content
stringlengths
5
1.05M
"""Apply the mask to the nifiti data Usage: roinii_fh roifile """ import re import os import sys import nibabel as nb from roi.pre import join_time from fmrilearn.load import load_roifile from fmrilearn.preprocess.nii import findallnii from fmrilearn.preprocess.nii import masknii def create(args): """Create a roi dataset using all Ploran 2007 (i.e. butterfly) datasets. Parameters ---------- mask - name of a roi found in the Harvard Oxford atlas (see roi package for details) newname - what (if anything) to rename the roi data as, often the default name (i.e. mask) are rather long subdatatable - a dictionary whose keys are subject numbers and whose values are absoluate paths to that Ss whole brain (functional) data. basepath - the top-level directory where all the Ss BOLD (and other) data lives. """ # Process args, a dunmb way to make # this function compatible with pool.map() mask, newname, subdatatable, basepath = args print("Mask is {0}.".format(mask)) maskednames = [] for s in sorted(subdatatable.keys()): print("Running subject {0}.".format(s)) # Look up the location of that Ss data, # and mask it, finally save the masked # file to disk datadir = subdatatable[s] saveas = os.path.join(basepath, 'roinii', "{0}_{1}.nii.gz".format(newname, s)) masknii(mask, datadir, save=saveas) if __name__ == '__main__': """Command line invocation setup.""" from multiprocessing import Pool # ---- # User parameters basepath = os.getcwd() ncore = 3 ## Set ncore > 1 if you want to ## parallelize the roi extractions # ---- # Create a place for the roi data to # live if necessary. try: os.mkdir("./roinii") except OSError: pass # ---- # Process argv if len(sys.argv[1:]) != 1: raise ValueError("One argument are required.") rois, names = load_roifile(sys.argv[1]) # ---- # Link subjects with paths to data subdatatable = {9 : os.path.join(basepath, 'fh09', 'warfh.nii'), 11 : os.path.join(basepath, 'fh11', 'warfh.nii'), 13 : os.path.join(basepath, 'fh13', 'warfh.nii'), 14 : os.path.join(basepath, 'fh14', 'warfh.nii'), 15 : os.path.join(basepath, 'fh15', 'warfh.nii'), 17 : os.path.join(basepath, 'fh17', 'warfh.nii'), 19 : os.path.join(basepath, 'fh19', 'warfh.nii'), 21 : os.path.join(basepath, 'fh21', 'warfh.nii'), 23 : os.path.join(basepath, 'fh23', 'warfh.nii'), 24 : os.path.join(basepath, 'fh24', 'warfh.nii'), 25 : os.path.join(basepath, 'fh25', 'warfh.nii'), 26 : os.path.join(basepath, 'fh26', 'warfh.nii'), 27 : os.path.join(basepath, 'fh27', 'warfh.nii'), 28 : os.path.join(basepath, 'fh28', 'warfh.nii')} # subdatatable = { # 14 : os.path.join(basepath, 'fh14', 'warfh.nii')} # Build up 4-tuples that contain all the args # create needs, iterate over all the entries # in the roifile arglist = [] for roi, name in zip(rois, names): arglist.append((roi, name, subdatatable, basepath)) # --- # Go! # Parallelize using the arglist and Pool pool = Pool(ncore) pool.map(create, arglist)
""" <name>Raw to Compositional Data</name> <author>By Serge-Etienne Parent, firstly generated using Widget Maker written by Kyle R. Covington</author> <description></description> <RFunctions>compositions</RFunctions> <tags>Compositions</tags> <icon>raw2comp.png</icon> <outputWidgets>plotting_plot, base_rViewer</outputWidgets> """ from OWRpy import * from libraries.base.qtWidgets.lineEdit import lineEdit as redRlineEdit from libraries.base.qtWidgets.radioButtons import radioButtons as redRradioButtons from libraries.base.qtWidgets.comboBox import comboBox as redRcomboBox from libraries.base.qtWidgets.checkBox import checkBox as redRcheckBox from libraries.base.qtWidgets.textEdit import textEdit as redRtextEdit import libraries.base.signalClasses as signals class RedRcomp(OWRpy): settingsList = [] def __init__(self, parent=None, signalManager=None): OWRpy.__init__(self) self.data = {} self.setRvariableNames(['acomp', 'rcomp', 'aplus', 'rplus']) self.RFunctionParam_X = '' self.inputs.addInput("X", "X", signals.RDataFrame.RDataFrame, self.processX) self.outputs.addOutput("acomp Output","acomp Output", signals.RMatrix.RMatrix) self.outputs.addOutput("rcomp Output","rcomp Output", signals.RMatrix.RMatrix) self.outputs.addOutput("rplus Output","rplus Output", signals.RMatrix.RMatrix) self.outputs.addOutput("aplus Output","aplus Output", signals.RMatrix.RMatrix) self.compositionType = redRradioButtons(self.controlArea, label = "Composition Type:", buttons = ['acomp', 'rcomp', 'aplus', 'rplus'], setChecked = "acomp", orientation='horizontal') # choose composition type self.RFunctionParamparts_lineEdit = redRlineEdit(self.controlArea, label = "parts:", text = '') self.RFunctionParamtotal_lineEdit = redRlineEdit(self.controlArea, label = "total:", text = '1') redRCommitButton(self.bottomAreaRight, "Commit", callback = self.commitFunction) def processX(self, data): if not self.require_librarys(["compositions"]): self.status.setText('R Libraries Not Loaded.') return if data: self.RFunctionParam_X=data.getData() #self.data = data self.commitFunction() else: self.RFunctionParam_X='' def commitFunction(self): if str(self.RFunctionParam_X) == '': return injection = [] if str(self.RFunctionParamparts_lineEdit.text()) != '': string = 'parts='+str(self.RFunctionParamparts_lineEdit.text())+'' injection.append(string) if str(self.RFunctionParamtotal_lineEdit.text()) != '': string = 'total='+str(self.RFunctionParamtotal_lineEdit.text())+'' injection.append(string) inj = ','.join(injection) if self.compositionType.getChecked() =='acomp': self.R(self.Rvariables['acomp']+'<-acomp(X='+str(self.RFunctionParam_X)+','+inj+')') newData = signals.RMatrix.RMatrix(data = self.Rvariables["acomp"], checkVal = False) self.rSend("acomp Output", newData) self.rSend('rcomp Output', None) self.rSend('aplus Output', None) self.rSend('rplus Output', None) elif self.compositionType.getChecked() =='rcomp': self.R(self.Rvariables['rcomp']+'<-rcomp(X='+str(self.RFunctionParam_X)+','+inj+')') newData = signals.RMatrix.RMatrix(data = self.Rvariables["rcomp"], checkVal = False) self.rSend("rcomp Output", newData) self.rSend('acomp Output', None) self.rSend('aplus Output', None) self.rSend('rplus Output', None) elif self.compositionType.getChecked() =='aplus': self.R(self.Rvariables['aplus']+'<-aplus(X='+str(self.RFunctionParam_X)+','+inj+')') newData = signals.RMatrix.RMatrix(data = self.Rvariables["aplus"], checkVal = False) self.rSend("aplus Output", newData) self.rSend('acomp Output', None) self.rSend('rcomp Output', None) self.rSend('rplus Output', None) else: self.R(self.Rvariables['rplus']+'<-rplus(X='+str(self.RFunctionParam_X)+','+inj+')') newData = signals.RMatrix.RMatrix(data = self.Rvariables["rplus"], checkVal = False) self.rSend("rplus Output", newData) self.rSend('acomp Output', None) self.rSend('rcomp Output', None) self.rSend('aplus Output', None)
import datetime import hashlib import httplib import types from ..service.jammer import Jammer from ..service.speed import Speed DATE_FMT = '%a, %d %b %Y %H:%M:%S GMT' def _if_modified_since(if_modified_since, last_modified): modified = datetime.datetime.fromtimestamp(last_modified).strftime(DATE_FMT) if modified == if_modified_since: return True return False class JamResponse(object): def __init__(self, jam, headers=None, code=httplib.OK): super(JamResponse, self).__init__() self._jam = jam self.headers = headers or {} self.code = code @property def body(self): return self._jam.contents if isinstance(self._jam, Jammer) else '' def handle_jam_request(request_path, if_modified_since, require_dependencies=False, excluded_dependencies=None): # !warning: if you feel the urge to make changes here, please consult pagespeed and yslow docs # step 0. sometimes the dynamic mod time or dependency order can change depending on how the request uri was formed. # if there is an old request out there, redirect to the correct url # step 1. check the dynamic last mod. if its cool, return the correct status code # step 2a. if we can't return 304, build out the response by using jammer content # step 2b. check the gel_page_cache for the generated file # step 2c. add headers that browsers love for assets # step 3. return the correct code, message, and body # note 1. this bypasses a renderer and returns directly to dispatcher # note 2. we gzip in nginx. in dev/debug, we manually deflate # test cases: # 1. /paste/ -> 400 # 2. /paste/<ver-1>/paste.js -> 302 # 3. /paste/<ver+1>/paste.js -> 404 # 4. /paste/paste.