hexsha
stringlengths
40
40
size
int64
7
1.04M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
247
max_stars_repo_name
stringlengths
4
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
368k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
247
max_issues_repo_name
stringlengths
4
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
247
max_forks_repo_name
stringlengths
4
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.04M
avg_line_length
float64
1.77
618k
max_line_length
int64
1
1.02M
alphanum_fraction
float64
0
1
original_content
stringlengths
7
1.04M
filtered:remove_function_no_docstring
int64
-102
942k
filtered:remove_class_no_docstring
int64
-354
977k
filtered:remove_delete_markers
int64
0
60.1k
2529dc53e5cd9ca70e79a3921134c3237fe3ea48
972
py
Python
scripts/run_iqtree.py
fmalmeida/PopPIPE
0012ff55c9959f1c7ac359412ca22d9c1948d00c
[ "Apache-2.0" ]
7
2020-05-04T10:16:25.000Z
2021-05-09T20:22:19.000Z
scripts/run_iqtree.py
fmalmeida/PopPIPE
0012ff55c9959f1c7ac359412ca22d9c1948d00c
[ "Apache-2.0" ]
4
2020-07-01T09:07:47.000Z
2021-05-19T12:04:37.000Z
scripts/run_iqtree.py
fmalmeida/PopPIPE
0012ff55c9959f1c7ac359412ca22d9c1948d00c
[ "Apache-2.0" ]
2
2021-05-09T00:34:29.000Z
2021-11-21T22:23:17.000Z
import subprocess import dendropy from shutil import copyfile if snakemake.params.enabled: iqtree_cmd = "iqtree --quiet -s " + snakemake.input.alignment + " -t " + snakemake.input.start_tree + \ " -T " + str(snakemake.threads) + " --prefix " + snakemake.params.prefix if snakemake.params.mode == "full": iqtree_cmd += " -m " + snakemake.params.model elif snakemake.params.mode == "fast": iqtree_cmd += " --fast" subprocess.run(iqtree_cmd, shell=True, check=True) else: copyfile(snakemake.input.start_tree, snakemake.output.unrooted) tree = dendropy.Tree.get(path=snakemake.output.unrooted, schema="newick") tree.reroot_at_midpoint(update_bipartitions=True, suppress_unifurcations=False) tree.reroot_at_midpoint(update_bipartitions=True, suppress_unifurcations=False) tree.write(path=str(snakemake.output.rooted), schema="newick", suppress_rooting=True, unquoted_underscores=True)
42.26087
107
0.70679
import subprocess import dendropy from shutil import copyfile if snakemake.params.enabled: iqtree_cmd = "iqtree --quiet -s " + snakemake.input.alignment + " -t " + snakemake.input.start_tree + \ " -T " + str(snakemake.threads) + " --prefix " + snakemake.params.prefix if snakemake.params.mode == "full": iqtree_cmd += " -m " + snakemake.params.model elif snakemake.params.mode == "fast": iqtree_cmd += " --fast" subprocess.run(iqtree_cmd, shell=True, check=True) else: copyfile(snakemake.input.start_tree, snakemake.output.unrooted) tree = dendropy.Tree.get(path=snakemake.output.unrooted, schema="newick") tree.reroot_at_midpoint(update_bipartitions=True, suppress_unifurcations=False) tree.reroot_at_midpoint(update_bipartitions=True, suppress_unifurcations=False) tree.write(path=str(snakemake.output.rooted), schema="newick", suppress_rooting=True, unquoted_underscores=True)
0
0
0
daae40433f08ca14b1c202d237fcaef60659f854
1,411
py
Python
example/toolbox/management/commands/analyzeuniquekeys.py
rkiddy/django-calaccess-raw-data
dab2bf103b713eee6d76295ffbd2d5d58c2796e4
[ "MIT" ]
48
2015-01-10T18:06:03.000Z
2022-01-27T16:48:29.000Z
example/toolbox/management/commands/analyzeuniquekeys.py
rkiddy/django-calaccess-raw-data
dab2bf103b713eee6d76295ffbd2d5d58c2796e4
[ "MIT" ]
1,193
2015-01-07T06:35:20.000Z
2021-06-19T11:43:20.000Z
example/toolbox/management/commands/analyzeuniquekeys.py
rkiddy/django-calaccess-raw-data
dab2bf103b713eee6d76295ffbd2d5d58c2796e4
[ "MIT" ]
163
2015-01-10T18:06:09.000Z
2022-01-14T00:29:12.000Z
import os import time import calculate from github import Github from django.conf import settings from calaccess_raw import get_model_list from calaccess_raw.management.commands import CalAccessCommand from django.contrib.humanize.templatetags.humanize import intcomma
31.355556
76
0.581857
import os import time import calculate from github import Github from django.conf import settings from calaccess_raw import get_model_list from calaccess_raw.management.commands import CalAccessCommand from django.contrib.humanize.templatetags.humanize import intcomma class Command(CalAccessCommand): help = 'Analyze how many model lack a UNIQUE_KEY definition' def handle(self, *args, **kwargs): """ Make it happen. """ # Loop through all the models and find any fields without docs missing_list = [] model_count = 0 for m in get_model_list(): model_count += 1 if m.UNIQUE_KEY is None: self.log("Missing: %s.%s" % ( m().klass_group, m().klass_name, ) ) missing_list.append(m) # If everything is done, declare victory missing_count = len(missing_list) if not missing_count: self.success("All %s models have a UNIQUE_KEY!" % missing_count) return False # If not, loop through the missing and create issues self.failure( "%s/%s (%d%%) of models lack a UNIQUE_KEY" % ( intcomma(missing_count), model_count, calculate.percentage(missing_count, model_count) ) )
0
1,118
23
e407015ffc89e6d1d5d878c1de0fb0517395640a
213
py
Python
Python/frequency_counter.py
Gaminee/Data_Structures_and_Algorithms.github.io
f25d368e17dfcbe81079f286012355281af8b390
[ "Unlicense" ]
77
2020-10-01T10:06:59.000Z
2021-11-08T08:57:18.000Z
Python/frequency_counter.py
Gaminee/Data_Structures_and_Algorithms.github.io
f25d368e17dfcbe81079f286012355281af8b390
[ "Unlicense" ]
64
2020-10-01T09:27:58.000Z
2020-12-02T10:47:01.000Z
Python/frequency_counter.py
Gaminee/Data_Structures_and_Algorithms.github.io
f25d368e17dfcbe81079f286012355281af8b390
[ "Unlicense" ]
327
2020-09-26T17:06:03.000Z
2021-10-09T06:04:39.000Z
L = [11,22,66,22,11,44,55,66,88,77,22,11,44,22,33,77,55,44] print('The given list is: ') print(L) D = {} for item in L: if item not in D: D[item] = L.count(item) print('Frequency of different items is:') print(D)
21.3
59
0.647887
L = [11,22,66,22,11,44,55,66,88,77,22,11,44,22,33,77,55,44] print('The given list is: ') print(L) D = {} for item in L: if item not in D: D[item] = L.count(item) print('Frequency of different items is:') print(D)
0
0
0
180fc1c1d07b42afefb6638e91e474bd5069892e
5,407
py
Python
server/datasource/models/candles.py
yizhang7210/Acre
c98cf8a4fdfb223a1958e8e61df759f889a1b13f
[ "MIT" ]
2
2017-11-27T21:55:21.000Z
2017-12-30T03:34:40.000Z
server/datasource/models/candles.py
yizhang7210/Acre
c98cf8a4fdfb223a1958e8e61df759f889a1b13f
[ "MIT" ]
30
2017-09-06T12:00:08.000Z
2018-06-20T22:47:46.000Z
server/datasource/models/candles.py
yizhang7210/Acre
c98cf8a4fdfb223a1958e8e61df759f889a1b13f
[ "MIT" ]
1
2021-04-05T13:59:37.000Z
2021-04-05T13:59:37.000Z
""" Data model and data access methods for Candles. """ import pytz from core.models.instruments import Instrument from django.db import models class Candle(models.Model): """ Candle data model. """ # pylint: disable=too-many-instance-attributes instrument = models.ForeignKey(Instrument, on_delete=models.PROTECT) start_time = models.DateTimeField() volume = models.PositiveIntegerField() granularity = models.CharField(max_length=5) open_bid = models.DecimalField(max_digits=12, decimal_places=6) high_bid = models.DecimalField(max_digits=12, decimal_places=6) low_bid = models.DecimalField(max_digits=12, decimal_places=6) close_bid = models.DecimalField(max_digits=12, decimal_places=6) open_ask = models.DecimalField(max_digits=12, decimal_places=6) high_ask = models.DecimalField(max_digits=12, decimal_places=6) low_ask = models.DecimalField(max_digits=12, decimal_places=6) close_ask = models.DecimalField(max_digits=12, decimal_places=6) def create_one(**kwargs): """ Create a Candle object with the given fields. Args: Named arguments. instrument: Instrument object. start_time: Datetime object. Candle start time. volume: Positive integer. granularity: String. 'D' for Daily. bid: Dictionary with 'o', 'h', 'l', 'c' ask: Dictionary with 'o', 'h', 'l', 'c' Returns: Candle object with the given fields. """ if 'bid' in kwargs: bid = kwargs.get('bid') del kwargs['bid'] if bid is not None: kwargs['open_bid'] = bid.get('o') kwargs['high_bid'] = bid.get('h') kwargs['low_bid'] = bid.get('l') kwargs['close_bid'] = bid.get('c') if 'ask' in kwargs: ask = kwargs.get('ask') del kwargs['ask'] if ask is not None: kwargs['open_ask'] = ask.get('o') kwargs['high_ask'] = ask.get('h') kwargs['low_ask'] = ask.get('l') kwargs['close_ask'] = ask.get('c') if 'start_time' in kwargs: kwargs['start_time'] = add_timezone(kwargs.get('start_time')) return Candle(**kwargs) def delete_all(): """ Delete all candles in the database. Args: None. """ return Candle.objects.all().delete() def get_all(order_by): """ Returns all candles in the database. Args: order_by: List of strings to order the candles by. Returns: List of all Candle objects (QuerySet). """ return Candle.objects.all().order_by(*order_by) def get_candles(**kwargs): """ Retrieve a list of candles with given conditions. Args: kwargs: Named arguments for filtering candles. instrument: Instrument object. Filter by this instrument. start: Datetime. Filter candles with later time than 'start'. end: Datetime. Filter candles with earlier time than 'end'. granularity: String. Granularity of the querying candle. order_by: String. Space delimited string of fields to order by. Returns: List of Candle objects satisfying the conditions (QuerySet). """ candles = Candle.objects.all() if kwargs.get('instrument') is not None: candles = candles.filter(instrument=kwargs.get('instrument')) if kwargs.get('start') is not None: start_time = add_timezone(kwargs.get('start')) candles = candles.filter(start_time__gte=start_time) if kwargs.get('end') is not None: end_time = add_timezone(kwargs.get('end')) candles = candles.filter(start_time__lte=end_time) if kwargs.get('granularity') is not None: candles = candles.filter(granularity=kwargs.get('granularity')) if kwargs.get('order_by') is not None: candles = candles.order_by(kwargs.get('order_by')) return candles def get_last(**kwargs): """ Retrieve the latest candle of given instrument and granularity. Args: kwargs: Named arguments for filtering candles. instrument: Instrument object. granularity: String. The granularity of the candles. before: Datetime. Get the last candle before this time. Returns: Candle object if exists or None. """ candles = get_candles( instrument=kwargs.get('instrument'), granularity=kwargs.get('granularity'), end=kwargs.get('before'), order_by='-start_time') if candles: return candles[0] def add_timezone(time_record): """ Add a default America/New_York timezone info to a datetime object. Args: time_record: Datetime object. Returns: Datetime object with a timezone if time_record did not have tzinfo, otherwise return time_record itself. """ if time_record.tzname() is None: return time_record.replace(tzinfo=pytz.timezone('America/New_York')) return time_record def insert_many(candles): """ Bulk insert a list of candles. Args: candles: List of Candle objects to be inserted. """ Candle.objects.bulk_create(candles)
31.994083
79
0.62567
""" Data model and data access methods for Candles. """ import pytz from core.models.instruments import Instrument from django.db import models class Candle(models.Model): """ Candle data model. """ # pylint: disable=too-many-instance-attributes instrument = models.ForeignKey(Instrument, on_delete=models.PROTECT) start_time = models.DateTimeField() volume = models.PositiveIntegerField() granularity = models.CharField(max_length=5) open_bid = models.DecimalField(max_digits=12, decimal_places=6) high_bid = models.DecimalField(max_digits=12, decimal_places=6) low_bid = models.DecimalField(max_digits=12, decimal_places=6) close_bid = models.DecimalField(max_digits=12, decimal_places=6) open_ask = models.DecimalField(max_digits=12, decimal_places=6) high_ask = models.DecimalField(max_digits=12, decimal_places=6) low_ask = models.DecimalField(max_digits=12, decimal_places=6) close_ask = models.DecimalField(max_digits=12, decimal_places=6) class Meta: unique_together = (('instrument', 'start_time', 'granularity'), ) def create_one(**kwargs): """ Create a Candle object with the given fields. Args: Named arguments. instrument: Instrument object. start_time: Datetime object. Candle start time. volume: Positive integer. granularity: String. 'D' for Daily. bid: Dictionary with 'o', 'h', 'l', 'c' ask: Dictionary with 'o', 'h', 'l', 'c' Returns: Candle object with the given fields. """ if 'bid' in kwargs: bid = kwargs.get('bid') del kwargs['bid'] if bid is not None: kwargs['open_bid'] = bid.get('o') kwargs['high_bid'] = bid.get('h') kwargs['low_bid'] = bid.get('l') kwargs['close_bid'] = bid.get('c') if 'ask' in kwargs: ask = kwargs.get('ask') del kwargs['ask'] if ask is not None: kwargs['open_ask'] = ask.get('o') kwargs['high_ask'] = ask.get('h') kwargs['low_ask'] = ask.get('l') kwargs['close_ask'] = ask.get('c') if 'start_time' in kwargs: kwargs['start_time'] = add_timezone(kwargs.get('start_time')) return Candle(**kwargs) def delete_all(): """ Delete all candles in the database. Args: None. """ return Candle.objects.all().delete() def get_all(order_by): """ Returns all candles in the database. Args: order_by: List of strings to order the candles by. Returns: List of all Candle objects (QuerySet). """ return Candle.objects.all().order_by(*order_by) def get_candles(**kwargs): """ Retrieve a list of candles with given conditions. Args: kwargs: Named arguments for filtering candles. instrument: Instrument object. Filter by this instrument. start: Datetime. Filter candles with later time than 'start'. end: Datetime. Filter candles with earlier time than 'end'. granularity: String. Granularity of the querying candle. order_by: String. Space delimited string of fields to order by. Returns: List of Candle objects satisfying the conditions (QuerySet). """ candles = Candle.objects.all() if kwargs.get('instrument') is not None: candles = candles.filter(instrument=kwargs.get('instrument')) if kwargs.get('start') is not None: start_time = add_timezone(kwargs.get('start')) candles = candles.filter(start_time__gte=start_time) if kwargs.get('end') is not None: end_time = add_timezone(kwargs.get('end')) candles = candles.filter(start_time__lte=end_time) if kwargs.get('granularity') is not None: candles = candles.filter(granularity=kwargs.get('granularity')) if kwargs.get('order_by') is not None: candles = candles.order_by(kwargs.get('order_by')) return candles def get_last(**kwargs): """ Retrieve the latest candle of given instrument and granularity. Args: kwargs: Named arguments for filtering candles. instrument: Instrument object. granularity: String. The granularity of the candles. before: Datetime. Get the last candle before this time. Returns: Candle object if exists or None. """ candles = get_candles( instrument=kwargs.get('instrument'), granularity=kwargs.get('granularity'), end=kwargs.get('before'), order_by='-start_time') if candles: return candles[0] def add_timezone(time_record): """ Add a default America/New_York timezone info to a datetime object. Args: time_record: Datetime object. Returns: Datetime object with a timezone if time_record did not have tzinfo, otherwise return time_record itself. """ if time_record.tzname() is None: return time_record.replace(tzinfo=pytz.timezone('America/New_York')) return time_record def insert_many(candles): """ Bulk insert a list of candles. Args: candles: List of Candle objects to be inserted. """ Candle.objects.bulk_create(candles)
0
64
27
40e01bc00a83ff41fbf3dca04cf9b0eb07326e3a
14,663
py
Python
models/Transformers/BertModel_backup.py
suhasgupta791/mids-w251-final-project
aa1ef80685c6d9b5fc8a444e438078150cc0d96c
[ "Apache-2.0" ]
null
null
null
models/Transformers/BertModel_backup.py
suhasgupta791/mids-w251-final-project
aa1ef80685c6d9b5fc8a444e438078150cc0d96c
[ "Apache-2.0" ]
null
null
null
models/Transformers/BertModel_backup.py
suhasgupta791/mids-w251-final-project
aa1ef80685c6d9b5fc8a444e438078150cc0d96c
[ "Apache-2.0" ]
1
2020-02-14T01:10:43.000Z
2020-02-14T01:10:43.000Z
#!/usr/bin/env python # coding: utf-8 import itertools import random import numpy as np import sys, os import pandas as pd import torch from torchsummary import summary from torchtext import data import torch.nn as nn import torch.utils.data from torch.utils.data import Dataset, TensorDataset,DataLoader, RandomSampler from torch.utils.tensorboard import SummaryWriter import torchvision import torch.nn.functional as F from sklearn.metrics import roc_auc_score, classification_report, confusion_matrix from tqdm import tqdm, tqdm_notebook import warnings warnings.filterwarnings(action='once') import pickle import shutil import time import matplotlib.pyplot as plt import tensorflow as tf # Import transformers specific packages from transformers import BertTokenizer, BertModel, BertConfig from transformers import BertForSequenceClassification, BertForTokenClassification from transformers import AdamW,get_linear_schedule_with_warmup, pipeline # Import package for data parallelism to train on multi-GPU machines from models.Transformers.parallel import DataParallelModel, DataParallelCriterion # Check if cuda is available # Set the device and empty cache device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device =='cuda': from apex import amp torch.cuda.empty_cache() torch.backends.cudnn.deterministic = True # Class for model training and inference
47.14791
156
0.613994
#!/usr/bin/env python # coding: utf-8 import itertools import random import numpy as np import sys, os import pandas as pd import torch from torchsummary import summary from torchtext import data import torch.nn as nn import torch.utils.data from torch.utils.data import Dataset, TensorDataset,DataLoader, RandomSampler from torch.utils.tensorboard import SummaryWriter import torchvision import torch.nn.functional as F from sklearn.metrics import roc_auc_score, classification_report, confusion_matrix from tqdm import tqdm, tqdm_notebook import warnings warnings.filterwarnings(action='once') import pickle import shutil import time import matplotlib.pyplot as plt import tensorflow as tf # Import transformers specific packages from transformers import BertTokenizer, BertModel, BertConfig from transformers import BertForSequenceClassification, BertForTokenClassification from transformers import AdamW,get_linear_schedule_with_warmup, pipeline # Import package for data parallelism to train on multi-GPU machines from models.Transformers.parallel import DataParallelModel, DataParallelCriterion # Check if cuda is available # Set the device and empty cache device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device =='cuda': from apex import amp torch.cuda.empty_cache() torch.backends.cudnn.deterministic = True # Class for model training and inference class Bert_Model(): def __init__(self,train_df,bert_model_name,bert_model_path, tokenizer,test_df=None, max_seq_length=128,seed=1234): if max_seq_length > tokenizer.max_model_input_sizes[bert_model_name]: print("Max sequence length specified > 512!!... resetting to 128") print("If you don't want this then set max_seq_length to <= 512") self._MAX_SEQUENCE_LENGTH = 128 else: self._MAX_SEQUENCE_LENGTH = max_seq_length self._SEED = seed self._WORK_DIR = "/root/models/Tranformer_based/workingdir/" self._bert_model_path=bert_model_path self._bert_model_name=bert_model_name self._train_data=train_df if test_df: self._test_size=test_df else: self._test_size=0 self._tokenizer = tokenizer self._training_stats = [] def tokenize(self,text_array): ''' Returns tokenized IDs and attention mask The transformers encode_plus method returns the following: { input_ids: list[int], token_type_ids: list[int] if return_token_type_ids is True (default) attention_mask: list[int] if return_attention_mask is True (default) overflowing_tokens: list[int] if a ``max_length`` is specified and return_overflowing_tokens is True num_truncated_tokens: int if a ``max_length`` is specified and return_overflowing_tokens is True special_tokens_mask: list[int] if ``add_special_tokens`` if set to ``True`` and return_special_tokens_mask is True }''' all_tokens=[] all_attention_mask=[] for i,text in enumerate(tqdm(text_array)): encoded = self._tokenizer.encode_plus( text, add_special_tokens=True, max_length=self._MAX_SEQUENCE_LENGTH, pad_to_max_length=True) tokens = torch.tensor(encoded['input_ids']) attention_mask = torch.tensor(encoded['attention_mask']) all_tokens.append(tokens) all_attention_mask.append(attention_mask) return all_tokens,all_attention_mask def initialize_model_for_training(self,dataset_len,EPOCHS=1,model_seed=21000,lr=2e-5,batch_size=32, accumulation_steps=2): # Setup model parameters np.random.seed(model_seed) torch.manual_seed(model_seed) torch.cuda.manual_seed(model_seed) torch.backends.cudnn.deterministic = True # Empty cache torch.cuda.empty_cache() model = BertForSequenceClassification.from_pretrained(self._bert_model_path, cache_dir=None, num_labels=2, output_attentions = False, output_hidden_states = False) model = model.to(device) param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] num_train_optimization_steps = int(EPOCHS*dataset_len/batch_size/accumulation_steps) optimizer = AdamW(optimizer_grouped_parameters, lr=lr,eps=1e-8,correct_bias=False) # To reproduce BertAdam specific behavior set correct_bias=False scheduler = get_linear_schedule_with_warmup(optimizer,num_warmup_steps=10,num_training_steps=num_train_optimization_steps) # PyTorch scheduler if device == 'cuda' : model, optimizer = amp.initialize(model,optimizer,opt_level="O1",verbosity=0) ### Parallel GPU processing #model = DataParallelModel(model) # using balanced data parallalism script model = torch.nn.DataParallel(model) # using native pytorch # criterion = nn.CrossEntropyLoss() criterion = nn.BCELoss() model = model.train() model.zero_grad() optimizer.zero_grad() return model,optimizer,scheduler,criterion,EPOCHS def run_training(self,model,train_dataLoader,valid_dataLoader,optimizer,scheduler,criterion, EPOCHS=1,tr_batch_size=32,accumulation_steps=20,evaluation_steps=80,pred_thres=0.5, logdir='./logs'): # Data Structure for training statistics training_stats=[] validation_stats=[] tr_loss = 0. tr_accuracy = 0. tr_auc = 0. tr_f1 = 0. tq = tqdm(range(EPOCHS),total=EPOCHS,leave=False) global_step = 0 for epoch in tq: print("--Training--") tk0 = tqdm(enumerate(train_dataLoader),total=len(train_dataLoader),leave=True) for step,(x_batch,attn_mask,y_batch) in tk0: outputs = model(x_batch.to(device), token_type_ids=None, attention_mask=attn_mask.to(device), labels=y_batch.to(device)) lossf,y_pred = outputs predicted_probs,predicted_labels = self.classifyWithThreshold(y_pred,y_batch) # Apply the additional layers # Parallel GPU processing #parallel_loss_criterion = DataParallelCriterion(criterion) # Loss loss = criterion(predicted_probs,torch.tensor(y_batch, dtype=torch.float, device=device)) # when using torch data parallel loss = loss.mean() # Mean the loss from multiple GPUs and take care of the batch #loss = parallel_loss_criterion(y_pred,y_batch.to(device))/accumulation_steps # when using balanced data parallel script if device == 'cuda': with amp.scale_loss(loss,optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item()/accumulation_steps # accumulate the global loss (divide by gloabal step to reflect moving average) # Accuracy acc = torch.mean((predicted_labels == y_batch.to(device)).to(torch.float)).item() # accuracy for the whole batch tr_accuracy += acc/accumulation_steps # AUC Score c_report_dict = self.class_report(predicted_labels,y_batch) # print(self.conf_matrix(predicted_labels,y_batch)) f1_score = c_report_dict['1']['f1-score'] tr_f1 +=f1_score/accumulation_steps auc = self.compute_auc_score(y_pred[:,1],y_batch) tr_auc += auc/accumulation_steps tk0.set_postfix(step=global_step+1,loss=loss.item(),accuracy=acc) # display running backward loss tk0.set_postfix(step=global_step+1,loss=loss.item(),accuracy=acc) # display running backward loss if (step+1) % accumulation_steps == 0: # Wait for several backward steps # Write training stats to tensorboard self.summaryWriter("train",tr_loss,tr_accuracy,tr_auc,tr_f1,global_step,logdir) # Zero out the evaluation metrics after several backward steps tr_accuracy = 0 tr_loss = 0 tr_auc = 0 tr_f1 = 0 torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) # clip the norm to 1.0 to prevent exploding gradients optimizer.step() # Now we can do an optimizer step scheduler.step() model.zero_grad() global_step+=1 # increment forward step count training_stats.append( { 'step': global_step, 'train_loss': tr_loss/global_step, 'train_acc': tr_accuracy/global_step, 'train_auc': tr_auc/global_step, }) #Run evaluation after several forward passes (determined by evaluation_steps) if (step+1) % evaluation_steps ==0: print("--I-- Running Validation") eval_loss,eval_accuracy,eval_auc,eval_f1=self.run_eval(model,valid_dataLoader,global_step,criterion) validation_stats.append( { 'step': global_step, 'valid_loss': eval_loss, 'valid accuracy': eval_accuracy, 'valid auc score': eval_auc, }) # Write training stats to tensorboard self.summaryWriter("eval",eval_loss,eval_accuracy,eval_auc,eval_f1,global_step,logdir) tq.set_postfix(train_loss=tr_loss,train_accuracy=tr_accuracy,train_auc=tr_auc,leave=False) return model,training_stats,validation_stats def run_eval(self,model,valid_dataLoader,global_step,criterion): avg_loss = 0. eval_accuracy = 0. eval_loss = 0. eval_auc = 0. eval_f1 = 0. nb_eval_steps = 0 tk0 = tqdm(enumerate(valid_dataLoader),total=len(valid_dataLoader),leave=True) for step,(x_batch, attn_mask,y_batch) in tk0: model.eval() with torch.no_grad(): outputs = model(x_batch.to(device), token_type_ids=None, attention_mask=attn_mask.to(device), labels=y_batch.to(device)) loss, y_pred = outputs predicted_probs,predicted_labels = self.classifyWithThreshold(y_pred,y_batch) # Loss loss = criterion(predicted_probs,torch.tensor(y_batch, dtype=torch.float, device=device)) # when using torch data parallel loss = loss.mean() # Mean the loss from multiple GPUs and to take care of batch size eval_loss += loss.item() # Accuracy # Accuracy eval_accuracy += torch.mean((predicted_labels == y_batch.to(device)).to(torch.float)).item() # accuracy for the whole batch # AUC Score auc = self.compute_auc_score(y_pred[:,1],y_batch.to(device)) eval_auc += auc # F1 Score c_report_dict = self.class_report(predicted_labels,y_batch) f1_score = c_report_dict['1']['f1-score'] eval_f1 += f1_score # tmp_eval_auc = self.compute_auc_score(predicted_labels, label_ids) ## ROC AUC Score # Increment total eval step count nb_eval_steps += 1 # Normalize to the number of steps avg_loss = eval_loss/nb_eval_steps avg_accuracy = eval_accuracy/nb_eval_steps avg_auc = eval_auc/nb_eval_steps avg_f1 = eval_f1/nb_eval_steps tk0.set_postfix(step=global_step,avg_loss=avg_loss,avg_accuracy=avg_accuracy,avg_auc=avg_auc) return avg_loss,avg_accuracy,avg_auc,avg_f1 # Function to calculate the accuracy of predictions vs labels def flat_accuracy(self,preds,labels): pred_flat = np.argmax(preds, axis=1).flatten() labels_flat = labels.flatten() return np.sum(pred_flat == labels_flat) def compute_auc_score(self,preds,labels): labels = labels.cpu().numpy() preds = preds.detach().cpu().numpy() auc_score = roc_auc_score(labels.flatten(),preds.flatten()) return auc_score def class_report(self,preds,labels): c_report = classification_report(labels.flatten(),preds.detach().cpu().numpy().flatten(),output_dict=True,zero_division=0) return c_report def conf_matrix(self,preds,labels): conf_matrix = confusion_matrix(labels.flatten(),preds.detach().cpu().numpy().flatten()) return conf_matrix def classifyWithThreshold(self,preds,labels): pass pred_after_sigmoid = torch.sigmoid(preds) # Apply the sigmoid to the logits from output of Bert pred_probs,pred_classes = torch.max(pred_after_sigmoid,dim=-1) return pred_probs,pred_classes def summaryWriter(self,name,loss,acc,auc,f1_score,n_iter,logdir): # Writer will output to ./runs/ directory by default writer = SummaryWriter(logdir) writer.add_scalar('Loss/'+name,loss,n_iter) writer.add_scalar('Accuracy/'+name,acc,n_iter) writer.add_scalar('ROC_AUC_Score/'+name,auc,n_iter) writer.add_scalar('F1_Score/'+name,f1_score,n_iter) writer.close()
11,566
1,677
22
e0179e878f7eca8bff86090f5fe6aea6db8c2820
25,793
py
Python
acoular/tbeamform.py
ndimubanzisenga/acoular
c7abace657d2602f9a4e9d2e4e1fabe44ec3927b
[ "BSD-3-Clause" ]
1
2019-08-30T22:45:09.000Z
2019-08-30T22:45:09.000Z
acoular/tbeamform.py
ndimubanzisenga/acoular
c7abace657d2602f9a4e9d2e4e1fabe44ec3927b
[ "BSD-3-Clause" ]
null
null
null
acoular/tbeamform.py
ndimubanzisenga/acoular
c7abace657d2602f9a4e9d2e4e1fabe44ec3927b
[ "BSD-3-Clause" ]
1
2019-08-30T03:29:09.000Z
2019-08-30T03:29:09.000Z
# -*- coding: utf-8 -*- #pylint: disable-msg=E0611, E1101, C0103, R0901, R0902, R0903, R0904, W0232 #------------------------------------------------------------------------------ # Copyright (c) 2007-2014, Acoular Development Team. #------------------------------------------------------------------------------ """Implements beamformers in the time domain. .. autosummary:: :toctree: generated/ BeamformerTime BeamformerTimeTraj BeamformerTimeSq BeamformerTimeSqTraj IntegratorSectorTime """ # imports from other packages from numpy import array, newaxis, empty, sqrt, arange, clip, r_, zeros, \ histogram, unique, cross, dot from traits.api import Float, CArray, Property, Trait, Bool, Delegate, \ cached_property, List from traitsui.api import View, Item from traitsui.menu import OKCancelButtons # acoular imports from .internal import digest from .grids import RectGrid from .microphones import MicGeom from .environments import Environment from .trajectory import Trajectory from .tprocess import TimeInOut def const_power_weight( bf ): """ Internal helper function for :class:`BeamformerTime` Provides microphone weighting to make the power per unit area of the microphone array geometry constant. Parameters ---------- bf: :class:`BeamformerTime` object Returns ------- array of floats The weight factors. """ r = bf.env.r( bf.c, zeros((3, 1)), bf.mpos.mpos) # distances to center # round the relative distances to one decimal place r = (r/r.max()).round(decimals=1) ru, ind = unique(r, return_inverse=True) ru = (ru[1:]+ru[:-1])/2 count, bins = histogram(r, r_[0, ru, 1.5*r.max()-0.5*ru[-1]]) bins *= bins weights = sqrt((bins[1:]-bins[:-1])/count) weights /= weights.mean() return weights[ind] # possible choices for spatial weights possible_weights = {'none':None, 'power':const_power_weight} class BeamformerTime( TimeInOut ): """ Provides a basic time domain beamformer with time signal output for a spatially fixed grid. """ #: :class:`~acoular.grids.Grid`-derived object that provides the grid locations. grid = Trait(RectGrid, desc="beamforming grid") #: Number of channels in output (=number of grid points). numchannels = Delegate('grid', 'size') #: :class:`~acoular.microphones.MicGeom` object that provides the microphone locations. mpos= Trait(MicGeom, desc="microphone geometry") #: :class:`~acoular.environments.Environment` or derived object, #: which provides information about the sound propagation in the medium. env = Trait(Environment(), Environment) #: Spatial weighting function. weights = Trait('none', possible_weights, desc="spatial weighting function") # (from timedomain.possible_weights) #: The speed of sound, defaults to 343 m/s c = Float(343., desc="speed of sound") #: Sound travel distances from microphone array center to grid #: points (readonly). r0 = Property( desc="array center to grid distances") #: Sound travel distances from array microphones to grid #: points (readonly). rm = Property( desc="array center to grid distances") # internal identifier digest = Property( depends_on = ['mpos.digest', 'grid.digest', 'source.digest', 'c', \ 'env.digest', 'weights', '__class__'], ) traits_view = View( [ [Item('mpos{}', style='custom')], [Item('grid', style='custom'), '-<>'], [Item('c', label='speed of sound')], [Item('env{}', style='custom')], [Item('weights{}', style='custom')], '|' ], title='Beamformer options', buttons = OKCancelButtons ) @cached_property #@cached_property #@cached_property def result( self, num=2048 ): """ Python generator that yields the beamformer output block-wise. Parameters ---------- num : integer, defaults to 2048 This parameter defines the size of the blocks to be yielded (i.e. the number of samples per block) Returns ------- Samples in blocks of shape (num, :attr:`numchannels`). :attr:`numchannels` is usually very large. The last block may be shorter than num. """ if self.weights_: w = self.weights_(self)[newaxis] else: w = 1.0 c = self.c/self.sample_freq delays = self.rm/c d_index = array(delays, dtype=int) # integer index d_interp1 = delays % 1 # 1st coeff for lin interpolation between samples d_interp2 = 1-d_interp1 # 2nd coeff for lin interpolation d_index2 = arange(self.mpos.num_mics) # amp = (self.rm/self.r0[:, newaxis]) # multiplication factor amp = (w/(self.rm*self.rm)).sum(1) * self.r0 amp = 1.0/(amp[:, newaxis]*self.rm) # multiplication factor d_interp1 *= amp # premultiplication, to save later ops d_interp2 *= amp dmin = d_index.min() # minimum index dmax = d_index.max()+1 # maximum index aoff = dmax-dmin # index span #working copy of data: zi = empty((aoff+num, self.source.numchannels), dtype=float) o = empty((num, self.grid.size), dtype=float) # output array offset = aoff # start offset for working array ooffset = 0 # offset for output array for block in self.source.result(num): ns = block.shape[0] # numbers of samples and channels maxoffset = ns-dmin # ns - aoff +aoff -dmin zi[aoff:aoff+ns] = block * w # copy data to working array # loop over data samples while offset < maxoffset: # yield output array if full if ooffset == num: yield o ooffset = 0 # the next line needs to be implemented faster o[ooffset] = (zi[offset+d_index, d_index2]*d_interp1 + \ zi[offset+d_index+1, d_index2]*d_interp2).sum(-1) offset += 1 ooffset += 1 # copy remaining samples in front of next block zi[0:aoff] = zi[-aoff:] offset -= num # remaining data chunk yield o[:ooffset] class BeamformerTimeSq( BeamformerTime ): """ Provides a time domain beamformer with time-dependend power signal output and possible autopower removal for a spatially fixed grid. """ #: Boolean flag, if 'True' (default), the main diagonal is removed before beamforming. r_diag = Bool(True, desc="removal of diagonal") # internal identifier digest = Property( depends_on = ['mpos.digest', 'grid.digest', 'source.digest', 'r_diag', \ 'c', 'env.digest', 'weights', '__class__'], ) traits_view = View( [ [Item('mpos{}', style='custom')], [Item('grid', style='custom'), '-<>'], [Item('r_diag', label='diagonal removed')], [Item('c', label='speed of sound')], [Item('env{}', style='custom')], [Item('weights{}', style='custom')], '|' ], title='Beamformer options', buttons = OKCancelButtons ) @cached_property # generator, delivers the beamformer result def result( self, num=2048 ): """ Python generator that yields the *squared* beamformer output with optional removal of autocorrelation block-wise. Parameters ---------- num : integer, defaults to 2048 This parameter defines the size of the blocks to be yielded (i.e. the number of samples per block) Returns ------- Samples in blocks of shape \ (num, :attr:`~BeamformerTime.numchannels`). :attr:`~BeamformerTime.numchannels` is usually very large (number of grid points). The last block may be shorter than num. """ if self.weights_: w = self.weights_(self)[newaxis] else: w = 1.0 c = self.c/self.source.sample_freq delays = self.rm/c d_index = array(delays, dtype=int) # integer index d_interp1 = delays % 1 # 1st coeff for lin interpolation between samples d_interp2 = 1-d_interp1 # 2nd coeff for lin interpolation d_index2 = arange(self.mpos.num_mics) # amp = (self.rm/self.r0[:, newaxis]) # multiplication factor amp = (w/(self.rm*self.rm)).sum(1) * self.r0 amp = 1.0/(amp[:, newaxis]*self.rm) # multiplication factor d_interp1 *= amp # premultiplication, to save later ops d_interp2 *= amp dmin = d_index.min() # minimum index dmax = d_index.max()+1 # maximum index # print dmin, dmax aoff = dmax-dmin # index span #working copy of data: zi = empty((aoff+num, self.source.numchannels), dtype=float) o = empty((num, self.grid.size), dtype=float) # output array temp = empty((self.grid.size, self.source.numchannels), dtype=float) offset = aoff # start offset for working array ooffset = 0 # offset for output array for block in self.source.result(num): ns = block.shape[0] # numbers of samples and channels maxoffset = ns-dmin # ns - aoff +aoff -dmin zi[aoff:aoff+ns] = block * w # copy data to working array # loop over data samples while offset < maxoffset: # yield output array if full if ooffset == num: yield o ooffset = 0 # the next line needs to be implemented faster temp[:, :] = (zi[offset+d_index, d_index2]*d_interp1 \ + zi[offset+d_index+1, d_index2]*d_interp2) if self.r_diag: # simple sum and remove autopower o[ooffset] = clip(temp.sum(-1)**2 - \ (temp**2).sum(-1), 1e-100, 1e+100) else: # simple sum o[ooffset] = temp.sum(-1)**2 offset += 1 ooffset += 1 # copy remaining samples in front of next block zi[0:aoff] = zi[-aoff:] offset -= num # remaining data chunk yield o[:ooffset] class BeamformerTimeTraj( BeamformerTime ): """ Provides a basic time domain beamformer with time signal output for a grid moving along a trajectory """ #: :class:`~acoular.trajectory.Trajectory` or derived object. #: Start time is assumed to be the same as for the samples. trajectory = Trait(Trajectory, desc="trajectory of the grid center") #: Reference vector, perpendicular to the y-axis of moving grid. rvec = CArray( dtype=float, shape=(3, ), value=array((0, 0, 0)), desc="reference vector") # internal identifier digest = Property( depends_on = ['mpos.digest', 'grid.digest', 'source.digest', \ 'c', 'weights', 'rvec', 'env.digest', 'trajectory.digest', \ '__class__'], ) traits_view = View( [ [Item('mpos{}', style='custom')], [Item('grid', style='custom'), '-<>'], [Item('trajectory{}', style='custom')], [Item('c', label='speed of sound')], [Item('env{}', style='custom')], [Item('weights{}', style='custom')], '|' ], title='Beamformer options', buttons = OKCancelButtons ) @cached_property def result( self, num=2048 ): """ Python generator that yields the beamformer output block-wise. Optional removal of autocorrelation. The "moving" grid can be translated and optionally rotated. Parameters ---------- num : integer, defaults to 2048 This parameter defines the size of the blocks to be yielded (i.e. the number of samples per block) Returns ------- Samples in blocks of shape \ (num, :attr:`~BeamformerTime.numchannels`). :attr:`~BeamformerTime.numchannels` is usually very \ large (number of grid points). The last block may be shorter than num. \ The output starts for signals that were emitted from the grid at t=0. """ if self.weights_: w = self.weights_(self)[newaxis] else: w = 1.0 c = self.c/self.source.sample_freq # temp array for the grid co-ordinates gpos = self.grid.pos() # max delay span = sum of # max diagonal lengths of circumscribing cuboids for grid and micarray dmax = sqrt(((gpos.max(1)-gpos.min(1))**2).sum()) dmax += sqrt(((self.mpos.mpos.max(1)-self.mpos.mpos.min(1))**2).sum()) dmax = int(dmax/c)+1 # max index span zi = empty((dmax+num, self.source.numchannels), \ dtype=float) #working copy of data o = empty((num, self.grid.size), dtype=float) # output array temp = empty((self.grid.size, self.source.numchannels), dtype=float) d_index2 = arange(self.mpos.num_mics, dtype=int) # second index (static) offset = dmax+num # start offset for working array ooffset = 0 # offset for output array # generators for trajectory, starting at time zero start_t = 0.0 g = self.trajectory.traj( start_t, delta_t=1/self.source.sample_freq) g1 = self.trajectory.traj( start_t, delta_t=1/self.source.sample_freq, der=1) rflag = (self.rvec == 0).all() #flag translation vs. rotation data = self.source.result(num) flag = True while flag: # yield output array if full if ooffset == num: yield o ooffset = 0 if rflag: # grid is only translated, not rotated tpos = gpos + array(g.next())[:, newaxis] else: # grid is both translated and rotated loc = array(g.next()) #translation array([0., 0.4, 1.]) dx = array(g1.next()) #direction vector (new x-axis) dy = cross(self.rvec, dx) # new y-axis dz = cross(dx, dy) # new z-axis RM = array((dx, dy, dz)).T # rotation matrix RM /= sqrt((RM*RM).sum(0)) # column normalized tpos = dot(RM, gpos)+loc[:, newaxis] # rotation+translation rm = self.env.r( self.c, tpos, self.mpos.mpos) r0 = self.env.r( self.c, tpos) delays = rm/c d_index = array(delays, dtype=int) # integer index d_interp1 = delays % 1 # 1st coeff for lin interpolation d_interp2 = 1-d_interp1 # 2nd coeff for lin interpolation amp = (w/(rm*rm)).sum(1) * r0 amp = 1.0/(amp[:, newaxis]*rm) # multiplication factor # now, we have to make sure that the needed data is available while offset+d_index.max()+2>dmax+num: # copy remaining samples in front of next block zi[0:dmax] = zi[-dmax:] # the offset is adjusted by one block length offset -= num # test if data generator is exhausted try: # get next data block = data.next() except StopIteration: print loc flag = False break # samples in the block, equals to num except for the last block ns = block.shape[0] zi[dmax:dmax+ns] = block * w# copy data to working array else: # the next line needs to be implemented faster # it eats half of the time temp[:, :] = (zi[offset+d_index, d_index2]*d_interp1 \ + zi[offset+d_index+1, d_index2]*d_interp2)*amp o[ooffset] = temp.sum(-1) offset += 1 ooffset += 1 # remaining data chunk yield o[:ooffset] class BeamformerTimeSqTraj( BeamformerTimeSq ): """ Provides a time domain beamformer with time-dependent power signal output and possible autopower removal for a grid moving along a trajectory. """ #: :class:`~acoular.trajectory.Trajectory` or derived object. #: Start time is assumed to be the same as for the samples. trajectory = Trait(Trajectory, desc="trajectory of the grid center") #: Reference vector, perpendicular to the y-axis of moving grid. rvec = CArray( dtype=float, shape=(3, ), value=array((0, 0, 0)), desc="reference vector") # internal identifier digest = Property( depends_on = ['mpos.digest', 'grid.digest', 'source.digest', 'r_diag', \ 'c', 'weights', 'rvec', 'env.digest', 'trajectory.digest', \ '__class__'], ) traits_view = View( [ [Item('mpos{}', style='custom')], [Item('grid', style='custom'), '-<>'], [Item('trajectory{}', style='custom')], [Item('r_diag', label='diagonal removed')], [Item('c', label='speed of sound')], [Item('env{}', style='custom')], [Item('weights{}', style='custom')], '|' ], title='Beamformer options', buttons = OKCancelButtons ) @cached_property def result( self, num=2048 ): """ Python generator that yields the *squared* beamformer output block-wise. Optional removal of autocorrelation. The "moving" grid can be translated and optionally rotated. Parameters ---------- num : integer, defaults to 2048 This parameter defines the size of the blocks to be yielded (i.e. the number of samples per block) Returns ------- Samples in blocks of shape \ (num, :attr:`~BeamformerTime.numchannels`). :attr:`~BeamformerTime.numchannels` is usually very \ large (number of grid points). The last block may be shorter than num. \ The output starts for signals that were emitted from the grid at t=0. """ if self.weights_: w = self.weights_(self)[newaxis] else: w = 1.0 c = self.c/self.source.sample_freq # temp array for the grid co-ordinates gpos = self.grid.pos() # max delay span = sum of # max diagonal lengths of circumscribing cuboids for grid and micarray dmax = sqrt(((gpos.max(1)-gpos.min(1))**2).sum()) dmax += sqrt(((self.mpos.mpos.max(1)-self.mpos.mpos.min(1))**2).sum()) dmax = int(dmax/c)+1 # max index span zi = empty((dmax+num, self.source.numchannels), \ dtype=float) #working copy of data o = empty((num, self.grid.size), dtype=float) # output array temp = empty((self.grid.size, self.source.numchannels), dtype=float) d_index2 = arange(self.mpos.num_mics, dtype=int) # second index (static) offset = dmax+num # start offset for working array ooffset = 0 # offset for output array # generators for trajectory, starting at time zero start_t = 0.0 g = self.trajectory.traj( start_t, delta_t=1/self.source.sample_freq) g1 = self.trajectory.traj( start_t, delta_t=1/self.source.sample_freq, der=1) rflag = (self.rvec == 0).all() #flag translation vs. rotation data = self.source.result(num) flag = True while flag: # yield output array if full if ooffset == num: yield o ooffset = 0 if rflag: # grid is only translated, not rotated tpos = gpos + array(g.next())[:, newaxis] else: # grid is both translated and rotated loc = array(g.next()) #translation dx = array(g1.next()) #direction vector (new x-axis) dy = cross(self.rvec, dx) # new y-axis dz = cross(dx, dy) # new z-axis RM = array((dx, dy, dz)).T # rotation matrix RM /= sqrt((RM*RM).sum(0)) # column normalized tpos = dot(RM, gpos)+loc[:, newaxis] # rotation+translation rm = self.env.r( self.c, tpos, self.mpos.mpos) r0 = self.env.r( self.c, tpos) delays = rm/c d_index = array(delays, dtype=int) # integer index d_interp1 = delays % 1 # 1st coeff for lin interpolation d_interp2 = 1-d_interp1 # 2nd coeff for lin interpolation amp = (w/(rm*rm)).sum(1) * r0 amp = 1.0/(amp[:, newaxis]*rm) # multiplication factor # now, we have to make sure that the needed data is available while offset+d_index.max()+2>dmax+num: # copy remaining samples in front of next block zi[0:dmax] = zi[-dmax:] # the offset is adjusted by one block length offset -= num # test if data generator is exhausted try: # get next data block = data.next() except StopIteration: flag = False break # samples in the block, equals to num except for the last block ns = block.shape[0] zi[dmax:dmax+ns] = block * w# copy data to working array else: # the next line needs to be implemented faster # it eats half of the time temp[:, :] = (zi[offset+d_index, d_index2]*d_interp1 \ + zi[offset+d_index+1, d_index2]*d_interp2)*amp if self.r_diag: # simple sum and remove autopower o[ooffset] = clip(temp.sum(-1)**2 - \ (temp**2).sum(-1), 1e-100, 1e+100) else: # simple sum o[ooffset] = temp.sum(-1)**2 offset += 1 ooffset += 1 # remaining data chunk yield o[:ooffset] class IntegratorSectorTime( TimeInOut ): """ Provides an Integrator in the time domain. """ #: :class:`~acoular.grids.Grid`-derived object that provides the grid locations. grid = Trait(RectGrid, desc="beamforming grid") #: List of sectors in grid sectors = List() #: Clipping, in Dezibel relative to maximum (negative values) clip = Float(-350.0) #: Number of channels in output (= number of sectors). numchannels = Property( depends_on = ['sectors', ]) # internal identifier digest = Property( depends_on = ['sectors', 'clip', 'grid.digest', 'source.digest', \ '__class__'], ) traits_view = View( [ [Item('sectors', style='custom')], [Item('grid', style='custom'), '-<>'], '|' ], title='Integrator', buttons = OKCancelButtons ) @cached_property @cached_property def result( self, num=1 ): """ Python generator that yields the source output integrated over the given sectors, block-wise. Parameters ---------- num : integer, defaults to 1 This parameter defines the size of the blocks to be yielded (i.e. the number of samples per block) Returns ------- Samples in blocks of shape (num, :attr:`numchannels`). :attr:`numchannels` is the number of sectors. The last block may be shorter than num. """ inds = [self.grid.indices(*sector) for sector in self.sectors] gshape = self.grid.shape o = empty((num, self.numchannels), dtype=float) # output array for r in self.source.result(num): ns = r.shape[0] mapshape = (ns,) + gshape rmax = r.max() rmin = rmax * 10**(self.clip/10.0) r = where(r>rmin, r, 0.0) i = 0 for ind in inds: h = r[:].reshape(mapshape)[ (s_[:],) + ind ] o[:ns, i] = h.reshape(h.shape[0], -1).sum(axis=1) i += 1 yield o[:ns]
37.435414
91
0.541426
# -*- coding: utf-8 -*- #pylint: disable-msg=E0611, E1101, C0103, R0901, R0902, R0903, R0904, W0232 #------------------------------------------------------------------------------ # Copyright (c) 2007-2014, Acoular Development Team. #------------------------------------------------------------------------------ """Implements beamformers in the time domain. .. autosummary:: :toctree: generated/ BeamformerTime BeamformerTimeTraj BeamformerTimeSq BeamformerTimeSqTraj IntegratorSectorTime """ # imports from other packages from numpy import array, newaxis, empty, sqrt, arange, clip, r_, zeros, \ histogram, unique, cross, dot from traits.api import Float, CArray, Property, Trait, Bool, Delegate, \ cached_property, List from traitsui.api import View, Item from traitsui.menu import OKCancelButtons # acoular imports from .internal import digest from .grids import RectGrid from .microphones import MicGeom from .environments import Environment from .trajectory import Trajectory from .tprocess import TimeInOut def const_power_weight( bf ): """ Internal helper function for :class:`BeamformerTime` Provides microphone weighting to make the power per unit area of the microphone array geometry constant. Parameters ---------- bf: :class:`BeamformerTime` object Returns ------- array of floats The weight factors. """ r = bf.env.r( bf.c, zeros((3, 1)), bf.mpos.mpos) # distances to center # round the relative distances to one decimal place r = (r/r.max()).round(decimals=1) ru, ind = unique(r, return_inverse=True) ru = (ru[1:]+ru[:-1])/2 count, bins = histogram(r, r_[0, ru, 1.5*r.max()-0.5*ru[-1]]) bins *= bins weights = sqrt((bins[1:]-bins[:-1])/count) weights /= weights.mean() return weights[ind] # possible choices for spatial weights possible_weights = {'none':None, 'power':const_power_weight} class BeamformerTime( TimeInOut ): """ Provides a basic time domain beamformer with time signal output for a spatially fixed grid. """ #: :class:`~acoular.grids.Grid`-derived object that provides the grid locations. grid = Trait(RectGrid, desc="beamforming grid") #: Number of channels in output (=number of grid points). numchannels = Delegate('grid', 'size') #: :class:`~acoular.microphones.MicGeom` object that provides the microphone locations. mpos= Trait(MicGeom, desc="microphone geometry") #: :class:`~acoular.environments.Environment` or derived object, #: which provides information about the sound propagation in the medium. env = Trait(Environment(), Environment) #: Spatial weighting function. weights = Trait('none', possible_weights, desc="spatial weighting function") # (from timedomain.possible_weights) #: The speed of sound, defaults to 343 m/s c = Float(343., desc="speed of sound") #: Sound travel distances from microphone array center to grid #: points (readonly). r0 = Property( desc="array center to grid distances") #: Sound travel distances from array microphones to grid #: points (readonly). rm = Property( desc="array center to grid distances") # internal identifier digest = Property( depends_on = ['mpos.digest', 'grid.digest', 'source.digest', 'c', \ 'env.digest', 'weights', '__class__'], ) traits_view = View( [ [Item('mpos{}', style='custom')], [Item('grid', style='custom'), '-<>'], [Item('c', label='speed of sound')], [Item('env{}', style='custom')], [Item('weights{}', style='custom')], '|' ], title='Beamformer options', buttons = OKCancelButtons ) @cached_property def _get_digest( self ): return digest(self) #@cached_property def _get_r0 ( self ): return self.env.r( self.c, self.grid.pos()) #@cached_property def _get_rm ( self ): return self.env.r( self.c, self.grid.pos(), self.mpos.mpos) def result( self, num=2048 ): """ Python generator that yields the beamformer output block-wise. Parameters ---------- num : integer, defaults to 2048 This parameter defines the size of the blocks to be yielded (i.e. the number of samples per block) Returns ------- Samples in blocks of shape (num, :attr:`numchannels`). :attr:`numchannels` is usually very large. The last block may be shorter than num. """ if self.weights_: w = self.weights_(self)[newaxis] else: w = 1.0 c = self.c/self.sample_freq delays = self.rm/c d_index = array(delays, dtype=int) # integer index d_interp1 = delays % 1 # 1st coeff for lin interpolation between samples d_interp2 = 1-d_interp1 # 2nd coeff for lin interpolation d_index2 = arange(self.mpos.num_mics) # amp = (self.rm/self.r0[:, newaxis]) # multiplication factor amp = (w/(self.rm*self.rm)).sum(1) * self.r0 amp = 1.0/(amp[:, newaxis]*self.rm) # multiplication factor d_interp1 *= amp # premultiplication, to save later ops d_interp2 *= amp dmin = d_index.min() # minimum index dmax = d_index.max()+1 # maximum index aoff = dmax-dmin # index span #working copy of data: zi = empty((aoff+num, self.source.numchannels), dtype=float) o = empty((num, self.grid.size), dtype=float) # output array offset = aoff # start offset for working array ooffset = 0 # offset for output array for block in self.source.result(num): ns = block.shape[0] # numbers of samples and channels maxoffset = ns-dmin # ns - aoff +aoff -dmin zi[aoff:aoff+ns] = block * w # copy data to working array # loop over data samples while offset < maxoffset: # yield output array if full if ooffset == num: yield o ooffset = 0 # the next line needs to be implemented faster o[ooffset] = (zi[offset+d_index, d_index2]*d_interp1 + \ zi[offset+d_index+1, d_index2]*d_interp2).sum(-1) offset += 1 ooffset += 1 # copy remaining samples in front of next block zi[0:aoff] = zi[-aoff:] offset -= num # remaining data chunk yield o[:ooffset] class BeamformerTimeSq( BeamformerTime ): """ Provides a time domain beamformer with time-dependend power signal output and possible autopower removal for a spatially fixed grid. """ #: Boolean flag, if 'True' (default), the main diagonal is removed before beamforming. r_diag = Bool(True, desc="removal of diagonal") # internal identifier digest = Property( depends_on = ['mpos.digest', 'grid.digest', 'source.digest', 'r_diag', \ 'c', 'env.digest', 'weights', '__class__'], ) traits_view = View( [ [Item('mpos{}', style='custom')], [Item('grid', style='custom'), '-<>'], [Item('r_diag', label='diagonal removed')], [Item('c', label='speed of sound')], [Item('env{}', style='custom')], [Item('weights{}', style='custom')], '|' ], title='Beamformer options', buttons = OKCancelButtons ) @cached_property def _get_digest( self ): return digest(self) # generator, delivers the beamformer result def result( self, num=2048 ): """ Python generator that yields the *squared* beamformer output with optional removal of autocorrelation block-wise. Parameters ---------- num : integer, defaults to 2048 This parameter defines the size of the blocks to be yielded (i.e. the number of samples per block) Returns ------- Samples in blocks of shape \ (num, :attr:`~BeamformerTime.numchannels`). :attr:`~BeamformerTime.numchannels` is usually very large (number of grid points). The last block may be shorter than num. """ if self.weights_: w = self.weights_(self)[newaxis] else: w = 1.0 c = self.c/self.source.sample_freq delays = self.rm/c d_index = array(delays, dtype=int) # integer index d_interp1 = delays % 1 # 1st coeff for lin interpolation between samples d_interp2 = 1-d_interp1 # 2nd coeff for lin interpolation d_index2 = arange(self.mpos.num_mics) # amp = (self.rm/self.r0[:, newaxis]) # multiplication factor amp = (w/(self.rm*self.rm)).sum(1) * self.r0 amp = 1.0/(amp[:, newaxis]*self.rm) # multiplication factor d_interp1 *= amp # premultiplication, to save later ops d_interp2 *= amp dmin = d_index.min() # minimum index dmax = d_index.max()+1 # maximum index # print dmin, dmax aoff = dmax-dmin # index span #working copy of data: zi = empty((aoff+num, self.source.numchannels), dtype=float) o = empty((num, self.grid.size), dtype=float) # output array temp = empty((self.grid.size, self.source.numchannels), dtype=float) offset = aoff # start offset for working array ooffset = 0 # offset for output array for block in self.source.result(num): ns = block.shape[0] # numbers of samples and channels maxoffset = ns-dmin # ns - aoff +aoff -dmin zi[aoff:aoff+ns] = block * w # copy data to working array # loop over data samples while offset < maxoffset: # yield output array if full if ooffset == num: yield o ooffset = 0 # the next line needs to be implemented faster temp[:, :] = (zi[offset+d_index, d_index2]*d_interp1 \ + zi[offset+d_index+1, d_index2]*d_interp2) if self.r_diag: # simple sum and remove autopower o[ooffset] = clip(temp.sum(-1)**2 - \ (temp**2).sum(-1), 1e-100, 1e+100) else: # simple sum o[ooffset] = temp.sum(-1)**2 offset += 1 ooffset += 1 # copy remaining samples in front of next block zi[0:aoff] = zi[-aoff:] offset -= num # remaining data chunk yield o[:ooffset] class BeamformerTimeTraj( BeamformerTime ): """ Provides a basic time domain beamformer with time signal output for a grid moving along a trajectory """ #: :class:`~acoular.trajectory.Trajectory` or derived object. #: Start time is assumed to be the same as for the samples. trajectory = Trait(Trajectory, desc="trajectory of the grid center") #: Reference vector, perpendicular to the y-axis of moving grid. rvec = CArray( dtype=float, shape=(3, ), value=array((0, 0, 0)), desc="reference vector") # internal identifier digest = Property( depends_on = ['mpos.digest', 'grid.digest', 'source.digest', \ 'c', 'weights', 'rvec', 'env.digest', 'trajectory.digest', \ '__class__'], ) traits_view = View( [ [Item('mpos{}', style='custom')], [Item('grid', style='custom'), '-<>'], [Item('trajectory{}', style='custom')], [Item('c', label='speed of sound')], [Item('env{}', style='custom')], [Item('weights{}', style='custom')], '|' ], title='Beamformer options', buttons = OKCancelButtons ) @cached_property def _get_digest( self ): return digest(self) def result( self, num=2048 ): """ Python generator that yields the beamformer output block-wise. Optional removal of autocorrelation. The "moving" grid can be translated and optionally rotated. Parameters ---------- num : integer, defaults to 2048 This parameter defines the size of the blocks to be yielded (i.e. the number of samples per block) Returns ------- Samples in blocks of shape \ (num, :attr:`~BeamformerTime.numchannels`). :attr:`~BeamformerTime.numchannels` is usually very \ large (number of grid points). The last block may be shorter than num. \ The output starts for signals that were emitted from the grid at t=0. """ if self.weights_: w = self.weights_(self)[newaxis] else: w = 1.0 c = self.c/self.source.sample_freq # temp array for the grid co-ordinates gpos = self.grid.pos() # max delay span = sum of # max diagonal lengths of circumscribing cuboids for grid and micarray dmax = sqrt(((gpos.max(1)-gpos.min(1))**2).sum()) dmax += sqrt(((self.mpos.mpos.max(1)-self.mpos.mpos.min(1))**2).sum()) dmax = int(dmax/c)+1 # max index span zi = empty((dmax+num, self.source.numchannels), \ dtype=float) #working copy of data o = empty((num, self.grid.size), dtype=float) # output array temp = empty((self.grid.size, self.source.numchannels), dtype=float) d_index2 = arange(self.mpos.num_mics, dtype=int) # second index (static) offset = dmax+num # start offset for working array ooffset = 0 # offset for output array # generators for trajectory, starting at time zero start_t = 0.0 g = self.trajectory.traj( start_t, delta_t=1/self.source.sample_freq) g1 = self.trajectory.traj( start_t, delta_t=1/self.source.sample_freq, der=1) rflag = (self.rvec == 0).all() #flag translation vs. rotation data = self.source.result(num) flag = True while flag: # yield output array if full if ooffset == num: yield o ooffset = 0 if rflag: # grid is only translated, not rotated tpos = gpos + array(g.next())[:, newaxis] else: # grid is both translated and rotated loc = array(g.next()) #translation array([0., 0.4, 1.]) dx = array(g1.next()) #direction vector (new x-axis) dy = cross(self.rvec, dx) # new y-axis dz = cross(dx, dy) # new z-axis RM = array((dx, dy, dz)).T # rotation matrix RM /= sqrt((RM*RM).sum(0)) # column normalized tpos = dot(RM, gpos)+loc[:, newaxis] # rotation+translation rm = self.env.r( self.c, tpos, self.mpos.mpos) r0 = self.env.r( self.c, tpos) delays = rm/c d_index = array(delays, dtype=int) # integer index d_interp1 = delays % 1 # 1st coeff for lin interpolation d_interp2 = 1-d_interp1 # 2nd coeff for lin interpolation amp = (w/(rm*rm)).sum(1) * r0 amp = 1.0/(amp[:, newaxis]*rm) # multiplication factor # now, we have to make sure that the needed data is available while offset+d_index.max()+2>dmax+num: # copy remaining samples in front of next block zi[0:dmax] = zi[-dmax:] # the offset is adjusted by one block length offset -= num # test if data generator is exhausted try: # get next data block = data.next() except StopIteration: print loc flag = False break # samples in the block, equals to num except for the last block ns = block.shape[0] zi[dmax:dmax+ns] = block * w# copy data to working array else: # the next line needs to be implemented faster # it eats half of the time temp[:, :] = (zi[offset+d_index, d_index2]*d_interp1 \ + zi[offset+d_index+1, d_index2]*d_interp2)*amp o[ooffset] = temp.sum(-1) offset += 1 ooffset += 1 # remaining data chunk yield o[:ooffset] class BeamformerTimeSqTraj( BeamformerTimeSq ): """ Provides a time domain beamformer with time-dependent power signal output and possible autopower removal for a grid moving along a trajectory. """ #: :class:`~acoular.trajectory.Trajectory` or derived object. #: Start time is assumed to be the same as for the samples. trajectory = Trait(Trajectory, desc="trajectory of the grid center") #: Reference vector, perpendicular to the y-axis of moving grid. rvec = CArray( dtype=float, shape=(3, ), value=array((0, 0, 0)), desc="reference vector") # internal identifier digest = Property( depends_on = ['mpos.digest', 'grid.digest', 'source.digest', 'r_diag', \ 'c', 'weights', 'rvec', 'env.digest', 'trajectory.digest', \ '__class__'], ) traits_view = View( [ [Item('mpos{}', style='custom')], [Item('grid', style='custom'), '-<>'], [Item('trajectory{}', style='custom')], [Item('r_diag', label='diagonal removed')], [Item('c', label='speed of sound')], [Item('env{}', style='custom')], [Item('weights{}', style='custom')], '|' ], title='Beamformer options', buttons = OKCancelButtons ) @cached_property def _get_digest( self ): return digest(self) def result( self, num=2048 ): """ Python generator that yields the *squared* beamformer output block-wise. Optional removal of autocorrelation. The "moving" grid can be translated and optionally rotated. Parameters ---------- num : integer, defaults to 2048 This parameter defines the size of the blocks to be yielded (i.e. the number of samples per block) Returns ------- Samples in blocks of shape \ (num, :attr:`~BeamformerTime.numchannels`). :attr:`~BeamformerTime.numchannels` is usually very \ large (number of grid points). The last block may be shorter than num. \ The output starts for signals that were emitted from the grid at t=0. """ if self.weights_: w = self.weights_(self)[newaxis] else: w = 1.0 c = self.c/self.source.sample_freq # temp array for the grid co-ordinates gpos = self.grid.pos() # max delay span = sum of # max diagonal lengths of circumscribing cuboids for grid and micarray dmax = sqrt(((gpos.max(1)-gpos.min(1))**2).sum()) dmax += sqrt(((self.mpos.mpos.max(1)-self.mpos.mpos.min(1))**2).sum()) dmax = int(dmax/c)+1 # max index span zi = empty((dmax+num, self.source.numchannels), \ dtype=float) #working copy of data o = empty((num, self.grid.size), dtype=float) # output array temp = empty((self.grid.size, self.source.numchannels), dtype=float) d_index2 = arange(self.mpos.num_mics, dtype=int) # second index (static) offset = dmax+num # start offset for working array ooffset = 0 # offset for output array # generators for trajectory, starting at time zero start_t = 0.0 g = self.trajectory.traj( start_t, delta_t=1/self.source.sample_freq) g1 = self.trajectory.traj( start_t, delta_t=1/self.source.sample_freq, der=1) rflag = (self.rvec == 0).all() #flag translation vs. rotation data = self.source.result(num) flag = True while flag: # yield output array if full if ooffset == num: yield o ooffset = 0 if rflag: # grid is only translated, not rotated tpos = gpos + array(g.next())[:, newaxis] else: # grid is both translated and rotated loc = array(g.next()) #translation dx = array(g1.next()) #direction vector (new x-axis) dy = cross(self.rvec, dx) # new y-axis dz = cross(dx, dy) # new z-axis RM = array((dx, dy, dz)).T # rotation matrix RM /= sqrt((RM*RM).sum(0)) # column normalized tpos = dot(RM, gpos)+loc[:, newaxis] # rotation+translation rm = self.env.r( self.c, tpos, self.mpos.mpos) r0 = self.env.r( self.c, tpos) delays = rm/c d_index = array(delays, dtype=int) # integer index d_interp1 = delays % 1 # 1st coeff for lin interpolation d_interp2 = 1-d_interp1 # 2nd coeff for lin interpolation amp = (w/(rm*rm)).sum(1) * r0 amp = 1.0/(amp[:, newaxis]*rm) # multiplication factor # now, we have to make sure that the needed data is available while offset+d_index.max()+2>dmax+num: # copy remaining samples in front of next block zi[0:dmax] = zi[-dmax:] # the offset is adjusted by one block length offset -= num # test if data generator is exhausted try: # get next data block = data.next() except StopIteration: flag = False break # samples in the block, equals to num except for the last block ns = block.shape[0] zi[dmax:dmax+ns] = block * w# copy data to working array else: # the next line needs to be implemented faster # it eats half of the time temp[:, :] = (zi[offset+d_index, d_index2]*d_interp1 \ + zi[offset+d_index+1, d_index2]*d_interp2)*amp if self.r_diag: # simple sum and remove autopower o[ooffset] = clip(temp.sum(-1)**2 - \ (temp**2).sum(-1), 1e-100, 1e+100) else: # simple sum o[ooffset] = temp.sum(-1)**2 offset += 1 ooffset += 1 # remaining data chunk yield o[:ooffset] class IntegratorSectorTime( TimeInOut ): """ Provides an Integrator in the time domain. """ #: :class:`~acoular.grids.Grid`-derived object that provides the grid locations. grid = Trait(RectGrid, desc="beamforming grid") #: List of sectors in grid sectors = List() #: Clipping, in Dezibel relative to maximum (negative values) clip = Float(-350.0) #: Number of channels in output (= number of sectors). numchannels = Property( depends_on = ['sectors', ]) # internal identifier digest = Property( depends_on = ['sectors', 'clip', 'grid.digest', 'source.digest', \ '__class__'], ) traits_view = View( [ [Item('sectors', style='custom')], [Item('grid', style='custom'), '-<>'], '|' ], title='Integrator', buttons = OKCancelButtons ) @cached_property def _get_digest( self ): return digest(self) @cached_property def _get_numchannels ( self ): return len(self.sectors) def result( self, num=1 ): """ Python generator that yields the source output integrated over the given sectors, block-wise. Parameters ---------- num : integer, defaults to 1 This parameter defines the size of the blocks to be yielded (i.e. the number of samples per block) Returns ------- Samples in blocks of shape (num, :attr:`numchannels`). :attr:`numchannels` is the number of sectors. The last block may be shorter than num. """ inds = [self.grid.indices(*sector) for sector in self.sectors] gshape = self.grid.shape o = empty((num, self.numchannels), dtype=float) # output array for r in self.source.result(num): ns = r.shape[0] mapshape = (ns,) + gshape rmax = r.max() rmin = rmax * 10**(self.clip/10.0) r = where(r>rmin, r, 0.0) i = 0 for ind in inds: h = r[:].reshape(mapshape)[ (s_[:],) + ind ] o[:ns, i] = h.reshape(h.shape[0], -1).sum(axis=1) i += 1 yield o[:ns]
317
0
208
2aec0d6638ad1f50011ab2d5daffdf486d01bf2e
774
py
Python
src/classifier/bin.py
Glavin001/IssueBot
4dfb31bda009e254b38dc8394669f7debeac65a4
[ "MIT" ]
15
2016-06-08T02:21:19.000Z
2019-10-16T19:14:41.000Z
src/classifier/bin.py
Glavin001/IssueBot
4dfb31bda009e254b38dc8394669f7debeac65a4
[ "MIT" ]
23
2015-03-15T04:35:33.000Z
2019-01-18T15:38:31.000Z
src/classifier/bin.py
Glavin001/IssueBot
4dfb31bda009e254b38dc8394669f7debeac65a4
[ "MIT" ]
7
2015-06-16T19:35:21.000Z
2021-08-09T06:13:16.000Z
# Dependencies import sys, json import classifier ignore_labels = ['duplicate', 'in-progress', 'pending-publication', 'published', 'waiting-for-user-information', 'high priority'] # simple JSON echo script for line in sys.stdin: payload = json.loads(line) ( action, params ) = payload results = {} if action == "train_labels": ( user, repo, issues, ignore_labels ) = params results = classifier.train_issues(user, repo, issues, ignore_labels) elif action == "predict_labels": ( user, repo, issues ) = params results = classifier.predict_labels_for_issues(user, repo, issues) elif action == "similarity": issues = params[0] results = classifier.issue_similarity(issues) print json.dumps(results)
33.652174
129
0.674419
# Dependencies import sys, json import classifier ignore_labels = ['duplicate', 'in-progress', 'pending-publication', 'published', 'waiting-for-user-information', 'high priority'] # simple JSON echo script for line in sys.stdin: payload = json.loads(line) ( action, params ) = payload results = {} if action == "train_labels": ( user, repo, issues, ignore_labels ) = params results = classifier.train_issues(user, repo, issues, ignore_labels) elif action == "predict_labels": ( user, repo, issues ) = params results = classifier.predict_labels_for_issues(user, repo, issues) elif action == "similarity": issues = params[0] results = classifier.issue_similarity(issues) print json.dumps(results)
0
0
0
d8da40a9c00637fbb4cc02915ca28a22d0d1e041
462
py
Python
tests/test_dash_compoment_utils.py
robpoll/webviz-config
220a4ade8d2a8f5351a302080707e28e6d216cb5
[ "MIT" ]
null
null
null
tests/test_dash_compoment_utils.py
robpoll/webviz-config
220a4ade8d2a8f5351a302080707e28e6d216cb5
[ "MIT" ]
null
null
null
tests/test_dash_compoment_utils.py
robpoll/webviz-config
220a4ade8d2a8f5351a302080707e28e6d216cb5
[ "MIT" ]
null
null
null
import pytest from webviz_config.utils._dash_component_utils import calculate_slider_step @pytest.mark.parametrize( "min_value,max_value,steps,res", [ (5, 10, 100, 0.01), (-10, -5, 100, 0.01), (-10, 10, 100, 0.1) ] )
22
75
0.621212
import pytest from webviz_config.utils._dash_component_utils import calculate_slider_step @pytest.mark.parametrize( "min_value,max_value,steps,res", [ (5, 10, 100, 0.01), (-10, -5, 100, 0.01), (-10, 10, 100, 0.1) ] ) def test_calculate_slider_step(min_value, max_value, steps, res): assert( calculate_slider_step( min_value=min_value, max_value=max_value, steps=steps ) == res )
184
0
22
f48ac06ade6c3699af7d7457c6a52059497ed0d7
31,685
py
Python
data/crud.py
delta-reporter/delta-core
e8fdcf01d3fd246c08fa30bbed84d66a85099167
[ "Apache-2.0" ]
1
2021-03-12T10:55:48.000Z
2021-03-12T10:55:48.000Z
data/crud.py
delta-reporter/delta-core
e8fdcf01d3fd246c08fa30bbed84d66a85099167
[ "Apache-2.0" ]
29
2020-04-20T10:20:20.000Z
2021-06-04T10:17:17.000Z
data/crud.py
delta-reporter/delta-core
e8fdcf01d3fd246c08fa30bbed84d66a85099167
[ "Apache-2.0" ]
3
2020-05-25T14:43:47.000Z
2021-09-02T15:27:31.000Z
import models import datetime from app import db from data import constants from logzero import logger from sqlalchemy import exc from sqlalchemy.sql import func from data.subqueries import TestCounts import re import os import pytz utc = pytz.UTC
33.108673
98
0.59716
import models import datetime from app import db from data import constants from logzero import logger from sqlalchemy import exc from sqlalchemy.sql import func from data.subqueries import TestCounts import re import os import pytz utc = pytz.UTC def session_commit(): try: db.session.commit() except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() class Create: @staticmethod def create_project(name, status): project = models.Project( name=name, project_status_id=constants.Constants.project_status["Active"] if not status else constants.Constants.project_status[status], ) db.session.add(project) session_commit() return project.id @staticmethod def create_launch(name, data, project_id): launch = models.Launch( name=name, data=data, launch_status_id=constants.Constants.launch_status["In Process"], project_id=project_id, ) db.session.add(launch) session_commit() return launch.id @staticmethod def create_test_run(data, start_datetime, test_type, environment, launch_id): test_run = models.TestRun( data=data, start_datetime=start_datetime, test_type=test_type, environment=environment, test_run_status_id=constants.Constants.test_run_status["Running"], launch_id=launch_id, ) db.session.add(test_run) session_commit() return test_run.id @staticmethod def create_test_suite(name, project_id, data, test_type): test_suite = models.TestSuite( name=name, project_id=project_id, data=data, test_type=test_type ) db.session.add(test_suite) session_commit() return test_suite.id @staticmethod def create_test_suite_history(data, start_datetime, test_run_id, test_suite_id): test_suite_history = models.TestSuiteHistory( data=data, start_datetime=start_datetime, test_suite_status_id=constants.Constants.test_suite_status["Running"], test_run_id=test_run_id, test_suite_id=test_suite_id, ) db.session.add(test_suite_history) session_commit() return test_suite_history.id @staticmethod def create_test(name, data, test_suite_id): test = models.MotherTest(name=name, data=data, test_suite_id=test_suite_id) db.session.add(test) session_commit() return test.id @staticmethod def create_test_history( start_datetime, test_id, test_run_id, test_suite_history_id, parameters, status ): test_history = models.Test( start_datetime=start_datetime, mother_test_id=test_id, test_status_id=constants.Constants.test_status["Running"] if not status else constants.Constants.test_status[status], test_resolution_id=constants.Constants.test_resolution["Not set"], test_run_id=test_run_id, test_suite_history_id=test_suite_history_id, parameters=parameters, ) db.session.add(test_history) session_commit() return test_history.id @staticmethod def create_test_retry(**kwargs): test_retry = models.TestRetries( test_id=kwargs.get("test_history_id"), retry_count=kwargs.get("retry_count"), start_datetime=kwargs.get("start_datetime"), end_datetime=kwargs.get("end_datetime"), trace=kwargs.get("trace"), message=kwargs.get("message"), error_type=kwargs.get("error_type"), media=kwargs.get("media"), ) db.session.add(test_retry) session_commit() return test_retry.id @staticmethod def store_media_file(name, type, file): new_file = models.Media(name=name, type=type, data=file) db.session.add(new_file) session_commit() Delete.delete_media_older_than_days() return new_file.id @staticmethod def create_note(mother_test_id, note_text, added_by): note = models.Notes( mother_test_id=mother_test_id, note_text=note_text, added_by=added_by ) db.session.add(note) session_commit() return note.id @staticmethod def create_smart_link( project_id, environment, smart_link, label, color, filtered, location, datetime_format, ): smart_link_element = models.SmartLinks( project_id=project_id, environment=environment, smart_link=smart_link, label=label, color=color, filtered=filtered, location_id=location, datetime_format=datetime_format, ) db.session.add(smart_link_element) session_commit() return smart_link_element.id class Read: @staticmethod def projects(): try: projects = models.Project.query.all() except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() projects = None return projects @staticmethod def project_by_id(project_id): try: project = models.Project.query.filter_by(id=project_id).first() except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() project = None return project @staticmethod def project_by_name(project_name): try: project = models.Project.query.filter_by(name=project_name).first() except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() project = None return project @staticmethod def launch_by_id(launch_id): try: launch = models.Launch.query.filter_by(id=launch_id).first() except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() launch = None return launch @staticmethod def launch_by_project_id(project_id): t_counts = TestCounts() try: launch = ( db.session.query( models.Launch, models.TestRun, t_counts.total_tests_by_test_run_id.c.tests_count, t_counts.failed_tests_by_test_run_id.c.failed_tests_count, t_counts.passed_tests_by_test_run_id.c.passed_tests_count, t_counts.running_tests_by_test_run_id.c.running_tests_count, t_counts.incomplete_tests_by_test_run_id.c.incomplete_tests_count, t_counts.skipped_tests_by_test_run_id.c.skipped_tests_count, ) .outerjoin( t_counts.total_tests_by_test_run_id, models.TestRun.id == t_counts.total_tests_by_test_run_id.c.test_run_id, ) .outerjoin( t_counts.failed_tests_by_test_run_id, models.TestRun.id == t_counts.failed_tests_by_test_run_id.c.test_run_id, ) .outerjoin( t_counts.passed_tests_by_test_run_id, models.TestRun.id == t_counts.passed_tests_by_test_run_id.c.test_run_id, ) .outerjoin( t_counts.running_tests_by_test_run_id, models.TestRun.id == t_counts.running_tests_by_test_run_id.c.test_run_id, ) .outerjoin( t_counts.incomplete_tests_by_test_run_id, models.TestRun.id == t_counts.incomplete_tests_by_test_run_id.c.test_run_id, ) .outerjoin( t_counts.skipped_tests_by_test_run_id, models.TestRun.id == t_counts.skipped_tests_by_test_run_id.c.test_run_id, ) .filter(models.TestRun.launch_id == models.Launch.id) .filter(models.Launch.project_id == project_id) .order_by(models.Launch.id.desc()) .limit(100) .all() ) except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() launch = None return launch @staticmethod def test_run_by_id(test_run_id): t_counts = TestCounts() try: test_run = ( db.session.query( models.TestRun, t_counts.total_tests_by_test_run_id.c.tests_count, t_counts.failed_tests_by_test_run_id.c.failed_tests_count, t_counts.passed_tests_by_test_run_id.c.passed_tests_count, t_counts.running_tests_by_test_run_id.c.running_tests_count, t_counts.incomplete_tests_by_test_run_id.c.incomplete_tests_count, t_counts.skipped_tests_by_test_run_id.c.skipped_tests_count, ) .outerjoin( t_counts.total_tests_by_test_run_id, models.TestRun.id == t_counts.total_tests_by_test_run_id.c.test_run_id, ) .outerjoin( t_counts.failed_tests_by_test_run_id, models.TestRun.id == t_counts.failed_tests_by_test_run_id.c.test_run_id, ) .outerjoin( t_counts.passed_tests_by_test_run_id, models.TestRun.id == t_counts.passed_tests_by_test_run_id.c.test_run_id, ) .outerjoin( t_counts.running_tests_by_test_run_id, models.TestRun.id == t_counts.running_tests_by_test_run_id.c.test_run_id, ) .outerjoin( t_counts.incomplete_tests_by_test_run_id, models.TestRun.id == t_counts.incomplete_tests_by_test_run_id.c.test_run_id, ) .outerjoin( t_counts.skipped_tests_by_test_run_id, models.TestRun.id == t_counts.skipped_tests_by_test_run_id.c.test_run_id, ) .filter(models.TestRun.id == test_run_id) .order_by(models.TestRun.id) ) except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() test_run = None return test_run @staticmethod def simple_test_run_by_id(test_run_id): try: test_run = models.TestRun.query.filter_by(id=test_run_id).first() except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() test_run = None return test_run.__dict__ @staticmethod def test_run_by_launch_id(launch_id): t_counts = TestCounts() try: test_run = ( db.session.query( models.TestRun, t_counts.total_tests_by_test_run_id.c.tests_count, t_counts.failed_tests_by_test_run_id.c.failed_tests_count, t_counts.passed_tests_by_test_run_id.c.passed_tests_count, t_counts.running_tests_by_test_run_id.c.running_tests_count, t_counts.incomplete_tests_by_test_run_id.c.incomplete_tests_count, t_counts.skipped_tests_by_test_run_id.c.skipped_tests_count, ) .outerjoin( t_counts.total_tests_by_test_run_id, models.TestRun.id == t_counts.total_tests_by_test_run_id.c.test_run_id, ) .outerjoin( t_counts.failed_tests_by_test_run_id, models.TestRun.id == t_counts.failed_tests_by_test_run_id.c.test_run_id, ) .outerjoin( t_counts.passed_tests_by_test_run_id, models.TestRun.id == t_counts.passed_tests_by_test_run_id.c.test_run_id, ) .outerjoin( t_counts.running_tests_by_test_run_id, models.TestRun.id == t_counts.running_tests_by_test_run_id.c.test_run_id, ) .outerjoin( t_counts.incomplete_tests_by_test_run_id, models.TestRun.id == t_counts.incomplete_tests_by_test_run_id.c.test_run_id, ) .outerjoin( t_counts.skipped_tests_by_test_run_id, models.TestRun.id == t_counts.skipped_tests_by_test_run_id.c.test_run_id, ) .filter(models.TestRun.launch_id == launch_id) .order_by(models.TestRun.id) ) except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() test_run = None return test_run @staticmethod def test_runs_failed_by_launch_id(launch_id): try: failed_runs = models.TestRun.query.filter_by( launch_id=launch_id, test_run_status_id=constants.Constants.test_run_status["Failed"], ).all() except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() failed_runs = None return failed_runs @staticmethod def test_suite_by_id(test_suite_id): try: test_suite = models.TestSuite.query.filter_by(id=test_suite_id).first() except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() test_suite = None return test_suite @staticmethod def test_suite_by_name_project_test_type(name, project_id, test_type): try: test_suite = models.TestSuite.query.filter_by( name=name, project_id=project_id, test_type=test_type ).first() except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() test_suite = None return test_suite @staticmethod def test_suite_history_by_suite_id_test_run(test_run_id, test_suite_id): try: test_suite_history = models.TestSuiteHistory.query.filter_by( test_run_id=test_run_id, test_suite_id=test_suite_id ).first() except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() test_suite_history = None return test_suite_history @staticmethod def mother_test_by_name(test_name): try: mother_test = models.MotherTest.query.filter_by(name=test_name).first() except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() mother_test = None return mother_test @staticmethod def test_by_id(test_id): try: test = models.Test.query.filter_by(id=test_id).first() except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() test = None return test.__dict__ @staticmethod def test_suite_history_by_test_run(test_run_id): try: test_suite_history = ( db.session.query(models.TestRun, models.TestSuiteHistory) .filter(models.TestRun.id == models.TestSuiteHistory.test_run_id) .filter(models.TestRun.id == test_run_id) .all() ) except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() test_suite_history = None return test_suite_history @staticmethod def test_suite_history_by_test_status_and_test_run_id( test_suite_status_id, test_run_id ): try: test_suite_history = ( db.session.query(models.TestRun, models.TestSuiteHistory) .filter(models.TestRun.id == models.TestSuiteHistory.test_run_id) .filter(models.TestRun.id == test_run_id) .filter( models.TestSuiteHistory.test_suite_status_id == test_suite_status_id ) .all() ) except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() test_suite_history = None return test_suite_history @staticmethod def test_history_by_test_id_and_test_run_id(test_id, test_run_id): try: test_history = models.Test.query.filter_by( mother_test_id=test_id, test_run_id=test_run_id ).first() except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() test_history = None return test_history @staticmethod def test_suite_history_by_array_of_test_statuses_and_test_run_id( test_statuses_ids, test_run_id ): array_of_statuses = re.findall( "\d+", test_statuses_ids ) # getting all numbers from string t_counts = TestCounts() try: test_history = ( db.session.query( models.TestSuiteHistory, t_counts.total_tests_by_test_suite_history_id.c.tests_count, t_counts.failed_tests_by_test_suite_history_id.c.failed_tests_count, t_counts.passed_tests_by_test_suite_history_id.c.passed_tests_count, t_counts.running_tests_by_test_suite_history_id.c.running_tests_count, t_counts.incomplete_tests_by_test_suite_history_id.c.incomplete_tests_count, t_counts.skipped_tests_by_test_suite_history_id.c.skipped_tests_count, ) .outerjoin( t_counts.total_tests_by_test_suite_history_id, models.TestSuiteHistory.id == t_counts.total_tests_by_test_suite_history_id.c.test_suite_history_id, ) .outerjoin( t_counts.failed_tests_by_test_suite_history_id, models.TestSuiteHistory.id == t_counts.failed_tests_by_test_suite_history_id.c.test_suite_history_id, ) .outerjoin( t_counts.passed_tests_by_test_suite_history_id, models.TestSuiteHistory.id == t_counts.passed_tests_by_test_suite_history_id.c.test_suite_history_id, ) .outerjoin( t_counts.running_tests_by_test_suite_history_id, models.TestSuiteHistory.id == t_counts.running_tests_by_test_suite_history_id.c.test_suite_history_id, ) .outerjoin( t_counts.incomplete_tests_by_test_suite_history_id, models.TestSuiteHistory.id == t_counts.incomplete_tests_by_test_suite_history_id.c.test_suite_history_id, ) .outerjoin( t_counts.skipped_tests_by_test_suite_history_id, models.TestSuiteHistory.id == t_counts.skipped_tests_by_test_suite_history_id.c.test_suite_history_id, ) .filter(models.TestRun.id == models.TestSuiteHistory.test_run_id) .filter(models.TestSuiteHistory.test_run_id == models.Test.test_run_id) .filter(models.TestSuiteHistory.id == models.Test.test_suite_history_id) .filter(models.TestRun.id == test_run_id) .filter(models.Test.test_status_id.in_(array_of_statuses)) .join(models.TestSuite) .order_by(models.TestSuite.name.asc()) .all() ) except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() test_history = None return test_history @staticmethod def tests_by_array_of_test_statuses_and_test_suite_history_id( test_statuses_ids, test_suite_history_id ): array_of_statuses = re.findall( "\d+", test_statuses_ids ) # getting all numbers from string try: test_history = ( db.session.query(models.Test) .filter(models.Test.test_suite_history_id == test_suite_history_id) .filter(models.Test.test_status_id.in_(array_of_statuses)) .order_by(models.Test.id.desc()) .all() ) except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() test_history = None return test_history @staticmethod def test_history_by_test_resolution_id(test_resolution_id): try: test_history = models.Test.query.filter_by( test_resolution_id=test_resolution_id ).all() except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() test_history = None return test_history @staticmethod def test_history_by_test_suite_id(test_suite_id): try: test_history = ( db.session.query(models.Test, models.Test, models.TestSuite) .filter(models.MotherTest.test_suite_id == models.TestSuite.id) .filter(models.Test.test_id == models.MotherTest.id) .filter(models.MotherTest.test_suite_id == test_suite_id) .all() ) except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() test_history = None return test_history @staticmethod def test_history_failed_by_test_suite_history_id(test_suite_history_id): try: test_history = ( db.session.query(models.Test) .filter(models.Test.test_suite_history_id == models.TestSuiteHistory.id) .filter( models.Test.test_status_id == constants.Constants.test_status["Failed"] ) .filter(models.TestSuiteHistory.id == test_suite_history_id) .all() ) except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() test_history = None return test_history @staticmethod def test_retries_by_test_history_id(test_history_id): try: test_retries = models.TestRetries.query.filter_by( test_history_id=test_history_id ).all() except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() test_retries = None return test_retries @staticmethod def file_by_media_id(media_id): try: file_data = models.Media.query.filter_by(id=media_id).first() except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() return file_data @staticmethod def test_history_by_test_id(test_id): try: test_history = ( models.Test.query.filter( models.Test.mother_test_id == test_id, models.Test.test_status_id != constants.Constants.test_status["Running"], ) .order_by(models.Test.end_datetime.desc()) .limit(10) .all() ) except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() test_history = None return test_history @staticmethod def notes_by_mother_test_id(mother_test_id): try: notes = models.Notes.query.filter_by(mother_test_id=mother_test_id).all() except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() notes = None return notes @staticmethod def smart_links_by_project_id(project_id): try: smart_links = models.SmartLinks.query.filter_by(project_id=project_id).all() except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() smart_links = None return smart_links @staticmethod def smart_links_by_project_id_and_location(project_id, location): try: smart_links = models.SmartLinks.query.filter_by( project_id=project_id, location_id=location ).all() except exc.SQLAlchemyError as e: logger.error(e) db.session.rollback() smart_links = None return smart_links class Update: @staticmethod def update_test_history( test_history_id, end_datetime, trace, file, message, error_type, test_status, ): test_history = db.session.query(models.Test).get(test_history_id) test_history.end_datetime = end_datetime test_history.trace = trace test_history.file = file test_history.message = message test_history.error_type = error_type test_history.test_status_id = constants.Constants.test_status.get(test_status) session_commit() return test_history @staticmethod def increase_test_history_retry(test_history_id): test_history = db.session.query(models.Test).get(test_history_id) test_history.retries = ( 1 if test_history.retries is None else test_history.retries + 1 ) session_commit() return test_history.retries @staticmethod def clean_test_history_media(test_history_id): test_history = db.session.query(models.Test).get(test_history_id) test_history.media = None session_commit() @staticmethod def update_test_history_resolution(test_id, test_resolution): test_history = db.session.query(models.Test).get(test_id) test_history.test_resolution_id = constants.Constants.test_resolution.get( test_resolution ) session_commit() return test_history @staticmethod def update_general_test_resolution(mother_test_id, test_resolution): test = db.session.query(models.MotherTest).get(mother_test_id) test.test_resolution_id = constants.Constants.test_resolution.get( test_resolution ) session_commit() return test @staticmethod def update_test_suite_history(test_suite_history_id, end_datetime, data): failed_test = Read.test_history_failed_by_test_suite_history_id( test_suite_history_id ) if failed_test: test_suite_status = constants.Constants.test_suite_status["Failed"] else: test_suite_status = constants.Constants.test_suite_status["Successful"] test_suite_history = db.session.query(models.TestSuiteHistory).get( test_suite_history_id ) test_suite_history.end_datetime = end_datetime test_suite_history.data = data test_suite_history.test_suite_status_id = test_suite_status session_commit() return test_suite_history.id @staticmethod def update_test_run(test_run_id, end_datetime, test_run_status): test_run = db.session.query(models.TestRun).get(test_run_id) test_run.end_datetime = end_datetime if test_run_status is not None: test_run.test_run_status_id = constants.Constants.test_run_status.get( test_run_status ) session_commit() return test_run.id @staticmethod def update_test_run_data(test_run_id, data): test_run = db.session.query(models.TestRun).get(test_run_id) test_run.data = data session_commit() return test_run.id @staticmethod def update_launch(launch_id, launch_status): launch = db.session.query(models.Launch).get(launch_id) launch.launch_status_id = constants.Constants.launch_status.get(launch_status) session_commit() return launch @staticmethod def add_media_to_test_history(test_history_id, media): test_history = db.session.query(models.Test).get(test_history_id) if test_history.media: test_history.media.append(media) else: test_history.media = [media] session_commit() return test_history.id @staticmethod def update_test_data(test_id, data): test = db.session.query(models.Test).get(test_id) test.data = data session_commit() return test.id @staticmethod def update_project_name(id, name): project = db.session.query(models.Project).get(id) if project.name != name: project.name = name session_commit() return project.name @staticmethod def update_test_flaky_flag(id, is_flaky): test = db.session.query(models.MotherTest).get(id) test.is_flaky = is_flaky session_commit() return test @staticmethod def update_smart_link(id, environment, smart_link, label, color, type, location): smart_link_object = db.session.query(models.SmartLinks).get(id) smart_link_object.environment = environment smart_link_object.smart_link = smart_link smart_link_object.label = label smart_link_object.color = color smart_link_object.type_id = type smart_link_object.location_id = location session_commit() return smart_link_object class Delete: @staticmethod def delete_project(project_id): project = db.session.query(models.Project).get(project_id) if project is None: return "Project already deleted" db.session.delete(project) session_commit() return "Project deleted successfully" @staticmethod def delete_smart_link(smart_link_id): smart_link = db.session.query(models.SmartLinks).get(smart_link_id) if smart_link is None: return "SmartLink already deleted" db.session.delete(smart_link) session_commit() return "SmartLink deleted successfully" @staticmethod def delete_media_older_than_days(): days = os.environ["DAYS_OLD_MEDIA_DELETE"] epoch_time = utc.localize(datetime.datetime.today()) - datetime.timedelta( days=int(days) ) amount = models.Media.query.filter( models.Media.created_datetime <= epoch_time ).count() models.Media.query.filter(models.Media.created_datetime <= epoch_time).delete() db.session.commit() logger.warning( "{} elements, older than {} days were deleted ".format(amount, days) )
28,834
2,482
115
746790b2f99b3eeda9ba31ceed4b0eb4232aa515
59
py
Python
settings.py
joevgear/test_rail_util
fb5e6d24798025de47e12499921d533286e64cf8
[ "MIT" ]
null
null
null
settings.py
joevgear/test_rail_util
fb5e6d24798025de47e12499921d533286e64cf8
[ "MIT" ]
null
null
null
settings.py
joevgear/test_rail_util
fb5e6d24798025de47e12499921d533286e64cf8
[ "MIT" ]
null
null
null
TESTRAIL_API_TOKEN = "" TESTRAIL_URL = "" TESTRAIL_PWD = ""
19.666667
23
0.711864
