content
stringlengths
5
1.05M
""" Abstract class for generic scraping actions """ from abc import ABC, abstractmethod import logging from logging import Logger from pathlib import Path from bs4 import BeautifulSoup import requests from requests.exceptions import ConnectTimeout, HTTPError, RequestException import config as cfg class Page(ABC): def __init__(self, log_name: str, log_path: Path): self.logger = self._init_log(log_name, log_path) @abstractmethod def scrape(self): pass @abstractmethod def _pages(self): pass @abstractmethod def _page_elements(self, soup: BeautifulSoup): pass def _get_soup(self, url: str) -> BeautifulSoup: """ Scrape the page, returning success and soup.""" req = requests.get(url, headers=cfg.HTTP_HEADERS) try: req.raise_for_status() except ConnectTimeout: raise ConnectTimeout except HTTPError: raise HTTPError except RequestException: raise RequestException else: soup = BeautifulSoup(req.text, "html.parser") return soup def _init_log(self, log_name: str, log_path: Path) -> Logger: logger = logging.getLogger(log_name) logger.setLevel(logging.DEBUG) fh = logging.FileHandler(log_path, mode="a") formatter = logging.Formatter("%(asctime)s-%(levelname)s-%(message)s") fh.setFormatter(formatter) logger.addHandler(fh) logger.info("********************************") return logger
import logging import threading import os import sys from collections import Counter from itertools import islice from multiprocessing import cpu_count from typing import IO, List, Iterable, Optional, cast import subprocess LOGGER = logging.getLogger(__name__) DEFAULT_STOP_EPSILON_VALUE = '0.00001' DEFAULT_STOP_WINDOW_SIZE = 20 DEFAULT_INVALID_CHARACTER_PLACEHOLDER = '?' INVAID_CHARACTER_START_ORD = 0x6EE80 def format_feature_line(feature_line: List[str]) -> str: return '\t'.join(feature_line) def replace_invalid_characters(text: str, placeholder: str = DEFAULT_INVALID_CHARACTER_PLACEHOLDER): return ''.join(( c if ord(c) < INVAID_CHARACTER_START_ORD else placeholder for c in text )) def lines_to_log(logger: logging.Logger, level: int, message: str, lines: Iterable[str]): LOGGER.debug('lines: %s', lines) for line in lines: if isinstance(line, bytes): line = line.decode('utf-8') line = line.rstrip() logger.log(level, message, line) class WapitiModel: def __init__(self, process: subprocess.Popen): self.process = process @property def process_stdin(self) -> IO: stdin = self.process.stdin assert stdin return stdin @property def process_stdout(self) -> IO: stdout = self.process.stdout assert stdout return stdout def iter_read_lines(self) -> Iterable[str]: while self.process.poll() is None: line = self.process_stdout.readline().decode('utf-8').rstrip() LOGGER.debug('read line: %s', line) yield line def iter_label(self, data: str) -> Iterable[str]: self.process_stdin.write((data + '\n\n\n').encode('utf-8')) self.process_stdin.flush() yield from self.iter_read_lines() def label_lines(self, lines: List[str], clean_input: bool = False) -> List[str]: LOGGER.debug('lines: %s', lines) for line in lines + ['', '']: if clean_input: cleaned_line = replace_invalid_characters(line, placeholder='?') else: cleaned_line = line try: LOGGER.debug('writing line: %s', cleaned_line) LOGGER.debug('line counts: %s', Counter(cleaned_line)) self.process_stdin.write( (cleaned_line + '\n').encode('utf-8') ) self.process_stdin.flush() except BrokenPipeError: LOGGER.error('failed to write line: %s', [(c, hex(ord(c))) for c in cleaned_line]) raise self.process_stdin.flush() labelled_lines = list(islice(self.iter_read_lines(), len(lines) + 1)) LOGGER.debug('labelled_lines: %s', labelled_lines) return labelled_lines[:-1] def label_raw_text(self, data: str) -> str: return '\n'.join(self.label_lines(data.splitlines())) def label_features(self, features: List[List[str]]) -> List[List[str]]: lines = [ format_feature_line(feature_line) for feature_line in features ] return [ [ token_features[0], labelled_line.rsplit('\t', maxsplit=1)[-1] ] for labelled_line, token_features in zip(self.label_lines(lines), features) ] class WapitiWrapper: def __init__(self, wapiti_binary_path: str = None): self.wapiti_binary_path = wapiti_binary_path or 'wapiti' def check_available(self): self.run_wapiti(['--version']) def load_model( self, model_path: str, output_only_labels: bool = True, stderr_to_log_enabled: bool = True) -> WapitiModel: if not os.path.isfile(str(model_path)): raise FileNotFoundError('wapiti model not found: %s' % model_path) args = [ 'label', '--model', str(model_path) ] if output_only_labels: args.append('--label') command = [self.wapiti_binary_path] + args LOGGER.debug('running wapiti: %s', command) process = subprocess.Popen( # pylint: disable=consider-using-with command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=sys.stderr if not stderr_to_log_enabled else subprocess.PIPE ) process.poll() if stderr_to_log_enabled: t = threading.Thread(target=lambda: lines_to_log( LOGGER, logging.INFO, 'wapiti, stderr: %s', cast(Iterable[str], process.stderr) )) t.daemon = True t.start() return WapitiModel(process=process) def run_wapiti(self, args: List[str]): command = [self.wapiti_binary_path] + args LOGGER.info('calling wapiti: %s', command) with subprocess.Popen( command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT ) as process: assert process.stdout with process.stdout: lines_to_log( LOGGER, logging.INFO, 'wapiti: %s', cast(Iterable[str], process.stdout) ) process.wait() if process.returncode != 0: raise subprocess.CalledProcessError( process.returncode, command ) LOGGER.debug('wapiti call succeeded') def label( self, model_path: str, data_path: str, output_data_path: str, output_only_labels: bool = True): if not os.path.isfile(str(model_path)): raise FileNotFoundError('model file not found: %s' % model_path) if not os.path.isfile(str(data_path)): raise FileNotFoundError('data file not found: %s' % data_path) args = [ 'label', '--model', str(model_path) ] if output_only_labels: args.append('--label') args.append(str(data_path)) args.append(str(output_data_path)) self.run_wapiti(args) def train( self, data_path: str, output_model_path: str, template_path: Optional[str] = None, max_iter: Optional[int] = None, num_threads: Optional[int] = None, stop_epsilon_value: Optional[str] = None, stop_window_size: Optional[int] = None ): if not os.path.isfile(str(data_path)): raise FileNotFoundError('data file not found: %s' % data_path) if not num_threads: num_threads = cpu_count() if not stop_epsilon_value: stop_epsilon_value = DEFAULT_STOP_EPSILON_VALUE if not stop_window_size: stop_window_size = DEFAULT_STOP_WINDOW_SIZE args = ['train'] if template_path: if not os.path.isfile(str(template_path)): raise FileNotFoundError('template file not found: %s' % template_path) args.append('--pattern') args.append(str(template_path)) if max_iter: args.append('--maxiter') args.append(str(max_iter)) args.append('--nthread') args.append(str(num_threads)) args.append('--stopeps') args.append(str(stop_epsilon_value)) args.append('--stopwin') args.append(str(stop_window_size)) args.append(str(data_path)) args.append(str(output_model_path)) self.run_wapiti(args)
import unittest import os, sys, inspect, json from src.solr_export import prep_url, exclude, match dir_path = os.path.dirname(os.path.realpath(__file__)) resource_path = dir_path + os.sep + "resources" class solr_export_test(unittest.TestCase): def test_prep_url(self): preped = prep_url("http://localhost:8983", {"q": "fish", "sort": "id asc"}) self.assertEqual(preped, "http://localhost:8983/select?q=fish&sort=id+asc") def test_exclude(self): with open(resource_path + "/doc_testexclude.json") as doc: json_doc = json.load(doc) # test basic exclude excluded = exclude(json_doc, "*_sort") self.assertEqual( excluded, {"id": "test", "sort_key": "value", "title_search": "title_value"}, ) # test comma separated exclude excluded = exclude(json_doc, "*_sort,*_search") self.assertEqual(excluded, {"id": "test", "sort_key": "value"}) # test multiple exclude json_doc = {"id": "1", "fish_exclude": "ex1", "other_exclude": "ex2"} excluded = exclude(json_doc, "*_exclude") self.assertEqual(excluded, {"id": "1"}) def test_match(self): self.assertTrue(match("title_search", "*_search")) self.assertTrue(match("sort_key", "sort_*")) self.assertTrue(match("title_search", "*_search,sort_*")) if __name__ == "__main__": unittest.main()
# -*- coding: utf-8 -*- # Distributed under the terms of MIT License (MIT) import pywikibot import re from pywikibot import pagegenerators from pywikibot import config import MySQLdb as mysqldb def numbertopersian(a): a = str(a) a = a.replace(u'0', u'۰') a = a.replace(u'1', u'۱') a = a.replace(u'2', u'۲') a = a.replace(u'3', u'۳') a = a.replace(u'4', u'۴') a = a.replace(u'5', u'۵') a = a.replace(u'6', u'۶') a = a.replace(u'7', u'۷') a = a.replace(u'8', u'۸') a = a.replace(u'9', u'۹') a = a.replace(u'.', u'٫') return a savetext = u"{{#switch:{{{1|fa}}}" # sql part for lang in ["fa", "ar", "cs", "tr", "en", "fr", "de", "it", "az", "fi", "ko", "hu", "he"]: site = pywikibot.Site(lang) query = "select /* SLOW_OK */ count(rc_title),0 from recentchanges join page on rc_cur_id=page_id where rc_new=1 and rc_namespace=0 and page_is_redirect=0 and page.page_len>70 and rc_deleted=0 and DATE_SUB(CURRENT_TIMESTAMP, INTERVAL 1 DAY)<rc_timestamp;" conn = mysqldb.connect(lang + "wiki.labsdb", db=site.dbName()+ '_p', read_default_file="~/replica.my.cnf") cursor = conn.cursor() pywikibot.output(u'Executing query:\n%s' % query) query = query.encode(site.encoding()) cursor.execute(query) wikinum, numb = cursor.fetchone() if wikinum: savetext = savetext + u"|" + lang + u"=" + numbertopersian(wikinum) else: savetext = savetext + u"|" + lang + u"=" # pywikipedia part savetext = savetext + "}}" pywikibot.output(savetext) site = pywikibot.Site() page = pywikibot.Page(site, u"الگو:سردر تغییرات اخیر/سایر ویکی‌ها") page.put(savetext, u"ربات: به‌روز رسانی آمار دیگر ویکی‌ها")
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np from ax.core.observation import ObservationData from ax.modelbridge.transforms.ivw import IVW, ivw_metric_merge from ax.utils.common.testutils import TestCase class IVWTransformTest(TestCase): def testNoRepeats(self): obsd = ObservationData( metric_names=["m1", "m2"], means=np.array([1.0, 2.0]), covariance=np.array([[1.0, 0.2], [0.2, 2.0]]), ) obsd2 = ivw_metric_merge(obsd) self.assertEqual(obsd2, obsd) def testMerge(self): obsd = ObservationData( metric_names=["m1", "m2", "m2"], means=np.array([1.0, 2.0, 1.0]), covariance=np.array([[1.0, 0.2, 0.4], [0.2, 2.0, 0.8], [0.4, 0.8, 3.0]]), ) obsd2 = ivw_metric_merge(obsd) self.assertEqual(obsd2.metric_names, ["m1", "m2"]) self.assertTrue(np.array_equal(obsd2.means, np.array([1.0, 0.6 * 2 + 0.4]))) cov12 = 0.2 * 0.6 + 0.4 * 0.4 # var(w1*y1 + w2*y2) = # w1 ** 2 * var(y1) + w2 ** 2 * var(y2) + 2 * w1 * w2 * cov(y1, y2) cov22 = 0.6 ** 2 * 2.0 + 0.4 ** 2 * 3 + 2 * 0.6 * 0.4 * 0.8 cov_true = np.array([[1.0, cov12], [cov12, cov22]]) discrep = np.max(np.abs(obsd2.covariance - cov_true)) self.assertTrue(discrep < 1e-8) def testNoiselessMerge(self): # One noiseless obsd = ObservationData( metric_names=["m1", "m2", "m2"], means=np.array([1.0, 2.0, 1.0]), covariance=np.array([[1.0, 0.2, 0.4], [0.2, 2.0, 0.8], [0.4, 0.8, 0.0]]), ) obsd2 = ivw_metric_merge(obsd) np.array_equal(obsd2.means, np.array([1.0, 1.0])) cov_true = np.array([[1.0, 0.4], [0.4, 0.0]]) self.assertTrue(np.array_equal(obsd2.covariance, cov_true)) # Conflicting noiseless, default (warn) obsd = ObservationData( metric_names=["m1", "m2", "m2"], means=np.array([1.0, 2.0, 1.0]), covariance=np.array([[1.0, 0.2, 0.4], [0.2, 0.0, 0.8], [0.4, 0.8, 0.0]]), ) with self.assertRaises(ValueError): obsd2 = ivw_metric_merge(obsd, conflicting_noiseless="wrong") obsd2 = ivw_metric_merge(obsd) self.assertTrue(np.array_equal(obsd2.means, np.array([1.0, 2.0]))) cov_true = np.array([[1.0, 0.2], [0.2, 0.0]]) self.assertTrue(np.array_equal(obsd2.covariance, cov_true)) # Conflicting noiseless, raise with self.assertRaises(ValueError): obsd2 = ivw_metric_merge(obsd, conflicting_noiseless="raise") def testTransform(self): obsd1_0 = ObservationData( metric_names=["m1", "m2", "m2"], means=np.array([1.0, 2.0, 1.0]), covariance=np.array([[1.0, 0.2, 0.4], [0.2, 2.0, 0.8], [0.4, 0.8, 3.0]]), ) obsd1_1 = ObservationData( metric_names=["m1", "m1", "m2", "m2"], means=np.array([1.0, 1.0, 2.0, 1.0]), covariance=np.array( [ [1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.2, 0.4], [0.0, 0.2, 2.0, 0.8], [0.0, 0.4, 0.8, 3.0], ] ), ) obsd2_0 = ObservationData( metric_names=["m1", "m2"], means=np.array([1.0, 1.6]), covariance=np.array([[1.0, 0.28], [0.28, 1.584]]), ) obsd2_1 = ObservationData( metric_names=["m1", "m2"], means=np.array([1.0, 1.6]), covariance=np.array([[0.5, 0.14], [0.14, 1.584]]), ) observation_data = [obsd1_0, obsd1_1] t = IVW(None, None, None) observation_data2 = t.transform_observation_data(observation_data, []) observation_data2_true = [obsd2_0, obsd2_1] for i, obsd in enumerate(observation_data2_true): self.assertEqual(observation_data2[i].metric_names, obsd.metric_names) self.assertTrue(np.array_equal(observation_data2[i].means, obsd.means)) discrep = np.max(np.abs(observation_data2[i].covariance - obsd.covariance)) self.assertTrue(discrep < 1e-8)
from setuptools import setup setup( name="ytdlmusic", version="2.0.0", description="ytdlmusic is a command-line program to search and download music files from YouTube without use browser.", long_description="The complete description/installation/use/FAQ is available at : https://github.com/thib1984/ytdlmusic#readme", long_description_content_type="text/markdown", url="https://github.com/thib1984/ytdlmusic", author="thib1984", author_email="thibault.garcon@gmail.com", license="MIT", packages=["ytdlmusic"], install_requires=[ "youtube-search-python", "yt_dlp", "tinytag", "unidecode", "termcolor", "colorama", ], zip_safe=False, entry_points={ "console_scripts": ["ytdlmusic=ytdlmusic.__init__:ytdlmusic"], }, classifiers=[ "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires=">=3.6", )
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Add a table to hold blacklisted projects Revision ID: b6a20b9c888d Revises: 5b3f9e687d94 Create Date: 2017-09-15 16:24:03.201478 """ from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql revision = "b6a20b9c888d" down_revision = "5b3f9e687d94" def upgrade(): op.create_table( "blacklist", sa.Column( "id", postgresql.UUID(as_uuid=True), server_default=sa.text("gen_random_uuid()"), nullable=False, ), sa.Column( "created", sa.DateTime(), server_default=sa.text("now()"), nullable=False ), sa.Column("name", sa.Text(), nullable=False), sa.Column("blacklisted_by", postgresql.UUID(), nullable=True), sa.Column("comment", sa.Text(), server_default="", nullable=False), sa.CheckConstraint( "name ~* '^([A-Z0-9]|[A-Z0-9][A-Z0-9._-]*[A-Z0-9])$'::text", name="blacklist_valid_name", ), sa.ForeignKeyConstraint(["blacklisted_by"], ["accounts_user.id"]), sa.PrimaryKeyConstraint("id"), sa.UniqueConstraint("name"), ) # Setup a trigger that will ensure that we never commit a name that hasn't # been normalized to our blacklist. op.execute( """ CREATE OR REPLACE FUNCTION ensure_normalized_blacklist() RETURNS TRIGGER AS $$ BEGIN NEW.name = normalize_pep426_name(NEW.name); RETURN NEW; END; $$ LANGUAGE plpgsql; """ ) op.execute( """ CREATE TRIGGER normalize_blacklist AFTER INSERT OR UPDATE OR DELETE ON blacklist FOR EACH ROW EXECUTE PROCEDURE ensure_normalized_blacklist(); """ ) def downgrade(): raise RuntimeError("Order No. 227 - Ни шагу назад!")
""" The ``interface`` taxon is the most fundamental and generic applet taxon. It groups applets implementing interfaces that are used for purposes that do not fit into any single other taxon. Because the ``interface`` taxon is so important, the applet names in this taxon are not prefixed with the taxon name. Examples: SPI, I²C. Counterexamples: MIDI (use taxon ``audio``). """
from .gelu import gelu from .transformer import * __version__ = '0.39.0'
from twilio.rest import Client account_sid = 'AC988415bd476b4abc248b4afaa8bc6717' auth_token = '3b62cb9653d077b61f0d1f50bc06e718' client = Client(account_sid, auth_token) message = client.messages.create( from_='+13343423628', body='asdf', to='+8617742566640' ) print(message.sid)
from marshmallow import fields from marshmallow import Schema class SmsRequestParameters(Schema): national_number = fields.String(required=True, description='National Number') country_code = fields.String( required=True, description='Country Code, like 86 for China' ) class ValidateSmsCodeParameters(Schema): code = fields.String(required=True, description='SMS Code') phone_num = fields.String( required=True, description='Concatted Phone Number, like 8613333333333' )
# -*- coding: utf-8 -*- from flask import current_app from .util import render_email_template, send_or_handle_error, escape_markdown import rollbar import pendulum def send_brief_response_received_email(supplier, brief, brief_response, supplier_user=None, is_update=False): to_address = brief_response.data['respondToEmailAddress'] if brief.lot.slug in ['rfx', 'atm', 'training2']: brief_url = current_app.config['FRONTEND_ADDRESS'] + '/2/' + brief.framework.slug + '/opportunities/' \ + str(brief.id) else: brief_url = current_app.config['FRONTEND_ADDRESS'] + '/' + brief.framework.slug + '/opportunities/' \ + str(brief.id) ask_question_url = '{}/login?next=%2Fsellers%2Fopportunities%2F{}%2Fask-a-question'.format( current_app.config['FRONTEND_ADDRESS'], brief.id ) brief_response_url = '{}/2/brief/{}/{}/respond/{}'.format( current_app.config['FRONTEND_ADDRESS'], brief.id, brief.lot.slug, brief_response.id ) if is_update: subject = "You've updated your response for {}" else: subject = "You've applied for {} successfully!" brief_title = brief.data['title'] if len(brief_title) > 30: brief_title = '{}...'.format(brief_title[:30]) subject = subject.format(brief_title) template_file_name = 'brief_response_updated.md' if is_update else 'brief_response_submitted.md' # prepare copy email_body = render_email_template( template_file_name, brief_id=brief.id, brief_url=brief_url, brief_response_url=brief_response_url, ask_question_url=ask_question_url, closing_at=brief.closed_at.format('DD MMMM YYYY'), brief_title=brief_title, supplier_name=supplier.name, frontend_url=current_app.config['FRONTEND_ADDRESS'], organisation=brief.data['organisation'], supplier_user=supplier_user ) send_or_handle_error( to_address, email_body, subject, current_app.config['DM_GENERIC_NOREPLY_EMAIL'], current_app.config['DM_GENERIC_SUPPORT_NAME'], event_description_for_errors='brief response recieved' ) def send_specialist_brief_response_received_email(supplier, brief, brief_response, supplier_user=None, is_update=False): from app.api.services import audit_service, audit_types # to circumvent circular dependency if brief.lot.slug not in ['specialist']: return to_address = brief_response.data['respondToEmailAddress'] specialist_name = '{} {}'.format( brief_response.data.get('specialistGivenNames', ''), brief_response.data.get('specialistSurname', '') ) brief_url = '{}/2/{}/opportunities/{}'.format( current_app.config['FRONTEND_ADDRESS'], brief.framework.slug, brief.id ) brief_response_url = '{}/2/brief/{}/specialist2/respond/{}'.format( current_app.config['FRONTEND_ADDRESS'], brief.id, brief_response.id ) attachment_url = '{}/api/2/brief/{}/respond/documents/{}/'.format( current_app.config['FRONTEND_ADDRESS'], brief.id, supplier.code ) ess = "" if brief_response.data.get('essentialRequirements', None): i = 0 for req in brief.data['essentialRequirements']: ess += "**{}. {}**\n\n{}\n\n".format( i + 1, req['criteria'], escape_markdown(brief_response.data['essentialRequirements'][req['criteria']]) ) i += 1 nth = "" if brief_response.data.get('niceToHaveRequirements', None): i = 0 for req in brief.data['niceToHaveRequirements']: nth_reqs = brief_response.data.get('niceToHaveRequirements', []) if req['criteria'] in nth_reqs: nth += "**{}. {}**\n\n{}\n\n".format( i + 1, req['criteria'], escape_markdown(nth_reqs[req['criteria']]) ) i += 1 if nth: nth = '####Desirable criteria: \n\n ' + nth criteriaResponses = "" evaluationCriteriaResponses = brief_response.data.get('criteria', {}) if evaluationCriteriaResponses: for evaluationCriteria in brief.data['evaluationCriteria']: if ( 'criteria' in evaluationCriteria and evaluationCriteria['criteria'] in evaluationCriteriaResponses.keys() ): criteriaResponses += "####• {}\n\n{}\n\n".format( evaluationCriteria['criteria'], escape_markdown(evaluationCriteriaResponses[evaluationCriteria['criteria']]) ) attachments = '' resume = '' for attach in brief_response.data.get('resume', []): if not resume: resume = '[{}]({}{}) '.format(attach, attachment_url, attach) else: attachments += "* [{}]({}{})\n\n".format(attach, attachment_url, attach) if attachments: attachments = '**Other documents:** \n\n ' + attachments if is_update: subject = "{}'s response for '{}' ({}) was updated".format( specialist_name, brief.data['title'], brief.id ) else: subject = 'You submitted {} for {} ({}) successfully'.format( specialist_name, brief.data['title'], brief.id ) response_security_clearance = '' if brief.data.get('securityClearance') == 'mustHave': must_have_clearance = '' if brief.data.get('securityClearanceCurrent') == 'baseline': must_have_clearance = 'baseline' elif brief.data.get('securityClearanceCurrent') == 'nv1': must_have_clearance = 'negative vetting level 1' elif brief.data.get('securityClearanceCurrent') == 'nv2': must_have_clearance = 'negative vetting level 2' elif brief.data.get('securityClearanceCurrent') == 'pv': must_have_clearance = 'positive vetting' response_security_clearance = '\n**Holds a {} security clearance:** {} '.format( must_have_clearance, escape_markdown(brief_response.data.get('securityClearance')) ) response_rates = '' response_rates_excluding_gst = '' if brief.data.get('preferredFormatForRates') == 'hourlyRate': response_rates = '**Hourly rate, including GST:** ${}'.format( escape_markdown(brief_response.data.get('hourRate')) ) response_rates_excluding_gst = '**Hourly rate, excluding GST:** ${}'.format( escape_markdown(brief_response.data.get('hourRateExcludingGST')) ) elif brief.data.get('preferredFormatForRates') == 'dailyRate': response_rates = '**Daily rate, including GST:** ${}'.format( escape_markdown(brief_response.data.get('dayRate')) ) response_rates_excluding_gst = '**Daily rate, excluding GST:** ${}'.format( escape_markdown(brief_response.data.get('dayRateExcludingGST')) ) response_visa_status = '' if brief_response.data.get('visaStatus') == 'AustralianCitizen': response_visa_status = 'Australian citizen' elif brief_response.data.get('visaStatus') == 'PermanentResident': response_visa_status = 'Permanent resident' elif brief_response.data.get('visaStatus') == 'ForeignNationalWithAValidVisa': response_visa_status = 'Foreign national with a valid visa' template_file_name = ( 'specialist_brief_response_updated.md' if is_update else 'specialist_brief_response_submitted.md' ) # prepare copy email_body = render_email_template( template_file_name, frontend_url=current_app.config['FRONTEND_ADDRESS'], brief_url=brief_url, brief_id=brief.id, brief_name=brief.data['title'], brief_organisation=brief.data['organisation'], supplier_user=supplier_user, essential_requirements=ess, nice_to_have_requirements=nth, criteria_responses=criteriaResponses, resume=resume, attachments=attachments, closing_at=brief.closed_at.format('DD MMMM YYYY'), specialist_name=escape_markdown(specialist_name), brief_response_url=brief_response_url, response_rates=response_rates, response_rates_excluding_gst=response_rates_excluding_gst, response_previously_worked=escape_markdown(brief_response.data.get('previouslyWorked')), response_security_clearance=response_security_clearance, response_start_date=escape_markdown(brief_response.data.get('availability')), response_visa_status=response_visa_status ) send_or_handle_error( to_address, email_body, subject, current_app.config['DM_GENERIC_NOREPLY_EMAIL'], current_app.config['DM_GENERIC_SUPPORT_NAME'], event_description_for_errors='brief response recieved' ) audit_service.log_audit_event( audit_type=audit_types.specialist_brief_response_received_email, user='', data={ "to_address": to_address, "email_body": email_body, "subject": subject }, db_object=brief) def send_specialist_brief_response_withdrawn_email(supplier, brief, brief_response, supplier_user=None): from app.api.services import audit_service, audit_types # to circumvent circular dependency to_address = brief_response.data['respondToEmailAddress'] specialist_name = '{} {}'.format( brief_response.data.get('specialistGivenNames', ''), brief_response.data.get('specialistSurname', '') ) subject = "{}'s response to '{}' ({}) has been withdrawn".format( specialist_name, brief.data['title'], brief.id ) brief_url = '{}/2/{}/opportunities/{}'.format( current_app.config['FRONTEND_ADDRESS'], brief.framework.slug, brief.id ) email_body = render_email_template( 'specialist_brief_response_withdrawn.md', specialist_name=specialist_name, brief_url=brief_url, brief_name=brief.data['title'], brief_id=brief.id, frontend_url=current_app.config['FRONTEND_ADDRESS'], brief_organisation=brief.data['organisation'], supplier_user=supplier_user ) send_or_handle_error( to_address, email_body, subject, current_app.config['DM_GENERIC_NOREPLY_EMAIL'], current_app.config['DM_GENERIC_SUPPORT_NAME'], event_description_for_errors='brief response withdrawn' ) audit_service.log_audit_event( audit_type=audit_types.specialist_brief_response_withdrawn_email, user='', data={ "to_address": to_address, "email_body": email_body, "subject": subject }, db_object=brief_response) def send_brief_response_withdrawn_email(supplier, brief, brief_response, supplier_user=None): from app.api.services import audit_service, audit_types # to circumvent circular dependency to_address = brief_response.data['respondToEmailAddress'] subject = "Your response for '{}' ({}) has been withdrawn".format( brief.data['title'], brief.id ) brief_url = '{}/2/{}/opportunities/{}'.format( current_app.config['FRONTEND_ADDRESS'], brief.framework.slug, brief.id ) email_body = render_email_template( 'brief_response_withdrawn.md', frontend_url=current_app.config['FRONTEND_ADDRESS'], brief_url=brief_url, brief_title=brief.data['title'], brief_id=brief.id, organisation=brief.data['organisation'], supplier_user=supplier_user ) send_or_handle_error( to_address, email_body, subject, current_app.config['DM_GENERIC_NOREPLY_EMAIL'], current_app.config['DM_GENERIC_SUPPORT_NAME'], event_description_for_errors='brief response withdrawn' ) audit_service.log_audit_event( audit_type=audit_types.brief_response_withdrawn_email, user='', data={ "to_address": to_address, "email_body": email_body, "subject": subject }, db_object=brief_response) def send_brief_closed_email(brief): from app.api.services import audit_service, audit_types # to circumvent circular dependency if brief.lot.slug in ['specialist']: return brief_email_sent_audit_event = audit_service.find(type=audit_types.sent_closed_brief_email.value, object_type="Brief", object_id=brief.id).count() if (brief_email_sent_audit_event > 0): return to_addresses = get_brief_emails(brief) # prepare copy email_body = render_email_template( 'brief_closed.md', frontend_url=current_app.config['FRONTEND_ADDRESS'], brief_name=brief.data['title'], brief_id=brief.id ) subject = "Your opportunity has closed - please review all responses." send_or_handle_error( to_addresses, email_body, subject, current_app.config['DM_GENERIC_NOREPLY_EMAIL'], current_app.config['DM_GENERIC_SUPPORT_NAME'], event_description_for_errors='brief closed' ) audit_service.log_audit_event( audit_type=audit_types.sent_closed_brief_email, user='', data={ "to_addresses": ', '.join(to_addresses), "email_body": email_body, "subject": subject }, db_object=brief) def send_seller_requested_feedback_from_buyer_email(brief): from app.api.services import audit_service, audit_types # to circumvent circular dependency to_addresses = get_brief_emails(brief) # prepare copy email_body = render_email_template( 'seller_requested_feedback_from_buyer_email.md', frontend_url=current_app.config['FRONTEND_ADDRESS'], brief_name=brief.data['title'], brief_id=brief.id ) subject = "Buyer notifications to unsuccessful sellers" send_or_handle_error( to_addresses, email_body, subject, current_app.config['DM_GENERIC_NOREPLY_EMAIL'], current_app.config['DM_GENERIC_SUPPORT_NAME'], event_description_for_errors='seller_requested_feedback_from_buyer_email' ) audit_service.log_audit_event( audit_type=audit_types.seller_requested_feedback_from_buyer_email, user='', data={ "to_addresses": ', '.join(to_addresses), "email_body": email_body, "subject": subject }, db_object=brief) def send_seller_invited_to_rfx_email(brief, invited_supplier): from app.api.services import audit_service, audit_types # to circumvent circular dependency if brief.lot.slug != 'rfx': return to_addresses = [] if 'contact_email' in invited_supplier.data: to_addresses = [invited_supplier.data['contact_email']] elif 'email' in invited_supplier.data: to_addresses = [invited_supplier.data['email']] if len(to_addresses) > 0: email_body = render_email_template( 'brief_rfx_invite_seller.md', frontend_url=current_app.config['FRONTEND_ADDRESS'], brief_name=brief.data['title'], brief_id=brief.id ) subject = "You have been invited to respond to an opportunity" send_or_handle_error( to_addresses, email_body, subject, current_app.config['DM_GENERIC_NOREPLY_EMAIL'], current_app.config['DM_GENERIC_SUPPORT_NAME'], event_description_for_errors='seller_invited_to_rfx_opportunity' ) audit_service.log_audit_event( audit_type=audit_types.seller_invited_to_rfx_opportunity, user='', data={ "to_addresses": ', '.join(to_addresses), "email_body": email_body, "subject": subject }, db_object=brief) def send_seller_invited_to_training_email(brief, invited_supplier): from app.api.services import audit_service, audit_types # to circumvent circular dependency if brief.lot.slug != 'training2': return to_addresses = [] if 'contact_email' in invited_supplier.data: to_addresses = [invited_supplier.data['contact_email']] elif 'email' in invited_supplier.data: to_addresses = [invited_supplier.data['email']] if len(to_addresses) > 0: email_body = render_email_template( 'brief_training_invite_seller.md', frontend_url=current_app.config['FRONTEND_ADDRESS'], brief_name=brief.data['title'], brief_id=brief.id ) subject = "You have been invited to respond to an opportunity" send_or_handle_error( to_addresses, email_body, subject, current_app.config['DM_GENERIC_NOREPLY_EMAIL'], current_app.config['DM_GENERIC_SUPPORT_NAME'], event_description_for_errors='seller_invited_to_training_opportunity' ) audit_service.log_audit_event( audit_type=audit_types.seller_invited_to_training_opportunity, user='', data={ "to_addresses": ', '.join(to_addresses), "email_body": email_body, "subject": subject }, db_object=brief) def send_specialist_brief_published_email(brief): from app.api.services import ( audit_service, audit_types, domain_service, suppliers ) # to circumvent circular dependency from app.models import Supplier if brief.lot.slug != 'specialist': return brief_email_sent_audit_event = audit_service.find(type=audit_types.specialist_brief_published.value, object_type="Brief", object_id=brief.id).count() if (brief_email_sent_audit_event > 0): return to_addresses = get_brief_emails(brief) invited_sellers = '' sellers_text = '' if brief.data.get('sellerSelector', '') == 'someSellers': sellers_text = '' seller_codes = [] for key, value in brief.data.get('sellers', {}).items(): seller_codes.append(key) sellers = suppliers.filter(Supplier.code.in_(seller_codes)).all() for seller in sellers: invited_sellers += '* {}\n'.format(seller.name) else: panel_category = domain_service.get(id=brief.data.get('sellerCategory')) sellers_text = 'All sellers approved under {}'.format(panel_category.name) # prepare copy email_body = render_email_template( 'specialist_brief_published.md', frontend_url=current_app.config['FRONTEND_ADDRESS'], brief_name=brief.data['title'], brief_id=brief.id, brief_close_date=brief.closed_at.strftime('%d/%m/%Y'), sellers_text=sellers_text, invited_sellers=invited_sellers, number_of_suppliers=brief.data.get('numberOfSuppliers', ''), question_close_date=brief.questions_closed_at.strftime('%d/%m/%Y') ) subject = "Your opportunity for {} has been published".format(brief.data['title']) send_or_handle_error( to_addresses, email_body, subject, current_app.config['DM_GENERIC_NOREPLY_EMAIL'], current_app.config['DM_GENERIC_SUPPORT_NAME'], event_description_for_errors='brief published' ) audit_service.log_audit_event( audit_type=audit_types.specialist_brief_published, user='', data={ "to_addresses": ', '.join(to_addresses), "email_body": email_body, "subject": subject }, db_object=brief) def send_specialist_brief_seller_invited_email(brief, invited_supplier): from app.api.services import audit_service, audit_types # to circumvent circular dependency if brief.lot.slug != 'specialist': return to_addresses = [] if 'contact_email' in invited_supplier.data: to_addresses = [invited_supplier.data['contact_email']] elif 'email' in invited_supplier.data: to_addresses = [invited_supplier.data['email']] if len(to_addresses) > 0: number_of_suppliers = int(brief.data['numberOfSuppliers']) email_body = render_email_template( 'specialist_brief_invite_seller.md', frontend_url=current_app.config['FRONTEND_ADDRESS'], brief_name=brief.data['title'], brief_id=brief.id, brief_organisation=brief.data['organisation'], brief_close_date=brief.closed_at.strftime('%d/%m/%Y'), question_close_date=brief.questions_closed_at.strftime('%d/%m/%Y'), number_of_suppliers=number_of_suppliers, number_of_suppliers_plural='s' if number_of_suppliers > 1 else '' ) subject = "You're invited to submit candidates for {}".format(brief.data['title']) send_or_handle_error( to_addresses, email_body, subject, current_app.config['DM_GENERIC_NOREPLY_EMAIL'], current_app.config['DM_GENERIC_SUPPORT_NAME'], event_description_for_errors='seller_invited_to_specialist_opportunity' ) audit_service.log_audit_event( audit_type=audit_types.seller_invited_to_specialist_opportunity, user='', data={ "to_addresses": ', '.join(to_addresses), "email_body": email_body, "subject": subject }, db_object=brief) def send_specialist_brief_closed_email(brief): from app.api.services import ( audit_service, audit_types, brief_responses_service ) # to circumvent circular dependency if brief.lot.slug != 'specialist': return audit_event = audit_service.find(type=audit_types.specialist_brief_closed_email.value, object_type="Brief", object_id=brief.id).count() if (audit_event > 0): return responses = brief_responses_service.get_brief_responses(brief.id, None, submitted_only=True) to_addresses = get_brief_emails(brief) # prepare copy email_body = render_email_template( 'specialist_brief_closed.md', frontend_url=current_app.config['FRONTEND_ADDRESS'], brief_name=brief.data['title'], brief_id=brief.id, number_of_responses='{}'.format(len(responses)), number_of_responses_plural='s' if len(responses) > 1 else '' ) subject = 'Your "{}" opportunity has closed.'