hexsha
stringlengths
40
40
size
int64
7
1.04M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
247
max_stars_repo_name
stringlengths
4
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
368k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
247
max_issues_repo_name
stringlengths
4
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
247
max_forks_repo_name
stringlengths
4
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.04M
avg_line_length
float64
1.77
618k
max_line_length
int64
1
1.02M
alphanum_fraction
float64
0
1
original_content
stringlengths
7
1.04M
filtered:remove_function_no_docstring
int64
-102
942k
filtered:remove_class_no_docstring
int64
-354
977k
filtered:remove_delete_markers
int64
0
60.1k
b6564c976990b7fa6fc560e5b2308ec16d5f0a89
492
py
Python
ABC/210/c.py
fumiyanll23/AtCoder
362ca9fcacb5415c1458bc8dee5326ba2cc70b65
[ "MIT" ]
null
null
null
ABC/210/c.py
fumiyanll23/AtCoder
362ca9fcacb5415c1458bc8dee5326ba2cc70b65
[ "MIT" ]
null
null
null
ABC/210/c.py
fumiyanll23/AtCoder
362ca9fcacb5415c1458bc8dee5326ba2cc70b65
[ "MIT" ]
null
null
null
from collections import defaultdict if __name__ == '__main__': main()
18.923077
37
0.497967
from collections import defaultdict def main(): # input N, K = map(int, input().split()) cs = [*map(int, input().split())] # compute ddict = defaultdict(int) for i in range(K): ddict[cs[i]] += 1 ans = len(ddict) for i in range(N-K): ddict[cs[i]] -= 1 if ddict[cs[i]] == 0: del ddict[cs[i]] ddict[cs[i+K]] += 1 ans = max(ans, len(ddict)) # output print(ans) if __name__ == '__main__': main()
393
0
23
da6567f46ca5114b211c9251f1de332e436be104
1,892
py
Python
code/model/intent_classification/intent_classifier_inference.py
vipulraheja/IteraTeR
80c1939969de909c39e41e16b8866355c038b6d2
[ "Apache-2.0" ]
11
2022-03-23T21:41:54.000Z
2022-03-26T13:41:01.000Z
code/model/intent_classification/intent_classifier_inference.py
vipulraheja/IteraTeR
80c1939969de909c39e41e16b8866355c038b6d2
[ "Apache-2.0" ]
null
null
null
code/model/intent_classification/intent_classifier_inference.py
vipulraheja/IteraTeR
80c1939969de909c39e41e16b8866355c038b6d2
[ "Apache-2.0" ]
1
2022-03-24T15:55:16.000Z
2022-03-24T15:55:16.000Z
import json import torch import argparse import numpy as np from transformers.modeling_outputs import SequenceClassifierOutput from transformers import Trainer, TrainingArguments, RobertaTokenizer, RobertaModel, RobertaConfig, RobertaForSequenceClassification if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--checkpoint', '-c', required=True, help='path to Pegasus model checkpoint') args = parser.parse_args() main(args)
35.037037
132
0.691332
import json import torch import argparse import numpy as np from transformers.modeling_outputs import SequenceClassifierOutput from transformers import Trainer, TrainingArguments, RobertaTokenizer, RobertaModel, RobertaConfig, RobertaForSequenceClassification def main(args): checkpoint = args.checkpoint model_name = 'roberta-large' model_cache_dir='roberta-large-model-cache/' model_type = RobertaForSequenceClassification config_type = RobertaConfig tokenizer_type = RobertaTokenizer tokenizer = tokenizer_type.from_pretrained( model_name, cache_dir=model_cache_dir ) id2label = {0: "clarity", 1: "fluency", 2: "coherence", 3: "style", 4: "meaning-changed"} device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") checkpoint = args.checkpoint model = model_type.from_pretrained(checkpoint) model.eval() model.to(device) before_text = 'I likes coffee.' after_text = 'I like coffee.' def score_text(before_text, after_text, tokenizer, model): input_ids = tokenizer(before_text, after_text, return_tensors='pt', padding=True, truncation=True) with torch.no_grad(): input_ids = input_ids.to(device) outputs = model(**input_ids) softmax_scores = torch.softmax(outputs.logits, dim=1) softmax_scores = softmax_scores[0].cpu().numpy() index = np.argmax(softmax_scores) return index, softmax_scores[index] index, confidence = score_text([before_text], [after_text], tokenizer, model) label = id2label[index] print(label) print(confidence) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--checkpoint', '-c', required=True, help='path to Pegasus model checkpoint') args = parser.parse_args() main(args)
1,370
0
23
740141a9f07306e45b5ebf41d61bb31b1b134c05
2,035
py
Python
Forms/mengban_seed.py
UlordChain/uwallet-client
c41f89f34dd17699cb4b285dbba9053f28be5603
[ "MIT" ]
19
2018-08-21T06:25:30.000Z
2018-08-21T12:34:14.000Z
Forms/mengban_seed.py
UlordChain/uwallet-client
c41f89f34dd17699cb4b285dbba9053f28be5603
[ "MIT" ]
1
2018-06-01T09:14:36.000Z
2018-06-01T09:20:49.000Z
Forms/mengban_seed.py
UlordChain/uwallet-client
c41f89f34dd17699cb4b285dbba9053f28be5603
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # @Time : 2017/12/18 # @Author : Shu # @Email : httpservlet@yeah.net from PyQt4.QtCore import * from PyQt4.QtGui import * from FormUI.ui_getseed import Ui_getseedWD
40.7
89
0.584767
# -*- coding: utf-8 -*- # @Time : 2017/12/18 # @Author : Shu # @Email : httpservlet@yeah.net from PyQt4.QtCore import * from PyQt4.QtGui import * from FormUI.ui_getseed import Ui_getseedWD class SeedWidget(QWidget, Ui_getseedWD): def __init__(self, parent=None): super(SeedWidget, self).__init__(parent) self.setupUi(self) self.parent = parent self.setStyleSheet("""QFrame#frame_left{border-image:url(:/images/heisemengban)} QFrame#frame_top{border-image:url(:/images/baisemengban)} QFrame#frame_rigth{background-color:white;} """) self.ted_setting_getseed.setReadOnly(True) self.btn_seed_password.clicked.connect(self.slot_password) self.frame_left.installEventFilter(self.parent) self.frame_top.installEventFilter(self.parent) def slot_password(self): """查看seed之前, 需要输入密码""" if self.led_seed_password.text().isEmpty(): self.led_seed_password.setStyleSheet("""border:1px solid red;""") else: self.led_seed_password.setStyleSheet("") password = unicode(self.led_seed_password.text()).encode('utf-8') try: args = ['getseed', '--client'] if password: args.append('-W') args.append(password) rs = self.parent.bwallet_main(*args, thread_safe=True) except Exception as e: print (e) if 'Incorrect password' in str(e): self.led_seed_password.setStyleSheet("""border:1px solid red;""") else: self.led_seed_password.setStyleSheet("""border:1px solid yellow;""") else: self.ted_setting_getseed.setText(rs) self.ted_setting_getseed.setVisible(True) self.led_seed_password.setVisible(False) self.btn_seed_password.setVisible(False)
637
1,197
23
f52c7e893c3ecdab0771489d791ee3bc29fa08c0
325
py
Python
test/test_json_equal.py
dakotahawkins/MCSchematicIntersection
a5bc130c9f887ca6a253c0a6508fcbca5f164df5
[ "MIT" ]
null
null
null
test/test_json_equal.py
dakotahawkins/MCSchematicIntersection
a5bc130c9f887ca6a253c0a6508fcbca5f164df5
[ "MIT" ]
null
null
null
test/test_json_equal.py
dakotahawkins/MCSchematicIntersection
a5bc130c9f887ca6a253c0a6508fcbca5f164df5
[ "MIT" ]
null
null
null
"""Tests two schematic json files to ensure they're equal """ import json import sys INPUT_A: str = sys.argv[1] INPUT_B: str = sys.argv[2] with open(INPUT_A, 'r') as infile_a: with open(INPUT_B, 'r') as infile_b: if json.load(infile_a)['nbt'] != json.load(infile_b)['nbt']: sys.exit(1) sys.exit(0)
21.666667
68
0.64
"""Tests two schematic json files to ensure they're equal """ import json import sys INPUT_A: str = sys.argv[1] INPUT_B: str = sys.argv[2] with open(INPUT_A, 'r') as infile_a: with open(INPUT_B, 'r') as infile_b: if json.load(infile_a)['nbt'] != json.load(infile_b)['nbt']: sys.exit(1) sys.exit(0)
0
0
0
ae2007157bf4f09f792df527fa386d5e97a2fa2a
54
py
Python
kenning/resources/reports/__init__.py
antmicro/edge-ai-tester
6b145145ed1cec206ae0229c846fb33d272f3ffa
[ "Apache-2.0" ]
20
2021-06-24T13:37:21.000Z
2022-03-25T10:50:26.000Z
kenning/resources/reports/__init__.py
antmicro/edge-ai-tester
6b145145ed1cec206ae0229c846fb33d272f3ffa
[ "Apache-2.0" ]
null
null
null
kenning/resources/reports/__init__.py
antmicro/edge-ai-tester
6b145145ed1cec206ae0229c846fb33d272f3ffa
[ "Apache-2.0" ]
1
2021-11-09T17:23:04.000Z
2021-11-09T17:23:04.000Z
""" Contains the templates for benchmark reports. """
13.5
45
0.722222
""" Contains the templates for benchmark reports. """
0
0
0
8150d7ae07dca58de8cc781d35d56112a702254d
20,928
py
Python
tests/stockfish/test_models.py
guidopetri/stockfish
8140df45cbec9a2bce41d2f71c1b7b2c9c7036a2
[ "MIT" ]
null
null
null
tests/stockfish/test_models.py
guidopetri/stockfish
8140df45cbec9a2bce41d2f71c1b7b2c9c7036a2
[ "MIT" ]
null
null
null
tests/stockfish/test_models.py
guidopetri/stockfish
8140df45cbec9a2bce41d2f71c1b7b2c9c7036a2
[ "MIT" ]
null
null
null
import pytest from timeit import default_timer from stockfish import Stockfish
39.711575
113
0.565845
import pytest from timeit import default_timer from stockfish import Stockfish class TestStockfish: @pytest.fixture def stockfish(self): return Stockfish() def test_get_best_move_first_move(self, stockfish): best_move = stockfish.get_best_move() assert best_move in ( "e2e3", "e2e4", "g1f3", "b1c3", "d2d4", ) def test_get_best_move_time_first_move(self, stockfish): best_move = stockfish.get_best_move_time(1000) assert best_move in ("e2e3", "e2e4", "g1f3", "b1c3", "d2d4") def test_set_position_resets_info(self, stockfish): stockfish.set_position(["e2e4", "e7e6"]) stockfish.get_best_move() assert stockfish.info != "" stockfish.set_position(["e2e4", "e7e6"]) assert stockfish.info == "" def test_get_best_move_not_first_move(self, stockfish): stockfish.set_position(["e2e4", "e7e6"]) best_move = stockfish.get_best_move() assert best_move in ("d2d4", "g1f3") def test_get_best_move_time_not_first_move(self, stockfish): stockfish.set_position(["e2e4", "e7e6"]) best_move = stockfish.get_best_move_time(1000) assert best_move in ("d2d4", "g1f3") def test_get_best_move_checkmate(self, stockfish): stockfish.set_position(["f2f3", "e7e5", "g2g4", "d8h4"]) assert stockfish.get_best_move() is None def test_get_best_move_time_checkmate(self, stockfish): stockfish.set_position(["f2f3", "e7e5", "g2g4", "d8h4"]) assert stockfish.get_best_move_time(1000) is None def test_set_fen_position(self, stockfish): stockfish.set_fen_position( "7r/1pr1kppb/2n1p2p/2NpP2P/5PP1/1P6/P6K/R1R2B2 w - - 1 27" ) assert stockfish.is_move_correct("f4f5") is True assert stockfish.is_move_correct("a1c1") is False def test_castling(self, stockfish): assert stockfish.is_move_correct("e1g1") is False stockfish.set_fen_position( "rnbqkbnr/ppp3pp/3ppp2/8/4P3/5N2/PPPPBPPP/RNBQK2R w KQkq - 0 4" ) assert stockfish.is_move_correct("e1g1") is True def test_set_fen_position_mate(self, stockfish): stockfish.set_fen_position("8/8/8/6pp/8/4k1PP/8/r3K3 w - - 12 53") assert stockfish.get_best_move() is None assert stockfish.info == "" def test_clear_info_after_set_new_fen_position(self, stockfish): stockfish.set_fen_position("8/8/8/6pp/8/4k1PP/r7/4K3 b - - 11 52") stockfish.get_best_move() stockfish.set_fen_position("8/8/8/6pp/8/4k1PP/8/r3K3 w - - 12 53") assert stockfish.info == "" stockfish.set_fen_position("8/8/8/6pp/8/4k1PP/r7/4K3 b - - 11 52") stockfish.get_best_move() stockfish.set_fen_position("8/8/8/6pp/8/4k1PP/8/r3K3 w - - 12 53", False) assert stockfish.info == "" def test_set_fen_position_starts_new_game(self, stockfish): stockfish.set_fen_position( "7r/1pr1kppb/2n1p2p/2NpP2P/5PP1/1P6/P6K/R1R2B2 w - - 1 27" ) stockfish.get_best_move() assert stockfish.info != "" stockfish.set_fen_position("3kn3/p5rp/1p3p2/3B4/3P1P2/2P5/1P3K2/8 w - - 0 53") assert stockfish.info == "" def test_set_fen_position_second_argument(self, stockfish): stockfish.set_depth(16) stockfish.set_fen_position( "rnbqk2r/pppp1ppp/3bpn2/8/3PP3/2N5/PPP2PPP/R1BQKBNR w KQkq - 0 1", True ) assert stockfish.get_best_move() == "e4e5" stockfish.set_fen_position( "rnbqk2r/pppp1ppp/3bpn2/4P3/3P4/2N5/PPP2PPP/R1BQKBNR b KQkq - 0 1", False ) assert stockfish.get_best_move() == "d6e7" stockfish.set_fen_position( "rnbqk2r/pppp1ppp/3bpn2/8/3PP3/2N5/PPP2PPP/R1BQKBNR w KQkq - 0 1", False ) assert stockfish.get_best_move() == "e4e5" def test_is_move_correct_first_move(self, stockfish): assert stockfish.is_move_correct("e2e1") is False assert stockfish.is_move_correct("a2a3") is True def test_is_move_correct_not_first_move(self, stockfish): stockfish.set_position(["e2e4", "e7e6"]) assert stockfish.is_move_correct("e2e1") is False assert stockfish.is_move_correct("a2a3") is True @pytest.mark.parametrize( "value", [ "info", "depth", "seldepth", "multipv", "score", "mate", "-1", "nodes", "nps", "tbhits", "time", "pv", "h2g1", "h4g3", ], ) def test_last_info(self, stockfish, value): stockfish.set_fen_position("r6k/6b1/2b1Q3/p6p/1p5q/3P2PP/5r1K/8 w - - 1 31") stockfish.get_best_move() assert value in stockfish.info def test_set_skill_level(self, stockfish): stockfish.set_fen_position( "rnbqkbnr/ppp2ppp/3pp3/8/4P3/5N2/PPPP1PPP/RNBQKB1R w KQkq - 0 1" ) assert stockfish.get_parameters()["Skill Level"] == 20 stockfish.set_skill_level(1) assert stockfish.get_best_move() in ( "b2b3", "b2b3", "d2d3", "d2d4", "b1c3", "d1e2", "g2g3", "c2c4", "f1e2", ) assert stockfish.get_parameters()["Skill Level"] == 1 stockfish.set_skill_level(20) assert stockfish.get_best_move() in ( "d2d4", "b1c3", ) assert stockfish.get_parameters()["Skill Level"] == 20 def test_set_elo_rating(self, stockfish): stockfish.set_depth(2) stockfish.set_fen_position( "rnbqkbnr/ppp2ppp/3pp3/8/4P3/5N2/PPPP1PPP/RNBQKB1R w KQkq - 0 1" ) assert stockfish.get_parameters()["UCI_Elo"] == 1350 stockfish.set_elo_rating(2000) assert stockfish.get_best_move() in ( "b2b3", "b2b3", "d2d3", "d2d4", "b1c3", "d1e2", "g2g3", "c2c4", "f1e2", ) assert stockfish.get_parameters()["UCI_Elo"] == 2000 stockfish.set_elo_rating(1350) assert stockfish.get_best_move() in ( "d1e2", "b1c3", "d2d3", "d2d4", "c2c4", "f1e2", ) assert stockfish.get_parameters()["UCI_Elo"] == 1350 def test_stockfish_constructor_with_custom_params(self, stockfish): stockfish.set_skill_level(1) assert stockfish.get_parameters() == { "Write Debug Log": "false", "Contempt": 0, "Min Split Depth": 0, "Threads": 1, "Ponder": "false", "Hash": 16, "MultiPV": 1, "Skill Level": 1, "Move Overhead": 30, "Minimum Thinking Time": 20, "Slow Mover": 80, "UCI_Chess960": "false", "UCI_LimitStrength": "false", "UCI_Elo": 1350, } def test_get_board_visual(self, stockfish): stockfish.set_position(["e2e4", "e7e6", "d2d4", "d7d5"]) if stockfish.get_stockfish_major_version() >= 12: expected_result = ( "+---+---+---+---+---+---+---+---+\n" "| r | n | b | q | k | b | n | r | 8\n" "+---+---+---+---+---+---+---+---+\n" "| p | p | p | | | p | p | p | 7\n" "+---+---+---+---+---+---+---+---+\n" "| | | | | p | | | | 6\n" "+---+---+---+---+---+---+---+---+\n" "| | | | p | | | | | 5\n" "+---+---+---+---+---+---+---+---+\n" "| | | | P | P | | | | 4\n" "+---+---+---+---+---+---+---+---+\n" "| | | | | | | | | 3\n" "+---+---+---+---+---+---+---+---+\n" "| P | P | P | | | P | P | P | 2\n" "+---+---+---+---+---+---+---+---+\n" "| R | N | B | Q | K | B | N | R | 1\n" "+---+---+---+---+---+---+---+---+\n" " a b c d e f g h\n" ) else: expected_result = ( "+---+---+---+---+---+---+---+---+\n" "| r | n | b | q | k | b | n | r |\n" "+---+---+---+---+---+---+---+---+\n" "| p | p | p | | | p | p | p |\n" "+---+---+---+---+---+---+---+---+\n" "| | | | | p | | | |\n" "+---+---+---+---+---+---+---+---+\n" "| | | | p | | | | |\n" "+---+---+---+---+---+---+---+---+\n" "| | | | P | P | | | |\n" "+---+---+---+---+---+---+---+---+\n" "| | | | | | | | |\n" "+---+---+---+---+---+---+---+---+\n" "| P | P | P | | | P | P | P |\n" "+---+---+---+---+---+---+---+---+\n" "| R | N | B | Q | K | B | N | R |\n" "+---+---+---+---+---+---+---+---+\n" ) assert stockfish.get_board_visual() == expected_result def test_get_fen_position(self, stockfish): assert ( stockfish.get_fen_position() == "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1" ) def test_get_fen_position_after_some_moves(self, stockfish): stockfish.set_position(["e2e4", "e7e6"]) assert ( stockfish.get_fen_position() == "rnbqkbnr/pppp1ppp/4p3/8/4P3/8/PPPP1PPP/RNBQKBNR w KQkq - 0 2" ) def test_get_stockfish_major_version(self, stockfish): assert stockfish.get_stockfish_major_version() in (8, 9, 10, 11, 12, 13, 14) def test_get_evaluation_cp(self, stockfish): stockfish.set_fen_position( "r4rk1/pppb1p1p/2nbpqp1/8/3P4/3QBN2/PPP1BPPP/R4RK1 w - - 0 11" ) evaluation = stockfish.get_evaluation() assert evaluation["type"] == "cp" and evaluation["value"] > 0 def test_get_evaluation_checkmate(self, stockfish): stockfish.set_fen_position("1nb1k1n1/pppppppp/8/6r1/5bqK/6r1/8/8 w - - 2 2") assert stockfish.get_evaluation() == {"type": "mate", "value": 0} def test_get_evaluation_stalemate(self, stockfish): stockfish.set_fen_position("1nb1kqn1/pppppppp/8/6r1/5b1K/6r1/8/8 w - - 2 2") assert stockfish.get_evaluation() == {"type": "cp", "value": 0} def test_set_depth(self, stockfish): stockfish.set_depth(12) assert stockfish.depth == "12" stockfish.get_best_move() assert "depth 12" in stockfish.info def test_get_best_move_wrong_position(self, stockfish): wrong_fen = "3kk3/8/8/8/8/8/8/3KK3 w - - 0 0" stockfish.set_fen_position(wrong_fen) assert stockfish.get_best_move() in ( "d1e2", "d1c1", ) def test_get_parameters(self, stockfish): stockfish._set_option("Minimum Thinking Time", 10) parameters = stockfish.get_parameters() assert parameters["Minimum Thinking Time"] == 10 def test_get_top_moves(self, stockfish): stockfish.set_depth(15) stockfish._set_option("MultiPV", 4) stockfish.set_fen_position("1rQ1r1k1/5ppp/8/8/1R6/8/2r2PPP/4R1K1 w - - 0 1") assert stockfish.get_top_moves(2) == [ {"Move": "e1e8", "Centipawn": None, "Mate": 1}, {"Move": "c8e8", "Centipawn": None, "Mate": 2}, ] stockfish.set_fen_position("8/8/8/8/8/3r2k1/8/6K1 w - - 0 1") assert stockfish.get_top_moves(2) == [ {"Move": "g1f1", "Centipawn": None, "Mate": -2}, {"Move": "g1h1", "Centipawn": None, "Mate": -1}, ] def test_get_top_moves_mate(self, stockfish): stockfish.set_depth(10) stockfish._set_option("MultiPV", 3) stockfish.set_fen_position("8/8/8/8/8/6k1/8/3r2K1 w - - 0 1") assert stockfish.get_top_moves() == [] assert stockfish.get_parameters()["MultiPV"] == 3 def test_get_top_moves_raising_error(self, stockfish): stockfish.set_fen_position( "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1" ) with pytest.raises(ValueError): stockfish.get_top_moves(0) assert len(stockfish.get_top_moves(2)) == 2 assert stockfish.get_parameters()["MultiPV"] == 1 def test_make_moves_from_current_position(self, stockfish): stockfish.set_fen_position( "r1bqkb1r/pppp1ppp/2n2n2/1B2p3/4P3/5N2/PPPP1PPP/RNBQK2R w KQkq - 0 1" ) with pytest.raises(ValueError): stockfish.make_moves_from_current_position([]) stockfish.make_moves_from_current_position(["e1g1"]) assert ( stockfish.get_fen_position() == "r1bqkb1r/pppp1ppp/2n2n2/1B2p3/4P3/5N2/PPPP1PPP/RNBQ1RK1 b kq - 1 1" ) stockfish.make_moves_from_current_position( ["f6e4", "d2d4", "e4d6", "b5c6", "d7c6", "d4e5", "d6f5"] ) assert ( stockfish.get_fen_position() == "r1bqkb1r/ppp2ppp/2p5/4Pn2/8/5N2/PPP2PPP/RNBQ1RK1 w kq - 1 5" ) stockfish.make_moves_from_current_position( ["d1d8", "e8d8", "b1c3", "d8e8", "f1d1", "f5e7", "h2h3", "f7f5"] ) assert ( stockfish.get_fen_position() == "r1b1kb1r/ppp1n1pp/2p5/4Pp2/8/2N2N1P/PPP2PP1/R1BR2K1 w - f6 0 9" ) def test_make_moves_transposition_table_speed(self, stockfish): """ make_moves_from_current_position won't send the "ucinewgame" token to Stockfish, since it will reach a new position similar to the current one. Meanwhile, set_fen_position will send this token (unless the user specifies otherwise), since it could be going to a completely new position. A big effect of sending this token is that it resets SF's transposition table. If the new position is similar to the current one, this will affect SF's speed. This function tests that make_moves_from_current_position doesn't reset the transposition table, by verifying SF is faster in evaluating a consecutive set of positions when the make_moves_from_current_position function is used. """ stockfish.set_depth(16) positions_considered = [] stockfish.set_fen_position( "rnbqkbnr/ppp1pppp/8/3p4/2PP4/8/PP2PPPP/RNBQKBNR b KQkq - 0 2" ) total_time_calculating_first = 0.0 for i in range(5): start = default_timer() chosen_move = stockfish.get_best_move() total_time_calculating_first += default_timer() - start positions_considered.append(stockfish.get_fen_position()) stockfish.make_moves_from_current_position([chosen_move]) total_time_calculating_second = 0.0 for i in range(len(positions_considered)): stockfish.set_fen_position(positions_considered[i]) start = default_timer() stockfish.get_best_move() total_time_calculating_second += default_timer() - start assert total_time_calculating_first < total_time_calculating_second def test_get_wdl_stats(self, stockfish): stockfish.set_depth(15) stockfish._set_option("MultiPV", 2) if stockfish.does_current_engine_version_have_wdl_option(): stockfish.set_fen_position("7k/4R3/4P1pp/7N/8/8/1q5q/3K4 w - - 0 1") stockfish.set_show_wdl_option(True) wdl_stats = stockfish.get_wdl_stats() assert wdl_stats[1] > wdl_stats[0] * 7 assert abs(wdl_stats[0] - wdl_stats[2]) / wdl_stats[0] < 0.1 assert stockfish._parameters["UCI_ShowWDL"] == "true" stockfish.set_fen_position( "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1" ) stockfish.set_show_wdl_option(False) wdl_stats = stockfish.get_wdl_stats() assert wdl_stats[1] > wdl_stats[0] * 4 assert wdl_stats[0] > wdl_stats[2] * 1.8 assert stockfish._parameters["UCI_ShowWDL"] == "false" stockfish.set_fen_position("8/8/8/8/8/6k1/6p1/6K1 w - - 0 1") assert stockfish.get_wdl_stats() is None else: with pytest.raises(RuntimeError): stockfish.get_wdl_stats() def test_does_current_engine_version_have_wdl_option(self, stockfish): if stockfish.get_stockfish_major_version() <= 11: assert not stockfish.does_current_engine_version_have_wdl_option() assert "UCI_ShowWDL" not in stockfish._parameters with pytest.raises(RuntimeError): stockfish.get_wdl_stats() def test_set_show_wdl_option(self, stockfish): stockfish.set_fen_position( "rnbqkb1r/pp3ppp/3p1n2/1B2p3/3NP3/2N5/PPP2PPP/R1BQK2R b KQkq - 0 6" ) if stockfish.does_current_engine_version_have_wdl_option(): stockfish.set_show_wdl_option(True) assert stockfish._parameters["UCI_ShowWDL"] == "true" assert len(Stockfish.get_wdl_stats()) == 3 assert stockfish._parameters["UCI_ShowWDL"] == "true" stockfish.set_show_wdl_option(False) assert stockfish._parameters["UCI_ShowWDL"] == "false" stockfish.set_fen_position("8/8/8/8/8/3k4/3p4/3K4 w - - 0 1") assert Stockfish.get_wdl_stats() is None assert stockfish._parameters["UCI_ShowWDL"] == "false" else: with pytest.raises(RuntimeError): stockfish.set_show_wdl_option(True) with pytest.raises(RuntimeError): stockfish.set_show_wdl_option(False) def test_benchmark_result_with_defaults(self, stockfish): params = stockfish.BenchmarkParameters() result = stockfish.benchmark(params) # result should contain the last line of a successful method call assert result.split(" ")[0] == "Nodes/second" def test_benchmark_result_with_valid_options(self, stockfish): params = stockfish.BenchmarkParameters( ttSize=64, threads=2, limit=1000, limitType="movetime", evalType="classical" ) result = stockfish.benchmark(params) # result should contain the last line of a successful method call assert result.split(" ")[0] == "Nodes/second" def test_benchmark_result_with_invalid_options(self, stockfish): params = stockfish.BenchmarkParameters( ttSize=2049, threads=0, limit=0, fenFile="./fakefile.fen", limitType="fghthtr", evalType="", ) result = stockfish.benchmark(params) # result should contain the last line of a successful method call assert result.split(" ")[0] == "Nodes/second" def test_benchmark_result_with_invalid_type(self, stockfish): params = { "ttSize": 16, "threads": 1, "limit": 13, "fenFile": "./fakefile.fen", "limitType": "depth", "evalType": "mixed", } result = stockfish.benchmark(params) # result should contain the last line of a successful method call assert result.split(" ")[0] == "Nodes/second" def test_multiple_calls_to_del(self, stockfish): assert stockfish._stockfish.poll() is None assert not stockfish._has_quit_command_been_sent stockfish.__del__() assert stockfish._stockfish.poll() is not None assert stockfish._has_quit_command_been_sent stockfish.__del__() assert stockfish._stockfish.poll() is not None assert stockfish._has_quit_command_been_sent def test_multiple_quit_commands(self, stockfish): # Test multiple quit commands, and include a call to del too. All of # them should run without causing some Exception. assert stockfish._stockfish.poll() is None assert not stockfish._has_quit_command_been_sent stockfish._put("quit") assert stockfish._has_quit_command_been_sent stockfish._put("quit") assert stockfish._has_quit_command_been_sent stockfish.__del__() assert stockfish._stockfish.poll() is not None assert stockfish._has_quit_command_been_sent stockfish._put(f"go depth {10}") # Should do nothing, and change neither of the values below. assert stockfish._stockfish.poll() is not None assert stockfish._has_quit_command_been_sent
17,526
3,298
23
ae71a18b83fe0ab9540c787415a3e73b56ccb447
1,884
py
Python
fs.py
mission-liao/fin-stmt-additional
da9ef5299e6ff10406996d0cb0975b46498d3c39
[ "MIT" ]
null
null
null
fs.py
mission-liao/fin-stmt-additional
da9ef5299e6ff10406996d0cb0975b46498d3c39
[ "MIT" ]
null
null
null
fs.py
mission-liao/fin-stmt-additional
da9ef5299e6ff10406996d0cb0975b46498d3c39
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import os import click from fstmt import TableAdaptorFactory, DashboardFactory, table @click.group() @cli.command() @click.argument('target') @click.argument('market') @click.argument('symbol') @click.option('--year', type=int) @click.option('--quarter', type=int, default=4) @click.option('--col', type=(str, str), multiple=True) @cli.command() @click.argument('target') @click.argument('market') @click.argument('symbol') @click.option('--year') @click.option('--quarter', type=int, default=4) @cli.command() @click.argument('target') @click.argument('market') @click.argument('symbol') @click.option('--arg', type=(str, str), multiple=True) @cli.command() @click.argument('target') if __name__ == '__main__': cli()
28.984615
75
0.685775
# -*- coding: utf-8 -*- import os import click from fstmt import TableAdaptorFactory, DashboardFactory, table def get_data_dir(): return os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data') def get_database_path(): return os.path.join(get_data_dir(), 'fstmt.sqlite') @click.group() def cli(): pass @cli.command() @click.argument('target') @click.argument('market') @click.argument('symbol') @click.option('--year', type=int) @click.option('--quarter', type=int, default=4) @click.option('--col', type=(str, str), multiple=True) def insert(target, market, symbol, year, quarter, col): t = TableAdaptorFactory(get_database_path()).by_shortcut(target) market = market.upper() if isinstance(t, table.Stock): if year is not None: raise Exception("Providing 'year' when creating stocks") if col : raise Exception("Providing 'col' when creating stocks") t.insert(market, symbol) else: t.insert(market, symbol, year, quarter, col) @cli.command() @click.argument('target') @click.argument('market') @click.argument('symbol') @click.option('--year') @click.option('--quarter', type=int, default=4) def delete(target, market, symbol, year, quarter): t = TableAdaptorFactory(get_database_path()).by_shortcut(target) market = market.upper() t.delete(market, symbol, year, quarter) @cli.command() @click.argument('target') @click.argument('market') @click.argument('symbol') @click.option('--arg', type=(str, str), multiple=True) def query(target, market, symbol, arg): d = DashboardFactory(get_database_path()).by_shortcut(target) market = market.upper() d.draw(market, symbol, arg) @cli.command() @click.argument('target') def migrate(target): t = TableAdaptorFactory(get_database_path()).by_shortcut(target) t.migrate() if __name__ == '__main__': cli()
974
0
156
46a9f3dcdb026e9a896987b4bac29a4f48c1cfbc
2,073
py
Python
tests/ar/test_news_blockchain.py
OpenDataCordoba/whoare
e6be8c4c15239054b546c468305860265668bac9
[ "MIT" ]
null
null
null
tests/ar/test_news_blockchain.py
OpenDataCordoba/whoare
e6be8c4c15239054b546c468305860265668bac9
[ "MIT" ]
5
2020-10-20T20:09:19.000Z
2020-12-28T00:39:28.000Z
tests/ar/test_news_blockchain.py
OpenDataCordoba/whoare
e6be8c4c15239054b546c468305860265668bac9
[ "MIT" ]
null
null
null
from datetime import date from whoare.zone_parsers.ar.news_from_blockchain import NewDomains
28.013514
66
0.682103
from datetime import date from whoare.zone_parsers.ar.news_from_blockchain import NewDomains def read_csv(dated): nd = NewDomains() nd.data_path = 'tests/ar/samples' results = nd.get_from_date(dated) urls = [] for zona, lista in results['zonas'].items(): for dom in lista: urls.append(dom) return urls def test_new_domains_2020_12_15(): urls = read_csv(date(2020, 12, 15)) assert 'd2creativos.com.ar' in urls assert 'danielojeda.com.ar' in urls assert 'deseame.ar' in urls assert 'desstek.com.ar' in urls assert 'diamondprotein.ar' in urls assert 'diamondprotein.com.ar' in urls assert 'diarioelliberal.ar' in urls def test_new_domains_2020_12_20(): urls = read_csv(date(2020, 12, 20)) assert 'xaragon.com.ar' in urls # # xn--expodiseo-s6a.com.ar assert 'expodiseño.com.ar' in urls assert 'zion.ar' in urls def test_new_domains_2018_10_08(): urls = read_csv(date(2018, 10, 8)) # TODO si empieza con cero el CSV viene malo # assert '341.com.ar' in urls assert 'abogadosdecordoba.net.ar' in urls assert 'abogadosdepueblosfumigados.com.ar' in urls assert 'aesucm.org.ar' in urls assert 'agenciatimonel.com.ar' in urls assert 'agustinpayges.com.ar' in urls assert 'forastero.tur.ar' in urls assert 'patinesconi.com.ar' in urls assert 'pcyrma.org.ar' in urls # # xn--diseowebrosario-1qb com.ar assert 'diseñowebrosario.com.ar' in urls # # xn--santuariodelapea-lub com.ar assert 'santuariodelapeña.com.ar' in urls def test_new_domains_2020_11_26(): urls = read_csv(date(2020, 11, 26)) assert 'sanro.ar' in urls # xn--cabaasatrapasueos-ixbl com.ar assert 'cabañasatrapasueños.com.ar' in urls assert 'zenlab.com.ar' in urls def test_new_domains_2019_01_15(): urls = read_csv(date(2019, 1, 15)) assert 'wtracker.com.ar' in urls # xn--tartamudezenaccin-vyb com.ar assert 'tartamudezenacción.com.ar' in urls assert 'yoquierocalzados.com.ar' in urls
1,842
0
138
b3a45dcb40d939002cd6cc74fed37e8c87cd19b8
2,539
py
Python
rbtools/clients/tests/test_scanning.py
fangwentong/rbtools
c09f5c93fd61d447dee19b643ddfcf00ba92f920
[ "MIT" ]
null
null
null
rbtools/clients/tests/test_scanning.py
fangwentong/rbtools
c09f5c93fd61d447dee19b643ddfcf00ba92f920
[ "MIT" ]
null
null
null
rbtools/clients/tests/test_scanning.py
fangwentong/rbtools
c09f5c93fd61d447dee19b643ddfcf00ba92f920
[ "MIT" ]
1
2020-06-27T23:08:47.000Z
2020-06-27T23:08:47.000Z
"""Unit tests for client scanning.""" from __future__ import unicode_literals import os from rbtools.clients import scan_usable_client from rbtools.clients.git import GitClient from rbtools.clients.svn import SVNClient from rbtools.clients.tests import SCMClientTests from rbtools.utils.process import execute class ScanningTests(SCMClientTests): """Unit tests for client scanning.""" def test_scanning_nested_repos_1(self): """Testing scan_for_usable_client with nested repositories (git inside svn) """ git_dir = os.path.join(self.testdata_dir, 'git-repo') svn_dir = os.path.join(self.testdata_dir, 'svn-repo') # Check out SVN first. clone_dir = self.chdir_tmp() execute(['svn', 'co', 'file://%s' % svn_dir, 'svn-repo'], env=None, ignore_errors=False, extra_ignore_errors=()) svn_clone_dir = os.path.join(clone_dir, 'svn-repo') # Now check out git. git_clone_dir = os.path.join(svn_clone_dir, 'git-repo') os.mkdir(git_clone_dir) execute(['git', 'clone', git_dir, git_clone_dir], env=None, ignore_errors=False, extra_ignore_errors=()) os.chdir(git_clone_dir) repository_info, tool = scan_usable_client({}, self.options) self.assertEqual(repository_info.local_path, os.path.realpath(git_clone_dir)) self.assertEqual(type(tool), GitClient) def test_scanning_nested_repos_2(self): """Testing scan_for_usable_client with nested repositories (svn inside git) """ git_dir = os.path.join(self.testdata_dir, 'git-repo') svn_dir = os.path.join(self.testdata_dir, 'svn-repo') # Check out git first clone_dir = self.chdir_tmp() git_clone_dir = os.path.join(clone_dir, 'git-repo') os.mkdir(git_clone_dir) execute(['git', 'clone', git_dir, git_clone_dir], env=None, ignore_errors=False, extra_ignore_errors=()) # Now check out svn. svn_clone_dir = os.path.join(git_clone_dir, 'svn-repo') os.chdir(git_clone_dir) execute(['svn', 'co', 'file://%s' % svn_dir, 'svn-repo'], env=None, ignore_errors=False, extra_ignore_errors=()) os.chdir(svn_clone_dir) repository_info, tool = scan_usable_client({}, self.options) self.assertEqual(repository_info.local_path, os.path.realpath(svn_clone_dir)) self.assertEqual(type(tool), SVNClient)
35.760563
78
0.648681
"""Unit tests for client scanning.""" from __future__ import unicode_literals import os from rbtools.clients import scan_usable_client from rbtools.clients.git import GitClient from rbtools.clients.svn import SVNClient from rbtools.clients.tests import SCMClientTests from rbtools.utils.process import execute class ScanningTests(SCMClientTests): """Unit tests for client scanning.""" def test_scanning_nested_repos_1(self): """Testing scan_for_usable_client with nested repositories (git inside svn) """ git_dir = os.path.join(self.testdata_dir, 'git-repo') svn_dir = os.path.join(self.testdata_dir, 'svn-repo') # Check out SVN first. clone_dir = self.chdir_tmp() execute(['svn', 'co', 'file://%s' % svn_dir, 'svn-repo'], env=None, ignore_errors=False, extra_ignore_errors=()) svn_clone_dir = os.path.join(clone_dir, 'svn-repo') # Now check out git. git_clone_dir = os.path.join(svn_clone_dir, 'git-repo') os.mkdir(git_clone_dir) execute(['git', 'clone', git_dir, git_clone_dir], env=None, ignore_errors=False, extra_ignore_errors=()) os.chdir(git_clone_dir) repository_info, tool = scan_usable_client({}, self.options) self.assertEqual(repository_info.local_path, os.path.realpath(git_clone_dir)) self.assertEqual(type(tool), GitClient) def test_scanning_nested_repos_2(self): """Testing scan_for_usable_client with nested repositories (svn inside git) """ git_dir = os.path.join(self.testdata_dir, 'git-repo') svn_dir = os.path.join(self.testdata_dir, 'svn-repo') # Check out git first clone_dir = self.chdir_tmp() git_clone_dir = os.path.join(clone_dir, 'git-repo') os.mkdir(git_clone_dir) execute(['git', 'clone', git_dir, git_clone_dir], env=None, ignore_errors=False, extra_ignore_errors=()) # Now check out svn. svn_clone_dir = os.path.join(git_clone_dir, 'svn-repo') os.chdir(git_clone_dir) execute(['svn', 'co', 'file://%s' % svn_dir, 'svn-repo'], env=None, ignore_errors=False, extra_ignore_errors=()) os.chdir(svn_clone_dir) repository_info, tool = scan_usable_client({}, self.options) self.assertEqual(repository_info.local_path, os.path.realpath(svn_clone_dir)) self.assertEqual(type(tool), SVNClient)
0
0
0
0662e69a71e1cc9d3473c7b9d5a6fe55d4510954
2,858
py
Python
tests/test_archive.py
lgq2015/ubuntu-isign
2b72d0c260d13e1dce4a9438a9b0cb566a0fcdaf
[ "Apache-2.0" ]
null
null
null
tests/test_archive.py
lgq2015/ubuntu-isign
2b72d0c260d13e1dce4a9438a9b0cb566a0fcdaf
[ "Apache-2.0" ]
null
null
null
tests/test_archive.py
lgq2015/ubuntu-isign
2b72d0c260d13e1dce4a9438a9b0cb566a0fcdaf
[ "Apache-2.0" ]
1
2020-10-26T17:36:54.000Z
2020-10-26T17:36:54.000Z
from isign_base_test import IsignBaseTest from isign.archive import archive_factory, Archive, AppArchive, AppZipArchive, IpaArchive from isign.utils import PY3 import logging log = logging.getLogger(__name__)
32.477273
89
0.731631
from isign_base_test import IsignBaseTest from isign.archive import archive_factory, Archive, AppArchive, AppZipArchive, IpaArchive from isign.utils import PY3 import logging log = logging.getLogger(__name__) class TestArchive(IsignBaseTest): def _test_good(self, filename, klass): archive = archive_factory(filename) assert archive is not None assert archive.__class__ is klass assert isinstance(archive, Archive) def test_archive_factory_app(self): self._test_good(self.TEST_APP, AppArchive) def test_archive_factory_appzip(self): self._test_good(self.TEST_APPZIP, AppZipArchive) def test_archive_factory_ipa(self): self._test_good(self.TEST_IPA, IpaArchive) def test_archive_factory_nonapp_dir(self): archive = archive_factory(self.TEST_NONAPP_DIR) assert archive is None def test_archive_factory_nonapp_ipa(self): archive = archive_factory(self.TEST_NONAPP_IPA) assert archive is None def test_archive_factory_nonapp_txt(self): archive = archive_factory(self.TEST_NONAPP_TXT) assert archive is None def test_archive_factory_nonapp_simulator_app(self): archive = archive_factory(self.TEST_SIMULATOR_APP) assert archive is None class TestBundleInfo(IsignBaseTest): def _test_bundle_info(self, filename): archive = archive_factory(filename) assert archive is not None assert archive.bundle_info is not None if PY3: assert archive.bundle_info[b'CFBundleName'] == b'isignTestApp' else: assert archive.bundle_info['CFBundleName'] == 'isignTestApp' def test_app_archive_info(self): self._test_bundle_info(self.TEST_APP) def test_appzip_archive_info(self): self._test_bundle_info(self.TEST_APPZIP) def test_ipa_archive_info(self): self._test_bundle_info(self.TEST_IPA) class TestArchivePrecheck(IsignBaseTest): def test_precheck_app(self): assert AppArchive.precheck(self.TEST_APP) def test_precheck_appzip(self): assert AppZipArchive.precheck(self.TEST_APPZIP) def test_precheck_ipa(self): assert IpaArchive.precheck(self.TEST_IPA) def test_bad_precheck_app(self): assert AppArchive.precheck(self.TEST_NONAPP_DIR) is False assert AppArchive.precheck(self.TEST_APPZIP) is False assert AppArchive.precheck(self.TEST_IPA) is False def test_bad_precheck_appzip(self): assert AppZipArchive.precheck(self.TEST_APP) is False assert AppZipArchive.precheck(self.TEST_IPA) is False def test_bad_precheck_ipa(self): assert IpaArchive.precheck(self.TEST_APP) is False assert IpaArchive.precheck(self.TEST_APPZIP) is False assert IpaArchive.precheck(self.TEST_NONAPP_IPA) is False
2,043
47
555
628390e7b0e104bdccc43edd629d89f2f161d0b5
4,769
py
Python
cotrendy/lightcurves.py
PLATO-Mission/cotrendy
31d03f0cfd8329f72d897e84d2aa6c0ca8865dfe
[ "MIT" ]
null
null
null
cotrendy/lightcurves.py
PLATO-Mission/cotrendy
31d03f0cfd8329f72d897e84d2aa6c0ca8865dfe
[ "MIT" ]
null
null
null
cotrendy/lightcurves.py
PLATO-Mission/cotrendy
31d03f0cfd8329f72d897e84d2aa6c0ca8865dfe
[ "MIT" ]
null
null
null
""" Light curves components for Cotrendy """ import sys import logging import numpy as np from scipy.stats import median_absolute_deviation import cotrendy.utils as cuts def load_photometry(config, apply_object_mask=True): """ Read in a photometry file Parameters ---------- config : dict Configuration file loaded via TOML apply_object_mask : boolean Mask our a subset of stars? Returns ------- times : array Array of times of observation lightcurves : list List of Lightcurve objects, one per star Raises ------ None """ root = config['global']['root'] time_file = config['data']['time_file'] flux_file = config['data']['flux_file'] error_file = config['data']['error_file'] times = cuts.depicklify(f"{root}/{time_file}") if times is None: logging.critical(f"Could not load {root}/{time_file}...") sys.exit(1) fluxes = cuts.depicklify(f"{root}/{flux_file}") if fluxes is None: logging.critical(f"Could not load {root}/{flux_file}...") sys.exit(1) errors = cuts.depicklify(f"{root}/{error_file}") if errors is None: logging.critical(f"Could not load {root}/{error_file}...") sys.exit(1) if fluxes.shape != errors.shape or len(times) != len(fluxes[0]): logging.critical("Data arrays have mismatched shapes...") sys.exit(1) # now apply the mask if needed if apply_object_mask: objects_mask_file = config['data']['objects_mask_file'] mask = cuts.depicklify(f"{root}/{objects_mask_file}") fluxes = fluxes[mask] errors = errors[mask] # now make list of Lightcurves objects lightcurves = [] n_stars = len(fluxes) i = 0 for star, star_err in zip(fluxes, errors): logging.info(f"{i+1}/{n_stars}") lightcurves.append(Lightcurve(star, star_err, config['data']['reject_outliers'])) i += 1 return times, lightcurves class Lightcurve(): """ Lightcurve object of real object """ def __init__(self, flux, flux_err, filter_outliers=False): """ Initialise the class Parameters ---------- flux : array-like list of flux values flux_err : array-like list of flux error values filter_outliers : boolean turn on PLATO outlier rejection? default = False Returns ------- None Raises ------ None """ # Initialise variables to hold data when trend is applied self.flux_wtrend = flux self.fluxerr_wtrend = flux_err self.median_flux = np.median(flux) self.outlier_indices = None # store the lightcurve after removing outliers if filter_outliers: self.filter_outliers() def filter_outliers(self, alpha=5, beta=12): """ Filter out data points that are > alpha*local MAD within a window ±beta around a given data point. Replace the data point with the local median as to not introduce gaps Parameters ---------- alpha : int Scaling factor for number of MADs to reject outside beta : int Half width of sliding window for MAD rejection Returns ------- None Outliers indices are included in self.outlier_indices Raises ------ None """ # could imaging this having a voting system where each beta*2+1 slice # votes on an outlier and if >N votes it gets nuked outlier_indices = [] for i in np.arange(beta, len(self.flux_wtrend)-beta-1): window = self.flux_wtrend[i-beta: i+beta+1] med = np.median(window) mad = median_absolute_deviation(window) outlier_positions = np.where(((window >= med+alpha*mad) | (window <= med-alpha*mad)))[0] + i - beta # gather them up and then correct them with a median # window centered on them for outlier_position in outlier_positions: if outlier_position not in outlier_indices: outlier_indices.append(outlier_position) # now go back and fix the outliers for outlier in outlier_indices: lower = outlier-beta upper = outlier+beta+1 if lower < 0: lower = 0 if upper > len(self.flux_wtrend): upper = len(self.flux_wtrend) med = np.median(self.flux_wtrend[lower:upper]) self.flux_wtrend[outlier] = med self.outlier_indices = outlier_indices
29.993711
89
0.585657
""" Light curves components for Cotrendy """ import sys import logging import numpy as np from scipy.stats import median_absolute_deviation import cotrendy.utils as cuts def load_photometry(config, apply_object_mask=True): """ Read in a photometry file Parameters ---------- config : dict Configuration file loaded via TOML apply_object_mask : boolean Mask our a subset of stars? Returns ------- times : array Array of times of observation lightcurves : list List of Lightcurve objects, one per star Raises ------ None """ root = config['global']['root'] time_file = config['data']['time_file'] flux_file = config['data']['flux_file'] error_file = config['data']['error_file'] times = cuts.depicklify(f"{root}/{time_file}") if times is None: logging.critical(f"Could not load {root}/{time_file}...") sys.exit(1) fluxes = cuts.depicklify(f"{root}/{flux_file}") if fluxes is None: logging.critical(f"Could not load {root}/{flux_file}...") sys.exit(1) errors = cuts.depicklify(f"{root}/{error_file}") if errors is None: logging.critical(f"Could not load {root}/{error_file}...") sys.exit(1) if fluxes.shape != errors.shape or len(times) != len(fluxes[0]): logging.critical("Data arrays have mismatched shapes...") sys.exit(1) # now apply the mask if needed if apply_object_mask: objects_mask_file = config['data']['objects_mask_file'] mask = cuts.depicklify(f"{root}/{objects_mask_file}") fluxes = fluxes[mask] errors = errors[mask] # now make list of Lightcurves objects lightcurves = [] n_stars = len(fluxes) i = 0 for star, star_err in zip(fluxes, errors): logging.info(f"{i+1}/{n_stars}") lightcurves.append(Lightcurve(star, star_err, config['data']['reject_outliers'])) i += 1 return times, lightcurves class Lightcurve(): """ Lightcurve object of real object """ def __init__(self, flux, flux_err, filter_outliers=False): """ Initialise the class Parameters ---------- flux : array-like list of flux values flux_err : array-like list of flux error values filter_outliers : boolean turn on PLATO outlier rejection? default = False Returns ------- None Raises ------ None """ # Initialise variables to hold data when trend is applied self.flux_wtrend = flux self.fluxerr_wtrend = flux_err self.median_flux = np.median(flux) self.outlier_indices = None # store the lightcurve after removing outliers if filter_outliers: self.filter_outliers() def filter_outliers(self, alpha=5, beta=12): """ Filter out data points that are > alpha*local MAD within a window ±beta around a given data point. Replace the data point with the local median as to not introduce gaps Parameters ---------- alpha : int Scaling factor for number of MADs to reject outside beta : int Half width of sliding window for MAD rejection Returns ------- None Outliers indices are included in self.outlier_indices Raises ------ None """ # could imaging this having a voting system where each beta*2+1 slice # votes on an outlier and if >N votes it gets nuked outlier_indices = [] for i in np.arange(beta, len(self.flux_wtrend)-beta-1): window = self.flux_wtrend[i-beta: i+beta+1] med = np.median(window) mad = median_absolute_deviation(window) outlier_positions = np.where(((window >= med+alpha*mad) | (window <= med-alpha*mad)))[0] + i - beta # gather them up and then correct them with a median # window centered on them for outlier_position in outlier_positions: if outlier_position not in outlier_indices: outlier_indices.append(outlier_position) # now go back and fix the outliers for outlier in outlier_indices: lower = outlier-beta upper = outlier+beta+1 if lower < 0: lower = 0 if upper > len(self.flux_wtrend): upper = len(self.flux_wtrend) med = np.median(self.flux_wtrend[lower:upper]) self.flux_wtrend[outlier] = med self.outlier_indices = outlier_indices
0
0
0
c4d9e25825d0a67968b72afbc467451be752f281
1,954
py
Python
BigQuery_Script.py
rezaho/iipp_patstat2018
b83e913a124113052dfbfc5d43ef9d9f6a3f7af0
[ "Apache-2.0" ]
null
null
null
BigQuery_Script.py
rezaho/iipp_patstat2018
b83e913a124113052dfbfc5d43ef9d9f6a3f7af0
[ "Apache-2.0" ]
null
null
null
BigQuery_Script.py
rezaho/iipp_patstat2018
b83e913a124113052dfbfc5d43ef9d9f6a3f7af0
[ "Apache-2.0" ]
null
null
null
# Script for creating and loading PatStat2018b dataset into Big Query tables # coding: utf-8 ############################################### ###### Importing Libraries and functions ###### from google.cloud import bigquery from open_patstat.utils.gcp import create_table, load_gcs_file, delete_table from open_patstat.utils.schema import Schema #################################################### ###### Initializing the Client anf Job Config ###### # Before running this line, make sure that you have defined the environment variable... # ..."GOOGLE_APPLICATION_CREDENTIALS" which points to the JSON file containing authentication key client = bigquery.Client() # Initializing the Job_config job_config = bigquery.LoadJobConfig() job_config.skip_leading_rows = 1 job_config.max_bad_records = 10 job_config.source_format = bigquery.SourceFormat.CSV dataset_ref = client.dataset('patstat') ########################################### ####### Creating and Adding Tables ######## # Tables list to be loaded tables_list = ['tls201', 'tls209', 'tls204', 'tls207', 'tls206', 'tls211', 'tls212'] # Google Bucket directory address, which contains all data files gs_add = 'gs://patstat_2018g/data_PATSTAT_Global_2018_Autumn/' # Loading the tables in the list for table in tables_list: # Creating the table create_table(client, dataset_id='patstat', table_id=table, schema=getattr(Schema(),table)) # Adding files to the table from GCP bucket table_ref = dataset_ref.table(table) job_config.schema = getattr(Schema(),table) # Adding files to the table from GCP bucket table_ref = dataset_ref.table(table) job_config.schema = getattr(Schema(),table) load_job = client.load_table_from_uri( source_uris=gs_add+table+'_*.gz', destination=table_ref, # job_id=job_id, job_id_prefix='lgs-', job_config=job_config, ) load_job.result()
34.892857
97
0.665814
# Script for creating and loading PatStat2018b dataset into Big Query tables # coding: utf-8 ############################################### ###### Importing Libraries and functions ###### from google.cloud import bigquery from open_patstat.utils.gcp import create_table, load_gcs_file, delete_table from open_patstat.utils.schema import Schema #################################################### ###### Initializing the Client anf Job Config ###### # Before running this line, make sure that you have defined the environment variable... # ..."GOOGLE_APPLICATION_CREDENTIALS" which points to the JSON file containing authentication key client = bigquery.Client() # Initializing the Job_config job_config = bigquery.LoadJobConfig() job_config.skip_leading_rows = 1 job_config.max_bad_records = 10 job_config.source_format = bigquery.SourceFormat.CSV dataset_ref = client.dataset('patstat') ########################################### ####### Creating and Adding Tables ######## # Tables list to be loaded tables_list = ['tls201', 'tls209', 'tls204', 'tls207', 'tls206', 'tls211', 'tls212'] # Google Bucket directory address, which contains all data files gs_add = 'gs://patstat_2018g/data_PATSTAT_Global_2018_Autumn/' # Loading the tables in the list for table in tables_list: # Creating the table create_table(client, dataset_id='patstat', table_id=table, schema=getattr(Schema(),table)) # Adding files to the table from GCP bucket table_ref = dataset_ref.table(table) job_config.schema = getattr(Schema(),table) # Adding files to the table from GCP bucket table_ref = dataset_ref.table(table) job_config.schema = getattr(Schema(),table) load_job = client.load_table_from_uri( source_uris=gs_add+table+'_*.gz', destination=table_ref, # job_id=job_id, job_id_prefix='lgs-', job_config=job_config, ) load_job.result()
0
0
0
fc24f84cff67f66fdbc72dc2ba547c523b3814fe
828
py
Python
external/cclib/bridge/cclib2pyquante.py
faribas/RMG-Py
6149e29b642bf8da9537e2db98f15121f0e040c7
[ "MIT" ]
1
2017-12-18T18:43:22.000Z
2017-12-18T18:43:22.000Z
external/cclib/bridge/cclib2pyquante.py
speth/RMG-Py
1d2c2b684580396e984459d9347628a5ceb80e2e
[ "MIT" ]
72
2016-06-06T18:18:49.000Z
2019-11-17T03:21:10.000Z
external/cclib/bridge/cclib2pyquante.py
speth/RMG-Py
1d2c2b684580396e984459d9347628a5ceb80e2e
[ "MIT" ]
3
2017-09-22T15:47:37.000Z
2021-12-30T23:51:47.000Z
""" cclib (http://cclib.sf.net) is (c) 2006, the cclib development team and licensed under the LGPL (http://www.gnu.org/copyleft/lgpl.html). """ __revision__ = "$Revision: 737 $" from PyQuante.Molecule import Molecule def makepyquante(atomcoords, atomnos, charge=0, mult=1): """Create a PyQuante Molecule. >>> import numpy >>> from PyQuante.hartree_fock import hf >>> atomnos = numpy.array([1,8,1],"i") >>> a = numpy.array([[-1,1,0],[0,0,0],[1,1,0]],"f") >>> pyqmol = makepyquante(a,atomnos) >>> en,orbe,orbs = hf(pyqmol) >>> print int(en * 10) / 10. # Should be around -73.8 -73.8 """ return Molecule("notitle", zip(atomnos, atomcoords), units="Angstrom", charge=charge, multiplicity=mult) if __name__ == "__main__": import doctest doctest.testmod()
29.571429
74
0.621981
""" cclib (http://cclib.sf.net) is (c) 2006, the cclib development team and licensed under the LGPL (http://www.gnu.org/copyleft/lgpl.html). """ __revision__ = "$Revision: 737 $" from PyQuante.Molecule import Molecule def makepyquante(atomcoords, atomnos, charge=0, mult=1): """Create a PyQuante Molecule. >>> import numpy >>> from PyQuante.hartree_fock import hf >>> atomnos = numpy.array([1,8,1],"i") >>> a = numpy.array([[-1,1,0],[0,0,0],[1,1,0]],"f") >>> pyqmol = makepyquante(a,atomnos) >>> en,orbe,orbs = hf(pyqmol) >>> print int(en * 10) / 10. # Should be around -73.8 -73.8 """ return Molecule("notitle", zip(atomnos, atomcoords), units="Angstrom", charge=charge, multiplicity=mult) if __name__ == "__main__": import doctest doctest.testmod()
0
0
0
f9a937ded3908623f9ea6aa4b476025ff2324f45
1,106
py
Python
NBATextAlerts/Alerts.py
kevinfjiang/NBATextAlerts
0ddd4fc0fa7a272191c422167350d8813581675b
[ "MIT" ]
1
2021-03-24T04:39:40.000Z
2021-03-24T04:39:40.000Z
NBATextAlerts/Alerts.py
kevinfjiang/NBATextAlerts
0ddd4fc0fa7a272191c422167350d8813581675b
[ "MIT" ]
1
2021-03-24T05:33:20.000Z
2021-03-24T05:36:28.000Z
NBATextAlerts/Alerts.py
kevinfjiang/NBATextAlerts
0ddd4fc0fa7a272191c422167350d8813581675b
[ "MIT" ]
null
null
null
""" https://www.twilio.com/ This link is the basis for the text messaging, make sure to sign up! After registering, press the home buton and click "Dashboard", both in the top left You will see the following lines "cellphone" -> Paste verified Twilio number as string "ACCOUNT SID" -> Paste that number into account as string "AUTH TOKEN" -> click show and paste that into token as string "PHONE NUMBER" -> Paste that into token as string Remember to verify your phone number """ from twilio.rest import Client cellphone = "" #Input the phone number you want to send texts too (the phone number verified by twilio) twilio_number = ""#Twilio provides a PHONE NUMBER, input it here account = ""#Input ACCOUNT SID token = ""#AUTH TOKEN, press show #Test message if calling alerts. Run Alerts.py to test the system is working if __name__ == "__main__": send_message("Test message. Did you receive it?")
30.722222
103
0.711573
""" https://www.twilio.com/ This link is the basis for the text messaging, make sure to sign up! After registering, press the home buton and click "Dashboard", both in the top left You will see the following lines "cellphone" -> Paste verified Twilio number as string "ACCOUNT SID" -> Paste that number into account as string "AUTH TOKEN" -> click show and paste that into token as string "PHONE NUMBER" -> Paste that into token as string Remember to verify your phone number """ from twilio.rest import Client cellphone = "" #Input the phone number you want to send texts too (the phone number verified by twilio) twilio_number = ""#Twilio provides a PHONE NUMBER, input it here account = ""#Input ACCOUNT SID token = ""#AUTH TOKEN, press show def send_message(message): client = Client(account, token) client.messages.create(to=cellphone, from_=twilio_number, body=message) #Test message if calling alerts. Run Alerts.py to test the system is working if __name__ == "__main__": send_message("Test message. Did you receive it?")
