hexsha
stringlengths
40
40
size
int64
7
1.04M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
247
max_stars_repo_name
stringlengths
4
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
368k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
247
max_issues_repo_name
stringlengths
4
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
247
max_forks_repo_name
stringlengths
4
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.04M
avg_line_length
float64
1.77
618k
max_line_length
int64
1
1.02M
alphanum_fraction
float64
0
1
original_content
stringlengths
7
1.04M
filtered:remove_function_no_docstring
int64
-102
942k
filtered:remove_class_no_docstring
int64
-354
977k
filtered:remove_delete_markers
int64
0
60.1k
9d16548fc6a8b1b86bb49107b9c13023f78ef594
3,051
py
Python
publish/tests/models.py
nacady/django-publish
a9b0b0b0ce0a2cd664d256edc4c819180dc882df
[ "BSD-3-Clause" ]
null
null
null
publish/tests/models.py
nacady/django-publish
a9b0b0b0ce0a2cd664d256edc4c819180dc882df
[ "BSD-3-Clause" ]
null
null
null
publish/tests/models.py
nacady/django-publish
a9b0b0b0ce0a2cd664d256edc4c819180dc882df
[ "BSD-3-Clause" ]
1
2021-06-28T03:59:45.000Z
2021-06-28T03:59:45.000Z
from django.db import models from datetime import datetime from publish.models import Publishable # publishable model with a reverse relation to # page (as a child) # non-publishable reverse relation to page (as a child) update_pub_date.pub_date = datetime.now()
29.621359
74
0.715831
from django.db import models from datetime import datetime from publish.models import Publishable class Site(models.Model): title = models.CharField(max_length=100) domain = models.CharField(max_length=100) class FlatPage(Publishable): url = models.CharField(max_length=100, db_index=True) title = models.CharField(max_length=200) content = models.TextField(blank=True) enable_comments = models.BooleanField() template_name = models.CharField(max_length=70, blank=True) registration_required = models.BooleanField() sites = models.ManyToManyField(Site) class Meta: ordering = ['url'] def get_absolute_url(self): if self.is_public: return self.url return '%s*' % self.url class Author(Publishable): name = models.CharField(max_length=100) profile = models.TextField(blank=True) class PublishMeta(Publishable.PublishMeta): publish_reverse_fields = ['authorprofile'] class AuthorProfile(Publishable): author = models.OneToOneField(Author) extra_profile = models.TextField(blank=True) class ChangeLog(models.Model): changed = models.DateTimeField(db_index=True, auto_now_add=True) message = models.CharField(max_length=200) class Tag(models.Model): title = models.CharField(max_length=100, unique=True) slug = models.CharField(max_length=100) # publishable model with a reverse relation to # page (as a child) class PageBlock(Publishable): page = models.ForeignKey('Page') content = models.TextField(blank=True) # non-publishable reverse relation to page (as a child) class Comment(models.Model): page = models.ForeignKey('Page') comment = models.TextField() def update_pub_date(page, field_name, value): # ignore value entirely and replace with now setattr(page, field_name, update_pub_date.pub_date) update_pub_date.pub_date = datetime.now() class Page(Publishable): slug = models.CharField(max_length=100, db_index=True) title = models.CharField(max_length=200) content = models.TextField(blank=True) pub_date = models.DateTimeField(default=datetime.now) parent = models.ForeignKey('self', blank=True, null=True) authors = models.ManyToManyField(Author, blank=True) log = models.ManyToManyField(ChangeLog, blank=True) tags = models.ManyToManyField(Tag, through='PageTagOrder', blank=True) class Meta: ordering = ['slug'] class PublishMeta(Publishable.PublishMeta): publish_exclude_fields = ['log'] publish_reverse_fields = ['pageblock_set'] publish_functions = {'pub_date': update_pub_date} def get_absolute_url(self): if not self.parent: return u'/%s/' % self.slug return '%s%s/' % (self.parent.get_absolute_url(), self.slug) class PageTagOrder(Publishable): # note these are named in non-standard way to # ensure we are getting correct names tagged_page = models.ForeignKey(Page) page_tag = models.ForeignKey(Tag) tag_order = models.IntegerField()
364
2,160
251
772b21e88da8f6ee452593fcfccc34cec501a301
1,226
py
Python
flower/db.py
guhaiqiao/Flower_app
eae9b6ce066544e8b505c98d202527d86cea9357
[ "MIT" ]
1
2020-12-14T01:48:20.000Z
2020-12-14T01:48:20.000Z
flower/db.py
guhaiqiao/Flower_app
eae9b6ce066544e8b505c98d202527d86cea9357
[ "MIT" ]
null
null
null
flower/db.py
guhaiqiao/Flower_app
eae9b6ce066544e8b505c98d202527d86cea9357
[ "MIT" ]
null
null
null
import sqlite3 import glob import os import click from flask import current_app, g from flask.cli import with_appcontext @click.command('init-db') @with_appcontext
23.576923
72
0.615824
import sqlite3 import glob import os import click from flask import current_app, g from flask.cli import with_appcontext def get_db(): if 'db' not in g: g.db = sqlite3.connect(current_app.config['DATABASE'], detect_types=sqlite3.PARSE_DECLTYPES) g.db.row_factory = sqlite3.Row return g.db def close_db(e=None): db = g.pop('db', None) if db is not None: db.close() def init_db(): db = get_db() paths = [ '/image/user_image', '/image/flower_image', '/image/blog_image', '/image/index_image' ] for path in paths: if not os.path.exists(os.getcwd() + path): os.mkdir(os.getcwd() + path) for picture in glob.glob(os.getcwd() + '/image/*/*.jpg'): print(picture.split('/')[-1]) if picture.split('/')[-1] != 'default.jpg': os.remove(picture) with current_app.open_resource('schema.sql') as f: db.executescript(f.read().decode('utf8')) @click.command('init-db') @with_appcontext def init_db_command(): init_db() click.echo('Initialized the database') def init_app(app): app.teardown_appcontext(close_db) app.cli.add_command(init_db_command)
942
0
114
c4bcfd12173f327f06cebc80aa483d7df62edc93
3,151
py
Python
tests/test_ddg_global_var_dependencies.py
Kyle-Kyle/angr
345b2131a7a67e3a6ffc7d9fd475146a3e12f837
[ "BSD-2-Clause" ]
6,132
2015-08-06T23:24:47.000Z
2022-03-31T21:49:34.000Z
tests/test_ddg_global_var_dependencies.py
Kyle-Kyle/angr
345b2131a7a67e3a6ffc7d9fd475146a3e12f837
[ "BSD-2-Clause" ]
2,272
2015-08-10T08:40:07.000Z
2022-03-31T23:46:44.000Z
tests/test_ddg_global_var_dependencies.py
Kyle-Kyle/angr
345b2131a7a67e3a6ffc7d9fd475146a3e12f837
[ "BSD-2-Clause" ]
1,155
2015-08-06T23:37:39.000Z
2022-03-31T05:54:11.000Z
import os import angr import nose test_location = str(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../binaries/tests')) arches = {'x86_64'} if __name__ == "__main__": main()
43.164384
171
0.720406
import os import angr import nose test_location = str(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../binaries/tests')) arches = {'x86_64'} def main(): test_ddg_global_var_dependencies() def test_ddg_global_var_dependencies(): for arch in arches: run_ddg_global_var_dependencies(arch) def run_ddg_global_var_dependencies(arch): test_file = os.path.join(test_location, arch, 'ddg_global_var_dependencies') proj = angr.Project(test_file, auto_load_libs=False) cfg = proj.analyses.CFGEmulated(context_sensitivity_level=2, keep_state=True, state_add_options=angr.sim_options.refs) ddg = proj.analyses.DDG(cfg) main_func = cfg.functions.function(name='main') target_block_addr = main_func.ret_sites[0].addr target_block = proj.factory.block(addr=target_block_addr) tgt_stmt_idx, tgt_stmt = get_target_stmt(proj, target_block) assert tgt_stmt_idx is not None buf_addr = tgt_stmt.data.addr.con.value tgt_ddg_node = get_ddg_node(ddg, target_block_addr, tgt_stmt_idx) assert tgt_ddg_node is not None # Whether the target depends on the statement assigning 'b' to the global variable has_correct_dependency = False for pred in ddg.get_predecessors(tgt_ddg_node): pred_block = proj.factory.block(addr=pred.block_addr) stmt = pred_block.vex.statements[pred.stmt_idx] has_correct_dependency |= check_dependency(stmt, buf_addr, ord('b')) # If the target depends on the statement assigning 'a' to the global variable, it is underconstrained (this assignment should be overwritten by the 'b' assignment) nose.tools.assert_false(check_dependency(stmt, buf_addr, ord('a')), msg="Target statement has incorrect dependency (DDG is underconstrained)") nose.tools.assert_true(has_correct_dependency, msg='Target statement does not have correct dependency (DDG is overconstrained)') def check_dependency(stmt, addr, const): # Check if we are storing a constant to a variable with constant address if stmt.tag == 'Ist_Store' and stmt.addr.tag == 'Iex_Const' and stmt.data.tag == 'Iex_Const': # Check if we are storing the specified constant to the specified variable address if stmt.addr.con.value == addr and stmt.data.con.value == const: return True return False def get_ddg_node(ddg, block_addr, stmt_idx): for node in ddg.graph.nodes: if node.block_addr == block_addr and node.stmt_idx == stmt_idx: return node return None def get_target_stmt(proj, block): for i, stmt in enumerate(block.vex.statements): # We're looking for the instruction that loads a constant memory address into a temporary variable if stmt.tag == 'Ist_WrTmp' and stmt.data.tag == 'Iex_Load' and stmt.data.addr.tag == 'Iex_Const': addr = stmt.data.addr.con.value section = proj.loader.main_object.find_section_containing(addr) # Confirm the memory address is in the uninitialized data section if section.name == '.bss': return i, stmt return None, None if __name__ == "__main__": main()
2,812
0
138
83b0710d125addf1a454b4ea6976092a23001346
930
py
Python
src/IO.py
Rahoo11/Jarvis
6fac03e6f7bb963d0632ec781323210b3379603b
[ "MIT" ]
null
null
null
src/IO.py
Rahoo11/Jarvis
6fac03e6f7bb963d0632ec781323210b3379603b
[ "MIT" ]
null
null
null
src/IO.py
Rahoo11/Jarvis
6fac03e6f7bb963d0632ec781323210b3379603b
[ "MIT" ]
null
null
null
from datetime import datetime import logging # LOGGING SETTINGS # Save detailed information to log file handler_file = logging.FileHandler("jarvis.log") handler_file.setFormatter(logging.Formatter( "%(asctime)s %(levelname)s %(filename)s:%(lineno)d - %(message)s", "%Y-%m-%d %H:%M:%S" )) # Output simple information to stderr handler_stderr = logging.StreamHandler() handler_stderr.setFormatter(logging.Formatter("%(levelname)s: %(message)s")) # Log everything of level INFO or higher (everything apart from DEBUG) logging.basicConfig( level=logging.INFO, handlers=[ handler_file, handler_stderr ] ) # END LOGGING SETTINGS def stdin() -> str: """ Use this to input commands for Jarvis if the desired way fails """ return input("Command: ") def stdout(response: str): """ Use this to output Jarvis's response if the desired way fails """ print(response)
22.682927
76
0.691398
from datetime import datetime import logging # LOGGING SETTINGS # Save detailed information to log file handler_file = logging.FileHandler("jarvis.log") handler_file.setFormatter(logging.Formatter( "%(asctime)s %(levelname)s %(filename)s:%(lineno)d - %(message)s", "%Y-%m-%d %H:%M:%S" )) # Output simple information to stderr handler_stderr = logging.StreamHandler() handler_stderr.setFormatter(logging.Formatter("%(levelname)s: %(message)s")) # Log everything of level INFO or higher (everything apart from DEBUG) logging.basicConfig( level=logging.INFO, handlers=[ handler_file, handler_stderr ] ) # END LOGGING SETTINGS def stdin() -> str: """ Use this to input commands for Jarvis if the desired way fails """ return input("Command: ") def stdout(response: str): """ Use this to output Jarvis's response if the desired way fails """ print(response)
0
0
0
6bf254e4d47110abc5fa56df01806709a669c1dd
8,744
py
Python
sfo.py
ayassinsayed/py.dataformat.sfo
99b2ad11b162318f7e5251a760bd5b53e1cf826d
[ "MIT" ]
1
2021-09-06T04:27:13.000Z
2021-09-06T04:27:13.000Z
sfo.py
Jasily/py.dataformat.sfo
99b2ad11b162318f7e5251a760bd5b53e1cf826d
[ "MIT" ]
null
null
null
sfo.py
Jasily/py.dataformat.sfo
99b2ad11b162318f7e5251a760bd5b53e1cf826d
[ "MIT" ]
4
2017-10-28T18:31:00.000Z
2021-01-26T00:24:18.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2016 - cologler <skyoflw@gmail.com> # ---------- # # ---------- import io __all__ = [ 'FormatError', 'SfoFile', 'PSVGameSfo', 'PSPGameSfo', ] _BYTE_ORDER = 'little' if __name__ == '__main__': for i in range(0, 1): test(r'test_res\param_%s.sfo' % str(i).rjust(2, '0'))
28.763158
98
0.589776
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2016 - cologler <skyoflw@gmail.com> # ---------- # # ---------- import io __all__ = [ 'FormatError', 'SfoFile', 'PSVGameSfo', 'PSPGameSfo', ] class FormatError(Exception): pass _BYTE_ORDER = 'little' class Header: def __init__(self): # uint32_t magic; Always PSF # uint32_t version; Usually 1.1 # uint32_t key_table_start; Start offset of key_table # uint32_t data_table_start; Start offset of data_table # uint32_t tables_entries; Number of entries in all tables self._magic = None self._version = None self._key_table_start = None self._data_table_start = None self._tables_entries = None @property def key_table_start(self): return self._key_table_start @property def data_table_start(self): return self._data_table_start @property def tables_entries(self): return self._tables_entries def fix_data(self, sfo): self._tables_entries = len(sfo) raise NotImplementedError def from_reader(self, reader): self._magic = reader.read(4) self._version = reader.read(4) self._key_table_start = int.from_bytes(reader.read(4), _BYTE_ORDER) self._data_table_start = int.from_bytes(reader.read(4), _BYTE_ORDER) self._tables_entries = int.from_bytes(reader.read(4), _BYTE_ORDER) if self._magic != b'\x00PSF': raise FormatError return self class IndexTableEntry: FORMAT_UTF8S = b'\x04\x00' '''utf8 character string, NULL terminated''' FORMAT_UTF8 = b'\x04\x02' ''' Allways has a length of 4 bytes in len and max_len (even in the case some bytes are not used, all them are marked as used) ''' FORMAT_INT32 = b'\x04\x04' def __init__(self): # uint16_t key_offset; param_key offset (relative to start offset of key_table) */ # uint16_t data_fmt; param_data data type */ # uint32_t data_len; param_data used bytes */ # uint32_t data_max_len; param_data total bytes */ # uint32_t data_offset; param_data offset (relative to start offset of data_table) */ self._key_offset = None self._data_fmt = None self._data_len = None self._data_max_len = None self._data_offset = None @property def key_offset(self): return self._key_offset @property def data_fmt(self): return self._data_fmt @property def data_len(self): return self._data_len @property def data_offset(self): return self._data_offset @property def data_max_len(self): return self._data_max_len def fix_data(self, data): raise NotImplementedError def from_reader(self, reader): self._key_offset = int.from_bytes(reader.read(2), _BYTE_ORDER) self._data_fmt = reader.read(2) self._data_len = int.from_bytes(reader.read(4), _BYTE_ORDER) self._data_max_len = int.from_bytes(reader.read(4), _BYTE_ORDER) self._data_offset = int.from_bytes(reader.read(4), _BYTE_ORDER) if self._data_fmt != self.FORMAT_UTF8 and\ self._data_fmt != self.FORMAT_INT32 and\ self._data_fmt != self.FORMAT_UTF8S: print(self._data_fmt) raise FormatError class Data: def __init__(self): self._index_table_entry = IndexTableEntry() self._key = None self._value = None @property def index_table_entry(self): return self._index_table_entry @property def key(self): return self._key @property def value(self): return self._value def fix_data(self): self._index_table_entry.fix_data(self) raise NotImplementedError def __seek(self, reader, offset): pos = reader.tell() if pos != offset: reader.seek(offset) def key_from_reader(self, reader, header): offset = header.key_table_start + self._index_table_entry.key_offset self.__seek(reader, offset) buffer = b'' while True: b = reader.read(1) if b == b'\x00': break buffer += b self._key = buffer.decode('utf8') def value_from_reader(self, reader, header): offset = header.data_table_start + self._index_table_entry.data_offset self.__seek(reader, offset) buffer = reader.read(self._index_table_entry.data_max_len) if self._index_table_entry.data_fmt == IndexTableEntry.FORMAT_UTF8: i = buffer.find(b'\x00') assert i >= 0 buffer = buffer[:i] self._value = buffer.decode('utf8') elif self._index_table_entry.data_fmt == IndexTableEntry.FORMAT_INT32: assert len(buffer) == 4 self._value = int.from_bytes(buffer, _BYTE_ORDER) else: raise NotImplementedError class SfoFile: def __init__(self, header, data): assert isinstance(header, Header) self._header = header self._data = {} for d in data: self._data[d.key] = d def __contains__(self, key): return key in self._data def __getitem__(self, key): return self._data[key].value def __setitem__(self, key, value): raise NotImplementedError def __delitem__(self, key): raise NotImplementedError def __len__(self): return len(self._data) def keys(self): return self._data.keys() def values(self): return self._data.values() def get_or_None(self, key): r = self._data.get(key, None) return None if r == None else r.value def _fix_data(self): for v in self.values(): v.fix_data() self._header.fix_data(self) raise NotImplementedError @staticmethod def from_reader(reader): header = Header().from_reader(reader) datas = [Data() for _ in range(0, header.tables_entries)] for d in datas: d.index_table_entry.from_reader(reader) for d in datas: d.key_from_reader(reader, header) for d in datas: d.value_from_reader(reader, header) sfo = SfoFile(header, datas) return sfo @staticmethod def from_bytes(buffer): return SfoFile.from_reader(io.BytesIO(buffer)) class _Loader: def __init__(self, sfo: SfoFile, key): self._sfo = sfo self._key = key self._value = None self._is_loaded = False def refresh(self): self._is_loaded = False @property def value(self): if not self._is_loaded: self._value = self._sfo.get_or_None(self._key) self._is_loaded = True return self._value class SfoInfoWrapper: def __init__(self, sfo): self._sfo = sfo self._cache = {} @classmethod def from_bytes(cls, buffer): return cls(SfoFile.from_reader(io.BytesIO(buffer))) def refresh(self): for value in self._cache.values(): value.refresh() def _get_value(self, key): loader = self._cache.get(key) if loader == None: loader = _Loader(self._sfo, key) self._cache[key] = loader return loader.value @property def app_ver(self): return self._get_value('APP_VER') @property def category(self): return self._get_value('CATEGORY') @property def title(self): return self._get_value('TITLE') class PSVGameSfo(SfoInfoWrapper): @property def content_id(self): return self._get_value('CONTENT_ID') @property def title_id(self): return self._get_value('TITLE_ID') class PSPGameSfo(SfoInfoWrapper): @property def disc_id(self): return self._get_value('DISC_ID') @property def category(self): return self._get_value('CATEGORY') def test(path): with open(path, mode='rb') as reader: sfo = SfoFile.from_reader(reader) for k in sfo._data: v = sfo._data[k] print('%s: "%s"' % (v._key, v._value)) if __name__ == '__main__': for i in range(0, 1): test(r'test_res\param_%s.sfo' % str(i).rjust(2, '0'))
6,074
2,035
242
73e9bc79d0b58408169e58a0a67fb34a83f478ad
490
py
Python
bluebottle/test/factory_models/payments.py
maykinmedia/bluebottle
355d4729662b5e9a03398efb4fe882e0f8cfa28d
[ "BSD-3-Clause" ]
null
null
null
bluebottle/test/factory_models/payments.py
maykinmedia/bluebottle
355d4729662b5e9a03398efb4fe882e0f8cfa28d
[ "BSD-3-Clause" ]
null
null
null
bluebottle/test/factory_models/payments.py
maykinmedia/bluebottle
355d4729662b5e9a03398efb4fe882e0f8cfa28d
[ "BSD-3-Clause" ]
null
null
null
import factory from bluebottle.payments.models import Payment, OrderPayment from bluebottle.payments_logger.models import PaymentLogEntry from .orders import OrderFactory
24.5
61
0.804082
import factory from bluebottle.payments.models import Payment, OrderPayment from bluebottle.payments_logger.models import PaymentLogEntry from .orders import OrderFactory class OrderPaymentFactory(factory.DjangoModelFactory): FACTORY_FOR = OrderPayment payment_method = 'mock' amount = 100 order = factory.SubFactory(OrderFactory) class PaymentFactory(factory.DjangoModelFactory): FACTORY_FOR = Payment order_payment = factory.SubFactory(OrderPaymentFactory)
0
270
46
39765b3fa03cc18cbd68dd8b22b2a3c60009bf92
2,667
py
Python
tests/feeds/test_matic_usd_feed.py
tellor-io/telliot-feed-examples
3f825c90ad372f42c89eee0f5b54250f22ec0728
[ "MIT" ]
7
2021-11-10T21:14:57.000Z
2022-03-26T07:27:23.000Z
tests/feeds/test_matic_usd_feed.py
tellor-io/telliot-feed-examples
3f825c90ad372f42c89eee0f5b54250f22ec0728
[ "MIT" ]
86
2021-11-09T13:12:58.000Z
2022-03-31T17:28:56.000Z
tests/feeds/test_matic_usd_feed.py
tellor-io/telliot-feed-examples
3f825c90ad372f42c89eee0f5b54250f22ec0728
[ "MIT" ]
2
2021-11-27T12:51:22.000Z
2022-03-12T16:38:00.000Z
import pytest from telliot_feed_examples.feeds.matic_usd_feed import matic_usd_median_feed @pytest.mark.asyncio
115.956522
1,381
0.813648
import pytest from telliot_feed_examples.feeds.matic_usd_feed import matic_usd_median_feed @pytest.mark.asyncio async def test_fetch_price(): (value, _) = await matic_usd_median_feed.source.fetch_new_datapoint() assert value > 0 print(value) def test_query_info(): q = matic_usd_median_feed.query exp_id = "40aa71e5205fdc7bdb7d65f7ae41daca3820c5d3a8f62357a99eda3aa27244a3" exp_data = b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00@\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\tSpotPrice\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00@\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x05matic\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03usd\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" # noqa: E501 exp_data_hex = "00000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000080000000000000000000000000000000000000000000000000000000000000000953706f745072696365000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000c00000000000000000000000000000000000000000000000000000000000000040000000000000000000000000000000000000000000000000000000000000008000000000000000000000000000000000000000000000000000000000000000056d6174696300000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000037573640000000000000000000000000000000000000000000000000000000000" # noqa: E501 # print(q.query_data) assert q.query_data == exp_data assert q.query_id.hex() == exp_id assert q.query_data.hex() == exp_data_hex
2,506
0
45
2f90e72ab2ad376594d32a0c909e3065372a297e
1,066
py
Python
motelsAPI/settings/dev.py
amartinez1/5letrasAPI
670b638a8254a0809c9f953350cd1a3264b61bf7
[ "MIT" ]
2
2015-05-02T12:30:22.000Z
2015-05-08T18:13:43.000Z
motelsAPI/settings/dev.py
amartinez1/5letrasAPI
670b638a8254a0809c9f953350cd1a3264b61bf7
[ "MIT" ]
null
null
null
motelsAPI/settings/dev.py
amartinez1/5letrasAPI
670b638a8254a0809c9f953350cd1a3264b61bf7
[ "MIT" ]
null
null
null
from .base import * DATABASES = { 'default': { 'ENGINE': 'django.contrib.gis.db.backends.postgis', 'NAME': 'motels_db', } } ALLOWED_HOSTS = [] CORS_ORIGIN_ALLOW_ALL = True DEBUG = True SECRET_KEY = 'test' INSTALLED_APPS += ( 'autofixture', 'debug_toolbar', 'django_extensions', ) MIDDLEWARE_CLASSES += ( 'debug_toolbar.middleware.DebugToolbarMiddleware', ) REST_FRAMEWORK = { 'DEFAULT_FILTER_BACKENDS': ('rest_framework.filters.DjangoFilterBackend',), 'DEFAULT_PERMISSION_CLASSES': ( 'rest_framework.permissions.AllowAny', ), 'DEFAULT_RENDERER_CLASSES': ( 'rest_framework.renderers.JSONRenderer', 'rest_framework.renderers.BrowsableAPIRenderer', ), 'DEFAULT_AUTHENTICATION_CLASSES': ( 'rest_framework.authentication.SessionAuthentication', 'rest_framework.authentication.TokenAuthentication', ), 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.LimitOffsetPagination', 'PAGE_SIZE': 10, }
23.688889
80
0.661351
from .base import * DATABASES = { 'default': { 'ENGINE': 'django.contrib.gis.db.backends.postgis', 'NAME': 'motels_db', } } ALLOWED_HOSTS = [] CORS_ORIGIN_ALLOW_ALL = True DEBUG = True SECRET_KEY = 'test' INSTALLED_APPS += ( 'autofixture', 'debug_toolbar', 'django_extensions', ) MIDDLEWARE_CLASSES += ( 'debug_toolbar.middleware.DebugToolbarMiddleware', ) REST_FRAMEWORK = { 'DEFAULT_FILTER_BACKENDS': ('rest_framework.filters.DjangoFilterBackend',), 'DEFAULT_PERMISSION_CLASSES': ( 'rest_framework.permissions.AllowAny', ), 'DEFAULT_RENDERER_CLASSES': ( 'rest_framework.renderers.JSONRenderer', 'rest_framework.renderers.BrowsableAPIRenderer', ), 'DEFAULT_AUTHENTICATION_CLASSES': ( 'rest_framework.authentication.SessionAuthentication', 'rest_framework.authentication.TokenAuthentication', ), 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.LimitOffsetPagination', 'PAGE_SIZE': 10, }
0
0
0
a1adb53a7219e0575c94c4f8e32bc32af0a24a42
955
py
Python
snooper.py
boztalay/SuperconCubeCmd
9cbd685a75dbf9fdf7a04e7a240b07117b1fbe82
[ "MIT" ]
null
null
null
snooper.py
boztalay/SuperconCubeCmd
9cbd685a75dbf9fdf7a04e7a240b07117b1fbe82
[ "MIT" ]
null
null
null
snooper.py
boztalay/SuperconCubeCmd
9cbd685a75dbf9fdf7a04e7a240b07117b1fbe82
[ "MIT" ]
null
null
null
import sys import cubey if __name__ == "__main__": if len(sys.argv) != 2: print "Gimme a serial port!" sys.exit(1) serialPort = sys.argv[1] main(serialPort)
23.292683
93
0.536126
import sys import cubey def main(serialPort): cube = cubey.Cube(serialPort) print "Listening, Ctrl-C to stop..." try: while True: rawMessage = cube.sendCommand("m n u") printMessage(rawMessage) except KeyboardInterrupt: print cube.breakOut() print "Done!" def printMessage(rawMessage): print print "Got a message!" print "==============" print contents = map(int, rawMessage.split()) rowFormat = "% 4X |" + (" %02X" * 16) print " 0 1 2 3 4 5 6 7 8 9 A B C D E F" print " ------------------------------------------------" for rowStartIndex in range(0, 512, 16): print rowFormat % tuple([rowStartIndex] + contents[rowStartIndex:rowStartIndex + 16]) if __name__ == "__main__": if len(sys.argv) != 2: print "Gimme a serial port!" sys.exit(1) serialPort = sys.argv[1] main(serialPort)
721
0
46
7ffc97d0a4c41aca77fb73ffa2a8a35b537492b9
3,841
py
Python
src/SgFactory/table.py
WDonegan/psg-factories
5a6e362d9159a0d5c82960d9e2e7d446f1ab013d
[ "MIT" ]
null
null
null
src/SgFactory/table.py
WDonegan/psg-factories
5a6e362d9159a0d5c82960d9e2e7d446f1ab013d
[ "MIT" ]
null
null
null
src/SgFactory/table.py
WDonegan/psg-factories
5a6e362d9159a0d5c82960d9e2e7d446f1ab013d
[ "MIT" ]
null
null
null
import PySimpleGUI as sg from .base import GeneratorBase
43.157303
60
0.548555
import PySimpleGUI as sg from .base import GeneratorBase class Table(GeneratorBase): VALUES = 'values' HEADINGS = 'headings' VISIBLE_COLUMN_MAP = 'visible_column_map' COL_WIDTHS = 'col_widths' DEF_COL_WIDTH = 'def_col_width' AUTO_SIZE_COLUMNS = 'auto_size_columns' MAX_COL_WIDTH = 'max_col_width' SELECT_MODE = 'select_mode' DISPLAY_ROW_NUMBERS = 'display_row_numbers' NUM_ROWS = 'num_rows' ROW_HEIGHT = 'row_height' FONT = 'font' JUSTIFICATION = 'justification' TEXT_COLOR = 'text_color' BACKGROUND_COLOR = 'background_color' ALTERNATING_ROW_COLOR = 'alternating_row_color' SELECTED_ROW_COLORS = 'selected_row_colors' HEADER_TEXT_COLOR = 'header_text_color' HEADER_BACKGROUND_COLOR = 'header_background_color' HEADER_FONT = 'header_font' ROW_COLORS = 'row_colors' VERTICAL_SCROLL_ONLY = 'vertical_scroll_only' HIDE_VERTICAL_SCROLL = 'hide_vertical_scroll' SIZE = 'size' CHANGE_SUBMITS = 'change_submits' ENABLE_EVENTS = 'enable_events' ENABLE_CLICK_EVENTS = 'enable_click_events' RIGHT_CLICK_SELECTS = 'right_click_selects' BIND_RETURN_KEY = 'bind_return_key' PAD = 'pad' KEY = 'key' TOOLTIP = 'tooltip' RIGHT_CLICK_MENU = 'right_click_menu' EXPAND_X = 'expand_x' EXPAND_Y = 'expand_y' VISIBLE = 'visible' METADATA = 'metadata' def reset_params(self): self.__parameters__ = { self.VALUES: (False, None), self.HEADINGS: (False, None), self.VISIBLE_COLUMN_MAP: (False, None), self.COL_WIDTHS: (False, None), self.DEF_COL_WIDTH: (False, None), self.AUTO_SIZE_COLUMNS: (False, None), self.MAX_COL_WIDTH: (False, None), self.SELECT_MODE: (False, None), self.DISPLAY_ROW_NUMBERS: (False, None), self.NUM_ROWS: (False, None), self.ROW_HEIGHT: (False, None), self.FONT: (False, None), self.JUSTIFICATION: (False, None), self.TEXT_COLOR: (False, None), self.BACKGROUND_COLOR: (False, None), self.ALTERNATING_ROW_COLOR: (False, None), self.SELECTED_ROW_COLORS: (False, None), self.HEADER_TEXT_COLOR: (False, None), self.HEADER_BACKGROUND_COLOR: (False, None), self.HEADER_FONT: (False, None), self.ROW_COLORS: (False, None), self.VERTICAL_SCROLL_ONLY: (False, None), self.HIDE_VERTICAL_SCROLL: (False, None), self.SIZE: (False, None), self.CHANGE_SUBMITS: (False, None), self.ENABLE_EVENTS: (False, None), self.ENABLE_CLICK_EVENTS: (False, None), self.RIGHT_CLICK_SELECTS: (False, None), self.BIND_RETURN_KEY: (False, None), self.PAD: (False, None), self.KEY: (False, None), self.TOOLTIP: (False, None), self.RIGHT_CLICK_MENU: (False, None), self.EXPAND_X: (False, None), self.EXPAND_Y: (False, None), self.VISIBLE: (False, None), self.METADATA: (False, None), } def make(self, key: str, param_key: str = None): self.__parameters__[self.KEY] = (True, key) active_params: dict = self.__get_params__(param_key) return sg.Table(**active_params)
2,408
1,352
23
9e5764903cdf85638ab62747d681b0695238c4e3
1,411
py
Python
day-9&10/main.py
a18antsv/Python-Two-Week-Challenge
cfdefe5e2643d1c1ee66d08a16a7ffc175ba1a3a
[ "MIT" ]
null
null
null
day-9&10/main.py
a18antsv/Python-Two-Week-Challenge
cfdefe5e2643d1c1ee66d08a16a7ffc175ba1a3a
[ "MIT" ]
null
null
null
day-9&10/main.py
a18antsv/Python-Two-Week-Challenge
cfdefe5e2643d1c1ee66d08a16a7ffc175ba1a3a
[ "MIT" ]
null
null
null
import requests from flask import Flask, render_template, request, redirect base_url = "http://hn.algolia.com/api/v1" # This URL gets the newest stories. new = f"{base_url}/search_by_date?tags=story" # This URL gets the most popular stories popular = f"{base_url}/search?tags=story" # This function makes the URL to get the detail of a storie by id. # Heres the documentation: https://hn.algolia.com/api db = {} app = Flask("DayNine") @app.route("/") @app.route("/<id>") app.run(host="0.0.0.0")
24.754386
70
0.690291
import requests from flask import Flask, render_template, request, redirect base_url = "http://hn.algolia.com/api/v1" # This URL gets the newest stories. new = f"{base_url}/search_by_date?tags=story" # This URL gets the most popular stories popular = f"{base_url}/search?tags=story" # This function makes the URL to get the detail of a storie by id. # Heres the documentation: https://hn.algolia.com/api def make_detail_url(id): return f"{base_url}/items/{id}" db = {} app = Flask("DayNine") @app.route("/") def index(): allowed_orders = ("popular", "new") order_by = request.args.get("order_by") if order_by: order_by = order_by.lower() if order_by not in allowed_orders: order_by = allowed_orders[0] posts_from_db = db.get(order_by) if posts_from_db: posts = posts_from_db else: posts = requests.get(globals()[order_by]).json()["hits"] db[order_by] = posts return render_template("index.html", order_by=order_by, posts=posts) @app.route("/<id>") def detail(id): try: request = requests.get(make_detail_url(id)) request.raise_for_status() except requests.exceptions.HTTPError: return redirect("/") post = request.json() return render_template( "detail.html", title=post.get("title"), url=post.get("url"), points=post.get("points"), author=post.get("author"), comments=post.get("children") ) app.run(host="0.0.0.0")
842
0
66
d32135b6fdf1615d5e0b4352267bf443c9e38704
2,651
py
Python
feewaiver/urls.py
dbca-wa/feewaiver
7938a0e9d18924c12b27c0a411b6d7eccb40166b
[ "Apache-2.0" ]
null
null
null
feewaiver/urls.py
dbca-wa/feewaiver
7938a0e9d18924c12b27c0a411b6d7eccb40166b
[ "Apache-2.0" ]
12
2021-02-24T02:33:01.000Z
2022-01-25T02:37:39.000Z
feewaiver/urls.py
mintcoding/feewaiver
47d69db91386f760dd36d87cbb565a9bb72a27d5
[ "Apache-2.0" ]
1
2021-01-08T02:15:27.000Z
2021-01-08T02:15:27.000Z
from django.conf import settings from django.contrib import admin from django.conf.urls import url, include from django.conf.urls.static import static from rest_framework import routers #from feewaiver import views, users_api, api from feewaiver import views, api from ledger.urls import urlpatterns as ledger_patterns from feewaiver.utils import are_migrations_running # API patterns router = routers.DefaultRouter() router.register(r'feewaivers',api.FeeWaiverViewSet) router.register(r'feewaivers_paginated',api.FeeWaiverPaginatedViewSet) router.register(r'participants',api.ParticipantsViewSet) router.register(r'parks',api.ParkViewSet) router.register(r'campgrounds',api.CampGroundViewSet) router.register(r'temporary_document', api.TemporaryDocumentCollectionViewSet) api_patterns = [ #url(r'^api/profile$', users_api.GetProfile.as_view(), name='get-profile'), #url(r'^api/department_users$', users_api.DepartmentUserList.as_view(), name='department-users-list'), #url(r'^api/filtered_users$', users_api.UserListFilterView.as_view(), name='filtered_users'), url(r'^api/',include(router.urls)), ] # URL Patterns urlpatterns = [ url(r'^ledger/admin/', admin.site.urls, name='ledger_admin'), url(r'', include(api_patterns)), url(r'^$', views.FeeWaiverRoutingView.as_view(), name='ds_home'), url(r'^contact/', views.FeeWaiverContactView.as_view(), name='ds_contact'), url(r'^admin_data/', views.FeeWaiverAdminDataView.as_view(), name='admin_data'), url(r'^further_info/', views.FeeWaiverFurtherInformationView.as_view(), name='ds_further_info'), url(r'^internal/', views.InternalView.as_view(), name='internal'), url(r'^external/', views.ExternalView.as_view(), name='external'), url(r'^account/$', views.ExternalView.as_view(), name='manage-account'), url(r'^profiles/', views.ExternalView.as_view(), name='manage-profiles'), url(r'^help/(?P<application_type>[^/]+)/(?P<help_type>[^/]+)/$', views.HelpView.as_view(), name='help'), url(r'^mgt-commands/$', views.ManagementCommandsView.as_view(), name='mgt-commands'), url(r'^internal/fee_waiver/(?P<feewaiver_pk>\d+)/$', views.InternalFeeWaiverView.as_view(), name='internal-feewaiver-detail'), url(r'^history/fee_waiver/(?P<pk>\d+)/$', views.FeeWaiverHistoryCompareView.as_view(), name='feewaiver_history'), ] + ledger_patterns if settings.DEBUG: # Serve media locally in development. urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) if settings.SHOW_DEBUG_TOOLBAR: import debug_toolbar urlpatterns = [ url('__debug__/', include(debug_toolbar.urls)), ] + urlpatterns
48.2
130
0.744247
from django.conf import settings from django.contrib import admin from django.conf.urls import url, include from django.conf.urls.static import static from rest_framework import routers #from feewaiver import views, users_api, api from feewaiver import views, api from ledger.urls import urlpatterns as ledger_patterns from feewaiver.utils import are_migrations_running # API patterns router = routers.DefaultRouter() router.register(r'feewaivers',api.FeeWaiverViewSet) router.register(r'feewaivers_paginated',api.FeeWaiverPaginatedViewSet) router.register(r'participants',api.ParticipantsViewSet) router.register(r'parks',api.ParkViewSet) router.register(r'campgrounds',api.CampGroundViewSet) router.register(r'temporary_document', api.TemporaryDocumentCollectionViewSet) api_patterns = [ #url(r'^api/profile$', users_api.GetProfile.as_view(), name='get-profile'), #url(r'^api/department_users$', users_api.DepartmentUserList.as_view(), name='department-users-list'), #url(r'^api/filtered_users$', users_api.UserListFilterView.as_view(), name='filtered_users'), url(r'^api/',include(router.urls)), ] # URL Patterns urlpatterns = [ url(r'^ledger/admin/', admin.site.urls, name='ledger_admin'), url(r'', include(api_patterns)), url(r'^$', views.FeeWaiverRoutingView.as_view(), name='ds_home'), url(r'^contact/', views.FeeWaiverContactView.as_view(), name='ds_contact'), url(r'^admin_data/', views.FeeWaiverAdminDataView.as_view(), name='admin_data'), url(r'^further_info/', views.FeeWaiverFurtherInformationView.as_view(), name='ds_further_info'), url(r'^internal/', views.InternalView.as_view(), name='internal'), url(r'^external/', views.ExternalView.as_view(), name='external'), url(r'^account/$', views.ExternalView.as_view(), name='manage-account'), url(r'^profiles/', views.ExternalView.as_view(), name='manage-profiles'), url(r'^help/(?P<application_type>[^/]+)/(?P<help_type>[^/]+)/$', views.HelpView.as_view(), name='help'), url(r'^mgt-commands/$', views.ManagementCommandsView.as_view(), name='mgt-commands'), url(r'^internal/fee_waiver/(?P<feewaiver_pk>\d+)/$', views.InternalFeeWaiverView.as_view(), name='internal-feewaiver-detail'), url(r'^history/fee_waiver/(?P<pk>\d+)/$', views.FeeWaiverHistoryCompareView.as_view(), name='feewaiver_history'), ] + ledger_patterns if settings.DEBUG: # Serve media locally in development. urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) if settings.SHOW_DEBUG_TOOLBAR: import debug_toolbar urlpatterns = [ url('__debug__/', include(debug_toolbar.urls)), ] + urlpatterns
0
0
0
54f82229c0438a79d9123d69c7d0467d0c47c179
1,758
py
Python
ros/src/twist_controller/twist_controller.py
Acharya-Kiran/CarND-Capstone
bc5f59ea20271e2e46e156fff86cd2482b52c5f2
[ "MIT" ]
null
null
null
ros/src/twist_controller/twist_controller.py
Acharya-Kiran/CarND-Capstone
bc5f59ea20271e2e46e156fff86cd2482b52c5f2
[ "MIT" ]
null
null
null
ros/src/twist_controller/twist_controller.py
Acharya-Kiran/CarND-Capstone
bc5f59ea20271e2e46e156fff86cd2482b52c5f2
[ "MIT" ]
null
null
null
from pid import PID from lowpass import LowPassFilter from yaw_controller import YawController import rospy GAS_DENSITY = 2.858 ONE_MPH = 0.44704
27.904762
101
0.755973
from pid import PID from lowpass import LowPassFilter from yaw_controller import YawController import rospy GAS_DENSITY = 2.858 ONE_MPH = 0.44704 class Controller(object): def __init__(self,vehicle_mass,fuel_capacity,brake_deadband,decel_limit, accel_limit,wheel_radius,wheel_base,steer_ratio,max_lat_accel,max_steer_angle): # TODO: Implement self.yaw_controller = YawController(wheel_base,steer_ratio,0.1,max_lat_accel,max_steer_angle) kp=0.3 ki=0.1 kd=0. mn=0. mx=0.2 self.throttle_controller=PID(kp,ki,kd,mn,mx) tau=0.5 ts=.02 self.vel_lpf = LowPassFilter(tau,ts) self.vehicle_mass = vehicle_mass self.fuel_capacity=fuel_capacity self.brake_deadband=brake_deadband self.decel_limit=decel_limit self.accel_limit=accel_limit self.wheel_radius=wheel_radius self.last_time = rospy.get_time() def control(self, current_vel,dbw_enabled,linear_vel,angular_vel): # TODO: Change the arg, kwarg list to suit your needs # Return throttle, brake, steer if not dbw_enabled: self.throttle_controller.reset() return 0., 0., 0. current_vel = self.vel_lpf.filt(current_vel) steering = self.yaw_controller.get_steering(linear_vel,angular_vel,current_vel) vel_error = linear_vel - current_vel self.last_vel = current_vel current_time = rospy.get_time() sample_time = current_time - self.last_time self.last_time = current_time throttle = self.throttle_controller.step(vel_error,sample_time) brake = 0 if linear_vel==0 and current_vel<0.1: throttle=0 brake=400 elif throttle<.1 and vel_error<0: throttle=0 decel = max(vel_error,self.decel_limit) brake = abs(decel)*self.vehicle_mass*self.wheel_radius return throttle,brake,steering
1,525
4
78
9ecb3b223a203a77d74b6711d0796c6b4e890962
27,213
py
Python
others/Pytorch/utilis_rnn.py
jhuebotter/CartpoleSNNdemo
d18a85cbc45bff48295c46c9cd8c9fc00192318c
[ "MIT" ]
null
null
null
others/Pytorch/utilis_rnn.py
jhuebotter/CartpoleSNNdemo
d18a85cbc45bff48295c46c9cd8c9fc00192318c
[ "MIT" ]
null
null
null
others/Pytorch/utilis_rnn.py
jhuebotter/CartpoleSNNdemo
d18a85cbc45bff48295c46c9cd8c9fc00192318c
[ "MIT" ]
null
null
null
import torch import torch.nn as nn from torch.utils import data from datetime import datetime import collections import os import random as rnd import copy from Modeling.Pytorch.utilis_rnn_specific import * from SI_Toolkit.load_and_normalize import load_normalization_info, load_data, normalize_df, denormalize_df def get_device(): """ Small function to correctly send data to GPU or CPU depending what is available """ if torch.cuda.is_available(): device = torch.device('cuda:0') else: device = torch.device('cpu') return device # Set seeds everywhere required to make results reproducible # Print parameter count # https://stackoverflow.com/questions/49201236/check-the-total-number-of-parameters-in-a-pytorch-model def load_pretrained_rnn(net, pt_path, device): """ A function loading parameters (weights and biases) from a previous training to a net RNN instance :param net: An instance of RNN :param pt_path: path to .pt file storing weights and biases :return: No return. Modifies net in place. """ pre_trained_model = torch.load(pt_path, map_location=device) print("Loading Model: ", pt_path) print('') pre_trained_model = list(pre_trained_model.items()) new_state_dict = collections.OrderedDict() count = 0 num_param_key = len(pre_trained_model) for key, value in net.state_dict().items(): if count >= num_param_key: break layer_name, weights = pre_trained_model[count] new_state_dict[key] = weights # print("Pre-trained Layer: %s - Loaded into new layer: %s" % (layer_name, key)) count += 1 print('') net.load_state_dict(new_state_dict) # Initialize weights and biases - should be only applied if no pretrained net loaded # FIXME: To tailor this sequence class according to the commands and state_variables of cartpole class Sequence(nn.Module): """" Our RNN class. """ def reset(self): """ Reset the network (not the weights!) """ self.sample_counter = 0 self.h = [None] * len(self.h_size) self.c = [None] * len(self.h_size) self.output = None self.outputs = [] def forward(self, rnn_input): """ Predicts future CartPole states IN "OPEN LOOP" (at every time step prediction for the next time step is done based on the true CartPole state) """ # Initialize hidden layers - this change at every call as the batch size may vary for i in range(len(self.h_size)): self.h[i] = torch.zeros(rnn_input.size(1), self.h_size[i], dtype=torch.float).to(self.device) self.c[i] = torch.zeros(rnn_input.size(1), self.h_size[i], dtype=torch.float).to(self.device) # The for loop takes the consecutive time steps from input plugs them into RNN and save the outputs into a list # THE NETWORK GETS ALWAYS THE GROUND TRUTH, THE REAL STATE OF THE CARTPOLE, AS ITS INPUT # IT PREDICTS THE STATE OF THE CARTPOLE ONE TIME STEP AHEAD BASED ON TRUE STATE NOW for iteration, input_t in enumerate(rnn_input.chunk(rnn_input.size(0), dim=0)): # Propagate input through RNN layers if self.rnn_type == 'LSTM': self.h[0], self.c[0] = self.layers[0](input_t.squeeze(0), (self.h[0], self.c[0])) for i in range(len(self.h_size) - 1): self.h[i + 1], self.c[i + 1] = self.layers[i + 1](self.h[i], (self.h[i + 1], self.c[i + 1])) else: self.h[0] = self.layers[0](input_t.squeeze(0), self.h[0]) for i in range(len(self.h_size) - 1): self.h[i + 1] = self.layers[i + 1](self.h[i], self.h[i + 1]) self.output = self.layers[-1](self.h[-1]) self.outputs += [self.output] self.sample_counter = self.sample_counter + 1 # In the train mode we want to continue appending the outputs by calling forward function # The outputs will be saved internally in the network instance as a list # Otherwise we want to transform outputs list to a tensor and return it return self.output import pandas as pd # # def load_data(a, filepath=None, columns_list=None, norm_inf=False, rnn_full_name=None, downsample=1): # if filepath is None: # filepath = a.val_file_name # # if columns_list is None: # columns_list = list(set(a.inputs_list).union(set(a.outputs_list))) # # if type(filepath) == list: # filepaths = filepath # else: # filepaths = [filepath] # # all_dfs = [] # saved separately to get normalization # all_time_axes = [] # # for one_filepath in filepaths: # # Load dataframe # print('loading data from ' + str(one_filepath)) # print('') # df = pd.read_csv(one_filepath, comment='#') # df=df.iloc[::downsample].reset_index() # # # You can shift dt by one time step to know "now" the timestep till the next row # if a.cheat_dt: # if 'dt' in df: # df['dt'] = df['dt'].shift(-1) # df = df[:-1] # # # FIXME: Make calculation of dt compatible with downsampling # # Get time axis as separate Dataframe # if 'time' in df.columns: # t = df['time'] # elif 'dt' in df.columns: # dt = df['dt'] # t = dt.cumsum() # t.rename('time', inplace=True) # else: # t = pd.Series([]) # t.rename('time', inplace=True) # # time_axis = t # all_time_axes.append(time_axis) # # # Get only relevant subset of columns # if columns_list == 'all': # pass # else: # df = df[columns_list] # # all_dfs.append(df) # # # return all_dfs, all_time_axes # # # This way of doing normalization is fine for long data sets and (relatively) short sequence lengths # # The points from the edges of the datasets count too little # def calculate_normalization_info(df, PATH_TO_EXPERIMENT_RECORDINGS, rnn_full_name): # if type(df) is list: # df_total = pd.concat(df) # else: # df_total = df # # if 'time' in df_total.columns: # df_total.drop('time', # axis='columns', inplace=True) # # df_mean = df_total.mean(axis=0) # df_std = df_total.std(axis=0) # df_max = df_total.max(axis=0) # df_min = df_total.min(axis=0) # frame = {'mean': df_mean, 'std': df_std, 'max': df_max, 'min': df_min} # df_norm_info = pd.DataFrame(frame).transpose() # # df_norm_info.to_csv(PATH_TO_EXPERIMENT_RECORDINGS + rnn_full_name + '-norm' + '.csv') # # # Plot historgrams to make the firs check about gaussian assumption # # for feature in df_total.columns: # # plt.hist(df_total[feature].to_numpy(), 50, density=True, facecolor='g', alpha=0.75) # # plt.title(feature) # # plt.show() # # return df_norm_info # # # def load_normalization_info(PATH_TO_EXPERIMENT_RECORDINGS, rnn_full_name): # return pd.read_csv(PATH_TO_EXPERIMENT_RECORDINGS + rnn_full_name + '-norm' + '.csv', index_col=0) # # # def normalize_df(dfs, normalization_info, normalization_type='minmax_sym'): # if normalization_type == 'gaussian': # def normalize_feature(col): # col_mean = normalization_info.loc['mean', col.name] # col_std = normalization_info.loc['std', col.name] # return (col - col_mean) / col_std # elif normalization_type == 'minmax_pos': # def normalize_feature(col): # col_min = normalization_info.loc['min', col.name] # col_max = normalization_info.loc['max', col.name] # return (col - col_min) / (col_max - col_min) # elif normalization_type == 'minmax_sym': # def normalize_feature(col): # col_min = normalization_info.loc['min', col.name] # col_max = normalization_info.loc['max', col.name] # return -1.0 + 2.0 * (col - col_min) / (col_max - col_min) # # if type(dfs) is list: # for i in range(len(dfs)): # dfs[i] = dfs[i].apply(normalize_feature, axis=0) # else: # dfs = dfs.apply(normalize_feature, axis=0) # # return dfs # # # def denormalize_df(dfs, normalization_info, normalization_type='minmax_sym'): # if normalization_type == 'gaussian': # def denormalize_feature(col): # col_mean = normalization_info.loc['mean', col.name] # col_std = normalization_info.loc['std', col.name] # return col * col_std + col_mean # elif normalization_type == 'minmax_pos': # def denormalize_feature(col): # col_min = normalization_info.loc['min', col.name] # col_max = normalization_info.loc['max', col.name] # return col * (col_max - col_min) + col_min # elif normalization_type == 'minmax_sym': # def denormalize_feature(col): # col_min = normalization_info.loc['min', col.name] # col_max = normalization_info.loc['max', col.name] # return ((col + 1.0) / 2.0) * (col_max - col_min) + col_min # # if type(dfs) is list: # for i in range(len(dfs)): # dfs[i] = dfs[i].apply(denormalize_feature, axis=0) # else: # dfs = dfs.apply(denormalize_feature, axis=0) # # return dfs def plot_results(net, args, dataset=None, normalization_info = None, time_axes=None, filepath=None, inputs_list=None, outputs_list=None, closed_loop_list=None, seq_len=None, warm_up_len=None, closed_loop_enabled=False, comment='', rnn_full_name=None, save=False, close_loop_idx=512): """ This function accepts RNN instance, arguments and CartPole instance. It runs one random experiment with CartPole, inputs the data into RNN and check how well RNN predicts CartPole state one time step ahead of time """ rnn_full_name = net.rnn_full_name if filepath is None: filepath = args.val_file_name if type(filepath) == list: filepath = filepath[0] if warm_up_len is None: warm_up_len = args.warm_up_len if seq_len is None: seq_len = args.seq_len if inputs_list is None: inputs_list = args.inputs_list if inputs_list is None: raise ValueError('RNN inputs not provided!') if outputs_list is None: outputs_list = args.outputs_list if outputs_list is None: raise ValueError('RNN outputs not provided!') if closed_loop_enabled and (closed_loop_list is None): closed_loop_list = args.close_loop_for if closed_loop_list is None: raise ValueError('RNN closed-loop-inputs not provided!') net.reset() net.eval() device = get_device() if normalization_info is None: normalization_info = load_normalization_info(args.PATH_TO_EXPERIMENT_RECORDINGS, rnn_full_name) if dataset is None or time_axes is None: test_dfs, time_axes = load_data(args, filepath) test_dfs_norm = normalize_df(test_dfs, normalization_info) test_set = Dataset(test_dfs_norm, args, time_axes=time_axes, seq_len=seq_len) del test_dfs else: test_set = copy.deepcopy(dataset) test_set.reset_seq_len(seq_len=seq_len) # Format the experiment data features, targets, time_axis = test_set.get_experiment(1) # Put number in brackets to get the same idx at every run features_pd = pd.DataFrame(data=features, columns=inputs_list) targets_pd = pd.DataFrame(data=targets, columns=outputs_list) rnn_outputs = pd.DataFrame(columns=outputs_list) warm_up_idx = 0 rnn_input_0 = copy.deepcopy(features_pd.iloc[0]) # Does not bring anything. Why? 0-state shouldn't have zero internal state due to biases... while warm_up_idx < warm_up_len: rnn_input = rnn_input_0 rnn_input = np.squeeze(rnn_input.to_numpy()) rnn_input = torch.from_numpy(rnn_input).float().unsqueeze(0).unsqueeze(0).to(device) net(rnn_input=rnn_input) warm_up_idx += 1 net.outputs = [] net.sample_counter = 0 idx_cl = 0 close_the_loop = False for index, row in features_pd.iterrows(): rnn_input = pd.DataFrame(copy.deepcopy(row)).transpose().reset_index(drop=True) if idx_cl == close_loop_idx: close_the_loop = True if closed_loop_enabled and close_the_loop and (normalized_rnn_output is not None): rnn_input[closed_loop_list] = normalized_rnn_output[closed_loop_list] rnn_input = np.squeeze(rnn_input.to_numpy()) rnn_input = torch.from_numpy(rnn_input).float().unsqueeze(0).unsqueeze(0).to(device) normalized_rnn_output = net(rnn_input=rnn_input) normalized_rnn_output = np.squeeze(normalized_rnn_output.detach().cpu().numpy()).tolist() normalized_rnn_output = copy.deepcopy(pd.DataFrame(data=[normalized_rnn_output], columns=outputs_list)) rnn_outputs = rnn_outputs.append(copy.deepcopy(normalized_rnn_output), ignore_index=True) idx_cl += 1 targets_pd_denorm = denormalize_df(targets_pd, normalization_info) rnn_outputs_denorm = denormalize_df(rnn_outputs, normalization_info) fig, axs = plot_results_specific(targets_pd_denorm, rnn_outputs_denorm, time_axis, comment, closed_loop_enabled, close_loop_idx) plt.show() if save: # Make folders if not yet exist try: os.makedirs('save_plots') except FileExistsError: pass dateTimeObj = datetime.now() timestampStr = dateTimeObj.strftime("-%d%b%Y_%H%M%S") if rnn_full_name is not None: fig.savefig('./save_plots/' + rnn_full_name + timestampStr + '.png') else: fig.savefig('./save_plots/' + timestampStr + '.png')
38.545326
132
0.614449
import torch import torch.nn as nn from torch.utils import data from datetime import datetime import collections import os import random as rnd import copy from Modeling.Pytorch.utilis_rnn_specific import * from SI_Toolkit.load_and_normalize import load_normalization_info, load_data, normalize_df, denormalize_df def get_device(): """ Small function to correctly send data to GPU or CPU depending what is available """ if torch.cuda.is_available(): device = torch.device('cuda:0') else: device = torch.device('cpu') return device # Set seeds everywhere required to make results reproducible def set_seed(args): seed = args.seed rnd.seed(seed) np.random.seed(seed) # Print parameter count # https://stackoverflow.com/questions/49201236/check-the-total-number-of-parameters-in-a-pytorch-model def print_parameter_count(net): pytorch_total_params = sum(p.numel() for p in net.parameters()) pytorch_trainable_params = sum(p.numel() for p in net.parameters() if p.requires_grad) print('::: # network all parameters: ' + str(pytorch_total_params)) print('::: # network trainable parameters: ' + str(pytorch_trainable_params)) print('') def load_pretrained_rnn(net, pt_path, device): """ A function loading parameters (weights and biases) from a previous training to a net RNN instance :param net: An instance of RNN :param pt_path: path to .pt file storing weights and biases :return: No return. Modifies net in place. """ pre_trained_model = torch.load(pt_path, map_location=device) print("Loading Model: ", pt_path) print('') pre_trained_model = list(pre_trained_model.items()) new_state_dict = collections.OrderedDict() count = 0 num_param_key = len(pre_trained_model) for key, value in net.state_dict().items(): if count >= num_param_key: break layer_name, weights = pre_trained_model[count] new_state_dict[key] = weights # print("Pre-trained Layer: %s - Loaded into new layer: %s" % (layer_name, key)) count += 1 print('') net.load_state_dict(new_state_dict) # Initialize weights and biases - should be only applied if no pretrained net loaded def initialize_weights_and_biases(net): print('Initialize weights and biases') for name, param in net.named_parameters(): print('Initialize {}'.format(name)) if 'gru' in name: if 'weight' in name: nn.init.orthogonal_(param) if 'linear' in name: if 'weight' in name: nn.init.orthogonal_(param) # nn.init.xavier_uniform_(param) if 'bias' in name: # all biases nn.init.constant_(param, 0) print('') def create_rnn_instance(rnn_name=None, inputs_list=None, outputs_list=None, load_rnn=None, path_save=None, device=None): if load_rnn is not None and load_rnn != 'last': # 1) Find csv with this name if exists load name, inputs and outputs list # if it does not exist raise error # 2) Create corresponding net # 3) Load parameters from corresponding pt file filename = load_rnn print('Loading a pretrained RNN with the full name: {}'.format(filename)) print('') txt_filename = filename + '.txt' pt_filename = filename + '.pt' txt_path = path_save + txt_filename pt_path = path_save + pt_filename if not os.path.isfile(txt_path): raise ValueError( 'The corresponding .txt file is missing (information about inputs and outputs) at the location {}'.format( txt_path)) if not os.path.isfile(pt_path): raise ValueError( 'The corresponding .pt file is missing (information about weights and biases) at the location {}'.format( pt_path)) f = open(txt_path, 'r') lines = f.readlines() rnn_name = lines[1].rstrip("\n") inputs_list = lines[7].rstrip("\n").split(sep=', ') outputs_list = lines[10].rstrip("\n").split(sep=', ') f.close() print('Inputs to the loaded RNN: {}'.format(', '.join(map(str, inputs_list)))) print('Outputs from the loaded RNN: {}'.format(', '.join(map(str, outputs_list)))) print('') # Construct the requested RNN net = Sequence(rnn_name=rnn_name, inputs_list=inputs_list, outputs_list=outputs_list) net.rnn_full_name = load_rnn # Load the parameters load_pretrained_rnn(net, pt_path, device) elif load_rnn == 'last': files_found = False while (not files_found): try: import glob list_of_files = glob.glob(path_save + '/*.txt') txt_path = max(list_of_files, key=os.path.getctime) except FileNotFoundError: raise ValueError('No information about any pretrained network found at {}'.format(path_save)) f = open(txt_path, 'r') lines = f.readlines() rnn_name = lines[1].rstrip("\n") pre_rnn_full_name = lines[4].rstrip("\n") inputs_list = lines[7].rstrip("\n").split(sep=', ') outputs_list = lines[10].rstrip("\n").split(sep=', ') f.close() pt_path = path_save + pre_rnn_full_name + '.pt' if not os.path.isfile(pt_path): print('The .pt file is missing (information about weights and biases) at the location {}'.format( pt_path)) print('I delete the corresponding .txt file and try to search again') print('') os.remove(txt_path) else: files_found = True print('Full name of the loaded RNN is {}'.format(pre_rnn_full_name)) print('Inputs to the loaded RNN: {}'.format(', '.join(map(str, inputs_list)))) print('Outputs from the loaded RNN: {}'.format(', '.join(map(str, outputs_list)))) print('') # Construct the requested RNN net = Sequence(rnn_name=rnn_name, inputs_list=inputs_list, outputs_list=outputs_list) net.rnn_full_name = pre_rnn_full_name # Load the parameters load_pretrained_rnn(net, pt_path, device) else: # a.load_rnn is None print('No pretrained network specified. I will train a network from scratch.') print('') # Construct the requested RNN net = Sequence(rnn_name=rnn_name, inputs_list=inputs_list, outputs_list=outputs_list) initialize_weights_and_biases(net) return net, rnn_name, inputs_list, outputs_list def create_log_file(rnn_name, inputs_list, outputs_list, path_save): rnn_full_name = rnn_name[:4] + str(len(inputs_list)) + 'IN-' + rnn_name[4:] + '-' + str(len(outputs_list)) + 'OUT' net_index = 0 while True: txt_path = path_save + rnn_full_name + '-' + str(net_index) + '.txt' if os.path.isfile(txt_path): pass else: rnn_full_name += '-' + str(net_index) f = open(txt_path, 'w') f.write('RNN NAME: \n' + rnn_name + '\n\n') f.write('RNN FULL NAME: \n' + rnn_full_name + '\n\n') f.write('INPUTS: \n' + ', '.join(map(str, inputs_list)) + '\n\n') f.write('OUTPUTS: \n' + ', '.join(map(str, outputs_list)) + '\n\n') f.close() break net_index += 1 print('Full name given to the currently trained network is {}.'.format(rnn_full_name)) print('') return rnn_full_name # FIXME: To tailor this sequence class according to the commands and state_variables of cartpole class Sequence(nn.Module): """" Our RNN class. """ def __init__(self, rnn_name, inputs_list, outputs_list): super(Sequence, self).__init__() """Initialization of an RNN instance We assume that inputs may be both commands and state variables, whereas outputs are always state variables """ # Check if GPU is available. If yes device='cuda:0' if not device='cpu' self.device = get_device() self.rnn_name = rnn_name self.rnn_full_name = None # Get the information about network architecture from the network name # Split the names into "LSTM/GRU", "128H1", "64H2" etc. names = rnn_name.split('-') layers = ['H1', 'H2', 'H3', 'H4', 'H5'] self.h_size = [] # Hidden layers sizes for name in names: for index, layer in enumerate(layers): if layer in name: # assign the variable with name obtained from list layers. self.h_size.append(int(name[:-2])) if not self.h_size: raise ValueError('You have to provide the size of at least one hidden layer in rnn name') if 'GRU' in names: self.rnn_type = 'GRU' elif 'LSTM' in names: self.rnn_type = 'LSTM' else: self.rnn_type = 'RNN-Basic' # Construct network if self.rnn_type == 'GRU': self.rnn_cell = [nn.GRUCell(len(inputs_list), self.h_size[0]).to(get_device())] for i in range(len(self.h_size) - 1): self.rnn_cell.append(nn.GRUCell(self.h_size[i], self.h_size[i + 1]).to(get_device())) elif self.rnn_type == 'LSTM': self.rnn_cell = [nn.LSTMCell(len(inputs_list), self.h_size[0]).to(get_device())] for i in range(len(self.h_size) - 1): self.rnn_cell.append(nn.LSTMCell(self.h_size[i], self.h_size[i + 1]).to(get_device())) else: self.rnn_cell = [nn.RNNCell(len(inputs_list), self.h_size[0]).to(get_device())] for i in range(len(self.h_size) - 1): self.rnn_cell.append(nn.RNNCell(self.h_size[i], self.h_size[i + 1]).to(get_device())) self.linear = nn.Linear(self.h_size[-1], len(outputs_list)) # RNN out self.layers = nn.ModuleList([]) for cell in self.rnn_cell: self.layers.append(cell) self.layers.append(self.linear) # Count data samples (=time steps) self.sample_counter = 0 # Declaration of the variables keeping internal state of GRU hidden layers self.h = [None] * len(self.h_size) self.c = [None] * len(self.h_size) # Internal state cell - only matters for LSTM # Variable keeping the most recent output of RNN self.output = None # List storing the history of RNN outputs self.outputs = [] # Send the whole RNN to GPU if available, otherwise send it to CPU self.to(self.device) print('Constructed a neural network of type {}, with {} hidden layers with sizes {} respectively.' .format(self.rnn_type, len(self.h_size), ', '.join(map(str, self.h_size)))) print('The inputs are (in this order): {}'.format(', '.join(map(str, inputs_list)))) print('The outputs are (in this order): {}'.format(', '.join(map(str, outputs_list)))) def reset(self): """ Reset the network (not the weights!) """ self.sample_counter = 0 self.h = [None] * len(self.h_size) self.c = [None] * len(self.h_size) self.output = None self.outputs = [] def forward(self, rnn_input): """ Predicts future CartPole states IN "OPEN LOOP" (at every time step prediction for the next time step is done based on the true CartPole state) """ # Initialize hidden layers - this change at every call as the batch size may vary for i in range(len(self.h_size)): self.h[i] = torch.zeros(rnn_input.size(1), self.h_size[i], dtype=torch.float).to(self.device) self.c[i] = torch.zeros(rnn_input.size(1), self.h_size[i], dtype=torch.float).to(self.device) # The for loop takes the consecutive time steps from input plugs them into RNN and save the outputs into a list # THE NETWORK GETS ALWAYS THE GROUND TRUTH, THE REAL STATE OF THE CARTPOLE, AS ITS INPUT # IT PREDICTS THE STATE OF THE CARTPOLE ONE TIME STEP AHEAD BASED ON TRUE STATE NOW for iteration, input_t in enumerate(rnn_input.chunk(rnn_input.size(0), dim=0)): # Propagate input through RNN layers if self.rnn_type == 'LSTM': self.h[0], self.c[0] = self.layers[0](input_t.squeeze(0), (self.h[0], self.c[0])) for i in range(len(self.h_size) - 1): self.h[i + 1], self.c[i + 1] = self.layers[i + 1](self.h[i], (self.h[i + 1], self.c[i + 1])) else: self.h[0] = self.layers[0](input_t.squeeze(0), self.h[0]) for i in range(len(self.h_size) - 1): self.h[i + 1] = self.layers[i + 1](self.h[i], self.h[i + 1]) self.output = self.layers[-1](self.h[-1]) self.outputs += [self.output] self.sample_counter = self.sample_counter + 1 # In the train mode we want to continue appending the outputs by calling forward function # The outputs will be saved internally in the network instance as a list # Otherwise we want to transform outputs list to a tensor and return it return self.output def return_outputs_history(self): return torch.stack(self.outputs, 1) import pandas as pd # # def load_data(a, filepath=None, columns_list=None, norm_inf=False, rnn_full_name=None, downsample=1): # if filepath is None: # filepath = a.val_file_name # # if columns_list is None: # columns_list = list(set(a.inputs_list).union(set(a.outputs_list))) # # if type(filepath) == list: # filepaths = filepath # else: # filepaths = [filepath] # # all_dfs = [] # saved separately to get normalization # all_time_axes = [] # # for one_filepath in filepaths: # # Load dataframe # print('loading data from ' + str(one_filepath)) # print('') # df = pd.read_csv(one_filepath, comment='#') # df=df.iloc[::downsample].reset_index() # # # You can shift dt by one time step to know "now" the timestep till the next row # if a.cheat_dt: # if 'dt' in df: # df['dt'] = df['dt'].shift(-1) # df = df[:-1] # # # FIXME: Make calculation of dt compatible with downsampling # # Get time axis as separate Dataframe # if 'time' in df.columns: # t = df['time'] # elif 'dt' in df.columns: # dt = df['dt'] # t = dt.cumsum() # t.rename('time', inplace=True) # else: # t = pd.Series([]) # t.rename('time', inplace=True) # # time_axis = t # all_time_axes.append(time_axis) # # # Get only relevant subset of columns # if columns_list == 'all': # pass # else: # df = df[columns_list] # # all_dfs.append(df) # # # return all_dfs, all_time_axes # # # This way of doing normalization is fine for long data sets and (relatively) short sequence lengths # # The points from the edges of the datasets count too little # def calculate_normalization_info(df, PATH_TO_EXPERIMENT_RECORDINGS, rnn_full_name): # if type(df) is list: # df_total = pd.concat(df) # else: # df_total = df # # if 'time' in df_total.columns: # df_total.drop('time', # axis='columns', inplace=True) # # df_mean = df_total.mean(axis=0) # df_std = df_total.std(axis=0) # df_max = df_total.max(axis=0) # df_min = df_total.min(axis=0) # frame = {'mean': df_mean, 'std': df_std, 'max': df_max, 'min': df_min} # df_norm_info = pd.DataFrame(frame).transpose() # # df_norm_info.to_csv(PATH_TO_EXPERIMENT_RECORDINGS + rnn_full_name + '-norm' + '.csv') # # # Plot historgrams to make the firs check about gaussian assumption # # for feature in df_total.columns: # # plt.hist(df_total[feature].to_numpy(), 50, density=True, facecolor='g', alpha=0.75) # # plt.title(feature) # # plt.show() # # return df_norm_info # # # def load_normalization_info(PATH_TO_EXPERIMENT_RECORDINGS, rnn_full_name): # return pd.read_csv(PATH_TO_EXPERIMENT_RECORDINGS + rnn_full_name + '-norm' + '.csv', index_col=0) # # # def normalize_df(dfs, normalization_info, normalization_type='minmax_sym'): # if normalization_type == 'gaussian': # def normalize_feature(col): # col_mean = normalization_info.loc['mean', col.name] # col_std = normalization_info.loc['std', col.name] # return (col - col_mean) / col_std # elif normalization_type == 'minmax_pos': # def normalize_feature(col): # col_min = normalization_info.loc['min', col.name] # col_max = normalization_info.loc['max', col.name] # return (col - col_min) / (col_max - col_min) # elif normalization_type == 'minmax_sym': # def normalize_feature(col): # col_min = normalization_info.loc['min', col.name] # col_max = normalization_info.loc['max', col.name] # return -1.0 + 2.0 * (col - col_min) / (col_max - col_min) # # if type(dfs) is list: # for i in range(len(dfs)): # dfs[i] = dfs[i].apply(normalize_feature, axis=0) # else: # dfs = dfs.apply(normalize_feature, axis=0) # # return dfs # # # def denormalize_df(dfs, normalization_info, normalization_type='minmax_sym'): # if normalization_type == 'gaussian': # def denormalize_feature(col): # col_mean = normalization_info.loc['mean', col.name] # col_std = normalization_info.loc['std', col.name] # return col * col_std + col_mean # elif normalization_type == 'minmax_pos': # def denormalize_feature(col): # col_min = normalization_info.loc['min', col.name] # col_max = normalization_info.loc['max', col.name] # return col * (col_max - col_min) + col_min # elif normalization_type == 'minmax_sym': # def denormalize_feature(col): # col_min = normalization_info.loc['min', col.name] # col_max = normalization_info.loc['max', col.name] # return ((col + 1.0) / 2.0) * (col_max - col_min) + col_min # # if type(dfs) is list: # for i in range(len(dfs)): # dfs[i] = dfs[i].apply(denormalize_feature, axis=0) # else: # dfs = dfs.apply(denormalize_feature, axis=0) # # return dfs class Dataset(data.Dataset): def __init__(self, dfs, args, time_axes=None, seq_len=None): 'Initialization - divide data in features and labels' self.data = [] self.labels = [] for df in dfs: # Get Raw Data features = copy.deepcopy(df) targets = copy.deepcopy(df) features.drop(features.tail(1).index, inplace=True) # Drop last row targets.drop(targets.head(1).index, inplace=True) features.reset_index(inplace=True) # Reset index targets.reset_index(inplace=True) features = features[args.inputs_list] targets = targets[args.outputs_list] self.data.append(features) self.labels.append(targets) self.args = args self.seq_len = None self.df_lengths = [] self.df_lengths_cs = [] self.number_of_samples = 0 self.time_axes = time_axes self.reset_seq_len(seq_len=seq_len) def reset_seq_len(self, seq_len=None): """ This method should be used if the user wants to change the seq_len without creating new Dataset Please remember that one can reset it again to come back to old configuration :param seq_len: Gives new user defined seq_len. Call empty to come back to default. """ if seq_len is None: self.seq_len = self.args.seq_len # Sequence length else: self.seq_len = seq_len self.df_lengths = [] self.df_lengths_cs = [] if type(self.data) == list: for data_set in self.data: self.df_lengths.append(data_set.shape[0] - self.seq_len) if not self.df_lengths_cs: self.df_lengths_cs.append(self.df_lengths[0]) else: self.df_lengths_cs.append(self.df_lengths_cs[-1] + self.df_lengths[-1]) self.number_of_samples = self.df_lengths_cs[-1] else: self.number_of_samples = self.data.shape[0] - self.seq_len def __len__(self): 'Total number of samples' return self.number_of_samples def __getitem__(self, idx, get_time_axis=False): """ Requires the self.data to be a list of pandas dataframes """ # Find index of the dataset in self.data and index of the starting point in this dataset idx_data_set = next(i for i, v in enumerate(self.df_lengths_cs) if v > idx) if idx_data_set == 0: pass else: idx -= self.df_lengths_cs[idx_data_set - 1] # Get data features = self.data[idx_data_set].to_numpy()[idx:idx + self.seq_len, :] # Every point in features has its target value corresponding to the next time step: targets = self.labels[idx_data_set].to_numpy()[idx:idx + self.seq_len] # After feeding the whole sequence we just compare the final output of the RNN with the state following afterwards # targets = self.labels[idx_data_set].to_numpy()[idx + self.seq_len-1] # If get_time_axis try to obtain a vector of time data for the chosen sample if get_time_axis: try: time_axis = self.time_axes[idx_data_set].to_numpy()[idx:idx + self.seq_len + 1] except IndexError: time_axis = [] # Return results if get_time_axis: return features, targets, time_axis else: return features, targets def get_experiment(self, idx=None): if self.time_axes is None: raise Exception('No time information available!') if idx is None: idx = np.random.randint(0, self.number_of_samples) return self.__getitem__(idx, get_time_axis=True) def plot_results(net, args, dataset=None, normalization_info = None, time_axes=None, filepath=None, inputs_list=None, outputs_list=None, closed_loop_list=None, seq_len=None, warm_up_len=None, closed_loop_enabled=False, comment='', rnn_full_name=None, save=False, close_loop_idx=512): """ This function accepts RNN instance, arguments and CartPole instance. It runs one random experiment with CartPole, inputs the data into RNN and check how well RNN predicts CartPole state one time step ahead of time """ rnn_full_name = net.rnn_full_name if filepath is None: filepath = args.val_file_name if type(filepath) == list: filepath = filepath[0] if warm_up_len is None: warm_up_len = args.warm_up_len if seq_len is None: seq_len = args.seq_len if inputs_list is None: inputs_list = args.inputs_list if inputs_list is None: raise ValueError('RNN inputs not provided!') if outputs_list is None: outputs_list = args.outputs_list if outputs_list is None: raise ValueError('RNN outputs not provided!') if closed_loop_enabled and (closed_loop_list is None): closed_loop_list = args.close_loop_for if closed_loop_list is None: raise ValueError('RNN closed-loop-inputs not provided!') net.reset() net.eval() device = get_device() if normalization_info is None: normalization_info = load_normalization_info(args.PATH_TO_EXPERIMENT_RECORDINGS, rnn_full_name) if dataset is None or time_axes is None: test_dfs, time_axes = load_data(args, filepath) test_dfs_norm = normalize_df(test_dfs, normalization_info) test_set = Dataset(test_dfs_norm, args, time_axes=time_axes, seq_len=seq_len) del test_dfs else: test_set = copy.deepcopy(dataset) test_set.reset_seq_len(seq_len=seq_len) # Format the experiment data features, targets, time_axis = test_set.get_experiment(1) # Put number in brackets to get the same idx at every run features_pd = pd.DataFrame(data=features, columns=inputs_list) targets_pd = pd.DataFrame(data=targets, columns=outputs_list) rnn_outputs = pd.DataFrame(columns=outputs_list) warm_up_idx = 0 rnn_input_0 = copy.deepcopy(features_pd.iloc[0]) # Does not bring anything. Why? 0-state shouldn't have zero internal state due to biases... while warm_up_idx < warm_up_len: rnn_input = rnn_input_0 rnn_input = np.squeeze(rnn_input.to_numpy()) rnn_input = torch.from_numpy(rnn_input).float().unsqueeze(0).unsqueeze(0).to(device) net(rnn_input=rnn_input) warm_up_idx += 1 net.outputs = [] net.sample_counter = 0 idx_cl = 0 close_the_loop = False for index, row in features_pd.iterrows(): rnn_input = pd.DataFrame(copy.deepcopy(row)).transpose().reset_index(drop=True) if idx_cl == close_loop_idx: close_the_loop = True if closed_loop_enabled and close_the_loop and (normalized_rnn_output is not None): rnn_input[closed_loop_list] = normalized_rnn_output[closed_loop_list] rnn_input = np.squeeze(rnn_input.to_numpy()) rnn_input = torch.from_numpy(rnn_input).float().unsqueeze(0).unsqueeze(0).to(device) normalized_rnn_output = net(rnn_input=rnn_input) normalized_rnn_output = np.squeeze(normalized_rnn_output.detach().cpu().numpy()).tolist() normalized_rnn_output = copy.deepcopy(pd.DataFrame(data=[normalized_rnn_output], columns=outputs_list)) rnn_outputs = rnn_outputs.append(copy.deepcopy(normalized_rnn_output), ignore_index=True) idx_cl += 1 targets_pd_denorm = denormalize_df(targets_pd, normalization_info) rnn_outputs_denorm = denormalize_df(rnn_outputs, normalization_info) fig, axs = plot_results_specific(targets_pd_denorm, rnn_outputs_denorm, time_axis, comment, closed_loop_enabled, close_loop_idx) plt.show() if save: # Make folders if not yet exist try: os.makedirs('save_plots') except FileExistsError: pass dateTimeObj = datetime.now() timestampStr = dateTimeObj.strftime("-%d%b%Y_%H%M%S") if rnn_full_name is not None: fig.savefig('./save_plots/' + rnn_full_name + timestampStr + '.png') else: fig.savefig('./save_plots/' + timestampStr + '.png')