.format(brief.data['title']) send_or_handle_error( to_addresses, email_body, subject, current_app.config['DM_GENERIC_NOREPLY_EMAIL'], current_app.config['DM_GENERIC_SUPPORT_NAME'], event_description_for_errors='brief closed' ) audit_service.log_audit_event( audit_type=audit_types.specialist_brief_closed_email, user='', data={ "to_addresses": ', '.join(to_addresses), "email_body": email_body, "subject": subject }, db_object=brief) def send_brief_clarification_to_buyer(brief, brief_question, supplier): from app.api.services import ( audit_service, audit_types ) # to circumvent circular dependency to_addresses = get_brief_emails(brief) # prepare copy email_body = render_email_template( 'brief_question_to_buyer.md', frontend_url=current_app.config['FRONTEND_ADDRESS'], brief_id=brief.id, brief_name=escape_markdown(brief.data.get('title')), publish_by_date=brief.closed_at.strftime('%d/%m/%Y'), message=escape_markdown(brief_question.data.get('question')), supplier_name=escape_markdown(supplier.name) ) subject = "You received a new question for ‘{}’".format(brief.data.get('title')) send_or_handle_error( to_addresses, email_body, subject, current_app.config['DM_GENERIC_NOREPLY_EMAIL'], current_app.config['DM_GENERIC_SUPPORT_NAME'], event_description_for_errors='brief question email sent to buyer' ) audit_service.log_audit_event( audit_type=audit_types.sent_brief_question_to_buyer, user='', data={ "to_addresses": ', '.join(to_addresses), "email_body": email_body, "subject": subject }, db_object=brief) def send_brief_clarification_to_seller(brief, brief_question, to_address): from app.api.services import ( audit_service, audit_types ) # to circumvent circular dependency # prepare copy email_body = render_email_template( 'brief_question_to_seller.md', frontend_url=current_app.config['FRONTEND_ADDRESS'], brief_id=brief.id, brief_name=escape_markdown(brief.data.get('title')), brief_organisation=brief.data.get('organisation'), publish_by_date=brief.questions_closed_at.strftime('%d/%m/%Y'), message=escape_markdown(brief_question.data.get('question')) ) subject = "You submitted a question for {} ({}) successfully".format(brief.data.get('title'), brief.id) send_or_handle_error( to_address, email_body, subject, current_app.config['DM_GENERIC_NOREPLY_EMAIL'], current_app.config['DM_GENERIC_SUPPORT_NAME'], event_description_for_errors='brief question email sent to seller' ) audit_service.log_audit_event( audit_type=audit_types.sent_brief_question_to_seller, user='', data={ "to_addresses": to_address, "email_body": email_body, "subject": subject }, db_object=brief) def send_opportunity_closed_early_email(brief, current_user): # to circumvent circular dependencies from app.api.services import audit_service, audit_types to_addresses = get_brief_emails(brief) supplier_code, seller = next(iter(brief.data.get('sellers', {}).items())) email_body = render_email_template( 'opportunity_closed_early.md', brief_id=brief.id, framework=brief.framework.slug, frontend_url=current_app.config['FRONTEND_ADDRESS'], possessive="'" if seller['name'].lower().endswith('s') else "'s", seller_name=escape_markdown(seller['name']), title=escape_markdown(brief.data['title']), user=escape_markdown(current_user.name) ) subject = "'{}' has been closed early".format(brief.data['title']) send_or_handle_error( to_addresses, email_body, subject, current_app.config['DM_GENERIC_NOREPLY_EMAIL'], current_app.config['DM_GENERIC_SUPPORT_NAME'], event_description_for_errors=audit_types.close_opportunity_early ) audit_service.log_audit_event( audit_type=audit_types.sent_opportunity_closed_early_email, user='', data={ "to_addresses": ', '.join(to_addresses), "email_body": email_body, "subject": subject }, db_object=brief ) def send_opportunity_edited_email_to_buyers(brief, current_user, edit): # to circumvent circular dependencies from app.api.business.brief import brief_edit_business from app.api.services import audit_service, audit_types to_addresses = get_brief_emails(brief) summary = '' seller_questions_message = '' timezone = 'Australia/Canberra' changes = brief_edit_business.get_changes_made_to_opportunity(brief, edit) if 'closingDate' in changes: seller_questions_message = ( 'The last day sellers can ask questions is now {}. '.format( brief.questions_closed_at.in_timezone(timezone).format('DD MMMM YYYY') ) + 'You must answer all relevant questions while the opportunity is live.' ) summary = '* Closing date changed from {} to {}\n'.format( pendulum.parse(edit.data['closed_at'], tz=timezone).format('DD MMMM YYYY'), brief.closed_at.in_timezone(timezone).format('DD MMMM YYYY') ) if 'title' in changes: summary += "* Title changed from '{}' to '{}'\n".format( escape_markdown(edit.data['title']), escape_markdown(brief.data['title']) ) if 'sellers' in changes: new_sellers = [] for key, value in changes['sellers']['newValue'].items(): if key not in changes['sellers']['oldValue']: new_sellers.append(value['name']) number_of_sellers_invited = len(new_sellers) seller_or_sellers = 'seller' if number_of_sellers_invited == 1 else 'sellers' summary += '* {} more {} invited to apply:\n'.format(number_of_sellers_invited, seller_or_sellers) sorted_sellers = sorted(new_sellers, key=lambda s: s.lower()) for seller in sorted_sellers: summary += ' * {}\n'.format( escape_markdown(seller) ) if 'summary' in changes: summary += '* Summary was updated\n' def generate_document_changes(old, new): text = '' removed = [x for x in old if x not in new] added = [x for x in new if x not in old] if len(removed) > 0: for x in removed: text += '* ' + escape_markdown(x) + ' removed\n' if len(added) > 0: for x in added: text += '* ' + escape_markdown(x) + ' added\n' return text if 'attachments' in changes: summary += generate_document_changes(changes['attachments']['oldValue'], changes['attachments']['newValue']) if 'responseTemplate' in changes: summary += generate_document_changes( changes['responseTemplate']['oldValue'], changes['responseTemplate']['newValue'] ) if 'requirementsDocument' in changes: summary += generate_document_changes( changes['requirementsDocument']['oldValue'], changes['requirementsDocument']['newValue'] ) email_body = render_email_template( 'opportunity_edited_buyers.md', brief_id=brief.id, edit_summary=summary, framework=brief.framework.slug, frontend_url=current_app.config['FRONTEND_ADDRESS'], seller_questions_message=seller_questions_message, title=escape_markdown(brief.data['title']), user=escape_markdown(current_user.name) ) subject = "Updates made to '{}' opportunity".format(brief.data['title']) send_or_handle_error( to_addresses, email_body, subject, current_app.config['DM_GENERIC_NOREPLY_EMAIL'], current_app.config['DM_GENERIC_SUPPORT_NAME'], event_description_for_errors=audit_types.opportunity_edited ) audit_service.log_audit_event( audit_type=audit_types.sent_opportunity_edited_email_to_buyers, user='', data={ "to_addresses": ', '.join(to_addresses), "email_body": email_body, "subject": subject }, db_object=brief ) def send_opportunity_edited_email_to_seller(brief, email_address, buyer): # to circumvent circular dependencies from app.api.services import audit_service, audit_types candidate_message = '' if brief.lot.slug == 'specialist': candidate_message = "candidate's " formatted_closing_date = ( brief.closed_at.in_timezone('Australia/Canberra').format('dddd DD MMMM YYYY at h:mmA (in Canberra)') ) email_body = render_email_template( 'opportunity_edited_sellers.md', brief_id=brief.id, buyer=buyer, candidate_message=candidate_message, closing_date=formatted_closing_date, framework=brief.framework.slug, frontend_url=current_app.config['FRONTEND_ADDRESS'], title=escape_markdown(brief.data['title']) ) subject = "Changes made to '{}' opportunity".format(brief.data['title']) send_or_handle_error( email_address, email_body, subject, current_app.config['DM_GENERIC_NOREPLY_EMAIL'], current_app.config['DM_GENERIC_SUPPORT_NAME'], event_description_for_errors=audit_types.opportunity_edited ) audit_service.log_audit_event( audit_type=audit_types.sent_opportunity_edited_email_to_seller, user='', data={ "to_addresses": email_address, "email_body": email_body, "subject": subject }, db_object=brief ) def send_opportunity_withdrawn_email_to_buyers(brief, current_user): # to circumvent circular dependencies from app.api.business.brief import brief_business from app.api.services import audit_service, audit_types to_addresses = get_brief_emails(brief) seller_message = '' invited_seller_codes = list(brief.data.get('sellers', {}).keys()) if brief_business.is_open_to_all(brief): seller_message = 'We have notified sellers who have drafted or submitted responses to this opportunity' elif len(invited_seller_codes) == 1: invited_seller_code = invited_seller_codes.pop() seller_name = brief.data['sellers'][invited_seller_code]['name'] seller_message = '{} has been notified'.format(seller_name) else: seller_message = 'All invited sellers have been notified' email_body = render_email_template( 'opportunity_withdrawn_buyers.md', brief_id=brief.id, framework=brief.framework.slug, frontend_url=current_app.config['FRONTEND_ADDRESS'], seller_message=escape_markdown(seller_message), title=escape_markdown(brief.data['title']), user=escape_markdown(current_user.name), withdrawal_reason=escape_markdown(brief.data['reasonToWithdraw']) ) subject = "'{}' ({}) is withdrawn from the Digital Marketplace".format( brief.data['title'], brief.id ) send_or_handle_error( to_addresses, email_body, subject, current_app.config['DM_GENERIC_NOREPLY_EMAIL'], current_app.config['DM_GENERIC_SUPPORT_NAME'], event_description_for_errors=audit_types.withdraw_opportunity ) audit_service.log_audit_event( audit_type=audit_types.sent_opportunity_withdrawn_email_to_buyers, user='', data={ "to_addresses": ', '.join(to_addresses), "email_body": email_body, "subject": subject }, db_object=brief ) def send_opportunity_withdrawn_email_to_seller(brief, email_address, buyer): # to circumvent circular dependencies from app.api.services import audit_service, audit_types email_body = render_email_template( 'opportunity_withdrawn_sellers.md', brief_id=brief.id, buyer=buyer, framework=brief.framework.slug, frontend_url=current_app.config['FRONTEND_ADDRESS'], title=escape_markdown(brief.data['title']), withdrawal_reason=escape_markdown(brief.data['reasonToWithdraw']) ) subject = "'{}' ({}) is withdrawn from the Digital Marketplace".format( brief.data['title'], brief.id ) send_or_handle_error( email_address, email_body, subject, current_app.config['DM_GENERIC_NOREPLY_EMAIL'], current_app.config['DM_GENERIC_SUPPORT_NAME'], event_description_for_errors=audit_types.withdraw_opportunity ) audit_service.log_audit_event( audit_type=audit_types.sent_opportunity_withdrawn_email_to_seller, user='', data={ "to_addresses": email_address, "email_body": email_body, "subject": subject }, db_object=brief ) def get_brief_emails(brief): to_addresses = [user.email_address for user in brief.users if user.active] to_addresses = to_addresses + [ tb.user.email_address for tb in brief.team_briefs if tb.user.active and tb.team.status == 'completed'] to_addresses = to_addresses + [ tb.team.email_address for tb in brief.team_briefs if tb.team.status == 'completed' and tb.team.email_address ] return to_addresses
from downloader import download
#!/usr/bin/env python # -*- coding: utf-8 -*- import argparse def main(file, out): in_file = open(file, "r") out_file = open(out, "w") for l in in_file.readlines(): l_split = l.split("\t") # if it's a known IDS attack OR normal traffic if (l_split[14] != "0" and l_split[17] == "-1") or (l_split[17] == "1"): out_file.write('\t'.join(map(str, l_split))) pass if __name__ == "__main__": parser = argparse.ArgumentParser(description="Pre process the Kyoto database. This script gets the unmodified data and outputs a csv file where " "only IDS detection and normal traffic are present. Additionally, it's possible to normalize, " "binarize and remove attributes. It's also possible to remove instances belonging to classes that " "have less than certain amount of occurrences.") parser.add_argument("file", help="input file") parser.add_argument("out", help="output file") args = parser.parse_args() main(args.file, args.out) pass
from __future__ import unicode_literals import youtube_dl ydl = youtube_dl.YoutubeDL({'format': 'mp4'}) def download(url): ydl.download([url])
import pkg_resources from timeseries.timeseries import * from timeseries.lazy import * try: __version__ = pkg_resources.get_distribution(__name__).version except: __version__ = 'unknown'
from time import time import numpy as np import cv2 import math from pydarknet import Detector, Image from constants import * if CAPTURE_MODE == "ZED_SDK": import pyzed.sl as sl zed = sl.Camera() init_params = sl.InitParameters() init_params.camera_resolution = sl.RESOLUTION.HD720 init_params.depth_mode = sl.DEPTH_MODE.PERFORMANCE init_params.coordinate_units = sl.UNIT.METER err = zed.open(init_params) if err != sl.ERROR_CODE.SUCCESS: print("ERROR OPENING ZED CAMERA WITH SDK") exit(1) image = sl.Mat() depth_map = sl.Mat() point_cloud = sl.Mat() runtime_parameters = sl.RuntimeParameters() elif CAPTURE_MODE == "OPENCV": cam = cv2.VideoCapture(CAMERA_INDEX) cam.set(cv2.CAP_PROP_FRAME_WIDTH, OPENCV_CAMERA_WIDTH) cam.set(cv2.CAP_PROP_FRAME_HEIGHT, OPENCV_CAMERA_HEIGHT) if DETECTION_MODE == "YOLO": net = Detector(bytes(YOLO_PATH_CONFIG[YOLO_VERSION], encoding="utf-8"), bytes(YOLO_PATH_WEIGHTS[YOLO_VERSION], encoding="utf-8"), 0, bytes(YOLO_PATH_DATA[YOLO_VERSION],encoding="utf-8")) def get_frame(): if CAPTURE_MODE == "ZED_SDK": if zed.grab(runtime_parameters) == sl.ERROR_CODE.SUCCESS: # A new image is available if grab() returns SUCCESS zed.retrieve_image(image, sl.VIEW.LEFT) return cv2.cvtColor(image.get_data(), cv2.COLOR_RGBA2RGB) else: _, frame = cam.read() if FLIP_IMG: frame = cv2.flip(frame, 0) frame = cv2.flip(frame, 1) return frame[:,:OPENCV_FRAME_WIDTH_CUT,:] # cut half left of image def detect(frame): img_darknet = Image(frame) results = net.detect(img_darknet, thresh=DETECTION_THRESHOLD) return [[x,y,w,h,cat,score] for cat, score, (x, y, w, h) in results] def get_mono_pos(rects): cones_blue = [[],[]] cones_yellow = [[],[]] print_info = "" for rect in rects: y = (CONE_HEIGHT * FOCAL) / (rect[3]*PIXEL_SIZE) u = (rect[0]-U_OFFSET) x = u*PIXEL_SIZE*y/FOCAL v = (rect[1]-V_OFFSET) z = v*PIXEL_SIZE*y/FOCAL print_info += f"Cone height:{rect[3]} px \n" print_info += f"Cone x:{x/10} cm, y:{y/10} cm \n" x /= 1000 x += X_OFFSET y /= 1000 z /= 1000 ratio = rect[2]/rect[3] if MIN_RATIO <= ratio <= MAX_RATIO: if MIN_DISTANCE <= y <= MAX_DISTANCE: if not math.isinf(x) or not math.isinf(y) or not math.isnan(x) or not math.isnan(y): if rect[4] == b'blue_cone': cones_blue[0].append([x,y]) cones_blue[1].append(rect) elif rect[4] == b'yellow_cone': cones_yellow[0].append([x,y]) cones_yellow[1].append(rect) else: ignored_by_y_dist += 1 else: ignored_by_ratio += 1 print_info += f"Input:\n Cones Detected:{len(rects):>3}\n" print_info += f" Cones Returned:\n Blue:{len(cones_blue):>5}\n Yellow:{len(cones_yellow):>3}\n" print_info += f" Ignored cones:\n Ratio:{ignored_by_ratio:>4}\n Y Dist:{ignored_by_y_dist:>3}\n" return cones_blue, cones_yellow, print_info def get_stereo_pos(rects): cones_blue = [[],[]] cones_yellow = [[],[]] print_info = "" for rect in rects: zed.retrieve_measure(point_cloud, sl.MEASURE.XYZRGBA) #zed.retrieve_measure(depth_map, sl.MEASURE.DEPTH) # Retrieve depth err, point3D = point_cloud.get_value(rect[0],rect[1]) if err == sl.ERROR_CODE.SUCCESS: x = point3D[0] z = point3D[1] y = point3D[2] if not math.isinf(x) and not math.isinf(y) and not math.isnan(x) and not math.isnan(y): if rect[4] == b'blue_cone' or rect[4] == b'BLUE_CONE': cones_blue[0].append([y,-x + X_OFFSET ]) cones_blue[1].append(rect) elif rect[4] == b'yellow_cone' or rect[4] == b'YELLOW_CONE': cones_yellow[0].append([y,-x + X_OFFSET]) cones_yellow[1].append(rect) return cones_blue, cones_yellow, print_info def get_pos(rects): if MESURMENT_MODE == "MONO": cones_blue, cones_yellow, print_info = get_mono_pos(rects) elif MESURMENT_MODE == "STEREO": cones_blue, cones_yellow, print_info = get_stereo_pos(rects) return cones_blue, cones_yellow, print_info def run(): frame_time_start = time() frame = get_frame() frame_time = (time() - frame_time_start) * 1000 detect_time_start = time() rects = detect(frame) detect_time = (time() - detect_time_start) * 1000 img = frame.copy() frame_time_start = time() cones_blue, cones_yellow, print_info = get_pos(rects) get_pos_time = (time() - frame_time_start) * 1000 if SHOW_IMG: if len(cones_blue[0]): for i in range(len(cones_blue[0])): x,y = cones_blue[0][i] u,v,w,h,cat,_ = cones_blue[1][i] cv2.rectangle(img, (int(u - w / 2), int(v - h / 2)), (int(u + w / 2), int(v + h / 2)), (255, 0, 0), thickness=2) cv2.putText(img, str(f"x:{x:.2f} m"),(int(u),int(v)),cv2.FONT_HERSHEY_COMPLEX,1,(255,255,0)) cv2.putText(img, str(f"y:{y:.2f} m"),(int(u),int(v+30)),cv2.FONT_HERSHEY_COMPLEX,1,(255,255,0)) if len(cones_yellow[0]): for i in range(len(cones_yellow[0])): x,y = cones_yellow[0][i] u,v,w,h,cat,_ = cones_yellow[1][i] cv2.rectangle(img, (int(u - w / 2), int(v - h / 2)), (int(u + w / 2), int(v + h / 2)), (0, 255, 255), thickness=2) cv2.putText(img, str(f"x:{x:.2f} m"),(int(u),int(v)),cv2.FONT_HERSHEY_COMPLEX,1,(255,255,0)) cv2.putText(img, str(f"y:{y:.2f} m"),(int(u),int(v+30)),cv2.FONT_HERSHEY_COMPLEX,1,(255,255,0)) print_info += f" Times:\n Frame:{frame_time:>7.0f} ms\n Detect:{detect_time:>6.0f} ms\n get_pos:{get_pos_time:>5.0f} ms\n\n" return np.array(cones_blue[0]), np.array(cones_yellow[0]), print_info, img if __name__ == "__main__": print("Starting test") blue, yellow , print_info, img = run() print(f"blue cones: {blue}\nyellow cones: {yellow}\n")
import thingspeak import schedule from twitter_bot_module import Twitter_Bot from gpiozero import CPUTemperature from time import sleep, strftime # Declare CPU, thingspeak and local variables cpu = CPUTemperature() channel_id = 1357661 write_key = '037QCFSLSVG4MFMZ' # read_key = 'TZ9SADGMTGS7B3M0' degree_sign = u"\N{DEGREE SIGN}" twitter = Twitter_Bot() warning_dict = {} # Define write_temp() function to write temperature to thingspeak def write_temp(temp, channel_write): try: response = channel_write.update({'field1': temp}) print(temp, strftime("%Y-%m-%d %H:%M:%S")) except: print("Connection Failed") # Define log_temp() function to get the temperature and log temp to twitter and thingspeak def log_temp(tweets): temp = cpu.temperature time = strftime("%Y-%m-%d %H:%M:%S") write_temp(temp, channel_write) if temp >= 60: out_string = f"Warning! High CPU Temperature: {temp}{degree_sign}C recorded on {time}" print(out_string) tweets.tweet(out_string) warning_dict.update({time: temp}) # Define daily_brief() function to make a daily brief string and send it to twitter def daily_brief(warning, tweets): min_temp = 10000 max_temp = -10000 out_string = f"{len(warning)} warnings in total today\n" if len(warning) != 0: for time_out, temp in warning.items(): if temp < min_temp: min_temp = temp if temp > max_temp: max_temp = temp out_string += f"Max Warning Temperature Today: {max_temp}{degree_sign}C\n" out_string += f"Min Warning Temperature Today: {min_temp}{degree_sign}C\n" tweets.tweet(out_string) print(out_string) # Define good_bye function to terminate the program def good_bye(tweets): # tweets.tweet("Farewell!") print("Farewell!") quit() # Use schedule to log temperature every 10 mins, report daily brief at 23:50 and close the program at 23:51 everyday schedule.every(10).minutes.do(log_temp, tweets=twitter) schedule.every().day.at("23:50:00").do(daily_brief, warning=warning_dict, tweets=twitter) schedule.every().day.at("23:51:00").do(good_bye, tweets=twitter) # main program if __name__ == "__main__": print("Hello World!") channel_write = thingspeak.Channel(id=channel_id, api_key=write_key) # channel_read = thingspeak.Channel(id=channel_id, api_key=read_key) while True: schedule.run_pending() sleep(1)
class AccountPermissions(object): MUTATE_DATA = 1 permissions = { MUTATE_DATA: { "name": "MUTATE_DATA", "description": "Can edit any site data. TODO: make this work.", }, }
# GlitchyGames # palette: Manages the custom color palette file format used by the engine import configparser import os.path import sys from pygame import Color VGA = 'vga' SYSTEM = 'system' NES = 'nes' class ColorPalette: _BUILTIN_PALETTE_LOCATION = os.path.join(os.path.dirname(__file__), 'resources') _DEFAULT_EXTENSION = 'palette' def __init__(self, colors=None, filename=None): if colors: self._colors = colors elif filename: script_path = os.path.dirname(sys.argv[0]) paths = [self._BUILTIN_PALETTE_LOCATION, script_path, os.path.join(script_path, 'resources') ] for path in paths: file_path = os.path.join(path, f'{filename}.{self._DEFAULT_EXTENSION}') if os.path.exists(file_path): self._colors = PaletteUtility.load_palette_from_file(file_path) break else: self._colors = [] self._size = len(self._colors) - 1 def get_color(self, palette_index): """Returns PyGame Color at index""" return self._colors[palette_index] if palette_index <= self._size else None def set_color(self, palette_index, new_color): """Sets the indexed color to the new PyGame Color""" if palette_index < self._size: self._colors[palette_index] = new_color else: self._colors.append(new_color) class PaletteUtility: @staticmethod def load_palette_from_config(config): """Load a palette from a ConfigParser object. Returns a list of PyGame Colors""" colors = [] for color_index in range(int(config['default']['colors'])): color_index = str(color_index) tmp_color = Color( config[color_index].getint('red'), config[color_index].getint('green'), config[color_index].getint('blue'), config[color_index].getint('alpha', 255) ) colors.append(tmp_color) return colors @staticmethod def load_palette_from_file(config_file_path): """Load a palette from a GlitchyGames palette file. Returns a list of PyGame Colors""" config = configparser.ConfigParser() # Read contents of file and close after with open(config_file_path) as file_obj: config.read_file(file_obj) return PaletteUtility.load_palette_from_config(config) @staticmethod def write_palette_to_file(config_data, output_file): """ Write a GlitchyGames palette to a file""" with open(output_file, 'w') as file_obj: config_data.write(file_obj) @staticmethod def parse_rgb_data_in_file(rgb_data_file): """Read RGB data from a file. Returns a list of PyGame Colors""" # Read input RGBA Values from file. No duplicates colors = [] with open(rgb_data_file) as file_obj: for line in file_obj.readlines(): tmp = [int(x) for x in line.strip().split(',')] color = Color(*tmp) if color not in colors: colors.append(color) return colors @staticmethod def create_palette_data(colors): """Create a ConfigParser object containing palette data from a list of PyGame Colors. Returns a ConfigParser""" palette_data = configparser.ConfigParser() palette_data['default'] = {"colors": str(len(colors))} for count, color in enumerate(colors): palette_data[str(count)] = { "red": color.r, "green": color.g, "blue": color.b, "alpha": color.a } return palette_data # A Custom Color palette with named colors class Default(ColorPalette): """A default set of colors used for Glitchy Games Examples""" def __init__(self): super().__init__(filename='default') self.YELLOW = self.get_color(0) self.PURPLE = self.get_color(1) self.BLUE = self.get_color(2) self.GREEN = self.get_color(3) self.WHITE = self.get_color(4) self.BLACK = self.get_color(5) self.BLACKLUCENT = self.get_color(6) self.BLUELUCENT = self.get_color(7) self.RED = self.get_color(8) class System(ColorPalette): """A palette representing the 16 default system colors""" def __init__(self): super().__init__(filename=SYSTEM) self.BLACK = self.get_color(0) self.MAROON = self.get_color(1) self.GREEN = self.get_color(2) self.OLIVE = self.get_color(3) self.NAVY = self.get_color(4) self.PURPLE = self.get_color(5) self.TEAL = self.get_color(6) self.SILVER = self.get_color(7) self.GREY = self.get_color(8) self.RED = self.get_color(9) self.LIME = self.get_color(10) self.YELLOW = self.get_color(11) self.BLUE = self.get_color(12) self.MAGENTA = self.get_color(13) self.CYAN = self.get_color(14) self.WHITE = self.get_color(15) class Vga(ColorPalette): """The 256 VGA color palette""" def __init__(self): super().__init__(filename=VGA) # TODO: Set Color Names (See rich.color for list of names to poach)
''' datetime_utilities.py ======================== Basic functions to make dealing with Dates and Times easier datetime_utilities - Module Contents +++++++++++++++++++++++++++++++ ''' import pytz class tzAlias(object): ''' Enum like objec to organize pytz time zones. They are called based on strings, so this will make it easiere in the IDE ''' eastern=pytz.timezone('US/Eastern') central=pytz.timezone('US/Central') pacific=pytz.timezone('US/Pacific') london=pytz.timezone('Europe/London') paris=pytz.timezone('Europe/Paris') utc=pytz.UTC def isAware(dtObject): ''' determines if a datetime.datetime or datetime.time object is aware or naive ''' if hasattr(dtObject,'tzinfo') and not dtObject.tzinfo is None and not dtObject.tzinfo.utcoffset(dtObject) is None: return(True) return(False) def modify_time_zone(dtObject,time_zone=pytz.UTC, old_time_zone=None): ''' adjusts the time zone on a date time objects. accepts both aware and unaware objects For unaware objects it uses the time as 'tacks on' the time zone For aware objects it translates the time from the old to the new ''' if time_zone is None: return dtObject if isAware(dtObject): output=time_zone.normalize(dtObject) else: if old_time_zone is None: output=time_zone.localize(dtObject) else: output=time_zone.normalize(old_time_zone.localize(dtObject)) return(output)
from django.contrib import admin from example_app.models import Secret admin.site.register(Secret)
from setuptools import setup with open('README.md', 'r') as fh: long_description = fh.read() setup( name='ingreedypy', py_modules=['ingreedypy'], version='1.3.5', description='ingreedy-py parses recipe ingredient lines into a object', long_description=long_description, long_description_content_type='text/markdown', author='Scott Cooper', author_email='scttcper@gmail.com', url='https://github.com/openculinary/ingreedy-py', keywords=['ingreedy', 'ingreedypy', 'recipe', 'parser'], install_requires=[ 'parsimonious' ], extras_require={ 'tests': [ 'pytest', 'pytest-cov', ] }, classifiers=[ "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], )
# Autogenerated constants for Arcade Gamepad service from enum import IntEnum from jacdac.constants import * from jacdac.system.constants import * JD_SERVICE_CLASS_ARCADE_GAMEPAD = const(0x1deaa06e) class ArcadeGamepadButton(IntEnum): LEFT = const(0x1) UP = const(0x2) RIGHT = const(0x3) DOWN = const(0x4) A = const(0x5) B = const(0x6) MENU = const(0x7) SELECT = const(0x8) RESET = const(0x9) EXIT = const(0xa) JD_ARCADE_GAMEPAD_REG_BUTTONS = const(JD_REG_READING) JD_ARCADE_GAMEPAD_REG_AVAILABLE_BUTTONS = const(0x180) JD_ARCADE_GAMEPAD_EV_DOWN = const(JD_EV_ACTIVE) JD_ARCADE_GAMEPAD_EV_UP = const(JD_EV_INACTIVE) JD_ARCADE_GAMEPAD_PACK_FORMATS = { JD_ARCADE_GAMEPAD_REG_BUTTONS: "r: u8 u0.8", JD_ARCADE_GAMEPAD_REG_AVAILABLE_BUTTONS: "r: u8", JD_ARCADE_GAMEPAD_EV_DOWN: "u8", JD_ARCADE_GAMEPAD_EV_UP: "u8" }
import os import typing import tornado.web from tornado_swagger._builders import generate_doc_from_endpoints from tornado_swagger._handlers import SwaggerSpecHandler, SwaggerUiHandler STATIC_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "swagger_ui")) def export_swagger( routes: typing.List[tornado.web.URLSpec], *, api_base_url: str = "/", description: str = "Swagger API definition", api_version: str = "1.0.0", title: str = "Swagger API", contact: str = "", schemes: list = None, security_definitions: dict = None, security: list = None, ): """Export swagger schema as dict""" return generate_doc_from_endpoints( routes, api_base_url=api_base_url, description=description, api_version=api_version, title=title, contact=contact, schemes=schemes, security_definitions=security_definitions, security=security, ) def setup_swagger( routes: typing.List[tornado.web.URLSpec], *, swagger_url: str = "/api/doc", api_base_url: str = "/", description: str = "Swagger API definition", api_version: str = "1.0.0", title: str = "Swagger API", contact: str = "", schemes: list = None, security_definitions: dict = None, security: list = None, display_models: bool = True, ): """Inject swagger ui to application routes""" swagger_schema = generate_doc_from_endpoints( routes, api_base_url=api_base_url, description=description, api_version=api_version, title=title, contact=contact, schemes=schemes, security_definitions=security_definitions, security=security, ) _swagger_ui_url = "/{}".format(swagger_url) if not swagger_url.startswith("/") else swagger_url _base_swagger_ui_url = _swagger_ui_url.rstrip("/") _swagger_spec_url = "{}/swagger.json".format(_swagger_ui_url) routes[:0] = [ tornado.web.url(_swagger_ui_url, SwaggerUiHandler), tornado.web.url("{}/".format(_base_swagger_ui_url), SwaggerUiHandler), tornado.web.url(_swagger_spec_url, SwaggerSpecHandler), ] SwaggerSpecHandler.SWAGGER_SPEC = swagger_schema with open(os.path.join(STATIC_PATH, "ui.html"), "r") as f: SwaggerUiHandler.SWAGGER_HOME_TEMPLATE = ( f.read().replace("{{ SWAGGER_URL }}", _swagger_spec_url).replace("{{ DISPLAY_MODELS }}", str(-1 if not display_models else 1)) )
class Solution: def minCostClimbingStairs(self, cost: List[int]) -> int: dp = [0 for _ in range(len(cost))] dp[0] = cost[0] dp[1] = cost[1] for k in range(2, len(cost)): dp[k] = min(dp[k-1], dp[k-2]) + cost[k] return min(dp[-1], dp[-2])
import json import requests import warnings from .models import University def _deprecated(msg): warnings.simplefilter('always') warnings.warn(msg, category=DeprecationWarning, stacklevel=2) warnings.simplefilter('default') class API(object): """API object for making requests to the university database.""" endpoint = r"http://universities.hipolabs.com/search" def __init__(self, encoding='utf-8'): """ Initialize the API object, optionally specifying the encoding to use for Python 2. :param str encoding: encoding to use when using Python 2 """ self.encoding = encoding self.session = requests.Session() def search(self, name="", domain="", country_code="", country=""): """ Search for a university in the database. Each available option can be used to narrow down saerch results. :param str name: The name of the university. :param str domain: The domain the university uses. :param str country_code: DEPRECATED, DOES NOTHING :param str country: The country of the university. :rtype: generator of models.University objects """ parameters = dict() if any([name, domain, country_code, country]): if name: parameters["name"] = name if domain: parameters["domain"] = domain if country_code: _deprecated("Country code filters have no function for now.") parameters["alpha_two_code"] = country_code if country: parameters["country"] = country university_data = self.session.get( self.endpoint, params=parameters ).json() for data in university_data: yield University(self.encoding, json=data) def lucky(self, name="", domain="", country_code="", country=""): """ Search for a university in the database, and only return the first result. This is simply a wrapper on search() that takes the resulting generator and returns the first element if it exists. Each available option can be used to narrow down search results. :param str name: The name of the university. :param str domain: The domain the university uses. :param str country_code: DEPRECATED, DOES NOTHING :param str country: The country of the university. :rtype: A models.University object """ attempt = self.search(name, domain, country_code, country) try: return next(attempt) except StopIteration: return None def get_all(self): """ Return a generator containing all university data. This is simply a wrapper on search() which does not do any filtering. :rtype: generator of models.University objects """ return self.search() def __del__(self): self.session.close()
""" A federated learning training session using FEI. """ import logging import fei_agent import fei_client import fei_server import fei_trainer def main(): """ A Plato federated learning training session using the FEI algorithm. """ logging.info("Starting RL Environment's process.") trainer = fei_trainer.Trainer() client = fei_client.Client(trainer=trainer) agent = fei_agent.RLAgent() server = fei_server.RLServer(agent=agent, trainer=trainer) server.run(client) if __name__ == "__main__": main()
# Menu # PROBABLY WONT COMPILE from consolemenu import * from consolemenu.items import * from colorama import * from termcolor import colored from geo_scraper.site_scrapers import humdata_check_filter, humdata_scraper print(colored(ascii-art.txt, 'green', 'on_red')) menu = ConsoleMenu("chimera", "interface") humdata_search_item = MenuItem("-h -s") humdata_check_item = MenuItem("-h -c") humdata_scraper_item = MenuItem("scrape -h") diva_scraper_item = MenuItem("scrape -d") scrape_sites_item = MenuItem("scrape -s") function_humdata_search = FunctionItem("humdata_search_filter(humdata_search_item, section, driver)") function_humdata_check = FunctionItem("humdata_check_filter(humdata_check_item, section, driver)") function_humdata_scraper = FunctionItem("humdata_scraper(website, countrylist, organizationlist, filetypelist, taglist)") function_diva_scraper = FunctionItem("diva_scraper_(website, countrylist, taglist)") function_scrape_sites = FunctionItem("scrape_sites(countrylist=['Denmark', 'Albania'], filetypelist=['CSV','Shapefile'], organizationlist=['Facebook','WorldPop'], taglist=['Roads', 'Inland water', 'weather and climate'], querylist=[], sitelist=['https://data.humdata.org/search?ext_geodata=1&q=&ext_page_size=25', 'https://www.diva-gis.org/GData'])") command_humdata_search = CommandItem("Command", "touch out.txt") command_humdata_check = CommandItem("Command", "touch out.txt") command_humdata_scraper = CommandItem("Command", "touch out.txt") command_diva_scraper = CommandItem("Command", "touch out.txt") command_scrape_sites = CommandItem("Command", "touch out.txt") selection_menu = SelectionMenu(["-h", "-s", "object"]) selection_menu = SelectionMenu(["-h", "-c", "object"]) selection_menu = SelectionMenu(["scrape", "-h", "object"]) selection_menu = SelectionMenu(["scrape", "-s", "object"]) selection_menu = SelectionMenu(["scrape", "-d", "object"]) menu.append_item(humdata_search_item) menu.append_item(humdata_check_item) menu.append_item(humdata_scraper_item) menu.append_item(diva_scraper_item) menu.append_item(scrape_sites_item) menu.append_item(function_humdata_search) menu.append_item(function_humdata_check) menu.append_item(function_humdata_scraper) menu.append_item(function_diva_scraper) menu.append_item(function_scrape_sites) menu.show()
import urllib.parse import async_timeout import aiohttp import asyncio import logging import voluptuous as vol import homeassistant.util as util import voluptuous as vol from datetime import timedelta from homeassistant.helpers.aiohttp_client import async_get_clientsession _LOGGER = logging.getLogger(__name__) MIN_TIME_BETWEEN_SCANS = timedelta(seconds=3) MIN_TIME_BETWEEN_FORCED_SCANS = timedelta(seconds=1) from homeassistant.helpers import config_validation as cv from homeassistant.components.media_player.const import ( MEDIA_TYPE_CHANNEL, SUPPORT_TURN_ON, SUPPORT_TURN_OFF, SUPPORT_VOLUME_MUTE, SUPPORT_SELECT_SOURCE, SUPPORT_VOLUME_SET, ) from homeassistant.components.media_player import ( MediaPlayerDevice ) from homeassistant.const import ( CONF_NAME, CONF_HOST, STATE_IDLE, STATE_ON, STATE_OFF ) MULTI_ROOM_SOURCE_TYPE = [ 'hdmi1', 'hdmi2', 'optical', 'bt', 'wifi' ] BOOL_OFF = 'off' BOOL_ON = 'on' TIMEOUT = 10 SUPPORT_SAMSUNG_MULTI_ROOM = SUPPORT_VOLUME_SET | SUPPORT_VOLUME_MUTE | SUPPORT_SELECT_SOURCE CONF_MAX_VOLUME = 'max_volume' CONF_PORT = 'port' CONF_POWER_OPTIONS = 'power_options' PLATFORM_SCHEMA = vol.Schema({ vol.Optional('platform', default='samsung_multi_room'): cv.string, vol.Optional(CONF_NAME, default='soundbar'): cv.string, vol.Optional(CONF_HOST, default='127.0.0.1'): cv.string, vol.Optional(CONF_PORT, default='55001'): cv.string, vol.Optional(CONF_MAX_VOLUME, default='100'): cv.string vol.Optional(CONF_POWER_OPTIONS, default=True): cv.boolean }) class MultiRoomApi(): def __init__(self, ip, port, session, hass): self.session = session self.hass = hass self.ip = ip self.port = port self.endpoint = 'http://{0}:{1}'.format(ip, port) async def _exec_cmd(self, cmd, key_to_extract): import xmltodict query = urllib.parse.urlencode({ "cmd": cmd }, quote_via=urllib.parse.quote) url = '{0}/UIC?{1}'.format(self.endpoint, query) with async_timeout.timeout(TIMEOUT, loop=self.hass.loop): _LOGGER.debug("Executing: {} with cmd: {}".format(url, cmd)) response = await self.session.get(url) data = await response.text() _LOGGER.debug(data) response = xmltodict.parse(data) if key_to_extract in response['UIC']['response']: return response['UIC']['response'][key_to_extract] else: return None async def _exec_get(self, action, key_to_extract): return await self._exec_cmd('<name>{0}</name>'.format(action), key_to_extract) async def _exec_set(self, action, property_name, value): if type(value) is str: value_type = 'str' else: value_type = 'dec' cmd = '<name>{0}</name><p type="{3}" name="{1}" val="{2}"/>'.format(action, property_name, value, value_type) return await self._exec_cmd(cmd, property_name) async def get_main_info(self): return await self._exec_get('GetMainInfo') async def get_volume(self): return int(await self._exec_get('GetVolume', 'volume')) async def set_volume(self, volume): return await self._exec_set('SetVolume', 'volume', int(volume)) async def get_speaker_name(self): return await self._exec_get('GetSpkName', 'spkname') async def get_muted(self): return await self._exec_get('GetMute', 'mute') == BOOL_ON async def set_muted(self, mute): if mute: return await self._exec_set('SetMute', 'mute', BOOL_ON) else: return await self._exec_set('SetMute', 'mute', BOOL_OFF) async def get_source(self): return await self._exec_get('GetFunc', 'function') async def set_source(self, source): return await self._exec_set('SetFunc', 'function', source) async def get_state(self): result = await self._exec_get('GetPowerStatus', '<powerStatus>(.*?)</powerStatus>') if result: return result[0] return 0 async def set_state(self, key): return await self._exec_set('SetPowerStatus', 'powerStatus', int(key)) class MultiRoomDevice(MediaPlayerDevice): def __init__(self, name, max_volume, power_options, api): _LOGGER.info('Initializing MultiRoomDevice') self._name = name self.api = api self._state = STATE_OFF self._current_source = None self._volume = 0 self._muted = False self._max_volume = max_volume self._power_options = power_options @property def supported_features(self): return SUPPORT_SAMSUNG_MULTI_ROOM | SUPPORT_TURN_OFF | SUPPORT_TURN_ON @property def name(self): return self._name @property def state(self): return self._state async def turn_on(self): await self.api.set_state(1) async def turn_off(self): await self.api.set_state(0) @property def volume_level(self): return self._volume async def async_set_volume_level(self, volume): await self.api.set_volume(volume * self._max_volume) await self.async_update() @property def source(self): return self._current_source @property def source_list(self): return sorted(MULTI_ROOM_SOURCE_TYPE) async def async_select_source(self, source): await self.api.set_source(source) await self.async_update() @property def is_volume_muted(self): return self._muted async def async_mute_volume(self, mute): self._muted = mute await self.api.set_muted(self._muted) await self.async_update() @util.Throttle(MIN_TIME_BETWEEN_SCANS, MIN_TIME_BETWEEN_FORCED_SCANS) async def async_update(self): _LOGGER.info('Refreshing state...') state = await self.api.get_state() if state and int(state) == 1: "If Power is ON, update other values" self._state = STATE_ON self._current_source = await self.api.get_source() self._volume = await self.api.get_volume() / self._max_volume self._muted = await self.api.get_muted() else: self._state = STATE_OFF def setup_platform(hass, config, add_devices, discovery_info=None): _LOGGER.error('Setup of the soundbar') ip = config.get(CONF_HOST) port = config.get(CONF_PORT) name = config.get(CONF_NAME) max_volume = int(config.get(CONF_MAX_VOLUME)) session = async_get_clientsession(hass) api = MultiRoomApi(ip, port, session, hass) add_devices([MultiRoomDevice(name, max_volume, power_options, api)], True)
