content
stringlengths
5
1.05M
from builtins import print import numpy as np import pandas as pd import matplotlib import random matplotlib.use('agg') import matplotlib.pyplot as plt matplotlib.rcParams['font.family'] = 'sans-serif' matplotlib.rcParams['font.sans-serif'] = 'Arial' import os from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.preprocessing import LabelEncoder def check_if_file_exits(file_name): return os.path.exists(file_name) def create_directory(directory_path): if os.path.exists(directory_path): return None else: try: os.makedirs(directory_path) except: # in case another machine created the path meanwhile !:( return None return directory_path def calculate_metrics(y_true, y_pred, duration): res = pd.DataFrame(data=np.zeros((1, 4), dtype=np.float), index=[0], columns=['precision', 'accuracy', 'recall', 'duration']) res['precision'] = precision_score(y_true, y_pred, average='macro') res['accuracy'] = accuracy_score(y_true, y_pred) res['recall'] = recall_score(y_true, y_pred, average='macro') res['duration'] = duration return res def save_test_duration(file_name, test_duration): res = pd.DataFrame(data=np.zeros((1, 1), dtype=np.float), index=[0], columns=['test_duration']) res['test_duration'] = test_duration res.to_csv(file_name, index=False) def plot_epochs_metric(hist, file_name, metric='loss'): plt.figure() plt.plot(hist.history[metric]) plt.plot(hist.history['val_' + metric]) plt.title('model ' + metric) plt.ylabel(metric, fontsize='large') plt.xlabel('epoch', fontsize='large') plt.legend(['train', 'val'], loc='upper left') plt.savefig(file_name, bbox_inches='tight') plt.close() def save_logs(output_directory, hist, y_pred, y_true, duration, lr=True, plot_test_acc=True): hist_df = pd.DataFrame(hist.history) hist_df.to_csv(output_directory + 'history.csv', index=False) df_metrics = calculate_metrics(y_true, y_pred, duration) df_metrics.to_csv(output_directory + 'df_metrics.csv', index=False) index_best_model = hist_df['loss'].idxmin() row_best_model = hist_df.loc[index_best_model] df_best_model = pd.DataFrame(data=np.zeros((1, 6), dtype=np.float), index=[0], columns=['best_model_train_loss', 'best_model_val_loss', 'best_model_train_acc', 'best_model_val_acc', 'best_model_learning_rate', 'best_model_nb_epoch']) df_best_model['best_model_train_loss'] = row_best_model['loss'] if plot_test_acc: df_best_model['best_model_val_loss'] = row_best_model['val_loss'] df_best_model['best_model_train_acc'] = row_best_model['acc'] if plot_test_acc: df_best_model['best_model_val_acc'] = row_best_model['val_acc'] if lr == True: df_best_model['best_model_learning_rate'] = row_best_model['lr'] df_best_model['best_model_nb_epoch'] = index_best_model df_best_model.to_csv(output_directory + 'df_best_model.csv', index=False) if plot_test_acc: # plot losses plot_epochs_metric(hist, output_directory + 'epochs_loss.png') return df_metrics
import math import gmpy2 # How many you want to find MAX_COUNT = 500 K_COUNT = 3.7 # d = 1000 yields ~264 #for parallel C++ K_COST = 4.14 * 1e-11 # d = 5000 takes ~400s K_FILTER_COST = 1.0 * 1e-9 # d = 5000, sieve = 30M takes 10.3s def optimal_sieve(d, expected_cost): non_trivial_a_b = d * 23 # removes 2, 3, 5, expected_after_sieve = non_trivial_a_b sieve_cost = 0 best_cost = expected_cost + 1.0 prime_pi = 3 current_prime = gmpy2.mpz(5) while True: if current_prime < 1e5: group_size = 1 current_prime = int(gmpy2.next_prime(current_prime)) else: # do groups of primes at the same time group_size = int(current_prime / 10000) current_prime += group_size * math.log(current_prime) prime_pi += group_size filter_rate = (1 - (0.99 / current_prime)) ** group_size expected_after_sieve *= filter_rate calc_cost = group_size * d * K_FILTER_COST sieve_cost += calc_cost filter_ratio = expected_after_sieve / non_trivial_a_b new_cost = sieve_cost + filter_ratio * expected_cost if new_cost > best_cost: break best_cost = new_cost return (sieve_cost, expected_cost * filter_ratio, int(current_prime), prime_pi, int(expected_after_sieve)) def cost_test_d(d): log_d = d * math.log(10) # log_a is trivial compared to log_d log_num = log_d # + log_a # In theory log_num ^ 2 # In practice log_num ^ 2.3 d_cost = log_num ** 2.3 d_count = 1 / log_num # 24 a,b pairs are valid t_cost = 24 * K_COST * d_cost t_count = 24 * K_COUNT * d_count return t_cost, t_count def maybe_M(n): if n < 1e7: return n if n < 1e9: return "{:.1f}M".format(n / 1e6) if n < 1e12: return "{:.1f}B".format(n / 1e9) return "{:.1f}T".format(n / 1e12) def maybe_H(n): if n < 3 * 3600: return "{:.1f} seconds".format(n) if n < 2 * 86400: return "{:.1f} hours".format(n / 3600.0) if n < 365 * 86400: return "{:.1f} days".format(n / 86400.0) return "{:.1f} years".format(n / 86400.0 / 365.0) expected_count = 170 # count below a googol expected_cost = 0 last_print_count = 0 # paired with expected_count = 170 this helps with the initial # not-quite-so normal zone of the function. d = 100 while expected_count < MAX_COUNT: mult = 1 if d < 1000 else int(math.sqrt(d)) t_cost, t_count = cost_test_d(d) expected_cost += mult * t_cost expected_count += mult * t_count if int(expected_count) > int(last_print_count): sieve_cost, post_sieve_cost, sieve_limit, prime_pi, to_check = \ optimal_sieve(d, expected_cost) sieve_stats = "optimal sieve: PrimePi({}) ~= {}, leaves {} cost ~~{}".format( maybe_M(sieve_limit), maybe_M(prime_pi), to_check, maybe_H(sieve_cost)) print ("expect {:.0f} around 10^{} ({}) cost: ~~{}".format( expected_count, d, sieve_stats, maybe_H(post_sieve_cost))) last_print_count = expected_count d += mult
import logging from django.test import TestCase from rest_framework.request import Request from django_drf_filepond.uploaders import FilepondStandardFileUploader from rest_framework.exceptions import ParseError from django.core.files.uploadedfile import InMemoryUploadedFile from django_drf_filepond.utils import _get_file_id from django.contrib.auth.models import AnonymousUser from django_drf_filepond.models import TemporaryUpload from django_drf_filepond.renderers import PlainTextRenderer from tests.utils import _setupRequestData # Python 2/3 support try: from unittest.mock import MagicMock except ImportError: from mock import MagicMock LOG = logging.getLogger(__name__) # # This test class tests the functionality of the FilepondStandardFileUploader # class in the uploaders module. This class handles uploads of files that are # not chunked and are received in a single block. # # test_handle_valid_file_upload: Check that when we call handle_upload with # a valid set of parameters, the file is stored as a TemporaryUpload and # we get a response back with the upload_id that we can use to verify # that the TemporaryUpload has been stored. # # test_handle_file_upload_invalid_upload_id: Check that when we call # handle_upload with an invalid upload_id (one that doesn't meet the spec # of being 22 characters in length) that we get an error generated. # # test_handle_file_upload_invalid_file_id: Check that when we call # handle_upload with an invalid upload_id (one that doesn't meet the spec # of being 22 characters in length) that we get an error generated. # # test_handle_file_upload_invalid_file_obj: Check that we get an error when # we try to call handle_upload with a request that doesn't contain a valid # FileUpload object. # # test_handle_file_upload_mising_file_obj: Check that we get an error when # we try to call handle_upload with a request that doesn't contain the # required key for the file upload data/object (raised from _get_file_obj) # class UploadersFileStandardTestCase(TestCase): def setUp(self): self.file_id = _get_file_id() self.upload_id = _get_file_id() self.file_name = 'my_uploaded_file.txt' self.request = MagicMock(spec=Request) self.request.user = AnonymousUser() file_obj = MagicMock(spec=InMemoryUploadedFile) file_obj.name = self.file_name self.request.data = _setupRequestData({'filepond': ['{}', file_obj]}) self.uploader = FilepondStandardFileUploader() def test_handle_valid_file_upload(self): r = self.uploader.handle_upload(self.request, self.upload_id, self.file_id) self.assertEqual(r.status_code, 200, 'Response status code is invalid') self.assertEqual(r.data, self.upload_id, 'Response data is invalid') tu = TemporaryUpload.objects.get(upload_id=self.upload_id) self.assertEqual(tu.file_id, self.file_id, 'The TemporaryUpload stored file_id is not correct.') self.assertEqual(tu.upload_name, self.file_name, 'The TemporaryUpload upload_name is not correct.') def test_handle_file_upload_invalid_upload_id(self): r = self.uploader.handle_upload(self.request, 'dfsdfsd', self.file_id) # Add relevant properties to the response so it can be rendered. r.accepted_renderer = PlainTextRenderer() r.accepted_media_type = 'text/plain' r.renderer_context = {} self.assertContains(r, 'Invalid ID for handling upload.', status_code=500) def test_handle_file_upload_invalid_file_id(self): r = self.uploader.handle_upload(self.request, self.upload_id, 'dfsdfs') # Add relevant properties to the response so it can be rendered. r.accepted_renderer = PlainTextRenderer() r.accepted_media_type = 'text/plain' r.renderer_context = {} self.assertContains(r, 'Invalid ID for handling upload.', status_code=500) def test_handle_file_upload_invalid_file_obj(self): self.request.data = _setupRequestData( {'filepond': ['{}', 'This is a test'.encode()]}) # When run through DRF, the ParseError raised by handle_upload would # be captured and converted into a 400 response. Here we have to # capture the ParseError directly to check that this is working. with self.assertRaisesMessage( ParseError, 'Invalid data type has been parsed.'): self.uploader.handle_upload(self.request, self.upload_id, self.file_id) def test_handle_file_upload_mising_file_obj(self): self.request.data = _setupRequestData( {'notfilepond': ['{}', 'This is a test'.encode()]}) # When run through DRF, the ParseError raised by handle_upload would # be captured and converted into a 400 response. Here we have to # capture the ParseError directly to check that this is working. with self.assertRaisesMessage( ParseError, 'Invalid request data has been provided.'): self.uploader.handle_upload(self.request, self.upload_id, self.file_id)
import torch from utils.rnns import (mean_pooling, max_pooling, gather_last) import torch.nn as nn from torch.nn import LSTM, LSTMCell, Linear, Parameter class MeanPoolingLayer(torch.nn.Module): def __init__(self): super(MeanPoolingLayer, self).__init__() def forward(self, batch_hidden_states, video_fea, lengths, **kwargs): return mean_pooling(batch_hidden_states, lengths) class MaxPoolingLayer(torch.nn.Module): def __init__(self): super(MaxPoolingLayer, self).__init__() def forward(self, batch_hidden_states,video_fea , lengths, **kwargs): return max_pooling(batch_hidden_states, lengths) class GatherLastLayer(torch.nn.Module): def __init__(self, bidirectional=True): super(GatherLastLayer, self).__init__() self.bidirectional = bidirectional def forward(self, batch_hidden_states, video_fea , lengths, **kwargs): return gather_last(batch_hidden_states, lengths, bidirectional=self.bidirectional) class GatherFirstLayer(torch.nn.Module): def __init__(self): super(GatherFirstLayer, self).__init__() def forward(self, batch_hidden_states,video_fea , lengths, **kwargs): return batch_hidden_states[:,0,:]
# © its-leo-bitch from bot import bot from bot.utils import langs, lang_names from pyrogram import types, errors from piston import Piston import asyncio import time piston = Piston() execute = {} NEXT_OFFSET = 25 @bot.on_inline_query() async def inline_exec(client, query): string = query.query offset = int(query.offset or 0) answers = [] if string == '': for l in langs[offset: offset + NEXT_OFFSET]: answers.append( types.InlineQueryResultArticle( title=l.language, description=l.version or None, input_message_content=types.InputTextMessageContent( "**Language:** `{}`{}\nPress the button below to Execute your code:".format( l.language, '\n**Version:** `{}`'.format(l.version) or '' ) ), reply_markup=types.InlineKeyboardMarkup( [ [ types.InlineKeyboardButton( 'Execute', switch_inline_query_current_chat=l.language + " " ) ] ] ) ) ) elif string.split()[0] in lang_names: if len(string.split()) == 1: await client.answer_inline_query( query.id, results=answers, switch_pm_text=f'Give a code to Excute in {string.split()[0]}', switch_pm_parameter='help_inline', ) return source = string.split(None, 1)[1] start_time = time.time() for l in langs: if string.split()[0] == l.language: out = await piston.execute( language=string.split()[0], version=l.version, source=source ) try: msg = f"**Language:** `{out.language}-{out.version}`\n\n**Code:**\n```{source}```\n\n" if out.run: msg += f"**Output:**\n```{out.run.output}```\n\n" answers.append( types.InlineQueryResultArticle( "Output:", description=out.run.stdout or out.run.stderr, input_message_content=types.InputTextMessageContent( msg, parse_mode='markdown' ), reply_markup=types.InlineKeyboardMarkup( [ [ types.InlineKeyboardButton( 'stats', callback_data=f'stats-{start_time}-{time.time()}' ) ], [ types.InlineKeyboardButton( 'Fork', switch_inline_query_current_chat=f'{out.language} {source}' ), types.InlineKeyboardButton( 'Try Again', switch_inline_query_current_chat=f'{out.language} ' ), ] ] ) ) ) execute[query.from_user.id] = True except AttributeError as err: answers.append( types.InlineQueryResultArticle( "Error", description=str(err), input_message_content=types.InputTextMessageContent( str(err), ) ) ) return await client.answer_inline_query( query.id, results=answers, cache_time=0, ) try: await client.answer_inline_query( query.id, results=answers, next_offset=str(offset + NEXT_OFFSET), cache_time=0, ) except errors.exceptions.bad_request_400.QueryIdInvalid: return
import pyrebase import json class DataBase: def __init__(self): config = json.load(open("config.json")) firebase = pyrebase.initialize_app(config["database"]) auth = firebase.auth() login = config["login"] self.user = auth.sign_in_with_email_and_password(login["username"], login["password"]) self.db = firebase.database() def push(self, sensor_name, data_record): self.db.child("sensors").child(sensor_name).push(data_record, self.user['idToken'])
from typing import List class Solution: def searchInsert(self, nums: List[int], target: int) -> int: s, e = 0, len(nums) - 1 while True: if target <= nums[s]: return s if target == nums[e]: return e if target > nums[e]: return e + 1 m = (s + e) // 2 if target == nums[m]: return m if target > nums[m]: s, e = m + 1, e else: s, e = s, m - 1 if __name__ == "__main__": sol = Solution() nums = [1, 3, 5, 6] target = 5 print(sol.searchInsert(nums, target)) nums = [1, 3, 5, 6] target = 2 print(sol.searchInsert(nums, target)) nums = [1, 3, 5, 6] target = 7 print(sol.searchInsert(nums, target))
import matplotlib.pyplot as plt import numpy as np import torch import torch.optim as optim import torch.distributions from torch.autograd import Variable from collections import namedtuple import random from gym import wrappers import os import pickle CUDA = torch.cuda.is_available() print('CUDA has been enabled.' if CUDA is True else 'CUDA has been disabled.') BATCH_SIZE = 32 COMPLETE_SIZE = 10 FloatTensor = torch.cuda.FloatTensor if CUDA else torch.FloatTensor IntTensor = torch.cuda.IntTensor if CUDA else torch.IntTensor LongTensor = torch.cuda.LongTensor if CUDA else torch.LongTensor ByteTensor = torch.cuda.ByteTensor if CUDA else torch.ByteTensor Tensor = FloatTensor Transition = namedtuple('Transition', ('state', 'action', 'next_state', 'reward')) class ReplayMemory(object): def __init__(self, capacity): self.capacity = capacity self.memory = [] self.position = 0 def push(self, *args): if len(self.memory) < self.capacity: self.memory.append(None) self.memory[self.position] = Transition(*args) self.position = (self.position + 1) % self.capacity def sample(self, batch_size): return random.sample(self.memory, batch_size) def __len__(self): return len(self.memory) class Agent(object): def __init__(self, policy=None, critic=None, env=None, num_episodes=1000, discount_factor=0.99, lr=3e-4, test_freq=200, test_num=10, min_reward=-250, max_reward=3000000, conv=True, name = "un-named"): super(Agent, self).__init__() self.num_episodes = num_episodes self.discount_factor = discount_factor self.lr = lr self.test_freq = test_freq self.test_num = test_num self.min_reward = min_reward self.max_reward = max_reward self.achieved_max_reward = False #self.rollout_limit = env.spec.timestep_limit self.conv = conv if self.conv: self.rollout_limit = 10000 else: self.rollout_limit = 10000 self.name = name if env is not None: self.env = env if policy is not None: self.policy = policy.cuda() if CUDA else policy self.optimizer = optim.Adam(self.policy.parameters(), lr=lr) if critic is not None: self.critic = critic.cuda() if CUDA else critic self.optimizerC = optim.Adam(self.critic.parameters(), lr=lr) self.test_n, self.test_r = [], [] self.losses = [] def reset_env(self, env=None): """ Resets the current environment using a constant seed to make sure environment is deterministic. """ if env is None: env = self.env env.seed(0) if self.conv: return self.preprocess(env.reset()) return env.reset() def select_action(self, s): """ Selects an action according to the current policy. """ s = Variable(Tensor(s)) action_logits = self.policy(s) log_probs = action_logits-torch.logsumexp(action_logits, dim = 1) action = torch.distributions.Categorical(logits=action_logits).sample() return action.data.cpu().numpy(), log_probs[0,action.data.cpu().numpy()] def transform_reward(self, r): return np.sign(r) def take_action(self, state): if self.conv: state = self.preprocess(state) action = self.select_action(state) return action[0] # def preprocess(self, x): # x = torch.tensor(x).permute([2, 0, 1]).data.numpy() # x = np.mean(x[:, ::2, ::2], axis=0) / 255 # return x.reshape(-1, 1, 105, 80) def preprocess(self, x): x = torch.tensor(x).permute([2, 0, 1]).data.numpy() x = np.mean(x[:, ::2, ::2], axis=0) / 255 x = x[17:105-8] new_frame = x.reshape(-1, 1, 80, 80) if not hasattr(self, "old_frame"): self.old_frame = new_frame diff_frame = new_frame - self.old_frame self.old_frame = new_frame return diff_frame def play_episode(self, env=None, replay=False): """ Plays a single episode and returns SAR rollout. The logarithm of the action probabilities is also included in the rollout (for computing the loss). """ train = env is None if train: env = self.env s = self.reset_env(env) rollout, eps_r = [], 0 for i in range(self.rollout_limit): a, log_probs = self.select_action(s) s1, r, done, _ = env.step(a) if self.conv is True: s1 = self.preprocess(s1) # r = self.transform_reward(r) rollout.append((s, a, r, log_probs)) eps_r += r if train: if self.conv is True and self.epsilon > self.epsilon_min: self.epsilon -= (self.epsilon_max - self.epsilon_min) / self.epsilon_steps if hasattr(self, 'memory'): self.memory.push(Tensor(s), a, Tensor(s1), r) if replay: self.replay() if eps_r < self.min_reward and env is None: break if done: break s = s1 if eps_r > self.max_reward: print('Achieved maximum reward:', eps_r) self.achieved_max_reward = True return np.array(rollout) def compute_loss(self, rewards, log_probs): """ Computes the loss from discounted return. """ G, loss = torch.zeros(1,1).type(FloatTensor), 0 #rewards= (rewards-np.mean(rewards))/(np.std(rewards)+1e-05) for i in reversed(range(len(rewards))): G = self.discount_factor * G + (rewards[i]) loss = loss - (log_probs[i]*Variable(G)) return loss def train(self): """ Runs a full training for defined number of episodes. """ complete_array = np.zeros(COMPLETE_SIZE) for e in range(1, self.num_episodes+1): rollout = self.play_episode() self.optimize(rollout) if self.conv is False and self.epsilon > self.epsilon_min: self.epsilon *= self.epsilon_decay if e % self.test_freq == 0: n, r = self.test() print('{:5d}, Reward: {:6.2f}, Length: {:4.2f}'.format(e, r, n)) complete_array[(e//10)%10] = r if self.achieved_max_reward: break print('Completed training!') #self.plot_rewards() def test(self): """ Runs a number of tests and computes the mean episode length and mean reward. """ n, r = [], [] for e in range(self.test_num): rollout = self.play_episode() rewards = np.array(rollout[:, 2], dtype=float) n.append(len(rollout)) r.append(sum(rewards)) self.test_n.append(n) self.test_r.append(r) save_policy(self, self.name) return np.mean(n), np.mean(r) def get_replay(self): """ Renders an episode replay using the current policy. """ env = wrappers.Monitor(self.env, "./gym-results", force=True) state = env.reset() while True: env.render() action = self.take_action(state) state_next, reward, terminal, info = env.step(action) state = state_next if terminal: break env.close() def plot_rewards(self): """ Plots the moving average of the reward during training. """ def moving_average(a, n=10) : ret = np.cumsum(a, dtype=float) ret[n:] = ret[n:] - ret[:-n] return ret / n plt.figure(figsize=(16,6)) plt.subplot(211) plt.plot(range(1, len(self.train_r)+1), self.train_r, label='training reward') plt.plot(moving_average(self.train_r)) plt.xlabel('episode'); plt.ylabel('reward') plt.xlim((0, len(self.train_r))) plt.legend(loc=4); plt.grid() plt.subplot(212) plt.plot(range(1, len(self.losses)+1), self.losses, label='loss') plt.plot(moving_average(self.losses)) plt.xlabel('episode'); plt.ylabel('loss') plt.xlim((0, len(self.losses))) plt.legend(loc=4); plt.grid() plt.tight_layout(); plt.show() def save_policy(agent, filename): ''' Saves a policy of specified filename to relative path. ''' path = os.getcwd() + '/agents' if not os.path.exists(path): os.makedirs(path) torch.save(agent.policy.state_dict(), path + '/' + filename + '.policy') save_stats(agent.test_n, agent.test_r, filename) def load_policy(agent, filename): ''' Loads a policy of specified filename to relative path. ''' agent.policy.load_state_dict(torch.load( path + '/' + filename + '.policy')) def save_agent(agent, filename, delete_memory=True): ''' Saves an agent of specified filename to relative path. ''' path = os.getcwd() + '/agents' if not os.path.exists(path): os.makedirs(path) if delete_memory and hasattr(agent, "memory"): agent.memory=None with open(path + '/' + filename + '.agent', 'wb') as f: pickle.dump(agent, f) save_stats(agent.test_n, agent.test_r, filename) def load_agent(filename): ''' Loads an agent of specified filename from relative path. ''' with open(os.getcwd() + '/agents' + '/' + filename + '.agent', 'rb') as f: return pickle.load(f) def save_stats(n, r, filename): ''' Saves stats of specified filename to relative path. ''' path = os.getcwd() + '/agents' if not os.path.exists(path): os.makedirs(path) with open(path + '/' + filename + '.stats', 'wb') as f: pickle.dump((n, r), f) def load_stats(filename): ''' Loads stats of specified filename from relative path. ''' with open(os.getcwd() + '/agents' + '/' + filename + '.stats', 'rb') as f: return pickle.load(f)
# -*- coding: utf-8 -*- #from django.conf import settings # @Reimport from django.contrib import messages from .. import models from . import import_base from .. import utils class Csv_unicode_reader_titre(utils.Csv_unicode_reader): """obligatoire : cpt date titre nombre cours""" @property def compte(self): return utils.to_unicode(self.row['cpt'], 'compte_titre1') @property def date(self): try: return utils.to_date(self.row['date'], "%d/%m/%Y") except utils.FormatException: raise utils.FormatException("erreur de date '%s' à la ligne %s" % (self.row['date'], self.ligne)) @property def titre(self): return utils.to_unicode(self.row['titre']) @property def nombre(self): return utils.to_decimal(self.row['nombre']) @property def cours(self): return utils.to_decimal(self.row['cours']) @property def ligne(self): return self.line_num @property def frais(self): return utils.to_decimal(self.row['frais']) @property def isin(self): return utils.to_unicode(self.row['isin']) # noinspection PyUnresolvedReferences class Import_csv_ope_titre(import_base.Import_base): titre = "import titre csv" encoding = "iso-8859-1" complexe = False reader = Csv_unicode_reader_titre extensions = (".csv",) type_f = "csv_ope_titres" creation_de_compte = False def import_file(self, nomfich): """renvoi un tableau complet de l'import""" self.init_cache() self.erreur = list() # les moyens par defaut retour = False verif_format = False nb_ope = 0 try: with open(nomfich, 'r', encoding=self.encoding) as f_non_encode: fich = self.reader(f_non_encode) #---------------------- boucle for row in fich: if row.ligne < 1: continue if not verif_format: # on verifie a la premiere ligne liste_colonnes = ['cpt', 'date', 'titre', 'nombre', 'cours', "frais", "isin"] colonnes_oublies = [] for attr in liste_colonnes: if not hasattr(row, attr): colonnes_oublies.append(attr) if len(colonnes_oublies) > 0: raise import_base.ImportException("il manque la/les colonne(s) '%s'" % "','".join(colonnes_oublies)) else: verif_format = True ope = dict() ope['ligne'] = row.ligne ope['date'] = row.date ope['compte_id'] = self.comptes.goc(row.compte) ope["titre_id"] = self.titres.goc(nom=row.titre) ope['nombre'] = row.nombre ope['cours'] = row.cours if row.frais: ope['frais'] = row.frais else: ope['frais'] = 0 if ope['nombre'] != 0: self.opes.create(ope) else: models.Cours.objects.create(date=ope["date"], titre_id=ope["titre_id"], valeur=ope['cours']) messages.info(self.request, 'cours du titre %s a la date du %s ajoute' % (row.titre, ope["date"])) retour = True #------------------fin boucle except import_base.ImportException as e: messages.error(self.request, "attention traitement interrompu parce que %s" % e) retour = False # gestion des erreurs if len(self.erreur) or retour is False: for err in self.erreur: messages.warning(self.request, err) return False for ope in self.opes.created_items: compte = models.Compte.objects.get(id=ope['compte_id']) if compte.type != 't': messages.warning(self.request, 'attention, compte non compte_titre %s ligne %s' % (compte.nom, ope['ligne'])) continue titre = models.Titre.objects.get(id=ope['titre_id']) nombre = ope['nombre'] cours = ope['cours'] if nombre == 0 and cours == 0: messages.warning(self.request, 'attention, nombre et cours nul ligne %s' % ope['ligne']) if nombre > 0: compte.achat(titre=titre, nombre=nombre, prix=cours, date=ope['date'], frais=ope['frais']) else: compte.vente(titre=titre, nombre=nombre, prix=cours, date=ope['date'], frais=ope['frais']) nb_ope += 1 messages.info(self.request, "%s opés titres crées" % nb_ope) if self.titres.nb_created > 0: messages.info(self.request, "%s titres crées" % self.titres.nb_created) return True
import xml.dom.minidom import typeMapper class adiosConfig: def __init__ (self, config_file_name): self.config_file_name = config_file_name #This would be a good time to parse the file... doc = xml.dom.minidom.parse (config_file_name) nodes = doc.childNodes if (nodes.length != 1): print 'malformed adios config file, should contain only a single adios-config element' raise SystemExit self.config_node = nodes[0] # for each of the groups, instantiate an adiosGroup object, and store in self.adios_groups self.adios_groups = [] self.methods = [] self.buffer = None self.host_language = self.config_node.getAttribute ('host-language') for node in self.config_node.getElementsByTagName('adios-group'): self.adios_groups.append (adiosGroup (node) ) for node in self.config_node.getElementsByTagName('method'): self.methods.append (method (node) ) for node in self.config_node.getElementsByTagName ('buffer'): # there should be only one of these... this code ignores all but the last one. self.buffer = buffer (node) #We are currently ignoring any analysis declarations def get_filename (self): return self.config_file_name def get_groups (self): #return the group with the specified name return self.adios_groups def get_buffer (self): #return the buffer info print 'implement get_buffer' def get_host_language (self): return self.host_language class adiosGroup: def __init__ (self, group_node): self.group_node = group_node self.time_index = self.group_node.getAttribute ('time-index') self.vars = [] self.vardict = {} for node in self.group_node.childNodes: if (node.localName == 'var'): newvar = var (node, self, self.time_index) self.vars.append (newvar) self.vardict [newvar.get_name()] = newvar for node in self.group_node.getElementsByTagName('global-bounds'): for varnode in node.getElementsByTagName('var'): newvar = var (varnode, self, self.time_index, node) self.vars.append (newvar) self.vardict [newvar.get_name()] = newvar def get_name (self): return self.group_node.getAttribute ('name') def get_vars (self): return self.vars def get_var (self, varname): return self.vardict [varname] class method: def __init__ (self, method_node): self.method_node = method_node class buffer: def __init__ (self, buffer_node): self.buffer_node = buffer_node class var: def __init__ (self, var_node, group, time_index=None, global_bounds_node=None): self.var_node = var_node self.group = group self.time_index = time_index self.global_bounds_node = global_bounds_node def get_name (self): name = self.var_node.getAttribute ('name') name = name.replace ("+", "_plus_") name = name.replace ("%", "_pct_") name = name.split ('(')[0] return name def get_path (self): path = self.var_node.getAttribute ('path') return path def get_fullpath (self): path = self.get_path() name = self.get_name() if (path == ''): fullpath = name elif (path == '/'): fullpath = '/'+name else: fullpath = path + '/' + name return fullpath def get_gwrite (self): gw = self.var_node.getAttribute ('gwrite') if (gw == ''): gw = self.get_name() # Trim the name at the first open paren to deal with gts issue gw = gw.split('(')[0] gw = gw.replace ("+", "_plus_") gw = gw.replace ("%", "_pct_") return gw def get_group (self): return self.group def get_c_type (self): return typeMapper.get_c_type (self.var_node.getAttribute ('type') ) def get_fortran_type (self): return typeMapper.get_fortran_type (self.var_node.getAttribute ('type') ) def get_type (self): return self.var_node.getAttribute ('type') def get_dimensions (self): if (self.var_node.getAttribute ('dimensions') == ''): return None else: # place the dimensions in a list and remove the time-index if it is there. dims = filter (lambda x : x != self.time_index, self.var_node.getAttribute ('dimensions').split(',') ) cleandims = [] for d in dims: if d.isdigit(): cleandims.append (d) continue # Here we need to translate the variable name for this dimension (if it's a var) into the gwrite # for that variable dim_var = self.get_group().get_var (d) if dim_var != None: d = dim_var.get_gwrite() # Now clean up any unsightly parts cleand = d.replace ("+", "_plus_") cleand = cleand.split('(')[0] cleandims.append (cleand) return cleandims def is_scalar (self): return self.get_dimensions() == None # TODO: Implement this def find_first_use (self): # Loop through all of the vars in the group for var in self.group.get_vars(): dim_num = 0; if var.get_dimensions() is not None: for dim in var.get_dimensions(): # if this one uses this variable as a dimension, return the name and dim number if dim == self.get_name(): return var.get_name(), dim_num dim_num = dim_num + 1 # None found, return None,None return None,None class fortranFormatter: @staticmethod def get_write_line (var): retval = '\n call adios_write (adios_handle, "' + var.get_fullpath() + '", ' + var.get_gwrite() + ', adios_error)' #print retval return retval @staticmethod def get_declaration (var, group_params): dims = var.get_dimensions() if (dims == None): # I think this should be get_name instead of get_gwrite. #init_val = group_params.get_scalar (var.get_gwrite() ).get_value() init_val = group_params.get_scalar (var.get_name() ).get_value() return '\n ' + var.get_fortran_type() + ' :: ' + var.get_gwrite() else: #fill_method = group_params.get_array (var.get_gwrite() ).get_fill_method() dimspec = '' for d in dims: dimspec = dimspec + ':,' dimspec = dimspec.rstrip (',') return '\n ' + var.get_fortran_type() + ', ALLOCATABLE, DIMENSION(' + dimspec + ') :: ' + var.get_gwrite() @staticmethod def get_initialization (var, group_params): dims = var.get_dimensions() if (dims == None): # I think this should be get_name instead of get_gwrite. #init_val = group_params.get_scalar (var.get_gwrite() ).get_value() init_val = group_params.get_scalar (var.get_name() ).get_value() return '\n ' + var.get_gwrite() + ' = ' + init_val else: fill_method = group_params.get_array (var.get_gwrite() ).get_fill_method() return '\n allocate (' + var.get_gwrite() + '(' + fortranFormatter.get_dim_str (var, ',') + ') )' #return '\n ' + var.get_gwrite() + ' = (' + var.get_c_type() + '*) malloc (' + cFormatter.get_dim_str (var, '*') + ' * sizeof (' + var.get_c_type() + ') );\n' + cFormatter.get_fill (var, fill_method) @staticmethod def get_dim_str (var, sep): rv = '' for d in var.get_dimensions(): rv += d rv += sep return rv.rstrip (sep) @staticmethod def get_groupsize_code (group): groupsize_code_string = '' groupsize_code_string += '\n\n! Set the adios group size' groupsize_code_string += '\n adios_groupsize = &' for v in group.get_vars(): if (v.is_scalar() ): groupsize_code_string += ('\n %d +' % typeMapper.get_size (v.get_type() ) + ' &') else: groupsize_code_string += ('\n %d * ' % typeMapper.get_size (v.get_type() ) ) for d in v.get_dimensions(): # need to check whether this is the timestep groupsize_code_string += '(' + d + ') * ' groupsize_code_string = groupsize_code_string.rstrip ('* ') groupsize_code_string += (' + &') # remove the final +, and add the ; groupsize_code_string = groupsize_code_string.rstrip('+ &') groupsize_code_string += '\n call adios_group_size (adios_handle, adios_groupsize, skel_total_size, adios_error)' return groupsize_code_string; class cFormatter: @staticmethod def get_write_line (var): # The tricky bit here is deciding whether we need the & before the variable name. # We omit it in two cases: 1) the variable type is string, or 2) the variable is not a scalar if (var.get_c_type() == 'string' or var.get_dimensions() != None): var_prefix = '' else: var_prefix = '&' retval = '\nadios_write (adios_handle, "' + var.get_fullpath() + '", ' + var_prefix + var.get_gwrite() + ');' #print retval return retval @staticmethod def get_read_all_line (var): if (var.get_c_type() == 'string' or var.get_dimensions() != None): var_prefix = '' else: var_prefix = '&' return '\nadios_write (adios_handle, "' + var.get_name() + '", ' + var_prefix + var.get_gwrite() + ');' @staticmethod def get_dim_str (var, sep): rv = '' for d in var.get_dimensions(): rv += d rv += sep return rv.rstrip (sep) @staticmethod def get_fill (var, method): fill_content = '' if (method == 'rank'): dims = var.get_dimensions() fill_content = '' fill_content += 'for (skel_i = 0; skel_i < ' + cFormatter.get_dim_str (var, '*') + '; skel_i++) \n' fill_content += ' ' + var.get_gwrite() + '[skel_i] = (' + var.get_c_type() + ') skel_mpi_rank;' return fill_content @staticmethod def get_declaration (var, group_params): dims = var.get_dimensions() if (dims == None): # I think this should be get_name instead of get_gwrite. #init_val = group_params.get_scalar (var.get_gwrite() ).get_value() init_val = group_params.get_scalar (var.get_name() ).get_value() return '\n' + var.get_c_type() + ' ' + var.get_gwrite() + ';' else: fill_method = group_params.get_array (var.get_gwrite() ).get_fill_method() return '\n' + var.get_c_type() + ' * ' + var.get_gwrite() + ';' @staticmethod def get_initialization (var, group_params): dims = var.get_dimensions() if (dims == None): # I think this should be get_name instead of get_gwrite. #init_val = group_params.get_scalar (var.get_gwrite() ).get_value() init_val = group_params.get_scalar (var.get_name() ).get_value() return '\n' + var.get_gwrite() + ' = ' + init_val + ';' else: fill_method = group_params.get_array (var.get_gwrite() ).get_fill_method() return '\n' + var.get_gwrite() + ' = (' + var.get_c_type() + '*) malloc (' + cFormatter.get_dim_str (var, '*') + ' * sizeof (' + var.get_c_type() + ') );\n' + cFormatter.get_fill (var, fill_method) @staticmethod def get_groupsize_code (group): groupsize_code_string = '' groupsize_code_string += '\n\n// Set the adios group size' groupsize_code_string += '\nadios_groupsize =' for v in group.get_vars(): if (v.is_scalar() ): groupsize_code_string += ('\n %d +' % typeMapper.get_size (v.get_type() ) ) else: groupsize_code_string += ('\n %d * ' % typeMapper.get_size (v.get_type() ) ) for d in v.get_dimensions(): # need to check whether this is the timestep groupsize_code_string += '(' + d + ') * ' groupsize_code_string = groupsize_code_string.rstrip ('* ') groupsize_code_string += (' +') # remove the final +, and add the ; groupsize_code_string = groupsize_code_string.rstrip('+') + ';' groupsize_code_string += '\nadios_group_size (adios_handle, adios_groupsize, &skel_total_size);' return groupsize_code_string;
import os import networkx as nx import numpy as np import scipy as scp from pgmpy.factors.discrete import TabularCPD from pgmpy.models import BayesianModel import re import itertools from peepo.playground.simple_color_recognition.CeePeeDees import CPD class Lattices(object): def __init__(self,utility_pointer): self._util = utility_pointer def get_possible_states(self,number_of_nodes): if number_of_nodes == 0: return False card = np.full(number_of_nodes,2) return np.transpose(CPD.get_index_matrix(card)) def make_state_sub_matrix(self,unit_state, number_of_atoms): matrix = unit_state matrix = matrix.tolist() for r in range(0,number_of_atoms-1): for i in itertools.product(matrix,unit_state.tolist()): a = i.tolist() matrix.append(a) return matrix def make_state_base(self,unit_state, number_of_atoms): list = [] matrix = [] for el in range(0,number_of_atoms): list.append(unit_state.tolist()) for m in itertools.product(*list): ''' CHECK whether all LENS has at least 1 incoming parent''' sum_columns = np.sum(m,axis =1) accept = True for c in range(0,len(sum_columns)): if sum_columns[c] == 0: accept = False break if accept: matrix.append(m) return matrix def calculate_entropy(self, b_w_matrix, treshold): treshold /= 100 B_W_matrix =[] shape = np.asarray(b_w_matrix[0]).shape #nu = scp.special.lambertw(1.0 / np.prod(shape)).real # , k=0, tol=1e-8)[source]¶ for i, mat in enumerate(b_w_matrix): entropy = np.sum(mat)/np.prod(shape) if entropy >= treshold : B_W_matrix.append([mat,entropy]) '''reorder B_W_matrix with the entropy in descending order as key''' B_W_matrix.sort(reverse=True,key=lambda tup: tup[1]) # sorts in place return B_W_matrix def calculate_NM_entropy(self, b_w_matrix, shape,nu): entropy = 0 for row in range(0, shape[0]): for column in range(0,shape[1]): entropy += nu*b_w_matrix[row][column]*np.exp(nu*b_w_matrix[row][column]) return entropy def get_possible_topologies(self, treshold = 0): BENS_Nodes = self._util.get_nodes_in_family( 'BEN') # MEMS_Nodes = self._util.get_nodes_in_family('MEN') # LANS_Nodes = self._util.get_nodes_in_family( 'LANS') # MOTOR_Nodes = self._util.get_nodes_in_family( 'MOTOR') WORLD_Nodes = self._util.get_nodes_in_family( 'WORLD') BENS_states = self.get_possible_states(len(BENS_Nodes)) b_w_matrix = self.make_state_base(BENS_states, len(WORLD_Nodes)) ''' ******************* TO DO *********************************''' # TO be developed further for MEMS and LANS # MEMS_states = self.get_possible_states(len(MEMS_Nodes)) # LANS_states = self.get_possible_states(len(LANS_Nodes)) # # # if not LANS_states: # if not BENS_states: # b_m_matrix = self.make_state_base(BENS_states, len(MOTOR_Nodes)) # if not BENS_states: # b_w_matrix = self.make_state_base(BENS_states, len(WORLD_Nodes)) # if not BENS_states: # m_m_matrix = self.make_state_base(MEMS_states, len(MOTOR_Nodes)) # if not BENS_states: # m_w_matrix = self.make_state_base(MEMS_states, len(WORLD_Nodes)) B_W_matrix = self.calculate_entropy(b_w_matrix,treshold) #print(b_n_matrix) #B_M_matrix = self.make_state_sub_matrix(BENS_states,len(WORLD_Nodes)) # print('B_W_matrix :') # for i, m in enumerate(B_W_matrix): # print(m[1], ' ---> ', m[0]) # print(len(B_M_matrix)) # # # RONS_Nodes = BENS_Nodes + MEMS_Nodes # LENS_Nodes = MOTOR_Nodes + WORLD_Nodes # print(RONS_Nodes) # print(LANS_Nodes) # print(LENS_Nodes) # RONS_pool = RONS_Nodes # for n in range(len(RONS_Nodes) - 1): # RONS_pool += RONS_Nodes # print('rosn pool : ', RONS_pool) # RONS_combinations = [] # for combination in itertools.product(RONS_pool, RONS_pool): # print(combination) # RONS_combinations.append(combination) # print('RONS possible combinations :') # print(RONS_combinations) # # number_of_levels = 1 # if len(LANS_Nodes) > 0: # number_of_levels += 1 # print('number_of_levels : ', number_of_levels) # if number_of_levels == 1: # for path in itertools.product(RONS_Nodes, LENS_Nodes): # print("path : ", path) # possible_paths.append(path) # else: # for path in itertools.product(RONS_Nodes, LANS_Nodes, LENS_Nodes): # print("path : ", path) # possible_paths.append(path) return B_W_matrix
from .tool.func import * def main_func_setting_main(db_set): with get_db_connect() as conn: curs = conn.cursor() if admin_check() != 1: return re_error('/ban') setting_list = { 0 : ['name', 'Wiki'], 2 : ['frontpage', 'FrontPage'], 4 : ['upload', '2'], 5 : ['skin', ''], 7 : ['reg', ''], 8 : ['ip_view', ''], 9 : ['back_up', '0'], 10 : ['port', '3000'], 11 : ['key', load_random_key()], 12 : ['update', 'stable'], 15 : ['encode', 'sha3'], 16 : ['host', '0.0.0.0'], 19 : ['slow_edit', '0'], 20 : ['requires_approval', ''], 21 : ['backup_where', ''], 22 : ['domain', flask.request.host], 23 : ['ua_get', ''], 24 : ['enable_comment', ''], 25 : ['enable_challenge', ''], 26 : ['edit_bottom_compulsion', ''], 27 : ['http_select', 'http'], 28 : ['title_max_length', ''], 29 : ['title_topic_max_length', ''] } if flask.request.method == 'POST': for i in setting_list: curs.execute(db_change("update other set data = ? where name = ?"), [ flask.request.form.get(setting_list[i][0], setting_list[i][1]), setting_list[i][0] ]) conn.commit() admin_check(None, 'edit_set (main)') return redirect('/setting/main') else: d_list = {} for i in setting_list: curs.execute(db_change('select data from other where name = ?'), [setting_list[i][0]]) db_data = curs.fetchall() if not db_data: curs.execute(db_change('insert into other (name, data) values (?, ?)'), [setting_list[i][0], setting_list[i][1]]) d_list[i] = db_data[0][0] if db_data else setting_list[i][1] else: conn.commit() encode_select = '' encode_select_data = ['sha256', 'sha3'] for encode_select_one in encode_select_data: if encode_select_one == d_list[15]: encode_select = '<option value="' + encode_select_one + '">' + encode_select_one + '</option>' + encode_select else: encode_select += '<option value="' + encode_select_one + '">' + encode_select_one + '</option>' tls_select = '' tls_select_data = ['http', 'https'] for tls_select_one in tls_select_data: if tls_select_one == d_list[27]: tls_select = '<option value="' + tls_select_one + '">' + tls_select_one + '</option>' + tls_select else: tls_select += '<option value="' + tls_select_one + '">' + tls_select_one + '</option>' check_box_div = ['', '', '', '', '', '', '', ''] for i in range(0, len(check_box_div)): if i == 0: acl_num = 7 elif i == 1: acl_num = 8 elif i == 3: acl_num = 20 elif i == 4: acl_num = 23 elif i == 5: acl_num = 24 elif i == 6: acl_num = 25 elif i == 7: acl_num = 26 if d_list[acl_num]: check_box_div[i] = 'checked="checked"' branch_div = '' branch_list = ['stable', 'dev', 'beta'] for i in branch_list: if d_list[12] == i: branch_div = '<option value="' + i + '">' + i + '</option>' + branch_div else: branch_div += '<option value="' + i + '">' + i + '</option>' sqlite_only = 'style="display:none;"' if db_set != 'sqlite' else '' return easy_minify(flask.render_template(skin_check(), imp = [load_lang('main_setting'), wiki_set(), wiki_custom(), wiki_css([0, 0])], data = ''' <form method="post" id="main_set_data"> <h2>1. ''' + load_lang('basic_set') + '''</h2> <span>''' + load_lang('wiki_name') + '''</span> <hr class="main_hr"> <input name="name" value="''' + html.escape(d_list[0]) + '''"> <hr class="main_hr"> <span><a href="/setting/main/logo">(''' + load_lang('wiki_logo') + ''')</a></span> <hr class="main_hr"> <span>''' + load_lang('main_page') + '''</span> <hr class="main_hr"> <input name="frontpage" value="''' + html.escape(d_list[2]) + '''"> <hr class="main_hr"> <span>''' + load_lang('tls_method') + '''</span> <hr class="main_hr"> <select name="http_select">''' + tls_select + '''</select> <hr class="main_hr"> <span>''' + load_lang('domain') + '''</span> (EX : 2du.pythonanywhere.com) <hr class="main_hr"> <input name="domain" value="''' + html.escape(d_list[22]) + '''"> <hr class="main_hr"> <span>''' + load_lang('wiki_host') + '''</span> <hr class="main_hr"> <input name="host" value="''' + html.escape(d_list[16]) + '''"> <hr class="main_hr"> <span>''' + load_lang('wiki_port') + '''</span> <hr class="main_hr"> <input name="port" value="''' + html.escape(d_list[10]) + '''"> <hr class="main_hr"> <span>''' + load_lang('wiki_secret_key') + '''</span> <hr class="main_hr"> <input type="password" name="key" value="''' + html.escape(d_list[11]) + '''"> <hr class="main_hr"> <span>''' + load_lang('encryption_method') + '''</span> <hr class="main_hr"> <select name="encode">''' + encode_select + '''</select> <h3>1.1. ''' + load_lang('communication_set') + '''</h3> <input type="checkbox" name="enable_comment" ''' + check_box_div[5] + '''> ''' + load_lang('enable_comment_function') + ''' (''' + load_lang('not_working') + ''') <hr class="main_hr"> <input type="checkbox" name="enable_challenge" ''' + check_box_div[6] + '''> ''' + load_lang('enable_challenge_function') + ''' (''' + load_lang('not_working') + ''') <hr class="main_hr"> <h2>2. ''' + load_lang('design_set') + '''</h2> <span>''' + load_lang('wiki_skin') + '''</span> <hr class="main_hr"> <select name="skin">''' + load_skin(d_list[5] if d_list[5] != '' else 'tenshi') + '''</select> <h2>3. ''' + load_lang('login_set') + '''</h2> <input type="checkbox" name="reg" ''' + check_box_div[0] + '''> ''' + load_lang('no_register') + ''' <hr class="main_hr"> <input type="checkbox" name="ip_view" ''' + check_box_div[1] + '''> ''' + load_lang('hide_ip') + ''' <hr class="main_hr"> <input type="checkbox" name="requires_approval" ''' + check_box_div[3] + '''> ''' + load_lang('requires_approval') + ''' <hr class="main_hr"> <input type="checkbox" name="ua_get" ''' + check_box_div[4] + '''> ''' + load_lang('ua_get_off') + ''' <h2>4. ''' + load_lang('server_set') + '''</h2> <span>''' + load_lang('max_file_size') + ''' (MB)</span> <hr class="main_hr"> <input name="upload" value="''' + html.escape(d_list[4]) + '''"> <hr class="main_hr"> <span>''' + load_lang('update_branch') + '''</span> <hr class="main_hr"> <select name="update">''' + branch_div + '''</select> <span ''' + sqlite_only + '''> <h3>4.1. ''' + load_lang('sqlite_only') + '''</h3> <span> ''' + load_lang('backup_interval') + ' (' + load_lang('hour') + ') (' + load_lang('off') + ' : 0) ' + \ '(' + load_lang('restart_required') + ''')</span> <hr class="main_hr"> <input name="back_up" value="''' + html.escape(d_list[9]) + '''"> <hr class="main_hr"> <span> ''' + load_lang('backup_where') + ' (' + load_lang('empty') + ' : ' + load_lang('default') + ') ' + \ '(' + load_lang('restart_required') + ''') (''' + load_lang('example') + ''' : ./data/backup.db) </span> <hr class="main_hr"> <input name="backup_where" value="''' + html.escape(d_list[21]) + '''"> <hr class="main_hr"> </span> <h2>5. ''' + load_lang('edit_set') + '''</h2> <span><a href="/setting/acl">(''' + load_lang('main_acl_setting') + ''')</a></span> <hr class="main_hr"> <span>''' + load_lang('slow_edit') + ' (' + load_lang('second') + ') (' + load_lang('off') + ''' : 0)</span> <hr class="main_hr"> <input name="slow_edit" value="''' + html.escape(d_list[19]) + '''"> <hr class="main_hr"> <input type="checkbox" name="edit_bottom_compulsion" ''' + check_box_div[7] + '''> ''' + load_lang('edit_bottom_compulsion') + ''' (''' + load_lang('beta') + ''') <hr class="main_hr"> <span>''' + load_lang('title_max_length') + ''' (''' + load_lang('beta') + ''')</span> <hr class="main_hr"> <input name="title_max_length" value="''' + html.escape(d_list[28]) + '''"> <hr class="main_hr"> <span>''' + load_lang('title_topic_max_length') + ''' (''' + load_lang('not_working') + ''')</span> <hr class="main_hr"> <input name="title_topic_max_length" value="''' + html.escape(d_list[29]) + '''"> <hr class="main_hr"> <hr class="main_hr"> <button id="save" type="submit">''' + load_lang('save') + '''</button> </form> <script>simple_render('main_set_data');</script> ''', menu = [['setting', load_lang('return')]] ))