170
0
23
abfd30e1b28d8aa306ca97c0ff99e36c6c64c29c
2,546
py
Python
utils/timer.py
FanmingL/ESCP
518f13f8b002d142f670f52d9ef34778e2c2d59f
[ "MIT" ]
null
null
null
utils/timer.py
FanmingL/ESCP
518f13f8b002d142f670f52d9ef34778e2c2d59f
[ "MIT" ]
null
null
null
utils/timer.py
FanmingL/ESCP
518f13f8b002d142f670f52d9ef34778e2c2d59f
[ "MIT" ]
null
null
null
import time import inspect import numpy as np if __name__ == '__main__': test_timer()
33.064935
89
0.569521
import time import inspect import numpy as np class Timer: def __init__(self): self.check_points = {} self.points_time = {} self.need_summary = {} self.init_time = time.time() def reset(self): self.check_points = {} self.points_time = {} self.need_summary = {} @staticmethod def file_func_line(stack=1): frame = inspect.stack()[stack][0] info = inspect.getframeinfo(frame) return info.filename, info.function, info.lineno @staticmethod def line(stack=2, short=False): file, func, lineo = Timer.file_func_line(stack) if short: return f"line_{lineo}_func_{func}" return f"line: {lineo}, func: {func}, file: {file}" def register_point(self, tag=None, stack=3, short=True, need_summary=True, level=0): if tag is None: tag = self.line(stack, short) if False and not tag.startswith('__'): print(f'arrive {tag}, time: {time.time() - self.init_time}, level: {level}') if level not in self.check_points: self.check_points[level] = [] self.points_time[level] = [] self.need_summary[level] = set() self.check_points[level].append(tag) self.points_time[level].append(time.time()) if need_summary: self.need_summary[level].add(tag) def register_end(self, stack=4, level=0): self.register_point('__timer_end_unique', stack, need_summary=False, level=level) def summary(self): if len(self.check_points) == 0: return dict() res = {} for level in self.check_points: self.register_point('__timer_finale_unique', level=level) res_tmp = {} for ind, item in enumerate(self.check_points[level][:-1]): time_now = self.points_time[level][ind] time_next = self.points_time[level][ind + 1] if item in res_tmp: res_tmp[item].append(time_next - time_now) else: res_tmp[item] = [time_next - time_now] for k, v in res_tmp.items(): if k in self.need_summary[level]: res['period_' + k] = np.mean(v) self.reset() return res def test_timer(): timer = Timer() for i in range(4): timer.register_point() time.sleep(1) for k, v in timer.summary().items(): print(f'{k}, {v}') if __name__ == '__main__': test_timer()
2,194
215
46
f7642e021866ac47a0bcd5fd062c3e4fbd79be21
4,042
py
Python
src/interface_py/h2o4gpu/util/lightgbm_dynamic.py
pnijhara/h2o4gpu
6257112c134136471420b68241f57190a445b67d
[ "Apache-2.0" ]
458
2017-09-20T08:32:10.000Z
2022-02-28T18:40:57.000Z
src/interface_py/h2o4gpu/util/lightgbm_dynamic.py
Jun-NIBS/h2o4gpu
9885416deb3285f5d0f33023d6c07373ac4fc0b7
[ "Apache-2.0" ]
461
2017-09-20T11:39:04.000Z
2021-11-21T15:51:42.000Z
src/interface_py/h2o4gpu/util/lightgbm_dynamic.py
Jun-NIBS/h2o4gpu
9885416deb3285f5d0f33023d6c07373ac4fc0b7
[ "Apache-2.0" ]
114
2017-09-20T12:08:07.000Z
2021-11-29T14:15:40.000Z
# pylint: skip-file import os import importlib.util got_cpu_lgb = False got_gpu_lgb = False from h2o4gpu.util.gpu import device_count _, ngpus_vis_global = device_count() enable_lightgbm_import = True if enable_lightgbm_import: lgb_loader = importlib.util.find_spec('lightgbm') lgb_found = lgb_loader is not None always_do_dynamic_lgb_selection = True # False will take existing lightgbm package if exists, True will always overwrite existing do_dynamic_lgb_selection = True link_method = False # False (default now) is to directly load from path if not lgb_found and do_dynamic_lgb_selection or always_do_dynamic_lgb_selection: numpy_loader = importlib.util.find_spec('numpy') found = numpy_loader is not None if found: numpy_path = os.path.dirname(numpy_loader.origin) dirname = "/".join(numpy_path.split("/")[:-1]) lgb_path_gpu = os.path.join(dirname, "lightgbm_gpu") lgb_path_cpu = os.path.join(dirname, "lightgbm_cpu") lgb_path_new = os.path.join(dirname, "lightgbm") got_lgb = False expt_gpu = "" expt_cpu = "" expt_other = "" # This locally leads to lgb as if did import lightgbm as lgb, but also any other file that imports lgb will immediately return with lgb even though no module name "lightgbm" has a path in site-packages. try: if ngpus_vis_global > 0: loader = importlib.machinery.SourceFileLoader('lightgbm', os.path.join(lgb_path_gpu, '__init__.py')) lgb = loader.load_module() print("Selected GPU version of lightgbm to import\n") got_lgb = True # This locally leads to lgb as if did import lightgbm as lgb, but also any other file that imports lgb will immediately return with lgb even though no module name "lightgbm" has a path in site-packages. got_gpu_lgb = True except Exception as e: expt_gpu = str(e) pass if not got_lgb: try: loader = importlib.machinery.SourceFileLoader('lightgbm', os.path.join(lgb_path_cpu, '__init__.py')) lgb = loader.load_module() if ngpus_vis_global > 0: print( "Selected CPU version of lightgbm to import (GPU selection failed due to %s)\n" % expt_gpu) else: print("Selected CPU version of lightgbm to import\n") got_lgb = True got_cpu_lgb = True except Exception as e: expt_cpu = str(e) pass if not got_lgb: try: loader = importlib.machinery.SourceFileLoader('lightgbm', os.path.join(lgb_path_new, '__init__.py')) lgb = loader.load_module() if ngpus_vis_global > 0: print( "Selected non-dynamic CPU version of lightgbm to import (GPU selection failed due to %s)\n" % expt_other) else: print("Selected non-dynamic CPU version of lightgbm to import\n") got_lgb = True got_cpu_lgb = True except Exception as e: expt_other = str(e) pass if not got_lgb: print( "Unable to dynamically or non-dynamically import either GPU or CPU version of lightgbm: expt_gpu=%s expt_cpu=%s expt_other=%s\n" % ( expt_gpu, expt_cpu, expt_other)) else: print("Did not find lightgbm or numpy\n")
47.552941
222
0.543295
# pylint: skip-file import os import importlib.util got_cpu_lgb = False got_gpu_lgb = False from h2o4gpu.util.gpu import device_count _, ngpus_vis_global = device_count() enable_lightgbm_import = True if enable_lightgbm_import: lgb_loader = importlib.util.find_spec('lightgbm') lgb_found = lgb_loader is not None always_do_dynamic_lgb_selection = True # False will take existing lightgbm package if exists, True will always overwrite existing do_dynamic_lgb_selection = True link_method = False # False (default now) is to directly load from path if not lgb_found and do_dynamic_lgb_selection or always_do_dynamic_lgb_selection: numpy_loader = importlib.util.find_spec('numpy') found = numpy_loader is not None if found: numpy_path = os.path.dirname(numpy_loader.origin) dirname = "/".join(numpy_path.split("/")[:-1]) lgb_path_gpu = os.path.join(dirname, "lightgbm_gpu") lgb_path_cpu = os.path.join(dirname, "lightgbm_cpu") lgb_path_new = os.path.join(dirname, "lightgbm") got_lgb = False expt_gpu = "" expt_cpu = "" expt_other = "" # This locally leads to lgb as if did import lightgbm as lgb, but also any other file that imports lgb will immediately return with lgb even though no module name "lightgbm" has a path in site-packages. try: if ngpus_vis_global > 0: loader = importlib.machinery.SourceFileLoader('lightgbm', os.path.join(lgb_path_gpu, '__init__.py')) lgb = loader.load_module() print("Selected GPU version of lightgbm to import\n") got_lgb = True # This locally leads to lgb as if did import lightgbm as lgb, but also any other file that imports lgb will immediately return with lgb even though no module name "lightgbm" has a path in site-packages. got_gpu_lgb = True except Exception as e: expt_gpu = str(e) pass if not got_lgb: try: loader = importlib.machinery.SourceFileLoader('lightgbm', os.path.join(lgb_path_cpu, '__init__.py')) lgb = loader.load_module() if ngpus_vis_global > 0: print( "Selected CPU version of lightgbm to import (GPU selection failed due to %s)\n" % expt_gpu) else: print("Selected CPU version of lightgbm to import\n") got_lgb = True got_cpu_lgb = True except Exception as e: expt_cpu = str(e) pass if not got_lgb: try: loader = importlib.machinery.SourceFileLoader('lightgbm', os.path.join(lgb_path_new, '__init__.py')) lgb = loader.load_module() if ngpus_vis_global > 0: print( "Selected non-dynamic CPU version of lightgbm to import (GPU selection failed due to %s)\n" % expt_other) else: print("Selected non-dynamic CPU version of lightgbm to import\n") got_lgb = True got_cpu_lgb = True except Exception as e: expt_other = str(e) pass if not got_lgb: print( "Unable to dynamically or non-dynamically import either GPU or CPU version of lightgbm: expt_gpu=%s expt_cpu=%s expt_other=%s\n" % ( expt_gpu, expt_cpu, expt_other)) else: print("Did not find lightgbm or numpy\n")
0
0
0
188ee1b65907db67dfd917f80e2a5d76fdb2dca5
1,967
py
Python
google-cloud-sdk/lib/surface/resource_manager/folders/undelete.py
KaranToor/MA450
c98b58aeb0994e011df960163541e9379ae7ea06
[ "Apache-2.0" ]
1
2017-11-29T18:52:27.000Z
2017-11-29T18:52:27.000Z
google-cloud-sdk/.install/.backup/lib/surface/resource_manager/folders/undelete.py
KaranToor/MA450
c98b58aeb0994e011df960163541e9379ae7ea06
[ "Apache-2.0" ]
null
null
null
google-cloud-sdk/.install/.backup/lib/surface/resource_manager/folders/undelete.py
KaranToor/MA450
c98b58aeb0994e011df960163541e9379ae7ea06
[ "Apache-2.0" ]
1
2020-07-25T12:09:01.000Z
2020-07-25T12:09:01.000Z
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command to undelete a folder.""" import textwrap from googlecloudsdk.api_lib.resource_manager import folders from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.resource_manager import flags from googlecloudsdk.command_lib.resource_manager import folders_base from googlecloudsdk.core import log @base.Hidden @base.ReleaseTracks(base.ReleaseTrack.ALPHA) class Undelete(folders_base.FolderCommand): """Undelete a folder. Undeletes the folder with the given folder ID. This command can fail for the following reasons: * There is no folder with the given ID. * The active account does not have Owner or Editor permissions for the given folder. * When the folder to be undeleted has the same display name as an active folder under this folder's parent. """ detailed_help = { 'EXAMPLES': textwrap.dedent("""\ The following command undeletes the folder with the ID `3589215982`: $ {command} 3589215982 """), } @staticmethod
33.338983
74
0.744281
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command to undelete a folder.""" import textwrap from googlecloudsdk.api_lib.resource_manager import folders from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.resource_manager import flags from googlecloudsdk.command_lib.resource_manager import folders_base from googlecloudsdk.core import log @base.Hidden @base.ReleaseTracks(base.ReleaseTrack.ALPHA) class Undelete(folders_base.FolderCommand): """Undelete a folder. Undeletes the folder with the given folder ID. This command can fail for the following reasons: * There is no folder with the given ID. * The active account does not have Owner or Editor permissions for the given folder. * When the folder to be undeleted has the same display name as an active folder under this folder's parent. """ detailed_help = { 'EXAMPLES': textwrap.dedent("""\ The following command undeletes the folder with the ID `3589215982`: $ {command} 3589215982 """), } @staticmethod def Args(parser): flags.FolderIdArg('you want to undelete.').AddToParser(parser) def Run(self, args): service = folders.FoldersService() messages = folders.FoldersMessages() restored = service.Undelete( messages.CloudresourcemanagerFoldersUndeleteRequest( foldersId=args.id)) log.RestoredResource(restored)
303
0
49
5a28b79a46e2fcfa07d776568c13a7328fded066
417
py
Python
contract/tests/ownership.py
ebloc/eBlocBroker
52d507835a0fe3c930df2e2c816724d26a3484a7
[ "MIT" ]
7
2018-02-10T22:57:28.000Z
2020-11-20T14:46:18.000Z
contract/tests/ownership.py
ebloc/eBlocBroker
52d507835a0fe3c930df2e2c816724d26a3484a7
[ "MIT" ]
5
2020-10-30T18:43:27.000Z
2021-02-04T12:39:30.000Z
contract/tests/ownership.py
ebloc/eBlocBroker
52d507835a0fe3c930df2e2c816724d26a3484a7
[ "MIT" ]
5
2017-07-06T14:14:13.000Z
2019-02-22T14:40:16.000Z
#!/usr/bin/python3 import pytest from utils import ZERO_ADDRESS from brownie import accounts def test_ownership(Ebb): """Get Owner""" assert Ebb.getOwner() == accounts[0] with pytest.reverts(): # transferOwnership should revert Ebb.transferOwnership(ZERO_ADDRESS, {"from": accounts[0]}) Ebb.transferOwnership(accounts[1], {"from": accounts[0]}) assert Ebb.getOwner() == accounts[1]
23.166667
66
0.695444
#!/usr/bin/python3 import pytest from utils import ZERO_ADDRESS from brownie import accounts def test_ownership(Ebb): """Get Owner""" assert Ebb.getOwner() == accounts[0] with pytest.reverts(): # transferOwnership should revert Ebb.transferOwnership(ZERO_ADDRESS, {"from": accounts[0]}) Ebb.transferOwnership(accounts[1], {"from": accounts[0]}) assert Ebb.getOwner() == accounts[1]
0
0
0
d4bf808de2a868ba73315da564d256636fe0b32b
2,858
py
Python
gd/api/_property.py
scottwedge/gd.py
328c9833abc949b1c9ac0eabe276bd66fead4c2c
[ "MIT" ]
null
null
null
gd/api/_property.py
scottwedge/gd.py
328c9833abc949b1c9ac0eabe276bd66fead4c2c
[ "MIT" ]
null
null
null
gd/api/_property.py
scottwedge/gd.py
328c9833abc949b1c9ac0eabe276bd66fead4c2c
[ "MIT" ]
null
null
null
"""Automatic object property code generator.""" from gd.typing import Enum, Union from gd.api.enums import ( ColorChannelProperties, LevelDataEnum, LevelHeaderEnum, ObjectDataEnum, PlayerColor, ) from gd.api.parser import ( # type: ignore _INT, _BOOL, _FLOAT, _HSV, _ENUMS, _TEXT, _GROUPS, _COLOR_INT, _COLOR_BOOL, _COLOR_PLAYER, _COLOR_FLOAT, _COLOR_HSV, _HEADER_INT, _HEADER_BOOL, _HEADER_FLOAT, _HEADER_COLORS, _COLORS, _GUIDELINES, _HEADER_ENUMS, ) from gd.api.hsv import HSV __all__ = ("_template", "_create", "_object_code", "_color_code", "_header_code", "_level_code") _template = """ @property def {name}(self): \"\"\":class:`{cls}`: Property ({desc}).\"\"\" return self.data.get({enum!r}) @{name}.setter def {name}(self, value): self.data[{enum!r}] = value @{name}.deleter def {name}(self): try: del self.data[{enum!r}] except KeyError: pass """.strip() _container = "_container = {}" _object_code = _create(ObjectDataEnum, "object") _color_code = _create(ColorChannelProperties, "color") _header_code = _create(LevelHeaderEnum, "header") _level_code = _create(LevelDataEnum, "level")
23.816667
96
0.573828
"""Automatic object property code generator.""" from gd.typing import Enum, Union from gd.api.enums import ( ColorChannelProperties, LevelDataEnum, LevelHeaderEnum, ObjectDataEnum, PlayerColor, ) from gd.api.parser import ( # type: ignore _INT, _BOOL, _FLOAT, _HSV, _ENUMS, _TEXT, _GROUPS, _COLOR_INT, _COLOR_BOOL, _COLOR_PLAYER, _COLOR_FLOAT, _COLOR_HSV, _HEADER_INT, _HEADER_BOOL, _HEADER_FLOAT, _HEADER_COLORS, _COLORS, _GUIDELINES, _HEADER_ENUMS, ) from gd.api.hsv import HSV __all__ = ("_template", "_create", "_object_code", "_color_code", "_header_code", "_level_code") _template = """ @property def {name}(self): \"\"\":class:`{cls}`: Property ({desc}).\"\"\" return self.data.get({enum!r}) @{name}.setter def {name}(self, value): self.data[{enum!r}] = value @{name}.deleter def {name}(self): try: del self.data[{enum!r}] except KeyError: pass """.strip() _container = "_container = {}" def _get_type(n: Union[int, str], ts: str = "object") -> str: t = { "object": { n in _INT: int, n in _BOOL: bool, n in _FLOAT: float, n in _HSV: HSV, n in _ENUMS: _ENUMS.get(n), n == _TEXT: str, n == _GROUPS: set, }, "color": { n in _COLOR_INT: int, n in _COLOR_BOOL: bool, n == _COLOR_PLAYER: PlayerColor, n == _COLOR_FLOAT: float, n == _COLOR_HSV: HSV, }, "header": { n in _HEADER_INT: int, n in _HEADER_BOOL: bool, n == _HEADER_FLOAT: float, n in _HEADER_COLORS: "ColorChannel", n == _COLORS: list, n == _GUIDELINES: list, n in _HEADER_ENUMS: _HEADER_ENUMS.get(n), }, "level": {True: "soon"}, # yikes! } r = t.get(ts, {}).get(1, str) try: return r.__name__ except AttributeError: return r def _create(enum: Enum, ts: str) -> str: final = [] for name, value in enum.as_dict().items(): desc = enum(value).desc value = str(value) cls = _get_type(value, ts=ts) final.append(_template.format(name=name, enum=value, desc=desc, cls=cls)) property_container = {} for name, value in enum.as_dict().items(): value = str(value) # we are going with str from now on if value not in property_container: property_container[value] = name final.append(_container.format(property_container)) return ("\n\n").join(final) _object_code = _create(ObjectDataEnum, "object") _color_code = _create(ColorChannelProperties, "color") _header_code = _create(LevelHeaderEnum, "header") _level_code = _create(LevelDataEnum, "level")
1,575
0
46
ffc6fc0c01a161fba017b7f74580eecc40db4a94
286
py
Python
test.py
picturate/picturate
9f8e69fef7b600b6d8c1ade41a0ccfc382992e8b
[ "Apache-2.0" ]
4
2020-08-03T04:16:53.000Z
2020-11-02T20:11:16.000Z
test.py
picturate/picturate
9f8e69fef7b600b6d8c1ade41a0ccfc382992e8b
[ "Apache-2.0" ]
6
2020-09-04T12:36:08.000Z
2021-06-18T04:31:29.000Z
test.py
picturate/picturate
9f8e69fef7b600b6d8c1ade41a0ccfc382992e8b
[ "Apache-2.0" ]
1
2020-07-24T07:29:46.000Z
2020-07-24T07:29:46.000Z
from picturate.config import CAttnGANConfig from picturate.nets import CAttnGAN config = CAttnGANConfig('bird') gan = CAttnGAN(config, pretrained=True) caption = "This little bird is blue with short beak and white underbelly" filename = 'bird' gan.generate_image(caption, filename)
23.833333
73
0.793706
from picturate.config import CAttnGANConfig from picturate.nets import CAttnGAN config = CAttnGANConfig('bird') gan = CAttnGAN(config, pretrained=True) caption = "This little bird is blue with short beak and white underbelly" filename = 'bird' gan.generate_image(caption, filename)
0
0
0
409729662516480907dfc439cb222223768f41e8
14,838
py
Python
tests/unit/test_maxmin.py
mzelling/syndata
bba1c4a7b142f1da332d6613baae30b8b97c4e9b
[ "MIT" ]
null
null
null
tests/unit/test_maxmin.py
mzelling/syndata
bba1c4a7b142f1da332d6613baae30b8b97c4e9b
[ "MIT" ]
null
null
null
tests/unit/test_maxmin.py
mzelling/syndata
bba1c4a7b142f1da332d6613baae30b8b97c4e9b
[ "MIT" ]
null
null
null
import pytest import numpy as np from syndata.core import ClusterData from syndata.maxmin import MaxMinClusters, MaxMinCov, MaxMinBal, maxmin_sampler # Test Cases for maxmin_sampler def test_maxmin_sampler(): """ Make sure the sampling mechanism doesn't break when wrong inputs are supplied. """ # Test cases throwing exceptions args_causing_exception = [ # negative vals {'n_samples': 10, 'ref': -2, 'min_val': 1, 'maxmin_ratio': 1.5}, {'n_samples': 10, 'ref': 2, 'min_val': -1, 'maxmin_ratio': 1.5}, {'n_samples': 10, 'ref': 2, 'min_val': 1, 'maxmin_ratio': -1.5}, # zeros vals {'n_samples': 0, 'ref': 2, 'min_val': 1, 'maxmin_ratio': 1.5}, {'n_samples': 10, 'ref': 0, 'min_val': 1, 'maxmin_ratio': 1.5}, {'n_samples': 10, 'ref': 2, 'min_val': 0, 'maxmin_ratio': 1.5}, {'n_samples': 10, 'ref': 2, 'min_val': 1, 'maxmin_ratio': 0}, # ref < min {'n_samples': 10, 'ref': 1, 'min_val': 2, 'maxmin_ratio': 1.5}, # ref > max {'n_samples': 10, 'ref': 10, 'min_val': 1, 'maxmin_ratio': 1.5}, # maxmin_ratio < 1 {'n_samples': 10, 'ref': 2, 'min_val': 1, 'maxmin_ratio': 0.7}, # maxmin_ratio = 1, ref != min_val {'n_samples': 10, 'ref': 2, 'min_val': 1, 'maxmin_ratio': 1}, ] with pytest.raises(ValueError): for args in args_causing_exception: args['f_constrain'] = lambda x: 2*args['ref'] - x maxmin_sampler(**args) # Test cases with appropriate inputs (randomized) args_appropriate_input = [] max_ref_val = 10; max_min_val = 10 for i in range(100): min_val = np.random.default_rng(seed=i).uniform(0,max_min_val) ref = np.random.uniform(min_val, max_ref_val) maxmin_ratio = np.random.uniform(ref/min_val, 10*(ref/min_val)) args_appropriate_input.append( { # Do the first 10 tests on the edge case n_samples=1 'n_samples': np.random.choice(np.arange(2,15)) if i>10 else 1, 'min_val': min_val, 'ref': ref, 'maxmin_ratio': maxmin_ratio, } ) print('making the args', 'ref', ref, 'min_val', min_val, 'max_val', min_val*maxmin_ratio) # Add test case with large sample size args_appropriate_input.append({'n_samples': 10000, 'ref': 2, \ 'min_val': 1, 'maxmin_ratio': 3}) for args in args_appropriate_input: args['f_constrain'] = lambda x: 2*args['ref'] - x out = maxmin_sampler(**args) print(out) assert check_maxmin_sampler_output(out, args['f_constrain']) def check_maxmin_sampler_output(sampled_vals, f_constrain): """ Check that output satisfies lower and upper bounds. Check min, max values are related through the constraint. Check that output is sorted. """ return is_sorted(sampled_vals, order='ascending') \ and (f_constrain(np.max(sampled_vals) == np.min(sampled_vals))) \ and (f_constrain(np.min(sampled_vals) == np.max(sampled_vals))) def is_sorted(vals, order='ascending'): """ Check if values are sorted. """ if order=='ascending': return np.all(vals[1:] - vals[:-1] >= 0) elif order=='descending': return np.all(vals[1:] - vals[:-1] <= 0) # Test Cases for MaxMinCov def test_init_maxmincov(): """ Make sure that no illicit values can be used to construct MaxMinCov. """ # appropriate values of attributes interior_cases = np.random.uniform(1,10,size=(100,3)) # random appropriate values edge_cases = np.concatenate([2-np.eye(3),np.ones(3)[np.newaxis,:]],axis=0) # edge and corner cases Z_appropriate = np.concatenate([interior_cases,edge_cases],axis=0) args_appropriate = [{'ref_aspect': z[0], 'aspect_maxmin': z[1], 'radius_maxmin': z[2]} for z in Z_appropriate] for args in args_appropriate: my_maxmincov = MaxMinCov(**args) for attr in ['ref_aspect','aspect_maxmin','radius_maxmin']: assert hasattr(my_maxmincov, attr) # inappropriate values of attributes Z_inappropriate = np.concatenate([np.ones(3) - 0.5*np.eye(3), (1-0.01)*np.ones(3)[np.newaxis,:]]) args_inappropriate = [{'ref_aspect': z[0], 'aspect_maxmin': z[1], 'radius_maxmin': z[2]} for z in Z_inappropriate] with pytest.raises(ValueError): for args in args_inappropriate: MaxMinCov(**args) @pytest.fixture() def setup_maxmincov(): """ Initialize a valid MaxMinCov instance to test its methods. """ maxmincov = MaxMinCov(ref_aspect=1.5, aspect_maxmin=1.5, radius_maxmin=1.5) yield maxmincov def test_make_cluster_aspects(setup_maxmincov): """ Make sure that valid cluster aspect ratios are sampled. Test the range of acceptable numbers of clusters, and make sure setting a seed works. """ maxmincov = setup_maxmincov with pytest.raises(ValueError): maxmincov.make_cluster_aspects(0,seed=None) maxmincov.make_cluster_aspects(0.99,seed=None) # test different numbers of clusters for n_clusters in range(1,100): cluster_aspects = maxmincov.make_cluster_aspects(n_clusters,seed=None) assert np.all(cluster_aspects >= 1) assert np.max(cluster_aspects) >= maxmincov.ref_aspect assert np.min(cluster_aspects) <= maxmincov.ref_aspect # test seed seed = 23 for i in range(10): cluster_aspects_new = maxmincov.make_cluster_aspects(2,seed=23) # make sure that each successive output is the same as the previous output if i >= 1: assert np.all(cluster_aspects_new == cluster_aspects_prev) cluster_aspects_prev = cluster_aspects_new def test_make_cluster_radii(setup_maxmincov): """ Make sure valid cluster radii are sampled. Test the range of acceptable inputs, and make sure setting a seed works. """ maxmincov = setup_maxmincov # test appropriate inputs interior_cases = np.concatenate([np.arange(1,20+1)[:,np.newaxis], np.random.uniform(0,10,size=20)[:,np.newaxis], np.random.choice(np.arange(2,100),size=20)[:,np.newaxis]], axis=1) edge_cases = np.array([[1,1e-3,2], [1,1e-3,1],[2,100,1]]) Z_appropriate = np.concatenate([interior_cases, edge_cases],axis=0) args_appropriate = [{'n_clusters': z[0], 'ref_radius': z[1], 'n_dim': z[2]} for z in Z_appropriate] for args in args_appropriate: tol = 1e-12 print(args) cluster_radii = maxmincov.make_cluster_radii(**args) print(cluster_radii) assert np.all(cluster_radii > 0) assert (np.min(cluster_radii) <= args['ref_radius'] + tol) and \ (np.max(cluster_radii) >= args['ref_radius'] - tol) # test inappropriate inputs with pytest.raises(ValueError): maxmincov.make_cluster_radii(n_clusters=0, ref_radius=1, n_dim=10) maxmincov.make_cluster_radii(n_clusters=1, ref_radius=0, n_dim=10) maxmincov.make_cluster_radii(n_clusters=1, ref_radius=1, n_dim=0) # test seeds seed = 717 for i in range(10): cluster_radii_new = maxmincov.make_cluster_radii(n_clusters=5,ref_radius=4,n_dim=25, seed=seed) if (i >= 1): assert np.all(cluster_radii_new == cluster_radii_prev) cluster_radii_prev = cluster_radii_new def test_make_axis_sd(setup_maxmincov): """ Make sure valid standard deviations are sampled (>0). Ensure sure ref_sd is between min and max, and that the maxmin ratio equals the desired aspect ratio. """ maxmincov = setup_maxmincov # test appropriate inputs interior_cases = np.concatenate([np.arange(2,50+2)[:,np.newaxis], np.random.uniform(0,10,size=50)[:,np.newaxis], np.random.uniform(1,10,size=50)[:,np.newaxis]], axis=1) edge_cases = np.array([[1,0.5,1.5], [1,0.5,1], [2,0.1,1]]) Z_appropriate = np.concatenate([interior_cases, edge_cases],axis=0) args_appropriate = [{'n_axes': z[0], 'sd': z[1], 'aspect': z[2]} for z in Z_appropriate] for args in args_appropriate: out = maxmincov.make_axis_sd(**args) assert (np.min(out) <= args['sd']) and (np.max(out) >= args['sd']) # test inappropriate inputs with pytest.raises(ValueError): maxmincov.make_axis_sd(n_axes=0, sd=1, aspect=2) maxmincov.make_axis_sd(n_axes=0.5, sd=0, aspect=2) maxmincov.make_axis_sd(n_axes=1, sd=1, aspect=0.5) maxmincov.make_axis_sd(n_axes=2, sd=1, aspect=-2) maxmincov.make_axis_sd(n_axes=2, sd=-1, aspect=2) # test seed seed = 123 for i in range(10): axis_sd_new = maxmincov.make_axis_sd(n_axes=5,sd=4,aspect=25, seed=seed) if (i >= 1): assert np.all(axis_sd_new == axis_sd_prev) axis_sd_prev = axis_sd_new def test_make_cov(setup_maxmincov, setup_clusterdata): """ Make sure axes are orthogonal Make sure cov = axis * sd**2 * axis', similar for cov_inv """ clusterdata = setup_clusterdata maxmincov = setup_maxmincov # ensure output makes mathematical sense for i in range(10): (axis, sd, cov, cov_inv) = maxmincov.make_cov(clusterdata) for cluster_idx in range(clusterdata.n_clusters): # test orthogonality of cluster axes assert np.all(np.allclose(axis[cluster_idx] @ np.transpose(axis[cluster_idx]), np.eye(axis[cluster_idx].shape[0]))) # test covariance matrix is correct assert np.all(np.allclose(cov[cluster_idx], np.transpose(axis[cluster_idx]) @ np.diag(sd[cluster_idx]**2) \ @ axis[cluster_idx])) # test inverse covariance matrix is correct assert np.all(np.allclose(cov_inv[cluster_idx], np.transpose(axis[cluster_idx]) @ np.diag(sd[cluster_idx]**(-2)) \ @ axis[cluster_idx])) # test seed seed = 123 for i in range(10): cov_structure_new = maxmincov.make_cov(clusterdata, seed=seed) if (i >= 1): for cluster_idx in range(clusterdata.n_clusters): for j in range(4): # iterate through axis, sd, cov, cov_inv assert np.all(np.allclose(cov_structure_prev[j][cluster_idx], cov_structure_new[j][cluster_idx])) # set previous covariance structure for next iteration: cov_structure_prev = cov_structure_new # Test Cases for MaxMinBal @pytest.fixture(params = np.linspace(1,10,10)) def test_init_maxminbal(setup_maxminbal): """ Ensure imbalance ratio is properly specified. """ maxminbal = setup_maxminbal assert maxminbal.imbal_ratio >= 1 # test input check for inappropriate arguments with pytest.raises(ValueError): MaxMinBal(imbal_ratio = 0.5) MaxMinBal(imbal_ratio = -2) def test_make_class_sizes(setup_maxminbal,setup_clusterdata): """ """ maxminbal = setup_maxminbal clusterdata = setup_clusterdata # test with appropriate input Z_appropriate = [[500,5],[200,1],[100,2],[1000,10],[1500,3], [100,100]] args_appropriate = [{'n_samples': z[0], 'n_clusters': z[1]} for z in Z_appropriate] for args in args_appropriate: clusterdata.n_samples = args['n_samples'] clusterdata.n_clusters = args['n_clusters'] out = maxminbal.make_class_sizes(clusterdata) assert np.issubdtype(out.dtype, np.integer) and np.all(out >= 1) and \ (np.sum(out) == args['n_samples']) # test with inappropriate input Z_inappropriate = [[500,0],[0,10],[100,-1],[-0.5,5],[10,11]] args_inappropriate = [{'n_samples': z[0], 'n_clusters': z[1]} for z in Z_inappropriate] for args in args_inappropriate: with pytest.raises(ValueError): clusterdata.n_clusters = args['n_clusters'] clusterdata.n_samples = args['n_samples'] maxminbal.make_class_sizes(clusterdata) def test_float_to_int(setup_maxminbal): """ float_class_sz, n_samples """ maxminbal = setup_maxminbal # test appropriate inputs for float_class_sz, n_samples in [(np.array([23.2, 254.7, 0.1, 35.6]), 100), \ (np.array([0.2, 0.7, 0.1, 0.5]), 10), (np.array([2.5,1.5,5.2]), 3), (np.array([0.5]), 1)]: out = maxminbal.float_to_int(float_class_sz,n_samples) print(len(float_class_sz), float_class_sz, n_samples) assert (np.sum(out) == n_samples) and (np.all(out >= 1)) \ and np.issubdtype(out.dtype,np.integer) # test inputs that should be left unchanged assert np.all(maxminbal.float_to_int(np.array([5,10,25,7]), 5+10+25+7) \ == np.sort(np.array([5,10,25,7]))) # test inappropriate inputs for float_class_sz, n_samples in [(np.array([0.5,1.5]), 1), (np.array([0.5,1.5]), 0), (np.array([2.5,1.5,5.2]), 2)]: with pytest.raises(ValueError): maxminbal.float_to_int(float_class_sz,n_samples) # Test Cases for MaxMinClusters def test_init_maxminclusters(): """ Make sure to throw an error when inappropriate arguments are given. """ # edge and interior test cases for n_clusters, n_samples, n_dim MaxMinClusters(n_clusters=1,n_samples=1,n_dim=1) MaxMinClusters(n_clusters=1,n_samples=1,n_dim=10) MaxMinClusters(n_clusters=2,n_samples=100,n_dim=2) MaxMinClusters(n_clusters=10,n_samples=200,n_dim=5) # edge and interior test cases for testing maxmin ratios MaxMinClusters(imbal_maxmin=1,aspect_maxmin=1,radius_maxmin=1, aspect_ref=1) MaxMinClusters(imbal_maxmin=1,aspect_maxmin=1.1,radius_maxmin=1.1,aspect_ref=1.5) MaxMinClusters(imbal_maxmin=1.2,aspect_maxmin=1,radius_maxmin=1.5,aspect_ref=7) MaxMinClusters(imbal_maxmin=3,aspect_maxmin=2,radius_maxmin=1,aspect_ref=5) MaxMinClusters(imbal_maxmin=3,aspect_maxmin=2,radius_maxmin=5,aspect_ref=1) MaxMinClusters(imbal_maxmin=3,aspect_maxmin=2,radius_maxmin=5,aspect_ref=4) # edge and interior test cases for overlap MaxMinClusters(alpha_max=0.5, alpha_min=0.01) MaxMinClusters(alpha_max=0.05, alpha_min=0) MaxMinClusters(alpha_max=0.1, alpha_min=0.0001) # testing the distributions MaxMinClusters(dist='exp') MaxMinClusters(dist='gaussian') MaxMinClusters(dist='t') # testing packing and scale MaxMinClusters(packing=0.5) MaxMinClusters(packing=0.01) MaxMinClusters(packing=0.99) MaxMinClusters(scale=0.01) MaxMinClusters(scale=0.05) MaxMinClusters(scale=5) MaxMinClusters(scale=10) with pytest.raises(ValueError): # must have n_dim, n_clusters, n_samples >= 1 # and n_clusters <= n_samples MaxMinClusters(n_clusters=10,n_samples=100,n_dim=0) MaxMinClusters(n_clusters=10,n_samples=9,n_dim=10) MaxMinClusters(n_clusters=0,n_samples=100,n_dim=10) MaxMinClusters(n_clusters=2,n_samples=1,n_dim=10) MaxMinClusters(n_clusters=2,n_samples=1,n_dim=10) # maxmin_ratios must be >= 1 MaxMinClusters(imbal_maxmin=0.98) MaxMinClusters(imbal_maxmin=-1.1) MaxMinClusters(aspect_maxmin=0.35) MaxMinClusters(aspect_maxmin=-1.5) MaxMinClusters(radius_maxmin=0.21) MaxMinClusters(radius_maxmin=-1) MaxMinClusters(aspect_ref=0.99) MaxMinClusters(aspect_ref=-2) # must have alpha_max > 0, alpha_min >= 0, alpha_max > alpha_min MaxMinClusters(alpha_max=0, alpha_min=0) MaxMinClusters(alpha_max=0.05, alpha_min=0.1) MaxMinClusters(alpha_max=0.1, alpha_min=0.0001) MaxMinClusters(alpha_max=0.025, alpha_min=-1.0) MaxMinClusters(alpha_max=-0.5, alpha_min=0.05) # packing must be strictly between 0 and 1, scale must be >0 MaxMinClusters(packing=0) MaxMinClusters(packing=1) MaxMinClusters(scale=0) MaxMinClusters(scale=-0.5) # currently only support dist in {'gaussian','exp','t'} MaxMinClusters(dist='foo') MaxMinClusters(dist='bar')
33.722727
100
0.709934
import pytest import numpy as np from syndata.core import ClusterData from syndata.maxmin import MaxMinClusters, MaxMinCov, MaxMinBal, maxmin_sampler # Test Cases for maxmin_sampler def test_maxmin_sampler(): """ Make sure the sampling mechanism doesn't break when wrong inputs are supplied. """ # Test cases throwing exceptions args_causing_exception = [ # negative vals {'n_samples': 10, 'ref': -2, 'min_val': 1, 'maxmin_ratio': 1.5}, {'n_samples': 10, 'ref': 2, 'min_val': -1, 'maxmin_ratio': 1.5}, {'n_samples': 10, 'ref': 2, 'min_val': 1, 'maxmin_ratio': -1.5}, # zeros vals {'n_samples': 0, 'ref': 2, 'min_val': 1, 'maxmin_ratio': 1.5}, {'n_samples': 10, 'ref': 0, 'min_val': 1, 'maxmin_ratio': 1.5}, {'n_samples': 10, 'ref': 2, 'min_val': 0, 'maxmin_ratio': 1.5}, {'n_samples': 10, 'ref': 2, 'min_val': 1, 'maxmin_ratio': 0}, # ref < min {'n_samples': 10, 'ref': 1, 'min_val': 2, 'maxmin_ratio': 1.5}, # ref > max {'n_samples': 10, 'ref': 10, 'min_val': 1, 'maxmin_ratio': 1.5}, # maxmin_ratio < 1 {'n_samples': 10, 'ref': 2, 'min_val': 1, 'maxmin_ratio': 0.7}, # maxmin_ratio = 1, ref != min_val {'n_samples': 10, 'ref': 2, 'min_val': 1, 'maxmin_ratio': 1}, ] with pytest.raises(ValueError): for args in args_causing_exception: args['f_constrain'] = lambda x: 2*args['ref'] - x maxmin_sampler(**args) # Test cases with appropriate inputs (randomized) args_appropriate_input = [] max_ref_val = 10; max_min_val = 10 for i in range(100): min_val = np.random.default_rng(seed=i).uniform(0,max_min_val) ref = np.random.uniform(min_val, max_ref_val) maxmin_ratio = np.random.uniform(ref/min_val, 10*(ref/min_val)) args_appropriate_input.append( { # Do the first 10 tests on the edge case n_samples=1 'n_samples': np.random.choice(np.arange(2,15)) if i>10 else 1, 'min_val': min_val, 'ref': ref, 'maxmin_ratio': maxmin_ratio, } ) print('making the args', 'ref', ref, 'min_val', min_val, 'max_val', min_val*maxmin_ratio) # Add test case with large sample size args_appropriate_input.append({'n_samples': 10000, 'ref': 2, \ 'min_val': 1, 'maxmin_ratio': 3}) for args in args_appropriate_input: args['f_constrain'] = lambda x: 2*args['ref'] - x out = maxmin_sampler(**args) print(out) assert check_maxmin_sampler_output(out, args['f_constrain']) def check_maxmin_sampler_output(sampled_vals, f_constrain): """ Check that output satisfies lower and upper bounds. Check min, max values are related through the constraint. Check that output is sorted. """ return is_sorted(sampled_vals, order='ascending') \ and (f_constrain(np.max(sampled_vals) == np.min(sampled_vals))) \ and (f_constrain(np.min(sampled_vals) == np.max(sampled_vals))) def is_sorted(vals, order='ascending'): """ Check if values are sorted. """ if order=='ascending': return np.all(vals[1:] - vals[:-1] >= 0) elif order=='descending': return np.all(vals[1:] - vals[:-1] <= 0) # Test Cases for MaxMinCov def test_init_maxmincov(): """ Make sure that no illicit values can be used to construct MaxMinCov. """ # appropriate values of attributes interior_cases = np.random.uniform(1,10,size=(100,3)) # random appropriate values edge_cases = np.concatenate([2-np.eye(3),np.ones(3)[np.newaxis,:]],axis=0) # edge and corner cases Z_appropriate = np.concatenate([interior_cases,edge_cases],axis=0) args_appropriate = [{'ref_aspect': z[0], 'aspect_maxmin': z[1], 'radius_maxmin': z[2]} for z in Z_appropriate] for args in args_appropriate: my_maxmincov = MaxMinCov(**args) for attr in ['ref_aspect','aspect_maxmin','radius_maxmin']: assert hasattr(my_maxmincov, attr) # inappropriate values of attributes Z_inappropriate = np.concatenate([np.ones(3) - 0.5*np.eye(3), (1-0.01)*np.ones(3)[np.newaxis,:]]) args_inappropriate = [{'ref_aspect': z[0], 'aspect_maxmin': z[1], 'radius_maxmin': z[2]} for z in Z_inappropriate] with pytest.raises(ValueError): for args in args_inappropriate: MaxMinCov(**args) @pytest.fixture() def setup_maxmincov(): """ Initialize a valid MaxMinCov instance to test its methods. """ maxmincov = MaxMinCov(ref_aspect=1.5, aspect_maxmin=1.5, radius_maxmin=1.5) yield maxmincov def test_make_cluster_aspects(setup_maxmincov): """ Make sure that valid cluster aspect ratios are sampled. Test the range of acceptable numbers of clusters, and make sure setting a seed works. """ maxmincov = setup_maxmincov with pytest.raises(ValueError): maxmincov.make_cluster_aspects(0,seed=None) maxmincov.make_cluster_aspects(0.99,seed=None) # test different numbers of clusters for n_clusters in range(1,100): cluster_aspects = maxmincov.make_cluster_aspects(n_clusters,seed=None) assert np.all(cluster_aspects >= 1) assert np.max(cluster_aspects) >= maxmincov.ref_aspect assert np.min(cluster_aspects) <= maxmincov.ref_aspect # test seed seed = 23 for i in range(10): cluster_aspects_new = maxmincov.make_cluster_aspects(2,seed=23) # make sure that each successive output is the same as the previous output if i >= 1: assert np.all(cluster_aspects_new == cluster_aspects_prev) cluster_aspects_prev = cluster_aspects_new def test_make_cluster_radii(setup_maxmincov): """ Make sure valid cluster radii are sampled. Test the range of acceptable inputs, and make sure setting a seed works. """ maxmincov = setup_maxmincov # test appropriate inputs interior_cases = np.concatenate([np.arange(1,20+1)[:,np.newaxis], np.random.uniform(0,10,size=20)[:,np.newaxis], np.random.choice(np.arange(2,100),size=20)[:,np.newaxis]], axis=1) edge_cases = np.array([[1,1e-3,2], [1,1e-3,1],[2,100,1]]) Z_appropriate = np.concatenate([interior_cases, edge_cases],axis=0) args_appropriate = [{'n_clusters': z[0], 'ref_radius': z[1], 'n_dim': z[2]} for z in Z_appropriate] for args in args_appropriate: tol = 1e-12 print(args) cluster_radii = maxmincov.make_cluster_radii(**args) print(cluster_radii) assert np.all(cluster_radii > 0) assert (np.min(cluster_radii) <= args['ref_radius'] + tol) and \ (np.max(cluster_radii) >= args['ref_radius'] - tol) # test inappropriate inputs with pytest.raises(ValueError): maxmincov.make_cluster_radii(n_clusters=0, ref_radius=1, n_dim=10) maxmincov.make_cluster_radii(n_clusters=1, ref_radius=0, n_dim=10) maxmincov.make_cluster_radii(n_clusters=1, ref_radius=1, n_dim=0) # test seeds seed = 717 for i in range(10): cluster_radii_new = maxmincov.make_cluster_radii(n_clusters=5,ref_radius=4,n_dim=25, seed=seed) if (i >= 1): assert np.all(cluster_radii_new == cluster_radii_prev) cluster_radii_prev = cluster_radii_new def test_make_axis_sd(setup_maxmincov): """ Make sure valid standard deviations are sampled (>0). Ensure sure ref_sd is between min and max, and that the maxmin ratio equals the desired aspect ratio. """ maxmincov = setup_maxmincov # test appropriate inputs interior_cases = np.concatenate([np.arange(2,50+2)[:,np.newaxis], np.random.uniform(0,10,size=50)[:,np.newaxis], np.random.uniform(1,10,size=50)[:,np.newaxis]], axis=1) edge_cases = np.array([[1,0.5,1.5], [1,0.5,1], [2,0.1,1]]) Z_appropriate = np.concatenate([interior_cases, edge_cases],axis=0) args_appropriate = [{'n_axes': z[0], 'sd': z[1], 'aspect': z[2]} for z in Z_appropriate] for args in args_appropriate: out = maxmincov.make_axis_sd(**args) assert (np.min(out) <= args['sd']) and (np.max(out) >= args['sd']) # test inappropriate inputs with pytest.raises(ValueError): maxmincov.make_axis_sd(n_axes=0, sd=1, aspect=2) maxmincov.make_axis_sd(n_axes=0.5, sd=0, aspect=2) maxmincov.make_axis_sd(n_axes=1, sd=1, aspect=0.5) maxmincov.make_axis_sd(n_axes=2, sd=1, aspect=-2) maxmincov.make_axis_sd(n_axes=2, sd=-1, aspect=2) # test seed seed = 123 for i in range(10): axis_sd_new = maxmincov.make_axis_sd(n_axes=5,sd=4,aspect=25, seed=seed) if (i >= 1): assert np.all(axis_sd_new == axis_sd_prev) axis_sd_prev = axis_sd_new def test_make_cov(setup_maxmincov, setup_clusterdata): """ Make sure axes are orthogonal Make sure cov = axis * sd**2 * axis', similar for cov_inv """ clusterdata = setup_clusterdata maxmincov = setup_maxmincov # ensure output makes mathematical sense for i in range(10): (axis, sd, cov, cov_inv) = maxmincov.make_cov(clusterdata) for cluster_idx in range(clusterdata.n_clusters): # test orthogonality of cluster axes assert np.all(np.allclose(axis[cluster_idx] @ np.transpose(axis[cluster_idx]), np.eye(axis[cluster_idx].shape[0]))) # test covariance matrix is correct assert np.all(np.allclose(cov[cluster_idx], np.transpose(axis[cluster_idx]) @ np.diag(sd[cluster_idx]**2) \ @ axis[cluster_idx])) # test inverse covariance matrix is correct assert np.all(np.allclose(cov_inv[cluster_idx], np.transpose(axis[cluster_idx]) @ np.diag(sd[cluster_idx]**(-2)) \ @ axis[cluster_idx])) # test seed seed = 123 for i in range(10): cov_structure_new = maxmincov.make_cov(clusterdata, seed=seed) if (i >= 1): for cluster_idx in range(clusterdata.n_clusters): for j in range(4): # iterate through axis, sd, cov, cov_inv assert np.all(np.allclose(cov_structure_prev[j][cluster_idx], cov_structure_new[j][cluster_idx])) # set previous covariance structure for next iteration: cov_structure_prev = cov_structure_new # Test Cases for MaxMinBal @pytest.fixture(params = np.linspace(1,10,10)) def setup_maxminbal(request): return MaxMinBal(request.param) def test_init_maxminbal(setup_maxminbal): """ Ensure imbalance ratio is properly specified. """ maxminbal = setup_maxminbal assert maxminbal.imbal_ratio >= 1 # test input check for inappropriate arguments with pytest.raises(ValueError): MaxMinBal(imbal_ratio = 0.5) MaxMinBal(imbal_ratio = -2) def test_make_class_sizes(setup_maxminbal,setup_clusterdata): """ """ maxminbal = setup_maxminbal clusterdata = setup_clusterdata # test with appropriate input Z_appropriate = [[500,5],[200,1],[100,2],[1000,10],[1500,3], [100,100]] args_appropriate = [{'n_samples': z[0], 'n_clusters': z[1]} for z in Z_appropriate] for args in args_appropriate: clusterdata.n_samples = args['n_samples'] clusterdata.n_clusters = args['n_clusters'] out = maxminbal.make_class_sizes(clusterdata) assert np.issubdtype(out.dtype, np.integer) and np.all(out >= 1) and \ (np.sum(out) == args['n_samples']) # test with inappropriate input Z_inappropriate = [[500,0],[0,10],[100,-1],[-0.5,5],[10,11]] args_inappropriate = [{'n_samples': z[0], 'n_clusters': z[1]} for z in Z_inappropriate] for args in args_inappropriate: with pytest.raises(ValueError): clusterdata.n_clusters = args['n_clusters'] clusterdata.n_samples = args['n_samples'] maxminbal.make_class_sizes(clusterdata) def test_float_to_int(setup_maxminbal): """ float_class_sz, n_samples """ maxminbal = setup_maxminbal # test appropriate inputs for float_class_sz, n_samples in [(np.array([23.2, 254.7, 0.1, 35.6]), 100), \ (np.array([0.2, 0.7, 0.1, 0.5]), 10), (np.array([2.5,1.5,5.2]), 3), (np.array([0.5]), 1)]: out = maxminbal.float_to_int(float_class_sz,n_samples) print(len(float_class_sz), float_class_sz, n_samples) assert (np.sum(out) == n_samples) and (np.all(out >= 1)) \ and np.issubdtype(out.dtype,np.integer) # test inputs that should be left unchanged assert np.all(maxminbal.float_to_int(np.array([5,10,25,7]), 5+10+25+7) \ == np.sort(np.array([5,10,25,7]))) # test inappropriate inputs for float_class_sz, n_samples in [(np.array([0.5,1.5]), 1), (np.array([0.5,1.5]), 0), (np.array([2.5,1.5,5.2]), 2)]: with pytest.raises(ValueError): maxminbal.float_to_int(float_class_sz,n_samples) # Test Cases for MaxMinClusters def test_init_maxminclusters(): """ Make sure to throw an error when inappropriate arguments are given. """ # edge and interior test cases for n_clusters, n_samples, n_dim MaxMinClusters(n_clusters=1,n_samples=1,n_dim=1) MaxMinClusters(n_clusters=1,n_samples=1,n_dim=10) MaxMinClusters(n_clusters=2,n_samples=100,n_dim=2) MaxMinClusters(n_clusters=10,n_samples=200,n_dim=5) # edge and interior test cases for testing maxmin ratios MaxMinClusters(imbal_maxmin=1,aspect_maxmin=1,radius_maxmin=1, aspect_ref=1) MaxMinClusters(imbal_maxmin=1,aspect_maxmin=1.1,radius_maxmin=1.1,aspect_ref=1.5) MaxMinClusters(imbal_maxmin=1.2,aspect_maxmin=1,radius_maxmin=1.5,aspect_ref=7) MaxMinClusters(imbal_maxmin=3,aspect_maxmin=2,radius_maxmin=1,aspect_ref=5) MaxMinClusters(imbal_maxmin=3,aspect_maxmin=2,radius_maxmin=5,aspect_ref=1) MaxMinClusters(imbal_maxmin=3,aspect_maxmin=2,radius_maxmin=5,aspect_ref=4) # edge and interior test cases for overlap MaxMinClusters(alpha_max=0.5, alpha_min=0.01) MaxMinClusters(alpha_max=0.05, alpha_min=0) MaxMinClusters(alpha_max=0.1, alpha_min=0.0001) # testing the distributions MaxMinClusters(dist='exp') MaxMinClusters(dist='gaussian') MaxMinClusters(dist='t') # testing packing and scale MaxMinClusters(packing=0.5) MaxMinClusters(packing=0.01) MaxMinClusters(packing=0.99) MaxMinClusters(scale=0.01) MaxMinClusters(scale=0.05) MaxMinClusters(scale=5) MaxMinClusters(scale=10) with pytest.raises(ValueError): # must have n_dim, n_clusters, n_samples >= 1 # and n_clusters <= n_samples MaxMinClusters(n_clusters=10,n_samples=100,n_dim=0) MaxMinClusters(n_clusters=10,n_samples=9,n_dim=10) MaxMinClusters(n_clusters=0,n_samples=100,n_dim=10) MaxMinClusters(n_clusters=2,n_samples=1,n_dim=10) MaxMinClusters(n_clusters=2,n_samples=1,n_dim=10) # maxmin_ratios must be >= 1 MaxMinClusters(imbal_maxmin=0.98) MaxMinClusters(imbal_maxmin=-1.1) MaxMinClusters(aspect_maxmin=0.35) MaxMinClusters(aspect_maxmin=-1.5) MaxMinClusters(radius_maxmin=0.21) MaxMinClusters(radius_maxmin=-1) MaxMinClusters(aspect_ref=0.99) MaxMinClusters(aspect_ref=-2) # must have alpha_max > 0, alpha_min >= 0, alpha_max > alpha_min MaxMinClusters(alpha_max=0, alpha_min=0) MaxMinClusters(alpha_max=0.05, alpha_min=0.1) MaxMinClusters(alpha_max=0.1, alpha_min=0.0001) MaxMinClusters(alpha_max=0.025, alpha_min=-1.0) MaxMinClusters(alpha_max=-0.5, alpha_min=0.05) # packing must be strictly between 0 and 1, scale must be >0 MaxMinClusters(packing=0) MaxMinClusters(packing=1) MaxMinClusters(scale=0) MaxMinClusters(scale=-0.5) # currently only support dist in {'gaussian','exp','t'} MaxMinClusters(dist='foo') MaxMinClusters(dist='bar')
41
0
22
f547cb46376f6cd48fe72244973add9c82d457c0
122
py
Python
configs/scheduler_cfgs/multi_step_lr_cfg.py
slothfulxtx/TransLoc3D
0ac324b1dcec456c76d7db2f87d13c076f2d55e4
[ "MIT" ]
5
2021-09-30T08:12:26.000Z
2022-01-19T16:20:10.000Z
configs/scheduler_cfgs/multi_step_lr_cfg.py
slothfulxtx/TransLoc3D
0ac324b1dcec456c76d7db2f87d13c076f2d55e4
[ "MIT" ]
null
null
null
configs/scheduler_cfgs/multi_step_lr_cfg.py
slothfulxtx/TransLoc3D
0ac324b1dcec456c76d7db2f87d13c076f2d55e4
[ "MIT" ]
null
null
null
scheduler_type = 'MultiStepLR' scheduler_cfg = dict( gamma=0.5, milestones=(50, 100, 150, 200) ) end_epoch = 250
15.25
34
0.672131
scheduler_type = 'MultiStepLR' scheduler_cfg = dict( gamma=0.5, milestones=(50, 100, 150, 200) ) end_epoch = 250
0
0
0
517a5b82716bd7c535ee53011b12813c5f3bf87e
392
py
Python
back/webapi/views/SystemDateView.py
stimulee/piclodio3
09f23d608b36cfd0e2e4aec3310c57752e8b7c59
[ "MIT" ]
null
null
null
back/webapi/views/SystemDateView.py
stimulee/piclodio3
09f23d608b36cfd0e2e4aec3310c57752e8b7c59
[ "MIT" ]
null
null
null
back/webapi/views/SystemDateView.py
stimulee/piclodio3
09f23d608b36cfd0e2e4aec3310c57752e8b7c59
[ "MIT" ]
null
null
null
from time import strftime from rest_framework.permissions import AllowAny from rest_framework.views import APIView from rest_framework.response import Response
24.5
47
0.721939
from time import strftime from rest_framework.permissions import AllowAny from rest_framework.views import APIView from rest_framework.response import Response class SystemDateList(APIView): permission_classes = (AllowAny,) def get(self, request, format=None): # get the local system date clock = strftime("%Y-%m-%dT%H:%M:%S") return Response(str(clock))
134
73
23
d9f7438220a4ebe74beaea888af37f17f5bfb665
721
py
Python
levenshtein_distance.py
int2str/catbot
d6279845eb51eaa9c9e9f2aef2f7a521432d7851
[ "MIT" ]
null
null
null
levenshtein_distance.py
int2str/catbot
d6279845eb51eaa9c9e9f2aef2f7a521432d7851
[ "MIT" ]
null
null
null
levenshtein_distance.py
int2str/catbot
d6279845eb51eaa9c9e9f2aef2f7a521432d7851
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Tue Sep 1 14:54:14 2020 @author: Mei """ @memoize
18.487179
74
0.468793
# -*- coding: utf-8 -*- """ Created on Tue Sep 1 14:54:14 2020 @author: Mei """ def memoize(func): mem = {} def memoizer(*args, **kwargs): key = str(args) + str(kwargs) if key not in mem: mem[key] = func(*args, **kwargs) return mem[key] return memoizer @memoize def levenshtein(s, t): if s == "": return len(t) if t == "": return len(s) if s[-1] == t[-1]: cost = 0 else: cost = 1 res = min([levenshtein(s[:-1], t) + 1, # char is inserted levenshtein(s, t[:-1]) + 1, # char is deleted levenshtein(s[:-1], t[:-1]) + cost]) # char is substituted return res
582
0
45
131c12d042555b54873fdce0f237aab3ccf4db7f
37
py
Python
src/repconc/models/repconc/__init__.py
jingtaozhan/RepCONC
64f3f8ac265e33a8abcd8d9d750e8a170b739f3b
[ "MIT" ]
37
2021-10-16T07:38:44.000Z
2022-03-18T17:54:10.000Z
src/repconc/models/repconc/__init__.py
jingtaozhan/RepCONC
64f3f8ac265e33a8abcd8d9d750e8a170b739f3b
[ "MIT" ]
4
2021-11-09T15:57:59.000Z
2022-03-01T09:10:32.000Z
src/repconc/models/repconc/__init__.py
jingtaozhan/RepCONC
64f3f8ac265e33a8abcd8d9d750e8a170b739f3b
[ "MIT" ]
5
2021-11-08T02:58:24.000Z
2022-02-22T05:22:37.000Z
from .modeling_repconc import RepCONC
37
37
0.891892
from .modeling_repconc import RepCONC
0
0
0
b2e9ce95b9c470541c1124a564f290f253410919
9,658
py
Python
applications/FluidDynamicsApplication/tests/embedded_reservoir_test.py
AndreaVoltan/MyKratos7.0
e977752722e8ef1b606f25618c4bf8fd04c434cc
[ "BSD-4-Clause" ]
2
2020-04-30T19:13:08.000Z
2021-04-14T19:40:47.000Z
applications/FluidDynamicsApplication/tests/embedded_reservoir_test.py
AndreaVoltan/MyKratos7.0
e977752722e8ef1b606f25618c4bf8fd04c434cc
[ "BSD-4-Clause" ]
1
2020-04-30T19:19:09.000Z
2020-05-02T14:22:36.000Z
applications/FluidDynamicsApplication/tests/embedded_reservoir_test.py
AndreaVoltan/MyKratos7.0
e977752722e8ef1b606f25618c4bf8fd04c434cc
[ "BSD-4-Clause" ]
1
2020-06-12T08:51:24.000Z
2020-06-12T08:51:24.000Z
import KratosMultiphysics import KratosMultiphysics.FluidDynamicsApplication as KratosFluid import KratosMultiphysics.kratos_utilities as KratosUtilities have_external_solvers = KratosUtilities.IsApplicationAvailable("ExternalSolversApplication") import KratosMultiphysics.KratosUnittest as UnitTest @UnitTest.skipUnless(have_external_solvers,"Missing required application: ExternalSolversApplication") if __name__ == '__main__': test = EmbeddedReservoirTest() test.setUp() test.distance = 0.5 test.slip_level_set = False test.print_output = False test.print_reference_values = False test.work_folder = "EmbeddedReservoirTest" test.reference_file = "reference_slip_reservoir_2D" test.settings = "EmbeddedReservoir2DTest_parameters.json" test.setUpProblem() test.setUpDistanceField() test.runTest() test.tearDown() test.checkResults()
45.130841
203
0.657693
import KratosMultiphysics import KratosMultiphysics.FluidDynamicsApplication as KratosFluid import KratosMultiphysics.kratos_utilities as KratosUtilities have_external_solvers = KratosUtilities.IsApplicationAvailable("ExternalSolversApplication") import KratosMultiphysics.KratosUnittest as UnitTest @UnitTest.skipUnless(have_external_solvers,"Missing required application: ExternalSolversApplication") class EmbeddedReservoirTest(UnitTest.TestCase): def testEmbeddedReservoir2D(self): self.distance = 0.5 self.slip_level_set = False self.work_folder = "EmbeddedReservoirTest" self.reference_file = "reference_reservoir_2D" self.settings = "EmbeddedReservoir2DTest_parameters.json" self.ExecuteEmbeddedReservoirTest() def testEmbeddedReservoir3D(self): self.distance = 0.5 self.slip_level_set = False self.work_folder = "EmbeddedReservoirTest" self.reference_file = "reference_reservoir_3D" self.settings = "EmbeddedReservoir3DTest_parameters.json" self.ExecuteEmbeddedReservoirTest() def testEmbeddedSlipReservoir2D(self): self.distance = 0.5 self.slip_level_set = True self.work_folder = "EmbeddedReservoirTest" self.reference_file = "reference_slip_reservoir_2D" self.settings = "EmbeddedReservoir2DTest_parameters.json" self.ExecuteEmbeddedReservoirTest() def testEmbeddedSlipReservoir3D(self): self.distance = 0.5 self.slip_level_set = True self.work_folder = "EmbeddedReservoirTest" self.reference_file = "reference_slip_reservoir_3D" self.settings = "EmbeddedReservoir3DTest_parameters.json" self.ExecuteEmbeddedReservoirTest() def ExecuteEmbeddedReservoirTest(self): with UnitTest.WorkFolderScope(self.work_folder, __file__): self.setUp() self.setUpProblem() self.setUpDistanceField() self.runTest() self.tearDown() self.checkResults() def setUp(self): self.check_tolerance = 1e-6 self.print_output = False self.print_reference_values = False def tearDown(self): with UnitTest.WorkFolderScope(self.work_folder, __file__): KratosUtilities.DeleteFileIfExisting( self.ProjectParameters["solver_settings"]["model_import_settings"]["input_filename"].GetString()+'.time') def setUpProblem(self): with UnitTest.WorkFolderScope(self.work_folder, __file__): with open(self.settings, 'r') as parameter_file: self.ProjectParameters = KratosMultiphysics.Parameters(parameter_file.read()) self.model = KratosMultiphysics.Model() ## Solver construction import python_solvers_wrapper_fluid self.solver = python_solvers_wrapper_fluid.CreateSolver(self.model, self.ProjectParameters) ## Set the "is_slip" field in the json settings (to avoid duplication it is set to false in all tests) if self.slip_level_set and self.solver.settings.Has("is_slip"): self.ProjectParameters["solver_settings"]["is_slip"].SetBool(True) self.solver.AddVariables() ## Read the model - note that SetBufferSize is done here self.solver.ImportModelPart() self.solver.PrepareModelPart() ## Add AddDofs self.solver.AddDofs() ## Solver initialization self.solver.Initialize() ## Processes construction import process_factory self.list_of_processes = process_factory.KratosProcessFactory(self.model).ConstructListOfProcesses( self.ProjectParameters["processes"]["gravity"] ) self.list_of_processes += process_factory.KratosProcessFactory(self.model).ConstructListOfProcesses( self.ProjectParameters["processes"]["boundary_conditions_process_list"] ) ## Processes initialization for process in self.list_of_processes: process.ExecuteInitialize() self.main_model_part = self.model.GetModelPart(self.ProjectParameters["problem_data"]["model_part_name"].GetString()) def setUpDistanceField(self): # Set the distance function if (self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] == 2): for node in self.main_model_part.Nodes: distance = node.Y-self.distance node.SetSolutionStepValue(KratosMultiphysics.DISTANCE, 0, distance) elif (self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] == 3): for node in self.main_model_part.Nodes: distance = node.Z-self.distance node.SetSolutionStepValue(KratosMultiphysics.DISTANCE, 0, distance) # Set the ELEMENTAL_DISTANCES value n_nodes = len(self.main_model_part.Elements[1].GetNodes()) for element in self.main_model_part.Elements: elem_dist = KratosMultiphysics.Vector(n_nodes) elem_nodes = element.GetNodes() for i_node in range(0,n_nodes): elem_dist[i_node] = elem_nodes[i_node].GetSolutionStepValue(KratosMultiphysics.DISTANCE) element.SetValue(KratosMultiphysics.ELEMENTAL_DISTANCES, elem_dist) def runTest(self): with UnitTest.WorkFolderScope(self.work_folder, __file__): if (self.print_output): gid_mode = KratosMultiphysics.GiDPostMode.GiD_PostBinary multifile = KratosMultiphysics.MultiFileFlag.SingleFile deformed_mesh_flag = KratosMultiphysics.WriteDeformedMeshFlag.WriteUndeformed write_conditions = KratosMultiphysics.WriteConditionsFlag.WriteElementsOnly gid_io = KratosMultiphysics.GidIO(self.ProjectParameters["solver_settings"]["model_import_settings"]["input_filename"].GetString(),gid_mode,multifile,deformed_mesh_flag, write_conditions) mesh_name = 0.0 gid_io.InitializeMesh( mesh_name) gid_io.WriteMesh( self.main_model_part.GetMesh() ) gid_io.FinalizeMesh() gid_io.InitializeResults(mesh_name,(self.main_model_part).GetMesh()) end_time = self.ProjectParameters["problem_data"]["end_time"].GetDouble() time = 0.0 step = 0 for process in self.list_of_processes: process.ExecuteBeforeSolutionLoop() while(time <= end_time): time = self.solver.AdvanceInTime(time) for process in self.list_of_processes: process.ExecuteInitializeSolutionStep() self.solver.InitializeSolutionStep() self.solver.Predict() self.solver.SolveSolutionStep() self.solver.FinalizeSolutionStep() for process in self.list_of_processes: process.ExecuteFinalizeSolutionStep() for process in self.list_of_processes: process.ExecuteBeforeOutputStep() if (self.print_output): gid_io.WriteNodalResults(KratosMultiphysics.VELOCITY,self.main_model_part.Nodes,time,0) gid_io.WriteNodalResults(KratosMultiphysics.PRESSURE,self.main_model_part.Nodes,time,0) gid_io.WriteNodalResults(KratosMultiphysics.DISTANCE,self.main_model_part.Nodes,time,0) for process in self.list_of_processes: process.ExecuteAfterOutputStep() for process in self.list_of_processes: process.ExecuteFinalize() if (self.print_output): gid_io.FinalizeResults() def checkResults(self): with UnitTest.WorkFolderScope(self.work_folder, __file__): if self.print_reference_values: with open(self.reference_file+'.csv','w') as ref_file: ref_file.write("#ID, PRESSURE\n") for node in self.main_model_part.Nodes: pres = node.GetSolutionStepValue(KratosMultiphysics.PRESSURE) ref_file.write("{0}, {1}\n".format(node.Id, pres)) else: with open(self.reference_file+'.csv','r') as reference_file: reference_file.readline() # skip header line = reference_file.readline() for node in self.main_model_part.Nodes: values = [ float(i) for i in line.rstrip('\n ').split(',') ] node_id = values[0] reference_pres = values[1] pres = node.GetSolutionStepValue(KratosMultiphysics.PRESSURE) self.assertAlmostEqual(reference_pres, pres, delta = self.check_tolerance) line = reference_file.readline() if line != '': # If we did not reach the end of the reference file self.fail("The number of nodes in the mdpa is smaller than the number of nodes in the output file") if __name__ == '__main__': test = EmbeddedReservoirTest() test.setUp() test.distance = 0.5 test.slip_level_set = False test.print_output = False test.print_reference_values = False test.work_folder = "EmbeddedReservoirTest" test.reference_file = "reference_slip_reservoir_2D" test.settings = "EmbeddedReservoir2DTest_parameters.json" test.setUpProblem() test.setUpDistanceField() test.runTest() test.tearDown() test.checkResults()
8,421
26
318
68e1ed0ef59a3040f7e29f35297d861200c09805
454
py
Python
tests/conftest.py
BradleyKirton/ice3x