# Copyright 2013 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import datetime import iso8601 import netaddr from nova import context from nova import db from nova.objects import base from nova.objects import instance from nova.objects import security_group from nova.openstack.common import timeutils from nova import test from nova.tests.api.openstack import fakes from nova.tests import fake_instance from nova.tests.objects import test_instance_fault from nova.tests.objects import test_objects class _TestInstanceObject(object): @property def fake_instance(self): fake_instance = fakes.stub_instance(id=2, access_ipv4='1.2.3.4', access_ipv6='::1') fake_instance['scheduled_at'] = None fake_instance['terminated_at'] = None fake_instance['deleted_at'] = None fake_instance['created_at'] = None fake_instance['updated_at'] = None fake_instance['launched_at'] = ( fake_instance['launched_at'].replace( tzinfo=iso8601.iso8601.Utc(), microsecond=0)) fake_instance['deleted'] = False fake_instance['info_cache']['instance_uuid'] = fake_instance['uuid'] fake_instance['security_groups'] = None return fake_instance def test_datetime_deserialization(self): red_letter_date = timeutils.parse_isotime( timeutils.isotime(datetime.datetime(1955, 11, 5))) inst = instance.Instance() inst.uuid = 'fake-uuid' inst.launched_at = red_letter_date primitive = inst.obj_to_primitive() expected = {'nova_object.name': 'Instance', 'nova_object.namespace': 'nova', 'nova_object.version': '1.0', 'nova_object.data': {'uuid': 'fake-uuid', 'launched_at': '1955-11-05T00:00:00Z'}, 'nova_object.changes': ['uuid', 'launched_at']} self.assertEqual(primitive, expected) inst2 = instance.Instance.obj_from_primitive(primitive) self.assertTrue(isinstance(inst2.launched_at, datetime.datetime)) self.assertEqual(inst2.launched_at, red_letter_date) def test_ip_deserialization(self): inst = instance.Instance() inst.uuid = 'fake-uuid' inst.access_ip_v4 = '1.2.3.4' inst.access_ip_v6 = '::1' primitive = inst.obj_to_primitive() expected = {'nova_object.name': 'Instance', 'nova_object.namespace': 'nova', 'nova_object.version': '1.0', 'nova_object.data': {'uuid': 'fake-uuid', 'access_ip_v4': '1.2.3.4', 'access_ip_v6': '::1'}, 'nova_object.changes': ['uuid', 'access_ip_v6', 'access_ip_v4']} self.assertEqual(primitive, expected) inst2 = instance.Instance.obj_from_primitive(primitive) self.assertTrue(isinstance(inst2.access_ip_v4, netaddr.IPAddress)) self.assertTrue(isinstance(inst2.access_ip_v6, netaddr.IPAddress)) self.assertEqual(inst2.access_ip_v4, netaddr.IPAddress('1.2.3.4')) self.assertEqual(inst2.access_ip_v6, netaddr.IPAddress('::1')) def test_get_without_expected(self): ctxt = context.get_admin_context() self.mox.StubOutWithMock(db, 'instance_get_by_uuid') db.instance_get_by_uuid(ctxt, 'uuid', columns_to_join=[] ).AndReturn(self.fake_instance) self.mox.ReplayAll() inst = instance.Instance.get_by_uuid(ctxt, 'uuid') # Make sure these weren't loaded for attr in instance.INSTANCE_OPTIONAL_FIELDS: attrname = base.get_attrname(attr) self.assertFalse(hasattr(inst, attrname)) self.assertRemotes() def test_get_with_expected(self): ctxt = context.get_admin_context() self.mox.StubOutWithMock(db, 'instance_get_by_uuid') db.instance_get_by_uuid( ctxt, 'uuid', columns_to_join=['metadata', 'system_metadata'] ).AndReturn(self.fake_instance) self.mox.ReplayAll() inst = instance.Instance.get_by_uuid( ctxt, 'uuid', expected_attrs=instance.INSTANCE_OPTIONAL_FIELDS) for attr in instance.INSTANCE_OPTIONAL_FIELDS: attrname = base.get_attrname(attr) self.assertTrue(hasattr(inst, attrname)) self.assertRemotes() def test_get_by_id(self): ctxt = context.get_admin_context() self.mox.StubOutWithMock(db, 'instance_get') db.instance_get(ctxt, 'instid', columns_to_join=[] ).AndReturn(self.fake_instance) self.mox.ReplayAll() inst = instance.Instance.get_by_id(ctxt, 'instid') self.assertEqual(inst.uuid, self.fake_instance['uuid']) self.assertRemotes() def test_load(self): ctxt = context.get_admin_context() self.mox.StubOutWithMock(db, 'instance_get_by_uuid') fake_uuid = self.fake_instance['uuid'] db.instance_get_by_uuid(ctxt, fake_uuid, columns_to_join=[] ).AndReturn(self.fake_instance) fake_inst2 = dict(self.fake_instance, system_metadata=[{'key': 'foo', 'value': 'bar'}]) db.instance_get_by_uuid(ctxt, fake_uuid, columns_to_join=['system_metadata'] ).AndReturn(fake_inst2) self.mox.ReplayAll() inst = instance.Instance.get_by_uuid(ctxt, fake_uuid) self.assertFalse(hasattr(inst, '_system_metadata')) sys_meta = inst.system_metadata self.assertEqual(sys_meta, {'foo': 'bar'}) self.assertTrue(hasattr(inst, '_system_metadata')) # Make sure we don't run load again sys_meta2 = inst.system_metadata self.assertEqual(sys_meta2, {'foo': 'bar'}) self.assertRemotes() def test_get_remote(self): # isotime doesn't have microseconds and is always UTC ctxt = context.get_admin_context() self.mox.StubOutWithMock(db, 'instance_get_by_uuid') fake_instance = self.fake_instance db.instance_get_by_uuid(ctxt, 'fake-uuid', columns_to_join=[] ).AndReturn(fake_instance) self.mox.ReplayAll() inst = instance.Instance.get_by_uuid(ctxt, 'fake-uuid') self.assertEqual(inst.id, fake_instance['id']) self.assertEqual(inst.launched_at, fake_instance['launched_at']) self.assertEqual(str(inst.access_ip_v4), fake_instance['access_ip_v4']) self.assertEqual(str(inst.access_ip_v6), fake_instance['access_ip_v6']) self.assertRemotes() def test_refresh(self): ctxt = context.get_admin_context() self.mox.StubOutWithMock(db, 'instance_get_by_uuid') fake_uuid = self.fake_instance['uuid'] db.instance_get_by_uuid(ctxt, fake_uuid, columns_to_join=[] ).AndReturn(dict(self.fake_instance, host='orig-host')) db.instance_get_by_uuid(ctxt, fake_uuid, columns_to_join=[] ).AndReturn(dict(self.fake_instance, host='new-host')) self.mox.ReplayAll() inst = instance.Instance.get_by_uuid(ctxt, fake_uuid) self.assertEqual(inst.host, 'orig-host') inst.refresh() self.assertEqual(inst.host, 'new-host') self.assertRemotes() self.assertEqual(set([]), inst.obj_what_changed()) def test_save(self): ctxt = context.get_admin_context() fake_inst = dict(self.fake_instance, host='oldhost') fake_uuid = fake_inst['uuid'] self.mox.StubOutWithMock(db, 'instance_get_by_uuid') self.mox.StubOutWithMock(db, 'instance_update_and_get_original') self.mox.StubOutWithMock(db, 'instance_info_cache_update') db.instance_get_by_uuid(ctxt, fake_uuid, columns_to_join=[] ).AndReturn(fake_inst) db.instance_update_and_get_original( ctxt, fake_uuid, {'user_data': 'foo'}).AndReturn( (fake_inst, dict(fake_inst, host='newhost'))) self.mox.ReplayAll() inst = instance.Instance.get_by_uuid(ctxt, fake_uuid) inst.user_data = 'foo' inst.save() self.assertEqual(inst.host, 'newhost') def test_get_deleted(self): ctxt = context.get_admin_context() fake_inst = dict(self.fake_instance, id=123, deleted=123) fake_uuid = fake_inst['uuid'] self.mox.StubOutWithMock(db, 'instance_get_by_uuid') db.instance_get_by_uuid(ctxt, fake_uuid, columns_to_join=[] ).AndReturn(fake_inst) self.mox.ReplayAll() inst = instance.Instance.get_by_uuid(ctxt, fake_uuid) # NOTE(danms): Make sure it's actually a bool self.assertEqual(inst.deleted, True) def test_with_info_cache(self): ctxt = context.get_admin_context() fake_inst = dict(self.fake_instance) fake_uuid = fake_inst['uuid'] fake_inst['info_cache'] = {'network_info': 'foo', 'instance_uuid': fake_uuid} self.mox.StubOutWithMock(db, 'instance_get_by_uuid') self.mox.StubOutWithMock(db, 'instance_update_and_get_original') self.mox.StubOutWithMock(db, 'instance_info_cache_update') db.instance_get_by_uuid(ctxt, fake_uuid, columns_to_join=[] ).AndReturn(fake_inst) db.instance_info_cache_update(ctxt, fake_uuid, {'network_info': 'bar'}) self.mox.ReplayAll() inst = instance.Instance.get_by_uuid(ctxt, fake_uuid) self.assertEqual(inst.info_cache.network_info, fake_inst['info_cache']['network_info']) self.assertEqual(inst.info_cache.instance_uuid, fake_uuid) inst.info_cache.network_info = 'bar' inst.save() def test_with_security_groups(self): ctxt = context.get_admin_context() fake_inst = dict(self.fake_instance) fake_uuid = fake_inst['uuid'] fake_inst['security_groups'] = [ {'id': 1, 'name': 'secgroup1', 'description': 'fake-desc', 'user_id': 'fake-user', 'project_id': 'fake_project', 'created_at': None, 'updated_at': None, 'deleted_at': None, 'deleted': False}, {'id': 2, 'name': 'secgroup2', 'description': 'fake-desc', 'user_id': 'fake-user', 'project_id': 'fake_project', 'created_at': None, 'updated_at': None, 'deleted_at': None, 'deleted': False}, ] self.mox.StubOutWithMock(db, 'instance_get_by_uuid') self.mox.StubOutWithMock(db, 'instance_update_and_get_original') self.mox.StubOutWithMock(db, 'security_group_update') db.instance_get_by_uuid(ctxt, fake_uuid, columns_to_join=[] ).AndReturn(fake_inst) db.security_group_update(ctxt, 1, {'description': 'changed'} ).AndReturn(fake_inst['security_groups'][0]) self.mox.ReplayAll() inst = instance.Instance.get_by_uuid(ctxt, fake_uuid) self.assertEqual(len(inst.security_groups), 2) for index, group in enumerate(fake_inst['security_groups']): for key in group: self.assertEqual(group[key], inst.security_groups[index][key]) self.assertTrue(isinstance(inst.security_groups[index], security_group.SecurityGroup)) self.assertEqual(inst.security_groups.obj_what_changed(), set()) inst.security_groups[0].description = 'changed' inst.save() self.assertEqual(inst.security_groups.obj_what_changed(), set()) def test_with_fault(self): ctxt = context.get_admin_context() fake_inst = dict(self.fake_instance) fake_uuid = fake_inst['uuid'] fake_faults = [dict(x, instance_uuid=fake_uuid) for x in test_instance_fault.fake_faults['fake-uuid']] self.mox.StubOutWithMock(db, 'instance_get_by_uuid') self.mox.StubOutWithMock(db, 'instance_fault_get_by_instance_uuids') db.instance_get_by_uuid(ctxt, fake_uuid, columns_to_join=[] ).AndReturn(self.fake_instance) db.instance_fault_get_by_instance_uuids(ctxt, [fake_uuid]).AndReturn( {fake_uuid: fake_faults}) self.mox.ReplayAll() inst = instance.Instance.get_by_uuid(ctxt, fake_uuid, expected_attrs=['fault']) self.assertEqual(fake_faults[0], dict(inst.fault.items())) self.assertRemotes() def test_iteritems_with_extra_attrs(self): self.stubs.Set(instance.Instance, 'name', 'foo') inst = instance.Instance() inst.uuid = 'fake-uuid' self.assertEqual(inst.items(), {'uuid': 'fake-uuid', 'name': 'foo', }.items()) class TestInstanceObject(test_objects._LocalTest, _TestInstanceObject): pass class TestRemoteInstanceObject(test_objects._RemoteTest, _TestInstanceObject): pass class _TestInstanceListObject(object): def fake_instance(self, id, updates=None): fake_instance = fakes.stub_instance(id=2, access_ipv4='1.2.3.4', access_ipv6='::1') fake_instance['scheduled_at'] = None fake_instance['terminated_at'] = None fake_instance['deleted_at'] = None fake_instance['created_at'] = None fake_instance['updated_at'] = None fake_instance['launched_at'] = ( fake_instance['launched_at'].replace( tzinfo=iso8601.iso8601.Utc(), microsecond=0)) fake_instance['info_cache'] = {'network_info': 'foo', 'instance_uuid': fake_instance['uuid']} fake_instance['security_groups'] = [] fake_instance['deleted'] = 0 if updates: fake_instance.update(updates) return fake_instance def test_get_all_by_filters(self): fakes = [self.fake_instance(1), self.fake_instance(2)] ctxt = context.get_admin_context() self.mox.StubOutWithMock(db, 'instance_get_all_by_filters') db.instance_get_all_by_filters(ctxt, {'foo': 'bar'}, 'uuid', 'asc', limit=None, marker=None, columns_to_join=['metadata']).AndReturn( fakes) self.mox.ReplayAll() inst_list = instance.InstanceList.get_by_filters( ctxt, {'foo': 'bar'}, 'uuid', 'asc', expected_attrs=['metadata']) for i in range(0, len(fakes)): self.assertTrue(isinstance(inst_list.objects[i], instance.Instance)) self.assertEqual(inst_list.objects[i].uuid, fakes[i]['uuid']) self.assertRemotes() def test_get_by_host(self): fakes = [self.fake_instance(1), self.fake_instance(2)] ctxt = context.get_admin_context() self.mox.StubOutWithMock(db, 'instance_get_all_by_host') db.instance_get_all_by_host(ctxt, 'foo', columns_to_join=None).AndReturn(fakes) self.mox.ReplayAll() inst_list = instance.InstanceList.get_by_host(ctxt, 'foo') for i in range(0, len(fakes)): self.assertTrue(isinstance(inst_list.objects[i], instance.Instance)) self.assertEqual(inst_list.objects[i].uuid, fakes[i]['uuid']) self.assertEqual(inst_list.objects[i]._context, ctxt) self.assertEqual(inst_list.obj_what_changed(), set()) self.assertRemotes() def test_get_by_host_and_node(self): fakes = [self.fake_instance(1), self.fake_instance(2)] ctxt = context.get_admin_context() self.mox.StubOutWithMock(db, 'instance_get_all_by_host_and_node') db.instance_get_all_by_host_and_node(ctxt, 'foo', 'bar').AndReturn( fakes) self.mox.ReplayAll() inst_list = instance.InstanceList.get_by_host_and_node(ctxt, 'foo', 'bar') for i in range(0, len(fakes)): self.assertTrue(isinstance(inst_list.objects[i], instance.Instance)) self.assertEqual(inst_list.objects[i].uuid, fakes[i]['uuid']) self.assertRemotes() def test_get_by_host_and_not_type(self): fakes = [self.fake_instance(1), self.fake_instance(2)] ctxt = context.get_admin_context() self.mox.StubOutWithMock(db, 'instance_get_all_by_host_and_not_type') db.instance_get_all_by_host_and_not_type(ctxt, 'foo', type_id='bar').AndReturn( fakes) self.mox.ReplayAll() inst_list = instance.InstanceList.get_by_host_and_not_type(ctxt, 'foo', 'bar') for i in range(0, len(fakes)): self.assertTrue(isinstance(inst_list.objects[i], instance.Instance)) self.assertEqual(inst_list.objects[i].uuid, fakes[i]['uuid']) self.assertRemotes() def test_get_hung_in_rebooting(self): fakes = [self.fake_instance(1), self.fake_instance(2)] dt = timeutils.isotime() ctxt = context.get_admin_context() self.mox.StubOutWithMock(db, 'instance_get_all_hung_in_rebooting') db.instance_get_all_hung_in_rebooting(ctxt, dt).AndReturn( fakes) self.mox.ReplayAll() inst_list = instance.InstanceList.get_hung_in_rebooting(ctxt, dt) for i in range(0, len(fakes)): self.assertTrue(isinstance(inst_list.objects[i], instance.Instance)) self.assertEqual(inst_list.objects[i].uuid, fakes[i]['uuid']) self.assertRemotes() def test_with_fault(self): ctxt = context.get_admin_context() fake_insts = [ fake_instance.fake_db_instance(uuid='fake-uuid', host='host'), fake_instance.fake_db_instance(uuid='fake-inst2', host='host'), ] fake_faults = test_instance_fault.fake_faults self.mox.StubOutWithMock(db, 'instance_get_all_by_host') self.mox.StubOutWithMock(db, 'instance_fault_get_by_instance_uuids') db.instance_get_all_by_host(ctxt, 'host', columns_to_join=[] ).AndReturn(fake_insts) db.instance_fault_get_by_instance_uuids( ctxt, [x['uuid'] for x in fake_insts]).AndReturn(fake_faults) self.mox.ReplayAll() instances = instance.InstanceList.get_by_host(ctxt, 'host', expected_attrs=['fault']) self.assertEqual(2, len(instances)) self.assertEqual(fake_faults['fake-uuid'][0], dict(instances[0].fault.iteritems())) self.assertEqual(None, instances[1].fault) def test_fill_faults(self): ctxt = context.get_admin_context() self.mox.StubOutWithMock(db, 'instance_fault_get_by_instance_uuids') inst1 = instance.Instance() inst1.uuid = 'uuid1' inst2 = instance.Instance() inst2.uuid = 'uuid2' insts = [inst1, inst2] for inst in insts: inst.obj_reset_changes() db_faults = { 'uuid1': [{'id': 123, 'instance_uuid': 'uuid1', 'code': 456, 'message': 'Fake message', 'details': 'No details', 'host': 'foo', 'deleted': False, 'deleted_at': None, 'updated_at': None, 'created_at': None, } ]} db.instance_fault_get_by_instance_uuids(ctxt, [x.uuid for x in insts], ).AndReturn(db_faults) self.mox.ReplayAll() inst_list = instance.InstanceList() inst_list._context = ctxt inst_list.objects = insts faulty = inst_list.fill_faults() self.assertEqual(faulty, ['uuid1']) self.assertEqual(inst_list[0].fault.message, db_faults['uuid1'][0]['message']) self.assertEqual(inst_list[1].fault, None) for inst in inst_list: self.assertEqual(inst.obj_what_changed(), set()) class TestInstanceListObject(test_objects._LocalTest, _TestInstanceListObject): pass class TestRemoteInstanceListObject(test_objects._RemoteTest, _TestInstanceListObject): pass class TestInstanceObjectMisc(test.TestCase): def test_expected_cols(self): self.stubs.Set(instance, 'INSTANCE_OPTIONAL_NON_COLUMNS', ['bar']) self.assertEqual(['foo'], instance.expected_cols(['foo', 'bar'])) self.assertEqual(None, instance.expected_cols(None))
from typing import Dict class ConfigError(RuntimeError): """An error encountered during reading the config file Args: msg (str): The message displayed to the user on error """ def __init__(self, msg): super(ConfigError, self).__init__("%s" % (msg,)) class MonzoInvalidStateError(RuntimeError): def __init__(self): super(MonzoInvalidStateError, self).__init__("Invalid state in the login callback") class ClientError(Exception): """An error that contains data to send to the user's client. Args: message_content: The content of the m.room.message event to send the user. """ def __init__(self, message_content: Dict[str, str]): self.message_content = message_content class InvalidParamsError(ClientError): pass class ProcessingError(ClientError): pass
import os import torch import pandas as pd import numpy as np from torch.utils.data import Dataset, DataLoader from functools import reduce import abc class imageDataset(Dataset): def __init__(self, csv_file_path, cont_flag=True, standardize_dirty=False, dirty_csv_file_path=None): self.df_dataset = pd.read_csv(csv_file_path) self.dataset_type = 'image' self.cont_flag = cont_flag self.len_data = self.df_dataset.shape[0] if cont_flag: self.num_cols = self.df_dataset.columns.tolist() self.cat_cols = [] else: self.num_cols = [] self.cat_cols = self.df_dataset.columns.tolist() if standardize_dirty: self.df_dataset_dirty = pd.read_csv(dirty_csv_file_path) ## feature type cast -- all features are real for col_name in self.num_cols: self.df_dataset[col_name] = self.df_dataset[col_name].astype(float, copy=False) if standardize_dirty: self.df_dataset_dirty[col_name] = self.df_dataset_dirty[col_name].astype(float, copy=False) # standardize (re-scale) continuous features defintions if cont_flag: if standardize_dirty: # standardize using dirty statistics -- e.g. useful running clean data on dirty models. self.cont_means = self.df_dataset_dirty[self.num_cols].stack().mean() self.cont_stds = self.df_dataset_dirty[self.num_cols].stack().std() else: self.cont_means = self.df_dataset[self.num_cols].stack().mean() self.cont_stds = self.df_dataset[self.num_cols].stack().std() ## global defs self.size_tensor = len(self.df_dataset.columns) self.feat_info = [] if cont_flag: for col_name in self.df_dataset.columns: # numerical (real) self.feat_info.append((col_name, "real", 1)) else: for col_name in self.df_dataset.columns: # categorical (categ) self.feat_info.append((col_name, "categ", 2)) # black and white def standardize_dataset(self, dataset): """ NOTE: this method standardize images or not depending on whether they are binarized or not.""" if self.cont_flag: dataset = self.from_raw_to_tensor_cont(dataset) else: dataset = self.from_raw_to_tensor_categ(dataset) return dataset def from_raw_to_tensor_cont(self, dataset): return (dataset-self.cont_means)/self.cont_stds def from_raw_to_tensor_categ(self, dataset): return dataset @abc.abstractmethod def __len__(self): """Not implemented""" @abc.abstractmethod def __getitem__(self, idx): """Not implemented""" class imageDatasetInstance(imageDataset): def __init__(self, csv_file_path_all, csv_file_path_instance, csv_file_cell_outlier_mtx=[], get_indexes=False, cont_flag=True, standardize_dirty=False, dirty_csv_file_path=None): super().__init__(csv_file_path_all, cont_flag=cont_flag, standardize_dirty=standardize_dirty, dirty_csv_file_path=dirty_csv_file_path) self.df_dataset_instance = pd.read_csv(csv_file_path_instance) self.get_indexes = get_indexes # get ground-truth cell error matrix, if provided if csv_file_cell_outlier_mtx: self.cell_outlier_mtx = pd.read_csv(csv_file_cell_outlier_mtx).values else: self.cell_outlier_mtx = np.array([]) # make sure of data types in the dataframe for col_name in self.num_cols: self.df_dataset_instance[col_name] = self.df_dataset_instance[col_name].astype(float, copy=False) #Directly standardize the dataset here (instead of row by row) self.df_dataset_instance_standardized = self.standardize_dataset(self.df_dataset_instance) def __len__(self): return self.df_dataset_instance.shape[0] def __getitem__(self, idx): if self.get_indexes: index_ret = [idx] else: index_ret = [] if self.cell_outlier_mtx.size: cell_outlier_ret = [self.cell_outlier_mtx[idx,:]] else: cell_outlier_ret = [] ret_list = [torch.tensor(self.df_dataset_instance_standardized.iloc[idx].values, dtype=torch.float)] # ret_list = [torch.tensor(self.df_dataset_instance.iloc[idx].values, dtype=torch.float)] ret_list += cell_outlier_ret ret_list += index_ret return ret_list
import copy import datetime import json import unittest from mock import MagicMock, patch import config from archiver.archiver import IngestArchiver, Manifest, ArchiveSubmission, Biomaterial # TODO use mocks for integration tests class TestIngestArchiver(unittest.TestCase): def setUp(self): self.ontology_api = MagicMock() self.ingest_api = MagicMock() self.ingest_api.url = 'ingest_url' self.dsp_api = MagicMock() self.dsp_api.url = 'dsp_url' self.dsp_api.get_current_version = MagicMock(return_value=None) with open(config.JSON_DIR + 'hca/biomaterials.json', encoding=config.ENCODING) as data_file: biomaterials = json.loads(data_file.read()) with open(config.JSON_DIR + 'hca/project.json', encoding=config.ENCODING) as data_file: project = json.loads(data_file.read()) project['uuid']['uuid'] = self._generate_fake_id(prefix='project_') with open(config.JSON_DIR + 'hca/process.json', encoding=config.ENCODING) as data_file: assay = json.loads(data_file.read()) assay['uuid']['uuid'] = self._generate_fake_id(prefix='assay_') with open(config.JSON_DIR + 'hca/library_preparation_protocol.json', encoding=config.ENCODING) as data_file: library_preparation_protocol = json.loads(data_file.read()) library_preparation_protocol['uuid']['uuid'] = self._generate_fake_id( prefix='library_preparation_protocol_') with open(config.JSON_DIR + 'hca/sequencing_protocol.json', encoding=config.ENCODING) as data_file: sequencing_protocol = json.loads(data_file.read()) sequencing_protocol['uuid']['uuid'] = self._generate_fake_id(prefix='sequencing_protocol_') with open(config.JSON_DIR + 'hca/sequencing_file.json', encoding=config.ENCODING) as data_file: sequencing_file = json.loads(data_file.read()) sequencing_file['uuid']['uuid'] = self._generate_fake_id(prefix='sequencing_file_') biomaterial_objects = [] for biomaterial in biomaterials: # TODO decide what to use for alias, assign random no for now biomaterial['uuid']['uuid'] = self._generate_fake_id(prefix='biomaterial_') biomaterial_objects.append(Biomaterial(biomaterial)) with open(config.JSON_DIR + 'hca/library_preparation_protocol_10x.json', encoding=config.ENCODING) as data_file: library_preparation_protocol_10x = json.loads(data_file.read()) library_preparation_protocol_10x['uuid']['uuid'] = self._generate_fake_id( prefix='library_preparation_protocol_10x_') self.base_manifest = { 'biomaterials': biomaterial_objects, 'project': project, 'files': [sequencing_file], 'assay': assay, 'library_preparation_protocol': library_preparation_protocol, 'library_preparation_protocol_10x': library_preparation_protocol_10x, 'sequencing_protocol': sequencing_protocol, 'input_biomaterial': biomaterials[0], 'manifest_id': 'dummy_manifest_id' } def _generate_fake_id(self, prefix): now = datetime.datetime.utcnow().strftime("%Y-%m-%dT%H%M%S") return prefix + '_' + now @staticmethod def _mock_manifest(manifest): assay_manifest = MagicMock(Manifest) assay_manifest.get_biomaterials = MagicMock( return_value=manifest.get('biomaterials')) assay_manifest.get_project = MagicMock( return_value=manifest.get('project')) assay_manifest.get_assay_process = MagicMock( return_value=manifest.get('assay')) assay_manifest.get_library_preparation_protocol = MagicMock( return_value=manifest.get('library_preparation_protocol')) assay_manifest.get_sequencing_protocol = MagicMock( return_value=manifest.get('sequencing_protocol')) assay_manifest.get_input_biomaterial = MagicMock( return_value=manifest.get('input_biomaterial')) assay_manifest.get_files = MagicMock( return_value=manifest.get('files')) assay_manifest.manifest_id = manifest.get('manifest_id') return assay_manifest def test_archive_skip_metadata_with_accessions(self): with open(config.JSON_DIR + 'hca/biomaterial_with_accessions.json', encoding=config.ENCODING) as data_file: biomaterials = json.loads(data_file.read()) biomaterial_manifest = {'biomaterials': biomaterials} mock_manifest = self._mock_manifest(biomaterial_manifest) archiver = IngestArchiver( ontology_api=self.ontology_api, ingest_api=self.ingest_api, dsp_api=self.dsp_api, exclude_types=['sequencingRun']) archiver.get_manifest = MagicMock(return_value=mock_manifest) entity_map = archiver.convert('') archive_submission = archiver.archive(entity_map) self.assertTrue(archive_submission.is_completed) self.assertTrue(archive_submission.errors) self.assertFalse(archive_submission.processing_result)
from pybamm import Parameter def lico2_volume_change_Ai2020(sto): """ lico2 particle volume change as a function of stochiometry [1, 2]. References ---------- .. [1] Ai, W., Kraft, L., Sturm, J., Jossen, A., & Wu, B. (2020). Electrochemical Thermal-Mechanical Modelling of Stress Inhomogeneity in Lithium-Ion Pouch Cells. Journal of The Electrochemical Society, 167(1), 013512 DOI: 10.1149/2.0122001JES. .. [2] Rieger, B., Erhard, S. V., Rumpf, K., & Jossen, A. (2016). A new method to model the thickness change of a commercial pouch cell during discharge. Journal of The Electrochemical Society, 163(8), A1566-A1575. Parameters ---------- sto: :class:`pybamm.Symbol` Electrode stochiometry, dimensionless should be R-averaged particle concentration Returns ------- t_change:class:`pybamm.Symbol` volume change, dimensionless, normalised by particle volume """ omega = Parameter("Positive electrode partial molar volume [m3.mol-1]") c_p_max = Parameter("Maximum concentration in positive electrode [mol.m-3]") t_change = omega * c_p_max * sto return t_change
import sys import os __all__=['mc_wordcloud.py'] sys.path.append("..") def Get(name): return os.path.dirname(os.path.realpath(__file__)) + '\\' + name
"""Loads configuration yaml and runs an experiment.""" from argparse import ArgumentParser import os import glob from datetime import datetime import shutil import yaml from tqdm import tqdm import torch import numpy as np from collections import defaultdict import data import model import probe import regimen import reporter import task import loss import glob import sys from run_experiment import choose_dataset_class, choose_probe_class, choose_model_class def load_projected_representations(probe, model, dataset): """ Loads projected representations under `probe` from `dataset`. """ projections_by_batch = [] for batch in tqdm(dataset, desc='[predicting]'): observation_batch, label_batch, length_batch, _ = batch word_representations = model(observation_batch) transformed_representations = torch.matmul(word_representations, probe.proj) projections_by_batch.append(transformed_representations.detach().cpu().numpy()) return projections_by_batch def evaluate_vectors(args, probe, dataset, model, results_dir, output_name): probe_params_path = os.path.join(results_dir, args['probe']['params_path']) probe.load_state_dict(torch.load(probe_params_path)) probe.eval() print(probe.proj) dataloader = dataset.get_dev_dataloader() projections = load_projected_representations(probe, model, dataloader) relations_to_projections = defaultdict(list) relations_to_sentences = defaultdict(list) relations_to_idxs = defaultdict(list) relations_to_words = defaultdict(list) for projection_batch, (data_batch, label_batch, length_batch, observation_batch) in zip(projections, dataloader): for projection, label, length, (observation, _) in zip(projection_batch, label_batch, length_batch, observation_batch): for idx, word in enumerate(observation.sentence): if observation.head_indices[idx] == '0': pass # head word else: head_index = int(observation.head_indices[idx]) proj_diff = projection[idx] - projection[head_index-1] relation = observation.governance_relations[idx] relations_to_projections[relation].append(proj_diff) relations_to_sentences[relation].append(" ".join(observation.sentence)) relations_to_idxs[relation].append(idx) relations_to_words[relation].append(word) relations_to_diffs = {} all_relations = [] all_sentences = [] all_idxs = [] all_words = [] y_list = [] for relation in relations_to_projections: diffs = torch.FloatTensor(relations_to_projections[relation]) # compute the SVD u, s, v = diffs.svd() average_diff = torch.mean(diffs, 0) relations_to_diffs[relation] = average_diff all_relations += relations_to_projections[relation] all_sentences += relations_to_sentences[relation] all_idxs += relations_to_idxs[relation] all_words += relations_to_words[relation] y_list += [relation] * len(relations_to_projections[relation]) allDiff = torch.FloatTensor(all_relations) # print(y_list) sentences_idxs_words = np.array([all_sentences, all_idxs, all_words]) if len(sys.argv) > 2: np.save('/sailhome/ethanchi/structural-probes/relationOutputs/{}.npy'.format(output_name), allDiff.numpy()) np.save('/sailhome/ethanchi/structural-probes/relationOutputs/{}Y.npy'.format(output_name), np.array(y_list)) np.save('/sailhome/ethanchi/structural-probes/relationOutputs/{}-data.npy'.format(output_name), sentences_idxs_words) allDiff = torch.mean(allDiff, 0) cos = torch.nn.CosineSimilarity(dim=0, eps=1e-10) # for relation in relations_to_diffs: # print(relation, torch.norm(relations_to_diffs[relation])) # for relation2 in relations_to_diffs: # print(relation, relation2, cos(relations_to_diffs[relation], relations_to_diffs[relation2])) # print("AllDiff", torch.norm(allDiff)) # print("Projection is: {}".format(projection[int(observation.head_indices[idx])-1])) def execute_experiment(args, results_dir, output_name): """ Execute an experiment as determined by the configuration in args. Args: train_probe: Boolean whether to train the probe report_results: Boolean whether to report results """ dataset_class = choose_dataset_class(args) # task_class, reporter_class, loss_class = choose_task_classes(args) probe_class = choose_probe_class(args) model_class = choose_model_class(args) # regimen_class = regimen.ProbeRegimen expt_dataset = dataset_class(args, task.DummyTask) # expt_reporter = reporter_class(args) expt_probe = probe_class(args) expt_model = model_class(args) # expt_regimen = regimen_class(args) # expt_loss = loss_class(args) evaluate_vectors(args, expt_probe, expt_dataset, expt_model, results_dir, output_name) if __name__ == '__main__': argp = ArgumentParser() argp.add_argument('dir') argp.add_argument('output_name') argp.add_argument('--seed', default=0, type=int, help='sets all random seeds for (within-machine) reproducibility') cli_args = argp.parse_args() if cli_args.seed: np.random.seed(cli_args.seed) torch.manual_seed(cli_args.seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # yaml_args = yaml.load(open(#") os.chdir(cli_args.dir) yaml_args = yaml.load(open(glob.glob("*.yaml")[0])) # setup_new_experiment_dir(cli_args, yaml_args, cli_args.results_dir) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") yaml_args['device'] = device execute_experiment(yaml_args, cli_args.dir, cli_args.output_name)
# -*- coding: utf-8 -*- """ Created on Mon Apr 5 01:30:10 2021 @author: kfp """ try: import __devel__ _release_ = False except: _release_ = True from functools import reduce from pygnuplot import gnuplot if not _release_: from storage import STORAGE else: from numaplot.storage import STORAGE keys2d = ['styles', 'samples', 'key', 'title'] keys3d = keys2d + ['dummy', 'urange', 'vrange', 'xyplane', 'hidden3d',\ 'isosamples', 'parametric', 'output'] def check_minreq(data): """ Minimal requirements: if data is admissible then it shall be forwarded to the gnuplot handler, otherwise an error message should be returned. Return type is <boolean>. """ minkeys = ['terminal','method'] b = [data.keys().__contains__(s) for s in minkeys] f=lambda x,y: x & y return reduce(f,b) def check_key(data, key): """ Check if key in data. If so, then return the value, otherwise return the empty string. """ if data.keys().__contains__(key): return data[key] else: return '' def make_kw(keys,data): """ Create the **kw for gnuplot.set() -- unpack operator ** """ d = dict() for x in keys: d.update({x : check_key(data,x)}) return d def perform(uid): """ With the argument='uid' get the the data from STORAGE and perform the method requested. """ try: data = STORAGE[uid]['post'] except Exception: STORAGE.update({uid: {'error' : KeyError("xyz") }}) return False if not check_minreq(data): STORAGE.update({uid: {'error' : "check_minreq failed" }}) return False g = gnuplot.Gnuplot(terminal = data['terminal']) if data['method'] == 'plot': g.set(**make_kw(keys2d, data)) g.plot(data['plot']) elif data['method'] == 'splot': g.set(**make_kw(keys3d, data)) g.splot(data['splot']) else: pass print(data['terminal']) #debug
from rdflib import Graph from rdflib.resource import Resource from rdflib.namespace import RDFS def test_properties(rdfs_graph: Graph) -> None: """ The properties of a `rdflib.resource.Resource` work as expected. """ cres = Resource(rdfs_graph, RDFS.Container) assert cres.graph is rdfs_graph assert cres.identifier == RDFS.Container