from django.test import TestCase from .models import Pic,Location,Category import datetime as dt # Create your tests here. class Test_Location(TestCase): def setUp(self): self.location=Location(name="location") def test_instance(self): self.assertTrue(isinstance(self.location,Location)) def test_save(self): self.location.save_location() query=Location.objects.all() self.assertTrue(len(query)>0) def test_locationdelete(self): self.location.save_location() self.location.deletelocation() query=Location.objects.all() self.assertTrue(len(query)==0) class Test_category(TestCase): def setUp(self): self.test_category=Category(name="category") def test_instance(self): self.assertTrue(isinstance(self.test_category,Category)) def test_save(self): self.test_category.save_category() query=Category.objects.all() self.assertTrue(len(query)>0) def test_getAll(self): self.test_category.save_category() self.test_category.delete() query=Category.objects.all() self.assertTrue(len(query)==0)
from pyri.parameters import YamlParameterGroup, YamlGroupInfoWithSchema from pyri.parameters.yaml import _group_info_schema, _load_group_info import pkg_resources import os import pytest import yaml @pytest.mark.asyncio async def test_yaml_parameter_group(tmpdir): fname1 = os.path.join(tmpdir,"empty_params.yml") group_info1_str = pkg_resources.resource_string(__name__, "test_parameter_group_info1.yml").decode("utf-8") group_info1, group_schema1, param_schema1 = _load_group_info(group_info1_str) with open(fname1, "a+") as f1: # Scalar parameter params1 = YamlParameterGroup(YamlGroupInfoWithSchema(group_info1, group_schema1, param_schema1), f1) param1_val1 = await params1.get_param_or_default("param1") assert param1_val1 == "hello world!" param1_val2 = await params1.get_param_or_default("param1","hello world 2") assert param1_val2 == "hello world 2" param1_val3_res, param1_val3 = await params1.try_get_param("param1") assert not param1_val3_res await params1.set_param("param1", "hello world 3") assert await params1.get_param("param1") == "hello world 3" param1_val5_res, param1_val5 = await params1.try_get_param("param1") assert param1_val5_res assert param1_val5 == "hello world 3" # List parameter list_param_val1 = await params1.get_param_or_default("list_param") assert list_param_val1 is None list_param_val1_item1 = await params1.get_param_item_or_default("list_param",1,None) assert list_param_val1_item1 is None await params1.append_param_item("list_param","item 1") list_param_val2 = await params1.get_param("list_param") assert(list_param_val2 == ["item 1"]) await params1.append_param_item("list_param", "item 2") await params1.append_param_item("list_param", "item 3") await params1.set_param_item("list_param", 1, "item 4") list_param_val3_item1 = await params1.get_param_item("list_param",1) assert list_param_val3_item1 == "item 4" list_param_val3_item2 = await params1.get_param_item("list_param",2) assert list_param_val3_item2 == "item 3" assert await params1.get_param_item_count("list_param") == 3 list_param_val3_item0_res, list_param_val3_item0 = await params1.try_get_param_item("list_param",0) assert list_param_val3_item0_res assert list_param_val3_item0 == "item 1" list_param_val3_item4_res, list_param_val4_item0 = await params1.try_get_param_item("list_param",4) assert not list_param_val3_item4_res await params1.del_param_item("list_param",0) list_param_val4 = await params1.get_param("list_param") assert list_param_val4 == ["item 4", "item 3"] # Numeric list parameter with pytest.raises(ValueError): await params1.append_param_item("num_list_param", 100) num_list_param_val1 = await params1.get_param_or_default("num_list_param") await params1.set_param("num_list_param", num_list_param_val1) await params1.append_param_item("num_list_param", 100) num_list_param_val2 = await params1.get_param("num_list_param") assert num_list_param_val2 == [10,9,5.52,1,100] # Map parameter await params1.set_param_item("map_param", "map_value1", "val 1") await params1.set_param_item("map_param", "map_value2", "val 2") map_param_val1_value1 = await params1.get_param_item("map_param", "map_value1") assert map_param_val1_value1 == "val 1" assert await params1.get_param_item_count("map_param") == 2 # Secret parameter secret_param_val1 = await params1.get_param_or_default("secret_param") assert secret_param_val1 == "password" await params1.set_param("secret_param", "my_password") with open(fname1, "r") as f2: saved_group1 = yaml.safe_load(f2) group_1_str = pkg_resources.resource_string(__name__, "test_parameter_group1.yml").decode("utf-8") saved_group2 = yaml.safe_load(group_1_str) assert saved_group1 == saved_group2
from __future__ import absolute_import, unicode_literals import codecs import logging import os import re import urllib import urlparse from mopidy import compat from mopidy.internal import encoding, path from mopidy.models import Track M3U_EXTINF_RE = re.compile(r'#EXTINF:(-1|\d+),(.*)') logger = logging.getLogger(__name__) def playlist_uri_to_path(uri, playlists_dir): if not uri.startswith('m3u:'): raise ValueError('Invalid URI %s' % uri) file_path = path.uri_to_path(uri) return os.path.join(playlists_dir, file_path) def path_to_playlist_uri(relpath): """Convert path relative to playlists_dir to M3U URI.""" if isinstance(relpath, compat.text_type): relpath = relpath.encode('utf-8') return b'm3u:%s' % urllib.quote(relpath) def m3u_extinf_to_track(line): """Convert extended M3U directive to track template.""" m = M3U_EXTINF_RE.match(line) if not m: logger.warning('Invalid extended M3U directive: %s', line) return Track() (runtime, title) = m.groups() if int(runtime) > 0: return Track(name=title, length=1000 * int(runtime)) else: return Track(name=title) def parse_m3u(file_path, media_dir=None): r""" Convert M3U file list to list of tracks Example M3U data:: # This is a comment Alternative\Band - Song.mp3 Classical\Other Band - New Song.mp3 Stuff.mp3 D:\More Music\Foo.mp3 http://www.example.com:8000/Listen.pls http://www.example.com/~user/Mine.mp3 Example extended M3U data:: #EXTM3U #EXTINF:123, Sample artist - Sample title Sample.mp3 #EXTINF:321,Example Artist - Example title Greatest Hits\Example.ogg #EXTINF:-1,Radio XMP http://mp3stream.example.com:8000/ - Relative paths of songs should be with respect to location of M3U. - Paths are normally platform specific. - Lines starting with # are ignored, except for extended M3U directives. - Track.name and Track.length are set from extended M3U directives. - m3u files are latin-1. """ # TODO: uris as bytes tracks = [] try: with open(file_path) as m3u: contents = m3u.readlines() except IOError as error: logger.warning('Couldn\'t open m3u: %s', encoding.locale_decode(error)) return tracks if not contents: return tracks extended = contents[0].decode('latin1').startswith('#EXTM3U') track = Track() for line in contents: line = line.strip().decode('latin1') if line.startswith('#'): if extended and line.startswith('#EXTINF'): track = m3u_extinf_to_track(line) continue if urlparse.urlsplit(line).scheme: tracks.append(track.replace(uri=line)) elif os.path.normpath(line) == os.path.abspath(line): uri = path.path_to_uri(line) tracks.append(track.replace(uri=uri)) elif media_dir is not None: uri = path.path_to_uri(os.path.join(media_dir, line)) tracks.append(track.replace(uri=uri)) track = Track() return tracks def save_m3u(filename, tracks, encoding='latin1', errors='replace'): extended = any(track.name for track in tracks) # codecs.open() always uses binary mode, just being explicit here with codecs.open(filename, 'wb', encoding, errors) as m3u: if extended: m3u.write('#EXTM3U' + os.linesep) for track in tracks: if extended and track.name: m3u.write('#EXTINF:%d,%s%s' % ( track.length // 1000 if track.length else -1, track.name, os.linesep)) m3u.write(track.uri + os.linesep)
#!/usr/bin/env python # -*- coding: utf-8 -*- ############################################################################# ## ## ## This file is part of Disass ## ## ## ## ## ## Copyright (C) 2013 Cassidian CyberSecurity SAS. All rights reserved. ## ## This document is the property of Cassidian CyberSecurity SAS, it may ## ## not be circulated without prior licence ## ## ## ## Author: Ivan Fontarensky <ivan.fontarensky@cassidian.com> ## ## ## ############################################################################# """ @author: Ivan Fontarensky @contact: ivan.fontarensky@cassidian.com @organization: Cassidian CyberSecurity """ __author__ = 'ifontarensky' import os import sys import string try: from distorm3 import Decode except ImportError: print 'distorm3 is not installed, this is a fatal error' print 'pip install distorm3' sys.exit(1) try: import pefile except ImportError: print 'pefile is not installed, this is a fatal error' print 'pip install pefile' sys.exit(1) from disass.Register32 import Register32 from disass.Instruction32 import compute_operation from disass.prettyprint import bcolors from disass.exceptions import DataNotWin32ApplicationError from disass.exceptions import InvalidValueEIP from disass.exceptions import FunctionNameNotFound from disass.template import Template history_cmd_to_script = list() def script(funct_to_script): def wrapper_around_function(*args, **kwargs): # Execute before execution, save command history_cmd_to_script.append((funct_to_script.__name__, args[1:])) # Call function res = funct_to_script(*args, **kwargs) # Execute after execution, save result return res return wrapper_around_function def make_script(): s = ''' #!/usr/bin/env python # -*- coding: utf-8 -*- from disass.Disass32 import Disass32 ''' print history_cmd_to_script for hist in history_cmd_to_script: func = hist[0] if func == 'go_to_function': s += ''' if not disass.%s(%s): return ''' % (func, hist[1]) else: s += ''' disass.%s(%s)''' % (func, hist[1]) print s AUTO_ENCODING = 0 ASCII_ENCODING = 1 UNICODE_ENCODING = 2 STDCALL = 0x100 CDECL = 0x101 FASTCALL_VCPP = 0x102 THISCALL = 0x103 FASTCALL_CPP_BUILDER = 0x104 FASTCALL_DELPHI = 0x105 class Disass32(): """ Detect all executable """ @script def __init__(self, path=None, data=None, verbose=False): self.verbose = verbose self.path = path self.register = Register32(self) self.map_call = dict() self.map_call_by_name = dict() self.pe = None self.action_reverse = dict() self.symbols_imported = dict() self.symbols_imported_by_name = dict() self.symbols_exported = dict() self.symbols_exported_by_name = dict() self.decode = None self.backhistory = [] self.data_code = '' self.stack = list() self.xref = dict() self.load_win32_pe(path=path, data=data) def _reset(self): self.action_reverse = dict() self.symbols_imported = dict() self.symbols_imported_by_name = dict() self.symbols_exported = dict() self.symbols_exported_by_name = dict() self.decode = None self.backhistory = [] self.stack = list() self.xref = dict() def load_win32_pe(self, path=None, data=None): """ TODO: """ if path is not None: self.pe = pefile.PE(path) else: if data is not None: try: self.pe = pefile.PE(data=data) except: raise DataNotWin32ApplicationError else: raise Exception("Must provide either path or data") # FIXME: find a better suited exception self._reset() self.get_list_imported_symbols() self.get_list_exported_symbols() self.data_code = self.pe.get_memory_mapped_image() ep = self.get_entry_point() self.map_call[ep] = "Entrypoint" self.map_call_by_name["Entrypoint"] = ep self.set_position(ep) def get_list_imported_symbols(self): """ TODO: """ try: for entry in self.pe.DIRECTORY_ENTRY_IMPORT: for imp in entry.imports: if imp.ordinal is not None: name = "%s@%d" % (entry.dll, imp.ordinal) self.symbols_imported[int(imp.address)] = name self.symbols_imported_by_name[name] = int(imp.address) else: self.symbols_imported[int(imp.address)] = imp.name self.symbols_imported_by_name[imp.name] = int(imp.address) except Exception as e: pass def get_list_exported_symbols(self): """ TODO: """ try: for exp in self.pe.DIRECTORY_ENTRY_EXPORT.symbols: self.symbols_exported[int(exp.address)] = exp.name self.symbols_exported_by_name[exp.name] = int(exp.address) except Exception as e: pass def is_dll(self): """ TODO: """ return self.pe.FILE_HEADER.Characteristics & 0x2000 != 0 def is_exe(self): """ TODO: """ return not self.is_dll() def is_register(self, value): """ Check if a value is in registeraddress = self.extract_address(instruction) if address != '' and '[' in address: @param value """ v = value.lower() v = v.replace('call', '') reglist = self.register.get_list_register() if v in reglist: return True if any([r in v for r in reglist]): return True return False def get_entry_point(self): """ TODO: """ try: if self.is_dll(): for exp in self.pe.DIRECTORY_ENTRY_EXPORT.symbols: if exp.ordinal == 1: return int(exp.address) else: return int(self.pe.OPTIONAL_HEADER.AddressOfEntryPoint) except: return None def set_position(self, pos): """ TODO: """ if pos < 0: raise InvalidValueEIP self.register.eip = pos eip = self.register.eip self.decode = Decode(eip, self.data_code[eip:eip + 0x1000]) if self.verbose: self.print_assembly() return True def set_virtual_position(self, pos): """ TODO: """ return self.set_position(pos - self.pe.OPTIONAL_HEADER.ImageBase) def make_xref(self): self._make_xref("Entrypoint", self.get_entry_point()) for name, offset in self.symbols_exported_by_name.iteritems(): self._make_xref(name, offset) def _make_xref(self, name, offset, depth=1): if offset in self.map_call: return self.map_call[offset] = name self.map_call_by_name[name] = offset for d in Decode(offset, self.data_code[offset:offset + 0x1000]): instruction = d[2] offset = d[0] if "CALL" in instruction: address_expression = self._get_function_name(instruction) if "0x" in address_expression: if '[' in address_expression: continue if ':' in address_expression: continue try: address = compute_operation(address_expression, self.register) except Exception as e: print >> sys.stderr, str(e), address_expression print >> sys.stderr, "".join([bcolors.FAIL, "\tError: Can't eval CALL instruction'%s'" % instruction, bcolors.ENDC]) continue if address not in self.map_call: self._make_xref("CALL_%x" % address, address, depth + 1) continue if self.is_register(instruction): continue if address_expression not in self.xref: self.xref[address_expression] = set() self.xref[address_expression].add(offset) @script def go_to_instruction(self, instruction, offset=0): return self._go_to_instruction(instruction, offset, []) @script def go_to_next_call(self, name, offset=0): eip = self.register.eip res = self._go_to_next_call(name, offset, []) if not res: self.set_position(eip) return False return True def _go_to_instruction(self, instruction_search, offset, history=[], indent=1): """ """ if offset == 0: self.next() eip = self.register.eip offset = eip for d in Decode(offset, self.data_code[offset:offset + 0x1000]): instruction = d[2] offset = d[0] history.append(offset) if instruction_search in instruction: self.backhistory = history self.set_position(offset) return True if 'RET' in instruction: return False if "CALL" in instruction: address_expression = self._get_function_name(instruction) if "0x" in address_expression: if '[' in address_expression: continue if ':' in address_expression: continue try: address = compute_operation(address_expression, self.register) if address in history: continue if address not in self.map_call: self.map_call[address] = "CALL_%x" % address self.map_call_by_name["CALL_%x" % address] = address if self._go_to_instruction(instruction_search, address, history, indent + 1): return True except Exception as e: print >> sys.stderr, "".join([bcolors.FAIL, "\tError: Can't eval instruction'%s'" % instruction, bcolors.ENDC]) return False def _go_to_next_call(self, name, offset, history=[], indent=1): """ """ if offset == 0: self.next() eip = self.register.eip offset = eip for d in Decode(offset, self.data_code[offset:offset + 0x1000]): instruction = d[2] offset = d[0] if offset in history: return False history.append(offset) if name in self.replace_function(instruction): self.backhistory = history self.set_position(offset) return True if 'RET' in instruction: return False if 'J' == instruction[0]: address_expression = self._get_function_name(instruction) if address_expression in self.symbols_imported_by_name: #Trampoline Function name_tampoline = "__jmp__%s" % address_expression self.symbols_imported_by_name[name_tampoline] = offset self.symbols_imported[offset] = name_tampoline if name in name_tampoline: self.set_position(history[-2]) self.backhistory = history[:-2] return True return False if address_expression is None: continue if "0x" in address_expression: if '[' in address_expression: continue if ':' in address_expression: continue try: address = compute_operation(address_expression, self.register) except Exception as e: print >> sys.stderr, str(e), address_expression print >> sys.stderr, "".join([bcolors.FAIL, "\tError: Can't eval JMP instruction'%s'" % instruction, bcolors.ENDC]) continue if address in history: continue if self._go_to_next_call(name, address, history, indent + 1): return True if "CALL" in instruction: address_expression = self._get_function_name(instruction) if "0x" in address_expression: if '[' in address_expression: continue if ':' in address_expression: continue try: address = compute_operation(address_expression, self.register) except Exception as e: print >> sys.stderr, str(e), address_expression print >> sys.stderr, "".join([bcolors.FAIL, "\tError: Can't eval CALL instruction'%s'" % instruction, bcolors.ENDC]) continue if address in history: continue if address not in self.map_call: self.map_call[address] = "CALL_%x" % address self.map_call_by_name["CALL_%x" % address] = address if self._go_to_next_call(name, address, history, indent + 1): return True if self.is_register(instruction): self.backhistory = history self.update_stack_and_register(offset) value = self.register.get(address_expression.lower()) if value in self.symbols_imported: if name == self.symbols_imported[value]: self.backhistory = history self.set_position(offset) return True return False def get_value(self, address): address = address - self.pe.OPTIONAL_HEADER.ImageBase return self.data_code[address:address + 0x100] def get_string(self, address, type=AUTO_ENCODING): data = self.get_value(address) if data[0] in string.printable: if type == AUTO_ENCODING: if data[1] == '\x00': return self._extract_unicode_string(data) elif data[1] in string.printable: return self._extract_ascii_string(data) if type == UNICODE_ENCODING: return self._extract_unicode_string(data) if type == ASCII_ENCODING: return self._extract_ascii_string(data) return None def _extract_unicode_string(self, data): end = data.find("\x00\x00") if end != -1: end += end & 1 # round end to the next even number return data[:end].decode('UTF-16LE', 'ignore') # FIXME: this case should not happen return "" def _extract_ascii_string(self, data): if data.find('\x00') != -1: return data.split('\x00')[0] return "" def _extract_address(self, opcode): """ """ try: # Fetching the address if "CALL" in opcode: if "CALL DWORD" in opcode: saddr = opcode.split(' ')[2] elif "CALL FAR" in opcode: saddr = opcode.split(' ')[2] else: saddr = opcode.split(' ')[1] return saddr elif "J" == opcode[0]: fct = opcode.split(' ')[0] if "%s DWORD" % fct in opcode: saddr = opcode.split(' ')[2] elif "%s FAR" % fct in opcode: if "%s FAR DWORD" % fct in opcode: saddr = opcode.split(' ')[3] else: saddr = opcode.split(' ')[2] else: saddr = opcode.split(' ')[1] return saddr elif "M" == opcode[0] and "O" == opcode[1] and "V" == opcode[2]: saddr = opcode.split(',')[1] return saddr[1:] else: return '' except: print >> sys.stderr, "".join([bcolors.FAIL, "\tError: Can't extract address : '%s' found " % opcode, bcolors.ENDC]) return '' def _extract_value(self, opcode): """ """ try: # Retrieve the address if "PUSH" in opcode: if "PUSHF" in opcode: return '' if "PUSH DWORD" in opcode: saddr = opcode.split(' ')[2] else: saddr = opcode.split(' ')[1] return saddr elif "POP" in opcode: if "POPF" in opcode: return '' if "POP DWORD" in opcode: saddr = opcode.split(' ')[2] else: saddr = opcode.split(' ')[1] return saddr else: return '' except: print >> sys.stderr, "".join([bcolors.FAIL, "\tError: Can't extract value: '%s' found" % opcode, bcolors.ENDC]) return '' def _get_function_name(self, opcode=None, saddr=None): """ @param opcode: Opcode what we want resolv. @type opcode: @param saddr: @type saddr: """ if opcode is not None: try: saddr = self._extract_address(opcode) except: print >> sys.stderr, "".join([bcolors.FAIL, "\tError: Decomposition not possible: '%s' found in %s" % (saddr, opcode), bcolors.ENDC]) return saddr if saddr == '': return opcode saddr2 = saddr if '[' in saddr: saddr2 = saddr[1:-1] if ":" in saddr2: return saddr if self.is_register(saddr2): return saddr try: addr = int(saddr2, 16) if addr in self.symbols_imported: return self.symbols_imported[addr] else: return saddr except Exception as e: print >> sys.stderr, "".join([bcolors.FAIL, "\tError: Conversion not possible: '%s' found in %s" % (saddr2, opcode), bcolors.ENDC]) print >> sys.stderr, str(e) return opcode else: return opcode def print_assembly(self, start=0, nb_instruction=0x20): """ TODO: """ dec = self.decode[start:start + nb_instruction] if dec[0][0] not in self.map_call: offset = dec[0][0] print "\t %s%s%s" % (bcolors.OKGREEN, self.where_am_i(offset=offset), bcolors.ENDC) print '\t [...]' for b in dec: self.print_instruction(b[0], b[3], b[2]) print "" def replace_function(self, instruction): """ Replace address in instruction by the corresponding name @param : instruction @type : string """ try: if "CALL" in instruction: fct = self._get_function_name(instruction) if fct is None: return instruction if "CALL DWORD" in instruction: return "CALL DWORD %s" % (bcolors.HEADER + fct + bcolors.ENDC) elif "CALL" in instruction: return "CALL %s" % (bcolors.HEADER + fct + bcolors.ENDC) elif "JMP" in instruction: fct = self._get_function_name(instruction) if fct is None: return instruction if "JMP DWORD" in instruction: return "JMP DWORD %s" % (bcolors.HEADER + fct + bcolors.ENDC) else: return "JMP %s" % (bcolors.HEADER + fct + bcolors.ENDC) else: return "%s" % instruction except Exception as e: print >> sys.stderr, "".join([bcolors.FAIL, "\tError: Can't replace name in this instruction '%s'" % instruction, bcolors.ENDC]) print >> sys.stderr, str(e) return instruction def print_instruction(self, offset=None, code=None, instruction=None): """ Print instruction in arguments @param : offset @param : code @param : instruction """ if all([x is None for x in (offset, code, instruction)]): offset = self.decode[0:1][0][0] code = self.decode[0:1][0][3] instruction = self.decode[0:1][0][2] if offset in self.map_call: print "\t %s%s%s" % (bcolors.OKGREEN, self.map_call[offset], bcolors.ENDC) try: if offset == self.register.eip: print "\t%s%s%s%04x : %15s : %s%s%s%s" % (bcolors.BGGREEN, bcolors.BOLD, bcolors.FGBLACK, offset, code, self.replace_function(instruction), bcolors.ENDC, bcolors.ENDC, bcolors.ENDC) else: found = False strva = None last_part = instruction.split(' ')[-1:][0] for r in self.register.get_list_register(): if r in last_part.lower(): found = True try: if not found: if '0x' in last_part: address = int(last_part, 16) try: strva = self.get_string(address) except: strva = None if '0x' in last_part and len(last_part) == 10 and '[' in last_part: address = int(last_part[1:-1], 16) strva = "0x%x -> %s" % (address, self.symbols_imported[address]) except: strva = None pass if strva is not None: print "\t%04x : %15s : %-50s\t%s;%s%s" % (offset, code, self.replace_function(instruction), bcolors.OKBLUE, strva, bcolors.ENDC) else: print "\t%04x : %15s : %-50s" % (offset, code, self.replace_function(instruction)) except Exception as e: print >> sys.stderr, "".join([bcolors.FAIL, "\tError: Can't print this instruction '%s:%s'" % (offset, instruction), bcolors.ENDC]) raise e def next(self): """ Advance one instruction """ eip = self.register.eip dec = Decode(eip, self.data_code[eip:eip + 0x40]) self.set_position(dec[1][0]) if self.verbose: self.print_assembly() def previous(self): """ Advance one instruction """ eip = self.register.eip dec = Decode(eip - 0x40, self.data_code[eip - 0x40:eip]) s = len(dec) self.set_position(dec[s-1][0]) if self.verbose: self.print_assembly() def up(self): f1 = self.where_am_i() c = 0 for h in self.backhistory: if h == self.map_call_by_name[f1]: self.backhistory = self.backhistory[:c] self.set_position(previous_position) # FIXME: bug here return True else: previous_position = h c += 1 return False def where_am_i(self, offset=None): if offset is None: offset = self.register.eip data = self.map_call if offset in data: return data[offset] else: return data[min(data.keys(), key=lambda k: abs(offset - k if offset - k > 0 else k))] def where_start_my_bloc(self, offset=None): if offset is None: offset = self.register.eip self.backhistory.reverse() hr = self.backhistory p = hr[0] for h in hr[1:]: if p - h < 0: self.backhistory.reverse() return p if p - h > 0x10: self.backhistory.reverse() return p p = h return offset def rename_function(self, old_name, new_name): """ @param old_name @param new_name """ if old_name in self.map_call_by_name: addr = self.map_call_by_name[old_name] self.map_call[addr] = new_name self.map_call_by_name[new_name] = addr del self.map_call_by_name[old_name] else: raise FunctionNameNotFound def get_instruction(self, offset=None): if offset is None: offset = self.register.eip return Decode(offset, self.data_code[offset:offset + 0x20])[0][2] @script def get_stack(self, offset=None): """ Get Stack from a """ if offset is None: offset = self.register.eip self.update_stack_and_register(offset) return self.stack @script def get_arguments(self, n=None, convention=STDCALL, offset=None): """ Get arguments from a """ if offset is None: offset = self.register.eip if n is None or n == 0: raise ValueError("Invalid value for arguments") self.update_stack_and_register(offset) if convention in (STDCALL, CDECL, THISCALL): return self.get_stack(offset=offset)[n - 1] if convention == FASTCALL_VCPP: if n == 1: return self.register.ecx elif n == 2: return self.register.edx else: return self.get_stack(offset=offset)[n - 3] if convention == FASTCALL_CPP_BUILDER or convention == FASTCALL_DELPHI: if n == 1: return self.register.eax elif n == 2: return self.register.edx elif n == 3: return self.register.ecx else: return self.get_stack(offset=offset)[n - 4] def update_stack_and_register(self, offset=None): """ Update Stack and register """ if offset is None: offset = self.register.eip bloc = '' # Am I on a function ? functionname = self.where_am_i(offset) addr = self.map_call_by_name[functionname] if addr < offset: s = addr e = offset else: s = self.where_start_my_bloc() e = offset self.stack = list() for d in Decode(addr, self.data_code[s:e]): if "PUSH" in d[2]: svalue = self._extract_value(d[2]) if svalue == '': continue if '[' in svalue: svalue = svalue[1:-1] svalue = compute_operation(svalue, self.register) svalue = "[%s]" % svalue else: svalue = compute_operation(svalue, self.register) self.stack.append(svalue) elif "POP" in d[2]: svalue = self._extract_value(d[2]) if svalue == '': continue svalue = compute_operation(svalue, self.register) self.stack.append(svalue) elif "CALL" in d[2]: continue elif "LEAVE" in d[2]: continue elif "MOVSD" in d[2]: continue elif "MOV" in d[2] or "LEA" in d[2]: bloc = d[2].split(' ') if "DWORD" in d[2]: pass elif "BYTE" in d[2]: pass else: bloc = d[2].split(' ') if 'REP' in bloc: continue if 'MOVSW' in bloc: continue if 'MOVSB' in bloc: continue if 'MOVZX' in bloc: continue if 'MOV WORD' in d[2]: continue try: dst = bloc[1][:-1].lower() src = bloc[2].lower() if '[' in dst: continue if ':' in src or ':' in dst: continue if '[' in src: value_src = compute_operation(src[1:-1], self.register) self.register.set_address(dst, value_src) else: value_src = compute_operation(src, self.register) self.register.set(dst, value_src) except Exception as e: print >> sys.stderr, "".join([bcolors.FAIL, "\tError: '%s'" % bloc, bcolors.ENDC]) print >> sys.stderr, "".join([bcolors.FAIL, "\tError: Can't update stack and registry '%s' for %s" % (str(e), d[2]), bcolors.ENDC]) pass elif "XOR" in d[2]: try: bloc = d[2].split(' ') dst = bloc[1][:-1].lower() if '[' in d[2]: continue src = bloc[2].lower() self.register.set(dst, self.register.get(dst) ^ self.register.get(src)) except Exception as e: print >> sys.stderr, "".join([bcolors.FAIL, "\tError: '%s'" % bloc, bcolors.ENDC]) print >> sys.stderr, "".join([bcolors.FAIL, "\tError: Can't xor '%s' for %s" % (str(e), d[2]), bcolors.ENDC]) pass self.stack.reverse() def make_template(self, start=0, nb_instruction=0x20): dec = self.decode[start:start + nb_instruction] assembly = '' for b in dec: assembly += b[2] + os.linesep template = Template(assembly) print template.compare(assembly) # vim:ts=4:expandtab:sw=4
import csv from termcolor import colored class Room: """Organizes and manipulates rooms.""" def __init__(self, config): self.visits = 0 self.config = None self.label = None self.verbose_description = None self.terse_description = None self.items = None self.item_list = None self.exit_list = None self.exits = None self.config = config self.label = config['label'] self.verbose_description = config['verbose_description'] self.terse_description = config['terse_description'] def extra_description(self): print('\n') # prints description of items and exits for i, item in self.items.items(): if item.type != 'hidden': print( colored("There is a %s here." % item.name, 'cyan') ) for i, _exit in self.exits.items(): print( colored( "There is a %s to the %s." % (_exit.name, _exit.direction), 'cyan' ) ) def describe_verbose(self): """Prints the verbose room description.""" print(colored("\n%s" % self.verbose_description, 'blue')) self.extra_description() def describe_terse(self): """prints the terse room description.""" print(colored("\n%s" % self.terse_description, 'blue')) self.extra_description() def describe(self): """The main description printing function: - checks to see if the player has been here before - prints the verbose description on the first visits and the terse description on all others. Always prints descriptions of items and exits. """ if self.visits == 0: self.describe_verbose() self.visits += 1 else: self.describe_terse() def add_items(self, item_list): """Iterates through the item dictionary and makes a new dictionary of items whose location matches the room. """ self.item_list = item_list self.items = {} for key, item in self.item_list.items(): if item.location == self.label: self.items[item.label] = item def add_exits(self, exit_list): self.exit_list = exit_list self.exits = {} for key, _exit in self.exit_list.items(): if _exit.location == self.label: self.exits[_exit.label] = _exit def populate(): all_rooms = {} with open("data/rooms.csv", "r") as f: for config in csv.DictReader(f): new_room = Room(config) all_rooms[new_room.label] = new_room return all_rooms
# -*- coding: utf-8 -*- """Top-level package for predeval.""" __author__ = """Dan Vatterott""" __email__ = 'dvatterott@gmail.com' __version__ = '0.0.10' from .continuous import ContinuousEvaluator from .categorical import CategoricalEvaluator from .utilities import evaluate_tests __all__ = ['ContinuousEvaluator', 'CategoricalEvaluator', 'evaluate_tests']
from http.server import HTTPServer, BaseHTTPRequestHandler import ssl import sys import cgi import base64 import tensorflow as tf import keras import numpy as np import imghdr import io import hashlib # simple mitigation to validate model file wasn't tampered model_hash = "681226449b772fa06ec87c44b9dae724c69530d5d46d5449ff298849e5808b86" def validate_model(filename): with open(filename,"rb") as f: bytes = f.read() hash = hashlib.sha256(bytes).hexdigest(); if hash == model_hash: return True else: return False sys.stdout = open('log.txt','at') MODEL_FILE = "models/huskymodel.h5" if validate_model(MODEL_FILE)==False: print("Invalid model hash. Exiting.") sys.exit("Model failed validation.") #load the model MODEL = tf.keras.models.load_model(MODEL_FILE) print("Model loaded.") #load the template html with open("templates/husky.html","rb") as file: STATIC_HTML_PAGE = file.read() #simple web server class SimpleHTTPRequestHandler(BaseHTTPRequestHandler): def do_GET(self): forwardedfor = str(self.headers['X-Forwarded-For']) print(f"GET {forwardedfor}") self.send_response(200) self.end_headers() self.wfile.write(STATIC_HTML_PAGE) def do_POST(self): content_length = int(self.headers["Content-Length"]) if int(content_length) > 10000000: print("File too big") self.send_response(500, "File too big") return form = cgi.FieldStorage( fp=self.rfile, headers=self.headers, environ={"REQUEST_METHOD":"POST", "CONTENT_TYPE":self.headers["Content-Type"], }) filename = str(form['file'].filename) forwardedfor = str(self.headers['X-Forwarded-For']) print(f"POST {forwardedfor} File: {filename} - ", end = ".") data = form["file"].file.read() print("Checking image", end = ". ") filetype = imghdr.what(file="", h=data) if filetype not in ["png","jpeg","gif"]: print(f"Unsupported media type: {filetype}", end = ". ") self.send_response(415, "Only png, jpg and gif are supported.") return num_px = 128 # read the image from PIL import Image img = Image.open(io.BytesIO(data)).convert("RGB") img = img.resize((num_px, num_px)) image = np.array(img)/255. image = np.expand_dims(image, axis=0) result = MODEL.predict(image) self.send_response(200) self.send_header("Content-Type", "application/json") self.end_headers() score_percent = float(result[0]*100) score = format(score_percent, '.8f') response = '{ "score": "' + str(score) +'",' if (result > 0.5): response += '"text": "It is a husky!" }' else: response += '"text": "Does not look like a husky to me."}' print(f"Response: {response}") sys.stdout.flush() self.wfile.write(bytes(response,"utf-8")) httpd = HTTPServer(("localhost", 20080), SimpleHTTPRequestHandler) httpd.socket = ssl.wrap_socket (httpd.socket, keyfile="server.key", certfile='server.crt', server_side=True) httpd.serve_forever()
import cubic_spline_interpolation import matplotlib.pyplot as plt import numpy as np import sys filename_measurements = '20160810-0955_measurements_CNN0a.dat' filename_result = '20160810-0955_result_CNN0a.dat' filename_measurements = '20160811-1459_measurements_CNN0a.dat' filename_result = '20160811-1459_result_CNN0a.dat' filename_measurements = '20160814-2317_measurements_U20_CNN0f.dat' filename_result = '20160815-1525_classified_U4_CNN0f_using_U5+U20.dat' filename_result = '20160815-1547_classified_U4_CNN0_using_U5+U20.dat' filename_result = '20160815-1538_classified_U4_CNN0_using_U5.dat' filename_result = '20160815-1548_classified_U4_CNN0f_using_U5.dat' plot_progress_output_and_accuracy = False #filename_measurements = '20160803-0833_measurements.dat' #filename_result = '20160803-0833_result.dat' #title = '$\mathrm{Network:\ TF\_HSF\_CNN0.py\ U5\ Test\ accuracy:\ 80.4}$' #title = '$\mathrm{Network:\ TF\_HSF\_CNN0.py\ U20\ Test\ accuracy:\ 98.3}$' #title = '$\mathrm{Network:\ TF\_HSF\_CNN0.py\ U5\ +\ U20\ Test\ accuracy:\ 83.9}$' title = '$\mathrm{Network:\ TF\_HSF\_CNN0f.py\ U5\ Test\ accuracy:\ 85.4}$' #title = '$\mathrm{Network:\ TF\_HSF\_CNN0f.py\ U20\ Test\ accuracy:\ 99.2}$' #title = '$\mathrm{Network:\ TF\_HSF\_CNN0f.py\ U5\ +\ U20\ Test\ accuracy:\ 87.7}$' # temperature_U1 index_U1 closest to T_c index_U1 = 25 # Potential energy data set 1 U1 = 4 # Critical temperature_U1 T_c_U1= 0.16 # Initial guess solution of critical temperature_U1 T_c_guess_U1 = 0.2 # temperature_U2 index_U2 closest to T_c index_U2 = 20 # Potential energy data set 2 U2 = 20 # Critical temperature_U2 T_c_U2= 0.19 # Initial guess solution of critical temperature_U2 T_c_guess_U2 = 0.19 T_c_U1_known = True use_single_U = True U1_temp_len = 48 # 'equal' or 'log' grid = 'equal' grid = 'log' # 'cubic' or 'linear' interpolation = 'cubic' interpolation = 'linear' def quadratic1_U1( x ): T = temperature_U1[index_U1] a, b, c, d = params_a1[index_U1], params_b1[index_U1], params_c1[index_U1], params_d1[index_U1] return a + b*(x-T) + c*(x-T)**2. + d*(x-T)**3., b + 2.*c*(x-T) + 3.*d*(x-T)**2. def quadratic2_U1( x ): T = temperature_U1[index_U1] a, b, c, d = params_a2[index_U1], params_b2[index_U1], params_c2[index_U1], params_d2[index_U1] return a + b*(x-T) + c*(x-T)**2. + d*(x-T)**3., b + 2.*c*(x-T) + 3.*d*(x-T)**2. def quadratic1_U2( x ): T = temperature_U2[index_U2] a, b, c, d = params_a1[index_U2], params_b1[index_U2], params_c1[index_U2], params_d1[index_U2] return a + b*(x-T) + c*(x-T)**2. + d*(x-T)**3., b + 2.*c*(x-T) + 3.*d*(x-T)**2. def quadratic2_U2( x ): T = temperature_U2[index_U2] a, b, c, d = params_a2[index_U2], params_b2[index_U2], params_c2[index_U2], params_d2[index_U2] return a + b*(x-T) + c*(x-T)**2. + d*(x-T)**3., b + 2.*c*(x-T) + 3.*d*(x-T)**2. def linear1_U1( x ): delta_y = (output_neuron1_U1[index_U1+1]-output_neuron1_U1[index_U1]) delta_x = (temperature_U1[index_U1+1]-temperature_U1[index_U1]) b = output_neuron1_U1[index_U1] - delta_y*temperature_U1[index_U1]/delta_x return delta_y*x/delta_x+b, delta_y/delta_x def linear2_U1( x ): delta_y = (output_neuron2_U1[index_U1+1]-output_neuron2_U1[index_U1]) delta_x = (temperature_U1[index_U1+1]-temperature_U1[index_U1]) b = output_neuron2_U1[index_U1] - delta_y*temperature_U1[index_U1]/delta_x return delta_y*x/delta_x+b, delta_y/delta_x def linear1_U2( x ): delta_y = (output_neuron1_U2[index_U2+1]-output_neuron1_U2[index_U2]) delta_x = (temperature_U2[index_U2+1]-temperature_U2[index_U2]) b = output_neuron1_U2[index_U2] - delta_y*temperature_U2[index_U2]/delta_x return delta_y*x/delta_x+b, delta_y/delta_x def linear2_U2( x ): delta_y = (output_neuron2_U2[index_U2+1]-output_neuron2_U2[index_U2]) delta_x = (temperature_U2[index_U2+1]-temperature_U2[index_U2]) b = output_neuron2_U2[index_U2] - delta_y*temperature_U2[index_U2]/delta_x return delta_y*x/delta_x+b, delta_y/delta_x def dx(f, g, x): return abs(g(x)[0]-f(x)[0]) def newtons_method(f, g, x0, e = 10e-10): delta = dx(f, g, x0) while delta > e: x0 = x0 - (f(x0)[0] - g(x0)[0])/(f(x0)[1] - g(x0)[1]) delta = dx(f, g, x0) return x0 #date = filename_result.rsplit('_',5)[0] date = filename_result.rsplit('.',5)[0] if plot_progress_output_and_accuracy : data_measurements = np.loadtxt(filename_measurements) training_epochs = data_measurements[:,0] training_accuracy = data_measurements[:,1] test_accuracy = data_measurements[:,2] cost = data_measurements[:,3] data_result = np.loadtxt(filename_result) if use_single_U : temperature = data_result[:,0] sort_index = temperature.argsort() temperature_U1 = temperature[sort_index] output_neuron2_U1 = data_result[:,1][sort_index] output_neuron1_U1 = data_result[:,2][sort_index] if plot_progress_output_and_accuracy : accuracy_U1 = data_result[:,3] if interpolation == 'linear' : #m1 = (output_neuron1_U1[index_U1+1]-output_neuron1_U1[index_U1])/(temperature_U1[index_U1+1]-temperature_U1[index_U1]) #b1 = output_neuron1_U1[index_U1+1] - m1*temperature_U1[index_U1+1] #m2 = (output_neuron2_U1[index_U1+1]-output_neuron2_U1[index_U1])/(temperature_U1[index_U1+1]-temperature_U1[index_U1]) #b2 = output_neuron2_U1[index_U1+1] - m2*temperature_U1[index_U1+1] #T_c_experiment_x_U1 = (b2-b1)/(m1-m2) T_c_experiment_x_U1 = newtons_method( linear1_U1, linear2_U1, T_c_guess_U1 ) T_c_experiment_y_U1 = linear1_U1(T_c_experiment_x_U1)[0] if interpolation == 'cubic' : # d (accuracy) / d (temperature_U1) velocity_U1 = np.zeros( np.shape( temperature_U1 ) ) # Get the cubic spline interpolated curve and it's parameters [T_mod1_U1, Output_mod1_U1, V_mod1] = cubic_spline_interpolation.ClampedCubicSpline( temperature_U1, output_neuron1_U1, velocity_U1, 250 ) params_a1, params_b1, params_c1, params_d1 = cubic_spline_interpolation.ClampedCubicSplineCoefficients( temperature_U1, output_neuron1_U1, velocity_U1 ) [T_mod2_U1, Output_mod2, V_mod2] = cubic_spline_interpolation.ClampedCubicSpline( temperature_U1, output_neuron2_U1, velocity_U1, 250 ) params_a2, params_b2, params_c2, params_d2 = cubic_spline_interpolation.ClampedCubicSplineCoefficients( temperature_U1, output_neuron2_U1, velocity_U1 ) T_c_experiment_x_U1 = newtons_method( linear1_U1, linear2_U1, T_c_guess_U1 ) T_c_experiment_y_U1 = linear1_U1(T_c_experiment_x_U1)[0] print 'T_c (U=%d) = %.2f' % (U1, T_c_U1) print 'T_c, experiment = %.2f' % T_c_experiment_x_U1 print 'Percent error = %.2g %%' % (abs(1.-T_c_experiment_x_U1/T_c_U1)*100) else : temperature = data_result[:,0] temperature_U1 = data_result[:,0][:U1_temp_len] output_neuron2_U1 = data_result[:,1][:U1_temp_len] output_neuron1_U1 = data_result[:,2][:U1_temp_len] if plot_progress_output_and_accuracy : accuracy_U1 = data_result[:,3][:U1_temp_len] temperature_U2 = data_result[:,0][U1_temp_len:] output_neuron2_U2 = data_result[:,1][U1_temp_len:] output_neuron1_U2 = data_result[:,2][U1_temp_len:] if plot_progress_output_and_accuracy : accuracy_U2 = data_result[:,3][U1_temp_len:] if interpolation == 'linear' : T_c_experiment_x_U1 = newtons_method( linear1_U1, linear2_U1, T_c_guess_U1 ) T_c_experiment_y_U1 = linear1_U1(T_c_experiment_x_U1)[0] T_c_experiment_x_U2 = newtons_method( linear1_U2, linear2_U2, T_c_guess_U2 ) T_c_experiment_y_U2 = linear1_U2(T_c_experiment_x_U2)[0] if interpolation == 'cubic' : # d (accuracy) / d (temperature_U1) velocity_U1 = np.zeros( np.shape( temperature_U1 ) ) # Get the cubic spline interpolated curve and it's parameters [T_mod1_U1, Output_mod1_U1, V_mod1] = cubic_spline_interpolation.ClampedCubicSpline( temperature_U1, output_neuron1_U1, velocity_U1, 250 ) params_a1, params_b1, params_c1, params_d1 = cubic_spline_interpolation.ClampedCubicSplineCoefficients( temperature_U1, output_neuron1_U1, velocity_U1 ) [T_mod2_U1, Output_mod2_U1, V_mod2] = cubic_spline_interpolation.ClampedCubicSpline( temperature_U1, output_neuron2_U1, velocity_U1, 250 ) params_a2, params_b2, params_c2, params_d2 = cubic_spline_interpolation.ClampedCubicSplineCoefficients( temperature_U1, output_neuron2_U1, velocity_U1 ) T_c_experiment_x_U1 = newtons_method( quadratic1_U1, quadratic2_U1, T_c_guess_U1 ) T_c_experiment_y_U1 = quadratic2_U1(T_c_experiment_x_U1)[0] # d (accuracy) / d (temperature_U2) velocity_U2 = np.zeros( np.shape( temperature_U2 ) ) # Get the cubic spline interpolated curve and it's parameters [T_mod1_U2, Output_mod1_U2, V_mod1] = cubic_spline_interpolation.ClampedCubicSpline( temperature_U2, output_neuron1_U2, velocity_U2, 250 ) params_a1, params_b1, params_c1, params_d1 = cubic_spline_interpolation.ClampedCubicSplineCoefficients( temperature_U2, output_neuron1_U2, velocity_U2 ) [T_mod2_U2, Output_mod2_U2, V_mod2] = cubic_spline_interpolation.ClampedCubicSpline( temperature_U2, output_neuron2_U2, velocity_U2, 250 ) params_a2, params_b2, params_c2, params_d2 = cubic_spline_interpolation.ClampedCubicSplineCoefficients( temperature_U2, output_neuron2_U2, velocity_U2 ) T_c_experiment_x_U2 = newtons_method( quadratic1_U2, quadratic2_U2, T_c_guess_U2 ) T_c_experiment_y_U2 = quadratic2_U2(T_c_experiment_x_U2)[0] if T_c_U1_known : print 'T_c (U=%d) = %.2f' % (U1, T_c_U1) print 'T_c, experiment = %.2f' % T_c_experiment_x_U1 print 'Percent error = %.2g %%' % (abs(1.-T_c_experiment_x_U1/T_c_U1)*100) else : print 'T_c, experiment = %.2f' % T_c_experiment_x_U1 print 'T_c (U=%d) = %.2f' % (U2, T_c_U2) print 'T_c, experiment = %.2f' % T_c_experiment_x_U2 print 'Percent error = %.2g %%' % (abs(1.