch.''' import torch import torch.nn as nn import torchvision.models as models import torch.nn.functional as F from ipdb import set_trace as bp cfg = { 'VGG16_POST': [512, 512, 'M'] }
38.4375
118
0.552304
'''VGG11/13/16/19 in Pytorch.''' import torch import torch.nn as nn import torchvision.models as models import torch.nn.functional as F from ipdb import set_trace as bp cfg = { 'VGG16_POST': [512, 512, 'M'] } class VGG_POST(nn.Module): def __init__(self, height, width): super(VGG_POST, self).__init__() # input ==> encoder( vgg16 : h,w / 2^5 ) ==> h,w / 16 self.feature_post = self._make_layers(cfg['VGG16_POST']) # h, w / 16 / 2 ==> h,w / 32 self.feature_size = (int(height/32) * int(width/32))*512 # self.avgpool2d = nn.AvgPool2d(kernel_size=1, stride=1) # view() for FC must follow in forward() self.fc1 = nn.Linear(self.feature_size, 512) self.fc2 = nn.Linear(512, 128) self.fc3 = nn.Linear(128, 32) self.fc4 = nn.Linear(32, 3) # left, right, uncertain, 4*3 def forward(self, x): # x from pretrained VGG16, # x : torch.Size([16, 512, , 16]) x = self.feature_post(x) # torch.Size([16, 512, 1, 1]) x = self.avgpool2d(x) x = x.view(x.size(0), -1) # torch.Size([16, 512]) x = F.relu(self.fc1(x)) # 256 x = F.relu(self.fc2(x)) # 128 x = F.relu(self.fc3(x)) # 64 x = F.relu(self.fc4(x)) # 3 return x def _make_layers(self, cfg): layers = [] in_channels = 512 for x in cfg: if x == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1), nn.BatchNorm2d(x), nn.ReLU(inplace=True)] in_channels = x # layers += [nn.AvgPool2d(kernel_size=1, stride=1)] # AvgPool2d is defined indivisual layer for using GradCam return nn.Sequential(*layers)
1,522
5
103
db034706bef1d18d60d07c19f08ed0864ca128c0
9,352
py
Python
vafator/tests/test_annotator.py
TRON-Bioinformatics/vafator
032b9daeba52b6f560b9b3d428b3eceff541d0ee
[ "MIT" ]
2
2021-10-17T12:50:13.000Z
2021-11-19T06:00:57.000Z
vafator/tests/test_annotator.py
TRON-Bioinformatics/vafator
032b9daeba52b6f560b9b3d428b3eceff541d0ee
[ "MIT" ]
8
2021-10-14T10:25:04.000Z
2022-02-15T21:14:10.000Z
vafator/tests/test_annotator.py
TRON-Bioinformatics/vafator
032b9daeba52b6f560b9b3d428b3eceff541d0ee
[ "MIT" ]
null
null
null
import os import pkg_resources from unittest import TestCase from cyvcf2 import VCF from vafator.annotator import Annotator import vafator.tests.utils as test_utils import time from logzero import logger
53.747126
120
0.710543
import os import pkg_resources from unittest import TestCase from cyvcf2 import VCF from vafator.annotator import Annotator import vafator.tests.utils as test_utils import time from logzero import logger class TestAnnotator(TestCase): def test_annotator(self): input_file = pkg_resources.resource_filename(__name__, "resources/test1.vcf") output_vcf = pkg_resources.resource_filename(__name__, "resources/results/test_annotator1_output.vcf") bam1 = pkg_resources.resource_filename(__name__, "resources/COLO_829_n1.bam") bam2 = pkg_resources.resource_filename(__name__, "resources/COLO_829_t1.bam") annotator = Annotator( input_vcf=input_file, output_vcf=output_vcf, input_bams={"normal": [bam1], "tumor": [bam2]}) annotator.run() self.assertTrue(os.path.exists(output_vcf)) n_variants_input = test_utils._get_count_variants(input_file) n_variants_output = test_utils._get_count_variants(output_vcf) self.assertTrue(n_variants_input == n_variants_output) info_annotations = test_utils._get_info_fields(output_vcf) self.assertTrue("tumor_af" in info_annotations) self.assertTrue("normal_af" in info_annotations) self.assertTrue("tumor_ac" in info_annotations) self.assertTrue("normal_ac" in info_annotations) self.assertTrue("tumor_dp" in info_annotations) self.assertTrue("normal_dp" in info_annotations) def test_annotator_with_multiple_bams(self): input_file = pkg_resources.resource_filename(__name__, "resources/test1.vcf") output_vcf = pkg_resources.resource_filename(__name__, "resources/results/test_annotator1_output.vcf") bam1 = pkg_resources.resource_filename(__name__, "resources/COLO_829_n1.bam") bam2 = pkg_resources.resource_filename(__name__, "resources/COLO_829_t1.bam") annotator = Annotator( input_vcf=input_file, output_vcf=output_vcf, input_bams={"normal": [bam1, bam2], "tumor": [bam1, bam2]}) annotator.run() self.assertTrue(os.path.exists(output_vcf)) n_variants_input = test_utils._get_count_variants(input_file) n_variants_output = test_utils._get_count_variants(output_vcf) self.assertTrue(n_variants_input == n_variants_output) info_annotations = test_utils._get_info_fields(output_vcf) self.assertTrue("tumor_af_1" in info_annotations) self.assertTrue("normal_af_1" in info_annotations) self.assertTrue("tumor_ac_1" in info_annotations) self.assertTrue("normal_ac_1" in info_annotations) self.assertTrue("tumor_dp_1" in info_annotations) self.assertTrue("normal_dp_1" in info_annotations) self.assertTrue("tumor_af_2" in info_annotations) self.assertTrue("normal_af_2" in info_annotations) self.assertTrue("tumor_ac_2" in info_annotations) self.assertTrue("normal_ac_2" in info_annotations) self.assertTrue("tumor_dp_2" in info_annotations) self.assertTrue("normal_dp_2" in info_annotations) def test_annotator_with_prefix(self): input_file = pkg_resources.resource_filename(__name__, "resources/test1.vcf") output_vcf = pkg_resources.resource_filename(__name__, "resources/results/test_annotator1_output.vcf") bam1 = pkg_resources.resource_filename(__name__, "resources/COLO_829_n1.bam") bam2 = pkg_resources.resource_filename(__name__, "resources/COLO_829_t1.bam") annotator = Annotator( input_vcf=input_file, output_vcf=output_vcf, input_bams={"RNA_normal": [bam1, bam2], "RNA_tumor": [bam1, bam2]}) annotator.run() self.assertTrue(os.path.exists(output_vcf)) n_variants_input = test_utils._get_count_variants(input_file) n_variants_output = test_utils._get_count_variants(output_vcf) self.assertTrue(n_variants_input == n_variants_output) info_annotations = test_utils._get_info_fields(output_vcf) self.assertTrue("RNA_tumor_af_1" in info_annotations) self.assertTrue("RNA_normal_af_1" in info_annotations) self.assertTrue("RNA_tumor_ac_1" in info_annotations) self.assertTrue("RNA_normal_ac_1" in info_annotations) self.assertTrue("RNA_tumor_dp_1" in info_annotations) self.assertTrue("RNA_normal_dp_1" in info_annotations) self.assertTrue("RNA_tumor_af_2" in info_annotations) self.assertTrue("RNA_normal_af_2" in info_annotations) self.assertTrue("RNA_tumor_ac_2" in info_annotations) self.assertTrue("RNA_normal_ac_2" in info_annotations) self.assertTrue("RNA_tumor_dp_2" in info_annotations) self.assertTrue("RNA_normal_dp_2" in info_annotations) def test_annotator_with_mnvs(self): input_file = pkg_resources.resource_filename(__name__, "resources/test_tumor_normal.vcf") output_vcf = pkg_resources.resource_filename(__name__, "resources/results/test_tumor_normal_output.vcf") bam1 = pkg_resources.resource_filename(__name__, "resources/COLO_829_n1.bam") bam2 = pkg_resources.resource_filename(__name__, "resources/COLO_829_t1.bam") annotator = Annotator( input_vcf=input_file, output_vcf=output_vcf, input_bams={"RNA_normal": [bam1, bam2], "RNA_tumor": [bam1, bam2]}) annotator.run() self.assertTrue(os.path.exists(output_vcf)) n_variants_input = test_utils._get_count_variants(input_file) n_variants_output = test_utils._get_count_variants(output_vcf) self.assertTrue(n_variants_input == n_variants_output) info_annotations = test_utils._get_info_fields(output_vcf) self.assertTrue("RNA_tumor_af_1" in info_annotations) self.assertTrue("RNA_normal_af_1" in info_annotations) self.assertTrue("RNA_tumor_ac_1" in info_annotations) self.assertTrue("RNA_normal_ac_1" in info_annotations) self.assertTrue("RNA_tumor_dp_1" in info_annotations) self.assertTrue("RNA_normal_dp_1" in info_annotations) self.assertTrue("RNA_tumor_af_2" in info_annotations) self.assertTrue("RNA_normal_af_2" in info_annotations) self.assertTrue("RNA_tumor_ac_2" in info_annotations) self.assertTrue("RNA_normal_ac_2" in info_annotations) self.assertTrue("RNA_tumor_dp_2" in info_annotations) self.assertTrue("RNA_normal_dp_2" in info_annotations) def _get_info_at(self, input_file, chromosome, position, annotation): vcf = VCF(input_file) self.assertIsNotNone(vcf) for v in vcf: if v.POS == position and v.CHROM == chromosome: vcf.close() return v.INFO.get(annotation) vcf.close() return {} def test_nist(self): input_file = pkg_resources.resource_filename( __name__, "resources/project.NIST.hc.snps.indels.chr1_1000000_2000000.vcf") output_vcf = pkg_resources.resource_filename( __name__, "resources/results/project.NIST.hc.snps.indels.chr1_1000000_2000000.vaf.vcf") bam_file = pkg_resources.resource_filename( __name__, "resources/project.NIST_NIST7035_H7AP8ADXX_TAAGGCGA_1_NA12878.bwa.markDuplicates.chr1_1000000_2000000.bam") start = time.time() annotator = Annotator(input_vcf=input_file, output_vcf=output_vcf, input_bams={"normal": [bam_file]}) annotator.run() duration = time.time() - start logger.info("Duration {} seconds".format(round(duration, 3))) self.assertTrue(os.path.exists(output_vcf)) n_variants_input = test_utils._get_count_variants(input_file) n_variants_output = test_utils._get_count_variants(output_vcf) self.assertTrue(n_variants_input == n_variants_output) info_annotations = test_utils._get_info_fields(output_vcf) self.assertTrue("normal_af" in info_annotations) self.assertTrue("normal_ac" in info_annotations) self.assertTrue("normal_dp" in info_annotations) def test_annotator_bams_order(self): input_file = pkg_resources.resource_filename(__name__, "resources/test1.vcf") output_vcf = pkg_resources.resource_filename(__name__, "resources/results/test_annotator1_output.vcf") output_vcf_2 = pkg_resources.resource_filename(__name__, "resources/results/test_annotator2_output.vcf") bam1 = pkg_resources.resource_filename(__name__, "resources/COLO_829_n1.bam") bam2 = pkg_resources.resource_filename(__name__, "resources/COLO_829_t1.bam") Annotator(input_vcf=input_file, output_vcf=output_vcf, input_bams={"normal": [bam1], "tumor": [bam2]}).run() Annotator(input_vcf=input_file, output_vcf=output_vcf_2, input_bams={"tumor": [bam2], "normal": [bam1]}).run() self.assertTrue(os.path.exists(output_vcf)) self.assertTrue(os.path.exists(output_vcf_2)) vcf = VCF(output_vcf) vcf_2 = VCF(output_vcf_2) for v, v2 in zip(vcf, vcf_2): self.assertEqual(v.INFO["normal_dp"], v2.INFO["normal_dp"]) self.assertEqual(v.INFO["tumor_dp"], v2.INFO["tumor_dp"])
8,901
9
228
817c9d802649e5563674be39ac0c3499f6cde805
4,358
py
Python
orio-0.1.0/src/main/tuner/search/exhaustive/exhaustive.py
nn4ip/pluto
92ace2441b6b8d6b66d1bb7ef3e893df4ff23a4d
[ "MIT" ]
183
2017-01-28T17:23:29.000Z
2022-03-25T08:58:56.000Z
orio-0.1.0/src/main/tuner/search/exhaustive/exhaustive.py
nn4ip/pluto
92ace2441b6b8d6b66d1bb7ef3e893df4ff23a4d
[ "MIT" ]
70
2017-03-29T09:51:04.000Z
2021-12-28T07:00:44.000Z
orio-0.1.0/src/main/tuner/search/exhaustive/exhaustive.py
nn4ip/pluto
92ace2441b6b8d6b66d1bb7ef3e893df4ff23a4d
[ "MIT" ]
57
2017-03-29T07:27:58.000Z
2022-01-14T03:13:39.000Z
# # Implementation of the exhaustive search algorithm # import sys, time import main.tuner.search.search #----------------------------------------------------- class Exhaustive(main.tuner.search.search.Search): '''The search engine that uses an exhaustive search approach''' def __init__(self, cfrags, axis_names, axis_val_ranges, constraint, time_limit, total_runs, search_opts, cmd_line_opts, ptcodegen, ptdriver, odriver): '''To instantiate an exhaustive search engine''' main.tuner.search.search.Search.__init__(self, cfrags, axis_names, axis_val_ranges, constraint, time_limit, total_runs, search_opts, cmd_line_opts, ptcodegen, ptdriver, odriver) # read all algorithm-specific arguments self.__readAlgoArgs() # complain if the total number of search runs is defined (i.e. exhaustive search # only needs to be run once) if self.total_runs > 1: print ('error: the total number of %s search runs must be one (or can be undefined)' % self.__class__.__name__) sys.exit(1) #-------------------------------------------------- def __readAlgoArgs(self): '''To read all algorithm-specific arguments''' for vname, rhs in self.search_opts.iteritems(): print ('error: unrecognized %s algorithm-specific argument: "%s"' % (self.__class__.__name__, vname)) sys.exit(1) #-------------------------------------------------- def __getNextCoord(self, coord): ''' Return the next neighboring coordinate to be considered in the search space. Return None if all coordinates in the search space have been visited. ''' next_coord = coord[:] for i in range(0, self.total_dims): ipoint = next_coord[i] iuplimit = self.dim_uplimits[i] if ipoint < iuplimit-1: next_coord[i] += 1 break else: next_coord[i] = 0 if i == self.total_dims - 1: return None return next_coord #-------------------------------------------------- def searchBestCoord(self): ''' To explore the search space and retun the coordinate that yields the best performance (i.e. minimum performance cost). ''' if self.verbose: print '\n----- begin exhaustive search -----' # record the best coordinate and its best performance cost best_coord = None best_perf_cost = self.MAXFLOAT # start the timer start_time = time.time() # start from the origin coordinate (i.e. [0,0,...]) coord = [0] * self.total_dims # evaluate every coordinate in the search space while True: # determine the performance cost of the current coordinate perf_cost = self.getPerfCost(coord) if self.verbose: print 'coordinate: %s, cost: %s' % (coord, perf_cost) # compare to the best result so far if perf_cost < best_perf_cost: best_coord = coord best_perf_cost = perf_cost if self.verbose: print '>>>> best coordinate found: %s, cost: %s' % (coord,perf_cost) # check if the time is up if self.time_limit > 0 and (time.time()-start_time) > self.time_limit: break # move to the next coordinate in the search space coord = self.__getNextCoord(coord) # check if all coordinates have been visited if coord == None: break # compute the total search time search_time = time.time() - start_time if self.verbose: print '----- end exhaustive search -----' if self.verbose: print '----- begin summary -----' if self.verbose: print ' best coordinate: %s, cost: %s' % (best_coord, best_perf_cost) if self.verbose: print ' total search time: %.2f seconds' % search_time if self.verbose: print '----- end summary -----' # return the best coordinate return best_coord
36.621849
101
0.544516
# # Implementation of the exhaustive search algorithm # import sys, time import main.tuner.search.search #----------------------------------------------------- class Exhaustive(main.tuner.search.search.Search): '''The search engine that uses an exhaustive search approach''' def __init__(self, cfrags, axis_names, axis_val_ranges, constraint, time_limit, total_runs, search_opts, cmd_line_opts, ptcodegen, ptdriver, odriver): '''To instantiate an exhaustive search engine''' main.tuner.search.search.Search.__init__(self, cfrags, axis_names, axis_val_ranges, constraint, time_limit, total_runs, search_opts, cmd_line_opts, ptcodegen, ptdriver, odriver) # read all algorithm-specific arguments self.__readAlgoArgs() # complain if the total number of search runs is defined (i.e. exhaustive search # only needs to be run once) if self.total_runs > 1: print ('error: the total number of %s search runs must be one (or can be undefined)' % self.__class__.__name__) sys.exit(1) #-------------------------------------------------- def __readAlgoArgs(self): '''To read all algorithm-specific arguments''' for vname, rhs in self.search_opts.iteritems(): print ('error: unrecognized %s algorithm-specific argument: "%s"' % (self.__class__.__name__, vname)) sys.exit(1) #-------------------------------------------------- def __getNextCoord(self, coord): ''' Return the next neighboring coordinate to be considered in the search space. Return None if all coordinates in the search space have been visited. ''' next_coord = coord[:] for i in range(0, self.total_dims): ipoint = next_coord[i] iuplimit = self.dim_uplimits[i] if ipoint < iuplimit-1: next_coord[i] += 1 break else: next_coord[i] = 0 if i == self.total_dims - 1: return None return next_coord #-------------------------------------------------- def searchBestCoord(self): ''' To explore the search space and retun the coordinate that yields the best performance (i.e. minimum performance cost). ''' if self.verbose: print '\n----- begin exhaustive search -----' # record the best coordinate and its best performance cost best_coord = None best_perf_cost = self.MAXFLOAT # start the timer start_time = time.time() # start from the origin coordinate (i.e. [0,0,...]) coord = [0] * self.total_dims # evaluate every coordinate in the search space while True: # determine the performance cost of the current coordinate perf_cost = self.getPerfCost(coord) if self.verbose: print 'coordinate: %s, cost: %s' % (coord, perf_cost) # compare to the best result so far if perf_cost < best_perf_cost: best_coord = coord best_perf_cost = perf_cost if self.verbose: print '>>>> best coordinate found: %s, cost: %s' % (coord,perf_cost) # check if the time is up if self.time_limit > 0 and (time.time()-start_time) > self.time_limit: break # move to the next coordinate in the search space coord = self.__getNextCoord(coord) # check if all coordinates have been visited if coord == None: break # compute the total search time search_time = time.time() - start_time if self.verbose: print '----- end exhaustive search -----' if self.verbose: print '----- begin summary -----' if self.verbose: print ' best coordinate: %s, cost: %s' % (best_coord, best_perf_cost) if self.verbose: print ' total search time: %.2f seconds' % search_time if self.verbose: print '----- end summary -----' # return the best coordinate return best_coord
0
0
0
f2dc1850d674cc25fd856fe2c9f15426cb04a079
1,010
py
Python
app.py
Manasi2001/Smart-Irrigation-System
9de4b44256e6f998f7dde0c721ce34bf0000f360
[ "MIT" ]
null
null
null
app.py
Manasi2001/Smart-Irrigation-System
9de4b44256e6f998f7dde0c721ce34bf0000f360
[ "MIT" ]
null
null
null
app.py
Manasi2001/Smart-Irrigation-System
9de4b44256e6f998f7dde0c721ce34bf0000f360
[ "MIT" ]
null
null
null
import os import joblib classifier = joblib.load(r'smartirrigation.pkl') # importing Flask and other modules from flask import Flask, request, render_template import numpy as np # Flask constructor app = Flask(__name__) # A decorator used to tell the application # which URL is associated function @app.route('/', methods = ["GET", "POST"]) if __name__=='__main__': port = int(os.environ.get("PORT", 5000)) app.run(host='0.0.0.0', port=port)
31.5625
67
0.622772
import os import joblib classifier = joblib.load(r'smartirrigation.pkl') # importing Flask and other modules from flask import Flask, request, render_template import numpy as np # Flask constructor app = Flask(__name__) # A decorator used to tell the application # which URL is associated function @app.route('/', methods = ["GET", "POST"]) def green_hacks(): if request.method == "POST": m_c = request.form.get("m_c") temp = request.form.get("temp") p = classifier.predict(np.array([m_c, temp]).reshape(-2,2)) if p == 0: output = "No need for the pump to be on." return render_template('index.html', output=output) elif p == 1: output = "Switch on your pump immediately." return render_template('index.html', output=output) return render_template('index.html') if __name__=='__main__': port = int(os.environ.get("PORT", 5000)) app.run(host='0.0.0.0', port=port)
507
0
23
4f076ea07d8ac8daa548c2e9e7e0dff9a07548bd
4,761
py
Python
bebotPlatform/settings.py
ElitosGon/bebotPlatform
f10b37ecc6cc748a719efc639faa9a2907357682
[ "Apache-2.0" ]
null
null
null
bebotPlatform/settings.py
ElitosGon/bebotPlatform
f10b37ecc6cc748a719efc639faa9a2907357682
[ "Apache-2.0" ]
6
2020-06-05T17:08:29.000Z
2022-03-11T23:14:15.000Z
bebotPlatform/settings.py
ElitosGon/bebotPlatform
f10b37ecc6cc748a719efc639faa9a2907357682
[ "Apache-2.0" ]
null
null
null
""" Django settings for bebotPlatform project. Generated by 'django-admin startproject' using Django 2.0.1. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ from django.utils.translation import ugettext_lazy as _ from django.utils.translation import ugettext import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) PROJECT_ROOT = os.path.abspath(os.path.join(BASE_DIR, '..')) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'w7hotrp-fj11%$fp1gc)uoqk3zwx@5nmucgy-2sd&aht4gt80c' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['localhost', '127.0.0.1','142.93.189.104'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.humanize', 'django.contrib.sites', 'webPlatform', 'vote', 'actstream', 'notifications', ] SITE_ID = 1 MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.locale.LocaleMiddleware', ] ROOT_URLCONF = 'bebotPlatform.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, "templates")], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.i18n', 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'bebotPlatform.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'bebotDB', 'USER': 'bebot', 'PASSWORD': 'bebot', 'HOST': 'localhost', 'PORT': '', } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ TIME_ZONE = 'America/Santiago' USE_I18N = True USE_L10N = True USE_TZ = False # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, "static"), ] # File handler MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') # Language LANGUAGE_CODE = 'es' LANGUAGES = [ ('es', _('Spanish')) ] LOCALE_PATH = (os.path.join(BASE_DIR,'locale')) # Email setting EMAIL_USE_TLS = True EMAIL_HOST = 'smtp.gmail.com' EMAIL_PORT = 25 EMAIL_HOST_USER = 'BeBot.Project@gmail.com' EMAIL_HOST_PASSWORD = 'bebotproject' EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' SMTP_ENABLED = True EMAIL_HOST_MEDGO = 'BeBot.Project@gmail.com' TEMPLATED_EMAIL_TEMPLATE_DIR = 'templated_email/' #use '' for top level template dir, ensure there is a trailing slash TEMPLATED_EMAIL_FILE_EXTENSION = 'email' # Images Avatar DJANGORESIZED_DEFAULT_KEEP_META = True DJANGORESIZED_DEFAULT_FORCE_FORMAT = 'JPEG' # Google GOOGLE_RECAPTCHA_SECRET_KEY = '6LfuJEAUAAAAAJdnw0LxAKSlMbhEeYt8ijfoUNyl' # ACTSTREAM ACTSTREAM_SETTINGS = { 'FETCH_RELATIONS': True, 'USE_PREFETCH': True, 'USE_JSONFIELD': True, 'GFK_FETCH_DEPTH': 1, } # Notification NOTIFICATIONS_SOFT_DELETE=True
26.45
118
0.705944
""" Django settings for bebotPlatform project. Generated by 'django-admin startproject' using Django 2.0.1. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ from django.utils.translation import ugettext_lazy as _ from django.utils.translation import ugettext import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) PROJECT_ROOT = os.path.abspath(os.path.join(BASE_DIR, '..')) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'w7hotrp-fj11%$fp1gc)uoqk3zwx@5nmucgy-2sd&aht4gt80c' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['localhost', '127.0.0.1','142.93.189.104'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.humanize', 'django.contrib.sites', 'webPlatform', 'vote', 'actstream', 'notifications', ] SITE_ID = 1 MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.locale.LocaleMiddleware', ] ROOT_URLCONF = 'bebotPlatform.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, "templates")], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.i18n', 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'bebotPlatform.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'bebotDB', 'USER': 'bebot', 'PASSWORD': 'bebot', 'HOST': 'localhost', 'PORT': '', } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ TIME_ZONE = 'America/Santiago' USE_I18N = True USE_L10N = True USE_TZ = False # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, "static"), ] # File handler MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') # Language LANGUAGE_CODE = 'es' LANGUAGES = [ ('es', _('Spanish')) ] LOCALE_PATH = (os.path.join(BASE_DIR,'locale')) # Email setting EMAIL_USE_TLS = True EMAIL_HOST = 'smtp.gmail.com' EMAIL_PORT = 25 EMAIL_HOST_USER = 'BeBot.Project@gmail.com' EMAIL_HOST_PASSWORD = 'bebotproject' EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' SMTP_ENABLED = True EMAIL_HOST_MEDGO = 'BeBot.Project@gmail.com' TEMPLATED_EMAIL_TEMPLATE_DIR = 'templated_email/' #use '' for top level template dir, ensure there is a trailing slash TEMPLATED_EMAIL_FILE_EXTENSION = 'email' # Images Avatar DJANGORESIZED_DEFAULT_KEEP_META = True DJANGORESIZED_DEFAULT_FORCE_FORMAT = 'JPEG' # Google GOOGLE_RECAPTCHA_SECRET_KEY = '6LfuJEAUAAAAAJdnw0LxAKSlMbhEeYt8ijfoUNyl' # ACTSTREAM ACTSTREAM_SETTINGS = { 'FETCH_RELATIONS': True, 'USE_PREFETCH': True, 'USE_JSONFIELD': True, 'GFK_FETCH_DEPTH': 1, } # Notification NOTIFICATIONS_SOFT_DELETE=True
0
0
0
e19efff62172edb798c2b0bad7a319dbf88a5318
3,862
py
Python
flowsa/Census_CBP.py
cchiq/flowsa
fc21e8da7c3ba66ca4ae4a0c72f568af7ef5e6c0
[ "CC0-1.0" ]
null
null
null
flowsa/Census_CBP.py
cchiq/flowsa
fc21e8da7c3ba66ca4ae4a0c72f568af7ef5e6c0
[ "CC0-1.0" ]
null
null
null
flowsa/Census_CBP.py
cchiq/flowsa
fc21e8da7c3ba66ca4ae4a0c72f568af7ef5e6c0
[ "CC0-1.0" ]
null
null
null
# Census_CBP.py (flowsa) # !/usr/bin/env python3 # coding=utf-8 """ Pulls County Business Patterns data in NAICS from the Census Bureau Writes out to various FlowBySector class files for these data items EMP = Number of employees, Class = Employment PAYANN = Annual payroll ($1,000), Class = Money ESTAB = Number of establishments, Class = Other This script is designed to run with a configuration parameter --year = 'year' e.g. 2015 """ import pandas as pd import numpy as np import json #from flowsa.datapull import build_url, make_http_request, load_from_requests_response from flowsa.common import log, flow_by_activity_fields, get_all_state_FIPS_2, datapath
38.62
86
0.631538
# Census_CBP.py (flowsa) # !/usr/bin/env python3 # coding=utf-8 """ Pulls County Business Patterns data in NAICS from the Census Bureau Writes out to various FlowBySector class files for these data items EMP = Number of employees, Class = Employment PAYANN = Annual payroll ($1,000), Class = Money ESTAB = Number of establishments, Class = Other This script is designed to run with a configuration parameter --year = 'year' e.g. 2015 """ import pandas as pd import numpy as np import json #from flowsa.datapull import build_url, make_http_request, load_from_requests_response from flowsa.common import log, flow_by_activity_fields, get_all_state_FIPS_2, datapath def Census_CBP_URL_helper(build_url, config, args): urls_census = [] FIPS_2 = get_all_state_FIPS_2()['FIPS_2'] for c in FIPS_2: url = build_url url = url.replace("__stateFIPS__", c) # specified NAICS code year depends on year of data if args["year"] in ['2017']: url = url.replace("__NAICS__", "NAICS2017") if args["year"] in ['2012', '2013', '2014', '2015', '2016']: url = url.replace("__NAICS__", "NAICS2012") if args["year"] in ['2010', '2011']: url = url.replace("__NAICS__", "NAICS2007") urls_census.append(url) return urls_census def census_cbp_call(url, cbp_response, args): cbp_json = json.loads(cbp_response.text) # convert response to dataframe df_census = pd.DataFrame(data=cbp_json[1:len(cbp_json)], columns=cbp_json[0]) return df_census def census_cbp_parse(dataframe_list, args): # concat dataframes df = pd.concat(dataframe_list, sort=False) # Add year df['Year'] = args["year"] # convert county='999' to line for full state df.loc[df['county'] == '999', 'county'] = '000' # Make FIPS as a combo of state and county codes df['Location'] = df['state'] + df['county'] # now drop them df = df.drop(columns=['state', 'county']) # rename NAICS column and add NAICS year as description if 'NAICS2007' in df.columns: df = df.rename(columns={"NAICS2007": "ActivityProducedBy"}) df['Description'] = 'NAICS2007' if 'NAICS2012' in df.columns: df = df.rename(columns={"NAICS2012": "ActivityProducedBy"}) df['Description'] = 'NAICS2012' if 'NAICS2017' in df.columns: df = df.rename(columns={"NAICS2017": "ActivityProducedBy"}) df['Description'] = 'NAICS2017' # drop all sectors record df = df[df['ActivityProducedBy'] != "00"] # rename columns df = df.rename(columns={'ESTAB': 'Number of establishments', 'EMP': 'Number of employees', 'PAYANN': 'Annual payroll'}) # use "melt" fxn to convert colummns into rows df = df.melt(id_vars=["Location", "ActivityProducedBy", "Year", "Description"], var_name="FlowName", value_name="FlowAmount") # specify unit based on flowname df['Unit'] = np.where(df["FlowName"] == 'Annual payroll', "USD", "p") # specify class df.loc[df['FlowName'] == 'Number of employees', 'Class'] = 'Employment' df.loc[df['FlowName'] == 'Number of establishments', 'Class'] = 'Other' df.loc[df['FlowName'] == 'Annual payroll', 'Class'] = 'Money' # add location system based on year of data if args['year'] >= '2019': df['LocationSystem'] = 'FIPS_2019' elif '2015' <= args['year'] < '2019': df['LocationSystem'] = 'FIPS_2015' elif '2013' <= args['year'] < '2015': df['LocationSystem'] = 'FIPS_2013' elif '2010' <= args['year'] < '2013': df['LocationSystem'] = 'FIPS_2010' # hard code data df['SourceName'] = 'Census_CBP' # Add tmp DQ scores df['DataReliability'] = 5 df['DataCollection'] = 5 df['Compartment'] = None return df
3,124
0
69
5dcd64d4cbce7570663b74758a9b37abc2510d4e
1,363
py
Python
packages/pyright-internal/src/tests/samples/variadicTypeVar2.py
sasano8/pyright
e804f324ee5dbd25fd37a258791b3fd944addecd
[ "MIT" ]
4,391
2019-05-07T01:18:57.000Z
2022-03-31T20:45:44.000Z
packages/pyright-internal/src/tests/samples/variadicTypeVar2.py
sasano8/pyright
e804f324ee5dbd25fd37a258791b3fd944addecd
[ "MIT" ]
2,740
2019-05-07T03:29:30.000Z
2022-03-31T12:57:46.000Z
packages/pyright-internal/src/tests/samples/variadicTypeVar2.py
sasano8/pyright
e804f324ee5dbd25fd37a258791b3fd944addecd
[ "MIT" ]
455
2019-05-07T12:55:14.000Z
2022-03-31T17:09:15.000Z
# This sample tests various conditions under which Unpack # can and cannot be used. # pyright: reportMissingModuleSource=false from typing import Generic, List, Tuple, TypeVar, Union from typing_extensions import TypeVarTuple, Unpack _T = TypeVar("_T") _Xs = TypeVarTuple("_Xs") # This should generate an error. x: List[Unpack[_Xs]] = [] # This should generate an error. y: Unpack[_Xs] = () # This should generate an error. z: Unpack = () # This should generate two errors because _Xs must be unpacked. # def func1(value: Array[*_Xs]) -> Tuple[complex, *_Xs, str]: # ...
21.296875
63
0.62876
# This sample tests various conditions under which Unpack # can and cannot be used. # pyright: reportMissingModuleSource=false from typing import Generic, List, Tuple, TypeVar, Union from typing_extensions import TypeVarTuple, Unpack _T = TypeVar("_T") _Xs = TypeVarTuple("_Xs") class ClassA(Generic[_T, Unpack[_Xs]]): def __init__(self, *shape: Unpack[_Xs]): self.x: Tuple[Unpack[_Xs]] = shape # This should generate an error self.y: _Xs = shape def func1(self) -> Union[Unpack[_Xs]]: ... # This should generate an error def func2(self) -> Tuple[Unpack[_T]]: ... # This should generate an error def func3(self) -> Tuple[Unpack[int]]: ... # This should generate an error def func4(self) -> Tuple[Unpack[_Xs, _Xs]]: ... # This should generate an error. a: List[Unpack[_Xs]] = [] # This should generate an error. b: Unpack[_Xs] = () # This should generate an error. x: List[Unpack[_Xs]] = [] # This should generate an error. y: Unpack[_Xs] = () # This should generate an error. z: Unpack = () class Array(Generic[Unpack[_Xs]]): ... # This should generate two errors because _Xs must be unpacked. def func0(value: Array[_Xs]) -> Tuple[complex, _Xs, str]: ... # def func1(value: Array[*_Xs]) -> Tuple[complex, *_Xs, str]: # ...