9,315
3,525
189
a14001fe338c11a2de9e1cb5a8130727cb1dcd35
7,654
py
Python
resto_client/cli/parser/parser_configure_server.py
CNES/resto_client
7048bd79c739e33882ebd664790dcf0528e81aa4
[ "Apache-2.0" ]
6
2019-12-20T09:12:30.000Z
2021-07-08T11:44:55.000Z
resto_client/cli/parser/parser_configure_server.py
CNES/resto_client
7048bd79c739e33882ebd664790dcf0528e81aa4
[ "Apache-2.0" ]
null
null
null
resto_client/cli/parser/parser_configure_server.py
CNES/resto_client
7048bd79c739e33882ebd664790dcf0528e81aa4
[ "Apache-2.0" ]
1
2019-12-17T20:16:39.000Z
2019-12-17T20:16:39.000Z
# -*- coding: utf-8 -*- """ .. admonition:: License Copyright 2019 CNES Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import argparse from resto_client.base_exceptions import RestoClientDesignError from resto_client.services.service_access import (AuthenticationServiceAccess, RestoServiceAccess) from resto_client.settings.resto_client_config import resto_client_print from resto_client.settings.servers_database import DB_SERVERS from .parser_common import CliFunctionReturnType from .parser_settings import (SERVER_ARGNAME, RESTO_URL_ARGNAME, RESTO_PROTOCOL_ARGNAME, AUTH_URL_ARGNAME, AUTH_PROTOCOL_ARGNAME) def cli_create_server(args: argparse.Namespace) -> CliFunctionReturnType: """ CLI adapter to create a server definition :param args: arguments parsed by the CLI parser :returns: the resto client parameters and the resto server possibly built by this command. """ # TODO: Modify ServiceAcces such that lower is implemented in them resto_access = RestoServiceAccess(getattr(args, RESTO_URL_ARGNAME), getattr(args, RESTO_PROTOCOL_ARGNAME).lower()) auth_access = AuthenticationServiceAccess(getattr(args, AUTH_URL_ARGNAME), getattr(args, AUTH_PROTOCOL_ARGNAME).lower()) DB_SERVERS.create_server(getattr(args, SERVER_ARGNAME), resto_access, auth_access) return None, None def cli_delete_server(args: argparse.Namespace) -> CliFunctionReturnType: """ CLI adapter to delete a server definition :param args: arguments parsed by the CLI parser :returns: the resto client parameters and the resto server possibly built by this command. """ DB_SERVERS.delete(getattr(args, SERVER_ARGNAME)) return None, None def cli_edit_server(args: argparse.Namespace) -> CliFunctionReturnType: """ CLI adapter to edit the server characteristics :param args: arguments parsed by the CLI parser :raises RestoClientDesignError: unconditionally, as this function is not implemented yet """ raise RestoClientDesignError('Edit server unimplemented') def cli_show_servers(args: argparse.Namespace) -> CliFunctionReturnType: """ CLI adapter to show the servers database :param args: arguments parsed by the CLI parser :returns: the resto client parameters and the resto server possibly built by this command. """ _ = args # to avoid pylint warning resto_client_print(DB_SERVERS) return None, None # We need to specify argparse._SubParsersAction for mypy to run. Thus pylint squeals. # pylint: disable=protected-access def add_configure_server_subparser(sub_parsers: argparse._SubParsersAction) -> None: """ Add the 'configure_server' subparser :param sub_parsers: argparse object used to add a parser for that subcommand. """ parser_configure_server = sub_parsers.add_parser( 'configure_server', help='configure servers known by resto_client.', description='Allows to create, modify or delete servers characteristics: url, type, etc.', epilog='Servers definition is stored in a configuration file and can be edited using this' ' command.') help_msg = 'For more help: {} <parameter> -h'.format(parser_configure_server.prog) sub_parsers_configure_server = parser_configure_server.add_subparsers(description=help_msg) add_config_server_create_parser(sub_parsers_configure_server) add_config_server_delete_parser(sub_parsers_configure_server) add_config_server_edit_parser(sub_parsers_configure_server) add_config_server_show_parser(sub_parsers_configure_server) def add_config_server_create_parser( sub_parsers_configure_server: argparse._SubParsersAction) -> None: """ Update the 'configure_server' command subparser with options for 'configure_server create' :param sub_parsers_configure_server: argparse object used to add a parser for that subcommand. """ subparser = sub_parsers_configure_server.add_parser( 'create', help='create a new server', description='Create a new server in the servers configuration database.') _add_positional_args_parser(subparser) subparser.set_defaults(func=cli_create_server) def add_config_server_delete_parser( sub_parsers_configure_server: argparse._SubParsersAction) -> None: """ Update the 'configure_server' command subparser with options for 'configure_server delete' :param sub_parsers_configure_server: argparse object used to add a parser for that subcommand. """ subparser = sub_parsers_configure_server.add_parser( 'delete', help='delete an existing server', description='Delete a server from the configuration database.') subparser.add_argument(SERVER_ARGNAME, help='name of the server to delete') subparser.set_defaults(func=cli_delete_server) def add_config_server_edit_parser( sub_parsers_configure_server: argparse._SubParsersAction) -> None: """ Update the 'configure_server' command subparser with options for 'configure_server edit' :param sub_parsers_configure_server: argparse object used to add a parser for that subcommand. """ subparser = sub_parsers_configure_server.add_parser( 'edit', help='edit server characteristics', description='Edit the characteristics of a server existing in the configuration database.') _add_positional_args_parser(subparser) subparser.set_defaults(func=cli_edit_server) def add_config_server_show_parser( sub_parsers_configure_server: argparse._SubParsersAction) -> None: """ Update the 'configure_server' command subparser with options for 'configure_server show' :param sub_parsers_configure_server: argparse object used to add a parser for that subcommand. """ subparser = sub_parsers_configure_server.add_parser( 'show', help='show servers database', description='Show all the servers defined in the database with their configuration.') subparser.set_defaults(func=cli_show_servers) def _add_positional_args_parser(subparser: argparse.ArgumentParser) -> None: """ Add the positional arguments parsing rules for configure_server subcommands :param subparser: parser to be supplemented with positional arguments. """ subparser.add_argument(SERVER_ARGNAME, help='name of the server') group_resto = subparser.add_argument_group('resto service') group_resto.add_argument(RESTO_URL_ARGNAME, help='URL of the resto server') group_resto.add_argument(RESTO_PROTOCOL_ARGNAME, choices=RestoServiceAccess.supported_protocols(), help='Protocol of the resto server') group_auth = subparser.add_argument_group('authentication service') group_auth.add_argument(AUTH_URL_ARGNAME, nargs='?', help='URL of the authentication server') group_auth.add_argument(AUTH_PROTOCOL_ARGNAME, choices=AuthenticationServiceAccess.supported_protocols(), help='Protocol of the authentication server')
44.5
100
0.74902
# -*- coding: utf-8 -*- """ .. admonition:: License Copyright 2019 CNES Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import argparse from resto_client.base_exceptions import RestoClientDesignError from resto_client.services.service_access import (AuthenticationServiceAccess, RestoServiceAccess) from resto_client.settings.resto_client_config import resto_client_print from resto_client.settings.servers_database import DB_SERVERS from .parser_common import CliFunctionReturnType from .parser_settings import (SERVER_ARGNAME, RESTO_URL_ARGNAME, RESTO_PROTOCOL_ARGNAME, AUTH_URL_ARGNAME, AUTH_PROTOCOL_ARGNAME) def cli_create_server(args: argparse.Namespace) -> CliFunctionReturnType: """ CLI adapter to create a server definition :param args: arguments parsed by the CLI parser :returns: the resto client parameters and the resto server possibly built by this command. """ # TODO: Modify ServiceAcces such that lower is implemented in them resto_access = RestoServiceAccess(getattr(args, RESTO_URL_ARGNAME), getattr(args, RESTO_PROTOCOL_ARGNAME).lower()) auth_access = AuthenticationServiceAccess(getattr(args, AUTH_URL_ARGNAME), getattr(args, AUTH_PROTOCOL_ARGNAME).lower()) DB_SERVERS.create_server(getattr(args, SERVER_ARGNAME), resto_access, auth_access) return None, None def cli_delete_server(args: argparse.Namespace) -> CliFunctionReturnType: """ CLI adapter to delete a server definition :param args: arguments parsed by the CLI parser :returns: the resto client parameters and the resto server possibly built by this command. """ DB_SERVERS.delete(getattr(args, SERVER_ARGNAME)) return None, None def cli_edit_server(args: argparse.Namespace) -> CliFunctionReturnType: """ CLI adapter to edit the server characteristics :param args: arguments parsed by the CLI parser :raises RestoClientDesignError: unconditionally, as this function is not implemented yet """ raise RestoClientDesignError('Edit server unimplemented') def cli_show_servers(args: argparse.Namespace) -> CliFunctionReturnType: """ CLI adapter to show the servers database :param args: arguments parsed by the CLI parser :returns: the resto client parameters and the resto server possibly built by this command. """ _ = args # to avoid pylint warning resto_client_print(DB_SERVERS) return None, None # We need to specify argparse._SubParsersAction for mypy to run. Thus pylint squeals. # pylint: disable=protected-access def add_configure_server_subparser(sub_parsers: argparse._SubParsersAction) -> None: """ Add the 'configure_server' subparser :param sub_parsers: argparse object used to add a parser for that subcommand. """ parser_configure_server = sub_parsers.add_parser( 'configure_server', help='configure servers known by resto_client.', description='Allows to create, modify or delete servers characteristics: url, type, etc.', epilog='Servers definition is stored in a configuration file and can be edited using this' ' command.') help_msg = 'For more help: {} <parameter> -h'.format(parser_configure_server.prog) sub_parsers_configure_server = parser_configure_server.add_subparsers(description=help_msg) add_config_server_create_parser(sub_parsers_configure_server) add_config_server_delete_parser(sub_parsers_configure_server) add_config_server_edit_parser(sub_parsers_configure_server) add_config_server_show_parser(sub_parsers_configure_server) def add_config_server_create_parser( sub_parsers_configure_server: argparse._SubParsersAction) -> None: """ Update the 'configure_server' command subparser with options for 'configure_server create' :param sub_parsers_configure_server: argparse object used to add a parser for that subcommand. """ subparser = sub_parsers_configure_server.add_parser( 'create', help='create a new server', description='Create a new server in the servers configuration database.') _add_positional_args_parser(subparser) subparser.set_defaults(func=cli_create_server) def add_config_server_delete_parser( sub_parsers_configure_server: argparse._SubParsersAction) -> None: """ Update the 'configure_server' command subparser with options for 'configure_server delete' :param sub_parsers_configure_server: argparse object used to add a parser for that subcommand. """ subparser = sub_parsers_configure_server.add_parser( 'delete', help='delete an existing server', description='Delete a server from the configuration database.') subparser.add_argument(SERVER_ARGNAME, help='name of the server to delete') subparser.set_defaults(func=cli_delete_server) def add_config_server_edit_parser( sub_parsers_configure_server: argparse._SubParsersAction) -> None: """ Update the 'configure_server' command subparser with options for 'configure_server edit' :param sub_parsers_configure_server: argparse object used to add a parser for that subcommand. """ subparser = sub_parsers_configure_server.add_parser( 'edit', help='edit server characteristics', description='Edit the characteristics of a server existing in the configuration database.') _add_positional_args_parser(subparser) subparser.set_defaults(func=cli_edit_server) def add_config_server_show_parser( sub_parsers_configure_server: argparse._SubParsersAction) -> None: """ Update the 'configure_server' command subparser with options for 'configure_server show' :param sub_parsers_configure_server: argparse object used to add a parser for that subcommand. """ subparser = sub_parsers_configure_server.add_parser( 'show', help='show servers database', description='Show all the servers defined in the database with their configuration.') subparser.set_defaults(func=cli_show_servers) def _add_positional_args_parser(subparser: argparse.ArgumentParser) -> None: """ Add the positional arguments parsing rules for configure_server subcommands :param subparser: parser to be supplemented with positional arguments. """ subparser.add_argument(SERVER_ARGNAME, help='name of the server') group_resto = subparser.add_argument_group('resto service') group_resto.add_argument(RESTO_URL_ARGNAME, help='URL of the resto server') group_resto.add_argument(RESTO_PROTOCOL_ARGNAME, choices=RestoServiceAccess.supported_protocols(), help='Protocol of the resto server') group_auth = subparser.add_argument_group('authentication service') group_auth.add_argument(AUTH_URL_ARGNAME, nargs='?', help='URL of the authentication server') group_auth.add_argument(AUTH_PROTOCOL_ARGNAME, choices=AuthenticationServiceAccess.supported_protocols(), help='Protocol of the authentication server')
0
0
0
472e53d4d44cd3cc04aaf44dbd4aac137138d3f3
1,224
py
Python
src/wlstm/utils.py
tedhuang96/mifwlstm
e1d5a3a1f954952ff5a1f28be08e703d1251e592
[ "MIT" ]
11
2021-06-21T04:06:45.000Z
2022-02-22T20:53:45.000Z
src/wlstm/utils.py
tedhuang96/mifwlstm
e1d5a3a1f954952ff5a1f28be08e703d1251e592
[ "MIT" ]
null
null
null
src/wlstm/utils.py
tedhuang96/mifwlstm
e1d5a3a1f954952ff5a1f28be08e703d1251e592
[ "MIT" ]
null
null
null
import torch from os.path import join, isdir, isfile from os import listdir import re from src.wlstm.models import ReBiL
42.206897
125
0.686275
import torch from os.path import join, isdir, isfile from os import listdir import re from src.wlstm.models import ReBiL def load_rebil_model(args, logdir, device='cuda:0'): if not isdir(logdir): print('The folder '+logdir+' is not found.') return None if args.eval_model_saved_epoch is None: saved_epoch = args.num_epochs else: saved_epoch = args.eval_model_saved_epoch for filename in listdir(logdir): if isfile(join(logdir, filename)) and re.search('.*epoch_'+str(saved_epoch)+'.pt', filename): model_filename = join(logdir, filename) model = ReBiL(embedding_size=args.embedding_size, hidden_size=args.hidden_size, num_layers=args.num_layers, \ num_lstms=args.num_lstms, bidirectional=args.bidirectional, end_mask=args.end_mask, device=device).to(device) checkpoint = torch.load(model_filename, map_location=device) model.load_state_dict(checkpoint['model_state_dict']) model.load_lstms_dict(checkpoint['lstms_dict']) print(model_filename + ' is loaded.') return model print('The model is not saved at epoch '+str(saved_epoch)+' in '+logdir) return None
1,079
0
23
4498832be13a9415d6ca76fd5ad2398b9e886b1d
1,059
py
Python
src/push_button.py
albang/arisa
9b7ea5e7befc92d1febb038476d03e858a622153
[ "MIT" ]
null
null
null
src/push_button.py
albang/arisa
9b7ea5e7befc92d1febb038476d03e858a622153
[ "MIT" ]
null
null
null
src/push_button.py
albang/arisa
9b7ea5e7befc92d1febb038476d03e858a622153
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import RPi.GPIO as GPIO # Import Raspberry Pi GPIO library import os, time os.system('mpg123 -g100 /home/pi/paw_patrol_courte.mp3 &') GPIO.setwarnings(False) # Ignore warning for now GPIO.setmode(GPIO.BOARD) # Use physical pin numbering GPIO.setup(10, GPIO.IN, pull_up_down=GPIO.PUD_DOWN) # Set pin 10 to be an input pin and set initial value to be pulled low (off) GPIO.add_event_detect(10,GPIO.RISING,callback=button_callback,bouncetime=4000) # Setup event on pin 10 rising edge GPIO.setup(13, GPIO.IN, pull_up_down=GPIO.PUD_DOWN) # Set pin 10 to be an input pin and set initial value to be pulled low (off) GPIO.add_event_detect(13,GPIO.RISING,callback=button_callback2,bouncetime=4000) # Setup event on pin 10 rising edge while True: time.sleep(100000) GPIO.cleanup() # Clean up
40.730769
128
0.756374
#!/usr/bin/env python3 import RPi.GPIO as GPIO # Import Raspberry Pi GPIO library import os, time def button_callback(channel): print("Button was pushed!") os.system('mpg123 /home/pi/minute_courte.mp3 &') def button_callback2(channel): print("Button was pushed!") os.system('mpg123 -g100 /home/pi/paw_patrol_courte.mp3 &') os.system('mpg123 -g100 /home/pi/paw_patrol_courte.mp3 &') GPIO.setwarnings(False) # Ignore warning for now GPIO.setmode(GPIO.BOARD) # Use physical pin numbering GPIO.setup(10, GPIO.IN, pull_up_down=GPIO.PUD_DOWN) # Set pin 10 to be an input pin and set initial value to be pulled low (off) GPIO.add_event_detect(10,GPIO.RISING,callback=button_callback,bouncetime=4000) # Setup event on pin 10 rising edge GPIO.setup(13, GPIO.IN, pull_up_down=GPIO.PUD_DOWN) # Set pin 10 to be an input pin and set initial value to be pulled low (off) GPIO.add_event_detect(13,GPIO.RISING,callback=button_callback2,bouncetime=4000) # Setup event on pin 10 rising edge while True: time.sleep(100000) GPIO.cleanup() # Clean up
198
0
46
4da98b7e4cedd701321a8df23f73f41ffd79cf6e
1,054
py
Python
src/utils.py
michaellas/streaming-vid-to-gifs
ee5df22c820d4d631f0437c98a53989ecb76dca3
[ "MIT" ]
null
null
null
src/utils.py
michaellas/streaming-vid-to-gifs
ee5df22c820d4d631f0437c98a53989ecb76dca3
[ "MIT" ]
1
2015-04-07T12:24:26.000Z
2015-04-07T12:28:30.000Z
src/utils.py
michaellas/streaming-vid-to-gifs
ee5df22c820d4d631f0437c98a53989ecb76dca3
[ "MIT" ]
null
null
null
import time import sys if __name__ == '__main__': ''' @log_called_times_decorator def ff(): print 'f' while True: ff() time.sleep(1) ''' print_progress(45) print '' print_progress(x=20,max=200)
26.35
107
0.578748
import time import sys def log_called_times_decorator(func): def wrapper(*args): wrapper.count += 1 # print "The function I modify has been called {0} times(s).".format(wrapper.count) now = time.time() if now - wrapper.last_log > wrapper.dt: print '[DEBUG] In last %ds %s() was called %d times' % (wrapper.dt,func.__name__,wrapper.count) wrapper.count = 0 wrapper.last_log = now return func(*args) wrapper.count = 0 wrapper.last_log = time.time() wrapper.dt = 5 return wrapper def print_progress( percent=None, x=0, max=100): if not percent: percent = x*100.0/max sys.stdout.write('\r') bars = int(percent / 5) sys.stdout.write("[%-20s] %d%% " % ('='*bars, int(percent))) sys.stdout.flush() if __name__ == '__main__': ''' @log_called_times_decorator def ff(): print 'f' while True: ff() time.sleep(1) ''' print_progress(45) print '' print_progress(x=20,max=200)
748
0
46
7e9bde1a168f5b214f14f1b43d8d2d70b12ae817
11,187
py
Python
org/hasii/chip8/ui/Chip8UIScreen.py
hasii2011/Chip8Emulator
96be8c0d01ccae0492ce0f980af905ec5c690f1a
[ "MIT" ]
null
null
null
org/hasii/chip8/ui/Chip8UIScreen.py
hasii2011/Chip8Emulator
96be8c0d01ccae0492ce0f980af905ec5c690f1a
[ "MIT" ]
8
2019-08-12T23:33:12.000Z
2020-12-09T01:31:17.000Z
org/hasii/chip8/ui/Chip8UIScreen.py
hasii2011/Chip8Emulator
96be8c0d01ccae0492ce0f980af905ec5c690f1a
[ "MIT" ]
null
null
null
from typing import List from os import getcwd from os.path import basename from pkg_resources import resource_filename from logging import Logger from logging import getLogger from pygame import event as Event from pygame import Surface from pygame.font import Font from albow.References import AttrRef from albow.References import ItemRef from albow.themes.Theme import Theme from albow.core.ui.Widget import Widget from albow.core.ui.Screen import Screen from albow.dialog.FileDialogUtilities import request_old_filename from albow.dialog.TitledDialog import TitledDialog from albow.core.ui.Shell import Shell from albow.core.ui.AlbowEventLoop import AlbowEventLoop from albow.menu.Menu import Menu from albow.menu.MenuBar import MenuBar from albow.menu.MenuItem import MenuItem from albow.layout.Column import Column from albow.layout.Row import Row from albow.layout.Frame import Frame from albow.widgets.Label import Label from albow.widgets.ValueDisplay import ValueDisplay from org.hasii.chip8.Version import Version from org.hasii.chip8.Chip8 import Chip8 from org.hasii.chip8.keyboard.Chip8KeyPadKeys import Chip8KeyPadKeys from org.hasii.chip8.Chip8RegisterName import Chip8RegisterName from org.hasii.chip8.ui.Chip8Screen import Chip8Screen from org.hasii.chip8.errors.InvalidIndexRegisterValue import InvalidIndexRegisterValue from org.hasii.chip8.errors.UnknownInstructionError import UnknownInstructionError from org.hasii.chip8.errors.UnKnownSpecialRegistersSubOpCode import UnKnownSpecialRegistersSubOpCode from org.hasii.chip8.ui.Chip8UIStack import Chip8UIStack from org.hasii.chip8.ui.Chip8UIInstructionList import Chip8UIInstructionList from org.hasii.chip8.ui.Chip8Beep import Chip8Beep
37.29
141
0.653169
from typing import List from os import getcwd from os.path import basename from pkg_resources import resource_filename from logging import Logger from logging import getLogger from pygame import event as Event from pygame import Surface from pygame.font import Font from albow.References import AttrRef from albow.References import ItemRef from albow.themes.Theme import Theme from albow.core.ui.Widget import Widget from albow.core.ui.Screen import Screen from albow.dialog.FileDialogUtilities import request_old_filename from albow.dialog.TitledDialog import TitledDialog from albow.core.ui.Shell import Shell from albow.core.ui.AlbowEventLoop import AlbowEventLoop from albow.menu.Menu import Menu from albow.menu.MenuBar import MenuBar from albow.menu.MenuItem import MenuItem from albow.layout.Column import Column from albow.layout.Row import Row from albow.layout.Frame import Frame from albow.widgets.Label import Label from albow.widgets.ValueDisplay import ValueDisplay from org.hasii.chip8.Version import Version from org.hasii.chip8.Chip8 import Chip8 from org.hasii.chip8.keyboard.Chip8KeyPadKeys import Chip8KeyPadKeys from org.hasii.chip8.Chip8RegisterName import Chip8RegisterName from org.hasii.chip8.ui.Chip8Screen import Chip8Screen from org.hasii.chip8.errors.InvalidIndexRegisterValue import InvalidIndexRegisterValue from org.hasii.chip8.errors.UnknownInstructionError import UnknownInstructionError from org.hasii.chip8.errors.UnKnownSpecialRegistersSubOpCode import UnKnownSpecialRegistersSubOpCode from org.hasii.chip8.ui.Chip8UIStack import Chip8UIStack from org.hasii.chip8.ui.Chip8UIInstructionList import Chip8UIInstructionList from org.hasii.chip8.ui.Chip8Beep import Chip8Beep class Chip8UIScreen(Screen): FONT_PKG: str = 'org.hasii.chip8.resources' CPU_CYCLE_EVENT: int = AlbowEventLoop.MUSIC_END_EVENT + 1 SIXTY_HERTZ: int = 1000 // 60 fileItems = [ MenuItem(text="Load", command="processLoad"), MenuItem(text="Exit", command="processExit"), ] helpItems = [ MenuItem(text="About", command="processAbout"), MenuItem(text="Help", command="processHelp"), ] fileMenu: Menu = Menu(title="File", items=fileItems) helpMenu: Menu = Menu(title="Help", items=helpItems) def __init__(self, theShell: Shell, theSurface: Surface): """ Args: theShell: The shell that wraps this screen theSurface: The pygame surface to use to drawn on Returns: An instance of itself """ super().__init__(theShell) self.surface: Surface = theSurface self.logger: Logger = getLogger(__name__) self.chip8: Chip8 = Chip8() fullFileName: str = self._findFont('MonoFonto.ttf') self.internalsFont: Font = Font(fullFileName, 13) self.note = Chip8Beep(440) self.labelAttrs = { 'fg_color': Theme.WHITE, 'bg_color': Theme.LAMAS_MEDIUM_BLUE, 'font': self.internalsFont, } self.rowColumnAttrs = { 'bg_color': Theme.LAMAS_MEDIUM_BLUE, 'margin': 2, 'spacing': 3, } menus = [ Chip8UIScreen.fileMenu, Chip8UIScreen.helpMenu ] menuBar = MenuBar(menus=menus, width=self.shell.width) framedMenuBar: Frame = Frame(client=menuBar, width=self.shell.width) chip8Screen: Chip8Screen = Chip8Screen(self.chip8.virtualScreen) internalsDisp: Row = self.makeCpuInternalsDisplay() registerDisp: Row = self.makeRegisterDisplay() stackDisp: Column = self.makeStackDisplay() instrDisp: Column = self.makeInstructionListDisplay() registerStackDisp: Row = Row([registerDisp, stackDisp, instrDisp], align='b', **self.rowColumnAttrs) contentAttrs = { "align": "l", 'expand': 0, 'bg_color': Theme.LAMAS_MEDIUM_BLUE, 'margin': 1, 'spacing': 2, } contents = Column([framedMenuBar, chip8Screen, internalsDisp, registerStackDisp], **contentAttrs) self.logger.debug(f"Menu bar size: {framedMenuBar.size}, shell width: {self.shell.width}") self.add(contents) def timer_event(self, theEvent: Event): """ The shell set this up to be called at the CHIP8 60Hz rate; So here we will * emulate a CPU cycle * decrement both the CHIP 8 delay timer and the sound timer Args: theEvent: """ # clock = Clock() # milliseconds = clock.tick(1000) # milliseconds passed since last frame; needs to agree witH Chip8UIShell value # self.logger.info(f"milliseconds: {milliseconds}") milliseconds: float = theEvent.dict['time'] seconds: float = milliseconds/1000 self.logger.debug(f"seconds: {seconds:5.3f}") try: if self.chip8.romLoaded is True: if self.chip8.isCPUWaitingForKeyPress() is False: self.chip8.emulateSingleCpuCycle() self.chip8.decrementDelayTimer() self.chip8.decrementSoundTimer() if self.chip8.soundTimer == 0: self.note.stop() except (UnknownInstructionError, InvalidIndexRegisterValue, UnKnownSpecialRegistersSubOpCode) as e: self.logger.error(f"Chip 8 failure: {e}") self.logger.error(f"Chip Dump:\n {self.chip8}") self.chip8.debugPrintMemory = True self.logger.error(f' MEMORY DUMP') self.logger.error(f'____________________________________________________________________') self.chip8._debugPrintMemory(startByteNbr=0, nBytes=len(self.chip8.memory)) self.shell.quit() return True def key_down(self, theKeyEvent: Event): """ Seems like part of the Chip 8 emulator has to happen here: http://laurencescotford.co.uk/?p=347 Args: theKeyEvent: The PyGame key event """ pressedKey: Chip8KeyPadKeys = Chip8KeyPadKeys.toEnum(theKeyEvent.key) self.logger.debug(f"key down: {pressedKey.value:X}") if pressedKey != Chip8KeyPadKeys.UNSUPPORTED: self.chip8.keypad.keyDown(pressedKey) self.logger.debug(f"keypad: {self.chip8.keypad}") if self.chip8.keyPressData.waitingForKey is True: self.chip8.setKeyPressed(pressedKey) self.note.play(-1) def key_up(self, theKeyEvent: Event): releasedKey: Chip8KeyPadKeys = Chip8KeyPadKeys.toEnum(theKeyEvent.key) self.logger.debug(f"key up: {releasedKey.value:X}") if releasedKey != Chip8KeyPadKeys.UNSUPPORTED: self.chip8.keypad.keyUp(releasedKey) self.logger.debug(f"keypad: {self.chip8.keypad}") self.note.stop() def processLoad_cmd(self): cwd: str = getcwd() + '/org/hasii/chip8/roms' path = request_old_filename(directory=cwd) self.logger.info(f'path: {path}') self.chip8.resetCPU() fName: str = basename(path) self.chip8.loadROM(theFilename=fName) def processExit_cmd(self): self.logger.info("Executed exit item command") self.shell.quit() def processAbout_cmd(self): ttlDlg: TitledDialog = TitledDialog(title='Chip8 Python', message=f'Version {Version}, by Humberto A. Sanchez II') response = ttlDlg.present() self.logger.info(f'response: {response}') def processHelp_cmd(self): self.logger.info("Executed help item command") def makeCpuInternalsDisplay(self) -> Row: pcRow: Row = self._makeLabelValueRow(refName='pc', attrLabel='PC:', attrFormat='0x%04X', valueWidth=50) idxRow: Row = self._makeLabelValueRow(refName='indexRegister', attrLabel='Idx:', attrFormat='0x%04X', valueWidth=42) sndTimerRow: Row = self._makeLabelValueRow(refName='soundTimer', attrLabel='Sound Timer:', attrFormat='0x%04X', valueWidth=42) dlyTimerRow: Row = self._makeLabelValueRow(refName='delayTimer', attrLabel='Delay Timer:', attrFormat='0x%04X', valueWidth=42) instCountRow: Row = self._makeLabelValueRow(refName='instructionCount', attrLabel='Inst Cnt:', valueWidth=50) retAttrs = { 'bg_color': Theme.LAMAS_MEDIUM_BLUE, 'fg_color': Theme.WHITE, 'spacing': 2, } retContainer: Row = Row([pcRow, idxRow, sndTimerRow, dlyTimerRow, instCountRow], **retAttrs) return retContainer def makeRegisterDisplay(self) -> Row: leftList: List[Widget] = [] rightList: List[Widget] = [] for regName in Chip8RegisterName: itemRef: ItemRef = ItemRef(base=self.chip8.registers, index=regName) regLabel: Label = Label(regName.name + ':', **self.labelAttrs) regValue: ValueDisplay = ValueDisplay(ref=itemRef, width=42, **self.labelAttrs) regValue.format = '0x%04X' pairRow: Row = Row([regLabel, regValue], **self.rowColumnAttrs) if regName.value % 2: rightList.append(pairRow) else: leftList.append(pairRow) leftColumn: Column = Column(leftList, **self.rowColumnAttrs) rightColumn: Column = Column(rightList, **self.rowColumnAttrs) gridAttrs = { 'bg_color': Theme.LAMAS_MEDIUM_BLUE, 'margin': 2, 'border_width': 1 } retGrid: Row = Row([leftColumn, rightColumn], **gridAttrs) return retGrid def makeStackDisplay(self) -> Column: stackLabel: Label = Label("Stack", **self.labelAttrs) stackBox: Chip8UIStack = Chip8UIStack(theChipStack=self.chip8.stack) stackContainer: Column = Column([stackLabel, stackBox], **self.rowColumnAttrs) return stackContainer def makeInstructionListDisplay(self) -> Column: instrLabel: Label = Label("Instructions", **self.labelAttrs) instrBox: Chip8UIInstructionList = Chip8UIInstructionList(instructionList=self.chip8.instructionList) instrContainer: Column = Column([instrLabel, instrBox], **self.rowColumnAttrs) return instrContainer def _makeLabelValueRow(self, refName: str, attrLabel: str, attrFormat: str = None, valueWidth: int = 100) -> Row: attrRef: AttrRef = AttrRef(base=self.chip8, name=refName) attrLabel: Label = Label(attrLabel, **self.labelAttrs) attrValue: ValueDisplay = ValueDisplay(ref=attrRef, width=valueWidth, **self.labelAttrs) if attrFormat is not None: attrValue.format = attrFormat retRow: Row = Row([attrLabel, attrValue], **self.rowColumnAttrs) return retRow def _findFont(self, theFileName: str): fileName = resource_filename(Chip8UIScreen.FONT_PKG, theFileName) self.logger.debug(f"The full file name: {fileName}") return fileName
4,272
5,165
23
4495fdf8627af041231ecfd1e216c9c24557ea8c
847
py
Python
monte_carlo.py
yandexdataschool/pyretina
300d3cd460ded071d75d3729e9b5dc1489d86d73
[ "Apache-2.0" ]
2
2016-05-28T15:59:47.000Z
2018-07-30T21:05:18.000Z
monte_carlo.py
yandexdataschool/pyretina
300d3cd460ded071d75d3729e9b5dc1489d86d73
[ "Apache-2.0" ]
null
null
null
monte_carlo.py
yandexdataschool/pyretina
300d3cd460ded071d75d3729e9b5dc1489d86d73
[ "Apache-2.0" ]
null
null
null
from pyretina.mc import monte_carlo import numpy as np import json import os import os.path as osp import shutil number_of_events = 10 if __name__ == "__main__": main("config/mc.json")
21.175
82
0.641086
from pyretina.mc import monte_carlo import numpy as np import json import os import os.path as osp import shutil number_of_events = 10 def main(conf): with open(conf, 'r') as f: config = json.load(f) for N in np.arange(20, 520, 20): config['scattering']['number_of_particles'] = { 'type' : 'randint', 'low' : N, 'high' : N + 1 } plot_dir = osp.join('./events_img', '%d_particles' % N) try: shutil.rmtree(plot_dir) except: pass os.mkdir(plot_dir) events = monte_carlo(number_of_events, config, plot_dir=plot_dir, plot_each=2) import cPickle as pickle with open('data/mini_velo_sim_%d.pickled' % N, 'w') as f: pickle.dump(events, f) print 'Generated %d events with %d particles' % (number_of_events, N) if __name__ == "__main__": main("config/mc.json")
634
0
23
18ed809f9eec9232085b1804143efe6ca93e3a6e
5,950
py
Python
miner.py
OwlEyes33/crypto-alpha
dc3b39ecf38f3f445ecd94057775220b651633fc
[ "Apache-2.0" ]
null
null
null
miner.py
OwlEyes33/crypto-alpha
dc3b39ecf38f3f445ecd94057775220b651633fc
[ "Apache-2.0" ]
null
null
null
miner.py
OwlEyes33/crypto-alpha
dc3b39ecf38f3f445ecd94057775220b651633fc
[ "Apache-2.0" ]
null
null
null
import logging import os import time from math import inf from os import environ from threading import Thread import requests from redis import Redis from block import Block from blockchain import Blockchain from peer2peer import PeerToPeerMessage from transaction import Transaction logging.basicConfig(level=logging.DEBUG) if __name__ == "__main__": miner = Miner() miner.routine()
37.421384
86
0.557479
import logging import os import time from math import inf from os import environ from threading import Thread import requests from redis import Redis from block import Block from blockchain import Blockchain from peer2peer import PeerToPeerMessage from transaction import Transaction logging.basicConfig(level=logging.DEBUG) class Miner(object): def __init__(self, *args, **kwargs): self.transactions = kwargs.get('transactions', {}) self.block_size = 64 self.miner = list() self.peers = environ.get('PEERS', 'http://localhost:8000').split(',') assert len(self.peers) self.cached_p2p_messages = dict() self.blockchain = Blockchain() self.redis_cli = Redis(host='redis') self.sync_to_redis() def get_peers_blockchain(self): try: blockchains = dict() _max = -inf best_peer = None with open("blockchain.dat", "rb") as f: blockchain_size = len(f.read()) for peer in self.peers: r = requests.get("http://{}/api/blockchain".format(peer)) if r.json().get('size'): size = int(r.json().get('size')) if size > _max: _max = size best_peer = peer blockchains[peer] = r.json().get('size') if _max > blockchain_size: logging.debug("Downloading new blockchain from: {}".format(best_peer)) os.rename('blockchain.dat', 'blockchain.backup') r = requests.get("http://{}/api/sync".format(best_peer)) with open('blockchain.dat', 'wb') as f: f.write(r.content) if self.blockchain.verify_blockchain(): os.remove('blockchain.backup') else: os.remove('blockchain.dat') os.rename('blockchain.backup', 'blockchain.dat') except requests.exceptions.ConnectionError: pass def sync_to_redis(self): for _, key in enumerate(self.transactions): self.redis_cli[key] = str(self.transactions[key]) self.transactions = {} def broadcast_new_block(self, block): p2p = PeerToPeerMessage(block=block) for peer in self.peers: r = requests.post("http://{}/api/block".format(peer), data=p2p.to_json()) assert r.status_code <= 299 @staticmethod def ping_peer_transactions(peer, p2p_message): logging.debug("Forwarding transactions to nearest peer {}".format(peer)) payload = p2p_message.to_json() try: requests.post("http://{}/api/transactions".format(peer), data=payload) except requests.exceptions.ConnectionError as e: logging.warning("Connection error {}".format(str(e))) @staticmethod def ping_peer_block(peer, p2p_message): logging.debug("Forwarding block to nearest peer {}".format(peer)) payload = p2p_message.to_json() try: requests.post("http://{}/api/block".format(peer), data=payload) except requests.exceptions.ConnectionError as e: logging.warning("Connection error {}".format(str(e))) def forward(self, p2p, target): for peer in self.peers: t = Thread(target=target, args=(peer, p2p)) t.start() # Todo: Transactions should be sorted by timestamp def compile_block(self): data = str() i = 0 for transaction_id in self.redis_cli.keys(): if i < 64: try: transaction = self.redis_cli[transaction_id] t = Transaction() transaction = t.from_string(transaction.decode('utf-8')) if not transaction.verify_signature(): logging.warning("Transaction signature not valid") continue data = data + str(transaction) + '\n' self.redis_cli.delete(transaction.id) i = i + 1 except IndexError: return False block = Block(data=data) return block def do_proof_of_work(self, block, first=False): if block: magic_number = 0 while True: block.magic_number = magic_number if not first: block.blockchain_snapshot = self.blockchain.get_sha512hash() else: block.blockchain_snapshot = 'None' sha512hash = block.generate_hash() block.sha512hash = sha512hash if block.check_proof_of_work(): block.magic_number = magic_number block.sha512hash = sha512hash return block magic_number = magic_number + 1 def routine(self): # Check if there is a new blockchain version while True: logging.debug("Requesting new blockchain info from P2P network") self.get_peers_blockchain() time.sleep(1) # Check if we have transactions if len(list(self.redis_cli.keys())): # Compile a block logging.debug("Building a new block") block = self.compile_block() # Do proof of work logging.debug("Doing proof of work on block") block = self.do_proof_of_work(block) # Verify a block logging.debug("Verifying the block") if self.blockchain.verify_blockchain(new_block=block): # Write the block logging.debug("Writing a new block") self.blockchain.write_new_block(block) if __name__ == "__main__": miner = Miner() miner.routine()
5,170
359
23
940189421ca5db8b06f5e381219db498733f8003
95
py
Python
mumu/decorators/__init__.py
mingminyu/mumu
e9f6c86a0b678ce4467ffba7f3dc4c0c8f971ff8
[ "Apache-2.0" ]
1
2021-06-22T16:57:28.000Z
2021-06-22T16:57:28.000Z
mumu/decorators/__init__.py
mingminyu/mumu
e9f6c86a0b678ce4467ffba7f3dc4c0c8f971ff8
[ "Apache-2.0" ]
null
null
null
mumu/decorators/__init__.py
mingminyu/mumu
e9f6c86a0b678ce4467ffba7f3dc4c0c8f971ff8
[ "Apache-2.0" ]
null
null
null
from ._timeit import timeit from ._progressbar import pbar_sql_query from ._retry import retry
23.75
40
0.842105
from ._timeit import timeit from ._progressbar import pbar_sql_query from ._retry import retry
0
0
0
1486c16002e2c1f7f36eced992718519ad8c6db1
959
py
Python
web2py-appliances-master/MyForum/models/db.py
wantsomechocolate/WantsomeBeanstalk
8c8a0a80490d04ea52661a3114fd3db8de65a01e
[ "BSD-3-Clause" ]
null
null
null
web2py-appliances-master/MyForum/models/db.py
wantsomechocolate/WantsomeBeanstalk
8c8a0a80490d04ea52661a3114fd3db8de65a01e
[ "BSD-3-Clause" ]
null
null
null
web2py-appliances-master/MyForum/models/db.py
wantsomechocolate/WantsomeBeanstalk
8c8a0a80490d04ea52661a3114fd3db8de65a01e
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- DEBUG = True db = DAL('sqlite://storage.sqlite',pool_size=1,check_reserved=['all']) response.generic_patterns = ['*'] if request.is_local else [] from gluon.tools import Auth, Service, prettydate auth = Auth(db) auth.define_tables(username=False, signature=False) service = Service() ## configure email mail = auth.settings.mailer mail.settings.server = 'logging' or 'smtp.gmail.com:587' mail.settings.sender = 'you@gmail.com' mail.settings.login = 'username:password' ## configure auth policy auth.settings.registration_requires_verification = False auth.settings.registration_requires_approval = False auth.settings.reset_password_requires_verification = True ## if you need to use OpenID, Facebook, MySpace, Twitter, Linkedin, etc. ## register with janrain.com, write your domain:api_key in private/janrain.key from gluon.contrib.login_methods.rpx_account import use_janrain use_janrain(auth, filename='private/janrain.key')
33.068966
78
0.777894
# -*- coding: utf-8 -*- DEBUG = True db = DAL('sqlite://storage.sqlite',pool_size=1,check_reserved=['all']) response.generic_patterns = ['*'] if request.is_local else [] from gluon.tools import Auth, Service, prettydate auth = Auth(db) auth.define_tables(username=False, signature=False) service = Service() ## configure email mail = auth.settings.mailer mail.settings.server = 'logging' or 'smtp.gmail.com:587' mail.settings.sender = 'you@gmail.com' mail.settings.login = 'username:password' ## configure auth policy auth.settings.registration_requires_verification = False auth.settings.registration_requires_approval = False auth.settings.reset_password_requires_verification = True ## if you need to use OpenID, Facebook, MySpace, Twitter, Linkedin, etc. ## register with janrain.com, write your domain:api_key in private/janrain.key from gluon.contrib.login_methods.rpx_account import use_janrain use_janrain(auth, filename='private/janrain.key')
0
0
0
0cd0801dcd3a7dfddc9f817c743870fca0f08fa8
34
py
Python
python/cendalytics/report/core/bp/__init__.py
jiportilla/ontology
8a66bb7f76f805c64fc76cfc40ab7dfbc1146f40
[ "MIT" ]
null
null
null
python/cendalytics/report/core/bp/__init__.py
jiportilla/ontology
8a66bb7f76f805c64fc76cfc40ab7dfbc1146f40
[ "MIT" ]
null
null
null
python/cendalytics/report/core/bp/__init__.py
jiportilla/ontology
8a66bb7f76f805c64fc76cfc40ab7dfbc1146f40
[ "MIT" ]
null
null
null
from .report_api import ReportAPI
17
33
0.852941
from .report_api import ReportAPI
0
0
0
9ded2fcc8e677e149baf4d0a230b66939619b9e9
8,353
py
Python
conceptnet5/vectors/retrofit.py
MattCurryCom/conceptnet5
a16d94e635aee3d35a22aa04fcad7bb87ce927d8
[ "Apache-2.0" ]
1
2018-11-27T17:00:57.000Z
2018-11-27T17:00:57.000Z
conceptnet5/vectors/retrofit.py
MattCurryCom/conceptnet5
a16d94e635aee3d35a22aa04fcad7bb87ce927d8
[ "Apache-2.0" ]
null
null
null
conceptnet5/vectors/retrofit.py
MattCurryCom/conceptnet5
a16d94e635aee3d35a22aa04fcad7bb87ce927d8
[ "Apache-2.0" ]
null
null
null
import pandas as pd import numpy as np from sklearn.preprocessing import normalize from .sparse_matrix_builder import build_from_conceptnet_table from .formats import load_hdf, save_hdf def retrofit(row_labels, dense_frame, sparse_csr, iterations=5, verbosity=0, max_cleanup_iters=20, orig_vec_weight=0.15): """ Retrofitting is a process of combining information from a machine-learned space of term vectors with further structured information about those terms. It was originally presented in this 2015 NAACL paper by Manaal Faruqui, Jesse Dodge, Sujay Jauhar, Chris Dyer, Eduard Hovy, and Noah Smith, "Retrofitting Word Vectors to Semantic Lexicons": https://www.cs.cmu.edu/~hovy/papers/15HLT-retrofitting-word-vectors.pdf This function implements a variant that I've been calling "wide retrofitting", which extends the process to learn vectors for terms that were outside the original space. `row_labels` is the list of terms that we want to have vectors for. `dense_frame` is a DataFrame assigning vectors to some of these terms. `sparse_csr` is a SciPy sparse square matrix, whose rows and columns are implicitly labeled with `row_labels`. The entries of this matrix are positive for terms that we know are related from our structured data. (This is an awkward form of input, but unfortunately there is no good way to represent sparse labeled data in Pandas.) `sharded_retrofit` is responsible for building `row_labels` and `sparse_csr` appropriately. """ # Initialize a DataFrame with rows that we know retroframe = pd.DataFrame( index=row_labels, columns=dense_frame.columns, dtype='f' ) retroframe.update(dense_frame) # orig_weights = 1 for known vectors, 0 for unknown vectors orig_weights = 1 - retroframe.iloc[:, 0].isnull() orig_vec_indicators = (orig_weights.values != 0) orig_vecs = retroframe.fillna(0).values # Subtract the mean so that vectors don't just clump around common # hypernyms orig_vecs[orig_vec_indicators] -= orig_vecs[orig_vec_indicators].mean(0) # Delete the frame we built, we won't need its indices again until the end del retroframe vecs = orig_vecs for iteration in range(iterations): if verbosity >= 1: print('Retrofitting: Iteration %s of %s' % (iteration+1, iterations)) # Since the sparse weight matrix is row-stochastic and has self-loops, # pre-multiplication by it replaces each vector by a weighted average # of itself and its neighbors. We really want to take the average # of (itself and) the nonzero neighbors, which we can do by dividing # the average with all the neighbors by the total of the weights of the # nonzero neighbors. This avoids unduly shrinking vectors assigned to # terms with lots of zero neighbors. # Find, for every term, the total weight of its nonzero neighbors. nonzero_indicators = (np.abs(vecs).sum(1) != 0) total_neighbor_weights = sparse_csr.dot(nonzero_indicators) # Now average with all the neighbors. vecs = sparse_csr.dot(vecs) # Now divide each vector (row) by the associated total weight. # Some of the total weights could be zero, but only for rows that, # before averaging, were zero and had all neighbors zero, whence # after averaging will be zero. So only do the division for rows # that are nonzero now, after averaging. Also, we reshape the total # weights into a column vector so that numpy will broadcast the # division by weights across the columns of the embedding matrix. nonzero_indicators = (np.abs(vecs).sum(1) != 0) total_neighbor_weights = total_neighbor_weights[nonzero_indicators] total_neighbor_weights = total_neighbor_weights.reshape((len(total_neighbor_weights), 1)) vecs[nonzero_indicators] /= total_neighbor_weights # Re-center the (new) non-zero vectors. vecs[nonzero_indicators] -= vecs[nonzero_indicators].mean(0) # Average known rows with original vectors vecs[orig_vec_indicators, :] = \ (1.0 - orig_vec_weight) * vecs[orig_vec_indicators, :] + orig_vec_weight * orig_vecs[orig_vec_indicators, :] # Clean up as many all-zero vectors as possible. Zero vectors # can either come from components of the conceptnet graph that # don't contain any terms from the embedding we are currently # retrofitting (and there is nothing we can do about those here, # but when retrofitting is done on that embedding they should be # taken care of then) or from terms whose distance in the graph is # larger than the number of retrofitting iterations used above; we # propagate non-zero values to those terms by averaging over their # non-zero neighbors. Note that this propagation can never reach # the first class of terms, so we can't necessarily expect the # number of zero vectors to go to zero at any one invocation of # this code. n_zero_indicators_old = -1 for iteration in range(max_cleanup_iters): zero_indicators = (np.abs(vecs).sum(1) == 0) n_zero_indicators = np.sum(zero_indicators) if n_zero_indicators == 0 or n_zero_indicators == n_zero_indicators_old: break n_zero_indicators_old = n_zero_indicators # First replace each zero vector (row) by the weighted average of all its # neighbors. vecs[zero_indicators, :] = sparse_csr[zero_indicators, :].dot(vecs) # Now divide each newly nonzero vector (row) by the total weight of its # old nonzero neighbors. new_nonzero_indicators = np.logical_and(zero_indicators, np.abs(vecs).sum(1) != 0) total_neighbor_weights = sparse_csr[new_nonzero_indicators, :].dot(np.logical_not(zero_indicators)) total_neighbor_weights = total_neighbor_weights.reshape((len(total_neighbor_weights), 1)) vecs[new_nonzero_indicators, :] /= total_neighbor_weights else: print('Warning: cleanup iteration limit exceeded.') retroframe = pd.DataFrame(data=vecs, index=row_labels, columns=dense_frame.columns) return retroframe
48.005747
130
0.704058
import pandas as pd import numpy as np from sklearn.preprocessing import normalize from .sparse_matrix_builder import build_from_conceptnet_table from .formats import load_hdf, save_hdf def sharded_retrofit(dense_hdf_filename, conceptnet_filename, output_filename, iterations=5, nshards=6, verbosity=0, max_cleanup_iters=20, orig_vec_weight=0.15): # frame_box is basically a reference to a single large DataFrame. The # DataFrame will at times be present or absent. When it's present, the list # contains one item, which is the DataFrame. When it's absent, the list # is empty. frame_box = [load_hdf(dense_hdf_filename)] sparse_csr, combined_index = build_from_conceptnet_table(conceptnet_filename, orig_index=frame_box[0].index) shard_width = frame_box[0].shape[1] // nshards for i in range(nshards): temp_filename = output_filename + '.shard%d' % i shard_from = shard_width * i shard_to = shard_from + shard_width if len(frame_box) == 0: frame_box.append(load_hdf(dense_hdf_filename)) dense_frame = pd.DataFrame(frame_box[0].iloc[:, shard_from:shard_to]) # Delete full_dense_frame while running retrofitting, because it takes # up a lot of memory and we can reload it from disk later. frame_box.clear() retrofitted = retrofit(combined_index, dense_frame, sparse_csr, iterations, verbosity, max_cleanup_iters, orig_vec_weight) save_hdf(retrofitted, temp_filename) del retrofitted def join_shards(output_filename, nshards=6, sort=False): joined_matrix = None joined_labels = None for i in range(nshards): shard = load_hdf(output_filename + '.shard%d' % i) nrows, ncols = shard.shape if joined_matrix is None: joined_matrix = np.zeros((nrows, ncols * nshards), dtype='f') joined_labels = shard.index joined_matrix[:, (ncols * i):(ncols * (i + 1))] = shard.values del shard normalize(joined_matrix, axis=1, norm='l2', copy=False) dframe = pd.DataFrame(joined_matrix, index=joined_labels) if sort: dframe.sort_index(inplace=True) save_hdf(dframe, output_filename) def retrofit(row_labels, dense_frame, sparse_csr, iterations=5, verbosity=0, max_cleanup_iters=20, orig_vec_weight=0.15): """ Retrofitting is a process of combining information from a machine-learned space of term vectors with further structured information about those terms. It was originally presented in this 2015 NAACL paper by Manaal Faruqui, Jesse Dodge, Sujay Jauhar, Chris Dyer, Eduard Hovy, and Noah Smith, "Retrofitting Word Vectors to Semantic Lexicons": https://www.cs.cmu.edu/~hovy/papers/15HLT-retrofitting-word-vectors.pdf This function implements a variant that I've been calling "wide retrofitting", which extends the process to learn vectors for terms that were outside the original space. `row_labels` is the list of terms that we want to have vectors for. `dense_frame` is a DataFrame assigning vectors to some of these terms. `sparse_csr` is a SciPy sparse square matrix, whose rows and columns are implicitly labeled with `row_labels`. The entries of this matrix are positive for terms that we know are related from our structured data. (This is an awkward form of input, but unfortunately there is no good way to represent sparse labeled data in Pandas.) `sharded_retrofit` is responsible for building `row_labels` and `sparse_csr` appropriately. """ # Initialize a DataFrame with rows that we know retroframe = pd.DataFrame( index=row_labels, columns=dense_frame.columns, dtype='f' ) retroframe.update(dense_frame) # orig_weights = 1 for known vectors, 0 for unknown vectors orig_weights = 1 - retroframe.iloc[:, 0].isnull() orig_vec_indicators = (orig_weights.values != 0) orig_vecs = retroframe.fillna(0).values # Subtract the mean so that vectors don't just clump around common # hypernyms orig_vecs[orig_vec_indicators] -= orig_vecs[orig_vec_indicators].mean(0) # Delete the frame we built, we won't need its indices again until the end del retroframe vecs = orig_vecs for iteration in range(iterations): if verbosity >= 1: print('Retrofitting: Iteration %s of %s' % (iteration+1, iterations)) # Since the sparse weight matrix is row-stochastic and has self-loops, # pre-multiplication by it replaces each vector by a weighted average # of itself and its neighbors. We really want to take the average # of (itself and) the nonzero neighbors, which we can do by dividing # the average with all the neighbors by the total of the weights of the # nonzero neighbors. This avoids unduly shrinking vectors assigned to # terms with lots of zero neighbors. # Find, for every term, the total weight of its nonzero neighbors. nonzero_indicators = (np.abs(vecs).sum(1) != 0) total_neighbor_weights = sparse_csr.dot(nonzero_indicators) # Now average with all the neighbors. vecs = sparse_csr.dot(vecs) # Now divide each vector (row) by the associated total weight. # Some of the total weights could be zero, but only for rows that, # before averaging, were zero and had all neighbors zero, whence # after averaging will be zero. So only do the division for rows # that are nonzero now, after averaging. Also, we reshape the total # weights into a column vector so that numpy will broadcast the # division by weights across the columns of the embedding matrix. nonzero_indicators = (np.abs(vecs).sum(1) != 0) total_neighbor_weights = total_neighbor_weights[nonzero_indicators] total_neighbor_weights = total_neighbor_weights.reshape((len(total_neighbor_weights), 1)) vecs[nonzero_indicators] /= total_neighbor_weights # Re-center the (new) non-zero vectors. vecs[nonzero_indicators] -= vecs[nonzero_indicators].mean(0) # Average known rows with original vectors vecs[orig_vec_indicators, :] = \ (1.0 - orig_vec_weight) * vecs[orig_vec_indicators, :] + orig_vec_weight * orig_vecs[orig_vec_indicators, :] # Clean up as many all-zero vectors as possible. Zero vectors # can either come from components of the conceptnet graph that # don't contain any terms from the embedding we are currently # retrofitting (and there is nothing we can do about those here, # but when retrofitting is done on that embedding they should be # taken care of then) or from terms whose distance in the graph is # larger than the number of retrofitting iterations used above; we # propagate non-zero values to those terms by averaging over their # non-zero neighbors. Note that this propagation can never reach # the first class of terms, so we can't necessarily expect the # number of zero vectors to go to zero at any one invocation of # this code. n_zero_indicators_old = -1 for iteration in range(max_cleanup_iters): zero_indicators = (np.abs(vecs).sum(1) == 0) n_zero_indicators = np.sum(zero_indicators) if n_zero_indicators == 0 or n_zero_indicators == n_zero_indicators_old: break n_zero_indicators_old = n_zero_indicators # First replace each zero vector (row) by the weighted average of all its # neighbors. vecs[zero_indicators, :] = sparse_csr[zero_indicators, :].dot(vecs) # Now divide each newly nonzero vector (row) by the total weight of its # old nonzero neighbors. new_nonzero_indicators = np.logical_and(zero_indicators, np.abs(vecs).sum(1) != 0) total_neighbor_weights = sparse_csr[new_nonzero_indicators, :].dot(np.logical_not(zero_indicators)) total_neighbor_weights = total_neighbor_weights.reshape((len(total_neighbor_weights), 1)) vecs[new_nonzero_indicators, :] /= total_neighbor_weights else: print('Warning: cleanup iteration limit exceeded.') retroframe = pd.DataFrame(data=vecs, index=row_labels, columns=dense_frame.columns) return retroframe
2,009
0
46
fcd076838a13b16b0181931dfa476968f0b03f64
11,297
py
Python
Stock_Analysis/auto_value_stock.py
parmarsuraj99/Finance
d9f012e33a99b959fdde575feedeb5922b379fe2
[ "MIT" ]
1
2022-02-25T01:25:21.000Z
2022-02-25T01:25:21.000Z
Stock_Analysis/auto_value_stock.py
StockScripts/Finance
330bb46ea8e4c7ad5f3150cfa6d25e356178b189
[ "MIT" ]
null
null
null
Stock_Analysis/auto_value_stock.py
StockScripts/Finance
330bb46ea8e4c7ad5f3150cfa6d25e356178b189
[ "MIT" ]
2
2021-01-28T21:52:30.000Z
2021-02-16T13:26:35.000Z
# Code from https://medium.com/datadriveninvestor/use-python-to-value-a-stock-automatically-3b520422ab6 by Bohmian # Importing required modules import pandas as pd import numpy as np import matplotlib.pyplot as plt import numpy as np import time from config import financial_model_prep pd.set_option('display.max_columns', None) # Settings to produce nice plots in a Jupyter notebook plt.style.use('fivethirtyeight') plt.rcParams['figure.figsize'] = [15, 10] import seaborn as sns # To extract and parse fundamental data from finviz website import requests from bs4 import BeautifulSoup as bs import warnings warnings.filterwarnings('ignore') # For parsing financial statements data from financialmodelingprep api from urllib.request import urlopen import json # inputs base_url = "https://financialmodelingprep.com/api/v3/" tickers = ['AAL'] apiKey = financial_model_prep() cash_flows = [] total_debts = [] cash_and_ST_investments_list = [] betas = [] discount_rates = [] EPS_growth_5Ys = [] EPS_growth_6Y_to_10Ys = [] EPS_growth_11Y_to_20Ys = [] shares_outstandings = [] intrinsic_values = [] current_prices = [] margins_safety = [] valid_tickers = [] for ticker in tickers: try: q_cash_flow_statement = pd.DataFrame(get_jsonparsed_data(base_url+'cash-flow-statement/' + ticker + '?period=quarter' + '&apikey=' + apiKey)) q_cash_flow_statement = q_cash_flow_statement.set_index('date').iloc[:4] # extract for last 4 quarters q_cash_flow_statement = q_cash_flow_statement.apply(pd.to_numeric, errors='coerce') cash_flow_statement = pd.DataFrame(get_jsonparsed_data(base_url+'cash-flow-statement/' + ticker + '?apikey=' + apiKey)) cash_flow_statement = cash_flow_statement.set_index('date') cash_flow_statement = cash_flow_statement.apply(pd.to_numeric, errors='coerce') ttm_cash_flow_statement = q_cash_flow_statement.sum() # sum up last 4 quarters to get TTM cash flow cash_flow_statement = cash_flow_statement[::-1].append(ttm_cash_flow_statement.rename('TTM')).drop(['netIncome'], axis=1) final_cash_flow_statement = cash_flow_statement[::-1] # reverse list to show most recent ones first # final_cash_flow_statement[['freeCashFlow']].iloc[::-1].iloc[-15:].plot(kind='bar', title=ticker + ' Cash Flows') # plt.show() q_balance_statement = pd.DataFrame(get_jsonparsed_data(base_url+'balance-sheet-statement/' + ticker + '?period=quarter' + '&apikey=' + apiKey)) q_balance_statement = q_balance_statement.set_index('date') q_balance_statement = q_balance_statement.apply(pd.to_numeric, errors='coerce') cash_flow = final_cash_flow_statement.iloc[0]['freeCashFlow'] total_debt = q_balance_statement.iloc[0]['totalDebt'] cash_and_ST_investments = q_balance_statement.iloc[0]['cashAndShortTermInvestments'] # print("Free Cash Flow: ", cash_flow) # print("Total Debt: ", total_debt) # print("Cash and ST Investments: ", cash_and_ST_investments) # List of data we want to extract from Finviz Table metric = ['Price', 'EPS next 5Y', 'Beta', 'Shs Outstand'] finviz_data = get_finviz_data(ticker) # print('\nFinViz Data:\n' + str(finviz_data)) Beta = finviz_data['Beta'] discount_rate = 7 if(Beta<0.80): discount_rate = 5 elif(Beta>=0.80 and Beta<1): discount_rate = 6 elif(Beta>=1 and Beta<1.1): discount_rate = 6.5 elif(Beta>=1.1 and Beta<1.2): discount_rate = 7 elif(Beta>=1.2 and Beta<1.3): discount_rate =7.5 elif(Beta>=1.3 and Beta<1.4): discount_rate = 8 elif(Beta>=1.4 and Beta<1.6): discount_rate = 8.5 elif(Beta>=1.61): discount_rate = 9 # print("\nDiscount Rate: ", discount_rate) EPS_growth_5Y = finviz_data['EPS next 5Y'] EPS_growth_6Y_to_10Y = EPS_growth_5Y/2 # Half the previous growth rate, conservative estimate EPS_growth_11Y_to_20Y = np.minimum(EPS_growth_6Y_to_10Y, 4) # Slightly higher than long term inflation rate, conservative estimate shares_outstanding = round(finviz_data['Shs Outstand']) # print("Free Cash Flow: ", cash_flow) # print("Total Debt: ", total_debt) # print("Cash and ST Investments: ", cash_and_ST_investments) # print("EPS Growth 5Y: ", EPS_growth_5Y) # print("EPS Growth 6Y to 10Y: ", EPS_growth_6Y_to_10Y) # print("EPS Growth 11Y to 20Y: ", EPS_growth_11Y_to_20Y) # print("Discount Rate: ", discount_rate) # print("Shares Outstanding: ", shares_outstanding) intrinsic_value = round(calculate_intrinsic_value(cash_flow, total_debt, cash_and_ST_investments, EPS_growth_5Y, EPS_growth_6Y_to_10Y, EPS_growth_11Y_to_20Y, shares_outstanding, discount_rate), 2) # print("\nIntrinsic Value: ", intrinsic_value) current_price = finviz_data['Price'] # print("Current Price: ", current_price) change = round(((intrinsic_value-current_price)/current_price)*100, 2) # print("Margin of Safety: ", margin_safety) cash_flows.append(cash_flow) total_debts.append(total_debt) cash_and_ST_investments_list.append(cash_and_ST_investments) betas.append(Beta) discount_rates.append(discount_rate) EPS_growth_5Ys.append(EPS_growth_5Y) EPS_growth_6Y_to_10Ys.append(EPS_growth_6Y_to_10Y) EPS_growth_11Y_to_20Ys.append(EPS_growth_11Y_to_20Y) shares_outstandings.append(shares_outstanding) intrinsic_values.append(intrinsic_value) current_prices.append(current_price) margins_safety.append(change) valid_tickers.append(ticker) except: pass df = pd.DataFrame(np.column_stack([valid_tickers, cash_flows, total_debts, cash_and_ST_investments_list, betas, discount_rates, EPS_growth_5Ys, EPS_growth_6Y_to_10Ys, EPS_growth_11Y_to_20Ys, shares_outstandings, intrinsic_values, current_prices, margins_safety]), columns=['Ticker', 'Cash Flow', 'Total Debt', 'Cash and ST investment', 'Beta', 'Discount Rate', 'EPS Growth 5 Y', 'EPS Growth 6-10 Y', 'EPS Growth 11-20 Y', 'Shares Outstanding', 'Intrinsic Value', 'Current Price', 'Margin Safety']).set_index('Ticker') df = df.sort_values(['Margin Safety'], ascending=True) df.to_csv(f'{time.time()}.csv') print (df)
46.681818