7a289b6b208a0bd07112744923cf5d315982ee31
[ "MIT" ]
null
null
null
tests/conftest.py
BradleyKirton/ice3x
7a289b6b208a0bd07112744923cf5d315982ee31
[ "MIT" ]
1
2021-01-18T09:38:53.000Z
2021-01-18T09:38:53.000Z
tests/conftest.py
BradleyKirton/ice3x
7a289b6b208a0bd07112744923cf5d315982ee31
[ "MIT" ]
1
2021-01-15T05:15:08.000Z
2021-01-15T05:15:08.000Z
import pytest def pytest_collection_modifyitems(config, items): """If async dependencies is not available skip async tests.""" try: import treq # noqa skip_async = False except ImportError: skip_async = True skip_slow = pytest.mark.skip(reason="need --runslow option to run") for item in items: if "requires_async" in item.keywords and skip_async is True: item.add_marker(skip_slow)
23.894737
71
0.665198
import pytest def pytest_collection_modifyitems(config, items): """If async dependencies is not available skip async tests.""" try: import treq # noqa skip_async = False except ImportError: skip_async = True skip_slow = pytest.mark.skip(reason="need --runslow option to run") for item in items: if "requires_async" in item.keywords and skip_async is True: item.add_marker(skip_slow)
0
0
0
1f318af426ba6effdcc824c35b1410a508967992
605
py
Python
python/train_model.py
bfakhri/dml_custom
1e908b10890df11e510d72c21f3125e3069a0eac
[ "CC-BY-4.0" ]
null
null
null
python/train_model.py
bfakhri/dml_custom
1e908b10890df11e510d72c21f3125e3069a0eac
[ "CC-BY-4.0" ]
null
null
null
python/train_model.py
bfakhri/dml_custom
1e908b10890df11e510d72c21f3125e3069a0eac
[ "CC-BY-4.0" ]
null
null
null
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import argparse import random import numpy as np import deepmind_lab import tensorflow as tf import sys print('PYTHON VERSION - ', sys.version) # For the DML random agent dataset import random_dataset # For the model that we will train import model # For debugging import os for i in range(10): print(os.getcwd()) ds = random_dataset.dml_dataset() model = model.Model(ds.shape) for i in range(1000000): batch = ds.get_batch() model.train_step(batch, i)
18.90625
39
0.771901
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import argparse import random import numpy as np import deepmind_lab import tensorflow as tf import sys print('PYTHON VERSION - ', sys.version) # For the DML random agent dataset import random_dataset # For the model that we will train import model # For debugging import os for i in range(10): print(os.getcwd()) ds = random_dataset.dml_dataset() model = model.Model(ds.shape) for i in range(1000000): batch = ds.get_batch() model.train_step(batch, i)
0
0
0
61db0562dc232d4ff5aad924e5350c8b5a68b06a
503
py
Python
hub/models/types.py
harenlewis/api-hub
f79cd8b82e95c039269765a4542866286803a322
[ "MIT" ]
null
null
null
hub/models/types.py
harenlewis/api-hub
f79cd8b82e95c039269765a4542866286803a322
[ "MIT" ]
2
2020-06-05T19:41:09.000Z
2021-06-10T21:07:30.000Z
hub/models/types.py
harenlewis/api-hub
f79cd8b82e95c039269765a4542866286803a322
[ "MIT" ]
null
null
null
GET = 100 POST = 200 PUT = 300 DELETE = 400 METHOD_TYPES = ( (GET, 'GET'), (POST, 'POST'), (PUT, 'PUT'), (DELETE, 'DELETE'), ) METHOD_TYPES_DICT = { 'GET': GET, 'POST': POST, 'PUT': PUT, 'DELETE': DELETE, } JSON = 500 HTML = 600 TEXT = 700 RESP_TYPES = ( (JSON, 'JSON'), (HTML, 'HTML'), (TEXT, 'TEXT'), ) RESP_TYPES_DICT = { 'JSON': 'application/json; charset=utf-8', 'HTML': 'text/html; charset=utf-8', 'TEXT': 'text/plain; charset=utf-8', }
14.794118
46
0.532803
GET = 100 POST = 200 PUT = 300 DELETE = 400 METHOD_TYPES = ( (GET, 'GET'), (POST, 'POST'), (PUT, 'PUT'), (DELETE, 'DELETE'), ) METHOD_TYPES_DICT = { 'GET': GET, 'POST': POST, 'PUT': PUT, 'DELETE': DELETE, } JSON = 500 HTML = 600 TEXT = 700 RESP_TYPES = ( (JSON, 'JSON'), (HTML, 'HTML'), (TEXT, 'TEXT'), ) RESP_TYPES_DICT = { 'JSON': 'application/json; charset=utf-8', 'HTML': 'text/html; charset=utf-8', 'TEXT': 'text/plain; charset=utf-8', }
0
0
0
052a4a4bdf56d5e8dedd6dfe0080f6b2a2e65602
145
py
Python
app/adapters/api/dtos/message_dto.py
jmp/fast1
2fb0283168d93b258da15e12af530c50de2dba75
[ "MIT" ]
1
2021-11-23T13:27:21.000Z
2021-11-23T13:27:21.000Z
app/adapters/api/dtos/message_dto.py
jmp/fast1
2fb0283168d93b258da15e12af530c50de2dba75
[ "MIT" ]
null
null
null
app/adapters/api/dtos/message_dto.py
jmp/fast1
2fb0283168d93b258da15e12af530c50de2dba75
[ "MIT" ]
null
null
null
from pydantic import BaseModel
14.5
30
0.641379
from pydantic import BaseModel class MessageDto(BaseModel): detail: str class Config: frozen = True title = "Message"
0
90
23
69dfa3f3f3c61dd8f1cd49fd9d62071055662676
3,962
py
Python
genome_designer/tests/integration/test_pipeline_integration.py
churchlab/millstone
ddb5d003a5b8a7675e5a56bafd5c432d9642b473
[ "MIT" ]
45
2015-09-30T14:55:33.000Z
2021-06-28T02:33:30.000Z
genome_designer/tests/integration/test_pipeline_integration.py
churchlab/millstone
ddb5d003a5b8a7675e5a56bafd5c432d9642b473
[ "MIT" ]
261
2015-06-03T20:41:56.000Z
2022-03-07T08:46:10.000Z
genome_designer/tests/integration/test_pipeline_integration.py
churchlab/millstone
ddb5d003a5b8a7675e5a56bafd5c432d9642b473
[ "MIT" ]
22
2015-06-04T20:43:10.000Z
2022-02-27T08:27:34.000Z
"""Alignment pipeline integration tests. """ import os import time from django.conf import settings from djcelery_testworker.testcase import CeleryWorkerTestCase from main.models import AlignmentGroup from main.models import Dataset from main.models import ExperimentSample from main.testing_util import create_common_entities from pipeline.pipeline_runner import run_pipeline from utils.import_util import copy_and_add_dataset_source from utils.import_util import import_reference_genome_from_local_file from utils.import_util import import_reference_genome_from_ncbi from utils import internet_on TEST_FASTA = os.path.join(settings.PWD, 'test_data', 'fake_genome_and_reads', 'test_genome.fa') TEST_FASTQ1 = os.path.join(settings.PWD, 'test_data', 'fake_genome_and_reads', '38d786f2', 'test_genome_1.snps.simLibrary.1.fq') TEST_FASTQ2 = os.path.join(settings.PWD, 'test_data', 'fake_genome_and_reads', '38d786f2', 'test_genome_1.snps.simLibrary.2.fq')
38.096154
80
0.69687
"""Alignment pipeline integration tests. """ import os import time from django.conf import settings from djcelery_testworker.testcase import CeleryWorkerTestCase from main.models import AlignmentGroup from main.models import Dataset from main.models import ExperimentSample from main.testing_util import create_common_entities from pipeline.pipeline_runner import run_pipeline from utils.import_util import copy_and_add_dataset_source from utils.import_util import import_reference_genome_from_local_file from utils.import_util import import_reference_genome_from_ncbi from utils import internet_on TEST_FASTA = os.path.join(settings.PWD, 'test_data', 'fake_genome_and_reads', 'test_genome.fa') TEST_FASTQ1 = os.path.join(settings.PWD, 'test_data', 'fake_genome_and_reads', '38d786f2', 'test_genome_1.snps.simLibrary.1.fq') TEST_FASTQ2 = os.path.join(settings.PWD, 'test_data', 'fake_genome_and_reads', '38d786f2', 'test_genome_1.snps.simLibrary.2.fq') class TestAlignmentPipeline(CeleryWorkerTestCase): def setUp(self): common_entities = create_common_entities() self.project = common_entities['project'] self.reference_genome = import_reference_genome_from_local_file( self.project, 'ref_genome', TEST_FASTA, 'fasta') self.experiment_sample = ExperimentSample.objects.create( project=self.project, label='sample1') copy_and_add_dataset_source(self.experiment_sample, Dataset.TYPE.FASTQ1, Dataset.TYPE.FASTQ1, TEST_FASTQ1) copy_and_add_dataset_source(self.experiment_sample, Dataset.TYPE.FASTQ2, Dataset.TYPE.FASTQ2, TEST_FASTQ2) def test_run_pipeline(self): """Tests running the full pipeline. """ sample_list = [self.experiment_sample] alignment_group_obj, async_result = run_pipeline('name_placeholder', self.reference_genome, sample_list) # Block until pipeline finishes. while not async_result.ready(): time.sleep(1) if async_result.status == 'FAILURE': self.fail('Async task failed.') # Refresh the object. alignment_group_obj = AlignmentGroup.objects.get( id=alignment_group_obj.id) # Verify the AlignmentGroup object is created. self.assertEqual(1, len(alignment_group_obj.experimentsampletoalignment_set.all())) self.assertEqual(AlignmentGroup.STATUS.COMPLETED, alignment_group_obj.status) # Make sure the initial JBrowse config has been created. jbrowse_dir = self.reference_genome.get_jbrowse_directory_path() self.assertTrue(os.path.exists(jbrowse_dir)) self.assertTrue(os.path.exists(os.path.join(jbrowse_dir, 'indiv_tracks'))) def test_run_pipeline__genbank_from_ncbi_with_spaces_in_label(self): """Tests the pipeline where the genome is imported from NCBI with spaces in the name. """ if not internet_on(): return MG1655_ACCESSION = 'NC_000913.3' MG1655_LABEL = 'mg1655 look a space' ref_genome = import_reference_genome_from_ncbi(self.project, MG1655_LABEL, MG1655_ACCESSION, 'genbank') sample_list = [self.experiment_sample] alignment_group_obj, async_result = run_pipeline('name_placeholder', ref_genome, sample_list) # Block until pipeline finishes. while not async_result.ready(): time.sleep(1) if async_result.status == 'FAILURE': self.fail('Async task failed.') alignment_group_obj = AlignmentGroup.objects.get( id=alignment_group_obj.id) self.assertEqual(1, len(alignment_group_obj.experimentsampletoalignment_set.all())) self.assertEqual(AlignmentGroup.STATUS.COMPLETED, alignment_group_obj.status)
618
2,336
23
c03319542f2244c2d4ef46ea8722b2475a06c15b
793
py
Python
topics/Array/Best_Time_to_Buy_and_Sell_Stock_121/Best_Time_to_Buy_and_Sell_Stock_121.py
DmitryNaimark/leetcode-solutions-python
16af5f3a9cb8469d82b14c8953847f0e93a92324
[ "MIT" ]
1
2019-10-31T11:06:23.000Z
2019-10-31T11:06:23.000Z
topics/Array/Best_Time_to_Buy_and_Sell_Stock_121/Best_Time_to_Buy_and_Sell_Stock_121.py
DmitryNaimark/leetcode-solutions-python
16af5f3a9cb8469d82b14c8953847f0e93a92324
[ "MIT" ]
null
null
null
topics/Array/Best_Time_to_Buy_and_Sell_Stock_121/Best_Time_to_Buy_and_Sell_Stock_121.py
DmitryNaimark/leetcode-solutions-python
16af5f3a9cb8469d82b14c8953847f0e93a92324
[ "MIT" ]
null
null
null
# https://leetcode.com/problems/best-time-to-buy-and-sell-stock/ # --------------------------------------------------- from typing import List # Runtime Complexity: O(N) # Space Complexity: O(1) # --------------------------------------------------- # Test Cases # --------------------------------------------------- solution = Solution() # 5 print(solution.maxProfit([7, 1, 5, 3, 6, 4])) # 0 print(solution.maxProfit([7, 6, 4, 3, 1]))
27.344828
64
0.461538
# https://leetcode.com/problems/best-time-to-buy-and-sell-stock/ # --------------------------------------------------- from typing import List # Runtime Complexity: O(N) # Space Complexity: O(1) class Solution: def maxProfit(self, prices: List[int]) -> int: if len(prices) == 0: return 0 cur_min = prices[0] max_diff = 0 for i in range(1, len(prices)): cur_min = min(prices[i], cur_min) max_diff = max(prices[i] - cur_min, max_diff) return max_diff # --------------------------------------------------- # Test Cases # --------------------------------------------------- solution = Solution() # 5 print(solution.maxProfit([7, 1, 5, 3, 6, 4])) # 0 print(solution.maxProfit([7, 6, 4, 3, 1]))
294
-6
48
651987d7de3aff6142ce2f122b6b368e0940755f
6,839
py
Python
main.py
GunnarHolwerda/PiWallGuiController
cc90e5f6fd6f13fdfdcabcc8e6b195bf01cb440f
[ "MIT" ]
5
2017-03-29T20:44:42.000Z
2020-06-26T23:11:34.000Z
main.py
GunnarHolwerda/PiWallGuiController
cc90e5f6fd6f13fdfdcabcc8e6b195bf01cb440f
[ "MIT" ]
null
null
null
main.py
GunnarHolwerda/PiWallGuiController
cc90e5f6fd6f13fdfdcabcc8e6b195bf01cb440f
[ "MIT" ]
1
2021-03-08T14:57:09.000Z
2021-03-08T14:57:09.000Z
""" GUI Application to control the PiWall from """ #!/usr/bin/python3 # Author: Gunnar Holwerda # GUI to control a PiWall from tkinter import Frame, StringVar, OptionMenu, Listbox, Button, Label, Tk, END from piwallcontroller.piwallcontroller import PiWallController from piwallcontroller.playlist import Playlist from threading import Thread class SelectorWindow(Frame): """ GUI Class extending the tkinter.Frame class """ TIMEOUTS = { '1 hour ': 3600, '2 hours': 7200, '3 hours': 10800, 'Infinite': -1, } def create_video_file_dropdown(self): """ Creates the dropdown to display the video files from """ videos = self.__controller.get_video_file_list() if videos: self.__dropdown_selection.set(videos[0]) else: videos.append(None) self.video_dropdown = OptionMenu( None, self.__dropdown_selection, *videos) self.video_dropdown.config(width=10) self.video_dropdown.grid(row=0, column=0) def create_timeout_dropdown(self): """ Creates the dropdown that displays the timeouts """ timeouts = list(self.TIMEOUTS.keys()) timeouts.sort() self.__timeout_selection.set(timeouts[0]) self.timeout_dropdown = OptionMenu( None, self.__timeout_selection, *timeouts) self.timeout_dropdown.config(width=5) self.timeout_dropdown.grid(row=0, column=1) def create_display_box(self): """ Creates display box that displays all current items in the playlist """ self.display_box = Listbox(width=30, height=10) self.display_box.grid(row=0, column=2, columnspan=2) def create_play_button(self): """ Creates the play button """ self.submit_button = Button(text="Play", width=10) self.submit_button['command'] = self.play_wall self.submit_button.grid(row=1, column=2, pady=5) def create_add_button(self): """ Creates the button to add the current values in the video and timeout dropdown into the playlist """ self.add_button = Button(text='Add', fg='green', width=10) self.add_button['command'] = self.update_display_box self.add_button.grid(row=1, column=0, pady=5) def create_delete_button(self): """ Creates delete button to delete items from display blox """ self.delete_button = Button(text='Delete', fg='red', width=10) self.delete_button['command'] = self.delete_selected_item self.delete_button.grid(row=1, column=1, pady=5) def create_reboot_button(self): """ Creates button that reboots the pi's """ self.reboot_button = Button(text='Reboot Tiles', fg='red', width=10) self.reboot_button['command'] = self.reboot_pressed self.reboot_button.grid(row=1, column=3, pady=5) def create_status_label(self): """ Creates label to display current status of the wall """ self.status_label = Label(relief="ridge", width=11) self.set_status_label(0) self.status_label.grid(row=2, column=3, pady=5) def create_stop_button(self): """ Creates stop button to stop PiWall """ self.stop_button = Button(text='Stop Playing') self.set_status_label(0) self.stop_button['command'] = self.stop_pressed self.stop_button.grid(row=2, column=2, pady=5) def delete_selected_item(self): """ Deletes the currently selected item from the displaybox """ self.__playlist.remove_playlist_item(self.display_box.curselection()) self.display_box.delete(self.display_box.curselection()) def play_wall(self): """ Submits ths form to be played on the pi's """ if self.__playlist.is_empty(): return self.set_status_label(1) self.display_box.delete(0, END) # If there is a thread running, we need to stop the wall, which will # end the thread if self.__command_thread.isAlive(): print("Stopping Wall") self.__controller.stop_wall() self.__command_thread.join() self.__command_thread = Thread( target=self.__controller.run_commands, args=(self.__playlist,)) self.__command_thread.start() def update_display_box(self): """ Button listener for the Add Button (create_add_button) """ video_file = self.__dropdown_selection.get() timeout = self.__timeout_selection.get() self.__playlist.add_playlist_item(video_file, self.TIMEOUTS[timeout]) self.display_box.insert(END, "{0} {1}".format(timeout, video_file)) def stop_pressed(self): """ Button listener for the Stop Button (create_stop_button) """ self.__controller.stop_wall() self.set_status_label(0) def reboot_pressed(self): """ Button listener for the Reboot Button (create_reboot_button) """ self.set_status_label(0) self.__controller.reboot_pis() return True def set_status_label(self, state): """ Updates the status label to the current status of the PiWall """ if state == 1: self.status_label.config(text='Playing', fg='green') return True elif state == 0: self.status_label.config(text='Not Playing', fg='red') return True else: Exception( 'Status label state {0} not supported. Try 1 or 2'.format(state)) def get_controller(self): """ Returns the piwallcontrollers """ return self.__controller # Run the GUI if __name__ == "__main__": tk_window = Tk(className="PiWall") frame = SelectorWindow(master=tk_window) tk_window.mainloop() frame.get_controller().stop_wall()
33.360976
90
0.619389
""" GUI Application to control the PiWall from """ #!/usr/bin/python3 # Author: Gunnar Holwerda # GUI to control a PiWall from tkinter import Frame, StringVar, OptionMenu, Listbox, Button, Label, Tk, END from piwallcontroller.piwallcontroller import PiWallController from piwallcontroller.playlist import Playlist from threading import Thread class SelectorWindow(Frame): """ GUI Class extending the tkinter.Frame class """ TIMEOUTS = { '1 hour ': 3600, '2 hours': 7200, '3 hours': 10800, 'Infinite': -1, } def __init__(self, master=None): Frame.__init__(self, master) self.__playlist = Playlist() self.__controller = PiWallController() self.__dropdown_selection = StringVar() self.__timeout_selection = StringVar() self.__command_thread = Thread( target=self.__controller.run_commands, args=(self.__playlist,)) self.grid() self.create_video_file_dropdown() self.create_timeout_dropdown() self.create_display_box() self.create_add_button() self.create_delete_button() self.create_play_button() self.create_reboot_button() self.create_status_label() self.create_stop_button() def create_video_file_dropdown(self): """ Creates the dropdown to display the video files from """ videos = self.__controller.get_video_file_list() if videos: self.__dropdown_selection.set(videos[0]) else: videos.append(None) self.video_dropdown = OptionMenu( None, self.__dropdown_selection, *videos) self.video_dropdown.config(width=10) self.video_dropdown.grid(row=0, column=0) def create_timeout_dropdown(self): """ Creates the dropdown that displays the timeouts """ timeouts = list(self.TIMEOUTS.keys()) timeouts.sort() self.__timeout_selection.set(timeouts[0]) self.timeout_dropdown = OptionMenu( None, self.__timeout_selection, *timeouts) self.timeout_dropdown.config(width=5) self.timeout_dropdown.grid(row=0, column=1) def create_display_box(self): """ Creates display box that displays all current items in the playlist """ self.display_box = Listbox(width=30, height=10) self.display_box.grid(row=0, column=2, columnspan=2) def create_play_button(self): """ Creates the play button """ self.submit_button = Button(text="Play", width=10) self.submit_button['command'] = self.play_wall self.submit_button.grid(row=1, column=2, pady=5) def create_add_button(self): """ Creates the button to add the current values in the video and timeout dropdown into the playlist """ self.add_button = Button(text='Add', fg='green', width=10) self.add_button['command'] = self.update_display_box self.add_button.grid(row=1, column=0, pady=5) def create_delete_button(self): """ Creates delete button to delete items from display blox """ self.delete_button = Button(text='Delete', fg='red', width=10) self.delete_button['command'] = self.delete_selected_item self.delete_button.grid(row=1, column=1, pady=5) def create_reboot_button(self): """ Creates button that reboots the pi's """ self.reboot_button = Button(text='Reboot Tiles', fg='red', width=10) self.reboot_button['command'] = self.reboot_pressed self.reboot_button.grid(row=1, column=3, pady=5) def create_status_label(self): """ Creates label to display current status of the wall """ self.status_label = Label(relief="ridge", width=11) self.set_status_label(0) self.status_label.grid(row=2, column=3, pady=5) def create_stop_button(self): """ Creates stop button to stop PiWall """ self.stop_button = Button(text='Stop Playing') self.set_status_label(0) self.stop_button['command'] = self.stop_pressed self.stop_button.grid(row=2, column=2, pady=5) def delete_selected_item(self): """ Deletes the currently selected item from the displaybox """ self.__playlist.remove_playlist_item(self.display_box.curselection()) self.display_box.delete(self.display_box.curselection()) def play_wall(self): """ Submits ths form to be played on the pi's """ if self.__playlist.is_empty(): return self.set_status_label(1) self.display_box.delete(0, END) # If there is a thread running, we need to stop the wall, which will # end the thread if self.__command_thread.isAlive(): print("Stopping Wall") self.__controller.stop_wall() self.__command_thread.join() self.__command_thread = Thread( target=self.__controller.run_commands, args=(self.__playlist,)) self.__command_thread.start() def update_display_box(self): """ Button listener for the Add Button (create_add_button) """ video_file = self.__dropdown_selection.get() timeout = self.__timeout_selection.get() self.__playlist.add_playlist_item(video_file, self.TIMEOUTS[timeout]) self.display_box.insert(END, "{0} {1}".format(timeout, video_file)) def stop_pressed(self): """ Button listener for the Stop Button (create_stop_button) """ self.__controller.stop_wall() self.set_status_label(0) def reboot_pressed(self): """ Button listener for the Reboot Button (create_reboot_button) """ self.set_status_label(0) self.__controller.reboot_pis() return True def set_status_label(self, state): """ Updates the status label to the current status of the PiWall """ if state == 1: self.status_label.config(text='Playing', fg='green') return True elif state == 0: self.status_label.config(text='Not Playing', fg='red') return True else: Exception( 'Status label state {0} not supported. Try 1 or 2'.format(state)) def get_controller(self): """ Returns the piwallcontrollers """ return self.__controller # Run the GUI if __name__ == "__main__": tk_window = Tk(className="PiWall") frame = SelectorWindow(master=tk_window) tk_window.mainloop() frame.get_controller().stop_wall()
686
0
27
4e411687a292bc56a0037b2e523555237471ea26
765
py
Python
libraries/botbuilder-schema/botbuilder/schema/_sign_in_enums.py
victor-kironde/botbuilder-python
e893d9b036d7cf33cf9c9afd1405450c354cdbcd
[ "MIT" ]
1
2020-07-12T21:04:08.000Z
2020-07-12T21:04:08.000Z
libraries/botbuilder-schema/botbuilder/schema/_sign_in_enums.py
Fortune-Adekogbe/botbuilder-python
4e48c874c32a2a7fe7f27a7a1f825e2aa39466c4
[ "MIT" ]
null
null
null
libraries/botbuilder-schema/botbuilder/schema/_sign_in_enums.py
Fortune-Adekogbe/botbuilder-python
4e48c874c32a2a7fe7f27a7a1f825e2aa39466c4
[ "MIT" ]
1
2020-10-01T07:34:07.000Z
2020-10-01T07:34:07.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- from enum import Enum
40.263158
94
0.60915
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- from enum import Enum class SignInConstants(str, Enum): # Name for the signin invoke to verify the 6-digit authentication code as part of sign-in. verify_state_operation_name = "signin/verifyState" # Name for signin invoke to perform a token exchange. token_exchange_operation_name = "signin/tokenExchange" # The EventActivity name when a token is sent to the bot. token_response_event_name = "tokens/response"
0
392
23
cedce4854061d9a8c9e7cb1c10204a423754caa1
220
py
Python
verifyage.py
cheesyc/basicpython
9a055e4f813c6caa601ba00da939439b0bc82a3f
[ "MIT" ]
null
null
null
verifyage.py
cheesyc/basicpython
9a055e4f813c6caa601ba00da939439b0bc82a3f
[ "MIT" ]
null
null
null
verifyage.py
cheesyc/basicpython
9a055e4f813c6caa601ba00da939439b0bc82a3f
[ "MIT" ]
null
null
null
from datetime import datetime # def days (d): # now = datetime.now if __name__ == "__main__": # u = int(input("What is your age?")) # d = int(input("What month were you born in?"") print (datetime.now)
22
52
0.613636
from datetime import datetime # def days (d): # now = datetime.now if __name__ == "__main__": # u = int(input("What is your age?")) # d = int(input("What month were you born in?"") print (datetime.now)
0
0
0
2ab9ebef051b3056bedabb899617bd511e5cce45
3,546
py
Python
acceptance/harness/acceptance_test.py
ismacaulay/qtcwatchdog
72f3588eef1019bac8788fa58c52722dfa7c4d28
[ "MIT" ]
null
null
null
acceptance/harness/acceptance_test.py
ismacaulay/qtcwatchdog
72f3588eef1019bac8788fa58c52722dfa7c4d28
[ "MIT" ]
12
2015-10-22T15:38:28.000Z
2016-03-22T18:53:57.000Z
acceptance/harness/acceptance_test.py
ismacaulay/qtcwatchdog
72f3588eef1019bac8788fa58c52722dfa7c4d28
[ "MIT" ]
null
null
null
import os, mock from pyfakefs import fake_filesystem_unittest from observer import FakeObserver from qtcwatchdog.qtcwatchdog import QtcWatchdog from qtcwatchdog.watcher import ProjectWatcher
38.543478
101
0.663283
import os, mock from pyfakefs import fake_filesystem_unittest from observer import FakeObserver from qtcwatchdog.qtcwatchdog import QtcWatchdog from qtcwatchdog.watcher import ProjectWatcher class WatchdogAcceptanceTest(fake_filesystem_unittest.TestCase): def setUp(self): self.setUpPyfakefs() self.fs_observer = FakeObserver(self.fs) self.project_settings = {} self.sleep_patcher = mock.patch('time.sleep') self.addCleanup(self.sleep_patcher.stop) self.mock_sleep = self.sleep_patcher.start() self.running_patcher = mock.patch('qtcwatchdog.watcher.running') self.addCleanup(self.running_patcher.stop) self.mock_running = self.running_patcher.start() self.mock_running.side_effect = [True, False] self.observer_patcher = mock.patch('qtcwatchdog.watcher.Observer') self.addCleanup(self.observer_patcher.stop) self.mock_observer = self.observer_patcher.start() self.mock_observer.return_value = self.fs_observer self.watcher_patcher = mock.patch('qtcwatchdog.qtcwatchdog.ProjectWatcher') self.addCleanup(self.watcher_patcher.stop) self.mock_watcher = self.watcher_patcher.start() self.mock_watcher.side_effect = self.save_updater self.setup_project_directory() def tearDown(self): pass def setup_project_directory(self): self.project_settings = { 'project': 'watchdog', 'project_path': os.path.relpath('/project/watchdog'), 'files': {}, 'includes': {}, } self.files_file = os.path.join(self.project_settings['project_path'], 'watchdog.files') self.includes_file = os.path.join(self.project_settings['project_path'], 'watchdog.includes') os.makedirs(self.project_settings['project_path']) self.fs.CreateFile(self.files_file) self.fs.CreateFile(self.includes_file) self.initial_files = [ os.path.join(self.project_settings['project_path'], 'initial_file.txt'), os.path.join(self.project_settings['project_path'], 'initial_file.cxx'), os.path.join(self.project_settings['project_path'], 'initial_file.h'), ] for f in self.initial_files: self.fs.CreateFile(f) self.initial_directories = [ os.path.join(self.project_settings['project_path'], 'directory1'), os.path.join(self.project_settings['project_path'], 'directory2'), os.path.join(self.project_settings['project_path'], 'directory3'), ] for d in self.initial_directories: self.fs.CreateDirectory(d) def create_and_start_watchdog(self): self.watchdog = QtcWatchdog(self.project_settings) self.watchdog.start() def create_file_with_contents(self, path, contents): try: self.fs.RemoveObject(path) finally: self.fs.CreateFile(path, contents=contents) def save_updater(self, project_path_arg, updater_arg): self.file_updater = updater_arg return ProjectWatcher(project_path_arg, updater_arg) def file_contains_paths(self, file_path, paths=[]): with open(file_path) as f: lines = [f.strip('\n') for f in f.readlines()] for path in paths: if path not in lines: return False, '{} does not contain path {}'.format(file_path, path) return True, 'All paths in {}. paths: {}'.format(file_path, str(paths))
3,098
43
211
7d5e808698d08d5b754ad10b30667e0affcf369b
9,023
py
Python
predictive-horizontal-pod-autoscaler/short/analyse.py
jthomperoo/custom-pod-autoscaler-experiments
f065bee72391dff008a388d46cba40df3fb23c98
[ "Apache-2.0" ]
4
2020-02-26T14:00:01.000Z
2022-02-25T15:23:09.000Z
predictive-horizontal-pod-autoscaler/short/analyse.py
jthomperoo/custom-pod-autoscaler-experiments
f065bee72391dff008a388d46cba40df3fb23c98
[ "Apache-2.0" ]
1
2021-06-12T09:40:56.000Z
2021-06-12T09:51:45.000Z
predictive-horizontal-pod-autoscaler/short/analyse.py
jthomperoo/custom-pod-autoscaler-experiments
f065bee72391dff008a388d46cba40df3fb23c98
[ "Apache-2.0" ]
1
2021-07-07T09:58:23.000Z
2021-07-07T09:58:23.000Z
# Copyright 2020 Jamie Thompson. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import numpy as np from tabulate import tabulate from matplotlib import pyplot as plt if __name__ == "__main__": main()
54.355422
161
0.729469
# Copyright 2020 Jamie Thompson. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import numpy as np from tabulate import tabulate from matplotlib import pyplot as plt def plot_replica_comparison(horizontal_replicas, predictive_replicas): plt.figure(figsize=[6, 6]) plt.plot(list(np.arange(0, 30, 0.5)), horizontal_replicas, "r", list(np.arange(0, 30, 0.5)), predictive_replicas, "b") plt.legend(["K8s HPA", "CPA Predictive HPA"]) plt.xlabel("time (minutes)") plt.ylabel("number of replicas") plt.savefig("results/predictive_vs_horizontal_replicas.svg") def plot_avg_latency_comparison(horizontal_latencies, predictive_latencies): horizontal_avg_latencies = [] for result in horizontal_latencies: if result["requests"].get("GET_/api/v1/namespaces/default/services/horizontal-deployment/proxy//") is None: continue horizontal_avg_latencies.append(result["requests"].get("GET_/api/v1/namespaces/default/services/horizontal-deployment/proxy//").get("avg_response_time")) predictive_avg_latencies = [] for result in predictive_latencies: if result["requests"].get("GET_/api/v1/namespaces/default/services/predictive-deployment/proxy//") is None: continue predictive_avg_latencies.append(result["requests"].get("GET_/api/v1/namespaces/default/services/predictive-deployment/proxy//").get("avg_response_time")) plt.figure(figsize=[6, 6]) plt.plot(list(np.arange(0, 30, 0.5)), horizontal_avg_latencies, "r", list(np.arange(0, 30, 0.5)), predictive_avg_latencies, "b") plt.legend(["K8s HPA", "CPA Predictive HPA"]) plt.xlabel("time (minutes)") plt.ylabel("average latency") plt.savefig("results/avg_latency_comparison.svg") def plot_max_latency_comparison(horizontal_latencies, predictive_latencies): horizontal_max_latencies = [] for result in horizontal_latencies: if result["requests"].get("GET_/api/v1/namespaces/default/services/horizontal-deployment/proxy//") is None: continue horizontal_max_latencies.append(result["requests"].get("GET_/api/v1/namespaces/default/services/horizontal-deployment/proxy//").get("max_response_time")) predictive_max_latencies = [] for result in predictive_latencies: if result["requests"].get("GET_/api/v1/namespaces/default/services/predictive-deployment/proxy//") is None: continue predictive_max_latencies.append(result["requests"].get("GET_/api/v1/namespaces/default/services/predictive-deployment/proxy//").get("max_response_time")) plt.figure(figsize=[6, 6]) plt.plot(list(np.arange(0, 30, 0.5)), horizontal_max_latencies, "r", list(np.arange(0, 30, 0.5)), predictive_max_latencies, "b") plt.legend(["K8s HPA", "CPA Predictive HPA"]) plt.xlabel("time (minutes)") plt.ylabel("maximum latency") plt.savefig("results/max_latency_comparison.svg") def plot_failed_to_success_request_percentage(horizontal_latencies, predictive_latencies): horizontal_fail_percentages = [] for result in horizontal_latencies: if result["requests"].get("GET_/api/v1/namespaces/default/services/horizontal-deployment/proxy//") is None: continue horizontal_fail_percentages.append(result["num_requests_fail"] / result["num_requests"] * 100) predictive_fail_percentages = [] for result in predictive_latencies: if result["requests"].get("GET_/api/v1/namespaces/default/services/predictive-deployment/proxy//") is None: continue predictive_fail_percentages.append(result["num_requests_fail"] / result["num_requests"] * 100) plt.figure(figsize=[6, 6]) plt.plot(list(np.arange(0, 30, 0.5)), horizontal_fail_percentages, "r", list(np.arange(0, 30, 0.5)), predictive_fail_percentages, "b") plt.legend(["K8s HPA", "CPA Predictive HPA"]) plt.xlabel("time (minutes)") plt.ylabel("failed requests (%)") plt.savefig("results/fail_percentage_comparison.svg") def create_table(horizontal_replicas, predictive_replicas, horizontal_latencies, predictive_latencies): horizontal_num_requests = [] for result in horizontal_latencies: if result["requests"].get("GET_/api/v1/namespaces/default/services/horizontal-deployment/proxy//") is None: continue horizontal_num_requests.append(result["num_requests"]) predictive_num_requests = [] for result in predictive_latencies: if result["requests"].get("GET_/api/v1/namespaces/default/services/predictive-deployment/proxy//") is None: continue predictive_num_requests.append(result["num_requests"]) horizontal_avg_latencies = [] for result in horizontal_latencies: if result["requests"].get("GET_/api/v1/namespaces/default/services/horizontal-deployment/proxy//") is None: continue horizontal_avg_latencies.append(result["requests"].get("GET_/api/v1/namespaces/default/services/horizontal-deployment/proxy//").get("avg_response_time")) predictive_avg_latencies = [] for result in predictive_latencies: if result["requests"].get("GET_/api/v1/namespaces/default/services/predictive-deployment/proxy//") is None: continue predictive_avg_latencies.append(result["requests"].get("GET_/api/v1/namespaces/default/services/predictive-deployment/proxy//").get("avg_response_time")) horizontal_max_latencies = [] for result in horizontal_latencies: if result["requests"].get("GET_/api/v1/namespaces/default/services/horizontal-deployment/proxy//") is None: continue horizontal_max_latencies.append(result["requests"].get("GET_/api/v1/namespaces/default/services/horizontal-deployment/proxy//").get("max_response_time")) predictive_max_latencies = [] for result in predictive_latencies: if result["requests"].get("GET_/api/v1/namespaces/default/services/predictive-deployment/proxy//") is None: continue predictive_max_latencies.append(result["requests"].get("GET_/api/v1/namespaces/default/services/predictive-deployment/proxy//").get("max_response_time")) horizontal_fail_percentages = [] for result in horizontal_latencies: if result["requests"].get("GET_/api/v1/namespaces/default/services/horizontal-deployment/proxy//") is None: continue horizontal_fail_percentages.append(result["num_requests_fail"] / result["num_requests"] * 100) predictive_fail_percentages = [] for result in predictive_latencies: if result["requests"].get("GET_/api/v1/namespaces/default/services/predictive-deployment/proxy//") is None: continue predictive_fail_percentages.append(result["num_requests_fail"] / result["num_requests"] * 100) table = { "time (mins)": list(np.arange(0, 30, 0.5)), "hpa num requests": horizontal_num_requests, "phpa num requests": predictive_num_requests, "hpa replicas": horizontal_replicas, "phpa replicas": predictive_replicas, "hpa avg latencies": horizontal_avg_latencies, "phpa avg latencies": predictive_avg_latencies, "hpa max latencies": horizontal_max_latencies, "phpa max latencies": predictive_max_latencies, "hpa fail requests (%)": horizontal_fail_percentages, "phpa fail requests (%)": predictive_fail_percentages } with open("results/predictive_vs_horizontal_table.md", "w") as table_file: table_file.write(tabulate(table, tablefmt="pipe", headers="keys")) def main(): with open("results/results.json") as json_file: results = json.load(json_file) horizontal_replicas = results["horizontal"]["replicas"] predictive_replicas = results["predictive"]["replicas"] horizontal_latencies = results["horizontal"]["latency"] predictive_latencies = results["predictive"]["latency"] horizontal_latencies = sorted(horizontal_latencies, key=lambda k: k["start_time"]) predictive_latencies = sorted(predictive_latencies, key=lambda k: k["start_time"]) create_table(horizontal_replicas, predictive_replicas, horizontal_latencies, predictive_latencies) plot_replica_comparison(horizontal_replicas, predictive_replicas) plot_avg_latency_comparison(horizontal_latencies, predictive_latencies) plot_max_latency_comparison(horizontal_latencies, predictive_latencies) plot_failed_to_success_request_percentage(horizontal_latencies, predictive_latencies) if __name__ == "__main__": main()
8,167
0
138
21699970a803f9a1e84a84d986852609b75c11f8
2,747
py
Python
fmformatter/Sites2Query.py
wassermanlab/OpenFlexTyper
35edbf2c29f20ccec20baaaf46cc2382b7defda6
[ "MIT" ]
7
2019-11-26T00:01:58.000Z
2021-04-03T05:31:44.000Z
fmformatter/Sites2Query.py
wassermanlab/OpenFlexTyper_restore
f599011a8f856bd81e73e5472d50980b4695055c
[ "MIT" ]
33
2019-10-22T22:23:51.000Z
2020-10-02T20:14:17.000Z
fmformatter/Sites2Query.py
wassermanlab/OpenFlexTyper_restore
f599011a8f856bd81e73e5472d50980b4695055c
[ "MIT" ]
4
2019-11-29T23:16:57.000Z
2020-03-07T19:04:26.000Z
import pybedtools import sys import argparse # Function which takes in a sites file and produces a query file. # Sites file looks like (these are 1-based coords): # 22:50988105:G:A # # Query file looks like: # #Index Reference Alternate Chrom Pos Ref Alt Identifier DataType #0 TTTCTCCAAATACAGATCCAATGTCTTCACTTGTCTATTAAATGCCTCCCATTCCAAATATGATTACCTCTCCCCAGCTCCAATTAAGTCCCTTCTTTCCCCTCTTACTACCGCTTTCTTCCATGTGCCTCTTACAACACCATGGAGACATTTTTCATTTGTGCTTCTTTCATGCAGTTAGCCAAGCTTGTCAAGTTTTTTTTTTTTTGAAAAAAAAAAAAAATACATACATATATATATATATAATTTTTTTTCCCCTCACTATGTTGCCCAGATTGGTCTTGAACTACCGGGCTCAAGT TTTCTCCAAATACAGATCCAATGTCTTCACTTGTCTATTAAATGCCTCCCATTCCAAATATGATTACCTCTCCCCAGCTCCAATTAAGTCCCTTCTTTCCCCTCTTACTACCGCTTTCTTCCATGTGCCTCTTACAACACCATGGAGACACTTTTCATTTGTGCTTCTTTCATGCAGTTAGCCAAGCTTGTCAAGTTTTTTTTTTTTTGAAAAAAAAAAAAAATACATACATATATATATATATAATTTTTTTTCCCCTCACTATGTTGCCCAGATTGGTCTTGAACTACCGGGCTCAAGT 16 27557749 T C rs7198785_S-3AAAA cytoscan # given 1-based pos coordinate, extract seqs and return the 2 seqs for query, one with the ref and one with the alt alleles # reftest,alttest = Site2Seqs(22,50988105,'G','A',ARGS.Fasta) # print(reftest) # print(alttest) if __name__=="__main__": Main()
41.621212
649
0.790681
import pybedtools import sys import argparse def GetArgs(): parser = argparse.ArgumentParser() parser.add_argument("-I","--Infile",help="Infile in the format of Sites: Chrom:position:ref:alt", required=True) parser.add_argument("-F","--Fasta",help="Input fasta file corresponding to the positions", required=True) parser.add_argument("-O","--Outfile",help="Output file for the queries for FlexTyper", required=True) parser.add_argument("-S","--Source",help="Source acquired from,e.g. PeddyGRCh37Sites", required=True) args = parser.parse_args() return args # Function which takes in a sites file and produces a query file. # Sites file looks like (these are 1-based coords): # 22:50988105:G:A # # Query file looks like: # #Index Reference Alternate Chrom Pos Ref Alt Identifier DataType #0 TTTCTCCAAATACAGATCCAATGTCTTCACTTGTCTATTAAATGCCTCCCATTCCAAATATGATTACCTCTCCCCAGCTCCAATTAAGTCCCTTCTTTCCCCTCTTACTACCGCTTTCTTCCATGTGCCTCTTACAACACCATGGAGACATTTTTCATTTGTGCTTCTTTCATGCAGTTAGCCAAGCTTGTCAAGTTTTTTTTTTTTTGAAAAAAAAAAAAAATACATACATATATATATATATAATTTTTTTTCCCCTCACTATGTTGCCCAGATTGGTCTTGAACTACCGGGCTCAAGT TTTCTCCAAATACAGATCCAATGTCTTCACTTGTCTATTAAATGCCTCCCATTCCAAATATGATTACCTCTCCCCAGCTCCAATTAAGTCCCTTCTTTCCCCTCTTACTACCGCTTTCTTCCATGTGCCTCTTACAACACCATGGAGACACTTTTCATTTGTGCTTCTTTCATGCAGTTAGCCAAGCTTGTCAAGTTTTTTTTTTTTTGAAAAAAAAAAAAAATACATACATATATATATATATAATTTTTTTTCCCCTCACTATGTTGCCCAGATTGGTCTTGAACTACCGGGCTCAAGT 16 27557749 T C rs7198785_S-3AAAA cytoscan def ParseSitesGetQuery(SitesInfile,Fasta,QueryOutfile,Source): infile = open(SitesInfile,'r') outfile = open(QueryOutfile,'w') counter = 0 outfile.write("#Index\tReference\tAlternate\tChrom\tPos\tRef\tAlt\tIdentifier\tDataType\n") for line in infile: line = line.strip('\n') cols=line.split(':') chrom = cols[0] pos = int(cols[1]) - 1 # 1-based transition ref = cols[2] alt = cols[3] Source='PeddySitesGRCh37' refSeq,altSeq = Site2Seqs(chrom,pos,ref,alt,Fasta) outfile.write("%d\t%s\t%s\t%s\t%d\t%s\t%s\t%s\t%s\n"%(counter,refSeq,altSeq,chrom,pos,ref,alt,line,Source)) counter += 1 # given 1-based pos coordinate, extract seqs and return the 2 seqs for query, one with the ref and one with the alt alleles def Site2Seqs(chrom,pos,ref,alt,fasta): pos = pos-1 refSeq = pybedtools.BedTool.seq((chrom,pos-150,pos+151),fasta) altSeqleft = pybedtools.BedTool.seq((chrom,pos-150,pos),fasta) altSeqright = pybedtools.BedTool.seq((chrom,pos+1,pos+151),fasta) altSeq = altSeqleft + alt + altSeqright return refSeq,altSeq def Main(): ARGS = GetArgs() ParseSitesGetQuery(ARGS.Infile,ARGS.Fasta,ARGS.Outfile,ARGS.Source) # test Site2Seqs # reftest,alttest = Site2Seqs(22,50988105,'G','A',ARGS.Fasta) # print(reftest) # print(alttest) if __name__=="__main__": Main()
1,466
0
91
fac204b97e11e17794e1161b7bf560750117f3ce
49
py
Python
src/thekpi_node/__init__.py
keeplerteam/thekpi
082258c26909254caf46caec1da89438a43548c3
[ "MIT" ]
2
2022-01-21T14:37:50.000Z
2022-01-21T16:06:27.000Z
src/thekpi_node/__init__.py
keeplerteam/thekpi
082258c26909254caf46caec1da89438a43548c3
[ "MIT" ]
null
null
null
src/thekpi_node/__init__.py
keeplerteam/thekpi
082258c26909254caf46caec1da89438a43548c3
[ "MIT" ]
null
null
null
from .node import KpiNode __all__ = ["KpiNode"]
12.25
25
0.714286
from .node import KpiNode __all__ = ["KpiNode"]
0
0
0
1fa0e3b8383b8f9f172b6decfb3c6c2eff282ed3
4,727
py
Python
python/Tests/TestStatic.py
ugirumurera/ta_solver
c3bd83633aca4db785a4d0dc554f924bb26754e1
[ "BSD-3-Clause-LBNL" ]
null
null
null
python/Tests/TestStatic.py
ugirumurera/ta_solver
c3bd83633aca4db785a4d0dc554f924bb26754e1
[ "BSD-3-Clause-LBNL" ]
null
null
null
python/Tests/TestStatic.py
ugirumurera/ta_solver
c3bd83633aca4db785a4d0dc554f924bb26754e1
[ "BSD-3-Clause-LBNL" ]
null
null
null
import unittest import numpy as np from Solvers.Frank_Wolfe_Solver_Static import Frank_Wolfe_Solver from Solvers.Path_Based_Frank_Wolfe_Solver import Path_Based_Frank_Wolfe_Solver #from Solvers.Decomposition_Solver import Decomposition_Solver from Model_Manager.Link_Model_Manager import Link_Model_Manager_class from Java_Connection import Java_Connection from Data_Types.Demand_Assignment_Class import Demand_Assignment_class import os import inspect class TestStatic(unittest.TestCase): @classmethod ''' def test_decomposition_solver(self): number_of_subproblems = 1 start_time1 = timeit.default_timer() assignment_dec, error = Decomposition_Solver(self.traffic_scenario, self.Cost_Function, number_of_subproblems) print "Decomposition finished with error ", error elapsed1 = timeit.default_timer() - start_time1 print ("Decomposition Path-based took %s seconds" % elapsed1) '''
41.464912
121
0.675904
import unittest import numpy as np from Solvers.Frank_Wolfe_Solver_Static import Frank_Wolfe_Solver from Solvers.Path_Based_Frank_Wolfe_Solver import Path_Based_Frank_Wolfe_Solver #from Solvers.Decomposition_Solver import Decomposition_Solver from Model_Manager.Link_Model_Manager import Link_Model_Manager_class from Java_Connection import Java_Connection from Data_Types.Demand_Assignment_Class import Demand_Assignment_class import os import inspect class TestStatic(unittest.TestCase): @classmethod def setUpClass(cls): # make Java connection cls.connection = Java_Connection() # create a static/bpr model manager this_folder = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) configfile = os.path.join(this_folder, os.path.pardir, 'configfiles', 'seven_links.xml') bpr_coefficients = {0L: [1, 0, 0, 0, 1], 1L: [1, 0, 0, 0, 1], 2L: [5, 0, 0, 0, 5], 3L: [2, 0, 0, 0, 2], 4L: [2, 0, 0, 0, 2], 5L: [1, 0, 0, 0, 1], 6L: [5, 0, 0, 0, 5]} cls.model_manager = Link_Model_Manager_class(configfile, "static", cls.connection, None, "bpr", bpr_coefficients) # create a demand assignment api = TestStatic.model_manager.beats_api time_period = 1 # Only have one time period for static model paths_list = list(api.get_path_ids()) commodity_list = list(api.get_commodity_ids()) route_list = {} for path_id in paths_list: route_list[path_id] = api.get_subnetwork_with_id(path_id).get_link_ids() # Creating the demand assignment for initialization cls.demand_assignments = Demand_Assignment_class(route_list, commodity_list, time_period, dt=time_period) demands = {} demand_value = np.zeros(time_period) demand_value1 = np.zeros(time_period) demand_value[0] = 2 demand_value1[0] = 2 demands[(1L, 1L)] = demand_value demands[(2L, 1L)] = demand_value1 demands[(3L, 1L)] = demand_value cls.demand_assignments.set_all_demands(demands) def check_manager(self): self.assertTrue(TestStatic.model_manager.is_valid()) def test_model_run(self): traffic_model = TestStatic.model_manager.traffic_model link_states = traffic_model.Run_Model(TestStatic.demand_assignments) self.assertTrue(self.check_assignments(link_states)) def test_link_cost(self): traffic_model = TestStatic.model_manager.traffic_model link_states = traffic_model.Run_Model(TestStatic.demand_assignments) link_costs = TestStatic.model_manager.cost_function.evaluate_Cost_Function(link_states) self.assertTrue(self.check_link_costs(link_costs)) def test_link_based_fw(self): frank_sol = Frank_Wolfe_Solver(self.model_manager) def test_path_based_fw(self): num_steps = 1 eps = 1e-2 frank_sol = Frank_Wolfe_Solver(self.model_manager) assignment_seq = Path_Based_Frank_Wolfe_Solver(self.model_manager, num_steps) # Cost resulting from the path_based Frank-Wolfe link_states = self.model_manager.traffic_model.Run_Model(assignment_seq) cost_path_based = self.model_manager.cost_function.evaluate_BPR_Potential(link_states) # Cost resulting from link-based Frank-Wolfe cost_link_based = self.model_manager.cost_function.evaluate_BPR_Potential_FW(frank_sol) self.assertTrue(np.abs(cost_link_based-cost_path_based) < eps) ''' def test_decomposition_solver(self): number_of_subproblems = 1 start_time1 = timeit.default_timer() assignment_dec, error = Decomposition_Solver(self.traffic_scenario, self.Cost_Function, number_of_subproblems) print "Decomposition finished with error ", error elapsed1 = timeit.default_timer() - start_time1 print ("Decomposition Path-based took %s seconds" % elapsed1) ''' def check_assignments(self, link_states): links_flows = {(0L,1L): [6], (1L,1L): [4], (2L,1L): [2], (3L,1L): [2], (4L,1L): [2], (5L,1L): [2], (6L,1L): [4]} states = link_states.get_all_states() for key in states.keys(): if states[key][0].get_flow() != links_flows[key][0]: return False return True def check_link_costs(self, link_costs): cost_links = {(0L,1L): [1297], (1L,1L): [257], (2L,1L): [85], (3L,1L): [34], (4L,1L): [34], (5L,1L): [17], (6L,1L): [1285]} states = link_costs.get_all_costs() for key in states.keys(): if states[key][0] != cost_links[key][0]: return False return True
3,559
0
214
7678dbedc0d00e401fec232c6c04c058318a2f5c
3,363
py
Python
tests/test_latency_host_filter.py
luos/nova-latency-scheduler
8e83539ce1dfd080ba86e4e71a2b999e56a91ec8
[ "MIT" ]
1
2017-03-28T19:02:23.000Z
2017-03-28T19:02:23.000Z
tests/test_latency_host_filter.py
luos/nova-latency-scheduler
8e83539ce1dfd080ba86e4e71a2b999e56a91ec8
[ "MIT" ]
null
null
null
tests/test_latency_host_filter.py
luos/nova-latency-scheduler
8e83539ce1dfd080ba86e4e71a2b999e56a91ec8
[ "MIT" ]
null
null
null
from unittest import TestCase from network_filters import LatencyFilter, HostLatencyService
35.03125
88
0.652691
from unittest import TestCase from network_filters import LatencyFilter, HostLatencyService class TestLatencyHostFilter(TestCase): def setUp(self): super(TestLatencyHostFilter, self).setUp() self.latencies = MockHostLatencyService() self.filter = LatencyFilter(self.latencies) def test_given_a_host_with_no_hints_passes(self): self.assertPasses("test-host", {}) def test_given_a_host_with_a_latency_hint_but_no_latency_info_fails(self): self.latencies.returns({}) self.assertFails('test-host', {'latency_to': ['50,target1']}) def test_given_a_host_with_a_latency_hint_and_latency_info_passes(self): self.latencies.returns({'target1': 30}) self.assertPasses('test-host', {'latency_to': ['50,target1']}) def test_given_a_host_with_higher_latency_than_the_hint_fails(self): self.latencies.returns({'target1': 1000}) self.assertFails('test-host', {'latency_to': ['50,target1']}) def test_given_a_host_with_multiple_latencies_if_no_less_than_expected_fails(self): self.latencies.returns({ 'target2': 10000, 'target1': 1000, 'target24': 3333 }) self.assertFails('test-host', {'latency_to': ['50,target1']}) def test_given_a_host_with_multiple_latencies_with_less_than_the_hint_passes(self): self.latencies.returns({ 'target2': 10000, 'target1': 1000, 'target24': 3333 }) self.assertPasses('test-host', {'latency_to': ['1001,target1']}) def test_given_multiple_expectations_when_meets_expectations_passes(self): self.latencies.returns({ 'target2': 50, 'target1': 60, }) self.assertPasses('test-host', {'latency_to': ['1001,target1', '500,target2']}) def test_given_multiple_expectations_when_doesnt_meet_expectations_fails(self): self.latencies.returns({ 'target2': 5000, 'target1': 6000, }) self.assertFails('test-host', {'latency_to': ['1001,target1', '500,target2']}) def test_given_multiple_expectations_when_one_host_doesnt_exist_fails(self): self.latencies.returns({ 'target1': 5000, }) self.assertFails('test-host', {'latency_to': ['1001,target1', '500,target2']}) def test_given_multiple_expectations_when_successful_passes(self): self.latencies.returns({ 'target3': 24234, 'target2': 2000, 'target1': 1000, }) self.assertPasses('test-host', {'latency_to': ['1001,target1', '2001,target2']}) def test_given_multiple_expectations_one_of_them_fails_then_fails(self): self.latencies.returns({ 'target3': 24234, 'target2': 2002, 'target1': 1000, }) self.assertFails('test-host', {'latency_to': ['1001,target1', '2001,target2']}) def assertFails(self, host, hints): assert self.filter.host_passes(host, hints) == False def assertPasses(self, host, hints): assert self.filter.host_passes(host, hints) == True class MockHostLatencyService(HostLatencyService): latencies = {} def get_latencies_from_host(self, host): return self.latencies def returns(self, latencies): self.latencies = latencies
2,725
118
423
7c364bc32aba99d22e5967788cc363abdd9e9b31
484
py
Python
api/setup.py
jim8786453/kiln_share
2d70c8863f7db18069d13cdea319cd113a2d0bbb
[ "BSD-3-Clause" ]
1
2018-03-21T12:27:56.000Z
2018-03-21T12:27:56.000Z
api/setup.py
jim8786453/kiln_share
2d70c8863f7db18069d13cdea319cd113a2d0bbb
[ "BSD-3-Clause" ]
null
null
null
api/setup.py
jim8786453/kiln_share
2d70c8863f7db18069d13cdea319cd113a2d0bbb
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python import os import platform from setuptools import setup from pip.req import parse_requirements req_file = 'requirements.txt' install_reqs = parse_requirements(req_file, session=False) reqs = [str(ir.req) for ir in install_reqs] del os.link setup( author='Jim Kennedy', author_email='jim@kohlstudios.co.uk', description='Api for kilnshare.co.uk', install_requires=reqs, name='kiln_share', packages=['kiln_share'], version='0.0.1', )
22
58
0.727273
#!/usr/bin/env python import os import platform from setuptools import setup from pip.req import parse_requirements req_file = 'requirements.txt' install_reqs = parse_requirements(req_file, session=False) reqs = [str(ir.req) for ir in install_reqs] del os.link setup( author='Jim Kennedy', author_email='jim@kohlstudios.co.uk', description='Api for kilnshare.co.uk', install_requires=reqs, name='kiln_share', packages=['kiln_share'], version='0.0.1', )
0
0
0
adeea26af730e012cda2bb7d0ba780ef3a185e64
4,228
py
Python
backend/foodgram/recipes/views.py
solilov/foodgram_project_react
9b0194f912ff881cd2213550d6b4be71e7587403
[ "MIT" ]
null
null
null
backend/foodgram/recipes/views.py
solilov/foodgram_project_react
9b0194f912ff881cd2213550d6b4be71e7587403
[ "MIT" ]
null
null
null
backend/foodgram/recipes/views.py
solilov/foodgram_project_react
9b0194f912ff881cd2213550d6b4be71e7587403
[ "MIT" ]
null
null
null
from api.filters import IngredientFilter, TagOrAuthorFilter from api.pagination import CustomPagination from api.serializers import (CustomRecipeSerializer, IngredientSerializer, RecipeSerializer, TagSerializer) from django.db.models import Sum from django.http import HttpResponse from django.shortcuts import get_object_or_404 from django_filters.rest_framework import DjangoFilterBackend from recipes.models import (Favorite, Ingredient, IngredientRecipe, Recipe, Shopping_Cart, Tag) from reportlab.pdfbase import pdfmetrics from reportlab.pdfbase.ttfonts import TTFont from reportlab.pdfgen import canvas from rest_framework import status, viewsets from rest_framework.decorators import action from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from rest_framework.views import APIView from rest_framework.viewsets import ReadOnlyModelViewSet
37.415929
79
0.705061
from api.filters import IngredientFilter, TagOrAuthorFilter from api.pagination import CustomPagination from api.serializers import (CustomRecipeSerializer, IngredientSerializer, RecipeSerializer, TagSerializer) from django.db.models import Sum from django.http import HttpResponse from django.shortcuts import get_object_or_404 from django_filters.rest_framework import DjangoFilterBackend from recipes.models import (Favorite, Ingredient, IngredientRecipe, Recipe, Shopping_Cart, Tag) from reportlab.pdfbase import pdfmetrics from reportlab.pdfbase.ttfonts import TTFont from reportlab.pdfgen import canvas from rest_framework import status, viewsets from rest_framework.decorators import action from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from rest_framework.views import APIView from rest_framework.viewsets import ReadOnlyModelViewSet class TagViewSet(ReadOnlyModelViewSet): queryset = Tag.objects.all() serializer_class = TagSerializer filter_backends = [DjangoFilterBackend] filter_fields = ['name', 'slug', 'id'] class IngredientViewSet(ReadOnlyModelViewSet): queryset = Ingredient.objects.all() serializer_class = IngredientSerializer filter_backends = [DjangoFilterBackend] filter_class = IngredientFilter class RecipeViewSet(viewsets.ModelViewSet): serializer_class = RecipeSerializer filter_backends = [DjangoFilterBackend] filter_class = TagOrAuthorFilter pagination_class = CustomPagination def get_queryset(self): if self.request.query_params.get('is_favorited'): return Recipe.objects.filter(favorites__user=self.request.user) elif self.request.query_params.get('is_in_shopping_cart'): return Recipe.objects.filter(shopping_cart__user=self.request.user) return Recipe.objects.all() def perform_create(self, serializer): serializer.save(author=self.request.user) @action(detail=False, methods=['get']) def download_shopping_cart(self, request): user = request.user shopping_list = IngredientRecipe.objects.filter( recipe__shopping_cart__user=user ).values( 'ingredient__name', 'ingredient__measurement_unit' ).annotate(amount=Sum('amount')).order_by() response = HttpResponse(content_type='application/pdf') response['Content-Disposition'] = ( 'attachment; filename="shopping_list.pdf"' ) pdfmetrics.registerFont(TTFont('Petersburg', 'PetersburgITT.ttf')) p = canvas.Canvas(response) p.setFont('Petersburg', 24) p.drawString(200, 800, 'Список покупок') p.setFont('Petersburg', 20) number = 1 height = 750 for i in shopping_list: p.drawString(100, height, text=( f'{number}) {i["ingredient__name"]} - {i["amount"]}' f'{i["ingredient__measurement_unit"]}' )) height -= 20 number += 1 p.showPage() p.save() return response class FavoriteView(APIView): permission_classes = [IsAuthenticated] def get(self, request, id): recipe = get_object_or_404(Recipe, id=id) Favorite.objects.get_or_create(user=request.user, recipe=recipe) serializer = CustomRecipeSerializer(recipe) return Response(serializer.data, status=status.HTTP_201_CREATED) def delete(self, request, id): Favorite.objects.filter(user=request.user, recipe_id=id).delete() return Response(status=status.HTTP_204_NO_CONTENT) class Shopping_CartView(APIView): permission_classes = [IsAuthenticated] def get(self, request, id): recipe = get_object_or_404(Recipe, id=id) Shopping_Cart.objects.create(user=request.user, recipe=recipe) serializer = CustomRecipeSerializer(recipe) return Response(serializer.data, status=status.HTTP_201_CREATED) def delete(self, request, id): Shopping_Cart.objects.filter( user=request.user, recipe_id=id ).delete() return Response(status=status.HTTP_204_NO_CONTENT)
2,284
884
115
a7da0dc79993ceee28e11231a75e0d28a5195097
784
py
Python
back/infolica/alembic/versions/20210906_5a8069c68433.py
maltaesousa/infolica
9b510b706daba8f8a04434d281c1f8730651f25f
[ "MIT" ]
null
null
null
back/infolica/alembic/versions/20210906_5a8069c68433.py
maltaesousa/infolica
9b510b706daba8f8a04434d281c1f8730651f25f
[ "MIT" ]
327
2019-10-29T13:35:25.000Z
2022-03-03T10:01:46.000Z
back/infolica/alembic/versions/20210906_5a8069c68433.py
maltaesousa/infolica
9b510b706daba8f8a04434d281c1f8730651f25f
[ "MIT" ]
5
2019-11-07T15:49:05.000Z
2021-03-08T08:59:56.000Z
"""fix affaire abandon default value Revision ID: 5a8069c68433 Revises: ee79f1259c77 Create Date: 2021-09-06 16:28:58.437853 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '5a8069c68433' down_revision = 'ee79f1259c77' branch_labels = None depends_on = None
25.290323
65
0.655612
"""fix affaire abandon default value Revision ID: 5a8069c68433 Revises: ee79f1259c77 Create Date: 2021-09-06 16:28:58.437853 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '5a8069c68433' down_revision = 'ee79f1259c77' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column('affaire', 'abandon', existing_type=sa.BOOLEAN(), nullable=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column('affaire', 'abandon', existing_type=sa.BOOLEAN(), nullable=True) # ### end Alembic commands ###
421
0
46
93f461036d6eba069464298f7bf6843f8d47e919
1,074
py
Python
fNb-end/src/backend/models/Hangar.py
kauereblin/ifc
071103c4b87a158754f1fe6751984ed0b1760fed
[ "MIT" ]
4
2020-07-23T18:20:00.000Z
2020-11-17T02:38:31.000Z
fNb-end/src/backend/models/Hangar.py
kauereblin/ifc
071103c4b87a158754f1fe6751984ed0b1760fed
[ "MIT" ]
null
null
null
fNb-end/src/backend/models/Hangar.py
kauereblin/ifc
071103c4b87a158754f1fe6751984ed0b1760fed
[ "MIT" ]
null
null
null
from config import db from models.Pilot import Pilot from models.HelicopteroDeCombate import HelicopteroDeCombate
31.588235
79
0.647114