import pyglet from pyglet.gl import * from robocute.base import * QUAD_SW = 0 QUAD_SE = 1 QUAD_NE = 2 QUAD_NW = 3 ''' Quad ''' class Quad(Base): def __init__(self, texture): super().__init__() self.texture = texture self.width = texture.width self.height = texture.height self.vertices = None #self.indices = [None] * 4 self.north = None self.south = None self.east = None self.west = None # self.validate() def get_tex_coord(self, ndx): tex_coords = self.texture.tex_coords u = tex_coords[ndx * 3] v = tex_coords[ndx * 3 + 1] r = tex_coords[ndx * 3 + 2] return (u, v, r) def validate(self): super().validate() ''' Compose ''' def compose(self, g, mesh): x1 = g.x y1 = g.y x2 = x1 + self.width y2 = y1 + self.height vertices = [ (x1, y1), (x2, y1), (x2, y2), (x1, y2) ] self.compose_sw(vertices, mesh) self.compose_se(vertices, mesh) self.compose_ne(vertices, mesh) self.compose_nw(vertices, mesh) def compose_sw(self, vertices, mesh): indice = mesh.add_vertex( vertices[QUAD_SW] ) mesh.set_tex_coord(indice, self.get_tex_coord(QUAD_SW)) #self.indices[QUAD_SW] = indice def compose_se(self, vertices, mesh): #if not self.east: indice = mesh.add_vertex(vertices[QUAD_SE]) mesh.set_tex_coord(indice, self.get_tex_coord(QUAD_SE)) #self.indices[QUAD_SE] = indice def compose_ne(self, vertices, mesh): #if not self.north and not self.east: indice = mesh.add_vertex(vertices[QUAD_NE]) mesh.set_tex_coord(indice, self.get_tex_coord(QUAD_NE)) #self.indices[QUAD_NE] = indice def compose_nw(self, vertices, mesh): #if not self.north: indice = mesh.add_vertex(vertices[QUAD_NW]) mesh.set_tex_coord(indice, self.get_tex_coord(QUAD_NW)) #self.indices[QUAD_NW] = indice ''' PostCompose ''' def postcompose(self, mesh): self.postcompose_sw() self.postcompose_se() self.postcompose_ne() self.postcompose_nw() #mesh.indices.extend(self.indices) def postcompose_sw(self): pass def postcompose_se(self): if self.east: self.indices[QUAD_SE] = self.east.indices[QUAD_SW] def postcompose_ne(self): if self.north: self.indices[QUAD_NE] = self.north.indices[QUAD_SE] elif self.east: self.indices[QUAD_NE] = self.east.indices[QUAD_NW] def postcompose_nw(self): if self.north: self.indices[QUAD_NW] = self.north.indices[QUAD_SW] def draw(self, graphics): if self.texture: self.texture.blit(graphics.x, graphics.y, graphics.z) if graphics.query: self.query(graphics) ''' QuadContainer ''' class QuadContainer(Base): def __init__(self): super().__init__() self.quads = [] def validate(self): super().validate() def add_quad(self, quad): self.invalidate() self.quads.append(quad) def repeat(self, quad, count): self.invalidate() i = 0 while i < count: add_quad(quad.copy()) ''' QuadRow ''' class QuadRow(QuadContainer): def __init__(self): super().__init__() self.north = None self.south = None self.height = None def validate(self): super().validate() lastQuad = None for quad in self.quads: if lastQuad: lastQuad.east = quad quad.west = lastQuad lastQuad = quad self.height = lastQuad.height def compose(self, graphics, mesh): if self.invalid: self.validate() for quad in self.quads: quad.compose(graphics, mesh) graphics.x += quad.width ''' #fixme:reinstate this when shared vertices get figured out. for quad in self.quads: quad.postcompose(mesh) ''' ''' QuadColumn ''' class QuadColumn(QuadContainer): def __init__(self): super().__init__() def validate(self): super().validate() lastQuad = None for quad in self.quads: if lastQuad: lastQuad.north = quad quad.south = lastQuad lastQuad = quad def compose(self, graphics, mesh): if self.invalid: self.validate() for quad in self.quads: quad.compose(graphics, mesh) graphics.y += quad.height ''' #fixme:reinstate this when shared vertices get figure out. for quad in self.quads: quad.postcompose(mesh) ''' return ''' QuadGrid ''' class QuadGrid(QuadContainer): def __init__(self): super().__init__() def add_row(self, row): self.add_quad(row) def validate(self): super().validate() lastRow = None for row in self.quads: if lastRow: lastRow.north = row #fixme:going to use this? quadNdx = 0 for quad in row.quads: lastRow.quads[quadNdx].north = quad row.south = lastRow lastRow = row def compose(self, graphics, mesh): if self.invalid: self.validate() gX = graphics.x for row in self.quads: row.compose(graphics, mesh) graphics.x = gX graphics.y += row.height ''' #fixme:reinstate this when shared vertices get figure out. for row in self.rows: row.postcompose(mesh) ''' return ''' QuadMesh ''' class QuadMesh(Base): def __init__(self, texture): super().__init__() self.texture = texture #self.indices = [] self.vertices = [] self.tex_coords = [] #self.domain = pyglet.graphics.vertexdomain.create_indexed_domain('v2i/dynamic', 't3f') self.domain = pyglet.graphics.vertexdomain.create_domain('v2i/dynamic', 't3f') def add_vertex(self, vertex): self.vertices.append(vertex[0]) self.vertices.append(vertex[1]) self.tex_coords.extend([0.]*3) return int(len(self.vertices) / 2 - 1) def set_tex_coord(self, indice, tex_coord): self.tex_coords[indice * 3] = tex_coord[0] self.tex_coords[indice * 3 + 1] = tex_coord[1] self.tex_coords[indice * 3 + 2] = tex_coord[2] def create_vertex_list(self): #vertexList = self.domain.create(len(self.vertices)/2, len(self.indices)) vertexList = self.domain.create(int(len(self.vertices)/2)) #vertexList.indices = self.indices vertexList.vertices = self.vertices vertexList.tex_coords = self.tex_coords return vertexList def draw(self): vertexList = self.create_vertex_list() glEnable(self.texture.target) glBindTexture(self.texture.target, self.texture.id) vertexList.draw(GL_QUADS) glDisable(self.texture.target)
import py from pypy.rpython.extfunc import BaseLazyRegistering, extdef, registering from pypy.rlib import rarithmetic from pypy.rpython.lltypesystem import lltype, rffi from pypy.tool.autopath import pypydir from pypy.rpython.ootypesystem import ootype from pypy.rlib import rposix from pypy.translator.tool.cbuild import ExternalCompilationInfo from pypy.tool.autopath import pypydir class CConfig: _compilation_info_ = ExternalCompilationInfo( includes = ['src/ll_strtod.h'], include_dirs = [str(py.path.local(pypydir).join('translator', 'c'))], separate_module_sources = ['#include <src/ll_strtod.h>'], export_symbols = ['LL_strtod_formatd', 'LL_strtod_parts_to_float'], ) class RegisterStrtod(BaseLazyRegistering): def __init__(self): self.configure(CConfig) @registering(rarithmetic.formatd) def register_formatd(self): ll_strtod = self.llexternal('LL_strtod_formatd', [rffi.CCHARP, rffi.DOUBLE], rffi.CCHARP, sandboxsafe=True, threadsafe=False) def llimpl(fmt, x): res = ll_strtod(fmt, x) return rffi.charp2str(res) def oofakeimpl(fmt, x): return ootype.oostring(rarithmetic.formatd(fmt._str, x), -1) return extdef([str, float], str, 'll_strtod.ll_strtod_formatd', llimpl=llimpl, oofakeimpl=oofakeimpl, sandboxsafe=True) @registering(rarithmetic.parts_to_float) def register_parts_to_float(self): ll_parts_to_float = self.llexternal('LL_strtod_parts_to_float', [rffi.CCHARP] * 4, rffi.DOUBLE, sandboxsafe=True, threadsafe=False) def llimpl(sign, beforept, afterpt, exponent): res = ll_parts_to_float(sign, beforept, afterpt, exponent) if res == -1 and rposix.get_errno() == 42: raise ValueError("Wrong literal for float") return res def oofakeimpl(sign, beforept, afterpt, exponent): return rarithmetic.parts_to_float(sign._str, beforept._str, afterpt._str, exponent._str) return extdef([str, str, str, str], float, 'll_strtod.ll_strtod_parts_to_float', llimpl=llimpl, oofakeimpl=oofakeimpl, sandboxsafe=True)
import logging import threading import time logging.basicConfig(level=logging.DEBUG, format='(%(threadName)-10s) %(message)s', ) lock = threading.Lock() acquired = lock.acquire() print(acquired) # acquired = lock.acquire() # this blocks the main thread # print(acquired) acquired = lock.acquire(0) # this does not block main thread blocks the main thread print(acquired)
#!/usr/bin/python3 # update_produce.py - Corrects costs in produce sales spreadsheet. import openpyxl wb = openpyxl.load_workbook('produceSales.xlsx') sheet = wb.get_sheet_by_name('Sheet') # Os tipos de produtos e seus processo atualizados PRICE_UPDATES = {'Garlic': 99.07, 'Celery': 101.19, 'Lemon': 333.27} # Percorre as linhas em um loop e atualizar os preços for row_num in range(2, sheet.max_row): # 2 = Pulando a primeira linha produce_name = sheet.cell(row=row_num, column=1).value if produce_name in PRICE_UPDATES: sheet.cell(row=row_num, column=2).value = PRICE_UPDATES[produce_name] wb.save('updated_produce_sales.xlsx')
# Exercise_3_tests.py from Tests import * # format testów # TESTS = [ {"arg":arg0, "hint": hint0}, {"arg":arg1, "hint": hint1}, ... ] TESTS = [ # 0 { "arg": [[[(1, 2), (2, 4)], [(0, 2), (3, 11), (4, 3)], [(0, 4), (3, 13)], [(1, 11), (2, 13), (5, 17), (6, 1)], [(1, 3), (5, 5)], [(3, 17), (4, 5), (7, 7)], [(3, 1), (7, 3)], [(5, 7), (6, 3), ]], 0, 7], "hint": 7 }, # 1 { "arg": [[[(1, 2), (2, 4)], [(0, 2), (3, 11), (4, 3)], [(0, 4), (3, 13)], [(1, 11), (2, 13), (5, 17), (6, 1)], [(1, 3), (5, 5)], [(3, 17), (4, 5), (7, 7)], [(3, 1), (7, 3)], [(5, 7), (6, 3), ]], 4, 6], "hint": 6 }, # 2 { "arg": [[[(1, 2), (2, 4)], [(0, 2), (3, 11), (4, 3)], [(0, 4), (3, 13)], [(1, 11), (2, 13), (5, 17), (6, 1)], [(1, 3), (5, 5)], [(3, 17), (4, 5), (7, 7)], [(3, 1), (7, 3)], [(5, 7), (6, 3), ]], 2, 5], "hint": 4 }, # 3 { "arg": [[[(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9)], [(0, 1), (10, 9)], [(0, 2), (10, 8)], [(0, 3), (10, 7)], [(0, 4), (10, 6)], [(0, 5), (10, 5)], [(0, 6), (10, 4)], [(0, 7), (10, 3)], [(0, 8), (10, 2)], [(0, 9), (10, 1)], [(1, 9), (2, 8), (3, 7), (4, 6), (5, 5), (6, 4), (7, 3), (8, 2), (9, 1)]], 0, 10], "hint": 18 }, # 4 { "arg": [[[(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9)], [(0, 1), (10, 9)], [(0, 2), (10, 8)], [(0, 3), (10, 7)], [(0, 4), (10, 6)], [(0, 5), (10, 5)], [(0, 6), (10, 4)], [(0, 7), (10, 3)], [(0, 8), (10, 2)], [(0, 9), (10, 1)], [(1, 9), (2, 8), (3, 7), (4, 6), (5, 5), (6, 4), (7, 3), (8, 2), (9, 1)]], 1, 9], "hint": 4 }, # 5 { "arg": [[[(5, 8), (6, 1), (20, 1), (21, 9), (24, 8)], [(2, 2), (5, 4), (14, 1), (25, 5)], [(1, 2), (11, 1), (18, 4), (21, 3), (26, 9)], [(6, 4), (7, 1), (8, 6), (9, 6), (12, 8), (14, 6), (17, 8), (18, 6), (19, 2), (23, 3), (24, 5)], [(6, 4), (10, 4), (25, 4), (25, 7), (29, 5)], [(0, 8), (1, 4), (7, 6), (14, 7), (18, 7), (22, 8), (26, 3), (27, 1), (28, 1)], [(0, 1), (3, 4), (4, 4), (16, 7), (19, 6)], [(3, 1), (5, 6), (10, 7), (20, 2), (29, 8)], [(3, 6), (27, 3)], [(3, 6), (14, 1), (15, 7), (16, 8), (20, 1), (21, 9), (22, 5), (23, 4), (26, 4), (28, 7)], [(4, 4), (7, 7), (13, 4), (16, 7), (19, 6)], [(2, 1), (13, 9), (19, 5), (21, 1), (28, 8)], [(3, 8), (14, 6), (16, 8)], [(10, 4), (11, 9), (15, 5), (18, 2), (29, 2)], [(1, 1), (3, 6), (5, 7), (9, 1), (12, 6), (17, 6), (22, 1)], [(9, 7), (13, 5), (23, 4), (27, 1)], [(6, 7), (9, 8), (10, 7), (12, 8), (18, 6), (27, 9)], [(3, 8), (14, 6), (23, 2)], [(2, 4), (3, 6), (5, 7), (13, 2), (16, 6), (23, 5), (24, 6)], [(3, 2), (6, 6), (10, 6), (11, 5), (27, 8)], [(0, 1), (7, 2), (9, 1), (21, 6), (23, 4), (25, 3), (28, 4), (29, 8)], [(0, 9), (2, 3), (9, 9), (11, 1), (20, 6), (24, 8), (27, 7), (28, 1)], [(5, 8), (9, 5), (14, 1), (24, 1), (27, 8)], [(3, 3), (9, 4), (15, 4), (17, 2), (18, 5), (20, 4), (24, 8)], [(0, 8), (3, 5), (18, 6), (21, 8), (22, 1), (23, 8), (28, 3), (29, 9)], [(1, 5), (4, 4), (20, 3), (26, 4)], [(2, 9), (5, 3), (9, 4), (25, 4)], [(5, 1), (8, 3), (15, 1), (16, 9), (19, 8), (21, 7), (22, 8), (29, 3)], [(5, 1), (9, 7), (11, 8), (20, 4), (21, 1), (24, 3)], [(4, 5), (7, 8), (13, 2), (20, 8), (24, 9), (27, 3)]], 0, 18], "hint": 11 }, # 6 { "arg": [[[(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9)], [(0, 1), (10, 9)], [(0, 2), (10, 8)], [(0, 3), (10, 7)], [(0, 4), (10, 6)], [(0, 5), (10, 5)], [(0, 6), (10, 4)], [(0, 7), (10, 3)], [(0, 8), (10, 2)], [(0, 9), (10, 1)], [(1, 9), (2, 8), (3, 7), (4, 6), (5, 5), (6, 4), (7, 3), (8, 2), (9, 1)], [(12, 3)], [(11, 3)]], 0, 11], "hint": 0 }, ] def printarg(G, s, k): print("Graf: ", limit(G, 120)) print("Start: ", s) print("Cel : ", k) def printhint(hint): print("Przykladowy wynik:", limit(hint, 120)) def printsol(sol): print("Uzyskany wynik :", limit(sol, 120)) def check(G, s, k, hint, sol): if hint == sol: print("Test zaliczony") return True else: print("NIEZALICZONY!") return False def runtests(f): internal_runtests(printarg, printhint, printsol, check, TESTS, f)
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = [ 'GetUsersResult', 'AwaitableGetUsersResult', 'get_users', ] @pulumi.output_type class GetUsersResult: """ A collection of values returned by getUsers. """ def __init__(__self__, comments=None, emails=None, enableds=None, expiration_dates=None, first_names=None, groups=None, id=None, keys=None, last_names=None, user_ids=None): if comments and not isinstance(comments, list): raise TypeError("Expected argument 'comments' to be a list") pulumi.set(__self__, "comments", comments) if emails and not isinstance(emails, list): raise TypeError("Expected argument 'emails' to be a list") pulumi.set(__self__, "emails", emails) if enableds and not isinstance(enableds, list): raise TypeError("Expected argument 'enableds' to be a list") pulumi.set(__self__, "enableds", enableds) if expiration_dates and not isinstance(expiration_dates, list): raise TypeError("Expected argument 'expiration_dates' to be a list") pulumi.set(__self__, "expiration_dates", expiration_dates) if first_names and not isinstance(first_names, list): raise TypeError("Expected argument 'first_names' to be a list") pulumi.set(__self__, "first_names", first_names) if groups and not isinstance(groups, list): raise TypeError("Expected argument 'groups' to be a list") pulumi.set(__self__, "groups", groups) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if keys and not isinstance(keys, list): raise TypeError("Expected argument 'keys' to be a list") pulumi.set(__self__, "keys", keys) if last_names and not isinstance(last_names, list): raise TypeError("Expected argument 'last_names' to be a list") pulumi.set(__self__, "last_names", last_names) if user_ids and not isinstance(user_ids, list): raise TypeError("Expected argument 'user_ids' to be a list") pulumi.set(__self__, "user_ids", user_ids) @property @pulumi.getter def comments(self) -> Sequence[str]: return pulumi.get(self, "comments") @property @pulumi.getter def emails(self) -> Sequence[str]: return pulumi.get(self, "emails") @property @pulumi.getter def enableds(self) -> Sequence[bool]: return pulumi.get(self, "enableds") @property @pulumi.getter(name="expirationDates") def expiration_dates(self) -> Sequence[str]: return pulumi.get(self, "expiration_dates") @property @pulumi.getter(name="firstNames") def first_names(self) -> Sequence[str]: return pulumi.get(self, "first_names") @property @pulumi.getter def groups(self) -> Sequence[Sequence[str]]: return pulumi.get(self, "groups") @property @pulumi.getter def id(self) -> str: """ The provider-assigned unique ID for this managed resource. """ return pulumi.get(self, "id") @property @pulumi.getter def keys(self) -> Sequence[str]: return pulumi.get(self, "keys") @property @pulumi.getter(name="lastNames") def last_names(self) -> Sequence[str]: return pulumi.get(self, "last_names") @property @pulumi.getter(name="userIds") def user_ids(self) -> Sequence[str]: return pulumi.get(self, "user_ids") class AwaitableGetUsersResult(GetUsersResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetUsersResult( comments=self.comments, emails=self.emails, enableds=self.enableds, expiration_dates=self.expiration_dates, first_names=self.first_names, groups=self.groups, id=self.id, keys=self.keys, last_names=self.last_names, user_ids=self.user_ids) def get_users(opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetUsersResult: """ Use this data source to access information about an existing resource. """ __args__ = dict() if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() if opts.plugin_download_url is None: opts.plugin_download_url = _utilities.get_plugin_download_url() __ret__ = pulumi.runtime.invoke('proxmoxve:Permission/getUsers:getUsers', __args__, opts=opts, typ=GetUsersResult).value return AwaitableGetUsersResult( comments=__ret__.comments, emails=__ret__.emails, enableds=__ret__.enableds, expiration_dates=__ret__.expiration_dates, first_names=__ret__.first_names, groups=__ret__.groups, id=__ret__.id, keys=__ret__.keys, last_names=__ret__.last_names, user_ids=__ret__.user_ids)
#!/usr/bin/python # -*- coding: utf-8 -*- ##---------------------------------------------------------- ##file :get_maya_win.py ##author:xiyuhao ##email:695888835@qq.com ##---------------------------------------------------------- ##date:2017.9.15 ##----------------------------------------------------------- import sys import os import PySide.QtCore as QtCore import PySide.QtGui as QtGui import shiboken as PyQtSip import maya.OpenMayaUI as omui def getMayaWin(): """ @get the maya window """ ptr = omui.MQtUtil.mainWindow() inptr = PyQtSip.wrapInstance(long(ptr),QtGui.QWidget) return inptr
""" Logging setup By default: Log with lastResort logger, usually STDERR. Logging can be overridden either programmatically in code using the library or by creating one or more of - /etc/ocrd_logging.py - $HOME/ocrd_logging.py - $PWD/ocrd_logging.py These files will be executed in the context of ocrd/ocrd_logging.py, with `logging` global set. """ # pylint: disable=no-member from __future__ import absolute_import from traceback import format_stack import logging import logging.config import os from .constants import LOG_FORMAT, LOG_TIMEFMT __all__ = [ 'disableLogging', 'getLevelName', 'getLogger', 'initLogging', 'logging', 'setOverrideLogLevel', ] _initialized_flag = False _overrideLogLevel = None _ocrdLevel2pythonLevel = { 'TRACE': 'DEBUG', 'OFF': 'CRITICAL', 'FATAL': 'ERROR', } class PropagationShyLogger(logging.Logger): def addHandler(self, hdlr): super().addHandler(hdlr) self.propagate = not self.handlers def removeHandler(self, hdlr): super().removeHandler(hdlr) self.propagate = not self.handlers logging.setLoggerClass(PropagationShyLogger) logging.getLogger().propagate = False def getLevelName(lvl): """ Get (string) python logging level for (string) spec-defined log level name. """ lvl = _ocrdLevel2pythonLevel.get(lvl, lvl) return logging.getLevelName(lvl) def setOverrideLogLevel(lvl, silent=False): """ Override all logger filter levels to include lvl and above. - Set root logger level - iterates all existing loggers and sets their log level to ``NOTSET``. Args: lvl (string): Log level name. silent (boolean): Whether to log the override call """ if lvl is None: return root_logger = logging.getLogger('') if not silent: root_logger.info('Overriding log level globally to %s', lvl) lvl = getLevelName(lvl) global _overrideLogLevel # pylint: disable=global-statement _overrideLogLevel = lvl for loggerName in logging.Logger.manager.loggerDict: logger = logging.Logger.manager.loggerDict[loggerName] if isinstance(logger, logging.PlaceHolder): continue logger.setLevel(logging.NOTSET) root_logger.setLevel(lvl) def getLogger(*args, **kwargs): """ Wrapper around ``logging.getLogger`` that respects `overrideLogLevel <#setOverrideLogLevel>`_. """ if not _initialized_flag: initLogging() logging.getLogger('').critical('getLogger was called before initLogging. Source of the call:') for line in [x for x in format_stack(limit=2)[0].split('\n') if x]: logging.getLogger('').critical(line) name = args[0] logger = logging.getLogger(*args, **kwargs) if _overrideLogLevel and name: logger.setLevel(logging.NOTSET) return logger def initLogging(): """ Reset root logger, read logging configuration if exists, otherwise use basicConfig """ global _initialized_flag # pylint: disable=global-statement if _initialized_flag: logging.getLogger('').critical('initLogging was called multiple times. Source of latest call:') for line in [x for x in format_stack(limit=2)[0].split('\n') if x]: logging.getLogger('').critical(line) logging.disable(logging.NOTSET) for handler in logging.root.handlers[:]: logging.root.removeHandler(handler) CONFIG_PATHS = [ os.path.curdir, os.path.join(os.path.expanduser('~')), '/etc', ] config_file = next((f for f \ in [os.path.join(p, 'ocrd_logging.conf') for p in CONFIG_PATHS] \ if os.path.exists(f)), None) if config_file: logging.config.fileConfig(config_file) logging.getLogger('ocrd.logging').debug("Picked up logging config at %s" % config_file) else: # Default logging config logging.basicConfig(level=logging.INFO, format=LOG_FORMAT, datefmt=LOG_TIMEFMT) logging.getLogger('').setLevel(logging.INFO) # logging.getLogger('ocrd.resolver').setLevel(logging.INFO) # logging.getLogger('ocrd.resolver.download_to_directory').setLevel(logging.INFO) # logging.getLogger('ocrd.resolver.add_files_to_mets').setLevel(logging.INFO) logging.getLogger('PIL').setLevel(logging.INFO) # To cut back on the `Self-intersection at or near point` INFO messages logging.getLogger('shapely.geos').setLevel(logging.ERROR) logging.getLogger('tensorflow').setLevel(logging.ERROR) if _overrideLogLevel: logging.getLogger('').setLevel(_overrideLogLevel) _initialized_flag = True def disableLogging(): global _initialized_flag # pylint: disable=global-statement _initialized_flag = False global _overrideLogLevel # pylint: disable=global-statement _overrideLogLevel = None logging.basicConfig(level=logging.CRITICAL) logging.disable(logging.ERROR) # Initializing stream handlers at module level # would cause message output in all runtime contexts, # including those which are already run for std output # (--dump-json, --version, ocrd-tool, bashlib etc). # So this needs to be an opt-in from the CLIs/decorators: #initLogging() # Also, we even have to block log output for libraries # (like matplotlib/tensorflow) which set up logging # themselves already: disableLogging()
import os from pathlib import Path from tempfile import NamedTemporaryFile import numpy as np from napari.utils import io from napari.plugins.io import read_data_with_plugins def test_builtin_reader_plugin(make_test_viewer): """Test the builtin reader plugin reads a temporary file.""" with NamedTemporaryFile(suffix='.tif', delete=False) as tmp: data = np.random.rand(20, 20) io.imsave(tmp.name, data) tmp.seek(0) layer_data = read_data_with_plugins(tmp.name) assert isinstance(layer_data, list) assert len(layer_data) == 1 assert isinstance(layer_data[0], tuple) assert np.allclose(data, layer_data[0][0]) viewer = make_test_viewer() viewer.open(tmp.name, plugin='builtins') assert np.allclose(viewer.layers[0].data, data) def test_builtin_reader_plugin_csv(make_test_viewer, tmpdir): """Test the builtin reader plugin reads a temporary file.""" tmp = os.path.join(tmpdir, 'test.csv') column_names = ['index', 'axis-0', 'axis-1'] table = np.random.random((5, 3)) data = table[:, 1:] # Write csv file io.write_csv(tmp, table, column_names=column_names) layer_data = read_data_with_plugins(tmp) assert isinstance(layer_data, list) assert len(layer_data) == 1 assert isinstance(layer_data[0], tuple) assert layer_data[0][2] == 'points' assert np.allclose(data, layer_data[0][0]) viewer = make_test_viewer() viewer.open(tmp, plugin='builtins') assert np.allclose(viewer.layers[0].data, data) def test_builtin_reader_plugin_stacks(make_test_viewer): """Test the builtin reader plugin reads multiple files as a stack.""" data = np.random.rand(5, 20, 20) tmps = [] for plane in data: tmp = NamedTemporaryFile(suffix='.tif', delete=False) io.imsave(tmp.name, plane) tmp.seek(0) tmps.append(tmp) viewer = make_test_viewer() # open should take both strings and Path object, so we make one of the # pathnames a Path object names = [tmp.name for tmp in tmps] names[0] = Path(names[0]) viewer.open(names, stack=True, plugin='builtins') assert np.allclose(viewer.layers[0].data, data) for tmp in tmps: tmp.close() os.unlink(tmp.name)
import unittest from hamcrest import * from src.students import Students from src.exampleData import Data class StudentsAssertPyTest(unittest.TestCase): def setUp(self): self.temp = Students(Data().example) def test_delete_lack_student(self): assert_that(calling(self.temp.deleteStudent) .with_args(3, "Kasia", "Polak"), raises(Exception)) def test_delete_student(self): assert_that(self.temp.deleteStudent(1, "Kasia", "Polak"), not_(contains_exactly(('1', 'Kasia', 'Polak')))) def tearDown(self): self.temp = None
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from __future__ import annotations from collections import defaultdict from typing import TYPE_CHECKING from typing import List, Tuple, Union if TYPE_CHECKING: from .account import Account from qlib.backtest.position import BasePosition, Position import random import numpy as np import pandas as pd from ..data.data import D from ..config import C from ..constant import REG_CN from ..log import get_module_logger from .decision import Order, OrderDir, OrderHelper from .high_performance_ds import BaseQuote, NumpyQuote class Exchange: def __init__( self, freq="day", start_time=None, end_time=None, codes="all", deal_price: Union[str, Tuple[str], List[str]] = None, subscribe_fields=[], limit_threshold: Union[Tuple[str, str], float, None] = None, volume_threshold=None, open_cost=0.0015, close_cost=0.0025, min_cost=5, impact_cost=0.0, extra_quote=None, quote_cls=NumpyQuote, **kwargs, ): """__init__ :param freq: frequency of data :param start_time: closed start time for backtest :param end_time: closed end time for backtest :param codes: list stock_id list or a string of instruments(i.e. all, csi500, sse50) :param deal_price: Union[str, Tuple[str, str], List[str]] The `deal_price` supports following two types of input - <deal_price> : str - (<buy_price>, <sell_price>): Tuple[str] or List[str] <deal_price>, <buy_price> or <sell_price> := <price> <price> := str - for example '$close', '$open', '$vwap' ("close" is OK. `Exchange` will help to prepend "$" to the expression) :param subscribe_fields: list, subscribe fields. This expressions will be added to the query and `self.quote`. It is useful when users want more fields to be queried :param limit_threshold: Union[Tuple[str, str], float, None] 1) `None`: no limitation 2) float, 0.1 for example, default None 3) Tuple[str, str]: (<the expression for buying stock limitation>, <the expression for sell stock limitation>) `False` value indicates the stock is tradable `True` value indicates the stock is limited and not tradable :param volume_threshold: Union[ Dict[ "all": ("cum" or "current", limit_str), "buy": ("cum" or "current", limit_str), "sell":("cum" or "current", limit_str), ], ("cum" or "current", limit_str), ] 1) ("cum" or "current", limit_str) denotes a single volume limit. - limit_str is qlib data expression which is allowed to define your own Operator. Please refer to qlib/contrib/ops/high_freq.py, here are any custom operator for high frequency, such as DayCumsum. !!!NOTE: if you want you use the custom operator, you need to register it in qlib_init. - "cum" means that this is a cumulative value over time, such as cumulative market volume. So when it is used as a volume limit, it is necessary to subtract the dealt amount. - "current" means that this is a real-time value and will not accumulate over time, so it can be directly used as a capacity limit. e.g. ("cum", "0.2 * DayCumsum($volume, '9:45', '14:45')"), ("current", "$bidV1") 2) "all" means the volume limits are both buying and selling. "buy" means the volume limits of buying. "sell" means the volume limits of selling. Different volume limits will be aggregated with min(). If volume_threshold is only ("cum" or "current", limit_str) instead of a dict, the volume limits are for both by deault. In other words, it is same as {"all": ("cum" or "current", limit_str)}. 3) e.g. "volume_threshold": { "all": ("cum", "0.2 * DayCumsum($volume, '9:45', '14:45')"), "buy": ("current", "$askV1"), "sell": ("current", "$bidV1"), } :param open_cost: cost rate for open, default 0.0015 :param close_cost: cost rate for close, default 0.0025 :param trade_unit: trade unit, 100 for China A market. None for disable trade unit. **NOTE**: `trade_unit` is included in the `kwargs`. It is necessary because we must distinguish `not set` and `disable trade_unit` :param min_cost: min cost, default 5 :param impact_cost: market impact cost rate (a.k.a. slippage). A recommended value is 0.1. :param extra_quote: pandas, dataframe consists of columns: like ['$vwap', '$close', '$volume', '$factor', 'limit_sell', 'limit_buy']. The limit indicates that the etf is tradable on a specific day. Necessary fields: $close is for calculating the total value at end of each day. Optional fields: $volume is only necessary when we limit the trade amount or calculate PA(vwap) indicator $vwap is only necessary when we use the $vwap price as the deal price $factor is for rounding to the trading unit limit_sell will be set to False by default(False indicates we can sell this target on this day). limit_buy will be set to False by default(False indicates we can buy this target on this day). index: MultipleIndex(instrument, pd.Datetime) """ self.freq = freq self.start_time = start_time self.end_time = end_time self.trade_unit = kwargs.pop("trade_unit", C.trade_unit) if len(kwargs) > 0: raise ValueError(f"Get Unexpected arguments {kwargs}") if limit_threshold is None: limit_threshold = C.limit_threshold if deal_price is None: deal_price = C.deal_price # we have some verbose information here. So logging is enable self.logger = get_module_logger("online operator") # TODO: the quote, trade_dates, codes are not necessary. # It is just for performance consideration. self.limit_type = self._get_limit_type(limit_threshold) if limit_threshold is None: if C.region == REG_CN: self.logger.warning(f"limit_threshold not set. The stocks hit the limit may be bought/sold") elif self.limit_type == self.LT_FLT and abs(limit_threshold) > 0.1: if C.region == REG_CN: self.logger.warning(f"limit_threshold may not be set to a reasonable value") if isinstance(deal_price, str): if deal_price[0] != "$": deal_price = "$" + deal_price self.buy_price = self.sell_price = deal_price elif isinstance(deal_price, (tuple, list)): self.buy_price, self.sell_price = deal_price else: raise NotImplementedError(f"This type of input is not supported") if isinstance(codes, str): codes = D.instruments(codes) self.codes = codes # Necessary fields # $close is for calculating the total value at end of each day. # $factor is for rounding to the trading unit # $change is for calculating the limit of the stock #  get volume limit from kwargs self.buy_vol_limit, self.sell_vol_limit, vol_lt_fields = self._get_vol_limit(volume_threshold) necessary_fields = {self.buy_price, self.sell_price, "$close", "$change", "$factor", "$volume"} if self.limit_type == self.LT_TP_EXP: for exp in limit_threshold: necessary_fields.add(exp) all_fields = necessary_fields | vol_lt_fields all_fields = list(all_fields | set(subscribe_fields)) self.all_fields = all_fields self.open_cost = open_cost self.close_cost = close_cost self.min_cost = min_cost self.impact_cost = impact_cost self.limit_threshold: Union[Tuple[str, str], float, None] = limit_threshold self.volume_threshold = volume_threshold self.extra_quote = extra_quote self.get_quote_from_qlib() # init quote by quote_df self.quote_cls = quote_cls self.quote: BaseQuote = self.quote_cls(self.quote_df, freq) def get_quote_from_qlib(self): # get stock data from qlib if len(self.codes) == 0: self.codes = D.instruments() self.quote_df = D.features( self.codes, self.all_fields, self.start_time, self.end_time, freq=self.freq, disk_cache=True ).dropna(subset=["$close"]) self.quote_df.columns = self.all_fields # check buy_price data and sell_price data for attr in "buy_price", "sell_price": pstr = getattr(self, attr) # price string if self.quote_df[pstr].isna().any(): self.logger.warning("{} field data contains nan.".format(pstr)) # update trade_w_adj_price if self.quote_df["$factor"].isna().any(): # The 'factor.day.bin' file not exists, and `factor` field contains `nan` # Use adjusted price self.trade_w_adj_price = True self.logger.warning("factor.day.bin file not exists or factor contains `nan`. Order using adjusted_price.") if self.trade_unit is not None: self.logger.warning(f"trade unit {self.trade_unit} is not supported in adjusted_price mode.") else: # The `factor.day.bin` file exists and all data `close` and `factor` are not `nan` # Use normal price self.trade_w_adj_price = False # update limit self._update_limit(self.limit_threshold) # concat extra_quote if self.extra_quote is not None: # process extra_quote if "$close" not in self.extra_quote: raise ValueError("$close is necessray in extra_quote") for attr in "buy_price", "sell_price": pstr = getattr(self, attr) # price string if pstr not in self.extra_quote.columns: self.extra_quote[pstr] = self.extra_quote["$close"] self.logger.warning(f"No {pstr} set for extra_quote. Use $close as {pstr}.") if "$factor" not in self.extra_quote.columns: self.extra_quote["$factor"] = 1.0 self.logger.warning("No $factor set for extra_quote. Use 1.0 as $factor.") if "limit_sell" not in self.extra_quote.columns: self.extra_quote["limit_sell"] = False self.logger.warning("No limit_sell set for extra_quote. All stock will be able to be sold.") if "limit_buy" not in self.extra_quote.columns: self.extra_quote["limit_buy"] = False self.logger.warning("No limit_buy set for extra_quote. All stock will be able to be bought.") assert set(self.extra_quote.columns) == set(self.quote_df.columns) - {"$change"} self.quote_df = pd.concat([self.quote_df, self.extra_quote], sort=False, axis=0) LT_TP_EXP = "(exp)" # Tuple[str, str] LT_FLT = "float" # float LT_NONE = "none" # none def _get_limit_type(self, limit_threshold): """get limit type""" if isinstance(limit_threshold, Tuple): return self.LT_TP_EXP elif isinstance(limit_threshold, float): return self.LT_FLT elif limit_threshold is None: return self.LT_NONE else: raise NotImplementedError(f"This type of `limit_threshold` is not supported") def _update_limit(self, limit_threshold): # check limit_threshold limit_type = self._get_limit_type(limit_threshold) if limit_type == self.LT_NONE: self.quote_df["limit_buy"] = False self.quote_df["limit_sell"] = False elif limit_type == self.LT_TP_EXP: # set limit self.quote_df["limit_buy"] = self.quote_df[limit_threshold[0]] self.quote_df["limit_sell"] = self.quote_df[limit_threshold[1]] elif limit_type == self.LT_FLT: self.quote_df["limit_buy"] = self.quote_df["$change"].ge(limit_threshold) self.quote_df["limit_sell"] = self.quote_df["$change"].le(-limit_threshold) # pylint: disable=E1130 def _get_vol_limit(self, volume_threshold): """ preproccess the volume limit. get the fields need to get from qlib. get the volume limit list of buying and selling which is composed of all limits. Parameters ---------- volume_threshold : please refer to the doc of exchange. Returns ------- fields: set the fields need to get from qlib. buy_vol_limit: List[Tuple[str]] all volume limits of buying. sell_vol_limit: List[Tuple[str]] all volume limits of selling. Raises ------ ValueError the format of volume_threshold is not supported. """ if volume_threshold is None: return None, None, set() fields = set() buy_vol_limit = [] sell_vol_limit = [] if isinstance(volume_threshold, tuple): volume_threshold = {"all": volume_threshold} assert isinstance(volume_threshold, dict) for key in volume_threshold: vol_limit = volume_threshold[key] assert isinstance(vol_limit, tuple) fields.add(vol_limit[1]) if key in ("buy", "all"): buy_vol_limit.append(vol_limit) if key in ("sell", "all"): sell_vol_limit.append(vol_limit) return buy_vol_limit, sell_vol_limit, fields def check_stock_limit(self, stock_id, start_time, end_time, direction=None): """ Parameters ---------- direction : int, optional trade direction, by default None - if direction is None, check if tradable for buying and selling. - if direction == Order.BUY, check the if tradable for buying - if direction == Order.SELL, check the sell limit for selling. """ if direction is None: buy_limit = self.quote.get_data(stock_id, start_time, end_time, field="limit_buy", method="all") sell_limit = self.quote.get_data(stock_id, start_time, end_time, field="limit_sell", method="all") return buy_limit or sell_limit elif direction == Order.BUY: return self.quote.get_data(stock_id, start_time, end_time, field="limit_buy", method="all") elif direction == Order.SELL: return self.quote.get_data(stock_id, start_time, end_time, field="limit_sell", method="all") else: raise ValueError(f"direction {direction} is not supported!") def check_stock_suspended(self, stock_id, start_time, end_time): # is suspended if stock_id in self.quote.get_all_stock(): return self.quote.get_data(stock_id, start_time, end_time, "$close") is None else: return True def is_stock_tradable(self, stock_id, start_time, end_time, direction=None): # check if stock can be traded # same as check in check_order if self.check_stock_suspended(stock_id, start_time, end_time) or self.check_stock_limit( stock_id, start_time, end_time, direction ): return False else: return True def check_order(self, order): # check limit and suspended if self.check_stock_suspended(order.stock_id, order.start_time, order.end_time) or self.check_stock_limit( order.stock_id, order.start_time, order.end_time, order.direction ): return False else: return True def deal_order( self, order, trade_account: Account = None, position: BasePosition = None, dealt_order_amount: defaultdict = defaultdict(float), ): """ Deal order when the actual transaction the results section in `Order` will be changed. :param order: Deal the order. :param trade_account: Trade account to be updated after dealing the order. :param position: position to be updated after dealing the order. :param dealt_order_amount: the dealt order amount dict with the format of {stock_id: float} :return: trade_val, trade_cost, trade_price """ # check order first. if self.check_order(order) is False: order.deal_amount = 0.0 # using np.nan instead of None to make it more convenient to should the value in format string self.logger.debug(f"Order failed due to trading limitation: {order}") return 0.0, 0.0, np.nan if trade_account is not None and position is not None: raise ValueError("trade_account and position can only choose one") # NOTE: order will be changed in this function trade_price, trade_val, trade_cost = self._calc_trade_info_by_order( order, trade_account.current_position if trade_account else position, dealt_order_amount ) if trade_val > 1e-5: # If the order can only be deal 0 value. Nothing to be updated # Otherwise, it will result in # 1) some stock with 0 value