295
411
68
b3129c41be6df0f67c689237bce862f41d0f6489
12,097
py
Python
dockeroo/docker/gentoo_bootstrap.py
dockeroo/dockeroo
6395b4008d0d3d6cabdfec9d52ce448b095fdae1
[ "Apache-2.0" ]
4
2016-07-25T09:21:32.000Z
2022-02-11T19:11:23.000Z
dockeroo/docker/gentoo_bootstrap.py
dockeroo/dockeroo
6395b4008d0d3d6cabdfec9d52ce448b095fdae1
[ "Apache-2.0" ]
null
null
null
dockeroo/docker/gentoo_bootstrap.py
dockeroo/dockeroo
6395b4008d0d3d6cabdfec9d52ce448b095fdae1
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright (c) 2016, Giacomo Cariello. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from zc.buildout import UserError from dockeroo import BaseGroupRecipe from dockeroo.docker import BaseDockerSubRecipe, Archive from dockeroo.utils import merge, string_as_bool class DockerGentooBootstrapRecipe(BaseGroupRecipe): """ This recipe creates a docker image that contains a full operating system (typically Gentoo). Such builder image can be used to create further docker images with :py:class:`dockeroo.docker.gentoo_build.DockerGentooBuildRecipe` recipe. The recipe executes the following tasks: 1. Extract **archives** into a docker image. 2. Create a container from such image. 3. Install "freeze" binary into the container. This is a simple no-op binary executable. 4. If a **layout** is defined, copy layout contents onto container's root. 5. Execute **build-script**. 6. If **commit** is enabled, commit modifications of image. .. describe:: Usage The following example buildout part shows how to build a full Gentoo amd64 docker image. .. code-block:: ini [crossdev_builder.img] crossdev-arch = x86_64 crossdev-platform = x86_64 crossdev-processor = x86_64 crossdev-variant = docker crossdev-abi = gnu crossdev-gentoo-profile = no-multilib crossdev-gentoo-platform = amd64 crossdev-gentoo-platform-flavor = amd64 recipe = dockeroo:docker.gentoo-bootstrap image = dockeroo/builder_${:crossdev-arch}:latest container = dockeroo_builder_${:crossdev-arch} volumes-from = ${distfiles:container} gentoo-platform = amd64 gentoo-platform-flavor = amd64-nomultilib gentoo-version = 20160414 archives = http://distfiles.gentoo.org/releases/${:gentoo-platform}/autobuilds/${:gentoo-version}/stage3-${:gentoo-platform-flavor}-${:gentoo-version}.tar.bz2 commit = true keep = true layout = ${buildout:containers-directory}/builder_${:crossdev-arch} build-script = test -d /usr/portage/profiles || emerge-webrsync emerge --sync emerge -uDNvkb world emerge -nNuvkb sys-devel/crossdev test -e /usr/${:crossdev-processor}-${:crossdev-variant}-linux-${:crossdev-abi}/.crossdev || \ crossdev -S -v -t ${:crossdev-processor}-${:crossdev-variant}-linux-${:crossdev-abi} --ov-output /usr/local/portage-crossdev-${:crossdev-arch} -P -kb && \ touch /usr/${:crossdev-processor}-${:crossdev-variant}-linux-${:crossdev-abi}/.crossdev (cd /usr/${:crossdev-processor}-${:crossdev-variant}-linux-${:crossdev-abi}/etc/portage && \ rm -f make.profile && ln -s /usr/portage/profiles/default/linux/${:crossdev-gentoo-platform}/13.0/${:crossdev-gentoo-profile} make.profile) ROOT=/usr/${:crossdev-processor}-${:crossdev-variant}-linux-${:crossdev-abi} \ ${:crossdev-processor}-${:crossdev-variant}-linux-${:crossdev-abi}-emerge -nuvkb1 --keep-going sys-apps/baselayout ROOT=/usr/${:crossdev-processor}-${:crossdev-variant}-linux-${:crossdev-abi} \ ${:crossdev-processor}-${:crossdev-variant}-linux-${:crossdev-abi}-emerge -nuvkb1 --keep-going $(egrep '^[a-z]+' /usr/portage/profiles/default/linux/packages.build) ROOT=/usr/${:crossdev-processor}-${:crossdev-variant}-linux-${:crossdev-abi} \ ${:crossdev-processor}-${:crossdev-variant}-linux-${:crossdev-abi}-emerge -nuvkb1 --keep-going sys-apps/portage sys-apps/openrc net-misc/netifrc app-portage/gentoolkit chroot-${:crossdev-arch}-docker -c locale-gen chroot-${:crossdev-arch}-docker -c env-update To use the above part, several other files are necessary, to be copied in via **layout**:: /etc/locale.gen /etc/portage/repos.conf/crossdev.conf /etc/portage/repos.conf/local.conf /usr/local/bin/chroot-x86_64-docker /usr/local/portage-crossdev-x86_64/metadata/layout.conf /usr/local/portage-crossdev-x86_64/profiles/repo_name /usr/x86_64-docker-linux-gnu/dockeroo-root/.keep /usr/x86_64-docker-linux-gnu/etc/bash/bashrc.d/emerge-chroot /usr/x86_64-docker-linux-gnu/etc/locale.gen /usr/x86_64-docker-linux-gnu/etc/portage/make.conf Here's an example of chroot-x86_64-docker script, useful to build docker images with :py:class:`dockeroo.docker.gentoo_build.DockerGentooBuildRecipe` recipe: .. code-block:: bash #!/bin/sh cd /usr/x86_64-docker-linux-gnu set -e mkdir -p dev proc sys tmp etc/portage/repos.conf usr/portage usr/local/portage-crossdev-x86_64/packages var/lib/layman mount -o bind /dev dev mount -o bind /dev/pts dev/pts mount -o bind /dev/shm dev/shm mount -o bind /etc/portage/repos.conf etc/portage/repos.conf mount -o bind /proc proc mount -o bind /sys sys mount -o bind /tmp tmp mount -o bind /usr/portage usr/portage mount -o bind /usr/portage/distfiles usr/portage/distfiles mount -o bind /usr/local/portage-crossdev-x86_64 usr/local/portage-crossdev-x86_64 mount -o bind /usr/local/portage-crossdev-x86_64/packages usr/local/portage-crossdev-x86_64/packages mount -o bind /var/lib/layman var/lib/layman cp /etc/resolv.conf etc/resolv.conf set +e chroot . /bin/bash --login "$@" ret=$? set -e umount var/lib/layman umount usr/local/portage-crossdev-x86_64/packages umount usr/local/portage-crossdev-x86_64 umount usr/portage/distfiles umount usr/portage umount tmp umount sys umount proc umount etc/portage/repos.conf umount dev/shm umount dev/pts umount dev set +e exit $ret .. describe:: Configuration options archives List of URLs of operating system initial filesystem contents (Gentoo stageX). crossdev-platform Name of destination platform. If enabled, allows automatic configuration of QEMU binfmt mapping. command Command to execute upon container starting. Defaults to "/bin/freeze". commit Commit image changes after recipe install execution. Defaults to false. container Name of build container. keep Don't delete image upon uninstall. layout Copies a local folder to container's root with **docker cp**. machine-name Docker machine where **build-image** and **base-image** reside. Defaults to DOCKER_MACHINE_NAME environment variable or "default" if unset. name Name of destination image. Defaults to part name. build-script Execute this script after extraction of archives filesystem and import of layout. tag Tag name. Defaults to "latest". timeout **docker** command timeout. tty Assign a **Pseudo-TTY** to the container. volumes Volumes to bind mount, one per line. Format is <path>:<mountpoint>. volumes-from Mount volumes from specified container. """ subrecipe_class = DockerGentooBootstrapSubRecipe
42.745583
182
0.630322
# -*- coding: utf-8 -*- # # Copyright (c) 2016, Giacomo Cariello. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from zc.buildout import UserError from dockeroo import BaseGroupRecipe from dockeroo.docker import BaseDockerSubRecipe, Archive from dockeroo.utils import merge, string_as_bool class DockerGentooBootstrapSubRecipe(BaseDockerSubRecipe): # pylint: disable=too-many-instance-attributes def initialize(self): super(DockerGentooBootstrapSubRecipe, self).initialize() self.tag = self.options.get("tag", "latest") self.name += ':{}'.format(self.tag) self.command = self.options.get("command", "/bin/freeze") self.commit = string_as_bool(self.options.get('commit', False)) self.container = self.options.get('container', "{}_bootstrap".format(self.name.replace(':', '_'))) self.keep = string_as_bool(self.options.get('keep', False)) self.layout = self.options.get('layout', None) self.crossdev_platform = self.options.get( 'crossdev-platform', self.engine.platform) self.build_shell = self.options.get('build-shell', self.shell) self.build_script = "#!{}\n{}".format( self.build_shell, '\n'.join([_f for _f in [x.strip() for x in self.options.get('build-script').replace('$$', '$').splitlines()] if _f])) \ if self.options.get('build-script', None) is not None else None self.tty = string_as_bool(self.options.get('tty', False)) self.archives = [] for url, prefix, md5sum in [merge([None, None, None], x.split())[:3] for x in [_f for _f in [x.strip() for x in self.options.get( 'archives', self.options.get('archive', '')).splitlines()] if _f]]: if prefix == '/': prefix = None self.archives.append( Archive(url=url, prefix=prefix, md5sum=md5sum)) self.volumes = [y for y in [x.strip().split( ':', 1) for x in self.options.get('volumes', '').splitlines()] if y[0]] self.volumes_from = self.options.get('volumes-from', None) def install(self): if not any([x for x in self.engine.images() if self.name == x['image']]): if not self.archives: raise UserError( "Image does not exist and no source specified.") for archive in self.archives: archive.download(self.recipe.buildout) self.engine.import_archives(self.name, *self.archives) if not self.engine.containers(include_stopped=True, name=self.container): self.engine.create_container(self.container, self.name, command=self.command, privileged=True, tty=self.tty, volumes=self.volumes, volumes_from=self.volumes_from) # else: # raise RuntimeError("Container \"{}\" already exists".format(self.container)) self.engine.install_freeze(self.container) if self.layout: self.engine.load_layout(self.container, self.layout) self.engine.start_container(self.container) if self.build_script: if self.crossdev_platform != self.engine.platform: if self.engine.machine is not None: self.engine.machine.config_binfmt(self.crossdev_platform) else: raise UserError("docker-machine is not defined but binfmt configuration is needed.") self.engine.run_script(self.container, self.build_script) if self.commit: self.engine.commit_container(self.container, self.name) self.engine.remove_container(self.container) self.engine.clean_stale_images() return self.mark_completed() def update(self): if (self.layout and self.is_layout_updated(self.layout)) or \ not next(self.engine.images(name=self.name), None): return self.install() return self.mark_completed() def uninstall(self): self.engine.remove_container(self.container) if not self.keep: self.engine.remove_image(self.name) class DockerGentooBootstrapRecipe(BaseGroupRecipe): """ This recipe creates a docker image that contains a full operating system (typically Gentoo). Such builder image can be used to create further docker images with :py:class:`dockeroo.docker.gentoo_build.DockerGentooBuildRecipe` recipe. The recipe executes the following tasks: 1. Extract **archives** into a docker image. 2. Create a container from such image. 3. Install "freeze" binary into the container. This is a simple no-op binary executable. 4. If a **layout** is defined, copy layout contents onto container's root. 5. Execute **build-script**. 6. If **commit** is enabled, commit modifications of image. .. describe:: Usage The following example buildout part shows how to build a full Gentoo amd64 docker image. .. code-block:: ini [crossdev_builder.img] crossdev-arch = x86_64 crossdev-platform = x86_64 crossdev-processor = x86_64 crossdev-variant = docker crossdev-abi = gnu crossdev-gentoo-profile = no-multilib crossdev-gentoo-platform = amd64 crossdev-gentoo-platform-flavor = amd64 recipe = dockeroo:docker.gentoo-bootstrap image = dockeroo/builder_${:crossdev-arch}:latest container = dockeroo_builder_${:crossdev-arch} volumes-from = ${distfiles:container} gentoo-platform = amd64 gentoo-platform-flavor = amd64-nomultilib gentoo-version = 20160414 archives = http://distfiles.gentoo.org/releases/${:gentoo-platform}/autobuilds/${:gentoo-version}/stage3-${:gentoo-platform-flavor}-${:gentoo-version}.tar.bz2 commit = true keep = true layout = ${buildout:containers-directory}/builder_${:crossdev-arch} build-script = test -d /usr/portage/profiles || emerge-webrsync emerge --sync emerge -uDNvkb world emerge -nNuvkb sys-devel/crossdev test -e /usr/${:crossdev-processor}-${:crossdev-variant}-linux-${:crossdev-abi}/.crossdev || \ crossdev -S -v -t ${:crossdev-processor}-${:crossdev-variant}-linux-${:crossdev-abi} --ov-output /usr/local/portage-crossdev-${:crossdev-arch} -P -kb && \ touch /usr/${:crossdev-processor}-${:crossdev-variant}-linux-${:crossdev-abi}/.crossdev (cd /usr/${:crossdev-processor}-${:crossdev-variant}-linux-${:crossdev-abi}/etc/portage && \ rm -f make.profile && ln -s /usr/portage/profiles/default/linux/${:crossdev-gentoo-platform}/13.0/${:crossdev-gentoo-profile} make.profile) ROOT=/usr/${:crossdev-processor}-${:crossdev-variant}-linux-${:crossdev-abi} \ ${:crossdev-processor}-${:crossdev-variant}-linux-${:crossdev-abi}-emerge -nuvkb1 --keep-going sys-apps/baselayout ROOT=/usr/${:crossdev-processor}-${:crossdev-variant}-linux-${:crossdev-abi} \ ${:crossdev-processor}-${:crossdev-variant}-linux-${:crossdev-abi}-emerge -nuvkb1 --keep-going $(egrep '^[a-z]+' /usr/portage/profiles/default/linux/packages.build) ROOT=/usr/${:crossdev-processor}-${:crossdev-variant}-linux-${:crossdev-abi} \ ${:crossdev-processor}-${:crossdev-variant}-linux-${:crossdev-abi}-emerge -nuvkb1 --keep-going sys-apps/portage sys-apps/openrc net-misc/netifrc app-portage/gentoolkit chroot-${:crossdev-arch}-docker -c locale-gen chroot-${:crossdev-arch}-docker -c env-update To use the above part, several other files are necessary, to be copied in via **layout**:: /etc/locale.gen /etc/portage/repos.conf/crossdev.conf /etc/portage/repos.conf/local.conf /usr/local/bin/chroot-x86_64-docker /usr/local/portage-crossdev-x86_64/metadata/layout.conf /usr/local/portage-crossdev-x86_64/profiles/repo_name /usr/x86_64-docker-linux-gnu/dockeroo-root/.keep /usr/x86_64-docker-linux-gnu/etc/bash/bashrc.d/emerge-chroot /usr/x86_64-docker-linux-gnu/etc/locale.gen /usr/x86_64-docker-linux-gnu/etc/portage/make.conf Here's an example of chroot-x86_64-docker script, useful to build docker images with :py:class:`dockeroo.docker.gentoo_build.DockerGentooBuildRecipe` recipe: .. code-block:: bash #!/bin/sh cd /usr/x86_64-docker-linux-gnu set -e mkdir -p dev proc sys tmp etc/portage/repos.conf usr/portage usr/local/portage-crossdev-x86_64/packages var/lib/layman mount -o bind /dev dev mount -o bind /dev/pts dev/pts mount -o bind /dev/shm dev/shm mount -o bind /etc/portage/repos.conf etc/portage/repos.conf mount -o bind /proc proc mount -o bind /sys sys mount -o bind /tmp tmp mount -o bind /usr/portage usr/portage mount -o bind /usr/portage/distfiles usr/portage/distfiles mount -o bind /usr/local/portage-crossdev-x86_64 usr/local/portage-crossdev-x86_64 mount -o bind /usr/local/portage-crossdev-x86_64/packages usr/local/portage-crossdev-x86_64/packages mount -o bind /var/lib/layman var/lib/layman cp /etc/resolv.conf etc/resolv.conf set +e chroot . /bin/bash --login "$@" ret=$? set -e umount var/lib/layman umount usr/local/portage-crossdev-x86_64/packages umount usr/local/portage-crossdev-x86_64 umount usr/portage/distfiles umount usr/portage umount tmp umount sys umount proc umount etc/portage/repos.conf umount dev/shm umount dev/pts umount dev set +e exit $ret .. describe:: Configuration options archives List of URLs of operating system initial filesystem contents (Gentoo stageX). crossdev-platform Name of destination platform. If enabled, allows automatic configuration of QEMU binfmt mapping. command Command to execute upon container starting. Defaults to "/bin/freeze". commit Commit image changes after recipe install execution. Defaults to false. container Name of build container. keep Don't delete image upon uninstall. layout Copies a local folder to container's root with **docker cp**. machine-name Docker machine where **build-image** and **base-image** reside. Defaults to DOCKER_MACHINE_NAME environment variable or "default" if unset. name Name of destination image. Defaults to part name. build-script Execute this script after extraction of archives filesystem and import of layout. tag Tag name. Defaults to "latest". timeout **docker** command timeout. tty Assign a **Pseudo-TTY** to the container. volumes Volumes to bind mount, one per line. Format is <path>:<mountpoint>. volumes-from Mount volumes from specified container. """ subrecipe_class = DockerGentooBootstrapSubRecipe
3,999
84
131
bc5473086318e86d614755dbb30522dfe789f2a8
10,298
py
Python
Apollo.py
heitorsampaio/ApolloAI
c2983ce51c52641453fb1f6e0d7598bdd47ed66d
[ "MIT" ]
null
null
null
Apollo.py
heitorsampaio/ApolloAI
c2983ce51c52641453fb1f6e0d7598bdd47ed66d
[ "MIT" ]
null
null
null
Apollo.py
heitorsampaio/ApolloAI
c2983ce51c52641453fb1f6e0d7598bdd47ed66d
[ "MIT" ]
null
null
null
#!/usr/bin python3 #importing stuffs import speech_recognition as sr import os import sys import re import webbrowser import smtplib import requests import subprocess from pyowm import OWM import youtube_dl import vlc import urllib import urllib3 import json from bs4 import BeautifulSoup as soup from urllib.request import urlopen import wikipedia import random from time import strftime from gtts import gTTS import pyttsx3 import lxml from yeelight import Bulb from yeelight import * from matplotlib import colors from tempfile import TemporaryFile import facebook import tweepy import snowboydecoder import signal import pyaudio from ibm_watson import TextToSpeechV1 from ibm_watson.websocket import SynthesizeCallback from pygame import mixer bulb = Bulb('192.168.15.2') interrupted = False text_to_speech = TextToSpeechV1( iam_apikey='9mDYXRnjmXZS5grZPaBVleJarFajeVEn-Mjp9m_sWFSm', url='https://stream.watsonplatform.net/text-to-speech/api' ) class Play(object): """ Wrapper to play the audio in a blocking mode """ test_callback = MySynthesizeCallback() while True: assistant(mic())
32.588608
158
0.578171
#!/usr/bin python3 #importing stuffs import speech_recognition as sr import os import sys import re import webbrowser import smtplib import requests import subprocess from pyowm import OWM import youtube_dl import vlc import urllib import urllib3 import json from bs4 import BeautifulSoup as soup from urllib.request import urlopen import wikipedia import random from time import strftime from gtts import gTTS import pyttsx3 import lxml from yeelight import Bulb from yeelight import * from matplotlib import colors from tempfile import TemporaryFile import facebook import tweepy import snowboydecoder import signal import pyaudio from ibm_watson import TextToSpeechV1 from ibm_watson.websocket import SynthesizeCallback from pygame import mixer bulb = Bulb('192.168.15.2') interrupted = False text_to_speech = TextToSpeechV1( iam_apikey='9mDYXRnjmXZS5grZPaBVleJarFajeVEn-Mjp9m_sWFSm', url='https://stream.watsonplatform.net/text-to-speech/api' ) class Play(object): """ Wrapper to play the audio in a blocking mode """ def __init__(self): self.format = pyaudio.paInt16 self.channels = 1 self.rate = 22050 self.chunk = 1024 self.pyaudio = None self.stream = None def start_streaming(self): self.pyaudio = pyaudio.PyAudio() self.stream = self._open_stream() self._start_stream() def _open_stream(self): stream = self.pyaudio.open( format=self.format, channels=self.channels, rate=self.rate, output=True, frames_per_buffer=self.chunk, start=False ) return stream def _start_stream(self): self.stream.start_stream() def write_stream(self, audio_stream): self.stream.write(audio_stream) def complete_playing(self): self.stream.stop_stream() self.stream.close() self.pyaudio.terminate() class MySynthesizeCallback(SynthesizeCallback): def __init__(self): SynthesizeCallback.__init__(self) self.play = Play() def on_connected(self): print('Opening stream to play') self.play.start_streaming() def on_error(self, error): print('Error received: {}'.format(error)) def on_timing_information(self, timing_information): print(timing_information) def on_audio_stream(self, audio_stream): self.play.write_stream(audio_stream) def on_close(self): print('Completed synthesizing') self.play.complete_playing() test_callback = MySynthesizeCallback() def apolloRes(audio): text_to_speech.synthesize_using_websocket(audio, test_callback, accept='audio/wav', voice="en-US_MichaelV3Voice",) def mic(): r = sr.Recognizer() with sr.Microphone() as source: print('Tell me something... ') r.pause_threshold = 1 r.adjust_for_ambient_noise(source) audio = r.listen(source) try: command = r.recognize_google(audio, language='en-US').lower() print('You said: ' + command) except sr.UnknownValueError: print('...') command = mic() return command def assistant(command): if 'tell me about' in command: reg_ex = re.search('tell me about(.*)', command) try: if reg_ex: topic = reg_ex.group(1) wikipedia.set_lang('en') ny = wikipedia.summary(topic, sentences=1) print(ny) apolloRes(ny) apolloRes('Thats what i know about %s' %(topic)) except Exception as e: apolloRes(e) elif 'open the website' in command: reg_ex = re.search('open the website (.*)', command) if reg_ex: domain = reg_ex.group(1) print(domain) url = 'https://www.' + domain webbrowser.open(url) apolloRes('I have opened the desired website.') else: pass bulb.turn_off() elif 'hey apollo' in command: day_time = int(strftime('%H')) if day_time < 12: apolloRes('Hey. Good Morning') elif 12 <= day_time < 18: apolloRes('Hey. Good Afternoon') else: apolloRes('Hey. Good Night') elif 'tell me a joke' in command: res = requests.get( 'https://icanhazdadjoke.com/', headers={'Accept':'application/json'}) if res.status_code == requests.codes.ok: apolloRes(str(res.json()['joke'])) else: apolloRes('oops! Im running out of jokes right now and im not in the mood for jokes.') elif 'tell me todays news' in command: try: news_url = 'https://news.google.com/rss?hl=pt-BR&gl=BR&ceid=BR:pt-419' Client = urlopen(news_url) xml_page = Client.read() Client.close() soup_page = soup(xml_page,'lxml') news_list = soup_page.findAll('item') for news in news_list[:15]: apolloRes(news.title.text) except Exception as e: print(e) elif '''how's the weather in ''' in command: reg_ex = re.search('''how's the weather in (.*)''', command) if reg_ex: city = reg_ex.group(1) owm = OWM(API_key='247eed961dfdbff4a65c25d27834eaea') obs = owm.weather_at_place(city) w = obs.get_weather() k = w.get_status() x = w.get_temperature(unit='celsius') apolloRes('O clima em %s é %s. Com máxima temperature de %0.2f e a minima temperatura de %0.2f celsius' % (city, k, x['temp_max'], x['temp_min'])) elif 'what time is it' in command: import datetime now = datetime.datetime.now() apolloRes('It is %d hours and %d minutes' %(now.hour, now.minute)) elif 'turn on the room light' in command: bulb.turn_on() bulb.set_brightness(100) apolloRes('Feito.') elif 'turn off the room light' in command: bulb.turn_off() apolloRes('Pronto.') elif 'change the room light color to' in command: reg_ex = re.search('mude a luz do quarto para (.*)', command) if reg_ex: color = reg_ex.group(1) if color == 'azul': bulb.set_rgb(0,0,255) apolloRes('Feito.') elif color == 'vermelho': bulb.set_rgb(255,0,0) apolloRes('Feito.') elif color == 'cyano': bulb.set_rgb(0,255,255) apolloRes('Feito.') elif color == 'verde limão': bulb.set_rgb(0,255,0) apolloRes('Feito.') elif color == 'amarelo': bulb.set_rgb(255,255,0) apolloRes('Feito.') elif color == 'rosa': bulb.set_rgb(255,0,255) apolloRes('Feito.') elif color == 'verde': bulb.set_rgb(128,128,0) apolloRes('Feito.') elif color == 'azul marinho': bulb.set_rgb(0,0,128) apolloRes('Feito.') elif color == 'roxo': bulb.set_rgb(128,0,128) apolloRes('Feito.') elif color == 'branco': bulb.set_rgb(255,255,255) apolloRes('Feito.') elif 'mude o brilho da luz do quarto para' in command: reg_ex = re.search('mude o brilho da luz do quarto para (.*)', command) if reg_ex: bri = reg_ex.group(1) bulb.set_brightness(int(bri)) apolloRes('O brilho da luz do quarto agora está em %d porcento' %(int(bri))) elif 'start light flow' in command: transitions = [ RGBTransition(255,0,255, duration=1000) ] flow = Flow( count=0, transitions=transitions ) bulb.start_flow(flow) elif 'who are you' in command: apolloRes('''Olá, eu sou Apollo, uma inteligencia artificial criada por Heitor Sampaio, basta você pedir que eu posso fazer qualquer coisa, todos os dias estou aprendendo mais, caso queira saber minhas habilidades, diga "Me ajuda", até mais! ''') elif 'open the application' in command: reg_ex = re.search('abra o (.*)', command) if reg_ex: appname = reg_ex.group(1) appname1 = appname+'.app' subprocess.Popen(['open', '-n', '/Applications/' + appname1], stdout=subprocess.PIPE) apolloRes('I have opened the desired application') elif 'post on twitter' in command: reg_ex = re.search('post on twitter (.*)', command) if reg_ex: post = reg_ex.group(1) consumer_key = '' consumer_secret = '' access_token = '' access_token_secret = '' auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) api.update_status(status = post) elif 'send a e-mail' in command: apolloRes('Para quem você gostaria de enviar o e-mail?') #recipient = mic() elif 'play the next song' in command: subprocess.Popen(['atvremote', '-a', 'next']) apolloRes('Ok, i have changed the song on AppleTV') elif 'comece uma dinâmica molecular' in command: reg_ex = re.search('comece uma dinâmica molecular (.*)', command) if reg_ex: din = reg_ex.group(1) if din == 'sem gpu': process = subprocess.Popen(['python3 /Users/heitorsampaio/GMXSMDF/run.py'], stdin=subprocess.PIPE, stdout=subprocess.PIPE) process.stdin.write(b'2') process.stdin.close() elif din == 'com gpu': process = subprocess.Popen(['python3', '/Users/heitorsampaio/GMXSMDF/run.py'], stdin=subprocess.PIPE, stdout=subprocess.PIPE) process.stdin.write(b'1') process.stdin.close() while True: assistant(mic())
8,734
26
414
77402bae8e8b2c3ce234d1baa57bbcf8550c4e85
1,094
py
Python
lib/xos-synchronizer/xos-synchronizer-tests/test_event_steps/event_step.py
mary-grace/xos
3e269834d29f936757f5091183c9b5188ed5cb9e
[ "Apache-2.0" ]
66
2015-01-29T20:56:45.000Z
2021-07-01T09:56:44.000Z
lib/xos-synchronizer/xos-synchronizer-tests/test_event_steps/event_step.py
mary-grace/xos
3e269834d29f936757f5091183c9b5188ed5cb9e
[ "Apache-2.0" ]
112
2015-01-30T19:59:09.000Z
2017-04-08T16:43:40.000Z
lib/xos-synchronizer/xos-synchronizer-tests/test_event_steps/event_step.py
mary-grace/xos
3e269834d29f936757f5091183c9b5188ed5cb9e
[ "Apache-2.0" ]
66
2015-02-09T17:35:36.000Z
2021-03-24T12:31:19.000Z
# Copyright 2017-present Open Networking Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from __future__ import absolute_import from xossynchronizer.event_steps.eventstep import EventStep from mock_modelaccessor import *
35.290323
81
0.756856
# Copyright 2017-present Open Networking Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from __future__ import absolute_import from xossynchronizer.event_steps.eventstep import EventStep from mock_modelaccessor import * class TestEventStep(EventStep): technology = "kafka" topics = ["sometopic"] pattern = None def __init__(self, model_accessor, log, *args, **kwargs): super(TestEventStep, self).__init__(model_accessor, log, *args, **kwargs) def process_event(self, event): print("received an event", event)
170
135
23
40ad6cc077d9a49f51d8967b96d2c30ae64493ca
484
py
Python
modules/joinall.py
JohnBishop95/MirahezeBots
4408c65cabac750cd9771f4ed0889f530253bfff
[ "EFL-2.0" ]
null
null
null
modules/joinall.py
JohnBishop95/MirahezeBots
4408c65cabac750cd9771f4ed0889f530253bfff
[ "EFL-2.0" ]
null
null
null
modules/joinall.py
JohnBishop95/MirahezeBots
4408c65cabac750cd9771f4ed0889f530253bfff
[ "EFL-2.0" ]
null
null
null
"""This module implements .joinall.""" from __future__ import ( unicode_literals, absolute_import, print_function, division ) from sopel import module import time @module.require_admin @module.commands('joinall') @module.thread(True) def handle_joins(bot, trigger): """Join some channels.""" channels = bot.config.core.channels if trigger.sender == '#ZppixBot': for channel in channels: bot.join(channel) time.sleep(1)
19.36
39
0.669421
"""This module implements .joinall.""" from __future__ import ( unicode_literals, absolute_import, print_function, division ) from sopel import module import time @module.require_admin @module.commands('joinall') @module.thread(True) def handle_joins(bot, trigger): """Join some channels.""" channels = bot.config.core.channels if trigger.sender == '#ZppixBot': for channel in channels: bot.join(channel) time.sleep(1)
0
0
0
2c158777c33cf24c011d63203509380559f6719a
2,052
py
Python
application/py/crolling.py
MaengJowan/bookshare
aee23df229e67961a2cb92526ac74d2563287fb0
[ "MIT" ]
null
null
null
application/py/crolling.py
MaengJowan/bookshare
aee23df229e67961a2cb92526ac74d2563287fb0
[ "MIT" ]
null
null
null
application/py/crolling.py
MaengJowan/bookshare
aee23df229e67961a2cb92526ac74d2563287fb0
[ "MIT" ]
null
null
null
import requests import json from bs4 import BeautifulSoup import sys word = sys.argv[1] word = word.strip().replace("&", "+") main()
31.569231
142
0.634016
import requests import json from bs4 import BeautifulSoup import sys word = sys.argv[1] word = word.strip().replace("&", "+") def get_coverImg(url): result=requests.get(url) soup = BeautifulSoup(result.text, 'html.parser') div = soup.find("div", {"id":"divDetailInfo"}) if(div == None): imgUrl = "http://hanul.hannam.ac.kr/image/ko/common/noImageM.gif" return imgUrl else: iframe=div.find('iframe')['src'] iframeResult=requests.get(iframe) soup = BeautifulSoup(iframeResult.text, 'html.parser') imgUrl=soup.find('td').find("img")['src'] return imgUrl def get_list(): source={} url = f"http://hanul.hannam.ac.kr/search/tot/result?pn=1&st=KWRD&si=TOTAL&oi=DISP06&os=DESC&q={word}&cpp=20" result=requests.get(url) if(result.status_code != requests.codes.ok): print(f"{word} can not search") else: soup = BeautifulSoup(result.text, 'html.parser') div = soup.find("div", {"id" : "divResultList"}) cnt = soup.find("div", {"id" : "searchCnt"}).find("strong").get_text() booklist=div.find_all("div", {"class" : "briefData"}) i = 0 for book in booklist: detail=book.find("dl", {"class" : "briefDetail"}) searchTitle=detail.find("dd", {"class" : "searchTitle"}).find("a") title=searchTitle.get_text() url = f"http://hanul.hannam.ac.kr{searchTitle['href']}" imgUrl=get_coverImg(url) bookline=detail.find_all("dd", {"class" : "bookline"}) author=bookline[0].get_text() publisher = bookline[1].get_text() borrow = bookline[-1].get_text() if(borrow == "\xa0"): borrow = "전자책" source[f"{i}"]={"imgUrl":imgUrl, "url":url, "title":title, "author":author, "publisher":publisher, "borrow":borrow} i += 1 source[f"{i}"]={"cnt":cnt, "libraryUrl":f"http://hanul.hannam.ac.kr/search/tot/result?st=KWRD&si=TOTAL&oi=DISP06&os=DESC&q={word}&cpp=20"} return source def listToDict(lst): op = { i : lst[i] for i in range(0, len(lst) ) } return op def main(): result=get_list() print(result) main()
1,824
0
92
b247dcd44831854f5cf0ba67245c72b96e7ebb14
1,597
py
Python
WGALP/blocks/load_krakendb_ramdisk.py
redsnic/WGA-LP
1d8f4a85843b4220559e3e5cccaaee8c78e1b452
[ "MIT" ]
5
2021-08-03T17:09:19.000Z
2021-12-14T18:11:02.000Z
WGALP/blocks/load_krakendb_ramdisk.py
redsnic/WGA-LP
1d8f4a85843b4220559e3e5cccaaee8c78e1b452
[ "MIT" ]
null
null
null
WGALP/blocks/load_krakendb_ramdisk.py
redsnic/WGA-LP
1d8f4a85843b4220559e3e5cccaaee8c78e1b452
[ "MIT" ]
null
null
null
# --- default imports --- # --- load utils --- from WGALP.utils.commandLauncher import run_sp from WGALP.step import Step description = """ load kraken_db in a ramdisk """ input_description = """ the position (on disk) of the kraken2 database """ output_description = """ the mounting point of the newly created ramdisk """ ### Wrapper ### Runner def krakendb_make_ramdisk_runner(step, args): """ NOTE: this requires 8GB of free RAM, be careful not to forget the ramdisk loaded... [better to be run with "force"] input: kraken_db : path output: kraken_ram_db : position of kraken2 dabtabase in the ramdisk kraken_ramdisk : ramdisk mounting point """ db = args["kraken_db"] # this command works with minikraken db, change ramdisk size if needed... command = "mount -t tmpfs -o size=8G tmpfs " + step.outpath + " && " command += "cp -R " + db + " " + step.outpath + "/kraken_db" # note that this command requies to be root (may prompt to get a password) if step.execution_mode != "read": run_sp(step, command) # organize output step.outputs = { "kraken_ram_db" : "kraken_db", "kraken_ramdisk" : "" } return step
28.017544
87
0.65623
# --- default imports --- # --- load utils --- from WGALP.utils.commandLauncher import run_sp from WGALP.step import Step description = """ load kraken_db in a ramdisk """ input_description = """ the position (on disk) of the kraken2 database """ output_description = """ the mounting point of the newly created ramdisk """ ### Wrapper def load_krakendb_ramdisk(name, rootpath, kraken_db, execution_mode = "on_demand"): step = Step(name, rootpath, execution_mode=execution_mode) step.set_command(krakendb_make_ramdisk_runner) step_args = { "kraken_db": kraken_db, } step.run(step_args) step.set_description("load kraken_db in a ramdisk", "...", "...") return step ### Runner def krakendb_make_ramdisk_runner(step, args): """ NOTE: this requires 8GB of free RAM, be careful not to forget the ramdisk loaded... [better to be run with "force"] input: kraken_db : path output: kraken_ram_db : position of kraken2 dabtabase in the ramdisk kraken_ramdisk : ramdisk mounting point """ db = args["kraken_db"] # this command works with minikraken db, change ramdisk size if needed... command = "mount -t tmpfs -o size=8G tmpfs " + step.outpath + " && " command += "cp -R " + db + " " + step.outpath + "/kraken_db" # note that this command requies to be root (may prompt to get a password) if step.execution_mode != "read": run_sp(step, command) # organize output step.outputs = { "kraken_ram_db" : "kraken_db", "kraken_ramdisk" : "" } return step
342
0
22
c40972a4bff7bb3ccdd36b0d87f0b2f304adfe8b
1,166
py
Python
src/toil/utils/toilDestroyCluster.py
YeoLab/toil
9837c396b946bc4a0cf97e7c2705e5892b88707b
[ "Apache-2.0" ]
null
null
null
src/toil/utils/toilDestroyCluster.py
YeoLab/toil
9837c396b946bc4a0cf97e7c2705e5892b88707b
[ "Apache-2.0" ]
1
2017-07-31T23:47:25.000Z
2017-07-31T23:47:25.000Z
src/toil/utils/toilDestroyCluster.py
lexentbio/toil
6ad3813af4450962d0899aa6c821189f86472ef9
[ "Apache-2.0" ]
1
2020-09-17T17:49:32.000Z
2020-09-17T17:49:32.000Z
# Copyright (C) 2015 UCSC Computational Genomics Lab # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Terminates the specified cluster and associated resources """ import logging from toil.provisioners import Cluster from toil.lib.bioio import parseBasicOptions, getBasicOptionParser from toil.utils import addBasicProvisionerOptions logger = logging.getLogger(__name__)
35.333333
74
0.766724
# Copyright (C) 2015 UCSC Computational Genomics Lab # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Terminates the specified cluster and associated resources """ import logging from toil.provisioners import Cluster from toil.lib.bioio import parseBasicOptions, getBasicOptionParser from toil.utils import addBasicProvisionerOptions logger = logging.getLogger(__name__) def main(): parser = getBasicOptionParser() parser = addBasicProvisionerOptions(parser) config = parseBasicOptions(parser) cluster = Cluster(provisioner=config.provisioner, clusterName=config.clusterName, zone=config.zone) cluster.destroyCluster()
268
0
23
0c4337a0ad68810e4d3b72feb11fc8e929ff526c
778
py
Python
Muzact/app.py
Vikash-Kothary/hackathon-project-muzact
f5fdc8537faeda691dccdccc79d45a153c2dbab6
[ "MIT" ]
null
null
null
Muzact/app.py
Vikash-Kothary/hackathon-project-muzact
f5fdc8537faeda691dccdccc79d45a153c2dbab6
[ "MIT" ]
null
null
null
Muzact/app.py
Vikash-Kothary/hackathon-project-muzact
f5fdc8537faeda691dccdccc79d45a153c2dbab6
[ "MIT" ]
null
null
null
from flask import Flask, request import requests, json app = Flask(__name__) @app.route('/shazam', methods=['GET', 'POST']) @app.route('/') if __name__ == '__main__': app.run('0.0.0.0', debug = 'True')
28.814815
74
0.661954
from flask import Flask, request import requests, json app = Flask(__name__) @app.route('/shazam', methods=['GET', 'POST']) @app.route('/') def index(): if request.method == 'POST': return "{'artist':'Taylor Swift', 'song':'style'}" # return shazam_request(request.data) return 'Hello World' def shazam_request(file): headers = {'X-Shazam-Api-Key': '03789B8E-A8CE-4229-A880-7FDE4C4FAEFC', 'Content-Type':'application/octet-stream'} payload = open(file, 'rb').read() url = 'http://beta.amp.shazam.com/partner/recognise' response = requests.post(url, data=payload, headers=headers) res = json.loads(response) metadata = res['matches'][0]['metadata'] return metadata if __name__ == '__main__': app.run('0.0.0.0', debug = 'True')
523
0
46
ed5972ed81f4bea34843be0060bc2e8cdc364c2f
2,287
py
Python
Decimal_to_Binary_Converter.py
jerryhcooke/Decimal-Binary-Converter
6ee6d47b33418f65dbcbbaa67b7e2da3c94f9063
[ "MIT" ]
null
null
null
Decimal_to_Binary_Converter.py
jerryhcooke/Decimal-Binary-Converter
6ee6d47b33418f65dbcbbaa67b7e2da3c94f9063
[ "MIT" ]
null
null
null
Decimal_to_Binary_Converter.py
jerryhcooke/Decimal-Binary-Converter
6ee6d47b33418f65dbcbbaa67b7e2da3c94f9063
[ "MIT" ]
null
null
null
# A converter that takes a denary number and converts it, using comparison # rather than recursion, to binary import sys from colorama import init from termcolor import cprint from pyfiglet import figlet_format init(strip=not sys.stdout.isatty()) cprint(figlet_format('Binary / Decimal Converter', font='doom'), 'white', attrs=['bold']) while True: print("Please select from the following options:", "\n") print("1 - Convert Decimal -> Binary") print("2 - Convert Binary -> Decimal") print("X - Exit the program", "\n") choice = input("Please make your selection: ") if choice == "x": break elif choice == '1': try: user_number = input("Your number: ") result = convert_to_binary(int(user_number)) print("\n", "Your number converted to binary is: ", "0b", result, " \n") except ValueError: print("\n", "Please enter an integer" " \n") elif choice == '2': try: user_number = input("Your number: ") result = binary_to_decimal(user_number) print("\n", "Your number converted to decimal is: ", result, " \n") except ValueError: print("\n""Please enter a decimal number." " \n") else: print("\n", "!! Please select from one of the three options !!", " \n")
31.763889
79
0.615216
# A converter that takes a denary number and converts it, using comparison # rather than recursion, to binary import sys from colorama import init from termcolor import cprint from pyfiglet import figlet_format init(strip=not sys.stdout.isatty()) cprint(figlet_format('Binary / Decimal Converter', font='doom'), 'white', attrs=['bold']) def generate_comparisons(number): # generates a list of powers of two, the # max being the first that is greater than n list = [1] while max(list) < number: x = max(list) list.append(x * 2) comparisons = reversed(list) return comparisons def convert_to_binary(decimal): # takes the output of generate_comparisons and uses it to to convert binary = [] comparison = generate_comparisons(int(decimal)) for number in comparison: if (decimal - number) >= 0: binary.append(1) decimal -= number else: binary.append(0) new_string = "".join(str(i) for i in binary) return new_string def binary_to_decimal(user_binary): # takes an inputted binary number and converts decimal output_decimal = 0 for bit in user_binary: output_decimal = output_decimal*2 + int(bit) return output_decimal while True: print("Please select from the following options:", "\n") print("1 - Convert Decimal -> Binary") print("2 - Convert Binary -> Decimal") print("X - Exit the program", "\n") choice = input("Please make your selection: ") if choice == "x": break elif choice == '1': try: user_number = input("Your number: ") result = convert_to_binary(int(user_number)) print("\n", "Your number converted to binary is: ", "0b", result, " \n") except ValueError: print("\n", "Please enter an integer" " \n") elif choice == '2': try: user_number = input("Your number: ") result = binary_to_decimal(user_number) print("\n", "Your number converted to decimal is: ", result, " \n") except ValueError: print("\n""Please enter a decimal number." " \n") else: print("\n", "!! Please select from one of the three options !!", " \n")
847
0
69
0fc69002b14a34c3e184479e98b73ecbe4f4b141
2,341
py
Python
appliedpy_ecourse/class7/ex2_models.py
fallenfuzz/pynet
9624d83cca160fd325a34e838e4474c9b80fe2ab
[ "Apache-2.0" ]
528
2015-01-07T15:28:51.000Z
2022-03-27T09:45:37.000Z
appliedpy_ecourse/class7/ex2_models.py
fallenfuzz/pynet
9624d83cca160fd325a34e838e4474c9b80fe2ab
[ "Apache-2.0" ]
19
2015-07-01T23:52:27.000Z
2021-09-22T04:30:34.000Z
appliedpy_ecourse/class7/ex2_models.py
fallenfuzz/pynet
9624d83cca160fd325a34e838e4474c9b80fe2ab
[ "Apache-2.0" ]
555
2015-01-18T07:21:43.000Z
2022-03-20T21:25:22.000Z
''' Add an SnmpCredentials model to the models.py file. This model should support both SNMPv3 and SNMPv1/v2c. Add a foreign key reference in the NetworkDevice model pointing to the SnmpCredentials model. ''' from django.db import models
48.770833
80
0.699701
