content
stringlengths
5
1.05M
#!/usr/bin/env python3 import sys def start(): from poshc2.client.command_handlers.ImplantHandler import main args = sys.argv args.remove("--client") args.remove("start.py") main(args)
from django import forms from django.utils.translation import ugettext_lazy as _ from django.conf import settings from .models import Experiment class EditExperimentForm(forms.ModelForm): """From to edit an experiment. Differs from the creation form, as it does not allow editing of the folder_name, but does allow changing the state of the experiment. """ class Meta: model = Experiment fields = ('title', 'state', 'users',) widgets = { 'title': forms.TextInput, 'folder_name': forms.TextInput, } class CreateExperimentForm(forms.ModelForm): """Form to create experiments. Differs from the edit form, as it allows changing of the folder_name, but does not have the state field. Changing the state at creation is not desired, as we want experiments to be explicitly opened by the user when needed. """ class Meta: model = Experiment fields = ('title', 'folder_name', 'users',) widgets = { 'title': forms.TextInput, 'folder_name': forms.TextInput, } def __init__(self, **kwargs): super().__init__(**kwargs) # Adds a new label and help text to folder_name self.fields['folder_name'].label = _("experiments:forms:folder_name") self.fields['folder_name'].help_text = _( "experiments:forms:folder_name:help" ).format(settings.WEBEXPERIMENT_HOST) def clean_folder_name(self): """Ensures that no 2 experiments will have the same folder name""" data = self.cleaned_data['folder_name'] if Experiment.objects.filter(folder_name=data).exists(): self.add_error( 'folder_name', _('experiments:forms:create:duplicate_folder') ) return data.lower()
from .camelsplit import camelsplit # noqa
#!/usr/bin/env python3 bind = '0.0.0.0:5000' pid = '/tmp/chat_websocket.pid'
#!/usr/bin/env python # -*- coding:utf-8 -*- """ Numpy中实现基本数学计算脚本 Created on 2017-11-16 author: denglelai """ import numpy as np def main(): """ run basic operations of numpy """ # 绝对值,1 a_variable = np.abs(-1) print "-1的绝对值为:" + str(a_variable) # sin函数,1.0 a_variable = np.sin(np.pi / 2) print "pi/2的正弦值为:" + str(a_variable) # tanh逆函数,0.500001071578 a_variable = np.arctanh(0.462118) print "tanh(0.462118)值为:" + str(a_variable) # e为底的指数函数,20.0855369232 a_variable = np.exp(3) print "e的3次方值为:" + str(a_variable) # 2的3次方,8 a_variable = np.power(2, 3) print "2的3次方值为:" + str(a_variable) # 点积,1*3+2*4=11 a_variable = np.dot([1, 2], [3, 4]) print "向量[1. 2]与向量[3. 4]点乘值为:" + str(a_variable) # 开方,5 a_variable = np.sqrt(25) print "25的2次方根值为:" + str(a_variable) # 求和,10 a_variable = np.sum([1, 2, 3, 4]) print "对[1, 2, 3, 4]中元素求和结果为:" + str(a_variable) # 平均值,5.5 a_variable = np.mean([4, 5, 6, 7]) print "对[1, 2, 3, 4]中元素求平均结果为:" + str(a_variable) # 标准差,0.968245836552 a_variable = np.std([1, 2, 3, 2, 1, 3, 2, 0]) print "对[1, 2, 3, 2, 1, 3, 2, 0]中元素求标准差结果为:" + str(a_variable) if __name__ == '__main__': main()
# -*- coding:utf-8 -*- # @time :2020/8/28 # @IDE : pycharm # @author :lxztju # @github : https://github.com/lxztju # @Emial : lxztju@163.com import torch def load_checkpoint(filepath): checkpoint = torch.load(filepath, map_location='cpu') model = checkpoint['model'] # 提取网络结构 model.load_state_dict(checkpoint['model_state_dict']) # 加载网络权重参数 for parameter in model.parameters(): parameter.requires_grad = False model.eval() return model model = load_checkpoint('./resnext101_32x8.pth') example = torch.rand(1, 3, 224, 224) traced_script_module = torch.jit.trace(model, example) traced_script_module.save('./trace_resnext101_32x8.pt') output = traced_script_module(torch.ones(1, 3, 224, 224)) print(output)
#PPO-LSTM import gym import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.distributions import Categorical import time import numpy as np import sys sys.path.append(".") from args.config import PPO_lstm_params as params class PPO(nn.Module): def __init__(self, learning_rate, K_epoch, gamma, lmbda, eps_clip): super(PPO, self).__init__() self.learning_rate = learning_rate self.K_epoch = K_epoch self.gamma = gamma self.eps_clip = eps_clip self.lmbda = lmbda self.data = [] self.fc1 = nn.Linear(4, 64) self.lstm = nn.LSTM(64, 32) self.fc_pi = nn.Linear(32, 2) self.fc_v = nn.Linear(32, 1) self.optimizer = optim.Adam(self.parameters(), lr=self.learning_rate) def pi(self, x, hidden): x = F.relu(self.fc1(x)) x = x.view(-1, 1, 64) x, lstm_hidden = self.lstm(x, hidden) x = self.fc_pi(x) prob = F.softmax(x, dim=2) return prob, lstm_hidden def v(self, x, hidden): x = F.relu(self.fc1(x)) x = x.view(-1, 1, 64) x, lstm_hidden = self.lstm(x, hidden) v = self.fc_v(x) return v def put_data(self, transition): self.data.append(transition) def make_batch(self): s_lst, a_lst, r_lst, s_prime_lst, prob_a_lst, h_in_lst, h_out_lst, done_lst = [], [], [], [], [], [], [], [] for transition in self.data: s, a, r, s_prime, prob_a, h_in, h_out, done = transition s_lst.append(s) a_lst.append([a]) r_lst.append([r]) s_prime_lst.append(s_prime) prob_a_lst.append([prob_a]) h_in_lst.append(h_in) h_out_lst.append(h_out) done_mask = 0 if done else 1 done_lst.append([done_mask]) s,a,r,s_prime,done_mask,prob_a = torch.tensor(s_lst, dtype=torch.float), torch.tensor(a_lst), \ torch.tensor(r_lst), torch.tensor(s_prime_lst, dtype=torch.float), \ torch.tensor(done_lst, dtype=torch.float), torch.tensor(prob_a_lst) self.data = [] return s, a, r, s_prime, done_mask, prob_a, h_in_lst[0], h_out_lst[0] def train_net(self): s, a, r, s_prime, done_mask, prob_a, (h1_in, h2_in), ( h1_out, h2_out) = self.make_batch() first_hidden = (h1_in.detach(), h2_in.detach()) second_hidden = (h1_out.detach(), h2_out.detach()) for i in range(self.K_epoch): v_prime = self.v(s_prime, second_hidden).squeeze(1) td_target = r + self.gamma * v_prime * done_mask v_s = self.v(s, first_hidden).squeeze(1) delta = td_target - v_s delta = delta.detach().numpy() advantage_lst = [] advantage = 0.0 for item in delta[::-1]: advantage = self.gamma * self.lmbda * advantage + item[0] advantage_lst.append([advantage]) advantage_lst.reverse() advantage = torch.tensor(advantage_lst, dtype=torch.float) pi, _ = self.pi(s, first_hidden) pi_a = pi.squeeze(1).gather(1, a) ratio = torch.exp(torch.log(pi_a) - torch.log(prob_a)) # a/b == log(exp(a)-exp(b)) surr1 = ratio * advantage surr2 = torch.clamp(ratio, 1 - self.eps_clip, 1 + self.eps_clip) * advantage loss = -torch.min(surr1, surr2) + F.smooth_l1_loss( v_s, td_target.detach()) self.optimizer.zero_grad() loss.mean().backward(retain_graph=True) self.optimizer.step() class PPO_lstm_algo(): def __init__(self): super(PPO_lstm_algo, self).__init__() self.env = gym.make(params['gym_env']) self.T_horizon = params['T_horizon'] self.epoch = params['epoch'] self.learning_rate = params['learning_rate'] self.K_epoch = params['K_epoch'] self.gamma = params['gamma'] self.eps_clip = params['eps_clip'] self.lmbda = params['lmbda'] self.print_interval = params["print_interval"] self.model = PPO(self.learning_rate, self.K_epoch, self.gamma, self.lmbda, self.eps_clip) self.print_interval = params['print_interval'] self.init_write() def init_write(self): with open("./result/PPO_lstm.csv", "w+", encoding="utf-8") as f: f.write("epoch_number,average reward\n") def train(self): score = 0.0 for n_epi in range(self.epoch): h_out = (torch.zeros([1, 1, 32], dtype=torch.float), torch.zeros([1, 1, 32], dtype=torch.float)) s = self.env.reset() done = False while not done: for t in range(self.T_horizon): h_in = h_out prob, h_out = self.model.pi( torch.from_numpy(s).float(), h_in) prob = prob.view(-1) m = Categorical(prob) a = m.sample().item() s_prime, r, done, info = self.env.step(a) self.model.put_data( (s, a, r, s_prime, prob[a].item(), h_in, h_out, done)) s = s_prime score += r if done: break self.model.train_net() if n_epi % self.print_interval == 0: with open("./result/PPO_lstm.csv", "a+", encoding="utf-8") as f: f.write("{},{:.1f} \n".format(n_epi, score / self.print_interval)) print("episode :{}, avg score : {:.1f}".format( n_epi, score / self.print_interval)) score = 0.0 self.env.close() if __name__ == '__main__': algo = PPO_lstm_algo() algo.train()
# -*- coding: utf-8 -*- """ Author: Michael Markus Ackermann ================================ """ from typing import List import numpy as np def absorption_coefficient(zc: List[complex], kc: List[complex], thickness: float, z_air: float): """ Returns the Sound Absorption Coefficient. NOTE 1: The values for 'zc' and 'kc' are already divided by the porosity. NOTE 2: This function only considers the normal incidence angle. Args: zc (List[complex]): Material Charactheristic Impedance. kc (List[complex]): Material Wave Number. thickness (float): Material Thickness. z_air (float): Air Characteristic Impedance. Returns: absorption (np. ndarray): Sound Absorption Coefficient [no units]. """ zs = -1j * (zc / np.tan(kc * thickness)) # Surface impedance (zs) vp = (zs - z_air) / (zs + z_air) # Reflection coefficient (vp) return 1 - np.abs(vp) ** 2 # Sound Absorption Coefficient
# coding: utf-8 from __future__ import unicode_literals import pytest from mock import Mock from attrdict import AttrDict from ariadne.actions import Visit, Action, FillForm @pytest.fixture def ctx_browser(): """ :return: Context with mocked browser. """ mock = Mock() context = AttrDict({ 'browser': mock }) return context def test_action_run_not_implemented(): """ Run method isn't implemented in base class. """ with pytest.raises(NotImplementedError): context = {} Action().run(context) class TestVisit: @pytest.fixture def action(self): return Visit('/login') def test_get_url(self, action): """ get_url should return target URL. """ assert action.get_url() == '/login' def test_get_url_with_server(self, action): """ get_url should return target URL. """ assert action.get_url('http://localhost/') == 'http://localhost/login' def test_run(self, action, ctx_browser): """ Browser should visit given URL. """ action.run(ctx_browser) ctx_browser.browser.visit.assert_called_with('/login') def test_run_with_server(self, action, ctx_browser): """ Browser should visit given URL. """ ctx_browser.update({ 'server_url': 'http://localhost/' }) action.run(ctx_browser) ctx_browser.browser.visit.assert_called_with('http://localhost/login') class TestFillForm: @property def params(self): return { 'username': 'admin', 'password': 'secret', } def test_run(self, ctx_browser): """ Fill form with data. """ action = FillForm(data=self.params) action.run(context=ctx_browser) ctx_browser.browser.fill_form.assert_called_with(self.params) assert not ctx_browser.browser.find_by_css.called def test_run_empty(self, ctx_browser): """ Data might be empty. """ action = FillForm() action.run(context=ctx_browser) ctx_browser.browser.fill_form.assert_called_with({}) assert not ctx_browser.browser.find_by_css.called def test_run_submit(self, ctx_browser): """ Submit button by CSS id. """ action = FillForm(data=self.params, submit='#btn-submit') action.run(context=ctx_browser) # Assert mock ctx_browser.browser.fill_form.assert_called_with(self.params) ctx_browser.browser.find_by_css.assert_called_with('#btn-submit') def test_run_submit_true(self, ctx_browser): """ Submit button by CSS type. """ action = FillForm(data=self.params, submit=True) action.run(context=ctx_browser) # Assert mock ctx_browser.browser.fill_form.assert_called_with(self.params) ctx_browser.browser.find_by_css.assert_called_with('[type="submit"]')
#!/usr/bin/env python """ cTimer: A high resolution, high precision timer. """ import os import sys from distutils.core import setup, Extension if sys.platform == 'darwin': module1 = Extension('cTimer', sources = ['cTimer.c']) else: module1 = Extension('cTimer', sources = ['cTimer.c'], extra_link_args = ['-lrt']) f = open(os.path.join(os.path.dirname(__file__), 'ReadMe.md')) long_description = f.read() f.close() version = '0.1.1' setup ( name = 'cTimer', version = version, description = 'A high precision timer.', long_description = long_description, author = 'Chaordix (Russ Porosky)', author_email = 'russ@chaordix.com', url = 'https://github.com/chaordix/cTimer/', download_url = ('https://github.com/downloads/Chaordix/cTimer/cTimer-%s.tar.gz' % version), maintainer = 'Chaordix (Russ Porosky)', maintainer_email = 'russ@chaordix.com', keywords = ['timer', 'precision'], license = 'MIT', platforms = 'ALL', classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Console', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2.5', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', ], ext_modules = [module1] )
#! /usr/bin/env python #################################################################################### # calcSlopeDegrees.py # # A Python script to calculate slope from a DEM, where the horizontal spacing is in degrees # latitude and longitude. # # Requires RIOS (https://bitbucket.org/chchrsc/rios/) to read image # # The base slope calculation is in Python. If Numba (http://numba.pydata.org) # is available this is used to improve speed. # For the best speed a Fortran function (slope.f) is available to perform the slope calculation. # This must be compiled using: # # f2py -llapack -c slope.f90 -m slope # # Dan Clewley (daniel.clewley@gmail.com) - 26/06/2013 # # Adapted from EASI code by Jane Whitcomb # # # Copyright 2014 Daniel Clewley & Jane Whitcomb. # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, # merge, publish, distribute, sublicense, and/or sell copies of the # Software, and to permit persons to whom the Software is furnished # to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR # ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF # CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # #################################################################################### import sys,os sys.path.append(os.sys.path[0]) from rios import imagereader from rios.imagewriter import ImageWriter import argparse import numpy as np from math import sqrt useFortranSlope=True haveNumba = False try: import slope except ImportError: useFortranSlope=False try: from numba import autojit if useFortranSlope: print('Numba is available - using Fortran module instead') else: print('Fortran module not available - using Numba instead') haveNumba = True except ImportError: if not useFortranSlope: print('Warning: Could not import Numba or Fortran slope module - will be about 50 x slower!') else: print('Fortran module is available') # have to define our own autojit so Python doesn't complain def autojit(func): return func @autojit def slopePython(inBlock, outBlock, inXSize, inYSize, zScale=1): """ Calculate slope using Python. If Numba is available will make use of autojit function to run at ~ 1/2 the speed of the Fortran module. If not will fall back to pure Python - which will be slow! """ for x in range(1,inBlock.shape[2]-1): for y in range(1, inBlock.shape[1]-1): # Get window size dx = 2 * inXSize[y,x] dy = 2 * inYSize[y,x] # Calculate difference in elevation dzx = (inBlock[0,y,x-1] - inBlock[0,y,x+1])*zScale dzy = (inBlock[0,y-1,x] - inBlock[0,y+1,x])*zScale # Find normal vector to the plane nx = -1 * dy * dzx ny = -1 * dx * dzy nz = dx * dy slopeRad = np.arccos(nz / sqrt(nx**2 + ny**2 + nz**2)) slopeDeg = (180. / np.pi) * slopeRad outBlock[0,y,x] = slopeDeg return outBlock def slopePythonPlane(inBlock, outBlock, inXSize, inYSize, A_mat, z_vec, winSize=3, zScale=1): """ Calculate slope using Python. Algorithm fits plane to a window of data and calculated the slope from this - slope than the standard algorithm but can deal with noisy data batter. The matrix A_mat (winSize**2,3) and vector zScale (winSize**2) are allocated outside the function and passed in. """ winOffset = int(winSize/2) for x in range(winOffset-1,inBlock.shape[2]): for y in range(winOffset-1, inBlock.shape[1]): # Get window size dx = winSize * inXSize[y,x] dy = winSize * inYSize[y,x] # Calculate difference in elevation """ Solve A b = x to give x Where A is a matrix of: x_pos | y_pos | 1 and b is elevation and x are the coefficents """ # Form matrix index = 0 for i in range(-1*winOffset, winOffset+1): for j in range(-1*winOffset, winOffset+1): A_mat[index,0] = 0+(i*inXSize[y,x]) A_mat[index,1] = 0+(j*inYSize[y,x]) A_mat[index,2] = 1 # Elevation z_vec[index] = inBlock[0,y+j,x+i]*zScale index+=1 # Linear fit coeff_vec = np.linalg.lstsq(A_mat, z_vec)[0] # Calculate dzx and dzy dzx = coeff_vec[0] * dx dzy = coeff_vec[1] * dy # Find normal vector to the plane nx = -1 * dy * dzx ny = -1 * dx * dzy nz = dx * dy slopeRad = np.arccos(nz / sqrt(nx**2 + ny**2 + nz**2)) slopeDeg = (180. / np.pi) * slopeRad outBlock[0,y,x] = slopeDeg return outBlock def calcSlope(inBlock, inXSize, inYSize, fitPlane=False, zScale=1, winSize=3, minSlope=None): """ Calculates slope for a block of data Arrays are provided giving the size for each pixel. * inBlock - In elevation * inXSize - Array of pixel sizes (x) * inYSize - Array of pixel sizes (y) * fitPlane - Calculate slope by fitting a plane to elevation data using least squares fitting. * zScale - Scaling factor between horizontal and vertical * winSize - Window size to fit plane over. """ # If fortran class could be imported use this if useFortranSlope: if fitPlane: outBlock = slope.slopeplane(inBlock[0], inXSize, inYSize, zScale, winSize) else: outBlock = slope.slope(inBlock[0], inXSize, inYSize, zScale) # Add third dimension (required by rios) outBlock = outBlock.reshape(1, outBlock.shape[0], outBlock.shape[1]) # Cast to 32 bit float (rather than 64 bit numpy default) outBlock = outBlock.astype(np.float32) else: # Otherwise run through loop in python (which will be slower) # Setup output block outBlock = np.zeros_like(inBlock, dtype=np.float32) if fitPlane: # Setup matrix and vector required for least squares fitting. winOffset = int(winSize/2) A_mat = np.zeros((winSize**2,3)) z_vec = np.zeros(winSize**2) slopePythonPlane(inBlock, outBlock, inXSize, inYSize, A_mat, z_vec, zScale, winSize) else: slopePython(inBlock, outBlock, inXSize, inYSize, zScale) if minSlope is not None: # Set very low values to constant outBlock[0] = np.where(np.logical_and(outBlock[0] > 0,outBlock[0] < minSlope),minSlope,outBlock[0]) return(outBlock) def getPixelSize(lat, latsize, lonsize): """ Get the pixel size (in m) based on latitude and pixel size in degrees """ # Set up parameters for elipse # Semi-major and semi-minor for WGS-84 ellipse ellipse = [6378137.0, 6356752.314245] radlat = np.deg2rad(lat) Rsq = (ellipse[0]*np.cos(radlat))**2+(ellipse[1]*np.sin(radlat))**2 Mlat = (ellipse[0]*ellipse[1])**2/(Rsq**1.5) Nlon = ellipse[0]**2/np.sqrt(Rsq) xsize = np.pi/180*np.cos(radlat)*Nlon*lonsize ysize = np.pi/180*Mlat*latsize return xsize, ysize # Set up options parser = argparse.ArgumentParser() parser.add_argument("inimage", nargs=1,type=str, help="Input DEM") parser.add_argument("outimage", nargs=1,type=str, help="Output Slope image") parser.add_argument("--nostats", action='store_true', default=False, help="Don't calculate stats for output slope image.") parser.add_argument("--plane_ls", action='store_true', default=False, help="Calculate slope by fitting a plane to a window of elevation data using least squares fitting.") parser.add_argument("--min_slope", type=float, default=None, help="Set minimum value for slope (values smaller than this but greater than 0 will be fixed to this value)") parser.add_argument("--window_size", type=int, default=3, help="Window size to calculate slope over when using least squares fitting (default 3)") parser.add_argument("--z_scale", type=int, default=1, help="Scaling factor between horizontal (m) and vertical. Assumed 1 (vertical units are metres).") parser.add_argument("--spacing_degrees", action='store_true', default=False, help="Pixel size is in degrees - converted to metres based on latitude.") args = parser.parse_args() inImage = args.inimage[0] outImage = args.outimage[0] zScale = args.z_scale winSize = args.window_size fitPlane = args.plane_ls if not fitPlane and winSize != 3: print("ERROR: Setting window size is only supported with '--plane_ls'") sys.exit() if fitPlane and not useFortranSlope: print("WARNING: Couldn't import Fortran module, Numba isn't supported for plane fitting") calcStats = True if args.nostats: calcStats = False minSlope = args.min_slope hDegree = args.spacing_degrees # Set up RIOS image reader reader = imagereader.ImageReader(inImage, overlap=int(winSize/2)) writer = None print("Starting...") for (info, inBlock) in reader: # Get percent complete sys.stdout.write("\r %i Percent Complete"%(int(info.getPercent()))) # Get coordinates for block xCoords, yCoords = info.getBlockCoordArrays() # Convert pixel sizes to m (if in degrees). xres, yres = info.getPixelSize() if hDegree: xSize, ySize = getPixelSize(yCoords, xres, yres) else: xSize = np.zeros_like(xCoords) ySize = np.zeros_like(yCoords) xSize[...] = xres ySize[...] = yres outBlock = calcSlope(inBlock, xSize, ySize, fitPlane, zScale, winSize, minSlope) # Check if writer exists, create one if not. if writer is None: writer = ImageWriter(outImage, info=info, firstblock=outBlock) else: writer.write(outBlock) sys.stdout.write("\r 100 Percent Complete\n") if calcStats: # Close and calculate stats (for faster display) print("Writing stats...") writer.close(calcStats=True) else: writer.close(calcStats=False) print("Done")
from django.db import models # these are the two classes need to modify default Django user/admin login from django.contrib.auth.models import AbstractBaseUser from django.contrib.auth.models import PermissionsMixin from django.contrib.auth.models import BaseUserManager from django.conf import settings class UserProfileManager(BaseUserManager): """Manager for user profiles""" def create_user(self, email, name, password=None): """Create a new user profile""" if not email: raise ValueError("User must have an email address") #make the email letter case insensitive a method from BaseUserManager #email = self.normalize_email(email) # .normalize_email is a BaseuserManager class method """create user model object without the password by using .model attribute from BaseUserManager class https://stackoverflow.com/questions/51163088/self-model-in-django-custom-usermanager https://docs.djangoproject.com/en/3.0/topics/auth/customizing/ """ #user = self.model(email=email, name=name) user = self.model(email=self.normalize_email(email), name=name) # store the password not as string but an encripted to hash user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, name, password): """Crate and save a new superuser with given details""" user = self.create_user(email, name, password) # We did not specify is_superuser because is automatically created by PermissionMixin user.is_superuser = True # this method is specified in the UserProfile model user.is_staff = True user.save(using=self._db) return user class UserProfile(AbstractBaseUser, PermissionsMixin): """Database model for users authentication in the system""" email = models.EmailField(max_length=255, unique=True) name = models.CharField(max_length=255) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) # Creates a user profile manager objects = UserProfileManager() # Overwriting the default Django username and replace it with USERNAEM_FIELD # by taking user's email instead a user's name USERNAME_FIELD = 'email' # making the name as a requirement field REQUIRED_FIELDS = ['name'] def get_full_name(self): """Retrieve full name of user""" return self.name def get_short_name(self): """Retrieve short name of user""" return self.name def __str__(self): """Return string representation of the user""" return f'{self.email} is {self.name}' #return self.email class ProfileFeedItem(models.Model): """Profile status update""" user_profile = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE ) status_text = models.CharField(max_length=255) created_on = models.DateTimeField(auto_now_add = True) def __str__(self): """Return the model as a string""" return self.created_on #return f'created on {self.created_on}. Content: {self.status_text} '
import numpy as np import skimage.color as color import skimage.transform as transform rgb2gray = color.rgb2gray gray2rgb = color.gray2rgb imresize = transform.resize imrescale = transform.rescale def immerge(images, n_rows=None, n_cols=None, padding=0, pad_value=0): """Merge images to an image with (n_rows * h) * (n_cols * w). Parameters ---------- images : numpy.array or object which can be converted to numpy.array Images in shape of N * H * W(* C=1 or 3). """ images = np.array(images) n = images.shape[0] if n_rows: n_rows = max(min(n_rows, n), 1) n_cols = int(n - 0.5) // n_rows + 1 elif n_cols: n_cols = max(min(n_cols, n), 1) n_rows = int(n - 0.5) // n_cols + 1 else: n_rows = int(n ** 0.5) n_cols = int(n - 0.5) // n_rows + 1 h, w = images.shape[1], images.shape[2] shape = (h * n_rows + padding * (n_rows - 1), w * n_cols + padding * (n_cols - 1)) if images.ndim == 4: shape += (images.shape[3],) img = np.full(shape, pad_value, dtype=images.dtype) for idx, image in enumerate(images): i = idx % n_cols j = idx // n_cols img[j * (h + padding):j * (h + padding) + h, i * (w + padding):i * (w + padding) + w, ...] = image return img def immerge_(images, n_rows=None, n_cols=None, padding=0, pad_value=0): """Merge images to an image with (n_rows * h) * (n_cols * w). Parameters ---------- images : numpy.array or object which can be converted to numpy.array Images in shape of N * H * W(* C=1 or 3). """ images = np.array(images) n = images.shape[0] if n_rows: n_rows = max(min(n_rows, n), 1) n_cols = int(n - 0.5) // n_rows + 1 elif n_cols: n_cols = max(min(n_cols, n), 1) n_rows = int(n - 0.5) // n_cols + 1 else: n_rows = int(n ** 0.5) n_cols = int(n - 0.5) // n_rows + 1 h, w = images.shape[1], images.shape[2] n_rows = 1; n_cols = 1; padding = 0; #print(h); #print(w); #shape = (h * n_rows + padding * (n_rows - 1), # w * n_cols + padding * (n_cols - 1)) shape = (h * n_rows, w * n_cols ) if images.ndim == 4: shape += (images.shape[3],) img = np.full(shape, pad_value, dtype=images.dtype) for idx, image in enumerate(images): i = idx % n_cols j = idx // n_cols img[j * (h + padding):j * (h + padding) + h, i * (w + padding):i * (w + padding) + w, ...] = image #print(np.shape(img)) return img
"""Finetuning BERT hugging gace (pytorch) model. Author: Mohit Mayank - Inspired from Masked Label modelling with BERT article - Link: https://towardsdatascience.com/masked-language-modelling-with-bert-7d49793e5d2c """ # IMPORT ========= import pandas as pd from tqdm import tqdm import numpy as np import numpy as np # for deep learning import torch import torch.nn as nn import torch.optim as optim # load BERT model from transformers import AdamW from transformers import BertTokenizer, BertForMaskedLM # MODEL LOAD ========= #model_path = "../input/roberta-base" # if local copy is present model_path = "bert-base-uncased" # if local copy is not present tokenizer = BertTokenizer.from_pretrained(model_path) model = BertForMaskedLM.from_pretrained(model_path) # DATA PREP 1 ========= data = pd.read_csv("file_with_text.csv") # tokenize inputs = tokenizer(data, return_tensors='pt', max_length=250, truncation=True, padding='max_length') inputs['labels'] = inputs.input_ids.detach().clone() # create random array of floats with equal dimensions to input_ids tensor rand = torch.rand(inputs.input_ids.shape) # create mask array # mask tokens except special tokens like CLS and SEP mask_ratio = 0.3 mask_arr = (rand < mask_ratio) * (inputs.input_ids != 101) * \ (inputs.input_ids != 102) * (inputs.input_ids != 0) # get the indices where to add mask selection = [] for i in range(inputs.input_ids.shape[0]): selection.append( torch.flatten(mask_arr[i].nonzero()).tolist() ) # add the mask for i in range(inputs.input_ids.shape[0]): inputs.input_ids[i, selection[i]] = 103 # DATA PREP 2 - DATALOADER ========= # define dataset class class MLMDataset(torch.utils.data.Dataset): def __init__(self, encodings): self.encodings = encodings def __getitem__(self, idx): return {key: torch.tensor(val[idx]) for key, val in self.encodings.items()} def __len__(self): return len(self.encodings.input_ids) # create instance dataset = MLMDataset(inputs) loader = torch.utils.data.DataLoader(dataset, batch_size=16, shuffle=True) # PRE_TRAIN ============= device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') # and move our model over to the selected device model.to(device) # activate training mode model.train() # initialize optimizer optimizer = AdamW(model.parameters(), lr=5e-5) # TRAIN ===================== epochs = 20 for epoch in range(epochs): # setup loop with TQDM and dataloader loop = tqdm(loader, leave=True) for batch in loop: # initialize calculated gradients (from prev step) optimizer.zero_grad() # pull all tensor batches required for training input_ids = batch['input_ids'].to(device) attention_mask = batch['attention_mask'].to(device) labels = batch['labels'].to(device) # process outputs = model(input_ids, attention_mask=attention_mask, labels=labels) # extract loss loss = outputs.loss # calculate loss for every parameter that needs grad update loss.backward() # update parameters optimizer.step() # print relevant info to progress bar loop.set_description(f'Epoch {epoch}') loop.set_postfix(loss=loss.item()) # SAVE MODEL ===================== model.save_pretrained("bert_finetuned_on_text/") tokenizer.save_pretrained("bert_finetuned_on_text/")
class OpcoesArquivos: def __init__(self, diretorio): self.diretorio = diretorio def add_zeros(self, valor): valor = str(valor).replace(',', '.') valor = str(round(float(valor), 2)) if float(valor) == 0: valor = '0.00' else: cont = -1 for i in valor: if i == '.': cont += 1 if cont >= 0: cont += 1 if cont == 2: valor += '0' return valor def criar_arquivo(self, nome, conteudo=''): try: arquivo = open(f'{self.diretorio}{nome}.txt', 'r') if not arquivo.read(): OpcoesArquivos(self.diretorio).escrever_arquivo(nome, conteudo) arquivo.close() except: OpcoesArquivos(self.diretorio).escrever_arquivo(nome, conteudo) def escrever_arquivo(self, nome, conteudo=''): arquivo = open(f'{self.diretorio}{nome}.txt', 'a') arquivo.write(f'{conteudo}') arquivo.close() def apagar_arquivo(self, nome): arquivo = open(f'{self.diretorio}{nome}.txt', 'w') arquivo.write('') arquivo.close() def listar_dados(self, nome): arquivo = open(f'{self.diretorio}{nome}.txt', 'r') lista = arquivo.read().split(', ') lista.pop(-1) arquivo.close() aux = [] for i in lista: x = i.split(' - ') aux.append(x) for i in aux: i[2] = OpcoesArquivos(self.diretorio).add_zeros(i[2]) return aux def atualizar_total(self, nome): aux = OpcoesArquivos(self.diretorio).listar_dados(nome) aux.pop(-1) ganho = 0.00 if nome == 'receitas': for x, y, z in aux: if int(x) < 6: ganho += float(z.replace(',', '.')) else: ganho -= float(z.replace(',', '.')) else: for i in aux: ganho += float(i[2].replace(',', '.')) texto = '' if nome == 'cartao': for x, y, z, a, b in aux: texto += f'{x} - {y} - {z} - {a} - {b}, ' else: for x, y, z in aux: texto += f'{x} - {y} - {z}, ' texto += f'{len(aux) + 1} - TOTAL - {OpcoesArquivos(self.diretorio).add_zeros(ganho)}, ' arquivo = open(f'{self.diretorio}{nome}.txt', 'w') arquivo.write(texto) arquivo.close() if __name__ == '__main__': ## Local para testes a = str(__file__).replace('arquivos.py','') print(a)
import pathlib from setuptools import setup setup( name="pytest-level", version='0.1.1', py_modules=["pytest_level"], description='Select tests of a given level or lower', long_description=pathlib.Path('README.md').read_text(), long_description_content_type="text/markdown", author='Petr Viktorin', author_email='encukou@gmail.com', license='MIT', url='https://github.com/encukou/pytest-level', entry_points={"pytest11": ["name_of_plugin = pytest_level"]}, classifiers=[ 'Framework :: Pytest', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ], setup_requires=['pytest'], zip_safe=False, )
from interactable import Interactable, Button, TextBox from textProcessor import TextProcessor from imageProcessor import ImageProcessor import pygame as pg import config as cfg class GameNode(Interactable): def __init__(self, row_id=None, option_id=None, data=None): self.row_id = row_id self.option_id = option_id self.data = data self.children = [] self.rendered_models = [] self.text_box = None self.continue_button = None self.button = None self.last_text_box = None self.box_dimension = None self.button_dimension = None self.last_text_box_bool = False def get_text_box(self, next_nodes, color): if self.text_box == None: self.reset_text_box(next_nodes, color) else: self.text_box.text_obj.reset_scroll() def reset_text_box(self, next_nodes, color): continue_button = Button(TextProcessor("Continue", "center", cfg.CONTINUE_WIDTH * 0.9, cfg.CONTINUE_HEIGHT * 0.85, cfg.CONTINUE_WIDTH * 0.72, cfg.CONTINUE_HEIGHT * 0.425, box= cfg.CONTINUE_BOX_RECT, opacity = 200, box_color = color), next_nodes, args=self, trigger=[pg.MOUSEBUTTONDOWN, pg.K_SPACE, pg.K_RETURN]) self.text_box = TextBox(TextProcessor(self.data.text, "left", cfg.DEFAULT_TEXT_BOX[2] / 1.015, cfg.DEFAULT_TEXT_BOX[3] / 1.02, cfg.DEFAULT_TEXT_BOX[2] * 0.7, cfg.DEFAULT_TEXT_BOX[3] * 0.7, adjust=True, scroll=True, opacity = 100, box_color=color), continue_button) def get_button(self, next_nodes, color): self.button = Button(TextProcessor(self.data.text, "center", self.button_dimension[0], self.button_dimension[1], self.button_dimension[2], self.button_dimension[3], box=self.box_dimension, opacity = 200, box_color = color), next_nodes, args=self, trigger=self.trigger) def get_last_text_box(self, color): return TextProcessor(self.data.text, "center", cfg.LAST_TEXT_BOX[2] / 1.025, cfg.LAST_TEXT_BOX[3] / 1.05, cfg.LAST_TEXT_BOX[2] * 0.7, cfg.LAST_TEXT_BOX[3] * 0.7, box = cfg.LAST_TEXT_BOX, opacity = 100, box_color = color) def add_child(self, child_node): self.children.append(child_node) def add_parent(self, parent_node): if self not in parent_node.children: parent_node.add_child(self) def remove_child(self, node): if node in self.children: self.children.remove(node) def get_children(self): return self.children def render_background(self): return ImageProcessor(self.data.bg, h=cfg.WINDOW_HEIGHT, base="bgs") def render_models(self): return [] if self.data.models == None else [ImageProcessor(model_img, h=cfg.WINDOW_HEIGHT, base="models") for model_img in self.data.models.split()] def blit(self, target): if self.text_box != None: self.text_box.blit(target) if self.button != None: self.button.blit(target) if self.last_text_box != None: self.last_text_box.blit(target) def event(self, event, observer): if self.button != None: self.button.event(event, observer) if self.text_box != None: self.text_box.event(event, observer) class CellData: def __init__(self, conditional=None, destination=None, text = None, incoming = None, leaving = None, ending = None, noise = "None", models = None, bg = None, music = None): if conditional == None: conditional = [] else: conditional = conditional.replace("(", "").replace(")", "").split() for index, condition in enumerate(conditional): conditional[index] = condition.split(",") self.conditionals = conditional self.destination = destination self.text = text self.incoming = incoming self.leaving = leaving self.ending = ending self.noise = noise self.bg = bg self.music = music self.models = models class EndNode(Interactable): BUTTON_WIDTH = round(cfg.WINDOW_WIDTH / 3) BUTTON_MARGIN = round((cfg.WINDOW_WIDTH - BUTTON_WIDTH * 2) / 3) BUTTON_DIMENSION = BUTTON_WIDTH * 0.9, cfg.BUTTON_BASE_HEIGHT * 0.85, BUTTON_WIDTH * 0.72, cfg.BUTTON_BASE_HEIGHT * 0.425 button1_box_dimension = (BUTTON_MARGIN, cfg.BUTTON_Y, BUTTON_WIDTH, cfg.BUTTON_BASE_HEIGHT) button2_box_dimension = (BUTTON_WIDTH + BUTTON_MARGIN * 2, cfg.BUTTON_Y, BUTTON_WIDTH, cfg.BUTTON_BASE_HEIGHT) button3_box_dimension = (cfg.WINDOW_WIDTH/2 - BUTTON_WIDTH/2, cfg.BUTTON_Y, BUTTON_WIDTH, cfg.BUTTON_BASE_HEIGHT) def __init__(self, get_option_objs, update_active_objs, update_sounds, main_menu_node, data, gear=[], win_node = ""): self.get_option_objs, self.update_active_objs, self.update_sounds = get_option_objs, update_active_objs, update_sounds self.main_menu_node = main_menu_node self.gear = gear self.win_node = win_node self.game_data = data self.data=CellData(music="end") self.buttons = [ Button(TextProcessor("Restart", "center", self.BUTTON_WIDTH * 0.9, cfg.BUTTON_BASE_HEIGHT * 0.85, self.BUTTON_WIDTH * 0.72, cfg.BUTTON_BASE_HEIGHT * 0.425, box=self.button1_box_dimension,opacity=200,box_color = self.game_data.data_dict["box_color"]), self.restart, trigger = [pg.MOUSEBUTTONDOWN, pg.K_1]), Button(TextProcessor("Main Menu", "center", self.BUTTON_WIDTH * 0.9, cfg.BUTTON_BASE_HEIGHT * 0.85, self.BUTTON_WIDTH * 0.72, cfg.BUTTON_BASE_HEIGHT * 0.425, box=self.button2_box_dimension,opacity=200,box_color = self.game_data.data_dict["box_color"]), self.main_menu, trigger = [pg.MOUSEBUTTONDOWN, pg.K_2]), ] self.win_button = Button(TextProcessor("Continue", "center", self.BUTTON_WIDTH * 0.9, cfg.BUTTON_BASE_HEIGHT * 0.85, self.BUTTON_WIDTH * 0.72, cfg.BUTTON_BASE_HEIGHT * 0.425, box=self.button3_box_dimension,opacity=200,box_color = self.game_data.data_dict["box_color"]), self.assign_win_node, trigger = [pg.MOUSEBUTTONDOWN, pg.K_1]) def reset_buttons(self): self.buttons = [ Button(TextProcessor("Restart", "center", self.BUTTON_WIDTH * 0.9, cfg.BUTTON_BASE_HEIGHT * 0.85, self.BUTTON_WIDTH * 0.72, cfg.BUTTON_BASE_HEIGHT * 0.425, box=self.button1_box_dimension,opacity=200,box_color = self.game_data.data_dict["box_color"]), self.restart, trigger = [pg.MOUSEBUTTONDOWN, pg.K_1]), Button(TextProcessor("Main Menu", "center", self.BUTTON_WIDTH * 0.9, cfg.BUTTON_BASE_HEIGHT * 0.85, self.BUTTON_WIDTH * 0.72, cfg.BUTTON_BASE_HEIGHT * 0.425, box=self.button2_box_dimension,opacity=200,box_color = self.game_data.data_dict["box_color"]), self.main_menu, trigger = [pg.MOUSEBUTTONDOWN, pg.K_2]), ] def event(self, event, observer): if len(self.game_data.data_dict["endings"]) != 8: for button in self.buttons: button.event(event, observer) def blit(self, target): self.end_text_box.blit(target) if len(self.game_data.data_dict["endings"]) != 8: for button in self.buttons: button.blit(target) else: self.win_button.blit(target) def restart(self, arg): next_nodes = self.get_option_objs("0") self.update_sounds(next_nodes[0].data.music, next_nodes[0].data.noise) self.update_active_objs("nodes", next_nodes) self.update_active_objs("gear", [self.gear]) self.update_active_objs("background", [next_nodes[0].render_background()]) self.update_active_objs("models", next_nodes[0].render_models()) self.game_data.data_dict["backpack"] = False self.game_data.data_dict["inventory"] = [] self.game_data.data_dict["traversed_rows"] = [] def main_menu(self, arg): self.game_data.data_dict["option"] = "0" self.game_data.data_dict["backpack"] = False self.game_data.data_dict["inventory"] = [] self.main_menu_node.reset_buttons() self.update_active_objs("nodes", [self.main_menu_node]) self.update_active_objs("background", [self.main_menu_node.render_background()]) def render_background(self): return ImageProcessor(self.game_data.data_dict["endings"][-1][7], h=cfg.WINDOW_HEIGHT, base="bgs") def assign_win_node(self, arg): self.update_active_objs("nodes", [self.win_node]) def get_end_text_box(self, end): self.end_text_box =TextProcessor(end, "center", cfg.LAST_TEXT_BOX[2] / 1.2, cfg.LAST_TEXT_BOX[3] / 1.2, cfg.LAST_TEXT_BOX[2] * 0.6, cfg.LAST_TEXT_BOX[3] * 0.6, box = cfg.LAST_TEXT_BOX, opacity = 100, box_color = self.game_data.data_dict["box_color"], font_size = 10) class HellEndNode(EndNode): def __init__(self, get_option_objs, update_active_objs, update_sounds, main_menu_node, data, backpack, gear, win_node = ""): super().__init__(get_option_objs, update_active_objs, update_sounds, main_menu_node, data, win_node = win_node) self.buttons[0] = Button(TextProcessor("Try Again", "center", self.BUTTON_WIDTH * 0.9, cfg.BUTTON_BASE_HEIGHT * 0.85, self.BUTTON_WIDTH * 0.72, cfg.BUTTON_BASE_HEIGHT * 0.425, box=self.button1_box_dimension,opacity=200), self.try_again, trigger = [pg.MOUSEBUTTONDOWN, pg.K_1]) self.backpack = backpack self.gear = gear def reset_buttons(self): self.buttons = [ Button(TextProcessor("Try Again", "center", self.BUTTON_WIDTH * 0.9, cfg.BUTTON_BASE_HEIGHT * 0.85, self.BUTTON_WIDTH * 0.72, cfg.BUTTON_BASE_HEIGHT * 0.425, box=self.button1_box_dimension,opacity=200,box_color = self.game_data.data_dict["box_color"]), self.try_again, trigger = [pg.MOUSEBUTTONDOWN, pg.K_1]), Button(TextProcessor("Main Menu", "center", self.BUTTON_WIDTH * 0.9, cfg.BUTTON_BASE_HEIGHT * 0.85, self.BUTTON_WIDTH * 0.72, cfg.BUTTON_BASE_HEIGHT * 0.425, box=self.button2_box_dimension,opacity=200,box_color = self.game_data.data_dict["box_color"]), self.main_menu, trigger = [pg.MOUSEBUTTONDOWN, pg.K_2]), ] def try_again(self, arg): next_nodes = self.get_option_objs("706") self.update_sounds(next_nodes[0].data.music, next_nodes[0].data.noise) self.update_active_objs("nodes", next_nodes) self.update_active_objs("background", [next_nodes[0].render_background()]) self.update_active_objs("backpack", [self.backpack]) self.update_active_objs("gear", [self.gear]) self.update_active_objs("models", next_nodes[0].render_models()) class StartNode(Interactable): BUTTON_WIDTH = round(cfg.WINDOW_WIDTH / 3) BUTTON_MARGIN = round((cfg.WINDOW_WIDTH - BUTTON_WIDTH * 2) / 3) BUTTON_DIMENSION = BUTTON_WIDTH * 0.9, cfg.BUTTON_BASE_HEIGHT * 0.85, BUTTON_WIDTH * 0.72, cfg.BUTTON_BASE_HEIGHT * 0.425 button1_box_dimension = (BUTTON_MARGIN, cfg.BUTTON_Y, BUTTON_WIDTH, cfg.BUTTON_BASE_HEIGHT) button2_box_dimension = (BUTTON_WIDTH + BUTTON_MARGIN * 2, cfg.BUTTON_Y, BUTTON_WIDTH, cfg.BUTTON_BASE_HEIGHT) def __init__(self, get_option_objs, update_active_objs, update_sounds, data, backpack, gear): self.get_option_objs, self.update_active_objs, self.update_sounds = get_option_objs, update_active_objs, update_sounds self.game_data = data self.backpack = backpack self.gear = gear self.buttons = [ Button(TextProcessor("Continue", "center", self.BUTTON_WIDTH * 0.9, cfg.BUTTON_BASE_HEIGHT * 0.85, self.BUTTON_WIDTH * 0.72, cfg.BUTTON_BASE_HEIGHT * 0.425, box=self.button1_box_dimension, opacity=200, box_color = self.game_data.data_dict["box_color"]), self.continue_game, trigger = [pg.MOUSEBUTTONDOWN, pg.K_1]), Button(TextProcessor("New Game", "center", self.BUTTON_WIDTH * 0.9, cfg.BUTTON_BASE_HEIGHT * 0.85, self.BUTTON_WIDTH * 0.72, cfg.BUTTON_BASE_HEIGHT * 0.425, box=self.button2_box_dimension, opacity=200, box_color = self.game_data.data_dict["box_color"]), self.new_game, trigger = [pg.MOUSEBUTTONDOWN, pg.K_2]), ] self.update_active_objs("background", [self.render_background()]) def render_background(self): return ImageProcessor("mainmenu", h=cfg.WINDOW_HEIGHT, base="bgs") def reset_buttons(self): self.buttons = [ Button(TextProcessor("Continue", "center", self.BUTTON_WIDTH * 0.9, cfg.BUTTON_BASE_HEIGHT * 0.85, self.BUTTON_WIDTH * 0.72, cfg.BUTTON_BASE_HEIGHT * 0.425, box=self.button1_box_dimension, opacity=200, box_color = self.game_data.data_dict["box_color"]), self.continue_game, trigger = [pg.MOUSEBUTTONDOWN, pg.K_1]), Button(TextProcessor("New Game", "center", self.BUTTON_WIDTH * 0.9, cfg.BUTTON_BASE_HEIGHT * 0.85, self.BUTTON_WIDTH * 0.72, cfg.BUTTON_BASE_HEIGHT * 0.425, box=self.button2_box_dimension, opacity=200, box_color = self.game_data.data_dict["box_color"]), self.new_game, trigger = [pg.MOUSEBUTTONDOWN, pg.K_2]), ] def event(self, event, observer): for button in self.buttons: button.event(event, observer) def blit(self, target): self.update_sounds("intro", "None") for button in self.buttons: button.blit(target) def continue_game(self, arg): last_text_box = TextProcessor(self.game_data.data_dict["last_text"], "center", cfg.LAST_TEXT_BOX[2] / 1.025, cfg.LAST_TEXT_BOX[3] / 1.05, cfg.LAST_TEXT_BOX[2] * 0.7, cfg.LAST_TEXT_BOX[3] * 0.7, box = cfg.LAST_TEXT_BOX, box_color=self.game_data.data_dict["box_color"],opacity = 100) next_nodes = self.get_option_objs(self.game_data.data_dict["option"]) if len(next_nodes) != 1: next_nodes[0].last_text_box = last_text_box self.update_sounds(next_nodes[0].data.music, next_nodes[0].data.noise) self.update_active_objs("nodes", next_nodes) self.update_active_objs("background", [next_nodes[0].render_background()]) self.update_active_objs("models", next_nodes[0].render_models()) self.update_active_objs("gear", [self.gear]) if self.game_data.data_dict["backpack"] == True: self.update_active_objs("backpack", [self.backpack]) def new_game(self, arg): self.game_data.data_dict["option"] = "0" self.game_data.data_dict["traversed_rows"] = [] self.game_data.data_dict["inventory"] = [] self.game_data.data_dict["endings"] = [] next_nodes = self.get_option_objs(self.game_data.data_dict["option"]) self.update_sounds(next_nodes[0].data.music, "None") self.update_active_objs("background", [next_nodes[0].render_background()]) self.update_active_objs("gear", [self.gear]) self.update_active_objs("nodes", next_nodes) class WinNode(EndNode): def __init__(self, get_option_objs, update_active_objs, update_sounds, main_menu_node, data): super().__init__(get_option_objs, update_active_objs, update_sounds, main_menu_node, data) self.get_end_text_box("Congratulations, you found all the endings!")