TESTRAIL_API_TOKEN = "" TESTRAIL_URL = "" TESTRAIL_PWD = ""
0
0
0
dc0db130e806210874050218cce2f5ab9cc337fb
45,500
py
Python
experiment_setup.py
cambridgeltl/link-prediction_with_deep-learning
ff227fcc20ffa5e75ae456d1e8d533fd8204635d
[ "MIT" ]
28
2017-11-17T16:36:23.000Z
2022-01-06T12:30:47.000Z
experiment_setup.py
cambridgeltl/link-prediction_with_deep-learning
ff227fcc20ffa5e75ae456d1e8d533fd8204635d
[ "MIT" ]
2
2019-12-30T18:22:41.000Z
2020-04-15T07:40:35.000Z
experiment_setup.py
cambridgeltl/link-prediction_with_deep-learning
ff227fcc20ffa5e75ae456d1e8d533fd8204635d
[ "MIT" ]
15
2018-06-07T13:09:53.000Z
2021-03-07T07:27:33.000Z
import sys import csv import random """ Sets up the data for the Link Prediction experiment. Given the raw data file, it: 1)removes a specified amount of edges for representation induction, 2) creates a specified amount of negative examples from the remaining edges, 3) splits the positive and negative examples into train, dev and test sets as specified 4) writes the relevant train, dev and test files. """ #e.g of split: {'p1': [('date', '=', 1980)]} #In MATADOR dataset, all Chemical identifiers can be integers but no proteins can be if __name__ == '__main__': sys.exit(main(sys.argv))
46.571136
525
0.594396
import sys import csv import random """ Sets up the data for the Link Prediction experiment. Given the raw data file, it: 1)removes a specified amount of edges for representation induction, 2) creates a specified amount of negative examples from the remaining edges, 3) splits the positive and negative examples into train, dev and test sets as specified 4) writes the relevant train, dev and test files. """ def argparser(): import argparse ap = argparse.ArgumentParser() ap.add_argument('-f', '--input-file', help='Input .tsv file') ap.add_argument('-n', '--negative-ratio', default=1, help='Ratio of negative to positive examples to create (default 1)') ap.add_argument('-tf', '--train-filename', default='train.tsv', help='name of file for training data (default train.tsv)') ap.add_argument('-df', '--devel-filename', default='devel.tsv', help='name of file for development data (default devel.tsv)') ap.add_argument('-tef', '--test-filename', default='test.tsv', help='name of file for testing data (default test.tsv)') ap.add_argument('-vf', '--vertices-filename', default='vertices.txt', help='name of file containing mapping of all vertex number to name (default vertices.txt)') ap.add_argument('-tgf', '--train-graph-filename', default='train_adj_mat.adjlist', help='name of file to store graph for representation induction for training (default train_adj_mat.adjlist)') ap.add_argument('-tegf', '--test-graph-filename', default='test_adj_mat.adjlist', help='name of file to store graph for representation induction for testing (default test_adj_mat.adjlist)') ap.add_argument('-s', '--split', default='70:10:20', help='Train/devel/test split (default 70:10:20)') ap.add_argument('-il', '--induction_learning_split', default='50:50', help='Split for inducing representations and learning model (default 50:50)') ap.add_argument('-v', '--values', default='0:1', help='Values for labels (default 0:1)') ap.add_argument('-l', '--labels', default='O:I-LINK', help='Labels for values (default O:I-LINK)') ap.add_argument('-x', '--indices', default='0:1', help='Index of tsv file where entities can be found (default 0:1)') ap.add_argument('-a', '--attributes', default='score', help='Names of link attributes to be read from data (default score)') ap.add_argument('-ci', '--col_indices', default='0:1', help='Index of tsv file where information on entities and attributes are (default 0:1)') ap.add_argument('-cl', '--col_labels', default='entity1,entity2', help='Labels of the data in the tsv file where entities and attributes are (default 0:1)') ap.add_argument('-sc', '--split_criteria', default=None, help='How to split the data for processing of form: split_name1:criteria_name,operator,criteria_value::split_name2:criteria1_name,operator1,criteria1_value|criteria2_name,operator2,criteria2_value (default None)') ap.add_argument('-is', '--induction_split_names', default=None, help='Names of splits to be used for induction of form name1:name2 (default None)') ap.add_argument('-tr', '--train_split_names', default=None, help='Names of splits to be used as training data of form name1:name2 (default None)') ap.add_argument('-dn', '--devel_split_names', default=None, help='Names of splits to be used as development data of form name1:name2 (default None)') ap.add_argument('-te', '--test_split_names', default=None, help='Names of splits to be used as testing data of form name1:name2 (default None)') ap.add_argument('-b', '--balance-classes', default=False, help='Whether or not to balance the amount of examples of included class (default False)') ap.add_argument('-c', '--maintain-connection', default=False, help='Whether or not to maintain connectivity in induced representations graph (default False)') ap.add_argument('-g', '--graph_format', default='adjlist', help='Format of matrix representation output {adjlist, edgelist, line} (default adjlist)') ap.add_argument('-gb', '--graph_bipartite', default=False, help='Process graph as bipartitie or not esp for creating negatives') ap.add_argument('-sg', '--save-graph', default='True', help='Whether or not to save graph adjacency list in a file (default True)') return ap def read_data(input_data_file, attributes, col_labels, col_indices): col_indices_vals = col_indices.split(':') col_labels_vals = col_labels.split(',') assert(len(col_indices_vals) == len(col_labels_vals)), "Lenghts of Labels ({}) and Indices ({}) do not match.".format(col_labels, col_indices) indices = {} for label, index in zip(col_labels_vals, col_indices_vals): indices[label] = index split_indices = col_indices.split(':') assert(len(split_indices) >= 2), "Incorrect length for indices: {}".format(len(split_indices)) attribute_indices = {} for attribute in attributes.split(':'): attribute_indices[attribute] = -1 for num, index in enumerate(split_indices): if num == 0: entity1_index = int(index) elif num == 1: entity2_index = int(index) else: attribute_index_index = num - 2 #2 values of the indices (entity 1 and 2) are not part of the attributes list attribute_indices[attributes.split(':')[attribute_index_index]] = int(index) with open(input_data_file) as tsv: entity1_lst = [] entity2_lst = [] self_referential_edges = 0 data = {} for ind, line in enumerate(csv.reader(tsv, delimiter="\t")): #quoting=csv.QUOTE_NONE - If req to make data work, examine data attribute_values = {} entity1 = line[entity1_index].replace(' ', '_') entity2 = line[entity2_index].replace(' ', '_') #Check for attribute values for attribute, index in attribute_indices.iteritems(): attribute_values[attribute] = line[index] if entity1 == entity2: self_referential_edges += 1 key1 = "%s::%s" % (entity1, entity2) key2 = "%s::%s" % (entity2, entity1) score = attribute_values['score'] if 'score' in attribute_values else None if key1 not in data and key2 not in data: if score: try: if int(score) == 0: #Remove possible unconnected nodes continue except: continue else: if attributes == '': attribute_values = 1 #Shuffle node order in key if random.choice([0,1]) == 1: data[key1] = attribute_values else: data[key2] = attribute_values entity1_lst.append(entity1) entity2_lst.append(entity2) print("\n%s nodes read. %s edges read." % (len(set(entity1_lst + entity2_lst)), len(data))) print("{}/{:,} ({}%) edges were self-referential.".format(self_referential_edges, len(data), (self_referential_edges/float(len(data)))*100 )) return data def _equals(data, criteria, criteria_value): edges = [] for edge, attributes in data.iteritems(): assert(criteria in attributes), "Criteria {} not in attributes.".format(criteria) if int(attributes[criteria]) == criteria_value: edges.append(edge) return edges def _greaterthan(data, criteria, criteria_value): edges = [] for edge, attributes in data.iteritems(): assert(criteria in attributes), "Criteria {} not in attributes.".format(criteria) if int(attributes[criteria]) > criteria_value: edges.append(edge) return edges def _lessthan(data, criteria, criteria_value): edges = [] for edge, attributes in data.iteritems(): assert(criteria in attributes), "Criteria {} not in attributes.".format(criteria) if int(attributes[criteria]) < criteria_value: edges.append(edge) return edges #e.g of split: {'p1': [('date', '=', 1980)]} def get_splits(data, split_criteria=None): induction_edges, train_edges, test_edges = {}, {}, {} #split data split_data = {} for name, criteria_lst in split_criteria.iteritems(): split_data[name] = [] for ind, criteria in enumerate(criteria_lst): valid = [] if criteria[1] == '=': valid += _equals(data, criteria[0], criteria[2]) elif criteria[1] == '>': valid += _greaterthan(data, criteria[0], criteria[2]) elif criteria[1] == '<': valid += _lessthan(data, criteria[0], criteria[2]) elif criteria[1] == '>=': valid += _greaterthan(data, criteria[0], criteria[2]) + _equals(data, criteria[0], criteria[2]) elif criteria[1] == '<=': valid += _lessthan(data, criteria[0], criteria[2]) + _equals(data, criteria[0], criteria[2]) else: print("ERROR: Invalid criteria {} used.".format(criteria[1])) if ind > 0: valid = set(valid).intersection(set(split_data[name])) split_data[name] = list(valid) else: split_data[name] += list(valid) return split_data def get_induction_learning_edges(data, induction_learning_split, maintain_connection): induction_edges, learning_edges = {}, {} induction_split = int(induction_learning_split.split(':')[0]) learning_split = int(induction_learning_split.split(':')[1]) keys = data.keys() if maintain_connection: induction_keys = [] for key in keys: entity1 = key.split('::')[0] entity2 = key.split('::')[1] if entity1 in induction_keys and entity2 in induction_keys: #Both already have some connection current_induction_ratio = (float(len(induction_edges))/(len(learning_edges) + len(induction_edges))) * 100 current_learning_ratio = (float(len(learning_edges))/(len(learning_edges) + len(induction_edges))) * 100 if current_induction_ratio > induction_split and abs(current_induction_ratio - induction_split) > 5: #Induction edges ratio far above specified split place in learning learning_edges[key] = data[key] elif current_learning_ratio > learning_split and abs(current_learning_ratio - learning_split) > 5: #learning edges ratio far above specified split place in induction induction_edges[key] = data[key] else: #Both already have some connection, and ratio roughly in line with specified split place randomly place = random.randrange(100) if place < induction_split: induction_edges[key] = data[key] else: learning_edges[key] = data[key] else: induction_edges[key] = data[key] induction_keys.append(entity1) induction_keys.append(entity2) else: for key in keys: place = random.randrange(100) if place < induction_split: induction_edges[key] = data[key] else: learning_edges[key] = data[key] print("\n%s Induction Edges. %s Learning edges." % (len(induction_edges), len(learning_edges))) return induction_edges, learning_edges def create_adjacency_matrix_file(induction_edges, train_edges, test_edges, train_graph_filename, test_graph_filename, graph_format, vertices_filename, save_graph): print("Start of create adj matrices function: Training adj-mat edges %s. Testing adj-mat edges: %s" % (len(induction_edges), len(induction_edges) + len(train_edges))) train_adj_mat = {} #Only induction edges test_adj_mat = {} #Induction and training edges to create embeddings for testing vertices = {} node_index = 0 #Add induction edges to training adj_mat for key, weight in induction_edges.iteritems(): entity1 = key.split('::')[0] entity2 = key.split('::')[1] if entity1 not in vertices: node_index += 1 ent1_vertex_ind = node_index vertices[entity1] = node_index else: ent1_vertex_ind = vertices[entity1] if entity2 not in vertices: node_index += 1 ent2_vertex_ind = node_index vertices[entity2] = node_index else: ent2_vertex_ind = vertices[entity2] if ent1_vertex_ind in train_adj_mat: train_adj_mat[ent1_vertex_ind].append(str(ent2_vertex_ind)) else: train_adj_mat[ent1_vertex_ind] = [str(ent2_vertex_ind)] if ent2_vertex_ind in train_adj_mat: train_adj_mat[ent2_vertex_ind].append(str(ent1_vertex_ind)) else: train_adj_mat[ent2_vertex_ind] = [str(ent1_vertex_ind)] print("\n%s induction vertices read." % len(vertices)) #Copy all train adj_mat to test adj_mat for key, value in train_adj_mat.iteritems(): if key not in test_adj_mat: test_adj_mat[key] = value #Add training edges to testing adj_mat new_addition = 0 already_added = 0 for key, weight in train_edges.iteritems(): entity1 = key.split('::')[0] entity2 = key.split('::')[1] if entity1 not in vertices: node_index += 1 ent1_vertex_ind = node_index vertices[entity1] = node_index else: ent1_vertex_ind = vertices[entity1] if entity2 not in vertices: node_index += 1 ent2_vertex_ind = node_index vertices[entity2] = node_index else: ent2_vertex_ind = vertices[entity2] if ent1_vertex_ind in test_adj_mat: if str(ent2_vertex_ind) not in test_adj_mat[ent1_vertex_ind]: test_adj_mat[ent1_vertex_ind].append(str(ent2_vertex_ind)) else: new_addition += 1 test_adj_mat[ent1_vertex_ind] = [str(ent2_vertex_ind)] if ent2_vertex_ind in test_adj_mat: if str(ent1_vertex_ind) not in test_adj_mat[ent2_vertex_ind]: test_adj_mat[ent2_vertex_ind].append(str(ent1_vertex_ind)) else: new_addition += 1 test_adj_mat[ent2_vertex_ind] = [str(ent1_vertex_ind)] print("\n%s induction and train vertices read." % len(vertices)) print("\nAfter adding training edges: %s vertices in Train Matrix representation. %s vertices in Test Matrix representation." % (len(train_adj_mat), len(test_adj_mat))) #Add possible left out nodes to adj_mats (possible if connectivity not required) unconnected_nodes = 0 connected_nodes = {} learning_edges = {} for edge_dict in [train_edges, test_edges]: for key, value in edge_dict.iteritems(): learning_edges[key] = value for key, weight in learning_edges.iteritems(): entity1 = key.split('::')[0] entity2 = key.split('::')[1] if entity1 not in vertices: node_index += 1 unconnected_nodes += 1 vertices[entity1] = node_index #Must be a totally new entity, add to both matrices train_adj_mat[node_index] = [] test_adj_mat[node_index] = [] else: n_index = vertices[entity1] if n_index not in train_adj_mat: train_adj_mat[n_index] = [] if n_index not in test_adj_mat: test_adj_mat[n_index] = [] if entity1 not in connected_nodes: connected_nodes[entity1] = 1 if entity2 not in vertices: node_index += 1 unconnected_nodes += 1 vertices[entity2] = node_index #Must be a totally new entity, add to both matrices train_adj_mat[node_index] = [] test_adj_mat[node_index] = [] else: n_index = vertices[entity2] if n_index not in train_adj_mat: train_adj_mat[n_index] = [] if n_index not in test_adj_mat: test_adj_mat[n_index] = [] if entity2 not in connected_nodes: connected_nodes[entity2] = 1 print("Ratio unconnected nodes to connected in learning is {:,}:{:,}.".format(unconnected_nodes, len(connected_nodes))) print("\n%s total vertices read. %s vertices in Train Matrix representation. %s vertices in Test Matrix representation." % (len(vertices), len(train_adj_mat), len(test_adj_mat))) train_output = "" test_output = "" train_output_cnt = 0 test_output_cnt = 0 for graph_format in ['adjlist', 'edgelist', 'line', 'sdne']: train_output = "" test_output = "" train_output_cnt = 0 test_output_cnt = 0 train_graph_filename = 'train_adj_mat.{}'.format(graph_format) test_graph_filename = 'test_adj_mat.{}'.format(graph_format) if graph_format == 'adjlist': for key, value in train_adj_mat.iteritems(): if len(value) > 0: train_output_cnt += 1 train_output += "%s %s\n" % (key, ' '.join(value)) else: train_output += "%s\n" % (key) for key, value in test_adj_mat.iteritems(): if len(value) > 0: test_output_cnt += 1 test_output += "%s %s\n" % (key, ' '.join(value)) else: test_output += "%s\n" % (key) print("Non zero train: %s. Non zero test: %s" % (train_output_cnt, test_output_cnt)) elif graph_format == 'edgelist': for key, value in train_adj_mat.iteritems(): if len(value) > 0: for node_edge in value: train_output += "%s %s\n" % (key, node_edge) else: train_output += "%s %s\n" % (key, key) #Hack to create an edge for nodes which have no edges as node2vec does not ceate embeddings for them. NEEDED?? for key, value in test_adj_mat.iteritems(): if len(value) > 0: for node_edge in value: test_output += "%s %s\n" % (key, node_edge) else: test_output += "%s %s\n" % (key, key) #Hack to create an edge for nodes which have no edges as node2vec does not ceate embeddings for them. NEEDED?? elif graph_format == 'line': #TODO: Add proper scores here for key, value in train_adj_mat.iteritems(): if len(value) > 0: for node_edge in value: train_output += "%s %s %s\n" % (key, node_edge, 1) else: train_output += "%s %s %s\n" % (key, key, 0) for key, value in test_adj_mat.iteritems(): if len(value) > 0: for node_edge in value: test_output += "%s %s %s\n" % (key, node_edge, 1) else: test_output += "%s %s %s\n" % (key, key, 0) elif graph_format == 'sdne': #Needs node and edge count at top of file and nodeid must begin at 0 node_cnt = len(train_adj_mat) edge_cnt = 0 for key, value in train_adj_mat.iteritems(): key = str(int(key) - 1) if len(value) > 0: for node_edge in value: node_edge = str(int(node_edge) - 1) train_output += "%s %s\n" % (key, node_edge) edge_cnt += 1 else: train_output += "%s %s\n" % (key, key) edge_cnt += 1 train_output = "%s %s\n" % (node_cnt, edge_cnt) + train_output node_cnt = len(test_adj_mat) edge_cnt = 0 for key, value in test_adj_mat.iteritems(): key = str(int(key) - 1) if len(value) > 0: for node_edge in value: node_edge = str(int(node_edge) - 1) test_output += "%s %s\n" % (key, node_edge) edge_cnt += 1 else: test_output += "%s %s\n" % (key, key) edge_cnt += 1 test_output = "%s %s\n" % (node_cnt, edge_cnt) + test_output fil2 = open(train_graph_filename, 'w') fil2.write(train_output) test_graph = open(test_graph_filename, 'w') test_graph.write(test_output) voutput = "" fil3 = open(vertices_filename, 'w') for vertex, index in vertices.iteritems(): voutput += "%s %s\n" % (index, vertex) fil3.write(voutput) if save_graph: graph_output = "" for key, value in test_adj_mat.iteritems(): if len(value) > 0: graph_output += "%s %s\n" % (key, ' '.join(value)) else: graph_output += "%s\n" % (key) graph_file = open('graph.adjlist', 'w') graph_file.write(graph_output) graph_file.close() def create_learning_splits(learning_edges, negative_ratio, balance_classes, train_filename, devel_filename, test_filename, tdt_split, values, labels, separation_fn=None): keys = learning_edges.keys() entity_set = set([k for key in keys for k in key.split('::')]) print("\n%s vertices in learning." % len(entity_set)) #Create different sets if graph is bipartite. Avoids creating unrealistic (easier) negatives. entity1_lst, entity2_lst = None, None if separation_fn: entity1_lst, entity2_lst = separation_fn(entity_set) #Create data files train = open(train_filename, 'w') devel = open(devel_filename, 'w') test = open(test_filename, 'w') header = "node1\tnode2\tlabel\n" train_output = "%s" % header devel_output = "%s" % header test_output = "%s" % header train_max = int(tdt_split.split(':')[0]) devel_max = train_max + int(tdt_split.split(':')[1]) test_max = devel_max + int(tdt_split.split(':')[2]) values = [int(val) for val in values.split(':')] labels = labels.split(':') assert (len(values) == len(labels)), "%s values and %s labels" % (len(values), len(labels)) #Split edges into train, devel, test added_cnts = {} train_cnts = {} devel_cnts = {} test_cnts = {} train_entities = [] test_entities = [] train_edges = {} devel_edges = {} test_edges = {} for key, value in learning_edges.iteritems(): if balance_classes: if value in added_cnts: if added_cnts[value] <= least_cnts: added_cnts[value] += 1 else: added_cnts[value] = 1 if added_cnts[value] > least_cnts: continue entity1 = key.split('::')[0] entity2 = key.split('::')[1] place = random.randrange(100) if place < train_max: train_edges[key] = 1 if value in train_cnts: train_cnts[value] += 1 else: train_cnts[value] = 1 train_entities.append(entity1) train_entities.append(entity2) elif place < devel_max: devel_edges[key] = 1 if value in devel_cnts: devel_cnts[value] += 1 else: devel_cnts[value] = 1 elif place < test_max: test_edges[key] = 1 if value in test_cnts: test_cnts[value] += 1 else: test_cnts[value] = 1 test_entities.append(entity1) test_entities.append(entity2) else: print("WARNING: Item not placed in train, devel or test due to place index of: %s" % place) #Create train examples pos_cnt = len(train_edges) entity_lst = list(entity_set) noise_edges = 0 while len(train_edges) < pos_cnt * (int(negative_ratio) + 1): ent1 = random.choice(entity_lst) if not entity1_lst else random.choice(entity1_lst) ent2 = random.choice(entity_lst) if not entity2_lst else random.choice(entity2_lst) if ent1 != ent2: key1 = "%s::%s" % (ent1, ent2) key2 = "%s::%s" % (ent2, ent1) if key1 not in train_edges and key2 not in train_edges: #Shuffle node order in key if random.choice([0,1]) == 1: train_edges[key1] = 0 #Track whether it is a 'noise edge' if key1 in devel_edges or key1 in test_edges: noise_edges += 1 else: train_edges[key2] = 0 #Track whether it is a 'noise edge' if key2 in devel_edges or key2 in test_edges: noise_edges += 1 print("There were {}/{:,} ({}%) noise edges in training data.".format(noise_edges, len(train_edges), (noise_edges/float(len(train_edges)))*100 if len(train_edges) > 0 else 0)) #Create devel examples pos_cnt = len(devel_edges) noise_edges = 0 while len(devel_edges) < pos_cnt * (int(negative_ratio) + 1): ent1 = random.choice(entity_lst) if not entity1_lst else random.choice(entity1_lst) ent2 = random.choice(entity_lst) if not entity2_lst else random.choice(entity2_lst) if ent1 != ent2: key1 = "%s::%s" % (ent1, ent2) key2 = "%s::%s" % (ent2, ent1) if key1 not in train_edges and key1 not in devel_edges and key2 not in train_edges and key2 not in devel_edges: #Shuffle node order in key if random.choice([0,1]) == 1: devel_edges[key1] = 0 #Track whether it is a 'noise edge' if key1 in test_edges: noise_edges += 1 else: devel_edges[key2] = 0 #Track whether it is a 'noise edge' if key2 in test_edges: noise_edges += 1 print("There were {}/{:,} ({}%) noise edges in devel data.".format(noise_edges, len(devel_edges), (noise_edges/float(len(devel_edges)))*100 if len(devel_edges) > 0 else 0)) #Create test examples pos_cnt = len(test_edges) noise_edges = 0 while len(test_edges) < pos_cnt * (int(negative_ratio) + 1): ent1 = random.choice(entity_lst) if not entity1_lst else random.choice(entity1_lst) ent2 = random.choice(entity_lst) if not entity2_lst else random.choice(entity2_lst) if ent1 != ent2: key1 = "%s::%s" % (ent1, ent2) key2 = "%s::%s" % (ent2, ent1) if key1 not in train_edges and key1 not in devel_edges and key1 not in test_edges \ and key2 not in train_edges and key2 not in devel_edges and key2 not in test_edges: #Shuffle node order in key if random.choice([0,1]) == 1: test_edges[key1] = 0 else: test_edges[key2] = 0 train_cnts = {} train_entities = [] for key, value in train_edges.iteritems(): entity1 = key.split('::')[0] entity2 = key.split('::')[1] assert (value in values), "Value %s not in values." % value label = labels[values.index(value)] entry = "%s\t%s\t%s\n" % (entity1, entity2, label) train_output += entry if value in train_cnts: train_cnts[value] += 1 else: train_cnts[value] = 1 train_entities.append(entity1) train_entities.append(entity2) devel_cnts = {} devel_entities = [] for key, value in devel_edges.iteritems(): entity1 = key.split('::')[0] entity2 = key.split('::')[1] assert (value in values), "Value %s not in values." % value label = labels[values.index(value)] entry = "%s\t%s\t%s\n" % (entity1, entity2, label) devel_output += entry if value in devel_cnts: devel_cnts[value] += 1 else: devel_cnts[value] = 1 devel_entities.append(entity1) devel_entities.append(entity2) test_cnts = {} test_entities = [] print("There are %s keys in test edges" % len(test_edges)) for key, value in test_edges.iteritems(): entity1 = key.split('::')[0] entity2 = key.split('::')[1] assert (value in values), "Value %s not in values." % value label = labels[values.index(value)] entry = "%s\t%s\t%s\n" % (entity1, entity2, label) test_output += entry if value in test_cnts: test_cnts[value] += 1 else: test_cnts[value] = 1 test_entities.append(entity1) test_entities.append(entity2) train_set = set(train_entities) test_set = set(test_entities) train_set_size = len(train_set) test_set_size = len(test_set) train_test_intersection_size = len(train_set.intersection(test_set)) print("\nEntities in train only: {:,}".format(train_set_size - train_test_intersection_size)) print("Entities in test only: {:,}".format(test_set_size - train_test_intersection_size)) print("Entities in both train and test: {:,}".format(train_test_intersection_size)) print("\nClass items counts:") print("Train counts:") for k, v in train_cnts.iteritems(): print("{}\t: {:,}".format(k,v)) print("Devel counts:") for k, v in devel_cnts.iteritems(): print("{}\t: {:,}".format(k,v)) print("Test counts:") for k, v in test_cnts.iteritems(): print("{}\t: {:,}".format(k,v)) train.write(train_output) devel.write(devel_output) test.write(test_output) #Get only positive train edges pos_train = {} for edge, score in train_edges.iteritems(): if score > 0: pos_train[edge] = score pos_test = {} for edge, score in test_edges.iteritems(): if score > 0: pos_test[edge] = score print("End of creating learning splits. Train edges count: %s. Test edges count: %s" % (len(pos_train), len(pos_test))) return pos_train, pos_test def create_learning_files(induction_edges, train_edges, devel_edges, test_edges, negative_ratio, train_filename, devel_filename, test_filename, values, labels, fold_values=True, separation_fn=None): keys = induction_edges.keys() + train_edges.keys() + devel_edges.keys() + test_edges.keys() entity_set = set([k for key in keys for k in key.split('::')]) print("\n%s vertices in learning." % len(entity_set)) entity1_lst, entity2_lst = None, None if separation_fn: entity1_lst, entity2_lst = separation_fn(entity_set) if fold_values: for edge_set in [train_edges, devel_edges, test_edges]: for key, value in edge_set.iteritems(): if value > 0: edge_set[key] = 1 else: edge_set[key] = 0 #Create data files train = open(train_filename, 'w') devel = open(devel_filename, 'w') test = open(test_filename, 'w') header = "node1\tnode2\tlabel\n" train_output = "%s" % header devel_output = "%s" % header test_output = "%s" % header values = [int(val) for val in values.split(':')] labels = labels.split(':') assert (len(values) == len(labels)), "%s values and %s labels" % (len(values), len(labels)) #Create train examples pos_cnt = len(train_edges) entity_lst = list(entity_set) noise_edges = 0 while len(train_edges) < pos_cnt * (int(negative_ratio) + 1): ent1 = random.choice(entity_lst) if not entity1_lst else random.choice(entity1_lst) ent2 = random.choice(entity_lst) if not entity2_lst else random.choice(entity2_lst) if ent1 != ent2: key1 = "%s::%s" % (ent1, ent2) key2 = "%s::%s" % (ent2, ent1) if key1 not in induction_edges and key1 not in train_edges and key2 not in induction_edges and key2 not in train_edges: #Shuffle node order in key if random.choice([0,1]) == 1: train_edges[key1] = 0 #Track whether it is a 'noise edge' if key1 in devel_edges or key1 in test_edges: noise_edges += 1 else: train_edges[key2] = 0 #Track whether it is a 'noise edge' if key2 in devel_edges or key2 in test_edges: noise_edges += 1 print("There were {}/{:,} ({}%) noise edges in training data.".format(noise_edges, len(train_edges), (noise_edges/float(len(train_edges)))*100 if len(train_edges) > 0 else 0)) #Create devel examples pos_cnt = len(devel_edges) noise_edges = 0 while len(devel_edges) < pos_cnt * (int(negative_ratio) + 1): ent1 = random.choice(entity_lst) if not entity1_lst else random.choice(entity1_lst) ent2 = random.choice(entity_lst) if not entity2_lst else random.choice(entity2_lst) if ent1 != ent2: key1 = "%s::%s" % (ent1, ent2) key2 = "%s::%s" % (ent2, ent1) if key1 not in induction_edges and key1 not in train_edges and key1 not in devel_edges and key2 not in induction_edges and key2 not in train_edges and key2 not in devel_edges: #Shuffle node order in key if random.choice([0,1]) == 1: devel_edges[key1] = 0 #Track whether it is a 'noise edge' if key1 in test_edges: noise_edges += 1 else: devel_edges[key2] = 0 #Track whether it is a 'noise edge' if key2 in test_edges: noise_edges += 1 print("There were {}/{:,} ({}%) noise edges in devel data.".format(noise_edges, len(devel_edges), (noise_edges/float(len(devel_edges)))*100 if len(devel_edges) > 0 else 0)) #Create test examples pos_cnt = len(test_edges) noise_edges = 0 while len(test_edges) < pos_cnt * (int(negative_ratio) + 1): ent1 = random.choice(entity_lst) if not entity1_lst else random.choice(entity1_lst) ent2 = random.choice(entity_lst) if not entity2_lst else random.choice(entity2_lst) if ent1 != ent2: key1 = "%s::%s" % (ent1, ent2) key2 = "%s::%s" % (ent2, ent1) if key1 not in induction_edges and key1 not in train_edges and key1 not in devel_edges and key1 not in test_edges \ and key2 not in induction_edges and key2 not in train_edges and key2 not in devel_edges and key2 not in test_edges: #Shuffle node order in key if random.choice([0,1]) == 1: test_edges[key1] = 0 else: test_edges[key2] = 0 train_cnts = {} train_entities = [] for key, value in train_edges.iteritems(): entity1 = key.split('::')[0] entity2 = key.split('::')[1] assert (value in values), "Value %s not in values." % value label = labels[values.index(value)] entry = "%s\t%s\t%s\n" % (entity1, entity2, label) train_output += entry if value in train_cnts: train_cnts[value] += 1 else: train_cnts[value] = 1 train_entities.append(entity1) train_entities.append(entity2) devel_cnts = {} devel_entities = [] for key, value in devel_edges.iteritems(): entity1 = key.split('::')[0] entity2 = key.split('::')[1] assert (value in values), "Value %s not in values." % value label = labels[values.index(value)] entry = "%s\t%s\t%s\n" % (entity1, entity2, label) devel_output += entry if value in devel_cnts: devel_cnts[value] += 1 else: devel_cnts[value] = 1 devel_entities.append(entity1) devel_entities.append(entity2) test_cnts = {} test_entities = [] for key, value in test_edges.iteritems(): entity1 = key.split('::')[0] entity2 = key.split('::')[1] assert (value in values), "Value %s not in values." % value label = labels[values.index(value)] entry = "%s\t%s\t%s\n" % (entity1, entity2, label) test_output += entry if value in test_cnts: test_cnts[value] += 1 else: test_cnts[value] = 1 test_entities.append(entity1) test_entities.append(entity2) train_set = set(train_entities) test_set = set(test_entities) train_set_size = len(train_set) test_set_size = len(test_set) train_test_intersection_size = len(train_set.intersection(test_set)) print("\nEntities in train only: {:,}".format(train_set_size - train_test_intersection_size)) print("Entities in test only: {:,}".format(test_set_size - train_test_intersection_size)) print("Entities in both train and test: {:,}".format(train_test_intersection_size)) print("\nClass items counts:") print("Train counts:") for k, v in train_cnts.iteritems(): print("{}\t: {:,}".format(k,v)) print("Devel counts:") for k, v in devel_cnts.iteritems(): print("{}\t: {:,}".format(k,v)) print("Test counts:") for k, v in test_cnts.iteritems(): print("{}\t: {:,}".format(k,v)) train.write(train_output) devel.write(devel_output) test.write(test_output) return train_edges, test_edges #In MATADOR dataset, all Chemical identifiers can be integers but no proteins can be def matador_separation(entities): proteins = [] chemicals = [] for entity_name in entities: try: int(entity_name) chemicals.append(entity_name) except: proteins.append(entity_name) print("For MATADOR dataset: %s proteins and %s chemicals." % (len(proteins), len(chemicals))) return proteins, chemicals def setup_experiment(input_data_file, attributes, col_labels, col_indices, split_criteria, induction_split_names, train_split_names, devel_split_names, test_split_names, train_graph_filename, test_graph_filename, graph_format, vertices_filename, train_filename, devel_filename, test_filename, negative_ratio, values, labels, induction_learning_split, maintain_connection, balance_classes, tdt_split, save_graph, separation_fn=None): #split_name1:criteria_name,operator,criteria_value::split_name2:criteria_name,operator,criteria_value #Prepare split criteria data structure split_criteria_dict = None if split_criteria: split_criteria_dict = {} criteria_lst = split_criteria.split('::') for criteria in criteria_lst: split = criteria.split(':') assert(len(split) == 2), "Criteria split into {} is invalid.".format(len(split)) split_name = split[0] split_details_lst = split[1].split('|') split_criteria_dict[split_name] = [] for detail in split_details_lst: split_details = detail.split(',') assert(len(split_details) == 3), "Criteria details split into {} is invalid.".format(len(split_details)) criteria_name = split_details[0] operator = split_details[1] criteria_value = split_details[2] split_criteria_dict[split_name].append((criteria_name, operator, int(criteria_value))) data = read_data(input_data_file, attributes, col_labels, col_indices) if split_criteria: print("Splitting by criteria.") attribute = attributes.split(':') if len(attribute) > 1: raise NotImplemented('Multiple Attributes not implemented.') else: attribute = attribute[0] split_data = get_splits(data, split_criteria_dict) assert(induction_split_names and train_split_names and test_split_names), "induction_split_names and train_split_names and devel_split_names and test_split_names must be set if split_criteria set." induction_edges = {} learning_edges = {} train_edges = {} devel_edges = {} test_edges = {} induction_split_names = induction_split_names.split(':') train_split_names = train_split_names.split(':') devel_split_names = devel_split_names.split(':') if devel_split_names else [] test_split_names = test_split_names.split(':') for name in induction_split_names: if name not in split_data: print("ERROR: Name {} not in data (Split Names: {}).".format(name, split_data.keys())) break for key in split_data[name]: induction_edges[key] = data[key][attribute] print("{:,} induction edges.".format(len(induction_edges))) for name in train_split_names: if name not in split_data: print("ERROR: Name {} not in data (Split Names: {}).".format(name, split_data.keys())) break for key in split_data[name]: train_edges[key] = data[key][attribute] for name in devel_split_names: if name not in split_data: print("ERROR: Name {} not in data (Split Names: {}).".format(name, split_data.keys())) break for key in split_data[name]: devel_edges[key] = data[key][attribute] for name in test_split_names: if name not in split_data: print("ERROR: Name {} not in data (Split Names: {}).".format(name, split_data.keys())) break for key in split_data[name]: test_edges[key] = data[key][attribute] for edge_set in [train_edges, devel_edges, test_edges]: for key in edge_set: learning_edges[key] = data[key][attribute] create_adjacency_matrix_file(induction_edges, train_edges, test_edges, train_graph_filename, test_graph_filename, graph_format, vertices_filename, save_graph) create_learning_files(induction_edges, train_edges, devel_edges, test_edges, negative_ratio, train_filename, devel_filename, test_filename, values, labels, separation_fn=separation_fn) else: print("Splitting by size.") induction_edges, learning_edges = get_induction_learning_edges(data, induction_learning_split, maintain_connection) train_edges, test_edges = create_learning_splits(learning_edges, negative_ratio, balance_classes, train_filename, devel_filename, test_filename, tdt_split, values, labels, separation_fn=separation_fn) create_adjacency_matrix_file(induction_edges, train_edges, test_edges, train_graph_filename, test_graph_filename, graph_format, vertices_filename, save_graph) def main(argv): args = argparser().parse_args(argv[1:]) if args.graph_bipartite: setup_experiment(args.input_file, args.attributes, args.col_labels, args.col_indices, args.split_criteria, args.induction_split_names, args.train_split_names, args.devel_split_names, args.test_split_names, args.train_graph_filename, args.test_graph_filename, args.graph_format, args.vertices_filename, args.train_filename, args.devel_filename, args.test_filename, args.negative_ratio, args.values, args.labels, args.induction_learning_split, args.maintain_connection, args.balance_classes, args.split, args.save_graph, matador_separation) else: setup_experiment(args.input_file, args.attributes, args.col_labels, args.col_indices, args.split_criteria, args.induction_split_names, args.train_split_names, args.devel_split_names, args.test_split_names, args.train_graph_filename,args.test_graph_filename, args.graph_format, args.vertices_filename, args.train_filename, args.devel_filename, args.test_filename, args.negative_ratio, args.values, args.labels, args.induction_learning_split, args.maintain_connection, args.balance_classes, args.split, args.save_graph) if __name__ == '__main__': sys.exit(main(sys.argv))
44,573
0
309
4605f51ceb7bfa7b5d4f7657c9b428121e83d39b
784
py
Python
tools/lines.py
mamaddeveloper/teleadmin
a5823a7d27f7304825757a1e3cc7a5f50b5534ec
[ "MIT" ]
null
null
null
tools/lines.py
mamaddeveloper/teleadmin
a5823a7d27f7304825757a1e3cc7a5f50b5534ec
[ "MIT" ]
null
null
null
tools/lines.py
mamaddeveloper/teleadmin
a5823a7d27f7304825757a1e3cc7a5f50b5534ec
[ "MIT" ]
null
null
null
import random import codecs
26.133333
97
0.612245
import random import codecs class LinesAbstract: def __init__(self, path_or_list): if isinstance(path_or_list, str): self.lines = list([line.strip() for line in codecs.open(path_or_list, "r", "utf-8")]) else: self.lines = list(path_or_list) self.max = len(self.lines) def __next__(self): raise Exception("Abstract") class LinesSeq(LinesAbstract): def __init__(self, path): super().__init__(path) self.__index = -1 def __next__(self): self.__index += 1 if self.__index >= self.max: self.__index = 0 return self.lines[self.__index] class LinesSeqRnd(LinesSeq): def __init__(self, path): super().__init__(path) random.shuffle(self.lines)
540
15
201
e57b119c7f3bb96c441604c0b54c53af20889096
526
py
Python
intro_list.py
BeenashPervaiz/Command_Line_Task
a603fbdd06717ff157ecd72881d08329413fd82c
[ "MIT" ]
null
null
null
intro_list.py
BeenashPervaiz/Command_Line_Task
a603fbdd06717ff157ecd72881d08329413fd82c
[ "MIT" ]
null
null
null
intro_list.py
BeenashPervaiz/Command_Line_Task
a603fbdd06717ff157ecd72881d08329413fd82c
[ "MIT" ]
null
null
null
#list ----> we store int,float,string.. #ordered collection of item --->DAta structure numbers = [1, 2, 3, 4, 5] print(numbers) print(numbers[2])#we can also access by indexing words = ["Beenash", 'Pervaiz', "Hanan"] print(words) print(words[:2]) # by slicing mixed = [1, 2, 3, 4, "five", "six",2.5, None] print(mixed) print(mixed[-1])# negative indexing #change the data of the list mixed[1] = 'two' print(mixed) #if we change the almost total data of list numbers[:5] = ['one', 'two','three','four','five'] print(numbers)
26.3
50
0.665399
#list ----> we store int,float,string.. #ordered collection of item --->DAta structure numbers = [1, 2, 3, 4, 5] print(numbers) print(numbers[2])#we can also access by indexing words = ["Beenash", 'Pervaiz', "Hanan"] print(words) print(words[:2]) # by slicing mixed = [1, 2, 3, 4, "five", "six",2.5, None] print(mixed) print(mixed[-1])# negative indexing #change the data of the list mixed[1] = 'two' print(mixed) #if we change the almost total data of list numbers[:5] = ['one', 'two','three','four','five'] print(numbers)
0
0
0
8967e76251d4e2585ac4bb6805bc0086542f758a
136
py
Python
lms_aadi_postgres/contacts/contacts_controllers/contacts_delete.py
hcmuleva/personal-profile
051b5a2f36b927951691f48abe584beb8bc25440
[ "MIT" ]
null
null
null
lms_aadi_postgres/contacts/contacts_controllers/contacts_delete.py
hcmuleva/personal-profile
051b5a2f36b927951691f48abe584beb8bc25440
[ "MIT" ]
3
2020-07-13T17:46:32.000Z
2020-07-26T10:30:59.000Z
lms_aadi_postgres/contacts/contacts_controllers/contacts_delete.py
hcmuleva/personal-profile
051b5a2f36b927951691f48abe584beb8bc25440
[ "MIT" ]
null
null
null
from contacts.contacts_modules import delete_contact to_delete = delete_contact.DeleteContact() delete = to_delete.delete_contact("1")
27.2
52
0.838235
from contacts.contacts_modules import delete_contact to_delete = delete_contact.DeleteContact() delete = to_delete.delete_contact("1")
0
0
0
7a7177762b8c827b4e6e320a52cbf73bac71fbbc
9,322
py
Python
autolung/main_window.py
jcalendo/autolung
9a3a10d2f4d5618e91d7c805b04211faa6f54300
[ "MIT" ]
null
null
null
autolung/main_window.py
jcalendo/autolung
9a3a10d2f4d5618e91d7c805b04211faa6f54300
[ "MIT" ]
null
null
null
autolung/main_window.py
jcalendo/autolung
9a3a10d2f4d5618e91d7c805b04211faa6f54300
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'MainWindow.ui' # # Created by: PyQt5 UI code generator 5.12.2 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets
56.49697
201
0.695559
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'MainWindow.ui' # # Created by: PyQt5 UI code generator 5.12.2 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(742, 736) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.config_button = QtWidgets.QPushButton(self.centralwidget) self.config_button.setGeometry(QtCore.QRect(600, 160, 75, 31)) self.config_button.setObjectName("config_button") self.output_button = QtWidgets.QPushButton(self.centralwidget) self.output_button.setGeometry(QtCore.QRect(600, 200, 75, 31)) self.output_button.setObjectName("output_button") self.img_directory_button = QtWidgets.QPushButton(self.centralwidget) self.img_directory_button.setGeometry(QtCore.QRect(600, 120, 75, 31)) self.img_directory_button.setObjectName("img_directory_button") self.header_label = QtWidgets.QLabel(self.centralwidget) self.header_label.setGeometry(QtCore.QRect(200, 0, 351, 41)) font = QtGui.QFont() font.setPointSize(12) font.setBold(True) font.setWeight(75) self.header_label.setFont(font) self.header_label.setObjectName("header_label") self.subheader_label = QtWidgets.QLabel(self.centralwidget) self.subheader_label.setGeometry(QtCore.QRect(30, 30, 691, 41)) font = QtGui.QFont() font.setItalic(True) self.subheader_label.setFont(font) self.subheader_label.setObjectName("subheader_label") self.dir_label = QtWidgets.QLabel(self.centralwidget) self.dir_label.setGeometry(QtCore.QRect(30, 120, 241, 31)) font = QtGui.QFont() font.setPointSize(10) self.dir_label.setFont(font) self.dir_label.setObjectName("dir_label") self.config_label = QtWidgets.QLabel(self.centralwidget) self.config_label.setGeometry(QtCore.QRect(30, 160, 281, 31)) font = QtGui.QFont() font.setPointSize(10) self.config_label.setFont(font) self.config_label.setObjectName("config_label") self.output_label = QtWidgets.QLabel(self.centralwidget) self.output_label.setGeometry(QtCore.QRect(30, 200, 281, 31)) font = QtGui.QFont() font.setPointSize(10) self.output_label.setFont(font) self.output_label.setObjectName("output_label") self.preview_label = QtWidgets.QLabel(self.centralwidget) self.preview_label.setGeometry(QtCore.QRect(30, 240, 211, 31)) font = QtGui.QFont() font.setPointSize(10) self.preview_label.setFont(font) self.preview_label.setObjectName("preview_label") self.yes_radioButton = QtWidgets.QRadioButton(self.centralwidget) self.yes_radioButton.setGeometry(QtCore.QRect(320, 250, 41, 17)) self.yes_radioButton.setObjectName("yes_radioButton") self.no_radioButton = QtWidgets.QRadioButton(self.centralwidget) self.no_radioButton.setGeometry(QtCore.QRect(390, 250, 41, 17)) self.no_radioButton.setObjectName("no_radioButton") self.line = QtWidgets.QFrame(self.centralwidget) self.line.setGeometry(QtCore.QRect(0, 80, 801, 16)) self.line.setFrameShape(QtWidgets.QFrame.HLine) self.line.setFrameShadow(QtWidgets.QFrame.Sunken) self.line.setObjectName("line") self.img_dir_text = QtWidgets.QTextEdit(self.centralwidget) self.img_dir_text.setGeometry(QtCore.QRect(320, 120, 271, 31)) self.img_dir_text.setObjectName("img_dir_text") self.config_text = QtWidgets.QTextEdit(self.centralwidget) self.config_text.setGeometry(QtCore.QRect(320, 160, 271, 31)) self.config_text.setObjectName("config_text") self.output_text = QtWidgets.QTextEdit(self.centralwidget) self.output_text.setGeometry(QtCore.QRect(320, 200, 271, 31)) self.output_text.setObjectName("output_text") self.img_dir_help = QtWidgets.QToolButton(self.centralwidget) self.img_dir_help.setGeometry(QtCore.QRect(690, 120, 31, 31)) self.img_dir_help.setObjectName("img_dir_help") self.config_help = QtWidgets.QToolButton(self.centralwidget) self.config_help.setGeometry(QtCore.QRect(690, 160, 31, 31)) self.config_help.setObjectName("config_help") self.output_help = QtWidgets.QToolButton(self.centralwidget) self.output_help.setGeometry(QtCore.QRect(690, 200, 31, 31)) self.output_help.setObjectName("output_help") self.preview_help = QtWidgets.QToolButton(self.centralwidget) self.preview_help.setGeometry(QtCore.QRect(690, 240, 31, 31)) self.preview_help.setObjectName("preview_help") self.line_2 = QtWidgets.QFrame(self.centralwidget) self.line_2.setGeometry(QtCore.QRect(0, 290, 781, 16)) self.line_2.setFrameShape(QtWidgets.QFrame.HLine) self.line_2.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_2.setObjectName("line_2") self.run_button = QtWidgets.QPushButton(self.centralwidget) self.run_button.setGeometry(QtCore.QRect(30, 310, 331, 41)) self.run_button.setObjectName("run_button") self.quit_button = QtWidgets.QPushButton(self.centralwidget) self.quit_button.setGeometry(QtCore.QRect(380, 310, 341, 41)) self.quit_button.setObjectName("quit_button") self.textBrowser = QtWidgets.QTextBrowser(self.centralwidget) self.textBrowser.setGeometry(QtCore.QRect(30, 370, 691, 261)) self.textBrowser.setObjectName("textBrowser") self.progressBar = QtWidgets.QProgressBar(self.centralwidget) self.progressBar.setGeometry(QtCore.QRect(30, 650, 691, 41)) self.progressBar.setProperty("value", 24) self.progressBar.setObjectName("progressBar") MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 742, 21)) self.menubar.setObjectName("menubar") self.menuFile = QtWidgets.QMenu(self.menubar) self.menuFile.setObjectName("menuFile") self.menuHelp = QtWidgets.QMenu(self.menubar) self.menuHelp.setObjectName("menuHelp") MainWindow.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.actionClose = QtWidgets.QAction(MainWindow) self.actionClose.setObjectName("actionClose") self.actionHelp = QtWidgets.QAction(MainWindow) self.actionHelp.setObjectName("actionHelp") self.menuFile.addAction(self.actionClose) self.menuHelp.addAction(self.actionHelp) self.menubar.addAction(self.menuFile.menuAction()) self.menubar.addAction(self.menuHelp.menuAction()) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow")) self.config_button.setText(_translate("MainWindow", "Select")) self.output_button.setText(_translate("MainWindow", "Select")) self.img_directory_button.setText(_translate("MainWindow", "Select")) self.header_label.setText(_translate("MainWindow", "Autolung - automated lung image analysis")) self.subheader_label.setText(_translate("MainWindow", "Written by Gennaro Calendo for the Laboratory of Marla R. Wolfson, MS, PhD at Lewis Katz School of Medicine at Temple University, 2019")) self.dir_label.setText(_translate("MainWindow", "Select the folder containing lung images:")) self.config_label.setText(_translate("MainWindow", "Select the configuration file for this image set:")) self.output_label.setText(_translate("MainWindow", "Select the folder where the results will be saved:")) self.preview_label.setText(_translate("MainWindow", "Would you like to save QC images?")) self.yes_radioButton.setText(_translate("MainWindow", "Yes")) self.no_radioButton.setText(_translate("MainWindow", "No")) self.img_dir_help.setText(_translate("MainWindow", "?")) self.config_help.setText(_translate("MainWindow", "?")) self.output_help.setText(_translate("MainWindow", "?")) self.preview_help.setText(_translate("MainWindow", "?")) self.run_button.setText(_translate("MainWindow", "Start Analysis")) self.quit_button.setText(_translate("MainWindow", "Quit")) self.menuFile.setTitle(_translate("MainWindow", "File")) self.menuHelp.setTitle(_translate("MainWindow", "About")) self.actionClose.setText(_translate("MainWindow", "Close")) self.actionHelp.setText(_translate("MainWindow", "About"))
8,977
7
81
5ed2b6d22c8702f6b6e62de9b35b38767fb15a11
3,372
py
Python
IoT_Web/iotweb/views/devices_view.py
ertis-research/reliable-iot
c7a1f6bb69099797e2136522dbdda94c2e6a4895
[ "MIT" ]
1
2019-04-26T10:28:57.000Z
2019-04-26T10:28:57.000Z
IoT_Web/iotweb/views/devices_view.py
ertis-research/reliable-iot
c7a1f6bb69099797e2136522dbdda94c2e6a4895
[ "MIT" ]
null
null
null
IoT_Web/iotweb/views/devices_view.py
ertis-research/reliable-iot
c7a1f6bb69099797e2136522dbdda94c2e6a4895
[ "MIT" ]
1
2019-04-26T10:29:35.000Z
2019-04-26T10:29:35.000Z
from django.shortcuts import redirect from django.http import HttpResponse from django.template import loader from http.server import HTTPStatus from .User import User import iotweb.views.urls_and_messages as UM import requests import json def devices(request, shdw_id): """ GET request: renders the physical devices page POST request: It's a request to delete one physical device """ user = User.get_instance() if request.POST: # REQUEST TO DELETE DEVICE url = UM.DB_URL + 'deletePhysicalDevice/{}/'.format(request.POST['device_id']) headers = {'Authorization': 'Token {}'.format(user.user_token)} req = requests.get(url=url, headers=headers) if req.status_code == 200: return redirect('/viewDevices/{}/'.format(shdw_id)) else: template = loader.get_template('../templates/error_page.html') context = {'code_error': req.status_code, 'message': req.text, 'error_name': HTTPStatus(req.status_code).phrase, 'back': '/viewDevices/{}/'.format(shdw_id) } if req.status_code == 401: context['message'] = context['message'] + UM.REFRESH_TOKEN context['back'] = '/login/' return HttpResponse(template.render(context, request)) else: # GET - RENDER THE TEMPLATE WITH PHYSICAL DEVICES template = loader.get_template('../templates/physical_devices.html') url = UM.DB_URL + 'getShadowDevices/{}/'.format(shdw_id) headers = {'Authorization': 'Token {}'.format(user.user_token)} req = requests.get(url=url, headers=headers) if req.status_code == 200: devices_list = json.loads(req.text)['devices'] context = {'devices': [], 'shadow_id': shdw_id, 'email': user.user_email} if devices_list: for device in devices_list: json_object = json.loads(device) # CHECK THIS AGAIN url_token = UM.DB_URL + 'getTokenById/{}/'.format(json_object['token']) res_tok = requests.get(url=url_token, headers=headers) token = json.loads(res_tok.text)['token'] json_object['token'] = token # we replace token id with token value json_object['id'] = json_object['_id'] url_status = UM.DB_URL + 'getDeviceStatus/{}/'.format(json_object['_id']) req_status = requests.get(url=url_status, headers=headers) json_object['STATUS'] = json.loads(req_status.text)['status'] context['devices'].append(json_object) return HttpResponse(template.render(context, request)) else: template = loader.get_template('../templates/error_page.html') context = {'code_error': req.status_code, 'message': req.text, 'error_name': HTTPStatus(req.status_code).phrase, 'back': '/profile/' } if req.status_code == 401: context['message'] = context['message'] + UM.REFRESH_TOKEN context['back'] = '/login/' return HttpResponse(template.render(context, request))
39.670588
93
0.577995
from django.shortcuts import redirect from django.http import HttpResponse from django.template import loader from http.server import HTTPStatus from .User import User import iotweb.views.urls_and_messages as UM import requests import json def devices(request, shdw_id): """ GET request: renders the physical devices page POST request: It's a request to delete one physical device """ user = User.get_instance() if request.POST: # REQUEST TO DELETE DEVICE url = UM.DB_URL + 'deletePhysicalDevice/{}/'.format(request.POST['device_id']) headers = {'Authorization': 'Token {}'.format(user.user_token)} req = requests.get(url=url, headers=headers) if req.status_code == 200: return redirect('/viewDevices/{}/'.format(shdw_id)) else: template = loader.get_template('../templates/error_page.html') context = {'code_error': req.status_code, 'message': req.text, 'error_name': HTTPStatus(req.status_code).phrase, 'back': '/viewDevices/{}/'.format(shdw_id) } if req.status_code == 401: context['message'] = context['message'] + UM.REFRESH_TOKEN context['back'] = '/login/' return HttpResponse(template.render(context, request)) else: # GET - RENDER THE TEMPLATE WITH PHYSICAL DEVICES template = loader.get_template('../templates/physical_devices.html') url = UM.DB_URL + 'getShadowDevices/{}/'.format(shdw_id) headers = {'Authorization': 'Token {}'.format(user.user_token)} req = requests.get(url=url, headers=headers) if req.status_code == 200: devices_list = json.loads(req.text)['devices'] context = {'devices': [], 'shadow_id': shdw_id, 'email': user.user_email} if devices_list: for device in devices_list: json_object = json.loads(device) # CHECK THIS AGAIN url_token = UM.DB_URL + 'getTokenById/{}/'.format(json_object['token']) res_tok = requests.get(url=url_token, headers=headers) token = json.loads(res_tok.text)['token'] json_object['token'] = token # we replace token id with token value json_object['id'] = json_object['_id'] url_status = UM.DB_URL + 'getDeviceStatus/{}/'.format(json_object['_id']) req_status = requests.get(url=url_status, headers=headers) json_object['STATUS'] = json.loads(req_status.text)['status'] context['devices'].append(json_object) return HttpResponse(template.render(context, request)) else: template = loader.get_template('../templates/error_page.html') context = {'code_error': req.status_code, 'message': req.text, 'error_name': HTTPStatus(req.status_code).phrase, 'back': '/profile/' } if req.status_code == 401: context['message'] = context['message'] + UM.REFRESH_TOKEN context['back'] = '/login/' return HttpResponse(template.render(context, request))
0
0
0
3ee833341127b144f309c6b92f9f4b2ca5b72308
2,786
py
Python
mail_editor/helpers.py
maykinmedia/maykin-email-templates
946538cf07e8fbb6df577fe5ea22b970bf54b4a2
[ "BSD-3-Clause" ]
4
2019-03-11T04:36:05.000Z
2021-08-13T07:58:53.000Z
mail_editor/helpers.py
maykinmedia/maykin-email-templates
946538cf07e8fbb6df577fe5ea22b970bf54b4a2
[ "BSD-3-Clause" ]
15
2017-03-02T12:16:20.000Z
2022-01-21T15:03:44.000Z
mail_editor/helpers.py
maykinmedia/maykin-email-templates
946538cf07e8fbb6df577fe5ea22b970bf54b4a2
[ "BSD-3-Clause" ]
3
2019-09-29T05:45:26.000Z
2020-08-20T03:15:17.000Z
import logging from django.conf import settings from django.contrib.sites.shortcuts import get_current_site from django.template import loader from django.utils.safestring import mark_safe from django.utils.translation import ugettext_lazy as _ from .models import MailTemplate try: from django.template.exceptions import TemplateDoesNotExist, TemplateSyntaxError except ImportError: from django.template.base import TemplateDoesNotExist, TemplateSyntaxError logger = logging.getLogger(__name__)
31.303371
122
0.714645
import logging from django.conf import settings from django.contrib.sites.shortcuts import get_current_site from django.template import loader from django.utils.safestring import mark_safe from django.utils.translation import ugettext_lazy as _ from .models import MailTemplate try: from django.template.exceptions import TemplateDoesNotExist, TemplateSyntaxError except ImportError: from django.template.base import TemplateDoesNotExist, TemplateSyntaxError logger = logging.getLogger(__name__) def find_template(template_name, language=None): if language: template, _created = MailTemplate.objects.get_or_create(template_type=template_name, language=language, defaults={ 'subject': get_subject(template_name), 'body': get_body(template_name), 'base_template_path': get_base_template_path(template_name), }) else: base_qs = MailTemplate.objects.filter(template_type=template_name, language__isnull=True) if base_qs.exists(): template = base_qs.first() else: template = MailTemplate.objects.create( template_type=template_name, subject=get_subject(template_name), body=get_body(template_name), base_template_path=get_base_template_path(template_name), ) return template def get_subject(template_name): config = settings.MAIL_EDITOR_CONF template_config = config.get(template_name) if template_config: subject = template_config.get('subject_default') if subject: return subject return _('Please fix this template') def get_body(template_name): config = settings.MAIL_EDITOR_CONF template_config = config.get(template_name) default = _('Your content here...') if template_config: body = template_config.get('body_default') if body: default = body template = loader.get_template('mail/_outer_table.html') current_site = get_current_site(None) return template.render({'domain': current_site.domain, 'default': mark_safe(default)}, None) def get_base_template_path(template_name): config = settings.MAIL_EDITOR_CONF template_config = config.get(template_name) if template_config: return template_config.get('base_template', '') return '' def base_template_loader(template_path, context): default_path = 'mail/_base.html' if not template_path: template_path = default_path try: return loader.render_to_string(template_path, context) except (TemplateDoesNotExist, TemplateSyntaxError) as e: logging.exception("Base template could not be rendered") return loader.render_to_string(default_path, context)
2,157
0
115
9f358abb718b928d28ae4fa0e34eca5edd3395b9
2,547
py
Python
Dell PowerVault MD32xxi/md32xx.py
tomaprzem/zabbix
8eb46c72393636e919ac70e1c75f051d9ad04e3d
[ "MIT" ]
null
null
null
Dell PowerVault MD32xxi/md32xx.py
tomaprzem/zabbix
8eb46c72393636e919ac70e1c75f051d9ad04e3d
[ "MIT" ]
null
null
null
Dell PowerVault MD32xxi/md32xx.py
tomaprzem/zabbix
8eb46c72393636e919ac70e1c75f051d9ad04e3d
[ "MIT" ]
null
null
null
import subprocess import sys import getopt import json from pyzabbix import ZabbixMetric, ZabbixSender ipa = '' ipb = '' host = '' try: opts, args = getopt.getopt(sys.argv[1:], "ha:b:n:") except getopt.GetoptError: print 'md32xx.py -a <IPControlerA> -b <IPControlerB> -n <HostNameInZabbix>' sys.exit(2) for opt, arg in opts: if opt == "-h": print 'md32xx.py -a <IPControlerA> -b <IPControlerB> -n <HostNameInZabbix>' print 'Parameters:' print '-a\t\tIP Controler A' print '-b\t\tIP Controler B' print '-n\t\tHostName in Zabbix' print '-h\t\tThis help' sys.exit() elif opt == "-a": ipa = arg elif opt == "-b": ipb = arg elif opt == "-n": host = arg # else # print 'md32xx.py -a <IPControlerA> -b <IPControlerB> -n <HostNameInZabbix>' # sys.exit(2) SMCLI = "/opt/IBM_DS/client/SMcli" CONN = ipa + " " + ipb cmd = SMCLI + " " + CONN + " -S -c \"set session performanceMonitorInterval=3 performanceMonitorIterations=1;show allLogicalDrives performanceStats;\"" #print cmd proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True) (out, err) = proc.communicate() strings = out.split("\n",7)[7] #print strings packet = [] output = [] for str in strings.splitlines(): arr = str.split(',') output.append({"{#VALUE}": arr[0].replace("\"","")}) packet.append(ZabbixMetric(host, 'total.ios['+arr[0].replace("\"","")+']',arr[1].replace("\"", ""))) packet.append(ZabbixMetric(host, 'read['+arr[0].replace("\"","")+']',arr[2].replace("\"", ""))) packet.append(ZabbixMetric(host, 'read.cache.hit['+arr[0].replace("\"","")+']',arr[3].replace("\"", ""))) packet.append(ZabbixMetric(host, 'write.cache.hit['+arr[0].replace("\"","")+']',arr[4].replace("\"", ""))) packet.append(ZabbixMetric(host, 'ssd.cache.hit['+arr[0].replace("\"","")+']',arr[5].replace("\"", ""))) packet.append(ZabbixMetric(host, 'current.MBs['+arr[0].replace("\"","")+']',arr[6].replace("\"", ""))) packet.append(ZabbixMetric(host, 'max.MBs['+arr[0].replace("\"","")+']',arr[7].replace("\"", ""))) packet.append(ZabbixMetric(host, 'current.ios['+arr[0].replace("\"","")+']',arr[8].replace("\"", ""))) packet.append(ZabbixMetric(host, 'max.ios['+arr[0].replace("\"","")+']',arr[9].replace("\"", ""))) if arr[0].replace("\"","") == "STORAGE SUBSYSTEM TOTALS": break #print packet ZabbixSender(zabbix_server='192.168.10.45', zabbix_port=10051).send(packet) print '{"data":' print json.dumps(output) print '}'
41.754098
151
0.598351
import subprocess import sys import getopt import json from pyzabbix import ZabbixMetric, ZabbixSender ipa = '' ipb = '' host = '' try: opts, args = getopt.getopt(sys.argv[1:], "ha:b:n:") except getopt.GetoptError: print 'md32xx.py -a <IPControlerA> -b <IPControlerB> -n <HostNameInZabbix>' sys.exit(2) for opt, arg in opts: if opt == "-h": print 'md32xx.py -a <IPControlerA> -b <IPControlerB> -n <HostNameInZabbix>' print 'Parameters:' print '-a\t\tIP Controler A' print '-b\t\tIP Controler B' print '-n\t\tHostName in Zabbix' print '-h\t\tThis help' sys.exit() elif opt == "-a": ipa = arg elif opt == "-b": ipb = arg elif opt == "-n": host = arg # else # print 'md32xx.py -a <IPControlerA> -b <IPControlerB> -n <HostNameInZabbix>' # sys.exit(2) SMCLI = "/opt/IBM_DS/client/SMcli" CONN = ipa + " " + ipb cmd = SMCLI + " " + CONN + " -S -c \"set session performanceMonitorInterval=3 performanceMonitorIterations=1;show allLogicalDrives performanceStats;\"" #print cmd proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True) (out, err) = proc.communicate() strings = out.split("\n",7)[7] #print strings packet = [] output = [] for str in strings.splitlines(): arr = str.split(',') output.append({"{#VALUE}": arr[0].replace("\"","")}) packet.append(ZabbixMetric(host, 'total.ios['+arr[0].replace("\"","")+']',arr[1].replace("\"", ""))) packet.append(ZabbixMetric(host, 'read['+arr[0].replace("\"","")+']',arr[2].replace("\"", ""))) packet.append(ZabbixMetric(host, 'read.cache.hit['+arr[0].replace("\"","")+']',arr[3].replace("\"", ""))) packet.append(ZabbixMetric(host, 'write.cache.hit['+arr[0].replace("\"","")+']',arr[4].replace("\"", ""))) packet.append(ZabbixMetric(host, 'ssd.cache.hit['+arr[0].replace("\"","")+']',arr[5].replace("\"", ""))) packet.append(ZabbixMetric(host, 'current.MBs['+arr[0].replace("\"","")+']',arr[6].replace("\"", ""))) packet.append(ZabbixMetric(host, 'max.MBs['+arr[0].replace("\"","")+']',arr[7].replace("\"", ""))) packet.append(ZabbixMetric(host, 'current.ios['+arr[0].replace("\"","")+']',arr[8].replace("\"", ""))) packet.append(ZabbixMetric(host, 'max.ios['+arr[0].replace("\"","")+']',arr[9].replace("\"", ""))) if arr[0].replace("\"","") == "STORAGE SUBSYSTEM TOTALS": break #print packet ZabbixSender(zabbix_server='192.168.10.45', zabbix_port=10051).send(packet) print '{"data":' print json.dumps(output) print '}'
0
0
0
97789f2d81d078c1154b5841a8595992e15aa21b
3,331
py
Python
spd-2.4/twitter_handle.py
Sukhrobjon/career-lab
67bc38c0eb3b47248157f618cb34ed2bdd44fc78
[ "MIT" ]
null
null
null
spd-2.4/twitter_handle.py
Sukhrobjon/career-lab
67bc38c0eb3b47248157f618cb34ed2bdd44fc78
[ "MIT" ]
null
null
null
spd-2.4/twitter_handle.py
Sukhrobjon/career-lab
67bc38c0eb3b47248157f618cb34ed2bdd44fc78
[ "MIT" ]
null
null
null
from heapq import nlargest # NOTE: this solution assumes the handles are only english letters handles = ['DogeCoin', 'YangGang', 'HodlForLife', 'fakeDonaldDrumpf', 'GodIsLove', 'BernieOrBust'] new_user = 'iLoveDogs' obj = SimilarAccounts() result1 = obj.make_anagram(new_user) result2 = obj.make_anagram('DogeCoin') anagram_score = obj.get_score_with_anagram(new_user, 'GodIsLove') set_score = obj.get_score_with_set(new_user, 'GodIsLove') print(f"anagram score:", anagram_score) print(f"set score:", set_score) k_handles = obj.suggest(new_user, handles, 2) print(k_handles)
32.339806
84
0.600721
from heapq import nlargest class SimilarAccounts(): def suggest(self, new_user: str, handles: list, k: int = 2): """ Returns the two most similar account handles associated with new_user handle Args: new_user(str): New user's handle handles(list): Existing users handles k(int): number of similar accout handles Returns: handle(tuple): two most similar score accounts """ # stores the handle and score as (handle, score) scores = [] for handle in handles: score = self.get_score_with_set(new_user, handle) scores.append((handle, score)) # get the k largest handles k_handles = nlargest(k, scores, lambda score: score[1]) # printing out only the handles, not scores return [h[0] for h in k_handles] def get_score_with_anagram(self, handle1, handle2): """ Get the similarity score between two user handles +1 for each letter in the alphabet that occurs in both handles but scoring –1 for each letter that occurs in only one handle """ anagram1 = self.make_anagram(handle1) anagram2 = self.make_anagram(handle2) print(f"{handle1} anagram: {anagram1}") print(f"{handle2} anagram: {anagram2}") score = 0 for i in range(len(anagram1)): if anagram1[i] >= 1 and anagram2[i] > 0: score += 1 elif anagram1[i] >= 1 and anagram2[i] == 0: score -= 1 elif anagram2[i] >= 1 and anagram1[i] > 0: score += 1 elif anagram2[i] >= 1 and anagram1[i] == 0: score -= 1 return score def get_score_with_set(self, handle1, handle2): handle1 = set(handle1.lower()) handle2 = set(handle2.lower()) # print(f'handle1 set: {handle1}, \nhandle2 set: {handle2}') # number of -1s, all unmatch letters sym_diff = handle1.symmetric_difference(handle2) # number of +1s all matching letters intersection = handle1.intersection(handle2) # print(f"symmetric difference: {sym_diff}, \nintersection: {intersection}") score = len(intersection) - len(sym_diff) return (score) def make_anagram(self, word): """ Create a anagram representation of the word. NOTE: It processes words contain only lowercase letters """ # hashing 26 English letters anagram = [0] * 26 offset = ord('a') for letter in word: index = ord(letter.lower()) - offset anagram[index] += 1 return anagram # NOTE: this solution assumes the handles are only english letters handles = ['DogeCoin', 'YangGang', 'HodlForLife', 'fakeDonaldDrumpf', 'GodIsLove', 'BernieOrBust'] new_user = 'iLoveDogs' obj = SimilarAccounts() result1 = obj.make_anagram(new_user) result2 = obj.make_anagram('DogeCoin') anagram_score = obj.get_score_with_anagram(new_user, 'GodIsLove') set_score = obj.get_score_with_set(new_user, 'GodIsLove') print(f"anagram score:", anagram_score) print(f"set score:", set_score) k_handles = obj.suggest(new_user, handles, 2) print(k_handles)
545
2,175
23
5eb550b12cff3701f85e02e56962cdab42e7a5cf
6,175
py
Python
rfsoc_qpsk/dict_widget.py
louisliuwei/rfsoc_qpsk
53aaced242367b0ac5dd4f629f132f158095d83f
[ "BSD-3-Clause" ]
1
2020-02-25T01:16:41.000Z
2020-02-25T01:16:41.000Z
signal_gen/dict_widget.py
adriankaisinclair/signal_gen_proj
ecad285b367bca7e4dbc0fbf7059e1dcef6778e8
[ "BSD-3-Clause" ]
null
null
null
signal_gen/dict_widget.py
adriankaisinclair/signal_gen_proj
ecad285b367bca7e4dbc0fbf7059e1dcef6778e8
[ "BSD-3-Clause" ]
null
null
null
"""Configuration data container with interactive ipywidgets GUI""" import json import ipywidgets import jsonschema class DictWidget(): """Container class for configuration data Constructed from a JSON Schema. Use like a dictionary to store and retrieve configuration data. Will also create a ipywidget interactive representation via `gui()`. Also supports nested schemata (i.e. a schema tha contains `object` properties, which are themselves configuration containers.""" def __init__(self, schema): """Construct a Configuration object from a JSON schema definition""" self.schema = schema self.data = {} self.callback = None self.children = {} # Create GUI # Widget objects are collected in a dictionary (for update in __setitem__()) # as well as a list (together with their description labels to create a VBox for display). self.widgets = {} self.widgetlist = [] for name, props in self.schema['properties'].items(): minimum = props.get('minimum', None) maximum = props.get('maximum', None) description = props.get('description', '') # Containers create new `Configuration` instances - save those children for later if props['type'] == 'object': subschema = {"title": name, "type": "object", "properties": props['properties']} self.children[name] = Configuration(subschema) else: # Scalar data elements are displayed as is if props['type'] == 'integer': value = self.data.get(name, props.get('default', 0)) widget = ipywidgets.IntSlider(description=name, min=minimum, max=maximum, value=value) elif props['type'] == 'number': value = self.data.get(name, props.get('default', 0.0)) widget = ipywidgets.FloatSlider(description=name, min=minimum, max=maximum, value=value) elif props['type'] == 'string': # also supports drop down value = self.data.get(name, props.get('default', '')) if 'choices' in props: widget = ipywidgets.Dropdown(options=props['choices'].split(';'), value=value, description=name) else: widget = ipywidgets.Text(description=name, value=value) elif props['type'] == 'boolean': value = self.data.get(name, props.get('default', False)) widget = ipywidgets.Checkbox(description=name, value=value) else: widget = ipywidgets.Label(description=name, value=f"Don't know how to draw {props['type']}") widget.observe(self.on_value_change, names='value') # save for self-reference self.widgets[name] = widget self.widgetlist.append(ipywidgets.HBox([widget, ipywidgets.Label(value=description)])) # Add all saved children in a Tab if self.children: widget = ipywidgets.Tab([c._gui for c in self.children.values()]) for i, c in enumerate(self.children.keys()): widget.set_title(i, c) widget.observe(self.on_value_change, names='value') # save for self-reference self.widgets['_children'] = widget self.widgetlist.append(widget) # Return all widgets in a VBox self._gui = ipywidgets.VBox(self.widgetlist) def from_dict(self, dict_in): """Load configuration data from a dictionary. Will validate input against schema used in object construction.""" jsonschema.validate(dict_in, self.schema) for key, value in dict_in.items(): if isinstance(value, dict): self.children[key].from_dict(value) else: self[key] = value def from_json(self, json_in): """Load configuration data from JSON.""" temp = json.loads(json_in) self.from_dict(temp) def to_json(self): """Dump configuration data as JSON.""" if not self.data: return None return json.dumps(self.to_dict()) def to_dict(self): """Dump configuration data as dictionary.""" ret = dict(self.data) for name, child in self.children.items(): ret[name] = child.to_dict() return ret def __getitem__(self, item): """Allow using dict syntax for object retrievel. Will first try to locate a child configuration object. If that's not found, it will then look for a data item.""" if item in self.children: return self.children[item] return self.data.__getitem__(item) def __setitem__(self, item, value): """Allow using dict syntax for setting values. Will only allow setting values in accordance with schema used for object generation.""" if item not in self.schema['properties']: raise KeyError(f'"{item}" not in schema') temp = dict(self.data) temp.__setitem__(item, value) jsonschema.validate(temp, self.schema) self.data.__setitem__(item, value) # update any gui that may exist if item in self.widgets: self.widgets[item].value = value def on_value_change(self, change): """Callback for GUI updates.""" key = change['owner'].description self[key] = change['new'] if self.callback: self.callback(self.to_dict()) # TODO: expensive! def interact(self, callback=None): """Return an interactive ipywidgets GUI for setting configuration values. Will call `callback` with a dictionary of data values on change.""" self.callback = callback # Update children's callbacks, too. for c in self.children.values(): c.callback = callback return self._gui
37.652439
120
0.594818
"""Configuration data container with interactive ipywidgets GUI""" import json import ipywidgets import jsonschema class DictWidget(): """Container class for configuration data Constructed from a JSON Schema. Use like a dictionary to store and retrieve configuration data. Will also create a ipywidget interactive representation via `gui()`. Also supports nested schemata (i.e. a schema tha contains `object` properties, which are themselves configuration containers.""" def __init__(self, schema): """Construct a Configuration object from a JSON schema definition""" self.schema = schema self.data = {} self.callback = None self.children = {} # Create GUI # Widget objects are collected in a dictionary (for update in __setitem__()) # as well as a list (together with their description labels to create a VBox for display). self.widgets = {} self.widgetlist = [] for name, props in self.schema['properties'].items(): minimum = props.get('minimum', None) maximum = props.get('maximum', None) description = props.get('description', '') # Containers create new `Configuration` instances - save those children for later if props['type'] == 'object': subschema = {"title": name, "type": "object", "properties": props['properties']} self.children[name] = Configuration(subschema) else: # Scalar data elements are displayed as is if props['type'] == 'integer': value = self.data.get(name, props.get('default', 0)) widget = ipywidgets.IntSlider(description=name, min=minimum, max=maximum, value=value) elif props['type'] == 'number': value = self.data.get(name, props.get('default', 0.0)) widget = ipywidgets.FloatSlider(description=name, min=minimum, max=maximum, value=value) elif props['type'] == 'string': # also supports drop down value = self.data.get(name, props.get('default', '')) if 'choices' in props: widget = ipywidgets.Dropdown(options=props['choices'].split(';'), value=value, description=name) else: widget = ipywidgets.Text(description=name, value=value) elif props['type'] == 'boolean': value = self.data.get(name, props.get('default', False)) widget = ipywidgets.Checkbox(description=name, value=value) else: widget = ipywidgets.Label(description=name, value=f"Don't know how to draw {props['type']}") widget.observe(self.on_value_change, names='value') # save for self-reference self.widgets[name] = widget self.widgetlist.append(ipywidgets.HBox([widget, ipywidgets.Label(value=description)])) # Add all saved children in a Tab if self.children: widget = ipywidgets.Tab([c._gui for c in self.children.values()]) for i, c in enumerate(self.children.keys()): widget.set_title(i, c) widget.observe(self.on_value_change, names='value') # save for self-reference self.widgets['_children'] = widget self.widgetlist.append(widget) # Return all widgets in a VBox self._gui = ipywidgets.VBox(self.widgetlist) def from_dict(self, dict_in): """Load configuration data from a dictionary. Will validate input against schema used in object construction.""" jsonschema.validate(dict_in, self.schema) for key, value in dict_in.items(): if isinstance(value, dict): self.children[key].from_dict(value) else: self[key] = value def from_json(self, json_in): """Load configuration data from JSON.""" temp = json.loads(json_in) self.from_dict(temp) def to_json(self): """Dump configuration data as JSON.""" if not self.data: return None return json.dumps(self.to_dict()) def to_dict(self): """Dump configuration data as dictionary.""" ret = dict(self.data) for name, child in self.children.items(): ret[name] = child.to_dict() return ret def __repr__(self): return 'Configuration "' + self.schema['title'] + '" ' + str(self.data) def __getitem__(self, item): """Allow using dict syntax for object retrievel. Will first try to locate a child configuration object. If that's not found, it will then look for a data item.""" if item in self.children: return self.children[item] return self.data.__getitem__(item) def __setitem__(self, item, value): """Allow using dict syntax for setting values. Will only allow setting values in accordance with schema used for object generation.""" if item not in self.schema['properties']: raise KeyError(f'"{item}" not in schema') temp = dict(self.data) temp.__setitem__(item, value) jsonschema.validate(temp, self.schema) self.data.__setitem__(item, value) # update any gui that may exist if item in self.widgets: self.widgets[item].value = value def on_value_change(self, change): """Callback for GUI updates.""" key = change['owner'].description self[key] = change['new'] if self.callback: self.callback(self.to_dict()) # TODO: expensive! def interact(self, callback=None): """Return an interactive ipywidgets GUI for setting configuration values. Will call `callback` with a dictionary of data values on change.""" self.callback = callback # Update children's callbacks, too. for c in self.children.values(): c.callback = callback return self._gui
78
0
27
68ec29b122262b30ff0938589a6d290ac5c9c5f2
83
py
Python
nepali_company_registrar/__init__.py
girisagar46/nepal-company-registrar
09e0bf2e5f5f2ed43482d7148ddfd22d84a8000f
[ "MIT" ]
null
null
null
nepali_company_registrar/__init__.py
girisagar46/nepal-company-registrar
09e0bf2e5f5f2ed43482d7148ddfd22d84a8000f
[ "MIT" ]
3
2020-05-02T16:04:17.000Z
2021-12-13T20:39:06.000Z
nepali_company_registrar/__init__.py
girisagar46/nepal-company-registrar
09e0bf2e5f5f2ed43482d7148ddfd22d84a8000f
[ "MIT" ]
2
2020-05-02T15:47:13.000Z
2020-05-04T15:19:47.000Z
from nepali_company_registrar.nepal_company_registrar import NepalCompanyRegistrar
41.5
82
0.939759
from nepali_company_registrar.nepal_company_registrar import NepalCompanyRegistrar
0
0
0
e1dc6ae2165d37553a1c4ef3334ea49ec6b9f0af
6,605
py
Python
bt_ig/igdata.py
femtotrader/bt-ig-store
3eb2716b0ee2bc427c5e7b49bfb2661e97e10e02
[ "MIT" ]
1
2017-11-07T12:07:45.000Z
2017-11-07T12:07:45.000Z
bt_ig/igdata.py
femtotrader/bt-ig-store
3eb2716b0ee2bc427c5e7b49bfb2661e97e10e02
[ "MIT" ]
null
null
null
bt_ig/igdata.py
femtotrader/bt-ig-store
3eb2716b0ee2bc427c5e7b49bfb2661e97e10e02
[ "MIT" ]
1
2021-06-14T15:37:05.000Z
2021-06-14T15:37:05.000Z
from __future__ import (absolute_import, division, print_function, unicode_literals) from datetime import datetime, timedelta from backtrader.feed import DataBase from backtrader import TimeFrame, date2num, num2date from backtrader.utils.py3 import (integer_types, queue, string_types, with_metaclass) from backtrader.metabase import MetaParams from . import igstore class IGData(with_metaclass(MetaIGData, DataBase)): ''' params: ''' #TODO insert params params = ( ('useask', False), ('reconnections', -1), ('qcheck', 5) ) # States for the Finite State Machine in _load _ST_FROM, _ST_START, _ST_LIVE, _ST_HISTORBACK, _ST_OVER = range(5) _store = igstore.IGStore def islive(self): '''Returns ``True`` to notify ``Cerebro`` that preloading and runonce should be deactivated''' return True def setenvironment(self, env): '''Receives an environment (cerebro) and passes it over to the store it belongs to''' super(IGData, self).setenvironment(env) env.addstore(self.o) def start(self): '''Starts the IG connecction and gets the real contract and contractdetails if it exists''' super(IGData, self).start() # Create attributes as soon as possible self._statelivereconn = False # if reconnecting in live state self._storedmsg = dict() # keep pending live message (under None) self.qlive = queue.Queue() self._state = self._ST_OVER # Kickstart store and get queue to wait on self.o.start(data=self) self._start_finish() self._state = self._ST_START # initial state for _load self._st_start() self._reconns = 0 def stop(self): '''Stops and tells the store to stop''' super(IGData, self).stop() self.o.stop() def _load(self): ''' steps 1 - check if we status live. If so process message - Check for error codes in message and change status appropriately - Process the message as long as the status is not trying to reconnect - Setup a backfill if data is missing. 2 - If not, is the status set to perform a backfill? ''' if self._state == self._ST_OVER: return False while True: if self._state == self._ST_LIVE: try: msg = (self._storedmsg.pop(None, None) or self.qlive.get(timeout=self._qcheck)) except queue.Empty: return None # indicate timeout situation if msg is None: # Conn broken during historical/backfilling self.put_notification(self.CONNBROKEN) self.put_notification(self.DISCONNECTED) self._state = self._ST_OVER return False # failed #TODO handle error messages in feed #Check for empty data. Sometimes all the fields return None... if msg['UTM'] is None: return None #self._reconns = self.p.reconnections # Process the message according to expected return type if not self._statelivereconn: if self._laststatus != self.LIVE: if self.qlive.qsize() <= 1: # very short live queue self.put_notification(self.LIVE) ret = self._load_tick(msg) if ret: return True # could not load bar ... go and get new one continue elif self._state == self._ST_START: if not self._st_start(instart=False): self._state = self._ST_OVER return False #TODO # - Check for delays in feed # - put a self.put_notification(self.DELAYED) # - Attempt to fill in missing data # - Setup a backfill of some sort when starting a feed. # - Set Dissonnected status where appropriate.
31.303318
86
0.563967
from __future__ import (absolute_import, division, print_function, unicode_literals) from datetime import datetime, timedelta from backtrader.feed import DataBase from backtrader import TimeFrame, date2num, num2date from backtrader.utils.py3 import (integer_types, queue, string_types, with_metaclass) from backtrader.metabase import MetaParams from . import igstore class MetaIGData(DataBase.__class__): def __init__(cls, name, bases, dct): '''Class has already been created ... register''' # Initialize the class super(MetaIGData, cls).__init__(name, bases, dct) # Register with the store igstore.IGStore.DataCls = cls class IGData(with_metaclass(MetaIGData, DataBase)): ''' params: ''' #TODO insert params params = ( ('useask', False), ('reconnections', -1), ('qcheck', 5) ) # States for the Finite State Machine in _load _ST_FROM, _ST_START, _ST_LIVE, _ST_HISTORBACK, _ST_OVER = range(5) _store = igstore.IGStore def islive(self): '''Returns ``True`` to notify ``Cerebro`` that preloading and runonce should be deactivated''' return True def __init__(self, **kwargs): self.o = self._store(**kwargs) def setenvironment(self, env): '''Receives an environment (cerebro) and passes it over to the store it belongs to''' super(IGData, self).setenvironment(env) env.addstore(self.o) def start(self): '''Starts the IG connecction and gets the real contract and contractdetails if it exists''' super(IGData, self).start() # Create attributes as soon as possible self._statelivereconn = False # if reconnecting in live state self._storedmsg = dict() # keep pending live message (under None) self.qlive = queue.Queue() self._state = self._ST_OVER # Kickstart store and get queue to wait on self.o.start(data=self) self._start_finish() self._state = self._ST_START # initial state for _load self._st_start() self._reconns = 0 def _st_start(self, instart=True, tmout=None): #TODO Equivelent of streaming_prices self.qlive = self.o.streaming_prices(self.p.dataname, tmout=tmout) if self._statelivereconn: self.put_notification(self.DELAYED) self._state = self._ST_LIVE if instart: self._reconns = self.p.reconnections return True # no return before - implicit continue def stop(self): '''Stops and tells the store to stop''' super(IGData, self).stop() self.o.stop() def haslivedata(self): return bool(self._storedmsg or self.qlive) # do not return the objs def _load(self): ''' steps 1 - check if we status live. If so process message - Check for error codes in message and change status appropriately - Process the message as long as the status is not trying to reconnect - Setup a backfill if data is missing. 2 - If not, is the status set to perform a backfill? ''' if self._state == self._ST_OVER: return False while True: if self._state == self._ST_LIVE: try: msg = (self._storedmsg.pop(None, None) or self.qlive.get(timeout=self._qcheck)) except queue.Empty: return None # indicate timeout situation if msg is None: # Conn broken during historical/backfilling self.put_notification(self.CONNBROKEN) self.put_notification(self.DISCONNECTED) self._state = self._ST_OVER return False # failed #TODO handle error messages in feed #Check for empty data. Sometimes all the fields return None... if msg['UTM'] is None: return None #self._reconns = self.p.reconnections # Process the message according to expected return type if not self._statelivereconn: if self._laststatus != self.LIVE: if self.qlive.qsize() <= 1: # very short live queue self.put_notification(self.LIVE) ret = self._load_tick(msg) if ret: return True # could not load bar ... go and get new one continue elif self._state == self._ST_START: if not self._st_start(instart=False): self._state = self._ST_OVER return False #TODO # - Check for delays in feed # - put a self.put_notification(self.DELAYED) # - Attempt to fill in missing data # - Setup a backfill of some sort when starting a feed. # - Set Dissonnected status where appropriate. def _load_tick(self, msg): #print('MSG = {}'.format(msg)) #print(msg['UTM']) dtobj = datetime.utcfromtimestamp(int(msg['UTM']) / 1000) dt = date2num(dtobj) try: vol = int(msg['LTV']) except TypeError: vol = 0 #Check for missing Bid quote (Happens sometimes) if msg['BID'] == None and msg['OFR']: bid = float(msg['OFR']) ofr = float(msg['OFR']) #Check for missing offer quote (Happens sometimes) elif msg['OFR'] == None and msg['BID']: bid = float(msg['BID']) ofr = float(msg['BID']) else: bid = float(msg['BID']) ofr = float(msg['OFR']) if dt <= self.lines.datetime[-1]: return False # time already seen # Common fields self.lines.datetime[0] = dt self.lines.volume[0] = vol self.lines.openinterest[0] = 0.0 # Put the prices into the bar #SOMETIME tick can be missing BID or OFFER.... Need to fallback tick = ofr if self.p.useask else bid self.lines.open[0] = tick self.lines.high[0] = tick self.lines.low[0] = tick self.lines.close[0] = tick self.lines.volume[0] = vol self.lines.openinterest[0] = 0.0 return True def _load_history(self, msg): #TODO pass
1,874
277
158
58b7c6c0c929dbb5526611beacb304993639d923
3,750
py
Python
modules/photons_products/lifx.py
Djelibeybi/photons
bc0aa91771d8e88fd3c691fb58f18cb876f292ec
[ "MIT" ]
51
2020-07-03T08:34:48.000Z
2022-03-16T10:56:08.000Z
modules/photons_products/lifx.py
delfick/photons
bc0aa91771d8e88fd3c691fb58f18cb876f292ec
[ "MIT" ]
81
2020-07-03T08:13:59.000Z
2022-03-31T23:02:54.000Z
modules/photons_products/lifx.py
Djelibeybi/photons
bc0aa91771d8e88fd3c691fb58f18cb876f292ec
[ "MIT" ]
8
2020-07-24T23:48:20.000Z
2021-05-24T17:20:16.000Z
from photons_products.base import Product, Capability, CapabilityValue from photons_products.enums import VendorRegistry, Zones, Family from photons_products import conditions as cond class Capability(Capability): """ .. attribute:: is_light Is this device a light .. attribute:: zones The style of zones. So strips are LINEAR and things like the candle and tile are MATRIX .. attribute:: has_ir Do we have infrared capability .. attribute:: has_hev Does this device have HEV LEDs .. attribute:: has_color Do we have hue control .. attribute:: has_chain Do we have a chain of devices .. attribute:: has_relays Does this device have relays .. attribute:: has_buttons Does this device have physical buttons .. attribute:: has_unhandled This product has StateUnhandled .. attribute:: has_extended_multizone This product supports extended multizone messages .. attribute:: has_variable_color_temp Do we have variable kelvin .. attribute:: min_kelvin The min kelvin of this product .. attribute:: max_kelvin The max kelvin of this product .. attribute:: product The product class associate with this capability .. attribute:: firmware_major the firmware_major associated with this product You can create an instance of this capability with your own firmware_major by calling this instance .. attribute:: firmware_minor the firmware_major associated with this product You can create an instance of this capability with your own firmware_minor by calling this instance .. autoattribute:: photons_products.lifx.Capability.has_matrix .. autoattribute:: photons_products.lifx.Capability.has_multizone """ is_light = True zones = CapabilityValue(Zones.SINGLE) has_ir = CapabilityValue(False) has_hev = CapabilityValue(False) has_color = CapabilityValue(False) has_chain = CapabilityValue(False) has_relays = CapabilityValue(False) has_buttons = CapabilityValue(False) has_unhandled = CapabilityValue(False).until(0, 0, cond.NameHas("SWITCH"), becomes=True) has_extended_multizone = CapabilityValue(False).until( 2, 77, cond.Family(Family.LCM2), cond.Capability(has_multizone=True), becomes=True ) has_variable_color_temp = CapabilityValue(True) min_kelvin = CapabilityValue(2500) max_kelvin = CapabilityValue(9000) @property def has_multizone(self): """Return whether we have LINEAR zones""" return self.zones is Zones.LINEAR @property def has_matrix(self): """Return whether we have MATRIX zones""" return self.zones is Zones.MATRIX
27.985075
107
0.651467
from photons_products.base import Product, Capability, CapabilityValue from photons_products.enums import VendorRegistry, Zones, Family from photons_products import conditions as cond class Product(Product): vendor = VendorRegistry.LIFX class Capability(Capability): """ .. attribute:: is_light Is this device a light .. attribute:: zones The style of zones. So strips are LINEAR and things like the candle and tile are MATRIX .. attribute:: has_ir Do we have infrared capability .. attribute:: has_hev Does this device have HEV LEDs .. attribute:: has_color Do we have hue control .. attribute:: has_chain Do we have a chain of devices .. attribute:: has_relays Does this device have relays .. attribute:: has_buttons Does this device have physical buttons .. attribute:: has_unhandled This product has StateUnhandled .. attribute:: has_extended_multizone This product supports extended multizone messages .. attribute:: has_variable_color_temp Do we have variable kelvin .. attribute:: min_kelvin The min kelvin of this product .. attribute:: max_kelvin The max kelvin of this product .. attribute:: product The product class associate with this capability .. attribute:: firmware_major the firmware_major associated with this product You can create an instance of this capability with your own firmware_major by calling this instance .. attribute:: firmware_minor the firmware_major associated with this product You can create an instance of this capability with your own firmware_minor by calling this instance .. autoattribute:: photons_products.lifx.Capability.has_matrix .. autoattribute:: photons_products.lifx.Capability.has_multizone """ is_light = True zones = CapabilityValue(Zones.SINGLE) has_ir = CapabilityValue(False) has_hev = CapabilityValue(False) has_color = CapabilityValue(False) has_chain = CapabilityValue(False) has_relays = CapabilityValue(False) has_buttons = CapabilityValue(False) has_unhandled = CapabilityValue(False).until(0, 0, cond.NameHas("SWITCH"), becomes=True) has_extended_multizone = CapabilityValue(False).until( 2, 77, cond.Family(Family.LCM2), cond.Capability(has_multizone=True), becomes=True ) has_variable_color_temp = CapabilityValue(True) min_kelvin = CapabilityValue(2500) max_kelvin = CapabilityValue(9000) def capabilities_for_display(self): if self.is_light: return [ "zones", "has_ir", "has_hev", "has_color", "has_chain", "has_matrix", "has_relays", "has_buttons", "has_unhandled", "has_multizone", "has_extended_multizone", "has_variable_color_temp", "min_kelvin", "max_kelvin", ] else: return ["has_relays", "has_buttons"] @property def has_multizone(self): """Return whether we have LINEAR zones""" return self.zones is Zones.LINEAR @property def has_matrix(self): """Return whether we have MATRIX zones""" return self.zones is Zones.MATRIX class NonLightCapability(Capability): is_light = False has_ir = None has_hev = None has_color = None has_chain = None has_matrix = None has_multizone = None has_extended_multizone = None has_variable_color_temp = None max_kelvin = None min_kelvin = None
576
313
73
06cd1a03dea8936803ea80d1da734e2a983cdfda
676
py
Python
creat_price_data_datebase.py
brucewong0516/bitfinex_data
f29a7073831c6dd63d5fcfc9d3ed0d2679268f9c
[ "MIT" ]
2
2019-01-03T11:38:39.000Z
2019-04-11T14:03:25.000Z
creat_price_data_datebase.py
brucewong0516/bitfinex_data
f29a7073831c6dd63d5fcfc9d3ed0d2679268f9c
[ "MIT" ]
null
null
null
creat_price_data_datebase.py
brucewong0516/bitfinex_data
f29a7073831c6dd63d5fcfc9d3ed0d2679268f9c
[ "MIT" ]
1
2019-04-11T14:03:33.000Z
2019-04-11T14:03:33.000Z
# 若中断了直接再次运行即可 # 爬取历史数据建立数据库 if __name__ == '__main__': from crypto_1min import Bitfinex_api import threading initially_urls_queue = Bitfinex_api().create_initially_urls_queue() # Bitfinex_api().get_all_symbol_detail() threads = [thread() for i in range(50)] for thread in threads: thread.start() for thread in threads: thread.join()
32.190476
94
0.656805
# 若中断了直接再次运行即可 # 爬取历史数据建立数据库 if __name__ == '__main__': from crypto_1min import Bitfinex_api import threading initially_urls_queue = Bitfinex_api().create_initially_urls_queue() # Bitfinex_api().get_all_symbol_detail() class thread(threading.Thread): def __init__(self): threading.Thread.__init__(self) def run(self): while not initially_urls_queue.empty(): Bitfinex_api().request_for_get_history_price_data(initially_urls_queue.get()) threads = [thread() for i in range(50)] for thread in threads: thread.start() for thread in threads: thread.join()
184
10
93
89c49cc5089a630ef39091edc5eb321e74dc586b
1,605
py
Python
scraping/jobs/stock_scraper.py
nmccn/ddd
b4347c91c8776bca8dacc0d4372122b94e6ae4d5
[ "MIT" ]
null
null
null
scraping/jobs/stock_scraper.py
nmccn/ddd
b4347c91c8776bca8dacc0d4372122b94e6ae4d5
[ "MIT" ]
null
null
null
scraping/jobs/stock_scraper.py
nmccn/ddd
b4347c91c8776bca8dacc0d4372122b94e6ae4d5
[ "MIT" ]
null
null
null
#! python3 import datetime as dt import requests import pandas as pd import lxml.html as lh '''' Class containing the code that scrapes the stock ticker/information from various stock & crypto sites''' class StockScraper: ''' This is a function that scrapes a table from a provided web page.'''