*js -> 302 # 5. /paste/paste.js -> 302 # 6. /paste/require/paste.event.js -> 302 # 7. /paste/require/paste.js?filter=paste -> 400 # 8. /paste/require/paste.event.js?filter=paste.oop -> 302 # 9. /paste/require/paste.event%2Cpaste.framerate.js -> 302 _jam = Jammer(request_path=request_path, require_dependencies=require_dependencies) path_dependencies = _jam.parse_request_path_dependencies(request_path) path_last_modified = _jam.parse_request_path_last_modified(request_path) if isinstance(excluded_dependencies, types.StringTypes): excluded_dependencies = set(dependency_name.strip() for dependency_name in excluded_dependencies.split(',')) if isinstance(excluded_dependencies, set): _jam.filter_loaded(excluded_dependencies) has_valid_jam = _jam is not None and _jam.uri if not has_valid_jam: return JamResponse(None, code=httplib.BAD_REQUEST) last_modified_required = not _jam.is_debug if (_jam.checksum != path_dependencies or (last_modified_required and (not path_last_modified or not path_last_modified.isdigit() or int(path_last_modified) < _jam.last_modified))): return JamResponse( _jam, code=httplib.FOUND, headers={ 'Access-Control-Allow-Origin': '*', 'Cache-Control': 'private, no-cache, no-store, max-age=0, must-revalidate', 'Expires': datetime.datetime.utcnow().strftime('%a, %d %b %Y %H:%M:%S GMT'), 'ETag': hashlib.md5(_jam.checksum + '-' + str(_jam.last_modified)).hexdigest(), 'Location': _jam.uri } ) elif last_modified_required and _jam.last_modified != int(path_last_modified): return JamResponse(None, code=httplib.NOT_FOUND) elif _if_modified_since(if_modified_since, path_last_modified): return JamResponse(None, code=httplib.NOT_MODIFIED) else: headers = {} Speed.header_caching(request_path, headers.setdefault, _jam.last_modified, hashlib.md5(_jam.checksum + '-' + str(_jam.last_modified)).hexdigest()) return JamResponse( _jam, code=httplib.OK, headers=headers )
# Write your x_length_words function here: def x_length_words(sentence, x): words = sentence.split(" ") for word in words: if len(word) < x: return False return True # Uncomment these function calls to test your function: print(x_length_words("i like apples", 2)) # should print False print(x_length_words("he likes apples", 2)) # should print True
import logging import bspump.ssh import datetime import bspump import bspump.mongodb import bspump.ssh import bspump.common import bspump.file import bspump.trigger ### L = logging.getLogger(__name__) """ Config file for SSH connection should look like this: # SSH Connection [connection:SSHConnection] host=remotehost port=22 user=remoteuser password=p455w0rd known_hosts=.ssh/known_hosts client_host_keysign=/path/to/dir/with/ssh-keysign client_host_keys=skey .. If do not know the known_hosts or client_host_keys, leave it empty or do not append it to a Config file. If do not know the path to the directory with keys of client_host_keysign, do not append it to a Config file or set it to 0 (zero). Add conf file to ../etc/ This example connects to mongodb. #host = mongodb://127.0.0.1:27017 #databaseb=users #collections=user_location query's the database according to the parameters passed into query_parms and outputs the result into a file though SFTP. """ class SamplePipeline(bspump.Pipeline): def __init__(self, app, pipeline_id = None): super().__init__(app, pipeline_id) self.fileextjson = ".json" # Set the file name as "todays-date.json" for sftpsink self.jsonfilename = datetime.datetime.now().strftime('%d-%m-%Y') + self.fileextjson print(self.jsonfilename) query_parms = { } #run the application bspump-es-source.py -c ./etc/site.cofig self.build( bspump.mongodb.MongoDBSource(app, self, "MongoDBConnection", query_parms=query_parms, config={'database':'users', 'collection':'user_location', }).on(bspump.trigger.PeriodicTrigger(app,5 )), bspump.common.DictToJsonBytesParser(app, self), bspump.ssh.SFTPSink(app, self, "SSHConnection2" ,config={ 'remote_path': '/tmp/bspump_ssh/', 'filename': 'testfile', 'mode': 'a', }) ) if __name__ == '__main__': app = bspump.BSPumpApplication() svc = app.get_service("bspump.PumpService") # Make connection to SSH svc.add_connection( bspump.ssh.SSHConnection(app, "SSHConnection2" ,config={ "host": "bandit.labs.overthewire.org", "user": "bandit0", "password": "bandit0", "port": 2220, }) ) # Make connection to localhost Mongo svc.add_connection(bspump.mongodb.MongoDBConnection(app,"MongoDBConnection" ,config={ "host": "mongodb://127.0.0.1:27017"})) # Construct and register Pipeline pl = SamplePipeline(app, 'SamplePipeline') svc.add_pipeline(pl) pl.PubSub.publish("go!") app.run()
# Dolares x = int(input()) # Nro de juegos n = int(input()) comprados = 0 # Para cada juego for i in range(0, n): precio = int(input()) # Verificamos si se puede comprar if x >= precio: # Si lo compramos nos queda # menos dinero x = x - precio comprados = comprados + 1 print comprados
from sqlalchemy import ( Boolean, CheckConstraint, Column, Enum, Float, ForeignKey, Integer, MetaData, String, Table, UniqueConstraint, ) from deckman.model.artist import ArtistStatus metadata_obj = MetaData() artists = Table( "artists", metadata_obj, Column("id", Integer, primary_key=True), Column("musicbrainz_id", String(36), unique=True), Column("name", String(512), nullable=True), Column("name_sort", String(512), nullable=True), Column("image_url", String(512), nullable=True), Column("description", String(2048), nullable=True), Column("status", Enum(ArtistStatus, create_constraint=True)), # Column("profile_id", ForeignKey("profile.id"), nullable=True), ) settings_lossless = Table( "settings_lossless", metadata_obj, Column("id", Integer, primary_key=True), Column("name", String(128), unique=True), Column("sample_rate_khz", Float), Column("bit_depth", Integer), Column("channels", Integer), UniqueConstraint("sample_rate_khz", "bit_depth", "channels") ) settings_lossy = Table( "settings_lossy", metadata_obj, Column("id", Integer, primary_key=True), Column("name", String(128), unique=True), Column("bitrate", Integer, unique=True) ) qualities = Table( "qualities", metadata_obj, Column("id", Integer, primary_key=True), Column("profile_id", ForeignKey("profiles.id")), Column("position", Integer), Column( "settings_lossless_id", ForeignKey("settings_lossless.id"), nullable=True ), Column( "settings_lossy_id", ForeignKey("settings_lossy.id"), nullable=True ), Column("finish", Boolean), CheckConstraint( "(settings_lossy_id IS NULL) <> (settings_lossless_id IS NULL)", name="lossy_xor_lossless" ) ) profiles = Table( "profiles", metadata_obj, Column("id", Integer, primary_key=True), Column("name", String(128), unique=True), Column("tolerance", Float, default=0.2), Column("dual_formats", Boolean, default=False), )
# Copyright 2019 The PlaNet Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import csv import fnmatch import functools import multiprocessing.dummy as multiprocessing import os import re import sys import traceback # import imageio import numpy as np import skimage.io import tensorflow as tf from tensorboard.backend.event_processing import ( plugin_event_multiplexer as event_multiplexer) lock = multiprocessing.Lock() def safe_print(*args, **kwargs): with lock: print(*args, **kwargs) def create_reader(logdir): reader = event_multiplexer.EventMultiplexer() reader.AddRun(logdir, 'run') reader.Reload() return reader def extract_values(reader, tag): events = reader.Tensors('run', tag) steps = [event.step for event in events] times = [event.wall_time for event in events] values = [tf.make_ndarray(event.tensor_proto) for event in events] return steps, times, values def export_scalar(basename, steps, times, values): safe_print('Writing', basename + '.csv') values = [value.item() for value in values] with tf.gfile.Open(basename + '.csv', 'w') as outfile: writer = csv.writer(outfile) writer.writerow(('wall_time', 'step', 'value')) for row in zip(times, steps, values): writer.writerow(row) def export_image(basename, steps, times, values): tf.reset_default_graph() tf_string = tf.placeholder(tf.string) tf_tensor = tf.image.decode_image(tf_string) with tf.Session() as sess: for