import heterocl as hcl def test_tensor_slice_shape(): A = hcl.compute((2,10), lambda i,j: 0) assert A[0].shape == (10,)
BASE_MAPPER = { 'uuid': 'Id', 'name': 'Name', 'state': 'Status' } L3_NETWORK_MAPPER = { 'uuid': 'Id', 'name': 'Name', 'l2NetworkUuid': 'NetworkId' } PowerState_Mapper = { 'Running': 'POWERED_ON', 'Stopped': 'POWERED_OFF', 'Unknown': 'UNKNOWN', 'other': 'SUSPENDED' }
from dataclasses import asdict, dataclass from typing import Iterable, Optional, Union import numpy as np import pandas as pd from .dist_funs import DEFAULT_DIST_PAIR_DICT, DistanceNormalizer @dataclass class PairBase: df1: pd.DataFrame df2: pd.DataFrame name: Optional[str] = None def __getitem__(self, item): return [self.df1, self.df2][item] def __iter__(self): yield self.df1 yield self.df2 def __repr__(self): return ( f"{type(self).__name__}: {self.name} - " f"{self.df1.shape}, {self.df2.shape}" ) def sample( self, init_sample_left: Union[None, int, list, np.ndarray], init_sample_right: Union[None, int, list, np.ndarray], dropleft: Iterable = None, dropright: Iterable = None, ): df1, df2 = [ _df.pipe(_dodrop, todrop).pipe(_dosample, sample_size) for _df, sample_size, todrop in zip( self, [init_sample_left, init_sample_right], [dropleft, dropright], ) ] kls = type(self) return kls(**{**asdict(self), "df1": df1, "df2": df2}) @classmethod def concat(cls, pairs, ignore_index=False): df1, df2 = [ pd.concat([p[i] for p in pairs], ignore_index=ignore_index) for i in range(2) ] return cls(**{**asdict(pairs[0]), "df1": df1, "df2": df2}) @property def one_empty(self): return self.min_size == 0 @property def min_size(self): return min(self.df1.shape[0], self.df2.shape[0]) @property def n_cols(self): return self.df1.shape[1] @property def total_size(self): return self.df1.shape[0] + self.df2.shape[0] @dataclass(repr=False) class EntitySetPair(PairBase): distance_metrics: Optional[list] = None distance_normalizer: Optional[DistanceNormalizer] = None sample_count_for_dist_normalizer: int = 5000 def __post_init__(self): if self.name is None: self.name = self.df1.index.name if self.distance_metrics is None: self.distance_metrics = [ DEFAULT_DIST_PAIR_DICT[t] for t in self.df1.dtypes ] if self.distance_normalizer is None: self.distance_normalizer = DistanceNormalizer.from_raw_array( self._get_raw_distance_values( pd.MultiIndex.from_arrays( [ _df.sample( self.sample_count_for_dist_normalizer, replace=True, ).index for _df in self ] ).drop_duplicates() ) ) def get_distance_series(self, left_indices, right_indices) -> pd.Series: distance_keys = pd.MultiIndex.from_arrays( [left_indices, right_indices] ) key_pairs = distance_keys return pd.Series( self.distance_normalizer.transform( self._get_raw_distance_values(key_pairs) ), index=key_pairs, dtype=np.float64, ) def _get_raw_distance_values(self, key_pairs) -> np.ndarray: # if relation points to nonexistent ind # keyerror here side_values = [ self[side].loc[key_pairs.get_level_values(side), :].values for side in range(2) ] return np.concatenate( [ dist_fun( side_values[0][:, idx], side_values[1][:, idx], )[:, np.newaxis] for idx, dist_fun in enumerate(self.distance_metrics) ], axis=1, ) @dataclass(repr=False) class MotifPair(PairBase): entity_types_of_columns: Optional[list] = None def extend( self, relation_pair: "RelationPair", source_col=None, inverse=False ) -> "MotifPair": return relation_pair.megre( self, source_col if source_col is not None else self.n_cols - 1, inverse, ) @classmethod def root_from_indices( cls, left_indices, right_indices, entity_type, ) -> "MotifPair": return cls( df1=pd.DataFrame({0: left_indices}), df2=pd.DataFrame({0: right_indices}), name=entity_type, entity_types_of_columns=[entity_type], ) @property def leaf_entity_type(self): return self.entity_types_of_columns[-1] @dataclass(repr=False) class RelationPair(PairBase): entity_types_of_columns: Optional[list] = None def __post_init__(self): if self.name is None: if self.df1.index.name is None: self.name = "-".join(map(str, self.df1.columns)) else: self.name = self.df1.index.name if self.entity_types_of_columns is None: self.entity_types_of_columns = self.df1.columns.tolist() def megre( self, nh_pair: MotifPair, source_col: int, inverse=False, ) -> MotifPair: _cs = -1 if inverse else 1 new_name = f"{nh_pair.name}--{self.name}" new_type = self.entity_types_of_columns[int(not inverse)] etypes = nh_pair.entity_types_of_columns + [new_type] neigh_dfs = [ neighdf.merge( reldf.rename( columns=dict( zip(reldf.columns[::_cs], [source_col, nh_pair.n_cols]) ) ), how="inner", ) for reldf, neighdf in zip(self, nh_pair) ] return MotifPair(*neigh_dfs, new_name, etypes) def _dosample(df, size): if isinstance(size, (list, np.ndarray, pd.Index)): return df.loc[size, :] return df if (size is None or size > df.shape[0]) else df.sample(size) def _dodrop(df, todrop): if todrop is None: return df return df.drop(todrop)
def models(app): return 'model 1', 'model 2', 'model 3' __drops__ = models
import os, numpy, random, time, math import torch import torch.nn.functional as F from ssl_lib.utils import Bar, AverageMeter def supervised_train(epoch,train_loader, model,optimizer,lr_scheduler, cfg,device): model.train() batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() labeled_acc = AverageMeter() n_iter = cfg.n_imgs_per_epoch // cfg.l_batch_size bar = Bar('Supervised Training', max=n_iter) end = time.time() for batch_idx, (data_l, _) in enumerate(train_loader): inputs_l, labels = data_l inputs_l, labels = inputs_l.to(device), labels.to(device) data_time.update(time.time() - end) bs = inputs_l.size(0) cur_iteration = epoch*cfg.per_epoch_steps+batch_idx logits_l = model(inputs_l) loss = F.cross_entropy(logits_l, labels) # update parameters cur_lr = optimizer.param_groups[0]["lr"] optimizer.zero_grad() loss.backward() optimizer.step() lr_scheduler.step() acc_l = (logits_l.max(1)[1] == labels).float().mean() losses.update(loss.item()) labeled_acc.update(acc_l.item()) batch_time.update(time.time() - end) end = time.time() if (batch_idx+1) % 10==0: bar.suffix = ("{batch:4}/{iter:4}. LR:{lr:.6f}. Data:{dt:.3f}s. Batch:{bt:.3f}s. Loss:{loss:.4f}. Acc_L:{acc_l:.4f}.".format( batch=batch_idx+1, iter=n_iter, lr=cur_lr, dt=data_time.avg, bt=batch_time.avg, loss=losses.avg, acc_l=labeled_acc.avg)) bar.next() bar.finish() return losses.avg, labeled_acc.avg
import os import base64 import discord # HTTP headers headers = { "Access-Control-Allow-Origin": "*", "Access-Control-Allow-Methods": "GET", "Access-Control-Allow-Headers": "Content-Type", "Access-Control-Max-Age": "3600", "User-Agent": "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0" # "Authorization": base64.b64encode(bytes("Basic username:password", "utf-8")) } # Log-in for youtube to download age-restricted videos ~this still doesn't solve the issue, I don't understand why~ YT_MAIL = os.getenv("YT_MAIL") YT_PASS = os.getenv("YT_PASS") # youtube-dl wants cookies as a text file ~this also doesn't solve the age-restriction issue~ with open("cookies.txt", "w") as text_file: print(os.getenv('COOKIE_DATA'), file=text_file) ytdl_format_options = { "cookies": "cookies.txt", "user_agent": "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0", "username": YT_MAIL, "password": YT_PASS, "format": "bestaudio/best", "outtmpl": "%(extractor)s-%(id)s-%(title)s.%(ext)s", "restrictfilenames": True, "noplaylist": True, "nocheckcertificate": True, "ignoreerrors": False, "logtostderr": False, "quiet": True, "no_warnings": True, "default_search": "auto", "source_address": "0.0.0.0" # Bind to IPv4 since IPv6 addresses cause issues sometimes } # -vn discards video stream ffmpeg_options = { "options": "-vn" } # Bot's discord activities activities = [ discord.Game(name="with křemík."), discord.Activity(type=discord.ActivityType.listening, name="frequencies."), discord.Activity(type=discord.ActivityType.watching, name="you.") ] geckodriver_path = os.getenv("GECKODRIVER_PATH") firefox_bin = os.getenv("FIREFOX_BIN")
"""Run distributed tasks using the Celery distributed task queue. http://celeryproject.org/ """ import os import sys import time import contextlib import multiprocessing from mako.template import Template try: import joblib except ImportError: joblib = False from bcbio import utils from bcbio.distributed import ipython from bcbio.log import logger from bcbio.provenance import diagnostics, system def parallel_runner(parallel, dirs, config, config_file=None): """Process a supplied function: single, multi-processor or distributed. """ def run_parallel(fn_name, items, metadata=None): items = [x for x in items if x is not None] if len(items) == 0: return [] items = diagnostics.track_parallel(items, fn_name) imodule = parallel.get("module", "bcbio.distributed") sysinfo = system.get_info(dirs, parallel) if parallel["type"].startswith("messaging"): task_module = "{base}.tasks".format(base=imodule) runner_fn = runner(task_module, dirs, config, config_file) return runner_fn(fn_name, items) elif parallel["type"] == "ipython": return ipython.runner(parallel, fn_name, items, dirs["work"], sysinfo, config) else: logger.info("multiprocessing: %s" % fn_name) fn = getattr(__import__("{base}.multitasks".format(base=imodule), fromlist=["multitasks"]), fn_name) jobr = ipython.find_job_resources([fn], parallel, items, sysinfo, config) items = [ipython.add_cores_to_config(x, jobr.cores_per_job) for x in items] if joblib is None: raise ImportError("Need joblib for multiprocessing parallelization") out = [] for data in joblib.Parallel(jobr.num_jobs)(joblib.delayed(fn)(x) for x in items): if data: out.extend(data) return out return run_parallel def runner(task_module, dirs, config, config_file, wait=True): """Run a set of tasks using Celery, waiting for results or asynchronously. Initialize with the configuration and directory information, used to prepare a Celery configuration file and imports. It returns a function which acts like standard map; provide the function name instead of the function itself when calling. After name lookup, Celery runs the function in parallel; Celery servers can be remote or local but must have access to a shared filesystem. The function polls if wait is True, returning when all results are available. """ with create_celeryconfig(task_module, dirs, config, config_file): sys.path.append(dirs["work"]) __import__(task_module) tasks = sys.modules[task_module] from celery.task.sets import TaskSet def _run(fn_name, xs): fn = getattr(tasks, fn_name) job = TaskSet(tasks=[apply(fn.subtask, (x,)) for x in xs]) result = job.apply_async() out = [] if wait: with _close_taskset(result): while not result.ready(): time.sleep(5) if result.failed(): raise ValueError("Failed distributed task; cleaning up") for x in result.join(): if x: out.extend(x) return out return _run @contextlib.contextmanager def _close_taskset(ts): """Revoke existing jobs if a taskset fails; raise original error. """ try: yield None except: try: raise finally: try: ts.revoke() except: pass # ## Utility functions _celeryconfig_tmpl = """ CELERY_IMPORTS = ("${task_import}", ) BROKER_URL = "amqp://${userid}:${password}@${host}:${port}/${rabbitmq_vhost}" CELERY_RESULT_BACKEND= "amqp" CELERY_TASK_SERIALIZER = "json" CELERYD_CONCURRENCY = ${cores} CELERY_ACKS_LATE = False CELERYD_PREFETCH_MULTIPLIER = 1 BCBIO_CONFIG_FILE = "${config_file}" """ @contextlib.contextmanager def create_celeryconfig(task_module, dirs, config, config_file): amqp_config = utils.read_galaxy_amqp_config(config["galaxy_config"], dirs["config"]) if not amqp_config.has_key("host") or not amqp_config.has_key("userid"): raise ValueError("universe_wsgi.ini does not have RabbitMQ messaging details set") out_file = os.path.join(dirs["work"], "celeryconfig.py") amqp_config["rabbitmq_vhost"] = config["distributed"]["rabbitmq_vhost"] cores = config["distributed"].get("cores_per_host", 0) if cores < 1: cores = multiprocessing.cpu_count() amqp_config["cores"] = cores amqp_config["task_import"] = task_module amqp_config["config_file"] = config_file with open(out_file, "w") as out_handle: out_handle.write(Template(_celeryconfig_tmpl).render(**amqp_config)) try: yield out_file finally: pyc_file = "%s.pyc" % os.path.splitext(out_file)[0] for fname in [pyc_file, out_file]: if os.path.exists(fname): os.remove(fname)
#!/usr/bin/env python3 """ Tests for the inner product Tensorflow operation. .. moduleauthor:: David Stutz """ import numpy as np import tensorflow as tf from tensorflow.python.framework import ops from matplotlib import pyplot as plt Poisson_module = tf.load_op_library('build/libPoissonOp.so') PoissonGrad_module = tf.load_op_library('build/libPoissonGradOp.so') @ops.RegisterGradient("PoissonOp") def poisson_grad_cc(op, grad): return PoissonGrad_module.poisson_grad(grad, op.inputs[0], op.inputs[1], op.inputs[2]) sess = tf.Session() len_z = 200 len_x = 200 h = 1/(2**1) nz = int(len_z/h + 1) nx = int(len_x/h + 1) rho = 1000.0 G = 9.8 g_np = np.zeros((nz, nx)) coef_np = np.zeros((nz, nx)) p_true = np.zeros((nz, nx)) # for i in range(nz): # for j in range(nx): # g_np[i,j] = np.sin(2*np.pi/len_z*i*h)*np.sin(2*np.pi/len_x*j*h) # coef_np[i,j] = 1.0-np.cos(2*np.pi/len_z*i*h)*np.sin(2*np.pi/len_x*j*h)*len_z/(2*np.pi*rho*G) # p_true[i,j] = rho*G*i*h for i in range(nz): for j in range(nx): g_np[i,j] = 2*i*h*np.exp(-(i*h)**2-(j*h)**2) * rho * G coef_np[i,j] = 1 + np.exp(-(i*h)**2-(j*h)**2) p_true[i,j] = rho*G*i*h p_true = p_true - np.mean(p_true) # coef_np = np.ones((nz, nx)) # g_np = np.zeros((nz, nx)) # g_np[5,5] = -1.0 # g_np[15,15] = 1.0 print(np.mean(g_np)) coef = tf.constant(coef_np, dtype=tf.float64) # g_np = g_np - np.mean(g_np) g = tf.constant(g_np, dtype=tf.float64) p = Poisson_module.poisson_op(coef, g, h, G*rho, 2) # g = tf.gradients(tf.reduce_sum(p), coef, g, h) # print(sess.run(p)) # print(sess.run(g)) p_inv_np = sess.run(p) p_inv_np = p_inv_np - np.mean(p_inv_np) plt.subplot(1,2,1) plt.imshow(p_inv_np) plt.colorbar() plt.title('inv') plt.subplot(1,2,2) plt.imshow(p_true) plt.colorbar() plt.show() # sess = tf.Session() # h = 0.2 # nz = 5 # nx = 5 # rho = 1000.0 # G = 0.0 # g_np = np.zeros((nz, nx)) # g_np[0,0]=25.0 # g_np[4,4]=-25.0 # coef_np = np.ones((nz, nx)) # print(np.mean(g_np)) # coef = tf.constant(coef_np, dtype=tf.float64) # # g_np = g_np - np.mean(g_np) # g = tf.constant(g_np, dtype=tf.float64) # p = Poisson_module.poisson_op(coef, g, h, G*rho, 1) # # g = tf.gradients(tf.reduce_sum(p), coef, g, h) # # print(sess.run(p)) # # print(sess.run(g)) # p_inv_np = sess.run(p) # # p_inv_np = p_inv_np - np.mean(p_inv_np) # plt.imshow(p_inv_np) # plt.colorbar() # plt.title('inv') # plt.show()
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. from __future__ import division, unicode_literals import re import six from monty.io import zopen from monty.re import regrep from collections import defaultdict from pymatgen.core.periodic_table import Element from pymatgen.core.lattice import Lattice from pymatgen.core.structure import Structure from pymatgen.util.io_utils import clean_lines """ This module implements input and output processing from PWSCF. """ __author__ = "Shyue Ping Ong" __copyright__ = "Copyright 2012, The Materials Virtual Lab" __version__ = "0.1" __maintainer__ = "Shyue Ping Ong" __email__ = "ongsp@ucsd.edu" __date__ = "3/27/15" class PWInput(object): """ Base input file class. Right now, only supports no symmetry and is very basic. """ def __init__(self, structure, pseudo=None, control=None, system=None, electrons=None, ions=None, cell=None, kpoints_mode="automatic", kpoints_grid=(1, 1, 1),kpoints_shift=(0, 0, 0)): """ Initializes a PWSCF input file. Args: structure (Structure): Input structure. For spin-polarized calculation, properties (e.g. {"starting_magnetization": -0.5, "pseudo": "Mn.pbe-sp-van.UPF"}) on each site is needed instead of pseudo (dict). pseudo (dict): A dict of the pseudopotentials to use. Default to None. control (dict): Control parameters. Refer to official PWSCF doc on supported parameters. Default to {"calculation": "scf"} system (dict): System parameters. Refer to official PWSCF doc on supported parameters. Default to None, which means {}. electrons (dict): Electron parameters. Refer to official PWSCF doc on supported parameters. Default to None, which means {}. ions (dict): Ions parameters. Refer to official PWSCF doc on supported parameters. Default to None, which means {}. cell (dict): Cell parameters. Refer to official PWSCF doc on supported parameters. Default to None, which means {}. kpoints_mode (str): Kpoints generation mode. Default to automatic. kpoints_grid (sequence): The kpoint grid. Default to (1, 1, 1). kpoints_shift (sequence): The shift for the kpoints. Defaults to (0, 0, 0). """ self.structure = structure sections = {} sections["control"] = control or {"calculation": "scf"} sections["system"] = system or {} sections["electrons"] = electrons or {} sections["ions"] = ions or {} sections["cell"] = cell or {} if pseudo == None: for site in structure: try: site.properties['pseudo'] except KeyError: raise PWInputError("Missing %s in pseudo specification!" % site) else: for species in self.structure.composition.keys(): if species.symbol not in pseudo: raise PWInputError("Missing %s in pseudo specification!" % species.symbol) self.pseudo = pseudo self.sections = sections self.kpoints_mode = kpoints_mode self.kpoints_grid = kpoints_grid self.kpoints_shift = kpoints_shift def __str__(self): out = [] site_descriptions = {} if self.pseudo != None: site_descriptions = self.pseudo else: c = 1 for site in self.structure: name = None for k, v in site_descriptions.items(): if site.properties == v: name = k if name == None: name = site.specie.symbol+str(c) site_descriptions[name] = site.properties c += 1 def to_str(v): if isinstance(v, six.string_types): return "'%s'" % v elif isinstance(v, float): return "%s" % str(v).replace("e", "d") elif isinstance(v, bool): if v: return ".TRUE." else: return ".FALSE." return v for k1 in ["control", "system", "electrons", "ions", "cell"]: v1 = self.sections[k1] out.append("&%s" % k1.upper()) sub = [] for k2 in sorted(v1.keys()): if isinstance(v1[k2], list): n = 1 for l in v1[k2][:len(site_descriptions)]: sub.append(" %s(%d) = %s" % (k2, n, to_str(v1[k2][n-1]))) n += 1 else: sub.append(" %s = %s" % (k2, to_str(v1[k2]))) if k1 == "system": if 'ibrav' not in self.sections[k1]: sub.append(" ibrav = 0") if 'nat' not in self.sections[k1]: sub.append(" nat = %d" % len(self.structure)) if 'ntyp' not in self.sections[k1]: sub.append(" ntyp = %d" % len(site_descriptions)) sub.append("/") out.append(",\n".join(sub)) out.append("ATOMIC_SPECIES") for k, v in sorted(site_descriptions.items(), key=lambda i: i[0]): e = re.match(r"[A-Z][a-z]?", k).group(0) if self.pseudo is not None: p = v else: p = v['pseudo'] out.append(" %s %.4f %s" % (k, Element(e).atomic_mass, p)) out.append("ATOMIC_POSITIONS crystal") if self.pseudo is not None: for site in self.structure: out.append(" %s %.6f %.6f %.6f" % (site.specie.symbol, site.a, site.b, site.c)) else: for site in self.structure: name = None for k, v in sorted(site_descriptions.items(), key=lambda i: i[0]): if v == site.properties: name = k out.append(" %s %.6f %.6f %.6f" % (name, site.a, site.b, site.c)) out.append("K_POINTS %s" % self.kpoints_mode) kpt_str = ["%s" % i for i in self.kpoints_grid] kpt_str.extend(["%s" % i for i in self.kpoints_shift]) out.append(" %s" % " ".join(kpt_str)) out.append("CELL_PARAMETERS angstrom") for vec in self.structure.lattice.matrix: out.append(" %f %f %f" % (vec[0], vec[1], vec[2])) return "\n".join(out) def write_file(self, filename): """ Write the PWSCF input file. Args: filename (str): The string filename to output to. """ with open(filename, "w") as f: f.write(self.__str__()) @staticmethod def from_file(filename): """ Reads an PWInput object from a file. Args: filename (str): Filename for file Returns: PWInput object """ with zopen(filename, "rt") as f: return PWInput.from_string(f.read()) @staticmethod def from_string(string): """ Reads an PWInput object from a string. Args: string (str): PWInput string Returns: PWInput object """ lines = list(clean_lines(string.splitlines())) def input_mode(line): if line[0] == "&": return ("sections", line[1:].lower()) elif "ATOMIC_SPECIES" in line: return ("pseudo", ) elif "K_POINTS" in line: return ("kpoints", line.split("{")[1][:-1]) elif "CELL_PARAMETERS" in line or "ATOMIC_POSITIONS" in line: return ("structure", line.split("{")[1][:-1]) elif line == "/": return None else: return mode sections = {"control": {}, "system": {}, "electrons": {}, "ions": {}, "cell":{}} pseudo = {} pseudo_index = 0 lattice = [] species = [] coords = [] structure = None site_properties = {"pseudo":[]} mode = None for line in lines: mode = input_mode(line) if mode == None: pass elif mode[0] == "sections": section = mode[1] m = re.match(r'(\w+)\(?(\d*?)\)?\s*=\s*(.*)', line) if m: key = m.group(1).strip() key_ = m.group(2).strip() val = m.group(3).strip() if key_ != "": if sections[section].get(key, None) == None: val_ = [0.0]*20 # MAX NTYP DEFINITION val_[int(key_)-1] = PWInput.proc_val(key, val) sections[section][key] = val_ site_properties[key] = [] else: sections[section][key][int(key_)-1] = PWInput.proc_val(key, val) else: sections[section][key] = PWInput.proc_val(key, val) elif mode[0] == "pseudo": m = re.match(r'(\w+)\s+(\d*.\d*)\s+(.*)', line) if m: pseudo[m.group(1).strip()] = {} pseudo[m.group(1).strip()]["index"] = pseudo_index pseudo[m.group(1).strip()]["pseudopot"] = m.group(3).strip() pseudo_index += 1 elif mode[0] == "kpoints": m = re.match(r'(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)', line) if m: kpoints_grid = (int(m.group(1)), int(m.group(2)), int(m.group(3))) kpoints_shift = (int(m.group(4)), int(m.group(5)), int(m.group(6))) else: kpoints_mode = mode[1] elif mode[0] == "structure": m_l = re.match(r'(-?\d+\.?\d*)\s+(-?\d+\.?\d*)\s+(-?\d+\.?\d*)', line) m_p = re.match(r'(\w+)\s+(-?\d+\.\d*)\s+(-?\d+\.?\d*)\s+(-?\d+\.?\d*)', line) if m_l: lattice += [ float(m_l.group(1)), float(m_l.group(2)), float(m_l.group(3)) ] elif m_p: site_properties["pseudo"].append(pseudo[m_p.group(1)]["pseudopot"]) species += [pseudo[m_p.group(1)]["pseudopot"].split(".")[0]] coords += [[float(m_p.group(2)), float(m_p.group(3)), float(m_p.group(4))]] for k, v in site_properties.items(): if k != "pseudo": site_properties[k].append(sections['system'][k][pseudo[m_p.group(1)]["index"]]) if mode[1] == "angstrom": coords_are_cartesian = True elif mode[1] == "crystal": coords_are_cartesian = False structure = Structure(Lattice(lattice), species, coords, coords_are_cartesian=coords_are_cartesian, site_properties=site_properties) return PWInput(structure=structure, control=sections["control"], system=sections["system"], electrons=sections["electrons"], ions=sections["ions"], cell=sections["cell"], kpoints_mode=kpoints_mode, kpoints_grid=kpoints_grid, kpoints_shift=kpoints_shift) def proc_val(key, val): """ Static helper method to convert PWINPUT parameters to proper type, e.g., integers, floats, etc. Args: key: PWINPUT parameter key val: Actual value of PWINPUT parameter. """ float_keys = ('etot_conv_thr','forc_conv_thr','conv_thr','Hubbard_U','Hubbard_J0','defauss', 'starting_magnetization',) int_keys = ('nstep','iprint','nberrycyc','gdir','nppstr','ibrav','nat','ntyp','nbnd','nr1', 'nr2','nr3','nr1s','nr2s','nr3s','nspin','nqx1','nqx2','nqx3','lda_plus_u_kind', 'edir','report','esm_nfit','space_group','origin_choice','electron_maxstep', 'mixing_ndim','mixing_fixed_ns','ortho_para','diago_cg_maxiter','diago_david_ndim', 'nraise','bfgs_ndim','if_pos','nks','nk1','nk2','nk3','sk1','sk2','sk3','nconstr') bool_keys = ('wf_collect','tstress','tprnfor','lkpoint_dir','tefield','dipfield','lelfield', 'lorbm','lberry','lfcpopt','monopole','nosym','nosym_evc','noinv','no_t_rev', 'force_symmorphic','use_all_frac','one_atom_occupations','starting_spin_angle', 'noncolin','x_gamma_extrapolation','lda_plus_u','lspinorb','london', 'ts_vdw_isolated','xdm','uniqueb','rhombohedral','realxz','block', 'scf_must_converge','adaptive_thr','diago_full_acc','tqr','remove_rigid_rot', 'refold_pos') def smart_int_or_float(numstr): if numstr.find(".") != -1 or numstr.lower().find("e") != -1: return float(numstr) else: return int(numstr) try: if key in bool_keys: if val.lower() == ".true.": return True elif val.lower() == ".false.": return False else: raise ValueError(key + " should be a boolean type!") if key in float_keys: return float(re.search(r"^-?\d*\.?\d*d?-?\d*", val.lower()).group(0).replace("d", "e")) if key in int_keys: return int(re.match(r"^-?[0-9]+", val).group(0)) except ValueError: pass try: val = val.replace("d","e") return smart_int_or_float(val) except ValueError: pass if "true" in val.lower(): return True if "false" in val.lower(): return False m = re.match(r"^[\"|'](.+)[\"|']$", val) if m: return m.group(1) class PWInputError(BaseException): pass class PWOutput(object): patterns = { "energies": r'total energy\s+=\s+([\d\.\-]+)\sRy', "ecut": r'kinetic\-energy cutoff\s+=\s+([\d\.\-]+)\s+Ry', "lattice_type": r'bravais\-lattice index\s+=\s+(\d+)', "celldm1": r"celldm\(1\)=\s+([\d\.]+)\s", "celldm2": r"celldm\(2\)=\s+([\d\.]+)\s", "celldm3": r"celldm\(3\)=\s+([\d\.]+)\s", "celldm4": r"celldm\(4\)=\s+([\d\.]+)\s", "celldm5": r"celldm\(5\)=\s+([\d\.]+)\s", "celldm6": r"celldm\(6\)=\s+([\d\.]+)\s", "nkpts": r"number of k points=\s+([\d]+)" } def __init__(self, filename): self.filename = filename self.data = defaultdict(list) self.read_pattern(PWOutput.patterns) for k, v in self.data.items(): if k == "energies": self.data[k] = [float(i[0][0]) for i in v] elif k in ["lattice_type", "nkpts"]: self.data[k] = int(v[0][0][0]) else: self.data[k] = float(v[0][0][0]) def read_pattern(self, patterns, reverse=False, terminate_on_match=False, postprocess=str): """ General pattern reading. Uses monty's regrep method. Takes the same arguments. Args: patterns (dict): A dict of patterns, e.g., {"energy": r"energy\\(sigma->0\\)\\s+=\\s+([\\d\\-.]+)"}. reverse (bool): Read files in reverse. Defaults to false. Useful for large files, esp OUTCARs, especially when used with terminate_on_match. terminate_on_match (bool): Whether to terminate when there is at least one match in each key in pattern. postprocess (callable): A post processing function to convert all matches. Defaults to str, i.e., no change. Renders accessible: Any attribute in patterns. For example, {"energy": r"energy\\(sigma->0\\)\\s+=\\s+([\\d\\-.]+)"} will set the value of self.data["energy"] = [[-1234], [-3453], ...], to the results from regex and postprocess. Note that the returned values are lists of lists, because you can grep multiple items on one line. """ matches = regrep(self.filename, patterns, reverse=reverse, terminate_on_match=terminate_on_match, postprocess=postprocess) self.data.update(matches) def get_celldm(self, i): return self.data["celldm%d" % i] @property def final_energy(self): return self.data["energies"][-1] @property def lattice_type(self): return self.data["lattice_type"]
from datetime import date ano = date.today().year nome = input("digite seu nome: ") idade = int(input("digite sua idade: ")) altura = float(input("digite sua altura: ")) peso = float(input("digite seu peso: ")) ano_nascimento = int(ano) - idade imc = peso/(altura*altura) print(f'nome:{nome}, idade:{idade}, altura:{altura}, peso:{peso}, ano de nascimento:{ano_nascimento}, imc:{imc}')
from enum import Enum from typing import Any from app.schemas.debit import DebitCreate, DebitUpdate from fastapi import APIRouter, Depends, HTTPException from fastapi import status as sts from sqlalchemy.orm import Session from app import crud, models, schemas from app.api import deps from app.core.celery_app import celery_app router = APIRouter() class StatusRequest(str, Enum): canceled = "canceled" approved = "approved" rejected = "rejected" @router.get("/request", response_model=schemas.Debit) async def get_automatic_debit_request( db: Session = Depends(deps.get_db), current_user: models.User = Depends(deps.get_current_active_user) ) -> Any: """ Request Automatic Debit. """ debit = crud.debit.get_by_owner(db, owner_id=current_user.id) if debit: raise HTTPException(status_code=sts.HTTP_400_BAD_REQUEST, detail="Automatic debit request already made.") obj_in = DebitCreate() return crud.debit.create_with_owner(db, obj_in=obj_in, owner_id=current_user.id) @router.put("/{owner_id}", response_model=schemas.Debit) async def update_status( owner_id: int, status: StatusRequest, db: Session = Depends(deps.get_db), current_user: models.User = Depends(deps.get_current_active_superuser), ) -> Any: """ Update Automatic Debit Status. """ debit = crud.debit.get_by_owner(db, owner_id=owner_id) if not debit: raise HTTPException(status_code=sts.HTTP_404_NOT_FOUND, detail="Not Found automatic debit request by id") obj_in = DebitUpdate(status=status) debit_out = crud.debit.update_status(db, db_obj=debit, obj_in=obj_in) if status in (StatusRequest.canceled, StatusRequest.approved): user = crud.user.get(db, id=debit.owner_id) celery_app.send_task("app.tasks.send_email.email_task", args=[status, user.email]) return debit_out @router.get("/{owner_id}", response_model=schemas.Debit) async def get_automatic_debit_by_owner_id( owner_id: int, db: Session = Depends(deps.get_db), current_user: models.User = Depends(deps.get_current_active_user) ) -> Any: """ Get Automatic Debit By Owner Id. """ debit = crud.debit.get_by_owner(db, owner_id=owner_id) if not debit: raise HTTPException(status_code=sts.HTTP_404_NOT_FOUND, detail="Automatic debit request not found.") return debit
# %% '''Python Program to check for Stack Permutations. What are Stack Permutations? If the elements of the input queue can be permuted into the order of the elements in the output queue using ''' # %% from queue import Queue from collections import deque # %% def checkStackPermutation(inp, output, length): # Input queue inpQ = Queue() for i in range(length): inpQ.put(inp[i]) # output queue outQ = Queue() for i in range(length): outQ.put(output[i]) # stack to be used for permutation tempStack = deque() while (not inpQ.empty()): element = inpQ.queue[0] inpQ.get() if (element == outQ.queue[0]): outQ.get() while (len(tempStack) != 0): if (tempStack[-1] == outQ.queue[0]): tempStack.pop() outQ.get() else: break else: tempStack.append(element) # If after processing, both Input # queue and stack are empty then # the Input queue is permutable # otherwise not. return (inpQ.empty() and len(tempStack) == 0) # %% if __name__ == '__main__': inp = list(map(int, input().split())) # Output Queue output = list(map(int, input().split())) length = len(inp) if (checkStackPermutation(inp, output, length)): print("Yes, the output is a possible stack permutation of the input.") else: print("No, the output is not a stack permutation of the input") # %%
import sys from datetime import datetime from flask import Flask, g from flask.json import JSONEncoder from oslo_config import cfg from oslo_log import log as logging from pymsboot import config from pymsboot.api.v1.movie import bp_movie from pymsboot.context import make_context from pymsboot.db.api import db_init, DbApi LOG = logging.getLogger(__name__) CONF = cfg.CONF app = Flask(__name__) def prepare_service(argv): _DEFAULT_LOG_LEVELS = [ 'eventlet.wsgi.server=WARN', 'oslo_service.periodic_task=INFO', 'oslo_service.loopingcall=INFO', 'oslo_concurrency.lockutils=WARN', 'urllib3.connectionpool=CRITICAL', 'futurist.periodics=WARN', 'flask=INFO', 'sqlalchemy=WARN', 'werkzeug=INFO' ] extra_log_level_defaults = [ 'flask=INFO' ] default_log_levels = logging.get_default_log_levels() default_log_levels.extend(_DEFAULT_LOG_LEVELS) logging.register_options(CONF) logging.set_defaults(default_log_levels=default_log_levels + extra_log_level_defaults) config.parse_args(args=argv) logging.setup(CONF, 'pymsboot_api') def create_app(): if sys.argv is None: argv = [] else: argv = sys.argv[1:] prepare_service(argv) db_init() LOG.info('setup api wsgi app') app.config.update( DEBUG=True, SECRET_KEY=b'\x87T4a\x00\x8e\x12\xf8\xaa\x90\xe2\x98\xcf6Td\xaa\xf6\x8e\xf2\n\xae\x12' ) app.json_encoder = CustomJSONEncoder app.wsgi_app = OsloLogMiddleware(app.wsgi_app) app.register_blueprint(bp_movie, url_prefix='/api/v1/') return app @app.before_request def before_req(): g.dbapi = DbApi() g.req_ctx = make_context() class CustomJSONEncoder(JSONEncoder): def default(self, obj): try: if isinstance(obj, datetime): return obj.isoformat() iterable = iter(obj) except TypeError: pass else: return list(iterable) return JSONEncoder.default(self, obj) class OsloLogMiddleware(object): format = ('%(REMOTE_ADDR)s %(REMOTE_USER)s %(REMOTE_STATUS)s ' '"%(REQUEST_METHOD)s %(REQUEST_URI)s" status: %(status)s' ' len: %(bytes)s') def __init__(self, application): self.application = application def __call__(self, environ, start_response): LOG.info('Starting request: %s "%s %s"' % (environ['REMOTE_ADDR'], environ['REQUEST_METHOD'], self._get_uri(environ))) if LOG.isEnabledFor(logging.INFO): return self._log_app(environ, start_response) else: return self.application(environ, start_response) @staticmethod def _get_uri(environ): req_uri = (environ.get('SCRIPT_NAME', '') + environ.get('PATH_INFO', '')) if environ.get('QUERY_STRING'): req_uri += '?' + environ['QUERY_STRING'] return req_uri def _log_app(self, environ, start_response): req_uri = self._get_uri(environ) def replacement_start_response(status, headers, exc_info=None): """We need to gaze at the content-length, if set, to write log info. """ size = None for name, value in headers: if name.lower() == 'content-length': size = value self.write_log(environ, req_uri, status, size) return start_response(status, headers, exc_info) return self.application(environ, replacement_start_response) def write_log(self, environ, req_uri, status, size): """Write the log info out in a formatted form to ``LOG.info``. """ if size is None: size = '-' log_format = { 'REMOTE_ADDR': environ.get('REMOTE_ADDR') or '-', 'REMOTE_USER': environ.get('HTTP_X_USER_ID', '-'), 'REMOTE_STATUS': environ.get('HTTP_X_IDENTITY_STATUS', '-'), 'REQUEST_METHOD': environ['REQUEST_METHOD'], 'REQUEST_URI': req_uri, 'status': status.split(None, 1)[0], 'bytes': size, } # We don't need to worry about trying to avoid the cost of # interpolation here because we only reach this code if INFO # is enabled. message = self.format % log_format LOG.info(message)