284
0.615208
# Code from https://medium.com/datadriveninvestor/use-python-to-value-a-stock-automatically-3b520422ab6 by Bohmian # Importing required modules import pandas as pd import numpy as np import matplotlib.pyplot as plt import numpy as np import time from config import financial_model_prep pd.set_option('display.max_columns', None) # Settings to produce nice plots in a Jupyter notebook plt.style.use('fivethirtyeight') plt.rcParams['figure.figsize'] = [15, 10] import seaborn as sns # To extract and parse fundamental data from finviz website import requests from bs4 import BeautifulSoup as bs import warnings warnings.filterwarnings('ignore') # For parsing financial statements data from financialmodelingprep api from urllib.request import urlopen import json def get_jsonparsed_data(url): response = urlopen(url) data = response.read().decode("utf-8") return json.loads(data) # inputs base_url = "https://financialmodelingprep.com/api/v3/" tickers = ['AAL'] apiKey = financial_model_prep() cash_flows = [] total_debts = [] cash_and_ST_investments_list = [] betas = [] discount_rates = [] EPS_growth_5Ys = [] EPS_growth_6Y_to_10Ys = [] EPS_growth_11Y_to_20Ys = [] shares_outstandings = [] intrinsic_values = [] current_prices = [] margins_safety = [] valid_tickers = [] for ticker in tickers: try: q_cash_flow_statement = pd.DataFrame(get_jsonparsed_data(base_url+'cash-flow-statement/' + ticker + '?period=quarter' + '&apikey=' + apiKey)) q_cash_flow_statement = q_cash_flow_statement.set_index('date').iloc[:4] # extract for last 4 quarters q_cash_flow_statement = q_cash_flow_statement.apply(pd.to_numeric, errors='coerce') cash_flow_statement = pd.DataFrame(get_jsonparsed_data(base_url+'cash-flow-statement/' + ticker + '?apikey=' + apiKey)) cash_flow_statement = cash_flow_statement.set_index('date') cash_flow_statement = cash_flow_statement.apply(pd.to_numeric, errors='coerce') ttm_cash_flow_statement = q_cash_flow_statement.sum() # sum up last 4 quarters to get TTM cash flow cash_flow_statement = cash_flow_statement[::-1].append(ttm_cash_flow_statement.rename('TTM')).drop(['netIncome'], axis=1) final_cash_flow_statement = cash_flow_statement[::-1] # reverse list to show most recent ones first # final_cash_flow_statement[['freeCashFlow']].iloc[::-1].iloc[-15:].plot(kind='bar', title=ticker + ' Cash Flows') # plt.show() q_balance_statement = pd.DataFrame(get_jsonparsed_data(base_url+'balance-sheet-statement/' + ticker + '?period=quarter' + '&apikey=' + apiKey)) q_balance_statement = q_balance_statement.set_index('date') q_balance_statement = q_balance_statement.apply(pd.to_numeric, errors='coerce') cash_flow = final_cash_flow_statement.iloc[0]['freeCashFlow'] total_debt = q_balance_statement.iloc[0]['totalDebt'] cash_and_ST_investments = q_balance_statement.iloc[0]['cashAndShortTermInvestments'] # print("Free Cash Flow: ", cash_flow) # print("Total Debt: ", total_debt) # print("Cash and ST Investments: ", cash_and_ST_investments) # List of data we want to extract from Finviz Table metric = ['Price', 'EPS next 5Y', 'Beta', 'Shs Outstand'] def fundamental_metric(soup, metric): # the table which stores the data in Finviz has html table attribute class of 'snapshot-td2' return soup.find(text = metric).find_next(class_='snapshot-td2').text def get_finviz_data(ticker): try: url = ("http://finviz.com/quote.ashx?t=" + ticker.lower()) soup = bs(requests.get(url,headers={'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:20.0) Gecko/20100101 Firefox/20.0'}).content) dict_finviz = {} for m in metric: dict_finviz[m] = fundamental_metric(soup,m) for key, value in dict_finviz.items(): # replace percentages if (value[-1]=='%'): dict_finviz[key] = value[:-1] dict_finviz[key] = float(dict_finviz[key]) # billion if (value[-1]=='B'): dict_finviz[key] = value[:-1] dict_finviz[key] = float(dict_finviz[key])*1000000000 # million if (value[-1]=='M'): dict_finviz[key] = value[:-1] dict_finviz[key] = float(dict_finviz[key])*1000000 try: dict_finviz[key] = float(dict_finviz[key]) except: pass except Exception as e: print (e) print ('Not successful parsing ' + ticker + ' data.') return dict_finviz finviz_data = get_finviz_data(ticker) # print('\nFinViz Data:\n' + str(finviz_data)) Beta = finviz_data['Beta'] discount_rate = 7 if(Beta<0.80): discount_rate = 5 elif(Beta>=0.80 and Beta<1): discount_rate = 6 elif(Beta>=1 and Beta<1.1): discount_rate = 6.5 elif(Beta>=1.1 and Beta<1.2): discount_rate = 7 elif(Beta>=1.2 and Beta<1.3): discount_rate =7.5 elif(Beta>=1.3 and Beta<1.4): discount_rate = 8 elif(Beta>=1.4 and Beta<1.6): discount_rate = 8.5 elif(Beta>=1.61): discount_rate = 9 # print("\nDiscount Rate: ", discount_rate) EPS_growth_5Y = finviz_data['EPS next 5Y'] EPS_growth_6Y_to_10Y = EPS_growth_5Y/2 # Half the previous growth rate, conservative estimate EPS_growth_11Y_to_20Y = np.minimum(EPS_growth_6Y_to_10Y, 4) # Slightly higher than long term inflation rate, conservative estimate shares_outstanding = round(finviz_data['Shs Outstand']) # print("Free Cash Flow: ", cash_flow) # print("Total Debt: ", total_debt) # print("Cash and ST Investments: ", cash_and_ST_investments) # print("EPS Growth 5Y: ", EPS_growth_5Y) # print("EPS Growth 6Y to 10Y: ", EPS_growth_6Y_to_10Y) # print("EPS Growth 11Y to 20Y: ", EPS_growth_11Y_to_20Y) # print("Discount Rate: ", discount_rate) # print("Shares Outstanding: ", shares_outstanding) def calculate_intrinsic_value(cash_flow, total_debt, cash_and_ST_investments, EPS_growth_5Y, EPS_growth_6Y_to_10Y, EPS_growth_11Y_to_20Y, shares_outstanding, discount_rate): # Convert all percentages to decmials EPS_growth_5Y_d = EPS_growth_5Y/100 EPS_growth_6Y_to_10Y_d = EPS_growth_6Y_to_10Y/100 EPS_growth_11Y_to_20Y_d = EPS_growth_11Y_to_20Y/100 discount_rate_d = discount_rate/100 # print("\nDiscounted Cash Flows") # Lists of projected cash flows from year 1 to year 20 cash_flow_list = [] cash_flow_discounted_list = [] year_list = [] # Years 1 to 5 for year in range(1, 6): year_list.append(year) cash_flow*=(1 + EPS_growth_5Y_d) cash_flow_list.append(cash_flow) cash_flow_discounted = cash_flow/((1 + discount_rate_d)**year) cash_flow_discounted_list.append(cash_flow_discounted) # print("Year " + str(year) + ": $" + str(cash_flow_discounted)) ## Print out the projected discounted cash flows # Years 6 to 10 for year in range(6, 11): year_list.append(year) cash_flow*=(1 + EPS_growth_6Y_to_10Y_d) cash_flow_list.append(cash_flow) cash_flow_discounted = cash_flow/((1 + discount_rate_d)**year) cash_flow_discounted_list.append(cash_flow_discounted) # print("Year " + str(year) + ": $" + str(cash_flow_discounted)) ## Print out the projected discounted cash flows # Years 11 to 20 for year in range(11, 21): year_list.append(year) cash_flow*=(1 + EPS_growth_11Y_to_20Y_d) cash_flow_list.append(cash_flow) cash_flow_discounted = cash_flow/((1 + discount_rate_d)**year) cash_flow_discounted_list.append(cash_flow_discounted) # print("Year " + str(year) + ": $" + str(cash_flow_discounted)) ## Print out the projected discounted cash flows intrinsic_value = (sum(cash_flow_discounted_list) - total_debt + cash_and_ST_investments)/shares_outstanding df = pd.DataFrame.from_dict({'Year': year_list, 'Cash Flow': cash_flow_list, 'Discounted Cash Flow': cash_flow_discounted_list}) df.index = df.Year # df.plot(kind='bar', title = 'Projected Cash Flows of ' + ticker) # plt.show() return intrinsic_value intrinsic_value = round(calculate_intrinsic_value(cash_flow, total_debt, cash_and_ST_investments, EPS_growth_5Y, EPS_growth_6Y_to_10Y, EPS_growth_11Y_to_20Y, shares_outstanding, discount_rate), 2) # print("\nIntrinsic Value: ", intrinsic_value) current_price = finviz_data['Price'] # print("Current Price: ", current_price) change = round(((intrinsic_value-current_price)/current_price)*100, 2) # print("Margin of Safety: ", margin_safety) cash_flows.append(cash_flow) total_debts.append(total_debt) cash_and_ST_investments_list.append(cash_and_ST_investments) betas.append(Beta) discount_rates.append(discount_rate) EPS_growth_5Ys.append(EPS_growth_5Y) EPS_growth_6Y_to_10Ys.append(EPS_growth_6Y_to_10Y) EPS_growth_11Y_to_20Ys.append(EPS_growth_11Y_to_20Y) shares_outstandings.append(shares_outstanding) intrinsic_values.append(intrinsic_value) current_prices.append(current_price) margins_safety.append(change) valid_tickers.append(ticker) except: pass df = pd.DataFrame(np.column_stack([valid_tickers, cash_flows, total_debts, cash_and_ST_investments_list, betas, discount_rates, EPS_growth_5Ys, EPS_growth_6Y_to_10Ys, EPS_growth_11Y_to_20Ys, shares_outstandings, intrinsic_values, current_prices, margins_safety]), columns=['Ticker', 'Cash Flow', 'Total Debt', 'Cash and ST investment', 'Beta', 'Discount Rate', 'EPS Growth 5 Y', 'EPS Growth 6-10 Y', 'EPS Growth 11-20 Y', 'Shares Outstanding', 'Intrinsic Value', 'Current Price', 'Margin Safety']).set_index('Ticker') df = df.sort_values(['Margin Safety'], ascending=True) df.to_csv(f'{time.time()}.csv') print (df)
4,418
0
143
901b7a71198943a53f223f18bbc124edf656a124
2,580
py
Python
src/100_simple_aggregation.py
j20232/kaggle_earthquake
47fac5f2e8d2ad4fab82426a0b6af18b71e4b57b
[ "MIT" ]
null
null
null
src/100_simple_aggregation.py
j20232/kaggle_earthquake
47fac5f2e8d2ad4fab82426a0b6af18b71e4b57b
[ "MIT" ]
null
null
null
src/100_simple_aggregation.py
j20232/kaggle_earthquake
47fac5f2e8d2ad4fab82426a0b6af18b71e4b57b
[ "MIT" ]
null
null
null
"""Extract simple aggregation features Reference: https://www.kaggle.com/gpreda/lanl-earthquake-eda-and-prediction """ import sys import numpy as np import pandas as pd from pathlib import Path from tqdm import tqdm import competition as cc from common import stop_watch TRAIN_CSV_DIRECTORY_PATH = cc.INPUT_PATH / sys.argv[1] TRAIN_CSV_LIST = list(TRAIN_CSV_DIRECTORY_PATH.glob('**/*.csv')) @stop_watch if __name__ == "__main__": train_csv_path = cc.FEATURE_PATH / "{}".format(sys.argv[1]) train_csv_l = [str(item) for item in TRAIN_CSV_LIST] extract_features(train_csv_l, train_csv_path) test_csv_path = cc.FEATURE_PATH / "test" test_csv_l = [str(item) for item in cc.TEST_CSV_LIST] extract_features(test_csv_l, test_csv_path)
38.507463
91
0.622481
"""Extract simple aggregation features Reference: https://www.kaggle.com/gpreda/lanl-earthquake-eda-and-prediction """ import sys import numpy as np import pandas as pd from pathlib import Path from tqdm import tqdm import competition as cc from common import stop_watch TRAIN_CSV_DIRECTORY_PATH = cc.INPUT_PATH / sys.argv[1] TRAIN_CSV_LIST = list(TRAIN_CSV_DIRECTORY_PATH.glob('**/*.csv')) @stop_watch def extract_features(csv_list, feature_dir_path): df = pd.DataFrame() Path.mkdir(feature_dir_path, exist_ok=True, parents=True) for index, each_csv in enumerate(tqdm(sorted(csv_list))): seg = pd.read_csv(each_csv, dtype=cc.DTYPES) seg_id = each_csv.split("/")[-1].split(".")[0] df.loc[index, "seg_id"] = seg_id xc = pd.Series(seg['acoustic_data'].values) # basic aggregation df.loc[index, "mean"] = xc.mean() df.loc[index, "std"] = xc.std() df.loc[index, "max"] = xc.max() df.loc[index, "min"] = xc.min() df.loc[index, 'sum'] = xc.sum() df.loc[index, 'mad'] = xc.mad() df.loc[index, 'kurtosis'] = xc.kurtosis() df.loc[index, 'skew'] = xc.skew() df.loc[index, 'median'] = xc.median() df.loc[index, 'mean_change_rate'] = np.mean(np.nonzero((np.diff(xc) / xc[:-1]))[0]) # abs aggregation df.loc[index, 'abs_mean'] = np.abs(xc).mean() df.loc[index, 'abs_std'] = np.abs(xc).std() df.loc[index, 'abs_max'] = np.abs(xc).max() df.loc[index, 'abs_min'] = np.abs(xc).min() df.loc[index, 'abs_sum'] = np.abs(xc).sum() df.loc[index, 'abs_mad'] = np.abs(xc).mad() df.loc[index, 'abs_kurtosis'] = np.abs(xc).kurtosis() df.loc[index, 'abs_skew'] = np.abs(xc).skew() df.loc[index, 'abs_median'] = np.abs(xc).median() df.loc[index, 'mean_change_abs'] = np.mean(np.diff(xc)) df.loc[index, 'max_to_min'] = xc.max() / np.abs(xc.min()) df.loc[index, 'max_to_min_diff'] = xc.max() - np.abs(xc.min()) df.loc[index, 'count_big'] = len(xc[np.abs(xc) > 500]) print("Aggregation output is belows:") print(df.head(3)) df.to_csv(feature_dir_path / "{}.csv".format(cc.PREF), index=False) if __name__ == "__main__": train_csv_path = cc.FEATURE_PATH / "{}".format(sys.argv[1]) train_csv_l = [str(item) for item in TRAIN_CSV_LIST] extract_features(train_csv_l, train_csv_path) test_csv_path = cc.FEATURE_PATH / "test" test_csv_l = [str(item) for item in cc.TEST_CSV_LIST] extract_features(test_csv_l, test_csv_path)
1,795
0
22
0b3eba4af37debbbb40bec37c6e9b379c1156729
8,817
py
Python
segment.py
neelsj/syndata-generation
df73cc9a146c34870c3d80acce0ca04b314ec1b0
[ "MIT" ]
null
null
null
segment.py
neelsj/syndata-generation
df73cc9a146c34870c3d80acce0ca04b314ec1b0
[ "MIT" ]
null
null
null
segment.py
neelsj/syndata-generation
df73cc9a146c34870c3d80acce0ca04b314ec1b0
[ "MIT" ]
null
null
null
import os from datetime import datetime import json import matplotlib.pyplot as plt from tqdm import tqdm import torch import numpy as np from skimage import measure from shapely.geometry import Polygon, MultiPolygon from PIL import Image import cv2 #model = torch.hub.load('pytorch/vision:v0.10.0', 'deeplabv3_resnet50', pretrained=True) model = torch.hub.load('pytorch/vision:v0.10.0', 'deeplabv3_resnet101', pretrained=True) # model = torch.hub.load('pytorch/vision:v0.10.0', 'deeplabv3_mobilenet_v3_large', pretrained=True) model.eval() from torchvision import transforms COCO_INFO = { "description": "", "url": "", "version": "1", "year": 2022, "contributor": "MSR CV Group", "date_created": datetime.now().strftime("%m/%d/%Y") } COCO_LICENSES = [{ "url": "", "id": 0, "name": "License" }] if __name__ == "__main__": data_dir = "E:/Research/Images/FineGrained/StanfordCars/train_bing/"
31.830325
132
0.565612
import os from datetime import datetime import json import matplotlib.pyplot as plt from tqdm import tqdm import torch import numpy as np from skimage import measure from shapely.geometry import Polygon, MultiPolygon from PIL import Image import cv2 #model = torch.hub.load('pytorch/vision:v0.10.0', 'deeplabv3_resnet50', pretrained=True) model = torch.hub.load('pytorch/vision:v0.10.0', 'deeplabv3_resnet101', pretrained=True) # model = torch.hub.load('pytorch/vision:v0.10.0', 'deeplabv3_mobilenet_v3_large', pretrained=True) model.eval() from torchvision import transforms COCO_INFO = { "description": "", "url": "", "version": "1", "year": 2022, "contributor": "MSR CV Group", "date_created": datetime.now().strftime("%m/%d/%Y") } COCO_LICENSES = [{ "url": "", "id": 0, "name": "License" }] def create_mask(input_image): input_image = input_image.convert("RGB") preprocess = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) input_tensor = preprocess(input_image) input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model # move the input and model to GPU for speed if available if torch.cuda.is_available(): input_batch = input_batch.to('cuda') model.to('cuda') with torch.no_grad(): output = model(input_batch)['out'][0] output_predictions = output.argmax(0) # plot the semantic segmentation predictions of 21 classes in each color mask = np.uint8(255*(output_predictions.cpu().numpy() > 0)) #mask = output_predictions.byte().cpu().numpy() return mask def create_sub_mask_annotation(sub_mask, image_id, category_id, annotation_id, is_crowd, bbox=None): # Find contours (boundary lines) around each sub-mask # Note: there could be multiple contours if the object # is partially occluded. (E.g. an elephant behind a tree) #contours = measure.find_contours(sub_mask, 0.5, positive_orientation='low') padded_binary_mask = np.pad(sub_mask, pad_width=1, mode='constant', constant_values=0) contours = measure.find_contours(padded_binary_mask, 0.5, positive_orientation='low') segmentations = [] polygons = [] for contour in contours: # Flip from (row, col) representation to (x, y) # and subtract the padding pixel for i in range(len(contour)): row, col = contour[i] contour[i] = (col - 1, row - 1) # Make a polygon and simplify it poly = Polygon(contour) poly = poly.simplify(1.0, preserve_topology=False) polygons.append(poly) segmentation = np.array(poly.exterior.coords).ravel().tolist() segmentations.append(segmentation) # Combine the polygons to calculate the bounding box and area multi_poly = MultiPolygon(polygons) x, y, max_x, max_y = multi_poly.bounds width = max_x - x height = max_y - y bbox = bbox if (bbox) else (x, y, width, height) area = multi_poly.area annotation = { 'segmentation': segmentations, 'iscrowd': is_crowd, 'image_id': image_id, 'category_id': category_id, 'id': annotation_id, 'bbox': bbox, 'area': area } return annotation def generate_masks(data_dir, background=False): dirs = os.listdir(data_dir) # create a color pallette, selecting a color for each class palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1]) colors = torch.as_tensor([i for i in range(21)])[:, None] * palette colors = (colors % 255).numpy().astype("uint8") prcThresh = 3 images = [] annotations = [] image_id = 1 category_id = 1 annotation_id = 1 categories = [] for dir in tqdm(dirs): files_dir = os.path.join(data_dir, dir) if (not os.path.isdir(files_dir)): continue files = os.listdir(files_dir) files = [file for file in files if "_mask" not in file] category = {"supercategory": "object", "id": category_id, "name": dir} categories.append(category) for file in tqdm(files): filename = os.path.join(data_dir, dir, file) #print(filename) image = Image.open(filename) new_img={} new_img["license"] = 0 new_img["file_name"] = os.path.join(dir, file) new_img["width"] = int(image.size[0]) new_img["height"] = int(image.size[1]) new_img["id"] = image_id images.append(new_img) mask = create_mask(image) if (background): maskname = os.path.splitext(filename)[0] + "_mask.jpg" maskObj = np.uint8(255*(mask==0)) Image.fromarray(maskObj).save(maskname) #plt.imshow(np.array(image)[:,:,0]*mask) #plt.show() else: nb_components, output, boxes, centroids = cv2.connectedComponentsWithStats(mask, connectivity=8) box_sizes = [box[4] for box in boxes[1:]] for id in range(1, nb_components): box = [int(b) for b in boxes[id][0:4]] sub_mask = np.reshape(output==id, mask.shape).astype(np.double) #plt.imshow(sub_mask) #plt.show() prc = 100*box_sizes[id-1]/(mask.shape[0]*mask.shape[1]) if (prc >= prcThresh): try: annotation = create_sub_mask_annotation(sub_mask, image_id, category_id, annotation_id, False, bbox=box) annotations.append(annotation) annotation_id += 1 except Exception as e: print(e) pass #print(nb_components) #print(output) #print(stats) #print(centroids) # save mask for dominant big object if (box_sizes): max_ind = np.argmax(box_sizes) #print(max_ind) prc = 100*box_sizes[max_ind]/(mask.shape[0]*mask.shape[1]) #print(prc) if (prc >= prcThresh): maskname = os.path.splitext(filename)[0] + "_mask.jpg" #print(maskname) maskObj = np.uint8(255*np.reshape(1-(output==max_ind+1), mask.shape)) #maskObjN = 255-maskObj #edgeSum = np.sum(maskObjN[:,0]) + np.sum(maskObjN[:,-1]) + np.sum(maskObjN[0,:]) + np.sum(maskObjN[-1,:]) #if (edgeSum == 0): Image.fromarray(maskObj).save(maskname) ##mask.putpalette(colors) #plt.subplot(121) #plt.imshow(image) #plt.subplot(122) #plt.imshow(maskObj) #plt.show() image_id += 1 #if (image_id > 3): # break category_id += 1 #if (category_id > 3): # break print("saving annotations to coco as json ") ### create COCO JSON annotations coco = {} coco["info"] = COCO_INFO coco["licenses"] = COCO_LICENSES coco["images"] = images coco["categories"] = categories coco["annotations"] = annotations # TODO: specify coco file locaiton output_file_path = os.path.join(data_dir,"../", "coco_instances.json") with open(output_file_path, 'w+') as json_file: json_file.write(json.dumps(coco)) print(">> complete. find coco json here: ", output_file_path) print("last annotation id: ", annotation_id) print("last image_id: ", image_id) #from pycocotools.coco import COCO ## Initialize the COCO api for instance annotations #coco = COCO(output_file_path) ## Load the categories in a variable #imgIds = coco.getImgIds() #print("Number of images:", len(imgIds)) ## load and display a random image #for i in range(len(imgIds)): # img = coco.loadImgs(imgIds[i])[0] # I = Image.open(data_dir + "/" + img['file_name']) # plt.clf() # plt.imshow(I) # plt.axis('off') # annIds = coco.getAnnIds(imgIds=img['id']) # anns = coco.loadAnns(annIds) # coco.showAnns(anns, True) # plt.waitforbuttonpress() if __name__ == "__main__": data_dir = "E:/Research/Images/FineGrained/StanfordCars/train_bing/"
7,808
0
69
0326330a12bafbdb605fe605d3e7680654a1a51a
802
py
Python
tests/unit/common/query/test_expression_query_results_reader.py
ambrosejcarr/matrix-service
f61252d79941fa962240e27062682c9676f07e95
[ "MIT" ]
11
2018-10-26T20:47:55.000Z
2022-02-02T10:32:42.000Z
tests/unit/common/query/test_expression_query_results_reader.py
ambrosejcarr/matrix-service
f61252d79941fa962240e27062682c9676f07e95
[ "MIT" ]
379
2018-06-04T22:44:33.000Z
2020-06-03T00:20:08.000Z
tests/unit/common/query/test_expression_query_results_reader.py
ambrosejcarr/matrix-service
f61252d79941fa962240e27062682c9676f07e95
[ "MIT" ]
4
2018-11-22T01:00:27.000Z
2020-09-01T16:42:05.000Z
import mock import unittest from matrix.common.query.expression_query_results_reader import ExpressionQueryResultsReader
42.210526
94
0.786783
import mock import unittest from matrix.common.query.expression_query_results_reader import ExpressionQueryResultsReader class TestExpressionQueryResultsReader(unittest.TestCase): @mock.patch("matrix.common.query.query_results_reader.QueryResultsReader._parse_manifest") def test_load_results(self, mock_parse_manifest): reader = ExpressionQueryResultsReader("test_manifest_key") with self.assertRaises(NotImplementedError): reader.load_results() @mock.patch("matrix.common.query.query_results_reader.QueryResultsReader._parse_manifest") def test_load_slice(self, mock_parse_manifest): reader = ExpressionQueryResultsReader("test_manifest_key") results = reader.load_slice(0) self.assertEqual(type(results).__name__, 'generator')
376
280
23
1abc147f5b65fc34db7ff312e43a5af4e6f6fb0a
21,660
py
Python
analysis/graveyard/study_definition.py
opensafely/antibody-and-antiviral-deployment
27cd171870fdd161468d1cabd1eaee76f1943593
[ "MIT" ]
null
null
null
analysis/graveyard/study_definition.py
opensafely/antibody-and-antiviral-deployment
27cd171870fdd161468d1cabd1eaee76f1943593
[ "MIT" ]
1
2022-03-18T16:20:19.000Z
2022-03-18T16:20:19.000Z
analysis/graveyard/study_definition.py
opensafely/antibody-and-antiviral-deployment
27cd171870fdd161468d1cabd1eaee76f1943593
[ "MIT" ]
null
null
null
################################################################################ # # Description: This script provides the formal specification of the study data # that will be extracted from the OpenSAFELY database. # # Output: output/data/input_*.csv.gz # # Author(s): M Green (edited by H Curtis) # Date last updated: 03/02/2022 # ################################################################################ # IMPORT STATEMENTS ---- ## Import code building blocks from cohort extractor package from cohortextractor import ( StudyDefinition, patients, codelist_from_csv, codelist, filter_codes_by_category, combine_codelists, Measure ) ## Import codelists from codelist.py (which pulls them from the codelist folder) from codelists import * # DEFINE STUDY POPULATION ---- ## Define study time variables from datetime import date campaign_start = "2021-12-16" end_date = date.today().isoformat() ## Define study population and variables study = StudyDefinition( # PRELIMINARIES ---- ## Configure the expectations framework default_expectations = { "date": {"earliest": "2021-11-01", "latest": "today"}, "rate": "uniform", "incidence": 0.4, }, ## Define index date index_date = campaign_start, # POPULATION ---- population = patients.satisfying( """ (registered_eligible OR registered_treated) AND NOT has_died AND (sotrovimab_covid_therapeutics OR molnupiravir_covid_therapeutics OR casirivimab_covid_therapeutics OR covid_test_positive ) """, has_died = patients.died_from_any_cause( on_or_before = "index_date - 1 day", returning = "binary_flag", ), ), # TREATMENT - NEUTRALISING MONOCLONAL ANTIBODIES OR ANTIVIRALS ---- ## Sotrovimab sotrovimab_covid_therapeutics = patients.with_covid_therapeutics( #with_these_statuses = ["Approved", "Treatment Complete"], with_these_therapeutics = "Sotrovimab", with_these_indications = "non_hospitalised", on_or_after = "index_date", find_first_match_in_period = True, returning = "date", date_format = "YYYY-MM-DD", return_expectations = { "date": {"earliest": "2021-12-20"}, "incidence": 0.4 }, ), ### Molnupiravir molnupiravir_covid_therapeutics = patients.with_covid_therapeutics( #with_these_statuses = ["Approved", "Treatment Complete"], with_these_therapeutics = "Molnupiravir", with_these_indications = "non_hospitalised", on_or_after = "index_date", find_first_match_in_period = True, returning = "date", date_format = "YYYY-MM-DD", return_expectations = { "date": {"earliest": "2021-12-20"}, "incidence": 0.4 }, ), ### Casirivimab and imdevimab casirivimab_covid_therapeutics = patients.with_covid_therapeutics( #with_these_statuses = ["Approved", "Treatment Complete"], with_these_therapeutics = "Casirivimab and imdevimab", with_these_indications = "non_hospitalised", on_or_after = "index_date", find_first_match_in_period = True, returning = "date", date_format = "YYYY-MM-DD", return_expectations = { "date": {"earliest": "2021-12-20"}, "incidence": 0.4 }, ), date_treated = patients.minimum_of( "sotrovimab_covid_therapeutics", "molnupiravir_covid_therapeutics", "casirivimab_covid_therapeutics", ), # ELIGIBILITY CRITERIA VARIABLES ---- ## Inclusion criteria variables ### SARS-CoV-2 test # Note patients are eligible for treatment if diagnosed <=5d ago # in the latest 5 days there may be patients identified as eligible who have not yet been treated covid_test_positive = patients.with_test_result_in_sgss( pathogen = "SARS-CoV-2", test_result = "positive", returning = "binary_flag", on_or_after = "index_date - 5 days", find_first_match_in_period = True, restrict_to_earliest_specimen_date = False, return_expectations = { "incidence": 0.2 }, ), covid_test_date = patients.with_test_result_in_sgss( pathogen = "SARS-CoV-2", test_result = "positive", find_first_match_in_period = True, restrict_to_earliest_specimen_date = False, returning = "date", date_format = "YYYY-MM-DD", on_or_after = "index_date - 5 days", return_expectations = { "date": {"earliest": "2021-12-20", "latest": "index_date"}, "incidence": 0.9 }, ), covid_positive_test_type = patients.with_test_result_in_sgss( pathogen = "SARS-CoV-2", test_result = "positive", returning = "case_category", on_or_after = "index_date - 5 days", restrict_to_earliest_specimen_date = True, return_expectations = { "category": {"ratios": {"LFT_Only": 0.4, "PCR_Only": 0.4, "LFT_WithPCR": 0.2}}, "incidence": 0.2, }, ), covid_positive_previous_30_days = patients.with_test_result_in_sgss( pathogen = "SARS-CoV-2", test_result = "positive", returning = "binary_flag", between = ["covid_test_date - 31 days", "covid_test_date - 1 day"], find_last_match_in_period = True, restrict_to_earliest_specimen_date = False, return_expectations = { "incidence": 0.05 }, ), ### Onset of symptoms of COVID-19 symptomatic_covid_test = patients.with_test_result_in_sgss( pathogen = "SARS-CoV-2", test_result = "any", returning = "symptomatic", on_or_after = "index_date - 5 days", find_first_match_in_period = True, restrict_to_earliest_specimen_date = False, return_expectations={ "incidence": 0.1, "category": { "ratios": { "": 0.2, "N": 0.2, "Y": 0.6, } }, }, ), covid_symptoms_snomed = patients.with_these_clinical_events( covid_symptoms_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, on_or_after = "index_date - 5 days", ), # CENSORING ---- registered_eligible = patients.registered_as_of("covid_test_date"), registered_treated = patients.registered_as_of("date_treated"), ## Death of any cause death_date = patients.died_from_any_cause( returning = "date_of_death", date_format = "YYYY-MM-DD", on_or_after = "covid_test_date", return_expectations = { "date": {"earliest": "2021-12-20", "latest": "index_date"}, "incidence": 0.1 }, ), ## De-registration dereg_date = patients.date_deregistered_from_all_supported_practices( on_or_after = "covid_test_date", date_format = "YYYY-MM-DD", return_expectations = { "date": {"earliest": "2021-12-20", "latest": "index_date"}, "incidence": 0.1 }, ), ### Blueteq ‘high risk’ cohort high_risk_cohort_covid_therapeutics = patients.with_covid_therapeutics( with_these_statuses = ["Approved", "Treatment Complete"], with_these_therapeutics = ["Sotrovimab", "Molnupiravir","Casirivimab and imdevimab"], with_these_indications = "non_hospitalised", on_or_after = "index_date", find_first_match_in_period = True, returning = "risk_group", date_format = "YYYY-MM-DD", return_expectations = { "rate": "universal", "category": { "ratios": { "Down's syndrome": 0.1, "Sickle cell disease": 0.1, "solid cancer": 0.1, "haematological diseases, stem cell transplant recipients": 0.1, "renal disease": 0.1, "liver disease": 0.1, "immune-mediated inflammatory disorders (IMID)": 0.2, "Primary immune deficiencies": 0.1, "HIV/AIDS": 0.1,},}, }, ), ### NHSD ‘high risk’ cohort (codelist to be defined if/when data avaliable) # high_risk_cohort_nhsd = patients.with_these_clinical_events( # high_risk_cohort_nhsd_codes, # between = [campaign_start, index_date], # returning = "date", # date_format = "YYYY-MM-DD", # find_first_match_in_period = True, # ), ## Exclusion criteria ### Pattern of clinical presentation indicates that there is recovery rather than risk of deterioration from infection # (not currently possible to define/code) ### Require hospitalisation for COVID-19 ## NB this data lags behind the therapeutics/testing data so may be missing covid_hospital_admission_date = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = covid_icd10_codes, on_or_after = "index_date - 5 days", date_format = "YYYY-MM-DD", find_first_match_in_period = True, return_expectations = { "date": {"earliest": "index_date - 5 days", "latest": "index_date"}, "rate": "uniform", "incidence": 0.05 }, ), ### New supplemental oxygen requirement specifically for the management of COVID-19 symptoms # (not currently possible to define/code) ### Children weighing less than 40kg # (not currently possible to define/code) ### Children aged under 12 years age = patients.age_as_of( "index_date", return_expectations = { "rate": "universal", "int": {"distribution": "population_ages"}, "incidence" : 0.9 }, ), ### Known hypersensitivity reaction to the active substances or to any of the excipients of sotrovimab # (not currently possible to define/code) # HIGH RISK GROUPS ---- ## Down's syndrome downs_syndrome_nhsd_snomed = patients.with_these_clinical_events( downs_syndrome_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), downs_syndrome_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = downs_syndrome_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), downs_syndrome_nhsd = patients.minimum_of("downs_syndrome_nhsd_snomed", "downs_syndrome_nhsd_icd10"), ## Sickle cell disease sickle_cell_disease_nhsd_snomed = patients.with_these_clinical_events( sickle_cell_disease_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), sickle_cell_disease_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = sickle_cell_disease_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), sickle_cell_disease_nhsd = patients.minimum_of("sickle_cell_disease_nhsd_snomed", "sickle_cell_disease_nhsd_icd10"), ## Solid cancer cancer_opensafely_snomed = patients.with_these_clinical_events( combine_codelists( non_haematological_cancer_opensafely_snomed_codes, lung_cancer_opensafely_snomed_codes, chemotherapy_radiotherapy_opensafely_snomed_codes ), returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), ## Haematological diseases haematopoietic_stem_cell_transplant_nhsd_snomed = patients.with_these_clinical_events( haematopoietic_stem_cell_transplant_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), haematopoietic_stem_cell_transplant_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = haematopoietic_stem_cell_transplant_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), haematopoietic_stem_cell_transplant_nhsd_opcs4 = patients.admitted_to_hospital( returning = "date_admitted", with_these_procedures = haematopoietic_stem_cell_transplant_nhsd_opcs4_codes, date_format = "YYYY-MM-DD", find_first_match_in_period = True, return_expectations = { "date": {"earliest": "2020-02-01"}, "rate": "exponential_increase", "incidence": 0.01, }, ), # haematological_malignancies_nhsd_snomed = patients.with_these_clinical_events( # haematological_malignancies_nhsd_snomed_codes, # returning = "date", # date_format = "YYYY-MM-DD", # find_first_match_in_period = True, # #on_or_before = "end_date", # ), haematological_malignancies_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = haematological_malignancies_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), haematological_disease_nhsd = patients.minimum_of("haematopoietic_stem_cell_transplant_nhsd_snomed", "haematopoietic_stem_cell_transplant_nhsd_icd10", "haematopoietic_stem_cell_transplant_nhsd_opcs4", #"haematological_malignancies_nhsd_snomed", "haematological_malignancies_nhsd_icd10"), ## Renal disease ckd_stage_5_nhsd_snomed = patients.with_these_clinical_events( ckd_stage_5_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), ckd_stage_5_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = ckd_stage_5_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), ckd_stage_5_nhsd = patients.minimum_of("ckd_stage_5_nhsd_snomed", "ckd_stage_5_nhsd_icd10"), ## Liver disease liver_disease_nhsd_snomed = patients.with_these_clinical_events( ckd_stage_5_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), liver_disease_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = ckd_stage_5_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), liver_disease_nhsd = patients.minimum_of("liver_disease_nhsd_snomed", "liver_disease_nhsd_icd10"), ## Immune-mediated inflammatory disorders (IMID) imid_nhsd = patients.with_these_clinical_events( codelist = combine_codelists(immunosuppresant_drugs_dmd_codes, immunosuppresant_drugs_snomed_codes, oral_steroid_drugs_dmd_codes, oral_steroid_drugs_snomed_codes), returning = "date", find_last_match_in_period = True, date_format = "YYYY-MM-DD", ), ## Primary immune deficiencies immunosupression_nhsd = patients.with_these_clinical_events( immunosupression_nhsd_codes, returning = "date", find_last_match_in_period = True, date_format = "YYYY-MM-DD", ), ## HIV/AIDs hiv_aids_nhsd_snomed = patients.with_these_clinical_events( hiv_aids_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), hiv_aids_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = hiv_aids_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), hiv_aids_nhsd = patients.minimum_of("hiv_aids_nhsd_snomed", "hiv_aids_nhsd_icd10"), ## Solid organ transplant solid_organ_transplant_nhsd_snomed = patients.with_these_clinical_events( solid_organ_transplant_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), solid_organ_transplant_nhsd_opcs4 = patients.admitted_to_hospital( returning = "date_admitted", with_these_procedures = solid_organ_transplant_nhsd_opcs4_codes, date_format = "YYYY-MM-DD", find_first_match_in_period = True, return_expectations = { "date": {"earliest": "2020-02-01"}, "rate": "exponential_increase", "incidence": 0.01, }, ), solid_organ_transplant_nhsd = patients.minimum_of("solid_organ_transplant_nhsd_snomed", "solid_organ_transplant_nhsd_opcs4"), ## Rare neurological conditions ### Multiple sclerosis multiple_sclerosis_nhsd_snomed = patients.with_these_clinical_events( multiple_sclerosis_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), multiple_sclerosis_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = multiple_sclerosis_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), multiple_sclerosis_nhsd = patients.minimum_of("multiple_sclerosis_nhsd_snomed", "multiple_sclerosis_nhsd_icd10"), ### Motor neurone disease motor_neurone_disease_nhsd_snomed = patients.with_these_clinical_events( motor_neurone_disease_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), motor_neurone_disease_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = motor_neurone_disease_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), motor_neurone_disease_nhsd = patients.minimum_of("motor_neurone_disease_nhsd_snomed", "motor_neurone_disease_nhsd_icd10"), ### Myasthenia gravis myasthenia_gravis_nhsd_snomed = patients.with_these_clinical_events( myasthenia_gravis_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), myasthenia_gravis_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = myasthenia_gravis_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), myasthenia_gravis_nhsd = patients.minimum_of("myasthenia_gravis_nhsd_snomed", "myasthenia_gravis_nhsd_icd10"), ### Huntington’s disease huntingtons_disease_nhsd_snomed = patients.with_these_clinical_events( huntingtons_disease_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), huntingtons_disease_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = huntingtons_disease_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), huntingtons_disease_nhsd = patients.minimum_of("huntingtons_disease_nhsd_snomed", "huntingtons_disease_nhsd_icd10"), # CLINICAL/DEMOGRAPHIC COVARIATES ---- ## Sex sex = patients.sex( return_expectations = { "rate": "universal", "category": {"ratios": {"M": 0.49, "F": 0.51}}, } ), ## Ethnicity ethnicity_primis = patients.with_these_clinical_events( ethnicity_primis_codes, returning = "category", find_last_match_in_period = True, include_date_of_match = False, return_expectations = { "category": {"ratios": {"1": 0.2, "2": 0.2, "3": 0.2, "4": 0.2, "5": 0.2}}, "incidence": 0.75, }, ), ethnicity_sus = patients.with_ethnicity_from_sus( returning = "group_6", use_most_frequent_code = True, return_expectations = { "category": {"ratios": {"1": 0.2, "2": 0.2, "3": 0.2, "4": 0.2, "5": 0.2}}, "incidence": 0.8, }, ), ## Index of multiple deprivation imd = patients.categorised_as( {"0": "DEFAULT", "1": """index_of_multiple_deprivation >=1 AND index_of_multiple_deprivation < 32844*1/5""", "2": """index_of_multiple_deprivation >= 32844*1/5 AND index_of_multiple_deprivation < 32844*2/5""", "3": """index_of_multiple_deprivation >= 32844*2/5 AND index_of_multiple_deprivation < 32844*3/5""", "4": """index_of_multiple_deprivation >= 32844*3/5 AND index_of_multiple_deprivation < 32844*4/5""", "5": """index_of_multiple_deprivation >= 32844*4/5 """, }, index_of_multiple_deprivation = patients.address_as_of( "index_date", returning = "index_of_multiple_deprivation", round_to_nearest = 100, ), return_expectations = { "rate": "universal", "category": { "ratios": { "0": 0.01, "1": 0.20, "2": 0.20, "3": 0.20, "4": 0.20, "5": 0.19, }}, }, ), ## Region - NHS England 9 regions region_nhs = patients.registered_practice_as_of( "index_date", returning = "nuts1_region_name", return_expectations = { "rate": "universal", "category": { "ratios": { "North East": 0.1, "North West": 0.1, "Yorkshire and The Humber": 0.1, "East Midlands": 0.1, "West Midlands": 0.1, "East": 0.1, "London": 0.2, "South West": 0.1, "South East": 0.1,},}, }, ), region_covid_therapeutics = patients.with_covid_therapeutics( #with_these_statuses = ["Approved", "Treatment Complete"], with_these_therapeutics = ["Sotrovimab", "Molnupiravir", "Casirivimab and imdevimab"], with_these_indications = "non_hospitalised", on_or_after = "index_date", find_first_match_in_period = True, returning = "region", return_expectations = { "rate": "universal", "category": { "ratios": { "North East": 0.1, "North West": 0.1, "Yorkshire and The Humber": 0.1, "East Midlands": 0.1, "West Midlands": 0.1, "East": 0.1, "London": 0.2, "South West": 0.1, "South East": 0.1,},}, }, ), ## CMDUs/ICS )
31.255411
128
0.673084
################################################################################ # # Description: This script provides the formal specification of the study data # that will be extracted from the OpenSAFELY database. # # Output: output/data/input_*.csv.gz # # Author(s): M Green (edited by H Curtis) # Date last updated: 03/02/2022 # ################################################################################ # IMPORT STATEMENTS ---- ## Import code building blocks from cohort extractor package from cohortextractor import ( StudyDefinition, patients, codelist_from_csv, codelist, filter_codes_by_category, combine_codelists, Measure ) ## Import codelists from codelist.py (which pulls them from the codelist folder) from codelists import * # DEFINE STUDY POPULATION ---- ## Define study time variables from datetime import date campaign_start = "2021-12-16" end_date = date.today().isoformat() ## Define study population and variables study = StudyDefinition( # PRELIMINARIES ---- ## Configure the expectations framework default_expectations = { "date": {"earliest": "2021-11-01", "latest": "today"}, "rate": "uniform", "incidence": 0.4, }, ## Define index date index_date = campaign_start, # POPULATION ---- population = patients.satisfying( """ (registered_eligible OR registered_treated) AND NOT has_died AND (sotrovimab_covid_therapeutics OR molnupiravir_covid_therapeutics OR casirivimab_covid_therapeutics OR covid_test_positive ) """, has_died = patients.died_from_any_cause( on_or_before = "index_date - 1 day", returning = "binary_flag", ), ), # TREATMENT - NEUTRALISING MONOCLONAL ANTIBODIES OR ANTIVIRALS ---- ## Sotrovimab sotrovimab_covid_therapeutics = patients.with_covid_therapeutics( #with_these_statuses = ["Approved", "Treatment Complete"], with_these_therapeutics = "Sotrovimab", with_these_indications = "non_hospitalised", on_or_after = "index_date", find_first_match_in_period = True, returning = "date", date_format = "YYYY-MM-DD", return_expectations = { "date": {"earliest": "2021-12-20"}, "incidence": 0.4 }, ), ### Molnupiravir molnupiravir_covid_therapeutics = patients.with_covid_therapeutics( #with_these_statuses = ["Approved", "Treatment Complete"], with_these_therapeutics = "Molnupiravir", with_these_indications = "non_hospitalised", on_or_after = "index_date", find_first_match_in_period = True, returning = "date", date_format = "YYYY-MM-DD", return_expectations = { "date": {"earliest": "2021-12-20"}, "incidence": 0.4 }, ), ### Casirivimab and imdevimab casirivimab_covid_therapeutics = patients.with_covid_therapeutics( #with_these_statuses = ["Approved", "Treatment Complete"], with_these_therapeutics = "Casirivimab and imdevimab", with_these_indications = "non_hospitalised", on_or_after = "index_date", find_first_match_in_period = True, returning = "date", date_format = "YYYY-MM-DD", return_expectations = { "date": {"earliest": "2021-12-20"}, "incidence": 0.4 }, ), date_treated = patients.minimum_of( "sotrovimab_covid_therapeutics", "molnupiravir_covid_therapeutics", "casirivimab_covid_therapeutics", ), # ELIGIBILITY CRITERIA VARIABLES ---- ## Inclusion criteria variables ### SARS-CoV-2 test # Note patients are eligible for treatment if diagnosed <=5d ago # in the latest 5 days there may be patients identified as eligible who have not yet been treated covid_test_positive = patients.with_test_result_in_sgss( pathogen = "SARS-CoV-2", test_result = "positive", returning = "binary_flag", on_or_after = "index_date - 5 days", find_first_match_in_period = True, restrict_to_earliest_specimen_date = False, return_expectations = { "incidence": 0.2 }, ), covid_test_date = patients.with_test_result_in_sgss( pathogen = "SARS-CoV-2", test_result = "positive", find_first_match_in_period = True, restrict_to_earliest_specimen_date = False, returning = "date", date_format = "YYYY-MM-DD", on_or_after = "index_date - 5 days", return_expectations = { "date": {"earliest": "2021-12-20", "latest": "index_date"}, "incidence": 0.9 }, ), covid_positive_test_type = patients.with_test_result_in_sgss( pathogen = "SARS-CoV-2", test_result = "positive", returning = "case_category", on_or_after = "index_date - 5 days", restrict_to_earliest_specimen_date = True, return_expectations = { "category": {"ratios": {"LFT_Only": 0.4, "PCR_Only": 0.4, "LFT_WithPCR": 0.2}}, "incidence": 0.2, }, ), covid_positive_previous_30_days = patients.with_test_result_in_sgss( pathogen = "SARS-CoV-2", test_result = "positive", returning = "binary_flag", between = ["covid_test_date - 31 days", "covid_test_date - 1 day"], find_last_match_in_period = True, restrict_to_earliest_specimen_date = False, return_expectations = { "incidence": 0.05 }, ), ### Onset of symptoms of COVID-19 symptomatic_covid_test = patients.with_test_result_in_sgss( pathogen = "SARS-CoV-2", test_result = "any", returning = "symptomatic", on_or_after = "index_date - 5 days", find_first_match_in_period = True, restrict_to_earliest_specimen_date = False, return_expectations={ "incidence": 0.1, "category": { "ratios": { "": 0.2, "N": 0.2, "Y": 0.6, } }, }, ), covid_symptoms_snomed = patients.with_these_clinical_events( covid_symptoms_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, on_or_after = "index_date - 5 days", ), # CENSORING ---- registered_eligible = patients.registered_as_of("covid_test_date"), registered_treated = patients.registered_as_of("date_treated"), ## Death of any cause death_date = patients.died_from_any_cause( returning = "date_of_death", date_format = "YYYY-MM-DD", on_or_after = "covid_test_date", return_expectations = { "date": {"earliest": "2021-12-20", "latest": "index_date"}, "incidence": 0.1 }, ), ## De-registration dereg_date = patients.date_deregistered_from_all_supported_practices( on_or_after = "covid_test_date", date_format = "YYYY-MM-DD", return_expectations = { "date": {"earliest": "2021-12-20", "latest": "index_date"}, "incidence": 0.1 }, ), ### Blueteq ‘high risk’ cohort high_risk_cohort_covid_therapeutics = patients.with_covid_therapeutics( with_these_statuses = ["Approved", "Treatment Complete"], with_these_therapeutics = ["Sotrovimab", "Molnupiravir","Casirivimab and imdevimab"], with_these_indications = "non_hospitalised", on_or_after = "index_date", find_first_match_in_period = True, returning = "risk_group", date_format = "YYYY-MM-DD", return_expectations = { "rate": "universal", "category": { "ratios": { "Down's syndrome": 0.1, "Sickle cell disease": 0.1, "solid cancer": 0.1, "haematological diseases, stem cell transplant recipients": 0.1, "renal disease": 0.1, "liver disease": 0.1, "immune-mediated inflammatory disorders (IMID)": 0.2, "Primary immune deficiencies": 0.1, "HIV/AIDS": 0.1,},}, }, ), ### NHSD ‘high risk’ cohort (codelist to be defined if/when data avaliable) # high_risk_cohort_nhsd = patients.with_these_clinical_events( # high_risk_cohort_nhsd_codes, # between = [campaign_start, index_date], # returning = "date", # date_format = "YYYY-MM-DD", # find_first_match_in_period = True, # ), ## Exclusion criteria ### Pattern of clinical presentation indicates that there is recovery rather than risk of deterioration from infection # (not currently possible to define/code) ### Require hospitalisation for COVID-19 ## NB this data lags behind the therapeutics/testing data so may be missing covid_hospital_admission_date = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = covid_icd10_codes, on_or_after = "index_date - 5 days", date_format = "YYYY-MM-DD", find_first_match_in_period = True, return_expectations = { "date": {"earliest": "index_date - 5 days", "latest": "index_date"}, "rate": "uniform", "incidence": 0.05 }, ), ### New supplemental oxygen requirement specifically for the management of COVID-19 symptoms # (not currently possible to define/code) ### Children weighing less than 40kg # (not currently possible to define/code) ### Children aged under 12 years age = patients.age_as_of( "index_date", return_expectations = { "rate": "universal", "int": {"distribution": "population_ages"}, "incidence" : 0.9 }, ), ### Known hypersensitivity reaction to the active substances or to any of the excipients of sotrovimab # (not currently possible to define/code) # HIGH RISK GROUPS ---- ## Down's syndrome downs_syndrome_nhsd_snomed = patients.with_these_clinical_events( downs_syndrome_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), downs_syndrome_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = downs_syndrome_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), downs_syndrome_nhsd = patients.minimum_of("downs_syndrome_nhsd_snomed", "downs_syndrome_nhsd_icd10"), ## Sickle cell disease sickle_cell_disease_nhsd_snomed = patients.with_these_clinical_events( sickle_cell_disease_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), sickle_cell_disease_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = sickle_cell_disease_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), sickle_cell_disease_nhsd = patients.minimum_of("sickle_cell_disease_nhsd_snomed", "sickle_cell_disease_nhsd_icd10"), ## Solid cancer cancer_opensafely_snomed = patients.with_these_clinical_events( combine_codelists( non_haematological_cancer_opensafely_snomed_codes, lung_cancer_opensafely_snomed_codes, chemotherapy_radiotherapy_opensafely_snomed_codes ), returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), ## Haematological diseases haematopoietic_stem_cell_transplant_nhsd_snomed = patients.with_these_clinical_events( haematopoietic_stem_cell_transplant_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), haematopoietic_stem_cell_transplant_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = haematopoietic_stem_cell_transplant_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), haematopoietic_stem_cell_transplant_nhsd_opcs4 = patients.admitted_to_hospital( returning = "date_admitted", with_these_procedures = haematopoietic_stem_cell_transplant_nhsd_opcs4_codes, date_format = "YYYY-MM-DD", find_first_match_in_period = True, return_expectations = { "date": {"earliest": "2020-02-01"}, "rate": "exponential_increase", "incidence": 0.01, }, ), # haematological_malignancies_nhsd_snomed = patients.with_these_clinical_events( # haematological_malignancies_nhsd_snomed_codes, # returning = "date", # date_format = "YYYY-MM-DD", # find_first_match_in_period = True, # #on_or_before = "end_date", # ), haematological_malignancies_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = haematological_malignancies_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), haematological_disease_nhsd = patients.minimum_of("haematopoietic_stem_cell_transplant_nhsd_snomed", "haematopoietic_stem_cell_transplant_nhsd_icd10", "haematopoietic_stem_cell_transplant_nhsd_opcs4", #"haematological_malignancies_nhsd_snomed", "haematological_malignancies_nhsd_icd10"), ## Renal disease ckd_stage_5_nhsd_snomed = patients.with_these_clinical_events( ckd_stage_5_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), ckd_stage_5_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = ckd_stage_5_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), ckd_stage_5_nhsd = patients.minimum_of("ckd_stage_5_nhsd_snomed", "ckd_stage_5_nhsd_icd10"), ## Liver disease liver_disease_nhsd_snomed = patients.with_these_clinical_events( ckd_stage_5_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), liver_disease_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = ckd_stage_5_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), liver_disease_nhsd = patients.minimum_of("liver_disease_nhsd_snomed", "liver_disease_nhsd_icd10"), ## Immune-mediated inflammatory disorders (IMID) imid_nhsd = patients.with_these_clinical_events( codelist = combine_codelists(immunosuppresant_drugs_dmd_codes, immunosuppresant_drugs_snomed_codes, oral_steroid_drugs_dmd_codes, oral_steroid_drugs_snomed_codes), returning = "date", find_last_match_in_period = True, date_format = "YYYY-MM-DD", ), ## Primary immune deficiencies immunosupression_nhsd = patients.with_these_clinical_events( immunosupression_nhsd_codes, returning = "date", find_last_match_in_period = True, date_format = "YYYY-MM-DD", ), ## HIV/AIDs hiv_aids_nhsd_snomed = patients.with_these_clinical_events( hiv_aids_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), hiv_aids_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = hiv_aids_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), hiv_aids_nhsd = patients.minimum_of("hiv_aids_nhsd_snomed", "hiv_aids_nhsd_icd10"), ## Solid organ transplant solid_organ_transplant_nhsd_snomed = patients.with_these_clinical_events( solid_organ_transplant_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), solid_organ_transplant_nhsd_opcs4 = patients.admitted_to_hospital( returning = "date_admitted", with_these_procedures = solid_organ_transplant_nhsd_opcs4_codes, date_format = "YYYY-MM-DD", find_first_match_in_period = True, return_expectations = { "date": {"earliest": "2020-02-01"}, "rate": "exponential_increase", "incidence": 0.01, }, ), solid_organ_transplant_nhsd = patients.minimum_of("solid_organ_transplant_nhsd_snomed", "solid_organ_transplant_nhsd_opcs4"), ## Rare neurological conditions ### Multiple sclerosis multiple_sclerosis_nhsd_snomed = patients.with_these_clinical_events( multiple_sclerosis_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), multiple_sclerosis_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = multiple_sclerosis_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), multiple_sclerosis_nhsd = patients.minimum_of("multiple_sclerosis_nhsd_snomed", "multiple_sclerosis_nhsd_icd10"), ### Motor neurone disease motor_neurone_disease_nhsd_snomed = patients.with_these_clinical_events( motor_neurone_disease_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), motor_neurone_disease_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = motor_neurone_disease_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), motor_neurone_disease_nhsd = patients.minimum_of("motor_neurone_disease_nhsd_snomed", "motor_neurone_disease_nhsd_icd10"), ### Myasthenia gravis myasthenia_gravis_nhsd_snomed = patients.with_these_clinical_events( myasthenia_gravis_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), myasthenia_gravis_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = myasthenia_gravis_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), myasthenia_gravis_nhsd = patients.minimum_of("myasthenia_gravis_nhsd_snomed", "myasthenia_gravis_nhsd_icd10"), ### Huntington’s disease huntingtons_disease_nhsd_snomed = patients.with_these_clinical_events( huntingtons_disease_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), huntingtons_disease_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = huntingtons_disease_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), huntingtons_disease_nhsd = patients.minimum_of("huntingtons_disease_nhsd_snomed", "huntingtons_disease_nhsd_icd10"), # CLINICAL/DEMOGRAPHIC COVARIATES ---- ## Sex sex = patients.sex( return_expectations = { "rate": "universal", "category": {"ratios": {"M": 0.49, "F": 0.51}}, } ), ## Ethnicity ethnicity_primis = patients.with_these_clinical_events( ethnicity_primis_codes, returning = "category", find_last_match_in_period = True, include_date_of_match = False, return_expectations = { "category": {"ratios": {"1": 0.2, "2": 0.2, "3": 0.2, "4": 0.2, "5": 0.2}}, "incidence": 0.75, }, ), ethnicity_sus = patients.with_ethnicity_from_sus( returning = "group_6", use_most_frequent_code = True, return_expectations = { "category": {"ratios": {"1": 0.2, "2": 0.2, "3": 0.2, "4": 0.2, "5": 0.2}}, "incidence": 0.8, }, ), ## Index of multiple deprivation imd = patients.categorised_as( {"0": "DEFAULT", "1": """index_of_multiple_deprivation >=1 AND index_of_multiple_deprivation < 32844*1/5""", "2": """index_of_multiple_deprivation >= 32844*1/5 AND index_of_multiple_deprivation < 32844*2/5""", "3": """index_of_multiple_deprivation >= 32844*2/5 AND index_of_multiple_deprivation < 32844*3/5""", "4": """index_of_multiple_deprivation >= 32844*3/5 AND index_of_multiple_deprivation < 32844*4/5""", "5": """index_of_multiple_deprivation >= 32844*4/5 """, }, index_of_multiple_deprivation = patients.address_as_of( "index_date", returning = "index_of_multiple_deprivation", round_to_nearest = 100, ), return_expectations = { "rate": "universal", "category": { "ratios": { "0": 0.01, "1": 0.20, "2": 0.20, "3": 0.20, "4": 0.20, "5": 0.19, }}, }, ), ## Region - NHS England 9 regions region_nhs = patients.registered_practice_as_of( "index_date", returning = "nuts1_region_name", return_expectations = { "rate": "universal", "category": { "ratios": { "North East": 0.1, "North West": 0.1, "Yorkshire and The Humber": 0.1, "East Midlands": 0.1, "West Midlands": 0.1, "East": 0.1, "London": 0.2, "South West": 0.1, "South East": 0.1,},}, }, ), region_covid_therapeutics = patients.with_covid_therapeutics( #with_these_statuses = ["Approved", "Treatment Complete"], with_these_therapeutics = ["Sotrovimab", "Molnupiravir", "Casirivimab and imdevimab"], with_these_indications = "non_hospitalised", on_or_after = "index_date", find_first_match_in_period = True, returning = "region", return_expectations = { "rate": "universal", "category": { "ratios": { "North East": 0.1, "North West": 0.1, "Yorkshire and The Humber": 0.1, "East Midlands": 0.1, "West Midlands": 0.1, "East": 0.1, "London": 0.2, "South West": 0.1, "South East": 0.1,},}, }, ), ## CMDUs/ICS )
0
0
0
9c633934769dee6380c21948f3259c49e26608fa
5,146
py
Python
records_mover/db/bigquery/unloader.py
cwegrzyn/records-mover
e3b71d6c09d99d0bcd6a956b9d09d20f8abe98d2
[ "Apache-2.0" ]
36
2020-03-17T11:56:51.000Z
2022-01-19T16:03:32.000Z
records_mover/db/bigquery/unloader.py
cwegrzyn/records-mover
e3b71d6c09d99d0bcd6a956b9d09d20f8abe98d2
[ "Apache-2.0" ]
60
2020-03-02T23:13:29.000Z
2021-05-19T15:05:42.000Z
records_mover/db/bigquery/unloader.py
cwegrzyn/records-mover
e3b71d6c09d99d0bcd6a956b9d09d20f8abe98d2
[ "Apache-2.0" ]
4
2020-08-11T13:17:37.000Z
2021-11-05T21:11:52.000Z
import sqlalchemy from contextlib import contextmanager from typing import List, Iterator, Optional, Union, Tuple import logging from google.cloud.bigquery.dbapi.connection import Connection from google.cloud.bigquery.client import Client from google.cloud.bigquery.job import ExtractJobConfig from records_mover.db.unloader import Unloader from records_mover.records.records_format import BaseRecordsFormat, AvroRecordsFormat from records_mover.url.base import BaseDirectoryUrl from records_mover.url.resolver import UrlResolver from records_mover.records.unload_plan import RecordsUnloadPlan from records_mover.records.records_directory import RecordsDirectory from records_mover.db.errors import NoTemporaryBucketConfiguration logger = logging.getLogger(__name__)
45.539823
115
0.666148
import sqlalchemy from contextlib import contextmanager from typing import List, Iterator, Optional, Union, Tuple import logging from google.cloud.bigquery.dbapi.connection import Connection from google.cloud.bigquery.client import Client from google.cloud.bigquery.job import ExtractJobConfig from records_mover.db.unloader import Unloader from records_mover.records.records_format import BaseRecordsFormat, AvroRecordsFormat from records_mover.url.base import BaseDirectoryUrl from records_mover.url.resolver import UrlResolver from records_mover.records.unload_plan import RecordsUnloadPlan from records_mover.records.records_directory import RecordsDirectory from records_mover.db.errors import NoTemporaryBucketConfiguration logger = logging.getLogger(__name__) class BigQueryUnloader(Unloader): def __init__(self, db: Union[sqlalchemy.engine.Connection, sqlalchemy.engine.Engine], url_resolver: UrlResolver, gcs_temp_base_loc: Optional[BaseDirectoryUrl])\ -> None: self.db = db self.url_resolver = url_resolver self.gcs_temp_base_loc = gcs_temp_base_loc super().__init__(db=db) def can_unload_format(self, target_records_format: BaseRecordsFormat) -> bool: if isinstance(target_records_format, AvroRecordsFormat): return True return False def can_unload_to_scheme(self, scheme: str) -> bool: if scheme == 'gs': return True # Otherwise we'll need a temporary bucket configured for # BigQuery to unload into return self.gcs_temp_base_loc is not None def known_supported_records_formats_for_unload(self) -> List[BaseRecordsFormat]: return [AvroRecordsFormat()] @contextmanager def temporary_unloadable_directory_loc(self) -> Iterator[BaseDirectoryUrl]: if self.gcs_temp_base_loc is None: raise NoTemporaryBucketConfiguration('Please provide a scratch GCS URL in your config ' '(e.g., set SCRATCH_GCS_URL to a gs:// URL)') else: with self.gcs_temp_base_loc.temporary_directory() as temp_loc: yield temp_loc def _parse_bigquery_schema_name(self, schema: str) -> Tuple[Optional[str], str]: # https://github.com/mxmzdlv/pybigquery/blob/master/pybigquery/sqlalchemy_bigquery.py#L320 dataset = None project = None schema_split = schema.split('.') if len(schema_split) == 1: dataset, = schema_split elif len(schema_split) == 2: project, dataset = schema_split else: raise ValueError(f"Could not understand schema name {schema}") return (project, dataset) def _extract_job_config(self, unload_plan: RecordsUnloadPlan) -> ExtractJobConfig: config = ExtractJobConfig() if isinstance(unload_plan.records_format, AvroRecordsFormat): config.destination_format = 'AVRO' # https://cloud.google.com/bigquery/docs/loading-data-cloud-storage-avro#logical_types config.use_avro_logical_types = True else: raise NotImplementedError(f'Please add support for {unload_plan.records_format}') return config def unload(self, schema: str, table: str, unload_plan: RecordsUnloadPlan, directory: RecordsDirectory) -> Optional[int]: if directory.scheme != 'gs': with self.temporary_unloadable_directory_loc() as temp_gcs_loc: temp_directory = RecordsDirectory(temp_gcs_loc) out = self.unload(schema=schema, table=table, unload_plan=unload_plan, directory=temp_directory) temp_directory.copy_to(directory.loc) return out logger.info("Loading from records directory into BigQuery") # https://googleapis.github.io/google-cloud-python/latest/bigquery/usage/tables.html#creating-a-table connection: Connection =\ self.db.engine.raw_connection().connection # https://google-cloud.readthedocs.io/en/latest/bigquery/generated/google.cloud.bigquery.client.Client.html client: Client = connection._client project_id, dataset_id = self._parse_bigquery_schema_name(schema) job_config = self._extract_job_config(unload_plan) records_format = unload_plan.records_format filename = records_format.generate_filename('output') destination_uri = directory.loc.file_in_this_directory(filename) job = client.extract_table(f"{schema}.{table}", destination_uri.url, # Must match the destination dataset location. job_config=job_config) job.result() # Waits for table load to complete. logger.info(f"Unloaded from {dataset_id}:{table} into {filename}") directory.save_preliminary_manifest() return None
4,107
247
23
82eca7e21b92148d602ade08730e4aef0f573478
1,219
py
Python
depth_completion/config/resnet18_Baseline_config.py
tsunghan-mama/Depth-Completion
d73328d1d704470a6fd3859e2e1810bc311b1dc3
[ "MIT" ]
67
2020-07-11T09:44:10.000Z
2022-03-30T07:38:46.000Z
depth_completion/config/resnet18_Baseline_config.py
tsunghan-mama/Depth-Completion
d73328d1d704470a6fd3859e2e1810bc311b1dc3
[ "MIT" ]
8
2020-07-14T05:50:03.000Z
2022-01-19T09:07:46.000Z
depth_completion/config/resnet18_Baseline_config.py
patrickwu2/Depth-Completion
e9c52e2cb2dce558d6787e246bbc51c1670c16ca
[ "MIT" ]
9
2019-10-12T01:09:51.000Z
2020-05-26T21:35:28.000Z
common_config = { } train_config = { "dataset_name": "matterport", "model_name": "ResNet18SkipConnection", "in_channel": 9, "device_ids": [0], "seed": 7122, "num_workers": 8, "mode": "train", "train_path": "/tmp2/tsunghan/new_matterport/v1", "lr": 1e-4, "batch_size": 8, "loss_func": {('depth(L2)', 'depth_L2_loss', 1.)}, "load_model_path": None, "param_only": False, "validation": True, "valid_path": "/tmp2/tsunghan/new_matterport/v1", "epoches": 100, "save_prefix": "", } test_config = { "dataset_name": "matterport", "model_name": "ResNet18SkipConnection", "in_channel": 9, "device_ids": [0, 1, 2, 3], "seed": 7122, "num_workers": 8, "mode": "test", "test_path": "/tmp2/tsunghan/new_matterport/v1", "lr": 1e-4, "batch_size": 1, "loss_func": {('depth(L2)', 'depth_L2_loss', 1.), ('img_grad', 'img_grad_loss', 1e-3)}, "load_model_path": "/tmp2/tsunghan/twcc_data/twcc_experience_resnet/matterport_ResNet18SkipConnection_b10_lr0.0001_/epoch_13.pt", "param_only": True, "epoches": 100, "save_prefix": "resnet", "output":"/tmp2/tsunghan/experiment_result/mat_npy/r18sc_epo13", }
27.088889
133
0.61854
common_config = { } train_config = { "dataset_name": "matterport", "model_name": "ResNet18SkipConnection", "in_channel": 9, "device_ids": [0], "seed": 7122, "num_workers": 8, "mode": "train", "train_path": "/tmp2/tsunghan/new_matterport/v1", "lr": 1e-4, "batch_size": 8, "loss_func": {('depth(L2)', 'depth_L2_loss', 1.)}, "load_model_path": None, "param_only": False, "validation": True, "valid_path": "/tmp2/tsunghan/new_matterport/v1", "epoches": 100, "save_prefix": "", } test_config = { "dataset_name": "matterport", "model_name": "ResNet18SkipConnection", "in_channel": 9, "device_ids": [0, 1, 2, 3], "seed": 7122, "num_workers": 8, "mode": "test", "test_path": "/tmp2/tsunghan/new_matterport/v1", "lr": 1e-4, "batch_size": 1, "loss_func": {('depth(L2)', 'depth_L2_loss', 1.), ('img_grad', 'img_grad_loss', 1e-3)}, "load_model_path": "/tmp2/tsunghan/twcc_data/twcc_experience_resnet/matterport_ResNet18SkipConnection_b10_lr0.0001_/epoch_13.pt", "param_only": True, "epoches": 100, "save_prefix": "resnet", "output":"/tmp2/tsunghan/experiment_result/mat_npy/r18sc_epo13", }
0
0
0
38b4f6b2219146f62a43cb5525a1f50ceb4102df
660
py
Python
scheduler_task/study_apscheduler/examples/demo.py
2581676612/python
b309564a05838b23044bb8112fd4ef71307266b6
[ "MIT" ]
112
2017-09-19T17:38:38.000Z
2020-05-27T18:00:27.000Z
scheduler_task/study_apscheduler/examples/demo.py
tomoncle/Python-notes
ce675486290c3d1c7c2e4890b57e3d0c8a1228cc
[ "MIT" ]