''' Add an SnmpCredentials model to the models.py file. This model should support both SNMPv3 and SNMPv1/v2c. Add a foreign key reference in the NetworkDevice model pointing to the SnmpCredentials model. ''' from django.db import models class Credentials(models.Model): username = models.CharField(max_length=50) password = models.CharField(max_length=50) description = models.CharField(max_length=200, blank=True, null=True) def __unicode__(self): return u'%s' % (self.username) class SnmpCredentials(models.Model): snmp_mode = models.CharField(max_length=20) # 'snmp1_2c' or 'snmp3' description = models.CharField(max_length=200, blank=True, null=True) username = models.CharField(max_length=50, blank=True, null=True) auth_proto = models.CharField(max_length=30, blank=True, null=True) auth_key = models.CharField(max_length=50, blank=True, null=True) encrypt_proto = models.CharField(max_length=30, blank=True, null=True) encrypt_key = models.CharField(max_length=50, blank=True, null=True) community = models.CharField(max_length=50, blank=True, null=True) def __unicode__(self): return u'%s' % (self.description) class NetworkDevice(models.Model): device_name = models.CharField(primary_key=True, max_length=80) ip_address = models.IPAddressField() device_class = models.CharField(max_length=50) ssh_port = models.IntegerField(blank=True, null=True) api_port = models.IntegerField(blank=True, null=True) vendor = models.CharField(max_length=50, blank=True, null=True) model = models.CharField(max_length=50, blank=True, null=True) device_type = models.CharField(max_length=50, blank=True, null=True) os_version = models.CharField(max_length=100, blank=True, null=True) serial_number = models.CharField(max_length=50, blank=True, null=True) uptime_seconds = models.IntegerField(blank=True, null=True) credentials = models.ForeignKey(Credentials, blank=True, null=True) snmp_credentials = models.ForeignKey(SnmpCredentials, blank=True, null=True) snmp_port = models.IntegerField(blank=True, null=True) def __unicode__(self): return u'%s' % (self.device_name)
126
1,905
69
d168eea59a42d588125683162b3e1f7ba5c1b21c
988
py
Python
epics/devices/ad_image.py
juanfem/pyepics
6ced9237aa51e306a48057be0f80b08e44dbf0ae
[ "OML" ]
55
2015-05-09T14:42:51.000Z
2022-02-21T19:53:06.000Z
epics/devices/ad_image.py
juanfem/pyepics
6ced9237aa51e306a48057be0f80b08e44dbf0ae
[ "OML" ]
192
2015-01-22T16:36:41.000Z
2022-02-09T17:19:17.000Z
epics/devices/ad_image.py
juanfem/pyepics
6ced9237aa51e306a48057be0f80b08e44dbf0ae
[ "OML" ]
43
2015-09-15T20:55:02.000Z
2022-02-21T19:53:07.000Z
from .. import Device class AD_ImagePlugin(Device): """ AreaDetector Image Plugin """ attrs = ('ArrayData', 'UniqueId', 'UniqueId_RBV', 'NDimensions', 'NDimensions_RBV', 'ArraySize0', 'ArraySize0_RBV', 'ArraySize1', 'ArraySize1_RBV', 'ArraySize2', 'ArraySize2_RBV', 'ColorMode', 'ColorMode_RBV') _nonpvs = ('_prefix', '_pvs', '_delim') def ensure_value(self, attr, value, wait=False): """ensures that an attribute with an associated _RBV value is set to the specifed value """ rbv_attr = "%s_RBV" % attr if rbv_attr not in self._pvs: return self._pvs[attr].put(value, wait=wait) if self._pvs[rbv_attr].get(as_string=True) != value: self._pvs[attr].put(value, wait=wait)
30.875
69
0.572874
from .. import Device class AD_ImagePlugin(Device): """ AreaDetector Image Plugin """ attrs = ('ArrayData', 'UniqueId', 'UniqueId_RBV', 'NDimensions', 'NDimensions_RBV', 'ArraySize0', 'ArraySize0_RBV', 'ArraySize1', 'ArraySize1_RBV', 'ArraySize2', 'ArraySize2_RBV', 'ColorMode', 'ColorMode_RBV') _nonpvs = ('_prefix', '_pvs', '_delim') def __init__(self, prefix): Device.__init__(self, prefix, delim='', mutable=False, attrs=self.attrs) def ensure_value(self, attr, value, wait=False): """ensures that an attribute with an associated _RBV value is set to the specifed value """ rbv_attr = "%s_RBV" % attr if rbv_attr not in self._pvs: return self._pvs[attr].put(value, wait=wait) if self._pvs[rbv_attr].get(as_string=True) != value: self._pvs[attr].put(value, wait=wait)
111
0
27
6327f2a9bb703904fc001768cbf7a0f87cd749ea
4,196
py
Python
script/tazerUtil/serverUtil.py
jstrube/tazer
18a6d66ad2c20376609f1af7940e43b2031e4fd0
[ "BSD-3-Clause" ]
null
null
null
script/tazerUtil/serverUtil.py
jstrube/tazer
18a6d66ad2c20376609f1af7940e43b2031e4fd0
[ "BSD-3-Clause" ]
null
null
null
script/tazerUtil/serverUtil.py
jstrube/tazer
18a6d66ad2c20376609f1af7940e43b2031e4fd0
[ "BSD-3-Clause" ]
null
null
null
import subprocess as sp from . import util # This is a Tazer Server class. It is here to help wrap several functions that # exist across the Tazer source. The Commands listed in the arguments are the # equivalent commands (and arguments) as if run from the build tree. # The path is the path to the build directory!!! # This functions runs a Tazer server locally # Command: # pathToBuild/src/server/server port # Args: # (optional) port = Port to listen on. Default is 6023 (Config.h: serverPort) # This funtions pings a Tazer server. # Command: # pathToBuild/test/PingServer serverIpAddr port attempts sleepTime # Args: # (optional) serverIpAddr = Ip address of the server. Default is 127.0.0.1 # (optional) port = Port server is listening on. Default is 6023 (Config.h: serverPort) # (optional) attempts = Number of times to attempt a ping. Default is 10 # (optional) sleepTime = Time in seconds to sleep between attempts. Default is 10 # This funtion closes a Tazer server. Can close a local or remote server. # Command: # pathToBuild/test/CloseServer serverIpAddr port # Args: # serverIpAddr = Ip address of the server. # (optional) port = Port server is listening on. Default is 6023 (Config.h: serverPort) # Will block until the process that launched server finishes # Returns true if the process that launched server is still running # Kills the processes that is running the server # Get the PID of the child process
41.137255
99
0.637274
import subprocess as sp from . import util # This is a Tazer Server class. It is here to help wrap several functions that # exist across the Tazer source. The Commands listed in the arguments are the # equivalent commands (and arguments) as if run from the build tree. class TazerServer: # The path is the path to the build directory!!! def __init__(self, path, serverIpAddr=None, port=None, outputFileName=None): self.serverProc = None self.path = path self.serverIpAddr = serverIpAddr self.port = port self.printResult = True self.outputFileName = outputFileName self.outFile = util.openOutputFile(outputFileName) self.pid # This functions runs a Tazer server locally # Command: # pathToBuild/src/server/server port # Args: # (optional) port = Port to listen on. Default is 6023 (Config.h: serverPort) def run(self, port=None): port = port if port != None else self.port serverPath = self.path + "/src/server/server" args = [serverPath] if port: args.append(port) util.printCommand(args) self.serverProc = sp.Popen(args, stdout=self.outFile, stderr=self.outFile) self.childPid = self.serverProc.pid # This funtions pings a Tazer server. # Command: # pathToBuild/test/PingServer serverIpAddr port attempts sleepTime # Args: # (optional) serverIpAddr = Ip address of the server. Default is 127.0.0.1 # (optional) port = Port server is listening on. Default is 6023 (Config.h: serverPort) # (optional) attempts = Number of times to attempt a ping. Default is 10 # (optional) sleepTime = Time in seconds to sleep between attempts. Default is 10 def ping(self, serverIpAddr=None, port=None, attempts=None, sleepTime=None): serverIpAddr = serverIpAdd if serverIpAddr != None else self.serverIpAddr port = port if port != None else self.port pingPath = self.path + "/test/PingServer" args = [pingPath] if serverIpAddr: args.append(serverIpAddr) if port: args.append(port) if attempts: args.append(attempts) if sleepTime: args.append(sleepTime) util.printCommand(args) process = sp.Popen(args, stdout=self.outFile, stderr=self.outFile, universal_newlines=True) process.wait() if self.printResult and self.outputFileName == None: print(process.stdout.read()) # This funtion closes a Tazer server. Can close a local or remote server. # Command: # pathToBuild/test/CloseServer serverIpAddr port # Args: # serverIpAddr = Ip address of the server. # (optional) port = Port server is listening on. Default is 6023 (Config.h: serverPort) def close(self, serverIpAddr=None, port=None): serverIpAddr = serverIpAdd if serverIpAddr != None else self.serverIpAddr port = port if port != None else self.port closePath = self.path + "/test/CloseServer" args = [closePath] if serverIpAddr == None: serverIpAddr = "127.0.0.1" args.append(serverIpAddr) if port: args.append(port) util.printCommand(args) process = sp.Popen(args, stdout=self.outFile, stderr=self.outFile, universal_newlines=True) process.wait() if self.printResult and self.outputFileName == None: print(process.stdout.read()) # Will block until the process that launched server finishes def wait(self): if self.serverProc != None: self.serverProc.wait() # Returns true if the process that launched server is still running def poll(self): if self.serverProc != None: return None == self.serverProc.poll() return False # Kills the processes that is running the server def kill(self): if self.serverProc != None: self.serverProc.kill() # Get the PID of the child process def pid(self): if self.serverProc != None: print("PID: ", self.childPid)
2,419
-3
230
903d6526666ce50546bae687fd6815485193c917
915
py
Python
altstreamfield/utils.py
didorothy/wagtailaltstreamfield
00b6be4420e031036f1d2d6c0122969df7fb3900
[ "BSD-2-Clause" ]
null
null
null
altstreamfield/utils.py
didorothy/wagtailaltstreamfield
00b6be4420e031036f1d2d6c0122969df7fb3900
[ "BSD-2-Clause" ]
20
2019-11-12T16:49:32.000Z
2021-03-09T23:04:20.000Z
altstreamfield/utils.py
didorothy/wagtailaltstreamfield
00b6be4420e031036f1d2d6c0122969df7fb3900
[ "BSD-2-Clause" ]
null
null
null
from django.forms.widgets import Media def get_class_media(base, instance): '''Convenience function to be used when overriding the `media` property. This function maintains the tasks of the media property set up by `MediaDefiningClass` but allows you to extend the normal behavior. Use: class MyClass(Block): def media(self): media = get_classMedia(super().media(), self) # ... do extra stuff here ... return media ''' definition = getattr(instance, 'Media', None) if definition: extend = getattr(definition, 'extend', True) if extend: if extend is True: m = base else: m = Media() for medium in extend: m = m + base[medium] return m + Media(definition) return Media(definition) else: return base
31.551724
76
0.571585
from django.forms.widgets import Media def get_class_media(base, instance): '''Convenience function to be used when overriding the `media` property. This function maintains the tasks of the media property set up by `MediaDefiningClass` but allows you to extend the normal behavior. Use: class MyClass(Block): def media(self): media = get_classMedia(super().media(), self) # ... do extra stuff here ... return media ''' definition = getattr(instance, 'Media', None) if definition: extend = getattr(definition, 'extend', True) if extend: if extend is True: m = base else: m = Media() for medium in extend: m = m + base[medium] return m + Media(definition) return Media(definition) else: return base
0
0
0
b553b1daf5dcad704f72c521e15d5d3492a81839
1,158
py
Python
tests/functional_tests/pool/open_pool_ledger_with_valid_data_test.py
wYaobiz/indy-test-suite
7b4a3f9bb73e5830fea17a158dc0fc96ab29ac32
[ "Apache-2.0" ]
1
2021-07-26T14:19:07.000Z
2021-07-26T14:19:07.000Z
tests/functional_tests/pool/open_pool_ledger_with_valid_data_test.py
wYaobiz/indy-test-suite
7b4a3f9bb73e5830fea17a158dc0fc96ab29ac32
[ "Apache-2.0" ]
null
null
null
tests/functional_tests/pool/open_pool_ledger_with_valid_data_test.py
wYaobiz/indy-test-suite
7b4a3f9bb73e5830fea17a158dc0fc96ab29ac32
[ "Apache-2.0" ]
null
null
null
from indy import pool from utilities import utils from utilities import common, constant from test_scripts.functional_tests.pool.pool_test_base import PoolTestBase import pytest
39.931034
75
0.662349
from indy import pool from utilities import utils from utilities import common, constant from test_scripts.functional_tests.pool.pool_test_base import PoolTestBase import pytest class TestOpenPoolLedgerConfig(PoolTestBase): @pytest.mark.asyncio async def test(self): # 1. Create pool ledger configuration. self.steps.add_step("Create pool ledger config") await utils.perform(self.steps, common.create_pool_ledger_config, self.pool_name, constant.pool_genesis_txn_file) # 2. Open pool ledger. self.steps.add_step("Open pool ledger") self.pool_handle = await \ utils.perform(self.steps, pool.open_pool_ledger, self.pool_name, None, ignore_exception=True) # 3. Verify that returned pool_handle is a positive integer. self.steps.add_step("Verify that returned pool_" "handle is a positive integer") utils.check(self.steps, error_message="Cannot open pool ledger", condition=lambda: isinstance(self.pool_handle, int) and self.pool_handle >= 0)
879
76
23
d9fe82a160d5b6f40eb7f848610280b2b907fd7b
1,213
py
Python
examples/reference/models/select_server.py
g-parki/bokeh
664ead5306bba64609e734d4105c8aa8cfb76d81
[ "BSD-3-Clause" ]
15,193
2015-01-01T05:11:45.000Z
2022-03-31T19:30:20.000Z
examples/reference/models/select_server.py
g-parki/bokeh
664ead5306bba64609e734d4105c8aa8cfb76d81
[ "BSD-3-Clause" ]
9,554
2015-01-01T03:16:54.000Z
2022-03-31T22:59:39.000Z
examples/reference/models/select_server.py
g-parki/bokeh
664ead5306bba64609e734d4105c8aa8cfb76d81
[ "BSD-3-Clause" ]
4,829
2015-01-02T03:35:32.000Z
2022-03-30T16:40:26.000Z
## Bokeh server for Select import pandas as pd from bokeh.io import curdoc from bokeh.layouts import row from bokeh.models import ColumnDataSource, Select from bokeh.plotting import figure x=[3,4,6,12,10,1,5,6,3,8] y=[7,1,3,4,1,6,10,4,10,3] label=['Red', 'Orange', 'Red', 'Orange','Red', 'Orange','Red', 'Orange','Red', 'Orange',] df=pd.DataFrame({'x':x,'y':y,'label':label}) source = ColumnDataSource(data=dict(x=df.x, y=df.y,label=df.label)) plot_figure = figure(title='Select',height=450, width=600, tools="save,reset", toolbar_location="below") plot_figure.scatter('x', 'y', source=source, size=10,color='label') select = Select(title="Filter plot by color:", value="All", options=["All", "Red", "Orange"]) select.on_change('value',select_click) layout=row(select, plot_figure) curdoc().add_root(layout) curdoc().title = "Select Bokeh Server"
29.585366
93
0.695796
## Bokeh server for Select import pandas as pd from bokeh.io import curdoc from bokeh.layouts import row from bokeh.models import ColumnDataSource, Select from bokeh.plotting import figure x=[3,4,6,12,10,1,5,6,3,8] y=[7,1,3,4,1,6,10,4,10,3] label=['Red', 'Orange', 'Red', 'Orange','Red', 'Orange','Red', 'Orange','Red', 'Orange',] df=pd.DataFrame({'x':x,'y':y,'label':label}) source = ColumnDataSource(data=dict(x=df.x, y=df.y,label=df.label)) plot_figure = figure(title='Select',height=450, width=600, tools="save,reset", toolbar_location="below") plot_figure.scatter('x', 'y', source=source, size=10,color='label') select = Select(title="Filter plot by color:", value="All", options=["All", "Red", "Orange"]) def select_click(attr,old,new): active_select=select.value ##Getting radio button value # filter the dataframe with value in select if active_select!='All': selected_df=df[df['label']==active_select] else: selected_df=df.copy() source.data=dict(x=selected_df.x, y=selected_df.y,label=selected_df.label) select.on_change('value',select_click) layout=row(select, plot_figure) curdoc().add_root(layout) curdoc().title = "Select Bokeh Server"
319
0
23
da1d50a4f230ab93ab71b745cfeb7b321c903875
1,055
py
Python
src/sample/corpus_extraction_sklearn.py
humanist96/kmorph
0fc9ccdf77847de9602ca0c7f428e9dbb813b984
[ "Apache-2.0" ]
null
null
null
src/sample/corpus_extraction_sklearn.py
humanist96/kmorph
0fc9ccdf77847de9602ca0c7f428e9dbb813b984
[ "Apache-2.0" ]
null
null
null
src/sample/corpus_extraction_sklearn.py
humanist96/kmorph
0fc9ccdf77847de9602ca0c7f428e9dbb813b984
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from sklearn.feature_extraction.text import CountVectorizer from natto import MeCab _morpheme_type = ['NNG', 'NNP'] _escape_pattern = ['\n'] _nm = MeCab() corpus = generate_corpus2('news.txt') print('corpus : ', corpus) _cv = CountVectorizer() word_matrix = _cv.fit_transform(corpus) index = 0 for word_vector in word_matrix.toarray(): print('[', corpus[index], '] \n: ', word_vector) index += 1
23.977273
59
0.627488
# -*- coding: utf-8 -*- from sklearn.feature_extraction.text import CountVectorizer from natto import MeCab _morpheme_type = ['NNG', 'NNP'] _escape_pattern = ['\n'] _nm = MeCab() def filter_by_type(text): terms = [] for term_info in str(_nm.parse(text)).split('\n'): _term_info = term_info.split('\t') if len(_term_info) < 2: continue surface = _term_info[0] analysis = _term_info[1].split(',') if analysis[0] in _morpheme_type: terms.append(surface) return terms def generate_corpus2(data_path): _corpus = [] fp = open(data_path, 'r') for line in fp.readlines(): if line not in _escape_pattern: terms = filter_by_type(line) _corpus.append(' '.join(terms)) return _corpus corpus = generate_corpus2('news.txt') print('corpus : ', corpus) _cv = CountVectorizer() word_matrix = _cv.fit_transform(corpus) index = 0 for word_vector in word_matrix.toarray(): print('[', corpus[index], '] \n: ', word_vector) index += 1
573
0
46
03eae6ce95f068bc2d9cb82135f48b30fa2fa332
2,894
py
Python
UIBox/item.py
yemenPython/TheBossBaby
86e447b3fa360646a179e62c70b1750da5427541
[ "MIT" ]
1
2021-12-16T16:31:29.000Z
2021-12-16T16:31:29.000Z
UIBox/item.py
yemenPython/TheBossBaby
86e447b3fa360646a179e62c70b1750da5427541
[ "MIT" ]
null
null
null
UIBox/item.py
yemenPython/TheBossBaby
86e447b3fa360646a179e62c70b1750da5427541
[ "MIT" ]
1
2021-12-16T16:31:35.000Z
2021-12-16T16:31:35.000Z
#!/usr/bin/python3 from PyQt5 import QtCore, QtGui, QtWidgets
36.632911
104
0.653766
#!/usr/bin/python3 from PyQt5 import QtCore, QtGui, QtWidgets class UIBUi_Item(QtWidgets.QWidget): def __init__(self): super(UIBUi_Item, self).__init__() self.setObjectName("Form") self.setMouseTracking(True) self.gridLayout_2 = QtWidgets.QGridLayout(self) self.gridLayout_2.setSpacing(0) self.gridLayout_2.setContentsMargins(0, 0, -2, 0) self.gridLayout = QtWidgets.QGridLayout() self.gridLayout.setVerticalSpacing(0) self.title = QtWidgets.QLabel(self) font = QtGui.QFont() font.setPointSize(11) self.title.setFont(font) self.title.setText("") self.title.setObjectName("title") self.gridLayout.addWidget(self.title, 0, 1, 1, 1) self.subtitle = QtWidgets.QLabel(self) font = QtGui.QFont() font.setPointSize(7) self.subtitle.setFont(font) self.subtitle.setText("") self.subtitle.setObjectName("subtitle") self.gridLayout.addWidget(self.subtitle, 1, 1, 1, 1) self.subtitle.setLayoutDirection(QtCore.Qt.LeftToRight) self.subtitle.setAlignment(QtCore.Qt.AlignLeft) self.image = QtWidgets.QLabel(self) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.image.sizePolicy().hasHeightForWidth()) self.image.setSizePolicy(sizePolicy) self.image.setText("") self.image.setObjectName("image") self.gridLayout.addWidget(self.image, 0, 0, 2, 1) self.hotkey = QtWidgets.QLabel(self) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.hotkey.sizePolicy().hasHeightForWidth()) self.hotkey.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setPointSize(8) self.hotkey.setFont(font) self.hotkey.setText("") self.hotkey.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.hotkey.setObjectName("hotkey") self.gridLayout.addWidget(self.hotkey, 0, 2, 2, 1) self.gridLayout_2.addLayout(self.gridLayout, 0, 0, 1, 1) self.retranslateUi() QtCore.QMetaObject.connectSlotsByName(self) self.setStyleSheet(""" #subtitle { padding-left: 3px; font-size: 11px; color: #929a90; } #hotkey { padding-left: 5px; } #title {padding-left: 2px} """) def retranslateUi(self): _translate = QtCore.QCoreApplication.translate self.setWindowTitle(_translate("self", "self"))
2,740
15
76
64abab9832222fe0a8a6331f331b74645977e71e
5,313
py
Python
sentenceSpliter.py
neerbek/taboo-mon
3dc74fd38b112531db8b5f696ed92b894cc0a3b3
[ "MIT" ]
1
2021-05-10T00:27:10.000Z
2021-05-10T00:27:10.000Z
sentenceSpliter.py
neerbek/taboo-mon
3dc74fd38b112531db8b5f696ed92b894cc0a3b3
[ "MIT" ]
null
null
null
sentenceSpliter.py
neerbek/taboo-mon
3dc74fd38b112531db8b5f696ed92b894cc0a3b3
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on April 12, 2018 @author: neerbek """ import os import getopt import sys import io import monUtil import monsantoData import textClean import server_rnn_helper from similarity import load_trees from importlib import reload reload(textClean) # from backends import PDFMinerBackend datadir = "../data_monsanto/2018-04-12-workdir" filename = "monsantoDataEntries.json" startindex = 0 endindex = -1 outfile = "indexedsentences.txt" # parse input argv = sys.argv[1:] # first arg is filename # argv = "-s 0 -e -1 -o jantmp_trees.txt".split() try: opts, args = getopt.getopt(argv, "hd:l:s:e:o:", ["help", "datadir=", "labelfile=", "start=", "end=", "outfile="]) except getopt.GetoptError: usage(exitCode=2) for opt, arg in opts: if opt in ("-h", "--help"): usage(exitCode=0) elif opt in ("-d", "--datadir"): datadir = arg elif opt in ("-l", "--labelfile"): filename = arg elif opt in ("-s", "--start"): startindex = int(arg) elif opt in ("-e", "--end"): endindex = int(arg) elif opt in ("-o", "--outfile"): outfile = arg labelMap = {} for i, label in enumerate(monsantoData.labelList): labelMap[label] = i docs = monUtil.loadJSONList(filename, monUtil.MonsantoDocument.dictToMonsantoDocument) for d in docs: d.uri = os.path.join(datadir, d.uri[:-4] + ".txt") d.label = labelMap[d.label] # want to address # non-ascii # sentences split over several lines (with newlines) # monIds in text # non-informative lines (maybe later) # save with docId (monId?) and with lineNumber and sentenceNumber # I guess to save in file next to datafile with extension .sentences (might cause problems on windows) # watch out for very long or very short sentences cleanDocs = [] for i, doc in enumerate(docs): doc = docs[i] doc.uri = doc.uri.replace("\ ", " ") # don't escape for io.open doc.uri = doc.uri.replace("\$", "$") # don't escape for io.open with io.open(doc.uri, 'r', encoding='utf8') as f: lines = f.readlines() cleaner = textClean.TextCleaner() res = [] for j, line in enumerate(lines): before = line line = cleaner.cleanLine(line) if len(line) != 0: res.append(line) cleanDocs.append(res) if len(res) == 0: print("INFO: received empty doc: ", i, doc.uri) # if i % 10 == 0: # print("INFO: done processing doc", i) indexedSentenceList = [] for i, text in enumerate(cleanDocs): sentences = server_rnn_helper.get_indexed_sentences("\n".join(text)) for sentence in sentences: sentence.sentence = monUtil.removeNewline(sentence.sentence) # remove \n introduced above, not handled by server_rnn_helper.get_nltk_trees below sentence.sentence = monUtil.removeApostrof(sentence.sentence) # remove "'" not handled by server_rnn_helper.get_nltk_trees below sentence.sentence = monUtil.removeMultiCommas(sentence.sentence) # remove multiple commas indexedSentenceList.append(sentences) # i = 0 # for indexedSentence in indexedSentenceList[i]: # print(indexedSentence) # count = 0 # for sentences in indexedSentenceList: # count += len(sentences) # print(count) # counts = [] # for sentences in indexedSentenceList: # for sentence in sentences: # counts.append(len(sentence.sentence)) # len(counts) # import numpy # data = numpy.array(counts) # print(max(counts)) # bins = numpy.array([5, 20, 75, 125, 300, 500, 1000]) # classes = numpy.digitize(data, bins) # unique, counts = numpy.unique(classes, return_counts=True) # print(dict(zip(unique, counts))) # # {0: 1175, 1: 1122, 2: 2428, 3: 2062, 4: 3165, 5: 573, 6: 195, 7: 54} # count = 0 # val = 1 # for c in counts: # if c == val: # count += 1 # print("{}:".format(val), count) treeList = [] if endindex == -1: endindex = len(indexedSentenceList) endindex = min(endindex, len(indexedSentenceList)) for i in range(startindex, endindex): indexSentences = indexedSentenceList[i] print("Working on doc {}/{} ({}-{})".format(i, len(indexedSentenceList), startindex, endindex)) trees = server_rnn_helper.get_nltk_trees(i, indexedSentenceList[i]) treeList.append(trees) if len(trees) == 0: print("WARN: trees were empty", i, docs[i].uri) trees = [] for i in range(startindex, endindex): doc = docs[i] indexSentences = indexedSentenceList[i] for indexSentence in indexSentences: tree = indexSentence.tree if tree is None: continue # empty tree n = load_trees.Node() n.syntax = "{}".format(indexSentence.beginIndex) n.word = doc.monsantoId n.word = n.word.replace(" ", "%20") tree.parent = n n.left = tree nRight = n.add_child() nRight.syntax = "{}".format(doc.label) nRight.word = doc.uri[len(datadir) + 1:-4] nRight.word = nRight.word.replace(" ", "%20") trees.append(n) load_trees.put_trees(outfile, trees) # TODO: add timestamp here so we can track when the process terminated print("done. saved {} trees to {}".format(len(trees), outfile))
31.070175
153
0.652174
# -*- coding: utf-8 -*- """ Created on April 12, 2018 @author: neerbek """ import os import getopt import sys import io import monUtil import monsantoData import textClean import server_rnn_helper from similarity import load_trees from importlib import reload reload(textClean) # from backends import PDFMinerBackend datadir = "../data_monsanto/2018-04-12-workdir" filename = "monsantoDataEntries.json" startindex = 0 endindex = -1 outfile = "indexedsentences.txt" def usage(exitCode=0): print('sentenceSplitter.py [-o <outputfile>] [-d datadir] [-l <labelfile>] [-s <startindex>] [-e <endindex] [-h]') sys.exit(exitCode) # parse input argv = sys.argv[1:] # first arg is filename # argv = "-s 0 -e -1 -o jantmp_trees.txt".split() try: opts, args = getopt.getopt(argv, "hd:l:s:e:o:", ["help", "datadir=", "labelfile=", "start=", "end=", "outfile="]) except getopt.GetoptError: usage(exitCode=2) for opt, arg in opts: if opt in ("-h", "--help"): usage(exitCode=0) elif opt in ("-d", "--datadir"): datadir = arg elif opt in ("-l", "--labelfile"): filename = arg elif opt in ("-s", "--start"): startindex = int(arg) elif opt in ("-e", "--end"): endindex = int(arg) elif opt in ("-o", "--outfile"): outfile = arg labelMap = {} for i, label in enumerate(monsantoData.labelList): labelMap[label] = i docs = monUtil.loadJSONList(filename, monUtil.MonsantoDocument.dictToMonsantoDocument) for d in docs: d.uri = os.path.join(datadir, d.uri[:-4] + ".txt") d.label = labelMap[d.label] # want to address # non-ascii # sentences split over several lines (with newlines) # monIds in text # non-informative lines (maybe later) # save with docId (monId?) and with lineNumber and sentenceNumber # I guess to save in file next to datafile with extension .sentences (might cause problems on windows) # watch out for very long or very short sentences cleanDocs = [] for i, doc in enumerate(docs): doc = docs[i] doc.uri = doc.uri.replace("\ ", " ") # don't escape for io.open doc.uri = doc.uri.replace("\$", "$") # don't escape for io.open with io.open(doc.uri, 'r', encoding='utf8') as f: lines = f.readlines() cleaner = textClean.TextCleaner() res = [] for j, line in enumerate(lines): before = line line = cleaner.cleanLine(line) if len(line) != 0: res.append(line) cleanDocs.append(res) if len(res) == 0: print("INFO: received empty doc: ", i, doc.uri) # if i % 10 == 0: # print("INFO: done processing doc", i) indexedSentenceList = [] for i, text in enumerate(cleanDocs): sentences = server_rnn_helper.get_indexed_sentences("\n".join(text)) for sentence in sentences: sentence.sentence = monUtil.removeNewline(sentence.sentence) # remove \n introduced above, not handled by server_rnn_helper.get_nltk_trees below sentence.sentence = monUtil.removeApostrof(sentence.sentence) # remove "'" not handled by server_rnn_helper.get_nltk_trees below sentence.sentence = monUtil.removeMultiCommas(sentence.sentence) # remove multiple commas indexedSentenceList.append(sentences) # i = 0 # for indexedSentence in indexedSentenceList[i]: # print(indexedSentence) # count = 0 # for sentences in indexedSentenceList: # count += len(sentences) # print(count) # counts = [] # for sentences in indexedSentenceList: # for sentence in sentences: # counts.append(len(sentence.sentence)) # len(counts) # import numpy # data = numpy.array(counts) # print(max(counts)) # bins = numpy.array([5, 20, 75, 125, 300, 500, 1000]) # classes = numpy.digitize(data, bins) # unique, counts = numpy.unique(classes, return_counts=True) # print(dict(zip(unique, counts))) # # {0: 1175, 1: 1122, 2: 2428, 3: 2062, 4: 3165, 5: 573, 6: 195, 7: 54} # count = 0 # val = 1 # for c in counts: # if c == val: # count += 1 # print("{}:".format(val), count) treeList = [] if endindex == -1: endindex = len(indexedSentenceList) endindex = min(endindex, len(indexedSentenceList)) for i in range(startindex, endindex): indexSentences = indexedSentenceList[i] print("Working on doc {}/{} ({}-{})".format(i, len(indexedSentenceList), startindex, endindex)) trees = server_rnn_helper.get_nltk_trees(i, indexedSentenceList[i]) treeList.append(trees) if len(trees) == 0: print("WARN: trees were empty", i, docs[i].uri) trees = [] for i in range(startindex, endindex): doc = docs[i] indexSentences = indexedSentenceList[i] for indexSentence in indexSentences: tree = indexSentence.tree if tree is None: continue # empty tree n = load_trees.Node() n.syntax = "{}".format(indexSentence.beginIndex) n.word = doc.monsantoId n.word = n.word.replace(" ", "%20") tree.parent = n n.left = tree nRight = n.add_child() nRight.syntax = "{}".format(doc.label) nRight.word = doc.uri[len(datadir) + 1:-4] nRight.word = nRight.word.replace(" ", "%20") trees.append(n) load_trees.put_trees(outfile, trees) # TODO: add timestamp here so we can track when the process terminated print("done. saved {} trees to {}".format(len(trees), outfile))
143
0
23
c11bc4ddc779cc37ccba80a70677f0703b4a7cf3
7,182
py
Python
scoring/fields.py
stkrizh/otus
6bff5cf62661bb7bab6eac6cb563a63a52a56423
[ "MIT" ]
1
2021-07-25T11:11:55.000Z
2021-07-25T11:11:55.000Z
scoring/fields.py
stkrizh/otus
6bff5cf62661bb7bab6eac6cb563a63a52a56423
[ "MIT" ]
3
2020-03-24T17:33:29.000Z
2021-08-23T20:20:31.000Z
scoring/fields.py
stkrizh/otus
6bff5cf62661bb7bab6eac6cb563a63a52a56423
[ "MIT" ]
null
null
null
import datetime as dt import re class Field(object): """Base class for fields validation. Attributes ---------- allowed_type : Optional[type or Tuple[type]] Allowed field's type. Parameters ---------- label: Optional[unicode] Name of the field. required : bool Raise a `ValidationError` if the field value is `None`. False by default. nullable : bool Set this to `True` to consider nullable values as valid ones. True by default. """ allowed_type = None choices = None @staticmethod def is_nullable(value): """Check nullability of the value. Parameters ---------- value : Any Actual field value. Returns ------- bool `True` if `value` may be considered as a nullable, `False` otherwise. """ return not bool(value) def clean(self, value): """Validate the given value and return its "cleaned" value. Raise ValidationError for any errors. Parameters ---------- value : Any Actual field value. Raises ------ ValidationError If validation does not succeed. Returns ------- result : ValidationResult """ if value is None: if self.required: err = u"Field `{}` is required." raise ValidationError(err.format(self.label)) return value if isinstance(self.allowed_type, (type, tuple)): if not isinstance(value, self.allowed_type): err = u"Field `{}` must be an instance of `{}` type / types." err = err.format(self.label, self.allowed_type) raise ValidationError(err) if self.is_nullable(value): if not self.nullable: err = u"Field `{}` may not be nullable." raise ValidationError(err.format(self.label)) return value if self.choices: if value not in self.choices: err = u"Invalid value for field `{}`. Choices are: `{}`." choices = ", ".join(str(item) for item in self.choices) raise ValidationError(err.format(self.label, choices)) return value return self.validate(value) def validate(self, value): """Additional validation of non-empty value. """ return value class CharField(Field): """Represents a string. Parameters ---------- max_len: int Max length of the string. + from Field """ allowed_type = unicode, str class RegexField(CharField): """ Represents a string that match specified pattern. Parameters ---------- patter: Optional[unicode] Regular expression pattern. + from CharField """ pattern = r".*" error_message = u"Field `{}` doesn't match `{}` pattern." class ArgumentsField(Field): """Represents a dictionary. """ allowed_type = dict class EmailField(RegexField): """Represents an email address. """ pattern = r"^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$" error_message = u"Field `{}` is not a valid email address." class PhoneField(RegexField): """Represents a phone number. """ allowed_type = unicode, str, int pattern = r"^7\d{10}$" error_message = u"Field `{}` is not a valid phone number." @staticmethod class DateField(Field): """Represents a date in `DD.MM. YYYY` format. """ allowed_type = unicode, str class BirthDayField(DateField): """Represents a date of birth in `DD.MM. YYYY` format. """ class GenderField(Field): """Represents a gender. """ UNKNOWN = 0 MALE = 1 FEMALE = 2 GENDERS = {UNKNOWN: u"unknown", MALE: u"male", FEMALE: u"female"} allowed_type = unicode, str, int choices = GENDERS @staticmethod class ClientIDsField(Field): """Represents a non-empty list of integers. """ allowed_type = list
25.378092
79
0.574353
import datetime as dt import re class ValidationError(Exception): pass class Field(object): """Base class for fields validation. Attributes ---------- allowed_type : Optional[type or Tuple[type]] Allowed field's type. Parameters ---------- label: Optional[unicode] Name of the field. required : bool Raise a `ValidationError` if the field value is `None`. False by default. nullable : bool Set this to `True` to consider nullable values as valid ones. True by default. """ allowed_type = None choices = None def __init__( self, label=None, required=True, nullable=False, choices=None ): self.label = label self.required = required self.nullable = nullable self.choices = choices if choices is not None else self.choices @staticmethod def is_nullable(value): """Check nullability of the value. Parameters ---------- value : Any Actual field value. Returns ------- bool `True` if `value` may be considered as a nullable, `False` otherwise. """ return not bool(value) def clean(self, value): """Validate the given value and return its "cleaned" value. Raise ValidationError for any errors. Parameters ---------- value : Any Actual field value. Raises ------ ValidationError If validation does not succeed. Returns ------- result : ValidationResult """ if value is None: if self.required: err = u"Field `{}` is required." raise ValidationError(err.format(self.label)) return value if isinstance(self.allowed_type, (type, tuple)): if not isinstance(value, self.allowed_type): err = u"Field `{}` must be an instance of `{}` type / types." err = err.format(self.label, self.allowed_type) raise ValidationError(err) if self.is_nullable(value): if not self.nullable: err = u"Field `{}` may not be nullable." raise ValidationError(err.format(self.label)) return value if self.choices: if value not in self.choices: err = u"Invalid value for field `{}`. Choices are: `{}`." choices = ", ".join(str(item) for item in self.choices) raise ValidationError(err.format(self.label, choices)) return value return self.validate(value) def validate(self, value): """Additional validation of non-empty value. """ return value def __get__(self, instance, owner=None): if instance is None: return self if self.label is None: raise ValueError( u"Label of an instance of `Field` class may not be None." ) return instance.__dict__[self.label] def __set__(self, instance, value): if self.label is None: raise ValueError( u"Label of an instance of `Field` class may not be None." ) cleaned = self.clean(value) instance.__dict__[self.label] = cleaned class CharField(Field): """Represents a string. Parameters ---------- max_len: int Max length of the string. + from Field """ allowed_type = unicode, str def __init__(self, max_len=128, **kwargs): super(CharField, self).__init__(**kwargs) self.max_len = max_len def validate(self, value): if len(value) > self.max_len: err = u"Field `{}` must contain less than {} characters." raise ValidationError(err.format(self.label, self.max_len)) return value class RegexField(CharField): """ Represents a string that match specified pattern. Parameters ---------- patter: Optional[unicode] Regular expression pattern. + from CharField """ pattern = r".*" error_message = u"Field `{}` doesn't match `{}` pattern." def __init__(self, pattern=None, **kwargs): super(RegexField, self).__init__(**kwargs) self.pattern = self.pattern if pattern is None else pattern self.compiled_pattern = re.compile(self.pattern) def validate(self, value): value = super(RegexField, self).validate(value) if not self.compiled_pattern.match(value): raise ValidationError( self.error_message.format(self.label, self.pattern) ) return value class ArgumentsField(Field): """Represents a dictionary. """ allowed_type = dict class EmailField(RegexField): """Represents an email address. """ pattern = r"^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$" error_message = u"Field `{}` is not a valid email address." class PhoneField(RegexField): """Represents a phone number. """ allowed_type = unicode, str, int pattern = r"^7\d{10}$" error_message = u"Field `{}` is not a valid phone number." @staticmethod def is_nullable(value): return not bool(str(value)) def validate(self, value): value = str(value) return super(PhoneField, self).validate(value) class DateField(Field): """Represents a date in `DD.MM. YYYY` format. """ allowed_type = unicode, str def validate(self, value): try: date = dt.datetime.strptime(value, "%d.%m.%Y") except ValueError: err = u"Field `{}` doesn't match date format `DD.MM.YYYY`." raise ValidationError(err.format(self.label)) return date class BirthDayField(DateField): """Represents a date of birth in `DD.MM. YYYY` format. """ def validate(self, value): date = super(BirthDayField, self).validate(value) now = dt.datetime.now() if date < now - dt.timedelta(days=(365.25 * 70)): err = u"Field `{}` is not a valid birthday." raise ValidationError(err.format(self.label)) if date > now: err = u"Field `{}` is not a valid birthday." raise ValidationError(err.format(self.label)) return date class GenderField(Field): """Represents a gender. """ UNKNOWN = 0 MALE = 1 FEMALE = 2 GENDERS = {UNKNOWN: u"unknown", MALE: u"male", FEMALE: u"female"} allowed_type = unicode, str, int choices = GENDERS @staticmethod def is_nullable(value): return not bool(unicode(value)) class ClientIDsField(Field): """Represents a non-empty list of integers. """ allowed_type = list def validate(self, value): if all(isinstance(item, int) and item >= 0 for item in value): unique = list(set(value)) if unique: return unique err = u"Field `{}` must be a non-empty list with non-negative integers" raise ValidationError(err.format(self.label))
2,662
21
372
b2dc8eb7563fbeae7c3260ea4983e67be1ebdf31
974
py
Python
Ex028.py
andrade-lcs/ex_curso_em_video_python
f2d029efe7a20cdf0fcb5b602f9992e27d37c263
[ "MIT" ]
null
null
null
Ex028.py
andrade-lcs/ex_curso_em_video_python
f2d029efe7a20cdf0fcb5b602f9992e27d37c263
[ "MIT" ]
null
null
null
Ex028.py
andrade-lcs/ex_curso_em_video_python
f2d029efe7a20cdf0fcb5b602f9992e27d37c263
[ "MIT" ]
null
null
null
#t=int(input('Quantos anos tem seu carro?')) #if t <=3: # print('Carro novo') #else: # print('Carro velho') #print('Carro novo' if t<=3 else 'Carro velho') #print('fim') # print('Que nome lindo') #print('Bom dia, {}'.format(n)) #print('fim') #_____________________________ import random from time import sleep c = 0 while c != 1: print('O computador escolherá um númeor entre 1 e 6') a = int(random.randint(1,6)) b = int(input('Agora vc deve escolher um número entre 1 e 6: ')) print('-='*20) sleep(2) if a==b: print('Você escolheu o número que o computador escolheu') print('Você ganhou o jogo!') else: print('você escolheu o número errado') print('O número escolhido pelo computador foi {:.0f}, e o seu {:.0f}'.format(a,b)) print('O computador ganhou o jogo') print('-='*20) sleep(2) c = int(input('Para continuar digite 0 e para sair digite 1: ')) print(' ') print('Fim do jogo')
30.4375
90
0.616016
#t=int(input('Quantos anos tem seu carro?')) #if t <=3: # print('Carro novo') #else: # print('Carro velho') #print('Carro novo' if t<=3 else 'Carro velho') #print('fim') # print('Que nome lindo') #print('Bom dia, {}'.format(n)) #print('fim') #_____________________________ import random from time import sleep c = 0 while c != 1: print('O computador escolherá um númeor entre 1 e 6') a = int(random.randint(1,6)) b = int(input('Agora vc deve escolher um número entre 1 e 6: ')) print('-='*20) sleep(2) if a==b: print('Você escolheu o número que o computador escolheu') print('Você ganhou o jogo!') else: print('você escolheu o número errado') print('O número escolhido pelo computador foi {:.0f}, e o seu {:.0f}'.format(a,b)) print('O computador ganhou o jogo') print('-='*20) sleep(2) c = int(input('Para continuar digite 0 e para sair digite 1: ')) print(' ') print('Fim do jogo')
0
0
0
eb225baa26daf67586d587e4ced2d1f3464104dc
5,232
py
Python
daluke/plot/plot_finetune_ner.py
peleiden/daluke
d2c85ba6b80021b2959b369381c447d18b058576
[ "MIT" ]
10
2021-07-06T08:31:45.000Z
2021-12-17T09:13:33.000Z
daluke/plot/plot_finetune_ner.py
peleiden/daLUKE
d2c85ba6b80021b2959b369381c447d18b058576
[ "MIT" ]
70
2021-03-26T13:30:39.000Z
2021-06-10T15:06:36.000Z
daluke/plot/plot_finetune_ner.py
peleiden/daluke
d2c85ba6b80021b2959b369381c447d18b058576
[ "MIT" ]
null
null
null
from __future__ import annotations import os import click from pelutils.logger import log from pelutils.ds.plot import figsize_std, tab_colours, update_rc_params, rc_params import matplotlib.pyplot as plt from matplotlib.lines import Line2D import numpy as np from daluke.ner.training import TrainResults from daluke.plot import running_avg update_rc_params(rc_params) @click.command() @click.argument("location") if __name__ == "__main__": with log.log_errors: make_finetuning_plots()