from django.db import models from django.contrib.auth.models import User import os from django.conf import settings import json import logging from datetime import datetime import numpy as np from django.db import transaction from shutil import rmtree import struct import re from django.contrib import admin from django.db.models.signals import pre_delete from django.dispatch import receiver class Dataset(models.Model): name = models.CharField('Name', max_length=50) text_id = models.TextField(unique=True, null=False) description = models.TextField('Description') owner = models.ForeignKey(User, null=False, default=0) terms_count = models.IntegerField(default=0) documents_count = models.IntegerField(default=0) modalities_count = models.IntegerField(default=0) creation_time = models.DateTimeField(null=False, default=datetime.now) # 0=OK, 1=processing, 2=error status = models.IntegerField(null=False, default=0) error_message = models.TextField(null=True) language = models.TextField(null=False, default="english") preprocessing_params = models.TextField(null=False, default="{}") time_provided = models.BooleanField(null=False, default=True) is_public = models.BooleanField(null=False, default=True) def __str__(self): return self.name def reload(self): self.prepare_log() self.log("Loading dataset " + self.text_id + "...") Term.objects.filter(dataset=self).delete() Document.objects.filter(dataset=self).delete() Modality.objects.filter(dataset=self).delete() from models.models import ArtmModel ArtmModel.objects.filter(dataset=self).delete() try: meta_file = os.path.join(self.get_folder(), "meta", "meta.json") with open(meta_file) as f: self.docs_info = json.load(f) except BaseException as ex: self.log("WARNING! Wasn't able to load meta.json") self.log(str(ex)) self.time_provided = False self.docs_info = {} try: preprocessing_params = json.loads(self.preprocessing_params) self.log("Preprocessing params:" + str(preprocessing_params)) except BaseException: preprocessing_params = {} self.log("Warning! Failed to load preprocessing parameters.") # Preprocessing custom_vocab = False if "parse" in preprocessing_params: self.preprocess_parse(preprocessing_params["parse"]) if "filter" in preprocessing_params: self.preprocess_filter(preprocessing_params["filter"]) custom_vocab = True if "custom_vocab" in preprocessing_params and preprocessing_params[ "custom_vocab"]: self.log("Will use custom vocab.txt") custom_vocab = True self.create_batches() self.gather_dictionary(custom_vocab=custom_vocab) self.load_documents() self.log("Loaded " + str(self.documents_count) + " documents.") # Creating folder for models model_path = os.path.join( settings.DATA_DIR, "datasets", self.text_id, "models") if not os.path.exists(model_path): os.makedirs(model_path) self.log("Dataset " + self.text_id + " loaded.") self.creation_time = datetime.now() self.status = 0 self.save() # Counting weights for terms. self.log("Counting weights for terms.") self.reset_terms_weights() def preprocess_parse(self, params): self.log("Parsing documents...") from algo.preprocessing.Parser import Parser parser = Parser(self.get_folder()) if "store_order" in params: parser.store_order = params["store_order"] if "hashtags" in params: parser.hashtags = params["hashtags"] if "bigrams" in params: parser.bigrams = params["bigrams"] self.log("Parsing initialized.") parser.process() self.log("Parsing done.") def preprocess_filter(self, params): from algo.preprocessing.VocabFilter import VocabFilter self.log("Filtering words...") filter = VocabFilter(os.path.join(self.get_folder(), "vw.txt")) self.log("Filtering initilized.") if "lower_bound" in params: filter.lower_bound = int(params["lower_bound"]) if "upper_bound" in params: filter.upper_bound = int(params["upper_bound"]) if "upper_bound_relative" in params: filter.upper_bound_relative = int(params["upper_bound_relative"]) if "minimal_length" in params: filter.minimal_length = int(params["minimal_length"]) filter.save_vocabulary(os.path.join(self.get_folder(), "vocab.txt")) self.log("Filtering done.") def create_batches(self): import artm self.log("Creating ARTM batches...") batches_folder = os.path.join(self.get_folder(), "batches") if os.path.exists(batches_folder): rmtree(batches_folder) os.makedirs(batches_folder) vw_path = os.path.join(self.get_folder(), "vw.txt") if not os.path.exists(vw_path): raise ValueError("FATAL ERROR! vw.txt file wasn't found.") batch_vectorizer = artm.BatchVectorizer( data_path=vw_path, data_format="vowpal_wabbit", batch_size=10000, collection_name=self.text_id, target_folder=batches_folder ) self.log("Batches created.") @transaction.atomic def gather_dictionary(self, custom_vocab=False): import artm self.log("Creating ARTM dictionary...") dictionary = artm.Dictionary(name="dictionary") batches_folder = os.path.join(self.get_folder(), "batches") vocab_file_path = os.path.join(self.get_folder(), "vocab.txt") if custom_vocab: dictionary.gather(batches_folder, vocab_file_path=vocab_file_path) else: dictionary.gather(batches_folder) vocab_file = open(vocab_file_path, "w", encoding="utf-8") dictionary_file_name = os.path.join( self.get_folder(), "batches", "dictionary.txt") dictionary.save_text(dictionary_file_name) self.log("Saving terms to database...") term_index_id = -3 self.modalities_count = 0 self.terms_index = dict() modalities_index = dict() with open(dictionary_file_name, "r", encoding='utf-8') as f: for line in f: term_index_id += 1 if term_index_id < 0: continue parsed = line.replace(',', ' ').split() term = Term() term.dataset = self term.text = parsed[0] term.index_id = term_index_id term.token_value = float(parsed[2]) term.token_tf = int(parsed[3].split('.')[0]) term.token_df = int(parsed[4].split('.')[0]) modality_name = parsed[1] if modality_name not in modalities_index: modality = Modality() modality.index_id = self.modalities_count self.modalities_count += 1 modality.name = modality_name modality.dataset = self modality.save() modalities_index[modality_name] = modality modality = modalities_index[modality_name] term.modality = modality modality.terms_count += 1 term.save() if not custom_vocab: vocab_file.write("%s %s\n" % (parsed[0], parsed[1])) self.terms_index[term.text] = term self.terms_index[term.text + "$#" + term.modality.name] = term self.terms_index[term.index_id] = term if term_index_id % 10000 == 0: self.log(str(term_index_id)) # print(term_index_id) if not custom_vocab: vocab_file.close() self.terms_count = term_index_id + 1 self.terms_count = term_index_id + 1 self.log("Saving modalities...") max_modality_size = 0 word_modality_id = -1 for key, modality in modalities_index.items(): if modality.terms_count > max_modality_size: word_modality_id = modality.id max_modality_size = modality.terms_count for key, modality in modalities_index.items(): if modality.id == word_modality_id: modality.weight_spectrum = 1 modality.weight_naming = 1 if 'tag' in modality.name: modality.is_tag = True modality.save() self.normalize_modalities_weights() @transaction.atomic def load_documents(self): vw_file_name = os.path.join(self.get_folder(), "vw.txt") self.log( "Loading documents in Vowpal Wabbit format from " + vw_file_name) doc_id = 0 with open(vw_file_name, "r", encoding="utf-8") as f: for line in f: if len(line) <= 1: continue doc = Document() doc.dataset = self doc.index_id = doc_id doc.fetch_vw(line) if doc.text_id in self.docs_info: doc.fetch_meta(self.docs_info[doc.text_id]) doc.save() doc_id += 1 if doc_id % 1000 == 0: self.log(str(doc_id)) self.documents_count = doc_id self.save() def reload_untrusted(self): try: self.reload() except BaseException: import traceback self.error_message = traceback.format_exc() self.status = 2 self.save() def upload_from_archive(self, archive): archive_name = str(archive) parsed = archive_name.split('.') if parsed[1] != 'zip': raise ValueError("Must be zip archive") self.text_id = parsed[0] self.name = parsed[0] self.prepare_log("Loading dataset %s from archive..." % self.text_id) if len(Dataset.objects.filter(text_id=parsed[0])) != 0: raise ValueError("Dataset " + parsed[0] + " already exists.") zip_file_name = os.path.join(self.get_folder(), archive_name) with open(os.path.join(self.get_folder(), archive_name), 'wb+') as f: for chunk in archive.chunks(): f.write(chunk) self.log("Archive uploaded.") import zipfile zip_ref = zipfile.ZipFile(zip_file_name, 'r') zip_ref.extractall(self.get_folder()) zip_ref.close() self.log("Archive unpacked. Dataset name: " + self.text_id) os.remove(zip_file_name) def get_batches(self): import artm dataset_path = os.path.join( settings.DATA_DIR, "datasets", self.text_id) batches_folder = os.path.join(dataset_path, "batches") dictionary_file_name = os.path.join(batches_folder, "dictionary.txt") batch_vectorizer = artm.BatchVectorizer( data_path=batches_folder, data_format="batches") dictionary = artm.Dictionary(name="dictionary") dictionary.load_text(dictionary_file_name) return batch_vectorizer, dictionary def objects_safe(request): if request.user.is_anonymous(): return Dataset.objects.filter(is_public=True) else: return Dataset.objects.filter(is_public=True) |\ Dataset.objects.filter(is_public=False, owner=request.user) def prepare_log(self, string=""): self.log_file_name = os.path.join(self.get_folder(), "log.txt") with open(self.log_file_name, "w") as f: f.write("%s<br>\n" % string) def log(self, string): if settings.DEBUG: print(string) if settings.THREADING: with open(self.log_file_name, "a") as f: f.write(string + "<br>\n") def read_log(self): try: log_file_name = os.path.join( settings.DATA_DIR, "datasets", self.text_id, "log.txt") with open(log_file_name, "r") as f: return f.read() except BaseException: return "Datased is reloading" def get_folder(self): path = os.path.join(settings.DATA_DIR, "datasets", self.text_id) if not os.path.exists(path): os.makedirs(path) return path def get_terms_index(self, modality=None): terms_index = dict() if modality: query_set = Term.objects.filter(dataset=self, modality=modality) else: query_set = Term.objects.filter( dataset=self).order_by("-modality__weight_naming") for term in query_set: terms_index[term.text] = term.index_id # terms_index[term.text + "#$" + term.modality.name] = # term.index_id return terms_index def check_terms_order(self, index, full=True): if self.terms_count != len(index): return False if full: for term in Term.objects.filter(dataset=self): if index[term.index_id] != term.text: return False else: import random for i in range(10): term_iid = random.randint(0, self.terms_count - 1) if index[term_iid] != Term.objects.get( dataset_id=self.id, index_id=term_iid).text: return False return True @transaction.atomic def normalize_modalities_weights(self): weight_naming_sum = 0 weight_spectrum_sum = 0 modalities = Modality.objects.filter(dataset=self) wn = Dataset.normalize_weights([m.weight_naming for m in modalities]) ws = Dataset.normalize_weights([m.weight_spectrum for m in modalities]) for i in range(len(modalities)): modality = modalities[i] modality.weight_naming = wn[i] modality.weight_spectrum = ws[i] modality.save() def normalize_weights(w): s = sum(w) if s == 0: w[0] = 1 return w w = [int((x / s) * 1000) for x in w] w[0] += (1000 - sum(w)) return [x / 1000 for x in w] def get_dataset(request, modify=False): if "dataset_id" in request.GET: dataset = Dataset.objects.get(id=request.GET['dataset_id']) elif "ds" in request.GET: dataset = Dataset.objects.get(id=request.GET['ds']) elif "dataset" in request.GET: dataset = Dataset.objects.get(text_id=request.GET['dataset']) elif "dataset" in request.POST: dataset = Dataset.objects.get(text_id=request.POST['dataset']) else: return None if ((modify or not dataset.is_public) and not dataset.owner == request.user): return None return dataset # Returns array of terms weights. # Note. Each modality has two weights: for distance counting (spectrum) # and for top terms ranking (naming). In some procedures those weights are # used. To speed up those procedures, we count all weights for terms once # in reset_terms_weights and store in file. This function just read # corresonding array from file. def get_terms_weights(self, mode): if not os.path.exists(os.path.join( self.get_folder(), "terms_weights")): self.reset_terms_weights() if mode == "spectrum": return np.load(os.path.join(self.get_folder(), "terms_weights", "spectrum.npy")) elif mode == "naming": return np.load(os.path.join(self.get_folder(), "terms_weights", "naming.npy")) # Counts weights for terms and stores them in file. def reset_terms_weights(self): folder = os.path.join(self.get_folder(), "terms_weights") if not os.path.exists(folder): os.makedirs(folder) weights_spectrum = np.zeros(self.terms_count) weights_naming = np.zeros(self.terms_count) for modality in Modality.objects.filter(dataset=self): ws = modality.weight_spectrum wn = modality.weight_naming for term in Term.objects.filter(modality=modality): weights_spectrum[term.index_id] = ws weights_naming[term.index_id] = wn np.save(os.path.join(folder, "spectrum.npy"), weights_spectrum) np.save(os.path.join(folder, "naming.npy"), weights_naming) def delete_cached_distances(self): from models.models import ArtmModel for model in ArtmModel.objects.filter(dataset=self): model.delete_cached_distances() def delete_unused_folders(self): from models.models import ArtmModel models_folder = os.path.join(self.get_folder(), "models") legit_models = set([ model.text_id for model in ArtmModel.objects.filter(dataset=self) ]) for folder in os.listdir(models_folder): if folder not in legit_models: folder_to_remove = os.path.join(models_folder, folder) print("Removing trash: %s" % folder_to_remove) rmtree(folder_to_remove) def get_modalities_mask(self): path = os.path.join(self.get_folder(), "modalities_mask.npy") if os.path.exists(path): return np.load(path) else: ans = np.zeros(self.terms_count, dtype=np.int32) i = 0 for term in Term.objects.filter(dataset=self): ans[i] = term.modality.index_id i += 1 np.save(path, ans) return ans @receiver(pre_delete, sender=Dataset, dispatch_uid='dataset_delete_signal') def remove_dataset_files(sender, instance, using, **kwargs): folder = instance.get_folder() print("Will delete folder " + folder) try: rmtree(folder) except BaseException: pass def on_start(): ''' for dataset in Dataset.objects.all(): try: dataset.delete_unused_folders() except: pass ''' for dataset in Dataset.objects.filter(status=1): dataset.status = 2 dataset.error_message = "Dataset processing was interrupted." dataset.save() class Document(models.Model): # Title of the document. title = models.TextField(null=False) # Link to the document on the Internet. url = models.URLField(null=True) # Short description of the document. snippet = models.TextField(null=True) # Time of publicaton. time = models.DateTimeField(null=True) # Id inside dataset. index_id = models.IntegerField(null=False) # Should coincide with relative path of text file, if available. text_id = models.TextField(null=True) # Dataset, to which this document belongs. dataset = models.ForeignKey(Dataset, null=False) # [4 bytes term.index_id][2 bytes count][1 byte modality.index_id] bag_of_words = models.BinaryField(null=True) # Number of terms. terms_count = models.IntegerField(null=False, default=0) # Number of unique terms. unique_terms_count = models.IntegerField(null=False, default=0) # Full text of document. text = models.TextField(null=True) # [4 bytes position][1 byte length][4 bytes term.index_id] word_index = models.BinaryField(null=True) class Meta: # index_id's should be unique inside datasets. unique_together = (("dataset", "index_id")) # Extracts metatdata from doc_info object and saves it inside self. # To be used when dataset is loaded from archive. def fetch_meta(self, doc_info): if 'title' in doc_info: self.title = doc_info["title"] if "snippet" in doc_info: self.snippet = doc_info["snippet"] if "url" in doc_info: self.url = doc_info["url"] if "time" in doc_info: lst = doc_info["time"] try: self.time = datetime.fromtimestamp(lst) except BaseException: self.time = datetime(lst[0], lst[1], lst[2], lst[3], lst[4], lst[5]) else: if self.dataset.time_provided: self.dataset.log("Warning! Time isn't provided.") self.dataset.time_provided = False # Extracts document from it's Vowpal Wabbit description. def fetch_vw(self, line_vw): parsed_vw = line_vw.split() self.text_id = parsed_vw[0] self.title = self.text_id self.word_index = bytes() self.text = "" # Try load text and wordpos text_found = False text_file = os.path.join( self.dataset.get_folder(), "documents", self.text_id) if os.path.exists(text_file): text_found = True with open(text_file, "r", encoding="utf-8") as f2: self.text = f2.read() wordpos_file = os.path.join( self.dataset.get_folder(), "wordpos", self.text_id) if os.path.exists(wordpos_file): word_index_list = [] with open(wordpos_file, "r", encoding="utf-8") as f2: for line in f2.readlines(): parsed = line.split() if len(parsed) < 3: continue key = parsed[2] if key in self.dataset.terms_index: term_iid = self.dataset.terms_index[key].index_id word_index_list.append( (int(parsed[0]), -int(parsed[1]), term_iid)) word_index_list.sort() self.word_index = bytes() for pos, length, tid in word_index_list: self.word_index += struct.pack('I', pos) + struct.pack( 'B', -length) + struct.pack('I', tid) else: self.dataset.log( "WARNING! No wordpos for file " + self.text_id) bow = BagOfWords() current_modality = '@default_class' for term in parsed_vw[1:]: if term[0] == '|': current_modality = term[1:] else: parsed_term = term.split(':') key = parsed_term[0] + "$#" + current_modality if ':' in term: count = int(float(parsed_term[1])) else: count = 1 try: term_index_id = self.dataset.terms_index[key].index_id self.terms_count += count bow.add_term(term_index_id, count) if not text_found: self.word_index += \ struct.pack('I', len(self.text)) + \ struct.pack('B', len(parsed_term[0])) + \ struct.pack('I', term_index_id) except BaseException: pass if not text_found: self.text += term + " " self.bag_of_words = bow.to_bytes(self.dataset.terms_index) self.unique_terms_count = len(self.bag_of_words) // 7 def objects_safe(request): if request.user.is_anonymous(): return Document.objects.filter(dataset__is_public=True) else: return (Document.objects.filter(dataset__is_public=True) | Document.objects.filter( dataset__is_public=False, dataset__owner=request.user)) def count_term(self, iid): bow = self.bag_of_words left = 0 right = len(bow) // 7 if right == 0: return 0 while True: pos = (left + right) // 2 bow_iid = struct.unpack('I', bow[7 * pos: 7 * pos + 4])[0] if bow_iid == iid: return struct.unpack('H', bow[7 * pos + 4: 7 * pos + 6])[0] elif bow_iid > iid: right = pos else: left = pos + 1 if left >= right: return 0 def fetch_tags(self): tag_modalities = Modality.objects.filter( dataset=self.dataset, is_tag=True) if len(tag_modalities) == 0: return [] tag_names = dict() tag_strings = dict() for modality in tag_modalities: tag_names[modality.index_id] = modality.name bow = self.bag_of_words unique_terms_count = len(bow) // 7 for i in range(unique_terms_count): bow_iid = struct.unpack('I', bow[7 * i: 7 * i + 4])[0] modality_iid = struct.unpack('B', bow[7 * i + 6: 7 * i + 7])[0] if modality_iid in tag_names: term = Term.objects.filter( dataset=self.dataset, index_id=bow_iid)[0] if modality_iid in tag_strings: tag_strings[modality_iid] += ', ' else: tag_strings[modality_iid] = '' tag_strings[modality_iid] += '<a href="/term?id=' + \ str(term.id) + '">' + term.text + '</a>' ret = [] for tag_id, tag_string in tag_strings.items(): ret.append({"name": tag_names[tag_id], "string": tag_string}) return ret # Returns set of index_id's of words in this document which are modlities. def get_tags_ids(self): tag_ids = set() ret = set() for modality in Modality.objects.filter( dataset=self.dataset, is_tag=True): tag_ids.add(modality.index_id) bow = self.bag_of_words for i in range(len(bow) // 7): modality_iid = struct.unpack('B', bow[7 * i + 6: 7 * i + 7])[0] if modality_iid in tag_ids: ret.add(struct.unpack('I', bow[7 * i: 7 * i + 4])[0]) return ret def fetch_bow(self, cut_bow): bow = self.bag_of_words unique_terms_count = len(bow) // 7 bow_entries = [] for i in range(unique_terms_count): bow_iid = struct.unpack('I', bow[7 * i: 7 * i + 4])[0] bow_count = struct.unpack('H', bow[7 * i + 4: 7 * i + 6])[0] bow_entries.append((-bow_count, bow_iid)) bow_entries.sort() bow_send = "" prfx = "<a href = '/term?ds=" + str(self.dataset.id) + "&iid=" rest = unique_terms_count for x in bow_entries: cnt = -x[0] iid = x[1] if cnt <= cut_bow: bow_send += str(rest) + " terms, which occured " + \ str(cut_bow) + " times or less, aren't shown." break bow_send += prfx + str(iid) + "'>" + \ Term.objects.filter(dataset=self.dataset, index_id=iid)[0].text + \ "</a>: " + str(cnt) + "<br>" rest -= 1 return bow_send def get_text(self): return self.text # Returns positions of terms as list of triples: # (position, length, term.index_id). def get_word_index(self, no_overlap=True): wi = self.word_index if wi is None: return None count = len(wi) // 9 last_pos = -1 ret = [] for i in range(count): pos = struct.unpack('I', wi[9 * i: 9 * i + 4])[0] length = struct.unpack('B', wi[9 * i + 4: 9 * i + 5])[0] if no_overlap: if pos < last_pos: continue else: last_pos = pos + length ret.append((pos, length, struct.unpack( 'I', wi[9 * i + 5: 9 * i + 9])[0])) return ret def get_concordance(self, terms): text = self.text wi = self.word_index conc = "" cur_pos = 0 for i in range(len(wi) // 9): term_index_id = struct.unpack('I', wi[9 * i + 5: 9 * i + 9])[0] if term_index_id in terms: pos = struct.unpack('I', wi[9 * i: 9 * i + 4])[0] length = struct.unpack('B', wi[9 * i + 4: 9 * i + 5])[0] conc += text[cur_pos: pos] + "<b>" + \ text[pos: pos + length] + "</b>" cur_pos = pos + length conc += text[cur_pos:] sentences = filter(None, re.split("[!?.\n]+", conc)) conc = "" ctr = 0 for sentence in sentences: if "</b>" in sentence: ctr += 1 if ctr == 10: conc += "<i>(Not all occurences are shown)</i><br>" break length = len(sentence) pref = "" suf = "." fi = sentence.find("<b>") - 60 li = sentence.find("</b>") + 60 if fi < 0: fi = 0 else: while(fi != 0 and sentence[fi] != ' '): fi -= 1 pref = "... " if li > length: li = length else: while(li < length and sentence[li] != ' '): li += 1 suf = " ..." conc += pref + sentence[fi: li] + suf + "<br>" return conc[:-4] return conc[:-4] def __str__(self): return self.title class Modality(models.Model): name = models.TextField(null=False) dataset = models.ForeignKey(Dataset, null=False) terms_count = models.IntegerField(null=False, default=0) index_id = models.IntegerField(null=False, default=0) is_tag = models.BooleanField(null=False, default=False) weight_naming = models.FloatField(null=False, default=0) weight_spectrum = models.FloatField(null=False, default=0) def __str__(self): return self.dataset.name + "/" + self.name class Term(models.Model): text = models.TextField(null=False) modality = models.ForeignKey(Modality, null=False) dataset = models.ForeignKey(Dataset, null=False) # id in UCI files and word_index files index_id = models.IntegerField(null=False) token_value = models.FloatField(default=0) token_tf = models.IntegerField(default=0) token_df = models.IntegerField(default=0) documents = models.BinaryField(null=True) documents_defined = models.BooleanField(default=False) def __str__(self): return self.text def count_documents_index(self): if self.documents_defined: return self.documents_defined = True self.save() relations = [] documents = Document.objects.filter(dataset=self.dataset) temp_count = 0 self.documents = bytes() for document in documents: count = document.count_term(self.index_id) if count != 0: relations.append((count, document.index_id)) if temp_count < 5: self.documents += struct.pack('I', document.index_id) + \ struct.pack('H', count) temp_count += 1 self.save() relations.sort(reverse=True) self.documents = bytes() for count, document_index_id in relations: self.documents += struct.pack('I', document_index_id) + \ struct.pack('H', count) self.save() def get_documents(self): self.count_documents_index() for i in range(len(self.documents) // 6): doc_iid = struct.unpack('I', self.documents[6 * i: 6 * i + 4])[0] yield Document.objects.get(dataset_id=self.dataset_id, index_id=doc_iid) def objects_safe(request): if request.user.is_anonymous(): return Term.objects.filter(dataset__is_public=True) return (Term.objects.filter(dataset__is_public=True) | Term.objects.filter(dataset__is_public=False, dataset__owner=request.user)) admin.site.register(Dataset) admin.site.register(Document) admin.site.register(Modality) admin.site.register(Term) class BagOfWords(): """Helper class to pack bags of words into binary""" def __init__(self): self.bow = dict() def add_term(self, word_id, count): if word_id not in self.bow: self.bow[word_id] = count else: self.bow[word_id] += count def to_bytes(self, terms_index): ret = bytes() for word_id, count in sorted(self.bow.items()): ret += struct.pack('I', word_id) + struct.pack('H', count) + \ struct.pack('B', terms_index[word_id].modality.index_id) return ret
""" Do a search, generate modules for the questions & answers returned. """ import logging from typing import List from so_pip.commands.vendorize import import_so_question from so_pip.utils import guards as guards from so_pip.utils.user_trace import inform LOGGER = logging.getLogger(__name__) def import_so_search( package_prefix: str, query: str, tags: List[str], output_folder: str, stop_after: int = -1, minimum_loc: int = -1, ) -> List[str]: """Fetch questions and answers via a search""" guards.must_be_truthy(query, "query required") guards.must_be_truthy(output_folder, "output_folder required") inform(f"Starting search for '{query}'...") LOGGER.info(f"tags : {tags}") if not package_prefix: package_prefix = "" tags.sort() # import late # pylint: disable=import-outside-toplevel from so_pip.api_clients.stackapi_facade import get_json_by_search possibles = get_json_by_search(query, tuple(tags)) all_results = [] found = 0 inform(f"Found {len(possibles['items'])} possible answers") for possible in possibles["items"]: result = import_so_question( package_prefix, possible["question_id"], output_folder, minimum_loc=minimum_loc, ) all_results.extend(result) found += 1 if stop_after != -1 and (found > stop_after): break else: # nothing in possibles[items] print("No search results for query") return all_results if __name__ == "__main__": import_so_search("pymarc", "pymarc", ["python"], "../../output")
from typing import List, Dict from cloudrail.knowledge.context.aws.kms.kms_key_manager import KeyManager from cloudrail.knowledge.context.aws.aws_environment_context import AwsEnvironmentContext from cloudrail.knowledge.rules.aws.aws_base_rule import AwsBaseRule from cloudrail.knowledge.rules.base_rule import Issue from cloudrail.knowledge.rules.rule_parameters.base_paramerter import ParameterType class EnsureCodeBuildReportGroupEncryptedWithCustomerManagedCmkRule(AwsBaseRule): def get_id(self) -> str: return 'not_car_codebuild_report_groups_encrypted_at_rest_with_customer_managed_cmk' def execute(self, env_context: AwsEnvironmentContext, parameters: Dict[ParameterType, any]) -> List[Issue]: issues: List[Issue] = [] for report_group in env_context.codebuild_report_groups: if report_group.export_config_s3_destination_kms_data is None \ or report_group.export_config_s3_destination_kms_data.key_manager != KeyManager.CUSTOMER: issues.append( Issue( f'The {report_group.get_type()} `{report_group.get_friendly_name()}` ' f'is not set to use encryption at rest ' f'with customer-managed CMK', report_group, report_group)) return issues def should_run_rule(self, environment_context: AwsEnvironmentContext) -> bool: return bool(environment_context.codebuild_report_groups)
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import json from django.utils.translation import ugettext_lazy as _ from backend.components import paas_cc from backend.components.bcs import k8s from backend.utils.cache import region from backend.utils.decorators import parse_response_data from backend.utils.errcodes import ErrorCode from backend.utils.error_codes import error_codes def get_clusters(access_token, project_id): resp = paas_cc.get_all_clusters(access_token, project_id, desire_all_data=True) if resp.get('code') != ErrorCode.NoError: raise error_codes.APIError(f"get clusters error, {resp.get('message')}") return resp.get("data", {}).get("results") or [] def get_cluster_versions(access_token, kind="", ver_id="", env=""): resp = paas_cc.get_cluster_versions(access_token, kind=kind, ver_id=ver_id, env=env) if resp.get('code') != ErrorCode.NoError: raise error_codes.APIError(f"get cluster version, {resp.get('message')}") data = resp.get("data") or [] version_list = [] # 以ID排序,稳定版本排在前面 data.sort(key=lambda info: info["id"]) for info in data: configure = json.loads(info.get("configure") or "{}") version_list.append( {"version_id": info["version"], "version_name": configure.get("version_name") or info["version"]} ) return version_list def get_cluster_masters(access_token, project_id, cluster_id): """获取集群下的master信息""" resp = paas_cc.get_master_node_list(access_token, project_id, cluster_id) if resp.get("code") != ErrorCode.NoError: raise error_codes.APIError(_("获取集群master ip失败,{}").format(resp.get("message"))) results = resp.get("data", {}).get("results") or [] if not results: raise error_codes.APIError(_("获取集群master ip为空")) return results def get_cluster_nodes(access_token, project_id, cluster_id, raise_exception=True): """获取集群下的node信息""" resp = paas_cc.get_node_list(access_token, project_id, cluster_id) if resp.get("code") != ErrorCode.NoError: raise error_codes.APIError(_("获取集群node ip失败,{}").format(resp.get("message"))) results = resp.get("data", {}).get("results") or [] if not results and raise_exception: raise error_codes.APIError(_("获取集群node ip为空")) return results def get_cluster_snapshot(access_token, project_id, cluster_id): """获取集群快照""" resp = paas_cc.get_cluster_snapshot(access_token, project_id, cluster_id) if resp.get("code") != ErrorCode.NoError: raise error_codes.APIError(_("获取集群快照失败,{}").format(resp.get("message"))) return resp.get("data") or {} def get_cluster_info(access_token, project_id, cluster_id): resp = paas_cc.get_cluster(access_token, project_id, cluster_id) if resp.get("code") != ErrorCode.NoError: raise error_codes.APIError(_("获取集群信息失败,{}").format(resp.get("message"))) return resp.get("data") or {} def update_cluster_status(access_token, project_id, cluster_id, status): """更新集群状态""" data = {"status": status} resp = paas_cc.update_cluster(access_token, project_id, cluster_id, data) if resp.get("code") != ErrorCode.NoError: raise error_codes.APIError(_("更新集群状态失败,{}").format(resp.get("message"))) return resp.get("data") or {} @parse_response_data(default_data={}) def get_cluster(access_token, project_id, cluster_id): return paas_cc.get_cluster(access_token, project_id, cluster_id) @region.cache_on_arguments(expiration_time=3600 * 24 * 7) def get_cluster_coes(access_token, project_id, cluster_id): """获取集群类型,因为集群创建后,集群类型不允许修改 TODO: 为减少调用接口耗时,是否需要缓存? """ cluster = get_cluster(access_token, project_id, cluster_id) return cluster["type"] @parse_response_data() def delete_cluster(access_token, project_id, cluster_id): return paas_cc.delete_cluster(access_token, project_id, cluster_id) def get_cc_zk_config(access_token, project_id, cluster_id): resp = paas_cc.get_zk_config(access_token, project_id, cluster_id) if resp.get("code") != ErrorCode.NoError: raise error_codes.APIError(_("通过cc获取zk信息出错,{}").format(resp.get("message"))) data = resp.get("data") if not data: raise error_codes.APIError(_("通过cc获取zk信息为空")) return data[0] def get_cc_repo_domain(access_token, project_id, cluster_id): return paas_cc.get_jfrog_domain(access_token, project_id, cluster_id) @parse_response_data() def update_cc_nodes_status(access_token, project_id, cluster_id, nodes): """更新记录的节点状态""" return paas_cc.update_node_list(access_token, project_id, cluster_id, data=nodes)
import pytest import os import numpy as np import pandas as pd import io from nexoclom import __file__ as basefile from nexoclom.atomicdata import gValue, PhotoRate from nexoclom.atomicdata.initialize_atomicdata import (make_gvalue_table, make_photorates_table) @pytest.mark.atomicdata def test_make_gvalue_table(monkeypatch, tmpdir): gvalue_true_file = os.path.join(os.path.dirname(basefile), 'data', 'g-values', 'g-values.pkl') gvalue_test_file = tmpdir.join('g-values_test.pkl') monkeypatch.setattr(gValue, "gvalue_filename", lambda: gvalue_test_file) # monkeypatch.setattr(gValue, 'gvalue_file', gvalue_test_file) make_gvalue_table() gvalue_true = pd.read_pickle(gvalue_true_file) gvalue_test = pd.read_pickle(gvalue_test_file) assert np.all(gvalue_true == gvalue_test) @pytest.mark.atomicdata def test_make_photorates_table(monkeypatch, tmpdir): monkeypatch.setattr('sys.stdin', io.StringIO('0')) photo_true_file = os.path.join(os.path.dirname(basefile), 'data', 'Loss', 'photorates.pkl') photo_test_file = tmpdir.join('photorates.pkl') monkeypatch.setattr(PhotoRate, 'photorates_filename', lambda: photo_test_file) make_photorates_table() photo_true = pd.read_pickle(photo_true_file) photo_test = pd.read_pickle(photo_test_file) assert np.all(photo_true == photo_test)
import pytest from abuse_whois.matchers.whois import get_contact_from_whois @pytest.mark.parametrize( "hostname", [ "1.1.1.1", "github.com", ], ) def test_get_contact_from_whois(hostname: str): assert get_contact_from_whois(hostname) is not None