from config import db from models.Pilot import Pilot from models.HelicopteroDeCombate import HelicopteroDeCombate class Hangar(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(254), nullable=False) country = db.Column(db.String(254), nullable=False) pilot_id = db.Column(db.Integer, db.ForeignKey(Pilot.id), nullable=False) pilot = db.relationship("Pilot") helicopter_id = db.Column(db.Integer, db.ForeignKey(HelicopteroDeCombate.id), nullable=False) helicopter = db.relationship("HelicopteroDeCombate") def __str__(self): return f'''{self.id} - {self.name}, {self.country}; Piloto: {self.pilot_id} - {self.pilot}; Helicóptero: {self.helicopter_id} - {self.helicopter}''' def json(self): return { "id": self.id, "name": self.name, "country": self.country, "pilot_id": self.pilot_id, "pilot": self.pilot.json(), "helicopter_id": self.helicopter_id, "helicopter": self.helicopter.json() }
440
498
23
36df2a65cfecf0f2d8cef146751f1d40789fd2ae
1,128
py
Python
Code_Python/Exercicio-03/Leia-três-numeros.py
gabrielf7/code-exercises
b3a8661fadc133395f3c6fb7e926317acf7fa539
[ "MIT" ]
null
null
null
Code_Python/Exercicio-03/Leia-três-numeros.py
gabrielf7/code-exercises
b3a8661fadc133395f3c6fb7e926317acf7fa539
[ "MIT" ]
null
null
null
Code_Python/Exercicio-03/Leia-três-numeros.py
gabrielf7/code-exercises
b3a8661fadc133395f3c6fb7e926317acf7fa539
[ "MIT" ]
null
null
null
#questão 4 num1 = float(input("Digite o primeiro valor: \n")) num2 = float(input("Digite o segundo valor: \n")) num3 = float(input("Digite o terceiro valor: \n")) if(num1 > num2 > num3 or num1 == num2 > num3 or num1 > num2 == num3): maior = num1 segundo = num2 menor = num3 elif num1 > num2 < num3 or num1 == num2 < num3 or num1 > num2 == num3: maior = num1 segundo = num3 menor = num2 if(num2 > num1 > num3 or num2 == num1 > num3 or num2 > num1 == num3): maior = num2 segundo = num1 menor = num3 elif (num2 > num1 < num3 or num2 == num1 < num3 or num2 > num1 == num3): maior = num2 segundo = num3 menor = num1 if(num3 > num1 > num2 or num3 == num1 > num2 or num3 > num1 == num2): maior = num3 segundo = num1 menor = num2 elif (num3 > num1 < num2 or num3 == num1 < num2 or num3 > num1 == num2): maior = num3 segundo = num2 menor = num1 if num1 == num2 == num3: maior = num1 iguais = maior print("Iguais: [", iguais,"]") exit() print("Maior: [", maior, "] | Segundo: [", segundo, "] | Menor: ", [menor])
31.333333
75
0.565603
#questão 4 num1 = float(input("Digite o primeiro valor: \n")) num2 = float(input("Digite o segundo valor: \n")) num3 = float(input("Digite o terceiro valor: \n")) if(num1 > num2 > num3 or num1 == num2 > num3 or num1 > num2 == num3): maior = num1 segundo = num2 menor = num3 elif num1 > num2 < num3 or num1 == num2 < num3 or num1 > num2 == num3: maior = num1 segundo = num3 menor = num2 if(num2 > num1 > num3 or num2 == num1 > num3 or num2 > num1 == num3): maior = num2 segundo = num1 menor = num3 elif (num2 > num1 < num3 or num2 == num1 < num3 or num2 > num1 == num3): maior = num2 segundo = num3 menor = num1 if(num3 > num1 > num2 or num3 == num1 > num2 or num3 > num1 == num2): maior = num3 segundo = num1 menor = num2 elif (num3 > num1 < num2 or num3 == num1 < num2 or num3 > num1 == num2): maior = num3 segundo = num2 menor = num1 if num1 == num2 == num3: maior = num1 iguais = maior print("Iguais: [", iguais,"]") exit() print("Maior: [", maior, "] | Segundo: [", segundo, "] | Menor: ", [menor])
0
0
0
ec43363c255f6adb5d1411a40a6f397b07037274
383
py
Python
Economic_Dispatch/plot_results.py
asuncionjc/Pyomo_Playground
b81a12905fb6cdd041b11f89ee4bbbc20168d4d2
[ "Apache-2.0" ]
1
2019-04-12T14:47:58.000Z
2019-04-12T14:47:58.000Z
Economic_Dispatch/plot_results.py
asuncionjc/Pyomo_Playground
b81a12905fb6cdd041b11f89ee4bbbc20168d4d2
[ "Apache-2.0" ]
null
null
null
Economic_Dispatch/plot_results.py
asuncionjc/Pyomo_Playground
b81a12905fb6cdd041b11f89ee4bbbc20168d4d2
[ "Apache-2.0" ]
1
2021-02-14T18:40:13.000Z
2021-02-14T18:40:13.000Z
# -*- coding: utf-8 -*- """ Created on Wed Apr 10 15:53:54 2019 @author: Asun """ import matplotlib.pyplot as plt import numpy as np
25.533333
99
0.665796
# -*- coding: utf-8 -*- """ Created on Wed Apr 10 15:53:54 2019 @author: Asun """ import matplotlib.pyplot as plt import numpy as np def plot_results(model): x = np.arange(0, 3) y = [model.flow[generating_unit,1].value for generating_unit in model.indexes_generating_units] plt.plot(x, y, color = 'red', marker = 'o', linestyle = "--") plt.savefig('flow_plot.pdf')
226
0
23
de05130838373479be28ff8059892d8eb6a14633
1,787
py
Python
download_hype.py
woctezuma/steam-hype
cb885f8c1c2a4e7b8d344401207e3a7634f52317
[ "MIT" ]
1
2019-08-15T18:52:55.000Z
2019-08-15T18:52:55.000Z
download_hype.py
woctezuma/steam-hype
cb885f8c1c2a4e7b8d344401207e3a7634f52317
[ "MIT" ]
10
2019-08-15T19:05:10.000Z
2020-07-24T05:07:28.000Z
download_hype.py
woctezuma/steam-hype
cb885f8c1c2a4e7b8d344401207e3a7634f52317
[ "MIT" ]
1
2019-08-20T03:32:25.000Z
2019-08-20T03:32:25.000Z
import time import requests from utils import save_results if __name__ == '__main__': main()
20.078652
75
0.604365
import time import requests from utils import save_results def get_steam_hype_url(): # This is not my API. Please use with moderation! url = 'https://steamhype-api.herokuapp.com/calendar' return url def get_time_stamp(): time_stamp = int(time.time() * 1000) return time_stamp def get_steam_hype_params(num_followers=0): params = dict() params['start'] = get_time_stamp() params['current'] = 0 params['followers'] = num_followers params['includedlc'] = 'false' params['price'] = 100 params['discount'] = 0 params['reviews'] = 0 params['score'] = 0 return params def request_data(params=None): if params is None: params = get_steam_hype_params() resp_data = requests.get(url=get_steam_hype_url(), params=params) result = resp_data.json() return result def batch_request_data(params, save_results_to_disk=True, verbose=False): results = dict() while True: print('Request n°{}'.format(params['current'] + 1)) result = request_data(params) if len(result) == 0: break else: for game in result: app_id = game['id'] results[app_id] = game params['current'] += 1 if verbose: print(results) if save_results_to_disk: save_results(results=results) return results def main(num_followers=5000, save_results_to_disk=True): params = get_steam_hype_params(num_followers=num_followers) results = batch_request_data(params=params, save_results_to_disk=save_results_to_disk) return True if __name__ == '__main__': main()
1,543
0
138
538fa6ef11f1d9c920a5d631b5035786fcade951
2,881
py
Python
examples/sine.py
bjodah/finitediff
bfb1940cf5c7ce5c9a3b440d1efd8f8c4128fed8
[ "BSD-2-Clause" ]
27
2016-09-14T11:40:35.000Z
2022-03-05T18:48:26.000Z
examples/sine.py
tutoushaonian/finitediff
bfb1940cf5c7ce5c9a3b440d1efd8f8c4128fed8
[ "BSD-2-Clause" ]
4
2016-04-08T03:55:14.000Z
2018-06-27T11:18:58.000Z
examples/sine.py
tutoushaonian/finitediff
bfb1940cf5c7ce5c9a3b440d1efd8f8c4128fed8
[ "BSD-2-Clause" ]
5
2017-05-25T06:50:40.000Z
2021-09-13T14:16:59.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division, print_function # Python 3 behaviour in Py2 import numpy as np from finitediff import derivatives_at_point_by_finite_diff, interpolate_by_finite_diff def demo_usage(n_data=50, n_fit=537, nhead=5, ntail=5, plot=False, alt=0): """ Plots a noisy sine curve and the fitting to it. Also presents the error and the error in the approximation of its first derivative (cosine curve) Usage example for benchmarking: $ time python sine.py --nhead 3 --ntail 3 --n-fit 500000 --n-data 50000 Usage example for plotting: $ python sine.py --nhead 1 --ntail 1 --plot """ x0, xend = 0, 5 # shaky linspace -5% to +5% noise x_data = ( np.linspace(x0, xend, n_data) + np.random.rand(n_data) * (xend - x0) / n_data / 1.5 ) y_data = np.sin(x_data) * (1.0 + 0.1 * (np.random.rand(n_data) - 0.5)) x_fit = np.linspace(x0, xend, n_fit) # Edges behave badly, work around: x_fit[0] = x_fit[0] + (x_fit[1] - x_fit[0]) / 2 x_fit[-1] = x_fit[-2] + (x_fit[-1] - x_fit[-2]) / 2 if alt: y_fit = np.empty(n_fit) dydx_fit = np.empty(n_fit) for i, xf in enumerate(x_fit): # get index j of first data point beyond xf j = np.where(x_data > xf)[0][0] lower_bound = max(0, j - alt) upper_bound = min(n_data - 1, j + alt) y_fit[i] = derivatives_at_point_by_finite_diff( x_data[lower_bound:upper_bound], y_data[lower_bound:upper_bound], xf, 0 ) dydx_fit[i] = derivatives_at_point_by_finite_diff( x_data[lower_bound:upper_bound], y_data[lower_bound:upper_bound], xf, 1 )[1] else: interp = interpolate_by_finite_diff(x_data, y_data, x_fit, 1, nhead, ntail) y_fit = interp[:, 0] dydx_fit = interp[:, 1] if plot: import matplotlib.pyplot as plt plt.subplot(221) plt.plot(x_data, y_data, "x", label="Data points (sin)") plt.plot(x_fit, y_fit, "-", label="Fitted curve (order=0)") plt.plot(x_data, np.sin(x_data), "-", label="Analytic sin(x)") plt.legend() plt.subplot(222) plt.plot(x_fit, y_fit - np.sin(x_fit), label="Error in order=0") plt.legend() plt.subplot(223) plt.plot(x_fit, dydx_fit, "-", label="Fitted derivative (order=1)") plt.plot(x_data, np.cos(x_data), "-", label="Analytic cos(x)") plt.legend() plt.subplot(224) plt.plot(x_fit, dydx_fit - np.cos(x_fit), label="Error in order=1") plt.legend() plt.show() if __name__ == "__main__": try: from argh import dispatch_command except ImportError: dispatch_command(demo_usage)
30.648936
87
0.596321
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division, print_function # Python 3 behaviour in Py2 import numpy as np from finitediff import derivatives_at_point_by_finite_diff, interpolate_by_finite_diff def demo_usage(n_data=50, n_fit=537, nhead=5, ntail=5, plot=False, alt=0): """ Plots a noisy sine curve and the fitting to it. Also presents the error and the error in the approximation of its first derivative (cosine curve) Usage example for benchmarking: $ time python sine.py --nhead 3 --ntail 3 --n-fit 500000 --n-data 50000 Usage example for plotting: $ python sine.py --nhead 1 --ntail 1 --plot """ x0, xend = 0, 5 # shaky linspace -5% to +5% noise x_data = ( np.linspace(x0, xend, n_data) + np.random.rand(n_data) * (xend - x0) / n_data / 1.5 ) y_data = np.sin(x_data) * (1.0 + 0.1 * (np.random.rand(n_data) - 0.5)) x_fit = np.linspace(x0, xend, n_fit) # Edges behave badly, work around: x_fit[0] = x_fit[0] + (x_fit[1] - x_fit[0]) / 2 x_fit[-1] = x_fit[-2] + (x_fit[-1] - x_fit[-2]) / 2 if alt: y_fit = np.empty(n_fit) dydx_fit = np.empty(n_fit) for i, xf in enumerate(x_fit): # get index j of first data point beyond xf j = np.where(x_data > xf)[0][0] lower_bound = max(0, j - alt) upper_bound = min(n_data - 1, j + alt) y_fit[i] = derivatives_at_point_by_finite_diff( x_data[lower_bound:upper_bound], y_data[lower_bound:upper_bound], xf, 0 ) dydx_fit[i] = derivatives_at_point_by_finite_diff( x_data[lower_bound:upper_bound], y_data[lower_bound:upper_bound], xf, 1 )[1] else: interp = interpolate_by_finite_diff(x_data, y_data, x_fit, 1, nhead, ntail) y_fit = interp[:, 0] dydx_fit = interp[:, 1] if plot: import matplotlib.pyplot as plt plt.subplot(221) plt.plot(x_data, y_data, "x", label="Data points (sin)") plt.plot(x_fit, y_fit, "-", label="Fitted curve (order=0)") plt.plot(x_data, np.sin(x_data), "-", label="Analytic sin(x)") plt.legend() plt.subplot(222) plt.plot(x_fit, y_fit - np.sin(x_fit), label="Error in order=0") plt.legend() plt.subplot(223) plt.plot(x_fit, dydx_fit, "-", label="Fitted derivative (order=1)") plt.plot(x_data, np.cos(x_data), "-", label="Analytic cos(x)") plt.legend() plt.subplot(224) plt.plot(x_fit, dydx_fit - np.cos(x_fit), label="Error in order=1") plt.legend() plt.show() if __name__ == "__main__": try: from argh import dispatch_command except ImportError: def dispatch_command(cb): return cb() dispatch_command(demo_usage)
28
0
31
9271f1a5455a7ecdd71cc83dbca5ba4c204b255a
1,173
py
Python
packages/mdspan/package.py
pdidev/spack
32151f29738895e1f7d96e496c084d6349a9277b
[ "Apache-2.0", "MIT" ]
2
2020-04-09T11:39:41.000Z
2021-12-10T17:45:42.000Z
packages/mdspan/package.py
pdidev/spack
32151f29738895e1f7d96e496c084d6349a9277b
[ "Apache-2.0", "MIT" ]
1
2021-08-12T10:03:26.000Z
2021-08-12T10:03:26.000Z
packages/mdspan/package.py
pdidev/spack
32151f29738895e1f7d96e496c084d6349a9277b
[ "Apache-2.0", "MIT" ]
3
2020-03-27T15:41:45.000Z
2022-02-01T15:03:11.000Z
# Copyright (C) 2020 Commissariat a l'energie atomique et aux energies alternatives (CEA) # and others. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Mdspan(CMakePackage): """Reference implementation of mdspan targeting C++23.""" homepage = "https://github.com/Kokkos/mdspan" git = "https://github.com/Kokkos/mdspan.git" url = "https://github.com/kokkos/mdspan/archive/refs/tags/mdspan-0.2.0.tar.gz" maintainers = ['crtrott'] version('stable', branch='stable', preferred=True) version('0.2.0', sha256='1ce8e2be0588aa6f2ba34c930b06b892182634d93034071c0157cb78fa294212', extension='tar.gz') version('0.1.0', sha256='24c1e4be4870436c6c5e80d38870721b0b6252185b8288d00d8f3491dfba754b', extension='tar.gz') depends_on("cmake@3.12:", type='build') variant('cxx_standard', default='DETECT', description="Override the default CXX_STANDARD to compile with.", values=('DETECT', '14', '17', '20'))
35.545455
115
0.695652
# Copyright (C) 2020 Commissariat a l'energie atomique et aux energies alternatives (CEA) # and others. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Mdspan(CMakePackage): """Reference implementation of mdspan targeting C++23.""" homepage = "https://github.com/Kokkos/mdspan" git = "https://github.com/Kokkos/mdspan.git" url = "https://github.com/kokkos/mdspan/archive/refs/tags/mdspan-0.2.0.tar.gz" maintainers = ['crtrott'] version('stable', branch='stable', preferred=True) version('0.2.0', sha256='1ce8e2be0588aa6f2ba34c930b06b892182634d93034071c0157cb78fa294212', extension='tar.gz') version('0.1.0', sha256='24c1e4be4870436c6c5e80d38870721b0b6252185b8288d00d8f3491dfba754b', extension='tar.gz') depends_on("cmake@3.12:", type='build') variant('cxx_standard', default='DETECT', description="Override the default CXX_STANDARD to compile with.", values=('DETECT', '14', '17', '20')) def cmake_args(self): args = [ self.define_from_variant('MDSPAN_CXX_STANDARD', 'cxx_standard') ] return args
124
0
27
cdb3f49fb732beb3ef7f5d4eef3c47dfc48b1951
307
py
Python
examples/docs_snippets_crag/docs_snippets_crag/concepts/solids_pipelines/linear_pipeline.py
dbatten5/dagster
d76e50295054ffe5a72f9b292ef57febae499528
[ "Apache-2.0" ]
1
2021-07-03T09:05:58.000Z
2021-07-03T09:05:58.000Z
examples/docs_snippets_crag/docs_snippets_crag/concepts/solids_pipelines/linear_pipeline.py
dbatten5/dagster
d76e50295054ffe5a72f9b292ef57febae499528
[ "Apache-2.0" ]
1
2021-06-21T18:30:02.000Z
2021-06-25T21:18:39.000Z
examples/docs_snippets_crag/docs_snippets_crag/concepts/solids_pipelines/linear_pipeline.py
dbatten5/dagster
d76e50295054ffe5a72f9b292ef57febae499528
[ "Apache-2.0" ]
1
2021-09-26T07:29:17.000Z
2021-09-26T07:29:17.000Z
# pylint: disable=unused-argument # start_marker from dagster import pipeline, solid @solid @solid @pipeline # end_marker
13.347826
43
0.710098
# pylint: disable=unused-argument # start_marker from dagster import pipeline, solid @solid def return_one(context) -> int: return 1 @solid def add_one(context, number: int) -> int: return number + 1 @pipeline def linear_pipeline(): add_one(add_one(add_one(return_one()))) # end_marker
110
0
66
18b2f34f7078f46737a2a88c1ad04524675a51e2
1,147
py
Python
snakeskin/sources/source.py
ewanbarr/snakeskin
b41a5393e9b4ab42fd6245e022dd4923be01815b
[ "Apache-2.0" ]
null
null
null
snakeskin/sources/source.py
ewanbarr/snakeskin
b41a5393e9b4ab42fd6245e022dd4923be01815b
[ "Apache-2.0" ]
null
null
null
snakeskin/sources/source.py
ewanbarr/snakeskin
b41a5393e9b4ab42fd6245e022dd4923be01815b
[ "Apache-2.0" ]
null
null
null
import ephem as eph import numpy as np from snakeskin.constants import SEC_TO_SIDRAD
32.771429
82
0.632084
import ephem as eph import numpy as np from snakeskin.constants import SEC_TO_SIDRAD class Source(eph.FixedBody): def __init__(self,ra,dec,tobs=1800.0,name="none",value=1.,obs_config=None): super(Source,self).__init__() self.name = name coords = eph.Equatorial(ra,dec) self._ra = coords.ra self._dec = coords.dec self.tobs = tobs self.value = value self.obs_config = obs_config def azalt(self,telescope): self.compute(telescope) return self.az,self.alt def path(self,telescope,lmst): lat = telescope.lat ha = lmst-self.ra cosha = np.cos(ha) coslat = np.cos(lat) sinlat = np.sin(lat) alt = np.arcsin(sinlat*np.sin(self.dec)+coslat*np.cos(self.dec)*cosha) az = np.arctan2(np.sin(ha),(cosha*sinlat - np.tan(self.dec)*coslat))+np.pi return az,alt def trail(self,telescope,duration=600.0): start_lmst = telescope.sidereal_time() end_lmst = start_lmst+SEC_TO_SIDRAD*duration lmst = np.linspace(start_lmst,end_lmst,100)%(np.pi*2) return path(telescope,lmst)
925
7
130
ac9f99f6f60b9becd44d5f1c6fefe4639be389b0
474
py
Python
xastropy/relativity/__init__.py
bpholden/xastropy
66aff0995a84c6829da65996d2379ba4c946dabe
[ "BSD-3-Clause" ]
3
2015-08-23T00:32:58.000Z
2020-12-31T02:37:52.000Z
xastropy/relativity/__init__.py
Kristall-WangShiwei/xastropy
723fe56cb48d5a5c4cdded839082ee12ef8c6732
[ "BSD-3-Clause" ]
104
2015-07-17T18:31:54.000Z
2018-06-29T17:04:09.000Z
xastropy/relativity/__init__.py
Kristall-WangShiwei/xastropy
723fe56cb48d5a5c4cdded839082ee12ef8c6732
[ "BSD-3-Clause" ]
16
2015-07-17T15:50:37.000Z
2019-04-21T03:42:47.000Z
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ astropy.cosmology contains classes and functions for cosmological distance measures and other cosmology-related calculations. See the `Astropy documentation <http://docs.astropy.org/en/latest/cosmology/index.html>`_ for more detailed usage examples and references. """ from __future__ import (absolute_import, division, print_function, unicode_literals) from .velocities import *
36.461538
69
0.767932
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ astropy.cosmology contains classes and functions for cosmological distance measures and other cosmology-related calculations. See the `Astropy documentation <http://docs.astropy.org/en/latest/cosmology/index.html>`_ for more detailed usage examples and references. """ from __future__ import (absolute_import, division, print_function, unicode_literals) from .velocities import *
0
0
0
4bfa262067e0d0cd970b7cd29211db1db46e96fe
651
py
Python
app/migrations/0003_auto_20181022_1601.py
Evohmike/Nyumba-Kumi-App
80ba9ded12bda6e41c9395a4e439e80f8840d295
[ "MIT" ]
null
null
null
app/migrations/0003_auto_20181022_1601.py
Evohmike/Nyumba-Kumi-App
80ba9ded12bda6e41c9395a4e439e80f8840d295
[ "MIT" ]
null
null
null
app/migrations/0003_auto_20181022_1601.py
Evohmike/Nyumba-Kumi-App
80ba9ded12bda6e41c9395a4e439e80f8840d295
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2018-10-22 13:01 from __future__ import unicode_literals from django.db import migrations, models
25.038462
71
0.605223
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2018-10-22 13:01 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app', '0002_neighbourhood_hood_photo'), ] operations = [ migrations.AddField( model_name='neighbourhood', name='health', field=models.CharField(default='071000000', max_length=15), ), migrations.AddField( model_name='neighbourhood', name='police', field=models.CharField(default='9999', max_length=15), ), ]
0
474
23
30d1cfa49c2d708d5f169d7bff5b66ab9dc3fbca
2,138
py
Python
test_laylib/test_default_engine.py
Layto888/laylib-1.0.1
c7317c29659a476adf6e90eb729b09ce4c49e219
[ "MIT" ]
1
2018-08-04T14:44:42.000Z
2018-08-04T14:44:42.000Z
test_laylib/test_default_engine.py
Layto888/laylib-1.0
c7317c29659a476adf6e90eb729b09ce4c49e219
[ "MIT" ]
null
null
null
test_laylib/test_default_engine.py
Layto888/laylib-1.0
c7317c29659a476adf6e90eb729b09ce4c49e219
[ "MIT" ]
null
null
null
# test module default_engine.py import pytest import logging import os import inspect import sys current_dir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parent_dir = os.path.dirname(current_dir) sys.path.insert(0, parent_dir) from laylib import default_engine logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s') """ @pytest.fixture def surface_env(scope="function"): pg.init() if not pg.display.get_init(): logging.info('unable to init display pygame') set_env = pg.display.set_mode((200, 200)) yield set_env # pg.quit() """ @pytest.fixture @pytest.mark.skip(reason="unskip this test if you're not using travis CI.") @pytest.mark.skip(reason="We can't exit the main_loop this way") @pytest.mark.skip(reason="will not be tested. User interaction") @pytest.mark.skip(reason="will be tested with resources module.")
26.395062
87
0.755379
# test module default_engine.py import pytest import logging import os import inspect import sys current_dir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parent_dir = os.path.dirname(current_dir) sys.path.insert(0, parent_dir) from laylib import default_engine logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s') """ @pytest.fixture def surface_env(scope="function"): pg.init() if not pg.display.get_init(): logging.info('unable to init display pygame') set_env = pg.display.set_mode((200, 200)) yield set_env # pg.quit() """ class _ObjClass(default_engine.DefaultEngine): pass @pytest.fixture def class_default_engine(): new_class = _ObjClass() return new_class @pytest.mark.skip(reason="unskip this test if you're not using travis CI.") def test_surface_env(surface_env): # the screen should not be none. assert surface_env is not None assert surface_env.get_size() == (200, 200) def test_default_engine_attr(class_default_engine): assert isinstance(class_default_engine, default_engine.DefaultEngine) assert class_default_engine.running is True assert class_default_engine.playing is False assert class_default_engine._time_unit == 1000.0 def test_time_setget(class_default_engine): class_default_engine.time_unit = 20.0 assert class_default_engine.time_unit == 20.0 class_default_engine.time_unit = -50.0 assert class_default_engine.time_unit == 1000.0 @pytest.mark.skip(reason="We can't exit the main_loop this way") def test_delta_time_main_loop(class_default_engine): pass @pytest.mark.skip(reason="will not be tested. User interaction") def test_event_listener(): pass @pytest.mark.skip(reason="will be tested with resources module.") def test_load_game(): pass def test_destroy_game(class_default_engine): class_default_engine._destroy_game() assert class_default_engine.all_sprites is not None assert class_default_engine.img is None assert class_default_engine.snd is None assert class_default_engine.fnt is None
966
34
202
e0296db2c64142c0262d853517a11e247c329f34
3,886
py
Python
lingvo/core/base_decoder.py
pizzahan/lingvo
9b85b7ba5d037701302efa807841c05223bc7d1d
[ "Apache-2.0" ]
4
2019-06-08T00:19:06.000Z
2020-08-03T16:28:53.000Z
lingvo/core/base_decoder.py
pizzahan/lingvo
9b85b7ba5d037701302efa807841c05223bc7d1d
[ "Apache-2.0" ]
null
null
null
lingvo/core/base_decoder.py
pizzahan/lingvo
9b85b7ba5d037701302efa807841c05223bc7d1d
[ "Apache-2.0" ]
5
2018-12-11T08:05:16.000Z
2020-05-30T03:40:13.000Z
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Common decoder interface.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from lingvo.core import base_layer from lingvo.core import beam_search_helper from lingvo.core import target_sequence_sampler class BaseDecoder(base_layer.BaseLayer): """Base class for all decoders.""" @classmethod def FProp(self, theta, encoder_outputs, targets): """Decodes `targets` given encoded source. Args: theta: A `.NestedMap` object containing weights' values of this layer and its children layers. encoder_outputs: a NestedMap computed by encoder. targets: A dict of string to tensors representing the targets one try to predict. Returns: A map from metric name (a python string) to a tuple (value, weight). Both value and weight are scalar Tensors. """ predictions = self.ComputePredictions(theta, encoder_outputs, targets) return self.ComputeLoss(theta, predictions, targets)[0] class BaseBeamSearchDecoder(BaseDecoder): """Decoder that does beam search.""" @classmethod @base_layer.initializer def BeamSearchDecode(self, encoder_outputs): # pylint: disable=line-too-long """Performs beam search based decoding. Args: encoder_outputs: the outputs of the encoder. returns: `.BeamSearchDecodeOutput`, A namedtuple whose elements are tensors. """ # pylint: enable=line-too-long raise NotImplementedError('Abstract method')
37.728155
80
0.717962
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Common decoder interface.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from lingvo.core import base_layer from lingvo.core import beam_search_helper from lingvo.core import target_sequence_sampler class BaseDecoder(base_layer.BaseLayer): """Base class for all decoders.""" @classmethod def Params(cls): p = super(BaseDecoder, cls).Params() p.Define( 'packed_input', False, 'If True, decoder and all layers support ' 'multiple examples in a single sequence.') return p def FProp(self, theta, encoder_outputs, targets): """Decodes `targets` given encoded source. Args: theta: A `.NestedMap` object containing weights' values of this layer and its children layers. encoder_outputs: a NestedMap computed by encoder. targets: A dict of string to tensors representing the targets one try to predict. Returns: A map from metric name (a python string) to a tuple (value, weight). Both value and weight are scalar Tensors. """ predictions = self.ComputePredictions(theta, encoder_outputs, targets) return self.ComputeLoss(theta, predictions, targets)[0] def ComputePredictions(self, theta, encoder_outputs, targets): raise NotImplementedError('Abstract method: %s' % type(self)) def ComputeLoss(self, theta, predictions, targets): raise NotImplementedError('Abstract method: %s' % type(self)) class BaseBeamSearchDecoder(BaseDecoder): """Decoder that does beam search.""" @classmethod def Params(cls): p = super(BaseBeamSearchDecoder, cls).Params() p.Define('target_sos_id', 1, 'Id of the target sequence sos symbol.') p.Define('target_eos_id', 2, 'Id of the target sequence eos symbol.') # TODO(rpang): remove target_seq_len and use beam_search.target_seq_len # instead. p.Define('target_seq_len', 0, 'Target seq length.') p.Define('beam_search', beam_search_helper.BeamSearchHelper.Params(), 'BeamSearchHelper params.') p.Define('target_sequence_sampler', target_sequence_sampler.TargetSequenceSampler.Params(), 'TargetSequenceSampler params.') return p @base_layer.initializer def __init__(self, params): super(BaseBeamSearchDecoder, self).__init__(params) p = self.params p.beam_search.target_seq_len = p.target_seq_len p.beam_search.target_sos_id = p.target_sos_id p.beam_search.target_eos_id = p.target_eos_id self.CreateChild('beam_search', p.beam_search) p.target_sequence_sampler.target_seq_len = p.target_seq_len p.target_sequence_sampler.target_sos_id = p.target_sos_id p.target_sequence_sampler.target_eos_id = p.target_eos_id self.CreateChild('target_sequence_sampler', p.target_sequence_sampler) def BeamSearchDecode(self, encoder_outputs): # pylint: disable=line-too-long """Performs beam search based decoding. Args: encoder_outputs: the outputs of the encoder. returns: `.BeamSearchDecodeOutput`, A namedtuple whose elements are tensors. """ # pylint: enable=line-too-long raise NotImplementedError('Abstract method')
1,563
0
122
85d102b6cba4ef055e73d753952668f328b5a301
1,225
py
Python
tests/runtime/asset/test_persistent.py
formlio/forml
fd070da74a0107e37c0c643dd8df8680618fef74
[ "Apache-2.0" ]
78
2020-11-04T18:27:20.000Z
2022-02-07T03:32:53.000Z
tests/runtime/asset/test_persistent.py
formlio/forml
fd070da74a0107e37c0c643dd8df8680618fef74
[ "Apache-2.0" ]
3
2020-11-05T20:42:15.000Z
2021-01-13T19:57:01.000Z
tests/runtime/asset/test_persistent.py
formlio/forml
fd070da74a0107e37c0c643dd8df8680618fef74
[ "Apache-2.0" ]
7
2020-11-18T17:18:15.000Z
2021-03-24T05:14:29.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ ForML persistent unit tests. """ # pylint: disable=no-self-use from forml.runtime import asset class TestRegistry: """Registry unit tests.""" def test_get(self, registry: asset.Registry, project_name: asset.Project.Key, populated_lineage: asset.Lineage.Key): """Test lineage get.""" lineage = asset.Directory(registry).get(project_name).get(populated_lineage) assert lineage.key == populated_lineage
38.28125
120
0.75102
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ ForML persistent unit tests. """ # pylint: disable=no-self-use from forml.runtime import asset class TestRegistry: """Registry unit tests.""" def test_get(self, registry: asset.Registry, project_name: asset.Project.Key, populated_lineage: asset.Lineage.Key): """Test lineage get.""" lineage = asset.Directory(registry).get(project_name).get(populated_lineage) assert lineage.key == populated_lineage
0
0
0
6929622484867a36adedfe910766d009df4df761
491
py
Python
teste_requests.py
stevillis/gu-escola
2b26ec53e63fb70447c7a0eb13ab9c6e473122e0
[ "MIT" ]
null
null
null
teste_requests.py
stevillis/gu-escola
2b26ec53e63fb70447c7a0eb13ab9c6e473122e0
[ "MIT" ]
null
null
null
teste_requests.py
stevillis/gu-escola
2b26ec53e63fb70447c7a0eb13ab9c6e473122e0
[ "MIT" ]
null
null
null
import requests BASE_URL = 'http://localhost:8000/api/v2/' # GET Avaliacoes """ response = requests.get(f'{BASE_URL}avaliacoes') print(response) print(response.status_code) avaliacoes = response.json() print(avaliacoes) print(avaliacoes.get('count')) print(avaliacoes.get('results')) """ # GET Cursos headers = { 'Authorization': 'Token 6e6ab3885e67fcc06fabc926a277b07c3bd86be8' } response = requests.get(f'{BASE_URL}cursos', headers=headers) print(response.json().get('results'))
19.64
69
0.745418
import requests BASE_URL = 'http://localhost:8000/api/v2/' # GET Avaliacoes """ response = requests.get(f'{BASE_URL}avaliacoes') print(response) print(response.status_code) avaliacoes = response.json() print(avaliacoes) print(avaliacoes.get('count')) print(avaliacoes.get('results')) """ # GET Cursos headers = { 'Authorization': 'Token 6e6ab3885e67fcc06fabc926a277b07c3bd86be8' } response = requests.get(f'{BASE_URL}cursos', headers=headers) print(response.json().get('results'))
0
0
0
d5b5b6fef388dc9909b4b8f5f7507dcc08300c41
4,852
py
Python
submissions/aartiste/myKMeans.py
dillonpoff/aima-python
2eadb43f6ede9c7a2e211ea38dff3fa5fd5c91df
[ "MIT" ]
1
2018-08-24T14:04:18.000Z
2018-08-24T14:04:18.000Z
submissions/aartiste/myKMeans.py
dillonpoff/aima-python
2eadb43f6ede9c7a2e211ea38dff3fa5fd5c91df
[ "MIT" ]
null
null
null
submissions/aartiste/myKMeans.py
dillonpoff/aima-python
2eadb43f6ede9c7a2e211ea38dff3fa5fd5c91df
[ "MIT" ]
null
null
null
from sklearn.cluster import KMeans import traceback from submissions.aartiste import election from submissions.aartiste import county_demographics trumpECHP = DataFrame() ''' Extract data from the CORGIS elections, and merge it with the CORGIS demographics. Both data sets are organized by county and state. ''' joint = {} elections = election.get_results() for county in elections: try: st = county['Location']['State Abbreviation'] countyST = county['Location']['County'] + st trump = county['Vote Data']['Donald Trump']['Percent of Votes'] joint[countyST] = {} joint[countyST]['ST']= st joint[countyST]['Trump'] = trump except: traceback.print_exc() demographics = county_demographics.get_all_counties() for county in demographics: try: countyNames = county['County'].split() cName = ' '.join(countyNames[:-1]) st = county['State'] countyST = cName + st # elderly = # college = # home = # poverty = if countyST in joint: joint[countyST]['Elderly'] = county['Age']["Percent 65 and Older"] joint[countyST]['HighSchool'] = county['Education']["High School or Higher"] joint[countyST]['College'] = county['Education']["Bachelor's Degree or Higher"] joint[countyST]['White'] = county['Ethnicities']["White Alone, not Hispanic or Latino"] joint[countyST]['Persons'] = county['Housing']["Persons per Household"] joint[countyST]['Home'] = county['Housing']["Homeownership Rate"] joint[countyST]['Income'] = county['Income']["Median Houseold Income"] joint[countyST]['Poverty'] = county['Income']["Persons Below Poverty Level"] joint[countyST]['Sales'] = county['Sales']["Retail Sales per Capita"] except: traceback.print_exc() ''' Remove the counties that did not appear in both samples. ''' intersection = {} for countyST in joint: if 'College' in joint[countyST]: intersection[countyST] = joint[countyST] trumpECHP.data = [] ''' Build the input frame, row by row. ''' for countyST in intersection: # choose the input values row = [] for key in intersection[countyST]: if key in ['ST', 'Trump']: continue row.append(intersection[countyST][key]) trumpECHP.data.append(row) firstCounty = next(iter(intersection.keys())) firstRow = intersection[firstCounty] trumpECHP.feature_names = list(firstRow.keys()) trumpECHP.feature_names.remove('ST') trumpECHP.feature_names.remove('Trump') ''' Build the target list, one entry for each row in the input frame. The Naive Bayesian network is a classifier, i.e. it sorts data points into bins. The best it can do to estimate a continuous variable is to break the domain into segments, and predict the segment into which the variable's value will fall. In this example, I'm breaking Trump's % into two arbitrary segments. ''' trumpECHP.target = [] for countyST in intersection: # choose the target tt = trumpTarget(intersection[countyST]['Trump']) trumpECHP.target.append(tt) trumpECHP.target_names = [ 'Trump <= 45%', 'Trump > 45%', ] ''' Try scaling the data. ''' trumpScaled = DataFrame() setupScales(trumpECHP.data) trumpScaled.data = scaleGrid(trumpECHP.data) trumpScaled.feature_names = trumpECHP.feature_names trumpScaled.target = trumpECHP.target trumpScaled.target_names = trumpECHP.target_names ''' Make a customn classifier, ''' km = KMeans( n_clusters=2, # max_iter=300, # n_init=10, # init='k-means++', # algorithm='auto', # precompute_distances='auto', # tol=1e-4, # n_jobs=-1, # random_state=numpy.RandomState, # verbose=0, # copy_x=True, ) Examples = { 'Trump': { 'frame': trumpScaled, }, 'TrumpCustom': { 'frame': trumpScaled, 'kmeans': km }, }
27.568182
99
0.620569
from sklearn.cluster import KMeans import traceback from submissions.aartiste import election from submissions.aartiste import county_demographics class DataFrame: data = [] feature_names = [] target = [] target_names = [] trumpECHP = DataFrame() ''' Extract data from the CORGIS elections, and merge it with the CORGIS demographics. Both data sets are organized by county and state. ''' joint = {} elections = election.get_results() for county in elections: try: st = county['Location']['State Abbreviation'] countyST = county['Location']['County'] + st trump = county['Vote Data']['Donald Trump']['Percent of Votes'] joint[countyST] = {} joint[countyST]['ST']= st joint[countyST]['Trump'] = trump except: traceback.print_exc() demographics = county_demographics.get_all_counties() for county in demographics: try: countyNames = county['County'].split() cName = ' '.join(countyNames[:-1]) st = county['State'] countyST = cName + st # elderly = # college = # home = # poverty = if countyST in joint: joint[countyST]['Elderly'] = county['Age']["Percent 65 and Older"] joint[countyST]['HighSchool'] = county['Education']["High School or Higher"] joint[countyST]['College'] = county['Education']["Bachelor's Degree or Higher"] joint[countyST]['White'] = county['Ethnicities']["White Alone, not Hispanic or Latino"] joint[countyST]['Persons'] = county['Housing']["Persons per Household"] joint[countyST]['Home'] = county['Housing']["Homeownership Rate"] joint[countyST]['Income'] = county['Income']["Median Houseold Income"] joint[countyST]['Poverty'] = county['Income']["Persons Below Poverty Level"] joint[countyST]['Sales'] = county['Sales']["Retail Sales per Capita"] except: traceback.print_exc() ''' Remove the counties that did not appear in both samples. ''' intersection = {} for countyST in joint: if 'College' in joint[countyST]: intersection[countyST] = joint[countyST] trumpECHP.data = [] ''' Build the input frame, row by row. ''' for countyST in intersection: # choose the input values row = [] for key in intersection[countyST]: if key in ['ST', 'Trump']: continue row.append(intersection[countyST][key]) trumpECHP.data.append(row) firstCounty = next(iter(intersection.keys())) firstRow = intersection[firstCounty] trumpECHP.feature_names = list(firstRow.keys()) trumpECHP.feature_names.remove('ST') trumpECHP.feature_names.remove('Trump') ''' Build the target list, one entry for each row in the input frame. The Naive Bayesian network is a classifier, i.e. it sorts data points into bins. The best it can do to estimate a continuous variable is to break the domain into segments, and predict the segment into which the variable's value will fall. In this example, I'm breaking Trump's % into two arbitrary segments. ''' trumpECHP.target = [] def trumpTarget(percentage): if percentage > 45: return 1 return 0 for countyST in intersection: # choose the target tt = trumpTarget(intersection[countyST]['Trump']) trumpECHP.target.append(tt) trumpECHP.target_names = [ 'Trump <= 45%', 'Trump > 45%', ] ''' Try scaling the data. ''' trumpScaled = DataFrame() def setupScales(grid): global min, max min = list(grid[0]) max = list(grid[0]) for row in range(1, len(grid)): for col in range(len(grid[row])): cell = grid[row][col] if cell < min[col]: min[col] = cell if cell > max[col]: max[col] = cell def scaleGrid(grid): newGrid = [] for row in range(len(grid)): newRow = [] for col in range(len(grid[row])): try: cell = grid[row][col] scaled = (cell - min[col]) \ / (max[col] - min[col]) newRow.append(scaled) except: pass newGrid.append(newRow) return newGrid setupScales(trumpECHP.data) trumpScaled.data = scaleGrid(trumpECHP.data) trumpScaled.feature_names = trumpECHP.feature_names trumpScaled.target = trumpECHP.target trumpScaled.target_names = trumpECHP.target_names ''' Make a customn classifier, ''' km = KMeans( n_clusters=2, # max_iter=300, # n_init=10, # init='k-means++', # algorithm='auto', # precompute_distances='auto', # tol=1e-4, # n_jobs=-1, # random_state=numpy.RandomState, # verbose=0, # copy_x=True, ) Examples = { 'Trump': { 'frame': trumpScaled, }, 'TrumpCustom': { 'frame': trumpScaled, 'kmeans': km }, }
759
70
92
f45d5ecb43560f81497d317a23712bf1eaf8d15f
603
py
Python
initialize_points_w.py
NCBI-Hackathons/McDiff
43037967e65e8dbdda18c891175c93537b98a238
[ "MIT" ]
3
2018-06-21T15:16:25.000Z
2018-06-21T22:42:17.000Z
initialize_points_w.py
NCBI-Hackathons/McDiff
43037967e65e8dbdda18c891175c93537b98a238
[ "MIT" ]
null
null
null
initialize_points_w.py
NCBI-Hackathons/McDiff
43037967e65e8dbdda18c891175c93537b98a238
[ "MIT" ]
1
2018-06-25T16:17:04.000Z
2018-06-25T16:17:04.000Z
from shapely import geometry # import random # import numpy as np # numParticles = 120 # point_list = [[0,0],[0,1],[1,1],[1,0]] # poly = geometry.Polygon(point_list) # print generate_random_points(numParticles, poly)
25.125
71
0.706468
from shapely import geometry # import random # import numpy as np # numParticles = 120 # point_list = [[0,0],[0,1],[1,1],[1,0]] # poly = geometry.Polygon(point_list) def generate_random_points(N, poly): list_of_points = np.zeros((2, N)) minx,miny,maxx,maxy = poly.bounds counter = 0 while counter < N: punto = (np.random.uniform(minx, maxx), np.random.uniform(miny,maxy)) p = geometry.Point(punto) if poly.contains(p): list_of_points[0,counter] = punto[0] list_of_points[1,counter] = punto[1] counter += 1 return list_of_points # print generate_random_points(numParticles, poly)
360
0
23
c67cc3624a702cafd7e7246abe8b88132e111d61
53
py
Python
modules/__init__.py
richardHaw/nagare
4909c4ba8833e7cf5152e39a7bc58a558aaa2c7c
[ "MIT" ]
null
null
null
modules/__init__.py
richardHaw/nagare
4909c4ba8833e7cf5152e39a7bc58a558aaa2c7c
[ "MIT" ]
null
null
null
modules/__init__.py
richardHaw/nagare
4909c4ba8833e7cf5152e39a7bc58a558aaa2c7c
[ "MIT" ]
null
null
null
# this file is needed for python2, delete for python3
53
53
0.792453
# this file is needed for python2, delete for python3
0
0
0
54cd06ce2ea0585ac5ee273e70cb010a30aa3f06
9,713
py
Python
python/SAGEMAKER_NOTEBOOK_NO_DIRECT_INTERNET_ACCESS/SAGEMAKER_NOTEBOOK_NO_DIRECT_INTERNET_ACCESS_test.py
docebo/aws-config-rules
75f92bcad644bd71f19bbc15cf99e6d6de6b8227
[ "CC0-1.0" ]
1,295
2016-03-01T23:06:33.000Z
2022-03-31T07:17:53.000Z
python/SAGEMAKER_NOTEBOOK_NO_DIRECT_INTERNET_ACCESS/SAGEMAKER_NOTEBOOK_NO_DIRECT_INTERNET_ACCESS_test.py
tied/aws-config-rules
7c66e109c1225111d2ab8d1811d6e80dea0affcb
[ "CC0-1.0" ]
287
2016-03-01T19:51:43.000Z
2022-01-06T04:59:55.000Z
python/SAGEMAKER_NOTEBOOK_NO_DIRECT_INTERNET_ACCESS/SAGEMAKER_NOTEBOOK_NO_DIRECT_INTERNET_ACCESS_test.py
tied/aws-config-rules
7c66e109c1225111d2ab8d1811d6e80dea0affcb
[ "CC0-1.0" ]
744
2016-03-01T18:33:00.000Z
2022-03-31T18:46:44.000Z
# Copyright 2017-2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may # not use this file except in compliance with the License. A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for # the specific language governing permissions and limitations under the License. import sys import unittest try: from unittest.mock import MagicMock except ImportError: from mock import MagicMock ############## # Parameters # ############## # Define the default resource to report to Config Rules DEFAULT_RESOURCE_TYPE = 'AWS::::Account' ############# # Main Code # ############# CONFIG_CLIENT_MOCK = MagicMock() STS_CLIENT_MOCK = MagicMock() SAGEMAKER_CLIENT_MOCK = MagicMock() sys.modules['boto3'] = Boto3Mock() RULE = __import__('SAGEMAKER_NOTEBOOK_NO_DIRECT_INTERNET_ACCESS') #################### # Helper Functions # ####################
50.853403
182
0.724699
# Copyright 2017-2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may # not use this file except in compliance with the License. A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for # the specific language governing permissions and limitations under the License. import sys import unittest try: from unittest.mock import MagicMock except ImportError: from mock import MagicMock ############## # Parameters # ############## # Define the default resource to report to Config Rules DEFAULT_RESOURCE_TYPE = 'AWS::::Account' ############# # Main Code # ############# CONFIG_CLIENT_MOCK = MagicMock() STS_CLIENT_MOCK = MagicMock() SAGEMAKER_CLIENT_MOCK = MagicMock() class Boto3Mock(): @staticmethod def client(client_name, *args, **kwargs): if client_name == 'config': return CONFIG_CLIENT_MOCK if client_name == 'sts': return STS_CLIENT_MOCK if client_name == 'sagemaker': return SAGEMAKER_CLIENT_MOCK raise Exception("Attempting to create an unknown client") sys.modules['boto3'] = Boto3Mock() RULE = __import__('SAGEMAKER_NOTEBOOK_NO_DIRECT_INTERNET_ACCESS') class ComplianceTest(unittest.TestCase): notebook_instances_list = [{'NotebookInstances': [{'NotebookInstanceName': 'trial12'}, {'NotebookInstanceName': 'trial123'}]}] notebooks_direct_internet = [{'NotebookInstanceName': 'trial12', 'DirectInternetAccess': 'Enabled'}, {'NotebookInstanceName': 'trial123', 'DirectInternetAccess': 'Enabled'}] notebooks_no_direct_internet = [{'NotebookInstanceName': 'trial12', 'DirectInternetAccess': 'Disabled'}, {'NotebookInstanceName': 'trial123', 'DirectInternetAccess': 'Disabled'}] notebooks_both = [{'NotebookInstanceName': 'trial12', 'DirectInternetAccess': 'Disabled'}, {'NotebookInstanceName': 'trial123', 'DirectInternetAccess': 'Enabled'}] #SCENARIO 1: No Amazon SageMaker notebook instances exist def test_scenario_1_no_notebooks(self): notebook_instances_list = [{'NotebookInstances': []}] RULE.ASSUME_ROLE_MODE = False SAGEMAKER_CLIENT_MOCK.configure_mock(**{ "get_paginator.return_value": SAGEMAKER_CLIENT_MOCK, "paginate.return_value": notebook_instances_list}) response = RULE.lambda_handler(build_lambda_scheduled_event(), {}) resp_expected = [build_expected_response('NOT_APPLICABLE', '123456789012', 'AWS::::Account')] assert_successful_evaluation(self, response, resp_expected) #SCENARIO 2: DirectInternetAccess is set to Enabled for the Amazon SageMaker notebook instances def test_scenario_2_direct_internet_access(self): RULE.ASSUME_ROLE_MODE = False annotation = "This Amazon SageMaker Notebook Instance has direct internet access." SAGEMAKER_CLIENT_MOCK.configure_mock(**{ "get_paginator.return_value": SAGEMAKER_CLIENT_MOCK, "paginate.return_value": self.notebook_instances_list}) SAGEMAKER_CLIENT_MOCK.describe_notebook_instance = MagicMock(side_effect=self.notebooks_direct_internet) response = RULE.lambda_handler(build_lambda_scheduled_event(), {}) resp_expected = [build_expected_response('NON_COMPLIANT', compliance_resource_id='trial12', annotation=annotation), build_expected_response('NON_COMPLIANT', compliance_resource_id='trial123', annotation=annotation)] assert_successful_evaluation(self, response, resp_expected, evaluations_count=2) #SCENARIO 3: DirectInternetAccess is set to Disabled for the Amazon SageMaker notebook instances def test_scenario_3_no_direct_internet_access(self): RULE.ASSUME_ROLE_MODE = False SAGEMAKER_CLIENT_MOCK.configure_mock(**{ "get_paginator.return_value": SAGEMAKER_CLIENT_MOCK, "paginate.return_value": self.notebook_instances_list}) SAGEMAKER_CLIENT_MOCK.describe_notebook_instance = MagicMock(side_effect=self.notebooks_no_direct_internet) response = RULE.lambda_handler(build_lambda_scheduled_event(), {}) resp_expected = [build_expected_response('COMPLIANT', compliance_resource_id='trial12'), build_expected_response('COMPLIANT', compliance_resource_id='trial123')] assert_successful_evaluation(self, response, resp_expected, evaluations_count=2) #Test for a mix of compliance types def test_scenario_2_and_3(self): RULE.ASSUME_ROLE_MODE = False annotation = "This Amazon SageMaker Notebook Instance has direct internet access." SAGEMAKER_CLIENT_MOCK.configure_mock(**{ "get_paginator.return_value": SAGEMAKER_CLIENT_MOCK, "paginate.return_value": self.notebook_instances_list}) SAGEMAKER_CLIENT_MOCK.describe_notebook_instance = MagicMock(side_effect=self.notebooks_both) response = RULE.lambda_handler(build_lambda_scheduled_event(), {}) resp_expected = [build_expected_response('COMPLIANT', compliance_resource_id='trial12'), build_expected_response('NON_COMPLIANT', compliance_resource_id='trial123', annotation=annotation)] assert_successful_evaluation(self, response, resp_expected, evaluations_count=2) #################### # Helper Functions # #################### def build_lambda_configurationchange_event(invoking_event, rule_parameters=None): event_to_return = { 'configRuleName':'myrule', 'executionRoleArn':'roleArn', 'eventLeftScope': False, 'invokingEvent': invoking_event, 'accountId': '123456789012', 'configRuleArn': 'arn:aws:config:us-east-1:123456789012:config-rule/config-rule-8fngan', 'resultToken':'token' } if rule_parameters: event_to_return['ruleParameters'] = rule_parameters return event_to_return def build_lambda_scheduled_event(rule_parameters=None): invoking_event = '{"messageType":"ScheduledNotification","notificationCreationTime":"2017-12-23T22:11:18.158Z"}' event_to_return = { 'configRuleName':'myrule', 'executionRoleArn':'roleArn', 'eventLeftScope': False, 'invokingEvent': invoking_event, 'accountId': '123456789012', 'configRuleArn': 'arn:aws:config:us-east-1:123456789012:config-rule/config-rule-8fngan', 'resultToken':'token' } if rule_parameters: event_to_return['ruleParameters'] = rule_parameters return event_to_return def build_expected_response(compliance_type, compliance_resource_id, compliance_resource_type=DEFAULT_RESOURCE_TYPE, annotation=None): if not annotation: return { 'ComplianceType': compliance_type, 'ComplianceResourceId': compliance_resource_id, 'ComplianceResourceType': compliance_resource_type } return { 'ComplianceType': compliance_type, 'ComplianceResourceId': compliance_resource_id, 'ComplianceResourceType': compliance_resource_type, 'Annotation': annotation } def assert_successful_evaluation(test_class, response, resp_expected, evaluations_count=1): if isinstance(response, dict): test_class.assertEquals(resp_expected['ComplianceResourceType'], response['ComplianceResourceType']) test_class.assertEquals(resp_expected['ComplianceResourceId'], response['ComplianceResourceId']) test_class.assertEquals(resp_expected['ComplianceType'], response['ComplianceType']) test_class.assertTrue(response['OrderingTimestamp']) if 'Annotation' in resp_expected or 'Annotation' in response: test_class.assertEquals(resp_expected['Annotation'], response['Annotation']) elif isinstance(response, list): test_class.assertEquals(evaluations_count, len(response)) for i, response_expected in enumerate(resp_expected): test_class.assertEquals(response_expected['ComplianceResourceType'], response[i]['ComplianceResourceType']) test_class.assertEquals(response_expected['ComplianceResourceId'], response[i]['ComplianceResourceId']) test_class.assertEquals(response_expected['ComplianceType'], response[i]['ComplianceType']) test_class.assertTrue(response[i]['OrderingTimestamp']) if 'Annotation' in response_expected or 'Annotation' in response[i]: test_class.assertEquals(response_expected['Annotation'], response[i]['Annotation']) def assert_customer_error_response(test_class, response, customer_error_code=None, customer_error_message=None): if customer_error_code: test_class.assertEqual(customer_error_code, response['customerErrorCode']) if customer_error_message: test_class.assertEqual(customer_error_message, response['customerErrorMessage']) test_class.assertTrue(response['customerErrorCode']) test_class.assertTrue(response['customerErrorMessage']) if "internalErrorMessage" in response: test_class.assertTrue(response['internalErrorMessage']) if "internalErrorDetails" in response: test_class.assertTrue(response['internalErrorDetails']) def sts_mock(): assume_role_response = { "Credentials": { "AccessKeyId": "string", "SecretAccessKey": "string", "SessionToken": "string"}} STS_CLIENT_MOCK.reset_mock(return_value=True) STS_CLIENT_MOCK.assume_role = MagicMock(return_value=assume_role_response)
7,249
1,132
184
0e295a939cb3bb447622e932af4f06083d13ea4b
75
py
Python
starling_sim/basemodel/topology/__init__.py
tellae/starling
56121c728eb5de3dfc77cdf08da89548f3315c87
[ "CECILL-B" ]
19
2021-02-16T12:32:22.000Z
2022-01-06T11:16:44.000Z
starling_sim/basemodel/topology/__init__.py
tellae/starling
56121c728eb5de3dfc77cdf08da89548f3315c87
[ "CECILL-B" ]
20
2021-01-13T20:58:07.000Z
2022-03-21T15:53:07.000Z
starling_sim/basemodel/topology/__init__.py
tellae/starling
56121c728eb5de3dfc77cdf08da89548f3315c87
[ "CECILL-B" ]
null
null
null
""" This package contains the modules related to simulation topologies """
18.75
66
0.773333
""" This package contains the modules related to simulation topologies """
0
0
0
7a9c4005ae9ed6fcb141368f64486d286ecf01ed
3,288
py
Python
networking_onos/extensions/callback.py
sanghoshin/networking-onos
2baec5f74e2721e5f8dffd57b3ef7a27034fa54a
[ "Apache-2.0" ]
null
null
null
networking_onos/extensions/callback.py
sanghoshin/networking-onos
2baec5f74e2721e5f8dffd57b3ef7a27034fa54a
[ "Apache-2.0" ]
null
null
null
networking_onos/extensions/callback.py
sanghoshin/networking-onos
2baec5f74e2721e5f8dffd57b3ef7a27034fa54a
[ "Apache-2.0" ]
1
2017-10-19T04:23:14.000Z
2017-10-19T04:23:14.000Z
# Copyright (c) 2017 SK Telecom Ltd # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from neutron_lib.callbacks import events from neutron_lib.callbacks import registry from neutron_lib.callbacks import resources from networking_onos.extensions import constant as onos_const _OPERATION_MAPPING = { events.PRECOMMIT_CREATE: onos_const.ONOS_CREATE, events.PRECOMMIT_UPDATE: onos_const.ONOS_UPDATE, events.PRECOMMIT_DELETE: onos_const.ONOS_DELETE, events.AFTER_CREATE: onos_const.ONOS_CREATE, events.AFTER_UPDATE: onos_const.ONOS_UPDATE, events.AFTER_DELETE: onos_const.ONOS_DELETE, } _RESOURCE_MAPPING = { resources.SECURITY_GROUP: onos_const.ONOS_SG, resources.SECURITY_GROUP_RULE: onos_const.ONOS_SG_RULE, }
39.614458
79
0.680961
# Copyright (c) 2017 SK Telecom Ltd # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from neutron_lib.callbacks import events from neutron_lib.callbacks import registry from neutron_lib.callbacks import resources from networking_onos.extensions import constant as onos_const _OPERATION_MAPPING = { events.PRECOMMIT_CREATE: onos_const.ONOS_CREATE, events.PRECOMMIT_UPDATE: onos_const.ONOS_UPDATE, events.PRECOMMIT_DELETE: onos_const.ONOS_DELETE, events.AFTER_CREATE: onos_const.ONOS_CREATE, events.AFTER_UPDATE: onos_const.ONOS_UPDATE, events.AFTER_DELETE: onos_const.ONOS_DELETE, } _RESOURCE_MAPPING = { resources.SECURITY_GROUP: onos_const.ONOS_SG, resources.SECURITY_GROUP_RULE: onos_const.ONOS_SG_RULE, } class OnosSecurityGroupHandler(object): def __init__(self, precommit, postcommit): assert postcommit is not None self._precommit = precommit self._postcommit = postcommit self._subscribe() def _subscribe(self): if self._precommit is not None: for event in (events.PRECOMMIT_CREATE, events.PRECOMMIT_DELETE): registry.subscribe(self.sg_callback_precommit, resources.SECURITY_GROUP, event) registry.subscribe(self.sg_callback_precommit, resources.SECURITY_GROUP_RULE, event) registry.subscribe(self.sg_callback_precommit, resources.SECURITY_GROUP, events.PRECOMMIT_UPDATE) for event in (events.AFTER_CREATE, events.AFTER_DELETE): registry.subscribe(self.sg_callback_postcommit, resources.SECURITY_GROUP, event) registry.subscribe(self.sg_callback_postcommit, resources.SECURITY_GROUP_RULE, event) registry.subscribe(self.sg_callback_postcommit, resources.SECURITY_GROUP, events.AFTER_UPDATE) def _sg_callback(self, callback, resource, event, trigger, **kwargs): context = kwargs['context'] res = kwargs.get(resource) res_id = kwargs.get("%s_id" % resource) if res_id is None: res_id = res.get('id') ops = _OPERATION_MAPPING[event] res_type = _RESOURCE_MAPPING[resource] res_dict = res callback(context, ops, res_type, res_id, res_dict) def sg_callback_precommit(self, resource, event, trigger, **kwargs): self._sg_callback(self._precommit, resource, event, trigger, **kwargs) def sg_callback_postcommit(self, resource, event, trigger, **kwargs): self._sg_callback(self._postcommit, resource, event, trigger, **kwargs)
1,819
18
158
2e38813849e7b8d4b409de57f658a7d182ad66aa
3,682
py
Python
play.py
ksu-is/guesswordgame
65478e24c1fc834e43ab9dd3d00c8429fbe96f22
[ "Apache-2.0" ]
7
2015-10-03T04:10:57.000Z
2021-04-02T14:43:21.000Z
play.py
ksu-is/guesswordgame
65478e24c1fc834e43ab9dd3d00c8429fbe96f22
[ "Apache-2.0" ]
1
2016-04-20T17:11:22.000Z
2016-04-26T18:08:23.000Z
play.py
ksu-is/guesswordgame
65478e24c1fc834e43ab9dd3d00c8429fbe96f22
[ "Apache-2.0" ]
5
2016-02-26T09:42:48.000Z
2021-05-09T17:32:04.000Z
import game.main as game import time import sys if __name__ == "__main__": try: main() except (KeyboardInterrupt, SystemExit): print "\n Recieved Interrupt Signal. Bye...." import sys sys.exit()
32.017391
110
0.560565
import game.main as game import time import sys def main(): play = "--++playtheguesswordgame++--" if len(sys.argv) > 1 and sys.argv[1] == "tut": print """ Enter your guess that must be containing 4 letters: """ time.sleep(3) print """ # now the player types the word 'buff' """ time.sleep(5) print """ Enter your guess that must be containing 4 letters: buff _ _ _ _ ** """ time.sleep(6) print """ # the above is the clues for the player from his word buff # that is, the computer is saying that there are two characters # in the word 'buff' that exactly exists (and buff wasn't that # word) in the word the computer has in it's mind. # Now the player tries to find which are those two characters # were exactly in its place and which two aren't part of the word # that computer have in its mind. loading ....... """ time.sleep(20) print """ # Now again the user tries the word 'lube' Enter your guess that must be containing 4 letters: lube _ _ _ _ *!! """ time.sleep(6) print """ # from the above clue the player gets to know that the character 'u' # lies exactly at the second position on the word that he has to guess # and 'b' should be at the first position, from the previous clue (no 'f' here). # The player has now only a one ! to figure out. i,e either 'l' or 'b' exists in the # word but misplaced. now he is going to figure it out by trying the word 'bulk'. """ time.sleep(10) print """ Enter your guess that must be containing 4 letters: bulk _ _ _ _ *** """ print """ # Here, the player knows, one '*' for 'b', one '*' for 'u' and the last star for 'l' (from # previous clue). Now, he knows first three chars and he thinks the word might be 'bulb' """ print """ Enter your guess that must be containing 4 letters: bulb Congrats! you've got the right word. To continue playing the game please enter 1 and to quit enter 2: 1. play 2. quit # so, that's it we guess! """ play = raw_input("Do you want to play the game now! (y/n) :") while play != 'y' and play != 'Y' and play != 'n' and play != 'N': print "please type either 'y' or 'n' without single quote" play = raw_input("Do you want to play the game now! (y/n) :") if play == "--++playtheguesswordgame++--" or play == 'y' or play == 'Y': print """ Welcome to Guess Word game Game: Computer will think a word and you should guess it. It would be easy to win the game if you apply the basic logic. Play the game by typing your guess word. For each word you type, the game will output the number of characters that exactly match the word that computer have in its mind (yes! the mind) as the number of stars and the number of characters that exist in the word but not in the appropriate position with the number of exclamation symbol. """ guess_word = game.GuessWord() guess_word.start_game() else: print "Good bye!" if __name__ == "__main__": try: main() except (KeyboardInterrupt, SystemExit): print "\n Recieved Interrupt Signal. Bye...." import sys sys.exit()
3,423
0
23
b7325eaebdbd28f2ed8cbfb180708a24650dee3d
5,258
py
Python
mysite/users/models.py
2021fallCMPUT404/group-cmput404-project
985b76dc6c554caf77e7cf5788355cca22a26e74
[ "Apache-2.0" ]
2
2021-12-06T06:42:41.000Z
2022-03-29T21:40:14.000Z
mysite/users/models.py
2021fallCMPUT404/group-cmput404-project
985b76dc6c554caf77e7cf5788355cca22a26e74
[ "Apache-2.0" ]
7
2021-10-29T20:31:44.000Z
2021-12-05T06:55:58.000Z
mysite/users/models.py
2021fallCMPUT404/group-cmput404-project
985b76dc6c554caf77e7cf5788355cca22a26e74
[ "Apache-2.0" ]
null
null
null
from django.db import models from django.contrib.auth.models import User from django.contrib.auth.models import AbstractUser from django.http import HttpResponse import uuid from django import forms from django.forms.widgets import Textarea import datetime from posts.models import Post, Like, CommentLike#, InboxLike from django.urls import reverse SITE_URL = "https://cmput404-socialdist-project.herokuapp.com" ''' #TODO: MERGE USER_PROFILE INTO USER class User(AbstractUser): pass ''' # Create your models here.