23.602941
124
0.527103
#! python3 import datetime as dt import requests import pandas as pd import lxml.html as lh '''' Class containing the code that scrapes the stock ticker/information from various stock & crypto sites''' class StockScraper: def __init__(self, source, stock_or_crypto): self.source = source self.stock_or_crypto = stock_or_crypto ''' This is a function that scrapes a table from a provided web page.''' def scrape_table(self): col = [] i = 0 url = self.source page = requests.get(url, headers={'User-Agent': 'Mozilla/5.0'}) html_doc = lh.fromstring(page.content) tr_elements = html_doc.xpath('//tr') for t in tr_elements[0]: i+=1 name = t.text_content() col.append((name,[])) # print(name) for i in range(1, len(tr_elements)): T = tr_elements[i] if (len(T) != 10): break j = 0 for t in T.iterchildren(): data = t.text_content() if (i > 0): try: data = int(data) except: pass col[j][1].append(data) j+=1 ticker_dictionary = {title:column for (title,column) in col} ticker_dataframe = pd.DataFrame(ticker_dictionary) # print(ticker_dataframe) ticker_dataframe.to_csv('{}_ticker_dataframe_{}.csv'.format(self.stock_or_crypto, dt.datetime.now().hour), mode='a')
1,231
0
57
aa46a81ce18f9b351c934d3837daf97bc528b371
4,307
py
Python
2-Python_Scripts/TrojControl.py
mdodici/trojan-WD-pollution
ec79a96f0d9517a53df4c82ca1be0d5d38f3346b
[ "MIT" ]
null
null
null
2-Python_Scripts/TrojControl.py
mdodici/trojan-WD-pollution
ec79a96f0d9517a53df4c82ca1be0d5d38f3346b
[ "MIT" ]
null
null
null
2-Python_Scripts/TrojControl.py
mdodici/trojan-WD-pollution
ec79a96f0d9517a53df4c82ca1be0d5d38f3346b
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # In[8]: import rebound import numpy as np ############### ### IMPORTS ### ############### params = np.load('sample_params.npy') ################### ### DEFINITIONS ### ################### radeg = np.pi/180 ############################ ############################ ############################ ### SIMULATION ### ############################ ############################ ############################ t_tot = 2000000 Nout = 100000 times = np.linspace(0,t_tot,Nout) M0 = 1 num_tr = len(params[0]) sim = rebound.Simulation() sim.add(m=M0,x=0, y=0, z=0, vx=0, vy=0, vz=0, hash='Sun') add_tr(sim, params) sim.add(m=9.543e-4, a=5.2, e=.04839, inc=.022689, Omega=0, omega=0, hash='jupiter') sim.integrator = 'whfast' sim.dt = 0.5 sim.move_to_com() ps = sim.particles ######################################### ## Parameter tracking initialization ## ######################################### mass = np.zeros(Nout) x_sol = np.zeros(Nout); y_sol = np.zeros(Nout); z_sol = np.zeros(Nout) x_sol[0] = ps['Sun'].x y_sol[0] = ps['Sun'].y z_sol[0] = ps['Sun'].z x_jup = np.zeros(Nout); y_jup = np.zeros(Nout); z_jup = np.zeros(Nout) x_jup[0] = ps['jupiter'].x y_jup[0] = ps['jupiter'].y z_jup[0] = ps['jupiter'].z a_jup = np.zeros(Nout) e_jup = np.zeros(Nout) i_jup = np.zeros(Nout) pmjup = np.zeros(Nout) lmjup = np.zeros(Nout) a_jup[0] = ps['jupiter'].a e_jup[0] = ps['jupiter'].e i_jup[0] = ps['jupiter'].inc pmjup[0] = ps['jupiter'].pomega lmjup[0] = ps['jupiter'].l a_vals = np.zeros((num_tr, Nout)) e_vals = np.zeros((num_tr, Nout)) i_vals = np.zeros((num_tr, Nout)) omvals = np.zeros((num_tr, Nout)) pmvals = np.zeros((num_tr, Nout)) lmvals = np.zeros((num_tr, Nout)) x_vals = np.zeros((num_tr, Nout)) y_vals = np.zeros((num_tr, Nout)) z_vals = np.zeros((num_tr, Nout)) for moon in range(num_tr): a_vals[moon,0] = ps['tr_{0}'.format(moon)].a e_vals[moon,0] = ps['tr_{0}'.format(moon)].e i_vals[moon,0] = ps['tr_{0}'.format(moon)].inc lmvals[moon,0] = ps['tr_{0}'.format(moon)].l omvals[moon,0] = ps['tr_{0}'.format(moon)].Omega pmvals[moon,0] = ps['tr_{0}'.format(moon)].pomega x_vals[moon,0] = ps['tr_{0}'.format(moon)].x y_vals[moon,0] = ps['tr_{0}'.format(moon)].y z_vals[moon,0] = ps['tr_{0}'.format(moon)].z ########################### ########################### ########################### #### RUNNING #### ########################### ########################### ########################### for i, time in enumerate(times): sim.integrate(time) sim.move_to_com() x_sol[i] = ps['Sun'].x y_sol[i] = ps['Sun'].y z_sol[i] = ps['Sun'].z x_jup[i] = ps['jupiter'].x y_jup[i] = ps['jupiter'].y z_jup[i] = ps['jupiter'].z a_jup[i] = ps['jupiter'].a e_jup[i] = ps['jupiter'].e i_jup[i] = ps['jupiter'].inc pmjup[i] = ps['jupiter'].pomega lmjup[i] = ps['jupiter'].l for moon in range(num_tr): a_vals[moon,i] = ps['tr_{0}'.format(moon)].a e_vals[moon,i] = ps['tr_{0}'.format(moon)].e i_vals[moon,i] = ps['tr_{0}'.format(moon)].inc lmvals[moon,i] = ps['tr_{0}'.format(moon)].l omvals[moon,i] = ps['tr_{0}'.format(moon)].Omega pmvals[moon,i] = ps['tr_{0}'.format(moon)].pomega x_vals[moon,i] = ps['tr_{0}'.format(moon)].x y_vals[moon,i] = ps['tr_{0}'.format(moon)].y z_vals[moon,i] = ps['tr_{0}'.format(moon)].z ############## ## Saving ## ############## i_vals/= radeg i_jup /= radeg troj_data = np.array((a_vals, e_vals, i_vals, omvals, pmvals, lmvals, x_vals, y_vals, z_vals)) plnt_data = np.array((a_jup, e_jup, i_jup, pmjup, lmjup, x_jup, y_jup, z_jup)) star_data = np.array((mass, lsol, x_sol, y_sol, z_sol)) np.save("Ctrl_Trojandata.npy", troj_data) np.save("Ctrl_Planetdata.npy", plnt_data) np.save("Ctrl_Stardata.npy", star_data) np.save("Ctrl_Timesteps.npy", times)
23.664835
102
0.521941
#!/usr/bin/env python # coding: utf-8 # In[8]: import rebound import numpy as np ############### ### IMPORTS ### ############### params = np.load('sample_params.npy') ################### ### DEFINITIONS ### ################### radeg = np.pi/180 def add_tr(sim, pars): a = pars[0] e = pars[1] c = pars[2]*radeg p = pars[3] l = pars[4] for i in range(len(a)): sem = a[i] ecc = e[i] icl = c[i] pme = p[i] lam = l[i] has = 'tr_{0}'.format(i) sim.add(m=0, primary=sim.particles['Sun'], a=sem, e=ecc, inc=icl, pomega=pme, l=lam, hash=has) ############################ ############################ ############################ ### SIMULATION ### ############################ ############################ ############################ t_tot = 2000000 Nout = 100000 times = np.linspace(0,t_tot,Nout) M0 = 1 num_tr = len(params[0]) sim = rebound.Simulation() sim.add(m=M0,x=0, y=0, z=0, vx=0, vy=0, vz=0, hash='Sun') add_tr(sim, params) sim.add(m=9.543e-4, a=5.2, e=.04839, inc=.022689, Omega=0, omega=0, hash='jupiter') sim.integrator = 'whfast' sim.dt = 0.5 sim.move_to_com() ps = sim.particles ######################################### ## Parameter tracking initialization ## ######################################### mass = np.zeros(Nout) x_sol = np.zeros(Nout); y_sol = np.zeros(Nout); z_sol = np.zeros(Nout) x_sol[0] = ps['Sun'].x y_sol[0] = ps['Sun'].y z_sol[0] = ps['Sun'].z x_jup = np.zeros(Nout); y_jup = np.zeros(Nout); z_jup = np.zeros(Nout) x_jup[0] = ps['jupiter'].x y_jup[0] = ps['jupiter'].y z_jup[0] = ps['jupiter'].z a_jup = np.zeros(Nout) e_jup = np.zeros(Nout) i_jup = np.zeros(Nout) pmjup = np.zeros(Nout) lmjup = np.zeros(Nout) a_jup[0] = ps['jupiter'].a e_jup[0] = ps['jupiter'].e i_jup[0] = ps['jupiter'].inc pmjup[0] = ps['jupiter'].pomega lmjup[0] = ps['jupiter'].l a_vals = np.zeros((num_tr, Nout)) e_vals = np.zeros((num_tr, Nout)) i_vals = np.zeros((num_tr, Nout)) omvals = np.zeros((num_tr, Nout)) pmvals = np.zeros((num_tr, Nout)) lmvals = np.zeros((num_tr, Nout)) x_vals = np.zeros((num_tr, Nout)) y_vals = np.zeros((num_tr, Nout)) z_vals = np.zeros((num_tr, Nout)) for moon in range(num_tr): a_vals[moon,0] = ps['tr_{0}'.format(moon)].a e_vals[moon,0] = ps['tr_{0}'.format(moon)].e i_vals[moon,0] = ps['tr_{0}'.format(moon)].inc lmvals[moon,0] = ps['tr_{0}'.format(moon)].l omvals[moon,0] = ps['tr_{0}'.format(moon)].Omega pmvals[moon,0] = ps['tr_{0}'.format(moon)].pomega x_vals[moon,0] = ps['tr_{0}'.format(moon)].x y_vals[moon,0] = ps['tr_{0}'.format(moon)].y z_vals[moon,0] = ps['tr_{0}'.format(moon)].z ########################### ########################### ########################### #### RUNNING #### ########################### ########################### ########################### for i, time in enumerate(times): sim.integrate(time) sim.move_to_com() x_sol[i] = ps['Sun'].x y_sol[i] = ps['Sun'].y z_sol[i] = ps['Sun'].z x_jup[i] = ps['jupiter'].x y_jup[i] = ps['jupiter'].y z_jup[i] = ps['jupiter'].z a_jup[i] = ps['jupiter'].a e_jup[i] = ps['jupiter'].e i_jup[i] = ps['jupiter'].inc pmjup[i] = ps['jupiter'].pomega lmjup[i] = ps['jupiter'].l for moon in range(num_tr): a_vals[moon,i] = ps['tr_{0}'.format(moon)].a e_vals[moon,i] = ps['tr_{0}'.format(moon)].e i_vals[moon,i] = ps['tr_{0}'.format(moon)].inc lmvals[moon,i] = ps['tr_{0}'.format(moon)].l omvals[moon,i] = ps['tr_{0}'.format(moon)].Omega pmvals[moon,i] = ps['tr_{0}'.format(moon)].pomega x_vals[moon,i] = ps['tr_{0}'.format(moon)].x y_vals[moon,i] = ps['tr_{0}'.format(moon)].y z_vals[moon,i] = ps['tr_{0}'.format(moon)].z ############## ## Saving ## ############## i_vals/= radeg i_jup /= radeg troj_data = np.array((a_vals, e_vals, i_vals, omvals, pmvals, lmvals, x_vals, y_vals, z_vals)) plnt_data = np.array((a_jup, e_jup, i_jup, pmjup, lmjup, x_jup, y_jup, z_jup)) star_data = np.array((mass, lsol, x_sol, y_sol, z_sol)) np.save("Ctrl_Trojandata.npy", troj_data) np.save("Ctrl_Planetdata.npy", plnt_data) np.save("Ctrl_Stardata.npy", star_data) np.save("Ctrl_Timesteps.npy", times)
348
0
23
db093beb53a7b6ad82a8e1539915f07c674c857e
22,140
py
Python
filter_unlabel.py
IMAGR-LTD/noisystudent
c5ae6524c6ba37d3cd133107c21250c4b8fb7a28
[ "Apache-2.0" ]
683
2020-02-14T20:50:53.000Z
2022-03-30T06:02:54.000Z
filter_unlabel.py
IMAGR-LTD/noisystudent
c5ae6524c6ba37d3cd133107c21250c4b8fb7a28
[ "Apache-2.0" ]
11
2020-06-22T09:03:33.000Z
2021-11-02T16:15:00.000Z
filter_unlabel.py
IMAGR-LTD/noisystudent
c5ae6524c6ba37d3cd133107c21250c4b8fb7a28
[ "Apache-2.0" ]
102
2020-02-17T10:30:41.000Z
2022-03-25T05:38:51.000Z
# coding=utf-8 # Copyright 2019 The Google NoisyStudent Team Authors. # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import app from absl import flags import collections import json import copy import os import time import numpy as np import tensorflow as tf import utils FLAGS = flags.FLAGS flags.DEFINE_string('input_dir', '', '') flags.DEFINE_string('prediction_dir', '', '') flags.DEFINE_string('info_dir', '', '') flags.DEFINE_string('prelim_stats_dir', '', '') flags.DEFINE_string('output_dir', '', '') flags.DEFINE_integer( 'num_shards', default=128, help='') flags.DEFINE_integer( 'only_use_num_shards', default=-1, help='') flags.DEFINE_integer( 'shard_id', default=0, help='') flags.DEFINE_integer( 'num_image', default=1300, help='') flags.DEFINE_integer( 'total_replicas', default=1, help='') flags.DEFINE_integer( 'total_label_replicas', default=-1, help='') flags.DEFINE_integer( 'task', default=-1, help='') flags.DEFINE_integer( 'debug', default=0, help='') flags.DEFINE_float( 'min_threshold', default=0.0, help='') flags.DEFINE_float( 'max_prob', default=2, help='sometimes the probability can be greater than 1 due to floating point.') flags.DEFINE_integer( 'num_label_classes', default=1000, help='') flags.DEFINE_integer( 'upsample', default=1, help='') flags.DEFINE_integer( 'only_get_stats', default=0, help='') flags.DEFINE_string('file_prefix', 'train', '') flags.DEFINE_string( 'data_type', default='tfrecord', help='') flags.DEFINE_integer( 'use_top', default=1, help='') flags.DEFINE_bool( 'eval_imagenet_p', default=False, help='') flags.DEFINE_bool( 'use_all', default=False, help='') if __name__ == '__main__': app.run(main)
34.866142
145
0.652304
# coding=utf-8 # Copyright 2019 The Google NoisyStudent Team Authors. # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import app from absl import flags import collections import json import copy import os import time import numpy as np import tensorflow as tf import utils FLAGS = flags.FLAGS flags.DEFINE_string('input_dir', '', '') flags.DEFINE_string('prediction_dir', '', '') flags.DEFINE_string('info_dir', '', '') flags.DEFINE_string('prelim_stats_dir', '', '') flags.DEFINE_string('output_dir', '', '') flags.DEFINE_integer( 'num_shards', default=128, help='') flags.DEFINE_integer( 'only_use_num_shards', default=-1, help='') flags.DEFINE_integer( 'shard_id', default=0, help='') flags.DEFINE_integer( 'num_image', default=1300, help='') flags.DEFINE_integer( 'total_replicas', default=1, help='') flags.DEFINE_integer( 'total_label_replicas', default=-1, help='') flags.DEFINE_integer( 'task', default=-1, help='') flags.DEFINE_integer( 'debug', default=0, help='') flags.DEFINE_float( 'min_threshold', default=0.0, help='') flags.DEFINE_float( 'max_prob', default=2, help='sometimes the probability can be greater than 1 due to floating point.') flags.DEFINE_integer( 'num_label_classes', default=1000, help='') flags.DEFINE_integer( 'upsample', default=1, help='') flags.DEFINE_integer( 'only_get_stats', default=0, help='') flags.DEFINE_string('file_prefix', 'train', '') flags.DEFINE_string( 'data_type', default='tfrecord', help='') flags.DEFINE_integer( 'use_top', default=1, help='') flags.DEFINE_bool( 'eval_imagenet_p', default=False, help='') flags.DEFINE_bool( 'use_all', default=False, help='') def preprocess_jft(features): encoded_image = features['image/encoded'] image = utils.decode_raw_image(encoded_image) encoded_image = tf.image.encode_jpeg( image, format='rgb', quality=100) features['image/encoded'] = encoded_image return features def input_dataset(worker_id): filename = utils.get_filename(FLAGS.input_dir, FLAGS.file_prefix, FLAGS.shard_id, FLAGS.num_shards) dst = utils.get_dst_from_filename(filename, FLAGS.data_type, FLAGS.total_label_replicas, worker_id) dst = dst.apply( tf.data.experimental.map_and_batch( preprocess_jft if FLAGS.data_type == 'sstable' else lambda x: x, batch_size=1, num_parallel_batches=16, drop_remainder=False)) dst = dst.prefetch(tf.data.experimental.AUTOTUNE) return dst def get_worker_id_list(): if FLAGS.debug == 1: worker_id_list = [0] else: if FLAGS.task != -1: num_label_replica_per_worker = FLAGS.total_label_replicas // FLAGS.total_replicas worker_id_list = list(range( FLAGS.task * num_label_replica_per_worker, (FLAGS.task + 1) * num_label_replica_per_worker)) tf.logging.info('worker_id_list {:s}'.format(str(worker_id_list))) else: worker_id_list = list(range(FLAGS.total_label_replicas)) return worker_id_list def get_label_to_image_idx(): tf.logging.info('\n\ngetting label to image idx') label_to_image_idx = {} num_image_for_worker = {} for worker_id in get_worker_id_list(): with tf.gfile.Open( os.path.join( FLAGS.info_dir, 'info-%.5d-of-%.5d-%.5d.txt' % ( FLAGS.shard_id, FLAGS.num_shards, worker_id ))) as inf: info = json.load(inf) image_num = info['image_num'] num_image_for_worker[worker_id] = image_num if image_num == 0: continue label_dst = utils.label_dataset( worker_id, FLAGS.prediction_dir, FLAGS.shard_id, FLAGS.num_shards) iter = label_dst.make_initializable_iterator() elem = iter.get_next() cnt = 0 with tf.Session() as sess: sess.run(iter.initializer) for j in range(image_num): features = sess.run(elem) label_arr = features['classes'] prob_arr = features['probabilities'] for i in range(label_arr.shape[0]): label = label_arr[i] prob = prob_arr[i][label] if label not in label_to_image_idx: label_to_image_idx[label] = [] label_to_image_idx[label] += [{ 'worker_id': worker_id, 'idx': cnt, 'prob': prob, 'probabilities': prob_arr[i].tolist(), }] cnt += 1 assert cnt == image_num return label_to_image_idx, num_image_for_worker def get_keep_image_idx(label_to_image_idx, selected_threshold, uid_list): tf.logging.info('\n\ngetting keep image idx') stats_dir = os.path.join( FLAGS.output_dir, 'stats') tf.gfile.MakeDirs(stats_dir) keep_idx = {} for i in label_to_image_idx: label_to_image_idx[i] = sorted(label_to_image_idx[i], key=lambda x: -x['prob']) k = 0 uid = uid_list[i] while k < len(label_to_image_idx[i]): if (label_to_image_idx[i][k]['prob'] >= selected_threshold[uid][0] and label_to_image_idx[i][k]['prob'] <= FLAGS.max_prob): if FLAGS.use_all: include_copy = 1 else: include_copy = FLAGS.num_image / selected_threshold[uid][1] if not FLAGS.upsample: include_copy = min(include_copy, 1) prob = include_copy - int(include_copy) include_copy = int(include_copy) + int(np.random.random() < prob) if include_copy: info = label_to_image_idx[i][k] worker_id = info['worker_id'] print('include_copy', include_copy, FLAGS.num_image, selected_threshold[uid][1], '\n\n\n') if worker_id not in keep_idx: keep_idx[worker_id] = {} keep_idx[worker_id][info['idx']] = [i, info['prob'], include_copy, info['probabilities']] k += 1 counts = collections.defaultdict(int) total_keep_example = 0 for worker_id in keep_idx: for label, prob, include_copy, _ in keep_idx[worker_id].values(): counts[uid_list[label]] += include_copy total_keep_example += 1 tf.logging.info('counts: {:s}'.format(json.dumps(counts, indent=4))) return keep_idx, total_keep_example, counts def filter_image_by_idx( keep_idx, uid_list, total_keep_example, num_image_for_worker): sample_prob = 30000. / (FLAGS.num_image * 1000) image_list = [] np.random.seed(12345) def get_image_list(features): dump_features = {} prob = keep_idx[worker_id][cnt][1] label = keep_idx[worker_id][cnt][0] include_copy = keep_idx[worker_id][cnt][2] image_bytes = features['image/encoded'][0] dump_features['image/encoded'] = utils.bytes_feature(image_bytes) dump_features['prob'] = utils.float_feature(prob) dump_features['probabilities'] = utils.float_feature(keep_idx[worker_id][cnt][3]) dump_features['label'] = utils.int64_feature(label) example = tf.train.Example(features=tf.train.Features(feature=dump_features)) cur_image_list = [] for j in range(include_copy): image_info = { 'example': example, 'label': label, 'prob': prob, 'image_bytes': image_bytes, 'cnt': cnt, } cur_image_list += [image_info] return cur_image_list def flush(sess): tf.logging.info('saving images') np.random.shuffle(image_list) for image_info in image_list: image_bytes = image_info['image_bytes'] prob = image_info['prob'] label = image_info['label'] example = image_info['example'] cnt = image_info['cnt'] record_writer.write(example.SerializeToString()) if np.random.random() < sample_prob: uid = uid_list[label] filename = os.path.join( sample_dir, uid, 'image_{:d}_{:d}_{:d}_{:.2f}.jpeg'.format( FLAGS.shard_id, FLAGS.task, cnt, prob)) tf.logging.info('saving {:s}'.format(filename)) image = sess.run(decoded_image, feed_dict={image_bytes_placeholder: image_bytes} ) utils.save_pic(image, filename) tf.logging.info( '{:d}/{:d} images saved, elapsed time: {:.2f} h'.format( num_picked_images, total_keep_example, (time.time() - start_time) / 3600)) tf.logging.info('\n\nfilter image by index') num_picked_images = 0 sample_dir = os.path.join(FLAGS.output_dir, 'samples') data_dir = os.path.join(FLAGS.output_dir, 'data') for uid in uid_list: tf.gfile.MakeDirs(os.path.join(sample_dir, uid)) tf.gfile.MakeDirs(data_dir) image_bytes_placeholder = tf.placeholder(dtype=tf.string) decoded_image = utils.decode_raw_image(image_bytes_placeholder) total_cnt = 0 start_time = time.time() image_list = [] if len(keep_idx) == 0: return record_writer = tf.python_io.TFRecordWriter( os.path.join(data_dir, 'train-%d-%.5d-of-%.5d' % ( FLAGS.task, FLAGS.shard_id, FLAGS.num_shards))) for worker_id in get_worker_id_list(): tf.logging.info('worker_id: {:d}, elapsed time: {:.2f} h'.format( worker_id, (time.time() - start_time) / 3600.)) dst = input_dataset(worker_id) iter = dst.make_initializable_iterator() elem = iter.get_next() cnt = 0 hit_samples = {} with tf.Session() as sess: sess.run(iter.initializer) for i in range(num_image_for_worker[worker_id]): features = sess.run(elem) key = 'image/encoded' # encoded_image_arr = features['image/encoded'] # assert encoded_image_arr.shape[0] == 1 # for j in range(encoded_image_arr.shape[0]): for j in range(features[key].shape[0]): if worker_id in keep_idx and cnt in keep_idx[worker_id]: num_picked_images += 1 # image_list += get_image_list(encoded_image_arr[j]) image_list += get_image_list(features) hit_samples[cnt] = 1 if total_cnt % 1000 == 0: elapsed_time = (time.time() - start_time) / 3600 total_image = num_image_for_worker[worker_id] tf.logging.info( 'scanning idx {:d} of {:d} images, {:d}/{:d} images saved, elapsed time: {:.2f} h, remaining time {:.2f} h'.format( total_cnt, total_image, num_picked_images, total_keep_example, elapsed_time, elapsed_time / (total_cnt + 1) * (total_image - total_cnt) ) ) cnt += 1 total_cnt += 1 if len(image_list) >= 10000: flush(sess) image_list = [] try: sess.run(elem) assert False, "count isn't right" except tf.errors.OutOfRangeError: tf.logging.info('count is right') assert cnt == num_image_for_worker[worker_id], (cnt, num_image_for_worker[worker_id]) for idx in keep_idx[worker_id]: if idx not in hit_samples: tf.logging.info('\n\nnot hit, %d %d', worker_id, idx) assert num_picked_images == total_keep_example if len(image_list): with tf.Session() as sess: flush(sess) image_list = [] record_writer.close() def is_master_job(): return FLAGS.shard_id == 0 and (FLAGS.task == -1 or FLAGS.task == 0) def get_total_counts(uid_list, prelim_stats_dir, prob_threshold): if FLAGS.only_use_num_shards != -1: num_shards = FLAGS.only_use_num_shards else: num_shards = FLAGS.num_shards to_read_filenames = [] for i in range(num_shards): for j in range(FLAGS.total_replicas): if FLAGS.debug == 1 and (i != FLAGS.shard_id or j != FLAGS.task): continue prelim_stats_filename = os.path.join( prelim_stats_dir, 'prelim_stats_%.5d_%d.json' % (i, j)) to_read_filenames += [prelim_stats_filename] total_counts = {} total_counts_sum = {} for uid in uid_list: total_counts[uid] = [] total_counts_sum[uid] = [] for threshold in prob_threshold: total_counts[uid] += [[threshold, 0]] total_counts_sum[uid] += [[threshold, 0]] tf.logging.info('reading prelim stats') while len(to_read_filenames): new_to_read_filenames = [] for filename in to_read_filenames: completed, counts = load_json(filename) if completed: for uid in counts: for k in range(len(prob_threshold)): total_counts[uid][k][1] += counts[uid][k][1] tf.logging.info('finished reading prelim stats for {:s}'.format(filename)) else: new_to_read_filenames += [filename] tf.logging.info('not ready: {:s}'.format(filename)) to_read_filenames = new_to_read_filenames return total_counts, total_counts_sum def get_threshold(label_to_image_idx, uid_list, prob_threshold): tf.logging.info('\n\ngetting threshold') threshold_stats = {} prelim_stats_dir = FLAGS.prelim_stats_dir prelim_stats_filename = os.path.join(prelim_stats_dir, 'prelim_stats_%.5d_%d.json' % (FLAGS.shard_id, FLAGS.task)) if not load_json(prelim_stats_filename)[0]: tf.gfile.MakeDirs(prelim_stats_dir) for i in label_to_image_idx: label_to_image_idx[i] = sorted(label_to_image_idx[i], key=lambda x: -x['prob']) num_samples = [] n = len(label_to_image_idx[i]) start_idx = 0 cur_sample_idx = 0 for j in reversed(range(len(prob_threshold))): while cur_sample_idx < n and label_to_image_idx[i][cur_sample_idx]['prob'] >= prob_threshold[j]: cur_sample_idx += 1 num_samples += [(prob_threshold[j], cur_sample_idx - start_idx)] start_idx = cur_sample_idx threshold_stats[uid_list[i]] = copy.deepcopy(list(reversed(num_samples))) with tf.gfile.Open( prelim_stats_filename, 'w') as ouf: json.dump(threshold_stats, ouf) tf.logging.info('threshold_stats: {:s}'.format(json.dumps(threshold_stats, indent=4))) if is_master_job(): total_counts_file = os.path.join(prelim_stats_dir, 'total_counts.json') if not tf.gfile.Exists(total_counts_file): total_counts, total_counts_sum = get_total_counts( uid_list, prelim_stats_dir, prob_threshold) for uid in uid_list: for i in range(len(prob_threshold) - 1, -1, -1): if i < len(prob_threshold) - 1: total_counts_sum[uid][i][1] = total_counts_sum[uid][i + 1][1] + total_counts[uid][i][1] else: total_counts_sum[uid][i][1] = total_counts[uid][i][1] total_counts_sum_file = os.path.join(prelim_stats_dir, 'total_counts_sum.json') with tf.gfile.Open(total_counts_sum_file, 'w') as ouf: json.dump(total_counts_sum, ouf) with tf.gfile.Open(total_counts_file, 'w') as ouf: json.dump(total_counts, ouf) else: with tf.gfile.Open(total_counts_file) as inf: total_counts = json.load(inf) tf.gfile.MakeDirs(FLAGS.output_dir) threshold_file = os.path.join(FLAGS.output_dir, 'threshold.json') if not tf.gfile.Exists(threshold_file): selected_threshold = {} num_image_across_cat = 0 for uid in uid_list: threshold_idx = -1 total_image = 0 for i in range(len(prob_threshold) - 1, -1, -1): if prob_threshold[i] < FLAGS.max_prob and prob_threshold[i] >= FLAGS.min_threshold: total_image += total_counts[uid][i][1] if not FLAGS.use_all: if FLAGS.use_top and total_image >= FLAGS.num_image: threshold_idx = i break if prob_threshold[i] == FLAGS.min_threshold: threshold_idx = i break assert threshold_idx != -1 if not FLAGS.use_all: if total_image < FLAGS.num_image: assert prob_threshold[threshold_idx] == FLAGS.min_threshold tf.logging.info( 'warning: too few images, {:s} only has {:d} images while we expect {:d} images, upsampling, threshold {:.3f}'.format( uid, total_image, FLAGS.num_image, prob_threshold[threshold_idx])) else: tf.logging.info('warning: too many images, {:s} has {:d} images while we expect {:d} images, down sampling, threshold {:.3f}'.format( uid, total_image, FLAGS.num_image, prob_threshold[threshold_idx])) selected_threshold[uid] = ( prob_threshold[threshold_idx], total_image) num_image_across_cat += min(total_image, FLAGS.num_image) with tf.gfile.Open(threshold_file, 'w') as ouf: json.dump(selected_threshold, ouf) image_across_cat_filename = os.path.join(FLAGS.output_dir, 'num_image_across_cat.json') with tf.gfile.Open(image_across_cat_filename, 'w') as ouf: json.dump({'num_image_acorss_cat': num_image_across_cat}, ouf) else: with tf.gfile.Open(threshold_file) as inf: selected_threshold = json.load(inf) else: if FLAGS.only_get_stats: return None threshold_file = os.path.join(FLAGS.output_dir, 'threshold.json') while not tf.gfile.Exists(threshold_file): tf.logging.info('waiting for the threshold file') time.sleep(300) # sleep 5 min selected_threshold = None while True: try: with tf.gfile.Open(threshold_file) as inf: selected_threshold = json.load(inf) break except: pass return selected_threshold def load_json(filename): if tf.gfile.Exists(filename): counts = None try: with tf.gfile.Open(filename) as inf: counts = json.load(inf) return (True, counts) except: tf.logging.info('having error loading {:s}, not exist'.format( filename)) return (False, None) def read_stats(): total_counts = collections.defaultdict(int) filename_list = [] stats_dir = os.path.join(FLAGS.output_dir, 'stats') if FLAGS.only_use_num_shards != -1: num_shards = FLAGS.only_use_num_shards else: num_shards = FLAGS.num_shards for i in range(num_shards): for j in range(FLAGS.total_replicas): filename = os.path.join(stats_dir, 'stats_%.5d_%d.json' % (i, j)) filename_list += [filename] if FLAGS.debug == 1: filename_list = [os.path.join( stats_dir, 'stats_%.5d_%d.json' % (FLAGS.shard_id, FLAGS.task))] while len(filename_list): new_filename_list = [] for filename in filename_list: if load_json(filename)[0]: counts = None while True: try: with tf.gfile.Open(filename) as inf: counts = json.load(inf) break except: tf.logging.info('having error loading {:s}, retrying'.format( filename)) pass for uid in counts: total_counts[uid] += counts[uid] else: new_filename_list += [filename] filename_list = new_filename_list tf.logging.info('waiting for: {:s}'.format(' '.join(filename_list))) count_pairs = total_counts.items() count_pairs = sorted(count_pairs, key=lambda x: -x[1]) num_images_all_label = 0 for key, value in count_pairs: num_images_all_label += value final_stats = { 'cat_count': total_counts, 'cat_sorted_pairs': count_pairs, 'total_cnt': num_images_all_label } with tf.gfile.Open( os.path.join(FLAGS.output_dir, 'stats', 'final_stats.json'), 'w') as ouf: json.dump(final_stats, ouf) tf.logging.info(json.dumps(final_stats, indent=4)) def get_label_replicas(): # infer number of replicas from data FLAGS.total_label_replicas = 1 while True: filename = os.path.join( FLAGS.prediction_dir, 'train-info-%.5d-of-%.5d-%.5d' % ( 0, FLAGS.num_shards, FLAGS.total_label_replicas - 1)) if tf.gfile.Exists(filename): FLAGS.total_label_replicas *= 2 else: break FLAGS.total_label_replicas = FLAGS.total_label_replicas // 2 tf.logging.info('total_label_replicas {:d}'.format(FLAGS.total_label_replicas)) assert FLAGS.total_label_replicas > 0 def main(argv): stats_dir = os.path.join(FLAGS.output_dir, 'stats') stats_filename = os.path.join(stats_dir, 'stats_%.5d_%d.json' % (FLAGS.shard_id, FLAGS.task)) if load_json(stats_filename)[0]: if is_master_job(): read_stats() tf.logging.info('stats already finished, returning') return prelim_stats_filename = os.path.join( FLAGS.prelim_stats_dir, 'prelim_stats_%.5d_%d.json' % (FLAGS.shard_id, FLAGS.task)) completed, _ = load_json(prelim_stats_filename) if FLAGS.only_get_stats and completed and not is_master_job(): return get_label_replicas() assert FLAGS.total_label_replicas == FLAGS.total_replicas # must be sorted prob_threshold = [] # 0 to 0.99 for i in range(0, 101): prob = i / 100. prob_threshold += [prob] uid_list = utils.get_uid_list() print(len(uid_list)) print("\n" * 10) label_to_image_idx, num_image_for_worker = get_label_to_image_idx() selected_threshold = get_threshold( label_to_image_idx, uid_list, prob_threshold) if FLAGS.only_get_stats: return keep_idx, total_keep_example, counts = get_keep_image_idx( label_to_image_idx, selected_threshold, uid_list) filter_image_by_idx(keep_idx, uid_list, total_keep_example, num_image_for_worker) with tf.gfile.Open( os.path.join(stats_dir, 'stats_%.5d_%d.json' % (FLAGS.shard_id, FLAGS.task)), 'w') as ouf: json.dump(counts, ouf) if is_master_job(): read_stats() if __name__ == '__main__': app.run(main)
19,455
0
299
c7a57ea8bd5bf8926a8b9423d40481685fc17c8b
193
py
Python
PythonExercicios/ex060-calculo-do-fatorial-usando-for.py
ArthurAlbuquerquee/exercicios-python-cev
ba64d3a025731aae5e238c7cb469917420b7901e
[ "MIT" ]
null
null
null
PythonExercicios/ex060-calculo-do-fatorial-usando-for.py
ArthurAlbuquerquee/exercicios-python-cev
ba64d3a025731aae5e238c7cb469917420b7901e
[ "MIT" ]
null
null
null
PythonExercicios/ex060-calculo-do-fatorial-usando-for.py
ArthurAlbuquerquee/exercicios-python-cev
ba64d3a025731aae5e238c7cb469917420b7901e
[ "MIT" ]
null
null
null
n = int(input('Digite um número para calcular o fatorial: ')) f = 1 for c in range(n, 0, -1): print(f'{c}', end='') print(' x ' if c > 1 else ' = ', end='') f = f * c print(f'{f}')
24.125
61
0.502591
n = int(input('Digite um número para calcular o fatorial: ')) f = 1 for c in range(n, 0, -1): print(f'{c}', end='') print(' x ' if c > 1 else ' = ', end='') f = f * c print(f'{f}')
0
0
0
d462a20b6ef7379120157d79baf14c2fc027f6cd
3,966
py
Python
tests/test_preprocessing.py
MannLabs/alphaviz
5911f351cf5cd21e2a3fa2a455d1eeb0c43af9cc
[ "Apache-2.0" ]
6
2022-01-27T12:47:31.000Z
2022-03-10T11:18:03.000Z
tests/test_preprocessing.py
MannLabs/alphaviz
5911f351cf5cd21e2a3fa2a455d1eeb0c43af9cc
[ "Apache-2.0" ]
7
2022-01-27T14:34:15.000Z
2022-03-15T12:16:58.000Z
tests/test_preprocessing.py
MannLabs/alphaviz
5911f351cf5cd21e2a3fa2a455d1eeb0c43af9cc
[ "Apache-2.0" ]
null
null
null
#!python """ This module provides pytest tests for the functions from preprocessing.py file """ import pytest import alphaviz.preprocessing as preproc # def test_preprocess_ckg_output(): # ckg_output_string_correct = "~Q92934;~Q15149" # ckg_output_string_correct_2 = " ~Q92934; ~Q15149" # ckg_output_string_wrong = "Q92934; Q15149" # # proteins_correct_input = alphaviz.preprocessing.preprocess_ckg_output(ckg_output_string_correct) # assert len(proteins_correct_input) == 2, \ # "The number of extracted proteins is wrong." # assert 'Q92934' in proteins_correct_input, \ # "A unique protein is absent in the extracted list of proteins." # # assert proteins_correct_input == alphaviz.preprocessing.preprocess_ckg_output(ckg_output_string_correct_2), \ # "Spaces in the ckg string don't influence on the result of the output." # # with pytest.raises(ValueError): # alphaviz.preprocessing.preprocess_ckg_output(ckg_output_string_wrong)
47.783133
131
0.736258
#!python """ This module provides pytest tests for the functions from preprocessing.py file """ import pytest import alphaviz.preprocessing as preproc def test_get_mq_unique_proteins(): mq_analysis_file = "../test_data/evidence.txt" proteins = preproc.get_mq_unique_proteins(mq_analysis_file) assert len(proteins) == 6, \ "The number of extracted proteins is wrong." assert 'Plectin' in proteins, \ "A unique protein is absent in the extracted list of proteins." # def test_preprocess_ckg_output(): # ckg_output_string_correct = "~Q92934;~Q15149" # ckg_output_string_correct_2 = " ~Q92934; ~Q15149" # ckg_output_string_wrong = "Q92934; Q15149" # # proteins_correct_input = alphaviz.preprocessing.preprocess_ckg_output(ckg_output_string_correct) # assert len(proteins_correct_input) == 2, \ # "The number of extracted proteins is wrong." # assert 'Q92934' in proteins_correct_input, \ # "A unique protein is absent in the extracted list of proteins." # # assert proteins_correct_input == alphaviz.preprocessing.preprocess_ckg_output(ckg_output_string_correct_2), \ # "Spaces in the ckg string don't influence on the result of the output." # # with pytest.raises(ValueError): # alphaviz.preprocessing.preprocess_ckg_output(ckg_output_string_wrong) def test_get_identified_ions(): peptide = 'NTINHN' all_ions = ['', 'b2-H2O', '', '', 'b2', 'b3', '', 'b5-NH3', '', '', '', '', 'y1-NH3', 'y1', 'y4-H2O', 'y4'] assert [False,True,True,False,True,False] == preproc.get_identified_ions(all_ions, peptide, 'b'), \ "The extraction of identified b-ions doesn't work" assert [False,False,True,False,False,True] == preproc.get_identified_ions(all_ions, peptide, 'y'), \ "The extraction of identified y-ions doesn't work" def test_convert_diann_mq_mod(): seq1 = 'VSHGSSPSLLEALSSDFLAC(UniMod:4)K' assert 'VSHGSSPSLLEALSSDFLAC[Carbamidomethyl (C)]K' == preproc.convert_diann_mq_mod(seq1) seq2 = 'VSVINTVDTSHEDMIHDAQM(UniMod:35)DYYGTR' assert 'VSVINTVDTSHEDMIHDAQM[Oxidation (M)]DYYGTR' == preproc.convert_diann_mq_mod(seq2) seq3 = 'HAEMPVHTGLK(UniMod:2)' assert 'HAEMPVHTGLK[Amidated (C-term)]' == preproc.convert_diann_mq_mod(seq3) seq4 = 'HAEMPVHTGLKS(UniMod:23)A' assert 'HAEMPVHTGLKS[Dehydrated (ST)]A' == preproc.convert_diann_mq_mod(seq4) seq5 = 'HAEMPVHTGLKY(UniMod:23)A' assert 'HAEMPVHTGLKY[Dehydrated (Y)]A' == preproc.convert_diann_mq_mod(seq5) seq1_several_dif_mods = '(UniMod:1)VSHGSSPSLLEALSSDFLAC(UniMod:4)K' assert '[Acetyl (N-term)]VSHGSSPSLLEALSSDFLAC[Carbamidomethyl (C)]K' == preproc.convert_diann_mq_mod(seq1_several_dif_mods) seq2_several_same_mods = 'CAALVATAEENLC(UniMod:4)C(UniMod:4)EELSSK' assert 'CAALVATAEENLC[Carbamidomethyl (C)]C[Carbamidomethyl (C)]EELSSK' == preproc.convert_diann_mq_mod(seq2_several_same_mods) seq_no_mod = 'CVNTTLQIK' assert "CVNTTLQIK" == preproc.convert_diann_mq_mod(seq_no_mod) def test_convert_diann_ap_mod(): seq1 = '(UniMod:27)ELNMIIMLPDETTDLR' assert preproc.convert_diann_ap_mod(seq1) == 'pgELNMIIMLPDETTDLR', "The convertion of the N-term modifications doesn't work." seq2 = 'ADFSGM(UniMod:35)SQTDLSLSK' assert preproc.convert_diann_ap_mod(seq2) == 'ADFSGoxMSQTDLSLSK', "The convertion of the modifications doesn't work." seq3 = 'YYYDGDMIC(UniMod:4)' assert preproc.convert_diann_ap_mod(seq3) == 'YYYDGDMIcC', \ "The convertion of the C-term modifications doesn't work." seq1_several_dif_mods = '(UniMod:1)VSHGSSPSLLEALSSDFLAC(UniMod:4)K' assert 'aVSHGSSPSLLEALSSDFLAcCK' == preproc.convert_diann_ap_mod(seq1_several_dif_mods) seq2_several_same_mods = 'CAALVATAEENLC(UniMod:4)C(UniMod:4)EELSSK' assert 'CAALVATAEENLcCcCEELSSK' == preproc.convert_diann_ap_mod(seq2_several_same_mods) seq_no_mod = 'CVNTTLQIK' assert "CVNTTLQIK" == preproc.convert_diann_ap_mod(seq_no_mod)
2,870
0
92
4af483d9d5f2574d4667927db0ef0fd8d25f54f0
11,197
py
Python
smpp/pdu_builder.py
komuW/smpp_server
10ef5c2ebc09e2ef88bdd62c55a4280a187d1eb2
[ "BSD-3-Clause" ]
1
2016-05-18T16:57:20.000Z
2016-05-18T16:57:20.000Z
smpp/pdu_builder.py
komuW/smpp_server
10ef5c2ebc09e2ef88bdd62c55a4280a187d1eb2
[ "BSD-3-Clause" ]
null
null
null
smpp/pdu_builder.py
komuW/smpp_server
10ef5c2ebc09e2ef88bdd62c55a4280a187d1eb2
[ "BSD-3-Clause" ]
null
null
null
from . import * # bind = BindTransmitter(system_id='test_id', password='abc123') # print bind.get_obj() # print bind.get_hex() # print bind.get_bin() # #print json.dumps(bind.get_obj(), indent=4, sort_keys=True) # #print json.dumps(decode_pdu(bind.get_hex()), indent=4, sort_keys=True) # print json.dumps(unpack_pdu(bind.get_bin()), indent=4, sort_keys=True) # sm = SubmitSM(short_message='testing testing') # print json.dumps(unpack_pdu(sm.get_bin()), indent=4, sort_keys=True) # sm.add_message_payload('616263646566676869') # print json.dumps(unpack_pdu(sm.get_bin()), indent=4, sort_keys=True)
45.149194
117
0.676163
from . import * class PDU(object): def __init__(self, command_id, command_status, sequence_number, **kwargs): super(PDU, self).__init__() self.obj = {} self.obj['header'] = {} self.obj['header']['command_length'] = 0 self.obj['header']['command_id'] = command_id self.obj['header']['command_status'] = command_status self.obj['header']['sequence_number'] = sequence_number def add_optional_parameter(self, tag, value): if self.obj.get('body') is None: self.obj['body'] = {} if self.obj['body'].get('optional_parameters') is None: self.obj['body']['optional_parameters'] = [] self.obj['body']['optional_parameters'].append({ 'tag': tag, 'length': 0, 'value': value, }) def __add_optional_parameter(self, tag, value): # This is deprecated, but not everything has been updated yet. return self.add_optional_parameter(tag, value) def set_sar_msg_ref_num(self, value): self.add_optional_parameter('sar_msg_ref_num', value) def set_sar_segment_seqnum(self, value): self.add_optional_parameter('sar_segment_seqnum', value) def set_sar_total_segments(self, value): self.add_optional_parameter('sar_total_segments', value) def get_obj(self): return self.obj def get_hex(self): return encode_pdu(self.obj) def get_bin(self): return pack_pdu(self.obj) class Bind(PDU): def __init__(self, command_id, sequence_number, system_id='', password='', system_type='', interface_version='34', addr_ton=0, addr_npi=0, address_range='', **kwargs): super(Bind, self).__init__(command_id, 'ESME_ROK', sequence_number) self.obj['body'] = {} self.obj['body']['mandatory_parameters'] = {} self.obj['body']['mandatory_parameters']['system_id'] = system_id self.obj['body']['mandatory_parameters']['password'] = password self.obj['body']['mandatory_parameters']['system_type'] = system_type self.obj['body']['mandatory_parameters']['interface_version'] = interface_version self.obj['body']['mandatory_parameters']['addr_ton'] = addr_ton self.obj['body']['mandatory_parameters']['addr_npi'] = addr_npi self.obj['body']['mandatory_parameters']['address_range'] = address_range class BindTransmitter(Bind): def __init__(self, sequence_number, **kwargs): super(BindTransmitter, self).__init__('bind_transmitter', sequence_number, **kwargs) class BindReceiver(Bind): def __init__(self, sequence_number, **kwargs): super(BindReceiver, self).__init__('bind_receiver', sequence_number, **kwargs) class BindTransceiver(Bind): def __init__(self, sequence_number, **kwargs): super(BindTransceiver, self).__init__('bind_transceiver', sequence_number, **kwargs) class BindResp(PDU): def __init__(self, command_id, command_status, sequence_number, system_id='', **kwargs): super(BindResp, self).__init__(command_id, command_status, sequence_number) self.obj['body'] = {} self.obj['body']['mandatory_parameters'] = {} self.obj['body']['mandatory_parameters']['system_id'] = system_id class BindTransmitterResp(BindResp): def __init__(self, sequence_number, command_status="ESME_ROK", **kwargs): super(BindTransmitterResp, self).__init__('bind_transmitter_resp', command_status, sequence_number, **kwargs) class BindReceiverResp(BindResp): def __init__(self, sequence_number, command_status="ESME_ROK", **kwargs): super(BindReceiverResp, self).__init__('bind_receiver_resp', command_status, sequence_number, **kwargs) class BindTransceiverResp(BindResp): def __init__(self, sequence_number, command_status="ESME_ROK", **kwargs): super(BindTransceiverResp, self).__init__('bind_transceiver_resp', command_status, sequence_number, **kwargs) class Unbind(PDU): def __init__(self, sequence_number, **kwargs): super(Unbind, self).__init__('unbind', 'ESME_ROK', sequence_number, **kwargs) class UnbindResp(PDU): def __init__(self, sequence_number, **kwargs): super(UnbindResp, self).__init__('unbind_resp', 'ESME_ROK', sequence_number, **kwargs) class SM1(PDU): def __init__(self, command_id, sequence_number, service_type='', source_addr_ton=0, source_addr_npi=0, source_addr='', esm_class=0, protocol_id=0, priority_flag=0, schedule_delivery_time='', validity_period='', registered_delivery=0, replace_if_present_flag=0, data_coding=0, sm_default_msg_id=0, sm_length=0, short_message=None, **kwargs): super(SM1, self).__init__(command_id, 'ESME_ROK', sequence_number) self.obj['body'] = {} self.obj['body']['mandatory_parameters'] = {} self.obj['body']['mandatory_parameters']['service_type'] = service_type self.obj['body']['mandatory_parameters']['source_addr_ton'] = source_addr_ton self.obj['body']['mandatory_parameters']['source_addr_npi'] = source_addr_npi self.obj['body']['mandatory_parameters']['source_addr'] = source_addr self.obj['body']['mandatory_parameters']['esm_class'] = esm_class self.obj['body']['mandatory_parameters']['protocol_id'] = protocol_id self.obj['body']['mandatory_parameters']['priority_flag'] = priority_flag self.obj['body']['mandatory_parameters']['schedule_delivery_time'] = schedule_delivery_time self.obj['body']['mandatory_parameters']['validity_period'] = validity_period self.obj['body']['mandatory_parameters']['registered_delivery'] = registered_delivery self.obj['body']['mandatory_parameters']['replace_if_present_flag'] = replace_if_present_flag self.obj['body']['mandatory_parameters']['data_coding'] = data_coding self.obj['body']['mandatory_parameters']['sm_default_msg_id'] = sm_default_msg_id self.obj['body']['mandatory_parameters']['sm_length'] = sm_length self.obj['body']['mandatory_parameters']['short_message'] = short_message def add_message_payload(self, value): self.obj['body']['mandatory_parameters']['sm_length'] = 0 self.obj['body']['mandatory_parameters']['short_message'] = None self.add_optional_parameter('message_payload', value) class SubmitMulti(SM1): def __init__(self, sequence_number, number_of_dests=0, dest_address=[], **kwargs): super(SubmitMulti, self).__init__('submit_multi', sequence_number, **kwargs) mandatory_parameters = self.obj['body']['mandatory_parameters'] mandatory_parameters['number_of_dests'] = number_of_dests mandatory_parameters['dest_address'] = [] + dest_address def addDestinationAddress(self, destination_addr, dest_addr_ton=0, dest_addr_npi=0): if isinstance(destination_addr, str) and len(destination_addr) > 0: new_entry = { 'dest_flag': 1, 'dest_addr_ton': dest_addr_ton, 'dest_addr_npi': dest_addr_npi, 'destination_addr': destination_addr, } mandatory_parameters = self.obj['body']['mandatory_parameters'] mandatory_parameters['dest_address'].append(new_entry) mandatory_parameters['number_of_dests'] = len( mandatory_parameters['dest_address']) return True else: return False def addDistributionList(self, dl_name): if isinstance(dl_name, str) and len(dl_name) > 0: new_entry = { 'dest_flag': 2, 'dl_name': dl_name, } mandatory_parameters = self.obj['body']['mandatory_parameters'] mandatory_parameters['dest_address'].append(new_entry) mandatory_parameters['number_of_dests'] = len( mandatory_parameters['dest_address']) return True else: return False class SM2(SM1): def __init__(self, command_id, sequence_number, dest_addr_ton=0, dest_addr_npi=0, destination_addr='', **kwargs): super(SM2, self).__init__(command_id, sequence_number, **kwargs) mandatory_parameters = self.obj['body']['mandatory_parameters'] mandatory_parameters['dest_addr_ton'] = dest_addr_ton mandatory_parameters['dest_addr_npi'] = dest_addr_npi mandatory_parameters['destination_addr'] = destination_addr class SubmitSM(SM2): def __init__(self, sequence_number, **kwargs): super(SubmitSM, self).__init__('submit_sm', sequence_number, **kwargs) class SubmitSMResp(PDU): def __init__(self, sequence_number, message_id, command_status='ESME_ROK', **kwargs): super(SubmitSMResp, self).__init__('submit_sm_resp', command_status, sequence_number, **kwargs) self.obj['body'] = {} self.obj['body']['mandatory_parameters'] = {} self.obj['body']['mandatory_parameters']['message_id'] = message_id class DeliverSM(SM2): def __init__(self, sequence_number, **kwargs): super(DeliverSM, self).__init__('deliver_sm', sequence_number, **kwargs) class DeliverSMResp(PDU): def __init__(self, sequence_number, message_id='', command_status='ESME_ROK', **kwargs): super(DeliverSMResp, self).__init__('deliver_sm_resp', command_status, sequence_number, **kwargs) self.obj['body'] = {} self.obj['body']['mandatory_parameters'] = {} self.obj['body']['mandatory_parameters']['message_id'] = '' class EnquireLink(PDU): def __init__(self, sequence_number, **kwargs): super(EnquireLink, self).__init__('enquire_link', 'ESME_ROK', sequence_number, **kwargs) class EnquireLinkResp(PDU): def __init__(self, sequence_number, **kwargs): super(EnquireLinkResp, self).__init__('enquire_link_resp', 'ESME_ROK', sequence_number, **kwargs) class QuerySM(PDU): def __init__(self, sequence_number, message_id, source_addr='', source_addr_ton=0, source_addr_npi=0, **kwargs): super(QuerySM, self).__init__('query_sm', 'ESME_ROK', sequence_number, **kwargs) self.obj['body'] = {} self.obj['body']['mandatory_parameters'] = {} self.obj['body']['mandatory_parameters']['message_id'] = message_id self.obj['body']['mandatory_parameters']['source_addr'] = source_addr self.obj['body']['mandatory_parameters']['source_addr_ton'] = source_addr_ton self.obj['body']['mandatory_parameters']['source_addr_npi'] = source_addr_npi # bind = BindTransmitter(system_id='test_id', password='abc123') # print bind.get_obj() # print bind.get_hex() # print bind.get_bin() # #print json.dumps(bind.get_obj(), indent=4, sort_keys=True) # #print json.dumps(decode_pdu(bind.get_hex()), indent=4, sort_keys=True) # print json.dumps(unpack_pdu(bind.get_bin()), indent=4, sort_keys=True) # sm = SubmitSM(short_message='testing testing') # print json.dumps(unpack_pdu(sm.get_bin()), indent=4, sort_keys=True) # sm.add_message_payload('616263646566676869') # print json.dumps(unpack_pdu(sm.get_bin()), indent=4, sort_keys=True)
9,200
51
1,326
67a6499830b7f74583e2c66c04f86175dac0b79b
24,402
py
Python
lib/catnip/preparation.py
MetOffice/CATNIP
82a800d000513860077735eb115b060782a4815a
[ "BSD-3-Clause" ]
2
2020-09-28T14:03:27.000Z
2020-11-17T14:25:18.000Z
lib/catnip/preparation.py
MetOffice/CATNIP
82a800d000513860077735eb115b060782a4815a
[ "BSD-3-Clause" ]
26
2020-10-23T08:34:16.000Z
2021-04-01T14:32:12.000Z
lib/catnip/preparation.py
MetOffice/CATNIP
82a800d000513860077735eb115b060782a4815a
[ "BSD-3-Clause" ]
2
2020-11-20T17:08:25.000Z
2021-04-11T06:10:29.000Z
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # (C) British Crown Copyright 2017-2020 Met Office. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ----------------------------------------------------------------------------- import iris import iris.analysis import numpy as np from six import string_types, integer_types import iris.coord_categorisation as iccat import doctest import os.path import catnip.config as conf import iris.exceptions from dask import array as da def _get_xy_noborder(mask): """ make a function that returns the indices of where the mask is valid. If the mask is all True (all masked) raises a ValueError args ---- mask: mask from numpy array Returns ------- x1, x2, y1, y2: int giving space where the data is valid """ if np.all(mask): raise ValueError("All values masked - can't get indices") ys, xs = np.where(~mask) x1 = min(xs) x2 = max(xs) + 1 y1 = min(ys) y2 = max(ys) + 1 return x1, x2, y1, y2 def add_aux_unrotated_coords(cube): """ This function takes a cube that is on a rotated pole coordinate system and adds to it, two addtional auxillary coordinates to hold the unrotated coordinate values. args ---- cube: iris cube on an rotated pole coordinate system Returns ------- cube: input cube with auxilliary coordinates of unrotated latitude and longitude Notes ----- See below for an example that should be run with python3: >>> file = os.path.join(conf.DATA_DIR, 'mslp.daily.rcm.viet.nc') >>> cube = iris.load_cube(file) >>> print([coord.name() for coord in cube.coords()]) ['time', 'grid_latitude', 'grid_longitude'] >>> auxcube = add_aux_unrotated_coords(cube) >>> print([coord.name() for coord in auxcube.coords()]) ['time', 'grid_latitude', 'grid_longitude', 'latitude', 'longitude'] >>> print(auxcube.coord('latitude')) # doctest: +NORMALIZE_WHITESPACE AuxCoord(array([[35.32243855, 35.33914928, 35.355619 , ..., 35.71848081, 35.70883111, 35.69893388], [35.10317609, 35.11986604, 35.13631525, ..., 35.49871728, 35.48908 , 35.47919551], [34.88390966, 34.90057895, 34.91700776, ..., 35.27895246, 35.26932754, 35.25945571], ..., [ 6.13961446, 6.15413611, 6.16844578, ..., 6.48307389, 6.47472284, 6.46615667], [ 5.92011032, 5.93461779, 5.94891347, ..., 6.26323044, 6.25488773, 6.24633011], [ 5.70060768, 5.71510098, 5.72938268, ..., 6.04338876, 6.03505439, 6.02650532]]), standard_name=None, \ units=Unit('degrees'), long_name='latitude') >>> print(auxcube.shape) (360, 136, 109) >>> print(auxcube.coord('latitude').shape) (136, 109) >>> print(auxcube.coord('longitude').shape) (136, 109) """ if not isinstance(cube, iris.cube.Cube): raise TypeError("Input is not a cube") # get cube's coordinate system cs = cube.coord_system() if str(cs).find("Rotated") == -1: raise TypeError( "The cube is not on a rotated pole, coord system is {}".format(str(cs)) ) auxcube = cube.copy() # get coord names # Longitude xcoord = auxcube.coord(axis="X", dim_coords=True) # Latitude ycoord = auxcube.coord(axis="Y", dim_coords=True) # read in the grid lat/lon points from the cube glat = auxcube.coord(ycoord).points glon = auxcube.coord(xcoord).points # create a rectangular grid out of an array of # glon and glat values, shape will be len(glat)xlen(glon) x, y = np.meshgrid(glon, glat) # get the cube dimensions which corresponds to glon and glat x_dim = auxcube.coord_dims(xcoord)[0] y_dim = auxcube.coord_dims(ycoord)[0] # define two new variables to hold the unrotated coordinates rlongitude, rlatitude = iris.analysis.cartography.unrotate_pole( x, y, cs.grid_north_pole_longitude, cs.grid_north_pole_latitude ) # create two new auxillary coordinates to hold # the values of the unrotated coordinates reg_long = iris.coords.AuxCoord(rlongitude, long_name="longitude", units="degrees") reg_lat = iris.coords.AuxCoord(rlatitude, long_name="latitude", units="degrees") # add two auxilary coordinates to the cube holding # regular(unrotated) lat/lon values auxcube.add_aux_coord(reg_long, [y_dim, x_dim]) auxcube.add_aux_coord(reg_lat, [y_dim, x_dim]) return auxcube def add_bounds(cube, coord_names, bound_position=0.5): """ Simple function to check whether a coordinate in a cube has bounds, and add them if it doesn't. args ---- cube: iris cube coord_names: string or list of strings containing the name/s of the coordinates you want to add bounds to. bound_position: Optional, the desired position of the bounds relative to the position of the points. Default is 0.5. Returns ------- cube: cube with bounds added Notes ----- Need to be careful that it is appropriate to add bounds to the data, e.g. if data are instantaneous, time bounds are not appropriate. An example: >>> file = os.path.join(conf.DATA_DIR, 'mslp.daily.rcm.viet.nc') >>> cube = iris.load_cube(file) >>> bcube = add_bounds(cube, 'time') time coordinate already has bounds, none will be added >>> bcube = add_bounds(cube, 'grid_latitude') grid_latitude bounds added >>> bcube = add_bounds(cube, ['grid_latitude','grid_longitude']) grid_latitude bounds added grid_longitude bounds added """ # check if the input is an Iris cube if not isinstance(cube, iris.cube.Cube): raise TypeError("Input is not a cube") # check if the coordinate name input is a string if not isinstance(coord_names, (string_types, list)): raise TypeError("Input coordinate must be a string") bcube = cube.copy() # find names of dim coords c_names = [c.name() for c in bcube.coords()] # if coord_names is a single string, it will be split, # by the loop this statement checks for that case and # puts stash into a tuple to prevent splitting. if isinstance(coord_names, string_types): coord_names = tuple([coord_names]) for coord in coord_names: # check if coord is a string if not isinstance(coord, string_types): raise TypeError( "Coordinate {} must be a string, it is currently a {}".format( str(coord), type(coord) ) ) # check coord is a coordinate of the cube if coord not in c_names: raise AttributeError( "{} is not a coordinate, available coordinates are: {}".format( coord, c_names ) ) # check if the coord already has bounds if bcube.coord(coord).has_bounds(): print( ("{} coordinate already has bounds, none will be added".format(coord)) ) # add bounds to coord else: bcube.coord(coord).guess_bounds(bound_position=bound_position) print(("{} bounds added".format(coord))) return bcube def add_coord_system(cube): """ A cube must have a coordinate system in order to be regridded. This function checks whether a cube has a coordinate system. If the cube has no coordinate system, the standard the ellipsoid representation wgs84 (ie. the one used by GPS) is added. Note: It will not work for rotated pole data without a coordinate system. args ---- cube: iris cube Returns ------- cube: The copy of the input cube with coordinate system added, if the cube didn't have one already. Notes ----- A simple example: >>> file = os.path.join(conf.DATA_DIR, 'gtopo30_025deg.nc') >>> cube = iris.load_cube(file) >>> print(cube.coord('latitude').coord_system) None >>> cscube = add_coord_system(cube) Coordinate system GeogCS(6371229.0) added to cube >>> print(cscube.coord('latitude').coord_system) GeogCS(6371229.0) """ # Note: wgs84 is the World Geodetic System, and a standard coord # system in iris. In GeogCS(6371229.0), 6371229 is the Earth's # radius in m. See: # https://scitools.org.uk/iris/docs/v1.9.0/html/iris/iris/coord_systems.html # check if the input is an Iris cube if not isinstance(cube, iris.cube.Cube): raise TypeError("Input is not a cube") cscube = cube.copy() cs = cscube.coord_system() if cs is not None: if str(cs).find("Rotated") == 0: # not possible to add a coord system for # rotated pole cube without knowing the # rotation. Give error message. raise TypeError("Error, no coordinate system for rotated pole cube") else: coord_names = [coord.name() for coord in cscube.coords(dim_coords=True)] wgs84_cs = iris.coord_systems.GeogCS(6371229.0) if "latitude" in coord_names: cscube.coord("latitude").coord_system = wgs84_cs if "longitude" in coord_names: cscube.coord("longitude").coord_system = wgs84_cs print("Coordinate system GeogCS(6371229.0) added to cube") return cscube def add_time_coord_cats(cube): """ This function takes in an iris cube, and adds a range of numeric co-ordinate categorisations to it. Depending on the data, not all of the coords added will be relevant. args ---- cube: iris cube that has a coordinate called 'time' Returns ------- Cube: cube that has new time categorisation coords added Notes ----- test A simple example: >>> file = os.path.join(conf.DATA_DIR, 'mslp.daily.rcm.viet.nc') >>> cube = iris.load_cube(file) >>> coord_names = [coord.name() for coord in cube.coords()] >>> print((', '.join(coord_names))) time, grid_latitude, grid_longitude >>> ccube = add_time_coord_cats(cube) >>> coord_names = [coord.name() for coord in ccube.coords()] >>> print((', '.join(coord_names))) time, grid_latitude, grid_longitude, day_of_month, day_of_year, month, \ month_number, season, season_number, year >>> # print every 50th value of the added time cat coords ... for c in coord_names[3:]: ... print(ccube.coord(c).long_name) ... print(ccube.coord(c).points[::50]) ... day_of_month [ 1 21 11 1 21 11 1 21] day_of_year [ 1 51 101 151 201 251 301 351] month ['Jan' 'Feb' 'Apr' 'Jun' 'Jul' 'Sep' 'Nov' 'Dec'] month_number [ 1 2 4 6 7 9 11 12] season ['djf' 'djf' 'mam' 'jja' 'jja' 'son' 'son' 'djf'] season_number [0 0 1 2 2 3 3 0] year [2000 2000 2000 2000 2000 2000 2000 2000] """ # most errors pop up when you try to add a coord that has # previously been added, or the cube doesn't contain the # necessary attribute. ccube = cube.copy() # numeric try: iccat.add_day_of_year(ccube, "time") except AttributeError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) except ValueError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) try: iccat.add_day_of_month(ccube, "time") except AttributeError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) except ValueError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) try: iccat.add_month_number(ccube, "time") except AttributeError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) except ValueError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) try: iccat.add_season_number(ccube, "time") except AttributeError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) except ValueError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) try: iccat.add_year(ccube, "time") except AttributeError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) except ValueError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) # strings try: iccat.add_month(ccube, "time") except AttributeError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) except ValueError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) try: iccat.add_season(ccube, "time") except AttributeError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) except ValueError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) return ccube def extract_rot_cube(cube, min_lat, min_lon, max_lat, max_lon): """ Function etracts the specific region from the cube. args ---- cube: cube on rotated coord system, used as reference grid for transformation. Returns ------- min_lat: The minimum latitude point of the desired extracted cube. min_lon: The minimum longitude point of the desired extracted cube. max_lat: The maximum latitude point of the desired extracted cube. max_lon: The maximum longitude point of the desired extracted cube. An example: >>> file = os.path.join(conf.DATA_DIR, 'rcm_monthly.pp') >>> cube = iris.load_cube(file, 'air_temperature') >>> min_lat = 50 >>> min_lon = -10 >>> max_lat = 60 >>> max_lon = 0 >>> extracted_cube = extract_rot_cube(cube, min_lat, min_lon, max_lat, max_lon) >>> max_lat_cube = np.max(extracted_cube.coord('latitude').points) >>> print(f'{max_lat_cube:.3f}') 61.365 >>> min_lat_cube = np.min(extracted_cube.coord('latitude').points) >>> print(f'{min_lat_cube:.3f}') 48.213 >>> max_lon_cube = np.max(extracted_cube.coord('longitude').points) >>> print(f'{max_lon_cube:.3f}') 3.643 >>> min_lon_cube = np.min(extracted_cube.coord('longitude').points) >>> print(f'{min_lon_cube:.3f}') -16.292 """ # adding unrotated coords to the cube cube = add_aux_unrotated_coords(cube) # mask the cube using the true lat and lon lats = cube.coord("latitude").points lons = cube.coord("longitude").points select_lons = (lons >= min_lon) & (lons <= max_lon) select_lats = (lats >= min_lat) & (lats <= max_lat) selection = select_lats & select_lons selection = da.broadcast_to(selection, cube.shape) cube.data = da.ma.masked_where(~selection, cube.core_data()) # grab a single 2D slice of X and Y and take the mask lon_coord = cube.coord(axis="X", dim_coords=True) lat_coord = cube.coord(axis="Y", dim_coords=True) for yx_slice in cube.slices(["grid_latitude", "grid_longitude"]): cmask = yx_slice.data.mask break # now cut the cube down along X and Y coords x1, x2, y1, y2 = _get_xy_noborder(cmask) idx = len(cube.shape) * [slice(None)] idx[cube.coord_dims(cube.coord(axis="x", dim_coords=True))[0]] = slice(x1, x2, 1) idx[cube.coord_dims(cube.coord(axis="y", dim_coords=True))[0]] = slice(y1, y2, 1) extracted_cube = cube[tuple(idx)] return extracted_cube def remove_forecast_coordinates(iris_cube): """A function to remove the forecast_period and forecast_reference_time coordinates from the UM PP files args ---- iris_cube: input iris_cube Returns ------- iris_cube: iris cube without the forecast_period and forecast_reference_time coordinates Notes ----- See below for examples: >>> cube_list_fcr = iris.cube.CubeList() >>> file = os.path.join(conf.DATA_DIR, 'rcm_monthly.pp') >>> cube_list = iris.load(file) >>> for cube in cube_list: ... cube_fcr = remove_forecast_coordinates(cube) ... cube_list_fcr.append(cube_fcr) Removed the forecast_period coordinate from Heavyside function \ on pressure levels cube Removed the forecast_reference_time coordinate from Heavyside \ function on pressure levels cube Removed the forecast_period coordinate from air_temperature cube Removed the forecast_reference_time coordinate from air_temperature cube Removed the forecast_period coordinate from relative_humidity cube Removed the forecast_reference_time coordinate from relative_humidity cube Removed the forecast_period coordinate from specific_humidity cube Removed the forecast_reference_time coordinate from specific_humidity cube Removed the forecast_period coordinate from x_wind cube Removed the forecast_reference_time coordinate from x_wind cube Removed the forecast_period coordinate from y_wind cube Removed the forecast_reference_time coordinate from y_wind cube Now check if the forecast coordinates have been removed >>> for cube in cube_list_fcr: ... cube_nfc = remove_forecast_coordinates(cube) 'Expected to find exactly 1 forecast_period coordinate, but found none.' 'Expected to find exactly 1 forecast_reference_time coordinate, but found none.' 'Expected to find exactly 1 forecast_period coordinate, but found none.' 'Expected to find exactly 1 forecast_reference_time coordinate, but found none.' 'Expected to find exactly 1 forecast_period coordinate, but found none.' 'Expected to find exactly 1 forecast_reference_time coordinate, but found none.' 'Expected to find exactly 1 forecast_period coordinate, but found none.' 'Expected to find exactly 1 forecast_reference_time coordinate, but found none.' 'Expected to find exactly 1 forecast_period coordinate, but found none.' 'Expected to find exactly 1 forecast_reference_time coordinate, but found none.' 'Expected to find exactly 1 forecast_period coordinate, but found none.' 'Expected to find exactly 1 forecast_reference_time coordinate, but found none.' """ try: iris_cube.remove_coord("forecast_period") print( ( "Removed the forecast_period coordinate from {} cube".format( iris_cube.name() ) ) ) except iris.exceptions.CoordinateNotFoundError as coord_not_found: print("{}".format(coord_not_found)) try: iris_cube.remove_coord("forecast_reference_time") print( ( "Removed the forecast_reference_time coordinate from {} cube".format( iris_cube.name() ) ) ) except iris.exceptions.CoordinateNotFoundError as coord_not_found: print("{}".format(coord_not_found)) return iris_cube def rim_remove(cube, rim_width): """ Return IRIS cube with rim removed. args ---- cube: input iris cube rim_width: integer, number of grid points to remove from edge of lat and long Returns ------- rrcube: rim removed cube Notes ----- See below for examples: >>> cube_list_rr = iris.cube.CubeList() >>> file = os.path.join(conf.DATA_DIR, 'rcm_monthly.pp') >>> cube_list = iris.load(file) >>> for cube in cube_list: ... cube_rr = rim_remove(cube, 8) ... cube_list_rr.append(cube_rr) ... Removed 8 size rim from Heavyside function on pressure levels Removed 8 size rim from air_temperature Removed 8 size rim from relative_humidity Removed 8 size rim from specific_humidity Removed 8 size rim from x_wind Removed 8 size rim from y_wind >>> file = os.path.join(conf.DATA_DIR, 'rcm_mslp_monthly.pp') >>> mslp_cube = iris.load_cube(file) >>> >>> mslp_cube_rr = rim_remove(mslp_cube, 8) Removed 8 size rim from air_pressure_at_sea_level >>> >>> print(len(mslp_cube.coord('grid_latitude').points)) 432 >>> print(len(mslp_cube.coord('grid_longitude').points)) 444 >>> print(len(mslp_cube.coord('grid_latitude').points)) 432 >>> print(len(mslp_cube.coord('grid_longitude').points)) 444 >>> >>> mslp_cube_rrrr = rim_remove(mslp_cube_rr, 8) WARNING - This cube has already had it's rim removed Removed 8 size rim from air_pressure_at_sea_level Now test for failures: >>> mslp_cube_rr = rim_remove(cube, 8.2) # doctest: +ELLIPSIS Traceback (most recent call last): ... TypeError: Please provide a positive integer for rim_width >>> mslp_cube_rr = rim_remove(cube, -5) # doctest: +ELLIPSIS Traceback (most recent call last): ... IndexError: Please provide a positive integer > 0 for rim_width >>> mslp_cube_rr = rim_remove(cube, 400) # doctest: +ELLIPSIS Traceback (most recent call last): ... IndexError: length of lat or lon coord is < rim_width*2 >>> mslp_cube_rr = rim_remove(cube, 0) # doctest: +ELLIPSIS Traceback (most recent call last): ... IndexError: Please provide a positive integer > 0 for rim_width >>> mslp_cube_rr = rim_remove(cube, 'a') # doctest: +ELLIPSIS Traceback (most recent call last): ... TypeError: Please provide a positive integer for rim_width """ # check if the input is an Iris cube if not isinstance(cube, iris.cube.Cube): raise TypeError("Input is not a cube") # check whether rim_width is an integer if not isinstance(rim_width, (integer_types)): raise TypeError("Please provide a positive integer for rim_width") if rim_width <= 0: raise IndexError("Please provide a positive integer > 0 for rim_width") # check whether this cube has already had it's rim removed if "rim_removed" in cube.attributes: print("WARNING - This cube has already had it's rim removed") # Longitude xcoord = cube.coord(axis="X", dim_coords=True) # Latitude ycoord = cube.coord(axis="Y", dim_coords=True) # make sure specified rim_width is going to work if len(xcoord.points) <= (rim_width * 2) or len(ycoord.points) <= (rim_width * 2): raise IndexError("length of lat or lon coord is < rim_width*2") # Remove rim from Longitude rrcube = cube.subset(xcoord[rim_width : -1 * rim_width]) # Remove rim from Latitude rrcube = rrcube.subset(ycoord[rim_width : -1 * rim_width]) # add meta data that rim has been removed rrcube.attributes["rim_removed"] = "{} point rim removed".format(rim_width) print(("Removed {} size rim from {}".format(rim_width, cube.name()))) return rrcube if __name__ == "__main__": doctest.testmod()
35.263006
87
0.651586
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # (C) British Crown Copyright 2017-2020 Met Office. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ----------------------------------------------------------------------------- import iris import iris.analysis import numpy as np from six import string_types, integer_types import iris.coord_categorisation as iccat import doctest import os.path import catnip.config as conf import iris.exceptions from dask import array as da def _get_xy_noborder(mask): """ make a function that returns the indices of where the mask is valid. If the mask is all True (all masked) raises a ValueError args ---- mask: mask from numpy array Returns ------- x1, x2, y1, y2: int giving space where the data is valid """ if np.all(mask): raise ValueError("All values masked - can't get indices") ys, xs = np.where(~mask) x1 = min(xs) x2 = max(xs) + 1 y1 = min(ys) y2 = max(ys) + 1 return x1, x2, y1, y2 def add_aux_unrotated_coords(cube): """ This function takes a cube that is on a rotated pole coordinate system and adds to it, two addtional auxillary coordinates to hold the unrotated coordinate values. args ---- cube: iris cube on an rotated pole coordinate system Returns ------- cube: input cube with auxilliary coordinates of unrotated latitude and longitude Notes ----- See below for an example that should be run with python3: >>> file = os.path.join(conf.DATA_DIR, 'mslp.daily.rcm.viet.nc') >>> cube = iris.load_cube(file) >>> print([coord.name() for coord in cube.coords()]) ['time', 'grid_latitude', 'grid_longitude'] >>> auxcube = add_aux_unrotated_coords(cube) >>> print([coord.name() for coord in auxcube.coords()]) ['time', 'grid_latitude', 'grid_longitude', 'latitude', 'longitude'] >>> print(auxcube.coord('latitude')) # doctest: +NORMALIZE_WHITESPACE AuxCoord(array([[35.32243855, 35.33914928, 35.355619 , ..., 35.71848081, 35.70883111, 35.69893388], [35.10317609, 35.11986604, 35.13631525, ..., 35.49871728, 35.48908 , 35.47919551], [34.88390966, 34.90057895, 34.91700776, ..., 35.27895246, 35.26932754, 35.25945571], ..., [ 6.13961446, 6.15413611, 6.16844578, ..., 6.48307389, 6.47472284, 6.46615667], [ 5.92011032, 5.93461779, 5.94891347, ..., 6.26323044, 6.25488773, 6.24633011], [ 5.70060768, 5.71510098, 5.72938268, ..., 6.04338876, 6.03505439, 6.02650532]]), standard_name=None, \ units=Unit('degrees'), long_name='latitude') >>> print(auxcube.shape) (360, 136, 109) >>> print(auxcube.coord('latitude').shape) (136, 109) >>> print(auxcube.coord('longitude').shape) (136, 109) """ if not isinstance(cube, iris.cube.Cube): raise TypeError("Input is not a cube") # get cube's coordinate system cs = cube.coord_system() if str(cs).find("Rotated") == -1: raise TypeError( "The cube is not on a rotated pole, coord system is {}".format(str(cs)) ) auxcube = cube.copy() # get coord names # Longitude xcoord = auxcube.coord(axis="X", dim_coords=True) # Latitude ycoord = auxcube.coord(axis="Y", dim_coords=True) # read in the grid lat/lon points from the cube glat = auxcube.coord(ycoord).points glon = auxcube.coord(xcoord).points # create a rectangular grid out of an array of # glon and glat values, shape will be len(glat)xlen(glon) x, y = np.meshgrid(glon, glat) # get the cube dimensions which corresponds to glon and glat x_dim = auxcube.coord_dims(xcoord)[0] y_dim = auxcube.coord_dims(ycoord)[0] # define two new variables to hold the unrotated coordinates rlongitude, rlatitude = iris.analysis.cartography.unrotate_pole( x, y, cs.grid_north_pole_longitude, cs.grid_north_pole_latitude ) # create two new auxillary coordinates to hold # the values of the unrotated coordinates reg_long = iris.coords.AuxCoord(rlongitude, long_name="longitude", units="degrees") reg_lat = iris.coords.AuxCoord(rlatitude, long_name="latitude", units="degrees") # add two auxilary coordinates to the cube holding # regular(unrotated) lat/lon values auxcube.add_aux_coord(reg_long, [y_dim, x_dim]) auxcube.add_aux_coord(reg_lat, [y_dim, x_dim]) return auxcube def add_bounds(cube, coord_names, bound_position=0.5): """ Simple function to check whether a coordinate in a cube has bounds, and add them if it doesn't. args ---- cube: iris cube coord_names: string or list of strings containing the name/s of the coordinates you want to add bounds to. bound_position: Optional, the desired position of the bounds relative to the position of the points. Default is 0.5. Returns ------- cube: cube with bounds added Notes ----- Need to be careful that it is appropriate to add bounds to the data, e.g. if data are instantaneous, time bounds are not appropriate. An example: >>> file = os.path.join(conf.DATA_DIR, 'mslp.daily.rcm.viet.nc') >>> cube = iris.load_cube(file) >>> bcube = add_bounds(cube, 'time') time coordinate already has bounds, none will be added >>> bcube = add_bounds(cube, 'grid_latitude') grid_latitude bounds added >>> bcube = add_bounds(cube, ['grid_latitude','grid_longitude']) grid_latitude bounds added grid_longitude bounds added """ # check if the input is an Iris cube if not isinstance(cube, iris.cube.Cube): raise TypeError("Input is not a cube") # check if the coordinate name input is a string if not isinstance(coord_names, (string_types, list)): raise TypeError("Input coordinate must be a string") bcube = cube.copy() # find names of dim coords c_names = [c.name() for c in bcube.coords()] # if coord_names is a single string, it will be split, # by the loop this statement checks for that case and # puts stash into a tuple to prevent splitting. if isinstance(coord_names, string_types): coord_names = tuple([coord_names]) for coord in coord_names: # check if coord is a string if not isinstance(coord, string_types): raise TypeError( "Coordinate {} must be a string, it is currently a {}".format( str(coord), type(coord) ) ) # check coord is a coordinate of the cube if coord not in c_names: raise AttributeError( "{} is not a coordinate, available coordinates are: {}".format( coord, c_names ) ) # check if the coord already has bounds if bcube.coord(coord).has_bounds(): print( ("{} coordinate already has bounds, none will be added".format(coord)) ) # add bounds to coord else: bcube.coord(coord).guess_bounds(bound_position=bound_position) print(("{} bounds added".format(coord))) return bcube def add_coord_system(cube): """ A cube must have a coordinate system in order to be regridded. This function checks whether a cube has a coordinate system. If the cube has no coordinate system, the standard the ellipsoid representation wgs84 (ie. the one used by GPS) is added. Note: It will not work for rotated pole data without a coordinate system. args ---- cube: iris cube Returns ------- cube: The copy of the input cube with coordinate system added, if the cube didn't have one already. Notes ----- A simple example: >>> file = os.path.join(conf.DATA_DIR, 'gtopo30_025deg.nc') >>> cube = iris.load_cube(file) >>> print(cube.coord('latitude').coord_system) None >>> cscube = add_coord_system(cube) Coordinate system GeogCS(6371229.0) added to cube >>> print(cscube.coord('latitude').coord_system) GeogCS(6371229.0) """ # Note: wgs84 is the World Geodetic System, and a standard coord # system in iris. In GeogCS(6371229.0), 6371229 is the Earth's # radius in m. See: # https://scitools.org.uk/iris/docs/v1.9.0/html/iris/iris/coord_systems.html # check if the input is an Iris cube if not isinstance(cube, iris.cube.Cube): raise TypeError("Input is not a cube") cscube = cube.copy() cs = cscube.coord_system() if cs is not None: if str(cs).find("Rotated") == 0: # not possible to add a coord system for # rotated pole cube without knowing the # rotation. Give error message. raise TypeError("Error, no coordinate system for rotated pole cube") else: coord_names = [coord.name() for coord in cscube.coords(dim_coords=True)] wgs84_cs = iris.coord_systems.GeogCS(6371229.0) if "latitude" in coord_names: cscube.coord("latitude").coord_system = wgs84_cs if "longitude" in coord_names: cscube.coord("longitude").coord_system = wgs84_cs print("Coordinate system GeogCS(6371229.0) added to cube") return cscube def add_time_coord_cats(cube): """ This function takes in an iris cube, and adds a range of numeric co-ordinate categorisations to it. Depending on the data, not all of the coords added will be relevant. args ---- cube: iris cube that has a coordinate called 'time' Returns ------- Cube: cube that has new time categorisation coords added Notes ----- test A simple example: >>> file = os.path.join(conf.DATA_DIR, 'mslp.daily.rcm.viet.nc') >>> cube = iris.load_cube(file) >>> coord_names = [coord.name() for coord in cube.coords()] >>> print((', '.join(coord_names))) time, grid_latitude, grid_longitude >>> ccube = add_time_coord_cats(cube) >>> coord_names = [coord.name() for coord in ccube.coords()] >>> print((', '.join(coord_names))) time, grid_latitude, grid_longitude, day_of_month, day_of_year, month, \ month_number, season, season_number, year >>> # print every 50th value of the added time cat coords ... for c in coord_names[3:]: ... print(ccube.coord(c).long_name) ... print(ccube.coord(c).points[::50]) ... day_of_month [ 1 21 11 1 21 11 1 21] day_of_year [ 1 51 101 151 201 251 301 351] month ['Jan' 'Feb' 'Apr' 'Jun' 'Jul' 'Sep' 'Nov' 'Dec'] month_number [ 1 2 4 6 7 9 11 12] season ['djf' 'djf' 'mam' 'jja' 'jja' 'son' 'son' 'djf'] season_number [0 0 1 2 2 3 3 0] year [2000 2000 2000 2000 2000 2000 2000 2000] """ # most errors pop up when you try to add a coord that has # previously been added, or the cube doesn't contain the # necessary attribute. ccube = cube.copy() # numeric try: iccat.add_day_of_year(ccube, "time") except AttributeError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) except ValueError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) try: iccat.add_day_of_month(ccube, "time") except AttributeError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) except ValueError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) try: iccat.add_month_number(ccube, "time") except AttributeError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) except ValueError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) try: iccat.add_season_number(ccube, "time") except AttributeError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) except ValueError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) try: iccat.add_year(ccube, "time") except AttributeError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) except ValueError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) # strings try: iccat.add_month(ccube, "time") except AttributeError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) except ValueError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) try: iccat.add_season(ccube, "time") except AttributeError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) except ValueError as err: print(("add_time_coord_cats: {}, skipping . . . ".format(err))) return ccube def extract_rot_cube(cube, min_lat, min_lon, max_lat, max_lon): """ Function etracts the specific region from the cube. args ---- cube: cube on rotated coord system, used as reference grid for transformation. Returns ------- min_lat: The minimum latitude point of the desired extracted cube. min_lon: The minimum longitude point of the desired extracted cube. max_lat: The maximum latitude point of the desired extracted cube. max_lon: The maximum longitude point of the desired extracted cube. An example: >>> file = os.path.join(conf.DATA_DIR, 'rcm_monthly.pp') >>> cube = iris.load_cube(file, 'air_temperature') >>> min_lat = 50 >>> min_lon = -10 >>> max_lat = 60 >>> max_lon = 0 >>> extracted_cube = extract_rot_cube(cube, min_lat, min_lon, max_lat, max_lon) >>> max_lat_cube = np.max(extracted_cube.coord('latitude').points) >>> print(f'{max_lat_cube:.3f}') 61.365 >>> min_lat_cube = np.min(extracted_cube.coord('latitude').points) >>> print(f'{min_lat_cube:.3f}') 48.213 >>> max_lon_cube = np.max(extracted_cube.coord('longitude').points) >>> print(f'{max_lon_cube:.3f}') 3.643 >>> min_lon_cube = np.min(extracted_cube.coord('longitude').points) >>> print(f'{min_lon_cube:.3f}') -16.292 """ # adding unrotated coords to the cube cube = add_aux_unrotated_coords(cube) # mask the cube using the true lat and lon lats = cube.coord("latitude").points lons = cube.coord("longitude").points select_lons = (lons >= min_lon) & (lons <= max_lon) select_lats = (lats >= min_lat) & (lats <= max_lat) selection = select_lats & select_lons selection = da.broadcast_to(selection, cube.shape) cube.data = da.ma.masked_where(~selection, cube.core_data()) # grab a single 2D slice of X and Y and take the mask lon_coord = cube.coord(axis="X", dim_coords=True) lat_coord = cube.coord(axis="Y", dim_coords=True) for yx_slice in cube.slices(["grid_latitude", "grid_longitude"]): cmask = yx_slice.data.mask break # now cut the cube down along X and Y coords x1, x2, y1, y2 = _get_xy_noborder(cmask) idx = len(cube.shape) * [slice(None)] idx[cube.coord_dims(cube.coord(axis="x", dim_coords=True))[0]] = slice(x1, x2, 1) idx[cube.coord_dims(cube.coord(axis="y", dim_coords=True))[0]] = slice(y1, y2, 1) extracted_cube = cube[tuple(idx)] return extracted_cube def remove_forecast_coordinates(iris_cube): """A function to remove the forecast_period and forecast_reference_time coordinates from the UM PP files args ---- iris_cube: input iris_cube Returns ------- iris_cube: iris cube without the forecast_period and forecast_reference_time coordinates Notes ----- See below for examples: >>> cube_list_fcr = iris.cube.CubeList() >>> file = os.path.join(conf.DATA_DIR, 'rcm_monthly.pp') >>> cube_list = iris.load(file) >>> for cube in cube_list: ... cube_fcr = remove_forecast_coordinates(cube) ... cube_list_fcr.append(cube_fcr) Removed the forecast_period coordinate from Heavyside function \ on pressure levels cube Removed the forecast_reference_time coordinate from Heavyside \ function on pressure levels cube Removed the forecast_period coordinate from air_temperature cube Removed the forecast_reference_time coordinate from air_temperature cube Removed the forecast_period coordinate from relative_humidity cube Removed the forecast_reference_time coordinate from relative_humidity cube Removed the forecast_period coordinate from specific_humidity cube Removed the forecast_reference_time coordinate from specific_humidity cube Removed the forecast_period coordinate from x_wind cube Removed the forecast_reference_time coordinate from x_wind cube Removed the forecast_period coordinate from y_wind cube Removed the forecast_reference_time coordinate from y_wind cube Now check if the forecast coordinates have been removed >>> for cube in cube_list_fcr: ... cube_nfc = remove_forecast_coordinates(cube) 'Expected to find exactly 1 forecast_period coordinate, but found none.' 'Expected to find exactly 1 forecast_reference_time coordinate, but found none.' 'Expected to find exactly 1 forecast_period coordinate, but found none.' 'Expected to find exactly 1 forecast_reference_time coordinate, but found none.' 'Expected to find exactly 1 forecast_period coordinate, but found none.' 'Expected to find exactly 1 forecast_reference_time coordinate, but found none.' 'Expected to find exactly 1 forecast_period coordinate, but found none.' 'Expected to find exactly 1 forecast_reference_time coordinate, but found none.' 'Expected to find exactly 1 forecast_period coordinate, but found none.' 'Expected to find exactly 1 forecast_reference_time coordinate, but found none.' 'Expected to find exactly 1 forecast_period coordinate, but found none.' 'Expected to find exactly 1 forecast_reference_time coordinate, but found none.' """ try: iris_cube.remove_coord("forecast_period") print( ( "Removed the forecast_period coordinate from {} cube".format( iris_cube.name() ) ) ) except iris.exceptions.CoordinateNotFoundError as coord_not_found: print("{}".format(coord_not_found)) try: iris_cube.remove_coord("forecast_reference_time") print( ( "Removed the forecast_reference_time coordinate from {} cube".format( iris_cube.name() ) ) ) except iris.exceptions.CoordinateNotFoundError as coord_not_found: print("{}".format(coord_not_found)) return iris_cube def rim_remove(cube, rim_width): """ Return IRIS cube with rim removed. args ---- cube: input iris cube rim_width: integer, number of grid points to remove from edge of lat and long Returns ------- rrcube: rim removed cube Notes ----- See below for examples: >>> cube_list_rr = iris.cube.CubeList() >>> file = os.path.join(conf.DATA_DIR, 'rcm_monthly.pp') >>> cube_list = iris.load(file) >>> for cube in cube_list: ... cube_rr = rim_remove(cube, 8) ... cube_list_rr.append(cube_rr) ... Removed 8 size rim from Heavyside function on pressure levels Removed 8 size rim from air_temperature Removed 8 size rim from relative_humidity Removed 8 size rim from specific_humidity Removed 8 size rim from x_wind Removed 8 size rim from y_wind >>> file = os.path.join(conf.DATA_DIR, 'rcm_mslp_monthly.pp') >>> mslp_cube = iris.load_cube(file) >>> >>> mslp_cube_rr = rim_remove(mslp_cube, 8) Removed 8 size rim from air_pressure_at_sea_level >>> >>> print(len(mslp_cube.coord('grid_latitude').points)) 432 >>> print(len(mslp_cube.coord('grid_longitude').points)) 444 >>> print(len(mslp_cube.coord('grid_latitude').points)) 432 >>> print(len(mslp_cube.coord('grid_longitude').points)) 444 >>> >>> mslp_cube_rrrr = rim_remove(mslp_cube_rr, 8) WARNING - This cube has already had it's rim removed Removed 8 size rim from air_pressure_at_sea_level Now test for failures: >>> mslp_cube_rr = rim_remove(cube, 8.2) # doctest: +ELLIPSIS Traceback (most recent call last): ... TypeError: Please provide a positive integer for rim_width >>> mslp_cube_rr = rim_remove(cube, -5) # doctest: +ELLIPSIS Traceback (most recent call last): ... IndexError: Please provide a positive integer > 0 for rim_width >>> mslp_cube_rr = rim_remove(cube, 400) # doctest: +ELLIPSIS Traceback (most recent call last): ... IndexError: length of lat or lon coord is < rim_width*2 >>> mslp_cube_rr = rim_remove(cube, 0) # doctest: +ELLIPSIS Traceback (most recent call last): ... IndexError: Please provide a positive integer > 0 for rim_width >>> mslp_cube_rr = rim_remove(cube, 'a') # doctest: +ELLIPSIS Traceback (most recent call last): ... TypeError: Please provide a positive integer for rim_width """ # check if the input is an Iris cube if not isinstance(cube, iris.cube.Cube): raise TypeError("Input is not a cube") # check whether rim_width is an integer if not isinstance(rim_width, (integer_types)): raise TypeError("Please provide a positive integer for rim_width") if rim_width <= 0: raise IndexError("Please provide a positive integer > 0 for rim_width") # check whether this cube has already had it's rim removed if "rim_removed" in cube.attributes: print("WARNING - This cube has already had it's rim removed") # Longitude xcoord = cube.coord(axis="X", dim_coords=True) # Latitude ycoord = cube.coord(axis="Y", dim_coords=True) # make sure specified rim_width is going to work if len(xcoord.points) <= (rim_width * 2) or len(ycoord.points) <= (rim_width * 2): raise IndexError("length of lat or lon coord is < rim_width*2") # Remove rim from Longitude rrcube = cube.subset(xcoord[rim_width : -1 * rim_width]) # Remove rim from Latitude rrcube = rrcube.subset(ycoord[rim_width : -1 * rim_width]) # add meta data that rim has been removed rrcube.attributes["rim_removed"] = "{} point rim removed".format(rim_width) print(("Removed {} size rim from {}".format(rim_width, cube.name()))) return rrcube if __name__ == "__main__": doctest.testmod()
0
0
0
0dd32e9ca2c7ce0add00ea94a0758f176b038de9
27,038
py
Python
src/summarization/metric/rouge_metric.py
youngerous/kobart-voice-summarization
bf48edea602c0661d638f0ed6f4a35c2ced4009f
[ "Apache-2.0" ]
8
2021-05-16T05:40:29.000Z
2022-03-14T08:32:54.000Z
src/summarization/metric/rouge_metric.py
youngerous/kobart-voice-summarization
bf48edea602c0661d638f0ed6f4a35c2ced4009f
[ "Apache-2.0" ]
null
null
null