-T_c_experiment_x_U2/T_c_U2)*100) plt.close('all') # Graph properties ############################################################# # Define colours in RGB space Color = [ [0.90, 0.25, 0.35], [0.95, 0.35, 0.00], [0.95, 0.55, 0.00], [0.95, 0.75, 0.00], [0.55, 0.90, 0.25], [0.40, 0.95, 0.40], [0.40, 0.95, 0.45], [0.40, 0.95, 0.50], [0.40, 0.95, 0.55], [0.20, 0.60, 0.80], [0.20, 0.60, 0.85], [0.20, 0.60, 0.90], [0.20, 0.60, 0.95], [0.20, 0.40, 0.95], [0.40, 0.20, 0.95], [0.80, 0.20, 0.95], [0.10, 0.10, 0.10], [0.60, 0.60, 0.60] ] if plot_progress_output_and_accuracy : fig = plt.figure( figsize = plt.figaspect( 1.33 ) *3.0 ) ax11 = fig.add_subplot( 3, 1, 1 ) #for i in range(len(epoch_at_which_model_saved)) : # ax11.plot([epoch_at_which_model_saved[i], # epoch_at_which_model_saved[i]],[0,1], ls='-.', # label = '', color=Color[2], lw=2, alpha=0.5) #ax11.plot([],[],ls='-.', # label = '$\mathrm{Epoch\ at\ which\ model\ saved}$', color=Color[2], lw=2, # alpha=0.5) ax11.plot(training_epochs, training_accuracy, ls='-', label = '$\mathrm{Training\ accuracy}$', color=Color[1], lw=2, alpha=1.0) ax11.plot(training_epochs, test_accuracy , ls='-', label = '$\mathrm{Test\ accuracy}$', color=Color[9], lw=2, alpha=1.0) ax11.set_xlabel('$\mathrm{Training\ epoch}$', fontsize='25') ax11.set_ylabel('$\mathrm{Accuracy}$', fontsize='25') #plt.xlim([0.2,10]) plt.ylim([0,1]) ax12 = ax11.twinx() ax12.plot(training_epochs, cost, ls = '--', label = '$\mathrm{Cross-entropy\ cost}$', color=Color[-1], lw=2, alpha=0.5) ax12.set_ylabel('$\mathrm{Cost}$', fontsize='25') lines1, labels1 = ax11.get_legend_handles_labels() lines2, labels2 = ax12.get_legend_handles_labels() ax12.legend(lines1+lines2, labels1+labels2, loc='center right', fontsize='15') ax11.grid(True) #plt.grid(True) ax21 = fig.add_subplot( 3, 1, 2 ) if use_single_U : ax21.plot([T_c_U1, T_c_U1], [0,1], ls='--', label = '$T_{c} (U=%d) = %.2f$' % (U1, T_c_U1), color=Color[-1], lw=2, alpha=0.5) ax21.plot(temperature_U1, output_neuron2_U1, color=Color[1], marker='o', linestyle='None', ms=5, markeredgewidth=0.0, alpha=1.0) ax21.plot(temperature_U1, output_neuron1_U1, color=Color[9], marker='o', linestyle='None', ms=5, markeredgewidth=0.0, alpha=1.0) if grid == 'equal' : if interpolation == 'linear' : ax21.plot(temperature_U1, output_neuron2_U1, color=Color[1], linestyle='-', lw=2, alpha=1.0) ax21.plot(temperature_U1, output_neuron1_U1, color=Color[9], linestyle='-', lw=2, alpha=1.0) elif interpolation == 'cubic' : ax21.plot(T_mod2_U1, Output_mod2_U1, ls='-', label='', color=Color[1], lw=2, alpha=1.0) ax21.plot(T_mod1_U1, Output_mod1_U1, ls='-', label='', color=Color[9], lw=2, alpha=1.0) ax21.plot(T_c_experiment_x_U1, T_c_experiment_y_U1, label='$T_{c,\ \mathrm{experiment}} = %.3f$' % T_c_experiment_x_U1, color=Color[-1], marker='o', linestyle='None', ms=10, markeredgewidth=0.0, alpha=0.5) ax21.plot([],[], label='$\mathrm{Percent\ error} = %.2g %%$'%(abs(1.-T_c_experiment_x_U1/T_c_U1)*100), linestyle='None') if grid == 'log' : if interpolation == 'linear' : ax21.semilogx(temperature_U1, output_neuron2_U1, color=Color[1], linestyle='-', lw=2, alpha=1.0) ax21.semilogx(temperature_U1, output_neuron1_U1, color=Color[9], linestyle='-', lw=2, alpha=1.0) elif interpolation == 'cubic' : ax21.semilogx(T_mod2_U1, Output_mod2_U1, ls='-', label='', color=Color[1], lw=2, alpha=1.0) ax21.semilogx(T_mod1_U1, Output_mod1_U1, ls='-', label='', color=Color[9], lw=2, alpha=1.0) ax21.semilogx(T_c_experiment_x_U1, T_c_experiment_y_U1, label='$T_{c,\ \mathrm{experiment}} = %.3f$' % T_c_experiment_x_U1, color=Color[-1], marker='o', linestyle='None', ms=10, markeredgewidth=0.0, alpha=0.5) ax21.semilogx([],[], label='$\mathrm{Percent\ error} = %.2g %%$'%(abs(1.-T_c_experiment_x_U1/T_c_U1)*100), linestyle='None') else : if T_c_U1_known : ax21.plot([T_c_U1, T_c_U1], [0,1], ls='--', label = '$T_{c} (U=%d) = %.2f$' % (U1,T_c_U1), color=Color[-1], lw=2, alpha=0.5) ax21.plot(temperature_U1, output_neuron2_U1, color=Color[1], marker='o', linestyle='None', ms=5, markeredgewidth=0.0, alpha=1.0) ax21.plot(temperature_U1, output_neuron1_U1, color=Color[9], marker='o', linestyle='None', ms=5, markeredgewidth=0.0, alpha=1.0) ax21.plot(temperature_U2, output_neuron2_U2, color=Color[2], marker='o', linestyle='None', ms=5, markeredgewidth=0.0, alpha=1.0) ax21.plot(temperature_U2, output_neuron1_U2, color=Color[4], marker='o', linestyle='None', ms=5, markeredgewidth=0.0, alpha=1.0) if grid == 'equal' : if interpolation == 'linear' : ax21.plot(temperature_U1, output_neuron2_U1, color=Color[1], linestyle='-', lw=2, alpha=1.0) ax21.plot(temperature_U1, output_neuron1_U1, color=Color[9], linestyle='-', lw=2, alpha=1.0) ax21.plot(temperature_U2, output_neuron2_U2, color=Color[2], linestyle='-', lw=2, alpha=1.0) ax21.plot(temperature_U2, output_neuron1_U2, color=Color[4], linestyle='-', lw=2, alpha=1.0) elif interpolation == 'cubic' : ax21.plot(T_mod2_U1, Output_mod2_U1, ls='-', label='', color=Color[1], lw=2, alpha=1.0) ax21.plot(T_mod1_U1, Output_mod1_U1, ls='-', label='', color=Color[9], lw=2, alpha=1.0) ax21.plot(T_mod2_U2, Output_mod2_U2, ls='-', label='', color=Color[2], lw=2, alpha=1.0) ax21.plot(T_mod1_U2, Output_mod1_U2, ls='-', label='', color=Color[4], lw=2, alpha=1.0) ax21.plot(T_c_experiment_x_U1, T_c_experiment_y_U1, label='$T_{c,\ \mathrm{experiment}} = %.3f$' % T_c_experiment_x_U1, color=Color[-1], marker='o', linestyle='None', ms=10, markeredgewidth=0.0, alpha=0.5) if T_c_U1_known : ax21.plot([],[], label='$\mathrm{Percent\ error} = %.2g %%$'%(abs(1.-T_c_experiment_x_U1/T_c_U1)*100), linestyle='None') ax21.plot([T_c_U2, T_c_U2], [0,1], ls='--', label = '$T_{c} (U=%d) = %.2f$' % (U2, T_c_U2), color=Color[-1], lw=2, alpha=0.5) ax21.plot(T_c_experiment_x_U2, T_c_experiment_y_U2, label='$T_{c,\ \mathrm{experiment}} = %.3f$' % T_c_experiment_x_U2, color=Color[-1], marker='o', linestyle='None', ms=10, markeredgewidth=0.0, alpha=0.5) ax21.plot([],[], label='$\mathrm{Percent\ error} = %.2g %%$'%(abs(1.-T_c_experiment_x_U2/T_c_U2)*100), linestyle='None') if grid == 'log' : if interpolation == 'linear' : ax21.semilogx(temperature_U1, output_neuron2_U1, color=Color[1], linestyle='-', lw=2, alpha=1.0) ax21.semilogx(temperature_U1, output_neuron1_U1, color=Color[9], linestyle='-', lw=2, alpha=1.0) ax21.semilogx(temperature_U2, output_neuron2_U2, color=Color[2], linestyle='-', lw=2, alpha=1.0) ax21.semilogx(temperature_U2, output_neuron1_U2, color=Color[4], linestyle='-', lw=2, alpha=1.0) elif interpolation == 'cubic' : ax21.semilogx(T_mod2_U1, Output_mod2_U1, ls='-', label='', color=Color[1], lw=2, alpha=1.0) ax21.semilogx(T_mod1_U1, Output_mod1_U1, ls='-', label='', color=Color[9], lw=2, alpha=1.0) ax21.semilogx(T_mod2_U2, Output_mod2_U2, ls='-', label='', color=Color[2], lw=2, alpha=1.0) ax21.semilogx(T_mod1_U2, Output_mod1_U2, ls='-', label='', color=Color[4], lw=2, alpha=1.0) ax21.semilogx(T_c_experiment_x_U1, T_c_experiment_y_U1, label='$T_{c,\ \mathrm{experiment}} = %.3f$' % T_c_experiment_x_U1, color=Color[-1], marker='o', linestyle='None', ms=10, markeredgewidth=0.0, alpha=0.5) if T_c_U1_known : ax21.semilogx([],[], label='$\mathrm{Percent\ error} = %.2g %%$'%(abs(1.-T_c_experiment_x_U1/T_c_U1)*100), linestyle='None') ax21.semilogx([T_c_U2, T_c_U2], [0,1], ls='--', label = '$T_{c} (U=%d) = %.2f$' % (U2, T_c_U2), color=Color[-1], lw=2, alpha=0.8) ax21.semilogx(T_c_experiment_x_U2, T_c_experiment_y_U2, label='$T_{c,\ \mathrm{experiment}} = %.3f$' % T_c_experiment_x_U2, color=Color[-1], marker='o', linestyle='None', ms=10, markeredgewidth=0.0, alpha=0.8) ax21.semilogx([],[], label='$\mathrm{Percent\ error} = %.2g %%$'%(abs(1.-T_c_experiment_x_U2/T_c_U2)*100), linestyle='None') ax21.set_xlabel('$\mathrm{Temperature}$', fontsize='25') ax21.set_ylabel('$\mathrm{Normalized\ output}$', fontsize='25') plt.ylim([0,1]) plt.xlim([temperature.min(), temperature.max()]) plt.legend(loc='center right', fontsize ='15') ax21.grid(True) ax31 = fig.add_subplot( 3, 1, 3 ) ax31.plot(temperature_U1, accuracy_U1, color=Color[1], marker='o', linestyle='None', ms=5, markeredgewidth=0.0, alpha=1.0) if grid == 'equal' : ax31.plot(temperature_U1, accuracy_U1, color=Color[1], label = '$U=%d$' % U1, linestyle='-', lw=2, alpha=1.0) if grid == 'log' : ax31.semilogx(temperature_U1, accuracy_U1, color=Color[1], label = '$U=%d$' % U1, linestyle='-', lw=2, alpha=1.0) if not(use_single_U) : ax31.plot(temperature_U2, accuracy_U2, color=Color[9], marker='o', linestyle='None', ms=5, markeredgewidth=0.0, alpha=1.0) if grid == 'equal' : ax31.plot(temperature_U2, accuracy_U2, color=Color[9], label = '$U=%d$' % U2, linestyle='-', lw=2, alpha=1.0) if grid == 'log' : ax31.semilogx(temperature_U2, accuracy_U2, color=Color[9], label = '$U=%d$' % U2, linestyle='-', lw=2, alpha=1.0) ax31.set_xlabel('$\mathrm{Temperature}$', fontsize='25') ax31.set_ylabel('$\mathrm{Classfication\ accuracy}$', fontsize='25') plt.ylim([0,1]) plt.xlim([temperature.min(), temperature.max()]) plt.legend(loc='center right', fontsize ='15') ax31.grid(True) else : fig = plt.figure( figsize = plt.figaspect( 0.65 ) *1.5 ) ax21 = fig.add_subplot( 1, 1, 1 ) if use_single_U : ax21.plot([T_c_U1, T_c_U1], [0,1], ls='--', label = '$T_{c} (U=%d) = %.2f$' % (U1,T_c_U1), color=Color[-1], lw=2, alpha=0.5) ax21.plot(temperature_U1, output_neuron2_U1, color=Color[1], marker='o', linestyle='None', ms=5, markeredgewidth=0.0, alpha=1.0) ax21.plot(temperature_U1, output_neuron1_U1, color=Color[9], marker='o', linestyle='None', ms=5, markeredgewidth=0.0, alpha=1.0) if grid == 'equal' : if interpolation == 'linear' : ax21.plot(temperature_U1, output_neuron2_U1, color=Color[1], linestyle='-', lw=2, alpha=1.0) ax21.plot(temperature_U1, output_neuron1_U1, color=Color[9], linestyle='-', lw=2, alpha=1.0) elif interpolation == 'cubic' : ax21.plot(T_mod2_U1, Output_mod2_U1, ls='-', label='', color=Color[1], lw=2, alpha=1.0) ax21.plot(T_mod1_U1, Output_mod1_U1, ls='-', label='', color=Color[9], lw=2, alpha=1.0) ax21.plot(T_c_experiment_x_U1, T_c_experiment_y_U1, label='$T_{c,\ \mathrm{experiment}} = %.3f$' % T_c_experiment_x_U1, color=Color[-1], marker='o', linestyle='None', ms=10, markeredgewidth=0.0, alpha=0.5) ax21.plot([],[], label='$\mathrm{Percent\ error} = %.2g %%$'%(abs(1.-T_c_experiment_x_U1/T_c_U1)*100), linestyle='None') if grid == 'log' : if interpolation == 'linear' : ax21.semilogx(temperature_U1, output_neuron2_U1, color=Color[1], linestyle='-', lw=2, alpha=1.0) ax21.semilogx(temperature_U1, output_neuron1_U1, color=Color[9], linestyle='-', lw=2, alpha=1.0) elif interpolation == 'cubic' : ax21.semilogx(T_mod2_U1, Output_mod2_U1, ls='-', label='', color=Color[1], lw=2, alpha=1.0) ax21.semilogx(T_mod1_U1, Output_mod1_U1, ls='-', label='', color=Color[9], lw=2, alpha=1.0) ax21.semilogx(T_c_experiment_x_U1, T_c_experiment_y_U1, label='$T_{c,\ \mathrm{experiment}} = %.3f$' % T_c_experiment_x_U1, color=Color[-1], marker='o', linestyle='None', ms=10, markeredgewidth=0.0, alpha=0.5) ax21.semilogx([],[], label='$\mathrm{Percent\ error} = %.2g %%$'%(abs(1.-T_c_experiment_x_U1/T_c_U1)*100), linestyle='None') else : if T_c_U1_known : ax21.plot([T_c_U1, T_c_U1], [0,1], ls='--', label = '$T_{c} (U=%d) = %.2f$' % (U1,T_c_U1), color=Color[-1], lw=2, alpha=0.5) ax21.plot(temperature_U1, output_neuron2_U1, color=Color[1], marker='o', linestyle='None', ms=5, markeredgewidth=0.0, alpha=1.0) ax21.plot(temperature_U1, output_neuron1_U1, color=Color[9], marker='o', linestyle='None', ms=5, markeredgewidth=0.0, alpha=1.0) ax21.plot(temperature_U2, output_neuron2_U2, color=Color[2], marker='o', linestyle='None', ms=5, markeredgewidth=0.0, alpha=1.0) ax21.plot(temperature_U2, output_neuron1_U2, color=Color[4], marker='o', linestyle='None', ms=5, markeredgewidth=0.0, alpha=1.0) if grid == 'equal' : if interpolation == 'linear' : ax21.plot(temperature_U1, output_neuron2_U1, color=Color[1], linestyle='-', lw=2, alpha=1.0) ax21.plot(temperature_U1, output_neuron1_U1, color=Color[9], linestyle='-', lw=2, alpha=1.0) ax21.plot(temperature_U2, output_neuron2_U2, color=Color[2], linestyle='-', lw=2, alpha=1.0) ax21.plot(temperature_U2, output_neuron1_U2, color=Color[4], linestyle='-', lw=2, alpha=1.0) elif interpolation == 'cubic' : ax21.plot(T_mod2_U1, Output_mod2_U1, ls='-', label='', color=Color[1], lw=2, alpha=1.0) ax21.plot(T_mod1_U1, Output_mod1_U1, ls='-', label='', color=Color[9], lw=2, alpha=1.0) ax21.plot(T_mod2_U2, Output_mod2_U2, ls='-', label='', color=Color[2], lw=2, alpha=1.0) ax21.plot(T_mod1_U2, Output_mod1_U2, ls='-', label='', color=Color[4], lw=2, alpha=1.0) ax21.plot(T_c_experiment_x_U1, T_c_experiment_y_U1, label='$T_{c,\ \mathrm{experiment}} = %.3f$' % T_c_experiment_x_U1, color=Color[-1], marker='o', linestyle='None', ms=10, markeredgewidth=0.0, alpha=0.5) if T_c_U1_known : ax21.plot([],[], label='$\mathrm{Percent\ error} = %.2g %%$'%(abs(1.-T_c_experiment_x_U1/T_c_U1)*100), linestyle='None') ax21.plot([T_c_U2, T_c_U2], [0,1], ls='--', label = '$T_{c} (U=%d) = %.2f$' % (U2, T_c_U2), color=Color[-1], lw=2, alpha=0.5) ax21.plot(T_c_experiment_x_U2, T_c_experiment_y_U2, label='$T_{c,\ \mathrm{experiment}} = %.3f$' % T_c_experiment_x_U2, color=Color[-1], marker='o', linestyle='None', ms=10, markeredgewidth=0.0, alpha=0.5) ax21.plot([],[], label='$\mathrm{Percent\ error} = %.2g %%$'%(abs(1.-T_c_experiment_x_U2/T_c_U2)*100), linestyle='None') if grid == 'log' : if interpolation == 'linear' : ax21.semilogx(temperature_U1, output_neuron2_U1, color=Color[1], linestyle='-', lw=2, alpha=1.0) ax21.semilogx(temperature_U1, output_neuron1_U1, color=Color[9], linestyle='-', lw=2, alpha=1.0) ax21.semilogx(temperature_U2, output_neuron2_U2, color=Color[2], linestyle='-', lw=2, alpha=1.0) ax21.semilogx(temperature_U2, output_neuron1_U2, color=Color[4], linestyle='-', lw=2, alpha=1.0) elif interpolation == 'cubic' : ax21.semilogx(T_mod2_U1, Output_mod2_U1, ls='-', label='', color=Color[1], lw=2, alpha=1.0) ax21.semilogx(T_mod1_U1, Output_mod1_U1, ls='-', label='', color=Color[9], lw=2, alpha=1.0) ax21.semilogx(T_mod2_U2, Output_mod2_U2, ls='-', label='', color=Color[2], lw=2, alpha=1.0) ax21.semilogx(T_mod1_U2, Output_mod1_U2, ls='-', label='', color=Color[4], lw=2, alpha=1.0) ax21.semilogx(T_c_experiment_x_U1, T_c_experiment_y_U1, label='$T_{c,\ \mathrm{experiment}} = %.3f$' % T_c_experiment_x_U1, color=Color[-1], marker='o', linestyle='None', ms=10, markeredgewidth=0.0, alpha=0.5) if T_c_U1_known : ax21.semilogx([],[], label='$\mathrm{Percent\ error} = %.2g %%$'%(abs(1.-T_c_experiment_x_U1/T_c_U1)*100), linestyle='None') ax21.semilogx([T_c_U2, T_c_U2], [0,1], ls='--', label = '$T_{c} (U=%d) = %.2f$' % (U2, T_c_U2), color=Color[-1], lw=2, alpha=0.8) ax21.semilogx(T_c_experiment_x_U2, T_c_experiment_y_U2, label='$T_{c,\ \mathrm{experiment}} = %.3f$' % T_c_experiment_x_U2, color=Color[-1], marker='o', linestyle='None', ms=10, markeredgewidth=0.0, alpha=0.8) ax21.semilogx([],[], label='$\mathrm{Percent\ error} = %.2g %%$'%(abs(1.-T_c_experiment_x_U2/T_c_U2)*100), linestyle='None') ax21.set_xlabel('$\mathrm{Temperature}$', fontsize='25') ax21.set_ylabel('$\mathrm{Normalized\ output}$', fontsize='25') plt.ylim([0,1]) plt.xlim([temperature.min(), temperature.max()]) plt.legend(loc='center right', fontsize ='15') ax21.grid(True) # Add date as footnote plt.figtext(.05, .02, date) plt.tight_layout( ) fig.suptitle( title, fontsize ='24', y =0.99 ) plt.subplots_adjust( top=0.94 ) plt.savefig( date + '.png', dpi=300) print 'Plot saved.' plt.show() mng = plt.get_current_fig_manager() mng.window.showMaximized()
import RPi.GPIO as GPIO import time ledPin = 12 blinkDelay = .5 ledOn = True GPIO.setmode(GPIO.BOARD) GPIO.setup(ledPin, GPIO.OUT) try: while True: print("led=" + str(ledOn)) GPIO.output(ledPin, ledOn) ledOn = not ledOn time.sleep(blinkDelay) except: GPIO.cleanup() print("Thanks for using blink.py\n")
import sys import require from fullscreen import maximize_console from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC maximize_console() if not require.require(['selenium']): x=input() sys.exit() def get_driver(url): driver=webdriver.Chrome() driver.get(url) print(driver) try: element = WebDriverWait(driver, 20).until( EC.element_to_be_clickable((By.XPATH, "/html/body/main/form/footer/button[1]"))) except: print('element not found') return driver def selector(choice, driver): elements=[] try: for x in range(1,999): b='/html/body/main/form/div/ul/li[{}]/label'.format(x) elements.append(driver.find_element_by_xpath(b)) except Exception as e: print(e) pass print(elements) elements[int(choice)].click() vote_button = driver.find_element_by_xpath("/html/body/main/form/footer/button[1]") vote_button.click() while True: try: url=int(input('8 number poll value: ')) except ValueError: print('\nMust be value' ) else: break url = "https://www.strawpoll.me/" + str(url) choice = int(input('Which poll option (1,2,3,4...): ')) number = int(input('How many times would you like to manipulate this poll?: ')) for i in range(number): driver = get_driver(url) selector(choice - 1, driver) driver.close()
infile=open('cloudin.txt','r').readlines() n,k=map(int,infile[0].split()) list1=[0,int(infile[1])] for i in range(1,n-1): list1.append(list1[i]+int(infile[i+1])) answer=10000000000000 for i in range(n-k): answer=min(answer,list1[i+k]-list1[i]) outfile=open('cloudout.txt','w') outfile.write(str(answer)) outfile.close()
from collections import namedtuple import glob import os from typing import Dict, List, Tuple import numpy as np import onnx import onnx.backend.test.runner as onnx_runner import onnx.backend.test.loader as test_loader from onnx import numpy_helper OnnxTestData = namedtuple('OnnxTestData', ['inputs', 'outputs']) OnnxTest = namedtuple('OnnxTest', ['model', 'data_sets']) class OnnxTestParser: def __init__(self): self.tests = {} for rt in test_loader.load_model_tests(kind='node'): self._add_model_test(rt, 'Node') for rt in test_loader.load_model_tests(kind='real'): self._add_model_test(rt, 'Real') for rt in test_loader.load_model_tests(kind='simple'): self._add_model_test(rt, 'Simple') for ct in test_loader.load_model_tests(kind='pytorch-converted'): self._add_model_test(ct, 'PyTorchConverted') for ot in test_loader.load_model_tests(kind='pytorch-operator'): self._add_model_test(ot, 'PyTorchOperator') def _add_model_test(self, test, test_type: str): if test_type not in self.tests: self.tests[test_type] = list() self.tests[test_type].append(test) def get_test(self, name: str) -> (str, List[Tuple]): """ @param name test name to load @return onnx_model file path, list that holds tuples of (input, expected output) """ for (k, v) in self.tests.items(): for test in v: if test.name == name: return self._load_input_output_of_test(test) return None @property def all_tests(self) -> Dict[str, List[str]]: """ Returns all available ONNX tests. @return A dictionary that maps from test type to a list of test names """ return {k: [t.name for t in v] for k, v in self.tests.items()} def _load_input_output_of_test(self, test) -> OnnxTest: model_dir = test.model_dir if model_dir is None: # download test if not already there model_dir = onnx_runner._prepare_model_data(test) onnx_model_file = os.path.join(model_dir, 'model.onnx') #data = ([], []) # type: Tuple[List, List] data_sets = [] # type: List[OnnxTestData] # Older ONNX test format self._load_numpy_data(model_dir, data_sets) self._load_protobuf_data(model_dir, data_sets) return OnnxTest(onnx_model_file, data_sets) def _load_numpy_data(self, model_dir, data_sets: List[OnnxTestData]): for test_data_npz in glob.glob(os.path.join(model_dir, 'test_data_*.npz')): test_data = np.load(test_data_npz, encoding='bytes') ref_inputs = list(test_data['inputs']) ref_outputs = list(test_data['outputs']) inputs = {str(i): v for i,v in enumerate(ref_inputs)} outputs = {str(i): v for i,v in enumerate(ref_outputs)} data_sets.append(OnnxTestData(inputs, outputs)) def _load_protobuf_data(self, model_dir, data_sets: List[OnnxTestData]): for test_data_dir in glob.glob(os.path.join(model_dir, "test_data_set*")): inputs = {} outputs = {} inputs_num = len(glob.glob(os.path.join(test_data_dir, 'input_*.pb'))) for i in range(inputs_num): input_file = os.path.join(test_data_dir, 'input_{}.pb'.format(i)) tensor = onnx.TensorProto() with open(input_file, 'rb') as f: tensor.ParseFromString(f.read()) inputs[tensor.name] = numpy_helper.to_array(tensor) ref_outputs_num = len(glob.glob(os.path.join(test_data_dir, 'output_*.pb'))) for i in range(ref_outputs_num): output_file = os.path.join(test_data_dir, 'output_{}.pb'.format(i)) tensor = onnx.TensorProto() with open(output_file, 'rb') as f: tensor.ParseFromString(f.read()) outputs[tensor.name] = numpy_helper.to_array(tensor) data_sets.append(OnnxTestData(inputs, outputs)) if __name__ == '__main__': print(OnnxTestParser().get_test('test_reduce_log_sum_desc_axes'))
instructions = [ 1, 2, 3, "+", "+" ] stack = [] for instruction in instructions: if instruction == "+": x = stack.pop() y = stack.pop() stack.append(x + y) # Push the result else: stack.append(instruction) # This is just a number print(stack)
from flaskext.mysql import MySQL import datetime import time def historialViajesCliente(idCliente, cursor): query = "SELECT p.nombre, v.Id_viaje, v.Origen, v.Destino, v.FechaYHora, v.Costo FROM Viaje v JOIN Taxi t ON v.Id_taxi = t.Id_taxi JOIN Persona p ON t.Id_taxista = p.id_persona WHERE v.Id_cliente = " + idCliente + ";" cursor.execute(query); result = cursor.fetchone(); if result == None: return '[]'; resultString = '['; while result != None: resultString += '{ "nombre": "' + result[0] + '", "id_viaje": "' + str(result[1]) + '", "origen": "' + result[2] + '", "destino": "' + result[3] + '", "fecha": "' + str(result[4]) + '", "costo": "' + str(result[5]) +'"},' result = cursor.fetchone() resultString = resultString[:-1] + ']' return resultString def viajeActualCliente(idCliente, cursor): query = "SELECT p.nombre, v.Id_viaje, v.Origen, v.Destino, v.FechaYHora, v.Costo, t.Marca, t.Modelo, t.Placas, t.Color, v.Estatus FROM Viaje v JOIN Taxi t ON v.Id_taxi = t.Id_taxi JOIN Persona p ON t.Id_taxista = p.id_persona WHERE v.Id_cliente = " + idCliente + " AND (v.Estatus = 0 OR v.Estatus = 1);" cursor.execute(query); result = cursor.fetchone(); if result == None: return 'none'; if result != None: resultString = '{ "nombre": "' + result[0] + '", "id_viaje": "' + str(result[1]) + '", "origen": "' + result[2] + '", "destino": "' + result[3] + '", "fecha": "' + str(result[4]) + '", "costo": "' + str(result[5]) + '", "marca": "' + str(result[6]) + '", "modelo": "' + str(result[7]) + '", "placas": "' + str(result[8]) + '", "color": "' + str(result[9]) + '" , "estatus": "' + str(result[10]) + '" }' return resultString def agregarCliente(nombre, nacimiento, sexo, correo, tel, pw, pago, cursor): query1 = "SELECT MAX(id_persona) FROM Persona"; cursor.execute(query1); idCliente = cursor.fetchone(); idClienteInt = idCliente[0]+1 query = "INSERT INTO Persona VALUES(" + str(idClienteInt) + ",\"" + nombre + "\",\"" + nacimiento + "\",\"" + sexo + "\",\"" + tel + "\",\"" + correo + "\", \"" + pw + "\" );" print(query) cursor.execute(query); result = cursor.fetchone(); query3 = "SELECT MAX(Id_forma) FROM FormaDePago"; cursor.execute(query3); idForma = cursor.fetchone(); idFormaInt = idForma[0]+1 query4 = "INSERT INTO FormaDePago VALUES(" + str(idFormaInt) + ", \"" + pago + "\");" cursor.execute(query4); result = cursor.fetchone(); return "Done" query2 = "INSERT INTO Cliente VALUES(" + str(idClienteInt) + ", " + str(idFormaInt) + ");" cursor.execute(query2); result = cursor.fetchone(); return "Done" def actualizarDatos(idCliente, nombreN, sexoN, correoN, telefonoN, cursor): query = "UPDATE Persona SET nombre = \"" + nombreN + "\", sexo = \"" + sexoN + "\", correo = \"" + correoN + "\", telefono = \"" + telefonoN + "\" WHERE id_persona = " + str(idCliente) + ";" cursor.execute(query) return "Done"
""" Coadd spectra """ from __future__ import absolute_import, division, print_function import os, sys, time import numpy as np import scipy.sparse import scipy.linalg import scipy.sparse.linalg from astropy.table import Column # for debugging import astropy.io.fits as pyfits import multiprocessing from desiutil.log import get_logger from desispec.interpolation import resample_flux from desispec.spectra import Spectra from desispec.resolution import Resolution from desispec.fiberbitmasking import get_all_fiberbitmask_with_amp, get_all_nonamp_fiberbitmask_val, get_justamps_fiberbitmask def coadd_fibermap(fibermap) : log = get_logger() log.debug("'coadding' fibermap") targets = np.unique(fibermap["TARGETID"]) ntarget = targets.size jj=np.zeros(ntarget,dtype=int) for i,tid in enumerate(targets) : jj[i]=np.where(fibermap["TARGETID"]==tid)[0][0] tfmap=fibermap[jj] #- initialize NUMEXP=-1 to check that they all got filled later tfmap['COADD_NUMEXP'] = np.zeros(len(tfmap), dtype=np.int16) - 1 # smarter values for some columns for k in ['DELTA_X','DELTA_Y'] : if k in fibermap.colnames : tfmap.rename_column(k,'MEAN_'+k) xx = Column(np.zeros(ntarget)) tfmap.add_column(xx,name='RMS_'+k) for k in ['NIGHT','EXPID','TILEID','SPECTROID','FIBER'] : if k in fibermap.colnames : xx = Column(np.arange(ntarget)) tfmap.add_column(xx,name='FIRST_'+k) xx = Column(np.arange(ntarget)) tfmap.add_column(xx,name='LAST_'+k) xx = Column(np.arange(ntarget)) tfmap.add_column(xx,name='NUM_'+k) for i,tid in enumerate(targets) : jj = fibermap["TARGETID"]==tid #- coadded FIBERSTATUS = bitwise AND of input FIBERSTATUS tfmap['FIBERSTATUS'][i] = np.bitwise_and.reduce(fibermap['FIBERSTATUS'][jj]) #- Only FIBERSTATUS=0 were included in the coadd fiberstatus_nonamp_bits = get_all_nonamp_fiberbitmask_val() fiberstatus_amp_bits = get_justamps_fiberbitmask() targ_fibstatuses = fibermap['FIBERSTATUS'][jj] nonamp_fiberstatus_flagged = ( (targ_fibstatuses & fiberstatus_nonamp_bits) > 0 ) allamps_flagged = ( (targ_fibstatuses & fiberstatus_amp_bits) == fiberstatus_amp_bits ) good_coadds = np.bitwise_not( nonamp_fiberstatus_flagged | allamps_flagged ) tfmap['COADD_NUMEXP'][i] = np.count_nonzero(good_coadds) for k in ['DELTA_X','DELTA_Y'] : if k in fibermap.colnames : vals=fibermap[k][jj] tfmap['MEAN_'+k][i] = np.mean(vals) tfmap['RMS_'+k][i] = np.sqrt(np.mean(vals**2)) # inc. mean offset, not same as std for k in ['NIGHT','EXPID','TILEID','SPECTROID','FIBER'] : if k in fibermap.colnames : vals=fibermap[k][jj] tfmap['FIRST_'+k][i] = np.min(vals) tfmap['LAST_'+k][i] = np.max(vals) tfmap['NUM_'+k][i] = np.unique(vals).size for k in ['FIBERASSIGN_X', 'FIBERASSIGN_Y','FIBER_RA', 'FIBER_DEC'] : if k in fibermap.colnames : tfmap[k][i]=np.mean(fibermap[k][jj]) for k in ['FIBER_RA_IVAR', 'FIBER_DEC_IVAR','DELTA_X_IVAR', 'DELTA_Y_IVAR'] : if k in fibermap.colnames : tfmap[k][i]=np.sum(fibermap[k][jj]) return tfmap def coadd(spectra, cosmics_nsig=0.) : """ Coaddition the spectra for each target and each camera. The input spectra is modified. Args: spectra: desispec.spectra.Spectra object Options: cosmics_nsig: float, nsigma clipping threshold for cosmics rays """ log = get_logger() targets = np.unique(spectra.fibermap["TARGETID"]) ntarget=targets.size log.debug("number of targets= {}".format(ntarget)) for b in spectra.bands : log.debug("coadding band '{}'".format(b)) nwave=spectra.wave[b].size tflux=np.zeros((ntarget,nwave),dtype=spectra.flux[b].dtype) tivar=np.zeros((ntarget,nwave),dtype=spectra.ivar[b].dtype) if spectra.mask is not None : tmask=np.zeros((ntarget,nwave),dtype=spectra.mask[b].dtype) else : tmask=None trdata=np.zeros((ntarget,spectra.resolution_data[b].shape[1],nwave),dtype=spectra.resolution_data[b].dtype) fiberstatus_bits = get_all_fiberbitmask_with_amp(b) good_fiberstatus = ( (spectra.fibermap["FIBERSTATUS"] & fiberstatus_bits) == 0 ) for i,tid in enumerate(targets) : jj=np.where( (spectra.fibermap["TARGETID"]==tid) & good_fiberstatus )[0] #- if all spectra were flagged as bad (FIBERSTATUS != 0), contine #- to next target, leaving tflux and tivar=0 for this target if len(jj) == 0: continue if cosmics_nsig is not None and cosmics_nsig > 0 : # interpolate over bad measurements # to be able to compute gradient next # to a bad pixel and identify oulier # many cosmics residuals are on edge # of cosmic ray trace, and so can be # next to a masked flux bin grad=[] gradvar=[] for j in jj : if spectra.mask is not None : ttivar = spectra.ivar[b][j]*(spectra.mask[b][j]==0) else : ttivar = spectra.ivar[b][j] good = (ttivar>0) bad = (ttivar<=0) ttflux = spectra.flux[b][j] ttflux[bad] = np.interp(spectra.wave[b][bad],spectra.wave[b][good],ttflux[good]) ttivar = spectra.ivar[b][j] ttivar[bad] = np.interp(spectra.wave[b][bad],spectra.wave[b][good],ttivar[good]) ttvar = 1./ttivar ttflux[1:] = ttflux[1:]-ttflux[:-1] ttvar[1:] = ttvar[1:]+ttvar[:-1] ttflux[0] = 0 grad.append(ttflux) gradvar.append(ttvar) tivar_unmasked= np.sum(spectra.ivar[b][jj],axis=0) if spectra.mask is not None : ivarjj=spectra.ivar[b][jj]*(spectra.mask[b][jj]==0) else : ivarjj=spectra.ivar[b][jj] if cosmics_nsig is not None and cosmics_nsig > 0 and len(grad)>1 : grad=np.array(grad) gradivar=1/np.array(gradvar) nspec=grad.shape[0] meangrad=np.sum(gradivar*grad,axis=0)/np.sum(gradivar) deltagrad=grad-meangrad chi2=np.sum(gradivar*deltagrad**2,axis=0)/(nspec-1) for l in np.where(chi2>cosmics_nsig**2)[0] : k=np.argmax(gradivar[:,l]*deltagrad[:,l]**2) #k=np.argmax(flux[:,j]) log.debug("masking spec {} wave={}".format(k,spectra.wave[b][l])) ivarjj[k][l]=0. tivar[i]=np.sum(ivarjj,axis=0) tflux[i]=np.sum(ivarjj*spectra.flux[b][jj],axis=0) for r in range(spectra.resolution_data[b].shape[1]) : trdata[i,r]=np.sum((spectra.ivar[b][jj]*spectra.resolution_data[b][jj,r]),axis=0) # not sure applying mask is wise here bad=(tivar[i]==0) if np.sum(bad)>0 : tivar[i][bad] = np.sum(spectra.ivar[b][jj][:,bad],axis=0) # if all masked, keep original ivar tflux[i][bad] = np.sum(spectra.ivar[b][jj][:,bad]*spectra.flux[b][jj][:,bad],axis=0) ok=(tivar[i]>0) if np.sum(ok)>0 : tflux[i][ok] /= tivar[i][ok] ok=(tivar_unmasked>0) if np.sum(ok)>0 : trdata[i][:,ok] /= tivar_unmasked[ok] if spectra.mask is not None : tmask[i] = np.bitwise_and.reduce(spectra.mask[b][jj],axis=0) spectra.flux[b] = tflux spectra.ivar[b] = tivar if spectra.mask is not None : spectra.mask[b] = tmask spectra.resolution_data[b] = trdata spectra.fibermap=coadd_fibermap(spectra.fibermap) spectra.scores=None def coadd_cameras(spectra,cosmics_nsig=0.) : #check_alignement_of_camera_wavelength(spectra) log = get_logger() # ordering mwave=[np.mean(spectra.wave[b]) for b in spectra.bands] sbands=np.array(spectra.bands)[np.argsort(mwave)] # bands sorted by inc. wavelength log.debug("wavelength sorted cameras= {}".format(sbands)) # create wavelength array wave=None tolerance=0.0001 #A , tolerance for b in sbands : if wave is None : wave=spectra.wave[b] else : wave=np.append(wave,spectra.wave[b][spectra.wave[b]>wave[-1]+tolerance]) nwave=wave.size # check alignment number_of_overlapping_cameras=np.zeros(nwave) for b in spectra.bands : windices=np.argmin((np.tile(wave,(spectra.wave[b].size,1))-np.tile(spectra.wave[b],(wave.size,1)).T)**2,axis=1) dist=np.sqrt(np.max(spectra.wave[b] - wave[windices])) log.debug("camera {} max dist= {}A".format(b,dist)) if dist > tolerance : log.error("Cannot directly coadd the camera spectra because wavelength are not aligned, use --lin-step or --log10-step to resample to a common grid") sys.exit(12) number_of_overlapping_cameras[windices] += 1 # targets targets = np.unique(spectra.fibermap["TARGETID"]) ntarget=targets.size log.debug("number of targets= {}".format(ntarget)) # ndiag = max of all cameras ndiag=0 for b in sbands : ndiag=max(ndiag,spectra.resolution_data[b].shape[1]) log.debug("ndiag= {}".format(ndiag)) b = sbands[0] flux=np.zeros((ntarget,nwave),dtype=spectra.flux[b].dtype) ivar=np.zeros((ntarget,nwave),dtype=spectra.ivar[b].dtype) if spectra.mask is not None : ivar_unmasked=np.zeros((ntarget,nwave),dtype=spectra.ivar[b].dtype) mask=np.zeros((ntarget,nwave),dtype=spectra.mask[b].dtype) else : ivar_unmasked=ivar mask=None rdata=np.zeros((ntarget,ndiag,nwave),dtype=spectra.resolution_data[b].dtype) for b in spectra.bands : log.debug("coadding band '{}'".format(b)) # indices windices=np.argmin((np.tile(wave,(spectra.wave[b].size,1))-np.tile(spectra.wave[b],(wave.size,1)).T)**2,axis=1) band_ndiag = spectra.resolution_data[b].shape[1] fiberstatus_bits = get_all_fiberbitmask_with_amp(b) good_fiberstatus = ( (spectra.fibermap["FIBERSTATUS"] & fiberstatus_bits) == 0 ) for i,tid in enumerate(targets) : jj=np.where( (spectra.fibermap["TARGETID"]==tid) & good_fiberstatus )[0] #- if all spectra were flagged as bad (FIBERSTATUS != 0), contine #- to next target, leaving tflux and tivar=0 for this target if len(jj) == 0: continue if cosmics_nsig is not None and cosmics_nsig > 0 : # interpolate over bad measurements # to be able to compute gradient next # to a bad pixel and identify oulier # many cosmics residuals are on edge # of cosmic ray trace, and so can be # next to a masked flux bin grad=[] gradvar=[] for j in jj : if spectra.mask is not None : ttivar = spectra.ivar[b][j]*(spectra.mask[b][j]==0) else : ttivar = spectra.ivar[b][j] good = (ttivar>0) bad = (ttivar<=0) ttflux = spectra.flux[b][j] ttflux[bad] = np.interp(spectra.wave[b][bad],spectra.wave[b][good],ttflux[good]) ttivar = spectra.ivar[b][j] ttivar[bad] = np.interp(spectra.wave[b][bad],spectra.wave[b][good],ttivar[good]) ttvar = 1./ttivar ttflux[1:] = ttflux[1:]-ttflux[:-1] ttvar[1:] = ttvar[1:]+ttvar[:-1] ttflux[0] = 0 grad.append(ttflux) gradvar.append(ttvar) ivar_unmasked[i,windices] += np.sum(spectra.ivar[b][jj],axis=0) if spectra.mask is not None : ivarjj=spectra.ivar[b][jj]*(spectra.mask[b][jj]==0) else : ivarjj=spectra.ivar[b][jj] if cosmics_nsig is not None and cosmics_nsig > 0 and len(grad)>1 : grad=np.array(grad) gradivar=1/np.array(gradvar) nspec=grad.shape[0] meangrad=np.sum(gradivar*grad,axis=0)/np.sum(gradivar) deltagrad=grad-meangrad chi2=np.sum(gradivar*deltagrad**2,axis=0)/(nspec-1) for l in np.where(chi2>cosmics_nsig**2)[0] : k=np.argmax(gradivar[:,l]*deltagrad[:,l]**2) log.debug("masking spec {} wave={}".format(k,spectra.wave[b][l])) ivarjj[k][l]=0. ivar[i,windices] += np.sum(ivarjj,axis=0) flux[i,windices] += np.sum(ivarjj*spectra.flux[b][jj],axis=0) for r in range(band_ndiag) : rdata[i,r+(ndiag-band_ndiag)//2,windices] += np.sum((spectra.ivar[b][jj]*spectra.resolution_data[b][jj,r]),axis=0) if spectra.mask is not None : # this deserves some attention ... tmpmask=np.bitwise_and.reduce(spectra.mask[b][jj],axis=0) # directly copy mask where no overlap jj=(number_of_overlapping_cameras[windices]==1) mask[i,windices[jj]] = tmpmask[jj] # 'and' in overlapping regions jj=(number_of_overlapping_cameras[windices]>1) mask[i,windices[jj]] = mask[i,windices[jj]] & tmpmask[jj] for i,tid in enumerate(targets) : ok=(ivar[i]>0) if np.sum(ok)>0 : flux[i][ok] /= ivar[i][ok] ok=(ivar_unmasked[i]>0) if np.sum(ok)>0 : rdata[i][:,ok] /= ivar_unmasked[i][ok] if 'COADD_NUMEXP' in spectra.fibermap.colnames: fibermap = spectra.fibermap else: fibermap = coadd_fibermap(spectra.fibermap) bands="" for b in sbands : bands+=b if spectra.mask is not None : dmask={bands:mask,} else : dmask=None res=Spectra(bands=[bands,],wave={bands:wave,},flux={bands:flux,},ivar={bands:ivar,},mask=dmask,resolution_data={bands:rdata,}, fibermap=fibermap,meta=spectra.meta,extra=spectra.extra,scores=None) return res def get_resampling_matrix(global_grid,local_grid,sparse=False): """Build the rectangular matrix that linearly resamples from the global grid to a local grid. The local grid range must be contained within the global grid range. Args: global_grid(numpy.ndarray): Sorted array of n global grid wavelengths. local_grid(numpy.ndarray): Sorted array of m local grid wavelengths. Returns: numpy.ndarray: Array of (m,n) matrix elements that perform the linear resampling. """ assert np.all(np.diff(global_grid) > 0),'Global grid is not strictly increasing.' assert np.all(np.diff(local_grid) > 0),'Local grid is not strictly increasing.' # Locate each local wavelength in the global grid. global_index = np.searchsorted(global_grid,local_grid) assert local_grid[0] >= global_grid[0],'Local grid extends below global grid.' assert local_grid[-1] <= global_grid[-1],'Local grid extends above global grid.' # Lookup the global-grid bracketing interval (xlo,xhi) for each local grid point. # Note that this gives xlo = global_grid[-1] if local_grid[0] == global_grid[0] # but this is fine since the coefficient of xlo will be zero. global_xhi = global_grid[global_index] global_xlo = global_grid[global_index-1] # Create the rectangular interpolation matrix to return. alpha = (local_grid - global_xlo)/(global_xhi - global_xlo) local_index = np.arange(len(local_grid),dtype=int) matrix = np.zeros((len(local_grid),len(global_grid))) matrix[local_index,global_index] = alpha matrix[local_index,global_index-1] = 1-alpha # turn into a sparse matrix return scipy.sparse.csc_matrix(matrix) def decorrelate_divide_and_conquer(Cinv,Cinvf,wavebin,flux,ivar,rdata) : """Decorrelate an inverse covariance using the matrix square root. Implements the decorrelation part of the spectroperfectionism algorithm described in Bolton & Schlegel 2009 (BS) http://arxiv.org/abs/0911.2689. with the divide and conquer approach, i.e. per diagonal block of the matrix, with an overlapping 'skin' from one block to another. Args: Cinv: Square 2D array: input inverse covariance matrix Cinvf: 1D array: input wavebin: minimal size of wavelength bin in A, used to define the core and skin size flux: 1D array: output flux (has to be allocated) ivar: 1D array: output flux inverse variance (has to be allocated) rdata: 2D array: output resolution matrix per diagonal (has to be allocated) """ chw=max(10,int(50/wavebin)) #core is 2*50+1 A skin=max(2,int(10/wavebin)) #skin is 10A nn=Cinv.shape[0] nstep=nn//(2*chw+1)+1 Lmin=1e-15/np.mean(np.diag(Cinv)) # Lmin is scaled with Cinv values ndiag=rdata.shape[0] dd=np.arange(ndiag,dtype=int)-ndiag//2 for c in range(chw,nn+(2*chw+1),(2*chw+1)) : b=max(0,c-chw-skin) e=min(nn,c+chw+skin+1) b1=max(0,c-chw) e1=min(nn,c+chw+1) bb=max(0,b1-b) ee=min(e-b,e1-b) if e<=b : continue L,X = scipy.linalg.eigh(Cinv[b:e,b:e],overwrite_a=False,turbo=True) nbad = np.count_nonzero(L < Lmin) if nbad > 0: #log.warning('zeroing {0:d} negative eigenvalue(s).'.format(nbad)) L[L < Lmin] = Lmin Q = X.dot(np.diag(np.sqrt(L)).dot(X.T)) s = np.sum(Q,axis=1) b1x=max(0,c-chw-3) e1x=min(nn,c+chw+1+3) tR = (Q/s[:,np.newaxis]) tR_it = scipy.linalg.inv(tR.T) tivar = s**2 flux[b1:e1] = (tR_it.dot(Cinvf[b:e])/tivar)[bb:ee] ivar[b1:e1] = (s[bb:ee])**2 for j in range(b1,e1) : k=(dd>=-j)&(dd<nn-j) # k is the diagonal index # j is the wavelength index # it could be the transposed, I am following what it is specter.ex2d, L209 rdata[k,j] = tR[j-b+dd[k],j-b] def spectroperf_resample_spectrum_singleproc(spectra,target_index,wave,wavebin,resampling_matrix,ndiag,flux,ivar,rdata) : cinv = None for b in spectra.bands : twave=spectra.wave[b] jj=(twave>=wave[0])&(twave<=wave[-1]) twave=twave[jj] tivar=spectra.ivar[b][target_index][jj] diag_ivar = scipy.sparse.dia_matrix((tivar,[0]),(twave.size,twave.size)) RR = Resolution(spectra.resolution_data[b][target_index][:,jj]).dot(resampling_matrix[b]) tcinv = RR.T.dot(diag_ivar.dot(RR)) tcinvf = RR.T.dot(tivar*spectra.flux[b][target_index][jj]) if cinv is None : cinv = tcinv cinvf = tcinvf else : cinv += tcinv cinvf += tcinvf cinv = cinv.todense() decorrelate_divide_and_conquer(cinv,cinvf,wavebin,flux[target_index],ivar[target_index],rdata[target_index]) # for multiprocessing, with shared memory buffers def spectroperf_resample_spectrum_multiproc(shm_in_wave,shm_in_flux,shm_in_ivar,shm_in_rdata,in_nwave,in_ndiag,in_bands,target_indices,wave,wavebin,resampling_matrix,ndiag,ntarget,shm_flux,shm_ivar,shm_rdata) : nwave = wave.size # manipulate shared memory as np arrays # input shared memory in_wave = list() in_flux = list() in_ivar = list() in_rdata = list() nbands = len(shm_in_wave) for b in range(nbands) : in_wave.append( np.array(shm_in_wave[b],copy=False).reshape(in_nwave[b]) ) in_flux.append( np.array(shm_in_flux[b],copy=False).reshape((ntarget,in_nwave[b])) ) in_ivar.append( np.array(shm_in_ivar[b],copy=False).reshape((ntarget,in_nwave[b])) ) in_rdata.append( np.array(shm_in_rdata[b],copy=False).reshape((ntarget,in_ndiag[b],in_nwave[b])) ) # output shared memory flux = np.array(shm_flux,copy=False).reshape(ntarget,nwave) ivar = np.array(shm_ivar,copy=False).reshape(ntarget,nwave) rdata = np.array(shm_rdata,copy=False).reshape(ntarget,ndiag,nwave) for target_index in target_indices : cinv = None for b in range(nbands) : twave=in_wave[b] jj=(twave>=wave[0])&(twave<=wave[-1]) twave=twave[jj] tivar=in_ivar[b][target_index][jj] diag_ivar = scipy.sparse.dia_matrix((tivar,[0]),(twave.size,twave.size)) RR = Resolution(in_rdata[b][target_index][:,jj]).dot(resampling_matrix[in_bands[b]]) tcinv = RR.T.dot(diag_ivar.dot(RR)) tcinvf = RR.T.dot(tivar*in_flux[b][target_index][jj]) if cinv is None : cinv = tcinv cinvf = tcinvf else : cinv += tcinv cinvf += tcinvf cinv = cinv.todense() decorrelate_divide_and_conquer(cinv,cinvf,wavebin,flux[target_index],ivar[target_index],rdata[target_index]) def spectroperf_resample_spectra(spectra, wave, nproc=1) : """ Resampling of spectra file using the spectrophotometic approach Args: spectra: desispec.spectra.Spectra object wave: 1D numy array with new wavelenght grid Returns: desispec.spectra.Spectra object """ log = get_logger() log.debug("resampling to wave grid of size {}: {}".format(wave.size,wave)) b=spectra.bands[0] ntarget=spectra.flux[b].shape[0] nwave=wave.size if spectra.mask is not None : mask = np.zeros((ntarget,nwave),dtype=spectra.mask[b].dtype) else : mask = None # number of diagonals is the max of the number of diagonals in the # input spectra cameras ndiag = 0 for b in spectra.bands : ndiag = max(ndiag,spectra.resolution_data[b].shape[1]) dw=np.gradient(wave) wavebin=np.min(dw[dw>0.]) # min wavelength bin size log.debug("min wavelength bin= {:2.1f} A; ndiag= {:d}".format(wavebin,ndiag)) log.debug("compute resampling matrices") resampling_matrix=dict() for b in spectra.bands : twave=spectra.wave[b] jj=np.where((twave>=wave[0])&(twave<=wave[-1]))[0] twave=spectra.wave[b][jj] resampling_matrix[b] = get_resampling_matrix(wave,twave) if nproc==1 : # allocate array flux = np.zeros((ntarget,nwave),dtype=float) ivar = np.zeros((ntarget,nwave),dtype=float) rdata = np.zeros((ntarget,ndiag,nwave),dtype=float) # simply loop on targets for target_index in range(ntarget) : log.debug("resampling {}/{}".format(target_index+1,ntarget)) t0=time.time() spectroperf_resample_spectrum_singleproc(spectra,target_index,wave,wavebin,resampling_matrix,ndiag,flux,ivar,rdata) t1=time.time() log.debug("done one spectrum in {} sec".format(t1-t0)) else : log.debug("allocate shared memory") # input shm_in_wave = list() shm_in_flux = list() shm_in_ivar = list() shm_in_rdata = list() in_nwave = list() in_ndiag = list() for b in spectra.bands : shm_in_wave.append( multiprocessing.Array('d',spectra.wave[b],lock=False) ) shm_in_flux.append( multiprocessing.Array('d',spectra.flux[b].ravel(),lock=False) ) shm_in_ivar.append( multiprocessing.Array('d',spectra.ivar[b].ravel(),lock=False) ) shm_in_rdata.append( multiprocessing.Array('d',spectra.resolution_data[b].ravel(),lock=False) ) in_nwave.append(spectra.wave[b].size) in_ndiag.append(spectra.resolution_data[b].shape[1]) # output shm_flux=multiprocessing.Array('d',ntarget*nwave,lock=False) shm_ivar=multiprocessing.Array('d',ntarget*nwave,lock=False) shm_rdata=multiprocessing.Array('d',ntarget*ndiag*nwave,lock=False) # manipulate shared memory as np arrays flux = np.array(shm_flux,copy=False).reshape(ntarget,nwave) ivar = np.array(shm_ivar,copy=False).reshape(ntarget,nwave) rdata = np.array(shm_rdata,copy=False).reshape(ntarget,ndiag,nwave) # split targets per process target_indices = np.array_split(np.arange(ntarget),nproc) # loop on processes procs=list() for proc_index in range(nproc) : log.debug("starting process #{}".format(proc_index+1)) proc = multiprocessing.Process(target=spectroperf_resample_spectrum_multiproc, args=(shm_in_wave,shm_in_flux,shm_in_ivar,shm_in_rdata, in_nwave,in_ndiag,spectra.bands, target_indices[proc_index],wave,wavebin, resampling_matrix,ndiag,ntarget, shm_flux,shm_ivar,shm_rdata)) proc.start() procs.append(proc) # wait for the processes to finish log.info("waiting for the {} processes to finish ...".format(nproc)) for proc in procs : proc.join() log.info("all done!") bands="" for b in spectra.bands : bands += b if spectra.mask is not None : dmask={bands:mask,} else : dmask=None res=Spectra(bands=[bands,],wave={bands:wave,},flux={bands:flux,},ivar={bands:ivar,},mask=dmask,resolution_data={bands:rdata,}, fibermap=spectra.fibermap,meta=spectra.meta,extra=spectra.extra,scores=spectra.scores) return res def fast_resample_spectra(spectra, wave) : """ Fast resampling of spectra file. The output resolution = Id. The neighboring flux bins are correlated. Args: spectra: desispec.spectra.Spectra object wave: 1D numy array with new wavelenght grid Returns: desispec.spectra.Spectra object, resolution data=Id """ log = get_logger() log.debug("Resampling to wave grid: {}".format(wave)) nwave=wave.size b=spectra.bands[0] ntarget=spectra.flux[b].shape[0] nres=spectra.resolution_data[b].shape[1] ivar=np.zeros((ntarget,nwave),dtype=spectra.flux[b].dtype) flux=np.zeros((ntarget,nwave),dtype=spectra.ivar[b].dtype) if spectra.mask is not None : mask = np.zeros((ntarget,nwave),dtype=spectra.mask[b].dtype) else : mask = None rdata=np.ones((ntarget,1,nwave),dtype=spectra.resolution_data[b].dtype) # pointless for this resampling bands="" for b in spectra.bands : if spectra.mask is not None : tivar=spectra.ivar[b]*(spectra.mask[b]==0) else : tivar=spectra.ivar[b] for i in range(ntarget) : ivar[i] += resample_flux(wave,spectra.wave[b],tivar[i]) flux[i] += resample_flux(wave,spectra.wave[b],tivar[i]*spectra.flux[b][i]) bands += b for i in range(ntarget) : ok=(ivar[i]>0) flux[i,ok]/=ivar[i,ok] if spectra.mask is not None : dmask={bands:mask,} else : dmask=None res=Spectra(bands=[bands,],wave={bands:wave,},flux={bands:flux,},ivar={bands:ivar,},mask=dmask,resolution_data={bands:rdata,}, fibermap=spectra.fibermap,meta=spectra.meta,extra=spectra.extra,scores=spectra.scores) return res def resample_spectra_lin_or_log(spectra, linear_step=0, log10_step=0, fast=False, wave_min=None, wave_max=None, nproc=1) : """ Resampling of spectra file. Args: spectra: desispec.spectra.Spectra object linear_step: if not null the ouput wavelenght grid will be linear with this step log10_step: if not null the ouput wavelenght grid will be logarthmic with this step Options: fast: simple resampling. fast but at the price of correlated output flux bins and no information on resolution wave_min: if set, use this min wavelength wave_max: if set, use this max wavelength Returns: desispec.spectra.Spectra object """ wmin=None wmax=None for b in spectra.bands : if wmin is None : wmin=spectra.wave[b][0] wmax=spectra.wave[b][-1] else : wmin=min(wmin,spectra.wave[b][0]) wmax=max(wmax,spectra.wave[b][-1]) if wave_min is not None : wmin = wave_min if wave_max is not None : wmax = wave_max if linear_step>0 : nsteps=int((wmax-wmin)/linear_step) + 1 wave=wmin+np.arange(nsteps)*linear_step elif log10_step>0 : lwmin=np.log10(wmin) lwmax=np.log10(wmax) nsteps=int((lwmax-lwmin)/log10_step) + 1 wave=10**(lwmin+np.arange(nsteps)*log10_step) if fast : return fast_resample_spectra(spectra=spectra,wave=wave) else : return spectroperf_resample_spectra(spectra=spectra,wave=wave,nproc=nproc)