null
null
null
scheduler_task/study_apscheduler/examples/demo.py
tomoncle/Python-notes
ce675486290c3d1c7c2e4890b57e3d0c8a1228cc
[ "MIT" ]
56
2017-09-20T01:24:12.000Z
2020-04-16T06:19:31.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 17-8-13 上午11:33 # @Author : Tom.Lee # @CopyRight : 2016-2017 OpenBridge by yihecloud # @File : demo.py # @Product : PyCharm # @Docs : # @Source : import os from apscheduler.schedulers.blocking import BlockingScheduler if __name__ == '__main__': scheduler = BlockingScheduler() scheduler.add_job('sys:stdout.write', 'interval', seconds=3, args=['tick ...\n']) print('Press Ctrl+{0} to exit'.format('Break' if os.name == 'nt' else 'C')) try: scheduler.start() except (KeyboardInterrupt, SystemExit): pass
26.4
85
0.587879
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 17-8-13 上午11:33 # @Author : Tom.Lee # @CopyRight : 2016-2017 OpenBridge by yihecloud # @File : demo.py # @Product : PyCharm # @Docs : # @Source : import os from apscheduler.schedulers.blocking import BlockingScheduler if __name__ == '__main__': scheduler = BlockingScheduler() scheduler.add_job('sys:stdout.write', 'interval', seconds=3, args=['tick ...\n']) print('Press Ctrl+{0} to exit'.format('Break' if os.name == 'nt' else 'C')) try: scheduler.start() except (KeyboardInterrupt, SystemExit): pass
0
0
0
0fc246feb45369af60c1a8007ad889850bd24825
4,829
py
Python
clearblade/ClearBladeCore.py
sraman0302/ClearBlade-Python-SDK
bde192ef86969c8d1c592f7697ca104bc2362408
[ "Apache-2.0" ]
2
2018-05-10T18:38:04.000Z
2020-12-19T08:14:21.000Z
clearblade/ClearBladeCore.py
sraman0302/ClearBlade-Python-SDK
bde192ef86969c8d1c592f7697ca104bc2362408
[ "Apache-2.0" ]
6
2018-01-13T17:05:51.000Z
2021-09-01T18:25:41.000Z
clearblade/ClearBladeCore.py
sraman0302/ClearBlade-Python-SDK
bde192ef86969c8d1c592f7697ca104bc2362408
[ "Apache-2.0" ]
4
2018-11-08T21:18:08.000Z
2021-05-10T01:07:14.000Z
from __future__ import absolute_import import atexit from . import Users from . import Devices from . import Collections from . import Messaging from . import Code from .Developers import * # allows you to import Developer from ClearBladeCore from . import cbLogs ############# # USERS # ############# ############### # DEVICES # ############### ############ # DATA # ############ ############ # MQTT # ############ ############ # CODE # ############
31.154839
168
0.600745
from __future__ import absolute_import import atexit from . import Users from . import Devices from . import Collections from . import Messaging from . import Code from .Developers import * # allows you to import Developer from ClearBladeCore from . import cbLogs class System: def __exitcode(self): # forces all users to log out on system close. # I did this to prevent possible token reuse # after client code exits, even if they don't # log their users out themselves. while self.users: self.users.pop(0).logout() def __init__(self, systemKey, systemSecret, url="https://platform.clearblade.com", safe=True, sslVerify=True): self.systemKey = systemKey self.systemSecret = systemSecret self.url = url self.users = [] self.collections = [] self.messagingClients = [] self.devices = [] self.sslVerify = sslVerify if not sslVerify: cbLogs.warn("You have disabled SSL verification, this should only be done if your ClearBlade Platform instance is leveraging self signed SSL certificates.") if safe: atexit.register(self.__exitcode) ############# # USERS # ############# def User(self, email, password="", authToken=""): user = Users.User(self, email, password=password, authToken=authToken) if authToken == "": user.authenticate() return user elif user.checkAuth(): return user else: cbLogs.error("Invalid User authToken") exit(-1) def AnonUser(self): anon = Users.AnonUser(self) anon.authenticate() return anon def registerUser(self, authenticatedUser, email, password): n00b = Users.registerUser(self, authenticatedUser, email, password) self.users.append(n00b) return n00b def ServiceUser(self, email, token): user = Users.ServiceUser(self, email, token) if user.checkAuth(): return user else: cbLogs.error("Service User ", email, "failed to Auth") exit(-1) ############### # DEVICES # ############### def getDevices(self, authenticatedUser, query=None): self.devices = Devices.getDevices(self, authenticatedUser, query) return self.devices def getDevice(self, authenticatedUser, name): dev = Devices.getDevice(self, authenticatedUser, name) return dev def Device(self, name, key="", authToken=""): dev = Devices.Device(system=self, name=name, key=key, authToken=authToken) # check if dev in self.devices? return dev ############ # DATA # ############ def Collection(self, authenticatedUser, collectionID="", collectionName=""): if not collectionID and not collectionName: cbLogs.error("beep") exit(-1) col = Collections.Collection(self, authenticatedUser, collectionID, collectionName) self.collections.append(col) return col ############ # MQTT # ############ def Messaging(self, user, port=1883, keepalive=30, url="", client_id="", use_tls=False): msg = Messaging.Messaging(user, port, keepalive, url, client_id=client_id, use_tls=use_tls) self.messagingClients.append(msg) return msg ############ # CODE # ############ def Service(self, name): return Code.Service(self, name) class Query: def __init__(self): self.sorting = [] # only used in fetches. also, not implemented yet. TODO self.filters = [] def Or(self, query): # NOTE: you can't add filters after # you Or two queries together. # This function has to be the last step. q = Query() for filter in self.filters: q.filters.append(filter) for filter in query.filters: q.filters.append(filter) return q def __addFilter(self, column, value, operator): if len(self.filters) == 0: self.filters.append([]) self.filters[0].append({operator: [{column: value}]}) def equalTo(self, column, value): self.__addFilter(column, value, "EQ") def greaterThan(self, column, value): self.__addFilter(column, value, "GT") def lessThan(self, column, value): self.__addFilter(column, value, "LT") def greaterThanEqualTo(self, column, value): self.__addFilter(column, value, "GTE") def lessThanEqualTo(self, column, value): self.__addFilter(column, value, "LTE") def notEqualTo(self, column, value): self.__addFilter(column, value, "NEQ") def matches(self, column, value): self.__addFilter(column, value, "RE")
3,669
-17
638
78df92a0ac52515a71841949cff2f4cccb3a01f0
698
py
Python
GoogleCodeJam2017/Round0/TidyNumbers/TidyNumbers.py
Jspsun/CompetitiveCoding
a815bbcdab1fb30bd83730a7abd3505bff8bfb78
[ "MIT" ]
null
null
null
GoogleCodeJam2017/Round0/TidyNumbers/TidyNumbers.py
Jspsun/CompetitiveCoding
a815bbcdab1fb30bd83730a7abd3505bff8bfb78
[ "MIT" ]
null
null
null
GoogleCodeJam2017/Round0/TidyNumbers/TidyNumbers.py
Jspsun/CompetitiveCoding
a815bbcdab1fb30bd83730a7abd3505bff8bfb78
[ "MIT" ]
null
null
null
if __name__ == '__main__': __main__()
21.151515
71
0.465616
def __main__(): f = open("in.txt", 'r') o = open("out.txt", 'w') noOfCases = int(f.readline()) for testNo in range(noOfCases): counter = 0 data = f.readline() output = solver(data[:-1]) output = int(output) o.write("Case #" + str(testNo + 1) + ": " + str(output) + "\n") def solver(n): n = list(n) dex = inOrder(n) while dex != -1: n[dex] = str(int(n[dex]) - 1) n = n[:dex + 1] + ['9'] * (len(n) - dex - 1) dex = inOrder(n) return ''.join(n) def inOrder(n): for i in range(len(n) - 1): if n[i] > n[i + 1]: return i return -1 if __name__ == '__main__': __main__()
585
0
68
9d9072a0352d441e7a4e2e3e0c976746c5e8f9af
986
py
Python
project_dashboard/projects/crud.py
KruizerChick/project-dashboard
aa1d3fa713e49049ac7184dbe44a1f915ff56906
[ "MIT" ]
null
null
null
project_dashboard/projects/crud.py
KruizerChick/project-dashboard
aa1d3fa713e49049ac7184dbe44a1f915ff56906
[ "MIT" ]
null
null
null
project_dashboard/projects/crud.py
KruizerChick/project-dashboard
aa1d3fa713e49049ac7184dbe44a1f915ff56906
[ "MIT" ]
null
null
null
""" CRUD class for Projects app """ from crudbuilder.abstract import BaseCrudBuilder from .models.project import Project from .models.stakeholder import Stakeholder class ProjectCrud(BaseCrudBuilder): """ CRUD class for Project model """ model = Project search_fields = ["id", "name", "description"] tables2_fields = ("name", "description", 'is_closed') tables2_css_class = "table table-bordered table-condensed" login_required = True permission_required = True # tables2_pagination = 20 # default is 10 modelform_excludes = ['created'] # permissions = {} # custom_templates = {} class StakeholderCrud(BaseCrudBuilder): """ CRUD class for Stakeholder model """ model = Stakeholder search_fields = ["full_name", ] tables2_fields = ("full_name", "organization") tables2_css_class = "table table-bordered table-condensed" login_required = True permission_required = True modelform_excludes = ['created']
29
62
0.703854
""" CRUD class for Projects app """ from crudbuilder.abstract import BaseCrudBuilder from .models.project import Project from .models.stakeholder import Stakeholder class ProjectCrud(BaseCrudBuilder): """ CRUD class for Project model """ model = Project search_fields = ["id", "name", "description"] tables2_fields = ("name", "description", 'is_closed') tables2_css_class = "table table-bordered table-condensed" login_required = True permission_required = True # tables2_pagination = 20 # default is 10 modelform_excludes = ['created'] # permissions = {} # custom_templates = {} class StakeholderCrud(BaseCrudBuilder): """ CRUD class for Stakeholder model """ model = Stakeholder search_fields = ["full_name", ] tables2_fields = ("full_name", "organization") tables2_css_class = "table table-bordered table-condensed" login_required = True permission_required = True modelform_excludes = ['created']
0
0
0
db476ed9048fe8a87e8164fd5dd10cfe61c7b0bf
486
py
Python
L1Trigger/L1TMuonOverlap/python/fakeOmtfFwVersion_cff.py
PKUfudawei/cmssw
8fbb5ce74398269c8a32956d7c7943766770c093
[ "Apache-2.0" ]
2
2020-10-26T18:40:32.000Z
2021-04-10T16:33:25.000Z
L1Trigger/L1TMuonOverlap/python/fakeOmtfFwVersion_cff.py
PKUfudawei/cmssw
8fbb5ce74398269c8a32956d7c7943766770c093
[ "Apache-2.0" ]
30
2015-11-04T11:42:27.000Z
2021-12-01T07:56:34.000Z
L1Trigger/L1TMuonOverlap/python/fakeOmtfFwVersion_cff.py
PKUfudawei/cmssw
8fbb5ce74398269c8a32956d7c7943766770c093
[ "Apache-2.0" ]
8
2016-03-25T07:17:43.000Z
2021-07-08T17:11:21.000Z
import FWCore.ParameterSet.Config as cms omtfFwVersionSource = cms.ESSource( "EmptyESSource", recordName = cms.string('L1TMuonOverlapFwVersionRcd'), iovIsRunNotTime = cms.bool(True), firstValid = cms.vuint32(1) ) ###OMTF FW ESProducer. omtfFwVersion = cms.ESProducer( "L1TMuonOverlapFwVersionESProducer", algoVersion = cms.uint32(0x110), layersVersion = cms.uint32(6), patternsVersion = cms.uint32(3), synthDate = cms.string("2001-01-01 00:00") )
25.578947
58
0.716049
import FWCore.ParameterSet.Config as cms omtfFwVersionSource = cms.ESSource( "EmptyESSource", recordName = cms.string('L1TMuonOverlapFwVersionRcd'), iovIsRunNotTime = cms.bool(True), firstValid = cms.vuint32(1) ) ###OMTF FW ESProducer. omtfFwVersion = cms.ESProducer( "L1TMuonOverlapFwVersionESProducer", algoVersion = cms.uint32(0x110), layersVersion = cms.uint32(6), patternsVersion = cms.uint32(3), synthDate = cms.string("2001-01-01 00:00") )
0
0
0
bccbd46e4500f876a02aadf6e0c1065d389cdf38
4,603
py
Python
planning/planning/page/check_in_out/check_in_out.py
nishta/planning
5be1574111b9b94ec75c74960ace4314985b0014
[ "MIT" ]
null
null
null
planning/planning/page/check_in_out/check_in_out.py
nishta/planning
5be1574111b9b94ec75c74960ace4314985b0014
[ "MIT" ]
null
null
null
planning/planning/page/check_in_out/check_in_out.py
nishta/planning
5be1574111b9b94ec75c74960ace4314985b0014
[ "MIT" ]
null
null
null
from __future__ import unicode_literals import frappe from frappe.utils import getdate, validate_email_add, today import datetime from planning.planning.myfunction import mail_format_pms,actual_date_update,close_task_update @frappe.whitelist() @frappe.whitelist() @frappe.whitelist()
39.681034
291
0.74169
from __future__ import unicode_literals import frappe from frappe.utils import getdate, validate_email_add, today import datetime from planning.planning.myfunction import mail_format_pms,actual_date_update,close_task_update @frappe.whitelist() def checking_checkout(task=None,check_status=None,name=None): cur_date_time=frappe.utils.data.now () user_name=frappe.session.user if(task): if(check_status=="0"): doctype="NNTask"; #select parent,members,employee_name,parenttype from `tabNNAssign` where parenttype=%s and employee_name=%s",(doctype,user_name) count=frappe.db.sql("select task from `tabNNTask Check In Out` where status=1 and emp_name=%s",user_name); if(count): task=count[0][0] frappe.msgprint("Please Checkout <b>"+ task+"</b> Task") return "Not Valid" else: frappe.get_doc({ "doctype":"NNTask Check In Out", "task":task, "check_in":cur_date_time, "status":1, "emp_name":user_name }).insert(ignore_permissions=True) actual_date_update(task) else: hourly_rate=frappe.db.sql("""select hourly_rate from tabEmployee where employee_name=%s""",(user_name)) if(hourly_rate): hourly_cost=hourly_rate[0][0] else: hourly_cost=0; checkin_time=frappe.db.sql("""select check_in from `tabNNTask Check In Out` where name=%s""",name) if(checkin_time): checked_intime=checkin_time[0][0]; else: checked_intime=0 time_diff_in_seconds=frappe.utils.data.time_diff_in_seconds(cur_date_time,checked_intime); #frappe.msgprint(time_diff_in_seconds); cost_for_seound=float(hourly_cost)/float(3600); rate=(time_diff_in_seconds)*(cost_for_seound) #frappe.msgprint(str(rate),raise_exception=1) frappe.db.sql("""update `tabNNTask Check In Out` set check_out=%s,status=2,hourly_cost=%s,rate=%s where name=%s""",(cur_date_time,hourly_rate,rate,name)) else: return "not" @frappe.whitelist() def getTask(doctype): data=[] user_name=frappe.session.user select_task=frappe.db.sql("select name,parent,members,employee_name,parenttype from `tabNNAssign` where close_status=0 and parenttype=%s and employee_name=%s",(doctype,user_name)) if(select_task): i=1; values=""; for select_task_list in select_task: sno=i; assign_name=select_task_list[0]; task_name=select_task_list[1]; employee_id=select_task_list[2]; employee_name=select_task_list[3]; select_task_list=frappe.db.sql("""select task_list.project as project ,task_list.milestone as milestone,task_list.tasklist as task_list_name,task.duration as duration from `tabNNTasklist` task_list ,`tabNNTask` task where task.name=%s and task_list.tasklist=task.tasklist""",(task_name)) if(select_task_list): project_name=select_task_list[0][0]; milestone=select_task_list[0][1]; task_list_name=select_task_list[0][2]; duration=select_task_list[0][3]; else: project_name=""; milestone=""; status="Status"; close="Status"; status_che=1 checkin_status=frappe.db.sql("""select * from `tabNNTask Check In Out` where status=%s and task=%s and emp_name=%s order by creation desc""",(status_che,task_name,user_name)) if(checkin_status): check_status=1; check_status_name=checkin_status[0][0] else: check_status=0; check_status_name=""; #worked_cocuation: total_seconds=0; working_hours=frappe.db.sql("""select check_in,check_out from `tabNNTask Check In Out` where status=2 and task=%s and emp_name=%s order by creation desc""",(task_name,user_name)) for working_hours_list in working_hours: checkin_times=working_hours_list[0]; checkout_times=working_hours_list[1]; seconds=frappe.utils.data.time_diff_in_seconds(checkout_times,checkin_times); #frappe.msgprint(seconds); total_seconds=int(seconds)+int(total_seconds); #frappe.msgprint(total_seconds); worked_time=str(datetime.timedelta(seconds=total_seconds)) rows=[project_name]+[milestone]+[task_list_name]+[task_name]+[employee_name]+[check_status]+[check_status_name]+[duration]+[worked_time]+[assign_name] data.append(rows) i=i+1; return data @frappe.whitelist() def close_task(assign_name=None,): frappe.db.sql("""Update `tabNNAssign` set close_status=1 where name=%s""",(assign_name)) task=frappe.db.sql("""select parent from tabNNAssign where name=%s""",(assign_name)) mode=1; task_name=task if task: doctype="NNTask"; count=frappe.db.sql("""select *from tabNNAssign where close_status=0 and parent=%s and parenttype=%s""",(task_name,doctype)) if not count: close_task_update(task) mail_format_pms(task_name,mode)
4,243
0
66
bbacbcdb8d4041cc214fabfb3adceb83044c7b88
1,674
py
Python
action.py
yeyeto2788/mudpi-core
dc477eb3ccbe3317d11a8555d245dadbdb34c257
[ "BSD-4-Clause" ]
null
null
null
action.py
yeyeto2788/mudpi-core
dc477eb3ccbe3317d11a8555d245dadbdb34c257
[ "BSD-4-Clause" ]
1
2021-03-15T14:32:34.000Z
2021-03-15T14:32:34.000Z
action.py
yeyeto2788/mudpi-core
dc477eb3ccbe3317d11a8555d245dadbdb34c257
[ "BSD-4-Clause" ]
null
null
null
import json import subprocess import sys import redis
30.436364
82
0.537037
import json import subprocess import sys import redis class Action(): def __init__(self, config): self.config = config self.name = config.get("name", "Action") self.type = config.get("type", "event") self.key = config.get("key", None).replace(" ", "_").lower() if config.get( "key") is not None else self.name.replace(" ", "_").lower() # Actions will be either objects to publish for events # or a command string to execute self.action = config.get("action") try: self.r = config["redis"] if config[ "redis"] is not None else redis.Redis( host='127.0.0.1', port=6379) except KeyError: self.r = redis.Redis(host='127.0.0.1', port=6379) return def init_action(self): if self.type == 'event': self.topic = self.config.get("topic", "mudpi") elif self.type == 'command': self.shell = self.config.get("shell", False) def trigger(self, value=None): if self.type == 'event': self.emit_event() elif self.type == 'command': self.run_command(value) return def emit_event(self): self.r.publish(self.topic, json.dumps(self.action)) return def run_command(self, value=None): if value is None: completed_process = subprocess.run([self.action], shell=self.shell) else: completed_process = subprocess.run( [self.action, json.dumps(value)], shell=self.shell) return
1,464
-6
158
b88cc6b6407fec4332c3df0cdd6f4c0dc8c904b3
4,290
py
Python
packages/girder/plugins/oauth/girder_oauth/providers/google.py
ShenQianwithC/HistomicsTK
4ad7e72a7ebdabbdfc879254fad04ce7ca47e320
[ "Apache-2.0" ]
1
2019-11-14T18:13:26.000Z
2019-11-14T18:13:26.000Z
packages/girder/plugins/oauth/girder_oauth/providers/google.py
ShenQianwithC/HistomicsTK
4ad7e72a7ebdabbdfc879254fad04ce7ca47e320
[ "Apache-2.0" ]
3
2018-11-15T19:52:40.000Z
2022-02-14T21:56:22.000Z
packages/girder/plugins/oauth/girder_oauth/providers/google.py
ShenQianwithC/HistomicsTK
4ad7e72a7ebdabbdfc879254fad04ce7ca47e320
[ "Apache-2.0" ]
3
2018-05-21T19:45:19.000Z
2019-04-08T19:53:07.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- ############################################################################### # Copyright Kitware Inc. # # Licensed under the Apache License, Version 2.0 ( the "License" ); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### from six.moves import urllib from girder.api.rest import getApiUrl from girder.exceptions import RestException from girder.models.setting import Setting from .base import ProviderBase from .. import constants
35.75
79
0.571329
#!/usr/bin/env python # -*- coding: utf-8 -*- ############################################################################### # Copyright Kitware Inc. # # Licensed under the Apache License, Version 2.0 ( the "License" ); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### from six.moves import urllib from girder.api.rest import getApiUrl from girder.exceptions import RestException from girder.models.setting import Setting from .base import ProviderBase from .. import constants class Google(ProviderBase): _AUTH_URL = 'https://accounts.google.com/o/oauth2/auth' _AUTH_SCOPES = ['profile', 'email'] _TOKEN_URL = 'https://accounts.google.com/o/oauth2/token' _API_USER_URL = 'https://www.googleapis.com/plus/v1/people/me' _API_USER_FIELDS = ('id', 'emails', 'name') def getClientIdSetting(self): return Setting().get(constants.PluginSettings.GOOGLE_CLIENT_ID) def getClientSecretSetting(self): return Setting().get(constants.PluginSettings.GOOGLE_CLIENT_SECRET) @classmethod def getUrl(cls, state): clientId = Setting().get(constants.PluginSettings.GOOGLE_CLIENT_ID) if clientId is None: raise Exception('No Google client ID setting is present.') callbackUrl = '/'.join((getApiUrl(), 'oauth', 'google', 'callback')) query = urllib.parse.urlencode({ 'response_type': 'code', 'access_type': 'online', 'client_id': clientId, 'redirect_uri': callbackUrl, 'state': state, 'scope': ' '.join(cls._AUTH_SCOPES) }) return '%s?%s' % (cls._AUTH_URL, query) def getToken(self, code): params = { 'grant_type': 'authorization_code', 'code': code, 'client_id': self.clientId, 'client_secret': self.clientSecret, 'redirect_uri': self.redirectUri } resp = self._getJson(method='POST', url=self._TOKEN_URL, data=params) return resp def getUser(self, token): headers = { 'Authorization': ' '.join(( token['token_type'], token['access_token'])) } # For privacy and efficiency, fetch only the specific needed fields # https://developers.google.com/+/web/api/rest/#partial-response query = urllib.parse.urlencode({ 'fields': ','.join(self._API_USER_FIELDS) }) resp = self._getJson(method='GET', url='%s?%s' % (self._API_USER_URL, query), headers=headers) # Get user's OAuth2 ID oauthId = resp.get('id') if not oauthId: raise RestException( 'Google Plus did not return a user ID.', code=502) # Get user's email address # Prefer email address with 'account' type emails = [ email.get('value') for email in resp.get('emails', []) if email.get('type') == 'account' ] if not emails: # If an 'account' email can't be found, consider them all emails = [ email.get('value') for email in resp.get('emails', []) ] if emails: # Even if there are multiple emails, just use the first one email = emails[0] else: raise RestException( 'This Google Plus user has no available email address.', code=502) # Get user's name firstName = resp.get('name', {}).get('givenName', '') lastName = resp.get('name', {}).get('familyName', '') user = self._createOrReuseUser(oauthId, email, firstName, lastName) return user
2,832
435
23
f00f0283a00861b00d8ace96a341aa1af6392dc8
177
py
Python
todoapp/todos/urls.py
dhavall13/REST-API-TodoCRUD
5d7179d12c4436e38658d9a7483497c8db99f4be
[ "MIT" ]
null
null
null
todoapp/todos/urls.py
dhavall13/REST-API-TodoCRUD
5d7179d12c4436e38658d9a7483497c8db99f4be
[ "MIT" ]
null
null
null
todoapp/todos/urls.py
dhavall13/REST-API-TodoCRUD
5d7179d12c4436e38658d9a7483497c8db99f4be
[ "MIT" ]
null
null
null
from rest_framework import routers from .api import TodoViewSet router = routers.DefaultRouter() router.register('api/todos', TodoViewSet, 'todos') urlpatterns = router.urls
19.666667
50
0.79096
from rest_framework import routers from .api import TodoViewSet router = routers.DefaultRouter() router.register('api/todos', TodoViewSet, 'todos') urlpatterns = router.urls
0
0
0
91373743141e577dcbdc22838e0c93cfc222a5cc
241
py
Python
Application/get_whitelist.py
soheyldaliraan/instagram_sub_bot_remover
8ccf7134c79b8a9c9c09413321f526dd388c5609
[ "MIT" ]
27
2019-02-10T09:04:36.000Z
2022-03-07T21:44:26.000Z
Application/get_whitelist.py
soheyldaliraan/instagram_sub_bot_remover
8ccf7134c79b8a9c9c09413321f526dd388c5609
[ "MIT" ]
1
2022-03-01T02:45:18.000Z
2022-03-01T02:45:18.000Z
Application/get_whitelist.py
soheyldaliraan/instagram_sub_bot_remover
8ccf7134c79b8a9c9c09413321f526dd388c5609
[ "MIT" ]
5
2019-12-27T07:43:33.000Z
2022-02-15T19:51:37.000Z
import os import pandas as pd import configuration
20.083333
61
0.717842
import os import pandas as pd import configuration def get_whitelist(): if os.path.exists(configuration.whitelist_path): whitelist = pd.read_csv(configuration.whitelist_path) return list(whitelist['pk']) return []
165
0
23
8e57bc0091c782bab46c7958d378a4ddf117035a
378
py
Python
test.py
xiaoweiChen/OpenVINO_Model_Convert_Website
ce8b0d225d1e0228aace772e3017ad3154543688
[ "Apache-2.0" ]
1
2019-11-12T07:11:39.000Z
2019-11-12T07:11:39.000Z
test.py
xiaoweiChen/OpenVINO_Model_Convert_Website
ce8b0d225d1e0228aace772e3017ad3154543688
[ "Apache-2.0" ]
null
null
null
test.py
xiaoweiChen/OpenVINO_Model_Convert_Website
ce8b0d225d1e0228aace772e3017ad3154543688
[ "Apache-2.0" ]
null
null
null
import sys from converter import processPreTrainModels if __name__ == '__main__': if len(sys.argv) < 4: print("usage: {} proto caffemodel output_dir".format(sys.argv[0])) exit(0) proto = sys.argv[1] model = sys.argv[2] output = sys.argv[3] file_path = processPreTrainModels( proto, model, output) print("file_path is", file_path)
19.894737
70
0.648148
import sys from converter import processPreTrainModels if __name__ == '__main__': if len(sys.argv) < 4: print("usage: {} proto caffemodel output_dir".format(sys.argv[0])) exit(0) proto = sys.argv[1] model = sys.argv[2] output = sys.argv[3] file_path = processPreTrainModels( proto, model, output) print("file_path is", file_path)
0
0
0
25a83d4dda33b6f0fdf3262666cb597207aa5a6e
4,990
py
Python
package/tests/test_common/test_vm_details_provider.py
DYeag/AWS-Shell
b5318e72373b1a948ac6aced1c0bb4566d5ae46f
[ "0BSD" ]
3
2016-08-22T07:14:56.000Z
2018-03-16T07:31:44.000Z
package/tests/test_common/test_vm_details_provider.py
DYeag/AWS-Shell
b5318e72373b1a948ac6aced1c0bb4566d5ae46f
[ "0BSD" ]
470
2016-03-24T13:38:08.000Z
2022-02-05T01:14:05.000Z
package/tests/test_common/test_vm_details_provider.py
DYeag/AWS-Shell
b5318e72373b1a948ac6aced1c0bb4566d5ae46f
[ "0BSD" ]
9
2016-06-20T11:41:54.000Z
2020-11-21T00:42:45.000Z
from unittest import TestCase from mock import Mock from cloudshell.cp.aws.domain.common.vm_details_provider import VmDetailsProvider
40.901639
110
0.681964
from unittest import TestCase from mock import Mock from cloudshell.cp.aws.domain.common.vm_details_provider import VmDetailsProvider class TestVmDetailsProvider(TestCase): def setUp(self): self.vm_details_provider = VmDetailsProvider() def test_prepare_vm_details(self): instance = Mock() instance.image_id = 'image_id' instance.instance_type = 'instance_type' instance.platform = 'instance_platform' instance.network_interfaces = [] instance.volumes.all = lambda: [] instance.iam_instance_profile = {"Arn": "arn:aws:iam::admin_role"} vm_instance_data = self.vm_details_provider.create(instance).vmInstanceData self.assertTrue(self._get_value(vm_instance_data, 'AMI ID') == instance.image_id) self.assertTrue(self._get_value(vm_instance_data, 'instance type') == instance.instance_type) self.assertTrue(self._get_value(vm_instance_data, 'platform') == instance.platform) self.assertTrue(self._get_value(vm_instance_data, 'IAM Role') == instance.iam_instance_profile['Arn']) def test_prepare_network_interface_objects_with_elastic_ip(self): # elastic_ip network_interface = Mock() network_interface.association_attribute = {'IpOwnerId': '9929230', 'PublicIp': 'public_ip'} network_interface.network_interface_id = 'interface_id' network_interface.mac_address = 'mac_address' network_interface.subnet_id = 'subnet_id' network_interface.attachment = {'DeviceIndex': 0} network_interface.private_ip_address = 'private_ip' instance = Mock() instance.network_interfaces = [ network_interface ] network_interface_objects = self.vm_details_provider._get_vm_network_data(instance) nio = network_interface_objects[0] self.assertTrue(nio.interfaceId == 'interface_id') self.assertTrue(nio.networkId == 'subnet_id') self.assertTrue(nio.isPrimary == True) nio_data = nio.networkData self.assertTrue(self._get_value(nio_data, 'MAC Address') == 'mac_address') self.assertTrue(self._get_value(nio_data, 'Elastic IP') == True) self.assertTrue(self._get_value(nio_data, 'IP') == 'private_ip') self.assertTrue(self._get_value(nio_data, 'Public IP') == 'public_ip') def test_prepare_network_interface_objects_with_public_ip(self): network_interface = Mock() network_interface.association_attribute = dict() network_interface.network_interface_id = 'interface_id' network_interface.mac_address = 'mac_address' network_interface.subnet_id = 'subnet_id' network_interface.attachment = {'DeviceIndex': 0} network_interface.private_ip_address = 'private_ip' instance = Mock() instance.public_ip_address = 'public_ip' instance.network_interfaces = [ network_interface ] network_interface_objects = self.vm_details_provider._get_vm_network_data(instance) nio = network_interface_objects[0] self.assertTrue(nio.interfaceId == 'interface_id') self.assertTrue(nio.networkId == 'subnet_id') self.assertTrue(nio.isPrimary == True) nio_data = nio.networkData self.assertTrue(self._get_value(nio_data, 'MAC Address') == 'mac_address') self.assertTrue(self._get_value(nio_data, 'Elastic IP') == False) self.assertTrue(self._get_value(nio_data, 'IP') == 'private_ip') self.assertTrue(self._get_value(nio_data, 'Public IP') == '') def test_prepare_network_interface_objects_without_public_ip(self): network_interface = Mock() network_interface.association_attribute = dict() network_interface.network_interface_id = 'interface_id' network_interface.mac_address = 'mac_address' network_interface.subnet_id = 'subnet_id' network_interface.attachment = {'DeviceIndex': 1} network_interface.private_ip_address = 'private_ip' instance = Mock() instance.network_interfaces = [ network_interface ] network_interface_objects = self.vm_details_provider._get_vm_network_data(instance) nio = network_interface_objects[0] self.assertTrue(nio.interfaceId == 'interface_id') self.assertTrue(nio.networkId == 'subnet_id') self.assertTrue(nio.isPrimary == False) nio_data = nio.networkData self.assertTrue(self._get_value(nio_data, 'MAC Address') == 'mac_address') self.assertTrue(self._get_value(nio_data, 'Elastic IP') == False) self.assertTrue(self._get_value(nio_data, 'IP') == 'private_ip') self.assertTrue(self._get_value(nio_data, 'Public IP') == "") def _get_value(self, data, key): for item in data: if item.key == key: return item.value return None
4,652
17
185
e837781e421b78fc059079fdefb0bdc32efc4414
3,229
py
Python
scripts/eval.py
zsinsense/demosaicnet
bbe8151cab86dbe46b76806cf9ec353994b389ff
[ "MIT" ]
null
null
null
scripts/eval.py
zsinsense/demosaicnet
bbe8151cab86dbe46b76806cf9ec353994b389ff
[ "MIT" ]
null
null
null
scripts/eval.py
zsinsense/demosaicnet
bbe8151cab86dbe46b76806cf9ec353994b389ff
[ "MIT" ]
null
null
null
#!/bin/env python """Evaluate a demosaicking model.""" import argparse import os import time import torch as th from torch.utils.data import DataLoader import numpy as np import ttools from ttools.modules.image_operators import crop_like import demosaicnet LOG = ttools.get_logger(__name__) def main(args): """Entrypoint to the training.""" # Load model parameters from checkpoint, if any # meta = ttools.Checkpointer.load_meta(args.checkpoint_dir) # if meta is None: # LOG.warning("No checkpoint found at %s, aborting.", args.checkpoint_dir) # return meta = { 'mode': 'bayer', 'depth': 15, 'width': 64 } data = demosaicnet.Dataset(args.data, download=False, mode=meta["mode"], subset=demosaicnet.TEST_SUBSET) dataloader = DataLoader( data, batch_size=1, num_workers=4, pin_memory=True, shuffle=False) if meta["mode"] == demosaicnet.BAYER_MODE: model = demosaicnet.BayerDemosaick(depth=meta["depth"], width=meta["width"], pretrained=True, pad=False) elif meta["mode"] == demosaicnet.XTRANS_MODE: model = demosaicnet.XTransDemosaick(depth=meta["depth"], width=meta["width"], pretrained=True, pad=False) # checkpointer = ttools.Checkpointer(args.checkpoint_dir, model, meta=meta) # checkpointer.load_latest() # Resume from checkpoint, if any. state_dict = th.load(args.checkpoint_dir) model.load_state_dict(state_dict) # No need for gradients for p in model.parameters(): p.requires_grad = False mse_fn = th.nn.MSELoss() psnr_fn = PSNR() device = "cpu" if th.cuda.is_available(): device = "cuda" LOG.info("Using CUDA") count = 0 mse = 0.0 psnr = 0.0 for idx, batch in enumerate(dataloader): mosaic = batch[0].to(device) target = batch[1].to(device) output = model(mosaic) target = crop_like(target, output) output = th.clamp(output, 0, 1) psnr_ = psnr_fn(output, target).item() mse_ = mse_fn(output, target).item() psnr += psnr_ mse += mse_ count += 1 LOG.info("Image %04d, PSNR = %.1f dB, MSE = %.5f", idx, psnr_, mse_) mse /= count psnr /= count LOG.info("-----------------------------------") LOG.info("Average, PSNR = %.1f dB, MSE = %.5f", psnr, mse) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("data", help="root directory for the demosaicnet dataset.") parser.add_argument("checkpoint_dir", help="directory with the model checkpoints.") args = parser.parse_args() ttools.set_logger(False) main(args)
29.354545
87
0.569836
#!/bin/env python """Evaluate a demosaicking model.""" import argparse import os import time import torch as th from torch.utils.data import DataLoader import numpy as np import ttools from ttools.modules.image_operators import crop_like import demosaicnet LOG = ttools.get_logger(__name__) class PSNR(th.nn.Module): def __init__(self): super(PSNR, self).__init__() self.mse = th.nn.MSELoss() def forward(self, out, ref): mse = self.mse(out, ref) return -10*th.log10(mse+1e-12) def main(args): """Entrypoint to the training.""" # Load model parameters from checkpoint, if any # meta = ttools.Checkpointer.load_meta(args.checkpoint_dir) # if meta is None: # LOG.warning("No checkpoint found at %s, aborting.", args.checkpoint_dir) # return meta = { 'mode': 'bayer', 'depth': 15, 'width': 64 } data = demosaicnet.Dataset(args.data, download=False, mode=meta["mode"], subset=demosaicnet.TEST_SUBSET) dataloader = DataLoader( data, batch_size=1, num_workers=4, pin_memory=True, shuffle=False) if meta["mode"] == demosaicnet.BAYER_MODE: model = demosaicnet.BayerDemosaick(depth=meta["depth"], width=meta["width"], pretrained=True, pad=False) elif meta["mode"] == demosaicnet.XTRANS_MODE: model = demosaicnet.XTransDemosaick(depth=meta["depth"], width=meta["width"], pretrained=True, pad=False) # checkpointer = ttools.Checkpointer(args.checkpoint_dir, model, meta=meta) # checkpointer.load_latest() # Resume from checkpoint, if any. state_dict = th.load(args.checkpoint_dir) model.load_state_dict(state_dict) # No need for gradients for p in model.parameters(): p.requires_grad = False mse_fn = th.nn.MSELoss() psnr_fn = PSNR() device = "cpu" if th.cuda.is_available(): device = "cuda" LOG.info("Using CUDA") count = 0 mse = 0.0 psnr = 0.0 for idx, batch in enumerate(dataloader): mosaic = batch[0].to(device) target = batch[1].to(device) output = model(mosaic) target = crop_like(target, output) output = th.clamp(output, 0, 1) psnr_ = psnr_fn(output, target).item() mse_ = mse_fn(output, target).item() psnr += psnr_ mse += mse_ count += 1 LOG.info("Image %04d, PSNR = %.1f dB, MSE = %.5f", idx, psnr_, mse_) mse /= count psnr /= count LOG.info("-----------------------------------") LOG.info("Average, PSNR = %.1f dB, MSE = %.5f", psnr, mse) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("data", help="root directory for the demosaicnet dataset.") parser.add_argument("checkpoint_dir", help="directory with the model checkpoints.") args = parser.parse_args() ttools.set_logger(False) main(args)
149
4
75
ace7c9af9eb249c27faf798e56fca31751c8a6ad
1,030
py
Python
lrp_toolbox/training_test.py
KushDen/deepimportance_code_release
5d16f1f95568dc402be6dfed4ad993ec0dbaa356
[ "MIT" ]
18
2020-07-11T01:58:02.000Z
2021-09-17T07:08:34.000Z
lrp_toolbox/training_test.py
KushDen/deepimportance_code_release
5d16f1f95568dc402be6dfed4ad993ec0dbaa356
[ "MIT" ]
13
2021-01-13T14:41:26.000Z
2021-12-29T02:15:10.000Z
lrp_toolbox/training_test.py
KushDen/deepimportance_code_release
5d16f1f95568dc402be6dfed4ad993ec0dbaa356
[ "MIT" ]
8
2020-02-19T21:30:30.000Z
2022-03-11T01:34:33.000Z
''' @author: Sebastian Lapuschkin @maintainer: Sebastian Lapuschkin @contact: sebastian.lapuschkin@hhi.fraunhofer.de, wojciech.samek@hhi.fraunhofer.de @date: 30.09.2015 @version: 1.0 @copyright: Copyright (c) 2015-2017, Sebastian Lapuschkin, Alexander Binder, Gregoire Montavon, Klaus-Robert Mueller, Wojciech Samek @license : BSD-2-Clause ''' import modules import model_io import numpy as np ; na = np.newaxis D,N = 2,200000 #this is the XOR problem. X = np.random.rand(N,D) #we want [NxD] data X = (X > 0.5)*1.0 Y = X[:,0] == X[:,1] Y = (np.vstack((Y, np.invert(Y)))*1.0).T # and [NxC] labels X += np.random.randn(N,D)*0.1 # add some noise to the data. #build a network nn = modules.Sequential([modules.Linear(2,3), modules.Tanh(),modules.Linear(3,15), modules.Tanh(), modules.Linear(15,15), modules.Tanh(), modules.Linear(15,3), modules.Tanh() ,modules.Linear(3,2), modules.SoftMax()]) #train the network. nn.train(X,Y,Xval=X,Yval=Y, batchsize = 5) #save the network model_io.write(nn, '../xor_net_small_1000.txt')
28.611111
216
0.703883
''' @author: Sebastian Lapuschkin @maintainer: Sebastian Lapuschkin @contact: sebastian.lapuschkin@hhi.fraunhofer.de, wojciech.samek@hhi.fraunhofer.de @date: 30.09.2015 @version: 1.0 @copyright: Copyright (c) 2015-2017, Sebastian Lapuschkin, Alexander Binder, Gregoire Montavon, Klaus-Robert Mueller, Wojciech Samek @license : BSD-2-Clause ''' import modules import model_io import numpy as np ; na = np.newaxis D,N = 2,200000 #this is the XOR problem. X = np.random.rand(N,D) #we want [NxD] data X = (X > 0.5)*1.0 Y = X[:,0] == X[:,1] Y = (np.vstack((Y, np.invert(Y)))*1.0).T # and [NxC] labels X += np.random.randn(N,D)*0.1 # add some noise to the data. #build a network nn = modules.Sequential([modules.Linear(2,3), modules.Tanh(),modules.Linear(3,15), modules.Tanh(), modules.Linear(15,15), modules.Tanh(), modules.Linear(15,3), modules.Tanh() ,modules.Linear(3,2), modules.SoftMax()]) #train the network. nn.train(X,Y,Xval=X,Yval=Y, batchsize = 5) #save the network model_io.write(nn, '../xor_net_small_1000.txt')
0
0
0
c16cdfe67a57a720e41f4d1f6a82111d663200a5
149
py
Python
tests/iac_integration/cdk/testdata/cdk_v2/python/app.py
zhuhaow/aws-sam-cli
59d82ec6848b5a0cdd544d8ada838d4d34052971
[ "Apache-2.0" ]
2,959
2018-05-08T21:48:56.000Z
2020-08-24T14:35:39.000Z
tests/iac_integration/cdk/testdata/cdk_v2/python/app.py
zhuhaow/aws-sam-cli
59d82ec6848b5a0cdd544d8ada838d4d34052971
[ "Apache-2.0" ]
1,469
2018-05-08T22:44:28.000Z
2020-08-24T20:19:24.000Z
tests/iac_integration/cdk/testdata/cdk_v2/python/app.py
zhuhaow/aws-sam-cli
59d82ec6848b5a0cdd544d8ada838d4d34052971
[ "Apache-2.0" ]
642
2018-05-08T22:09:19.000Z
2020-08-17T09:04:37.000Z
#!/usr/bin/env python3 from aws_cdk import App from python.python_stack import PythonStack app = App() PythonStack(app, "TestStack") app.synth()
13.545455
43
0.751678
#!/usr/bin/env python3 from aws_cdk import App from python.python_stack import PythonStack app = App() PythonStack(app, "TestStack") app.synth()
0
0
0
294a2f7086d69271812482a18de2d6157e635b9d
3,551
py
Python
parsl/executors/base.py
Lnaden/parsl
f6ad3a272fa3d62e72ac3b7c402e25f079d4ab98
[ "Apache-2.0" ]
null
null
null
parsl/executors/base.py
Lnaden/parsl
f6ad3a272fa3d62e72ac3b7c402e25f079d4ab98
[ "Apache-2.0" ]
null
null
null
parsl/executors/base.py
Lnaden/parsl
f6ad3a272fa3d62e72ac3b7c402e25f079d4ab98
[ "Apache-2.0" ]
null
null
null
from abc import ABCMeta, abstractmethod, abstractproperty class ParslExecutor(metaclass=ABCMeta): """Define the strict interface for all Executor classes. This is a metaclass that only enforces concrete implementations of functionality by the child classes. In addition to the listed methods, a ParslExecutor instance must always have a member field: label: str - a human readable label for the executor, unique with respect to other executors. An executor may optionally expose: storage_access: List[parsl.data_provider.staging.Staging] - a list of staging providers that will be used for file staging. In the absence of this attribute, or if this attribute is `None`, then a default value of `parsl.data_provider.staging.default_staging` will be used by the staging code. Typechecker note: Ideally storage_access would be declared on executor __init__ methods as List[Staging] - however, lists are by default invariant, not co-variant, and it looks like @typeguard cannot be persuaded otherwise. So if you're implementing an executor and want to @typeguard the constructor, you'll have to use List[Any] here. """ @abstractmethod def start(self, *args, **kwargs): """Start the executor. Any spin-up operations (for example: starting thread pools) should be performed here. """ pass @abstractmethod def submit(self, *args, **kwargs): """Submit. We haven't yet decided on what the args to this can be, whether it should just be func, args, kwargs or be the partially evaluated fn """ pass @abstractmethod def scale_out(self, *args, **kwargs): """Scale out method. We should have the scale out method simply take resource object which will have the scaling methods, scale_out itself should be a coroutine, since scaling tasks can be slow. """ pass @abstractmethod def scale_in(self, blocks): """Scale in method. Cause the executor to reduce the number of blocks by count. We should have the scale in method simply take resource object which will have the scaling methods, scale_in itself should be a coroutine, since scaling tasks can be slow. """ pass @abstractmethod def shutdown(self, *args, **kwargs): """Shutdown the executor. This includes all attached resources such as workers and controllers. """ pass @abstractproperty def scaling_enabled(self): """Specify if scaling is enabled. The callers of ParslExecutors need to differentiate between Executors and Executors wrapped in a resource provider """ pass @property def run_dir(self): """Path to the run directory. """ return self._run_dir @run_dir.setter @property def hub_address(self): """Address to the Hub for monitoring. """ return self._hub_address @hub_address.setter @property def hub_port(self): """Port to the Hub for monitoring. """ return self._hub_port @hub_port.setter
30.350427
93
0.639538
from abc import ABCMeta, abstractmethod, abstractproperty class ParslExecutor(metaclass=ABCMeta): """Define the strict interface for all Executor classes. This is a metaclass that only enforces concrete implementations of functionality by the child classes. In addition to the listed methods, a ParslExecutor instance must always have a member field: label: str - a human readable label for the executor, unique with respect to other executors. An executor may optionally expose: storage_access: List[parsl.data_provider.staging.Staging] - a list of staging providers that will be used for file staging. In the absence of this attribute, or if this attribute is `None`, then a default value of `parsl.data_provider.staging.default_staging` will be used by the staging code. Typechecker note: Ideally storage_access would be declared on executor __init__ methods as List[Staging] - however, lists are by default invariant, not co-variant, and it looks like @typeguard cannot be persuaded otherwise. So if you're implementing an executor and want to @typeguard the constructor, you'll have to use List[Any] here. """ @abstractmethod def start(self, *args, **kwargs): """Start the executor. Any spin-up operations (for example: starting thread pools) should be performed here. """ pass @abstractmethod def submit(self, *args, **kwargs): """Submit. We haven't yet decided on what the args to this can be, whether it should just be func, args, kwargs or be the partially evaluated fn """ pass @abstractmethod def scale_out(self, *args, **kwargs): """Scale out method. We should have the scale out method simply take resource object which will have the scaling methods, scale_out itself should be a coroutine, since scaling tasks can be slow. """ pass @abstractmethod def scale_in(self, blocks): """Scale in method. Cause the executor to reduce the number of blocks by count. We should have the scale in method simply take resource object which will have the scaling methods, scale_in itself should be a coroutine, since scaling tasks can be slow. """ pass @abstractmethod def shutdown(self, *args, **kwargs): """Shutdown the executor. This includes all attached resources such as workers and controllers. """ pass @abstractproperty def scaling_enabled(self): """Specify if scaling is enabled. The callers of ParslExecutors need to differentiate between Executors and Executors wrapped in a resource provider """ pass @property def run_dir(self): """Path to the run directory. """ return self._run_dir @run_dir.setter def run_dir(self, value): self._run_dir = value @property def hub_address(self): """Address to the Hub for monitoring. """ return self._hub_address @hub_address.setter def hub_address(self, value): self._hub_address = value @property def hub_port(self): """Port to the Hub for monitoring. """ return self._hub_port @hub_port.setter def hub_port(self, value): self._hub_port = value
112
0
78
9eeb1c341a09b93233cbe624f89cddfd33fcd2f2
940
py
Python
part4c.py
ddlatumalea/signal_analysis
9e62e553f56e4c60c7e0963187e01c262d8d820e
[ "MIT" ]
null
null
null
part4c.py
ddlatumalea/signal_analysis
9e62e553f56e4c60c7e0963187e01c262d8d820e
[ "MIT" ]
null
null
null
part4c.py
ddlatumalea/signal_analysis
9e62e553f56e4c60c7e0963187e01c262d8d820e
[ "MIT" ]
1
2022-03-03T13:31:23.000Z
2022-03-03T13:31:23.000Z
def fourier_transform(yi): """a, b = fourier_transform(yi). Real-valued Fourier transform that determines the coefficients of the Fourier series for a given signal y. The coefficients of the cosine terms are returned in the array a; those of the sine terms in the array b. Frequencies start at zero and do not exceed the Nyquist frequency. yi = {y1,y2,...,xn} """ xi = np.arange(yi.size) length = yi.size // 2 + 1 a, b = np.empty(length), np.empty(length) # Compute zero and Nyquist frequency cases a[0] = np.mean(yi) a[-1] = yi @ np.cos(np.pi * xi) / yi.size b[0] = 0.0 b[-1] = 0.0 # Compute ordinary cases (overwrite Nyquist if odd length) for index in range(1, length + yi.size % 2 - 1): arg = 2.0 * np.pi * xi * index / yi.size a[index] = 2.0 / yi.size * yi @ np.cos(arg) b[index] = 2.0 / yi.size * yi @ np.sin(arg) return a, b
39.166667
62
0.601064
def fourier_transform(yi): """a, b = fourier_transform(yi). Real-valued Fourier transform that determines the coefficients of the Fourier series for a given signal y. The coefficients of the cosine terms are returned in the array a; those of the sine terms in the array b. Frequencies start at zero and do not exceed the Nyquist frequency. yi = {y1,y2,...,xn} """ xi = np.arange(yi.size) length = yi.size // 2 + 1 a, b = np.empty(length), np.empty(length) # Compute zero and Nyquist frequency cases a[0] = np.mean(yi) a[-1] = yi @ np.cos(np.pi * xi) / yi.size b[0] = 0.0 b[-1] = 0.0 # Compute ordinary cases (overwrite Nyquist if odd length) for index in range(1, length + yi.size % 2 - 1): arg = 2.0 * np.pi * xi * index / yi.size a[index] = 2.0 / yi.size * yi @ np.cos(arg) b[index] = 2.0 / yi.size * yi @ np.sin(arg) return a, b
0
0
0
686add8ace25e333d96d69d7abbb938d46abc531
1,453
py
Python
distance-betweeen-obj/main.py
CrispenGari/opencv-python
cfa862fbf3b8b2c8899b76cee2774d6fb72ba00e
[ "MIT" ]
1
2021-11-08T07:37:05.000Z
2021-11-08T07:37:05.000Z
distance-betweeen-obj/main.py
CrispenGari/opencv-python
cfa862fbf3b8b2c8899b76cee2774d6fb72ba00e
[ "MIT" ]
null
null
null
distance-betweeen-obj/main.py
CrispenGari/opencv-python
cfa862fbf3b8b2c8899b76cee2774d6fb72ba00e
[ "MIT" ]
null
null
null
import cv2 import numpy as np from math import pow, sqrt points = [] letters = list("ABCDEFGHIJKLMNOPQRSTUVWXYZ") image = np.zeros((512, 512, 3), np.uint8) while True: cv2.putText(image, f'TO CLEAR THE POINTS PRESS (c)', (20, 20), cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1) cv2.imshow("DISTANCE BETWEEN TWO POINTS", image) cv2.setMouseCallback("DISTANCE BETWEEN TWO POINTS", mouseEvent, None) key = cv2.waitKey(1) if key & 0xFF == 27: cv2.destroyAllWindows() break elif key & 0xFF == ord('c'): image = np.zeros((512, 512, 3), np.uint8) points = [] # cm = pixels / 96 * 2.54
37.25641
126
0.604267
import cv2 import numpy as np from math import pow, sqrt points = [] letters = list("ABCDEFGHIJKLMNOPQRSTUVWXYZ") image = np.zeros((512, 512, 3), np.uint8) def mouseEvent(event, x, y, params, flags): if event == cv2.EVENT_LBUTTONDOWN: cv2.circle(image, (x, y), 5, (0, 0, 255), -1) cv2.putText(image, letters[len(points) if len(points) < 26 else 0], (x, y), cv2.FONT_HERSHEY_PLAIN, 2, (255, 0, 0), 2) points.append((x, y)) if len(points) > 1: last_two_points = points[-2:] d, midpoint = findDistance(last_two_points) cv2.putText(image, f'{round(d)} (px)', midpoint, cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1) cv2.line(image, tuple(last_two_points[0]), tuple(last_two_points[1]),(0, 255, 0), 2) return def findDistance(points): x1, y1 = points[0] x2, y2 = points[1] d = sqrt(pow((x1 - x2), 2) + pow((y1 - y2), 2)) midpoint = tuple(([(x1 + x2)//2, (y1 + y2)//2])) return d, midpoint while True: cv2.putText(image, f'TO CLEAR THE POINTS PRESS (c)', (20, 20), cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1) cv2.imshow("DISTANCE BETWEEN TWO POINTS", image) cv2.setMouseCallback("DISTANCE BETWEEN TWO POINTS", mouseEvent, None) key = cv2.waitKey(1) if key & 0xFF == 27: cv2.destroyAllWindows() break elif key & 0xFF == ord('c'): image = np.zeros((512, 512, 3), np.uint8) points = [] # cm = pixels / 96 * 2.54
772
0
45
8e8c991f6293082c8cec862c8abc181e7ff19a46
1,948
py
Python
Learning/python_data_analysis8.py
VictoriaGuXY/MCO-Menu-Checker-Online
706e2e1bf7395cc344f382ea2ac53d964d459f86
[ "MIT" ]
null
null
null
Learning/python_data_analysis8.py
VictoriaGuXY/MCO-Menu-Checker-Online
706e2e1bf7395cc344f382ea2ac53d964d459f86
[ "MIT" ]
null
null
null
Learning/python_data_analysis8.py
VictoriaGuXY/MCO-Menu-Checker-Online
706e2e1bf7395cc344f382ea2ac53d964d459f86
[ "MIT" ]
null
null
null
import json import pandas as pd import numpy as np from pandas import DataFrame """ output """ # Note: some output is shortened to save spaces. # This file introduces methods to group data. # Data from https://github.com/mwaskom/seaborn-data df = pd.read_csv('E:\\tips.csv') """ total_bill tip sex smoker day time size 0 16.99 1.01 Female No Sun Dinner 2 1 10.34 1.66 Male No Sun Dinner 3 2 21.01 3.50 Male No Sun Dinner 3 3 23.68 3.31 Male No Sun Dinner 2 4 24.59 3.61 Female No Sun Dinner 4 5 25.29 4.71 Male No Sun Dinner 4 .. ... ... ... ... ... ... ... 240 27.18 2.00 Female Yes Sat Dinner 2 241 22.67 2.00 Male Yes Sat Dinner 2 242 17.82 1.75 Male No Sat Dinner 2 243 18.78 3.00 Female No Thur Dinner 2 [244 rows x 7 columns] """ # ------------------------------------------------------------------------------ # if we want to form group based on 'day' column group = df.groupby('day') # print out the first value (first line) in each group print (group.first()) """ total_bill tip sex smoker time size day Fri 28.97 3.00 Male Yes Dinner 2 Sat 20.65 3.35 Male No Dinner 3 Sun 16.99 1.01 Female No Dinner 2 Thur 27.20 4.00 Male No Lunch 4 """ # print out the last value (last line) in each group print (group.first()) """ total_bill tip sex smoker time size day Fri 10.09 2.00 Female Yes Lunch 2 Sat 17.82 1.75 Male No Dinner 2 Sun 15.69 1.50 Male Yes Dinner 2 Thur 18.78 3.00 Female No Dinner 2 """
32.466667
80
0.479466
import json import pandas as pd import numpy as np from pandas import DataFrame """ output """ # Note: some output is shortened to save spaces. # This file introduces methods to group data. # Data from https://github.com/mwaskom/seaborn-data df = pd.read_csv('E:\\tips.csv') """ total_bill tip sex smoker day time size 0 16.99 1.01 Female No Sun Dinner 2 1 10.34 1.66 Male No Sun Dinner 3 2 21.01 3.50 Male No Sun Dinner 3 3 23.68 3.31 Male No Sun Dinner 2 4 24.59 3.61 Female No Sun Dinner 4 5 25.29 4.71 Male No Sun Dinner 4 .. ... ... ... ... ... ... ... 240 27.18 2.00 Female Yes Sat Dinner 2 241 22.67 2.00 Male Yes Sat Dinner 2 242 17.82 1.75 Male No Sat Dinner 2 243 18.78 3.00 Female No Thur Dinner 2 [244 rows x 7 columns] """ # ------------------------------------------------------------------------------ # if we want to form group based on 'day' column group = df.groupby('day') # print out the first value (first line) in each group print (group.first()) """ total_bill tip sex smoker time size day Fri 28.97 3.00 Male Yes Dinner 2 Sat 20.65 3.35 Male No Dinner 3 Sun 16.99 1.01 Female No Dinner 2 Thur 27.20 4.00 Male No Lunch 4 """ # print out the last value (last line) in each group print (group.first()) """ total_bill tip sex smoker time size day Fri 10.09 2.00 Female Yes Lunch 2 Sat 17.82 1.75 Male No Dinner 2 Sun 15.69 1.50 Male Yes Dinner 2 Thur 18.78 3.00 Female No Dinner 2 """
0
0
0
948080e247360f7be9e2aa7cdc3fd4bb0c67bdac
438
py
Python
functions/reportIssue.py
chiluf/visvis.dev
373846ea25044b7ca50f44c63dab4248e14deacd
[ "BSD-3-Clause" ]
null
null
null
functions/reportIssue.py
chiluf/visvis.dev
373846ea25044b7ca50f44c63dab4248e14deacd
[ "BSD-3-Clause" ]
null
null
null
functions/reportIssue.py
chiluf/visvis.dev
373846ea25044b7ca50f44c63dab4248e14deacd
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (C) 2012, Almar Klein # # Visvis is distributed under the terms of the (new) BSD License. # The full license can be found in 'license.txt'. def reportIssue(): """ help() Open a webbrowser with the visvis website at the issue list. """ import webbrowser webbrowser.open("http://code.google.com/p/visvis/issues/list") if __name__ == '__main__': reportIssue()
23.052632
66
0.639269
# -*- coding: utf-8 -*- # Copyright (C) 2012, Almar Klein # # Visvis is distributed under the terms of the (new) BSD License. # The full license can be found in 'license.txt'. def reportIssue(): """ help() Open a webbrowser with the visvis website at the issue list. """ import webbrowser webbrowser.open("http://code.google.com/p/visvis/issues/list") if __name__ == '__main__': reportIssue()
0
0
0
405b1e05e30665caf1b56d799edb993551a9f5b1
217
py
Python
thirdfile.py
1frenchfrog1/testgithub
7191e44d75ba50438d9c2fe8f0fcf9fcf3a2a991
[ "MIT" ]
null
null
null
thirdfile.py
1frenchfrog1/testgithub
7191e44d75ba50438d9c2fe8f0fcf9fcf3a2a991
[ "MIT" ]
null
null
null
thirdfile.py
1frenchfrog1/testgithub
7191e44d75ba50438d9c2fe8f0fcf9fcf3a2a991
[ "MIT" ]
null
null
null
#!/usr/bin/python def printme3( str ): "This prints a passed string into this function" print(str) return def printme3too( str ): "This prints a passed string into this function" print(str) return
18.083333
51
0.686636
#!/usr/bin/python def printme3( str ): "This prints a passed string into this function" print(str) return def printme3too( str ): "This prints a passed string into this function" print(str) return
0
0
0
52c36ddcbbbc1ea0125baf76215d709418864b64
642
py
Python
lec7.py
uni-student234/ISAT252
4c0942919c432456fe26900c23f076161b4cc266
[ "MIT" ]
null
null
null
lec7.py
uni-student234/ISAT252
4c0942919c432456fe26900c23f076161b4cc266
[ "MIT" ]
null
null
null
lec7.py
uni-student234/ISAT252
4c0942919c432456fe26900c23f076161b4cc266
[ "MIT" ]
null
null
null
""" Week 2, day 7, lec 7 """ # i = 5 # while i >= 0: # i = i - 1 # if i == 3: # # break #breaks the smallest loop # # continue #skips the current iteration and moves on # # pass #does nothing, but is placehold if you need something for syntax # print(i) # for word in 'hello world'.split(): # print(word) # for str_item in word: # if str_item == '1': # break # print(str_item) # try: # print(1/0) # except ZeroDivisionError: # print('error') i = 5 while i >= 0: try: print(1/(i-3)) except: pass i = i - 1
20.0625
90
0.489097
""" Week 2, day 7, lec 7 """ # i = 5 # while i >= 0: # i = i - 1 # if i == 3: # # break #breaks the smallest loop # # continue #skips the current iteration and moves on # # pass #does nothing, but is placehold if you need something for syntax # print(i) # for word in 'hello world'.split(): # print(word) # for str_item in word: # if str_item == '1': # break # print(str_item) # try: # print(1/0) # except ZeroDivisionError: # print('error') i = 5 while i >= 0: try: print(1/(i-3)) except: pass i = i - 1
0
0
0
6446ebc359e3c3467ceb30fabeaa007c3100a7f7
11,447
py
Python
scripts/survivor_analysis/utils/annotate.py
a-paxton/oss-community-health
93ff4d266b5390b53d8ed59f71616de68bcfdda7
[ "MIT" ]
null
null
null
scripts/survivor_analysis/utils/annotate.py
a-paxton/oss-community-health
93ff4d266b5390b53d8ed59f71616de68bcfdda7
[ "MIT" ]
1
2022-03-22T19:32:27.000Z
2022-03-23T12:43:08.000Z
scripts/survivor_analysis/utils/annotate.py
a-paxton/oss-community-health
93ff4d266b5390b53d8ed59f71616de68bcfdda7
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np from collections import Counter from datetime import datetime from nltk.tokenize import RegexpTokenizer from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer import re def annotate_logs(comments, tickets): """ Annotates comments and tickets with additional information: 1. whether the body was updated (Boolean) 2. the number of PRs and issues opened by the comment author at the time of the comment posting 3. comment order (comment dataframe only) 4. identify whether ticket is closed (Boolean; ticket dataframe only) 5. identify whether a comment is associated to an issue or a PR Requires: pandas Parameters ---------- comments : pd.DataFrame tickets : pd.DataFrame Returns ------- The same dataframe, but with additional columns Examples -------- >> import pandas as pd >> import utils >> tickets = pd.read_csv("data/numpy/issues.tsv", sep="\t") >> comments = pd.read_csv("data/numpy/comments.tsv", sep="\t") >> comments, tickets = utils.annotate_logs(comments, tickets) """ # identify whether the body of comments or tickets were updated comments["was_updated"] = comments["created_at"] != comments["updated_at"] tickets["was_updated"] = tickets["created_at"] != tickets["updated_at"] # comments df: add number of PRs created by author to date num_PR_per_pers = [ sum((tickets["created_at"] < created_at) & (tickets["type"] == "pull_request") & (tickets["author_id"] == author_id)) for created_at, author_id in zip(comments["created_at"], comments["author_id"])] comments["num_PR_created"] = num_PR_per_pers # issues df: add number of PRs created by author to date num_PR_per_pers = [ sum((tickets["created_at"] < created_at) & (tickets["type"] == "pull_request") & (tickets["author_id"] == author_id)) for created_at, author_id in zip(tickets["created_at"], tickets["author_id"])] tickets["num_PR_created"] = num_PR_per_pers # comments df: add number of issues created by author to date num_issue_per_pers = [ sum((tickets["created_at"] < created_at) & (tickets["type"] == "issue") & (tickets["author_id"] == author_id)) for created_at, author_id in zip(comments["created_at"], comments["author_id"])] comments["num_issue_created"] = num_issue_per_pers # tickets df: add number of issues created by author to date num_issue_per_pers = [ sum((tickets["created_at"] < created_at) & (tickets["type"] == "issue") & (tickets["author_id"] == author_id)) for created_at, author_id in zip(tickets["created_at"], tickets["author_id"])] tickets["num_issue_created"] = num_issue_per_pers # track the comment order comments['comment_order'] = comments.sort_values(by=['created_at']) \ .groupby(by=['ticket_id']) \ .cumcount() # identify whether the PR is closed tickets['is_closed'] = pd.notnull(tickets['closed_at']) mask = tickets["closed_at"].isnull() tickets.loc[mask, "closed_at"] = pd.to_datetime(datetime.now()) open_duration = ( pd.to_datetime(tickets["closed_at"]) - pd.to_datetime(tickets["created_at"])) tickets["open_duration"] = open_duration.apply( lambda x: x.total_seconds()) # Now we want to remove this estimate for anything created before 1970 m = [True if c.startswith("1970") else False for c in tickets["created_at"]] tickets.loc[m, "open_duration"] = np.nan # For each comment, get the information on when the corresponding ticket # has been opened when it is available (comments can also be added to # commits) tickets.set_index("ticket_id", inplace=True, drop=False) # We're using the reindex function to tacket the case where we don't have # the ticket associated to a particular comment. comments["ticket_created_at"] = tickets.reindex( comments["ticket_id"])["created_at"].values comments["type"] = tickets.reindex( comments["ticket_id"])["type"].values # Reset the old index tickets.set_index("id", inplace=True, drop=False) # return the dataframes return comments, tickets def body_cleanup(comments, grateful_list, bot_list): """ Prepare comment or issue dataframe for text analysis: 1. Count number of times gratitude words appear in HTML comments (i.e., auto-generated templates for PRs and issues provided by projects) 2. Remove HTML comments 3. Remove quoted text 4. Strip newlines 5. Count and remove code blocks 6. Identify other users referenced in body 7. Flag whether the author was a bot Requires: pandas , nltk , collections , re Parameters ---------- comments : pd.DataFrame, ideally annotated with `annotate_logs()`; can be run with either comments df or issues/tickets df grateful_list : list or pd.Series of gratitude words to identify; currently works only with grateful unigrams bot_list : list or pd.Series of bot usernames to be ignored Returns ------- The same dataframe, but with cleaned body text and new columns (code_blocks , referenced_users , bot_flag) Examples -------- >> import pandas as pd >> import utils >> comments = pd.read_csv("data/numpy/comments.tsv", sep="\t") >> comments, tickets = utils.annotate.annotate_logs(comments, tickets) >> comments = utils.annotate.body_cleanup(comments, bot_list_df) """ # replace all NaN with empty strings comments['body'] = comments['body'].replace(np.nan, '', regex=True) # count thanks in HTML comments comments['html_comments'] = comments['body'].str.findall('(\<\!--.*?--\>)').apply(' '.join) # tokenize and count words tokenizer = RegexpTokenizer(r'\w+') comments['html_tokenized'] = comments['html_comments'].apply(str.lower).apply(tokenizer.tokenize) comments['html_word_count'] = comments['html_tokenized'].apply(lambda x: Counter(x)) # count words if they're in our grateful list comments['automatic_grateful_count'] = ( comments['html_word_count'].apply( lambda x: np.sum([v for k, v in x.items() if k in grateful_list]))) # let us know which ones were used comments['automatic_grateful_list'] = ( comments['html_word_count'].apply( lambda x: [k for k in x if k in grateful_list])) # remove the columns we don't need anymore comments = comments.drop(columns=['html_tokenized', 'html_word_count']) # remove the HTML comments from the body comments['body'] = (comments['body'].str.replace( "(<!--.*?-->)", " ", regex=True, flags=re.DOTALL)) # remove text quotes comments['body'] = (comments['body'].replace( "(^|\n|\r)+\>.*(?=\n|$)", " ", regex=True)) # remove newlines comments['body'] = (comments['body'].replace( "[\n\r]+", " ", regex=True)) # count and then remove code blocks comments['code_blocks'] = comments['body'].str.count("\`{3}")/2 comments['body'] = (comments['body'].replace( "\`{3}.*\`{3}", " ", regex=True)) # identify other humans comments['referenced_users'] = comments['body'].str.findall('@\w{1,}') # identify bots comments['bot_flag'] = comments['author_name'].isin(bot_list) # return our dataframe return comments def add_sentiment(comments): """ Add sentiment analysis scores to comments dataframe: * negative emotion * positive emotion * neutral emotion * compound emotion Requires: pandas , vaderSentiment For more on vaderSentiment, see https://github.com/cjhutto/vaderSentiment Parameters ---------- comments : pd.DataFrame ideally after `annotate_logs()` and `body_cleanup()`; can be run with either comments df or issues/tickets df Returns ------- The same dataframe but with new sentiment columns Examples -------- >> import pandas as pd >> import utils >> comments = pd.read_csv("data/numpy/comments.tsv", sep="\t") >> comments, tickets = utils.annotate.annotate_logs(comments, tickets) >> comments = utils.annotate.body_cleanup(comments, bot_list_df) >> comments = utils.annotate.add_sentiment(comments) """ # initialize sentiment analyzer analyser = SentimentIntensityAnalyzer() # remove NaNs comments['body'] = comments['body'].replace(np.nan, ' ', regex=True) # run sentiment analyzer over each comment body sentiment_df = ( comments['body'] .apply(analyser.polarity_scores) .astype(str) .str.strip('{}') .str.split(', ', expand=True)) # split the emotion output dictionary into new columns # (thanks to https://stackoverflow.com/a/13053267 for partial solution) comments['negative_emotion'] = sentiment_df[0].str.split( ': ').str[-1].astype(float) comments['neutral_emotion'] = sentiment_df[1].str.split( ': ').str[-1].astype(float) comments['positive_emotion'] = sentiment_df[2].str.split( ': ').str[-1].astype(float) comments['compound_emotion'] = sentiment_df[3].str.split( ': ').str[-1].astype(float) # return our dataframe return comments def add_gratitude(comments, grateful_list): """ Track expressions of gratitude: * overall counts * specific words Thanks to https://stackoverflow.com/a/47686394 Requires: pandas , nltk , collections Parameters ---------- comments : pd.DataFrame ideally after `annotate_logs()` and `body_cleanup()`; can be run with either comments df or issues/tickets df grateful_list : list or pd.Series of gratitude words to identify; currently works only with grateful unigrams Returns ------- The same dataframe but with new gratitude columns Examples -------- >> import pandas as pd >> import utils >> comments = pd.read_csv("data/numpy/comments.tsv", sep="\t") >> comments, tickets = utils.annotate.annotate_logs(comments, tickets) >> comments = utils.annotate.body_cleanup(comments, bot_list_df) >> comments = utils.annotate.add_gratitude(comments) """ # tokenize and count words tokenizer = RegexpTokenizer(r'\w+') comments['tokenized'] = comments['body'].apply( str.lower).apply(tokenizer.tokenize) comments['word_count'] = comments['tokenized'].apply(lambda x: Counter(x)) # count words if they're in our grateful list comments['grateful_count'] = ( comments['word_count'].apply( lambda x: np.sum([v for k, v in x.items() if k in grateful_list]))) # let us know which ones were used comments['grateful_list'] = ( comments['word_count'].apply( lambda x: [k for k in x if k in grateful_list])) # remove the columns we don't need anymore comments = comments.drop(columns=['tokenized', 'word_count']) # spit back our dataframe now return comments
34.478916
101
0.638857