src/summarization/metric/rouge_metric.py
youngerous/kobart-voice-summarization
bf48edea602c0661d638f0ed6f4a35c2ced4009f
[ "Apache-2.0" ]
3
2021-08-09T08:06:24.000Z
2021-11-29T05:04:56.000Z
""" Ref: https://dacon.io/competitions/official/235673/talkboard/401911?page=1&dtype=recent """ import os import re import platform import itertools import collections import pkg_resources # pip install py-rouge from io import open if platform.system() == "Windows": try: from eunjeon import Mecab except: print("please install eunjeon module") else: # Ubuntu일 경우 from konlpy.tag import Mecab
38.625714
97
0.492529
""" Ref: https://dacon.io/competitions/official/235673/talkboard/401911?page=1&dtype=recent """ import os import re import platform import itertools import collections import pkg_resources # pip install py-rouge from io import open if platform.system() == "Windows": try: from eunjeon import Mecab except: print("please install eunjeon module") else: # Ubuntu일 경우 from konlpy.tag import Mecab class Rouge: DEFAULT_METRICS = {"rouge-n"} DEFAULT_N = 1 STATS = ["f", "p", "r"] AVAILABLE_METRICS = {"rouge-n", "rouge-l", "rouge-w"} AVAILABLE_LENGTH_LIMIT_TYPES = {"words", "bytes"} REMOVE_CHAR_PATTERN = re.compile("[^A-Za-z0-9가-힣]") def __init__( self, metrics=None, max_n=None, limit_length=True, length_limit=1000, length_limit_type="words", apply_avg=True, apply_best=False, use_tokenizer=True, alpha=0.5, weight_factor=1.0, ): self.metrics = metrics[:] if metrics is not None else Rouge.DEFAULT_METRICS for m in self.metrics: if m not in Rouge.AVAILABLE_METRICS: raise ValueError("Unknown metric '{}'".format(m)) self.max_n = max_n if "rouge-n" in self.metrics else None # Add all rouge-n metrics if self.max_n is not None: index_rouge_n = self.metrics.index("rouge-n") del self.metrics[index_rouge_n] self.metrics += ["rouge-{}".format(n) for n in range(1, self.max_n + 1)] self.metrics = set(self.metrics) self.limit_length = limit_length if self.limit_length: if length_limit_type not in Rouge.AVAILABLE_LENGTH_LIMIT_TYPES: raise ValueError( "Unknown length_limit_type '{}'".format(length_limit_type) ) self.length_limit = length_limit if self.length_limit == 0: self.limit_length = False self.length_limit_type = length_limit_type self.use_tokenizer = use_tokenizer if use_tokenizer: self.tokenizer = Mecab() self.apply_avg = apply_avg self.apply_best = apply_best self.alpha = alpha self.weight_factor = weight_factor if self.weight_factor <= 0: raise ValueError("ROUGE-W weight factor must greater than 0.") def tokenize_text(self, text): if self.use_tokenizer: return self.tokenizer.morphs(text) else: return text @staticmethod def split_into_sentences(text): return text.split("\n") @staticmethod def _get_ngrams(n, text): ngram_set = collections.defaultdict(int) max_index_ngram_start = len(text) - n for i in range(max_index_ngram_start + 1): ngram_set[tuple(text[i : i + n])] += 1 return ngram_set @staticmethod def _split_into_words(sentences): return list(itertools.chain(*[_.split() for _ in sentences])) @staticmethod def _get_word_ngrams_and_length(n, sentences): assert len(sentences) > 0 assert n > 0 tokens = Rouge._split_into_words(sentences) return Rouge._get_ngrams(n, tokens), tokens, len(tokens) - (n - 1) @staticmethod def _get_unigrams(sentences): assert len(sentences) > 0 tokens = Rouge._split_into_words(sentences) unigram_set = collections.defaultdict(int) for token in tokens: unigram_set[token] += 1 return unigram_set, len(tokens) @staticmethod def _compute_p_r_f_score( evaluated_count, reference_count, overlapping_count, alpha=0.5, weight_factor=1.0, ): precision = ( 0.0 if evaluated_count == 0 else overlapping_count / float(evaluated_count) ) if weight_factor != 1.0: precision = precision ** (1.0 / weight_factor) recall = ( 0.0 if reference_count == 0 else overlapping_count / float(reference_count) ) if weight_factor != 1.0: recall = recall ** (1.0 / weight_factor) f1_score = Rouge._compute_f_score(precision, recall, alpha) return {"f": f1_score, "p": precision, "r": recall} @staticmethod def _compute_f_score(precision, recall, alpha=0.5): return ( 0.0 if (recall == 0.0 or precision == 0.0) else precision * recall / ((1 - alpha) * precision + alpha * recall) ) @staticmethod def _compute_ngrams(evaluated_sentences, reference_sentences, n): if len(evaluated_sentences) <= 0 or len(reference_sentences) <= 0: raise ValueError("Collections must contain at least 1 sentence.") evaluated_ngrams, _, evaluated_count = Rouge._get_word_ngrams_and_length( n, evaluated_sentences ) reference_ngrams, _, reference_count = Rouge._get_word_ngrams_and_length( n, reference_sentences ) # Gets the overlapping ngrams between evaluated and reference overlapping_ngrams = set(evaluated_ngrams.keys()).intersection( set(reference_ngrams.keys()) ) overlapping_count = 0 for ngram in overlapping_ngrams: overlapping_count += min(evaluated_ngrams[ngram], reference_ngrams[ngram]) return evaluated_count, reference_count, overlapping_count @staticmethod def _compute_ngrams_lcs( evaluated_sentences, reference_sentences, weight_factor=1.0 ): def _lcs(x, y): m = len(x) n = len(y) vals = collections.defaultdict(int) dirs = collections.defaultdict(int) for i in range(1, m + 1): for j in range(1, n + 1): if x[i - 1] == y[j - 1]: vals[i, j] = vals[i - 1, j - 1] + 1 dirs[i, j] = "|" elif vals[i - 1, j] >= vals[i, j - 1]: vals[i, j] = vals[i - 1, j] dirs[i, j] = "^" else: vals[i, j] = vals[i, j - 1] dirs[i, j] = "<" return vals, dirs def _wlcs(x, y, weight_factor): m = len(x) n = len(y) vals = collections.defaultdict(float) dirs = collections.defaultdict(int) lengths = collections.defaultdict(int) for i in range(1, m + 1): for j in range(1, n + 1): if x[i - 1] == y[j - 1]: length_tmp = lengths[i - 1, j - 1] vals[i, j] = ( vals[i - 1, j - 1] + (length_tmp + 1) ** weight_factor - length_tmp ** weight_factor ) dirs[i, j] = "|" lengths[i, j] = length_tmp + 1 elif vals[i - 1, j] >= vals[i, j - 1]: vals[i, j] = vals[i - 1, j] dirs[i, j] = "^" lengths[i, j] = 0 else: vals[i, j] = vals[i, j - 1] dirs[i, j] = "<" lengths[i, j] = 0 return vals, dirs def _mark_lcs(mask, dirs, m, n): while m != 0 and n != 0: if dirs[m, n] == "|": m -= 1 n -= 1 mask[m] = 1 elif dirs[m, n] == "^": m -= 1 elif dirs[m, n] == "<": n -= 1 else: raise UnboundLocalError("Illegal move") return mask if len(evaluated_sentences) <= 0 or len(reference_sentences) <= 0: raise ValueError("Collections must contain at least 1 sentence.") evaluated_unigrams_dict, evaluated_count = Rouge._get_unigrams( evaluated_sentences ) reference_unigrams_dict, reference_count = Rouge._get_unigrams( reference_sentences ) # Has to use weight factor for WLCS use_WLCS = weight_factor != 1.0 if use_WLCS: evaluated_count = evaluated_count ** weight_factor reference_count = 0 overlapping_count = 0.0 for reference_sentence in reference_sentences: reference_sentence_tokens = reference_sentence.split() if use_WLCS: reference_count += len(reference_sentence_tokens) ** weight_factor hit_mask = [0 for _ in range(len(reference_sentence_tokens))] for evaluated_sentence in evaluated_sentences: evaluated_sentence_tokens = evaluated_sentence.split() if use_WLCS: _, lcs_dirs = _wlcs( reference_sentence_tokens, evaluated_sentence_tokens, weight_factor, ) else: _, lcs_dirs = _lcs( reference_sentence_tokens, evaluated_sentence_tokens ) _mark_lcs( hit_mask, lcs_dirs, len(reference_sentence_tokens), len(evaluated_sentence_tokens), ) overlapping_count_length = 0 for ref_token_id, val in enumerate(hit_mask): if val == 1: token = reference_sentence_tokens[ref_token_id] if ( evaluated_unigrams_dict[token] > 0 and reference_unigrams_dict[token] > 0 ): evaluated_unigrams_dict[token] -= 1 reference_unigrams_dict[ref_token_id] -= 1 if use_WLCS: overlapping_count_length += 1 if ( ref_token_id + 1 < len(hit_mask) and hit_mask[ref_token_id + 1] == 0 ) or ref_token_id + 1 == len(hit_mask): overlapping_count += ( overlapping_count_length ** weight_factor ) overlapping_count_length = 0 else: overlapping_count += 1 if use_WLCS: reference_count = reference_count ** weight_factor return evaluated_count, reference_count, overlapping_count def get_scores(self, hypothesis, references): if isinstance(hypothesis, str): hypothesis, references = [hypothesis], [references] if type(hypothesis) != type(references): raise ValueError("'hyps' and 'refs' are not of the same type") if len(hypothesis) != len(references): raise ValueError("'hyps' and 'refs' do not have the same length") scores = {} has_rouge_n_metric = ( len([metric for metric in self.metrics if metric.split("-")[-1].isdigit()]) > 0 ) if has_rouge_n_metric: scores.update(self._get_scores_rouge_n(hypothesis, references)) # scores = {**scores, **self._get_scores_rouge_n(hypothesis, references)} has_rouge_l_metric = ( len( [ metric for metric in self.metrics if metric.split("-")[-1].lower() == "l" ] ) > 0 ) if has_rouge_l_metric: scores.update(self._get_scores_rouge_l_or_w(hypothesis, references, False)) # scores = {**scores, **self._get_scores_rouge_l_or_w(hypothesis, references, False)} has_rouge_w_metric = ( len( [ metric for metric in self.metrics if metric.split("-")[-1].lower() == "w" ] ) > 0 ) if has_rouge_w_metric: scores.update(self._get_scores_rouge_l_or_w(hypothesis, references, True)) # scores = {**scores, **self._get_scores_rouge_l_or_w(hypothesis, references, True)} return scores def _get_scores_rouge_n(self, all_hypothesis, all_references): metrics = [metric for metric in self.metrics if metric.split("-")[-1].isdigit()] if self.apply_avg or self.apply_best: scores = {metric: {stat: 0.0 for stat in Rouge.STATS} for metric in metrics} else: scores = { metric: [ {stat: [] for stat in Rouge.STATS} for _ in range(len(all_hypothesis)) ] for metric in metrics } for sample_id, (hypothesis, references) in enumerate( zip(all_hypothesis, all_references) ): assert isinstance(hypothesis, str) has_multiple_references = False if isinstance(references, list): has_multiple_references = len(references) > 1 if not has_multiple_references: references = references[0] # Prepare hypothesis and reference(s) hypothesis = self._preprocess_summary_as_a_whole(hypothesis) references = ( [ self._preprocess_summary_as_a_whole(reference) for reference in references ] if has_multiple_references else [self._preprocess_summary_as_a_whole(references)] ) # Compute scores for metric in metrics: suffix = metric.split("-")[-1] n = int(suffix) # Aggregate if self.apply_avg: # average model total_hypothesis_ngrams_count = 0 total_reference_ngrams_count = 0 total_ngrams_overlapping_count = 0 for reference in references: ( hypothesis_count, reference_count, overlapping_ngrams, ) = Rouge._compute_ngrams(hypothesis, reference, n) total_hypothesis_ngrams_count += hypothesis_count total_reference_ngrams_count += reference_count total_ngrams_overlapping_count += overlapping_ngrams score = Rouge._compute_p_r_f_score( total_hypothesis_ngrams_count, total_reference_ngrams_count, total_ngrams_overlapping_count, self.alpha, ) for stat in Rouge.STATS: scores[metric][stat] += score[stat] else: # Best model if self.apply_best: best_current_score = None for reference in references: ( hypothesis_count, reference_count, overlapping_ngrams, ) = Rouge._compute_ngrams(hypothesis, reference, n) score = Rouge._compute_p_r_f_score( hypothesis_count, reference_count, overlapping_ngrams, self.alpha, ) if ( best_current_score is None or score["r"] > best_current_score["r"] ): best_current_score = score for stat in Rouge.STATS: scores[metric][stat] += best_current_score[stat] # Keep all else: for reference in references: ( hypothesis_count, reference_count, overlapping_ngrams, ) = Rouge._compute_ngrams(hypothesis, reference, n) score = Rouge._compute_p_r_f_score( hypothesis_count, reference_count, overlapping_ngrams, self.alpha, ) for stat in Rouge.STATS: scores[metric][sample_id][stat].append(score[stat]) # Compute final score with the average or the the max if (self.apply_avg or self.apply_best) and len(all_hypothesis) > 1: for metric in metrics: for stat in Rouge.STATS: scores[metric][stat] /= len(all_hypothesis) return scores def _get_scores_rouge_l_or_w(self, all_hypothesis, all_references, use_w=False): metric = "rouge-w" if use_w else "rouge-l" if self.apply_avg or self.apply_best: scores = {metric: {stat: 0.0 for stat in Rouge.STATS}} else: scores = { metric: [ {stat: [] for stat in Rouge.STATS} for _ in range(len(all_hypothesis)) ] } for sample_id, (hypothesis_sentences, references_sentences) in enumerate( zip(all_hypothesis, all_references) ): assert isinstance(hypothesis_sentences, str) has_multiple_references = False if isinstance(references_sentences, list): has_multiple_references = len(references_sentences) > 1 if not has_multiple_references: references_sentences = references_sentences[0] # Prepare hypothesis and reference(s) hypothesis_sentences = self._preprocess_summary_per_sentence( hypothesis_sentences ) references_sentences = ( [ self._preprocess_summary_per_sentence(reference) for reference in references_sentences ] if has_multiple_references else [self._preprocess_summary_per_sentence(references_sentences)] ) # Compute scores # Aggregate if self.apply_avg: # average model total_hypothesis_ngrams_count = 0 total_reference_ngrams_count = 0 total_ngrams_overlapping_count = 0 for reference_sentences in references_sentences: ( hypothesis_count, reference_count, overlapping_ngrams, ) = Rouge._compute_ngrams_lcs( hypothesis_sentences, reference_sentences, self.weight_factor if use_w else 1.0, ) total_hypothesis_ngrams_count += hypothesis_count total_reference_ngrams_count += reference_count total_ngrams_overlapping_count += overlapping_ngrams score = Rouge._compute_p_r_f_score( total_hypothesis_ngrams_count, total_reference_ngrams_count, total_ngrams_overlapping_count, self.alpha, self.weight_factor if use_w else 1.0, ) for stat in Rouge.STATS: scores[metric][stat] += score[stat] else: # Best model if self.apply_best: best_current_score = None best_current_score_wlcs = None for reference_sentences in references_sentences: ( hypothesis_count, reference_count, overlapping_ngrams, ) = Rouge._compute_ngrams_lcs( hypothesis_sentences, reference_sentences, self.weight_factor if use_w else 1.0, ) score = Rouge._compute_p_r_f_score( total_hypothesis_ngrams_count, total_reference_ngrams_count, total_ngrams_overlapping_count, self.alpha, self.weight_factor if use_w else 1.0, ) if use_w: reference_count_for_score = reference_count ** ( 1.0 / self.weight_factor ) overlapping_ngrams_for_score = overlapping_ngrams score_wlcs = ( overlapping_ngrams_for_score / reference_count_for_score ) ** (1.0 / self.weight_factor) if ( best_current_score_wlcs is None or score_wlcs > best_current_score_wlcs ): best_current_score = score best_current_score_wlcs = score_wlcs else: if ( best_current_score is None or score["r"] > best_current_score["r"] ): best_current_score = score for stat in Rouge.STATS: scores[metric][stat] += best_current_score[stat] # Keep all else: for reference_sentences in references_sentences: ( hypothesis_count, reference_count, overlapping_ngrams, ) = Rouge._compute_ngrams_lcs( hypothesis_sentences, reference_sentences, self.weight_factor if use_w else 1.0, ) score = Rouge._compute_p_r_f_score( hypothesis_count, reference_count, overlapping_ngrams, self.alpha, self.weight_factor, ) for stat in Rouge.STATS: scores[metric][sample_id][stat].append(score[stat]) # Compute final score with the average or the the max if (self.apply_avg or self.apply_best) and len(all_hypothesis) > 1: for stat in Rouge.STATS: scores[metric][stat] /= len(all_hypothesis) return scores def _preprocess_summary_as_a_whole(self, summary): sentences = Rouge.split_into_sentences(summary) # Truncate if self.limit_length: # By words if self.length_limit_type == "words": summary = " ".join(sentences) all_tokens = summary.split() # Counting as in the perls script summary = " ".join(all_tokens[: self.length_limit]) # By bytes elif self.length_limit_type == "bytes": summary = "" current_len = 0 for sentence in sentences: sentence = sentence.strip() sentence_len = len(sentence) if current_len + sentence_len < self.length_limit: if current_len != 0: summary += " " summary += sentence current_len += sentence_len else: if current_len > 0: summary += " " summary += sentence[: self.length_limit - current_len] break else: summary = " ".join(sentences) summary = Rouge.REMOVE_CHAR_PATTERN.sub(" ", summary.lower()).strip() tokens = self.tokenize_text(Rouge.REMOVE_CHAR_PATTERN.sub(" ", summary)) preprocessed_summary = [" ".join(tokens)] return preprocessed_summary def _preprocess_summary_per_sentence(self, summary): sentences = Rouge.split_into_sentences(summary) # Truncate if self.limit_length: final_sentences = [] current_len = 0 # By words if self.length_limit_type == "words": for sentence in sentences: tokens = sentence.strip().split() tokens_len = len(tokens) if current_len + tokens_len < self.length_limit: sentence = " ".join(tokens) final_sentences.append(sentence) current_len += tokens_len else: sentence = " ".join(tokens[: self.length_limit - current_len]) final_sentences.append(sentence) break # By bytes elif self.length_limit_type == "bytes": for sentence in sentences: sentence = sentence.strip() sentence_len = len(sentence) if current_len + sentence_len < self.length_limit: final_sentences.append(sentence) current_len += sentence_len else: sentence = sentence[: self.length_limit - current_len] final_sentences.append(sentence) break sentences = final_sentences final_sentences = [] for sentence in sentences: sentence = Rouge.REMOVE_CHAR_PATTERN.sub(" ", sentence.lower()).strip() tokens = self.tokenize_text(Rouge.REMOVE_CHAR_PATTERN.sub(" ", sentence)) sentence = " ".join(tokens) final_sentences.append(sentence) return final_sentences
25,756
837
23
75f00237a492774445faf7cd823f0046fc10ff0e
1,953
py
Python
data_processing/find_entity.py
plista/news_knowledge_tree
7b31a6faba1f1f9b267386a75766e435fc4e2674
[ "MIT" ]
null
null
null
data_processing/find_entity.py
plista/news_knowledge_tree
7b31a6faba1f1f9b267386a75766e435fc4e2674
[ "MIT" ]
1
2019-12-16T18:42:53.000Z
2019-12-16T18:42:53.000Z
data_processing/find_entity.py
plista/news_knowledge_tree
7b31a6faba1f1f9b267386a75766e435fc4e2674
[ "MIT" ]
null
null
null
import functools import sys from typing import Set import nltk from flair.data import Sentence from flair.models import SequenceTagger from langdetect import detect @functools.lru_cache(maxsize=1) def get_tagger(language: str) -> SequenceTagger: """Return the tagger needed """ if language == "de": return SequenceTagger.load("de-ner") if language == "en": return SequenceTagger.load("ner-fast") raise Exception("Invalid language") def filter_text(text: str) -> str: """remove unwanted character from the text which can disturb NER""" filtered = text for s in "\\\xa0\"'[]()’“”\xad": filtered = filtered.replace(s, "") return filtered def format_entities(entities: Set[str]) -> Set[str]: """ Remove :param entity: :return: """ result = [] for entity in entities: if entity[-1] in [".", ",", "?", "!", ":"]: entity = entity[0:-1] entity = entity.replace("\n", " ") if entity[-1] == "s" and entity[:-1] in entities: continue if not entity: continue result.append(entity) return set(result) @functools.lru_cache(maxsize=512) def find_entity(text: str, language: str) -> Set[str]: """extract entity using flair""" global tagger filtered = filter_text(text) if not filtered: return set() detected_language = detect(filtered) if language != detected_language: return set() sent_tokens = nltk.sent_tokenize(filtered) sentences = [Sentence(i) for i in sent_tokens] tagger = get_tagger(language) tagger.predict(sentences) flair_entities = [] for sentence in sentences: flair_entities.extend( [entity.text for entity in sentence.get_spans("ner")] ) result = format_entities(set(flair_entities)) return result if __name__ == "__main__": text = sys.argv[1] print(find_entity(text))
26.391892
71
0.62724
import functools import sys from typing import Set import nltk from flair.data import Sentence from flair.models import SequenceTagger from langdetect import detect @functools.lru_cache(maxsize=1) def get_tagger(language: str) -> SequenceTagger: """Return the tagger needed """ if language == "de": return SequenceTagger.load("de-ner") if language == "en": return SequenceTagger.load("ner-fast") raise Exception("Invalid language") def filter_text(text: str) -> str: """remove unwanted character from the text which can disturb NER""" filtered = text for s in "\\\xa0\"'[]()’“”\xad": filtered = filtered.replace(s, "") return filtered def format_entities(entities: Set[str]) -> Set[str]: """ Remove :param entity: :return: """ result = [] for entity in entities: if entity[-1] in [".", ",", "?", "!", ":"]: entity = entity[0:-1] entity = entity.replace("\n", " ") if entity[-1] == "s" and entity[:-1] in entities: continue if not entity: continue result.append(entity) return set(result) @functools.lru_cache(maxsize=512) def find_entity(text: str, language: str) -> Set[str]: """extract entity using flair""" global tagger filtered = filter_text(text) if not filtered: return set() detected_language = detect(filtered) if language != detected_language: return set() sent_tokens = nltk.sent_tokenize(filtered) sentences = [Sentence(i) for i in sent_tokens] tagger = get_tagger(language) tagger.predict(sentences) flair_entities = [] for sentence in sentences: flair_entities.extend( [entity.text for entity in sentence.get_spans("ner")] ) result = format_entities(set(flair_entities)) return result if __name__ == "__main__": text = sys.argv[1] print(find_entity(text))
0
0
0
61180cfa234edf359cd1eae6b1289e74c60f9294
1,928
py
Python
datenguidepy/translation.py
EvgenyGorelov/datenguide-python
9ff89665149b5cee31bab63b8a7e396b7233cc39
[ "MIT" ]
35
2019-10-10T17:42:21.000Z
2021-04-10T08:56:51.000Z
datenguidepy/translation.py
EvgenyGorelov/datenguide-python
9ff89665149b5cee31bab63b8a7e396b7233cc39
[ "MIT" ]
67
2019-06-30T08:30:20.000Z
2021-06-21T12:59:18.000Z
datenguidepy/translation.py
EvgenyGorelov/datenguide-python
9ff89665149b5cee31bab63b8a7e396b7233cc39
[ "MIT" ]
8
2019-10-10T21:00:50.000Z
2021-06-22T11:58:32.000Z
from typing import Dict from abc import abstractmethod, ABC from pandas import DataFrame import json import os DEFAULT_TRANSLATION_PROVIDER = SchemaTranslationProvider()
31.096774
81
0.732365
from typing import Dict from abc import abstractmethod, ABC from pandas import DataFrame import json import os class TranslationProvider(ABC): @abstractmethod def translate_data_frame_from_german( self, data_frame: DataFrame, target_language: str ): pass @abstractmethod def translate_from_german(self, source_text: str, target_language: str): pass @abstractmethod def is_valid_language_code(self, target_language: str): pass @abstractmethod def get_valid_language_codes(self): pass class SchemaTranslationProvider(TranslationProvider): def __init__(self): self.translated_schema: Dict = self.get_translated_schema_from_file() @staticmethod def get_translated_schema_from_file(): curr_dir = os.path.dirname(os.path.abspath(__file__)) data_dir = os.path.join(curr_dir, "package_data") translation_json_path = os.path.join(data_dir, "translated_schema.json") with open(translation_json_path) as translation_file: translation_schema = json.loads(translation_file.read()) return translation_schema def translate_data_frame_from_german( self, data_frame: DataFrame, target_language: str ): data_frame.replace(self.translated_schema[target_language], inplace=True) def translate_from_german(self, source_text: str, target_language: str): language_specific_schema = self.translated_schema[target_language] if source_text in language_specific_schema: return language_specific_schema[source_text] else: return source_text def is_valid_language_code(self, target_language: str): return target_language in self.get_valid_language_codes() def get_valid_language_codes(self): return list(self.translated_schema.keys()) DEFAULT_TRANSLATION_PROVIDER = SchemaTranslationProvider()
1,299
408
46
2135004489baa792eeab5ba37016a6ad73478469
1,314
py
Python
src/contexts/kms/computed_data/application/find_one/ComputedDataByKeyAndInputQueryHandler.py
parada3desu/foxy-key-broker
fc95de9e9bfd61c506a9a18aa64c5c9cbeac8a9c
[ "Apache-2.0" ]
null
null
null
src/contexts/kms/computed_data/application/find_one/ComputedDataByKeyAndInputQueryHandler.py
parada3desu/foxy-key-broker
fc95de9e9bfd61c506a9a18aa64c5c9cbeac8a9c
[ "Apache-2.0" ]
null
null
null
src/contexts/kms/computed_data/application/find_one/ComputedDataByKeyAndInputQueryHandler.py
parada3desu/foxy-key-broker
fc95de9e9bfd61c506a9a18aa64c5c9cbeac8a9c
[ "Apache-2.0" ]
null
null
null
from src.contexts.kms.computed_data.application.find_one.ComputedDataByKeyAndInputFinder import \ ComputedDataByKeyAndInputFinder from src.contexts.kms.computed_data.application.find_one.ComputedDataByKeyAndInputQuery import \ ComputedDataByKeyAndInputQuery from src.contexts.kms.computed_data.application.find_one.KmsComputedDataResponse import KmsComputedDataResponse from src.contexts.kms.computed_data.domain.entities.ComputedDataInput import ComputedDataInput from src.contexts.kms.computed_data.domain.entities.ComputedDataType import ComputedDataType from src.contexts.kms.cryptokeys.domain.entities.CryptoKeyId import CryptoKeyId from src.contexts.shared.domain.QueryHandler import QueryHandler
50.538462
111
0.822679
from src.contexts.kms.computed_data.application.find_one.ComputedDataByKeyAndInputFinder import \ ComputedDataByKeyAndInputFinder from src.contexts.kms.computed_data.application.find_one.ComputedDataByKeyAndInputQuery import \ ComputedDataByKeyAndInputQuery from src.contexts.kms.computed_data.application.find_one.KmsComputedDataResponse import KmsComputedDataResponse from src.contexts.kms.computed_data.domain.entities.ComputedDataInput import ComputedDataInput from src.contexts.kms.computed_data.domain.entities.ComputedDataType import ComputedDataType from src.contexts.kms.cryptokeys.domain.entities.CryptoKeyId import CryptoKeyId from src.contexts.shared.domain.QueryHandler import QueryHandler class ComputedDataByKeyAndInputQueryHandler(QueryHandler): _subscription: str = ComputedDataByKeyAndInputQuery.QUERY_TYPE def __init__(self, finder: ComputedDataByKeyAndInputFinder): self._finder = finder def subscribed_to(self) -> str: return self._subscription async def handle(self, query: ComputedDataByKeyAndInputQuery) -> KmsComputedDataResponse: crypto_key_id = CryptoKeyId(query.key_id) input = ComputedDataInput(query.input) cd_type = ComputedDataType(query.type) return await self._finder.run(crypto_key_id, input, cd_type)
394
185
23
f7c7181676be11b5c14bd43d99798ed4f03ed80a
3,952
py
Python
tempest/tvaultconf.py
KiranPawar72/tempest
1fef3dd92b083055793065dd0693454735ec2c01
[ "Apache-2.0" ]
null
null
null
tempest/tvaultconf.py
KiranPawar72/tempest
1fef3dd92b083055793065dd0693454735ec2c01
[ "Apache-2.0" ]
null
null
null
tempest/tvaultconf.py
KiranPawar72/tempest
1fef3dd92b083055793065dd0693454735ec2c01
[ "Apache-2.0" ]
null
null
null
import apscheduler from apscheduler.schedulers.blocking import BlockingScheduler #If you want to cleanup all test resources like vms, volumes, workloads then set # following cleanup parameter value to True otherwise False cleanup = True # pre requisite paramter pre_req = True #Test results for reporting PASS = "PASS" FAIL = "FAIL" enabled_tests = ["Attached_Volume_Ceph"] #Id of workload type "parallel" parallel="2ddd528d-c9b4-4d7e-8722-cc395140255a" #Resources to use from file #Please add your resources one on each line in files: tempest/tempest/vms_file, volumes_file, workloads_file vms_from_file=False volumes_from_file=False workloads_from_file=False #CLI configuration parameters workload_type_id="f82ce76f-17fe-438b-aa37-7a023058e50d" workload_name="clitest" source_platform="openstack" snapshot_name = "test-snapshot" snapshot_type_full = "full" restore_name = "test-oneclick-restore" selective_restore_name = "test-selective-restore" restore_filename = "/opt/restore.json" vm_license_filename = "test_licenses/tvault_license_10VM.txt" capacity_license_filename = "test_licenses/tvault_license_100TB.txt" compute_license_filename = "test_licenses/tvault_license_10compute.txt" invalid_license_filename = "test_licenses/tvault_license_invalid.txt" expired_license_filename = "test_licenses/tvault_license_expired.txt" workload_modify_name = "test2-new" workload_modify_description = "test2-new-description" restore_type = "restore" global_job_scheduler=False tvault_ip = "192.168.16.254" tvault_dbusername = "root" tvault_dbname = "workloadmgr" tvault_password = "sample-password" no_of_compute_nodes = 1 compute_node_ip = "192.168.16.75" compute_node_username = "root" compute_node_password = "Password1!" # Scheduler parameter interval="1 hrs" interval_update = "7 hrs" enabled='false' retention_policy_type="Number of Snapshots to Keep" retention_policy_type_update = "Number of days to retain Snapshots" retention_policy_value="3" retention_policy_value_update = "7" schedule_report_file="scheduleReport.txt" sched=BlockingScheduler() count=0 No_of_Backup=1 # Scheduler policy parameters policy_name="policy2" policy_name_update = "policy_update" fullbackup_interval="8" fullbackup_interval_update = "7" # test parameters key_pair_name = "tempest_test_key_pair" instance_username = "ubuntu" snapshot_restore_name = "Tempest Test Restore" restored_instance_flavor = 2 security_group_id = "baaae013-75d5-4821-806c-2cb259c95fb4" security_group_name = "test_security" flavor_name = "test_flavor" config_yaml = {"compute": ["/etc/nova", "/var/lib/nova", "/var/log/nova"], "glance": ["/etc/glance", "/var/lib/glance", "/var/log/glance"], "keystone": ["/etc/keystone", "/var/lib/keystone", "/var/log/keystone"], "cinder": ["/etc/cinder", "/var/lib/cinder", "/var/log/cinder"], "neutron": ["/etc/neutron", "/var/lib/neutron"], "swift": ["/etc/swift", "/var/log/swift/"], "ceilometer": ["/etc/ceilometer", "/var/log/ceilometer/"], "orchestration": ["/etc/heat/", "/var/log/heat/"]} additional_dir = {"tvault-contego": ["/etc/tvault-contego/"]} bootfromvol_vol_size = 4 volumes_parts = ["/dev/vdb", "/dev/vdc"] recovery_flavor_ref = 3 recovery_image_ref = "cd056509-666b-41fa-9236-86f202b3e619" #Email settings data setting_data = {"smtp_default_recipient": "trilio.build@trilio.io", "smtp_default_sender": "trilio.build@trilio.io", "smtp_port": "587", "smtp_server_name": "smtp.gmail.com", "smtp_server_password": tvault_password, "smtp_server_username": "trilio.build@trilio.io", "smtp_timeout": "10" } enable_email_notification = {"smtp_email_enable" : 1} disable_email_notification = {"smtp_email_enable" : 0} #Parameter for multiple vm workloads etc vm_count = 8
34.973451
108
0.732287
import apscheduler from apscheduler.schedulers.blocking import BlockingScheduler #If you want to cleanup all test resources like vms, volumes, workloads then set # following cleanup parameter value to True otherwise False cleanup = True # pre requisite paramter pre_req = True #Test results for reporting PASS = "PASS" FAIL = "FAIL" enabled_tests = ["Attached_Volume_Ceph"] #Id of workload type "parallel" parallel="2ddd528d-c9b4-4d7e-8722-cc395140255a" #Resources to use from file #Please add your resources one on each line in files: tempest/tempest/vms_file, volumes_file, workloads_file vms_from_file=False volumes_from_file=False workloads_from_file=False #CLI configuration parameters workload_type_id="f82ce76f-17fe-438b-aa37-7a023058e50d" workload_name="clitest" source_platform="openstack" snapshot_name = "test-snapshot" snapshot_type_full = "full" restore_name = "test-oneclick-restore" selective_restore_name = "test-selective-restore" restore_filename = "/opt/restore.json" vm_license_filename = "test_licenses/tvault_license_10VM.txt" capacity_license_filename = "test_licenses/tvault_license_100TB.txt" compute_license_filename = "test_licenses/tvault_license_10compute.txt" invalid_license_filename = "test_licenses/tvault_license_invalid.txt" expired_license_filename = "test_licenses/tvault_license_expired.txt" workload_modify_name = "test2-new" workload_modify_description = "test2-new-description" restore_type = "restore" global_job_scheduler=False tvault_ip = "192.168.16.254" tvault_dbusername = "root" tvault_dbname = "workloadmgr" tvault_password = "sample-password" no_of_compute_nodes = 1 compute_node_ip = "192.168.16.75" compute_node_username = "root" compute_node_password = "Password1!" # Scheduler parameter interval="1 hrs" interval_update = "7 hrs" enabled='false' retention_policy_type="Number of Snapshots to Keep" retention_policy_type_update = "Number of days to retain Snapshots" retention_policy_value="3" retention_policy_value_update = "7" schedule_report_file="scheduleReport.txt" sched=BlockingScheduler() count=0 No_of_Backup=1 # Scheduler policy parameters policy_name="policy2" policy_name_update = "policy_update" fullbackup_interval="8" fullbackup_interval_update = "7" # test parameters key_pair_name = "tempest_test_key_pair" instance_username = "ubuntu" snapshot_restore_name = "Tempest Test Restore" restored_instance_flavor = 2 security_group_id = "baaae013-75d5-4821-806c-2cb259c95fb4" security_group_name = "test_security" flavor_name = "test_flavor" config_yaml = {"compute": ["/etc/nova", "/var/lib/nova", "/var/log/nova"], "glance": ["/etc/glance", "/var/lib/glance", "/var/log/glance"], "keystone": ["/etc/keystone", "/var/lib/keystone", "/var/log/keystone"], "cinder": ["/etc/cinder", "/var/lib/cinder", "/var/log/cinder"], "neutron": ["/etc/neutron", "/var/lib/neutron"], "swift": ["/etc/swift", "/var/log/swift/"], "ceilometer": ["/etc/ceilometer", "/var/log/ceilometer/"], "orchestration": ["/etc/heat/", "/var/log/heat/"]} additional_dir = {"tvault-contego": ["/etc/tvault-contego/"]} bootfromvol_vol_size = 4 volumes_parts = ["/dev/vdb", "/dev/vdc"] recovery_flavor_ref = 3 recovery_image_ref = "cd056509-666b-41fa-9236-86f202b3e619" #Email settings data setting_data = {"smtp_default_recipient": "trilio.build@trilio.io", "smtp_default_sender": "trilio.build@trilio.io", "smtp_port": "587", "smtp_server_name": "smtp.gmail.com", "smtp_server_password": tvault_password, "smtp_server_username": "trilio.build@trilio.io", "smtp_timeout": "10" } enable_email_notification = {"smtp_email_enable" : 1} disable_email_notification = {"smtp_email_enable" : 0} #Parameter for multiple vm workloads etc vm_count = 8
0
0
0
ac8a05944dc625fce2bbd415e88698aa71441818
2,645
py
Python
Sketches/MPS/Old/basicswarm.py
sparkslabs/kamaelia_orig
24b5f855a63421a1f7c6c7a35a7f4629ed955316
[ "Apache-2.0" ]
12
2015-10-20T10:22:01.000Z
2021-07-19T10:09:44.000Z
Sketches/MPS/Old/basicswarm.py
sparkslabs/kamaelia_orig
24b5f855a63421a1f7c6c7a35a7f4629ed955316
[ "Apache-2.0" ]
2
2015-10-20T10:22:55.000Z
2017-02-13T11:05:25.000Z
Sketches/MPS/Old/basicswarm.py
sparkslabs/kamaelia_orig
24b5f855a63421a1f7c6c7a35a7f4629ed955316
[ "Apache-2.0" ]
6
2015-03-09T12:51:59.000Z
2020-03-01T13:06:21.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright 2010 British Broadcasting Corporation and Kamaelia Contributors(1) # # (1) Kamaelia Contributors are listed in the AUTHORS file and at # http://www.kamaelia.org/AUTHORS - please extend this file, # not this notice. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Builds a basic rooted graph in a simple swarm fashion. # z = peer() a = peer() b = peer() c = peer() d = peer() e = peer() f = peer() g = peer() h = peer() a.join() b.join() c.join() d.join() e.join() f.join() g.join() h.join() for i in z,a,b,c,d,e,f,g,h: print i print """ The following should just have been displayed: peer (ID=0, parentID=None, max=2, children=[1, 2]) peer (ID=1, parentID=0, max=2, children=[3, 4]) peer (ID=2, parentID=0, max=2, children=[5, 6]) peer (ID=3, parentID=1, max=2, children=[7, 8]) peer (ID=4, parentID=1, max=2, children=[]) peer (ID=5, parentID=2, max=2, children=[]) peer (ID=6, parentID=2, max=2, children=[]) peer (ID=7, parentID=3, max=2, children=[]) peer (ID=8, parentID=3, max=2, children=[])"""
30.056818
88
0.659357
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright 2010 British Broadcasting Corporation and Kamaelia Contributors(1) # # (1) Kamaelia Contributors are listed in the AUTHORS file and at # http://www.kamaelia.org/AUTHORS - please extend this file, # not this notice. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Builds a basic rooted graph in a simple swarm fashion. # class peer(object): Peermax = 2 peers = [] def __init__(self, parent=None): self.childrenIDs = [] self.parent = None self.peermax = self.__class__.Peermax self.__class__.peers.append(self) self.id = len(self.__class__.peers)-1 def __repr__(self): return "peer (ID=%s, parentID=%s, max=%s, children=%s)" % \ (str(self.id), str(self.parent), str(self.peermax), str(self.childrenIDs)) def accept(self, fromWhoID): if fromWhoID in self.childrenIDs: return True, self.parent, self.childrenIDs if len(self.childrenIDs) < self.peermax: self.childrenIDs.append(fromWhoID) return True, self.parent, self.childrenIDs else: return False, self.parent, self.childrenIDs def join(self, nodeID=0): index, searchList, accepted, childrenIDs = -1, [], False, [0] while not accepted: searchList.extend(childrenIDs) index = index + 1 accepted, parent, childrenIDs = peer.peers[index].accept(self.id) self.parent = index z = peer() a = peer() b = peer() c = peer() d = peer() e = peer() f = peer() g = peer() h = peer() a.join() b.join() c.join() d.join() e.join() f.join() g.join() h.join() for i in z,a,b,c,d,e,f,g,h: print i print """ The following should just have been displayed: peer (ID=0, parentID=None, max=2, children=[1, 2]) peer (ID=1, parentID=0, max=2, children=[3, 4]) peer (ID=2, parentID=0, max=2, children=[5, 6]) peer (ID=3, parentID=1, max=2, children=[7, 8]) peer (ID=4, parentID=1, max=2, children=[]) peer (ID=5, parentID=2, max=2, children=[]) peer (ID=6, parentID=2, max=2, children=[]) peer (ID=7, parentID=3, max=2, children=[]) peer (ID=8, parentID=3, max=2, children=[])"""
918
127
23
92e442443eaed77627b9c4c3c3bec21faca2a44c
678
py
Python
dart_fss/utils/dataframe.py
dveamer/dart-fss
1ea6b937f363d604a7da9c03686fba7f66707efa
[ "MIT" ]
243
2019-04-19T09:05:32.000Z
2022-03-27T10:51:24.000Z
dart_fss/utils/dataframe.py
dveamer/dart-fss
1ea6b937f363d604a7da9c03686fba7f66707efa
[ "MIT" ]
80
2019-04-20T06:37:44.000Z
2022-03-25T12:20:47.000Z
dart_fss/utils/dataframe.py
dveamer/dart-fss
1ea6b937f363d604a7da9c03686fba7f66707efa
[ "MIT" ]
92
2019-04-18T06:19:52.000Z
2022-03-17T07:43:39.000Z
# -*- coding: utf-8 -*- from pandas import DataFrame from typing import List, Tuple def dataframe_astype(df: DataFrame, columns: List[Tuple[str, type]]): """ DataFrame Column Type converter Parameters ---------- df: DataFrame Pandas DataFrame columns: list of tuple of str, type column name and type for type conversion Returns ------- DataFrame Pandas DataFrame """ for column, tp in columns: if tp == int or tp == float: df[column] = df[column].str.replace(',|-', '').astype(tp, errors='ignore') else: df[column] = df[column].astype(tp, errors='ignore') return df
25.111111
86
0.588496
# -*- coding: utf-8 -*- from pandas import DataFrame from typing import List, Tuple def dataframe_astype(df: DataFrame, columns: List[Tuple[str, type]]): """ DataFrame Column Type converter Parameters ---------- df: DataFrame Pandas DataFrame columns: list of tuple of str, type column name and type for type conversion Returns ------- DataFrame Pandas DataFrame """ for column, tp in columns: if tp == int or tp == float: df[column] = df[column].str.replace(',|-', '').astype(tp, errors='ignore') else: df[column] = df[column].astype(tp, errors='ignore') return df
0
0
0
37d19ff1083bb0281e5b6217c9468d8302d267d7
20,094
py
Python
tests/unit/modules/test_timezone.py
byteskeptical/salt
637fe0b04f38b2274191b005d73b3c6707d7f400
[ "Apache-2.0" ]
5
2017-02-07T05:39:29.000Z
2020-06-13T02:07:33.000Z
tests/unit/modules/test_timezone.py
byteskeptical/salt
637fe0b04f38b2274191b005d73b3c6707d7f400
[ "Apache-2.0" ]
86
2017-01-27T11:54:46.000Z
2020-05-20T06:25:26.000Z
tests/unit/modules/test_timezone.py
byteskeptical/salt
637fe0b04f38b2274191b005d73b3c6707d7f400
[ "Apache-2.0" ]
11
2017-01-26T19:36:29.000Z
2021-12-11T07:54:16.000Z
# -*- coding: utf-8 -*- # Import Python Libs from __future__ import absolute_import, print_function, unicode_literals from tempfile import NamedTemporaryFile import os # Import Salt Testing Libs from tests.support.mixins import LoaderModuleMockMixin from tests.support.unit import TestCase, skipIf from tests.support.mock import ( MagicMock, NO_MOCK, NO_MOCK_REASON, patch, mock_open ) # Import Salt Libs from salt.exceptions import CommandExecutionError, SaltInvocationError import salt.modules.timezone as timezone from salt.ext import six import salt.utils.platform import salt.utils.stringutils GET_ZONE_FILE = 'salt.modules.timezone._get_zone_file' GET_LOCALTIME_PATH = 'salt.modules.timezone._get_localtime_path' @skipIf(NO_MOCK, NO_MOCK_REASON) @skipIf(NO_MOCK, NO_MOCK_REASON) class TimezoneModuleTestCase(TestCase, LoaderModuleMockMixin): ''' Timezone test case ''' TEST_TZ = 'UTC' @patch('salt.utils.path.which', MagicMock(return_value=False)) def test_get_zone_centos(self): ''' Test CentOS is recognized :return: ''' with patch.dict(timezone.__grains__, {'os': 'centos'}): with patch('salt.modules.timezone._get_zone_etc_localtime', MagicMock(return_value=self.TEST_TZ)): assert timezone.get_zone() == self.TEST_TZ @patch('salt.utils.path.which', MagicMock(return_value=False)) def test_get_zone_os_family_rh_suse(self): ''' Test RedHat and Suse are recognized :return: ''' for osfamily in ['RedHat', 'Suse']: with patch.dict(timezone.__grains__, {'os_family': [osfamily]}): with patch('salt.modules.timezone._get_zone_sysconfig', MagicMock(return_value=self.TEST_TZ)): assert timezone.get_zone() == self.TEST_TZ @patch('salt.utils.path.which', MagicMock(return_value=False)) def test_get_zone_os_family_debian_gentoo(self): ''' Test Debian and Gentoo are recognized :return: ''' for osfamily in ['Debian', 'Gentoo']: with patch.dict(timezone.__grains__, {'os_family': [osfamily]}): with patch('salt.modules.timezone._get_zone_etc_timezone', MagicMock(return_value=self.TEST_TZ)): assert timezone.get_zone() == self.TEST_TZ @patch('salt.utils.path.which', MagicMock(return_value=False)) def test_get_zone_os_family_allbsd_nilinuxrt(self): ''' Test *BSD and NILinuxRT are recognized :return: ''' for osfamily in ['FreeBSD', 'OpenBSD', 'NetBSD', 'NILinuxRT']: with patch.dict(timezone.__grains__, {'os_family': osfamily}): with patch('salt.modules.timezone._get_zone_etc_localtime', MagicMock(return_value=self.TEST_TZ)): assert timezone.get_zone() == self.TEST_TZ @patch('salt.utils.path.which', MagicMock(return_value=False)) def test_get_zone_os_family_slowlaris(self): ''' Test Slowlaris is recognized :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Solaris']}): with patch('salt.modules.timezone._get_zone_solaris', MagicMock(return_value=self.TEST_TZ)): assert timezone.get_zone() == self.TEST_TZ @patch('salt.utils.path.which', MagicMock(return_value=False)) def test_get_zone_os_family_aix(self): ''' Test IBM AIX is recognized :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['AIX']}): with patch('salt.modules.timezone._get_zone_aix', MagicMock(return_value=self.TEST_TZ)): assert timezone.get_zone() == self.TEST_TZ @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_set_zone_redhat(self): ''' Test zone set on RH series :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['RedHat']}): assert timezone.set_zone(self.TEST_TZ) name, args, kwargs = timezone.__salt__['file.sed'].mock_calls[0] assert args == ('/etc/sysconfig/clock', '^ZONE=.*', 'ZONE="UTC"') @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_set_zone_suse(self): ''' Test zone set on SUSE series :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Suse']}): assert timezone.set_zone(self.TEST_TZ) name, args, kwargs = timezone.__salt__['file.sed'].mock_calls[0] assert args == ('/etc/sysconfig/clock', '^TIMEZONE=.*', 'TIMEZONE="UTC"') @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_set_zone_gentoo(self): ''' Test zone set on Gentoo series :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Gentoo']}): with patch('salt.utils.files.fopen', mock_open()) as m_open: assert timezone.set_zone(self.TEST_TZ) fh_ = m_open.filehandles['/etc/timezone'][0] assert fh_.call.args == ('/etc/timezone', 'w'), fh_.call.args assert fh_.write_calls == ['UTC', '\n'], fh_.write_calls @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_set_zone_debian(self): ''' Test zone set on Debian series :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Debian']}): with patch('salt.utils.files.fopen', mock_open()) as m_open: assert timezone.set_zone(self.TEST_TZ) fh_ = m_open.filehandles['/etc/timezone'][0] assert fh_.call.args == ('/etc/timezone', 'w'), fh_.call.args assert fh_.write_calls == ['UTC', '\n'], fh_.write_calls @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=True)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_get_hwclock_timedate_utc(self): ''' Test get hwclock UTC/localtime :return: ''' with patch('salt.modules.timezone._timedatectl', MagicMock(return_value={'stdout': 'rtc in local tz'})): assert timezone.get_hwclock() == 'UTC' with patch('salt.modules.timezone._timedatectl', MagicMock(return_value={'stdout': 'rtc in local tz:yes'})): assert timezone.get_hwclock() == 'localtime' @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_get_hwclock_suse(self): ''' Test get hwclock on SUSE :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Suse']}): timezone.get_hwclock() name, args, kwarg = timezone.__salt__['cmd.run'].mock_calls[0] assert args == (['tail', '-n', '1', '/etc/adjtime'],) assert kwarg == {'python_shell': False} @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_get_hwclock_redhat(self): ''' Test get hwclock on RedHat :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['RedHat']}): timezone.get_hwclock() name, args, kwarg = timezone.__salt__['cmd.run'].mock_calls[0] assert args == (['tail', '-n', '1', '/etc/adjtime'],) assert kwarg == {'python_shell': False} def _test_get_hwclock_debian(self): # TODO: Enable this when testing environment is working properly ''' Test get hwclock on Debian :return: ''' with patch('salt.utils.path.which', MagicMock(return_value=False)): with patch('os.path.exists', MagicMock(return_value=True)): with patch('os.unlink', MagicMock()): with patch('os.symlink', MagicMock()): with patch.dict(timezone.__grains__, {'os_family': ['Debian']}): timezone.get_hwclock() name, args, kwarg = timezone.__salt__['cmd.run'].mock_calls[0] assert args == (['tail', '-n', '1', '/etc/adjtime'],) assert kwarg == {'python_shell': False} @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_get_hwclock_solaris(self): ''' Test get hwclock on Solaris :return: ''' # Incomplete with patch.dict(timezone.__grains__, {'os_family': ['Solaris']}): assert timezone.get_hwclock() == 'UTC' with patch('salt.utils.files.fopen', mock_open()): assert timezone.get_hwclock() == 'localtime' @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_get_hwclock_aix(self): ''' Test get hwclock on AIX :return: ''' # Incomplete hwclock = 'localtime' if not os.path.isfile('/etc/environment'): hwclock = 'UTC' with patch.dict(timezone.__grains__, {'os_family': ['AIX']}): assert timezone.get_hwclock() == hwclock @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=True)) def test_set_hwclock_timedatectl(self): ''' Test set hwclock with timedatectl :return: ''' timezone.set_hwclock('UTC') name, args, kwargs = timezone.__salt__['cmd.retcode'].mock_calls[0] assert args == (['timedatectl', 'set-local-rtc', 'false'],) timezone.set_hwclock('localtime') name, args, kwargs = timezone.__salt__['cmd.retcode'].mock_calls[1] assert args == (['timedatectl', 'set-local-rtc', 'true'],) @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_set_hwclock_aix_nilinuxrt(self): ''' Test set hwclock on AIX and NILinuxRT :return: ''' for osfamily in ['AIX', 'NILinuxRT']: with patch.dict(timezone.__grains__, {'os_family': osfamily}): with self.assertRaises(SaltInvocationError): assert timezone.set_hwclock('forty two') assert timezone.set_hwclock('UTC') @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) @patch('salt.modules.timezone.get_zone', MagicMock(return_value='TEST_TIMEZONE')) def test_set_hwclock_solaris(self): ''' Test set hwclock on Solaris :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Solaris'], 'cpuarch': 'x86'}): with self.assertRaises(SaltInvocationError): assert timezone.set_hwclock('forty two') assert timezone.set_hwclock('UTC') name, args, kwargs = timezone.__salt__['cmd.retcode'].mock_calls[0] assert args == (['rtc', '-z', 'GMT'],) assert kwargs == {'python_shell': False} @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) @patch('salt.modules.timezone.get_zone', MagicMock(return_value='TEST_TIMEZONE')) def test_set_hwclock_arch(self): ''' Test set hwclock on arch :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Arch']}): assert timezone.set_hwclock('UTC') name, args, kwargs = timezone.__salt__['cmd.retcode'].mock_calls[0] assert args == (['timezonectl', 'set-local-rtc', 'false'],) assert kwargs == {'python_shell': False} @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) @patch('salt.modules.timezone.get_zone', MagicMock(return_value='TEST_TIMEZONE')) def test_set_hwclock_redhat(self): ''' Test set hwclock on RedHat :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['RedHat']}): assert timezone.set_hwclock('UTC') name, args, kwargs = timezone.__salt__['file.sed'].mock_calls[0] assert args == ('/etc/sysconfig/clock', '^ZONE=.*', 'ZONE="TEST_TIMEZONE"') @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) @patch('salt.modules.timezone.get_zone', MagicMock(return_value='TEST_TIMEZONE')) def test_set_hwclock_suse(self): ''' Test set hwclock on SUSE :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Suse']}): assert timezone.set_hwclock('UTC') name, args, kwargs = timezone.__salt__['file.sed'].mock_calls[0] assert args == ('/etc/sysconfig/clock', '^TIMEZONE=.*', 'TIMEZONE="TEST_TIMEZONE"') @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) @patch('salt.modules.timezone.get_zone', MagicMock(return_value='TEST_TIMEZONE')) def test_set_hwclock_debian(self): ''' Test set hwclock on Debian :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Debian']}): assert timezone.set_hwclock('UTC') name, args, kwargs = timezone.__salt__['file.sed'].mock_calls[0] assert args == ('/etc/default/rcS', '^UTC=.*', 'UTC=yes') assert timezone.set_hwclock('localtime') name, args, kwargs = timezone.__salt__['file.sed'].mock_calls[1] assert args == ('/etc/default/rcS', '^UTC=.*', 'UTC=no') @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) @patch('salt.modules.timezone.get_zone', MagicMock(return_value='TEST_TIMEZONE')) def test_set_hwclock_gentoo(self): ''' Test set hwclock on Gentoo :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Gentoo']}): with self.assertRaises(SaltInvocationError): timezone.set_hwclock('forty two') timezone.set_hwclock('UTC') name, args, kwargs = timezone.__salt__['file.sed'].mock_calls[0] assert args == ('/etc/conf.d/hwclock', '^clock=.*', 'clock="UTC"') timezone.set_hwclock('localtime') name, args, kwargs = timezone.__salt__['file.sed'].mock_calls[1] assert args == ('/etc/conf.d/hwclock', '^clock=.*', 'clock="local"')
43.120172
116
0.62342
# -*- coding: utf-8 -*- # Import Python Libs from __future__ import absolute_import, print_function, unicode_literals from tempfile import NamedTemporaryFile import os # Import Salt Testing Libs from tests.support.mixins import LoaderModuleMockMixin from tests.support.unit import TestCase, skipIf from tests.support.mock import ( MagicMock, NO_MOCK, NO_MOCK_REASON, patch, mock_open ) # Import Salt Libs from salt.exceptions import CommandExecutionError, SaltInvocationError import salt.modules.timezone as timezone from salt.ext import six import salt.utils.platform import salt.utils.stringutils GET_ZONE_FILE = 'salt.modules.timezone._get_zone_file' GET_LOCALTIME_PATH = 'salt.modules.timezone._get_localtime_path' @skipIf(NO_MOCK, NO_MOCK_REASON) class TimezoneTestCase(TestCase, LoaderModuleMockMixin): def setup_loader_modules(self): return {timezone: {'__grains__': {'os_family': 'Ubuntu'}}} def setUp(self): self.tempfiles = [] def tearDown(self): for tempfile in self.tempfiles: try: os.remove(tempfile.name) except OSError: pass del self.tempfiles def test_zone_compare_equal(self): etc_localtime = self.create_tempfile_with_contents('a') zone_path = self.create_tempfile_with_contents('a') with patch(GET_ZONE_FILE, lambda p: zone_path.name): with patch(GET_LOCALTIME_PATH, lambda: etc_localtime.name): self.assertTrue(timezone.zone_compare('foo')) def test_zone_compare_nonexistent(self): etc_localtime = self.create_tempfile_with_contents('a') with patch(GET_ZONE_FILE, lambda p: '/foopath/nonexistent'): with patch(GET_LOCALTIME_PATH, lambda: etc_localtime.name): self.assertRaises(SaltInvocationError, timezone.zone_compare, 'foo') def test_zone_compare_unequal(self): etc_localtime = self.create_tempfile_with_contents('a') zone_path = self.create_tempfile_with_contents('b') with patch(GET_ZONE_FILE, lambda p: zone_path.name): with patch(GET_LOCALTIME_PATH, lambda: etc_localtime.name): self.assertFalse(timezone.zone_compare('foo')) def test_missing_localtime(self): with patch(GET_ZONE_FILE, lambda p: '/nonexisting'): with patch(GET_LOCALTIME_PATH, lambda: '/also-missing'): self.assertRaises(CommandExecutionError, timezone.zone_compare, 'foo') def create_tempfile_with_contents(self, contents): temp = NamedTemporaryFile(delete=False) if six.PY3: temp.write(salt.utils.stringutils.to_bytes(contents)) else: temp.write(contents) temp.close() self.tempfiles.append(temp) return temp @skipIf(NO_MOCK, NO_MOCK_REASON) class TimezoneModuleTestCase(TestCase, LoaderModuleMockMixin): ''' Timezone test case ''' TEST_TZ = 'UTC' def setup_loader_modules(self): return {timezone: {'__grains__': {'os': ''}, '__salt__': {'file.sed': MagicMock(), 'cmd.run': MagicMock(), 'cmd.retcode': MagicMock(return_value=0)}}} @patch('salt.utils.path.which', MagicMock(return_value=False)) def test_get_zone_centos(self): ''' Test CentOS is recognized :return: ''' with patch.dict(timezone.__grains__, {'os': 'centos'}): with patch('salt.modules.timezone._get_zone_etc_localtime', MagicMock(return_value=self.TEST_TZ)): assert timezone.get_zone() == self.TEST_TZ @patch('salt.utils.path.which', MagicMock(return_value=False)) def test_get_zone_os_family_rh_suse(self): ''' Test RedHat and Suse are recognized :return: ''' for osfamily in ['RedHat', 'Suse']: with patch.dict(timezone.__grains__, {'os_family': [osfamily]}): with patch('salt.modules.timezone._get_zone_sysconfig', MagicMock(return_value=self.TEST_TZ)): assert timezone.get_zone() == self.TEST_TZ @patch('salt.utils.path.which', MagicMock(return_value=False)) def test_get_zone_os_family_debian_gentoo(self): ''' Test Debian and Gentoo are recognized :return: ''' for osfamily in ['Debian', 'Gentoo']: with patch.dict(timezone.__grains__, {'os_family': [osfamily]}): with patch('salt.modules.timezone._get_zone_etc_timezone', MagicMock(return_value=self.TEST_TZ)): assert timezone.get_zone() == self.TEST_TZ @patch('salt.utils.path.which', MagicMock(return_value=False)) def test_get_zone_os_family_allbsd_nilinuxrt(self): ''' Test *BSD and NILinuxRT are recognized :return: ''' for osfamily in ['FreeBSD', 'OpenBSD', 'NetBSD', 'NILinuxRT']: with patch.dict(timezone.__grains__, {'os_family': osfamily}): with patch('salt.modules.timezone._get_zone_etc_localtime', MagicMock(return_value=self.TEST_TZ)): assert timezone.get_zone() == self.TEST_TZ @patch('salt.utils.path.which', MagicMock(return_value=False)) def test_get_zone_os_family_slowlaris(self): ''' Test Slowlaris is recognized :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Solaris']}): with patch('salt.modules.timezone._get_zone_solaris', MagicMock(return_value=self.TEST_TZ)): assert timezone.get_zone() == self.TEST_TZ @patch('salt.utils.path.which', MagicMock(return_value=False)) def test_get_zone_os_family_aix(self): ''' Test IBM AIX is recognized :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['AIX']}): with patch('salt.modules.timezone._get_zone_aix', MagicMock(return_value=self.TEST_TZ)): assert timezone.get_zone() == self.TEST_TZ @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_set_zone_redhat(self): ''' Test zone set on RH series :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['RedHat']}): assert timezone.set_zone(self.TEST_TZ) name, args, kwargs = timezone.__salt__['file.sed'].mock_calls[0] assert args == ('/etc/sysconfig/clock', '^ZONE=.*', 'ZONE="UTC"') @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_set_zone_suse(self): ''' Test zone set on SUSE series :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Suse']}): assert timezone.set_zone(self.TEST_TZ) name, args, kwargs = timezone.__salt__['file.sed'].mock_calls[0] assert args == ('/etc/sysconfig/clock', '^TIMEZONE=.*', 'TIMEZONE="UTC"') @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_set_zone_gentoo(self): ''' Test zone set on Gentoo series :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Gentoo']}): with patch('salt.utils.files.fopen', mock_open()) as m_open: assert timezone.set_zone(self.TEST_TZ) fh_ = m_open.filehandles['/etc/timezone'][0] assert fh_.call.args == ('/etc/timezone', 'w'), fh_.call.args assert fh_.write_calls == ['UTC', '\n'], fh_.write_calls @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_set_zone_debian(self): ''' Test zone set on Debian series :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Debian']}): with patch('salt.utils.files.fopen', mock_open()) as m_open: assert timezone.set_zone(self.TEST_TZ) fh_ = m_open.filehandles['/etc/timezone'][0] assert fh_.call.args == ('/etc/timezone', 'w'), fh_.call.args assert fh_.write_calls == ['UTC', '\n'], fh_.write_calls @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=True)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_get_hwclock_timedate_utc(self): ''' Test get hwclock UTC/localtime :return: ''' with patch('salt.modules.timezone._timedatectl', MagicMock(return_value={'stdout': 'rtc in local tz'})): assert timezone.get_hwclock() == 'UTC' with patch('salt.modules.timezone._timedatectl', MagicMock(return_value={'stdout': 'rtc in local tz:yes'})): assert timezone.get_hwclock() == 'localtime' @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_get_hwclock_suse(self): ''' Test get hwclock on SUSE :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Suse']}): timezone.get_hwclock() name, args, kwarg = timezone.__salt__['cmd.run'].mock_calls[0] assert args == (['tail', '-n', '1', '/etc/adjtime'],) assert kwarg == {'python_shell': False} @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_get_hwclock_redhat(self): ''' Test get hwclock on RedHat :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['RedHat']}): timezone.get_hwclock() name, args, kwarg = timezone.__salt__['cmd.run'].mock_calls[0] assert args == (['tail', '-n', '1', '/etc/adjtime'],) assert kwarg == {'python_shell': False} def _test_get_hwclock_debian(self): # TODO: Enable this when testing environment is working properly ''' Test get hwclock on Debian :return: ''' with patch('salt.utils.path.which', MagicMock(return_value=False)): with patch('os.path.exists', MagicMock(return_value=True)): with patch('os.unlink', MagicMock()): with patch('os.symlink', MagicMock()): with patch.dict(timezone.__grains__, {'os_family': ['Debian']}): timezone.get_hwclock() name, args, kwarg = timezone.__salt__['cmd.run'].mock_calls[0] assert args == (['tail', '-n', '1', '/etc/adjtime'],) assert kwarg == {'python_shell': False} @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_get_hwclock_solaris(self): ''' Test get hwclock on Solaris :return: ''' # Incomplete with patch.dict(timezone.__grains__, {'os_family': ['Solaris']}): assert timezone.get_hwclock() == 'UTC' with patch('salt.utils.files.fopen', mock_open()): assert timezone.get_hwclock() == 'localtime' @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_get_hwclock_aix(self): ''' Test get hwclock on AIX :return: ''' # Incomplete hwclock = 'localtime' if not os.path.isfile('/etc/environment'): hwclock = 'UTC' with patch.dict(timezone.__grains__, {'os_family': ['AIX']}): assert timezone.get_hwclock() == hwclock @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=True)) def test_set_hwclock_timedatectl(self): ''' Test set hwclock with timedatectl :return: ''' timezone.set_hwclock('UTC') name, args, kwargs = timezone.__salt__['cmd.retcode'].mock_calls[0] assert args == (['timedatectl', 'set-local-rtc', 'false'],) timezone.set_hwclock('localtime') name, args, kwargs = timezone.__salt__['cmd.retcode'].mock_calls[1] assert args == (['timedatectl', 'set-local-rtc', 'true'],) @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) def test_set_hwclock_aix_nilinuxrt(self): ''' Test set hwclock on AIX and NILinuxRT :return: ''' for osfamily in ['AIX', 'NILinuxRT']: with patch.dict(timezone.__grains__, {'os_family': osfamily}): with self.assertRaises(SaltInvocationError): assert timezone.set_hwclock('forty two') assert timezone.set_hwclock('UTC') @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) @patch('salt.modules.timezone.get_zone', MagicMock(return_value='TEST_TIMEZONE')) def test_set_hwclock_solaris(self): ''' Test set hwclock on Solaris :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Solaris'], 'cpuarch': 'x86'}): with self.assertRaises(SaltInvocationError): assert timezone.set_hwclock('forty two') assert timezone.set_hwclock('UTC') name, args, kwargs = timezone.__salt__['cmd.retcode'].mock_calls[0] assert args == (['rtc', '-z', 'GMT'],) assert kwargs == {'python_shell': False} @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) @patch('salt.modules.timezone.get_zone', MagicMock(return_value='TEST_TIMEZONE')) def test_set_hwclock_arch(self): ''' Test set hwclock on arch :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Arch']}): assert timezone.set_hwclock('UTC') name, args, kwargs = timezone.__salt__['cmd.retcode'].mock_calls[0] assert args == (['timezonectl', 'set-local-rtc', 'false'],) assert kwargs == {'python_shell': False} @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) @patch('salt.modules.timezone.get_zone', MagicMock(return_value='TEST_TIMEZONE')) def test_set_hwclock_redhat(self): ''' Test set hwclock on RedHat :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['RedHat']}): assert timezone.set_hwclock('UTC') name, args, kwargs = timezone.__salt__['file.sed'].mock_calls[0] assert args == ('/etc/sysconfig/clock', '^ZONE=.*', 'ZONE="TEST_TIMEZONE"') @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) @patch('salt.modules.timezone.get_zone', MagicMock(return_value='TEST_TIMEZONE')) def test_set_hwclock_suse(self): ''' Test set hwclock on SUSE :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Suse']}): assert timezone.set_hwclock('UTC') name, args, kwargs = timezone.__salt__['file.sed'].mock_calls[0] assert args == ('/etc/sysconfig/clock', '^TIMEZONE=.*', 'TIMEZONE="TEST_TIMEZONE"') @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) @patch('salt.modules.timezone.get_zone', MagicMock(return_value='TEST_TIMEZONE')) def test_set_hwclock_debian(self): ''' Test set hwclock on Debian :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Debian']}): assert timezone.set_hwclock('UTC') name, args, kwargs = timezone.__salt__['file.sed'].mock_calls[0] assert args == ('/etc/default/rcS', '^UTC=.*', 'UTC=yes') assert timezone.set_hwclock('localtime') name, args, kwargs = timezone.__salt__['file.sed'].mock_calls[1] assert args == ('/etc/default/rcS', '^UTC=.*', 'UTC=no') @skipIf(salt.utils.platform.is_windows(), 'os.symlink not available in Windows') @patch('salt.utils.path.which', MagicMock(return_value=False)) @patch('os.path.exists', MagicMock(return_value=True)) @patch('os.unlink', MagicMock()) @patch('os.symlink', MagicMock()) @patch('salt.modules.timezone.get_zone', MagicMock(return_value='TEST_TIMEZONE')) def test_set_hwclock_gentoo(self): ''' Test set hwclock on Gentoo :return: ''' with patch.dict(timezone.__grains__, {'os_family': ['Gentoo']}): with self.assertRaises(SaltInvocationError): timezone.set_hwclock('forty two') timezone.set_hwclock('UTC') name, args, kwargs = timezone.__salt__['file.sed'].mock_calls[0] assert args == ('/etc/conf.d/hwclock', '^clock=.*', 'clock="UTC"') timezone.set_hwclock('localtime') name, args, kwargs = timezone.__salt__['file.sed'].mock_calls[1] assert args == ('/etc/conf.d/hwclock', '^clock=.*', 'clock="local"')
2,046
35
265
60641ef4e63b02e80e53c98c3ee1677bdfba26a8
2,308
py
Python
handwriting_classifier.py
ngp111/digit_classification_keras
65d6b72d6d38bc257c5cde55d92d2210865f74d6
[ "MIT" ]
null
null
null
handwriting_classifier.py
ngp111/digit_classification_keras
65d6b72d6d38bc257c5cde55d92d2210865f74d6
[ "MIT" ]
null
null
null
handwriting_classifier.py
ngp111/digit_classification_keras
65d6b72d6d38bc257c5cde55d92d2210865f74d6
[ "MIT" ]
null
null
null
import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, Dropout, Dense, Flatten import matplotlib.pyplot as plt import numpy as np import random pixel_width = 28 pixel_height = 28 no_of_classes = 10 batch_size = 32 epochs = 10 (features_train, labels_train), (features_test, labels_test) = mnist.load_data() features_train = features_train.reshape(features_train.shape[0], pixel_width, pixel_height, 1) features_test = features_test.reshape(features_test.shape[0], pixel_width, pixel_height, 1) input_shape = (pixel_width, pixel_height, 1) features_train = features_train.astype('float32') features_test = features_test.astype('float32') features_train /= 255 features_test /= 255 labels_train = keras.utils.to_categorical(labels_train, no_of_classes) labels_test = keras.utils.to_categorical(labels_test, no_of_classes) model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation = 'relu', input_shape = input_shape)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(no_of_classes, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy']) model.fit(features_train, labels_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(features_test, labels_test)) score = model.evaluate(features_test, labels_test, verbose=0) predictions = model.predict(features_test) prediction_digits = np.argmax(predictions, axis=1) plt.figure(figsize=(18, 18)) for i in range(100): ax = plt.subplot(10, 10, i+1) plt.xticks([]) plt.xticks([]) plt.yticks([]) plt.grid(False) image_index = random.randint(0, len(prediction_digits)) plt.imshow(np.squeeze(features_test[image_index]), cmap=plt.cm.gray) ax.xaxis.label.set_color(get_label_color(prediction_digits[image_index], np.argmax(labels_test[image_index]))) #print(image_index) plt.xlabel('Predicted: %d' % prediction_digits[image_index]) plt.show()
31.189189
94
0.737002
import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, Dropout, Dense, Flatten import matplotlib.pyplot as plt import numpy as np import random def get_label_color(val1, val2): if val1 == val2: return 'black' else: return 'red' pixel_width = 28 pixel_height = 28 no_of_classes = 10 batch_size = 32 epochs = 10 (features_train, labels_train), (features_test, labels_test) = mnist.load_data() features_train = features_train.reshape(features_train.shape[0], pixel_width, pixel_height, 1) features_test = features_test.reshape(features_test.shape[0], pixel_width, pixel_height, 1) input_shape = (pixel_width, pixel_height, 1) features_train = features_train.astype('float32') features_test = features_test.astype('float32') features_train /= 255 features_test /= 255 labels_train = keras.utils.to_categorical(labels_train, no_of_classes) labels_test = keras.utils.to_categorical(labels_test, no_of_classes) model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation = 'relu', input_shape = input_shape)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(no_of_classes, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy']) model.fit(features_train, labels_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(features_test, labels_test)) score = model.evaluate(features_test, labels_test, verbose=0) predictions = model.predict(features_test) prediction_digits = np.argmax(predictions, axis=1) plt.figure(figsize=(18, 18)) for i in range(100): ax = plt.subplot(10, 10, i+1) plt.xticks([]) plt.xticks([]) plt.yticks([]) plt.grid(False) image_index = random.randint(0, len(prediction_digits)) plt.imshow(np.squeeze(features_test[image_index]), cmap=plt.cm.gray) ax.xaxis.label.set_color(get_label_color(prediction_digits[image_index], np.argmax(labels_test[image_index]))) #print(image_index) plt.xlabel('Predicted: %d' % prediction_digits[image_index]) plt.show()
74
0
23
078a6fe226b1f79db248bb1c1845407854fdbc98
673
py
Python
hw/hw10/tests/q2_1.py
ds-modules/Colab-demo
cccaff13633f8a5ec697cd4aeca9087f2feec2e4
[ "BSD-3-Clause" ]
null
null
null
hw/hw10/tests/q2_1.py
ds-modules/Colab-demo
cccaff13633f8a5ec697cd4aeca9087f2feec2e4
[ "BSD-3-Clause" ]
null
null
null
hw/hw10/tests/q2_1.py
ds-modules/Colab-demo
cccaff13633f8a5ec697cd4aeca9087f2feec2e4
[ "BSD-3-Clause" ]
null
null
null
test = { 'name': 'q2_1', 'points': 1, 'suites': [ { 'cases': [ {'code': '>>> # Make sure you assigned `binary options` to an array;\n>>> type(binary_options) == np.ndarray\nTrue', 'hidden': False, 'locked': False}, { 'code': '>>> # Should be a two element array of a binary distribution;\n>>> sorted(set(binary_options)) == sorted(set([0, 1]))\nTrue', 'hidden': False, 'locked': False}], 'scored': True, 'setup': '', 'teardown': '', 'type': 'doctest'}]}
61.181818
186
0.408618
test = { 'name': 'q2_1', 'points': 1, 'suites': [ { 'cases': [ {'code': '>>> # Make sure you assigned `binary options` to an array;\n>>> type(binary_options) == np.ndarray\nTrue', 'hidden': False, 'locked': False}, { 'code': '>>> # Should be a two element array of a binary distribution;\n>>> sorted(set(binary_options)) == sorted(set([0, 1]))\nTrue', 'hidden': False, 'locked': False}], 'scored': True, 'setup': '', 'teardown': '', 'type': 'doctest'}]}
0
0
0
9df1ec0fb4cc64dcc907cbc11b4596d5cfc19976
383
py
Python
BFS_Iterative.py
FER-NASP/AdvancedAlgorithms
ce09c50b9d02fac53a09f6f0d0d099fe87aa7354
[ "MIT" ]
1
2021-12-24T19:30:13.000Z
2021-12-24T19:30:13.000Z
BFS_Iterative.py
FER-NASP/AdvancedAlgorithms
ce09c50b9d02fac53a09f6f0d0d099fe87aa7354
[ "MIT" ]
null
null
null
BFS_Iterative.py
FER-NASP/AdvancedAlgorithms
ce09c50b9d02fac53a09f6f0d0d099fe87aa7354
[ "MIT" ]
null
null
null
import collections
20.157895
37
0.386423
import collections def BFS(G): vis=[] Q = collections.deque() for u0 in G: if u0 not in vis: Q.append(u0) vis.append(u0) while Q: u=Q.popleft() for v in G[u]['adj']: if v not in vis: vis.append(v) Q.append(v) return vis
339
0
23
3319b793d86371d50aabd94af3fdcfc7754f0115
3,646
py
Python
losses/LSGANLoss.py
NoelShin/LIT
ac08254c6ef2d29f5bb823d79f613b355f286953
[ "MIT" ]
1
2019-01-23T07:44:47.000Z
2019-01-23T07:44:47.000Z
losses/LSGANLoss.py
NoelShin/LIT
ac08254c6ef2d29f5bb823d79f613b355f286953
[ "MIT" ]
null
null
null
losses/LSGANLoss.py
NoelShin/LIT
ac08254c6ef2d29f5bb823d79f613b355f286953
[ "MIT" ]
null
null
null
import torch import torch.nn as nn from .base_loss import Loss
40.065934
120
0.590236
import torch import torch.nn as nn from .base_loss import Loss class LSGANLoss(Loss): def __init__(self, opt): super(LSGANLoss, self).__init__(opt) self.criterion = nn.MSELoss() def get_grid(self, tensor, is_real=False): grid = torch.FloatTensor(tensor.shape).fill_(1.0 if is_real else 0.0) grid = grid.cuda(0) if self.USE_CUDA else grid return grid def __call__(self, C, G, data_dict, level=None, level_in=None): loss_C = 0 loss_G = 0 package = dict() input, target = data_dict['input_tensor'], data_dict['target_tensor'] fake = G(x=input, level=level, level_in=level_in) if self.progression else G(input) if self.condition and self.progression: input = data_dict['C_input_tensor'] input_fake, input_real = torch.cat([input, fake.detach()], dim=1), torch.cat([input, target], dim=1) elif self.condition and not self.progression: input_fake, input_real = torch.cat([input, fake.detach()], dim=1), torch.cat([input, target], dim=1) else: input_fake, input_real = fake.detach(), target fake_features = C(input_fake, level, level_in) if self.progression else C(input_fake) real_features = C(input_real, level, level_in) if self.progression else C(input_real) C_score = 0 for i in range(self.n_C): fake_grid, real_grid = self.get_grid(fake_features[i][-1]), self.get_grid(real_features[i][-1], True) C_score += self.criterion(real_features[i][-1], real_grid) + self.criterion(fake_features[i][-1], fake_grid) C_score *= 0.5 loss_C += C_score if self.CT: real_features_2 = C(input_real) CT = self.CT_lambda * self.calc_CT(real_features, real_features_2) loss_C += CT package.update({'CT': CT.detach().item()}) else: package.update({'CT': 0.0}) if self.GP: GP = self.calc_GP(C, output=input_fake.detach(), target=input_real.detach()) loss_C += self.GP_lambda * GP package.update({'GP': GP.detach().item()}) else: package.update({'GP': 0.0}) input_fake = torch.cat([input, fake], dim=1) if self.condition else fake fake_features = C(input_fake, level, level_in) if self.progression else C(input_fake) G_score = 0 for i in range(self.n_C): real_grid = self.get_grid(fake_features[i][-1], True) G_score += self.criterion(fake_features[i][-1], real_grid) loss_G += G_score if self.FM: FM = 0 n_layers = len(fake_features[0]) for j in range(n_layers): FM += self.FM_criterion(fake_features[i][j], real_features[i][j].detach()) loss_G += FM * self.FM_lambda / self.n_C package.update({'FM': FM.detach().item() / self.n_C}) else: package.update({'FM': 0.0}) if self.VGG: VGG = 0 VGG += self.calc_FM(self.VGGNet(fake), self.VGGNet(target), weights=self.VGG_weights) loss_G += self.VGG_lambda * VGG package.update({'VGG': VGG.detach().item()}) else: package.update({'VGG': 0.0}) package.update({'A_score': C_score.detach().item(), 'G_score': G_score.detach().item(), 'total_A_loss': loss_C, 'total_G_loss': loss_G, 'generated_tensor': fake.detach(), 'A_state_dict': C.state_dict(), 'G_state_dict': G.state_dict(), 'target_tensor': target}) return package
3,478
1
103
a423a6f16d3d1cb1f60c93cd7d5e53d9405dd725
141
py
Python
autoflow/opt/iterations/__init__.py
auto-flow/autoflow
f5903424ad8694d57741a0bd6dfeaba320ea6517
[ "BSD-3-Clause" ]
49
2020-04-16T11:17:28.000Z
2020-05-06T01:32:44.000Z
autoflow/opt/iterations/__init__.py
auto-flow/autoflow
f5903424ad8694d57741a0bd6dfeaba320ea6517
[ "BSD-3-Clause" ]
null
null
null
autoflow/opt/iterations/__init__.py
auto-flow/autoflow
f5903424ad8694d57741a0bd6dfeaba320ea6517
[ "BSD-3-Clause" ]
3
2020-04-17T00:53:24.000Z
2020-04-23T03:04:26.000Z
from .successivehalving import SuccessiveHalving from .base import WarmStartIteration from .successiveresampling import SuccessiveResampling
35.25
54
0.893617
from .successivehalving import SuccessiveHalving from .base import WarmStartIteration from .successiveresampling import SuccessiveResampling
0
0
0
2faadc4f2c2569527fcf4fe1bfa31ec9ba643355
2,278
py
Python
biblio/mywebsites.py
lokal-profil/isfdb_site
0ce20d6347849926d4eda961ea9249c31519eea5
[ "BSD-3-Clause" ]
null
null
null
biblio/mywebsites.py
lokal-profil/isfdb_site
0ce20d6347849926d4eda961ea9249c31519eea5
[ "BSD-3-Clause" ]
null
null
null
biblio/mywebsites.py
lokal-profil/isfdb_site
0ce20d6347849926d4eda961ea9249c31519eea5
[ "BSD-3-Clause" ]
null
null
null
#!_PYTHONLOC # # (C) COPYRIGHT 2009-2019 Ahasuerus # ALL RIGHTS RESERVED # # The copyright notice above does not evidence any actual or # intended publication of such source code. # # Version: $Revision$ # Date: $Date$ import string import sys import MySQLdb from isfdb import * from common import * from login import * from SQLparsing import * if __name__ == '__main__': PrintHeader("My Web Sites") PrintNavbar('mywebsites', 0, 0, 'mywebsites.cgi', 0) (myID, username, usertoken) = GetUserData() myID = int(myID) if not myID: print 'You must be logged in to modify your list of preferred Web sites' sys.exit(0) PrintTrailer('mywebsites', 0, 0) #Get a list of currently defined Web sites query = "select site_id, site_name from websites order by site_name" db.query(query) result = db.store_result() row = result.fetch_row() websites = [] while row: websites.append(row[0]) row = result.fetch_row() # Get the currently defined site preferences for the logged-in user query = "select site_id,user_choice from user_sites where user_id='%d'" % (myID) db.query(query) result = db.store_result() row = result.fetch_row() user_sites = [] while row: user_sites.append(row[0]) row = result.fetch_row() print '<h3>Select Web Sites to link Publications to. At least one Amazon site needs to be selected since ISFDB links to Amazon-hosted images.</h3>' print '<form id="data" METHOD="POST" ACTION="/cgi-bin/submitmywebsites.cgi">' print '<ul>' for website in websites: checked = 'checked' for user_site in user_sites: if user_site[0] == website[0]: if user_site[1] == 0: checked = '' break print '<li><input type="checkbox" name="site_choice.%s" value="on" %s>%s ' % (website[0], checked, website[1]) print '<input name="site_id.%d" value="%s" type="HIDDEN"></li>' % (website[0], website[1]) print '</ul>' print '<p>' print '<input type="SUBMIT" value="Update List of Web Sites">' print '</form>' PrintTrailer('mywebsites', 0, 0)
31.638889
155
0.610184
#!_PYTHONLOC # # (C) COPYRIGHT 2009-2019 Ahasuerus # ALL RIGHTS RESERVED # # The copyright notice above does not evidence any actual or # intended publication of such source code. # # Version: $Revision$ # Date: $Date$ import string import sys import MySQLdb from isfdb import * from common import * from login import * from SQLparsing import * if __name__ == '__main__': PrintHeader("My Web Sites") PrintNavbar('mywebsites', 0, 0, 'mywebsites.cgi', 0) (myID, username, usertoken) = GetUserData() myID = int(myID) if not myID: print 'You must be logged in to modify your list of preferred Web sites' sys.exit(0) PrintTrailer('mywebsites', 0, 0) #Get a list of currently defined Web sites query = "select site_id, site_name from websites order by site_name" db.query(query) result = db.store_result() row = result.fetch_row() websites = [] while row: websites.append(row[0]) row = result.fetch_row() # Get the currently defined site preferences for the logged-in user query = "select site_id,user_choice from user_sites where user_id='%d'" % (myID) db.query(query) result = db.store_result() row = result.fetch_row() user_sites = [] while row: user_sites.append(row[0]) row = result.fetch_row() print '<h3>Select Web Sites to link Publications to. At least one Amazon site needs to be selected since ISFDB links to Amazon-hosted images.</h3>' print '<form id="data" METHOD="POST" ACTION="/cgi-bin/submitmywebsites.cgi">' print '<ul>' for website in websites: checked = 'checked' for user_site in user_sites: if user_site[0] == website[0]: if user_site[1] == 0: checked = '' break print '<li><input type="checkbox" name="site_choice.%s" value="on" %s>%s ' % (website[0], checked, website[1]) print '<input name="site_id.%d" value="%s" type="HIDDEN"></li>' % (website[0], website[1]) print '</ul>' print '<p>' print '<input type="SUBMIT" value="Update List of Web Sites">' print '</form>' PrintTrailer('mywebsites', 0, 0)
0
0
0
abc1662bafe8b88242e1d6f85d310846facbde58
5,427
py
Python
wpy/ArtifactGenerator.py
dulichan/wpython
0e8319dd0d9e8d8cb362a6a373a07bc8c2ff5e81
[ "WTFPL" ]
null
null
null
wpy/ArtifactGenerator.py
dulichan/wpython
0e8319dd0d9e8d8cb362a6a373a07bc8c2ff5e81
[ "WTFPL" ]
null
null
null
wpy/ArtifactGenerator.py
dulichan/wpython
0e8319dd0d9e8d8cb362a6a373a07bc8c2ff5e81
[ "WTFPL" ]
null
null
null
from pybars import Compiler import lxml.etree as etree import collections from . import Artifact import os class ArtifactGenerator(object): """Class used to generate artifacts for WSO2""" """Generate the artifact based on the passed template location and data""" def merge(self, a, b, path=None): "deep merge dictionary" if path is None: path = [] for key in b: if key in a: if isinstance(a[key], dict) and isinstance(b[key], dict): self.merge(a[key], b[key], path + [str(key)]) elif a[key] == b[key]: pass # same leaf value else: #raise Exception('Conflict at %s' % '.'.join(path + [str(key)])) pass else: a[key] = b[key] return a def get_filepaths(self, directory, function): """ This function will generate the file names in a directory tree by walking the tree either top-down or bottom-up. For each directory in the tree rooted at directory top (including top itself), it yields a 3-tuple (dirpath, dirnames, filenames). """ file_paths = [] # List which will store all of the full filepaths. # Walk the tree. for root, directories, files in os.walk(directory): for filename in files: # Join the two strings in order to form the full filepath. filepath = os.path.join(root, filename) file_paths = function(filepath, filename, file_paths) # Add it to the list. return file_paths # Self-explanatory. def generateArtifact(self, data, directory): """ Pass in the generic parameters for the pom file. The method will read the synapse directory and create the resources dictionary """ synapse_directory = directory fileList = self.get_filepaths(synapse_directory, synapse_config) resources = [] for fileObj in fileList: resources.append({'type': fileObj['fileESBType'], 'fileExtension': fileObj['fileType'], 'resourceName': fileObj['fileName'].split(".")[0]}) #print resources data['resources'] = resources artifactArtiObj = self.generate(data, "templates/artifact.hbs") return artifactArtiObj #registry_directory = directory + "/gateway-registry/" #def registry_config(filepath, filename, file_paths): #typeName = filepath.split("/") #print typeName # if typeName[13]=="synapse-config": # if len(typeName) == 16: # typeName = typeName[14] # file_paths.append({'filePath': filepath, 'fileName': filename, 'type': typeName}) #return file_paths #fileList = self.get_filepaths(registry_directory, registry_config) def generateCarPom(self, data, directory): """ Pass in the generic parameters for the pom file. The method will read the synapse directory and create the resources dictionary """ synapse_directory = directory fileList = self.get_filepaths(synapse_directory, synapse_config) resources = [] for fileObj in fileList: resources.append({'type': fileObj['fileESBType'], 'fileExtension': fileObj['fileType'], 'resourceName': fileObj['fileName'].split(".")[0]}) data['resources'] = resources print data artifactCarObj = self.generate(data, "templates/car_pom.hbs") return artifactCarObj #registry_directory = directory + "/dev-registry/" #def registry_config(filepath, filename, file_paths): #typeName = filepath.split("/") #print typeName # if typeName[13]=="synapse-config": # if len(typeName) == 16: # typeName = typeName[14] # file_paths.append({'filePath': filepath, 'fileName': filename, 'type': typeName}) #return file_paths #fileList = self.get_filepaths(registry_directory, registry_config)
36.918367
142
0.676617
from pybars import Compiler import lxml.etree as etree import collections from . import Artifact import os class ArtifactGenerator(object): """Class used to generate artifacts for WSO2""" def __init__(self): self.artifactList = [] pass """Generate the artifact based on the passed template location and data""" def generate(self, data, templateLocation): compiler = Compiler() source = open(templateLocation).read().decode('utf-8') template = compiler.compile(source) output = template(data) parser = etree.XMLParser(remove_blank_text=True) root = etree.XML(output, parser) xml_output = etree.tostring(root, pretty_print = True, xml_declaration = True, encoding='UTF-8') artifactObj = Artifact(xml_output) return artifactObj def merge(self, a, b, path=None): "deep merge dictionary" if path is None: path = [] for key in b: if key in a: if isinstance(a[key], dict) and isinstance(b[key], dict): self.merge(a[key], b[key], path + [str(key)]) elif a[key] == b[key]: pass # same leaf value else: #raise Exception('Conflict at %s' % '.'.join(path + [str(key)])) pass else: a[key] = b[key] return a def generateEndpoint(self, data): if data["type"]=="address": defaultData = { 'address_props': { 'statistics': "false", 'traceFlag': "false" } } data = self.merge(data, defaultData) artifactObj = self.generate(data, "templates/endpoint.hbs") return artifactObj def generateProxy(self, data): artifactObj = self.generate(data, "templates/proxy.hbs") return artifactObj def get_filepaths(self, directory, function): """ This function will generate the file names in a directory tree by walking the tree either top-down or bottom-up. For each directory in the tree rooted at directory top (including top itself), it yields a 3-tuple (dirpath, dirnames, filenames). """ file_paths = [] # List which will store all of the full filepaths. # Walk the tree. for root, directories, files in os.walk(directory): for filename in files: # Join the two strings in order to form the full filepath. filepath = os.path.join(root, filename) file_paths = function(filepath, filename, file_paths) # Add it to the list. return file_paths # Self-explanatory. def generateArtifact(self, data, directory): """ Pass in the generic parameters for the pom file. The method will read the synapse directory and create the resources dictionary """ synapse_directory = directory def synapse_config(filepath, filename, file_paths): typeName = os.path.splitext(filepath)[1] fileESBType = filepath.split("/")[-2][:-1] if typeName == ".xml": file_paths.append({'filePath': filepath, 'fileName': filename, 'fileType': typeName[1:], 'fileESBType': fileESBType}) return file_paths fileList = self.get_filepaths(synapse_directory, synapse_config) resources = [] for fileObj in fileList: resources.append({'type': fileObj['fileESBType'], 'fileExtension': fileObj['fileType'], 'resourceName': fileObj['fileName'].split(".")[0]}) #print resources data['resources'] = resources artifactArtiObj = self.generate(data, "templates/artifact.hbs") return artifactArtiObj #registry_directory = directory + "/gateway-registry/" #def registry_config(filepath, filename, file_paths): #typeName = filepath.split("/") #print typeName # if typeName[13]=="synapse-config": # if len(typeName) == 16: # typeName = typeName[14] # file_paths.append({'filePath': filepath, 'fileName': filename, 'type': typeName}) #return file_paths #fileList = self.get_filepaths(registry_directory, registry_config) def generateCarPom(self, data, directory): """ Pass in the generic parameters for the pom file. The method will read the synapse directory and create the resources dictionary """ synapse_directory = directory def synapse_config(filepath, filename, file_paths): typeName = os.path.splitext(filepath)[1] fileESBType = filepath.split("/")[-2][:-1] if typeName == ".xml": file_paths.append({'filePath': filepath, 'fileName': filename, 'fileType': typeName[1:], 'fileESBType': fileESBType}) return file_paths fileList = self.get_filepaths(synapse_directory, synapse_config) resources = [] for fileObj in fileList: resources.append({'type': fileObj['fileESBType'], 'fileExtension': fileObj['fileType'], 'resourceName': fileObj['fileName'].split(".")[0]}) data['resources'] = resources print data artifactCarObj = self.generate(data, "templates/car_pom.hbs") return artifactCarObj #registry_directory = directory + "/dev-registry/" #def registry_config(filepath, filename, file_paths): #typeName = filepath.split("/") #print typeName # if typeName[13]=="synapse-config": # if len(typeName) == 16: # typeName = typeName[14] # file_paths.append({'filePath': filepath, 'fileName': filename, 'type': typeName}) #return file_paths #fileList = self.get_filepaths(registry_directory, registry_config) def hold(self, artifact): self.artifactList.append(artifact) def saveList(self, location): for (artifact) in self.artifactList: artifact.save(location)