38.661765
105
0.621909
from django.db import models from django.contrib.auth.models import User from django.contrib.auth.models import AbstractUser from django.http import HttpResponse import uuid from django import forms from django.forms.widgets import Textarea import datetime from posts.models import Post, Like, CommentLike#, InboxLike from django.urls import reverse SITE_URL = "https://cmput404-socialdist-project.herokuapp.com" ''' #TODO: MERGE USER_PROFILE INTO USER class User(AbstractUser): pass ''' def user_directory_path(instance, filename): # file will be uploaded to MEDIA_ROOT / user_<id>/<filename> #return 'user_{0}/{1}'.format(instance.user.id, filename) return 'images/users/user_{0}/{1}'.format(instance.user.id, filename) # Create your models here. class Create_user(forms.Form): username = forms.CharField(initial='') password = forms.CharField(widget=forms.PasswordInput()) confirm_password = forms.CharField(widget=forms.PasswordInput()) class User_Profile(models.Model): type = "author" user = models.OneToOneField(User, on_delete=models.CASCADE, related_name='user_profile') host = SITE_URL + '/' url = SITE_URL displayName = models.CharField(max_length=60, blank=True) email = models.CharField(max_length=60, blank=True) first_name = models.CharField(max_length=69, blank=True) last_name = models.CharField(max_length=69, blank=True) profileImage = models.ImageField( upload_to='profile_picture', blank=True, default='profile_picture/default_picture.png') github = models.CharField(blank=True, default="", max_length=100) #user = models.ForeignKey(User, on_delete=models.CASCADE) bio = models.CharField(max_length=256, unique=False) #user_posts = models.ForeignKey(Post, on_delete=models.CASCADE, null=True) def __str__(self): return ', '.join((self.displayName, str(self.id), str(self.user.id))) def get_absolute_url(self): return SITE_URL + reverse('users:user_crud', args=[str(self.user.id)]) class Inbox(models.Model): type = 'inbox' author = models.ForeignKey(User, on_delete=models.CASCADE) post = models.ManyToManyField(Post, null=True, blank=True) follow = models.ManyToManyField("users.FriendRequest", null=True, blank=True) like = models.ManyToManyField(Like, null=True, blank=True) #comment_like = models.ManyToManyField(CommentLike, null=True, blank=True, on_delete=models.CASCADE) #inbox_like = models.ManyToManyField(InboxLike, null=True, blank=True, on_delete=models.CASCADE) class UserFollows(models.Model): #following actor = models.ForeignKey(User_Profile, related_name="following", on_delete=models.CASCADE, default='') #Got followed object = models.ForeignKey(User_Profile, related_name="followers", on_delete=models.CASCADE, default='') #Creates new instance of Userfollow with the actor following the object #Parameters are User_Profile objects def create_user_follow(actor, object): UserFollows.objects.get_or_create(actor=actor, object=object) #The actor will stop following the object def delete_user_follow(actor, object): instance = UserFollows.objects.filter(actor=actor, object=object) if instance.exists(): instance.delete() return None class FriendRequest(models.Model): type = "Follow" actor = models.ForeignKey(User_Profile, on_delete=models.CASCADE, related_name="actor", default='') object = models.ForeignKey(User_Profile, on_delete=models.CASCADE, related_name="object", default='') def create_friend_request(actor, object): '''Creates a friend request instance with the actor being the person who follows and the object is the person whom is being followed. The actor and object paramaters are user_profile objects.''' print(actor, object) if UserFollows.objects.filter(actor=object, object=actor).exists( ): #Checks if the object is already following the actor # Returns so it doesn't create constant friend requests print("{} is already following {}".format(object.displayName, actor.displayName)) return f_request, created = FriendRequest.objects.get_or_create(actor=actor, object=object) print("Friend request created") print(f_request.summary()) return f_request def summary(self): return '{} wants to follow {}'.format(self.actor.displayName, self.object.displayName)
794
3,760
146
414ed76ae0b89becc26b055e4a79ab7edd82af55
8,528
py
Python
clickup/client.py
skwaugh/ClickUp
3f9fb2d1e8cc8cd4e95cd46030e1265aefa5541d
[ "MIT" ]
3
2019-12-17T13:38:50.000Z
2021-05-31T13:47:50.000Z
clickup/client.py
secdevopsai/ClickUp
3f9fb2d1e8cc8cd4e95cd46030e1265aefa5541d
[ "MIT" ]
null
null
null
clickup/client.py
secdevopsai/ClickUp
3f9fb2d1e8cc8cd4e95cd46030e1265aefa5541d
[ "MIT" ]
4
2020-07-31T08:50:56.000Z
2022-02-14T18:58:04.000Z
import requests from collections import defaultdict import datetime
32.8
505
0.569536
import requests from collections import defaultdict import datetime class Client: def __init__(self, email, password, api): self.server = "https://api.clickup.com/" self.email = email self.password = password self.api = api self.bearer = self.login(email, password) user_response = self.get_user() self.username = user_response['user']['username'] self.user_id = user_response['user']['id'] team_response = self.get_teams() self.teams = {} self.subcategories = {} for team in team_response['teams']: self.teams[team['id']] = team['name'] self.spaces = {} for team in self.teams: spaces_response = self.get_team_spaces(team) for space in spaces_response['spaces']: self.spaces[space['id']] = { "name": space["name"], "team": team} def login(self, email, password): """Login to clickup and retrieve bearer token Arguments: email {str} password {str} Returns: token -- Bearer Token """ uri = "v1/login?include_teams=true" data = {"email": email, "password": password} response = requests.request( method="GET", url=self.server + uri, data=data).json() return response["token"] def send_request(self, method="GET", uri=None, version="v1", **kwargs): """Send HTTP Request to ClickUP API Keyword Arguments: method {str} -- HTTP Request Method (default: {"GET"}) uri {str} -- URI version {str} -- API Endpoint version (default: {"v1"}) Returns: response -- JSON object from ClickUP HTTP Response """ if version == "v1": headers = {"Authorization": self.api} else: headers = {"Authorization": "Bearer {}".format(self.bearer)} response = requests.request( method=method, url=self.server + uri, headers=headers, **kwargs).json() return response def get_user(self): """Retrieve user information Returns: dict -- JSON Object of user information """ uri = "api/v1/user" response = self.send_request("GET", uri=uri) return response def get_teams(self): """Retrieve teams Returns: response -- JSON Object of team information """ uri = "api/v1/team" response = self.send_request("GET", uri=uri) return response def get_team_spaces(self, team_id): """Retrieve Team Spaces Arguments: team_id Returns: response -- JSON Object of team spaces """ uri = "api/v1/team/{}/space".format(team_id) response = self.send_request("GET", uri=uri) return response def get_tasks_by_team(self, team_id, space_id=None, include_closed="true", version='v1'): """Get tasks associated with team id Arguments: team_id {str} Keyword Arguments: space_id {str} -- Space ID (default: {None}) include_closed {str} -- Include closed tasks (default: {"true"}) version {str} -- API Version (default: {'v1'}) Returns: response -- JSON Object of team spaces """ if version == 'v1': uri = "api/{}/team/{}/task?include_closed={}".format( version, team_id, include_closed) if space_id: uri += "&space_ids%5B%5D={}".format(space_id) response = self.send_request("GET", uri=uri) return response def enrich_task_ids(self, team_id, space_id, task_ids): """Retrieve more detailed task information Arguments: team_id {str} -- Team ID space_id {str} -- Space ID task_ids {list} -- Collection of task ids Returns: response -- JSON Object of enriched tasks """ uri = "v2/task?team_id={}&project_ids%5B%5D={}?fields%5B%5D=assignees&fields%5B%5D=assigned_comments_count&fields%5B%5D=assigned_checklist_items&fields%5B%5D=attachments_thumbnail_count&fields%5B%5D=dependency_state&fields%5B%5D=parent_task&fields%5B%5D=attachments_count&fields%5B%5D=followers&fields%5B%5D=totalTimeSpent&fields%5B%5D=subtasks_count&fields%5B%5D=subtasks_by_status&fields%5B%5D=tags&fields%5B%5D=simple_statuses&fields%5B%5D=fallback_coverimage&fields%5B%5D=customFields".format( team_id, space_id) uri_args = "&task_ids[]=".join([task_id for task_id in task_ids]) response = self.send_request("GET", uri=uri + uri_args, version="v2") return response def enrich_task(self, task_id): """Retrieve basic task information (not including time estimates) Arguments: task_id {str} -- Task ID Returns: response -- JSON Object of task details """ uri = "v1/task/{}".format(task_id) response = self.send_request("GET", uri=uri, version="v2") return response def get_task_ids(self, team_id, project_id, category_id, show_all=False): """[summary] Arguments: team_id {str} -- Team ID project_id {[type]} -- Project ID category_id {[type]} -- Category ID Keyword Arguments: show_all {bool} -- Show all tasks - including open (default: {False}) Returns: response -- JSON Object of task ids """ uri = "v2/taskId?team_id={}&project_ids%5B%5D={}&category_ids%5B%5D={}".format( team_id, project_id, category_id) if not show_all: uri += "&statuses%5B%5D=Open" response = self.send_request("GET", uri=uri, version="v2") return response def get_categories(self, space_id): """Retrieve Categories Arguments: space_id {str} - Space ID Returns: response -- JSON Object and appends subcategories to object instance """ uri = "v1/project/{}/category".format(space_id) response = self.send_request("GET", uri=uri, version="v2") self.get_subcategories(response, space_id) return response def get_subcategories(self, categories, space_id): """Retrieve Subcategories from get_categories() response Arguments: categories {dict} space_id -- Space ID """ for category in categories["categories"]: for subcategory in category['subcategories']: name = subcategory['name'] category_id = category['id'] subcategory_id = subcategory['id'] self.subcategories[subcategory_id] = { "name": name, "category_id": category_id, "space_id": space_id } def create_task(self, subcategory, name, timestamp, estimate=None): """Create task in ClickUp subcategory Arguments: subcategory str -- Subcategory name str -- Task name timestamp int -- Due Date (unix timestamp) estimate int -- Minutes estimated to complete task Returns: response -- JSON Object of task creation """ uri = "v1/subcategory/{}/task".format( subcategory) data = { "name": name, "assignees": [], "due_date": int(timestamp) * 1000, "start_date": None, "due_date_time": False, "status": "Open", "priority": "none", "position_wide": "subcategory", "position": 0 } response = self.send_request("POST", uri=uri, version="v2", data=data) if estimate: task_id = response['id'] estimate_time = {"time_estimate": 60000 * estimate, "time_estimate_string": "{} minutes".format(estimate)} uri = "v1/task/{}".format(task_id) response = self.send_request( "PUT", uri=uri, version="v2", data=estimate_time) return response def get_tags(self, project_id): """Retrieve task tags from Project Arguments: project_id """ uri = "v1/tag?project_id={}".format(project_id) response = self.send_request("GET", uri=uri, version="v2") return response
813
7,623
23
ff134e64e57b7ca7080b40af0e3f390aa9a3db33
1,305
py
Python
.env/lib/python2.7/site-packages/skimage/viewer/tests/test_utils.py
ViduraPrasangana/faster-rcnn-caffe
af6f5ee89c6e82d295bddd192d9dfcebd60d7c52
[ "MIT" ]
1
2019-01-12T13:17:32.000Z
2019-01-12T13:17:32.000Z
.env/lib/python2.7/site-packages/skimage/viewer/tests/test_utils.py
ViduraPrasangana/faster-rcnn-caffe
af6f5ee89c6e82d295bddd192d9dfcebd60d7c52
[ "MIT" ]
30
2020-04-15T19:37:40.000Z
2020-04-22T21:19:35.000Z
.env/lib/python2.7/site-packages/skimage/viewer/tests/test_utils.py
ViduraPrasangana/faster-rcnn-caffe
af6f5ee89c6e82d295bddd192d9dfcebd60d7c52
[ "MIT" ]
2
2020-03-12T23:20:22.000Z
2021-02-15T21:54:02.000Z
# -*- coding: utf-8 -*- from skimage.viewer import utils from skimage.viewer.utils import dialogs from skimage.viewer.qt import QtCore, QtWidgets, has_qt from skimage._shared import testing @testing.skipif(not has_qt, reason="Qt not installed") @testing.skipif(not has_qt, reason="Qt not installed") @testing.skipif(True, reason="Can't automatically close window. See #3081.") @testing.skipif(not has_qt, reason="Qt not installed") @testing.skipif(True, reason="Can't automatically close window. See #3081.") @testing.skipif(not has_qt, reason="Qt not installed")
31.071429
76
0.724904
# -*- coding: utf-8 -*- from skimage.viewer import utils from skimage.viewer.utils import dialogs from skimage.viewer.qt import QtCore, QtWidgets, has_qt from skimage._shared import testing @testing.skipif(not has_qt, reason="Qt not installed") def test_event_loop(): utils.init_qtapp() timer = QtCore.QTimer() timer.singleShot(10, QtWidgets.QApplication.quit) utils.start_qtapp() @testing.skipif(not has_qt, reason="Qt not installed") def test_format_filename(): fname = dialogs._format_filename(('apple', 2)) assert fname == 'apple' fname = dialogs._format_filename('') assert fname is None @testing.skipif(True, reason="Can't automatically close window. See #3081.") @testing.skipif(not has_qt, reason="Qt not installed") def test_open_file_dialog(): QApp = utils.init_qtapp() timer = QtCore.QTimer() timer.singleShot(100, lambda: QApp.quit()) filename = dialogs.open_file_dialog() assert filename is None @testing.skipif(True, reason="Can't automatically close window. See #3081.") @testing.skipif(not has_qt, reason="Qt not installed") def test_save_file_dialog(): QApp = utils.init_qtapp() timer = QtCore.QTimer() timer.singleShot(100, lambda: QApp.quit()) filename = dialogs.save_file_dialog() assert filename is None
645
0
88
e4eed4150a0020f361e02176075753236176288a
269
py
Python
RasaNLU/pending_actions.py
naikshubham/Rasa-Introduction
93b1c6428879e49ddd93d7a5ec5a4eb52fb9bab2
[ "BSD-2-Clause" ]
1
2021-06-15T09:58:15.000Z
2021-06-15T09:58:15.000Z
RasaNLU/pending_actions.py
naikshubham/Rasa-Introduction
93b1c6428879e49ddd93d7a5ec5a4eb52fb9bab2
[ "BSD-2-Clause" ]
null
null
null
RasaNLU/pending_actions.py
naikshubham/Rasa-Introduction
93b1c6428879e49ddd93d7a5ec5a4eb52fb9bab2
[ "BSD-2-Clause" ]
null
null
null
# Pending actions # we can improve user experience of our bot by asking the user simple yes or no followup questions # one easy way to handle these followup is to define pending actions which gets executed as soon as user says "yes" # and wiped if the user says "no"
44.833333
115
0.769517
# Pending actions # we can improve user experience of our bot by asking the user simple yes or no followup questions # one easy way to handle these followup is to define pending actions which gets executed as soon as user says "yes" # and wiped if the user says "no"
0
0
0
28ea666798dad6da46886eee004f74017eb3e201
2,573
py
Python
get_ip_pool.py
vbertcen/ajk_sp_sale_rent_ratio
bd477441fde3ccbe396b68dba2418ec0b9aa558e
[ "Apache-2.0" ]
1
2019-08-30T10:54:06.000Z
2019-08-30T10:54:06.000Z
get_ip_pool.py
vbertcen/ajk_sp_sale_rent_ratio
bd477441fde3ccbe396b68dba2418ec0b9aa558e
[ "Apache-2.0" ]
null
null
null
get_ip_pool.py
vbertcen/ajk_sp_sale_rent_ratio
bd477441fde3ccbe396b68dba2418ec0b9aa558e
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 import sys import pymysql import requests import datetime from lxml import etree reload(sys) sys.setdefaultencoding('utf8') now_str = datetime.datetime.now().strftime('%Y-%m-%d') headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 OPR/57.0.3098.116", } if __name__ == '__main__': init_ip_pool()
34.306667
156
0.539059
# coding=utf-8 import sys import pymysql import requests import datetime from lxml import etree reload(sys) sys.setdefaultencoding('utf8') now_str = datetime.datetime.now().strftime('%Y-%m-%d') headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 OPR/57.0.3098.116", } def init_ip_pool(): conn = pymysql.connect(host='localhost', user='root', password='Scholl7fcb', database='house_spider') cursor = conn.cursor() cursor.execute("truncate ip_pool") conn.commit() cursor.close() index = 1 while True: print "当前查询到第{}页".format(index) url = 'http://www.66ip.cn/{}.html'.format(index) html = requests.get(url=url, headers=headers) selector = etree.HTML(html.content) page_count = len(selector.xpath('//*[@id="main"]/div/div[1]/table/tr')) if page_count == 0: break print page_count ip = '//*[@id="main"]/div/div[1]/table/tr[{}]/td[1]' port = '//*[@id="main"]/div/div[1]/table/tr[{}]/td[2]' location = '//*[@id="main"]/div/div[1]/table/tr[{}]/td[3]' for i in range(2, page_count): ip_text = selector.xpath(ip.format(i))[0].text port_text = selector.xpath(port.format(i))[0].text location_text = selector.xpath(location.format(i))[0].text cursor = conn.cursor() if verify_available(ip_text, port_text): cursor.execute( "insert into ip_pool values(null,'{}','{}','{}',1,'{}')".format(ip_text, port_text, location_text, now_str)) print "ip={},available={}".format(ip_text, "true") else: cursor.execute( "insert into ip_pool values(null,'{}','{}','{}',0,'{}')".format(ip_text, port_text, location_text, now_str)) print "ip={},available={}".format(ip_text, "false") cursor.close() conn.commit() index += 1 conn.close() def verify_available(ip, port): pro = dict() pro['http'] = "http://{}:{}".format(ip, port) try: html = requests.get(url='http://www.baidu.com', headers=headers, proxies=pro, timeout=2) except Exception: return False else: return html.content.count('百度') > 0 if __name__ == '__main__': init_ip_pool()
2,130
0
46
dd8bdd0ca9cd34cb385f46afc75b4e9cf95ab521
476
py
Python
jython/jython/java_usage_examples.py
JohannesDienst/polyglot_integration
ee0936539282e82d4d0605ed564389c0539ede40
[ "MIT" ]
null
null
null
jython/jython/java_usage_examples.py
JohannesDienst/polyglot_integration
ee0936539282e82d4d0605ed564389c0539ede40
[ "MIT" ]
null
null
null
jython/jython/java_usage_examples.py
JohannesDienst/polyglot_integration
ee0936539282e82d4d0605ed564389c0539ede40
[ "MIT" ]
null
null
null
from java.lang import System as javasystem javasystem.out.println("Hello") from java.util import Random r = rand(100, 23) for i in range(10): print r.nextDouble()
23.8
56
0.653361
from java.lang import System as javasystem javasystem.out.println("Hello") from java.util import Random class rand(Random): def __init__(self, multiplier=1.0, seed=None): self.multiplier = multiplier if seed is None: Random.__init__(self) else: Random.__init__(self, seed) def nextDouble(self): return Random.nextDouble(self) * self.multiplier r = rand(100, 23) for i in range(10): print r.nextDouble()
233
-2
76
da4b679b11109485dccab6378be56da7adfaca21
321
py
Python
5-loops/exercise_3.1.py
wgatharia/csci131
50d76603863c9a9932634fdf2e48594f8dc673d2
[ "MIT" ]
null
null
null
5-loops/exercise_3.1.py
wgatharia/csci131
50d76603863c9a9932634fdf2e48594f8dc673d2
[ "MIT" ]
null
null
null
5-loops/exercise_3.1.py
wgatharia/csci131
50d76603863c9a9932634fdf2e48594f8dc673d2
[ "MIT" ]
null
null
null
""" File: exercise_3.1.py Author: William Gatharia This code demonstrates using a for loop. """ #loop and print numbers from 1 to 10 using a for loop and range # range creates a list of numbers # starting from 1 to 10. # Note the 11 = 10 + 1 is the upper limit form range for i in range(1, 11): print(i)
24.692308
63
0.682243
""" File: exercise_3.1.py Author: William Gatharia This code demonstrates using a for loop. """ #loop and print numbers from 1 to 10 using a for loop and range # range creates a list of numbers # starting from 1 to 10. # Note the 11 = 10 + 1 is the upper limit form range for i in range(1, 11): print(i)
0
0
0
cd438ed3e070272f3b23e2778ba9493fd02837f8
1,919
py
Python
Data_preparation/test/video_subcrop.py
Rukaume/LRCN
0d1928cc72544f59a4335fea7febc561d3dfc118
[ "MIT" ]
1
2020-11-07T05:57:32.000Z
2020-11-07T05:57:32.000Z
Data_preparation/test/video_subcrop.py
Rukaume/LRCN
0d1928cc72544f59a4335fea7febc561d3dfc118
[ "MIT" ]
1
2020-11-07T00:30:22.000Z
2021-01-26T02:22:16.000Z
Data_preparation/test/video_subcrop.py
Rukaume/LRCN
0d1928cc72544f59a4335fea7febc561d3dfc118
[ "MIT" ]
1
2020-11-07T05:57:52.000Z
2020-11-07T05:57:52.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Aug 27 21:19:37 2020 @author: miyazakishinichi """ import pandas as pd from tkinter import messagebox from tkinter import filedialog import tkinter import numpy as np from scipy import stats import matplotlib.pyplot as plt import os, sys, cv2 from tqdm import tqdm ####Tk root generate#### root = tkinter.Tk() root.withdraw() ####ROI setting#### messagebox.showinfo('selectfiles', 'select csvfile for ROI setting') ROI_file_path = tkinter.filedialog.askopenfilename(initialdir = dir) if ROI_file_path == "": messagebox.showinfo('cancel', 'stop before ROI setting') sys.exit() roi_data = csv_file_read(ROI_file_path) roi_data['left'] = roi_data['BX'] roi_data['right'] = roi_data['BX'] + roi_data['Width'] roi_data['low'] = roi_data['BY'] roi_data['high'] = roi_data['BY'] + roi_data['Height'] roi = roi_data.loc[3]['left':'high'] ####file select & directory setting#### messagebox.showinfo('selectfiles', 'select image files') path = filedialog.askopenfilename() if path != False: pass else: messagebox.showinfo('quit', 'stop the script') sys.exit() folderpath = os.path.dirname(path) os.chdir(folderpath) imlist = os.listdir("./") os.makedirs("../chamber3", exist_ok = True) for i in tqdm(range(len(imlist))): tempimage = cv2.imread(imlist[i]) left, right, low, high = int(roi['left']),\ int(roi['right']),int(roi['low']),int(roi['high']) subimage = tempimage[low:high,left:right] cv2.imwrite("../chamber3/{}.jpg".format(str(i).zfill(5)), subimage)
27.028169
71
0.668056
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Aug 27 21:19:37 2020 @author: miyazakishinichi """ import pandas as pd from tkinter import messagebox from tkinter import filedialog import tkinter import numpy as np from scipy import stats import matplotlib.pyplot as plt import os, sys, cv2 from tqdm import tqdm def csv_file_read(filepath): file_dir, file_name = os.path.split(filepath) base, ext = os.path.splitext(file_name) if ext == '.csv': data = pd.read_csv(filepath, index_col = 0) return data else: return messagebox.showinfo('error', 'selected file is not csv file') ####Tk root generate#### root = tkinter.Tk() root.withdraw() ####ROI setting#### messagebox.showinfo('selectfiles', 'select csvfile for ROI setting') ROI_file_path = tkinter.filedialog.askopenfilename(initialdir = dir) if ROI_file_path == "": messagebox.showinfo('cancel', 'stop before ROI setting') sys.exit() roi_data = csv_file_read(ROI_file_path) roi_data['left'] = roi_data['BX'] roi_data['right'] = roi_data['BX'] + roi_data['Width'] roi_data['low'] = roi_data['BY'] roi_data['high'] = roi_data['BY'] + roi_data['Height'] roi = roi_data.loc[3]['left':'high'] ####file select & directory setting#### messagebox.showinfo('selectfiles', 'select image files') path = filedialog.askopenfilename() if path != False: pass else: messagebox.showinfo('quit', 'stop the script') sys.exit() folderpath = os.path.dirname(path) os.chdir(folderpath) imlist = os.listdir("./") os.makedirs("../chamber3", exist_ok = True) for i in tqdm(range(len(imlist))): tempimage = cv2.imread(imlist[i]) left, right, low, high = int(roi['left']),\ int(roi['right']),int(roi['low']),int(roi['high']) subimage = tempimage[low:high,left:right] cv2.imwrite("../chamber3/{}.jpg".format(str(i).zfill(5)), subimage)
310
0
23
aedaa1eb60c8454a5adaa3d060aa87eba4684ba7
207
py
Python
getFrame.py
divakar-lakhera/Partial-Encryption
0fc6537b4a23848b21618e906a22920bd00b7c41
[ "MIT" ]
null
null
null
getFrame.py
divakar-lakhera/Partial-Encryption
0fc6537b4a23848b21618e906a22920bd00b7c41
[ "MIT" ]
null
null
null
getFrame.py
divakar-lakhera/Partial-Encryption
0fc6537b4a23848b21618e906a22920bd00b7c41
[ "MIT" ]
null
null
null
import cv2 INPUT_FILE='input_encode.avi' FRAME_NUMBER=70 cap=cv2.VideoCapture(INPUT_FILE) cap.set(cv2.CAP_PROP_POS_FRAMES, FRAME_NUMBER) ret,frame=cap.read() cv2.imwrite("frame_"+INPUT_FILE+".png",frame)
18.818182
46
0.797101
import cv2 INPUT_FILE='input_encode.avi' FRAME_NUMBER=70 cap=cv2.VideoCapture(INPUT_FILE) cap.set(cv2.CAP_PROP_POS_FRAMES, FRAME_NUMBER) ret,frame=cap.read() cv2.imwrite("frame_"+INPUT_FILE+".png",frame)
0
0
0
78169f18b371e12087115a1c033f6919a0a32815
27,978
py
Python
brainda/algorithms/decomposition/csp.py
TBC-TJU/MetaBCI-brainda
d2dc655163b771ca22e43432d886ece3d98235c8
[ "MIT" ]
null
null
null
brainda/algorithms/decomposition/csp.py
TBC-TJU/MetaBCI-brainda
d2dc655163b771ca22e43432d886ece3d98235c8
[ "MIT" ]
null
null
null
brainda/algorithms/decomposition/csp.py
TBC-TJU/MetaBCI-brainda
d2dc655163b771ca22e43432d886ece3d98235c8
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Authors: Swolf <swolfforever@gmail.com> # Date: 2021/1/07 # License: MIT License """ Common Spatial Patterns and his happy little buddies! """ from copy import deepcopy from typing import Union, Optional, List, Dict, Tuple from functools import partial import numpy as np from numpy import ndarray from scipy.linalg import eigh, pinv, solve from sklearn.base import BaseEstimator, TransformerMixin from sklearn.model_selection import GridSearchCV, StratifiedKFold, ShuffleSplit from sklearn.feature_selection import SelectKBest, mutual_info_classif from sklearn.svm import SVC from sklearn.linear_model import Ridge from sklearn.multiclass import OneVsRestClassifier, OneVsOneClassifier from sklearn.pipeline import make_pipeline from .base import robust_pattern, FilterBank from ..utils.covariance import nearestPD, covariances def csp_kernel(X: ndarray, y: ndarray) -> Tuple[ndarray, ndarray, ndarray]: """The kernel in CSP algorithm based on paper [1]_. Parameters ---------- X: ndarray eeg data, shape (n_trials, n_channels, n_samples). y: ndarray labels of X, shape (n_trials,). Returns ------- W: ndarray Spatial filters, shape (n_channels, n_filters). D: ndarray Eigenvalues of spatial filters, shape (n_filters,). A: ndarray Spatial patterns, shape (n_channels, n_patterns). References ---------- .. [1] Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement[J]. IEEE transactions on rehabilitation engineering, 2000, 8(4): 441-446. """ X, y = np.copy(X), np.copy(y) labels = np.unique(y) X = X - np.mean(X, axis=-1, keepdims=True) if len(labels) != 2: raise ValueError("the current kernel is for 2-class problem.") C1 = covariances(X[y==labels[0]]) C2 = covariances(X[y==labels[1]]) # # trace normalization # # this operation equals to trial normalization # C1 = C1 / np.trace(C1, axis1=-1, axis2=-2)[:, np.newaxis, np.newaxis] # C2 = C2 / np.trace(C2, axis1=-1, axis2=-2)[:, np.newaxis, np.newaxis] C1 = np.mean(C1, axis=0) C2 = np.mean(C2, axis=0) Cc = C1 + C2 # check positive-definiteness Cc = nearestPD(Cc) # generalized eigenvalue problem D, W = eigh(C1, Cc) ix = np.argsort(D)[::-1] W = W[:, ix] D = D[ix] A = robust_pattern(W, C1, W.T@C1@W) return W, D, A def csp_feature(W: ndarray, X: ndarray, n_components: int = 2) -> ndarray: """Return CSP features in paper [1]_. Parameters ---------- W : ndarray spatial filters from csp_kernel, shape (n_channels, n_filters) X : ndarray eeg data, shape (n_trials, n_channels, n_samples) n_components : int, optional the first k components to use, usually even number, by default 2 Returns ------- ndarray features of shape (n_trials, n_features) Raises ------ ValueError n_components should less than the number of channels References ---------- .. [1] Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement[J]. IEEE transactions on rehabilitation engineering, 2000, 8(4): 441-446. """ W, X = np.copy(W), np.copy(X) max_components = W.shape[1] if n_components > max_components: raise ValueError("n_components should less than the number of channels") eps = np.finfo(X.dtype).eps X = X - np.mean(X, axis=-1, keepdims=True) # normalized variance features = np.mean(np.square(np.matmul(W[:, :n_components].T, X)), axis=-1) features = features / (np.sum(features, axis=-1, keepdims=True) + eps) # log-transformation features = np.log(np.clip(features, eps, None)) return features def _rjd(X, eps=1e-9, n_iter_max=1000): """Approximate joint diagonalization based on jacobi angle. Parameters ---------- X : ndarray A set of covariance matrices to diagonalize, shape (n_trials, n_channels, n_channels). eps : float, optional Tolerance for stopping criterion (default 1e-8). n_iter_max : int, optional The maximum number of iteration to reach convergence (default 1000). Returns ------- V : ndarray The diagonalizer, shape (n_channels, n_filters), usually n_filters == n_channels. D : ndarray The set of quasi diagonal matrices, shape (n_trials, n_channels, n_channels). Notes ----- This is a direct implementation of the Cardoso AJD algorithm [1]_ used in JADE. The code is a translation of the matlab code provided in the author website. References ---------- .. [1] Cardoso, Jean-Francois, and Antoine Souloumiac. Jacobi angles for simultaneous diagonalization. SIAM journal on matrix analysis and applications 17.1 (1996): 161-164. """ # reshape input matrix A = np.concatenate(X, 0).T # init variables m, nm = A.shape V = np.eye(m) encore = True k = 0 while encore: encore = False k += 1 if k > n_iter_max: break for p in range(m - 1): for q in range(p + 1, m): Ip = np.arange(p, nm, m) Iq = np.arange(q, nm, m) # computation of Givens angle g = np.array([A[p, Ip] - A[q, Iq], A[p, Iq] + A[q, Ip]]) gg = np.dot(g, g.T) ton = gg[0, 0] - gg[1, 1] toff = gg[0, 1] + gg[1, 0] theta = 0.5 * np.arctan2(toff, ton + np.sqrt(ton * ton + toff * toff)) c = np.cos(theta) s = np.sin(theta) encore = encore | (np.abs(s) > eps) if (np.abs(s) > eps): tmp = A[:, Ip].copy() A[:, Ip] = c * A[:, Ip] + s * A[:, Iq] A[:, Iq] = c * A[:, Iq] - s * tmp tmp = A[p, :].copy() A[p, :] = c * A[p, :] + s * A[q, :] A[q, :] = c * A[q, :] - s * tmp tmp = V[:, p].copy() V[:, p] = c * V[:, p] + s * V[:, q] V[:, q] = c * V[:, q] - s * tmp D = np.reshape(A, (m, int(nm / m), m)).transpose(1, 0, 2) return V, D def _ajd_pham(X, eps=1e-9, n_iter_max=1000): """Approximate joint diagonalization based on pham's algorithm. Parameters ---------- X : ndarray A set of covariance matrices to diagonalize, shape (n_trials, n_channels, n_channels). eps : float, optional Tolerance for stoping criterion (default 1e-6). n_iter_max : int, optional The maximum number of iteration to reach convergence (default 1000). Returns ------- V : ndarray The diagonalizer, shape (n_channels, n_filters), usually n_filters == n_channels. D : ndarray The set of quasi diagonal matrices, shape (n_trials, n_channels, n_channels). Notes ----- This is a direct implementation of the PHAM's AJD algorithm [1]_. References ---------- .. [1] Pham, Dinh Tuan. "Joint approximate diagonalization of positive definite Hermitian matrices." SIAM Journal on Matrix Analysis and Applications 22, no. 4 (2001): 1136-1152. """ # Adapted from http://github.com/alexandrebarachant/pyRiemann n_epochs = X.shape[0] # Reshape input matrix A = np.concatenate(X, axis=0).T # Init variables n_times, n_m = A.shape V = np.eye(n_times) epsilon = n_times * (n_times - 1) * eps for it in range(n_iter_max): decr = 0 for ii in range(1, n_times): for jj in range(ii): Ii = np.arange(ii, n_m, n_times) Ij = np.arange(jj, n_m, n_times) c1 = A[ii, Ii] c2 = A[jj, Ij] g12 = np.mean(A[ii, Ij] / c1) g21 = np.mean(A[ii, Ij] / c2) omega21 = np.mean(c1 / c2) omega12 = np.mean(c2 / c1) omega = np.sqrt(omega12 * omega21) tmp = np.sqrt(omega21 / omega12) tmp1 = (tmp * g12 + g21) / (omega + 1) tmp2 = (tmp * g12 - g21) / max(omega - 1, 1e-9) h12 = tmp1 + tmp2 h21 = np.conj((tmp1 - tmp2) / tmp) decr += n_epochs * (g12 * np.conj(h12) + g21 * h21) / 2.0 tmp = 1 + 1.j * 0.5 * np.imag(h12 * h21) tmp = np.real(tmp + np.sqrt(tmp ** 2 - h12 * h21)) tau = np.array([[1, -h12 / tmp], [-h21 / tmp, 1]]) A[[ii, jj], :] = np.dot(tau, A[[ii, jj], :]) tmp = np.c_[A[:, Ii], A[:, Ij]] tmp = np.reshape(tmp, (n_times * n_epochs, 2), order='F') tmp = np.dot(tmp, tau.T) tmp = np.reshape(tmp, (n_times, n_epochs * 2), order='F') A[:, Ii] = tmp[:, :n_epochs] A[:, Ij] = tmp[:, n_epochs:] V[[ii, jj], :] = np.dot(tau, V[[ii, jj], :]) if decr < epsilon: break D = np.reshape(A, (n_times, -1, n_times)).transpose(1, 0, 2) return V.T, D def _uwedge(X, init=None, eps=1e-9, n_iter_max=1000): """Approximate joint diagonalization algorithm UWEDGE. Parameters ---------- X : ndarray A set of covariance matrices to diagonalize, shape (n_trials, n_channels, n_channels). init : None | ndarray, optional Initialization for the diagonalizer, shape (n_channels, n_channels). eps : float, optional Tolerance for stoping criterion (default 1e-7). n_iter_max : int The maximum number of iteration to reach convergence (default 1000). Returns ------- W_est : ndarray The diagonalizer, shape (n_filters, n_channels), usually n_filters == n_channels. D : ndarray The set of quasi diagonal matrices, shape (n_trials, n_channels, n_channels). Notes ----- Uniformly Weighted Exhaustive Diagonalization using Gauss iteration (U-WEDGE). Implementation of the AJD algorithm by Tichavsky and Yeredor [1]_ [2]_. This is a translation from the matlab code provided by the authors. References ---------- .. [1] P. Tichavsky, A. Yeredor and J. Nielsen, "A Fast Approximate Joint Diagonalization Algorithm Using a Criterion with a Block Diagonal Weight Matrix", ICASSP 2008, Las Vegas. .. [2] P. Tichavsky and A. Yeredor, "Fast Approximate Joint Diagonalization Incorporating Weight Matrices" IEEE Transactions of Signal Processing, 2009. """ L, d, _ = X.shape # reshape input matrix M = np.concatenate(X, 0).T # init variables d, Md = M.shape iteration = 0 improve = 10 if init is None: E, H = np.linalg.eig(M[:, 0:d]) W_est = np.dot(np.diag(1. / np.sqrt(np.abs(E))), H.T) else: W_est = init Ms = np.array(M) Rs = np.zeros((d, L)) for k in range(L): ini = k*d Il = np.arange(ini, ini + d) M[:, Il] = 0.5*(M[:, Il] + M[:, Il].T) Ms[:, Il] = np.dot(np.dot(W_est, M[:, Il]), W_est.T) Rs[:, k] = np.diag(Ms[:, Il]) crit = np.sum(Ms**2) - np.sum(Rs**2) while (improve > eps) & (iteration < n_iter_max): B = np.dot(Rs, Rs.T) C1 = np.zeros((d, d)) for i in range(d): C1[:, i] = np.sum(Ms[:, i:Md:d]*Rs, axis=1) D0 = B*B.T - np.outer(np.diag(B), np.diag(B)) A0 = (C1 * B - np.dot(np.diag(np.diag(B)), C1.T)) / (D0 + np.eye(d)) A0 += np.eye(d) W_est = np.linalg.solve(A0, W_est) Raux = np.dot(np.dot(W_est, M[:, 0:d]), W_est.T) aux = 1./np.sqrt(np.abs(np.diag(Raux))) W_est = np.dot(np.diag(aux), W_est) for k in range(L): ini = k*d Il = np.arange(ini, ini + d) Ms[:, Il] = np.dot(np.dot(W_est, M[:, Il]), W_est.T) Rs[:, k] = np.diag(Ms[:, Il]) crit_new = np.sum(Ms**2) - np.sum(Rs**2) improve = np.abs(crit_new - crit) crit = crit_new iteration += 1 D = np.reshape(Ms, (d, L, d)).transpose(1, 0, 2) return W_est.T, D ajd_methods = { 'rjd': _rjd, 'ajd_pham': _ajd_pham, 'uwedge': _uwedge } def _check_ajd_method(method): """Check if a given method is valid. Parameters ---------- method : callable object or str Could be the name of ajd_method or a callable method itself. Returns ------- method: callable object A callable ajd method. """ if callable(method): pass elif method in ajd_methods.keys(): method = ajd_methods[method] else: raise ValueError( """%s is not an valid method ! Valid methods are : %s or a callable function""" % (method, (' , ').join(ajd_methods.keys()))) return method def ajd(X: ndarray, method: str ='uwedge') -> Tuple[ndarray, ndarray]: """Wrapper of AJD methods. Parameters ---------- X : ndarray Input covariance matrices, shape (n_trials, n_channels, n_channels) method : str, optional AJD method (default uwedge). Returns ------- V : ndarray The diagonalizer, shape (n_channels, n_filters), usually n_filters == n_channels. D : ndarray The mean of quasi diagonal matrices, shape (n_channels,). """ method = _check_ajd_method(method) V, D = method(X) D = np.diag(np.mean(D, axis=0)) ind = np.argsort(D)[::-1] D = D[ind] V = V[:, ind] return V, D def gw_csp_kernel(X: ndarray, y: ndarray, ajd_method: str = 'uwedge') -> Tuple[ndarray, ndarray, ndarray, ndarray]: """Grosse-Wentrup AJD method based on paper [1]_. Parameters ---------- X : ndarray eeg data, shape (n_trials, n_channels, n_samples). y : ndarray labels, shape (n_trials). ajd_method : str, optional ajd methods, 'uwedge' 'rjd' and 'ajd_pham', by default 'uwedge'. Returns ------- W: ndarray Spatial filters, shape (n_channels, n_filters). D: ndarray Eigenvalues of spatial filters, shape (n_filters,). A: ndarray Spatial patterns, shape (n_channels, n_patterns). mutual_info: ndarray Mutual informaiton values, shape (n_filters). References ---------- .. [1] Grosse-Wentrup, Moritz, and Martin Buss. "Multiclass common spatial patterns and information theoretic feature extraction." Biomedical Engineering, IEEE Transactions on 55, no. 8 (2008): 1991-2000. """ X, y = np.copy(X), np.copy(y) labels = np.unique(y) X = X - np.mean(X, axis=-1, keepdims=True) Cx = [] for label in labels: C = covariances(X[y==label]) # trace normalization C = C / np.trace(C, axis1=-1, axis2=-2)[:, np.newaxis, np.newaxis] Cx.append(np.mean(C, axis=0)) Cx = np.stack(Cx) W, D = ajd(Cx, method=ajd_method) # Ctot = np.mean(Cx, axis=0) # W = W / np.sqrt(np.diag(W.T@Ctot@W)) W = W / np.sqrt(D) # compute mutual information values Pc = [np.mean(y == label) for label in labels] mutual_info = [] for j in range(W.shape[-1]): a = 0 b = 0 for i in range(len(labels)): # tmp = np.dot(np.dot(W[j], self.C_[i]), W[j].T) tmp = W[:, j].T@Cx[i]@W[:, j] a += Pc[i] * np.log(np.sqrt(tmp)) b += Pc[i] * (tmp ** 2 - 1) mi = - (a + (3.0 / 16) * (b ** 2)) mutual_info.append(mi) mutual_info = np.array(mutual_info) ix = np.argsort(mutual_info)[::-1] W = W[:, ix] mutual_info = mutual_info[ix] D = D[ix] A = robust_pattern(W, Cx[0], W.T@Cx[0]@W) return W, D, A, mutual_info class CSP(BaseEstimator, TransformerMixin): """Common Spatial Pattern. if n_components is None, auto finding the best number of components with gridsearch. The upper searching limit is determined by max_components, default is half of the number of channels. """ def spoc_kernel(X: ndarray, y: ndarray) -> Tuple[ndarray, ndarray, ndarray]: """Source Power Comodulation (SPoC) based on paper [1]_. It is a continous CSP-like method. Parameters ---------- X : ndarray eeg data, shape (n_trials, n_channels, n_samples) y : ndarray labels, shape (n_trials) Returns ------- W: ndarray Spatial filters, shape (n_channels, n_filters). D: ndarray Eigenvalues of spatial filters, shape (n_filters,). A: ndarray Spatial patterns, shape (n_channels, n_patterns). References ---------- .. [1] Sven Dähne, Frank C. Meinecke, Stefan Haufe, Johannes Höhne, Michael Tangermann, Klaus-Robert Müller, and Vadim V. Nikulin. SPoC: a novel framework for relating the amplitude of neuronal oscillations to behaviorally relevant parameters. NeuroImage, 86:111–122, 2014. doi:10.1016/j.neuroimage.2013.07.079. """ X, weights = np.copy(X), np.copy(y) eps = np.finfo(X.dtype).eps X = X - np.mean(X, axis=-1, keepdims=True) weights = weights - np.mean(weights) weights = weights / np.std(weights) Cx = covariances(X) # trace normalization Cx = Cx / np.trace(Cx, axis1=-1, axis2=-2)[:, np.newaxis, np.newaxis] C = np.mean(Cx, axis=0) Cz = np.mean(weights[:, np.newaxis, np.newaxis]*Cx, axis=0) # check positive-definiteness C = nearestPD(C) Cz = nearestPD(Cz) # TODO: direct copy from pyriemann, need verify D, W = eigh(Cz, C) ind = np.argsort(D)[::-1] D = D[ind] W = W[:, ind] A = robust_pattern(W, Cz, W.T@Cz@W) return W, D, A class SPoC(BaseEstimator, TransformerMixin): """Source Power Comodulation (SPoC). For continuous data, not verified. """ class FBCSP(FilterBank): """FBCSP. FilterBank CSP based on paper [1]_. References ---------- .. [1] Ang K K, Chin Z Y, Zhang H, et al. Filter bank common spatial pattern (FBCSP) in brain-computer interface[C]//2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). IEEE, 2008: 2390-2397. """
36.240933
315
0.589356
# -*- coding: utf-8 -*- # # Authors: Swolf <swolfforever@gmail.com> # Date: 2021/1/07 # License: MIT License """ Common Spatial Patterns and his happy little buddies! """ from copy import deepcopy from typing import Union, Optional, List, Dict, Tuple from functools import partial import numpy as np from numpy import ndarray from scipy.linalg import eigh, pinv, solve from sklearn.base import BaseEstimator, TransformerMixin from sklearn.model_selection import GridSearchCV, StratifiedKFold, ShuffleSplit from sklearn.feature_selection import SelectKBest, mutual_info_classif from sklearn.svm import SVC from sklearn.linear_model import Ridge from sklearn.multiclass import OneVsRestClassifier, OneVsOneClassifier from sklearn.pipeline import make_pipeline from .base import robust_pattern, FilterBank from ..utils.covariance import nearestPD, covariances def csp_kernel(X: ndarray, y: ndarray) -> Tuple[ndarray, ndarray, ndarray]: """The kernel in CSP algorithm based on paper [1]_. Parameters ---------- X: ndarray eeg data, shape (n_trials, n_channels, n_samples). y: ndarray labels of X, shape (n_trials,). Returns ------- W: ndarray Spatial filters, shape (n_channels, n_filters). D: ndarray Eigenvalues of spatial filters, shape (n_filters,). A: ndarray Spatial patterns, shape (n_channels, n_patterns). References ---------- .. [1] Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement[J]. IEEE transactions on rehabilitation engineering, 2000, 8(4): 441-446. """ X, y = np.copy(X), np.copy(y) labels = np.unique(y) X = X - np.mean(X, axis=-1, keepdims=True) if len(labels) != 2: raise ValueError("the current kernel is for 2-class problem.") C1 = covariances(X[y==labels[0]]) C2 = covariances(X[y==labels[1]]) # # trace normalization # # this operation equals to trial normalization # C1 = C1 / np.trace(C1, axis1=-1, axis2=-2)[:, np.newaxis, np.newaxis] # C2 = C2 / np.trace(C2, axis1=-1, axis2=-2)[:, np.newaxis, np.newaxis] C1 = np.mean(C1, axis=0) C2 = np.mean(C2, axis=0) Cc = C1 + C2 # check positive-definiteness Cc = nearestPD(Cc) # generalized eigenvalue problem D, W = eigh(C1, Cc) ix = np.argsort(D)[::-1] W = W[:, ix] D = D[ix] A = robust_pattern(W, C1, W.T@C1@W) return W, D, A def csp_feature(W: ndarray, X: ndarray, n_components: int = 2) -> ndarray: """Return CSP features in paper [1]_. Parameters ---------- W : ndarray spatial filters from csp_kernel, shape (n_channels, n_filters) X : ndarray eeg data, shape (n_trials, n_channels, n_samples) n_components : int, optional the first k components to use, usually even number, by default 2 Returns ------- ndarray features of shape (n_trials, n_features) Raises ------ ValueError n_components should less than the number of channels References ---------- .. [1] Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement[J]. IEEE transactions on rehabilitation engineering, 2000, 8(4): 441-446. """ W, X = np.copy(W), np.copy(X) max_components = W.shape[1] if n_components > max_components: raise ValueError("n_components should less than the number of channels") eps = np.finfo(X.dtype).eps X = X - np.mean(X, axis=-1, keepdims=True) # normalized variance features = np.mean(np.square(np.matmul(W[:, :n_components].T, X)), axis=-1) features = features / (np.sum(features, axis=-1, keepdims=True) + eps) # log-transformation features = np.log(np.clip(features, eps, None)) return features def _rjd(X, eps=1e-9, n_iter_max=1000): """Approximate joint diagonalization based on jacobi angle. Parameters ---------- X : ndarray A set of covariance matrices to diagonalize, shape (n_trials, n_channels, n_channels). eps : float, optional Tolerance for stopping criterion (default 1e-8). n_iter_max : int, optional The maximum number of iteration to reach convergence (default 1000). Returns ------- V : ndarray The diagonalizer, shape (n_channels, n_filters), usually n_filters == n_channels. D : ndarray The set of quasi diagonal matrices, shape (n_trials, n_channels, n_channels). Notes ----- This is a direct implementation of the Cardoso AJD algorithm [1]_ used in JADE. The code is a translation of the matlab code provided in the author website. References ---------- .. [1] Cardoso, Jean-Francois, and Antoine Souloumiac. Jacobi angles for simultaneous diagonalization. SIAM journal on matrix analysis and applications 17.1 (1996): 161-164. """ # reshape input matrix A = np.concatenate(X, 0).T # init variables m, nm = A.shape V = np.eye(m) encore = True k = 0 while encore: encore = False k += 1 if k > n_iter_max: break for p in range(m - 1): for q in range(p + 1, m): Ip = np.arange(p, nm, m) Iq = np.arange(q, nm, m) # computation of Givens angle g = np.array([A[p, Ip] - A[q, Iq], A[p, Iq] + A[q, Ip]]) gg = np.dot(g, g.T) ton = gg[0, 0] - gg[1, 1] toff = gg[0, 1] + gg[1, 0] theta = 0.5 * np.arctan2(toff, ton + np.sqrt(ton * ton + toff * toff)) c = np.cos(theta) s = np.sin(theta) encore = encore | (np.abs(s) > eps) if (np.abs(s) > eps): tmp = A[:, Ip].copy() A[:, Ip] = c * A[:, Ip] + s * A[:, Iq] A[:, Iq] = c * A[:, Iq] - s * tmp tmp = A[p, :].copy() A[p, :] = c * A[p, :] + s * A[q, :] A[q, :] = c * A[q, :] - s * tmp tmp = V[:, p].copy() V[:, p] = c * V[:, p] + s * V[:, q] V[:, q] = c * V[:, q] - s * tmp D = np.reshape(A, (m, int(nm / m), m)).transpose(1, 0, 2) return V, D def _ajd_pham(X, eps=1e-9, n_iter_max=1000): """Approximate joint diagonalization based on pham's algorithm. Parameters ---------- X : ndarray A set of covariance matrices to diagonalize, shape (n_trials, n_channels, n_channels). eps : float, optional Tolerance for stoping criterion (default 1e-6). n_iter_max : int, optional The maximum number of iteration to reach convergence (default 1000). Returns ------- V : ndarray The diagonalizer, shape (n_channels, n_filters), usually n_filters == n_channels. D : ndarray The set of quasi diagonal matrices, shape (n_trials, n_channels, n_channels). Notes ----- This is a direct implementation of the PHAM's AJD algorithm [1]_. References ---------- .. [1] Pham, Dinh Tuan. "Joint approximate diagonalization of positive definite Hermitian matrices." SIAM Journal on Matrix Analysis and Applications 22, no. 4 (2001): 1136-1152. """ # Adapted from http://github.com/alexandrebarachant/pyRiemann n_epochs = X.shape[0] # Reshape input matrix A = np.concatenate(X, axis=0).T # Init variables n_times, n_m = A.shape V = np.eye(n_times) epsilon = n_times * (n_times - 1) * eps for it in range(n_iter_max): decr = 0 for ii in range(1, n_times): for jj in range(ii): Ii = np.arange(ii, n_m, n_times) Ij = np.arange(jj, n_m, n_times) c1 = A[ii, Ii] c2 = A[jj, Ij] g12 = np.mean(A[ii, Ij] / c1) g21 = np.mean(A[ii, Ij] / c2) omega21 = np.mean(c1 / c2) omega12 = np.mean(c2 / c1) omega = np.sqrt(omega12 * omega21) tmp = np.sqrt(omega21 / omega12) tmp1 = (tmp * g12 + g21) / (omega + 1) tmp2 = (tmp * g12 - g21) / max(omega - 1, 1e-9) h12 = tmp1 + tmp2 h21 = np.conj((tmp1 - tmp2) / tmp) decr += n_epochs * (g12 * np.conj(h12) + g21 * h21) / 2.0 tmp = 1 + 1.j * 0.5 * np.imag(h12 * h21) tmp = np.real(tmp + np.sqrt(tmp ** 2 - h12 * h21)) tau = np.array([[1, -h12 / tmp], [-h21 / tmp, 1]]) A[[ii, jj], :] = np.dot(tau, A[[ii, jj], :]) tmp = np.c_[A[:, Ii], A[:, Ij]] tmp = np.reshape(tmp, (n_times * n_epochs, 2), order='F') tmp = np.dot(tmp, tau.T) tmp = np.reshape(tmp, (n_times, n_epochs * 2), order='F') A[:, Ii] = tmp[:, :n_epochs] A[:, Ij] = tmp[:, n_epochs:] V[[ii, jj], :] = np.dot(tau, V[[ii, jj], :]) if decr < epsilon: break D = np.reshape(A, (n_times, -1, n_times)).transpose(1, 0, 2) return V.T, D def _uwedge(X, init=None, eps=1e-9, n_iter_max=1000): """Approximate joint diagonalization algorithm UWEDGE. Parameters ---------- X : ndarray A set of covariance matrices to diagonalize, shape (n_trials, n_channels, n_channels). init : None | ndarray, optional Initialization for the diagonalizer, shape (n_channels, n_channels). eps : float, optional Tolerance for stoping criterion (default 1e-7). n_iter_max : int The maximum number of iteration to reach convergence (default 1000). Returns ------- W_est : ndarray The diagonalizer, shape (n_filters, n_channels), usually n_filters == n_channels. D : ndarray The set of quasi diagonal matrices, shape (n_trials, n_channels, n_channels). Notes ----- Uniformly Weighted Exhaustive Diagonalization using Gauss iteration (U-WEDGE). Implementation of the AJD algorithm by Tichavsky and Yeredor [1]_ [2]_. This is a translation from the matlab code provided by the authors. References ---------- .. [1] P. Tichavsky, A. Yeredor and J. Nielsen, "A Fast Approximate Joint Diagonalization Algorithm Using a Criterion with a Block Diagonal Weight Matrix", ICASSP 2008, Las Vegas. .. [2] P. Tichavsky and A. Yeredor, "Fast Approximate Joint Diagonalization Incorporating Weight Matrices" IEEE Transactions of Signal Processing, 2009. """ L, d, _ = X.shape # reshape input matrix M = np.concatenate(X, 0).T # init variables d, Md = M.shape iteration = 0 improve = 10 if init is None: E, H = np.linalg.eig(M[:, 0:d]) W_est = np.dot(np.diag(1. / np.sqrt(np.abs(E))), H.T) else: W_est = init Ms = np.array(M) Rs = np.zeros((d, L)) for k in range(L): ini = k*d Il = np.arange(ini, ini + d) M[:, Il] = 0.5*(M[:, Il] + M[:, Il].T) Ms[:, Il] = np.dot(np.dot(W_est, M[:, Il]), W_est.T) Rs[:, k] = np.diag(Ms[:, Il]) crit = np.sum(Ms**2) - np.sum(Rs**2) while (improve > eps) & (iteration < n_iter_max): B = np.dot(Rs, Rs.T) C1 = np.zeros((d, d)) for i in range(d): C1[:, i] = np.sum(Ms[:, i:Md:d]*Rs, axis=1) D0 = B*B.T - np.outer(np.diag(B), np.diag(B)) A0 = (C1 * B - np.dot(np.diag(np.diag(B)), C1.T)) / (D0 + np.eye(d)) A0 += np.eye(d) W_est = np.linalg.solve(A0, W_est) Raux = np.dot(np.dot(W_est, M[:, 0:d]), W_est.T) aux = 1./np.sqrt(np.abs(np.diag(Raux))) W_est = np.dot(np.diag(aux), W_est) for k in range(L): ini = k*d Il = np.arange(ini, ini + d) Ms[:, Il] = np.dot(np.dot(W_est, M[:, Il]), W_est.T) Rs[:, k] = np.diag(Ms[:, Il]) crit_new = np.sum(Ms**2) - np.sum(Rs**2) improve = np.abs(crit_new - crit) crit = crit_new iteration += 1 D = np.reshape(Ms, (d, L, d)).transpose(1, 0, 2) return W_est.T, D ajd_methods = { 'rjd': _rjd, 'ajd_pham': _ajd_pham, 'uwedge': _uwedge } def _check_ajd_method(method): """Check if a given method is valid. Parameters ---------- method : callable object or str Could be the name of ajd_method or a callable method itself. Returns ------- method: callable object A callable ajd method. """ if callable(method): pass elif method in ajd_methods.keys(): method = ajd_methods[method] else: raise ValueError( """%s is not an valid method ! Valid methods are : %s or a callable function""" % (method, (' , ').join(ajd_methods.keys()))) return method def ajd(X: ndarray, method: str ='uwedge') -> Tuple[ndarray, ndarray]: """Wrapper of AJD methods. Parameters ---------- X : ndarray Input covariance matrices, shape (n_trials, n_channels, n_channels) method : str, optional AJD method (default uwedge). Returns ------- V : ndarray The diagonalizer, shape (n_channels, n_filters), usually n_filters == n_channels. D : ndarray The mean of quasi diagonal matrices, shape (n_channels,). """ method = _check_ajd_method(method) V, D = method(X) D = np.diag(np.mean(D, axis=0)) ind = np.argsort(D)[::-1] D = D[ind] V = V[:, ind] return V, D def gw_csp_kernel(X: ndarray, y: ndarray, ajd_method: str = 'uwedge') -> Tuple[ndarray, ndarray, ndarray, ndarray]: """Grosse-Wentrup AJD method based on paper [1]_. Parameters ---------- X : ndarray eeg data, shape (n_trials, n_channels, n_samples). y : ndarray labels, shape (n_trials). ajd_method : str, optional ajd methods, 'uwedge' 'rjd' and 'ajd_pham', by default 'uwedge'. Returns ------- W: ndarray Spatial filters, shape (n_channels, n_filters). D: ndarray Eigenvalues of spatial filters, shape (n_filters,). A: ndarray Spatial patterns, shape (n_channels, n_patterns). mutual_info: ndarray Mutual informaiton values, shape (n_filters). References ---------- .. [1] Grosse-Wentrup, Moritz, and Martin Buss. "Multiclass common spatial patterns and information theoretic feature extraction." Biomedical Engineering, IEEE Transactions on 55, no. 8 (2008): 1991-2000. """ X, y = np.copy(X), np.copy(y) labels = np.unique(y) X = X - np.mean(X, axis=-1, keepdims=True) Cx = [] for label in labels: C = covariances(X[y==label]) # trace normalization C = C / np.trace(C, axis1=-1, axis2=-2)[:, np.newaxis, np.newaxis] Cx.append(np.mean(C, axis=0)) Cx = np.stack(Cx) W, D = ajd(Cx, method=ajd_method) # Ctot = np.mean(Cx, axis=0) # W = W / np.sqrt(np.diag(W.T@Ctot@W)) W = W / np.sqrt(D) # compute mutual information values Pc = [np.mean(y == label) for label in labels] mutual_info = [] for j in range(W.shape[-1]): a = 0 b = 0 for i in range(len(labels)): # tmp = np.dot(np.dot(W[j], self.C_[i]), W[j].T) tmp = W[:, j].T@Cx[i]@W[:, j] a += Pc[i] * np.log(np.sqrt(tmp)) b += Pc[i] * (tmp ** 2 - 1) mi = - (a + (3.0 / 16) * (b ** 2)) mutual_info.append(mi) mutual_info = np.array(mutual_info) ix = np.argsort(mutual_info)[::-1] W = W[:, ix] mutual_info = mutual_info[ix] D = D[ix] A = robust_pattern(W, Cx[0], W.T@Cx[0]@W) return W, D, A, mutual_info class CSP(BaseEstimator, TransformerMixin): """Common Spatial Pattern. if n_components is None, auto finding the best number of components with gridsearch. The upper searching limit is determined by max_components, default is half of the number of channels. """ def __init__(self, n_components: Optional[int] = None, max_components: Optional[int] = None): self.n_components = n_components self.max_components = max_components def fit(self, X: ndarray, y: ndarray): self.classes_ = np.unique(y) self.W_, self.D_, self.A_ = csp_kernel(X, y) # resorting with 0.5 threshold self.D_ = np.abs(self.D_ - 0.5) ind = np.argsort(self.D_, axis=-1)[::-1] self.W_, self.D_, self.A_ = self.W_[:, ind], self.D_[ind], self.A_[:, ind] # auto-tuning if self.n_components is None: estimator = make_pipeline(*[CSP(n_components=self.n_components), SVC()]) if self.max_components is None: params = {'csp__n_components': np.arange(1, self.W_.shape[1]+1)} else: params = {'csp__n_components': np.arange(1, self.max_components+1)} n_splits = np.min(np.unique(y, return_counts=True)[1]) n_splits = 5 if n_splits > 5 else n_splits gs = GridSearchCV(estimator, param_grid=params, scoring='accuracy', cv=StratifiedKFold(n_splits=n_splits, shuffle=True), refit=False, n_jobs=-1, verbose=False) gs.fit(X, y) self.best_n_components_ = gs.best_params_['csp__n_components'] return self def transform(self, X: ndarray): n_components = self.best_n_components_ if self.n_components is None else self.n_components return csp_feature(self.W_, X, n_components=n_components) class MultiCSP(BaseEstimator, TransformerMixin): def __init__(self, n_components: Optional[int] = None, max_components: Optional[int] = None, multiclass: str = 'ovr', ajd_method: str ='uwedge'): self.n_components = n_components self.max_components = max_components self.multiclass = multiclass self.ajd_method = ajd_method def fit(self, X: ndarray, y: ndarray): self.classes_ = np.unique(y) if self.multiclass == 'ovr': self.estimator_ = OneVsRestClassifier( make_pipeline(*[ CSP(n_components=self.n_components, max_components=self.max_components), SVC() ]), n_jobs=-1) self.estimator_.fit(X, y) elif self.multiclass == 'ovo': self.estimator_ = OneVsOneClassifier( make_pipeline(*[ CSP(n_components=self.n_components, max_components=self.max_components), SVC() ]), n_jobs=-1) # patching avoiding 2d array check self.estimator_._validate_data = partial(self.estimator_._validate_data, allow_nd=True) self.estimator_.fit(X, y) elif self.multiclass == 'grosse-wentrup': self.W_, _, self.A_, self.mutualinfo_values_ = gw_csp_kernel( X, y, ajd_method=self.ajd_method) if self.n_components is None: estimator = make_pipeline(*[ MultiCSP(n_components=self.n_components, multiclass='grosse-wentrup', ajd_method=self.ajd_method), SVC() ]) if self.max_components is None: params = {'multicsp__n_components': np.arange(1, self.W_.shape[1]+1)} else: params = {'multicsp__n_components': np.arange(1, self.max_components+1)} n_splits = np.min(np.unique(y, return_counts=True)[1]) n_splits = 5 if n_splits > 5 else n_splits gs = GridSearchCV(estimator, param_grid=params, scoring='accuracy', cv=StratifiedKFold(n_splits=n_splits, shuffle=True), refit=False, n_jobs=-1, verbose=False) gs.fit(X, y) self.best_n_components_ = gs.best_params_['multicsp__n_components'] else: raise ValueError("not a valid multiclass strategy") return self def transform(self, X: ndarray): if self.multiclass == 'grosse-wentrup': n_components = self.best_n_components_ if self.n_components is None else self.n_components features = csp_feature(self.W_, X, n_components=n_components) else: features = np.concatenate([est[0].transform(X) for est in self.estimator_.estimators_], axis=-1) return features def spoc_kernel(X: ndarray, y: ndarray) -> Tuple[ndarray, ndarray, ndarray]: """Source Power Comodulation (SPoC) based on paper [1]_. It is a continous CSP-like method. Parameters ---------- X : ndarray eeg data, shape (n_trials, n_channels, n_samples) y : ndarray labels, shape (n_trials) Returns ------- W: ndarray Spatial filters, shape (n_channels, n_filters). D: ndarray Eigenvalues of spatial filters, shape (n_filters,). A: ndarray Spatial patterns, shape (n_channels, n_patterns). References ---------- .. [1] Sven Dähne, Frank C. Meinecke, Stefan Haufe, Johannes Höhne, Michael Tangermann, Klaus-Robert Müller, and Vadim V. Nikulin. SPoC: a novel framework for relating the amplitude of neuronal oscillations to behaviorally relevant parameters. NeuroImage, 86:111–122, 2014. doi:10.1016/j.neuroimage.2013.07.079. """ X, weights = np.copy(X), np.copy(y) eps = np.finfo(X.dtype).eps X = X - np.mean(X, axis=-1, keepdims=True) weights = weights - np.mean(weights) weights = weights / np.std(weights) Cx = covariances(X) # trace normalization Cx = Cx / np.trace(Cx, axis1=-1, axis2=-2)[:, np.newaxis, np.newaxis] C = np.mean(Cx, axis=0) Cz = np.mean(weights[:, np.newaxis, np.newaxis]*Cx, axis=0) # check positive-definiteness C = nearestPD(C) Cz = nearestPD(Cz) # TODO: direct copy from pyriemann, need verify D, W = eigh(Cz, C) ind = np.argsort(D)[::-1] D = D[ind] W = W[:, ind] A = robust_pattern(W, Cz, W.T@Cz@W) return W, D, A class SPoC(BaseEstimator, TransformerMixin): """Source Power Comodulation (SPoC). For continuous data, not verified. """ def __init__(self, n_components: Optional[int] = None, max_components: Optional[int] = None): self.n_components = n_components self.max_components = max_components def fit(self, X: ndarray, y: ndarray): self.W_, self.D_, self.A_ = spoc_kernel(X, y) # auto-tuning if self.n_components is None: estimator = make_pipeline(*[SPoC(n_components=self.n_components), Ridge(alpha=0.5)]) if self.max_components is None: params = {'spoc__n_components': np.arange(1, self.W_.shape[1]+1)} else: params = {'spoc__n_components': np.arange(1, self.max_components+1)} test_size = 0.2 if len(y) > 5 else 1/len(y) gs = GridSearchCV(estimator, param_grid=params, scoring='neg_root_mean_squared_error', cv=ShuffleSplit(n_splits=5, test_size=test_size), refit=False, n_jobs=-1, verbose=False) gs.fit(X, y) self.best_n_components_ = gs.best_params_['spoc__n_components'] def transform(self, X: ndarray): n_components = self.best_n_components_ if self.n_components is None else self.n_components return csp_feature(self.W_, X, n_components=n_components) class FBCSP(FilterBank): """FBCSP. FilterBank CSP based on paper [1]_. References ---------- .. [1] Ang K K, Chin Z Y, Zhang H, et al. Filter bank common spatial pattern (FBCSP) in brain-computer interface[C]//2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). IEEE, 2008: 2390-2397. """ def __init__(self, n_components: Optional[int] = None, max_components: Optional[int] = None, n_mutualinfo_components: Optional[int] = None, filterbank: Optional[List[ndarray]] = None): self.n_components = n_components self.max_components = max_components self.n_mutualinfo_components = n_mutualinfo_components self.filterbank = filterbank super().__init__(CSP(n_components=n_components, max_components=max_components), filterbank=filterbank) def fit(self, X: ndarray, y: ndarray): super().fit(X, y) features = super().transform(X) if self.n_mutualinfo_components is None: estimator = make_pipeline(*[ SelectKBest(score_func=mutual_info_classif, k='all'), SVC() ]) params = {'selectkbest__k': np.arange(1, features.shape[1]+1)} n_splits = np.min(np.unique(y, return_counts=True)[1]) n_splits = 5 if n_splits > 5 else n_splits gs = GridSearchCV(estimator, param_grid=params, scoring='accuracy', cv=StratifiedKFold(n_splits=n_splits, shuffle=True), refit=False, n_jobs=-1, verbose=False) gs.fit(features, y) self.best_n_mutualinfo_components_ = gs.best_params_['selectkbest__k'] self.selector_ = SelectKBest( score_func=mutual_info_classif, k=self.best_n_mutualinfo_components_) else: self.selector_ = SelectKBest( score_func=mutual_info_classif, k=self.n_mutualinfo_components) self.selector_.fit(features, y) return self def transform(self, X: ndarray): features = super().transform(X) features = self.selector_.transform(features) return features class FBMultiCSP(FilterBank): def __init__(self, n_components: Optional[int] = None, max_components: Optional[int] = None, multiclass: str = 'ovr', ajd_method: str ='uwedge', n_mutualinfo_components: Optional[int] = None, filterbank: Optional[List[ndarray]] = None): self.n_components = n_components self.max_components = max_components self.multiclass = multiclass self.ajd_method = ajd_method self.n_mutualinfo_components = n_mutualinfo_components self.filterbank = filterbank self.n_mutualinfo_components = n_mutualinfo_components super().__init__(MultiCSP(n_components=n_components, max_components=max_components, multiclass=multiclass, ajd_method=ajd_method)) def fit(self, X: ndarray, y: ndarray): super().fit(X, y) features = super().transform(X) if self.n_mutualinfo_components is None: estimator = make_pipeline(*[ SelectKBest(score_func=mutual_info_classif, k='all'), SVC() ]) params = {'selectkbest__k': np.arange(1, features.shape[1]+1)} n_splits = np.min(np.unique(y, return_counts=True)[1]) n_splits = 5 if n_splits > 5 else n_splits gs = GridSearchCV(estimator, param_grid=params, scoring='accuracy', cv=StratifiedKFold(n_splits=n_splits, shuffle=True), refit=False, n_jobs=-1, verbose=False) gs.fit(features, y) self.best_n_mutualinfo_components_ = gs.best_params_['selectkbest__k'] self.selector_ = SelectKBest( score_func=mutual_info_classif, k=self.best_n_mutualinfo_components_) else: self.selector_ = SelectKBest( score_func=mutual_info_classif, k=self.n_mutualinfo_components) self.selector_.fit(features, y) return self def transform(self, X: ndarray): features = super().transform(X) features = self.selector_.transform(features) return features
9,176