37.106383
183
0.661888
from __future__ import annotations import os import click from pelutils.logger import log from pelutils.ds.plot import figsize_std, tab_colours, update_rc_params, rc_params import matplotlib.pyplot as plt from matplotlib.lines import Line2D import numpy as np from daluke.ner.training import TrainResults from daluke.plot import running_avg update_rc_params(rc_params) def loss_plot(location: str): res = TrainResults.load() batches_per_epoch = len(res.losses) // (res.epoch+1) _, ax1 = plt.subplots(figsize=figsize_std) res.losses # Loss axis x = np.arange(len(res.losses)) + 1 ax1.semilogy(x/batches_per_epoch, res.losses, color="gray", alpha=0.3) x, y = running_avg(x, res.losses, neighbors=10) ax1.semilogy(x/batches_per_epoch, y, color=tab_colours[0], label="Loss (Rolling Avg.)") ax1.set_xlabel("Epoch") ax1.set_ylabel("Cross Entropy Loss") h, l = ax1.get_legend_handles_labels() # Accuracy axis if res.running_dev_evaluations: ax2 = ax1.twinx() x = range(len(res.running_train_statistics)+1) ax2.plot( x, 100*np.array([0]+[e.statistics["micro avg"]["f1-score"] for e in res.running_dev_evaluations]), color=tab_colours[1], ms=15, label="Dev. Set F1", marker=".", lw=3, ) ax2.plot( x, 100*np.array([0]+[s["micro avg"]["f1-score"] for s in res.running_train_statistics]), color=tab_colours[2], ms=15, label="Training Set F1", marker=".", lw=3, ) ax2.set_ylim([0, 110]) ax2.set_ylabel("Micro Avg. F1 [%]") h2, l2 = ax2.get_legend_handles_labels() h += h2 l += l2 ax1.legend(h, l, loc="lower right", framealpha=1, edgecolor=(0, 0, 0, 1)) ax1.set_title("NER Fine-tuning of DaLUKE") plt.grid() plt.tight_layout() plt.savefig(os.path.join(location, "finetune-plots", "loss.png")) plt.close() def running_f1_detail_plot(location: str): res = TrainResults.load() if not res.running_train_statistics: return _, ax = plt.subplots(figsize=figsize_std) x = range(len(res.running_train_statistics)+1) cols = iter(tab_colours) train_stats = [(0,0,0), *[(s["micro avg"]["f1-score"], s["micro avg"]["precision"], s["micro avg"]["recall"]) for s in res.running_train_statistics]] dev_stats = [(0,0,0), *[(e.statistics["micro avg"]["f1-score"], e.statistics["micro avg"]["precision"], e.statistics["micro avg"]["recall"]) for e in res.running_dev_evaluations]] for stats, name in zip((train_stats, dev_stats), ("Training Set", "Dev. Set")): ax.plot(x, [100*f1_score for f1_score, _, _ in stats], color=next(cols), linewidth=3, ms=15, marker=".", label=f"{name}") ax.set_xlabel("Epoch") ax.set_ylabel("Micro Avg. F1 [%]") ax.set_xlim(left=0) ax.set_ylim([0, 110]) plt.title("Running Performance of Fine-tuning") ax.legend() plt.grid() plt.tight_layout() plt.savefig(os.path.join(location, "finetune-plots", "f1s.png")) plt.close() def _do_prediction_distribution_plot(location: str, true_type_distribution: dict[str, int], pred_distributions: list[dict[str, int]], dataset: str): types = sorted(list(set(true_type_distribution.keys()) - {"O"})) type_sequences = {t: list() for t in types} for dist in pred_distributions: for t in types: type_sequences[t].append(dist.get(t, 0)) _, ax = plt.subplots(figsize=figsize_std) x = np.arange(1, len(pred_distributions)+1) for i, t in enumerate(types): ax.plot( x, type_sequences[t], label=f"{t} predictions", color=tab_colours[i], linewidth=2, marker=".", markersize=20, ) ax.axhline(y=true_type_distribution[t], color=tab_colours[i], linestyle="--", alpha=.8, lw=2) h, l = ax.get_legend_handles_labels() h += [Line2D([0], [0], color="black", linestyle="--")] l += ["True annotation counts"] ax.legend(h, l) ax.set_xlim(left=0) ax.set_ylim(bottom=0) ax.set_xlabel("Epoch") ax.set_ylabel("# Spans Predicted") ax.set_title(f"Entity Predictions on {dataset.capitalize()}. Set During Fine-tuning") plt.grid() plt.tight_layout() plt.savefig(os.path.join(location, "finetune-plots", f"{dataset}-dists.png")) plt.close() def prediction_distribution_plots(location: str): res = TrainResults.load() _do_prediction_distribution_plot(location, res.dev_true_type_distribution, res.dev_pred_distributions, "dev") _do_prediction_distribution_plot(location, res.train_true_type_distribution, res.train_pred_distributions, "train") @click.command() @click.argument("location") def make_finetuning_plots(location: str): log.configure(os.path.join(location, "finetune-plots", "finetune-plot.log"), "Training plot of NER fine-tune") TrainResults.subfolder = location log("Loss and accuracy plot") loss_plot(location) log("Prediction distribution plots") prediction_distribution_plots(location) log("Detailed plot of running F1's") running_f1_detail_plot(location) if __name__ == "__main__": with log.log_errors: make_finetuning_plots()
4,613
0
114
06fdf5dfdb4933696507f332998511229cae25be
833
py
Python
VSCode_work/chapter10/chapter10_10_10.py
yangyahu-1994/Python-Crash-Course
6f8ef7fe8466d88931a0d3cc423ba5d966663b9d
[ "MIT" ]
12
2020-10-22T14:03:27.000Z
2022-03-28T08:14:22.000Z
VSCode_work/chapter10/chapter10_10_10.py
yangyahu-1994/Python-Crash-Course
6f8ef7fe8466d88931a0d3cc423ba5d966663b9d
[ "MIT" ]
null
null
null
VSCode_work/chapter10/chapter10_10_10.py
yangyahu-1994/Python-Crash-Course
6f8ef7fe8466d88931a0d3cc423ba5d966663b9d
[ "MIT" ]
9
2020-12-22T10:22:12.000Z
2022-03-28T08:14:53.000Z
# 定义函数 def count_numbers(filename): """获取指定的文件,并计算单词'the'在每个文件中出现的次数""" try: with open(filename) as file_object: contents = file_object.read() except FileNotFoundError: print(f"Sorry, the file {filename} does not exits.") else: # 计算出现的次数 numbers = contents.lower().count('the') print(f"The word 'the' appears {numbers} times in file {filename}.") # 获取文件 filenames = ['/home/yyh/Documents/Python_Crash_Course/Python-Crash-Course/VSCode_work/chapter10/data/63558-0.txt', '/home/yyh/Documents/Python_Crash_Course/Python-Crash-Course/VSCode_work/chapter10/data/63559-0.txt', '/home/yyh/Documents/Python_Crash_Course/Python-Crash-Course/VSCode_work/chapter10/data/63560-0.txt'] for filename in filenames: count_numbers(filename)
41.65
115
0.683073
# 定义函数 def count_numbers(filename): """获取指定的文件,并计算单词'the'在每个文件中出现的次数""" try: with open(filename) as file_object: contents = file_object.read() except FileNotFoundError: print(f"Sorry, the file {filename} does not exits.") else: # 计算出现的次数 numbers = contents.lower().count('the') print(f"The word 'the' appears {numbers} times in file {filename}.") # 获取文件 filenames = ['/home/yyh/Documents/Python_Crash_Course/Python-Crash-Course/VSCode_work/chapter10/data/63558-0.txt', '/home/yyh/Documents/Python_Crash_Course/Python-Crash-Course/VSCode_work/chapter10/data/63559-0.txt', '/home/yyh/Documents/Python_Crash_Course/Python-Crash-Course/VSCode_work/chapter10/data/63560-0.txt'] for filename in filenames: count_numbers(filename)
0
0
0
01db368e89b0bf8334c4f381333f9897fa93f294
793
py
Python
apps/article/tests/article/test_article_list.py
magocod/django_repository
660664ba2321499e92c3c5c23719756db2569e90
[ "MIT" ]
1
2019-10-01T01:39:29.000Z
2019-10-01T01:39:29.000Z
apps/article/tests/article/test_article_list.py
magocod/django_repository
660664ba2321499e92c3c5c23719756db2569e90
[ "MIT" ]
7
2019-12-04T21:40:40.000Z
2020-06-26T21:49:51.000Z
apps/article/tests/article/test_article_list.py
magocod/django_repository
660664ba2321499e92c3c5c23719756db2569e90
[ "MIT" ]
1
2020-04-08T02:46:31.000Z
2020-04-08T02:46:31.000Z
# standard library import json # local Django from apps.article.models import Article from apps.article.serializers.article import ArticleHeavySerializer from apps.tests.fixtures import RepositoryTestCase class ListArticleTest(RepositoryTestCase): """ ... """ serializer = ArticleHeavySerializer
29.37037
71
0.727617
# standard library import json # local Django from apps.article.models import Article from apps.article.serializers.article import ArticleHeavySerializer from apps.tests.fixtures import RepositoryTestCase class ListArticleTest(RepositoryTestCase): """ ... """ serializer = ArticleHeavySerializer def test_get_all(self): response = self.admin_client.get("/api/articles/") response_data = json.loads(response.content) serializer = self.serializer(Article.objects.all(), many=True,) self.assertEqual(response.status_code, 200) self.assertEqual(serializer.data, response_data) def test_get_all_authenticated(self): response = self.public_client.get("/api/articles/") self.assertEqual(response.status_code, 401)
423
0
54
93787bb0da83949daeb1c9f0fd9a21dd757d69bd
275
py
Python
ai/games/random_ai_game.py
JonKruger/checkers
8cc1390fcb69c1af15ac740fb3321aea7357f5d0
[ "MIT" ]
null
null
null
ai/games/random_ai_game.py
JonKruger/checkers
8cc1390fcb69c1af15ac740fb3321aea7357f5d0
[ "MIT" ]
null
null
null
ai/games/random_ai_game.py
JonKruger/checkers
8cc1390fcb69c1af15ac740fb3321aea7357f5d0
[ "MIT" ]
null
null
null
from ai.players.random_ai_player import RandomAIPlayer from ai.games.ai_game import AIGame from checkers.game import Game import random
30.555556
70
0.781818
from ai.players.random_ai_player import RandomAIPlayer from ai.games.ai_game import AIGame from checkers.game import Game import random class RandomAIGame(AIGame): def __init__(self, verbose=False): super().__init__(RandomAIPlayer(), RandomAIPlayer(), verbose)
83
6
50
e3fac1b3c3b5a1717c6d26e6cb738d1ed4d5e6c2
8,281
py
Python
syne_tune/optimizer/schedulers/transfer_learning/zero_shot.py
awslabs/syne-tune
1dd8e157477b86db01047a9a7821780ea04389bc
[ "ECL-2.0", "Apache-2.0" ]
97
2021-11-18T17:14:30.000Z
2022-03-29T00:33:12.000Z
syne_tune/optimizer/schedulers/transfer_learning/zero_shot.py
awslabs/syne-tune
1dd8e157477b86db01047a9a7821780ea04389bc
[ "ECL-2.0", "Apache-2.0" ]
54
2021-11-18T17:14:12.000Z
2022-03-22T08:11:48.000Z
syne_tune/optimizer/schedulers/transfer_learning/zero_shot.py
awslabs/syne-tune
1dd8e157477b86db01047a9a7821780ea04389bc
[ "ECL-2.0", "Apache-2.0" ]
9
2021-11-29T11:47:32.000Z
2022-02-24T15:28:11.000Z
# Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import logging from typing import Dict, Optional import numpy as np import pandas as pd import xgboost from syne_tune.blackbox_repository.blackbox_surrogate import BlackboxSurrogate from syne_tune.config_space import Domain from syne_tune.optimizer.schedulers.searchers.searcher import BaseSearcher from syne_tune.optimizer.schedulers.transfer_learning import ( TransferLearningTaskEvaluations, TransferLearningMixin, ) logger = logging.getLogger(__name__)
44.762162
120
0.662601
# Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import logging from typing import Dict, Optional import numpy as np import pandas as pd import xgboost from syne_tune.blackbox_repository.blackbox_surrogate import BlackboxSurrogate from syne_tune.config_space import Domain from syne_tune.optimizer.schedulers.searchers.searcher import BaseSearcher from syne_tune.optimizer.schedulers.transfer_learning import ( TransferLearningTaskEvaluations, TransferLearningMixin, ) logger = logging.getLogger(__name__) class ZeroShotTransfer(TransferLearningMixin, BaseSearcher): def __init__( self, config_space: Dict, transfer_learning_evaluations: Dict[str, TransferLearningTaskEvaluations], metric: str, mode: str = "min", sort_transfer_learning_evaluations: bool = True, use_surrogates: bool = False, random_seed: Optional[int] = None, ) -> None: """ A zero-shot transfer hyperparameter optimization method which jointly selects configurations that minimize the average rank obtained on historic metadata (transfer_learning_evaluations). Reference: Sequential Model-Free Hyperparameter Tuning. Martin Wistuba, Nicolas Schilling, Lars Schmidt-Thieme. IEEE International Conference on Data Mining (ICDM) 2015. :param config_space: Configuration space for trial evaluation function. :param transfer_learning_evaluations: Dictionary from task name to offline evaluations. :param metric: Objective name to optimize, must be present in transfer learning evaluations. :param mode: Whether to minimize (min) or maximize (max) :param sort_transfer_learning_evaluations: Use False if the hyperparameters for each task in transfer_learning_evaluations Are already in the same order. If set to True, hyperparameters are sorted. :param use_surrogates: If the same configuration is not evaluated on all tasks, set this to true. This will generate a set of configurations and will impute their performance using surrogate models. :param random_seed: Used for randomly sampling candidates. Only used if use_surrogate is True. """ super().__init__( config_space=config_space, transfer_learning_evaluations=transfer_learning_evaluations, metric=metric, metric_names=[metric], ) self._mode = mode self._random_state = np.random.RandomState(random_seed) if use_surrogates and len(transfer_learning_evaluations) <= 1: use_surrogates = False sort_transfer_learning_evaluations = False if use_surrogates: sort_transfer_learning_evaluations = False transfer_learning_evaluations = ( self._create_surrogate_transfer_learning_evaluations( config_space, transfer_learning_evaluations, metric ) ) warning_message = "This searcher assumes that each hyperparameter configuration occurs in all tasks. " scores = list() hyperparameters = None for task_name, task_data in transfer_learning_evaluations.items(): assert ( hyperparameters is None or task_data.hyperparameters.shape == hyperparameters.shape ), warning_message hyperparameters = task_data.hyperparameters if sort_transfer_learning_evaluations: hyperparameters = task_data.hyperparameters.sort_values( list(task_data.hyperparameters.columns) ) idx = hyperparameters.index.values avg_scores = task_data.objective_values(metric).mean(axis=1) if self._mode == "max": avg_scores = avg_scores.max(axis=1)[idx] else: avg_scores = avg_scores.min(axis=1)[idx] scores.append(avg_scores) if not use_surrogates: if len(transfer_learning_evaluations) > 1: logger.warning( warning_message + "If this is not the case, this searcher fails without a warning." ) if not sort_transfer_learning_evaluations: hyperparameters = hyperparameters.copy() hyperparameters.reset_index(drop=True, inplace=True) self._hyperparameters = hyperparameters sign = 1 if self._mode == "min" else -1 self._scores = sign * pd.DataFrame(scores) self._ranks = self._update_ranks() def _create_surrogate_transfer_learning_evaluations( self, config_space: Dict, transfer_learning_evaluations: Dict[str, TransferLearningTaskEvaluations], metric: str, ) -> Dict[str, TransferLearningTaskEvaluations]: """ Creates transfer_learning_evaluations where each configuration is evaluated on each task using surrogate models. """ surrogate_transfer_learning_evaluations = dict() for task_name, task_data in transfer_learning_evaluations.items(): estimator = BlackboxSurrogate.make_model_pipeline( configuration_space=config_space, fidelity_space={}, model=xgboost.XGBRegressor(), ) X_train = task_data.hyperparameters y_train = task_data.objective_values(metric).mean(axis=1) if self._mode == "max": y_train = y_train.max(axis=1) else: y_train = y_train.min(axis=1) estimator.fit(X_train, y_train) num_candidates = 10000 if len(config_space) >= 6 else 5 ** len(config_space) hyperparameters_new = pd.DataFrame( [ self._sample_random_config(config_space) for _ in range(num_candidates) ] ) objectives_evaluations_new = estimator.predict(hyperparameters_new).reshape( -1, 1, 1, 1 ) surrogate_transfer_learning_evaluations[ task_name ] = TransferLearningTaskEvaluations( configuration_space=config_space, hyperparameters=hyperparameters_new, objectives_names=[metric], objectives_evaluations=objectives_evaluations_new, ) return surrogate_transfer_learning_evaluations def get_config(self, **kwargs) -> Optional[Dict]: if self._ranks.shape[1] == 0: return None # Select greedy-best configuration considering all others best_idx = self._ranks.mean(axis=0).idxmin() # Update ranks for choosing each configuration considering the previously chosen ones self._ranks.clip(upper=self._ranks[best_idx], axis=0, inplace=True) # Drop the chosen configuration as a future candidate self._scores.drop(columns=best_idx, inplace=True) best_config = self._hyperparameters.loc[best_idx] self._hyperparameters.drop(index=best_idx, inplace=True) if self._ranks.std(axis=1).sum() == 0: self._ranks = self._update_ranks() return best_config.to_dict() def _sample_random_config(self, config_space: Dict) -> Dict: return { k: v.sample(random_state=self._random_state) if isinstance(v, Domain) else v for k, v in config_space.items() } def _update_ranks(self) -> pd.DataFrame: return self._scores.rank(axis=1) def _update(self, trial_id: str, config: Dict, result: Dict) -> None: pass def clone_from_state(self, state: Dict): raise NotImplementedError()
1,129
6,085
23
5a21299c7960ef147aa799e8ad8d4e56f46263b8
423
py
Python
copymaks.py
LittleQBerry/sklearn-logist
4ed208547b9d93171a8da14d3d010ec721cd17fa
[ "MIT" ]
null
null
null
copymaks.py
LittleQBerry/sklearn-logist
4ed208547b9d93171a8da14d3d010ec721cd17fa
[ "MIT" ]
null
null
null
copymaks.py
LittleQBerry/sklearn-logist
4ed208547b9d93171a8da14d3d010ec721cd17fa
[ "MIT" ]
null
null
null
import os from shutil import copyfile from os import listdir save_dir =r'J:/game/seg_classification/data/' imgs_dir =r'J:/game/seg_classification/_ouput_dir_/' if not os.path.isdir(save_dir): os.makedirs(save_dir) for files in listdir(imgs_dir): if files[-5] =='0': source_file=os.path.join(imgs_dir +files) target_file =os.path.join(save_dir +files) copyfile(source_file,target_file)
22.263158
52
0.718676
import os from shutil import copyfile from os import listdir save_dir =r'J:/game/seg_classification/data/' imgs_dir =r'J:/game/seg_classification/_ouput_dir_/' if not os.path.isdir(save_dir): os.makedirs(save_dir) for files in listdir(imgs_dir): if files[-5] =='0': source_file=os.path.join(imgs_dir +files) target_file =os.path.join(save_dir +files) copyfile(source_file,target_file)
0
0
0
c313d884667195d72422dcbdf27ccb9ddfa77912
3,927
py
Python
haiku/_src/random_test.py
rushic24/dm-haiku
8ee1a2125587831783ae7ae1e74baacec23ae56d
[ "Apache-2.0" ]
null
null
null
haiku/_src/random_test.py
rushic24/dm-haiku
8ee1a2125587831783ae7ae1e74baacec23ae56d
[ "Apache-2.0" ]
null
null
null
haiku/_src/random_test.py
rushic24/dm-haiku
8ee1a2125587831783ae7ae1e74baacec23ae56d
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for haiku._src.random.""" import functools from absl.testing import absltest from haiku._src import base from haiku._src import random from haiku._src import transform import jax from jax import prng import jax.numpy as jnp import numpy as np if __name__ == "__main__": absltest.main()
32.188525
80
0.66794
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for haiku._src.random.""" import functools from absl.testing import absltest from haiku._src import base from haiku._src import random from haiku._src import transform import jax from jax import prng import jax.numpy as jnp import numpy as np class RandomTest(absltest.TestCase): def test_optimize_rng_splitting(self): def f(): k1 = base.next_rng_key() k2 = base.next_rng_key() return k1, k2 key = jax.random.PRNGKey(42) assert_allclose = functools.partial(np.testing.assert_allclose, atol=1e-5) # With optimize_rng_use the keys returned should be equal to split(n). f_opt = transform.transform(random.optimize_rng_use(f)) jax.tree_multimap(assert_allclose, f_opt.apply({}, key), tuple(jax.random.split(key, 3))[1:]) # Without optimize_rng_use the keys should be equivalent to splitting in a # loop. f = transform.transform(f) jax.tree_multimap(assert_allclose, f.apply({}, key), tuple(split_for_n(key, 2))) def test_rbg_default_impl(self): with jax.default_prng_impl("rbg"): key = jax.random.PRNGKey(42) self.assertEqual(key.shape, (4,)) _, apply = transform.transform(base.next_rng_key) out_key = apply({}, key) self.assertEqual(out_key.shape, (4,)) def test_rbg_default_impl_invalid_key_shape(self): with jax.default_prng_impl("rbg"): key = jax.random.PRNGKey(42)[0:2] self.assertEqual(key.shape, (2,)) init, _ = transform.transform(base.next_rng_key) with self.assertRaisesRegex(ValueError, "Init must be called with an RNG"): init(key) class CustomRNGTest(absltest.TestCase): def setUp(self): super().setUp() jax.config.update("jax_enable_custom_prng", True) def tearDown(self): super().tearDown() jax.config.update("jax_enable_custom_prng", False) def test_non_custom_key(self): init, _ = transform.transform(base.next_rng_key) init(jax.random.PRNGKey(42)) # does not crash def test_custom_key(self): count = 0 def count_splits(_, num): nonlocal count count += 1 return jnp.zeros((num, 13), np.uint32) differently_shaped_prng_impl = prng.PRNGImpl( # Testing a different key shape to make sure it's accepted by Haiku key_shape=(13,), seed=lambda _: jnp.zeros((13,), np.uint32), split=count_splits, random_bits=lambda *_, data: jnp.zeros(data, np.uint32), fold_in=lambda key, _: key) init, _ = transform.transform(base.next_rng_key) key = prng.seed_with_impl(differently_shaped_prng_impl, 42) init(key) self.assertEqual(count, 1) # testing if Tracers with a different key shape are accepted jax.jit(init)(key) self.assertEqual(count, 2) def test_invalid_custom_key(self): init, _ = transform.transform(base.next_rng_key) with self.assertRaisesRegex(ValueError, "Init must be called with an RNG"): init(jnp.ones((2,), dtype=jnp.uint32)) def split_for_n(key, n): for _ in range(n): key, subkey = jax.random.split(key) yield subkey if __name__ == "__main__": absltest.main()
2,625
33
269
6a6b82dcc5b09f38955912cdd231dfc079e2215b
319
py
Python
csf_tz/after_sales_services/doctype/requested_payments/requested_payments_dashboard.py
Craftint/CSF_TZ
b5cb2d59d8f4e958ad7d4cb89421cfbec992abc5
[ "MIT" ]
null
null
null
csf_tz/after_sales_services/doctype/requested_payments/requested_payments_dashboard.py
Craftint/CSF_TZ
b5cb2d59d8f4e958ad7d4cb89421cfbec992abc5
[ "MIT" ]
null
null
null
csf_tz/after_sales_services/doctype/requested_payments/requested_payments_dashboard.py
Craftint/CSF_TZ
b5cb2d59d8f4e958ad7d4cb89421cfbec992abc5
[ "MIT" ]
1
2022-03-17T22:49:40.000Z
2022-03-17T22:49:40.000Z
from frappe import _
16.789474
50
0.579937
from frappe import _ def get_data(): return { 'fieldname': 're', 'non_standard_fieldnames': { 'Payment Entry': 'reference_name' }, 'internal_links': { 'Sales Order': ['references', 'reference_name'] }, 'transactions': [ { 'label': _('Payments'), 'items': ['Payment Entry'] } ] }
275
0
23
d7b4ca7a20b08e02e79aa7bd12cd25a873780374
3,180
py
Python
najdisi_sms/cli.py
brodul/najdi-si-sms
a73c2bfb55bcf7e2bfb4a75f50adff166873c6ed
[ "BSD-3-Clause" ]
5
2016-01-08T21:35:21.000Z
2018-10-11T08:59:21.000Z
najdisi_sms/cli.py
brodul/najdi-si-sms
a73c2bfb55bcf7e2bfb4a75f50adff166873c6ed
[ "BSD-3-Clause" ]
4
2016-01-09T14:30:33.000Z
2017-09-16T17:39:49.000Z
najdisi_sms/cli.py
brodul/najdi-si-sms
a73c2bfb55bcf7e2bfb4a75f50adff166873c6ed
[ "BSD-3-Clause" ]
2
2017-09-08T21:45:25.000Z
2018-10-16T11:55:13.000Z
from argparse import ArgumentParser import os import sys from six.moves.configparser import ConfigParser from najdisi_sms import utils from .api import SMSSender log = utils.get_logger() class SettingParser(object): """docstring for SettingParser""" def merge_settings(self, parser_space): """ Merge config file and cli options """ if os.path.exists(parser_space.config): ini_config = parse_ini(parser_space.config) for attr in ['username', 'password']: setattr( parser_space, attr, getattr(parser_space, attr, None) or ini_config.get('najdisi_sms', attr) ) elif not self.default_config_path == parser_space.config: log.info('Config file you specified not found!') return parser_space if __name__ == '__main__': main()
27.179487
70
0.545597
from argparse import ArgumentParser import os import sys from six.moves.configparser import ConfigParser from najdisi_sms import utils from .api import SMSSender log = utils.get_logger() class SettingParser(object): """docstring for SettingParser""" def __init__(self, args=None): self.args = args or sys.argv[1:] home = os.path.expanduser('~') self.default_config_path = os.path.join( home, '.config', 'najdisi_sms.ini' ) self.argparser = self._create_argparser() self.parser_space = self.argparser.parse_args(self.args) self.namespace = self.merge_settings(self.parser_space) self.check_password_username(self.namespace) def _create_argparser(self): parser = ArgumentParser() parser.add_argument( "rec_num", metavar=u"reciever_NUM", help="slovenian phone number starting with 0" ) parser.add_argument( "message", metavar=u"MESSAGE", help="SMS message (less than 160 characters)" ) parser.add_argument( "-c", "--configfile", dest="config", help=u"Config file", default=self.default_config_path ) parser.add_argument( "-u", "--username", dest="username", help=u"Username" ) parser.add_argument( "-p", "--password", dest="password", help=u"Password" ) parser.add_argument( "-A", "--useragent", dest="useragent", help=u"HTTP User Agent", default=("Mozilla/5.0 " "(Windows; U; Windows NT 6.1; es-ES; rv:1.9.2.3)" "Gecko/20100401 Firefox/3.6.3") ) return parser def merge_settings(self, parser_space): """ Merge config file and cli options """ def parse_ini(file_path): config = ConfigParser() config.read(file_path) return config if os.path.exists(parser_space.config): ini_config = parse_ini(parser_space.config) for attr in ['username', 'password']: setattr( parser_space, attr, getattr(parser_space, attr, None) or ini_config.get('najdisi_sms', attr) ) elif not self.default_config_path == parser_space.config: log.info('Config file you specified not found!') return parser_space def check_password_username(self, namespace): for attr in ['username', 'password']: if not getattr(namespace, attr): raise LookupError("Missing {}!".format(attr)) def main(): parser = SettingParser() namespace = parser.namespace sender = SMSSender( namespace.username, namespace.password, namespace.useragent ) sender.send(namespace.rec_num, namespace.message) if __name__ == '__main__': main()
2,108
0
134
93045327b67530baa933c410a2531ed53bd0fbbd
6,484
py
Python
utils/metrics.py
Hua-YS/Multi-Scene-Recognition
5c3db2a893221a1b49482675ac5f03532edd4f85
[ "MIT" ]
5
2021-06-28T12:49:38.000Z
2021-09-07T11:21:29.000Z
utils/metrics.py
Hua-YS/Multi-Scene-Recognition
5c3db2a893221a1b49482675ac5f03532edd4f85
[ "MIT" ]
null
null
null
utils/metrics.py
Hua-YS/Multi-Scene-Recognition
5c3db2a893221a1b49482675ac5f03532edd4f85
[ "MIT" ]
2
2021-07-19T09:19:11.000Z
2021-11-07T20:25:04.000Z
""" Modified from ML-GCN/util.py: * adding calculations: OP, OR, OF1, CP, CR, CF1, EP, ER, EF1 * removing args: difficult_examples """ import math import torch from PIL import Image from tqdm import tqdm import numpy as np import random import torch.nn.functional as F
35.048649
111
0.549352
""" Modified from ML-GCN/util.py: * adding calculations: OP, OR, OF1, CP, CR, CF1, EP, ER, EF1 * removing args: difficult_examples """ import math import torch from PIL import Image from tqdm import tqdm import numpy as np import random import torch.nn.functional as F class AveragePrecisionMeter(object): def __init__(self): super(AveragePrecisionMeter, self).__init__() self.reset() def reset(self): """Resets the meter with empty member variables""" self.scores = torch.FloatTensor(torch.FloatStorage()) self.targets = torch.LongTensor(torch.LongStorage()) def add(self, output, target): """ concatenate samples of the new batch and previous batches Args: output: predicted multiple labels, should be an NxK tensor, postive/negative means presence/absence target: ground truth multiple labels, should be an NxK binary tensors, each is multi-hot Notes: N: the number of samples K: the number of classes """ if not torch.is_tensor(output): output = torch.from_numpy(output) if not torch.is_tensor(target): target = torch.from_numpy(target) if output.dim() == 1: output = output.view(-1, 1) else: assert output.dim() == 2, \ 'wrong output size (should be 1D or 2D with one column \ per class)' if target.dim() == 1: target = target.view(-1, 1) else: assert target.dim() == 2, \ 'wrong target size (should be 1D or 2D with one column \ per class)' if self.scores.numel() > 0: assert target.size(1) == self.targets.size(1), \ 'dimensions for output should match previously added examples.' # make sure storage is of sufficient size if self.scores.storage().size() < self.scores.numel() + output.numel(): new_size = math.ceil(self.scores.storage().size() * 1.5) self.scores.storage().resize_(int(new_size + output.numel())) self.targets.storage().resize_(int(new_size + output.numel())) # store scores and targets offset = self.scores.size(0) if self.scores.dim() > 0 else 0 self.scores.resize_(offset + output.size(0), output.size(1)) self.targets.resize_(offset + target.size(0), target.size(1)) self.scores.narrow(0, offset, output.size(0)).copy_(output) self.targets.narrow(0, offset, target.size(0)).copy_(target) def value(self): """Returns the model's average precision for each class Return: ap (FloatTensor): 1xK tensor, with avg precision for each class k """ if self.scores.numel() == 0: return 0 self.scores_nonzero = self.scores[:, self.targets.sum(axis=0)>0] self.targets_nonzero = self.targets[:, self.targets.sum(axis=0)>0] ap = torch.zeros(self.scores_nonzero.size(1)) rg = torch.arange(1, self.scores_nonzero.size(0)).float() # compute average precision for each class for k in range(self.scores_nonzero.size(1)): # sort scores scores = self.scores_nonzero[:, k] targets = self.targets_nonzero[:, k] # compute average precision ap[k] = AveragePrecisionMeter.average_precision(scores, targets) return ap @staticmethod def average_precision(output, target): # sort examples sorted, indices = torch.sort(output, dim=0, descending=True) # Computes prec@i pos_count = 0. total_count = 0. precision_at_i = 0. for i in indices: label = target[i] if label == 1: pos_count += 1 total_count += 1 if label == 1: precision_at_i += pos_count / total_count if pos_count==0: precision_at_i = 0 else: precision_at_i /= pos_count return precision_at_i def overall(self): if self.scores.numel() == 0: return 0 scores = self.scores.cpu().numpy() targets = self.targets.cpu().numpy() targets[targets == -1] = 0 return self.evaluation(scores, targets) def overall_topk(self, k): targets = self.targets.cpu().numpy() targets[targets == -1] = 0 n, c = self.scores.size() scores = np.zeros((n, c)) - 1 index = self.scores.topk(k, 1, True, True)[1].cpu().numpy() tmp = self.scores.cpu().numpy() for i in range(n): for ind in index[i]: scores[i, ind] = 1 if tmp[i, ind] >= 0 else -1 return self.evaluation(scores, targets) def evaluation(self, scores_, targets_): """Returns the model's OP, OR, OF1, CP, CR, CF1, EP, ER, EF1 Return: OP, OR, OF1, CP, CR, CF1, EP, ER, EF1: 9 Float tensors """ eps = 1e-10 n, n_class = scores_.shape Nc, Np, Ng = np.zeros(n_class), np.zeros(n_class), np.zeros(n_class) for k in range(n_class): scores = scores_[:, k] targets = targets_[:, k] targets[targets == -1] = 0 Ng[k] = np.sum(targets == 1) Np[k] = np.sum(scores >= 0) Nc[k] = np.sum(targets * (scores >= 0)) OP = np.sum(Nc) / (np.sum(Np) + eps) OR = np.sum(Nc) / (np.sum(Ng) + eps) OF1 = (2 * OP * OR) / (OP + OR + eps) CP = Nc / (Np + eps) CR = Nc / (Ng + eps) CF1 = (2 * CP * CR) / ( CP + CR + eps) CP = np.mean(CP) CR = np.mean(CR) CF1 = np.mean(CF1) # calculate example-based pred = np.int8(np.round(1/(1+np.exp(-scores_)))) gt = np.int8(np.round(targets_)) TP_e = np.float32(np.sum(((pred+gt) == 2), 1)) FP_e = np.float32(np.sum(((pred-gt) == 1), 1)) FN_e = np.float32(np.sum(((pred-gt) == -1), 1)) TN_e = np.float32(np.sum(((pred+gt) == 0), 1)) # clear TP_e is 0, assign it some value and latter assign zero Nc = TP_e Np = TP_e + FP_e Ng = TP_e + FN_e EP = Nc / (Np + eps) ER = Nc / (Ng + eps) EF1 = (2 * EP * ER) / (EP + ER + eps) EP = np.mean(EP) ER = np.mean(ER) EF1 = np.mean(EF1) return OP, OR, OF1, CP, CR, CF1, EP, ER, EF1
1,316
4,872
24
c8983a64630f30f7f21c9bbdaa9a782c0bbb3db8
3,862
py
Python
compmatscipy/MyStats.py
YunyeongChoi/compmatscipy
44d0fe9f4d3806a21ee3bfcbca24b42120d91193
[ "MIT" ]
5
2019-08-19T14:48:31.000Z
2022-03-24T20:08:31.000Z
compmatscipy/MyStats.py
YunyeongChoi/compmatscipy
44d0fe9f4d3806a21ee3bfcbca24b42120d91193
[ "MIT" ]
1
2019-08-24T16:51:29.000Z
2019-08-24T16:51:29.000Z
compmatscipy/MyStats.py
YunyeongChoi/compmatscipy
44d0fe9f4d3806a21ee3bfcbca24b42120d91193
[ "MIT" ]
5
2019-07-16T19:15:28.000Z
2021-03-29T04:49:54.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Aug 6 12:05:46 2019 @author: chrisbartel """ import numpy as np from sklearn.metrics import confusion_matrix, r2_score
31.145161
95
0.56318
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Aug 6 12:05:46 2019 @author: chrisbartel """ import numpy as np from sklearn.metrics import confusion_matrix, r2_score def _make_binary_labels(data, thresh): return [1 if v <= thresh else 0 for v in data] class MyStats(object): def __init__(self, actual, pred, percentiles=[1, 10, 25, 50, 75, 90, 99], stability_thresholds=[0, 0.025, 0.5, 0.1, 0.2]): if len(actual) != len(pred): raise ValueError self.actual = actual self.pred = pred self.percentiles = percentiles self.stability_thresholds = stability_thresholds @property def errors(self): a, p = self.actual, self.pred return [a[i] - p[i] for i in range(len(a))] @property def abs_errors(self): errors = self.errors return [abs(e) for e in errors] @property def sq_errors(self): errors = self.errors return [e**2 for e in errors] @property def mean_error(self): return np.mean(self.errors) @property def mean_abs_error(self): return np.mean(self.abs_errors) @property def root_mean_sq_error(self): return np.sqrt(np.mean(self.sq_errors)) @property def median_error(self): return np.median(self.errors) @property def median_abs_error(self): return np.median(self.abs_errors) @property def root_median_sq_error(self): return np.sqrt(np.median(self.sq_errors)) @property def r2(self): return r2_score(self.actual, self.pred) @property def per_errors(self): percentiles = self.percentiles errors = self.errors return {p : np.percentile(errors, percentiles) for p in percentiles} @property def per_abs_errors(self): percentiles = self.percentiles errors = self.abs_errors return {p : np.percentile(errors, percentiles) for p in percentiles} @property def per_sq_errors(self): percentiles = self.percentiles errors = self.sq_errors return {p : np.sqrt(np.percentile(errors, percentiles)) for p in percentiles} @property def regression_stats(self): return {'abs' : {'mean' : self.mean_abs_error, 'median' : self.median_abs_error, 'per' : self.per_abs_errors}, 'raw' : {'mean' : self.mean_error, 'median' : self.median_error, 'per' : self.per_errors}, 'sq' : {'mean' : self.root_mean_sq_error, 'median' : self.root_median_sq_error, 'per' : self.per_sq_errors}, 'r2' : self.r2} def confusion(self, thresh): actual = _make_binary_labels(self.actual, thresh) pred = _make_binary_labels(self.pred, thresh) labels = ['tn', 'fp', 'fn', 'tp'] return dict(zip(labels, confusion_matrix(actual, pred).ravel())) def classification_scores(self, thresh): confusion = self.confusion['thresh'] tn, fp, fn, tp = [confusion[stat] for stat in ['tn', 'afp', 'fn', 'tp']] prec = tp/(tp+fp) rec = tp/(tp+fn) f1 = 2*(prec*rec)/(prec+rec) acc = (tp+tn)/(tp+tn+fp+fn) fpr = fp/(fp+tn) return {'precision' : prec, 'recall' : rec, 'f1' : f1, 'accuracy' : acc, 'fpr' : fpr} @property def classification_stats(self): threshs = self.stability_thresholds return {thresh : {'raw' : self.classification(thresh), 'scores' : self.classification_scores(thresh)} for thresh in threshs}
2,860
770
46
471a892d7e1469bc55d6a5fb681247474418f271
2,531
py
Python
ceph_deploy/hosts/suse/install.py
zidarsk8/ceph-deploy
e286d7d0cf6e161708909c91ea7f99aacf08c7c4
[ "MIT" ]
1
2018-01-03T03:13:24.000Z
2018-01-03T03:13:24.000Z
ceph_deploy/hosts/suse/install.py
zidarsk8/ceph-deploy
e286d7d0cf6e161708909c91ea7f99aacf08c7c4
[ "MIT" ]
null
null
null
ceph_deploy/hosts/suse/install.py
zidarsk8/ceph-deploy
e286d7d0cf6e161708909c91ea7f99aacf08c7c4
[ "MIT" ]
null
null
null
from ceph_deploy.util import templates from ceph_deploy.lib.remoto import process
25.31
112
0.453971
from ceph_deploy.util import templates from ceph_deploy.lib.remoto import process def install(distro, version_kind, version, adjust_repos): release = distro.release machine = distro.machine_type if version_kind in ['stable', 'testing']: key = 'release' else: key = 'autobuild' if distro.codename == 'Mantis': distro = 'opensuse12' else: distro = 'sles-11sp2' if adjust_repos: process.run( distro.conn, [ 'rpm', '--import', "https://ceph.com/git/?p=ceph.git;a=blob_plain;f=keys/{key}.asc".format(key=key) ] ) if version_kind == 'stable': url = 'http://ceph.com/rpm-{version}/{distro}/'.format( version=version, distro=distro, ) elif version_kind == 'testing': url = 'http://ceph.com/rpm-testing/{distro}'.format(distro=distro) elif version_kind == 'dev': url = 'http://gitbuilder.ceph.com/ceph-rpm-{distro}{release}-{machine}-basic/ref/{version}/'.format( distro=distro, release=release.split(".", 1)[0], machine=machine, version=version, ) process.run( distro.conn, [ 'rpm', '-Uvh', '--replacepkgs', '--force', '--quiet', '{url}noarch/ceph-release-1-0.noarch.rpm'.format( url=url, ), ] ) process.run( distro.conn, [ 'zypper', '--non-interactive', '--quiet', 'install', 'ceph', ], ) def mirror_install(distro, repo_url, gpg_url, adjust_repos): repo_url = repo_url.strip('/') # Remove trailing slashes if adjust_repos: process.run( distro.conn, [ 'rpm', '--import', gpg_url, ] ) ceph_repo_content = templates.ceph_repo.format( repo_url=repo_url, gpg_url=gpg_url ) distro.conn.remote_module.write_yum_repo(ceph_repo_content) process.run( distro.conn, [ 'zypper', '--non-interactive', '--quiet', 'install', 'ceph', ], )
2,401
0
46
74891ac87248010c5d11d2a67dbd35f68b342069
29
py
Python
examples/class_trivial.py
doboy/Underscore
d98273db3144cda79191d2c90f45d81b6d700b1f
[ "MIT" ]
7
2016-09-23T00:44:05.000Z
2021-10-04T21:19:12.000Z
examples/class_trivial.py
jameswu1991/Underscore
d98273db3144cda79191d2c90f45d81b6d700b1f
[ "MIT" ]
1
2016-09-23T00:45:05.000Z
2019-02-16T19:05:37.000Z
examples/class_trivial.py
jameswu1991/Underscore
d98273db3144cda79191d2c90f45d81b6d700b1f
[ "MIT" ]
3
2016-09-23T01:13:15.000Z
2018-07-20T21:22:17.000Z
Bar()
5.8
12
0.517241
class Bar(): pass Bar()
0
0
22
983347675b3f89295d6d1c7b7c4125a61b2ca029
771
py
Python
project_euler/problem_13/sol1.py
ming-nju/Python_learn
a0d31fe79310ed636047b1595da04a824394f3bc
[ "MIT" ]
2
2019-07-19T07:45:01.000Z
2019-07-19T07:45:09.000Z
project_euler/problem_13/sol1.py
ming-nju/Python_learn
a0d31fe79310ed636047b1595da04a824394f3bc
[ "MIT" ]
null
null
null
project_euler/problem_13/sol1.py
ming-nju/Python_learn
a0d31fe79310ed636047b1595da04a824394f3bc
[ "MIT" ]
3
2019-04-29T02:36:37.000Z
2019-10-05T12:17:59.000Z
""" Problem Statement: Work out the first ten digits of the sum of the following one-hundred 50-digit numbers. """ from __future__ import print_function import os try: raw_input # Python 2 except NameError: raw_input = input # Python 3 def solution(array): """Returns the first ten digits of the sum of the array elements. >>> sum = 0 >>> array = [] >>> with open(os.path.dirname(__file__) + "/num.txt","r") as f: ... for line in f: ... array.append(int(line)) ... >>> solution(array) '5537376230' """ return str(sum(array))[:10] if __name__ == "__main__": n = int(input().strip()) array = [] for i in range(n): array.append(int(input().strip())) print(solution(array))
20.837838
78
0.594034
""" Problem Statement: Work out the first ten digits of the sum of the following one-hundred 50-digit numbers. """ from __future__ import print_function import os try: raw_input # Python 2 except NameError: raw_input = input # Python 3 def solution(array): """Returns the first ten digits of the sum of the array elements. >>> sum = 0 >>> array = [] >>> with open(os.path.dirname(__file__) + "/num.txt","r") as f: ... for line in f: ... array.append(int(line)) ... >>> solution(array) '5537376230' """ return str(sum(array))[:10] if __name__ == "__main__": n = int(input().strip()) array = [] for i in range(n): array.append(int(input().strip())) print(solution(array))
0
0
0
06be20eddfdbb8f127ad0de90c3d9e742d293f5a
2,275
py
Python
extensions/music.py
ggoncalopereira/JBB.py
e66419466cc6d35e134cceb8c8ad48102556658b
[ "MIT" ]
null
null
null
extensions/music.py
ggoncalopereira/JBB.py
e66419466cc6d35e134cceb8c8ad48102556658b
[ "MIT" ]
null
null
null
extensions/music.py
ggoncalopereira/JBB.py
e66419466cc6d35e134cceb8c8ad48102556658b
[ "MIT" ]
1
2020-12-10T23:08:52.000Z
2020-12-10T23:08:52.000Z
import discord from discord.ext import commands import json import subprocess class Music(commands.Cog): """Play all great classics""" @commands.command(name='play', description="play a given music", brief="play a given music") @commands.command(name='stop', description="stop music and leave voice channel", brief="stop music")
39.224138
119
0.565714