import pandas as pd import numpy as np from collections import Counter from datetime import datetime from nltk.tokenize import RegexpTokenizer from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer import re def annotate_logs(comments, tickets): """ Annotates comments and tickets with additional information: 1. whether the body was updated (Boolean) 2. the number of PRs and issues opened by the comment author at the time of the comment posting 3. comment order (comment dataframe only) 4. identify whether ticket is closed (Boolean; ticket dataframe only) 5. identify whether a comment is associated to an issue or a PR Requires: pandas Parameters ---------- comments : pd.DataFrame tickets : pd.DataFrame Returns ------- The same dataframe, but with additional columns Examples -------- >> import pandas as pd >> import utils >> tickets = pd.read_csv("data/numpy/issues.tsv", sep="\t") >> comments = pd.read_csv("data/numpy/comments.tsv", sep="\t") >> comments, tickets = utils.annotate_logs(comments, tickets) """ # identify whether the body of comments or tickets were updated comments["was_updated"] = comments["created_at"] != comments["updated_at"] tickets["was_updated"] = tickets["created_at"] != tickets["updated_at"] # comments df: add number of PRs created by author to date num_PR_per_pers = [ sum((tickets["created_at"] < created_at) & (tickets["type"] == "pull_request") & (tickets["author_id"] == author_id)) for created_at, author_id in zip(comments["created_at"], comments["author_id"])] comments["num_PR_created"] = num_PR_per_pers # issues df: add number of PRs created by author to date num_PR_per_pers = [ sum((tickets["created_at"] < created_at) & (tickets["type"] == "pull_request") & (tickets["author_id"] == author_id)) for created_at, author_id in zip(tickets["created_at"], tickets["author_id"])] tickets["num_PR_created"] = num_PR_per_pers # comments df: add number of issues created by author to date num_issue_per_pers = [ sum((tickets["created_at"] < created_at) & (tickets["type"] == "issue") & (tickets["author_id"] == author_id)) for created_at, author_id in zip(comments["created_at"], comments["author_id"])] comments["num_issue_created"] = num_issue_per_pers # tickets df: add number of issues created by author to date num_issue_per_pers = [ sum((tickets["created_at"] < created_at) & (tickets["type"] == "issue") & (tickets["author_id"] == author_id)) for created_at, author_id in zip(tickets["created_at"], tickets["author_id"])] tickets["num_issue_created"] = num_issue_per_pers # track the comment order comments['comment_order'] = comments.sort_values(by=['created_at']) \ .groupby(by=['ticket_id']) \ .cumcount() # identify whether the PR is closed tickets['is_closed'] = pd.notnull(tickets['closed_at']) mask = tickets["closed_at"].isnull() tickets.loc[mask, "closed_at"] = pd.to_datetime(datetime.now()) open_duration = ( pd.to_datetime(tickets["closed_at"]) - pd.to_datetime(tickets["created_at"])) tickets["open_duration"] = open_duration.apply( lambda x: x.total_seconds()) # Now we want to remove this estimate for anything created before 1970 m = [True if c.startswith("1970") else False for c in tickets["created_at"]] tickets.loc[m, "open_duration"] = np.nan # For each comment, get the information on when the corresponding ticket # has been opened when it is available (comments can also be added to # commits) tickets.set_index("ticket_id", inplace=True, drop=False) # We're using the reindex function to tacket the case where we don't have # the ticket associated to a particular comment. comments["ticket_created_at"] = tickets.reindex( comments["ticket_id"])["created_at"].values comments["type"] = tickets.reindex( comments["ticket_id"])["type"].values # Reset the old index tickets.set_index("id", inplace=True, drop=False) # return the dataframes return comments, tickets def body_cleanup(comments, grateful_list, bot_list): """ Prepare comment or issue dataframe for text analysis: 1. Count number of times gratitude words appear in HTML comments (i.e., auto-generated templates for PRs and issues provided by projects) 2. Remove HTML comments 3. Remove quoted text 4. Strip newlines 5. Count and remove code blocks 6. Identify other users referenced in body 7. Flag whether the author was a bot Requires: pandas , nltk , collections , re Parameters ---------- comments : pd.DataFrame, ideally annotated with `annotate_logs()`; can be run with either comments df or issues/tickets df grateful_list : list or pd.Series of gratitude words to identify; currently works only with grateful unigrams bot_list : list or pd.Series of bot usernames to be ignored Returns ------- The same dataframe, but with cleaned body text and new columns (code_blocks , referenced_users , bot_flag) Examples -------- >> import pandas as pd >> import utils >> comments = pd.read_csv("data/numpy/comments.tsv", sep="\t") >> comments, tickets = utils.annotate.annotate_logs(comments, tickets) >> comments = utils.annotate.body_cleanup(comments, bot_list_df) """ # replace all NaN with empty strings comments['body'] = comments['body'].replace(np.nan, '', regex=True) # count thanks in HTML comments comments['html_comments'] = comments['body'].str.findall('(\<\!--.*?--\>)').apply(' '.join) # tokenize and count words tokenizer = RegexpTokenizer(r'\w+') comments['html_tokenized'] = comments['html_comments'].apply(str.lower).apply(tokenizer.tokenize) comments['html_word_count'] = comments['html_tokenized'].apply(lambda x: Counter(x)) # count words if they're in our grateful list comments['automatic_grateful_count'] = ( comments['html_word_count'].apply( lambda x: np.sum([v for k, v in x.items() if k in grateful_list]))) # let us know which ones were used comments['automatic_grateful_list'] = ( comments['html_word_count'].apply( lambda x: [k for k in x if k in grateful_list])) # remove the columns we don't need anymore comments = comments.drop(columns=['html_tokenized', 'html_word_count']) # remove the HTML comments from the body comments['body'] = (comments['body'].str.replace( "(<!--.*?-->)", " ", regex=True, flags=re.DOTALL)) # remove text quotes comments['body'] = (comments['body'].replace( "(^|\n|\r)+\>.*(?=\n|$)", " ", regex=True)) # remove newlines comments['body'] = (comments['body'].replace( "[\n\r]+", " ", regex=True)) # count and then remove code blocks comments['code_blocks'] = comments['body'].str.count("\`{3}")/2 comments['body'] = (comments['body'].replace( "\`{3}.*\`{3}", " ", regex=True)) # identify other humans comments['referenced_users'] = comments['body'].str.findall('@\w{1,}') # identify bots comments['bot_flag'] = comments['author_name'].isin(bot_list) # return our dataframe return comments def add_sentiment(comments): """ Add sentiment analysis scores to comments dataframe: * negative emotion * positive emotion * neutral emotion * compound emotion Requires: pandas , vaderSentiment For more on vaderSentiment, see https://github.com/cjhutto/vaderSentiment Parameters ---------- comments : pd.DataFrame ideally after `annotate_logs()` and `body_cleanup()`; can be run with either comments df or issues/tickets df Returns ------- The same dataframe but with new sentiment columns Examples -------- >> import pandas as pd >> import utils >> comments = pd.read_csv("data/numpy/comments.tsv", sep="\t") >> comments, tickets = utils.annotate.annotate_logs(comments, tickets) >> comments = utils.annotate.body_cleanup(comments, bot_list_df) >> comments = utils.annotate.add_sentiment(comments) """ # initialize sentiment analyzer analyser = SentimentIntensityAnalyzer() # remove NaNs comments['body'] = comments['body'].replace(np.nan, ' ', regex=True) # run sentiment analyzer over each comment body sentiment_df = ( comments['body'] .apply(analyser.polarity_scores) .astype(str) .str.strip('{}') .str.split(', ', expand=True)) # split the emotion output dictionary into new columns # (thanks to https://stackoverflow.com/a/13053267 for partial solution) comments['negative_emotion'] = sentiment_df[0].str.split( ': ').str[-1].astype(float) comments['neutral_emotion'] = sentiment_df[1].str.split( ': ').str[-1].astype(float) comments['positive_emotion'] = sentiment_df[2].str.split( ': ').str[-1].astype(float) comments['compound_emotion'] = sentiment_df[3].str.split( ': ').str[-1].astype(float) # return our dataframe return comments def add_gratitude(comments, grateful_list): """ Track expressions of gratitude: * overall counts * specific words Thanks to https://stackoverflow.com/a/47686394 Requires: pandas , nltk , collections Parameters ---------- comments : pd.DataFrame ideally after `annotate_logs()` and `body_cleanup()`; can be run with either comments df or issues/tickets df grateful_list : list or pd.Series of gratitude words to identify; currently works only with grateful unigrams Returns ------- The same dataframe but with new gratitude columns Examples -------- >> import pandas as pd >> import utils >> comments = pd.read_csv("data/numpy/comments.tsv", sep="\t") >> comments, tickets = utils.annotate.annotate_logs(comments, tickets) >> comments = utils.annotate.body_cleanup(comments, bot_list_df) >> comments = utils.annotate.add_gratitude(comments) """ # tokenize and count words tokenizer = RegexpTokenizer(r'\w+') comments['tokenized'] = comments['body'].apply( str.lower).apply(tokenizer.tokenize) comments['word_count'] = comments['tokenized'].apply(lambda x: Counter(x)) # count words if they're in our grateful list comments['grateful_count'] = ( comments['word_count'].apply( lambda x: np.sum([v for k, v in x.items() if k in grateful_list]))) # let us know which ones were used comments['grateful_list'] = ( comments['word_count'].apply( lambda x: [k for k in x if k in grateful_list])) # remove the columns we don't need anymore comments = comments.drop(columns=['tokenized', 'word_count']) # spit back our dataframe now return comments
0
0
0
46a90fe428c07ac7366934d1e4ee7724a8b4f434
352
py
Python
packages/Python/lldbsuite/test/python_api/sbtype_typeclass/TestSBTypeTypeClass.py
nathawes/swift-lldb
3cbf7470e0f9191ec1fc1c69ce8048c1dc64ec77
[ "Apache-2.0" ]
427
2018-05-29T14:21:02.000Z
2022-03-16T03:17:54.000Z
packages/Python/lldbsuite/test/python_api/sbtype_typeclass/TestSBTypeTypeClass.py
DalavanCloud/lldb
e913eaf2468290fb94c767d474d611b41a84dd69
[ "Apache-2.0" ]
25
2018-07-23T08:34:15.000Z
2021-11-05T07:13:36.000Z
packages/Python/lldbsuite/test/python_api/sbtype_typeclass/TestSBTypeTypeClass.py
DalavanCloud/lldb
e913eaf2468290fb94c767d474d611b41a84dd69
[ "Apache-2.0" ]
52
2018-07-19T19:57:32.000Z
2022-03-11T16:05:38.000Z
from lldbsuite.test import decorators from lldbsuite.test import lldbinline lldbinline.MakeInlineTest( __file__, globals(), [ decorators.skipIfFreeBSD, decorators.skipIfLinux, decorators.skipIfWindows, decorators.expectedFailureAll( oslist=['macosx'], archs=['i386'], bugnumber='rdar://28656677')])
32
57
0.6875
from lldbsuite.test import decorators from lldbsuite.test import lldbinline lldbinline.MakeInlineTest( __file__, globals(), [ decorators.skipIfFreeBSD, decorators.skipIfLinux, decorators.skipIfWindows, decorators.expectedFailureAll( oslist=['macosx'], archs=['i386'], bugnumber='rdar://28656677')])
0
0
0
af4dceb229fa3c43802c126ad350cbf15950b67e
1,585
bzl
Python
js/extensions.bzl
stoiky/rules_js
e61b61b98c2f5c733bf804f78db9f55b1fb2d599
[ "Apache-2.0" ]
null
null
null
js/extensions.bzl
stoiky/rules_js
e61b61b98c2f5c733bf804f78db9f55b1fb2d599
[ "Apache-2.0" ]
null
null
null
js/extensions.bzl
stoiky/rules_js
e61b61b98c2f5c733bf804f78db9f55b1fb2d599
[ "Apache-2.0" ]
null
null
null
"""Adapt repository rules in npm_import.bzl to be called from MODULE.bazel See https://bazel.build/docs/bzlmod#extension-definition """ load("//js/private:pnpm_utils.bzl", "pnpm_utils") load("//js/private:translate_pnpm_lock.bzl", translate_pnpm_lock_lib = "translate_pnpm_lock") load("//js:npm_import.bzl", "npm_import", "translate_pnpm_lock") load("//js/private:transitive_closure.bzl", "translate_to_transitive_closure") npm = module_extension( implementation = _extension_impl, tag_classes = { "translate_pnpm_lock": tag_class(attrs = dict({"name": attr.string()}, **translate_pnpm_lock_lib.attrs)), # todo: support individual packages as well # "package": tag_class(attrs = dict({"name": attr.string()}, **_npm_import.attrs)), }, )
42.837838
113
0.637855
"""Adapt repository rules in npm_import.bzl to be called from MODULE.bazel See https://bazel.build/docs/bzlmod#extension-definition """ load("//js/private:pnpm_utils.bzl", "pnpm_utils") load("//js/private:translate_pnpm_lock.bzl", translate_pnpm_lock_lib = "translate_pnpm_lock") load("//js:npm_import.bzl", "npm_import", "translate_pnpm_lock") load("//js/private:transitive_closure.bzl", "translate_to_transitive_closure") def _extension_impl(module_ctx): for mod in module_ctx.modules: for attr in mod.tags.translate_pnpm_lock: lockfile = pnpm_utils.parse_pnpm_lock(module_ctx.read(attr.pnpm_lock)) trans = translate_to_transitive_closure(lockfile, attr.prod, attr.dev, attr.no_optional) imports = translate_pnpm_lock_lib.gen_npm_imports(trans, attr) for i in imports: # fixme: pass the rest of the kwargs from i npm_import( name = i.name, package = i.package, version = i.pnpm_version, link_packages = i.link_packages, ) translate_pnpm_lock( name = "npm", pnpm_lock = attr.pnpm_lock, ) npm = module_extension( implementation = _extension_impl, tag_classes = { "translate_pnpm_lock": tag_class(attrs = dict({"name": attr.string()}, **translate_pnpm_lock_lib.attrs)), # todo: support individual packages as well # "package": tag_class(attrs = dict({"name": attr.string()}, **_npm_import.attrs)), }, )
787
0
23
c7b09eb689ac8f721c4645e55ec33f8b5d1f82bf
32,780
py
Python
paasta_tools/tron_tools.py
zhaoyanh1202/paasta
b0c148786f44476fe351fe410f0b81f0c941f3b6
[ "Apache-2.0" ]
null
null
null
paasta_tools/tron_tools.py
zhaoyanh1202/paasta
b0c148786f44476fe351fe410f0b81f0c941f3b6
[ "Apache-2.0" ]
null
null
null
paasta_tools/tron_tools.py
zhaoyanh1202/paasta
b0c148786f44476fe351fe410f0b81f0c941f3b6
[ "Apache-2.0" ]
null
null
null
# Copyright 2015-2018 Yelp Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import difflib import glob import hashlib import json import logging import os import pkgutil import re import subprocess import traceback from string import Formatter from typing import List from typing import Tuple import yaml from service_configuration_lib import read_extra_service_information from service_configuration_lib import read_yaml_file from service_configuration_lib.spark_config import generate_clusterman_metrics_entries from service_configuration_lib.spark_config import get_aws_credentials from service_configuration_lib.spark_config import get_resources_requested from service_configuration_lib.spark_config import get_spark_conf from service_configuration_lib.spark_config import K8S_AUTH_FOLDER from service_configuration_lib.spark_config import stringify_spark_env from paasta_tools.mesos_tools import mesos_services_running_here try: from yaml.cyaml import CSafeDumper as Dumper except ImportError: # pragma: no cover (no libyaml-dev / pypy) Dumper = yaml.SafeDumper # type: ignore from paasta_tools.clusterman import get_clusterman_metrics from paasta_tools.tron.client import TronClient from paasta_tools.tron import tron_command_context from paasta_tools.utils import DEFAULT_SOA_DIR from paasta_tools.utils import DockerParameter from paasta_tools.utils import DockerVolume from paasta_tools.utils import InstanceConfig from paasta_tools.utils import InvalidInstanceConfig from paasta_tools.utils import load_system_paasta_config from paasta_tools.utils import SystemPaastaConfig from paasta_tools.utils import load_v2_deployments_json from paasta_tools.utils import NoConfigurationForServiceError from paasta_tools.utils import NoDeploymentsAvailable from paasta_tools.utils import time_cache from paasta_tools.utils import filter_templates_from_config from paasta_tools.spark_tools import get_webui_url from paasta_tools.spark_tools import inject_spark_conf_str from paasta_tools import monitoring_tools from paasta_tools.monitoring_tools import list_teams from typing import Optional from typing import Dict from typing import Any log = logging.getLogger(__name__) logging.getLogger("tron").setLevel(logging.WARNING) MASTER_NAMESPACE = "MASTER" SPACER = "." VALID_MONITORING_KEYS = set( json.loads( pkgutil.get_data("paasta_tools.cli", "schemas/tron_schema.json").decode() )["definitions"]["job"]["properties"]["monitoring"]["properties"].keys() ) MESOS_EXECUTOR_NAMES = ("paasta", "spark") DEFAULT_AWS_REGION = "us-west-2" clusterman_metrics, _ = get_clusterman_metrics() class TronConfig(dict): """System-level configuration for Tron.""" def get_cluster_name(self): """:returns The name of the Tron cluster""" try: return self["cluster_name"] except KeyError: raise TronNotConfigured( "Could not find name of Tron cluster in system Tron config" ) def get_url(self): """:returns The URL for the Tron master's API""" try: return self["url"] except KeyError: raise TronNotConfigured( "Could not find URL of Tron master in system Tron config" ) def decompose_instance(instance): """Get (job_name, action_name) from an instance.""" decomposed = instance.split(SPACER) if len(decomposed) != 2: raise InvalidInstanceConfig("Invalid instance name: %s" % instance) return (decomposed[0], decomposed[1]) def decompose_executor_id(executor_id) -> Tuple[str, str, int, str]: """(service, job, run_number, action)""" service, job, str_run_number, action, _ = executor_id.split(SPACER) return (service, job, int(str_run_number), action) def parse_time_variables(command: str, parse_time: datetime.datetime = None) -> str: """Parses an input string and uses the Tron-style dateparsing to replace time variables. Currently supports only the date/time variables listed in the tron documentation: http://tron.readthedocs.io/en/latest/command_context.html#built-in-cc :param input_string: input string to be parsed :param parse_time: Reference Datetime object to parse the date and time strings, defaults to now. :returns: A string with the date and time variables replaced """ if parse_time is None: parse_time = datetime.datetime.now() # We build up a tron context object that has the right # methods to parse tron-style time syntax job_context = tron_command_context.JobRunContext( tron_command_context.CommandContext() ) # The tron context object needs the run_time attribute set so it knows # how to interpret the date strings job_context.job_run.run_time = parse_time return StringFormatter(job_context).format(command) class TronJobConfig: """Represents a job in Tron, consisting of action(s) and job-level configuration values.""" def format_tron_action_dict(action_config): """Generate a dict of tronfig for an action, from the TronActionConfig. :param job_config: TronActionConfig """ executor = action_config.get_executor() result = { "command": action_config.get_cmd(), "executor": executor, "requires": action_config.get_requires(), "node": action_config.get_node(), "retries": action_config.get_retries(), "retries_delay": action_config.get_retries_delay(), "expected_runtime": action_config.get_expected_runtime(), "trigger_downstreams": action_config.get_trigger_downstreams(), "triggered_by": action_config.get_triggered_by(), "on_upstream_rerun": action_config.get_on_upstream_rerun(), "trigger_timeout": action_config.get_trigger_timeout(), } if executor in MESOS_EXECUTOR_NAMES: result["executor"] = "mesos" result["cpus"] = action_config.get_cpus() result["mem"] = action_config.get_mem() result["disk"] = action_config.get_disk() result["env"] = action_config.get_env() result["extra_volumes"] = format_volumes(action_config.get_extra_volumes()) result["docker_parameters"] = [ {"key": param["key"], "value": param["value"]} for param in action_config.format_docker_parameters() ] constraint_labels = ["attribute", "operator", "value"] result["constraints"] = [ dict(zip(constraint_labels, constraint)) for constraint in action_config.get_calculated_constraints() ] result["docker_image"] = action_config.get_docker_url() # Only pass non-None values, so Tron will use defaults for others return {key: val for key, val in result.items() if val is not None} def format_tron_job_dict(job_config): """Generate a dict of tronfig for a job, from the TronJobConfig. :param job_config: TronJobConfig """ action_dict = { action_config.get_action_name(): format_tron_action_dict(action_config) for action_config in job_config.get_actions() } result = { "node": job_config.get_node(), "schedule": job_config.get_schedule(), "actions": action_dict, "monitoring": job_config.get_monitoring(), "queueing": job_config.get_queueing(), "run_limit": job_config.get_run_limit(), "all_nodes": job_config.get_all_nodes(), "enabled": job_config.get_enabled(), "allow_overlap": job_config.get_allow_overlap(), "max_runtime": job_config.get_max_runtime(), "time_zone": job_config.get_time_zone(), "expected_runtime": job_config.get_expected_runtime(), } cleanup_config = job_config.get_cleanup_action() if cleanup_config: cleanup_action = format_tron_action_dict(cleanup_config) result["cleanup_action"] = cleanup_action # Only pass non-None values, so Tron will use defaults for others return {key: val for key, val in result.items() if val is not None} @time_cache(ttl=5) def load_tron_service_config_no_cache( service, cluster, load_deployments=True, soa_dir=DEFAULT_SOA_DIR, for_validation=False, ): """Load all configured jobs for a service, and any additional config values.""" config = read_extra_service_information( service_name=service, extra_info=f"tron-{cluster}", soa_dir=soa_dir ) jobs = filter_templates_from_config(config) job_configs = [ TronJobConfig( name=name, service=service, cluster=cluster, config_dict=job, load_deployments=load_deployments, soa_dir=soa_dir, for_validation=for_validation, ) for name, job in jobs.items() ] return job_configs def create_complete_config(service, cluster, soa_dir=DEFAULT_SOA_DIR): """Generate a namespace configuration file for Tron, for a service.""" job_configs = load_tron_service_config( service=service, cluster=cluster, load_deployments=True, soa_dir=soa_dir ) preproccessed_config = {} preproccessed_config["jobs"] = { job_config.get_name(): format_tron_job_dict(job_config) for job_config in job_configs } return yaml.dump(preproccessed_config, Dumper=Dumper, default_flow_style=False) def list_tron_clusters(service: str, soa_dir: str = DEFAULT_SOA_DIR) -> List[str]: """Returns the Tron clusters a service is configured to deploy to.""" search_re = r"/tron-([0-9a-z-_]*)\.yaml$" service_dir = os.path.join(soa_dir, service) clusters = [] for filename in glob.glob(f"{service_dir}/*.yaml"): cluster_re_match = re.search(search_re, filename) if cluster_re_match is not None: clusters.append(cluster_re_match.group(1)) return clusters def parse_service_instance_from_executor_id(task_id: str) -> Tuple[str, str]: """Parses tron mesos task ids, like schematizer.traffic_generator.28414.turnstyle.46da87d7-6092-4ed4-b926-ffa7b21c7785""" try: service, job, job_run, action, uuid = task_id.split(".") except Exception as e: log.warning( f"Couldn't parse the mesos task id into a valid tron job: {task_id}: {e}" ) service, job, action = "unknown_service", "unknown_job", "unknown_action" return service, f"{job}.{action}"
35.864333
125
0.652013
# Copyright 2015-2018 Yelp Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import difflib import glob import hashlib import json import logging import os import pkgutil import re import subprocess import traceback from string import Formatter from typing import List from typing import Tuple import yaml from service_configuration_lib import read_extra_service_information from service_configuration_lib import read_yaml_file from service_configuration_lib.spark_config import generate_clusterman_metrics_entries from service_configuration_lib.spark_config import get_aws_credentials from service_configuration_lib.spark_config import get_resources_requested from service_configuration_lib.spark_config import get_spark_conf from service_configuration_lib.spark_config import K8S_AUTH_FOLDER from service_configuration_lib.spark_config import stringify_spark_env from paasta_tools.mesos_tools import mesos_services_running_here try: from yaml.cyaml import CSafeDumper as Dumper except ImportError: # pragma: no cover (no libyaml-dev / pypy) Dumper = yaml.SafeDumper # type: ignore from paasta_tools.clusterman import get_clusterman_metrics from paasta_tools.tron.client import TronClient from paasta_tools.tron import tron_command_context from paasta_tools.utils import DEFAULT_SOA_DIR from paasta_tools.utils import DockerParameter from paasta_tools.utils import DockerVolume from paasta_tools.utils import InstanceConfig from paasta_tools.utils import InvalidInstanceConfig from paasta_tools.utils import load_system_paasta_config from paasta_tools.utils import SystemPaastaConfig from paasta_tools.utils import load_v2_deployments_json from paasta_tools.utils import NoConfigurationForServiceError from paasta_tools.utils import NoDeploymentsAvailable from paasta_tools.utils import time_cache from paasta_tools.utils import filter_templates_from_config from paasta_tools.spark_tools import get_webui_url from paasta_tools.spark_tools import inject_spark_conf_str from paasta_tools import monitoring_tools from paasta_tools.monitoring_tools import list_teams from typing import Optional from typing import Dict from typing import Any log = logging.getLogger(__name__) logging.getLogger("tron").setLevel(logging.WARNING) MASTER_NAMESPACE = "MASTER" SPACER = "." VALID_MONITORING_KEYS = set( json.loads( pkgutil.get_data("paasta_tools.cli", "schemas/tron_schema.json").decode() )["definitions"]["job"]["properties"]["monitoring"]["properties"].keys() ) MESOS_EXECUTOR_NAMES = ("paasta", "spark") DEFAULT_AWS_REGION = "us-west-2" clusterman_metrics, _ = get_clusterman_metrics() class TronNotConfigured(Exception): pass class InvalidTronConfig(Exception): pass class TronConfig(dict): """System-level configuration for Tron.""" def __init__(self, config): super().__init__(config) def get_cluster_name(self): """:returns The name of the Tron cluster""" try: return self["cluster_name"] except KeyError: raise TronNotConfigured( "Could not find name of Tron cluster in system Tron config" ) def get_url(self): """:returns The URL for the Tron master's API""" try: return self["url"] except KeyError: raise TronNotConfigured( "Could not find URL of Tron master in system Tron config" ) def get_tronfig_folder(cluster, soa_dir): return os.path.join(soa_dir, "tron", cluster) def load_tron_config(): return TronConfig(load_system_paasta_config().get_tron_config()) def get_tron_client(): return TronClient(load_tron_config().get_url()) def compose_instance(job, action): return f"{job}{SPACER}{action}" def decompose_instance(instance): """Get (job_name, action_name) from an instance.""" decomposed = instance.split(SPACER) if len(decomposed) != 2: raise InvalidInstanceConfig("Invalid instance name: %s" % instance) return (decomposed[0], decomposed[1]) def decompose_executor_id(executor_id) -> Tuple[str, str, int, str]: """(service, job, run_number, action)""" service, job, str_run_number, action, _ = executor_id.split(SPACER) return (service, job, int(str_run_number), action) class StringFormatter(Formatter): def __init__(self, context=None): Formatter.__init__(self) self.context = context def get_value(self, key, args, kwds): if isinstance(key, str): try: return kwds[key] except KeyError: return self.context[key] else: return Formatter.get_value(key, args, kwds) def parse_time_variables(command: str, parse_time: datetime.datetime = None) -> str: """Parses an input string and uses the Tron-style dateparsing to replace time variables. Currently supports only the date/time variables listed in the tron documentation: http://tron.readthedocs.io/en/latest/command_context.html#built-in-cc :param input_string: input string to be parsed :param parse_time: Reference Datetime object to parse the date and time strings, defaults to now. :returns: A string with the date and time variables replaced """ if parse_time is None: parse_time = datetime.datetime.now() # We build up a tron context object that has the right # methods to parse tron-style time syntax job_context = tron_command_context.JobRunContext( tron_command_context.CommandContext() ) # The tron context object needs the run_time attribute set so it knows # how to interpret the date strings job_context.job_run.run_time = parse_time return StringFormatter(job_context).format(command) def pick_spark_ui_port(service, instance): # We don't know what ports will be available on the agent that the driver # will be scheduled on, so we just try to make them unique per service / instance. hash_key = f"{service} {instance}".encode() hash_number = int(hashlib.sha1(hash_key).hexdigest(), 16) preferred_port = 33000 + (hash_number % 25000) return preferred_port class TronActionConfig(InstanceConfig): config_filename_prefix = "tron" def __init__( self, service, instance, cluster, config_dict, branch_dict, soa_dir=DEFAULT_SOA_DIR, for_validation=False, ): super().__init__( cluster=cluster, instance=instance, service=service, config_dict=config_dict, branch_dict=branch_dict, soa_dir=soa_dir, ) self.job, self.action = decompose_instance(instance) # Indicate whether this config object is created for validation self.for_validation = for_validation def get_spark_config_dict(self): spark_config_dict = getattr(self, "_spark_config_dict", None) # cached the created dict, so that we don't need to process it multiple # times, and having inconsistent result if spark_config_dict is not None: return spark_config_dict if self.get_spark_cluster_manager() == "mesos": mesos_leader = ( f"zk://{load_system_paasta_config().get_zk_hosts()}" if not self.for_validation else "N/A" ) else: mesos_leader = None aws_creds = get_aws_credentials( aws_credentials_yaml=self.config_dict.get("aws_credentials_yaml") ) self._spark_config_dict = get_spark_conf( cluster_manager=self.get_spark_cluster_manager(), spark_app_base_name=f"tron_spark_{self.get_service()}_{self.get_instance()}", user_spark_opts=self.config_dict.get("spark_args", {}), paasta_cluster=self.get_spark_paasta_cluster(), paasta_pool=self.get_spark_paasta_pool(), paasta_service=self.get_service(), paasta_instance=self.get_instance(), docker_img=self.get_docker_url(), aws_creds=aws_creds, extra_volumes=self.get_volumes(load_system_paasta_config().get_volumes()), # tron is using environment variable to load the required creds with_secret=False, mesos_leader=mesos_leader, # load_system_paasta already load the default volumes load_paasta_default_volumes=False, ) return self._spark_config_dict def get_job_name(self): return self.job def get_action_name(self): return self.action def get_deploy_group(self) -> Optional[str]: return self.config_dict.get("deploy_group", None) def get_docker_url( self, system_paasta_config: Optional[SystemPaastaConfig] = None ) -> str: # It's okay for tronfig to contain things that aren't deployed yet - it's normal for developers to # push tronfig well before the job is scheduled to run, and either they'll deploy the service before # or get notified when the job fails. # # This logic ensures that we can still pass validation and run setup_tron_namespace even if # there's nothing in deployments.json yet. return ( "" if not self.get_docker_image() else super().get_docker_url(system_paasta_config=system_paasta_config) ) def get_cmd(self): command = self.config_dict.get("command") if self.get_executor() == "spark": # Spark expects to be able to write to MESOS_SANDBOX if it is set # but the default value (/mnt/mesos/sandbox) doesn't get mounted in # our Docker containers, so we unset it here. (Un-setting is fine, # since Spark will just write to /tmp instead). command = "unset MESOS_DIRECTORY MESOS_SANDBOX; " + inject_spark_conf_str( command, stringify_spark_env(self.get_spark_config_dict()) ) return command def get_spark_paasta_cluster(self): return self.config_dict.get("spark_paasta_cluster", self.get_cluster()) def get_spark_paasta_pool(self): return self.config_dict.get("spark_paasta_pool", "batch") def get_spark_cluster_manager(self): return self.config_dict.get("spark_cluster_manager", "mesos") def get_env(self): env = super().get_env() if self.get_executor() == "spark": spark_config_dict = self.get_spark_config_dict() env["EXECUTOR_CLUSTER"] = self.get_spark_paasta_cluster() env["EXECUTOR_POOL"] = self.get_spark_paasta_pool() env["SPARK_OPTS"] = stringify_spark_env(spark_config_dict) # The actual mesos secret will be decrypted and injected on mesos master when assigning # tasks. env["SPARK_MESOS_SECRET"] = "SHARED_SECRET(SPARK_MESOS_SECRET)" if clusterman_metrics: env["CLUSTERMAN_RESOURCES"] = json.dumps( generate_clusterman_metrics_entries( clusterman_metrics, get_resources_requested(spark_config_dict), spark_config_dict["spark.app.name"], get_webui_url(spark_config_dict["spark.ui.port"]), ) ) else: env["CLUSTERMAN_RESOURCES"] = "{}" if "AWS_ACCESS_KEY_ID" not in env or "AWS_SECRET_ACCESS_KEY" not in env: try: access_key, secret_key, session_token = get_aws_credentials( service=self.get_service(), aws_credentials_yaml=self.config_dict.get( "aws_credentials_yaml" ), ) env["AWS_ACCESS_KEY_ID"] = access_key env["AWS_SECRET_ACCESS_KEY"] = secret_key except Exception: log.warning( f"Cannot set AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment " f"variables for tron action {self.get_instance()} of service " f"{self.get_service()} via credentail file. Traceback:\n" f"{traceback.format_exc()}" ) if "AWS_DEFAULT_REGION" not in env: env["AWS_DEFAULT_REGION"] = DEFAULT_AWS_REGION return env def get_extra_volumes(self): extra_volumes = super().get_extra_volumes() if ( self.get_executor() == "spark" and self.get_spark_cluster_manager() == "kubernetes" ): extra_volumes.append( DockerVolume( { "hostPath": "/etc/pki/spark", "containerPath": K8S_AUTH_FOLDER, "mode": "RO", } ) ) return extra_volumes def get_cpu_burst_add(self) -> float: """ For Tron jobs, we don't let them burst by default, because they don't represent "real-time" workloads, and should not impact neighbors """ return self.config_dict.get("cpu_burst_add", 0) def get_executor(self): return self.config_dict.get("executor", "paasta") def get_healthcheck_mode(self, _) -> None: return None def get_node(self): return self.config_dict.get("node") def get_retries(self): return self.config_dict.get("retries") def get_retries_delay(self): return self.config_dict.get("retries_delay") def get_requires(self): return self.config_dict.get("requires") def get_expected_runtime(self): return self.config_dict.get("expected_runtime") def get_triggered_by(self): return self.config_dict.get("triggered_by", None) def get_trigger_downstreams(self): return self.config_dict.get("trigger_downstreams", None) def get_on_upstream_rerun(self): return self.config_dict.get("on_upstream_rerun", None) def get_trigger_timeout(self): return self.config_dict.get("trigger_timeout", None) def get_calculated_constraints(self): """Combine all configured Mesos constraints.""" constraints = self.get_constraints() if constraints is not None: return constraints else: constraints = self.get_extra_constraints() constraints.extend( self.get_deploy_constraints( blacklist=self.get_deploy_blacklist(), whitelist=self.get_deploy_whitelist(), # Don't have configs for the paasta cluster system_deploy_blacklist=[], system_deploy_whitelist=None, ) ) constraints.extend(self.get_pool_constraints()) return constraints def get_nerve_namespace(self) -> None: return None def validate(self): error_msgs = [] error_msgs.extend(super().validate()) # Tron is a little special, because it can *not* have a deploy group # But only if an action is running via ssh and not via paasta if ( self.get_deploy_group() is None and self.get_executor() in MESOS_EXECUTOR_NAMES ): error_msgs.append( f"{self.get_job_name()}.{self.get_action_name()} must have a deploy_group set" ) return error_msgs def format_docker_parameters( self, with_labels: bool = True, system_paasta_config: Optional[SystemPaastaConfig] = None, ) -> List[DockerParameter]: """Formats extra flags for running docker. Will be added in the format `["--%s=%s" % (e['key'], e['value']) for e in list]` to the `docker run` command Note: values must be strings""" parameters = super().format_docker_parameters( with_labels=with_labels, system_paasta_config=system_paasta_config ) if self.get_executor() == "spark": parameters.append({"key": "net", "value": "host"}) return parameters class TronJobConfig: """Represents a job in Tron, consisting of action(s) and job-level configuration values.""" def __init__( self, name: str, config_dict: Dict[str, Any], cluster: str, service: Optional[str] = None, load_deployments: bool = True, soa_dir: str = DEFAULT_SOA_DIR, for_validation: bool = False, ) -> None: self.name = name self.config_dict = config_dict self.cluster = cluster self.service = service self.load_deployments = load_deployments self.soa_dir = soa_dir # Indicate whether this config object is created for validation self.for_validation = for_validation def get_name(self): return self.name def get_node(self): return self.config_dict.get("node", "paasta") def get_schedule(self): return self.config_dict.get("schedule") def get_monitoring(self): srv_monitoring = dict( monitoring_tools.read_monitoring_config(self.service, soa_dir=self.soa_dir) ) tron_monitoring = self.config_dict.get("monitoring", {}) srv_monitoring.update(tron_monitoring) # filter out non-tron monitoring keys srv_monitoring = { k: v for k, v in srv_monitoring.items() if k in VALID_MONITORING_KEYS } return srv_monitoring def get_queueing(self): return self.config_dict.get("queueing") def get_run_limit(self): return self.config_dict.get("run_limit") def get_all_nodes(self): return self.config_dict.get("all_nodes") def get_enabled(self): return self.config_dict.get("enabled") def get_allow_overlap(self): return self.config_dict.get("allow_overlap") def get_max_runtime(self): return self.config_dict.get("max_runtime") def get_time_zone(self): return self.config_dict.get("time_zone") def get_service(self) -> Optional[str]: return self.service or self.config_dict.get("service") def get_deploy_group(self) -> Optional[str]: return self.config_dict.get("deploy_group", None) def get_cluster(self): return self.cluster def get_expected_runtime(self): return self.config_dict.get("expected_runtime") def _get_action_config(self, action_name, action_dict): action_service = action_dict.setdefault("service", self.get_service()) action_deploy_group = action_dict.setdefault( "deploy_group", self.get_deploy_group() ) if action_service and action_deploy_group and self.load_deployments: try: deployments_json = load_v2_deployments_json( service=action_service, soa_dir=self.soa_dir ) branch_dict = { "docker_image": deployments_json.get_docker_image_for_deploy_group( action_deploy_group ), "git_sha": deployments_json.get_git_sha_for_deploy_group( action_deploy_group ), # TODO: add Tron instances when generating deployments json "desired_state": "start", "force_bounce": None, } except NoDeploymentsAvailable: log.warning( f'Docker image unavailable for {action_service}.{self.get_name()}.{action_dict.get("name")}' " is it deployed yet?" ) branch_dict = None else: branch_dict = None action_dict["monitoring"] = self.get_monitoring() return TronActionConfig( service=action_service, instance=compose_instance(self.get_name(), action_name), cluster=self.get_cluster(), config_dict=action_dict, branch_dict=branch_dict, soa_dir=self.soa_dir, for_validation=self.for_validation, ) def get_actions(self): actions = self.config_dict.get("actions") return [ self._get_action_config(name, action_dict) for name, action_dict in actions.items() ] def get_cleanup_action(self): action_dict = self.config_dict.get("cleanup_action") if not action_dict: return None # TODO: we should keep this trickery outside paasta repo return self._get_action_config("cleanup", action_dict) def check_monitoring(self) -> Tuple[bool, str]: monitoring = self.get_monitoring() valid_teams = list_teams() if monitoring is not None: team_name = monitoring.get("team", None) if team_name is None: return False, "Team name is required for monitoring" elif team_name not in valid_teams: suggest_teams = difflib.get_close_matches( word=team_name, possibilities=valid_teams ) return ( False, f"Invalid team name: {team_name}. Do you mean one of these: {suggest_teams}", ) return True, "" def check_actions(self) -> Tuple[bool, List[str]]: actions = self.get_actions() cleanup_action = self.get_cleanup_action() if cleanup_action: actions.append(cleanup_action) checks_passed = True msgs: List[str] = [] for action in actions: action_msgs = action.validate() if action_msgs: checks_passed = False msgs.extend(action_msgs) return checks_passed, msgs def validate(self) -> List[str]: _, error_msgs = self.check_actions() checks = ["check_monitoring"] for check in checks: check_passed, check_msg = getattr(self, check)() if not check_passed: error_msgs.append(check_msg) return error_msgs def __eq__(self, other): if isinstance(other, type(self)): return self.config_dict == other.config_dict return False def format_volumes(paasta_volume_list): return [ { "container_path": v["containerPath"], "host_path": v["hostPath"], "mode": v["mode"], } for v in paasta_volume_list ] def format_master_config(master_config, default_volumes, dockercfg_location): mesos_options = master_config.get("mesos_options", {}) mesos_options.update( { "default_volumes": format_volumes(default_volumes), "dockercfg_location": dockercfg_location, } ) master_config["mesos_options"] = mesos_options return master_config def format_tron_action_dict(action_config): """Generate a dict of tronfig for an action, from the TronActionConfig. :param job_config: TronActionConfig """ executor = action_config.get_executor() result = { "command": action_config.get_cmd(), "executor": executor, "requires": action_config.get_requires(), "node": action_config.get_node(), "retries": action_config.get_retries(), "retries_delay": action_config.get_retries_delay(), "expected_runtime": action_config.get_expected_runtime(), "trigger_downstreams": action_config.get_trigger_downstreams(), "triggered_by": action_config.get_triggered_by(), "on_upstream_rerun": action_config.get_on_upstream_rerun(), "trigger_timeout": action_config.get_trigger_timeout(), } if executor in MESOS_EXECUTOR_NAMES: result["executor"] = "mesos" result["cpus"] = action_config.get_cpus() result["mem"] = action_config.get_mem() result["disk"] = action_config.get_disk() result["env"] = action_config.get_env() result["extra_volumes"] = format_volumes(action_config.get_extra_volumes()) result["docker_parameters"] = [ {"key": param["key"], "value": param["value"]} for param in action_config.format_docker_parameters() ] constraint_labels = ["attribute", "operator", "value"] result["constraints"] = [ dict(zip(constraint_labels, constraint)) for constraint in action_config.get_calculated_constraints() ] result["docker_image"] = action_config.get_docker_url() # Only pass non-None values, so Tron will use defaults for others return {key: val for key, val in result.items() if val is not None} def format_tron_job_dict(job_config): """Generate a dict of tronfig for a job, from the TronJobConfig. :param job_config: TronJobConfig """ action_dict = { action_config.get_action_name(): format_tron_action_dict(action_config) for action_config in job_config.get_actions() } result = { "node": job_config.get_node(), "schedule": job_config.get_schedule(), "actions": action_dict, "monitoring": job_config.get_monitoring(), "queueing": job_config.get_queueing(), "run_limit": job_config.get_run_limit(), "all_nodes": job_config.get_all_nodes(), "enabled": job_config.get_enabled(), "allow_overlap": job_config.get_allow_overlap(), "max_runtime": job_config.get_max_runtime(), "time_zone": job_config.get_time_zone(), "expected_runtime": job_config.get_expected_runtime(), } cleanup_config = job_config.get_cleanup_action() if cleanup_config: cleanup_action = format_tron_action_dict(cleanup_config) result["cleanup_action"] = cleanup_action # Only pass non-None values, so Tron will use defaults for others return {key: val for key, val in result.items() if val is not None} def load_tron_instance_config( service: str, instance: str, cluster: str, load_deployments: bool = True, soa_dir: str = DEFAULT_SOA_DIR, ) -> TronActionConfig: jobs = load_tron_service_config( service=service, cluster=cluster, load_deployments=load_deployments, soa_dir=soa_dir, ) requested_job, requested_action = instance.split(".") for job in jobs: if job.get_name() == requested_job: for action in job.get_actions(): if action.get_action_name() == requested_action: return action raise NoConfigurationForServiceError( f"No tron configuration found for {service} {instance}" ) @time_cache(ttl=5) def load_tron_service_config( service, cluster, load_deployments=True, soa_dir=DEFAULT_SOA_DIR, for_validation=False, ): return load_tron_service_config_no_cache( service, cluster, load_deployments, soa_dir, for_validation, ) def load_tron_service_config_no_cache( service, cluster, load_deployments=True, soa_dir=DEFAULT_SOA_DIR, for_validation=False, ): """Load all configured jobs for a service, and any additional config values.""" config = read_extra_service_information( service_name=service, extra_info=f"tron-{cluster}", soa_dir=soa_dir ) jobs = filter_templates_from_config(config) job_configs = [ TronJobConfig( name=name, service=service, cluster=cluster, config_dict=job, load_deployments=load_deployments, soa_dir=soa_dir, for_validation=for_validation, ) for name, job in jobs.items() ] return job_configs def create_complete_master_config(cluster, soa_dir=DEFAULT_SOA_DIR): system_paasta_config = load_system_paasta_config() tronfig_folder = get_tronfig_folder(soa_dir=soa_dir, cluster=cluster) config = read_yaml_file(os.path.join(tronfig_folder, f"MASTER.yaml")) master_config = format_master_config( config, system_paasta_config.get_volumes(), system_paasta_config.get_dockercfg_location(), ) return yaml.dump(master_config, Dumper=Dumper, default_flow_style=False) def create_complete_config(service, cluster, soa_dir=DEFAULT_SOA_DIR): """Generate a namespace configuration file for Tron, for a service.""" job_configs = load_tron_service_config( service=service, cluster=cluster, load_deployments=True, soa_dir=soa_dir ) preproccessed_config = {} preproccessed_config["jobs"] = { job_config.get_name(): format_tron_job_dict(job_config) for job_config in job_configs } return yaml.dump(preproccessed_config, Dumper=Dumper, default_flow_style=False) def validate_complete_config( service: str, cluster: str, soa_dir: str = DEFAULT_SOA_DIR ) -> List[str]: job_configs = load_tron_service_config( service=service, cluster=cluster, load_deployments=False, soa_dir=soa_dir, for_validation=True, ) # PaaSTA-specific validation for job_config in job_configs: check_msgs = job_config.validate() if check_msgs: return check_msgs master_config_path = os.path.join( os.path.abspath(soa_dir), "tron", cluster, MASTER_NAMESPACE + ".yaml" ) preproccessed_config = {} # Use Tronfig on generated config from PaaSTA to validate the rest preproccessed_config["jobs"] = { job_config.get_name(): format_tron_job_dict(job_config) for job_config in job_configs } complete_config = yaml.dump(preproccessed_config, Dumper=Dumper) proc = subprocess.run( ["tronfig", "-", "-V", "-n", service, "-m", master_config_path], input=complete_config, stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding="utf-8", ) if proc.returncode != 0: process_errors = proc.stderr.strip() if process_errors: # Error running tronfig print(proc.stderr) return [proc.stdout.strip()] return [] def get_tron_namespaces(cluster, soa_dir): tron_config_file = f"tron-{cluster}.yaml" config_dirs = [ _dir[0] for _dir in os.walk(os.path.abspath(soa_dir)) if tron_config_file in _dir[2] ] namespaces = [os.path.split(config_dir)[1] for config_dir in config_dirs] return namespaces def list_tron_clusters(service: str, soa_dir: str = DEFAULT_SOA_DIR) -> List[str]: """Returns the Tron clusters a service is configured to deploy to.""" search_re = r"/tron-([0-9a-z-_]*)\.yaml$" service_dir = os.path.join(soa_dir, service) clusters = [] for filename in glob.glob(f"{service_dir}/*.yaml"): cluster_re_match = re.search(search_re, filename) if cluster_re_match is not None: clusters.append(cluster_re_match.group(1)) return clusters def get_tron_dashboard_for_cluster(cluster: str): dashboards = load_system_paasta_config().get_dashboard_links()[cluster] if "Tron" not in dashboards: raise Exception(f"tron api endpoint is not defined for cluster {cluster}") return dashboards["Tron"] def tron_jobs_running_here() -> List[Tuple[str, str, int]]: return mesos_services_running_here( framework_filter=lambda fw: fw["name"].startswith("tron"), parse_service_instance_from_executor_id=parse_service_instance_from_executor_id, ) def parse_service_instance_from_executor_id(task_id: str) -> Tuple[str, str]: """Parses tron mesos task ids, like schematizer.traffic_generator.28414.turnstyle.46da87d7-6092-4ed4-b926-ffa7b21c7785""" try: service, job, job_run, action, uuid = task_id.split(".") except Exception as e: log.warning( f"Couldn't parse the mesos task id into a valid tron job: {task_id}: {e}" ) service, job, action = "unknown_service", "unknown_job", "unknown_action" return service, f"{job}.{action}"
18,261
2,480
1,114
6f6564a4b79638714786a730792e5cd34d3f9e05
1,755
py
Python
invenio_records_presentation/workflows/presentation.py
CESNET/invenio-records-presentation
547a2652a97feb1c6cd50e1ea917c2b5decb9286
[ "MIT" ]
null
null
null
invenio_records_presentation/workflows/presentation.py
CESNET/invenio-records-presentation
547a2652a97feb1c6cd50e1ea917c2b5decb9286
[ "MIT" ]
4
2019-03-19T16:18:22.000Z
2021-06-28T12:33:14.000Z
invenio_records_presentation/workflows/presentation.py
CESNET/invenio-records-presentation
547a2652a97feb1c6cd50e1ea917c2b5decb9286
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright (C) 2019 CESNET. # # Invenio Records Presentation is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """ Example Presentation workflow.""" from invenio_workflows import WorkflowEngine from invenio_records_presentation.api import PresentationOutputFile from invenio_records_presentation.workflows import presentation_workflow_factory example = presentation_workflow_factory(task_list=[ print_extra_data, create_example_file, print_data, transform_example_file, output_example_file, ])
27
89
0.688889
# -*- coding: utf-8 -*- # # Copyright (C) 2019 CESNET. # # Invenio Records Presentation is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """ Example Presentation workflow.""" from invenio_workflows import WorkflowEngine from invenio_records_presentation.api import PresentationOutputFile from invenio_records_presentation.workflows import presentation_workflow_factory def print_extra_data(obj, eng: WorkflowEngine): print(obj.extra_data) return obj def print_data(obj, eng: WorkflowEngine): print(obj.data) return obj def create_example_file(obj, eng: WorkflowEngine): # creates an example input file and passes a path to it input = obj.scratch.create_file(task_name='example_input') with open(input, 'w') as tf: tf.write("example file\n") obj.data = input return obj def transform_example_file(obj, eng: WorkflowEngine): input_data = '' try: with open(obj.data, 'r') as input: input_data = input.read() except OSError: eng.abort() # Cannot read input data, abort workflow execution output = obj.scratch.create_file(task_name='example_output') with open(output, 'w') as tf: tf.write(input_data.title()) obj.data = output return obj def output_example_file(obj, eng: WorkflowEngine): obj.data = PresentationOutputFile(path=obj.data, mimetype='text/plain', filename='example.txt') return obj example = presentation_workflow_factory(task_list=[ print_extra_data, create_example_file, print_data, transform_example_file, output_example_file, ])
1,008
0
115
af18231ed684c46a269b36519eb707e9ab6b7d6a
34,191
py
Python
twit_analytics.py
nikb999/Twitter-analytics
35074503be495e62fad282b9c723756df87119a7
[ "MIT" ]
null
null
null
twit_analytics.py
nikb999/Twitter-analytics
35074503be495e62fad282b9c723756df87119a7
[ "MIT" ]
null
null
null
twit_analytics.py
nikb999/Twitter-analytics
35074503be495e62fad282b9c723756df87119a7
[ "MIT" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- #add the path of the twitter egg import sys egg_path = '/home/users/web/........./cgi-bin/PyPkg/twitter-1.14.3-py2.7.egg' sys.path.append(egg_path) # Import the CGI, string, sys, and md5crypt modules import json, urllib2, re, time, datetime, sys, cgi, os import sqlite3 import MySQLdb as mdb import string, random from urlparse import urlparse from twitter import * from tempfile import TemporaryFile from collections import * from py_site_header import * def lex_anal(incomingTweetList): ''' routine to do lexical analysis ''' #final_tweet_list --- date / sender full name / tweet #read the tweets and create a list of sender-htag and sender-@ #incoming TweetList has two layer lists sender_htag = [] sender_at = [] h_tags_all = [] at_items_all = [] ts_all = [] for lex2 in incomingTweetList: for lex22 in lex2: td = lex22[0] #this is the tweet date try: ts = text_sanitize(lex22[1]) #this is the tweet sender except: print 'something wrong with ',lex22[1] ts = '---' ts_all.append(ts) h_tags = re.findall('[#]\w+',lex22[2]) #these are the h-tags at_items = re.findall('[@]\w+',lex22[2]) #these are the other users h_tags = [hti.lower() for hti in h_tags] at_items = [ati.lower() for ati in at_items] for h2 in h_tags: sender_htag.append([td,ts.lower()+'-'+h2]) h_tags_all.append(h2) for at2 in at_items: sender_at.append([td,ts.lower()+'-'+at2]) at_items_all.append(at2) #summarize the two new lists #following lists don't have dates sender_htag2 = [xx[1] for xx in sender_htag] sender_at2 = [yy[1] for yy in sender_at] #make a list of the tweet senders only ts_all = list(set(ts_all)) #print ts_all #get the top 10 htags #py2.6 ht_col = collections.Counter(h_tags_all) htag_data4heatmap = [] at_data4heatmap = [] #print '<ul>Top 10 Hashtags' #py2.6 for h_item in ht_col.most_common(10): for h_item in top_list(h_tags_all,10): #print '<li>', h_item, '</li>' #count the number of times each of the hastag was referenced by each tweet sender try: for tsitem in ts_all: try: itemtocount = str(tsitem+'-'+h_item[1]) htag_data4heatmap.append([tsitem,h_item[1], sender_htag2.count(itemtocount)]) except: print 'Problem here: ',h_item,tsitem except: print 'Problem here',h_item print '</ul>' #get the top 10 user references #py2.6 at_col = collections.Counter(at_items_all) #print '<ul>Top 10 Users' #py2.6 for a_item in at_col.most_common(10): for a_item in top_list(at_items_all,10): #print '<li>', a_item, '</li>' #count the number of times each of the hastag was referenced by each tweet sender try: for tsitem in ts_all: itemtocount = str(tsitem+'-'+a_item[1]) at_data4heatmap.append([tsitem,a_item[1], sender_at2.count(itemtocount)]) except: print 'Problem here 2',a_item print '</ul>' #draw the table with the heatmap tcols = len(ts_all) #number of tweet senders - rows trows = len(htag_data4heatmap) / tcols #number of hastags - cols #print trows, tcols if trows>0: print '<br><br>' print '<h3>Most Popular Hashtags</h3>' heatmap_table(trows,tcols,htag_data4heatmap) tcols = len(ts_all) #number of tweet senders - rows trows = len(at_data4heatmap) / tcols #number of hastags - cols #print trows, tcols if trows>0: print '<br><br>' print '<h3>Most Referenced Users</h3>' heatmap_table(trows,tcols,at_data4heatmap) # Define main function. main()
40.800716
197
0.534176
#!/usr/bin/python # -*- coding: utf-8 -*- #add the path of the twitter egg import sys egg_path = '/home/users/web/........./cgi-bin/PyPkg/twitter-1.14.3-py2.7.egg' sys.path.append(egg_path) # Import the CGI, string, sys, and md5crypt modules import json, urllib2, re, time, datetime, sys, cgi, os import sqlite3 import MySQLdb as mdb import string, random from urlparse import urlparse from twitter import * from tempfile import TemporaryFile from collections import * from py_site_header import * def thisPYfile(): return 'twit_analytics.py' def define_keys(): CONSUMER_KEY="......................" CONSUMER_SECRET="...................." ACCESS_TOKEN="..........................." ACCESS_TOKEN_SECRET="...................................." return CONSUMER_KEY, CONSUMER_SECRET, ACCESS_TOKEN, ACCESS_TOKEN_SECRET def start_database_to_store_tweets(): dbhost="......................" # Host name dbuser="......." # Mysql username dbpswd="......." # Mysql password dbname = '........' # MySql db try: conn = mdb.connect(host=dbhost,user=dbuser,passwd=dbpswd,db=dbname) c = conn.cursor() return c, True, conn except mdb.Error, e: return e, False def site_header(st=''): site_start() print '</div>' site_title(st) def site_start(): print ''' Content-type:text/html\r\n\r\n <html> <div class="wrap" id="wrap_id"> <head> <meta http-equiv="content-type" content="text/html;charset=utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1"> <title>Financial Models</title> <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js"></script> <script type="text/javascript" src="../js/js_functions.js"></script> <link rel="stylesheet" href="http://www.w3schools.com/lib/w3.css"> <link rel="stylesheet" href="http://www.w3schools.com/lib/w3-theme-indigo.css"> <link href='http://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css' rel='stylesheet' type='text/css'> <link rel="stylesheet" href="http://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.4.0/css/font-awesome.min.css"> <style> a:link { text-decoration: none; } a:visited { text-decoration: none; } a:hover { text-decoration: none; } a:active { text-decoration: none; } </style> </head> <body> ''' def site_title(s_title): print ''' <div id="site_title" class="w3-container w3-theme-d4 w3-center w3-padding-jumbo"> <p>&nbsp;</p> <div class="w3-row w3-jumbo"> ''' print s_title print ''' <br> </div> </div> ''' def site_footer(): import datetime curr_year = datetime.datetime.now().strftime("%Y") print '<div class="w3-container w3-border-top" style="text-align:center">' print '<p> &copy; 2013-'+curr_year+' | ' print '<a>Contact Us</a> </p>' print '<p><a href="./termsofuse.py">Terms of Use</a> |', print '<a href="./home.py#aboutus">About Us</a> </p>' print '</div>' print '</form>' print ' </body>' print ' </div>' #for the div id = wrap print ' </html>' def html_start(): # Start the HLML Block site_header('Twitter Analytics') def html_end(): site_footer() def top_list(in_l,topx): #function to get the top xx items in a list # Need this because v2.6 of python does not have Counter in collections counter = {} for i in in_l: counter[i] = counter.get(i, 0) + 1 final_dict = sorted([ (freq,word) for word, freq in counter.items() ], reverse=True)[:topx] return final_dict def text_sanitize(in_text): out_text = in_text.replace("'","") out_text = out_text.replace("\""," ").replace("\\"," ").replace("="," ").replace("''",'\"').replace("' '",'\"') return out_text def generate_form(): html_start() print '<div id="body_sty">' print '<p>Explore the world of Twitter and discover information about twitter users, their friends and followers as well as lexical analysis of the tweets.</p>' print '<TABLE style="display: block;" BORDER = 0>' print "<FORM METHOD = post ACTION=\'"+thisPYfile()+"\'>" print "<TR><TH align=\"left\">Screen Name:</TH><TD><INPUT type = text name=\"scn_name\"></TD><TR>" print "</TABLE>" print "<INPUT TYPE = hidden NAME = \"action\" VALUE = \"display\">" print "<INPUT TYPE = submit VALUE = \"Enter\">" print "</FORM>" print '</div>' html_end() def user_public_info(find_id_for): #html_start() #this line gets the public info for the user print '<h2>'+'\nUsers Public Info'+'</h2>' do_rest_of_module = 0 try: t = Twitter(auth=OAuth(define_keys()[2],define_keys()[3],define_keys()[0],define_keys()[1])) response = t.users.lookup(screen_name=find_id_for) do_rest_of_module = 1 except: print '<p>', 'Error getting public data' ,'</p>' if do_rest_of_module == 1: print '<h3>'+'\nBasic Info for: ', find_id_for+'</h3>' print '<p>', '\tKey Data' ,'</p>' print '<ul>' print '<li>ID:',response[0]['id'],'</li>' print '<li>Screen Name:',response[0]['screen_name'],'</li>' print '<li>Name:',response[0]['name'] ,'</li>' print '<li>Location:',response[0]['location'] ,'</li>' print '<li>Friends:',response[0]['friends_count'] ,'</li>' print '<li>Followers:',response[0]['followers_count'] ,'</li>' print '<li>Messages posted:',response[0]['statuses_count'] ,'</li>' print '</ul>' def get_last200_tweets(in_user): #this method will get the last 200 tweets of the user #rate limit is 180 requests per 15 min window #print '<h2>'+'\nAnalysis of Past Tweets for',in_user,'</h2>' do_rest_of_module = 0 try: t = Twitter(auth=OAuth(define_keys()[2],define_keys()[3],define_keys()[0],define_keys()[1])) response=t.statuses.user_timeline(screen_name=in_user,count=200) #print '<p>', '\tResponses left:', response.headers['x-rate-limit-remaining'] ,'</p>' #print '<p>Line 201. Response length: ',len(response),'</p>' if len(response) > 0: do_rest_of_module = 1 else: print '<p>', 'No info found for: ',in_user ,'</p>' except: print '<p>', 'Error getting tweets info for: ',in_user ,'</p>' if do_rest_of_module == 1: base_twit_list = [] data_for_plots = [] x = response #x = [element.lower() for element in response] #x is list - LOWER CASE hashtag_list = [] #start an empty list of hashtags at_list = [] #start an empty list of twitter IDs re_twt_list = [] #start a list of retweets #get the start and end dates sdf = x[0]['created_at'] #get the full date of last tweet start_date = datetime.date(int(sdf[26:30]), int(time.strptime(sdf[4:7],'%b').tm_mon), int(sdf[8:10])) edf = x[len(x)-1]['created_at'] #get the full date of first tweet end_date = datetime.date(int(edf[26:30]), int(time.strptime(edf[4:7],'%b').tm_mon), int(edf[8:10])) #end_date = str(edf[8:10])+'-'+str(edf[4:7])+'-'+str(edf[26:30]) twit_day_range = (start_date-end_date).days avg_twit_day = (1.0*len(x)/max(1,twit_day_range)) print >> t2, '<h4>'+'Tweet Stats for ', in_user+'</h4>' #print x[0] #print '\tStats for last',len(x), 'tweets by',in_user fix_nm = x[0]['user']['screen_name'] try: if str(x[0]['user']['name']).decode('ascii'): fix_nm = str(x[0]['user']['name']) except: #print 'something wrong with the name for ', x[0]['user']['name'] fix_nm = x[0]['user']['screen_name'] print >> t2, '<ul>' print >> t2, '<li>Key Personal Data</li>' print >> t2, '<ul>' print >> t2, '<li>ID:',x[0]['user']['id'],'</li>' print >> t2, '<li>Screen Name:',x[0]['user']['screen_name'],'</li>' print >> t2, '<li>Name:',fix_nm,'</li>' #print '<li>Location:',x[0]['user']['location'],'</li>' print >> t2, '<li>Friends:',x[0]['user']['friends_count'] ,'</li>' print >> t2, '<li>Followers:',x[0]['user']['followers_count'] ,'</li>' print >> t2, '<li>Messages posted:',x[0]['user']['statuses_count'] ,'</li>' foll_frnd_rat = 1.0*x[0]['user']['followers_count'] / max(1,x[0]['user']['friends_count']) print >> t2, '<li>Follower to Friend Ratio:', '%.1f' %(foll_frnd_rat),'</li>' print >> t2, '</ul>' print >> t2, '</ul>' print >> t2, '<ul>' print >> t2, '<li>',len(x),'tweets in past',twit_day_range,'days', print >> t2, '(',end_date,'to',start_date,')' ,'</li>' print >> t2, '<li>', 'Avg of ','%.1f' %(avg_twit_day),'tweets per day' ,'</li>' #add info to the data for charts list data_for_plots.extend([x[0]['user']['screen_name']]) data_for_plots.extend([x[0]['user']['friends_count']]) data_for_plots.extend([x[0]['user']['followers_count']]) data_for_plots.extend([x[0]['user']['statuses_count']]) data_for_plots.extend([twit_day_range]) data_for_plots.extend([len(x)]) for item in x: #the encode(ascii,ignore) will convert text to ascii and ignore other td = item['created_at'] twt_date = datetime.date(int(td[26:30]), int(time.strptime(td[4:7],'%b').tm_mon), int(td[8:10])) fix_nm = item['user']['screen_name'] try: if str(item['user']['name']).encode('utf8','ignore'): fix_nm = str(item['user']['name']) except: fix_nm = item['user']['screen_name'] try: fix_text = text_sanitize(item['text'].encode('utf8','ignore')) except: #print 'something wrong with the text in tweet for: ',in_user fix_text = 'Did not process' #print fix_text,'\t',type(item['text']),'\t',len(item['text']),'\t',item['text'], twt_list_data = [twt_date] + [fix_nm.lower()] + [fix_text] try: base_twit_list.append(twt_list_data) except: print '<p>Unknown Error:', type(twt_list_data), twt_list_data, '</p>' textitem = fix_text newhastags = re.findall('[#]\w+',textitem) newatitems = re.findall('[@]\w+',textitem) re_tweets = re.findall('RT',textitem) #before adding to the final lists, convert the hashtags and atitems #to lower case. This will avoid issues of double counting same names newhastags = [hti.lower() for hti in newhastags] newatitems = [ati.lower() for ati in newatitems] #Now add to the list. #Use EXTEND function that adds elements to the list rahter than another list. hashtag_list.extend(newhastags) at_list.extend(newatitems) re_twt_list.extend(re_tweets) #now try to find some patterns in the last 200 tweets #print 'use the collections library to find out the top 5' #Version 2.6 of python does not support Counters within collections #py2.6 hashcollect = collections.Counter(hashtag_list) #py2.6 atcollect = collections.Counter(at_list) totalretweets = len(re_twt_list) retwpercent = (1.0 * totalretweets / max(1,len(x)) ) * 100 top10users = [] #print '\n.............................' ,'</p>' print >> t2, '<li>', '\t',"%.2f%%" % retwpercent, 'are retweets (',totalretweets,'of a total of',len(x),'tweets)' ,'</li>' print >> t2, '<ul>' print >> t2, '<li>',(len(x)-totalretweets), 'tweets in ',twit_day_range,' days (without retweets)</li>' print >> t2, '<li>','Avg of ','%.1f' %( 1.0*(len(x)-totalretweets)/max(twit_day_range,1) ),'tweets per day (without retweets)</li>' print >> t2, '</ul></ul>' data_for_plots.extend([totalretweets]) print >> t2, '<ul>' print >> t2, '<li>', '\tHastags referenced over past',len(x),'tweets = ',len(hashtag_list) ,'</li>' print >> t2, '<li>', '\t10 Most referenced hashtags' ,'</li>' print >> t2, '<ul>' #py2.6 for h_item in hashcollect.most_common(10): #can't use in python 2.6 for h_item in top_list(hashtag_list,10): print >> t2, '<li>',text_sanitize(h_item[1]),'|',h_item[0] ,'</li>' print >> t2, '</ul></ul>' print >> t2, '<ul>' print >> t2, '<li>', '\tTwitter IDs referenced over past',len(x),'tweets = ',len(at_list) ,'</li>' print >> t2, '<li>', '\t10 Most referenced Tweeter IDs' ,'</li>' print >> t2, '<ul>' #py2.6 for at_item in atcollect.most_common(10): for at_item in top_list(at_list,10): print >> t2, '<li>', '\t\t',text_sanitize(at_item[1]),'|',at_item[0],'</li>' #add the list of users to the top10user list top10users.append(at_item[1].replace('@','')) print >> t2, '</ul></ul>' #print '<p>Twit list:',type(base_twit_list),'\t',len(base_twit_list),'</p>' return top10users, base_twit_list, data_for_plots def display_data(scn_name): html_start() print '<div id="body_sty">' print '<h4>Data shown for '+scn_name.upper()+' and 10 other users most referenced in '+scn_name.upper()+'\'s tweets.