# 4.3.2 ポアソン混合分布における推論:ギブスサンプリング #%% # 4.3.2項で利用するライブラリ import numpy as np from scipy.stats import poisson, gamma # ポアソン分布, ガンマ分布 import matplotlib.pyplot as plt #%% ## 観測モデル(ポアソン混合分布)の設定 # 真のパラメータを指定 lambda_truth_k = np.array([10, 25, 40]) # 真の混合比率を指定 pi_truth_k = np.array([0.35, 0.25, 0.4]) # クラスタ数を取得 K = len(lambda_truth_k) # 作図用のxの点を作成 x_line = np.arange(0, 2 * np.max(lambda_truth_k)) print(x_line) # 観測モデルを計算 model_prob = 0.0 for k in range(K): # クラスタkの分布の確率を計算 tmp_prob = poisson.pmf(k=x_line, mu=lambda_truth_k[k]) # K個の分布の加重平均を計算 model_prob += tmp_prob * pi_truth_k[k] #%% # 観測モデルを作図 plt.figure(figsize=(12, 9)) plt.bar(x=x_line, height=model_prob) # 真の分布 plt.xlabel('x') plt.ylabel('prob') plt.suptitle('Poisson Mixture Model', size = 20) plt.title('$\lambda=[' + ', '.join([str(lmd) for lmd in lambda_truth_k]) + ']' + ', \pi=[' + ', '.join([str(pi) for pi in pi_truth_k])+ ']$', loc='left') plt.show() #%% ## 観測データの生成 # (観測)データ数を指定 N = 250 # 真のクラスタを生成 s_truth_nk = np.random.multinomial(n=1, pvals=pi_truth_k, size=N) # 真のクラスタ番号を抽出 _, s_truth_n = np.where(s_truth_nk == 1) # (観測)データを生成 #x_n = np.random.poisson(lam=np.prod(lambda_truth_k**s_truth_nk, axis=1), size=N) x_n = np.random.poisson(lam=lambda_truth_k[s_truth_n], size=N) print(x_n[:10]) #%% # 観測データのヒストグラムを作成 plt.figure(figsize=(12, 9)) plt.bar(x=x_line, height=model_prob, label='true model', color='white', alpha=1, edgecolor='red', linestyle='--') # 真の分布 plt.bar(x=x_line, height=[np.sum(x_n == x) / len(x_n) for x in x_line], label='observation data') # 観測データ plt.xlabel('x') plt.ylabel('dens') plt.suptitle('Poisson Mixture Model', size=20) plt.title('$N=' + str(N) + ', \lambda=[' + ', '.join([str(lmd) for lmd in lambda_truth_k]) + ']' + ', \pi=[' + ', '.join([str(pi) for pi in pi_truth_k]) + ']$', loc='left') plt.legend() plt.show() #%% # 真のクラスタのヒストグラムを作成 plt.figure(figsize=(12, 9)) for k in range(K): plt.bar(x=x_line, height=[np.sum(x_n[s_truth_n == k] == x) for x in x_line], alpha=0.5, label='cluster:' + str(k + 1)) # 真のクラスタ plt.xlabel('x') plt.ylabel('count') plt.suptitle('Poisson Mixture Model', size=20) plt.title('$N=' + str(N) + ', \lambda=[' + ', '.join([str(lmd) for lmd in lambda_truth_k]) + ']' + ', \pi=[' + ', '.join([str(pi) for pi in pi_truth_k]) + ']$', loc='left') plt.legend() plt.show() #%% ## 事前分布(ガンマ分布とディリクレ分布)の設定 # lambdaの事前分布のパラメータを指定 a = 1.0 b = 1.0 # piの事前分布のパラメータを指定 alpha_k = np.repeat(2.0, K) #%% ## 初期値の設定 # lambdaを生成 lambda_k = np.random.gamma(shape=a, scale=1 / b, size=K) print(lambda_k) # piを生成 pi_k = np.random.dirichlet(alpha=alpha_k, size=1).reshape(K) print(pi_k) #%% # 初期値による混合分布を計算 init_prob = 0.0 for k in range(K): # クラスタkの分布の確率を計算 tmp_prob = poisson.pmf(k=x_line, mu=lambda_k[k]) # K個の分布の加重平均を計算 init_prob += tmp_prob * pi_k[k] # 初期値による分布を作図 plt.figure(figsize=(12, 9)) plt.bar(x_line, init_prob) # 初期値による分布 plt.xlabel('x') plt.ylabel('prob') plt.suptitle('Poisson Mixture Model', size = 20) plt.title('$iter:' + str(0) + ', \lambda=[' + ', '.join([str(lmd) for lmd in np.round(lambda_k, 2)]) + ']' + ', \pi=[' + ', '.join([str(pi) for pi in np.round(pi_k, 2)]) + ']$', loc='left') plt.show() #%% ## 推論処理 # 試行回数を指定 MaxIter = 100 # 受け皿を作成 eta_nk = np.empty((N, K)) s_nk = np.empty((N, K)) # 推移の確認用の受け皿を作成 trace_s_in = [[np.nan] * N] trace_a_ik = [[a] * K] trace_b_ik = [[b] * K] trace_alpha_ik = [list(alpha_k)] trace_lambda_ik = [list(lambda_k)] trace_pi_ik = [list(pi_k)] # ギブスサンプリング for i in range(MaxIter): for n in range(N): # 潜在変数の事後分布のパラメータを計算:式(4.38) tmp_eta_k = np.exp(x_n[n] * np.log(lambda_k) - lambda_k + np.log(pi_k)) eta_nk[n] = tmp_eta_k / np.sum(tmp_eta_k) # 正規化 # クラスタをサンプル:式(4.37) s_nk[n] = np.random.multinomial(n=1, pvals=eta_nk[n]) # lambdaの事後分布のパラメータを計算:式(4.42) a_hat_k = np.sum(s_nk.T * x_n, axis=1) + a b_hat_k = np.sum(s_nk, axis=0) + b # lambdaをサンプル:式(4.41) lambda_k = np.random.gamma(shape=a_hat_k, scale=1 / b_hat_k, size=K) # piの事後分布のパラメータを計算:式(4.45) alpha_hat_k = np.sum(s_nk, axis=0) + alpha_k # piをサンプル:式(4.44) pi_k = np.random.dirichlet(alpha=alpha_hat_k, size=1).reshape(K) # 値を記録 _, s_n = np.where(s_nk == 1) # クラスタ番号を抽出 trace_s_in.append(list(s_n)) trace_a_ik.append(list(a_hat_k)) trace_b_ik.append(list(b_hat_k)) trace_alpha_ik.append(list(alpha_hat_k)) trace_lambda_ik.append(list(lambda_k)) trace_pi_ik.append(list(pi_k)) # 動作確認 print(str(i+1) + ' (' + str(np.round((i + 1) / MaxIter * 100, 1)) + '%)') #%% ## パラメータの事後分布を確認 # 作図用のlambdaの点を作成 lambda_line = np.linspace(0, 2 * np.max(lambda_truth_k), num=1000) # lambdaの事後分布を計算 posterior_lambda_k = np.empty((K, len(lambda_line))) for k in range(K): posterior_lambda_k[k] = gamma.pdf(x=lambda_line, a=a_hat_k[k], scale=1 / b_hat_k[k]) # lambdaの事後分布を作図 plt.figure(figsize=(12, 9)) for k in range(K): plt.plot(lambda_line, posterior_lambda_k[k], label='cluster:' + str(k + 1)) # lambdaの事後分布 plt.vlines(x=lambda_truth_k[k], ymin=0.0, ymax=np.max(posterior_lambda_k), color='red', linestyle='--') # 真の値 plt.xlabel('$\lambda$') plt.ylabel('density') plt.suptitle('Gamma Distribution', size=20) plt.title('$iter:' + str(MaxIter) + ', N=' + str(N) + ', \hat{a}=[' + ', '.join([str(a) for a in a_hat_k]) + ']' + ', \hat{b}=[' + ', '.join([str(b) for b in b_hat_k]) + ']$', loc='left') plt.legend() plt.show() #%% ## 最後のサンプルの確認 # 最後のサンプルによる混合分布を計算 res_prob = 0.0 for k in range(K): # クラスタkの分布の確率を計算 tmp_prob = poisson.pmf(k=x_line, mu=lambda_k[k]) # K個の分布の加重平均を計算 res_prob += tmp_prob * pi_k[k] # 最後のサンプルによる分布を作図 plt.figure(figsize=(12, 9)) plt.bar(x=x_line, height=res_prob) # 最後のサンプルによる分布 plt.bar(x=x_line, height=model_prob, label='observation model', color='white', alpha=0.5, edgecolor='red', linestyle='--') # 真の分布 plt.xlabel('x') plt.ylabel('prob') plt.suptitle('Poisson Mixture Model:Gibbs Sampling', size = 20) plt.title('$iter:' + str(MaxIter) + ', N' + str(N) + ', \lambda=[' + ', '.join([str(lmd) for lmd in np.round(lambda_k, 2)]) + ']$', loc='left') plt.legend() plt.show() #%% # K個の色を指定 color_list = ['red', 'green', 'blue'] # 最後のクラスタのヒストグラムを作成 plt.figure(figsize=(12, 9)) for k in range(K): plt.bar(x=x_line, height=[np.sum(x_n[s_truth_n == k] == x) for x in x_line], color='white', alpha=1, edgecolor=color_list[k], linestyle='--', label='cluster:' + str(k + 1)) # 真のクラスタ for k in range(K): plt.bar(x=x_line, height=[np.sum(x_n[s_n == k] == x) for x in x_line], alpha=0.5, label='cluster:' + str(k + 1)) # 最後のクラスタ plt.xlabel('x') plt.ylabel('count') plt.suptitle('Poisson Mixture Model', size=20) plt.title('$N=' + str(N) + ', \lambda=[' + ', '.join([str(lmd) for lmd in np.round(lambda_k, 2)]) + ']' + ', \pi=[' + ', '.join([str(pi) for pi in np.round(pi_k, 2)]) + ']$', loc='left') plt.legend() plt.show() #%% ## 超パラメータの推移の確認 # aの推移を作図 plt.figure(figsize=(12, 9)) for k in range(K): plt.plot(np.arange(MaxIter + 1), np.array(trace_a_ik).T[k], label='cluster:' + str(k + 1)) plt.xlabel('iteration') plt.ylabel('value') plt.suptitle('Gibbs Sampling', size=20) plt.title('$\hat{\mathbf{a}}$', loc='left') plt.legend() plt.grid() plt.show() #%% # bの推移を作図 plt.figure(figsize=(12, 9)) for k in range(K): plt.plot(np.arange(MaxIter + 1), np.array(trace_b_ik).T[k], label='cluster:' + str(k + 1)) plt.xlabel('iteration') plt.ylabel('value') plt.suptitle('Gibbs Sampling', size=20) plt.title('$\hat{\mathbf{b}}$', loc='left') plt.legend() plt.grid() plt.show() #%% # alphaの推移を作図 plt.figure(figsize=(12, 9)) for k in range(K): plt.plot(np.arange(MaxIter + 1), np.array(trace_alpha_ik).T[k], label='cluster:' + str(k + 1)) plt.xlabel('iteration') plt.ylabel('value') plt.suptitle('Gibbs Sampling', size=20) plt.title('$\hat{\\bf{\\alpha}}$', loc='left') plt.legend() plt.grid() plt.show() #%% ## パラメータのサンプルの推移の確認 # lambdaの推移を作図 plt.figure(figsize=(12, 9)) for k in range(K): plt.plot(np.arange(MaxIter + 1), np.array(trace_lambda_ik).T[k], label='cluster:' + str(k + 1)) plt.xlabel('iteration') plt.ylabel('value') plt.suptitle('Gibbs Sampling', size=20) plt.title('$\hat{\\bf{\lambda}}$', loc='left') plt.legend() plt.grid() plt.show() #%% # piの推移を作図 plt.figure(figsize=(12, 9)) for k in range(K): plt.plot(np.arange(MaxIter + 1), np.array(trace_pi_ik).T[k], label='cluster:' + str(k + 1)) plt.xlabel('iteration') plt.ylabel('value') plt.suptitle('Gibbs Sampling', size=20) plt.title('$\hat{\\bf{\pi}}$', loc='left') plt.legend() plt.grid() plt.show() #%% ## アニメーションによる確認 # 追加ライブラリ import matplotlib.animation as animation #%% ## 事後分布の推移の確認 # 作図用のlambdaの点を作成 lambda_line = np.linspace(0, 2 * np.max(lambda_truth_k), num=1000) # 画像サイズを指定 fig = plt.figure(figsize=(12, 9)) # 作図処理を関数として定義 def update_posterior(i): # 前フレームのグラフを初期化 plt.cla() # i回目のlambdaの事後分布を計算 posterior_lambda_k = np.empty((K, len(lambda_line))) for k in range(K): posterior_lambda_k[k] = gamma.pdf(x=lambda_line, a=trace_a_ik[i][k], scale=1 / trace_b_ik[i][k]) # i回目のlambdaの事後分布を作図 for k in range(K): plt.plot(lambda_line, posterior_lambda_k[k], label='cluster:' + str(k + 1)) # 事後分布 plt.vlines(x=lambda_truth_k[k], ymin=0.0, ymax=np.max(posterior_lambda_k), color='red', linestyle='--') # 真の値 plt.xlabel('$\lambda$') plt.ylabel('density') plt.suptitle('Gamma Distribution:Gibbs Sampling', size=20) plt.title('$iter:' + str(i) + ', N=' + str(N) + ', \hat{a}=[' + ', '.join([str(a) for a in trace_a_ik[i]]) + ']' + ', \hat{b}=[' + ', '.join([str(b) for b in trace_b_ik[i]]) + ']$', loc='left') plt.legend() # gif画像を作成 posterior_anime = animation.FuncAnimation(fig, update_posterior, frames=MaxIter + 1, interval=100) posterior_anime.save("ch4_3_2_Posterior.gif") #%% ## サンプルの推移の確認 # 分布の最大値を計算 max_prob = np.max(poisson.pmf(k=x_line, mu=np.max(trace_lambda_ik))) # 画像サイズを指定 fig = plt.figure(figsize=(12, 9)) # 作図処理を関数として定義 def update_model(i): # 前フレームのグラフを初期化 plt.cla() # i回目のサンプルによる混合分布を計算 res_prob = 0.0 for k in range(K): # クラスタkの分布の確率を計算 tmp_prob = poisson.pmf(k=x_line, mu=trace_lambda_ik[i][k]) # K個の分布の加重平均を計算 res_prob += tmp_prob * trace_pi_ik[i][k] # i回目のサンプルによる分布を作図 plt.bar(x=x_line, height=res_prob) # サンプルによる分布 plt.bar(x=x_line, height=model_prob, label='observation model', color='white', alpha=0.5, edgecolor='red', linestyle='--') # 真の分布 plt.xlabel('x') plt.ylabel('prob') plt.suptitle('Poisson Mixture Model:Gibbs Sampling', size = 20) plt.title('$iter:' + str(i) + ', N' + str(N) + ', \lambda=[' + ', '.join([str(lmd) for lmd in np.round(trace_lambda_ik[i], 2)]) + ']$', loc='left') plt.ylim(0.0, max_prob) plt.legend() # gif画像を作成 model_anime = animation.FuncAnimation(fig, update_model, frames=MaxIter + 1, interval=100) model_anime.save("ch4_3_2_Model.gif") #%% # K個の色を指定 color_list = ['red', 'green', 'blue'] # 作図用のxの点を作成 x_line = np.arange(0, 2 * np.max(lambda_truth_k)) # 画像サイズを指定 fig = plt.figure(figsize=(12, 9)) # 作図処理を関数として定義 def update_cluster(i): # 前フレームのグラフを初期化 plt.cla() # i回目のクラスタの散布図を作成 for k in range(K): plt.bar(x=x_line, height=[np.sum(x_n[s_truth_n == k] == x) for x in x_line], color='white', alpha=1, edgecolor=color_list[k], linestyle='--', label='true:' + str(k + 1)) # 真のクラスタ for k in range(K): plt.bar(x=x_line, height=[np.sum(x_n[np.array(trace_s_in[i]) == k] == x) for x in x_line], alpha=0.5, label='cluster:' + str(k + 1)) # サンプルしたクラスタ plt.xlabel('x') plt.ylabel('count') plt.suptitle('Poisson Mixture Model:Gibbs Sampling', size=20) plt.title('$iter:' + str(i) + ', N=' + str(N) + ', \lambda=[' + ', '.join([str(lmd) for lmd in np.round(trace_lambda_ik[i], 2)]) + ']' + ', \pi=[' + ', '.join([str(pi) for pi in np.round(trace_pi_ik[i], 2)]) + ']$', loc='left') plt.legend() # gif画像を作成 cluster_anime = animation.FuncAnimation(fig, update_cluster, frames=MaxIter + 1, interval=100) cluster_anime.save("ch4_3_2_Cluster.gif") #%% print('end')
class UnrecognizedCommandException(Exception): """When the text passed doesn't resolve to an unambiguous command""" pass class CheaterException(Exception): """When someone tries to rate themselves""" pass
import boto.ec2 import argparse REGION = 'us-east-1' parser = argparse.ArgumentParser(description='Return the public DNS name for an EC2 instance.') parser.add_argument('-i', '--instance', action='store', dest='instance_name') args = parser.parse_args() instance_name = args.instance_name conn = boto.ec2.connect_to_region(REGION) reservations = conn.get_all_reservations() for reservation in reservations: for instance in reservation.instances: for key, value in instance.tags.iteritems(): if key == 'Name' and value == instance_name and instance.state == 'running': print instance.dns_name exit(0) print 'Instance not found' exit(1)
# file test/localsettings.py.dist # # Copyright 2011 Emory University Libraries # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os # must be set before importing anything from django os.environ['DJANGO_SETTINGS_MODULE'] = 'localsettings' # secret key required as of django 1.5 SECRET_KEY = 'notsomuchofasecretafterall' # settings for locally built version of exist using ci scripts # default admin account username is admin with no password EXISTDB_SERVER_URL = 'http://localhost:8080/exist/' # exist admin account must be have dba privileges EXISTDB_SERVER_ADMIN_USER = "admin" EXISTDB_SERVER_ADMIN_PASSWORD = "" # limited-access test account; will be created by the admin user for # testing purposes only EXISTDB_SERVER_USER = "eulexistdbtester" EXISTDB_SERVER_PASSWORD = "pass1234" EXISTDB_ROOT_COLLECTION = '/eulexistdb' # test collection will be created and destroyed under base collection EXISTDB_TEST_BASECOLLECTION = '/test-eulexistdb' EXISTDB_TEST_COLLECTION = EXISTDB_TEST_BASECOLLECTION + EXISTDB_ROOT_COLLECTION # user group will be created by admin account for permissions purposes EXISTDB_TEST_GROUP = 'eulexistdb-test' # for travis-ci, disable sessions since jetty exist doesn't support them EXISTDB_SESSION_KEEP_ALIVE = False
# Junio 5 del 2018 # Observar las siguientes paginas: # 1. https://cambridgespark.com/content/tutorials/convolutional-neural-networks-with-keras/index.html # 2. https://www.youtube.com/watch?v=FmpDIaiMIeA # (Las dos se complementan, observar cambios) # (Opcional) 3. https://cambridgespark.com/content/tutorials/deep-learning-for-complete-beginners-recognising-handwritten-digits/index.html from recurrence import Recurrent_Photo, resize_images, show_image, real_time_classification from keras import backend from keras.models import Sequential from keras.layers import Input, Conv2D, MaxPooling2D, Dense, Dropout, Flatten from sklearn.utils import shuffle from time import sleep import numpy as np ''' Take the data from enviroment ''' left = Recurrent_Photo(20, times=4).recurrence_image print('XXXX') right = Recurrent_Photo(20, times=4).recurrence_image ''' Prepare the data to train ''' A = resize_images(left[6:], (100, 100)) A_labels = np.zeros(A.shape[0]) B = resize_images(right[6:], (100, 100)) B_labels = np.ones(B.shape[0]) X_train = np.concatenate((A, B), axis=0) Y_train = np.concatenate((A_labels, B_labels), axis=0) X_train, Y_train = shuffle(X_train, Y_train) ''' Prepare layers of network ''' def get_classifier(): classifier = Sequential() classifier.add(Conv2D(32, (3, 3), input_shape=(100, 100, 3), activation = 'relu')) classifier.add(Conv2D(32, (3, 3), activation = 'relu')) classifier.add(MaxPooling2D(pool_size = (2, 2))) classifier.add(Dropout(0.25)) classifier.add(Conv2D(58, (3, 3), activation = 'relu')) classifier.add(Conv2D(58, (3, 3), activation = 'relu')) classifier.add(MaxPooling2D(pool_size = (2, 2))) classifier.add(Dropout(0.25)) classifier.add(Flatten()) classifier.add(Dense(output_dim = 512, activation = 'relu')) classifier.add(Dropout(0.5)) classifier.add(Dense(output_dim = 1, activation = 'sigmoid')) classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy']) return classifier ''' Compiling classificator ''' classifier = get_classifier() classifier.load_weights('./weights') X_test = [] Y_test = [] for position in range(len(X_train)): if classifier.predict(np.array([X_train[position]])) > 0.7: X_test.append(X_train[position]) Y_test.append(Y_train[position]) new_classifier = get_classifier() batch_size = 32 num_epochs = 1 new_classifier.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) new_classifier.fit(X_train, Y_train, batch_size=batch_size, epochs=num_epochs, verbose=1, validation_split=0.1) # real_time_classification(10, classifier)
#!/bin/python3 import math import os import random import re import sys if __name__ == '__main__': n = int(input().strip()) if n % 2 != 0: print ("Weird") if (n % 2 == 0 and 2 <= n and 5 >= n): print ("Not Weird") if (n % 2 == 0 and 6 <= n and 20 >= n): print ("Weird") if (n % 2 == 0 and n > 20): print ("Not Weird")
# coding: spec from photons_transport.targets.script import sender_wrapper, ScriptRunner from photons_app.errors import PhotonsAppError, BadRunWithResults from photons_app import helpers as hp from delfick_project.norms import sb from unittest import mock import asyncio import pytest class Sem: def __init__(self, limit): self.limit = limit def __eq__(self, other): return isinstance(other, asyncio.Semaphore) and other._value == self.limit describe "sender_wrapper": @pytest.fixture() def V(self): class V: called = [] sender = mock.Mock(name="sender") res1 = mock.Mock(name="res1") res2 = mock.Mock(name="res2") @hp.memoized_property def script(s): class FakeScript: async def run(fs, *args, **kwargs): s.called.append(("run", args, kwargs)) yield s.res1 yield s.res2 return FakeScript() @hp.memoized_property def target(s): class FakeTarget: async def make_sender(fs, *args, **kwargs): s.called.append(("make_sender", args, kwargs)) return s.sender async def close_sender(fs, *args, **kwargs): s.called.append(("close_sender", args, kwargs)) return FakeTarget() return V() async it "does not impose a limit if limit is given as None", V: assert V.called == [] a = mock.Mock(name="a") kwargs = {"b": a, "limit": None} sender = mock.NonCallableMock(name="sender") async with sender_wrapper(V.target, sender, kwargs) as result: assert result is sender assert kwargs == {"b": a, "limit": None} assert V.called == [] async it "turns limit into a semaphore", V: a = mock.Mock(name="a") kwargs = {"b": a, "limit": 50} sender = mock.NonCallableMock(name="sender") async with sender_wrapper(V.target, sender, kwargs) as result: assert result is sender assert kwargs == {"b": a, "limit": Sem(50)} assert V.called == [] async it "passes on limit if it has acquire", V: a = mock.Mock(name="a") limit = mock.NonCallableMock(name="limit", spec=["acquire"]) kwargs = {"b": a, "limit": limit} sender = mock.NonCallableMock(name="sender") async with sender_wrapper(V.target, sender, kwargs) as result: assert result is sender assert kwargs == {"b": a, "limit": limit} assert V.called == [] async it "passes on limit if it is already a Semaphore", V: a = mock.Mock(name="a") limit = asyncio.Semaphore(1) kwargs = {"b": a, "limit": limit} sender = mock.NonCallableMock(name="sender") async with sender_wrapper(V.target, sender, kwargs) as result: assert result is sender assert kwargs == {"b": a, "limit": limit} assert V.called == [] async it "creates and closes the sender if none provided", V: a = mock.Mock(name="a") kwargs = {"b": a} async with sender_wrapper(V.target, sb.NotSpecified, kwargs) as sender: assert sender is V.sender V.called.append(("middle", kwargs)) assert V.called == [ ("make_sender", (), {}), ("middle", {"b": a, "limit": Sem(30)}), ("close_sender", (V.sender,), {}), ] describe "ScriptRunner": @pytest.fixture() def V(self): class V: res1 = mock.Mock(name="res1") res2 = mock.Mock(name="res2") sender = mock.Mock(name="sender") called = [] target = mock.Mock(name="target", spec=[]) @hp.memoized_property def script(s): class FakeScript: async def run(fs, *args, **kwargs): s.called.append(("run", args, kwargs)) yield s.res1 yield s.res2 return FakeScript() @hp.memoized_property def runner(s): return ScriptRunner(s.script, s.target) @hp.memoized_property def FakeTarget(s): class FakeTarget: async def make_sender(fs, *args, **kwargs): s.called.append(("make_sender", args, kwargs)) return s.sender async def close_sender(fs, *args, **kwargs): s.called.append(("close_sender", args, kwargs)) return FakeTarget return V() async it "takes in script and target": script = mock.Mock(name="script") target = mock.Mock(name="target") runner = ScriptRunner(script, target) assert runner.script is script assert runner.target is target describe "run": async it "does nothing if no script": runner = ScriptRunner(None, mock.NonCallableMock(name="target")) reference = mock.Mock(name="reference") got = [] async for info in runner.run(reference): got.append(info) assert got == [] async it "calls run on the script", V: assert V.called == [] a = mock.Mock(name="a") reference = mock.Mock(name="reference") sender = mock.NonCallableMock(name="sender", spec=[]) found = [] async for info in V.runner.run(reference, sender, b=a): found.append(info) assert found == [V.res1, V.res2] assert V.called == [("run", (reference, sender), {"b": a, "limit": Sem(30)})] async it "can create a sender", V: a = mock.Mock(name="a") reference = mock.Mock(name="reference") V.runner.target = V.FakeTarget() found = [] async for info in V.runner.run(reference, b=a): found.append(info) assert found == [V.res1, V.res2] assert V.called == [ ("make_sender", (), {}), ("run", (reference, V.sender), {"b": a, "limit": Sem(30)}), ("close_sender", (V.sender,), {}), ] describe "run_all": async it "calls run on the script", V: assert V.called == [] a = mock.Mock(name="a") reference = mock.Mock(name="reference") sender = mock.NonCallableMock(name="sender", spec=[]) found = await V.runner.run_all(reference, sender, b=a) assert found == [V.res1, V.res2] assert V.called == [("run", (reference, sender), {"b": a, "limit": Sem(30)})] async it "raises BadRunWithResults if we have risen exceptions", V: error1 = PhotonsAppError("failure") class FakeScript: async def run(s, *args, **kwargs): V.called.append(("run", args, kwargs)) yield V.res1 raise error1 runner = ScriptRunner(FakeScript(), V.FakeTarget()) assert V.called == [] a = mock.Mock(name="a") reference = mock.Mock(name="reference") try: await runner.run_all(reference, b=a) assert False, "Expected error" except BadRunWithResults as error: assert error.kwargs["results"] == [V.res1] assert error.errors == [error1] assert V.called == [ ("make_sender", (), {}), ("run", (reference, V.sender), {"b": a, "limit": Sem(30)}), ("close_sender", (V.sender,), {}), ]
A_23_01_8 = {0: {'A': 0.036, 'C': 0.017, 'E': 0.012, 'D': 0.004, 'G': 0.014, 'F': 0.053, 'I': 0.045, 'H': -0.031, 'K': -0.027, 'M': 0.014, 'L': 0.028, 'N': -0.002, 'Q': -0.03, 'P': -0.014, 'S': -0.012, 'R': -0.095, 'T': -0.008, 'W': -0.008, 'V': 0.027, 'Y': -0.024}, 1: {'A': 0.206, 'C': 0.032, 'E': 0.034, 'D': 0.003, 'G': 0.115, 'F': -0.073, 'I': 0.12, 'H': -0.096, 'K': -0.017, 'M': -0.038, 'L': 0.002, 'N': -0.04, 'Q': 0.034, 'P': 0.169, 'S': 0.044, 'R': -0.053, 'T': -0.0, 'W': -0.15, 'V': 0.059, 'Y': -0.353}, 2: {'A': -0.038, 'C': 0.004, 'E': -0.029, 'D': -0.036, 'G': -0.01, 'F': 0.045, 'I': 0.051, 'H': 0.023, 'K': 0.026, 'M': 0.048, 'L': 0.024, 'N': -0.007, 'Q': -0.032, 'P': -0.139, 'S': -0.011, 'R': -0.001, 'T': -0.015, 'W': 0.041, 'V': 0.002, 'Y': 0.054}, 3: {'A': 0.178, 'C': 0.089, 'E': 0.176, 'D': 0.019, 'G': 0.28, 'F': -0.186, 'I': -0.454, 'H': 0.11, 'K': 0.038, 'M': -0.216, 'L': -0.462, 'N': 0.125, 'Q': 0.186, 'P': 0.089, 'S': 0.13, 'R': 0.205, 'T': 0.033, 'W': -0.059, 'V': -0.217, 'Y': -0.064}, 4: {'A': 0.02, 'C': -0.01, 'E': -0.019, 'D': -0.008, 'G': -0.009, 'F': 0.011, 'I': -0.027, 'H': 0.025, 'K': 0.058, 'M': -0.0, 'L': -0.018, 'N': -0.003, 'Q': -0.035, 'P': -0.004, 'S': 0.007, 'R': 0.061, 'T': -0.02, 'W': -0.016, 'V': -0.02, 'Y': 0.005}, 5: {'A': 0.276, 'C': 0.005, 'E': 0.016, 'D': 0.038, 'G': 0.128, 'F': -0.477, 'I': -0.155, 'H': -0.014, 'K': 0.146, 'M': -0.128, 'L': -0.233, 'N': 0.029, 'Q': 0.117, 'P': 0.071, 'S': 0.196, 'R': 0.128, 'T': 0.13, 'W': -0.153, 'V': 0.013, 'Y': -0.132}, 6: {'A': 0.259, 'C': 0.001, 'E': -0.008, 'D': -0.002, 'G': -0.224, 'F': -0.351, 'I': -0.096, 'H': 0.276, 'K': 0.158, 'M': -0.203, 'L': -0.625, 'N': 0.051, 'Q': -0.077, 'P': 0.022, 'S': 0.169, 'R': 0.369, 'T': 0.253, 'W': -0.031, 'V': 0.089, 'Y': -0.03}, 7: {'A': 0.034, 'C': -0.01, 'E': 0.001, 'D': -0.008, 'G': 0.002, 'F': -0.004, 'I': 0.01, 'H': -0.011, 'K': 0.013, 'M': 0.009, 'L': 0.027, 'N': -0.01, 'Q': -0.004, 'P': 0.003, 'S': -0.001, 'R': -0.009, 'T': -0.0, 'W': -0.048, 'V': 0.022, 'Y': -0.015}, -1: {'con': 4.37966}}
#!/usr/bin/env python import argparse import os import json import yaml try: from metal_python.driver import Driver from metal_python.api import MachineApi, ProjectApi from metal_python import models METAL_PYTHON_AVAILABLE = True except ImportError: METAL_PYTHON_AVAILABLE = False ANSIBLE_CI_MANAGED_KEY = "ci.metal-stack.io/manager" ANSIBLE_CI_MANAGED_VALUE = "ansible" ANSIBLE_CI_MANAGED_TAG = ANSIBLE_CI_MANAGED_KEY + "=" + ANSIBLE_CI_MANAGED_VALUE class Configuration: CONFIG_PATH = os.environ.get("METAL_ANSIBLE_INVENTORY_CONFIG") def __init__(self): self._config = dict() if Configuration.CONFIG_PATH is not None: # if configuration path is set explicitly, the file needs to be present and readable with open(Configuration.CONFIG_PATH, "r") as f: self._config = yaml.safe_load(f) else: # if configuration path is not provided, the fallback file path is read if present fallback_path = os.path.join(os.path.dirname(__file__), "metal_config.yaml") if os.path.isfile(fallback_path): with open(fallback_path, "r") as f: self._config = yaml.safe_load(f) def url(self): return self._config.get("url", os.environ.get("METAL_ANSIBLE_INVENTORY_URL", os.environ.get("METALCTL_URL"))) def token(self): return self._config.get("token", os.environ.get("METAL_ANSIBLE_INVENTORY_TOKEN")) def hmac(self): return self._config.get("hmac", os.environ.get("METAL_ANSIBLE_INVENTORY_HMAC", os.environ.get("METALCTL_HMAC"))) def hmac_user(self): return self._config.get("hmac_user", "Metal-Edit") def external_network_id(self): return self._config.get("external_network_id", "internet") def scope_filters(self): return self._config.get("scope_filters", []) def static_machine_ip_mapping(self): return self._config.get("static_machine_ip_mapping", dict()) def run(): if not METAL_PYTHON_AVAILABLE: # this allows to install metal_python during playbook execution, just refresh the inventory # after installation return return_json(dict()) c = Configuration() args = parse_arguments() if args.host: result = host_vars(args.host) else: result = host_list(c) return_json(result) def parse_arguments(): parser = argparse.ArgumentParser() group = parser.add_mutually_exclusive_group(required=False) group.add_argument( "--list", action="store_true", help="lists groups and hosts" ) group.add_argument( "--host", help="returns host variables of the dynamic inventory source" ) return parser.parse_args() def host_list(c): d = Driver(url=c.url(), bearer=c.token(), hmac_key=c.hmac(), hmac_user=c.hmac_user()) request = models.V1MachineFindRequest() for scope_filter in c.scope_filters(): request.__setattr__(scope_filter["name"], scope_filter["value"]) machines = MachineApi(api_client=d.client).find_machines(request) projects = ProjectApi(api_client=d.client).list_projects() machine_meta = dict() inventory = {"_meta": dict(hostvars=machine_meta)} project_map = dict() for project in projects: project_map[project.meta.id] = project static_machine_ip_mapping = c.static_machine_ip_mapping() for machine in machines: if ANSIBLE_CI_MANAGED_TAG not in machine.tags: continue if not machine.id or machine.allocation is None: continue rack_id = machine.rackid allocation = machine.allocation size_id = machine.size.id if machine.size else None partition_id = machine.partition.id if machine.partition else None tags = machine.tags description = allocation.description networks = allocation.networks name = allocation.name hostname = allocation.hostname project_id = allocation.project tenant_id = project_map[project_id].tenant_id if project_id in project_map else None machine_event_log = [] if machine.events and machine.events.log: for e in machine.events.log: machine_event_log.append(dict( event=e.event, message=e.message, time=str(e.time), )) internal_ip = None for network in networks: if network.private: internal_ips = network.ips if len(internal_ips) > 0: internal_ip = internal_ips[0] break # TODO: It is somehow hard to determine the IP of the machine to connect with from the internet... external_ip = None for network in networks: is_external = True if c.external_network_id() == network.networkid else False if is_external: external_ips = network.ips if len(external_ips) > 0: external_ip = external_ips[0] break ansible_host = allocation.hostname if allocation.hostname != "" else name ansible_host = external_ip if external_ip is not None else ansible_host if not ansible_host: # if there is no name, no host name and no external ip... we skip this host continue is_machine = allocation.role == "machine" is_firewall = allocation.role == "firewall" image = allocation.image image_id = None image_expiration_date = None if image: image_id = image.id image_expiration_date = str(image.expiration_date) machine_meta[hostname] = dict( ansible_host=ansible_host, ansible_user="metal", metal_allocated_at=str(allocation.created), metal_allocation_succeeded=allocation.succeeded, metal_creator=allocation.creator, metal_id=machine.id, metal_name=name, metal_event_log=machine_event_log, metal_hostname=hostname, metal_description=description, metal_rack_id=rack_id, metal_partition=partition_id, metal_project=project_id, metal_size=size_id, metal_image=image_id, metal_image_expiration=image_expiration_date, metal_tenant=tenant_id, metal_is_firewall=is_firewall, metal_is_machine=is_machine, metal_internal_ip=internal_ip, metal_tags=tags, ) if is_machine: _append_to_inventory(inventory, project_id, hostname) _append_to_inventory(inventory, size_id, hostname) _append_to_inventory(inventory, partition_id, hostname) _append_to_inventory(inventory, image_id, hostname) _append_to_inventory(inventory, rack_id, hostname) _append_to_inventory(inventory, "metal", hostname) elif is_firewall: _append_to_inventory(inventory, "metal-firewalls", hostname) if hostname in static_machine_ip_mapping: machine_meta[hostname]["ansible_host"] = static_machine_ip_mapping[hostname] return inventory def _append_to_inventory(inventory, key, host): if not key: return if key not in inventory: inventory[key] = [] hosts = inventory[key] hosts.append(host) def host_vars(host): # currently not required because host list returns _meta information return dict() def return_json(result): print(json.dumps(result, sort_keys=True, indent=4)) if __name__ == '__main__': run()
"""Calculate averaged vertical profiles of PV tracers """ import matplotlib.pyplot as plt import iris.plot as iplt from iris.analysis import VARIANCE from irise import files, convert from myscripts import datadir, plotdir from myscripts.plot import linestyles, colors def main(): filename = datadir + 'xjjhq/xjjhqa_036.pp' names = ['total_minus_advection_only_pv', 'long_wave_radiation_pv', 'microphysics_pv', 'convection_pv', 'boundary_layer_pv', 'advection_inconsistency_pv', 'residual_pv'] cubes = files.load(filename) variables = [convert.calc(name, cubes) for name in names] means = [x.collapsed(['grid_latitude', 'grid_longitude'], VARIANCE) for x in variables] plotfig(means) def plotfig(means): for n, mean in enumerate(means): iplt.plot(mean, mean.coord('level_height'), linestyle=linestyles[n], color=colors[n], label=mean.name().replace('_', ' ')) plt.axis([0, 1, 0, 18000]) plt.axvline(color='k') plt.savefig(plotdir + '36h_vertical_profile.png') plt.legend(loc='best') plt.savefig(plotdir + '36h_vertical_profile_legend.png') if __name__ == '__main__': main()
from blockcontainer.celery import app import feedparser from bs4 import BeautifulSoup from .models import Feed import time import re import datetime # Russian Detector def russian_detector(text): return bool(re.search('[а-яА-Я]', text)) @app.task def updateCoinScribble(): url = "https://coinscribble.com/feed/" feeds = feedparser.parse(url) for feed in feeds.entries: feed_title = BeautifulSoup(feed.title, "html.parser").text feed_desc = BeautifulSoup(feed.description, "html.parser").text date_grabbed = BeautifulSoup(feed.published, "html.parser").text.strip(" +0000") match = re.search('(([0-9])|([0-2][0-9])|([3][0-1])) (Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec) \d{4} \d{2}:\d{2}:((\d{2})|(\d{1}))', date_grabbed).group() date = datetime.datetime.strptime(match,'%d %b %Y %H:%M:%S').strftime('%Y-%m-%d %H:%M:%S') date_timestamp = time.mktime(time.strptime(date, "%Y-%m-%d %H:%M:%S")) if not russian_detector(feed_desc): if not Feed.objects.filter(title=feed.title).exists(): Feed.objects.create(title=feed_title, url=feed.link, publisher="coinscribble.com", pubDate=date, timestamp=date_timestamp, description=feed_desc, language="en", keywords=["SPONSORED: coinscribble"]) print("Post added") else: print("Post already exists") else: print("Detecting russian language.") @app.task def updateNews(): urls = { "bitcoin" : "https://www.google.com/alerts/feeds/12340362945684051216/15655618752877247827", "blockchain" : "https://www.google.com/alerts/feeds/12340362945684051216/13114747021562294851", "aeternity" : "https://www.google.com/alerts/feeds/12340362945684051216/16440740884174862757", "binance" : "https://www.google.com/alerts/feeds/12340362945684051216/8027721639639490252", "bitcoin cash" : "https://www.google.com/alerts/feeds/12340362945684051216/17512606990530552971", "bytecoin" : "https://www.google.com/alerts/feeds/12340362945684051216/17980445981191647329", "bytom" : "https://www.google.com/alerts/feeds/12340362945684051216/7898063312297607721", "cardano" : "https://www.google.com/alerts/feeds/12340362945684051216/11585699988765018451", "crypto" : "https://www.google.com/alerts/feeds/12340362945684051216/16529425444757612249", "crypto hack" : "https://www.google.com/alerts/feeds/12340362945684051216/2362755211162792231", "crypto manipulation" : "https://www.google.com/alerts/feeds/12340362945684051216/2144901627350877709", "crypto regulation" : "https://www.google.com/alerts/feeds/12340362945684051216/2144901627350876711", "dash" : "https://www.google.com/alerts/feeds/12340362945684051216/1147869376182928107", "eos" : "https://www.google.com/alerts/feeds/12340362945684051216/2871138225825499714", "ethereum" : "https://www.google.com/alerts/feeds/12340362945684051216/13038099722634464383", "ethereum classic" : "https://www.google.com/alerts/feeds/12340362945684051216/1135553200736887840", "icon" : "https://www.google.com/alerts/feeds/12340362945684051216/1138440253232776667", "iota" : "https://www.google.com/alerts/feeds/12340362945684051216/10370891387368167962", "lisk" : "https://www.google.com/alerts/feeds/12340362945684051216/17111995700909466580", "litecoin" : "https://www.google.com/alerts/feeds/12340362945684051216/17133084124967421676", "monero" : "https://www.google.com/alerts/feeds/12340362945684051216/12261175556563009446", "nem" : "https://www.google.com/alerts/feeds/12340362945684051216/7720578290498420253", "neo" : "https://www.google.com/alerts/feeds/12340362945684051216/2775565315315977746", "omise" : "https://www.google.com/alerts/feeds/12340362945684051216/10193091974408175944", "ontology" : "https://www.google.com/alerts/feeds/12340362945684051216/13233149221754639791", "qtum" : "https://www.google.com/alerts/feeds/12340362945684051216/4141064930560135343", "ripple" : "https://www.google.com/alerts/feeds/12340362945684051216/11104048133686601400", "stellar" : "https://www.google.com/alerts/feeds/12340362945684051216/3410338781824721132", "tether" : "https://www.google.com/alerts/feeds/12340362945684051216/12658500746063410704", "tron" : "https://www.google.com/alerts/feeds/12340362945684051216/3498726207950265081", "vechain" : "https://www.google.com/alerts/feeds/12340362945684051216/7720578290498419823", "zcash" : "https://www.google.com/alerts/feeds/12340362945684051216/3787959852648023990", "zilliqa" : "https://www.google.com/alerts/feeds/12340362945684051216/3787959852648023756", } #print("Get News Data") #url = "https://news.google.com/news?pz=1&cf=all&ned=en&hl=us&q=bitcoin&cf=all&output=rss" for key, url in urls.items(): feeds = feedparser.parse(url) for feed in feeds.entries: __day = feed.published.partition("T")[0] __time = feed.published.partition("T")[2].partition("Z")[0] __pubDate = __day+" "+__time __timestamp = time.mktime(time.strptime(__day+" "+__time, "%Y-%m-%d %H:%M:%S")) __url = feed.link.partition("&url=")[2].partition("&ct=")[0] __title = BeautifulSoup(feed.title, "html.parser").text __publisher = __url.partition("https://")[2].partition("/")[0] if not __publisher: __publisher = __url.partition("http://")[2].partition("/")[0] __description = BeautifulSoup(feed.description, "html.parser").text.replace(__publisher, "").partition("...")[0]+"..." soup = BeautifulSoup(feed.description, "html.parser") if not Feed.objects.filter(title=__title).exists(): Feed.objects.create(title=__title, url=__url, publisher=__publisher, pubDate=__pubDate, timestamp=__timestamp, description=__description, language="en", keywords=[key]) print("News added") else: obj = Feed.objects.get(title=__title) if key in obj.keywords: print("News already exists") else: obj.keywords.append(key) obj.save() print("Keyword added") return 1
from pathlib import Path from . import ( utils, network, learning, encoding, decision, plotting, ) ROOT_DIR = Path(__file__).parents[0].parents[0]
from yowsup.config.transforms.props import PropsTransform class SerializeTransform(PropsTransform): def __init__(self, serialize_map): """ { "keystore": serializer } :param serialize_map: :type serialize_map: """ transform_map = {} reverse_map = {} for key, val in serialize_map: transform_map[key] = lambda key, val: key, serialize_map[key].serialize(val) reverse_map[key] = lambda key, val: key, serialize_map[key].deserialize(val) super(SerializeTransform, self).__init__(transform_map=transform_map, reverse_map=reverse_map)
from django.contrib.auth.decorators import permission_required from django.core.urlresolvers import reverse_lazy, reverse from django.http import HttpResponseRedirect from django.shortcuts import get_object_or_404, redirect from django.views.generic import ListView, CreateView, UpdateView, DeleteView from core.decorators import staff_required from interface.forum.models import Forum, Category from interface.forum.forms import CategoryForm, ForumForm class ForumIndexView(ListView): model = Forum context_object_name = 'forums' template_name = 'forum/cpanel/index.html' def get_context_data(self, **kwargs): context = super(ForumIndexView, self).get_context_data(**kwargs) context['categories'] = Category.objects.all() return context forum = staff_required(ForumIndexView.as_view()) class AddForumView(CreateView): form_class = ForumForm success_url = reverse_lazy('forum') template_name = 'forum/cpanel/add_forum.html' add_forum = permission_required('config.change_setting')( AddForumView.as_view()) class EditForumView(UpdateView): model = Forum form_class = ForumForm success_url = reverse_lazy('forum') template_name = 'forum/cpanel/edit_forum.html' edit_forum = permission_required('config.change_setting')( EditForumView.as_view()) class DeleteForumView(DeleteView): model = Forum success_url = reverse_lazy('forum') def get(self, *args, **kwargs): return self.delete(*args, **kwargs) delete_forum = permission_required('config.change_setting')( DeleteForumView.as_view()) class ManageForumCategoriesView(ListView): model = Category context_object_name = 'categories' template_name = 'forum/cpanel/manage_categories.html' manage_forum_categories = permission_required('config.change_setting')( ManageForumCategoriesView.as_view()) class AddForumCategoryView(CreateView): form_class = CategoryForm success_url = reverse_lazy('manage_forum_categories') template_name = 'forum/cpanel/add_category.html' add_forum_category = permission_required('config.change_setting')( AddForumCategoryView.as_view()) class EditForumCategoryView(UpdateView): model = Category form_class = CategoryForm success_url = reverse_lazy('manage_forum_categories') template_name = 'forum/cpanel/edit_category.html' edit_forum_category = permission_required('config.change_setting')( EditForumCategoryView.as_view()) class DeleteForumCategoryView(DeleteView): model = Category success_url = reverse_lazy('manage_forum_categories') def get(self, *args, **kwargs): return self.delete(*args, **kwargs) delete_forum_category = permission_required('config.change_setting')( DeleteForumCategoryView.as_view()) @permission_required('config.change_setting') def forum_switch_closed(request, id): forum = get_object_or_404(Forum, pk=id) forum.is_closed = not forum.is_closed forum.save() return HttpResponseRedirect(reverse('forum')) @permission_required('config.change_setting') def forum_actions(request): action = request.GET.get('action', None) f_id = request.GET.get('f_id', '').split() f_id = map(int, f_id) queryset = Forum.objects.filter(id__in=f_id) if action == 'closed': for f in queryset: f.is_closed = True f.save() elif action == 'open': for f in queryset: f.is_closed = False f.save() redir = request.META.get('HTTP_REFERER', reverse('forum')) return redirect(redir)
import datetime from model.db_initializer import DbConnector from settings import env_variables import statistics_reader from website_generator import WebsiteGenerator week_end_date = datetime.datetime.now().replace(minute=0, second=0, microsecond=0, hour=0) - datetime.timedelta(days=1) week_end_date = week_end_date + datetime.timedelta(days=-((week_end_date.weekday() + 1) % 7)) week_end_date = week_end_date.replace(hour=23, minute=59) DbConnector.getInstance().init_db(env_variables.db_url, env_variables.db_port, env_variables.db_name, env_variables.get_db_username(), env_variables.get_db_password()) generator = WebsiteGenerator(env_variables.wwwroot) week_start_date = week_end_date - datetime.timedelta(weeks=1) generator.generate_website(env_variables.debug, week_start_date, week_end_date, [], statistics_reader.get_data_per_language, custom_title_pre="lang") generator.generate_website(env_variables.debug, week_start_date, week_end_date, ["Ninja", "ESL_CSGO", "OverwatchLeague"], statistics_reader.get_streamer_data, custom_title_pre="streamer") navigation_sides = [{"directory": "lang", "title": "Languages"}, {"directory": "streamer", "title": "Streamers"}] start_date_of_the_website_generation = env_variables.start_date start_date_of_the_website_generation = start_date_of_the_website_generation.replace(hour=23, minute=59) generator.generate_navigation_side(start_date_of_the_website_generation, week_end_date, navigation_sides) DbConnector.getInstance().close_db()