1,518
0
196
a0cae71e1c74c50e189d22060e5db50461098c6f
4,209
py
Python
early_projects/defi.py
JSBCCA/pythoncode
b7f2af8b0efc2d01d3e4568265eb3a5038a8679f
[ "MIT" ]
null
null
null
early_projects/defi.py
JSBCCA/pythoncode
b7f2af8b0efc2d01d3e4568265eb3a5038a8679f
[ "MIT" ]
null
null
null
early_projects/defi.py
JSBCCA/pythoncode
b7f2af8b0efc2d01d3e4568265eb3a5038a8679f
[ "MIT" ]
null
null
null
from math import pi import os import time # sum([n, n, n...]) adds any number of variables # print (subtract(8, 3)) # print (multiply(5, 3)) # print (double(7)) # print (triple(5)) # print (divide(8, 4)) # print (half(4)) # print (celsius_conv(94)) c_c = celsius_conv # print (fahrenheit_conv(49)) # print (p_t(3, 4)) # print (p_t2(5, 3)) # print (square(5)) # print (square_root(25)) # print (cube(4)) # print (f_y(1)) f_y = feet_to_yards # print (i_c(10)) i_c = inches_to_centi # print (i_f(11)) i_f = inches_to_feet # print (f_i(30)) f_i = feet_to_inches # print (blah(8)) # print (convert_mileage(90)) # print (liters_needed(50, 30)) def pie_perc(n): """precondition: n > 0 Assuming n people want to eat a pie, return the percentage each person gets to eat.""" return int(100 / n) def average_of_best_3(a, b, c, d): # gives the average of the highest 3 """Use numbers between 0 and 100""" first = min(a, b, c, d) second = (a + b + c + d - first) third = second / 3 return third circum = circumference # circum(r) = circumference(r)
19.307339
75
0.619625
from math import pi import os import time # sum([n, n, n...]) adds any number of variables def add(a, b): return a + b def subtract(a, b): # subtracts one number from another return a - b # print (subtract(8, 3)) def multiply(a, b): # multiplies two numbers return a * b # print (multiply(5, 3)) def double(n): # doubles a number return n * 2 # print (double(7)) def triple(n): # triples a number return n * 3 # print (triple(5)) def divide(a, b): # divides one number by another return a / b # print (divide(8, 4)) def half(n): # deduces half of a number return n / 2 # print (half(4)) def celsius_conv(f): # takes a temperature in degF and converts to degC if f == 0: return -17.7778 else: return (f - 32.0) * (5.0 / 9.0) # print (celsius_conv(94)) c_c = celsius_conv def fahrenheit_conv(c): # takes a temp in degC and converts to degF if c == 0: return 32 else: return c * (9.0 / 5.0) + 32 # print (fahrenheit_conv(49)) def p_t(a, b): # uses the Pythag. theorem to deduce what C is return ((a * a + b * b)**(1 / 2)) # print (p_t(3, 4)) def p_t2(c, a): # uses the Pythag. theorem to deduce what A or B is return ((c * c - a * a)**(1 / 2)) # print (p_t2(5, 3)) def square(c): # squares a number return (c * c) # print (square(5)) def square_root(n): # gives the square root of a number return (n**(1 / 2)) # print (square_root(25)) def cube(c): # cubes a number return (c**3) # print (cube(4)) def feet_to_yards(n): # converts feet into yards return (n * (1 / 3)) # print (f_y(1)) f_y = feet_to_yards def inches_to_centi(n): # converts inches to centimeters return (n * 2.54) # print (i_c(10)) i_c = inches_to_centi def inches_to_feet(n): # converts inches to feet return (n / 12) # print (i_f(11)) i_f = inches_to_feet def feet_to_inches(n): # converts feet to inches return (n * 12) # print (f_i(30)) f_i = feet_to_inches def miles_to_kilom(n): return n * 1.60934 def kilom_to_miles(n): return n * 0.621371 def blah(n): # halves a number, then adds one return half(n) + 1 # print (blah(8)) def convert_mileage(mpg): # converts mpg to liters per hundred km first = (100 * 3.785411784) second = (1.609344 * mpg) l_per_hundred_km = first / second return l_per_hundred_km # print (convert_mileage(90)) def liters_needed(k, mpg): # tells needed amount of liters first = convert_mileage(mpg) second = first / 100 liters = second * k return liters # print (liters_needed(50, 30)) def diff_from_10(x): return 10 - x def add_5(x): return x + 5 def days_difference(day1, day2): # gives number of days between 2 days return day2 - day1 def get_weekday(current_weekday, days_ahead): return (current_weekday + days_ahead - 1) % 7 + 1 def get_birthday_weekday(current_weekday, current_day, birthday_day): days_diff = days_difference(current_day, birthday_day) return get_weekday(current_weekday, days_diff) g_b_w = get_birthday_weekday def pie_perc(n): """precondition: n > 0 Assuming n people want to eat a pie, return the percentage each person gets to eat.""" return int(100 / n) def average_of_3(a, b, c): # gives the average of 3 numbers return (a + b + c) / 3 def average_of_best_3(a, b, c, d): # gives the average of the highest 3 """Use numbers between 0 and 100""" first = min(a, b, c, d) second = (a + b + c + d - first) third = second / 3 return third def weeks_elapsed(day1, day2): # deduces how many weeks are between 2 days first = abs(days_difference(day1, day2)) second = first / 7 third = int(second) return third def circle_area(r): return pi * pow(r, 2) def circumference(r): return (2 * (pi * r)) circum = circumference # circum(r) = circumference(r) def heart_disease(age, bmi): if age < 45: if bmi < 22.0: print("Low risk") else: print("Medium risk") else: if bmi < 22.0: print("Medium risk") else: print("High risk") def different(a, b): print(a != b)
2,308
0
781
1d857b0fad333456cb2cdb5bca71530476c6efd6
432
py
Python
fc_passion/db.py
jinShine/fc-passion-page
1e3af3595318a9ebf325e80869ac4d6c7194d0ff
[ "MIT" ]
1
2020-04-19T02:12:28.000Z
2020-04-19T02:12:28.000Z
fc_passion/db.py
jinShine/fc-passion-page
1e3af3595318a9ebf325e80869ac4d6c7194d0ff
[ "MIT" ]
null
null
null
fc_passion/db.py
jinShine/fc-passion-page
1e3af3595318a9ebf325e80869ac4d6c7194d0ff
[ "MIT" ]
null
null
null
import config from pymongo import MongoClient from instagram_api import insta_fetch_feed
28.8
74
0.712963
import config from pymongo import MongoClient from instagram_api import insta_fetch_feed class DB(): def __init__(self, client=None): self.client = MongoClient(config.MongoDB_URL, 27017) def fcpassion_db(self): return self.client.fcpassion def get_insta_api(self): instagram_collection = self.fcpassion_db().instagram return instagram_collection.find({}, {'_id': False}).sort('id', 1)
250
-10
104
382240a294a5586fea04c96c0d1b774719fa869a
5,495
py
Python
data_generators/data_generator_cnn.py
Yannick947/person_counting
4fbad4836369f89e238361498382824ddecf2eae
[ "MIT" ]
3
2020-08-17T08:36:21.000Z
2021-03-19T22:09:47.000Z
data_generators/data_generator_cnn.py
Yannick947/person_counting
4fbad4836369f89e238361498382824ddecf2eae
[ "MIT" ]
7
2021-02-02T23:05:11.000Z
2022-03-12T00:50:33.000Z
data_generators/data_generator_cnn.py
Yannick947/person_counting
4fbad4836369f89e238361498382824ddecf2eae
[ "MIT" ]
1
2020-08-17T08:36:24.000Z
2020-08-17T08:36:24.000Z
import os import pandas as pd import numpy as np import math from random import shuffle from tensorflow import keras from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler, MinMaxScaler from person_counting.data_generators.data_generators import Generator_CSVS from person_counting.data_generators.data_generators import * from person_counting.utils.preprocessing import get_filtered_lengths from person_counting.utils.scaler import FeatureScaler, LabelScaler from person_counting.utils.preprocessing import apply_file_filters class Generator_CSVS_CNN(Generator_CSVS): """ Generators class to load npy files from video folder structre like PCDS Dataset and train CNNs Arguments (**kwargs) length_t : Length of the feature's DataFrame in time dimension length_y : Length of the feature's DataFrame in y direction file_names : File names to be processed filter_cols_upper, : Amount of columns to be filtered at end and start of DataFrame batch_size : Batch size top_path : Parent path where csv files are contained label_file : Name of the label file """ def create_datagen( top_path, sample, label_file, augmentation_factor=0, filter_hour_below=7, filter_hour_above=24, filter_category_noisy=False, supercharge_crowdeds=False, ): """ Creates train and test data generators for lstm network. Arguments: top_path: Parent directory where shall be searched for training files sample: sample of hyperparameters used in this run label_file: Name of the label file containing all the labels augmentation_factor: Factor how much augmentation shall be done, 1 means moving every pixel for one position filter_hour_above: Hour after which videos shall be filtered filter_category_noisy: Flag if noisy videos shall be filtered """ # Load filenames and lengths length_t, length_y = get_filtered_lengths(top_path, sample) train_file_names, validation_file_names, test_file_names = get_file_split( top_path, supercharge_crowdeds=supercharge_crowdeds ) # Apply filters train_file_names = apply_file_filters( df=train_file_names, filter_hour_above=filter_hour_above, filter_category_noisy=filter_category_noisy, filter_hour_below=filter_hour_below, ) validation_file_names = apply_file_filters( df=validation_file_names, filter_hour_above=filter_hour_above, filter_category_noisy=filter_category_noisy, filter_hour_below=filter_hour_below, ) test_file_names = apply_file_filters( df=test_file_names, filter_hour_above=filter_hour_above, filter_category_noisy=filter_category_noisy, filter_hour_below=filter_hour_below, ) scale_files = pd.concat([train_file_names, validation_file_names, test_file_names]) print( "Dataset contains: \n{} training files \n{} validation files \n{} testing files".format( len(train_file_names), len(validation_file_names), len(test_file_names) ) ) feature_scaler = FeatureScaler(top_path, scale_files, sample) label_scaler = LabelScaler(top_path, label_file, scale_files, sample) gen_train = Generator_CSVS_CNN( length_t=length_t, length_y=length_y, file_names=train_file_names, feature_scaler=feature_scaler, label_scaler=label_scaler, sample=sample, top_path=top_path, label_file=label_file, augmentation_factor=augmentation_factor, ) # Don't do augmentation here! gen_validation = Generator_CSVS_CNN( length_t=length_t, length_y=length_y, file_names=validation_file_names, feature_scaler=feature_scaler, label_scaler=label_scaler, sample=sample, top_path=top_path, label_file=label_file, augmentation_factor=0, ) gen_test = Generator_CSVS_CNN( length_t=length_t, length_y=length_y, file_names=test_file_names, feature_scaler=feature_scaler, label_scaler=label_scaler, sample=sample, top_path=top_path, label_file=label_file, augmentation_factor=0, ) return gen_train, gen_validation, gen_test def get_file_split(top_path, supercharge_crowdeds=False): """Get filenames previously splitted""" if top_path[-2:] != "\\\\" and top_path[-1] != "/": top_path += "/" if supercharge_crowdeds: train = top_path + pd.read_csv( os.path.join(top_path, "supercharged_crowdeds_train_split.csv"), header=None, squeeze=True ) else: train = top_path + pd.read_csv(os.path.join(top_path, "train_split.csv"), header=None, squeeze=True) val = top_path + pd.read_csv(os.path.join(top_path, "validation_split.csv"), header=None, squeeze=True) test = top_path + pd.read_csv(os.path.join(top_path, "test_split.csv"), header=None, squeeze=True) train = train.apply(lambda row: row.replace("\\", "/")) val = val.apply(lambda row: row.replace("\\", "/")) test = test.apply(lambda row: row.replace("\\", "/")) return train, val, test
34.130435
108
0.697543
import os import pandas as pd import numpy as np import math from random import shuffle from tensorflow import keras from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler, MinMaxScaler from person_counting.data_generators.data_generators import Generator_CSVS from person_counting.data_generators.data_generators import * from person_counting.utils.preprocessing import get_filtered_lengths from person_counting.utils.scaler import FeatureScaler, LabelScaler from person_counting.utils.preprocessing import apply_file_filters class Generator_CSVS_CNN(Generator_CSVS): """ Generators class to load npy files from video folder structre like PCDS Dataset and train CNNs Arguments (**kwargs) length_t : Length of the feature's DataFrame in time dimension length_y : Length of the feature's DataFrame in y direction file_names : File names to be processed filter_cols_upper, : Amount of columns to be filtered at end and start of DataFrame batch_size : Batch size top_path : Parent path where csv files are contained label_file : Name of the label file """ def __init__(self, *args, **kwargs): super(Generator_CSVS_CNN, self).__init__(*args, **kwargs) def create_datagen( top_path, sample, label_file, augmentation_factor=0, filter_hour_below=7, filter_hour_above=24, filter_category_noisy=False, supercharge_crowdeds=False, ): """ Creates train and test data generators for lstm network. Arguments: top_path: Parent directory where shall be searched for training files sample: sample of hyperparameters used in this run label_file: Name of the label file containing all the labels augmentation_factor: Factor how much augmentation shall be done, 1 means moving every pixel for one position filter_hour_above: Hour after which videos shall be filtered filter_category_noisy: Flag if noisy videos shall be filtered """ # Load filenames and lengths length_t, length_y = get_filtered_lengths(top_path, sample) train_file_names, validation_file_names, test_file_names = get_file_split( top_path, supercharge_crowdeds=supercharge_crowdeds ) # Apply filters train_file_names = apply_file_filters( df=train_file_names, filter_hour_above=filter_hour_above, filter_category_noisy=filter_category_noisy, filter_hour_below=filter_hour_below, ) validation_file_names = apply_file_filters( df=validation_file_names, filter_hour_above=filter_hour_above, filter_category_noisy=filter_category_noisy, filter_hour_below=filter_hour_below, ) test_file_names = apply_file_filters( df=test_file_names, filter_hour_above=filter_hour_above, filter_category_noisy=filter_category_noisy, filter_hour_below=filter_hour_below, ) scale_files = pd.concat([train_file_names, validation_file_names, test_file_names]) print( "Dataset contains: \n{} training files \n{} validation files \n{} testing files".format( len(train_file_names), len(validation_file_names), len(test_file_names) ) ) feature_scaler = FeatureScaler(top_path, scale_files, sample) label_scaler = LabelScaler(top_path, label_file, scale_files, sample) gen_train = Generator_CSVS_CNN( length_t=length_t, length_y=length_y, file_names=train_file_names, feature_scaler=feature_scaler, label_scaler=label_scaler, sample=sample, top_path=top_path, label_file=label_file, augmentation_factor=augmentation_factor, ) # Don't do augmentation here! gen_validation = Generator_CSVS_CNN( length_t=length_t, length_y=length_y, file_names=validation_file_names, feature_scaler=feature_scaler, label_scaler=label_scaler, sample=sample, top_path=top_path, label_file=label_file, augmentation_factor=0, ) gen_test = Generator_CSVS_CNN( length_t=length_t, length_y=length_y, file_names=test_file_names, feature_scaler=feature_scaler, label_scaler=label_scaler, sample=sample, top_path=top_path, label_file=label_file, augmentation_factor=0, ) return gen_train, gen_validation, gen_test def get_file_split(top_path, supercharge_crowdeds=False): """Get filenames previously splitted""" if top_path[-2:] != "\\\\" and top_path[-1] != "/": top_path += "/" if supercharge_crowdeds: train = top_path + pd.read_csv( os.path.join(top_path, "supercharged_crowdeds_train_split.csv"), header=None, squeeze=True ) else: train = top_path + pd.read_csv(os.path.join(top_path, "train_split.csv"), header=None, squeeze=True) val = top_path + pd.read_csv(os.path.join(top_path, "validation_split.csv"), header=None, squeeze=True) test = top_path + pd.read_csv(os.path.join(top_path, "test_split.csv"), header=None, squeeze=True) train = train.apply(lambda row: row.replace("\\", "/")) val = val.apply(lambda row: row.replace("\\", "/")) test = test.apply(lambda row: row.replace("\\", "/")) return train, val, test
81
0
27
d5b22ea34f0bbc299fab73839184251258eecd69
310
py
Python
Losses/__init__.py
SimonTheVillain/ActiveStereoNet
708bddce844998b366be1a1ec8a72a31ccd26f8c
[ "MIT" ]
17
2019-08-23T04:00:32.000Z
2022-02-06T13:37:02.000Z
Losses/__init__.py
SimonTheVillain/ActiveStereoNet
708bddce844998b366be1a1ec8a72a31ccd26f8c
[ "MIT" ]
null
null
null
Losses/__init__.py
SimonTheVillain/ActiveStereoNet
708bddce844998b366be1a1ec8a72a31ccd26f8c
[ "MIT" ]
7
2019-12-20T07:46:41.000Z
2021-11-01T04:18:19.000Z
from .supervise import *
22.142857
79
0.580645
from .supervise import * def get_losses(name, **kwargs): name = name.lower() if name == 'rhloss': loss = RHLoss(**kwargs) elif name == 'xtloss': loss = XTLoss(**kwargs) else: raise NotImplementedError('Loss [{:s}] is not supported.'.format(name)) return loss
262
0
23
97cfb67e2c0a8d318cf1456a02cf8daf9b4214dc
1,551
py
Python
beaker/data_model/workspace.py
allenai/beaker-py
99c8d7f6e9938807ca5405964ef35633a19e8d68
[ "Apache-2.0" ]
null
null
null
beaker/data_model/workspace.py
allenai/beaker-py
99c8d7f6e9938807ca5405964ef35633a19e8d68
[ "Apache-2.0" ]
20
2021-12-16T13:23:07.000Z
2022-03-31T16:40:02.000Z
beaker/data_model/workspace.py
allenai/beaker-py
99c8d7f6e9938807ca5405964ef35633a19e8d68
[ "Apache-2.0" ]
null
null
null
from datetime import datetime from enum import Enum from typing import Dict, List, Optional, Tuple from .account import Account from .base import BaseModel class Permission(str, Enum): """ Workspace permission levels. """ no_permission = "none" read = "read" write = "write" full_control = "all"
19.3875
58
0.68343
from datetime import datetime from enum import Enum from typing import Dict, List, Optional, Tuple from .account import Account from .base import BaseModel class WorkspaceSize(BaseModel): datasets: int experiments: int groups: int images: int class Workspace(BaseModel): id: str name: str full_name: str description: Optional[str] = None size: WorkspaceSize owner: Account author: Account created: datetime modified: datetime archived: bool = False class WorkspaceRef(BaseModel): id: str name: str full_name: str class WorkspacePage(BaseModel): data: Tuple[Workspace, ...] next_cursor: Optional[str] = None class WorkspaceSpec(BaseModel): name: Optional[str] = None description: Optional[str] = None public: bool = False org: Optional[str] = None class WorkspaceTransferSpec(BaseModel): ids: List[str] class Permission(str, Enum): """ Workspace permission levels. """ no_permission = "none" read = "read" write = "write" full_control = "all" class WorkspacePermissions(BaseModel): requester_auth: str public: bool authorizations: Dict[str, Permission] """ A dictionary of account IDs to authorizations. """ class WorkspacePatch(BaseModel): name: Optional[str] = None description: Optional[str] = None archive: Optional[bool] = None class WorkspacePermissionsPatch(BaseModel): public: Optional[bool] = None authorizations: Optional[Dict[str, Permission]] = None
0
1,007
207
c79ee80443c8e28087163ee0ff092d7379886027
11,816
py
Python
bot/modelv0/state_view.py
gillesdami/python-sc2-bot-manyminds
b44f83018ff287ab3417ed9f7444b55590b89a09
[ "MIT" ]
1
2019-09-11T08:04:08.000Z
2019-09-11T08:04:08.000Z
bot/modelv0/state_view.py
gillesdami/python-sc2-bot-manyminds
b44f83018ff287ab3417ed9f7444b55590b89a09
[ "MIT" ]
null
null
null
bot/modelv0/state_view.py
gillesdami/python-sc2-bot-manyminds
b44f83018ff287ab3417ed9f7444b55590b89a09
[ "MIT" ]
null
null
null
import math import numpy as np from sc2.ids.unit_typeid import UnitTypeId from sc2.helpers.control_group import ControlGroup from . import constants as C
39.651007
165
0.574898
import math import numpy as np from sc2.ids.unit_typeid import UnitTypeId from sc2.helpers.control_group import ControlGroup from . import constants as C class StateView(): def __init__(self): self.map_size = [int(round(size)) for size in self.game_info.map_size] self.map_size_sum = self.map_size[0] + self.map_size[1] self.meta = np.zeros(16) #TODO move self.control_groups = [ControlGroup([]) for i in range(C.CONTROL_GROUPS_COUNT)] # todo add units to control_groups ## utils @staticmethod def one_hot_encode(size, value): return np.eye(1, size, value).reshape(-1) @staticmethod def get_unit_rouded_position(unit): return unit.position.rounded @staticmethod def get_zerg_unit_id(unit): return C.ZERG_UNITS_IDS.index(unit.type_id) @staticmethod def get_unit_health(unit): return math.floor(unit.health_percentage * (C.HEALTH_VIEWED_SIZE - 1)) @staticmethod def zero_pad_1d(array, final_length): return np.pad(array, (0, final_length - len(array)), mode='constant') ## control group update async def on_unit_destroyed(self, unit_tag): for control_group in self.control_groups: if unit_tag in control_group: control_group.remove_unit(unit_tag) async def on_unit_created(self, unit): if not unit.unit_typeid in [C.ZERG_MILITARY_UNIT_TYPEID_IDS]: for control_group in self.control_groups: if control_group.amount < C.CONTROL_GROUPS_MAX_UNIT_COUNT: control_group.add_unit(unit) ## views def eco_viewer(self): ''' WIP Projection of the game state for an AI controlling the workers in the gathering group. It uses data from: - known_enemy_units Units - townhalls Units - geysers Units - gathering_workers_group ControlGroup - mineral_field Units And return the following structure: ''' self.known_enemy_units #Units self.townhalls #Units self.geysers #Units self.workers #> filter worker building #Units self.mineral_field #Units def queens_viewer(self): pass @property def building_view_size(self): return 16 + 1 + 1 + C.MAX_ZERG_BUILDINGS_VIEWED_PER_TYPE * len(C.ZERG_BUILDINGS_IDS) + (self.map_size_sum + len(C.ZERG_UNITS_IDS)) * C.MAX_ENEMY_UNITS_VIEWED def building_viewer(self): ''' Projection of the game state for an AI controlling the construction of buildings. It uses data from: - meta number[] - units Units - workers Units - minerals number - vespene number - known_enemy_units Units And return the following structure: - meta 16 - minerals 1 - vespene 1 - structure_units len(C.ZERG_BUILDINGS_UNIT_TYPEID_IDS) - known_enemy_units (self.map_size_sum + len(C.ZERG_UNITS_IDS)) * C.MAX_ENEMY_UNITS_VIEWED ''' def structure_units_to_view(): view = np.array([]) for unit_type in C.ZERG_BUILDINGS_UNIT_TYPEID_IDS: # TODO filter only once if unit_type.value in self._game_data.units: ability = self._game_data.units[unit_type.value].creation_ability amount = len(self.units(unit_type).not_ready) amount += sum([o.ability == ability for w in self.workers for o in w.orders]) view = np.concatenate(( view, self.one_hot_encode(C.MAX_ZERG_BUILDINGS_VIEWED_PER_TYPE, max([amount, C.MAX_ZERG_BUILDINGS_VIEWED_PER_TYPE - 1])) )) return self.zero_pad_1d(view, C.MAX_ZERG_BUILDINGS_VIEWED_PER_TYPE * len(C.ZERG_BUILDINGS_IDS)) def known_enemy_units_to_view(): known_enemy_units = self.known_enemy_units.take(C.MAX_ENEMY_UNITS_VIEWED, False) view_size = (self.map_size_sum + len(C.ZERG_UNITS_IDS)) * C.MAX_ENEMY_UNITS_VIEWED view = np.array([]) for known_enemy_unit in known_enemy_units: if known_enemy_unit.type_id in C.ZERG_UNITS_IDS: position = self.get_unit_rouded_position(known_enemy_unit) unit_id_idx = self.get_zerg_unit_id(known_enemy_unit) view = np.concatenate(( view, self.one_hot_encode(len(C.ZERG_UNITS_IDS), unit_id_idx), self.one_hot_encode(self.map_size[0], position[0]), self.one_hot_encode(self.map_size[1], position[1]) )) return self.zero_pad_1d(view, view_size) return np.concatenate(( self.meta, [self.minerals], [self.vespene], structure_units_to_view(), known_enemy_units_to_view() )) @property def production_view_size(self): return 16 + 1 + 1 + len(C.ZERG_UNITS_LARVATRAINABLE_IDS) + len(C.ZERG_UNITS_LARVATRAINABLE_IDS) def production_viewer(self): ''' Projection of the game state for an AI controlling the production of units. It uses data from: - meta number[] - units Units - known_enemy_units Units - already_pending(UnitTypeId) number - minerals number - vespene number And return the following structure: - meta 16 - minerals 1 - vespene 1 - known_enemy_units_count len(C.ZERG_UNITS_LARVATRAINABLE_IDS) - units_count len(C.ZERG_UNITS_LARVATRAINABLE_IDS) ''' def known_enemy_units_to_view(): view = np.zeros(len(C.ZERG_UNITS_LARVATRAINABLE_IDS)) for known_enemy_unit in self.known_enemy_units: if known_enemy_unit.type_id in C.ZERG_UNITS_LARVATRAINABLE_IDS: view[C.get_zerg_unit_id(known_enemy_unit)] += 0.01 return view #softmax ? def units_including_pending(): view = np.zeros(len(C.ZERG_UNITS_LARVATRAINABLE_IDS)) for unit in self.units.filter(lambda u: not u.is_structure): if unit.type_id in C.ZERG_UNITS_LARVATRAINABLE_IDS: view[C.get_zerg_unit_id(known_enemy_unit)] += 0.01 for unit_id_idx, unit_type_idx in enumerate(C.ZERG_UNITS_LARVATRAINABLE_IDS): view[unit_id_idx] += self.already_pending(UnitTypeId(unit_type_idx)) / 100 return view #softmax ? return np.concatenate(( self.meta, [self.minerals], [self.vespene], known_enemy_units_to_view(), units_including_pending() )) @property def military_view_size(self): return (16 + C.MAX_ZERG_BUILDINGS_VIEWED_PER_TYPE * self.map_size_sum + C.MAX_ENEMY_UNITS_VIEWED * (len(C.ZERG_UNITS_IDS) + self.map_size_sum + C.HEALTH_VIEWED_SIZE) + C.CONTROL_GROUPS_MAX_UNIT_COUNT * (len(C.ZERG_UNITS_IDS) + self.map_size_sum + C.HEALTH_VIEWED_SIZE) * C.CONTROL_GROUPS_COUNT ) def military_viewer(self): ''' Projection of the game state for an AI controlling the military units. It uses data from: - meta number[] - units Units - known_enemy_units Units - control_groups ControlGroup And return the following structure: - meta 16 - townhall C.MAX_ZERG_BUILDINGS_VIEWED_PER_TYPE * self.map_size_sum - known_enemy_units C.MAX_ENEMY_UNITS_VIEWED * (len(C.ZERG_UNITS_IDS) + self.map_size_sum + C.HEALTH_VIEWED_SIZE) - units_groups C.CONTROL_GROUPS_MAX_UNIT_COUNT * (len(C.ZERG_UNITS_IDS) + self.map_size_sum + C.HEALTH_VIEWED_SIZE) * C.CONTROL_GROUPS_COUNT ''' def townhalls_to_view(): max_encoded_townhalls = C.MAX_ZERG_BUILDINGS_VIEWED_PER_TYPE view_size = max_encoded_townhalls * self.map_size_sum townhalls = self.townhalls.take(max_encoded_townhalls, False) view = np.array([]) for townhall in townhalls: position = self.get_unit_rouded_position(townhall) view = np.concatenate(( view, self.one_hot_encode(self.map_size[0], position[0]), self.one_hot_encode(self.map_size[1], position[1]) )) return self.zero_pad_1d(view, view_size) def known_enemy_units_to_view(): known_enemy_units = self.known_enemy_units.take(C.MAX_ENEMY_UNITS_VIEWED, False) view_size = C.MAX_ENEMY_UNITS_VIEWED * (len(C.ZERG_UNITS_IDS) + self.map_size_sum + C.HEALTH_VIEWED_SIZE) view = np.array([]) for unit in known_enemy_units: if unit.type_id in C.ZERG_UNITS_IDS: position = get_unit_rouded_position(unit) view = np.concatenate(( view, self.one_hot_encode(len(C.ZERG_UNITS_IDS), self.get_zerg_unit_id(unit)), self.one_hot_encode(self.map_size[0], position[0]), self.one_hot_encode(self.map_size[1], position[1]), self.one_hot_encode(C.HEALTH_VIEWED_SIZE, self.get_unit_health(unit)) )) return self.zero_pad_1d(view, view_size) def units_groups_to_view(): # view creation view = np.array([]) control_group_view_size = C.CONTROL_GROUPS_MAX_UNIT_COUNT * (len(C.ZERG_UNITS_IDS) + self.map_size_sum + C.HEALTH_VIEWED_SIZE) view_size = control_group_view_size * C.CONTROL_GROUPS_COUNT for control_group in self.control_groups: units = control_group.select_units(self.units) control_group_view = np.array([]) for unit in control_group: if unit.type_id in C.ZERG_UNITS_IDS: position = self.get_unit_rouded_position(unit) view = np.concatenate(( view, self.one_hot_encode(len(C.ZERG_UNITS_IDS), self.get_zerg_unit_id(unit)), self.one_hot_encode(self.map_size[0], position[0]), self.one_hot_encode(self.map_size[1], position[1]), self.one_hot_encode(C.HEALTH_VIEWED_SIZE, self.get_unit_health(unit)) )) view = np.concatenate(( view, self.zero_pad_1d(control_group_view, control_group_view_size) )) return self.zero_pad_1d(view, view_size) return np.concatenate(( self.meta, townhalls_to_view(), known_enemy_units_to_view(), units_groups_to_view() )) def research_viewer(self): pass def meta_viewer(self): pass
7,263
4,375
23
b94924887631dd799abe08a7574dbfa790332e61
752
py
Python
scaf/utils/__init__.py
englhardt/scaf
7ed7b424766ccb8910d28b55014604b5d98c276c
[ "MIT" ]
null
null
null
scaf/utils/__init__.py
englhardt/scaf
7ed7b424766ccb8910d28b55014604b5d98c276c
[ "MIT" ]
null
null
null
scaf/utils/__init__.py
englhardt/scaf
7ed7b424766ccb8910d28b55014604b5d98c276c
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2019 Adrian Englhardt <adrian.englhardt@gmail.com> # Licensed under the MIT License - https://opensource.org/licenses/MIT from .change_detection_helpers import normalize, normalize_2d, normalize_2d_global, prepare_data, smooth_frequency, \ transform_to_cosdist, transform_to_padded_cosdist, relative_frequency, percentual_diff, cut_array, filter_min_freq from .helpers import expand_path, natural_sort __all__ = ['normalize', 'normalize_2d', 'normalize_2d_global', 'prepare_data', 'smooth_frequency', 'transform_to_cosdist', 'transform_to_padded_cosdist', 'relative_frequency', 'percentual_diff', 'cut_array', 'filter_min_freq', 'expand_path', 'natural_sort']
53.714286
119
0.771277
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2019 Adrian Englhardt <adrian.englhardt@gmail.com> # Licensed under the MIT License - https://opensource.org/licenses/MIT from .change_detection_helpers import normalize, normalize_2d, normalize_2d_global, prepare_data, smooth_frequency, \ transform_to_cosdist, transform_to_padded_cosdist, relative_frequency, percentual_diff, cut_array, filter_min_freq from .helpers import expand_path, natural_sort __all__ = ['normalize', 'normalize_2d', 'normalize_2d_global', 'prepare_data', 'smooth_frequency', 'transform_to_cosdist', 'transform_to_padded_cosdist', 'relative_frequency', 'percentual_diff', 'cut_array', 'filter_min_freq', 'expand_path', 'natural_sort']
0
0
0
6207d26ad838fe858b8f58d14ff8cb583d93b58b
31,083
py
Python
openrave/sandbox/debugplanning.py
jdsika/TUM_HOly
a2ac55fa1751a3a8038cf61d29b95005f36d6264
[ "MIT" ]
2
2015-11-13T16:40:57.000Z
2017-09-15T15:37:19.000Z
openrave/sandbox/debugplanning.py
jdsika/holy
a2ac55fa1751a3a8038cf61d29b95005f36d6264
[ "MIT" ]
1
2016-06-13T01:29:51.000Z
2016-06-14T00:38:27.000Z
openrave/sandbox/debugplanning.py
jdsika/holy
a2ac55fa1751a3a8038cf61d29b95005f36d6264
[ "MIT" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # random code that helps with debugging/testing the python interfaces and examples # this is not meant to be run by normal users from __future__ import with_statement # for python 2.5 __copyright__ = 'Copyright (C) 2009-2010' __license__ = 'Apache License, Version 2.0' # random code that helps with debugging/testing the python interfaces and examples # this is not meant to be run by normal users from openravepy import * import openravepy.examples from openravepy.interfaces import * from numpy import * import numpy,time
45.777614
629
0.698453
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # random code that helps with debugging/testing the python interfaces and examples # this is not meant to be run by normal users from __future__ import with_statement # for python 2.5 __copyright__ = 'Copyright (C) 2009-2010' __license__ = 'Apache License, Version 2.0' # random code that helps with debugging/testing the python interfaces and examples # this is not meant to be run by normal users from openravepy import * import openravepy.examples from openravepy.interfaces import * from numpy import * import numpy,time def test_grasping(): import grasping env = Environment() robot = env.ReadRobotXMLFile('robots/barrettsegway.robot.xml') env.AddRobot(robot) T = eye(4) T[0,3] = 1 robot.SetTransform(T) target = env.ReadKinBodyXMLFile('data/mug1.kinbody.xml') target.SetTransform(T) env.AddKinBody(target) env.SetViewer('qtcoin') self = grasping.GraspingModel(robot=robot,target=target) self.init(friction=0.4,avoidlinks=[]) preshapes = array(((0.5,0.5,0.5,pi/3),(0.5,0.5,0.5,0),(0,0,0,pi/2))) rolls = arange(0,2*pi,pi/2) standoffs = array([0,0.025]) approachrays = self.computeBoxApproachRays(stepsize=0.02) graspingnoise=None self.generate(preshapes=preshapes, rolls=rolls, standoffs=standoffs, approachrays=approachrays,graspingnoise=None,addSphereNorms=False) def test_autograsping(): import grasping env = Environment() env.SetDebugLevel(DebugLevel.Debug) env.SetViewer('qtcoin') env.Load('data/lab1.env.xml') robot = env.GetRobots()[0] target = env.GetKinBody('mug1') self = grasping.GraspingModel(robot=robot,target=target) self.autogenerate() def test_reachability(): import kinematicreachability env = Environment() robot = env.ReadRobotXMLFile('robots/barrettsegway.robot.xml') env.AddRobot(robot) self = kinematicreachability.ReachabilityModel(robot=robot) self.autogenerate() def test_inversereachabilitygen(): import inversereachability env = Environment() robot = env.ReadRobotXMLFile('robots/barrettsegway.robot.xml') env.AddRobot(robot) self = inversereachability.InverseReachabilityModel(robot=robot) heightthresh=0.05 quatthresh=0.15 self.generate(heightthresh=heightthresh,quatthresh=quatthresh) def test_inversereachabilitytest(): import inversereachability from scipy.optimize import leastsq import bisect env = openravepy.Environment() robot = env.ReadRobotXMLFile('robots/barrettsegway.robot.xml') env.AddRobot(robot) self = inversereachability.InverseReachabilityModel(robot=robot) self.load() self.env.StopSimulation() self.robot.SetTransform(eye(4)) self.testSampling(heights=arange(-1,1,0.1),logllthresh=2.3) W = array([sum(e[2][:,-1]) for e in self.equivalenceclasses]) W /= max(W) dirs = array([m[4]*linalg.inv(rotationMatrixFromQuat(m[0:4]))[:,2] for m in self.equivalencemeans]) h = self.env.plot3 (points=dirs,pointsize=5.0,colors=c_[1-W,1-W,1-W,W]) def test_inversereachabilityrun(): import inversereachability env = Environment() env.SetViewer('qtcoin') env.Reset() env.Load('data/lab1.env.xml') robot = env.GetRobots()[0] self = inversereachability.InverseReachabilityModel(robot=robot) self.load() gp = examples.graspplanning.GraspPlanning(robot=robot,randomize=False) gm = gp.graspables[0][0] dests = gp.graspables[0][1] validgrasps,validindices = gm.computeValidGrasps() Tgrasp = gm.getGlobalGraspTransform(validgrasps[0]) densityfn,samplerfn,bounds = self.computeBaseDistribution(Tgrasp,2000) h = self.showBaseDistribution(densityfn,bounds,zoffset=1.0,thresh=1.0) densityfn2,samplerfn2,bounds2 = self.computeAggregateBaseDistribution([Tgrasp],2000) h2 = self.showBaseDistribution(densityfn2,bounds2,zoffset=3.0,thresh=1.0) def draw_inversereachability(): import inversereachability env = openravepy.Environment() robot = env.ReadRobotXMLFile('robots/barrettsegway.robot.xml') env.AddRobot(robot) self = inversereachability.InverseReachabilityModel(robot=robot) self.load() self.env.SetViewer('qtcoin') self.showEquivalenceClass(self.equivalenceclasses[0]) def test_graspplanning(): import graspplanning env = Environment() env.SetViewer('qtcoin') env.Reset() env.Load('data/lab1.env.xml')#wamtest1.env.xml') robot = env.GetRobots()[0] self = graspplanning.GraspPlanning(robot) gmodel=self.graspables[0][0] dests=self.graspables[0][1] self.graspAndPlaceObject(gmodel=gmodel,dests=dests) # draw all valid grasps configs = [] for gmodel,dests in self.graspables: validgrasps = gmodel.computeValidGrasps(checkcollision=True)[0] for g in validgrasps: T = dot(gmodel.getGlobalGraspTransform(g),linalg.inv(robot.GetActiveManipulator().GetGraspTransform())) configs.append((T,g[gmodel.graspindices['igrasppreshape']])) robotfilename='robots/barretthand.robot.xml' transparency=0.7 newrobots=[] for T,preshape in configs: print len(newrobots) newrobot = env.ReadRobotXMLFile(robotfilename) for link in newrobot.GetLinks(): for geom in link.GetGeometries(): geom.SetTransparency(transparency) env.AddRobot(newrobot,True) newrobot.SetTransform(T) newrobot.SetDOFValues(preshape) newrobots.append(newrobot) for newrobot in newrobots: env.RemoveKinBody(newrobot) newrobots=[] def test_graspreachability(): import mobilemanipulation,graspplanning env = Environment() env.SetViewer('qtcoin') env.Reset() env.Load('data/lab1.env.xml') robot = env.GetRobots()[0] planning = graspplanning.GraspPlanning(robot) gmodel=planning.graspables[0][0] dests=planning.graspables[0][1] self = mobilemanipulation.GraspReachability(robot=robot,gmodel=gmodel) starttime = time.time() densityfn,samplerfn,bounds,validgrasps = self.computeGraspDistribution(logllthresh=2.4) print 'time to build distribution: %fs'%(time.time()-starttime) h = self.irmodel.showBaseDistribution(densityfn,bounds,self.target.GetTransform()[2,3],thresh=1.0) def test_mobilemanipulation(): import mobilemanipulation env = Environment() env.SetViewer('qtcoin') env.Reset() env.Load('data/lab1.env.xml') robot = env.GetRobots()[0] self = mobilemanipulation.MobileManipulationPlanning(robot) gmodel=self.graspables[0][0] dests=self.graspables[0][1] def test_visibilityplanning(): import visibilityplanning, time self = visibilityplanning.PA10GraspExample() self.loadscene(scenefilename='data/pa10grasp.env.xml',randomize=False,sensorname='wristcam',showsensors=False) self.start() def test_pyann(): ktree = pyANN.KDTree(random.rand(10,7)) neighs,dists = ktree.kSearch(random.rand(7),5,1e-3); def test_ikfast(): import openravepy env = openravepy.Environment() robot = env.ReadRobotXMLFile('robots/barrettwam.robot.xml') env.AddRobot(robot) manip = robot.GetManipulators()[0] solvejoints = list(manip.GetArmJoints()) solvejoints.pop(2) solvefn=openravepy.ikfast.IKFastSolver.solveFullIK_6D self = openravepy.ikfast.IKFastSolver(kinbody=robot) baselink = manip.GetBase().GetIndex() eelink = manip.GetEndEffector().GetIndex() usedummyjoints = False code = self.generateIkSolver(baselink=baselink,eelink=eelink,solvejoints=solvejoints,freeparams=freejoints,usedummyjoints=usedummyjoints,solvefn=solvefn) def test_gripper(): env = Environment() env.SetViewer('qtcoin') env.Load('data/lab1.env.xml') robot = env.GetRobots()[0] basemanip = openravepy.interfaces.BaseManipulation(robot) manip = robot.GetActiveManipulator() robot.SetActiveDOFs(manip.GetGripperJoints()) basemanip.ReleaseFingers(execute=True) def test_constraintplanning(): import constraintplanning env = Environment() env.SetViewer('qtcoin') env.Load('data/lab1.env.xml') robot = env.GetRobots()[0] env.UpdatePublishedBodies() time.sleep(0.1) # give time for environment to update self = constraintplanning.ConstraintPlanning(robot) self.robot.SetJointValues([-0.90993702, 1.4134903 , 1.18074048, 1.6281302 , -1.42419982, 1.17677045, -2.48384023, 0.98699927, 0.59599888, 1.1350019 , 0]) target = self.gmodel.target robot.Grab(target) T = self.manip.GetEndEffectorTransform() T[2,3] += 0.4 constraintfreedoms = [1,1,0,0,0,0] constraintmatrix = eye(4) constrainterrorthresh = 1e-2 res = self.basemanip.MoveToHandPosition(matrices=[T],maxiter=10000,maxtries=1,seedik=8,constraintfreedoms=constraintfreedoms,constraintmatrix=constraintmatrix,constrainterrorthresh=constrainterrorthresh) #self.performGraspPlanning() def test_convex(): import convexdecomposition env = Environment() #env.SetViewer('qtcoin') env.Load('data/lab1.env.xml') robot = env.GetRobots()[0] self = convexdecomposition.ConvexDecompositionModel(robot) self.load() hulls = self.linkgeometry[0][0][1] def test_linkstatistics(): import linkstatistics from itertools import izip from enthought.tvtk.api import tvtk env = openravepy.Environment() robot = env.ReadRobotXMLFile('robots/barrettsegway.robot.xml') env.AddRobot(robot) robot.SetTransform(eye(4)) self = linkstatistics.LinkStatisticsModel(robot) self.load() self.robot.SetTransform(eye(4)) links = self.robot.GetLinks() ilink = 14 link = links[ilink] linkcd = self.cdmodel.linkgeometry[ilink] hulls = [] for ig,geom in enumerate(link.GetGeometries()): cdhulls = [cdhull for i,cdhull in linkcd if i==ig] if len(cdhulls) > 0: hulls += [self.transformHull(geom.GetTransform(),hull) for hull in cdhulls[0]] elif geom.GetType() == KinBody.Link.GeomProperties.Type.Box: hulls.append(self.transformHull(geom.GetTransform(),ComputeBoxMesh(geom.GetBoxExtents()))) elif geom.GetType() == KinBody.Link.GeomProperties.Type.Sphere: hulls.append(self.transformHull(geom.GetTransform(),ComputeGeodesicSphereMesh(geom.GetSphereRadius(),level=1))) elif geom.GetType() == KinBody.Link.GeomProperties.Type.Cylinder: hulls.append(self.transformHull(geom.GetTransform(),ComputeCylinderYMesh(radius=geom.GetCylinderRadius(),height=geom.GetCylinderHeight()))) linkstat = self.computeGeometryStatistics(hulls) ijoint = 3 joint = self.robot.GetJoints()[0] lower,upper = joint.GetLimits() axis=joint.GetAxis(0) minangle=lower[0] maxangle=upper[0] Tlinkjoint = self.robot.GetLinkts()[ilink].GetTransform() Tlinkjoint[0:3,3] -= joint.GetAnchor() # joint anchor should be at center volumepoints = dot(linkstat['volumepoints'],transpose(Tlink[0:3,0:3])) volumepoints += tile(Tlink[0:3,3],(len(volumepoints),1)) sweptpoints,sweptindices = self.computeSweptVolume(volumepoints=volumepoints,axis=axis,minangle=minangle,maxangle=maxangle) def test_contours(): from enthought.tvtk.api import tvtk from numpy import * import pickle,numpy from openravepy import * env = Environment() env.SetViewer('qtcoin') N = 50 Nj = N*(0+1j) x, y, z = numpy.mgrid[-10:10:Nj, -10:20:Nj, -10:40:Nj] scalars = x*x + 2.0*y*y + z*z/2.0 spacing=array((0.005,0.005,0.005)) id = tvtk.ImageData(origin=array((numpy.min(x),numpy.min(y),numpy.min(z))),spacing=spacing,dimensions=scalars.shape) id.point_data.scalars = scalars.ravel() x,y,z,t,sweptdata = pickle.load(open('tris.pp','r')) sweptdata = array(sweptdata,'float64') #sweptdata = sweptdata[0:61,0:60,0:60] id = tvtk.ImageData(origin=array((0,0,0)),spacing=array((0.005,0.005,0.005)),dimensions=sweptdata.shape[::-1]) id.point_data.scalars = 100.0*sweptdata.ravel() m = tvtk.MarchingCubes() m.set_input(id) m.set_value(0,0.5) m.update() o = m.get_output() newpoints = array(o.points) h = env.plot3 (points=newpoints,pointsize=2.0,colors=array((1,0,0))) indices = array(o.polys.data) indices = array(reshape(indices,(len(indices)/4,4)),'int') h2 = env.drawtrimesh (points=newpoints,indices=indices[:,1:4],colors=array((0,0,1,0.5))) def test_jointweights(): jointdv = array([v['volumedelta'] for v in self.jointvolumes ]) linkdv = array([v['volume'] for v in self.linkstats]) def test_simplenavigation(): import simplenavigation env = Environment() env.SetViewer('qtcoin') env.Load('data/lab1.env.xml') robot = env.GetRobots()[0] self = simplenavigation.SimpleNavigationPlanning(robot) self.robot.SetAffineTranslationMaxVels([0.5,0.5,0.5]) self.robot.SetAffineRotationAxisMaxVels(ones(4)) self.robot.SetActiveDOFs([],Robot.DOFAffine.X|Robot.DOFAffine.Y|Robot.DOFAffine.RotationAxis,[0,0,1]) self.basemanip.MoveActiveJoints(goal=[0.737,0.304,0]) def test_sampling(): import heapq self = SpaceSampler() stats = [] for level in range(5): theta,pfi = self.sampleS2(level) dirs = c_[cos(theta),sin(theta)*cos(pfi),sin(theta)*sin(pfi)] dists = [heapq.nsmallest(2,arccos(dot(dirs,dir)))[1] for dir in dirs] stats.append([level,mean(dists)]) def test_hrp2(): python convexdecomposition.py --volumeSplitThresholdPercent=5 --mergeThresholdPercent=10 --padding=0.005 rosrun openrave_database kinematicreachability_ros.py --manipname=leftarm --xyzdelta=0.04 --launchservice='8*localhost' python kinematicreachability.py --manipname=rightarm --xyzdelta=0.02 python kinematicreachability.py --manipname=leftarm --xyzdelta=0.02 python kinematicreachability.py --manipname=rightarm_chest --xyzdelta=0.02 python inversereachability.py --manipname=rightarm --heightthresh=0.02 --quatthresh=0.2 python inversereachability.py --manipname=leftarm --heightthresh=0.02 --quatthresh=0.2 python inversereachability.py --manipname=rightarm_chest --heightthresh=0.02 --quatthresh=0.2 python inversereachability.py --manipname=leftarm_chest --heightthresh=0.02 --quatthresh=0.2 python inversereachability.py --manipname=leftarm_chest --heightthresh=0.02 --quatthresh=0.2 --id=0 --jointvalues='0' python inversereachability.py --manipname=leftarm_chest --heightthresh=0.02 --quatthresh=0.2 --id=43 --jointvalues='0.43' python grasping.py --robot=robots/hrp2jsk.robot.xml --manipname=rightarm --target=scenes/cereal_frootloops.kinbody.xml --standoff=0 --boxdelta=0.01 --normalanglerange=1 --avoidlink=RWristCam python grasping.py --robot=robots/hrp2jsk.robot.xml --manipname=leftarm --target=scenes/cereal_frootloops.kinbody.xml --standoff=0 --boxdelta=0.01 --normalanglerange=1 --graspingnoise=0.01 --noviewer rosrun openrave_database grasping_ros.py --robot=robots/hrp2jsk.robot.xml --manipname=leftarm_chest --target=scenes/cereal_frootloops.kinbody.xml --standoff=0 --boxdelta=0.01 --normalanglerange=1 --graspingnoise=0.01 --launchservice='8*localhost' rosrun openrave_database grasping_ros.py --robot=robots/hrp2jsk.robot.xml --manipname=leftarm_chest2 --target=scenes/jskcup0.kinbody.xml --standoff=0 --boxdelta=0.01 --normalanglerange=1 --graspingnoise=0.01 --launchservice='8*localhost' import inversereachability env = Environment() robot = env.ReadRobotXMLFile('robots/hrp2jsk.robot.xml') env.AddRobot(robot) robot.SetActiveManipulator('leftarm') self = inversereachability.InverseReachabilityModel(robot=robot) heightthresh=0.02 quatthresh=0.1 self.generate(heightthresh=heightthresh,quatthresh=quatthresh) hand = env.ReadRobotXMLFile('robots/hrp2rhandjsk.robot.xml') env.AddRobot(hand) hand.SetTransform(Tgrasp) # test head movement import inversekinematics env = Environment() robot = env.ReadRobotXMLFile('robots/hrp2jsk08.robot.xml') env.AddRobot(robot) robot.SetActiveManipulator('head') manip = robot.GetActiveManipulator() ikmodel = inversekinematics.InverseKinematicsModel(robot,IkParameterization.Type.Direction3D) if not ikmodel.load(): ikmodel.generate() import inversereachability,mobilemanipulation,graspplanning,visibilitymodel env = Environment() env.SetViewer('qtcoin') env.Reset() env.Load('scenes/r602kitchen1.env.xml') robot = env.GetRobots()[0] origjointvalues = robot.GetJointValues() # define all the manipulators to use manips = [robot.GetManipulators('rightarm_chest')[0], robot.GetManipulators('rightarm_chest2')[0]]#,robot.GetManipulators('leftarm_chest')[0], robot.GetManipulators('leftarm_chest2')[0]] irmodels = [] with robot: for manip in manips: robot.SetActiveManipulator(manip) dofindices = inversereachability.InverseReachabilityModel.getdofindices(manip) for id,value in [('0',[0]),('43',[0.43]),('n43',[-0.43])]: robot.SetJointValues(value,dofindices) irmodel = inversereachability.InverseReachabilityModel(robot=robot,id=id) if irmodel.load(): irmodels.append(irmodel) else: print 'failed to load irmodel',manip.GetName(),id irgmodels = [] targets = [] for manip in manips: robot.SetActiveManipulator(manip) planning = graspplanning.GraspPlanning(robot,nodestinations=True) for gmodel,dests in planning.graspables: if True:#gmodel.target.GetName() == 'cereal0' or gmodel.target.GetName() == 'cereal1': for irmodel in irmodels: if irmodel.manip == gmodel.manip: irgmodels.append([irmodel,gmodel]) if not gmodel.target in targets: targets.append(gmodel.target) grmodel = mobilemanipulation.GraspReachability(robot=robot,irgmodels=irgmodels) self = mobilemanipulation.MobileManipulationPlanning(robot,grmodel=grmodel) usevisibilitycamera = 'wristcam' gmodel = self.graspObjectMobileSearch(usevisibilitycamera=usevisibilitycamera) table = env.GetKinBody('table') if table is not None: graspables = None Trolls = [matrixFromAxisAngle(array((0,0,1)),roll) for roll in arange(0,2*pi,pi/4)] alldests = graspplanning.GraspPlanning.setRandomDestinations(targets,table,transdelta=0.05,Trolls=Trolls,randomize=False) targetdests=zip(targets,alldests) self.graspAndPlaceObjectMobileSearch(targetdests=targetdests) #h = gr.showBaseDistribution(thresh=1.0,logllthresh=logllthresh) #grmodel.testSampling(weight=1.5,logllthresh=0.5,randomgrasps=True,randomplacement=False,updateenv=False) validgrasps,validindices = gr.gmodel.computeValidGrasps(checkik=False,backupdist=0.01) grmodel.gmodel.showgrasp(validgrasps[0],collisionfree=True) densityfn,samplerfn,bounds,validgrasps = gr.computeGraspDistribution(logllthresh=logllthresh) goals,numfailures=gr.sampleGoals(lambda goals: samplerfn(goals,weight=1.0),updateenv=True) grasp,pose,q = goals[0] robot.SetTransform(pose) robot.SetJointValues(q) basemanip.CloseFingers() grasp = gr.gmodel.grasps[283] Tgrasp = gr.gmodel.getGlobalGraspTransform(grasp,collisionfree=True) equivalenceclass,logll = gr.irmodel.getEquivalenceClass(Tgrasp) densityfn,samplerfn,bounds = gr.irmodel.computeBaseDistribution(Tgrasp,logllthresh=logllthresh) h = gr.irmodel.showBaseDistribution(densityfn,bounds,zoffset=gr.target.GetTransform()[2,3],thresh=1.0) env = Environment() robot = env.ReadRobotXMLFile('robots/hrp2jsk08.robot.xml') env.AddRobot(robot) body = env.ReadKinBodyXMLFile('scenes/cereal_frootloops.kinbody.xml') env.AddKinBody(body) T = eye(4) T[0:3,3] = [0.466,-0.157,0.544] body.SetTransform(T) robot.SetActiveManipulator('rightarm_chest') robot.Grab(body) robot.SetJointValues([-1.4,1.35239005,1.036349],[5,7,8]) robot.CheckSelfCollision() def test_visibility(): import visibilitymodel env = Environment() env.Reset() robot = env.ReadRobotXMLFile('robots/hrp2jsk08real.robot.xml') env.AddRobot(robot) robot.SetActiveManipulator('rightarm_chest') target = env.ReadKinBodyXMLFile('scenes/cereal_frootloops.kinbody.xml') env.AddKinBody(target) robot.SetActiveManipulator('rightarm_chest') self = visibilitymodel.VisibilityModel(robot=robot,target=target,sensorname='wristcam') if not self.load(): self.autogenerate() env.SetViewer('qtcoin') self.showtransforms() import kinematicreachability, grasping, visibilitymodel pose = array([-0.88932403, 0. , 0. , -0.45727755, 8.26839721, 3.14201928, 0.66500002]) grasp = array([ 1.65648009e-06, -2.83057716e-06, 1.00000000e+00, 9.23879445e-01, 3.82683724e-01, -4.47596904e-07, -3.82683724e-01, 9.23879445e-01, 3.24873599e-06, -4.32802886e-02, 8.53489910e-04, 7.89998472e-02, 0.00000000e+00, 4.71238898e+00, 9.23879477e-01, 3.82683432e-01, -5.50675114e-08, 1.65648009e-06, -2.83057716e-06, 1.00000000e+00, 9.23879445e-01, 3.82683724e-01, -4.47596904e-07, -3.82683724e-01, 9.23879445e-01, 3.24873599e-06, -4.23564091e-02, 1.23617332e-03, 7.89998472e-02, 6.41213000e-03, -2.11999994e-02, 9.99999978e-03, 7.90000036e-02, 2.35619450e+00]) robot.SetTransform(pose) robot.SetActiveManipulator('rightarm_chest') # rmodel = kinematicreachability.ReachabilityModel(robot=robot) # rmodel.load() gmodel = grasping.GraspingModel(robot,target=env.GetKinBody('cereal0')) gmodel.moveToPreshape(grasp) gmodel.robot.GetController().Reset(0) vmodel = visibilitymodel.VisibilityModel(robot=robot,target=gmodel.target,sensorname='wristcam') vmodel.load() self = vmodel self.SetCameraTransforms(self.pruneTransformations(thresh=0.04)) validjoints=self.computeValidTransform() self.robot.SetJointValues(validjoints[0][0],self.manip.GetArmJoints()) s=vmodel.visualprob.SampleVisibilityGoal(target=gmodel.target) pts = array([dot(self.target.GetTransform(),matrixFromPose(pose))[0:3,3] for pose in self.visibilitytransforms]) h=self.env.plot3(pts,5,colors=array([0.5,0.5,1,0.03])) def test_navigation(): import inversereachability,mobilemanipulation,graspplanning,visibilitymodel env = Environment() env.SetViewer('qtcoin') env.Reset() env.Load('scenes/r602kitchen1.env.xml') robot = env.GetRobots()[0] robot.GetController().Reset(0) Tstart = array([[ 1. , 0. , 0. , 6.26000023-7.37], [ 0. , 1. , 0. , 2.66899991-3.2], [ 0. , 0. , 1. , 0.66500002], [ 0. , 0. , 0. , 1. ]]) robot.SetTransform(Tstart) robot.SetJointValues(array([ 0. , 0. , 0.84761411, 0. , 0. , -2.20907021, 0. , 0. , 0. , 0.97831494, 0. , 0. , -2.23727012, 0. , 0. , 0. , 0. , 0. , -0.17453291, 0.17453295], dtype=float32)) self = mobilemanipulation.MobileManipulationPlanning(robot) goal2d = array([0.29134295742674898, -0.26705494655604034, -3.1834347453894472]) #goal2d = array([6.2547940332687197-7.37, 2.2240884123771689-3.2, -6.0887479146975627]) envmin = [] envmax = [] for b in self.env.GetBodies(): ab = b.ComputeAABB() envmin.append(ab.pos()-ab.extents()) envmax.append(ab.pos()+ab.extents()) abrobot = self.robot.ComputeAABB() envmin = numpy.min(array(envmin),0)+abrobot.extents() envmax = numpy.max(array(envmax),0)-abrobot.extents() bounds = array(((envmin[0],envmin[1],-pi),(envmax[0],envmax[1],pi))) self.robot.SetAffineTranslationLimits(envmin,envmax) self.robot.SetAffineTranslationMaxVels([0.5,0.5,0.5]) self.robot.SetAffineRotationAxisMaxVels(ones(4)) self.robot.SetActiveDOFs([],Robot.DOFAffine.X|Robot.DOFAffine.Y|Robot.DOFAffine.RotationAxis,[0,0,1]) center = r_[goal2d[0:2],0.2] xaxis = 0.5*array((cos(goal2d[2]),sin(goal2d[2]),0)) yaxis = 0.25*array((-sin(goal2d[2]),cos(goal2d[2]),0)) #self.hgoal = self.env.drawlinelist(transpose(c_[center-xaxis,center+xaxis,center-yaxis,center+yaxis]),linewidth=5.0,colors=array((0,1,0))) env.SetDebugLevel(DebugLevel.Debug) starttime = time.time() self.basemanip.MoveActiveJoints(goal=goal2d,maxiter=3000,steplength=0.05) print time.time()-starttime def test_fatmodels(): env=Environment() env.SetViewer('qtcoin') env.Load('scenes/r602kitchen3.env.xml') robot=env.GetRobots()[0] taskmanip=TaskManipulation(robot) env.SetDebugLevel(DebugLevel.Verbose) taskmanip.SwitchModels(switchpatterns=[('frootloops(+d)$','scenes/cereal_frootloops_fat.kinbody.xml')]) taskmanip.SwitchModels(switch=True) def test_pr2(): from openravepy.examples import inversekinematics, grasping env=Environment() robot=env.ReadRobotXMLFile('robots/pr2-beta-sim.robot.xml') env.AddRobot(robot) # kinematics # python inversekinematics.py --robot=robots/pr2-beta-sim.robot.xml --manipname=rightarm --freejoint=r_shoulder_pan_joint --numiktests=10 # python inversekinematics.py --robot=robots/pr2-beta-sim.robot.xml --manipname=rightarm_torso --freejoint=r_shoulder_pan_joint --freejoint=torso_lift_joint --numiktests=10 manipnames = ['leftarm','rightarm','leftarm_torso','rightarm_torso'] for manipname in manipnames: manip=robot.SetActiveManipulator(manipname) ikmodel=inversekinematics.InverseKinematicsModel(robot=robot,iktype=IkParameterization.Type.Transform6D) if not ikmodel.load(): ikmodel.autogenerate() rmodel = kinematicreachability.ReachabilityModel(robot) if not rmodel.load(): rmodel.autogenerate() # grasping # python grasping.py --robot=robots/pr2-beta-sim.robot.xml --target=data/box_frootloops.kinbody.xml --boxdelta=0.01 --standoff=0 --standoff=0.02 --standoff=0.05 --normalanglerange=1 --roll=0 --roll=1.5707963 --roll=3.141592 --roll=4.7123889 --graspingnoise=0.01 with env: target=env.ReadKinBodyXMLFile('data/box_frootloops.kinbody.xml') env.AddKinBody(target) for manipname in ['leftarm','rightarm']: robot.SetActiveManipulator(manipname) gmodel = grasping.GraspingModel(robot,target) if not gmodel.load(): with gmodel.target: gmodel.target.Enable(False) final,traj = gmodel.basemanip.ReleaseFingers(execute=False,outputfinal=True) gmodel.generate(preshapes = array([final]),rolls=arange(0,2*pi,pi/2),graspingnoise=0.01,standoffs=[0,0.02,0.05],approachrays=gmodel.computeBoxApproachRays(0.01,normalanglerange=1,directiondelta=0.1)) # create symbolic links def test_calibviews(): import calibrationviews env=Environment() env.SetViewer('qtcoin') env.Load('scenes/pa10lab.env.xml')#data/pa10calib_envcamera.env.xml') robot=env.GetRobots()[0] self = calibrationviews.CalibrationViews(robot,sensorrobot=env.GetRobot('ceilingcamera')) dists=arange(0.05,2.0,0.15) orientationdensity=1 self.computeAndMoveToObservations() for i,relativepose in enumerate(visibilitytransforms): pose = array(posebase) pose = poseMult(pose,relativepose) q = self.vmodel.manip.FindIKSolution(dot(matrixFromPose(pose),self.Tpatternrobot),True) if q is not None: print i #self.robot.SetJointValues(q,self.vmodel.manip.GetArmJoints()) self.vmodel.visualprob.ComputeVisibleConfiguration(pose=pose) raw_input('asdf') def test_freejoints(): env=Environment() env.SetViewer('qtcoin') env.Load('data/lab1.env.xml') robot=env.GetRobots()[0] robot.GetController().Reset(0) robot.SetJointValues(array([ -3.64122450e-01, 1.27151251e+00, -7.88666554e-09, 1.29461884e+00, -2.69412994e-05, 4.65967804e-01, 9.38504954e-08, 2.44345713e+00, 2.44345832e+00, 2.44345665e+00, 0.00000000e+00])) task=interfaces.TaskManipulation(robot) basemanip=interfaces.BaseManipulation(robot) m=robot.GetActiveManipulator() robot.SetActiveDOFs(m.GetArmIndices()) basemanip.MoveUnsyncJoints(jointvalues=[0,0,0,0],jointinds=m.GetGripperIndices()) task.ReleaseFingers() def test_pr2movehandstraight(): env=Environment() env.Load('robots/pr2-beta-static.robot.xml') robot=env.GetRobots()[0] RaveSetDebugLevel(DebugLevel.Debug) basemanip = interfaces.BaseManipulation(robot) lmodel = databases.linkstatistics.LinkStatisticsModel(robot) if not lmodel.load(): lmodel.autogenerate() lmodel.setRobotWeights() lmodel.setRobotResolutions() with env: robot.GetController().Reset(0) robot.SetDOFValues(array([ 3.92742505e+00, -1.11998514e+02, -1.12338294e+02, -2.58996561e+01, -4.50039340e+02, -4.94179434e+02, -1.02276493e+01, -7.15039024e+02, -7.36311760e+02, 1.02395814e+01, 2.59771698e+02, 2.57443795e+02, 2.30174678e-01, 1.46851569e-02, -4.67573707e-01, 5.14696340e-03, 8.37552006e-01, 1.02808376e+00, -2.17092539e+00, 7.99473354e+00, -1.90625735e+00, 3.75677048e-02, 7.16413010e-03, 9.25338303e-04, 1.30856421e-02, -1.44843374e-01, 1.06201002e+00, -1.84726393e+00, -1.53293256e+00, 1.22156997e+00, 4.56456176e-03, -5.94439315e+00, 7.32226686e-03, 9.54206204e-04])) Tgoal = array([[ 1.77635684e-15, 0.00000000e+00, 1.00000000e+00, 0.6], [ 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, 0], [ -1.00000000e+00, 0.00000000e+00, 1.77635684e-15, 1.2], [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]) robot.SetActiveManipulator('rightarm_torso') manip = robot.GetManipulator('rightarm_torso') sol = manip.FindIKSolution(Tgoal,IkFilterOptions.CheckEnvCollisions) for iter in range(10): basemanip.MoveToHandPosition(matrices=[Tgoal],execute=False) robot.SetDOFValues(sol,manip.GetArmIndices())
29,337
0
671
77e4d9b317e4a31644728d015d912e3836a26295
1,009
py
Python
python/package/model_2.py
pchtsp/ROADEF2018
442dfe919a41fa993155226b601625917e632577
[ "MIT" ]
null
null
null
python/package/model_2.py
pchtsp/ROADEF2018
442dfe919a41fa993155226b601625917e632577
[ "MIT" ]
null
null
null
python/package/model_2.py
pchtsp/ROADEF2018
442dfe919a41fa993155226b601625917e632577
[ "MIT" ]
null
null
null
import package.tuplist as tl import package.superdict as sd import pulp as pl import package.config as conf import package.params as pm import numpy as np import pprint as pp
32.548387
82
0.65114
import package.tuplist as tl import package.superdict as sd import pulp as pl import package.config as conf import package.params as pm import numpy as np import pprint as pp def solve_model(self, options): plates = self.trees bins = range(len(self.trees)) plates_bins = [(p, b) for p in plates for b in bins] model = pl.LpProblem("PHASE_2", pl.LpMinimize) print('Creating variables') # variables: # each plate has a position in the bin and a bin assignment. plate_bin = pl.LpVariable.dicts(name='plate_bin', indexs=plates_bins, lowBound=0, upBound=1, cat=pl.LpInteger) plate_pos = pl.LpVariable.dicts(name='plate_pos', indexs=plates, lowBound=0, upBound=3200, cat=pl.LpContinuous) # items have horizontal and vertical movement item_pos = pl.LpVariable.dicts(name='plate_pos', indexs=plates, lowBound=0, upBound=3200, cat=pl.LpContinuous) return
811
0
23
452928815217ec89a44a47d3ef314ea32d20e384
611
py
Python
ephios/core/admin.py
garinm90/ephios
7d04d3287ae16ee332e31add1f25829b199f29a5
[ "MIT" ]
null
null
null
ephios/core/admin.py
garinm90/ephios
7d04d3287ae16ee332e31add1f25829b199f29a5
[ "MIT" ]
null
null
null
ephios/core/admin.py
garinm90/ephios
7d04d3287ae16ee332e31add1f25829b199f29a5
[ "MIT" ]
null
null
null
from django.contrib import admin from guardian.admin import GuardedModelAdmin from ephios.core.models import ( Consequence, Event, EventType, LocalParticipation, Qualification, QualificationCategory, QualificationGrant, Shift, WorkingHours, ) admin.site.register(Qualification) admin.site.register(QualificationGrant) admin.site.register(QualificationCategory) admin.site.register(WorkingHours) admin.site.register(Consequence) admin.site.register(Shift) admin.site.register(Event, GuardedModelAdmin) admin.site.register(EventType) admin.site.register(LocalParticipation)
23.5
45
0.798691
from django.contrib import admin from guardian.admin import GuardedModelAdmin from ephios.core.models import ( Consequence, Event, EventType, LocalParticipation, Qualification, QualificationCategory, QualificationGrant, Shift, WorkingHours, ) admin.site.register(Qualification) admin.site.register(QualificationGrant) admin.site.register(QualificationCategory) admin.site.register(WorkingHours) admin.site.register(Consequence) admin.site.register(Shift) admin.site.register(Event, GuardedModelAdmin) admin.site.register(EventType) admin.site.register(LocalParticipation)
0
0
0
ed8ed35373a497ad4d9a9c5d8b7259a588436899
20,933
py
Python
front-end/testsuite-python-lib/Python-2.3/Lib/_strptime.py
MalloyPower/parsing-python
b2bca5eed07ea2af7a2001cd4f63becdfb0570be
[ "MIT" ]
1
2020-11-26T18:53:46.000Z
2020-11-26T18:53:46.000Z
front-end/testsuite-python-lib/Python-2.3/Lib/_strptime.py
MalloyPower/parsing-python
b2bca5eed07ea2af7a2001cd4f63becdfb0570be
[ "MIT" ]
null
null
null
front-end/testsuite-python-lib/Python-2.3/Lib/_strptime.py
MalloyPower/parsing-python
b2bca5eed07ea2af7a2001cd4f63becdfb0570be
[ "MIT" ]
1
2019-04-11T11:27:01.000Z
2019-04-11T11:27:01.000Z
"""Strptime-related classes and functions. CLASSES: LocaleTime -- Discovers and/or stores locale-specific time information TimeRE -- Creates regexes for pattern matching a string of text containing time information as is returned by time.strftime() FUNCTIONS: _getlang -- Figure out what language is being used for the locale strptime -- Calculates the time struct represented by the passed-in string Requires Python 2.2.1 or higher (mainly because of the use of property()). Can be used in Python 2.2 if the following line is added: True = 1; False = 0 """ import time import locale import calendar from re import compile as re_compile from re import IGNORECASE from datetime import date as datetime_date __author__ = "Brett Cannon" __email__ = "brett@python.org" __all__ = ['strptime'] class LocaleTime(object): """Stores and handles locale-specific information related to time. This is not thread-safe! Attributes are lazily calculated and no precaution is taken to check to see if the locale information has changed since the creation of the instance in use. ATTRIBUTES (all read-only after instance creation! Instance variables that store the values have mangled names): f_weekday -- full weekday names (7-item list) a_weekday -- abbreviated weekday names (7-item list) f_month -- full weekday names (14-item list; dummy value in [0], which is added by code) a_month -- abbreviated weekday names (13-item list, dummy value in [0], which is added by code) am_pm -- AM/PM representation (2-item list) LC_date_time -- format string for date/time representation (string) LC_date -- format string for date representation (string) LC_time -- format string for time representation (string) timezone -- daylight- and non-daylight-savings timezone representation (3-item list; code tacks on blank item at end for possible lack of timezone such as UTC) lang -- Language used by instance (string) """ def __init__(self, f_weekday=None, a_weekday=None, f_month=None, a_month=None, am_pm=None, LC_date_time=None, LC_time=None, LC_date=None, timezone=None, lang=None): """Optionally set attributes with passed-in values.""" if f_weekday is None: self.__f_weekday = None elif len(f_weekday) == 7: self.__f_weekday = list(f_weekday) else: raise TypeError("full weekday names must be a 7-item sequence") if a_weekday is None: self.__a_weekday = None elif len(a_weekday) == 7: self.__a_weekday = list(a_weekday) else: raise TypeError( "abbreviated weekday names must be a 7-item sequence") if f_month is None: self.__f_month = None elif len(f_month) == 12: self.__f_month = self.__pad(f_month, True) else: raise TypeError("full month names must be a 12-item sequence") if a_month is None: self.__a_month = None elif len(a_month) == 12: self.__a_month = self.__pad(a_month, True) else: raise TypeError( "abbreviated month names must be a 12-item sequence") if am_pm is None: self.__am_pm = None elif len(am_pm) == 2: self.__am_pm = am_pm else: raise TypeError("AM/PM representation must be a 2-item sequence") self.__LC_date_time = LC_date_time self.__LC_time = LC_time self.__LC_date = LC_date self.__timezone = timezone if timezone: if len(timezone) != 2: raise TypeError("timezone names must contain 2 items") else: self.__timezone = self.__pad(timezone, False) if lang: self.__lang = lang else: self.__lang = _getlang() f_weekday = property(__get_f_weekday, __set_nothing, doc="Full weekday names") a_weekday = property(__get_a_weekday, __set_nothing, doc="Abbreviated weekday names") f_month = property(__get_f_month, __set_nothing, doc="Full month names (dummy value at index 0)") a_month = property(__get_a_month, __set_nothing, doc="Abbreviated month names (dummy value at index 0)") am_pm = property(__get_am_pm, __set_nothing, doc="AM/PM representation") timezone = property(__get_timezone, __set_nothing, doc="Timezone representation (dummy value at index 2)") LC_date_time = property( __get_LC_date_time, __set_nothing, doc= "Format string for locale's date/time representation ('%c' format)") LC_date = property(__get_LC_date, __set_nothing, doc="Format string for locale's date representation ('%x' format)") LC_time = property(__get_LC_time, __set_nothing, doc="Format string for locale's time representation ('%X' format)") lang = property(lambda self: self.__lang, __set_nothing, doc="Language used for instance") class TimeRE(dict): """Handle conversion from format directives to regexes.""" def __init__(self, locale_time=None): """Init inst with non-locale regexes and store LocaleTime object.""" #XXX: Does 'Y' need to worry about having less or more than 4 digits? base = super(TimeRE, self) base.__init__({ # The " \d" option is to make %c from ANSI C work 'd': r"(?P<d>3[0-1]|[1-2]\d|0[1-9]|[1-9]| [1-9])", 'H': r"(?P<H>2[0-3]|[0-1]\d|\d)", 'I': r"(?P<I>1[0-2]|0[1-9]|[1-9])", 'j': r"(?P<j>36[0-6]|3[0-5]\d|[1-2]\d\d|0[1-9]\d|00[1-9]|[1-9]\d|0[1-9]|[1-9])", 'm': r"(?P<m>1[0-2]|0[1-9]|[1-9])", 'M': r"(?P<M>[0-5]\d|\d)", 'S': r"(?P<S>6[0-1]|[0-5]\d|\d)", 'U': r"(?P<U>5[0-3]|[0-4]\d|\d)", 'w': r"(?P<w>[0-6])", # W is set below by using 'U' 'y': r"(?P<y>\d\d)", 'Y': r"(?P<Y>\d\d\d\d)"}) base.__setitem__('W', base.__getitem__('U')) if locale_time: self.locale_time = locale_time else: self.locale_time = LocaleTime() def __getitem__(self, fetch): """Try to fetch regex; if it does not exist, construct it.""" try: return super(TimeRE, self).__getitem__(fetch) except KeyError: constructors = { 'A': lambda: self.__seqToRE(self.locale_time.f_weekday, fetch), 'a': lambda: self.__seqToRE(self.locale_time.a_weekday, fetch), 'B': lambda: self.__seqToRE(self.locale_time.f_month[1:], fetch), 'b': lambda: self.__seqToRE(self.locale_time.a_month[1:], fetch), 'c': lambda: self.pattern(self.locale_time.LC_date_time), 'p': lambda: self.__seqToRE(self.locale_time.am_pm, fetch), 'x': lambda: self.pattern(self.locale_time.LC_date), 'X': lambda: self.pattern(self.locale_time.LC_time), 'Z': lambda: self.__seqToRE(self.locale_time.timezone, fetch), '%': lambda: '%', } if fetch in constructors: self[fetch] = constructors[fetch]() return self[fetch] else: raise def __seqToRE(self, to_convert, directive): """Convert a list to a regex string for matching a directive.""" def sorter(a, b): """Sort based on length. Done in case for some strange reason that names in the locale only differ by a suffix and thus want the name with the suffix to match first. """ try: a_length = len(a) except TypeError: a_length = 0 try: b_length = len(b) except TypeError: b_length = 0 return cmp(b_length, a_length) to_convert = to_convert[:] # Don't want to change value in-place. for value in to_convert: if value != '': break else: return '' to_convert.sort(sorter) regex = '|'.join(to_convert) regex = '(?P<%s>%s' % (directive, regex) return '%s)' % regex def pattern(self, format): """Return re pattern for the format string. Need to make sure that any characters that might be interpreted as regex syntax is escaped. """ processed_format = '' # The sub() call escapes all characters that might be misconstrued # as regex syntax. regex_chars = re_compile(r"([\\.^$*+?{}\[\]|])") format = regex_chars.sub(r"\\\1", format) whitespace_replacement = re_compile('\s+') format = whitespace_replacement.sub('\s*', format) while format.find('%') != -1: directive_index = format.index('%')+1 processed_format = "%s%s%s" % (processed_format, format[:directive_index-1], self[format[directive_index]]) format = format[directive_index+1:] return "%s%s" % (processed_format, format) def compile(self, format): """Return a compiled re object for the format string.""" return re_compile(self.pattern(format), IGNORECASE) def strptime(data_string, format="%a %b %d %H:%M:%S %Y"): """Return a time struct based on the input data and the format string.""" time_re = TimeRE() locale_time = time_re.locale_time format_regex = time_re.compile(format) found = format_regex.match(data_string) if not found: raise ValueError("time data did not match format: data=%s fmt=%s" % (data_string, format)) if len(data_string) != found.end(): raise ValueError("unconverted data remains: %s" % data_string[found.end():]) year = 1900 month = day = 1 hour = minute = second = 0 tz = -1 # weekday and julian defaulted to -1 so as to signal need to calculate values weekday = julian = -1 found_dict = found.groupdict() for group_key in found_dict.iterkeys(): if group_key == 'y': year = int(found_dict['y']) # Open Group specification for strptime() states that a %y #value in the range of [00, 68] is in the century 2000, while #[69,99] is in the century 1900 if year <= 68: year += 2000 else: year += 1900 elif group_key == 'Y': year = int(found_dict['Y']) elif group_key == 'm': month = int(found_dict['m']) elif group_key == 'B': month = _insensitiveindex(locale_time.f_month, found_dict['B']) elif group_key == 'b': month = _insensitiveindex(locale_time.a_month, found_dict['b']) elif group_key == 'd': day = int(found_dict['d']) elif group_key == 'H': hour = int(found_dict['H']) elif group_key == 'I': hour = int(found_dict['I']) ampm = found_dict.get('p', '').lower() # If there was no AM/PM indicator, we'll treat this like AM if ampm in ('', locale_time.am_pm[0].lower()): # We're in AM so the hour is correct unless we're # looking at 12 midnight. # 12 midnight == 12 AM == hour 0 if hour == 12: hour = 0 elif ampm == locale_time.am_pm[1].lower(): # We're in PM so we need to add 12 to the hour unless # we're looking at 12 noon. # 12 noon == 12 PM == hour 12 if hour != 12: hour += 12 elif group_key == 'M': minute = int(found_dict['M']) elif group_key == 'S': second = int(found_dict['S']) elif group_key == 'A': weekday = _insensitiveindex(locale_time.f_weekday, found_dict['A']) elif group_key == 'a': weekday = _insensitiveindex(locale_time.a_weekday, found_dict['a']) elif group_key == 'w': weekday = int(found_dict['w']) if weekday == 0: weekday = 6 else: weekday -= 1 elif group_key == 'j': julian = int(found_dict['j']) elif group_key == 'Z': # Since -1 is default value only need to worry about setting tz if # it can be something other than -1. found_zone = found_dict['Z'].lower() if locale_time.timezone[0] == locale_time.timezone[1] and \ time.daylight: pass #Deals with bad locale setup where timezone info is # the same; first found on FreeBSD 4.4. elif found_zone in ("utc", "gmt"): tz = 0 elif locale_time.timezone[2].lower() == found_zone: tz = 0 elif time.daylight and \ locale_time.timezone[3].lower() == found_zone: tz = 1 # Cannot pre-calculate datetime_date() since can change in Julian #calculation and thus could have different value for the day of the week #calculation if julian == -1: # Need to add 1 to result since first day of the year is 1, not 0. julian = datetime_date(year, month, day).toordinal() - \ datetime_date(year, 1, 1).toordinal() + 1 else: # Assume that if they bothered to include Julian day it will #be accurate datetime_result = datetime_date.fromordinal((julian - 1) + datetime_date(year, 1, 1).toordinal()) year = datetime_result.year month = datetime_result.month day = datetime_result.day if weekday == -1: weekday = datetime_date(year, month, day).weekday() return time.struct_time((year, month, day, hour, minute, second, weekday, julian, tz))
40.024857
105
0.558878
"""Strptime-related classes and functions. CLASSES: LocaleTime -- Discovers and/or stores locale-specific time information TimeRE -- Creates regexes for pattern matching a string of text containing time information as is returned by time.strftime() FUNCTIONS: _getlang -- Figure out what language is being used for the locale strptime -- Calculates the time struct represented by the passed-in string Requires Python 2.2.1 or higher (mainly because of the use of property()). Can be used in Python 2.2 if the following line is added: True = 1; False = 0 """ import time import locale import calendar from re import compile as re_compile from re import IGNORECASE from datetime import date as datetime_date __author__ = "Brett Cannon" __email__ = "brett@python.org" __all__ = ['strptime'] def _getlang(): # Figure out what the current language is set to. return locale.getlocale(locale.LC_TIME) class LocaleTime(object): """Stores and handles locale-specific information related to time. This is not thread-safe! Attributes are lazily calculated and no precaution is taken to check to see if the locale information has changed since the creation of the instance in use. ATTRIBUTES (all read-only after instance creation! Instance variables that store the values have mangled names): f_weekday -- full weekday names (7-item list) a_weekday -- abbreviated weekday names (7-item list) f_month -- full weekday names (14-item list; dummy value in [0], which is added by code) a_month -- abbreviated weekday names (13-item list, dummy value in [0], which is added by code) am_pm -- AM/PM representation (2-item list) LC_date_time -- format string for date/time representation (string) LC_date -- format string for date representation (string) LC_time -- format string for time representation (string) timezone -- daylight- and non-daylight-savings timezone representation (3-item list; code tacks on blank item at end for possible lack of timezone such as UTC) lang -- Language used by instance (string) """ def __init__(self, f_weekday=None, a_weekday=None, f_month=None, a_month=None, am_pm=None, LC_date_time=None, LC_time=None, LC_date=None, timezone=None, lang=None): """Optionally set attributes with passed-in values.""" if f_weekday is None: self.__f_weekday = None elif len(f_weekday) == 7: self.__f_weekday = list(f_weekday) else: raise TypeError("full weekday names must be a 7-item sequence") if a_weekday is None: self.__a_weekday = None elif len(a_weekday) == 7: self.__a_weekday = list(a_weekday) else: raise TypeError( "abbreviated weekday names must be a 7-item sequence") if f_month is None: self.__f_month = None elif len(f_month) == 12: self.__f_month = self.__pad(f_month, True) else: raise TypeError("full month names must be a 12-item sequence") if a_month is None: self.__a_month = None elif len(a_month) == 12: self.__a_month = self.__pad(a_month, True) else: raise TypeError( "abbreviated month names must be a 12-item sequence") if am_pm is None: self.__am_pm = None elif len(am_pm) == 2: self.__am_pm = am_pm else: raise TypeError("AM/PM representation must be a 2-item sequence") self.__LC_date_time = LC_date_time self.__LC_time = LC_time self.__LC_date = LC_date self.__timezone = timezone if timezone: if len(timezone) != 2: raise TypeError("timezone names must contain 2 items") else: self.__timezone = self.__pad(timezone, False) if lang: self.__lang = lang else: self.__lang = _getlang() def __pad(self, seq, front): # Add '' to seq to either front (is True), else the back. seq = list(seq) if front: seq.insert(0, '') else: seq.append('') return seq def __set_nothing(self, stuff): # Raise TypeError when trying to set an attribute. raise TypeError("attribute does not support assignment") def __get_f_weekday(self): # Fetch self.f_weekday. if not self.__f_weekday: self.__calc_weekday() return self.__f_weekday def __get_a_weekday(self): # Fetch self.a_weekday. if not self.__a_weekday: self.__calc_weekday() return self.__a_weekday f_weekday = property(__get_f_weekday, __set_nothing, doc="Full weekday names") a_weekday = property(__get_a_weekday, __set_nothing, doc="Abbreviated weekday names") def __get_f_month(self): # Fetch self.f_month. if not self.__f_month: self.__calc_month() return self.__f_month def __get_a_month(self): # Fetch self.a_month. if not self.__a_month: self.__calc_month() return self.__a_month f_month = property(__get_f_month, __set_nothing, doc="Full month names (dummy value at index 0)") a_month = property(__get_a_month, __set_nothing, doc="Abbreviated month names (dummy value at index 0)") def __get_am_pm(self): # Fetch self.am_pm. if not self.__am_pm: self.__calc_am_pm() return self.__am_pm am_pm = property(__get_am_pm, __set_nothing, doc="AM/PM representation") def __get_timezone(self): # Fetch self.timezone. if not self.__timezone: self.__calc_timezone() return self.__timezone timezone = property(__get_timezone, __set_nothing, doc="Timezone representation (dummy value at index 2)") def __get_LC_date_time(self): # Fetch self.LC_date_time. if not self.__LC_date_time: self.__calc_date_time() return self.__LC_date_time def __get_LC_date(self): # Fetch self.LC_date. if not self.__LC_date: self.__calc_date_time() return self.__LC_date def __get_LC_time(self): # Fetch self.LC_time. if not self.__LC_time: self.__calc_date_time() return self.__LC_time LC_date_time = property( __get_LC_date_time, __set_nothing, doc= "Format string for locale's date/time representation ('%c' format)") LC_date = property(__get_LC_date, __set_nothing, doc="Format string for locale's date representation ('%x' format)") LC_time = property(__get_LC_time, __set_nothing, doc="Format string for locale's time representation ('%X' format)") lang = property(lambda self: self.__lang, __set_nothing, doc="Language used for instance") def __calc_weekday(self): # Set self.__a_weekday and self.__f_weekday using the calendar # module. a_weekday = [calendar.day_abbr[i] for i in range(7)] f_weekday = [calendar.day_name[i] for i in range(7)] if not self.__a_weekday: self.__a_weekday = a_weekday if not self.__f_weekday: self.__f_weekday = f_weekday def __calc_month(self): # Set self.__f_month and self.__a_month using the calendar module. a_month = [calendar.month_abbr[i] for i in range(13)] f_month = [calendar.month_name[i] for i in range(13)] if not self.__a_month: self.__a_month = a_month if not self.__f_month: self.__f_month = f_month def __calc_am_pm(self): # Set self.__am_pm by using time.strftime(). # The magic date (1999,3,17,hour,44,55,2,76,0) is not really that # magical; just happened to have used it everywhere else where a # static date was needed. am_pm = [] for hour in (01,22): time_tuple = time.struct_time((1999,3,17,hour,44,55,2,76,0)) am_pm.append(time.strftime("%p", time_tuple)) self.__am_pm = am_pm def __calc_date_time(self): # Set self.__date_time, self.__date, & self.__time by using # time.strftime(). # Use (1999,3,17,22,44,55,2,76,0) for magic date because the amount of # overloaded numbers is minimized. The order in which searches for # values within the format string is very important; it eliminates # possible ambiguity for what something represents. time_tuple = time.struct_time((1999,3,17,22,44,55,2,76,0)) date_time = [None, None, None] date_time[0] = time.strftime("%c", time_tuple) date_time[1] = time.strftime("%x", time_tuple) date_time[2] = time.strftime("%X", time_tuple) for offset,directive in ((0,'%c'), (1,'%x'), (2,'%X')): current_format = date_time[offset] for old, new in ( ('%', '%%'), (self.f_weekday[2], '%A'), (self.f_month[3], '%B'), (self.a_weekday[2], '%a'), (self.a_month[3], '%b'), (self.am_pm[1], '%p'), (self.timezone[0], '%Z'), (self.timezone[1], '%Z'), ('1999', '%Y'), ('99', '%y'), ('22', '%H'), ('44', '%M'), ('55', '%S'), ('76', '%j'), ('17', '%d'), ('03', '%m'), ('3', '%m'), # '3' needed for when no leading zero. ('2', '%w'), ('10', '%I')): # Must deal with possible lack of locale info # manifesting itself as the empty string (e.g., Swedish's # lack of AM/PM info) or a platform returning a tuple of empty # strings (e.g., MacOS 9 having timezone as ('','')). if old: current_format = current_format.replace(old, new) time_tuple = time.struct_time((1999,1,3,1,1,1,6,3,0)) if time.strftime(directive, time_tuple).find('00'): U_W = '%U' else: U_W = '%W' date_time[offset] = current_format.replace('11', U_W) if not self.__LC_date_time: self.__LC_date_time = date_time[0] if not self.__LC_date: self.__LC_date = date_time[1] if not self.__LC_time: self.__LC_time = date_time[2] def __calc_timezone(self): # Set self.__timezone by using time.tzname. # # Empty string used for matching when timezone is not used/needed. try: time.tzset() except AttributeError: pass time_zones = ["UTC", "GMT"] if time.daylight: time_zones.extend(time.tzname) else: time_zones.append(time.tzname[0]) self.__timezone = self.__pad(time_zones, 0) class TimeRE(dict): """Handle conversion from format directives to regexes.""" def __init__(self, locale_time=None): """Init inst with non-locale regexes and store LocaleTime object.""" #XXX: Does 'Y' need to worry about having less or more than 4 digits? base = super(TimeRE, self) base.__init__({ # The " \d" option is to make %c from ANSI C work 'd': r"(?P<d>3[0-1]|[1-2]\d|0[1-9]|[1-9]| [1-9])", 'H': r"(?P<H>2[0-3]|[0-1]\d|\d)", 'I': r"(?P<I>1[0-2]|0[1-9]|[1-9])", 'j': r"(?P<j>36[0-6]|3[0-5]\d|[1-2]\d\d|0[1-9]\d|00[1-9]|[1-9]\d|0[1-9]|[1-9])", 'm': r"(?P<m>1[0-2]|0[1-9]|[1-9])", 'M': r"(?P<M>[0-5]\d|\d)", 'S': r"(?P<S>6[0-1]|[0-5]\d|\d)", 'U': r"(?P<U>5[0-3]|[0-4]\d|\d)", 'w': r"(?P<w>[0-6])", # W is set below by using 'U' 'y': r"(?P<y>\d\d)", 'Y': r"(?P<Y>\d\d\d\d)"}) base.__setitem__('W', base.__getitem__('U')) if locale_time: self.locale_time = locale_time else: self.locale_time = LocaleTime() def __getitem__(self, fetch): """Try to fetch regex; if it does not exist, construct it.""" try: return super(TimeRE, self).__getitem__(fetch) except KeyError: constructors = { 'A': lambda: self.__seqToRE(self.locale_time.f_weekday, fetch), 'a': lambda: self.__seqToRE(self.locale_time.a_weekday, fetch), 'B': lambda: self.__seqToRE(self.locale_time.f_month[1:], fetch), 'b': lambda: self.__seqToRE(self.locale_time.a_month[1:], fetch), 'c': lambda: self.pattern(self.locale_time.LC_date_time), 'p': lambda: self.__seqToRE(self.locale_time.am_pm, fetch), 'x': lambda: self.pattern(self.locale_time.LC_date), 'X': lambda: self.pattern(self.locale_time.LC_time), 'Z': lambda: self.__seqToRE(self.locale_time.timezone, fetch), '%': lambda: '%', } if fetch in constructors: self[fetch] = constructors[fetch]() return self[fetch] else: raise def __seqToRE(self, to_convert, directive): """Convert a list to a regex string for matching a directive.""" def sorter(a, b): """Sort based on length. Done in case for some strange reason that names in the locale only differ by a suffix and thus want the name with the suffix to match first. """ try: a_length = len(a) except TypeError: a_length = 0 try: b_length = len(b) except TypeError: b_length = 0 return cmp(b_length, a_length) to_convert = to_convert[:] # Don't want to change value in-place. for value in to_convert: if value != '': break else: return '' to_convert.sort(sorter) regex = '|'.join(to_convert) regex = '(?P<%s>%s' % (directive, regex) return '%s)' % regex def pattern(self, format): """Return re pattern for the format string. Need to make sure that any characters that might be interpreted as regex syntax is escaped. """ processed_format = '' # The sub() call escapes all characters that might be misconstrued # as regex syntax. regex_chars = re_compile(r"([\\.^$*+?{}\[\]|])") format = regex_chars.sub(r"\\\1", format) whitespace_replacement = re_compile('\s+') format = whitespace_replacement.sub('\s*', format) while format.find('%') != -1: directive_index = format.index('%')+1 processed_format = "%s%s%s" % (processed_format, format[:directive_index-1], self[format[directive_index]]) format = format[directive_index+1:] return "%s%s" % (processed_format, format) def compile(self, format): """Return a compiled re object for the format string.""" return re_compile(self.pattern(format), IGNORECASE) def strptime(data_string, format="%a %b %d %H:%M:%S %Y"): """Return a time struct based on the input data and the format string.""" time_re = TimeRE() locale_time = time_re.locale_time format_regex = time_re.compile(format) found = format_regex.match(data_string) if not found: raise ValueError("time data did not match format: data=%s fmt=%s" % (data_string, format)) if len(data_string) != found.end(): raise ValueError("unconverted data remains: %s" % data_string[found.end():]) year = 1900 month = day = 1 hour = minute = second = 0 tz = -1 # weekday and julian defaulted to -1 so as to signal need to calculate values weekday = julian = -1 found_dict = found.groupdict() for group_key in found_dict.iterkeys(): if group_key == 'y': year = int(found_dict['y']) # Open Group specification for strptime() states that a %y #value in the range of [00, 68] is in the century 2000, while #[69,99] is in the century 1900 if year <= 68: year += 2000 else: year += 1900 elif group_key == 'Y': year = int(found_dict['Y']) elif group_key == 'm': month = int(found_dict['m']) elif group_key == 'B': month = _insensitiveindex(locale_time.f_month, found_dict['B']) elif group_key == 'b': month = _insensitiveindex(locale_time.a_month, found_dict['b']) elif group_key == 'd': day = int(found_dict['d']) elif group_key == 'H': hour = int(found_dict['H']) elif group_key == 'I': hour = int(found_dict['I']) ampm = found_dict.get('p', '').lower() # If there was no AM/PM indicator, we'll treat this like AM if ampm in ('', locale_time.am_pm[0].lower()): # We're in AM so the hour is correct unless we're # looking at 12 midnight. # 12 midnight == 12 AM == hour 0 if hour == 12: hour = 0 elif ampm == locale_time.am_pm[1].lower(): # We're in PM so we need to add 12 to the hour unless # we're looking at 12 noon. # 12 noon == 12 PM == hour 12 if hour != 12: hour += 12 elif group_key == 'M': minute = int(found_dict['M']) elif group_key == 'S': second = int(found_dict['S']) elif group_key == 'A': weekday = _insensitiveindex(locale_time.f_weekday, found_dict['A']) elif group_key == 'a': weekday = _insensitiveindex(locale_time.a_weekday, found_dict['a']) elif group_key == 'w': weekday = int(found_dict['w']) if weekday == 0: weekday = 6 else: weekday -= 1 elif group_key == 'j': julian = int(found_dict['j']) elif group_key == 'Z': # Since -1 is default value only need to worry about setting tz if # it can be something other than -1. found_zone = found_dict['Z'].lower() if locale_time.timezone[0] == locale_time.timezone[1] and \ time.daylight: pass #Deals with bad locale setup where timezone info is # the same; first found on FreeBSD 4.4. elif found_zone in ("utc", "gmt"): tz = 0 elif locale_time.timezone[2].lower() == found_zone: tz = 0 elif time.daylight and \ locale_time.timezone[3].lower() == found_zone: tz = 1 # Cannot pre-calculate datetime_date() since can change in Julian #calculation and thus could have different value for the day of the week #calculation if julian == -1: # Need to add 1 to result since first day of the year is 1, not 0. julian = datetime_date(year, month, day).toordinal() - \ datetime_date(year, 1, 1).toordinal() + 1 else: # Assume that if they bothered to include Julian day it will #be accurate datetime_result = datetime_date.fromordinal((julian - 1) + datetime_date(year, 1, 1).toordinal()) year = datetime_result.year month = datetime_result.month day = datetime_result.day if weekday == -1: weekday = datetime_date(year, month, day).weekday() return time.struct_time((year, month, day, hour, minute, second, weekday, julian, tz)) def _insensitiveindex(lst, findme): # Perform a case-insensitive index search. #XXX <bc>: If LocaleTime is not exposed, then consider removing this and # just lowercase when LocaleTime sets its vars and lowercasing # search values. findme = findme.lower() for key,item in enumerate(lst): if item.lower() == findme: return key else: raise ValueError("value not in list")