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytest from omegaconf import DictConfig from nemo.collections.asr.models.classification_models import EncDecRegressionModel @pytest.fixture() def speech_regression_model(): preprocessor = {'cls': 'nemo.collections.asr.modules.AudioToMelSpectrogramPreprocessor', 'params': dict({})} encoder = { 'cls': 'nemo.collections.asr.modules.ConvASREncoder', 'params': { 'feat_in': 64, 'activation': 'relu', 'conv_mask': True, 'jasper': [ { 'filters': 32, 'repeat': 1, 'kernel': [1], 'stride': [1], 'dilation': [1], 'dropout': 0.0, 'residual': False, 'separable': True, 'se': True, 'se_context_size': -1, } ], }, } decoder = { 'cls': 'nemo.collections.asr.modules.conv_asr.ConvASRDecoderClassification', 'params': {'feat_in': 32, 'return_logits': True, 'num_classes': 1}, } modelConfig = DictConfig( { 'preprocessor': DictConfig(preprocessor), 'encoder': DictConfig(encoder), 'decoder': DictConfig(decoder), 'labels': None, 'is_regression_task': True, } ) model = EncDecRegressionModel(cfg=modelConfig) return model class TestEncDecRegressionModel: @pytest.mark.unit def test_constructor(self, speech_regression_model): asr_model = speech_regression_model.train() conv_cnt = (64 * 32 * 1 + 32) + (64 * 1 * 1 + 32) # separable kernel + bias + pointwise kernel + bias bn_cnt = (4 * 32) * 2 # 2 * moving averages dec_cnt = 32 * 1 + 1 # fc + bias param_count = conv_cnt + bn_cnt + dec_cnt assert asr_model.num_weights == param_count # Check to/from config_dict: confdict = asr_model.to_config_dict() instance2 = EncDecRegressionModel.from_config_dict(confdict) assert isinstance(instance2, EncDecRegressionModel) @pytest.mark.unit def test_transcription(self, speech_regression_model, test_data_dir): audio_filenames = ['an22-flrp-b.wav', 'an90-fbbh-b.wav'] audio_paths = [os.path.join(test_data_dir, "asr", "train", "an4", "wav", fp) for fp in audio_filenames] model = speech_regression_model.eval() # Test Top 1 classification transcription results = model.transcribe(audio_paths, batch_size=2) assert len(results) == 2
import copy import json import re import botocore import skwadon.main as sic_main import skwadon.lib as sic_lib import skwadon.common_action as common_action class ConnectionListHandler(common_action.ListHandler): def __init__(self, session): self.session = session self.glue_client = None def init_client(self): if self.glue_client == None: self.glue_client = self.session.client("glue") def list(self): self.init_client() result = [] res = self.glue_client.get_connections() while True: for elem in res['ConnectionList']: name = elem["Name"] result.append(name) if not "NextToken" in res: break res = self.glue_client.get_connections(NextToken = res["NextToken"]) return result def child_handler(self, name): self.init_client() return common_action.NamespaceHandler( "conf", ["conf"], { "conf": ConnectionConfHandler(self.glue_client, name), "connection": ConnectionConnectionHandler(self.glue_client, name), }) class ConnectionConfHandler(common_action.ResourceHandler): properties = [ "Description", "ConnectionType", "MatchCriteria", "ConnectionProperties", "PhysicalConnectionRequirements", ] def __init__(self, glue_client, connection_name): self.glue_client = glue_client self.connection_name = connection_name def describe(self): try: res = self.glue_client.get_connection(Name = self.connection_name) curr_data = sic_lib.pickup(res["Connection"], self.properties) return curr_data except botocore.exceptions.ClientError as e: if e.response["Error"]["Code"] == "EntityNotFoundException": return None else: raise def create(self, confirmation_flag, src_data): update_data = sic_lib.pickup(src_data, self.properties) update_data["Name"] = self.connection_name sic_main.exec_put(confirmation_flag, f"glue_client.create_connection(ConnectionInput = {{Name = {self.connection_name}, ...}})", lambda: self.glue_client.create_connection(ConnectionInput = update_data) ) def update(self, confirmation_flag, src_data, curr_data): update_data = sic_lib.pickupAndCompareForUpdate(src_data, curr_data, self.properties) if update_data != None: update_data["Name"] = self.connection_name sic_main.exec_put(confirmation_flag, f"glue_client.update_connection(Name = {self.connection_name}, ...)", lambda: self.glue_client.update_connection(Name = self.connection_name, ConnectionInput = update_data) ) class ConnectionConnectionHandler(common_action.ResourceHandler): properties = [ "Description", "ConnectionType", "MatchCriteria", "ConnectionProperties", "PhysicalConnectionRequirements", ] def __init__(self, glue_client, connection_name): self.glue_client = glue_client self.connection_name = connection_name def describe(self): res = self.glue_client.get_connection(Name = self.connection_name) jdbc_url = sic_lib.dictlib_get(res, "Connection.ConnectionProperties.JDBC_CONNECTION_URL") curr_data = { } if jdbc_url != None: curr_data["JBCDUrl"] = jdbc_url m = re.compile("\Ajdbc:([^:]+)://([^:]+):([0-9]+)/(.+)\Z").search(jdbc_url) if m: driver = m.group(1) if driver == "postgresql" or driver == "redshift": host = m.group(2) port = m.group(3) db_name = m.group(4) user_name = sic_lib.dictlib_get(res, "Connection.ConnectionProperties.USERNAME") password = sic_lib.dictlib_get(res, "Connection.ConnectionProperties.PASSWORD") cmd = f"PGPASSWORD='{password}' psql -h {host} -p {port} -U {user_name} -d {db_name}" curr_data["CommandLine"] = cmd return curr_data def create(self, confirmation_flag, src_data): pass def update(self, confirmation_flag, src_data, curr_data): pass
def loop_example(list_to_loop_through): """ Assuming each item in list_to_loop_through is a number, return a list of each item in that list squared. """ print "I'm going to begin to loop through this list: ", list_to_loop_through, "\n" list_items_squared = [] for each_item in list_to_loop_through: print "Now I'm on: ", each_item print "{0} squared is {1}\n".format(each_item, each_item**2) list_items_squared.append(each_item**2) print "Now I'm done looping through the list, and I'm going to return the new list, where each list item has been squared." return list_items_squared ##Sample Output ## ##>>> my_list = [1, 3, 4, 5, 6, 78, 2334] ##>>> loop_example(my_list) ##I'm going to begin to loop through this list: [1, 3, 4, 5, 6, 78, 2334] ##Now I'm on: 1 ##1 squared is 1 ## ##Now I'm on: 3 ##3 squared is 9 ## ##Now I'm on: 4 ##4 squared is 16 ## ##Now I'm on: 5 ##5 squared is 25 ## ##Now I'm on: 6 ##6 squared is 36 ## ##Now I'm on: 78 ##78 squared is 6084 ## ##Now I'm on: 2334 ##2334 squared is 5447556 ## ##[1, 9, 16, 25, 36, 6084, 5447556]
""" Copyright (c) 2017, Jairus Martin. Distributed under the terms of the MIT License. The full license is in the file LICENSE, distributed with this software. @author jrm """ import ctypes from ctypes.util import find_library from atom.api import Atom, Float, Value, Str, Int, Typed from enaml.application import ProxyResolver from . import factories from .bridge import ObjcBridgeObject, ObjcMethod from ..core.app import BridgedApplication class ENBridge(ObjcBridgeObject): """ Access ENBridge.m using ctypes. Based on: https://stackoverflow.com/questions/1490039/ calling-objective-c-functions-from-python#1490644 """ #: Objc library objc = Value() #: Bridge.m access via ctypes bridge = Value() def _default_objc(self): """ Load the objc library using ctypes. """ objc = ctypes.cdll.LoadLibrary(find_library('objc')) objc.objc_getClass.restype = ctypes.c_void_p objc.sel_registerName.restype = ctypes.c_void_p objc.objc_msgSend.restype = ctypes.c_void_p objc.objc_msgSend.argtypes = [ctypes.c_void_p, ctypes.c_void_p] return objc def _default_bridge(self): """ Get an instance of the ENBridge object using ctypes. """ objc = self.objc ENBridge = objc.objc_getClass('ENBridge') return objc.objc_msgSend(ENBridge, objc.sel_registerName('instance')) def processEvents(self, data): """ Sends msgpack data to the ENBridge instance by calling the processEvents method via ctypes. """ objc = self.objc bridge = self.bridge #: This must come after the above as it changes the arguments! objc.objc_msgSend.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_char_p, ctypes.c_int] objc.objc_msgSend( bridge, objc.sel_registerName('processEvents:length:'), data, len(data)) #: Add a target to a UIControl that invokes a python callback addTarget = ObjcMethod('UIControl', dict(forControlEvents="enum"),#""UIControlEvents"), dict(andCallback="int"), dict(usingMethod="NSString"), dict(withValues="NSArray")) class AppDelegate(ObjcBridgeObject): pass class ViewController(ObjcBridgeObject): displayView = ObjcMethod('UIView') class IPhoneApplication(BridgedApplication): """ An iPhone implementation of an Enaml Native BridgedApplication. An IPhoneApplication uses the native iOS widget toolkit to implement an Enaml UI that runs in the local process. Since Objective-C can easily use the Python C-API, much if this classes implementation is done directly. For instance, the AppEventListener API is implemented directly in Objective-C (in Bridge.m) and invokes methods on this directly. """ #: AppDelegate widget app_delegate = Typed(AppDelegate) #: ViewControler view_controller = Typed(ViewController) #: ENBridge bridge = Typed(ENBridge) #: Pixel density of the device #: Loaded immediately as this is used often. dp = Float() # -------------------------------------------------------------------------- # Defaults # -------------------------------------------------------------------------- def _default_app_delegate(self): """ Return a bridge object reference to the AppDelegate this bridge sets this using a special id of -1 """ return AppDelegate(__id__=-1) def _default_view_controller(self): """ Return a bridge object reference to the ViewController the bridge sets this using a special id of -2 """ return ViewController(__id__=-2) def _default_bridge(self): """ Access the bridge using ctypes. Everything else should use bridge objects. """ return ENBridge(__id__=-4) def _default_dp(self): return 1.0 # ------------------------------------------------------------------------- # IPhoneApplication Constructor # ------------------------------------------------------------------------- def __init__(self, *args, **kwargs): """ Initialize a IPhoneApplication. """ super(IPhoneApplication, self).__init__(*args, **kwargs) self.resolver = ProxyResolver(factories=factories.IOS_FACTORIES) # ------------------------------------------------------------------------- # Bridge API Implementation # ------------------------------------------------------------------------- def show_view(self): """ Show the current `app.view`. This will fade out the previous with the new view. """ self.view_controller.displayView(self.get_view()) def dispatch_events(self, data): """ Send the data to the Native application for processing """ self.bridge.processEvents(data) # ------------------------------------------------------------------------- # iPhone utilities API Implementation # ------------------------------------------------------------------------- def _observe_keep_screen_on(self, change): """ Sets or clears the flag to keep the screen on. """ raise NotImplementedError def set_screen_on(window): from .ios_window import Window window = Window(__id__=window) if self.keep_screen_on: window.addFlags(Window.FLAG_KEEP_SCREEN_ON) else: window.clearFlags(Window.FLAG_KEEP_SCREEN_ON) self.widget.getWindow().then(set_screen_on) # ------------------------------------------------------------------------- # Plugin API Implementation # ------------------------------------------------------------------------- def load_plugin_factories(self): """ Add any plugin toolkit widgets to the ANDROID_FACTORIES """ for plugin in self.get_plugins(group='enaml_native_ios_factories'): get_factories = plugin.load() PLUGIN_FACTORIES = get_factories() factories.IOS_FACTORIES.update(PLUGIN_FACTORIES)
""" This module houses the GEOS ctypes prototype functions for the topological operations on geometries. """ from ctypes import c_double, c_int from django.contrib.gis.geos.libgeos import GEOM_PTR, GEOSFuncFactory from django.contrib.gis.geos.prototypes.errcheck import ( check_geom, check_minus_one, check_string, ) from django.contrib.gis.geos.prototypes.geom import geos_char_p class Topology(GEOSFuncFactory): "For GEOS unary topology functions." argtypes = [GEOM_PTR] restype = GEOM_PTR errcheck = staticmethod(check_geom) # Topology Routines geos_boundary = Topology('GEOSBoundary') geos_buffer = Topology('GEOSBuffer', argtypes=[GEOM_PTR, c_double, c_int]) geos_centroid = Topology('GEOSGetCentroid') geos_convexhull = Topology('GEOSConvexHull') geos_difference = Topology('GEOSDifference', argtypes=[GEOM_PTR, GEOM_PTR]) geos_envelope = Topology('GEOSEnvelope') geos_intersection = Topology('GEOSIntersection', argtypes=[GEOM_PTR, GEOM_PTR]) geos_linemerge = Topology('GEOSLineMerge') geos_pointonsurface = Topology('GEOSPointOnSurface') geos_preservesimplify = Topology('GEOSTopologyPreserveSimplify', argtypes=[GEOM_PTR, c_double]) geos_simplify = Topology('GEOSSimplify', argtypes=[GEOM_PTR, c_double]) geos_symdifference = Topology('GEOSSymDifference', argtypes=[GEOM_PTR, GEOM_PTR]) geos_union = Topology('GEOSUnion', argtypes=[GEOM_PTR, GEOM_PTR]) geos_cascaded_union = GEOSFuncFactory('GEOSUnionCascaded', argtypes=[GEOM_PTR], restype=GEOM_PTR) geos_unary_union = GEOSFuncFactory('GEOSUnaryUnion', argtypes=[GEOM_PTR], restype=GEOM_PTR) # GEOSRelate returns a string, not a geometry. geos_relate = GEOSFuncFactory( 'GEOSRelate', argtypes=[GEOM_PTR, GEOM_PTR], restype=geos_char_p, errcheck=check_string ) # Linear referencing routines geos_project = GEOSFuncFactory( 'GEOSProject', argtypes=[GEOM_PTR, GEOM_PTR], restype=c_double, errcheck=check_minus_one ) geos_interpolate = Topology('GEOSInterpolate', argtypes=[GEOM_PTR, c_double]) geos_project_normalized = GEOSFuncFactory( 'GEOSProjectNormalized', argtypes=[GEOM_PTR, GEOM_PTR], restype=c_double, errcheck=check_minus_one ) geos_interpolate_normalized = Topology('GEOSInterpolateNormalized', argtypes=[GEOM_PTR, c_double])
import time import simple_queue import simple_http_client class Task(object): def __init__(self, logger, config, method, host, path, headers, body, queue, url, timeout): self.logger = logger self.config = config self.method = method self.host = host self.path = path self.headers = headers self.body = body self.queue = queue self.url = url self.timeout = timeout self.start_time = time.time() self.unique_id = "%s:%f" % (url, self.start_time) self.trace_time = [] self.body_queue = simple_queue.Queue() self.body_len = 0 self.body_readed = 0 self.content_length = None self.worker = None self.read_buffers = [] self.read_buffer_len = 0 self.responsed = False self.finished = False self.retry_count = 0 def to_string(self): out_str = " Task:%s\r\n" % self.url out_str += " responsed:%d" % self.responsed out_str += " retry_count:%d" % self.retry_count out_str += " start_time:%d" % (time.time() - self.start_time) out_str += " body_readed:%d\r\n" % self.body_readed out_str += " Trace:%s" % self.get_trace() out_str += "\r\n" return out_str def put_data(self, data): self.body_queue.put(data) self.body_len += len(data) def read(self, size=None): # fail or cloe if return "" if self.body_readed == self.content_length: return memoryview(b'') if size: while self.read_buffer_len < size: data = self.body_queue.get(self.timeout) if not data: return memoryview(b'') self.read_buffers.append(data) self.read_buffer_len += len(data) if len(self.read_buffers[0]) == size: data = self.read_buffers[0] self.read_buffers.pop(0) self.read_buffer_len -= size elif len(self.read_buffers[0]) > size: data = self.read_buffers[0][:size] self.read_buffers[0] = self.read_buffers[0][size:] self.read_buffer_len -= size else: buff = bytearray(self.read_buffer_len) buff_view = memoryview(buff) p = 0 for data in self.read_buffers: buff_view[p:p+len(data)] = data p += len(data) if self.read_buffer_len == size: self.read_buffers = [] self.read_buffer_len = 0 data = buff_view else: data = buff_view[:size] self.read_buffers = [buff_view[size:]] self.read_buffer_len -= size else: if self.read_buffers: data = self.read_buffers.pop(0) self.read_buffer_len -= len(data) else: data = self.body_queue.get(self.timeout) if not data: return memoryview(b'') self.body_readed += len(data) return data def read_all(self): if self.content_length: buff = bytearray(int(self.content_length)) buff_view = memoryview(buff) p = 0 for data in self.read_buffers: buff_view[p:p+len(data)] = data p += len(data) self.read_buffers = [] self.read_buffer_len = 0 while p < self.content_length: data = self.read() if not data: break buff_view[p:p + len(data)] = data[0:len(data)] p += len(data) return buff_view[:p] else: out = list() while True: data = self.read() if not data: break if isinstance(data, memoryview): data = data.tobytes() out.append(data) out_buf = "".join(out) return memoryview(out_buf) def set_state(self, stat): # for debug trace time_now = time.time() self.trace_time.append((time_now, stat)) if self.config.show_state_debug: self.logger.debug("%s stat:%s", self.unique_id, stat) return time_now def get_trace(self): out_list = [] last_time = self.start_time for t, stat in self.trace_time: time_diff = int((t - last_time) * 1000) last_time = t out_list.append("%d:%s" % (time_diff, stat)) out_list.append(":%d" % ((time.time()-last_time)*1000)) return ",".join(out_list) def response_fail(self, reason=""): if self.responsed: self.logger.error("http_common responsed_fail but responed.%s", self.url) self.put_data("") return self.responsed = True err_text = "response_fail:%s" % reason self.logger.debug("%s %s", self.url, err_text) res = simple_http_client.BaseResponse(body=err_text) res.task = self res.worker = self.worker self.queue.put(res) self.finish() def finish(self): if self.finished: return self.put_data("") self.finished = True class HttpWorker(object): def __init__(self, logger, ip_manager, config, ssl_sock, close_cb, retry_task_cb, idle_cb, log_debug_data): self.logger = logger self.ip_manager = ip_manager self.config = config self.ssl_sock = ssl_sock self.init_rtt = ssl_sock.handshake_time / 3 self.rtt = self.init_rtt self.speed = 1 self.ip = ssl_sock.ip self.close_cb = close_cb self.retry_task_cb = retry_task_cb self.idle_cb = idle_cb self.log_debug_data = log_debug_data self.accept_task = True self.keep_running = True self.processed_tasks = 0 self.speed_history = [] self.last_recv_time = self.ssl_sock.create_time self.last_send_time = self.ssl_sock.create_time def update_debug_data(self, rtt, sent, received, speed): self.rtt = rtt self.speed = speed self.speed_history.append(speed) self.log_debug_data(rtt, sent, received) def close(self, reason): self.accept_task = False self.keep_running = False self.ssl_sock.close() if reason not in ["idle timeout"]: self.logger.debug("%s worker close:%s", self.ip, reason) self.ip_manager.report_connect_closed(self.ssl_sock.ip, reason) self.close_cb(self) def get_score(self): now = time.time() inactive_time = now - self.last_recv_time rtt = self.rtt if inactive_time > 30: if rtt > 1000: rtt = 1000 if self.version == "1.1": rtt += 100 else: rtt += len(self.streams) * 500 if inactive_time > 1: score = rtt elif inactive_time < 0.1: score = rtt + 1000 else: # inactive_time < 2 score = rtt + (1 / inactive_time) * 1000 return score def get_host(self, task_host): if task_host: return task_host else: return self.ssl_sock.host
try: input = raw_input # checks to see if in Python 3x or 2x to get input() command except NameError: pass import praw #Makes sure we can use the module #The next part will tell reddit that we are who we are, so that we can #grab info from accounts. reddit = praw.Reddit(client_id='<YOUR CLIENT ID HERE>', client_secret='<YOUR CLIENT SECRET HERE>', user_agent='RPi Karma Viewer') # This can be the title of the project me = reddit.redditor(input("Enter a reddit username: ")) #Defines the reddit username linkkarma = me.link_karma #Defines the variable linkkarma as the username's link karma commentkarma = me.comment_karma #Defines the variable commentkarma as the username's comment karma totalkarma = linkkarma + commentkarma #This will make a variable called totalkarma that will add both of the karma variables together. print "Reddit username karma viewer (RAKV) Version 1.1" print "Script available at https://github.com/jacksonsevendelta/Reddit-Karma-Viewer" print "You selected reddit username u/{}.".format(me) print "TOTAL KARMA:",totalkarma print "LINK KARMA:",linkkarma print "COMMENT KARMA:",commentkarma print "Finished for username",me print "Additionally, you can find this user's page at https://reddit.com/u/{}.".format(me)
__author__ = 'Tony Beltramelli - www.tonybeltramelli.com' __modified = 'Kevin Kössl' CONTEXT_LENGTH = 48 IMAGE_SIZE = 160 BATCH_SIZE = 64 EPOCHS = 10 STEPS_PER_EPOCH = 72000
#!/usr/bin/env python # Copyright 2014-2021 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: Tianyu Zhu <zhutianyu1991@gmail.com> # ''' PBC spin-restricted G0W0-CD QP eigenvalues with k-point sampling This implementation has the same scaling (N^4) as GW-AC, more robust but slower. GW-CD is particularly recommended for accurate core and high-energy states. Method: See T. Zhu and G.K.-L. Chan, arxiv:2007.03148 (2020) for details Compute Sigma directly on real axis with density fitting through a contour deformation method ''' from functools import reduce import numpy import numpy as np import h5py from scipy.optimize import newton, least_squares from pyscf import lib from pyscf.lib import logger from pyscf.ao2mo import _ao2mo from pyscf.ao2mo.incore import _conc_mos from pyscf.pbc import df, dft, scf from pyscf.pbc.mp.kmp2 import get_nocc, get_nmo, get_frozen_mask from pyscf import __config__ einsum = lib.einsum def kernel(gw, mo_energy, mo_coeff, orbs=None, kptlist=None, nw=None, verbose=logger.NOTE): '''GW-corrected quasiparticle orbital energies Returns: A list : converged, mo_energy, mo_coeff ''' mf = gw._scf if gw.frozen is None: frozen = 0 else: frozen = gw.frozen assert (frozen == 0) if orbs is None: orbs = range(gw.nmo) if kptlist is None: kptlist = range(gw.nkpts) nkpts = gw.nkpts nklist = len(kptlist) # v_xc dm = np.array(mf.make_rdm1()) v_mf = np.array(mf.get_veff()) - np.array(mf.get_j(dm_kpts=dm)) for k in range(nkpts): v_mf[k] = reduce(numpy.dot, (mo_coeff[k].T.conj(), v_mf[k], mo_coeff[k])) nocc = gw.nocc nmo = gw.nmo # v_hf from DFT/HF density if gw.fc: exxdiv = 'ewald' else: exxdiv = None rhf = scf.KRHF(gw.mol, gw.kpts, exxdiv=exxdiv) rhf.with_df = gw.with_df if getattr(gw.with_df, '_cderi', None) is None: raise RuntimeError('Found incompatible integral scheme %s.' 'KGWCD can be only used with GDF integrals' % gw.with_df.__class__) vk = rhf.get_veff(gw.mol,dm_kpts=dm) - rhf.get_j(gw.mol,dm_kpts=dm) for k in range(nkpts): vk[k] = reduce(numpy.dot, (mo_coeff[k].T.conj(), vk[k], mo_coeff[k])) # Grids for integration on imaginary axis freqs,wts = _get_scaled_legendre_roots(nw) logger.debug(gw, "Computing the imaginary part") Wmn, Del_00, Del_P0, qij, q_abs = get_WmnI_diag(gw, orbs, kptlist, freqs) conv = True mo_energy = np.zeros_like(np.array(mf.mo_energy)) for k in range(nklist): kn = kptlist[k] for p in orbs: if p < nocc: delta = -2e-2 else: delta = 2e-2 if gw.linearized: # FIXME logger.warn(gw,'linearization with CD leads to wrong quasiparticle energy') raise NotImplementedError else: # self-consistently solve QP equation def quasiparticle(omega): if gw.fc: sigmaR = get_sigma_diag(gw, omega, kn, p, Wmn[:,k,:,p-orbs[0],:], Del_00, Del_P0[k,p-orbs[0],:], freqs, wts, qij, q_abs).real else: sigmaR = get_sigma_diag(gw, omega, kn, p, Wmn[:,k,:,p-orbs[0],:], Del_00, Del_P0, freqs, wts, qij, q_abs).real return omega - mf.mo_energy[kn][p] - (sigmaR.real + vk[kn,p,p].real - v_mf[kn,p,p].real) try: e = newton(quasiparticle, mf.mo_energy[kn][p]+delta, tol=1e-6, maxiter=50) logger.debug(gw, "Computing poles for QP (k: %s, orb: %s)"%(kn,p)) mo_energy[kn,p] = e except RuntimeError: conv = False mo_coeff = mf.mo_coeff if gw.verbose >= logger.DEBUG: numpy.set_printoptions(threshold=nmo) for k in range(nkpts): logger.debug(gw, ' GW mo_energy @ k%d =\n%s', k,mo_energy[k]) numpy.set_printoptions(threshold=1000) return conv, mo_energy, mo_coeff def get_sigma_diag(gw, ep, kp, p, Wmn, Del_00, Del_P0, freqs, wts, qij, q_abs): ''' Compute self-energy on real axis using contour deformation ''' nocc = gw.nocc nkpts = gw.nkpts # This code does not support metals homo = -99. lumo = 99. for k in range(nkpts): if homo < gw._scf.mo_energy[k][nocc-1]: homo = gw._scf.mo_energy[k][nocc-1] if lumo > gw._scf.mo_energy[k][nocc]: lumo = gw._scf.mo_energy[k][nocc] ef = (homo+lumo)/2. nmo = gw.nmo sign = np.zeros((nkpts,nmo),dtype=np.int64) for k in range(nkpts): sign[k] = np.sign(ef-gw._scf.mo_energy[k]) sigmaI = get_sigmaI_diag(gw, ep, kp, p, Wmn, Del_00, Del_P0, sign, freqs, wts) sigmaR = get_sigmaR_diag(gw, ep, kp, p, ef, freqs, qij, q_abs) return sigmaI + sigmaR def get_rho_response(gw, omega, mo_energy, Lpq, kL, kidx): ''' Compute density response function in auxiliary basis at freq iw ''' nkpts, naux, nmo, nmo = Lpq.shape nocc = gw.nocc kpts = gw.kpts kscaled = gw.mol.get_scaled_kpts(kpts) kscaled -= kscaled[0] # Compute Pi for kL Pi = np.zeros((naux,naux),dtype=np.complex128) for i, kpti in enumerate(kpts): # Find ka that conserves with ki and kL (-ki+ka+kL=G) a = kidx[i] eia = mo_energy[i,:nocc,None] - mo_energy[a,None,nocc:] eia = eia/(omega**2+eia*eia) Pia = einsum('Pia,ia->Pia',Lpq[i][:,:nocc,nocc:],eia) # Response from both spin-up and spin-down density Pi += 4./nkpts * einsum('Pia,Qia->PQ',Pia,Lpq[i][:,:nocc,nocc:].conj()) return Pi def get_WmnI_diag(gw, orbs, kptlist, freqs, max_memory=8000): ''' Compute GW correlation self-energy (diagonal elements) in MO basis on imaginary axis ''' mo_energy = np.array(gw._scf.mo_energy) mo_coeff = np.array(gw._scf.mo_coeff) nmo = gw.nmo nkpts = gw.nkpts kpts = gw.kpts nklist = len(kptlist) nw = len(freqs) norbs = len(orbs) mydf = gw.with_df # possible kpts shift center kscaled = gw.mol.get_scaled_kpts(kpts) kscaled -= kscaled[0] Del_00, Del_P0, qij, q_abs = None, None, None, None if gw.fc: # Set up q mesh for q->0 finite size correction q_pts = np.array([1e-3,0,0]).reshape(1,3) q_abs = gw.mol.get_abs_kpts(q_pts) # Get qij = 1/sqrt(Omega) * < psi_{ik} | e^{iqr} | psi_{ak-q} > at q: (nkpts, nocc, nvir) qij = get_qij(gw, q_abs[0], mo_coeff) Wmn = np.zeros((nkpts,nklist,nmo,norbs,nw),dtype=np.complex128) if gw.fc: Del_P0 = np.zeros((nklist,norbs,nw),dtype=np.complex128) Del_00 = np.zeros(nw,dtype=np.complex128) for kL in range(nkpts): # Lij: (ki, L, i, j) for looping every kL Lij = [] # kidx: save kj that conserves with kL and ki (-ki+kj+kL=G) # kidx_r: save ki that conserves with kL and kj (-ki+kj+kL=G) kidx = np.zeros((nkpts),dtype=np.int64) kidx_r = np.zeros((nkpts),dtype=np.int64) for i, kpti in enumerate(kpts): for j, kptj in enumerate(kpts): # Find (ki,kj) that satisfies momentum conservation with kL kconserv = -kscaled[i] + kscaled[j] + kscaled[kL] is_kconserv = np.linalg.norm(np.round(kconserv) - kconserv) < 1e-12 if is_kconserv: kidx[i] = j kidx_r[j] = i logger.debug(gw, "Read Lpq (kL: %s / %s, ki: %s, kj: %s)"%(kL+1, nkpts, i, j)) Lij_out = None # Read (L|pq) and ao2mo transform to (L|ij) Lpq = [] for LpqR, LpqI, sign \ in mydf.sr_loop([kpti, kptj], max_memory=0.1*gw._scf.max_memory, compact=False): Lpq.append(LpqR+LpqI*1.0j) # support uneqaul naux on different k points Lpq = np.vstack(Lpq).reshape(-1,nmo**2) tao = [] ao_loc = None moij, ijslice = _conc_mos(mo_coeff[i], mo_coeff[j])[2:] Lij_out = _ao2mo.r_e2(Lpq, moij, ijslice, tao, ao_loc, out=Lij_out) Lij.append(Lij_out.reshape(-1,nmo,nmo)) Lij = np.asarray(Lij) naux = Lij.shape[1] if kL == 0: for w in range(nw): # body dielectric matrix eps_body Pi = get_rho_response(gw, freqs[w], mo_energy, Lij, kL, kidx) eps_body_inv = np.linalg.inv(np.eye(naux)-Pi) if gw.fc: # head dielectric matrix eps_00 Pi_00 = get_rho_response_head(gw, freqs[w], mo_energy, qij) eps_00 = 1. - 4. * np.pi/np.linalg.norm(q_abs[0])**2 * Pi_00 # wings dielectric matrix eps_P0 Pi_P0 = get_rho_response_wing(gw, freqs[w], mo_energy, Lij, qij) eps_P0 = -np.sqrt(4.*np.pi) / np.linalg.norm(q_abs[0]) * Pi_P0 # inverse dielectric matrix eps_inv_00 = 1./(eps_00 - np.dot(np.dot(eps_P0.conj(),eps_body_inv),eps_P0)) eps_inv_P0 = -eps_inv_00 * np.dot(eps_body_inv, eps_P0) # head correction Del_00[w] = 2./np.pi * (6.*np.pi**2/gw.mol.vol/nkpts)**(1./3.) * (eps_inv_00 - 1.) wings_const = np.sqrt(gw.mol.vol/4./np.pi**3) * (6.*np.pi**2/gw.mol.vol/nkpts)**(2./3.) eps_inv_PQ = eps_body_inv for k in range(nklist): kn = kptlist[k] # Find km that conserves with kn and kL (-km+kn+kL=G) km = kidx_r[kn] Qmn = einsum('Pmn,PQ->Qmn',Lij[km][:,:,orbs].conj(),eps_inv_PQ-np.eye(naux)) Wmn[km,k,:,:,w] = 1./nkpts * einsum('Qmn,Qmn->mn',Qmn,Lij[km][:,:,orbs]) if gw.fc: # compute wing correction Wn_P0 = einsum('Pnm,P->nm',Lij[kn],eps_inv_P0).diagonal() Wn_P0 = Wn_P0.real * 2. Del_P0[k,:,w] = wings_const * Wn_P0[orbs] else: for w in range(nw): Pi = get_rho_response(gw, freqs[w], mo_energy, Lij, kL, kidx) Pi_inv = np.linalg.inv(np.eye(naux)-Pi)-np.eye(naux) for k in range(nklist): kn = kptlist[k] # Find km that conserves with kn and kL (-km+kn+kL=G) km = kidx_r[kn] Qmn = einsum('Pmn,PQ->Qmn',Lij[km][:,:,orbs].conj(),Pi_inv) Wmn[km,k,:,:,w] = 1./nkpts * einsum('Qmn,Qmn->mn',Qmn,Lij[km][:,:,orbs]) return Wmn, Del_00, Del_P0, qij, q_abs def get_sigmaI_diag(gw, omega, kp, p, Wmn, Del_00, Del_P0, sign, freqs, wts): ''' Compute self-energy by integrating on imaginary axis ''' mo_energy = gw._scf.mo_energy nkpts = gw.nkpts sigma = 0j for k in range(nkpts): emo = omega - 1j*gw.eta*sign[k] - mo_energy[k] g0 = wts[None,:]*emo[:,None] / ((emo**2)[:,None]+(freqs**2)[None,:]) sigma += -einsum('mw,mw',g0,Wmn[k])/np.pi if gw.fc and k == kp: sigma += -einsum('w,w->',Del_00,g0[p])/np.pi sigma += -einsum('w,w->',Del_P0,g0[p])/np.pi return sigma def get_rho_response_R(gw, omega, mo_energy, Lpq, kL, kidx): ''' Compute density response function in auxiliary basis at freq iw ''' nkpts, naux, nmo, nmo = Lpq.shape nocc = gw.nocc kpts = gw.kpts kscaled = gw.mol.get_scaled_kpts(kpts) kscaled -= kscaled[0] # Compute Pi for kL Pi = np.zeros((naux,naux),dtype=np.complex128) for i, kpti in enumerate(kpts): # Find ka that conserves with ki and kL (-ki+ka+kL=G) a = kidx[i] eia = mo_energy[i,:nocc,None] - mo_energy[a,None,nocc:] eia = 1./(omega+eia+2j*gw.eta) + 1./(-omega+eia) Pia = einsum('Pia,ia->Pia',Lpq[i][:,:nocc,nocc:],eia) # Response from both spin-up and spin-down density Pi += 2./nkpts * einsum('Pia,Qia->PQ',Pia,Lpq[i][:,:nocc,nocc:].conj()) return Pi def get_sigmaR_diag(gw, omega, kn, orbp, ef, freqs, qij, q_abs): ''' Compute self-energy for poles inside coutour (more and more expensive away from Fermi surface) ''' mo_energy = np.array(gw._scf.mo_energy) mo_coeff = np.array(gw._scf.mo_coeff) nmo = gw.nmo nkpts = gw.nkpts kpts = gw.kpts mydf = gw.with_df # possible kpts shift center kscaled = gw.mol.get_scaled_kpts(kpts) kscaled -= kscaled[0] idx = [] for k in range(nkpts): if omega > ef: fm = 1.0 idx.append(np.where((mo_energy[k]<omega) & (mo_energy[k]>ef))[0]) else: fm = -1.0 idx.append(np.where((mo_energy[k]>omega) & (mo_energy[k]<ef))[0]) sigmaR = 0j for kL in range(nkpts): # Lij: (ki, L, i, j) for looping every kL Lij = [] # kidx: save kj that conserves with kL and ki (-ki+kj+kL=G) # kidx_r: save ki that conserves with kL and kj (-ki+kj+kL=G) kidx = np.zeros((nkpts),dtype=np.int64) kidx_r = np.zeros((nkpts),dtype=np.int64) for i, kpti in enumerate(kpts): for j, kptj in enumerate(kpts): # Find (ki,kj) that satisfies momentum conservation with kL kconserv = -kscaled[i] + kscaled[j] + kscaled[kL] is_kconserv = np.linalg.norm(np.round(kconserv) - kconserv) < 1e-12 if is_kconserv: kidx[i] = j kidx_r[j] = i km = kidx_r[kn] if len(idx[km]) > 0: for i, kpti in enumerate(kpts): for j, kptj in enumerate(kpts): # Find (ki,kj) that satisfies momentum conservation with kL kconserv = -kscaled[i] + kscaled[j] + kscaled[kL] is_kconserv = np.linalg.norm(np.round(kconserv) - kconserv) < 1e-12 if is_kconserv: kidx[i] = j kidx_r[j] = i #logger.debug(gw, "Read Lpq (kL: %s / %s, ki: %s, kj: %s)"%(kL+1, nkpts, i, j)) Lij_out = None # Read (L|pq) and ao2mo transform to (L|ij) Lpq = [] for LpqR, LpqI, sign \ in mydf.sr_loop([kpti, kptj], max_memory=0.1*gw._scf.max_memory, compact=False): Lpq.append(LpqR+LpqI*1.0j) # support uneqaul naux on different k points Lpq = np.vstack(Lpq).reshape(-1,nmo**2) tao = [] ao_loc = None moij, ijslice = _conc_mos(mo_coeff[i], mo_coeff[j])[2:] Lij_out = _ao2mo.r_e2(Lpq, moij, ijslice, tao, ao_loc, out=Lij_out) Lij.append(Lij_out.reshape(-1,nmo,nmo)) Lij = np.asarray(Lij) naux = Lij.shape[1] if kL == 0: km = kidx_r[kn] if len(idx[km]) > 0: for m in idx[km]: em = mo_energy[km][m] - omega # body dielectric matrix eps_body Pi = get_rho_response_R(gw, abs(em), mo_energy, Lij, kL, kidx) eps_body_inv = np.linalg.inv(np.eye(naux)-Pi) if gw.fc and m == orbp: # head dielectric matrix eps_00 Pi_00 = get_rho_response_head_R(gw, abs(em), mo_energy, qij) eps_00 = 1. - 4. * np.pi/np.linalg.norm(q_abs[0])**2 * Pi_00 # wings dielectric matrix eps_P0 Pi_P0 = get_rho_response_wing_R(gw, abs(em), mo_energy, Lij, qij) eps_P0 = -np.sqrt(4.*np.pi) / np.linalg.norm(q_abs[0]) * Pi_P0 # inverse dielectric matrix eps_inv_00 = 1./(eps_00 - np.dot(np.dot(eps_P0.conj(),eps_body_inv),eps_P0)) eps_inv_P0 = -eps_inv_00 * np.dot(eps_body_inv, eps_P0) eps_inv_PQ = eps_body_inv # body Qmn = einsum('P,PQ->Q',Lij[km][:,m,orbp].conj(),eps_inv_PQ-np.eye(naux)) Wmn = 1./nkpts * einsum('Q,Q->',Qmn,Lij[km][:,m,orbp]) sigmaR += fm * Wmn if gw.fc and m == orbp: # head correction Del_00 = 2./np.pi * (6.*np.pi**2/gw.mol.vol/nkpts)**(1./3.) * (eps_inv_00 - 1.) sigmaR += fm * Del_00 # wings correction wings_const = np.sqrt(gw.mol.vol/4./np.pi**3) * (6.