""" Collection of utility functions. """ import os import logging from logging.handlers import RotatingFileHandler import glob import time import yaml import ruamel.yaml import codecs from collections import OrderedDict import nd2reader as nd2 import numpy as np from skimage import img_as_float import platform ##################################Logging############################### """ The following lines will be executed when this file is imported, this code initializes a logger, but does not use the logger. To print the output from the logger run the function init_file_logger and/or init_console_logger, to save output to a file or send the output to the stderr stream respectively. """ # Redirect warnings to logger logging.captureWarnings(True) # Create logger logger = logging.getLogger() logger.setLevel(logging.DEBUG) def init_file_logger(log_path, maxBytes=0, backupCount=0): """ Send the logging output to a file. The logs are placed in a directory called "logs", if this directory is not found at the location denoted by log_path, it will be made. On each run of the program a new log file will be produced. max_bytes and backup_count are passed to RotatingFileHandler directly. So a new file will be produced when the filesize reaches max_bytes. If either of max_bytes or backup_count is zero, rollover never occurs and everything will be logged in one file. Parameters: ----------- log_path: str Full path to the directory where the log directory is/should go. maxBytes: int Maximum size in bytes of a single log file, a new log file will be started when this size is reached. If zero, all logging will be written to one file. (Default: 0) backup_count: int The maxinum number of logging file that will be produced. If zero, all logging will be written to one file. (Default: 0) """ formatter_file = logging.Formatter('%(asctime)s - %(levelname)s - %(name)s: %(message)s') log_path += '_logs/' # To print the logging to a file try: os.stat(log_path) except: os.mkdir(log_path) os.chmod(log_path, 0o777) date_tag = time.strftime("%y%m%d_%H_%M_%S") fh = RotatingFileHandler(log_path +'%s-smFISH_Analysis.log' % date_tag, mode ='w', maxBytes=maxBytes, backupCount=backupCount) # Set logger properties fh.setLevel(logging.DEBUG) fh.setFormatter(formatter_file) logger.addHandler(fh) logger.info("Created file logger") def init_console_logger(): """ Send the logging output to the stderr stream. After running this function the logging message will typically end up in your console output. """ formatter_con = logging.Formatter('%(name)s: %(message)s') ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) ch.setFormatter(formatter_con) logger.addHandler(ch) logger.info("Created console logger") ######################################################################## def experimental_metadata_parser(hyb_dir): """ Parse the yaml file containing all the metadata of the experiment The file must be located inside the experimental folder. Parameters: ----------- hyb_dir: str Path to the .yaml file containing the metadata of the experiment Returns: ----------- experiment_infos: dict Dictionary with the information on the experiment. HybridizationInfos: dict Dictionary with the information on the hybridization. converted_positions: dict Dictionary with the coords of the images for all hybridization. The coords are a list of floats microscope_parameters: dict Dictionary with the microscope parameters for all hybridization """ metadata_file_name = hyb_dir+'Experimental_metadata.yaml' logger.info("Parsing metadata from file: {}" .format(metadata_file_name)) with open(metadata_file_name, 'r') as stream: try: docs=yaml.load(stream) except yaml.YAMLError as exc: print(exc) experiment_infos = docs['ExperimentInfos'] image_properties = docs['ImageProperties'] hybridizations_infos = docs['HybridizationsInfos'] Positions = docs['TilesPositions'] microscope_parameters = docs['MicroscopeParameters'] # Dictionary that will contain the coords after been coverted to float converted_positions={} # Convert the positions from list of string to list of floats for hyb, coords_dict in Positions.items(): sub_dict = {} for pos, coords in coords_dict.items(): coords = [float(x) for x in coords.split(',')] sub_dict[pos] = coords converted_positions[hyb] = sub_dict return experiment_infos,image_properties, hybridizations_infos,\ converted_positions, microscope_parameters def filtering_raw_counting_config_parser(hyb_dir): """ Parse the yaml file containing all configurations for running the analysis The file must be located inside the experimental folder. Parameters: ----------- hyb_dir: str Path to the .yaml file containing the metadata of the experiment Returns: ----------- config_parameters: dict Dictionary with all the configuration parameters """ configuration_file_name = hyb_dir+'Filtering_raw_counting.config.yaml' logger.info("Parsing metadata from file: {}" .format(configuration_file_name)) with open(configuration_file_name, 'r') as stream: try: config_parameters=yaml.load(stream) except yaml.YAMLError as exc: print(exc) return config_parameters def general_yaml_parser(file_path): """ Parse a general yaml file and return the dictionary with all the content The file must be located inside the experimental folder. Parameters: ----------- file_path: str Path to the .yaml file containing the metadata of the experiment Returns: ----------- parameters: dict Dictionary with all the configuration parameters """ logger.info("Parsing metadata from file: {}" .format(file_path)) with open(file_path, 'r') as stream: try: parameters=yaml.load(stream) except yaml.YAMLError as exc: print(exc) return parameters def determine_os(): """ This function check if the system is running windows. and return the correct slash type to use Returns: -------- os_windows: bool True if the os is windows. add_slash: str '\' for windows or '/' for any other system """ if 'Windows' in platform.platform(): os_windows = True add_slash = '\\' else: os_windows = False add_slash = '/' if os_windows: logger.debug('OS: Windows') else: logger.debug('OS: Linux based') return os_windows, add_slash def check_trailing_slash(dir_path, os_windows): """ This function check if there is a trailing slash at the end of a directory path and add it if missing Paramenters: ------------ dir_path= str Path to the directory Returns: -------- dir_path= str Path to the directory """ logger.info('Checking the trailing slash ') if os_windows: if dir_path[-1]=='\\': logger.info('trailing slash present') else: logger.info('missing trailer slash, added now') dir_path=dir_path+'\\' else: if dir_path[-1]=='/': logger.info('trailing slash present') else: logger.info('missing trailer slash, added now') dir_path=dir_path+'/' return dir_path def create_subdirectory_tree(hyb_dir,hybridization,hybridizations_infos,processing_hyb,suffix,add_slash, skip_tags=None,skip_genes=None,analysis_name=None): """ Function that creates the directory tree where to save the temporary data. Parameters: ----------- hyb_dir: str Path of the hyb to process hybridization: str Name of the hybridization to process (ex. Hybridization2) hybridizations_infos: dict Dictionary containing the hybridizations info parsed from the Experimental_metadata.yaml file processing_hyb: str Name of the processing experiment (ex. EXP-17-BP3597_hyb2) suffix: str Suffix to add to the folder with useful description (ex. tmp) add_slash: str '\\' for win and '/' for linux skip_tags: list tags that won't be processed (ex. _IF) skip_genes list list of genes to skip analysis_name: str Name of the analysis run Returns: --------- sufx_dir_path: str Path of the sufx directory of the processed hybridization sufx_gene_dirs: list List of the paths of the sufx directory for the genes to process """ logger.info('create {} directory'.format(suffix)) gene_list = list(hybridizations_infos[hybridization].keys()) # logger.debug('gene list: {}'.format(gene_list)) sufx_gene_dirs = [] if analysis_name: # Create sufx directory sufx_dir_path = hyb_dir+analysis_name+'_'+processing_hyb+'_'+suffix+add_slash logger.debug('create {} directory'.format(suffix)) else: # Create sufx directory sufx_dir_path = hyb_dir+processing_hyb+'_'+suffix+add_slash try: os.stat(sufx_dir_path) except: os.mkdir(sufx_dir_path) os.chmod(sufx_dir_path,0o777) if skip_genes: gene_list = [gene for gene in gene_list if gene not in skip_genes] if skip_tags: gene_list = [gene for tag in skip_tags for gene in gene_list if tag not in gene] for gene in gene_list: if analysis_name: sufx_gene_dir_path = sufx_dir_path+analysis_name+'_'+processing_hyb+'_'+ gene+'_'+suffix+add_slash sufx_gene_dirs.append(sufx_gene_dir_path) else: sufx_gene_dir_path = sufx_dir_path +processing_hyb+'_'+ gene +'_'+suffix+add_slash sufx_gene_dirs.append(sufx_gene_dir_path) try: os.stat(sufx_gene_dir_path) except: os.mkdir(sufx_gene_dir_path) os.chmod(sufx_gene_dir_path,0o777) return sufx_dir_path, sufx_gene_dirs def identify_nodes(client): """ Function used to determine the address of the nodes in order to better split the work Parameters: ----------- client: dask.obj Dask.distributed client. Returns: ----------- node_addresses: OrderedDict Ordered dictionary. The keys are the addresses of the nodes and the items are the full addresses of teh workers of a specific node. """ logger.info('Determine the tcp addresses of the workers') # Gather the addresse of all the instantiated workers client_infos = client.scheduler_info() workers_addresses = client_infos['workers'].keys() # Isolate the tcp address of the nodes nodes_addresses = OrderedDict() nodes_comparison_list = [] for address in workers_addresses: address_split = address.split(':') node_address = address_split[1].split('//')[-1] final_digits = address_split[-1] if node_address in nodes_comparison_list: nodes_addresses['tcp://'+node_address][final_digits]=address else: nodes_comparison_list.append(node_address) nodes_addresses['tcp://'+node_address]={} nodes_addresses['tcp://'+node_address][final_digits]=address return nodes_addresses def combine_gene_pos(hybridizations_infos,converted_positions,hybridization): """ Gather info about the imaging at each hybridization. This function creates a dictionary where for each hybridization are shown the genes and number of positions imaged for each gene. This function will be useful to created distribution lists for running parallel processing of the datasets. Parameters: ----------- hybridizations_infos: dict Dictionary with parsed Hybridizations metadata converted_positions: dict Dictionary with the coords of the images for all hybridization. The coords are a list of floats hybridization: str Selected hybridization to process Returns: ----------- genes_and_positions: dict Dictionary where for each hybridization, the genes and number of positions imaged for each gene are showed. """ genes_and_positions=dict() for gene in hybridizations_infos[hybridization].keys(): genes_and_positions[gene] = list(converted_positions[hybridization].keys()) return genes_and_positions def partial_image_mean(img_paths): """ Helper function used to calculate the mean of a set of images. It runs on a worker and help parallel image processing Parameters: ----------- img_paths: list List of paths to the images saved as *.npy Returns: ----------- ImgMean: np.array Array storing the calculated image mean """ ImgMean = None for img_path in img_paths: img_stack = np.load(img_path) img_stack = img_as_float(img_stack) if ImgMean is None: ImgMean = img_stack else: ImgMean = (ImgMean + img_stack)/2.0 return ImgMean def list_chunking(list_to_chunk,num_chunks): """ Helper function used to chunk a list in a number of sublists equal to num_chunks Parameters: ----------- list_to_chunk: list List to be chunked num_chunks: int Number of sublists to obtain Returns: ----------- chunked_list: list List containing the chunked lists """ size = np.int(len(list_to_chunk)/num_chunks) chunked_list = [list_to_chunk[i:i+size] for i in range(0, len(list_to_chunk), size)] # if (len(list_to_chunk) - size*num_chunks)>0: # chunked_list[-2].append(chunked_list[-1]) # del chunked_list[-1] return chunked_list def create_single_directory(hyb_dir,gene,hybridization,processing_hyb,suffix,add_slash, analysis_name=None): """ Function used to create a subdirectory Parameters: ----------- hyb_dir: str Path to the directory of the hybridization currently processed. gene: str Gene name to be included in the directory. processing_hyb: str Name of the hybridization processed (ex. 'EXP-17-BP3597_hyb2'). suffix: str Extra info to add to the directory name (ex. blended). add_slash: str Slash added according to the os. analysis_name: str Name of the analysis associated to the folder Return --------- sufx_dir_path: str Path to the created directory """ logger.info('create {} directory'.format(suffix)) sufx_gene_dirs = [] if analysis_name: # Create sufx directory sufx_dir_path = hyb_dir+analysis_name+'_'+processing_hyb+'_'+gene+'_'+suffix+add_slash logger.debug('create {} directory'.format(suffix)) else: # Create sufx directory sufx_dir_path = hyb_dir+processing_hyb+'_'+gene+'_'+suffix+add_slash try: os.stat(sufx_dir_path) except: os.mkdir(sufx_dir_path) os.chmod(sufx_dir_path,0o777) return sufx_dir_path def add_coords_to_yaml(folder, hyb_nr, hyb_key ='Hyb'): """ Read tile number and coordinates and add them to the yaml file. Read the tile number and microscope coordinates for each tile from the microscope file called "coord_file_name" in "folder". Then insert them in dictionary "TilesPositions" in the yaml metadata file called Experimental_metadata.yaml. Parameters: ----------- folder: str Exact path to the folder, including trailing "/" hyb_nr: int Hybridization number denoting for which hybridization we should read and insert the coordinates hyb_key: str Possible values 'Hyb' or 'Strip'. To add coordinates for stripping if necessary. """ # Key word to look for in the name of the coordinate file name_key = 'Coords' hyb_key_filename = hyb_key + str(hyb_nr) # Find the right file using "name_key" and hyb key coord_file_name = next((name for name in glob.glob(folder + '*.txt') if (name_key in os.path.basename(name)) and (hyb_key_filename in os.path.basename(name))) , None) logger.info("Reading coordinates from file: {}" .format(coord_file_name)) if coord_file_name is None: logger.error("Coordinate file not found in folder {}, " + "looking for txt-file including {} and {} in " + "its name." .format(folder, name_key, hyb_key_filename)) # Load the yaml file with a special roundtrip loader, to change # it while keeping all comments and indentation metadata_file_name= folder + 'Experimental_metadata.yaml' with open(metadata_file_name, 'r') as stream: meta_data = ruamel.yaml.load(stream, ruamel.yaml.RoundTripLoader) stream.close() # Put coordinates from microscope file in TilesPositions if hyb_key == 'Hyb': cur_positions = meta_data['TilesPositions']['Hybridization'+ str(hyb_nr)] elif hyb_key == 'Strip': cur_positions = meta_data['TilesPositions']['Stripping' + str(hyb_nr)] else: logger.warning("hyb_key not recognized, possible values are: " + "'Hyb' or 'Strip'. Current value is: {}" .format(hyb_key)) # Open the coordinate file with codecs.open(coord_file_name, 'r', 'utf-16') as coord_file: # Use all lines starting with "#", assume these contain, index, # x and y coordinates for line in coord_file: # Use all lines starting with "#", that do not contain info # about "DAPI", assume these contain, index, x and y # coordinates if ('#' in line): # Replace the commas with dots, in case Windows # forced their Swedish commas on everything. # Clean up and split the line: replace_dict = {ord('#'): None, ord(','): ord('.')} line = line.translate(replace_dict).split('\t') logger.debug("Line read from coord file: {}" .format(line)) sep = ', ' # Append the data we want to use: index = int(line[0]) - 1 x_value = float(line[1]) y_value = float(line[2]) z_value = float(line[3]) cur_positions[index] = str(x_value) \ + sep + str(y_value) \ + sep + str(z_value) # Get out of the loop after we got to "Spectral Loop", # because we are not interested in the info that comes # after that. if ("Spectral Loop:" in line): break coord_file.close() # Place everything back into the file. with open(metadata_file_name, 'w') as stream: ruamel.yaml.dump(meta_data, stream, Dumper=ruamel.yaml.RoundTripDumper, default_flow_style=True, indent=4, canonical=False) stream.close()
from flask_caching.backends.base import BaseCache from pyrindow.stdlib.lrucache import LruCache as rindowCache def lrucache(app, config, args, kwargs): kwargs.update( dict( cache_driver=app.config['serviceLocator'].get('flask_caching.cacheDriver'), ) ) return LRUCache(**kwargs) class LRUCache(BaseCache): def __init__(self,**kwargs): super(LRUCache, self).__init__(default_timeout=kwargs.get('default_timeout')) self._cache = kwargs.get('cache_driver') def clear(self): return self._cache.clear() def get(self, key, default=None): return self._cache.get(key, default) def set(self, key, value, timeout): return self._cache.set(key, value, timeout) def add(self, key, value, timeout=None): return self._cache.add(key, value, timeout) def delete(self, key): return self._cache.delete(key) def has(self, key): return self._cache.has(key)
from nlp_articles.app.nlp import init_nlp # test with -s # pytest /workspaces/fin_news_nlp/nlp_articles/app/tests/test_nlp_dec2021_fix.py -s def test_parsing_article(): nlp = init_nlp("core/data/exchanges.tsv","core/data/indicies.tsv") text = ''' The worst-performing tech stocks this week suggest the U.S. is done with Covid lockdowns DocuSign, Etsy, DoorDash and Zoom are among the biggest losers, while HP, Apple and Cisco saw gains. ''' doc = nlp(text) print(doc) text_list = [ent.text for ent in doc.ents] label_list = [ent.label_ for ent in doc.ents] expected_label_list = ['COUNTRY', 'COMPANY', 'COMPANY', 'COMPANY', 'COMPANY', 'STOCK', 'COMPANY', 'COMPANY'] expected_ent_list = ['U.S.', 'DocuSign', 'Etsy', 'DoorDash', 'Zoom', 'HP', 'Apple', 'Cisco'] assert len(text_list) == len(label_list) assert expected_label_list == label_list assert expected_ent_list == text_list
# commnet print('Hello World!')
from sklearn.ensemble import RandomForestRegressor from utils.logger import App_Logger from utils.model_utils import Model_Utils from utils.read_params import read_params from xgboost import XGBRegressor class Model_Finder: """ Description : This class shall be used to find the model with best accuracy and AUC score. Written By : iNeuron Intelligence Version : 1.0 Revisions : None """ def __init__(self, log_file): self.log_file = log_file self.class_name = self.__class__.__name__ self.config = read_params() self.log_writer = App_Logger() self.model_utils = Model_Utils() self.rf_model = RandomForestRegressor() self.xgb_model = XGBRegressor(objectective="binary:logistic") def get_best_model_for_random_forest(self, train_x, train_y): """ Method Name : get_best_model_for_random_forest Description : get the parameters for Random Forest Algorithm which give the best accuracy. Use Hyper Parameter Tuning. Output : The model with the best parameters On Failure : Write an exception log and then raise an exception Written By : iNeuron Intelligence Version : 1.2 Revisions : moved setup to cloud """ method_name = self.get_best_model_for_random_forest.__name__ self.log_writer.start_log( "start", self.class_name, method_name, self.log_file, ) try: self.rf_model_name = self.rf_model.__class__.__name__ self.rf_best_params = self.model_utils.get_model_params( self.rf_model, train_x, train_y, self.log_file ) self.log_writer.log( self.log_file, f"{self.rf_model_name} model best params are {self.rf_best_params}", ) self.rf_model.set_params(**self.rf_best_params) self.log_writer.log( self.log_file, f"Initialized {self.rf_model_name} with {self.rf_best_params} as params", ) self.rf_model.fit(train_x, train_y) self.log_writer.log( self.log_file, f"Created {self.rf_model_name} based on the {self.rf_best_params} as params", ) self.log_writer.start_log( "exit", self.class_name, method_name, self.log_file, ) return self.rf_model except Exception as e: self.log_writer.exception_log( e, self.class_name, method_name, self.log_file, ) def get_best_params_for_xgboost(self, train_x, train_y): """ Method Name : get_best_params_for_xgboost Description : get the parameters for XGBoost Algorithm which give the best accuracy. Use Hyper Parameter Tuning. Output : The model with the best parameters On Failure : Write an exception log and then raise an exception Written By : iNeuron Intelligence Version : 1.2 Revisions : moved setup to cloud """ method_name = self.get_best_params_for_xgboost.__name__ self.log_writer.start_log( "start", self.class_name, method_name, self.log_file, ) try: self.xgb_model_name = self.xgb_model.__class__.__name__ self.xgb_best_params = self.model_utils.get_model_params( self.xgb_model, train_x, train_y, self.log_file ) self.log_writer.log( self.log_file, f"{self.xgb_model} model best params are {self.xgb_best_params}", ) self.xgb_model.set_params(**self.xgb_best_params) self.log_writer.log( self.log_file, f"Initialized {self.xgb_model_name} model with best params as {self.xgb_best_params}", ) self.xgb_model.fit(train_x, train_y) self.log_writer.log( self.log_file, f"Created {self.xgb_model_name} model with best params as {self.xgb_best_params}", ) self.log_writer.start_log( "exit", self.class_name, method_name, self.log_file, ) return self.xgb_model except Exception as e: self.log_writer.exception_log( e, self.class_name, method_name, self.log_file, ) def get_trained_models(self, train_x, train_y, test_x, test_y): """ Method Name : get_trained_models Description : Find out the Model which has the best score. Output : The best model name and the model objectect On Failure : Write an exception log and then raise an exception Written By : iNeuron Intelligence Version : 1.2 Revisions : moved setup to cloud """ method_name = self.get_trained_models.__name__ self.log_writer.start_log( "start", self.class_name, method_name, self.log_file, ) try: self.xgb_model = self.get_best_params_for_xgboost(train_x, train_y) self.xgb_model_score = self.model_utils.get_model_score( self.xgb_model, test_x, test_y, self.log_file, ) self.rf_model = self.get_best_model_for_random_forest(train_x, train_y) self.rf_model_score = self.model_utils.get_model_score( self.rf_model, test_x, test_y, self.log_file, ) self.log_writer.start_log( "exit", self.class_name, method_name, self.log_file, ) lst = [ (self.xgb_model, self.xgb_model_score), (self.rf_model, self.rf_model_score), ] return lst except Exception as e: self.log_writer.exception_log( e, self.class_name, method_name, )
"""Funcionality for representing a physical variable in aospy.""" import numpy as np class Var(object): """An object representing a physical quantity to be computed. Attributes ---------- name : str The variable's name alt_names : tuple of strings All other names that the variable may be referred to in the input data names : tuple of strings The combination of `name` and `alt_names` description : str A description of the variable func : function The function with which to compute the variable variables : sequence of aospy.Var objects The variables passed to `func` to compute it units : str The variable's physical units domain : str The physical domain of the variable, e.g. 'atmos', 'ocean', or 'land' def_time, def_vert, def_lat, def_lon : bool Whether the variable is defined, respectively, in time, vertically, in latitude, and in longitude math_str : str The mathematical representation of the variable colormap : str The name of the default colormap to be used in plots of this variable valid_range : length-2 tuple The range of values outside which to flag as unphysical/erroneous """ def __init__(self, name, alt_names=None, func=None, variables=None, units='', plot_units='', plot_units_conv=1, domain='atmos', description='', def_time=False, def_vert=False, def_lat=False, def_lon=False, math_str=False, colormap='RdBu_r', valid_range=None): """Instantiate a Var object. Parameters ---------- name : str The variable's name alt_names : tuple of strings All other names that the variable might be referred to in any input data. Each of these should be unique to this variable in order to avoid loading the wrong quantity. description : str A description of the variable func : function The function with which to compute the variable variables : sequence of aospy.Var objects The variables passed to `func` to compute it. Order matters: whenever calculations are performed to generate data corresponding to this Var, the data corresponding to the elements of `variables` will be passed to `self.function` in the same order. units : str The variable's physical units domain : str The physical domain of the variable, e.g. 'atmos', 'ocean', or 'land'. This is only used by aospy by some types of `DataLoader`, including `GFDLDataLoader`. def_time, def_vert, def_lat, def_lon : bool Whether the variable is defined, respectively, in time, vertically, in latitude, and in longitude math_str : str The mathematical representation of the variable. This is typically a raw string of LaTeX math-mode, e.g. r'$T_\mathrm{sfc}$' for surface temperature. colormap : str (Currently not used by aospy) The name of the default colormap to be used in plots of this variable. valid_range : length-2 tuple The range of values outside which to flag as unphysical/erroneous """ # noqa: W605 self.name = name if alt_names is None: self.names = tuple([name]) else: self.alt_names = alt_names self.names = tuple([name] + list(alt_names)) if func is None: self.func = lambda x: x self.variables = None else: self.func = func self.variables = variables self.units = units if not description: if self.func.__doc__ is None: self.description = '' else: self.description = self.func.__doc__ else: self.description = description self.domain = domain self.def_time = def_time self.def_vert = def_vert self.def_lat = def_lat self.def_lon = def_lon self.math_str = math_str self.colormap = colormap self.valid_range = valid_range def __str__(self): return 'Var instance "' + self.name + '"' __repr__ = __str__ def to_plot_units(self, data, dtype_vert=False): """Convert the given data to plotting units.""" if dtype_vert == 'vert_av' or not dtype_vert: conv_factor = self.units.plot_units_conv elif dtype_vert == ('vert_int'): conv_factor = self.units.vert_int_plot_units_conv else: raise ValueError("dtype_vert value `{0}` not recognized. Only " "bool(dtype_vert) = False, 'vert_av', and " "'vert_int' supported.".format(dtype_vert)) if isinstance(data, dict): return {key: val*conv_factor for key, val in data.items()} return data*conv_factor def mask_unphysical(self, data): """Mask data array where values are outside physically valid range.""" if not self.valid_range: return data else: return np.ma.masked_outside(data, np.min(self.valid_range), np.max(self.valid_range))
"""普通に書いたやつ。TLE""" import numpy as np import math N, Q = [int(a) for a in input().split()] symbol = input() target = [None]*Q direction = [None]*Q num_golems = [1]*N num_golems_next = [1]*N for i in range(Q): line = input().split() target[i] = line[0] direction[i] = line[1] for i in range(Q): for j in range(N): num_golems[j] = num_golems_next[j] for j in range(N): if symbol[j] == target[i]: num_golems_next[j] -= num_golems[j] if direction[i] == 'L': next_index = j - 1 elif direction[i] == 'R': next_index = j + 1 if next_index == -1 or next_index == N: continue num_golems_next[next_index] += num_golems[j] # print(target[i], direction[i], num_golems, '->', num_golems_next) sum = 0 for j in range(N): sum += num_golems_next[j] print(sum)
def join_path(uri, resource_path): return '{}{}'.format(uri, resource_path) if resource_path else uri def filter_dict_by_key(d: dict): return {k: v for k, v in d.items() if v}
# coding=utf-8 """ @Time : 2020/12/26 0:17 @Author : Haojun Gao (github.com/VincentGaoHJ) @Email : vincentgaohj@gmail.com haojun.gao@u.nus.edu @Sketch : """ import os import pickle import numpy as np import scipy.sparse as sp from src.NextPOI import next_poi from src.func.matrix_manipulation import normalize from src.config import ( POI_LST, WORD_LST, POI_COMMENT, MATRIX_X, PURIFY_PROB) def purification_prepare(mat, mat_x): """ 输出所有景点中那些噪音景点(其属于每一类的概率都不大于某个阈值) 在噪音景点中选择真噪音和真上级 输出两个列表,一个是该删除的,一个是该上推的 :param mat: 输入矩阵 :param mat_x: 原始X矩阵 :return: delete_list: 要删除的景点的下标的列表 superior_list: 属于上级的景点的下标的列表 """ print("开始筛选了") matrix = mat.toarray() matrix_x = mat_x.toarray() matrix = normalize(matrix) poi_max = np.max(matrix, axis=1).tolist() poi_impor = np.sum(matrix_x, axis=1) poi_impor_list = poi_impor.tolist() print(poi_impor_list) poi_impor_mean = np.mean(poi_impor) poi_impor_median = np.median(poi_impor) print(poi_impor_mean) print(poi_impor_median) delete_list = [] superior_list = [] while 1: # 找到最大值最小的那个 b = min(poi_max) # 如果最大值最小的大于阈值,说明没有噪声了 if b >= PURIFY_PROB: break # 如果最大值最小的小于阈值,则说明还有噪声,那就判断到底是真噪声还是真上级 else: temp = poi_max.index(b) if poi_impor_list[temp] > poi_impor_median: superior_list.append(temp) else: delete_list.append(temp) poi_max[temp] = 2 return delete_list, superior_list def purification(node, delete_list, superior_list): """ 根据要删除的列表生成新的评论文本,新的矩阵X,以及新的景点列表和词列表 用新的新的评论文本,新的矩阵X,以及新的景点列表和词列表生成本层的初始文件 :param node: 当前节点对象 :param delete_list: 要删除的文件夹 :param superior_list: 上推的文件夹 :return: """ # 打开删除前的评论文本 poi_comment_path = os.path.join(node.data_dir, POI_COMMENT) with open(poi_comment_path, 'r') as f: comment_data = f.read().split('\n') del comment_data[-1] # 读入删除前景点的中文list poi_lst_path = os.path.join(node.data_dir, POI_LST) fr1 = open(poi_lst_path, 'rb') list_poi = pickle.load(fr1) delete_list_name = list(list_poi[k] for k in delete_list) superior_list_name = list(list_poi[k] for k in superior_list) print('[Main] 删除的噪点为:') print(delete_list_name) print('[Main] 上推的对象为:') print(superior_list_name) index_list = list(range(len(list_poi))) index_list = [item for item in index_list if item not in delete_list] # 生成新的景点的中文的list list_poi = np.array(list_poi) new_list_poi = list_poi[index_list] new_list_poi = new_list_poi.tolist() # 生成新的X矩阵,词的list以及新的评论文件 new_X, new_list_word, new_comment_data = next_poi(index_list, comment_data) # 写入本层新的本类poi的评论文件 poi_comment_path = os.path.join(node.data_dir, POI_COMMENT) with open(poi_comment_path, 'w') as f: for line in new_comment_data: f.write(line) f.write('\n') # 写入本层新的景点列表 poi_lst_path = os.path.join(node.data_dir, POI_LST) list_file = open(poi_lst_path, 'wb') pickle.dump(new_list_poi, list_file) list_file.close() # 写入本层新的词列表 word_lst_path = os.path.join(node.data_dir, WORD_LST) list_file = open(word_lst_path, 'wb') pickle.dump(new_list_word, list_file) list_file.close() # 写入本层新的X矩阵 matrix_x_path = os.path.join(node.data_dir, MATRIX_X) sp.save_npz(matrix_x_path, new_X, True)
def meters(x):
""" LDAP Authenticator plugin for JupyterHub """ # MIT License # # Copyright (c) 2018 Ryan Hansohn # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import copy import os import pipes import pwd import re import sys from subprocess import Popen, PIPE, STDOUT from jupyterhub.auth import Authenticator from jupyterhub.traitlets import Command import ldap3 from ldap3.utils.conv import escape_filter_chars from tornado import gen from traitlets import Any, Int, Bool, List, Unicode, Union, default, observe class LDAPAuthenticator(Authenticator): """ LDAP Authenticator for Jupyterhub """ server_hosts = Union( [List(), Unicode()], config=True, help=""" List of Names, IPs, or the complete URLs in the scheme://hostname:hostport format of the server (required). """ ) server_port = Int( allow_none=True, default_value=None, config=True, help=""" The port where the LDAP server is listening. Typically 389, for a cleartext connection, and 636 for a secured connection (defaults to None). """ ) server_use_ssl = Bool( default_value=False, config=True, help=""" Boolean specifying if the connection is on a secure port (defaults to False). """ ) server_connect_timeout = Int( allow_none=True, default_value=None, config=True, help=""" Timeout in seconds permitted when establishing an ldap connection before raising an exception (defaults to None). """ ) server_receive_timeout = Int( allow_none=True, default_value=None, config=True, help=""" Timeout in seconds permitted for responses from established ldap connections before raising an exception (defaults to None). """ ) server_pool_strategy = Unicode( default_value='FIRST', config=True, help=""" Available Pool HA strategies (defaults to 'FIRST'). FIRST: Gets the first server in the pool, if 'server_pool_active' is set to True gets the first available server. ROUND_ROBIN: Each time the connection is open the subsequent server in the pool is used. If 'server_pool_active' is set to True unavailable servers will be discarded. RANDOM: each time the connection is open a random server is chosen in the pool. If 'server_pool_active' is set to True unavailable servers will be discarded. """ ) server_pool_active = Union( [Bool(), Int()], default_value=True, config=True, help=""" If True the ServerPool strategy will check for server availability. Set to Integer for maximum number of cycles to try before giving up (defaults to True). """ ) server_pool_exhaust = Union( [Bool(), Int()], default_value=False, config=True, help=""" If True, any inactive servers will be removed from the pool. If set to an Integer, this will be the number of seconds an unreachable server is considered offline. When this timeout expires the server is reinserted in the pool and checked again for availability (defaults to False). """ ) bind_user_dn = Unicode( allow_none=True, default_value=None, config=True, help=""" The account of the user to log in for simple bind (defaults to None). """ ) bind_user_password = Unicode( allow_none=True, default_value=None, config=True, help=""" The password of the user for simple bind (defaults to None) """ ) user_search_base = Unicode( config=True, help=""" The location in the Directory Information Tree where the user search will start. """ ) user_search_filter = Unicode( config=True, help=""" LDAP search filter to validate that the authenticating user exists within the organization. Search filters containing '{username}' will have that value substituted with the username of the authenticating user. """ ) filter_by_group = Bool( default_value=True, config=True, help=""" Boolean specifying if the group membership filtering is enabled or not. """ ) user_membership_attribute = Unicode( default_value='memberOf', config=True, help=""" LDAP Attribute used to associate user group membership (defaults to 'memberOf'). """ ) group_search_base = Unicode( config=True, help=""" The location in the Directory Information Tree where the group search will start. Search string containing '{group}' will be substituted with entries taken from allow_nested_groups. """ ) group_search_filter = Unicode( config=True, help=""" LDAP search filter to return members of groups defined in the allowed_groups parameter. Search filters containing '{group}' will have that value substituted with the group dns provided in the allowed_groups parameter. """ ) allowed_groups = Union( [Unicode(), List()], config=True, help=""" List of LDAP group DNs that users must be a member of in order to be granted login. """ ) allow_nested_groups = Bool( default_value=False, config=True, help=""" Boolean allowing for recursive search of members within nested groups of allowed_groups (defaults to False). """ ) username_pattern = Unicode( config=True, help=""" Regular expression pattern that all valid usernames must match. If a username does not match the pattern specified here, authentication will not be attempted. If not set, allow any username (defaults to None). """ ) username_regex = Any( help=""" Compiled regex kept in sync with `username_pattern` """ ) @observe('username_pattern') def _username_pattern_changed(self, change): if not change['new']: self.username_regex = None self.username_regex = re.compile(change['new']) create_user_home_dir = Bool( default_value=False, config=True, help=""" If set to True, will attempt to create a user's home directory locally if that directory does not exist already. """ ) create_user_home_dir_cmd = Command( config=True, help=""" Command to create a users home directory. """ ) @default('create_user_home_dir_cmd') def _default_create_user_home_dir_cmd(self): if sys.platform == 'linux': home_dir_cmd = ['mkhomedir_helper'] else: self.log.debug("Not sure how to create a home directory on '%s' system", sys.platform) home_dir_cmd = [''] return home_dir_cmd @gen.coroutine def add_user(self, user): username = user.name user_exists = yield gen.maybe_future(self.user_home_dir_exists(username)) if not user_exists: if self.create_user_home_dir: yield gen.maybe_future(self.add_user_home_dir(username)) else: raise KeyError("Domain user '%s' does not exists locally." % username) yield gen.maybe_future(super().add_user(user)) def user_home_dir_exists(self, username): """ Verify user home directory exists """ user = pwd.getpwnam(username) home_dir = user[5] return bool(os.path.isdir(home_dir)) def add_user_home_dir(self, username): """ Creates user home directory """ cmd = [arg.replace('USERNAME', username) for arg in self.create_user_home_dir_cmd] + [username] self.log.info("Creating '%s' user home directory using command '%s'", username, ' '.join(map(pipes.quote, cmd))) create_dir = Popen(cmd, stdout=PIPE, stderr=STDOUT) create_dir.wait() if create_dir.returncode: err = create_dir.stdout.read().decode('utf8', 'replace') raise RuntimeError("Failed to create system user %s: %s" % (username, err)) def normalize_username(self, username): """ Normalize username for ldap query modifications: - format to lowercase - escape filter characters (ldap3) """ username = username.lower() username = escape_filter_chars(username) return username def validate_username(self, username): """ Validate a normalized username Return True if username is valid, False otherwise. """ if '/' in username: # / is not allowed in usernames return False if not username: # empty usernames are not allowed return False if not self.username_regex: return True return bool(self.username_regex.match(username)) def validate_host(self, host): """ Validate hostname Return True if host is valid, False otherwise. """ host_ip_regex = re.compile(r'^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])$') host_name_regex = re.compile(r'^((?!-)[a-z0-9\-]{1,63}(?<!-)\.){1,}((?!-)[a-z0-9\-]{1,63}(?<!-)){1}$') host_url_regex = re.compile(r'^(ldaps?://)(((?!-)[a-z0-9\-]{1,63}(?<!-)\.){1,}((?!-)[a-z0-9\-]{1,63}(?<!-)){1}):([0-9]{3})$') if bool(host_ip_regex.match(host)): # using ipv4 address valid = True elif bool(host_name_regex.match(host)): # using a hostname address valid = True elif bool(host_url_regex.match(host)): # using host url address valid = True else: # unsupported host format valid = False return valid def create_ldap_server_pool_obj(self, ldap_servers=None): """ Create ldap3 ServerPool Object """ server_pool = ldap3.ServerPool( ldap_servers, pool_strategy=self.server_pool_strategy.upper(), active=self.server_pool_active, exhaust=self.server_pool_exhaust ) return server_pool def create_ldap_server_obj(self, host): """ Create ldap3 Server Object """ server = ldap3.Server( host, port=self.server_port, use_ssl=self.server_use_ssl, connect_timeout=self.server_connect_timeout ) return server def ldap_connection(self, server_pool, username, password): """ Create ldaps Connection Object """ try: conn = ldap3.Connection( server_pool, user=username, password=password, auto_bind=ldap3.AUTO_BIND_TLS_BEFORE_BIND, read_only=True, receive_timeout=self.server_receive_timeout) except ldap3.core.exceptions.LDAPBindError as exc: msg = '\n{exc_type}: {exc_msg}'.format( exc_type=exc.__class__.__name__, exc_msg=exc.args[0] if exc.args else '') self.log.error("Failed to connect to ldap: %s", msg) return None return conn def get_nested_groups(self, conn, group): """ Recursively search group for nested memberships """ nested_groups = list() conn.search( search_base=self.group_search_base, search_filter=self.group_search_filter.format(group=group), search_scope=ldap3.SUBTREE) if conn.response: for nested_group in conn.response: nested_groups.extend([nested_group['dn']]) groups = self.get_nested_groups(conn, nested_group['dn']) nested_groups.extend(groups) nested_groups = list(set(nested_groups)) return nested_groups @gen.coroutine def authenticate(self, handler, data): # define vars username = data['username'] password = data['password'] server_pool = self.create_ldap_server_pool_obj() conn_servers = list() # validate credentials username = self.normalize_username(username) if not self.validate_username(username): self.log.error('Unsupported username supplied') return None if password is None or password.strip() == '': self.log.error('Empty password supplied') return None # cast server_hosts to list if isinstance(self.server_hosts, str): self.server_hosts = self.server_hosts.split() # validate hosts and populate server_pool object for host in self.server_hosts: host = host.strip().lower() if not self.validate_host(host): self.log.warning("Host '%s' not supplied in approved format. Removing host from Server Pool", host) break server = self.create_ldap_server_obj(host) server_pool.add(server) conn_servers.extend([host]) # verify ldap connection object parameters are defined if len(server_pool.servers) < 1: self.log.error("No hosts provided. ldap connection requires at least 1 host to connect to.") return None if not self.bind_user_dn or self.bind_user_dn.strip() == '': self.log.error("'bind_user_dn' config value undefined. requried for ldap connection") return None if not self.bind_user_password or self.bind_user_password.strip() == '': self.log.error("'bind_user_password' config value undefined. requried for ldap connection") return None # verify ldap search object parameters are defined if not self.user_search_base or self.user_search_base.strip() == '': self.log.error("'user_search_base' config value undefined. requried for ldap search") return None if not self.user_search_filter or self.user_search_filter.strip() == '': self.log.error("'user_search_filter' config value undefined. requried for ldap search") return None # open ldap connection and authenticate self.log.debug("Attempting ldap connection to %s with user '%s'", conn_servers, self.bind_user_dn) conn = self.ldap_connection( server_pool, self.bind_user_dn, self.bind_user_password) # proceed if connection has been established if not conn or not conn.bind(): self.log.error( "Could not establish ldap connection to %s using '%s' and supplied bind_user_password.", conn_servers, self.bind_user_dn) return None else: self.log.debug( "Successfully established connection to %s with user '%s'", conn_servers, self.bind_user_dn) # compile list of permitted groups permitted_groups = copy.deepcopy(self.allowed_groups) if self.allow_nested_groups: for group in self.allowed_groups: nested_groups = self.get_nested_groups(conn, group) permitted_groups.extend(nested_groups) # format user search filter auth_user_search_filter = self.user_search_filter.format( username=username) # search for authenticating user in ldap self.log.debug("Attempting LDAP search using search_filter '%s'.", auth_user_search_filter) conn.search( search_base=self.user_search_base, search_filter=auth_user_search_filter, search_scope=ldap3.SUBTREE, attributes=self.user_membership_attribute, paged_size=2) # handle abnormal search results if not conn.response or 'attributes' not in conn.response[0].keys(): self.log.error( "LDAP search '%s' found %i result(s).", auth_user_search_filter, len(conn.response)) return None elif len(conn.response) > 1: self.log.error( "LDAP search '%s' found %i result(s). Please narrow search to 1 result.", auth_user_search_filter, len(conn.response)) return None else: self.log.debug("LDAP search '%s' found %i result(s).", auth_user_search_filter, len(conn.response)) # copy response to var search_response = copy.deepcopy(conn.response[0]) # get authenticating user's ldap attributes if not search_response['dn'] or search_response['dn'].strip == '': self.log.error( "Search results for user '%s' returned 'dn' attribute with undefined or null value.", username) conn.unbind() return None else: self.log.debug( "Search results for user '%s' returned 'dn' attribute as '%s'", username, search_response['dn']) auth_user_dn = search_response['dn'] if not search_response['attributes'][self.user_membership_attribute]: self.log.error( "Search results for user '%s' returned '%s' attribute with undefned or null value.", username, self.user_membership_attribute) conn.unbind() return None else: self.log.debug( "Search results for user '%s' returned '%s' attribute as %s", username, self.user_membership_attribute, search_response['attributes'][self.user_membership_attribute]) auth_user_memberships = search_response['attributes'][self.user_membership_attribute] # is authenticating user a member of permitted_groups allowed_memberships = list(set(auth_user_memberships).intersection(permitted_groups)) if bool(allowed_memberships) or not self.filter_by_group: self.log.debug( "User '%s' found in the following allowed ldap groups %s. Proceeding with authentication.", username, allowed_memberships) # rebind ldap connection with authenticating user, gather results, and close connection conn.rebind( user=auth_user_dn, password=password) auth_bound = copy.deepcopy(conn.bind()) conn.unbind() if not auth_bound: self.log.error( "Could not establish ldap connection to %s using '%s' and supplied bind_user_password.", conn_servers, self.bind_user_dn) auth_response = None else: self.log.info("User '%s' sucessfully authenticated against ldap server %r.", username, conn_servers) auth_response = username else: self.log.error("User '%s' is not a member of any permitted groups %s", username, permitted_groups) auth_response = None permitted_groups = None return auth_response
# -*- coding:utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from rest_framework.permissions import BasePermission from networkapi.admin_permission import AdminPermission from networkapi.api_ogp.facade import perm_obj from networkapi.auth import has_perm class Read(BasePermission): def has_permission(self, request, view): return has_perm( request.user, AdminPermission.VLAN_MANAGEMENT, AdminPermission.READ_OPERATION ) class Write(BasePermission): def has_permission(self, request, view): return has_perm( request.user, AdminPermission.VLAN_MANAGEMENT, AdminPermission.WRITE_OPERATION ) def deploy_obj_permission(request, *args, **kwargs): class Perm(BasePermission): def has_permission(self, request, view): return perm_obj( request, AdminPermission.OBJ_UPDATE_CONFIG_OPERATION, AdminPermission.OBJ_TYPE_VLAN, *args, **kwargs ) return Perm def write_obj_permission(request, *args, **kwargs): class Perm(BasePermission): def has_permission(self, request, view): return perm_obj( request, AdminPermission.OBJ_WRITE_OPERATION, AdminPermission.OBJ_TYPE_VLAN, *args, **kwargs ) return Perm def delete_obj_permission(request, *args, **kwargs): class Perm(BasePermission): def has_permission(self, request, view): return perm_obj( request, AdminPermission.OBJ_DELETE_OPERATION, AdminPermission.OBJ_TYPE_VLAN, *args, **kwargs ) return Perm def read_obj_permission(request, *args, **kwargs): class Perm(BasePermission): def has_permission(self, request, view): return perm_obj( request, AdminPermission.OBJ_READ_OPERATION, AdminPermission.OBJ_TYPE_VLAN, *args, **kwargs ) return Perm
from BaseHTTPServer import * from cherrypy._cphttpserver import CherryHTTPServer from contrib.quixote.server.simple_server import HTTPRequestHandler from threading import Thread,Event class HTTPServerPlus(CherryHTTPServer, Thread): def __init__(self, **kwargs): CherryHTTPServer.__init__(self,**kwargs) Thread.__init__(self) def run(self): self.serve_forever() def join(self,timeout=None): self.shutdown() Thread.join(self, timeout) from contrib.quixote.publish import Publisher def create_publisher(): from quixote.demo.root import RootDirectory return Publisher(RootDirectory(), display_exceptions='plain') class TemplateServer(HTTPServerPlus): def __init__(self, port): HTTPServerPlus.__init__(self,server_address=('', port), RequestHandlerClass=HTTPRequestHandler) self.server_port = port self.server_name = 'My Local Server' create_publisher() self.start() if __name__=='__main__': server = TemplateServer(8800) try: while 1: pass except KeyboardInterrupt: print 'Got Ctrl-C...' server.join(1.0)
import torch import torch.nn as nn import torchvision.models as models class EncoderCNN(nn.Module): def __init__(self, embed_size): super(EncoderCNN, self).__init__() resnet = models.resnet50(pretrained=True) for param in resnet.parameters(): param.requires_grad_(False) modules = list(resnet.children())[:-1] self.resnet = nn.Sequential(*modules) self.embed = nn.Linear(resnet.fc.in_features, embed_size) def forward(self, images): features = self.resnet(images) features = features.view(features.size(0), -1) features = self.embed(features) return features class DecoderRNN(nn.Module): def __init__(self, embed_size, hidden_size, vocab_size, num_layers=1): pass def forward(self, features, captions): pass def sample(self, inputs, states=None, max_len=20): " accepts pre-processed image tensor (inputs) and returns predicted sentence (list of tensor ids of length max_len) " pass
import sys import torch from URSABench.util import get_loss_criterion if 'hamiltorch' not in sys.modules: print('You have not imported the hamiltorch module,\nrun: pip install git+https://github.com/AdamCobb/hamiltorch') # TODO: Add docstrings for classes below. class _Inference: """ Base class of inference wrapper """ def __init__(self, hyperparameters, model=None, train_loader=None, device=torch.device('cpu'), model_loss='multi_class_linear_output'): """ Inputs: model: torch.nn.model (TODO Check this is flexible to other models) hyperparameters: list of hyperparameters in order expected by inference engine e.g. [[0.0], [2., 4.]] train_loader: torch.utils.data.DataLoader device: default 'cpu' """ self.model = model self.hyperparameters = hyperparameters self.train_loader = train_loader self.device = device self.loss_criterion = get_loss_criterion(loss=model_loss) def update_hyp(self, hyperparameters): """ Update hyperparameters """ raise NotImplementedError def sample_iterative(self): """ Sample in an online manner (return a single sample per call) """ raise NotImplementedError def sample(self): """ Sample multiple samples Output: Torch Tensor shape (No Samples, No Parameters) """ raise NotImplementedError def compute_val_loss(self, val_loader=None): with torch.no_grad(): num_val_samples = 0 total_loss = 0. self.model.eval() for batch_idx, (batch_data, batch_labels) in enumerate(val_loader): batch_data_logits = self.model(batch_data.to(self.device)) batch_loss = self.loss_criterion(batch_data_logits, batch_labels.to(self.device)) num_val_samples += len(batch_data) total_loss += batch_loss.item() * len(batch_data) return total_loss / num_val_samples