in the position # 2) `trade_unit` of trade_cost will be lost in user account if trade_account: trade_account.update_order(order=order, trade_val=trade_val, cost=trade_cost, trade_price=trade_price) elif position: position.update_order(order=order, trade_val=trade_val, cost=trade_cost, trade_price=trade_price) return trade_val, trade_cost, trade_price def get_quote_info(self, stock_id, start_time, end_time, method="ts_data_last"): return self.quote.get_data(stock_id, start_time, end_time, method=method) def get_close(self, stock_id, start_time, end_time, method="ts_data_last"): return self.quote.get_data(stock_id, start_time, end_time, field="$close", method=method) def get_volume(self, stock_id, start_time, end_time, method="sum"): """get the total deal volume of stock with `stock_id` between the time interval [start_time, end_time)""" return self.quote.get_data(stock_id, start_time, end_time, field="$volume", method=method) def get_deal_price(self, stock_id, start_time, end_time, direction: OrderDir, method="ts_data_last"): if direction == OrderDir.SELL: pstr = self.sell_price elif direction == OrderDir.BUY: pstr = self.buy_price else: raise NotImplementedError(f"This type of input is not supported") deal_price = self.quote.get_data(stock_id, start_time, end_time, field=pstr, method=method) if method is not None and (deal_price is None or np.isnan(deal_price) or deal_price <= 1e-08): self.logger.warning(f"(stock_id:{stock_id}, trade_time:{(start_time, end_time)}, {pstr}): {deal_price}!!!") self.logger.warning(f"setting deal_price to close price") deal_price = self.get_close(stock_id, start_time, end_time, method) return deal_price def get_factor(self, stock_id, start_time, end_time) -> Union[float, None]: """ Returns ------- Union[float, None]: `None`: if the stock is suspended `None` may be returned `float`: return factor if the factor exists """ assert start_time is not None and end_time is not None, "the time range must be given" if stock_id not in self.quote.get_all_stock(): return None return self.quote.get_data(stock_id, start_time, end_time, field="$factor", method="ts_data_last") def generate_amount_position_from_weight_position( self, weight_position, cash, start_time, end_time, direction=OrderDir.BUY ): """ The generate the target position according to the weight and the cash. NOTE: All the cash will assigned to the tadable stock. Parameter: weight_position : dict {stock_id : weight}; allocate cash by weight_position among then, weight must be in this range: 0 < weight < 1 cash : cash start_time : the start time point of the step end_time : the end time point of the step direction : the direction of the deal price for estimating the amount # NOTE: this function is used for calculating target position. So the default direction is buy """ # calculate the total weight of tradable value tradable_weight = 0.0 for stock_id in weight_position: if self.is_stock_tradable(stock_id=stock_id, start_time=start_time, end_time=end_time): # weight_position must be greater than 0 and less than 1 if weight_position[stock_id] < 0 or weight_position[stock_id] > 1: raise ValueError( "weight_position is {}, " "weight_position is not in the range of (0, 1).".format(weight_position[stock_id]) ) tradable_weight += weight_position[stock_id] if tradable_weight - 1.0 >= 1e-5: raise ValueError("tradable_weight is {}, can not greater than 1.".format(tradable_weight)) amount_dict = {} for stock_id in weight_position: if weight_position[stock_id] > 0.0 and self.is_stock_tradable( stock_id=stock_id, start_time=start_time, end_time=end_time ): amount_dict[stock_id] = ( cash * weight_position[stock_id] / tradable_weight // self.get_deal_price( stock_id=stock_id, start_time=start_time, end_time=end_time, direction=direction ) ) return amount_dict def get_real_deal_amount(self, current_amount, target_amount, factor): """ Calculate the real adjust deal amount when considering the trading unit :param current_amount: :param target_amount: :param factor: :return real_deal_amount; Positive deal_amount indicates buying more stock. """ if current_amount == target_amount: return 0 elif current_amount < target_amount: deal_amount = target_amount - current_amount deal_amount = self.round_amount_by_trade_unit(deal_amount, factor) return deal_amount else: if target_amount == 0: return -current_amount else: deal_amount = current_amount - target_amount deal_amount = self.round_amount_by_trade_unit(deal_amount, factor) return -deal_amount def generate_order_for_target_amount_position(self, target_position, current_position, start_time, end_time): """ Note: some future information is used in this function Parameter: target_position : dict { stock_id : amount } current_position : dict { stock_id : amount} trade_unit : trade_unit down sample : for amount 321 and trade_unit 100, deal_amount is 300 deal order on trade_date """ # split buy and sell for further use buy_order_list = [] sell_order_list = [] # three parts: kept stock_id, dropped stock_id, new stock_id # handle kept stock_id # because the order of the set is not fixed, the trading order of the stock is different, so that the backtest results of the same parameter are different; # so here we sort stock_id, and then randomly shuffle the order of stock_id # because the same random seed is used, the final stock_id order is fixed sorted_ids = sorted(set(list(current_position.keys()) + list(target_position.keys()))) random.seed(0) random.shuffle(sorted_ids) for stock_id in sorted_ids: # Do not generate order for the nontradable stocks if not self.is_stock_tradable(stock_id=stock_id, start_time=start_time, end_time=end_time): continue target_amount = target_position.get(stock_id, 0) current_amount = current_position.get(stock_id, 0) factor = self.get_factor(stock_id, start_time=start_time, end_time=end_time) deal_amount = self.get_real_deal_amount(current_amount, target_amount, factor) if deal_amount == 0: continue if deal_amount > 0: # buy stock buy_order_list.append( Order( stock_id=stock_id, amount=deal_amount, direction=Order.BUY, start_time=start_time, end_time=end_time, factor=factor, ) ) else: # sell stock sell_order_list.append( Order( stock_id=stock_id, amount=abs(deal_amount), direction=Order.SELL, start_time=start_time, end_time=end_time, factor=factor, ) ) # return order_list : buy + sell return sell_order_list + buy_order_list def calculate_amount_position_value( self, amount_dict, start_time, end_time, only_tradable=False, direction=OrderDir.SELL ): """Parameter position : Position() amount_dict : {stock_id : amount} direction : the direction of the deal price for estimating the amount # NOTE: This function is used for calculating current position value. So the default direction is sell. """ value = 0 for stock_id in amount_dict: if ( only_tradable is True and self.check_stock_suspended(stock_id=stock_id, start_time=start_time, end_time=end_time) is False and self.check_stock_limit(stock_id=stock_id, start_time=start_time, end_time=end_time) is False or only_tradable is False ): value += ( self.get_deal_price( stock_id=stock_id, start_time=start_time, end_time=end_time, direction=direction ) * amount_dict[stock_id] ) return value def _get_factor_or_raise_error(self, factor: float = None, stock_id: str = None, start_time=None, end_time=None): """Please refer to the docs of get_amount_of_trade_unit""" if factor is None: if stock_id is not None and start_time is not None and end_time is not None: factor = self.get_factor(stock_id=stock_id, start_time=start_time, end_time=end_time) else: raise ValueError(f"`factor` and (`stock_id`, `start_time`, `end_time`) can't both be None") return factor def get_amount_of_trade_unit(self, factor: float = None, stock_id: str = None, start_time=None, end_time=None): """ get the trade unit of amount based on **factor** the factor can be given directly or calculated in given time range and stock id. `factor` has higher priority than `stock_id`, `start_time` and `end_time` Parameters ---------- factor : float the adjusted factor stock_id : str the id of the stock start_time : the start time of trading range end_time : the end time of trading range """ if not self.trade_w_adj_price and self.trade_unit is not None: factor = self._get_factor_or_raise_error( factor=factor, stock_id=stock_id, start_time=start_time, end_time=end_time ) return self.trade_unit / factor else: return None def round_amount_by_trade_unit( self, deal_amount, factor: float = None, stock_id: str = None, start_time=None, end_time=None ): """Parameter Please refer to the docs of get_amount_of_trade_unit deal_amount : float, adjusted amount factor : float, adjusted factor return : float, real amount """ if not self.trade_w_adj_price and self.trade_unit is not None: # the minimal amount is 1. Add 0.1 for solving precision problem. factor = self._get_factor_or_raise_error( factor=factor, stock_id=stock_id, start_time=start_time, end_time=end_time ) return (deal_amount * factor + 0.1) // self.trade_unit * self.trade_unit / factor return deal_amount def _clip_amount_by_volume(self, order: Order, dealt_order_amount: dict) -> int: """parse the capacity limit string and return the actual amount of orders that can be executed. NOTE: this function will change the order.deal_amount **inplace** - This will make the order info more accurate Parameters ---------- order : Order the order to be executed. dealt_order_amount : dict :param dealt_order_amount: the dealt order amount dict with the format of {stock_id: float} """ if order.direction == Order.BUY: vol_limit = self.buy_vol_limit elif order.direction == Order.SELL: vol_limit = self.sell_vol_limit if vol_limit is None: return order.deal_amount vol_limit_num = [] for limit in vol_limit: assert isinstance(limit, tuple) if limit[0] == "current": limit_value = self.quote.get_data( order.stock_id, order.start_time, order.end_time, field=limit[1], method="sum", ) vol_limit_num.append(limit_value) elif limit[0] == "cum": limit_value = self.quote.get_data( order.stock_id, order.start_time, order.end_time, field=limit[1], method="ts_data_last", ) vol_limit_num.append(limit_value - dealt_order_amount[order.stock_id]) else: raise ValueError(f"{limit[0]} is not supported") vol_limit_min = min(vol_limit_num) orig_deal_amount = order.deal_amount order.deal_amount = max(min(vol_limit_min, orig_deal_amount), 0) if vol_limit_min < orig_deal_amount: self.logger.debug(f"Order clipped due to volume limitation: {order}, {list(zip(vol_limit_num, vol_limit))}") def _get_buy_amount_by_cash_limit(self, trade_price, cash, cost_ratio): """return the real order amount after cash limit for buying. Parameters ---------- trade_price : float position : cash cost_ratio : float Return ---------- float the real order amount after cash limit for buying. """ max_trade_amount = 0 if cash >= self.min_cost: # critical_price means the stock transaction price when the service fee is equal to min_cost. critical_price = self.min_cost / cost_ratio + self.min_cost if cash >= critical_price: # the service fee is equal to cost_ratio * trade_amount max_trade_amount = cash / (1 + cost_ratio) / trade_price else: # the service fee is equal to min_cost max_trade_amount = (cash - self.min_cost) / trade_price return max_trade_amount def _calc_trade_info_by_order(self, order, position: Position, dealt_order_amount): """ Calculation of trade info **NOTE**: Order will be changed in this function :param order: :param position: Position :param dealt_order_amount: the dealt order amount dict with the format of {stock_id: float} :return: trade_price, trade_val, trade_cost """ trade_price = self.get_deal_price(order.stock_id, order.start_time, order.end_time, direction=order.direction) total_trade_val = self.get_volume(order.stock_id, order.start_time, order.end_time) * trade_price order.factor = self.get_factor(order.stock_id, order.start_time, order.end_time) order.deal_amount = order.amount # set to full amount and clip it step by step # Clipping amount first # - It simulates that the order is rejected directly by the exchange due to large order # Another choice is placing it after rounding the order # - It simulates that the large order is submitted, but partial is dealt regardless of rounding by trading unit. self._clip_amount_by_volume(order, dealt_order_amount) # TODO: the adjusted cost ratio can be overestimated as deal_amount will be clipped in the next steps trade_val = order.deal_amount * trade_price if not total_trade_val or np.isnan(total_trade_val): # TODO: assert trade_val == 0, f"trade_val != 0, total_trade_val: {total_trade_val}; order info: {order}" adj_cost_ratio = self.impact_cost else: adj_cost_ratio = self.impact_cost * (trade_val / total_trade_val) ** 2 if order.direction == Order.SELL: cost_ratio = self.close_cost + adj_cost_ratio # sell # if we don't know current position, we choose to sell all # Otherwise, we clip the amount based on current position if position is not None: current_amount = ( position.get_stock_amount(order.stock_id) if position.check_stock(order.stock_id) else 0 ) if not np.isclose(order.deal_amount, current_amount): # when not selling last stock. rounding is necessary order.deal_amount = self.round_amount_by_trade_unit( min(current_amount, order.deal_amount), order.factor ) # in case of negative value of cash if position.get_cash() + order.deal_amount * trade_price < max( order.deal_amount * trade_price * cost_ratio, self.min_cost, ): order.deal_amount = 0 self.logger.debug(f"Order clipped due to cash limitation: {order}") elif order.direction == Order.BUY: cost_ratio = self.open_cost + adj_cost_ratio # buy if position is not None: cash = position.get_cash() trade_val = order.deal_amount * trade_price if cash < max(trade_val * cost_ratio, self.min_cost): # cash cannot cover cost order.deal_amount = 0 self.logger.debug(f"Order clipped due to cost higher than cash: {order}") elif cash < trade_val + max(trade_val * cost_ratio, self.min_cost): # The money is not enough max_buy_amount = self._get_buy_amount_by_cash_limit(trade_price, cash, cost_ratio) order.deal_amount = self.round_amount_by_trade_unit( min(max_buy_amount, order.deal_amount), order.factor ) self.logger.debug(f"Order clipped due to cash limitation: {order}") else: # The money is enough order.deal_amount = self.round_amount_by_trade_unit(order.deal_amount, order.factor) else: # Unknown amount of money. Just round the amount order.deal_amount = self.round_amount_by_trade_unit(order.deal_amount, order.factor) else: raise NotImplementedError("order type {} error".format(order.type)) trade_val = order.deal_amount * trade_price trade_cost = max(trade_val * cost_ratio, self.min_cost) if trade_val <= 1e-5: # if dealing is not successful, the trade_cost should be zero. trade_cost = 0 return trade_price, trade_val, trade_cost def get_order_helper(self) -> OrderHelper: if not hasattr(self, "_order_helper"): # cache to avoid recreate the same instance self._order_helper = OrderHelper(self) return self._order_helper
from urllib.parse import urlencode import pytest from django.core.exceptions import ImproperlyConfigured from saleor.core.emails import get_email_context, prepare_url def test_get_email_context(site_settings): site = site_settings.site expected_send_kwargs = {"from_email": site_settings.default_from_email} proper_context = { "domain": site.domain, "site_name": site.name, } send_kwargs, received_context = get_email_context() assert send_kwargs == expected_send_kwargs assert proper_context == received_context def test_email_having_display_name_in_settings(customer_user, site_settings, settings): expected_from_email = "Info <hello@mirumee.com>" site_settings.default_mail_sender_name = None site_settings.default_mail_sender_address = None settings.DEFAULT_FROM_EMAIL = expected_from_email assert site_settings.default_from_email == expected_from_email def test_email_with_email_not_configured_raises_error(settings, site_settings): """Ensure an exception is thrown when not default sender is set; both missing in the settings.py and in the site settings table. """ site_settings.default_mail_sender_address = None settings.DEFAULT_FROM_EMAIL = None with pytest.raises(ImproperlyConfigured) as exc: _ = site_settings.default_from_email assert exc.value.args == ("No sender email address has been set-up",) def test_prepare_url(): redirect_url = "https://www.example.com" params = urlencode({"param1": "abc", "param2": "xyz"}) result = prepare_url(params, redirect_url) assert result == "https://www.example.com?param1=abc&param2=xyz"
from pokermon.poker.board import Board, mkflop from pokermon.poker.cards import mkcard from pokermon.poker.deal import FullDeal from pokermon.poker.evaluation import EvaluationResult from pokermon.poker.game_runner import GameRunner from pokermon.poker.hands import HandType, mkhand from pokermon.poker.result import Result, get_result def test_game_result(): deal = FullDeal( hole_cards=[mkhand("AcAh"), mkhand("KdKs"), mkhand("JhJd")], board=Board(flop=mkflop("6dQc2s"), turn=mkcard("6s"), river=mkcard("3c")), ) game = GameRunner(starting_stacks=[100, 200, 300]) game.start_game() # Preflop game.bet_raise(to=10) game.call() game.call() # Flop game.bet_raise(to=20) game.call() game.call() # Turn game.bet_raise(to=30) game.call() game.call() # River game.check() game.check() game.check() result = get_result(deal, game.game_view()) assert result == Result( won_hand=[True, False, False], hand_results=[ EvaluationResult( hand_type=HandType.TWO_PAIR, kicker=33686528, ), EvaluationResult(hand_type=HandType.TWO_PAIR, kicker=16909312), EvaluationResult(hand_type=HandType.TWO_PAIR, kicker=4326400), ], went_to_showdown=[True, True, True], remained_in_hand=[True, True, True], earned_from_pot=[180, 0, 0], profits=[120, -60, -60], ) def test_game_with_tie(): deal = FullDeal( hole_cards=[mkhand("Ac3h"), mkhand("Ad4s"), mkhand("5s5d")], board=Board(flop=mkflop("AsAhKc"), turn=mkcard("Kd"), river=mkcard("7h")), ) game = GameRunner(starting_stacks=[100, 200, 300]) game.start_game() # Preflop game.bet_raise(to=30) game.call() game.call() # Flop game.bet_raise(to=50) game.call() game.call() # Turn game.bet_raise(to=20) game.call() game.call() # River game.bet_raise(to=100) game.call() result = get_result(deal, game.game_view()) assert result == Result( won_hand=[True, True, False], hand_results=[ EvaluationResult(hand_type=HandType.FULL_HOUSE, kicker=33556480), EvaluationResult(hand_type=HandType.FULL_HOUSE, kicker=33556480), EvaluationResult(hand_type=HandType.TWO_PAIR, kicker=50331680), ], remained_in_hand=[True, True, True], went_to_showdown=[True, True, True], earned_from_pot=[150, 350, 0], profits=[50, 150, -200], )
import requests from jikanpy import Jikan from animeoffline import * from animeoffline import config from animeoffline import utils # if anime_offline/config.py is unedited, this assumes a local instance # of jikan-rest is running on your system # https://github.com/jikan-me/jikan-rest jikan = Jikan(selected_base=config.jikan_url)
#!/bin/usr/env python3 import argparse, sys import time, os from rclpy.qos import qos_profile_system_default from rclpy.qos import QoSProfile from rclpy.qos import QoSReliabilityPolicy from rclpy.utilities import remove_ros_args from rclpy.node import Node import rclpy import nudged # from rmf_task_msgs.msg import Loop from rmf_fleet_msgs.msg import Location as rmf_loc from rmf_fleet_msgs.msg import FleetState, RobotState, RobotMode from rmf_fleet_msgs.msg import PathRequest, ModeRequest, DestinationRequest, ModeParameter from rna_task_msgs.msg import RnaTask, RnaTaskstatus, Location, RnaEmergency, RnaPredefinepos, RnaVsm # the robot ROBOT_UNIQUE_ID = os.environ.get('ROBOT_ID', 'RNAxx') # topic define: RMF_TASK = '/rna_task' RMF_TASK_STATUS = '/rna_task_status' RMF_VSM_RECORD = '/rna_vsm_record' RMF_PARSE_REQUESTS = '/parse_requests' RMF_FLEET_STATES = '/fleet_states' RMF_MODE_REQUESTS = '/mode_requests' RMF_PATH_REQUESTS = '/path_requests' RMF_DESTINATION_REQUESTS = '/destination_requests' # some navigation points hardcode below, to be changed accordingly # x y heading NURSE_STATION = [0.581, 19.511, -1.511] # x y heading HOME_POSITION = [-2.912, 18.559, 1.561] # x y heading bed_heading Neutral_point = [-2.324, 21.091, 1.557, 1.557] # x y heading bed_heading Bedside_left = [-3.170, 21.261, 0.9025, 1.557] # x y heading bed_heading Bedside_right = [-1.485, 21.229, 2.143, 1.557] # def parse_argv(argv=sys.argv[1:]): # parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) # parser.add_argument("-task_id", "--task_id", type=str, help="task id", default='T001') # parser.add_argument("-task_name", "--task_name", type=str, help="task name", default='VSM') # parser.add_argument("-name", "--patient_name", type=str, help="patient name", default='John') # parser.add_argument("-qr", "--qr_code", type=str, help="qr code value", default='1321351') # parser.add_argument("-item", "--item_name", type=str, help="item name", default='water') # parser.add_argument("-load", "--load_operation", type=str, help="open, or close compartment", default='open') # parser.add_argument("-patient_id", "--patient_id", type=int, help="patient_id", default=2) # parser.add_argument("-robot", "--robot_id", type=str, help="robot id", default=ROBOT_UNIQUE_ID) # parser.add_argument("-timer", "--enable_timer", type=int, help="enable_timer for debugging", default=1) # parser.add_argument("-status", "--show_fleet_state", type=int, help="show_fleet_state msg", default=0) # parser.add_argument("-bed", "--bed", type=int, help="bed number: i.e 1, 2 or...", default=1) # parser.add_argument("-escape", "--escape_on", type=int, help="1 is on , 0 is off", default=1) # parser.add_argument("-topic", "--rmf_topic", type=int, help="1=RnaTask, 2=ModeRequest, 3=PathRequest, 4=DestinationRequest", default=1) # parser.add_argument("-mode", "--mode", type=int, help="robot mode", default=1) # parser.add_argument("-schedule_type", "--schedule_type", type=str, help="schedule_type", default='NONE_SCHEDULE') # parser.add_argument("-schedule_time", "--schedule_time", type=str, help="in format of yyyy-mm-dd hh:mm:ss", default='yyyy-mm-dd hh:mm:ss') # parser.add_argument( # 'argv', nargs=argparse.REMAINDER, # help='Pass arbitrary arguments to the executable') # argv = remove_ros_args(args=argv) # args = parser.parse_args(argv) # return args class Simple_Pub_Sub(Node): def __init__(self, rna_task): # enable_timer=True, show_fleet_state=True):#, rmf_topic=1): super().__init__('simple_pub') qos_reliable = QoSProfile( depth=10, reliability=QoSReliabilityPolicy.RMW_QOS_POLICY_RELIABILITY_RELIABLE) # Requires four x,y points # x , y self.ref_coordinates_rna = [[NURSE_STATION[0], NURSE_STATION[1]], [HOME_POSITION[0], HOME_POSITION[1]], [Neutral_point[0], Neutral_point[1]], [Bedside_right[0], Bedside_right[1]]] self.ref_coordinates_rmf = [[75.787, -23.029], [73.013, -23.350], [73.537, -20.965], [74.57, -20.78]] self.rmf2rna_transform = nudged.estimate( self.ref_coordinates_rmf, self.ref_coordinates_rna ) self.rna2rmf_transform = nudged.estimate( self.ref_coordinates_rna, self.ref_coordinates_rmf ) self.rna_task = RnaTask() self.enable_timer = enable_timer self.show_fleet_state = show_fleet_state self.fleet_name='rna' self.path_requests = PathRequest() # Publishers and subscribers self.pub_rna_task = self.create_publisher(RnaTask, RMF_TASK, qos_profile=qos_reliable) # send the task to robot # receive vsm record from Robot self.create_subscription( RnaVsm, RMF_VSM_RECORD, self.vsm_record_callback, qos_profile=qos_reliable) # receive task status from Robot self.create_subscription( RnaTaskstatus, RMF_TASK_STATUS, self.rmf_task_status_callback, qos_profile=qos_reliable) if self.enable_timer: timer_period = 1.0 self.tmr = self.create_timer(timer_period, self.rna_task_callback) self.create_subscription( PathRequest, RMF_PATH_REQUESTS, self.path_req_callback, qos_profile=qos_reliable) def vsm_record_callback(self, vsm_record): print(vsm_record.robot_name, vsm_record.patient_id, vsm_record.record_time, vsm_record.heart_rate) print(vsm_record.blood_pressure, vsm_record.temperature, vsm_record.respiration_rate, vsm_record.spo2, vsm_record.pain_score) def rmf_task_status_callback(self, rmf_status): print(rmf_status.task_id, rmf_status.status, rmf_status.started_time, rmf_status.ended_time, rmf_status.description) def rna_task_callback(self, args): home = HOME_POSITION PRDEF_POS = (Bedside_left, Neutral_point, Bedside_right) task = RnaTask() # common parameters for all the tasks task.task_id = args.task_id #'T001' task.task_name = args.task_name task.robot_name = args.robot_id # home position loc = Location() loc.x = home[0] loc.y = home[1] loc.heading = home[2] task.home_position = loc if task.task_name in ('VSM', 'MEDICINE_DELIVERY', 'ITEM_DELIVERY'): task.bed_id = args.bed task.patient_name = args.patient_name task.patient_id = args.patient_id task.barcode = args.qr_code task.item_name = args.item_name # schedule task checking task.schedule_type = args.schedule_type if task.schedule_type != 'NONE_SCHEDULE': # if it's not NONE_SCHEDULE, the field of task.schedule_time need to be specified task.schedule_time = args.schedule_time # in format of "yyyy-mm-dd hh:mm:ss" # predefined patient engage points for pos in PRDEF_POS: prepos = RnaPredefinepos() loc = Location() loc.x = pos[0] loc.y = pos[1] loc.heading = pos[2] prepos.point=loc prepos.bed_heading= pos[3] task.pre_def_pos.append(prepos) elif task.task_name == 'GO_NURSE_STATION': loc = Location() loc.x = NURSE_STATION[0] loc.y = NURSE_STATION[1] loc.heading = NURSE_STATION[2] task.nurse_station = loc elif task.task_name == 'CODE_RED_BLUE': escape = RnaEmergency() loc = Location() loc.x = home[0] # hardcode here for temp testing, to be defined the emergency holding point loc.y = home[1] loc.heading = home[2] escape.point = loc escape.emergency_on = bool(args.escape_on) # True/False to switch it on/off task.escape = escape elif task.task_name == 'LOAD_ITEM': task.item_name = args.item_name task.load_operation = args.load_operation #elif task.task_name == 'CANCEL_TASK' or task.task_name == 'GO_HOME': #pass print("debug: timer_callbak, topic issued only once") self.tmr.cancel() # On reciept of a path_request. Transform Locations to RNA plane # Set the path request destination to be a task name self.pub_rna_task.publish(self.rna_task) def path_req_callback(self, msg: PathRequest, rna_task): self.path_requests = msg pprint(self.path_requests) # Removing all the points in path except the last one for now. holder = self.path_requests.path[-1] print('debug: holder has value of', holder) self.path_requests.path.clear() self.path_requests.path.append(holder) # Only assign a rna task when path request is recieved self.rna_task = rna_task def main(argv=sys.argv[1:]): args = parse_argv() rclpy.init(args=argv) node = Simple_Pub_Sub(task) try: rclpy.spin(node) finally: node.destroy_node() rclpy.shutdown() if __name__ == '__main__': main()
# Copyright 2019-2021 ETH Zurich and the DaCe authors. All rights reserved. import dace import dace.sdfg.nodes as nodes from dace.fpga_testing import xilinx_test import importlib.util import numpy as np from pathlib import Path @xilinx_test() def test_map_unroll_processing_elements(): # Grab the systolic GEMM implementation the samples directory spec = importlib.util.spec_from_file_location( "gemm", Path(__file__).parent.parent.parent / "samples" / "fpga" / "gemm_systolic_vectorized.py") gemm = importlib.util.module_from_spec(spec) spec.loader.exec_module(gemm) N = 128 K = 256 M = 512 P = 8 W = 4 TN = 32 TM = 128 # Create an SDFG with multiple processing elements sdfg = gemm.make_sdfg("map_unroll_processing_elements", dace.vector(dace.float32, W)) sdfg.specialize({"P": P, "W": W, "TN": TN, "TM": TM}) for state in sdfg.states(): for node in state.nodes(): if isinstance(node, nodes.MapEntry) and node.params == ["p"]: node.unroll = False node.schedule = dace.ScheduleType.Unrolled # Initialize arrays: Randomize A and B, zero C A = np.ndarray([N, K], dtype=dace.float32.type) B = np.ndarray([K, M], dtype=dace.float32.type) C = np.ndarray([N, M], dtype=dace.float32.type) A[:] = np.random.rand(N, K).astype(dace.float32.type) B[:] = np.random.rand(K, M).astype(dace.float32.type) C[:] = np.random.rand(N, M).astype(dace.float32.type) C_regression = A @ B + C sdfg(A=A, B=B, C=C, N=N, M=M, K=K) diff = np.linalg.norm(C_regression - C) / float(N * M) if not np.allclose(C_regression, C): raise ValueError("Verification failed.") return sdfg if __name__ == "__main__": test_map_unroll_processing_elements(None)
class Component: def __init__(self, start_node, end_node, val): self.symbol = '' self.type = 'generic' self.start_node = start_node self.end_node = end_node self.val = val self.id = -1 def is_node(self, node): if (self.start_node == node) or (self.end_node == node): return True else: return False def set_id(self, id_num): self.id = id_num def get_dir(self, node): if self.start_node == node: return 1 elif self.end_node == node: return -1 else: return 'error' def get_other_node(self, node): if self.start_node != node and self.end_node == node: return self.start_node elif self.end_node != node and self.start_node == node: return self.end_node else: return -1 class Resistor(Component): def __init__(self, start_node, end_node, val): super().__init__(start_node, end_node, val) self.symbol = 'R' self.type = 'passive' class Capacitor(Component): def __init__(self, start_node, end_node, val): super().__init__(start_node, end_node, val) self.symbol = 'C' self.type = 'passive' class VSource(Component): def __init__(self, start_node, end_node, val): super().__init__(start_node, end_node, val) self.symbol = 'V' self.type = 'active' class ISource(Component): def __init__(self, start_node, end_node, val): super().__init__(start_node, end_node, val) self.symbol = 'I' self.type = 'active'
# Generated by Django 3.0.6 on 2020-05-25 22:47 import django.core.validators from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('register', '0013_auto_20200525_2239'), ] operations = [ migrations.AlterField( model_name='patient', name='birth_year', field=models.PositiveSmallIntegerField(blank=True, null=True, validators=[django.core.validators.MinValueValidator(1900), django.core.validators.MaxValueValidator(2020)], verbose_name='Year of birth'), ), migrations.AlterField( model_name='patient', name='sex', field=models.PositiveSmallIntegerField(blank=True, choices=[(1, 'Female'), (2, 'Male'), (3, 'Other')], null=True), ), ]
# -*- coding: utf-8 -*- # # Copyright 2015 Thomas Amland # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import deque from threading import Lock class _Status(object): OPEN = object() CLOSED = object() SUSPENDED = object() class _ScheduleState(object): IDLE = 1 SCHEDULED = 2 class InternalMailbox(object): def __init__(self, dispatcher, actor, throughput=5): # Should only be set in message handler self._primary_status = _Status.OPEN self._idle = _ScheduleState.IDLE self._idle_lock = Lock() self._message_queue = deque() self._system_message_queue = deque() self._actor = actor self._dispatcher = dispatcher self._throughput = throughput def enqueue(self, item): self._message_queue.append(item) def enqueue_system(self, item): self._system_message_queue.append(item) def close(self): """ Stop processing of all messages.""" self._primary_status = _Status.CLOSED def suspend(self): """ Stop processing of user message. """ self._primary_status = _Status.SUSPENDED def resume(self): """ Continue processing of user message. """ self._primary_status = _Status.OPEN def is_closed(self): return self._primary_status is _Status.CLOSED def is_suspended(self): return self._primary_status is _Status.SUSPENDED def has_messages(self): return len(self._message_queue) > 0 or len(self._system_message_queue) > 0 def is_idle(self): return self._idle def is_scheduled(self): return not self._idle def set_scheduled(self): """ Returns True if state was successfully changed from idle to scheduled. """ with self._idle_lock: if self._idle: self._idle = False return True return False def set_idle(self): with self._idle_lock: self._idle = True def process_messages(self): if self._primary_status is _Status.CLOSED or not self.has_messages(): return self._process_system_message() if self._primary_status is _Status.OPEN: for _ in range(min(self._throughput, len(self._message_queue))): self._actor.handle_message(self._message_queue.popleft()) self._process_system_message() if self._primary_status is not _Status.OPEN: break self.set_idle() self._dispatcher.schedule_execution(self) def _process_system_message(self): if len(self._system_message_queue) > 0: self._actor.handle_system_message(self._system_message_queue.popleft()) def flush_messages(self): if not self.is_closed(): raise Exception() messages = [] while len(self._message_queue) > 0: messages.append(self._message_queue.popleft()) return messages
# class Tree: # def __init__(self, val, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def solve(self, root): # Write your code here siblings = [] count = 0 if root: siblings.append(root) while siblings: new = [] for node in siblings: if node.left is None and node.right: count += 1 if node.right is None and node.left: count += 1 if node.left: new.append(node.left) if node.right: new.append(node.right) siblings = new return count
from tests import TestCase from unittest import skip class TestMine(TestCase): def test_my_account_as_anonymous(self): self.assertLogin('/user') def test_my_account_as_gateway(self): self.login('main-gateway1@example.com', 'admin') html = self.assertOk('/user') response = self.client.post(html.find('//form').get('action'), data={'email': 'another@example.com'}, follow_redirects=True) assert 'Update successful' in str(response.get_data()) @skip('getting a 400 status, suspect file issues, can\'t duplicate irl') def test_my_gateway_as_gateway(self): self.login('main-gateway1@example.com', 'admin') html = self.assertOk('/gateway') form = html.find('//form') response = self.client.post(form.get('action'), content_type=form.get('enctype'), data={'id': 'main-gateway1', 'title': 'Another Title', 'logo': ''}, follow_redirects=True) output = str(response.get_data()) assert 'Update Another Title successful' in output def test_my_network_as_gateway(self): self.login('main-gateway1@example.com', 'admin') self.assertForbidden('/network') def test_my_account_as_network(self): self.login('main-network@example.com', 'admin') html = self.assertOk('/user') response = self.client.post(html.find('//form').get('action'), data={'email': 'another@example.com'}, follow_redirects=True) assert 'Update successful' in str(response.get_data()) def test_my_gateway_as_network(self): self.login('main-network@example.com', 'admin') self.assertForbidden('/gateway') def test_my_network_as_network(self): self.login('main-network@example.com', 'admin') html = self.assertOk('/network') response = self.client.post(html.find('//form').get('action'), data={'id': 'main-network', 'title': 'Another Title'}, follow_redirects=True) assert 'Update successful' in str(response.get_data())
from django.shortcuts import render, HttpResponseRedirect from django.urls import reverse def index(request): if request.user.is_authenticated: return HttpResponseRedirect(reverse('qa:index')) else: return render(request, 'web/index.html')
""" Package for vectorized test particle simulation Author : Tien Vo Date : 12-29-2021 """ from .plasma_parameters import * from .hdf5_helpers import * from .distribution import * from .conversions import * from .mpi_helpers import * from .constants import * from .whistler import * from .pusher import * from .chaos import * from .misc import *