import discord from discord.ext import commands import json import subprocess class Music(commands.Cog): """Play all great classics""" def __init__(self, bot): self.bot = bot @commands.command(name='play', description="play a given music", brief="play a given music") async def play(self, ctx, music): #play a mp3 file #check if user in voice channel if ctx.message.author.voice_channel: music = music.lower() #check if requested music exists if music in self.bot.musicMap: #if bot is not connected to voice channel connect if self.bot.voice_client == None: voice = await self.bot.join_voice_channel(ctx.message.author.voice_channel) self.bot.voice_client = voice #if bot is connected and is playing dont play if self.bot.player_client != None and self.bot.player_client.is_playing(): await ctx.send("Already Playing") else: #create player and play file player = self.bot.voice_client.create_ffmpeg_player(self.bot.MUSIC_PATH + self.bot.musicMap[music]) self.bot.player_client = player player.start() else: await ctx.send("Invalid Music") else: await ctx.send("You're not in a voice channel") @commands.command(name='stop', description="stop music and leave voice channel", brief="stop music") async def stop(self, ctx): appInfo = await self.bot.application_info() #check if user in voice channel if ctx.message.author.voice_channel: #cheack if bot in voice channel if self.bot.voice_client: #disconnect await self.bot.voice_client.disconnect() self.bot.voice_client = None self.bot.player_client = None else: await ctx.send(appInfo.name + " not in a voice channel") else: await ctx.send("You're not in a voice channel") def setup(bot): bot.add_cog(Music(bot))
1,738
0
101
1af70b5c74ac9c6f87ca8ab4ea3b051aa0ade4f9
2,313
py
Python
dmscripts/bulk_upload_documents.py
alphagov-mirror/digitalmarketplace-scripts
8a7ef9b2b5f5fffea6e012bd676b095a27d35101
[ "MIT" ]
1
2020-06-23T01:55:31.000Z
2020-06-23T01:55:31.000Z
dmscripts/bulk_upload_documents.py
alphagov-mirror/digitalmarketplace-scripts
8a7ef9b2b5f5fffea6e012bd676b095a27d35101
[ "MIT" ]
267
2015-10-12T12:43:52.000Z
2021-08-19T10:38:55.000Z
dmscripts/bulk_upload_documents.py
alphagov-mirror/digitalmarketplace-scripts
8a7ef9b2b5f5fffea6e012bd676b095a27d35101
[ "MIT" ]
7
2015-11-11T16:47:41.000Z
2021-04-10T18:03:04.000Z
import re import csv from dmutils.documents import get_document_path, generate_download_filename
36.714286
119
0.707739
import re import csv from dmutils.documents import get_document_path, generate_download_filename def upload_file(bucket, dry_run, file_path, framework_slug, bucket_category, supplier_name_dict=None): # Retrieve the supplier ID from the filepath supplier_id = get_supplier_id_from_framework_file_path(file_path) # Construct the document name document_name = get_document_name_from_file_path(file_path) # Don't upload signed agreement files if 'signed-framework-agreement' in document_name: raise ValueError( f"'{document_name}'. Signed and countersigned agreement documents should not be uploaded " f"using this script as they require the document URL to be stored in the database." ) # Construct the upload path upload_path = get_document_path(framework_slug, supplier_id, bucket_category, document_name) # Get the download_filename if TSV supplied if supplier_name_dict is None: download_filename = None else: supplier_name = supplier_name_dict[supplier_id] download_filename = generate_download_filename(supplier_id, document_name, supplier_name) # Do the actual upload if not dry_run: with open(file_path, 'rb') as source_file: bucket.save(upload_path, source_file, acl='bucket-owner-full-control', download_filename=download_filename) print(supplier_id) else: print("[Dry-run] UPLOAD: '{}' to '{}'".format(file_path, upload_path)) def get_supplier_id_from_framework_file_path(path): match = re.search(r'(?:/|-)(\d{5,6})[-_]', path) if not match: raise ValueError("Could not find supplier ID in path {}".format(path)) return match.group(1) def get_document_name_from_file_path(path): match = re.search(r'/\d{5,6}-(.*)', path) if not match: raise ValueError("Could not find valid document name in path {}".format(path)) return match.group(1) def get_supplier_name_dict_from_tsv(tsv_path): if not tsv_path or not tsv_path.endswith('.tsv'): return None suppliers_name_dict = {} with open(tsv_path, 'r') as tsvfile: tsv_reader = csv.reader(tsvfile, delimiter='\t') for row in tsv_reader: suppliers_name_dict[row[0]] = row[1] return suppliers_name_dict
2,119
0
92
042b8109e2f671dcb6a5528205ba2a23432c656d
1,200
py
Python
SUAVE/SUAVE-2.5.0/trunk/SUAVE/Methods/Flight_Dynamics/Dynamic_Stability/Full_Linearized_Equations/Supporting_Functions/cm_alphadot.py
Vinicius-Tanigawa/Undergraduate-Research-Project
e92372f07882484b127d7affe305eeec2238b8a9
[ "MIT" ]
null
null
null
SUAVE/SUAVE-2.5.0/trunk/SUAVE/Methods/Flight_Dynamics/Dynamic_Stability/Full_Linearized_Equations/Supporting_Functions/cm_alphadot.py
Vinicius-Tanigawa/Undergraduate-Research-Project
e92372f07882484b127d7affe305eeec2238b8a9
[ "MIT" ]
null
null
null
SUAVE/SUAVE-2.5.0/trunk/SUAVE/Methods/Flight_Dynamics/Dynamic_Stability/Full_Linearized_Equations/Supporting_Functions/cm_alphadot.py
Vinicius-Tanigawa/Undergraduate-Research-Project
e92372f07882484b127d7affe305eeec2238b8a9
[ "MIT" ]
null
null
null
## @ingroup Methods-Flight_Dynamics-Dynamic_Stability-Full_Linearized_Equations-Supporting_Functions # cm_alphadot.py # # Created: Jun 2014, A. Wendorff # Modified: Jan 2016, E. Botero # ---------------------------------------------------------------------- # Method # ---------------------------------------------------------------------- ## @ingroup Methods-Flight_Dynamics-Dynamic_Stability-Full_Linearized_Equations-Supporting_Functions def cm_alphadot(cm_i, ep_alpha, l_t, mac): """ This calculates the pitching moment coefficient with respect to the rate of change of the alpha of attack of the aircraft Assumptions: None Source: J.H. Blakelock, "Automatic Control of Aircraft and Missiles" Wiley & Sons, Inc. New York, 1991, (pg 23) Inputs: cm_i [dimensionless] ep_alpha [dimensionless] l_t [meters] mac [meters] Outputs: cm_alphadot [dimensionless] Properties Used: N/A """ # Generating Stability derivative cm_alphadot = 2. * cm_i * ep_alpha * l_t / mac return cm_alphadot
30.769231
100
0.55
## @ingroup Methods-Flight_Dynamics-Dynamic_Stability-Full_Linearized_Equations-Supporting_Functions # cm_alphadot.py # # Created: Jun 2014, A. Wendorff # Modified: Jan 2016, E. Botero # ---------------------------------------------------------------------- # Method # ---------------------------------------------------------------------- ## @ingroup Methods-Flight_Dynamics-Dynamic_Stability-Full_Linearized_Equations-Supporting_Functions def cm_alphadot(cm_i, ep_alpha, l_t, mac): """ This calculates the pitching moment coefficient with respect to the rate of change of the alpha of attack of the aircraft Assumptions: None Source: J.H. Blakelock, "Automatic Control of Aircraft and Missiles" Wiley & Sons, Inc. New York, 1991, (pg 23) Inputs: cm_i [dimensionless] ep_alpha [dimensionless] l_t [meters] mac [meters] Outputs: cm_alphadot [dimensionless] Properties Used: N/A """ # Generating Stability derivative cm_alphadot = 2. * cm_i * ep_alpha * l_t / mac return cm_alphadot
0
0
0
d171c4fc232b86e1fa3960aaaa0c13f95e31ee4a
1,697
py
Python
test/application/test_request_assertion_model.py
Ashaba/API-Monitor
533eb6698fcb5decb48f746784af6894844b3c69
[ "MIT" ]
null
null
null
test/application/test_request_assertion_model.py
Ashaba/API-Monitor
533eb6698fcb5decb48f746784af6894844b3c69
[ "MIT" ]
22
2018-02-06T19:53:11.000Z
2021-04-30T20:35:01.000Z
test/application/test_request_assertion_model.py
Ashaba/API-Monitor
533eb6698fcb5decb48f746784af6894844b3c69
[ "MIT" ]
null
null
null
from test.base import BaseTestCase from application.models import RequestAssertion
41.390244
95
0.831467
from test.base import BaseTestCase from application.models import RequestAssertion class TestRequestAssertionModel(BaseTestCase): def setUp(self): super(TestRequestAssertionModel, self).setUp() self.test_request_assertion = RequestAssertion( request_id="1", assertion_type="Status Code", comparison="equal", value=200 ) def test_create_request_assertion(self): old_request_assertions = RequestAssertion.fetch_all() self.assertEqual(len(old_request_assertions), 0) self.test_request_assertion.save() current_request_assertions = RequestAssertion.fetch_all() self.assertEqual(len(current_request_assertions), len(old_request_assertions) + 1) def test_update_request_assertion(self): self.test_request_assertion.save() request_assertion = RequestAssertion.get(self.test_request_assertion.id) old_request_assertion_comparison = request_assertion.comparison request_assertion.comparison = 'less than' request_assertion.save() new_request_assertion_comparison = RequestAssertion.get(self.test_request_assertion.id) self.assertEqual(new_request_assertion_comparison.comparison, 'less than') self.assertNotEqual(old_request_assertion_comparison, new_request_assertion_comparison) def test_delete_request_assertion(self): self.test_request_assertion.save() old_request_assertions = RequestAssertion.fetch_all() particular_request_assertion = RequestAssertion.find_first(id=self.test_request_assertion.id) particular_request_assertion.delete() current_request_assertions = RequestAssertion.fetch_all() self.assertNotEqual(len(old_request_assertions), len(current_request_assertions)) self.assertEqual(len(current_request_assertions), 0)
1,467
25
121
59a020e72f267e4924a4e2b3801e624ac28cb564
539
py
Python
regex/count_smiley_faces.py
ahmedelq/PythonicAlgorithms
ce10dbb6e1fd0ea5c922a932b0f920236aa411bf
[ "MIT" ]
null
null
null
regex/count_smiley_faces.py
ahmedelq/PythonicAlgorithms
ce10dbb6e1fd0ea5c922a932b0f920236aa411bf
[ "MIT" ]
null
null
null
regex/count_smiley_faces.py
ahmedelq/PythonicAlgorithms
ce10dbb6e1fd0ea5c922a932b0f920236aa411bf
[ "MIT" ]
null
null
null
#Author: ahmelq - github.com/ahmedelq/ #License: MIT #This is a solution of https://www.codewars.com/kata/583203e6eb35d7980400002a if __name__ == "__main__": print( countSmileys([':)', ';(', ';}', ':-D']), # should return 2 countSmileys([';D', ':-(', ':-)', ';~)']), # should return 3 countSmileys([';]', ':[', ';*', ':$', ';-D']) # should return 1 )
26.95
77
0.489796
#Author: ahmelq - github.com/ahmedelq/ #License: MIT #This is a solution of https://www.codewars.com/kata/583203e6eb35d7980400002a def countSmileys(arr): import re return len( re.compile(r'[:;][-~]?[\)D]') .findall(' '.join(arr)) ) if __name__ == "__main__": print( countSmileys([':)', ';(', ';}', ':-D']), # should return 2 countSmileys([';D', ':-(', ':-)', ';~)']), # should return 3 countSmileys([';]', ':[', ';*', ':$', ';-D']) # should return 1 )
111
0
23
10d104b9b64fc13f624cb8a75615a586496f8dc6
6,984
py
Python
plastron/commands/export.py
dsteelma-umd/plastron
d0e344c65ee2dfeba4fd78df3f73a1ae5f42b1d0
[ "Apache-2.0" ]
null
null
null
plastron/commands/export.py
dsteelma-umd/plastron
d0e344c65ee2dfeba4fd78df3f73a1ae5f42b1d0
[ "Apache-2.0" ]
null
null
null
plastron/commands/export.py
dsteelma-umd/plastron
d0e344c65ee2dfeba4fd78df3f73a1ae5f42b1d0
[ "Apache-2.0" ]
null
null
null
import json import logging import os from argparse import Namespace from datetime import datetime from tempfile import NamedTemporaryFile from time import sleep from plastron import pcdm from plastron.stomp import Message from plastron.exceptions import FailureException, DataReadException, RESTAPIException from plastron.namespaces import get_manager from plastron.serializers import SERIALIZER_CLASSES from plastron.util import LocalFile logger = logging.getLogger(__name__) nsm = get_manager()
36.375
113
0.507016
import json import logging import os from argparse import Namespace from datetime import datetime from tempfile import NamedTemporaryFile from time import sleep from plastron import pcdm from plastron.stomp import Message from plastron.exceptions import FailureException, DataReadException, RESTAPIException from plastron.namespaces import get_manager from plastron.serializers import SERIALIZER_CLASSES from plastron.util import LocalFile logger = logging.getLogger(__name__) nsm = get_manager() def configure_cli(subparsers): parser = subparsers.add_parser( name='export', description='Export resources from the repository' ) parser.add_argument( '-o', '--output-file', help='File to write export package to', action='store', ) parser.add_argument( '-f', '--format', help='Export job format', action='store', choices=SERIALIZER_CLASSES.keys(), required=True ) parser.add_argument( '--uri-template', help='Public URI template', action='store' ) parser.add_argument( 'uris', nargs='*', help='URIs of repository objects to export' ) parser.set_defaults(cmd_name='export') class Command: def __init__(self): self.result = None def __call__(self, *args, **kwargs): for result in self.execute(*args, **kwargs): pass def execute(self, fcrepo, args): start_time = datetime.now().timestamp() count = 0 errors = 0 total = len(args.uris) try: serializer_class = SERIALIZER_CLASSES[args.format] except KeyError: logger.error(f'Unknown format: {args.format}') raise FailureException() logger.debug(f'Exporting to file {args.output_file}') with serializer_class(args.output_file, public_uri_template=args.uri_template) as serializer: for uri in args.uris: r = fcrepo.head(uri) if r.status_code == 200: # do export if 'describedby' in r.links: # the resource is a binary, get the RDF description URI rdf_uri = r.links['describedby']['url'] else: rdf_uri = uri logger.info(f'Exporting item {count + 1}/{total}: {uri}') graph = fcrepo.get_graph(rdf_uri) try: serializer.write(graph) count += 1 except DataReadException as e: # log the failure, but continue to attempt to export the rest of the URIs logger.error(f'Export of {uri} failed: {e}') errors += 1 sleep(1) else: # log the failure, but continue to attempt to export the rest of the URIs logger.error(f'Unable to retrieve {uri}') errors += 1 # update the status now = datetime.now().timestamp() yield { 'time': { 'started': start_time, 'now': now, 'elapsed': now - start_time }, 'count': { 'total': total, 'exported': count, 'errors': errors } } logger.info(f'Exported {count} of {total} items') self.result = { 'content_type': serializer.content_type, 'file_extension': serializer.file_extension, 'count': { 'total': total, 'exported': count, 'errors': errors } } def process_message(listener, message): # define the processor for this message def process(): if message.job_id is None: logger.error('Expecting a PlastronJobId header') else: uris = message.body.split('\n') export_format = message.args.get('format', 'text/turtle') logger.info(f'Received message to initiate export job {message.job_id} containing {len(uris)} items') logger.info(f'Requested export format is {export_format}') try: command = Command() with NamedTemporaryFile() as export_fh: logger.debug(f'Export temporary file name is {export_fh.name}') args = Namespace( uris=uris, output_file=export_fh.name, format=export_format, uri_template=listener.public_uri_template ) for status in command.execute(listener.repository, args): listener.broker.connection.send( '/topic/plastron.jobs.status', headers={ 'PlastronJobId': message.job_id }, body=json.dumps(status) ) job_name = message.args.get('name', message.job_id) filename = job_name + command.result['file_extension'] file = pcdm.File(LocalFile( export_fh.name, mimetype=command.result['content_type'], filename=filename )) with listener.repository.at_path('/exports'): file.create_object(repository=listener.repository) command.result['download_uri'] = file.uri logger.info(f'Uploaded export file to {file.uri}') logger.debug(f'Export temporary file size is {os.path.getsize(export_fh.name)}') logger.info(f'Export job {message.job_id} complete') return Message( headers={ 'PlastronJobId': message.job_id, 'PlastronJobStatus': 'Done', 'persistent': 'true' }, body=json.dumps(command.result) ) except (FailureException, RESTAPIException) as e: logger.error(f"Export job {message.job_id} failed: {e}") return Message( headers={ 'PlastronJobId': message.job_id, 'PlastronJobStatus': 'Failed', 'PlastronJobError': str(e), 'persistent': 'true' } ) # process message listener.executor.submit(process).add_done_callback(listener.get_response_handler(message.id))
6,339
-7
149
2d0af0d7fb0d233d7cf933b498df9ce8898f7a13
8,312
py
Python
helpers/ResNet.py
kchare/advex_notbugs_features
0ec0578a1aba2bdb86854676c005488091b64123
[ "MIT" ]
2
2022-02-08T11:51:12.000Z
2022-02-23T00:30:07.000Z
helpers/ResNet.py
kchare/advex_notbugs_features
0ec0578a1aba2bdb86854676c005488091b64123
[ "MIT" ]
null
null
null
helpers/ResNet.py
kchare/advex_notbugs_features
0ec0578a1aba2bdb86854676c005488091b64123
[ "MIT" ]
2
2021-12-21T20:31:28.000Z
2022-01-21T17:06:34.000Z
<<<<<<< HEAD '''Implements ResNet9,..56 dynamically for CIFAR-10 Description of implementation can be found here: https://arxiv.org/pdf/1512.03385.pdf''' import tensorflow as class ResNetBlock(tf.keras.layers.Layer): '''See official RStudio/Keras documentation here: https://github.com/rstudio/keras/blob/main/vignettes/examples/cifar10_resnet.py for implemetation of residual block layers Implements residual block described for CIFAR 10 in He et al. (2016): https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf ''' class ResNet56(tf.keras.Model): def summary(self): """See hack here: https://stackoverflow.com/questions/55235212/model-summary-cant-print-output-shape-while-using-subclass-model overrides default 'multiple' output shape for debugging, something that is still an open issue on GitHub for TF2.7""" x = tf.keras.layers.Input(shape=(32,32,3)) m = tf.keras.Model(inputs=x, outputs=self.call(x)) return m.summary() mod = ResNet56(3, 16) mod.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)) ======= '''Implements ResNet9,..56 dynamically for CIFAR-10 Description of implementation can be found here: https://arxiv.org/pdf/1512.03385.pdf''' import tensorflow as tf class ResNetBlock(tf.keras.layers.Layer): '''See official RStudio/Keras documentation here: https://github.com/rstudio/keras/blob/main/vignettes/examples/cifar10_resnet.py for implemetation of residual block layers Implements residual block described for CIFAR 10 in He et al. (2016): https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf ''' >>>>>>> 5c65073e7e9b9d1e712f2f35af09fbe7b3ffc696
45.922652
131
0.664461
<<<<<<< HEAD '''Implements ResNet9,..56 dynamically for CIFAR-10 Description of implementation can be found here: https://arxiv.org/pdf/1512.03385.pdf''' import tensorflow as class ResNetBlock(tf.keras.layers.Layer): '''See official RStudio/Keras documentation here: https://github.com/rstudio/keras/blob/main/vignettes/examples/cifar10_resnet.py for implemetation of residual block layers Implements residual block described for CIFAR 10 in He et al. (2016): https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf ''' def __init__(self, n_filters, kernel_size, stride, l2=5e-4, init_stride=False, first_layer=False): self.n_filters = n_filters self.first_layer = first_layer super(ResNetBlock, self).__init__() if init_stride: stride1 = stride + 1 else: stride1 = stride self.conv_layer_1 = tf.keras.layers.Conv2D(n_filters, kernel_size, strides=stride1, padding='same', kernel_regularizer=tf.keras.regularizers.l2(l2), kernel_initializer='he_normal') self.conv_layer_2 = tf.keras.layers.Conv2D(n_filters, kernel_size, strides=stride, padding='same', kernel_regularizer=tf.keras.regularizers.l2(l2), kernel_initializer='he_normal') self.bn1 = tf.keras.layers.BatchNormalization() self.act1 = tf.keras.layers.ReLU() self.bn2 = tf.keras.layers.BatchNormalization() self.act2 = tf.keras.layers.ReLU() self.conv_projection = tf.keras.layers.Conv2D(n_filters, 1, strides=stride1, padding='same', kernel_regularizer=tf.keras.regularizers.l2(l2), kernel_initializer='he_normal') def call(self, inputs): x = self.conv_layer_1(inputs) # apply without activation since will batch normalize x = self.bn1(x) x = self.act1(x) # use ReLU activation as specified by paper x = self.conv_layer_2(x) x = self.bn2(x) if self.first_layer: inputs = self.conv_projection(inputs) x = tf.keras.layers.Add()([x, inputs]) x = self.act2(x) return x class ResNet56(tf.keras.Model): def __init__(self, block_depth, base_filters=16, l2=5e-4): self.block_depth = block_depth super(ResNet56, self).__init__() self.conv_1 = tf.keras.layers.Conv2D(base_filters, 3, padding='same') self.pre_bn = tf.keras.layers.BatchNormalization() self.stack1 = [ResNetBlock(base_filters, 3, 1, l2=l2) for _ in range(self.block_depth-1)] self.one_to_two = ResNetBlock(base_filters * 2, 3, 1, init_stride=True, first_layer=True, l2=l2) self.stack2 = [ResNetBlock(base_filters * 2, 3, 1, l2=l2) for _ in range(self.block_depth - 1)] self.two_to_three = ResNetBlock(base_filters * 4, 3, 1, init_stride=True, first_layer=True, l2=l2) self.stack3 = [ResNetBlock(base_filters * 4, 3, 1, l2=l2) for _ in range(self.block_depth - 1)] self.out_dense = tf.keras.layers.Dense(10, kernel_regularizer=tf.keras.regularizers.l2(l2)) #, activation='softmax') def call(self, inputs): x = self.conv_1(inputs) x = self.pre_bn(x) x = tf.keras.layers.Activation('relu')(x) for i in range(self.block_depth-1): x = self.stack1[i](x) x = self.one_to_two(x) for i in range(self.block_depth-1): x = self.stack2[i](x) x = self.two_to_three(x) for i in range(self.block_depth-1): x = self.stack3[i](x) x = tf.keras.layers.GlobalAveragePooling2D()(x) x = tf.keras.layers.Flatten()(x) x = self.out_dense(x) return x def summary(self): """See hack here: https://stackoverflow.com/questions/55235212/model-summary-cant-print-output-shape-while-using-subclass-model overrides default 'multiple' output shape for debugging, something that is still an open issue on GitHub for TF2.7""" x = tf.keras.layers.Input(shape=(32,32,3)) m = tf.keras.Model(inputs=x, outputs=self.call(x)) return m.summary() mod = ResNet56(3, 16) mod.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)) ======= '''Implements ResNet9,..56 dynamically for CIFAR-10 Description of implementation can be found here: https://arxiv.org/pdf/1512.03385.pdf''' import tensorflow as tf class ResNetBlock(tf.keras.layers.Layer): '''See official RStudio/Keras documentation here: https://github.com/rstudio/keras/blob/main/vignettes/examples/cifar10_resnet.py for implemetation of residual block layers Implements residual block described for CIFAR 10 in He et al. (2016): https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf ''' def __init__(self, n_filters, kernel_size, stride, init_stride=False, first_layer=False): self.n_filters = n_filters self.first_layer = first_layer super(ResNetBlock, self).__init__() if init_stride: stride1 = stride + 1 else: stride1 = stride self.conv_layer_1 = tf.keras.layers.Conv2D(n_filters, kernel_size, strides=stride1, padding='same', kernel_regularizer=tf.keras.regularizers.l2(1e-4), kernel_initializer='he_normal') self.conv_layer_2 = tf.keras.layers.Conv2D(n_filters, kernel_size, strides=stride, padding='same', kernel_regularizer=tf.keras.regularizers.l2(1e-4), kernel_initializer='he_normal') self.bn1 = tf.keras.layers.BatchNormalization() self.act1 = tf.keras.layers.ReLU() self.bn2 = tf.keras.layers.BatchNormalization() self.act2 = tf.keras.layers.ReLU() self.conv_projection = tf.keras.layers.Conv2D(n_filters, 1, strides=stride1, padding='same', #kernel_regularizer=tf.keras.regularizers.l2(1e-3), kernel_initializer='he_normal') def call(self, inputs): x = self.conv_layer_1(inputs) # apply without activation since will batch normalize x = self.bn1(x) x = self.act1(x) # use ReLU activation as specified by paper x = self.conv_layer_2(x) x = self.bn2(x) if self.first_layer: inputs = self.conv_projection(inputs) x = tf.keras.layers.Add()([x, inputs]) x = self.act2(x) return x class ResNet56(tf.keras.Model): def __init__(self, block_depth, base_filters=16): self.block_depth = block_depth super(ResNet56, self).__init__() self.conv_1 = tf.keras.layers.Conv2D(base_filters, 3, padding='same') self.pre_bn = tf.keras.layers.BatchNormalization() self.stack1 = [ResNetBlock(base_filters, 3, 1) for _ in range(self.block_depth-1)] self.one_to_two = ResNetBlock(base_filters * 2, 3, 1, init_stride=True, first_layer=True) self.stack2 = [ResNetBlock(base_filters * 2, 3, 1) for _ in range(self.block_depth - 1)] self.two_to_three = ResNetBlock(base_filters * 4, 3, 1, init_stride=True, first_layer=True) self.stack3 = [ResNetBlock(base_filters * 4, 3, 1) for _ in range(self.block_depth - 1)] self.out_dense = tf.keras.layers.Dense(10, activation='softmax') def call(self, inputs): x = self.conv_1(inputs) x = self.pre_bn(x) x = tf.keras.layers.Activation('relu')(x) for i in range(self.block_depth-1): x = self.stack1[i](x) x = self.one_to_two(x) for i in range(self.block_depth-1): x = self.stack2[i](x) x = self.two_to_three(x) for i in range(self.block_depth-1): x = self.stack3[i](x) x = tf.keras.layers.GlobalAveragePooling2D()(x) x = tf.keras.layers.Flatten()(x) x = self.out_dense(x) return x def summary(self): """See hack here: https://stackoverflow.com/questions/55235212/model-summary-cant-print-output-shape-while-using-subclass-model overrides default 'multiple' output shape for debugging, something that is still an open issue on GitHub for TF2.7""" x = tf.keras.layers.Input(shape=(32,32,3)) m = tf.keras.Model(inputs=x, outputs=self.call(x)) return m.summary() >>>>>>> 5c65073e7e9b9d1e712f2f35af09fbe7b3ffc696
5,904
466
172
55b78c2012898f4fe86987d78fcabcd324b3ffd9
558
py
Python
src/ram/service/__init__.py
bootforce-dev/ram-framework
b39c43cbe3b6e76db73dfd65c38da4fa578b032f
[ "MIT" ]
1
2019-03-01T10:19:34.000Z
2019-03-01T10:19:34.000Z
src/ram/service/__init__.py
ram-framework/ram-framework
b39c43cbe3b6e76db73dfd65c38da4fa578b032f
[ "MIT" ]
null
null
null
src/ram/service/__init__.py
ram-framework/ram-framework
b39c43cbe3b6e76db73dfd65c38da4fa578b032f
[ "MIT" ]
null
null
null
import pkgutil from ram.classes import Service
27.9
62
0.625448
import pkgutil from ram.classes import Service class __api__(object): def __iter__(self): for _, srvname, _ in pkgutil.iter_modules(__path__): yield srvname def __getitem__(self, srvname): if not srvname: raise ImportError("Service name cannot be empty.") srvpath = __name__ + '.' + srvname service = __import__(srvpath, fromlist=['__api__']) if not isinstance(service, Service): raise ImportError("No service interface found.") else: return service
432
1
76
8cf872b6a3c803c792ca79410991edaca09c12a3
19,959
py
Python
src/test_chess.py
liyiran/adversarial-search
8346cec55e9872409e0e6714cf8bce5e8d82bc8d
[ "Apache-2.0" ]
null
null
null
src/test_chess.py
liyiran/adversarial-search
8346cec55e9872409e0e6714cf8bce5e8d82bc8d
[ "Apache-2.0" ]
null
null
null
src/test_chess.py
liyiran/adversarial-search
8346cec55e9872409e0e6714cf8bce5e8d82bc8d
[ "Apache-2.0" ]
null
null
null
from unittest import TestCase, skip from hw1cs561s2018 import Chess, Configuration, alphabeta_cutoff_search, minimax_decision
35.201058
200
0.651486
from unittest import TestCase, skip from hw1cs561s2018 import Chess, Configuration, alphabeta_cutoff_search, minimax_decision class TestChess(TestCase): def test_evaluation(self): configuration2 = Configuration(path=None) configuration2.generate_configuration_from_string( """Circle ALPHABETA 2 0,S3,0,0,0,0,0,S1 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,C1,0 10,20,30,40,50,60,70,80 """) chess2 = Chess(path=None, configuration=configuration2) self.assertEqual(80 - 4 * 80, chess2.evaluation(s_pieces=chess2.initial_state.s_pieces, c_pieces=chess2.initial_state.c_pieces, player="C", row_values=configuration2.row_values)) ############################################################ def test_action_no_action(self): configuration1 = Configuration(path=None) configuration1.generate_configuration_from_string( """Star MINIMAX 2 0,S1,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,S1,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 10,20,30,40,50,60,70,80 """) chess1 = Chess(path=None, configuration=configuration1) utility1 = minimax_decision(chess1.initial_state, chess1) self.assertEqual(('Noop'), utility1[0]) # min action self.assertEqual(140, utility1[1]) # myopic self.assertEqual(140, utility1[2]) # farsighted self.assertEqual(1, utility1[3]) # total number chess1.initial_state.to_move = configuration1.player utility2 = alphabeta_cutoff_search(chess1.initial_state, chess1, d=1024) self.assertEqual(utility1[0], utility2[0]) self.assertEqual(utility1[1], utility2[1]) self.assertEqual(utility1[2], utility2[2]) self.assertGreaterEqual(utility1[3], utility2[3]) ############################################# def test_action_go_to_boarder(self): configuration1 = Configuration(path=None) configuration1.generate_configuration_from_string( """Circle MINIMAX 2 0,S2,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,C1 0,0,0,0,0,0,S1,0 0,0,0,0,0,S1,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 10,20,30,40,50,60,70,80 """) chess1 = Chess(path=None, configuration=configuration1) utility1 = minimax_decision(chess1.initial_state, chess1) self.assertEqual(2 * 80 + 2 * 60, -utility1[2]) chess1.initial_state.to_move = configuration1.player utility2 = alphabeta_cutoff_search(chess1.initial_state, chess1, d=1024) self.assertEqual(utility1[0], utility2[0]) self.assertEqual(utility1[1], utility2[1]) self.assertEqual(utility1[2], utility2[2]) self.assertGreaterEqual(utility1[3], utility2[3]) def test_tie_break(self): configuration1 = Configuration(path=None) configuration1.generate_configuration_from_string( """Star MINIMAX 2 0,0,0,0,0,0,0,0 0,S1,0,0,0,0,0,0 0,0,0,0,S1,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,C1,0 10,20,30,40,50,60,70,80 """) chess1 = Chess(path=None, configuration=configuration1) utility1 = minimax_decision(chess1.initial_state, chess1) self.assertEqual(((1, 1), (0, 0)), utility1[0]) self.assertEqual(80, utility1[2]) chess1.initial_state.to_move = configuration1.player utility2 = alphabeta_cutoff_search(chess1.initial_state, chess1, d=1024) self.assertEqual(utility1[0], utility2[0]) # self.assertEqual(utility1[1], utility2[1]) # self.assertEqual(utility1[2], utility2[2]) # self.assertGreaterEqual(utility1[3], utility2[3]) def test_tie_break2(self): configuration1 = Configuration(path=None) configuration1.generate_configuration_from_string( """Circle MINIMAX 2 0,0,0,0,0,0,0,S1 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,C1,0 0,0,0,0,0,0,0,0 10,20,30,40,50,60,70,80 """) chess1 = Chess(path=None, configuration=configuration1) utility1 = minimax_decision(chess1.initial_state, chess1) self.assertEqual(((6, 6), (7, 5)), utility1[0]) # self.assertEqual(2 * 80 + 2 * 60 + 80, -utility1[2]) chess1.initial_state.to_move = configuration1.player utility2 = alphabeta_cutoff_search(chess1.initial_state, chess1, d=1024) self.assertEqual(utility1[0], utility2[0]) # self.assertEqual(utility1[1], utility2[1]) # self.assertEqual(utility1[2], utility2[2]) # self.assertGreaterEqual(utility1[3], utility2[3]) @skip("heihei") def test_pressure_test(self): configuration1 = Configuration(path=None) configuration1.generate_configuration_from_string( """Circle MINIMAX 10 0,C1,0,C1,0,C1,0,C1 C1,0,C1,0,C1,0,C1,0 0,C1,0,C1,0,C1,0,C1 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 S1,0,S1,0,S1,0,S1,0 0,S1,0,S1,0,S1,0,S1 S1,0,S1,0,S1,0,S1,0 10,20,30,40,50,60,70,80 """) chess1 = Chess(path=None, configuration=configuration1) utility1 = minimax_decision(chess1.initial_state, chess1, depth_limit=10) # self.assertEqual(2 * 80 + 2 * 60, -utility1[2]) # print utility1 # chess1.initial_state.to_move = configuration1.player # utility2 = alphabeta_cutoff_search(chess1.initial_state, chess1, d=5) # self.assertEqual(utility1[0], utility2[0]) # self.assertEqual(utility1[1], utility2[1]) # self.assertEqual(utility1[2], utility2[2]) # self.assertGreaterEqual(utility1[3], utility2[3]) ##################### def test_action_go_to_boarder1(self): configuration1 = Configuration(path=None) configuration1.generate_configuration_from_string( """Circle MINIMAX 2 0,S2,0,0,0,0,0,0 S1,0,0,0,0,0,0,0 0,0,0,0,0,0,0,C1 0,0,0,0,0,0,S1,0 0,0,0,0,0,S1,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 10,20,30,40,50,60,70,80 """) chess1 = Chess(path=None, configuration=configuration1) utility1 = minimax_decision(chess1.initial_state, chess1) self.assertEqual(2 * 80 + 2 * 60 + 80, -utility1[2]) chess1.initial_state.to_move = configuration1.player utility2 = alphabeta_cutoff_search(chess1.initial_state, chess1, d=1024) self.assertEqual(utility1[0], utility2[0]) self.assertEqual(utility1[1], utility2[1]) self.assertEqual(utility1[2], utility2[2]) self.assertGreaterEqual(utility1[3], utility2[3]) @skip("demonstrating skipping") def test_action_go_to_boarder4(self): configuration1 = Configuration(path=None) configuration1.generate_configuration_from_string( """Star MINIMAX 2 0,C1,0,0,0,0,0,S1 C1,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 10,20,30,40,50,60,70,80 """) chess1 = Chess(path=None, configuration=configuration1) # utility1 = minimax_decision(chess1.initial_state, chess1) # self.assertEqual(80, -utility1[2]) chess1.initial_state.to_move = configuration1.player utility2 = alphabeta_cutoff_search(chess1.initial_state, chess1, d=1024) self.assertEqual(-80, utility2[2]) # self.assertEqual(utility1[0], utility2[0]) # self.assertEqual(utility1[1], utility2[1]) # self.assertEqual(utility1[2], utility2[2]) # self.assertGreaterEqual(utility1[3], utility2[3]) ######################################## def test_actions(self): configuration1 = Configuration(path=None) configuration1.generate_configuration_from_string( """Star MINIMAX 2 0,S1,0,0,0,0,0,0 0,0,C1,0,0,0,0,0 0,0,0,S1,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 10,20,30,40,50,60,70,80 """) configuration2 = Configuration(path=None) configuration2.generate_configuration_from_string( """Circle ALPHABETA 2 0,S2,0,0,0,0,0,0 S1,0,0,0,0,0,0,0 0,0,0,0,0,0,0,C1 0,0,0,0,0,0,S1,0 0,0,0,0,0,S1,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 10,20,30,40,50,60,70,80 """) configuration3 = Configuration(path=None) configuration3.generate_configuration_from_string( """Circle ALPHABETA 2 0,S100,0,0,0,0,0,0 0,0,C1,0,0,0,0,0 0,0,0,S1,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 10,20,30,40,50,60,70,80 """) configuration4 = Configuration(path=None) configuration4.generate_configuration_from_string( """Star ALPHABETA 2 0,C1,0,0,0,0,0,0 0,0,C1,0,0,0,0,0 0,0,0,S1,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 10,20,30,40,50,60,70,80 """) chess1 = Chess(path=None, configuration=configuration1) chess2 = Chess(path=None, configuration=configuration2) chess3 = Chess(path=None, configuration=configuration3) chess4 = Chess(path=None, configuration=configuration4) actions1 = chess1.actions(chess1.initial_state) self.assertEqual(2, len(actions1)) actions2 = chess2.actions(chess2.initial_state) self.assertEqual(1, len(actions2)) actions3 = chess3.actions(chess3.initial_state) self.assertEqual(2, len(actions3)) actions4 = chess4.actions(chess4.initial_state) self.assertEqual(1, len(actions4)) self.assertEqual(80 + 60 - 20, Chess.evaluation(c_pieces=chess1.initial_state.c_pieces, s_pieces=chess1.initial_state.s_pieces, player="S", row_values=configuration1.row_values)) self.assertEqual(80 * 2 + 70 + 50 + 40 - 30, Chess.evaluation(c_pieces=chess2.initial_state.c_pieces, s_pieces=chess2.initial_state.s_pieces, player="S", row_values=configuration2.row_values)) self.assertEqual(80 * 100 + 60 - 20, Chess.evaluation(c_pieces=chess3.initial_state.c_pieces, s_pieces=chess3.initial_state.s_pieces, player="S", row_values=configuration3.row_values)) self.assertEqual(60 - 10 - 20, Chess.evaluation(c_pieces=chess4.initial_state.c_pieces, s_pieces=chess4.initial_state.s_pieces, player="S", row_values=configuration4.row_values)) state = chess1.result(chess1.initial_state, actions1[0]) self.assertEqual('C', state.to_move) self.assertEqual(len(chess1.initial_state.c_pieces + chess1.initial_state.s_pieces), len(state.c_pieces + state.s_pieces)) state = chess1.result(chess1.initial_state, actions1[1]) self.assertEqual('C', state.to_move) self.assertEqual(len(chess1.initial_state.c_pieces + chess1.initial_state.s_pieces), len(state.c_pieces + state.s_pieces) + 1) for a in actions2: state = chess2.result(chess2.initial_state, a) self.assertEqual('S', state.to_move) self.assertEqual(len(chess2.initial_state.c_pieces + chess2.initial_state.s_pieces), len(state.c_pieces + state.s_pieces)) state = chess3.result(chess3.initial_state, actions3[0]) self.assertEqual('S', state.to_move) self.assertEqual(len(chess3.initial_state.c_pieces + chess3.initial_state.s_pieces), len(state.c_pieces + state.s_pieces)) state = chess3.result(chess3.initial_state, actions3[1]) self.assertEqual('S', state.to_move) self.assertEqual(len(chess3.initial_state.c_pieces + chess3.initial_state.s_pieces), len(state.c_pieces + state.s_pieces) + 1) for a in actions4: state = chess4.result(chess4.initial_state, a) self.assertEqual('C', state.to_move) self.assertEqual(len(chess4.initial_state.c_pieces + chess4.initial_state.s_pieces), len(state.c_pieces + state.s_pieces)) utility1 = minimax_decision(chess1.initial_state, chess1) self.assertEqual(80 * 2, utility1[2]) chess2.initial_state.to_move = 'Circle' utility2 = minimax_decision(chess2.initial_state, chess2) self.assertEqual(-80 * 3 - 60 * 2, utility2[2]) utility3 = minimax_decision(chess3.initial_state, chess3) self.assertEqual(80 - 80 * 100, utility3[2]) # utility4 = minimax_decision(chess4.initial_state, chess4) # self.assertEqual(80 - 80 * 2, utility4) def test_depth_limit1(self): configuration1 = Configuration(path=None) configuration1.generate_configuration_from_string( """Star MINIMAX 2 0,S1,0,0,0,0,0,0 0,0,C1,0,0,0,0,0 0,0,0,S1,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 10,20,30,40,50,60,70,80 """) chess1 = Chess(path=None, configuration=configuration1) utility1 = minimax_decision(chess1.initial_state, chess1, configuration1.depth_limit) self.assertEqual(((2, 3), (0, 1)), utility1[0]) self.assertEqual(160, utility1[1]) self.assertEqual(160, utility1[2]) self.assertEqual(5, utility1[3]) chess1.initial_state.to_move = configuration1.player utility2 = alphabeta_cutoff_search(chess1.initial_state, chess1, configuration1.depth_limit) self.assertEqual(utility1[0], utility2[0]) self.assertEqual(utility1[1], utility2[1]) self.assertEqual(utility1[2], utility2[2]) self.assertGreaterEqual(utility1[3], utility2[3]) def test_depth_limit2(self): configuration1 = Configuration(path=None) configuration1.generate_configuration_from_string( """Star MINIMAX 9 0,S1,0,0,0,0,0,0 S1,0,0,0,0,0,0,0 0,0,0,0,0,0,0,C1 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 10,20,30,40,50,60,70,80 """) chess1 = Chess(path=None, configuration=configuration1) utility1 = minimax_decision(chess1.initial_state, chess1, configuration1.depth_limit) self.assertEqual(((1, 0), (0, 1)), utility1[0]) self.assertEqual(130, utility1[1]) # myopic self.assertEqual(90, utility1[2]) self.assertEqual(26, utility1[3]) chess1.initial_state.to_move = configuration1.player utility2 = alphabeta_cutoff_search(chess1.initial_state, chess1, configuration1.depth_limit) self.assertEqual(utility1[0], utility2[0]) self.assertEqual(utility1[1], utility2[1]) self.assertEqual(utility1[2], utility2[2]) self.assertGreaterEqual(utility1[3], utility2[3]) def test_depth_limit3(self): configuration1 = Configuration(path=None) configuration1.generate_configuration_from_string( """Circle MINIMAX 2 0,S2,0,0,0,0,0,0 S1,0,0,0,0,0,0,0 0,0,0,0,0,0,0,C1 0,0,0,0,0,0,S1,0 0,0,0,0,0,S1,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 10,20,30,40,50,60,70,80""") chess1 = Chess(path=None, configuration=configuration1) utility1 = minimax_decision(chess1.initial_state, chess1, configuration1.depth_limit) self.assertEqual('Noop', utility1[0]) self.assertEqual(-290, utility1[1]) # myopic self.assertEqual(-300, utility1[2]) self.assertEqual(5, utility1[3]) chess1.initial_state.to_move = configuration1.player utility2 = alphabeta_cutoff_search(chess1.initial_state, chess1, configuration1.depth_limit) self.assertEqual(utility1[0], utility2[0]) self.assertEqual(utility1[1], utility2[1]) self.assertEqual(utility1[2], utility2[2]) self.assertGreaterEqual(utility1[3], utility2[3]) def test_depth_limit4(self): configuration1 = Configuration(path=None) configuration1.generate_configuration_from_string( """Star MINIMAX 7 0,C1,0,C1,0,C1,0,C1 C1,0,C1,0,C1,0,C1,0 0,S1,0,S1,0,S1,0,S1 S1,0,S1,0,S1,0,S1,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 10,20,30,40,52,70,90,1000 """) chess1 = Chess(path=None, configuration=configuration1) utility1 = minimax_decision(chess1.initial_state, chess1, configuration1.depth_limit) self.assertEqual((('Noop')), utility1[0]) self.assertEqual(368, utility1[1]) # myopic self.assertEqual(368, utility1[2]) self.assertGreaterEqual(utility1[3], 3) utility2 = alphabeta_cutoff_search(chess1.initial_state, chess1, configuration1.depth_limit) self.assertEqual(utility1[0], utility2[0]) self.assertEqual(utility1[1], utility2[1]) self.assertEqual(utility1[2], utility2[2]) self.assertGreaterEqual(utility1[3], utility2[3]) def test_tie_break_star(self): configuration1 = Configuration(path=None) configuration1.generate_configuration_from_string( """Star MINIMAX 7 0,0,0,0,0,0,0,0 0,S1,0,0,0,S1,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,C1 10,20,30,40,52,70,90,1000 """) chess1 = Chess(path=None, configuration=configuration1) utility1 = minimax_decision(chess1.initial_state, chess1, 1024) self.assertEqual((((1, 1), (0, 0))), utility1[0]) self.assertEqual(1000 + 90 - 1000, utility1[1]) # myopic self.assertEqual(1000, utility1[2]) self.assertEqual(utility1[3], 33) utility2 = alphabeta_cutoff_search(chess1.initial_state, chess1, configuration1.depth_limit) self.assertEqual(utility1[0], utility2[0]) self.assertEqual(utility1[1], utility2[1]) self.assertEqual(utility1[2], utility2[2]) self.assertGreaterEqual(utility1[3], 33) def test_tie_break_circle(self): configuration1 = Configuration(path=None) configuration1.generate_configuration_from_string( """Circle MINIMAX 7 0,0,0,0,0,0,S1,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,C1,0,0,C1,0,0 0,0,0,0,0,0,0,0 10,20,30,40,52,70,90,1000 """) chess1 = Chess(path=None, configuration=configuration1) utility1 = minimax_decision(chess1.initial_state, chess1, 1024) self.assertEqual((((6, 2), (7, 1))), utility1[0]) self.assertEqual(1000 + 90 - 1000, utility1[1]) # myopic self.assertEqual(1000, utility1[2]) self.assertEqual(utility1[3], 33) utility2 = alphabeta_cutoff_search(chess1.initial_state, chess1, configuration1.depth_limit) self.assertEqual(utility1[0], utility2[0]) self.assertEqual(utility1[1], utility2[1]) self.assertEqual(utility1[2], utility2[2]) self.assertGreaterEqual(utility1[3], 33) def test_translate(self): configuration1 = Configuration(path=None) configuration1.generate_configuration_from_string( """Star MINIMAX 7 0,C1,0,C1,0,C1,0,C1 C1,0,C1,0,C1,0,C1,0 0,S1,0,S1,0,S1,0,S1 S1,0,S1,0,S1,0,S1,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 10,20,30,40,52,70,90,1000 """) chess1 = Chess(path=None, configuration=configuration1) utility = (((1, 0), (0, 1)), 130, 90, 26) self.assertEqual("""G1-H2 130 90 26 """, chess1.translate(utility)) def test_translate_no_action(self): configuration1 = Configuration(path=None) configuration1.generate_configuration_from_string( """Star MINIMAX 7 0,C1,0,C1,0,C1,0,C1 C1,0,C1,0,C1,0,C1,0 0,S1,0,S1,0,S1,0,S1 S1,0,S1,0,S1,0,S1,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0 10,20,30,40,52,70,90,1000""") chess1 = Chess(path=None, configuration=configuration1) utility = (('Noop'), 130, 90, 26) self.assertEqual("""pass 130 90 26 """, chess1.translate(utility)) def test_integration_test1(self): chess = Chess(path="../res/test_case_1.txt", configuration=None) result = chess.translate(minimax_decision(game=chess, state=chess.initial_state, depth_limit=chess.config.depth_limit)) self.assertEqual("F4-H2\n160\n160\n5\n", result) chess.write_to_file(result)