*np.pi**2/gw.mol.vol/nkpts)**(2./3.) Wn_P0 = einsum('P,P->',Lij[kn][:,m,orbp].conj(),eps_inv_P0) Wn_P0 = Wn_P0.real * 2. sigmaR += fm * wings_const * Wn_P0 else: km = kidx_r[kn] if len(idx[km]) > 0: for m in idx[km]: em = mo_energy[km][m] - omega Pi = get_rho_response_R(gw, abs(em), mo_energy, Lij, kL, kidx) Pi_inv = np.linalg.inv(np.eye(naux)-Pi)-np.eye(naux) Qmn = einsum('P,PQ->Q',Lij[km][:,m,orbp].conj(),Pi_inv) Wmn = 1./nkpts * einsum('Q,Q->',Qmn,Lij[km][:,m,orbp]) sigmaR += fm * Wmn return sigmaR def get_rho_response_head_R(gw, omega, mo_energy, qij): ''' Compute head (G=0, G'=0) density response function in auxiliary basis at freq w ''' nkpts, nocc, nvir = qij.shape nocc = gw.nocc kpts = gw.kpts # Compute Pi head Pi_00 = 0j for i, kpti in enumerate(kpts): eia = mo_energy[i,:nocc,None] - mo_energy[i,None,nocc:] eia = 1./(omega+eia+2j*gw.eta) + 1./(-omega+eia) Pi_00 += 2./nkpts * einsum('ia,ia->',eia,qij[i].conj()*qij[i]) return Pi_00 def get_rho_response_wing_R(gw, omega, mo_energy, Lpq, qij): ''' Compute density response function in auxiliary basis at freq iw ''' nkpts, naux, nmo, nmo = Lpq.shape nocc = gw.nocc kpts = gw.kpts # Compute Pi for kL Pi = np.zeros(naux,dtype=np.complex128) for i, kpti in enumerate(kpts): eia = mo_energy[i,:nocc,None] - mo_energy[i,None,nocc:] eia = 1./(omega+eia+2j*gw.eta) + 1./(-omega+eia) eia_q = eia * qij[i].conj() Pi += 2./nkpts * einsum('Pia,ia->P',Lpq[i][:,:nocc,nocc:],eia_q) return Pi def get_rho_response_head(gw, omega, mo_energy, qij): ''' Compute head (G=0, G'=0) density response function in auxiliary basis at freq iw ''' nkpts, nocc, nvir = qij.shape nocc = gw.nocc kpts = gw.kpts # Compute Pi head Pi_00 = 0j for i, kpti in enumerate(kpts): eia = mo_energy[i,:nocc,None] - mo_energy[i,None,nocc:] eia = eia/(omega**2+eia*eia) Pi_00 += 4./nkpts * einsum('ia,ia->',eia,qij[i].conj()*qij[i]) return Pi_00 def get_rho_response_wing(gw, omega, mo_energy, Lpq, qij): ''' Compute wing (G=P, G'=0) density response function in auxiliary basis at freq iw ''' nkpts, naux, nmo, nmo = Lpq.shape nocc = gw.nocc kpts = gw.kpts # Compute Pi wing Pi = np.zeros(naux,dtype=np.complex128) for i, kpti in enumerate(kpts): eia = mo_energy[i,:nocc,None] - mo_energy[i,None,nocc:] eia = eia/(omega**2+eia*eia) eia_q = eia * qij[i].conj() Pi += 4./nkpts * einsum('Pia,ia->P',Lpq[i][:,:nocc,nocc:],eia_q) return Pi def get_qij(gw, q, mo_coeff, uniform_grids=False): ''' Compute qij = 1/Omega * |< psi_{ik} | e^{iqr} | psi_{ak-q} >|^2 at q: (nkpts, nocc, nvir) ''' nocc = gw.nocc nmo = gw.nmo nvir = nmo - nocc kpts = gw.kpts nkpts = len(kpts) cell = gw.mol mo_energy = gw._scf.mo_energy if uniform_grids: mydf = df.FFTDF(cell, kpts=kpts) coords = cell.gen_uniform_grids(mydf.mesh) else: coords, weights = dft.gen_grid.get_becke_grids(cell,level=5) ngrid = len(coords) qij = np.zeros((nkpts,nocc,nvir),dtype=np.complex128) for i, kpti in enumerate(kpts): ao_p = dft.numint.eval_ao(cell, coords, kpt=kpti, deriv=1) ao = ao_p[0] ao_grad = ao_p[1:4] if uniform_grids: ao_ao_grad = einsum('mg,xgn->xmn',ao.T.conj(),ao_grad) * cell.vol / ngrid else: ao_ao_grad = einsum('g,mg,xgn->xmn',weights,ao.T.conj(),ao_grad) q_ao_ao_grad = -1j * einsum('x,xmn->mn',q,ao_ao_grad) q_mo_mo_grad = np.dot(np.dot(mo_coeff[i][:,:nocc].T.conj(), q_ao_ao_grad), mo_coeff[i][:,nocc:]) enm = 1./(mo_energy[i][nocc:,None] - mo_energy[i][None,:nocc]) dens = enm.T * q_mo_mo_grad qij[i] = dens / np.sqrt(cell.vol) return qij def _get_scaled_legendre_roots(nw): """ Scale nw Legendre roots, which lie in the interval [-1, 1], so that they lie in [0, inf) Ref: www.cond-mat.de/events/correl19/manuscripts/ren.pdf Returns: freqs : 1D ndarray wts : 1D ndarray """ freqs, wts = np.polynomial.legendre.leggauss(nw) x0 = 0.5 freqs_new = x0*(1.+freqs)/(1.-freqs) wts = wts*2.*x0/(1.-freqs)**2 return freqs_new, wts def _get_clenshaw_curtis_roots(nw): """ Clenshaw-Curtis qaudrature on [0,inf) Ref: J. Chem. Phys. 132, 234114 (2010) Returns: freqs : 1D ndarray wts : 1D ndarray """ freqs = np.zeros(nw) wts = np.zeros(nw) a = 0.2 for w in range(nw): t = (w+1.0)/nw * np.pi/2. freqs[w] = a / np.tan(t) if w != nw-1: wts[w] = a*np.pi/2./nw/(np.sin(t)**2) else: wts[w] = a*np.pi/4./nw/(np.sin(t)**2) return freqs[::-1], wts[::-1] class KRGWCD(lib.StreamObject): linearized = getattr(__config__, 'gw_gw_GW_linearized', False) eta = getattr(__config__, 'gw_gw_GW_eta', 1e-3) fc = getattr(__config__, 'gw_gw_GW_fc', True) def __init__(self, mf, frozen=0): self.mol = mf.mol self._scf = mf self.verbose = self.mol.verbose self.stdout = self.mol.stdout self.max_memory = mf.max_memory #TODO: implement frozen orbs if frozen > 0: raise NotImplementedError self.frozen = frozen # DF-KGW must use GDF integrals if getattr(mf, 'with_df', None): self.with_df = mf.with_df else: raise NotImplementedError self._keys.update(['with_df']) ################################################## # don't modify the following attributes, they are not input options self._nocc = None self._nmo = None self.kpts = mf.kpts self.nkpts = len(self.kpts) # self.mo_energy: GW quasiparticle energy, not scf mo_energy self.mo_energy = None self.mo_coeff = mf.mo_coeff self.mo_occ = mf.mo_occ self.sigma = None keys = set(('linearized','eta','fc')) self._keys = set(self.__dict__.keys()).union(keys) def dump_flags(self): log = logger.Logger(self.stdout, self.verbose) log.info('') log.info('******** %s ********', self.__class__) log.info('method = %s', self.__class__.__name__) nocc = self.nocc nvir = self.nmo - nocc nkpts = self.nkpts log.info('GW nocc = %d, nvir = %d, nkpts = %d', nocc, nvir, nkpts) if self.frozen is not None: log.info('frozen orbitals %s', str(self.frozen)) logger.info(self, 'use perturbative linearized QP eqn = %s', self.linearized) logger.info(self, 'GW finite size corrections = %s', self.fc) return self @property def nocc(self): return self.get_nocc() @nocc.setter def nocc(self, n): self._nocc = n @property def nmo(self): return self.get_nmo() @nmo.setter def nmo(self, n): self._nmo = n get_nocc = get_nocc get_nmo = get_nmo get_frozen_mask = get_frozen_mask def kernel(self, mo_energy=None, mo_coeff=None, orbs=None, kptlist=None, nw=100): """ Input: kptlist: self-energy k-points orbs: self-energy orbs nw: grid number Output: mo_energy: GW quasiparticle energy """ if mo_coeff is None: mo_coeff = np.array(self._scf.mo_coeff) if mo_energy is None: mo_energy = np.array(self._scf.mo_energy) nmo = self.nmo naux = self.with_df.get_naoaux() nkpts = self.nkpts mem_incore = (2*nkpts*nmo**2*naux) * 16/1e6 mem_now = lib.current_memory()[0] if (mem_incore + mem_now > 0.99*self.max_memory): logger.warn(self, 'Memory may not be enough!') raise NotImplementedError cput0 = (logger.process_clock(), logger.perf_counter()) self.dump_flags() self.converged, self.mo_energy, self.mo_coeff = \ kernel(self, mo_energy, mo_coeff, orbs=orbs, kptlist=kptlist, nw=nw, verbose=self.verbose) logger.warn(self, 'GW QP energies may not be sorted from min to max') logger.timer(self, 'GW', *cput0) return self.mo_energy if __name__ == '__main__': from pyscf.pbc import gto from pyscf.pbc.lib import chkfile import os # This test takes a few minutes cell = gto.Cell() cell.build(unit = 'angstrom', a = ''' 0.000000 1.783500 1.783500 1.783500 0.000000 1.783500 1.783500 1.783500 0.000000 ''', atom = 'C 1.337625 1.337625 1.337625; C 2.229375 2.229375 2.229375', dimension = 3, max_memory = 8000, verbose = 4, pseudo = 'gth-pade', basis='gth-szv', precision=1e-10) kpts = cell.make_kpts([3,1,1],scaled_center=[0,0,0]) gdf = df.GDF(cell, kpts) gdf_fname = 'gdf_ints_311.h5' gdf._cderi_to_save = gdf_fname if not os.path.isfile(gdf_fname): gdf.build() chkfname = 'diamond_311.chk' if os.path.isfile(chkfname): kmf = dft.KRKS(cell, kpts) kmf.xc = 'pbe' kmf.with_df = gdf kmf.with_df._cderi = gdf_fname data = chkfile.load(chkfname, 'scf') kmf.__dict__.update(data) else: kmf = dft.KRKS(cell, kpts) kmf.xc = 'pbe' kmf.with_df = gdf kmf.with_df._cderi = gdf_fname kmf.conv_tol = 1e-12 kmf.chkfile = chkfname kmf.kernel() gw = KRGWCD(kmf) gw.linearized = False # without finite size corrections gw.fc = False nocc = gw.nocc gw.kernel(kptlist=[0,1,2],orbs=range(0,nocc+3)) print(gw.mo_energy) assert((abs(gw.mo_energy[0][nocc-1]-0.62045796))<1e-5) assert((abs(gw.mo_energy[0][nocc]-0.96574426))<1e-5) assert((abs(gw.mo_energy[1][nocc-1]-0.52639129))<1e-5) assert((abs(gw.mo_energy[1][nocc]-1.07442235))<1e-5) # with finite size corrections gw.fc = True gw.kernel(kptlist=[0,1,2],orbs=range(0,nocc+3)) print(gw.mo_energy) assert((abs(gw.mo_energy[0][nocc-1]-0.5427707))<1e-5) assert((abs(gw.mo_energy[0][nocc]-0.80148557))<1e-5) assert((abs(gw.mo_energy[1][nocc-1]-0.45073751))<1e-5) assert((abs(gw.mo_energy[1][nocc]-0.92910117))<1e-5)
#!/usr/bin/env python # # Copyright (c) 2013-2016, ETH Zurich. # All rights reserved. # # This file is distributed under the terms in the attached LICENSE file. # If you do not find this file, copies can be found by writing to: # ETH Zurich D-INFK, Universitaetstr. 6, CH-8092 Zurich. Attn: Systems Group. import sys import model import config from pygraph.classes.digraph import digraph # -------------------------------------------------- # NetOS base class class NetosMachine(model.Model): """A machine model that parses the NetOS machine database for machines We intentionally did not use the NUMA model as a base class, which was meant as a dirty hack to auto-generate the graph for a machine. We can now (and should) do this directly from the pairwise measurements. Note: Currently this inherits from Model, but it should really not. The initialization here is completely separate from the base classes init code. We currently also parse hierarchical information from various Linux tools (lscpu, likwid). This is useful for hierarchical models (such as clusters), but also virtualization. """ # Topology information as returned by the topology_parser res = None # Machine name name = None def __init__(self): """Initialize the Simulator for a NetOS machine. Read topology information from the NetOS machine DB and build a fully-connected graph representing the pairwise message-passing communication cost (as a sum of send and receive cost). """ self.name = config.args.machine print ('Initializing NetOS machine %s' % self.name) # Build a graph model super(NetosMachine, self).__init__() def get_name(self): return self.name def _build_graph(self): """Build a graph representing the communication cost within that machine. The cost of communication for each pair of cores is the send_cost + receive_cost on that link. This is set as edge weight and used by the schedulers when sorting edges. """ _c_list = self.get_cores() # Add all cores to the graph gr = digraph() gr.add_nodes(_c_list) for snd in _c_list: for rcv in _c_list: if snd!=rcv: snd_cost = self.get_send_cost(snd, rcv) rcv_cost = self.get_receive_cost(snd, rcv) gr.add_edge((snd, rcv), rcv_cost + snd_cost) return gr def __repr__(self): return self.name # -------------------------------------------------- # Static function def get_list(): """Get list of NetOS machines """ sys.path.append(config.MACHINE_DATABASE) from machineinfo import machines return [ s for (s, _, _) in machines ]
import os import argparse from em import molecule from dataset.metrics import matching_iou from evoseg import evolutionary_segmentation as evo_seg from evoseg import miscellaneous as misc import numpy as np import pandas as pd import pickle import copy import glob MAX_NUMBER_SEGMENTS=60 if __name__ == '__main__': ''' ARGUMENTS # --input_path imput mrc file path # --label_path input index mrc file path # --output_dir output directory path to save output # --initial_size initial population size # --n_mates number of combinations # --p_mates probability of crossovers # --p_split probability of split mutation # --p_merge probability of merge mutation # --patience number of iterations without succesive improvements to stop # --top_n save top n trough generations # --n_max max number of generations ''' parser = argparse.ArgumentParser() parser.add_argument('--input_path', required=True, help= 'Input mrc directory path') parser.add_argument('--output_path', required=True, help= 'Output directory path') parser.add_argument('--level', required=True, help= 'Isosurface level') #parser.add_argument('--label_path', required=True, help='Input mrc file path with labels') parser.add_argument('--init_size', required=False, default=30, help= 'Initial population size') parser.add_argument('--n_mates', required=False, default=25, help= 'Number of possible combinations') parser.add_argument('--p_mates', required=False, default=0.5, help= 'Probability of crossover ocurrence') parser.add_argument('--p_split', required=False, default=0.01, help= 'Probability of split mutation') parser.add_argument('--p_merge', required=False, default=0.01, help= 'Probability of merge mutation') parser.add_argument('--n_patience', required=False, default=30, help= 'Number of iterations without succesive improvements to stop') parser.add_argument('--n_max', required=False, default=200, help= 'Max number of generations') opt = parser.parse_args() if not os.path.exists(opt.output_path): os.mkdir(opt.output_path) print('init') classifier = pickle.load(open('classifier/classifier.pkl', 'rb')) print("Loading maps from {}".format(opt.input_path)) filenames = glob.glob(opt.input_path) for f in filenames: mol = molecule.Molecule(f,0.01) #mol_gt = molecule.Molecule(opt.label_path, 0.01) data = mol.getDataAtContour(1) #data_gt = mol_gt.getDataAtContour(1) #data[data_gt==0]=0 mol.setData(data) pop = evo_seg.init_population(30, MAX_NUMBER_SEGMENTS, [1,4], [1,4], mol) save=False counter = 0 run= True pop_fitness = None overall_best_score = 0 patience = 30 #int(opt.n_patience) test_id = os.path.basename(opt.input_path).split('.')[0] score_list = [] score_segmentation_list = [] top_5 = [] while(run): ma, pa = evo_seg.select_parents(pop, 25) #int(opt.n_mates)) new_gen = evo_seg.mating(ma, pa, 0.5, 0.5, data) mutated_pop = evo_seg.mutate(new_gen, 0.01, 0.01, [1,4], [1,4], mol) pop_fitness = [ classifier.predict_proba(n['features'].reshape(1, -1))[0][1] for n in new_gen ] sorted_idx = np.argsort(pop_fitness) if len(top_5) > 0: for t in top_5: mutated_pop.append(t) top_5 = [ copy.deepcopy(new_gen[sorted_idx[i]]) for i in range(-5,0) ] pop_fitness = [ classifier.predict_proba(n['features'].reshape(1, -1))[0][1] for n in mutated_pop ] sorted_idx = np.argsort(pop_fitness) print("Population of gen {} fitness {}".format(counter,pop_fitness)) best_individual_score = np.max(pop_fitness) print("***Optimizing {}, best score of generation {} is {}".format(test_id, counter, best_individual_score)) save = True if best_individual_score > overall_best_score else False overall_best_score = best_individual_score if best_individual_score > overall_best_score else overall_best_score score_list.append(best_individual_score) current_segmentation = mutated_pop[sorted_idx[-1]]['labels'] if save: print(" saving segmentation...") save_path = os.path.join(opt.output_path,'best_{0}_{1:.2f}.npy'.format(test_id,best_individual_score)) np.save(save_path, current_segmentation) patience = 30 else: patience -= 1 pop = mutated_pop run = False if ((counter >= 200) | (patience==0)) else True counter += 1 # plot results #plot_evolutionary_graph(score_list, score_segmentation_list, os.path.join(opt.output_path,'evolutionary_result'), 'Matching IoU')
#!/env/python # -*- encoding: utf-8 -*- """ @version: 0.1 @author: wenzhiquan @contact: wenzhiquanr@163.com @site: http://github.wenzhiquan.com @software: PyCharm @file: __init__.py.py @time: 15/12/7 15:17 @description: null """ def func(): pass class Main(): def __init__(self): pass if __name__ == '__main__': pass
from test_utils import run_query def index_key(item): return item['index'] def test_quadbin_kring_distances(): """Computes kring""" result = run_query('SELECT QUADBIN_KRING_DISTANCES(5209574053332910079, 1)') expected = sorted( [ {'index': 5208043533147045887, 'distance': 1}, {'index': 5209556461146865663, 'distance': 1}, {'index': 5209591645518954495, 'distance': 1}, {'index': 5208061125333090303, 'distance': 1}, {'index': 5209574053332910079, 'distance': 0}, {'index': 5209609237704998911, 'distance': 1}, {'index': 5208113901891223551, 'distance': 1}, {'index': 5209626829891043327, 'distance': 1}, {'index': 5209662014263132159, 'distance': 1}, ], key=index_key, ) assert sorted(result[0][0], key=index_key) == expected
from django.http import Http404 from django.shortcuts import render, redirect from haystack.generic_views import SearchView, FacetedSearchView, FacetedSearchMixin from nuremberg.documents.models import Document from .forms import DocumentSearchForm from .lib.digg_paginator import DiggPaginator from .lib.solr_grouping_backend import GroupedSearchQuerySet class Search(FacetedSearchView): """ This is a subclass of the default Haystack faceted search view to implement our modifications, including pagination, shorter query parameters, custom sorting, and labeled facets. You can add a search facet to the list simply by placing it in `facet_labels`. See `forms.py` for the faceting and fielded search logic itself. """ load_all = False queryset = GroupedSearchQuerySet() # page numbers like [1, 2 ... 6, 7, 8, 9, 10, ... 19, 20] paginator_class = DiggPaginator paginate_by = 15 context_pages = 4 edge_pages = 2 form_class = DocumentSearchForm search_field = 'q' filter_field = 'f' material_field = 'm' sort_field = 'sort' default_sort = 'relevance' facet_labels = ( ('Material Type', 'material_type'), ('Trial', 'case_names'), ('Defendant', 'defendants'), ('Date', 'date_year'), ('Author', 'authors'), ('Language', 'language'), ('Source', 'source'), ('Trial Issues', 'trial_activities'), ) facet_to_label = {field: label for (label, field) in facet_labels} facet_fields = [label[1] for label in facet_labels] def get(self, *args, **kwargs): try: return super().get(*args, **kwargs) except Http404: if self.request.GET.get('page', 1) == 1: raise params = self.request.GET.copy() del params['page'] return redirect('%s?%s' % (self.request.path, params.urlencode())) def form_invalid(self, form): # override SearchView to give a blank search by default # TODO: this seems unnecessary self.queryset = form.search() context = self.get_context_data(**{ self.form_name: form, 'object_list': self.get_queryset() }) return self.render_to_response(context) def get_form_kwargs(self): kwargs = super().get_form_kwargs() kwargs.update({ 'sort_results': self.request.GET.get(self.sort_field, self.default_sort), 'selected_facets': self.request.GET.getlist(self.filter_field), 'facet_to_label': self.facet_to_label }) return kwargs def get_queryset(self): # override FacetedSearchMixin qs = super(FacetedSearchMixin, self).get_queryset() for field in self.facet_fields: sort = 'count' qs = qs.facet(field, missing=True, sort=sort, mincount=1) return qs def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) # pull the query out of form so it is pre-processed context['query'] = context['form'].data.get('q') or '*' if context['facets']: labeled_facets = [] for (label, field) in self.facet_labels: counts = context['facets']['fields'].get(field, []) # missing ignores mincount and sorting if (None, 0) in counts: counts.remove((None, 0)) else: pass # sort missing into the other facet values # counts.sort(key=lambda field: field[1], reverse=True) labeled_facets.append({ 'field': field, 'label': label, 'counts': counts }) context.update({'labeled_facets': labeled_facets}) if context['form']: context['facet_lookup'] = {} for (field, value, facet) in context['form'].applied_filters: context['facet_lookup'][facet] = True if self.request.GET.get('partial'): context['base_template'] = 'search/partial.html' else: context['base_template'] = None return context def get_paginator(self, *args, **kwargs): return self.paginator_class(*args, body=self.context_pages, tail=self.edge_pages, **kwargs)
Y,X,d = [int(x) for x in input().split()] arr = [] for _ in range(Y): xs = [int(x) for x in input().split()] arr.extend(xs) arr.sort() hi = max(arr) for i in range(Y*X): arr[i] -= hi if all(map(lambda x: x % d == 0, arr)): total = 0 med = arr[(Y*X) // 2] # print(med) for x in arr: rem = abs(med-x) total += rem // d print(total) else: print("-1")
#!/usr/bin/env python3 plink = 'https://www.udemy.com/course/python-1000/?referralCode=D3A7B607149F46D12A28' doc = f''' > This file was created by [this](./missions.py) Python script. Learn what Python scripts [can do]({plink}) for you! ''' import os ofile = './MISSIONS.md' mfile = 'MISSION.md' def get_mission(afile, fout): prefix = '## ' with open(afile) as fh: mission = prefix mission += fh.read().split(prefix)[1].strip() print(mission, end="\n\n", file=fout) with open(ofile, 'w') as fh: print(doc, "\n", file=fh) for root, dirs, files in os.walk("./com"): aroot = root.replace('\\', '/') for file in files: if file == mfile: afile = aroot + "/" + file get_mission(afile, fh) print(f"> Go to [Mission]({afile})", file=fh) print(file=fh)
# Copyright (c) ACSONE SA/NV 2021 # Distributed under the MIT License (http://opensource.org/licenses/MIT). """Utilities to work with PEP 503 package indexes.""" import logging import os from io import StringIO from pathlib import PosixPath from subprocess import CalledProcessError from typing import Iterator, Optional, Tuple from urllib.parse import urljoin, urlparse import requests from lxml import etree from .process import check_call _logger = logging.getLogger(__name__) def files_on_index( index_url: str, project_name: str ) -> Iterator[Tuple[str, Optional[Tuple[str, str]]]]: """Iterate files available on an index for a given project name.""" project_name = project_name.replace("_", "-") base_url = urljoin(index_url, project_name + "/") r = requests.get(base_url) if r.status_code == 404: # project not found on this index return r.raise_for_status() parser = etree.HTMLParser() tree = etree.parse(StringIO(r.text), parser) for a in tree.iterfind("//a"): parsed_url = urlparse(a.get("href")) p = PosixPath(parsed_url.path) if parsed_url.fragment: hash_type, hash_value = parsed_url.fragment.split("=", 2)[:2] yield p.name, (hash_type, hash_value) else: yield p.name, None def exists_on_index(index_url: str, filename: str) -> bool: """Check if a distribution exists on a package index.""" project_name = filename.split("-", 1)[0] for filename_on_index, _ in files_on_index(index_url, project_name): if filename_on_index == filename: return True return False class DistPublisher: def publish(self, dist_dir: str, dry_run: bool) -> None: raise NotImplementedError() class MultiDistPublisher(DistPublisher): def __init__(self): self._dist_publishers = [] def add(self, dist_publisher: DistPublisher) -> None: self._dist_publishers.append(dist_publisher) def publish(self, dist_dir: str, dry_run: bool) -> None: for dist_publisher in self._dist_publishers: dist_publisher.publish(dist_dir, dry_run) class TwineDistPublisher: def __init__( self, index_url: str, repository_url: str, username: str, password: str, ): self._index_url = index_url self._repository_url = repository_url self._username = username self._password = password def publish(self, dist_dir: str, dry_run: bool) -> None: for filename in os.listdir(dist_dir): if exists_on_index(self._index_url, filename): _logger.info( f"Not uploading {filename} that already exists " f"on {self._repository_url}." ) continue _logger.info(f"Uploading {filename} to {self._repository_url}") cmd = [ "twine", "upload", "--repository-url", self._repository_url, "-u", self._username, filename, ] if dry_run: _logger.info("DRY-RUN" + " ".join(cmd)) else: _logger.info(" ".join(cmd)) try: check_call( cmd, cwd=dist_dir, env=dict(os.environ, TWINE_PASSWORD=self._password), ) except CalledProcessError as e: if ( "File already exists" in e.output or "This filename has already been used" in e.output ): # in case exist_on_index() received an outdated index page _logger.warning( f"Could not upload {filename} that already exists " f"on {self._repository_url}." ) else: raise class RsyncDistPublisher(DistPublisher): def __init__(self, rsync_target): self._rsync_target = rsync_target def publish(self, dist_dir: str, dry_run: bool) -> None: pkgname = _find_pkgname_in_dist_dir(dist_dir) # --ignore-existing: never overwrite an existing package # os.path.join: make sure directory names end with / cmd = [ "rsync", "-rv", "--ignore-existing", "--no-perms", "--chmod=ugo=rwX", os.path.join(dist_dir, ""), os.path.join(self._rsync_target, pkgname, ""), ] if dry_run: _logger.info("DRY-RUN" + " ".join(cmd)) else: _logger.info(" ".join(cmd)) check_call(cmd, cwd=".") def _find_pkgname_in_dist_dir(dist_dir: str) -> str: """Find the package name by looking at .whl files""" pkgname = None for f in os.listdir(dist_dir): if f.endswith(".whl"): new_pkgname = f.split("-")[0].replace("_", "-") if pkgname and new_pkgname != pkgname: raise RuntimeError(f"Multiple packages names in {dist_dir}") pkgname = new_pkgname if not pkgname: raise RuntimeError(f"Package name not found in {dist_dir}") return pkgname
from com.hhj.pystock.search_engine.Bloomfilter import Bloomfilter from com.hhj.pystock.search_engine.Segments import segments class SplunkM(object): def __init__(self): self.bf = Bloomfilter(64) self.terms = {} # Dictionary of term to set of events self.events = [] def add_event(self, event): """Adds an event to this object""" # Generate a unique ID for the event, and save it event_id = len(self.events) self.events.append(event) # Add each term to the bloomfilter, and track the event by each term for term in segments(event): self.bf.add_value(term) if term not in self.terms: self.terms[term] = set() self.terms[term].add(event_id) def search_all(self, terms): """Search for an AND of all terms""" # Start with the universe of all events... results = set(range(len(self.events))) for term in terms: # If a term isn't present at all then we can stop looking if not self.bf.might_contain(term): return if term not in self.terms: return # Drop events that don't match from our results results = results.intersection(self.terms[term]) for event_id in sorted(results): yield self.events[event_id] def search_any(self, terms): """Search for an OR of all terms""" results = set() for term in terms: # If a term isn't present, we skip it, but don't stop if not self.bf.might_contain(term): continue if term not in self.terms: continue # Add these events to our results results = results.union(self.terms[term]) for event_id in sorted(results): yield self.events[event_id]
"""打印输出乘法表(内部函数)""" upper = int(input('从1到几:')) def multiplication_table(n: int) -> bool: """打印输出数字1~n的乘法表""" def put_bar(n: int) -> None: """连续打印输出n个'-'并换行""" print('-' * n) if 1 <= n <= 3: w = 2 elif 4 <= n <= 9: w = 3 elif 10 <= n <= 31: w = 4 else : return False f = '{{:{}d}}'.format(w) put_bar(n * w) for i in range(1, n + 1): for j in range(1, n + 1): print(f.format(i * j), end='') print() put_bar(n * w) return True multiplication_table(upper)
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack.package import * class PyDaskMl(PythonPackage): """Scalable Machine Learning with Dask.""" homepage = "https://ml.dask.org/" pypi = "dask-ml/dask-ml-1.8.0.tar.gz" version('1.8.0', sha256='8fc4ac3ec1915e382fb8cae9ff1ec9b5ac1bee0b6f4c6975d6e6cb7191a4a815') variant('docs', default=False, description='Build HTML documentation') variant('xgboost', default=False, description='Deploys XGBoost alongside Dask') depends_on('python@3.6:', type=('build', 'run')) depends_on('py-setuptools', type='build') depends_on('py-setuptools-scm', type='build') depends_on('py-dask+array+dataframe@2.4.0:', type=('build', 'run')) depends_on('py-distributed@2.4.0:', type=('build', 'run')) depends_on('py-numba', type=('build', 'run')) depends_on('py-numpy@1.17.3:', type=('build', 'run')) depends_on('py-pandas@0.24.2:', type=('build', 'run')) depends_on('py-scikit-learn@0.23:', type=('build', 'run')) depends_on('py-scipy', type=('build', 'run')) depends_on('py-dask-glm@0.2.0:', type=('build', 'run')) depends_on('py-multipledispatch@0.4.9:', type=('build', 'run')) depends_on('py-packaging', type=('build', 'run')) depends_on('py-graphviz', type=('build', 'run'), when='+docs') depends_on('py-heapdict', type=('build', 'run'), when='+docs') depends_on('py-ipykernel', type=('build', 'run'), when='+docs') depends_on('py-ipython', type=('build', 'run'), when='+docs') depends_on('py-nbsphinx', type=('build', 'run'), when='+docs') depends_on('py-nose', type=('build', 'run'), when='+docs') depends_on('py-numpydoc', type=('build', 'run'), when='+docs') depends_on('py-sortedcontainers', type=('build', 'run'), when='+docs') depends_on('py-sphinx', type=('build', 'run'), when='+docs') depends_on('py-sphinx-rtd-theme', type=('build', 'run'), when='+docs') depends_on('py-sphinx-gallery', type=('build', 'run'), when='+docs') depends_on('py-testpath', type=('build', 'run'), when='+docs') depends_on('py-tornado', type=('build', 'run'), when='+docs') depends_on('py-zict', type=('build', 'run'), when='+docs') depends_on('py-dask-sphinx-theme@1.1.0:', type=('build', 'run'), when='+docs') depends_on('py-nbsphinx', type=('build', 'run'), when='+docs') depends_on('py-xgboost+dask', type=('build', 'run'), when='+docs') depends_on('py-xgboost+dask', type=('build', 'run'), when='+xgboost') patch('xgboost_dependency.patch') conflicts('+docs', when='%gcc target=aarch64:') @run_after('install') def install_docs(self): if '+docs' in self.spec: with working_dir('docs'): make('html') install_tree('docs', self.prefix.docs)
# # dcolumn/dcolumns/tests/urls.py # try: from django.urls import re_path except: from django.conf.urls import url as re_path from . import views urlpatterns = [ re_path(r'^test-book-create/$', views.test_book_create_view, name='test-book-create'), re_path(r'^test-book-update/(?P<pk>\d+)/$', views.test_book_update_view, name='test-book-update'), re_path(r'^test-book-detail/(?P<pk>\d+)/$', views.test_book_detail_view, name='test-book-detail'), re_path(r'^test-book-list/$', views.test_book_list_view, name='test-book-list'), ]
#input para pegar valor da variavel valor = input('digite algo: ') #variaveis gerais tipo = type(valor) espaco = valor.isspace() numero = valor.isnumeric() alfabetico = valor.isalpha() alfanumerico = valor.isalnum() maiscula = valor.isupper() minuscula = valor.islower() maiscula_e_minuscula = valor.istitle() #transformar valor true e false em verdadeiro e falso if espaco == True: espaco = 'verdadeiro' else: espaco = 'falso' if numero == True: numero = 'verdadeiro' else: numero = 'falso' if alfabetico == True: alfabetico = 'verdadeiro' else: alfabetico = 'falso' if alfanumerico == True: alfanumerico = 'verdadeiro' else: alfanumerico = 'falso' if maiscula == True: maiscula = 'verdadeiro' else: maiscula = 'falso' if minuscula == True: minuscula = 'verdadeiro' else: minuscula = 'falso' if maiscula_e_minuscula == True: maiscula_e_minuscula = 'verdadeiro' else: maiscula_e_minuscula = 'falso' #mostrar resultados na tela print('O tipo primitivo desse valor é: {}'.format(tipo)) print('Só tem espaços? {}'.format(espaco)) print('É formado apenas por números? {}'.format(numero)) print('É formado apenas por letras? {}'.format(alfabetico)) print('É formado apenas por letras ou números? {}'.format(alfanumerico)) print('Está somente em maiusculas? {}'.format(maiscula)) print('Está somente em minusculas? {}'.format(minuscula)) print('Está em maiusculas e minusculas? {}'.format(maiscula_e_minuscula))
import ctypes import numpy as np from AnyQt.QtCore import QRectF from pyqtgraph.graphicsItems.ImageItem import ImageItem # load the C++ library; The _grid_density is build and distributed as a # python extension but does not export any python objects (apart from PyInit), from . import _grid_density lib = ctypes.pydll.LoadLibrary(_grid_density.__file__) # compute the color/class density image def class_density_image( min_x, max_x, min_y, max_y, resolution, x_data, y_data, rgb_data ): x_sz = (max_x - min_x) / (resolution - 1) y_sz = (max_y - min_y) / (resolution - 1) x_grid = [min_x + i * x_sz for i in range(resolution)] y_grid = [min_y + i * y_sz for i in range(resolution)] n_points = len(x_data) sample = range(n_points) if n_points > 1000: sample = grid_sample(x_data, y_data, 1000) x_data_norm = (np.array(x_data) - min_x) / (max_x - min_x) y_data_norm = (np.array(y_data) - min_y) / (max_y - min_y) x_grid_norm = (np.array(x_grid) - min_x) / (max_x - min_x) y_grid_norm = (np.array(y_grid) - min_y) / (max_y - min_y) img = compute_density( x_grid_norm, y_grid_norm, x_data_norm[sample], y_data_norm[sample], np.array(rgb_data)[sample], ) density_img = ImageItem(img.astype(np.uint8), autoLevels=False) density_img.setRect( QRectF( min_x - x_sz / 2, min_y - y_sz / 2, max_x - min_x + x_sz, max_y - min_y + y_sz, ) ) density_img.setZValue(-1) return density_img # call C++ implementation def compute_density(x_grid, y_grid, x_data, y_data, rgb_data): fun = lib.compute_density fun.restype = None fun.argtypes = [ ctypes.c_int, np.ctypeslib.ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"), np.ctypeslib.ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"), ctypes.c_int, np.ctypeslib.ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"), np.ctypeslib.ndpointer(ctypes.c_double, flags="C_CONTIGUOUS"), np.ctypeslib.ndpointer(ctypes.c_int, flags="C_CONTIGUOUS"), np.ctypeslib.ndpointer(ctypes.c_int, flags="C_CONTIGUOUS"), ] gx = np.ascontiguousarray(x_grid, dtype=np.float64) gy = np.ascontiguousarray(y_grid, dtype=np.float64) dx = np.ascontiguousarray(x_data, dtype=np.float64) dy = np.ascontiguousarray(y_data, dtype=np.float64) drgb = np.ascontiguousarray(rgb_data, dtype=np.int32) resolution = len(x_grid) n_points = len(x_data) img = np.ascontiguousarray(np.zeros((resolution, resolution, 4)), dtype=np.int32) fun(resolution, gx, gy, n_points, dx, dy, drgb, img) img = np.swapaxes(img, 0, 1) return img # sample k data points from a uniformly spaced g*g grid of buckets def grid_sample(x_data, y_data, k=1000, g=10): n = len(x_data) min_x, max_x = min(x_data), max(x_data) min_y, max_y = min(y_data), max(y_data) dx, dy = (max_x - min_x) / g, (max_y - min_y) / g grid = [[[] for j in range(g)] for i in range(g)] for i in range(n): y = int(min((y_data[i] - min_y) / dy, g - 1)) x = int(min((x_data[i] - min_x) / dx, g - 1)) grid[y][x].append(i) for y in range(g): for x in range(g): np.random.shuffle(grid[y][x]) sample = [] while len(sample) < k: for y in range(g): for x in range(g): if len(grid[y][x]) != 0: sample.append(grid[y][x].pop()) np.random.shuffle(sample) return sample[:k]