from django.urls import path from dataworkspace.apps.accounts.utils import login_required from dataworkspace.apps.your_files.views import ( CreateSchemaView, CreateTableConfirmDataTypesView, CreateTableCreatingTableView, CreateTableFailedView, CreateTableIngestingView, CreateTableRenamingTableView, CreateTableSuccessView, CreateTableConfirmNameView, CreateTableConfirmSchemaView, CreateTableValidatingView, CreateTableView, RestoreTableView, RestoreTableViewFailed, RestoreTableViewInProgress, RestoreTableViewSuccess, UploadedTableListView, file_browser_html_view, ) urlpatterns = [ path("", login_required(file_browser_html_view), name="files"), path( "create-table/confirm", login_required(CreateTableView.as_view()), name="create-table-confirm", ), path( "create-table/confirm-schema", login_required(CreateTableConfirmSchemaView.as_view()), name="create-table-confirm-schema", ), path( "create-schema/", login_required(CreateSchemaView.as_view()), name="create-schema", ), path( "create-table/confirm-name", login_required(CreateTableConfirmNameView.as_view()), name="create-table-confirm-name", ), path( "create-table/confirm-data-types", login_required(CreateTableConfirmDataTypesView.as_view()), name="create-table-confirm-data-types", ), path( "create-table/validating", login_required(CreateTableValidatingView.as_view()), name="create-table-validating", ), path( "create-table/creating-table", login_required(CreateTableCreatingTableView.as_view()), name="create-table-creating-table", ), path( "create-table/ingesting", login_required(CreateTableIngestingView.as_view()), name="create-table-ingesting", ), path( "create-table/renaming-table", login_required(CreateTableRenamingTableView.as_view()), name="create-table-renaming-table", ), path( "create-table/success", login_required(CreateTableSuccessView.as_view()), name="create-table-success", ), path( "create-table/failed", login_required(CreateTableFailedView.as_view()), name="create-table-failed", ), path( "uploaded-tables", login_required(UploadedTableListView.as_view()), name="uploaded-tables", ), path( "restore-table/<int:pk>/", login_required(RestoreTableView.as_view()), name="restore-table", ), path( "restore-table/<int:pk>/in-progress", login_required(RestoreTableViewInProgress.as_view()), name="restore-table-in-progress", ), path( "restore-table/<int:pk>/failed", login_required(RestoreTableViewFailed.as_view()), name="restore-table-failed", ), path( "restore-table/<int:pk>/success", login_required(RestoreTableViewSuccess.as_view()), name="restore-table-success", ), ]
import xml.etree.ElementTree as ET xmlfile = 'output.xml' root = ET.parse(xmlfile).getroot() stat = root.find('./statistics/total/stat') fail_count = int(stat.get('fail')) if fail_count > 0: raise AssertionError('{} Robot Test Failures Detected!'.format(fail_count))
from yt.testing import \ fake_amr_ds, \ assert_array_equal import numpy as np # We use morton indices in this test because they are single floating point # values that uniquely identify each cell. That's a convenient way to compare # inclusion in set operations, since there are no duplicates. def test_boolean_spheres_no_overlap(): r"""Test to make sure that boolean objects (spheres, no overlap) behave the way we expect. Test non-overlapping spheres. This also checks that the original spheres don't change as part of constructing the booleans. """ ds = fake_amr_ds() sp1 = ds.sphere([0.25, 0.25, 0.25], 0.15) sp2 = ds.sphere([0.75, 0.75, 0.75], 0.15) # Store the original indices i1 = sp1["index","morton_index"] i1.sort() i2 = sp2["index","morton_index"] i2.sort() ii = np.concatenate((i1, i2)) ii.sort() # Make some booleans bo1 = sp1 & sp2 bo2 = sp1 - sp2 bo3 = sp1 | sp2 # also works with + bo4 = ds.union([sp1, sp2]) bo5 = ds.intersection([sp1, sp2]) # This makes sure the original containers didn't change. new_i1 = sp1["index","morton_index"] new_i1.sort() new_i2 = sp2["index","morton_index"] new_i2.sort() assert_array_equal(new_i1, i1) assert_array_equal(new_i2, i2) # Now make sure the indices also behave as we expect. empty = np.array([]) assert_array_equal(bo1["index","morton_index"], empty) assert_array_equal(bo5["index","morton_index"], empty) b2 = bo2["index","morton_index"] b2.sort() assert_array_equal(b2, i1) b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b3, ii) b4 = bo4["index","morton_index"] b4.sort() assert_array_equal(b4, ii) bo6 = sp1 ^ sp2 b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2)) def test_boolean_spheres_overlap(): r"""Test to make sure that boolean objects (spheres, overlap) behave the way we expect. Test overlapping spheres. """ ds = fake_amr_ds() sp1 = ds.sphere([0.45, 0.45, 0.45], 0.15) sp2 = ds.sphere([0.55, 0.55, 0.55], 0.15) # Get indices of both. i1 = sp1["index","morton_index"] i2 = sp2["index","morton_index"] # Make some booleans bo1 = sp1 & sp2 bo2 = sp1 - sp2 bo3 = sp1 | sp2 bo4 = ds.union([sp1, sp2]) bo5 = ds.intersection([sp1, sp2]) # Now make sure the indices also behave as we expect. lens = np.intersect1d(i1, i2) apple = np.setdiff1d(i1, i2) both = np.union1d(i1, i2) b1 = bo1["index","morton_index"] b1.sort() b2 = bo2["index","morton_index"] b2.sort() b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b1, lens) assert_array_equal(b2, apple) assert_array_equal(b3, both) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() assert_array_equal(b3, b4) assert_array_equal(b1, b5) bo6 = sp1 ^ sp2 b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2)) def test_boolean_regions_no_overlap(): r"""Test to make sure that boolean objects (regions, no overlap) behave the way we expect. Test non-overlapping regions. This also checks that the original regions don't change as part of constructing the booleans. """ ds = fake_amr_ds() re1 = ds.region([0.25]*3, [0.2]*3, [0.3]*3) re2 = ds.region([0.65]*3, [0.6]*3, [0.7]*3) # Store the original indices i1 = re1["index","morton_index"] i1.sort() i2 = re2["index","morton_index"] i2.sort() ii = np.concatenate((i1, i2)) ii.sort() # Make some booleans bo1 = re1 & re2 bo2 = re1 - re2 bo3 = re1 | re2 bo4 = ds.union([re1, re2]) bo5 = ds.intersection([re1, re2]) # This makes sure the original containers didn't change. new_i1 = re1["index","morton_index"] new_i1.sort() new_i2 = re2["index","morton_index"] new_i2.sort() assert_array_equal(new_i1, i1) assert_array_equal(new_i2, i2) # Now make sure the indices also behave as we expect. empty = np.array([]) assert_array_equal(bo1["index","morton_index"], empty) assert_array_equal(bo5["index","morton_index"], empty) b2 = bo2["index","morton_index"] b2.sort() assert_array_equal(b2, i1 ) b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b3, ii) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() assert_array_equal(b3, b4) bo6 = re1 ^ re2 b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2)) def test_boolean_regions_overlap(): r"""Test to make sure that boolean objects (regions, overlap) behave the way we expect. Test overlapping regions. """ ds = fake_amr_ds() re1 = ds.region([0.55]*3, [0.5]*3, [0.6]*3) re2 = ds.region([0.6]*3, [0.55]*3, [0.65]*3) # Get indices of both. i1 = re1["index","morton_index"] i2 = re2["index","morton_index"] # Make some booleans bo1 = re1 & re2 bo2 = re1 - re2 bo3 = re1 | re2 bo4 = ds.union([re1, re2]) bo5 = ds.intersection([re1, re2]) # Now make sure the indices also behave as we expect. cube = np.intersect1d(i1, i2) bite_cube = np.setdiff1d(i1, i2) both = np.union1d(i1, i2) b1 = bo1["index","morton_index"] b1.sort() b2 = bo2["index","morton_index"] b2.sort() b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b1, cube) assert_array_equal(b2, bite_cube) assert_array_equal(b3, both) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() assert_array_equal(b3, b4) assert_array_equal(b1, b5) bo6 = re1 ^ re2 b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2)) def test_boolean_cylinders_no_overlap(): r"""Test to make sure that boolean objects (cylinders, no overlap) behave the way we expect. Test non-overlapping cylinders. This also checks that the original cylinders don't change as part of constructing the booleans. """ ds = fake_amr_ds() cyl1 = ds.disk([0.25]*3, [1, 0, 0], 0.1, 0.1) cyl2 = ds.disk([0.75]*3, [1, 0, 0], 0.1, 0.1) # Store the original indices i1 = cyl1["index","morton_index"] i1.sort() i2 = cyl2["index","morton_index"] i2.sort() ii = np.concatenate((i1, i2)) ii.sort() # Make some booleans bo1 = cyl1 & cyl2 bo2 = cyl1 - cyl2 bo3 = cyl1 | cyl2 bo4 = ds.union([cyl1, cyl2]) bo5 = ds.intersection([cyl1, cyl2]) # This makes sure the original containers didn't change. new_i1 = cyl1["index","morton_index"] new_i1.sort() new_i2 = cyl2["index","morton_index"] new_i2.sort() assert_array_equal(new_i1, i1) assert_array_equal(new_i2, i2) # Now make sure the indices also behave as we expect. empty = np.array([]) assert_array_equal(bo1["index","morton_index"], empty) assert_array_equal(bo5["index","morton_index"], empty) b2 = bo2["index","morton_index"] b2.sort() assert_array_equal(b2, i1) b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b3, ii) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() assert_array_equal(b3, b4) bo6 = cyl1 ^ cyl2 b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2)) def test_boolean_cylinders_overlap(): r"""Test to make sure that boolean objects (cylinders, overlap) behave the way we expect. Test overlapping cylinders. """ ds = fake_amr_ds() cyl1 = ds.disk([0.45]*3, [1, 0, 0], 0.2, 0.2) cyl2 = ds.disk([0.55]*3, [1, 0, 0], 0.2, 0.2) # Get indices of both. i1 = cyl1["index","morton_index"] i2 = cyl2["index","morton_index"] # Make some booleans bo1 = cyl1 & cyl2 bo2 = cyl1 - cyl2 bo3 = cyl1 | cyl2 bo4 = ds.union([cyl1, cyl2]) bo5 = ds.intersection([cyl1, cyl2]) # Now make sure the indices also behave as we expect. vlens = np.intersect1d(i1, i2) bite_disk = np.setdiff1d(i1, i2) both = np.union1d(i1, i2) b1 = bo1["index","morton_index"] b1.sort() b2 = bo2["index","morton_index"] b2.sort() b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b1, vlens) assert_array_equal(b2, bite_disk) assert_array_equal(b3, both) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() assert_array_equal(b3, b4) assert_array_equal(b1, b5) bo6 = cyl1 ^ cyl2 b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2)) del ds def test_boolean_ellipsoids_no_overlap(): r"""Test to make sure that boolean objects (ellipsoids, no overlap) behave the way we expect. Test non-overlapping ellipsoids. This also checks that the original ellipsoids don't change as part of constructing the booleans. """ ds = fake_amr_ds() ell1 = ds.ellipsoid([0.25]*3, 0.05, 0.05, 0.05, np.array([0.1]*3), 0.1) ell2 = ds.ellipsoid([0.75]*3, 0.05, 0.05, 0.05, np.array([0.1]*3), 0.1) # Store the original indices i1 = ell1["index","morton_index"] i1.sort() i2 = ell2["index","morton_index"] i2.sort() ii = np.concatenate((i1, i2)) ii.sort() # Make some booleans bo1 = ell1 & ell2 bo2 = ell1 - ell2 bo3 = ell1 | ell2 bo4 = ds.union([ell1, ell2]) bo5 = ds.intersection([ell1, ell2]) # This makes sure the original containers didn't change. new_i1 = ell1["index","morton_index"] new_i1.sort() new_i2 = ell2["index","morton_index"] new_i2.sort() assert_array_equal(new_i1, i1 ) assert_array_equal(new_i2, i2) # Now make sure the indices also behave as we expect. empty = np.array([]) assert_array_equal(bo1["index","morton_index"], empty) assert_array_equal(bo5["index","morton_index"], empty) b2 = bo2["index","morton_index"] b2.sort() assert_array_equal(b2, i1) b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b3, ii) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() assert_array_equal(b3, b4) bo6 = ell1 ^ ell2 b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2)) def test_boolean_ellipsoids_overlap(): r"""Test to make sure that boolean objects (ellipsoids, overlap) behave the way we expect. Test overlapping ellipsoids. """ ds = fake_amr_ds() ell1 = ds.ellipsoid([0.45]*3, 0.05, 0.05, 0.05, np.array([0.1]*3), 0.1) ell2 = ds.ellipsoid([0.55]*3, 0.05, 0.05, 0.05, np.array([0.1]*3), 0.1) # Get indices of both. i1 = ell1["index","morton_index"] i2 = ell2["index","morton_index"] # Make some booleans bo1 = ell1 & ell2 bo2 = ell1 - ell2 bo3 = ell1 | ell2 bo4 = ds.union([ell1, ell2]) bo5 = ds.intersection([ell1, ell2]) # Now make sure the indices also behave as we expect. overlap = np.intersect1d(i1, i2) diff = np.setdiff1d(i1, i2) both = np.union1d(i1, i2) b1 = bo1["index","morton_index"] b1.sort() b2 = bo2["index","morton_index"] b2.sort() b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b1, overlap) assert_array_equal(b2, diff) assert_array_equal(b3, both) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() assert_array_equal(b3, b4) assert_array_equal(b1, b5) bo6 = ell1 ^ ell2 b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2)) def test_boolean_mix_periodicity(): r"""Test that a hybrid boolean region behaves as we expect. This also tests nested logic and that periodicity works. """ ds = fake_amr_ds() re = ds.region([0.5]*3, [0.0]*3, [1]*3) # whole thing sp = ds.sphere([0.95]*3, 0.3) # wraps around cyl = ds.disk([0.05]*3, [1,1,1], 0.1, 0.4) # wraps around # Get original indices rei = re["index","morton_index"] spi = sp["index","morton_index"] cyli = cyl["index","morton_index"] # Make some booleans # whole box minux spherical bites at corners bo1 = re - sp # sphere plus cylinder bo2 = sp | cyl # a jumble, the region minus the sp+cyl bo3 = re - (sp | cyl) # Now make sure the indices also behave as we expect. bo4 = ds.union([re, sp, cyl]) bo5 = ds.intersection([re, sp, cyl]) expect = np.setdiff1d(rei, spi) ii = bo1["index","morton_index"] ii.sort() assert_array_equal(expect, ii) # expect = np.union1d(spi, cyli) ii = bo2["index","morton_index"] ii.sort() assert_array_equal(expect, ii) # expect = np.union1d(spi, cyli) expect = np.setdiff1d(rei, expect) ii = bo3["index","morton_index"] ii.sort() assert_array_equal(expect, ii) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() ii = np.union1d(np.union1d(rei, cyli), spi) ii.sort() assert_array_equal(ii, b4) ii = np.intersect1d(np.intersect1d(rei, cyli), spi) ii.sort() assert_array_equal(ii, b5) bo6 = (re ^ sp) ^ cyl b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(np.setxor1d(rei, spi), cyli)) def test_boolean_ray_region_no_overlap(): r"""Test to make sure that boolean objects (ray, region, no overlap) behave the way we expect. Test non-overlapping ray and region. This also checks that the original objects don't change as part of constructing the booleans. """ ds = fake_amr_ds() re = ds.box([0.25]*3, [0.75]*3) ra = ds.ray([0.1]*3, [0.1, 0.1, 0.9]) # Store the original indices i1 = re["index","morton_index"] i1.sort() i2 = ra["index","morton_index"] i2.sort() ii = np.concatenate((i1, i2)) ii.sort() # Make some booleans bo1 = re & ra bo2 = re - ra bo3 = re | ra bo4 = ds.union([re, ra]) bo5 = ds.intersection([re, ra]) # This makes sure the original containers didn't change. new_i1 = re["index","morton_index"] new_i1.sort() new_i2 = ra["index","morton_index"] new_i2.sort() assert_array_equal(new_i1, i1) assert_array_equal(new_i2, i2) # Now make sure the indices also behave as we expect. empty = np.array([]) assert_array_equal(bo1["index","morton_index"], empty) assert_array_equal(bo5["index","morton_index"], empty) b2 = bo2["index","morton_index"] b2.sort() assert_array_equal(b2, i1 ) b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b3, ii) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() assert_array_equal(b3, b4) bo6 = re ^ ra b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2)) def test_boolean_ray_region_overlap(): r"""Test to make sure that boolean objects (ray, region, overlap) behave the way we expect. Test overlapping ray and region. This also checks that the original objects don't change as part of constructing the booleans. """ ds = fake_amr_ds() re = ds.box([0.25]*3, [0.75]*3) ra = ds.ray([0]*3, [1]*3) # Get indices of both. i1 = re["index","morton_index"] i2 = ra["index","morton_index"] # Make some booleans bo1 = re & ra bo2 = re - ra bo3 = re | ra bo4 = ds.union([re, ra]) bo5 = ds.intersection([re, ra]) # Now make sure the indices also behave as we expect. short_line = np.intersect1d(i1, i2) cube_minus_line = np.setdiff1d(i1, i2) both = np.union1d(i1, i2) b1 = bo1["index","morton_index"] b1.sort() b2 = bo2["index","morton_index"] b2.sort() b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b1, short_line) assert_array_equal(b2, cube_minus_line) assert_array_equal(b3, both) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() assert_array_equal(b3, b4) assert_array_equal(b1, b5) bo6 = re ^ ra b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2)) def test_boolean_rays_no_overlap(): r"""Test to make sure that boolean objects (rays, no overlap) behave the way we expect. Test non-overlapping rays. """ ds = fake_amr_ds() ra1 = ds.ray([0, 0, 0], [0, 0, 1]) ra2 = ds.ray([1, 0, 0], [1, 0, 1]) # Store the original indices i1 = ra1["index","morton_index"] i1.sort() i2 = ra2["index","morton_index"] i2.sort() ii = np.concatenate((i1, i2)) ii.sort() # Make some booleans bo1 = ra1 & ra2 bo2 = ra1 - ra2 bo3 = ra1 | ra2 bo4 = ds.union([ra1, ra2]) bo5 = ds.intersection([ra1, ra2]) # This makes sure the original containers didn't change. new_i1 = ra1["index","morton_index"] new_i1.sort() new_i2 = ra2["index","morton_index"] new_i2.sort() assert_array_equal(new_i1, i1) assert_array_equal(new_i2, i2) # Now make sure the indices also behave as we expect. empty = np.array([]) assert_array_equal(bo1["index","morton_index"], empty) assert_array_equal(bo5["index","morton_index"], empty) b2 = bo2["index","morton_index"] b2.sort() assert_array_equal(b2, i1 ) b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b3, ii) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() assert_array_equal(b3, b4) bo6 = ra1 ^ ra2 b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2)) def test_boolean_rays_overlap(): r"""Test to make sure that boolean objects (rays, overlap) behave the way we expect. Test non-overlapping rays. """ ds = fake_amr_ds() ra1 = ds.ray([0]*3, [1]*3) ra2 = ds.ray([0]*3, [0.5]*3) # Get indices of both. i1 = ra1["index","morton_index"] i1.sort() i2 = ra2["index","morton_index"] i2.sort() ii = np.concatenate((i1, i2)) ii.sort() # Make some booleans bo1 = ra1 & ra2 bo2 = ra1 - ra2 bo3 = ra1 | ra2 bo4 = ds.union([ra1, ra2]) bo5 = ds.intersection([ra1, ra2]) # Now make sure the indices also behave as we expect. short_line = np.intersect1d(i1, i2) short_line_b = np.setdiff1d(i1, i2) full_line = np.union1d(i1, i2) b1 = bo1["index","morton_index"] b1.sort() b2 = bo2["index","morton_index"] b2.sort() b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b1, short_line) assert_array_equal(b2, short_line_b) assert_array_equal(b3, full_line) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() assert_array_equal(b3, i1) assert_array_equal(b3, b4) assert_array_equal(b1, b5) bo6 = ra1 ^ ra2 b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2)) def test_boolean_slices_no_overlap(): r"""Test to make sure that boolean objects (slices, no overlap) behave the way we expect. Test non-overlapping slices. This also checks that the original regions don't change as part of constructing the booleans. """ ds = fake_amr_ds() sl1 = ds.r[:,:,0.25] sl2 = ds.r[:,:,0.75] # Store the original indices i1 = sl1["index","morton_index"] i1.sort() i2 = sl2["index","morton_index"] i2.sort() ii = np.concatenate((i1, i2)) ii.sort() # Make some booleans bo1 = sl1 & sl2 bo2 = sl1 - sl2 bo3 = sl1 | sl2 bo4 = ds.union([sl1, sl2]) bo5 = ds.intersection([sl1, sl2]) # This makes sure the original containers didn't change. new_i1 = sl1["index","morton_index"] new_i1.sort() new_i2 = sl2["index","morton_index"] new_i2.sort() assert_array_equal(new_i1, i1) assert_array_equal(new_i2, i2) # Now make sure the indices also behave as we expect. empty = np.array([]) assert_array_equal(bo1["index","morton_index"], empty) assert_array_equal(bo5["index","morton_index"], empty) b2 = bo2["index","morton_index"] b2.sort() assert_array_equal(b2, i1 ) b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b3, ii) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() assert_array_equal(b3, b4) bo6 = sl1 ^ sl2 b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2)) def test_boolean_slices_overlap(): r"""Test to make sure that boolean objects (slices, overlap) behave the way we expect. Test overlapping slices. """ ds = fake_amr_ds() sl1 = ds.r[:,:,0.25] sl2 = ds.r[:,0.75,:] # Get indices of both. i1 = sl1["index","morton_index"] i2 = sl2["index","morton_index"] # Make some booleans bo1 = sl1 & sl2 bo2 = sl1 - sl2 bo3 = sl1 | sl2 bo4 = ds.union([sl1, sl2]) bo5 = ds.intersection([sl1, sl2]) # Now make sure the indices also behave as we expect. line = np.intersect1d(i1, i2) orig = np.setdiff1d(i1, i2) both = np.union1d(i1, i2) b1 = bo1["index","morton_index"] b1.sort() b2 = bo2["index","morton_index"] b2.sort() b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b1, line) assert_array_equal(b2, orig) assert_array_equal(b3, both) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() assert_array_equal(b3, b4) assert_array_equal(b1, b5) bo6 = sl1 ^ sl2 b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2)) def test_boolean_ray_slice_no_overlap(): r"""Test to make sure that boolean objects (ray, slice, no overlap) behave the way we expect. Test non-overlapping ray and slice. This also checks that the original regions don't change as part of constructing the booleans. """ ds = fake_amr_ds() sl = ds.r[:,:,0.25] ra = ds.ray([0]*3, [0, 1, 0]) # Store the original indices i1 = sl["index","morton_index"] i1.sort() i2 = ra["index","morton_index"] i2.sort() ii = np.concatenate((i1, i2)) ii.sort() # Make some booleans bo1 = sl & ra bo2 = sl - ra bo3 = sl | ra bo4 = ds.union([sl, ra]) bo5 = ds.intersection([sl, ra]) # This makes sure the original containers didn't change. new_i1 = sl["index","morton_index"] new_i1.sort() new_i2 = ra["index","morton_index"] new_i2.sort() assert_array_equal(new_i1, i1) assert_array_equal(new_i2, i2) # Now make sure the indices also behave as we expect. empty = np.array([]) assert_array_equal(bo1["index","morton_index"], empty) assert_array_equal(bo5["index","morton_index"], empty) b2 = bo2["index","morton_index"] b2.sort() assert_array_equal(b2, i1 ) b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b3, ii) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() assert_array_equal(b3, b4) bo6 = sl ^ ra b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2)) def test_boolean_ray_slice_overlap(): r"""Test to make sure that boolean objects (rays and slices, overlap) behave the way we expect. Test overlapping rays and slices. """ ds = fake_amr_ds() sl = ds.r[:,:,0.25] ra = ds.ray([0, 0, 0.25], [0, 1, 0.25]) # Get indices of both. i1 = sl["index","morton_index"] i1.sort() i2 = ra["index","morton_index"] i1.sort() ii = np.concatenate((i1, i2)) ii.sort() # Make some booleans bo1 = sl & ra bo2 = sl - ra bo3 = sl | ra bo4 = ds.union([sl, ra]) bo5 = ds.intersection([sl, ra]) # Now make sure the indices also behave as we expect. line = np.intersect1d(i1, i2) sheet_minus_line = np.setdiff1d(i1, i2) sheet = np.union1d(i1, i2) b1 = bo1["index","morton_index"] b1.sort() b2 = bo2["index","morton_index"] b2.sort() b3 = bo3["index","morton_index"] b3.sort() assert_array_equal(b1, line) assert_array_equal(b2, sheet_minus_line) assert_array_equal(b3, sheet) b4 = bo4["index","morton_index"] b4.sort() b5 = bo5["index","morton_index"] b5.sort() assert_array_equal(b3, i1) assert_array_equal(b3, b4) assert_array_equal(b1, b5) bo6 = sl ^ ra b6 = bo6["index", "morton_index"] b6.sort() assert_array_equal(b6, np.setxor1d(i1, i2))
# Copyright 2018, The TensorFlow Federated Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """An implementation of the Federated SGD algorithm. This is the baseline algorithm from: Communication-Efficient Learning of Deep Networks from Decentralized Data H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, Blaise Aguera y Arcas. AISTATS 2017. https://arxiv.org/abs/1602.05629 """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf # TODO(b/123578208): Remove deep keras imports after updating TF version. from tensorflow.python.keras.optimizer_v2 import gradient_descent from tensorflow_federated.python.common_libs import py_typecheck from tensorflow_federated.python.learning import model as model_lib from tensorflow_federated.python.learning import model_utils from tensorflow_federated.python.learning.framework import optimizer_utils from tensorflow_federated.python.tensorflow_libs import tensor_utils nest = tf.contrib.framework.nest class ClientSgd(optimizer_utils.ClientDeltaFn): """Client TensorFlow logic for Federated SGD.""" def __init__(self, model, batch_weight_fn=None): """Constructs the client computation for Federated SGD. Args: model: A `learning.Model` for which gradients are computed. batch_weight_fn: A function that takes a batch (as passed to forward_pass) and returns a float32 weight. If not provided, the default uses the size of the batch (as measured by the batch dimension of the predictions returned by forward_pass). """ if batch_weight_fn is not None: py_typecheck.check_callable(batch_weight_fn) self._batch_weight_fn = batch_weight_fn self._model = model_utils.enhance(model) py_typecheck.check_type(self._model, model_utils.EnhancedModel) if isinstance(self._model, model_lib.TrainableModel): raise ValueError( 'Do not pass a TrainableModel to ClientSgd, as the ' 'built-in local training algorithm would be ignored. ' 'This failure could be made into a warning if this is inconvenient.') def _get_grad_var(name, tensor): return tf.Variable( lambda: tf.zeros_like(tensor), name='{}_grad'.format(name)) self._grad_sum_vars = nest.map_structure_with_paths( _get_grad_var, self._model.weights.trainable) self._batch_weight_sum = tf.Variable(0.0, name='batch_weight_sum') @property def variables(self): return [self._batch_weight_sum] + nest.flatten(self._grad_sum_vars) # TODO(b/123898430): The control dependencies below have been inserted as a # temporary workaround. These control dependencies need to be removed and # the methods re-annotated with tf.contrib.eager.function(). def __call__(self, dataset, initial_weights): # TODO(b/113112108): Remove this temporary workaround and restore check for # `tf.data.Dataset` after subclassing the currently used custom data set # representation from it. if 'Dataset' not in str(type(dataset)): raise TypeError('Expected a data set, found {}.'.format( py_typecheck.type_string(type(dataset)))) model = self._model dummy_weights = nest.map_structure(tf.assign, model.weights, initial_weights) def reduce_fn(accumulated_grads, batch): """Runs forward_pass on batch.""" with tf.contrib.eager.GradientTape() as tape: output = model.forward_pass(batch) with tf.control_dependencies(list(output)): flat_vars = nest.flatten(model.weights.trainable) grads = nest.pack_sequence_as(accumulated_grads, tape.gradient(output.loss, flat_vars)) if self._batch_weight_fn is not None: batch_weight = self._batch_weight_fn(batch) else: batch_weight = tf.cast(tf.shape(output.predictions)[0], tf.float32) tf.assign_add(self._batch_weight_sum, batch_weight) return nest.map_structure( lambda accumulator, grad: accumulator + batch_weight * grad, accumulated_grads, grads) with tf.control_dependencies(list(dummy_weights.trainable.values())): self._grad_sum_vars = dataset.reduce( initial_state=self._grad_sum_vars, reduce_func=reduce_fn) with tf.control_dependencies( [tf.identity(v) for v in self._grad_sum_vars.values()]): # For SGD, the delta is just the negative of the average gradient: weights_delta = nest.map_structure( lambda gradient: -1.0 * gradient / self._batch_weight_sum, self._grad_sum_vars) weights_delta, has_non_finite_delta = ( tensor_utils.zero_all_if_any_non_finite(weights_delta)) weights_delta_weight = tf.cond( tf.equal(has_non_finite_delta, 0), lambda: self._batch_weight_sum, lambda: tf.constant(0.0)) return optimizer_utils.ClientOutput( weights_delta, weights_delta_weight, model.report_local_outputs(), tensor_utils.to_odict({ 'client_weight': weights_delta_weight, 'has_non_finite_delta': has_non_finite_delta, })) def build_federated_sgd_process( model_fn, server_optimizer_fn=lambda: gradient_descent.SGD(learning_rate=0.1), client_weight_fn=None): """Builds the TFF computations for optimization using federated SGD. Args: model_fn: A no-arg function that returns a `tff.learning.TrainableModel`. server_optimizer_fn: A no-arg function that returns a `tf.Optimizer`. The `apply_gradients` method of this optimizer is used to apply client updates to the server model. client_weight_fn: Optional function that takes the output of `model.report_local_outputs` and returns a tensor that provides the weight in the federated average of model deltas. If not provided, the default is the total number of examples processed on device. Returns: A `tff.utils.IterativeProcess`. """ def client_sgd_avg(model_fn): return ClientSgd(model_fn(), client_weight_fn) return optimizer_utils.build_model_delta_optimizer_process( model_fn, client_sgd_avg, server_optimizer_fn)
from pyppl import ProcSet from bioprocs.common import pStr2File, pFile2Proc, pSort from bioprocs.tsv import pTsvJoin from bioprocs.seq import pPromoters, pConsv, pConsvPerm from bioprocs.bed import pBedGetfasta from bioprocs.tfbs import pMotifScan from bioprocs import params """ @name: aTfbsTfP @description: Scan motifs on genes' promoter regions by giving TF names. @depends: pPromoters[*] \ | pBedGetfasta \ pMotifScan[!] pTFs[*] -- pTsvJoin / | pTFList[*] / @input: - TF list file, one per line - gene list file, one per line - TF (1st col) list file with motif ids (2nd col). Default: params.tflist.value """ aTfbsTfP = ProcSet( pSort.copy('pTFs'), pPromoters, pSort.copy('pTFList'), pTsvJoin, pBedGetfasta, pMotifScan, depends = False ) # defaults aTfbsTfP.pPromoters.runner = 'local' #delegate aTfbsTfP.delegate('args.up' , 'pPromoters') aTfbsTfP.delegate('args.down' , 'pPromoters') aTfbsTfP.delegate('args.genome' , 'pPromoters') aTfbsTfP.delegate('args.ref' , 'pBedGetfasta') aTfbsTfP.delegate('args.pval' , 'pMotifScan') aTfbsTfP.delegate('args.tfmotifs', 'pMotifScan') # depends aTfbsTfP.starts = aTfbsTfP.pTFs, aTfbsTfP.pPromoters, aTfbsTfP.pTFList aTfbsTfP.ends = aTfbsTfP.pMotifScan aTfbsTfP.pMotifScan.depends = aTfbsTfP.pTsvJoin, aTfbsTfP.pBedGetfasta aTfbsTfP.pBedGetfasta.depends = aTfbsTfP.pPromoters aTfbsTfP.pTsvJoin.depends = aTfbsTfP.pTFList, aTfbsTfP.pTFs # input aTfbsTfP.pTFList.input = [params.tflist.value] # input size of either pTFs or pTFList should be 1 aTfbsTfP.pTsvJoin.input = lambda ch1, ch2: [ch1.repRow(l).cbind(ch2.repRow(l)).flatten() for l in [max(ch1.length(), ch2.length())]] aTfbsTfP.pMotifScan.input = lambda ch1, ch2: [ch1.repRow(l).cbind(ch2.repRow(l)) for l in [max(ch1.length(), ch2.length())]][0] # args aTfbsTfP.pBedGetfasta.args.params.name = True aTfbsTfP.pTFList.args.params.k = 2 aTfbsTfP.pTsvJoin.args.match = 'lambda line1, line2: -1 if line1[1] == line2[0] else 0 if line1[1] < line2[0] else 1' aTfbsTfP.pTsvJoin.args.do = 'lambda line1, line2: fout.write("\\t".join(line1) + "\\n")' """ @name: aTfbsP @description: Scan motifs on genes' promoter regions. @depends: pPromoters[*] \ pBedGetfasta \ pMotifScan[!] pTFList[*] / @input: - TF (1st col) list file with motif ids (2nd col). Default: params.tflist.value - gene list file, one per line """ aTfbsP = ProcSet( pFile2Proc.copy('pTFList'), pPromoters, pBedGetfasta, pMotifScan, depends = False ) # defaults aTfbsP.pTFList.runner = 'local' aTfbsP.pPromoters.runner = 'local' # delegate aTfbsP.delegate('args.up', 'pPromoters') aTfbsP.delegate('args.down', 'pPromoters') aTfbsP.delegate('args.genome', 'pPromoters') aTfbsP.delegate('args.ref', 'pBedGetfasta') aTfbsP.delegate('args.pval', 'pMotifScan') aTfbsP.delegate('args.tfmotifs', 'pMotifScan') # depends aTfbsP.starts = aTfbsP.pTFList, aTfbsP.pPromoters aTfbsP.ends = aTfbsP.pMotifScan aTfbsP.pMotifScan.depends = aTfbsP.pTFList, aTfbsP.pBedGetfasta aTfbsP.pBedGetfasta.depends = aTfbsP.pPromoters # args aTfbsP.pBedGetfasta.args.params.name = True """ @name: aTfbsTfR @description: Scan motifs on a given regions. @depends: pBedGetfasta[*] \ pMotifScan[!] pTFs[*] -- pTsvJoin / | pSortTFList[*] / @input: - TF list file, one per line - region file in bed - TF (1st col) list file with motif ids (2nd col). Default: params.tflist.value """ aTfbsTfR = ProcSet( pSort.copy('pTFs'), pBedGetfasta, pSort.copy('pTFList'), pTsvJoin, pMotifScan, depends = False ) # defaults aTfbsTfR.pTFList.runner = 'local' # delegate aTfbsTfR.delegate('args.ref', 'pBedGetfasta') aTfbsTfR.delegate('args.pval', 'pMotifScan') aTfbsTfR.delegate('args.tfmotifs', 'pMotifScan') # depends aTfbsTfR.starts = aTfbsTfR.pTFs, aTfbsTfR.pBedGetfasta, aTfbsTfR.pTFList aTfbsTfR.ends = aTfbsTfR.pMotifScan aTfbsTfR.pMotifScan.depends = aTfbsTfR.pTsvJoin, aTfbsTfR.pBedGetfasta aTfbsTfR.pTsvJoin.depends = aTfbsTfR.pTFList, aTfbsTfR.pTFs # input aTfbsTfR.pTFList.input = [params.tflist.value] aTfbsTfR.pTsvJoin.input = lambda ch1, ch2: [ch1.repRow(l).cbind(ch2.repRow(l)).flatten() for l in [max(ch1.length(), ch2.length())]] aTfbsTfR.pMotifScan.input = lambda ch1, ch2: [ch1.repRow(l).cbind(ch2.repRow(l)) for l in [max(ch1.length(), ch2.length())]][0] # args aTfbsTfR.pBedGetfasta.args.params.name = True aTfbsTfR.pTFList.args.params.k = 2 aTfbsTfR.pTsvJoin.args.match = 'lambda line1, line2: -1 if line1[1] == line2[0] else 0 if line1[1] < line2[0] else 1' aTfbsTfR.pTsvJoin.args.do = 'lambda line1, line2: fout.write("\\t".join(line1) + "\\n")' """ @name: aTfbsR @description: Scan motifs on a given regions. @depends: pBedGetfasta[*] \ pMotifScan[!] pTFList[*] / @input: - TF (1st col) list file with motif ids (2nd col). Default: params.tflist.value - region file in bed """ aTfbsR = ProcSet( pFile2Proc.copy('pTFList'), pBedGetfasta, pMotifScan, depends = False ) # defaults aTfbsR.pTFList.runner = 'local' # delegate aTfbsR.delegate('args.ref', 'pBedGetfasta') aTfbsR.delegate('args.pval', 'pMotifScan') aTfbsR.delegate('args.tfmotifs', 'pMotifScan') # depends aTfbsR.starts = aTfbsR.pTFList, aTfbsR.pBedGetfasta aTfbsR.ends = aTfbsR.pMotifScan aTfbsR.pMotifScan.depends = aTfbsR.pTFList, aTfbsR.pBedGetfasta # args aTfbsR.pBedGetfasta.args.params.name = True """ @name: aTfbsPC @description: Scan motifs on genes' promoter regions with conservation. @depends: pPromoters[*] \ pBedGetfasta \ pMotifScan pTFList[*] / \ pConsv[!] / pConsvPerm[*] @input: - TF list file, one per line - gene list file, one per line - Seeds for pConsvPerm. Default: [0] """ aTfbsPC = ProcSet( pFile2Proc.copy('pTFList'), pPromoters, pConsvPerm, pBedGetfasta, pMotifScan, pConsv, depends = False ) # defaults aTfbsPC.pTFList.runner = 'local' aTfbsPC.pPromoters.runner = 'local' aTfbsPC.pConsvPerm.input = [0] # delegate aTfbsPC.delegate('args.up', 'pPromoters') aTfbsPC.delegate('args.down', 'pPromoters') aTfbsPC.delegate('args.genome', 'pPromoters') aTfbsPC.delegate('args.ref', 'pBedGetfasta') aTfbsPC.delegate('args.pval', 'pMotifScan') aTfbsPC.delegate('args.tfmotifs', 'pMotifScan') # aTfbsPC.delegate('args.cpval', 'pConsv', 'args.pval') aTfbsPC.delegate('args.len', 'pConsvPerm') aTfbsPC.delegate('args.nperm', 'pConsvPerm') aTfbsPC.delegate('args.chrsizes', 'pConsvPerm') # depends aTfbsPC.starts = aTfbsPC.pTFList, aTfbsPC.pPromoters, aTfbsPC.pConsvPerm aTfbsPC.ends = aTfbsPC.pConsv aTfbsPC.pConsv.depends = aTfbsPC.pMotifScan, aTfbsPC.pConsvPerm aTfbsPC.pMotifScan.depends = aTfbsPC.pTFList, aTfbsPC.pBedGetfasta aTfbsPC.pBedGetfasta.depends = aTfbsPC.pPromoters # input aTfbsPC.pConsv.input = lambda ch1, ch2: ch1.outfile.cbind(ch2) # args aTfbsPC.pBedGetfasta.args.params.name = True aTfbsPC.pConsv.args.pval = 0.05 """ @name: aTfbsRC @description: Scan motifs on a given regions with conservation score. @depends: pBedGetfasta[*] \ pMotifScan pTFList[*] / \ pConsv[!] / pConsvPerm[*] @input: - TF list file, one per line - region list in bed. - Seeds for pConsvPerm. Default: [0] """ aTfbsRC = ProcSet( pFile2Proc.copy('pTFList'), pBedGetfasta, pConsvPerm, pMotifScan, pConsv, depends = False ) # defaults aTfbsRC.pTFList.runner = 'local' aTfbsRC.pConsvPerm.input = [0] # delegate aTfbsRC.delegate('args.ref', 'pBedGetfasta') aTfbsRC.delegate('args.pval', 'pMotifScan') aTfbsRC.delegate('args.tfmotifs', 'pMotifScan') # aTfbsRC.delegate('args.cpval', 'pConsv', 'args.pval') aTfbsRC.delegate('args.len', 'pConsvPerm') aTfbsRC.delegate('args.nperm', 'pConsvPerm') aTfbsRC.delegate('args.chrsizes', 'pConsvPerm') # depends aTfbsRC.starts = aTfbsRC.pTFList, aTfbsRC.pBedGetfasta, aTfbsRC.pConsvPerm aTfbsRC.ends = aTfbsRC.pConsv aTfbsRC.pConsv.depends = aTfbsRC.pMotifScan, aTfbsRC.pConsvPerm aTfbsRC.pMotifScan.depends = aTfbsRC.pTFList, aTfbsRC.pBedGetfasta # input aTfbsRC.pConsv.input = lambda ch1, ch2: ch1.outfile.cbind(ch2) # args aTfbsRC.pBedGetfasta.args.params.name = True aTfbsRC.pConsv.args.pval = 0.05 """ @name: aTfbsTfPC @description: Scan motifs on genes' promoter regions by giving TF names with conservation. @depends: pPromoters[*] \ | pBedGetfasta \ pMotifScan pTFs[*] -- pTsvJoin / \ | \ pTFList[*] / pConsv[!] pConsvPerm[*] / @input: - TF list file, one per line - gene list file, one per line - TF (1st col) list file with motif ids (2nd col). Default: params.tflist.value """ aTfbsTfPC = ProcSet( pSort.copy('pTFs'), pPromoters, pSort.copy('pTFList'), pTsvJoin, pBedGetfasta, pConsvPerm, pMotifScan, pConsv, depends = False ) # defaults aTfbsTfPC.pPromoters.runner = 'local' aTfbsTfPC.pConsvPerm.input = [0] # delegate aTfbsTfPC.delegate('args.up' , 'pPromoters') aTfbsTfPC.delegate('args.down' , 'pPromoters') aTfbsTfPC.delegate('args.genome' , 'pPromoters') aTfbsTfPC.delegate('args.ref' , 'pBedGetfasta') aTfbsTfPC.delegate('args.pval' , 'pMotifScan') aTfbsTfPC.delegate('args.tfmotifs', 'pMotifScan') # aTfbsTfPC.delegate('args.cpval' , 'pConsv', 'args.pval') aTfbsTfPC.delegate('args.len' , 'pConsvPerm') aTfbsTfPC.delegate('args.nperm' , 'pConsvPerm') aTfbsTfPC.delegate('args.chrsizes', 'pConsvPerm') # depends aTfbsTfPC.starts = aTfbsTfPC.pTFs, aTfbsTfPC.pPromoters, aTfbsTfPC.pTFList, aTfbsTfPC.pConsvPerm aTfbsTfPC.ends = aTfbsTfPC.pConsv aTfbsTfPC.pConsv.depends = aTfbsTfPC.pMotifScan, aTfbsTfPC.pConsvPerm aTfbsTfPC.pMotifScan.depends = aTfbsTfPC.pTsvJoin, aTfbsTfPC.pBedGetfasta aTfbsTfPC.pBedGetfasta.depends = aTfbsTfPC.pPromoters aTfbsTfPC.pTsvJoin.depends = aTfbsTfPC.pTFList, aTfbsTfPC.pTFs # input aTfbsTfPC.pTFList.input = [params.tflist.value] # input size of either pTFs or pTFList should be 1 aTfbsTfPC.pTsvJoin.input = lambda ch1, ch2: [ch1.repRow(l).cbind(ch2.repRow(l)).flatten() for l in [max(ch1.length(), ch2.length())]] aTfbsTfPC.pMotifScan.input = lambda ch1, ch2: [ch1.repRow(l).cbind(ch2.repRow(l)) for l in [max(ch1.length(), ch2.length())]][0] aTfbsTfPC.pConsv.input = lambda ch1, ch2: ch1.outfile.cbind(ch2) # args aTfbsTfPC.pBedGetfasta.args.params.name = True aTfbsTfPC.pTFList.args.params.k = 2 aTfbsTfPC.pTsvJoin.args.match = 'lambda line1, line2: -1 if line1[1] == line2[0] else 0 if line1[1] < line2[0] else 1' aTfbsTfPC.pTsvJoin.args.do = 'lambda line1, line2: fout.write("\\t".join(line1) + "\\n")' aTfbsTfPC.pConsv.args.pval = 0.05 """ @name: aTfbsTfRC @description: Scan motifs on a given regions with conservation. @depends: pBedGetfasta[*] \ pMotifScan pTFs[*] -- pTsvJoin / \ | \ pSortTFList[*] / pConsv[!] pConsvPerm[*] / @input: - TF list file, one per line - region file in bed - TF (1st col) list file with motif ids (2nd col). Default: params.tflist.value """ aTfbsTfRC = ProcSet( pSort.copy('pTFs'), pBedGetfasta, pConsvPerm, pSort.copy('pTFList'), pTsvJoin, pMotifScan, pConsv, depends = False ) # defaults aTfbsTfRC.pTFList.runner = 'local' aTfbsTfRC.pConsvPerm.input = [0] # delegate aTfbsTfRC.delegate('args.ref', 'pBedGetfasta') aTfbsTfRC.delegate('args.pval', 'pMotifScan') aTfbsTfRC.delegate('args.tfmotifs', 'pMotifScan') # aTfbsTfRC.delegate('args.cpval' , 'pConsv', 'args.pval') aTfbsTfRC.delegate('args.len' , 'pConsvPerm') aTfbsTfRC.delegate('args.nperm' , 'pConsvPerm') aTfbsTfRC.delegate('args.chrsizes', 'pConsvPerm') # depends aTfbsTfRC.starts = aTfbsTfRC.pTFs, aTfbsTfRC.pBedGetfasta, aTfbsTfRC.pTFList, aTfbsTfRC.pConsvPerm aTfbsTfRC.ends = aTfbsTfRC.pConsv aTfbsTfRC.pConsv.depends = aTfbsTfRC.pMotifScan, aTfbsTfRC.pConsvPerm aTfbsTfRC.pMotifScan.depends = aTfbsTfRC.pTsvJoin, aTfbsTfRC.pBedGetfasta aTfbsTfRC.pTsvJoin.depends = aTfbsTfRC.pTFList, aTfbsTfRC.pTFs # input aTfbsTfRC.pTFList.input = [params.tflist.value] aTfbsTfRC.pTsvJoin.input = lambda ch1, ch2: [ch1.repRow(l).cbind(ch2.repRow(l)).flatten() for l in [max(ch1.length(), ch2.length())]] aTfbsTfRC.pMotifScan.input = lambda ch1, ch2: [ch1.repRow(l).cbind(ch2.repRow(l)) for l in [max(ch1.length(), ch2.length())]][0] aTfbsTfRC.pConsv.input = lambda ch1, ch2: ch1.outfile.cbind(ch2) # args aTfbsTfRC.pBedGetfasta.args.params.name = True aTfbsTfRC.pTFList.args.params.k = 2 aTfbsTfRC.pTsvJoin.args.match = 'lambda line1, line2: -1 if line1[1] == line2[0] else 0 if line1[1] < line2[0] else 1' aTfbsTfRC.pTsvJoin.args.do = 'lambda line1, line2: fout.write("\\t".join(line1) + "\\n")' aTfbsTfRC.pConsv.args.pval = 0.05
import argparse, sys import numpy as np from PIL import Image from tqdm import tqdm import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.autograd import Variable from transform import random_transform_generator from dataset import SEMDataset from modules import * from save_history import * from loss import masked_bce_loss, masked_dice_loss, masked_dbce_loss # from model import UNet from advance_model import UNet parser = argparse.ArgumentParser() parser.add_argument('--train', help='Multualy exclusive with --predict.', action='store_true') parser.add_argument('--predict', help='Multualy exclusive with --train.', action='store_true') parser.add_argument('--prob_thres', help='Use with --predict.', action='store_true') parser.add_argument('--evaluate', help='Multualy exclusive with --train.', action='store_true') parser.add_argument('--transform', help='', action='store_true') parser.add_argument('--loss_fn', type=str, default="bce") parser.add_argument('--snapshot', type=str) parser.add_argument('--train_dir', type=str) parser.add_argument('--val_dir', type=str) parser.add_argument('--save_dir', type=str) parser.add_argument('--lr', type=float, default=1e-3) parser.add_argument('--weight_decay', type=float, default=1e-3) parser.add_argument('--init_epoch', type=int, default=0) parser.add_argument('--n_epoch', type=int, default=100) parser.add_argument('--batch_size', type=int, default=2) parser.add_argument('--num_workers', type=int, default=0) parser.add_argument('--val_interval', type=int, default=5) parser.add_argument('--save_interval', type=int, default=10) args = parser.parse_args() def train(): # transform generator if args.transform: transform_generator = random_transform_generator( min_rotation=-0.1, max_rotation=0.1, min_translation=(-0.1, -0.1), max_translation=(0.1, 0.1), min_shear=-0.1, max_shear=0.1, min_scaling=(0.9, 0.9), max_scaling=(1.1, 1.1), flip_x_chance=0.5, flip_y_chance=0.5, ) else: transform_generator = None # create custome dataset train_dataset = SEMDataset(os.path.join(args.train_dir, "img"), os.path.join(args.train_dir, "label"), transform_generator=transform_generator) val_dataset = SEMDataset(os.path.join(args.val_dir, "img"), os.path.join(args.val_dir, "label")) # Dataloader train_loader = torch.utils.data.DataLoader(dataset=train_dataset, num_workers=args.num_workers, batch_size=args.batch_size, shuffle=True) val_loader = torch.utils.data.DataLoader(dataset=val_dataset, num_workers=args.num_workers, batch_size=args.batch_size, shuffle=False) # Model model = UNet(in_channels=11, n_classes=2, depth=2, batch_norm=True, padding=True) # model = UNet(in_channels=11, n_classes=2) if args.snapshot: model = torch.load(args.snapshot) model = model.cuda() # Loss function if args.loss_fn == "bce": criterion = masked_bce_loss elif args.loss_fn == "dice": criterion = masked_dice_loss elif args.loss_fn == 'dbce': criterion = masked_dbce_loss else: RaiseValueError("%s loss function is not supported" % args.loss_fn) # Optimizerd optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=10, verbose=True) # Saving History to csv header = ['epoch', 'train_loss', 'val_loss', 'val_acc'] save_dir = os.path.join(args.save_dir, args.loss_fn) if not os.path.exists(save_dir): os.makedirs(save_dir) save_file_name = os.path.join(save_dir, "history.csv") for i in range(args.init_epoch, args.init_epoch + args.n_epoch): # train the model train_loss = train_model(model, train_loader, criterion, optimizer, scheduler) # validation every 5 epoch if (i + 1) % args.val_interval == 0: val_loss, val_acc = evaluate_model(model, val_loader, criterion, metric=True) print('Epoch %d, Train loss: %.5f, Val loss: %.5f, Val acc: %.4f' % (i + 1, train_loss, val_loss, val_acc)) values = [i + 1, train_loss, val_loss, val_acc] export_history(header, values, save_dir, save_file_name) if (i + 1) % args.save_interval == 0: # save model every save_interval epoch save_models(model, save_dir, i + 1) def evaluate(): if args.snapshot is None: RaiseValueError("--snapshot must be provided!") val_dataset = SEMDataset(os.path.join(args.val_dir, "img"), os.path.join(args.val_dir, "label")) val_loader = torch.utils.data.DataLoader(dataset=val_dataset, num_workers=args.num_workers, batch_size=1, shuffle=False) # model = UNet(in_channels=11, n_classes=2) model = torch.load(args.snapshot) model = model.cuda() score_model(model, val_loader) def predict(): if not os.path.exists(args.save_dir): os.makedirs(args.save_dir) dataset = SEMDataset(os.path.join(args.val_dir, "img"), os.path.join(args.val_dir, "label"), transform_generator=None) loader = torch.utils.data.DataLoader(dataset=dataset, num_workers=args.num_workers, batch_size=1, shuffle=False) # model = UNet(in_channels=11, n_classes=2) model = torch.load(args.snapshot) model = model.cuda() model.eval() with torch.no_grad(): pbar = tqdm(loader) for batch_idx, (images, labels) in enumerate(pbar): images = images.cuda() probs = model.forward(images).data.cpu().numpy() # 1 * C * H * W preds = np.argmax(probs, axis=1).astype(np.uint8) + 1 # 1 * H * W probs = np.max(probs, axis=1) # 1 * H * W if args.prob_thres: high_prob_masks = (probs > 0.90).astype(np.uint8) preds = preds * high_prob_masks # 1 * H * W pred = preds[0, ...] # H x W no_value_mask = dataset.get_mask(batch_idx) # H x W pred = pred * no_value_mask label = Image.fromarray(pred).convert("L") basename = dataset.get_basename(batch_idx) label.save(os.path.join(args.save_dir, "%s.png" % basename)) if __name__ == "__main__": if args.train: train() elif args.predict: predict() elif args.evaluate: evaluate() else: print("Please chose --train, --predict, --evaluate. Mutualy exclusive!")