step, time_, value in zip(steps, times, values): filename = '{}-{}-{}.png'.format(basename, step, time_) width, height, string = value[0], value[1], value[2] del width del height tensor = sess.run(tf_tensor, {tf_string: string}) # imageio.imsave(filename, tensor) skimage.io.imsave(filename, tensor) filename = '{}-{}-{}.npy'.format(basename, step, time_) np.save(filename, tensor) def process_logdir(logdir, args): clean = lambda text: re.sub('[^A-Za-z0-9_]', '_', text) basename = os.path.join(args.outdir, clean(logdir)) if len(tf.gfile.Glob(basename + '*')) > 0 and not args.force: safe_print('Exists', logdir) return try: safe_print('Start', logdir) reader = create_reader(logdir) for tag in reader.Runs()['run']['tensors']: # tensors -> scalars if fnmatch.fnmatch(tag, args.tags): steps, times, values = extract_values(reader, tag) filename = '{}___{}'.format(basename, clean(tag)) export_scalar(filename, steps, times, values) # for tag in tags['images']: # if fnmatch.fnmatch(tag, args.tags): # steps, times, values = extract_values(reader, tag) # filename = '{}___{}'.format(basename, clean(tag)) # export_image(filename, steps, times, values) del reader safe_print('Done', logdir) except Exception: safe_print('Exception', logdir) safe_print(traceback.print_exc()) def main(args): logdirs = tf.gfile.Glob(args.logdirs) print(len(logdirs), 'logdirs.') assert logdirs tf.gfile.MakeDirs(args.outdir) np.random.shuffle(logdirs) pool = multiprocessing.Pool(args.workers) worker_fn = functools.partial(process_logdir, args=args) pool.map(worker_fn, logdirs) if __name__ == '__main__': boolean = lambda x: ['False', 'True'].index(x) parser = argparse.ArgumentParser() parser.add_argument( '--logdirs', required=True, help='glob for log directories to fetch') parser.add_argument( '--tags', default='trainer*score', help='glob for tags to save') parser.add_argument( '--outdir', required=True, help='output directory to store values') parser.add_argument( '--force', type=boolean, default=False, help='overwrite existing files') parser.add_argument( '--workers', type=int, default=10, help='number of worker threads') args_, remaining = parser.parse_known_args() args_.logdirs = os.path.expanduser(args_.logdirs) args_.outdir = os.path.expanduser(args_.outdir) remaining.insert(0, sys.argv[0]) tf.app.run(lambda _: main(args_), remaining)
from sqlalchemy import Column, ForeignKey, Integer, Table, Text from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import backref, relationship Base = declarative_base() metadata = Base.metadata WinesRegion = Table( 'wines_region', metadata, Column('wine_id', Integer, ForeignKey('wines.id'), nullable=False), Column('region_id', Integer, ForeignKey('regions.id'), nullable=False) ) WinesUser = Table( 'wines_user', metadata, Column('wine_id', Integer, ForeignKey('wines.id'), nullable=False), Column('user_id', Integer, ForeignKey('users.id'), nullable=False) ) class Regions(Base): __tablename__ = 'regions' id = Column(Integer, primary_key=True) name = Column(Text, nullable=False) class Wines(Base): __tablename__ = 'wines' id = Column(Integer, primary_key=True) variety = Column(Text) description = Column(Text) points = Column(Integer) price = Column(Integer) winery = Column(Text) country = Column(Text) province = Column(Text) users = relationship('User', secondary=WinesUser, backref=backref('wines', lazy='dynamic')) regions = relationship('Regions', secondary=WinesRegion, backref=backref('regions', lazy='dynamic')) def to_dict(self): return { 'id': self.id, 'variety': self.variety, 'description': self.description, 'points': self.points, 'price': self.price, 'winery': self.winery, 'country': self.country, 'province': self.province, 'regions': [region.name for region in self.regions] } class User(Base): __tablename__ = 'users' id = Column(Integer, primary_key=True) name = Column(Text) username = Column(Text, unique=True) password = Column(Text) email = Column(Text, unique=True) def is_authenticated(self): return True def is_active(self): return True def is_anonymous(self): return False def get_id(self): return self.id @staticmethod def create(db_session, name, username, password, email): user = User(name=name, username=username, password=password, email=email) db_session.add(user) db_session.flush() db_session.commit() db_session.refresh(user) return user
# Festlegen der Abbruchbedingung ungueltige_eingabe = True # Starten der While-Schleife while ungueltige_eingabe: # Versuche Nutzereingabe zu erhalten try: alter = int(input("Bitte geben Sie Ihr Alter ein: ")) if alter >= 18: print("Dein Alter ist", alter, ".") ungueltige_eingabe = False else: print("Du bist leider nicht alt genug.") # Sollte Nutzereingabe nicht int sein, gibt folgende exception aus except: print("Bitte geben Sie nur ganze Zahlen ein.")
# Helper from bluezero from bluezero import async_tools from queue import Queue from robotpacket import RobotPacket from robotcommand import RobotCommand from robotstate import RobotState import blepy class RobotPeripheral(blepy.Peripheral): # Custom service UUID CPU_TMP_SRVC = '12341000-1234-1234-1234-123456789abc' def __init__(self, adapter_address, state: RobotState, event_queue: Queue): self.notifiers = { "Acceleration": None, "Steering": None, "Collision": None } self.event_queue = event_queue self.services = [RobotService(True, state, event_queue, self.notifiers)] super().__init__(self.services, adapter_address, "Robot", appearance=0) def _on_connect_callback(self, device): print("Connected to " + str(device.address)) packet = RobotPacket(RobotCommand.CONNECTED) self.event_queue.put(packet) def _on_disconnect_callback(self, adapter_address, device_address): print("Disconnected from " + device_address) packet = RobotPacket(RobotCommand.DISCONNECTED) self.event_queue.put(packet) def event_handler(self, packet: RobotPacket): switcher = { RobotCommand.ACCELERATION: self.notifiers["Acceleration"], RobotCommand.STEERING: self.notifiers["Steering"], RobotCommand.COLLISION: self.notifiers["Collision"] } notifier = switcher.get(packet.get_command()) if notifier is not None: notifier.set_value(list(packet.get_parameter().to_bytes(1, byteorder='little', signed=True))) class RobotService(blepy.Service): # Custom service UUID CPU_TMP_SRVC = '12341001-1234-1234-1234-123456789abc' def __init__(self, primary, state: RobotState, event_queue: Queue, notifiers: map): super().__init__(self.CPU_TMP_SRVC, primary) self.characteristics = [ RobotCharacteristics.Acceleration(state, event_queue, notifiers), RobotCharacteristics.Steering(state, event_queue, notifiers), RobotCharacteristics.Collision(state, event_queue, notifiers), RobotCharacteristics.Automove(state, event_queue, notifiers), ] class RobotCharacteristics: class Acceleration(blepy.Characteristic): def __init__(self, state: RobotState, event_queue: Queue, notifiers: map): super().__init__("12341002-1234-1234-1234-123456789abc", event_queue) self.flags = ['write'] self.write_callback = self.write self.state = state def write(self, value, options): packet = RobotPacket(RobotCommand.ACCELERATION, int.from_bytes(value, byteorder='little', signed=True)) self.event_queue.put(packet) class Steering(blepy.Characteristic): def __init__(self, state: RobotState, event_queue: Queue, notifiers: map): super().__init__("12341003-1234-1234-1234-123456789abc", event_queue) self.flags = ['write'] self.write_callback = self.write self.state = state def write(self, value, options): packet = RobotPacket(RobotCommand.STEERING, int.from_bytes(value, byteorder='little', signed=True)) self.event_queue.put(packet) class Collision(blepy.Characteristic): def __init__(self, state: RobotState, event_queue: Queue, notifiers: map): super().__init__("12341004-1234-1234-1234-123456789abc", event_queue) self.flags = ['notify'] self.notify_callback = self.notify self.notifiers = notifiers def notify(self, notifying, characteristic): self.notifiers["Collision"] = characteristic if notifying else None return notifying class Automove(blepy.Characteristic): def __init__(self, state: RobotState, event_queue: Queue, notifiers: map): super().__init__("12341005-1234-1234-1234-123456789abc", event_queue) self.flags = ['write'] self.write_callback = self.write self.notifiers = notifiers def write(self, value, options): packet = RobotPacket(RobotCommand.MODE) self.event_queue.put(packet)
""" models module for organising table and validation """ from django.db import models class Contact(models.Model): """ A class for storing instance contact """ contact_id = models.AutoField(primary_key=True) first_name = models.CharField(max_length=130, blank=True, null=True) middle_name = models.CharField(max_length=130, blank=True, null=True) last_name = models.CharField(max_length=130, blank=True, null=True) email = models.EmailField(max_length=110, blank=True, null=True) country = models.CharField(max_length=65, blank=True, null=True) phone = models.CharField(max_length=19, null=True) address = models.CharField(max_length=254, blank=True, null=True)