# Problem Name: Tandem Bicycle # Problem Description: # A tandem bicycle is a bicycle that's operated by two people: person A and person B. Both peope pedal the bicycle, but the person that pedals faster dictates the speed of the bicycle. So if person A is pedals at a speed of 5, and person B pedals at a speed of 4, the tandem bicycle moves at a speed of 5(i.e tandem speed = max(speedA, speedB)). # You're given two lists of positive integers: one that contains the speeds of riders wearing red-shirts and one that contains the speeds of riders wearing blue-shirts. Each rider is represented by a single positive integer, which is the speed that they pedal a tandem bicycle at. Both lists have the same length, meaning that there are as many red-shirt riders as there are blue-shirt riders. Your goal is to pair every rider wearing a red-shirt with rider wearing a blue-shirt to operate a tandem bicycle. # Write a function that returns the maximum possible total speed or the minimum possible total speed of all the tandem bicycles being ridden based on an input parameters, fastest. If fastest = True, your function should return the maximum possible total speed; otherwise it should return the minimum total speed. # "Total Speed" is defined as the sum of the speeds of all the tandem bicycle being ridden. For example, if there are 4 riders (2 red-shirt riders and 2 blue-shirt riders) who have speeds of 1,3,4,5, and if they're paired on tandem bicycles as follows: [1, 4], [5, 3], then the total speed of these tandem bicyles is 4 + 5 = 9. #################################### # Sample Input: # redShirtSpeeds = [5, 5, 3, 9, 2] # blueShirtSpeeds = [3, 6, 7, 2, 1] # fastest = true # Sample Output: 32 #################################### """ Explain the solution: - The brute-force approach to solve this problem is to generate every possible set of pairs of riders and to determine the total speed that each of these sets generates. This solution does not work but, it isn't optimal. Can you think of better way to solve this problem? - Try looking at the input arrays in sorted order. How might this help you solve the problem? - When generating the maximum total speed, you want to pair the slowest red-shirt riders with the fastest blue-shirt riders and vice versa, so as to always take advantage of the largest speeds. When generating the minimum total speed, you want to pair the fastest red-shirt riders with the fastest blue-shirt riders, so as to "eliminate" a large speed by pairing it with a another large(larger) speed. - Sort the input arrays in place, and follow the strategy discussed in Hint #3. With the inputs sorted, you can find the slowest and largest speeds from each shirt color in constant time. - O(n(log(n)) time | O(1) space - where n is the length of the tandem bicycles ################## Detailed explanation of the Solution: create a function of tandemBicycle(redShirtSpeeds, blueShirtSpeeds, fastest): sort the redShirtSpeeds and blueShirtSpeeds arrays in place if not fastest: call the function reverseArrayInPlace(redShirtSpeeds) totalSpeed is initialized to 0 for idx in range(len(redShirtSpeeds)): rider1 = redShirtSpeeds[idx] # array in sorted ascending order rider2 = blueShirtSpeeds[len(blueShirtSpeeds) - 1 - idx] # Reverse the blueShirtSpeeds array in descending order totalSpeed += max(rider1, rider2) return totalSpeed create a function of reverseArrayInPlace(array): start = 0 end = len(array) - 1 while start < end: array[start], array[end] = array[end], array[start] start += 1 end -= 1 """ #################################### def tandemBicycle(redShirtSpeeds, blueShirtSpeeds, fastest): redShirtSpeeds.sort() blueShirtSpeeds.sort() if not fastest: reverseArrayInPlace(redShirtSpeeds) totalSpeed = 0 for idx in range(len(redShirtSpeeds)): rider1 = redShirtSpeeds[idx] # array in sorted ascending order rider2 = blueShirtSpeeds[len(blueShirtSpeeds) - 1 - idx] # Reverse the blueShirtSpeeds array in descending order totalSpeed += max(rider1, rider2) return totalSpeed def reverseArrayInPlace(array): start = 0 end = len(array) - 1 while start < end: array[start], array[end] = array[end], array[start] start += 1 end -= 1 print(tandemBicycle([5, 5, 3, 9, 2], [3, 6, 7, 2, 1], True))
""" Convenience functions and sample script for converting Freesurfer annot files to a set of VTKs (and manifest file) for use with the roygbiv web tool. """ import glob import os import json import numpy as np import nibabel as nib HTML_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), 'web')) DATA_DIR = os.environ.get('ROYGBIV_PATH', os.path.join(HTML_DIR, 'data')) def downsample_vtk(vtk_file, sample_rate): """Sample rate: number between 0 and 1.""" from mindboggle.mio.vtks import read_vtk, write_vtk from mindboggle.guts.mesh import decimate_file if (sample_rate < 0 or sample_rate > 1): raise ValueError('0 <= sample_rate <= 1; you input %f' % sample_rate) # Downsample decimate_file(vtk_file, reduction=1 - sample_rate, output_vtk=vtk_file, save_vtk=True, smooth_steps=0) # Hack to re-save in vtk_data = read_vtk(vtk_file) write_vtk(vtk_file, *vtk_data[:-2]) def add_metadata(metadata, json_file='files_to_load.json', output_dir=DATA_DIR): """Additional metadata to insert into the manifest file.""" json_filepath = os.path.join(output_dir, json_file) with open(json_filepath, 'rb') as fp: old_metadata = json.load(fp) old_metadata.update(metadata) with open(json_filepath, 'wb') as fp: json.dump(old_metadata, fp) def freesurfer_annot_to_vtks(surface_file, label_file, output_stem='', json_file=None, sample_rate=1, force=False, verbose=True, output_dir=DATA_DIR): """ Splits a surface file into vtk files based on regions in the label file. """ def print_verbose(*args): """Print only if verbose True""" if verbose: print(args) if json_file is None: json_file = output_stem + 'files_to_download.json' # vtk_dir = os.path.join(output_dir, os.path.dirname(output_stem)) # Make the output directory if not os.path.exists(output_dir): os.makedirs(vtk_dir) # Convert the surface file to vtk if os.path.splitext(surface_file)[1] == '.vtk': surface_vtk = surface_file else: surface_vtk = os.path.join(vtk_dir, os.path.basename(surface_file) + '.vtk') if force or not os.path.exists(surface_vtk): print_verbose('Converting surface to vtk: %s' % surface_file) from mindboggle.mio.vtks import freesurfer_surface_to_vtk freesurfer_surface_to_vtk(surface_file, surface_vtk) # Convert the data file to vtk if os.path.splitext(label_file)[1] == '.vtk': label_vtk = label_file labels, names = None, None else: label_vtk = os.path.join(vtk_dir, os.path.basename(label_file) + '.vtk') if force or not os.path.exists(label_vtk): print_verbose('Converting data to vtk: %s' % label_file) from mindboggle.mio.vtks import freesurfer_annot_to_vtk freesurfer_annot_to_vtk(label_file, surface_vtk, label_vtk) labels, _, names = nib.freesurfer.read_annot(label_file) used_labels = np.unique(labels[labels >= 1]) used_names = np.asarray(names)[used_labels] print_verbose("Unused areas: %s" % (set(names) - set(used_names))) names = used_names labels = used_labels # Expand the data file to multiple vtks print_verbose('Expanding vtk data to multiple files.') from mindboggle.mio.vtks import explode_scalars explode_output_stem = os.path.join(output_dir, output_stem) explode_scalars(label_vtk, output_stem=explode_output_stem) output_vtks = filter(lambda p: p not in [surface_vtk, label_vtk], glob.glob(explode_output_stem + '*.vtk')) print_verbose('Downsampling vtk files.') for vtk_file in output_vtks: downsample_vtk(vtk_file, sample_rate=sample_rate) print_verbose('Creating download manifest file.') if labels is None: names = labels = [os.path.splitext(vtk_file)[0] for vtk_file in output_vtks] vtk_dict = dict([(name, output_stem + '%s.vtk' % lbl) for lbl, name in zip(labels, names)]) json_file = os.path.join(output_dir, json_file) with open(json_file, 'wb') as fp: json.dump(dict(filename=vtk_dict), fp) return json_file def atlas2aparc(atlas_name, hemi=None): """ Find freesurfer atlas aparc from atlas key. Valid keys: desikan, destrieux, dkt if `hemi` is specified, it a valid filename will be returned; otherwise a format string will be returned.""" if atlas_name == 'desikan': annot_file_template = '%s.aparc.annot' elif atlas_name == 'destrieux': annot_file_template = '%s.aparc.a2009s.annot' elif atlas_name == 'dkt': annot_file_template = '%s.aparc.DKTatlas40.annot' else: raise ValueError('Unknown atlas: %s' % atlas_name) return annot_file_template % (hemi if hemi else '%s') def dump_vtks(subject_path, atlas_name, sample_rate=1, surface='pial', force=False, output_dir=DATA_DIR): """ Convenience function to dump vtk parcels for each hemisphere.""" all_data = dict(filename=dict()) for hemi in ['lh', 'rh']: surface_file = os.path.join(subject_path, 'surf', '%s.%s' % ( hemi, surface)) label_file = os.path.join(subject_path, 'label', atlas2aparc(atlas_name, hemi=hemi)) json_file = freesurfer_annot_to_vtks( surface_file, label_file, output_stem='%s_' % hemi, json_file='%s_files_to_load.json' % hemi, sample_rate=sample_rate, force=force, output_dir=output_dir) with open(json_file, 'rb') as fp: hemi_files = json.load(fp)['filename'] for key, val in hemi_files.items(): hemi_key = '%s_%s' % (hemi, key) all_data['filename'][hemi_key] = val # Create a unified json file for lh/rh with open('files_to_load.json', 'wb') as fp: json.dump(all_data, fp)
#!/usr/bin/env python import os import scipy.stats as stats import numpy as np import pandas as pd import ndjson from pandas.io.json import json_normalize import statsmodels.stats.multitest as mt # The schema of the cpg genotype file is the following and the header is included # snp_id # chr # asm_region_inf # asm_region_sup # ref_reads # alt_reads # effect # ref: array of 'methyl', which is the methyl % of each REF reaf # alt: array of 'methyl', which is the methyl % of each ALT reaf # nb_cpg # nb_sig_cpg # cpg: array of pos, effect, fisher_pvalue, ref_cov, and alt_cov INPUT_FILE = os.environ['ASM_REGION'] OUTPUT_FILE = os.environ['ASM_REGION_PVALUE'] P_VALUE = float(os.environ['P_VALUE']) BH_THRESHOLD = float(os.environ['BH_THRESHOLD']) # load from file-like objects with open(INPUT_FILE) as f: data = ndjson.load(f) # Converte the JSON file in dataframe df = json_normalize(data) ################################## Calculate p-value of asm_region # Function to extract Wilcoxon p-value (5-digit rounding) def wilcoxon_pvalue(row): try: _, pvalue = stats.mannwhitneyu(json_normalize(row['ref']), json_normalize(row['alt']), alternative = "two-sided") return round(pvalue,5) # If the ref and alt datasets are equal or one is included in the other one: except ValueError: return 1 # Create a column with the p-value df['wilcoxon_pvalue'] = df.apply(wilcoxon_pvalue, axis = 1) ################################## Calculate p-value corrected for multiple testing using Benjamini–Hochberg df['wilcoxon_corr_pvalue'] = mt.multipletests(df['wilcoxon_pvalue'], alpha = BH_THRESHOLD, method = 'fdr_bh')[1] df['wilcoxon_corr_pvalue'] = df['wilcoxon_corr_pvalue'].round(5) ################################## Calculate number of significant consecutive CpGs in the same direction. # Find consecutive significant ASM CpGs that are negative def consecutive_neg_cpg(row): if int(row['nb_sig_cpg']) > 1 : flat_cpg = json_normalize(row['cpg']) max_nb_consec = 0 current_nb_consec = 0 for index, row in flat_cpg.iterrows(): if (index > 0): if (flat_cpg.iloc[index-1].fisher_pvalue < P_VALUE and row.fisher_pvalue < P_VALUE and np.sign(flat_cpg.iloc[index-1].effect) == -1 and np.sign(row.effect) == -1): if (current_nb_consec == 0): current_nb_consec = 2 else: current_nb_consec = current_nb_consec + 1 max_nb_consec = max(max_nb_consec, current_nb_consec) else: current_nb_consec = 0 return max_nb_consec else: return 0 # Find consecutive significant ASM CpGs that are negative def consecutive_pos_cpg(row): if int(row['nb_sig_cpg']) > 1 : flat_cpg = json_normalize(row['cpg']) max_nb_consec = 0 current_nb_consec = 0 for index, row in flat_cpg.iterrows(): if (index > 0): if (flat_cpg.iloc[index-1].fisher_pvalue < P_VALUE and row.fisher_pvalue < P_VALUE and np.sign(flat_cpg.iloc[index-1].effect) == 1 and np.sign(row.effect) == 1): if (current_nb_consec == 0): current_nb_consec = 2 else: current_nb_consec = current_nb_consec + 1 max_nb_consec = max(max_nb_consec, current_nb_consec) else: current_nb_consec = 0 return max_nb_consec else: return 0 # Create a column with the number of consecutive CpGs that have significant ASM in the same direction df['nb_consec_pos_sig_asm'] = df.apply(consecutive_pos_cpg, axis = 1) df['nb_consec_neg_sig_asm'] = df.apply(consecutive_neg_cpg, axis = 1) # Sort the dataframe per the chromosome column (pushing Y chromosomes first) to avoid BigQuery treat the chr column as integers df_sorted = df.sort_values(by=['chr'], ascending = False) ################################## Save file in JSON format # Save to JSON df.to_json(OUTPUT_FILE, orient = "records", lines = True)
import numpy as np import torch from pytorch3d.transforms import quaternion_multiply, quaternion_apply class Skeleton: def __init__(self, offsets, parents, device, joints_left=None, joints_right=None): assert len(offsets) == len(parents) self._offsets = torch.tensor(offsets, dtype=torch.float32, device=device) self._parents = torch.tensor(parents, dtype=torch.int8, device=device) self._joints_left = joints_left self._joints_right = joints_right self._compute_metadata() def cuda(self): self._offsets = self._offsets.cuda() return self def num_joints(self): return self._offsets.shape[0] def offsets(self): return self._offsets def parents(self): return self._parents def has_children(self): return self._has_children def children(self): return self._children def forward_kinematics(self, rotations, root_positions): """ Perform forward kinematics using the given trajectory and local rotations. Arguments (where N = batch size, L = sequence length, J = number of joints): -- rotations: (N, L, J, 4) tensor of unit quaternions describing the local rotations of each joint. -- root_positions: (N, L, 3) tensor describing the root joint positions. """ assert len(rotations.shape) == 4 assert rotations.shape[-1] == 4 positions_world = [] rotations_world = [] expanded_offsets = self._offsets.expand(rotations.shape[0], rotations.shape[1], self._offsets.shape[0], self._offsets.shape[1]) # Parallelize along the batch and time dimensions for i in range(self._offsets.shape[0]): if self._parents[i] == -1: positions_world.append(root_positions) rotations_world.append(rotations[:, :, 0]) else: positions_world.append(quaternion_apply(rotations_world[self._parents[i]], expanded_offsets[:, :, i]) \ + positions_world[self._parents[i]]) if self._has_children[i]: rotations_world.append(quaternion_multiply(rotations_world[self._parents[i]], rotations[:, :, i])) else: # This joint is a terminal node -> it would be useless to compute the transformation rotations_world.append(None) return torch.stack(positions_world, dim=3).permute(0, 1, 3, 2) def joints_left(self): return self._joints_left def joints_right(self): return self._joints_right def _compute_metadata(self): self._has_children = np.zeros(len(self._parents)).astype(bool) for i, parent in enumerate(self._parents): if parent != -1: self._has_children[parent] = True self._children = [] for i, parent in enumerate(self._parents): self._children.append([]) for i, parent in enumerate(self._parents): if parent != -1: self._children[parent].append(i)
from collections import OrderedDict import param from ..io.resources import bundled_files from ..reactive import ReactiveHTML from ..util import classproperty from .grid import GridSpec class GridStack(ReactiveHTML, GridSpec): """ The GridStack layout builds on the GridSpec component and gridstack.js to allow resizing and dragging items in the grid. """ allow_resize = param.Boolean(default=True, doc=""" Allow resizing the grid cells.""") allow_drag = param.Boolean(default=True, doc=""" Allow dragging the grid cells.""") state = param.List(doc=""" Current state of the grid (updated as items are resized and dragged).""") width = param.Integer(default=None) height = param.Integer(default=None) _template = """ <div id="grid" class="grid-stack"> {% for key, obj in objects.items() %} <div data-id="{{ id(obj) }}" class="grid-stack-item" gs-h="{{ (key[2] or nrows)-(key[0] or 0) }}" gs-w="{{ (key[3] or ncols)-(key[1] or 0) }}" gs-y="{{ (key[0] or 0) }}" gs-x="{{ (key[1] or 0) }}"> <div id="content" class="grid-stack-item-content">${obj}</div> </div> {% endfor %} </div> """ # noqa _scripts = { 'render': [""" const options = { column: data.ncols, disableResize: !data.allow_resize, disableDrag: !data.allow_drag, margin: 0 } if (data.nrows) options.row = data.nrows if (model.height) options.cellHeight = Math.floor(model.height/data.nrows) const gridstack = GridStack.init(options, grid); function sync_state() { const items = [] for (const node of gridstack.engine.nodes) { items.push({id: node.el.getAttribute('data-id'), x0: node.x, y0: node.y, x1: node.x+node.w, y1: node.y+node.h}) } data.state = items } gridstack.on('resizestop', (event, el) => { window.dispatchEvent(new Event("resize")); sync_state() }) gridstack.on('dragstop', (event, el) => { sync_state() }) sync_state() state.gridstack = gridstack """], 'allow_drag': ["state.gridstack.enableMove(data.allow_drag)"], 'allow_resize': ["state.gridstack.enableResize(data.allow_resize)"], 'ncols': ["state.gridstack.column(data.ncols)"], 'nrows': [""" state.gristack.opts.row = data.nrows if (data.nrows && model.height) state.gridstack.cellHeight(Math.floor(model.height/data.nrows)) else state.gridstack.cellHeight('auto') """] } __css_raw__ = [ 'https://cdn.jsdelivr.net/npm/gridstack@4.2.5/dist/gridstack.min.css', 'https://cdn.jsdelivr.net/npm/gridstack@4.2.5/dist/gridstack-extra.min.css' ] __javascript_raw__ = [ 'https://cdn.jsdelivr.net/npm/gridstack@4.2.5/dist/gridstack-h5.js' ] __js_require__ = { 'paths': { 'gridstack': 'https://cdn.jsdelivr.net/npm/gridstack@4.2.5/dist/gridstack-h5' }, 'exports': { 'gridstack': 'GridStack' }, 'shim': { 'gridstack': { 'exports': 'GridStack' } } } @classproperty def __js_skip__(cls): return { 'GridStack': cls.__javascript__[0:1], } _rename = {} @classproperty def __javascript__(cls): return bundled_files(cls) @classproperty def __css__(cls): return bundled_files(cls, 'css') @param.depends('state', watch=True) def _update_objects(self): objects = OrderedDict() object_ids = {str(id(obj)): obj for obj in self} for p in self.state: objects[(p['y0'], p['x0'], p['y1'], p['x1'])] = object_ids[p['id']] self.objects.clear() self.objects.update(objects) self._update_sizing() @param.depends('objects', watch=True) def _update_sizing(self): if self.ncols: width = int(float(self.width)/self.ncols) else: width = 0 if self.nrows: height = int(float(self.height)/self.nrows) else: height = 0 for i, ((y0, x0, y1, x1), obj) in enumerate(self.objects.items()): x0 = 0 if x0 is None else x0 x1 = (self.ncols) if x1 is None else x1 y0 = 0 if y0 is None else y0 y1 = (self.nrows) if y1 is None else y1 h, w = y1-y0, x1-x0 if self.sizing_mode in ['fixed', None]: properties = {'width': w*width, 'height': h*height} else: properties = {'sizing_mode': self.sizing_mode} if 'width' in self.sizing_mode: properties['height'] = h*height elif 'height' in self.sizing_mode: properties['width'] = w*width obj.param.set_param(**{k: v for k, v in properties.items() if not obj.param[k].readonly})
#!/usr/bin/env python # # SPDX-License-Identifier: Apache-2.0 # Copyright Contributors to the OpenTimelineIO project """Test file for the track algorithms library.""" import unittest import opentimelineio as otio import opentimelineio.test_utils as otio_test_utils class TimelineTrimmingTests(unittest.TestCase, otio_test_utils.OTIOAssertions): """ test harness for timeline trimming function """ def make_sample_timeline(self): result = otio.adapters.read_from_string( """ { "OTIO_SCHEMA": "Timeline.1", "metadata": {}, "name": null, "tracks": { "OTIO_SCHEMA": "Stack.1", "children": [ { "OTIO_SCHEMA": "Track.1", "children": [ { "OTIO_SCHEMA": "Clip.1", "effects": [], "markers": [], "media_reference": null, "metadata": {}, "name": "A", "source_range": { "OTIO_SCHEMA": "TimeRange.1", "duration": { "OTIO_SCHEMA": "RationalTime.1", "rate": 24, "value": 50 }, "start_time": { "OTIO_SCHEMA": "RationalTime.1", "rate": 24, "value": 0.0 } } }, { "OTIO_SCHEMA": "Clip.1", "effects": [], "markers": [], "media_reference": null, "metadata": {}, "name": "B", "source_range": { "OTIO_SCHEMA": "TimeRange.1", "duration": { "OTIO_SCHEMA": "RationalTime.1", "rate": 24, "value": 50 }, "start_time": { "OTIO_SCHEMA": "RationalTime.1", "rate": 24, "value": 0.0 } } }, { "OTIO_SCHEMA": "Clip.1", "effects": [], "markers": [], "media_reference": null, "metadata": {}, "name": "C", "source_range": { "OTIO_SCHEMA": "TimeRange.1", "duration": { "OTIO_SCHEMA": "RationalTime.1", "rate": 24, "value": 50 }, "start_time": { "OTIO_SCHEMA": "RationalTime.1", "rate": 24, "value": 0.0 } } } ], "effects": [], "kind": "Video", "markers": [], "metadata": {}, "name": "Sequence1", "source_range": null } ], "effects": [], "markers": [], "metadata": {}, "name": "tracks", "source_range": null } }""", "otio_json" ) return result, result.tracks[0] def test_trim_to_existing_range(self): original_timeline, original_track = self.make_sample_timeline() self.assertEqual( original_track.trimmed_range(), otio.opentime.TimeRange( start_time=otio.opentime.RationalTime(0, 24), duration=otio.opentime.RationalTime(150, 24) ) ) # trim to the exact range it already has trimmed = otio.algorithms.timeline_trimmed_to_range( original_timeline, otio.opentime.TimeRange( start_time=otio.opentime.RationalTime(0, 24), duration=otio.opentime.RationalTime(150, 24) ) ) # it shouldn't have changed at all self.assertIsOTIOEquivalentTo(original_timeline, trimmed) def test_trim_to_longer_range(self): original_timeline, original_track = self.make_sample_timeline() # trim to a larger range trimmed = otio.algorithms.timeline_trimmed_to_range( original_timeline, otio.opentime.TimeRange( start_time=otio.opentime.RationalTime(-10, 24), duration=otio.opentime.RationalTime(160, 24) ) ) # it shouldn't have changed at all self.assertJsonEqual(original_timeline, trimmed) def test_trim_front(self): original_timeline, original_track = self.make_sample_timeline() # trim off the front (clip A and part of B) trimmed = otio.algorithms.timeline_trimmed_to_range( original_timeline, otio.opentime.TimeRange( start_time=otio.opentime.RationalTime(60, 24), duration=otio.opentime.RationalTime(90, 24) ) ) self.assertNotEqual(original_timeline, trimmed) trimmed = trimmed.tracks[0] self.assertEqual(len(trimmed), 2) self.assertEqual( trimmed.trimmed_range(), otio.opentime.TimeRange( start_time=otio.opentime.RationalTime(0, 24), duration=otio.opentime.RationalTime(90, 24) ) ) # did clip B get trimmed? self.assertEqual(trimmed[0].name, "B") self.assertEqual( trimmed[0].trimmed_range(), otio.opentime.TimeRange( start_time=otio.opentime.RationalTime(10, 24), duration=otio.opentime.RationalTime(40, 24) ) ) # clip C should have been left alone self.assertIsOTIOEquivalentTo(trimmed[1], original_track[2]) def test_trim_end(self): original_timeline, original_track = self.make_sample_timeline() # trim off the end (clip C and part of B) trimmed_timeline = otio.algorithms.timeline_trimmed_to_range( original_timeline, otio.opentime.TimeRange( start_time=otio.opentime.RationalTime(0, 24), duration=otio.opentime.RationalTime(90, 24) ) ) # rest of the tests are on the track trimmed = trimmed_timeline.tracks[0] self.assertNotEqual(original_timeline, trimmed) self.assertEqual(len(trimmed), 2) self.assertEqual( trimmed.trimmed_range(), otio.opentime.TimeRange( start_time=otio.opentime.RationalTime(0, 24), duration=otio.opentime.RationalTime(90, 24) ) ) # clip A should have been left alone self.assertIsOTIOEquivalentTo(trimmed[0], original_track[0]) # did clip B get trimmed? self.assertEqual(trimmed[1].name, "B") self.assertEqual( trimmed[1].trimmed_range(), otio.opentime.TimeRange( start_time=otio.opentime.RationalTime(0, 24), duration=otio.opentime.RationalTime(40, 24) ) ) def test_trim_with_transitions(self): original_timeline, original_track = self.make_sample_timeline() self.assertEqual( otio.opentime.RationalTime(150, 24), original_timeline.duration() ) self.assertEqual(len(original_track), 3) # add a transition tr = otio.schema.Transition( in_offset=otio.opentime.RationalTime(12, 24), out_offset=otio.opentime.RationalTime(20, 24) ) original_track.insert(1, tr) self.assertEqual(len(original_track), 4) self.assertEqual( otio.opentime.RationalTime(150, 24), original_timeline.duration() ) # if you try to sever a Transition in the middle it should fail with self.assertRaises(otio.exceptions.CannotTrimTransitionsError): trimmed = otio.algorithms.timeline_trimmed_to_range( original_timeline, otio.opentime.TimeRange( start_time=otio.opentime.RationalTime(5, 24), duration=otio.opentime.RationalTime(50, 24) ) ) with self.assertRaises(otio.exceptions.CannotTrimTransitionsError): trimmed = otio.algorithms.timeline_trimmed_to_range( original_timeline, otio.opentime.TimeRange( start_time=otio.opentime.RationalTime(45, 24), duration=otio.opentime.RationalTime(50, 24) ) ) trimmed = otio.algorithms.timeline_trimmed_to_range( original_timeline, otio.opentime.TimeRange( start_time=otio.opentime.RationalTime(25, 24), duration=otio.opentime.RationalTime(50, 24) ) ) self.assertNotEqual(original_timeline, trimmed) expected = otio.adapters.read_from_string( """ { "OTIO_SCHEMA": "Timeline.1", "metadata": {}, "name": null, "tracks": { "OTIO_SCHEMA": "Stack.1", "children": [ { "OTIO_SCHEMA": "Track.1", "children": [ { "OTIO_SCHEMA": "Clip.1", "effects": [], "markers": [], "media_reference": null, "metadata": {}, "name": "A", "source_range": { "OTIO_SCHEMA": "TimeRange.1", "duration": { "OTIO_SCHEMA": "RationalTime.1", "rate": 24, "value": 25 }, "start_time": { "OTIO_SCHEMA": "RationalTime.1", "rate": 24, "value": 25.0 } } }, { "OTIO_SCHEMA": "Transition.1", "in_offset": { "OTIO_SCHEMA": "RationalTime.1", "rate": 24, "value": 12 }, "metadata": {}, "name": null, "out_offset": { "OTIO_SCHEMA": "RationalTime.1", "rate": 24, "value": 20 }, "transition_type": null }, { "OTIO_SCHEMA": "Clip.1", "effects": [], "markers": [], "media_reference": null, "metadata": {}, "name": "B", "source_range": { "OTIO_SCHEMA": "TimeRange.1", "duration": { "OTIO_SCHEMA": "RationalTime.1", "rate": 24, "value": 25 }, "start_time": { "OTIO_SCHEMA": "RationalTime.1", "rate": 24, "value": 0.0 } } } ], "effects": [], "kind": "Video", "markers": [], "metadata": {}, "name": "Sequence1", "source_range": null } ], "effects": [], "markers": [], "metadata": {}, "name": "tracks", "source_range": null } } """, "otio_json" ) self.assertJsonEqual(expected, trimmed) if __name__ == '__main__': unittest.main()
import logging _LOGGER = logging.getLogger(__name__) from homeassistant.components.device_tracker import SOURCE_TYPE_GPS from homeassistant.util import slugify from homeassistant.components.device_tracker.config_entry import TrackerEntity from homeassistant.helpers.dispatcher import async_dispatcher_connect from homeassistant.helpers.typing import HomeAssistantType from . import DOMAIN, SIGNAL_STATE_UPDATED async def async_setup_scanner(hass, config, async_see, discovery_info=None): data = hass.data[DOMAIN] tracker = AIKADeviceTracker(hass, data, async_see) await tracker.async_update() _LOGGER.info("Setup of AIKA device tracker") async_dispatcher_connect(hass, SIGNAL_STATE_UPDATED, tracker.async_update) return True class AIKADeviceTracker(TrackerEntity): """AIKA Connected Drive device tracker.""" def __init__(self, hass, data, async_see): """Initialize the Tracker.""" self.hass = hass self.data = data self.async_see = async_see self.status = None self._latitude = None self._longitude = None self._attributes = { "trackr_id": None, "heading": None, "speed": None } async def async_update(self): """Update the device info. Only update the state in home assistant if tracking in the car is enabled. """ self.status = self.data.status self._latitude = float(self.status["maika.lat"]) self._longitude = float(self.status["maika.lng"]) self._attributes = { "trackr_id": self.status["maika.sn"], "heading": self.get_heading(int(self.status["maika.course"])), "speed": self.status["maika.speed"] } await self.async_see( dev_id = "maika_{}".format(self.status["maika.iccid"]), mac = self.status["maika.iccid"], host_name = self.status["maika.devicename"], gps = (self._latitude, self._longitude), attributes = self._attributes, icon="mdi:car" ) def get_heading(self, course: int): if course > 349 or course < 10: return "N" if course > 9 and course < 80: return "NE" if course > 79 and course < 100: return "E" if course > 99 and course < 170: return "SE" if course > 169 and course < 190: return "S" if course > 189 and course < 260: return "SW" if course > 259 and course < 280: return "W" if course > 279 and course < 350: return "NW" @property def dev_id(self): return "maika_{}".format(slugify(self.status["maika.iccid"])) @property def source_type(self): return SOURCE_TYPE_GPS @property def location_accuracy(self): return 4 # default for GPS @property def latitude(self) -> float: """Return latitude value of the device.""" return self._latitude @property def longitude(self) -> float: """Return longitude value of the device.""" return self._longitude def force_update(self): return True
# -*- coding: utf-8 -*- # Copyright (c) 2020 Alexey Pechnikov. All rights reserved. # https://orcid.org/0000-0001-9626-8615 (ORCID) # pechnikov@mobigroup.ru (email) # License: http://opensource.org/licenses/MIT # process [multi]geometry def _NCubeGeometryToPolyData(geometry, dem=None): #from shapely.geometry.base import BaseGeometry, BaseMultipartGeometry from vtk import vtkPolyData, vtkAppendPolyData, vtkPoints, vtkCellArray, vtkStringArray, vtkIntArray, vtkFloatArray, vtkBitArray import xarray as xr import numpy as np if geometry is None or geometry.is_empty: return vtk_points = vtkPoints() vtk_cells = vtkCellArray() # get part(s) of (multi)geometry #if isinstance(geometry, (BaseMultipartGeometry)): if geometry.type.startswith('Multi') or geometry.type == 'GeometryCollection': geometries = [geom for geom in geometry] else: geometries = [geometry] for geom in geometries: # polygon #print ("geom.type", geom.type) if geom.type == 'Polygon': coords = np.asarray(geom.exterior.coords) else: coords = np.asarray(geom.coords) #print ("coords", coords) xs = coords[:,0] ys = coords[:,1] if coords.shape[1] > 2: zs = np.array(coords[:,2]) else: zs = np.zeros(len(xs)) #print (xs) # rasterize geometries (lines only, not points) # alas, modern scipy or matplotlib don't work in ParaView 5.7 on MacOS if dem is not None: # print (dem) if dem.res and len(xs)>1: res = min(dem.res) _xs = [xs[:1]] _ys = [ys[:1]] _zs = [zs[:1]] for (x0,y0,z0,x,y,z) in zip(xs[:-1],ys[:-1],zs[:-1],xs[1:],ys[1:],zs[1:]): length = max(abs(x-x0),abs(y-y0)) num = round(length/res+0.5) # print ("num",num) if num > 1: _x = np.linspace(x0,x,num) _y = np.linspace(y0,y,num) _z = np.linspace(z0,z,num) _xs.append(_x[1:]) _ys.append(_y[1:]) _zs.append(_z[1:]) else: _xs.append([x]) _ys.append([y]) _zs.append([z]) xs = np.concatenate(_xs) ys = np.concatenate(_ys) zs = np.concatenate(_zs) zs += dem.sel(x=xr.DataArray(xs), y=xr.DataArray(ys), method='nearest').values #print ("xs", xs) mask = np.where(~np.isnan(zs))[0] mask2 = np.where(np.diff(mask)!=1)[0]+1 xs = np.split(xs[mask], mask2) ys = np.split(ys[mask], mask2) zs = np.split(zs[mask], mask2) for (_xs,_ys,_zs) in zip(xs,ys,zs): # need to have 2 point or more #if len(_xs) <= 1: # continue vtk_cells.InsertNextCell(len(_xs)) for (x,y,z) in zip(_xs,_ys,_zs): pointId = vtk_points.InsertNextPoint(x, y, z) vtk_cells.InsertCellPoint(pointId) # not enougth valid points if vtk_points.GetNumberOfPoints() < 1: return #print ("GetNumberOfPoints", vtk_points.GetNumberOfPoints()) vtk_polyData = vtkPolyData() vtk_polyData.SetPoints(vtk_points) #if geometry.type in ['Point','MultiPoint']: if geometry.type.endswith('Point'): vtk_polyData.SetVerts(vtk_cells) else: vtk_polyData.SetLines(vtk_cells) return vtk_polyData # process geodataframe and xarray raster def _NCubeGeometryOnTopography(df, dem): from vtk import vtkPolyData, vtkAppendPolyData, vtkPoints, vtkCellArray, vtkStringArray, vtkIntArray, vtkFloatArray, vtkBitArray from shapely.geometry.base import BaseGeometry, BaseMultipartGeometry from shapely.geometry import box #import xarray as xr import numpy as np #print ("_NCUBEGeometryOnTopography start") dem_extent = dem_crs = None if dem is not None: # TODO: that's better to direct use NODATA values if dem.values.dtype not in [np.dtype('float16'),np.dtype('float32'),np.dtype('float64'),np.dtype('float128')]: dem.values = dem.values.astype("float32") # dask array can't be processed by this way dem.values[dem.values == dem.nodatavals[0]] = np.nan # NaN border to easy lookup dem.values[0,:] = np.nan dem.values[-1,:] = np.nan dem.values[:,0] = np.nan dem.values[:,-1] = np.nan dem_extent = box(dem.x.min(),dem.y.min(),dem.x.max(),dem.y.max()) dem_crs = dem.crs if 'crs' in dem.attrs.keys() else None #print (dem.values) df = _NCubeGeoDataFrameToTopography(df, dem_extent, dem_crs) groups = df.index.unique() ;#[11454:11455] #print ("groups",groups) # TEST #groups = groups[:1] # iterate blocks vtk_blocks = [] for group in groups: #print ("group",group) # Python 2 string issue wrapped if hasattr(group, 'encode'): # select only equals _df = df[df.index.str.startswith(group)&df.index.str.endswith(group)&(df.index.str.len()==len(group))].reset_index() else: _df = df[df.index == group].reset_index() #print (_df.geometry) vtk_appendPolyData = vtkAppendPolyData() # iterate rows with the same attributes and maybe multiple geometries for rowidx,row in _df.iterrows(): #print ("row", row) vtk_polyData = _NCubeGeometryToPolyData(row.geometry, dem) if vtk_polyData is None: #print ("vtk_polyData is None") continue vtk_arrays = _NCubeGeoDataFrameRowToVTKArrays(row.to_dict()) for (vtk_arr, val) in vtk_arrays: if val is None: continue # for _ in range(vtk_polyData.GetNumberOfCells()): # vtk_arr.InsertNextValue(val) if isinstance(val, (tuple)): # if np.any(np.isnan(val)): # continue # add vector for _ in range(vtk_polyData.GetNumberOfCells()): vtk_arr.InsertNextTuple(val) vtk_polyData.GetCellData().AddArray(vtk_arr) else: # add scalar for _ in range(vtk_polyData.GetNumberOfCells()): vtk_arr.InsertNextValue(val) vtk_polyData.GetCellData().AddArray(vtk_arr) # compose vtkPolyData vtk_appendPolyData.AddInputData(vtk_polyData) # nothing to process if vtk_appendPolyData.GetNumberOfInputConnections(0) == 0: continue vtk_appendPolyData.Update() vtk_block = vtk_appendPolyData.GetOutput() vtk_blocks.append((str(group),vtk_block)) #print ("_NCUBEGeometryOnTopography end") return vtk_blocks def _NCubeGeoDataFrameToTopography(df, dem_extent, dem_crs=None): import geopandas as gpd # extract the geometry coordinate system if df.crs is not None and df.crs != {}: df_crs = df.crs else: df_crs = None print ("df_crs",df_crs,"dem_crs",dem_crs) # reproject when the both coordinate systems are defined and these are different if df_crs and dem_crs: # load error fix for paraView 5.8.1rc1 Python3 try: # ParaView 5.7 Python 2.7 df_extent = gpd.GeoDataFrame([], crs={'init' : dem_crs}, geometry=[dem_extent]) except: # ParaView 5.8 RC2 Python 3.7 df_extent = gpd.GeoDataFrame([], crs=dem_crs, geometry=[dem_extent]) print ("df_extent", df_extent.crs, df_extent.geometry) extent_reproj = df_extent.to_crs(df_crs)['geometry'][0] # if original or reprojected raster extent is valid, use it to crop geometry print ("crop geometry", extent_reproj.is_valid,extent_reproj.wkt) if extent_reproj.is_valid: # geometry intersection to raster extent in geometry coordinate system df = df[df.geometry.intersects(extent_reproj)].copy() # dangerous operation, see https://github.com/Toblerity/Shapely/issues/553 df['geometry'] = df.geometry.intersection(extent_reproj) try: # ParaView 5.7 Python 2.7 # reproject [cropped] geometry to original raster coordinates if needed return df.to_crs({'init' : dem_crs}) except: # ParaView 5.8 RC2 Python 3.7 return df.to_crs(dem_crs) # let's assume the coordinate systems are the same if dem_extent is not None: df = df[df.geometry.intersects(dem_extent)] # wrap issue with 3D geometry intersection by 2D extent # if df.geometry[0].has_z: # print ("df.geometry[0].has_z") # else: # df['geometry'] = df.geometry.intersection(dem_extent) return df # Load shapefile or geojson def _NCubeGeoDataFrameLoad(shapename, shapecol=None, shapeencoding=None): import geopandas as gpd df = gpd.read_file(shapename, encoding=shapeencoding) # very important check df = df[df.geometry.notnull()] if shapecol is not None: df = df.sort_values(shapecol).set_index(shapecol) else: # to merge all geometries in output df.index = len(df)*['None'] return df def _NcubeDataFrameToVTKArrays(df): from vtk import vtkStringArray, vtkIntArray, vtkFloatArray, vtkBitArray arrays = [] # Create columns for colname in df.columns: dtype = df[colname].dtype #print (colname, dtype) if dtype in ['O','str','datetime64']: vtk_arr = vtkStringArray() elif dtype in ['int64']: vtk_arr = vtkIntArray() elif dtype in ['float64']: vtk_arr = vtkFloatArray() elif dtype in ['bool']: vtk_arr = vtkBitArray() else: print ('Unknown Pandas column type', dtype) vtk_arr = vtkStringArray() vtk_arr.SetNumberOfComponents(1) vtk_arr.SetName(colname) for val in df[colname]: # some different datatypes could be saved as strings if isinstance(vtk_arr, vtkStringArray): val = str(val) vtk_arr.InsertNextValue(val) arrays.append(vtk_arr) return arrays # list of list of VtkArray's # we ignore case of scientific notation for numbers # https://re-thought.com/how-to-suppress-scientific-notation-in-pandas/ def _NCubeGeoDataFrameRowToVTKArrays(items): #vtkPolyData, vtkAppendPolyData, vtkPoints, vtkCellArray, from vtk import vtkStringArray, vtkIntArray, vtkFloatArray, vtkBitArray from shapely.geometry.base import BaseGeometry, BaseMultipartGeometry vtk_row = [] for (key,value) in items.items(): #print (key,value) components = 1 # define attribute as array if isinstance(value, (BaseMultipartGeometry)): #print ('BaseMultipartGeometry') continue elif isinstance(value, (BaseGeometry)): #print ('BaseGeometry') continue elif isinstance(value, (tuple)): #print ('vtkFloatArray') vtk_arr = vtkFloatArray() components = len(value) # elif isinstance(value, (int)) or (type(value)==str and value.replace('-','',1).isdigit()): elif isinstance(value, (int)) \ or (type(value)==str and value[0] in ['-','+'] and value[1:].isdigit()) \ or (type(value)==str and value.isdigit()): # ParaView category editor converts strings to numeric when it's possible #print('vtkIntArray') value = int(value) vtk_arr = vtkIntArray() # elif isinstance(value, (float)) or (type(value)==str and value.replace('-','',1).replace('.','',1).isdigit()): elif isinstance(value, (float)) \ or (type(value)==str and value[0] in ['-','+'] and value[1:].replace('.','',1).isdigit()) \ or (type(value)==str and value.replace('.','',1).isdigit()): # ParaView category editor converts strings to numeric when it's possible #print ('vtkFloatArray') value = float(value) vtk_arr = vtkFloatArray() elif isinstance(value, (bool)): #print ('vtkBitArray') vtk_arr = vtkBitArray() else: # some different datatypes could be saved as strings value = str(value) vtk_arr = vtkStringArray() vtk_arr.SetNumberOfComponents(components) vtk_arr.SetName(key) vtk_row.append((vtk_arr, value)) return vtk_row
#!/usr/bin/env python3 from strips import * from golog_program import * from domains.elevator import * up = lambda: Exec(ElevatorState.up()) down = lambda: Exec(ElevatorState.down()) turn_off = lambda: Exec(ElevatorState.turn_off()) def next_floor_to_serve(fl): return Test(lambda s: s.light[fl]) def go_floor(fl): return While(lambda s: s.at != fl, If(lambda s: s.at < fl, up(), down() ) ) def serve_a_floor(): return Pick(Floor, lambda x: Sequence( next_floor_to_serve(x.num), go_floor(x.num), turn_off() ) ) def control(): return Sequence( While(lambda s: any(s.light.values()), serve_a_floor() ), go_floor(1) ) p = control() print('initial state: %s' % s) print('program: %s' % p) numSolutions = 0 for pn, sn, an in trans_star(p, s, []): print('solution: %s' % an) print('resulting state: %s' % sn) numSolutions += 1 print('%d solutions found.' % numSolutions)