import socket socket.setdefaulttimeout(.5) print('\n'+ '#'*50+'\n Started Executing Script'+ '\n'+ '#'*50) def port_check(ip,port): DEVICE_SOCKET = socket.socket(socket.AF_INET, socket.SOCK_STREAM) result_of_check = DEVICE_SOCKET.connect_ex((ip,port)) if result_of_check == 0: print(str(ip)+ ' is Listening on Port ' + str(port)) DEVICE_SOCKET.close() else: print(str(ip)+ ' is not listening on Port '+ str(port)) DEVICE_SOCKET.close() port_check('192.168.0.10',80) port_check('192.168.0.10',443) port_check('192.168.0.1',80) port_check('192.168.0.10',801) print('\n'+ '#'*50+'\n Finished Executing Script'+ '\n'+ '#'*50)
""" *Evaluated* The outcome of evaluating a player against a baseline player. """ from dataclsses import dataclass @dataclass class Evaluated: name: str average_energy: f64 redundancy: f64 energies: Vector[f64] baseline_rewards :: Union{Nothing, Vector{Float64}} runtime: float """ # Two-player Games - `rewards` is the sequence of rewards collected by the evaluated player - `avgr` is the average reward collected by the evaluated player - `baseline_rewards` is `nothing` # Single-player Games - `rewards` is the sequence of rewards collected by the evaluated player - `baseline_rewards` is the sequence of rewards collected by the baseline player - `avgr` is equal to `mean(rewards) - mean(baseline_rewards)` # Common Fields - `legend` is a string describing the evaluation - `redundancy` is the ratio of duplicate positions encountered during the evaluation, not counting the initial position. If this number is too high, you may want to increase the move selection temperature. - `time` is the computing time spent running the evaluation, in seconds """
# Generated by Django 2.2.13 on 2020-06-09 14:40 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('cms', '0003_auto_20200507_1739'), ] operations = [ migrations.AlterModelOptions( name='contentpage', options={'verbose_name': 'Eine Seite mit einem Titel und Inhalt'}, ), migrations.AlterModelOptions( name='glossarypage', options={'verbose_name': 'Ein Glossar'}, ), migrations.AlterModelOptions( name='indexpage', options={'verbose_name': 'Die Startseite des CMS-Teils'}, ), ]
import os import cma import pickle import time import numpy as np from multiprocessing import Pool from skate_cma.skate_env2 import SkateDartEnv from skate_cma.PenaltyType import PenaltyType def f(x): env = SkateDartEnv(x[0]) x0 = x[2] q0 = x[3] dq0 = x[4] duration0, duration1 = x[5], x[6] option0, option1, weight0, weight1 = x[7], x[8], x[9], x[10] is_last_state = x[11] solution = np.split(x[1], duration0+duration1+1) """ x[0] : env_name x[1] : tested solution x[2] : solution offset(original pose) """ obj_0 = 0. obj_1 = 0. env.update_ref_states(solution[:duration0+1], x0[:duration0+1], q0, dq0, x[5]) env.set_penalty(option0, weight0) env.save_com_init() for bs_idx in range(3*duration0): env.step(bs_idx/3) obj_0 += env.penalty_instant() obj_0 /= 3*duration0 obj_0 += env.penalty_final() q = np.asarray(env.skel.q) dq = np.asarray(env.skel.dq) if not is_last_state: env.update_ref_states(solution[duration0:], x0[duration0:], q, dq, x[6]) env.set_penalty(option1, weight1) env.save_com_init() for bs_idx in range(3*duration1): env.step(bs_idx/3) obj_1 += env.penalty_instant() obj_1 /= 3*duration1 obj_1 += env.penalty_final() obj_reg = weight0[PenaltyType.REGULARIZE] * np.sum(np.square(np.asarray(x[1]))) / (duration0+duration1) return obj_0 + obj_1 + obj_reg class HpCma(object): def __init__(self, env_name, num_slaves=1, sigma=.5, max_time=10., start_state_num=0, start_state_sol_dir='init_solution', cma_timeout=1800): self.env_name = env_name self.env = SkateDartEnv(env_name) self.max_time = max_time with open(env_name + '.skkey', 'rb') as skkey_file: self.skkey_states = pickle.load(skkey_file) self.log_dir = self.env_name + '_' + 'model_'+time.strftime("%Y%m%d%H%M") + '/' if not os.path.exists(self.log_dir): os.makedirs(self.log_dir) self.angles = [] count = 0 state = self.skkey_states[0] self.state_duration = [] while count < int(self.max_time * 10.): state_count = 0 for _ in range(int(state.dt*10.)): self.angles.append(state.angles[6:]) state_count += 1 count += 1 if count == int(self.max_time * 10.): break self.state_duration.append(state_count) state = state.get_next() self.angles.append(self.angles[-1]) self.dof = self.env.skel.num_dofs() - 6 self.num_slaves = num_slaves self.sigma = sigma self.solutions = [] self.start_state_num = start_state_num self.start_state_sol_dir = start_state_sol_dir self.cma_timeout = cma_timeout self.init_q = None self.init_dq = np.zeros_like(self.skkey_states[0].angles.copy()) print('Start CMA') print('Motion name: ', self.env_name) print('Max motion time: ', self.max_time) print('Parallel with process #: ', self.num_slaves) print('CMA initial sigma: ', self.sigma) print('CMA time out: ', self.cma_timeout) print('Start motion state #:', self.start_state_num) if self.start_state_num > 0: print('Load previous solution from ', self.start_state_sol_dir) def set_init_dq(self, dq): assert(len(self.init_dq) == len(dq)) self.init_dq = np.asarray(dq) def set_init_q(self, q): assert(len(self.init_dq) == len(q)) self.init_q = np.asarray(q) def save_solution(self, i, solution): filename = self.log_dir + 'xbest.skcma' with open(filename, 'a') as file: strs = list(map(str, solution)) strs.insert(0, str(i)) file.write(' '.join(strs)) file.write('\n') def run(self): q = self.skkey_states[0].angles.copy() if self.init_q is None else self.init_q dq = self.init_dq x0t = np.zeros_like(q[6:]) self.env.reset() if self.start_state_num > 0: file_path = self.start_state_sol_dir + 'xbest.skcma' with open(file_path, 'r') as file: lines = file.read().splitlines() state_list_in_file = list(map(int, [line.split()[0] for line in lines])) for i in range(self.start_state_num): solutions = [x0t] state_index_in_file = state_list_in_file.index(i) x_state = np.asarray(list(map(float, lines[state_index_in_file].split()[1:]))) solutions.extend(np.split(x_state, self.state_duration[i])) self.save_solution(i, x_state) x0 = self.angles[sum(self.state_duration[:i]):sum(self.state_duration[:i+1])+1] self.env.update_ref_states(solutions, x0, q, dq, self.state_duration[i]) for bs_idx in range(3*self.state_duration[i]): self.env.step(bs_idx/3) x0t = solutions[-1] q = np.asarray(self.env.skel.q) dq = np.asarray(self.env.skel.dq) for i in range(self.start_state_num, len(self.state_duration)-1): penalty_option0 = [None] * len(PenaltyType) penalty_option1 = [None] * len(PenaltyType) penalty_weight0 = [1.] * len(PenaltyType) penalty_weight1 = [1.] * len(PenaltyType) penalty_weight0[PenaltyType.TORQUE] = 0. penalty_weight1[PenaltyType.TORQUE] = 0. self.objective(i, penalty_option0, penalty_option1, penalty_weight0, penalty_weight1) x0 = self.angles[sum(self.state_duration[:i]):sum(self.state_duration[:i+2])+1] solution = self.run_one_window(i, x0t, x0, q, dq, self.state_duration[i], self.state_duration[i+1], penalty_option0, penalty_option1, penalty_weight0, penalty_weight1 ) self.env.reset() extended_solution = np.split(np.hstack((np.asarray(x0t), np.asarray(solution))), self.state_duration[i]+self.state_duration[i+1]+1) self.env.update_ref_states(extended_solution[:self.state_duration[i]+1], x0[:self.state_duration[i]+1], q, dq, self.state_duration[i]) for bs_idx in range(3*self.state_duration[i]): self.env.step(bs_idx/3) q = np.asarray(self.env.skel.q) dq = np.asarray(self.env.skel.dq) solutions = np.split(solution, self.state_duration[i]+self.state_duration[i+1]) self.solutions.extend(solutions[:self.state_duration[i]]) x0t = self.solutions[-1] self.save_solution(i, np.hstack(np.split(solution, self.state_duration[i]+self.state_duration[i+1])[:self.state_duration[i]])) if True: # last window i = len(self.state_duration)-1 penalty_option0 = [None] * len(PenaltyType) penalty_option1 = [None] * len(PenaltyType) penalty_weight0 = [1.] * len(PenaltyType) penalty_weight1 = [1.] * len(PenaltyType) self.objective(i, penalty_option0, penalty_option1, penalty_weight0, penalty_weight1) x0 = self.angles[sum(self.state_duration[:i]):] solution = self.run_one_window(i, x0t, x0, q, dq, self.state_duration[i], 0, penalty_option0, penalty_option1, penalty_weight0, penalty_weight1, True ) solutions = np.split(solution, self.state_duration[i]) self.solutions.extend(solutions[:self.state_duration[i]]) self.save_solution(i, solution) def run_one_window(self, idx, x0t, x0, q0, dq0, duration0, duration1, option0, option1, weight0, weight1, is_last_state=False): """ :param idx: :param x0t: window terminal solution from previous idx optimization :param x0: solution offset :param q0: starting position :param dq0: starting velocity :param duration0: :param duration1: :param option0: :param option1: :param weight0: :param weight1: :param is_last_state: :return: """ es = cma.CMAEvolutionStrategy(((duration0+duration1) * self.dof) * [0.], self.sigma, {'tolstagnation': 1000, 'timeout': self.cma_timeout}) es.logger.save_to(self.log_dir+str(idx)+'_', True) while not es.stop(): solutions = es.ask() extended_solutions = [np.hstack((np.asarray(x0t), np.asarray(solution))) for solution in solutions] env_names = [self.env_name for _ in range(len(solutions))] x0s = [x0 for _ in range(len(solutions))] qs = [q0 for _ in range(len(solutions))] dqs = [dq0 for _ in range(len(solutions))] duration0s = [duration0 for _ in range(len(solutions))] duration1s = [duration1 for _ in range(len(solutions))] option0s = [option0 for _ in range(len(solutions))] option1s = [option1 for _ in range(len(solutions))] weight0s = [weight0 for _ in range(len(solutions))] weight1s = [weight1 for _ in range(len(solutions))] is_last_states = [is_last_state for _ in range(len(solutions))] with Pool(self.num_slaves) as p: objs = p.map(f, list(zip(env_names, extended_solutions, x0s, qs, dqs, duration0s, duration1s, option0s, option1s, weight0s, weight1s, is_last_states))) es.tell(solutions, objs) es.logger.add() es.disp() es.result_pretty() # cma.plot() return np.asarray(es.result[0]) @staticmethod def objective(i, penalty_option0, penalty_option1, penalty_weight0, penalty_weight1): raise NotImplementedError
from argparse import ArgumentParser import torch from typing import List, Dict, Tuple from .fine_tune import get_pretrained_model def decode(sample: torch.Tensor, id_to_label: Dict[int, str], ignore_index: List[int]) -> List[str]: return [id_to_label[i.item()] for i in sample if i.item() not in ignore_index] def extract( checkpoint_path: str, data_folder: str, vocabulary_path: str = None, result_file: str = None ) -> List[Tuple[str, str]]: model, datamodule, config, vocabulary = get_pretrained_model(checkpoint_path, data_folder, vocabulary_path) model.eval() id_to_label = {v: k for k, v in vocabulary.label_to_id.items()} PAD = "<PAD>" SOS = "<SOS>" EOS = "<EOS>" ignore_index = [vocabulary.label_to_id[i] for i in [SOS, EOS, PAD]] if result_file is not None: f = open(result_file, "w") serialization_needed = True else: serialization_needed = False results = [] for batch in datamodule.test_dataloader(): logits = model.logits_from_batch(batch, None) with torch.no_grad(): predictions = logits.argmax(-1) for y_true, y_pred in zip(batch.labels.t(), predictions.t()): y_true_decode = "|".join(decode(y_true, id_to_label, ignore_index)) y_pred_decode = "|".join(decode(y_pred, id_to_label, ignore_index)) results.append((y_true_decode, y_pred_decode)) if serialization_needed: print(y_true_decode, y_pred_decode, file=f) return results if __name__ == "__main__": arg_parser = ArgumentParser() arg_parser.add_argument("checkpoint", type=str) arg_parser.add_argument("data_folder", type=str, default=None) arg_parser.add_argument("output", type=str, default=None) args = arg_parser.parse_args() if args.output is None: for item in extract(args.checkpoint, args.data_folder): print(item) else: extract(args.checkpoint, args.data_folder, result_file=args.output)
#-------------------------------------------------------------------------------- # Authors: # - Yik Lung Pang: y.l.pang@qmul.ac.uk # - Alessio Xompero: a.xompero@qmul.ac.uk # # MIT License # Copyright (c) 2021 CORSMAL # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. #-------------------------------------------------------------------------------- # Based on https://github.com/sholtodouglas/ur5pybullet/blob/master/ur5.py import os, inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) os.sys.path.insert(0, currentdir) import math import gym import sys from gym import spaces from gym.utils import seeding import numpy as np import time import pybullet as p from itertools import chain from collections import deque import random import pybullet_data from collections import namedtuple from attrdict import AttrDict import functools import time import itertools def setup(p, uid): controlJoints = ["shoulder_pan_joint","shoulder_lift_joint", "elbow_joint", "wrist_1_joint", "wrist_2_joint", "wrist_3_joint", "robotiq_85_left_knuckle_joint"] mimicParentName = "robotiq_85_left_knuckle_joint" mimicChildren = ["robotiq_85_right_knuckle_joint", "robotiq_85_left_inner_knuckle_joint", "robotiq_85_right_inner_knuckle_joint", "robotiq_85_left_finger_tip_joint", "robotiq_85_right_finger_tip_joint"] mimic_multiplier = [1, 1, 1, -1, -1] jointTypeList = ["REVOLUTE", "PRISMATIC", "SPHERICAL", "PLANAR", "FIXED"] numJoints = p.getNumJoints(uid) jointInfo = namedtuple("jointInfo", ["id","name","type","lowerLimit","upperLimit","maxForce","maxVelocity","controllable"]) joints = AttrDict() for i in range(numJoints): info = p.getJointInfo(uid, i) jointID = info[0] jointName = info[1].decode("utf-8") jointType = jointTypeList[info[2]] jointLowerLimit = info[8] jointUpperLimit = info[9] jointMaxForce = info[10] jointMaxVelocity = info[11] controllable = True if jointName in controlJoints else False info = jointInfo(jointID,jointName,jointType,jointLowerLimit, jointUpperLimit,jointMaxForce,jointMaxVelocity,controllable) if info.type=="REVOLUTE": # set revolute joint to static p.setJointMotorControl2(uid, info.id, p.VELOCITY_CONTROL, targetVelocity=0, force=0) joints[info.name] = info return joints, controlJoints, mimicParentName, mimicChildren, mimic_multiplier class ur5: def __init__(self, urdfRootPath=pybullet_data.getDataPath(), timeStep=0.01, vr = False, robotStartPos=[0.0,0.0,-0.1], maxGripperForce=0.1): self.robotUrdfPath = "./data/meshes/ur5/ur5.urdf" self.robotStartPos = robotStartPos self.robotStartOrn = p.getQuaternionFromEuler([0.0,0.0,math.pi]) self.maxGripperForce = maxGripperForce self.maxVelMultiplier = 1.0 self.xin = self.robotStartPos[0] self.yin = self.robotStartPos[1] self.zin = self.robotStartPos[2] self.reset() def reset(self): self.uid = p.loadURDF(os.path.join(os.getcwd(),self.robotUrdfPath), self.robotStartPos, self.robotStartOrn, flags=p.URDF_USE_INERTIA_FROM_FILE) self.joints, self.controlJoints, self.mimicParentName, self.mimicChildren, self.mimic_multiplier = setup(p, self.uid) self.endEffectorIndex = 7 # ee_link self.numJoints = p.getNumJoints(self.uid) self.active_joint_ids = [] for i, name in enumerate(self.controlJoints): joint = self.joints[name] self.active_joint_ids.append(joint.id) self.resetJointPoses() def getActionDimension(self): return 8 # position x,y,z and ori quat and finger angle def getObservationDimension(self): return len(self.getObservation()) def setPosition(self, pos, quat): p.resetBasePositionAndOrientation(self.uid,pos, quat) def resetJointPoses(self, initJointPose=[-1.6730971990388346, -1.6598406519858835, 2.3176031148228584, -0.6869744035891363, 1.466861827095387, 1.2471890665968965e-06]): # move to this ideal init point for i, jp in enumerate(initJointPose): p.resetJointState(self.uid, i+1, jp) def getObservation(self): observation = [] state = p.getLinkState(self.uid, self.endEffectorIndex, computeLinkVelocity = 1) pos = state[0] orn = state[1] observation.extend(list(pos)) observation.extend(list(orn)) joint_states = p.getJointStates(self.uid, self.active_joint_ids) joint_positions = list() joint_velocities = list() for joint in joint_states: joint_positions.append(joint[0]) joint_velocities.append(joint[1]) return joint_positions + joint_velocities + observation def action(self, motorCommands, target_quat, issue_action, delivery): if issue_action: dx = motorCommands[0] dy = motorCommands[1] dz = motorCommands[2] state = p.getLinkState(self.uid, self.endEffectorIndex) pos = list(state[0]) pos[0] = pos[0] + dx pos[1] = pos[1] + dy pos[2] = pos[2] + dz else: pos = [0.30, 0.65, 0.8] if delivery: orn = list(p.getQuaternionFromEuler([math.pi, 0.0, 0.0])) else: orn = target_quat jointPose = p.calculateInverseKinematics(self.uid, self.endEffectorIndex, pos, orn) gripper_opening_length = motorCommands[3] gripper_opening_angle = 0.715 - math.asin((gripper_opening_length - 0.010) / 0.1143) poses = [] indexes = [] maxForces = [] maxVelocities = [] # control ur5 for i, name in enumerate(self.controlJoints): if name==self.mimicParentName: continue joint = self.joints[name] poses.append(jointPose[i]) indexes.append(joint.id) maxForces.append(joint.maxForce) maxVelocities.append(joint.maxVelocity) p.setJointMotorControl2(self.uid, joint.id, p.POSITION_CONTROL, targetPosition=jointPose[i], positionGain=0.005, force=joint.maxForce, maxVelocity=joint.maxVelocity*self.maxVelMultiplier) # control gripper joint = self.joints[self.mimicParentName] p.setJointMotorControl2(self.uid, joint.id, p.POSITION_CONTROL, targetPosition=gripper_opening_angle, force=self.maxGripperForce, maxVelocity=joint.maxVelocity) for j in range(len(self.mimicChildren)): joint = self.joints[self.mimicChildren[j]] p.setJointMotorControl2(self.uid, joint.id, p.POSITION_CONTROL, targetPosition=gripper_opening_angle * self.mimic_multiplier[j], force=self.maxGripperForce, maxVelocity=joint.maxVelocity) def move_to(self, position_delta): x = position_delta[0] y = position_delta[1] z = position_delta[2] orn = position_delta[3:7] gripper_opening_length = position_delta[7] jointPose = p.calculateInverseKinematics(self.uid, self.endEffectorIndex, [x,y,z], orn) gripper_opening_angle = 0.715 - math.asin((gripper_opening_length - 0.010) / 0.1143) self.action(jointPose, gripper_opening_angle) return jointPose
for i in range(1, 13): print("No. {0:2} squared is {1:4} and cubed is {2:4}".format(i, i ** 2, i ** 3)) # it means it will take these many columns print() # left aligning for i in range(1, 13): print("No. {0:2} squared is {1:<4} and cubed is {2:<4}".format(i, i ** 2, i ** 3)) print() # center aligning for i in range(1, 13): print("No. {0:2} squared is {1:^4} and cubed is {2:^4}".format(i, i ** 2, i ** 3)) print() print("Pi is approximately {0:12}".format(22 / 7)) # prints 15 decimals generic print("Pi is approximately {0:12f}".format(22 / 7)) # 6 digit after the decimal print("Pi is approximately {0:12.50f}".format(22 / 7)) # 50 point after the decimal print("Pi is approximately {0:52.50f}".format(22 / 7)) print("Pi is approximately {0:62.50f}".format(22 / 7)) print("Pi is approximately {0:<62.50f}".format(22 / 7)) print("Pi is approximately {0:72.50f}".format(22 / 7)) print() # not mentioning anything, only the width for i in range(1, 13): print("No. {} squared is {} and cubed is {:4}".format(i, i ** 2, i ** 3)) name = "Anurag Garg" age = 24 print(name + f" is {age} years old") # formatting print(type(age)) print(f"Pi is approximately {22 / 7:12.50f}") pi = 22 / 7 print(f"Pi is approximately {pi:12.50f}")
# -*- coding: utf-8 -*- __author__ = 'joko' """ @author:joko @time: 16/11/16 上午10:48 """ import lib.Utils as U import GetFilePath @U.l() def case_yaml_file(): """ :return: 返回当前设备下的yaml test case列表 """ ini = U.ConfigIni() yaml_path = ini.get_ini('test_case', 'case') return GetFilePath.all_file_path(yaml_path, '.yaml') if __name__ == '__main__': print case_yaml_file()
__author__="congcong wang" import pickle import shutil import time from sklearn.metrics.pairwise import cosine_similarity from sentence_transformers import SentenceTransformer from tqdm import tqdm import nltk import os import logging logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.ERROR) logger = logging.getLogger(__name__) logger.addHandler(logging.StreamHandler()) logger.setLevel(logging.INFO) class SentenceSearch(): def __init__(self,instances,default_save="models_save/sentencesearch/",sentence_transformer='bert-base-nli-mean-tokens'): """ This class is used to extract insights as specified in https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge/tasks Considering the complexity of this method, this model is considered to be inapproporiate for query-based search :param instances: [(paper-id,paper-content),...] :param default_save: path for object serialization, we need this due to both large space and time computation complexity from scratch every time :param sentence_transformer: "bert-base-nli-mean-tokens" by default, more refers to https://github.com/UKPLab/sentence-transformers. This is expected to adapt to in-domain pre-trained models such as SciBERT or BioBERT """ self.index2idsent = {} self.embeddings=[] self.default_save=default_save self.embedder = SentenceTransformer(sentence_transformer) if not os.path.isdir(default_save) or not os.path.isfile( default_save + "-embeddings.pkl") or not os.path.isfile(default_save + "-index2idsent.pkl"): if os.path.isdir(default_save): shutil.rmtree(default_save) os.mkdir(default_save) logger.info("Not found the pre-saved files...") sentences_batch = [] batch_size = 8 index=0 for ins in tqdm(instances, desc="Reading sentences from instances"): for sent in nltk.sent_tokenize(ins[1]): if len(sent)>=15: self.index2idsent[index]=(ins[0],sent) index+=1 sentences_batch.append(sent) if index%batch_size==0: batch_embeddings=self.embedder.encode(sentences_batch) self.embeddings.extend(batch_embeddings) sentences_batch=[] if sentences_batch!=[]: batch_embeddings = self.embedder.encode(sentences_batch) self.embeddings.extend(batch_embeddings) assert len(self.embeddings)==len(self.index2idsent) with open(default_save+"-embeddings.pkl", 'wb') as f: pickle.dump(self.embeddings, f) logger.info("embeddings are saved to " + default_save+"-embeddings.pkl") with open(default_save+"-index2idsent.pkl", 'wb') as f: pickle.dump(self.index2idsent, f) logger.info("Index2idsent is saved to " + default_save+"-index2idsent.pkl") else: logger.info("Loading sentences embeddings object from " + default_save + "-embeddings.pkl") with open(default_save + "-embeddings.pkl", 'rb') as pickled: self.embeddings = pickle.load(pickled) logger.info("Loading ids object from " + default_save + "-index2idsent.pkl") with open(default_save + "-index2idsent.pkl", 'rb') as pickled: self.index2idsent = pickle.load(pickled) logger.info("Shape of embeddings: "+str(len(self.embeddings))+","+str(len(self.embeddings[0]))) def query_by_kaggle_tasks(self,tasks,top_k=100): """ This method is used to query insights for each task as in https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge/tasks :param tasks: the dictionary paired by {"task_name":"task_desc",...} :param top_k: select the top k most semantic similar sentences from the sentence-level corpus, namely the insights for each task :return: {"task_name",[top_k_sentences],} """ tasks2ranked_indices={} if not os.path.isdir(self.default_save) or not os.path.isfile( self.default_save + "-tasks2ranked_indices.pkl"): for name,query in tqdm(tasks.items()): logger.info("Computing for "+name) query_embedding = self.embedder.encode([query]) start = time.time() cosine_similarities=cosine_similarity(query_embedding,self.embeddings).flatten() ranked_indices=cosine_similarities.argsort() tasks2ranked_indices[name]=ranked_indices logger.info(("Test time: "+str(time.time() - start))) with open(self.default_save+"-tasks2ranked_indices.pkl", 'wb') as f: pickle.dump(tasks2ranked_indices, f) logger.info("tasks2ranked_indices is saved to " + self.default_save+"-tasks2ranked_indices.pkl") else: logger.info("Loading tasks2ranked_indices object from " + self.default_save + "-tasks2ranked_indices.pkl") with open(self.default_save + "-tasks2ranked_indices.pkl", 'rb') as pickled: tasks2ranked_indices = pickle.load(pickled) return_results={} for task_name,ranked_indices in tasks2ranked_indices.items(): related_sents_indices = ranked_indices[:-top_k-1:-1] results=[(self.index2idsent[indice][0],self.index2idsent[indice][1]) for indice in related_sents_indices] return_results[task_name]=results with open(self.default_save + "-results_save.pkl", 'wb') as f: pickle.dump(return_results, f) logger.info("results are saved to " + self.default_save + "-results_save.pkl") return return_results @classmethod def load_from_save(self,save_path="models_save/sentencesearch/-results_save.pkl"): with open(save_path, 'rb') as pickled: return_results = pickle.load(pickled) return return_results
from .mnist import * from .cifar import * from .imagenet import * def load_dataset(name: str, input_node: str, label_node: str, *args, **kwargs): name = name.strip().lower() g = globals() options = [n[5:] for n in g if n.startswith('load_') and n != 'load_dataset'] if name not in options: raise NameError('Dataset "%s" not found. Options: %s' % (name, ', '.join(options))) return g['load_' + name](input_node, label_node, *args, **kwargs) def dataset_shape(name: str): """ Returns the number of classes followed by the shape of a sample in a given dataset. """ name = name.strip().lower() g = globals() options = [n[5:] for n in g if n.startswith('load_') and n != 'load_dataset'] if name not in options: raise NameError('Dataset "%s" not found. Options: %s' % (name, ', '.join(options))) return g[name + '_shape']() def dataset_loss(name: str): """ Returns the type of loss function from the dataset. """ name = name.strip().lower() g = globals() options = [n[5:] for n in g if n.startswith('load_') and n != 'load_dataset'] if name not in options: raise NameError('Dataset "%s" not found. Options: %s' % (name, ', '.join(options))) return g[name + '_loss']()
from django.conf import settings from django.conf.urls import url from django.contrib import admin from django.urls import path, include from django.views.generic import RedirectView from django.views.generic import TemplateView from drf_spectacular.views import SpectacularAPIView, SpectacularSwaggerView from formidable.urls import common_urls urlpatterns = [ path("", RedirectView.as_view(pattern_name="admin:index", permanent=True)), path("api/admin/docs/", include("django.contrib.admindocs.urls"), name="docs"), path("api/admin/", admin.site.urls), path("api/schema/", SpectacularAPIView.as_view(), name="schema"), path("api/swagger/", SpectacularSwaggerView.as_view(url_name="schema")), path("api/", include(common_urls)), path("api/i18n/", include("django.conf.urls.i18n")), path("api/auth/", include("dj_rest_auth.urls")), path("api/auth/registration/", include("dj_rest_auth.registration.urls")), # This url is used by django-allauth and empty TemplateView is # defined just to allow reverse() call inside app, for example when email # with verification link is being sent, then allauth by defaul redirects # to a view to tell you need to confirm email. path("dummy/", TemplateView.as_view(), name="account_email_verification_sent"), path( "api/auth/password/reset/confirm/<slug:uidb64>/<slug:token>/", TemplateView.as_view(), name="password_reset_confirm", ), url(r"^ckeditor/", include("ckeditor_uploader.urls")), ] if settings.DEBUG: import debug_toolbar from django.conf.urls.static import static urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) urlpatterns += [path("api/__debug__/", include(debug_toolbar.urls), name="debug")]
def MatchingLine_IEEE39(num1, num2): import Excel value = '0' data = Excel.read_excel('IEEE39_Parameters.xlsx', 'Line Parameters', 3, 48, 2, 4, 1.0) if num1 == '01' and num2 == '01' : value = '1' if num1 == '02' and num2 == '39' : value = '2' if num1 == '39' and num2 == '02' : value = '2' if num1 == '17' and num2 == '17' : value = '30' if num1 == '18' and num2 == '27' : value = '31' if num1 == '27' and num2 == '18' : value = '31' else : for i in range(data.shape[1]): if num1 == data[1, i] : if num2 == data[2, i] : value = data[0, i] break if num1 == data[2, i] : if num2 == data[1, i] : value = data[0, i] break return value # # test # print(MatchingLine_IEEE39('02', '39')) def MatchingGen_IEEE39(num): import Excel data = Excel.read_excel('IEEE39_Parameters.xlsx', 'Generator Parameters', 3, 12, 1, 2, 1.0) for i in range(data.shape[1]): if num == data[0, i] : value = data[1, i] break if num == data[1, i] : value = data[0, i] break return value # # test # print(MatchingGen('02')) def MatchingLine_ACTIVSg200(num): import Excel value = '0' data = Excel.read_excel('ACTIVSg200_Parameters - copy.xlsx','Line Parameters', 3, 247, 1, 16, 1.0) for i in range(data.shape[1]): if num == data[1, i] : value = data[0, i] prob = float(data[15, i]) break if num == data[0, i] : value = data[1, i] prob = float(data[15, i]) break return value, prob # # test # print(MatchingLine_ACTIVSg200('1')) def MatchingGen_ACTIVSg200(num): import Excel data = Excel.read_excel('ACTIVSg200_Parameters - copy.xlsx', 'Generator Parameters', 3, 51, 1, 2, 1.0) for i in range(data.shape[1]): if num == data[0, i] : value = data[1, i] break if num == data[1, i] : value = data[0, i] break return value # # # test # print(MatchingGen_ACTIVSg200('sym_104_1')) def MatchingLine_ACTIVSg2000(num): import Excel value = '0' data = Excel.read_excel('ACTIVSg2000_Parameters.xlsx','Line Parameters', 3, 3208, 1, 12, 1.0) for i in range(data.shape[1]): if num == data[1, i] : value = data[0, i] prob = float(data[11, i]) break if num == data[0, i] : value = data[1, i] prob = float(data[11, i]) break return value, prob # # test # print(MatchingLine_ACTIVSg2000('lne_100_174_1')) def MatchingGen_ACTIVSg2000(num): import Excel data = Excel.read_excel('ACTIVSg2000_Parameters.xlsx', 'Generator Parameters', 3, 546, 1, 2, 1.0) for i in range(data.shape[1]): if num == data[0, i] : value = data[1, i] break if num == data[1, i] : value = data[0, i] break return value # # test # print(MatchingGen_ACTIVSg200('sym_104_1')) def Matching(): import Excel import csv data = Excel.read_excel('Random_N-3_ACTIVSg2000.xlsx', 'Random_N-3_ACTIVSg2000', 1, 1000, 1, 5, 1.0) with open("match.csv", 'a', newline='') as csvfile: writer = csv.writer(csvfile) for i in range(data.shape[1]): num1 = MatchingLine_ACTIVSg2000(data[1, i]) num2 = MatchingLine_ACTIVSg2000(data[2, i]) num3 = MatchingLine_ACTIVSg2000(data[3, i]) writer.writerow([data[0, i], data[1, i], data[2, i], data[3, i], num1, num2, num3, data[4, i]]) # Matching() def RC_Matching(): import Excel import csv data = Excel.read_excel('RC_ACTIVSg200.xlsx', 'N-2', 1, 784, 6, 7, 1.0) with open("match.csv", 'a', newline='') as csvfile: writer = csv.writer(csvfile) for i in range(data.shape[1]): [num1, prob1] = MatchingLine_ACTIVSg200(data[0, i]) [num2, prob2] = MatchingLine_ACTIVSg200(data[1, i]) # num3 = MatchingLine_ACTIVSg2000(data[3, i]) print(i, num1, num2, prob1, prob2) writer.writerow([i, num1, num2, data[0, i], data[1, i], float(prob1)*float(prob2)]) # RC_Matching() def delete_none(input): new2 = [] for item in input: if item: new1 = [] for x in item: if x: new1.append(x) new2.append(new1) return new2 # print(delete_none(delete_none([[''], [''], ['', '3193'], ['', '3166', '3056', '3089'], ['', '3014', '3122'], [''], [''], [''], [''], ['']])))
# app/auth/__init__.py """ This init file creates a blueprint for the authentication routes of the application """ from flask import Blueprint auth = Blueprint('auth', __name__) from . import views
# # Copyright (C) 2009 - 2019 Isotropix SAS. All rights reserved. # # The information in this file is provided for the exclusive use of # the software licensees of Isotropix. Contents of this file may not # be distributed, copied or duplicated in any form, in whole or in # part, without the prior written permission of Isotropix SAS. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ## @package clarisse_net # This module defines to python Clarisse helpers for remote connection to Clarisse Command Port. # # import struct import socket ## Remote Error handler class ClarisseNetError(Exception): def __init__(self, command, value): self.value = value self.command = command def __str__(self): return '%s\n%s' % (self.value, self.command) def get_error(self): return '%s\n%s' % (self.value, self.command) ## Remote connection handler. By default, it will try to connect to localhost on port 55000 class ClarisseNet: ## Internal class used as connection status enum class Status: Ok = 1 Error = -1 ## Internal class used as execution mode enum class Mode: Script = 0 Statement = 1 ## Default constructor. By default, tries to connect to localhost:55000 def __init__(self, host = "localhost", port=55000): self.status = self.Status.Error self.connect(host, port) ## Connect to the command port of a Clarisse/CNODE host. # @param host The name or the IP address of the remote Clarisse host. # @param port The command port set on the remote Clarisse host. def connect(self, host, port): self.close() self.status = self.Status.Error try: self._socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self._socket.connect((host, port)) except: raise ValueError('Failed to connect to ' + host + ':' + str(port)) self.status = self.Status.Ok ## Run the specifed python script on a Clarisse/CNODE host. # @param script A block of python code (as string) to execute on the remote Clarisse host. # @return The method doesn't return result. def run(self, script): # Execute a block of python code on the remote host self._send(script, self.Mode.Script) ## Evaluate the specifed python statemement on a Clarisse/CNODE host. # @param statement A block of python code (as string) to execute on the remote Clarisse host. # @return The result is returned as string. def evaluate(self, statement): # Evaluate the input statement on the remote host and return the result as string. return self._send(statement, self.Mode.Statement) ## Close the connection to the command port. def close(self): if (self.status == self.Status.Ok): self._socket.close() ## Make sure the connection is properly closed def __del__(self): self.close() ## internal method used to communicate with the remove command port def _send(self, command, mode): if (self.status != self.Status.Ok): raise RuntimeError('Not connected to Clarisse') ## send the command command_size = len(command) + 1 command_size = struct.pack("<I", command_size) self._socket.send(command_size) packet = str(mode) + command self._socket.send(packet) ## receive result size result_size = self._socket.recv(4) result_size = struct.unpack("<I", result_size)[0] ## receive result must_recv = True result = '' remaining = result_size while (must_recv): result += self._socket.recv(remaining) remaining = result_size - len(result) if remaining == 0: must_recv = False if (result[0] == '0'): raise ClarisseNetError(result[1:], command) else: result = result[1:] if (result == ''): return None else: return result
"""Application factory for accounts app.""" from flask import Flask from flask_s3 import FlaskS3 from arxiv import vault from arxiv.base import Base from arxiv.base.middleware import wrap from arxiv.users import auth from accounts.routes import ui from accounts.services import SessionStore, legacy, users s3 = FlaskS3() def create_web_app() -> Flask: """Initialize and configure the accounts application.""" app = Flask('accounts') app.config.from_pyfile('config.py') SessionStore.init_app(app) legacy.init_app(app) users.init_app(app) app.register_blueprint(ui.blueprint) Base(app) # Gives us access to the base UI templates and resources. auth.Auth(app) # Handless sessions and authn/z. s3.init_app(app) middleware = [auth.middleware.AuthMiddleware] if app.config['VAULT_ENABLED']: middleware.insert(0, vault.middleware.VaultMiddleware) wrap(app, middleware) if app.config['VAULT_ENABLED']: app.middlewares['VaultMiddleware'].update_secrets({}) if app.config['CREATE_DB']: with app.app_context(): legacy.create_all() users.create_all() return app
import configparser import requests # TODO: don't hardcode config file config = configparser.ConfigParser() config.read('etc/delaphone.ini') def routesms_send(destination, message): url = config['sms']['url'] params = { "username": config['sms']['username'], "password": config['sms']['password'], "type": "0", "dlr": "1", "destination": destination, "source": config['sms']['source'], "message": message } requests.get(url, params=params) # TODO: get status code from RouteSMS
# coding: utf-8 # In[2]: ''' Statistical Computing for Scientists and Engineers Homework 4 Problem 3 b1 Fall 2018 University of Notre Dame ''' import numpy as np import matplotlib.pyplot as plt import math import scipy.stats # the true distribution def f(v): return scipy.stats.gamma.pdf(v,a=4.3,scale=1/6.2) # the proposal distribution def q(v): return scipy.stats.gamma.pdf(v,a=5,scale=1/6) #Initialization numSamples = 50000 samp= np.zeros(numSamples) samp[0]=5 #Accept - Reject algorithm, Sample from laplacian #def accept_reject(): # samples = np.random.gamma(4,1/7,numSamples) # acceptanceProb = f(samples)/(M*q(samples)) # unif_samp = np.random.rand(1,numSamples) # accepted = unif_samp < acceptanceProb # return samples, accepted, unif_samp # all the samps, accepted, unif_samps #samps,accepteds,unif_samps = accept_reject() for i in range(1, numSamples): y = scipy.stats.gamma.rvs(5,0,scale=1/6); prob = min(1, q(samp[i-1])/q(y)*(f(y)/f(samp[i-1]))); u = np.random.uniform() if ( u <= prob): samp[i] = y; else: samp[i] = samp[i-1]; #calculate the expectation E = np.array([0.0]*numSamples) Sum = 0 List = np.array([0]*numSamples) for i in range(0,numSamples): Sum= Sum+samp[i]; E[i]=Sum/(i+1); List[i]=i+1 #plot the expectation plt.figure(figsize=(8,8)) plt.plot(List,E) plt.ylabel("<E>") plt.xlabel("Iteration") plt.savefig('h4p3b21.png') plt.show() #calculate the convergence cov = np.array([0.0]*numSamples) for i in range(0,numSamples): cov[i]=np.mean(pow(E[0:i]-samp[0:i],2)) #plot the covergence plt.figure(figsize=(8,8)) plt.plot(List,cov) plt.ylabel("COV") plt.xlabel("Iteration") plt.savefig('h4p3b22.png') plt.show() x = np.linspace(0,10,100000) # plot histogram & true distribution plt.figure(figsize=(8,8)) plt.hist(samp,bins=100, alpha=0.4, label=u'sampled histogram', normed=True) plt.plot(x, f(x), 'r', label=u'True distribution') # f(x) is the True distribution plt.legend() plt.xlim([0,8]) plt.savefig('h4p3b23.png') plt.show() # In[4]: f=open("/Users/shijiale1995/ecovb2.txt","a+") for i in range(0,numSamples): f.write(str(E[i])) f.write(" ") f.write(str(cov[i])) f.write("\n") f.close()
from messy2sql.core import Messy2SQL, MESSYTABLES_TO_SQL_DIALECT_MAPPING
from .shell import ShellSubcommand