</h4><hr>' user_to_check = scn_name if user_to_check[0] == '@': user_raw = user_to_check user_to_check = user_raw.replace('@','') # the following lines get the user info # -- this is response limited to 180 #user_public_info(user_to_check) max_items_to_show = 200 max_tweets_to_get = 200 #if temp file exists, close it global t2 try: t2.close() except: print '' #open the temp file t2=TemporaryFile() print >> t2, ''' <a href="#" onclick="show_hideStuff('detailed_data'); return false;"> <br><br><hr><br> <h3>Detailed Data (click to see or hide)</h3></a><br> <div id="detailed_data" style="display:none"> ''' # last xx tweets is response limited to 180 res_last200_tweets = get_last200_tweets(user_to_check.lower()) #print '<p>', type(res_last200_tweets), len(res_last200_tweets), '</p>' final_tweet_list = [] final_data_for_plots = [] do_rest_of_display_data = 0 try: user_reference = res_last200_tweets[0] tweet_last200_tweets = res_last200_tweets[1] final_tweet_list.append(tweet_last200_tweets) final_data_for_plots.append(res_last200_tweets[2]) do_rest_of_display_data = 1 except: print '<p>Something wrong to get the list of twitter IDs</p>' if (do_rest_of_display_data == 1): print >> t2, '<br>' try: if len(user_reference) > 0: for newuser in user_reference: if newuser != user_to_check: res_last200_tweets = get_last200_tweets(newuser.lower()) tweets_from_res_last200 = res_last200_tweets[1] final_tweet_list.append(tweets_from_res_last200) final_data_for_plots.append(res_last200_tweets[2]) else: print >>t2, '<p>', 'Did not find any instance of other users referenced in your tweets.' ,'</p>' except: print >>t2, '<p>', 'No info found.' ,'</p>' #Add the data to the temp file also print >> t2, '<br><br><hr><h4>List of Tweets Analyzed</h4>' print >> t2, '<table id="table1" class="pure-table" width=100% style="display: block;">' print >> t2, '<thead><tr bgcolor=#def><td>Date</td><td>Sender</td><td>Text</td></tr></thead>' row_even = True for i1 in final_tweet_list: for i2 in i1: #database fields: current date, username, screen name, twt_date, twt_writer, twt_text twts = [datetime.date.today(),scn_name,user_to_check,i2[0],text_sanitize(i2[1]),text_sanitize(i2[2])] try: if row_even == True: print >> t2, '<tr><td><sm>', twts[3] ,'</sm></td><td><sm>', str(twts[4]),'</sm></td><td><sm>', str(twts[5]),'</sm></td></tr>' row_even = False else: print >> t2, '<tr class="pure-table-odd"><td><sm>', twts[3] ,'</sm></td><td><sm>', str(twts[4]),'</sm></td><td><sm>', str(twts[5]),'</sm></td></tr>' row_even = True except: print '', print >> t2, '</table>' #print out the chart data #data fields: screen_name, friends, followers, msgs, daterange, tweets, retweets #print json.dumps(final_data_for_plots,indent=2) #try doing a chart #draw a chart showing friends and followers print '<h3>Friends and Followers</h3>' x_fdfp = [] y1_fdfp = [] y2_fdfp = [] #print '<p>Before adding data:',x_fdfp, y_fdfp, '</p>' x_fdfp.append( 'Screen Name' ) y1_fdfp.append( 'Friends' ) y2_fdfp.append( 'Followers' ) for xy1 in range(len(final_data_for_plots)): x_fdfp.append( final_data_for_plots[xy1][0] ) y1_fdfp.append( final_data_for_plots[xy1][1] ) y2_fdfp.append( final_data_for_plots[xy1][2] ) two_bar_chart_data("Friends and Followers", x_fdfp, y1_fdfp, y2_fdfp) print '<h3>Followers to Friends Ratio</h3>' #Draw a bar chart to show followers to friends ratio x_fdfp = [] y_fdfp = [] #print '<p>Before adding data:',x_fdfp, y_fdfp, '</p>' for xy1 in range(len(final_data_for_plots)): x_fdfp.append( final_data_for_plots[xy1][0] ) y_fdfp.append( round( 1.0 * final_data_for_plots[xy1][2] / max(final_data_for_plots[xy1][1],1),1) ) #print '<p>',x_fdfp, y_fdfp, '</p>' bar_chart_data("Followers to Friends Ratio", x_fdfp, y_fdfp) print '<h3>Tweets sent per day</h3>' x_fdfp = [] y1_fdfp = [] y2_fdfp = [] #print '<p>Before adding data:',x_fdfp, y_fdfp, '</p>' x_fdfp.append( 'Screen Name' ) y1_fdfp.append( 'Tweets per day - with retweets' ) y2_fdfp.append( 'Tweets per day - without retweets' ) for xy1 in range(len(final_data_for_plots)): x_fdfp.append( final_data_for_plots[xy1][0] ) y1_fdfp.append( final_data_for_plots[xy1][5] / max(final_data_for_plots[xy1][4],1) ) y2_fdfp.append( (final_data_for_plots[xy1][5]-final_data_for_plots[xy1][6]) / max(final_data_for_plots[xy1][4],1) ) two_bar_chart_data("Tweets sent per day", x_fdfp, y1_fdfp, y2_fdfp) print '<h3>Tweet range (tweets seen per day)</h3>' x_fdfp = [] y_fdfp = [] #print '<p>Before adding data:',x_fdfp, y_fdfp, '</p>' for xy1 in range(len(final_data_for_plots)): x_fdfp.append( final_data_for_plots[xy1][0] ) y_fdfp.append( round( 1.0 * final_data_for_plots[xy1][2] * final_data_for_plots[xy1][5] / max(final_data_for_plots[xy1][4],1) ) ) #print '<p>',x_fdfp, y_fdfp, '</p>' bar_chart_data("Tweet Range", x_fdfp, y_fdfp) lex_anal(final_tweet_list) #print out the detailed data # go to the first record of the temp file first print >> t2, ' </div> ' t2.seek(0) print t2.read() t2.close() #if this works - can delete below this. else: print '<p>Not able to process this user. Please try another.</p>' print '</div>' #close the body_sty div html_end() def lex_anal(incomingTweetList): ''' routine to do lexical analysis ''' #final_tweet_list --- date / sender full name / tweet #read the tweets and create a list of sender-htag and sender-@ #incoming TweetList has two layer lists sender_htag = [] sender_at = [] h_tags_all = [] at_items_all = [] ts_all = [] for lex2 in incomingTweetList: for lex22 in lex2: td = lex22[0] #this is the tweet date try: ts = text_sanitize(lex22[1]) #this is the tweet sender except: print 'something wrong with ',lex22[1] ts = '---' ts_all.append(ts) h_tags = re.findall('[#]\w+',lex22[2]) #these are the h-tags at_items = re.findall('[@]\w+',lex22[2]) #these are the other users h_tags = [hti.lower() for hti in h_tags] at_items = [ati.lower() for ati in at_items] for h2 in h_tags: sender_htag.append([td,ts.lower()+'-'+h2]) h_tags_all.append(h2) for at2 in at_items: sender_at.append([td,ts.lower()+'-'+at2]) at_items_all.append(at2) #summarize the two new lists #following lists don't have dates sender_htag2 = [xx[1] for xx in sender_htag] sender_at2 = [yy[1] for yy in sender_at] #make a list of the tweet senders only ts_all = list(set(ts_all)) #print ts_all #get the top 10 htags #py2.6 ht_col = collections.Counter(h_tags_all) htag_data4heatmap = [] at_data4heatmap = [] #print '<ul>Top 10 Hashtags' #py2.6 for h_item in ht_col.most_common(10): for h_item in top_list(h_tags_all,10): #print '<li>', h_item, '</li>' #count the number of times each of the hastag was referenced by each tweet sender try: for tsitem in ts_all: try: itemtocount = str(tsitem+'-'+h_item[1]) htag_data4heatmap.append([tsitem,h_item[1], sender_htag2.count(itemtocount)]) except: print 'Problem here: ',h_item,tsitem except: print 'Problem here',h_item print '</ul>' #get the top 10 user references #py2.6 at_col = collections.Counter(at_items_all) #print '<ul>Top 10 Users' #py2.6 for a_item in at_col.most_common(10): for a_item in top_list(at_items_all,10): #print '<li>', a_item, '</li>' #count the number of times each of the hastag was referenced by each tweet sender try: for tsitem in ts_all: itemtocount = str(tsitem+'-'+a_item[1]) at_data4heatmap.append([tsitem,a_item[1], sender_at2.count(itemtocount)]) except: print 'Problem here 2',a_item print '</ul>' #draw the table with the heatmap tcols = len(ts_all) #number of tweet senders - rows trows = len(htag_data4heatmap) / tcols #number of hastags - cols #print trows, tcols if trows>0: print '<br><br>' print '<h3>Most Popular Hashtags</h3>' heatmap_table(trows,tcols,htag_data4heatmap) tcols = len(ts_all) #number of tweet senders - rows trows = len(at_data4heatmap) / tcols #number of hastags - cols #print trows, tcols if trows>0: print '<br><br>' print '<h3>Most Referenced Users</h3>' heatmap_table(trows,tcols,at_data4heatmap) def heatmap_table(trows,tcols,hm): #calculate the max and min of the references #and create a normalized color scale mx = max(i[2] for i in hm) mn = min(i[2] for i in hm) itv = mx - mn #COLOR pallete from http://colorbrewer2.org/ for arow in hm: rval = 1.0*arow[2]/itv if rval<0.1: arow[2]='#FFF5F0' elif rval>=0.1 and rval<0.25: arow[2]='#FEE0D2' elif rval>=0.25 and rval<0.4: arow[2]='#FCBBA1' elif rval>=0.4 and rval<0.5: arow[2]='#FC9272' elif rval>=0.5 and rval<0.6: arow[2]='#FB6A4A' elif rval>=0.6 and rval<0.7: arow[2]='#EF3B2C' elif rval>=0.7 and rval<0.8: arow[2]='#CB181D' elif rval>=0.8 and rval<0.9: arow[2]='#A50F15' elif rval>=0.9: arow[2]='#67000D' print '<table width=100% style="display: block;"> ' for i in range(trows+1): print '<tr>', for j in range(tcols+1): if (i==0 and j==0): print '<td width="15%">','','</td>', elif i==0 and j>0 and j<(tcols): print '<td width="8.5%"><sm>',hm[j-1][0][:10],'</sm></td>', elif i==0 and j==(tcols): print '<td width="8.5%"><sm>',hm[j-1][0][:10],'</sm></td></tr>' elif i>0 and j==0: print '<td><sm>',hm[(i-1)*tcols+j+1-1][1],'</sm></td>', elif i>0 and j>0 and j<tcols: print '<td bgcolor=',hm[(i-1)*tcols+j-1][2],'></td>', elif i>0 and j==tcols: print '<td bgcolor=',hm[(i-1)*tcols+j-1][2],'></td></tr>' print '</table> ' def print_detailed_tweets(in_usertocheck): html_start() check_another_user_button() #print '<h3>Listing of tweets analyzed:</h3>' sd2st = start_database_to_store_tweets() if sd2st[1] == True: c2 = sd2st[0] conn2 = sd2st[2] #read all the tweets for the username and screen name read_text = "SELECT * FROM tweetlist WHERE (username =\'"+in_usertocheck+"\')" #print '<p>Select tweet command:',read_text,'</p>' try: c2.execute(read_text) for crow in c2: print crow[1] conn2.close() #print '<h2>Finished with the tweet list</h2>' except conn2.Error, e: print "E Error %d: %s" % (e.args[0], e.args[1]) else: print "F Error %d: %s" % (sd2st[0].args[0],sd2st[0].args[1]) html_end() def bar_chart_data(cht_title,xdata,ydata): #this routine will draw a bar chart #print '<p>DO NOT PRINT anaything inside chart modules except needed items</p>' print '<!--Load the AJAX API-->' print '<script type=\"text/javascript\" src=\"https://www.google.com/jsapi\"></script>' print '<script type=\"text/javascript\">' # Load the Visualization API and the piechart package. print ' google.load(\'visualization\', \'1.0\', {\'packages\':[\'corechart\']}); ' # Set a callback to run when the Google Visualization API is loaded. print ' google.setOnLoadCallback(drawChart);' # Callback that creates and populates a data table, # instantiates the pie chart, passes in the data and # draws it. print ' function drawChart() { ' # Create the data table. print ' var data = new google.visualization.arrayToDataTable([ ' print ' [ \'Screen Name\', \' ' , cht_title, ' \', {role:\'style\'} ], ' for cdi in range(len(xdata)): if cdi == 0: print " [ \'", xdata[cdi], "\',", ydata[cdi], ", \'orange\' ], " else: print " [ \'", xdata[cdi], "\',", ydata[cdi], ", \'blue\' ], " print ' ]); ' #Set chart options print " var options = {\'title\':\'",cht_title,"\', " print ' \'width\':600, ' print ' \'height\':400, ' print ' \'hAxis\' : {\'logScale\' : true} , ' print ' legend :\'none\' , \'backgroundColor\': { fill: \"none\" } ' print ' }; ' # chart_bottom(): # Instantiate and draw our chart, passing in some options. print ' var chart = new google.visualization.BarChart(document.getElementById(\"',cht_title+'DIV','\")); ' print ' function selectHandler() { ' print ' var selectedItem = chart.getSelection()[0]; ' print ' if (selectedItem) { ' print ' var topping = data.getValue(selectedItem.row, 0); ' print ' alert(\'The user selected \' + topping); ' print ' } ' print ' } ' print ' google.visualization.events.addListener(chart, \'select\', selectHandler); ' print ' chart.draw(data, options); ' print ' } ' print '</script> ' print '<!--Div that will hold the pie chart--> ' print '<div id=\"',cht_title+'DIV','\" style=\"width:600; height:400\"></div> ' def two_bar_chart_data(cht_title,xdata,ydata1,ydata2): #this routine will draw a bar chart with two bara #print '<p>DO NOT PRINT anaything inside chart modules except needed items</p>' print '<!--Load the AJAX API-->' print '<script type=\"text/javascript\" src=\"https://www.google.com/jsapi\"></script>' print '<script type=\"text/javascript\">' # Load the Visualization API and the piechart package. print ' google.load(\'visualization\', \'1.0\', {\'packages\':[\'corechart\']}); ' # Set a callback to run when the Google Visualization API is loaded. print ' google.setOnLoadCallback(drawChart);' print ' function drawChart() { ' print ' var data = new google.visualization.arrayToDataTable([ ' print " [ \'Screen Name\', \' ",ydata1[0], "\' ,{role:\'style\'}, \'" ,ydata2[0], "\' , {role:\'style\'} ], " for cdi in range(len(xdata)): if cdi>0: print " [ \'", xdata[cdi], "\',", ydata1[cdi],",\'blue\',", ydata2[cdi], ", \'red\' ], " print ' ]); ' #Set chart options print " var options = {\'title\':\'",cht_title,"\', " print ' \'width\':600, ' print ' \'height\':400, ' print ' \'hAxis\' : {\'logScale\' : false} , ' print ' legend :\'top\' , \'backgroundColor\': { fill: \"none\" } ' print ' }; ' # chart_bottom(): # Instantiate and draw our chart, passing in some options. print ' var chart = new google.visualization.BarChart(document.getElementById(\"',cht_title+'DIV','\")); ' print ' function selectHandler() { ' print ' var selectedItem = chart.getSelection()[0]; ' print ' if (selectedItem) { ' print ' var topping = data.getValue(selectedItem.row, 0); ' print ' alert(\'The user selected \' + topping); ' print ' } ' print ' } ' print ' google.visualization.events.addListener(chart, \'select\', selectHandler); ' print ' chart.draw(data, options); ' print ' } ' print '</script> ' print '<!--Div that will hold the pie chart--> ' print '<div id=\"',cht_title+'DIV','\" style=\"width:600; height:400\"></div> ' def test3(): #Test some random twitter functions on stream data html_start() testname = "concession,privatization,public private" #testname = "mining,mines,metal,oil,gas,petroleum" try: ts = TwitterStream(auth=OAuth(define_keys()[2],define_keys()[3],define_keys()[0],define_keys()[1])) #response = ts.statuses.sample() response = ts.statuses.filter(track=testname) showcount = 0 maxshow = 50 for tweet in response: showcount += 1 if showcount>= maxshow: break # You must test that your tweet has text. It might be a delete # or data message. if tweet is None: print_para("-- None --") elif tweet.get('text'): print_para(tweet['user']['name']+'.....'+str(twit_date(tweet['created_at']))+'---'+tweet['text']) else: print_para(str(showcount)+'...') #print_para(json.dumps(tweet,indent=2)) except TwitterHTTPError, e: print '<p>Error getting tweets info for:',e['details'],'</p>' html_end() def print_para(instr): print '<p>',instr,'</p>' def twit_date(in_created_at): out_date = datetime.date(int(in_created_at[26:30]), int(time.strptime(in_created_at[4:7],'%b').tm_mon), int(in_created_at[8:10])) return out_date # Define main function. def main(): form = cgi.FieldStorage() if (form.has_key("action") and form.has_key("scn_name")): if (form["action"].value == "display"): display_data(text_sanitize(form["scn_name"].value)) else: generate_form() main()
29,208
0
613
47aeba5f5a974bde56729cafe676435b3057e324
3,765
py
Python
sonde/qaqc_viewer.py
wilsaj/pint
a2b2a6ea9ff480a168358af642cf36c7f3c5d0e4
[ "BSD-3-Clause" ]
1
2017-12-06T04:28:59.000Z
2017-12-06T04:28:59.000Z
sonde/qaqc_viewer.py
wilsaj/pint
a2b2a6ea9ff480a168358af642cf36c7f3c5d0e4
[ "BSD-3-Clause" ]
null
null
null
sonde/qaqc_viewer.py
wilsaj/pint
a2b2a6ea9ff480a168358af642cf36c7f3c5d0e4
[ "BSD-3-Clause" ]
null
null
null
""" QAQC Viewer based on Chaco & Traits """ #from enthought.chaco.example_support import COLOR_PALETTE #from enthought.enable.example_support import DemoFrame, demo_main # Enthought library imports from enthought.enable.api import Window, Component, ComponentEditor from enthought.traits.api import HasTraits, Instance from enthought.traits.ui.api import Item, Group, View # Chaco imports from enthought.chaco.api import Plot, ArrayDataSource, ArrayPlotData, \ BarPlot, DataRange1D, LabelAxis, LinearMapper, VPlotContainer, \ PlotAxis, PlotGrid, LinePlot, add_default_grids, PlotLabel from enthought.chaco.tools.api import PanTool, ZoomTool from enthought.chaco.scales.api import CalendarScaleSystem from enthought.chaco.scales_tick_generator import ScalesTickGenerator from sonde import Sonde import time import numpy as np #============================================================================== # Attributes to use for the plot view. #size=(800,600) #title="Salinity plot example" if __name__ == "__main__": viewer = BaseViewer() viewer.configure_traits()
41.833333
110
0.601594
""" QAQC Viewer based on Chaco & Traits """ #from enthought.chaco.example_support import COLOR_PALETTE #from enthought.enable.example_support import DemoFrame, demo_main # Enthought library imports from enthought.enable.api import Window, Component, ComponentEditor from enthought.traits.api import HasTraits, Instance from enthought.traits.ui.api import Item, Group, View # Chaco imports from enthought.chaco.api import Plot, ArrayDataSource, ArrayPlotData, \ BarPlot, DataRange1D, LabelAxis, LinearMapper, VPlotContainer, \ PlotAxis, PlotGrid, LinePlot, add_default_grids, PlotLabel from enthought.chaco.tools.api import PanTool, ZoomTool from enthought.chaco.scales.api import CalendarScaleSystem from enthought.chaco.scales_tick_generator import ScalesTickGenerator from sonde import Sonde import time import numpy as np class BaseViewer(HasTraits): main_tab = Instance(Component) traits_view = View(Item('main_tab', editor=ComponentEditor), width=500, height=500, resizable=True, title="Salinity Plot") def __init__(self, **kwargs): HasTraits.__init__(self, **kwargs) self.init_data() def init_data(self): file_name = '/home/dpothina/work/apps/pysonde/tests/ysi_test_files/BAYT_20070323_CDT_YS1772AA_000.dat' sonde = Sonde(file_name) sal_ds = np.array([1, 2, 3, 4, 5, 6, 7, 8]) # sonde.data['seawater_salinity'] time_ds = sal_ds**2 # [time.mktime(date.utctimetuple()) for date in sonde.dates] #time_ds = ArrayDataSource(dt) #sal_ds = ArrayDataSource(salinity, sort_order="none") self.plot_data = ArrayPlotData(sal_ds=sal_ds, time_ds=time_ds) def _main_tab_default(self): self.sal_plot = Plot(self.plot_data) self.sal_plot.plot(('time_ds', 'sal_ds'), type='line') #sal_plot.overlays.append(PlotAxis(sal_plot, orientation='left')) #bottom_axis = PlotAxis(sal_plot, orientation="bottom",# mapper=xmapper, # tick_generator=ScalesTickGenerator(scale=CalendarScaleSystem())) #sal_plot.overlays.append(bottom_axis) #hgrid, vgrid = add_default_grids(sal_plot) #vgrid.tick_generator = bottom_axis.tick_generator #sal_plot.tools.append(PanTool(sal_plot, constrain=True, # constrain_direction="x")) #sal_plot.overlays.append(ZoomTool(sal_plot, drag_button="right", # always_on=True, # tool_mode="range", # axis="index", # max_zoom_out_factor=10.0, # )) container = VPlotContainer(bgcolor="lightblue", spacing=40, padding=50, fill_padding=False) container.add(sal_plot) #container.add(price_plot) #container.overlays.append(PlotLabel("Salinity Plot with Date Axis", # component=container, # #font="Times New Roman 24")) # font="Arial 24")) return container #def default_traits_view(self): # return View(Group(Item('main_tab', editor=ComponentEditor)), # width=500, height=500, resizable=True, title="Salinity Plot") #============================================================================== # Attributes to use for the plot view. #size=(800,600) #title="Salinity plot example" if __name__ == "__main__": viewer = BaseViewer() viewer.configure_traits()
2,200
450
23
86f12b2a5cc0b34fb6db729600f73e406c9d8539
1,514
py
Python
src/tt_calendar/tt_calendar/logic.py
al-arz/the-tale
542770257eb6ebd56a5ac44ea1ef93ff4ab19eb5
[ "BSD-3-Clause" ]
85
2017-11-21T12:22:02.000Z
2022-03-27T23:07:17.000Z
src/tt_calendar/tt_calendar/logic.py
al-arz/the-tale
542770257eb6ebd56a5ac44ea1ef93ff4ab19eb5
[ "BSD-3-Clause" ]
545
2017-11-04T14:15:04.000Z
2022-03-27T14:19:27.000Z
src/tt_calendar/tt_calendar/logic.py
al-arz/the-tale
542770257eb6ebd56a5ac44ea1ef93ff4ab19eb5
[ "BSD-3-Clause" ]
45
2017-11-11T12:36:30.000Z
2022-02-25T06:10:44.000Z
import datetime from . import relations
22.597015
66
0.61889
import datetime from . import relations def actual_real_feasts(now=None): if now is None: now = datetime.datetime.utcnow() now = now.replace(year=datetime.MINYEAR) for feast in relations.REAL_FEAST.records: for interval in feast.intervals: if interval[0] <= now <= interval[1]: yield feast break def actual_dates(now, relation): for date in relation.records: for interval in date.intervals: if interval[0] <= (now.month, now.day) <= interval[1]: yield date break def is_day_off(date): if date.day in (14, 29, 44, 59, 74, 89): return True if date.month == relations.MONTH.DRY.value and date.day == 1: return True return False def day_type(date): if is_day_off(date): return relations.DAY_TYPE.DAY_OFF return relations.DAY_TYPE.WEEKDAY def day_times(time): if time.hour < 7 or 19 <= time.hour: yield relations.DAY_TIME.DARK_TIME else: yield relations.DAY_TIME.LIGHT_TIME if time.hour < 7: yield relations.DAY_TIME.NIGHT elif time.hour < 10: yield relations.DAY_TIME.MORNING elif time.hour < 16: yield relations.DAY_TIME.DAY elif time.hour < 19: yield relations.DAY_TIME.EVENING else: yield relations.DAY_TIME.NIGHT if time.hour == 7: yield relations.DAY_TIME.DAWN if time.hour == 19: yield relations.DAY_TIME.SUNSET
1,352
0
115
120fa0d15479ccd5b4653c3adf9354e51e55b55c
573
py
Python
ComicPub/comics/admin.py
Xonshiz/ComicPub
d332ee1b62d6c28347954280696c86898de6d125
[ "MIT" ]
8
2017-09-02T07:04:59.000Z
2020-12-17T17:30:34.000Z
ComicPub/comics/admin.py
Xonshiz/ComicPub
d332ee1b62d6c28347954280696c86898de6d125
[ "MIT" ]
1
2017-10-24T12:49:57.000Z
2017-10-24T15:04:44.000Z
ComicPub/comics/admin.py
Xonshiz/ComicPub
d332ee1b62d6c28347954280696c86898de6d125
[ "MIT" ]
4
2017-10-24T14:13:13.000Z
2021-12-15T17:09:23.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.contrib import admin from comics.models import Comic, ComicChapter # class PageFileInline(admin.TabularInline): # model = ComicChapter # # # class PageAdmin(admin.ModelAdmin): # inlines = [PageFileInline, ] # class ChapterInline(admin.TabularInline): # model = ComicChapterFiles # # class ComicAdmin(admin.ModelAdmin): # inlines = [ # ChapterInline, # ] # admin.site.register(ComicChapter, ComicAdmin) admin.site.register(Comic) admin.site.register(ComicChapter)
21.222222
47
0.724258
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.contrib import admin from comics.models import Comic, ComicChapter # class PageFileInline(admin.TabularInline): # model = ComicChapter # # # class PageAdmin(admin.ModelAdmin): # inlines = [PageFileInline, ] # class ChapterInline(admin.TabularInline): # model = ComicChapterFiles # # class ComicAdmin(admin.ModelAdmin): # inlines = [ # ChapterInline, # ] # admin.site.register(ComicChapter, ComicAdmin) admin.site.register(Comic) admin.site.register(ComicChapter)
0
0
0
d7e5e4980b5718dcaa9192759e6b4c3e5d658b97
2,457
py
Python
chpt6/Generate_random_characters.py
GDG-Buea/learn-python
9dfe8caa4b57489cf4249bf7e64856062a0b93c2
[ "Apache-2.0" ]
null
null
null
chpt6/Generate_random_characters.py
GDG-Buea/learn-python
9dfe8caa4b57489cf4249bf7e64856062a0b93c2
[ "Apache-2.0" ]
2
2018-05-21T09:39:00.000Z
2018-05-27T15:59:15.000Z
chpt6/Generate_random_characters.py
GDG-Buea/learn-python
9dfe8caa4b57489cf4249bf7e64856062a0b93c2
[ "Apache-2.0" ]
2
2018-05-19T14:59:56.000Z
2018-05-19T15:25:48.000Z
# This program displays 100 lowercase letters, fifteen per line import turtle from random import randint main() print() # Draw a line from (x1, y1) to (x2, y2) # def drawLine(x1, y1, x2, y2): # turtle.penup() # turtle.goto(x1, y1) # turtle.pendown() # turtle.goto(x2, y2) # def writeText(s, x, y): # turtle.penup() # Pull the pen up # turtle.goto(x, y) # turtle.pendown() # Pull the pen down # turtle.write(s) # Write a string # # Draw a point at the specified location (x, y) # def drawPoint(x, y): # turtle.penup() # Pull the pen up # turtle.goto(x, y) # turtle.pendown() # Pull the pen down # turtle.begin_fill() # Begin to fill color in a shape # turtle.circle(3) # turtle.end_fill() # Fill the shape # # Draw a circle centered at (x, y) with the specified radius # def drawCircle(x = 0, y = 0, radius = 10): # turtle.penup() # Pull the pen up # turtle.goto(x, y - radius) # turtle.pendown() # Pull the pen down # turtle.circle(radius) # # Draw a rectangle at (x, y) with the specified width and height # def drawRectangle(x = 0, y = 0, width = 10, height = 10): # turtle.penup() # Pull the pen up # turtle.goto(x + width / 2, y + height / 2) # turtle.pendown() # Pull the pen down # turtle.right(90) # turtle.forward(height) # turtle.right(90) # turtle.forward(width) # turtle.right(90) # turtle.forward(height) # turtle.right(90) # turtle.forward(width) # Generate a random uppercase letter # def getRandomUpperCaseLetter() : # return getRandomCharacter('A', 'Z') # # Generate a random digit character # def getRandomDigitCharacter() : # return getRandomCharacter('0', '9') # # Generate a random character # def getRandomASCIICharacter() : # return chr(randint(0, 127)) # # # Generate a random character between ch1 and ch2 # def getRandomCharacter(ch1, ch2) : # return chr(randint(ord(ch1), ord(ch2))) #
23.179245
66
0.659341
# This program displays 100 lowercase letters, fifteen per line import turtle from random import randint def get_random_lower_case_letter(): return get_random_character('a', 'z') def get_random_character(ch1, ch2): return chr(randint(ord(ch1), ord(ch2))) def write_text(s, x, y): turtle.penup() turtle.goto(x, y) turtle.pendown() turtle.write(s) turtle.goto(x, y) turtle.done() def main(): count = 0 number_of_characters = 100 characters_per_line = 15 print("\n") for i in range(number_of_characters): print("\t", get_random_lower_case_letter(), end=' ') count += 1 if count % characters_per_line == 0: print() main() print() # Draw a line from (x1, y1) to (x2, y2) # def drawLine(x1, y1, x2, y2): # turtle.penup() # turtle.goto(x1, y1) # turtle.pendown() # turtle.goto(x2, y2) # def writeText(s, x, y): # turtle.penup() # Pull the pen up # turtle.goto(x, y) # turtle.pendown() # Pull the pen down # turtle.write(s) # Write a string # # Draw a point at the specified location (x, y) # def drawPoint(x, y): # turtle.penup() # Pull the pen up # turtle.goto(x, y) # turtle.pendown() # Pull the pen down # turtle.begin_fill() # Begin to fill color in a shape # turtle.circle(3) # turtle.end_fill() # Fill the shape # # Draw a circle centered at (x, y) with the specified radius # def drawCircle(x = 0, y = 0, radius = 10): # turtle.penup() # Pull the pen up # turtle.goto(x, y - radius) # turtle.pendown() # Pull the pen down # turtle.circle(radius) # # Draw a rectangle at (x, y) with the specified width and height # def drawRectangle(x = 0, y = 0, width = 10, height = 10): # turtle.penup() # Pull the pen up # turtle.goto(x + width / 2, y + height / 2) # turtle.pendown() # Pull the pen down # turtle.right(90) # turtle.forward(height) # turtle.right(90) # turtle.forward(width) # turtle.right(90) # turtle.forward(height) # turtle.right(90) # turtle.forward(width) # Generate a random uppercase letter # def getRandomUpperCaseLetter() : # return getRandomCharacter('A', 'Z') # # Generate a random digit character # def getRandomDigitCharacter() : # return getRandomCharacter('0', '9') # # Generate a random character # def getRandomASCIICharacter() : # return chr(randint(0, 127)) # # # Generate a random character between ch1 and ch2 # def getRandomCharacter(ch1, ch2) : # return chr(randint(ord(ch1), ord(ch2))) #
533
0
92
b4b58aa4d7d83f1298f775781fc1a78f79bf902f
531
py
Python
miniProject/miniApp/urls.py
cs-fullstack-2019-spring/django-mini-project5-gkg901
35af15000480a104f46adb62ba9ceebd4d0ad7a1
[ "Apache-2.0" ]
null
null
null
miniProject/miniApp/urls.py
cs-fullstack-2019-spring/django-mini-project5-gkg901
35af15000480a104f46adb62ba9ceebd4d0ad7a1
[ "Apache-2.0" ]
null
null
null
miniProject/miniApp/urls.py
cs-fullstack-2019-spring/django-mini-project5-gkg901
35af15000480a104f46adb62ba9ceebd4d0ad7a1
[ "Apache-2.0" ]
null
null
null
from django.urls import path from . import views urlpatterns = [ path('', views.index, name='index'), path('allrecipes/', views.allrecipes, name='allrecipes'), path('newrecipe/', views.newrecipe, name='newrecipe'), path('profile/', views.profile, name='profile'), path('newuser/', views.newuser, name='newuser'), path('details/<int:ID>', views.details, name='details'), path('edituser/<int:ID>', views.edituser, name='edituser'), path('editrecipe/<int:ID>', views.editrecipe, name='editrecipe'), ]
37.928571
69
0.664783
from django.urls import path from . import views urlpatterns = [ path('', views.index, name='index'), path('allrecipes/', views.allrecipes, name='allrecipes'), path('newrecipe/', views.newrecipe, name='newrecipe'), path('profile/', views.profile, name='profile'), path('newuser/', views.newuser, name='newuser'), path('details/<int:ID>', views.details, name='details'), path('edituser/<int:ID>', views.edituser, name='edituser'), path('editrecipe/<int:ID>', views.editrecipe, name='editrecipe'), ]
0
0
0
e63a707a6d1aecf82dd0e657d12e6dcba8e4283c
3,996
py
Python
hash_code.py
Arpan-206/EncryptoCLI
26a7718ef387d46bfcf2d167e17a494de0165858
[ "MIT" ]
2
2021-10-20T13:38:45.000Z
2022-01-11T12:36:49.000Z
hash_code.py
Arpan-206/EncryptoCLI
26a7718ef387d46bfcf2d167e17a494de0165858
[ "MIT" ]
null
null
null
hash_code.py
Arpan-206/EncryptoCLI
26a7718ef387d46bfcf2d167e17a494de0165858
[ "MIT" ]
null
null
null
# Importing the hashing library import hashlib # Importing the visual libraries from PyInquirer import Separator, prompt from termcolor import colored # Defining the hash function.
27.75
129
0.508008
# Importing the hashing library import hashlib # Importing the visual libraries from PyInquirer import Separator, prompt from termcolor import colored # Defining the hash function. def hash_func(): # Asking the user for further data regarding algoritms hash_info = prompt([ { 'type': 'list', 'qmark': '>', 'name': 'algorithm', 'message': 'Which algorithm do you want to use?', 'choices': [ Separator(), { 'name': 'MD5', }, { 'name': 'SHA256', }, { 'name': 'SHA512', }, { 'name': 'BLAKE2', }, { 'name': 'BLAKE2b', }, ], }, { 'type': 'list', 'qmark': '>', 'name': 'type_of_data', 'message': 'What do you want to hash?', 'choices': [ Separator(), { 'name': 'Text', }, { 'name': 'File', }, ], }, ]) # Storing the data into seperate variables algorithm = hash_info['algorithm'] type_of_data = hash_info['type_of_data'] # Determining the type of data to hash and calling the appropriate functions if type_of_data == 'File': handle_file_hashing(algorithm) else: handle_text_hashing(algorithm) def handle_text_hashing(algorithm): # Asking the user for the data data_info = prompt([ { 'type': 'input', 'qmark': '>', 'name': 'hash_data', 'message': 'Enter data to hash.', }, ]) # Defining the hash_out variable according to the algorithm selected by user if algorithm == 'MD5': hash_out = hashlib.md5() elif algorithm == 'SHA256': hash_out = hashlib.sha256() elif algorithm == 'SHA512': hash_out = hashlib.sha512() elif algorithm == 'BLAKE2': hash_out = hashlib.blake2s() else: hash_out = hashlib.blake2b() # Populating it the data after converting it to binary hash_out.update(data_info['hash_data'].encode()) # Calculating the actual hash hash_out = hash_out.hexdigest() # Printing out the hash print(colored('Your hash is: ', 'white') + colored(hash_out, 'green')) return None def handle_file_hashing(algorithm): # Asking the user for the path to the file file_info = prompt([ { 'type': 'input', 'qmark': '>', 'name': 'file_name', 'message': 'Enter the path to the file.', }, ]) try: # Again, Defining the hash_out variable according to the algorithm selected by user if algorithm == 'MD5': hash_out = hashlib.md5() elif algorithm == 'SHA256': hash_out = hashlib.sha256() elif algorithm == 'SHA512': hash_out = hashlib.sha512() elif algorithm == 'BLAKE2': hash_out = hashlib.blake2s() else: hash_out = hashlib.blake2b() # Populating it the data after converting it to binary but this time in chunks so as to not put too much strain on memory with open(file_info['file_name'], 'rb') as file_path: chunk = 0 while chunk != b'': chunk = file_path.read(1024) hash_out.update(chunk) # Calculating the actual hash hash_out = hash_out.hexdigest() # Printing out the hash print(colored('Your hash is: ', 'white') + colored(hash_out, 'green')) except Exception as e: print(colored( 'Can\'t find the file please check the name and make sure the extension is also present.', 'red'))
3,741
0
69
e155cdbdf8a6a6a7a4d4cc1a43c09c3a16b32d5c
3,800
py
Python
examples/plugins/single_project/sample_project/data/plugin/ui_service.py
janvonrickenbach/Envisage_wxPhoenix_py3
cf79e5b2a0c3b46898a60b5fe5a2fb580604808b
[ "BSD-3-Clause" ]
null
null
null
examples/plugins/single_project/sample_project/data/plugin/ui_service.py
janvonrickenbach/Envisage_wxPhoenix_py3
cf79e5b2a0c3b46898a60b5fe5a2fb580604808b
[ "BSD-3-Clause" ]
1
2017-05-22T21:15:22.000Z
2017-05-22T21:15:22.000Z
examples/plugins/single_project/sample_project/data/plugin/ui_service.py
janvonrickenbach/Envisage_wxPhoenix_py3
cf79e5b2a0c3b46898a60b5fe5a2fb580604808b
[ "BSD-3-Clause" ]
1
2019-10-01T07:03:58.000Z
2019-10-01T07:03:58.000Z
#----------------------------------------------------------------------------- # # Copyright (c) 2007 by Enthought, Inc. # All rights reserved. # #----------------------------------------------------------------------------- """ The UI service for the Data plugin. """ # Standard library imports. import logging # Enthought library imports. from envisage.api import ApplicationObject, UOL from pyface.api import confirm, error, FileDialog, information, YES # Data library imports. # Local imports. from services import IDATA_MODEL # Setup a logger for this module logger = logging.getLogger(__name__) class UiService(ApplicationObject): """ The UI service for the Data plugin. """ ########################################################################## # Attributes ########################################################################## #### public 'UiService' interface ######################################## # A reference to the Data plugin's model service. model_service = UOL ########################################################################## # 'Object' interface ########################################################################## #### operator methods #################################################### def __init__(self, **kws): """ Constructor. Extended to ensure our UOL properties are set. """ super(UiService, self).__init__(**kws) # Ensure we have a default model-service if one wasn't specified. if self.model_service is None: self.model_service = 'service://%s' % IDATA_MODEL return ########################################################################## # 'UIService' interface ########################################################################## #### public methods ###################################################### #TODO cgalvan: to be implemented # def delete_data(self, context, data_name, parent_window): # """ # Delete a Data. # # """ # # # Open confirmation-dialog to confirm deletion # message = 'Are you sure you want to delete %s?' % data_name # if confirm(parent_window, message) == YES: # self.model_service.delete_context_item(context, data_name) # # return def edit_data(self, window, data): """ Edit the data parameters of the specified data. """ data_parameters = data.data_parameters edit_ui = data_parameters.edit_traits( view='data_view', kind='livemodal', # handler=handler, parent=window) return edit_ui.result def display_message(self, msg, title=None, is_error=False): """ Display the specified message to the user. """ # Ensure we record any reasons this method doesn't work. Especially # since it's critical in displaying errors to users! try: # Attempt to identify the current application window. parent_window = None workbench = self.application.get_service('envisage.' 'workbench.IWorkbench') if workbench is not None: parent_window = workbench.active_window.control # Display the requested message if is_error: error(parent_window, msg, title=title) else: information(parent_window, msg, title=title) except: logger.exception('Unable to display pop-up message') return #### EOF #####################################################################
29.007634
78
0.460789
#----------------------------------------------------------------------------- # # Copyright (c) 2007 by Enthought, Inc. # All rights reserved. # #----------------------------------------------------------------------------- """ The UI service for the Data plugin. """ # Standard library imports. import logging # Enthought library imports. from envisage.api import ApplicationObject, UOL from pyface.api import confirm, error, FileDialog, information, YES # Data library imports. # Local imports. from services import IDATA_MODEL # Setup a logger for this module logger = logging.getLogger(__name__) class UiService(ApplicationObject): """ The UI service for the Data plugin. """ ########################################################################## # Attributes ########################################################################## #### public 'UiService' interface ######################################## # A reference to the Data plugin's model service. model_service = UOL ########################################################################## # 'Object' interface ########################################################################## #### operator methods #################################################### def __init__(self, **kws): """ Constructor. Extended to ensure our UOL properties are set. """ super(UiService, self).__init__(**kws) # Ensure we have a default model-service if one wasn't specified. if self.model_service is None: self.model_service = 'service://%s' % IDATA_MODEL return ########################################################################## # 'UIService' interface ########################################################################## #### public methods ###################################################### #TODO cgalvan: to be implemented # def delete_data(self, context, data_name, parent_window): # """ # Delete a Data. # # """ # # # Open confirmation-dialog to confirm deletion # message = 'Are you sure you want to delete %s?' % data_name # if confirm(parent_window, message) == YES: # self.model_service.delete_context_item(context, data_name) # # return def edit_data(self, window, data): """ Edit the data parameters of the specified data. """ data_parameters = data.data_parameters edit_ui = data_parameters.edit_traits( view='data_view', kind='livemodal', # handler=handler, parent=window) return edit_ui.result def display_message(self, msg, title=None, is_error=False): """ Display the specified message to the user. """ # Ensure we record any reasons this method doesn't work. Especially # since it's critical in displaying errors to users! try: # Attempt to identify the current application window. parent_window = None workbench = self.application.get_service('envisage.' 'workbench.IWorkbench') if workbench is not None: parent_window = workbench.active_window.control # Display the requested message if is_error: error(parent_window, msg, title=title) else: information(parent_window, msg, title=title) except: logger.exception('Unable to display pop-up message') return #### EOF #####################################################################
0
0
0
20dc02eb654f867beadeef8c295396bcf7913d05
8,460
py
Python
metecho/tests/consumers.py
almostolmos/Metecho
7f58eca163faafea1ce07ffb6f4de2449fa0b8df
[ "BSD-3-Clause" ]
21
2020-04-02T21:39:58.000Z
2022-01-31T19:43:47.000Z
metecho/tests/consumers.py
almostolmos/Metecho
7f58eca163faafea1ce07ffb6f4de2449fa0b8df
[ "BSD-3-Clause" ]
1,613
2020-03-26T16:39:57.000Z
2022-03-07T14:54:16.000Z
metecho/tests/consumers.py
almostolmos/Metecho
7f58eca163faafea1ce07ffb6f4de2449fa0b8df
[ "BSD-3-Clause" ]
21
2020-07-21T11:58:47.000Z
2021-11-25T00:48:21.000Z
import pytest from channels.db import database_sync_to_async from channels.testing import WebsocketCommunicator from ..api.model_mixins import Request from ..api.push import push_message_about_instance, report_error from ..api.serializers import ( EpicSerializer, ProjectSerializer, ScratchOrgSerializer, TaskSerializer, ) from ..consumers import PushNotificationConsumer from ..routing import websockets pytestmark = pytest.mark.asyncio @database_sync_to_async @pytest.mark.django_db @pytest.mark.django_db @pytest.mark.django_db @pytest.mark.django_db @pytest.mark.django_db @pytest.mark.django_db @pytest.mark.django_db @pytest.mark.django_db # These tests need to go last, after any tests that start up a Communicator: @pytest.mark.django_db
33.307087
88
0.711348
import pytest from channels.db import database_sync_to_async from channels.testing import WebsocketCommunicator from ..api.model_mixins import Request from ..api.push import push_message_about_instance, report_error from ..api.serializers import ( EpicSerializer, ProjectSerializer, ScratchOrgSerializer, TaskSerializer, ) from ..consumers import PushNotificationConsumer from ..routing import websockets pytestmark = pytest.mark.asyncio @database_sync_to_async def serialize_model(serializer_model, instance, user): serializer = serializer_model(instance, context={"request": Request(user)}) return serializer.data @pytest.mark.django_db async def test_push_notification_consumer__project(user_factory, project_factory): user = await database_sync_to_async(user_factory)() project = await database_sync_to_async(project_factory)() communicator = WebsocketCommunicator(websockets, "/ws/notifications/") communicator.scope["user"] = user connected, _ = await communicator.connect() assert connected await communicator.send_json_to( {"model": "project", "id": str(project.id), "action": "SUBSCRIBE"} ) response = await communicator.receive_json_from() assert "ok" in response await push_message_about_instance( project, {"type": "TEST_MESSAGE", "payload": {"originating_user_id": "abc"}} ) response = await communicator.receive_json_from() model = await serialize_model(ProjectSerializer, project, user) assert response == { "type": "TEST_MESSAGE", "payload": {"originating_user_id": "abc", "model": model}, } await communicator.disconnect() @pytest.mark.django_db async def test_push_notification_consumer__scratch_org__list( user_factory, scratch_org_factory ): user = await database_sync_to_async(user_factory)() scratch_org = await database_sync_to_async(scratch_org_factory)() communicator = WebsocketCommunicator(websockets, "/ws/notifications/") communicator.scope["user"] = user connected, _ = await communicator.connect() assert connected await communicator.send_json_to( {"model": "scratch_org", "id": "list", "action": "SUBSCRIBE"} ) response = await communicator.receive_json_from() assert "ok" in response await push_message_about_instance( scratch_org, {"type": "SCRATCH_ORG_RECREATE", "payload": {"originating_user_id": "abc"}}, for_list=True, ) response = await communicator.receive_json_from() model = await serialize_model(ScratchOrgSerializer, scratch_org, user) assert response == { "type": "SCRATCH_ORG_RECREATE", "payload": {"originating_user_id": "abc", "model": model}, } await communicator.disconnect() @pytest.mark.django_db async def test_push_notification_consumer__epic(user_factory, epic_factory): user = await database_sync_to_async(user_factory)() epic = await database_sync_to_async(epic_factory)(project__repo_id=1234) communicator = WebsocketCommunicator(websockets, "/ws/notifications/") communicator.scope["user"] = user connected, _ = await communicator.connect() assert connected await communicator.send_json_to( {"model": "epic", "id": str(epic.id), "action": "SUBSCRIBE"} ) response = await communicator.receive_json_from() assert "ok" in response await push_message_about_instance( epic, {"type": "TEST_MESSAGE", "payload": {"originating_user_id": "abc"}} ) response = await communicator.receive_json_from() model = await serialize_model(EpicSerializer, epic, user) assert response == { "type": "TEST_MESSAGE", "payload": {"originating_user_id": "abc", "model": model}, } await communicator.disconnect() @pytest.mark.django_db async def test_push_notification_consumer__task(user_factory, task_factory): user = await database_sync_to_async(user_factory)() task = await database_sync_to_async(task_factory)(epic__project__repo_id=4321) communicator = WebsocketCommunicator(websockets, "/ws/notifications/") communicator.scope["user"] = user connected, _ = await communicator.connect() assert connected await communicator.send_json_to( {"model": "task", "id": str(task.id), "action": "SUBSCRIBE"} ) response = await communicator.receive_json_from() assert "ok" in response await push_message_about_instance( task, {"type": "TEST_MESSAGE", "payload": {"originating_user_id": "abc"}} ) response = await communicator.receive_json_from() model = await serialize_model(TaskSerializer, task, user) assert response == { "type": "TEST_MESSAGE", "payload": {"originating_user_id": "abc", "model": model}, } await communicator.disconnect() @pytest.mark.django_db async def test_push_notification_consumer__scratch_org( user_factory, scratch_org_factory ): user = await database_sync_to_async(user_factory)() scratch_org = await database_sync_to_async(scratch_org_factory)( task__epic__project__repo_id=2468 ) communicator = WebsocketCommunicator(websockets, "/ws/notifications/") communicator.scope["user"] = user connected, _ = await communicator.connect() assert connected await communicator.send_json_to( {"model": "scratch_org", "id": str(scratch_org.id), "action": "SUBSCRIBE"} ) response = await communicator.receive_json_from() assert "ok" in response await push_message_about_instance( scratch_org, {"type": "TEST_MESSAGE", "payload": {"originating_user_id": "abc"}} ) response = await communicator.receive_json_from() model = await serialize_model(ScratchOrgSerializer, scratch_org, user) assert response == { "type": "TEST_MESSAGE", "payload": {"originating_user_id": "abc", "model": model}, } await communicator.disconnect() @pytest.mark.django_db async def test_push_notification_consumer__report_error(user_factory): user = await database_sync_to_async(user_factory)() communicator = WebsocketCommunicator(websockets, "/ws/notifications/") communicator.scope["user"] = user connected, _ = await communicator.connect() assert connected await communicator.send_json_to( {"model": "user", "id": str(user.id), "action": "SUBSCRIBE"} ) response = await communicator.receive_json_from() assert "ok" in response await report_error(user) response = await communicator.receive_json_from() assert response == { "type": "BACKEND_ERROR", "payload": {"message": "There was an error"}, } await communicator.disconnect() @pytest.mark.django_db async def test_push_notification_consumer__unsubscribe(user_factory): user = await database_sync_to_async(user_factory)() communicator = WebsocketCommunicator(websockets, "/ws/notifications/") communicator.scope["user"] = user connected, _ = await communicator.connect() assert connected await communicator.send_json_to( {"model": "user", "id": str(user.id), "action": "SUBSCRIBE"} ) response = await communicator.receive_json_from() assert "ok" in response await communicator.send_json_to( {"model": "user", "id": str(user.id), "action": "UNSUBSCRIBE"} ) response = await communicator.receive_json_from() assert "ok" in response await communicator.disconnect() @pytest.mark.django_db async def test_push_notification_consumer__invalid_subscription(user_factory): user = await database_sync_to_async(user_factory)() communicator = WebsocketCommunicator(websockets, "/ws/notifications/") communicator.scope["user"] = user connected, _ = await communicator.connect() assert connected await communicator.send_json_to({"model": "foobar", "id": "buzbaz"}) response = await communicator.receive_json_from() assert "error" in response await communicator.disconnect() # These tests need to go last, after any tests that start up a Communicator: @pytest.mark.django_db async def test_push_notification_consumer__missing_instance(): content = { "model_name": "scratchorg", "id": "bet this is an invalid ID", "payload": {}, } consumer = PushNotificationConsumer() new_content = await consumer.hydrate_message(content) assert new_content == {"payload": {}}
7,456
0
220
f3976e2ec215dc1bd2bd45dd144b13e71688e6f1
6,227
py
Python
cajitos_site/users/routes.py
OlgaKuratkina/cajitos
0bc13f71281a1a67c8bcd1a3ae343ad0b14d9bad
[ "MIT" ]
null
null
null
cajitos_site/users/routes.py
OlgaKuratkina/cajitos
0bc13f71281a1a67c8bcd1a3ae343ad0b14d9bad
[ "MIT" ]
7
2020-05-08T19:51:22.000Z
2022-03-11T23:37:57.000Z
cajitos_site/users/routes.py
OlgaKuratkina/cajitos
0bc13f71281a1a67c8bcd1a3ae343ad0b14d9bad
[ "MIT" ]
null
null
null
import markdown from flask import redirect, url_for, flash, render_template, session, request, current_app, abort from flask_login import current_user, login_user, logout_user, login_required from cajitos_site import bcrypt from cajitos_site.users import users from cajitos_site.users.forms import RegistrationForm, LoginForm, UpdateAccountForm, RequestResetForm, ResetPasswordForm from cajitos_site.models import User, load_user from cajitos_site.utils.email import send_service_email from cajitos_site.utils.utils import ( get_redirect_target, save_picture ) from cajitos_site.utils.auth_utils import generate_google_auth_request, get_google_user_info # Disbaled temporarily or forever # @users.route("/register", methods=['GET', 'POST']) @users.route("/login", methods=['GET', 'POST']) @users.route('/google_login') @users.route('/google_login/callback') @users.route('/logout') @users.route('/account/<int:user_id>') @users.route('/account/<int:user_id>/update', methods=['GET', 'POST']) @login_required @users.route("/reset_password", methods=['GET', 'POST']) @users.route("/reset_password/<token>", methods=['GET', 'POST'])
40.967105
120
0.696965
import markdown from flask import redirect, url_for, flash, render_template, session, request, current_app, abort from flask_login import current_user, login_user, logout_user, login_required from cajitos_site import bcrypt from cajitos_site.users import users from cajitos_site.users.forms import RegistrationForm, LoginForm, UpdateAccountForm, RequestResetForm, ResetPasswordForm from cajitos_site.models import User, load_user from cajitos_site.utils.email import send_service_email from cajitos_site.utils.utils import ( get_redirect_target, save_picture ) from cajitos_site.utils.auth_utils import generate_google_auth_request, get_google_user_info # Disbaled temporarily or forever # @users.route("/register", methods=['GET', 'POST']) def register(): if current_user.is_authenticated: return redirect(url_for('blog.posts')) form = RegistrationForm() if form.validate_on_submit(): user = User.create(username=form.username.data, email=form.email.data) flash(f'Account created for {form.username.data}!', 'success') flash(f'Check your email to confirm your new account', 'success') token = user.get_validation_token() reset_link = f"{url_for('users.validate_token', token=token, _external=True)}" send_service_email(user, reset_link) return redirect(url_for('blog.posts')) return render_template('user/register.html', title='Register', form=form) @users.route("/login", methods=['GET', 'POST']) def login(): form = LoginForm() if form.validate_on_submit(): user = User.select().where(User.email == form.email.data).first() if user and user.status != 'Confirmed': flash('You need to confirm your account to proceed!', 'info') elif user and bcrypt.check_password_hash(user.password, form.password.data): flash('You have been logged in!', 'success') login_user(user, remember=form.remember.data) next_page = get_redirect_target() return redirect(next_page) if next_page else redirect(url_for('blog.posts')) else: flash('Login Unsuccessful. Please check email and password', 'danger') return render_template('user/login.html', title='Login', form=form) @users.route('/google_login') def google_login(): request_uri = generate_google_auth_request() return redirect(request_uri) @users.route('/google_login/callback') def callback(): userinfo_response = get_google_user_info(request) if userinfo_response.get('email_verified'): google_id = userinfo_response['sub'] email = userinfo_response['email'] profile_picture = userinfo_response['picture'] username = userinfo_response['given_name'] else: return 'User email not available or not verified by Google.', 400 user = User.get_user_by_email(email) if not user: user = User.create( google_id=google_id, username=username, email=email, password='', profile_picture=profile_picture, status='Confirmed' ) else: user.google_id = google_id user.username = username if profile_picture: user.profile_picture = profile_picture user.status = 'Confirmed' user.save() login_user(user) return redirect(url_for('blog.posts')) @users.route('/logout') def logout(): logout_user() return redirect(url_for('blog.posts')) @users.route('/account/<int:user_id>') def account(user_id): user = load_user(user_id) return render_template('user/account.html', title='Account', user=user) @users.route('/account/<int:user_id>/update', methods=['GET', 'POST']) @login_required def account_update(user_id): form = UpdateAccountForm() if request.method == 'GET': form.username.data = current_user.username form.email.data = current_user.email form.about_me.data = current_user.about_me if form.validate_on_submit() and current_user.id == user_id: if form.picture.data: picture_file = save_picture(form.picture.data) current_user.profile_picture = picture_file current_user.username = form.username.data current_user.email = form.email.data current_user.about_me = markdown.markdown(form.about_me.data) current_user.save() flash('Your account has been updated!', 'success') return redirect(url_for('users.account', user_id=user_id)) elif current_user.id != user_id: abort(403) return render_template('create_entry.html', title='Account', form=form) @users.route("/reset_password", methods=['GET', 'POST']) def reset_request(): if current_user.is_authenticated: return redirect(url_for('blog.posts')) form = RequestResetForm() if form.validate_on_submit(): user = User.select().where(User.email == form.email.data).first() token = user.get_validation_token() reset_link = f"{url_for('users.validate_token', token=token, _external=True)}" send_service_email(user, reset_link, confirm_account=False) flash('An email has been sent with instructions to complete operation.', 'info') return redirect(url_for('users.login')) return render_template('user/reset_request.html', title='Reset Password', form=form) @users.route("/reset_password/<token>", methods=['GET', 'POST']) def validate_token(token): if current_user.is_authenticated: return redirect(url_for('blog.posts')) user = User.verify_token(token) if user is None: flash('That is an invalid or expired token', 'warning') return redirect(url_for('users.reset_request')) form = ResetPasswordForm() if form.validate_on_submit(): hashed_password = bcrypt.generate_password_hash(form.password.data).decode('utf-8') user.password = hashed_password # Instead of default implementation with user.is_active user.status = 'Confirmed' user.save() flash('Your password has been updated! You are now able to log in', 'success') return redirect(url_for('users.login')) return render_template('user/validate_token.html', title='Reset Password', form=form)
4,876
0
198
43fc4974ba1213885593d4b53ba973eb01e9d576
9,049
py
Python
sdc/ysdc_dataset_api/dataset/dataset.py
sty61010/shifts
d3bb3086d8f2581f74644585701f4b1db4338483
[ "Apache-2.0" ]
null
null
null
sdc/ysdc_dataset_api/dataset/dataset.py
sty61010/shifts
d3bb3086d8f2581f74644585701f4b1db4338483
[ "Apache-2.0" ]
null
null
null
sdc/ysdc_dataset_api/dataset/dataset.py
sty61010/shifts
d3bb3086d8f2581f74644585701f4b1db4338483
[ "Apache-2.0" ]
null
null
null
import json import os from typing import Callable, Union from typing import Optional, List import torch from sdc.constants import SCENE_TAG_TYPE_TO_OPTIONS, VALID_TRAJECTORY_TAGS from ..features import FeatureProducerBase from ..proto import get_tags_from_request, proto_to_dict from ..utils import ( get_file_paths, get_gt_trajectory, get_latest_track_state_by_id, get_to_track_frame_transform, read_feature_map_from_file, request_is_valid, scenes_generator, transform_2d_points, )
42.088372
99
0.637971
import json import os from typing import Callable, Union from typing import Optional, List import torch from sdc.constants import SCENE_TAG_TYPE_TO_OPTIONS, VALID_TRAJECTORY_TAGS from ..features import FeatureProducerBase from ..proto import get_tags_from_request, proto_to_dict from ..utils import ( get_file_paths, get_gt_trajectory, get_latest_track_state_by_id, get_to_track_frame_transform, read_feature_map_from_file, request_is_valid, scenes_generator, transform_2d_points, ) class MotionPredictionDataset(torch.utils.data.IterableDataset): def __init__( self, dataset_path: str, scene_tags_fpath: str, feature_producer: FeatureProducerBase = None, prerendered_dataset_path: str = None, transform_ground_truth_to_agent_frame: bool = True, scene_tags_filter: Union[Callable, None] = None, trajectory_tags_filter: Union[Callable, None] = None, pre_filtered_scene_file_paths: Optional[List[str]] = None, yield_metadata=False ): """Pytorch-style dataset class for the motion prediction task. Dataset iterator performs iteration over scenes in the dataset and individual prediction requests in each scene. Iterator yields dict that can have the following structure: { 'scene_id': str, 'track_id': int, 'scene_tags': Dict[str, str], 'ground_truth_trajectory': np.ndarray, 'prerendered_feature_map': np.ndarray, 'feature_maps': np.ndarray, }. 'scene_id' unique scene identifier. 'track_id' vehicle id of the current prediction request. 'ground_truth_trajectory' field is always included, it contains ground truth trajectory for the current prediction request. 'prerendered_feature_map' field would be present if prerendered_dataset_path was specified, contains pre-rendered feature maps. 'feature_maps' field would be present if user passes an instance of ysdc_dataset_api.features.FeatureRenderer, contains feature maps rendered on the fly by specified renderer instance. Args: dataset_path: path to the dataset directory scene_tags_fpath: path to the tags file feature_producer: instance of the FeatureProducerBase class, used to generate features for a data item. Defaults to None. prerendered_dataset_path: path to the pre-rendered dataset. Defaults to None. transform_ground_truth_to_agent_frame: whether to transform ground truth trajectory to an agent coordinate system or return global coordinates. Defaults to True. scene_tags_filter: function to filter dataset scenes by tags. Defaults to None. trajectory_tags_filter: function to filter prediction requests by trajectory tags. Defaults to None. Raises: ValueError: if none of feature_producer or prerendered_dataset_path was specified. """ super(MotionPredictionDataset, self).__init__() self._feature_producer = feature_producer self._prerendered_dataset_path = prerendered_dataset_path self._transform_ground_truth_to_agent_frame = transform_ground_truth_to_agent_frame self._scene_tags_filter = _callable_or_trivial_filter(scene_tags_filter) self._trajectory_tags_filter = _callable_or_trivial_filter(trajectory_tags_filter) self._yield_metadata = yield_metadata if pre_filtered_scene_file_paths is not None: print('Building MotionPredictionDataset with pre-filtered ' 'scene file paths.') self._scene_file_paths = pre_filtered_scene_file_paths else: self._scene_file_paths = self._filter_paths( get_file_paths(dataset_path), scene_tags_fpath) @property def num_scenes(self) -> int: """Number of scenes in the dataset""" return len(self._scene_file_paths) def __iter__(self): worker_info = torch.utils.data.get_worker_info() if worker_info is None: file_paths = self._scene_file_paths else: file_paths = self._split_filepaths_by_worker( worker_info.id, worker_info.num_workers) def data_gen(_file_paths: List[str]): for scene, fpath in scenes_generator(_file_paths, yield_fpath=True): for request in scene.prediction_requests: if not request_is_valid(scene, request): continue trajectory_tags = get_tags_from_request(request) if not self._trajectory_tags_filter(trajectory_tags): continue track = get_latest_track_state_by_id(scene, request.track_id) to_track_frame_tf = get_to_track_frame_transform(track) ground_truth_trajectory = get_gt_trajectory(scene, request.track_id) if self._transform_ground_truth_to_agent_frame: ground_truth_trajectory = transform_2d_points( ground_truth_trajectory, to_track_frame_tf) result = { 'ground_truth_trajectory': ground_truth_trajectory, 'scene_id': scene.id, 'track_id': request.track_id, 'scene_tags': proto_to_dict(scene.scene_tags), } if self._prerendered_dataset_path: fm_path = self._get_serialized_fm_path(fpath, scene.id, request.track_id) result['prerendered_feature_map'] = read_feature_map_from_file(fm_path) if self._feature_producer: result.update( self._feature_producer.produce_features(scene, to_track_frame_tf)) if self._yield_metadata: result = ( self.add_metadata_to_batch( scene=scene, request=request, trajectory_tags=trajectory_tags, batch=result)) yield result return data_gen(file_paths) def add_metadata_to_batch(self, scene, request, trajectory_tags, batch): batch['scene_id'] = scene.id batch['request_id'] = request.track_id # Note that some will be "invalid" batch['num_vehicles'] = len(scene.prediction_requests) scene_tags_dict = proto_to_dict(scene.scene_tags) for scene_tag_type in SCENE_TAG_TYPE_TO_OPTIONS.keys(): scene_tag_options = SCENE_TAG_TYPE_TO_OPTIONS[scene_tag_type] for scene_tag_option in scene_tag_options: try: batch[f'{scene_tag_type}__{scene_tag_option}'] = int( scene_tags_dict[scene_tag_type] == scene_tag_option) except KeyError: batch[f'{scene_tag_type}__{scene_tag_option}'] = -1 trajectory_tags = set(trajectory_tags) for trajectory_tag in VALID_TRAJECTORY_TAGS: batch[trajectory_tag] = (trajectory_tag in trajectory_tags) return batch def _get_serialized_fm_path(self, scene_fpath, scene_id, track_id): base, _ = os.path.split(scene_fpath) _, subdir = os.path.split(base) return os.path.join(self._prerendered_dataset_path, subdir, f'{scene_id}_{track_id}.npy') def _split_filepaths_by_worker(self, worker_id, num_workers): n_scenes_per_worker = self.num_scenes // num_workers split = list(range(0, self.num_scenes, n_scenes_per_worker)) start = split[worker_id] if worker_id == num_workers - 1: stop = self.num_scenes else: stop = split[worker_id + 1] return self._scene_file_paths[start:stop] def _callable_or_lambda_true(self, f): if f is None: return lambda x: True if not callable(f): raise ValueError('Expected callable, got {}'.format(type(f))) return f def _filter_paths(self, file_paths, scene_tags_fpath): valid_indices = [] with open(scene_tags_fpath, 'r') as f: for i, line in enumerate(f): tags = json.loads(line.strip()) if self._scene_tags_filter(tags): valid_indices.append(i) print( f'{len(valid_indices)}/{len(file_paths)} ' f'scenes fit the filter criteria.') return [file_paths[i] for i in valid_indices] def _callable_or_trivial_filter(f): if f is None: return _trivial_filter if not callable(f): raise ValueError('Expected callable, got {}'.format(type(f))) return f def _trivial_filter(x): return True
4,714
3,746
69
351525ff3510e81241132c03602b819a2a740942
70
py
Python
core/src/static_classes/__init__.py
azurlane-doujin/AzurLanePaintingExtract-v1.0
ef4f25e70b3ca1b9df4304132cc7612c8f5efebb
[ "MIT" ]
144
2019-06-13T06:43:43.000Z
2022-03-29T15:07:57.000Z
core/src/static_classes/__init__.py
Shabi1213/AzurLanePaintingExtract-v1.0
ef4f25e70b3ca1b9df4304132cc7612c8f5efebb
[ "MIT" ]
2
2020-08-02T15:08:58.000Z
2021-11-29T02:34:18.000Z
core/src/static_classes/__init__.py
Goodjooy/ArknightsPaintingExtract
e1e6ef339c6f76cab45a26df66497126c11a21a8
[ "MIT" ]
19
2020-03-01T10:06:52.000Z
2022-02-06T13:49:26.000Z
__all__ = ["file_read", 'image_deal', 'search_order', 'static_data']
35
69
0.7
__all__ = ["file_read", 'image_deal', 'search_order', 'static_data']
0
0
0
13e87111dffd55a11464ba7c203a6cc1cb2cb9ac
412
py
Python
Demo/wdt/example_wdt_file.py
quecpython/EC100Y-SDK
712c7eb7b54a3971009d94f6d6b21a6011d56f68
[ "MIT" ]
4
2021-01-28T01:30:59.000Z
2021-06-15T07:13:41.000Z
Demo/wdt/example_wdt_file.py
QuePython/EC100Y-SDK
712c7eb7b54a3971009d94f6d6b21a6011d56f68
[ "MIT" ]
null
null
null
Demo/wdt/example_wdt_file.py
QuePython/EC100Y-SDK
712c7eb7b54a3971009d94f6d6b21a6011d56f68
[ "MIT" ]
3
2021-04-07T09:55:59.000Z
2022-01-08T15:15:23.000Z
''' @Author: Pawn @Date: 2020-08-12 @LastEditTime: 2020-08-12 17:06:08 @Description: example for module timer @FilePath: example_wdt.py ''' from machine import WDT from machine import Timer timer1 = Timer(Timer.Timer1) if __name__ == '__main__': wdt = WDT(20) # 启动看门狗,间隔时长 timer1.start(period=15000, mode=timer1.PERIODIC, callback=feed) # 使用定时器喂狗 # wdt.stop()
17.913043
78
0.682039
''' @Author: Pawn @Date: 2020-08-12 @LastEditTime: 2020-08-12 17:06:08 @Description: example for module timer @FilePath: example_wdt.py ''' from machine import WDT from machine import Timer timer1 = Timer(Timer.Timer1) def feed(t): wdt.feed() if __name__ == '__main__': wdt = WDT(20) # 启动看门狗,间隔时长 timer1.start(period=15000, mode=timer1.PERIODIC, callback=feed) # 使用定时器喂狗 # wdt.stop()
6
0
23
bcb5024cd6f5e64a630af32466bb1b12cbac2b4a
2,752
py
Python
users/tests/test_urls.py
jewells07/mumbleapi
beee0b50eefb3b1ff3e21073400c778323eece98
[ "Apache-2.0" ]
1
2021-05-18T11:37:44.000Z
2021-05-18T11:37:44.000Z
users/tests/test_urls.py
TomNewton1/mumbleapi
108d5a841b97d38285bede523f243624e05bc231
[ "Apache-2.0" ]
null
null
null
users/tests/test_urls.py
TomNewton1/mumbleapi
108d5a841b97d38285bede523f243624e05bc231
[ "Apache-2.0" ]
null
null
null
from django.conf.urls import url from django.urls import reverse , resolve from rest_framework import status from rest_framework.test import APITestCase from users.views import ( followUser , users , UserProfileUpdate , ProfilePictureUpdate , usersRecommended , user , userMumbles, userArticles, passwordChange, sendActivationEmail, sendActivationEmail , activate) # Create your tests here.