19,076
732
23
ab8bb7e5f5c38a866610aeab2dfd90be6b13a3ea
44,907
py
Python
redun/backends/db/dataflow.py
cclauss/redun
55792921b42b430571eafc30ab21eb50eb4f64b3
[ "Apache-2.0" ]
null
null
null
redun/backends/db/dataflow.py
cclauss/redun
55792921b42b430571eafc30ab21eb50eb4f64b3
[ "Apache-2.0" ]
null
null
null
redun/backends/db/dataflow.py
cclauss/redun
55792921b42b430571eafc30ab21eb50eb4f64b3
[ "Apache-2.0" ]
null
null
null
""" Dataflow visualization. An upstream dataflow visualization explains the derivation of a value. Take for example this dataflow visualization of the derivation of a VCF file from a bioinformatic analysis: ``` value = File(path=sample4.vcf, hash=********) value <-- <********> call_variants(bam, ref_genome) bam = <********> File(path=sample4.bam, hash=********) ref_genome = <********> File(path=ref_genome, hash=********) bam <-- argument of <********> call_variants_all(bams, ref_genome) <-- <********> align_reads_all(fastqs, ref_genome) <-- <********> align_reads(fastq, ref_genome) fastq = <********> File(path=sample4.fastq, hash=********) ref_genome = <********> File(path=ref_genome, hash=********) fastq <-- argument of <********> align_reads_all(fastqs, ref_genome) <-- argument of <********> main(fastqs, ref_genome) <-- origin ref_genome <-- argument of <********> align_reads_all(fastqs, ref_genome) <-- argument of <********> main(fastqs, ref_genome) <-- origin ``` Hash values are indicated by * above. For reference, here is what the workflow might have been: ``` @task() def align_reads(fastq: File, ref_genome: File) -> File: reads = cast(str, fastq.read()) ref = cast(str, ref_genome.read()) bam = File(fastq.path.replace("fastq", "bam")) bam.write("align({}, {})".format(reads, ref)) return bam @task() def call_variants(bam: File, ref_genome: File) -> File: align = cast(str, bam.read()) ref = cast(str, ref_genome.read()) vcf = File(bam.path.replace("bam", "vcf")) vcf.write("calls({}, {})".format(align, ref)) return vcf @task() def align_reads_all(fastqs: List[File], ref_genome: File): bams = [align_reads(fastq, ref_genome) for fastq in fastqs] return bams @task() def call_variants_all(bams: List[File], ref_genome: File): vcfs = [call_variants(bam, ref_genome) for bam in bams] return vcfs @task() def main(fastqs: List[File], ref_genome: File): bams = align_reads_all(fastqs, ref_genome) vcfs = call_variants_all(bams, ref_genome) return vcfs ``` A dataflow visualization consists of a series of paragraphs called "dataflow sections" that describe how one of the values is derived. Here is the section for the `bam` value: ``` bam <-- argument of <********> call_variants_all(bams, ref_genome) <-- <********> align_reads_all(fastqs, ref_genome) <-- <********> align_reads(fastq, ref_genome_2) fastq = <********> File(path=sample4.fastq, hash=********) ref_genome = <********> File(path=ref_genome, hash=********) ``` A section is made of three clauses: assignment, routing, and arguments. The assignment clause indicates which CallNode produced this value: ``` bam <-- argument of <********> call_variants_all(bams, ref_genome) ``` Routing clauses, if present, describe a series of additional CallNodes that "route" the value by passing via arguments from parent CallNode to child CallNode, or by results from child CallNode to parent CallNode. ``` <-- result of <********> align_reads_all(fastqs, ref_genome) <-- <********> align_reads(fastq, ref_genome_2) ``` Argument clauses define the value for each argument in the final CallNode. ``` fastq = <********> File(path=sample4.fastq, hash=********) ref_genome = <********> File(path=ref_genome, hash=********) ``` To build this visualization, the following strategy is used: - Given a starting value (e.g. a VCF file in the example above), walk the CallGraph backwards (i.e. upstream) to determine relevant nodes. These are call DataflowNodes, which are connected by DataflowEdges. - DataflowEdges are then grouped into sections. - Each section is then reorganized into a DataflowSectionDOM. A DataflowDOM is the collection of DataflowSectionDOMs. The DOM(document object model) is an intermediate representation that can be rendered in multiple ways. - Once a DataflowDOM is created, it can either be rendered into a textual format, or serialized into JSON for the web frontend. """ import ast import re from collections import defaultdict from enum import Enum from itertools import chain from textwrap import dedent from typing import ( Any, Callable, Dict, Iterable, Iterator, List, NamedTuple, Optional, Set, Tuple, TypeVar, Union, cast, ) from redun.backends.db import Argument, CallNode, RedunBackendDb, Task, Value from redun.utils import assert_never, trim_string T = TypeVar("T") REDUN_INTERNAL_TASKS = { "redun.postprocess_script", "redun.script", } def iter_unique(items: Iterable[T], key: Callable[[T], Any] = lambda x: x) -> Iterator[T]: """ Iterate through unique items. """ seen: Set[T] = set() for item in items: item_key = key(item) if item_key not in seen: yield item seen.add(item_key) class ArgumentValue(NamedTuple): """ A DataflowNode used for tracing one subvalue in an argument. """ argument: Argument value: Value class CallNodeValue(NamedTuple): """ A DataflowNode used for tracing one subvalue of a CallNode result. """ call_node: CallNode value: Value # There are several kinds of DataflowNodes. DataflowNode = Union[ArgumentValue, CallNodeValue, CallNode, Value] class DataflowEdge(NamedTuple): """ An edge in a Dataflow graph. """ src: DataflowNode dest: Optional[DataflowNode] # A grouping of DataflowEdges that are displayed as one "paragraph". DataflowSection = List[DataflowEdge] class DataflowSectionKind(Enum): """ Each dataflow section describes either a task call or a data manipulation. """ CALL = "call" DATA = "data" class DataflowAssign(NamedTuple): """ The assignment clause in a Dataflow DOM. """ var_name: str prefix: str node_display: str node: Optional[DataflowNode] class DataflowRouting(NamedTuple): """ A routing clause in a Dataflow DOM. """ prefix: str node_display: str node: Optional[DataflowNode] class DataflowArg(NamedTuple): """ An argument clause in a Dataflow DOM. """ var_name: str value: Value class DataflowSectionDOM(NamedTuple): """ A section in Dataflow DOM. """ assign: DataflowAssign routing: List[DataflowRouting] args: List[DataflowArg] # The top-level Dataflow DOM. DataflowDOM = Iterable[DataflowSectionDOM] def get_task_args(task: Task) -> List[str]: """ Returns list of argument names of a Task. Raises a SyntaxError if the task source code is not properly formatted. """ # Since we don't currently record the name of positional arguments, # we have to infer them from the source code. code = ast.parse(dedent(task.source)) if not isinstance(code.body[0], ast.FunctionDef): raise SyntaxError("Source code is not a properly formatted function.") # Type ignore is needed since the AST lib does seem to use proper types # everywhere. return [arg.arg for arg in code.body[0].args.args] # type: ignore def make_var_name(var_name_base: str, name2var: Dict[str, DataflowNode], suffix: int = 2) -> str: """ Generate a new variable using a unique suffix (e.g. myvar_2). """ # Strip numerical suffix. var_name_base = re.sub(r"_\d+$", "", var_name_base) if var_name_base not in name2var: # This variable name is already unique. return var_name_base # Search increase suffixes until we find a unique variable name. while True: new_var_name = var_name_base + "_" + str(suffix) if new_var_name not in name2var: return new_var_name suffix += 1 def get_default_arg_name(pos: int) -> str: """ Generate the default name for argument. """ return f"arg{pos}" class DataflowVars: """ Manages variable names for nodes in a dataflow. """ def __getitem__(self, node: DataflowNode) -> str: """ Get a variable name for a DataflowNode. """ return self.var2name[node] def __setitem__(self, node: DataflowNode, var_name: str) -> str: """ Set a new variable name for a DataflowNode. """ self.var2name[node] = var_name self.name2var[var_name] = node return var_name def __contains__(self, node: DataflowNode) -> bool: """ Returns True if node has a variable name. """ return node in self.var2name def get_task_args(self, task: Task) -> List[str]: """ Returns the parameter names of a Task. """ args = self.task2args.get(task) if not args: # Cache task arg names. # TODO: Properly handle variadic args. try: args = self.task2args[task] = get_task_args(task) except SyntaxError: # The argument names cannot be properly parsed. return [] return args def new_var_name( self, node: DataflowNode, base_var_name: Optional[str] = None ) -> Tuple[str, Optional[str]]: """ Get or create a new variable name for a DataflowNode. """ var_name = self.var2name.get(node) if var_name: # Node is already named. return var_name, None if not base_var_name: # Autogenerate base var name from ArgumentValue. assert isinstance(node, ArgumentValue) argument, value = node # Determine new variable name. if argument.arg_key: base_var_name = argument.arg_key else: arg_names = self.get_task_args(argument.call_node.task) if not arg_names: # Use default argument names. base_var_name = get_default_arg_name(argument.arg_position) else: base_var_name = arg_names[argument.arg_position] # Ensure variable name is unique. var_name = make_var_name(base_var_name, self.name2var) self[node] = var_name return var_name, base_var_name def walk_dataflow_value(backend: RedunBackendDb, value: Value) -> Iterator[DataflowEdge]: """ Iterates through the edges in the upstream dataflow graph of a Value. """ # Find upstream CallNodes. # A value can be produced by many CallNodes and it can be a subvalue of # a value produced from many CallNodes. call_nodes = set(value.results) | { call_node for parent in value.parents for call_node in parent.results } call_nodes = {call_node for call_node in call_nodes if not is_internal_task(call_node.task)} # Determine which CallNodes are just routing CallNodes. # A routing CallNode is an upstream CallNode that is also an ancestor # of another upstream CallNode. seen: Set[CallNode] = set() routing_call_nodes = set() for call_node in call_nodes: for ancestor in walk_parents(call_node, seen): if ancestor in call_nodes: routing_call_nodes.add(ancestor) break # Determine originating CallNodes (upstream and non-routing). originating_call_nodes = call_nodes - routing_call_nodes # Prefer the most recent CallNodes. start_time_call_nodes = [ (job.start_time, call_node) for call_node in originating_call_nodes for job in call_node.jobs ] max_start_time = max((start_time for start_time, _ in start_time_call_nodes), default=None) upstream_call_node = next( ( call_node for start_time, call_node in start_time_call_nodes if start_time == max_start_time ), None, ) # Emit Value-CallNode edges in dataflow. if upstream_call_node: yield DataflowEdge(value, upstream_call_node) else: yield DataflowEdge(value, None) def get_callnode_arguments(call_node: CallNode) -> List[Argument]: """ Returns a CallNode's arguments in sorted order. """ pos_args = [] kw_args = [] for arg in call_node.arguments: if arg.arg_position is not None: pos_args.append(arg) else: kw_args.append(arg) pos_args.sort(key=lambda arg: arg.arg_position) kw_args.sort(key=lambda arg: arg.arg_key) return pos_args + kw_args def walk_dataflow_callnode(backend: RedunBackendDb, call_node: CallNode) -> Iterator[DataflowEdge]: """ Iterates through the upstream Arguments of a CallNode. """ # Emit CallNode-ArgumentValue edges in dataflow. # Reversing the arguments will lead to the traversal to be in original # argument order, which is nicer for display. arguments = get_callnode_arguments(call_node) if arguments: for argument in arguments: yield DataflowEdge(call_node, ArgumentValue(argument, argument.value)) else: # There are no arguments, this is an origin of the dataflow. yield DataflowEdge(call_node, None) def is_internal_task(task: Task) -> bool: """ Returns True if task is an internal redun task. We skip such tasks in the dataflow to avoid clutter. """ return task.fullname in REDUN_INTERNAL_TASKS def walk_dataflow_callnode_value( backend: RedunBackendDb, call_node_value: CallNodeValue ) -> Iterator[DataflowEdge]: """ Iterates through the upstream dataflow edges of a CallNodeValue. The edges either go deeper to the child CallNodes or stay with this CallNode. """ call_node, value = call_node_value # Prefer the flow from children of call_node over call_node. child_matches = [ child_node for child_node in call_node.children if not is_internal_task(child_node.task) and is_subvalue(value, child_node.value) ] if len(child_matches) == 1: # There is one obvious child CallNode that produced this value. # Follow the dataflow through this child CallNode. [child_node] = child_matches yield DataflowEdge(call_node_value, CallNodeValue(child_node, value)) else: # Otherwise, we follow the dataflow for the whole CallNode. yield DataflowEdge(call_node_value, call_node) def walk_dataflow_argument_value( backend: RedunBackendDb, argument_value: ArgumentValue ) -> Iterator[DataflowEdge]: """ Iterates through the upstream dataflow edges of an ArgumentValue. Edge types: - ArgumentValue <-- CallNodeValue: - Value came from the result of a CallNode. - ArgumentValue <-- ArgumentValue - Value came from argument of parent CallNode, i.e. argument-to-argument routing. - ArgumentValue <-- Origin - Value came directly from user or task. """ argument, value = argument_value is_terminal = True # Determine the most recent common parent CallNode of all the upstream CallNodes. call_node_parents = [set(call_node.parents) for call_node in argument.upstream] call_node_parents.append(set(argument.call_node.parents)) context_call_node = next( iter( sorted( set.intersection(*call_node_parents), key=lambda call_node: call_node.timestamp, reverse=True, ) ), None, ) # Process upstream CallNodes in a consistent order (call_order). if context_call_node: # Use reverse order during emission to get correct order during display. upstream_order = sorted( [ (call_node, edge.call_order) for call_node in argument.upstream for edge in call_node.parent_edges if edge.parent_node == context_call_node ], key=lambda pair: pair[1], reverse=True, ) upstream = [call_node for call_node, _ in upstream_order] else: # Fallback if we can't determine context call node. upstream = argument.upstream # Emit upstream sibling CallNodes. for call_node in iter_unique(upstream): # Order subvalues for consistency. subvalues = sorted(call_node.value.children, key=lambda child: child.value_hash) result_values = iter_unique(chain([call_node.value], subvalues)) match = False for result_value in result_values: if value.value_hash == result_value.value_hash: is_terminal = False match = True yield DataflowEdge( argument_value, CallNodeValue(call_node, result_value), ) if not match: # Default to emitting the whole result of the CallNode. is_terminal = False yield DataflowEdge( argument_value, CallNodeValue(call_node, call_node.value), ) # Emit upstream argument from parent CallNode. # Prefer most recent parent. parent_call_nodes = sorted( argument.call_node.parents, key=lambda parent: parent.timestamp, reverse=True ) for parent_call_node in parent_call_nodes[:1]: for parent_argument in parent_call_node.arguments: parent_values = chain([parent_argument.value], parent_argument.value.children) for parent_value in parent_values: if value.value_hash == parent_value.value_hash: is_terminal = False yield DataflowEdge( argument_value, ArgumentValue(parent_argument, value), ) # Emit terminal origin value. if is_terminal: yield DataflowEdge(argument_value, None) def walk_dataflow_node(backend: RedunBackendDb, node: DataflowNode) -> Iterator[DataflowEdge]: """ Iterates through the upstream dataflow edges of a any DataflowNode. """ if isinstance(node, Value): return walk_dataflow_value(backend, node) elif isinstance(node, CallNode): return walk_dataflow_callnode(backend, node) elif isinstance(node, ArgumentValue): return walk_dataflow_argument_value(backend, node) elif isinstance(node, CallNodeValue): return walk_dataflow_callnode_value(backend, node) else: assert_never(node) def walk_dataflow(backend: RedunBackendDb, init_node: DataflowNode) -> Iterator[DataflowEdge]: """ Iterate through all the upstream dataflow edges of a 'node' in the CallGraph. A 'node' can be a Value, CallNode, CallNodeValue, or an ArgumentValue. """ # Perform depth-first traversal. queue: List[DataflowNode] = [init_node] seen: Set[DataflowNode] = set() while queue: node: DataflowNode = queue.pop() child_edges = list(walk_dataflow_node(backend, node)) yield from child_edges # Reverse edges before pushing on to stack to maintain sibling order. for edge in reversed(child_edges): node2 = edge.dest if node2 is None: # Terminal node of type 'Origin'. continue # Determine whether dest node is unique and should be added to queue. if node2 not in seen: queue.append(node2) seen.add(node2) def get_section_edge_type(edge: DataflowEdge) -> str: """ Classifies a DataflowEdge. """ src, dest = edge if ( isinstance(src, ArgumentValue) and isinstance(dest, CallNodeValue) and src.value.value_hash != dest.value.value_hash ): return "data" elif isinstance(src, CallNode) and isinstance(dest, ArgumentValue): return "call_arg" elif isinstance(src, (Value, CallNodeValue)) and isinstance(dest, CallNode): return "call_result" elif isinstance(src, CallNodeValue) and isinstance(dest, CallNodeValue): return "call_result_routing" elif isinstance(src, ArgumentValue) and isinstance(dest, CallNodeValue): return "call_arg_result_routing" elif isinstance(src, ArgumentValue) and isinstance(dest, ArgumentValue): return "call_arg_routing" elif isinstance(src, CallNode) and dest is None: return "call_origin" elif isinstance(src, ArgumentValue) and dest is None: return "call_arg_origin" elif isinstance(src, Value) and dest is None: return "call_value_origin" else: raise AssertionError(f"Unknown edge type {edge}") def toposort_edges(edges: Iterable[DataflowEdge]) -> Iterator[DataflowEdge]: """ Topologically sort DataflowEdges in depth-first order. """ # Compute indegree. indegrees: Dict[DataflowNode, int] = defaultdict(int) src2edge: Dict[DataflowNode, List[DataflowEdge]] = defaultdict( cast(Callable[[], List[DataflowEdge]], list) ) for edge in edges: src2edge[edge.src].append(edge) # Ensure every node is present in indegrees, including roots. indegrees[edge.src] if edge.dest: indegrees[edge.dest] += 1 # Initialize queue with roots. queue: List[DataflowNode] = [node for node, degree in indegrees.items() if degree == 0] while queue: node = queue.pop() yield from src2edge[node] # Reverse edges before pushing on stack in order to maintain sibling order. for edge in reversed(src2edge[node]): if edge.dest: indegrees[edge.dest] -= 1 if indegrees[edge.dest] == 0: # All parents have been visited, we can enqueue dest. queue.append(edge.dest) def rewrite_call_node_merges(edges: List[DataflowEdge]) -> List[DataflowEdge]: """ Rewrites dataflow graphs to enforce one CallNodeValue per CallNode. This function identifies CallNode that have multilple parent CallNodeValues like this: ArgumentValue --> CallNodeValue --\ V CallNode (merge_node) ^ ArgumentValue --> CallNodeValue --/ and rewrite them to unify the CallNodeValues like this: ArgumentValue --\ V CallNodeValue --> CallNode ^ ArgumentValue --/ """ # Build graph dict. src2edges: Dict[Optional[DataflowNode], List[DataflowEdge]] = defaultdict(list) dest2edges = defaultdict(list) nodes = [] for edge in edges: nodes.append(edge.src) src2edges[edge.src].append(edge) if edge.dest: dest2edges[edge.dest].append(edge) # Find merge nodes. merge_nodes = [ node for node, edges in dest2edges.items() if isinstance(node, CallNode) and len(edges) > 1 ] # Rewrite CallNode merge nodes. for merge_node in merge_nodes: # Find relevant edges and nodes. cv_cn_edges = dest2edges[merge_node] call_node_values = [edge.src for edge in cv_cn_edges] upstream_edges = [ edge for call_node_value in call_node_values for edge in dest2edges[call_node_value] ] upstream_nodes = list(iter_unique(edge.src for edge in upstream_edges)) old_edges = set(cv_cn_edges) | set(upstream_edges) # Create new unified CallNodeValue from call_node_values. unified_node = CallNodeValue(call_node=merge_node, value=merge_node.value) # Create new edges. new_edges = [ DataflowEdge( src=upstream_node, dest=unified_node, ) for upstream_node in upstream_nodes ] + [DataflowEdge(src=unified_node, dest=merge_node)] # Remove old edges from edges. edges2 = [edge for edge in edges if edge not in old_edges] # To keep edges in traversal order, insert new edges right before # the first appearance of the merge_node. insert_index = min(i for i, edge in enumerate(edges2) if edge.src == merge_node) edges = edges2[:insert_index] + new_edges + edges2[insert_index:] return edges def iter_subsections(section: DataflowSection) -> Iterator[DataflowSection]: """ Determines if a section should be broken down into small sections. In real life dataflows, there are some cases where the dataflow merges such that the structure is a DAG, not just a tree. These merges represent a value that was passed to two or more different tasks and then their outputs eventually combine again, either into a single Value like a list or as arguments into a common task. For example, `value` is a merge node in the upstream dataflow of `result`. value = task0() output1 = task1(a=value) output2 = task2(b=value) result = task3(c=output1, d=output2) The upstream dataflow graph of `result` is: Value(result) | V CallNode(task3) ---------------\ | | V V ArgumentValue(task3, key=a) ArgumentValue(task3, key=b) | | V V CallNode(task1) CallNode(task2) | | V V ArgumentValue(task1, key=c) ArgumentValue(task2, key=d) | | V | CallNodeValue(task0, value) <--/ | V CallNode(task0) | V Origin The function `iter_dataflow_section()` will break this graph right after every the `CallNode --> ArgumentValue` edge, resulting in three sections. One of those sections will have a "merge node", `CallNode(task0)`: ArgumentValue(task1, key=c) ArgumentValue(task2, key=d) | | V | CallNodeValue(task0, value) <--/ | V CallNode(task0) | V Origin This function will further break this section into subsections like this: Subsection 1: ArgumentValue(task1, key=c) | V CallNodeValue(task0, value) Subsection 2: ArgumentValue(task2, key=d) | V CallNodeValue(task0, value) Subsection 3: CallNodeValue(task0, value) | V CallNode(task0) | V Origin Ultimately these three subsections get rendered as: c <-- c_2 d <-- c_2 c_2 <-- task() <-- origin """ # Build graph dict. src2edges: Dict[Optional[DataflowNode], List[DataflowEdge]] = defaultdict(list) dest2edges = defaultdict(list) nodes = [] for edge in section: nodes.append(edge.src) src2edges[edge.src].append(edge) if edge.dest: dest2edges[edge.dest].append(edge) # Find roots. Maintain order of appearence in section. roots = [node for node in iter_unique(nodes) if len(dest2edges[node]) == 0] # Find merge nodes. merge_nodes = [node for node, edges in dest2edges.items() if len(edges) > 1] if not merge_nodes: # No merge nodes. Keep section as is. yield section return # Determine subsections. subsection: DataflowSection = [] node: Optional[DataflowNode] for node in roots + merge_nodes: while True: next_edges = src2edges[node] if len(next_edges) != 1: # We have hit the end of the section. # There are either no more edges, or we hitting the arguments. subsection.extend(next_edges) yield subsection subsection = [] break # Path should always be linear. [edge] = next_edges subsection.append(edge) if edge.dest not in merge_nodes: # Follow edge. node = edge.dest else: # We have hit the merge node, stop. yield subsection subsection = [] break def iter_dataflow_sections( dataflow_edges: Iterable[DataflowEdge], ) -> Iterator[Tuple[DataflowSectionKind, DataflowSection]]: """ Yields dataflow sections from an iterable of dataflow edges. A dataflow section is a group of edges representing one 'paragraph' in a dataflow display. value <-- <1234abcd> call_node(arg1, arg2) <-- result of <2345abcd> call_node2(arg3, arg4) arg3 = <3456abcd> 'hello_world' arg4 = <4567abcd> File('foo.txt') """ node2call_section: Dict[DataflowNode, List[Tuple[int, DataflowEdge]]] = {} node2data_section: Dict[DataflowNode, List[Tuple[int, DataflowEdge]]] = defaultdict( cast(Callable[[], List[Tuple[int, DataflowEdge]]], list) ) new_vars: Set[ArgumentValue] = set() section: List[Tuple[int, DataflowEdge]] edges = toposort_edges(dataflow_edges) edge_list = rewrite_call_node_merges(list(edges)) # Group dataflow edges into display sections. # Retain the appearance order of each edge so we can sort sections later. for i, edge in enumerate(edge_list): edge_type = get_section_edge_type(edge) if edge_type == "data": # Edge is a data section edge. node2data_section[edge.src].append((i, edge)) continue if edge_type == "call_arg": # New variable. assert isinstance(edge.dest, ArgumentValue) new_vars.add(edge.dest) if edge.src in new_vars: # src is a new variable so we start a new section. section = [(i, edge)] else: # Get or create section associated with src and add this edge. if edge.src not in node2call_section: section = node2call_section[edge.src] = [] else: section = node2call_section[edge.src] section.append((i, edge)) # Get section associated with dest and union with src section. if edge.dest: if edge.dest not in node2call_section: # dest_section same as src. node2call_section[edge.dest] = section else: # Union dest_section with section. # Although this extend might have dups, I use iter_unique to clean it up. dest_section = node2call_section[edge.dest] dest_section.extend(section) node2call_section[edge.src] = dest_section # Get unique sections. call_sections = iter_unique(node2call_section.values(), key=id) data_sections = node2data_section.values() def get_order_section( int_edges: List[Tuple[int, DataflowEdge]] ) -> Tuple[int, List[DataflowEdge]]: """ Returns a tuple of section appearance order and the section. The appearance order of a section is the maximum order of its edges. We also clean up any duplicate edges that may have been added to the section. """ ints = [] section = [] for i, edge in int_edges: ints.append(i) section.append(edge) return (max(ints), list(iter_unique(section))) # Label each section with its type ("call" or "data") and determine section order. sections = [ (DataflowSectionKind.CALL,) + get_order_section(int_edges) for int_edges in call_sections ] sections.extend( (DataflowSectionKind.DATA,) + get_order_section(int_edges) for int_edges in data_sections ) # Sort sections. sections = sorted(sections, key=lambda row: row[1]) # Yield sections. for kind, _, section2 in sections: if kind == DataflowSectionKind.CALL: # If there is path merging, then we will emit multiple sections. for subsection in iter_subsections(section2): yield (kind, subsection) else: yield (kind, section2) def make_section_dom( section: DataflowSection, dataflow_vars: DataflowVars, new_varname: str = "value", ) -> DataflowSectionDOM: """ Returns DOM for a dataflow section. """ # Determine assign information from first edge in section. src, assign_node = section[0] if isinstance(src, Value): # Start new variable. assign_var_name = dataflow_vars[src] = new_varname elif isinstance(src, (ArgumentValue, CallNodeValue)): # Value should be named already. assign_var_name = dataflow_vars[src] else: assert not isinstance(src, CallNode) assert_never(src) routing_defs: List[Optional[DataflowNode]] = [] arg_defs: List[Tuple[str, Value]] = [] renames: Dict[str, str] = {} # Compute whether this section ends with a variable. is_var2var = isinstance(assign_node, (ArgumentValue, CallNodeValue)) last_routing_node = None # Process remaining edges. for src, dest in section[1:]: if isinstance(src, CallNode) and isinstance(dest, ArgumentValue): # Argument definition edge. var_name, base_var_name = dataflow_vars.new_var_name(dest) if base_var_name: renames[base_var_name] = var_name arg_defs.append((var_name, dest.value)) else: # Routing edge. last_routing_node = dest if isinstance(dest, CallNode): is_var2var = False # Skip unnecessary routing edge, ignore. if not (isinstance(src, CallNodeValue) and isinstance(dest, CallNode)): routing_defs.append(dest) # The last routing def or assign (if there are no routing defs) needs # to rename its variables to be unique. last_line = len(routing_defs) # Create assign clause. if is_var2var and not routing_defs: # Assignment is a var2var. assert assign_node # Name the last node after the first node, if it doesn't have a name yet. base_name = dataflow_vars[section[0].src] var_name, _ = dataflow_vars.new_var_name(assign_node, base_name) dom_assign = DataflowAssign(assign_var_name, "", var_name, assign_node) else: prefix, node_display = display_node(assign_node, renames if last_line == 0 else {}) dom_assign = DataflowAssign(assign_var_name, prefix, node_display, assign_node) # Create routing clauses. dom_routing: List[DataflowRouting] = [] for i, dest in enumerate(routing_defs, 1): prefix, node_display = display_node(dest, renames if i == last_line else {}) dom_routing.append(DataflowRouting(prefix, node_display, dest)) # If last routing node is a Value, as opposed to a CallNode, then this was a # merge node and we should end with a new variable. if is_var2var and isinstance(last_routing_node, (ArgumentValue, CallNodeValue)): # This is a merge node, give it a variable name. assert not arg_defs # Name the last node after the first node, if it doesn't have a name yet. base_name = dataflow_vars[section[0].src] var_name, _ = dataflow_vars.new_var_name(last_routing_node, base_name) dom_routing.append(DataflowRouting("", var_name, last_routing_node)) # Create argument definitions. dom_args: List[DataflowArg] = [DataflowArg(var_name, var) for var_name, var in arg_defs] return DataflowSectionDOM(dom_assign, dom_routing, dom_args) def make_data_section_dom( section: DataflowSection, dataflow_vars: DataflowVars, new_varname: str = "value", ) -> DataflowSectionDOM: """ Returns a DOM for a data section. A data section describes how one value was constructed from several subvalues. For example this dataflow section: parent_value <-- derives from subvalue1 = File(path='file1') subvalue2 = File(path='file2') corresponds to this kind of code: subvalue1 = task1() subvalue2 = task2() parent_value = [subvalue1, subvalue2] task3(parent_value) """ downstream_nodes: Set[DataflowNode] = set() upstream_nodes: List[CallNodeValue] = [] for edge in section: assert isinstance(edge.dest, CallNodeValue) downstream_nodes.add(edge.src) upstream_nodes.append(edge.dest) # Determine assign clause. # We only support one downstream node currently. [downstream_node] = downstream_nodes assign_var_name = dataflow_vars[downstream_node] # Determine arg clauses. args = [] for upstream_node in iter_unique(upstream_nodes): call_node, value = upstream_node # Ensure variable name is unique. base_var_name = upstream_node.call_node.task.name + "_result" new_var_name, _ = dataflow_vars.new_var_name(upstream_node, base_var_name) args.append(DataflowArg(new_var_name, value)) return DataflowSectionDOM( assign=DataflowAssign( var_name=assign_var_name, prefix="", node_display="derives from", node=None ), routing=[], args=args, ) def make_dataflow_dom( dataflow_edges: Iterable[DataflowEdge], new_varname: str = "value" ) -> Iterable[DataflowSectionDOM]: """ Yields dataflow section DOMs from an iterable of dataflow edges. It also performs variable renaming to give every value a unique variable name. """ dataflow_vars = DataflowVars() for kind, section in iter_dataflow_sections(dataflow_edges): if kind == DataflowSectionKind.CALL: yield make_section_dom(section, dataflow_vars, new_varname=new_varname) elif kind == DataflowSectionKind.DATA: yield make_data_section_dom(section, dataflow_vars, new_varname=new_varname) else: raise NotImplementedError(f"Unknown kind '{kind}'.") def get_dataflow_call_node(node: Optional[DataflowNode]) -> Optional[CallNode]: """ Returns the CallNode for a DataflowNode. """ if isinstance(node, CallNode): return node elif isinstance(node, ArgumentValue): return node.argument.call_node elif isinstance(node, CallNodeValue): return node.call_node elif node is None: return None else: assert_never(node) def get_node_hash(node: Optional[DataflowNode]) -> Optional[str]: """ Formats hash for a DataflowNode. """ if isinstance(node, Value): return node.value_hash call_node = get_dataflow_call_node(node) if call_node: return call_node.call_hash return None def display_node(node: Optional[DataflowNode], renames: Dict[str, str]) -> Tuple[str, str]: """ Formats a dataflow node to a string. """ if isinstance(node, CallNode): return ("", display_call_node(node, renames)) elif isinstance(node, ArgumentValue): return ( "argument of", display_call_node(node.argument.call_node, renames), ) elif isinstance(node, CallNodeValue): return ("", display_call_node(node.call_node, renames)) elif node is None: return ("", "origin") else: assert_never(node) def display_call_node(call_node: CallNode, renames: Dict[str, str]) -> str: """ Formats a CallNode to a string. """ try: arg_names = get_task_args(call_node.task) except SyntaxError: arg_names = [get_default_arg_name(i) for i in range(len(call_node.arguments))] args = [renames.get(arg, arg) for arg in arg_names] return "{task_name}({args})".format(task_name=call_node.task.name, args=", ".join(args)) def display_value(value: Value) -> str: """ Format a Value to a string. """ return trim_string(repr(value.value_parsed)) def display_hash(node: Optional[DataflowNode]) -> str: """ Formats hash for a DataflowNode. """ node_hash = get_node_hash(node) if node_hash: return "<{}> ".format(node_hash[:8]) else: return "" def display_section(dom: DataflowSectionDOM) -> Iterator[str]: """ Yields lines for displaying a dataflow section DOM. """ # Display assign line. assign = dom.assign yield "{var_name} <-- {prefix}{value_hash}{value}".format( var_name=assign.var_name, prefix=assign.prefix + " " if assign.prefix else "", value_hash=display_hash(assign.node), value=assign.node_display, ) indent = len(assign.var_name) + 1 # Display routing. for routing_def in dom.routing: yield "{indent}<-- {prefix}{node_hash}{node}".format( indent=" " * indent, prefix=routing_def.prefix + " " if routing_def.prefix else "", node_hash=display_hash(routing_def.node), node=routing_def.node_display, ) # Display argument definitions. if dom.args: max_var_len = max(len(arg.var_name) for arg in dom.args) for arg in dom.args: yield " {var_name}{padding} = <{value_hash}> {var}".format( var_name=arg.var_name, padding=" " * (max_var_len - len(arg.var_name)), value_hash=arg.value.value_hash[:8], var=display_value(arg.value), ) def display_dataflow(dom: DataflowDOM) -> Iterator[str]: """ Yields for lines displaying a dataflow DOM. """ for dom_section in dom: yield from display_section(dom_section) yield "" def serialize_section(dom: DataflowSectionDOM) -> dict: """ Serialize a DataflowSectionDOM to JSON. """ # Serialize assignment. assign_hash: Optional[str] if isinstance(dom.assign.node, Value): assign_hash = dom.assign.node.value_hash assign_job_id = None assign_execution_id = None elif dom.assign.node: call_node = get_dataflow_call_node(dom.assign.node) assert call_node assign_hash = call_node.call_hash # Get latest job of call_node. assign_job = sorted(call_node.jobs, key=lambda job: job.start_time, reverse=True)[0] assign_job_id = assign_job.id assign_execution_id = assign_job.execution.id else: assign_hash = None assign_job_id = None assign_execution_id = None # Serialize routing. routing = [] for routing_def in dom.routing: call_node = get_dataflow_call_node(routing_def.node) if call_node: call_hash: Optional[str] = call_node.call_hash # Get latest job of call_node. job = sorted(call_node.jobs, key=lambda job: job.start_time, reverse=True)[0] job_id: Optional[str] = job.id execution_id: Optional[str] = job.execution.id else: call_hash = None job_id = None execution_id = None routing.append( { "prefix": routing_def.prefix, "hash": call_hash, "display": routing_def.node_display, "job_id": job_id, "execution_id": execution_id, } ) # Serialize arguments. args = [ { "var_name": arg.var_name, "hash": arg.value.value_hash, "value_display": display_value(arg.value), } for arg in dom.args ] return { "assign": { "var_name": dom.assign.var_name, "prefix": dom.assign.prefix, "display": dom.assign.node_display, "hash": assign_hash, "job_id": assign_job_id, "execution_id": assign_execution_id, }, "routing": routing, "args": args, } def serialize_dataflow(dom: DataflowDOM) -> Iterator[dict]: """ Serialize DataflowDOM to JSON. """ for dom_section in dom: yield serialize_section(dom_section)
31.939545
99
0.628944