# Generated by Django 3.1.1 on 2020-09-14 04:11 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('organization', '0002_auto_20200913_1430'), ] operations = [ migrations.RemoveField( model_name='organization', name='group', ), ]
from distutils.core import setup, Extension, Command from distutils import sysconfig from distutils.command.build_ext import build_ext import os, shutil, re, subprocess class my_build_ext (build_ext): def run(self): cmd = self.reinitialize_command('build_dylib') cmd.run() build_ext.run(self) class build_dylib (Command): user_options = [] def initialize_options(self): pass def finalize_options(self): pass def get_arch_flags(self): cflags = sysconfig.get_config_var('CFLAGS') result = [] for item in re.findall('(-arch\s+\S+)', cflags): result.extend(item.split()) return result def run(self): print("running build_dylib") bdir = 'build/libdir' if os.path.exists(bdir): shutil.rmtree(bdir) os.makedirs(bdir) cflags = self.get_arch_flags() cc = sysconfig.get_config_var('CC') subprocess.check_call([cc] + cflags + [ '-c', '-o', os.path.join(bdir, 'libfoo.o'), 'src/libfoo.c']) subprocess.check_call(['libtool', '-dynamic', '-o', os.path.join(bdir, 'libfoo.dylib'), '-install_name', os.path.abspath(os.path.join(bdir, 'libfoo.dylib')), os.path.join(os.path.join(bdir, 'libfoo.o'))]) setup( cmdclass = { 'build_dylib': build_dylib, 'build_ext': my_build_ext, }, ext_modules=[ Extension("foo", ["src/modfoo.c"], extra_link_args=["-L%s"%(os.path.abspath("build/libdir"),), "-lfoo"]) ], options={ 'build_ext': { 'inplace': True }, }, )
from lx16a import * from math import sin, cos, pi import time import xlwt import pandas as pd import numpy as np from xlwt import Workbook class RecordMotorData(): def __init__ (self, servo): self.servo = servo; self.id = []; self.angleOffset = []; self.physicalPos = []; self.virtualPos = []; self.temp = []; self.voltage = []; def record(self): self.id.append(int(self.servo.IDRead())) self.angleOffset.append(int(self.servo.angleOffsetRead())) self.physicalPos.append(int(self.servo.getPhysicalPos())) self.virtualPos.append(int(self.servo.getVirtualPos())) self.temp.append(int(self.servo.tempRead())) self.voltage.append(int(self.servo.vInRead())) def save2CSV(recordMotorDataList): id = []; angleOffset = []; physicalPos = []; virtualPos = []; temp = []; voltage = []; for recordMotorData in recordMotorDataList: id.extend(recordMotorData.id); angleOffset.extend(recordMotorData.angleOffset); physicalPos.extend(recordMotorData.physicalPos); virtualPos.extend(recordMotorData.virtualPos); temp.extend(recordMotorData.temp); voltage.extend(recordMotorData.voltage); df = pd.DataFrame(list(zip(id, angleOffset, physicalPos, virtualPos, temp, voltage)), columns = ["Id", "Angle offset", "Physical pos", "Virtual pos", "Temp", "Voltage"]) df.to_csv(r'MotorData.csv') def initializeMotor(servo1): targetPos = 120; initialPos = servo1.getPhysicalPos(); error = targetPos-initialPos print(servo1.IDRead()) print(initialPos) print(error) t=0; while (abs(sin(t*2*pi/360)*error) < abs(error)): # print("Motor id is ", servo1.IDRead()) # print("Physical pos is ", servo1.getPhysicalPos()) # print("Virtual pos is ", servo1.getVirtualPos()) servo1.moveTimeWrite(sin(t*2*pi/360)*error+initialPos) time.sleep(.01) t+=3 def resetAllMotors(servoL1, servoL2, servoA1S, servoA1E, servoA2S, servoA2E): initializeMotor(servoL1); initializeMotor(servoL2); initializeMotor(servoA1S); initializeMotor(servoA1E); initializeMotor(servoA2S); initializeMotor(servoA2E); def danceLegs1(servo1, servo2,cycles, relativeAngleStep, r1, r2): print("Starting dance 1") direction = 1; for i in range(0,cycles): t=0; initialPos1 = servo1.getPhysicalPos(); initialPos2 = servo2.getPhysicalPos(); while (t<180): r1.record(); r2.record(); # print(sin(t*2*pi/360)*relativeAngleStep) # print("Motor id is ", servo1.IDRead()) # print("Physical pos is ", servo1.getPhysicalPos()) # print("Virtual pos is ", servo1.getVirtualPos()) # print("Motor id is ", servo2.IDRead()) # print("Physical pos is ", servo2.getPhysicalPos()) # print("Virtual pos is ", servo2.getVirtualPos()) servo1.moveTimeWrite(direction*sin(t*3*pi/360)*relativeAngleStep+initialPos1); servo2.moveTimeWrite(direction*sin(t*3*pi/360)*relativeAngleStep+initialPos2); time.sleep(.01) t+=5; direction= -direction; def turnL1A2(servoLeg1, servoLeg2, servoArm1S, servoArm1E, servoArm2S, servoArm2E, cycles, angleStepLeg, angleStepShoulder, angleStepElbow, r1, r2): print("Starting dance legs with arms") direction = 1; for i in range(0,cycles): t=0; initialPosL1 = servoLeg1.getPhysicalPos(); initialPosL2 = servoLeg2.getPhysicalPos(); initialPosA1S = servoArm1S.getPhysicalPos(); initialPosA1E = servoArm1E.getPhysicalPos(); initialPosA2S = servoArm2S.getPhysicalPos(); initialPosA2E = servoArm2E.getPhysicalPos(); while (t<180): r1.record(); r2.record(); # print(sin(t*2*pi/360)*angleStepLeg) # print("Motor id is ", servoLeg1.IDRead()) # print("Physical pos is ", servoLeg1.getPhysicalPos()) # print("Virtual pos is ", servoLeg1.getVirtualPos()) # print("Motor id is ", servoLeg2.IDRead()) # print("Physical pos is ", servoLeg2.getPhysicalPos()) # print("Virtual pos is ", servoLeg2.getVirtualPos()) servoLeg1.moveTimeWrite(direction*sin(t*2*pi/360)*angleStepLeg+initialPosL1); #servoLeg2.moveTimeWrite(direction*sin(t*2*pi/360)*angleStepLeg+initialPosL2); #servoArm1S.moveTimeWrite(direction*sin(4*t*2*pi/360)*angleStepShoulder+initialPosA1S); #servoArm1E.moveTimeWrite(direction*sin(4*t*2*pi/360)*angleStepElbow+initialPosA1E); servoArm2S.moveTimeWrite(-direction*sin(2*t*2*pi/360)*angleStepShoulder+initialPosA2S); servoArm2E.moveTimeWrite(-direction*sin(2*t*2*pi/360)*angleStepElbow+initialPosA2E); time.sleep(.01) t+=5; direction= -direction; resetAllMotors(servoL1, servoL2, servoA1S, servoA1E, servoA2S, servoA2E) def turnL1A1(servoLeg1, servoLeg2, servoArm1S, servoArm1E, servoArm2S, servoArm2E, cycles, angleStepLeg, angleStepShoulder, angleStepElbow, r1, r2): print("Starting dance legs with arms") direction = 1; for i in range(0,cycles): t=0; initialPosL1 = servoLeg1.getPhysicalPos(); initialPosL2 = servoLeg2.getPhysicalPos(); initialPosA1S = servoArm1S.getPhysicalPos(); initialPosA1E = servoArm1E.getPhysicalPos(); initialPosA2S = servoArm2S.getPhysicalPos(); initialPosA2E = servoArm2E.getPhysicalPos(); while (t<180): r1.record(); r2.record(); # print(sin(t*2*pi/360)*angleStepLeg) # print("Motor id is ", servoLeg1.IDRead()) # print("Physical pos is ", servoLeg1.getPhysicalPos()) # print("Virtual pos is ", servoLeg1.getVirtualPos()) # print("Motor id is ", servoLeg2.IDRead()) # print("Physical pos is ", servoLeg2.getPhysicalPos()) # print("Virtual pos is ", servoLeg2.getVirtualPos()) servoLeg1.moveTimeWrite(direction*sin(t*2*pi/360)*angleStepLeg+initialPosL1); #servoLeg2.moveTimeWrite(direction*sin(t*2*pi/360)*angleStepLeg+initialPosL2); servoArm1S.moveTimeWrite(-direction*sin(2*t*2*pi/360)*angleStepShoulder+initialPosA1S); servoArm1E.moveTimeWrite(-direction*sin(2*t*2*pi/360)*angleStepElbow+initialPosA1E); # servoArm2S.moveTimeWrite(-direction*sin(4*t*2*pi/360)*angleStepShoulder+initialPosA2S); # servoArm2E.moveTimeWrite(-direction*sin(4*t*2*pi/360)*angleStepElbow+initialPosA2E); time.sleep(.01) t+=5; direction= -direction; resetAllMotors(servoL1, servoL2, servoA1S, servoA1E, servoA2S, servoA2E) def turnL2A1(servoLeg1, servoLeg2, servoArm1S, servoArm1E, servoArm2S, servoArm2E, cycles, angleStepLeg, angleStepShoulder, angleStepElbow, r1, r2): print("Starting dance legs with arms") direction = 1; for i in range(0,cycles): t=0; initialPosL1 = servoLeg1.getPhysicalPos(); initialPosL2 = servoLeg2.getPhysicalPos(); initialPosA1S = servoArm1S.getPhysicalPos(); initialPosA1E = servoArm1E.getPhysicalPos(); initialPosA2S = servoArm2S.getPhysicalPos(); initialPosA2E = servoArm2E.getPhysicalPos(); while (t<180): r1.record(); r2.record(); # print(sin(t*2*pi/360)*angleStepLeg) # print("Motor id is ", servoLeg1.IDRead()) # print("Physical pos is ", servoLeg1.getPhysicalPos()) # print("Virtual pos is ", servoLeg1.getVirtualPos()) # print("Motor id is ", servoLeg2.IDRead()) # print("Physical pos is ", servoLeg2.getPhysicalPos()) # print("Virtual pos is ", servoLeg2.getVirtualPos()) #servoLeg1.moveTimeWrite(direction*sin(t*2*pi/360)*angleStepLeg+initialPosL1); servoLeg2.moveTimeWrite(direction*sin(t*2*pi/360)*angleStepLeg+initialPosL2); servoArm1S.moveTimeWrite(-direction*sin(2*t*2*pi/360)*angleStepShoulder+initialPosA1S); servoArm1E.moveTimeWrite(-direction*sin(2*t*2*pi/360)*angleStepElbow+initialPosA1E); #servoArm2S.moveTimeWrite(direction*sin(4*t*2*pi/360)*angleStepShoulder+initialPosA2S); #servoArm2E.moveTimeWrite(direction*sin(4*t*2*pi/360)*angleStepElbow+initialPosA2E); time.sleep(.01) t+=5; direction= -direction; resetAllMotors(servoL1, servoL2, servoA1S, servoA1E, servoA2S, servoA2E) def turnL2A2(servoLeg1, servoLeg2, servoArm1S, servoArm1E, servoArm2S, servoArm2E, cycles, angleStepLeg, angleStepShoulder, angleStepElbow, r1, r2): print("Starting dance legs with arms") direction = 1; for i in range(0,cycles): t=0; initialPosL1 = servoLeg1.getPhysicalPos(); initialPosL2 = servoLeg2.getPhysicalPos(); initialPosA1S = servoArm1S.getPhysicalPos(); initialPosA1E = servoArm1E.getPhysicalPos(); initialPosA2S = servoArm2S.getPhysicalPos(); initialPosA2E = servoArm2E.getPhysicalPos(); while (t<180): r1.record(); r2.record(); # print(sin(t*2*pi/360)*angleStepLeg) # print("Motor id is ", servoLeg1.IDRead()) # print("Physical pos is ", servoLeg1.getPhysicalPos()) # print("Virtual pos is ", servoLeg1.getVirtualPos()) # print("Motor id is ", servoLeg2.IDRead()) # print("Physical pos is ", servoLeg2.getPhysicalPos()) # print("Virtual pos is ", servoLeg2.getVirtualPos()) #servoLeg1.moveTimeWrite(direction*sin(t*2*pi/360)*angleStepLeg+initialPosL1); servoLeg2.moveTimeWrite(direction*sin(t*2*pi/360)*angleStepLeg+initialPosL2); # servoArm1S.moveTimeWrite(-direction*sin(4*t*2*pi/360)*angleStepShoulder+initialPosA1S); # servoArm1E.moveTimeWrite(-direction*sin(4*t*2*pi/360)*angleStepElbow+initialPosA1E); servoArm2S.moveTimeWrite(direction*sin(2*t*2*pi/360)*angleStepShoulder+initialPosA2S); servoArm2E.moveTimeWrite(direction*sin(2*t*2*pi/360)*angleStepElbow+initialPosA2E); time.sleep(.01) t+=5; direction= -direction; resetAllMotors(servoL1, servoL2, servoA1S, servoA1E, servoA2S, servoA2E) def danceArmsAlternate(servoLeg1, servoLeg2, servoArm1S, servoArm1E, servoArm2S, servoArm2E, cycles, angleStepLeg, angleStepShoulder, angleStepElbow, r1, r2): print("Starting dance legs with arms") direction = 1; for i in range(0,cycles): t=0; initialPosL1 = servoLeg1.getPhysicalPos(); initialPosL2 = servoLeg2.getPhysicalPos(); initialPosA1S = servoArm1S.getPhysicalPos(); initialPosA1E = servoArm1E.getPhysicalPos(); initialPosA2S = servoArm2S.getPhysicalPos(); initialPosA2E = servoArm2E.getPhysicalPos(); while (t<180): r1.record(); r2.record(); # print(sin(t*2*pi/360)*angleStepLeg) # print("Motor id is ", servoLeg1.IDRead()) # print("Physical pos is ", servoLeg1.getPhysicalPos()) # print("Virtual pos is ", servoLeg1.getVirtualPos()) # print("Motor id is ", servoLeg2.IDRead()) # print("Physical pos is ", servoLeg2.getPhysicalPos()) # print("Virtual pos is ", servoLeg2.getVirtualPos()) # servoLeg1.moveTimeWrite(direction*sin(t*2*pi/360)*angleStepLeg+initialPosL1); # servoLeg2.moveTimeWrite(direction*sin(t*2*pi/360)*angleStepLeg+initialPosL2); servoArm1S.moveTimeWrite(direction*sin(2*t*2*pi/360)*angleStepShoulder+initialPosA1S); servoArm1E.moveTimeWrite(direction*sin(2*t*2*pi/360)*angleStepElbow+initialPosA1E); time.sleep(.01) servoArm2S.moveTimeWrite(direction*sin(2*t*2*pi/360)*angleStepShoulder+initialPosA2S); servoArm2E.moveTimeWrite(direction*sin(2*t*2*pi/360)*angleStepElbow+initialPosA2E); time.sleep(.01) t+=5; direction= -direction; resetAllMotors(servoL1, servoL2, servoA1S, servoA1E, servoA2S, servoA2E) def danceArmsSynchronized(servoLeg1, servoLeg2, servoArm1S, servoArm1E, servoArm2S, servoArm2E, cycles, angleStepLeg, angleStepShoulder, angleStepElbow, r1, r2): print("Starting dance legs with arms") direction = 1; for i in range(0,cycles): t=0; initialPosL1 = servoLeg1.getPhysicalPos(); initialPosL2 = servoLeg2.getPhysicalPos(); initialPosA1S = servoArm1S.getPhysicalPos(); initialPosA1E = servoArm1E.getPhysicalPos(); initialPosA2S = servoArm2S.getPhysicalPos(); initialPosA2E = servoArm2E.getPhysicalPos(); while (t<180): r1.record(); r2.record(); # print(sin(t*2*pi/360)*angleStepLeg) # print("Motor id is ", servoLeg1.IDRead()) # print("Physical pos is ", servoLeg1.getPhysicalPos()) # print("Virtual pos is ", servoLeg1.getVirtualPos()) # print("Motor id is ", servoLeg2.IDRead()) # print("Physical pos is ", servoLeg2.getPhysicalPos()) # print("Virtual pos is ", servoLeg2.getVirtualPos()) # servoLeg1.moveTimeWrite(direction*sin(t*2*pi/360)*angleStepLeg+initialPosL1); # servoLeg2.moveTimeWrite(direction*sin(t*2*pi/360)*angleStepLeg+initialPosL2); servoArm1S.moveTimeWrite(direction*sin(2*t*2*pi/360)*angleStepShoulder+initialPosA1S); servoArm1E.moveTimeWrite(direction*sin(2*t*2*pi/360)*angleStepElbow+initialPosA1E); time.sleep(.01) servoArm2S.moveTimeWrite(-direction*sin(2*t*2*pi/360)*angleStepShoulder+initialPosA2S); servoArm2E.moveTimeWrite(-direction*sin(2*t*2*pi/360)*angleStepElbow+initialPosA2E); time.sleep(.01) t+=5; direction= -direction; resetAllMotors(servoL1, servoL2, servoA1S, servoA1E, servoA2S, servoA2E) def danceLegsAndArms1(servoLeg1, servoLeg2, servoArm1S, servoArm1E, servoArm2S, servoArm2E, cycles, angleStepLeg, angleStepShoulder, angleStepElbow, r1, r2): print("Starting dance legs with arms") direction = 1; for i in range(0,cycles): t=0; initialPosL1 = servoLeg1.getPhysicalPos(); initialPosL2 = servoLeg2.getPhysicalPos(); initialPosA1S = servoArm1S.getPhysicalPos(); initialPosA1E = servoArm1E.getPhysicalPos(); initialPosA2S = servoArm2S.getPhysicalPos(); initialPosA2E = servoArm2E.getPhysicalPos(); while (t<180): r1.record(); r2.record(); # print(sin(t*2*pi/360)*angleStepLeg) # print("Motor id is ", servoLeg1.IDRead()) # print("Physical pos is ", servoLeg1.getPhysicalPos()) # print("Virtual pos is ", servoLeg1.getVirtualPos()) # print("Motor id is ", servoLeg2.IDRead()) # print("Physical pos is ", servoLeg2.getPhysicalPos()) # print("Virtual pos is ", servoLeg2.getVirtualPos()) servoLeg1.moveTimeWrite(direction*sin(t*2*pi/360)*angleStepLeg+initialPosL1); servoLeg2.moveTimeWrite(direction*sin(t*2*pi/360)*angleStepLeg+initialPosL2); servoArm1S.moveTimeWrite(direction*sin(2*t*2*pi/360)*angleStepShoulder+initialPosA1S); servoArm1E.moveTimeWrite(direction*sin(2*t*2*pi/360)*angleStepElbow+initialPosA1E); servoArm2S.moveTimeWrite(direction*sin(2*t*2*pi/360)*angleStepShoulder+initialPosA2S); servoArm2E.moveTimeWrite(direction*sin(2*t*2*pi/360)*angleStepElbow+initialPosA2E); time.sleep(.01) t+=5; direction= -direction; resetAllMotors(servoL1, servoL2, servoA1S, servoA1E, servoA2S, servoA2E) def danceLegsAndArms2(servoLeg1, servoLeg2, servoArm1S, servoArm1E, servoArm2S, servoArm2E, cycles, angleStepLeg, angleStepShoulder, angleStepElbow, r1, r2): print("Starting dance legs with arms") direction = 1; for i in range(0,cycles): t=0; initialPosL1 = servoLeg1.getPhysicalPos(); initialPosL2 = servoLeg2.getPhysicalPos(); initialPosA1S = servoArm1S.getPhysicalPos(); initialPosA1E = servoArm1E.getPhysicalPos(); initialPosA2S = servoArm2S.getPhysicalPos(); initialPosA2E = servoArm2E.getPhysicalPos(); while (t<180): r1.record(); r2.record(); # print(sin(t*2*pi/360)*angleStepLeg) # print("Motor id is ", servoLeg1.IDRead()) # print("Physical pos is ", servoLeg1.getPhysicalPos()) # print("Virtual pos is ", servoLeg1.getVirtualPos()) # print("Motor id is ", servoLeg2.IDRead()) # print("Physical pos is ", servoLeg2.getPhysicalPos()) # print("Virtual pos is ", servoLeg2.getVirtualPos()) servoLeg1.moveTimeWrite(direction*sin(t*2*pi/360)*angleStepLeg+initialPosL1); servoLeg2.moveTimeWrite(direction*sin(t*2*pi/360)*angleStepLeg+initialPosL2); servoArm1S.moveTimeWrite(direction*sin(2*t*2*pi/360)*angleStepShoulder+initialPosA1S); servoArm1E.moveTimeWrite(direction*sin(2*t*2*pi/360)*angleStepElbow+initialPosA1E); servoArm2S.moveTimeWrite(-direction*sin(2*t*2*pi/360)*angleStepShoulder+initialPosA2S); servoArm2E.moveTimeWrite(-direction*sin(2*t*2*pi/360)*angleStepElbow+initialPosA2E); time.sleep(.01) t+=5; direction= -direction; resetAllMotors(servoL1, servoL2, servoA1S, servoA1E, servoA2S, servoA2E) # This is the port that the controller board is connected to # This will be different for different computers # On Windows, try the ports COM1, COM2, COM3, etc... # On Raspbian, try each port in /dev/ try: LX16A.initialize("COM9") servoL1 = LX16A(7) servoL2 = LX16A(8) servoA1S = LX16A(2) servoA1E = LX16A(1) servoA2S = LX16A(4) servoA2E = LX16A(3) servoL1.motorMode(800) servoL2.motorMode(-800) time.sleep(3) servoL1.servoMode() servoL2.servoMode() print("Resetting to home position") resetAllMotors(servoL1, servoL2, servoA1S, servoA1E, servoA2S, servoA2E) print("Finished resetting") except KeyboardInterrupt: quit()
from django.views.generic import TemplateView class HistorySupportTabTemplateView(TemplateView): template_name = "history_support/base.html" class HistorySupportTab1TemplateView(TemplateView): template_name = "history_support/frags/tab_1.html" class HistorySupportTab2TemplateView(TemplateView): template_name = "history_support/frags/tab_2.html" class HistorySupportTab3TemplateView(TemplateView): template_name = "history_support/frags/tab_3.html"
from Crypto.PublicKey import RSA from Crypto.Util.number import * #e, n, c params = open("parameters.txt").read().split("\n") for l in params: if len(l) == 0: continue exec(l) ''' #export public key pair to public.pem public_key = RSA.construct((n, e)) with open("public.pem", "w") as f: f.write(public_key.exportKey(format='PEM')) ''' ''' generate private.pem by using RsaCtfTool ''' privdata = open("private.pem").read() private_key = RSA.importKey(privdata) print private_key.decrypt(long_to_bytes(c))
# # (c) 2017, Forcepoint # Documentation fragment. This fragment specifies the top level # requirements for obtaining a valid session to the Forcepoint NGFW Management # Center. class ModuleDocFragment(object): # Standard documentation fragment DOCUMENTATION = ''' options: filter: description: - String value to match against when making query. Matches all if not specified. A filter will attempt to find a match in the name, primary key field or comment field of a given record. required: false default: '*' type: str limit: description: - Limit the number of results. Set to 0 to remove limit. required: false default: 10 type: int exact_match: description: - Whether to do an exact match on the filter specified required: false default: false case_sensitive: description: - Whether to do a case sensitive match on the filter specified required: false default: true notes: - If a filter is not used in the query, this will return all results for the element type specified. The return data in this case will only contain the metadata for the element which will be name and type. To get detailed information about an element, use a filter. When using filters on network or service elements, the filter value will search the element fields, for example, you could use a filter of '1.1.1.1' when searching for hosts and all hosts with this IP will be returned. The same applies for services. If you are unsure of the service name but know the port you require, your filter can be by port. '''
#!/usr/bin/env python # -*- coding: utf-8 -*- # @File : github.py.py # @Author: guq # @Date : 2022/4/19 # @Desc : import base64 import hashlib from core.uploader_base import BaseUploader, init_server_decor class GithubUploader(BaseUploader): name = 'github' is_repo = True def __init__(self, access_token, owner, repo, branch, store_path, is_use_jsdelivr=True): self.access_token = access_token self.owner = owner.lower() self.repo = repo self.branch = branch self.store_path = store_path self.is_use_jsdelivr = is_use_jsdelivr # jsdelivr CDN加速 self.headers = { "Authorization": "token %s" % access_token, "Accept": "application/vnd.github.v3+json" } super().__init__() async def format_pic_url(self, filename): fullname = filename # fullname = SQLiteModel.get_fullname_by_name(filename, upload_way=self.name) if not self.is_use_jsdelivr: # https://raw.githubusercontent.com/EngiGu/resources/images/2.txt path = 'https://raw.githubusercontent.com/{owner}/{repo}/{branch}/{path}/{fullname}'.format( owner=self.owner, repo=self.repo, path=self.store_path, fullname=fullname, branch=self.branch ) else: # https://cdn.jsdelivr.net/gh/engigu/ReadLogs/static/logviewer.gif path = 'https://cdn.jsdelivr.net/gh/{owner}/{repo}@{branch}/{path}/{fullname}'.format( owner=self.owner, repo=self.repo, path=self.store_path, fullname=fullname, branch=self.branch ) return path.replace('///', '/') def git_blob_hash(self, data): if isinstance(data, str): data = data.encode() data = b'blob ' + str(len(data)).encode() + b'\0' + data h = hashlib.sha1() h.update(data) return h.hexdigest() async def upload(self, file, filename, raw_filename): # file 二进制文件 file_content = base64.b64encode(file).decode() sha = self.git_blob_hash(file) url = 'https://api.github.com/repos/{owner}/{repo}/contents/{path}/{fullname}'.format( owner=self.owner, repo=self.repo, path=self.store_path, fullname=filename ).replace('///', '/') kwargs = { 'url': url, 'json': { "message": self.format_upload_info(filename), "committer": { "name": "image bot", "email": "image_bot@sooko.club" }, "content": file_content, "branch": self.branch, 'sha': sha }, 'headers': self.headers } return await self.send_requstes('PUT', **kwargs) async def deal_upload_result(self, result, filename): # 处理上传结果 url = await self.format_pic_url(filename) need_add_record = False if 'committer' not in str(result): # 上传出现异常 return -1, str(result), str(result), need_add_record else: # 结果正常 need_add_record = True return 0, '上传成功!', url, need_add_record async def get_all_blob_tree(self): # 主要是获取所有的blob目录 kwargs = { 'url': 'https://api.github.com/repos/{owner}/{repo}/git/trees/{branch}?recursive=1'.format( owner=self.owner, repo=self.repo, branch=self.branch, access_token=self.access_token, path=self.store_path ), } return await self.send_requstes('GET', **kwargs) async def processing_tree_data(self, tree): result = [] for blob in tree: path = blob.get('path', '') filename = path.split("/")[-1] if len(filename.split('.')[0]) == 32: result.append({'name': filename, 'fullname': path}) return result async def do_data(self): result = await self.get_all_blob_tree() result = await self.processing_tree_data(result.get('tree', [])) return result @init_server_decor async def init_server(self, sqlite_model): # 初始化 print('2. starting pull blob images...') result = await self.do_data() i = 0 for file in result: sqlite_model.add_one_record(name=file['name'], upload_way=self.name, fullname=file['fullname']) i += 1 print('3.. complete all recrod to sqlite [%s/%s]' % (i, i), end='\r') print('\nall done.', )
#from .sparseDatasetLoader import SparseDatasetLocator, SparseDataset from .denseDatasetLoaderHDF5_v2 import DenseDatasetFromSamples_v2 from .adaptiveDatasetLoader import getSamplePatternCrops, AdaptiveDataset from .datasetUtils import getCropsForDataset, Normalization, getNormalizationForDataset from .stepsizeDatasetLoader import StepsizeDataset
from pydantic import BaseModel class Configuration(BaseModel): latitude: str longitude: str
import cv2 import numpy as np import math import socket import time UDP_IP = "localhost" UDP_PORT = 5065 sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) time_counter = 0 # For counting time frequency_tracker_left = [0]*6 frequency_tracker_right = [0]*6 def get_max(arr): e = -1 freq = -123456 for i in range (0,len(arr),1): if arr[i] > freq: e = i freq = arr[i] return e cap = cv2.VideoCapture(0) begin_time = time.time() while(1): #sending gesture data to server time_counter = time.time() - begin_time #print(time_counter) if time_counter > 2: print ("Time exceeded") left = get_max(frequency_tracker_left) right = get_max(frequency_tracker_right) txt = "left = "+str(left) + " right = "+str(right) if left != 0 or right != 0: print(txt) #sock.sendto( txt.encode(), (UDP_IP, UDP_PORT)) sock.sendto( bytes(txt,'utf-8'), (UDP_IP, UDP_PORT)) frequency_tracker_left = [0]*6 frequency_tracker_right = [0]*6 begin_time = time.time() try: #an error comes if it does not find anything in window as it cannot find contour of max area #therefore this try error statement ret, frame = cap.read() frame=cv2.flip(frame,1) kernel = np.ones((3,3),np.uint8) #define region of interest roi=frame[00:300, 00:200] #[horiozontal,vertical] cv2.rectangle(frame,(00,00),(200,300),(0,255,0),0) #(x,y) x is horizontal hsv = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV) # define range of skin color in HSV lower_skin = np.array([0,20,70], dtype=np.uint8) upper_skin = np.array([20,255,255], dtype=np.uint8) #extract skin colur imagw mask = cv2.inRange(hsv, lower_skin, upper_skin) #extrapolate the hand to fill dark spots within mask = cv2.dilate(mask,kernel,iterations = 4) #blur the image mask = cv2.GaussianBlur(mask,(5,5),100) #find contours _,contours,hierarchy= cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) #find contour of max area(hand) cnt = max(contours, key = lambda x: cv2.contourArea(x)) #approx the contour a little epsilon = 0.0005*cv2.arcLength(cnt,True) approx= cv2.approxPolyDP(cnt,epsilon,True) #make convex hull around hand hull = cv2.convexHull(cnt) #define area of hull and area of hand areahull = cv2.contourArea(hull) areacnt = cv2.contourArea(cnt) #find the percentage of area not covered by hand in convex hull arearatio=((areahull-areacnt)/areacnt)*100 #find the defects in convex hull with respect to hand hull = cv2.convexHull(approx, returnPoints=False) defects = cv2.convexityDefects(approx, hull) # l = no. of defects l=0 #code for finding no. of defects due to fingers for i in range(defects.shape[0]): s,e,f,d = defects[i,0] start = tuple(approx[s][0]) end = tuple(approx[e][0]) far = tuple(approx[f][0]) pt= (100,180) # find length of all sides of triangle a = math.sqrt((end[0] - start[0])**2 + (end[1] - start[1])**2) b = math.sqrt((far[0] - start[0])**2 + (far[1] - start[1])**2) c = math.sqrt((end[0] - far[0])**2 + (end[1] - far[1])**2) s = (a+b+c)/2 ar = math.sqrt(s*(s-a)*(s-b)*(s-c)) #distance between point and convex hull d=(2*ar)/a # apply cosine rule here angle = math.acos((b**2 + c**2 - a**2)/(2*b*c)) * 57 # ignore angles > 90 and ignore points very close to convex hull(they generally come due to noise) if angle <= 90 and d>30: l += 1 cv2.circle(roi, far, 3, [255,0,0], -1) #draw lines around hand cv2.line(roi,start, end, [0,255,0], 2) l+=1 #print corresponding gestures which are in their ranges font = cv2.FONT_HERSHEY_SIMPLEX if l==1: if areacnt<2000: cv2.putText(frame,'Put hand in the box',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA) #print("left Put hand in the box") else: if arearatio<12: cv2.putText(frame,'0',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA) #print("left 0") frequency_tracker_left[0] += 1 elif arearatio<17.5: cv2.putText(frame,'Best of luck',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA) #print("left Best of luck") else: cv2.putText(frame,'1',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA) frequency_tracker_left[1] += 1 #print("left ",1) elif l==2: cv2.putText(frame,'2',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA) #print("left ",2) frequency_tracker_left[2] += 1 elif l==3: if arearatio<27: cv2.putText(frame,'3',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA) #print("left ",3) frequency_tracker_left[3] += 1 else: cv2.putText(frame,'ok',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA) #print("left ok,") elif l==4: cv2.putText(frame,'4',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA) #print("left ",4) frequency_tracker_left[4] += 1 elif l==5: cv2.putText(frame,'5',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA) #print("left ",5) frequency_tracker_left[5] += 1 elif l==6: cv2.putText(frame,'reposition',(0,50), font, 2, (0,0,255), 3, cv2.LINE_AA) #print("left reposition") else : cv2.putText(frame,'reposition',(10,50), font, 2, (0,0,255), 3, cv2.LINE_AA) #print("left reposition") #show the windows cv2.imshow('mask',mask) cv2.imshow('frame',frame) #for second hand ret, frame = cap.read() frame=cv2.flip(frame,1) kernel = np.ones((3,3),np.uint8) #define region of interest roi=frame[00:300, 450:650] #[vertical,horizontal] cv2.rectangle(frame,(450,00),(650,300),(0,255,0),0) #(x,y) x is horizontal hsv = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV) # define range of skin color in HSV lower_skin = np.array([0,20,70], dtype=np.uint8) upper_skin = np.array([20,255,255], dtype=np.uint8) #extract skin colur imagw mask = cv2.inRange(hsv, lower_skin, upper_skin) #extrapolate the hand to fill dark spots within mask = cv2.dilate(mask,kernel,iterations = 4) #blur the image mask = cv2.GaussianBlur(mask,(5,5),100) #find contours _,contours,hierarchy= cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) #find contour of max area(hand) cnt = max(contours, key = lambda x: cv2.contourArea(x)) #approx the contour a little epsilon = 0.0005*cv2.arcLength(cnt,True) approx= cv2.approxPolyDP(cnt,epsilon,True) #make convex hull around hand hull = cv2.convexHull(cnt) #define area of hull and area of hand areahull = cv2.contourArea(hull) areacnt = cv2.contourArea(cnt) #find the percentage of area not covered by hand in convex hull arearatio=((areahull-areacnt)/areacnt)*100 #find the defects in convex hull with respect to hand hull = cv2.convexHull(approx, returnPoints=False) defects = cv2.convexityDefects(approx, hull) # l = no. of defects l=0 #code for finding no. of defects due to fingers for i in range(defects.shape[0]): s,e,f,d = defects[i,0] start = tuple(approx[s][0]) end = tuple(approx[e][0]) far = tuple(approx[f][0]) pt= (100,180) # find length of all sides of triangle a = math.sqrt((end[0] - start[0])**2 + (end[1] - start[1])**2) b = math.sqrt((far[0] - start[0])**2 + (far[1] - start[1])**2) c = math.sqrt((end[0] - far[0])**2 + (end[1] - far[1])**2) s = (a+b+c)/2 ar = math.sqrt(s*(s-a)*(s-b)*(s-c)) #distance between point and convex hull d=(2*ar)/a # apply cosine rule here angle = math.acos((b**2 + c**2 - a**2)/(2*b*c)) * 57 # ignore angles > 90 and ignore points very close to convex hull(they generally come due to noise) if angle <= 90 and d>30: l += 1 cv2.circle(roi, far, 3, [255,0,0], -1) #draw lines around hand cv2.line(roi,start, end, [0,255,0], 2) l+=1 #print corresponding gestures which are in their ranges font = cv2.FONT_HERSHEY_SIMPLEX if l==1: if areacnt<2000: cv2.putText(frame,'Put hand in the box',(400,50), font, 2, (0,0,255), 3, cv2.LINE_AA) else: if arearatio<12: cv2.putText(frame,'0',(400,50), font, 2, (0,0,255), 3, cv2.LINE_AA) frequency_tracker_right[0] += 1 elif arearatio<17.5: cv2.putText(frame,'Best of luck',(400,50), font, 2, (0,0,255), 3, cv2.LINE_AA) else: cv2.putText(frame,'1',(400,50), font, 2, (0,0,255), 3, cv2.LINE_AA) frequency_tracker_right[1] += 1 elif l==2: cv2.putText(frame,'2',(400,50), font, 2, (0,0,255), 3, cv2.LINE_AA) frequency_tracker_right[2] += 1 elif l==3: if arearatio<27: cv2.putText(frame,'3',(400,50), font, 2, (0,0,255), 3, cv2.LINE_AA) frequency_tracker_right[3] += 1 else: cv2.putText(frame,'ok',(400,50), font, 2, (0,0,255), 3, cv2.LINE_AA) elif l==4: cv2.putText(frame,'4',(400,50), font, 2, (0,0,255), 3, cv2.LINE_AA) frequency_tracker_right[4] += 1 elif l==5: cv2.putText(frame,'5',(400,50), font, 2, (0,0,255), 3, cv2.LINE_AA) frequency_tracker_right[5] += 1 elif l==6: cv2.putText(frame,'reposition',(400,50), font, 2, (0,0,255), 3, cv2.LINE_AA) else : cv2.putText(frame,'reposition',(400,50), font, 2, (0,0,255), 3, cv2.LINE_AA) #show the windows cv2.imshow('mask2',mask) cv2.imshow('frame',frame) except: pass k = cv2.waitKey(5) & 0xFF if k == 27: break cv2.destroyAllWindows() cap.release()
#! /usr/bin/python3 import sys import json import argparse import logging def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--add", nargs='+', type=str, required=False, help="List of strings to add to the vocab at the end.") args = parser.parse_args() return args def main(): args = parse_args() logging.basicConfig(level=logging.DEBUG) logging.debug(args) vocab = {} for index, line in enumerate(sys.stdin): line = line.strip() parts = line.split("\t") item = parts[0] vocab[item] = index if args.add is not None: for item in args.add: if item not in vocab.keys(): index += 1 vocab[item] = index json.dump(vocab, sys.stdout, ensure_ascii=False, indent=4) if __name__ == '__main__': main()
from .SCM import SCM __all__ = ['SCM']
from uFire_ISE import uFire_ISE mv = uFire_ISE() mv.measuremV() print("mV: " + str(mv.mV))