5,875
0
478
c7f02da4a17a76fc3ef4f8355db88715fe9fe33d
2,231
py
Python
examples/widgets/lists/list_kv.py
xinmingzhang/kivy
86b6e19d8a02788fe8850b690bcecdff848f3c4e
[ "MIT" ]
9
2016-09-03T07:20:01.000Z
2020-05-21T14:44:48.000Z
examples/widgets/lists/list_kv.py
xinmingzhang/kivy
86b6e19d8a02788fe8850b690bcecdff848f3c4e
[ "MIT" ]
1
2017-05-30T20:45:15.000Z
2017-05-30T20:45:15.000Z
examples/widgets/lists/list_kv.py
xinmingzhang/kivy
86b6e19d8a02788fe8850b690bcecdff848f3c4e
[ "MIT" ]
4
2016-09-10T15:27:54.000Z
2020-03-27T22:05:31.000Z
from kivy.adapters.dictadapter import DictAdapter from kivy.uix.selectableview import SelectableView from kivy.uix.listview import ListView, ListItemButton from kivy.uix.gridlayout import GridLayout from kivy.lang import Builder from kivy.factory import Factory from fixtures import integers_dict # [TODO] Will SelectableView be in the kivy/factory_registers.py, # as a result of setup.py? ListItemButton? others? Factory.register('SelectableView', cls=SelectableView) Factory.register('ListItemButton', cls=ListItemButton) # [TODO] SelectableView is subclassed here, yet, it is necessary to add the # index property in the template. Same TODO in list_cascade_images.py. Builder.load_string(''' [CustomListItem@SelectableView+BoxLayout]: size_hint_y: ctx.size_hint_y height: ctx.height ListItemButton: text: ctx.text is_selected: ctx.is_selected ''') class MainView(GridLayout): '''Implementation of a list view with a kv template used for the list item class. ''' if __name__ == '__main__': from kivy.base import runTouchApp runTouchApp(MainView(width=800))
36.57377
78
0.650829
from kivy.adapters.dictadapter import DictAdapter from kivy.uix.selectableview import SelectableView from kivy.uix.listview import ListView, ListItemButton from kivy.uix.gridlayout import GridLayout from kivy.lang import Builder from kivy.factory import Factory from fixtures import integers_dict # [TODO] Will SelectableView be in the kivy/factory_registers.py, # as a result of setup.py? ListItemButton? others? Factory.register('SelectableView', cls=SelectableView) Factory.register('ListItemButton', cls=ListItemButton) # [TODO] SelectableView is subclassed here, yet, it is necessary to add the # index property in the template. Same TODO in list_cascade_images.py. Builder.load_string(''' [CustomListItem@SelectableView+BoxLayout]: size_hint_y: ctx.size_hint_y height: ctx.height ListItemButton: text: ctx.text is_selected: ctx.is_selected ''') class MainView(GridLayout): '''Implementation of a list view with a kv template used for the list item class. ''' def __init__(self, **kwargs): kwargs['cols'] = 1 super(MainView, self).__init__(**kwargs) list_item_args_converter = \ lambda row_index, rec: {'text': rec['text'], 'is_selected': rec['is_selected'], 'size_hint_y': None, 'height': 25} # Here we create a dict adapter with 1..100 integer strings as # sorted_keys, and integers_dict from fixtures as data, passing our # CompositeListItem kv template for the list item view. Then we # create a list view using this adapter. args_converter above converts # dict attributes to ctx attributes. dict_adapter = DictAdapter(sorted_keys=[str(i) for i in range(100)], data=integers_dict, args_converter=list_item_args_converter, template='CustomListItem') list_view = ListView(adapter=dict_adapter) self.add_widget(list_view) if __name__ == '__main__': from kivy.base import runTouchApp runTouchApp(MainView(width=800))
1,075
0
27
3d08429226f10159b4af20dd37f0a9c228fb7474
10,140
py
Python
utils/evaluate.py
kyuyeonpooh/objects-that-sound
962031567f7e5657637d5518dff4f9a44af1c7eb
[ "BSD-3-Clause" ]
18
2020-05-11T06:38:14.000Z
2022-03-08T02:01:08.000Z
utils/evaluate.py
kyuyeonpooh/objects-that-sound
962031567f7e5657637d5518dff4f9a44af1c7eb
[ "BSD-3-Clause" ]
6
2020-11-13T17:46:51.000Z
2021-04-30T21:13:55.000Z
utils/evaluate.py
kyuyeonpooh/objects-that-sound
962031567f7e5657637d5518dff4f9a44af1c7eb
[ "BSD-3-Clause" ]
5
2020-05-27T07:36:45.000Z
2022-03-08T02:01:09.000Z
import math import os import sys import numpy as np from util import load_result from itertools import combinations from itertools import product from ontology import Ontology def get_max_tree_distance(ontology, tags, debug=False): """ Description: Return max tree distance which can be derived with given tag list. Parameters: tags: list of tags used in training. (type: list) [Example] ['Acoustic guitar', 'Electric Guitar', ..., 'Piano'] """ # create combination between tags comb = combinations(tags, 2) # initiate maximum distance between two tags max_dist = 0 # loop for every combination for item in comb: # calculate distance between two tags distance = ontology.get_min_distance(item[0], item[1]) if debug: print("'%s'-'%s': %d" % (item[0], item[1], distance)) # update max_dist if distance > max_dist max_dist = distance if distance > max_dist else max_dist return max_dist def get_min_tag_distance(ontology, tags_x, tags_y): """ Description: Return minimum available tree distance between two videos Parameters: tags_x: tags of one video tags_y: tags of the other video [Example] [Example] tags_x = ['Electric Guitar', 'Human Voice'] tags_y = ['Human Voice'] This function with the example above should return 0, because 'Human Voice' tag exists in both of tag lists. tags_x = ['Piano', 'Guitar', 'Bass Guitar'] tags_y = ['Accordion'] This function with the example above should return the distance between 'Accordion' and 'Piano', because its distance will be the smallest among the followings: 'Piano' - 'Accordion', 'Guitar' - 'Accordion', 'Bass Guitar' - 'Accordion' """ products = product(tags_x, tags_y) min_dist = sys.maxsize for x, y in products: distance = ontology.get_min_distance(x, y) min_dist = min_dist if min_dist < distance else distance return min_dist def dist_to_score(ontology, distances, tags=[], max_dist=-1, debug=False): """ Description: Convert distances of K retrieved items into scores Parameters: distances: tree distance between query and K retrieved items [Example] [0, 0, 1, 2, 1, 0, 5, 4, ..., 9] (type: ndarray, len: K) [Note] score = max_tree_distance - distance """ # get maximum tree distance max_tree_distance = 0 if max_dist >= 0: max_tree_distance = max_dist elif len(tags) >= 0: max_tree_distance = get_max_tree_distance(ontology, tags) scores = max_tree_distance - distances return scores def DCG(scores, k=30, alternate=False): """ Description: Return DCG(Discounted Cumulative Gain) with given score (relevance) list Parameters: scores: score list (type: ndarray, len: N) [Example] [8, 6, 6, 8, 4, 7, ..., 2] k: length of retrieved items to calculate nDCG """ # return zero if scores is None if scores is None or len(scores) < 1: return 0.0 # set the number of items in scores scores = scores[:k] n_scores = len(scores) # use alternative formula of DCG if alternate: log2i = np.log2(np.asarray(range(1, n_scores + 1)) + 1) return ((np.power(2, scores) - 1) / log2i).sum() # use traditional formula of DCG else: log2i = np.log2(np.asarray(range(1, n_scores + 1)) + 1) return (scores / log2i).sum() def IDCG(scores, k=30, alternate=False): """ Description: Return IDCG(Ideal Discounted Cumulative Gain) with given score (relevance) list Parameters: scores: score list (type: ndarray, len: N) [Example] [8, 6, 6, 8, 4, 7, ..., 2] k: length of retrieved items to calculate nDCG """ if scores is None or len(scores) < 1: return 0.0 # copy and sort scores in incresing order s = sorted(scores) s = s[::-1][:k] # convert s in decresing order return DCG(s, k, alternate) def NDCG(scores, k=30, alternate=False): """ Description: Return nDCG(normalized Discounted Cumulative Gain) with given score (relevance) list Parameters: scores: score list (type: ndarray, len: N) [Example] [8, 6, 6, 8, 4, 7, ..., 2] """ # return 0 if scores is empty if scores is None or len(scores) < 1: return 0.0 # calculate idcg idcg = IDCG(scores, k, alternate) if idcg == 0: return 0.0 return DCG(scores, k, alternate) / idcg def do_NDCG(ontology, k, queries, ret_items, tags): """ Description: Return Average nDCG for queries and ret_item Parameters: queries: list of N queries (type: list, dimension: 2D, shape: (N, ?)) [Example] [[tag1, tag2, ..., tagK], ..., [tagA, tagB, ..., tagG]] ret_items: list of N retrieved items (type: list, dimension: 3D, shape: (N, K, ?)) [Example] [[[tagA, tagB, ..., tagG], ..., [tagX, tagY, ..., tagZ]], ... , [ ... ]] """ N = len(queries) ndcgs = 0 # get max_tree_distance max_tree_distance = get_max_tree_distance(ontology, tags, debug=False) # for every query, calculate nDCG for i in range(N): distances = np.asarray( [get_min_tag_distance(ontology, queries[i], ret_items[i][j]) for j in range(len(ret_items[i]))] ) scores = dist_to_score(ontology, distances, max_dist=max_tree_distance) ndcgs += NDCG(scores, k) return ndcgs / N def AP(target, results): """ Description: Return AP(Average Precision) with target and results Parameters: target: list of K retrieved items (type: list, len: K) [Example] [tag1, tag2, ..., tagK] results: list of N retrieved items (type: list, shape: (N, ?)) [Example] [[tagA, tagB, ..., tagG], ..., [tagX, tagY, ..., tagZ]] """ # initiate variables for average precision n = 1 # the number of result hit = 0 # the number of hit ap = 0 # average precision = 1/hit * sum(precision) len_target = len(target) for res in results: (small_set, big_set) = (target, res) if len_target < len(res) else (res, target) for item in small_set: if item in big_set: # hit hit += 1 ap += hit / n break n += 1 return ap / hit def recallAtK(target, results): """ Description: Return 'recall at k' with target and results Parameters: target: list of K retrieved items (type: list, len: K) [Example] [tag1, tag2, ..., tagK] results: list of N retrieved items (type: list, shape: (N, ?)) [Example] [[tagA, tagB, ..., tagG], ..., [tagX, tagY, ..., tagZ]] """ # initiate variables for average precision recall = 0 K = len(results) len_target = len(target) for res in results: (small_set, big_set) = (target, res) if len_target < len(res) else (res, target) for item in small_set: if item in big_set: # hit recall += 1 break return recall / K if __name__ == "__main__": data_dir = "json" tags = [ "Acoustic guitar", "Bass guitar", "Strum", "Piano", "Independent music", "Wedding music", "Scary music", "Firecracker", "Drip", ] ontology = Ontology(data_dir) """ # Calculate maximum tree distance between tags print("Calculate maximum tree distance between tags") max_dist = get_max_tree_distance(ontology, tags, debug=False) print("Maximum tree distance: ", max_dist, end="\n\n") # Convert distances to scores with max_dist print("Convert distances to scores with max_dist") distances = np.array([0, 0, 1, 2, 1, 0, 5, 4, 8, 9]) print("Distances: ", distances) scores = dist_to_score(ontology, distances, max_dist=max_dist, debug=True) print("Scores: ", scores, end="\n\n") # Convert distances to scores with tags print("Convert distances to scores with tags") distances = np.array([0, 0, 1, 2, 1, 0, 5, 4, 8, 9]) print("Distances: ", distances) scores = dist_to_score(ontology, distances, tags=tags, debug=True) print("Scores: ", scores, end="\n\n") # Do DCG, IDCG, NDCG scores = [3, 2, 3, 0, 1, 2] print("### Do DCG ###: ", DCG(scores, alternate=False)) print("### Do IDCG ###: ", IDCG(scores)) print("### Do NDCG ###: ", NDCG(scores), end="\n\n") # Do AP and recall at K target = ["a", "b", "c"] results = [["a", "g"], ["d", "e", "f", "b"], ["g", "h", "c"], ["y", "k", "p"]] print("### AP ###: ", AP(target, results)) print("### Recall at K ###: ", recallAtK(target, results), end="\n\n") # Do get_min_tag_distance: example1 tags_x = ["Independent music", "Drip"] tags_y = ["Drip"] print("@@@ get_min_tag_distance1 @@@: ", get_min_tag_distance(ontology, tags_x, tags_y)) # Do get_min_tag_distance: example2 tags_x = ["Piano", "Guitar", "Bass guitar"] tags_y = ["Accordion"] print("@@@ get_min_tag_distance2 @@@: ", get_min_tag_distance(ontology, tags_x, tags_y), end="\n\n") """ # Do average nDCG with open("metadata/all_tags.cls") as fi: tags = map(lambda x: x[:-1], fi.readlines()) tags = dict((x, i) for i, x in enumerate(tags)) file_names = [ "./results/AVE_aug_ave_i2a.pickle", "./results/AVE_aug_ave_a2i.pickle", "./results/AVE_aug_ave_i2i.pickle", "./results/AVE_aug_ave_a2a.pickle", ] for f in file_names: queries, ret_items = load_result(f) ndcgs = do_NDCG(ontology, 5, queries, ret_items, tags) print("nDCG: %s" % (f), ndcgs, end="\n\n")
32.190476
107
0.581953
import math import os import sys import numpy as np from util import load_result from itertools import combinations from itertools import product from ontology import Ontology def get_max_tree_distance(ontology, tags, debug=False): """ Description: Return max tree distance which can be derived with given tag list. Parameters: tags: list of tags used in training. (type: list) [Example] ['Acoustic guitar', 'Electric Guitar', ..., 'Piano'] """ # create combination between tags comb = combinations(tags, 2) # initiate maximum distance between two tags max_dist = 0 # loop for every combination for item in comb: # calculate distance between two tags distance = ontology.get_min_distance(item[0], item[1]) if debug: print("'%s'-'%s': %d" % (item[0], item[1], distance)) # update max_dist if distance > max_dist max_dist = distance if distance > max_dist else max_dist return max_dist def get_min_tag_distance(ontology, tags_x, tags_y): """ Description: Return minimum available tree distance between two videos Parameters: tags_x: tags of one video tags_y: tags of the other video [Example] [Example] tags_x = ['Electric Guitar', 'Human Voice'] tags_y = ['Human Voice'] This function with the example above should return 0, because 'Human Voice' tag exists in both of tag lists. tags_x = ['Piano', 'Guitar', 'Bass Guitar'] tags_y = ['Accordion'] This function with the example above should return the distance between 'Accordion' and 'Piano', because its distance will be the smallest among the followings: 'Piano' - 'Accordion', 'Guitar' - 'Accordion', 'Bass Guitar' - 'Accordion' """ products = product(tags_x, tags_y) min_dist = sys.maxsize for x, y in products: distance = ontology.get_min_distance(x, y) min_dist = min_dist if min_dist < distance else distance return min_dist def dist_to_score(ontology, distances, tags=[], max_dist=-1, debug=False): """ Description: Convert distances of K retrieved items into scores Parameters: distances: tree distance between query and K retrieved items [Example] [0, 0, 1, 2, 1, 0, 5, 4, ..., 9] (type: ndarray, len: K) [Note] score = max_tree_distance - distance """ # get maximum tree distance max_tree_distance = 0 if max_dist >= 0: max_tree_distance = max_dist elif len(tags) >= 0: max_tree_distance = get_max_tree_distance(ontology, tags) scores = max_tree_distance - distances return scores def DCG(scores, k=30, alternate=False): """ Description: Return DCG(Discounted Cumulative Gain) with given score (relevance) list Parameters: scores: score list (type: ndarray, len: N) [Example] [8, 6, 6, 8, 4, 7, ..., 2] k: length of retrieved items to calculate nDCG """ # return zero if scores is None if scores is None or len(scores) < 1: return 0.0 # set the number of items in scores scores = scores[:k] n_scores = len(scores) # use alternative formula of DCG if alternate: log2i = np.log2(np.asarray(range(1, n_scores + 1)) + 1) return ((np.power(2, scores) - 1) / log2i).sum() # use traditional formula of DCG else: log2i = np.log2(np.asarray(range(1, n_scores + 1)) + 1) return (scores / log2i).sum() def IDCG(scores, k=30, alternate=False): """ Description: Return IDCG(Ideal Discounted Cumulative Gain) with given score (relevance) list Parameters: scores: score list (type: ndarray, len: N) [Example] [8, 6, 6, 8, 4, 7, ..., 2] k: length of retrieved items to calculate nDCG """ if scores is None or len(scores) < 1: return 0.0 # copy and sort scores in incresing order s = sorted(scores) s = s[::-1][:k] # convert s in decresing order return DCG(s, k, alternate) def NDCG(scores, k=30, alternate=False): """ Description: Return nDCG(normalized Discounted Cumulative Gain) with given score (relevance) list Parameters: scores: score list (type: ndarray, len: N) [Example] [8, 6, 6, 8, 4, 7, ..., 2] """ # return 0 if scores is empty if scores is None or len(scores) < 1: return 0.0 # calculate idcg idcg = IDCG(scores, k, alternate) if idcg == 0: return 0.0 return DCG(scores, k, alternate) / idcg def do_NDCG(ontology, k, queries, ret_items, tags): """ Description: Return Average nDCG for queries and ret_item Parameters: queries: list of N queries (type: list, dimension: 2D, shape: (N, ?)) [Example] [[tag1, tag2, ..., tagK], ..., [tagA, tagB, ..., tagG]] ret_items: list of N retrieved items (type: list, dimension: 3D, shape: (N, K, ?)) [Example] [[[tagA, tagB, ..., tagG], ..., [tagX, tagY, ..., tagZ]], ... , [ ... ]] """ N = len(queries) ndcgs = 0 # get max_tree_distance max_tree_distance = get_max_tree_distance(ontology, tags, debug=False) # for every query, calculate nDCG for i in range(N): distances = np.asarray( [get_min_tag_distance(ontology, queries[i], ret_items[i][j]) for j in range(len(ret_items[i]))] ) scores = dist_to_score(ontology, distances, max_dist=max_tree_distance) ndcgs += NDCG(scores, k) return ndcgs / N def AP(target, results): """ Description: Return AP(Average Precision) with target and results Parameters: target: list of K retrieved items (type: list, len: K) [Example] [tag1, tag2, ..., tagK] results: list of N retrieved items (type: list, shape: (N, ?)) [Example] [[tagA, tagB, ..., tagG], ..., [tagX, tagY, ..., tagZ]] """ # initiate variables for average precision n = 1 # the number of result hit = 0 # the number of hit ap = 0 # average precision = 1/hit * sum(precision) len_target = len(target) for res in results: (small_set, big_set) = (target, res) if len_target < len(res) else (res, target) for item in small_set: if item in big_set: # hit hit += 1 ap += hit / n break n += 1 return ap / hit def recallAtK(target, results): """ Description: Return 'recall at k' with target and results Parameters: target: list of K retrieved items (type: list, len: K) [Example] [tag1, tag2, ..., tagK] results: list of N retrieved items (type: list, shape: (N, ?)) [Example] [[tagA, tagB, ..., tagG], ..., [tagX, tagY, ..., tagZ]] """ # initiate variables for average precision recall = 0 K = len(results) len_target = len(target) for res in results: (small_set, big_set) = (target, res) if len_target < len(res) else (res, target) for item in small_set: if item in big_set: # hit recall += 1 break return recall / K if __name__ == "__main__": data_dir = "json" tags = [ "Acoustic guitar", "Bass guitar", "Strum", "Piano", "Independent music", "Wedding music", "Scary music", "Firecracker", "Drip", ] ontology = Ontology(data_dir) """ # Calculate maximum tree distance between tags print("Calculate maximum tree distance between tags") max_dist = get_max_tree_distance(ontology, tags, debug=False) print("Maximum tree distance: ", max_dist, end="\n\n") # Convert distances to scores with max_dist print("Convert distances to scores with max_dist") distances = np.array([0, 0, 1, 2, 1, 0, 5, 4, 8, 9]) print("Distances: ", distances) scores = dist_to_score(ontology, distances, max_dist=max_dist, debug=True) print("Scores: ", scores, end="\n\n") # Convert distances to scores with tags print("Convert distances to scores with tags") distances = np.array([0, 0, 1, 2, 1, 0, 5, 4, 8, 9]) print("Distances: ", distances) scores = dist_to_score(ontology, distances, tags=tags, debug=True) print("Scores: ", scores, end="\n\n") # Do DCG, IDCG, NDCG scores = [3, 2, 3, 0, 1, 2] print("### Do DCG ###: ", DCG(scores, alternate=False)) print("### Do IDCG ###: ", IDCG(scores)) print("### Do NDCG ###: ", NDCG(scores), end="\n\n") # Do AP and recall at K target = ["a", "b", "c"] results = [["a", "g"], ["d", "e", "f", "b"], ["g", "h", "c"], ["y", "k", "p"]] print("### AP ###: ", AP(target, results)) print("### Recall at K ###: ", recallAtK(target, results), end="\n\n") # Do get_min_tag_distance: example1 tags_x = ["Independent music", "Drip"] tags_y = ["Drip"] print("@@@ get_min_tag_distance1 @@@: ", get_min_tag_distance(ontology, tags_x, tags_y)) # Do get_min_tag_distance: example2 tags_x = ["Piano", "Guitar", "Bass guitar"] tags_y = ["Accordion"] print("@@@ get_min_tag_distance2 @@@: ", get_min_tag_distance(ontology, tags_x, tags_y), end="\n\n") """ # Do average nDCG with open("metadata/all_tags.cls") as fi: tags = map(lambda x: x[:-1], fi.readlines()) tags = dict((x, i) for i, x in enumerate(tags)) file_names = [ "./results/AVE_aug_ave_i2a.pickle", "./results/AVE_aug_ave_a2i.pickle", "./results/AVE_aug_ave_i2i.pickle", "./results/AVE_aug_ave_a2a.pickle", ] for f in file_names: queries, ret_items = load_result(f) ndcgs = do_NDCG(ontology, 5, queries, ret_items, tags) print("nDCG: %s" % (f), ndcgs, end="\n\n")
0
0
0
32c39be02178140946a124ae7744a66b50840fb3
1,711
py
Python
task06/kadai3.py
hameji/PythonDjango
35f3c41c03f17e23ed3a74bc6457e5d501a9650d
[ "MIT" ]
null
null
null
task06/kadai3.py
hameji/PythonDjango
35f3c41c03f17e23ed3a74bc6457e5d501a9650d
[ "MIT" ]
null
null
null
task06/kadai3.py
hameji/PythonDjango
35f3c41c03f17e23ed3a74bc6457e5d501a9650d
[ "MIT" ]
null
null
null
#coding:utf-8 import requests import pprint import csv main()
25.161765
78
0.566335
#coding:utf-8 import requests import pprint import csv def request_Url(url): payload = { 'applicationId': 1094782773139302380, 'genreId': 100283, # 洋菓子 'carrier': 0, # 0:PC, 1:mobile 'page':1, #何ページ目か } r = requests.get(url, params=payload) return r.json() def check_Data(json): print("_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/") print("_/_/_/_/_/_/_/_/_/構造確認_/_/_/_/_/_/_/_/_/") print("_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/") pprint.pprint(json, depth=2, compact=True) # total = int(resp['Items']) <- これ働かなかったなぜ? # Max = total/30 + 1 # print("【num of item】",total) # print("【num of page】",Max) print("_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/") data = json['Items'][0] pprint.pprint(data, depth=2, compact=True) print("_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/") def parse_Json_to_List(json): ranking_list = [] counter = 0 for i in json['Items']: counter = counter + 1 item = i['Item'] rank = item['rank'] name = item['itemName'] print('【rank】'+ str(rank)) print('【Name】' + str(name[:30]) + '...') rankData = [rank, name] ranking_list.append(rankData) if counter == 10: break return ranking_list def add_to_csv_file(path, list): with open(path, mode='a', encoding="utf-8_sig") as file: writer = csv.writer(file) writer.writerow(list) def main(): url = 'https://app.rakuten.co.jp/services/api/IchibaItem/Ranking/20170628' json = request_Url(url) # checkData(json) list = parse_Json_to_List(json) add_to_csv_file('kadai3data.csv', list) main()
1,593
0
115
974251c9784ccca2d7e09370ed045cd02bd561ef
3,686
py
Python
recognizer/pddl/pddl_planner.py
RukNdf/MA-Landmark
4038ebe7edc9e353e1987479f5f9edc528a4bd2a
[ "Unlicense" ]
null
null
null
recognizer/pddl/pddl_planner.py
RukNdf/MA-Landmark
4038ebe7edc9e353e1987479f5f9edc528a4bd2a
[ "Unlicense" ]
null
null
null
recognizer/pddl/pddl_planner.py
RukNdf/MA-Landmark
4038ebe7edc9e353e1987479f5f9edc528a4bd2a
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python # # pddl_planner.py # ma-goal-recognition # # Created by Felipe Meneguzzi on 2020-03-12. # Copyright 2020 Felipe Meneguzzi. All rights reserved. # from recognizer.pddl.pddl_parser import PDDL_Parser from recognizer.pddl.state import applicable, apply import time
35.786408
115
0.607976
#!/usr/bin/env python # # pddl_planner.py # ma-goal-recognition # # Created by Felipe Meneguzzi on 2020-03-12. # Copyright 2020 Felipe Meneguzzi. All rights reserved. # from recognizer.pddl.pddl_parser import PDDL_Parser from recognizer.pddl.state import applicable, apply import time class PDDL_Planner: def __init__(self, verbose=False): self.verbose = verbose def applicable(self, state, positive, negative): return applicable(state, positive, negative) def apply(self, state, positive, negative): return apply(state, positive, negative) def solvable(self, domain, initial_state, goal_state): """"Computes whether the problem posed by initial_state, goal_state is solvable by reachability analysis""" last_state = set([]) reachable_literals = set(initial_state) positive_goals = set(goal_state[0]) actions = domain positive_effects = set([]) negative_effects = set([]) for a in actions: positive_effects = positive_effects.union(set(a.add_effects)) negative_effects = negative_effects.union(set(a.del_effects)) # First check the obvious stuff for p in goal_state[0]: if p not in reachable_literals and p not in positive_effects: return False for p in goal_state[1]: if p in reachable_literals and p not in negative_effects: return False while last_state != reachable_literals: last_state = reachable_literals.copy() if positive_goals.issubset(reachable_literals): return True for a in actions: if a.applicable(reachable_literals): reachable_literals = reachable_literals.union(a.add_effects) return False #----------------------------------------------- # Solve #----------------------------------------------- def solve_file(self, domainfile, problemfile, verbose=False): # Parser start_time = time.time() parser = self.parse(domainfile,problemfile) # Test if first state is not the goal if applicable(parser.state, parser.positive_goals, parser.negative_goals): return [], 0 # Grounding process ground_actions = self.grounding(parser) plan = self.solve(ground_actions, parser.state, (parser.positive_goals, parser.negative_goals)) final_time = time.time() - start_time if verbose: print('Time: ' + str(final_time) + 's') if plan: print('plan:') for act in plan: print('(' + act.name + ''.join(' ' + p for p in act.parameters) + ')') else: print('No plan was found') return plan, final_time def parse(self, domainfile, problemfile): if self.verbose: print("Parsing %s and %s" % (domainfile,problemfile)) parser = PDDL_Parser() parser.parse_domain(domainfile) parser.parse_problem(problemfile) return parser def grounding(self, parser): ground_actions = [] start_time = time.time() for action in parser.actions: for act in action.groundify(parser.objects): ground_actions.append(act) final_time = time.time() - start_time if self.verbose: print("Grounding time: %d s" % final_time) print("Number of actions: %d" % len(ground_actions)) return ground_actions def solve(self, domain, initial_state, goals): raise NotImplementedError("PDDL Planners need to implement solve")
1,819
1,553
23
22109965bbbb582bac925c5777e6cc232e05234f
1,332
py
Python
qualang_tools/config/__init__.py
TheoLaudatQM/py-qua-tools
60c005c651148bafee8f437ce1be69d2340a265b
[ "BSD-3-Clause" ]
null
null
null
qualang_tools/config/__init__.py
TheoLaudatQM/py-qua-tools
60c005c651148bafee8f437ce1be69d2340a265b
[ "BSD-3-Clause" ]
null
null
null
qualang_tools/config/__init__.py
TheoLaudatQM/py-qua-tools
60c005c651148bafee8f437ce1be69d2340a265b
[ "BSD-3-Clause" ]
null
null
null
from qualang_tools.config.integration_weights_tools import ( convert_integration_weights, compress_integration_weights, plot_integration_weights, ) from qualang_tools.config.waveform_tools import ( drag_gaussian_pulse_waveforms, drag_cosine_pulse_waveforms, ) from qualang_tools.config.builder import ConfigBuilder from qualang_tools.config.components import * from qualang_tools.config.primitive_components import * __all__ = [ "drag_gaussian_pulse_waveforms", "drag_cosine_pulse_waveforms", "convert_integration_weights", "compress_integration_weights", "plot_integration_weights", "Controller", "ArbitraryWaveform", "ConstantWaveform", "DigitalWaveform", "MeasurePulse", "ControlPulse", "Mixer", "Element", "MeasureElement", "ConstantIntegrationWeights", "ArbitraryIntegrationWeights", "ElementCollection", "ReadoutResonator", "Transmon", "FluxTunableTransmon", "Coupler", "Oscillator", "Port", "AnalogInputPort", "AnalogOutputPort", "DigitalInputPort", "DigitalOutputPort", "Waveform", "Pulse", "Operation", "IntegrationWeights", "Weights", "DigitalSample", "Matrix2x2", "AnalogOutputFilter", "ConfigBuilder", ]
25.615385
61
0.688438
from qualang_tools.config.integration_weights_tools import ( convert_integration_weights, compress_integration_weights, plot_integration_weights, ) from qualang_tools.config.waveform_tools import ( drag_gaussian_pulse_waveforms, drag_cosine_pulse_waveforms, ) from qualang_tools.config.builder import ConfigBuilder from qualang_tools.config.components import * from qualang_tools.config.primitive_components import * __all__ = [ "drag_gaussian_pulse_waveforms", "drag_cosine_pulse_waveforms", "convert_integration_weights", "compress_integration_weights", "plot_integration_weights", "Controller", "ArbitraryWaveform", "ConstantWaveform", "DigitalWaveform", "MeasurePulse", "ControlPulse", "Mixer", "Element", "MeasureElement", "ConstantIntegrationWeights", "ArbitraryIntegrationWeights", "ElementCollection", "ReadoutResonator", "Transmon", "FluxTunableTransmon", "Coupler", "Oscillator", "Port", "AnalogInputPort", "AnalogOutputPort", "DigitalInputPort", "DigitalOutputPort", "Waveform", "Pulse", "Operation", "IntegrationWeights", "Weights", "DigitalSample", "Matrix2x2", "AnalogOutputFilter", "ConfigBuilder", ]
0
0
0
8debd24c7b2f10459219c2a5b93fdb2751a9e97a
3,931
py
Python
api/subtitle/opensubtitles.py
stephanos/subtitlevocabulary
f452d7f35468912fe3967cfcf81c8f65cab345ec
[ "MIT" ]
19
2017-04-20T00:57:36.000Z
2018-01-06T10:47:38.000Z
api/subtitle/opensubtitles.py
stephanos/subtitlevocabulary
f452d7f35468912fe3967cfcf81c8f65cab345ec
[ "MIT" ]
null
null
null
api/subtitle/opensubtitles.py
stephanos/subtitlevocabulary
f452d7f35468912fe3967cfcf81c8f65cab345ec
[ "MIT" ]
3
2018-01-01T06:27:48.000Z
2020-04-09T17:21:28.000Z
import base64 import json import os import re import zlib from retrying import retry from xmlrpc.client import ServerProxy from api.fixture import load_fixture from api.subtitle.model import to_model LANGUAGE = 'en' NEWLINE_PATTERN = re.compile(r'(\r\n|\r|\n)') OPENSUBTITLES_URL = 'http://api.opensubtitles.org/xml-rpc' OPENSUBTITLES_UA = 'subvoc v1.0' UNICODE_BOM = u'\N{ZERO WIDTH NO-BREAK SPACE}' class OpenSubtitles: """API client to download subtitles from opensubtitles.org""" def __init__(self, credentials, client=None): """Constructor to prepare API connection. :param credentials: username/password tupel :param client: optional, custom XMLRPC client """ self.token = None self.credentials = credentials self.xmlrpc = client or ServerProxy(OPENSUBTITLES_URL, allow_none=True) def login(self): """Request and save authentication token. :raises RuntimeError: if login fails """ username = self.credentials[0] password = self.credentials[1] resp = self.xmlrpc.LogIn(username, password, LANGUAGE, OPENSUBTITLES_UA) self._ensure_success(resp) self.token = resp.get('token') def find_by_query(self, query): """Find subtitles by query. Note that it first tries to find and return a local fixture, and only does an HTTP call if none was found. :param query: query string describing movie :returns: list of subtitles that match query """ qry = query.lower().strip() resp = self._fixture('query', qry) \ or self._find({'query': qry, 'sublanguageid': 'eng'}) return self._resp_to_model(resp) def find_subtitles_for_movie(self, imdb_id): """Find subtitle by IMDb ID. Note that it first tries to find and return a local fixture, and only does an HTTP call if none was found. :param imdb_id: IMDb ID of movie (starts with 'tt') :returns: list of subtitles for movie """ search_id = imdb_id.replace('tt', '').lstrip('0') resp = self._fixture('id', imdb_id) \ or self._find({'imdbid': search_id, 'sublanguageid': 'eng'}) return self._resp_to_model(resp) def load_text(self, subtitle_id, subtitle_encoding): """Load subtitle text for movie. :param subtitle_id: ID of subtitle :param subtitle_encoding: encoding of subtitle text :returns: string with movie subtitle text """ resp = self._fixture('subtitle', subtitle_id) \ or self._download(subtitle_id) text = resp.get('data')[0].get('data') text = base64.standard_b64decode(text) text = zlib.decompress(text, 47) text = str(text, subtitle_encoding) text = text.lstrip(UNICODE_BOM) text = re.sub(NEWLINE_PATTERN, '\n', text) return text @retry(stop_max_delay=5000, stop_max_attempt_number=3) @retry(stop_max_delay=5000, stop_max_attempt_number=3)
32.487603
84
0.640041
import base64 import json import os import re import zlib from retrying import retry from xmlrpc.client import ServerProxy from api.fixture import load_fixture from api.subtitle.model import to_model LANGUAGE = 'en' NEWLINE_PATTERN = re.compile(r'(\r\n|\r|\n)') OPENSUBTITLES_URL = 'http://api.opensubtitles.org/xml-rpc' OPENSUBTITLES_UA = 'subvoc v1.0' UNICODE_BOM = u'\N{ZERO WIDTH NO-BREAK SPACE}' class OpenSubtitles: """API client to download subtitles from opensubtitles.org""" def __init__(self, credentials, client=None): """Constructor to prepare API connection. :param credentials: username/password tupel :param client: optional, custom XMLRPC client """ self.token = None self.credentials = credentials self.xmlrpc = client or ServerProxy(OPENSUBTITLES_URL, allow_none=True) def login(self): """Request and save authentication token. :raises RuntimeError: if login fails """ username = self.credentials[0] password = self.credentials[1] resp = self.xmlrpc.LogIn(username, password, LANGUAGE, OPENSUBTITLES_UA) self._ensure_success(resp) self.token = resp.get('token') def find_by_query(self, query): """Find subtitles by query. Note that it first tries to find and return a local fixture, and only does an HTTP call if none was found. :param query: query string describing movie :returns: list of subtitles that match query """ qry = query.lower().strip() resp = self._fixture('query', qry) \ or self._find({'query': qry, 'sublanguageid': 'eng'}) return self._resp_to_model(resp) def find_subtitles_for_movie(self, imdb_id): """Find subtitle by IMDb ID. Note that it first tries to find and return a local fixture, and only does an HTTP call if none was found. :param imdb_id: IMDb ID of movie (starts with 'tt') :returns: list of subtitles for movie """ search_id = imdb_id.replace('tt', '').lstrip('0') resp = self._fixture('id', imdb_id) \ or self._find({'imdbid': search_id, 'sublanguageid': 'eng'}) return self._resp_to_model(resp) def load_text(self, subtitle_id, subtitle_encoding): """Load subtitle text for movie. :param subtitle_id: ID of subtitle :param subtitle_encoding: encoding of subtitle text :returns: string with movie subtitle text """ resp = self._fixture('subtitle', subtitle_id) \ or self._download(subtitle_id) text = resp.get('data')[0].get('data') text = base64.standard_b64decode(text) text = zlib.decompress(text, 47) text = str(text, subtitle_encoding) text = text.lstrip(UNICODE_BOM) text = re.sub(NEWLINE_PATTERN, '\n', text) return text @retry(stop_max_delay=5000, stop_max_attempt_number=3) def _download(self, subtitle_id): if not self.token: self.login() resp = self.xmlrpc.DownloadSubtitles(self.token, [subtitle_id]) self._ensure_success(resp) return resp @retry(stop_max_delay=5000, stop_max_attempt_number=3) def _find(self, query): if not self.token: self.login() resp = self.xmlrpc.SearchSubtitles(self.token, [query], [{'limit': 500}]) self._ensure_success(resp) return resp def _ensure_success(self, resp): if resp.get('status').split()[0] != '200': raise RuntimeError("received status {}".format(resp.get('status'))) def _fixture(self, directory, arg): data = load_fixture(os.path.join('opensubtitles', directory, arg + '.json')) if data: return json.loads(data) def _resp_to_model(self, resp): return [to_model(item) for item in resp.get('data')]
749
0
133
8254adb03861f55618a48b8c21e079a5ff47bf47
19,391
py
Python
TrainingExtensions/tensorflow/src/python/aimet_tensorflow/channel_pruning/channel_pruner.py
quic-sendilk/aimet
85b183955f7cf17cdb5fba76a6d48cc7e57d878c
[ "BSD-3-Clause" ]
3
2021-08-23T13:00:54.000Z
2021-11-17T10:52:36.000Z
TrainingExtensions/tensorflow/src/python/aimet_tensorflow/channel_pruning/channel_pruner.py
4ant00ra/aimet
c6ffd3c31c290fe0913b50831d58534f6df61d76
[ "BSD-3-Clause" ]
null
null
null
TrainingExtensions/tensorflow/src/python/aimet_tensorflow/channel_pruning/channel_pruner.py
4ant00ra/aimet
c6ffd3c31c290fe0913b50831d58534f6df61d76
[ "BSD-3-Clause" ]
null
null
null
# /usr/bin/env python3.5 # -*- mode: python -*- # ============================================================================= # @@-COPYRIGHT-START-@@ # # Copyright (c) 2019, Qualcomm Innovation Center, Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # SPDX-License-Identifier: BSD-3-Clause # # @@-COPYRIGHT-END-@@ # ============================================================================= """ Prunes layers using Channel Pruning scheme """ from typing import List, Dict, Tuple, Set import copy import tensorflow as tf import numpy as np # Import aimet specific modules from aimet_common.defs import CostMetric, LayerCompRatioPair from aimet_common.utils import AimetLogger from aimet_common.pruner import Pruner from aimet_common.channel_pruner import select_channels_to_prune from aimet_common.cost_calculator import CostCalculator, Cost from aimet_common.winnow.winnow_utils import update_winnowed_channels from aimet_tensorflow.utils.graph_saver import save_and_load_graph from aimet_tensorflow.utils.common import is_op_compressible, get_ordered_ops from aimet_tensorflow.layer_database import Layer, LayerDatabase from aimet_tensorflow.utils.op.conv import WeightTensorUtils from aimet_tensorflow.winnow import winnow from aimet_tensorflow.channel_pruning.data_subsampler import DataSubSampler from aimet_tensorflow.channel_pruning.weight_reconstruction import WeightReconstructor from aimet_tensorflow.common.graph_eval import initialize_uninitialized_vars logger = AimetLogger.get_area_logger(AimetLogger.LogAreas.ChannelPruning) class InputChannelPruner(Pruner): """ Pruner for Channel Pruning method """ def __init__(self, input_op_names: List[str], output_op_names: List[str], data_set: tf.data.Dataset, batch_size: int, num_reconstruction_samples: int, allow_custom_downsample_ops: bool): """ Input Channel Pruner with given dataset, input shape, number of batches and samples per image. :param input_op_names: list of input op names :param output_op_names: List of output op names of the model, used to help ConnectedGraph determine valid ops (to ignore training ops for example). :param data_set: data set to be used with the model :param batch_size: batch size :param num_reconstruction_samples: number of reconstruction samples :param allow_custom_downsample_ops: allow downsample/upsample ops to be inserted """ self._input_op_names = input_op_names self._output_op_names = output_op_names self._data_set = data_set self._batch_size = batch_size self._num_reconstruction_samples = num_reconstruction_samples self._allow_custom_downsample_ops = allow_custom_downsample_ops @staticmethod def _select_inp_channels(layer: Layer, comp_ratio: float) -> list: """ :param layer: layer for which input channels to prune are selected. :param comp_ratio: the ratio of costs after pruning has taken place 0 < comp_ratio <= 1. :return: prune_indices: list of input channels indices to prune. """ assert layer.module.type == 'Conv2D' weight_index = WeightTensorUtils.get_tensor_index_in_given_op(layer.module) weight_tensor = layer.model.run(layer.module.inputs[weight_index]) # Conv2d weight shape in TensorFlow [kh, kw, Nic, Noc] # re order in the common shape [Noc, Nic, kh, kw] weight_tensor = np.transpose(weight_tensor, (3, 2, 0, 1)) num_in_channels = weight_tensor.shape[1] prune_indices = select_channels_to_prune(weight_tensor, comp_ratio, num_in_channels) return prune_indices def _data_subsample_and_reconstruction(self, orig_layer: Layer, pruned_layer: Layer, output_mask: List[int], orig_layer_db: LayerDatabase, comp_layer_db: LayerDatabase): """ Collect and sub sampled output data from original layer and input data from pruned layer and set reconstructed weight and bias to pruned layer in compressed model database :param orig_layer: layer from original model :param pruned_layer: layer from potentially compressed model :param output_mask : output mask that specifies certain output channels to remove :param orig_layer_db: original Layer database without any compression :param comp_layer_db: compressed Layer database :return: """ sub_sampled_inp, sub_sampled_out = DataSubSampler.get_sub_sampled_data(orig_layer, pruned_layer, self._input_op_names, orig_layer_db, comp_layer_db, self._data_set, self._batch_size, self._num_reconstruction_samples) logger.debug("Input Data size: %s, Output data size: %s", len(sub_sampled_inp), len(sub_sampled_out)) # update the weight and bias (if any) using sub sampled input and output data WeightReconstructor.reconstruct_params_for_conv2d(pruned_layer, sub_sampled_inp, sub_sampled_out, output_mask) def _sort_on_occurrence(self, sess: tf.Session, layer_comp_ratio_list: List[LayerCompRatioPair]) -> \ List[LayerCompRatioPair]: """ Function takes session and list of conv layer-comp ratio to sort, and sorts them based on occurrence in the model. :param sess: tf.Session :param layer_comp_ratio_list: layer compression ratio list :return: sorted_layer_comp_ratio_List """ sorted_layer_comp_ratio_list = [] ordered_ops = get_ordered_ops(graph=sess.graph, starting_op_names=self._input_op_names) for op in ordered_ops: if is_op_compressible(op): for pair in layer_comp_ratio_list: if op.name == pair.layer.name: sorted_layer_comp_ratio_list.append(LayerCompRatioPair(pair.layer, pair.comp_ratio)) return sorted_layer_comp_ratio_list def calculate_compressed_cost(self, layer_db: LayerDatabase, layer_comp_ratio_list: List[LayerCompRatioPair]) -> Cost: """ Calculate cost of a compressed model given a set of layers and corresponding comp-ratios :param layer_db: Layer database for original model :param layer_comp_ratio_list: List of (layer + comp-ratio) pairs :return: Estimated cost of the compressed model """ # sort all the layers in layer_comp_ratio_list based on occurrence layer_comp_ratio_list = self._sort_on_occurrence(layer_db.model, layer_comp_ratio_list) detached_op_names = set() # Copy the db comp_layer_db = copy.deepcopy(layer_db) current_sess = comp_layer_db.model for layer_comp_ratio in layer_comp_ratio_list: orig_layer = layer_db.find_layer_by_name(layer_comp_ratio.layer.name) comp_ratio = layer_comp_ratio.comp_ratio if comp_ratio is not None and comp_ratio < 1.0: # select input channels of conv2d op to winnow prune_indices = self._select_inp_channels(orig_layer, comp_ratio) if not prune_indices: continue # Winnow the selected op and modify it's upstream affected ops current_sess, ordered_modules_list = winnow.winnow_tf_model(current_sess, self._input_op_names, self._output_op_names, [(orig_layer.module, prune_indices)], reshape=self._allow_custom_downsample_ops, in_place=True, verbose=False) if not ordered_modules_list: continue # Get all the detached op names from updated session graph for orig_op_name, _, _, _ in ordered_modules_list: detached_op_names.add(orig_op_name) # update layer database by excluding the detached ops comp_layer_db.update_database(current_sess, detached_op_names, update_model=False) # calculate the cost of this model compressed_model_cost = CostCalculator.compute_model_cost(comp_layer_db) # close the session associated with compressed layer database comp_layer_db.model.close() return compressed_model_cost @staticmethod def _update_pruned_ops_and_masks_info( ordered_modules_list: List[Tuple[str, tf.Operation, List[List[int]], List[List[int]]]], orig_layer_name_to_pruned_name_and_mask_dict: Dict[str, Tuple[str, List[int]]], pruned_name_to_orig_name_dict: Dict[str, str], detached_op_names: Set[str]): """ Update dictionaries with information about newly winnowed ops and masks :param ordered_modules_list: Output of winnow_tf_model holding information on winnowed ops and masks :param orig_layer_name_to_pruned_name_and_mask_dict: Dictionary mapping original layer names to most recent pruned op name and most recent output masks. :param pruned_name_to_orig_name_dict: Dictionary mapping pruned layer names to original layer names (if a layer was winnowed in multiple rounds of winnow_tf_model, there may be multiple prined layer names mapping to the same original layer name) :param detached_op_names: Set holding names of operations which are detached due to winnowing and should not be used. """ for prepruned_op_name, pruned_op, _, output_masks in ordered_modules_list: detached_op_names.add(prepruned_op_name) if pruned_op.type == 'Conv2D': # Currently, we only care about tracking information about conv ops if prepruned_op_name in pruned_name_to_orig_name_dict: # the op was already pruned once prior to this most recent round of winnowing original_op_name = pruned_name_to_orig_name_dict[prepruned_op_name] # Get and update previous pruned op name and output mask _, running_output_mask = \ orig_layer_name_to_pruned_name_and_mask_dict.get(original_op_name, (None, None)) assert running_output_mask is not None # Replace previous pruned op name with most recent pruned op name # Update output mask update_winnowed_channels(running_output_mask, output_masks[0]) orig_layer_name_to_pruned_name_and_mask_dict[original_op_name] = (pruned_op.name, running_output_mask) else: # This is the first time this op is being pruned # The name should not show up in either dict assert prepruned_op_name not in orig_layer_name_to_pruned_name_and_mask_dict assert prepruned_op_name not in pruned_name_to_orig_name_dict original_op_name = prepruned_op_name # Add output channel mask info to layer_to_masks_dict orig_layer_name_to_pruned_name_and_mask_dict[prepruned_op_name] = (pruned_op.name, output_masks[0]) # Map pruned op's name to original op name in pruned_to_orig_name_dict pruned_name_to_orig_name_dict[pruned_op.name] = original_op_name def _reconstruct_layers(self, layers_to_reconstruct: List[Layer], orig_layer_name_to_pruned_name_and_mask_dict: Dict[str, Tuple[str, List[int]]], layer_db: LayerDatabase, comp_layer_db: LayerDatabase): """ Reconstruct weights and biases of layers in the layers_to_reconstruct list. :param layers_to_reconstruct: List of layers to reconstruct weights and biases of :param orig_layer_name_to_pruned_name_and_mask_dict: Dictionary mapping original layer names to most recent pruned op name and most recent output masks. :param layer_db: Original layer database :param comp_layer_db: Compressed layer database """ for layer in layers_to_reconstruct: # Get output mask of layer, that contains information about all channels winnowed since the start pruned_layer_name, output_mask = \ orig_layer_name_to_pruned_name_and_mask_dict.get(layer.name, (None, None)) assert pruned_layer_name is not None pruned_layer = comp_layer_db.find_layer_by_name(pruned_layer_name) self._data_subsample_and_reconstruction(layer, pruned_layer, output_mask, layer_db, comp_layer_db) class ChannelPruningCostCalculator(CostCalculator): """ Cost calculation utilities for Channel Pruning """ def calculate_compressed_cost(self, layer_db: LayerDatabase, layer_ratio_list: List[LayerCompRatioPair], cost_metric: CostMetric) -> Cost: """ Calculate compressed cost of a model given a list of layer-compression-ratio pairs :param layer_db: Layer database for the original model :param layer_ratio_list: List of layer, compression-ratio :param cost_metric: Cost metric to use for compression (mac or memory) :return: Compressed cost """ # Special logic for channel pruning - we first actually prune the model and then determine its cost # Because it is not easy to estimate it otherwise compressed_cost = self._pruner.calculate_compressed_cost(layer_db, layer_ratio_list) return compressed_cost
51.847594
120
0.657264
# /usr/bin/env python3.5 # -*- mode: python -*- # ============================================================================= # @@-COPYRIGHT-START-@@ # # Copyright (c) 2019, Qualcomm Innovation Center, Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # SPDX-License-Identifier: BSD-3-Clause # # @@-COPYRIGHT-END-@@ # ============================================================================= """ Prunes layers using Channel Pruning scheme """ from typing import List, Dict, Tuple, Set import copy import tensorflow as tf import numpy as np # Import aimet specific modules from aimet_common.defs import CostMetric, LayerCompRatioPair from aimet_common.utils import AimetLogger from aimet_common.pruner import Pruner from aimet_common.channel_pruner import select_channels_to_prune from aimet_common.cost_calculator import CostCalculator, Cost from aimet_common.winnow.winnow_utils import update_winnowed_channels from aimet_tensorflow.utils.graph_saver import save_and_load_graph from aimet_tensorflow.utils.common import is_op_compressible, get_ordered_ops from aimet_tensorflow.layer_database import Layer, LayerDatabase from aimet_tensorflow.utils.op.conv import WeightTensorUtils from aimet_tensorflow.winnow import winnow from aimet_tensorflow.channel_pruning.data_subsampler import DataSubSampler from aimet_tensorflow.channel_pruning.weight_reconstruction import WeightReconstructor from aimet_tensorflow.common.graph_eval import initialize_uninitialized_vars logger = AimetLogger.get_area_logger(AimetLogger.LogAreas.ChannelPruning) class InputChannelPruner(Pruner): """ Pruner for Channel Pruning method """ def __init__(self, input_op_names: List[str], output_op_names: List[str], data_set: tf.data.Dataset, batch_size: int, num_reconstruction_samples: int, allow_custom_downsample_ops: bool): """ Input Channel Pruner with given dataset, input shape, number of batches and samples per image. :param input_op_names: list of input op names :param output_op_names: List of output op names of the model, used to help ConnectedGraph determine valid ops (to ignore training ops for example). :param data_set: data set to be used with the model :param batch_size: batch size :param num_reconstruction_samples: number of reconstruction samples :param allow_custom_downsample_ops: allow downsample/upsample ops to be inserted """ self._input_op_names = input_op_names self._output_op_names = output_op_names self._data_set = data_set self._batch_size = batch_size self._num_reconstruction_samples = num_reconstruction_samples self._allow_custom_downsample_ops = allow_custom_downsample_ops @staticmethod def _select_inp_channels(layer: Layer, comp_ratio: float) -> list: """ :param layer: layer for which input channels to prune are selected. :param comp_ratio: the ratio of costs after pruning has taken place 0 < comp_ratio <= 1. :return: prune_indices: list of input channels indices to prune. """ assert layer.module.type == 'Conv2D' weight_index = WeightTensorUtils.get_tensor_index_in_given_op(layer.module) weight_tensor = layer.model.run(layer.module.inputs[weight_index]) # Conv2d weight shape in TensorFlow [kh, kw, Nic, Noc] # re order in the common shape [Noc, Nic, kh, kw] weight_tensor = np.transpose(weight_tensor, (3, 2, 0, 1)) num_in_channels = weight_tensor.shape[1] prune_indices = select_channels_to_prune(weight_tensor, comp_ratio, num_in_channels) return prune_indices def _data_subsample_and_reconstruction(self, orig_layer: Layer, pruned_layer: Layer, output_mask: List[int], orig_layer_db: LayerDatabase, comp_layer_db: LayerDatabase): """ Collect and sub sampled output data from original layer and input data from pruned layer and set reconstructed weight and bias to pruned layer in compressed model database :param orig_layer: layer from original model :param pruned_layer: layer from potentially compressed model :param output_mask : output mask that specifies certain output channels to remove :param orig_layer_db: original Layer database without any compression :param comp_layer_db: compressed Layer database :return: """ sub_sampled_inp, sub_sampled_out = DataSubSampler.get_sub_sampled_data(orig_layer, pruned_layer, self._input_op_names, orig_layer_db, comp_layer_db, self._data_set, self._batch_size, self._num_reconstruction_samples) logger.debug("Input Data size: %s, Output data size: %s", len(sub_sampled_inp), len(sub_sampled_out)) # update the weight and bias (if any) using sub sampled input and output data WeightReconstructor.reconstruct_params_for_conv2d(pruned_layer, sub_sampled_inp, sub_sampled_out, output_mask) def _sort_on_occurrence(self, sess: tf.Session, layer_comp_ratio_list: List[LayerCompRatioPair]) -> \ List[LayerCompRatioPair]: """ Function takes session and list of conv layer-comp ratio to sort, and sorts them based on occurrence in the model. :param sess: tf.Session :param layer_comp_ratio_list: layer compression ratio list :return: sorted_layer_comp_ratio_List """ sorted_layer_comp_ratio_list = [] ordered_ops = get_ordered_ops(graph=sess.graph, starting_op_names=self._input_op_names) for op in ordered_ops: if is_op_compressible(op): for pair in layer_comp_ratio_list: if op.name == pair.layer.name: sorted_layer_comp_ratio_list.append(LayerCompRatioPair(pair.layer, pair.comp_ratio)) return sorted_layer_comp_ratio_list def _prune_layer(self, orig_layer_db: LayerDatabase, comp_layer_db: LayerDatabase, layer: Layer, comp_ratio: float, cost_metric: CostMetric): pass def calculate_compressed_cost(self, layer_db: LayerDatabase, layer_comp_ratio_list: List[LayerCompRatioPair]) -> Cost: """ Calculate cost of a compressed model given a set of layers and corresponding comp-ratios :param layer_db: Layer database for original model :param layer_comp_ratio_list: List of (layer + comp-ratio) pairs :return: Estimated cost of the compressed model """ # sort all the layers in layer_comp_ratio_list based on occurrence layer_comp_ratio_list = self._sort_on_occurrence(layer_db.model, layer_comp_ratio_list) detached_op_names = set() # Copy the db comp_layer_db = copy.deepcopy(layer_db) current_sess = comp_layer_db.model for layer_comp_ratio in layer_comp_ratio_list: orig_layer = layer_db.find_layer_by_name(layer_comp_ratio.layer.name) comp_ratio = layer_comp_ratio.comp_ratio if comp_ratio is not None and comp_ratio < 1.0: # select input channels of conv2d op to winnow prune_indices = self._select_inp_channels(orig_layer, comp_ratio) if not prune_indices: continue # Winnow the selected op and modify it's upstream affected ops current_sess, ordered_modules_list = winnow.winnow_tf_model(current_sess, self._input_op_names, self._output_op_names, [(orig_layer.module, prune_indices)], reshape=self._allow_custom_downsample_ops, in_place=True, verbose=False) if not ordered_modules_list: continue # Get all the detached op names from updated session graph for orig_op_name, _, _, _ in ordered_modules_list: detached_op_names.add(orig_op_name) # update layer database by excluding the detached ops comp_layer_db.update_database(current_sess, detached_op_names, update_model=False) # calculate the cost of this model compressed_model_cost = CostCalculator.compute_model_cost(comp_layer_db) # close the session associated with compressed layer database comp_layer_db.model.close() return compressed_model_cost def prune_model(self, layer_db: LayerDatabase, layer_comp_ratio_list: List[LayerCompRatioPair], cost_metric: CostMetric, trainer): # sort all the layers in layer_comp_ratio_list based on occurrence layer_comp_ratio_list = self._sort_on_occurrence(layer_db.model, layer_comp_ratio_list) # Copy the db comp_layer_db = copy.deepcopy(layer_db) current_sess = comp_layer_db.model # Dictionary to map original layer name to list of most recent pruned layer name and output mask. # Masks remain at the original length and specify channels winnowed after each round of winnower. orig_layer_name_to_pruned_name_and_mask_dict = {} # Dictionary to map most recent pruned layer name to the original layer name pruned_name_to_orig_name_dict = {} # List to hold original layers to reconstruct layers_to_reconstruct = [] detached_op_names = set() # Prune layers which have comp ratios less than 1 for layer_comp_ratio in layer_comp_ratio_list: orig_layer = layer_db.find_layer_by_name(layer_comp_ratio.layer.name) if layer_comp_ratio.comp_ratio is not None and layer_comp_ratio.comp_ratio < 1.0: # 1) channel selection prune_indices = self._select_inp_channels(orig_layer, layer_comp_ratio.comp_ratio) if not prune_indices: continue # 2) Winnowing the model current_sess, ordered_modules_list = winnow.winnow_tf_model(current_sess, self._input_op_names, self._output_op_names, [(orig_layer.module, prune_indices)], reshape=self._allow_custom_downsample_ops, in_place=True, verbose=False) if not ordered_modules_list: continue layers_to_reconstruct.append(orig_layer) # Update dictionaries with new info about pruned ops and new masks self._update_pruned_ops_and_masks_info(ordered_modules_list, orig_layer_name_to_pruned_name_and_mask_dict, pruned_name_to_orig_name_dict, detached_op_names) # Save and reload modified graph to allow changes to take effect # Need to initialize uninitialized variables first since only newly winnowed conv ops are initialized during # winnow_tf_model, and all other newly winnowed ops are not. with current_sess.graph.as_default(): initialize_uninitialized_vars(current_sess) current_sess = save_and_load_graph('./saver', current_sess) comp_layer_db.update_database(current_sess, detached_op_names, update_model=True) # Perform reconstruction self._reconstruct_layers(layers_to_reconstruct, orig_layer_name_to_pruned_name_and_mask_dict, layer_db, comp_layer_db) return comp_layer_db @staticmethod def _update_pruned_ops_and_masks_info( ordered_modules_list: List[Tuple[str, tf.Operation, List[List[int]], List[List[int]]]], orig_layer_name_to_pruned_name_and_mask_dict: Dict[str, Tuple[str, List[int]]], pruned_name_to_orig_name_dict: Dict[str, str], detached_op_names: Set[str]): """ Update dictionaries with information about newly winnowed ops and masks :param ordered_modules_list: Output of winnow_tf_model holding information on winnowed ops and masks :param orig_layer_name_to_pruned_name_and_mask_dict: Dictionary mapping original layer names to most recent pruned op name and most recent output masks. :param pruned_name_to_orig_name_dict: Dictionary mapping pruned layer names to original layer names (if a layer was winnowed in multiple rounds of winnow_tf_model, there may be multiple prined layer names mapping to the same original layer name) :param detached_op_names: Set holding names of operations which are detached due to winnowing and should not be used. """ for prepruned_op_name, pruned_op, _, output_masks in ordered_modules_list: detached_op_names.add(prepruned_op_name) if pruned_op.type == 'Conv2D': # Currently, we only care about tracking information about conv ops if prepruned_op_name in pruned_name_to_orig_name_dict: # the op was already pruned once prior to this most recent round of winnowing original_op_name = pruned_name_to_orig_name_dict[prepruned_op_name] # Get and update previous pruned op name and output mask _, running_output_mask = \ orig_layer_name_to_pruned_name_and_mask_dict.get(original_op_name, (None, None)) assert running_output_mask is not None # Replace previous pruned op name with most recent pruned op name # Update output mask update_winnowed_channels(running_output_mask, output_masks[0]) orig_layer_name_to_pruned_name_and_mask_dict[original_op_name] = (pruned_op.name, running_output_mask) else: # This is the first time this op is being pruned # The name should not show up in either dict assert prepruned_op_name not in orig_layer_name_to_pruned_name_and_mask_dict assert prepruned_op_name not in pruned_name_to_orig_name_dict original_op_name = prepruned_op_name # Add output channel mask info to layer_to_masks_dict orig_layer_name_to_pruned_name_and_mask_dict[prepruned_op_name] = (pruned_op.name, output_masks[0]) # Map pruned op's name to original op name in pruned_to_orig_name_dict pruned_name_to_orig_name_dict[pruned_op.name] = original_op_name def _reconstruct_layers(self, layers_to_reconstruct: List[Layer], orig_layer_name_to_pruned_name_and_mask_dict: Dict[str, Tuple[str, List[int]]], layer_db: LayerDatabase, comp_layer_db: LayerDatabase): """ Reconstruct weights and biases of layers in the layers_to_reconstruct list. :param layers_to_reconstruct: List of layers to reconstruct weights and biases of :param orig_layer_name_to_pruned_name_and_mask_dict: Dictionary mapping original layer names to most recent pruned op name and most recent output masks. :param layer_db: Original layer database :param comp_layer_db: Compressed layer database """ for layer in layers_to_reconstruct: # Get output mask of layer, that contains information about all channels winnowed since the start pruned_layer_name, output_mask = \ orig_layer_name_to_pruned_name_and_mask_dict.get(layer.name, (None, None)) assert pruned_layer_name is not None pruned_layer = comp_layer_db.find_layer_by_name(pruned_layer_name) self._data_subsample_and_reconstruction(layer, pruned_layer, output_mask, layer_db, comp_layer_db) class ChannelPruningCostCalculator(CostCalculator): """ Cost calculation utilities for Channel Pruning """ def __init__(self, pruner: InputChannelPruner): self._pruner = pruner def calculate_compressed_cost(self, layer_db: LayerDatabase, layer_ratio_list: List[LayerCompRatioPair], cost_metric: CostMetric) -> Cost: """ Calculate compressed cost of a model given a list of layer-compression-ratio pairs :param layer_db: Layer database for the original model :param layer_ratio_list: List of layer, compression-ratio :param cost_metric: Cost metric to use for compression (mac or memory) :return: Compressed cost """ # Special logic for channel pruning - we first actually prune the model and then determine its cost # Because it is not easy to estimate it otherwise compressed_cost = self._pruner.calculate_compressed_cost(layer_db, layer_ratio_list) return compressed_cost
3,532
0
81
34c77104cbf677459d426c7e0ff996874e4646da
6,521
py
Python
fitness_tracker/notes/workouts/create_workout_window.py
JuricaRT/fitness_tracker
178ab7f20cc3cabcb5b2cad34cebfd4aa20c4fc6
[ "MIT" ]
1
2020-08-30T11:30:25.000Z
2020-08-30T11:30:25.000Z
fitness_tracker/notes/workouts/create_workout_window.py
JuricaRT/fitness_tracker
178ab7f20cc3cabcb5b2cad34cebfd4aa20c4fc6
[ "MIT" ]
21
2020-08-23T17:14:52.000Z
2021-05-04T19:22:21.000Z
fitness_tracker/notes/workouts/create_workout_window.py
JuricaRT/fitness_tracker
178ab7f20cc3cabcb5b2cad34cebfd4aa20c4fc6
[ "MIT" ]
null
null
null
import json from datetime import datetime from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QHBoxLayout, QLabel, QLineEdit, QPushButton, QMessageBox from PyQt5.QtGui import QIntValidator from PyQt5.QtCore import Qt, pyqtSignal from fitness_tracker.database_wrapper import DatabaseWrapper
40.75625
137
0.698973
import json from datetime import datetime from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QHBoxLayout, QLabel, QLineEdit, QPushButton, QMessageBox from PyQt5.QtGui import QIntValidator from PyQt5.QtCore import Qt, pyqtSignal from fitness_tracker.database_wrapper import DatabaseWrapper class CreateWorkoutWindow(QWidget): refresh_my_workouts_signal = pyqtSignal(str) refresh_after_creating_signal = pyqtSignal(bool) def __init__(self, workout_name=None, one_time=False, date=None): super().__init__() self.setStyleSheet(""" QWidget{ background-color: #232120; font-weight: bold; color:#c7c7c7; } QPushButton{ background-color: rgba(0, 0, 0, 0); border: 1px solid; font-size: 18px; font-weight: bold; border-color: #808080; min-height: 28px; white-space:nowrap; text-align: center; padding-left: 5%; font-family: Montserrat; } QPushButton:hover:!pressed{ border: 2px solid; border-color: #747474; } QPushButton:pressed{ border: 2px solid; background-color: #323232; } """) self.setWindowFlags(Qt.FramelessWindowHint | Qt.Tool) self.setWindowModality(Qt.ApplicationModal) if workout_name != None: self.setWindowTitle("Edit Workout") else: self.setWindowTitle("Create a New Workout") self.db_wrapper = DatabaseWrapper() self.table_name = "Workouts" self.workout_name = workout_name self.one_time = one_time self.current_date = date self.fetched_my_workouts = json.loads(self.db_wrapper.fetch_local_column(self.table_name, "my_workouts")) self.create_panel() def create_panel(self): layout = QVBoxLayout() workout_name_layout = QHBoxLayout() workout_name_label = QLabel("Workout Name:") self.workout_name_edit = QLineEdit() workout_name_layout.addWidget(workout_name_label) workout_name_layout.addWidget(self.workout_name_edit) grid_layout = QGridLayout() empty = QLabel("") name_label = QLabel("Name") sets_label = QLabel("Sets") reps_label = QLabel("Reps") rest_label = QLabel("Rest(Opt.)[min]") grid_layout.addWidget(empty, 0, 0) grid_layout.addWidget(name_label, 0, 1) grid_layout.addWidget(sets_label, 0, 2) grid_layout.addWidget(reps_label, 0, 3) grid_layout.addWidget(rest_label, 0, 4) exercise_number = [None] * 10 self.name_edits = [None] * 10 self.sets_edits = [None] * 10 self.reps_edits = [None] * 10 self.rest_edits = [None] * 10 j = 1 for i in range(10): exercise_number[i] = QLabel("Exercise #"+ str(i+1)) self.name_edits[i], self.sets_edits[i], self.reps_edits[i], self.rest_edits[i] = QLineEdit(), QLineEdit(), QLineEdit(), QLineEdit() self.sets_edits[i].setValidator(QIntValidator()) self.reps_edits[i].setValidator(QIntValidator()) self.rest_edits[i].setValidator(QIntValidator()) grid_layout.addWidget(exercise_number[i], j, 0) grid_layout.addWidget(self.name_edits[i], j, 1) grid_layout.addWidget(self.sets_edits[i], j, 2) grid_layout.addWidget(self.reps_edits[i], j, 3) grid_layout.addWidget(self.rest_edits[i], j, 4) j += 1 if self.workout_name != None: self.workout_name_edit.setText(self.workout_name) for i, exercise in enumerate(self.fetched_my_workouts[self.workout_name].keys()): self.name_edits[i].setText(exercise) self.sets_edits[i].setText(self.fetched_my_workouts[self.workout_name][exercise]["Sets"]) self.reps_edits[i].setText(self.fetched_my_workouts[self.workout_name][exercise]["Reps"]) self.rest_edits[i].setText(self.fetched_my_workouts[self.workout_name][exercise]["Rest"]) buttons_layout = QHBoxLayout() save_button = QPushButton("Save") save_button.clicked.connect(lambda: self.save_changes()) cancel_button = QPushButton("Cancel") cancel_button.clicked.connect(lambda: self.close()) buttons_layout.addWidget(save_button) if self.workout_name != None: delete_button = QPushButton("Delete Workout") delete_button.clicked.connect(lambda: self.delete_workout()) buttons_layout.addWidget(delete_button) buttons_layout.addWidget(cancel_button) layout.addLayout(workout_name_layout) layout.addLayout(grid_layout) layout.addLayout(buttons_layout) self.setLayout(layout) def delete_workout(self): message_box = QMessageBox() message_box.setIcon(QMessageBox.Question) message_box.setText("Are you sure you want to delete this workout?") message_box.setWindowTitle("Confirm delete") message_box.setStandardButtons(QMessageBox.Cancel | QMessageBox.Ok) message_box.buttonClicked.connect(lambda answer: self.delete_workout_confirmed(answer.text())) message_box.exec_() def delete_workout_confirmed(self, answer): if "OK" in answer: del self.fetched_my_workouts[self.workout_name] self.db_wrapper.update_table_column(self.table_name, "my_workouts", json.dumps(self.fetched_my_workouts)) self.refresh_my_workouts_signal.emit(self.workout_name) self.close() def save_changes(self): workout_name = self.workout_name_edit.text() if workout_name != "": new_workout = {} for i in range(10): exercise_dict = {} if self.name_edits[i].text() != "" and self.sets_edits[i].text() != "" and self.reps_edits[i].text() != "": exercise_dict["Sets"] = str(self.sets_edits[i].text()) exercise_dict["Reps"] = str(self.reps_edits[i].text()) exercise_dict["Rest"] = "N/A" if self.rest_edits[i].text() == "" else str(self.rest_edits[i].text()) new_workout[self.name_edits[i].text()] = exercise_dict if self.one_time == False: self.fetched_my_workouts[workout_name] = new_workout self.db_wrapper.update_table_column(self.table_name, "my_workouts", json.dumps(self.fetched_my_workouts)) else: workouts = json.loads(self.db_wrapper.fetch_local_column(self.table_name, "workouts")) if not self.current_date in workouts: workouts[self.current_date] = {"Personal Notes": "", "Workout Name": "None"} workouts[self.current_date]["Workout Name"] = workout_name workouts[self.current_date]["Exercises"] = new_workout self.db_wrapper.update_table_column(self.table_name, "workouts", json.dumps(workouts)) self.refresh_after_creating_signal.emit(True) self.close()
5,958
239
23
2d947a8901e26ca611324dba4e552212acbd3611
142
py
Python
DataProfileViewer/__init__.py
remram44/DataProfileVis
ca8a02f462c2860ce874805e2f036bdc2c3035d1
[ "BSD-3-Clause" ]
null
null
null
DataProfileViewer/__init__.py
remram44/DataProfileVis
ca8a02f462c2860ce874805e2f036bdc2c3035d1
[ "BSD-3-Clause" ]
null
null
null
DataProfileViewer/__init__.py
remram44/DataProfileVis
ca8a02f462c2860ce874805e2f036bdc2c3035d1
[ "BSD-3-Clause" ]
1
2020-10-29T17:03:29.000Z
2020-10-29T17:03:29.000Z
from ._plot_metadata_table import plot_data_summary, plot_edit_profiler, get_exported_metadata from ._demodata import get_lifeexpectancy_data
47.333333
94
0.901408
from ._plot_metadata_table import plot_data_summary, plot_edit_profiler, get_exported_metadata from ._demodata import get_lifeexpectancy_data
0
0
0
8c79cfb53997f5073994566dbb00f69088c6de42
30,204
py
Python
sql/views.py
a4221722/autops
d59aedd2b505cd0ecda5e7715a9eb887927b038b
[ "Apache-2.0" ]
1
2019-04-20T06:08:09.000Z
2019-04-20T06:08:09.000Z
sql/views.py
a4221722/autops
d59aedd2b505cd0ecda5e7715a9eb887927b038b
[ "Apache-2.0" ]
null
null
null
sql/views.py
a4221722/autops
d59aedd2b505cd0ecda5e7715a9eb887927b038b
[ "Apache-2.0" ]
2
2019-01-18T03:55:37.000Z
2020-05-15T03:32:01.000Z
# -*- coding: UTF-8 -*- import re import json import multiprocessing import math from collections import OrderedDict import pdb from django.db.models import Q from django.db import transaction from django.conf import settings from django.views.decorators.csrf import csrf_exempt from django.shortcuts import render, get_object_or_404 from django.http import HttpResponse, HttpResponseRedirect from django.contrib.auth.decorators import login_required from django.contrib.auth.hashers import check_password from django.core.paginator import Paginator,InvalidPage,EmptyPage,PageNotAnInteger from .daoora import DaoOra from .const import Const from .sendmail import MailSender from .aes_decryptor import Prpcrypt from .models import * from .getnow import getNow from .tasks import oraAutoReview,mailDba,wechatDba,dingDba daoora = DaoOra() prpCryptor = Prpcrypt() cryColList = ['cert_no','qq','cell','card_no','database_password'] configMap = { 'oracle':ora_primary_config, 'mysql':'my_primary_config'} daoMap = { 'oracle':daoora, 'mysql':'my_master_config'} #首页,也是查看所有SQL工单页面,具备翻页功能 #提交oracle sql界面 #将中文名映射为英文名 #判断工单类型,做相应处理 #展示SQL工单详细内容,以及可以人工审核,审核通过即可执行 #人工审核也通过,执行SQL #终止流程 #工程师确认 #检查登录用户是否为admin #数据同步 @check_admin #查询功能 @csrf_exempt #SQL审核必读 #图表展示 #获取当前请求url #展示数据库schema列表 #个人中心 #配置用户权限 @check_admin
43.458993
463
0.683121