""" Dataflow visualization. An upstream dataflow visualization explains the derivation of a value. Take for example this dataflow visualization of the derivation of a VCF file from a bioinformatic analysis: ``` value = File(path=sample4.vcf, hash=********) value <-- <********> call_variants(bam, ref_genome) bam = <********> File(path=sample4.bam, hash=********) ref_genome = <********> File(path=ref_genome, hash=********) bam <-- argument of <********> call_variants_all(bams, ref_genome) <-- <********> align_reads_all(fastqs, ref_genome) <-- <********> align_reads(fastq, ref_genome) fastq = <********> File(path=sample4.fastq, hash=********) ref_genome = <********> File(path=ref_genome, hash=********) fastq <-- argument of <********> align_reads_all(fastqs, ref_genome) <-- argument of <********> main(fastqs, ref_genome) <-- origin ref_genome <-- argument of <********> align_reads_all(fastqs, ref_genome) <-- argument of <********> main(fastqs, ref_genome) <-- origin ``` Hash values are indicated by * above. For reference, here is what the workflow might have been: ``` @task() def align_reads(fastq: File, ref_genome: File) -> File: reads = cast(str, fastq.read()) ref = cast(str, ref_genome.read()) bam = File(fastq.path.replace("fastq", "bam")) bam.write("align({}, {})".format(reads, ref)) return bam @task() def call_variants(bam: File, ref_genome: File) -> File: align = cast(str, bam.read()) ref = cast(str, ref_genome.read()) vcf = File(bam.path.replace("bam", "vcf")) vcf.write("calls({}, {})".format(align, ref)) return vcf @task() def align_reads_all(fastqs: List[File], ref_genome: File): bams = [align_reads(fastq, ref_genome) for fastq in fastqs] return bams @task() def call_variants_all(bams: List[File], ref_genome: File): vcfs = [call_variants(bam, ref_genome) for bam in bams] return vcfs @task() def main(fastqs: List[File], ref_genome: File): bams = align_reads_all(fastqs, ref_genome) vcfs = call_variants_all(bams, ref_genome) return vcfs ``` A dataflow visualization consists of a series of paragraphs called "dataflow sections" that describe how one of the values is derived. Here is the section for the `bam` value: ``` bam <-- argument of <********> call_variants_all(bams, ref_genome) <-- <********> align_reads_all(fastqs, ref_genome) <-- <********> align_reads(fastq, ref_genome_2) fastq = <********> File(path=sample4.fastq, hash=********) ref_genome = <********> File(path=ref_genome, hash=********) ``` A section is made of three clauses: assignment, routing, and arguments. The assignment clause indicates which CallNode produced this value: ``` bam <-- argument of <********> call_variants_all(bams, ref_genome) ``` Routing clauses, if present, describe a series of additional CallNodes that "route" the value by passing via arguments from parent CallNode to child CallNode, or by results from child CallNode to parent CallNode. ``` <-- result of <********> align_reads_all(fastqs, ref_genome) <-- <********> align_reads(fastq, ref_genome_2) ``` Argument clauses define the value for each argument in the final CallNode. ``` fastq = <********> File(path=sample4.fastq, hash=********) ref_genome = <********> File(path=ref_genome, hash=********) ``` To build this visualization, the following strategy is used: - Given a starting value (e.g. a VCF file in the example above), walk the CallGraph backwards (i.e. upstream) to determine relevant nodes. These are call DataflowNodes, which are connected by DataflowEdges. - DataflowEdges are then grouped into sections. - Each section is then reorganized into a DataflowSectionDOM. A DataflowDOM is the collection of DataflowSectionDOMs. The DOM(document object model) is an intermediate representation that can be rendered in multiple ways. - Once a DataflowDOM is created, it can either be rendered into a textual format, or serialized into JSON for the web frontend. """ import ast import re from collections import defaultdict from enum import Enum from itertools import chain from textwrap import dedent from typing import ( Any, Callable, Dict, Iterable, Iterator, List, NamedTuple, Optional, Set, Tuple, TypeVar, Union, cast, ) from redun.backends.db import Argument, CallNode, RedunBackendDb, Task, Value from redun.utils import assert_never, trim_string T = TypeVar("T") REDUN_INTERNAL_TASKS = { "redun.postprocess_script", "redun.script", } def iter_unique(items: Iterable[T], key: Callable[[T], Any] = lambda x: x) -> Iterator[T]: """ Iterate through unique items. """ seen: Set[T] = set() for item in items: item_key = key(item) if item_key not in seen: yield item seen.add(item_key) class ArgumentValue(NamedTuple): """ A DataflowNode used for tracing one subvalue in an argument. """ argument: Argument value: Value class CallNodeValue(NamedTuple): """ A DataflowNode used for tracing one subvalue of a CallNode result. """ call_node: CallNode value: Value # There are several kinds of DataflowNodes. DataflowNode = Union[ArgumentValue, CallNodeValue, CallNode, Value] class DataflowEdge(NamedTuple): """ An edge in a Dataflow graph. """ src: DataflowNode dest: Optional[DataflowNode] # A grouping of DataflowEdges that are displayed as one "paragraph". DataflowSection = List[DataflowEdge] class DataflowSectionKind(Enum): """ Each dataflow section describes either a task call or a data manipulation. """ CALL = "call" DATA = "data" class DataflowAssign(NamedTuple): """ The assignment clause in a Dataflow DOM. """ var_name: str prefix: str node_display: str node: Optional[DataflowNode] class DataflowRouting(NamedTuple): """ A routing clause in a Dataflow DOM. """ prefix: str node_display: str node: Optional[DataflowNode] class DataflowArg(NamedTuple): """ An argument clause in a Dataflow DOM. """ var_name: str value: Value class DataflowSectionDOM(NamedTuple): """ A section in Dataflow DOM. """ assign: DataflowAssign routing: List[DataflowRouting] args: List[DataflowArg] # The top-level Dataflow DOM. DataflowDOM = Iterable[DataflowSectionDOM] def get_task_args(task: Task) -> List[str]: """ Returns list of argument names of a Task. Raises a SyntaxError if the task source code is not properly formatted. """ # Since we don't currently record the name of positional arguments, # we have to infer them from the source code. code = ast.parse(dedent(task.source)) if not isinstance(code.body[0], ast.FunctionDef): raise SyntaxError("Source code is not a properly formatted function.") # Type ignore is needed since the AST lib does seem to use proper types # everywhere. return [arg.arg for arg in code.body[0].args.args] # type: ignore def make_var_name(var_name_base: str, name2var: Dict[str, DataflowNode], suffix: int = 2) -> str: """ Generate a new variable using a unique suffix (e.g. myvar_2). """ # Strip numerical suffix. var_name_base = re.sub(r"_\d+$", "", var_name_base) if var_name_base not in name2var: # This variable name is already unique. return var_name_base # Search increase suffixes until we find a unique variable name. while True: new_var_name = var_name_base + "_" + str(suffix) if new_var_name not in name2var: return new_var_name suffix += 1 def get_default_arg_name(pos: int) -> str: """ Generate the default name for argument. """ return f"arg{pos}" class DataflowVars: """ Manages variable names for nodes in a dataflow. """ def __init__(self): self.var2name: Dict[DataflowNode, str] = {} self.name2var: Dict[str, DataflowNode] = {} self.task2args: Dict[Task, List[str]] = {} def __getitem__(self, node: DataflowNode) -> str: """ Get a variable name for a DataflowNode. """ return self.var2name[node] def __setitem__(self, node: DataflowNode, var_name: str) -> str: """ Set a new variable name for a DataflowNode. """ self.var2name[node] = var_name self.name2var[var_name] = node return var_name def __contains__(self, node: DataflowNode) -> bool: """ Returns True if node has a variable name. """ return node in self.var2name def get_task_args(self, task: Task) -> List[str]: """ Returns the parameter names of a Task. """ args = self.task2args.get(task) if not args: # Cache task arg names. # TODO: Properly handle variadic args. try: args = self.task2args[task] = get_task_args(task) except SyntaxError: # The argument names cannot be properly parsed. return [] return args def new_var_name( self, node: DataflowNode, base_var_name: Optional[str] = None ) -> Tuple[str, Optional[str]]: """ Get or create a new variable name for a DataflowNode. """ var_name = self.var2name.get(node) if var_name: # Node is already named. return var_name, None if not base_var_name: # Autogenerate base var name from ArgumentValue. assert isinstance(node, ArgumentValue) argument, value = node # Determine new variable name. if argument.arg_key: base_var_name = argument.arg_key else: arg_names = self.get_task_args(argument.call_node.task) if not arg_names: # Use default argument names. base_var_name = get_default_arg_name(argument.arg_position) else: base_var_name = arg_names[argument.arg_position] # Ensure variable name is unique. var_name = make_var_name(base_var_name, self.name2var) self[node] = var_name return var_name, base_var_name def walk_dataflow_value(backend: RedunBackendDb, value: Value) -> Iterator[DataflowEdge]: """ Iterates through the edges in the upstream dataflow graph of a Value. """ # Find upstream CallNodes. # A value can be produced by many CallNodes and it can be a subvalue of # a value produced from many CallNodes. call_nodes = set(value.results) | { call_node for parent in value.parents for call_node in parent.results } call_nodes = {call_node for call_node in call_nodes if not is_internal_task(call_node.task)} def walk_parents(node: CallNode, seen: set) -> Iterator[CallNode]: for parent in node.parents: if parent not in seen: yield parent seen.add(parent) yield from walk_parents(parent, seen) # Determine which CallNodes are just routing CallNodes. # A routing CallNode is an upstream CallNode that is also an ancestor # of another upstream CallNode. seen: Set[CallNode] = set() routing_call_nodes = set() for call_node in call_nodes: for ancestor in walk_parents(call_node, seen): if ancestor in call_nodes: routing_call_nodes.add(ancestor) break # Determine originating CallNodes (upstream and non-routing). originating_call_nodes = call_nodes - routing_call_nodes # Prefer the most recent CallNodes. start_time_call_nodes = [ (job.start_time, call_node) for call_node in originating_call_nodes for job in call_node.jobs ] max_start_time = max((start_time for start_time, _ in start_time_call_nodes), default=None) upstream_call_node = next( ( call_node for start_time, call_node in start_time_call_nodes if start_time == max_start_time ), None, ) # Emit Value-CallNode edges in dataflow. if upstream_call_node: yield DataflowEdge(value, upstream_call_node) else: yield DataflowEdge(value, None) def get_callnode_arguments(call_node: CallNode) -> List[Argument]: """ Returns a CallNode's arguments in sorted order. """ pos_args = [] kw_args = [] for arg in call_node.arguments: if arg.arg_position is not None: pos_args.append(arg) else: kw_args.append(arg) pos_args.sort(key=lambda arg: arg.arg_position) kw_args.sort(key=lambda arg: arg.arg_key) return pos_args + kw_args def walk_dataflow_callnode(backend: RedunBackendDb, call_node: CallNode) -> Iterator[DataflowEdge]: """ Iterates through the upstream Arguments of a CallNode. """ # Emit CallNode-ArgumentValue edges in dataflow. # Reversing the arguments will lead to the traversal to be in original # argument order, which is nicer for display. arguments = get_callnode_arguments(call_node) if arguments: for argument in arguments: yield DataflowEdge(call_node, ArgumentValue(argument, argument.value)) else: # There are no arguments, this is an origin of the dataflow. yield DataflowEdge(call_node, None) def is_internal_task(task: Task) -> bool: """ Returns True if task is an internal redun task. We skip such tasks in the dataflow to avoid clutter. """ return task.fullname in REDUN_INTERNAL_TASKS def walk_dataflow_callnode_value( backend: RedunBackendDb, call_node_value: CallNodeValue ) -> Iterator[DataflowEdge]: """ Iterates through the upstream dataflow edges of a CallNodeValue. The edges either go deeper to the child CallNodes or stay with this CallNode. """ call_node, value = call_node_value def is_subvalue(query_value: Value, target_value: Value) -> bool: value_hashes = chain( [target_value.value_hash], (child.value_hash for child in target_value.children) ) return query_value.value_hash in value_hashes # Prefer the flow from children of call_node over call_node. child_matches = [ child_node for child_node in call_node.children if not is_internal_task(child_node.task) and is_subvalue(value, child_node.value) ] if len(child_matches) == 1: # There is one obvious child CallNode that produced this value. # Follow the dataflow through this child CallNode. [child_node] = child_matches yield DataflowEdge(call_node_value, CallNodeValue(child_node, value)) else: # Otherwise, we follow the dataflow for the whole CallNode. yield DataflowEdge(call_node_value, call_node) def walk_dataflow_argument_value( backend: RedunBackendDb, argument_value: ArgumentValue ) -> Iterator[DataflowEdge]: """ Iterates through the upstream dataflow edges of an ArgumentValue. Edge types: - ArgumentValue <-- CallNodeValue: - Value came from the result of a CallNode. - ArgumentValue <-- ArgumentValue - Value came from argument of parent CallNode, i.e. argument-to-argument routing. - ArgumentValue <-- Origin - Value came directly from user or task. """ argument, value = argument_value is_terminal = True # Determine the most recent common parent CallNode of all the upstream CallNodes. call_node_parents = [set(call_node.parents) for call_node in argument.upstream] call_node_parents.append(set(argument.call_node.parents)) context_call_node = next( iter( sorted( set.intersection(*call_node_parents), key=lambda call_node: call_node.timestamp, reverse=True, ) ), None, ) # Process upstream CallNodes in a consistent order (call_order). if context_call_node: # Use reverse order during emission to get correct order during display. upstream_order = sorted( [ (call_node, edge.call_order) for call_node in argument.upstream for edge in call_node.parent_edges if edge.parent_node == context_call_node ], key=lambda pair: pair[1], reverse=True, ) upstream = [call_node for call_node, _ in upstream_order] else: # Fallback if we can't determine context call node. upstream = argument.upstream # Emit upstream sibling CallNodes. for call_node in iter_unique(upstream): # Order subvalues for consistency. subvalues = sorted(call_node.value.children, key=lambda child: child.value_hash) result_values = iter_unique(chain([call_node.value], subvalues)) match = False for result_value in result_values: if value.value_hash == result_value.value_hash: is_terminal = False match = True yield DataflowEdge( argument_value, CallNodeValue(call_node, result_value), ) if not match: # Default to emitting the whole result of the CallNode. is_terminal = False yield DataflowEdge( argument_value, CallNodeValue(call_node, call_node.value), ) # Emit upstream argument from parent CallNode. # Prefer most recent parent. parent_call_nodes = sorted( argument.call_node.parents, key=lambda parent: parent.timestamp, reverse=True ) for parent_call_node in parent_call_nodes[:1]: for parent_argument in parent_call_node.arguments: parent_values = chain([parent_argument.value], parent_argument.value.children) for parent_value in parent_values: if value.value_hash == parent_value.value_hash: is_terminal = False yield DataflowEdge( argument_value, ArgumentValue(parent_argument, value), ) # Emit terminal origin value. if is_terminal: yield DataflowEdge(argument_value, None) def walk_dataflow_node(backend: RedunBackendDb, node: DataflowNode) -> Iterator[DataflowEdge]: """ Iterates through the upstream dataflow edges of a any DataflowNode. """ if isinstance(node, Value): return walk_dataflow_value(backend, node) elif isinstance(node, CallNode): return walk_dataflow_callnode(backend, node) elif isinstance(node, ArgumentValue): return walk_dataflow_argument_value(backend, node) elif isinstance(node, CallNodeValue): return walk_dataflow_callnode_value(backend, node) else: assert_never(node) def walk_dataflow(backend: RedunBackendDb, init_node: DataflowNode) -> Iterator[DataflowEdge]: """ Iterate through all the upstream dataflow edges of a 'node' in the CallGraph. A 'node' can be a Value, CallNode, CallNodeValue, or an ArgumentValue. """ # Perform depth-first traversal. queue: List[DataflowNode] = [init_node] seen: Set[DataflowNode] = set() while queue: node: DataflowNode = queue.pop() child_edges = list(walk_dataflow_node(backend, node)) yield from child_edges # Reverse edges before pushing on to stack to maintain sibling order. for edge in reversed(child_edges): node2 = edge.dest if node2 is None: # Terminal node of type 'Origin'. continue # Determine whether dest node is unique and should be added to queue. if node2 not in seen: queue.append(node2) seen.add(node2) def get_section_edge_type(edge: DataflowEdge) -> str: """ Classifies a DataflowEdge. """ src, dest = edge if ( isinstance(src, ArgumentValue) and isinstance(dest, CallNodeValue) and src.value.value_hash != dest.value.value_hash ): return "data" elif isinstance(src, CallNode) and isinstance(dest, ArgumentValue): return "call_arg" elif isinstance(src, (Value, CallNodeValue)) and isinstance(dest, CallNode): return "call_result" elif isinstance(src, CallNodeValue) and isinstance(dest, CallNodeValue): return "call_result_routing" elif isinstance(src, ArgumentValue) and isinstance(dest, CallNodeValue): return "call_arg_result_routing" elif isinstance(src, ArgumentValue) and isinstance(dest, ArgumentValue): return "call_arg_routing" elif isinstance(src, CallNode) and dest is None: return "call_origin" elif isinstance(src, ArgumentValue) and dest is None: return "call_arg_origin" elif isinstance(src, Value) and dest is None: return "call_value_origin" else: raise AssertionError(f"Unknown edge type {edge}") def toposort_edges(edges: Iterable[DataflowEdge]) -> Iterator[DataflowEdge]: """ Topologically sort DataflowEdges in depth-first order. """ # Compute indegree. indegrees: Dict[DataflowNode, int] = defaultdict(int) src2edge: Dict[DataflowNode, List[DataflowEdge]] = defaultdict( cast(Callable[[], List[DataflowEdge]], list) ) for edge in edges: src2edge[edge.src].append(edge) # Ensure every node is present in indegrees, including roots. indegrees[edge.src] if edge.dest: indegrees[edge.dest] += 1 # Initialize queue with roots. queue: List[DataflowNode] = [node for node, degree in indegrees.items() if degree == 0] while queue: node = queue.pop() yield from src2edge[node] # Reverse edges before pushing on stack in order to maintain sibling order. for edge in reversed(src2edge[node]): if edge.dest: indegrees[edge.dest] -= 1 if indegrees[edge.dest] == 0: # All parents have been visited, we can enqueue dest. queue.append(edge.dest) def rewrite_call_node_merges(edges: List[DataflowEdge]) -> List[DataflowEdge]: """ Rewrites dataflow graphs to enforce one CallNodeValue per CallNode. This function identifies CallNode that have multilple parent CallNodeValues like this: ArgumentValue --> CallNodeValue --\ V CallNode (merge_node) ^ ArgumentValue --> CallNodeValue --/ and rewrite them to unify the CallNodeValues like this: ArgumentValue --\ V CallNodeValue --> CallNode ^ ArgumentValue --/ """ # Build graph dict. src2edges: Dict[Optional[DataflowNode], List[DataflowEdge]] = defaultdict(list) dest2edges = defaultdict(list) nodes = [] for edge in edges: nodes.append(edge.src) src2edges[edge.src].append(edge) if edge.dest: dest2edges[edge.dest].append(edge) # Find merge nodes. merge_nodes = [ node for node, edges in dest2edges.items() if isinstance(node, CallNode) and len(edges) > 1 ] # Rewrite CallNode merge nodes. for merge_node in merge_nodes: # Find relevant edges and nodes. cv_cn_edges = dest2edges[merge_node] call_node_values = [edge.src for edge in cv_cn_edges] upstream_edges = [ edge for call_node_value in call_node_values for edge in dest2edges[call_node_value] ] upstream_nodes = list(iter_unique(edge.src for edge in upstream_edges)) old_edges = set(cv_cn_edges) | set(upstream_edges) # Create new unified CallNodeValue from call_node_values. unified_node = CallNodeValue(call_node=merge_node, value=merge_node.value) # Create new edges. new_edges = [ DataflowEdge( src=upstream_node, dest=unified_node, ) for upstream_node in upstream_nodes ] + [DataflowEdge(src=unified_node, dest=merge_node)] # Remove old edges from edges. edges2 = [edge for edge in edges if edge not in old_edges] # To keep edges in traversal order, insert new edges right before # the first appearance of the merge_node. insert_index = min(i for i, edge in enumerate(edges2) if edge.src == merge_node) edges = edges2[:insert_index] + new_edges + edges2[insert_index:] return edges def iter_subsections(section: DataflowSection) -> Iterator[DataflowSection]: """ Determines if a section should be broken down into small sections. In real life dataflows, there are some cases where the dataflow merges such that the structure is a DAG, not just a tree. These merges represent a value that was passed to two or more different tasks and then their outputs eventually combine again, either into a single Value like a list or as arguments into a common task. For example, `value` is a merge node in the upstream dataflow of `result`. value = task0() output1 = task1(a=value) output2 = task2(b=value) result = task3(c=output1, d=output2) The upstream dataflow graph of `result` is: Value(result) | V CallNode(task3) ---------------\ | | V V ArgumentValue(task3, key=a) ArgumentValue(task3, key=b) | | V V CallNode(task1) CallNode(task2) | | V V ArgumentValue(task1, key=c) ArgumentValue(task2, key=d) | | V | CallNodeValue(task0, value) <--/ | V CallNode(task0) | V Origin The function `iter_dataflow_section()` will break this graph right after every the `CallNode --> ArgumentValue` edge, resulting in three sections. One of those sections will have a "merge node", `CallNode(task0)`: ArgumentValue(task1, key=c) ArgumentValue(task2, key=d) | | V | CallNodeValue(task0, value) <--/ | V CallNode(task0) | V Origin This function will further break this section into subsections like this: Subsection 1: ArgumentValue(task1, key=c) | V CallNodeValue(task0, value) Subsection 2: ArgumentValue(task2, key=d) | V CallNodeValue(task0, value) Subsection 3: CallNodeValue(task0, value) | V CallNode(task0) | V Origin Ultimately these three subsections get rendered as: c <-- c_2 d <-- c_2 c_2 <-- task() <-- origin """ # Build graph dict. src2edges: Dict[Optional[DataflowNode], List[DataflowEdge]] = defaultdict(list) dest2edges = defaultdict(list) nodes = [] for edge in section: nodes.append(edge.src) src2edges[edge.src].append(edge) if edge.dest: dest2edges[edge.dest].append(edge) # Find roots. Maintain order of appearence in section. roots = [node for node in iter_unique(nodes) if len(dest2edges[node]) == 0] # Find merge nodes. merge_nodes = [node for node, edges in dest2edges.items() if len(edges) > 1] if not merge_nodes: # No merge nodes. Keep section as is. yield section return # Determine subsections. subsection: DataflowSection = [] node: Optional[DataflowNode] for node in roots + merge_nodes: while True: next_edges = src2edges[node] if len(next_edges) != 1: # We have hit the end of the section. # There are either no more edges, or we hitting the arguments. subsection.extend(next_edges) yield subsection subsection = [] break # Path should always be linear. [edge] = next_edges subsection.append(edge) if edge.dest not in merge_nodes: # Follow edge. node = edge.dest else: # We have hit the merge node, stop. yield subsection subsection = [] break def iter_dataflow_sections( dataflow_edges: Iterable[DataflowEdge], ) -> Iterator[Tuple[DataflowSectionKind, DataflowSection]]: """ Yields dataflow sections from an iterable of dataflow edges. A dataflow section is a group of edges representing one 'paragraph' in a dataflow display. value <-- <1234abcd> call_node(arg1, arg2) <-- result of <2345abcd> call_node2(arg3, arg4) arg3 = <3456abcd> 'hello_world' arg4 = <4567abcd> File('foo.txt') """ node2call_section: Dict[DataflowNode, List[Tuple[int, DataflowEdge]]] = {} node2data_section: Dict[DataflowNode, List[Tuple[int, DataflowEdge]]] = defaultdict( cast(Callable[[], List[Tuple[int, DataflowEdge]]], list) ) new_vars: Set[ArgumentValue] = set() section: List[Tuple[int, DataflowEdge]] edges = toposort_edges(dataflow_edges) edge_list = rewrite_call_node_merges(list(edges)) # Group dataflow edges into display sections. # Retain the appearance order of each edge so we can sort sections later. for i, edge in enumerate(edge_list): edge_type = get_section_edge_type(edge) if edge_type == "data": # Edge is a data section edge. node2data_section[edge.src].append((i, edge)) continue if edge_type == "call_arg": # New variable. assert isinstance(edge.dest, ArgumentValue) new_vars.add(edge.dest) if edge.src in new_vars: # src is a new variable so we start a new section. section = [(i, edge)] else: # Get or create section associated with src and add this edge. if edge.src not in node2call_section: section = node2call_section[edge.src] = [] else: section = node2call_section[edge.src] section.append((i, edge)) # Get section associated with dest and union with src section. if edge.dest: if edge.dest not in node2call_section: # dest_section same as src. node2call_section[edge.dest] = section else: # Union dest_section with section. # Although this extend might have dups, I use iter_unique to clean it up. dest_section = node2call_section[edge.dest] dest_section.extend(section) node2call_section[edge.src] = dest_section # Get unique sections. call_sections = iter_unique(node2call_section.values(), key=id) data_sections = node2data_section.values() def get_order_section( int_edges: List[Tuple[int, DataflowEdge]] ) -> Tuple[int, List[DataflowEdge]]: """ Returns a tuple of section appearance order and the section. The appearance order of a section is the maximum order of its edges. We also clean up any duplicate edges that may have been added to the section. """ ints = [] section = [] for i, edge in int_edges: ints.append(i) section.append(edge) return (max(ints), list(iter_unique(section))) # Label each section with its type ("call" or "data") and determine section order. sections = [ (DataflowSectionKind.CALL,) + get_order_section(int_edges) for int_edges in call_sections ] sections.extend( (DataflowSectionKind.DATA,) + get_order_section(int_edges) for int_edges in data_sections ) # Sort sections. sections = sorted(sections, key=lambda row: row[1]) # Yield sections. for kind, _, section2 in sections: if kind == DataflowSectionKind.CALL: # If there is path merging, then we will emit multiple sections. for subsection in iter_subsections(section2): yield (kind, subsection) else: yield (kind, section2) def make_section_dom( section: DataflowSection, dataflow_vars: DataflowVars, new_varname: str = "value", ) -> DataflowSectionDOM: """ Returns DOM for a dataflow section. """ # Determine assign information from first edge in section. src, assign_node = section[0] if isinstance(src, Value): # Start new variable. assign_var_name = dataflow_vars[src] = new_varname elif isinstance(src, (ArgumentValue, CallNodeValue)): # Value should be named already. assign_var_name = dataflow_vars[src] else: assert not isinstance(src, CallNode) assert_never(src) routing_defs: List[Optional[DataflowNode]] = [] arg_defs: List[Tuple[str, Value]] = [] renames: Dict[str, str] = {} # Compute whether this section ends with a variable. is_var2var = isinstance(assign_node, (ArgumentValue, CallNodeValue)) last_routing_node = None # Process remaining edges. for src, dest in section[1:]: if isinstance(src, CallNode) and isinstance(dest, ArgumentValue): # Argument definition edge. var_name, base_var_name = dataflow_vars.new_var_name(dest) if base_var_name: renames[base_var_name] = var_name arg_defs.append((var_name, dest.value)) else: # Routing edge. last_routing_node = dest if isinstance(dest, CallNode): is_var2var = False # Skip unnecessary routing edge, ignore. if not (isinstance(src, CallNodeValue) and isinstance(dest, CallNode)): routing_defs.append(dest) # The last routing def or assign (if there are no routing defs) needs # to rename its variables to be unique. last_line = len(routing_defs) # Create assign clause. if is_var2var and not routing_defs: # Assignment is a var2var. assert assign_node # Name the last node after the first node, if it doesn't have a name yet. base_name = dataflow_vars[section[0].src] var_name, _ = dataflow_vars.new_var_name(assign_node, base_name) dom_assign = DataflowAssign(assign_var_name, "", var_name, assign_node) else: prefix, node_display = display_node(assign_node, renames if last_line == 0 else {}) dom_assign = DataflowAssign(assign_var_name, prefix, node_display, assign_node) # Create routing clauses. dom_routing: List[DataflowRouting] = [] for i, dest in enumerate(routing_defs, 1): prefix, node_display = display_node(dest, renames if i == last_line else {}) dom_routing.append(DataflowRouting(prefix, node_display, dest)) # If last routing node is a Value, as opposed to a CallNode, then this was a # merge node and we should end with a new variable. if is_var2var and isinstance(last_routing_node, (ArgumentValue, CallNodeValue)): # This is a merge node, give it a variable name. assert not arg_defs # Name the last node after the first node, if it doesn't have a name yet. base_name = dataflow_vars[section[0].src] var_name, _ = dataflow_vars.new_var_name(last_routing_node, base_name) dom_routing.append(DataflowRouting("", var_name, last_routing_node)) # Create argument definitions. dom_args: List[DataflowArg] = [DataflowArg(var_name, var) for var_name, var in arg_defs] return DataflowSectionDOM(dom_assign, dom_routing, dom_args) def make_data_section_dom( section: DataflowSection, dataflow_vars: DataflowVars, new_varname: str = "value", ) -> DataflowSectionDOM: """ Returns a DOM for a data section. A data section describes how one value was constructed from several subvalues. For example this dataflow section: parent_value <-- derives from subvalue1 = File(path='file1') subvalue2 = File(path='file2') corresponds to this kind of code: subvalue1 = task1() subvalue2 = task2() parent_value = [subvalue1, subvalue2] task3(parent_value) """ downstream_nodes: Set[DataflowNode] = set() upstream_nodes: List[CallNodeValue] = [] for edge in section: assert isinstance(edge.dest, CallNodeValue) downstream_nodes.add(edge.src) upstream_nodes.append(edge.dest) # Determine assign clause. # We only support one downstream node currently. [downstream_node] = downstream_nodes assign_var_name = dataflow_vars[downstream_node] # Determine arg clauses. args = [] for upstream_node in iter_unique(upstream_nodes): call_node, value = upstream_node # Ensure variable name is unique. base_var_name = upstream_node.call_node.task.name + "_result" new_var_name, _ = dataflow_vars.new_var_name(upstream_node, base_var_name) args.append(DataflowArg(new_var_name, value)) return DataflowSectionDOM( assign=DataflowAssign( var_name=assign_var_name, prefix="", node_display="derives from", node=None ), routing=[], args=args, ) def make_dataflow_dom( dataflow_edges: Iterable[DataflowEdge], new_varname: str = "value" ) -> Iterable[DataflowSectionDOM]: """ Yields dataflow section DOMs from an iterable of dataflow edges. It also performs variable renaming to give every value a unique variable name. """ dataflow_vars = DataflowVars() for kind, section in iter_dataflow_sections(dataflow_edges): if kind == DataflowSectionKind.CALL: yield make_section_dom(section, dataflow_vars, new_varname=new_varname) elif kind == DataflowSectionKind.DATA: yield make_data_section_dom(section, dataflow_vars, new_varname=new_varname) else: raise NotImplementedError(f"Unknown kind '{kind}'.") def get_dataflow_call_node(node: Optional[DataflowNode]) -> Optional[CallNode]: """ Returns the CallNode for a DataflowNode. """ if isinstance(node, CallNode): return node elif isinstance(node, ArgumentValue): return node.argument.call_node elif isinstance(node, CallNodeValue): return node.call_node elif node is None: return None else: assert_never(node) def get_node_hash(node: Optional[DataflowNode]) -> Optional[str]: """ Formats hash for a DataflowNode. """ if isinstance(node, Value): return node.value_hash call_node = get_dataflow_call_node(node) if call_node: return call_node.call_hash return None def display_node(node: Optional[DataflowNode], renames: Dict[str, str]) -> Tuple[str, str]: """ Formats a dataflow node to a string. """ if isinstance(node, CallNode): return ("", display_call_node(node, renames)) elif isinstance(node, ArgumentValue): return ( "argument of", display_call_node(node.argument.call_node, renames), ) elif isinstance(node, CallNodeValue): return ("", display_call_node(node.call_node, renames)) elif node is None: return ("", "origin") else: assert_never(node) def display_call_node(call_node: CallNode, renames: Dict[str, str]) -> str: """ Formats a CallNode to a string. """ try: arg_names = get_task_args(call_node.task) except SyntaxError: arg_names = [get_default_arg_name(i) for i in range(len(call_node.arguments))] args = [renames.get(arg, arg) for arg in arg_names] return "{task_name}({args})".format(task_name=call_node.task.name, args=", ".join(args)) def display_value(value: Value) -> str: """ Format a Value to a string. """ return trim_string(repr(value.value_parsed)) def display_hash(node: Optional[DataflowNode]) -> str: """ Formats hash for a DataflowNode. """ node_hash = get_node_hash(node) if node_hash: return "<{}> ".format(node_hash[:8]) else: return "" def display_section(dom: DataflowSectionDOM) -> Iterator[str]: """ Yields lines for displaying a dataflow section DOM. """ # Display assign line. assign = dom.assign yield "{var_name} <-- {prefix}{value_hash}{value}".format( var_name=assign.var_name, prefix=assign.prefix + " " if assign.prefix else "", value_hash=display_hash(assign.node), value=assign.node_display, ) indent = len(assign.var_name) + 1 # Display routing. for routing_def in dom.routing: yield "{indent}<-- {prefix}{node_hash}{node}".format( indent=" " * indent, prefix=routing_def.prefix + " " if routing_def.prefix else "", node_hash=display_hash(routing_def.node), node=routing_def.node_display, ) # Display argument definitions. if dom.args: max_var_len = max(len(arg.var_name) for arg in dom.args) for arg in dom.args: yield " {var_name}{padding} = <{value_hash}> {var}".format( var_name=arg.var_name, padding=" " * (max_var_len - len(arg.var_name)), value_hash=arg.value.value_hash[:8], var=display_value(arg.value), ) def display_dataflow(dom: DataflowDOM) -> Iterator[str]: """ Yields for lines displaying a dataflow DOM. """ for dom_section in dom: yield from display_section(dom_section) yield "" def serialize_section(dom: DataflowSectionDOM) -> dict: """ Serialize a DataflowSectionDOM to JSON. """ # Serialize assignment. assign_hash: Optional[str] if isinstance(dom.assign.node, Value): assign_hash = dom.assign.node.value_hash assign_job_id = None assign_execution_id = None elif dom.assign.node: call_node = get_dataflow_call_node(dom.assign.node) assert call_node assign_hash = call_node.call_hash # Get latest job of call_node. assign_job = sorted(call_node.jobs, key=lambda job: job.start_time, reverse=True)[0] assign_job_id = assign_job.id assign_execution_id = assign_job.execution.id else: assign_hash = None assign_job_id = None assign_execution_id = None # Serialize routing. routing = [] for routing_def in dom.routing: call_node = get_dataflow_call_node(routing_def.node) if call_node: call_hash: Optional[str] = call_node.call_hash # Get latest job of call_node. job = sorted(call_node.jobs, key=lambda job: job.start_time, reverse=True)[0] job_id: Optional[str] = job.id execution_id: Optional[str] = job.execution.id else: call_hash = None job_id = None execution_id = None routing.append( { "prefix": routing_def.prefix, "hash": call_hash, "display": routing_def.node_display, "job_id": job_id, "execution_id": execution_id, } ) # Serialize arguments. args = [ { "var_name": arg.var_name, "hash": arg.value.value_hash, "value_display": display_value(arg.value), } for arg in dom.args ] return { "assign": { "var_name": dom.assign.var_name, "prefix": dom.assign.prefix, "display": dom.assign.node_display, "hash": assign_hash, "job_id": assign_job_id, "execution_id": assign_execution_id, }, "routing": routing, "args": args, } def serialize_dataflow(dom: DataflowDOM) -> Iterator[dict]: """ Serialize DataflowDOM to JSON. """ for dom_section in dom: yield serialize_section(dom_section)
616
0
81
b0c91e83a9b74bb222678d78da749bca5e26d7a9
1,131
py
Python
visualization_scripts/depth_distributions.py
crmauceri/pytorch-deeplab-xception
aec2cb7b0c09c346519c6bf22c2cbf419021fdc7
[ "MIT" ]
1
2021-12-11T08:21:19.000Z
2021-12-11T08:21:19.000Z
visualization_scripts/depth_distributions.py
crmauceri/rgbd_deeplab
aec2cb7b0c09c346519c6bf22c2cbf419021fdc7
[ "MIT" ]
null
null
null
visualization_scripts/depth_distributions.py
crmauceri/rgbd_deeplab
aec2cb7b0c09c346519c6bf22c2cbf419021fdc7
[ "MIT" ]
null
null
null
import matplotlib.pyplot as plt import scipy.stats import numpy as np from tqdm import tqdm from PIL import Image from deeplab3.config.defaults import get_cfg_defaults from dataloaders.utils import sample_distribution from dataloaders.datasets.cityscapes import CityscapesSegmentation from dataloaders.datasets.coco import COCOSegmentation from dataloaders.datasets.sunrgbd import RGBDSegmentation from dataloaders.SampleLoader import SampleLoader city_rgbd = get_cfg_defaults() city_rgbd.merge_from_file('configs/cityscapes_rgbd.yaml') city_rgbd.merge_from_list(['DATASET.ROOT', 'datasets/cityscapes/', 'DATASET.CITYSCAPES.DEPTH_DIR', 'completed_depth']) sunrgbd_rgbd = get_cfg_defaults() sunrgbd_rgbd.merge_from_file('configs/sunrgbd.yaml') sunrgbd_rgbd.merge_from_list(['DATASET.ROOT', 'datasets/SUNRGBD/']) sunrgbd_rgbd_dist_train = sample_distribution(RGBDSegmentation(sunrgbd_rgbd, split='train'), n=100) sunrgbd_rgbd_dist_test = sample_distribution(RGBDSegmentation(sunrgbd_rgbd, split='test'), n=100) city_rgbd_dist = sample_distribution(CityscapesSegmentation(city_rgbd, split='train'))
37.7
99
0.821397
import matplotlib.pyplot as plt import scipy.stats import numpy as np from tqdm import tqdm from PIL import Image from deeplab3.config.defaults import get_cfg_defaults from dataloaders.utils import sample_distribution from dataloaders.datasets.cityscapes import CityscapesSegmentation from dataloaders.datasets.coco import COCOSegmentation from dataloaders.datasets.sunrgbd import RGBDSegmentation from dataloaders.SampleLoader import SampleLoader city_rgbd = get_cfg_defaults() city_rgbd.merge_from_file('configs/cityscapes_rgbd.yaml') city_rgbd.merge_from_list(['DATASET.ROOT', 'datasets/cityscapes/', 'DATASET.CITYSCAPES.DEPTH_DIR', 'completed_depth']) sunrgbd_rgbd = get_cfg_defaults() sunrgbd_rgbd.merge_from_file('configs/sunrgbd.yaml') sunrgbd_rgbd.merge_from_list(['DATASET.ROOT', 'datasets/SUNRGBD/']) sunrgbd_rgbd_dist_train = sample_distribution(RGBDSegmentation(sunrgbd_rgbd, split='train'), n=100) sunrgbd_rgbd_dist_test = sample_distribution(RGBDSegmentation(sunrgbd_rgbd, split='test'), n=100) city_rgbd_dist = sample_distribution(CityscapesSegmentation(city_rgbd, split='train'))
0
0
0
3934a4a0ed4d91e9682e7a523fecefc8304cc24f
7,933
py
Python
src/cc_catalog_airflow/dags/provider_api_scripts/test_walters_art_museum.py
gauravahlawat81/cccatalog
cabfa11c4e1d68c66390ed46649282b7d33e2c58
[ "MIT" ]
65
2018-05-25T00:47:18.000Z
2021-11-30T05:58:43.000Z
src/cc_catalog_airflow/dags/provider_api_scripts/test_walters_art_museum.py
cc-archive/cccatalog
bc95ccc159ed7f1444d44e1db08d9a11a16c6d12
[ "MIT" ]
463
2018-05-01T14:35:42.000Z
2021-06-11T20:32:50.000Z
src/cc_catalog_airflow/dags/provider_api_scripts/test_walters_art_museum.py
cc-archive/cccatalog
bc95ccc159ed7f1444d44e1db08d9a11a16c6d12
[ "MIT" ]
81
2018-05-05T20:33:12.000Z
2021-04-28T02:23:10.000Z
import os import json import logging import requests from unittest.mock import patch, MagicMock import walters_art_museum as wam RESOURCES = os.path.join( os.path.abspath(os.path.dirname(__file__)), 'tests/resources/waltersartmuseum' ) logging.basicConfig( format='%(asctime)s - %(name)s - %(levelname)s: %(message)s', level=logging.DEBUG ) logger = logging.getLogger(__name__) # _get_image_list test suite # _build_query_param test suite # This test fails if default constants change. # _extract_image_list_from_json test suite # _process_image test suite # _get_creator_info test suite # get_meta_data test suite
32.646091
101
0.708307
import os import json import logging import requests from unittest.mock import patch, MagicMock import walters_art_museum as wam RESOURCES = os.path.join( os.path.abspath(os.path.dirname(__file__)), 'tests/resources/waltersartmuseum' ) logging.basicConfig( format='%(asctime)s - %(name)s - %(levelname)s: %(message)s', level=logging.DEBUG ) logger = logging.getLogger(__name__) def _get_resource_json(json_resource): with open(os.path.join(RESOURCES, json_resource)) as file: json_resource = json.load(file) return json_resource # _get_image_list test suite def test_get_image_list_retries_with_none_response(): with patch.object( wam.delayed_requester, 'get_response_json', return_value=None ) as mock_get: wam._get_image_list('some_class', retries=3) assert mock_get.call_count == 1 def test_get_image_list_retries_with_non_ok_response(): response_json = _get_resource_json('walters_full_response_example.json') r = requests.Response() r.status_code = 504 r.json = MagicMock(return_value=response_json) with patch.object( wam.delayed_requester, 'get_response_json', return_value=r.json() ) as mock_get: wam._get_image_list('some_class', retries=3) assert mock_get.call_count == 1 def test_get_image_list_with_full_response(): response_json = _get_resource_json('walters_full_response_example.json') r = requests.Response() r.status_code = 200 r.json = MagicMock(return_value=response_json) with patch.object( wam.delayed_requester, 'get_response_json', return_value=r.json() ) as mock_get: image_list = wam._get_image_list('Manuscripts & Rare Books', retries=3) # Here image list is same as items list because test example has only one # page and image. In case of more than one pages the image list will be # contain all images of more than one items list. expect_image_list = _get_resource_json('items_list_example.json') assert mock_get.call_count == 1 assert image_list == expect_image_list # _build_query_param test suite # This test fails if default constants change. def test_build_query_param_default(): walters_api_key = 'notset' actual_param_made = wam._build_query_param( apikey=walters_api_key ) expected_param = { 'accept': 'json', 'apikey': walters_api_key, 'pageSize': 100, 'orderBy': 'classification', 'classification': None, 'Page': 1 } assert actual_param_made == expected_param def test_build_query_param_given(): walters_api_key = 'notset' class_param = 'someclass' actual_param_made = wam._build_query_param( class_param=class_param, apikey=walters_api_key ) expected_param = { 'accept': 'json', 'apikey': walters_api_key, 'pageSize': 100, 'orderBy': 'classification', 'classification': class_param, 'Page': 1 } assert actual_param_made == expected_param # _extract_image_list_from_json test suite def test_extract_items_list_from_json_returns_expected_output(): json_response_inpydict_form = _get_resource_json( 'walters_full_response_example.json' ) actual_items_list = wam._extract_items_list_from_json( json_response_inpydict_form ) expect_items_list = _get_resource_json('items_list_example.json') assert actual_items_list == expect_items_list def test_extract_items_list_from_json_returns_nones_given_false_return_stat(): test_dict = { "ReturnStatus": False, "ReturnCode": 404 } assert wam._extract_items_list_from_json(test_dict) is None def test_extract_items_list_from_json_handles_missing_Items(): test_dict = { "ReturnStatus": True, "ReturnCode": 200 } assert wam._extract_items_list_from_json(test_dict) is None def test_extract_items_list_from_json_handles_missing_imgs_in_Items(): test_dict = { "Items": [], "ReturnStatus": True, "ReturnCode": 200 } assert wam._extract_items_list_from_json(test_dict) is None def test_extract_items_list_from_json_returns_nones_given_none_json(): assert wam._extract_items_list_from_json(None) is None # _process_image test suite def test_process_image_returns_expected_output_given_right_input(): image = _get_resource_json('full_image_object.json') with patch.object( wam.image_store, 'add_item', return_value=100 ) as mock_add_item: total_images = wam._process_image(image) expect_meta_data = { "ObjectNumber": "W.569.4A", "PublicAccessDate": "2014-04-25T13:19:25.22", "Collection": "Manuscripts", "Medium": "ink and pigments on thick cream-colored, gold-flecked paper", "Classification": "Manuscripts & Rare Books", "Description": "abc", "CreditLine": "Acquired by Henry Walters", } mock_add_item.assert_called_once_with( foreign_landing_url="http://art.thewalters.org/detail/2", image_url="http://static.thewalters.org/images/CPS_W.569.4a_Fp_DD.jpg", thumbnail_url="http://static.thewalters.org/images/CPS_W.569.4a_Fp_DD.jpg?width=100", license_url="https://creativecommons.org/publicdomain/zero/1.0/", foreign_identifier="W.569.4A", creator="Iranian", creator_url="https://art.thewalters.org/browse/iranian", title="Leaf from Qur'an", meta_data=expect_meta_data ) assert total_images == 100 # _get_creator_info test suite def test_get_creator_info_returns_expected_output_given_right_input(): response_json = _get_resource_json('full_image_object.json') actual_creator, actual_creator_url = wam._get_creator_info(response_json) expected_creator = "Iranian" expected_creator_url = "https://art.thewalters.org/browse/iranian" assert actual_creator == expected_creator assert actual_creator_url == expected_creator_url def test_get_creator_info_returns_none_given_no_creator_info(): response_json = _get_resource_json('no_creator_info.json') actual_creator, actual_creator_url = wam._get_creator_info(response_json) expected_creator = None expected_creator_url = None assert actual_creator == expected_creator assert actual_creator_url == expected_creator_url # get_meta_data test suite def test_get_image_meta_data_returns_full_meta_data_given_right_input(): response_json = _get_resource_json("full_image_object.json") actual_metadata = wam._get_image_meta_data(response_json) expected_metadata = { "ObjectNumber": "W.569.4A", "PublicAccessDate": "2014-04-25T13:19:25.22", "Collection": "Manuscripts", "Medium": "ink and pigments on thick cream-colored, gold-flecked paper", "Classification": "Manuscripts & Rare Books", "Description": "abc", "CreditLine": "Acquired by Henry Walters", } assert actual_metadata == expected_metadata def test_get_image_meta_data_returns_partial_meta_data(): response_json = _get_resource_json("partial_meta_data.json") actual_metadata = wam._get_image_meta_data(response_json) expected_metadata = { "ObjectNumber": "W.569.4A", "PublicAccessDate": "2014-04-25T13:19:25.22", "Collection": "Manuscripts", "Medium": "ink and pigments on thick cream-colored, gold-flecked paper" } assert actual_metadata == expected_metadata def test_get_image_meta_data_return_empty_dict_given_no_meta_data(): response_json = _get_resource_json("no_meta_data.json") actual_metadata = wam._get_image_meta_data(response_json) expected_metadata = {} assert actual_metadata == expected_metadata