from pymongo import MongoClient from pymongo.errors import PyMongoError from bson.json_util import dumps # client = MongoClient(port=27017) # db = client.STUDENTMDB # collections = db['STUDENT'] # collections.insert_one({"St_id": "21425454", "Name":"Ragul","Email":"ravi@gmail.com","Grade" :"11", "Stream":"Maths"}) class Database(object): _instance = None database_error_msg = ' error raised in db ,' def __new__(cls, *args, **kwargs): if not cls._instance: cls._instance = object.__new__(cls) return cls._instance def __init__(self): try: self.client = MongoClient("mongodb://localhost:27017") self.db = self.client['STUDENTMDB'] except PyMongoError as e: raise print(e) def insert_data(self, insert_collection, inserted_data): res=[] try: db_collection = self.db[f'{insert_collection}'] db_collection.insert_one(inserted_data) except PyMongoError: return {'message':self.database_error_msg} else: return {'message': 'Successfully insert a response'} def get_data(self, get_collection, search_id=None): data=[] if search_id == None: try: db_collection = self.db[f'{get_collection}'] users = db_collection.find(projection= {'_id':False}) data = [ user for user in users] return { 'request':{'message': 'All records received'}, 'response':data} except PyMongoError: return {'message':self.database_error_msg} else: try: db_collection = self.db[f'{get_collection}'] data = db_collection.find_one(filter={'St_id':search_id}, projection= {'_id':False}) return { 'request':{'message': 'record received', 'Search Id':f'{search_id}'}, 'response':data} except PyMongoError: return {'message':self.database_error_msg} def detele_data(self, del_collections, search_id): try: db_collection = self.db[f'{del_collections}'] db_collection.delete_one({'St_id': search_id}) except PyMongoError: return {'message':self.database_error_msg} else: return {'message': 'Successfully remove the user'} def update_data(self, up_collections, search_id, updated_value): try: db_collection = self.db[f'{up_collections}'] db_collection.update_one({'St_id':search_id},{"$set":updated_value}) except PyMongoError: return {'request': {'message':self.database_error_msg}} else: return {'request':{'message':'Successfully update the response', 'updated':updated_value}} def course_lookup_db(self, code): resp=[] pipeline = [ {'$match': {'Course_code': code}} ] results = self.db['TEACHER'].aggregate(pipeline) for result in results: data = {'Name' : result['Name'], 'Subject': result['Subject']} resp.append(data) return resp if __name__ == "__main__": db = Database() # data = { # "St_id": "21425456", # "Name":"ravi ram", # "Email":"raja@gmail.com", # "Grade" :"12", # "Stream":"Bio" # } # db.insert_data('STUDENT', data)
#!/bin/python import sys def kangaroo(x1, v1, x2, v2): if x1<x2 and v1<v2: return 'NO' elif x1==x2 and v1>v2: return 'NO' elif x1==x2 and v2>v1: return 'YES' else: if v1!=v2: if (float(x1-x2)/(v2-v1))==(x1-x2)/(v2-v1): return 'YES' else: return 'NO' elif v1==v2: return 'NO' x1, v1, x2, v2 = raw_input().strip().split(' ') x1, v1, x2, v2 = [int(x1), int(v1), int(x2), int(v2)] result = kangaroo(x1, v1, x2, v2) print(result)
from scipy.stats import norm import numpy as np import pandas as pd from . import common_args from ..util import (read_param_file, compute_groups_matrix, ResultDict, extract_group_names, _check_groups) from types import MethodType from multiprocessing import Pool, cpu_count from functools import partial from itertools import combinations, zip_longest def analyze(problem, Y, calc_second_order=True, num_resamples=100, conf_level=0.95, print_to_console=False, parallel=False, n_processors=None, keep_resamples=False, seed=None): """Perform Sobol Analysis on model outputs. Returns a dictionary with keys 'S1', 'S1_conf', 'ST', and 'ST_conf', where each entry is a list of size D (the number of parameters) containing the indices in the same order as the parameter file. If calc_second_order is True, the dictionary also contains keys 'S2' and 'S2_conf'. Compatible with --------------- * `saltelli` Parameters ---------- problem : dict The problem definition Y : numpy.array A NumPy array containing the model outputs calc_second_order : bool Calculate second-order sensitivities (default True) num_resamples : int The number of resamples (default 100) conf_level : float The confidence interval level (default 0.95) print_to_console : bool Print results directly to console (default False) keep_resamples : bool Whether or not to store intermediate resampling results (default False) References ---------- .. [1] Sobol, I. M. (2001). "Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates." Mathematics and Computers in Simulation, 55(1-3):271-280, doi:10.1016/S0378-4754(00)00270-6. .. [2] Saltelli, A. (2002). "Making best use of model evaluations to compute sensitivity indices." Computer Physics Communications, 145(2):280-297, doi:10.1016/S0010-4655(02)00280-1. .. [3] Saltelli, A., P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and S. Tarantola (2010). "Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index." Computer Physics Communications, 181(2):259-270, doi:10.1016/j.cpc.2009.09.018. Examples -------- >>> X = saltelli.sample(problem, 512) >>> Y = Ishigami.evaluate(X) >>> Si = sobol.analyze(problem, Y, print_to_console=True) """ if seed: # Set seed to ensure CIs are the same rng = np.random.default_rng(seed).integers else: rng = np.random.randint # determining if groups are defined and adjusting the number # of rows in the cross-sampled matrix accordingly groups = _check_groups(problem) if not groups: D = problem['num_vars'] else: _, D = extract_group_names(groups) if calc_second_order and Y.size % (2 * D + 2) == 0: N = int(Y.size / (2 * D + 2)) elif not calc_second_order and Y.size % (D + 2) == 0: N = int(Y.size / (D + 2)) else: raise RuntimeError(""" Incorrect number of samples in model output file. Confirm that calc_second_order matches option used during sampling.""") if not 0 < conf_level < 1: raise RuntimeError("Confidence level must be between 0-1.") # normalize the model output Y = (Y - Y.mean()) / Y.std() A, B, AB, BA = separate_output_values(Y, D, N, calc_second_order) r = rng(N, size=(N, num_resamples)) Z = norm.ppf(0.5 + conf_level / 2) if not parallel: S = create_Si_dict(D, num_resamples, keep_resamples, calc_second_order) for j in range(D): S['S1'][j] = first_order(A, AB[:, j], B) S1_conf_j = first_order(A[r], AB[r, j], B[r]) if keep_resamples: S['S1_conf_all'][:, j] = S1_conf_j S['S1_conf'][j] = Z * S1_conf_j.std(ddof=1) S['ST'][j] = total_order(A, AB[:, j], B) ST_conf_j = total_order(A[r], AB[r, j], B[r]) if keep_resamples: S['ST_conf_all'][:, j] = ST_conf_j S['ST_conf'][j] = Z * ST_conf_j.std(ddof=1) # Second order (+conf.) if calc_second_order: for j in range(D): for k in range(j + 1, D): S['S2'][j, k] = second_order( A, AB[:, j], AB[:, k], BA[:, j], B) S['S2_conf'][j, k] = Z * second_order(A[r], AB[r, j], AB[r, k], BA[r, j], B[r]).std(ddof=1) else: tasks, n_processors = create_task_list( D, calc_second_order, n_processors) func = partial(sobol_parallel, Z, A, AB, BA, B, r) pool = Pool(n_processors) S_list = pool.map_async(func, tasks) pool.close() pool.join() S = Si_list_to_dict(S_list.get(), D, num_resamples, keep_resamples, calc_second_order) # Add problem context and override conversion method for special case S.problem = problem S.to_df = MethodType(to_df, S) # Print results to console if print_to_console: res = S.to_df() for df in res: print(df) return S def first_order(A, AB, B): """ First order estimator