# -*- coding: UTF-8 -*- import re import json import multiprocessing import math from collections import OrderedDict import pdb from django.db.models import Q from django.db import transaction from django.conf import settings from django.views.decorators.csrf import csrf_exempt from django.shortcuts import render, get_object_or_404 from django.http import HttpResponse, HttpResponseRedirect from django.contrib.auth.decorators import login_required from django.contrib.auth.hashers import check_password from django.core.paginator import Paginator,InvalidPage,EmptyPage,PageNotAnInteger from .daoora import DaoOra from .const import Const from .sendmail import MailSender from .aes_decryptor import Prpcrypt from .models import * from .getnow import getNow from .tasks import oraAutoReview,mailDba,wechatDba,dingDba daoora = DaoOra() prpCryptor = Prpcrypt() cryColList = ['cert_no','qq','cell','card_no','database_password'] configMap = { 'oracle':ora_primary_config, 'mysql':'my_primary_config'} daoMap = { 'oracle':daoora, 'mysql':'my_master_config'} def login(request): if request.GET.get('originPath') is not None and re.match(r'/detail/(?P<workflowId>[0-9]+)/$',request.GET.get('originPath')): origin_path = request.GET.get('originPath') else: origin_path = '/allworkflow/' context={'origin_path':origin_path} return render(request, 'login.html',context) def logout(request): if request.session.get('login_username', False): del request.session['login_username'] return render(request, 'login.html') def _mapRmDisplay(reviewMan): try: userList = json.loads(reviewMan) except Exception: userList = reviewMan displayList = [users.objects.get(username=un).display for un in userList] return displayList def _mapEnDisplay(userName): try: display=users.objects.get(username=userName).display except Exception: display='' return display #首页,也是查看所有SQL工单页面,具备翻页功能 def allworkflow(request): #一个页面展示 PAGE_LIMIT = 12 pageNo = 0 navStatus = '' listAllWorkflow = [] #if 'navStatus' in request.GET: # navStatus = request.GET['navStatus'] #else: # navStatus = 'all' hasAffirmed = request.GET.get('hasAffirmed') searchStatus = request.GET.get('search_status') waitForPrc = request.GET.get('wait_process') loginUser = request.session.get('login_username', False) #修改全部工单、审核不通过、已执行完毕界面工程师只能看到自己发起的工单,审核人可以看到全部 allFlow = [] listWorkflow = [] #查询全部流程 loginUserOb = users.objects.get(username=loginUser) #查询workflow model,根据pageNo和navStatus获取对应的内容 role = loginUserOb.role if role == '审核人' or loginUser == 'admin': allFlow = workflow.objects.values('id','data_change_type','workflow_name','engineer','status','affirm','create_time','cluster_name').order_by('-create_time') elif role == '工程师': allFlow = workflow.objects.values('id','data_change_type','workflow_name','engineer','status','affirm','create_time','cluster_name').filter(engineer=loginUser).order_by('-create_time') #if navStatus == 'all' and (role == '审核人' or loginUser == 'admin'): # allFlow = workflow.objects.values('id','data_change_type','workflow_name','engineer','status','affirm','create_time','cluster_name').order_by('-create_time') #elif navStatus == 'all' and role == '工程师': # allFlow = workflow.objects.values('id','data_change_type','workflow_name','engineer','status','affirm','create_time','cluster_name').filter(engineer=loginUser).order_by('-create_time') #elif navStatus == 'waitingforme': # allFlow = workflow.objects.values('id','data_change_type','workflow_name','engineer','status','affirm','create_time','cluster_name').filter(Q(status__in=(Const.workflowStatus['manreviewing'],Const.workflowStatus['manexec'],Const.workflowStatus['autoreviewwrong']),review_man__icontains=loginUser ) | Q(status__in=(Const.workflowStatus['manreviewing'],Const.workflowStatus['manexec']), review_man__contains='"' + loginUser + '"')).order_by('-create_time') #elif (role == '审核人' or loginUser == 'admin') and navStatus == 'unaffirm': # allFlow = workflow.objects.values('id','data_change_type','workflow_name','engineer','status','affirm','create_time','cluster_name').filter(status__in=(Const.workflowStatus['finish'],Const.workflowStatus['manfinish'],),affirm = '未确认').order_by('-create_time') #elif role == '工程师' and navStatus == 'unaffirm': # allFlow = workflow.objects.values('id','data_change_type','workflow_name','engineer','status','affirm','create_time','cluster_name').filter(engineer=loginUser,status__in=(Const.workflowStatus['finish'],Const.workflowStatus['manfinish'],),affirm = '未确认').order_by('-create_time') #elif (role == '审核人' or loginUser == 'admin') and navStatus == 'affirm': # allFlow = workflow.objects.values('id','data_change_type','workflow_name','engineer','status','affirm','create_time','cluster_name').filter(status__in=(Const.workflowStatus['finish'],Const.workflowStatus['manfinish'],),affirm = '已确认').order_by('-create_time') #elif role == '工程师' and navStatus == 'affirm': # allFlow = workflow.objects.values('id','data_change_type','workflow_name','engineer','status','affirm','create_time','cluster_name').filter(engineer=loginUser,status__in=(Const.workflowStatus['finish'],Const.workflowStatus['manfinish'],),affirm = '已确认').order_by('-create_time') # #allFlow = workflow.objects.values('id','data_change_type','workflow_name','engineer','status','create_time','cluster_name').filter(status__in=(Const.workflowStatus['finish'],Const.workflowStatus['exception'],Const.workflowStatus['manfinish'],Const.workflowStatus['manexcept'])).order_by('-create_time') #elif role == '工程师': # allFlow = workflow.objects.values('id','data_change_type','workflow_name','engineer','status','affirm','create_time','cluster_name').filter(status__in=(Const.workflowStatus['finish'],Const.workflowStatus['exception'],Const.workflowStatus['manfinish'],Const.workflowStatus['manexcept']),engineer=loginUser).order_by('-create_time') #elif role == '审核人' or loginUser == 'admin': # allFlow = workflow.objects.values('id','data_change_type','workflow_name','engineer','status','affirm','create_time','cluster_name').filter(status=Const.workflowStatus[navStatus]).order_by('-create_time') #elif role == '工程师': # allFlow = workflow.objects.values('id','data_change_type','workflow_name','engineer','status','affirm','create_time','cluster_name').filter(status=Const.workflowStatus[navStatus],engineer=loginUser).order_by('-create_time') #else: # context = {'errMsg': '传入参数有误!'} # return render(request, 'error.html', context) if hasAffirmed: allFlow = allFlow.filter(affirm = hasAffirmed) if searchStatus: allFlow = allFlow.filter(status = searchStatus) if waitForPrc and waitForPrc == '待我处理': allFlow = allFlow.filter(review_man__contains='"' + loginUser + '"',status__in = (Const.workflowStatus['manreviewing'],Const.workflowStatus['autoreviewwrong'],Const.workflowStatus['manexec'])) pages = math.ceil(len(allFlow)/PAGE_LIMIT) pageList = [i+1 for i in range(0,pages)] #参数检查 if 'pageNo' in request.GET: pageNo = min(int(request.GET['pageNo']),pages) else: pageNo = 1 if pageNo < 1: pageNo = 1 offset = (pageNo-1) * PAGE_LIMIT limit = offset + PAGE_LIMIT listWorkflow = allFlow[offset:limit] pageDisplay = [pageNo+i for i in range(-5,5) if pageNo+i>0 and pageNo+i<=pages] for flow in listWorkflow: flow['engineer_display']=_mapEnDisplay(flow['engineer']) flowStatus = [v for k,v in Const.workflowStatus.items()] #context = {'currentMenu':'allworkflow', 'listWorkflow':listWorkflow,'pages':pages, 'pageNo':pageNo, 'navStatus':navStatus, 'PAGE_LIMIT':PAGE_LIMIT, 'role':role, 'flowStatus':flowStatus} return render(request, 'allWorkflow.html', locals()) #提交oracle sql界面 def submitSqlOra(request,workflowId=None): workflowId = request.GET.get('workflowid') if workflowId: workflowDetail = get_object_or_404(workflow, pk=workflowId) sql_content = workflowDetail.sql_content workflow_name = workflowDetail.workflow_name cluster_name = workflowDetail.cluster_name.split(',') message = workflowDetail.message reason = workflowDetail.reason data_change_type = workflowDetail.data_change_type primaries = ora_primary_config.objects.all().order_by('cluster_name') if len(primaries) == 0: context = {'errMsg': '目标数为0, 请查看后端是否没有配置数据库信息'} return render(request, 'error.html', context) #获取所有数据库名称 listAllClusterName = [primary.cluster_name for primary in primaries] dictAllClusterSchema = OrderedDict() ##获取主库地址: for clusterName in listAllClusterName: # listPrimaries = ora_primary_config.objects.filter(cluster_name=clusterName) # if len(listPrimaries) !=1: # context = {'errMsg': '存在两个名称一样的数据库,请修改数据库配置'} # return render(request, 'error.html', context) # #取出连接信息 # primaryHost = listPrimaries[0].primary_host # primaryPort = listPrimaries[0].primary_port # primarySrv = listPrimaries[0].primary_srv # primaryUser = listPrimaries[0].primary_user # primaryPassword = prpCryptor.decrypt(listPrimaries[0].primary_password) # listSchema = daoora.getAllSchemaByCluster(clusterName) dictAllClusterSchema[clusterName] = '' #获取所有审核人,当前登录用户不可以审核 loginUser = request.session.get('login_username', False) reviewMen = users.objects.filter(role='审核人').exclude(username=loginUser) if len(reviewMen) == 0: context = {'errMsg': '审核人为0,请配置审核人'} return render(request, 'error.html', context) listAllReviewMen = [user.display for user in reviewMen] if workflowId: context = {'currentMenu':'submitsqlora', 'dictAllClusterSchema':dictAllClusterSchema, 'reviewMen':listAllReviewMen,'workflowid':workflowId,'sql_content':sql_content,'workflow_name':workflow_name,'message':message,'reason':reason,'data_change_type':data_change_type} else: context = {'currentMenu':'submitsqlora', 'dictAllClusterSchema':dictAllClusterSchema, 'reviewMen':listAllReviewMen} return render(request, 'submitSqlOra.html', context) #将中文名映射为英文名 def _mapReviewMan(review_man): usersList = users.objects.filter(display=review_man) listUsername = [user.username for user in usersList] return listUsername[0] #判断工单类型,做相应处理 def workflowSubmit(request): dataChangeType = request.POST.get('data_change_type') workflowid = request.POST.get('workflowid') sqlContent = request.POST['sql_content'] workflowName = request.POST['workflow_name'] clusterNameStr = request.POST.get('cluster_name') isBackup = request.POST['is_backup'] reviewMan = request.POST.get('review_man').split(',') listAllReviewMen = [_mapReviewMan(man) for man in reviewMan] message = request.POST['message'] reason = request.POST['reason'] data_change_type = request.POST['data_change_type'] #subReviewMen = _mapReviewMan(request.POST.get('sub_review_man', '')) #服务器端参数验证 if data_change_type in ('数据修订','数据初始化'): if sqlContent is None: context = {'errMsg': 'SQL内容不能为空'} return render(request, 'error.html', context) else: if message is None: context = {'errMsg': '备注不能为空'} return render(request, 'error.html', context) if reason is None or workflowName is None or clusterNameStr is None or isBackup is None or reviewMan is None: context = {'errMsg': '页面提交参数可能为空'} return render(request, 'error.html', context) primaries = ora_primary_config.objects.all().order_by('cluster_name') if len(primaries) == 0: context = {'errMsg': '目标数为0, 请查看后端是否没有配置数据库信息'} return render(request, 'error.html', context) #获取所有数据库名称 listAllClusterName = [primary.cluster_name for primary in primaries] dictAllClusterSchema = OrderedDict() #获取主库地址: for clusterName in listAllClusterName: listPrimaries = ora_primary_config.objects.filter(cluster_name=clusterName) if len(listPrimaries) !=1: context = {'errMsg': '存在两个名称一样的数据库,请修改数据库配置'} return render(request, 'error.html', context) #取出连接信息 primaryHost = listPrimaries[0].primary_host primaryPort = listPrimaries[0].primary_port primarySrv = listPrimaries[0].primary_srv primaryUser = listPrimaries[0].primary_user primaryPassword = prpCryptor.decrypt(listPrimaries[0].primary_password) #判断工单类型,转入相应的状态 if data_change_type in ('数据修订','数据初始化') and sqlContent: sqlContent = sqlContent.rstrip() if sqlContent[-1] != ";": context = {'errMsg': "SQL语句结尾没有以;结尾,请后退重新修改并提交!"} return render(request, 'error.html', context) workflowStatus = Const.workflowStatus['autoreviewing'] else: workflowStatus = Const.workflowStatus['manexec'] #存进数据库里 engineer = request.session.get('login_username', False) if not workflowid: Workflow = workflow() Workflow.create_time = getNow() else: Workflow = workflow.objects.get(id=int(workflowid)) Workflow.workflow_name = workflowName Workflow.engineer = engineer Workflow.review_man = json.dumps(listAllReviewMen, ensure_ascii=False) Workflow.status = workflowStatus Workflow.is_backup = isBackup Workflow.cluster_name = clusterNameStr Workflow.sql_content = sqlContent Workflow.execute_result = '' Workflow.message = message Workflow.reason = reason Workflow.data_change_type = data_change_type Workflow.save() workflowId = Workflow.id if data_change_type in ('数据修订','数据初始化') and sqlContent: oraAutoReview.delay(workflowId) url = _getDetailUrl(request) + str(workflowId) +'/' strTitle = "新的SQL上线工单提醒 # " + str(workflowId) objEngineer = users.objects.get(username=engineer) for reviewMan in listAllReviewMen: if reviewMan == "": continue strContent = "发起人:" + engineer + "\n审核人:" + str(listAllReviewMen) + "\n工单地址:" + url + "\n工单名称: " + workflowName+"\n原因:"+ reason+"\n备注说明: "+ message + "\n具体SQL:" + sqlContent objReviewMan = users.objects.get(username=reviewMan) mailDba.delay(strTitle, strContent, [objReviewMan.email]) wechatDba.delay(strTitle,strContent,objReviewMan.wechat_account) dingDba.delay(strContent,objReviewMan.mobile) return HttpResponseRedirect('/detail/' + str(workflowId) + '/') def _mapResultSt(x): if x['stagestatus'] == '连接服务器异常': return 1 elif x['stagestatus'] == 'sql执行异常': return 2 elif x['stagestatus'] == '解析失败': return 3 else: return 4 #展示SQL工单详细内容,以及可以人工审核,审核通过即可执行 def detail(request, workflowId): PAGE_LIMIT = 12 loginUser = request.session.get('login_username', False) loginUserObj = users.objects.get(username = loginUser) workflowDetail = get_object_or_404(workflow, pk=workflowId) if workflowDetail.status in (Const.workflowStatus['finish'], Const.workflowStatus['exception'],Const.workflowStatus['manfinish'],Const.workflowStatus['manexcept']): try: listResult = json.loads(workflowDetail.execute_result) listResult.sort(key=_mapResultSt) except Exception as err: listResult = [] else: if workflowDetail.review_content: listResult = json.loads(workflowDetail.review_content) else: listResult=[] pages = math.ceil(len(listResult)/PAGE_LIMIT) if 'pageNo' in request.GET: pageNo = min(int(request.GET['pageNo']),pages-1) else: pageNo = 0 if pageNo < 0: pageNo = 0 offset = pageNo * PAGE_LIMIT limit = offset + PAGE_LIMIT pageRange = range(pageNo,pageNo+min(4,pages-pageNo)+1) listContent = listResult[offset:limit] try: listAllReviewMen = json.loads(workflowDetail.review_man) except ValueError: listAllReviewMen = (workflowDetail.review_man, ) strMessage = workflowDetail.message workflowStatus = Const.workflowStatus engineer_display = _mapEnDisplay(workflowDetail.engineer) reviewman_display = _mapRmDisplay(workflowDetail.review_man) operator_display = _mapEnDisplay(workflowDetail.operator) context = {'currentMenu':'allworkflow', 'workflowDetail':workflowDetail, 'listContent':listContent,'pages':pages,'pageNo':pageNo,'PAGE_LIMIT':PAGE_LIMIT,'listAllReviewMen':listAllReviewMen,'pageRange':pageRange,'strMessage':strMessage,'loginUserObj':loginUserObj,'workflowStatus':workflowStatus,'engineer_display':engineer_display,'reviewman_display':reviewman_display,'operator_display':operator_display} return render(request, 'detail.html', context) #人工审核也通过,执行SQL def execute(request): workflowId = request.POST['workflowid'] if workflowId == '' or workflowId is None: context = {'errMsg': 'workflowId参数为空.'} return render(request, 'error.html', context) workflowId = int(workflowId) with transaction.atomic(): try: workflowDetail = workflow.objects.select_for_update().get(id=workflowId,status__in=(Const.workflowStatus['manreviewing'],Const.workflowStatus['autoreviewwrong'],)) except Exception: context = {'errMsg': '已经在执行'} return render(request, 'error.html', context) #clusterName = workflowDetail.cluster_name try: listAllReviewMen = json.loads(workflowDetail.review_man) except ValueError: listAllReviewMen = (workflowDetail.review_man, ) #服务器端二次验证,正在执行人工审核动作的当前登录用户必须为审核人. 避免攻击或被接口测试工具强行绕过 loginUser = request.session.get('login_username', False) if loginUser is None or loginUser not in listAllReviewMen: context = {'errMsg': '当前登录用户不是审核人,请重新登录.'} return render(request, 'error.html', context) #将流程状态修改为执行中,并更新reviewok_time字段 workflowDetail.status = Const.workflowStatus['executing'] workflowDetail.reviewok_time = getNow() workflowDetail.save() (finalStatus, finalList) = daoora.executeFinal(workflowDetail) #封装成JSON格式存进数据库字段里 strJsonResult = json.dumps(finalList) workflowDetail.execute_result = strJsonResult workflowDetail.finish_time = getNow() workflowDetail.status = finalStatus workflowDetail.operator = loginUser workflowDetail.save() #如果执行完毕了,则根据settings.py里的配置决定是否给提交者和DBA一封邮件提醒.DBA需要知晓审核并执行过的单子 url = _getDetailUrl(request) + str(workflowId) + '/' #给主、副审核人,申请人,DBA各发一封邮件 engineer = workflowDetail.engineer reviewMen = workflowDetail.review_man workflowStatus = workflowDetail.status workflowName = workflowDetail.workflow_name objEngineer = users.objects.get(username=engineer) strTitle = "SQL上线工单执行完毕 # " + str(workflowId) strContent = "发起人:" + engineer + "\n审核人:" + reviewMen + "\n工单地址:" + url + "\n工单名称: " + workflowName +"\n执行结果:" + workflowStatus mailDba.delay(strTitle, strContent, [objEngineer.email]) wechatDba.delay(strTitle, strContent,objEngineer.wechat_account) dingDba.delay(strContent,objEngineer.mobile) return HttpResponseRedirect('/detail/' + str(workflowId) + '/') #终止流程 def cancel(request): workflowId = request.POST['workflowid'] if workflowId == '' or workflowId is None: context = {'errMsg': 'workflowId参数为空.'} return render(request, 'error.html', context) workflowId = int(workflowId) workflowDetail = workflow.objects.get(id=workflowId) reviewMan = workflowDetail.review_man try: listAllReviewMen = json.loads(reviewMan) except ValueError: listAllReviewMen = (reviewMan, ) #服务器端二次验证,如果正在执行终止动作的当前登录用户,不是发起人也不是审核人,则异常. loginUser = request.session.get('login_username', False) if loginUser is None or (loginUser not in listAllReviewMen and loginUser != workflowDetail.engineer): context = {'errMsg': '当前登录用户不是审核人也不是发起人,请重新登录.'} return render(request, 'error.html', context) #服务器端二次验证,如果当前单子状态是结束状态,则不能发起终止 if workflowDetail.status in (Const.workflowStatus['abort'], Const.workflowStatus['finish'], Const.workflowStatus['manfinish']): return HttpResponseRedirect('/detail/' + str(workflowId) + '/') workflowDetail.status = Const.workflowStatus['abort'] workflowDetail.save() #如果人工终止了,则根据settings.py里的配置决定是否给提交者和审核人发邮件提醒。如果是发起人终止流程,则给主、副审核人各发一封;如果是审核人终止流程,则给发起人发一封邮件,并附带说明此单子被拒绝掉了,需要重新修改. url = _getDetailUrl(request) + str(workflowId) + '/' engineer = workflowDetail.engineer workflowStatus = workflowDetail.status workflowName = workflowDetail.workflow_name if loginUser == engineer: strTitle = "发起人主动终止SQL上线工单流程 # " + str(workflowId) strContent = "发起人:" + engineer + "\n审核人:" + reviewMan + "\n工单地址:" + url + "\n工单名称: " + workflowName +"\n执行结果:" + workflowStatus +"\n提醒:发起人主动终止流程" for reviewMan in listAllReviewMen: if reviewMan == "": continue objReviewMan = users.objects.get(username=reviewMan) mailDba.delay(strTitle, strContent, [objReviewMan.email]) wechatDba.delay(strTitle, strContent, objReviewMan.wechat_account) dingDba.delay(strContent,objReviewMan.mobile) else: objEngineer = users.objects.get(username=engineer) strTitle = "SQL上线工单被拒绝执行 # " + str(workflowId) strContent = "发起人:" + engineer + "\n审核人:" + reviewMan + "\n工单地址:" + url + "\n工单名称: " + workflowName +"\n执行结果:" + workflowStatus +"\n提醒:此工单被拒绝执行,请登陆重新提交或修改工单" mailDba.delay(strTitle, strContent, [objEngineer.email]) wechatDba.delay(strTitle, strContent, objEngineer.wechat_account) dingDba.delay(strContent,objEngineer.mobile) return HttpResponseRedirect('/detail/' + str(workflowId) + '/') #工程师确认 def engineerAffirm(request): loginUser = request.session.get('login_user') workflowId = request.POST['workflowid'] with transaction.atomic(): try: workflowDetail = workflow.objects.select_for_update().get(id=workflowId,status__in=(Const.workflowStatus['finish'],Const.workflowStatus['manfinish'],)) except Exception: context = {'errMsg': '在操作中'} return render(request, 'error.html', context) workflowDetail.affirm = '已确认' workflowDetail.affirm_time = getNow() workflowDetail.save() return HttpResponseRedirect('/detail/' + str(workflowId) + '/') #检查登录用户是否为admin def check_admin(func): def _decrator(request): loginUser = request.session.get('login_username', False) if loginUser != 'admin': context = {'errMsg': '无权限访问该页面'} return render(request, 'error.html', context) else: return func(request) return _decrator #数据同步 @check_admin def datasync(request): optCtls = operation_ctl.objects.all().order_by('data_type').order_by('opt_type') optDict = {} for optCtl in optCtls: optDict[optCtl.data_type+'_'+optCtl.opt_type]=[optCtl.modify_time.strftime("%Y-%m-%d %H:%M:%S"),optCtl.status] #optDict = json.dumps(optDict) listOptInfo = operation_record.objects.all().order_by('-modify_time')[:10] for row in listOptInfo: #row.message = row.message[max(row.message.rfind('$$',0,-3)+2,len(row.message)-50):row.message.rfind('$$')] for i in ['create_time','modify_time','finish_time']: if getattr(row,i) is not None: setattr(row,i,getattr(row,i).strftime('%Y-%m-%d %H:%M:%S')) context = {'currentMenu':'datasync','optDict':optDict,'listOptInfo':listOptInfo} return render(request, 'datasync.html', context) #查询功能 @csrf_exempt def queryora(request): primaries = ora_primary_config.objects.all().order_by('cluster_name') if len(primaries) == 0: context = {'errMsg': '目标数为0, 请查看后端是否没有配置数据库信息'} return render(request, 'error.html', context) #获取所有数据库名称 listAllClusterName = [primary.cluster_name for primary in primaries] dictAllClusterSchema = OrderedDict() for clusterName in listAllClusterName: dictAllClusterSchema[clusterName] = '' #query = request.POST.get('query') #if query and query == '1': logon_user = request.session.get('login_username', False) clusterName = request.POST.get('cluster_name') sql_content = request.POST.get('sql_content') sql_query = request.POST.get('sql_query') try: page = int(request.POST.get('page','1')) except Exception: page = 1 headerList = [] queryResultP = [] after_range_num = 5 before_range_num = 4 if page < 1: page = 1 if sql_query: sqlContent = sql_query.strip().rstrip(';') if len(sqlContent) == 0: context = {'errMsg':'sql内容不能为空'} return render(request,'error.html',context) finalStatus,msg,headerList,queryResult = daoora.query(logon_user,clusterName,sqlContent) paginator = Paginator(queryResult, 10) try: queryResultP = paginator.page(page) except (EmptyPage,InvalidPage,PageNotAnInteger): queryResultP = paginator.page(1) if page >= after_range_num: page_range = paginator.page_range[page-after_range_num:page+before_range_num] else: page_range = paginator.page_range[0:int(page)+before_range_num] if finalStatus != '执行结束': context = {'errMsg':msg} return render(request, 'error.html', context) header_list = headerList crtList = [] for cnt in range(0,len(headerList)): if headerList[cnt].lower() in cryColList: crtList.append(cnt) query_result_p = [] for row in queryResultP: strRow = [] for i in range(0,len(row)): if i in crtList: try: strRow.append(prpCryptor.encrypt(row[i])) except Exception as err: strRow.append('$xxxxxxxxxxxxxx$') else: try: strRow.append(str(row[i])) except: strRow.append('byte data type') query_result_p.append(strRow) currentMenu='queryora' return render(request, 'queryora.html', locals()) #SQL审核必读 def dbaprinciples(request): context = {'currentMenu':'dbaprinciples'} return render(request, 'dbaprinciples.html', context) #图表展示 def charts(request): context = {'currentMenu':'charts'} return render(request, 'charts.html', context) #获取当前请求url def _getDetailUrl(request): scheme = request.scheme #host = request.META['HTTP_HOST'] host = getattr(settings,'WAN_HOST') return "%s://%s/detail/" % (scheme, host) #展示数据库schema列表 def oradict(request): primaries = configMap['oracle'].objects.all().order_by('cluster_name') if len(primaries) == 0: context = {'errMsg': '目标数为0, 请查看后端是否没有配置数据库信息'} return render(request, 'error.html', context) #获取所有数据库名称 listAllClusterName = [primary.cluster_name for primary in primaries] clusterName = request.GET.get('cluster_name') if clusterName: listSchema = daoMap['oracle'].getAllSchemaByCluster(clusterName) result = {'listSchema':listSchema} return HttpResponse(json.dumps(result), content_type='application/json') #dictAllClusterSchema = OrderedDict() ##获取主库地址: #for clusterName in listAllClusterName: # listSchema = daoMap['oracle'].getAllSchemaByCluster(clusterName) # dictAllClusterSchema[clusterName] = listSchema return render(request,'oradict.html',locals()) #个人中心 def myProfile(request): pass #配置用户权限 @check_admin def privConfig(request): after_range_num = 5 before_range_num = 4 try: page = int(request.GET.get('page','1')) if page < 1: page = 1 except ValueError: page = 1 listUsers = users.objects.filter(is_active=1).order_by('username') paginator = Paginator(listUsers, 10) listCluster = ora_primary_config.objects.all().order_by('cluster_name') try: listUsersP = paginator.page(page) except (EmptyPage,InvalidPage,PageNotAnInteger): listUsersP = paginator.page(1) if page >= after_range_num: page_range = paginator.page_range[page-after_range_num:page+before_range_num] else: page_range = paginator.page_range[0:int(page)+before_range_num] currentMenu='privconfig' return render(request,'privconfig.html',locals()) def myPrivs(request): listUsers = users.objects.filter(username=request.session.get('login_username')) listCluster = ora_primary_config.objects.all().order_by('cluster_name') currentMenu='myprivs' return render(request,'myprivs.html',locals()) def assignToMe(request): loginUser = request.session.get('login_username') workflowId = request.POST['workflowid'] with transaction.atomic(): try: workflowDetail = workflow.objects.select_for_update().get(id=workflowId,status=Const.workflowStatus['manexec'],operator=None) except Exception: context = {'errMsg': '获取工单状态失败或者已经有人在处理'} return render(request, 'error.html', context) try: reviewMen = json.loads(workflowDetail.review_man) except Exception: reviewMen = workflowDetail.review_man if not loginUser in reviewMen: context = {'errMsg': '你不在审核人之列'} return render(request, 'error.html', context) workflowDetail.operator = loginUser try: workflowDetail.save() except Exception as e: context = {'errMsg': str(e)} return render(request, 'error.html', context) else: return HttpResponseRedirect('/detail/' + str(workflowId) + '/')
30,409
0
538
efe2db08314c57bd59ee078b29667d0527f4de9f
844
py
Python
NeuralNet/Oli/evaluateNN.py
alex-ta/Fontinator
7ca9effe3b61ded032176557520127e1d4b7a5ef
[ "Apache-2.0" ]
6
2017-04-12T14:05:19.000Z
2021-01-29T11:23:50.000Z
NeuralNet/Oli/evaluateNN.py
alex-ta/Fontinator
7ca9effe3b61ded032176557520127e1d4b7a5ef
[ "Apache-2.0" ]
null
null
null
NeuralNet/Oli/evaluateNN.py
alex-ta/Fontinator
7ca9effe3b61ded032176557520127e1d4b7a5ef
[ "Apache-2.0" ]
null
null
null
from NeuralNet.Oli.libs.ProcessingPipeline import ProcessingPipeline from NeuralNet.Oli.libs.Preprocessor import SimplePreprocessor, IPreprocessor #__________Configuration__________# # Path to folder which contains subfolders with the images IMG_PATH = '../../images/Dataset_2' # Name for model when saved MODEL_LOAD_PATH = "SavedModels/LT2" # Pipeline managing working with keras model pipeline: ProcessingPipeline = ProcessingPipeline() # Loads all images and extract features and labels preprocessor: IPreprocessor = SimplePreprocessor() x, y = pipeline.load_features_and_preprocess(IMG_PATH, img_preprocessor=preprocessor) # Load the model from disk pipeline.load_model(MODEL_LOAD_PATH) # Make predictions with loaded model y_pred = pipeline.predict(x) # Evaluate model on test images and show summary pipeline.evaluate(y, y_pred)
30.142857
85
0.81872
from NeuralNet.Oli.libs.ProcessingPipeline import ProcessingPipeline from NeuralNet.Oli.libs.Preprocessor import SimplePreprocessor, IPreprocessor #__________Configuration__________# # Path to folder which contains subfolders with the images IMG_PATH = '../../images/Dataset_2' # Name for model when saved MODEL_LOAD_PATH = "SavedModels/LT2" # Pipeline managing working with keras model pipeline: ProcessingPipeline = ProcessingPipeline() # Loads all images and extract features and labels preprocessor: IPreprocessor = SimplePreprocessor() x, y = pipeline.load_features_and_preprocess(IMG_PATH, img_preprocessor=preprocessor) # Load the model from disk pipeline.load_model(MODEL_LOAD_PATH) # Make predictions with loaded model y_pred = pipeline.predict(x) # Evaluate model on test images and show summary pipeline.evaluate(y, y_pred)
0
0
0
a25701cc6b6f43c6850d384533ce9653d157c2e6
3,530
py
Python
examples/checkpointing/checkpoint.py
RajatRasal/devito
162abb6b318e77eaa4e8f719047327c45782056f
[ "MIT" ]
null
null
null
examples/checkpointing/checkpoint.py
RajatRasal/devito
162abb6b318e77eaa4e8f719047327c45782056f
[ "MIT" ]
null
null
null
examples/checkpointing/checkpoint.py
RajatRasal/devito
162abb6b318e77eaa4e8f719047327c45782056f
[ "MIT" ]
null
null
null
from pyrevolve import Checkpoint, Operator from devito import TimeFunction class CheckpointOperator(Operator): """Devito's concrete implementation of the ABC pyrevolve.Operator. This class wraps devito.Operator so it conforms to the pyRevolve API. pyRevolve will call apply with arguments t_start and t_end. Devito calls these arguments t_s and t_e so the following dict is used to perform the translations between different names. :param op: The devito.Operator object that this object will wrap :param args: If devito.Operator.apply() expects any arguments, they can be provided here to be cached. Any calls to CheckpointOperator.apply() will automatically include these cached arguments in the call to the underlying devito.Operator.apply(). """ t_arg_names = {'t_start': 'time_m', 't_end': 'time_M'} def apply(self, t_start, t_end): """ If the devito operator requires some extra arguments in the call to apply they can be stored in the args property of this object so pyRevolve calls pyRevolve.Operator.apply() without caring about these extra arguments while this method passes them on correctly to devito.Operator """ # Build the arguments list to invoke the kernel function args = self.op.arguments(**self._prepare_args(t_start, t_end)) # Invoke kernel function with args arg_values = [args[p.name] for p in self.op.parameters] self.op.cfunction(*arg_values) class DevitoCheckpoint(Checkpoint): """Devito's concrete implementation of the Checkpoint abstract base class provided by pyRevolve. Holds a list of symbol objects that hold data. """ def __init__(self, objects): """Intialise a checkpoint object. Upon initialisation, a checkpoint stores only a reference to the objects that are passed into it.""" assert(all(isinstance(o, TimeFunction) for o in objects)) dtypes = set([o.dtype for o in objects]) assert(len(dtypes) == 1) self._dtype = dtypes.pop() self.objects = objects @property def save(self, ptr): """Overwrite live-data in this Checkpoint object with data found at the ptr location.""" i_ptr_lo = 0 i_ptr_hi = 0 for o in self.objects: i_ptr_hi = i_ptr_hi + o.size ptr[i_ptr_lo:i_ptr_hi] = o.data.flatten()[:] i_ptr_lo = i_ptr_hi def load(self, ptr): """Copy live-data from this Checkpoint object into the memory given by the ptr.""" i_ptr_lo = 0 i_ptr_hi = 0 for o in self.objects: i_ptr_hi = i_ptr_hi + o.size o.data[:] = ptr[i_ptr_lo:i_ptr_hi].reshape(o.shape) i_ptr_lo = i_ptr_hi @property def size(self): """The memory consumption of the data contained in a checkpoint.""" return sum([o.size for o in self.objects])
42.02381
90
0.650142
from pyrevolve import Checkpoint, Operator from devito import TimeFunction class CheckpointOperator(Operator): """Devito's concrete implementation of the ABC pyrevolve.Operator. This class wraps devito.Operator so it conforms to the pyRevolve API. pyRevolve will call apply with arguments t_start and t_end. Devito calls these arguments t_s and t_e so the following dict is used to perform the translations between different names. :param op: The devito.Operator object that this object will wrap :param args: If devito.Operator.apply() expects any arguments, they can be provided here to be cached. Any calls to CheckpointOperator.apply() will automatically include these cached arguments in the call to the underlying devito.Operator.apply(). """ t_arg_names = {'t_start': 'time_m', 't_end': 'time_M'} def __init__(self, op, **kwargs): self.op = op self.args = kwargs op_default_args = self.op.prepare_arguments(**kwargs) self.start_offset = op_default_args[self.t_arg_names['t_start']] def _prepare_args(self, t_start, t_end): args = self.args.copy() args[self.t_arg_names['t_start']] = t_start + self.start_offset args[self.t_arg_names['t_end']] = t_end - 1 + self.start_offset return args def apply(self, t_start, t_end): """ If the devito operator requires some extra arguments in the call to apply they can be stored in the args property of this object so pyRevolve calls pyRevolve.Operator.apply() without caring about these extra arguments while this method passes them on correctly to devito.Operator """ # Build the arguments list to invoke the kernel function args = self.op.arguments(**self._prepare_args(t_start, t_end)) # Invoke kernel function with args arg_values = [args[p.name] for p in self.op.parameters] self.op.cfunction(*arg_values) class DevitoCheckpoint(Checkpoint): """Devito's concrete implementation of the Checkpoint abstract base class provided by pyRevolve. Holds a list of symbol objects that hold data. """ def __init__(self, objects): """Intialise a checkpoint object. Upon initialisation, a checkpoint stores only a reference to the objects that are passed into it.""" assert(all(isinstance(o, TimeFunction) for o in objects)) dtypes = set([o.dtype for o in objects]) assert(len(dtypes) == 1) self._dtype = dtypes.pop() self.objects = objects @property def dtype(self): return self._dtype def save(self, ptr): """Overwrite live-data in this Checkpoint object with data found at the ptr location.""" i_ptr_lo = 0 i_ptr_hi = 0 for o in self.objects: i_ptr_hi = i_ptr_hi + o.size ptr[i_ptr_lo:i_ptr_hi] = o.data.flatten()[:] i_ptr_lo = i_ptr_hi def load(self, ptr): """Copy live-data from this Checkpoint object into the memory given by the ptr.""" i_ptr_lo = 0 i_ptr_hi = 0 for o in self.objects: i_ptr_hi = i_ptr_hi + o.size o.data[:] = ptr[i_ptr_lo:i_ptr_hi].reshape(o.shape) i_ptr_lo = i_ptr_hi @property def size(self): """The memory consumption of the data contained in a checkpoint.""" return sum([o.size for o in self.objects])
432
0
80
73e96d1b436844de47df13ec105b301ac7ba9065
1,543
py
Python
demo_feature_descriptor.py
DVukalov/cvclasses18
e9a1cab443d847e547fea98b55eecf248520122d
[ "MIT" ]
null
null
null
demo_feature_descriptor.py
DVukalov/cvclasses18
e9a1cab443d847e547fea98b55eecf248520122d
[ "MIT" ]
null
null
null
demo_feature_descriptor.py
DVukalov/cvclasses18
e9a1cab443d847e547fea98b55eecf248520122d
[ "MIT" ]
null
null
null
#!/usr/bin/python3 # DRAFT import os import sys import json import numpy as np import matplotlib.pyplot as plt if __name__ == "__main__": if len(sys.argv) == 2: compare_descriptors(sys.argv[1])
25.295082
130
0.610499
#!/usr/bin/python3 # DRAFT import os import sys import json import numpy as np import matplotlib.pyplot as plt def get_hamming(a, b): d = 0; for i in range(len(a[0])): d+=bin(a[0][i] ^ b[0][i]).count("1") return d def get_distances(values, cols, flag): d = [] dist = (lambda i, j : values[i] ^ values[j]) if type(values[0] is float) else (lambda x : bin(values[i] ^ values[j]).count("1")) descr = [] for i in range(0, int(len(values) / cols)): descr.append([values[i * cols : (i + 1) * cols]]) # добавить расстояние хэмминга if flag==0: for i in range(0, len(descr)): for j in range(i+1, len(descr)): d.append(get_hamming(descr[i], descr[j])) #d.append(np.linalg.norm(np.array(descr[i]) - np.array(descr[j]))) else: for i in range(0, len(descr)): for j in range(i+1, len(descr)): #d.append(get_hamming(descr[i], descr[j])) d.append(np.linalg.norm(np.array(descr[i]) - np.array(descr[j]))) return d def compare_descriptors(filename): data = dict() with open(filename, 'r+', encoding=('UTF-8')) as f: data = json.loads(f.read()) hist_data = dict() i= 0; for key, val in data.items(): hist_data[key] = get_distances(val["data"], val["cols"], i) i=i+1 for key, val in hist_data.items(): val = (val - np.min(val))/np.ptp(val) bins = np.linspace(min(val), max(val), 50) plt.hist(val, alpha=0.5, label=key, normed=True) plt.legend() plt.show() if __name__ == "__main__": if len(sys.argv) == 2: compare_descriptors(sys.argv[1])
1,293
0
72
0a6f6ccab95232541ad45f0a864c6c8f318c1343
5,198
py
Python
bookorbooks/school/tests/class_tests.py
talhakoylu/SummerInternshipBackend
4ecedf5c97f73e3d32d5a534769e86aac3e4b6d3
[ "MIT" ]
1
2021-08-10T22:24:17.000Z
2021-08-10T22:24:17.000Z
bookorbooks/school/tests/class_tests.py
talhakoylu/SummerInternshipBackend
4ecedf5c97f73e3d32d5a534769e86aac3e4b6d3
[ "MIT" ]
null
null
null
bookorbooks/school/tests/class_tests.py
talhakoylu/SummerInternshipBackend
4ecedf5c97f73e3d32d5a534769e86aac3e4b6d3
[ "MIT" ]
null
null
null
from account.models.instructor_model import InstructorProfile import json from school.models.class_model import Class from school.models.school_model import School from django.urls.base import reverse from rest_framework.test import APITestCase from country.models import Country, City from django.contrib.auth import get_user_model User = get_user_model()
41.584
144
0.649865
from account.models.instructor_model import InstructorProfile import json from school.models.class_model import Class from school.models.school_model import School from django.urls.base import reverse from rest_framework.test import APITestCase from country.models import Country, City from django.contrib.auth import get_user_model User = get_user_model() class ClassTests(APITestCase): url_list = reverse("school:list_class") url_create = reverse("school:add_class") url_login = reverse("token_obtain_pair") def setUp(self) -> None: self.country = Country.objects.create(name = "Türkiye", code = "Tur") self.city = City.objects.create(country = self.country, name = "Konya", code = "42") self.school = School.objects.create(city = self.city, name = "Example School", address = "Example Address", website = "Example website") self.create_instructor(school=self.school) self.create_class(school_class = self.school ,user = self.user.user_instructor, name = "Class A", grade = 4) self.url_update = reverse("school:update_class", kwargs={"id" : self.school_class.id}) self.fake_user_data = { "username" : "johndoetest", "password" : "johndoe123", "user_type" : 3 } self.fake_user = User.objects.create_user(username = self.fake_user_data["username"], password = self.fake_user_data["password"], user_type = self.fake_user_data["user_type"], email = "johndoetest@example.com", identity_number = "12345678910") def create_instructor(self, school, username = "johndoe", password = "johndoe123", user_type = 4): self.login_data = { username : username, password : password } self.user = User.objects.create_user(username = username, password = password, user_type = user_type) instructor = InstructorProfile.objects.get(user = self.user) instructor.school = school instructor.save() def create_class(self, school_class, user, name, grade): self.school_class = Class.objects.create(instructor = user, school = school_class, name = name, grade = grade) def login_with_token(self, login_data): """ A method for using login process. """ response = self.client.post(self.url_login, login_data) self.assertEqual(200, response.status_code) token = response.data["access"] self.client.credentials(HTTP_AUTHORIZATION='Bearer ' + token) def test_get_class_list(self): """ Tests that class list page returns a status code of 200 and whether the details contains city, country and name fields. """ response = self.client.get(self.url_list) result = json.loads(response.content) self.assertEqual(200, response.status_code) self.assertTrue("school" in result[0] and result[0]["school"]["name"] == "Example School") self.assertTrue("instructor" in result[0]) self.assertTrue("name" in result[0] and result[0]["name"] == "Class A") def test_create_class_is_authenticated(self): """ Tests whether the user is authenticated, and if not, the user cannot access the "class add" page. """ response = self.client.get(self.url_create) self.assertEqual(401, response.status_code) def test_create_class_is_instructor(self): """ Tests whether the user is instructor. """ self.login_with_token(self.fake_user_data) response = self.client.get(self.url_create) self.assertEqual(403, response.status_code) def test_class_update_is_authenticated(self): """ Tests whether the user is authenticated, and if not, the user cannot access the "class update" page. """ response = self.client.get(self.url_update) self.assertEqual(401, response.status_code) def test_class_update_is_instructor(self): """ Tests whether the user is instructor. """ self.login_with_token(self.fake_user_data) response = self.client.get(self.url_create) self.assertEqual(403, response.status_code) def test_class_update_is_own_class(self): """ Tests whether the user is instructor. """ self.fake_user_data["user_type"] = 4 self.login_with_token(self.fake_user_data) response = self.client.get(self.url_create) self.assertEqual(403, response.status_code) self.assertTrue("detail" in json.loads(response.content)) def test_class_create(self): """ Class createcls page test. """ class_data = { "name": "Class Name", "grade" : 8 } login = { "username": "johndoe", "password" : "johndoe123" } self.login_with_token(login) response = self.client.post(self.url_create, class_data) result = Class.objects.filter(instructor=self.user.user_instructor) self.assertEqual(201, response.status_code) self.assertTrue(result.count() > 0)
1,567
3,242
23
4669eb8a1f882f9e79fab53b7a21494546fdaba9
2,321
py
Python
frarch/modules/metrics/base.py
victorbadenas/frarch
e75e2a63aaf14cf797ffffc901ca382b3d88b7b0
[ "Apache-2.0" ]
null
null
null
frarch/modules/metrics/base.py
victorbadenas/frarch
e75e2a63aaf14cf797ffffc901ca382b3d88b7b0
[ "Apache-2.0" ]
4
2022-02-16T20:53:24.000Z
2022-02-16T21:39:26.000Z
frarch/modules/metrics/base.py
victorbadenas/frarch
e75e2a63aaf14cf797ffffc901ca382b3d88b7b0
[ "Apache-2.0" ]
1
2022-03-20T23:47:16.000Z
2022-03-20T23:47:16.000Z
import abc from typing import Any import torch AGGREGATION_MODES = ["mean", "max", "min"] class Metric(metaclass=abc.ABCMeta): """abstract class for Metric objects. Example: Simple usage of the Metric class:: class MyMetric(Metric): def _update(self, predictions, truth): # compute some metric return metric_value model = MyModel() mymetric = MyMetric() for batch, labels in dataset: predictions = model(batch) mymetric.update(predictions, labels) print(mymetric.get_metric(mode="mean")) """ def reset(self) -> None: """Clear metrics from class.""" self.metrics = [] def update(self, predictions: torch.Tensor, truth: torch.Tensor) -> None: """Compute metric value and append to the metrics array. Args: predictions (torch.Tensor): output tensors from model. truth (torch.Tensor): ground truth tensor. """ self.metrics.append(self._update(predictions, truth)) @abc.abstractmethod def _update(self, predictions: torch.Tensor, truth: torch.Tensor) -> Any: """Compute the metric value. Args: predictions (torch.Tensor): output tensors from model. truth (torch.Tensor): ground truth tensor. """ def get_metric(self, mode="mean") -> float: """Aggregate all values stored in the metric class. Args: mode (str, optional): aggregation type. mean, max or min. Defaults to "mean". Raises: ValueError: aggregation mode not supported Returns: float: aggregated metric. """ if len(self) == 0: return 0.0 if mode not in AGGREGATION_MODES: raise ValueError( f"Mode {mode} not supported. Supported modes: {AGGREGATION_MODES}" ) if mode == "mean": return sum(self.metrics) / len(self) elif mode == "max": return max(self.metrics) elif mode == "min": return min(self.metrics)
28.304878
82
0.560534
import abc from typing import Any import torch AGGREGATION_MODES = ["mean", "max", "min"] class Metric(metaclass=abc.ABCMeta): """abstract class for Metric objects. Example: Simple usage of the Metric class:: class MyMetric(Metric): def _update(self, predictions, truth): # compute some metric return metric_value model = MyModel() mymetric = MyMetric() for batch, labels in dataset: predictions = model(batch) mymetric.update(predictions, labels) print(mymetric.get_metric(mode="mean")) """ def __init__(self) -> None: self.reset() def reset(self) -> None: """Clear metrics from class.""" self.metrics = [] def update(self, predictions: torch.Tensor, truth: torch.Tensor) -> None: """Compute metric value and append to the metrics array. Args: predictions (torch.Tensor): output tensors from model. truth (torch.Tensor): ground truth tensor. """ self.metrics.append(self._update(predictions, truth)) @abc.abstractmethod def _update(self, predictions: torch.Tensor, truth: torch.Tensor) -> Any: """Compute the metric value. Args: predictions (torch.Tensor): output tensors from model. truth (torch.Tensor): ground truth tensor. """ def __len__(self) -> int: return len(self.metrics) def get_metric(self, mode="mean") -> float: """Aggregate all values stored in the metric class. Args: mode (str, optional): aggregation type. mean, max or min. Defaults to "mean". Raises: ValueError: aggregation mode not supported Returns: float: aggregated metric. """ if len(self) == 0: return 0.0 if mode not in AGGREGATION_MODES: raise ValueError( f"Mode {mode} not supported. Supported modes: {AGGREGATION_MODES}" ) if mode == "mean": return sum(self.metrics) / len(self) elif mode == "max": return max(self.metrics) elif mode == "min": return min(self.metrics)
64
0
54
bed916834bec6eedf516cff915c111227e3b0006
561
py
Python
simple5ploit/utils/server.py
binexisHATT/simple5ploit
c3be89bbe67e413ee313da310d57a180243a758f
[ "MIT" ]
1
2021-03-21T21:00:42.000Z
2021-03-21T21:00:42.000Z
simple5ploit/utils/server.py
binexisHATT/simple5ploit
c3be89bbe67e413ee313da310d57a180243a758f
[ "MIT" ]
null
null
null
simple5ploit/utils/server.py
binexisHATT/simple5ploit
c3be89bbe67e413ee313da310d57a180243a758f
[ "MIT" ]
1
2021-10-29T19:07:03.000Z
2021-10-29T19:07:03.000Z
"""Use this template for creating simple Python3 server""" from http.server import SimpleHTTPRequestHandler from socketserver import TCPServer
35.0625
65
0.647059
"""Use this template for creating simple Python3 server""" from http.server import SimpleHTTPRequestHandler from socketserver import TCPServer def serve(port: int): if port > 65535: print(f"[X] port number, {port}, is not a valid port") print("[*] will use port 8888 instead") port = 8888 Handler = SimpleHTTPRequestHandler with TCPServer(("", port), Handler) as httpd: print(f"[**]::server running at http://localhost:{port}") print(f"[**]::press (CTRL+C) to stop server...") httpd.serve_forever()
394
0
23
0cf4c615a40fbaa98c794e4e41937f5390b1e17a
1,323
py
Python
src/plt-lorenz.py
nicola144/auxiliary-particle-filters
61d72e9163abb73007c0fbd30f68d4cc6d7ab4e9
[ "MIT" ]
5
2020-11-26T15:56:15.000Z
2022-02-06T12:48:21.000Z
src/plt-lorenz.py
nicola144/auxiliary-particle-filters
61d72e9163abb73007c0fbd30f68d4cc6d7ab4e9
[ "MIT" ]
null
null
null
src/plt-lorenz.py
nicola144/auxiliary-particle-filters
61d72e9163abb73007c0fbd30f68d4cc6d7ab4e9
[ "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt # This import registers the 3D projection, but is otherwise unused. from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import def lorenz(x, y, z, s=10, r=28, b=2.667): ''' Given: x, y, z: a point of interest in three dimensional space s, r, b: parameters defining the lorenz attractor Returns: x_dot, y_dot, z_dot: values of the lorenz attractor's partial derivatives at the point x, y, z ''' x_dot = s*(y - x) y_dot = r*x - y - x*z z_dot = x*y - b*z return x_dot, y_dot, z_dot dt = 0.01 num_steps = 1000 # Need one more for the initial values xs = np.empty(num_steps + 1) ys = np.empty(num_steps + 1) zs = np.empty(num_steps + 1) # Set initial values xs[0], ys[0], zs[0] = (0., 1., 1.05) # Step through "time", calculating the partial derivatives at the current point # and using them to estimate the next point for i in range(num_steps): x_dot, y_dot, z_dot = lorenz(xs[i], ys[i], zs[i]) xs[i + 1] = xs[i] + (x_dot * dt) ys[i + 1] = ys[i] + (y_dot * dt) zs[i + 1] = zs[i] + (z_dot * dt) # Plot fig = plt.figure() ax = fig.gca(projection='3d') ax.plot(xs, ys, zs, lw=0.5) ax.set_xlabel("X1 Axis") ax.set_ylabel("X2 Axis") ax.set_zlabel("X3 Axis") ax.set_title("Lorenz 63 noiseless trajectory") plt.savefig('lorenz-2.pdf')
25.442308
79
0.662887
import numpy as np import matplotlib.pyplot as plt # This import registers the 3D projection, but is otherwise unused. from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import def lorenz(x, y, z, s=10, r=28, b=2.667): ''' Given: x, y, z: a point of interest in three dimensional space s, r, b: parameters defining the lorenz attractor Returns: x_dot, y_dot, z_dot: values of the lorenz attractor's partial derivatives at the point x, y, z ''' x_dot = s*(y - x) y_dot = r*x - y - x*z z_dot = x*y - b*z return x_dot, y_dot, z_dot dt = 0.01 num_steps = 1000 # Need one more for the initial values xs = np.empty(num_steps + 1) ys = np.empty(num_steps + 1) zs = np.empty(num_steps + 1) # Set initial values xs[0], ys[0], zs[0] = (0., 1., 1.05) # Step through "time", calculating the partial derivatives at the current point # and using them to estimate the next point for i in range(num_steps): x_dot, y_dot, z_dot = lorenz(xs[i], ys[i], zs[i]) xs[i + 1] = xs[i] + (x_dot * dt) ys[i + 1] = ys[i] + (y_dot * dt) zs[i + 1] = zs[i] + (z_dot * dt) # Plot fig = plt.figure() ax = fig.gca(projection='3d') ax.plot(xs, ys, zs, lw=0.5) ax.set_xlabel("X1 Axis") ax.set_ylabel("X2 Axis") ax.set_zlabel("X3 Axis") ax.set_title("Lorenz 63 noiseless trajectory") plt.savefig('lorenz-2.pdf')
0
0
0
08fc5cb1dced07419054a946bb8215665b291c68
3,908
py
Python
demo.py
Ushk/fourier-feature-networks
af4947e137e31c5e3a887d800f1995485414297d
[ "MIT" ]
null
null
null
demo.py
Ushk/fourier-feature-networks
af4947e137e31c5e3a887d800f1995485414297d
[ "MIT" ]
null
null
null
demo.py
Ushk/fourier-feature-networks
af4947e137e31c5e3a887d800f1995485414297d
[ "MIT" ]
null
null
null
import torch import torch.nn as nn import torchvision import numpy as np from tqdm import tqdm from dataset import ImageDataset if __name__ == '__main__': device = "cuda:0" network_size = (4, 512, 256) learning_rate = 1e-4 iters = 250 mapping_size = 256 B_gauss = torch.randn((mapping_size, 2)).to(device) * 10 ds = ImageDataset("data/fox.jpg", 512) grid, image = ds[0] grid = grid.unsqueeze(0).to(device) image = image.unsqueeze(0).to(device) test_data = (grid, image) train_data = (grid[:, ::2, ::2], image[:, ::2, :: 2]) output = train_model(network_size, learning_rate, iters, B_gauss, train_data=train_data, test_data=(grid, image), device=device)
28.948148
92
0.591095
import torch import torch.nn as nn import torchvision import numpy as np from tqdm import tqdm from dataset import ImageDataset class Swish(nn.Module): def __init__(self): super().__init__() def forward(self, x): return x * torch.sigmoid(x) class SirenLayer(nn.Module): def __init__(self, in_f, out_f, w0=30, is_first=False, is_last=False): super().__init__() self.in_f = in_f self.w0 = w0 self.linear = nn.Linear(in_f, out_f) self.is_first = is_first self.is_last = is_last self.init_weights() def init_weights(self): b = 1 / \ self.in_f if self.is_first else np.sqrt(6 / self.in_f) / self.w0 with torch.no_grad(): self.linear.weight.uniform_(-b, b) def forward(self, x): x = self.linear(x) return x if self.is_last else torch.sin(self.w0 * x) def input_mapping(x, B): if B is None: return x else: x_proj = (2. * np.pi * x) @ B.t() return torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1) def make_network(num_layers, input_dim, hidden_dim): layers = [nn.Linear(input_dim, hidden_dim), Swish()] for i in range(1, num_layers - 1): layers.append(nn.Linear(hidden_dim, hidden_dim)) layers.append(Swish()) layers.append(nn.Linear(hidden_dim, 3)) layers.append(nn.Sigmoid()) return nn.Sequential(*layers) def gon_model(num_layers, input_dim, hidden_dim): layers = [SirenLayer(input_dim, hidden_dim, is_first=True)] for i in range(1, num_layers - 1): layers.append(SirenLayer(hidden_dim, hidden_dim)) layers.append(SirenLayer(hidden_dim, 3, is_last=True)) return nn.Sequential(*layers) def train_model(network_size, learning_rate, iters, B, train_data, test_data, device="cpu"): model = gon_model(*network_size).to(device) optim = torch.optim.Adam(model.parameters(), lr=learning_rate) loss_fn = torch.nn.MSELoss() train_psnrs = [] test_psnrs = [] xs = [] for i in range(iters): #for i in tqdm(range(iters), desc='train iter', leave=False): model.train() optim.zero_grad() t_o = model(input_mapping(train_data[0], B)) t_loss = .5 * loss_fn(t_o, train_data[1]) t_loss.backward() optim.step() # print(f"---[steps: {i}]: train loss: {t_loss.item():.6f}") train_psnrs.append(- 10 * torch.log10(2 * t_loss).item()) if i % 25 == 0: model.eval() with torch.no_grad(): v_o = model(input_mapping(test_data[0], B)) save_img = torch.zeros((1,3,256,256)).to(device) test_inds = (test_data[0]*255).round().long() save_img[0, :, test_inds[:,0], test_inds[:,1]] = v_o.T #v_loss = loss_fn(v_o, test_data[1]) #v_psnrs = - 10 * torch.log10(2 * v_loss).item() #test_psnrs.append(v_psnrs) #xs.append(i) torchvision.utils.save_image(save_img, f"imgs/{i}.jpeg") # print(f"---[steps: {i}]: valid loss: {v_loss.item():.6f}") return { 'state': model.state_dict(), 'train_psnrs': train_psnrs, 'test_psnrs': test_psnrs, } if __name__ == '__main__': device = "cuda:0" network_size = (4, 512, 256) learning_rate = 1e-4 iters = 250 mapping_size = 256 B_gauss = torch.randn((mapping_size, 2)).to(device) * 10 ds = ImageDataset("data/fox.jpg", 512) grid, image = ds[0] grid = grid.unsqueeze(0).to(device) image = image.unsqueeze(0).to(device) test_data = (grid, image) train_data = (grid[:, ::2, ::2], image[:, ::2, :: 2]) output = train_model(network_size, learning_rate, iters, B_gauss, train_data=train_data, test_data=(grid, image), device=device)
2,882
9
272
2507f30939de842954c4932ecd45b09333c6cfe5
33,664
py
Python
tests/tree/aggs/test_aggs.py
alk-lbinet/pandagg
542350f84ca4497ab4a5f01b054aff2385f6827e
[ "Apache-2.0" ]
null
null
null
tests/tree/aggs/test_aggs.py
alk-lbinet/pandagg
542350f84ca4497ab4a5f01b054aff2385f6827e
[ "Apache-2.0" ]
null
null
null
tests/tree/aggs/test_aggs.py
alk-lbinet/pandagg
542350f84ca4497ab4a5f01b054aff2385f6827e
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # ============================================================================= # IMPORTS # ============================================================================= from __future__ import unicode_literals from unittest import TestCase from mock import patch from pandagg.tree.aggs import Aggs from pandagg.exceptions import InvalidOperationMappingFieldError from pandagg.aggs import DateHistogram, Terms, Avg, Min, Filter import tests.testing_samples.data_sample as sample from tests.testing_samples.mapping_example import MAPPINGS
35.213389
113
0.361157
#!/usr/bin/env python # -*- coding: utf-8 -*- # ============================================================================= # IMPORTS # ============================================================================= from __future__ import unicode_literals from unittest import TestCase from mock import patch from pandagg.tree.aggs import Aggs from pandagg.exceptions import InvalidOperationMappingFieldError from pandagg.aggs import DateHistogram, Terms, Avg, Min, Filter import tests.testing_samples.data_sample as sample from tests.testing_samples.mapping_example import MAPPINGS class AggTestCase(TestCase): def setUp(self): patcher = patch("uuid.uuid4", side_effect=range(1000)) patcher.start() self.addCleanup(patcher.stop) def test_deserialize_nodes_with_subaggs(self): expected = { "genres": { "terms": {"field": "genres", "size": 3}, "aggs": { "movie_decade": { "date_histogram": {"field": "year", "fixed_interval": "3650d"} } }, } } agg1 = Aggs(expected) agg2 = Aggs( { "genres": Terms( field="genres", size=3, aggs={ "movie_decade": DateHistogram( field="year", fixed_interval="3650d" ) }, ) } ) agg3 = Aggs( { "genres": Terms( field="genres", size=3, aggs={ "movie_decade": DateHistogram( field="year", fixed_interval="3650d" ) }, ) } ) agg4 = Aggs( { "genres": Terms( field="genres", size=3, aggs={ "movie_decade": { "date_histogram": { "field": "year", "fixed_interval": "3650d", } } }, ) } ) agg5 = Aggs( { "genres": { "terms": {"field": "genres", "size": 3}, "aggs": { "movie_decade": DateHistogram( field="year", fixed_interval="3650d" ) }, } } ) for a in (agg1, agg2, agg3, agg4, agg5): self.assertEqual(a.to_dict(), expected) self.assertEqual( a.show(stdout=False), """<Aggregations> genres <terms, field="genres", size=3> └── movie_decade <date_histogram, field="year", fixed_interval="3650d"> """, ) def test_add_node_with_mapping(self): with_mapping = Aggs(mappings=MAPPINGS, nested_autocorrect=True) # add regular node with_mapping = with_mapping.agg("workflow", Terms(field="workflow")) self.assertEqual( with_mapping.to_dict(), {"workflow": {"terms": {"field": "workflow"}}} ) # try to add field aggregation on non-existing field will fail with self.assertRaises(ValueError): with_mapping.agg( "imaginary_agg", Terms(field="imaginary_field"), insert_below="workflow" ) # try to add aggregation on a non-compatible field will fail with self.assertRaises(InvalidOperationMappingFieldError): with_mapping.agg( "average_of_string", Avg(field="classification_type"), insert_below="workflow", ) # add field aggregation on field passing through nested will automatically add nested with_mapping = with_mapping.agg( "local_f1_score", Avg(field="local_metrics.performance.test.f1_score"), insert_below="workflow", ) self.assertEqual( with_mapping.to_dict(), { "workflow": { "aggs": { "nested_below_workflow": { "aggs": { "local_f1_score": { "avg": { "field": "local_metrics.performance.test.f1_score" } } }, "nested": {"path": "local_metrics"}, } }, "terms": {"field": "workflow"}, } }, ) self.assertEqual( with_mapping.show(stdout=False), """<Aggregations> workflow <terms, field="workflow"> └── nested_below_workflow <nested, path="local_metrics"> └── local_f1_score <avg, field="local_metrics.performance.test.f1_score"> """, ) auto_nested_id = with_mapping.id_from_key("nested_below_workflow") k, node = with_mapping.get(auto_nested_id) self.assertEqual(k, "nested_below_workflow") self.assertEqual(node.KEY, "nested") self.assertEqual(node.path, "local_metrics") # add other agg requiring nested will reuse nested agg as parent with_mapping = with_mapping.agg( "local_precision", Avg(field="local_metrics.performance.test.precision"), insert_below="workflow", ) self.assertEqual( { "workflow": { "aggs": { "nested_below_workflow": { "aggs": { "local_f1_score": { "avg": { "field": "local_metrics.performance.test.f1_score" } }, "local_precision": { "avg": { "field": "local_metrics.performance.test.precision" } }, }, "nested": {"path": "local_metrics"}, } }, "terms": {"field": "workflow"}, } }, with_mapping.to_dict(), ) # add under a nested parent a field aggregation that requires to be located under root will automatically # add reverse-nested with_mapping = with_mapping.agg( "language_terms", Terms(field="language"), insert_below="nested_below_workflow", ) self.assertEqual( with_mapping.to_dict(), { "workflow": { "aggs": { "nested_below_workflow": { "aggs": { "local_f1_score": { "avg": { "field": "local_metrics.performance.test.f1_score" } }, "local_precision": { "avg": { "field": "local_metrics.performance.test.precision" } }, "reverse_nested_below_nested_below_workflow": { "aggs": { "language_terms": { "terms": {"field": "language"} } }, "reverse_nested": {}, }, }, "nested": {"path": "local_metrics"}, } }, "terms": {"field": "workflow"}, } }, ) # TODO - finish these tests (reverse nested) def test_paste_tree_with_mapping(self): # with explicit nested initial_agg_1 = Aggs( { "week": { "date_histogram": { "field": "date", "format": "yyyy-MM-dd", "interval": "1w", } } }, mappings=MAPPINGS, ) self.assertEqual({k for k, _ in initial_agg_1.list()}, {None, "week"}) pasted_agg_1 = Aggs( { "nested_below_week": { "nested": {"path": "local_metrics"}, "aggs": { "local_metrics.field_class.name": { "terms": { "field": "local_metrics.field_class.name", "size": 10, } } }, } } ) self.assertEqual( {k for k, _ in pasted_agg_1.list()}, {None, "nested_below_week", "local_metrics.field_class.name"}, ) agg_2 = initial_agg_1.aggs(pasted_agg_1, insert_below="week") self.assertEqual( {k for k, _ in agg_2.list()}, {None, "week", "nested_below_week", "local_metrics.field_class.name"}, ) self.assertEqual( agg_2.to_dict(), { "week": { "date_histogram": { "field": "date", "format": "yyyy-MM-dd", "interval": "1w", }, "aggs": { "nested_below_week": { "nested": {"path": "local_metrics"}, "aggs": { "local_metrics.field_class.name": { "terms": { "field": "local_metrics.field_class.name", "size": 10, } } }, } }, } }, ) # without explicit nested initial_agg_2 = Aggs( { "week": { "date_histogram": { "field": "date", "format": "yyyy-MM-dd", "interval": "1w", } } }, mappings=MAPPINGS, nested_autocorrect=True, ) self.assertEqual({k for k, _ in initial_agg_2.list()}, {None, "week"}) pasted_agg_2 = Aggs( { "local_metrics.field_class.name": { "terms": {"field": "local_metrics.field_class.name", "size": 10} } } ) self.assertEqual( {k for k, _ in pasted_agg_2.list()}, {None, "local_metrics.field_class.name"}, ) agg_3 = initial_agg_2.aggs(pasted_agg_2, insert_below="week") self.assertEqual( {k for k, _ in agg_3.list()}, {None, "week", "nested_below_week", "local_metrics.field_class.name"}, ) self.assertEqual( agg_3.to_dict(), { "week": { "date_histogram": { "field": "date", "format": "yyyy-MM-dd", "interval": "1w", }, "aggs": { "nested_below_week": { "nested": {"path": "local_metrics"}, "aggs": { "local_metrics.field_class.name": { "terms": { "field": "local_metrics.field_class.name", "size": 10, } } }, } }, } }, ) def test_insert_tree_without_mapping(self): # with explicit nested initial_agg_1 = Aggs( { "week": { "date_histogram": { "field": "date", "format": "yyyy-MM-dd", "interval": "1w", } } } ) self.assertEqual({k for k, _ in initial_agg_1.list()}, {None, "week"}) pasted_agg_1 = Aggs( { "nested_below_week": { "nested": {"path": "local_metrics"}, "aggs": { "local_metrics.field_class.name": { "terms": { "field": "local_metrics.field_class.name", "size": 10, } } }, } } ) self.assertEqual( {k for k, _ in pasted_agg_1.list()}, {None, "nested_below_week", "local_metrics.field_class.name"}, ) agg_2 = initial_agg_1.aggs(pasted_agg_1, insert_below="week") self.assertEqual( {k for k, _ in agg_2.list()}, {None, "week", "nested_below_week", "local_metrics.field_class.name"}, ) self.assertEqual( agg_2.to_dict(), { "week": { "date_histogram": { "field": "date", "format": "yyyy-MM-dd", "interval": "1w", }, "aggs": { "nested_below_week": { "nested": {"path": "local_metrics"}, "aggs": { "local_metrics.field_class.name": { "terms": { "field": "local_metrics.field_class.name", "size": 10, } } }, } }, } }, ) def test_interpret_agg_string(self): some_agg = Aggs() some_agg = some_agg.agg("some_field", insert_below=None) self.assertEqual( some_agg.to_dict(), {"some_field": {"terms": {"field": "some_field"}}} ) # with default size some_agg = Aggs() some_agg = some_agg.agg("some_field", insert_below=None, size=10) self.assertEqual( some_agg.to_dict(), {"some_field": {"terms": {"field": "some_field", "size": 10}}}, ) # with parent some_agg = Aggs( {"root_agg_name": {"terms": {"field": "some_field", "size": 5}}} ) some_agg = some_agg.agg("child_field", insert_below="root_agg_name") self.assertEqual( some_agg.to_dict(), { "root_agg_name": { "aggs": {"child_field": {"terms": {"field": "child_field"}}}, "terms": {"field": "some_field", "size": 5}, } }, ) # with required nested some_agg = Aggs( {"term_workflow": {"terms": {"field": "workflow", "size": 5}}}, mappings=MAPPINGS, nested_autocorrect=True, ) some_agg = some_agg.agg( "local_metrics.field_class.name", insert_below="term_workflow" ) self.assertEqual( some_agg.to_dict(), { "term_workflow": { "aggs": { "nested_below_term_workflow": { "aggs": { "local_metrics.field_class.name": { "terms": {"field": "local_metrics.field_class.name"} } }, "nested": {"path": "local_metrics"}, } }, "terms": {"field": "workflow", "size": 5}, } }, ) def test_aggs(self): node = Terms(field="some_field", size=10) some_agg = Aggs().agg("some_name", node, insert_below=None) self.assertEqual( some_agg.to_dict(), {"some_name": {"terms": {"field": "some_field", "size": 10}}}, ) # with parent with required nested some_agg = Aggs( {"term_workflow": {"terms": {"field": "workflow", "size": 5}}}, mappings=MAPPINGS, nested_autocorrect=True, ) node = Avg(field="local_metrics.performance.test.f1_score") some_agg = some_agg.agg("min_local_f1", node, insert_below="term_workflow") self.assertEqual( some_agg.to_dict(), { "term_workflow": { "aggs": { "nested_below_term_workflow": { "aggs": { "min_local_f1": { "avg": { "field": "local_metrics.performance.test.f1_score" } } }, "nested": {"path": "local_metrics"}, } }, "terms": {"field": "workflow", "size": 5}, } }, ) def test_aggs_at_root(self): # not at root a = ( Aggs() .groupby("zero", "terms", field="terms_zero") .agg("one", "terms", field="terms_one") .agg("two", "terms", field="terms_two") ) self.assertEqual( a.to_dict(), { "zero": { "terms": {"field": "terms_zero"}, "aggs": { "one": {"terms": {"field": "terms_one"}}, "two": {"terms": {"field": "terms_two"}}, }, } }, ) # at root a = ( Aggs() .groupby("zero", "terms", field="terms_zero") .agg("one", "terms", field="terms_one") .agg("two", "terms", field="terms_two", at_root=True) ) self.assertEqual( a.to_dict(), { "zero": { "terms": {"field": "terms_zero"}, "aggs": {"one": {"terms": {"field": "terms_one"}}}, }, "two": {"terms": {"field": "terms_two"}}, }, ) def test_aggs_strings(self): self.assertEqual( Aggs().agg("yolo1").agg("yolo2").to_dict(), { "yolo1": {"terms": {"field": "yolo1"}}, "yolo2": {"terms": {"field": "yolo2"}}, }, ) def test_init_from_node_hierarchy(self): node_hierarchy = sample.get_node_hierarchy() agg = Aggs(node_hierarchy, mappings=MAPPINGS) self.assertEqual(agg.to_dict(), sample.EXPECTED_AGG_QUERY) # with nested node_hierarchy = { "week": DateHistogram( field="date", interval="1w", aggs={ "local_metrics.field_class.name": Terms( field="local_metrics.field_class.name", size=10, aggs={ "min_f1_score": Min( field="local_metrics.performance.test.f1_score" ) }, ) }, ) } agg = Aggs(node_hierarchy, mappings=MAPPINGS, nested_autocorrect=True) self.assertEqual( agg.to_dict(), { "week": { "aggs": { "nested_below_week": { "aggs": { "local_metrics.field_class.name": { "aggs": { "min_f1_score": { "min": { "field": "local_metrics.performance.test.f1_score" } } }, "terms": { "field": "local_metrics.field_class.name", "size": 10, }, } }, "nested": {"path": "local_metrics"}, } }, "date_histogram": {"field": "date", "interval": "1w"}, } }, ) self.assertEqual( agg.to_dict(), { "week": { "aggs": { "nested_below_week": { "aggs": { "local_metrics.field_class.name": { "aggs": { "min_f1_score": { "min": { "field": "local_metrics.performance.test.f1_score" } } }, "terms": { "field": "local_metrics.field_class.name", "size": 10, }, } }, "nested": {"path": "local_metrics"}, } }, "date_histogram": {"field": "date", "interval": "1w"}, } }, ) def test_agg_init(self): agg = sample.get_wrapper_declared_agg() self.assertEqual(agg.to_dict(), sample.EXPECTED_AGG_QUERY) def test_groupby_args_syntax(self): a = Aggs().groupby("some_name", "terms", field="some_field") self.assertEqual(a.to_dict(), {"some_name": {"terms": {"field": "some_field"}}}) def test_groupby_at_root(self): a = ( Aggs() .groupby("one", "terms", field="terms_one") .groupby("two", "terms", field="terms_two", at_root=True) ) self.assertEqual( a.to_dict(), { "two": { "terms": {"field": "terms_two"}, "aggs": {"one": {"terms": {"field": "terms_one"}}}, } }, ) # not at root: default behavior a = ( Aggs() .groupby("one", "terms", field="terms_one") .groupby("two", "terms", field="terms_two") ) self.assertEqual( a.to_dict(), { "one": { "terms": {"field": "terms_one"}, "aggs": {"two": {"terms": {"field": "terms_two"}}}, } }, ) def test_groupby_insert_below(self): a1 = Aggs( {"A": Terms(field="A", aggs={"B": Terms(field="B"), "C": Terms(field="C")})} ) self.assertEqual( a1.to_dict(), { "A": { "terms": {"field": "A"}, "aggs": { "C": {"terms": {"field": "C"}}, "B": {"terms": {"field": "B"}}, }, } }, ) self.assertEqual( a1.groupby("D", Terms(field="D"), insert_below="A").to_dict(), { "A": { "terms": {"field": "A"}, "aggs": { "D": { "terms": {"field": "D"}, "aggs": { "B": {"terms": {"field": "B"}}, "C": {"terms": {"field": "C"}}, }, } }, } }, ) def test_agg_insert_below(self): a1 = Aggs( {"A": Terms(field="A", aggs={"B": Terms(field="B"), "C": Terms(field="C")})} ) self.assertEqual( a1.to_dict(), { "A": { "terms": {"field": "A"}, "aggs": { "C": {"terms": {"field": "C"}}, "B": {"terms": {"field": "B"}}, }, } }, ) expected = { "A": { "aggs": { "B": {"terms": {"field": "B"}}, "C": {"terms": {"field": "C"}}, "D": {"terms": {"field": "D"}}, }, "terms": {"field": "A"}, } } self.assertEqual( a1.agg(name="D", type_or_agg=Terms(field="D"), insert_below="A").to_dict(), expected, ) self.assertEqual( a1.agg( name="D", type_or_agg="terms", field="D", insert_below="A" ).to_dict(), expected, ) self.assertEqual( a1.agg( name="D", type_or_agg={"terms": {"field": "D"}}, insert_below="A" ).to_dict(), expected, ) def test_applied_nested_path_at_node(self): """Check that correct nested path is detected at node levels: week └── nested_below_week └── local_metrics.field_class.name ├── avg_f1_score ├── max_f1_score └── min_f1_score """ node_hierarchy = { "week": DateHistogram( field="date", interval="1w", aggs={ "local_metrics.field_class.name": Terms( field="local_metrics.field_class.name", size=10, aggs={ "min_f1_score": Min( field="local_metrics.performance.test.f1_score" ) }, ) }, ) } agg = Aggs(node_hierarchy, mappings=MAPPINGS, nested_autocorrect=True) self.assertEqual(agg.applied_nested_path_at_node(agg.id_from_key("week")), None) for node_key in ( "nested_below_week", "local_metrics.field_class.name", "min_f1_score", ): self.assertEqual( agg.applied_nested_path_at_node(agg.id_from_key(node_key)), "local_metrics", ) def test_groupby_pointer(self): a = ( Aggs() .groupby("A", "terms", field="a") .groupby("B", "date_histogram", fixed_interval="1d", field="b") ) self.assertEqual(a.get_key(a._groupby_ptr), "B") a1 = a.agg("C1", "terms", field="c1").agg("C2", "terms", field="c2") self.assertEqual( a1.show(stdout=False), """<Aggregations> A <terms, field="a"> └── B <date_histogram, field="b", fixed_interval="1d"> ├── C1 <terms, field="c1"> └── C2 <terms, field="c2"> """, ) self.assertEqual( a1.to_dict(), { "A": { "aggs": { "B": { "aggs": { "C1": {"terms": {"field": "c1"}}, "C2": {"terms": {"field": "c2"}}, }, "date_histogram": {"field": "b", "fixed_interval": "1d"}, } }, "terms": {"field": "a"}, } }, ) def test_deepest_linear_agg(self): # deepest_linear_bucket_agg """ week └── nested_below_week └── local_metrics.field_class.name <----- HERE because then metric aggregation └── avg_f1_score """ node_hierarchy = { "week": DateHistogram( field="date", interval="1w", aggs={ "local_metrics.field_class.name": Terms( field="local_metrics.field_class.name", size=10, aggs={ "min_f1_score": Min( field="local_metrics.performance.test.f1_score" ) }, ) }, ) } agg = Aggs(node_hierarchy, mappings=MAPPINGS, nested_autocorrect=True) self.assertEqual( agg.get_key(agg._deepest_linear_bucket_agg), "local_metrics.field_class.name", ) # week is last bucket linear bucket node_hierarchy_2 = { "week": DateHistogram( field="date", interval="1w", aggs={ "local_metrics.field_class.name": Terms( field="local_metrics.field_class.name", size=10 ), "f1_score_above_threshold": Filter( filter={ "range": { "local_metrics.performance.test.f1_score": {"gte": 0.5} } } ), }, ) } agg2 = Aggs(node_hierarchy_2, mappings=MAPPINGS, nested_autocorrect=True) self.assertEqual(agg2.get_key(agg2._deepest_linear_bucket_agg), "week") def test_grouped_by(self): a = Aggs().aggs( { "some_agg": { "terms": {"field": "some_field"}, "aggs": {"below_agg": {"terms": {"field": "other_field"}}}, } } ) self.assertEqual(a._groupby_ptr, a.root) self.assertEqual( a.agg("age_avg", "avg", field="age").to_dict(), { "some_agg": { "terms": {"field": "some_field"}, "aggs": {"below_agg": {"terms": {"field": "other_field"}}}, }, "age_avg": {"avg": {"field": "age"}}, }, ) # select a specific agg new_a = a.grouped_by("some_agg") self.assertEqual(new_a._groupby_ptr, new_a.id_from_key("some_agg")) self.assertEqual( new_a.agg("age_avg", "avg", field="age").to_dict(), { "some_agg": { "terms": {"field": "some_field"}, "aggs": { "below_agg": {"terms": {"field": "other_field"}}, "age_avg": {"avg": {"field": "age"}}, }, } }, ) # deepest last_a = a.grouped_by(deepest=True) self.assertEqual(last_a._groupby_ptr, new_a.id_from_key("below_agg")) self.assertEqual( last_a.agg("age_avg", "avg", field="age").to_dict(), { "some_agg": { "terms": {"field": "some_field"}, "aggs": { "below_agg": { "terms": {"field": "other_field"}, "aggs": {"age_avg": {"avg": {"field": "age"}}}, } }, } }, )
29,246
3,856
23
16a28ee4b62eb063602230dea021f902824e2ced
2,785
py
Python
airflow/providers/google/cloud/links/cloud_tasks.py
holly-evans/airflow
865406cbab4defd35c95afbf0a8d5987ff7788b1
[ "Apache-2.0" ]
8,092
2016-04-27T20:32:29.000Z
2019-01-05T07:39:33.000Z
airflow/providers/google/cloud/links/cloud_tasks.py
holly-evans/airflow
865406cbab4defd35c95afbf0a8d5987ff7788b1
[ "Apache-2.0" ]
2,961
2016-05-05T07:16:16.000Z
2019-01-05T08:47:59.000Z
airflow/providers/google/cloud/links/cloud_tasks.py
holly-evans/airflow
865406cbab4defd35c95afbf0a8d5987ff7788b1
[ "Apache-2.0" ]
3,546
2016-05-04T20:33:16.000Z
2019-01-05T05:14:26.000Z
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """This module contains Google Cloud Tasks links.""" from typing import TYPE_CHECKING, Optional from airflow.models import BaseOperator from airflow.providers.google.cloud.links.base import BaseGoogleLink if TYPE_CHECKING: from airflow.utils.context import Context CLOUD_TASKS_BASE_LINK = "https://pantheon.corp.google.com/cloudtasks" CLOUD_TASKS_QUEUE_LINK = CLOUD_TASKS_BASE_LINK + "/queue/{location}/{queue_id}/tasks?project={project_id}" CLOUD_TASKS_LINK = CLOUD_TASKS_BASE_LINK + "?project={project_id}" class CloudTasksQueueLink(BaseGoogleLink): """Helper class for constructing Cloud Task Queue Link""" name = "Cloud Tasks Queue" key = "cloud_task_queue" format_str = CLOUD_TASKS_QUEUE_LINK @staticmethod def extract_parts(queue_name: Optional[str]): """ Extract project_id, location and queue id from queue name: projects/PROJECT_ID/locations/LOCATION_ID/queues/QUEUE_ID """ if not queue_name: return "", "", "" parts = queue_name.split("/") return parts[1], parts[3], parts[5] @staticmethod class CloudTasksLink(BaseGoogleLink): """Helper class for constructing Cloud Task Link""" name = "Cloud Tasks" key = "cloud_task" format_str = CLOUD_TASKS_LINK @staticmethod
33.963415
106
0.70018
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """This module contains Google Cloud Tasks links.""" from typing import TYPE_CHECKING, Optional from airflow.models import BaseOperator from airflow.providers.google.cloud.links.base import BaseGoogleLink if TYPE_CHECKING: from airflow.utils.context import Context CLOUD_TASKS_BASE_LINK = "https://pantheon.corp.google.com/cloudtasks" CLOUD_TASKS_QUEUE_LINK = CLOUD_TASKS_BASE_LINK + "/queue/{location}/{queue_id}/tasks?project={project_id}" CLOUD_TASKS_LINK = CLOUD_TASKS_BASE_LINK + "?project={project_id}" class CloudTasksQueueLink(BaseGoogleLink): """Helper class for constructing Cloud Task Queue Link""" name = "Cloud Tasks Queue" key = "cloud_task_queue" format_str = CLOUD_TASKS_QUEUE_LINK @staticmethod def extract_parts(queue_name: Optional[str]): """ Extract project_id, location and queue id from queue name: projects/PROJECT_ID/locations/LOCATION_ID/queues/QUEUE_ID """ if not queue_name: return "", "", "" parts = queue_name.split("/") return parts[1], parts[3], parts[5] @staticmethod def persist( operator_instance: BaseOperator, context: "Context", queue_name: Optional[str], ): project_id, location, queue_id = CloudTasksQueueLink.extract_parts(queue_name) operator_instance.xcom_push( context, key=CloudTasksQueueLink.key, value={"project_id": project_id, "location": location, "queue_id": queue_id}, ) class CloudTasksLink(BaseGoogleLink): """Helper class for constructing Cloud Task Link""" name = "Cloud Tasks" key = "cloud_task" format_str = CLOUD_TASKS_LINK @staticmethod def persist( operator_instance: BaseOperator, context: "Context", project_id: Optional[str], ): operator_instance.xcom_push( context, key=CloudTasksLink.key, value={"project_id": project_id}, )
640
0
52
90143376f671142320b39462852736a614776a02
3,729
py
Python
app/create_app.py
communitiesuk/funding-service-design-assessment
95ec0cbb97a42ef12d931658b90d3d91f1edee4c
[ "MIT" ]
null
null
null
app/create_app.py
communitiesuk/funding-service-design-assessment
95ec0cbb97a42ef12d931658b90d3d91f1edee4c
[ "MIT" ]
null
null
null
app/create_app.py
communitiesuk/funding-service-design-assessment
95ec0cbb97a42ef12d931658b90d3d91f1edee4c
[ "MIT" ]
null
null
null
from app.assets import compile_static_assets from flask import Flask from flask_assets import Environment from flask_compress import Compress from flask_talisman import Talisman from flask_wtf.csrf import CSRFProtect from jinja2 import ChoiceLoader from jinja2 import PackageLoader from jinja2 import PrefixLoader app = create_app()
28.684615
79
0.588898
from app.assets import compile_static_assets from flask import Flask from flask_assets import Environment from flask_compress import Compress from flask_talisman import Talisman from flask_wtf.csrf import CSRFProtect from jinja2 import ChoiceLoader from jinja2 import PackageLoader from jinja2 import PrefixLoader def create_app() -> Flask: flask_app = Flask( __name__, static_url_path="/assets", static_folder="static/dist" ) flask_app.config.from_pyfile("config.py") flask_app.jinja_loader = ChoiceLoader( [ PackageLoader("app"), PrefixLoader( {"govuk_frontend_jinja": PackageLoader("govuk_frontend_jinja")} ), ] ) flask_app.jinja_env.trim_blocks = True flask_app.jinja_env.lstrip_blocks = True csp = { "default-src": "'self'", "script-src": [ "'self'", "'sha256-+6WnXIl4mbFTCARd8N3COQmT3bJJmo32N8q8ZSQAIcU='", "'sha256-l1eTVSK8DTnK8+yloud7wZUqFrI0atVo6VlC6PJvYaQ='", ], "img-src": ["data:", "'self'"], } if str( flask_app.config.get( "".join(["APPLICATION_STORE", "_API_HOST_PUBLIC"]) ) ).startswith("https://"): csp.update( { "connect-src": [ flask_app.config.get("APPLICATION_STORE_API_HOST_PUBLIC"), ], } ) hss = { "Strict-Transport-Security": ( "max-age=31536000; includeSubDomains; preload" ), "X-Content-Type-Options": "nosniff", "X-Frame-Options": "SAMEORIGIN", "X-XSS-Protection": "1; mode=block", "Feature_Policy": ( "microphone 'none'; camera 'none'; geolocation 'none'" ), } Compress(flask_app) Talisman( flask_app, content_security_policy=csp, strict_transport_security=hss, content_security_policy_nonce_in=["script-src"], ) csrf = CSRFProtect() csrf.init_app(flask_app) # This is silently used by flask in the background. @flask_app.context_processor def inject_global_constants(): return dict( stage="beta", service_title="Funding Service Design - Assessment Hub", service_meta_description=( "Funding Service Design Iteration - Assessment Hub" ), service_meta_keywords="Funding Service Design - Assessment Hub", service_meta_author="DLUHC", ) with flask_app.app_context(): from app.default.routes import ( default_bp, not_found, internal_server_error, ) from app.assess.routes import assess_bp from app.assess.api import api_bp from app.assess.views.assess import AssessQuestionView flask_app.register_error_handler(404, not_found) flask_app.register_error_handler(500, internal_server_error) flask_app.register_blueprint(default_bp) flask_app.register_blueprint(assess_bp) flask_app.register_blueprint(api_bp) flask_app.add_url_rule( "/".join( [ flask_app.config["ASSESSMENT_HUB_ROUTE"], "application", "<application_id>", "question", "<question_id>", ] ) + "/", view_func=AssessQuestionView.as_view("application_question"), ) # Bundle and compile assets assets = Environment() assets.init_app(flask_app) compile_static_assets(assets) return flask_app app = create_app()
3,370
0
23
5d4f8ce969782769c49f9bd860ae31820b06ab43
1,738
py
Python
setup.py
msdslab/ASReview-vizualisation
725cdfcc028a91225487fc6c63b15bd1cb3c6130
[ "Apache-2.0" ]
1
2020-01-31T07:13:34.000Z
2020-01-31T07:13:34.000Z
setup.py
msdslab/ASReview-vizualisation
725cdfcc028a91225487fc6c63b15bd1cb3c6130
[ "Apache-2.0" ]
1
2020-01-30T12:40:03.000Z
2020-01-30T12:41:08.000Z
setup.py
msdslab/ASReview-vizualisation
725cdfcc028a91225487fc6c63b15bd1cb3c6130
[ "Apache-2.0" ]
1
2020-01-29T15:18:43.000Z
2020-01-29T15:18:43.000Z
# based on https://github.com/pypa/sampleproject # MIT License from io import open from os import path # Always prefer setuptools over distutils from setuptools import find_namespace_packages from setuptools import setup import versioneer here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name='asreview-insights', version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), description='Insight tools for the ASReview project', long_description=long_description, long_description_content_type='text/markdown', url='https://github.com/asreview/asreview-insights', author='ASReview LAB developers', author_email='asreview@uu.nl', classifiers=[ 'Development Status :: 5 - Production/Stable', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', ], keywords='asreview plot insights', packages=find_namespace_packages(include=['asreviewcontrib.*']), install_requires=[ "numpy", "matplotlib", "asreview>=1,<2", ], extras_require={}, entry_points={ "asreview.entry_points": [ "plot = asreviewcontrib.insights.entrypoint:PlotEntryPoint", "metrics = asreviewcontrib.insights.entrypoint:MetricsEntryPoint", ] }, project_urls={ 'Bug Reports': "https://github.com/asreview/asreview-insights/issues", 'Source': "https://github.com/asreview/asreview-insights", }, )
31.6
78
0.677791
# based on https://github.com/pypa/sampleproject # MIT License from io import open from os import path # Always prefer setuptools over distutils from setuptools import find_namespace_packages from setuptools import setup import versioneer here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name='asreview-insights', version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), description='Insight tools for the ASReview project', long_description=long_description, long_description_content_type='text/markdown', url='https://github.com/asreview/asreview-insights', author='ASReview LAB developers', author_email='asreview@uu.nl', classifiers=[ 'Development Status :: 5 - Production/Stable', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', ], keywords='asreview plot insights', packages=find_namespace_packages(include=['asreviewcontrib.*']), install_requires=[ "numpy", "matplotlib", "asreview>=1,<2", ], extras_require={}, entry_points={ "asreview.entry_points": [ "plot = asreviewcontrib.insights.entrypoint:PlotEntryPoint", "metrics = asreviewcontrib.insights.entrypoint:MetricsEntryPoint", ] }, project_urls={ 'Bug Reports': "https://github.com/asreview/asreview-insights/issues", 'Source': "https://github.com/asreview/asreview-insights", }, )
0
0
0
07526d850b339b3e5cf2dc6b9dcb0479990f24ad
819
py
Python
distort_obj.py
aschier/mesh_scripts
730e51abe04c8b0e189774ca7fcf9039c60f80cd
[ "BSD-3-Clause" ]
null
null
null
distort_obj.py
aschier/mesh_scripts
730e51abe04c8b0e189774ca7fcf9039c60f80cd
[ "BSD-3-Clause" ]
null
null
null
distort_obj.py
aschier/mesh_scripts
730e51abe04c8b0e189774ca7fcf9039c60f80cd
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python import sys, random vertices = [] faces = [] with open(sys.argv[1], "r") as file: lines = file.read().split("\n") outputobj = "" for line in lines: if line.startswith("v"): parts = line.split(" ") vertices.append([float(x) for x in parts[1:]]) if line.startswith("f"): parts = line.split(" ") faces.append([int(x) for x in parts[1:]]) for face in faces: for idx in face: vertex = [x+random.random()/50.0 for x in vertices[idx-1]] outputobj += "v " + " ".join([str(x) for x in vertex]) + "\n" for i in xrange(len(faces)): outputobj += "f {0:d} {1:d} {2:d}".format(3*i+1, 3*i+1+1, 3*i+2+1) + "\n" with open(sys.argv[2], "w") as outfile: outfile.write(outputobj)
32.76
81
0.521368
#!/usr/bin/env python import sys, random vertices = [] faces = [] with open(sys.argv[1], "r") as file: lines = file.read().split("\n") outputobj = "" for line in lines: if line.startswith("v"): parts = line.split(" ") vertices.append([float(x) for x in parts[1:]]) if line.startswith("f"): parts = line.split(" ") faces.append([int(x) for x in parts[1:]]) for face in faces: for idx in face: vertex = [x+random.random()/50.0 for x in vertices[idx-1]] outputobj += "v " + " ".join([str(x) for x in vertex]) + "\n" for i in xrange(len(faces)): outputobj += "f {0:d} {1:d} {2:d}".format(3*i+1, 3*i+1+1, 3*i+2+1) + "\n" with open(sys.argv[2], "w") as outfile: outfile.write(outputobj)
0
0
0
b7fcc03c4d39ad34490d062cf734cf9b98afa16c
3,933
py
Python
metadata/scrape/hscic/ods.py
nhsengland/publish-o-matic
dc8f16cb83a2360989afa44d887e63b5cde6af29
[ "MIT" ]
null
null
null
metadata/scrape/hscic/ods.py
nhsengland/publish-o-matic
dc8f16cb83a2360989afa44d887e63b5cde6af29
[ "MIT" ]
11
2015-03-02T16:30:20.000Z
2016-11-29T12:16:15.000Z
metadata/scrape/hscic/ods.py
nhsengland/publish-o-matic
dc8f16cb83a2360989afa44d887e63b5cde6af29
[ "MIT" ]
2
2020-12-25T20:38:31.000Z
2021-04-11T07:35:01.000Z
""" Scrape ODS data from the HSCIC """ import json import sys import ffs sys.path.append(ffs.Path.here().parent) import scrape DATA_DIR = ffs.Path.here()/'../../data' DOWNLOADS = 'http://systems.hscic.gov.uk/data/ods/datadownloads/index' def check_sanity_of(metadata): """ We've just finished scraping, let's make sure we haven't scraped bullshit. """ for dataset in metadata: for resource in dataset['resources']: if not resource['url']: print dataset['title'] print dataset['url'] print resource raise Error('You scraped a resource without noting the URL Larry') return def fetch_dataset_metadata(url): """ Given a URL, fetch the metadata and resources from that page, and return it as a dict. """ print url dom = scrape._astree(url) title = dom.cssselect('h1.documentFirstHeading')[0].text_content().strip() description_elements = [e.text_content() for e in dom.cssselect('#parent-fieldname-text')[0] if e.tag != 'table'] description = "\n".join(description_elements).strip() metadata = dict( url=url, title=title, description=description, ) resources = [] try: data_tbody = dom.cssselect('table.listing tbody')[1] except IndexError: # Sometimes the table isn't built that way data_tbody = dom.cssselect('table.listing tbody')[0] resource_rows = data_tbody.cssselect('tr') try: for row in resource_rows: if 'haandsa' in url: try: description, name, created, _ = row except ValueError: description, name, created = row else: name, description, created = row # if 'safehaven' in url: # import pdb;pdb.set_trace() resource = { 'url': name.cssselect('a')[0].get('href'), 'name': name.text_content().strip(), 'description': description.text_content().strip() } resources.append(resource) except ValueError: # Sometimes there are more columns for row in resource_rows: name, full, excel, created = row resource = { 'url': full.cssselect('a')[0].get('href'), 'name': 'Full ' + name.text_content().strip(), 'description': name.text_content().strip() } resources.append(resource) if excel.text_content().strip() == 'N/A': continue try: resource = { 'url': excel.cssselect('a')[0].get('href'), 'name': 'Excel ' + name.text_content().strip(), 'description': name.text_content().strip() } except IndexError: import pdb;pdb.set_trace() print row resources.append(resource) metadata['resources'] = resources return metadata def fetch_ods_metadata(): """ * Fetch the list of downloads from the download index * Iterate through them gathering metadata on each * Write to a file as one dataset per "Download" """ dom = scrape._astree(DOWNLOADS) downloads = dom.cssselect('table.listing a.internal-link') categories = list(set(a.get('href') for a in downloads)) metadata = [fetch_dataset_metadata(url) for url in categories] check_sanity_of(metadata) metafile = DATA_DIR/'ods.json' metafile.truncate() metafile << json.dumps(metadata, indent=2) return if __name__ == '__main__': sys.exit(main())
31.214286
117
0.567251
""" Scrape ODS data from the HSCIC """ import json import sys import ffs sys.path.append(ffs.Path.here().parent) import scrape DATA_DIR = ffs.Path.here()/'../../data' DOWNLOADS = 'http://systems.hscic.gov.uk/data/ods/datadownloads/index' class Error(Exception): def __init__(self, msg): Exception.__init__(self, '\n\n\n{0}\n\n\n'.format(msg)) def check_sanity_of(metadata): """ We've just finished scraping, let's make sure we haven't scraped bullshit. """ for dataset in metadata: for resource in dataset['resources']: if not resource['url']: print dataset['title'] print dataset['url'] print resource raise Error('You scraped a resource without noting the URL Larry') return def fetch_dataset_metadata(url): """ Given a URL, fetch the metadata and resources from that page, and return it as a dict. """ print url dom = scrape._astree(url) title = dom.cssselect('h1.documentFirstHeading')[0].text_content().strip() description_elements = [e.text_content() for e in dom.cssselect('#parent-fieldname-text')[0] if e.tag != 'table'] description = "\n".join(description_elements).strip() metadata = dict( url=url, title=title, description=description, ) resources = [] try: data_tbody = dom.cssselect('table.listing tbody')[1] except IndexError: # Sometimes the table isn't built that way data_tbody = dom.cssselect('table.listing tbody')[0] resource_rows = data_tbody.cssselect('tr') try: for row in resource_rows: if 'haandsa' in url: try: description, name, created, _ = row except ValueError: description, name, created = row else: name, description, created = row # if 'safehaven' in url: # import pdb;pdb.set_trace() resource = { 'url': name.cssselect('a')[0].get('href'), 'name': name.text_content().strip(), 'description': description.text_content().strip() } resources.append(resource) except ValueError: # Sometimes there are more columns for row in resource_rows: name, full, excel, created = row resource = { 'url': full.cssselect('a')[0].get('href'), 'name': 'Full ' + name.text_content().strip(), 'description': name.text_content().strip() } resources.append(resource) if excel.text_content().strip() == 'N/A': continue try: resource = { 'url': excel.cssselect('a')[0].get('href'), 'name': 'Excel ' + name.text_content().strip(), 'description': name.text_content().strip() } except IndexError: import pdb;pdb.set_trace() print row resources.append(resource) metadata['resources'] = resources return metadata def fetch_ods_metadata(): """ * Fetch the list of downloads from the download index * Iterate through them gathering metadata on each * Write to a file as one dataset per "Download" """ dom = scrape._astree(DOWNLOADS) downloads = dom.cssselect('table.listing a.internal-link') categories = list(set(a.get('href') for a in downloads)) metadata = [fetch_dataset_metadata(url) for url in categories] check_sanity_of(metadata) metafile = DATA_DIR/'ods.json' metafile.truncate() metafile << json.dumps(metadata, indent=2) return def main(): fetch_ods_metadata() return 0 if __name__ == '__main__': sys.exit(main())
95
2
81
f176663e74b963d6d7e6336560c123d0572a7cad
847
py
Python
nanitosbaby/store/migrations/0007_auto_20170722_1945.py
Hector-hedb12/nanitosbaby
86eff05157dab02a7daca61e1f70ec76bbf6cbdf
[ "MIT" ]
null
null
null
nanitosbaby/store/migrations/0007_auto_20170722_1945.py
Hector-hedb12/nanitosbaby
86eff05157dab02a7daca61e1f70ec76bbf6cbdf
[ "MIT" ]
null
null
null
nanitosbaby/store/migrations/0007_auto_20170722_1945.py
Hector-hedb12/nanitosbaby
86eff05157dab02a7daca61e1f70ec76bbf6cbdf
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-07-22 19:45 from __future__ import unicode_literals from django.db import migrations
26.46875
87
0.582054
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-07-22 19:45 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('store', '0006_auto_20170227_0204'), ] operations = [ migrations.AlterModelOptions( name='category', options={'verbose_name': 'Categoria', 'verbose_name_plural': 'Categorias'}, ), migrations.AlterModelOptions( name='product', options={'verbose_name': 'Producto'}, ), migrations.AlterModelOptions( name='productamount', options={'verbose_name': 'Cantidad de Producto'}, ), migrations.AlterModelOptions( name='size', options={'verbose_name': 'Talla'}, ), ]
0
676
23
6e0b8d667aadec326f62af823df8872b61b53d0e
5,659
py
Python
SpriteTool.py
LV-6502/Sprite-Layer-Compiler
9d37dbf1473e5d4015758dcc60a5fb1965d2a9e3
[ "MIT" ]
3
2021-05-06T06:40:08.000Z
2021-09-12T14:28:38.000Z
SpriteTool.py
LV-6502/Sprite-Layer-Compiler
9d37dbf1473e5d4015758dcc60a5fb1965d2a9e3
[ "MIT" ]
null
null
null
SpriteTool.py
LV-6502/Sprite-Layer-Compiler
9d37dbf1473e5d4015758dcc60a5fb1965d2a9e3
[ "MIT" ]
null
null
null
import tkinter as tk from tkinter import filedialog, Entry, messagebox from PIL import ImageTk, Image filenames = [] all_labels = [] base_labels = [] Layer_0 = Image.new(mode = "RGB", size = (1, 1)) left_img_out = Image.new(mode = "RGB", size = (1, 1)) right_img_out = Image.new(mode = "RGB", size = (1, 1)) window = tk.Tk() window.geometry("1000x600") window.title("V1.0") heading = tk.Label(text = "Sprite Layer Compiler", bg="grey", fg="white", width="500",height="3") heading2 = tk.Label(text = "", bg="grey", fg="white", width="500",height="1") heading.pack() heading2.place(x=0,y=350) Description_Label = tk.Label(window, text = "Sprite Frame Dimensions").place(x=320,y=260) X_label = tk.Label(window, text = "Pixel X:").place(x=320,y=280) xval = Entry(window, width="8") xval.place(x=370,y=280) xval.focus_set() Y_label = tk.Label(window, text = "Pixel Y:").place(x=320,y=300) yval = Entry(window, width="8") yval.place(x=370,y=300) yval.focus_set() tk.Button(window, text='Layer 0', command= lambda: openfile0(60,60),).place(x=10,y=60) tk.Button(window, text='Layer 1', command= lambda: openfile1(60,90)).place(x=10,y=90) tk.Button(window, text='Layer 2', command= lambda: openfile1(60,120)).place(x=10,y=120) tk.Button(window, text='Layer 3', command= lambda: openfile1(60,150)).place(x=10,y=150) tk.Button(window, text='Layer 4', command= lambda: openfile1(60,180)).place(x=10,y=180) tk.Button(window, text='Layer 5', command= lambda: openfile1(60,210)).place(x=10,y=210) tk.Button(window, text='Layer 6', command= lambda: openfile1(60,240)).place(x=10,y=240) tk.Button(window, text='Preview', command=Preview, bg="grey", fg="white", width="8",height="1").place(x=10,y=280) tk.Button(window, text='Flip Left', command=FlipLeft, bg="grey", fg="white", width="8",height="1").place(x=80,y=280) tk.Button(window, text='Clear', command=Clear, bg="#e12120", fg="white", width="8",height="1").place(x=170,y=280) tk.Button(window, text='Clear All', command=ClearAll, bg="#971414", fg="white", width="8",height="1").place(x=240,y=280) tk.Button(window, text='Save Right', command=SaveFileRight, bg="green", fg="white", width="8",height="1").place(x=10,y=310) tk.Button(window, text='Save Left', command=SaveFileLeft, bg="green", fg="white", width="8",height="1").place(x=80,y=310) window.mainloop()
34.717791
123
0.641103
import tkinter as tk from tkinter import filedialog, Entry, messagebox from PIL import ImageTk, Image filenames = [] all_labels = [] base_labels = [] Layer_0 = Image.new(mode = "RGB", size = (1, 1)) left_img_out = Image.new(mode = "RGB", size = (1, 1)) right_img_out = Image.new(mode = "RGB", size = (1, 1)) def openfile0(xnum,ynum): global filename0 filename0 = filedialog.askopenfilename(parent=window,title="Layer 0") if filename0: b0_l = tk.Label(window, text = "File path: " + filename0) b0_l.place(x=xnum,y=ynum) filenames.append(filename0) base_labels.append(b0_l) else: b0_l = tk.Label(window, text = "File path: " + "Nothing Chosen") b0_l.place(x=xnum,y=ynum) base_labels.append(b0_l) def openfile1(xnum,ynum): filename = filedialog.askopenfilename(parent=window, title="Layer 1") if filename: b1_l = tk.Label(window, text = "File path: " + filename) b1_l.place(x=xnum,y=ynum) filenames.append(filename) all_labels.append(b1_l) all_labels.append(b1_l) else: b1_l = tk.Label(window, text = "File path: " + "Nothing chosen") b1_l.place(x=xnum,y=ynum) all_labels.append(b1_l) def Preview(): global Layer_0 global right_img_out try: Layer_0 = Image.open(filename0) for name in filenames: try: sub_image = Image.open(name) Layer_0.paste(sub_image, (0, 0), sub_image) except: pass img_x = ImageTk.PhotoImage(Layer_0) right_img_out = ImageTk.getimage(img_x) panel = tk.Label(window, image=img_x) panel.image = img_x panel.place(x=10,y=380) all_labels.append(panel) except: pass def ClearAll(): global filenames global filename0 global Layer_0 filenames = [] Preview() for label in all_labels: label.destroy() for label in base_labels: label.destroy() filename0 = "" Layer_0 = Image.new(mode = "RGB", size = (1, 1)) def Clear(): global filenames filenames = [] Preview() for label in all_labels: label.destroy() def FlipLeft(): global flip_img global left_img_out try: flip_img = Layer_0 x_value = getXval() y_value = getYval() width, height = flip_img.size limit = int(width/x_value) for x in range(limit): y = x+1 sub_image = flip_img.crop(box=((x_value*x),0,(x_value*y),y_value)).transpose(Image.FLIP_LEFT_RIGHT) flip_img.paste(sub_image, box=((x_value*x),0)) img_sub = ImageTk.PhotoImage(flip_img) img_PIL = ImageTk.getimage(img_sub) flip_img = img_PIL img = ImageTk.PhotoImage(flip_img) left_img_out = ImageTk.getimage(img) panel2 = tk.Label(window, image=img) panel2.image = img all_labels.append(panel2) panel2.place(x=10,y=450) except ValueError: tk.messagebox.showerror('Hold up','Sprite dimensions required') def getXval(): global xval string = xval.get() strtoint = int(string) return strtoint def getYval(): global yval string = yval.get() strtoint = int(string) return strtoint def SaveFileRight(): location = filedialog.asksaveasfile(mode='wb', defaultextension=".png") if not location: return right_img_out.save(location, "png") def SaveFileLeft(): location = filedialog.asksaveasfile(mode='wb', defaultextension=".png") if not location: return left_img_out.save(location, "png") window = tk.Tk() window.geometry("1000x600") window.title("V1.0") heading = tk.Label(text = "Sprite Layer Compiler", bg="grey", fg="white", width="500",height="3") heading2 = tk.Label(text = "", bg="grey", fg="white", width="500",height="1") heading.pack() heading2.place(x=0,y=350) Description_Label = tk.Label(window, text = "Sprite Frame Dimensions").place(x=320,y=260) X_label = tk.Label(window, text = "Pixel X:").place(x=320,y=280) xval = Entry(window, width="8") xval.place(x=370,y=280) xval.focus_set() Y_label = tk.Label(window, text = "Pixel Y:").place(x=320,y=300) yval = Entry(window, width="8") yval.place(x=370,y=300) yval.focus_set() tk.Button(window, text='Layer 0', command= lambda: openfile0(60,60),).place(x=10,y=60) tk.Button(window, text='Layer 1', command= lambda: openfile1(60,90)).place(x=10,y=90) tk.Button(window, text='Layer 2', command= lambda: openfile1(60,120)).place(x=10,y=120) tk.Button(window, text='Layer 3', command= lambda: openfile1(60,150)).place(x=10,y=150) tk.Button(window, text='Layer 4', command= lambda: openfile1(60,180)).place(x=10,y=180) tk.Button(window, text='Layer 5', command= lambda: openfile1(60,210)).place(x=10,y=210) tk.Button(window, text='Layer 6', command= lambda: openfile1(60,240)).place(x=10,y=240) tk.Button(window, text='Preview', command=Preview, bg="grey", fg="white", width="8",height="1").place(x=10,y=280) tk.Button(window, text='Flip Left', command=FlipLeft, bg="grey", fg="white", width="8",height="1").place(x=80,y=280) tk.Button(window, text='Clear', command=Clear, bg="#e12120", fg="white", width="8",height="1").place(x=170,y=280) tk.Button(window, text='Clear All', command=ClearAll, bg="#971414", fg="white", width="8",height="1").place(x=240,y=280) tk.Button(window, text='Save Right', command=SaveFileRight, bg="green", fg="white", width="8",height="1").place(x=10,y=310) tk.Button(window, text='Save Left', command=SaveFileLeft, bg="green", fg="white", width="8",height="1").place(x=80,y=310) window.mainloop()