6,889
0
385
61df26516d0787ba8bcc1bd61f1621598a533158
89
py
Python
program_files/__init__.py
Vinxenx/SESMG
ca8616ee2b175f949de737890d6f5cd4533f6ee7
[ "MIT" ]
13
2020-12-01T08:41:40.000Z
2021-12-01T22:07:12.000Z
program_files/__init__.py
Vinxenx/SESMG
ca8616ee2b175f949de737890d6f5cd4533f6ee7
[ "MIT" ]
66
2020-08-07T10:34:12.000Z
2022-03-31T13:07:07.000Z
program_files/__init__.py
Vinxenx/SESMG
ca8616ee2b175f949de737890d6f5cd4533f6ee7
[ "MIT" ]
6
2020-08-07T10:26:35.000Z
2022-01-12T09:36:54.000Z
# -*- coding: utf-8 -*- """ Created on Tue Jan 14 09:35:53 2020 @author: Christian """
11.125
35
0.58427
# -*- coding: utf-8 -*- """ Created on Tue Jan 14 09:35:53 2020 @author: Christian """
0
0
0
73716934c248a6b00656fef6bc54f715e7c1296c
12,778
py
Python
scripts/convert.py
kumasento/deacon
d9bf1adfc93d176930ddc43757eb039714c92657
[ "MIT" ]
2
2021-04-11T11:01:34.000Z
2021-04-12T09:18:02.000Z
scripts/convert.py
kumasento/deacon
d9bf1adfc93d176930ddc43757eb039714c92657
[ "MIT" ]
3
2021-04-10T21:06:42.000Z
2021-04-10T21:06:42.000Z
scripts/convert.py
kumasento/maxdeep
d9bf1adfc93d176930ddc43757eb039714c92657
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """ Convert from pre-trained models. """ import argparse import math import os import sys from collections import OrderedDict from dataclasses import dataclass from typing import Dict import numpy as np import onnx import toml from onnx import shape_inference from pydeacon.graph import ( DeaconGraph, Globals, LayerType, Node, Output, OutputType, Parallelism, Seq, Shape, ) @dataclass if __name__ == "__main__": main()
36.824207
121
0.487792
#!/usr/bin/env python3 """ Convert from pre-trained models. """ import argparse import math import os import sys from collections import OrderedDict from dataclasses import dataclass from typing import Dict import numpy as np import onnx import toml from onnx import shape_inference from pydeacon.graph import ( DeaconGraph, Globals, LayerType, Node, Output, OutputType, Parallelism, Seq, Shape, ) def is_power_of_two(n: int) -> bool: return (n & (n - 1) == 0) and n > 0 def next_power_of_two(x: int) -> int: return pow(2, math.ceil(math.log(x) / math.log(2))) @dataclass class Tensor: layer_name: str # from which layer generates this tensor. index: int # which output port class ONNXConverter: def __init__(self, last_padded: bool = False, bit_width: int = 16): self.last_padded = last_padded self.bit_width = bit_width def convert_name(self, name: str): return name.replace("_", "").lower() def get_shape(self, name: str, value_info: dict): shape = value_info[name].type.tensor_type.shape return [x.dim_value for x in shape.dim[1:]] def parse_attrs(self, node) -> Dict: attrs = {} for attr in node.attribute: if attr.name == "kernel_shape": assert np.unique(attr.ints).size == 1 attrs["K"] = attr.ints[0] if attr.name == "pads": assert np.unique(attr.ints).size == 1 attrs["P"] = attr.ints[0] if attr.name == "strides": assert np.unique(attr.ints).size == 1 attrs["S"] = attr.ints[0] if attr.name == "group": attrs["G"] = attr.i return attrs def get_config_suffix(self) -> str: suffix = "_onnx" if self.last_padded: suffix += "_last_padded" if self.bit_width != 16: suffix += f"_b{self.bit_width}" return suffix def convert(self, src_file: str, dst_file: str, init_seq: str): model = onnx.load(src_file) model = shape_inference.infer_shapes(model) G = DeaconGraph( name="_".join(os.path.basename(src_file).split(".")[:-1]).replace("-", "_") + self.get_config_suffix(), globals=Globals( a_bw=self.bit_width, w_bw=self.bit_width, freq=200, coeff_on_chip=True, use_dram=True, num_frac_bits=8 if self.bit_width == 16 else 0, ), ) value_info = {info.name: info for info in model.graph.value_info} for input_tensor in model.graph.input: value_info[input_tensor.name] = input_tensor prev_d_node = None tensor_map: Dict[str, Tensor] = {} for node in model.graph.node: d_node = None if node.op_type not in [ "Conv", "MaxPool", "Relu", "Concat", "Dropout", "Clip", "Add", "BatchNormalization", "Cast", ]: print(node.op_type + " not supported. Break.") break out_shape = self.get_shape(node.output[0], value_info) in_shape = self.get_shape(node.input[0], value_info) attrs = self.parse_attrs(node) print(node.name, node.op_type, in_shape, " -> ", out_shape) new_node = True if node.op_type == "Conv": assert len(node.output) == 1 d_node = Node( name=self.convert_name(node.name), shape=Shape( H=out_shape[1], W=out_shape[2], F=out_shape[0], C=in_shape[0] ), K=attrs["K"], P=attrs["P"], S=attrs["S"], seq=Seq.FILTER_MAJOR, layer_type=LayerType.STANDARD if "G" not in attrs or attrs["G"] != in_shape[0] else LayerType.DEPTHWISE, ) # Fuse into depthwise separable if node.input[0] in tensor_map: input_name = tensor_map[node.input[0]].layer_name if ( d_node.K == 1 and G.node_map[input_name].layer_type == LayerType.DEPTHWISE ): p_node = G.node_map[self.convert_name(input_name)] p_node.layer_type = LayerType.DEPTHWISE_SEPARABLE p_node.shape.F = d_node.shape.F d_node = p_node new_node = False elif node.op_type == "Add": na = G.node_map[tensor_map[node.input[0]].layer_name] nb = G.node_map[tensor_map[node.input[1]].layer_name] nc = G.node_map[nb.inputs[0]] # na --> nc --> nb if ( nb.layer_type == LayerType.DEPTHWISE_SEPARABLE and nc.inputs[0] == na.name and nc.layer_type == LayerType.STANDARD ): # inverted bottleneck nc.outputs.append(Output(output_type=OutputType.IFMAP)) nb.residual = nc.name + "_" + str(len(nc.outputs) - 1) elif ( nb.layer_type == LayerType.STANDARD and nc.inputs[0] == na.name and nc.layer_type == LayerType.STANDARD ): # resnet-18 stack type nc.outputs.append(Output(output_type=OutputType.IFMAP)) nb.residual = nc.name + "_" + str(len(nc.outputs) - 1) elif ( nb.layer_type == LayerType.STANDARD and nc.layer_type == LayerType.STANDARD and nc.inputs[0].split("_")[0] == na.inputs[0].split("_")[0] ): # resnet-18 shortcut # na is the shortcut convolution # should erase na, add a new input to nb, from a duplicated ifmap of nc, and assign residual to that. nc.outputs.append(Output(output_type=OutputType.IFMAP)) extra_input = f"{nc.name}_{len(nc.outputs)-1}" nb.inputs.append(extra_input) nb.residual = extra_input nc.par = Parallelism(P_F=[nc.shape.F // nc.shape.C, 1], P_C=[1]) nb.par = Parallelism(P_C=[nc.shape.F // nc.shape.C, 1], P_F=[1]) # make sure the first output is taken by nc. if "_" in nc.inputs[0]: nc.inputs[0], na.inputs[0] = na.inputs[0], nc.inputs[0] output_node, index = G.get_output(nc.inputs[0]) output_node.outputs[0], output_node.outputs[1] = ( output_node.outputs[1], output_node.outputs[0], ) output_node.output_nodes[0], output_node.output_nodes[1] = ( output_node.output_nodes[1], output_node.output_nodes[0], ) G.node_map = {k: v for k, v in G.node_map.items() if v != na} for input_name in na.inputs: output_node, index = G.get_output(input_name) assert index == len(output_node.outputs) - 1 output_node.outputs.pop(index) output_node.output_nodes.pop(index) else: print("na = ", na) print("nc = ", nc) print("nb = ", nb) assert False d_node = nb new_node = False elif node.op_type == "MaxPool": d_node = Node( name=self.convert_name(node.name), shape=Shape( H=out_shape[1], W=out_shape[2], F=out_shape[0], C=in_shape[0] ), K=attrs["K"], P=attrs["P"], S=attrs["S"], seq=Seq.FILTER_MAJOR, layer_type=LayerType.POOLING, ) elif node.op_type in [ "Relu", "Dropout", "Clip", "BatchNormalization", "Cast", ]: assert prev_d_node d_node = prev_d_node new_node = False elif node.op_type == "Concat": d_node = Node( name=self.convert_name(node.name), shape=Shape( H=out_shape[1], W=out_shape[2], F=out_shape[0], C=in_shape[0] ), K=1, P=0, S=1, seq=Seq.FILTER_MAJOR, layer_type=LayerType.CONCAT, ) else: assert False assert len(node.input) >= 1 # append the current node as one of the output node of its inputs. if new_node: if node.input[0] == "data" or node.input[0] == "input": d_node.inputs = [] # first layer else: for tensor_name in node.input: if tensor_name not in tensor_map: continue # possibly a weight tensor input_name = tensor_map[tensor_name].layer_name key = self.convert_name(input_name) if key == d_node.name: # merged continue if key in G.node_map: input_name = G.node_map[key].name if len(G.node_map[key].output_nodes) >= 1: input_name += "_" + str( len(G.node_map[key].output_nodes) ) d_node.inputs.append(input_name) for input_name in d_node.inputs: input_node, index = G.get_output(input_name) input_node.output_nodes.append(d_node.name) assert len(input_node.output_nodes) == index + 1 # We assume only the original output will be used. input_node.outputs.append( Output(output_type=OutputType.OFMAP, index=0) ) # create entries in the tensor map for i, tensor_name in enumerate(node.output): tensor_map[tensor_name] = Tensor(layer_name=d_node.name, index=i) G.node_map[self.convert_name(node.name)] = d_node prev_d_node = d_node if new_node: print(d_node) prev_d_node.outputs.append(Output(output_type=OutputType.OFMAP)) if self.last_padded: if prev_d_node and not is_power_of_two(prev_d_node.shape.F): print(prev_d_node.shape.F) prev_d_node.shape.F = next_power_of_two(prev_d_node.shape.F) vis = set() for d_node in G.node_map.values(): if d_node.name in vis: continue vis.add(d_node.name) G.initialize_parallelism(d_node) G.initialize_seq( start=Seq.FILTER_MAJOR if init_seq == "FM" else Seq.CHANNEL_MAJOR ) G.sanity_check() G.dump(dst_file) G.dump_spreadsheet( os.path.join( os.path.dirname(dst_file), os.path.basename(dst_file).split(".")[0] + ".csv", ) ) def main(): parser = argparse.ArgumentParser() parser.add_argument("-f", "--model-file", type=str, help="Model file") parser.add_argument( "-o", "--config-file", type=str, help="Dump converted config file" ) parser.add_argument( "--last-padded", action="store_true", help="Whether to pad the last layer to power of 2", ) parser.add_argument("--init-seq", type=str, default="FM", help="Initial seq") parser.add_argument("--bw", type=int, default=8, help="Bit width") args = parser.parse_args() ONNXConverter(last_padded=args.last_padded, bit_width=args.bw).convert( args.model_file, args.config_file, init_seq=args.init_seq ) if __name__ == "__main__": main()
11,919
90
275
47312b896ce1ded775eb5694ed034f119703f054
3,999
py
Python
pma_api/utils.py
joeflack4/pma-api
de213833c93ad0c90b127188526c9eced31edc75
[ "MIT" ]
2
2018-08-24T14:27:25.000Z
2020-05-11T18:59:24.000Z
pma_api/utils.py
joeflack4/pma-api
de213833c93ad0c90b127188526c9eced31edc75
[ "MIT" ]
36
2018-07-13T15:49:50.000Z
2019-07-17T18:29:28.000Z
pma_api/utils.py
joeflack4/pma-api
de213833c93ad0c90b127188526c9eced31edc75
[ "MIT" ]
4
2018-07-12T19:24:52.000Z
2021-03-09T16:08:38.000Z
"""Assortment of utilities for application.""" import itertools import operator import os import random from typing import List from flask_sqlalchemy import Model, SQLAlchemy from pma_api.app import PmaApiFlask B64_CHAR_SET = ''.join(('abcdefghijklmnopqrstuvwxyz', 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', '0123456789-_')) seen = {None} random.seed(2020) def next64(): """Random string generator. Returns: str: Randomly generated string. """ n_char = 8 result = None while result in seen: result = ''.join(random.choice(B64_CHAR_SET) for _ in range(n_char)) seen.add(result) return result def most_common(a_list: list): """Get most common element in a list Args: a_list (list): Any arbitrary list Returns: any: pick the highest-count/earliest item """ # get an iterable of (item, iterable) pairs sorted_list = sorted((x, i) for i, x in enumerate(a_list)) groups = itertools.groupby(sorted_list, key=operator.itemgetter(0)) def _auxfun(grp): """Auxiliary function to get "quality" for an item This function should be used in tandem with max() Args: grp (iterable): an object to returned by max() if the provided iterable passed to max() is empty. """ item, iterable = grp count = 0 min_index = len(a_list) for _, where in iterable: count += 1 min_index = min(min_index, where) return count, -min_index return max(groups, key=_auxfun)[0] def dict_to_pretty_json(dictionary: {}) -> '': """Given a dictionary, pretty print JSON str Args: dictionary (dict): dictionary Returns: str: Prettified JSON string """ import json return json.dumps( dictionary, sort_keys=True, indent=4, separators=(',', ': ')) def join_url_parts(*args: str) -> str: """Join parts of a url string Parts of a URL string may come from different sources, so joining them directly together may yield too many or too few '/' delimiters. Args: *args: Returns: str: Well-formed url """ base_str = '/'.join(args) return 'http://' + base_str.replace('http://', '').replace('//', '/') def get_db_models(db: SQLAlchemy) -> List[Model]: """Get list of models from SqlAlchemy Args: db: SqlAlchemy db object Returns: list(Model): List of registered SqlAlchemy models """ # noinspection PyProtectedMember models: List[Model] = \ [cls for cls in db.Model._decl_class_registry.values() if isinstance(cls, type) and issubclass(cls, db.Model)] return models # TODO 2019.03.10-jef: Get this to work def stderr_stdout_captured(func): """Capture stderr and stdout Args: func: A function Returns: str, str, any: stderr output, stdout output, return of function """ import sys from io import StringIO old_stdout = sys.stdout old_stderr = sys.stderr captured_stderr = sys.stderr = StringIO() captured_stdout = sys.stdout = StringIO() returned_value = func() _err: str = captured_stderr.getvalue() _out: str = captured_stdout.getvalue() sys.stdout = old_stdout sys.stderr = old_stderr return _err, _out, returned_value def get_app_instance() -> PmaApiFlask: """Get reference to copy of currently running application instance Returns: PmaApiFlask: PmaApiFlask application instance. """ err = 'A current running app was not able to be found.' try: from flask import current_app app: PmaApiFlask = current_app if app.__repr__() == '<LocalProxy unbound>': raise RuntimeError(err) except RuntimeError: from pma_api import create_app app: PmaApiFlask = create_app(os.getenv('ENV_NAME', 'default')) return app
23.946108
76
0.628657
"""Assortment of utilities for application.""" import itertools import operator import os import random from typing import List from flask_sqlalchemy import Model, SQLAlchemy from pma_api.app import PmaApiFlask B64_CHAR_SET = ''.join(('abcdefghijklmnopqrstuvwxyz', 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', '0123456789-_')) seen = {None} random.seed(2020) def next64(): """Random string generator. Returns: str: Randomly generated string. """ n_char = 8 result = None while result in seen: result = ''.join(random.choice(B64_CHAR_SET) for _ in range(n_char)) seen.add(result) return result def most_common(a_list: list): """Get most common element in a list Args: a_list (list): Any arbitrary list Returns: any: pick the highest-count/earliest item """ # get an iterable of (item, iterable) pairs sorted_list = sorted((x, i) for i, x in enumerate(a_list)) groups = itertools.groupby(sorted_list, key=operator.itemgetter(0)) def _auxfun(grp): """Auxiliary function to get "quality" for an item This function should be used in tandem with max() Args: grp (iterable): an object to returned by max() if the provided iterable passed to max() is empty. """ item, iterable = grp count = 0 min_index = len(a_list) for _, where in iterable: count += 1 min_index = min(min_index, where) return count, -min_index return max(groups, key=_auxfun)[0] def dict_to_pretty_json(dictionary: {}) -> '': """Given a dictionary, pretty print JSON str Args: dictionary (dict): dictionary Returns: str: Prettified JSON string """ import json return json.dumps( dictionary, sort_keys=True, indent=4, separators=(',', ': ')) def join_url_parts(*args: str) -> str: """Join parts of a url string Parts of a URL string may come from different sources, so joining them directly together may yield too many or too few '/' delimiters. Args: *args: Returns: str: Well-formed url """ base_str = '/'.join(args) return 'http://' + base_str.replace('http://', '').replace('//', '/') def get_db_models(db: SQLAlchemy) -> List[Model]: """Get list of models from SqlAlchemy Args: db: SqlAlchemy db object Returns: list(Model): List of registered SqlAlchemy models """ # noinspection PyProtectedMember models: List[Model] = \ [cls for cls in db.Model._decl_class_registry.values() if isinstance(cls, type) and issubclass(cls, db.Model)] return models # TODO 2019.03.10-jef: Get this to work def stderr_stdout_captured(func): """Capture stderr and stdout Args: func: A function Returns: str, str, any: stderr output, stdout output, return of function """ import sys from io import StringIO old_stdout = sys.stdout old_stderr = sys.stderr captured_stderr = sys.stderr = StringIO() captured_stdout = sys.stdout = StringIO() returned_value = func() _err: str = captured_stderr.getvalue() _out: str = captured_stdout.getvalue() sys.stdout = old_stdout sys.stderr = old_stderr return _err, _out, returned_value def get_app_instance() -> PmaApiFlask: """Get reference to copy of currently running application instance Returns: PmaApiFlask: PmaApiFlask application instance. """ err = 'A current running app was not able to be found.' try: from flask import current_app app: PmaApiFlask = current_app if app.__repr__() == '<LocalProxy unbound>': raise RuntimeError(err) except RuntimeError: from pma_api import create_app app: PmaApiFlask = create_app(os.getenv('ENV_NAME', 'default')) return app
0
0
0
dce593f083f710d9b47b53386014bb2642bc2023
1,084
py
Python
Projects/Online Workouts/w3resource/Basic - Part-I/program-81.py
ivenpoker/Python-Projects
2975e1bd687ec8dbcc7a4842c13466cb86292679
[ "MIT" ]
1
2019-09-23T15:51:45.000Z
2019-09-23T15:51:45.000Z
Projects/Online Workouts/w3resource/Basic - Part-I/program-81.py
ivenpoker/Python-Projects
2975e1bd687ec8dbcc7a4842c13466cb86292679
[ "MIT" ]
5
2021-02-08T20:47:19.000Z
2022-03-12T00:35:44.000Z
Projects/Online Workouts/w3resource/Basic - Part-I/program-81.py
ivenpoker/Python-Projects
2975e1bd687ec8dbcc7a4842c13466cb86292679
[ "MIT" ]
null
null
null
# !/usr/bin/env python3 ####################################################################################### # # # Program purpose: Concatenates N-strings. # # Program Author : Happi Yvan <ivensteinpoker@gmail.com> # # Creation Date : August 27, 2019 # # # ####################################################################################### if __name__ == "__main__": num_str = int(input("Enter number of strings: ")) strs = read_strs(num_str) print(f"\nStrings are: {strs}") # joining strings on '-' print(f"Concatenated strings: {'-'.join(strs)}")
40.148148
87
0.350554
# !/usr/bin/env python3 ####################################################################################### # # # Program purpose: Concatenates N-strings. # # Program Author : Happi Yvan <ivensteinpoker@gmail.com> # # Creation Date : August 27, 2019 # # # ####################################################################################### def read_strs(max_cnt=0): strings = [] tmp = 1 while tmp is not max_cnt+1: tmp_str = str(input(f"Enter string #{tmp}: ")) strings.append(tmp_str) tmp += 1 return strings if __name__ == "__main__": num_str = int(input("Enter number of strings: ")) strs = read_strs(num_str) print(f"\nStrings are: {strs}") # joining strings on '-' print(f"Concatenated strings: {'-'.join(strs)}")
188
0
23
83cdf744bb4105c7bd913cf6fac47cf20ff9faa7
1,741
py
Python
python/test.py
MorenoJoshua/freeswitchManager
b1488f6c9e2a2e3008e758dde46ea9ca22fdec26
[ "MIT" ]
null
null
null
python/test.py
MorenoJoshua/freeswitchManager
b1488f6c9e2a2e3008e758dde46ea9ca22fdec26
[ "MIT" ]
null
null
null
python/test.py
MorenoJoshua/freeswitchManager
b1488f6c9e2a2e3008e758dde46ea9ca22fdec26
[ "MIT" ]
null
null
null
import requests import hmac import hashlib import datetime as dt import simplejson as json access_key = '80473469' # example secret_key = 'GhDzk8Lc00xUzUjHFJqDqLztMNq5KMgU' # example # Generate the X-Timestamp t = dt.datetime.utcnow().replace(microsecond=0) timestamp = t.isoformat() timestamp = '2015-10-29T14:33:46' headers = { 'accept': "application/json", 'x-timestamp': timestamp } # Generate the MD5 hash of the body body = '' body_md5 = hashlib.md5(body).hexdigest() if body != '' else '' # Creating URI info query_params = ['limit=1','page=2'] # Since this is a simple request, we won't set any query params query_params.sort() url_scheme = 'https' net_location = 'api.flowroute.com' method = 'GET' path = '/v1/routes/' ordered_query_params = u'&'.join(query_params) canonical_uri = '{0}://{1}{2}\n{3}'.format(url_scheme, net_location, path, ordered_query_params) # Create the message string tokens = (timestamp, method, body_md5, canonical_uri) message_string = u'\n'.join(tokens).encode('utf-8') # Generate the signature signature = hmac.new(secret_key, message_string, digestmod=hashlib.sha1).hexdigest() # Make the request request_url = '{0}://{1}{2}?{3}'.format(url_scheme, net_location, path, ordered_query_params) # append ordered query params here #request = requests.get(request_url, auth=(access_key, signature), headers=headers) #result = json.loads(request.text) print "timestamp: " + str(timestamp) print "tokens: " + str(tokens) print "canonical_uri: " + str(canonical_uri) print "request_uri: " + str(request_url) print "message_string: " + str(message_string) print "access_key: " + str(access_key) print "signature: " + str(signature) print "headers: " + str(headers) print "" #print str(result)
32.240741
129
0.731189
import requests import hmac import hashlib import datetime as dt import simplejson as json access_key = '80473469' # example secret_key = 'GhDzk8Lc00xUzUjHFJqDqLztMNq5KMgU' # example # Generate the X-Timestamp t = dt.datetime.utcnow().replace(microsecond=0) timestamp = t.isoformat() timestamp = '2015-10-29T14:33:46' headers = { 'accept': "application/json", 'x-timestamp': timestamp } # Generate the MD5 hash of the body body = '' body_md5 = hashlib.md5(body).hexdigest() if body != '' else '' # Creating URI info query_params = ['limit=1','page=2'] # Since this is a simple request, we won't set any query params query_params.sort() url_scheme = 'https' net_location = 'api.flowroute.com' method = 'GET' path = '/v1/routes/' ordered_query_params = u'&'.join(query_params) canonical_uri = '{0}://{1}{2}\n{3}'.format(url_scheme, net_location, path, ordered_query_params) # Create the message string tokens = (timestamp, method, body_md5, canonical_uri) message_string = u'\n'.join(tokens).encode('utf-8') # Generate the signature signature = hmac.new(secret_key, message_string, digestmod=hashlib.sha1).hexdigest() # Make the request request_url = '{0}://{1}{2}?{3}'.format(url_scheme, net_location, path, ordered_query_params) # append ordered query params here #request = requests.get(request_url, auth=(access_key, signature), headers=headers) #result = json.loads(request.text) print "timestamp: " + str(timestamp) print "tokens: " + str(tokens) print "canonical_uri: " + str(canonical_uri) print "request_uri: " + str(request_url) print "message_string: " + str(message_string) print "access_key: " + str(access_key) print "signature: " + str(signature) print "headers: " + str(headers) print "" #print str(result)
0
0
0
366c1976344b76f7e0aa3018661a6d511956da45
4,053
py
Python
oecp/proxy/requests_proxy.py
openeuler-mirror/oecp
967ed6b9e53f2da5f795f49bb5b5fc0423372863
[ "MulanPSL-1.0" ]
null
null
null
oecp/proxy/requests_proxy.py
openeuler-mirror/oecp
967ed6b9e53f2da5f795f49bb5b5fc0423372863
[ "MulanPSL-1.0" ]
null
null
null
oecp/proxy/requests_proxy.py
openeuler-mirror/oecp
967ed6b9e53f2da5f795f49bb5b5fc0423372863
[ "MulanPSL-1.0" ]
null
null
null
# -*- encoding=utf-8 -*- """ # ********************************************************************************** # Copyright (c) Huawei Technologies Co., Ltd. 2020-2020. All rights reserved. # [oecp] is licensed under the Mulan PSL v1. # You can use this software according to the terms and conditions of the Mulan PSL v1. # You may obtain a copy of Mulan PSL v1 at: # http://license.coscl.org.cn/MulanPSL # THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR # PURPOSE. # See the Mulan PSL v1 for more details. # Author: # Create: 2021-09-03 # Description: requests api proxy # ********************************************************************************** """ import logging import sys import traceback from time import time from urllib.request import urlretrieve from urllib.error import URLError from tqdm import tqdm from oecp.utils.unit_convert import convert_bytes logger = logging.getLogger("oecp") def do_download(url, file_path, progress=False, step=1): """ 从url下载,保存到file_path :param url: 远程地址 :param file_path: 文件路径 :param progress: 展示下载进度 :param step: 每次展示进度步数 :return: """ def current_timestamp(): """ 当前秒 :return: """ return int(time()) class ReportHook(object): """ 回调类 """ last_block = 0 download = 0 total = 0 percent = 0 last_time = current_timestamp() def cb(self, block_num=1, block_size=1, total_size=None): """ retrieve reporthook :param block_num: 块编号 :param block_size: 块大小 :param total_size: 总下载大小 :return: """ if not total_size: return self.total = total_size download = (block_num - self.last_block) * block_size now = current_timestamp() interval = now - self.last_time if not interval: return speed = download // interval if not speed: return self.download += download percent = self.download * 100 // self.total est = (self.total - self.download) // speed if percent >= self.percent + step: sys.stderr.write(f"{percent}% [{convert_bytes(self.download)}/{convert_bytes(self.total)}] complete, " f"estimate to take another {est} seconds\n") self.percent = percent self.last_block = block_num self.last_time = now #logger.debug("recommended to use requests.proxy.do_download_tqdm instead if stdout support \"\\r\"") reporthook = ReportHook().cb if progress else None try: logger.debug(f"download {url} to {file_path}") return urlretrieve(url, file_path, reporthook=reporthook) except: logger.debug(f"urlretrieve {url} exception {traceback.format_exc()}") def do_download_tqdm(url, file_path): """ 使用tqdm展示下载进度条 :param url: :param file_path: :return: """ class ReportHook(tqdm): """ 回调类 """ last_block = 0 def cb(self, block_num=1, block_size=1, total_size=None): """ retrieve reporthook :param block_num: 块编号 :param block_size: 块大小 :param total_size: 总下载大小 :return: """ if total_size: self.total = total_size self.update((block_num - self.last_block) * block_size) self.last_block = block_num with ReportHook(unit='iB', unit_scale=True) as progress_bar: try: logger.debug(f"download {url} to {file_path}") return urlretrieve(url, file_path, progress_bar.cb) except: logger.debug(f"urlretrieve {url} exception {traceback.format_exc()}")
30.022222
118
0.564767
# -*- encoding=utf-8 -*- """ # ********************************************************************************** # Copyright (c) Huawei Technologies Co., Ltd. 2020-2020. All rights reserved. # [oecp] is licensed under the Mulan PSL v1. # You can use this software according to the terms and conditions of the Mulan PSL v1. # You may obtain a copy of Mulan PSL v1 at: # http://license.coscl.org.cn/MulanPSL # THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR # PURPOSE. # See the Mulan PSL v1 for more details. # Author: # Create: 2021-09-03 # Description: requests api proxy # ********************************************************************************** """ import logging import sys import traceback from time import time from urllib.request import urlretrieve from urllib.error import URLError from tqdm import tqdm from oecp.utils.unit_convert import convert_bytes logger = logging.getLogger("oecp") def do_download(url, file_path, progress=False, step=1): """ 从url下载,保存到file_path :param url: 远程地址 :param file_path: 文件路径 :param progress: 展示下载进度 :param step: 每次展示进度步数 :return: """ def current_timestamp(): """ 当前秒 :return: """ return int(time()) class ReportHook(object): """ 回调类 """ last_block = 0 download = 0 total = 0 percent = 0 last_time = current_timestamp() def cb(self, block_num=1, block_size=1, total_size=None): """ retrieve reporthook :param block_num: 块编号 :param block_size: 块大小 :param total_size: 总下载大小 :return: """ if not total_size: return self.total = total_size download = (block_num - self.last_block) * block_size now = current_timestamp() interval = now - self.last_time if not interval: return speed = download // interval if not speed: return self.download += download percent = self.download * 100 // self.total est = (self.total - self.download) // speed if percent >= self.percent + step: sys.stderr.write(f"{percent}% [{convert_bytes(self.download)}/{convert_bytes(self.total)}] complete, " f"estimate to take another {est} seconds\n") self.percent = percent self.last_block = block_num self.last_time = now #logger.debug("recommended to use requests.proxy.do_download_tqdm instead if stdout support \"\\r\"") reporthook = ReportHook().cb if progress else None try: logger.debug(f"download {url} to {file_path}") return urlretrieve(url, file_path, reporthook=reporthook) except: logger.debug(f"urlretrieve {url} exception {traceback.format_exc()}") def do_download_tqdm(url, file_path): """ 使用tqdm展示下载进度条 :param url: :param file_path: :return: """ class ReportHook(tqdm): """ 回调类 """ last_block = 0 def cb(self, block_num=1, block_size=1, total_size=None): """ retrieve reporthook :param block_num: 块编号 :param block_size: 块大小 :param total_size: 总下载大小 :return: """ if total_size: self.total = total_size self.update((block_num - self.last_block) * block_size) self.last_block = block_num with ReportHook(unit='iB', unit_scale=True) as progress_bar: try: logger.debug(f"download {url} to {file_path}") return urlretrieve(url, file_path, progress_bar.cb) except: logger.debug(f"urlretrieve {url} exception {traceback.format_exc()}")
0
0
0
de17091d3df24d73c76bf0f93b09db5b447175d3
1,946
py
Python
.vim/plugged/after/pythonx/my_snippet_helpers.py
sharils/home
bccac132b68d8d7cc46f21cae343b9ce99af6e01
[ "Unlicense" ]
3
2018-08-03T11:58:44.000Z
2019-12-12T14:44:36.000Z
.vim/plugged/after/pythonx/my_snippet_helpers.py
sharils/home
bccac132b68d8d7cc46f21cae343b9ce99af6e01
[ "Unlicense" ]
1
2020-08-02T01:14:37.000Z
2020-08-02T01:15:27.000Z
.vim/plugged/after/pythonx/my_snippet_helpers.py
sharils/home
bccac132b68d8d7cc46f21cae343b9ce99af6e01
[ "Unlicense" ]
1
2019-03-02T10:08:10.000Z
2019-03-02T10:08:10.000Z
import re import os import vim
27.408451
112
0.666495
import re import os import vim def around_assign(snip): return '=' in snip.buffer[snip.line] def around_catch(snip): return 'catch' in snip.buffer[snip.line - 1] def around_class(snip): return 'class' in snip.buffer[snip.line] def around_const_let_var(snip): return re.search('const|let|var', snip.buffer[snip.line]) and '=' not in snip.buffer[snip.line] def around_expect(snip): return 'expect' in snip.buffer[snip.line] def around_export(snip): return 'export' in snip.buffer[snip.line] def around_first_line_or_require(snip): return 'const' not in snip.buffer[snip.line] and (snip.line == 0 or 'require' in snip.buffer[snip.line - 1]) def around_for(snip): return 'for' in snip.buffer[snip.line] def around_function(snip): return re.search('=>|function|^\s+\w+\(.*\)', snip.buffer[snip.line]) def around_import(snip): return 'import' in snip.buffer[snip.line] def around_json_parse(snip): return 'JSON.parse' in snip.v def around_regex(snip): return re.search('/.+/', snip.buffer[snip.line]) def around_require(snip): return 'require' in snip.buffer[snip.line] def around_switch(snip): return re.search('break|switch', snip.buffer[snip.line - 1]) or ( snip.line - 2 >= 0 and 'case' in snip.buffer[snip.line - 2] and 'return' in snip.buffer[snip.line - 1] ) def around_template_string(snip): return '`' in snip.buffer[snip.line] def around_throw(snip): return 'throw' in snip.buffer[snip.line] def importname(path): return to_camel(re.sub('\..*', '', os.path.basename(path))) def path_and_line(): return vim.eval("'\"'. expand('%') . ':' . line('.') . '\"'") def singularize(plural): return re.sub('(?<!e)es|s$', '', plural) def singularize_idx(plural): return singularize(plural) + 'Idx' if len(plural) > 0 else plural def to_camel(text): return re.sub('[-_]([a-zA-Z0-9])', lambda m: m.group(1).upper(), text)
1,432
0
483
681bb0f26e4f2b6b3ed857eda5a41e22243ccaba
3,488
py
Python
angr/procedures/definitions/win32_api-ms-win-wsl-api-l1-1-0.py
r4b3rt/angr
c133cfd4f83ffea2a1d9e064241e9459eaabc55f
[ "BSD-2-Clause" ]
null
null
null
angr/procedures/definitions/win32_api-ms-win-wsl-api-l1-1-0.py
r4b3rt/angr
c133cfd4f83ffea2a1d9e064241e9459eaabc55f
[ "BSD-2-Clause" ]
null
null
null
angr/procedures/definitions/win32_api-ms-win-wsl-api-l1-1-0.py
r4b3rt/angr
c133cfd4f83ffea2a1d9e064241e9459eaabc55f
[ "BSD-2-Clause" ]
null
null
null
# pylint:disable=line-too-long import logging from ...sim_type import SimTypeFunction, SimTypeShort, SimTypeInt, SimTypeLong, SimTypeLongLong, SimTypeDouble, SimTypeFloat, SimTypePointer, SimTypeChar, SimStruct, SimTypeFixedSizeArray, SimTypeBottom, SimUnion, SimTypeBool from ...calling_conventions import SimCCStdcall, SimCCMicrosoftAMD64 from .. import SIM_PROCEDURES as P from . import SimLibrary _l = logging.getLogger(name=__name__) lib = SimLibrary() lib.set_default_cc('X86', SimCCStdcall) lib.set_default_cc('AMD64', SimCCMicrosoftAMD64) lib.set_library_names("api-ms-win-wsl-api-l1-1-0.dll") prototypes = \ { # 'WslIsDistributionRegistered': SimTypeFunction([SimTypePointer(SimTypeChar(label="Char"), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["distributionName"]), # 'WslRegisterDistribution': SimTypeFunction([SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimTypeChar(label="Char"), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["distributionName", "tarGzFilename"]), # 'WslUnregisterDistribution': SimTypeFunction([SimTypePointer(SimTypeChar(label="Char"), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["distributionName"]), # 'WslConfigureDistribution': SimTypeFunction([SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypeInt(signed=False, label="WSL_DISTRIBUTION_FLAGS")], SimTypeInt(signed=True, label="Int32"), arg_names=["distributionName", "defaultUID", "wslDistributionFlags"]), # 'WslGetDistributionConfiguration': SimTypeFunction([SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimTypeInt(signed=False, label="UInt32"), offset=0), SimTypePointer(SimTypeInt(signed=False, label="UInt32"), offset=0), SimTypePointer(SimTypeInt(signed=False, label="WSL_DISTRIBUTION_FLAGS"), offset=0), SimTypePointer(SimTypePointer(SimTypePointer(SimTypeChar(label="Byte"), offset=0), offset=0), offset=0), SimTypePointer(SimTypeInt(signed=False, label="UInt32"), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["distributionName", "distributionVersion", "defaultUID", "wslDistributionFlags", "defaultEnvironmentVariables", "defaultEnvironmentVariableCount"]), # 'WslLaunchInteractive': SimTypeFunction([SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypeInt(signed=True, label="Int32"), SimTypePointer(SimTypeInt(signed=False, label="UInt32"), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["distributionName", "command", "useCurrentWorkingDirectory", "exitCode"]), # 'WslLaunch': SimTypeFunction([SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypeInt(signed=True, label="Int32"), SimTypePointer(SimTypeInt(signed=True, label="Int"), label="IntPtr", offset=0), SimTypePointer(SimTypeInt(signed=True, label="Int"), label="IntPtr", offset=0), SimTypePointer(SimTypeInt(signed=True, label="Int"), label="IntPtr", offset=0), SimTypePointer(SimTypePointer(SimTypeInt(signed=True, label="Int"), label="IntPtr", offset=0), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["distributionName", "command", "useCurrentWorkingDirectory", "stdIn", "stdOut", "stdErr", "process"]), } lib.set_prototypes(prototypes)
96.888889
706
0.746273
# pylint:disable=line-too-long import logging from ...sim_type import SimTypeFunction, SimTypeShort, SimTypeInt, SimTypeLong, SimTypeLongLong, SimTypeDouble, SimTypeFloat, SimTypePointer, SimTypeChar, SimStruct, SimTypeFixedSizeArray, SimTypeBottom, SimUnion, SimTypeBool from ...calling_conventions import SimCCStdcall, SimCCMicrosoftAMD64 from .. import SIM_PROCEDURES as P from . import SimLibrary _l = logging.getLogger(name=__name__) lib = SimLibrary() lib.set_default_cc('X86', SimCCStdcall) lib.set_default_cc('AMD64', SimCCMicrosoftAMD64) lib.set_library_names("api-ms-win-wsl-api-l1-1-0.dll") prototypes = \ { # 'WslIsDistributionRegistered': SimTypeFunction([SimTypePointer(SimTypeChar(label="Char"), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["distributionName"]), # 'WslRegisterDistribution': SimTypeFunction([SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimTypeChar(label="Char"), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["distributionName", "tarGzFilename"]), # 'WslUnregisterDistribution': SimTypeFunction([SimTypePointer(SimTypeChar(label="Char"), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["distributionName"]), # 'WslConfigureDistribution': SimTypeFunction([SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypeInt(signed=False, label="UInt32"), SimTypeInt(signed=False, label="WSL_DISTRIBUTION_FLAGS")], SimTypeInt(signed=True, label="Int32"), arg_names=["distributionName", "defaultUID", "wslDistributionFlags"]), # 'WslGetDistributionConfiguration': SimTypeFunction([SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimTypeInt(signed=False, label="UInt32"), offset=0), SimTypePointer(SimTypeInt(signed=False, label="UInt32"), offset=0), SimTypePointer(SimTypeInt(signed=False, label="WSL_DISTRIBUTION_FLAGS"), offset=0), SimTypePointer(SimTypePointer(SimTypePointer(SimTypeChar(label="Byte"), offset=0), offset=0), offset=0), SimTypePointer(SimTypeInt(signed=False, label="UInt32"), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["distributionName", "distributionVersion", "defaultUID", "wslDistributionFlags", "defaultEnvironmentVariables", "defaultEnvironmentVariableCount"]), # 'WslLaunchInteractive': SimTypeFunction([SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypeInt(signed=True, label="Int32"), SimTypePointer(SimTypeInt(signed=False, label="UInt32"), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["distributionName", "command", "useCurrentWorkingDirectory", "exitCode"]), # 'WslLaunch': SimTypeFunction([SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypePointer(SimTypeChar(label="Char"), offset=0), SimTypeInt(signed=True, label="Int32"), SimTypePointer(SimTypeInt(signed=True, label="Int"), label="IntPtr", offset=0), SimTypePointer(SimTypeInt(signed=True, label="Int"), label="IntPtr", offset=0), SimTypePointer(SimTypeInt(signed=True, label="Int"), label="IntPtr", offset=0), SimTypePointer(SimTypePointer(SimTypeInt(signed=True, label="Int"), label="IntPtr", offset=0), offset=0)], SimTypeInt(signed=True, label="Int32"), arg_names=["distributionName", "command", "useCurrentWorkingDirectory", "stdIn", "stdOut", "stdErr", "process"]), } lib.set_prototypes(prototypes)
0
0
0