from pydantic import BaseModel, root_validator from app.resources.utils import str_to_isoformat class MeasurementRequest(BaseModel): # API expects a json object like: start_time: str # YYYY-MM-DDThh:mm:ss+00:00 stop_time: str # YYYY-MM-DDThh:mm:ss+00:00 @root_validator(pre=True) def check_required_items(cls, values): start_time = values.get("start_time") stop_time = values.get("stop_time") if not start_time: raise ValueError("Field 'start_time' required") if not stop_time: raise ValueError("Field 'end_time' required") if not isinstance(start_time, str): raise ValueError("Field 'start_time' must be a str") str_to_isoformat(start_time) if not isinstance(stop_time, str): raise ValueError("Field 'stop_time' must be a str") str_to_isoformat(stop_time) return values class TextRequest(BaseModel): # API expects a json object like: channel_id: str # welo channel to search in start_time: str # YYYY-MM-DDThh:mm:ss+00:00. stop_time: str # YYYY-MM-DDThh:mm:ss+00:00. text: str # to search @root_validator(pre=True) def check_required_items(cls, values): channel_id = values.get("channel") start_time = values.get("start_time") stop_time = values.get("stop_time") text = values.get("text") if not channel_id: raise ValueError("Field 'channel_id' required") if not isinstance(channel_id, str): raise ValueError("Field 'channel_id' must be a str") if not start_time: raise ValueError("Field 'start_time' required") if not isinstance(start_time, str): raise ValueError("Field 'start_time' must be a str") str_to_isoformat(start_time) if not stop_time: raise ValueError("Field 'end_time' required") if not isinstance(stop_time, str): raise ValueError("Field 'stop_time' must be a str") str_to_isoformat(stop_time) if not text: raise ValueError("Field 'text' required") if not isinstance(text, str): raise ValueError("Field 'text' must be a str") return values
""" Django settings for sana_pchr project. For more information on this file, see https://docs.djangoproject.com/en/1.7/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.7/ref/settings/ """ # Database # https://docs.djangoproject.com/en/1.7/ref/settings/#databases import dj_database_url from sana_pchr.settings_base import * from sana_pchr.settings_sms import * from sana_pchr.settings_update import * ADMINS = [('', '')] EMAIL_HOST = "" EMAIL_HOST_USER = "" EMAIL_HOST_PASSWORD = "" EMAIL_USE_TLS = True EMAIL_PORT = 587 DEBUG = False SERVER_EMAIL = '' DATABASES = {'default': dj_database_url.config()}
import json import pickle import zlib # from sqlalchemy.orm.interfaces import SessionExtension from sqlalchemy.ext.mutable import Mutable from sqlalchemy.types import ( TypeDecorator, VARCHAR, PickleType ) # py3 compatibility try: unicode except NameError: unicode = str from six import iteritems class ASCII(TypeDecorator): ''' A database string type that only allows ASCII characters. This is a data type check since all strings in the database could be unicode. ''' impl = VARCHAR def process_bind_param(self, value, dialect): ''' Run encode on a unicode string to make sure the string only contains ASCII characterset characters. To avoid another conversion pass, the original unicode value is passed to the underlying db. ''' # run an encode on the value with ascii to see if it contains # non ascii. Ignore the return value because we only want to throw # an exception if the encode fails. The data can stay unicode for # insertion into the db. if value is not None: value.encode('ascii') return value def process_result_value(self, value, dialect): ''' Run encode on a unicode string coming out of the database to turn the unicode string back into an encoded python bytestring. ''' if isinstance(value, unicode): value = value.encode('ascii') return value class JSONEncodedDict(TypeDecorator): ''' Represents a dictionary as a json-encoded string in the database. ''' impl = VARCHAR def process_bind_param(self, value, dialect): ''' Turn a dictionary into a JSON encoded string on the way into the database. ''' if value is not None: value = json.dumps(value) return value def process_result_value(self, value, dialect): ''' Turn a JSON encoded string into a dictionary on the way out of the database. ''' if value is not None: value = json.loads(value) return value class ZipPickler(object): '''Simple wrapper for pickle that auto compresses/decompresses values''' def loads(self, string): return pickle.loads(zlib.decompress(string)) def dumps(self, obj, protocol): return zlib.compress(pickle.dumps(obj, protocol)) class ZipPickleType(PickleType): def __init__(self, *pargs, **kargs): super(ZipPickleType, self).__init__(pickler=ZipPickler(), *pargs, **kargs) class MutationDict(Mutable, dict): ''' A dictionary that automatically emits change events for SQA change tracking. Lifted almost verbatim from the SQA docs. ''' @classmethod def coerce(cls, key, value): "Convert plain dictionaries to MutationDict." if not isinstance(value, MutationDict): if isinstance(value, dict): return MutationDict(value) # this call will raise ValueError return Mutable.coerce(key, value) else: return value def update(self, *args, **kwargs): ''' Updates the current dictionary with kargs or a passed in dict. Calls the internal setitem for the update method to maintain mutation tracking. ''' for k, v in iteritems(dict(*args, **kwargs)): self[k] = v def __setitem__(self, key, value): '''Detect dictionary set events and emit change events.''' dict.__setitem__(self, key, value) self.changed() def __delitem__(self, key): '''Detect dictionary del events and emit change events.''' dict.__delitem__(self, key) self.changed() def __getstate__(self): '''Get state returns a plain dictionary for pickling purposes.''' return dict(self) def __setstate__(self, state): ''' Set state assumes a plain dictionary and then re-constitutes a Mutable dict. ''' self.update(state) def pop(self, *pargs, **kargs): """ Wrap standard pop() to trigger self.changed() """ result = super(MutationDict, self).pop(*pargs, **kargs) self.changed() return result def popitem(self, *pargs, **kargs): """ Wrap standard popitem() to trigger self.changed() """ result = super(MutationDict, self).popitem(*pargs, **kargs) self.changed() return result __all__ = ['ASCII', 'JSONEncodedDict', 'ZipPickler', 'MutationDict', 'ZipPickleType']
from django import template register = template.Library() @register.inclusion_tag('project_components/tables/headers.html') def header(*headers, expand_last_by=0): context = {} context.update({'headers': [header for header in headers]}) return context
import numpy as np def identity(): return np.eye(3, dtype=np.float32) def scale(s): matrix = identity() np.fill_diagonal(matrix[:2, :2], s) return matrix def translate(t): matrix = identity() matrix[:2, 2] = t return matrix def rotate(radian): # clockwise cos = np.cos(radian) sin = np.sin(radian) return np.array( [ [cos, -sin, 0], [sin, cos, 0], [0, 0, 1] ], dtype=np.float32) def center_rotate_scale_cw(center, angle, s): center = np.array(center) return translate(center) @ rotate(angle * np.pi / 180) @ scale(s) @ translate(-center) def hflip(width): return np.array([ [-1, 0, width], [0, 1, 0], [0, 0, 1] ], dtype=np.float32) def vflip(height): return np.array([ [1, 0, 0], [0, -1, height], [0, 0, 1] ], dtype=np.float32) def shear(shr_x, shr_y): m = identity() m[0, 1] = shr_x m[1, 0] = shr_y return m
# Application condition beep.id == max_used_id and not cur_node_is_processed # Reaction beep_code = "ecrobot_sound_tone(1000, 100, " + str(beep.Volume)+ ");\n" code.append([beep_code]) id_to_pos_in_code[beep.id] = len(code) - 1 cur_node_is_processed = True
# Copyright 2021 Red Hat Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for mrack.outputs.utils""" from unittest.mock import patch from mrack.outputs.utils import get_external_id @patch("mrack.outputs.utils.resolve_hostname") def test_get_external_id(mock_resolve, provisioning_config, host1_aws, metahost1): """ Test that resolve_hostname is not called when it is not supposed to be. """ dns = "my.dns.name" mock_resolve.return_value = dns # By default, it resolves DNS ext_id = get_external_id(host1_aws, metahost1, provisioning_config) assert ext_id == dns # Disable in host metadata metahost1["resolve_host"] = False ext_id = get_external_id(host1_aws, metahost1, provisioning_config) assert ext_id == host1_aws.ip_addr # Disable in provider del metahost1["resolve_host"] provisioning_config["aws"]["resolve_host"] = False ext_id = get_external_id(host1_aws, metahost1, provisioning_config) assert ext_id == host1_aws.ip_addr # Explicitly enabled in provider provisioning_config["aws"]["resolve_host"] = True ext_id = get_external_id(host1_aws, metahost1, provisioning_config) assert ext_id == dns # Resolution enabled, but nothing is resolved mock_resolve.return_value = None ext_id = get_external_id(host1_aws, metahost1, provisioning_config) assert ext_id == host1_aws.ip_addr
# Serializers define the API representation. from django.contrib.auth import get_user_model from rest_framework import serializers User = get_user_model() class ProfileSerializer(serializers.ModelSerializer): class Meta: model = User fields = [ "id", "email", "name", ]
import pytest from sympy.abc import a, b, c, d, e from devito.tools import toposort from devito import configuration pytestmark = pytest.mark.skipif(configuration['backend'] == 'yask' or configuration['backend'] == 'ops', reason="testing is currently restricted") @pytest.mark.parametrize('elements, expected', [ ([[a, b, c], [c, d, e]], [a, b, c, d, e]), ([[e, d, c], [c, b, a]], [e, d, c, b, a]), ([[a, b, c], [b, d, e]], [a, b, d, c, e]), ([[a, b, c], [d, b, c]], [a, d, b, c]), ([[a, b, c], [c, d, b]], None), ]) def test_toposort(elements, expected): try: ordering = toposort(elements) assert ordering == expected except ValueError: assert expected is None
from .WeiXinCrawler import WeiXinCrawler
import os, sys from logs import logDecorator as lD import json from scipy.interpolate import interp1d from scipy.integrate import odeint import numpy as np import tensorflow as tf import time from tensorflow.python.client import timeline config = json.load(open('../config/config.json')) logBase = config['logging']['logBase'] + '.lib.multipleODE.multipleODE_tf' class multipleODE: '''[summary] [description] ''' @lD.log(logBase + '.__init__') def __init__(logger, self, Npat, Nnt, Nl, tspan, Atimesj, Btimesj, fj, rj, mj, stress_t, stress_v, layers, activations, gpu_device='0'): '''[summary] [description] Parameters ---------- logger : {[type]} [description] self : {[type]} [description] ''' try: self.Npat = Npat # --> 1 number self.Nnt = Nnt # --> 1 number self.Nl = Nl # --> 1 number self.NperUser = Nnt + Nl # --> 1 number self.tspan = tspan # --> 1D array self.fj = fj # --> Npat arrays self.rj = rj # --> Npat arrays self.mj = mj # --> Npat arrays os.environ["CUDA_VISIBLE_DEVICES"] = gpu_device self.device = ['/device:GPU:{}'.format(g) for g in gpu_device.split(',')] self.stressInterp = [interp1d(t_vec, s_vec) for t_vec, s_vec in zip(stress_t, stress_v)] self.AjInterp = [interp1d(tspan, a_vec) for a_vec in Atimesj] self.BjInterp = [interp1d(tspan, b_vec) for b_vec in Btimesj] activation_map = { 'tanh' : tf.nn.tanh, 'sigmoid' : tf.nn.sigmoid, 'relu' : tf.nn.relu, 'linear' : tf.identity } activations = [ activation_map[a] for a in activations ] start = time.time() for d in self.device: with tf.device(d): self.tf_opsFlow(layers=layers, activations=activations) timespent = time.time() - start print('graphTime', timespent) # self.options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) # self.run_metadata = tf.RunMetadata() except Exception as e: logger.error('Unable to initialize multipleODE \n{}'.format(str(e))) @lD.log(logBase + '.tf_opsFlow') def tf_opsFlow(logger, self, layers, activations): try: with tf.variable_scope('weights'): self.fj_tf = [ tf.Variable(fj_vec, dtype=tf.float32, name='fj_{}'.format(index)) for index, fj_vec in enumerate(self.fj)] self.rj_tf = [ tf.Variable(rj_vec, dtype=tf.float32, name='rj_{}'.format(index)) for index, rj_vec in enumerate(self.rj)] self.mj_tf = [ tf.Variable(mj_vec, dtype=tf.float32, name='mj_{}'.format(index)) for index, mj_vec in enumerate(self.mj)] self.NNwts_tf = [] self.NNb_tf = [] self.NNact_tf = [] self.Taus_tf = [] prev_l = self.Nnt + 1 for i, l in enumerate(layers): wts = tf.Variable(np.random.random(size=(l, prev_l)), dtype=tf.float32, name='wts_{}'.format(i)) prev_l = l bias = tf.Variable(np.random.rand(), dtype=tf.float32, name='bias_{}'.format(i)) act = activations[i] tau = tf.Variable(np.random.rand(), dtype=tf.float32, name='tau_{}'.format(i)) self.NNwts_tf.append(wts) self.NNb_tf.append(bias) self.NNact_tf.append(act) self.Taus_tf.append(tau) with tf.variable_scope('rhs_operation'): self.y_tf = tf.placeholder(dtype=tf.float32, name='y_tf') self.t = tf.placeholder(dtype=tf.float32, name='dt') self.stress_val = tf.placeholder(dtype=tf.float32, name='stress_val') self.Aj = tf.placeholder(dtype=tf.float32, name='Aj') self.Bj = tf.placeholder(dtype=tf.float32, name='Bj') def get_slowVaryingComponents(j, Nnt_list, stressVal, slowComponents): with tf.variable_scope('cpnt{}'.format(j)): # concatenate to [ n1, n2, n3, s ] res = tf.concat([Nnt_list, [stressVal]], axis=0, name='concat{}'.format(j)) res = tf.reshape(res, [-1, 1]) for index, (w, b, a) in enumerate(zip(self.NNwts_tf, self.NNb_tf, self.NNact_tf)): res = tf.matmul(w, res) + b res = a(res) res = res[0][0] - slowComponents[j] / self.Taus_tf[j] return res def rhs_operation(user): with tf.variable_scope('user_{:05}'.format(user)): # Extract [n1, n2, n3] Nnt_list = self.y_tf[ (user*self.NperUser) : (user*self.NperUser + self.Nnt)] stressVal = self.stress_val[user] slowComponents = self.y_tf[ (user*self.NperUser) : (user*self.NperUser + 3)] with tf.variable_scope('Nnt_parts'): # Calculate the neurotransmitters Nnt_result = self.fj_tf[user] - self.rj_tf[user] * Nnt_list / ( 1 + self.Aj[user] ) \ - self.mj_tf[user] * Nnt_list / ( 1 + self.Bj[user] ) with tf.variable_scope('slow_Components'): # Calculate long-term dependencies # This is the NN([ n1, n2, n3, s ]) res_ls = [get_slowVaryingComponents(j, Nnt_list, stressVal, slowComponents) for j in range(self.Nl)] results = tf.concat([Nnt_result, res_ls], axis=0) return results self.rhs_results = [rhs_operation(user) for user in range(self.Npat)] self.rhs_results = tf.concat(self.rhs_results, axis=0) self.init = tf.global_variables_initializer() config = tf.ConfigProto(gpu_options={'allow_growth':True}) self.sess = tf.Session(config=config) tfwriter = tf.summary.FileWriter('./tensorlog/', self.sess.graph) tfwriter.close() self.sess.run( self.init ) except Exception as e: logger.error('Unable to create tensorflow ops flow \n{}'.format(str(e))) @lD.log(logBase + '.interpolate') def interpolate(logger, self, dx_T, dy_T, x, name='interpolate' ): try: with tf.variable_scope(name): with tf.variable_scope('neighbors'): delVals = dx_T - x ind_1 = tf.argmax(tf.sign( delVals )) ind_0 = ind_1 - 1 with tf.variable_scope('calculation'): value = tf.cond( x[0] <= dx_T[0], lambda : dy_T[:1], lambda : tf.cond( x[0] >= dx_T[-1], lambda : dy_T[-1:], lambda : (dy_T[ind_0] + \ (dy_T[ind_1] - dy_T[ind_0]) \ *(x-dx_T[ind_0])/ \ (dx_T[ind_1]-dx_T[ind_0])) )) result = tf.multiply(value[0], 1, name='y') return result except Exception as e: logger.error('Unable to interpolate \n{}'.format(str(e))) # @lD.log(logBase + '.dy') def dy(self, y, t): '''[summary] [description] Arguments: y {[type]} -- [description] t {[type]} -- [description] ''' try: rhs_results = self.sess.run( self.rhs_results, # options=self.options, run_metadata=self.run_metadata, feed_dict={ self.y_tf : y, self.t : [t], self.stress_val : [interp(t) for interp in self.stressInterp], self.Aj : [interp(t) for interp in self.AjInterp], self.Bj : [interp(t) for interp in self.BjInterp] }) return rhs_results except Exception as e: # logger.error('Unable to get dy result \n{}'.format(str(e))) print('Unable to get dy result \n{}'.format(str(e))) @lD.log(logBase + '.solveY') def solveY(logger, self, y0, t, args, useJac=False, full_output=False): try: NNwts, NNb, NNact, Taus = args for i, (weights, bias, tau) in enumerate(zip(NNwts, NNb, Taus)): self.sess.run( self.NNwts_tf[i].assign(weights) ) self.sess.run( self.NNb_tf[i].assign(bias) ) self.sess.run( self.Taus_tf[i].assign(tau) ) jac = None if useJac: jac = self.jac start = time.time() result_dict = {} if full_output: y_t, result_dict = odeint(self.dy, y0, t, Dfun=jac, full_output=True, mxstep=50000) else: y_t = odeint(self.dy, y0, t, Dfun=jac, full_output=False) timespent = time.time() - start print('odeTime', timespent) # fetched_timeline = timeline.Timeline(self.run_metadata.step_stats) # chrome_trace = fetched_timeline.generate_chrome_trace_format() # with open('timeline_step.json', 'w') as f: # f.write(chrome_trace) # if useJac: # print('') return y_t, result_dict except Exception as e: logger.error('Unable to solve Y \n{}'.format(str(e))) class multipleODE_new: '''[summary] [description] ''' @lD.log(logBase + '.__init__') def __init__(logger, self, Npat, Nnt, Nl, tspan, Atimesj, Btimesj, fj, rj, mj, stress_t, stress_v, layers, activations, gpu_device='0'): '''[summary] [description] Parameters ---------- logger : {[type]} [description] self : {[type]} [description] ''' try: self.Npat = Npat # --> 1 number self.Nnt = Nnt # --> 1 number self.Nl = Nl # --> 1 number self.NperUser = Nnt + Nl # --> 1 number self.tspan = tspan # --> 1D array self.fj = fj # --> Npat arrays self.rj = rj # --> Npat arrays self.mj = mj # --> Npat arrays os.environ["CUDA_VISIBLE_DEVICES"] = gpu_device self.device = ['/device:GPU:{}'.format(g) for g in gpu_device.split(',')] self.stressInterp = [interp1d(t_vec, s_vec) for t_vec, s_vec in zip(stress_t, stress_v)] self.AjInterp = [interp1d(tspan, a_vec) for a_vec in Atimesj] self.BjInterp = [interp1d(tspan, b_vec) for b_vec in Btimesj] activation_map = { 'tanh' : tf.nn.tanh, 'sigmoid' : tf.nn.sigmoid, 'relu' : tf.nn.relu, 'linear' : tf.identity } activations = [ activation_map[a] for a in activations ] start = time.time() for d in self.device: with tf.device(d): self.tf_opsFlow(layers=layers, activations=activations) timespent = time.time() - start print('graphTime', timespent) # self.options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) # self.run_metadata = tf.RunMetadata() except Exception as e: logger.error('Unable to initialize multipleODE \n{}'.format(str(e))) @lD.log(logBase + '.tf_opsFlow') def tf_opsFlow(logger, self, layers, activations): try: with tf.variable_scope('weights'): self.fj_tf = tf.Variable(self.fj, dtype=tf.float32, name='fj') self.rj_tf = tf.Variable(self.rj, dtype=tf.float32, name='rj') self.mj_tf = tf.Variable(self.mj, dtype=tf.float32, name='mj') self.NNwts_tf = [] self.NNb_tf = [] self.NNact_tf = [] self.Taus_tf = [] prev_l = self.Nnt + 1 for i, l in enumerate(layers): wts = tf.Variable(np.random.random(size=(l, prev_l)), dtype=tf.float32, name='wts_{}'.format(i)) prev_l = l bias = tf.Variable(np.random.rand(), dtype=tf.float32, name='bias_{}'.format(i)) act = activations[i] tau = tf.Variable(np.random.rand(), dtype=tf.float32, name='tau_{}'.format(i)) self.NNwts_tf.append(wts) self.NNb_tf.append(bias) self.NNact_tf.append(act) self.Taus_tf.append(tau) with tf.variable_scope('rhs_operation'): self.y_tf = tf.placeholder(dtype=tf.float32, name='y_tf') self.stress_val = tf.placeholder(dtype=tf.float32, name='stress_val') self.Aj = tf.placeholder(dtype=tf.float32, name='Aj') self.Bj = tf.placeholder(dtype=tf.float32, name='Bj') def get_slowVaryingComponents(j, Nnt_list, stressVal, slowComponents): with tf.variable_scope('cpnt{}'.format(j)): # concatenate to [ n1, n2, n3, s ] res = tf.concat([Nnt_list, [stressVal]], axis=0, name='concat{}'.format(j)) res = tf.reshape(res, [-1, 1]) for index, (w, b, a) in enumerate(zip(self.NNwts_tf, self.NNb_tf, self.NNact_tf)): res = tf.matmul(w, res) + b res = a(res) res = res[0][0] - slowComponents[j] / self.Taus_tf[j] return res def rhs_operation(user): with tf.variable_scope('user_{:05}'.format(user)): # Extract [n1, n2, n3] Nnt_list = self.y_tf[ (user*self.NperUser) : (user*self.NperUser + self.Nnt)] stressVal = self.stress_val[user] slowComponents = self.y_tf[ (user*self.NperUser) : (user*self.NperUser + 3)] with tf.variable_scope('Nnt_parts'): # Calculate the neurotransmitters Nnt_result = self.fj_tf[user] - self.rj_tf[user] * Nnt_list / ( 1 + self.Aj[user] ) \ - self.mj_tf[user] * Nnt_list / ( 1 + self.Bj[user] ) with tf.variable_scope('slow_Components'): # Calculate long-term dependencies # This is the NN([ n1, n2, n3, s ]) res_ls = [get_slowVaryingComponents(j, Nnt_list, stressVal, slowComponents) for j in range(self.Nl)] results = tf.concat([Nnt_result, res_ls], axis=0) return results # self.rhs_results = [rhs_operation(user) for user in range(self.Npat)] # self.rhs_results = tf.concat(self.rhs_results, axis=0) self.rhs_results = self.fj_tf - self.rj_tf * self.y_tf / ( 1 + self.Aj ) \ - self.mj_tf * self.y_tf / ( 1 + self.Bj ) self.rhs_results = tf.reshape(self.rhs_results, shape=[-1], name='flattenOps') self.init = tf.global_variables_initializer() config = tf.ConfigProto(gpu_options={'allow_growth':True}) self.sess = tf.Session(config=config) tfwriter = tf.summary.FileWriter('./tensorlog/', self.sess.graph) tfwriter.close() self.sess.run( self.init ) except Exception as e: logger.error('Unable to create tensorflow ops flow \n{}'.format(str(e))) @lD.log(logBase + '.interpolate') def interpolate(logger, self, dx_T, dy_T, x, name='interpolate' ): try: with tf.variable_scope(name): with tf.variable_scope('neighbors'): delVals = dx_T - x ind_1 = tf.argmax(tf.sign( delVals )) ind_0 = ind_1 - 1 with tf.variable_scope('calculation'): value = tf.cond( x[0] <= dx_T[0], lambda : dy_T[:1], lambda : tf.cond( x[0] >= dx_T[-1], lambda : dy_T[-1:], lambda : (dy_T[ind_0] + \ (dy_T[ind_1] - dy_T[ind_0]) \ *(x-dx_T[ind_0])/ \ (dx_T[ind_1]-dx_T[ind_0])) )) result = tf.multiply(value[0], 1, name='y') return result except Exception as e: logger.error('Unable to interpolate \n{}'.format(str(e))) # @lD.log(logBase + '.dy') def dy(self, y, t): '''[summary] [description] Arguments: y {[type]} -- [description] t {[type]} -- [description] ''' try: rhs_results = self.sess.run( self.rhs_results, # options=self.options, run_metadata=self.run_metadata, feed_dict={ self.y_tf : np.array(y).reshape(self.Npat, -1), self.stress_val : np.array([interp(t) for interp in self.stressInterp]).reshape(self.Npat, -1), self.Aj : np.array([interp(t) for interp in self.AjInterp]).reshape(self.Npat, -1), self.Bj : np.array([interp(t) for interp in self.BjInterp]).reshape(self.Npat, -1) }) return rhs_results except Exception as e: # logger.error('Unable to get dy result \n{}'.format(str(e))) print('Unable to get dy result \n{}'.format(str(e))) @lD.log(logBase + '.solveY') def solveY(logger, self, y0, t, args, useJac=False, full_output=False): try: NNwts, NNb, NNact, Taus = args for i, (weights, bias, tau) in enumerate(zip(NNwts, NNb, Taus)): self.sess.run( self.NNwts_tf[i].assign(weights) ) self.sess.run( self.NNb_tf[i].assign(bias) ) self.sess.run( self.Taus_tf[i].assign(tau) ) jac = None if useJac: jac = self.jac start = time.time() result_dict = {} if full_output: y_t, result_dict = odeint(self.dy, y0, t, Dfun=jac, full_output=True, mxstep=50000) else: y_t = odeint(self.dy, y0, t, Dfun=jac, full_output=False) timespent = time.time() - start print('odeTime', timespent) # fetched_timeline = timeline.Timeline(self.run_metadata.step_stats) # chrome_trace = fetched_timeline.generate_chrome_trace_format() # with open('timeline_step.json', 'w') as f: # f.write(chrome_trace) # if useJac: # print('') return y_t, result_dict except Exception as e: logger.error('Unable to solve Y \n{}'.format(str(e)))
# -*- coding: utf-8 -*- import matplotlib.pyplot as plt import numpy as np ### 创建带有偏差的 y = 3x^2 -2 的数据 x = np.random.rand(100, 1) # 制作100个0到1的随机数 x = x * 4 - 2 # 值的范围变更为-2~2 y = 3 * x**2 - 2 # y = 3x^2 - 2 y += np.random.randn(100, 1) # 加上标准正态分布(均值0、标准偏差1)的随机数 ### 学习 from sklearn import linear_model model = linear_model.LinearRegression() model.fit(x**2, y) # 把x平方之后给出 ### 显示系统、截距和决定系数 print('系数', model.coef_) print('截距', model.intercept_) print('决定系数', model.score(x**2, y)) ### 显示图表 plt.scatter(x, y, marker ='+') plt.scatter(x, model.predict(x**2), marker='o') # 将x平方交给predict plt.show()
from collections import defaultdict class trienode(): def __init__(self, isleaf=False): self.isLeaf = isleaf self.mapping = defaultdict(trienode) def get_mapping(self): return self.mapping def is_leaf(self): return self.isLeaf class trie: def __init__(self, head=None): self.root = None self.trie_size = 0 def insert(self, value): curr = self.root if self.root == None: self.root = trienode() curr = self.root for token in value: if token in curr.get_mapping(): curr = curr.get_mapping()[token] else: curr.get_mapping()[token] = trienode() curr = curr.get_mapping()[token] curr.isLeaf = True self.trie_size = self.trie_size + 1 def search(self, value): if self.root == None: return False curr = self.root for token in value: if token not in curr.get_mapping(): return False else: curr = curr.get_mapping()[token] return curr.isLeaf def __dfs(self, start_char, next_link, helper, sugg): helper = helper + start_char if next_link.is_leaf(): sugg.append(helper) for k, v in next_link.get_mapping().items(): self.__dfs(k, v, helper, sugg) def suggestions(self, prefix): sugg = [] if self.root == None: return sugg curr = self.root for token in prefix: if token not in curr.get_mapping(): return sugg else: curr = curr.get_mapping()[token] helper = '' for key, val in curr.get_mapping().items(): self.__dfs(key, val, helper, sugg) for i in range(len(sugg)): sugg[i] = prefix + sugg[i] return sugg def size(self): return self.trie_size
import sys PATH = [ "src/comms/mqtt" ] for lib in PATH: sys.path.append(lib) import mqtt_net as mqtt # defining for test script if __name__ == '__main__': # Note: make sure you are reading values from a subscriber on the same board to see the result # Start a client mqtt_tx = mqtt.MQTTLink("ece180d/MEAT/general", user_id = 'Jack') message = { 'sender' : 'Jack', 'color' : (255, 0, 0), 'data' : 'This is a test message.', 'time' : { 'hour': 11, 'minute': 52, 'second': 0 }, 'emoji' : [1, 5] } mqtt_tx.send(message)
# coding: utf-8 # import the packages import numpy as np from scipy.misc import imread, imresize, imsave import matplotlib.pyplot as plt from numpy import matlib import math from scipy import stats import imageio from skimage.transform import resize import skimage import zlib, sys import gzip import matplotlib import scipy import copy # define a function to covert the image to a gray scale image def rgb2gray(rgb): return np.dot(rgb[...,:3], [0.299, 0.587, 0.114]) # define a function to get the proper Haar matrix and permutation matrix def GetHaarMatrices(N): Q = np.matrix("[1,1;1,-1]") M = int(N/2) T = np.kron(matlib.eye(M),Q)/np.sqrt(2) P = np.vstack((matlib.eye(N)[::2,:],matlib.eye(N)[1::2,:])) return T,P # reads in a jpeg image A = imageio.imread('image.jpg') # show the original image just read in plt.imshow(A, cmap = plt.get_cmap('gray')) plt.title("original image") plt.show() # resize the image(before apply gray scale function) as a 256 by 256 matrix A = skimage.transform.resize(A, [256, 256], mode='constant') # show the jpeg image in a figure plt.imshow(A, cmap = plt.get_cmap('gray')) plt.title("original image after resize") plt.show() # Apply the rgb2gray function to the image A = rgb2gray(A) # show the jpeg image in a figure plt.imshow(A, cmap = plt.get_cmap('gray')) plt.title("Gray-scale after resize") plt.show() # make a deep copy of resize&gray-scale image B = copy.deepcopy(A) # set size to 256 N = 256 # Doing full-level Encoding (Forward Haar Transform) for i in range(int(np.log2(N))): T,P = GetHaarMatrices(N) #print(T.shape) B[0:N, 0:N] = P*T*B[0:N, 0:N]*T.T*P.T N = int(N/2) # show the result of full-level encoding plt.figure() plt.imshow(B[127:256,127:256], cmap = plt.get_cmap('gray')) plt.title("Full-levelForward Haar Transform") plt.show() # print the info of B print(B) # make 2 deep copy of B X = copy.deepcopy(B) Y = copy.deepcopy(B) # convert X(2D numpy array) into 1D numpy array Y = Y.ravel() # print the shape of reshaped X print(Y.shape) # create a codebook to store the sign of the numpy array elements sign = np.ones(len(Y),) # set the positive 1 to -1 if the correspond element in X is negative for element in Y: if element < 0: element = -1 # print the sign codebook print(sign) # make a deep copy to X to get the threshold but not affect X Z = copy.deepcopy(Y) # sort the numpy array by its absolute value Z = np.sort(abs(Z)) # promopt to ask user what the top percent pixel will retain the same percent = input('How many percents of smallest elements you want to set to zero?') # define thresholding function to find the threshold def thresholding(source, percentage): index = 0 index = math.floor(len(source) * percentage / 100) threshold = source[index] return threshold # apply the thresholding function to find the threshold th th = thresholding(Z, int(percent)) print(th) # create an empty list to store the pixel which set to zeros data = [] # implementation of the threshold process to numpy array X for i in range(X.shape[0]): for j in range(X.shape[1]): if X[i][j] > th: continue else: data.append(X[i][j]) X[i][j] = 0 #print(len(data)) # show the image after apply to threshold plt.imshow(X[127:256,127:256], cmap = plt.get_cmap('gray')) plt.title("After Thresholding") plt.show() # print the matrix out the make sure A apply to the threshold function correctly print(X) # make a copy of image after thresholding as M M = copy.deepcopy(X) # read in M row by row, skip the element of 0 # and take binary log to the nonzero positive element # set only one element in each container def log_quantiz(inp): for i in range(inp.shape[0]): for j in range(inp.shape[1]): if inp[i][j] == 0: continue else: inp[i][j] = math.log2(inp[i][j]) # Apply log_quantiz function to M log_quantiz(M) # show the image after apply to log quantization plt.imshow(M[127:256,127:256], cmap = plt.get_cmap('gray')) plt.title("After Log-quantization") plt.show() #print(M) # make a copy of image after thresholding as N N = copy.deepcopy(M) # start of the lossless compression by using package # compress the image compressed_data = zlib.compress(N, 9) compress_ratio = float(sys.getsizeof(compressed_data))/sys.getsizeof(N) # print out the percent of lossless compression #print("Size before compress:", sys.getsizeof(N)) #print("Size after compress:", sys.getsizeof(compressed_data)) print("compress_ratio:", compress_ratio * 100, "%") # ---------------------------------------------------------------- # start of decompressed image # ---------------------------------------------------------------- # convert the lossless compressed image by using zlib decompressed_data = zlib.decompress(compressed_data) print(sys.getsizeof(decompressed_data)) # convert the bytes type to numpy array decompressed_data = np.frombuffer(decompressed_data) # to check that we won't loss any info since of compression and decompression print(decompressed_data == M.ravel()) # convert the 1D decompressed data into a 2D numpy array E E = np.reshape(decompressed_data, (256, 256)) # show the image before reverse log quantization plt.imshow(E[127:256,127:256], cmap = plt.get_cmap('gray')) plt.title("decompress the compressed data") plt.show() # reverse log quantization to E # make a deep copy of E as F F = copy.deepcopy(E) # read in F row by row, skip the element of 0 # and take binary power to the nonzero positive element # set only one element in each container def reverse_log_quantiz(inp): for i in range(inp.shape[0]): for j in range(inp.shape[1]): if inp[i][j] == 0: continue else: inp[i][j] = math.pow(2, inp[i][j]) # Apply reverse_log_quantiz function to M reverse_log_quantiz(F) # show the image after apply to reverse log quantization plt.imshow(F[127:256,127:256], cmap = plt.get_cmap('gray')) plt.title("reverse of log-quantization") plt.show() print(F) # reverse threshold to F # make a deep copy of F as G G = copy.deepcopy(F) # read in F row by row, find the min nonzero pixel # put the number from data codebook before apply thresholding function # in order to put the data back to nonzero def reverse_thresholding(source, preplacement): index = 0 for i in range(source.shape[0]): for j in range(source.shape[1]): if source[i][j] == 0: source[i][j] = data[index] index += 1 else: continue # Apply reverse thresholding function to M reverse_thresholding(G, data) # show the image after apply to reverse threshold plt.imshow(G[127:256,127:256], cmap = plt.get_cmap('gray')) plt.title("Reverse of Thresholding") plt.show() print(G) # make a deep copy of G J = copy.deepcopy(G) # get number of times of decoding and the starting point N = len(J) times = int(np.log2(N)) start = 2 # Doing full-level decoding (Backward Haar Transform) for i in range(times): T,P = GetHaarMatrices(start) J[0:start, 0:start] = T.T*P.T*J[0:start, 0:start]*P*T start = 2 * start # show the result of full-level decoding plt.figure() plt.imshow(J, cmap = plt.get_cmap('gray')) plt.show() # print the info of J print(J)
import numpy as np import pytest from numpy.testing import assert_almost_equal from sequgen.dimension import Dimension from sequgen.parameter_space import ParameterSpace from sequgen.samplers.sample_uniform_random import sample_uniform_random class TestParameterSpaceWithSinglePlainDimension: @pytest.fixture def space(self, random_seeded): return ParameterSpace( [Dimension('somename', -10, 10)], sample_uniform_random ) def test_repr(self, space: ParameterSpace): expected = "1-D parameter space with dimensions: 'somename'" assert repr(space) == expected def test_format_str(self, space: ParameterSpace): expected = 'somename={somename:.2f}' assert space.format_str() == expected def test_sample(self, space: ParameterSpace): result = space.sample() assert result.keys() == {'somename'} assert_almost_equal(result['somename'], np.array([-2.5091976])) def test_default_sampler(random_seeded): space = ParameterSpace([Dimension('somename', -10, 10)]) assert space.sampler == sample_uniform_random