35
446
a213ac945ac3eff393596fccbd49623779d35895
16,917
py
Python
teller/explainer/explainer.py
Techtonique/teller
3571353b843179335e3995a0128d4a0c54c2b905
[ "BSD-3-Clause-Clear" ]
5
2021-07-14T11:57:36.000Z
2022-03-26T19:47:54.000Z
teller/explainer/explainer.py
Techtonique/teller
3571353b843179335e3995a0128d4a0c54c2b905
[ "BSD-3-Clause-Clear" ]
1
2021-12-21T17:53:37.000Z
2022-01-26T11:36:32.000Z
teller/explainer/explainer.py
Techtonique/teller
3571353b843179335e3995a0128d4a0c54c2b905
[ "BSD-3-Clause-Clear" ]
1
2021-12-21T17:51:00.000Z
2021-12-21T17:51:00.000Z
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import matplotlib.style as style from sklearn.base import BaseEstimator from ..utils import ( is_factor, numerical_gradient, numerical_gradient_jackknife, numerical_gradient_gaussian, numerical_interactions, numerical_interactions_jackknife, numerical_interactions_gaussian, Progbar, score_regression, score_classification, ) class Explainer(BaseEstimator): """Class Explainer: effects of features on the response. Attributes: obj: an object; fitted object containing methods `fit` and `predict` n_jobs: an integer; number of jobs for parallel computing y_class: an integer; class whose probability has to be explained (for classification only) normalize: a boolean; whether the features must be normalized or not (changes the effects) """ def fit( self, X, y, X_names, method="avg", type_ci="jackknife", scoring=None, level=95, col_inters=None, ): """Fit the explainer's attribute `obj` to training data (X, y). Args: X: array-like, shape = [n_samples, n_features]; Training vectors, where n_samples is the number of samples and n_features is the number of features. y: array-like, shape = [n_samples, ]; Target values. X_names: {array-like}, shape = [n_features, ]; Column names (strings) for training vectors. method: str; Type of summary requested for effects. Either `avg` (for average effects), `inters` (for interactions) or `ci` (for effects including confidence intervals around them). type_ci: str; Type of resampling for `method == 'ci'` (confidence intervals around effects). Either `jackknife` bootsrapping or `gaussian` (gaussian white noise with standard deviation equal to `0.01` applied to the features). scoring: str; measure of errors must be in ("explained_variance", "neg_mean_absolute_error", "neg_mean_squared_error", "neg_mean_squared_log_error", "neg_median_absolute_error", "r2", "rmse") (default: "rmse"). level: int; Level of confidence required for `method == 'ci'` (in %). col_inters: str; Name of column for computing interactions. """ assert method in ( "avg", "ci", "inters", ), "must have: `method` in ('avg', 'ci', 'inters')" n, p = X.shape self.X_names = X_names self.level = level self.method = method self.type_ci = type_ci if is_factor(y): # classification --- self.n_classes = len(np.unique(y)) assert ( self.y_class <= self.n_classes ), "self.y_class must be <= number of classes" assert hasattr( self.obj, "predict_proba" ), "`self.obj` must be a classifier and have a method `predict_proba`" self.type_fit = "classification" if scoring is None: self.scoring = "accuracy" self.score_ = score_classification(self.obj, X, y, scoring=self.scoring) y_hat = predict_proba(X) # heterogeneity of effects if method == "avg": self.grad_ = numerical_gradient( predict_proba, X, normalize=self.normalize, n_jobs=self.n_jobs, ) # confidence intervals if method == "ci": if type_ci=="jackknife": self.ci_ = numerical_gradient_jackknife( predict_proba, X, normalize=self.normalize, n_jobs=self.n_jobs, level=level, ) if type_ci=="gaussian": self.ci_ = numerical_gradient_gaussian( predict_proba, X, normalize=self.normalize, n_jobs=self.n_jobs, level=level, ) # interactions if method == "inters": assert col_inters is not None, "`col_inters` must be provided" self.col_inters = col_inters ix1 = np.where(X_names == col_inters)[0][0] pbar = Progbar(p) if type_ci=="jackknife": for ix2 in range(p): self.ci_inters_.update( { X_names[ix2]: numerical_interactions_jackknife( f=predict_proba, X=X, ix1=ix1, ix2=ix2, verbose=0, ) } ) pbar.update(ix2) if type_ci=="gaussian": for ix2 in range(p): self.ci_inters_.update( { X_names[ix2]: numerical_interactions_gaussian( f=predict_proba, X=X, ix1=ix1, ix2=ix2, verbose=0, ) } ) pbar.update(ix2) pbar.update(p) print("\n") else: # is_factor(y) == False # regression --- self.type_fit = "regression" if scoring is None: self.scoring = "rmse" self.score_ = score_regression(self.obj, X, y, scoring=self.scoring) y_hat = self.obj.predict(X) # heterogeneity of effects if method == "avg": self.grad_ = numerical_gradient( self.obj.predict, X, normalize=self.normalize, n_jobs=self.n_jobs, ) # confidence intervals if method == "ci": if type_ci=="jackknife": self.ci_ = numerical_gradient_jackknife( self.obj.predict, X, normalize=self.normalize, n_jobs=self.n_jobs, level=level, ) if type_ci=="gaussian": self.ci_ = numerical_gradient_gaussian( self.obj.predict, X, normalize=self.normalize, n_jobs=self.n_jobs, level=level, ) # interactions if method == "inters": assert col_inters is not None, "`col_inters` must be provided" self.col_inters = col_inters ix1 = np.where(X_names == col_inters)[0][0] pbar = Progbar(p) if type_ci=="jackknife": for ix2 in range(p): self.ci_inters_.update( { X_names[ix2]: numerical_interactions_jackknife( f=self.obj.predict, X=X, ix1=ix1, ix2=ix2, verbose=0, ) } ) if type_ci=="gaussian": for ix2 in range(p): self.ci_inters_.update( { X_names[ix2]: numerical_interactions_gaussian( f=self.obj.predict, X=X, ix1=ix1, ix2=ix2, verbose=0, ) } ) pbar.update(ix2) pbar.update(p) print("\n") self.y_mean_ = np.mean(y) ss_tot = np.sum((y - self.y_mean_) ** 2) ss_reg = np.sum((y_hat - self.y_mean_) ** 2) ss_res = np.sum((y - y_hat) ** 2) self.residuals_ = y - y_hat self.r_squared_ = 1 - ss_res / ss_tot self.adj_r_squared_ = 1 - (1 - self.r_squared_) * (n - 1) / ( n - p - 1 ) # classification and regression --- if method == "avg": res_df = pd.DataFrame(data=self.grad_, columns=X_names) res_df_mean = res_df.mean() res_df_std = res_df.std() res_df_median = res_df.median() res_df_min = res_df.min() res_df_max = res_df.max() data = pd.concat( [res_df_mean, res_df_std, res_df_median, res_df_min, res_df_max], axis=1 ) df_effects = pd.DataFrame( data=data.values, columns=["mean", "std", "median", "min", "max"], index=X_names, ) # heterogeneity of effects self.effects_ = df_effects.sort_values(by=["mean"], ascending=False) return self def summary(self): """Summarise results a method in class Explainer Args: None """ assert ( (self.ci_ is not None) | (self.effects_ is not None) | (self.ci_inters_ is not None) ), "object not fitted, fit the object first" if (self.ci_ is not None) & (self.method == "ci"): # (mean_est, se_est, # mean_est + qt*se_est, mean_est - qt*se_est, # p_values, signif_codes) df_mean = pd.Series(data=self.ci_[0], index=self.X_names) df_se = pd.Series(data=self.ci_[1], index=self.X_names) df_ubound = pd.Series(data=self.ci_[2], index=self.X_names) df_lbound = pd.Series(data=self.ci_[3], index=self.X_names) df_pvalue = pd.Series(data=self.ci_[4], index=self.X_names) df_signif = pd.Series(data=self.ci_[5], index=self.X_names) data = pd.concat( [df_mean, df_se, df_lbound, df_ubound, df_pvalue, df_signif], axis=1, ) self.ci_summary_ = pd.DataFrame( data=data.values, columns=[ "Estimate", "Std. Error", str(self.level) + "% lbound", str(self.level) + "% ubound", "Pr(>|t|)", "", ], index=self.X_names, ).sort_values(by=["Estimate"], ascending=False) print("\n") print(f"Score ({self.scoring}): \n {np.round(self.score_, 3)}") if self.type_fit == "regression": print("\n") print("Residuals: ") self.residuals_dist_ = pd.DataFrame( pd.Series( data=np.quantile( self.residuals_, q=[0, 0.25, 0.5, 0.75, 1] ), index=["Min", "1Q", "Median", "3Q", "Max"], ) ).transpose() print(self.residuals_dist_.to_string(index=False)) print("\n") if self.type_ci=="jackknife": print("Tests on marginal effects (Jackknife): ") if self.type_ci=="gaussian": print("Tests on marginal effects (Gaussian noise): ") with pd.option_context( "display.max_rows", None, "display.max_columns", None ): print(self.ci_summary_) print("\n") print( "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘-’ 1" ) if self.type_fit == "regression": print("\n") print( f"Multiple R-squared: {np.round(self.r_squared_, 3)}, Adjusted R-squared: {np.round(self.adj_r_squared_, 3)}" ) if (self.effects_ is not None) & (self.method == "avg"): print("\n") print("Heterogeneity of marginal effects: ") with pd.option_context( "display.max_rows", None, "display.max_columns", None ): print(self.effects_) print("\n") if (self.ci_inters_ is not None) & (self.method == "inters"): print("\n") print("Interactions with " + self.col_inters + ": ") with pd.option_context( "display.max_rows", None, "display.max_columns", None ): print( pd.DataFrame( self.ci_inters_, index=[ "Estimate", "Std. Error", str(95) + "% lbound", str(95) + "% ubound", "Pr(>|t|)", "", ], ).transpose() ) def plot(self, what): """Plot average effects, heterogeneity of effects, ... Args: what: a string; if . """ assert self.effects_ is not None, "Call method 'fit' before plotting" assert self.grad_ is not None, "Call method 'fit' before plotting" # For method == "avg" if (self.method == "avg"): if(what == "average_effects"): sns.set(style="darkgrid") fi = pd.DataFrame() fi['features'] = self.effects_.index.values fi['effect'] = self.effects_['mean'].values sns.barplot(x='effect', y='features', data=fi.sort_values(by='effect', ascending=False)) if(what == "hetero_effects"): grads_df = pd.DataFrame(data=self.grad_, columns=self.X_names) sorted_columns = list(self.effects_.index.values) # by mean sorted_columns.reverse() grads_df = grads_df.reindex(sorted_columns, axis=1) sns.set(style="darkgrid") grads_df.boxplot(vert=False) # For method == "ci" if (self.method == "ci"): assert self.ci_ is not None, "Call method 'fit' before plotting" raise NotImplementedError("No plot for method == 'ci' yet")
32.284351
131
0.435952
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import matplotlib.style as style from sklearn.base import BaseEstimator from ..utils import ( is_factor, numerical_gradient, numerical_gradient_jackknife, numerical_gradient_gaussian, numerical_interactions, numerical_interactions_jackknife, numerical_interactions_gaussian, Progbar, score_regression, score_classification, ) class Explainer(BaseEstimator): """Class Explainer: effects of features on the response. Attributes: obj: an object; fitted object containing methods `fit` and `predict` n_jobs: an integer; number of jobs for parallel computing y_class: an integer; class whose probability has to be explained (for classification only) normalize: a boolean; whether the features must be normalized or not (changes the effects) """ def __init__(self, obj, n_jobs=None, y_class=0, normalize=False): self.obj = obj self.n_jobs = n_jobs self.y_mean_ = None self.effects_ = None self.residuals_ = None self.r_squared_ = None self.adj_r_squared_ = None self.effects_ = None self.ci_ = None self.ci_inters_ = {} self.type_fit = None self.y_class = y_class # classification only self.normalize = normalize self.type_ci = None def fit( self, X, y, X_names, method="avg", type_ci="jackknife", scoring=None, level=95, col_inters=None, ): """Fit the explainer's attribute `obj` to training data (X, y). Args: X: array-like, shape = [n_samples, n_features]; Training vectors, where n_samples is the number of samples and n_features is the number of features. y: array-like, shape = [n_samples, ]; Target values. X_names: {array-like}, shape = [n_features, ]; Column names (strings) for training vectors. method: str; Type of summary requested for effects. Either `avg` (for average effects), `inters` (for interactions) or `ci` (for effects including confidence intervals around them). type_ci: str; Type of resampling for `method == 'ci'` (confidence intervals around effects). Either `jackknife` bootsrapping or `gaussian` (gaussian white noise with standard deviation equal to `0.01` applied to the features). scoring: str; measure of errors must be in ("explained_variance", "neg_mean_absolute_error", "neg_mean_squared_error", "neg_mean_squared_log_error", "neg_median_absolute_error", "r2", "rmse") (default: "rmse"). level: int; Level of confidence required for `method == 'ci'` (in %). col_inters: str; Name of column for computing interactions. """ assert method in ( "avg", "ci", "inters", ), "must have: `method` in ('avg', 'ci', 'inters')" n, p = X.shape self.X_names = X_names self.level = level self.method = method self.type_ci = type_ci if is_factor(y): # classification --- self.n_classes = len(np.unique(y)) assert ( self.y_class <= self.n_classes ), "self.y_class must be <= number of classes" assert hasattr( self.obj, "predict_proba" ), "`self.obj` must be a classifier and have a method `predict_proba`" self.type_fit = "classification" if scoring is None: self.scoring = "accuracy" self.score_ = score_classification(self.obj, X, y, scoring=self.scoring) def predict_proba(x): return self.obj.predict_proba(x)[:, self.y_class] y_hat = predict_proba(X) # heterogeneity of effects if method == "avg": self.grad_ = numerical_gradient( predict_proba, X, normalize=self.normalize, n_jobs=self.n_jobs, ) # confidence intervals if method == "ci": if type_ci=="jackknife": self.ci_ = numerical_gradient_jackknife( predict_proba, X, normalize=self.normalize, n_jobs=self.n_jobs, level=level, ) if type_ci=="gaussian": self.ci_ = numerical_gradient_gaussian( predict_proba, X, normalize=self.normalize, n_jobs=self.n_jobs, level=level, ) # interactions if method == "inters": assert col_inters is not None, "`col_inters` must be provided" self.col_inters = col_inters ix1 = np.where(X_names == col_inters)[0][0] pbar = Progbar(p) if type_ci=="jackknife": for ix2 in range(p): self.ci_inters_.update( { X_names[ix2]: numerical_interactions_jackknife( f=predict_proba, X=X, ix1=ix1, ix2=ix2, verbose=0, ) } ) pbar.update(ix2) if type_ci=="gaussian": for ix2 in range(p): self.ci_inters_.update( { X_names[ix2]: numerical_interactions_gaussian( f=predict_proba, X=X, ix1=ix1, ix2=ix2, verbose=0, ) } ) pbar.update(ix2) pbar.update(p) print("\n") else: # is_factor(y) == False # regression --- self.type_fit = "regression" if scoring is None: self.scoring = "rmse" self.score_ = score_regression(self.obj, X, y, scoring=self.scoring) y_hat = self.obj.predict(X) # heterogeneity of effects if method == "avg": self.grad_ = numerical_gradient( self.obj.predict, X, normalize=self.normalize, n_jobs=self.n_jobs, ) # confidence intervals if method == "ci": if type_ci=="jackknife": self.ci_ = numerical_gradient_jackknife( self.obj.predict, X, normalize=self.normalize, n_jobs=self.n_jobs, level=level, ) if type_ci=="gaussian": self.ci_ = numerical_gradient_gaussian( self.obj.predict, X, normalize=self.normalize, n_jobs=self.n_jobs, level=level, ) # interactions if method == "inters": assert col_inters is not None, "`col_inters` must be provided" self.col_inters = col_inters ix1 = np.where(X_names == col_inters)[0][0] pbar = Progbar(p) if type_ci=="jackknife": for ix2 in range(p): self.ci_inters_.update( { X_names[ix2]: numerical_interactions_jackknife( f=self.obj.predict, X=X, ix1=ix1, ix2=ix2, verbose=0, ) } ) if type_ci=="gaussian": for ix2 in range(p): self.ci_inters_.update( { X_names[ix2]: numerical_interactions_gaussian( f=self.obj.predict, X=X, ix1=ix1, ix2=ix2, verbose=0, ) } ) pbar.update(ix2) pbar.update(p) print("\n") self.y_mean_ = np.mean(y) ss_tot = np.sum((y - self.y_mean_) ** 2) ss_reg = np.sum((y_hat - self.y_mean_) ** 2) ss_res = np.sum((y - y_hat) ** 2) self.residuals_ = y - y_hat self.r_squared_ = 1 - ss_res / ss_tot self.adj_r_squared_ = 1 - (1 - self.r_squared_) * (n - 1) / ( n - p - 1 ) # classification and regression --- if method == "avg": res_df = pd.DataFrame(data=self.grad_, columns=X_names) res_df_mean = res_df.mean() res_df_std = res_df.std() res_df_median = res_df.median() res_df_min = res_df.min() res_df_max = res_df.max() data = pd.concat( [res_df_mean, res_df_std, res_df_median, res_df_min, res_df_max], axis=1 ) df_effects = pd.DataFrame( data=data.values, columns=["mean", "std", "median", "min", "max"], index=X_names, ) # heterogeneity of effects self.effects_ = df_effects.sort_values(by=["mean"], ascending=False) return self def summary(self): """Summarise results a method in class Explainer Args: None """ assert ( (self.ci_ is not None) | (self.effects_ is not None) | (self.ci_inters_ is not None) ), "object not fitted, fit the object first" if (self.ci_ is not None) & (self.method == "ci"): # (mean_est, se_est, # mean_est + qt*se_est, mean_est - qt*se_est, # p_values, signif_codes) df_mean = pd.Series(data=self.ci_[0], index=self.X_names) df_se = pd.Series(data=self.ci_[1], index=self.X_names) df_ubound = pd.Series(data=self.ci_[2], index=self.X_names) df_lbound = pd.Series(data=self.ci_[3], index=self.X_names) df_pvalue = pd.Series(data=self.ci_[4], index=self.X_names) df_signif = pd.Series(data=self.ci_[5], index=self.X_names) data = pd.concat( [df_mean, df_se, df_lbound, df_ubound, df_pvalue, df_signif], axis=1, ) self.ci_summary_ = pd.DataFrame( data=data.values, columns=[ "Estimate", "Std. Error", str(self.level) + "% lbound", str(self.level) + "% ubound", "Pr(>|t|)", "", ], index=self.X_names, ).sort_values(by=["Estimate"], ascending=False) print("\n") print(f"Score ({self.scoring}): \n {np.round(self.score_, 3)}") if self.type_fit == "regression": print("\n") print("Residuals: ") self.residuals_dist_ = pd.DataFrame( pd.Series( data=np.quantile( self.residuals_, q=[0, 0.25, 0.5, 0.75, 1] ), index=["Min", "1Q", "Median", "3Q", "Max"], ) ).transpose() print(self.residuals_dist_.to_string(index=False)) print("\n") if self.type_ci=="jackknife": print("Tests on marginal effects (Jackknife): ") if self.type_ci=="gaussian": print("Tests on marginal effects (Gaussian noise): ") with pd.option_context( "display.max_rows", None, "display.max_columns", None ): print(self.ci_summary_) print("\n") print( "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘-’ 1" ) if self.type_fit == "regression": print("\n") print( f"Multiple R-squared: {np.round(self.r_squared_, 3)}, Adjusted R-squared: {np.round(self.adj_r_squared_, 3)}" ) if (self.effects_ is not None) & (self.method == "avg"): print("\n") print("Heterogeneity of marginal effects: ") with pd.option_context( "display.max_rows", None, "display.max_columns", None ): print(self.effects_) print("\n") if (self.ci_inters_ is not None) & (self.method == "inters"): print("\n") print("Interactions with " + self.col_inters + ": ") with pd.option_context( "display.max_rows", None, "display.max_columns", None ): print( pd.DataFrame( self.ci_inters_, index=[ "Estimate", "Std. Error", str(95) + "% lbound", str(95) + "% ubound", "Pr(>|t|)", "", ], ).transpose() ) def plot(self, what): """Plot average effects, heterogeneity of effects, ... Args: what: a string; if . """ assert self.effects_ is not None, "Call method 'fit' before plotting" assert self.grad_ is not None, "Call method 'fit' before plotting" # For method == "avg" if (self.method == "avg"): if(what == "average_effects"): sns.set(style="darkgrid") fi = pd.DataFrame() fi['features'] = self.effects_.index.values fi['effect'] = self.effects_['mean'].values sns.barplot(x='effect', y='features', data=fi.sort_values(by='effect', ascending=False)) if(what == "hetero_effects"): grads_df = pd.DataFrame(data=self.grad_, columns=self.X_names) sorted_columns = list(self.effects_.index.values) # by mean sorted_columns.reverse() grads_df = grads_df.reindex(sorted_columns, axis=1) sns.set(style="darkgrid") grads_df.boxplot(vert=False) # For method == "ci" if (self.method == "ci"): assert self.ci_ is not None, "Call method 'fit' before plotting" raise NotImplementedError("No plot for method == 'ci' yet") def get_individual_effects(self): assert self.grad_ is not None, "Call method 'fit' before calling this method" if self.method == "avg": return pd.DataFrame(data=self.grad_, columns=self.X_names)
748
0
93
70d25e9deb9ce5482aecfe92367ea925fc132f5b
4,271
py
Python
script/extract_spotting_area.py
jingyonghou/XY_QByE_STD
ca2a07c70ea7466ee363cd0b81808c6794a400e5
[ "Apache-2.0" ]
null
null
null
script/extract_spotting_area.py
jingyonghou/XY_QByE_STD
ca2a07c70ea7466ee363cd0b81808c6794a400e5
[ "Apache-2.0" ]
null
null
null
script/extract_spotting_area.py
jingyonghou/XY_QByE_STD
ca2a07c70ea7466ee363cd0b81808c6794a400e5
[ "Apache-2.0" ]
1
2020-07-28T06:02:03.000Z
2020-07-28T06:02:03.000Z
import numpy as np import sys import wavedata import random import os if __name__=="__main__": if len(sys.argv) < 7: print("USAGE: python %s result_dir keywordlist testlist testscp textfile ourdir"%sys.argv[0]) exit(1) result_dir = sys.argv[1] keywordlist = open(sys.argv[2]).readlines() testlist = open(sys.argv[3]).readlines() doc_scp_file = sys.argv[4] relevant_dict = build_relevant_dict(sys.argv[5]) out_dir = sys.argv[6] scorelist_all = [] arealist_all = [] for keyword in keywordlist: result_fid = open(result_dir + keyword.strip() + ".RESULT") resultlist = result_fid.readlines() result_fid.close() scorelist = [] arealist = [] for res in resultlist: fields =res.strip().split() score = float(fields[0]) start_point = int(fields[1]) end_point = int(fields[2]) scorelist.append(score) arealist.append((start_point, end_point)) scorelist_all.append(scorelist) arealist_all.append(arealist) extract_list_all = extract_spotting_area(scorelist_all, arealist_all, keywordlist, testlist, relevant_dict) write_spot_wave(extract_list_all, doc_scp_file, out_dir)
36.818966
199
0.618356
import numpy as np import sys import wavedata import random import os def relevant(query, text_id, relevant_dict): if text_id in relevant_dict[query]: return True return False def build_relevant_dict(text_file): relevant_dict = {} for line in open(text_file).readlines(): fields = line.strip().split() text_id = fields[0] for i in range(1, len(fields)): keyword_id = fields[i] if not relevant_dict.has_key(keyword_id): relevant_dict[keyword_id]=set() relevant_dict[keyword_id].add(text_id) return relevant_dict def extract_spotting_area(scorelist_all, arealist_all, querylist, doclist, relevant_dict): extract_list_all = [] for i in range(len(querylist)): true_list=[] false_list=[] extract_list=[] ranklist = np.array(scorelist_all[i]).argsort() for j in range(len(ranklist)): j_r = ranklist[j] keyword_id = querylist[i].strip() keyword = querylist[i].strip().split("_")[0] utt_id = doclist[j_r].strip() doc_id = "_".join(doclist[j_r].strip().split("_")[:-1]) if relevant(keyword, doc_id, relevant_dict): true_list.append([ keyword_id, utt_id, 1, scorelist_all[i][j_r], j, arealist_all[i][j_r] ]) else: false_list.append([ keyword_id, utt_id, 0, scorelist_all[i][j_r], j, arealist_all[i][j_r] ]) true_num = len(true_list) extract_list = true_list + false_list[0:true_num] extract_list_all.append(extract_list) return extract_list_all def frame_to_point(frame_pair): return (frame_pair[0]*10*8, frame_pair[1]*10*8+25*8) def write_spot_wave(extract_list_all, doc_scp, out_dir): doc_dic = {} for line in open(doc_scp).readlines(): fields = line.strip().split() if len(fields) != 2: print("Error: the fields of doc scp file is not 2\n") exit(1) doc_id = fields[0] wav_path = fields[1] if doc_dic.has_key(doc_id): print("Error: repeat key in doc scp file\n") doc_dic[doc_id] = wav_path for extract_list in extract_list_all: keyword_id = extract_list[0][0] keyword_out_dir = out_dir + "-".join(keyword_id.split("'")) cmd = "mkdir -p " + keyword_out_dir os.system(cmd) for item in extract_list: doc_id = item[1] has_keyword = item[2] score = item[3] rank_position = item[4] extract_point = frame_to_point(item[5]) inputfilename = doc_dic[doc_id] data = wavedata.readwave(inputfilename) spotting_data = data[extract_point[0]:extract_point[1]] outputfilename = keyword_out_dir + "/%s_%s_%s_%s_%s_%s_%s.wav"%(str(rank_position).zfill(4), str(has_keyword), str(score), str(extract_point[0]), str(extract_point[1]),keyword_id, doc_id) wavedata.writewave(outputfilename, spotting_data, 1, 2, 8000) if __name__=="__main__": if len(sys.argv) < 7: print("USAGE: python %s result_dir keywordlist testlist testscp textfile ourdir"%sys.argv[0]) exit(1) result_dir = sys.argv[1] keywordlist = open(sys.argv[2]).readlines() testlist = open(sys.argv[3]).readlines() doc_scp_file = sys.argv[4] relevant_dict = build_relevant_dict(sys.argv[5]) out_dir = sys.argv[6] scorelist_all = [] arealist_all = [] for keyword in keywordlist: result_fid = open(result_dir + keyword.strip() + ".RESULT") resultlist = result_fid.readlines() result_fid.close() scorelist = [] arealist = [] for res in resultlist: fields =res.strip().split() score = float(fields[0]) start_point = int(fields[1]) end_point = int(fields[2]) scorelist.append(score) arealist.append((start_point, end_point)) scorelist_all.append(scorelist) arealist_all.append(arealist) extract_list_all = extract_spotting_area(scorelist_all, arealist_all, keywordlist, testlist, relevant_dict) write_spot_wave(extract_list_all, doc_scp_file, out_dir)
2,873
0
116
271deb29b66fe4e4014e52baf2d9509cf8f631f6
427
py
Python
src/smallest_integer.py
marco-zangari/code-katas
1dfda1cfbbe8687b17e97e414358b38d964df675
[ "MIT" ]
null
null
null
src/smallest_integer.py
marco-zangari/code-katas
1dfda1cfbbe8687b17e97e414358b38d964df675
[ "MIT" ]
null
null
null
src/smallest_integer.py
marco-zangari/code-katas
1dfda1cfbbe8687b17e97e414358b38d964df675
[ "MIT" ]
null
null
null
"""Find the smallest integer in the array, Kata in Codewars.""" def smallest(alist): """Return the smallest integer in the list. input: a list of integers output: a single integer ex: [34, 15, 88, 2] should return 34 ex: [34, -345, -1, 100] should return -345 """ res = [alist[0]] for num in alist: if res[0] > num: res.pop() res.append(num) return res[0]
23.722222
63
0.569087
"""Find the smallest integer in the array, Kata in Codewars.""" def smallest(alist): """Return the smallest integer in the list. input: a list of integers output: a single integer ex: [34, 15, 88, 2] should return 34 ex: [34, -345, -1, 100] should return -345 """ res = [alist[0]] for num in alist: if res[0] > num: res.pop() res.append(num) return res[0]
0
0
0
e3f4e7de367fe4adbb1c08ed45342cc24a82354b
1,810
py
Python
extract-code.py
aaw/commafree
6ee17fdf1e7858546782f81b1f004659c03661d3
[ "Unlicense" ]
null
null
null
extract-code.py
aaw/commafree
6ee17fdf1e7858546782f81b1f004659c03661d3
[ "Unlicense" ]
null
null
null
extract-code.py
aaw/commafree
6ee17fdf1e7858546782f81b1f004659c03661d3
[ "Unlicense" ]
null
null
null
#!/usr/bin/python3 # Extracts a commafree code from a CNF file created by commafree.py and # the output of a SAT solver on that CNF file. Only works on satisfiable # instances. # # Usage: extract-code.py <cnf-file> <sat-solver-output-file> import re import sys if __name__ == '__main__': if len(sys.argv) < 3: print('Usage: %s <cnf-file> <sat-solver-output-file>' % sys.argv[0]) sys.exit(1) mapping = strip_cnf_mapping(sys.argv[1]) solution = strip_sat_solution(sys.argv[2]) code = [mapping[code_id] for code_id in solution if mapping.get(code_id) is not None] assert verify_commafree(code) print('{' + ', '.join(sorted(code)) + '}') print('') print('size: %s' % len(code))
31.754386
78
0.570718
#!/usr/bin/python3 # Extracts a commafree code from a CNF file created by commafree.py and # the output of a SAT solver on that CNF file. Only works on satisfiable # instances. # # Usage: extract-code.py <cnf-file> <sat-solver-output-file> import re import sys def strip_cnf_mapping(filename): # lines look like 'c var 1 == 000001 chosen' mapping = {} pattern = re.compile('c var ([^\\s]+) == ([^\\s]+) chosen') with open(filename) as f: for line in f: if line.startswith('p'): continue if not line.startswith('c'): return mapping m = re.match(pattern, line) if m is None: continue mapping[int(m.groups()[0])] = m.groups()[1] return mapping def strip_sat_solution(filename): pos = [] with open(filename) as f: for line in f: if not line.startswith('v'): continue pos += [int(x) for x in line[1:].strip().split(' ') if int(x) > 0] return pos def verify_commafree(codewords): n = len(codewords[0]) cws = set(c for c in codewords) for x in codewords: for y in codewords: for i in range(1,n): cw = x[i:]+y[:i] if cw in cws: print("CONFLICT: %s, %s, and %s." % (x,y,cw)) return False return True if __name__ == '__main__': if len(sys.argv) < 3: print('Usage: %s <cnf-file> <sat-solver-output-file>' % sys.argv[0]) sys.exit(1) mapping = strip_cnf_mapping(sys.argv[1]) solution = strip_sat_solution(sys.argv[2]) code = [mapping[code_id] for code_id in solution if mapping.get(code_id) is not None] assert verify_commafree(code) print('{' + ', '.join(sorted(code)) + '}') print('') print('size: %s' % len(code))
1,004
0
69
31784bf0310bf0d5bfc0d90a75df67dd15a12b22
2,039
py
Python
bindings/python/native/tests/test_event.py
lmy441900/wallet.rs
4810f8205c3a3e1b7177d5fc6be92c714e0ef6eb
[ "Apache-2.0" ]
135
2020-08-27T15:31:16.000Z
2022-03-28T07:52:07.000Z
bindings/python/native/tests/test_event.py
lmy441900/wallet.rs
4810f8205c3a3e1b7177d5fc6be92c714e0ef6eb
[ "Apache-2.0" ]
263
2020-08-28T00:12:19.000Z
2022-03-29T18:54:29.000Z
bindings/python/native/tests/test_event.py
lmy441900/wallet.rs
4810f8205c3a3e1b7177d5fc6be92c714e0ef6eb
[ "Apache-2.0" ]
56
2020-11-02T05:52:06.000Z
2022-03-13T00:21:12.000Z
import iota_wallet as iw
31.369231
76
0.772928
import iota_wallet as iw def test_event_balance_change(): def on_balance_changed(event): assert isinstance(event, str) event_id = iw.on_balance_change(on_balance_changed) iw.remove_balance_change_listener(bytes(event_id)) def test_event_new_transaction(): def on_new_transaction(event): assert isinstance(event, str) event_id = iw.on_new_transaction(on_new_transaction) iw.remove_new_transaction_listener(bytes(event_id)) def test_event_confirmation_state_change(): def on_confirmation_state_change(event): assert isinstance(event, str) event_id = iw.on_confirmation_state_change(on_confirmation_state_change) iw.remove_confirmation_state_change_listener(bytes(event_id)) def test_event_reattachment(): def on_reattachment(event): assert isinstance(event, str) event_id = iw.on_reattachment(on_reattachment) iw.remove_reattachment_listener(bytes(event_id)) def test_event_broadcast(): def on_broadcast(event): assert isinstance(event, str) event_id = iw.on_broadcast(on_broadcast) iw.remove_broadcast_listener(bytes(event_id)) def test_event_error(): def on_error(event): assert isinstance(event, str) event_id = iw.on_error(on_error) iw.remove_error_listener(bytes(event_id)) def test_event_stronghold_status_change(): def on_stronghold_status_change(event): assert isinstance(event, str) event_id = iw.on_stronghold_status_change(on_stronghold_status_change) iw.remove_stronghold_status_change_listener(bytes(event_id)) def test_on_transfer_progress(): def on_transfer_progress(event): assert isinstance(event, str) event_id = iw.on_transfer_progress(on_transfer_progress) iw.remove_transfer_progress_listener(bytes(event_id)) def test_on_migration_progress(): def on_migration_progress(event): assert isinstance(event, str) event_id = iw.on_migration_progress(on_migration_progress) iw.remove_migration_progress_listener(bytes(event_id))
1,798
0
207
6496c26b86b5e1c0f0f3e63c148cc42bb42f3e84
22,361
py
Python
chrome/test/functional/autofill.py
meego-tablet-ux/meego-app-browser
0f4ef17bd4b399c9c990a2f6ca939099495c2b9c
[ "BSD-3-Clause" ]
1
2015-10-12T09:14:22.000Z
2015-10-12T09:14:22.000Z
chrome/test/functional/autofill.py
meego-tablet-ux/meego-app-browser
0f4ef17bd4b399c9c990a2f6ca939099495c2b9c
[ "BSD-3-Clause" ]
null
null
null
chrome/test/functional/autofill.py
meego-tablet-ux/meego-app-browser
0f4ef17bd4b399c9c990a2f6ca939099495c2b9c
[ "BSD-3-Clause" ]
1
2020-11-04T07:22:28.000Z
2020-11-04T07:22:28.000Z
#!/usr/bin/python # Copyright (c) 2011 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import logging import os import pickle import re import autofill_dataset_converter import autofill_dataset_generator import pyauto_functional # Must be imported before pyauto import pyauto class AutofillTest(pyauto.PyUITest): """Tests that autofill works correctly""" def Debug(self): """Test method for experimentation. This method will not run automatically. """ import pprint pp = pprint.PrettyPrinter(indent=2) while True: raw_input('Hit <enter> to dump info.. ') info = self.GetAutofillProfile() pp.pprint(info) def testFillProfile(self): """Test filling profiles and overwriting with new profiles.""" profiles = [{'NAME_FIRST': 'Bob', 'NAME_LAST': 'Smith', 'ADDRESS_HOME_ZIP': '94043',}, {'EMAIL_ADDRESS': 'sue@example.com', 'COMPANY_NAME': 'Company X',}] credit_cards = [{'CREDIT_CARD_NUMBER': '6011111111111117', 'CREDIT_CARD_EXP_MONTH': '12', 'CREDIT_CARD_EXP_4_DIGIT_YEAR': '2011'}, {'CREDIT_CARD_NAME': 'Bob C. Smith'}] self.FillAutofillProfile(profiles=profiles, credit_cards=credit_cards) profile = self.GetAutofillProfile() self.assertEqual(profiles, profile['profiles']) self.assertEqual(credit_cards, profile['credit_cards']) profiles = [ {'NAME_FIRST': 'Larry'}] self.FillAutofillProfile(profiles=profiles) profile = self.GetAutofillProfile() self.assertEqual(profiles, profile['profiles']) self.assertEqual(credit_cards, profile['credit_cards']) def testFillProfileCrazyCharacters(self): """Test filling profiles with unicode strings and crazy characters.""" # Adding autofill profiles. file_path = os.path.join(self.DataDir(), 'autofill', 'crazy_autofill.txt') profiles = self.EvalDataFrom(file_path) self.FillAutofillProfile(profiles=profiles) self.assertEqual(profiles, self.GetAutofillProfile()['profiles']) # Adding credit cards. file_path = os.path.join(self.DataDir(), 'autofill', 'crazy_creditcards.txt') test_data = self.EvalDataFrom(file_path) credit_cards_input = test_data['input'] self.FillAutofillProfile(credit_cards=credit_cards_input) self.assertEqual(test_data['expected'], self.GetAutofillProfile()['credit_cards']) def testGetProfilesEmpty(self): """Test getting profiles when none have been filled.""" profile = self.GetAutofillProfile() self.assertEqual([], profile['profiles']) self.assertEqual([], profile['credit_cards']) def testAutofillInvalid(self): """Test filling in invalid values for profiles.""" # First try profiles with invalid input. without_invalid = {'NAME_FIRST': u'Will', 'ADDRESS_HOME_CITY': 'Sunnyvale', 'ADDRESS_HOME_STATE': 'CA', 'ADDRESS_HOME_ZIP': 'my_zip', 'ADDRESS_HOME_COUNTRY': 'United States'} # Add some invalid fields. with_invalid = without_invalid.copy() with_invalid['PHONE_HOME_WHOLE_NUMBER'] = 'Invalid_Phone_Number' with_invalid['PHONE_FAX_WHOLE_NUMBER'] = 'Invalid_Fax_Number' self.FillAutofillProfile(profiles=[with_invalid]) self.assertEqual([without_invalid], self.GetAutofillProfile()['profiles']) def testAutofillPrefsStringSavedAsIs(self): """Test invalid credit card numbers typed in prefs should be saved as-is.""" credit_card = {'CREDIT_CARD_NUMBER': 'Not_0123-5Checked'} self.FillAutofillProfile(credit_cards=[credit_card]) self.assertEqual([credit_card], self.GetAutofillProfile()['credit_cards'], msg='Credit card number in prefs not saved as-is.') def _LuhnCreditCardNumberValidator(self, number): """Validates whether a number is valid or invalid using the Luhn test. Validation example: 1. Example number: 49927398716 2. Reverse the digits: 61789372994 3. Sum the digits in the odd-numbered position for s1: 6 + 7 + 9 + 7 + 9 + 4 = 42 4. Take the digits in the even-numbered position: 1, 8, 3, 2, 9 4.1. Two times each digit in the even-numbered position: 2, 16, 6, 4, 18 4.2. For each resulting value that is now 2 digits, add the digits together: 2, 7, 6, 4, 9 (0 + 2 = 2, 1 + 6 = 7, 0 + 6 = 6, 0 + 4 = 4, 1 + 8 = 9) 4.3. Sum together the digits for s2: 2 + 7 + 6 + 4 + 9 = 28 5. Sum together s1 + s2 and if the sum ends in zero, the number passes the Luhn test: 42 + 28 = 70 which is a valid credit card number. Args: number: the credit card number being validated, as a string. Return: boolean whether the credit card number is valid or not. """ # Filters out non-digit characters. number = re.sub('[^0-9]', '', number) reverse = [int(ch) for ch in str(number)][::-1] # The divmod of the function splits a number into two digits, ready for # summing. return ((sum(reverse[0::2]) + sum(sum(divmod(d*2, 10)) for d in reverse[1::2])) % 10 == 0) def testInvalidCreditCardNumberIsNotAggregated(self): """Test credit card info with an invalid number is not aggregated. When filling out a form with an invalid credit card number (one that does not pass the Luhn test) the credit card info should not be saved into Autofill preferences. """ invalid_cc_info = {'CREDIT_CARD_NAME': 'Bob Smith', 'CREDIT_CARD_NUMBER': '4408 0412 3456 7890', 'CREDIT_CARD_EXP_MONTH': '12', 'CREDIT_CARD_EXP_4_DIGIT_YEAR': '2014'} cc_number = invalid_cc_info['CREDIT_CARD_NUMBER'] self.assertFalse(self._LuhnCreditCardNumberValidator(cc_number), msg='This test requires an invalid credit card number.') url = self.GetHttpURLForDataPath( os.path.join('autofill', 'autofill_creditcard_form.html')) self.NavigateToURL(url) for key, value in invalid_cc_info.iteritems(): script = ('document.getElementById("%s").value = "%s"; ' 'window.domAutomationController.send("done");') % (key, value) self.ExecuteJavascript(script, 0, 0) js_code = """ document.getElementById("cc_submit").submit(); window.addEventListener("unload", function() { window.domAutomationController.send("done"); }); """ self.ExecuteJavascript(js_code, 0, 0) # Wait until the form is submitted and the page completes loading. self.WaitUntil( lambda: self.GetDOMValue('document.readyState'), expect_retval='complete') cc_infobar = self.GetBrowserInfo()['windows'][0]['tabs'][0]['infobars'] self.assertFalse( cc_infobar, msg='Save credit card infobar offered to save CC info.') def testWhitespacesAndSeparatorCharsStrippedForValidCCNums(self): """Test whitespaces and separator chars are stripped for valid CC numbers. The credit card numbers used in this test pass the Luhn test. For reference: http://www.merriampark.com/anatomycc.htm """ credit_card_info = [{'CREDIT_CARD_NAME': 'Bob Smith', 'CREDIT_CARD_NUMBER': '4408 0412 3456 7893', 'CREDIT_CARD_EXP_MONTH': '12', 'CREDIT_CARD_EXP_4_DIGIT_YEAR': '2014'}, {'CREDIT_CARD_NAME': 'Jane Doe', 'CREDIT_CARD_NUMBER': '4417-1234-5678-9113', 'CREDIT_CARD_EXP_MONTH': '10', 'CREDIT_CARD_EXP_4_DIGIT_YEAR': '2013'}] url = self.GetHttpURLForDataPath( os.path.join('autofill', 'autofill_creditcard_form.html')) for cc_info in credit_card_info: self.NavigateToURL(url) for key, value in cc_info.iteritems(): cc_number = cc_info['CREDIT_CARD_NUMBER'] self.assertTrue(self._LuhnCreditCardNumberValidator(cc_number), msg='This test requires a valid credit card number.') script = ('document.getElementById("%s").value = "%s"; ' 'window.domAutomationController.send("done");') % (key, value) self.ExecuteJavascript(script, 0, 0) js_code = """ document.getElementById("cc_submit").submit(); window.addEventListener("unload", function() { window.domAutomationController.send("done"); }); """ self.ExecuteJavascript(js_code, 0, 0) # Wait until form is submitted and page completes loading. self.WaitUntil( lambda: self.GetDOMValue('document.readyState'), expect_retval='complete') self.PerformActionOnInfobar('accept', infobar_index=0) # Verify the filled-in credit card number against the aggregated number. aggregated_cc_1 = ( self.GetAutofillProfile()['credit_cards'][0]['CREDIT_CARD_NUMBER']) aggregated_cc_2 = ( self.GetAutofillProfile()['credit_cards'][1]['CREDIT_CARD_NUMBER']) self.assertFalse((' ' in aggregated_cc_1 or ' ' in aggregated_cc_2 or '-' in aggregated_cc_1 or '-' in aggregated_cc_2), msg='Whitespaces or separator chars not stripped.') def testProfilesNotAggregatedWithNoAddress(self): """Test Autofill does not aggregate profiles with no address info.""" profile = {'NAME_FIRST': 'Bob', 'NAME_LAST': 'Smith', 'EMAIL_ADDRESS': 'bsmith@example.com', 'COMPANY_NAME': 'Company X', 'PHONE_HOME_WHOLE_NUMBER': '650-123-4567',} url = self.GetHttpURLForDataPath( os.path.join('autofill', 'duplicate_profiles_test.html')) self.NavigateToURL(url) for key, value in profile.iteritems(): script = ('document.getElementById("%s").value = "%s"; ' 'window.domAutomationController.send("done");') % (key, value) self.ExecuteJavascript(script, 0, 0) js_code = """ document.getElementById("merge_dup").submit(); window.addEventListener("unload", function() { window.domAutomationController.send("done"); }); """ self.ExecuteJavascript(js_code, 0, 0) self.assertFalse(self.GetAutofillProfile()['profiles'], msg='Profile with no address info was aggregated.') def testProfilesNotAggregatedWithInvalidEmail(self): """Test Autofill does not aggregate profiles with an invalid email.""" profile = {'NAME_FIRST': 'Bob', 'NAME_LAST': 'Smith', 'EMAIL_ADDRESS': 'garbage', 'ADDRESS_HOME_LINE1': '1234 H St.', 'ADDRESS_HOME_CITY': 'San Jose', 'ADDRESS_HOME_STATE': 'CA', 'ADDRESS_HOME_ZIP': '95110', 'COMPANY_NAME': 'Company X', 'PHONE_HOME_WHOLE_NUMBER': '408-123-4567',} url = self.GetHttpURLForDataPath( os.path.join('autofill', 'duplicate_profiles_test.html')) self.NavigateToURL(url) for key, value in profile.iteritems(): script = ('document.getElementById("%s").value = "%s"; ' 'window.domAutomationController.send("done");') % (key, value) self.ExecuteJavascript(script, 0, 0) js_code = """ document.getElementById("merge_dup").submit(); window.addEventListener("unload", function() { window.domAutomationController.send("done"); }); """ self.ExecuteJavascript(js_code, 0, 0) self.assertFalse(self.GetAutofillProfile()['profiles'], msg='Profile with invalid email was aggregated.') def _SendKeyEventsToPopulateForm(self, tab_index=0, windex=0): """Send key events to populate a web form with Autofill profile data. Args: tab_index: The tab index, default is 0. windex: The window index, default is 0. """ TAB_KEYPRESS = 0x09 # Tab keyboard key press. DOWN_KEYPRESS = 0x28 # Down arrow keyboard key press. RETURN_KEYPRESS = 0x0D # Return keyboard key press. self.SendWebkitKeypressEvent(TAB_KEYPRESS, tab_index, windex) self.SendWebkitKeypressEvent(DOWN_KEYPRESS, tab_index, windex) self.SendWebkitKeypressEvent(DOWN_KEYPRESS, tab_index, windex) self.SendWebkitKeypressEvent(RETURN_KEYPRESS, tab_index, windex) def testComparePhoneNumbers(self): """Test phone fields parse correctly from a given profile. The high level key presses execute the following: Select the first text field, invoke the autofill popup list, select the first profile within the list, and commit to the profile to populate the form. """ profile_path = os.path.join(self.DataDir(), 'autofill', 'phone_pinput_autofill.txt') profile_expected_path = os.path.join(self.DataDir(), 'autofill', 'phone_pexpected_autofill.txt') profiles = self.EvalDataFrom(profile_path) profiles_expected = self.EvalDataFrom(profile_expected_path) self.FillAutofillProfile(profiles=profiles) url = self.GetHttpURLForDataPath( os.path.join('autofill', 'form_phones.html')) for profile_expected in profiles_expected: self.NavigateToURL(url) self._SendKeyEventsToPopulateForm() form_values = {} for key, value in profile_expected.iteritems(): js_returning_field_value = ( 'var field_value = document.getElementById("%s").value;' 'window.domAutomationController.send(field_value);' ) % key form_values[key] = self.ExecuteJavascript( js_returning_field_value, 0, 0) self.assertEqual( form_values[key], value, msg=('Original profile not equal to expected profile at key: "%s"\n' 'Expected: "%s"\nReturned: "%s"' % ( key, value, form_values[key]))) def testCCInfoNotStoredWhenAutocompleteOff(self): """Test CC info not offered to be saved when autocomplete=off for CC field. If the credit card number field has autocomplete turned off, then the credit card infobar should not offer to save the credit card info. The credit card number must be a valid Luhn number. """ credit_card_info = {'CREDIT_CARD_NAME': 'Bob Smith', 'CREDIT_CARD_NUMBER': '4408041234567893', 'CREDIT_CARD_EXP_MONTH': '12', 'CREDIT_CARD_EXP_4_DIGIT_YEAR': '2014'} url = self.GetHttpURLForDataPath( os.path.join('autofill', 'cc_autocomplete_off_test.html')) self.NavigateToURL(url) for key, value in credit_card_info.iteritems(): script = ('document.getElementById("%s").value = "%s"; ' 'window.domAutomationController.send("done");') % (key, value) self.ExecuteJavascript(script, 0, 0) js_code = """ document.getElementById("cc_submit").submit(); window.addEventListener("unload", function() { window.domAutomationController.send("done"); }); """ self.ExecuteJavascript(js_code, 0, 0) # Wait until form is submitted and page completes loading. self.WaitUntil( lambda: self.GetDOMValue('document.readyState'), expect_retval='complete') cc_infobar = self.GetBrowserInfo()['windows'][0]['tabs'][0]['infobars'] self.assertFalse(cc_infobar, msg='Save credit card infobar offered to save CC info.') def testNoAutofillForReadOnlyFields(self): """Test that Autofill does not fill in read-only fields.""" profile = {'NAME_FIRST': 'Bob', 'NAME_LAST': 'Smith', 'EMAIL_ADDRESS': 'bsmith@gmail.com', 'ADDRESS_HOME_LINE1': '1234 H St.', 'ADDRESS_HOME_CITY': 'San Jose', 'ADDRESS_HOME_STATE': 'CA', 'ADDRESS_HOME_ZIP': '95110', 'COMPANY_NAME': 'Company X', 'PHONE_HOME_WHOLE_NUMBER': '408-123-4567',} self.FillAutofillProfile(profiles=[profile]) url = self.GetHttpURLForDataPath( os.path.join('autofill', 'read_only_field_test.html')) self.NavigateToURL(url) self._SendKeyEventsToPopulateForm() js_return_readonly_field = ( 'var field_value = document.getElementById("email").value;' 'window.domAutomationController.send(field_value);') readonly_field_value = self.ExecuteJavascript( js_return_readonly_field, 0, 0) js_return_addrline1_field = ( 'var field_value = document.getElementById("address").value;' 'window.domAutomationController.send(field_value);') addrline1_field_value = self.ExecuteJavascript( js_return_addrline1_field, 0, 0) self.assertNotEqual( readonly_field_value, profile['EMAIL_ADDRESS'], 'Autofill filled in value "%s" for a read-only field.' % readonly_field_value) self.assertEqual( addrline1_field_value, profile['ADDRESS_HOME_LINE1'], 'Unexpected value "%s" in the Address field.' % addrline1_field_value) def FormFillLatencyAfterSubmit(self): """Test latency time on form submit with lots of stored Autofill profiles. This test verifies when a profile is selected from the Autofill dictionary that consists of thousands of profiles, the form does not hang after being submitted. The high level key presses execute the following: Select the first text field, invoke the autofill popup list, select the first profile within the list, and commit to the profile to populate the form. This test is partially automated. The bulk of the work is done, such as generating 1500 plus profiles, inserting those profiles into Autofill, selecting a profile from the list. The tester will need to click on the submit button and check if the browser hangs. """ # HTML file needs to be run from a http:// url. url = self.GetHttpURLForDataPath( os.path.join('autofill', 'latency_after_submit_test.html')) # Run the generator script to generate the dictionary list needed for the # profiles. gen = autofill_dataset_generator.DatasetGenerator( logging_level=logging.ERROR) list_of_dict = gen.GenerateDataset(num_of_dict_to_generate=1501) self.FillAutofillProfile(profiles=list_of_dict) self.NavigateToURL(url) self._SendKeyEventsToPopulateForm() # TODO(dyu): add automated form hang or crash verification. raw_input( 'Verify the test manually. Test hang time after submitting the form.') def AutofillCrowdsourcing(self): """Test able to send POST request of web form to Autofill server. The Autofill server processes the data offline, so it can take a few days for the result to be detectable. Manual verification is required. """ # HTML file needs to be run from a specific http:// url to be able to verify # the results a few days later by visiting the same url. url = 'http://www.corp.google.com/~dyu/autofill/crowdsourcing-test.html' # Adding crowdsourcing Autofill profile. file_path = os.path.join(self.DataDir(), 'autofill', 'crowdsource_autofill.txt') profiles = self.EvalDataFrom(file_path) self.FillAutofillProfile(profiles=profiles) # Autofill server captures 2.5% of the data posted. # Looping 1000 times is a safe minimum to exceed the server's threshold or # noise. for i in range(1000): fname = self.GetAutofillProfile()['profiles'][0]['NAME_FIRST'] lname = self.GetAutofillProfile()['profiles'][0]['NAME_LAST'] email = self.GetAutofillProfile()['profiles'][0]['EMAIL_ADDRESS'] # Submit form to collect crowdsourcing data for Autofill. self.NavigateToURL(url, 0, 0) fname_field = ('document.getElementById("fn").value = "%s"; ' 'window.domAutomationController.send("done");') % fname lname_field = ('document.getElementById("ln").value = "%s"; ' 'window.domAutomationController.send("done");') % lname email_field = ('document.getElementById("em").value = "%s"; ' 'window.domAutomationController.send("done");') % email self.ExecuteJavascript(fname_field, 0, 0); self.ExecuteJavascript(lname_field, 0, 0); self.ExecuteJavascript(email_field, 0, 0); self.ExecuteJavascript('document.getElementById("frmsubmit").submit();' 'window.domAutomationController.send("done");', 0, 0) def MergeDuplicateProfilesInAutofill(self): """Test Autofill ability to merge duplicate profiles and throw away junk.""" # HTML file needs to be run from a http:// url. url = self.GetHttpURLForDataPath( os.path.join('autofill', 'duplicate_profiles_test.html')) # Run the parser script to generate the dictionary list needed for the # profiles. c = autofill_dataset_converter.DatasetConverter( os.path.join(self.DataDir(), 'autofill', 'dataset.txt'), logging_level=logging.INFO) # Set verbosity to INFO, WARNING, ERROR. list_of_dict = c.Convert() for profile in list_of_dict: self.NavigateToURL(url) for key, value in profile.iteritems(): script = ('document.getElementById("%s").value = "%s"; ' 'window.domAutomationController.send("done");') % (key, value) self.ExecuteJavascript(script, 0, 0) self.ExecuteJavascript('document.getElementById("merge_dup").submit();' 'window.domAutomationController.send("done");', 0, 0) # Verify total number of inputted profiles is greater than the final number # of profiles after merging. self.assertTrue( len(list_of_dict) > len(self.GetAutofillProfile()['profiles'])) # Write profile dictionary to a file. merged_profile = os.path.join(self.DataDir(), 'autofill', 'merged-profiles.txt') profile_dict = self.GetAutofillProfile()['profiles'] output = open(merged_profile, 'wb') pickle.dump(profile_dict, output) output.close() if __name__ == '__main__': pyauto_functional.Main()
45.449187
80
0.653414