following Saltelli et al. 2010 CPC, normalized by sample variance """ return np.mean(B * (AB - A), axis=0) / np.var(np.r_[A, B], axis=0) def total_order(A, AB, B): """ Total order estimator following Saltelli et al. 2010 CPC, normalized by sample variance """ return 0.5 * np.mean((A - AB) ** 2, axis=0) / np.var(np.r_[A, B], axis=0) def second_order(A, ABj, ABk, BAj, B): """Second order estimator following Saltelli 2002""" Vjk = np.mean(BAj * ABk - A * B, axis=0) / np.var(np.r_[A, B], axis=0) Sj = first_order(A, ABj, B) Sk = first_order(A, ABk, B) return Vjk - Sj - Sk def create_Si_dict(D: int, num_resamples: int, keep_resamples: bool, calc_second_order: bool): """initialize empty dict to store sensitivity indices""" S = ResultDict((k, np.zeros(D)) for k in ('S1', 'S1_conf', 'ST', 'ST_conf')) if keep_resamples: # Create entries to store intermediate resampling results S['S1_conf_all'] = np.zeros((num_resamples, D)) S['ST_conf_all'] = np.zeros((num_resamples, D)) if calc_second_order: S['S2'] = np.full((D, D), np.nan) S['S2_conf'] = np.full((D, D), np.nan) return S def separate_output_values(Y, D, N, calc_second_order): AB = np.zeros((N, D)) BA = np.zeros((N, D)) if calc_second_order else None step = 2 * D + 2 if calc_second_order else D + 2 A = Y[0:Y.size:step] B = Y[(step - 1):Y.size:step] for j in range(D): AB[:, j] = Y[(j + 1):Y.size:step] if calc_second_order: BA[:, j] = Y[(j + 1 + D):Y.size:step] return A, B, AB, BA def sobol_parallel(Z, A, AB, BA, B, r, tasks): sobol_indices = [] for d, j, k in tasks: if d == 'S1': s = first_order(A, AB[:, j], B) elif d == 'S1_conf': s = Z * first_order(A[r], AB[r, j], B[r]).std(ddof=1) elif d == 'ST': s = total_order(A, AB[:, j], B) elif d == 'ST_conf': s = Z * total_order(A[r], AB[r, j], B[r]).std(ddof=1) elif d == 'S2': s = second_order(A, AB[:, j], AB[:, k], BA[:, j], B) elif d == 'S2_conf': s = Z * second_order(A[r], AB[r, j], AB[r, k], BA[r, j], B[r]).std(ddof=1) sobol_indices.append([d, j, k, s]) return sobol_indices def create_task_list(D, calc_second_order, n_processors): """ Create list with one entry (key, parameter 1, parameter 2) per sobol index (+conf.). This is used to supply parallel tasks to multiprocessing.Pool """ tasks_first_order = [[d, j, None] for j in range( D) for d in ('S1', 'S1_conf', 'ST', 'ST_conf')] # Add second order (+conf.) to tasks tasks_second_order = [] if calc_second_order: tasks_second_order = [[d, j, k] for j in range(D) for k in range(j + 1, D) for d in ('S2', 'S2_conf')] if n_processors is None: n_processors = min(cpu_count(), len( tasks_first_order) + len(tasks_second_order)) if not calc_second_order: tasks = np.array_split(tasks_first_order, n_processors) else: # merges both lists alternating its elements and splits the # resulting lists into n_processors sublists tasks = np.array_split([v for v in sum( zip_longest(tasks_first_order[::-1], tasks_second_order), ()) if v is not None], n_processors) return tasks, n_processors def Si_list_to_dict(S_list, D: int, num_resamples: int, keep_resamples:bool, calc_second_order: bool): """Convert the parallel output into the regular dict format for printing/returning""" S = create_Si_dict(D, num_resamples, keep_resamples, calc_second_order) L = [] for l in S_list: # first reformat to flatten L += l for s in L: # First order (+conf.) if s[2] is None: S[s[0]][s[1]] = s[3] else: S[s[0]][s[1], s[2]] = s[3] return S def Si_to_pandas_dict(S_dict): """Convert Si information into Pandas DataFrame compatible dict. Parameters ---------- S_dict : ResultDict Sobol sensitivity indices See Also ---------- Si_list_to_dict Returns ---------- tuple : of total, first, and second order sensitivities. Total and first order are dicts. Second order sensitivities contain a tuple of parameter name combinations for use as the DataFrame index and second order sensitivities. If no second order indices found, then returns tuple of (None, None) Examples -------- >>> X = saltelli.sample(problem, 512) >>> Y = Ishigami.evaluate(X) >>> Si = sobol.analyze(problem, Y, print_to_console=True) >>> T_Si, first_Si, (idx, second_Si) = sobol.Si_to_pandas_dict(Si, problem) """ problem = S_dict.problem total_order = { 'ST': S_dict['ST'], 'ST_conf': S_dict['ST_conf'] } first_order = { 'S1': S_dict['S1'], 'S1_conf': S_dict['S1_conf'] } idx = None second_order = None if 'S2' in S_dict: groups = _check_groups(problem) if groups: names, _ = extract_group_names(groups) else: names = problem.get('names') if len(names) > 2: idx = list(combinations(names, 2)) else: idx = (names, ) second_order = { 'S2': [S_dict['S2'][names.index(i[0]), names.index(i[1])] for i in idx], 'S2_conf': [S_dict['S2_conf'][names.index(i[0]), names.index(i[1])] for i in idx] } return total_order, first_order, (idx, second_order) def to_df(self): '''Conversion method to Pandas DataFrame. To be attached to ResultDict. Returns -------- List : of Pandas DataFrames in order of Total, First, Second Example ------- >>> Si = sobol.analyze(problem, Y, print_to_console=True) >>> total_Si, first_Si, second_Si = Si.to_df() ''' total, first, (idx, second) = Si_to_pandas_dict(self) problem = self.problem groups = _check_groups(problem) if not groups: names = problem.get('names') else: names, _ = extract_group_names(groups) ret = [pd.DataFrame(total, index=names), pd.DataFrame(first, index=names)] if second: ret += [pd.DataFrame(second, index=idx)] return ret def cli_parse(parser): parser.add_argument('--max-order', type=int, required=False, default=2, choices=[1, 2], help='Maximum order of sensitivity indices to ' 'calculate') parser.add_argument('-r', '--resamples', type=int, required=False, default=100, help='Number of bootstrap resamples for Sobol ' 'confidence intervals') parser.add_argument('--parallel', action='store_true', help='Makes ' 'use of parallelization.', dest='parallel') parser.add_argument('--processors', type=int, required=False, default=None, help='Number of processors to be used with the ' + 'parallel option.', dest='n_processors') return parser def cli_action(args): problem = read_param_file(args.paramfile) Y = np.loadtxt(args.model_output_file, delimiter=args.delimiter, usecols=(args.column,)) analyze(problem, Y, (args.max_order == 2), num_resamples=args.resamples, print_to_console=True, parallel=args.parallel, n_processors=args.n_processors, seed=args.seed) if __name__ == "__main__": common_args.run_cli(cli_parse, cli_action)
from ...common_descs import * from ...hek.defs.objs.tag import HekTag from supyr_struct.defs.tag_def import TagDef animation_comment = """ Played immediately after the old unit's transform out animation. The new actor is braindead during the animation, and is invincible until it ends. """ vitality_inheritance_overrides = ( 'neither', 'both', 'shield_only', 'health_only' ) keyframe_action = Struct("keyframe_action", SEnum16("keyframe", "primary", "secondary", "final", ), SEnum16("rider_handling", 'none', 'kill', 'eject', ), SEnum16("target", 'self', 'riders', ), Pad(2), dependency_os("damage_effect", "jpt!"), dependency_os("effect", "effe"), ascii_str32("effect_marker"), SIZE=72 ) transform_in_target = Struct("transform_in_target", ascii_str32("target_name"), Bool16("flags", 'try_to_use_existing_unit', 'drop_weapon', 'inherit_seated_units', 'delete_attached_actors', ), Pad(2), QStruct("selection_chances", Float("easy"), Float("normal"), Float("hard"), Float("imposs"), ORIENT="h" ), Struct("ai", dependency_os("actor_variant", "actv"), SEnum16("encounter_squad_handling", 'inherit_from_old_unit', 'inherit_from_attacker', 'free_actor', ), Pad(2), SEnum16("team_handling", 'inherit_from_old_unit', 'inherit_from_attacker', 'override', ), SEnum16("team_override", *unit_teams), SEnum16("initial_state_handling", 'inherit', 'override', ), SEnum16("initial_state_override", *actor_states), SEnum16("return_state_handling", 'inherit', 'override', 'actor_default', ), SEnum16("return_state_override", *actor_states), Pad(4), ), Struct("animation", ascii_str32("transform_in_anim"), reflexive("keyframe_actions", keyframe_action, 9, DYN_NAME_PATH='.effect_marker'), COMMENT=animation_comment ), Struct("vitality", Pad(4), SEnum16("inheritance", *vitality_inheritance_overrides), SEnum16("override", *vitality_inheritance_overrides), Float("shield_override"), Float("health_override"), ), SIZE=172 ) avti_body = Struct("tagdata", reflexive("targets", transform_in_target, 16, DYN_NAME_PATH='.target_name'), SIZE=36 ) def get(): return avti_def avti_def = TagDef("avti", blam_header_os('avti', 1), avti_body, ext=".actor_variant_transform_in", endian=">", tag_cls=HekTag )