from smpl_tools.actions import _determine_output_samplenames, _process_naming_pattern import unittest class SplitSilenceTest(unittest.TestCase): def test_determine_multiple_filenames_extensionless_names_kept(self): extensionless_name = "my_src" result = _determine_output_samplenames(None, extensionless_name, 1) self.assertTrue(extensionless_name in result[0]) pass def test_determine_multiple_filenames_numbered_correctly(self): extensionless_name = "my_src" result = _determine_output_samplenames(None, extensionless_name, 2) self.assertEquals(result, ["my_src_01.wav", "my_src_02.wav"]) pass def test_naming_pattern_replacement(self): test_pattern = "%(trck)/%(smpl).wav" result = _process_naming_pattern( test_pattern, sample_name="alpha1", track_name="track01" ) self.assertEquals(result, "track01/alpha1.wav") def test_naming_pattern_replacement_removes_sample_ext(self): test_pattern = "%(trck)/%(smpl).wav" result = _process_naming_pattern( test_pattern, sample_name="alpha1.wav", track_name="track01" ) self.assertEquals(result, "track01/alpha1.wav") def test_naming_pattern_replacement_removes_track_ext(self): test_pattern = "%(trck)/%(smpl).wav" result = _process_naming_pattern( test_pattern, sample_name="alpha1", track_name="track01.wav" ) self.assertEquals(result, "track01/alpha1.wav") def test_naming_pattern_replacement_adds_ext(self): test_pattern = "%(trck)/%(smpl)" result = _process_naming_pattern( test_pattern, sample_name="alpha1.wav", track_name="track01" ) self.assertEquals(result, "track01/alpha1.wav")
""" notes: ? docs: ? I said pick up the can. § TODO: § Amplify weapons on Wallhammer. % FIXME: % Target compromised: move in, move in. & FIX: & Overwatch, target one sterilized. µ WHYNOT: µ make a floor list with room class instances, use index with movement()? ! IMPORTANT: ! Roger that. Waiting for contact. Over. $ LOGS: $ 28/10/2021 $ 01:54AM $ don't really know where im going with this one """ #encoding #coding:utf-8 #libraries/modules #import time import libs.actions.f1actions as f1actions import libs.actions.f0actions as f0actions #libs setup #classes #functions def choose_action(argUserChoice,argUserRoom,argUserFloor): if argUserFloor == 1: if argUserRoom == 1: if argUserChoice == 1: return f1actions.bedroom_jump_from_window() else: print("\nInvalid Action Choice.\n") if argUserRoom == 2: pass if argUserRoom == 3: pass if argUserRoom == 4: pass if argUserRoom == 5: if argUserChoice == 1: return f1actions.sibling_change_clothes() else: print("\nInvalid Action Choice.\n") if argUserRoom == 6: pass if argUserRoom == 7: if argUserChoice == 1: return f1actions.restrooms_flush() if argUserChoice == 2: return f1actions.restrooms_use() if argUserChoice == 3: return f1actions.restrooms_drink() else: print("\nInvalid Action Choice.\n") if argUserRoom == 8: pass if argUserFloor == 0: if argUserRoom == 1: pass if argUserRoom == 2: if argUserChoice == 1: return f0actions.hallway2_observe_painting() else: print("\nInvalid Action Choice.\n") if argUserRoom == 3: pass if argUserRoom == 4: if argUserChoice == 1: return f0actions.bathroom_look_at_mirror()#% make it so the spooky stuff only happens once if argUserChoice == 2: return f0actions.bathroom_wash_hands() if argUserChoice == 3: return f0actions.bathroom_pull_curtain() else: print("\nInvalid Action Choice.\n") if argUserRoom == 5: pass if argUserRoom == 6: if argUserChoice == 1: return f0actions.dining_sit() else: print("\nInvalid Action Choice.\n") if argUserRoom == 7: pass if argUserRoom == 8: pass if argUserRoom == 9: pass if argUserRoom == 10: pass #input("(press any key to continue...) > ") #script
__author__ = 'dimd' from zope.interface import Interface, Attribute class IValidator(Interface): is_valid = Attribute('is this message valid') message_type = Attribute('show us the type of the message') def validate(): """ Validate incoming message for our supported types :return: self """ class IValidatorResponse(Interface): response = Attribute( """ Helper interface that provides attribute to hold a valid response from our main validator """ )
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: MIT-0 __copyright__ = ('Copyright Amazon.com, Inc. or its affiliates. ' 'All Rights Reserved.') __version__ = '2.6.1' __license__ = 'MIT-0' __author__ = 'Akihiro Nakajima' __url__ = 'https://github.com/aws-samples/siem-on-amazon-opensearch-service' from siem.sf_config_snapshot import (extract_host, extract_ip, extract_user, update_doc_ids) def transform(logdata): logdata = update_doc_ids(logdata) logdata = extract_host(logdata) logdata = extract_user(logdata) logdata = extract_ip(logdata) try: compliance = logdata['newEvaluationResult']['complianceType'] except KeyError: compliance = None if compliance: if compliance == 'COMPLIANT': logdata['event']['outcome'] = 'success' elif compliance == 'NON_COMPLIANT': logdata['event']['outcome'] = 'failure' else: # INSUFFICIENT_DATA # NOT_APPLICABLE logdata['event']['outcome'] = 'unknown' return logdata
import os from nacl.encoding import Base64Encoder, HexEncoder, URLSafeBase64Encoder from nacl.signing import SigningKey key_length = 32 private_key_signature = b"\x00\x00\x00\x40" public_key_signature = b"\x00\x00\x00\x20" device_ip_cache_filename = ".device_ip.cache" def read_device_ip_from_cache(device_id: str): """ Reads the cache file and looks if it has seen the device before :param str device_id: ID of the device to look for :returns: IP of the device, None otherwise :rtype: str or None """ with open(device_ip_cache_filename, "r") as f: for line in reversed(f.readlines()): if line.startswith(device_id): return line.split()[1] def write_device_ip_to_cache(device_id: str, ip: str): """ Writes the IP of the device to the cache file :param str device_id: ID of the device :param str ip: IP of the device """ if not os.path.exists(device_ip_cache_filename): with open(device_ip_cache_filename, "w") as f: f.write("") current = read_device_ip_from_cache(device_id) if current is None or current != ip: with open(device_ip_cache_filename, "a+") as f: f.write(f"{device_id} {ip}\n") def sign_file(file_path: str, sign_key: str): """ Sign a file with the given key :param str file_path: path to the file to sign :param str sign_key: private key to sign the file with. Expects it to be in Base64 format. """ signing_key = extract_curve_private_key(sign_key) signed = signing_key.sign(get_sha256_hash(file_path), encoder=Base64Encoder) signature = signed.signature """ Replacing padding characters for uri encoding. """ signature = signature.decode("utf-8").replace("+", "-").replace("/", "_") with open(file_path + ".sha256.signed", "wb") as f: f.write(signature.encode("utf-8")) def get_pubkey(sign_key): """ Get the public key from the given private key :param str sign_key: private key to get the public key from. Expects it to be in Base64 format. :return: public key in Hex format :rtype: str """ signing_key = extract_curve_private_key(sign_key) return signing_key.verify_key.encode(encoder=HexEncoder) def get_sha256_hash(file_path): """ Get the sha256 hash of the given file :param str file_path: path to the file to get the hash of :return: sha256 hash of the file in byte format :rtype: bytes """ import hashlib sha256_hash = hashlib.sha256() with open(file_path, "rb") as f: for byte_block in iter(lambda: f.read(4096), b""): sha256_hash.update(byte_block) return sha256_hash.digest() def bytes_from_file(file_path, chunksize=8192): """ Reads the given file and returns the contents as a byte array :param str file_path: path to the file to read :param int chunksize: size of the chunks to read :returns: the contents of the file as a byte array :rtype: bytearray """ with open(file_path, "rb") as f: while True: if chunk := f.read(chunksize): yield from chunk else: break def bytes_after(signature, length, bytestr): """ Returns the bytes after the given signature :param bytes signature: the signature to find the bytes after :param int length: the length of the bytes to return :param bytes bytestr: the bytes to search in :returns: the bytes after the signature :rtype: bytes """ start = bytestr.find(signature) + len(signature) return bytestr[start : start + length] def extract_curve_private_key(openssh_priv_key): """ Returns the curve private key from the openssh private key :param str openssh_priv_key: openssh private key :returns: the curve private key """ return SigningKey(seed=openssh_priv_key, encoder=URLSafeBase64Encoder)
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #tag::example-block[] from pyignite import Client from pyignite.datatypes.cache_config import CacheMode from pyignite.datatypes.prop_codes import * from pyignite.exceptions import SocketError nodes = [ ('127.0.0.1', 10800), ('217.29.2.1', 10800), ('200.10.33.1', 10800), ] client = Client(timeout=40.0) client.connect(nodes) print('Connected to {}'.format(client)) my_cache = client.get_or_create_cache({ PROP_NAME: 'my_cache', PROP_CACHE_MODE: CacheMode.REPLICATED, }) my_cache.put('test_key', 0) # Abstract main loop while True: try: # Do the work test_value = my_cache.get('test_key') my_cache.put('test_key', test_value + 1) except (OSError, SocketError) as e: # Recover from error (repeat last command, check data # consistency or just continue − depends on the task) print('Error: {}'.format(e)) print('Last value: {}'.format(my_cache.get('test_key'))) print('Reconnected to {}'.format(client)) #end::example-block[]
# Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file or at # https://developers.google.com/open-source/licenses/bsd """Unit test for User Group creation servlet.""" from __future__ import print_function from __future__ import division from __future__ import absolute_import import unittest import settings from framework import permissions from proto import site_pb2 from proto import usergroup_pb2 from services import service_manager from sitewide import groupcreate from testing import fake from testing import testing_helpers class GroupCreateTest(unittest.TestCase): """Tests for the GroupCreate servlet.""" def setUp(self): self.services = service_manager.Services( user=fake.UserService(), usergroup=fake.UserGroupService(), project=fake.ProjectService()) self.servlet = groupcreate.GroupCreate( 'req', 'res', services=self.services) self.mr = testing_helpers.MakeMonorailRequest() def CheckAssertBasePermissions( self, restriction, expect_admin_ok, expect_nonadmin_ok): old_group_creation_restriction = settings.group_creation_restriction settings.group_creation_restriction = restriction # Anon users can never do it mr = testing_helpers.MakeMonorailRequest( perms=permissions.GetPermissions(None, {}, None)) self.assertRaises( permissions.PermissionException, self.servlet.AssertBasePermission, mr) mr = testing_helpers.MakeMonorailRequest() if expect_admin_ok: self.servlet.AssertBasePermission(mr) else: self.assertRaises( permissions.PermissionException, self.servlet.AssertBasePermission, mr) mr = testing_helpers.MakeMonorailRequest( perms=permissions.GetPermissions(mr.auth.user_pb, {111}, None)) if expect_nonadmin_ok: self.servlet.AssertBasePermission(mr) else: self.assertRaises( permissions.PermissionException, self.servlet.AssertBasePermission, mr) settings.group_creation_restriction = old_group_creation_restriction def testAssertBasePermission(self): self.CheckAssertBasePermissions( site_pb2.UserTypeRestriction.ANYONE, True, True) self.CheckAssertBasePermissions( site_pb2.UserTypeRestriction.ADMIN_ONLY, True, False) self.CheckAssertBasePermissions( site_pb2.UserTypeRestriction.NO_ONE, False, False) def testGatherPageData(self): page_data = self.servlet.GatherPageData(self.mr) self.assertEqual('', page_data['initial_name']) def testProcessFormData_Normal(self): post_data = fake.PostData( groupname=['group@example.com'], visibility='1') url = self.servlet.ProcessFormData(self.mr, post_data) self.assertIn('/g/3444127190/', url) group_id = self.services.user.LookupUserID('cnxn', 'group@example.com') group_settings = self.services.usergroup.GetGroupSettings('cnxn', group_id) self.assertIsNotNone(group_settings) members_after, owners_after = self.services.usergroup.LookupMembers( 'cnxn', [group_id]) self.assertEqual(0, len(members_after[group_id] + owners_after[group_id])) def testProcessFormData_Import(self): post_data = fake.PostData( groupname=['group@example.com'], group_type='1', import_group=['on']) self.servlet.ProcessFormData(self.mr, post_data) group_id = self.services.user.LookupUserID('cnxn', 'group@example.com') group_settings = self.services.usergroup.GetGroupSettings('cnxn', group_id) self.assertIsNotNone(group_settings) self.assertEqual(usergroup_pb2.MemberVisibility.OWNERS, group_settings.who_can_view_members) self.assertEqual(usergroup_pb2.GroupType.MDB, group_settings.ext_group_type)
from ..extensions import db class Election(db.Model): """ Implements an object to represent all data relating to a specific election """ id = db.Column(db.Integer, primary_key=True) name = db.Column(db.Text, unique=True, nullable=False) voters = db.relationship('Voter', backref=db.backref('election', lazy='joined'), lazy=True) authorities = db.relationship('Authority', backref=db.backref('election', lazy='joined'), lazy=True) candidates = db.relationship('Candidate', backref=db.backref('election', lazy='joined'), lazy=True) bulletin = db.Column(db.Text, default="") results = db.Column(db.Text) seats = db.Column(db.Integer) def __init__(self, name): self.name = name def __repr__(self): return f'<Election {self.id} ({self.name})>'
import os import cv2 import datetime def read_image(img_path): img = cv2.imread(img_path) img[:,:,::-1] = img return img def rgb2gray(img): return cv2.cvtColor(img, cv2.COLOR_RGB2GRAY).squeeze() def save_image(img_path, img): cv2.imwrite(img_path, img[:,:,::-1]) def get_all_paths(folder, ext=None): paths = [os.path.join(folder, f) for f in sorted(os.listdir(folder))] if ext: paths = [p for p in paths if p.endswith(ext)] return paths def get_datetime(): return datetime.datetime.now().strftime('%m%d_%H%M') class LogWriter(): def __init__(self, log_path=None, print_out=True, log_time=True, clear_pre_content=True): self.log_path = log_path self.print_out = print_out self.log_time = log_time if log_path and clear_pre_content: os.system('rm -f '+log_path) def __call__(self, log_content): log_content = self.add_info(log_content) if self.print_out: self.Print(log_content) if self.log_path: self.Save(self.log_path, log_content) def add_info(self, log_content): if self.log_time: log_content = ('LOG[%s]: '%get_datetime())+log_content return log_content def Print(self, log_content): print(log_content) def Save(self, log_path, log_content): if log_path: with open(log_path, 'a') as f: f.write(log_content+'\n')
from model.contact import Contact def test_add_contact(app): old_contact = app.contact.get_contact_list() contact = Contact(firstname="Ivan", lastname="Ivanov") app.contact.add(contact) assert len(old_contact) + 1 == app.contact.count() new_contact = app.contact.get_contact_list() old_contact.append(contact) assert sorted(old_contact, key=Contact.id_or_max) == sorted(new_contact, key=Contact.id_or_max)
# Copyright 2019-2020 Not Just A Toy Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import typing as ty from falcon_heavy.utils import cached_property from .base import AbstractConvertible, BaseType from .path import Path __all__ = ( 'AnyType', 'LazyType', ) class AnyType(BaseType): """Any type""" __slots__ = () T = ty.TypeVar('T') class LazyType(AbstractConvertible[T]): """Lazy type Resolves target type when it needed :param resolver: callable for lazy resolving of target type """ def __init__(self, resolver: ty.Callable[[], AbstractConvertible[T]], **kwargs: ty.Any) -> None: self.resolver = resolver super(LazyType, self).__init__(**kwargs) @cached_property def resolved(self) -> AbstractConvertible[T]: return self.resolver() def convert(self, value: ty.Any, path: Path, *args: ty.Any, **context: ty.Any) -> ty.Optional[T]: return self.resolved.convert(value, path, **context)
import functools import os import subprocess import sys import click # TODO: CAMPid 0970432108721340872130742130870874321 def import_it(*segments): import importlib import pkg_resources major = int(pkg_resources.get_distribution(__name__.partition('.')[0]).version.partition(".")[0]) m = { "pyqt_tools": "pyqt{major}_tools".format(major=major), "pyqt_plugins": "pyqt{major}_plugins".format(major=major), "qt_tools": "qt{major}_tools".format(major=major), "qt_applications": "qt{major}_applications".format(major=major), } majored = [m[segments[0]], *segments[1:]] return importlib.import_module(".".join(majored)) qt_applications = import_it("qt_applications") qt_tools = import_it("qt_tools") fspath = getattr(os, 'fspath', str) @click.group() def main(): pass def run( application_name, args=(), environment=os.environ, sys_platform=sys.platform, ): modified_environment = qt_tools.create_environment( reference=environment, ) command_elements = qt_tools.create_command_elements( name=application_name, sys_platform=sys_platform, ) completed_process = subprocess.run( [*command_elements, *args], env=modified_environment, ) return completed_process.returncode # written by build.py # @main.command( # add_help_option=False, # context_settings={ # 'ignore_unknown_options': True, # 'allow_extra_args': True, # }, # ) # @click.pass_context # def designer(ctx): # return run('designer', args=ctx.args) # ---- start of generated wrapper entry points @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def assistant(ctx): return run('assistant', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def canbusutil(ctx): return run('canbusutil', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def designer(ctx): return run('designer', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def lconvert(ctx): return run('lconvert', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def licheck64(ctx): return run('licheck64', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def linguist(ctx): return run('linguist', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def lprodump(ctx): return run('lprodump', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def lrelease(ctx): return run('lrelease', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def lrelease_pro(ctx): return run('lrelease-pro', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def lupdate(ctx): return run('lupdate', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def lupdate_pro(ctx): return run('lupdate-pro', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def moc(ctx): return run('moc', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def pixeltool(ctx): return run('pixeltool', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qcollectiongenerator(ctx): return run('qcollectiongenerator', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qdbus(ctx): return run('qdbus', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qdbuscpp2xml(ctx): return run('qdbuscpp2xml', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qdbusviewer(ctx): return run('qdbusviewer', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qdbusxml2cpp(ctx): return run('qdbusxml2cpp', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qdistancefieldgenerator(ctx): return run('qdistancefieldgenerator', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qdoc(ctx): return run('qdoc', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qgltf(ctx): return run('qgltf', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qhelpgenerator(ctx): return run('qhelpgenerator', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qlalr(ctx): return run('qlalr', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qmake(ctx): return run('qmake', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qml(ctx): return run('qml', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qmlcachegen(ctx): return run('qmlcachegen', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qmleasing(ctx): return run('qmleasing', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qmlformat(ctx): return run('qmlformat', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qmlimportscanner(ctx): return run('qmlimportscanner', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qmllint(ctx): return run('qmllint', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qmlmin(ctx): return run('qmlmin', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qmlplugindump(ctx): return run('qmlplugindump', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qmlpreview(ctx): return run('qmlpreview', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qmlprofiler(ctx): return run('qmlprofiler', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qmlscene(ctx): return run('qmlscene', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qmltestrunner(ctx): return run('qmltestrunner', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qmltyperegistrar(ctx): return run('qmltyperegistrar', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qscxmlc(ctx): return run('qscxmlc', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qtattributionsscanner(ctx): return run('qtattributionsscanner', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qtdiag(ctx): return run('qtdiag', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qtpaths(ctx): return run('qtpaths', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qtplugininfo(ctx): return run('qtplugininfo', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qtwaylandscanner(ctx): return run('qtwaylandscanner', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def qvkgen(ctx): return run('qvkgen', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def rcc(ctx): return run('rcc', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def repc(ctx): return run('repc', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def sdpscanner(ctx): return run('sdpscanner', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def tracegen(ctx): return run('tracegen', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def uic(ctx): return run('uic', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def xmlpatterns(ctx): return run('xmlpatterns', args=ctx.args) @main.command( add_help_option=False, context_settings={ 'ignore_unknown_options': True, 'allow_extra_args': True, }, ) @click.pass_context def xmlpatternsvalidator(ctx): return run('xmlpatternsvalidator', args=ctx.args) # ---- end of generated wrapper subcommands
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'publish_progress_form.ui' # # by: pyside-uic 0.2.15 running on PySide 1.2.2 # # WARNING! All changes made in this file will be lost! from tank.platform.qt import QtCore, QtGui class Ui_PublishProgressForm(object): def setupUi(self, PublishProgressForm): PublishProgressForm.setObjectName("PublishProgressForm") PublishProgressForm.resize(651, 384) self.verticalLayout_4 = QtGui.QVBoxLayout(PublishProgressForm) self.verticalLayout_4.setObjectName("verticalLayout_4") self.horizontalLayout = QtGui.QHBoxLayout() self.horizontalLayout.setObjectName("horizontalLayout") spacerItem = QtGui.QSpacerItem(40, 20, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.horizontalLayout.addItem(spacerItem) self.verticalLayout_3 = QtGui.QVBoxLayout() self.verticalLayout_3.setSpacing(-1) self.verticalLayout_3.setObjectName("verticalLayout_3") spacerItem1 = QtGui.QSpacerItem(20, 100, QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Fixed) self.verticalLayout_3.addItem(spacerItem1) self.title = QtGui.QLabel(PublishProgressForm) self.title.setStyleSheet("#title {\n" "font-size: 24px;\n" "}") self.title.setObjectName("title") self.verticalLayout_3.addWidget(self.title) self.progress_bar = QtGui.QProgressBar(PublishProgressForm) self.progress_bar.setProperty("value", 24) self.progress_bar.setObjectName("progress_bar") self.verticalLayout_3.addWidget(self.progress_bar) self.details = QtGui.QLabel(PublishProgressForm) self.details.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignTop) self.details.setWordWrap(False) self.details.setObjectName("details") self.verticalLayout_3.addWidget(self.details) self.stage_progress_bar = QtGui.QProgressBar(PublishProgressForm) self.stage_progress_bar.setProperty("value", 24) self.stage_progress_bar.setObjectName("stage_progress_bar") self.verticalLayout_3.addWidget(self.stage_progress_bar) spacerItem2 = QtGui.QSpacerItem(20, 0, QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Expanding) self.verticalLayout_3.addItem(spacerItem2) self.verticalLayout_3.setStretch(5, 1) self.horizontalLayout.addLayout(self.verticalLayout_3) spacerItem3 = QtGui.QSpacerItem(40, 20, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.horizontalLayout.addItem(spacerItem3) self.horizontalLayout.setStretch(0, 1) self.horizontalLayout.setStretch(1, 5) self.horizontalLayout.setStretch(2, 1) self.verticalLayout_4.addLayout(self.horizontalLayout) self.verticalLayout_4.setStretch(0, 1) self.retranslateUi(PublishProgressForm) QtCore.QMetaObject.connectSlotsByName(PublishProgressForm) def retranslateUi(self, PublishProgressForm): PublishProgressForm.setWindowTitle(QtGui.QApplication.translate("PublishProgressForm", "Form", None, QtGui.QApplication.UnicodeUTF8)) self.title.setText(QtGui.QApplication.translate("PublishProgressForm", "Publishing...", None, QtGui.QApplication.UnicodeUTF8)) self.details.setText(QtGui.QApplication.translate("PublishProgressForm", "(Details)", None, QtGui.QApplication.UnicodeUTF8)) from . import resources_rc
import sys import os from pathlib import Path import shutil unary_op = ['-', '~'] op = ['+', '*', '&', '<', '>', '/', '|', '-', '='] class_var_dec = ['field', 'static'] types = ['int', 'char', 'boolean'] statements = ['let', 'while', 'if', 'do', 'return'] subDec = ['constructor', 'method', 'function'] keywordConstants = ['true', 'false', 'null', 'this'] keywords = ['class', 'function', 'constructor', 'method', 'var', 'int', 'char', 'boolean', 'void', 'true', 'false', 'null', 'this', 'field', 'static', 'let', 'if', 'while', 'do', 'else', 'return'] symbols = ['=','.', '-', '+', '/', '*', '{', '}', '(', ')', '<', '>', '|', '&', ';', '[', ']', ',', '~'] tokenIndex = 0 analysed_tokens = list() currentToken = tuple() output_file = None def compileClass(): output = '<class>\n' writeXML(output) # keyword class output = '<'+currentToken[0]+'> '+currentToken[1]+' </'+currentToken[0]+'>\n' writeXML(output) advanceToken() # class Name output = '<'+currentToken[0]+'> '+currentToken[1]+' </'+currentToken[0]+'>\n' writeXML(output) advanceToken() eat('{') while currentToken[1] != '}': if currentToken[1] in class_var_dec: compileClassVarDec() elif currentToken[1] in subDec: compileSubRoutineDec() eat('}') writeXML('</class>\n') def compileClassVarDec(): writeXML('<classVarDec>\n') # field/static eat(currentToken[1]) # int, boolean, char eat(currentToken[1]) # varname output = '<'+currentToken[0]+'> '+currentToken[1]+' </'+currentToken[0]+'>\n' writeXML(output) advanceToken() while currentToken[1] == ',': eat(',') output = '<'+currentToken[0]+'> '+currentToken[1]+' </'+currentToken[0]+'>\n' writeXML(output) advanceToken() eat(';') writeXML('</classVarDec>\n') def compileSubRoutineDec(): writeXML('<subroutineDec>\n') # constructor/method/function eat(currentToken[1]) # void/types if currentToken[1] == 'void' or currentToken[1] in types: eat(currentToken[1]) # className type else: output = '<'+currentToken[0]+'> '+currentToken[1]+' </'+currentToken[0]+'>\n' writeXML(output) advanceToken() # subroutineName output = '<'+currentToken[0]+'> '+currentToken[1]+' </'+currentToken[0]+'>\n' writeXML(output) advanceToken() eat('(') compileParameterList() eat(')') compileSubRoutineBody() writeXML('</subroutineDec>\n') def compileParameterList(): writeXML('<parameterList>\n') while currentToken[1] != ')': # var type output = '<'+currentToken[0]+'> '+currentToken[1]+' </'+currentToken[0]+'>\n' writeXML(output) advanceToken() # variable name output = '<'+currentToken[0]+'> '+currentToken[1]+' </'+currentToken[0]+'>\n' writeXML(output) advanceToken() if currentToken[1] == ',': eat(',') writeXML('</parameterList>\n') def compileSubRoutineBody(): writeXML('<subroutineBody>\n') eat('{') while currentToken[1] != '}': if currentToken[1] == 'var': writeXML('<varDec>\n') eat('var') # variable type output = '<'+currentToken[0]+'> '+currentToken[1]+' </'+currentToken[0]+'>\n' writeXML(output) advanceToken() # varName output = '<'+currentToken[0]+'> '+currentToken[1]+' </'+currentToken[0]+'>\n' writeXML(output) advanceToken() if currentToken[1] == ',': eat(',') # varName output = '<'+currentToken[0]+'> '+currentToken[1]+' </'+currentToken[0]+'>\n' writeXML(output) advanceToken() eat(';') writeXML('</varDec>\n') # compile statements elif currentToken[1] in statements: compileStatements() eat('}') writeXML('</subroutineBody>\n') def compileStatements(): writeXML('<statements>\n') while currentToken[1] in statements: if currentToken[1] == 'if': compileIfStatement() elif currentToken[1] == 'while': compileWhileStatement() elif currentToken[1] == 'let': compileLetStatement() elif currentToken[1] == 'do': compileDoStatement() elif currentToken[1] == 'return': compileReturnStatement() writeXML('</statements>\n') def compileIfStatement(): writeXML('<ifStatement>\n') eat('if') eat('(') compileExpression() eat(')') eat('{') compileStatements() eat('}') if currentToken[1] == 'else': eat('else') eat('{') compileStatements() eat('}') writeXML('</ifStatement>\n') def compileWhileStatement(): writeXML('<whileStatement>\n') eat('while') eat('(') compileExpression() eat(')') eat('{') if currentToken[1] != '}': compileStatements() eat('}') writeXML('</whileStatement>\n') def compileLetStatement(): writeXML('<letStatement>\n') eat('let') if currentToken[0] =='identifier': first = currentToken advanceToken() # Array reference if currentToken[1] == '[': output = '<'+first[0]+'> '+first[1]+' </'+first[0]+'>\n' writeXML(output) eat('[') compileExpression() eat(']') # usual variable name else: output = '<'+first[0]+'> '+first[1]+' </'+first[0]+'>\n' writeXML(output) else: exitCompilation() eat('=') compileExpression() eat(';') writeXML('</letStatement>\n') def compileDoStatement(): writeXML('<doStatement>\n') eat('do') if currentToken[0] == 'identifier': first = currentToken advanceToken() # identifier() if currentToken[1] == '(': output = '<'+first[0]+'> '+first[1]+' </'+first[0]+'>\n' writeXML(output) eat('(') compileExpressionList() eat(')') # className.method() elif currentToken[1] == '.': output = '<'+first[0]+'> '+first[1]+' </'+first[0]+'>\n' writeXML(output) eat('.') output = '<'+currentToken[0]+'> '+currentToken[1]+' </'+currentToken[0]+'>\n' writeXML(output) advanceToken() eat('(') compileExpressionList() eat(')') else: exitCompilation() else: exitCompilation() eat(';') writeXML('</doStatement>\n') def compileReturnStatement(): writeXML('<returnStatement>\n') eat('return') if currentToken[1] != ';': compileExpression() eat(';') else: eat(';') writeXML('</returnStatement>\n') def compileExpression(): writeXML('<expression>\n') compileTerm() while currentToken[1] in op: eat(currentToken[1]) compileTerm() writeXML('</expression>\n') def compileExpressionList(): writeXML('<expressionList>\n') while currentToken[1] != ')': compileExpression() if currentToken[1] == ',': eat(',') continue writeXML('</expressionList>\n') def compileTerm(): writeXML('<term>\n') # if it is an int or str constant, we ouptut and advance token if currentToken[0] == 'integerConstant' or currentToken[0] == 'stringConstant': output = '<'+currentToken[0]+'> '+currentToken[1]+' </'+currentToken[0]+'>\n' writeXML(output) writeXML('</term>\n') advanceToken() # if it is a keyword constant, we ouptut and advance token elif currentToken[1] in keywordConstants: output = '<'+currentToken[0]+'> '+currentToken[1]+' </'+currentToken[0]+'>\n' writeXML(output) writeXML('</term>\n') advanceToken() # expression in parantheses eg sum = (2+3) elif currentToken[1] == '(': eat('(') compileExpression() eat(')') writeXML('</term>\n') # but if it is an identifier, the we need to check next token elif currentToken[0] == 'identifier': first = currentToken # get the next token, current token refers to it advanceToken() # array reference if currentToken[1] == '[': output = '<'+first[0]+'> '+first[1]+' </'+first[0]+'>\n' writeXML(output) eat('[') compileExpression() eat(']') writeXML('</term>\n') # subroutine call eg Main.output() elif currentToken[1] == '.': output = '<'+first[0]+'> '+first[1]+' </'+first[0]+'>\n' writeXML(output) eat('.') output = '<'+currentToken[0]+'> '+currentToken[1]+' </'+currentToken[0]+'>\n' writeXML(output) advanceToken() eat('(') compileExpressionList() eat(')') writeXML('</term>\n') # subroutine call eg cry() elif currentToken[1] == '(': output = '<'+first[0]+'> '+first[1]+' </'+first[0]+'>\n' writeXML(output) eat('(') compileExpressionList() eat(')') writeXML('</term>\n') # else a usual varname else: output = '<'+first[0]+'> '+first[1]+' </'+first[0]+'>\n' writeXML(output) writeXML('</term>\n') # if -7 or ~term elif currentToken[1] in unary_op: eat(currentToken[1]) compileTerm() writeXML('</term>\n') else: exitCompilation() def eat(currentTokenCompare): if currentToken[1] == currentTokenCompare: if currentToken[1] == '>': output = '<'+currentToken[0]+'> '+'&gt;'+' </'+currentToken[0]+'>\n' writeXML(output) advanceToken() elif currentToken[1] == '<': output = '<'+currentToken[0]+'> '+'&lt;'+' </'+currentToken[0]+'>\n' writeXML(output) advanceToken() elif currentToken[1] == '&': output = '<'+currentToken[0]+'>' + '&amp;' +'</'+currentToken[0]+'>\n' writeXML(output) advanceToken() else: output = '<'+currentToken[0]+'> '+currentToken[1]+' </'+currentToken[0]+'>\n' writeXML(output) advanceToken() else: exitCompilation() def advanceToken(): global tokenIndex global currentToken tokenIndex += 1 if tokenIndex < len(analysed_tokens): currentToken = analysed_tokens[tokenIndex] def exitCompilation(): print(currentToken) print('Syntax error') exit() def tokenizer(jackFile): tokensList = list() with open(jackFile, 'r') as TokenizerInput: line = TokenizerInput.readline() while line != '': if line.strip().startswith('/') or line.startswith('\n') or line.strip().startswith('*'): line = TokenizerInput.readline() continue else: tokenLine = line.strip().split('//')[0] if tokenLine != '': for letter in tokenLine: tokensList.append(letter) line = TokenizerInput.readline() # print(tokensList) len_of_tokensList = len(tokensList) tokensListIndex = 0 tokenString = "" while tokensListIndex < len_of_tokensList: # check if we reached a space if tokensList[tokensListIndex] == ' ': # do we have integer constant if tokenString != "": if tokenString.isnumeric(): token = ("integerConstant",tokenString) analysed_tokens.append(token) tokenString = "" tokensListIndex += 1 elif tokenString in keywords: token = ("keyword", tokenString) analysed_tokens.append(token) tokenString = "" tokensListIndex += 1 else: token = ("identifier", tokenString) analysed_tokens.append(token) tokenString = "" tokensListIndex += 1 else: tokensListIndex += 1 # check if we reached a symbol elif tokensList[tokensListIndex] in symbols: # if we have a symbol, check to see if token string is empty if tokenString != "": if tokenString.isnumeric(): token = ("integerConstant",tokenString) analysed_tokens.append(token) token = ("symbol", tokensList[tokensListIndex]) analysed_tokens.append(token) tokenString = "" tokensListIndex += 1 elif tokenString in keywords: token = ("keyword", tokenString) analysed_tokens.append(token) token = ("symbol", tokensList[tokensListIndex]) analysed_tokens.append(token) tokenString = "" tokensListIndex += 1 else: token = ("identifier", tokenString) analysed_tokens.append(token) token = ("symbol", tokensList[tokensListIndex]) analysed_tokens.append(token) tokenString = "" tokensListIndex += 1 else: token = ("symbol", tokensList[tokensListIndex]) analysed_tokens.append(token) tokensListIndex += 1 # else append to token string else: # check if we dont have string constant if tokensList[tokensListIndex] != '"': tokenString += tokensList[tokensListIndex] tokensListIndex += 1 # if we have string constant, form it and continue the loop else: stringConst = '' tokensListIndex += 1 while tokensListIndex < len_of_tokensList and tokensList[tokensListIndex] != '"': stringConst += tokensList[tokensListIndex] tokensListIndex += 1 analysed_tokens.append(("stringConstant", stringConst)) tokensListIndex += 1 # print(analysed_tokens) def writeXML(string): with open(output_file, 'a') as xmlfile: xmlfile.write(string) def openDirForAnalysis(directory): directory = Path(directory) for jackFile in os.listdir(directory): if jackFile.endswith('.jack'): global output_file output_file = jackFile.split('.')[0]+'.xml' file_to_analyze = directory/jackFile tokenizer(file_to_analyze) global currentToken currentToken = analysed_tokens[tokenIndex] compileClass() shutil.move(output_file, directory) output_file = None def openFileForAnalysis(jackFile): tokenizer(jackFile) global output_file output_file = jackFile.split('.')[0]+'.xml' global currentToken currentToken = analysed_tokens[tokenIndex] compileClass() def main(): fileOrDir = sys.argv[1] if os.path.isdir(fileOrDir): directory = fileOrDir openDirForAnalysis(directory) else: jackFile = fileOrDir openFileForAnalysis(jackFile) if __name__ == "__main__": main()