37.69863
87
0.703125
from django.conf.urls import url from django.urls import reverse , resolve from rest_framework import status from rest_framework.test import APITestCase from users.views import ( followUser , users , UserProfileUpdate , ProfilePictureUpdate , usersRecommended , user , userMumbles, userArticles, passwordChange, sendActivationEmail, sendActivationEmail , activate) # Create your tests here. class AccountTests(APITestCase): def setUp(self): pass def test_users_url(self): url = 'users-api:users' reversed_url = reverse(url) response = self.client.get('/api/users/') self.assertEqual(resolve(reversed_url).func,users) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_users_follow_url(self): url = 'users-api:follow-user' reversed_url = reverse(url,args=['praveen']) self.assertEqual(resolve(reversed_url).func,followUser) def test_user_profile_update_url(self): url = 'users-api:profile_update' reversed_url = reverse(url) self.assertEqual(resolve(reversed_url).func.view_class,UserProfileUpdate) def test_profile_update_photo_url(self): url = 'users-api:profile_update_photo' reversed_url = reverse(url) resolved = resolve(reversed_url).func self.assertEqual(resolved.view_class,ProfilePictureUpdate) def test_users_recommended_url(self): url = 'users-api:users-recommended' reversed_url = reverse(url) self.assertEqual(resolve(reversed_url).func,usersRecommended) def test_user_url(self): url = 'users-api:user' reversed_url = reverse(url,args=['test']) self.assertEqual(resolve(reversed_url).func,user) def test_user_mumbles(self): url = 'users-api:user-mumbles' reversed_url = reverse(url,args=['test']) self.assertEqual(resolve(reversed_url).func,userMumbles) def test_user_articles_url(self): url = 'users-api:user-articles' reversed_url = reverse(url,args=['test']) self.assertEqual(resolve(reversed_url).func,userArticles) def test_user_password_url(self): url = 'users-api:password-change' reversed_url = reverse(url) self.assertEqual(resolve(reversed_url).func,passwordChange) def test_send_activation_email_url(self): url = 'users-api:send-activation-email' reversed_url = reverse(url) self.assertEqual(resolve(reversed_url).func,sendActivationEmail) def test_active_user_account_url(self): url = 'users-api:verify' reversed_url = reverse(url,args=['903u924u934u598348943','*&6g83chruhrweriuj']) self.assertEqual(resolve(reversed_url).func,activate)
1,987
11
347
6a95b14f3ec8c3f933b91466b0d3fff7d5b8dd2e
520
py
Python
common/connector.py
ex0hunt/redrat
08ba8f088fcfb3ea246c56305420c2bc9e77517f
[ "BSD-2-Clause" ]
null
null
null
common/connector.py
ex0hunt/redrat
08ba8f088fcfb3ea246c56305420c2bc9e77517f
[ "BSD-2-Clause" ]
null
null
null
common/connector.py
ex0hunt/redrat
08ba8f088fcfb3ea246c56305420c2bc9e77517f
[ "BSD-2-Clause" ]
null
null
null
import configparser import os from redmine import Redmine
34.666667
76
0.713462
import configparser import os from redmine import Redmine def redmine(): rootdir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) config_path = os.path.join(rootdir, 'settings.conf') config = configparser.ConfigParser() config.read(config_path) host = config.get('RedmineServer', 'host') username = config.get('RedmineServer', 'username') password = config.get('RedmineServer', 'password') redmine = Redmine(host, username=username, password=password) return redmine
439
0
23
73e1afd1d4cf91f0ff98fd1d78bfc8ce897e5c54
4,921
py
Python
src/Testing/ZopeTestCase/utils.py
tseaver/Zope-RFA
08634f39b0f8b56403a2a9daaa6ee4479ef0c625
[ "ZPL-2.1" ]
2
2015-12-21T10:34:56.000Z
2017-09-24T11:07:58.000Z
src/Testing/ZopeTestCase/utils.py
MatthewWilkes/Zope
740f934fc9409ae0062e8f0cd6dcfd8b2df00376
[ "ZPL-2.1" ]
null
null
null
src/Testing/ZopeTestCase/utils.py
MatthewWilkes/Zope
740f934fc9409ae0062e8f0cd6dcfd8b2df00376
[ "ZPL-2.1" ]
null
null
null
############################################################################## # # Copyright (c) 2005 Zope Foundation and Contributors. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """Utility functions These functions are designed to be imported and run at module level to add functionality to the test environment. """ import os import sys import time import random import transaction import layer @layer.appcall def setupCoreSessions(app): '''Sets up the session_data_manager e.a.''' from Acquisition import aq_base commit = 0 if not hasattr(app, 'temp_folder'): from Products.TemporaryFolder.TemporaryFolder import MountedTemporaryFolder tf = MountedTemporaryFolder('temp_folder', 'Temporary Folder') app._setObject('temp_folder', tf) commit = 1 if not hasattr(aq_base(app.temp_folder), 'session_data'): from Products.Transience.Transience import TransientObjectContainer toc = TransientObjectContainer('session_data', 'Session Data Container', timeout_mins=3, limit=100) app.temp_folder._setObject('session_data', toc) commit = 1 if not hasattr(app, 'browser_id_manager'): from Products.Sessions.BrowserIdManager import BrowserIdManager bid = BrowserIdManager('browser_id_manager', 'Browser Id Manager') app._setObject('browser_id_manager', bid) commit = 1 if not hasattr(app, 'session_data_manager'): from Products.Sessions.SessionDataManager import SessionDataManager sdm = SessionDataManager('session_data_manager', title='Session Data Manager', path='/temp_folder/session_data', requestName='SESSION') app._setObject('session_data_manager', sdm) commit = 1 if commit: transaction.commit() @layer.appcall def setupSiteErrorLog(app): '''Sets up the error_log object required by ZPublisher.''' if not hasattr(app, 'error_log'): try: from Products.SiteErrorLog.SiteErrorLog import SiteErrorLog except ImportError: pass else: app._setObject('error_log', SiteErrorLog()) transaction.commit() def importObjectFromFile(container, filename, quiet=0): '''Imports an object from a (.zexp) file into the given container.''' from ZopeLite import _print, _patched quiet = quiet or not _patched start = time.time() if not quiet: _print("Importing %s ... " % os.path.basename(filename)) container._importObjectFromFile(filename, verify=0) transaction.commit() if not quiet: _print('done (%.3fs)\n' % (time.time() - start)) _Z2HOST = None _Z2PORT = None def startZServer(number_of_threads=1, log=None): '''Starts an HTTP ZServer thread.''' global _Z2HOST, _Z2PORT if _Z2HOST is None: _Z2HOST = '127.0.0.1' _Z2PORT = random.choice(range(55000, 55500)) from threadutils import setNumberOfThreads setNumberOfThreads(number_of_threads) from threadutils import QuietThread, zserverRunner t = QuietThread(target=zserverRunner, args=(_Z2HOST, _Z2PORT, log)) t.setDaemon(1) t.start() time.sleep(0.1) # Sandor Palfy return _Z2HOST, _Z2PORT def makerequest(app, stdout=sys.stdout): '''Wraps the app into a fresh REQUEST.''' from Testing.makerequest import makerequest as _makerequest environ = {} environ['SERVER_NAME'] = _Z2HOST or 'nohost' environ['SERVER_PORT'] = '%d' % (_Z2PORT or 80) environ['REQUEST_METHOD'] = 'GET' return _makerequest(app, stdout=stdout, environ=environ) def appcall(func, *args, **kw): '''Calls a function passing 'app' as first argument.''' from base import app, close app = app() args = (app,) + args try: return func(*args, **kw) finally: transaction.abort() close(app) def makelist(arg): '''Turns arg into a list. Where arg may be list, tuple, or string. ''' if type(arg) == type([]): return arg if type(arg) == type(()): return list(arg) if type(arg) == type(''): return filter(None, [arg]) raise ValueError('Argument must be list, tuple, or string') __all__ = [ 'setupCoreSessions', 'setupSiteErrorLog', 'startZServer', 'importObjectFromFile', 'appcall', 'makerequest', 'makelist', ]
31.544872
83
0.636456
############################################################################## # # Copyright (c) 2005 Zope Foundation and Contributors. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """Utility functions These functions are designed to be imported and run at module level to add functionality to the test environment. """ import os import sys import time import random import transaction import layer @layer.appcall def setupCoreSessions(app): '''Sets up the session_data_manager e.a.''' from Acquisition import aq_base commit = 0 if not hasattr(app, 'temp_folder'): from Products.TemporaryFolder.TemporaryFolder import MountedTemporaryFolder tf = MountedTemporaryFolder('temp_folder', 'Temporary Folder') app._setObject('temp_folder', tf) commit = 1 if not hasattr(aq_base(app.temp_folder), 'session_data'): from Products.Transience.Transience import TransientObjectContainer toc = TransientObjectContainer('session_data', 'Session Data Container', timeout_mins=3, limit=100) app.temp_folder._setObject('session_data', toc) commit = 1 if not hasattr(app, 'browser_id_manager'): from Products.Sessions.BrowserIdManager import BrowserIdManager bid = BrowserIdManager('browser_id_manager', 'Browser Id Manager') app._setObject('browser_id_manager', bid) commit = 1 if not hasattr(app, 'session_data_manager'): from Products.Sessions.SessionDataManager import SessionDataManager sdm = SessionDataManager('session_data_manager', title='Session Data Manager', path='/temp_folder/session_data', requestName='SESSION') app._setObject('session_data_manager', sdm) commit = 1 if commit: transaction.commit() @layer.appcall def setupSiteErrorLog(app): '''Sets up the error_log object required by ZPublisher.''' if not hasattr(app, 'error_log'): try: from Products.SiteErrorLog.SiteErrorLog import SiteErrorLog except ImportError: pass else: app._setObject('error_log', SiteErrorLog()) transaction.commit() def importObjectFromFile(container, filename, quiet=0): '''Imports an object from a (.zexp) file into the given container.''' from ZopeLite import _print, _patched quiet = quiet or not _patched start = time.time() if not quiet: _print("Importing %s ... " % os.path.basename(filename)) container._importObjectFromFile(filename, verify=0) transaction.commit() if not quiet: _print('done (%.3fs)\n' % (time.time() - start)) _Z2HOST = None _Z2PORT = None def startZServer(number_of_threads=1, log=None): '''Starts an HTTP ZServer thread.''' global _Z2HOST, _Z2PORT if _Z2HOST is None: _Z2HOST = '127.0.0.1' _Z2PORT = random.choice(range(55000, 55500)) from threadutils import setNumberOfThreads setNumberOfThreads(number_of_threads) from threadutils import QuietThread, zserverRunner t = QuietThread(target=zserverRunner, args=(_Z2HOST, _Z2PORT, log)) t.setDaemon(1) t.start() time.sleep(0.1) # Sandor Palfy return _Z2HOST, _Z2PORT def makerequest(app, stdout=sys.stdout): '''Wraps the app into a fresh REQUEST.''' from Testing.makerequest import makerequest as _makerequest environ = {} environ['SERVER_NAME'] = _Z2HOST or 'nohost' environ['SERVER_PORT'] = '%d' % (_Z2PORT or 80) environ['REQUEST_METHOD'] = 'GET' return _makerequest(app, stdout=stdout, environ=environ) def appcall(func, *args, **kw): '''Calls a function passing 'app' as first argument.''' from base import app, close app = app() args = (app,) + args try: return func(*args, **kw) finally: transaction.abort() close(app) def makelist(arg): '''Turns arg into a list. Where arg may be list, tuple, or string. ''' if type(arg) == type([]): return arg if type(arg) == type(()): return list(arg) if type(arg) == type(''): return filter(None, [arg]) raise ValueError('Argument must be list, tuple, or string') __all__ = [ 'setupCoreSessions', 'setupSiteErrorLog', 'startZServer', 'importObjectFromFile', 'appcall', 'makerequest', 'makelist', ]
0
0
0
c4ac1344ac12b2b41b5b5813289b0939cfb026e8
977
py
Python
experiments/mcompress/set_options.py
paralab/EigenMM
5c94233524ae2758ebf47c3b3fdb6570a6cc4e59
[ "MIT" ]
null
null
null
experiments/mcompress/set_options.py
paralab/EigenMM
5c94233524ae2758ebf47c3b3fdb6570a6cc4e59
[ "MIT" ]
null
null
null
experiments/mcompress/set_options.py
paralab/EigenMM
5c94233524ae2758ebf47c3b3fdb6570a6cc4e59
[ "MIT" ]
null
null
null
emm_fmt = """<?xml version="1.0" encoding="utf-8" ?> <EIGEN_MM> <OPTIONS _splitmaxiters="10" _nodesperevaluator="1" _subproblemsperevaluator="1" _totalsubproblems="1" _nevaluators="1" _taskspernode="%d" _nevals="-1" _nk="10" _nb="4" _p="0" _nv="10" _raditers="20" _splittol="0.9" _radtol="1e-8" _L="1.1" _R="-1" _terse="0" _details="0" _debug="1" _save_correctness="0" _save_operators="0" _save_eigenvalues="0" _save_eigenbasis="1" _correctness_filename="" _operators_filename="" _eigenvalues_filename="" _eigenbasis_filename="%s" /> </EIGEN_MM>""" import sys if __name__ == "__main__": taskspernode = int(sys.argv[1]) optionsdir = sys.argv[2] outputdir = sys.argv[3] expname = sys.argv[4] emmpath = optionsdir + "/" + expname + "_options.xml" f = open(emmpath, 'w') f_str = emm_fmt % (taskspernode, outputdir + "/" + expname) f.write(f_str) f.close()
20.354167
63
0.616172
emm_fmt = """<?xml version="1.0" encoding="utf-8" ?> <EIGEN_MM> <OPTIONS _splitmaxiters="10" _nodesperevaluator="1" _subproblemsperevaluator="1" _totalsubproblems="1" _nevaluators="1" _taskspernode="%d" _nevals="-1" _nk="10" _nb="4" _p="0" _nv="10" _raditers="20" _splittol="0.9" _radtol="1e-8" _L="1.1" _R="-1" _terse="0" _details="0" _debug="1" _save_correctness="0" _save_operators="0" _save_eigenvalues="0" _save_eigenbasis="1" _correctness_filename="" _operators_filename="" _eigenvalues_filename="" _eigenbasis_filename="%s" /> </EIGEN_MM>""" import sys if __name__ == "__main__": taskspernode = int(sys.argv[1]) optionsdir = sys.argv[2] outputdir = sys.argv[3] expname = sys.argv[4] emmpath = optionsdir + "/" + expname + "_options.xml" f = open(emmpath, 'w') f_str = emm_fmt % (taskspernode, outputdir + "/" + expname) f.write(f_str) f.close()
0
0
0
cb18427c6dda988b4a46b9e6269b431bec7b5ea3
5,758
py
Python
qtpyvcp/widgets/display_widgets/atc_widget/atc.py
awigen/qtpyvcp
5a23c4bca78accb159a76ac03652c74d5a07d14f
[ "BSD-3-Clause-LBNL", "MIT" ]
null
null
null
qtpyvcp/widgets/display_widgets/atc_widget/atc.py
awigen/qtpyvcp
5a23c4bca78accb159a76ac03652c74d5a07d14f
[ "BSD-3-Clause-LBNL", "MIT" ]
null
null
null
qtpyvcp/widgets/display_widgets/atc_widget/atc.py
awigen/qtpyvcp
5a23c4bca78accb159a76ac03652c74d5a07d14f
[ "BSD-3-Clause-LBNL", "MIT" ]
null
null
null
import os # Workarround for nvidia propietary drivers import ctypes import ctypes.util ctypes.CDLL(ctypes.util.find_library("GL"), mode=ctypes.RTLD_GLOBAL) # end of Workarround from qtpy.QtCore import Signal, Slot, QUrl, QTimer from qtpy.QtQuickWidgets import QQuickWidget from qtpyvcp.plugins import getPlugin from qtpyvcp.utilities import logger from qtpyvcp.utilities.hal_qlib import QComponent LOG = logger.getLogger(__name__) STATUS = getPlugin('status') TOOLTABLE = getPlugin('tooltable') IN_DESIGNER = os.getenv('DESIGNER', False) WIDGET_PATH = os.path.dirname(os.path.abspath(__file__))
30.146597
83
0.633032
import os # Workarround for nvidia propietary drivers import ctypes import ctypes.util ctypes.CDLL(ctypes.util.find_library("GL"), mode=ctypes.RTLD_GLOBAL) # end of Workarround from qtpy.QtCore import Signal, Slot, QUrl, QTimer from qtpy.QtQuickWidgets import QQuickWidget from qtpyvcp.plugins import getPlugin from qtpyvcp.utilities import logger from qtpyvcp.utilities.hal_qlib import QComponent LOG = logger.getLogger(__name__) STATUS = getPlugin('status') TOOLTABLE = getPlugin('tooltable') IN_DESIGNER = os.getenv('DESIGNER', False) WIDGET_PATH = os.path.dirname(os.path.abspath(__file__)) class DynATC(QQuickWidget): moveToPocketSig = Signal(int, int, arguments=['previous_pocket', 'pocket_num']) # toolInSpindleSig = Signal(int, arguments=['tool_num']) rotateFwdSig = Signal(int, arguments=['steps']) rotateRevSig = Signal(int, arguments=['steps']) showToolSig = Signal(int, int, arguments=['pocket', 'tool_num']) hideToolSig = Signal(int, arguments=['tool_num']) homeMsgSig = Signal(str, arguments=["message"]) homingMsgSig = Signal(str, arguments=["message"]) def __init__(self, parent=None): super(DynATC, self).__init__(parent) if IN_DESIGNER: return self.atc_position = 0 self.pocket = 1 self.home = 0 self.homing = 0 self.pocket_slots = 12 self.component = QComponent("atc-widget") # define pocket pins to store tools for i in range(self.pocket_slots): pin_name = "pocket-{}".format(i+1) self.component.newPin(pin_name, "s32", "in") self.component[pin_name].valueChanged.connect(self.pocket_changed) self.component.newPin('home', "float", "in") self.component.newPin('homing', "float", "in") self.component.newPin("goto", "float", "in") self.component.newPin('goto-enable', "bit", "in") self.component.newPin("steps", "float", "in") self.component.newPin('steps-fwd', "bit", "in") self.component.newPin('steps-rev', "bit", "in") self.component.newPin('jog-fwd', "bit", "in") self.component.newPin('jog-rev', "bit", "in") self.component['home'].valueIncreased.connect(self.home_message) self.component['homing'].valueIncreased.connect(self.homing_message) self.component['goto-enable'].valueIncreased.connect(self.goto) self.component['steps-fwd'].valueIncreased.connect(self.steps_fwd) self.component['steps-rev'].valueIncreased.connect(self.steps_rev) self.component['jog-fwd'].valueIncreased.connect(self.jog_fwd) self.component['jog-rev'].valueIncreased.connect(self.jog_rev) self.component.ready() self.engine().rootContext().setContextProperty("atc_spiner", self) qml_path = os.path.join(WIDGET_PATH, "atc.qml") url = QUrl.fromLocalFile(qml_path) self.setSource(url) # Fixme fails on qtdesigner self.tool_table = None self.status_tool_table = None self.pockets = dict() self.tools = None self.load_tools() self.draw_tools() STATUS.tool_table.notify(self.load_tools) STATUS.pocket_prepped.notify(self.on_pocket_prepped) STATUS.tool_in_spindle.notify(self.on_tool_in_spindle) def hideEvent(self, *args, **kwargs): pass # hack to prevent animation glitch when we are on another tab def load_tools(self): self.tool_table = TOOLTABLE.getToolTable() self.status_tool_table = STATUS.tool_table self.pockets = dict() self.tools = dict() for i in range(self.pocket_slots): pin_name = "pocket-{}".format(i+1) self.pockets[i + 1] = self.component[pin_name].value def draw_tools(self): for i in range(1, 13): self.hideToolSig.emit(i) for pocket, tool in self.pockets.items(): if 0 < pocket < 13: if tool != 0: self.showToolSig.emit(pocket, tool) def pocket_changed(self): self.load_tools() self.draw_tools() def on_tool_in_spindle(self, tool): self.load_tools() self.draw_tools() def on_pocket_prepped(self, pocket_num): self.load_tools() self.draw_tools() def homing_message(self, *args, **kwargs): self.homing = args[0] if self.homing: self.homingMsgSig.emit("REFERENCING") else: self.homingMsgSig.emit("") def home_message(self, *args, **kwargs): self.home = args[0] if self.homing: self.homeMsgSig.emit("") else: self.homeMsgSig.emit("UN REFERENCED") def goto(self): self.component["goto-enable"].value = 0 pocket = self.component["goto"].value if self.pocket > pocket: steps = self.pocket - pocket self.rotate_rev(steps) elif self.pocket < pocket: steps = pocket - self.pocket self.rotate_fwd(steps) def steps_fwd(self): self.component["steps-fwd"].value = 0 steps = self.component["steps"].value self.rotate_fwd(steps) def steps_rev(self): self.component["steps-rev"].value = 0 steps = self.component["steps"].value self.rotate_rev(steps) def rotate_fwd(self, steps): self.rotateFwdSig.emit(steps) def rotate_rev(self, steps): self.rotateRevSig.emit(steps) def jog_fwd(self, *args, **kwargs): self.rotateFwdSig.emit(1) self.command.set_digital_output(5, 0) def jog_rev(self, *args, **kwargs): self.rotateRevSig.emit(1) self.command.set_digital_output(6, 0)
4,211
920
23
0515dfbce20f8b6db5af0d540ac7d973ccefba31
603
py
Python
oreo_backend/memes/migrations/0003_auto_20211108_1250.py
TaipeiTechIAEWorkplace/Website
fc962d5f8163c08f901fe4d97af14b8e7b3cfc9c
[ "MIT" ]
1
2022-02-06T07:08:13.000Z
2022-02-06T07:08:13.000Z
oreo_backend/memes/migrations/0003_auto_20211108_1250.py
TaipeiTechIAEWorkplace/Website
fc962d5f8163c08f901fe4d97af14b8e7b3cfc9c
[ "MIT" ]
null
null
null
oreo_backend/memes/migrations/0003_auto_20211108_1250.py
TaipeiTechIAEWorkplace/Website
fc962d5f8163c08f901fe4d97af14b8e7b3cfc9c
[ "MIT" ]
null
null
null
# Generated by Django 3.2.9 on 2021-11-08 04:50 from django.db import migrations, models
22.333333
58
0.557214
# Generated by Django 3.2.9 on 2021-11-08 04:50 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('memes', '0002_auto_20211108_1233'), ] operations = [ migrations.RemoveField( model_name='photo', name='hashtag', ), migrations.RemoveField( model_name='photo', name='uploader', ), migrations.AlterField( model_name='photo', name='upload_date', field=models.DateTimeField(auto_now_add=True), ), ]
0
489
23
2166ee9410003528b21dcef8b26807deef3d0e7b
1,546
py
Python
uav.py
Aniq55/DroneSim
32cc5c40eefa542f1260e922567f854602ee66f4
[ "MIT" ]
5
2018-06-10T04:58:29.000Z
2022-02-03T08:22:41.000Z
uav.py
Aniq55/DroneSim
32cc5c40eefa542f1260e922567f854602ee66f4
[ "MIT" ]
null
null
null
uav.py
Aniq55/DroneSim
32cc5c40eefa542f1260e922567f854602ee66f4
[ "MIT" ]
2
2018-06-12T04:49:49.000Z
2020-06-27T19:59:48.000Z
from constants import * import time import threading from chaos import *
35.136364
87
0.498706
from constants import * import time import threading from chaos import * class UAV(): def __init__(self, ID, x, y, velx, vely): self.ID= ID self.x= x self.y= y self.velx= velx self.vely= vely self.rescued = [] self._time_ = time.time() self.init_time = self._time_ def update_position(self, time_elapsed): self.x= ( self.x + self.velx*time_elapsed*random_val() )%L self.y= ( self.y + self.vely*time_elapsed*random_val() )%L def search_survivors(self): self.init_time = time.time() while len(SURVIVORS)>0: x_lower, x_upper = self.x - RANGE, self.x + RANGE y_lower, y_upper = self.y - RANGE, self.y + RANGE filtered= [s for s in SURVIVORS if s.x > x_lower and s.x < x_upper and s.y > y_lower and s.y < y_upper and s.marked_safe == False] for f in filtered: f.marked_safe = True self.rescued.append(f) SURVIVORS.remove(f) time.sleep(0.5) self.update_position(time.time()- self._time_) self._time_ = time.time() # print(len(filtered), time.time()) print(len(SURVIVORS), time.time()- self.init_time) output_file.write("%d, %f\n"%(len(SURVIVORS), time.time()- self.init_time))
1,378
-9
104
fd2d2d27a90eb687cfa5ddaaf7a717a930d940df
2,951
py
Python
ldap_sync/__main__.py
JuKu/pycroft
15595f9b4327da5c52c77174def73660226da7dc
[ "Apache-2.0" ]
null
null
null
ldap_sync/__main__.py
JuKu/pycroft
15595f9b4327da5c52c77174def73660226da7dc
[ "Apache-2.0" ]
null
null
null
ldap_sync/__main__.py
JuKu/pycroft
15595f9b4327da5c52c77174def73660226da7dc
[ "Apache-2.0" ]
null
null
null
import argparse import logging import os from .exporter import add_stdout_logging, establish_and_return_ldap_connection, \ establish_and_return_session, fake_connection, fetch_current_ldap_users, \ fetch_users_to_sync, get_config_or_exit, logger, sync_all logger = logging.getLogger('ldap_sync') NAME_LEVEL_MAPPING = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } parser = argparse.ArgumentParser(description="Pycroft ldap syncer") parser.add_argument('--fake', dest='fake', action='store_true', default=False, help="Use a mocked LDAP backend") parser.add_argument("-l", "--log", dest='loglevel', type=str, choices=list(NAME_LEVEL_MAPPING.keys()), default='info', help="Set the loglevel") parser.add_argument("-d", "--debug", dest='loglevel', action='store_const', const='debug', help="Short for --log=debug") if __name__ == '__main__': exit(main())
30.42268
91
0.683497
import argparse import logging import os from .exporter import add_stdout_logging, establish_and_return_ldap_connection, \ establish_and_return_session, fake_connection, fetch_current_ldap_users, \ fetch_users_to_sync, get_config_or_exit, logger, sync_all logger = logging.getLogger('ldap_sync') def sync_production(): logger.info("Starting the production sync. See --help for other options.") config = get_config_or_exit(required_property='ldap') db_users = fetch_users_to_sync( session=establish_and_return_session(config.db_uri), required_property=config.required_property, ) logger.info("Fetched %s database users", len(db_users)) connection = establish_and_return_ldap_connection( host=config.host, port=config.port, bind_dn=config.bind_dn, bind_pw=config.bind_pw, ) ldap_users = fetch_current_ldap_users(connection, base_dn=config.base_dn) logger.info("Fetched %s ldap users", len(ldap_users)) sync_all(db_users, ldap_users, connection, base_dn=config.base_dn) def sync_fake(): logger.info("Starting sync using a mocked LDAP backend. See --help for other options.") try: db_uri = os.environ['PYCROFT_DB_URI'] except KeyError: logger.critical('PYCROFT_DB_URI not set') exit() db_users = fetch_users_to_sync( session=establish_and_return_session(db_uri) ) logger.info("Fetched %s database users", len(db_users)) connection = fake_connection() BASE_DN = 'ou=pycroft,dc=agdsn,dc=de' logger.debug("BASE_DN set to %s", BASE_DN) ldap_users = fetch_current_ldap_users(connection, base_dn=BASE_DN) logger.info("Fetched %s ldap users", len(ldap_users)) sync_all(db_users, ldap_users, connection, base_dn=BASE_DN) NAME_LEVEL_MAPPING = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } parser = argparse.ArgumentParser(description="Pycroft ldap syncer") parser.add_argument('--fake', dest='fake', action='store_true', default=False, help="Use a mocked LDAP backend") parser.add_argument("-l", "--log", dest='loglevel', type=str, choices=list(NAME_LEVEL_MAPPING.keys()), default='info', help="Set the loglevel") parser.add_argument("-d", "--debug", dest='loglevel', action='store_const', const='debug', help="Short for --log=debug") def main(): args = parser.parse_args() add_stdout_logging(logger, level=NAME_LEVEL_MAPPING[args.loglevel]) try: if args.fake: sync_fake() else: sync_production() except KeyboardInterrupt: logger.fatal("SIGINT received, stopping.") logger.info("Re-run the syncer to retain a consistent state.") return 1 return 0 if __name__ == '__main__': exit(main())
1,821
0
69
a20fcaf6ccf8820b917742d329e834e07689579f
6,837
py
Python
visdex/exploratory_graphs/__init__.py
mcraig-ibme/visdex
bbf8365e627f6d52fb201ae4ae6fef6775c4d716
[ "Apache-2.0" ]
null
null
null
visdex/exploratory_graphs/__init__.py
mcraig-ibme/visdex
bbf8365e627f6d52fb201ae4ae6fef6775c4d716
[ "Apache-2.0" ]
null
null
null
visdex/exploratory_graphs/__init__.py
mcraig-ibme/visdex
bbf8365e627f6d52fb201ae4ae6fef6775c4d716
[ "Apache-2.0" ]
null
null
null
""" visdex: Exploratory graphs The exploratory graphs section defines specialised data visualisations that can be generated by the user on request """ import logging from dash import html, dcc import dash_bootstrap_components as dbc from dash.dependencies import Input, Output, State, MATCH import plotly.graph_objects as go from . import ( bar_graph, histogram_graph, manhattan_graph, scatter_graph, violin_graph, ) from visdex.common import standard_margin_left, vstack, plot_style LOG = logging.getLogger(__name__) def generate_generic_group(n_clicks, group_type): """ The generic builder for each of the component types. :param n_clicks: :param group_type: :param component_list: :return: """ LOG.info(f"generate_generic_group {group_type}") children = list() component_list = all_components[group_type] for component in component_list: name = component["id"] args_to_replicate = dict(component) del args_to_replicate["component_type"] del args_to_replicate["id"] del args_to_replicate["label"] # Generate each component with the correct id, index, and arguments, inside its # own Div. children.append( html.Div( [ component["label"] + ":", component["component_type"]( id={"type": group_type + "-" + name, "index": n_clicks}, **args_to_replicate, ), ], id={"type": "div-" + group_type + "-" + name, "index": n_clicks}, style=plot_style, ) ) children.append( dcc.Graph( id={"type": "gen-" + group_type + "-graph", "index": n_clicks}, figure=go.Figure(data=go.Scatter()), ) ) LOG.debug(f"{children}") return html.Div( id={"type": "filter-graph-group-" + group_type, "index": n_clicks}, children=children, )
34.356784
91
0.511482
""" visdex: Exploratory graphs The exploratory graphs section defines specialised data visualisations that can be generated by the user on request """ import logging from dash import html, dcc import dash_bootstrap_components as dbc from dash.dependencies import Input, Output, State, MATCH import plotly.graph_objects as go from . import ( bar_graph, histogram_graph, manhattan_graph, scatter_graph, violin_graph, ) from visdex.common import standard_margin_left, vstack, plot_style LOG = logging.getLogger(__name__) def get_layout(app): @app.callback( [ Output("explore-collapse", "is_open"), Output("collapse-explore-button", "children"), ], [Input("collapse-explore-button", "n_clicks")], [State("explore-collapse", "is_open")], prevent_initial_call=True, ) def toggle_collapse_explore(n, is_open): """ Handle click on the 'Explore' expand/collapse button """ LOG.info(f"toggle_collapse_explore {n} {is_open}") if n: return not is_open, "+" if is_open else "-" return is_open, "-" @app.callback( Output("graph-group-container", "children"), [Input("add-graph-button", "n_clicks")], [State("graph-group-container", "children")], prevent_initial_call=True, ) def add_graph_group(n_clicks, children): # Add a new graph group each time the button is clicked. The if None guard stops # there being an initial graph. LOG.info(f"add_graph_group") if n_clicks is not None: # This dropdown controls what type of graph-group to display next to it. new_graph_type_dd = html.Div( [ "Graph type:", dcc.Dropdown( id={"type": "graph-type-dd", "index": n_clicks}, options=[ {"label": str(value).capitalize(), "value": value} for value in all_components.keys() ], value="scatter", style={"width": "50%"}, ), # This is a placeholder for the 'filter-graph-group-scatter' or # 'filter-graph-group-bar' to be placed here. # Because graph-type-dd above is set to Scatter, this will initially be # automatically filled with a filter-graph-group-scatter. # But on the initial generation of this object, we give it type # 'placeholder' to make it easy to check its value in # change_graph_group_type() html.Div(id={"type": "placeholder", "index": n_clicks}), ], id={"type": "divgraph-type-dd", "index": n_clicks}, style=vstack, ) children.append(new_graph_type_dd) return children @app.callback( Output({"type": "divgraph-type-dd", "index": MATCH}, "children"), [Input({"type": "graph-type-dd", "index": MATCH}, "value")], [ State({"type": "graph-type-dd", "index": MATCH}, "id"), State({"type": "divgraph-type-dd", "index": MATCH}, "children"), ], ) def change_graph_group_type(graph_type, id, children): LOG.info(f"change_graph_group_type {graph_type} {id}") # Generate a new group of the right type. if "filter-graph-group-" + str(graph_type) != children[-1]["props"]["id"]["type"]: children[-1] = generate_generic_group(id["index"], graph_type) return children bar_graph.define_cbs(app) histogram_graph.define_cbs(app) manhattan_graph.define_cbs(app) scatter_graph.define_cbs(app) violin_graph.define_cbs(app) return html.Div(children=[ html.Div( [ dbc.Button( "+", id="collapse-explore-button", style={ "display": "inline-block", "margin-left": "10px", "width": "40px", "vertical-align" : "middle", }, ), html.H2( "Exploratory graphs", style={ "display": "inline-block", "margin-left": standard_margin_left, "margin-bottom": "0", "vertical-align" : "middle", }, ), ], ), dbc.Collapse( id="explore-collapse", children=[ # Container to hold all the exploratory graphs html.Div(id="graph-group-container", children=[]), # Button at the page bottom to add a new graph html.Button( "New Graph", id="add-graph-button", style={ "margin-top": "10px", "margin-left": standard_margin_left, "margin-bottom": "40px", }, ), ], is_open=False, ), ]) def generate_generic_group(n_clicks, group_type): """ The generic builder for each of the component types. :param n_clicks: :param group_type: :param component_list: :return: """ LOG.info(f"generate_generic_group {group_type}") children = list() component_list = all_components[group_type] for component in component_list: name = component["id"] args_to_replicate = dict(component) del args_to_replicate["component_type"] del args_to_replicate["id"] del args_to_replicate["label"] # Generate each component with the correct id, index, and arguments, inside its # own Div. children.append( html.Div( [ component["label"] + ":", component["component_type"]( id={"type": group_type + "-" + name, "index": n_clicks}, **args_to_replicate, ), ], id={"type": "div-" + group_type + "-" + name, "index": n_clicks}, style=plot_style, ) ) children.append( dcc.Graph( id={"type": "gen-" + group_type + "-graph", "index": n_clicks}, figure=go.Figure(data=go.Scatter()), ) ) LOG.debug(f"{children}") return html.Div( id={"type": "filter-graph-group-" + group_type, "index": n_clicks}, children=children, )
4,786
0
23
eebf786325342f19a4237a7fea589022310860b1
4,982
py
Python
intel_software/pkg_contents/micperf/CONTENTS/usr/share/micperf/micp/micp/kernels/mkl_conv.py
antoinecarme/xeon-phi-data
883a6e2f31b2e729715303725f417b2990d923be
[ "BSD-3-Clause" ]
1
2021-07-22T18:01:28.000Z
2021-07-22T18:01:28.000Z
intel_software/pkg_contents/micperf/CONTENTS/usr/share/micperf/micp/micp/kernels/mkl_conv.py
antoinecarme/xeon-phi-data
883a6e2f31b2e729715303725f417b2990d923be
[ "BSD-3-Clause" ]
null
null
null
intel_software/pkg_contents/micperf/CONTENTS/usr/share/micperf/micp/micp/kernels/mkl_conv.py
antoinecarme/xeon-phi-data
883a6e2f31b2e729715303725f417b2990d923be
[ "BSD-3-Clause" ]
null
null
null
# Copyright 2012-2017, Intel Corporation, All Rights Reserved. # # This software is supplied under the terms of a license # agreement or nondisclosure agreement with Intel Corp. # and may not be copied or disclosed except in accordance # with the terms of that agreement. import os import re import micp.kernel as micp_kernel import micp.info as micp_info import micp.common as micp_common import micp.params as micp_params from micp.common import mp_print, get_ln, CAT_ERROR confParamNames = [ 'groups', 'nImg', 'inpWidth', 'inpHeight', 'nIfm', \ 'nOfm', 'kw', 'kh', 'stride', 'pad', 'iters' ] optimalParamValues = '1 16 224 224 3 64 7 7 2 3 100' # expected minimal number of parsed scores in output CONST_expected_perf_scores = 3 # expected number of "|"-separated sections in output CONST_expected_sections = 2 # expected measurements per row CONST_expected_meas_per_row = 4
35.585714
119
0.609193
# Copyright 2012-2017, Intel Corporation, All Rights Reserved. # # This software is supplied under the terms of a license # agreement or nondisclosure agreement with Intel Corp. # and may not be copied or disclosed except in accordance # with the terms of that agreement. import os import re import micp.kernel as micp_kernel import micp.info as micp_info import micp.common as micp_common import micp.params as micp_params from micp.common import mp_print, get_ln, CAT_ERROR confParamNames = [ 'groups', 'nImg', 'inpWidth', 'inpHeight', 'nIfm', \ 'nOfm', 'kw', 'kh', 'stride', 'pad', 'iters' ] optimalParamValues = '1 16 224 224 3 64 7 7 2 3 100' # expected minimal number of parsed scores in output CONST_expected_perf_scores = 3 # expected number of "|"-separated sections in output CONST_expected_sections = 2 # expected measurements per row CONST_expected_meas_per_row = 4 class mkl_conv(micp_kernel.Kernel): def __init__(self): optimalParamsString = '' self._categoryParams = {} info = micp_info.Info() maxCount = info.num_cores() self.name = 'mkl_conv' self.param_validator = micp_params.NO_VALIDATOR # for ease of use, split params into two lists self._paramNames = ['omp_num_threads', 'with_padding', 'output'] self._paramNames.extend(confParamNames) self._paramDefaults = {'omp_num_threads':str(maxCount), 'with_padding':'0', 'output':'--original-output'} for (idx, val) in enumerate(optimalParamValues.split(' ')): optimalParamsString += '--{0} {1} '.format(confParamNames[idx], val) self._paramDefaults[confParamNames[idx]] = val self._categoryParams['test'] = [ optimalParamsString ] self._categoryParams['optimal'] = [ optimalParamsString ] self._categoryParams['optimal_quick'] = self._categoryParams['optimal'] self._categoryParams['scaling'] = self._categoryParams['optimal'] self._categoryParams['scaling_quick'] = self._categoryParams['optimal'] # scale with step 10 coreConfig = range(1, maxCount, 10) self._categoryParams['scaling_core'] = \ [ ' '.join(['--omp_num_threads {0}'.format(cc), optimalParamsString]) \ for cc in coreConfig] def path_host_exec(self, offload_method): if offload_method == 'local': return self._path_exec(micp_kernel.LIBEXEC_HOST, "std_conv_bench") else: return None def _do_unit_test(self): return True def offload_methods(self): return ['local'] def param_type(self): return 'pos' def independent_var(self, category): return 'omp_num_threads' def param_for_env(self): return ['omp_num_threads'] def path_dev_exec(self, offType): """ Intel Xeon Phi Coprocessors is not supported """ return None def environment_host(self): return {'LD_LIBRARY_PATH':self.ld_library_path(), 'KMP_PLACE_THREADS':'1T', 'KMP_AFFINITY':'compact,granularity=fine'} def get_process_modifiers(self): info = micp_info.Info() if info.is_processor_mcdram_available(): return ['numactl', '--membind=1'] else: return [] def parse_desc(self, raw): res_line = raw.splitlines() # get general parameters before '|' character try: out_sections = res_line[1].rsplit("|", 1) except IndexError: micp_kernel.raise_parse_error(raw) if len(out_sections) != CONST_expected_sections: micp_kernel.raise_parse_error(raw) return out_sections[0].strip() def parse_perf(self, raw): res_lines = raw.splitlines() result = {} for line in res_lines: # example one line of output: # FWD w/ padding in flops min(ms) 0.01; max(gflop/s) 2.70;avg(ms) 0.02; avg(gflop/s) 1.58; # ex. ( FWD ) propagation = re.search('([F|B]WD[A-Z_]*)', line) # ex. (avg ) ((gflops/s)) (1.58 ) values = re.findall('([a-zA-Z]*)\(([a-zA-Z/]*)\)\s*([0-9]*\.[0-9]*)', line) # skip text data lines if not (propagation and values): continue # check syntax (4 measurements per row) if len(values) != CONST_expected_meas_per_row: micp_kernel.raise_parse_error(raw) propag_txt = propagation.group(0) for (prop, unit, value) in values: if prop != 'avg': continue if unit == 'gflop/s': result['Computation.Avg.{0}'.format(propag_txt)] = {'value':value, 'units':'GFlops', 'rollup':True} if len(result) != CONST_expected_perf_scores: micp_kernel.raise_parse_error(raw) return result
3,629
430
23
5499e89c9e89f497892f031f5a9cc83e7deaabf6
610
py
Python
wfsim/utils.py
jmeyers314/wfsim
c2ad60c100ec1c4046368801a56a5211499f0c51
[ "BSD-3-Clause" ]
null
null
null
wfsim/utils.py
jmeyers314/wfsim
c2ad60c100ec1c4046368801a56a5211499f0c51
[ "BSD-3-Clause" ]
null
null
null
wfsim/utils.py
jmeyers314/wfsim
c2ad60c100ec1c4046368801a56a5211499f0c51
[ "BSD-3-Clause" ]
null
null
null
import numpy as np import galsim def BBSED(T): """(unnormalized) Blackbody SED for temperature T in Kelvin. """ waves_nm = np.arange(330.0, 1120.0, 10.0) flambda = planck(T, waves_nm*1e-9) return galsim.SED( galsim.LookupTable(waves_nm, flambda), wave_type='nm', flux_type='flambda' )
27.727273
64
0.57377
import numpy as np import galsim def BBSED(T): """(unnormalized) Blackbody SED for temperature T in Kelvin. """ waves_nm = np.arange(330.0, 1120.0, 10.0) def planck(t, w): # t in K # w in m c = 2.99792458e8 # speed of light in m/s kB = 1.3806488e-23 # Boltzmann's constant J per Kelvin h = 6.62607015e-34 # Planck's constant in J s return w**(-5) / (np.exp(h*c/(w*kB*t))-1) flambda = planck(T, waves_nm*1e-9) return galsim.SED( galsim.LookupTable(waves_nm, flambda), wave_type='nm', flux_type='flambda' )
249
0
26
a5f484ac8ab36970a0402fcb7d92a67abbe863f9
1,495
py
Python
src/app/search.py
delgadofarid/my-first-search-engine
e8ea909030a599bb4bba739fe77747c98395dc29
[ "Apache-2.0" ]
1
2021-06-05T03:52:21.000Z
2021-06-05T03:52:21.000Z
src/app/search.py
delgadofarid/my-first-search-engine
e8ea909030a599bb4bba739fe77747c98395dc29
[ "Apache-2.0" ]
null
null
null
src/app/search.py
delgadofarid/my-first-search-engine
e8ea909030a599bb4bba739fe77747c98395dc29
[ "Apache-2.0" ]
null
null
null
import re from elasticsearch import Elasticsearch, helpers from itertools import islice # initialize Elasticsearch client es = Elasticsearch()
30.510204
103
0.626756
import re from elasticsearch import Elasticsearch, helpers from itertools import islice # initialize Elasticsearch client es = Elasticsearch() def first_n(iterable, n): return islice(iterable, 0, n) def format_es_response(user_question, es_candidates): results = list() for c in es_candidates: par = dict() par['questionText'] = user_question par['bookTitle'] = c['_source']['bookTitle'] par['paragraphText'] = c['_source']['paragraphText'] par['esScore'] = c['_score'] par['paragraphId'] = c['_source']['paragraphId'] par['bookURL'] = c['_source']['bookURL'] par['bookId'] = c['_source']['bookId'] results.append(par) return results def search_candidates(user_question, index_name="wikibooks-search-index", size=20, es=Elasticsearch()): match_queries = [ {"match": {"bookTitle": user_question}}, {"match": {"paragraphText": user_question}} ] quoted_text = re.findall('"([^"]*)"', user_question) for text in quoted_text: match_queries.append({"match_phrase": {"bookTitle": text}}) match_queries.append({"match_phrase": {"paragraphText": text}}) es_query = { "query": { "bool": { "should": match_queries } } } results = helpers.scan(es, query=es_query, index=index_name, preserve_order=True) results = first_n(results, size) return format_es_response(user_question, results)
1,279
0
69
5786c329b92403e4f8b652789de8bbe26502cea4
24,221
py
Python
tests/test_configfetch.py
openandclose/configfetch
fc0b329e6861cc73f0a108ddaea636e6956dd56f
[ "MIT" ]
null
null
null
tests/test_configfetch.py
openandclose/configfetch
fc0b329e6861cc73f0a108ddaea636e6956dd56f
[ "MIT" ]
null
null
null
tests/test_configfetch.py
openandclose/configfetch
fc0b329e6861cc73f0a108ddaea636e6956dd56f
[ "MIT" ]
null
null
null
import argparse import configparser import functools import textwrap import pytest import configfetch fetch_ = configfetch.fetch fetch = functools.partial( configfetch.fetch, option_builder=configfetch.FiniOptionBuilder) # blank string returns ``None`` # Just checking the standard library's behaviors. class _CustomFunc(configfetch.Func): """Used the test below.""" @configfetch.register
24.842051
85
0.473886
import argparse import configparser import functools import textwrap import pytest import configfetch fetch_ = configfetch.fetch fetch = functools.partial( configfetch.fetch, option_builder=configfetch.FiniOptionBuilder) def f(string): return textwrap.dedent(string.strip('\n')) def _get_action(conf, option_strings): parser = argparse.ArgumentParser(prog='test') conf.build_arguments(parser) # parser.print_help() for action in parser._get_optional_actions(): if option_strings in action.option_strings: return action raise ValueError('No action with option_strings: %r' % option_strings) class TestEscapedSplit: def check_comma(self, value, expected): ret = configfetch._parse_comma(value) assert ret == expected def check_line(self, value, expected): ret = configfetch._parse_line(value) assert ret == expected def test_comma(self): self.check_comma('aaaa', ['aaaa']) self.check_comma(r'\aaaa', [r'\aaaa']) self.check_comma(r'aa\aa', [r'aa\aa']) self.check_comma(r'aaa\a', [r'aaa\a']) self.check_comma(r'aaaa\\', [r'aaaa\\']) self.check_comma(r'aa\\aa', [r'aa\\aa']) self.check_comma(r'aa\\\aa', [r'aa\\\aa']) self.check_comma('aa, bb', ['aa', 'bb']) self.check_comma(r'aa\, bb', ['aa, bb']) self.check_comma(r'aa\\, bb', [r'aa\, bb']) self.check_comma(r'aa\\\, bb', [r'aa\\, bb']) self.check_comma(r'aa\a, bb', [r'aa\a', 'bb']) self.check_comma(r'aa\\a, bb', [r'aa\\a', 'bb']) self.check_comma(r'aa\\\a, bb', [r'aa\\\a', 'bb']) self.check_comma(',aa', ['aa']) self.check_comma('aa,', ['aa']) self.check_comma('aa,,', ['aa']) def test_line(self): self.check_line('aa\nbb', ['aa', 'bb']) self.check_line('aa\\\nbb', ['aa\nbb']) self.check_line('aa\\\\\nbb', ['aa\\\nbb']) self.check_line('aa\\\\\\\nbb', ['aa\\\\\nbb']) self.check_line('aa\nbb,', ['aa', 'bb,']) class TestInheritance: def test_iter(self): data = f(""" [sec1] [sec2] """) conf = fetch(data) assert list(conf.__iter__()) == ['DEFAULT', 'sec1', 'sec2'] def test_iter_option(self): data = f(""" [sec1] aa = xxx bb = yyy """) conf = fetch(data) assert list(conf.sec1.__iter__()) == ['aa', 'bb'] def test_contains(self): data = f(""" [sec1] [sec2] """) conf = fetch(data) assert 'sec2' in conf def test_contains_option(self): data = f(""" [sec1] aa = xxx bb = yyy """) conf = fetch(data) assert 'bb' in conf.sec1 class TestParseConfig: def test_conf_str(self): data = f(""" [sec1] aa = xxx """) conf = fetch(data) assert conf.sec1.aa == 'xxx' def test_conf_str_blank(self): data = f(""" [sec1] """) conf = fetch(data) with pytest.raises(configfetch.NoOptionError): assert conf.sec1.aa == '' def test_conf_str_nosection(self): data = f(""" [sec1] aa = xxx """) conf = fetch(data) with pytest.raises(configfetch.NoSectionError): assert conf.sec2 def test_conf_str_default(self): data = f(""" [DEFAULT] aa = xxx [sec1] """) conf = fetch(data) assert conf.sec1.aa == 'xxx' def test_conf_str_default_nosection(self): data = f(""" [DEFAULT] aa = xxx """) conf = fetch(data) with pytest.raises(configfetch.NoSectionError): assert conf.sec1.aa == 'xxx' def test_conf_str_default_read_section(self): data = f(""" [DEFAULT] aa = xxx """) conf = fetch(data) data = f(""" [sec1] """) conf._config.read_string(data) assert conf.sec1.aa == 'xxx' def test_conf_str_default_blank(self): data = f(""" [DEFAULT] [sec1] """) conf = fetch(data) with pytest.raises(configfetch.NoOptionError): assert conf.sec1.aa == '' def test_conf_str_default_blank_nosection(self): data = '' conf = fetch(data) with pytest.raises(configfetch.NoSectionError): assert conf.sec1.aa == '' def test_conf_bool(self): data = f(""" [sec1] aa = :: f: bool Yes """) conf = fetch(data) assert conf.sec1.aa is True def test_conf_bool_no(self): data = f(""" [sec1] aa = :: f: bool No """) conf = fetch(data) assert conf.sec1.aa is False # blank string returns ``None`` def test_conf_bool_blank(self): data = f(""" [sec1] aa = :: f: bool """) conf = fetch(data) assert conf.sec1.aa is None def test_conf_comma(self): data = f(""" [sec1] aa = :: f: comma xxx1, xxx2, xxx3 """) conf = fetch(data) assert conf.sec1.aa == ['xxx1', 'xxx2', 'xxx3'] def test_conf_comma_indent(self): data = f(""" [sec1] aa = :: f: comma xxx1, xxx2, xxx3 """) conf = fetch(data) assert conf.sec1.aa == ['xxx1', 'xxx2', 'xxx3'] def test_conf_comma_newline(self): data = f(""" [sec1] aa = :: f: comma xxx1, xxx2 xxx3 """) conf = fetch(data) assert conf.sec1.aa == ['xxx1', 'xxx2\nxxx3'] def test_conf_comma_blank(self): data = f(""" [sec1] aa = :: f: comma """) conf = fetch(data) assert conf.sec1.aa == [] def test_conf_line(self): data = f(""" [sec1] aa = :: f: line xxx1 xxx2 xxx3 """) conf = fetch(data) assert conf.sec1.aa == ['xxx1', 'xxx2', 'xxx3'] def test_conf_line_comma(self): data = f(""" [sec1] aa = :: f: line xxx1 xxx2 xxx3, xxx4 """) conf = fetch(data) assert conf.sec1.aa == ['xxx1', 'xxx2', 'xxx3, xxx4'] def test_conf_line_blank(self): data = f(""" [sec1] aa = :: f: line """) conf = fetch(data) assert conf.sec1.aa == [] def test_conf_line_multiblanks(self): data = f(""" [sec1] aa = :: f: line """) conf = fetch(data) assert conf.sec1.aa == [] def test_conf_bar_comma(self): data = f(""" [sec1] aa = :: f: comma, bar xxx1, xxx2, xxx3 """) conf = fetch(data) assert conf.sec1.aa == 'xxx1|xxx2|xxx3' def test_conf_bar_comma_blank(self): data = f(""" [sec1] aa = :: f: comma, bar """) conf = fetch(data) assert conf.sec1.aa == '' def test_conf_bar_comma_blank_spaces(self): data = f(""" [sec1] aa = :: f: comma, bar """) conf = fetch(data) assert conf.sec1.aa == '' def test_conf_bar_line(self): data = f(""" [sec1] aa = :: f: line, bar xxx1 xxx2 xxx3 """) conf = fetch(data) assert conf.sec1.aa == 'xxx1|xxx2|xxx3' def test_conf_bar_line_blank(self): data = f(""" [sec1] aa = :: f: line, bar """) conf = fetch(data) assert conf.sec1.aa == '' def test_conf_bar_line_blank_spaces(self): data = f(""" [sec1] aa = :: f: line, bar """) conf = fetch(data) assert conf.sec1.aa == '' def test_conf_cmd(self): data = f(""" [sec1] aa = :: f: cmd --aaa -b "ccc cc" ddd,dd """) conf = fetch(data) assert conf.sec1.aa == ['--aaa', '-b', 'ccc cc', 'ddd,dd'] def test_conf_cmds(self): data = f(""" [sec1] aa = :: f: line, cmds ls *.txt find . "aaa" """) conf = fetch(data) assert conf.sec1.aa == [['ls', '*.txt'], ['find', '.', 'aaa']] def test_conf_fmt(self): data = f(""" [sec1] aa = :: f: fmt {USER}/data/my.css """) conf = fetch(data, fmts={'USER': '/home/john'}) assert conf.sec1.aa == '/home/john/data/my.css' class TestParseContexts: def test_ctx_default_bool(self): data = f(""" [DEFAULT] aa = :: f: bool no [sec1] """) conf = fetch(data) assert conf.sec1.aa is False def test_ctx_default_bool_noop(self): data = f(""" [DEFAULT] aa = :: f: bool [sec1] aa = no """) conf = fetch(data) assert conf.sec1.aa is False def test_ctx_default_comma(self): data = f(""" [DEFAULT] aa = :: f: comma [sec1] aa = xxx1, xxx2, xxx3 """) conf = fetch(data) assert conf.sec1.aa == ['xxx1', 'xxx2', 'xxx3'] class TestParseFunc: def test_func_newline(self): data = f(""" [sec1] aa = :: f: bool no """) conf = fetch(data) assert conf.sec1.aa is False # Just checking the standard library's behaviors. class TestConfigParser: def test_indent(self): data = f(""" [sec1] aa = xxx """) config = configparser.ConfigParser() config.read_string(data) assert config['sec1']['aa'] == '\nxxx' data = f(""" [sec1] aa = xxx """) config = configparser.ConfigParser() with pytest.raises(configparser.ParsingError): config.read_string(data) def test_allow_no_value(self): data = f(""" [sec1] aa = :: f: bool no """) config = configparser.ConfigParser(allow_no_value=True) config.read_string(data) assert config['sec1']['aa'] == '\n:: f: bool\nno' class TestArgparse: parser = argparse.ArgumentParser() parser.add_argument('-a', '--aa') parser.add_argument('-b', '--bb') parser.add_argument('-c', '--cc', action='store_const', default='', const='yes') parser.add_argument('-d', '--no-cc', action='store_const', const='no', dest='cc') parser.add_argument('-e', '--ee-eee') def get_args(self, cmd): return self.parser.parse_args(cmd) def test_args_and_conf(self): data = f(""" [sec1] aa = xxx """) args = self.get_args(['--aa', 'axxx']) conf = fetch(data, args=args) assert conf.sec1.aa == 'axxx' def test_args_and_conf_short(self): data = f(""" [sec1] aa = xxx """) args = self.get_args(['-a', 'axxx']) conf = fetch(data, args=args) assert conf.sec1.aa == 'axxx' def test_args_and_conf_none(self): data = f(""" [sec1] aa = xxx """) args = self.get_args([]) conf = fetch(data, args=args) assert conf.sec1.aa == 'xxx' def test_args_and_conf_const(self): data = f(""" [sec1] cc = :: f: bool """) args = self.get_args(['--cc']) conf = fetch(data, args=args) assert conf.sec1.cc is True def test_args_and_conf_const_false(self): data = f(""" [sec1] cc = :: f: bool true """) args = self.get_args(['--no-cc']) conf = fetch(data, args=args) assert conf.sec1.cc is False def test_args_and_conf_dash(self): data = f(""" [sec1] ee_eee = xxx """) args = self.get_args(['-e', 'axxx']) conf = fetch(data, args=args) assert conf.sec1.ee_eee == 'axxx' class _CustomFunc(configfetch.Func): """Used the test below.""" @configfetch.register def custom(self, value): return 'test' class TestCustomize: def test_customfunc(self): data = f(""" [sec1] aa = :: f: custom xxx """) conf = fetch(data, Func=_CustomFunc) assert conf.sec1.aa == 'test' class TestDouble: def test_nooption_nooption(self): data = f(""" [sec1] aa = xxx """) conf1 = fetch(data) data = f(""" [sec1] aa = yyy """) conf2 = fetch(data) double = configfetch.Double(conf2.sec1, conf1.sec1) with pytest.raises(configfetch.NoOptionError): assert double.bb == 'zzz' def test_nooption_blank(self): data = f(""" [sec1] aa = xxx """) conf1 = fetch(data) data = f(""" [sec1] bb = """) conf2 = fetch(data) double = configfetch.Double(conf2.sec1, conf1.sec1) assert double.bb == '' def test_blank_nooption(self): data = f(""" [sec1] bb = """) conf1 = fetch(data) data = f(""" [sec1] aa = yyy """) conf2 = fetch(data) double = configfetch.Double(conf2.sec1, conf1.sec1) assert double.bb == '' def test_blank_blank(self): data = f(""" [sec1] bb = """) conf1 = fetch(data) data = f(""" [sec1] bb = :: f: comma """) conf2 = fetch(data) double = configfetch.Double(conf2.sec1, conf1.sec1) assert double.bb == '' def test_plus(self): data = f(""" [sec1] aa = :: f: plus xxx, yyy """) conf1 = fetch(data) data = f(""" [sec1] aa = :: f: plus -yyy """) conf2 = fetch(data) double = configfetch.Double(conf2.sec1, conf1.sec1) assert double.aa == ['xxx'] class TestGetPlusMinusValues: initial = ['aaa', 'bbb', 'ccc'] def compare(self, adjusts, initial, expected): values = configfetch._get_plusminus_values(adjusts, initial) assert values == expected def test_adjusts_argument(self): args = (['ddd'], None, ['ddd']) self.compare(*args) args = (['+ddd'], None, ['ddd']) self.compare(*args) args = (['-bbb'], None, []) self.compare(*args) args = (['ddd'], self.initial, ['ddd']) self.compare(*args) args = (['+ddd'], self.initial, ['aaa', 'bbb', 'ccc', 'ddd']) self.compare(*args) args = (['-bbb'], self.initial, ['aaa', 'ccc']) self.compare(*args) args = (['-aaa, -bbb'], self.initial, ['ccc']) self.compare(*args) args = (['-aaa, +ddd, +eee'], self.initial, ['bbb', 'ccc', 'ddd', 'eee']) self.compare(*args) class TestMinusAdapter: parser = argparse.ArgumentParser() parser.add_argument('-a', '--aa', action='store_const', const='A') parser.add_argument('-b', '--bb', action='store_true') parser.add_argument('-c', '--cc', action='store_false') parser.add_argument('-d', '--dd', action='append') parser.add_argument('-e', '--ee', action='append_const', const='E') parser.add_argument('-f', '--ff', action='count') parser.add_argument('-x', '--xx') parser.add_argument('-y', '--yy', nargs=1) def compare(self, args, new_args, matcher=None): assert configfetch.minusadapter(self.parser, matcher, args) == new_args def test(self): # No Minus argument args = ['--aa', '--xx', 'xxxx', '--bb'] new_args = ['--aa', '--xx', 'xxxx', '--bb'] self.compare(args, new_args) # Minus argument args = ['--aa', '--xx', '-xxxx', '--bb'] new_args = ['--aa', '--xx=-xxxx', '--bb'] self.compare(args, new_args) # Minus with another StoreAction args = ['--aa', '--xx', '-xxxx', '--yy', 'yyyy'] new_args = ['--aa', '--xx=-xxxx', '--yy', 'yyyy'] self.compare(args, new_args) # Minus with AppendAction args = ['--dd', '-dddd', '--xx', '-xxxx', '--bb'] new_args = ['--dd=-dddd', '--xx=-xxxx', '--bb'] self.compare(args, new_args) # Minus, short option version args = ['--aa', '-x', '-xxxx', '--bb'] new_args = ['--aa', '-x-xxxx', '--bb'] self.compare(args, new_args) class TestParseArgs: def test_help(self): data = f(""" [sec1] aa = : help string :: f: comma xxx1, xxx2 """) conf = fetch(data) args = conf._ctx['aa']['argparse'] assert args['help'] == 'help string' def test_help_multilines(self): data = f(""" [sec1] aa = : This : is a : help. :: f: comma xxx1, xxx2 """) conf = fetch(data) args = conf._ctx['aa']['argparse'] assert args['help'] == 'This\nis a\nhelp.' def test_help_multilines_blank(self): # testing both ':' and ': ' data = f(""" [sec1] aa = : This : is a : : : help. :: f: comma xxx1, xxx2 """) conf = fetch(data) args = conf._ctx['aa']['argparse'] assert args['help'] == 'This\nis a\n\n\nhelp.' def test_help_and_choices(self): data = f(""" [sec1] aa = : help string :: choices: ss, tt tt """) conf = fetch(data) args = conf._ctx['aa']['argparse'] assert args['help'] == 'help string' assert args['choices'] == ['ss', 'tt'] class TestBuildArgs: def test_help(self): data = f(""" [sec1] aa = : help string :: f: comma xxx1, xxx2 """) conf = fetch(data) action = _get_action(conf, '--aa') assert isinstance(action, argparse._StoreAction) assert action.help == 'help string' def test_help_and_choices(self): data = f(""" [sec1] aa = : help string :: choices: ss, tt tt """) conf = fetch(data) action = _get_action(conf, '--aa') assert isinstance(action, argparse._StoreAction) assert action.choices == ['ss', 'tt'] def test_names(self): data = f(""" [sec1] aa = : help string :: names: a true """) conf = fetch(data) action = _get_action(conf, '--aa') assert isinstance(action, argparse._StoreAction) assert action.option_strings == ['-a', '--aa'] def test_bool(self): data = f(""" [sec1] aa = : help string :: f: bool yes """) conf = fetch(data) action = _get_action(conf, '--aa') assert isinstance(action, argparse._StoreConstAction) assert action.const == 'yes' def test_bool_opposite(self): data = f(""" [sec1] aa = : help string :: f: bool yes no_aa = : help string2 :: dest: aa :: f: bool no """) conf = fetch(data) parser = argparse.ArgumentParser(prog='test') conf.build_arguments(parser) namespace = parser.parse_args(['--aa']) assert namespace.__dict__['aa'] == 'yes' namespace = parser.parse_args(['--no-aa']) assert namespace.__dict__['aa'] == 'no' def test_bool_default_no(self): data = f(""" [sec1] overwrite = : help string :: f: bool no """) conf = fetch(data) action = _get_action(conf, '--overwrite') assert isinstance(action, argparse._StoreConstAction) assert action.const == 'yes' def test_bool_opposite_default_no(self): data = f(""" [sec1] overwrite = : help string :: f: bool no no_overwrite = : help string2 :: dest: overwrite :: f: bool yes """) conf = fetch(data) parser = argparse.ArgumentParser(prog='test') conf.build_arguments(parser) namespace = parser.parse_args(['--overwrite']) assert namespace.__dict__['overwrite'] == 'yes' namespace = parser.parse_args(['--no-overwrite']) assert namespace.__dict__['overwrite'] == 'no' class TestBuildArgsCommandlineOnly: def test_int(self): data = f(""" [sec1] aa = : help string :: default: 1 xxx """) conf = fetch(data) action = _get_action(conf, '--aa') assert isinstance(action, argparse._StoreAction) assert action.default == 1 def test_int_like_string(self): data = f(""" [sec1] aa = : help string :: default: '1' xxx """) conf = fetch(data) action = _get_action(conf, '--aa') assert isinstance(action, argparse._StoreAction) assert action.default == '1' def test_type(self): data = f(""" [sec1] aa = : help string :: type: int 42 """) conf = fetch(data) action = _get_action(conf, '--aa') assert isinstance(action, argparse._StoreAction) assert action.type == int def test_suppress(self): data = f(""" [DEFAULT] aa = : argparse.SUPPRESS :: default: argparse.SUPPRESS [sec1] aa = xxx """) conf = fetch(data) action = _get_action(conf, '--aa') assert isinstance(action, argparse._StoreAction) assert action.help == argparse.SUPPRESS assert action.default == argparse.SUPPRESS assert conf.sec1.aa == 'xxx' def test_print_data(): data = f(""" [DEFAULT] aa = aaa [sec1] bb = bbb cc = : help string :: names: c :: f: bool ccc dd = """) dict_string = f(""" { 'DEFAULT': { 'aa': { 'value': 'aaa', }, }, 'sec1': { 'bb': { 'value': 'bbb', }, 'cc': { 'argparse': { 'help': 'help string', 'names': ['c'], }, 'func': ['bool'], 'value': 'ccc', }, 'dd': { 'value': '', }, }, } """) ini_string = f(""" [DEFAULT] aa= aaa [sec1] bb= bbb cc= ccc dd= """) conf = fetch(data, option_builder=configfetch.FiniOptionBuilder) printer = configfetch.ConfigPrinter ret = [] printer(conf, print=ret.append).print_dict() assert '\n'.join(ret) == dict_string[:-1] ret = [] printer(conf, print=ret.append).print_ini() assert '\n'.join(ret) == ini_string[:-1] dict_ = eval(dict_string) conf = fetch(dict_, option_builder=configfetch.DictOptionBuilder) ret = [] printer(conf, print=ret.append).print_dict() assert '\n'.join(ret) == dict_string[:-1] ret = [] printer(conf, print=ret.append).print_ini() assert '\n'.join(ret) == ini_string[:-1]