""" Reading the leaderboards with :class:`SteamLeaderboard` is as easy as iterating over a list. """ import logging from steam.core.msg import MsgProto from steam.enums import EResult, ELeaderboardDataRequest, ELeaderboardSortMethod, ELeaderboardDisplayType from steam.enums.emsg import EMsg from steam.util import _range, chunks from steam.util.throttle import ConstantRateLimit class Leaderboards(object): def __init__(self, *args, **kwargs): super(Leaderboards, self).__init__(*args, **kwargs) def get_leaderboard(self, app_id, name): """.. versionadded:: 0.8.2 Find a leaderboard :param app_id: application id :type app_id: :class:`int` :param name: leaderboard name :type name: :class:`str` :return: leaderboard instance :rtype: :class:`SteamLeaderboard` :raises: :class:`LookupError` on message timeout or error """ message = MsgProto(EMsg.ClientLBSFindOrCreateLB) message.header.routing_appid = app_id message.body.app_id = app_id message.body.leaderboard_name = name message.body.create_if_not_found = False resp = self.send_job_and_wait(message, timeout=15) if not resp: raise LookupError("Didn't receive response within 15seconds :(") if resp.eresult != EResult.OK: raise LookupError(EResult(resp.eresult)) return SteamLeaderboard(self, app_id, name, resp) class SteamLeaderboard(object): """.. versionadded:: 0.8.2 Steam leaderboard object. Generated via :meth:`Leaderboards.get_leaderboard()` Works more or less like a :class:`list` to access entries. .. note:: Each slice will produce a message to steam. Steam and protobufs might not like large slices. Avoid accessing individual entries by index and instead use iteration or well sized slices. Example usage: .. code:: python lb = client.get_leaderboard(...) for entry in lb[:100]: # top 100 print entry """ ELeaderboardDataRequest = ELeaderboardDataRequest ELeaderboardSortMethod = ELeaderboardSortMethod ELeaderboardDisplayType = ELeaderboardDisplayType app_id = 0 name = '' #: leaderboard name id = 0 #: leaderboard id entry_count = 0 sort_method = ELeaderboardSortMethod.NONE #: :class:`steam.enums.common.ELeaderboardSortMethod` display_type = ELeaderboardDisplayType.NONE #: :class:`steam.enums.common.ELeaderboardDisplayType` data_request = ELeaderboardDataRequest.Global #: :class:`steam.enums.common.ELeaderboardDataRequest` def __init__(self, steam, app_id, name, data): self._steam = steam self.app_id = app_id for field in data.DESCRIPTOR.fields: if field.name.startswith('leaderboard_'): self.__dict__[field.name.replace('leaderboard_', '')] = getattr(data, field.name) self.sort_method = ELeaderboardSortMethod(self.sort_method) self.display_type = ELeaderboardDisplayType(self.display_type) def __repr__(self): return "<%s(%d, %s, %d, %s, %s)>" % ( self.__class__.__name__, self.app_id, repr(self.name), len(self), self.sort_method, self.display_type, ) def __len__(self): return self.entry_count def get_entries(self, start=0, end=0, data_request=None, steam_ids=None): """Get leaderboard entries. :param start: start entry, not index (e.g. rank 1 is ``start=1``) :type start: :class:`int` :param end: end entry, not index (e.g. only one entry then ``start=1,end=1``) :type end: :class:`int` :param data_request: data being requested :type data_request: :class:`steam.enums.common.ELeaderboardDataRequest` :param steam_ids: list of steam ids when using :attr:`.ELeaderboardDataRequest.Users` :type steamids: :class:`list` :return: a list of entries, see ``CMsgClientLBSGetLBEntriesResponse`` :rtype: :class:`list` :raises: :class:`LookupError` on message timeout or error """ message = MsgProto(EMsg.ClientLBSGetLBEntries) message.body.app_id = self.app_id message.body.leaderboard_id = self.id message.body.range_start = start message.body.range_end = end message.body.leaderboard_data_request = self.data_request if data_request is None else data_request if steam_ids: message.body.steamids.extend(steam_ids) resp = self._steam.send_job_and_wait(message, timeout=15) if not resp: raise LookupError("Didn't receive response within 15seconds :(") if resp.eresult != EResult.OK: raise LookupError(EResult(resp.eresult)) if resp.HasField('leaderboard_entry_count'): self.entry_count = resp.leaderboard_entry_count return resp.entries def __getitem__(self, x): if isinstance(x, slice): stop_max = len(self) start = 0 if x.start is None else x.start if x.start >= 0 else max(0, x.start + stop_max) stop = stop_max if x.stop is None else x.stop if x.stop >= 0 else max(0, x.stop + stop_max) step = x.step or 1 if step < 0: start, stop = stop, start step = abs(step) if start >= stop: return [] else: if x < 0: x += self.entry_count start, stop, step = x, x + 1, 1 if x < 0 or x >= self.entry_count: raise IndexError('list index out of range') entries = self.get_entries(start+1, stop) if isinstance(x, slice): return [entries[i] for i in _range(0, len(entries), step)] else: return entries[0] def get_iter(self, times, seconds, chunk_size=2000): """Make a iterator over the entries See :class:`steam.util.throttle.ConstantRateLimit` for ``times`` and ``seconds`` parameters. :param chunk_size: number of entries per request :type chunk_size: :class:`int` :returns: generator object :rtype: :class:`generator` The iterator essentially buffers ``chuck_size`` number of entries, and ensures we are not sending messages too fast. For example, the ``__iter__`` method on this class uses ``get_iter(1, 1, 2000)`` """ def entry_generator(): with ConstantRateLimit(times, seconds, sleep_func=self._steam.sleep) as r: for entries in chunks(self, chunk_size): if not entries: return for entry in entries: yield entry r.wait() return entry_generator() def __iter__(self): return self.get_iter(1, 1, 2000)
import os, argparse, time parser = argparse.ArgumentParser() parser.add_argument('-d','--dork',help="Enter your dork") parser.add_argument('-a','--amount',help="Enter amount of site to printout") arg = parser.parse_args() class Dorker: def __init__(self, dork, amount): self.dork = dork self.amount = amount def check_requirements(self): try: from googlesearch import search if(self.dork is None and self.amount is None): print(f'Usage: python3 {os.path.basename(__file__)} -d <dork> -a <amount>') exit() else: dork.searcher(search) except ModuleNotFoundError: print("Installing Required Module!..") os.system("pip3 install googlesearch-python") except Exception as err: print("Error: {}".format(err)) def searcher(self,search): count=0 print("="*14+"-Dorking-"+"="*14) print() for site in search(self.dork, num_results=int(self.amount)): count+=1 print(f'({count}): {site}') time.sleep(.1) print() print("="*14+"Done"+"="*14) if __name__=="__main__": print(""" 888~-_ 888 _ 888 \\ e88~-_ 888-~\\ 888 e~ ~ e88~~8e 888-~\\ 888 | d888 i 888 888d8b d888 88b 888 888 | 8888 | 888 888Y88b 8888__888 888 888 / Y888 ' 888 888 Y88b Y888 , 888 888_-~ "88_-~ 888 888 Y88b "88___/ 888 DORKER BY: Anikin Luke """) dork = Dorker(arg.dork, arg.amount) dork.check_requirements()