#!/usr/bin/python # Copyright (c) 2011 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import logging import os import pickle import re import autofill_dataset_converter import autofill_dataset_generator import pyauto_functional # Must be imported before pyauto import pyauto class AutofillTest(pyauto.PyUITest): """Tests that autofill works correctly""" def Debug(self): """Test method for experimentation. This method will not run automatically. """ import pprint pp = pprint.PrettyPrinter(indent=2) while True: raw_input('Hit <enter> to dump info.. ') info = self.GetAutofillProfile() pp.pprint(info) def testFillProfile(self): """Test filling profiles and overwriting with new profiles.""" profiles = [{'NAME_FIRST': 'Bob', 'NAME_LAST': 'Smith', 'ADDRESS_HOME_ZIP': '94043',}, {'EMAIL_ADDRESS': 'sue@example.com', 'COMPANY_NAME': 'Company X',}] credit_cards = [{'CREDIT_CARD_NUMBER': '6011111111111117', 'CREDIT_CARD_EXP_MONTH': '12', 'CREDIT_CARD_EXP_4_DIGIT_YEAR': '2011'}, {'CREDIT_CARD_NAME': 'Bob C. Smith'}] self.FillAutofillProfile(profiles=profiles, credit_cards=credit_cards) profile = self.GetAutofillProfile() self.assertEqual(profiles, profile['profiles']) self.assertEqual(credit_cards, profile['credit_cards']) profiles = [ {'NAME_FIRST': 'Larry'}] self.FillAutofillProfile(profiles=profiles) profile = self.GetAutofillProfile() self.assertEqual(profiles, profile['profiles']) self.assertEqual(credit_cards, profile['credit_cards']) def testFillProfileCrazyCharacters(self): """Test filling profiles with unicode strings and crazy characters.""" # Adding autofill profiles. file_path = os.path.join(self.DataDir(), 'autofill', 'crazy_autofill.txt') profiles = self.EvalDataFrom(file_path) self.FillAutofillProfile(profiles=profiles) self.assertEqual(profiles, self.GetAutofillProfile()['profiles']) # Adding credit cards. file_path = os.path.join(self.DataDir(), 'autofill', 'crazy_creditcards.txt') test_data = self.EvalDataFrom(file_path) credit_cards_input = test_data['input'] self.FillAutofillProfile(credit_cards=credit_cards_input) self.assertEqual(test_data['expected'], self.GetAutofillProfile()['credit_cards']) def testGetProfilesEmpty(self): """Test getting profiles when none have been filled.""" profile = self.GetAutofillProfile() self.assertEqual([], profile['profiles']) self.assertEqual([], profile['credit_cards']) def testAutofillInvalid(self): """Test filling in invalid values for profiles.""" # First try profiles with invalid input. without_invalid = {'NAME_FIRST': u'Will', 'ADDRESS_HOME_CITY': 'Sunnyvale', 'ADDRESS_HOME_STATE': 'CA', 'ADDRESS_HOME_ZIP': 'my_zip', 'ADDRESS_HOME_COUNTRY': 'United States'} # Add some invalid fields. with_invalid = without_invalid.copy() with_invalid['PHONE_HOME_WHOLE_NUMBER'] = 'Invalid_Phone_Number' with_invalid['PHONE_FAX_WHOLE_NUMBER'] = 'Invalid_Fax_Number' self.FillAutofillProfile(profiles=[with_invalid]) self.assertEqual([without_invalid], self.GetAutofillProfile()['profiles']) def testAutofillPrefsStringSavedAsIs(self): """Test invalid credit card numbers typed in prefs should be saved as-is.""" credit_card = {'CREDIT_CARD_NUMBER': 'Not_0123-5Checked'} self.FillAutofillProfile(credit_cards=[credit_card]) self.assertEqual([credit_card], self.GetAutofillProfile()['credit_cards'], msg='Credit card number in prefs not saved as-is.') def _LuhnCreditCardNumberValidator(self, number): """Validates whether a number is valid or invalid using the Luhn test. Validation example: 1. Example number: 49927398716 2. Reverse the digits: 61789372994 3. Sum the digits in the odd-numbered position for s1: 6 + 7 + 9 + 7 + 9 + 4 = 42 4. Take the digits in the even-numbered position: 1, 8, 3, 2, 9 4.1. Two times each digit in the even-numbered position: 2, 16, 6, 4, 18 4.2. For each resulting value that is now 2 digits, add the digits together: 2, 7, 6, 4, 9 (0 + 2 = 2, 1 + 6 = 7, 0 + 6 = 6, 0 + 4 = 4, 1 + 8 = 9) 4.3. Sum together the digits for s2: 2 + 7 + 6 + 4 + 9 = 28 5. Sum together s1 + s2 and if the sum ends in zero, the number passes the Luhn test: 42 + 28 = 70 which is a valid credit card number. Args: number: the credit card number being validated, as a string. Return: boolean whether the credit card number is valid or not. """ # Filters out non-digit characters. number = re.sub('[^0-9]', '', number) reverse = [int(ch) for ch in str(number)][::-1] # The divmod of the function splits a number into two digits, ready for # summing. return ((sum(reverse[0::2]) + sum(sum(divmod(d*2, 10)) for d in reverse[1::2])) % 10 == 0) def testInvalidCreditCardNumberIsNotAggregated(self): """Test credit card info with an invalid number is not aggregated. When filling out a form with an invalid credit card number (one that does not pass the Luhn test) the credit card info should not be saved into Autofill preferences. """ invalid_cc_info = {'CREDIT_CARD_NAME': 'Bob Smith', 'CREDIT_CARD_NUMBER': '4408 0412 3456 7890', 'CREDIT_CARD_EXP_MONTH': '12', 'CREDIT_CARD_EXP_4_DIGIT_YEAR': '2014'} cc_number = invalid_cc_info['CREDIT_CARD_NUMBER'] self.assertFalse(self._LuhnCreditCardNumberValidator(cc_number), msg='This test requires an invalid credit card number.') url = self.GetHttpURLForDataPath( os.path.join('autofill', 'autofill_creditcard_form.html')) self.NavigateToURL(url) for key, value in invalid_cc_info.iteritems(): script = ('document.getElementById("%s").value = "%s"; ' 'window.domAutomationController.send("done");') % (key, value) self.ExecuteJavascript(script, 0, 0) js_code = """ document.getElementById("cc_submit").submit(); window.addEventListener("unload", function() { window.domAutomationController.send("done"); }); """ self.ExecuteJavascript(js_code, 0, 0) # Wait until the form is submitted and the page completes loading. self.WaitUntil( lambda: self.GetDOMValue('document.readyState'), expect_retval='complete') cc_infobar = self.GetBrowserInfo()['windows'][0]['tabs'][0]['infobars'] self.assertFalse( cc_infobar, msg='Save credit card infobar offered to save CC info.') def testWhitespacesAndSeparatorCharsStrippedForValidCCNums(self): """Test whitespaces and separator chars are stripped for valid CC numbers. The credit card numbers used in this test pass the Luhn test. For reference: http://www.merriampark.com/anatomycc.htm """ credit_card_info = [{'CREDIT_CARD_NAME': 'Bob Smith', 'CREDIT_CARD_NUMBER': '4408 0412 3456 7893', 'CREDIT_CARD_EXP_MONTH': '12', 'CREDIT_CARD_EXP_4_DIGIT_YEAR': '2014'}, {'CREDIT_CARD_NAME': 'Jane Doe', 'CREDIT_CARD_NUMBER': '4417-1234-5678-9113', 'CREDIT_CARD_EXP_MONTH': '10', 'CREDIT_CARD_EXP_4_DIGIT_YEAR': '2013'}] url = self.GetHttpURLForDataPath( os.path.join('autofill', 'autofill_creditcard_form.html')) for cc_info in credit_card_info: self.NavigateToURL(url) for key, value in cc_info.iteritems(): cc_number = cc_info['CREDIT_CARD_NUMBER'] self.assertTrue(self._LuhnCreditCardNumberValidator(cc_number), msg='This test requires a valid credit card number.') script = ('document.getElementById("%s").value = "%s"; ' 'window.domAutomationController.send("done");') % (key, value) self.ExecuteJavascript(script, 0, 0) js_code = """ document.getElementById("cc_submit").submit(); window.addEventListener("unload", function() { window.domAutomationController.send("done"); }); """ self.ExecuteJavascript(js_code, 0, 0) # Wait until form is submitted and page completes loading. self.WaitUntil( lambda: self.GetDOMValue('document.readyState'), expect_retval='complete') self.PerformActionOnInfobar('accept', infobar_index=0) # Verify the filled-in credit card number against the aggregated number. aggregated_cc_1 = ( self.GetAutofillProfile()['credit_cards'][0]['CREDIT_CARD_NUMBER']) aggregated_cc_2 = ( self.GetAutofillProfile()['credit_cards'][1]['CREDIT_CARD_NUMBER']) self.assertFalse((' ' in aggregated_cc_1 or ' ' in aggregated_cc_2 or '-' in aggregated_cc_1 or '-' in aggregated_cc_2), msg='Whitespaces or separator chars not stripped.') def testProfilesNotAggregatedWithNoAddress(self): """Test Autofill does not aggregate profiles with no address info.""" profile = {'NAME_FIRST': 'Bob', 'NAME_LAST': 'Smith', 'EMAIL_ADDRESS': 'bsmith@example.com', 'COMPANY_NAME': 'Company X', 'PHONE_HOME_WHOLE_NUMBER': '650-123-4567',} url = self.GetHttpURLForDataPath( os.path.join('autofill', 'duplicate_profiles_test.html')) self.NavigateToURL(url) for key, value in profile.iteritems(): script = ('document.getElementById("%s").value = "%s"; ' 'window.domAutomationController.send("done");') % (key, value) self.ExecuteJavascript(script, 0, 0) js_code = """ document.getElementById("merge_dup").submit(); window.addEventListener("unload", function() { window.domAutomationController.send("done"); }); """ self.ExecuteJavascript(js_code, 0, 0) self.assertFalse(self.GetAutofillProfile()['profiles'], msg='Profile with no address info was aggregated.') def testProfilesNotAggregatedWithInvalidEmail(self): """Test Autofill does not aggregate profiles with an invalid email.""" profile = {'NAME_FIRST': 'Bob', 'NAME_LAST': 'Smith', 'EMAIL_ADDRESS': 'garbage', 'ADDRESS_HOME_LINE1': '1234 H St.', 'ADDRESS_HOME_CITY': 'San Jose', 'ADDRESS_HOME_STATE': 'CA', 'ADDRESS_HOME_ZIP': '95110', 'COMPANY_NAME': 'Company X', 'PHONE_HOME_WHOLE_NUMBER': '408-123-4567',} url = self.GetHttpURLForDataPath( os.path.join('autofill', 'duplicate_profiles_test.html')) self.NavigateToURL(url) for key, value in profile.iteritems(): script = ('document.getElementById("%s").value = "%s"; ' 'window.domAutomationController.send("done");') % (key, value) self.ExecuteJavascript(script, 0, 0) js_code = """ document.getElementById("merge_dup").submit(); window.addEventListener("unload", function() { window.domAutomationController.send("done"); }); """ self.ExecuteJavascript(js_code, 0, 0) self.assertFalse(self.GetAutofillProfile()['profiles'], msg='Profile with invalid email was aggregated.') def _SendKeyEventsToPopulateForm(self, tab_index=0, windex=0): """Send key events to populate a web form with Autofill profile data. Args: tab_index: The tab index, default is 0. windex: The window index, default is 0. """ TAB_KEYPRESS = 0x09 # Tab keyboard key press. DOWN_KEYPRESS = 0x28 # Down arrow keyboard key press. RETURN_KEYPRESS = 0x0D # Return keyboard key press. self.SendWebkitKeypressEvent(TAB_KEYPRESS, tab_index, windex) self.SendWebkitKeypressEvent(DOWN_KEYPRESS, tab_index, windex) self.SendWebkitKeypressEvent(DOWN_KEYPRESS, tab_index, windex) self.SendWebkitKeypressEvent(RETURN_KEYPRESS, tab_index, windex) def testComparePhoneNumbers(self): """Test phone fields parse correctly from a given profile. The high level key presses execute the following: Select the first text field, invoke the autofill popup list, select the first profile within the list, and commit to the profile to populate the form. """ profile_path = os.path.join(self.DataDir(), 'autofill', 'phone_pinput_autofill.txt') profile_expected_path = os.path.join(self.DataDir(), 'autofill', 'phone_pexpected_autofill.txt') profiles = self.EvalDataFrom(profile_path) profiles_expected = self.EvalDataFrom(profile_expected_path) self.FillAutofillProfile(profiles=profiles) url = self.GetHttpURLForDataPath( os.path.join('autofill', 'form_phones.html')) for profile_expected in profiles_expected: self.NavigateToURL(url) self._SendKeyEventsToPopulateForm() form_values = {} for key, value in profile_expected.iteritems(): js_returning_field_value = ( 'var field_value = document.getElementById("%s").value;' 'window.domAutomationController.send(field_value);' ) % key form_values[key] = self.ExecuteJavascript( js_returning_field_value, 0, 0) self.assertEqual( form_values[key], value, msg=('Original profile not equal to expected profile at key: "%s"\n' 'Expected: "%s"\nReturned: "%s"' % ( key, value, form_values[key]))) def testCCInfoNotStoredWhenAutocompleteOff(self): """Test CC info not offered to be saved when autocomplete=off for CC field. If the credit card number field has autocomplete turned off, then the credit card infobar should not offer to save the credit card info. The credit card number must be a valid Luhn number. """ credit_card_info = {'CREDIT_CARD_NAME': 'Bob Smith', 'CREDIT_CARD_NUMBER': '4408041234567893', 'CREDIT_CARD_EXP_MONTH': '12', 'CREDIT_CARD_EXP_4_DIGIT_YEAR': '2014'} url = self.GetHttpURLForDataPath( os.path.join('autofill', 'cc_autocomplete_off_test.html')) self.NavigateToURL(url) for key, value in credit_card_info.iteritems(): script = ('document.getElementById("%s").value = "%s"; ' 'window.domAutomationController.send("done");') % (key, value) self.ExecuteJavascript(script, 0, 0) js_code = """ document.getElementById("cc_submit").submit(); window.addEventListener("unload", function() { window.domAutomationController.send("done"); }); """ self.ExecuteJavascript(js_code, 0, 0) # Wait until form is submitted and page completes loading. self.WaitUntil( lambda: self.GetDOMValue('document.readyState'), expect_retval='complete') cc_infobar = self.GetBrowserInfo()['windows'][0]['tabs'][0]['infobars'] self.assertFalse(cc_infobar, msg='Save credit card infobar offered to save CC info.') def testNoAutofillForReadOnlyFields(self): """Test that Autofill does not fill in read-only fields.""" profile = {'NAME_FIRST': 'Bob', 'NAME_LAST': 'Smith', 'EMAIL_ADDRESS': 'bsmith@gmail.com', 'ADDRESS_HOME_LINE1': '1234 H St.', 'ADDRESS_HOME_CITY': 'San Jose', 'ADDRESS_HOME_STATE': 'CA', 'ADDRESS_HOME_ZIP': '95110', 'COMPANY_NAME': 'Company X', 'PHONE_HOME_WHOLE_NUMBER': '408-123-4567',} self.FillAutofillProfile(profiles=[profile]) url = self.GetHttpURLForDataPath( os.path.join('autofill', 'read_only_field_test.html')) self.NavigateToURL(url) self._SendKeyEventsToPopulateForm() js_return_readonly_field = ( 'var field_value = document.getElementById("email").value;' 'window.domAutomationController.send(field_value);') readonly_field_value = self.ExecuteJavascript( js_return_readonly_field, 0, 0) js_return_addrline1_field = ( 'var field_value = document.getElementById("address").value;' 'window.domAutomationController.send(field_value);') addrline1_field_value = self.ExecuteJavascript( js_return_addrline1_field, 0, 0) self.assertNotEqual( readonly_field_value, profile['EMAIL_ADDRESS'], 'Autofill filled in value "%s" for a read-only field.' % readonly_field_value) self.assertEqual( addrline1_field_value, profile['ADDRESS_HOME_LINE1'], 'Unexpected value "%s" in the Address field.' % addrline1_field_value) def FormFillLatencyAfterSubmit(self): """Test latency time on form submit with lots of stored Autofill profiles. This test verifies when a profile is selected from the Autofill dictionary that consists of thousands of profiles, the form does not hang after being submitted. The high level key presses execute the following: Select the first text field, invoke the autofill popup list, select the first profile within the list, and commit to the profile to populate the form. This test is partially automated. The bulk of the work is done, such as generating 1500 plus profiles, inserting those profiles into Autofill, selecting a profile from the list. The tester will need to click on the submit button and check if the browser hangs. """ # HTML file needs to be run from a http:// url. url = self.GetHttpURLForDataPath( os.path.join('autofill', 'latency_after_submit_test.html')) # Run the generator script to generate the dictionary list needed for the # profiles. gen = autofill_dataset_generator.DatasetGenerator( logging_level=logging.ERROR) list_of_dict = gen.GenerateDataset(num_of_dict_to_generate=1501) self.FillAutofillProfile(profiles=list_of_dict) self.NavigateToURL(url) self._SendKeyEventsToPopulateForm() # TODO(dyu): add automated form hang or crash verification. raw_input( 'Verify the test manually. Test hang time after submitting the form.') def AutofillCrowdsourcing(self): """Test able to send POST request of web form to Autofill server. The Autofill server processes the data offline, so it can take a few days for the result to be detectable. Manual verification is required. """ # HTML file needs to be run from a specific http:// url to be able to verify # the results a few days later by visiting the same url. url = 'http://www.corp.google.com/~dyu/autofill/crowdsourcing-test.html' # Adding crowdsourcing Autofill profile. file_path = os.path.join(self.DataDir(), 'autofill', 'crowdsource_autofill.txt') profiles = self.EvalDataFrom(file_path) self.FillAutofillProfile(profiles=profiles) # Autofill server captures 2.5% of the data posted. # Looping 1000 times is a safe minimum to exceed the server's threshold or # noise. for i in range(1000): fname = self.GetAutofillProfile()['profiles'][0]['NAME_FIRST'] lname = self.GetAutofillProfile()['profiles'][0]['NAME_LAST'] email = self.GetAutofillProfile()['profiles'][0]['EMAIL_ADDRESS'] # Submit form to collect crowdsourcing data for Autofill. self.NavigateToURL(url, 0, 0) fname_field = ('document.getElementById("fn").value = "%s"; ' 'window.domAutomationController.send("done");') % fname lname_field = ('document.getElementById("ln").value = "%s"; ' 'window.domAutomationController.send("done");') % lname email_field = ('document.getElementById("em").value = "%s"; ' 'window.domAutomationController.send("done");') % email self.ExecuteJavascript(fname_field, 0, 0); self.ExecuteJavascript(lname_field, 0, 0); self.ExecuteJavascript(email_field, 0, 0); self.ExecuteJavascript('document.getElementById("frmsubmit").submit();' 'window.domAutomationController.send("done");', 0, 0) def MergeDuplicateProfilesInAutofill(self): """Test Autofill ability to merge duplicate profiles and throw away junk.""" # HTML file needs to be run from a http:// url. url = self.GetHttpURLForDataPath( os.path.join('autofill', 'duplicate_profiles_test.html')) # Run the parser script to generate the dictionary list needed for the # profiles. c = autofill_dataset_converter.DatasetConverter( os.path.join(self.DataDir(), 'autofill', 'dataset.txt'), logging_level=logging.INFO) # Set verbosity to INFO, WARNING, ERROR. list_of_dict = c.Convert() for profile in list_of_dict: self.NavigateToURL(url) for key, value in profile.iteritems(): script = ('document.getElementById("%s").value = "%s"; ' 'window.domAutomationController.send("done");') % (key, value) self.ExecuteJavascript(script, 0, 0) self.ExecuteJavascript('document.getElementById("merge_dup").submit();' 'window.domAutomationController.send("done");', 0, 0) # Verify total number of inputted profiles is greater than the final number # of profiles after merging. self.assertTrue( len(list_of_dict) > len(self.GetAutofillProfile()['profiles'])) # Write profile dictionary to a file. merged_profile = os.path.join(self.DataDir(), 'autofill', 'merged-profiles.txt') profile_dict = self.GetAutofillProfile()['profiles'] output = open(merged_profile, 'wb') pickle.dump(profile_dict, output) output.close() if __name__ == '__main__': pyauto_functional.Main()
0
0
0
707d8212ab78ecedd3b8526ac78feab6240c7ea9
531
py
Python
test/utils/assertions.py
wileykestner/falcon-sqlalchemy-demo
a1c8bdf212bafc4b577dbebab57753d724871572
[ "MIT" ]
41
2016-10-21T04:08:05.000Z
2020-11-27T22:07:18.000Z
test/utils/assertions.py
wileykestner/falcon-sqlalchemy-demo
a1c8bdf212bafc4b577dbebab57753d724871572
[ "MIT" ]
null
null
null
test/utils/assertions.py
wileykestner/falcon-sqlalchemy-demo
a1c8bdf212bafc4b577dbebab57753d724871572
[ "MIT" ]
8
2017-12-19T21:56:49.000Z
2022-01-30T12:29:05.000Z
import pytest from test.utils.helpers import get_header_value, get_json_from_response
33.1875
91
0.783427
import pytest from test.utils.helpers import get_header_value, get_json_from_response def assert_header_value(header_key, expected_value, response_headers): header_value = get_header_value(header_key, response_headers) if header_value is not None: assert header_value == expected_value else: pytest.fail("The response headers do not contain the key: '{}'".format(header_key)) def assert_json_response(expected_json_body, response): assert get_json_from_response(response) == expected_json_body
396
0
46
818be53fc6b29242febd7a21069a6faefa42f81e
616
py
Python
src/lib/jeffos/user.py
JeffTheK/Jeff-OS
8db91673c82bfad69076a10bce0ded376c0dd58b
[ "MIT" ]
null
null
null
src/lib/jeffos/user.py
JeffTheK/Jeff-OS
8db91673c82bfad69076a10bce0ded376c0dd58b
[ "MIT" ]
null
null
null
src/lib/jeffos/user.py
JeffTheK/Jeff-OS
8db91673c82bfad69076a10bce0ded376c0dd58b
[ "MIT" ]
null
null
null
from .__init__ import * from .color import ERR
29.333333
53
0.650974
from .__init__ import * from .color import ERR def get_current_user() -> str: if not os.path.isfile(OS_PATH+"sys/var/usr.cfg"): print(ERR+"usr.cfg not found") return "ERROR" usr_cfg = open(OS_PATH+"sys/var/usr.cfg", 'r') current_user = usr_cfg.readlines()[0].strip() usr_cfg.close() return current_user def change_current_user(user_name: str): usr_cfg = open(OS_PATH+"sys/var/usr.cfg", 'r') lines = usr_cfg.readlines() lines[0] = user_name+"\n" usr_cfg.close() usr_cfg = open(OS_PATH+"sys/var/usr.cfg", 'w') usr_cfg.writelines(lines) usr_cfg.close()
524
0
46
8d53c50312ab63f92c7d0a794e02e685e48f61a5
17,069
py
Python
fred/clients/eseries.py
dmpe/FRB
692bcf576e17bd1a81db2b7644f4f61aeb39e5c7
[ "MIT" ]
107
2016-01-19T15:13:07.000Z
2022-03-25T03:51:16.000Z
fred/clients/eseries.py
dmpe/FRB
692bcf576e17bd1a81db2b7644f4f61aeb39e5c7
[ "MIT" ]
8
2016-02-05T20:07:51.000Z
2021-08-11T17:05:02.000Z
fred/clients/eseries.py
dmpe/FRB
692bcf576e17bd1a81db2b7644f4f61aeb39e5c7
[ "MIT" ]
37
2016-01-19T15:13:11.000Z
2021-05-21T10:10:41.000Z
from fred.utils import NamespacedClient, query_params from fred.helpers import _get_request class ESeriesClient(NamespacedClient): """ Class for working with FRED series """ @query_params('realtime_start','realtime_end') def details(self,series_id=None,response_type=None,params=None): """ Function to request a series of economic data. `<https://research.stlouisfed.org/docs/api/fred/release.html>`_ :arg int series_id: The id for a series. Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg bool ssl_verify: To verify HTTPs. """ path='/series?' params['series_id'] = series_id response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response @query_params('realtime_start','realtime_end') def categories(self,series_id=None,response_type=None,params=None): """ Function to request the categories for an economic data series. `<https://research.stlouisfed.org/docs/api/fred/release.html>`_ :arg int series_id: The id for a series. Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg bool ssl_verify: To verify HTTPs. """ path='/series/categories?' params['series_id'] = series_id response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response @query_params('realtime_start','realtime_end') def release(self,series_id=None,response_type=None,params=None): """ Function to request the release for an economic data series. `<https://research.stlouisfed.org/docs/api/fred/series_release.html>`_ :arg int series_id: The id for a series. Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg bool ssl_verify: To verify HTTPs. """ path='/series/release?' params['series_id'] = series_id response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response @query_params('realtime_start','realtime_end', 'order_by','sort_order') def tags(self,series_id=None,response_type=None,params=None): """ Function to request FRED tags for a particular series. FRED tags are attributes assigned to series. `<https://research.stlouisfed.org/docs/api/fred/series_tags.html>`_ :arg int series_id: The id for a series. Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg str order_by: Order results by values of the specified attribute. Options are 'series_count', 'popularity', 'created', 'name', 'group_id' :arg str sort_order: Sort results for attribute values specified by order_by. Options are 'asc','desc' :arg bool ssl_verify: To verify HTTPs. """ path = '/series/tags?' params['series_id'] = series_id response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response @query_params('realtime_start','realtime_end','limit', 'offset','filter_value') def updates(self,series_id=None,response_type=None,params=None): """ Function to request economic data series sorted by when observations were updated on the FRED server (attribute last_updated). Results are limited to series updated within the last two weeks. `<https://research.stlouisfed.org/docs/api/fred/series_updates.html>`_ :arg int series_id: The id for a series. Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg int limit: The maximum number of results to return. Options 1 to 1000 :arg int offset: Data offset. Options >=0 :arg str filter_value: Limit results by geographic type of economic data series. Options are 'macro', 'regional', and 'all' :arg bool ssl_verify: To verify HTTPs. """ path = '/series/updates?' params['series_id'] = series_id response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response @query_params('realtime_start','realtime_end','limit', 'offset','sort_order') def vintage_dates(self,series_id=None,response_type=None,params=None): """ Function to request the dates in history when a series' data values were revised or new data values were released. Vintage dates are the release dates for a series excluding release dates when the data for the series did not change. `<https://research.stlouisfed.org/docs/api/fred/series_vintagedates.html>`_ :arg int series_id: The id for a series. Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg int limit: The maximum number of results to return. Options 1 to 1000 :arg int offset: Data offset. Options >=0 :arg str sort_order: Sort results by vintage_date. Options are 'asc','desc' :arg bool ssl_verify: To verify HTTPs. """ path = '/series/vintagedates?' params['series_id'] = series_id response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response @query_params('realtime_start','realtime_end','limit', 'offset','sort_order','observation_start','observation_end', 'units','frequency','aggregation_method','output_type', 'vintage_dates') def observations(self,series_id=None,response_type=None,params=None): """ Function to request the observations or data values for an economic data series. `<https://research.stlouisfed.org/docs/api/fred/series_observations.html>`_ :arg int series_id: The id for a series. Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg int limit: The maximum number of results to return. Options 1 to 100000 :arg int offset: Data offset. Options >=0 :arg str sort_order: Sort results is ascending or descending observation_date order. Options are 'asc','desc' :arg str observation_start: The start of the observation period. Format "YYYY-MM-DD" :arg str observation_end: The end of the observation period. Format "YYYY-MM-DD" :arg str units: A key that indicates a data value transformation. Options are 'lin', 'chg', 'ch1', 'pch', 'pc1', 'pca', 'cch', 'cca', 'log' :arg str frequency: Indicates a lower frequency to aggregate values. Options are 'd', 'w', 'bw', 'm', 'q', 'sa', 'a', 'wef', 'weth', 'wew', 'wetu', 'wem', 'wesu', 'wesa', 'bwew', 'bwem' :arg str aggregation_method: Indicates the aggregation method used for frequency aggregation. Options are 'avg', 'sum', 'eop' :arg int output_type: Output type. Options are 1, 2, 3, 4 :arg str vintage_dates: Date(s) in history. Format "YYYY-MM-DD". Example for multiple dates "2000-01-01,2005-02-24,..." :arg bool ssl_verify: To verify HTTPs. """ path = '/series/observations?' params['series_id'] = series_id response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response @query_params('search_type','realtime_start','realtime_end', 'limit','offset','order_by','sort_order','filter_variable', 'filter_value','tag_names','exclude_tag_names') def search(self,search_text=None,response_type=None,params=None): """ Function to request economic data series that match search text. `<https://research.stlouisfed.org/docs/api/fred/series_search.html>`_ :arg str search_text: The words to match against economic data series. Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str search_type: Determines the type of search to perform. Options are 'full_text','series_id' :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg int limit: The maximum number of results to return. Options 1 to 1000 :arg int offset: Data offset. Options >=0 :arg str order_by: Order results by values of the specified attribute. Options are 'search_rank', 'series_id', 'title', 'units', 'frequency', 'seasonal_adjustment', 'realtime_start', 'realtime_end', 'last_updated', 'observation_start', 'observation_end', 'popularity' :arg str sort_order: Sort results for attribute values specified by order_by. Options are 'asc','desc' :arg str filter_variable: The attribute to filter results by. Options are 'frequency', 'units','seasonal_adjustment' :arg str filter_value: The value of the filter_variable attribute to filter results by. :arg str tag_names: Tag names used to match series. Separate with semicolon as in "income;bea" :arg str exclude_tag_names: Tag names used to exclude series. Separate with semicolon as in "income;bea" :arg bool ssl_verify: To verify HTTPs. """ path = '/series/search?' params['search_text'] = search_text response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response @query_params('realtime_start','realtime_end', 'limit','offset','order_by','sort_order','tag_names', 'tag_group_id','tag_search_text') def search_tags(self,series_search_text=None,response_type=None,params=None): """ Function to request the FRED tags for a series search. `<https://research.stlouisfed.org/docs/api/fred/series_search_tags.html>`_ :arg str series_search_text: The words to match against economic data series. Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg int limit: The maximum number of results to return. Options 1 to 1000 :arg int offset: Data offset. Options >=0 :arg str order_by: Order results by values of the specified attribute. Options are 'series_count', 'popularity', 'created', 'name', 'group_id' :arg str sort_order: Sort results for attribute values specified by order_by. Options are 'asc','desc' :arg str tag_names: Tag names that series match. Separate with semicolon as in "income;bea" :arg str tag_group_id: Tag ID to filter tags by. Options are 'freq', 'gen', 'geo', 'geot', 'rls', 'seas', 'src' :arg str tag_search_text: The words to find matching tags with. :arg bool ssl_verify: To verify HTTPs. """ path = '/series/search/tags?' params['series_search_text'] = series_search_text response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response @query_params('realtime_start','realtime_end', 'limit','offset','order_by','sort_order', 'tag_group_id','tag_search_text','exclude_tag_names') def search_related_tags(self,series_search_text=None,tag_names=None,response_type=None,params=None): """ Function to request the related FRED tags for one or more FRED tags matching a series search. `<https://research.stlouisfed.org/docs/api/fred/series_search_related_tags.html>`_ :arg str series_search_text: The words to match against economic data series. Required. :arg str tag_names: Tag names that series match. Separate with semicolon as in "income;bea". Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg int limit: The maximum number of results to return. Options 1 to 1000 :arg int offset: Data offset. Options >=0 :arg str order_by: Order results by values of the specified attribute. Options are 'series_count', 'popularity', 'created', 'name', 'group_id' :arg str sort_order: Sort results for attribute values specified by order_by. Options are 'asc','desc' :arg str tag_group_id: Tag ID to filter tags by. Options are 'freq', 'gen', 'geo', 'geot', 'rls', 'seas', 'src' :arg str tag_search_text: The words to find matching tags with. :arg str exclude_tag_names: Tag names to exclude. Separate with semicolon as in "income;bea" :arg bool ssl_verify: To verify HTTPs. """ path = '/series/search/related_tags?' params['series_search_text'], params['tag_names'] = series_search_text, tag_names response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response
61.399281
127
0.656629
from fred.utils import NamespacedClient, query_params from fred.helpers import _get_request class ESeriesClient(NamespacedClient): """ Class for working with FRED series """ @query_params('realtime_start','realtime_end') def details(self,series_id=None,response_type=None,params=None): """ Function to request a series of economic data. `<https://research.stlouisfed.org/docs/api/fred/release.html>`_ :arg int series_id: The id for a series. Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg bool ssl_verify: To verify HTTPs. """ path='/series?' params['series_id'] = series_id response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response @query_params('realtime_start','realtime_end') def categories(self,series_id=None,response_type=None,params=None): """ Function to request the categories for an economic data series. `<https://research.stlouisfed.org/docs/api/fred/release.html>`_ :arg int series_id: The id for a series. Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg bool ssl_verify: To verify HTTPs. """ path='/series/categories?' params['series_id'] = series_id response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response @query_params('realtime_start','realtime_end') def release(self,series_id=None,response_type=None,params=None): """ Function to request the release for an economic data series. `<https://research.stlouisfed.org/docs/api/fred/series_release.html>`_ :arg int series_id: The id for a series. Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg bool ssl_verify: To verify HTTPs. """ path='/series/release?' params['series_id'] = series_id response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response @query_params('realtime_start','realtime_end', 'order_by','sort_order') def tags(self,series_id=None,response_type=None,params=None): """ Function to request FRED tags for a particular series. FRED tags are attributes assigned to series. `<https://research.stlouisfed.org/docs/api/fred/series_tags.html>`_ :arg int series_id: The id for a series. Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg str order_by: Order results by values of the specified attribute. Options are 'series_count', 'popularity', 'created', 'name', 'group_id' :arg str sort_order: Sort results for attribute values specified by order_by. Options are 'asc','desc' :arg bool ssl_verify: To verify HTTPs. """ path = '/series/tags?' params['series_id'] = series_id response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response @query_params('realtime_start','realtime_end','limit', 'offset','filter_value') def updates(self,series_id=None,response_type=None,params=None): """ Function to request economic data series sorted by when observations were updated on the FRED server (attribute last_updated). Results are limited to series updated within the last two weeks. `<https://research.stlouisfed.org/docs/api/fred/series_updates.html>`_ :arg int series_id: The id for a series. Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg int limit: The maximum number of results to return. Options 1 to 1000 :arg int offset: Data offset. Options >=0 :arg str filter_value: Limit results by geographic type of economic data series. Options are 'macro', 'regional', and 'all' :arg bool ssl_verify: To verify HTTPs. """ path = '/series/updates?' params['series_id'] = series_id response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response @query_params('realtime_start','realtime_end','limit', 'offset','sort_order') def vintage_dates(self,series_id=None,response_type=None,params=None): """ Function to request the dates in history when a series' data values were revised or new data values were released. Vintage dates are the release dates for a series excluding release dates when the data for the series did not change. `<https://research.stlouisfed.org/docs/api/fred/series_vintagedates.html>`_ :arg int series_id: The id for a series. Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg int limit: The maximum number of results to return. Options 1 to 1000 :arg int offset: Data offset. Options >=0 :arg str sort_order: Sort results by vintage_date. Options are 'asc','desc' :arg bool ssl_verify: To verify HTTPs. """ path = '/series/vintagedates?' params['series_id'] = series_id response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response @query_params('realtime_start','realtime_end','limit', 'offset','sort_order','observation_start','observation_end', 'units','frequency','aggregation_method','output_type', 'vintage_dates') def observations(self,series_id=None,response_type=None,params=None): """ Function to request the observations or data values for an economic data series. `<https://research.stlouisfed.org/docs/api/fred/series_observations.html>`_ :arg int series_id: The id for a series. Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg int limit: The maximum number of results to return. Options 1 to 100000 :arg int offset: Data offset. Options >=0 :arg str sort_order: Sort results is ascending or descending observation_date order. Options are 'asc','desc' :arg str observation_start: The start of the observation period. Format "YYYY-MM-DD" :arg str observation_end: The end of the observation period. Format "YYYY-MM-DD" :arg str units: A key that indicates a data value transformation. Options are 'lin', 'chg', 'ch1', 'pch', 'pc1', 'pca', 'cch', 'cca', 'log' :arg str frequency: Indicates a lower frequency to aggregate values. Options are 'd', 'w', 'bw', 'm', 'q', 'sa', 'a', 'wef', 'weth', 'wew', 'wetu', 'wem', 'wesu', 'wesa', 'bwew', 'bwem' :arg str aggregation_method: Indicates the aggregation method used for frequency aggregation. Options are 'avg', 'sum', 'eop' :arg int output_type: Output type. Options are 1, 2, 3, 4 :arg str vintage_dates: Date(s) in history. Format "YYYY-MM-DD". Example for multiple dates "2000-01-01,2005-02-24,..." :arg bool ssl_verify: To verify HTTPs. """ path = '/series/observations?' params['series_id'] = series_id response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response @query_params('search_type','realtime_start','realtime_end', 'limit','offset','order_by','sort_order','filter_variable', 'filter_value','tag_names','exclude_tag_names') def search(self,search_text=None,response_type=None,params=None): """ Function to request economic data series that match search text. `<https://research.stlouisfed.org/docs/api/fred/series_search.html>`_ :arg str search_text: The words to match against economic data series. Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str search_type: Determines the type of search to perform. Options are 'full_text','series_id' :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg int limit: The maximum number of results to return. Options 1 to 1000 :arg int offset: Data offset. Options >=0 :arg str order_by: Order results by values of the specified attribute. Options are 'search_rank', 'series_id', 'title', 'units', 'frequency', 'seasonal_adjustment', 'realtime_start', 'realtime_end', 'last_updated', 'observation_start', 'observation_end', 'popularity' :arg str sort_order: Sort results for attribute values specified by order_by. Options are 'asc','desc' :arg str filter_variable: The attribute to filter results by. Options are 'frequency', 'units','seasonal_adjustment' :arg str filter_value: The value of the filter_variable attribute to filter results by. :arg str tag_names: Tag names used to match series. Separate with semicolon as in "income;bea" :arg str exclude_tag_names: Tag names used to exclude series. Separate with semicolon as in "income;bea" :arg bool ssl_verify: To verify HTTPs. """ path = '/series/search?' params['search_text'] = search_text response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response @query_params('realtime_start','realtime_end', 'limit','offset','order_by','sort_order','tag_names', 'tag_group_id','tag_search_text') def search_tags(self,series_search_text=None,response_type=None,params=None): """ Function to request the FRED tags for a series search. `<https://research.stlouisfed.org/docs/api/fred/series_search_tags.html>`_ :arg str series_search_text: The words to match against economic data series. Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg int limit: The maximum number of results to return. Options 1 to 1000 :arg int offset: Data offset. Options >=0 :arg str order_by: Order results by values of the specified attribute. Options are 'series_count', 'popularity', 'created', 'name', 'group_id' :arg str sort_order: Sort results for attribute values specified by order_by. Options are 'asc','desc' :arg str tag_names: Tag names that series match. Separate with semicolon as in "income;bea" :arg str tag_group_id: Tag ID to filter tags by. Options are 'freq', 'gen', 'geo', 'geot', 'rls', 'seas', 'src' :arg str tag_search_text: The words to find matching tags with. :arg bool ssl_verify: To verify HTTPs. """ path = '/series/search/tags?' params['series_search_text'] = series_search_text response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response @query_params('realtime_start','realtime_end', 'limit','offset','order_by','sort_order', 'tag_group_id','tag_search_text','exclude_tag_names') def search_related_tags(self,series_search_text=None,tag_names=None,response_type=None,params=None): """ Function to request the related FRED tags for one or more FRED tags matching a series search. `<https://research.stlouisfed.org/docs/api/fred/series_search_related_tags.html>`_ :arg str series_search_text: The words to match against economic data series. Required. :arg str tag_names: Tag names that series match. Separate with semicolon as in "income;bea". Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg int limit: The maximum number of results to return. Options 1 to 1000 :arg int offset: Data offset. Options >=0 :arg str order_by: Order results by values of the specified attribute. Options are 'series_count', 'popularity', 'created', 'name', 'group_id' :arg str sort_order: Sort results for attribute values specified by order_by. Options are 'asc','desc' :arg str tag_group_id: Tag ID to filter tags by. Options are 'freq', 'gen', 'geo', 'geot', 'rls', 'seas', 'src' :arg str tag_search_text: The words to find matching tags with. :arg str exclude_tag_names: Tag names to exclude. Separate with semicolon as in "income;bea" :arg bool ssl_verify: To verify HTTPs. """ path = '/series/search/related_tags?' params['series_search_text'], params['tag_names'] = series_search_text, tag_names response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response
0
0
0
d1839a3279a5cf65bd5fa7efd4fde3026ed8d45c
9,871
py
Python
ke/images/python/cluster_tool.py
justasabc/kubernetes-ubuntu
afc670297a5becb2fcb4404c3ee1e02c99b5eaf4
[ "Apache-2.0" ]
1
2020-10-18T01:34:39.000Z
2020-10-18T01:34:39.000Z
ke/images/python/cluster_tool.py
justasabc/kubernetes-ubuntu
afc670297a5becb2fcb4404c3ee1e02c99b5eaf4
[ "Apache-2.0" ]
null
null
null
ke/images/python/cluster_tool.py
justasabc/kubernetes-ubuntu
afc670297a5becb2fcb4404c3ee1e02c99b5eaf4
[ "Apache-2.0" ]
null
null
null
""" Class Hierarchy G{classtree: BaseTool} Package tree G{packagetree: cluster_tool} Import Graph G{importgraph: cluster_tool} """ #/usr/bin/python # -*- coding:utf-8 -*- import subprocess from json_generator import JsonGenerator from container_client import ContainerClient DOCKER_SERVER_URL = 'tcp://master:2375' class BaseTool: """ base tool """ class KubernetesTool(BaseTool): """ kubernetes tool """ #===================================================================== # create pod/service/replicationController/node/minion/event #===================================================================== #===================================================================== # list pod/service/replicationController/node/minion/event #===================================================================== #===================================================================== # delete pod/service/replicationController/node/minion/event #===================================================================== #===================================================================== # get pod hostname #===================================================================== #===================================================================== # resize replicationController #===================================================================== class IptablesTool(BaseTool): """ iptables tool """ #========================================================== # nat add rules to PREROUTING/POSTROUTING/INPUT/OUTPUT chains #========================================================== #========================================================== # nat delete rules to PREROUTING/POSTROUTING/INPUT/OUTPUT chains #========================================================== #========================================================== # nat flush PREROUTING/POSTROUTING/INPUT/OUTPUT chains #========================================================== #========================================================== # nat list PREROUTING/POSTROUTING/INPUT/OUTPUT chains #========================================================== if __name__=="__main__": main()
34.757042
141
0.668727
""" Class Hierarchy G{classtree: BaseTool} Package tree G{packagetree: cluster_tool} Import Graph G{importgraph: cluster_tool} """ #/usr/bin/python # -*- coding:utf-8 -*- import subprocess from json_generator import JsonGenerator from container_client import ContainerClient DOCKER_SERVER_URL = 'tcp://master:2375' class BaseTool: """ base tool """ def __init__(self,name): self.name = name """ @type: C{string} """ def execute_command(self,command_str): #print "[BaseTool] {0}".format(command_str) p = subprocess.Popen(command_str, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) value = "" for line in p.stdout.readlines(): value += line return_code = p.wait() return value.rstrip() class KubernetesTool(BaseTool): """ kubernetes tool """ def __init__(self): #print "[KubernetesTool] init..." BaseTool.__init__(self,"KubernetesTool") self.container_client = ContainerClient(DOCKER_SERVER_URL) """ @type: L{ContainerClient} """ #print "[KubernetesTool] OK" def __create(self,type_name,config_file): command_str = "kubecfg -c {0} create {1}".format(config_file,type_name) return BaseTool.execute_command(self,command_str) def __list(self,type_name): command_str = "kubecfg list {0}".format(type_name) return BaseTool.execute_command(self,command_str) def __delete(self,type_name,type_id): command_str = "kubecfg delete {0}/{1}".format(type_name,type_id) return BaseTool.execute_command(self,command_str) #===================================================================== # create pod/service/replicationController/node/minion/event #===================================================================== def create_pod(self,config_file): type_name = "pods" return self.__create(type_name,config_file) def create_service(self,config_file): type_name = "services" return self.__create(type_name,config_file) def create_replication_controller(self,config_file): type_name = "replicationControllers" return self.__create(type_name,config_file) #===================================================================== # list pod/service/replicationController/node/minion/event #===================================================================== def list_pods(self): type_name = "pods" return self.__list(type_name) def list_services(self): type_name = "services" return self.__list(type_name) def list_replication_controller(self): type_name = "replicationControllers" return self.__list(type_name) #===================================================================== # delete pod/service/replicationController/node/minion/event #===================================================================== def delete_pod(self,type_id): type_name = "pods" return self.__delete(type_name,type_id) def delete_service(self,type_id): type_name = "services" return self.__delete(type_name,type_id) def delete_replication_controller(self,type_id): type_name = "replicationControllers" return self.__delete(type_name,type_id) #===================================================================== # get pod hostname #===================================================================== def get_pod_hostname(self,pod_id): command_str = "kubecfg list pods | grep "+pod_id+ " | awk '{print $3;}' | cut -f1 -d/" return BaseTool.execute_command(self,command_str) def hostname_to_ip(self,hostname): if hostname == "": print "*"*50 print "[KubernetesTool] hostname is empty! " print "[KubernetesTool] use master node instead! " print "*"*50 hostname = "master" command_str = "resolveip -s {0}".format(hostname) return BaseTool.execute_command(self,command_str) def get_pod_ip(self,pod_id): hostname = self.get_pod_hostname(pod_id) return self.hostname_to_ip(hostname) def stats_container(self,container): command_str = "docker stats {0}".format(container) return BaseTool.execute_command(self,command_str) def get_host_ip(self): command_str = "/sbin/ifconfig $ETH0 | grep 'inet addr:' | cut -d: -f2 | awk '{ print $1}'" return BaseTool.execute_command(self,command_str) def get_container_ip(self,container_name): command_str = "docker inspect -f '{{ .NetworkSettings.IPAddress }}' {0}".format(container_name) return BaseTool.execute_command(self,command_str) def copy_region_xml_to_minions(self,minions): # scp -r xml/* minion1:/volumes/var/www/region_load/ for minion in minions: print "copying xml to {0}...".format(minion) command_str = "scp -r xml/* {0}:/volumes/var/www/region_load/".format(minion) BaseTool.execute_command(self,command_str) def save_json_to_file(self,dict_data,file_path): generator = JsonGenerator('generator') generator.generate(dict_data,file_path) #===================================================================== # resize replicationController #===================================================================== def resize_replication_controller(self,controller_id,replicas): command_str = "kubecfg resize {0} {1}".format(controller_id,replicas) return BaseTool.execute_command(self,command_str) class IptablesTool(BaseTool): """ iptables tool """ def __init__(self): #print "[IptablesTool] init..." BaseTool.__init__(self,"IptablesTool") #print "[IptablesTool] OK" #========================================================== # nat add rules to PREROUTING/POSTROUTING/INPUT/OUTPUT chains #========================================================== def nat_add_rule_to_prerouting_chain(self,protocol,src_port,dst_port,src_ip,dst_ip): command_str = "iptables -t nat -A PREROUTING -p {0} --dport {1} -j DNAT --to-destination {2}:{3}".format(protocol,dst_port,dst_ip,dst_port) return BaseTool.execute_command(self,command_str) def nat_add_rule_to_postrouting_chain(self,protocol,src_port,dst_port,src_ip,dst_ip): command_str = "iptables -t nat -A POSTROUTING -p {0} -d {1} --dport {2} -j SNAT --to-source {3}".format(protocol,dst_ip,dst_port,src_ip) return BaseTool.execute_command(self,command_str) def nat_add_rule_to_input_chain(self,protocol,src_port,dst_port,src_ip,dst_ip): command_str = "ls" return BaseTool.execute_command(self,command_str) def nat_add_rule_to_output_chain(self,protocol,src_port,dst_port,src_ip,dst_ip): command_str = "ls" return BaseTool.execute_command(self,command_str) #========================================================== # nat delete rules to PREROUTING/POSTROUTING/INPUT/OUTPUT chains #========================================================== def nat_delete_rule_from_prerouting_chain(self,rule_number): command_str = "iptables -t nat -D PREROUTING {0}".format(rule_number) return BaseTool.execute_command(self,command_str) def nat_delete_rule_from_postrouting_chain(self,rule_number): command_str = "iptables -t nat -D POSTROUTING {0}".format(rule_number) return BaseTool.execute_command(self,command_str) def nat_delete_rule_from_input_chain(self,rule_number): command_str = "iptables -t nat -D INPUT {0}".format(rule_number) return BaseTool.execute_command(self,command_str) def nat_delete_rule_from_output_chain(self,rule_number): command_str = "iptables -t nat -D OUTPUT {0}".format(rule_number) return BaseTool.execute_command(self,command_str) #========================================================== # nat flush PREROUTING/POSTROUTING/INPUT/OUTPUT chains #========================================================== def nat_flush_prerouting_chain(self): command_str = "iptables -t nat -F PREROUTING" return BaseTool.execute_command(self,command_str) def nat_flush_postrouting_chain(self): command_str = "iptables -t nat -F POSTROUTING" return BaseTool.execute_command(self,command_str) def nat_flush_input_chain(self): command_str = "iptables -t nat -F INPUT" return BaseTool.execute_command(self,command_str) def nat_flush_output_chain(self): command_str = "iptables -t nat -F OUTPUT" return BaseTool.execute_command(self,command_str) def nat_flush_all_chains(self): self.nat_flush_prerouting_chain() self.nat_flush_postrouting_chain() self.nat_flush_input_chain() self.nat_flush_output_chain() #========================================================== # nat list PREROUTING/POSTROUTING/INPUT/OUTPUT chains #========================================================== def nat_list_prerouting_chain(self,with_line_numbers=False): command_str = "iptables -t nat -L PREROUTING" if with_line_numbers: command_str += " --line-numbers" return BaseTool.execute_command(self,command_str) def nat_list_postrouting_chain(self,with_line_numbers=False): command_str = "iptables -t nat -L POSTROUTING" if with_line_numbers: command_str += " --line-numbers" return BaseTool.execute_command(self,command_str) def nat_list_input_chain(self,with_line_numbers=False): command_str = "iptables -t nat -L INPUT" if with_line_numbers: command_str += " --line-numbers" return BaseTool.execute_command(self,command_str) def nat_list_output_chain(self,with_line_numbers=False): command_str = "iptables -t nat -L OUTPUT" if with_line_numbers: command_str += " --line-numbers" return BaseTool.execute_command(self,command_str) def nat_list_all_chains(self): result = "" result += (self.nat_list_prerouting_chain() + "\n") result += (self.nat_list_postrouting_chain() + "\n") result += (self.nat_list_input_chain() + "\n") result += (self.nat_list_output_chain() + "\n") return result.rstrip() class ToolTesting(KubernetesTool,IptablesTool): pass def test(): cmd = IptablesTool() cmd.nat_flush_prerouting_chain() print cmd.nat_list_all_chains() print "OK" cmd = KubernetesTool() hostname = cmd.get_pod_hostname("apache-pod") print cmd.hostname_to_ip(hostname) print "OK" def main(): test() if __name__=="__main__": main()
6,544
32
1,090
82c4e1c9d79324cfb9f7ba26f995247d4d54ad9e
333
py
Python
utils.py
liliangbin/faceRecognition
077e070b42fb8aa8868c604863858a177c178ec7
[ "Apache-2.0" ]
4
2019-06-30T13:04:30.000Z
2021-04-18T08:01:55.000Z
utils.py
liliangbin/faceRecognition
077e070b42fb8aa8868c604863858a177c178ec7
[ "Apache-2.0" ]
null
null
null
utils.py
liliangbin/faceRecognition
077e070b42fb8aa8868c604863858a177c178ec7
[ "Apache-2.0" ]
null
null
null
import matplotlib.pyplot as plt
27.75
57
0.708709
import matplotlib.pyplot as plt def show_train_history(train_history, train, validation): plt.plot(train_history.history[train]) plt.plot(train_history.history[validation]) plt.title('train history') plt.ylabel(train) plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='upper left') plt.show()
277
0
23
4311beaaf96391f1dec77dcb15a6c9c8eec39f67
239
py
Python
cli/__init__.py
Polsaker/throat
39fd66efb7251f1607d9bf9e407e0cbbdfc10c57
[ "MIT" ]
8
2019-05-27T19:34:25.000Z
2020-03-01T19:06:48.000Z
cli/__init__.py
Polsaker/throat
39fd66efb7251f1607d9bf9e407e0cbbdfc10c57
[ "MIT" ]
null
null
null
cli/__init__.py
Polsaker/throat
39fd66efb7251f1607d9bf9e407e0cbbdfc10c57
[ "MIT" ]
7
2019-05-29T17:12:40.000Z
2020-05-01T16:41:16.000Z
from .recount import recount from .admin import admin from .default import default from .migration import migration from .translations import translations commands = [ migration, recount, admin, default, translations ]
18.384615
38
0.74477
from .recount import recount from .admin import admin from .default import default from .migration import migration from .translations import translations commands = [ migration, recount, admin, default, translations ]
0
0
0
500d465798a7caedef8ae7ce212b2a7ab666165d
1,078
py
Python
madrona/common/assets.py
movermeyer/madrona
fcdced0a03408754b88a3d88f416e04d500c32d4
[ "BSD-3-Clause" ]
9
2015-03-09T11:04:21.000Z
2022-01-16T09:45:36.000Z
madrona/common/assets.py
movermeyer/madrona
fcdced0a03408754b88a3d88f416e04d500c32d4
[ "BSD-3-Clause" ]
1
2020-04-24T14:38:43.000Z
2020-04-24T14:38:43.000Z
madrona/common/assets.py
movermeyer/madrona
fcdced0a03408754b88a3d88f416e04d500c32d4
[ "BSD-3-Clause" ]
2
2016-12-06T15:31:35.000Z
2018-03-04T20:04:44.000Z