""" Classes in this file are standalone because we don't want to impose a false hierarchy between two classes. That is, inheritance may imply a hierarchy that isn't real. """ class Settings(object): kExactTestBias = 1.0339757656912846e-25 kSmallEpsilon = 5.684341886080802e-14 kLargeEpsilon = 1e-07 SMALL_EPSILON = 5.684341886080802e-14 local_scratch = '/app/scratch' python = 'python' plink = "/srv/gsfs0/software/plink/1.90/plink" redis_uri = 'redis://hydra_redis:6379' class Commands(object): HELP = "HELP" INIT = "INIT" INIT_STATS = 'INIT_STATS' QC = "QC" PCA = "PCA" ECHO = "ECHO" ASSO = "ASSO" EXIT = "EXIT" all_commands = [HELP, INIT, QC, PCA, ASSO, EXIT] # used by v.1 interface commands_with_parms = [QC, PCA, ASSO] class Thresholds(object): # ECHO options ECHO_COUNTS = 20 # QC Options QC_hwe = 1e-10 QC_maf = 0.01 # PCA Options PCA_maf = 0.1 PCA_ld_window = 50 PCA_ld_threshold = 0.2 PCA_pcs = 10 # Association Options ASSO_pcs = 10 class Options(object): # HELP = Commands.HELP INIT = Commands.INIT QC = Commands.QC PCA = Commands.PCA ASSO = Commands.ASSO EXIT = Commands.EXIT HWE = "HWE" MAF = "MAF" MPS = "MPS" MPI = "MPI" SNP = "snp" LD = "LD" NONE = "NONE" class QCOptions(object): HWE = Options.HWE MAF = Options.MAF MPS = Options.MPS MPI = Options.MPI SNP = Options.SNP all_options = [HWE, MAF, MPS, MPI, SNP] class PCAOptions(object): HWE = Options.HWE MAF = Options.MAF MPS = Options.MPS MPI = Options.MPI SNP = Options.SNP LD = Options.LD NONE = Options.NONE all_options = [HWE, MAF, MPS, MPI, SNP, LD, NONE] class QCFilterNames(object): QC_HWE = Options.HWE QC_MAF = Options.MAF QC_MPS = Options.MPS QC_MPI = Options.MPI QC_snp = Options.SNP class PCAFilterNames(object): PCA_HWE = Options.HWE PCA_MAF = Options.MAF PCA_MPS = Options.MPS PCA_MPI = Options.MPI PCA_snp = Options.SNP PCA_LD = Options.LD PCA_NONE = Options.NONE external_host = "hydratest23.azurewebsites.net" class ServerHTTP(object): listen_host = '0.0.0.0' external_host = external_host#"localhost"#external_host#'hydraapp.azurewebsites.net'#"localhost"# port = '9001' max_content_length = 1024 * 1024 * 1024 # 1 GB wait_time = 0.5 # for the time.sleep() hacks class ClientHTTP(object): default_max_content_length = 1024 * 1024 * 1024 # 1 GB default_listen_host = '0.0.0.0' default_external_host = external_host#'hydraapp.azurewebsites.net' # "localhost"# clients = [{ 'name': 'Center1', 'listen_host': default_listen_host, 'external_host': default_external_host, 'port': 9002, 'max_content_length': default_max_content_length }, { 'name': 'Center2', 'listen_host': default_listen_host, 'external_host': default_external_host, 'port': 9003, 'max_content_length': default_max_content_length }, { 'name': 'Center3', 'listen_host': default_listen_host, 'external_host': default_external_host, 'port': 9004, 'max_content_length': default_max_content_length } ]
""" Common methods and constants """ UUID_PATTERN = r'[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}'
""" File: 405.py Title: Convert a Number to Hexadecimal Difficulty: Easy URL: https://leetcode.com/problems/convert-a-number-to-hexadecimal/ """ import unittest class Solution: def toHex(self, num: int) -> str: if num == 0: return "0" if num < 0: num = 0xffffffff + num + 1 hex_str = "" while True: d = num % 16 if d >= 10: hex_str = chr(ord('a') + (d - 10)) + hex_str else: hex_str = chr(ord('0') + d) + hex_str num //= 16 if num == 0: break return hex_str class SolutionTestCase(unittest.TestCase): def test_example1(self): # Input num = 26 # Output output = "1a" solution = Solution() self.assertEqual(solution.toHex(num), output) def test_example2(self): # Input num = -1 # Output output = "ffffffff" solution = Solution() self.assertEqual(solution.toHex(num), output) if __name__ == "__main__": unittest.main()
import numpy as np import sys import skimage.io as sio import os import sys import shutil from objloader import LoadTextureOBJ libpath = os.path.dirname(os.path.abspath(__file__)) sys.path.append(libpath + '/../lib') import render import objloader input_obj = sys.argv[1] V, F, VT, FT, VN, FN, face_mat, kdmap = objloader.LoadTextureOBJ(input_obj) # set up camera information info = {'Height':480, 'Width':640, 'fx':575, 'fy':575, 'cx':319.5, 'cy':239.5} render.setup(info) # set up mesh buffers in cuda context = render.SetMesh(V, F) cam2world = np.array([[ 0.85408425, 0.31617427, -0.375678 , 0.56351697 * 2], [ 0. , -0.72227067, -0.60786998, 0.91180497 * 2], [-0.52013469, 0.51917219, -0.61688 , 0.92532003 * 2], [ 0. , 0. , 0. , 1. ]], dtype=np.float32) world2cam = np.linalg.inv(cam2world).astype('float32') # the actual rendering process render.render(context, world2cam) # get depth information depth = render.getDepth(info) # get information of mesh rendering # vindices represents 3 vertices related to pixels # vweights represents barycentric weights of the 3 vertices # findices represents the triangle index related to pixels vindices, vweights, findices = render.getVMap(context, info) #Example: render texture based on the info, loop in python is inefficient, consider move to cpp uv = np.zeros((findices.shape[0], findices.shape[1], 3), dtype='float32') for j in range(2): uv[:,:,j] = 0 for k in range(3): vind = FT[findices][:,:,k] uv_ind = VT[vind][:,:,j] uv[:,:,j] += vweights[:,:,k] * uv_ind mask = np.sum(vweights, axis=2) > 0 mat = face_mat[findices] diffuse = np.zeros((findices.shape[0],findices.shape[1],3), dtype='uint8') for i in range(findices.shape[0]): for j in range(findices.shape[1]): if mask[i,j] == 0: diffuse[i,j,:] = 0 continue elif kdmap[mat[i,j]].shape == (1,1,3): diffuse[i,j,:] = kdmap[mat[i,j]][0,0] else: img = kdmap[mat[i,j]] x = uv[i,j,0] y = 1 - uv[i,j,1] x = x - int(x) y = y - int(y) while x >= 1: x -= 1 while x < 0: x += 1 while y >= 1: y -= 1 while y < 0: y += 1 #uv[i,j,0] = x #uv[i,j,1] = y x = x * (img.shape[1] - 1) y = y * (img.shape[0] - 1) px = int(x) py = int(y) rx = px + 1 ry = py + 1 if ry == img.shape[0]: ry -= 1 if rx == img.shape[1]: rx -= 1 wx = (x - px) wy = y - py albedo = (img[py,px,:] * (1 - wx) + img[py,rx,:] * wx) * (1 - wy) + (img[ry,px,:] * (1 - wx) + img[ry,rx,:]*wx) * wy diffuse[i,j,:] = albedo render.Clear() sio.imsave('../resources/depth.png', depth / np.max(depth)) sio.imsave('../resources/vweights.png', vweights) sio.imsave('../resources/diffuse.png', diffuse)
""" Module for working with modulemd YAML definitions with the least abstractions as possible. Within this module, modulemd YAMLs are represented simply as a string, and all transformation functions are `str` -> `str`. """ import os import gi import yaml # python3-packaging in not available in RHEL 8.x try: from packaging.version import Version except ModuleNotFoundError: from distutils.version import StrictVersion as Version gi.require_version("Modulemd", "2.0") from gi.repository import Modulemd # noqa: E402 def is_valid(mod_yaml): """ Determine whether the `mod_yaml` string is a valid modulemd YAML definition """ idx = Modulemd.ModuleIndex.new() try: ret, _ = idx.update_from_string(mod_yaml, strict=True) return ret except gi.repository.GLib.GError: return False def validate(mod_yaml): """ Same as `is_valid` but raises exception if the YAML is not valid. """ idx = Modulemd.ModuleIndex.new() try: ret, failures = idx.update_from_string(mod_yaml, strict=True) except gi.repository.GLib.GError as ex: raise RuntimeError(ex) if not ret: raise RuntimeError(failures[0].get_gerror().message) return ret def create(name, stream): """ Create a minimal modulemd YAML definition containing only a module name and module stream. To set any additional attributes, use `update` function. """ mod_stream = Modulemd.ModuleStreamV2.new(name, stream) mod_stream.set_summary("") mod_stream.set_description("") mod_stream.add_module_license("") index = Modulemd.ModuleIndex.new() index.add_module_stream(mod_stream) return index.dump_to_string() def update(mod_yaml, name=None, stream=None, version=None, context=None, arch=None, summary=None, description=None, module_licenses=None, content_licenses=None, rpms_nevras=None, requires=None, buildrequires=None, api=None, filters=None, profiles=None, components=None): """ Transform a given modulemd YAML string into another, updated one. The input string remains unchanged. This function allows to modify specified modulemd attributes while leaving the rest of them as is. For structured attributes, such as `module_licenses` which value is a list, new values are not appended to a list, but the new value is used instead. For the official documentation of the modulemd YAML format and it's values, please see https://github.com/fedora-modularity/libmodulemd/blob/main/yaml_specs/modulemd_stream_v2.yaml It will allow you to better understand the parameters of this function. Args: mod_yaml (str): An input modulelmd YAML name (str): The name of the module stream (str): Module update stream name version (int): Module version, integer, cannot be negative context (str): Module context flag arch (str): Module artifact architecture summary (str): A short summary describing the module description (str): A verbose description of the module module_licenses (list): A list of module licenses content_licenses (list): A list of licenses used by the packages in the module. rpms_nevras (list): RPM artifacts shipped with this module requires (dict): Module runtime dependencies represented as a `dict` of module names as keys and list of streams as their values. buildrequires (dict): Module buildtime dependencies represented as a `dict` of module names as keys and list of streams as their values. api (list): The module's public RPM-level API represented as a list of package names. filters (list): Module component filters represented as a list of pckage names. profiles (dict): A `dict` of profile names as keys and lists of package names as their values. components (list): Functional components of the module represented as a `dict` with package names as keys and `dict`s representing the particular components as keys. The component `dict` should contain keys like `name`, `rationale`, `repository`, etc. Returns: An updated modulemd YAML represented as string """ mod_stream = _yaml2stream(mod_yaml) name = name or mod_stream.get_module_name() stream = stream or mod_stream.get_stream_name() mod_stream = _modulemd_read_packager_string(mod_yaml, name, stream) if version: mod_stream.set_version(version) if context: mod_stream.set_context(context) if arch: mod_stream.set_arch(arch) if summary: mod_stream.set_summary(summary) if description: mod_stream.set_description(description) if module_licenses: mod_stream.clear_module_licenses() for module_license in module_licenses: mod_stream.add_module_license(module_license) if content_licenses: mod_stream.clear_content_licenses() for content_license in content_licenses: mod_stream.add_content_license(content_license) if rpms_nevras: mod_stream.clear_rpm_artifacts() for nevra in rpms_nevras: mod_stream.add_rpm_artifact(nevra) if api: mod_stream.clear_rpm_api() for rpm in api: mod_stream.add_rpm_api(rpm) if filters: mod_stream.clear_rpm_filters() for rpm in filters: mod_stream.add_rpm_filter(rpm) if profiles: mod_stream.clear_profiles() for profile_name, rpms in profiles.items(): profile = Modulemd.Profile.new(profile_name) for rpm in rpms: profile.add_rpm(rpm) mod_stream.add_profile(profile) if components: mod_stream.clear_rpm_components() for component in components: component_rpm = Modulemd.ComponentRpm.new(component.pop("name")) for key, value in component.items(): component_rpm.set_property(key, value) mod_stream.add_component(component_rpm) # Updating dependencies is quite messy because AFAIK the only operations # that `libmodoulemd` allows us to do is adding a runtime/buildtime # dependencies one be one and dropping all of them at once. # We need to help ourselves a little and drop all runtime dependencies and # re-populate them with the old ones if a new ones weren't set. Similarly # for buildrequires. old_deps = Modulemd.Dependencies() # Module can contain multiple pairs of dependencies. If we want to update # both `requires` and `buildrequires` at the same time, we can drop all # current dependencies and just set a new one. If we want to update only # one of them, we are getting to an ambiguous situation, not knowing what # pair of dependencies we should update. Let's just raise an exception. if (len(mod_stream.get_dependencies()) > 1 and (requires or buildrequires) and not (requires and buildrequires)): raise AttributeError("Provided YAML contains multiple pairs of " "dependencies. It is ambiguous which one to " "update.") if mod_stream.get_dependencies(): old_deps = mod_stream.get_dependencies()[0] new_deps = Modulemd.Dependencies() if requires: for depname, depstreams in requires.items(): for depstream in depstreams: new_deps.add_runtime_stream(depname, depstream) else: for depname in old_deps.get_runtime_modules(): for depstream in old_deps.get_runtime_streams(depname): new_deps.add_runtime_stream(depname, depstream) if buildrequires: for depname, depstreams in buildrequires.items(): for depstream in depstreams: new_deps.add_buildtime_stream(depname, depstream) else: for depname in old_deps.get_buildtime_modules(): for depstream in old_deps.get_buildtime_streams(depname): new_deps.add_buildtime_stream(depname, depstream) if requires or buildrequires: mod_stream.clear_dependencies() mod_stream.add_dependencies(new_deps) idx2 = Modulemd.ModuleIndex.new() idx2.add_module_stream(mod_stream) return idx2.dump_to_string() def upgrade(mod_yaml, version): """ Upgrade the input module YAML from an older version to a newer one. Downgrades aren't supported even in case where it would be possible. """ parsed = yaml.safe_load(mod_yaml or "") if not parsed or "version" not in parsed: raise ValueError("Missing modulemd version") supported = [1, 2] if parsed["version"] not in supported or version not in supported: raise ValueError("Unexpected modulemd version") if parsed["version"] > version: raise ValueError("Cannot downgrade modulemd version") mod_stream = _modulemd_read_packager_string( mod_yaml, parsed["data"].get("name", ""), parsed["data"].get("stream", "")) mod_stream_upgraded = _modulestream_upgrade_ext(mod_stream, version) return _stream2yaml(mod_stream_upgraded) def load(path): """ Load modulemd YAML definition from a file """ with open(path, "r") as yaml_file: mod_yaml = yaml_file.read() validate(mod_yaml) return mod_yaml def dump(mod_yaml, dest=None): """ Dump modulemd YAML definition into a file If `dest` is not specified, the file will be created in the current working directory and it's name is going to be generated from the module attributes in the `N:S:V:C:A.modulemd.yaml` format. If `dest` is a directory, then the file is going to be generated in that directory. If `dest` is pointing to a (nonexisting) file, it is going to be dumped in its place. """ filename = _generate_filename(mod_yaml) path = dest if not path: path = os.path.join(os.getcwd(), filename) elif os.path.isdir(path): path = os.path.join(dest, filename) with open(path, "w") as moduleyaml: moduleyaml.write(mod_yaml) def _generate_filename(mod_yaml): """ Generate filename for a module yaml """ mod_stream = _yaml2stream(mod_yaml) return "{N}:{S}:{V}:{C}:{A}.modulemd.yaml".format( N=mod_stream.get_module_name(), S=mod_stream.get_stream_name(), V=mod_stream.get_version(), C=mod_stream.get_context(), A=mod_stream.get_arch() or "noarch") def _yaml2stream(mod_yaml): try: return _modulemd_read_packager_string(mod_yaml) except gi.repository.GLib.GError as ex: raise ValueError(ex.message) def _stream2yaml(mod_stream): idx = Modulemd.ModuleIndex.new() idx.add_module_stream(mod_stream) try: return idx.dump_to_string() except gi.repository.GLib.GError as ex: raise RuntimeError(ex.message) def _modulemd_read_packager_string(mod_yaml, name=None, stream=None): """ For the time being we happen to be in a transition state when `Modulemd.ModuleStream.read_string` is deprecated and throws warnings on Fedora but we still use old libmodulemd (2.9.4) on RHEL8, which doesn't provide its replacement in the form of `Modulemd.read_packager_string`. """ if Version(Modulemd.get_version()) < Version("2.11"): mod_stream = Modulemd.ModuleStreamV2.new(name, stream) mod_stream = mod_stream.read_string(mod_yaml, True, name, stream) return mod_stream return Modulemd.read_packager_string(mod_yaml, name, stream) def _modulestream_upgrade_ext(mod_stream, version): """ For the time being we happen to be in a transition state when `Modulemd.ModuleStream.upgrade` is deprecated and throws warnings on Fedora but we still use old libmodulemd (2.9.4) on RHEL8, which doesn't provide its replacement in the form of `Modulemd.ModuleStream.upgrade_ext`. """ if Version(Modulemd.get_version()) < Version("2.10"): return mod_stream.upgrade(version) mod_upgraded = mod_stream.upgrade_ext(version) return mod_upgraded.get_stream_by_NSVCA( mod_stream.get_stream_name(), mod_stream.get_version(), mod_stream.get_context(), mod_stream.get_arch())
from unittest.mock import Mock from prices import Money, TaxedMoney from ....plugins.manager import PluginsManager from ....product.models import ProductVariant from ....product.utils.availability import get_variant_availability from ...tests.utils import get_graphql_content QUERY_GET_VARIANT_PRICING = """ query ($channel: String, $address: AddressInput) { products(first: 1, channel: $channel) { edges { node { variants { pricing(address: $address) { onSale discount { currency net { amount } } priceUndiscounted { currency net { amount } } price { currency net { amount } } } } } } } } """ def test_get_variant_pricing_on_sale(api_client, sale, product, channel_USD): price = product.variants.first().channel_listings.get().price sale_discounted_value = sale.channel_listings.get().discount_value discounted_price = price.amount - sale_discounted_value variables = {"channel": channel_USD.slug, "address": {"country": "US"}} response = api_client.post_graphql(QUERY_GET_VARIANT_PRICING, variables) content = get_graphql_content(response) pricing = content["data"]["products"]["edges"][0]["node"]["variants"][0]["pricing"] # ensure the availability was correctly retrieved and sent assert pricing # check availability assert pricing["onSale"] is True # check the discount assert pricing["discount"]["currency"] == price.currency assert pricing["discount"]["net"]["amount"] == discounted_price # check the undiscounted price assert pricing["priceUndiscounted"]["currency"] == price.currency assert pricing["priceUndiscounted"]["net"]["amount"] == price.amount # check the discounted price assert pricing["price"]["currency"] == price.currency assert pricing["price"]["net"]["amount"] == discounted_price def test_get_variant_pricing_not_on_sale(api_client, product, channel_USD): price = product.variants.first().channel_listings.get().price variables = {"channel": channel_USD.slug, "address": {"country": "US"}} response = api_client.post_graphql(QUERY_GET_VARIANT_PRICING, variables) content = get_graphql_content(response) pricing = content["data"]["products"]["edges"][0]["node"]["variants"][0]["pricing"] # ensure the availability was correctly retrieved and sent assert pricing # check availability assert pricing["onSale"] is False # check the discount assert pricing["discount"] is None # check the undiscounted price assert pricing["priceUndiscounted"]["currency"] == price.currency assert pricing["priceUndiscounted"]["net"]["amount"] == price.amount # check the discounted price assert pricing["price"]["currency"] == price.currency assert pricing["price"]["net"]["amount"] == price.amount def test_variant_pricing( variant: ProductVariant, monkeypatch, settings, stock, channel_USD ): taxed_price = TaxedMoney(Money("10.0", "USD"), Money("12.30", "USD")) monkeypatch.setattr( PluginsManager, "apply_taxes_to_product", Mock(return_value=taxed_price) ) product = variant.product product_channel_listing = product.channel_listings.get() variant_channel_listing = variant.channel_listings.get() pricing = get_variant_availability( variant=variant, variant_channel_listing=variant_channel_listing, product=product, product_channel_listing=product_channel_listing, collections=[], discounts=[], channel=channel_USD, ) assert pricing.price == taxed_price assert pricing.price_local_currency is None monkeypatch.setattr( "django_prices_openexchangerates.models.get_rates", lambda c: {"PLN": Mock(rate=2)}, ) settings.DEFAULT_COUNTRY = "PL" settings.OPENEXCHANGERATES_API_KEY = "fake-key" pricing = get_variant_availability( variant=variant, variant_channel_listing=variant_channel_listing, product=product, product_channel_listing=product_channel_listing, collections=[], discounts=[], channel=channel_USD, local_currency="PLN", country="US", ) assert pricing.price_local_currency.currency == "PLN" # type: ignore pricing = get_variant_availability( variant=variant, variant_channel_listing=variant_channel_listing, product=product, product_channel_listing=product_channel_listing, collections=[], discounts=[], channel=channel_USD, ) assert pricing.price.tax.amount assert pricing.price_undiscounted.tax.amount assert pricing.price_undiscounted.tax.amount
# -*- coding: utf-8 -*- import pandas as pd from windpyplus.utils.tradedate import tradedate from windpyplus.stockSector.StockSector import allAstock, MSCIAStock from windpyplus.fundamental.foreCastWind import foreCastWind from windpyplus.utils.convertToWindCode import convertBQCode, convertCode from windpyplus.utils.dfToExcel import dftoSameWorkbook, dfToExcel from windpyplus.fundamental.valucation import valucationWind from windpyplus.fundamental.fundamentalWind import financialDataWind, netProfit_filter, ROE_filter, growth_filter, cashFlow_filter, multi_filter allastocks = list(allAstock().index.values) def fiter_ForecastValucation(qt = '20170930', CHG_MIN= 7): allastocks = list(allAstock().index.values) df = foreCastWind(allastocks, qt) df = df[df['PROFITNOTICE_CHANGEMEAN'] > CHG_MIN] print(df.head(10)) stocklists = df.index.values df_V = valucationWind(stocklists) print(df_V.head(10)) df_f = pd.merge(df_V,df, how='left') dfToExcel(df_f, "filter_valucation_forecast_"+ str(qt)+"_"+ str(CHG_MIN)) print('num of filter_forecastValucation : {}'.format(df_f)) return df_f if __name__ == '__main__': print(tradedate()) df = fiter_ForecastValucation(qt= '20170930',CHG_MIN= 30) #stocks_muiltfilter = multi_filter(list(df.index.values), ) #df = financialDataWind(stocks_muiltfilter) #print(df)
#!/usr/bin/env python # Copyright 2017 Open Source Robotics Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import rospy from simulation.msg import Control from sensor_msgs.msg import Joy STEERING_AXIS = 0 THROTTLE_AXIS = 4 class Translator: def __init__(self): self.sub = rospy.Subscriber("joy", Joy, self.callback) self.pub = rospy.Publisher('prius', Control, queue_size=1) self.last_published_time = rospy.get_rostime() self.last_published = None self.timer = rospy.Timer(rospy.Duration(1./20.), self.timer_callback) def timer_callback(self, event): if self.last_published and self.last_published_time < rospy.get_rostime() + rospy.Duration(1.0/20.): self.callback(self.last_published) def callback(self, message): rospy.logdebug("joy_translater received axes %s",message.axes) command = Control() command.header = message.header if message.axes[THROTTLE_AXIS] >= 0: command.throttle = message.axes[THROTTLE_AXIS] command.brake = 0.0 else: command.brake = message.axes[THROTTLE_AXIS] * -1 command.throttle = 0.0 if message.buttons[3]: command.shift_gears = Control.FORWARD elif message.buttons[1]: command.shift_gears = Control.NEUTRAL elif message.buttons[0]: command.shift_gears = Control.REVERSE else: command.shift_gears = Control.NO_COMMAND command.steer = message.axes[STEERING_AXIS] self.last_published = message self.pub.publish(command) if __name__ == '__main__': rospy.init_node('joy_translator') t = Translator() rospy.spin()
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: consensus_submit_message.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() import basic_types_pb2 as basic__types__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='consensus_submit_message.proto', package='proto', syntax='proto3', serialized_options=b'\n\"com.hederahashgraph.api.proto.javaP\001', create_key=_descriptor._internal_create_key, serialized_pb=b'\n\x1e\x63onsensus_submit_message.proto\x12\x05proto\x1a\x11\x62\x61sic_types.proto\"n\n\x19\x43onsensusMessageChunkInfo\x12\x32\n\x14initialTransactionID\x18\x01 \x01(\x0b\x32\x14.proto.TransactionID\x12\r\n\x05total\x18\x02 \x01(\x05\x12\x0e\n\x06number\x18\x03 \x01(\x05\"\x8e\x01\n%ConsensusSubmitMessageTransactionBody\x12\x1f\n\x07topicID\x18\x01 \x01(\x0b\x32\x0e.proto.TopicID\x12\x0f\n\x07message\x18\x02 \x01(\x0c\x12\x33\n\tchunkInfo\x18\x03 \x01(\x0b\x32 .proto.ConsensusMessageChunkInfoB&\n\"com.hederahashgraph.api.proto.javaP\x01\x62\x06proto3' , dependencies=[basic__types__pb2.DESCRIPTOR,]) _CONSENSUSMESSAGECHUNKINFO = _descriptor.Descriptor( name='ConsensusMessageChunkInfo', full_name='proto.ConsensusMessageChunkInfo', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='initialTransactionID', full_name='proto.ConsensusMessageChunkInfo.initialTransactionID', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='total', full_name='proto.ConsensusMessageChunkInfo.total', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='number', full_name='proto.ConsensusMessageChunkInfo.number', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=60, serialized_end=170, ) _CONSENSUSSUBMITMESSAGETRANSACTIONBODY = _descriptor.Descriptor( name='ConsensusSubmitMessageTransactionBody', full_name='proto.ConsensusSubmitMessageTransactionBody', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='topicID', full_name='proto.ConsensusSubmitMessageTransactionBody.topicID', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='message', full_name='proto.ConsensusSubmitMessageTransactionBody.message', index=1, number=2, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b"", message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='chunkInfo', full_name='proto.ConsensusSubmitMessageTransactionBody.chunkInfo', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=173, serialized_end=315, ) _CONSENSUSMESSAGECHUNKINFO.fields_by_name['initialTransactionID'].message_type = basic__types__pb2._TRANSACTIONID _CONSENSUSSUBMITMESSAGETRANSACTIONBODY.fields_by_name['topicID'].message_type = basic__types__pb2._TOPICID _CONSENSUSSUBMITMESSAGETRANSACTIONBODY.fields_by_name['chunkInfo'].message_type = _CONSENSUSMESSAGECHUNKINFO DESCRIPTOR.message_types_by_name['ConsensusMessageChunkInfo'] = _CONSENSUSMESSAGECHUNKINFO DESCRIPTOR.message_types_by_name['ConsensusSubmitMessageTransactionBody'] = _CONSENSUSSUBMITMESSAGETRANSACTIONBODY _sym_db.RegisterFileDescriptor(DESCRIPTOR) ConsensusMessageChunkInfo = _reflection.GeneratedProtocolMessageType('ConsensusMessageChunkInfo', (_message.Message,), { 'DESCRIPTOR' : _CONSENSUSMESSAGECHUNKINFO, '__module__' : 'consensus_submit_message_pb2' # @@protoc_insertion_point(class_scope:proto.ConsensusMessageChunkInfo) }) _sym_db.RegisterMessage(ConsensusMessageChunkInfo) ConsensusSubmitMessageTransactionBody = _reflection.GeneratedProtocolMessageType('ConsensusSubmitMessageTransactionBody', (_message.Message,), { 'DESCRIPTOR' : _CONSENSUSSUBMITMESSAGETRANSACTIONBODY, '__module__' : 'consensus_submit_message_pb2' # @@protoc_insertion_point(class_scope:proto.ConsensusSubmitMessageTransactionBody) }) _sym_db.RegisterMessage(ConsensusSubmitMessageTransactionBody) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
from tkinter import * from videomaker.functions.startThread import startThread def initButton(focus): focus.startButton = Button(focus.master, text="Start!", width=42, height=5, command= lambda: startThread(focus)) # Cant make the text bigger or bolder without distorting the size of the button, even if the button is larger, the text is still # proportionate with the button focus.startButton.place(x=750, y=400)
from Runner import Runner from Scheduler import Scheduler from model import Player, PlayerHadouken def main(): runner = Runner( players=( Player(0), ), state='ryu_vs_ken_highest_difficulty' ) scheduler = Scheduler(runner.on_frame, fps=40) scheduler.run() if __name__ == '__main__': main()
'''OpenGL extension OES.fbo_render_mipmap This module customises the behaviour of the OpenGL.raw.GLES2.OES.fbo_render_mipmap to provide a more Python-friendly API Overview (from the spec) OES_framebuffer_object allows rendering to the base level of a texture only. This extension removes this limitation by allowing implementations to support rendering to any mip-level of a texture(s) that is attached to a framebuffer object(s). If this extension is supported, FramebufferTexture2DOES, and FramebufferTexture3DOES can be used to render directly into any mip level of a texture image The official definition of this extension is available here: http://www.opengl.org/registry/specs/OES/fbo_render_mipmap.txt ''' from OpenGL import platform, constant, arrays from OpenGL import extensions, wrapper import ctypes from OpenGL.raw.GLES2 import _types, _glgets from OpenGL.raw.GLES2.OES.fbo_render_mipmap import * from OpenGL.raw.GLES2.OES.fbo_render_mipmap import _EXTENSION_NAME def glInitFboRenderMipmapOES(): '''Return boolean indicating whether this extension is available''' from OpenGL import extensions return extensions.hasGLExtension( _EXTENSION_NAME ) ### END AUTOGENERATED SECTION
from abc import ABC, abstractmethod from ungenetico.gene import Gene #from ungenetico.ga import GeneticAlgorithm from ungenetico.population import Population import random from dataclasses import dataclass from itertools import accumulate import copy import numpy as np class Mutation(ABC): """Abstract class""" @abstractmethod def mutate(self, gen: Gene, ag): pass class Crossover(ABC): """Abstract class""" @abstractmethod def exchange(self, gen1: Gene, gen2: Gene, ag): pass class Probability(ABC): """Abstract class""" @abstractmethod def assign_probability(self, pop: Population, ag): pass class Selection(ABC): """Abstract class""" @abstractmethod def select(self, pop: Population, ag): pass class Pairing(ABC): """Abstract class""" @abstractmethod def match(self, pop: Population, ag): pass class Reproduction(ABC): """Abstract class""" @abstractmethod def reproduce(self, pop: Population, ag): pass class MutationUniform(Mutation): def mutate(self, gen: Gene, ag): """ :param gen: :param ag: :return: """ gen.value = [random.uniform(gen.min_val, gen.max_val) for _ in range(gen.length)] @dataclass class MutationNotUniform(Mutation): b: float = 0.5 def mutate(self, gen: Gene, ag): """ Parameters ---------- gen ag Returns ------- """ t = ag.generation tmax = ag.generation_max values = [None]*gen.length for i in range(gen.length): beta = random.randint(0, 1) r = random.uniform(0, 1) delta = (gen.max_val-gen.value[i]) * (1 - r**(1-t/tmax)**self.b) if beta == 0: value = gen.value[i] + delta else: value = gen.value[i] - delta values[i] = value gen.value = values class CrossoverSimple(Crossover): def exchange(self, gen1: Gene, gen2: Gene, ag): return gen2.value, gen1.value class CrossoverRandom(Crossover): def exchange(self, gen1: Gene, gen2: Gene, ag): child1 = [None]*gen1.length child2 = [None]*gen1.length for i in range(gen1.length): child1[i] = random.uniform(gen1.value[i], gen2.value[i]) child2[i] = random.uniform(gen1.value[i], gen2.value[i]) return child1, child2 @dataclass class CrossoverArithmetic(Crossover): alpha: float = 0.7 def exchange(self, gen1: Gene, gen2: Gene, ag): child1 = [None]*gen1.length child2 = [None]*gen1.length for i in range(gen1.length): child1[i] = self.alpha*gen1.value[i] + (1-self.alpha)*gen2.value[i] child2[i] = self.alpha*gen2.value[i] + (1-self.alpha)*gen1.value[i] return child1, child2 @dataclass class CrossoverBLX(Crossover): alpha: float = 0.7 def exchange(self, gen1: Gene, gen2: Gene, ag): child1 = [None]*gen1.length child2 = [None]*gen1.length for i in range(gen1.length): cmin = min(gen1.value[i], gen2.value[i]) cmax = max(gen1.value[i], gen2.value[i]) d = cmax-cmin child1[i] = random.uniform(cmin - d*self.alpha, cmax + d*self.alpha) child2[i] = random.uniform(cmin - d*self.alpha, cmax + d*self.alpha) return child1, child2 class ProbabilityUniform(Probability): def assign_probability(self, pop: Population, ag): prob = 1/pop.size for ind in pop.population: ind.survival_probability = prob class ProbabilityProportional(Probability): def assign_probability(self, pop: Population, ag): ga_min = ag.objective_min sov_max = sum([ind.objective_value + (1-ga_min) for ind in pop.population]) sov_min = sum([1/(ind.objective_value + (1 - ga_min)) for ind in pop.population]) if ag.optimization == 'maximization': for ind in pop.population: ind.survival_probability = (ind.objective_value + (1-ga_min)) / sov_max else: for ind in pop.population: ind.survival_probability = (1/(ind.objective_value + (1-ga_min))) / sov_min class ProbabilityLineal(Probability): def assign_probability(self, pop: Population, ag): n = pop.size if ag.optimization == 'maximization': pop.sort_population('descending', 'objective_value') else: pop.sort_population('ascending', 'objective_value') for i in range(n): pop.population[i].survival_probability = 2*(n-i) / (n*(n+1)) class SelectionStochastic(Selection): def select(self, pop: Population, ag): pop.sort_population('descending', 'survival_probability') prob = [ind.survival_probability for ind in pop.population] angle = list(accumulate(prob)) new_population = Population() for i in range(pop.size): roulette = random.uniform(0, 1) pos = len([1 for jind in angle if roulette >= jind]) new_population.append_individual(copy.deepcopy(pop.population[pos])) pop.population = new_population.population class PairingRandom(Pairing): def match(self, pop: Population, ag): pop.parents = random.sample(range(pop.size), pop.size) class PairingAdjacent(Pairing): def match(self, pop: Population, ag): n = list(range(1, pop.size)) n.append(pop.size-1) pop.partners = n class PairingExtremes(Pairing): def match(self, pop: Population, ag): pop.partners = list(range(pop.size-1, -1, -1)) class ReproductionSimple(Reproduction): def reproduce(self, pop: Population, ag): for ind in pop.population: ind.paired = False for index in range(pop.size): parent1 = pop.population[index] parent2 = pop.population[pop.partners[index]] if not parent1.paired and not parent2.paired: parent1.paired = True parent2.paired = True exchange_point = random.randint(0, len(parent1.genome)) for i in range(exchange_point, len(parent1.genome)): parent1.genome[i].value, parent2.genome[i].value = parent1.genome[i].exchange(parent2.genome[i], ag) class ReproductionTwoParentsTwoChildren(Reproduction): def reproduce(self, pop: Population, ag): for ind in pop.population: ind.paired = False for index in range(pop.size): parent1 = pop.population[index] parent2 = pop.population[pop.partners[index]] if not parent1.paired and not parent2.paired: parent1.paired = True parent2.paired = True for i in range(len(parent1.genome)): parent1.genome[i].value, parent2.genome[i].value = parent1.genome[i].exchange(parent2.genome[i], ag) class ReproductionBestParentBestChild(Reproduction): def reproduce(self, pop: Population, ag): for ind in pop.population: ind.paired = False for index in range(pop.size): parent1 = pop.population[index] parent2 = pop.population[pop.partners[index]] if not parent1.paired and not parent2.paired: parent1.paired = True parent2.paired = True child1 = copy.deepcopy(parent1) child2 = copy.deepcopy(parent2) for i in range(len(parent1.genome)): child1.genome[i].value, child2.genome[i].value = parent1.genome[i].exchange(parent2.genome[i], ag) parent1.calculate_objective_function(ag.objective_function) parent2.calculate_objective_function(ag.objective_function) child1.calculate_objective_function(ag.objective_function) child2.calculate_objective_function(ag.objective_function) if ag.optimization == 'maximization': if parent2.objective_value > parent1.objective_value: #pop.population[index] = copy.deepcopy(parent2) pop.population[index] = parent2 if child1.objective_value > child2.objective_value: pop.population[pop.partners[index]] = child1 else: pop.population[pop.partners[index]] = child2 else: if parent2.objective_value < parent1.objective_value: # pop.population[index] = copy.deepcopy(parent2) pop.population[index] = parent2 if child1.objective_value < child2.objective_value: pop.population[pop.partners[index]] = child1 else: pop.population[pop.partners[index]] = child2 class ReproductionBestBetweenParentsChildren(Reproduction): def reproduce(self, pop: Population, ag): for ind in pop.population: ind.paired = False for index in range(pop.size): parent1 = pop.population[index] parent2 = pop.population[pop.partners[index]] if not parent1.paired and not parent2.paired: parent1.paired = True parent2.paired = True child1 = copy.deepcopy(parent1) child2 = copy.deepcopy(parent2) for i in range(len(parent1.genome)): child1.genome[i].value, child2.genome[i].value = parent1.genome[i].exchange(parent2.genome[i], ag) parent1.calculate_objective_function(ag.objective_function) parent2.calculate_objective_function(ag.objective_function) child1.calculate_objective_function(ag.objective_function) child2.calculate_objective_function(ag.objective_function) group = [parent1, parent2, child1, child2] obj_vals = np.array([parent1.objective_value, parent2.objective_value, child1.objective_value, child2.objective_value]) arg_obj_vals = np.argsort(obj_vals) if ag.optimization == 'maximization': pop.population[index] = group[arg_obj_vals[-1]] pop.population[pop.partners[index]] = group[arg_obj_vals[-2]] else: pop.population[index] = group[arg_obj_vals[0]] pop.population[pop.partners[index]] = group[arg_obj_vals[1]]