# This script's purpose is to train a preliminary CNN for tracking by Keras # Author: Billy Li # Email: li000400@umn.edu # import starts import sys from pathlib import Path import csv import random import pickle import numpy as np import tensorflow as tf from tensorflow.keras import Model, initializers, regularizers from tensorflow.keras.layers import( Input, Dense, Conv2D, BatchNormalization, MaxPool2D,Dropout, Flatten, TimeDistributed, Embedding, Reshape, Softmax ) from tensorflow.keras.optimizers import Adam import unet05 as unet util_dir = Path.cwd().parent.joinpath('util') sys.path.insert(1, str(util_dir)) from Config import extractor_config as Config from mu2e_output import * from Loss import unmasked_cce from Metric import * ### import ends def photographic_train(C): pstage("Start Training") ### load inputs pinfo('Loading processed arrays') X = np.load(C.X_npy) Y = np.load(C.Y_npy) pinfo('Standarlizing input arrays') mean = X.mean() std = X.std() std_inv = 1/std X = (X-mean)*std_inv ### outputs pinfo('Configuring output paths') cwd = Path.cwd() data_dir = cwd.parent.parent.joinpath('data') weights_dir = cwd.parent.parent.joinpath('weights') model_weights = weights_dir.joinpath(C.model_name+'.h5') record_file = data_dir.joinpath(C.record_name+'.csv') ### build the model # input_layer = Input(shape=(X.shape[1],X.shape[2],1)) # x = Conv2D(512, (3, 3), padding='same', activation='relu', kernel_initializer=initializers.RandomNormal(stddev=0.01), kernel_regularizer=regularizers.l2(1e-8))(input_layer) # x = BatchNormalization()(x) # #x = MaxPool2D(pool_size=(2, 2), padding='same')(x) # x = Dropout(0.3)(x) # # x = Conv2D(128, (3, 3), padding='same', activation='relu', kernel_initializer=initializers.RandomNormal(stddev=0.01), kernel_regularizer=regularizers.l2(1e-8))(x) # x = BatchNormalization()(x) # #x = MaxPool2D(pool_size=(2, 2), padding='same')(x) # x = Dropout(0.3)(x) # # x = Conv2D(256, (3, 3), padding='same', activation='relu', kernel_initializer=initializers.RandomNormal(stddev=0.01), kernel_regularizer=regularizers.l2(1e-8))(x) # x = BatchNormalization()(x) # #x = MaxPool2D(pool_size=(2, 2), padding='same')(x) # x = Dropout(0.3)(x) # # x = Conv2D(512, (3, 3), padding='same', activation='relu', kernel_initializer=initializers.RandomNormal(stddev=0.01), kernel_regularizer=regularizers.l2(1e-8))(x) # x = BatchNormalization()(x) # #x = MaxPool2D(pool_size=(2, 2), padding='same')(x) # x = Dropout(0.3)(x) # # x = Conv2D(256, (3, 3), padding='same', activation='relu', kernel_initializer=initializers.RandomNormal(stddev=0.01), kernel_regularizer=regularizers.l2(1e-8))(x) # x = BatchNormalization()(x) # #x = MaxPool2D(pool_size=(2, 2), padding='same')(x) # x = Dropout(0.3)(x) # # x = Conv2D(128, (3, 3), padding='same', activation='relu', kernel_initializer=initializers.RandomNormal(stddev=0.01), kernel_regularizer=regularizers.l2(1e-8))(x) # x = BatchNormalization()(x) # #x = MaxPool2D(pool_size=(2, 2), padding='same')(x) # x = Dropout(0.3)(x) # # # # # x = Conv2D(64, (3, 3), padding='same', activation='relu', kernel_initializer=initializers.RandomNormal(stddev=0.01), kernel_regularizer=regularizers.l2(1e-8))(x) # x = BatchNormalization()(x) # #x = MaxPool2D(pool_size=(2, 2), padding='same')(x) # x = Dropout(0.3)(x) # # # x = Conv2D(3, (3, 3), padding='same', activation='relu', kernel_initializer=initializers.RandomNormal(stddev=0.01), kernel_regularizer=regularizers.l2(1e-8))(x) # x = BatchNormalization()(x) # #x = MaxPool2D(pool_size=(2, 2), padding='same')(x) # x = Dropout(0.3)(x) # # # # output_layer = Softmax()(x) # model = Model(inputs=input_layer, outputs=output_layer) input_shape = (X.shape[1], X.shape[2], 1) model = unet.get_architecture(input_shape,3) print(model.summary()) # setup loss cce = unmasked_cce # setup metric ca = unmasked_categorical_accuracy # setup optimizer adam = Adam(1e-4) # setup callback CsvCallback = tf.keras.callbacks.CSVLogger(str(record_file), separator=",", append=False) LRCallback = tf.keras.callbacks.ReduceLROnPlateau( monitor='loss', factor=0.1, patience=10, verbose=0, mode='auto', min_delta=1e-6, cooldown=0, min_lr=1e-7 ) # print(cnn.summary()) model.compile(optimizer=adam,\ metrics = ca,\ loss=cce) model.fit(x=X, y=Y,\ validation_split=0.2,\ shuffle=True,\ batch_size=64, epochs=200,\ callbacks = [CsvCallback, LRCallback]) model.save(model_weights) pcheck_point('Finished Training') return C if __name__ == "__main__": pbanner() psystem('Photographic track extractor') pmode('Testing Feasibility') pinfo('Input DType for testing: StrawDigiMC') # load pickle cwd = Path.cwd() pickle_path = cwd.joinpath('photographic.train.config.pickle') C = pickle.load(open(pickle_path,'rb')) # initialize parameters model_name = "photographic_05" record_name = "photographic_record_05" # setup parameters C.set_outputs(model_name, record_name) photographic_train(C)
henn1 = 12 henn2 = 14 henn3 = 124 if henn1 == henn2 and henn2 == henn3: print(1) elif henn1 == henn2 or henn2 == henn3 or henn1 == henn3: print(2) else: print(3)
import importlib.resources as pkg_resources import requests from functools import cache, total_ordering from typing import Any, Callable import adventofcode2021.data session = requests.Session() cookie = pkg_resources.read_text(adventofcode2021.data, "cookie.txt").strip() requests.utils.add_dict_to_cookiejar(session.cookies, {"session": cookie}) @cache def get_input_data(day: int) -> list[str]: url = f"https://adventofcode.com/2021/day/{day}/input" text = session.get(url).text return [line.strip() for line in text.split("\n") if line.strip() != ''] @total_ordering class DayTemplate: def __init__(self, day: int, process: Callable[[str], Any] = None): """ Create a new day of the advent calender. `day`: an int representing which day this is, for sorting and dynamically grabbing data. `process`: a function that can take a string and return any value, since all input data is a list of strings and that might not be what we want. """ self.day = day self.link = f"https://adventofcode.com/2021/day/{self.day}" self._data = get_input_data(self.day) self.process = process if process is not None else lambda x: x @property def data(self) -> list: return [self.process(i) for i in self._data] def part_1(self) -> Any: print("Calculating part 1...") def part_2(self) -> Any: print("Calculating part 2...") def __lt__(self, other) -> bool: self.day < other.day def __eq__(self, other) -> bool: self.day == other.day def __str__(self) -> str: return f"Day {self.day} | {self.part_1()} | {self.part_2()}" class ThisShouldNeverHappenExeception(Exception): pass
import math import astropy as ast import matplotlib.pyplot as plt import numpy as np import matplotlib as mpl import os from astropy.time import Time from decimal import * from pylab import * from astropy import units as u import warnings from scipy.stats import chi2,chisquare, norm import pandas as pd class PeriodicityTest(): ''' A class to apply and store the information of the periodicty tests. Parameters ---------- pulsar_phases : PulsarPhases object Attributes ---------- chisqr_test : Results of the chi square tests. Format: [Statistic, p_value, nsigmas] number : int Number of phases used in the analysis cos : list of float Cosine moments of the list of phases sin: list of float Sine moments of the list of phases Zntest_res: Results of the Zn tests. Format: [Statistic, p_value, nsigmas]. Default is n=10 Htest_res: Results of the H test. Format: [Statistic, p_value, nsigmas] ''' def __init__(self,pulsar_phases): self.apply_all_tests(pulsar_phases) ############################################## #EXECUTION ############################################# def apply_all_tests(self,pulsar_phases): #Apply chi square test using Lightcurve Class self.chisqr_res=pulsar_phases.histogram.chi_sqr_pulsar_test() #Apply unbinned statistical tests self.moments(pulsar_phases) self.apply_moment_tests() def apply_moment_tests(self): #Default n=10 for zn test self.zn_test(n=10) self.Htest_res=self.H_test() def moments(self,pulsar_phases,n=25): #Transform list to be between 0 and 2pi plist=(pulsar_phases.phases)*2*np.pi #Calculate moments k=np.arange(1,n+1) cos_moment=sum(np.cos(np.outer(plist,k)),axis=0) sin_moment=sum(np.sin(np.outer(plist,k)),axis=0) #Store the information self.number=len(plist) self.cos=cos_moment self.sin=sin_moment return(self.number,self.cos,self.sin) def zn_test(self,n=10): cos_moment=self.cos[0:n+1] sin_moment=self.sin[0:n+1] self.Zn_n=n #Calculate statistic and pvalue Zn=2/self.number*sum(np.power(cos_moment,2)+np.power(sin_moment,2)) pvalue_zn=chi2.sf(float(Zn),2*n) sigmas_zn=norm.isf(pvalue_zn, loc=0, scale=1) #Store information self.Zntest_res=Zn,pvalue_zn,sigmas_zn return(self.Zntest_res) def H_test(self): bn=0.398 h=[] #Calculate statistic and pvalue for m in np.arange(1,len(self.cos)): h.append(2/self.number*sum(np.power(self.cos[0:m],2)+np.power(self.sin[0:m],2))-4*m+4) H=max(h) pvalue_H=np.exp(-bn*H) sigmas_H=norm.isf(float(pvalue_H), loc=0, scale=1) #Store information self.Htest_res=H,pvalue_H,sigmas_H return(self.Htest_res) ############################################## #RESULTS ############################################# def show_Pstats(self): return(pd.DataFrame(data={'Chi_square_test':self.chisqr_res,'Zn_test':self.Zntest_res,'H_test':self.Htest_res},index=["Statistic", "p-value", "Number of $\sigma$"]))