from elementtree import ElementTree as et import os ROOT_PATH = '' def get_js_files(): """Returns a list of all the javascript files listed in media/js_includes.xml""" files = [] path = os.path.dirname(os.path.abspath(__file__)) tree = et.parse(path + '/../media/js_includes.xml') for f in tree.findall('file'): files.append(ROOT_PATH + f.get('path')) return files def get_js_test_files(): """Returns a list of all the javascript test files listed in media/js_includes.xml""" files = [] path = os.path.dirname(os.path.abspath(__file__)) tree = et.parse(path + '/../media/js_includes.xml') for f in tree.findall('test'): files.append(ROOT_PATH + f.get('path')) return files def get_css_files(): """Returns a list of all css files listed in media/css_includes.xml""" files = [] path = os.path.dirname(os.path.abspath(__file__)) tree = et.parse(path + '/../media/css_includes.xml') for f in tree.findall('file'): files.append(ROOT_PATH + f.get('path')) return files
30.8
65
0.646568
from elementtree import ElementTree as et import os ROOT_PATH = '' def get_js_files(): """Returns a list of all the javascript files listed in media/js_includes.xml""" files = [] path = os.path.dirname(os.path.abspath(__file__)) tree = et.parse(path + '/../media/js_includes.xml') for f in tree.findall('file'): files.append(ROOT_PATH + f.get('path')) return files def get_js_test_files(): """Returns a list of all the javascript test files listed in media/js_includes.xml""" files = [] path = os.path.dirname(os.path.abspath(__file__)) tree = et.parse(path + '/../media/js_includes.xml') for f in tree.findall('test'): files.append(ROOT_PATH + f.get('path')) return files def get_css_files(): """Returns a list of all css files listed in media/css_includes.xml""" files = [] path = os.path.dirname(os.path.abspath(__file__)) tree = et.parse(path + '/../media/css_includes.xml') for f in tree.findall('file'): files.append(ROOT_PATH + f.get('path')) return files
0
0
0
48a887f207778a7c4e05b2e0a8a7e32643674841
1,018
py
Python
tests/conf/config.py
robert-werner/fastapi-crudrouter
4f924307b53e5ea1adaa509302800c060ee7d06a
[ "MIT" ]
null
null
null
tests/conf/config.py
robert-werner/fastapi-crudrouter
4f924307b53e5ea1adaa509302800c060ee7d06a
[ "MIT" ]
null
null
null
tests/conf/config.py
robert-werner/fastapi-crudrouter
4f924307b53e5ea1adaa509302800c060ee7d06a
[ "MIT" ]
null
null
null
import os import pathlib ENV_FILE_PATH = pathlib.Path(__file__).parent / "dev.env" assert ENV_FILE_PATH.exists()
27.513514
150
0.574656
import os import pathlib ENV_FILE_PATH = pathlib.Path(__file__).parent / "dev.env" assert ENV_FILE_PATH.exists() class BaseConfig: POSTGRES_HOST = "" POSTGRES_USER = "" POSTGRES_PASSWORD = "" POSTGRES_DB = "" POSTGRES_PORT = "" def __init__(self): self._apply_dot_env() self._apply_env_vars() self.POSTGRES_URI = f"postgresql://{self.POSTGRES_USER}:{self.POSTGRES_PASSWORD}@{self.POSTGRES_HOST}:{self.POSTGRES_PORT}/{self.POSTGRES_DB}" print(self.POSTGRES_URI) def _apply_dot_env(self): with open(ENV_FILE_PATH) as fp: for line in fp.readlines(): line = line.strip(" \n") if not line.startswith("#"): k, v = line.split("=", 1) if hasattr(self, k) and not getattr(self, k): setattr(self, k, v) def _apply_env_vars(self): for k, v in os.environ.items(): if hasattr(self, k): setattr(self, k, v)
685
194
23
530a06fbf60cdea98dfb1c9085cf498b370520c5
3,958
py
Python
.2lanemdr/2lanemdr.py
hemidactylus/nbws1
282cc2f0d5c04f5fc818f3e411dfb5b549ea47f6
[ "Apache-2.0" ]
null
null
null
.2lanemdr/2lanemdr.py
hemidactylus/nbws1
282cc2f0d5c04f5fc818f3e411dfb5b549ea47f6
[ "Apache-2.0" ]
null
null
null
.2lanemdr/2lanemdr.py
hemidactylus/nbws1
282cc2f0d5c04f5fc818f3e411dfb5b549ea47f6
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python import re import os import sys import json import subprocess DEF_FILE = '.2lane.info' DIRECTIVE_TEMPLATE = '<!-- 2L {body} -->' TYPO_WARNING_FINDER = re.compile('\W2L\W', re.IGNORECASE) MESSAGE_TEMPLATE = '** 2lanemdr {kind} on {filename}:{linenumber} "{message}"' def parseDirective(line, wrcs): """ Return (kind, target): ('endif', None) ('if', <fn>) ('elif', <fn>) (None, None) """ if line == DIRECTIVE_TEMPLATE.format(body='ENDIF'): return ('endif', None) else: for fn in wrcs.keys(): if line == DIRECTIVE_TEMPLATE.format(body='IF %s' % fn): return ('if', fn) elif line == DIRECTIVE_TEMPLATE.format(body='ELIF %s' % fn): return ('elif', fn) # return None, None def mkFiles(src, prescr, warner, errorer): """ Return a list with the path to all files created """ inContents = [ li.replace('\n', '') for li in open(src).readlines() ] # open files oFiles = { fn: open(fp, 'w') for fn, fp in prescr.items() } # cursor setting writing = { fn: True for fn in oFiles.keys() } # process lines for lineNumber, line in enumerate(inContents): # directive or content line? directive, dTarget = parseDirective(line, writing) if directive is not None: # validate and process if directive == 'endif': if sum(int(c) for c in writing.values()) != 1: errorer('Misplaced ENDIF', lineNumber) else: for fn in writing.keys(): writing[fn] = True elif directive == 'if': if sum(int(c) for c in writing.values()) != len(writing): errorer('Misplaced IF', lineNumber) else: for fn in writing.keys(): writing[fn] = fn == dTarget elif directive == 'elif': if sum(int(c) for c in writing.values()) != 1: errorer('Misplaced ELIF', lineNumber) elif writing[dTarget]: errorer('Repeated target in ELIF', lineNumber) else: for fn in writing.keys(): writing[fn] = fn == dTarget else: errorer('Unknown directive', lineNumber) else: # if TYPO_WARNING_FINDER.search(line): warner('check line', lineNumber) # write serially on all active cursors for fn, fh in oFiles.items(): if writing[fn]: fh.write('%s\n' % line) # close files for fn, fh in oFiles.items(): fh.close() return [fp for fp in prescr.values()] if __name__ == '__main__': if os.path.isfile(DEF_FILE): defs = json.load(open(DEF_FILE)) files = defs.get('sources', {}) # allCreatedFiles = [] # for origF, dests in files.items(): createdFiles = mkFiles(origF, dests, warner=warner, errorer=errorer) allCreatedFiles += createdFiles # we git add the created files subprocess.call(['git', 'add'] + allCreatedFiles)
29.984848
80
0.490904
#!/usr/bin/python import re import os import sys import json import subprocess DEF_FILE = '.2lane.info' DIRECTIVE_TEMPLATE = '<!-- 2L {body} -->' TYPO_WARNING_FINDER = re.compile('\W2L\W', re.IGNORECASE) MESSAGE_TEMPLATE = '** 2lanemdr {kind} on {filename}:{linenumber} "{message}"' def parseDirective(line, wrcs): """ Return (kind, target): ('endif', None) ('if', <fn>) ('elif', <fn>) (None, None) """ if line == DIRECTIVE_TEMPLATE.format(body='ENDIF'): return ('endif', None) else: for fn in wrcs.keys(): if line == DIRECTIVE_TEMPLATE.format(body='IF %s' % fn): return ('if', fn) elif line == DIRECTIVE_TEMPLATE.format(body='ELIF %s' % fn): return ('elif', fn) # return None, None def mkFiles(src, prescr, warner, errorer): """ Return a list with the path to all files created """ inContents = [ li.replace('\n', '') for li in open(src).readlines() ] # open files oFiles = { fn: open(fp, 'w') for fn, fp in prescr.items() } # cursor setting writing = { fn: True for fn in oFiles.keys() } # process lines for lineNumber, line in enumerate(inContents): # directive or content line? directive, dTarget = parseDirective(line, writing) if directive is not None: # validate and process if directive == 'endif': if sum(int(c) for c in writing.values()) != 1: errorer('Misplaced ENDIF', lineNumber) else: for fn in writing.keys(): writing[fn] = True elif directive == 'if': if sum(int(c) for c in writing.values()) != len(writing): errorer('Misplaced IF', lineNumber) else: for fn in writing.keys(): writing[fn] = fn == dTarget elif directive == 'elif': if sum(int(c) for c in writing.values()) != 1: errorer('Misplaced ELIF', lineNumber) elif writing[dTarget]: errorer('Repeated target in ELIF', lineNumber) else: for fn in writing.keys(): writing[fn] = fn == dTarget else: errorer('Unknown directive', lineNumber) else: # if TYPO_WARNING_FINDER.search(line): warner('check line', lineNumber) # write serially on all active cursors for fn, fh in oFiles.items(): if writing[fn]: fh.write('%s\n' % line) # close files for fn, fh in oFiles.items(): fh.close() return [fp for fp in prescr.values()] if __name__ == '__main__': if os.path.isfile(DEF_FILE): defs = json.load(open(DEF_FILE)) files = defs.get('sources', {}) # allCreatedFiles = [] # for origF, dests in files.items(): def warner(msg, intLineno): wmsg = MESSAGE_TEMPLATE.format( kind='WARNING', filename=origF, linenumber=intLineno+1, message=msg, ) print(wmsg) def errorer(msg, intLineno): emsg = MESSAGE_TEMPLATE.format( kind='ERROR', filename=origF, linenumber=intLineno+1, message=msg, ) print(emsg) sys.exit(1) createdFiles = mkFiles(origF, dests, warner=warner, errorer=errorer) allCreatedFiles += createdFiles # we git add the created files subprocess.call(['git', 'add'] + allCreatedFiles)
525
0
70
9903ff1dd556a8dc9bf96c9260ccd0029845f009
4,704
py
Python
utils.py
menpo/menpo-admin
41cb5ab9aa56c3df26e7bfbf43a56a0cbd5f9674
[ "BSD-3-Clause" ]
null
null
null
utils.py
menpo/menpo-admin
41cb5ab9aa56c3df26e7bfbf43a56a0cbd5f9674
[ "BSD-3-Clause" ]
1
2017-01-24T11:17:03.000Z
2017-01-24T11:17:03.000Z
utils.py
menpo/menpo-admin
41cb5ab9aa56c3df26e7bfbf43a56a0cbd5f9674
[ "BSD-3-Clause" ]
null
null
null
import os import subprocess from subprocess import CalledProcessError from functools import partial from collections import namedtuple Project = namedtuple('Project', ['name', 'versions']) # all projects using condaci along with the Python version they # need. Note that for non-python projects we can choose any single # python version. PROJECTS = [Project(*x) for x in [('menpo', (2, 34, 35)), ('menpodetect', (2, 34, 35)), ('menpofit', (2, 34, 35)), ('menpo3d', (2, 34, 35)), ('menpocli', (2, 34, 35)), ('menpowidgets', (2, 34, 35)), ('landmarkerio-server', (2,)), ('menpobench', (2,)), ('cyassimp', (2, 34, 35)), ('cyrasterize', (2, 34, 35)), ('cyvlfeat', (2, 34, 35)), ('cyffld2', (2, 34, 35)), ('cypico', (2, 34, 35)), ('conda-arrow', (2, 34, 35)), ('conda-boost', (2, 34, 35)), ('conda-cherrypy', (2, 34, 35)), ('conda-dlib', (2, 34, 35)), ('conda-opencv3', (2, 34, 35)), ('conda-ffmpeg', (2, 34, 35)), ('conda-glew', (2, 34, 35)), ('conda-glfw3', (2, 34, 35)), ('conda-freeimage', (2, 34, 35)), ('conda-imageio', (2, 34, 35)), ('conda-joblib', (2, 34, 35)), ('workerbee', (2, 34, 35)), # Python 3 only ('lsfm', (35,)), # Python 2 only ('conda-menpo-pyvrml97', (2,)), ('conda-pathlib', (2,)), # We currenty build mayavi (and all it's deps) # so we can be Python 3 ('conda-vtk', (2, 34, 35)), ('conda-traits', (2, 34, 35)), ('conda-envisage', (2, 34, 35)), ('conda-pyface', (2, 34, 35)), ('conda-apptools', (2, 34, 35)), ('conda-traitsui', (2, 34, 35)), ('conda-mayavi', (2, 34, 35)), # And we also need the latest ipywidgets... ('conda-ipywidgets', (2, 34, 35)), ('conda-widgetsnbextension', (2, 34, 35)), # Non-Python projects ('vrml97', (2,)), ('conda-flann', (2,)), ('conda-eigen', (2,)), ('conda-enum', (2,)), ('conda-vlfeat', (35,)), ('conda-opencv', (35,)) ]] PROJECT_NAMES = [p.name for p in PROJECTS] appveyor_op = partial(perform_operation_on_file, 'appveyor.yml') travis_op = partial(perform_operation_on_file, '.travis.yml') def copy_and_yield(fsrc, fdst, length=1024*1024): """copy data from file-like object fsrc to file-like object fdst""" while 1: buf = fsrc.read(length) if not buf: break fdst.write(buf) yield
29.4
71
0.51892
import os import subprocess from subprocess import CalledProcessError from functools import partial from collections import namedtuple Project = namedtuple('Project', ['name', 'versions']) # all projects using condaci along with the Python version they # need. Note that for non-python projects we can choose any single # python version. PROJECTS = [Project(*x) for x in [('menpo', (2, 34, 35)), ('menpodetect', (2, 34, 35)), ('menpofit', (2, 34, 35)), ('menpo3d', (2, 34, 35)), ('menpocli', (2, 34, 35)), ('menpowidgets', (2, 34, 35)), ('landmarkerio-server', (2,)), ('menpobench', (2,)), ('cyassimp', (2, 34, 35)), ('cyrasterize', (2, 34, 35)), ('cyvlfeat', (2, 34, 35)), ('cyffld2', (2, 34, 35)), ('cypico', (2, 34, 35)), ('conda-arrow', (2, 34, 35)), ('conda-boost', (2, 34, 35)), ('conda-cherrypy', (2, 34, 35)), ('conda-dlib', (2, 34, 35)), ('conda-opencv3', (2, 34, 35)), ('conda-ffmpeg', (2, 34, 35)), ('conda-glew', (2, 34, 35)), ('conda-glfw3', (2, 34, 35)), ('conda-freeimage', (2, 34, 35)), ('conda-imageio', (2, 34, 35)), ('conda-joblib', (2, 34, 35)), ('workerbee', (2, 34, 35)), # Python 3 only ('lsfm', (35,)), # Python 2 only ('conda-menpo-pyvrml97', (2,)), ('conda-pathlib', (2,)), # We currenty build mayavi (and all it's deps) # so we can be Python 3 ('conda-vtk', (2, 34, 35)), ('conda-traits', (2, 34, 35)), ('conda-envisage', (2, 34, 35)), ('conda-pyface', (2, 34, 35)), ('conda-apptools', (2, 34, 35)), ('conda-traitsui', (2, 34, 35)), ('conda-mayavi', (2, 34, 35)), # And we also need the latest ipywidgets... ('conda-ipywidgets', (2, 34, 35)), ('conda-widgetsnbextension', (2, 34, 35)), # Non-Python projects ('vrml97', (2,)), ('conda-flann', (2,)), ('conda-eigen', (2,)), ('conda-enum', (2,)), ('conda-vlfeat', (35,)), ('conda-opencv', (35,)) ]] PROJECT_NAMES = [p.name for p in PROJECTS] def load_file(fpath): with open(fpath, 'rt') as f: text = f.read() return text def save_file(fpath, string): with open(fpath, 'wt') as f: f.write(string) def repo_url(project_name): return 'git@github.com:menpo/{}'.format(project_name) def clone_repo(project_name): repo_url = 'git@github.com:menpo/{}'.format(project_name) print('cloning {}'.format(repo_url)) subprocess.check_output(['git', 'clone', repo_url]) def clone_all_repos(working_dir): if not os.path.isdir(working_dir): print('creating path at {}'.format(working_dir)) os.mkdir(working_dir) for project in PROJECT_NAMES: os.chdir(working_dir) try: clone_repo(project) except CalledProcessError: pass def apply_to_all_projects(working_dir, f, clone=True): if clone: clone_all_repos(working_dir) for project in PROJECT_NAMES: repo_dir = os.path.join(working_dir, project) print('processing {}...'.format(project)) f(repo_dir) def perform_operation_on_file(filename, operation, repo_dir): filepath = os.path.join(repo_dir, filename) old_text = load_file(filepath) new_text = operation(old_text) if old_text != new_text: save_file(filepath, new_text) return True else: return False def replace_str(old, new, text): return text.replace(old, new) appveyor_op = partial(perform_operation_on_file, 'appveyor.yml') travis_op = partial(perform_operation_on_file, '.travis.yml') def copy_and_yield(fsrc, fdst, length=1024*1024): """copy data from file-like object fsrc to file-like object fdst""" while 1: buf = fsrc.read(length) if not buf: break fdst.write(buf) yield def download_file(url, dest_path): try: from urllib2 import urlopen # Py2 except ImportError: from urllib.request import urlopen # Py3 req = urlopen(url) with open(str(dest_path), 'wb') as fp: for _ in copy_and_yield(req, fp): pass req.close()
1,511
0
211
51009389239cc5dc8055739ff5e46bb49c3c734e
4,566
py
Python
scripts/bench/4_latencybreakdown.py
sirikata/sirikata
3a0d54a8c4778ad6e25ef031d461b2bc3e264860
[ "BSD-3-Clause" ]
31
2015-01-28T17:01:10.000Z
2021-11-04T08:30:37.000Z
scripts/bench/4_latencybreakdown.py
pathorn/sirikata
5d366a822ef2fb57cd9f64cc4f6085c0a635fdfa
[ "BSD-3-Clause" ]
null
null
null
scripts/bench/4_latencybreakdown.py
pathorn/sirikata
5d366a822ef2fb57cd9f64cc4f6085c0a635fdfa
[ "BSD-3-Clause" ]
9
2015-08-02T18:39:49.000Z
2019-10-11T10:32:30.000Z
#!/usr/bin/python # flow_fairness.py # # Runs a simulation with objects continually messaging each other. # The analysis then generates statistics about the actual rates # achieved and the weights. The output can be used to generate # fairness graphs. import sys import subprocess import os.path # FIXME It would be nice to have a better way of making this script able to find # other modules in sibling packages sys.path.insert(0, sys.path[0]+"/..") import util.stdio from cluster.config import ClusterConfig from cluster.sim import ClusterSimSettings,ClusterSim import flow_fairness if __name__ == "__main__": nss=16 nobjects = 1000#19000#326 packname = '1a_objects.pack' numoh = 1 cc = ClusterConfig() import math; edgex=int(math.sqrt(nss)) edgey=int(nss/int(math.sqrt(nss))) cs = ClusterSimSettings(cc, nss, (edgex,edgey), numoh) cs.region_weight_options = '--flatness=8' cs.debug = True cs.valgrind = False cs.profile = False cs.oprofile = False cs.loglevels["oh"]="insane"; cs.loc = 'standard' cs.blocksize = 256 cs.tx_bandwidth = 50000000 cs.rx_bandwidth = 5000000 cs.oseg_cache_clean_group=25; cs.oseg_cache_entry_lifetime= "10000s" ## Use pack across multiple ohs #cs.num_random_objects = 0 #cs.num_pack_objects = nobjects / cs.num_oh #cs.object_pack = packname #cs.pack_dump = True cs.num_random_objects = 0 cs.object_sl_file='sl.trace.'+str(edgex)+'x'+str(edgey); cs.object_sl_center=(384,384,0); cs.object_connect_phase = '20s' cs.center=[cs.blocksize*edgex/2,cs.blocksize*edgey/2,0] cs.zrange=(-10000,10000) cs.object_static = 'static' cs.object_query_frac = 0.0 cs.duration = '420s' rates = sys.argv[1:] nobjectlist=[250,500,750,1000,1250,1500,1750,2000];#+= nobjectlist+=[2500,3000,3500,4000,4500]+range(5000,20000,1000) nobjectlist.reverse() #nobjectlist = [5000]; #nobjectlist=[19000] caches=[256]*len(nobjectlist) #caches+=[250]*len(nobjectlist) #caches+=[750]*len(nobjectlist) #caches+=[75]*len(nobjectlist)#[10,15,20,25,30,35,40] #nobjectlist=nobjectlist*4#run with 4 caches cs.oseg_cache_size=caches[0]; cs.oseg_cache_selector='cache_communication'; plan = FlowPairFairness(cc, cs, scheme='csfq', payload=1024) oldoptions=plan.cs.scenario_options; done={} adder="" print "SCENARIO OPTIONS ",plan.cs.scenario_options for rate in rates: for nobjectsindex in range(len(nobjectlist)): cs.oseg_cache_size=caches[nobjectsindex]; nobjects=nobjectlist[nobjectsindex] if nobjects in done: adder+='c'; done={} msgfile='messagetrace.'+str(nobjects); global trmsgfile cs.num_sl_objects=nobjects; cs.message_trace_file=msgfile; trace_location=cs.pack_dir+'/'+msgfile trmsgfile=trace_location print 'loading file '+cs.object_sl_file+' with trace '+msgfile plan.run(rate) plan.analysis() nam='endtoend'; if len(rates)>1: nam+='-'+str(rate); nam+=adder nam+='.' nam+=str(nobjects) os.rename(flow_fairness.get_latency_logfile_name(rate),nam); done[nobjects]=True plan.graph()
31.489655
112
0.622646
#!/usr/bin/python # flow_fairness.py # # Runs a simulation with objects continually messaging each other. # The analysis then generates statistics about the actual rates # achieved and the weights. The output can be used to generate # fairness graphs. import sys import subprocess import os.path # FIXME It would be nice to have a better way of making this script able to find # other modules in sibling packages sys.path.insert(0, sys.path[0]+"/..") import util.stdio from cluster.config import ClusterConfig from cluster.sim import ClusterSimSettings,ClusterSim import flow_fairness class FlowPairFairness(flow_fairness.FlowFairness): def _setup_cluster_sim(self, rate, io): self.cs.scenario = 'loadpackettrace' if self.local: localval = 'true' else: localval = 'false' self.cs.object_simple='false' self.cs.scenario_options = ' '.join( ['--num-pings-per-second=' + str(rate), '--num-objects-per-server=512', '--ping-size=' + str(self.payload_size), '--local=' + localval, " --tracefile="+trmsgfile ] ) self.cs.odp_flow_scheduler = self.scheme if 'object' not in self.cs.traces['simoh']: self.cs.traces['simoh'].append('object') if 'ping' not in self.cs.traces['simoh']: self.cs.traces['simoh'].append('ping') if 'message' not in self.cs.traces['all']: self.cs.traces['all'].append('message') #if 'oseg-cumulative' not in self.cs.traces['space']: self.cs.traces['space'].append('oseg-cumulative'); cluster_sim = ClusterSim(self.cc, self.cs, io=io) return cluster_sim if __name__ == "__main__": nss=16 nobjects = 1000#19000#326 packname = '1a_objects.pack' numoh = 1 cc = ClusterConfig() import math; edgex=int(math.sqrt(nss)) edgey=int(nss/int(math.sqrt(nss))) cs = ClusterSimSettings(cc, nss, (edgex,edgey), numoh) cs.region_weight_options = '--flatness=8' cs.debug = True cs.valgrind = False cs.profile = False cs.oprofile = False cs.loglevels["oh"]="insane"; cs.loc = 'standard' cs.blocksize = 256 cs.tx_bandwidth = 50000000 cs.rx_bandwidth = 5000000 cs.oseg_cache_clean_group=25; cs.oseg_cache_entry_lifetime= "10000s" ## Use pack across multiple ohs #cs.num_random_objects = 0 #cs.num_pack_objects = nobjects / cs.num_oh #cs.object_pack = packname #cs.pack_dump = True cs.num_random_objects = 0 cs.object_sl_file='sl.trace.'+str(edgex)+'x'+str(edgey); cs.object_sl_center=(384,384,0); cs.object_connect_phase = '20s' cs.center=[cs.blocksize*edgex/2,cs.blocksize*edgey/2,0] cs.zrange=(-10000,10000) cs.object_static = 'static' cs.object_query_frac = 0.0 cs.duration = '420s' rates = sys.argv[1:] nobjectlist=[250,500,750,1000,1250,1500,1750,2000];#+= nobjectlist+=[2500,3000,3500,4000,4500]+range(5000,20000,1000) nobjectlist.reverse() #nobjectlist = [5000]; #nobjectlist=[19000] caches=[256]*len(nobjectlist) #caches+=[250]*len(nobjectlist) #caches+=[750]*len(nobjectlist) #caches+=[75]*len(nobjectlist)#[10,15,20,25,30,35,40] #nobjectlist=nobjectlist*4#run with 4 caches cs.oseg_cache_size=caches[0]; cs.oseg_cache_selector='cache_communication'; plan = FlowPairFairness(cc, cs, scheme='csfq', payload=1024) oldoptions=plan.cs.scenario_options; done={} adder="" print "SCENARIO OPTIONS ",plan.cs.scenario_options for rate in rates: for nobjectsindex in range(len(nobjectlist)): cs.oseg_cache_size=caches[nobjectsindex]; nobjects=nobjectlist[nobjectsindex] if nobjects in done: adder+='c'; done={} msgfile='messagetrace.'+str(nobjects); global trmsgfile cs.num_sl_objects=nobjects; cs.message_trace_file=msgfile; trace_location=cs.pack_dir+'/'+msgfile trmsgfile=trace_location print 'loading file '+cs.object_sl_file+' with trace '+msgfile plan.run(rate) plan.analysis() nam='endtoend'; if len(rates)>1: nam+='-'+str(rate); nam+=adder nam+='.' nam+=str(nobjects) os.rename(flow_fairness.get_latency_logfile_name(rate),nam); done[nobjects]=True plan.graph()
1,015
30
48
733ac65472342a53c51bb203028ce20ee9757d52
3,537
py
Python
python/sparkdl/transformers/keras_applications.py
alonsoir/spark-deep-learning
3f668d9b4a0aa2ef6fe05df5bf5c1d705cd2530d
[ "Apache-2.0" ]
54
2017-10-12T04:42:18.000Z
2021-08-24T08:47:03.000Z
python/sparkdl/transformers/keras_applications.py
alonsoir/spark-deep-learning
3f668d9b4a0aa2ef6fe05df5bf5c1d705cd2530d
[ "Apache-2.0" ]
null
null
null
python/sparkdl/transformers/keras_applications.py
alonsoir/spark-deep-learning
3f668d9b4a0aa2ef6fe05df5bf5c1d705cd2530d
[ "Apache-2.0" ]
17
2017-10-12T07:34:10.000Z
2020-03-12T12:25:25.000Z
# Copyright 2017 Databricks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from abc import ABCMeta, abstractmethod import keras.backend as K from keras.applications import inception_v3, xception import tensorflow as tf from sparkdl.transformers.utils import (imageInputPlaceholder, InceptionV3Constants) """ Essentially a factory function for getting the correct KerasApplicationModel class for the network name. """ KERAS_APPLICATION_MODELS = { "InceptionV3": InceptionV3Model, "Xception": XceptionModel }
31.300885
91
0.685327
# Copyright 2017 Databricks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from abc import ABCMeta, abstractmethod import keras.backend as K from keras.applications import inception_v3, xception import tensorflow as tf from sparkdl.transformers.utils import (imageInputPlaceholder, InceptionV3Constants) """ Essentially a factory function for getting the correct KerasApplicationModel class for the network name. """ def getKerasApplicationModel(name): try: return KERAS_APPLICATION_MODELS[name]() except KeyError: raise ValueError("%s is not a supported model. Supported models: %s" % (name, ', '.join(KERAS_APPLICATION_MODELS.keys()))) class KerasApplicationModel: __metaclass__ = ABCMeta def getModelData(self, featurize): sess = tf.Session() with sess.as_default(): K.set_learning_phase(0) inputImage = imageInputPlaceholder(nChannels=3) preprocessed = self.preprocess(inputImage) model = self.model(preprocessed, featurize) return dict(inputTensorName=inputImage.name, outputTensorName=model.output.name, session=sess, inputTensorSize=self.inputShape(), outputMode="vector") @abstractmethod def preprocess(self, inputImage): pass @abstractmethod def model(self, preprocessed, featurize): pass @abstractmethod def inputShape(self): pass def _testPreprocess(self, inputImage): """ For testing only. The preprocess function to be called before kerasModel.predict(). """ return self.preprocess(inputImage) @abstractmethod def _testKerasModel(self, include_top): """ For testing only. The keras model object to compare to. """ pass class InceptionV3Model(KerasApplicationModel): def preprocess(self, inputImage): return inception_v3.preprocess_input(inputImage) def model(self, preprocessed, featurize): return inception_v3.InceptionV3(input_tensor=preprocessed, weights="imagenet", include_top=(not featurize)) def inputShape(self): return InceptionV3Constants.INPUT_SHAPE def _testKerasModel(self, include_top): return inception_v3.InceptionV3(weights="imagenet", include_top=include_top) class XceptionModel(KerasApplicationModel): def preprocess(self, inputImage): return xception.preprocess_input(inputImage) def model(self, preprocessed, featurize): return xception.Xception(input_tensor=preprocessed, weights="imagenet", include_top=(not featurize)) def inputShape(self): return (299, 299) def _testKerasModel(self, include_top): return xception.Xception(weights="imagenet", include_top=include_top) KERAS_APPLICATION_MODELS = { "InceptionV3": InceptionV3Model, "Xception": XceptionModel }
1,583
619
305
006928383270000981141a2d160f55e1a9bc214b
773
py
Python
src/pyscripts/xsbs/plugins.py
harryd/xsbs-minimal
aaceaeda1d3fe6cdd7182484989eaa74e9ae9518
[ "BSD-3-Clause" ]
1
2018-05-22T13:42:47.000Z
2018-05-22T13:42:47.000Z
src/pyscripts/xsbs/plugins.py
harryd/xsbs-minimal
aaceaeda1d3fe6cdd7182484989eaa74e9ae9518
[ "BSD-3-Clause" ]
null
null
null
src/pyscripts/xsbs/plugins.py
harryd/xsbs-minimal
aaceaeda1d3fe6cdd7182484989eaa74e9ae9518
[ "BSD-3-Clause" ]
null
null
null
from elixir import setup_all, create_all import os, sys # Initialize these before loading plugins import xsbs.db import xsbs.events import xsbs.log import xsbs.ban import xsbs.users import xsbs.server import xsbs.game import xsbs.teamcontrol import xsbs.persistteam import xsbs.demo import xsbs.http import xsbs.http.jsonapi main()
21.472222
113
0.756792
from elixir import setup_all, create_all import os, sys # Initialize these before loading plugins import xsbs.db import xsbs.events import xsbs.log import xsbs.ban import xsbs.users import xsbs.server import xsbs.game import xsbs.teamcontrol import xsbs.persistteam import xsbs.demo import xsbs.http import xsbs.http.jsonapi class PluginManager(object): def __init__(self, plugins_path='plugins'): self.plugins_path = plugins_path self.plugin_modules = [] def loadPlugins(self): files = os.listdir(self.plugins_path) for file in files: if file[0] != '.': self.plugin_modules.append(__import__(os.path.basename(self.plugins_path) + '.' + os.path.splitext(file)[0])) def main(): pm = PluginManager() pm.loadPlugins() setup_all() create_all() main()
339
7
92
67ea6b4220213acf076591a0da456dbff315ee05
8,959
py
Python
fuzzytorch/monitors.py
opimentel-github/fuzzy-torch
4f1e06e6fc445cdec23e9762ca20408feeb296e3
[ "MIT" ]
1
2021-03-12T08:49:15.000Z
2021-03-12T08:49:15.000Z
fuzzytorch/monitors.py
opimentel-github/fuzzy-torch
4f1e06e6fc445cdec23e9762ca20408feeb296e3
[ "MIT" ]
null
null
null
fuzzytorch/monitors.py
opimentel-github/fuzzy-torch
4f1e06e6fc445cdec23e9762ca20408feeb296e3
[ "MIT" ]
null
null
null
from __future__ import print_function from __future__ import division from . import _C import os import torch.nn as nn import numpy as np from . import losses as ft_losses from . import metrics as ft_metrics from . import optimizers as ft_optimizers from . import exceptions as ex import fuzzytools.files as files from fuzzytools.counters import Counter from fuzzytools.datascience.xerror import XError import pandas as pd from fuzzytools.dataframes import DFBuilder from copy import copy, deepcopy ################################################################################################################################################### ### repr ### history methods ### along training methods ### get statistics ### file methods
31.882562
147
0.724969
from __future__ import print_function from __future__ import division from . import _C import os import torch.nn as nn import numpy as np from . import losses as ft_losses from . import metrics as ft_metrics from . import optimizers as ft_optimizers from . import exceptions as ex import fuzzytools.files as files from fuzzytools.counters import Counter from fuzzytools.datascience.xerror import XError import pandas as pd from fuzzytools.dataframes import DFBuilder from copy import copy, deepcopy ################################################################################################################################################### class LossMonitor(object): def __init__(self, loss, optimizer, metrics, save_mode:str=_C.SM_NO_SAVE, target_metric_crit:str=None, k_counter_duration:int=_C.K_COUNTER_DURATION, val_epoch_counter_duration:int=_C.VAL_EPOCH_COUNTER_DURATION, earlystop_epoch_duration:int=_C.EARLYSTOP_EPOCH_DURATION, **kwargs): ### CHECKS assert isinstance(loss, ft_losses.FTLoss) metrics = [metrics] if isinstance(metrics, ft_metrics.FTMetric) else metrics assert isinstance(metrics, list) and all([isinstance(metric, ft_metrics.FTMetric) for metric in metrics]) assert len([metric.name for metric in metrics])==len(set([metric.name for metric in metrics])) assert isinstance(optimizer, ft_optimizers.LossOptimizer) self.loss = loss self.optimizer = optimizer self.metrics = metrics self.save_mode = save_mode self.target_metric_crit = metrics[0].name if target_metric_crit is None else target_metric_crit self.counter_k = Counter({'k': k_counter_duration}) self.counter_epoch = Counter({'val_epoch':val_epoch_counter_duration, 'earlystop_epoch':earlystop_epoch_duration}) self.name = loss.name self.best_epoch = np.infty self.last_saved_filedir = None self.reset() def reset(self): self.best_value = None self.loss_df = DFBuilder() self.opt_df = DFBuilder() self.loss_df_epoch = DFBuilder() self.metrics_df_epoch = DFBuilder() self.counter_k.reset() self.counter_epoch.reset() ### repr def __repr__(self): def get_metrics_repr(): return f' (target_metric_crit={self.target_metric_crit})' if self.save_mode in [_C.SM_ONLY_INF_METRIC, _C.SM_ONLY_SUP_METRIC] else '' txt = '' txt += f'[{self.name}]'+'\n' txt += f' - opt-parameters={len(self.optimizer):,}[p] - device={self.optimizer.get_device()}'+'\n' txt += f' - save-mode={self.save_mode}{get_metrics_repr()}'+'\n' txt += f' - counter_k={self.counter_k} - counter_epoch={self.counter_epoch}'+'\n' return txt[:-1] def get_save_dict(self): info = { 'save_mode':self.save_mode, 'target_metric_crit':self.target_metric_crit, 'counter_k':self.counter_k, 'counter_epoch':self.counter_epoch, 'best_epoch':self.best_epoch, 'last_saved_filedir':self.last_saved_filedir, } d = { 'info':info, 'loss_df':self.loss_df, 'opt_df':self.opt_df, 'loss_df_epoch':self.loss_df_epoch, 'metrics_df_epoch':self.metrics_df_epoch, } return d def load_from_dict(self, _d): d = deepcopy(_d) info = d['info'] self.save_mode = info['save_mode'] self.target_metric_crit = info['target_metric_crit'] self.counter_k = info['counter_k'] self.counter_epoch = info['counter_epoch'] self.best_epoch = info['best_epoch'] self.last_saved_filedir = info['last_saved_filedir'] self.loss_df = d['loss_df'] self.opt_df = d['opt_df'] self.loss_df_epoch = d['loss_df_epoch'] self.metrics_df_epoch = d['metrics_df_epoch'] ### history methods def add_loss_history_k(self, loss, dt=0, ): if self.counter_k.check('k'): assert isinstance(loss, ft_losses.BatchLoss) d = loss.get_info() #index = self.counter_k.get_global_count() index = None d.update({ '_dt':dt, }) self.loss_df.append(index, d) def add_opt_history_epoch(self): d = self.optimizer.get_info() #index = self.counter_epoch.get_global_count() index = None d.update({ '_k':self.counter_k.get_global_count(), }) self.opt_df.append(index, d) def add_loss_history_epoch(self, loss, dt=0, set_name=None, ): if self.counter_epoch.check('val_epoch'): assert isinstance(loss, ft_losses.BatchLoss) d = loss.get_info() #index = self.counter_epoch.get_global_count() index = None d.update({ '_dt':dt, '_set':set_name, }) self.loss_df_epoch.append(index, d) def add_metric_history_epoch(self, metrics_dict, dt=0, set_name=None, ): if self.counter_epoch.check('val_epoch'): d = {} for mn in metrics_dict.keys(): metric = metrics_dict[mn] assert isinstance(metric, ft_metrics.BatchMetric) d[mn] = metric.get_info()['_metric'] d.update({ '_dt':dt, '_set':set_name, }) #index = f'{self.counter_epoch.get_global_count()}.set_name' index = None self.metrics_df_epoch.append(index, d) #print(self.metrics_df_epoch.get_df()) def get_metric_names(self): return [m.name for m in self.metrics] ### along training methods def k_update(self): self.counter_k.update() def epoch_update(self): self.optimizer.update() self.counter_epoch.update() if self.counter_epoch.check('earlystop_epoch'): raise ex.TrainingInterruptedError() def set_last_saved_filedir(self, last_saved_filedir): self.last_saved_filedir = last_saved_filedir def needs_save(self): return not self.save_mode==_C.SM_NO_SAVE def train(self): self.optimizer.train() def eval(self): self.optimizer.eval() def needs_evaluation(self): return self.counter_epoch.check('val_epoch') def reset_early_stop(self): self.counter_epoch.reset_cn('earlystop_epoch') ### get statistics def get_best_epoch(self): return self.best_epoch def set_best_epoch(self, best_epoch): self.best_epoch = best_epoch def get_time_per_iteration(self): loss_df = self.loss_df.get_df() return XError([v for v in loss_df['_dt'].values]) def get_evaluation_set_names(self): loss_df_epoch = self.loss_df_epoch.get_df() return list(np.unique(loss_df_epoch['_set'].values)) def get_time_per_epoch_set(self, set_name): loss_df_epoch = self.loss_df_epoch.get_df() return XError([v for v in loss_df_epoch['_dt'][loss_df_epoch['_set'].isin([set_name])].values]) def get_time_per_epoch(self): # fixme only eval times evaluation_set_names = self.get_evaluation_set_names() return sum([self.get_time_per_epoch_set(set_name) for set_name in evaluation_set_names]) def get_total_time(self): evaluation_set_names = self.get_evaluation_set_names() loss_df = self.loss_df.get_df() loss_df_epoch = self.loss_df_epoch.get_df() total_time = 0 total_time += loss_df['_dt'].values.sum() total_time += sum([loss_df_epoch['_dt'][loss_df_epoch['_set'].isin([set_name])].values.sum() for set_name in evaluation_set_names]) # fixme return total_time ### file methods def remove_filedir(self, filedir): if filedir is None: return files.delete_filedir(filedir, verbose=0) # remove last best model def check_save_condition(self, set_name): if self.save_mode==_C.SM_NO_SAVE: return False elif self.save_mode==_C.SM_ALL: return True elif self.save_mode==_C.SM_ONLY_ALL: self.remove_filedir(self.last_saved_filedir) # remove last best model return True elif self.save_mode==_C.SM_ONLY_INF_LOSS: loss_df_epoch = self.loss_df_epoch.get_df() loss_evolution = [np.inf]+[v for v in loss_df_epoch['_loss'][loss_df_epoch['_set'].isin([set_name])].values] loss_history = loss_evolution[:-1] # history actual_loss = loss_evolution[-1] # last one if actual_loss<np.min(loss_history): # must save and delete self.remove_filedir(self.last_saved_filedir) # remove last best model self.best_value = actual_loss return True else: return False elif self.save_mode==_C.SM_ONLY_INF_METRIC: metrics_df_epoch = self.metrics_df_epoch.get_df() metric_evolution = [np.inf]+[v for v in metrics_df_epoch[self.target_metric_crit][metrics_df_epoch['_set'].isin([set_name])].values] metric_history = metric_evolution[:-1] # history actual_metric = metric_evolution[-1] # last one if actual_metric<np.min(metric_history): # must save and delete self.remove_filedir(self.last_saved_filedir) # remove last best model self.best_value = actual_metric return True else: return False elif self.save_mode==_C.SM_ONLY_SUP_METRIC: metrics_df_epoch = self.metrics_df_epoch.get_df() metric_evolution = [-np.inf]+[v for v in metrics_df_epoch[self.target_metric_crit][metrics_df_epoch['_set'].isin([set_name])].values] metric_history = metric_evolution[:-1] # history actual_metric = metric_evolution[-1] # last one if actual_metric>np.max(metric_history): # must save and delete self.remove_filedir(self.last_saved_filedir) # remove last best model self.best_value = actual_metric return True else: return False else: raise Exception(f'save mode {self.save_mode} not supported')
7,539
5
665
9fca07bdb9a6dbdf43649b5340b88d177ac4d6ab
7,256
py
Python
leyline/tree_drawer.py
bentheiii/leyline
e9850b6f30a0aaa453ee1fcbd22fe6bf4c49ce0b
[ "MIT" ]
null
null
null
leyline/tree_drawer.py
bentheiii/leyline
e9850b6f30a0aaa453ee1fcbd22fe6bf4c49ce0b
[ "MIT" ]
null
null
null
leyline/tree_drawer.py
bentheiii/leyline
e9850b6f30a0aaa453ee1fcbd22fe6bf4c49ce0b
[ "MIT" ]
null
null
null
from _ast import AST, Return, Expr, Str, Call, Attribute, Name, Yield, Raise from abc import ABC from ast import parse, iter_child_nodes from functools import reduce import inspect from textwrap import dedent from typing import Type, List, Tuple, Collection, Optional import re from leyline import Node from leyline.gviz import Digraph, GraphNode, GraphEdge ColorName = Optional[str] StyleName = Optional[str]
34.717703
114
0.570149
from _ast import AST, Return, Expr, Str, Call, Attribute, Name, Yield, Raise from abc import ABC from ast import parse, iter_child_nodes from functools import reduce import inspect from textwrap import dedent from typing import Type, List, Tuple, Collection, Optional import re from leyline import Node from leyline.gviz import Digraph, GraphNode, GraphEdge class NodeData: def __init__(self, node: Node): self.node = node self.return_values: List[Tuple[AST, str]] = [] self.yield_values: List[Tuple[AST, str]] = [] self.next_nodes: List[Tuple[Node, str]] = [] self.raise_values: List[Tuple[AST, str]] = [] @classmethod def from_node(cls, node: Node): def extract_node_name(r_value: AST): if isinstance(r_value, Call) \ and isinstance(r_value.func, Attribute) \ and isinstance(r_value.func.value, Name) \ and r_value.func.value.id == 'self': return r_value.func.attr return None def get_of_type(ast: AST, t: Type[AST]): prev = None for c in iter_child_nodes(ast): if isinstance(c, t): label = '' if isinstance(prev, Expr): prev = prev.value if isinstance(prev, Str): label = prev.s yield (c, label) yield from get_of_type(c, t) prev = c ret = cls(node) source = inspect.getsource(node) source = dedent(source) ast = parse(source) for (r, label) in get_of_type(ast, Return): targ_node_name = extract_node_name(r.value) if targ_node_name is None: is_return = True else: targ_node = getattr(node.owner, targ_node_name, None) if not targ_node: raise NameError(targ_node_name) is_return = not isinstance(targ_node, Node) if is_return: ret.return_values.append((r.value, label)) else: ret.next_nodes.append((targ_node, label)) for (y, label) in get_of_type(ast, Yield): ret.yield_values.append((y.value, label)) for (r, label) in get_of_type(ast, Raise): ret.raise_values.append((r.exc, label)) return ret class GraphDrawer(ABC): def node(self, data: NodeData) -> GraphNode: return GraphNode(data.node.__name__) def edge(self, origin: NodeData, goal: Node, labels: Collection[str]) -> GraphEdge: return GraphEdge(origin.node.__name__, goal.__name__) def _graph(self, ley: Type['Ley']) -> Digraph: return Digraph() def draw_ley(self, ley: Type['Ley']): digraph = self._graph(ley) node_stack = [ley.__start__] known = {ley.__start__} while node_stack: node = node_stack.pop() data = NodeData.from_node(node) gnode = self.node(data) digraph.nodes.append(gnode) nexts = {} for next_, label in data.next_nodes: if next_ in nexts: nexts[next_].append(label) else: nexts[next_] = [label] for n, labels in nexts.items(): if n not in known: node_stack.append(n) known.add(n) edge = self.edge(data, n, labels) digraph.edges.append(edge) return digraph.text() ColorName = Optional[str] StyleName = Optional[str] class SimpleDrawer(GraphDrawer): def __init__(self, start_title=None, title=..., start_node_color: ColorName = 'green', dead_end_color: ColorName = 'red', may_return_color: ColorName = 'yellow', may_raise_color: ColorName = 'lightblue', may_yield_color: ColorName = 'greenyellow', only_next_color: ColorName = 'firebrick', loop_style: StyleName = 'dashed'): self.start_title = start_title self.title = title self.start_node_color = start_node_color self.dead_end_color = dead_end_color self.may_return_color = may_return_color self.may_raise_color = may_raise_color self.may_yield_color = may_yield_color self.only_next_color = only_next_color self.loop_style = loop_style def node(self, data: NodeData) -> GraphNode: ret = super().node(data) if data.node.is_start(): ret.border_color = self.start_node_color if self.start_title: ret.additional_attributes['label'] = f'"{self.start_title}"' if all(n == data.node for (n, _) in data.next_nodes): ret.add_fill_color(self.dead_end_color) elif data.return_values: ret.add_fill_color(self.may_return_color) if data.raise_values: ret.add_fill_color(self.may_raise_color) if data.yield_values: ret.add_fill_color(self.may_yield_color) if data.node.__doc__: ret.additional_attributes['tooltip'] = f'"{data.node.__doc__.strip()}"' return ret num_pattern = re.compile(r'^(?P<prefix>.)*?(?P<num>[+-]?(\d+(\.\d*)?|\.\d+)([eE][+-]?\d+)?)(?P<postfix>.)*?$') @classmethod def combine_labels(cls, a: str, b: str): if not b: return a if not a: return b a_num_match = cls.num_pattern.fullmatch(a) b_num_match = cls.num_pattern.fullmatch(b) if a_num_match and b_num_match \ and a_num_match['prefix'] == b_num_match['prefix'] \ and a_num_match['postfix'] == b_num_match['postfix']: return a_num_match['prefix'] \ + str(float(a_num_match['num']) + float(b_num_match['num'])) \ + a_num_match['postfix'] return a + ', ' + b def edge(self, origin: NodeData, goal: Node, labels: Collection[str]) -> GraphEdge: ret = super().edge(origin, goal, labels) label = reduce(self.combine_labels, labels) if label: ret.additional_attributes['label'] = '"' + label + '"' if origin.node == goal: ret.styles.append('dashed') ret.additional_attributes['dir'] = 'back' elif not origin.return_values \ and all((n in (goal, origin.node)) for (n, _) in origin.next_nodes): ret.add_color(self.only_next_color) return ret def _graph(self, ley: Type['Ley']): ret = super()._graph(ley) if self.title: title = self.title if title is ...: title = ley.__name__ ret.title = title return ret class GeneratorDrawer(SimpleDrawer): def __init__(self, *args, wont_yield_style='dashed', **kwargs): super().__init__(*args, may_yield_color=None, **kwargs) self.wont_yield_style = wont_yield_style def node(self, data: NodeData): ret = super().node(data) if not data.yield_values: ret.border_style = self.wont_yield_style return ret
6,228
359
252
3d55f92f4fbef80ed3856d2d699e6a8ff8285101
675
py
Python
zip_function.py
sm1216/python
ccb78875dcb95cc18bf8d2a66896dedbb0fe7b41
[ "MIT" ]
null
null
null
zip_function.py
sm1216/python
ccb78875dcb95cc18bf8d2a66896dedbb0fe7b41
[ "MIT" ]
null
null
null
zip_function.py
sm1216/python
ccb78875dcb95cc18bf8d2a66896dedbb0fe7b41
[ "MIT" ]
null
null
null
list1 =[1,2,3] list2 =["one","two","three"] zipped = list(zip(list1,list2)) print(zipped) print("####################") unzipped =list(zip(*zipped)) print(unzipped) print("####################") for (l1, l2) in zip(list1,list2): print(l1) print(l2) print("####################") items = ["apples" ,"banana " , "orange"] counts =[13,12,11] prices =[20,30,40] sentences =[] for (items,counts,prices) in zip (items,counts,prices): items,counts,prices = str(items),str(counts),str(prices) sentence = "i bought "+ counts + " " + items + "at" + prices + "." sentences.append(sentence) print (sentences) print("done")
21.09375
75
0.539259
list1 =[1,2,3] list2 =["one","two","three"] zipped = list(zip(list1,list2)) print(zipped) print("####################") unzipped =list(zip(*zipped)) print(unzipped) print("####################") for (l1, l2) in zip(list1,list2): print(l1) print(l2) print("####################") items = ["apples" ,"banana " , "orange"] counts =[13,12,11] prices =[20,30,40] sentences =[] for (items,counts,prices) in zip (items,counts,prices): items,counts,prices = str(items),str(counts),str(prices) sentence = "i bought "+ counts + " " + items + "at" + prices + "." sentences.append(sentence) print (sentences) print("done")
0
0
0
3ba318c481e1408482608b403e889b6d462281f5
988
py
Python
examples/bokeh_interactive_units.py
Narsil/chempy
ac7217f45a8cfe3b11ca771f78f0a04c07708818
[ "BSD-2-Clause" ]
null
null
null
examples/bokeh_interactive_units.py
Narsil/chempy
ac7217f45a8cfe3b11ca771f78f0a04c07708818
[ "BSD-2-Clause" ]
null
null
null
examples/bokeh_interactive_units.py
Narsil/chempy
ac7217f45a8cfe3b11ca771f78f0a04c07708818
[ "BSD-2-Clause" ]
1
2022-03-21T09:01:48.000Z
2022-03-21T09:01:48.000Z
""" Interactive kinetics app with sliders (with units). Start by runing: $ bokeh serve interactive.py Add --show argument or navigate to: http://localhost:5006/interactive """ from collections import defaultdict import sys from chempy.util.bkh import integration_with_sliders from chempy.units import SI_base_registry, default_units as u from bokeh_interactive import get_rsys if __name__.startswith('bk_'): from bokeh.io import curdoc kf, kb = 3/u.molar/u.s, .3/u.s curdoc().add_root(integration_with_sliders( get_rsys(kf, kb), tend=3*u.s, c0=defaultdict(lambda: 0*u.molar, {'Fe+3': .9*u.molar, 'SCN-': .7*u.molar}), parameters={'kf': kf, 'kb': kb}, get_odesys_kw=dict( unit_registry=SI_base_registry, output_conc_unit=u.molar, output_time_unit=u.second ) )) elif __name__ == '__main__': import warnings warnings.warn("Run using 'bokeh serve %s'" % __file__) sys.exit(1)
29.058824
84
0.672065
""" Interactive kinetics app with sliders (with units). Start by runing: $ bokeh serve interactive.py Add --show argument or navigate to: http://localhost:5006/interactive """ from collections import defaultdict import sys from chempy.util.bkh import integration_with_sliders from chempy.units import SI_base_registry, default_units as u from bokeh_interactive import get_rsys if __name__.startswith('bk_'): from bokeh.io import curdoc kf, kb = 3/u.molar/u.s, .3/u.s curdoc().add_root(integration_with_sliders( get_rsys(kf, kb), tend=3*u.s, c0=defaultdict(lambda: 0*u.molar, {'Fe+3': .9*u.molar, 'SCN-': .7*u.molar}), parameters={'kf': kf, 'kb': kb}, get_odesys_kw=dict( unit_registry=SI_base_registry, output_conc_unit=u.molar, output_time_unit=u.second ) )) elif __name__ == '__main__': import warnings warnings.warn("Run using 'bokeh serve %s'" % __file__) sys.exit(1)
0
0
0
fc603a336d6907b4650063f43483887c9a02976b
4,693
py
Python
renku/cli/_config.py
jirikuncar/renku-python
69df9ea1d5db3c63fd2ea3537c7e46d079360c8f
[ "Apache-2.0" ]
2
2019-03-09T17:56:57.000Z
2019-07-03T15:20:22.000Z
renku/cli/_config.py
jirikuncar/renku-python
69df9ea1d5db3c63fd2ea3537c7e46d079360c8f
[ "Apache-2.0" ]
null
null
null
renku/cli/_config.py
jirikuncar/renku-python
69df9ea1d5db3c63fd2ea3537c7e46d079360c8f
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright 2017 - Swiss Data Science Center (SDSC) # A partnership between École Polytechnique Fédérale de Lausanne (EPFL) and # Eidgenössische Technische Hochschule Zürich (ETHZ). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration utilities.""" import errno import os from functools import update_wrapper import click import yaml from renku._compat import Path from ._options import Endpoint APP_NAME = 'Renku' """Application name for storing configuration.""" RENKU_HOME = '.renku' """Project directory name.""" # Register Endpoint serializer yaml.add_representer( Endpoint, lambda dumper, data: dumper.represent_str(str(data)) ) def default_config_dir(): """Return default config directory.""" return click.get_app_dir(APP_NAME) def config_path(path=None, final=False): """Return config path.""" if final and path: return path if path is None: path = default_config_dir() try: os.makedirs(path) except OSError as e: # pragma: no cover if e.errno != errno.EEXIST: raise return os.path.join(path, 'config.yml') def read_config(path=None, final=False): """Read Renku configuration.""" try: with open(config_path(path, final=final), 'r') as configfile: return yaml.load(configfile) or {} except FileNotFoundError: return {} def write_config(config, path, final=False): """Write Renku configuration.""" with open(config_path(path, final=final), 'w+') as configfile: yaml.dump(config, configfile, default_flow_style=False) def config_load(ctx, param, value): """Print application config path.""" if ctx.obj is None: ctx.obj = {} ctx.obj['config_path'] = value ctx.obj['config'] = read_config(value) return value def with_config(f): """Add config to function.""" # keep it. @click.pass_context return update_wrapper(new_func, f) def print_app_config_path(ctx, param, value): """Print application config path.""" if not value or ctx.resilient_parsing: return click.echo(config_path(os.environ.get('RENKU_CONFIG'))) ctx.exit() def create_project_config_path( path, mode=0o777, parents=False, exist_ok=False ): """Create new project configuration folder.""" # FIXME check default directory mode project_path = Path(path).absolute().joinpath(RENKU_HOME) project_path.mkdir(mode=mode, parents=parents, exist_ok=exist_ok) return str(project_path) def get_project_config_path(path=None): """Return project configuration folder if exist.""" project_path = Path(path or '.').absolute().joinpath(RENKU_HOME) if project_path.exists() and project_path.is_dir(): return str(project_path) def find_project_config_path(path=None): """Find project config path.""" path = Path(path) if path else Path.cwd() abspath = path.absolute() project_path = get_project_config_path(abspath) if project_path: return project_path for parent in abspath.parents: project_path = get_project_config_path(parent) if project_path: return project_path
29.149068
75
0.680162
# -*- coding: utf-8 -*- # # Copyright 2017 - Swiss Data Science Center (SDSC) # A partnership between École Polytechnique Fédérale de Lausanne (EPFL) and # Eidgenössische Technische Hochschule Zürich (ETHZ). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration utilities.""" import errno import os from functools import update_wrapper import click import yaml from renku._compat import Path from ._options import Endpoint APP_NAME = 'Renku' """Application name for storing configuration.""" RENKU_HOME = '.renku' """Project directory name.""" # Register Endpoint serializer yaml.add_representer( Endpoint, lambda dumper, data: dumper.represent_str(str(data)) ) def default_config_dir(): """Return default config directory.""" return click.get_app_dir(APP_NAME) def config_path(path=None, final=False): """Return config path.""" if final and path: return path if path is None: path = default_config_dir() try: os.makedirs(path) except OSError as e: # pragma: no cover if e.errno != errno.EEXIST: raise return os.path.join(path, 'config.yml') def read_config(path=None, final=False): """Read Renku configuration.""" try: with open(config_path(path, final=final), 'r') as configfile: return yaml.load(configfile) or {} except FileNotFoundError: return {} def write_config(config, path, final=False): """Write Renku configuration.""" with open(config_path(path, final=final), 'w+') as configfile: yaml.dump(config, configfile, default_flow_style=False) def config_load(ctx, param, value): """Print application config path.""" if ctx.obj is None: ctx.obj = {} ctx.obj['config_path'] = value ctx.obj['config'] = read_config(value) return value def with_config(f): """Add config to function.""" # keep it. @click.pass_context def new_func(ctx, *args, **kwargs): # Invoked with custom config: if 'config' in kwargs: return ctx.invoke(f, *args, **kwargs) if ctx.obj is None: ctx.obj = {} config = ctx.obj['config'] project_enabled = not ctx.obj.get('no_project', False) project_config_path = get_project_config_path() if project_enabled and project_config_path: project_config = read_config(project_config_path) config['project'] = project_config result = ctx.invoke(f, config, *args, **kwargs) project_config = config.pop('project', None) if project_config: if not project_config_path: raise RuntimeError('Invalid config update') write_config(project_config, path=project_config_path) write_config(config, path=ctx.obj['config_path']) if project_config is not None: config['project'] = project_config return result return update_wrapper(new_func, f) def print_app_config_path(ctx, param, value): """Print application config path.""" if not value or ctx.resilient_parsing: return click.echo(config_path(os.environ.get('RENKU_CONFIG'))) ctx.exit() def create_project_config_path( path, mode=0o777, parents=False, exist_ok=False ): """Create new project configuration folder.""" # FIXME check default directory mode project_path = Path(path).absolute().joinpath(RENKU_HOME) project_path.mkdir(mode=mode, parents=parents, exist_ok=exist_ok) return str(project_path) def get_project_config_path(path=None): """Return project configuration folder if exist.""" project_path = Path(path or '.').absolute().joinpath(RENKU_HOME) if project_path.exists() and project_path.is_dir(): return str(project_path) def find_project_config_path(path=None): """Find project config path.""" path = Path(path) if path else Path.cwd() abspath = path.absolute() project_path = get_project_config_path(abspath) if project_path: return project_path for parent in abspath.parents: project_path = get_project_config_path(parent) if project_path: return project_path
974
0
26
a8139ae5acfd5b3b05d97a8c89429570e88de8c3
2,016
py
Python
JaroEliCall/src/wrapped_interfaces/login_wrapped_ui.py
jaroslaw-wieczorek/Project_IP_Telephony_Python_Voip
05143356fe91f745c286db8c3e2432714ab122e7
[ "MIT" ]
null
null
null
JaroEliCall/src/wrapped_interfaces/login_wrapped_ui.py
jaroslaw-wieczorek/Project_IP_Telephony_Python_Voip
05143356fe91f745c286db8c3e2432714ab122e7
[ "MIT" ]
null
null
null
JaroEliCall/src/wrapped_interfaces/login_wrapped_ui.py
jaroslaw-wieczorek/Project_IP_Telephony_Python_Voip
05143356fe91f745c286db8c3e2432714ab122e7
[ "MIT" ]
1
2018-03-20T21:22:40.000Z
2018-03-20T21:22:40.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed May 30 18:49:11 2018 @author: afar """ import os import sys import hashlib from PyQt5.QtWidgets import QDialog from PyQt5.QtWidgets import QStatusBar # importing data accc lib_path = os.path.abspath(os.path.join(__file__, '..', '..', '..')) sys.path.append(lib_path) from gui.login_ui import Ui_LoginInterfaceDialog #from gui.testpic_ui import Ui_Dialog from gui.resources import icons_wrapper_rc
25.518987
85
0.632937
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed May 30 18:49:11 2018 @author: afar """ import os import sys import hashlib from PyQt5.QtWidgets import QDialog from PyQt5.QtWidgets import QStatusBar # importing data accc lib_path = os.path.abspath(os.path.join(__file__, '..', '..', '..')) sys.path.append(lib_path) from gui.login_ui import Ui_LoginInterfaceDialog #from gui.testpic_ui import Ui_Dialog from gui.resources import icons_wrapper_rc class LoginWrappedUI(QDialog, Ui_LoginInterfaceDialog): def __init__(self): super(LoginWrappedUI, self).__init__() self.setupUi(self) self.statusBar = QStatusBar() self.verticalLayout.addWidget(self.statusBar) def set_info_text(self, text): self.label_info.setText(text) def clear_info_text(self): self.label_info.clear() def hide_info_text(self): self.label_info.hide() def show_info_text(self): self.label_info.show() def set_login(self, login): self.line_edit_login.setText(login) def set_password(self, password): self.line_edit_password.setText(password) def get_login(self): if self.line_edit_login.text() != '' and self.line_edit_login.text() != None: return str(self.line_edit_login.text()) else: return None def get_password(self): print("haslo: ", self.line_edit_password.text()) a = self.line_edit_password.text().replace(" ", "") print(a) print(len(a)) print(hashlib.sha256(a.encode()).hexdigest()) return hashlib.sha256(a.encode()).hexdigest() def set_push_button_login(self, funct): self.push_button_login.clicked.connect(funct) def set_push_button_register(self, funct): self.push_button_register.clicked.connect(funct) def nothing(self): print("Do nothing!")
1,047
34
422