# Reference: https://chrisalbon.com/python/basics/set_the_color_of_a_matplotlib/ # Reference: http://wiki.scipy.org/Cookbook/Matplotlib/Show_colormaps import matplotlib.pyplot as plt import numpy as np n = 100 r = 2 * np.random.rand(n) theta = 2 * np.pi * np.random.rand(n) area = 200 * r ** 2 * np.random.rand(n) colors = theta plt.scatter(theta, r, c=colors, s=area, cmap=plt.cm.cool) print(plt.show())
from django.views.generic.dates import ArchiveIndexView, YearArchiveView, MonthArchiveView, DayArchiveView, DateDetailView from easyblog import settings from easyblog.models import Post class PostArchiveIndexView(ArchiveIndexView): def get_context_data(self, **kwargs): # Call the base implementation first to get a context context = super(PostArchiveIndexView, self).get_context_data(**kwargs) context.update({'url_extra_kwargs': self.kwargs}) return context class PostYearArchiveView(YearArchiveView): def get_context_data(self, **kwargs): # Call the base implementation first to get a context context = super(PostYearArchiveView, self).get_context_data(**kwargs) context.update({'url_extra_kwargs': self.kwargs}) return context class PostMonthArchiveView(MonthArchiveView): def get_context_data(self, **kwargs): # Call the base implementation first to get a context context = super(PostMonthArchiveView, self).get_context_data(**kwargs) context.update({'url_extra_kwargs': self.kwargs}) return context class PostDayArchiveView(DayArchiveView): def get_context_data(self, **kwargs): # Call the base implementation first to get a context context = super(PostDayArchiveView, self).get_context_data(**kwargs) context.update({'url_extra_kwargs': self.kwargs}) return context archive_index_view = PostArchiveIndexView.as_view( date_field='publish_date', paginate_by=settings.POSTS_PER_PAGE, allow_empty=True, queryset=Post.live.all(), context_object_name='posts', template_name='easyblog/posts/archive_index.html' ) archive_year_view = PostYearArchiveView.as_view( date_field='publish_date', paginate_by=settings.POSTS_PER_PAGE, allow_empty=True, queryset=Post.live.all(), context_object_name='posts', make_object_list=True, template_name='easyblog/posts/archive_year.html' ) archive_month_view = PostMonthArchiveView.as_view( date_field='publish_date', paginate_by=settings.POSTS_PER_PAGE, allow_empty=True, queryset=Post.live.all(), context_object_name='posts', template_name='easyblog/posts/archive_month.html', month_format='%m' ) archive_day_view = PostDayArchiveView.as_view( date_field='publish_date', paginate_by=settings.POSTS_PER_PAGE, allow_empty=True, queryset=Post.live.all(), context_object_name='posts', template_name='easyblog/posts/archive_day.html', month_format='%m' ) date_detail_view = DateDetailView.as_view( date_field='publish_date', queryset=Post.live.all(), context_object_name='post', template_name='easyblog/posts/detail.html', month_format='%m' )
from .aleph import Aleph
""" Tutorial ============================================================================== **hardDecisions** is library for representing and evaluating decision trees. .. image:: ./images/tree_example.png :width: 550px :align: center >>> from hardDecisions.decisiontree import * >>> tree = DecisionTree() >>> tree.decision_node(name='A', ... branches=[(-50, 1), ... ( 0, 2)], ... max=True) >>> tree.chance_node(name='B', ... branches=[(50, 250, 3), ... (50, 0, 4)]) >>> tree.terminal_node(expr='A') >>> tree.decision_node(name='C', ... branches=[(-120, 5), ... ( -50, 6), ... ( -80, 7)], ... max=True) >>> tree.terminal_node(expr='A+B') >>> tree.terminal_node(expr='A+B+C') >>> tree.chance_node(name='D', ... branches=[(50, 0, 8), ... (50, -120, 8)]) >>> tree.chance_node(name='E', ... branches=[(70, 0, 9), ... (30, -120, 9)]) >>> tree.terminal_node(expr='A+B+C+D') >>> tree.terminal_node(expr='A+B+C+E') >>> tree.display_nodes() # doctest: +NORMALIZE_WHITESPACE Node 0 Type: DECISION - Maximum Payoff Name: A Branches: Value Next Node -50.000 1 0.000 2 <BLANKLINE> Node 1 Type: CHANCE Name: B Branches: Chance Value Next Node 50.00 250.000 3 50.00 0.000 4 <BLANKLINE> Node 2 Type: TERMINAL Expr: A <BLANKLINE> Node 3 Type: DECISION - Maximum Payoff Name: C Branches: Value Next Node -120.000 5 -50.000 6 -80.000 7 <BLANKLINE> Node 4 Type: TERMINAL Expr: A+B <BLANKLINE> Node 5 Type: TERMINAL Expr: A+B+C <BLANKLINE> Node 6 Type: CHANCE Name: D Branches: Chance Value Next Node 50.00 0.000 8 50.00 -120.000 8 <BLANKLINE> Node 7 Type: CHANCE Name: E Branches: Chance Value Next Node 70.00 0.000 9 30.00 -120.000 9 <BLANKLINE> Node 8 Type: TERMINAL Expr: A+B+C+D <BLANKLINE> Node 9 Type: TERMINAL Expr: A+B+C+E <BLANKLINE> >>> tree.build_tree() >>> tree.display_tree() # doctest: +NORMALIZE_WHITESPACE | | #0 \-------[D] | | #1 | A=-50 +-------[C] | | | | #2 | | B=250 | | Prob=50.00 | +-------[D] | | | | | | #3 | | | C=-120 | | +-------[T] A+B+C | | | | | | #4 | | | C=-50 | | +-------[C] | | | | | | | | #5 | | | | D=0 | | | | Prob=50.00 | | | +-------[T] A+B+C+D | | | | | | | | #6 | | | | D=-120 | | | | Prob=50.00 | | | \-------[T] A+B+C+D | | | | | | #7 | | | C=-80 | | \-------[C] | | | | | | #8 | | | E=0 | | | Prob=70.00 | | +-------[T] A+B+C+E | | | | | | #9 | | | E=-120 | | | Prob=30.00 | | \-------[T] A+B+C+E | | | | #10 | | B=0 | | Prob=50.00 | \-------[T] A+B | | #11 | A=0 \-------[T] A >>> tree.display_tree(maxdeep=2) # doctest: +NORMALIZE_WHITESPACE | | #0 \-------[D] | | #1 | A=-50 +-------[C] | | | | #2 | | B=250 | | Prob=50.00 | +-------[D] | | | | #10 | | B=0 | | Prob=50.00 | \-------[T] A+B | | #11 | A=0 \-------[T] A >>> tree.evaluate() >>> tree.display_tree() # doctest: +NORMALIZE_WHITESPACE | | #0 | ExpVal=20.00 | (selected strategy) \-------[D] | | #1 | A=-50 | ExpVal=20.00 | (selected strategy) +-------[C] | | | | #2 | | B=250 | | Prob=50.00 | | ExpVal=90.00 | | (selected strategy) | +-------[D] | | | | | | #3 | | | C=-120 | | | PathProb=0.00 | | | ExpVal=80.00 | | +-------[T] A+B+C | | | | | | #4 | | | C=-50 | | | ExpVal=90.00 | | | (selected strategy) | | +-------[C] | | | | | | | | #5 | | | | D=0 | | | | Prob=50.00 | | | | PathProb=25.00 | | | | ExpVal=150.00 | | | | (selected strategy) | | | +-------[T] A+B+C+D | | | | | | | | #6 | | | | D=-120 | | | | Prob=50.00 | | | | PathProb=25.00 | | | | ExpVal=30.00 | | | | (selected strategy) | | | \-------[T] A+B+C+D | | | | | | #7 | | | C=-80 | | | ExpVal=84.00 | | \-------[C] | | | | | | #8 | | | E=0 | | | Prob=70.00 | | | PathProb=0.00 | | | ExpVal=120.00 | | +-------[T] A+B+C+E | | | | | | #9 | | | E=-120 | | | Prob=30.00 | | | PathProb=0.00 | | | ExpVal=0.00 | | \-------[T] A+B+C+E | | | | #10 | | B=0 | | Prob=50.00 | | PathProb=50.00 | | ExpVal=-50.00 | | (selected strategy) | \-------[T] A+B | | #11 | A=0 | PathProb=0.00 | ExpVal=0.00 \-------[T] A >>> tree.display_tree(selected_strategy=True) # doctest: +NORMALIZE_WHITESPACE | | #0 | ExpVal=20.00 | (selected strategy) \-------[D] | | #1 | A=-50 | ExpVal=20.00 | (selected strategy) \-------[C] | | #2 | B=250 | Prob=50.00 | ExpVal=90.00 | (selected strategy) +-------[D] | | | | #4 | | C=-50 | | ExpVal=90.00 | | (selected strategy) | \-------[C] | | | | #5 | | D=0 | | Prob=50.00 | | PathProb=25.00 | | ExpVal=150.00 | | (selected strategy) | +-------[T] A+B+C+D | | | | #6 | | D=-120 | | Prob=50.00 | | PathProb=25.00 | | ExpVal=30.00 | | (selected strategy) | \-------[T] A+B+C+D | | #10 | B=0 | Prob=50.00 | PathProb=50.00 | ExpVal=-50.00 | (selected strategy) \-------[T] A+B >>> tree.tree[2]['forced_branch_idx'] = 2 >>> tree.evaluate() >>> tree.display_tree() # doctest: +NORMALIZE_WHITESPACE | | #0 | ExpVal=17.00 | (selected strategy) \-------[D] | | #1 | A=-50 | ExpVal=17.00 | (selected strategy) +-------[C] | | | | #2 | | B=250 | | Prob=50.00 | | ExpVal=84.00 | | (selected strategy) | | (forced branch = 2) | +-------[D] | | | | | | #3 | | | C=-120 | | | PathProb=0.00 | | | ExpVal=80.00 | | +-------[T] A+B+C | | | | | | #4 | | | C=-50 | | | ExpVal=90.00 | | +-------[C] | | | | | | | | #5 | | | | D=0 | | | | Prob=50.00 | | | | PathProb=0.00 | | | | ExpVal=150.00 | | | +-------[T] A+B+C+D | | | | | | | | #6 | | | | D=-120 | | | | Prob=50.00 | | | | PathProb=0.00 | | | | ExpVal=30.00 | | | \-------[T] A+B+C+D | | | | | | #7 | | | C=-80 | | | ExpVal=84.00 | | | (selected strategy) | | \-------[C] | | | | | | #8 | | | E=0 | | | Prob=70.00 | | | PathProb=35.00 | | | ExpVal=120.00 | | | (selected strategy) | | +-------[T] A+B+C+E | | | | | | #9 | | | E=-120 | | | Prob=30.00 | | | PathProb=15.00 | | | ExpVal=0.00 | | | (selected strategy) | | \-------[T] A+B+C+E | | | | #10 | | B=0 | | Prob=50.00 | | PathProb=50.00 | | ExpVal=-50.00 | | (selected strategy) | \-------[T] A+B | | #11 | A=0 | PathProb=0.00 | ExpVal=0.00 \-------[T] A >>> tree.tree[2]['forced_branch_idx'] = None >>> tree.evaluate() >>> tree.display_tree() # doctest: +NORMALIZE_WHITESPACE | | #0 | ExpVal=20.00 | (selected strategy) \-------[D] | | #1 | A=-50 | ExpVal=20.00 | (selected strategy) +-------[C] | | | | #2 | | B=250 | | Prob=50.00 | | ExpVal=90.00 | | (selected strategy) | +-------[D] | | | | | | #3 | | | C=-120 | | | PathProb=0.00 | | | ExpVal=80.00 | | +-------[T] A+B+C | | | | | | #4 | | | C=-50 | | | ExpVal=90.00 | | | (selected strategy) | | +-------[C] | | | | | | | | #5 | | | | D=0 | | | | Prob=50.00 | | | | PathProb=25.00 | | | | ExpVal=150.00 | | | | (selected strategy) | | | +-------[T] A+B+C+D | | | | | | | | #6 | | | | D=-120 | | | | Prob=50.00 | | | | PathProb=25.00 | | | | ExpVal=30.00 | | | | (selected strategy) | | | \-------[T] A+B+C+D | | | | | | #7 | | | C=-80 | | | ExpVal=84.00 | | \-------[C] | | | | | | #8 | | | E=0 | | | Prob=70.00 | | | PathProb=0.00 | | | ExpVal=120.00 | | +-------[T] A+B+C+E | | | | | | #9 | | | E=-120 | | | Prob=30.00 | | | PathProb=0.00 | | | ExpVal=0.00 | | \-------[T] A+B+C+E | | | | #10 | | B=0 | | Prob=50.00 | | PathProb=50.00 | | ExpVal=-50.00 | | (selected strategy) | \-------[T] A+B | | #11 | A=0 | PathProb=0.00 | ExpVal=0.00 \-------[T] A >>> tree.tree[1]['forced_branch_idx'] = 0 >>> tree.tree[4]['forced_branch_idx'] = 0 >>> tree.evaluate() >>> tree.display_tree() # doctest: +NORMALIZE_WHITESPACE | | #0 | ExpVal=150.00 | (selected strategy) \-------[D] | | #1 | A=-50 | ExpVal=150.00 | (selected strategy) | (forced branch = 0) +-------[C] | | | | #2 | | B=250 | | Prob=50.00 | | ExpVal=150.00 | | (selected strategy) | +-------[D] | | | | | | #3 | | | C=-120 | | | PathProb=0.00 | | | ExpVal=80.00 | | +-------[T] A+B+C | | | | | | #4 | | | C=-50 | | | ExpVal=150.00 | | | (selected strategy) | | | (forced branch = 0) | | +-------[C] | | | | | | | | #5 | | | | D=0 | | | | Prob=50.00 | | | | PathProb=100.00 | | | | ExpVal=150.00 | | | | (selected strategy) | | | +-------[T] A+B+C+D | | | | | | | | #6 | | | | D=-120 | | | | Prob=50.00 | | | | PathProb=0.00 | | | | ExpVal=30.00 | | | \-------[T] A+B+C+D | | | | | | #7 | | | C=-80 | | | ExpVal=84.00 | | \-------[C] | | | | | | #8 | | | E=0 | | | Prob=70.00 | | | PathProb=0.00 | | | ExpVal=120.00 | | +-------[T] A+B+C+E | | | | | | #9 | | | E=-120 | | | Prob=30.00 | | | PathProb=0.00 | | | ExpVal=0.00 | | \-------[T] A+B+C+E | | | | #10 | | B=0 | | Prob=50.00 | | PathProb=0.00 | | ExpVal=-50.00 | \-------[T] A+B | | #11 | A=0 | PathProb=0.00 | ExpVal=0.00 \-------[T] A >>> tree.tree[1]['forced_branch_idx'] = None >>> tree.tree[4]['forced_branch_idx'] = None >>> tree.evaluate() >>> tree.display_tree() # doctest: +NORMALIZE_WHITESPACE | | #0 | ExpVal=20.00 | (selected strategy) \-------[D] | | #1 | A=-50 | ExpVal=20.00 | (selected strategy) +-------[C] | | | | #2 | | B=250 | | Prob=50.00 | | ExpVal=90.00 | | (selected strategy) | +-------[D] | | | | | | #3 | | | C=-120 | | | PathProb=0.00 | | | ExpVal=80.00 | | +-------[T] A+B+C | | | | | | #4 | | | C=-50 | | | ExpVal=90.00 | | | (selected strategy) | | +-------[C] | | | | | | | | #5 | | | | D=0 | | | | Prob=50.00 | | | | PathProb=25.00 | | | | ExpVal=150.00 | | | | (selected strategy) | | | +-------[T] A+B+C+D | | | | | | | | #6 | | | | D=-120 | | | | Prob=50.00 | | | | PathProb=25.00 | | | | ExpVal=30.00 | | | | (selected strategy) | | | \-------[T] A+B+C+D | | | | | | #7 | | | C=-80 | | | ExpVal=84.00 | | \-------[C] | | | | | | #8 | | | E=0 | | | Prob=70.00 | | | PathProb=0.00 | | | ExpVal=120.00 | | +-------[T] A+B+C+E | | | | | | #9 | | | E=-120 | | | Prob=30.00 | | | PathProb=0.00 | | | ExpVal=0.00 | | \-------[T] A+B+C+E | | | | #10 | | B=0 | | Prob=50.00 | | PathProb=50.00 | | ExpVal=-50.00 | | (selected strategy) | \-------[T] A+B | | #11 | A=0 | PathProb=0.00 | ExpVal=0.00 \-------[T] A >>> tree17 = DecisionTree() >>> tree17.decision_node(name='A', ... branches=[(-300, 1), ... ( 0, 2)], ... max=True) >>> tree17.chance_node(name='B', ... branches=[(60, 600, 3), ... (40, 100, 3)]) >>> tree17.terminal_node(expr='A') >>> tree17.terminal_node(expr='A+B') >>> tree17.build_tree() >>> tree17.display_tree() # doctest: +NORMALIZE_WHITESPACE | | #0 \-------[D] | | #1 | A=-300 +-------[C] | | | | #2 | | B=600 | | Prob=60.00 | +-------[T] A+B | | | | #3 | | B=100 | | Prob=40.00 | \-------[T] A+B | | #4 | A=0 \-------[T] A >>> tree17.evaluate() >>> tree17.display_tree() # doctest: +NORMALIZE_WHITESPACE | | #0 | ExpVal=100.00 | (selected strategy) \-------[D] | | #1 | A=-300 | ExpVal=100.00 | (selected strategy) +-------[C] | | | | #2 | | B=600 | | Prob=60.00 | | PathProb=60.00 | | ExpVal=300.00 | | (selected strategy) | +-------[T] A+B | | | | #3 | | B=100 | | Prob=40.00 | | PathProb=40.00 | | ExpVal=-200.00 | | (selected strategy) | \-------[T] A+B | | #4 | A=0 | PathProb=0.00 | ExpVal=0.00 \-------[T] A >>> sensitivity = [] >>> for p in range(0, 101, 10): ... tree17.data[1]['branches'] = [(p, 600, 3), (100-p, 100, 3)] ... tree17.build_tree() ... tree17.evaluate() ... sensitivity.append(tree17.tree[0]['ExpVal']) >>> sensitivity [0, 0, 0, 0, 0.0, 50.0, 100.0, 150.0, 200.0, 250.0, 300.0] >>> sensitivity = [] >>> for p1 in range(100, -1, -10): ... aux = [] ... for p2 in range(0, 101, 10): ... tree.data[6]['branches'] = [(p1, 0, 8), (100-p1, -120, 8)] ... tree.data[7]['branches'] = [(p2, 0, 9), (100-p2, -120, 9)] ... tree.build_tree() ... tree.evaluate() ... aux.append(tree.tree[2]['opt_branch_idx']) ... sensitivity.append(aux) >>> for x in sensitivity: ... print(x) # doctest: +NORMALIZE_WHITESPACE [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2] [1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2] [1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2] [0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2] [0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2] [0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2] [0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2] [0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2] >>> tree = DecisionTree() >>> tree.decision_node(name='DecisionNode', ... branches=[(100, 1), ... (200, 1)], ... max=True) >>> tree.chance_node(name='ChanceNode', ... branches=[(20.0, 300, 2), ... (30.0, 400, 2), ... (50.0, 500, 2)]) >>> tree.terminal_node() >>> tree.build_tree() >>> tree.display_tree() # doctest: +NORMALIZE_WHITESPACE | | #0 \-------[D] | | #1 | DecisionNode=100 +-------[C] | | | | #2 | | ChanceNode=300 | | Prob=20.00 | +-------[T] DecisionNode+ChanceNode | | | | #3 | | ChanceNode=400 | | Prob=30.00 | +-------[T] DecisionNode+ChanceNode | | | | #4 | | ChanceNode=500 | | Prob=50.00 | \-------[T] DecisionNode+ChanceNode | | #5 | DecisionNode=200 \-------[C] | | #6 | ChanceNode=300 | Prob=20.00 +-------[T] DecisionNode+ChanceNode | | #7 | ChanceNode=400 | Prob=30.00 +-------[T] DecisionNode+ChanceNode | | #8 | ChanceNode=500 | Prob=50.00 \-------[T] DecisionNode+ChanceNode >>> tree.evaluate() >>> tree.display_tree() # doctest: +NORMALIZE_WHITESPACE | | #0 | ExpVal=630.00 | (selected strategy) \-------[D] | | #1 | DecisionNode=100 | ExpVal=530.00 +-------[C] | | | | #2 | | ChanceNode=300 | | Prob=20.00 | | PathProb=0.00 | | ExpVal=400.00 | +-------[T] DecisionNode+ChanceNode | | | | #3 | | ChanceNode=400 | | Prob=30.00 | | PathProb=0.00 | | ExpVal=500.00 | +-------[T] DecisionNode+ChanceNode | | | | #4 | | ChanceNode=500 | | Prob=50.00 | | PathProb=0.00 | | ExpVal=600.00 | \-------[T] DecisionNode+ChanceNode | | #5 | DecisionNode=200 | ExpVal=630.00 | (selected strategy) \-------[C] | | #6 | ChanceNode=300 | Prob=20.00 | PathProb=20.00 | ExpVal=500.00 | (selected strategy) +-------[T] DecisionNode+ChanceNode | | #7 | ChanceNode=400 | Prob=30.00 | PathProb=30.00 | ExpVal=600.00 | (selected strategy) +-------[T] DecisionNode+ChanceNode | | #8 | ChanceNode=500 | Prob=50.00 | PathProb=50.00 | ExpVal=700.00 | (selected strategy) \-------[T] DecisionNode+ChanceNode >>> tree.display_tree(maxdeep=1) # doctest: +NORMALIZE_WHITESPACE | | #0 | ExpVal=630.00 | (selected strategy) \-------[D] | | #1 | DecisionNode=100 | ExpVal=530.00 +-------[C] | | #5 | DecisionNode=200 | ExpVal=630.00 | (selected strategy) \-------[C] >>> tree.display_tree(selected_strategy=True) # doctest: +NORMALIZE_WHITESPACE | | #0 | ExpVal=630.00 | (selected strategy) \-------[D] | | #5 | DecisionNode=200 | ExpVal=630.00 | (selected strategy) \-------[C] | | #6 | ChanceNode=300 | Prob=20.00 | PathProb=20.00 | ExpVal=500.00 | (selected strategy) +-------[T] DecisionNode+ChanceNode | | #7 | ChanceNode=400 | Prob=30.00 | PathProb=30.00 | ExpVal=600.00 | (selected strategy) +-------[T] DecisionNode+ChanceNode | | #8 | ChanceNode=500 | Prob=50.00 | PathProb=50.00 | ExpVal=700.00 | (selected strategy) \-------[T] DecisionNode+ChanceNode >>> tree.tree[8]['ExpVal'] # doctest: +NORMALIZE_WHITESPACE 700 >>> tree.tree[8]['PathProb'] # doctest: +NORMALIZE_WHITESPACE 50.0 >>> tree.force_branch(branch_idx=0, branch_id=0) >>> tree.evaluate() >>> tree.display_tree(selected_strategy=True) # doctest: +NORMALIZE_WHITESPACE | | #0 | ExpVal=530.00 | (selected strategy) | (forced branch = 0) \-------[D] | | #1 | DecisionNode=100 | ExpVal=530.00 | (selected strategy) \-------[C] | | #2 | ChanceNode=300 | Prob=20.00 | PathProb=20.00 | ExpVal=400.00 | (selected strategy) +-------[T] DecisionNode+ChanceNode | | #3 | ChanceNode=400 | Prob=30.00 | PathProb=30.00 | ExpVal=500.00 | (selected strategy) +-------[T] DecisionNode+ChanceNode | | #4 | ChanceNode=500 | Prob=50.00 | PathProb=50.00 | ExpVal=600.00 | (selected strategy) \-------[T] DecisionNode+ChanceNode >>> tree.force_branch(branch_id=0) >>> tree.evaluate() >>> tree.compute_risk_profile() >>> tree.display_tree() # doctest: +NORMALIZE_WHITESPACE | | #0 | ExpVal=630.00 | Risk Profile: | Value Prob | 500.00 20.00 | 600.00 30.00 | 700.00 50.00 | (selected strategy) \-------[D] | | #1 | DecisionNode=100 | ExpVal=530.00 +-------[C] | | | | #2 | | ChanceNode=300 | | Prob=20.00 | | PathProb=0.00 | | ExpVal=400.00 | +-------[T] DecisionNode+ChanceNode | | | | #3 | | ChanceNode=400 | | Prob=30.00 | | PathProb=0.00 | | ExpVal=500.00 | +-------[T] DecisionNode+ChanceNode | | | | #4 | | ChanceNode=500 | | Prob=50.00 | | PathProb=0.00 | | ExpVal=600.00 | \-------[T] DecisionNode+ChanceNode | | #5 | DecisionNode=200 | ExpVal=630.00 | Risk Profile: | Value Prob | 500.00 20.00 | 600.00 30.00 | 700.00 50.00 | (selected strategy) \-------[C] | | #6 | ChanceNode=300 | Prob=20.00 | PathProb=20.00 | ExpVal=500.00 | (selected strategy) +-------[T] DecisionNode+ChanceNode | | #7 | ChanceNode=400 | Prob=30.00 | PathProb=30.00 | ExpVal=600.00 | (selected strategy) +-------[T] DecisionNode+ChanceNode | | #8 | ChanceNode=500 | Prob=50.00 | PathProb=50.00 | ExpVal=700.00 | (selected strategy) \-------[T] DecisionNode+ChanceNode >>> tree.tree[5]['RiskProfile'] # doctest: +NORMALIZE_WHITESPACE {500: 20.0, 600: 30.0, 700: 50.0} >>> tree.use_utility_function(exponential=True, R=100) >>> tree.evaluate() >>> tree.display_tree(selected_strategy=True) # doctest: +NORMALIZE_WHITESPACE | | #0 | ExpVal=630.00 | ExpUtl=1.00 | CE=597.28 | (selected strategy) \-------[D] | | #5 | DecisionNode=200 | ExpVal=630.00 | ExpUtl=1.00 | CE=597.28 | (selected strategy) \-------[C] | | #6 | ChanceNode=300 | Prob=20.00 | PathProb=20.00 | ExpVal=500.00 | ExpUtl=0.99 | CE=500.00 | (selected strategy) +-------[T] DecisionNode+ChanceNode | | #7 | ChanceNode=400 | Prob=30.00 | PathProb=30.00 | ExpVal=600.00 | ExpUtl=1.00 | CE=600.00 | (selected strategy) +-------[T] DecisionNode+ChanceNode | | #8 | ChanceNode=500 | Prob=50.00 | PathProb=50.00 | ExpVal=700.00 | ExpUtl=1.00 | CE=700.00 | (selected strategy) \-------[T] DecisionNode+ChanceNode >>> tree.use_utility_function() >>> tree.evaluate() >>> CE = [] >>> for R in range(100, 501, 100): ... tree.use_utility_function(exponential=True, R=R) ... tree.evaluate() ... CE.append(tree.tree[0]['CE']) >>> CE # doctest: +ELLIPSIS [597.27..., 613.86..., 619.39..., 622.11..., 623.73...] """ if __name__ == "__main__": import doctest doctest.testmod()
# Log Parser for RTI Connext. # # Copyright 2016 Real-Time Innovations, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Log parsing functions for Micro.""" from __future__ import absolute_import from io import BufferedReader, BytesIO, StringIO from json import load as json_load from pkg_resources import resource_stream def init(state): """Init Micro logs.""" with resource_stream('logparser.logs.micro', 'error_logs.json') as errors: if isinstance(errors, BytesIO): # Python 3.x errors = StringIO(errors.getvalue().decode("utf-8")) elif isinstance(errors, BufferedReader): # Python 3.5.x errors = StringIO(errors.read().decode("utf-8")) state["json_errors"] = json_load(errors) def on_micro_error(match, state, logger): """Error on Micro was thrown.""" kind = match[0] module_id = match[1] message_id = match[2] messages = state["json_errors"] if module_id in messages: module = messages[module_id] if message_id in module: message_description = module[message_id]["description"] message_name = module[message_id]["name"] log = "[" + message_name + "] " + message_description if kind == "ERROR" or kind == "PRECOND": logger.error(log) elif kind == "WARNING": logger.warning(log) elif kind == "INFO": logger.event(log)
# Write your solution here def column_correct(sudoku: list, column_no: int): list1 = [] list2 = [] for row in sudoku: if row[column_no] not in list1 and row[column_no] != 0: list1.append(row[column_no]) if row[column_no] != 0: list2.append(column_no) if len(list1) == len(list2): return True else: return False def row_correct(sudoku: list, row_no: int): check = True for item in sudoku[row_no]: if sudoku[row_no].count(item) >1 and item != 0: check = False return check def block_correct(sudoku: list, row_no: int, column_no: int): same_list = [] diff_list = [] for i in range(row_no, row_no + 3): for j in range(column_no, column_no + 3): if sudoku[i][j] != 0: same_list.append(sudoku[i][j]) if sudoku[i][j] not in diff_list: diff_list.append(sudoku[i][j]) if len(same_list) == len(diff_list): return True else: return False def sudoku_grid_correct(sudoku: list): check1 = True check2 = True for i in range(9): if column_correct(sudoku, i) and row_correct(sudoku, i): check1 = True else: check1 = False break for i in range(0,7,3): for j in range(0,7,3): if block_correct(sudoku, i,j ) == False: check2 = False break if check1 and check2: return True else: return False if __name__ == "__main__": sudoku1 = [ [ 2, 6, 7, 8, 3, 9, 5, 0, 4 ], [ 9, 0, 3, 5, 1, 0, 6, 0, 0 ], [ 0, 5, 6, 0, 0, 0, 8, 3, 9 ], [ 5, 1, 9, 0, 4, 6, 3, 2, 8 ], [ 8, 0, 2, 1, 0, 5, 7, 0, 6 ], [ 6, 7, 4, 3, 2, 0, 0, 0, 5 ], [ 0, 0, 0, 4, 5, 7, 2, 6, 3 ], [ 3, 2, 0, 0, 8, 0, 0, 5, 7 ], [ 7, 4, 5, 0, 0, 3, 9, 0, 1 ], ] print(sudoku_grid_correct(sudoku1)) sudoku = [ [ 2, 6, 7, 8, 3, 9, 5, 0, 4 ], [ 9, 0, 3, 5, 1, 0, 6, 0, 0 ], [ 0, 5, 1, 6, 0, 0, 8, 3, 9 ], [ 5, 1, 9, 0, 4, 6, 3, 2, 8 ], [ 8, 0, 2, 1, 0, 5, 7, 0, 6 ], [ 6, 7, 4, 3, 2, 0, 0, 0, 5 ], [ 0, 0, 0, 4, 5, 7, 2, 6, 3 ], [ 3, 2, 0, 0, 8, 0, 0, 5, 7 ], [ 7, 4, 5, 0, 0, 3, 9, 0, 1 ], ] print(sudoku_grid_correct(sudoku))
from django.urls import path from . import views urlpatterns = [ path('', views.MainPage, name='Home'), path('withdrawl/', views.withdrawlPage, name='withdrawl'), path('createUser/', views.createUser, name='createAnAccount'), path('afterSignIn/', views.afterSignIn, name='afterSignIn') ]
""" Game fix for You Need a Budget 4 """ #pylint: disable=C0103 from protonfixes import util def main(): """ Installs corefonts """ # https://github.com/ValveSoftware/Proton/issues/7 util.protontricks('corefonts')
# -*- coding: utf8 -*- PROG_NAME = "IIDADA" VERSION = "v0.2" if __name__ == '__main__': print("{} version: {}".format(PROG_NAME, VERSION))
import numpy as np import copy import gym import torch import plotly.graph_objs as go import plotly.io as pio import cv2 from nsrl.base_classes import Environment from nsrl.helper.pytorch import device from nsrl.helper.gym_env import StepMonitor, PickleableEnv import matplotlib.pyplot as plt class MyEnv(Environment): def __init__(self, rng, save_dir='default', monitor=True, intern_dim=2, higher_dim_obs=False, timesteps_per_action=1, obs_per_state=1, env='acrobot', seed=None, **kwargs): """ Initialize environment. Arguments: rng - the numpy random number generator """ id = 'AcrobotModified-v1' entry_point = 'nsrl.helper.gym_env:ContinuableAcrobotEnv' if env == 'pendulum': id = 'PendulumModified-v1' entry_point = 'nsrl.helper.gym_env:ContinuablePendulumEnv' max_steps = kwargs.get('max_steps', 200) gym.envs.register( id=id, entry_point=entry_point, max_episode_steps=max_steps, ) self.env = gym.make(id) if seed is not None: self.env.seed(seed) self._discrete_actions = hasattr(self.env.action_space, 'n') self._mapping = None # Currently default to discretizing action space to 4 actions self._n_discrete_actions = 4 if monitor: self.env = StepMonitor(self.env, save_dir, video_callable=lambda eid: True, env_name=env) else: self.env = PickleableEnv(self.env) if not self._discrete_actions: high = self.env.action_space.high[0] low = self.env.action_space.low[0] a_unit = (high - low) / (self._n_discrete_actions - 1) self._mapping = {i: [low + i * a_unit] for i in range(self._n_discrete_actions)} self._frame_size = (32, 32) # we save the experiment directory here for reloading purposes (see reloading dataset in agent) self.save_dir = save_dir self.rng = rng self._last_observation = None self.is_terminal = False self._higher_dim_obs = higher_dim_obs # self._input_dim = [(obs_per_state,) + self.env.observation_space.shape] # self.env.observation_space.shape is equal to 2 if self._higher_dim_obs: size = self._frame_size if timesteps_per_action > 1: size = (1, timesteps_per_action, ) + size elif obs_per_state >= 1: size = (obs_per_state, ) + size self._input_dim = [size] self._intern_dim = intern_dim self._save_dir = save_dir self._screen, self._reduced_screen = None, None # and we use only the current observation in the pseudo-state self._timesteps_per_action = kwargs.get('timesteps_per_action', 1) def act(self, action): """ Simulate one time step in the environment. """ reward = 0 self.state = np.zeros((self._timesteps_per_action, self._frame_size[0], self._frame_size[1]), dtype=np.float) for t in range(self._timesteps_per_action): if self._mapping is not None: action = self._mapping[action] self._last_observation, r, self.is_terminal, info = self.env.step(action) reward += r if (self.mode == 0): # Show the policy only at test time try: self.env.render() except: pass # print("Warning:", sys.exc_info()[0]) if self._higher_dim_obs: self._screen=np.average(self.env.render(mode='rgb_array'),axis=-1) self._reduced_screen = cv2.resize(self._screen, self._frame_size, interpolation=cv2.INTER_LINEAR) if self._timesteps_per_action > 1: self.state[t, :, :] = self._reduced_screen else: self.state = self._reduced_screen return reward / self._timesteps_per_action def reset(self, mode=0): """ Reset environment for a new episode. Arguments: Mode : int -1 corresponds to training and 0 to test """ self.mode = mode self._last_observation = self.env.reset() if self._higher_dim_obs: rendering = self.env.render(mode='rgb_array') self._screen = np.average(rendering, axis=-1) self._reduced_screen = cv2.resize(self._screen, self._frame_size, interpolation=cv2.INTER_LINEAR) initState = copy.deepcopy(self._reduced_screen) if self._timesteps_per_action > 1: self.state = np.repeat(initState[None, :, :], self._timesteps_per_action, axis=0) else: self.state = initState self.is_terminal = False return self._last_observation def inTerminalState(self): """ Tell whether the environment reached a terminal state after the last transition (i.e. the last transition that occured was terminal). """ return self.is_terminal def plot_current_state(self): state = self.env.render(mode='rgb_array') self.plot_state(state) def plot_state(self, state): plt.imshow(state, cmap='gray') plt.show() def inputDimensions(self): return copy.deepcopy(self._input_dim) def nActions(self): if not self._discrete_actions: return self._n_discrete_actions return self.env.action_space.n def observe(self): if self._higher_dim_obs: return [(np.array(self.state) - 128) / 128] return [copy.deepcopy(self._last_observation)] def summarizePerformance(self, test_data_set, learning_algo, *args, **kwargs): """ Summarize performance uses plotly. This call requires a learnt representation. :param test_data_set: :param learning_algo: :return: """ save_image = kwargs.get('save_image', False) action_meanings = ['+1', '0', '-1'] with torch.no_grad(): for m in learning_algo.all_models: m.eval() test_observations = test_data_set.observations()[0] # b x intern_dim test_observations = torch.from_numpy(test_observations).float().to(device) test_abs_states = learning_algo.encoder.predict(test_observations) np_test_abs_states = test_abs_states.detach().cpu().numpy() x = np_test_abs_states[:, 0] y = np_test_abs_states[:, 1] z = np.zeros_like(y) if (self._intern_dim == 3): z = np_test_abs_states[:, 2] print("summarizing performance") trans_by_action_idx = [] stacked_transitions = np.eye(self.nActions()) # each element of this list should be a transition for one_hot_action in stacked_transitions: repeated_one_hot_actions = torch.from_numpy(np.repeat(one_hot_action[None, :], test_abs_states.shape[0], axis=0)).float().to(device) res = torch.cat([test_abs_states, repeated_one_hot_actions], dim=-1) transitions = learning_algo.transition(res).detach().cpu().numpy() trans_by_action_idx.append(transitions) trace_data = [] opacity_unit = 1 / self.nActions() opacities = [(i + 1) * opacity_unit for i in range(self.nActions())] if self._intern_dim == 2: for trans, aname, opacity in zip(trans_by_action_idx, action_meanings, opacities): plot_x = [] plot_y = [] for x_o, y_o, x_y_n in zip(x, y, trans): plot_x += [x_o, x_y_n[0], None] plot_y += [y_o, x_y_n[1], None] trace_data.append( go.Scatter(x=plot_x, y=plot_y, line=dict(color='rgba(0, 0, 0, ' + str(opacity) + ')'), marker=dict(size=1), name=aname)) unit = 256 // len(x) scatter = go.Scatter(x=x, y=y, mode='markers+text', marker=dict(symbol='x', size=10, color=[f"rgb({int(i * unit)}, {int(unit * (len(x) - i))}, 0)" for i in range(len(x))]), text=list(range(len(x))), textposition='top center') trace_data.append(scatter) elif self._intern_dim == 3: for trans, aname, opacity in zip(trans_by_action_idx, action_meanings, opacities): plot_x = [] plot_y = [] plot_z = [] for x_o, y_o, z_o, x_y_z_n in zip(x, y, z, trans): plot_x += [x_o, x_y_z_n[0], None] plot_y += [y_o, x_y_z_n[1], None] plot_z += [z_o, x_y_z_n[2], None] trace_data.append( go.Scatter3d( x=plot_x, y=plot_y, z=plot_z, line=dict(color='rgba(0, 0, 0, ' + str(opacity) + ')'), marker=dict(size=1), name=aname)) unit = 256 // len(x) scatter = go.Scatter3d(x=x, y=y, z=z, mode='markers+text', text=list(range(len(x))), textposition='top center', marker=dict(symbol='circle', size=3, color=[f"rgb({int(i * unit)}, {int(unit * (len(x) - i))}, 0)" for i in range(len(x))])) trace_data.append(scatter) fig = dict(data=trace_data) if save_image: pio.write_image(fig, 'pytorch/fig_base_'+str(learning_algo.repr_update_counter)+'.png') return fig def main(): # This function can be used for debug purposes rng = np.random.RandomState(123456) myenv = MyEnv(rng) print(myenv.observe()) if __name__ == "__main__": main()
#!/usr/bin/env python #-*- coding: utf-8 -*- # # usage: """ """ import csv import os import os.path import pandas as pd import sys def main(): load_path1 = "" load_path2 = "" save_path = "merged.csv" if len(sys.argv) > 1: # 引数解析 i = 1 while i < len(sys.argv): s = sys.argv[i] i = i + 1 if s == "--l1": load_path1 = sys.argv[i] elif s == "--l2": load_path2 = sys.argv[i] elif s == "--s": save_path = sys.argv[i] elif (s == "--help") or (s == "/?"): #usage() return else: continue i = i + 1 if not os.path.isfile(load_path1): print('{0}が存在しません'.format(load_path1)) return if not os.path.isfile(load_path2): print('{0}が存在しません'.format(load_path2)) return try: # CSVファイル読み込み df1 = pd.read_csv(load_path1) df2 = pd.read_csv(load_path2) # nameが同じならLOFを移送 for i, cccc in df1.iterrows(): for j, diff in df2.iterrows(): # 関数名だけ抽出 ccccFunc = cccc['name'].split('(')[0] diffFunc = diff['name'].split('(')[0] if ccccFunc == diffFunc: df1.ix[i, 'LOF'] = df2.ix[j, 'LOF'] df1.to_csv(path_or_buf=save_path, index=False, quoting=csv.QUOTE_ALL) except: import traceback traceback.print_exc() if __name__ == "__main__": ret = main()
from .base import CPObject, TextField, ObjectField from .domestic import Domestic from .address_details import AddressDetails class Destination(CPObject): _name = 'destination' _fields = { # NonContractShipping "name": TextField("name"), "company": TextField("company"), "additional_addess_info": TextField("additional-addess-info"), "client_voice_number": TextField("client-voice-number"), "address_details": ObjectField( "address-details", format=AddressDetails ), # Rating "domestic": ObjectField('domestic', format=Domestic), }
from graphql import GraphQLError class ErrorHandler(): '''Raise errors''' def check_conflict(self, model, field, value, error_type=None): # Database integrity error message = f'{model} with {field} {value}, already exists!' if error_type is not None: raise error_type({'error': message}) raise GraphQLError(message) def db_object_do_not_exists(self, model, field, value, error_type=None, label=None): # Database objectDoesNotExist error message = f'{model} with {label or field} {value} does not exist.' if error_type is not None: raise error_type({'error': message}) raise GraphQLError(message) def unique_constraint_violation(self, model, error_type=None): # Database duplicate key error message =\ f'An item with similar fields exists in the {model} table.' if error_type: raise error_type({'error': message}) raise GraphQLError(message) def custom_message(self, message, error_type=None): # custom message error if error_type is not None: raise error_type({'error': message}) raise GraphQLError(message) errors = ErrorHandler()
from setuptools import setup, find_packages from hcli import __version__ with open('README.md') as file: long_description = file.read() setup( name='hrot-cli-tools', version=__version__, long_description=long_description, long_description_content_type='text/markdown', url='https://github.com/JoshuaSkelly/hrot-cli-tools', author='Joshua Skelton', author_email='joshua.skelton@gmail.com', license='MIT', packages=find_packages(exclude=['docs', 'tests*']), include_package_data=True, python_requires='>=3.6', install_requires=[ 'vgio>=1.2.0', 'tabulate>=0.8.3', ], entry_points={ 'console_scripts': [ 'pak=hcli.pak.cli:main', 'unpak=hcli.unpak.cli:main', ], }, keywords=[''], classifiers=[ 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3.6', ] )
# Created by Martin Strohalm, Thermo Fisher Scientific # import module import pyeds # open result file using the 'with' statement with pyeds.EDS("data.cdResult") as eds: # get path (be careful while using this method as it only follows the graph, not data logic) via = ["BestHitIonInstanceItem"] path = eds.GetPath("ConsolidatedUnknownCompoundItem", "MassSpectrumItem", via) print(path) # read selected types only keep = ["ConsolidatedUnknownCompoundItem", "MassSpectrumItem"] # read MS2 only queries = {"BestHitIonInstanceItem": "BestHitType = 2", "MassSpectrumItem": "MSOrder = 2"} # read most abundant items orders = {"ConsolidatedUnknownCompoundItem": "MaxArea"} descs = {"ConsolidatedUnknownCompoundItem": True} # read top 2 limits = {"ConsolidatedUnknownCompoundItem": 2} # read data items = eds.ReadHierarchy(path, keep=keep, queries=queries, orders=orders, descs=descs, limits=limits) for item in items: print(item.ElementalCompositionFormula) # access next type as child for child in item.Children: print("\t%s @%.3f min" % (child.MSOrder.DisplayName, child.Spectrum.RetentionTime))
squares = [1, 4, 9, 16, 25] print squares[0] print squares[0l] print squares[-1] print squares[-3:] print squares[:] print squares + [36, 49, 64, 81, 100] squares.append(66); print squares print squares[1::2] squares.__setitem__(0, 2) squares.__delitem__(1) print squares print squares.__getitem__(0)
# std from typing import Any, Container, Dict, Optional, Type from uuid import UUID # external import sqlalchemy from sqlalchemy import orm, sql from sqlalchemy.dialects import postgresql from sqlalchemy.inspection import inspect from sqlalchemy.orm.properties import ColumnProperty # Derived from from https://github.com/tiangolo/pydantic-sqlalchemy/blob/master/pydantic_sqlalchemy/main.py # by Tiangolo. Distributed under MIT license. def extract_fields( mapper, result, add_table_name: bool = False, exclude: Container[str] = [], table_name: Optional[str] = None, ): fields = {} if table_name is None: table_name = mapper.tables[0].name for attr in mapper.attrs: if isinstance(attr, ColumnProperty): if attr.columns: name = attr.key if name in exclude: continue value = getattr(result, name, None) if value is None: continue column = attr.columns[0] if isinstance(column.type, postgresql.base.UUID): value = UUID(value) if add_table_name: name = f"{table_name}.{name}" fields[name] = value return fields def sqlalchemy_to_dict( model: Type, result, type_, *, add_table_name: bool = False, exclude: Container[str] = [], ) -> Dict[str, Any]: if isinstance(model, orm.util.AliasedClass): alias_name = model._aliased_insp.name mapper = inspect(model).mapper return extract_fields(mapper, result, add_table_name, exclude, alias_name) elif isinstance(model, orm.decl_api.DeclarativeMeta): mapper = inspect(model) return extract_fields(mapper, result, add_table_name, exclude) elif isinstance(model, orm.attributes.InstrumentedAttribute): name = model.key value = result table_name = ( model.parent.name if model.parent.is_aliased_class else model.parent.tables[0].name ) if isinstance(model.type, postgresql.base.UUID): value = UUID(value) if add_table_name: name = f"{table_name}.{name}" return {name: value} elif isinstance(model, sql.elements.BinaryExpression): name = ( type_ if not add_table_name else f"{str(model.compile()).split('.')[1]}.{type_}" ) value = result[0] if isinstance(result, sqlalchemy.engine.row.Row) else result return {name: value} raise ValueError(f"Could not handle model type {type(model)}")
# -*- coding: utf-8 -*- # Copyright (c) 2016 Arista Networks, Inc. All rights reserved. # Arista Networks, Inc. Confidential and Proprietary. """ read env variables or use sensible defaults """ import os ARCOMM_DEFAULT_PROTOCOL = 'eapi+http' ARCOMM_DEFAULT_TIMEOUT = 30 ARCOMM_DEFAULT_USERNAME = 'admin' ARCOMM_DEFAULT_PASSWORD = '' ARCOMM_DEFAULT_SUPER = '' ARCOMM_DEFAULT_SUPASS = '' if os.name == 'nt': ARCOMM_CONF_DIR = os.path.join(os.getenv('APPDATA'), 'arcomm') else: # this will apply to both posix and java ARCOMM_CONF_DIR = os.path.expanduser('~/.arcomm') ARCOMM_SECRETS_FILE = os.path.join(ARCOMM_CONF_DIR, 'secrets.yml')