3,093
0
254
362ad954b7ae66d4982bdce7facb466b9ccb8cc8
1,188
py
Python
app/app.py
valuebaseai/docker_viz_test
a873238436a273936374b9ba2c1eae364eaa65ca
[ "MIT" ]
null
null
null
app/app.py
valuebaseai/docker_viz_test
a873238436a273936374b9ba2c1eae364eaa65ca
[ "MIT" ]
null
null
null
app/app.py
valuebaseai/docker_viz_test
a873238436a273936374b9ba2c1eae364eaa65ca
[ "MIT" ]
null
null
null
import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import plotly.express as px # This dataframe has 244 lines, but 4 distinct values for `day` df = px.data.tips() app = dash.Dash(__name__) app.layout = html.Div([ html.P("Selector:"), dcc.Dropdown( id='names', value='day', options=[{'value': x, 'label': x} for x in ['smoker', 'day', 'time', 'sex']], clearable=False ), html.P("Values:"), dcc.Dropdown( id='values', value='total_bill', options=[{'value': x, 'label': x} for x in ['total_bill', 'tip', 'size']], clearable=False ), dcc.Graph(id="pie-chart"), ]) @app.callback( Output("pie-chart", "figure"), [Input("names", "value"), Input("values", "value")]) #app.run_server(debug=True) if __name__ == "__main__": import os debug = False if os.environ["DASH_DEBUG_MODE"] == "False" else True app.run_server(host="0.0.0.0", port=8050, debug=debug)
25.276596
71
0.59596
import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import plotly.express as px # This dataframe has 244 lines, but 4 distinct values for `day` df = px.data.tips() app = dash.Dash(__name__) app.layout = html.Div([ html.P("Selector:"), dcc.Dropdown( id='names', value='day', options=[{'value': x, 'label': x} for x in ['smoker', 'day', 'time', 'sex']], clearable=False ), html.P("Values:"), dcc.Dropdown( id='values', value='total_bill', options=[{'value': x, 'label': x} for x in ['total_bill', 'tip', 'size']], clearable=False ), dcc.Graph(id="pie-chart"), ]) @app.callback( Output("pie-chart", "figure"), [Input("names", "value"), Input("values", "value")]) def generate_chart(names, values): fig = px.pie(df, values=values, names=names) return fig #app.run_server(debug=True) if __name__ == "__main__": import os debug = False if os.environ["DASH_DEBUG_MODE"] == "False" else True app.run_server(host="0.0.0.0", port=8050, debug=debug)
77
0
22
2100a825b81abf1ae8d76c45a765eb6393aee0f6
3,392
py
Python
codedigger/contest/cron.py
jyothiprakashpanaik/Backend
9ab1b57436a0a1a6197777c0b36c842e71121d3a
[ "Apache-2.0" ]
17
2020-10-07T22:40:37.000Z
2022-01-20T07:19:09.000Z
codedigger/contest/cron.py
jyothiprakashpanaik/Backend
9ab1b57436a0a1a6197777c0b36c842e71121d3a
[ "Apache-2.0" ]
42
2021-06-03T01:58:04.000Z
2022-01-31T14:49:22.000Z
codedigger/contest/cron.py
jyothiprakashpanaik/Backend
9ab1b57436a0a1a6197777c0b36c842e71121d3a
[ "Apache-2.0" ]
25
2020-10-06T17:55:19.000Z
2021-12-09T07:56:50.000Z
# Cron Job - # Problem Assign -- Contest with isProblem False -- Assign Problem # Result Assign -- Contest with isResult False # contest end -- (startTime + duration) <= time.now #Email from django.core.mail import send_mail from codedigger.settings import EMAIL_HOST_USER ## Short Code Contest # from .utils import login, clean, penalty # from .models import CodeforcesContest, CodeforcesContestSubmission, CodeforcesContestParticipation # import requests, random, re # from codeforces.cron import save_user # from codeforces.models import user as CodeforcesUser # from bs4 import BeautifulSoup as bs # def update_penalty(contest, cookie) : # contestId = contest.contestId # groupId = contest.groupId # page = 0 # prevHandle = None # while(page < 100): # page+=1 # url = "https://codeforces.com/group/"+groupId+"/contest/"+str(contestId)+"/standings/page/"+str(page) # res = requests.get(url , headers = {'Cookie' : cookie}) # soup = bs(res.content,features="html5lib") # participants = soup.find('table' , {'class' :'standings'}).findAll('tr') # NProblems = len(participants[0].findAll('th'))-4 # isBreak = False # isFirst = True # for participant in participants[1:-1] : # column = participant.findAll('td') # user_handle = clean(column[1].find('a').text) # if isFirst: # if user_handle == prevHandle: # isBreak = True # break # else : # prevHandle = user_handle # isFirst = False # contest_user,created = CodeforcesUser.objects.get_or_create(handle = user_handle) # if created : # url = "https://codeforces.com/api/user.info?handles="+user_handle # res = requests.get(url) # if res.status_code == 200: # data = res.json() # if data['status'] == 'OK': # save_user(contest_user , data['result'][0]) # contest_participant,created = CodeforcesContestParticipation.objects.get_or_create( # contest=contest, # user=contest_user, # participantId=participant['participantid'], # defaults={ # 'isOfficial' : clean(column[0].text) != '', # 'isVirtual' : column[1].find('sup') != None # }) # for i in range(NProblems): # sub = CodeforcesContestSubmission.objects.filter(participant=contest_participant, problemIndex = i) # newSub = CodeforcesContestSubmission(participant=contest_participant, problemIndex = i) # if column[4+i].find('span' , {'class' : 'cell-accepted'})!=None and column[4+i]['title'][:3]=='GNU': # subId = participant.findAll('td')[4+i]['acceptedsubmissionid'] # if sub.exists() and str(sub[0].submissionId) == subId : # continue # if sub.exists() : # sub[0].isSolved = True # sub[0].submissionId = subId # sub[0].lang = column[4+i]['title'] # sub[0].penalty = penalty(cookie, contestId, subId, groupId) # sub[0].save() # else : # newSub.isSolved = True # newSub.submissionId = subId # newSub.lang = column[4+i]['title'] # newSub.penalty = penalty(cookie, contestId, subId, groupId) # newSub.save() # else : # newSub.isSolved = False # if not sub.exists() : # newSub.save() # if isBreak: # break # def update_codeforces_short_code_contests() : # cookie = login() # codeforcescontest = CodeforcesContest.objects.filter(Type = "Short Code") # for contest in codeforcescontest : # update_penalty(contest, cookie)
34.612245
106
0.661557
# Cron Job - # Problem Assign -- Contest with isProblem False -- Assign Problem # Result Assign -- Contest with isResult False # contest end -- (startTime + duration) <= time.now #Email from django.core.mail import send_mail from codedigger.settings import EMAIL_HOST_USER ## Short Code Contest # from .utils import login, clean, penalty # from .models import CodeforcesContest, CodeforcesContestSubmission, CodeforcesContestParticipation # import requests, random, re # from codeforces.cron import save_user # from codeforces.models import user as CodeforcesUser # from bs4 import BeautifulSoup as bs # def update_penalty(contest, cookie) : # contestId = contest.contestId # groupId = contest.groupId # page = 0 # prevHandle = None # while(page < 100): # page+=1 # url = "https://codeforces.com/group/"+groupId+"/contest/"+str(contestId)+"/standings/page/"+str(page) # res = requests.get(url , headers = {'Cookie' : cookie}) # soup = bs(res.content,features="html5lib") # participants = soup.find('table' , {'class' :'standings'}).findAll('tr') # NProblems = len(participants[0].findAll('th'))-4 # isBreak = False # isFirst = True # for participant in participants[1:-1] : # column = participant.findAll('td') # user_handle = clean(column[1].find('a').text) # if isFirst: # if user_handle == prevHandle: # isBreak = True # break # else : # prevHandle = user_handle # isFirst = False # contest_user,created = CodeforcesUser.objects.get_or_create(handle = user_handle) # if created : # url = "https://codeforces.com/api/user.info?handles="+user_handle # res = requests.get(url) # if res.status_code == 200: # data = res.json() # if data['status'] == 'OK': # save_user(contest_user , data['result'][0]) # contest_participant,created = CodeforcesContestParticipation.objects.get_or_create( # contest=contest, # user=contest_user, # participantId=participant['participantid'], # defaults={ # 'isOfficial' : clean(column[0].text) != '', # 'isVirtual' : column[1].find('sup') != None # }) # for i in range(NProblems): # sub = CodeforcesContestSubmission.objects.filter(participant=contest_participant, problemIndex = i) # newSub = CodeforcesContestSubmission(participant=contest_participant, problemIndex = i) # if column[4+i].find('span' , {'class' : 'cell-accepted'})!=None and column[4+i]['title'][:3]=='GNU': # subId = participant.findAll('td')[4+i]['acceptedsubmissionid'] # if sub.exists() and str(sub[0].submissionId) == subId : # continue # if sub.exists() : # sub[0].isSolved = True # sub[0].submissionId = subId # sub[0].lang = column[4+i]['title'] # sub[0].penalty = penalty(cookie, contestId, subId, groupId) # sub[0].save() # else : # newSub.isSolved = True # newSub.submissionId = subId # newSub.lang = column[4+i]['title'] # newSub.penalty = penalty(cookie, contestId, subId, groupId) # newSub.save() # else : # newSub.isSolved = False # if not sub.exists() : # newSub.save() # if isBreak: # break # def update_codeforces_short_code_contests() : # cookie = login() # codeforcescontest = CodeforcesContest.objects.filter(Type = "Short Code") # for contest in codeforcescontest : # update_penalty(contest, cookie)
0
0
0
d954154e7b9daa5cdea8c4b4390e0576c8ac5293
5,948
py
Python
ocr/form_recognizer.py
PrynsTag/oneBarangay
6a8d56003d85b8385e91f5c5d81208619023c1ee
[ "Apache-2.0" ]
null
null
null
ocr/form_recognizer.py
PrynsTag/oneBarangay
6a8d56003d85b8385e91f5c5d81208619023c1ee
[ "Apache-2.0" ]
96
2021-08-28T12:37:02.000Z
2022-03-23T04:25:12.000Z
ocr/form_recognizer.py
PrynsTag/oneBarangay
6a8d56003d85b8385e91f5c5d81208619023c1ee
[ "Apache-2.0" ]
null
null
null
"""Recognize and extract forms.""" import os from statistics import fmean from azure.ai.formrecognizer.aio import FormRecognizerClient, FormTrainingClient from azure.core.credentials import AzureKeyCredential class RecognizeCustomFormsSampleAsync: """Class to recognize forms in async mode.""" async def recognize_custom_forms(self, custom_model_id, filename): """Extract text from custom form. Args: custom_model_id: The trained custom model id. filename: The filename of the document that will be scanned. Returns: The header for the table and the extracted text. """ endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] model_id = os.getenv("CUSTOM_TRAINED_MODEL_ID", custom_model_id) async with FormRecognizerClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) as form_recognizer_client: # Make sure your form's type is included in the # list of form types the custom model can recognize form_url = ( f"https://storage.googleapis.com/" f"{os.getenv('GS_MEDIA_BUCKET_NAME')}/" f"{filename}" ) poller = await form_recognizer_client.begin_recognize_custom_forms_from_url( model_id=model_id, form_url=form_url, include_field_elements=True ) forms = await poller.result() table = [] header = {} for _, form in enumerate(forms): row = {} for idx, (name, field) in enumerate(form.fields.items()): if idx >= 3: for value in field.value: for i, val in value.to_dict()["value"].items(): data = val["value_data"] # Condition for "No Data" if data: words = data["field_elements"] # Condition for multiple word result if len(words) > 1: word_list = [word["text"] for word in words] confidence_list = [word["confidence"] for word in words] slug_name = ( val["name"] .lower() .replace(" ", "_") .replace("(", "") .replace(")", "") ) row[slug_name] = { "text": " ".join(word_list), "confidence": round(fmean(confidence_list), 3), } else: slug_name = ( val["name"] .lower() .replace(" ", "_") .replace("(", "") .replace(")", "") ) row[slug_name] = { "text": words[0]["text"], "confidence": words[0]["confidence"], } else: slug_name = ( val["name"] .lower() .replace(" ", "_") .replace("(", "") .replace(")", "") ) row[slug_name] = { "text": data, "confidence": data, } if i == "REMARKS": table.append(row) row = {} else: slug_name = ( name.lower().replace(" ", "_").replace("(", "").replace(")", "") ) header[slug_name] = { "text": field.value, "confidence": field.confidence, } return header, table async def form_recognizer_runner(filename): """Runner for the form recognizer. Args: filename: The filename of the document to be scanned Returns: The form header and the table scanned. """ sample = RecognizeCustomFormsSampleAsync() model_id = None if os.getenv("CONTAINER_SAS_URL"): endpoint = os.getenv("AZURE_FORM_RECOGNIZER_ENDPOINT") key = os.getenv("AZURE_FORM_RECOGNIZER_KEY") if not endpoint or not key: raise ValueError("Please provide endpoint and API key to run the samples.") form_training_client = FormTrainingClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) async with form_training_client: model = await ( await form_training_client.begin_training( os.getenv("CONTAINER_SAS_URL"), use_training_labels=True ) ).result() model_id = model.model_id return await sample.recognize_custom_forms(model_id, filename)
43.416058
96
0.408036
"""Recognize and extract forms.""" import os from statistics import fmean from azure.ai.formrecognizer.aio import FormRecognizerClient, FormTrainingClient from azure.core.credentials import AzureKeyCredential class RecognizeCustomFormsSampleAsync: """Class to recognize forms in async mode.""" async def recognize_custom_forms(self, custom_model_id, filename): """Extract text from custom form. Args: custom_model_id: The trained custom model id. filename: The filename of the document that will be scanned. Returns: The header for the table and the extracted text. """ endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] model_id = os.getenv("CUSTOM_TRAINED_MODEL_ID", custom_model_id) async with FormRecognizerClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) as form_recognizer_client: # Make sure your form's type is included in the # list of form types the custom model can recognize form_url = ( f"https://storage.googleapis.com/" f"{os.getenv('GS_MEDIA_BUCKET_NAME')}/" f"{filename}" ) poller = await form_recognizer_client.begin_recognize_custom_forms_from_url( model_id=model_id, form_url=form_url, include_field_elements=True ) forms = await poller.result() table = [] header = {} for _, form in enumerate(forms): row = {} for idx, (name, field) in enumerate(form.fields.items()): if idx >= 3: for value in field.value: for i, val in value.to_dict()["value"].items(): data = val["value_data"] # Condition for "No Data" if data: words = data["field_elements"] # Condition for multiple word result if len(words) > 1: word_list = [word["text"] for word in words] confidence_list = [word["confidence"] for word in words] slug_name = ( val["name"] .lower() .replace(" ", "_") .replace("(", "") .replace(")", "") ) row[slug_name] = { "text": " ".join(word_list), "confidence": round(fmean(confidence_list), 3), } else: slug_name = ( val["name"] .lower() .replace(" ", "_") .replace("(", "") .replace(")", "") ) row[slug_name] = { "text": words[0]["text"], "confidence": words[0]["confidence"], } else: slug_name = ( val["name"] .lower() .replace(" ", "_") .replace("(", "") .replace(")", "") ) row[slug_name] = { "text": data, "confidence": data, } if i == "REMARKS": table.append(row) row = {} else: slug_name = ( name.lower().replace(" ", "_").replace("(", "").replace(")", "") ) header[slug_name] = { "text": field.value, "confidence": field.confidence, } return header, table async def form_recognizer_runner(filename): """Runner for the form recognizer. Args: filename: The filename of the document to be scanned Returns: The form header and the table scanned. """ sample = RecognizeCustomFormsSampleAsync() model_id = None if os.getenv("CONTAINER_SAS_URL"): endpoint = os.getenv("AZURE_FORM_RECOGNIZER_ENDPOINT") key = os.getenv("AZURE_FORM_RECOGNIZER_KEY") if not endpoint or not key: raise ValueError("Please provide endpoint and API key to run the samples.") form_training_client = FormTrainingClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) async with form_training_client: model = await ( await form_training_client.begin_training( os.getenv("CONTAINER_SAS_URL"), use_training_labels=True ) ).result() model_id = model.model_id return await sample.recognize_custom_forms(model_id, filename)
0
0
0
6847eac22fa6fe907df819c4635e45eba818a864
17,227
py
Python
SSTransits.py
keatonb/SolarSystemTransits
c11966972d0f407892c4aeb046fd4aaea3f2d76d
[ "MIT" ]
null
null
null
SSTransits.py
keatonb/SolarSystemTransits
c11966972d0f407892c4aeb046fd4aaea3f2d76d
[ "MIT" ]
null
null
null
SSTransits.py
keatonb/SolarSystemTransits
c11966972d0f407892c4aeb046fd4aaea3f2d76d
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Jan 24 15:39:33 2021 Calculate and plot details of inner Solar System transits as seen from outer Solar System objects. Requires package solarsystem (https://pypi.org/project/solarsystem/) Animation requires imagemagick (imagemagick.org) @author: keatonb """ import solarsystem import numpy as np import matplotlib.pyplot as plt import warnings from astropy import units as u from astropy import constants as const from astropy.time import Time from scipy.interpolate import interp1d from datetime import timedelta from matplotlib import animation #from NASA Planetary Fact Sheet #km #https://nssdc.gsfc.nasa.gov/planetary/factsheet/ planetdiameter = {"Mercury":4879, "Venus":12104, "Earth":12756, "Mars":6792, "Jupiter":142984, "Saturn":120536, "Uranus":51118, "Neptune":49528} class Geometry: """ innerplanet relative to Sun as seen from outerplanet at time Derived in Bell & Rustamkulov (2021, in prep.) """ def __init__(self, innerplanet, outerplanet, time): """ Parameters: innerplanet (str): name of inner planet outerplanet (str): name of outer planet time (datetime): timestamp (UTC) """ self.innerplanet = innerplanet.capitalize() self.outerplanet = outerplanet.capitalize() self.time = time #Get heliocentric ecliptic planet positions at time: #(Longitude (l, deg), Latitude (b, deg), Distance (r, AU)) H = solarsystem.Heliocentric(year=time.year, month=time.month, day=time.day, hour=time.hour, minute=time.minute + time.second/60 + time.microsecond/1e6) planets = H.planets() #Get heliocentric ecliptic planet positions: #(Longitude (l, deg), Latitude (b, deg), Distance (r, AU)) O = planets[outerplanet] I = planets[innerplanet] E = planets["Earth"] #Convert to spherical position vector: #[r (AU, b (radians), l (radians)] rvec = lambda P: np.array([P[2],P[1]*np.pi/180,P[0]*np.pi/180]) rO = rvec(O) rI = rvec(I) rE = rvec(E) #Convert to Cartesian coordinates (x,y,z in AU) xvec = lambda rP: np.array([rP[0]*np.cos(rP[1])*np.cos(rP[2]), rP[0]*np.cos(rP[1])*np.sin(rP[2]), rP[0]*np.sin(rP[1])]) xO = xvec(rO) xI = xvec(rI) xE = xvec(rE) #Get positions relative to outer planet xO_Sun = - xO xO_I = xI - xO xO_E = xE - xO #Align x-axis with Sun for relative planet positions #With two rotation matrices: x' = BAx A = np.array([[-np.cos(rO[2]),-np.sin(rO[2]),0], [np.sin(rO[2]),-np.cos(rO[2]),0], [0,0,1]]) B = np.array([[np.cos(rO[1]),0,-np.sin(rO[1])], [0,1,0], [np.sin(rO[1]),0,np.cos(rO[1])]]) BA = np.matmul(B, A) xvecprime = lambda xO_P: np.matmul(BA,xO_P) xO_Sun_prime = xvecprime(xO_Sun) #Passes a sanity check xO_I_prime = xvecprime(xO_I) xO_E_prime = xvecprime(xO_E) self.xSun = xO_Sun_prime self.xI = xO_I_prime self.xE = xO_I_prime #Convert back to spherical coordinates #for on-sky positions as seen from O [r (AU,b (radians),l (radians)] rvecprime = lambda xvecp: np.array([np.sqrt(np.sum(xvecp**2.)), np.arctan(xvecp[2]/np.sqrt(np.sum(xvecp[:2]**2))), -np.arctan(xvecp[1]/xvecp[0])]) rO_Sun_prime = rvecprime(xO_Sun_prime) #Passes a sanity check rO_I_prime = rvecprime(xO_I_prime) #Passes a sanity check rO_E_prime = rvecprime(xO_E_prime) #Praise Boas! self.rSun = rO_Sun_prime self.rI = rO_I_prime self.rE = rO_I_prime #Angular separation between inner planet and Sun (radians) self.theta = np.arccos(np.dot(xO_Sun_prime,xO_I_prime)/(rO_Sun_prime[0]*rO_I_prime[0])) #Angular diameters of inner planet and Sun (radians) self.angdiam_Sun = 2*const.R_sun.to(u.AU)/(rO_Sun_prime[0]*u.AU) self.angdiam_I = planetdiameter[innerplanet]*u.km.to(u.AU)/rO_I_prime[0] #Are we in transit? self.intransit = ((self.theta < (self.angdiam_Sun + self.angdiam_I)/2.) & (rO_I_prime[0] < rO_Sun_prime[0])) #Fraction of distance toward Solar limb (0 at center) r = self.theta / (self.angdiam_Sun/2.0) self.mu = np.sqrt(1-r**2.) #Light travel time delay to Earth (seconds) self.timedelay = ((rO_I_prime[0] + rO_E_prime[0])*u.AU/const.c).to(u.s).value def plot(self, ax=None, fov=(4,4), unit=u.arcsec, show=True, filename=None, timedelay=True, fontsize=13, **kwargs): """ Plot snapshot of Sun, innerplanet from outerplanet Parameters: ax (mpl axis): axis to plot to (default: create new fig,ax) fov (tuple): (width,height) in solar radii unit (astropy angle unit): unit for axes show (bool): whether to show plot (default: True) filename (str): filename to save to (default: None) timedelay (bool): add light-travel time to text? fontsize (float): fontsize **kwargs: args for figure if no axis provided """ #Create fig and ax if no ax provided if ax is None: fig,ax = plt.subplots(**kwargs) #Circles must be round ax.set_aspect(1) #Angular unit conversion (from radians) scale = u.radian.to(unit) #Display sun, planet sunangrad = scale*self.angdiam_Sun/2. sun = plt.Circle((0, 0), sunangrad, color='y', zorder = 1) #Is planet in front of Sun? infront = self.rI[0] < self.rSun[0] #The line on this circle makes it look larger than reality, #but it's almost too small to see without planet = plt.Circle((scale*self.rI[2], scale*self.rI[1]), scale*self.angdiam_I/2., color='blue', zorder=2*infront) ax.add_patch(sun) ax.add_patch(planet) #Add text time = self.time if timedelay: time += timedelta(seconds=self.timedelay) ax.text(0.03,0.02,(f"{self.innerplanet} from {self.outerplanet} \n" + time.strftime('%Y-%m-%d %H:%M:%S')), transform=ax.transAxes, ha='left', va='bottom', fontsize=fontsize) ax.set_xlabel(fr"$l'$ ({unit.short_names[0]})", fontsize=fontsize) ax.set_ylabel(fr"$b'$ ({unit.short_names[0]})", fontsize=fontsize) #Scale axes ax.set_xlim(-fov[0]*sunangrad/2, fov[0]*sunangrad/2) ax.set_ylim(-fov[1]*sunangrad/2, fov[1]*sunangrad/2) #Save plot or show if filename is not None: plt.savefig(filename) if show: plt.show() def _limbdarkening(phi, u2=0.88, v2=-0.23): """limb darkening law parameterization from Section 14.7 of Allen's Astrophysical Quantities (4th ed, Cox, 2000, AIP Press) default u2,v2 values are for ~V filter @ 600 nm phi is angle between solar radius vector and line of sight (radians) normalized so disk integrates to 1 """ mu = np.cos(phi) return (1 - u2 - v2 + u2*mu + v2*(mu**2))/(1-u2/3 - v2/2) class Transit: """ Properties and plots of transits in time window. Calculates: - MJD (instantaneous and observed) of ingress,egress,midtranist - Impact parameter (b) Plots: - animate (gif) - traceplot (path) TODO: lightcurve (simulated) """ def __init__(self, innerplanet, outerplanet, starttime, endtime, timestep): """ Parameters: innerplanet (str): name of inner planet outerplanet (str): name of outer planet starttime (datetime): timestamp (UTC) before transit endtime (datetime): timestamp (UTC) before transit timestep (float): sampling interval (minutes; > 0) Notes: Impact parameter, b, is minimum within timestamp """ #Check that timestep is positive if timestep <= 0: raise Exception("Timestep must be positive.") if timestep > 10: warnings.warn("Timesteps longer than 10 minutes may produce poor results") deltatime = timedelta(minutes=timestep) self.innerplanet = innerplanet self.outerplanet = outerplanet #Compute timestamps self.times = [starttime] while self.times[-1] < endtime: self.times.append(self.times[-1] + deltatime) self.mjd = np.array([Time(time).mjd for time in self.times]) #Calculate geometry at each timestamp self.geometry = [Geometry(self.innerplanet, self.outerplanet, time) for time in self.times] #Get observed times (corrected for light travel time) self.mjdobs = self.mjd + np.array([g.timedelay for g in self.geometry])/(24*3600.) #compute transit start, end, and mid-eclipse times #in transit when transitsep <= 1 transitsep = [g.theta / ((g.angdiam_Sun+g.angdiam_I)/2.0) for g in self.geometry] #separate below and after transit deepest = np.argmin([g.theta / ((g.angdiam_Sun+g.angdiam_I)/2.) for g in self.geometry]) #we'll interpolate precise start and end times if deepest != 0: self.startingress_mjd = float(interp1d(transitsep[:deepest],self.mjd[:deepest], bounds_error=False)(1)) self.startingress_mjdobs = float(interp1d(transitsep[:deepest],self.mjdobs[:deepest], bounds_error=False)(1)) else: self.startingress_mjd = np.nan self.startingress_mjdobs = np.nan if deepest != len(self.geometry)-1: self.endegress_mjd = float(interp1d(transitsep[deepest:],self.mjd[deepest:], bounds_error=False)(1)) self.endegress_mjdobs = float(interp1d(transitsep[deepest:],self.mjdobs[deepest:], bounds_error=False)(1)) else: self.endegress_mjd = np.nan self.endegress_mjdobs = np.nan self.midtransit_mjd = (self.startingress_mjd + self.endegress_mjd)/2. self.midtransit_mjdobs = (self.startingress_mjdobs + self.endegress_mjdobs)/2. self.transitdurationobs = (self.endegress_mjdobs - self.startingress_mjdobs)*24*u.h #Compute geometry at mid-transit self.midtransit_geometry = Geometry(self.innerplanet, self.outerplanet, Time(self.midtransit_mjd,format='mjd').to_datetime()) #Simulate mid-transit (default limb darkening) phi = np.arcsin(2*self.midtransit_geometry.theta/self.midtransit_geometry.angdiam_Sun) self.midtransit_depth = ((self.midtransit_geometry.angdiam_I**2/ self.midtransit_geometry.angdiam_Sun**2)* _limbdarkening(phi))*1e6 # ppm #Compute impact parameter (good to timestep precision) self.b = self.midtransit_geometry.theta / ((self.midtransit_geometry.angdiam_Sun)/2.) def animate(self, filename="Transit.gif", duration=3, figsize=(4,4), dpi=150, **kwargs): """Animate the transit Parameters: filename (str): file to save animation to duration (float): loop duration (seconds) figsize (float,float): width, height in inches dpi (float): dots per inch **kwargs: for Geometry plot function """ fig,ax = plt.subplots(figsize=figsize) #No initialization needed #Animation function to call #Time between frames interval = duration/len(self.times) #Animate it and save! anim = animation.FuncAnimation(fig, animateframe, init_func=init, frames=len(self.times), interval=interval, blit=False) anim.save(filename, dpi=dpi, fps = 1/interval, writer='imagemagick') def traceplot(self, ax=None, fov=(4,4), unit=u.arcsec, show=True, filename=None, plotsun=True, fontsize=13, **kwargs): """Plot path of transit across Sun Parameters: ax (mpl axis): axis to plot to (default: create new fig,ax) fov (tuple): (width,height) in solar radii unit (astropy angle unit or "solarradii"): unit for axes show (bool): whether to show plot (default: True) filename (str): filename to save to (default: None) sun (bool): plot Sun circle? (default: True) fontsize (float): fontsize **kwargs: args for figure if no axis provided """ #collect relevant details angdiam_I = np.array([g.angdiam_I for g in self.geometry]) angdiam_Sun = np.array([g.angdiam_Sun for g in self.geometry]) b = np.array([g.rI[1] for g in self.geometry]) l = np.array([g.rI[2] for g in self.geometry]) rI = np.array([g.rI[0] for g in self.geometry]) rSun = np.array([g.rSun[0] for g in self.geometry]) #Are we plotting in solar radii? (useful for overlaying traces) solarradii = unit == "solarradii" if solarradii: unit = u.radian #Angular unit conversion (from radians) scale = u.radian.to(unit) #Get trajectory angle, phi, to plot shadow wide enough phi = np.arctan(np.diff(b)/np.diff(l)) phi = np.concatenate((phi,[phi[-1]])) # match length #Create fig and ax if no ax provided if ax is None: fig,ax = plt.subplots(**kwargs) #Circles must be round ax.set_aspect(1) #Display sun, using angular size at mid-transit (unless solarradii display units) midtransit = np.argmin([g.theta / ((g.angdiam_Sun)/2.) for g in self.geometry]) angdiam_Sun = angdiam_Sun[midtransit] sunangrad = scale*angdiam_Sun/2. if solarradii: #Handle case for solar radii units sunangrad = 1 scale = 2./angdiam_Sun if plotsun: #Only plot sun if requested sun = plt.Circle((0, 0), sunangrad, color='y', zorder = 1) ax.add_patch(sun) #Is planet in front of Sun? infront = rI[midtransit] < rSun[midtransit] #Display transit path linewidth = scale*angdiam_I / np.cos(phi) #Width of shadow path ax.fill_between(scale*l,scale*b+linewidth/2.,scale*b-linewidth/2,lw=0, fc='0.2',zorder=2*infront) ax.set_xlabel(fr"$l'$ ({unit.short_names[0]})", fontsize=fontsize) ax.set_ylabel(fr"$b'$ ({unit.short_names[0]})", fontsize=fontsize) if solarradii: ax.set_xlabel("Solar radii", fontsize=fontsize) ax.set_ylabel("Solar radii", fontsize=fontsize) #Scale axes ax.set_xlim(-fov[0]*sunangrad/2, fov[0]*sunangrad/2) ax.set_ylim(-fov[1]*sunangrad/2, fov[1]*sunangrad/2) #Save plot or show if filename is not None: plt.tight_layout() plt.savefig(filename) if show: plt.tight_layout() plt.show() def simlightcurve(self,limbdarkeningfunc = _limbdarkening, limbdarkening_args = {"u2":0.88, "v2":-0.23}): """ Simulate transit light curve with limb darkening Assumes negligible limb darkening gradient across transiting planet disk Returns relative model flux at self.mjd_obs """ theta = np.array([g.theta for g in self.geometry]) angdiam_Sun = np.array([g.angdiam_Sun for g in self.geometry]) angdiam_I = np.array([g.angdiam_I for g in self.geometry]) #Angle between radial vector and line of sight phi = np.arcsin(2*theta/angdiam_Sun) #compute relative flux lc = 1 - (angdiam_I**2/angdiam_Sun**2)*_limbdarkening(phi,**limbdarkening_args) lc[np.isnan(lc)] = 1 return lc
41.311751
105
0.573925
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Jan 24 15:39:33 2021 Calculate and plot details of inner Solar System transits as seen from outer Solar System objects. Requires package solarsystem (https://pypi.org/project/solarsystem/) Animation requires imagemagick (imagemagick.org) @author: keatonb """ import solarsystem import numpy as np import matplotlib.pyplot as plt import warnings from astropy import units as u from astropy import constants as const from astropy.time import Time from scipy.interpolate import interp1d from datetime import timedelta from matplotlib import animation #from NASA Planetary Fact Sheet #km #https://nssdc.gsfc.nasa.gov/planetary/factsheet/ planetdiameter = {"Mercury":4879, "Venus":12104, "Earth":12756, "Mars":6792, "Jupiter":142984, "Saturn":120536, "Uranus":51118, "Neptune":49528} class Geometry: """ innerplanet relative to Sun as seen from outerplanet at time Derived in Bell & Rustamkulov (2021, in prep.) """ def __init__(self, innerplanet, outerplanet, time): """ Parameters: innerplanet (str): name of inner planet outerplanet (str): name of outer planet time (datetime): timestamp (UTC) """ self.innerplanet = innerplanet.capitalize() self.outerplanet = outerplanet.capitalize() self.time = time #Get heliocentric ecliptic planet positions at time: #(Longitude (l, deg), Latitude (b, deg), Distance (r, AU)) H = solarsystem.Heliocentric(year=time.year, month=time.month, day=time.day, hour=time.hour, minute=time.minute + time.second/60 + time.microsecond/1e6) planets = H.planets() #Get heliocentric ecliptic planet positions: #(Longitude (l, deg), Latitude (b, deg), Distance (r, AU)) O = planets[outerplanet] I = planets[innerplanet] E = planets["Earth"] #Convert to spherical position vector: #[r (AU, b (radians), l (radians)] rvec = lambda P: np.array([P[2],P[1]*np.pi/180,P[0]*np.pi/180]) rO = rvec(O) rI = rvec(I) rE = rvec(E) #Convert to Cartesian coordinates (x,y,z in AU) xvec = lambda rP: np.array([rP[0]*np.cos(rP[1])*np.cos(rP[2]), rP[0]*np.cos(rP[1])*np.sin(rP[2]), rP[0]*np.sin(rP[1])]) xO = xvec(rO) xI = xvec(rI) xE = xvec(rE) #Get positions relative to outer planet xO_Sun = - xO xO_I = xI - xO xO_E = xE - xO #Align x-axis with Sun for relative planet positions #With two rotation matrices: x' = BAx A = np.array([[-np.cos(rO[2]),-np.sin(rO[2]),0], [np.sin(rO[2]),-np.cos(rO[2]),0], [0,0,1]]) B = np.array([[np.cos(rO[1]),0,-np.sin(rO[1])], [0,1,0], [np.sin(rO[1]),0,np.cos(rO[1])]]) BA = np.matmul(B, A) xvecprime = lambda xO_P: np.matmul(BA,xO_P) xO_Sun_prime = xvecprime(xO_Sun) #Passes a sanity check xO_I_prime = xvecprime(xO_I) xO_E_prime = xvecprime(xO_E) self.xSun = xO_Sun_prime self.xI = xO_I_prime self.xE = xO_I_prime #Convert back to spherical coordinates #for on-sky positions as seen from O [r (AU,b (radians),l (radians)] rvecprime = lambda xvecp: np.array([np.sqrt(np.sum(xvecp**2.)), np.arctan(xvecp[2]/np.sqrt(np.sum(xvecp[:2]**2))), -np.arctan(xvecp[1]/xvecp[0])]) rO_Sun_prime = rvecprime(xO_Sun_prime) #Passes a sanity check rO_I_prime = rvecprime(xO_I_prime) #Passes a sanity check rO_E_prime = rvecprime(xO_E_prime) #Praise Boas! self.rSun = rO_Sun_prime self.rI = rO_I_prime self.rE = rO_I_prime #Angular separation between inner planet and Sun (radians) self.theta = np.arccos(np.dot(xO_Sun_prime,xO_I_prime)/(rO_Sun_prime[0]*rO_I_prime[0])) #Angular diameters of inner planet and Sun (radians) self.angdiam_Sun = 2*const.R_sun.to(u.AU)/(rO_Sun_prime[0]*u.AU) self.angdiam_I = planetdiameter[innerplanet]*u.km.to(u.AU)/rO_I_prime[0] #Are we in transit? self.intransit = ((self.theta < (self.angdiam_Sun + self.angdiam_I)/2.) & (rO_I_prime[0] < rO_Sun_prime[0])) #Fraction of distance toward Solar limb (0 at center) r = self.theta / (self.angdiam_Sun/2.0) self.mu = np.sqrt(1-r**2.) #Light travel time delay to Earth (seconds) self.timedelay = ((rO_I_prime[0] + rO_E_prime[0])*u.AU/const.c).to(u.s).value def plot(self, ax=None, fov=(4,4), unit=u.arcsec, show=True, filename=None, timedelay=True, fontsize=13, **kwargs): """ Plot snapshot of Sun, innerplanet from outerplanet Parameters: ax (mpl axis): axis to plot to (default: create new fig,ax) fov (tuple): (width,height) in solar radii unit (astropy angle unit): unit for axes show (bool): whether to show plot (default: True) filename (str): filename to save to (default: None) timedelay (bool): add light-travel time to text? fontsize (float): fontsize **kwargs: args for figure if no axis provided """ #Create fig and ax if no ax provided if ax is None: fig,ax = plt.subplots(**kwargs) #Circles must be round ax.set_aspect(1) #Angular unit conversion (from radians) scale = u.radian.to(unit) #Display sun, planet sunangrad = scale*self.angdiam_Sun/2. sun = plt.Circle((0, 0), sunangrad, color='y', zorder = 1) #Is planet in front of Sun? infront = self.rI[0] < self.rSun[0] #The line on this circle makes it look larger than reality, #but it's almost too small to see without planet = plt.Circle((scale*self.rI[2], scale*self.rI[1]), scale*self.angdiam_I/2., color='blue', zorder=2*infront) ax.add_patch(sun) ax.add_patch(planet) #Add text time = self.time if timedelay: time += timedelta(seconds=self.timedelay) ax.text(0.03,0.02,(f"{self.innerplanet} from {self.outerplanet} \n" + time.strftime('%Y-%m-%d %H:%M:%S')), transform=ax.transAxes, ha='left', va='bottom', fontsize=fontsize) ax.set_xlabel(fr"$l'$ ({unit.short_names[0]})", fontsize=fontsize) ax.set_ylabel(fr"$b'$ ({unit.short_names[0]})", fontsize=fontsize) #Scale axes ax.set_xlim(-fov[0]*sunangrad/2, fov[0]*sunangrad/2) ax.set_ylim(-fov[1]*sunangrad/2, fov[1]*sunangrad/2) #Save plot or show if filename is not None: plt.savefig(filename) if show: plt.show() def _limbdarkening(phi, u2=0.88, v2=-0.23): """limb darkening law parameterization from Section 14.7 of Allen's Astrophysical Quantities (4th ed, Cox, 2000, AIP Press) default u2,v2 values are for ~V filter @ 600 nm phi is angle between solar radius vector and line of sight (radians) normalized so disk integrates to 1 """ mu = np.cos(phi) return (1 - u2 - v2 + u2*mu + v2*(mu**2))/(1-u2/3 - v2/2) class Transit: """ Properties and plots of transits in time window. Calculates: - MJD (instantaneous and observed) of ingress,egress,midtranist - Impact parameter (b) Plots: - animate (gif) - traceplot (path) TODO: lightcurve (simulated) """ def __init__(self, innerplanet, outerplanet, starttime, endtime, timestep): """ Parameters: innerplanet (str): name of inner planet outerplanet (str): name of outer planet starttime (datetime): timestamp (UTC) before transit endtime (datetime): timestamp (UTC) before transit timestep (float): sampling interval (minutes; > 0) Notes: Impact parameter, b, is minimum within timestamp """ #Check that timestep is positive if timestep <= 0: raise Exception("Timestep must be positive.") if timestep > 10: warnings.warn("Timesteps longer than 10 minutes may produce poor results") deltatime = timedelta(minutes=timestep) self.innerplanet = innerplanet self.outerplanet = outerplanet #Compute timestamps self.times = [starttime] while self.times[-1] < endtime: self.times.append(self.times[-1] + deltatime) self.mjd = np.array([Time(time).mjd for time in self.times]) #Calculate geometry at each timestamp self.geometry = [Geometry(self.innerplanet, self.outerplanet, time) for time in self.times] #Get observed times (corrected for light travel time) self.mjdobs = self.mjd + np.array([g.timedelay for g in self.geometry])/(24*3600.) #compute transit start, end, and mid-eclipse times #in transit when transitsep <= 1 transitsep = [g.theta / ((g.angdiam_Sun+g.angdiam_I)/2.0) for g in self.geometry] #separate below and after transit deepest = np.argmin([g.theta / ((g.angdiam_Sun+g.angdiam_I)/2.) for g in self.geometry]) #we'll interpolate precise start and end times if deepest != 0: self.startingress_mjd = float(interp1d(transitsep[:deepest],self.mjd[:deepest], bounds_error=False)(1)) self.startingress_mjdobs = float(interp1d(transitsep[:deepest],self.mjdobs[:deepest], bounds_error=False)(1)) else: self.startingress_mjd = np.nan self.startingress_mjdobs = np.nan if deepest != len(self.geometry)-1: self.endegress_mjd = float(interp1d(transitsep[deepest:],self.mjd[deepest:], bounds_error=False)(1)) self.endegress_mjdobs = float(interp1d(transitsep[deepest:],self.mjdobs[deepest:], bounds_error=False)(1)) else: self.endegress_mjd = np.nan self.endegress_mjdobs = np.nan self.midtransit_mjd = (self.startingress_mjd + self.endegress_mjd)/2. self.midtransit_mjdobs = (self.startingress_mjdobs + self.endegress_mjdobs)/2. self.transitdurationobs = (self.endegress_mjdobs - self.startingress_mjdobs)*24*u.h #Compute geometry at mid-transit self.midtransit_geometry = Geometry(self.innerplanet, self.outerplanet, Time(self.midtransit_mjd,format='mjd').to_datetime()) #Simulate mid-transit (default limb darkening) phi = np.arcsin(2*self.midtransit_geometry.theta/self.midtransit_geometry.angdiam_Sun) self.midtransit_depth = ((self.midtransit_geometry.angdiam_I**2/ self.midtransit_geometry.angdiam_Sun**2)* _limbdarkening(phi))*1e6 # ppm #Compute impact parameter (good to timestep precision) self.b = self.midtransit_geometry.theta / ((self.midtransit_geometry.angdiam_Sun)/2.) def animate(self, filename="Transit.gif", duration=3, figsize=(4,4), dpi=150, **kwargs): """Animate the transit Parameters: filename (str): file to save animation to duration (float): loop duration (seconds) figsize (float,float): width, height in inches dpi (float): dots per inch **kwargs: for Geometry plot function """ fig,ax = plt.subplots(figsize=figsize) #No initialization needed def init(): self.geometry[0].plot(ax=ax, show=False, **kwargs) plt.tight_layout() return #Animation function to call def animateframe(i): ax.clear() #Clear previous data self.geometry[i].plot(ax=ax, show=False, **kwargs) return #Time between frames interval = duration/len(self.times) #Animate it and save! anim = animation.FuncAnimation(fig, animateframe, init_func=init, frames=len(self.times), interval=interval, blit=False) anim.save(filename, dpi=dpi, fps = 1/interval, writer='imagemagick') def traceplot(self, ax=None, fov=(4,4), unit=u.arcsec, show=True, filename=None, plotsun=True, fontsize=13, **kwargs): """Plot path of transit across Sun Parameters: ax (mpl axis): axis to plot to (default: create new fig,ax) fov (tuple): (width,height) in solar radii unit (astropy angle unit or "solarradii"): unit for axes show (bool): whether to show plot (default: True) filename (str): filename to save to (default: None) sun (bool): plot Sun circle? (default: True) fontsize (float): fontsize **kwargs: args for figure if no axis provided """ #collect relevant details angdiam_I = np.array([g.angdiam_I for g in self.geometry]) angdiam_Sun = np.array([g.angdiam_Sun for g in self.geometry]) b = np.array([g.rI[1] for g in self.geometry]) l = np.array([g.rI[2] for g in self.geometry]) rI = np.array([g.rI[0] for g in self.geometry]) rSun = np.array([g.rSun[0] for g in self.geometry]) #Are we plotting in solar radii? (useful for overlaying traces) solarradii = unit == "solarradii" if solarradii: unit = u.radian #Angular unit conversion (from radians) scale = u.radian.to(unit) #Get trajectory angle, phi, to plot shadow wide enough phi = np.arctan(np.diff(b)/np.diff(l)) phi = np.concatenate((phi,[phi[-1]])) # match length #Create fig and ax if no ax provided if ax is None: fig,ax = plt.subplots(**kwargs) #Circles must be round ax.set_aspect(1) #Display sun, using angular size at mid-transit (unless solarradii display units) midtransit = np.argmin([g.theta / ((g.angdiam_Sun)/2.) for g in self.geometry]) angdiam_Sun = angdiam_Sun[midtransit] sunangrad = scale*angdiam_Sun/2. if solarradii: #Handle case for solar radii units sunangrad = 1 scale = 2./angdiam_Sun if plotsun: #Only plot sun if requested sun = plt.Circle((0, 0), sunangrad, color='y', zorder = 1) ax.add_patch(sun) #Is planet in front of Sun? infront = rI[midtransit] < rSun[midtransit] #Display transit path linewidth = scale*angdiam_I / np.cos(phi) #Width of shadow path ax.fill_between(scale*l,scale*b+linewidth/2.,scale*b-linewidth/2,lw=0, fc='0.2',zorder=2*infront) ax.set_xlabel(fr"$l'$ ({unit.short_names[0]})", fontsize=fontsize) ax.set_ylabel(fr"$b'$ ({unit.short_names[0]})", fontsize=fontsize) if solarradii: ax.set_xlabel("Solar radii", fontsize=fontsize) ax.set_ylabel("Solar radii", fontsize=fontsize) #Scale axes ax.set_xlim(-fov[0]*sunangrad/2, fov[0]*sunangrad/2) ax.set_ylim(-fov[1]*sunangrad/2, fov[1]*sunangrad/2) #Save plot or show if filename is not None: plt.tight_layout() plt.savefig(filename) if show: plt.tight_layout() plt.show() def simlightcurve(self,limbdarkeningfunc = _limbdarkening, limbdarkening_args = {"u2":0.88, "v2":-0.23}): """ Simulate transit light curve with limb darkening Assumes negligible limb darkening gradient across transiting planet disk Returns relative model flux at self.mjd_obs """ theta = np.array([g.theta for g in self.geometry]) angdiam_Sun = np.array([g.angdiam_Sun for g in self.geometry]) angdiam_I = np.array([g.angdiam_I for g in self.geometry]) #Angle between radial vector and line of sight phi = np.arcsin(2*theta/angdiam_Sun) #compute relative flux lc = 1 - (angdiam_I**2/angdiam_Sun**2)*_limbdarkening(phi,**limbdarkening_args) lc[np.isnan(lc)] = 1 return lc
228
0
61
eabe8c69163f71157cd2ba1f49bb642b4bbb49cc
4,751
py
Python
pose_estimation/my_train.py
RoboBachelor/vehicle_pose_estimation
53f1ff4a70d69256ba10fd2ecee024cf19801b22
[ "MIT" ]
1
2021-11-01T15:12:39.000Z
2021-11-01T15:12:39.000Z
pose_estimation/my_train.py
RoboBachelor/vehicle_pose_estimation
53f1ff4a70d69256ba10fd2ecee024cf19801b22
[ "MIT" ]
1
2021-11-01T15:11:14.000Z
2021-11-06T07:02:13.000Z
pose_estimation/my_train.py
RoboBachelor/vehicle_pose_estimation
53f1ff4a70d69256ba10fd2ecee024cf19801b22
[ "MIT" ]
1
2021-12-15T22:19:08.000Z
2021-12-15T22:19:08.000Z
import os.path as osp import sys import argparse import time import torch from torchvision import transforms this_dir = osp.dirname(__file__) paths = [] paths.append(osp.join(this_dir, '..', 'lib')) paths.append(osp.join(this_dir, '..', 'lib', 'dataset')) for path in paths: if path not in sys.path: sys.path.insert(0, path) import models from core.loss import JointsMSELoss from utils.utils import get_optimizer from core.config import config from core.config import update_config from core.config import update_dir from core.config import get_model_name from core.evaluate import accuracy from CarJointsDataset import CarJointsDataset class AverageMeter(object): """Computes and stores the average and current value""" args = parse_args() model = eval('models.' + 'pose_resnet' + '.get_pose_net')( config, is_train=False ) print(model) # define loss function (criterion) and optimizer criterion = JointsMSELoss( use_target_weight=config.LOSS.USE_TARGET_WEIGHT ) optimizer = get_optimizer(config, model) lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( optimizer, config.TRAIN.LR_STEP, config.TRAIN.LR_FACTOR ) # Data loading code normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_dataset = CarJointsDataset( config, transforms.Compose([ transforms.ToTensor(), normalize, ]) ) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=config.TRAIN.BATCH_SIZE, shuffle=config.TRAIN.SHUFFLE, num_workers=config.WORKERS ) # switch to train mode model.train() batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() acc = AverageMeter() end = time.time() for epoch in range(config.TRAIN.BEGIN_EPOCH, config.TRAIN.END_EPOCH): lr_scheduler.step() for i, (input, target) in enumerate(train_loader): # compute output output = model(input) loss = criterion(output, target, 0) # compute gradient and do update step optimizer.zero_grad() loss.backward() optimizer.step() # measure accuracy and record loss losses.update(loss.item(), input.size(0)) _, avg_acc, cnt, pred = accuracy(output.detach().cpu().numpy(), target.detach().cpu().numpy()) acc.update(avg_acc, cnt) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % config.PRINT_FREQ == 0: msg = 'Epoch: [{0}][{1}/{2}]\t' \ 'Time {batch_time.val:.3f}s ({batch_time.avg:.3f}s)\t' \ 'Speed {speed:.1f} samples/s\t' \ 'Data {data_time.val:.3f}s ({data_time.avg:.3f}s)\t' \ 'Loss {loss.val:.5f} ({loss.avg:.5f})\t' \ 'Accuracy {acc.val:.3f} ({acc.avg:.3f})'.format( epoch, i, len(train_loader), batch_time=batch_time, speed=input.size(0)/batch_time.val, data_time=data_time, loss=losses, acc=acc) print(msg) print("End of current epoch") print("End of training!")
26.841808
75
0.595875
import os.path as osp import sys import argparse import time import torch from torchvision import transforms this_dir = osp.dirname(__file__) paths = [] paths.append(osp.join(this_dir, '..', 'lib')) paths.append(osp.join(this_dir, '..', 'lib', 'dataset')) for path in paths: if path not in sys.path: sys.path.insert(0, path) import models from core.loss import JointsMSELoss from utils.utils import get_optimizer from core.config import config from core.config import update_config from core.config import update_dir from core.config import get_model_name from core.evaluate import accuracy from CarJointsDataset import CarJointsDataset class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count if self.count != 0 else 0 def parse_args(): parser = argparse.ArgumentParser(description='Train keypoints network') # general parser.add_argument('--cfg', help='experiment configure file name', required=True, type=str) args, rest = parser.parse_known_args() # update config update_config(args.cfg) # training parser.add_argument('--frequent', help='frequency of logging', default=config.PRINT_FREQ, type=int) parser.add_argument('--gpus', help='gpus', type=str) parser.add_argument('--workers', help='num of dataloader workers', type=int) args = parser.parse_args() return args args = parse_args() model = eval('models.' + 'pose_resnet' + '.get_pose_net')( config, is_train=False ) print(model) # define loss function (criterion) and optimizer criterion = JointsMSELoss( use_target_weight=config.LOSS.USE_TARGET_WEIGHT ) optimizer = get_optimizer(config, model) lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( optimizer, config.TRAIN.LR_STEP, config.TRAIN.LR_FACTOR ) # Data loading code normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_dataset = CarJointsDataset( config, transforms.Compose([ transforms.ToTensor(), normalize, ]) ) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=config.TRAIN.BATCH_SIZE, shuffle=config.TRAIN.SHUFFLE, num_workers=config.WORKERS ) # switch to train mode model.train() batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() acc = AverageMeter() end = time.time() for epoch in range(config.TRAIN.BEGIN_EPOCH, config.TRAIN.END_EPOCH): lr_scheduler.step() for i, (input, target) in enumerate(train_loader): # compute output output = model(input) loss = criterion(output, target, 0) # compute gradient and do update step optimizer.zero_grad() loss.backward() optimizer.step() # measure accuracy and record loss losses.update(loss.item(), input.size(0)) _, avg_acc, cnt, pred = accuracy(output.detach().cpu().numpy(), target.detach().cpu().numpy()) acc.update(avg_acc, cnt) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % config.PRINT_FREQ == 0: msg = 'Epoch: [{0}][{1}/{2}]\t' \ 'Time {batch_time.val:.3f}s ({batch_time.avg:.3f}s)\t' \ 'Speed {speed:.1f} samples/s\t' \ 'Data {data_time.val:.3f}s ({data_time.avg:.3f}s)\t' \ 'Loss {loss.val:.5f} ({loss.avg:.5f})\t' \ 'Accuracy {acc.val:.3f} ({acc.avg:.3f})'.format( epoch, i, len(train_loader), batch_time=batch_time, speed=input.size(0)/batch_time.val, data_time=data_time, loss=losses, acc=acc) print(msg) print("End of current epoch") print("End of training!") def valid_speed_test(): # switch to val mode model.eval() sum_time = 0 with torch.no_grad(): for i in range(10): start = time.time() # compute output output = model(input[0:1]) sum_time += time.time() - start print("End of valid! {} seconds for 10 images!".format(sum_time)) model.train()
1,422
0
126
ac8a36d1877984ef81576c267c469097f46c2c4e
1,898
py
Python
setup.py
qctrl/python-cirq
72f2e412bcef2d92a53dee71ad50dca4153bb192
[ "Apache-2.0" ]
null
null
null
setup.py
qctrl/python-cirq
72f2e412bcef2d92a53dee71ad50dca4153bb192
[ "Apache-2.0" ]
6
2020-01-16T03:10:34.000Z
2022-03-13T22:57:46.000Z
setup.py
qctrl/python-cirq
72f2e412bcef2d92a53dee71ad50dca4153bb192
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # DO NOT EDIT THIS FILE! # This file has been autogenerated by dephell <3 # https://github.com/dephell/dephell try: from setuptools import setup except ImportError: from distutils.core import setup import os.path readme = '' here = os.path.abspath(os.path.dirname(__file__)) readme_path = os.path.join(here, 'README.rst') if os.path.exists(readme_path): with open(readme_path, 'rb') as stream: readme = stream.read().decode('utf8') setup( long_description=readme, name='qctrl-cirq', version='0.0.4', description='Q-CTRL Python Cirq', python_requires='<3.9,>=3.6.4', project_urls={"documentation": "", "homepage": "https://q-ctrl.com", "repository": "https://github.com/qctrl/python-cirq"}, author='Q-CTRL', author_email='support@q-ctrl.com', license='Apache-2.0', keywords='q-ctrl qctrl quantum control', classifiers=['Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Scientific/Engineering :: Physics', 'Topic :: Scientific/Engineering :: Visualization', 'Topic :: Software Development :: Embedded Systems', 'Topic :: System :: Distributed Computing'], packages=['qctrlcirq'], package_dir={"": "."}, package_data={}, install_requires=['cirq==0.*,>=0.6.0', 'numpy==1.*,>=1.16.0', 'qctrl-open-controls==4.*,>=4.3.0', 'scipy==1.*,>=1.3.0', 'toml==0.*,>=0.10.0'], extras_require={"dev": ["nbval==0.*,>=0.9.5", "pylama", "pylint", "pylint-runner", "pytest", "qctrl-visualizer==2.*,>=2.1.0", "sphinx==2.*,>=2.2.0"]}, )
45.190476
620
0.652266
# -*- coding: utf-8 -*- # DO NOT EDIT THIS FILE! # This file has been autogenerated by dephell <3 # https://github.com/dephell/dephell try: from setuptools import setup except ImportError: from distutils.core import setup import os.path readme = '' here = os.path.abspath(os.path.dirname(__file__)) readme_path = os.path.join(here, 'README.rst') if os.path.exists(readme_path): with open(readme_path, 'rb') as stream: readme = stream.read().decode('utf8') setup( long_description=readme, name='qctrl-cirq', version='0.0.4', description='Q-CTRL Python Cirq', python_requires='<3.9,>=3.6.4', project_urls={"documentation": "", "homepage": "https://q-ctrl.com", "repository": "https://github.com/qctrl/python-cirq"}, author='Q-CTRL', author_email='support@q-ctrl.com', license='Apache-2.0', keywords='q-ctrl qctrl quantum control', classifiers=['Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Scientific/Engineering :: Physics', 'Topic :: Scientific/Engineering :: Visualization', 'Topic :: Software Development :: Embedded Systems', 'Topic :: System :: Distributed Computing'], packages=['qctrlcirq'], package_dir={"": "."}, package_data={}, install_requires=['cirq==0.*,>=0.6.0', 'numpy==1.*,>=1.16.0', 'qctrl-open-controls==4.*,>=4.3.0', 'scipy==1.*,>=1.3.0', 'toml==0.*,>=0.10.0'], extras_require={"dev": ["nbval==0.*,>=0.9.5", "pylama", "pylint", "pylint-runner", "pytest", "qctrl-visualizer==2.*,>=2.1.0", "sphinx==2.*,>=2.2.0"]}, )
0
0
0
c8628f4105fa9dc4a1e175f4c7f8e662791f1969
4,341
py
Python
tests/test_elasticsearch_driver_metadata_as_nested.py
James-QiuHaoran/scalable-image-matching
a96fe5132d2c39f32680a97e216b438c87280a24
[ "MIT" ]
22
2018-11-24T12:30:47.000Z
2021-09-08T12:22:18.000Z
tests/test_elasticsearch_driver_metadata_as_nested.py
James-QiuHaoran/scalable-image-matching
a96fe5132d2c39f32680a97e216b438c87280a24
[ "MIT" ]
null
null
null
tests/test_elasticsearch_driver_metadata_as_nested.py
James-QiuHaoran/scalable-image-matching
a96fe5132d2c39f32680a97e216b438c87280a24
[ "MIT" ]
6
2019-01-18T12:18:36.000Z
2021-05-07T08:47:34.000Z
import pytest import urllib.request import os import hashlib from elasticsearch import Elasticsearch, ConnectionError, RequestError, NotFoundError from time import sleep from image_match.elasticsearch_driver import SignatureES from PIL import Image test_img_url1 = 'https://camo.githubusercontent.com/810bdde0a88bc3f8ce70c5d85d8537c37f707abe/68747470733a2f2f75706c6f61642e77696b696d656469612e6f72672f77696b6970656469612f636f6d6d6f6e732f7468756d622f652f65632f4d6f6e615f4c6973612c5f62795f4c656f6e6172646f5f64615f56696e63692c5f66726f6d5f4332524d465f7265746f75636865642e6a70672f36383770782d4d6f6e615f4c6973612c5f62795f4c656f6e6172646f5f64615f56696e63692c5f66726f6d5f4332524d465f7265746f75636865642e6a7067' test_img_url2 = 'https://camo.githubusercontent.com/826e23bc3eca041110a5af467671b012606aa406/68747470733a2f2f63322e737461746963666c69636b722e636f6d2f382f373135382f363831343434343939315f303864383264653537655f7a2e6a7067' urllib.request.urlretrieve(test_img_url1, 'test1.jpg') urllib.request.urlretrieve(test_img_url2, 'test2.jpg') INDEX_NAME = 'test_environment_{}'.format(hashlib.md5(os.urandom(128)).hexdigest()[:12]) DOC_TYPE = 'image' MAPPINGS = { "mappings": { DOC_TYPE: { "dynamic": True, "properties": { "metadata": { "type": "nested", "dynamic": True, "properties": { "tenant_id": { "type": "keyword" }, "project_id": { "type": "keyword" } } } } } } } @pytest.fixture(scope='module', autouse=True) @pytest.fixture(scope='function', autouse=True) @pytest.fixture(scope='function', autouse=True) @pytest.fixture @pytest.fixture
32.395522
452
0.652384
import pytest import urllib.request import os import hashlib from elasticsearch import Elasticsearch, ConnectionError, RequestError, NotFoundError from time import sleep from image_match.elasticsearch_driver import SignatureES from PIL import Image test_img_url1 = 'https://camo.githubusercontent.com/810bdde0a88bc3f8ce70c5d85d8537c37f707abe/68747470733a2f2f75706c6f61642e77696b696d656469612e6f72672f77696b6970656469612f636f6d6d6f6e732f7468756d622f652f65632f4d6f6e615f4c6973612c5f62795f4c656f6e6172646f5f64615f56696e63692c5f66726f6d5f4332524d465f7265746f75636865642e6a70672f36383770782d4d6f6e615f4c6973612c5f62795f4c656f6e6172646f5f64615f56696e63692c5f66726f6d5f4332524d465f7265746f75636865642e6a7067' test_img_url2 = 'https://camo.githubusercontent.com/826e23bc3eca041110a5af467671b012606aa406/68747470733a2f2f63322e737461746963666c69636b722e636f6d2f382f373135382f363831343434343939315f303864383264653537655f7a2e6a7067' urllib.request.urlretrieve(test_img_url1, 'test1.jpg') urllib.request.urlretrieve(test_img_url2, 'test2.jpg') INDEX_NAME = 'test_environment_{}'.format(hashlib.md5(os.urandom(128)).hexdigest()[:12]) DOC_TYPE = 'image' MAPPINGS = { "mappings": { DOC_TYPE: { "dynamic": True, "properties": { "metadata": { "type": "nested", "dynamic": True, "properties": { "tenant_id": { "type": "keyword" }, "project_id": { "type": "keyword" } } } } } } } @pytest.fixture(scope='module', autouse=True) def index_name(): return INDEX_NAME @pytest.fixture(scope='function', autouse=True) def setup_index(request, index_name): es = Elasticsearch() try: es.indices.create(index=index_name, body=MAPPINGS) except RequestError as e: if e.error == u'index_already_exists_exception': es.indices.delete(index_name) else: raise def fin(): try: es.indices.delete(index_name) except NotFoundError: pass request.addfinalizer(fin) @pytest.fixture(scope='function', autouse=True) def cleanup_index(request, es, index_name): def fin(): try: es.indices.delete(index_name) except NotFoundError: pass request.addfinalizer(fin) @pytest.fixture def es(): return Elasticsearch() @pytest.fixture def ses(es, index_name): return SignatureES(es=es, index=index_name, doc_type=DOC_TYPE) def test_elasticsearch_running(es): i = 0 while i < 5: try: es.ping() assert True return except ConnectionError: i += 1 sleep(2) pytest.fail('Elasticsearch not running (failed to connect after {} tries)' .format(str(i))) def test_lookup_with_filter_by_metadata(ses): ses.add_image('test1.jpg', metadata=_metadata('foo', 'project-x'), refresh_after=True) ses.add_image('test2.jpg', metadata=_metadata('foo', 'project-x'), refresh_after=True) ses.add_image('test3.jpg', img='test1.jpg', metadata=_metadata('foo', 'project-y'), refresh_after=True) ses.add_image('test2.jpg', metadata=_metadata('bar', 'project-x'), refresh_after=True) r = ses.search_image('test1.jpg', pre_filter=_nested_filter('foo', 'project-x')) assert len(r) == 2 r = ses.search_image('test1.jpg', pre_filter=_nested_filter('foo', 'project-z')) assert len(r) == 0 r = ses.search_image('test1.jpg', pre_filter=_nested_filter('bar', 'project-x')) assert len(r) == 1 r = ses.search_image('test1.jpg', pre_filter=_nested_filter('bar-2', 'project-x')) assert len(r) == 0 r = ses.search_image('test1.jpg', pre_filter=_nested_filter('bar', 'project-z')) assert len(r) == 0 def _metadata(tenant_id, project_id): return dict( tenant_id=tenant_id, project_id=project_id ) def _nested_filter(tenant_id, project_id): return { "nested" : { "path" : "metadata", "query" : { "bool" : { "must" : [ {"term": {"metadata.tenant_id": tenant_id}}, {"term": {"metadata.project_id": project_id}} ] } } } }
2,453
0
214
4cbf11419437fed2cf010cf45d94dd5dea8c505a
41
py
Python
tru/global_vars.py
TroyRetter/TRU
c9989d09021b0e1483487c99c5a2e73b0310aae6
[ "MIT" ]
null
null
null
tru/global_vars.py
TroyRetter/TRU
c9989d09021b0e1483487c99c5a2e73b0310aae6
[ "MIT" ]
null
null
null
tru/global_vars.py
TroyRetter/TRU
c9989d09021b0e1483487c99c5a2e73b0310aae6
[ "MIT" ]
null
null
null
BASE_DIRECTORY = None CACHE = "/tmp/tru"
13.666667
21
0.707317
BASE_DIRECTORY = None CACHE = "/tmp/tru"
0
0
0
a2008ac42ab43f59dd987f910382bf756d67c855
1,670
py
Python
src/BandC/ParserUtil.py
pywash/pywash
f105752f67ad5c4648117a2bebd875f8c88caeb2
[ "MIT" ]
7
2019-02-26T10:45:18.000Z
2019-08-13T18:08:58.000Z
src/BandC/ParserUtil.py
pywash/pywash
f105752f67ad5c4648117a2bebd875f8c88caeb2
[ "MIT" ]
null
null
null
src/BandC/ParserUtil.py
pywash/pywash
f105752f67ad5c4648117a2bebd875f8c88caeb2
[ "MIT" ]
1
2021-06-11T14:56:52.000Z
2021-06-11T14:56:52.000Z
from src.BandC import * from src.Exceptions import FileFormatNotFound __parsers__ = {'.csv': CSV, '.arff': Arff} __url_parsers__ = {'.csv': URLCSV, '.arff': URLARFF} def assign_parser(file_path: str, contents: str = None, verbose: bool = False) -> callable: """ Allocate a specific parser to a file_path :param file_path: The file path of the dataset to parse :param contents: The dataset as a string :param verbose: True for output :return: A parser object which is able to parse the dataset """ # Check file path to see if we need a local or an url parser parsers = __parsers__ if file_path.startswith('https:'): print('THIS IS IT') parsers = __url_parsers__ # Find the correct parser for the file for parser in parsers: # Check if we have implemented a parser for this file if file_path.endswith(parser): # Check if the dataset has been given as a string if contents is None: return parsers[parser](file_path=file_path, verbose=verbose) else: return parsers[parser](file_path=file_path, contents=contents, verbose=verbose) # When the file format is not in our list of parable formats raise FileFormatNotFound("File format of file: " + file_path + " is unknown") if __name__ == "__main__": p = assign_parser("C:/AAA_School/Assignments/BEP/Datasets/Test.csv", verbose=True) print() print(p) print(p.get_dialect) print() print(p.parse_file().head(5)) print('Done')
35.531915
91
0.619162
from src.BandC import * from src.Exceptions import FileFormatNotFound __parsers__ = {'.csv': CSV, '.arff': Arff} __url_parsers__ = {'.csv': URLCSV, '.arff': URLARFF} def assign_parser(file_path: str, contents: str = None, verbose: bool = False) -> callable: """ Allocate a specific parser to a file_path :param file_path: The file path of the dataset to parse :param contents: The dataset as a string :param verbose: True for output :return: A parser object which is able to parse the dataset """ # Check file path to see if we need a local or an url parser parsers = __parsers__ if file_path.startswith('https:'): print('THIS IS IT') parsers = __url_parsers__ # Find the correct parser for the file for parser in parsers: # Check if we have implemented a parser for this file if file_path.endswith(parser): # Check if the dataset has been given as a string if contents is None: return parsers[parser](file_path=file_path, verbose=verbose) else: return parsers[parser](file_path=file_path, contents=contents, verbose=verbose) # When the file format is not in our list of parable formats raise FileFormatNotFound("File format of file: " + file_path + " is unknown") if __name__ == "__main__": p = assign_parser("C:/AAA_School/Assignments/BEP/Datasets/Test.csv", verbose=True) print() print(p) print(p.get_dialect) print() print(p.parse_file().head(5)) print('Done')
0
0
0
1c749ee797e17400b3ddbf7ac439a88ffca0a93e
2,955
py
Python
tests/test_xsd_union.py
imanashoorii/zibal-zeep
9ff7b229b0759597823da41d1dbf48c6e7b5b383
[ "MIT" ]
null
null
null
tests/test_xsd_union.py
imanashoorii/zibal-zeep
9ff7b229b0759597823da41d1dbf48c6e7b5b383
[ "MIT" ]
null
null
null
tests/test_xsd_union.py
imanashoorii/zibal-zeep
9ff7b229b0759597823da41d1dbf48c6e7b5b383
[ "MIT" ]
null
null
null
from tests.utils import assert_nodes_equal, load_xml, render_node from zibalzeep import xsd
30.78125
92
0.551946
from tests.utils import assert_nodes_equal, load_xml, render_node from zibalzeep import xsd def test_union_same_types(): schema = xsd.Schema( load_xml( """ <?xml version="1.0"?> <xsd:schema xmlns="http://tests.python-zeep.org/" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://tests.python-zeep.org/" targetNamespace="http://tests.python-zeep.org/" elementFormDefault="qualified"> <xsd:simpleType name="MMYY"> <xsd:restriction base="xsd:int"/> </xsd:simpleType> <xsd:simpleType name="MMYYYY"> <xsd:restriction base="xsd:int"/> </xsd:simpleType> <xsd:simpleType name="Date"> <xsd:union memberTypes="tns:MMYY MMYYYY"/> </xsd:simpleType> <xsd:element name="item" type="tns:Date"/> </xsd:schema> """ ) ) elm = schema.get_element("ns0:item") node = render_node(elm, "102018") expected = """ <document> <ns0:item xmlns:ns0="http://tests.python-zeep.org/">102018</ns0:item> </document> """ assert_nodes_equal(expected, node) value = elm.parse(list(node)[0], schema) assert value == 102018 def test_union_mixed(): schema = xsd.Schema( load_xml( """ <?xml version="1.0"?> <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://tests.python-zeep.org/" targetNamespace="http://tests.python-zeep.org/" elementFormDefault="qualified"> <xsd:element name="item" type="tns:Date"/> <xsd:simpleType name="Date"> <xsd:union memberTypes="xsd:date xsd:gYear xsd:gYearMonth tns:MMYY tns:MMYYYY"/> </xsd:simpleType> <xsd:simpleType name="MMYY"> <xsd:restriction base="xsd:string"> <xsd:pattern value="(0[123456789]|1[012]){1}\d{2}"/> </xsd:restriction> </xsd:simpleType> <xsd:simpleType name="MMYYYY"> <xsd:restriction base="xsd:string"> <xsd:pattern value="(0[123456789]|1[012]){1}\d{4}"/> </xsd:restriction> </xsd:simpleType> </xsd:schema> """ ) ) elm = schema.get_element("ns0:item") node = render_node(elm, "102018") expected = """ <document> <ns0:item xmlns:ns0="http://tests.python-zeep.org/">102018</ns0:item> </document> """ assert_nodes_equal(expected, node) value = elm.parse(list(node)[0], schema) assert value == "102018" node = render_node(elm, "2018") expected = """ <document> <ns0:item xmlns:ns0="http://tests.python-zeep.org/">2018</ns0:item> </document> """ assert_nodes_equal(expected, node) value = elm.parse(list(node)[0], schema) assert value == "2018"
2,815
0
46
14b8846f714d76e5b90a4f207ecf7721fe8b3e01
3,334
py
Python
docs/mail-merge/docs_mail_merge_test.py
kvij/python-samples
1f3341c37bacf5239210ea0cbe957a373c095a0a
[ "Apache-2.0" ]
1
2021-06-12T22:39:57.000Z
2021-06-12T22:39:57.000Z
docs/mail-merge/docs_mail_merge_test.py
kvij/python-samples
1f3341c37bacf5239210ea0cbe957a373c095a0a
[ "Apache-2.0" ]
null
null
null
docs/mail-merge/docs_mail_merge_test.py
kvij/python-samples
1f3341c37bacf5239210ea0cbe957a373c095a0a
[ "Apache-2.0" ]
8
2021-11-25T04:26:15.000Z
2021-11-30T17:06:49.000Z
# -*- coding: utf-8 -*- # # Copyright ©2018-2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at apache.org/licenses/LICENSE-2.0. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ docs_mail_merge_test.py -- unit test for docs_mail_merge.py: 1. test credentials file availability 2. test whether project can connect to all 3 APIs 3. test creation (and deletion) of Google Docs file 4. test copying (and deletion) of Google Docs file 5. test getting plain text data 6. test getting data from Google Sheets spreadsheet """ import os import unittest from googleapiclient import discovery from docs_mail_merge import (CLIENT_ID_FILE, get_data, get_http_client, _copy_template) class TestDocsMailMerge(unittest.TestCase): 'Unit tests for Mail Merge sample' def project_test(): 'Tests whether project credentials file was downloaded from project.' if os.path.exists(CLIENT_ID_FILE): return True raise IOError('''\ ERROR: Must create a Google APIs project, enable both the Drive and Docs REST APIs, create and download OAuth2 client credentials as %r before unit test can run.''' % CLIENT_ID_FILE) def gapis_test(): 'Tests whether project can connect to all 3 APIs used in the sample.' HTTP = get_http_client() discovery.build('drive', 'v3', http=HTTP) discovery.build('docs', 'v1', http=HTTP) discovery.build('sheets', 'v4', http=HTTP) return True def create_doc_test(): 'Tests whether project can create and delete a Google Docs file.' DRIVE = discovery.build('drive', 'v3', http=get_http_client()) DATA = { 'name': 'Test Doc', 'mimeType': 'application/vnd.google-apps.document', } doc_id = DRIVE.files().create(body=DATA, fields='id').execute().get('id') DRIVE.files().delete(fileId=doc_id, fields='').execute() return True def copy_doc_test(): 'Tests whether project can copy and delete a Google Docs file.' DRIVE = discovery.build('drive', 'v3', http=get_http_client()) DOCS_FILE_ID = '1Xycxuuv7OhEQUuzbt_Mw0TPMq02MseSD1vZdBJ3nLjk' doc_id = _copy_template(DOCS_FILE_ID, 'text', DRIVE) DRIVE.files().delete(fileId=doc_id, fields='').execute() return True def get_text_data_test(): 'Tests reading plain text data.' return get_data('text') def get_sheets_data_test(): 'Tests reading Google Sheets data.' return get_data('sheets') if __name__ == '__main__': unittest.main()
35.849462
79
0.709058
# -*- coding: utf-8 -*- # # Copyright ©2018-2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at apache.org/licenses/LICENSE-2.0. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ docs_mail_merge_test.py -- unit test for docs_mail_merge.py: 1. test credentials file availability 2. test whether project can connect to all 3 APIs 3. test creation (and deletion) of Google Docs file 4. test copying (and deletion) of Google Docs file 5. test getting plain text data 6. test getting data from Google Sheets spreadsheet """ import os import unittest from googleapiclient import discovery from docs_mail_merge import (CLIENT_ID_FILE, get_data, get_http_client, _copy_template) class TestDocsMailMerge(unittest.TestCase): 'Unit tests for Mail Merge sample' def test_project(self): self.assertTrue(project_test()) def test_gapis(self): self.assertTrue(gapis_test()) def test_create_doc(self): self.assertTrue(create_doc_test()) def test_copy_doc(self): self.assertTrue(copy_doc_test()) def test_get_text_data(self): self.assertTrue(bool(get_text_data_test())) def test_get_sheets_data(self): self.assertTrue(bool(get_sheets_data_test())) def project_test(): 'Tests whether project credentials file was downloaded from project.' if os.path.exists(CLIENT_ID_FILE): return True raise IOError('''\ ERROR: Must create a Google APIs project, enable both the Drive and Docs REST APIs, create and download OAuth2 client credentials as %r before unit test can run.''' % CLIENT_ID_FILE) def gapis_test(): 'Tests whether project can connect to all 3 APIs used in the sample.' HTTP = get_http_client() discovery.build('drive', 'v3', http=HTTP) discovery.build('docs', 'v1', http=HTTP) discovery.build('sheets', 'v4', http=HTTP) return True def create_doc_test(): 'Tests whether project can create and delete a Google Docs file.' DRIVE = discovery.build('drive', 'v3', http=get_http_client()) DATA = { 'name': 'Test Doc', 'mimeType': 'application/vnd.google-apps.document', } doc_id = DRIVE.files().create(body=DATA, fields='id').execute().get('id') DRIVE.files().delete(fileId=doc_id, fields='').execute() return True def copy_doc_test(): 'Tests whether project can copy and delete a Google Docs file.' DRIVE = discovery.build('drive', 'v3', http=get_http_client()) DOCS_FILE_ID = '1Xycxuuv7OhEQUuzbt_Mw0TPMq02MseSD1vZdBJ3nLjk' doc_id = _copy_template(DOCS_FILE_ID, 'text', DRIVE) DRIVE.files().delete(fileId=doc_id, fields='').execute() return True def get_text_data_test(): 'Tests reading plain text data.' return get_data('text') def get_sheets_data_test(): 'Tests reading Google Sheets data.' return get_data('sheets') if __name__ == '__main__': unittest.main()
296
0
156
2644da3c7c17205a4c4c3e561f05108d119f037f
2,323
py
Python
datashader/tests/test_raster.py
nside/datashader
7d1af5a63c51430731e728a627d5e2304c56da8a
[ "BSD-3-Clause" ]
null
null
null
datashader/tests/test_raster.py
nside/datashader
7d1af5a63c51430731e728a627d5e2304c56da8a
[ "BSD-3-Clause" ]
1
2021-07-30T18:24:08.000Z
2021-07-30T18:24:08.000Z
datashader/tests/test_raster.py
nside/datashader
7d1af5a63c51430731e728a627d5e2304c56da8a
[ "BSD-3-Clause" ]
null
null
null
from os import path import pytest import datashader as ds import rasterio as rio from pytest import set_trace BASE_PATH = path.split(__file__)[0] DATA_PATH = path.abspath(path.join(BASE_PATH, 'data')) TEST_RASTER_PATH = path.join(DATA_PATH, 'world.rgb.tif') with rio.open(TEST_RASTER_PATH) as src: x_range = (src.bounds.left, src.bounds.right) y_range = (src.bounds.bottom, src.bounds.top) cvs = ds.Canvas(plot_width=2, plot_height=2, x_range=x_range, y_range=y_range)
33.666667
95
0.641412
from os import path import pytest import datashader as ds import rasterio as rio from pytest import set_trace BASE_PATH = path.split(__file__)[0] DATA_PATH = path.abspath(path.join(BASE_PATH, 'data')) TEST_RASTER_PATH = path.join(DATA_PATH, 'world.rgb.tif') with rio.open(TEST_RASTER_PATH) as src: x_range = (src.bounds.left, src.bounds.right) y_range = (src.bounds.bottom, src.bounds.top) cvs = ds.Canvas(plot_width=2, plot_height=2, x_range=x_range, y_range=y_range) def test_raster_aggregate_default(): with rio.open(TEST_RASTER_PATH) as src: agg = cvs.raster(src) assert agg is not None def test_raster_aggregate_nearest(): with rio.open(TEST_RASTER_PATH) as src: agg = cvs.raster(src, resample_method='nearest') assert agg is not None def test_raster_aggregate_with_overviews(): with rio.open(TEST_RASTER_PATH) as src: agg = cvs.raster(src, use_overviews=True) assert agg is not None def test_raster_aggregate_without_overviews(): with rio.open(TEST_RASTER_PATH) as src: agg = cvs.raster(src, use_overviews=False) assert agg is not None def test_raster_set_missing(): with rio.open(TEST_RASTER_PATH) as src: agg = cvs.raster(src, missing=-100) assert agg is not None def test_out_of_bounds_return_correct_size(): with rio.open(TEST_RASTER_PATH) as src: cvs = ds.Canvas(plot_width=2, plot_height=2, x_range=[1e10, 1e20], y_range=[1e10, 1e20]) agg = cvs.raster(src, missing=-100) assert agg.shape == (2,2) assert agg is not None def test_partial_extent_returns_correct_size(): with rio.open(TEST_RASTER_PATH) as src: half_width = (src.bounds.right - src.bounds.left) / 2 half_height = (src.bounds.top - src.bounds.bottom) / 2 cvs = ds.Canvas(plot_width=512, plot_height=256, x_range=[src.bounds.left-half_width, src.bounds.left+half_width], y_range=[src.bounds.bottom-half_height, src.bounds.bottom+half_height]) agg = cvs.raster(src, missing=-100) assert agg.shape == (256, 512) assert agg is not None
1,615
0
161
f2dedbfad2292cca8b53e6df8edb30d71cc8f25c
298
py
Python
pybpodgui_plugin_session_history/settings.py
pybpod/pybpod-gui-plugin-session-history
6767c5a6590001a8f0420cfdb5327f924b98dc5a
[ "MIT" ]
null
null
null
pybpodgui_plugin_session_history/settings.py
pybpod/pybpod-gui-plugin-session-history
6767c5a6590001a8f0420cfdb5327f924b98dc5a
[ "MIT" ]
null
null
null
pybpodgui_plugin_session_history/settings.py
pybpod/pybpod-gui-plugin-session-history
6767c5a6590001a8f0420cfdb5327f924b98dc5a
[ "MIT" ]
null
null
null
#!/usr/bin/python3 # -*- coding: utf-8 -*- import os SETTINGS_PRIORITY = 80 # THESE SETTINGS ARE NEEDED FOR PYSETTINGS SESSIONLOG_PLUGIN_ICON = os.path.join(os.path.dirname(__file__), 'resources', 'history.png') SESSIONLOG_PLUGIN_WINDOW_SIZE = 700, 600 SESSIONLOG_PLUGIN_REFRESH_RATE = 1000
21.285714
92
0.758389
#!/usr/bin/python3 # -*- coding: utf-8 -*- import os SETTINGS_PRIORITY = 80 # THESE SETTINGS ARE NEEDED FOR PYSETTINGS SESSIONLOG_PLUGIN_ICON = os.path.join(os.path.dirname(__file__), 'resources', 'history.png') SESSIONLOG_PLUGIN_WINDOW_SIZE = 700, 600 SESSIONLOG_PLUGIN_REFRESH_RATE = 1000
0
0
0
ffe35272f8ce7acb0b3fa5d432b36ab020bfbd5f
1,795
py
Python
utils/utils.py
likesum/bpn
bf4cc2b78c461f99cdc7ac91453b1c4cd3aad9b6
[ "MIT" ]
17
2021-04-14T13:57:59.000Z
2022-02-09T04:28:13.000Z
utils/utils.py
likesum/bpn
bf4cc2b78c461f99cdc7ac91453b1c4cd3aad9b6
[ "MIT" ]
4
2021-04-29T03:41:59.000Z
2022-01-06T02:33:39.000Z
utils/utils.py
likesum/bpn
bf4cc2b78c461f99cdc7ac91453b1c4cd3aad9b6
[ "MIT" ]
6
2021-05-19T08:04:19.000Z
2021-12-28T12:32:40.000Z
"""Various utility functions.""" import sys import time import signal import numpy as np def getstop(): """Returns stop so that stop[0] is True if ctrl+c was hit.""" stop = [False] _orig = [None] _orig[0] = signal.signal(signal.SIGINT, handler) return stop def saveopt(fname, opt): """Save optimizer state to file""" weights = opt.get_weights() npz = {('%d' % i): weights[i] for i in range(len(weights))} np.savez(fname, **npz) def savemodel(fname, model): """Save model weights to file""" weights = model.get_weights() npz = {('%d' % i): weights[i] for i in range(len(weights))} np.savez(fname, **npz) def loadmodel(fname, model): """Restore model weights from file.""" npz = np.load(fname) weights = [npz['%d' % i] for i in range(len(npz.files))] model.set_weights(weights) def loadopt(fname, opt, model): """Restore optimizer state from file.""" npz = np.load(fname) weights = [npz['%d' % i] for i in range(len(npz.files))] opt._create_all_weights(model.trainable_variables) opt.set_weights(weights)
27.19697
75
0.579387
"""Various utility functions.""" import sys import time import signal import numpy as np class LogWriter: def __init__(self, filename): self._log = open(filename, 'a') def log(self, data, numit=None): """Log output in standard format.""" if numit is None: lstr = data else: dstr = [(k + (' = %.3e' % data[k])) for k in data.keys()] lstr = '[%09d] ' % numit + ' '.join(dstr) sys.stdout.write(time.strftime("%Y-%m-%d %H:%M:%S ") + lstr + "\n") sys.stdout.flush() self._log.write(time.strftime("%Y-%m-%d %H:%M:%S ") + lstr + "\n") self._log.flush() def getstop(): """Returns stop so that stop[0] is True if ctrl+c was hit.""" stop = [False] _orig = [None] def handler(_a, _b): del _a del _b stop[0] = True signal.signal(signal.SIGINT, _orig[0]) _orig[0] = signal.signal(signal.SIGINT, handler) return stop def saveopt(fname, opt): """Save optimizer state to file""" weights = opt.get_weights() npz = {('%d' % i): weights[i] for i in range(len(weights))} np.savez(fname, **npz) def savemodel(fname, model): """Save model weights to file""" weights = model.get_weights() npz = {('%d' % i): weights[i] for i in range(len(weights))} np.savez(fname, **npz) def loadmodel(fname, model): """Restore model weights from file.""" npz = np.load(fname) weights = [npz['%d' % i] for i in range(len(npz.files))] model.set_weights(weights) def loadopt(fname, opt, model): """Restore optimizer state from file.""" npz = np.load(fname) weights = [npz['%d' % i] for i in range(len(npz.files))] opt._create_all_weights(model.trainable_variables) opt.set_weights(weights)
147
496
50
153f0948bdb59700318ba30f9815f029f9d0d05f
2,579
py
Python
src/fb.py
webgisdeveloper/COvid19
45d80109109ee03ca4b7ea463f63830b6f411cf0
[ "MIT" ]
null
null
null
src/fb.py
webgisdeveloper/COvid19
45d80109109ee03ca4b7ea463f63830b6f411cf0
[ "MIT" ]
null
null
null
src/fb.py
webgisdeveloper/COvid19
45d80109109ee03ca4b7ea463f63830b6f411cf0
[ "MIT" ]
null
null
null
import geopandas as gpd import pandas as pd from shapely.geometry import Point from geopandas.tools import sjoin import sqlite3 #from datetime import datetime, timezone import datetime co_county_sf = '/Users/rl/scratch/covid-19/facebook/co_counties/co_counties.shp' boulder_county_zone_sf = '/Users/rl/scratch/covid-19/facebook/boulder_county_zoning/Zoning__Zoning_Districts.shp'
27.43617
113
0.618457
import geopandas as gpd import pandas as pd from shapely.geometry import Point from geopandas.tools import sjoin import sqlite3 #from datetime import datetime, timezone import datetime def day_of_week(date): year,month,day = date.split('-') ans = datetime.date(int(year), int(month), int(day)) day_of_week = ans.strftime("%A") return day_of_week def utc_to_local(utc_dt): return utc_dt.replace(tzinfo=datetime.timezone.utc).astimezone(tz=None) def switch_tz(date, time): year, month, day = date.split('-') hour = time[:2] minute = time[2:] utc = datetime.datetime( int(year), int(month), int(day), int(hour), int(minute) ) mnt = utc_to_local(utc) return ('-'.join([mnt.strftime('%Y'), mnt.strftime('%m'), mnt.strftime('%d')]) , \ mnt.strftime('%H') + mnt.strftime('%M')) def get_bounding_shape(lat, lon, gdf, name): h=pd.DataFrame({'Lat':[lat], 'Lon':[lon]}) geometry = [Point(xy) for xy in zip([lon], [lat])] hg = gpd.GeoDataFrame(h, geometry=geometry) hg.crs = {'init' :'epsg:4326'} hg_1 = hg.to_crs(gdf.crs) r = sjoin(gdf,hg_1) if r.empty: return None else: return r[name].tolist()[0] co_county_sf = '/Users/rl/scratch/covid-19/facebook/co_counties/co_counties.shp' def get_co_county(lat, lon, gdf=None): if gdf is None: gdf = gpd.read_file(co_county_sf) return get_bounding_shape(lat, lon, gdf, 'NAME') boulder_county_zone_sf = '/Users/rl/scratch/covid-19/facebook/boulder_county_zoning/Zoning__Zoning_Districts.shp' def get_boulder_co_zone(lat, lon, gdf=None): if gdf is None: gdf = gpd.read_file(boulder_county_zone_sf) return get_bounding_shape(lat, lon, gdf, 'ZONEDESC') def dict_factory(cursor, row): d = {} for idx, col in enumerate(cursor.description): d[col[0]] = row[idx] return d def get_db_fields(db_path, fields, local_tz=True): c = sqlite3.connect(db_path) c.row_factory = dict_factory D = {} dates = [] for row in c.execute('SELECT * FROM pop_tile WHERE n_crisis != "\\N"'): lat = row['lat'] lon = row['lon'] if (lat,lon) not in D: D[(lat,lon)] = {} date, time = row['date_time'].split() if local_tz: date, time = switch_tz(date,time) if date not in dates: dates.append(date) if date not in D[(lat,lon)]: D[(lat,lon)][date] = {} d = {} for field in fields: d[field] = row[field] D[(lat,lon)][date][time] = d return D
2,011
0
182
7095a2abb5c57ba434cd9edb10719738604c0238
1,607
py
Python
django-saiqa/saiqa/Test/RegisterTest.py
mark-mo/saiqa
a12482931aa0830de915ace4a25b039db951cd34
[ "Apache-2.0" ]
null
null
null
django-saiqa/saiqa/Test/RegisterTest.py
mark-mo/saiqa
a12482931aa0830de915ace4a25b039db951cd34
[ "Apache-2.0" ]
21
2019-12-26T17:09:47.000Z
2022-03-21T22:16:46.000Z
saidj/saidj/test/RegisterTest.py
mark-mo/saiqa
a12482931aa0830de915ace4a25b039db951cd34
[ "Apache-2.0" ]
null
null
null
from saiqa.Model.UserModel import User from saiqa.Service.UserService import UserService from saiqa.Service.QuestionService import QuestionService from saiqa.Exception.CustomException import FormatError, PasswordMismatchError, EmptyFormError import re service = UserService('test') qser = QuestionService('test') # List of tests: # Good Register # Password Mismatch # Incorrect Username Format # Incorrect Password Format 1 # Incorrect Password Format 2 # Bad Register # Duplicate User
34.934783
94
0.671437
from saiqa.Model.UserModel import User from saiqa.Service.UserService import UserService from saiqa.Service.QuestionService import QuestionService from saiqa.Exception.CustomException import FormatError, PasswordMismatchError, EmptyFormError import re service = UserService('test') qser = QuestionService('test') # List of tests: # Good Register # Password Mismatch # Incorrect Username Format # Incorrect Password Format 1 # Incorrect Password Format 2 # Bad Register # Duplicate User def testregister(username, password, repassword): user = User(username, password) try: if user.getpassword() == '': raise EmptyFormError if user.getpassword() != repassword: raise PasswordMismatchError except PasswordMismatchError: # This would kick a user back to the register screen return 'Passwords do not match' except EmptyFormError: # This would kick a user back to the register screen return 'Empty form' specres = re.findall('[$&+,=?@`~^*%!-_]', user.getpassword()) upres = re.findall('[A-Z]', user.getpassword()) try: if(len(user.getusername()) < 4 or len(user.getusername()) > 20): raise FormatError if(len(user.getpassword()) < 4 or len(user.getpassword()) > 20): raise FormatError if(len(specres) < 2 or len(upres) < 2): raise FormatError except FormatError: return 'Incorrect formatting' # If true, the user exists if not (service.createUser(user)): return 'Duplicate user' return 'Good registration'
1,084
0
22
8bd670a796ae7575f3e1ae3f850652a36e145686
1,400
py
Python
Official Notes/Exercises/Chapter 7/ex_0617.py
rafay99-epic/Ssmsunng-Innovation-Campus-Notes
19a2dfd125957d5a3d3458636d91747b48267689
[ "MIT" ]
1
2022-01-14T15:20:43.000Z
2022-01-14T15:20:43.000Z
Official Notes/Exercises/Chapter 7/ex_0617.py
rafay99-epic/Ssmsunng-Innovation-Campus-Notes
19a2dfd125957d5a3d3458636d91747b48267689
[ "MIT" ]
null
null
null
Official Notes/Exercises/Chapter 7/ex_0617.py
rafay99-epic/Ssmsunng-Innovation-Campus-Notes
19a2dfd125957d5a3d3458636d91747b48267689
[ "MIT" ]
null
null
null
# Coding Practice #0617 #---------------------------------------------------------------------------------- import numpy as np import cv2 # Go to the directory where the data file is located. # os.chdir(r'~~') # Please, replace the path with your own. # 1. Morphological filtering. # Open an image in B/W. img = cv2.imread('picture_Texture.jpg',0) cv2.imshow("Texture", img) cv2.waitKey(0) # Wait until a key is pressed. cv2.destroyAllWindows() # Close the open window. # 1.1. Erosion and dilation: # Erosion: Turns white pixels into black ones. # Dilation: Turns black pixels into white ones. kernel = np.ones((5,5),'uint8') img_eroded = cv2.erode(img, kernel, iterations=5) # 'iterations' is adjustable. img_dilated = cv2.dilate(img,kernel,iterations=5) # 'iterations' is adjustable. cv2.imshow("Eroded", img_eroded) cv2.waitKey(0) # Wait until a key is pressed. cv2.destroyAllWindows() # Close the open window. cv2.imshow("Dilated", img_dilated) cv2.waitKey(0) # Wait until a key is pressed. cv2.destroyAllWindows() # Close the open window.
43.75
118
0.506429
# Coding Practice #0617 #---------------------------------------------------------------------------------- import numpy as np import cv2 # Go to the directory where the data file is located. # os.chdir(r'~~') # Please, replace the path with your own. # 1. Morphological filtering. # Open an image in B/W. img = cv2.imread('picture_Texture.jpg',0) cv2.imshow("Texture", img) cv2.waitKey(0) # Wait until a key is pressed. cv2.destroyAllWindows() # Close the open window. # 1.1. Erosion and dilation: # Erosion: Turns white pixels into black ones. # Dilation: Turns black pixels into white ones. kernel = np.ones((5,5),'uint8') img_eroded = cv2.erode(img, kernel, iterations=5) # 'iterations' is adjustable. img_dilated = cv2.dilate(img,kernel,iterations=5) # 'iterations' is adjustable. cv2.imshow("Eroded", img_eroded) cv2.waitKey(0) # Wait until a key is pressed. cv2.destroyAllWindows() # Close the open window. cv2.imshow("Dilated", img_dilated) cv2.waitKey(0) # Wait until a key is pressed. cv2.destroyAllWindows() # Close the open window.
0
0
0