from django.db import models import django import datetime from django.conf import settings # Create your models here. class category(models.Model): """docstring for category""" categoryName = models.CharField(max_length=50, primary_key=True) categoryCount = models.IntegerField(default=0) def __str__(self): return "%s" %(self.categoryName) class user(models.Model): """docstring for user""" username = models.CharField(max_length = 400, primary_key = True) password = models.CharField(max_length = 42) def __str__(self): return "%s" %(self.username) class act(models.Model): """docstring for Act""" actId = models.IntegerField(primary_key=True) username = models.ForeignKey(user, default='johndoe==', on_delete=models.SET_DEFAULT) timestamp = models.DateTimeField(default=django.utils.timezone.now) caption = models.CharField(max_length=200) upvotes = models.IntegerField(default=0) imgB64 = models.CharField(max_length=1000) categoryName = models.ForeignKey(category, on_delete=models.CASCADE) def __str__(self): return "%d, %s, %s" %(self.actId, self.imgB64, self.caption)
# -*- coding: utf-8 -*- ''' Use the cloud cache on the master to derive IPv4 addresses based on minion ID. This roster requires that the minion in question was created using at least the 2015.2.0 version of Salt Cloud. Starting with the 2015.2.0 release, Salt Cloud maintains an index of minions that it creates and deletes. This index tracks the provider and profile configuration used to provision the minion, including authentication information. So long as this configuration remains current, it can be used by Salt SSH to log into any minion in the index. ''' # Import python libs from __future__ import absolute_import import os.path # Import 3rd-party libs import msgpack # Import Salt libs import salt.loader import salt.utils import salt.utils.cloud import salt.utils.validate.net import salt.config from salt import syspaths from salt.ext.six import string_types def targets(tgt, tgt_type='glob', **kwargs): # pylint: disable=W0613 ''' Return the targets from the flat yaml file, checks opts for location but defaults to /etc/salt/roster ''' ret = {} cache = os.path.join(syspaths.CACHE_DIR, 'cloud', 'index.p') if not os.path.exists(cache): return {} with salt.utils.fopen(cache, 'r') as fh_: cache_data = msgpack.load(fh_) indexed_minion = cache_data.get(tgt, None) if indexed_minion is None: return {} client = salt.cloud.CloudClient( os.path.join(os.path.dirname(__opts__['conf_file']), 'cloud') ) info = client.action('show_instance', names=[tgt]) if not info: return {} provider = indexed_minion.get('provider', None) profile = indexed_minion.get('profile', None) driver = indexed_minion.get('driver', None) vm_ = { 'provider': provider, 'profile': profile, } full_info = info.get(provider, {}).get(driver, {}).get(tgt, {}).get(tgt, {}) public_ips = full_info.get('public_ips', []) private_ips = full_info.get('private_ips', []) ip_list = [] for item in (public_ips, private_ips): if isinstance(item, list): ip_list = ip_list + item elif isinstance(item, string_types): ip_list.append(item) roster_order = __opts__.get('roster_order', ( 'public', 'private', 'local' )) preferred_ip = extract_ipv4(roster_order, ip_list) ret['tgt'] = { 'host': preferred_ip, } cloud_opts = salt.config.cloud_config('/etc/salt/cloud') ssh_username = salt.utils.cloud.ssh_usernames({}, cloud_opts) if isinstance(ssh_username, string_types): ret['tgt']['user'] = ssh_username elif isinstance(ssh_username, list): ret['tgt']['user'] = ssh_username[0] password = salt.config.get_cloud_config_value( 'password', vm_, cloud_opts, search_global=False, default=None ) if password: ret['tgt']['password'] = password key_filename = salt.config.get_cloud_config_value( 'private_key', vm_, cloud_opts, search_global=False, default=None ) if key_filename: ret['tgt']['priv'] = key_filename return ret def extract_ipv4(roster_order, ipv4): ''' Extract the preferred IP address from the ipv4 grain ''' for ip_type in roster_order: for ip_ in ipv4: if ':' in ip_: continue if not salt.utils.validate.net.ipv4_addr(ip_): continue if ip_type == 'local' and ip_.startswith('127.'): return ip_ elif ip_type == 'private' and not salt.utils.cloud.is_public_ip(ip_): return ip_ elif ip_type == 'public' and salt.utils.cloud.is_public_ip(ip_): return ip_ return None
import cv2 import numpy as np from base_camera import BaseCamera def merge(left_image, right_image): return np.concatenate((left_image, right_image), axis=1) class Camera(BaseCamera): video_source_1 = 1 video_source_2 = 2 @staticmethod def set_video_sources(source_1, source_2): Camera.video_source_1 = source_1 Camera.video_source_2 = source_2 @staticmethod def frames(): camera_1 = cv2.VideoCapture(Camera.video_source_1) camera_2 = cv2.VideoCapture(Camera.video_source_2) if not camera_1.isOpened() and camera_2.isOpened(): raise RuntimeError('Could not start the cameras.') while True: # read current frame _, img_1 = camera_1.read() _, img_2 = camera_2.read() img = merge(img_1, img_2) # encode as a jpeg image and return it yield cv2.imencode('.jpg', img)[1].tobytes()
# Authors: Cicely Motamedi, Adam Robinson # Description: This file contains the main code for the microscope user interface. # Some of the more complicated functionality is found in other files. from kivy.app import App from kivy.uix.scatter import Scatter from kivy.uix.label import Label from kivy.uix.floatlayout import FloatLayout from kivy.uix.textinput import TextInput from kivy.uix.accordion import Accordion, AccordionItem from kivy.uix.button import Button from kivy.uix.boxlayout import BoxLayout from kivy.uix.image import AsyncImage from kivy.uix.slider import Slider from kivy.config import Config from kivy.core.window import Window from kivy.clock import Clock from threading import Thread from kivy.uix.gridlayout import GridLayout import sys sys.path.append("..\\src") from MicroscopeControl import MicroscopeController from CustomBoxLayout import CustomBoxLayout from ImageDisplay import ImageDisplay import numpy as np class accordionWidget(Accordion): def __init__(self, *args, **kwargs): kwargs['orientation'] = 'vertical' kwargs['size_hint_x'] = 2 super(accordionWidget, self).__init__(*args, **kwargs) #root = Accordion(orientation='vertical', size_hint_x=2) item1 = AccordionItem(title='Camera') item1.add_widget(Slider(min=-100, max=100, value=25)) self.add_widget(item1) item2 = AccordionItem(title='Zoom and Focus') box2 = BoxLayout(orientation='vertical') instructions = Label(text='Enter a value between 0 and 1',size_hint_y=1) box2.add_widget(instructions) label1 = BoxLayout(orientation='horizontal',size_hint_y=1) zoomLabel = Label(text='Zoom',size_hint_x=None,width=100, size_hint_y=None, height=40) ZminusButton = Button(text='-',size_hint_x=None,width=30,size_hint_y=None,height=40) self.zoomInput = TextInput(text='0.005',multiline=False,size_hint_x=None,width=100,size_hint_y=None,height=40) ZplusButton = Button(text='+',size_hint_x=None,width=30,size_hint_y=None,height=40) label1.add_widget(zoomLabel) label1.add_widget(ZminusButton) label1.add_widget(self.zoomInput) label1.add_widget(ZplusButton) box2.add_widget(label1) self.zoomInput.bind(on_text_validate=self.setZoom) ZminusButton.bind(on_release=self.incrementZoomMinus) ZplusButton.bind(on_release=self.incrementZoomPlus) instructions2 = Label(text='Enter a value between 0 and 1',size_hint_y=1) box2.add_widget(instructions2) label2 = BoxLayout(orientation='horizontal',size_hint_y=1) focusLabel = Label(text='Focus',size_hint_x=None, width=100,size_hint_y=None,height=40) FminusButton = Button(text='-',size_hint_x=None,width=30,size_hint_y=None,height=40) self.focusInput = TextInput(text='0.005',multiline=False,size_hint_x=None,width=100,size_hint_y=None,height=40) FplusButton = Button(text='+',size_hint_x=None,width=30,size_hint_y=None,height=40) box2.add_widget(label2) label2.add_widget(focusLabel) label2.add_widget(FminusButton) label2.add_widget(self.focusInput) label2.add_widget(FplusButton) self.focusInput.bind(on_text_validate=self.setFocus) FminusButton.bind(on_release=self.incrementFocusMinus) FplusButton.bind(on_release=self.incrementFocusPlus) item2.add_widget(box2) self.add_widget(item2) item3 = AccordionItem(title='Stage Control') gridLayout = GridLayout(cols=3) gridLayout.add_widget(Button(opacity=0)) moveUp = Button(text='Up') gridLayout.add_widget(moveUp) gridLayout.add_widget(Button(opacity=0)) moveLeft = Button(text='Left') gridLayout.add_widget(moveLeft) gridLayout.add_widget(Button(opacity=0)) moveRight = Button(text='Right') gridLayout.add_widget(moveRight) gridLayout.add_widget(Button(opacity=0)) moveDown = Button(text='Down') gridLayout.add_widget(moveDown) gridLayout.add_widget(Button(opacity=0)) moveUp.bind(on_press=self.clockMoveUp) moveUp.bind(on_release=self.stopClock) item3.add_widget(gridLayout) self.add_widget(item3) item4 = AccordionItem(title='Image Settings') item4.add_widget(Slider(min=-100, max=100, value=25)) self.add_widget(item4) self.microscope = None # self.zooming = False # self.zoom_value = 0.5 # self.closing = False # self.zoom_thread = Thread(target=self.adjustZoom) # self.zoom_thread.start() # self.focusing = False # self.focus_value = 0.5 # self.focus_thread = Thread(target=self.adjustFocus) # self.focus_thread.start() def close(self): pass # def adjustZoom(self): # while not self.closing: # if self.microscope is not None and not self.zooming: # current = self.microscope.focus.getZoom() # if np.abs(current - self.zoom_value) > 0.005 and not self.zooming: # def done(): # self.zooming = False # self.zooming = True # self.microscope.focus.setZoom(self.zoom_value, corrected=False, callback=done) def setZoom(self, object): def done(error, val): if error is None: print(val) else: print("Error setting zoom") #print(dir(object)) value = object.text print(value) try: value = float(value) except Exception as ex: return if value >= 0.005 and value <= 0.995: print(value) self.microscope.focus.setZoom(value, corrected=False, cb=done) else: print("Invalid input") # def adjustFocus(self): # while not self.closing: # if self.microscope is not None and not self.focusing: # current = self.microscope.focus.getFocus() # if np.abs(current - self.focus_value) > 0.005 and not self.focusing: # def done(): # self.focusing = False # self.focusing = True # self.microscope.focus.setFocus(self.focus_value, corrected=False, callback=done) def setFocus(self, object): def done(error, val): if error is None: print(val) else: print("Error setting focus") value = object.text print(value) try: value=float(value) except Exception as ex: return if value >= 0.005 and value <= 0.995: self.microscope.focus.setFocus(value, corrected=False, cb=done) else: print("Invalid input") def setMicroscope(self, ms): self.microscope = ms def incrementZoomMinus(self, object): def done(error, val): if error is None: print(val) else: print("Error setting focus") value = float(self.zoomInput.text) value -= 0.1 self.zoomInput.text = "%1.4f"%value if value >= 0.005 and value <= 0.995: self.microscope.focus.setZoom(value, corrected=False, cb=done) else: print("Invalid input") def incrementZoomPlus(self, object): def done(error, val): if error is None: print(val) else: print("Error setting focus") value = float(self.zoomInput.text) value += 0.1 self.zoomInput.text = "%1.4f"%value if value >= 0.005 and value <= 0.995: self.microscope.focus.setZoom(value, corrected=False, cb=done) else: print("Invalid input") def incrementFocusMinus(self, object): def done(error, val): if error is None: print(val) else: print("Error setting focus") value = float(self.focusInput.text) value -= 0.1 self.focusInput.text = "%1.4f"%value if value >= 0.005 and value <= 0.995: self.microscope.focus.setFocus(value, corrected=False, cb=done) else: print("Invalid input") def incrementFocusPlus(self, object): def done(error, val): if error is None: print(val) else: print("Error setting focus") value = float(self.focusInput.text) value += 0.1 self.focusInput.text = "%1.4f"%value if value >= 0.005 and value <= 0.995: self.microscope.focus.setFocus(value, corrected=False, cb=done) else: print("Invalid input") def moveIncrementUp(self,a): def done(error, value): if error is None: print(value) else: print(error) self.microscope.stage.moveDelta(0, 0.01, cb=done) def clockMoveUp(self,a): Clock.schedule_interval(self.moveIncrementUp,0.01) def stopClock(self, a): Clock.unschedule(self.moveIncrementUp) class userInterface(BoxLayout): def initializeMicroscope(self): self.microscope = MicroscopeController() def close(self): self.accordion.close() if self.microscope is not None: self.microscope.cleanup() def __init__(self, **kwargs): kwargs['orientation'] = 'horizontal' super(userInterface, self).__init__(**kwargs) self.accordion = accordionWidget() self.add_widget(self.accordion) self.display = BoxLayout(orientation='vertical', size_hint_x=4) self.microscope = None Thread(target=self.initializeMicroscope).start() self.microscope_loaded = False def checkMicroscope(a): if not self.microscope_loaded and self.microscope is not None: self.microscope_loaded = True self.microscope.camera.enableLowRes() self.accordion.setMicroscope(self.microscope) self.microscope.camera.startCapture() if self.microscope_loaded: img = self.microscope.camera.getFrame() img = np.rot90(img, 3, axes=(0, 1)) img = np.flipud(img) self.image_display.setImage(img) Clock.schedule_interval(checkMicroscope, 1 / 10) # def _check_process(b): # self.load_progress.value = self.current_progress # if not t.is_alive(): # Clock.unschedule(_check_process) # self.load_progress.opacity = 0 # self._parent_obj.interface.preview_pane.loadThumbnails( # self._parent_obj.dataset # ) # Clock.schedule_interval(_check_process, .025) # self.display.add_widget( # AsyncImage(source="https://images.squarespace-cdn.com/content/v1/5a5906400abd0406785519dd/1552662149940-G6MMFW3JC2J61UBPROJ5/ke17ZwdGBToddI8pDm48kLkXF2pIyv_F2eUT9F60jBl7gQa3H78H3Y0txjaiv_0fDoOvxcdMmMKkDsyUqMSsMWxHk725yiiHCCLfrh8O1z4YTzHvnKhyp6Da-NYroOW3ZGjoBKy3azqku80C789l0iyqMbMesKd95J-X4EagrgU9L3Sa3U8cogeb0tjXbfawd0urKshkc5MgdBeJmALQKw/baelen.jpg?format=1500w",size_hint_y=10) # ) self.image_display = ImageDisplay(orientation='vertical', size_hint_y=10) self.display.add_widget(self.image_display) img = np.random.normal(0.0, 127, (1024, 1024, 3)).astype(np.uint8) self.image_display.setImage(img) self.input1 = BoxLayout(orientation='horizontal',size_hint_y=None, height=30) xLabel = Label(text='X=',size_hint_x=1, size_hint_y=None, height=30) self.xInput = TextInput(multiline=False,size_hint_x=4, size_hint_y=None, height=30) yLabel = Label(text='Y=',size_hint_x=1, size_hint_y=None, height=30) self.yInput = TextInput(multiline=False,size_hint_x=4, size_hint_y=None, height=30) self.input1.add_widget(xLabel) self.input1.add_widget(self.xInput) #self.input2 = BoxLayout(orientation='horizontal',size_hint_y=1) self.input1.add_widget(yLabel) self.input1.add_widget(self.yInput) self.add_widget(self.display) self.display.add_widget(self.input1) #self.display.add_widget(self.input2) self.yInput.bind(on_text_validate=self.moveTo) self.xInput.bind(on_text_validate=self.moveTo) def moveTo(self, object): def done(): if error is None: print(val) else: print("Error moving stage") xvalue = self.xInput.text yvalue = self.yInput.text print(xvalue, yvalue) if xvalue.strip() == "" or xvalue is None: xvalue = "0.0" if yvalue.strip() == "" or yvalue is None: yvalue = "0.0" try: xvalue=float(xvalue) yvalue=float(yvalue) except Exception as ex: return print(xvalue, yvalue) if xvalue >= -50 and xvalue <= 50: if yvalue >= -44 and yvalue <= 37: self.microscope.stage.moveTo(xvalue, yvalue, callback=done) else: print("Invalid input") class userInterfaceApp(App): def on_request_close(self, *args): print("close called") self.interface.close() return False def build(self): self.interface = userInterface() Window.bind(on_request_close=self.on_request_close) return self.interface if __name__=="__main__": Config.set('input', 'mouse', 'mouse,multitouch_on_demand') userInterfaceApp().run()
from ttypes import * # Alias for rpc_storage_mode class StorageMode: """ Confluo storage modes. Attributes: IN_MEMORY: Data stored in memory. DURABLE_RELAXED: Relaxed (no linearizable guarantees). DURABLE: Data is persisted. """ def __init__(self): pass IN_MEMORY = rpc_storage_mode.RPC_IN_MEMORY DURABLE_RELAXED = rpc_storage_mode.RPC_DURABLE_RELAXED DURABLE = rpc_storage_mode.RPC_DURABLE
# -*- coding: utf-8 -*- class ThreadSafeCreateMixin(object): """ ThreadSafeCreateMixin can be used as an inheritance of thread safe backend implementations """ @classmethod def create(cls): """ Return always a new instance of the backend class """ return cls() class SingletonCreateMixin(object): """ SingletonCreateMixin can be used as an inheritance of singleton backend implementations """ _instances = {} @classmethod def create(cls): """ Return always the same instance of the backend class """ if cls not in cls._instances: cls._instances[cls] = cls() return cls._instances[cls]
"""Amendment of the DataLad `GitRepo` base class""" __docformat__ = 'restructuredtext' from . import utils as ut from datalad.support.gitrepo import ( GitRepo as RevolutionGitRepo ) obsolete_methods = ( 'is_dirty', ) # remove deprecated methods from API for m in obsolete_methods: if hasattr(RevolutionGitRepo, m): setattr(RevolutionGitRepo, m, ut.nothere)
from django.db.models import Q from rest_framework import serializers, viewsets from brambling.api.v1.permissions import BaseOrderPermission from brambling.models import ( Attendee, EnvironmentalFactor, Order, ) class AttendeePermission(BaseOrderPermission): def has_permission(self, request, view): # For now, disallow creation via the API. if request.method == 'POST': return False return True def has_object_permission(self, request, view, attendee): return self._has_order_permission(request, attendee.order) class AttendeeSerializer(serializers.HyperlinkedModelSerializer): ef_cause = serializers.SlugRelatedField( slug_field='name', queryset=EnvironmentalFactor.objects.all(), many=True, ) ef_avoid = serializers.SlugRelatedField( slug_field='name', queryset=EnvironmentalFactor.objects.all(), many=True, ) order = serializers.HyperlinkedRelatedField(view_name='order-detail', read_only=True) link = serializers.HyperlinkedIdentityField(view_name='attendee-detail') full_name = serializers.SerializerMethodField() class Meta: model = Attendee fields = ( 'id', 'link', 'order', 'first_name', 'middle_name', 'last_name', 'name_order', 'basic_completed', 'email', 'phone', 'liability_waiver', 'photo_consent', 'housing_status', 'housing_completed', 'ef_cause', 'ef_avoid', 'person_prefer', 'person_avoid', 'housing_prefer', 'other_needs', 'full_name', ) def get_full_name(self, obj): return obj.get_full_name() class AttendeeViewSet(viewsets.ModelViewSet): queryset = Attendee.objects.all() serializer_class = AttendeeSerializer permission_classes = [AttendeePermission] def get_queryset(self): qs = self.queryset.all().distinct() if 'order' in self.request.GET: qs = qs.filter(order=self.request.GET['order']) # Superusers can see all the things. if self.request.user.is_superuser: return qs # Otherwise, if you're authenticated, you can see them # if the order is yours or you administer the related event. if self.request.user.is_authenticated(): return qs.filter( Q(order__person=self.request.user) | Q(order__event__members=self.request.user) | Q(order__event__organization__members=self.request.user) ) # Otherwise, you can view for orders in your session. session_orders = Order.objects._get_session(self.request) return qs.filter(order__code__in=session_orders.values())
c.NotebookApp.ip = '0.0.0.0' #'localhost' # 指定 c.NotebookApp.open_browser = False # 关闭自动打开浏览器 #c.NotebookApp.ip = '*' c.NotebookApp.allow_root = False c.NotebookApp.port = 8889 c.NotebookApp.password = u'argon2:$argon2id$v=19$m=10240,t=10,p=8$zoyBM4a1oUIpw4bO/mciVQ$JN/sGgvyOhVpbpzU/z4u8HsAWG3dYXfavHFeaxADLgA'
"""Tests for letsencrypt.le_util.""" import errno import os import shutil import stat import tempfile import unittest import mock from letsencrypt import errors class MakeOrVerifyDirTest(unittest.TestCase): """Tests for letsencrypt.le_util.make_or_verify_dir. Note that it is not possible to test for a wrong directory owner, as this testing script would have to be run as root. """ def setUp(self): self.root_path = tempfile.mkdtemp() self.path = os.path.join(self.root_path, 'foo') os.mkdir(self.path, 0o400) self.uid = os.getuid() def tearDown(self): shutil.rmtree(self.root_path, ignore_errors=True) def _call(self, directory, mode): from letsencrypt.le_util import make_or_verify_dir return make_or_verify_dir(directory, mode, self.uid) def test_creates_dir_when_missing(self): path = os.path.join(self.root_path, 'bar') self._call(path, 0o650) self.assertTrue(os.path.isdir(path)) self.assertEqual(stat.S_IMODE(os.stat(path).st_mode), 0o650) def test_existing_correct_mode_does_not_fail(self): self._call(self.path, 0o400) self.assertEqual(stat.S_IMODE(os.stat(self.path).st_mode), 0o400) def test_existing_wrong_mode_fails(self): self.assertRaises(errors.Error, self._call, self.path, 0o600) def test_reraises_os_error(self): with mock.patch.object(os, 'makedirs') as makedirs: makedirs.side_effect = OSError() self.assertRaises(OSError, self._call, 'bar', 12312312) class CheckPermissionsTest(unittest.TestCase): """Tests for letsencrypt.le_util.check_permissions. Note that it is not possible to test for a wrong file owner, as this testing script would have to be run as root. """ def setUp(self): _, self.path = tempfile.mkstemp() self.uid = os.getuid() def tearDown(self): os.remove(self.path) def _call(self, mode): from letsencrypt.le_util import check_permissions return check_permissions(self.path, mode, self.uid) def test_ok_mode(self): os.chmod(self.path, 0o600) self.assertTrue(self._call(0o600)) def test_wrong_mode(self): os.chmod(self.path, 0o400) self.assertFalse(self._call(0o600)) class UniqueFileTest(unittest.TestCase): """Tests for letsencrypt.le_util.unique_file.""" def setUp(self): self.root_path = tempfile.mkdtemp() self.default_name = os.path.join(self.root_path, 'foo.txt') def tearDown(self): shutil.rmtree(self.root_path, ignore_errors=True) def _call(self, mode=0o600): from letsencrypt.le_util import unique_file return unique_file(self.default_name, mode) def test_returns_fd_for_writing(self): fd, name = self._call() fd.write('bar') fd.close() self.assertEqual(open(name).read(), 'bar') def test_right_mode(self): self.assertEqual(0o700, os.stat(self._call(0o700)[1]).st_mode & 0o777) self.assertEqual(0o100, os.stat(self._call(0o100)[1]).st_mode & 0o777) def test_default_exists(self): name1 = self._call()[1] # create 0000_foo.txt name2 = self._call()[1] name3 = self._call()[1] self.assertNotEqual(name1, name2) self.assertNotEqual(name1, name3) self.assertNotEqual(name2, name3) self.assertEqual(os.path.dirname(name1), self.root_path) self.assertEqual(os.path.dirname(name2), self.root_path) self.assertEqual(os.path.dirname(name3), self.root_path) basename1 = os.path.basename(name2) self.assertTrue(basename1.endswith('foo.txt')) basename2 = os.path.basename(name2) self.assertTrue(basename2.endswith('foo.txt')) basename3 = os.path.basename(name3) self.assertTrue(basename3.endswith('foo.txt')) class UniqueLineageNameTest(unittest.TestCase): """Tests for letsencrypt.le_util.unique_lineage_name.""" def setUp(self): self.root_path = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.root_path, ignore_errors=True) def _call(self, filename, mode=0o777): from letsencrypt.le_util import unique_lineage_name return unique_lineage_name(self.root_path, filename, mode) def test_basic(self): f, name = self._call("wow") self.assertTrue(isinstance(f, file)) self.assertTrue(isinstance(name, str)) def test_multiple(self): for _ in xrange(10): f, name = self._call("wow") self.assertTrue(isinstance(f, file)) self.assertTrue(isinstance(name, str)) self.assertTrue("wow-0009.conf" in name) @mock.patch("letsencrypt.le_util.os.fdopen") def test_failure(self, mock_fdopen): err = OSError("whoops") err.errno = errno.EIO mock_fdopen.side_effect = err self.assertRaises(OSError, self._call, "wow") @mock.patch("letsencrypt.le_util.os.fdopen") def test_subsequent_failure(self, mock_fdopen): self._call("wow") err = OSError("whoops") err.errno = errno.EIO mock_fdopen.side_effect = err self.assertRaises(OSError, self._call, "wow") if __name__ == '__main__': unittest.main() # pragma: no cover
import unittest from source_document import SourceDocument from test_tagged_document import create_test_repo from tagged_document import TaggedDocument class SourceDocumentTests(unittest.TestCase): """Unit tests for the Document class""" def test_cleaning(self): # Tests removing snippets input_path = "tests/sample-expanded.txt" reference_path = "tests/sample.txt" reference_text = open(reference_path, "r").read() document = SourceDocument(input_path) self.assertEqual(document.cleaned_contents, reference_text) def test_finding_documents(self): found_documents = SourceDocument.find("tests", ["txt"]) self.assertTrue(len(found_documents) == 7) def test_processing(self): # Tests rendering a snippet using tagged documents. repo = create_test_repo() tagged_documents = TaggedDocument.find(repo, ["txt"]) self.assertTrue(tagged_documents) input_path = "tests/sample.txt" reference_path = "tests/sample-expanded.txt" reference_text = open(reference_path, "r").read() source = SourceDocument(input_path) rendered_output = source.render(tagged_documents, language="swift",show_query=False) self.assertEqual(rendered_output, (reference_text, True))
from dataclasses import dataclass from typing import Optional import hyperstate as hs @dataclass(eq=True) class DeepInner: x: int @dataclass(eq=True) class PPO: inner: Optional[DeepInner] = None cliprange: float = 0.2 gamma: float = 0.99 lambd: float = 0.95 entcoeff: float = 0.01 value_loss_coeff: float = 1 @dataclass(eq=True) class Config: lr: float steps: int ppo: PPO task_id: str def test_override() -> None: config = hs.load( Config, file=None, overrides=[ "task_id=CherryPick", "lr=0.1", "steps=100", "ppo.cliprange=0.1", "ppo.inner.x=10", ], ) assert config == Config( lr=0.1, steps=100, ppo=PPO(cliprange=0.1, inner=DeepInner(x=10)), task_id="CherryPick", )
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Monte-Carlo estimation of the KL divergence.""" from typing import Optional import chex from distrax._src.distributions.distribution import DistributionLike from distrax._src.utils import conversion import jax import jax.numpy as jnp from tensorflow_probability.substrates import jax as tfp tfd = tfp.distributions PRNGKey = chex.PRNGKey def estimate_kl_best_effort( distribution_a: DistributionLike, distribution_b: DistributionLike, rng_key: PRNGKey, num_samples: int, proposal_distribution: Optional[DistributionLike] = None): """Estimates KL(distribution_a, distribution_b) exactly or with DiCE. If the kl_divergence(distribution_a, distribution_b) is not supported, the DiCE estimator is used instead. Args: distribution_a: The first distribution. distribution_b: The second distribution. rng_key: The PRNGKey random key. num_samples: The number of samples, if using the DiCE estimator. proposal_distribution: A proposal distribution for the samples, if using the DiCE estimator. If None, use `distribution_a` as proposal. Returns: The estimated KL divergence. """ distribution_a = conversion.as_distribution(distribution_a) distribution_b = conversion.as_distribution(distribution_b) # If possible, compute the exact KL. try: return tfd.kl_divergence(distribution_a, distribution_b) except NotImplementedError: pass return mc_estimate_kl(distribution_a, distribution_b, rng_key, num_samples=num_samples, proposal_distribution=proposal_distribution) def mc_estimate_kl( distribution_a: DistributionLike, distribution_b: DistributionLike, rng_key: PRNGKey, num_samples: int, proposal_distribution: Optional[DistributionLike] = None): """Estimates KL(distribution_a, distribution_b) with the DiCE estimator. To get correct gradients with respect the `distribution_a`, we use the DiCE estimator, i.e., we stop the gradient with respect to the samples and with respect to the denominator in the importance weights. We then do not need reparametrized distributions. Args: distribution_a: The first distribution. distribution_b: The second distribution. rng_key: The PRNGKey random key. num_samples: The number of samples, if using the DiCE estimator. proposal_distribution: A proposal distribution for the samples, if using the DiCE estimator. If None, use `distribution_a` as proposal. Returns: The estimated KL divergence. """ if proposal_distribution is None: proposal_distribution = distribution_a proposal_distribution = conversion.as_distribution(proposal_distribution) distribution_a = conversion.as_distribution(distribution_a) distribution_b = conversion.as_distribution(distribution_b) samples, logp_proposal = proposal_distribution.sample_and_log_prob( seed=rng_key, sample_shape=[num_samples]) samples = jax.lax.stop_gradient(samples) logp_proposal = jax.lax.stop_gradient(logp_proposal) logp_a = distribution_a.log_prob(samples) logp_b = distribution_b.log_prob(samples) importance_weight = jnp.exp(logp_a - logp_proposal) log_ratio = logp_b - logp_a kl_estimator = -importance_weight * log_ratio return jnp.mean(kl_estimator, axis=0) def mc_estimate_kl_with_reparameterized( distribution_a: DistributionLike, distribution_b: DistributionLike, rng_key: PRNGKey, num_samples: int): """Estimates KL(distribution_a, distribution_b).""" if isinstance(distribution_a, tfd.Distribution): if distribution_a.reparameterization_type != tfd.FULLY_REPARAMETERIZED: raise ValueError( f'Distribution `{distribution_a.name}` cannot be reparameterized.') distribution_a = conversion.as_distribution(distribution_a) distribution_b = conversion.as_distribution(distribution_b) samples, logp_a = distribution_a.sample_and_log_prob( seed=rng_key, sample_shape=[num_samples]) logp_b = distribution_b.log_prob(samples) log_ratio = logp_b - logp_a kl_estimator = -log_ratio return jnp.mean(kl_estimator, axis=0) def mc_estimate_mode( distribution: DistributionLike, rng_key: PRNGKey, num_samples: int): """Returns a Monte Carlo estimate of the mode of a distribution.""" distribution = conversion.as_distribution(distribution) # Obtain samples from the distribution and their log probability. samples, log_probs = distribution.sample_and_log_prob( seed=rng_key, sample_shape=[num_samples]) # Do argmax over the sample_shape. index = jnp.expand_dims(jnp.argmax(log_probs, axis=0), axis=0) mode = jnp.squeeze(jnp.take_along_axis(samples, index, axis=0), axis=0) return mode
# ------------------------------------ # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ----------------------------------- # pylint: disable=line-too-long # This is to allow complete package description on PyPI """ Core component of the Microsoft Graph Python SDK consisting of HTTP/Graph Client and a configurable middleware pipeline (Preview). """ from .core import SDK_VERSION __version__ = SDK_VERSION