20,491
1,183
2,116
4b11f987288e4258a61dd4806f7718825b2bb273
2,254
py
Python
portal_gun/commands/ssh.py
Coderik/portal-gun
081020a46b16b649497bceb6c2435b1ba135b487
[ "MIT" ]
69
2018-05-03T18:25:43.000Z
2021-02-10T11:37:28.000Z
portal_gun/commands/ssh.py
Coderik/portal-gun
081020a46b16b649497bceb6c2435b1ba135b487
[ "MIT" ]
7
2018-09-19T06:39:11.000Z
2022-03-29T21:55:08.000Z
portal_gun/commands/ssh.py
Coderik/portal-gun
081020a46b16b649497bceb6c2435b1ba135b487
[ "MIT" ]
11
2018-07-30T18:09:12.000Z
2019-10-03T15:36:13.000Z
import os from portal_gun.commands.helpers import get_provider_config, get_portal_spec, get_portal_name, \ get_provider_from_portal from portal_gun.context_managers.no_print import no_print from .base_command import BaseCommand from .handlers import create_handler
34.676923
107
0.726264
import os from portal_gun.commands.helpers import get_provider_config, get_portal_spec, get_portal_name, \ get_provider_from_portal from portal_gun.context_managers.no_print import no_print from .base_command import BaseCommand from .handlers import create_handler class SshCommand(BaseCommand): DEFAULT_TMUX_SESSION = 'portal' def __init__(self, args): BaseCommand.__init__(self, args) @staticmethod def cmd(): return 'ssh' @classmethod def add_subparser(cls, subparsers): parser = subparsers.add_parser(cls.cmd(), help='Connect to the remote host via ssh') parser.add_argument('portal', help='Name of portal') parser.add_argument('-t', '--tmux', dest='tmux', nargs='?', default=None, const=cls.DEFAULT_TMUX_SESSION, metavar='session', help='Automatically open tmux session upon connection. ' 'Default session name is `{}`.'.format(cls.DEFAULT_TMUX_SESSION)) def run(self): # Find, parse and validate configs with no_print(): portal_name = get_portal_name(self._args.portal) portal_spec = get_portal_spec(portal_name) provider_name = get_provider_from_portal(portal_spec) provider_config = get_provider_config(self._args.config, provider_name) # Create appropriate command handler for given cloud provider handler = create_handler(provider_name, provider_config) identity_file, user, host, disable_known_hosts = handler.get_ssh_params(portal_spec, portal_name) print('Connecting to the remote machine...') print('\tssh -i "{}" {}@{}'.format(identity_file, user, host).expandtabs(4)) # If needed, disable strict known-hosts check options = [] if disable_known_hosts: options = [ '-o', 'StrictHostKeyChecking=no' ] # If requested, configure a preamble (a set of commands to be run automatically after connection) preamble = [] if self._args.tmux is not None: preamble = [ '-t', '""tmux attach-session -t {sess} || tmux new-session -s {sess}""'.format(sess=self._args.tmux) ] print('Upon connection will open tmux session `{}`.'.format(self._args.tmux)) print('') # Ssh to remote host (effectively replace current process by ssh) os.execvp('ssh', ['ssh', '-i', identity_file, '{}@{}'.format(user, host)] + options + preamble)
1,796
167
23
a5bd7b16ae0ef9281e8935c406154bcc19d183b1
10,477
py
Python
pt3/client.py
Aerun/pytyle3
86876fa7ad652fc99b77f5482559733c95490e84
[ "WTFPL" ]
null
null
null
pt3/client.py
Aerun/pytyle3
86876fa7ad652fc99b77f5482559733c95490e84
[ "WTFPL" ]
null
null
null
pt3/client.py
Aerun/pytyle3
86876fa7ad652fc99b77f5482559733c95490e84
[ "WTFPL" ]
null
null
null
import time import xcffib.xproto import xpybutil import xpybutil.event as event import xpybutil.ewmh as ewmh import xpybutil.motif as motif import xpybutil.icccm as icccm import xpybutil.rect as rect import xpybutil.util as util import xpybutil.window as window from debug import debug import config import state import tile clients = {} ignore = [] # Some clients are never gunna make it... event.connect('PropertyNotify', xpybutil.root, cb_property_notify)
34.127036
98
0.592345
import time import xcffib.xproto import xpybutil import xpybutil.event as event import xpybutil.ewmh as ewmh import xpybutil.motif as motif import xpybutil.icccm as icccm import xpybutil.rect as rect import xpybutil.util as util import xpybutil.window as window from debug import debug import config import state import tile clients = {} ignore = [] # Some clients are never gunna make it... class Client(object): def __init__(self, wid): self.wid = wid self.name = ewmh.get_wm_name(self.wid).reply() or 'N/A' debug('Connecting to %s' % self) window.listen(self.wid, 'PropertyChange', 'FocusChange') event.connect('PropertyNotify', self.wid, self.cb_property_notify) event.connect('FocusIn', self.wid, self.cb_focus_in) event.connect('FocusOut', self.wid, self.cb_focus_out) # This connects to the parent window (decorations) # We get all resize AND move events... might be too much self.parentid = window.get_parent_window(self.wid) window.listen(self.parentid, 'StructureNotify') event.connect('ConfigureNotify', self.parentid, self.cb_configure_notify) # A window should only be floating if that is default self.floating = getattr(config, 'floats_default', False) # Not currently in a "moving" state self.moving = False # Load some data self.desk = ewmh.get_wm_desktop(self.wid).reply() # Add it to this desktop's tilers tile.update_client_add(self) # First cut at saving client geometry self.save() def remove(self): tile.update_client_removal(self) debug('Disconnecting from %s' % self) event.disconnect('ConfigureNotify', self.parentid) event.disconnect('PropertyNotify', self.wid) event.disconnect('FocusIn', self.wid) event.disconnect('FocusOut', self.wid) def activate(self): ewmh.request_active_window_checked(self.wid, source=1).check() def unmaximize(self): vatom = util.get_atom('_NET_WM_STATE_MAXIMIZED_VERT') hatom = util.get_atom('_NET_WM_STATE_MAXIMIZED_HORZ') ewmh.request_wm_state_checked(self.wid, 0, vatom, hatom).check() def save(self): self.saved_geom = window.get_geometry(self.wid) self.saved_state = ewmh.get_wm_state(self.wid).reply() def restore(self): debug('Restoring %s' % self) if getattr(config, 'remove_decorations', False): motif.set_hints_checked(self.wid,2,decoration=1).check() if getattr(config, 'tiles_below', False): ewmh.request_wm_state_checked(self.wid,0,util.get_atom('_NET_WM_STATE_BELOW')).check() if self.saved_state: fullymaxed = False vatom = util.get_atom('_NET_WM_STATE_MAXIMIZED_VERT') hatom = util.get_atom('_NET_WM_STATE_MAXIMIZED_HORZ') if vatom in self.saved_state and hatom in self.saved_state: fullymaxed = True ewmh.request_wm_state_checked(self.wid, 1, vatom, hatom).check() elif vatom in self.saved_state: ewmh.request_wm_state_checked(self.wid, 1, vatom).check() elif hatom in self.saved_state: ewmh.request_wm_state_checked(self.wid, 1, hatom).check() # No need to continue if we've fully maximized the window if fullymaxed: return mnow = rect.get_monitor_area(window.get_geometry(self.wid), state.monitors) mold = rect.get_monitor_area(self.saved_geom, state.monitors) x, y, w, h = self.saved_geom # What if the client is on a monitor different than what it was before? # Use the same algorithm in Openbox to convert one monitor's # coordinates to another. if mnow != mold: nowx, nowy, noww, nowh = mnow oldx, oldy, oldw, oldh = mold xrat, yrat = float(noww) / float(oldw), float(nowh) / float(oldh) x = nowx + (x - oldx) * xrat y = nowy + (y - oldy) * yrat w *= xrat h *= yrat window.moveresize(self.wid, x, y, w, h) def moveresize(self, x=None, y=None, w=None, h=None): # Ignore this if the user is moving the window... if self.moving: print 'Sorry but %s is moving...' % self return try: window.moveresize(self.wid, x, y, w, h) except: pass def is_button_pressed(self): try: pointer = xpybutil.conn.core.QueryPointer(self.wid).reply() if pointer is None: return False if (xcffib.xproto.KeyButMask.Button1 & pointer.mask or xcffib.xproto.KeyButMask.Button3 & pointer.mask): return True except xcffib.xproto.BadWindow: pass return False def cb_focus_in(self, e): if self.moving and e.mode == xcffib.xproto.NotifyMode.Ungrab: state.GRAB = None self.moving = False tile.update_client_moved(self) def cb_focus_out(self, e): if e.mode == xcffib.xproto.NotifyMode.Grab: state.GRAB = self def cb_configure_notify(self, e): if state.GRAB is self and self.is_button_pressed(): self.moving = True def cb_property_notify(self, e): aname = util.get_atom_name(e.atom) try: if aname == '_NET_WM_DESKTOP': if should_ignore(self.wid): untrack_client(self.wid) return olddesk = self.desk self.desk = ewmh.get_wm_desktop(self.wid).reply() if self.desk is not None and self.desk != olddesk: tile.update_client_desktop(self, olddesk) else: self.desk = olddesk elif aname == '_NET_WM_STATE': if should_ignore(self.wid): untrack_client(self.wid) return except xcffib.xproto.BadWindow: pass # S'ok... def __str__(self): return '{%s (%d)}' % (self.name[0:30], self.wid) def update_clients(): client_list = ewmh.get_client_list_stacking().reply() client_list = list(reversed(client_list)) for c in client_list: if c not in clients: track_client(c) for c in clients.keys(): if c not in client_list: untrack_client(c) def track_client(client): assert client not in clients try: if not should_ignore(client): if state.PYTYLE_STATE == 'running': # This is truly unfortunate and only seems to be necessary when # a client comes back from an iconified state. This causes a # slight lag when a new window is mapped, though. time.sleep(0.2) clients[client] = Client(client) except xcffib.xproto.BadWindow: debug('Window %s was destroyed before we could finish inspecting it. ' 'Untracking it...' % client) untrack_client(client) def untrack_client(client): if client not in clients: return c = clients[client] del clients[client] c.remove() def should_ignore(client): # Don't waste time on clients we'll never possibly tile if client in ignore: return True nm = ewmh.get_wm_name(client).reply() wm_class = icccm.get_wm_class(client).reply() if wm_class is not None: try: inst, cls = wm_class matchNames = set([inst.lower(), cls.lower()]) if matchNames.intersection(config.ignore): debug('Ignoring %s because it is in the ignore list' % nm) return True if hasattr(config, 'tile_only') and config.tile_only: if not matchNames.intersection(config.tile_only): debug('Ignoring %s because it is not in the tile_only ' 'list' % nm) return True except ValueError: pass if icccm.get_wm_transient_for(client).reply() is not None: debug('Ignoring %s because it is transient' % nm) ignore.append(client) return True wtype = ewmh.get_wm_window_type(client).reply() if wtype: for atom in wtype: aname = util.get_atom_name(atom) if aname in ('_NET_WM_WINDOW_TYPE_DESKTOP', '_NET_WM_WINDOW_TYPE_DOCK', '_NET_WM_WINDOW_TYPE_TOOLBAR', '_NET_WM_WINDOW_TYPE_MENU', '_NET_WM_WINDOW_TYPE_UTILITY', '_NET_WM_WINDOW_TYPE_SPLASH', '_NET_WM_WINDOW_TYPE_DIALOG', '_NET_WM_WINDOW_TYPE_DROPDOWN_MENU', '_NET_WM_WINDOW_TYPE_POPUP_MENU', '_NET_WM_WINDOW_TYPE_TOOLTIP', '_NET_WM_WINDOW_TYPE_NOTIFICATION', '_NET_WM_WINDOW_TYPE_COMBO', '_NET_WM_WINDOW_TYPE_DND'): debug('Ignoring %s because it has type %s' % (nm, aname)) ignore.append(client) return True wstate = ewmh.get_wm_state(client).reply() if wstate is None: debug('Ignoring %s because it does not have a state' % nm) return True for atom in wstate: aname = util.get_atom_name(atom) # For now, while I decide how to handle these guys if aname == '_NET_WM_STATE_STICKY': debug('Ignoring %s because it is sticky and they are weird' % nm) return True if aname in ('_NET_WM_STATE_SHADED', '_NET_WM_STATE_HIDDEN', '_NET_WM_STATE_FULLSCREEN', '_NET_WM_STATE_MODAL'): debug('Ignoring %s because it has state %s' % (nm, aname)) return True d = ewmh.get_wm_desktop(client).reply() if d == 0xffffffff: debug('Ignoring %s because it\'s on all desktops' \ '(not implemented)' % nm) return True return False def cb_property_notify(e): aname = util.get_atom_name(e.atom) if aname == '_NET_CLIENT_LIST_STACKING': update_clients() event.connect('PropertyNotify', xpybutil.root, cb_property_notify)
9,523
0
488
aba168a92af45bb1cc54c1d9fa128f27dfac8b46
411
py
Python
movies/details/models.py
tehran4e/workspace
1a479458ae113c02e6597578f289e5f9283a69f2
[ "MIT" ]
null
null
null
movies/details/models.py
tehran4e/workspace
1a479458ae113c02e6597578f289e5f9283a69f2
[ "MIT" ]
null
null
null
movies/details/models.py
tehran4e/workspace
1a479458ae113c02e6597578f289e5f9283a69f2
[ "MIT" ]
null
null
null
from django.db import models
27.4
61
0.693431
from django.db import models class Artist(models.Model): name = models.CharField(max_length=200) def __str__(self): return self.name class Movie(models.Model): title = models.CharField(max_length=100) year = models.IntegerField() director = models.CharField(max_length=100) story = models.TextField() artistsName = models.ManyToManyField(Artist, blank=True)
23
307
49
1782765336d1c920b25f3e04b8d6dd09f0344112
905
py
Python
index_cli/core/json_type.py
lishnih/index_cli
57f23d5df5168bcc73e23e0eeabbb8317014585b
[ "MIT" ]
null
null
null
index_cli/core/json_type.py
lishnih/index_cli
57f23d5df5168bcc73e23e0eeabbb8317014585b
[ "MIT" ]
null
null
null
index_cli/core/json_type.py
lishnih/index_cli
57f23d5df5168bcc73e23e0eeabbb8317014585b
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding=utf-8 # Stan 2018-09-27 from __future__ import (division, absolute_import, print_function, unicode_literals) import json from sqlalchemy.types import UserDefinedType, TypeDecorator, Text # class JsonType(UserDefinedType): # def get_col_spec(self, **kw): # return "JSON" # # def bind_processor(self, dialect): # def process(value): # return json.dumps(value, ensure_ascii=False).encode('utf8') # # return process # # def result_processor(self, dialect, coltype): # def process(value): # return json.loads(value) # # return process
23.815789
73
0.653039
#!/usr/bin/env python # coding=utf-8 # Stan 2018-09-27 from __future__ import (division, absolute_import, print_function, unicode_literals) import json from sqlalchemy.types import UserDefinedType, TypeDecorator, Text class JsonType(TypeDecorator): impl = Text def process_bind_param(self, value, dialect): return json.dumps(value, ensure_ascii=False) def process_result_value(self, value, dialect): return json.loads(value) # class JsonType(UserDefinedType): # def get_col_spec(self, **kw): # return "JSON" # # def bind_processor(self, dialect): # def process(value): # return json.dumps(value, ensure_ascii=False).encode('utf8') # # return process # # def result_processor(self, dialect, coltype): # def process(value): # return json.loads(value) # # return process
136
79
23
ed5e6c0f6c69ec6fdd90183710bf386418d25c66
1,563
py
Python
tests/test_settings.py
sneJ-/chaostoolkit-lib
07b00c8bffe8cda7494b049f9640cdbba3bad8bc
[ "Apache-2.0" ]
1
2019-11-18T19:57:42.000Z
2019-11-18T19:57:42.000Z
tests/test_settings.py
sneJ-/chaostoolkit-lib
07b00c8bffe8cda7494b049f9640cdbba3bad8bc
[ "Apache-2.0" ]
null
null
null
tests/test_settings.py
sneJ-/chaostoolkit-lib
07b00c8bffe8cda7494b049f9640cdbba3bad8bc
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import os.path from chaoslib.settings import get_loaded_settings, load_settings, save_settings settings_dir = os.path.join(os.path.dirname(__file__), "fixtures")
28.944444
79
0.715931
# -*- coding: utf-8 -*- import os.path from chaoslib.settings import get_loaded_settings, load_settings, save_settings settings_dir = os.path.join(os.path.dirname(__file__), "fixtures") def test_do_not_fail_when_settings_do_not_exist(): assert load_settings( os.path.join(settings_dir, "no_settings.yaml")) is None def test_load_settings(): settings = load_settings(os.path.join(settings_dir, "settings.yaml")) assert "notifications" in settings def test_save_settings(): settings = load_settings(os.path.join(settings_dir, "settings.yaml")) new_settings_location = os.path.join(settings_dir, "new_settings.yaml") try: os.remove(new_settings_location) except OSError: pass save_settings(settings, new_settings_location) saved_settings = load_settings(new_settings_location) assert "notifications" in saved_settings os.remove(new_settings_location) def test_load_unsafe_settings(): settings = load_settings( os.path.join(settings_dir, "unsafe-settings.yaml")) assert settings is None def test_create_settings_file_on_save(): ghost = os.path.abspath(os.path.join(settings_dir, "bah", "ghost.yaml")) assert not os.path.exists(ghost) try: save_settings({}, ghost) assert os.path.exists(ghost) finally: try: os.remove(ghost) except OSError: pass def test_get_loaded_settings(): settings = load_settings(os.path.join(settings_dir, "settings.yaml")) assert get_loaded_settings() is settings
1,231
0
138
0da55faa65c939131e74dd60e3f512e40b9acbf0
49
py
Python
instance/config.py
davideguidobene/cinema-web-app
1a83576a1e37ea69bec2b2a80f584912cfc9b264
[ "MIT" ]
null
null
null
instance/config.py
davideguidobene/cinema-web-app
1a83576a1e37ea69bec2b2a80f584912cfc9b264
[ "MIT" ]
null
null
null
instance/config.py
davideguidobene/cinema-web-app
1a83576a1e37ea69bec2b2a80f584912cfc9b264
[ "MIT" ]
null
null
null
import os SECRET_KEY = os.getenv("SECRET_KEY")
9.8
36
0.734694
import os SECRET_KEY = os.getenv("SECRET_KEY")
0
0
0
7a777dd89c577420d917a03e50e383d90d26f239
652
py
Python
cit_vipnet/inventory/migrations/0002_auto_20210906_1138.py
mr-Marshanskiy/cit-vipnet
6a0e56a13cae57252957c82af3d4e98da5d9d6a4
[ "BSD-3-Clause" ]
null
null
null
cit_vipnet/inventory/migrations/0002_auto_20210906_1138.py
mr-Marshanskiy/cit-vipnet
6a0e56a13cae57252957c82af3d4e98da5d9d6a4
[ "BSD-3-Clause" ]
null
null
null
cit_vipnet/inventory/migrations/0002_auto_20210906_1138.py
mr-Marshanskiy/cit-vipnet
6a0e56a13cae57252957c82af3d4e98da5d9d6a4
[ "BSD-3-Clause" ]
null
null
null
# Generated by Django 2.2 on 2021-09-06 08:38 from django.db import migrations
29.636364
137
0.627301
# Generated by Django 2.2 on 2021-09-06 08:38 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('inventory', '0001_initial'), ] operations = [ migrations.AlterModelOptions( name='hardwareplatform', options={'ordering': ['-name'], 'verbose_name': 'Аппаратная платформа', 'verbose_name_plural': 'Аппаратные платформы'}, ), migrations.AlterModelOptions( name='modification', options={'ordering': ['-name'], 'verbose_name': 'Модификация исполненеия', 'verbose_name_plural': 'Модификации исполненеий'}, ), ]
0
630
23
a218e268b041cea723c99b9e20c6c99c665876db
88
py
Python
main.py
hailleenvarela/data-2022-1
8f92e1325b6fcbf727b426c50ddf32d10e38db89
[ "MIT" ]
null
null
null
main.py
hailleenvarela/data-2022-1
8f92e1325b6fcbf727b426c50ddf32d10e38db89
[ "MIT" ]
1
2022-02-27T23:23:50.000Z
2022-02-27T23:23:50.000Z
main.py
hailleenvarela/data-2022-1
8f92e1325b6fcbf727b426c50ddf32d10e38db89
[ "MIT" ]
3
2022-02-27T23:14:24.000Z
2022-03-02T00:47:12.000Z
from source.etl import ETL x = ETL() df = x.extract(True) x.transform(df) #x.load(df)
11
26
0.670455
from source.etl import ETL x = ETL() df = x.extract(True) x.transform(df) #x.load(df)
0
0
0
97d4c4d8955d3f56c8e11f52c3ceebef2f337f77
2,533
py
Python
2021/advent2021_9.py
aatango/Advent-of-Code
f229abc7acaaa0a2316839bf11fa7e2fdf9caf2c
[ "MIT" ]
null
null
null
2021/advent2021_9.py
aatango/Advent-of-Code
f229abc7acaaa0a2316839bf11fa7e2fdf9caf2c
[ "MIT" ]
null
null
null
2021/advent2021_9.py
aatango/Advent-of-Code
f229abc7acaaa0a2316839bf11fa7e2fdf9caf2c
[ "MIT" ]
null
null
null
"""Advent of Code 2021, day 9: Smoke Basin""" def main(input_matrix: tuple[str]) -> int: """ Find all of the low points on your heightmap. What is the sum of the risk levels of all low points on your heightmap? """ # It's a brute force approach that does not scale to part two, # but it's what I could think of with very little time. # Transform string input into usable int values. for line in input_matrix: int_line: list[int] = [] for num in line: int_line.append(int(num)) DEPTH_MAP.append(int_line) # Find local minima. low_points: list[int] = [] for line_index, line in enumerate(DEPTH_MAP): for point_index, point in enumerate(line): neighbours: list[int] = [] if point_index - 1 in range(0, len(line)): neighbours.append(DEPTH_MAP[line_index][point_index - 1]) if point_index + 1 in range(0, len(line)): neighbours.append(DEPTH_MAP[line_index][point_index + 1]) if line_index - 1 in range(0, len(DEPTH_MAP)): neighbours.append(DEPTH_MAP[line_index - 1][point_index]) if line_index + 1 in range(0, len(DEPTH_MAP)): neighbours.append(DEPTH_MAP[line_index + 1][point_index]) if point < min(neighbours): low_points.append(point + 1) return sum(low_points) def part_two(): """What do you get if you multiply together the sizes of the three largest basins? Unlike most other days, this part_two() is dependent on main(), as it's there that the global DEPTH_MAP is generated. """ basins_sizes: list[int] = [] # This loop is to initiate recursive calls, whenever it finds a new basin. for line_index, line in enumerate(DEPTH_MAP): for point_index, point in enumerate(line): if point < 9: basins_sizes.append(map_basin((line_index, point_index))) basins_sizes.sort() return basins_sizes[-3] * basins_sizes[-2] * basins_sizes[-1] if __name__ == "__main__": with open("../input", "r") as file: INPUT_FILE = tuple(file.read().splitlines()) # Global so that it doesn't have to be remade for part two. DEPTH_MAP: list[list[int]] = [] print(main(INPUT_FILE)) print(part_two())
28.784091
83
0.684959
"""Advent of Code 2021, day 9: Smoke Basin""" def main(input_matrix: tuple[str]) -> int: """ Find all of the low points on your heightmap. What is the sum of the risk levels of all low points on your heightmap? """ # It's a brute force approach that does not scale to part two, # but it's what I could think of with very little time. # Transform string input into usable int values. for line in input_matrix: int_line: list[int] = [] for num in line: int_line.append(int(num)) DEPTH_MAP.append(int_line) # Find local minima. low_points: list[int] = [] for line_index, line in enumerate(DEPTH_MAP): for point_index, point in enumerate(line): neighbours: list[int] = [] if point_index - 1 in range(0, len(line)): neighbours.append(DEPTH_MAP[line_index][point_index - 1]) if point_index + 1 in range(0, len(line)): neighbours.append(DEPTH_MAP[line_index][point_index + 1]) if line_index - 1 in range(0, len(DEPTH_MAP)): neighbours.append(DEPTH_MAP[line_index - 1][point_index]) if line_index + 1 in range(0, len(DEPTH_MAP)): neighbours.append(DEPTH_MAP[line_index + 1][point_index]) if point < min(neighbours): low_points.append(point + 1) return sum(low_points) def part_two(): """What do you get if you multiply together the sizes of the three largest basins? Unlike most other days, this part_two() is dependent on main(), as it's there that the global DEPTH_MAP is generated. """ def map_basin(pos: tuple[int], basin_size: int = 0) -> int: if DEPTH_MAP[pos[0]][pos[1]] >= 9: return basin_size basin_size += 1 DEPTH_MAP[pos[0]][pos[1]] = 9 basin_size += map_basin((max(pos[0] - 1, 0), pos[1])) basin_size += map_basin((min(pos[0] + 1, len(DEPTH_MAP) - 1), pos[1])) basin_size += map_basin((pos[0], max(pos[1] - 1, 0))) basin_size += map_basin((pos[0], min(pos[1] + 1, len(DEPTH_MAP[0]) - 1))) return basin_size basins_sizes: list[int] = [] # This loop is to initiate recursive calls, whenever it finds a new basin. for line_index, line in enumerate(DEPTH_MAP): for point_index, point in enumerate(line): if point < 9: basins_sizes.append(map_basin((line_index, point_index))) basins_sizes.sort() return basins_sizes[-3] * basins_sizes[-2] * basins_sizes[-1] if __name__ == "__main__": with open("../input", "r") as file: INPUT_FILE = tuple(file.read().splitlines()) # Global so that it doesn't have to be remade for part two. DEPTH_MAP: list[list[int]] = [] print(main(INPUT_FILE)) print(part_two())
430
0
24
8485ba5f72fd09655120694f54a0ea9e297a8fe8
545
py
Python
pythondata_cpu_blackparrot/system_verilog/black-parrot/external/basejump_stl/testing/bsg_test/dramsim3_bandwidth2/const_random.py
litex-hub/pythondata-cpu-blackparrot
ba50883f12d33e1d834640640c84ddc9329bb68a
[ "BSD-3-Clause" ]
3
2021-05-12T21:57:55.000Z
2021-07-29T19:56:04.000Z
pythondata_cpu_blackparrot/system_verilog/black-parrot/external/basejump_stl/testing/bsg_test/dramsim3_bandwidth2/const_random.py
litex-hub/litex-data-cpu-blackparrot
ba50883f12d33e1d834640640c84ddc9329bb68a
[ "BSD-3-Clause" ]
1
2020-05-02T02:41:24.000Z
2020-05-02T02:44:25.000Z
pythondata_cpu_blackparrot/system_verilog/black-parrot/external/basejump_stl/testing/bsg_test/dramsim3_bandwidth2/const_random.py
litex-hub/litex-data-cpu-blackparrot
ba50883f12d33e1d834640640c84ddc9329bb68a
[ "BSD-3-Clause" ]
2
2020-05-01T08:33:19.000Z
2021-07-29T19:56:12.000Z
import sys import random from trace_gen import * if __name__ == "__main__": random.seed(0) num_cache_p = int(sys.argv[1]) block_size_in_words_p = int(sys.argv[2]) tg = TraceGen(block_size_in_words_p) tg.clear_tags() #words = (2**18)/num_cache_p # 1MB words = (2**18)/num_cache_p # 1MB max_range = (2**14)# 64KB for i in range(words): taddr = random.randint(0, max_range-1) << 2 write_not_read = random.randint(0,1) if write_not_read: tg.send_write(taddr) else: tg.send_read(taddr) tg.done()
20.185185
47
0.66055
import sys import random from trace_gen import * if __name__ == "__main__": random.seed(0) num_cache_p = int(sys.argv[1]) block_size_in_words_p = int(sys.argv[2]) tg = TraceGen(block_size_in_words_p) tg.clear_tags() #words = (2**18)/num_cache_p # 1MB words = (2**18)/num_cache_p # 1MB max_range = (2**14)# 64KB for i in range(words): taddr = random.randint(0, max_range-1) << 2 write_not_read = random.randint(0,1) if write_not_read: tg.send_write(taddr) else: tg.send_read(taddr) tg.done()
0
0
0
74ee5adaad45c0809358f0e7260945651ef42945
5,699
py
Python
touchdown/tests/test_aws_vpc_subnet.py
yaybu/touchdown
70ecda5191ce2d095bc074dcb23bfa1584464814
[ "Apache-2.0" ]
14
2015-01-05T18:18:04.000Z
2022-02-07T19:35:12.000Z
touchdown/tests/test_aws_vpc_subnet.py
yaybu/touchdown
70ecda5191ce2d095bc074dcb23bfa1584464814
[ "Apache-2.0" ]
106
2015-01-06T00:17:13.000Z
2019-09-07T00:35:32.000Z
touchdown/tests/test_aws_vpc_subnet.py
yaybu/touchdown
70ecda5191ce2d095bc074dcb23bfa1584464814
[ "Apache-2.0" ]
5
2015-01-30T10:18:24.000Z
2022-02-07T19:35:13.000Z
# Copyright 2015 Isotoma Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from touchdown.tests.aws import StubberTestCase from touchdown.tests.fixtures.aws import ( NetworkAclFixture, RouteTableFixture, VpcFixture, ) from touchdown.tests.stubs.aws import SubnetStubber
32.565714
87
0.589402
# Copyright 2015 Isotoma Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from touchdown.tests.aws import StubberTestCase from touchdown.tests.fixtures.aws import ( NetworkAclFixture, RouteTableFixture, VpcFixture, ) from touchdown.tests.stubs.aws import SubnetStubber class TestSubnetCreation(StubberTestCase): def test_create_subnet(self): goal = self.create_goal("apply") vpcf = self.fixtures.enter_context(VpcFixture(goal, self.aws)) subnet = self.fixtures.enter_context( SubnetStubber( goal.get_service( vpcf.vpc.add_subnet( name="test-subnet", cidr_block="192.168.0.0/25" ), "apply", ) ) ) subnet.add_describe_subnets_empty_response() subnet.add_create_subnet() subnet.add_create_tags(Name="test-subnet") # Wait for the subnet to exist subnet.add_describe_subnets_empty_response() subnet.add_describe_subnets_empty_response() subnet.add_describe_subnets_one_response() # Call describe_object again to make sure remote state is correctly cached subnet.add_describe_subnets_one_response() subnet.add_describe_network_acls() subnet.add_describe_route_tables() goal.execute() def test_adding_route_table_to_subnet(self): goal = self.create_goal("apply") vpcf = self.fixtures.enter_context(VpcFixture(goal, self.aws)) route_table = self.fixtures.enter_context( RouteTableFixture(goal, self.aws, vpcf.vpc) ) subnet = self.fixtures.enter_context( SubnetStubber( goal.get_service( vpcf.vpc.add_subnet( name="test-subnet", cidr_block="192.168.0.0/25", route_table=route_table, ), "apply", ) ) ) subnet.add_describe_subnets_one_response() subnet.add_describe_network_acls() subnet.add_describe_route_tables() subnet.add_associate_route_table("rt-52f2381b") goal.execute() def test_adding_nacl_table_to_subnet(self): goal = self.create_goal("apply") vpcf = self.fixtures.enter_context(VpcFixture(goal, self.aws)) nacl = self.fixtures.enter_context(NetworkAclFixture(goal, self.aws, vpcf.vpc)) subnet = self.fixtures.enter_context( SubnetStubber( goal.get_service( vpcf.vpc.add_subnet( name="test-subnet", cidr_block="192.168.0.0/25", network_acl=nacl, ), "apply", ) ) ) subnet.add_describe_subnets_one_response() subnet.add_describe_network_acls() subnet.add_describe_route_tables() subnet.add_replace_network_acl_association() goal.execute() def test_create_subnet_idempotent(self): goal = self.create_goal("apply") vpcf = self.fixtures.enter_context(VpcFixture(goal, self.aws)) subnet = self.fixtures.enter_context( SubnetStubber( goal.get_service( vpcf.vpc.add_subnet( name="test-subnet", cidr_block="192.168.0.0/25" ), "apply", ) ) ) subnet.add_describe_subnets_one_response() subnet.add_describe_network_acls() subnet.add_describe_route_tables() self.assertEqual(len(list(goal.plan())), 0) self.assertEqual(len(goal.get_changes(subnet.resource)), 0) class TestSubnetDestroy(StubberTestCase): def test_destroy_subnet(self): goal = self.create_goal("destroy") vpcf = self.fixtures.enter_context(VpcFixture(goal, self.aws)) subnet = self.fixtures.enter_context( SubnetStubber( goal.get_service( vpcf.vpc.add_subnet( name="test-subnet", cidr_block="192.168.0.0/25" ), "destroy", ) ) ) subnet.add_describe_subnets_one_response() subnet.add_describe_network_acls() subnet.add_describe_route_tables() subnet.add_delete_subnet() goal.execute() def test_destroy_subnet_idempotent(self): goal = self.create_goal("destroy") vpcf = self.fixtures.enter_context(VpcFixture(goal, self.aws)) subnet = self.fixtures.enter_context( SubnetStubber( goal.get_service( vpcf.vpc.add_subnet( name="test-subnet", cidr_block="192.168.0.0/25" ), "destroy", ) ) ) subnet.add_describe_subnets_empty_response() self.assertEqual(len(list(goal.plan())), 0) self.assertEqual(len(goal.get_changes(subnet.resource)), 0)
4,665
41
206
62b58d3a59f61b26ea27943ea666bc132820d76e
8,597
py
Python
pymbs/processing/loops/fourbar.py
brutzl/pymbs
fb7c91435f56b5c4d460f82f081d5d1960fea886
[ "MIT" ]
null
null
null
pymbs/processing/loops/fourbar.py
brutzl/pymbs
fb7c91435f56b5c4d460f82f081d5d1960fea886
[ "MIT" ]
null
null
null
pymbs/processing/loops/fourbar.py
brutzl/pymbs
fb7c91435f56b5c4d460f82f081d5d1960fea886
[ "MIT" ]
null
null
null
from pymbs.processing.loops.loop import Loop from pymbs.common.functions import sqrt from pymbs.processing import Frame from pymbs.processing.loads.constraint import Constraint from numpy import pi from pymbs.symbolics import Matrix, eye, cos, sin, atan, atan2, acos, zeros, transpose AL = 'FB_%s_AL' BE = 'FB_%s_BE' GA = 'FB_%s_GA' DE = 'FB_%s_DE' L1 = 'FB_%s_L1' L2 = 'FB_%s_L2' L3 = 'FB_%s_L3' L4 = 'FB_%s_L4' PHI = 'FB_%s_PHI' PSI = 'FB_%s_PSI' THETA = 'FB_%s_THETA' A = 'FB_%s_A' B = 'FB_%s_B' C = 'FB_%s_C' D = 'FB_%s_D' E = 'FB_%s_E' F = 'FB_%s_F' from pymbs.symbolics import Graph class FourBar(Loop): ''' Explicit Treatment of a Four Bar Linkage Mechanism ''' ''' Sketch: B--3--C / \ 2 4 / \ A-----1------D ''' def __init__(self, name, csCa, csCb, posture): ''' Constructor @param setup: Four Bar Linkage has two setups: -1, 1 ''' # Assertions assert ( isinstance(csCa, Frame) ) assert ( isinstance(csCb, Frame) ) assert ( isinstance(posture, int) ) assert ( (posture == 1) or (posture == -1 )) # Check parents if (csCa.parentBody.joint is None): raise ValueError('Loop "%s": Coordinate System "%s" is directly connected to the world!'%(name,csCa.name)) if (csCb.parentBody.joint is None): raise ValueError('Loop "%s": Coordinate System "%s" is directly connected to the world!'%(name,csCb.name)) # Build complete FourBarLinkage jB = csCa.parentBody.joint jD = csCb.parentBody.joint if (jB.coordSys.parentBody.joint == None): jB = csCb.parentBody.joint jD = csCa.parentBody.joint jA = jB.coordSys.parentBody.joint csC3 = csCb csC4 = csCa else: jA = jB.coordSys.parentBody.joint csC3 = csCa csC4 = csCb # Do the Joints have the same axis of Rotation if (jA.Phi == Matrix([1,0,0])): self.sign = 1 self.pick = Matrix([[0,1,0], [0,0,1]]) elif (jA.Phi == Matrix([0,1,0])): self.sign = -1 self.pick = Matrix([[1,0,0], [0,0,1]]) elif (jA.Phi == Matrix([0,0,1])): self.sign = 1 self.pick = Matrix([[1,0,0], [0,1,0]]) else: raise ValueError('Loop "%s": Axis of Rotation must be either x,y or z!'%name) assert( jA.Phi == jB.Phi ), 'jA.Phi(%s): %s, jB.Phi(%s): %s'%(jA.name,jA.Phi,jB.name,jB.Phi) assert( jA.Phi == jD.Phi ), 'jA.Phi(%s): %s, jD.Phi(%s): %s'%(jA.name,jA.Phi,jD.name,jD.Phi) assert( jA.Psi.norm() == 0 ) assert( jB.Psi.norm() == 0 ) assert( jD.Psi.norm() == 0 ) # Are All Coordinate Systems aligned like their parentBody? assert( (jA.coordSys.R - eye(3)) == zeros(3) ) assert( (jB.coordSys.R - eye(3)) == zeros(3) ) assert( (jD.coordSys.R - eye(3)) == zeros(3) ) # Check that bodies between joints are the same assert( jA.coordSys.parentBody == jD.coordSys.parentBody ) assert( jA.body == jB.coordSys.parentBody ) assert( jB.body == csC3.parentBody ) assert( jD.body == csC4.parentBody ) # Super Constructor Loop.__init__(self, name) # Save Parameters self.jA = jA self.jB = jB self.jD = jD self.csC3 = csC3 self.csC4 = csC4 self.posture = posture # Independent Coordinates self.u = [jA.q] self.ud = [jA.qd] self.udd = [jA.qdd] # Dependent Coordinates self.v = [jB.q, jD.q] self.vd = [jB.qd, jD.qd] self.vdd = [jB.qdd, jD.qdd] def calc(self, graph): ''' Returns precalculated v(u), Bvu and b_prime, s.t. q = [u,v]', where u: independent coordinates v: dependent coordinates Starting from the Constraint Equation: Phi(q) = 0, One Obtains by Differentiation: (d(Phi)/du)*u_dot + (d(Phi)/dv)*v_dot = 0 Ju*u_dot + Jv+v_dot = 0 Thus, v_dot = -(inv(Jv)*Ju)*u_dot = Bvu*u_dot, with Jv = d(Phi)/dv and Ju = d(Phi)/du Differentiating once more, yields Ju*u_ddot + Jv*v_ddot + [Ju_dot, Jv_dot]*[u_dot,v_dot]' = 0 Ju*u_ddot + Jv*v_ddot + J_dot*q_dot = 0 Using this relations, one may obtain an expression for v_ddot v_ddot = -(inv(Jv)*Ju)*u_ddot - inv(Jv)*J_dot*q_dot = Bvu*u_ddot + b_prime, with b_prime = -inv(Jv)*J_dot*q_dot Finally one can transform the Equation of Motion M*q_ddot + h = f + W'*mu M*(J*u_ddot + b) + h = f + W'*mu with J = [1, Bvu']' and b = [0,b_prime']' (J'*M*J)*u_ddot + J'*M*b + J'*h = J'*f, since J'*W' = 0 M_star*u_ddot + h_star = f_star M_star = (J'*M*J) h_star = J'*M*b + J'*h f_star = J'*f ''' assert isinstance(graph, Graph) # Abbrevations s = self.sign # Generalised Coordinates q1 = self.jA.q # u[0] # angle between x-axes q1d = self.jA.qd q2 = self.jB.q # v[0] # angle between x-axes q2d = self.jB.qd q3 = self.jD.q # v[1] # angle between x-axes q3d = self.jD.qd # Length of bars and angle between x-axis and bar l1_vec = self.jD.coordSys.p - self.jA.coordSys.p l1_vec2 = self.pick*l1_vec l1 = graph.addEquation(L1%self.name, sqrt((transpose(l1_vec)*l1_vec))) alpha = graph.addEquation(AL%self.name, s*atan2(l1_vec2[1],l1_vec2[0])) l2_vec = self.jB.coordSys.p l2_vec2 = self.pick*l2_vec l2 = graph.addEquation(L2%self.name, sqrt((transpose(l2_vec)*l2_vec))) beta = graph.addEquation(BE%self.name, s*atan2(l2_vec2[1],l2_vec2[0])) l3_vec = self.csC3.p l3_vec2 = self.pick*l3_vec l3 = graph.addEquation(L3%self.name, sqrt((transpose(l3_vec)*l3_vec))) gamma = graph.addEquation(GA%self.name, s*atan2(l3_vec2[1],l3_vec2[0])) l4_vec = self.csC4.p l4_vec2 = self.pick*l4_vec l4 = graph.addEquation(L4%self.name, sqrt((transpose(l4_vec)*l4_vec))) delta = graph.addEquation(DE%self.name, s*atan2(l4_vec2[1],l4_vec2[0])) # angle between bars phi_prime = graph.addEquation(PHI%self.name, q1 + beta - alpha) # A = P1, B = P2, C = P3 #P1 = graph.addEquation(A%self.name, 2*l4*(l1-l2*cos(phi_prime))) #P2 = graph.addEquation(B%self.name, -2*l2*l4*sin(phi_prime)) #P3 = graph.addEquation(C%self.name, l1**2+l2**2-l3**2+l4**2-2*l1*l2*cos(phi_prime)) # D = P1, E = P2, F = P3 P4 = graph.addEquation(D%self.name, 2*l3*(l2-l1*cos(-phi_prime))) P5 = graph.addEquation(E%self.name, -2*l1*l3*sin(-phi_prime)) P6 = graph.addEquation(F%self.name, l2**2+l1**2-l4**2+l3**2-2*l2*l1*cos(-phi_prime)) # Calculate v theta_prime = graph.addEquation(THETA%self.name, 2*atan((P5-self.posture*sqrt(P4**2+P5**2-P6**2))/(P4-P6))) psi_prime = graph.addEquation(PSI%self.name, ((l2*sin(phi_prime)+l3*sin(phi_prime+theta_prime))/abs(l2*sin(phi_prime)+l3*sin(phi_prime+theta_prime)))*acos((l2*cos(phi_prime)+l3*cos(phi_prime+theta_prime)-l1)/l4)) v1 = (psi_prime + alpha - delta) v0 = (theta_prime + beta - gamma) Bvu = Matrix( [[-l2*sin(phi_prime-psi_prime)/(l3*sin(phi_prime+theta_prime-psi_prime))-1], [(l2*sin(theta_prime))/(l4*sin(phi_prime+theta_prime-psi_prime))]] ) b_prime = Matrix( [-(q1d**2*l2*cos(phi_prime-psi_prime)+l3*cos(phi_prime+theta_prime-psi_prime)*(q1d+q2d)**2-l4*q3d**2)/(l3*sin(phi_prime+theta_prime-psi_prime)) , -(q1d**2*l2*cos(theta_prime)+l3*(q1d+q2d)**2-l4*q3d**2*cos(phi_prime+theta_prime-psi_prime))/(l4*sin(phi_prime+theta_prime-psi_prime)) ] ) return ([v0,v1],Bvu,b_prime) def applyConstraintLoads(self): ''' apply Constraint Forces at the end of the cut ''' # locking all directions perpendicular to axis of rotation transLock = [0,0,0] for i in [0,1,2]: if (self.jA.Phi[i] == 0): transLock[i] = 1 # apply Constraint c = Constraint(name='Constraint_%s'%self.name, parent=self.csC3, child=self.csC4, \ transLock=transLock, rotLock=[0,0,0], active=False) # return load object return c
35.378601
310
0.562289
from pymbs.processing.loops.loop import Loop from pymbs.common.functions import sqrt from pymbs.processing import Frame from pymbs.processing.loads.constraint import Constraint from numpy import pi from pymbs.symbolics import Matrix, eye, cos, sin, atan, atan2, acos, zeros, transpose AL = 'FB_%s_AL' BE = 'FB_%s_BE' GA = 'FB_%s_GA' DE = 'FB_%s_DE' L1 = 'FB_%s_L1' L2 = 'FB_%s_L2' L3 = 'FB_%s_L3' L4 = 'FB_%s_L4' PHI = 'FB_%s_PHI' PSI = 'FB_%s_PSI' THETA = 'FB_%s_THETA' A = 'FB_%s_A' B = 'FB_%s_B' C = 'FB_%s_C' D = 'FB_%s_D' E = 'FB_%s_E' F = 'FB_%s_F' from pymbs.symbolics import Graph class FourBar(Loop): ''' Explicit Treatment of a Four Bar Linkage Mechanism ''' ''' Sketch: B--3--C / \ 2 4 / \ A-----1------D ''' def __init__(self, name, csCa, csCb, posture): ''' Constructor @param setup: Four Bar Linkage has two setups: -1, 1 ''' # Assertions assert ( isinstance(csCa, Frame) ) assert ( isinstance(csCb, Frame) ) assert ( isinstance(posture, int) ) assert ( (posture == 1) or (posture == -1 )) # Check parents if (csCa.parentBody.joint is None): raise ValueError('Loop "%s": Coordinate System "%s" is directly connected to the world!'%(name,csCa.name)) if (csCb.parentBody.joint is None): raise ValueError('Loop "%s": Coordinate System "%s" is directly connected to the world!'%(name,csCb.name)) # Build complete FourBarLinkage jB = csCa.parentBody.joint jD = csCb.parentBody.joint if (jB.coordSys.parentBody.joint == None): jB = csCb.parentBody.joint jD = csCa.parentBody.joint jA = jB.coordSys.parentBody.joint csC3 = csCb csC4 = csCa else: jA = jB.coordSys.parentBody.joint csC3 = csCa csC4 = csCb # Do the Joints have the same axis of Rotation if (jA.Phi == Matrix([1,0,0])): self.sign = 1 self.pick = Matrix([[0,1,0], [0,0,1]]) elif (jA.Phi == Matrix([0,1,0])): self.sign = -1 self.pick = Matrix([[1,0,0], [0,0,1]]) elif (jA.Phi == Matrix([0,0,1])): self.sign = 1 self.pick = Matrix([[1,0,0], [0,1,0]]) else: raise ValueError('Loop "%s": Axis of Rotation must be either x,y or z!'%name) assert( jA.Phi == jB.Phi ), 'jA.Phi(%s): %s, jB.Phi(%s): %s'%(jA.name,jA.Phi,jB.name,jB.Phi) assert( jA.Phi == jD.Phi ), 'jA.Phi(%s): %s, jD.Phi(%s): %s'%(jA.name,jA.Phi,jD.name,jD.Phi) assert( jA.Psi.norm() == 0 ) assert( jB.Psi.norm() == 0 ) assert( jD.Psi.norm() == 0 ) # Are All Coordinate Systems aligned like their parentBody? assert( (jA.coordSys.R - eye(3)) == zeros(3) ) assert( (jB.coordSys.R - eye(3)) == zeros(3) ) assert( (jD.coordSys.R - eye(3)) == zeros(3) ) # Check that bodies between joints are the same assert( jA.coordSys.parentBody == jD.coordSys.parentBody ) assert( jA.body == jB.coordSys.parentBody ) assert( jB.body == csC3.parentBody ) assert( jD.body == csC4.parentBody ) # Super Constructor Loop.__init__(self, name) # Save Parameters self.jA = jA self.jB = jB self.jD = jD self.csC3 = csC3 self.csC4 = csC4 self.posture = posture # Independent Coordinates self.u = [jA.q] self.ud = [jA.qd] self.udd = [jA.qdd] # Dependent Coordinates self.v = [jB.q, jD.q] self.vd = [jB.qd, jD.qd] self.vdd = [jB.qdd, jD.qdd] def calc(self, graph): ''' Returns precalculated v(u), Bvu and b_prime, s.t. q = [u,v]', where u: independent coordinates v: dependent coordinates Starting from the Constraint Equation: Phi(q) = 0, One Obtains by Differentiation: (d(Phi)/du)*u_dot + (d(Phi)/dv)*v_dot = 0 Ju*u_dot + Jv+v_dot = 0 Thus, v_dot = -(inv(Jv)*Ju)*u_dot = Bvu*u_dot, with Jv = d(Phi)/dv and Ju = d(Phi)/du Differentiating once more, yields Ju*u_ddot + Jv*v_ddot + [Ju_dot, Jv_dot]*[u_dot,v_dot]' = 0 Ju*u_ddot + Jv*v_ddot + J_dot*q_dot = 0 Using this relations, one may obtain an expression for v_ddot v_ddot = -(inv(Jv)*Ju)*u_ddot - inv(Jv)*J_dot*q_dot = Bvu*u_ddot + b_prime, with b_prime = -inv(Jv)*J_dot*q_dot Finally one can transform the Equation of Motion M*q_ddot + h = f + W'*mu M*(J*u_ddot + b) + h = f + W'*mu with J = [1, Bvu']' and b = [0,b_prime']' (J'*M*J)*u_ddot + J'*M*b + J'*h = J'*f, since J'*W' = 0 M_star*u_ddot + h_star = f_star M_star = (J'*M*J) h_star = J'*M*b + J'*h f_star = J'*f ''' assert isinstance(graph, Graph) # Abbrevations s = self.sign # Generalised Coordinates q1 = self.jA.q # u[0] # angle between x-axes q1d = self.jA.qd q2 = self.jB.q # v[0] # angle between x-axes q2d = self.jB.qd q3 = self.jD.q # v[1] # angle between x-axes q3d = self.jD.qd # Length of bars and angle between x-axis and bar l1_vec = self.jD.coordSys.p - self.jA.coordSys.p l1_vec2 = self.pick*l1_vec l1 = graph.addEquation(L1%self.name, sqrt((transpose(l1_vec)*l1_vec))) alpha = graph.addEquation(AL%self.name, s*atan2(l1_vec2[1],l1_vec2[0])) l2_vec = self.jB.coordSys.p l2_vec2 = self.pick*l2_vec l2 = graph.addEquation(L2%self.name, sqrt((transpose(l2_vec)*l2_vec))) beta = graph.addEquation(BE%self.name, s*atan2(l2_vec2[1],l2_vec2[0])) l3_vec = self.csC3.p l3_vec2 = self.pick*l3_vec l3 = graph.addEquation(L3%self.name, sqrt((transpose(l3_vec)*l3_vec))) gamma = graph.addEquation(GA%self.name, s*atan2(l3_vec2[1],l3_vec2[0])) l4_vec = self.csC4.p l4_vec2 = self.pick*l4_vec l4 = graph.addEquation(L4%self.name, sqrt((transpose(l4_vec)*l4_vec))) delta = graph.addEquation(DE%self.name, s*atan2(l4_vec2[1],l4_vec2[0])) # angle between bars phi_prime = graph.addEquation(PHI%self.name, q1 + beta - alpha) # A = P1, B = P2, C = P3 #P1 = graph.addEquation(A%self.name, 2*l4*(l1-l2*cos(phi_prime))) #P2 = graph.addEquation(B%self.name, -2*l2*l4*sin(phi_prime)) #P3 = graph.addEquation(C%self.name, l1**2+l2**2-l3**2+l4**2-2*l1*l2*cos(phi_prime)) # D = P1, E = P2, F = P3 P4 = graph.addEquation(D%self.name, 2*l3*(l2-l1*cos(-phi_prime))) P5 = graph.addEquation(E%self.name, -2*l1*l3*sin(-phi_prime)) P6 = graph.addEquation(F%self.name, l2**2+l1**2-l4**2+l3**2-2*l2*l1*cos(-phi_prime)) # Calculate v theta_prime = graph.addEquation(THETA%self.name, 2*atan((P5-self.posture*sqrt(P4**2+P5**2-P6**2))/(P4-P6))) psi_prime = graph.addEquation(PSI%self.name, ((l2*sin(phi_prime)+l3*sin(phi_prime+theta_prime))/abs(l2*sin(phi_prime)+l3*sin(phi_prime+theta_prime)))*acos((l2*cos(phi_prime)+l3*cos(phi_prime+theta_prime)-l1)/l4)) v1 = (psi_prime + alpha - delta) v0 = (theta_prime + beta - gamma) Bvu = Matrix( [[-l2*sin(phi_prime-psi_prime)/(l3*sin(phi_prime+theta_prime-psi_prime))-1], [(l2*sin(theta_prime))/(l4*sin(phi_prime+theta_prime-psi_prime))]] ) b_prime = Matrix( [-(q1d**2*l2*cos(phi_prime-psi_prime)+l3*cos(phi_prime+theta_prime-psi_prime)*(q1d+q2d)**2-l4*q3d**2)/(l3*sin(phi_prime+theta_prime-psi_prime)) , -(q1d**2*l2*cos(theta_prime)+l3*(q1d+q2d)**2-l4*q3d**2*cos(phi_prime+theta_prime-psi_prime))/(l4*sin(phi_prime+theta_prime-psi_prime)) ] ) return ([v0,v1],Bvu,b_prime) def applyConstraintLoads(self): ''' apply Constraint Forces at the end of the cut ''' # locking all directions perpendicular to axis of rotation transLock = [0,0,0] for i in [0,1,2]: if (self.jA.Phi[i] == 0): transLock[i] = 1 # apply Constraint c = Constraint(name='Constraint_%s'%self.name, parent=self.csC3, child=self.csC4, \ transLock=transLock, rotLock=[0,0,0], active=False) # return load object return c
0
0
0
127d839e1bbc55e99f4f321f7c332ef610cb53d8
1,812
py
Python
earth_enterprise/src/server/wsgi/wms/ogc/common/image_specs.py
ezeeyahoo/earthenterprise
b6cac9e6228946f2f17d1edb75e118aeb3e8e8c9
[ "Apache-2.0" ]
2,661
2017-03-20T22:12:50.000Z
2022-03-30T09:43:19.000Z
earth_enterprise/src/server/wsgi/wms/ogc/common/image_specs.py
ezeeyahoo/earthenterprise
b6cac9e6228946f2f17d1edb75e118aeb3e8e8c9
[ "Apache-2.0" ]
1,531
2017-03-24T17:20:32.000Z
2022-03-16T18:11:14.000Z
earth_enterprise/src/server/wsgi/wms/ogc/common/image_specs.py
ezeeyahoo/earthenterprise
b6cac9e6228946f2f17d1edb75e118aeb3e8e8c9
[ "Apache-2.0" ]
990
2017-03-24T11:54:28.000Z
2022-03-22T11:51:47.000Z
#!/usr/bin/env python2.7 # # Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Holds meta-information about the image formats we support.""" import collections ImageSpec = collections.namedtuple( "ImageSpec", "content_type file_extension pil_format") IMAGE_SPECS = {"jpg": ImageSpec("image/jpeg", "jpg", "JPEG"), "png": ImageSpec("image/png", "png", "PNG") } def IsKnownFormat(fmt): """Checks if the format is supported. Args: fmt: Format of the image. Returns: boolean: If the format is supported. """ for spec in IMAGE_SPECS.values(): if spec.content_type == fmt: return True return False def GetImageSpec(fmt): """Get the Imagespec. Args: fmt: Format of the image. Returns: image_spec: image spec. """ for spec in IMAGE_SPECS.values(): if spec.content_type == fmt: return spec return None def FormatIsPng(fmt): """Checks if the format is of type png. Args: fmt: Format of the image. Returns: boolean: If the format is png or not. """ for typ, spec in IMAGE_SPECS.iteritems(): if spec.content_type == fmt: return typ == "png" return False if __name__ == "__main__": main()
22.65
74
0.679912
#!/usr/bin/env python2.7 # # Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Holds meta-information about the image formats we support.""" import collections ImageSpec = collections.namedtuple( "ImageSpec", "content_type file_extension pil_format") IMAGE_SPECS = {"jpg": ImageSpec("image/jpeg", "jpg", "JPEG"), "png": ImageSpec("image/png", "png", "PNG") } def IsKnownFormat(fmt): """Checks if the format is supported. Args: fmt: Format of the image. Returns: boolean: If the format is supported. """ for spec in IMAGE_SPECS.values(): if spec.content_type == fmt: return True return False def GetImageSpec(fmt): """Get the Imagespec. Args: fmt: Format of the image. Returns: image_spec: image spec. """ for spec in IMAGE_SPECS.values(): if spec.content_type == fmt: return spec return None def FormatIsPng(fmt): """Checks if the format is of type png. Args: fmt: Format of the image. Returns: boolean: If the format is png or not. """ for typ, spec in IMAGE_SPECS.iteritems(): if spec.content_type == fmt: return typ == "png" return False def main(): is_format = IsKnownFormat("jpeg") print is_format if __name__ == "__main__": main()
44
0
23
9b3205aefcc2508985db4f069099edf5e7dbfa1b
662
py
Python
ClassFromQueryGenerator/CRUDPyMacros/Update.py
UnstableMutex/ClassFromQueryGenerator
5de03f61059d2c61783a9b66ab4e11060343e803
[ "MIT" ]
null
null
null
ClassFromQueryGenerator/CRUDPyMacros/Update.py
UnstableMutex/ClassFromQueryGenerator
5de03f61059d2c61783a9b66ab4e11060343e803
[ "MIT" ]
null
null
null
ClassFromQueryGenerator/CRUDPyMacros/Update.py
UnstableMutex/ClassFromQueryGenerator
5de03f61059d2c61783a9b66ab4e11060343e803
[ "MIT" ]
null
null
null
comma="," result="SET ANSI_NULLS ON\n" result+="GO\n" result+="SET QUOTED_IDENTIFIER ON\n" result+="GO\n" result+="CREATE PROCEDURE "+Model.TableName+"_Update\n" result+=mapcols(pars) result+="AS\n" result+="BEGIN\n" result+="SET NOCOUNT ON;\n" result+="update [dbo].["+Model.TableName+"]\n" result+=" set (" result+=mapusual(sqf) result+=")\n" result+="WHERE " +Model.PK.Name+"=@"+Model.PK.Name+"\n" result+="END\n" result+="GO\n"
24.518519
55
0.669184
def sqf(col): return "["+col.Name+"] = @"+col.Name def pars(col): return "@"+col.Name+" "+col.SQLType+"\n" comma="," def mapcols(f): return comma.join(map(f,Model.Columns)) def mapusual(f): return comma.join(map(f,Model.UsualColumns)) result="SET ANSI_NULLS ON\n" result+="GO\n" result+="SET QUOTED_IDENTIFIER ON\n" result+="GO\n" result+="CREATE PROCEDURE "+Model.TableName+"_Update\n" result+=mapcols(pars) result+="AS\n" result+="BEGIN\n" result+="SET NOCOUNT ON;\n" result+="update [dbo].["+Model.TableName+"]\n" result+=" set (" result+=mapusual(sqf) result+=")\n" result+="WHERE " +Model.PK.Name+"=@"+Model.PK.Name+"\n" result+="END\n" result+="GO\n"
141
0
89
e33365306faf8e05ad78b480b5ad8b2e0c36c04f
6,338
py
Python
tests/core/testRpg.py
rrpg/engine
989f701b82aa7c73ea98003eed13077e5d6f15f9
[ "MIT" ]
2
2016-04-07T23:36:46.000Z
2016-12-20T15:35:17.000Z
tests/core/testRpg.py
rrpg/engine
989f701b82aa7c73ea98003eed13077e5d6f15f9
[ "MIT" ]
5
2016-02-04T16:28:33.000Z
2016-03-18T17:02:07.000Z
tests/core/testRpg.py
rrpg/engine
989f701b82aa7c73ea98003eed13077e5d6f15f9
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import unittest import tests.common import core from core.localisation import _ from core import Rpg import models.player from models.saved_game import saved_game import json import sqlite3
37.502959
297
0.736668
# -*- coding: utf-8 -*- import unittest import tests.common import core from core.localisation import _ from core import Rpg import models.player from models.saved_game import saved_game import json import sqlite3 class rpgTests(tests.common.common): idSavedGame = 1 idFaultySavedGame = 2 idEmptySavedGame = 3 incorrectIdSavedGame = 42 def test_unknown_world(self): rpgEngine = Rpg.Rpg() try: rpgEngine.initWorld("some/unexisting/world") except core.exception.exception as e: self.assertEquals(str(e), _('ERROR_UNKNOWN_SELECTED_WORLD')) def test_invalid_saved_game_id(self): rpgEngine = Rpg.Rpg() rpgEngine.initWorld(self.dbFile) with self.assertRaises(core.exception.exception) as raised: rpgEngine.initSavedGame(self.incorrectIdSavedGame) self.assertEquals(str(raised.exception), _('ERROR_RRPG_INIT_INVALID_SAVED_GAME_ID')) def test_load_player_with_no_save(self): rpgEngine = Rpg.Rpg() rpgEngine.initWorld(self.dbFile) with self.assertRaises(core.exception.exception) as raised: rpgEngine.initPlayer() self.assertEquals(str(raised.exception), _('ERROR_SAVED_GAME_NEEDED_TO_INIT_PLAYER')) def test_load_player_with_empty_save(self): rpgEngine = Rpg.Rpg() rpgEngine.initWorld(self.dbFile) rpgEngine.initSavedGame(self.idEmptySavedGame) with self.assertRaises(core.exception.exception) as raised: rpgEngine.initPlayer() self.assertEquals(str(raised.exception), _('ERROR_NON_EMPTY_SAVED_GAME_NEEDED_TO_INIT_PLAYER')) def test_load_player_with_faulty_save(self): rpgEngine = Rpg.Rpg() rpgEngine.initWorld(self.dbFile) rpgEngine.initSavedGame(self.idFaultySavedGame) with self.assertRaises(core.exception.exception) as raised: rpgEngine.initPlayer() self.assertEquals(str(raised.exception), _('ERROR_CONNECT_INVALID_CREDENTIALS')) def test_invalid_world(self): rpgEngine = Rpg.Rpg() rpgEngine.initWorld("tests/invalidDB") rpgEngine.initSavedGame(self.idSavedGame) self.assertRaises(sqlite3.OperationalError, rpgEngine.initPlayer) def test_invalid_action_format(self): with self.assertRaises(TypeError) as raised: self.rpg.setAction("Not list action") self.assertEquals(str(raised.exception), _('ERROR_INVALID_FORMAT_ACTION')) def test_invalid_action_text(self): self.rpg.setAction(["Unknown action"]) output = self.rpg._runAction() self.assertEquals(output, _('ERROR_UNKNOWN_COMMAND')) def test_invalid_action_json(self): self.rpg.setAction(["Unknown action"]) output = self.rpg._runAction(True) self.assertEquals(output, {'error': {'message': _('ERROR_UNKNOWN_COMMAND'), 'code': 1}}) def compareSavedGamesSaveOk(self): saves = saved_game.loadAll() expectedSaves = [ { 'id_saved_game': 1, 'snapshot_player': '{"id_gender": 1, "name": "TEST_PLAYER_SOME", "id_character": 4, "id_player": 3, "stat_defence": 2, "stat_attack": 4, "stat_max_hp": 20, "inventory": null, "id_area": 1, "stat_current_hp": 20, "login": "TEST_PLAYER_SOME", "stat_speed": 2, "id_species": 1, "stat_luck": 10}', 'id_player': 3, 'id_character': 4 }, { 'id_saved_game': 2, 'snapshot_player': '{"id_gender": 1, "name": "TEST_PLAYER2bis", "id_character": 3, "id_player": 2, "stat_defence": 2, "stat_attack": 4, "stat_max_hp": 20, "inventory": null, "id_area": 1, "stat_current_hp": 20, "login": "TEST_PLAYER2bis", "stat_speed": 2, "id_species": 1, "stat_luck": 10}', 'id_player': 2, 'id_character': 3 }, { 'id_saved_game': 3, 'snapshot_player': '', 'id_player': None, 'id_character': None } ] self.assertEquals(saves, expectedSaves) def compareSavedGamesSaveKo(self): saves = saved_game.loadAll() expectedSaves = [ { 'id_saved_game': 1, 'snapshot_player': '{"id_gender": 1, "name": "TEST_PLAYER", "id_character": 2, "id_player": 1, "stat_defence": 2, "stat_attack": 4, "stat_max_hp": 20, "inventory": null, "id_area": 1, "stat_current_hp": 20, "login": "TEST_PLAYER", "stat_speed": 2, "id_species": 1, "stat_luck": 10}', 'id_player': 1, 'id_character': 2 }, { 'id_saved_game': 2, 'snapshot_player': '{"id_gender": 1, "name": "TEST_PLAYER2bis", "id_character": 3, "id_player": 2, "stat_defence": 2, "stat_attack": 4, "stat_max_hp": 20, "inventory": null, "id_area": 1, "stat_current_hp": 20, "login": "TEST_PLAYER2bis", "stat_speed": 2, "id_species": 1, "stat_luck": 10}', 'id_player': 2, 'id_character': 3 }, { 'id_saved_game': 3, 'snapshot_player': '', 'id_player': None, 'id_character': None } ] self.assertEquals(saves, expectedSaves) def test_login_already_used(self): with self.assertRaises(models.player.exception) as raised: self.rpg.createPlayer('TEST_PLAYER', 1, 1) self.assertEquals(str(raised.exception), _('ERROR_SIGNUP_LOGIN_ALREADY_USED')) self.compareSavedGamesSaveKo() def test_invalid_gender(self): with self.assertRaises(models.player.exception) as raised: self.rpg.createPlayer('TEST_PLAYER_SOME', 'some gender', 1) self.assertEquals(str(raised.exception), _('ERROR_SIGNUP_INVALID_GENDER')) self.compareSavedGamesSaveKo() def test_invalid_species(self): with self.assertRaises(models.player.exception) as raised: self.rpg.createPlayer('TEST_PLAYER_SOME', 1, 'some species') self.assertEquals(str(raised.exception), _('ERROR_SIGNUP_INVALID_SPECIES')) self.compareSavedGamesSaveKo() def test_ok(self): self.rpg.createPlayer('TEST_PLAYER_SOME', '1', '1') self.compareSavedGamesSaveOk() def test_command_with_no_saved_game(self): rpgEngine = Rpg.Rpg() rpgEngine.setAction([_('LOOK_COMMAND')]) with self.assertRaises(core.exception.exception) as raised: rpgEngine._runAction(True) self.assertEquals(str(raised.exception), _('ERROR_SAVED_GAME_NEEDED_TO_RUN_ACTION')) def test_command_with_no_player(self): rpgEngine = Rpg.Rpg() rpgEngine.initWorld(self.dbFile) rpgEngine.initSavedGame(self.idEmptySavedGame) rpgEngine.setAction([_('LOOK_COMMAND')]) with self.assertRaises(core.exception.exception) as raised: rpgEngine._runAction(True) self.assertEquals(str(raised.exception), _('ERROR_CONNECTED_PLAYER_NEEDED_FOR_COMMAND')) def test_run_action_with_no_action(self): with self.assertRaises(core.exception.exception) as raised: self.rpg._runAction() self.assertEquals(str(raised.exception), _('ERROR_NO_ACTION_SET'))
5,562
536
23