from django import forms from .models import AuthUser,Books,Storages,Comments,Reserves class ProfileForm(forms.ModelForm): class Meta: model = AuthUser # fields = [ 'id', 'password','last_login','is_superuser','username', # 'first_name', 'last_name','email','is_staff','is_active','date_joined'] fields = [ 'first_name', 'last_name','email' ] # class BookForm(forms.ModelForm): # class Meta: # model = Books # fields = [ 'isbn', 'title', 'authors', 'publisher', 'price' ] # class StorageForm(forms.ModelForm): # class Meta: # model = Storages # fields = [ 'stono', 'isbn', 'lno'] # class AddBookForm(forms.ModelForm): # class Meta: # model = Books, Storages # fields = [ 'isbn', 'title', 'authors', 'publisher', 'price', 'lno'] class AddBookForm(forms.Form): isbn = forms.CharField(max_length=50) title = forms.CharField(max_length=50) authors = forms.CharField(max_length=50) publisher = forms.CharField(max_length=50) price = forms.FloatField() lno = forms.ChoiceField(choices=(('1', 'Lee Shau Kee Library'), ('2', 'Liberal Arts Library'), ('3', 'Science Library'), ('4', 'Zhangjiang Library'))) #lno = forms.IntegerField(max_value=4,min_value=1) lno.widget.attrs.update({'class':'dropdown-trigger waves-effect'}) class CommentForm(forms.ModelForm): class Meta: model = Comments fields = [ 'text'] class ReserveForm(forms.Form): lno = forms.ChoiceField(choices=(('1', 'Lee Shau Kee Library'), ('2', 'Liberal Arts Library'), ('3', 'Science Library'), ('4', 'Zhangjiang Library'))) #lno = forms.IntegerField(max_value=4,min_value=1) lno.widget.attrs.update({'class':'dropdown-trigger waves-effect'}) class SearchBookForm(forms.Form): text=forms.CharField(max_length=50, required=False)
import json import re from collections import ChainMap from functools import partial from pathlib import Path from typing import Any, Callable, Dict import yaml from jinja2 import UndefinedError from jinja2.sandbox import SandboxedEnvironment from plumbum.cli.terminal import ask, choose, prompt from plumbum.colors import bold, info, italics from yamlinclude import YamlIncludeConstructor from ..tools import get_jinja_env, printf_exception from ..types import AnyByStrDict, Choices, OptStrOrPath, PathSeq, StrOrPath from .objects import DEFAULT_DATA, EnvOps, UserMessageError __all__ = ("load_config_data", "query_user_data") class ConfigFileError(ValueError): pass class InvalidConfigFileError(ConfigFileError): def __init__(self, conf_path: Path, quiet: bool): msg = str(conf_path) printf_exception(self, "INVALID CONFIG FILE", msg=msg, quiet=quiet) super().__init__(msg) class MultipleConfigFilesError(ConfigFileError): def __init__(self, conf_paths: PathSeq, quiet: bool): msg = str(conf_paths) printf_exception(self, "MULTIPLE CONFIG FILES", msg=msg, quiet=quiet) super().__init__(msg) class InvalidTypeError(TypeError): pass def load_yaml_data( conf_path: Path, quiet: bool = False, _warning: bool = True ) -> AnyByStrDict: YamlIncludeConstructor.add_to_loader_class( loader_class=yaml.FullLoader, base_dir=conf_path.parent ) try: with open(conf_path) as f: return yaml.load(f, Loader=yaml.FullLoader) except yaml.parser.ParserError as e: raise InvalidConfigFileError(conf_path, quiet) from e def parse_yaml_string(string: str) -> Any: """Parse a YAML string and raise a ValueError if parsing failed. This method is needed because :meth:`prompt` requires a ``ValueError`` to repeat falied questions. """ try: return yaml.safe_load(string) except yaml.error.YAMLError as error: raise ValueError(str(error)) def load_config_data( src_path: StrOrPath, quiet: bool = False, _warning: bool = True ) -> AnyByStrDict: """Try to load the content from a `copier.yml` or a `copier.yaml` file. """ conf_paths = [ p for p in Path(src_path).glob("copier.*") if p.is_file() and re.match(r"\.ya?ml", p.suffix, re.I) ] if len(conf_paths) > 1: raise MultipleConfigFilesError(conf_paths, quiet=quiet) elif len(conf_paths) == 1: return load_yaml_data(conf_paths[0], quiet=quiet, _warning=_warning) else: return {} def load_answersfile_data( dst_path: StrOrPath, answers_file: OptStrOrPath = None, ) -> AnyByStrDict: """Load answers data from a `$dst_path/$answers_file` file if it exists.""" try: with open(Path(dst_path) / (answers_file or ".copier-answers.yml")) as fd: return yaml.safe_load(fd) except FileNotFoundError: return {} def cast_answer_type(answer: Any, type_fn: Callable) -> Any: """Cast answer to expected type.""" # Skip casting None into "None" if type_fn is str and answer is None: return answer # Parse correctly bools as 1, true, yes... if type_fn is bool and isinstance(answer, str): return parse_yaml_string(answer) try: return type_fn(answer) except (TypeError, AttributeError): # JSON or YAML failed because it wasn't a string; no need to convert return answer def render_value(value: Any, env: SandboxedEnvironment, context: AnyByStrDict) -> str: """Render a single templated value using Jinja. If the value cannot be used as a template, it will be returned as is. """ try: template = env.from_string(value) except TypeError: # value was not a string return value try: return template.render(**context) except UndefinedError as error: raise UserMessageError(str(error)) from error def render_choices( choices: Choices, env: SandboxedEnvironment, context: AnyByStrDict ) -> Choices: """Render a list or dictionary of templated choices using Jinja.""" render = partial(render_value, env=env, context=context) if isinstance(choices, dict): choices = {render(k): render(v) for k, v in choices.items()} elif isinstance(choices, list): for i, choice in enumerate(choices): if isinstance(choice, (tuple, list)) and len(choice) == 2: choices[i] = (render(choice[0]), render(choice[1])) else: choices[i] = render(choice) return choices def query_user_data( questions_data: AnyByStrDict, last_answers_data: AnyByStrDict, forced_answers_data: AnyByStrDict, ask_user: bool, envops: EnvOps, ) -> AnyByStrDict: """Query the user for questions given in the config file.""" type_maps: Dict[str, Callable] = { "bool": bool, "float": float, "int": int, "json": json.loads, "str": str, "yaml": parse_yaml_string, } env = get_jinja_env(envops=envops) result: AnyByStrDict = {} defaults: AnyByStrDict = {} _render_value = partial( render_value, env=env, context=ChainMap(result, forced_answers_data, defaults, DEFAULT_DATA), ) _render_choices = partial( render_choices, env=env, context=ChainMap(result, forced_answers_data, defaults, DEFAULT_DATA), ) for question, details in questions_data.items(): # Get question type; by default let YAML decide it type_name = _render_value(details.get("type", "yaml")) try: type_fn = type_maps[type_name] except KeyError: raise InvalidTypeError() # Get default answer ask_this = ask_user default = cast_answer_type(_render_value(details.get("default")), type_fn) defaults[question] = default try: # Use forced answer answer = forced_answers_data[question] ask_this = False except KeyError: # Get default answer answer = last_answers_data.get(question, default) if ask_this: # Generate message to ask the user emoji = "🕵️" if details.get("secret", False) else "🎤" message = f"\n{bold | question}? Format: {type_name}\n{emoji} " if details.get("help"): message = ( f"\n{info & italics | _render_value(details['help'])}{message}" ) # Use the right method to ask if type_fn is bool: answer = ask(message, answer) elif details.get("choices"): choices = _render_choices(details["choices"]) answer = choose(message, choices, answer) else: answer = prompt(message, type_fn, answer) if answer != details.get("default", default): result[question] = cast_answer_type(answer, type_fn) return result
import matplotlib.pyplot as plt import cv2 import numpy as np def disp_to_color(D, max_disp): D = D.astype(float) D_nml = D.reshape(D.size) / max_disp D_nml[D_nml>1] = 1 I = disp_map(D_nml).reshape(D.shape+(3,)) return I def disp_map(I): map = np.array([[0,0,0,114],[0,0,1,185],[1,0,0,114],[1,0,1,174]\ ,[0,1,0,114],[0,1,1,185],[1,1,0,114],[1,1,1,0]], dtype=float) bins = map[:-1,3] cbins = bins.cumsum() bins = bins / cbins[-1] cbins = cbins[:-1] / cbins[-1] tem = I.reshape(1,I.size) > cbins.reshape(cbins.size,1) ind = np.sum(I.reshape(1,I.size) > cbins.reshape(cbins.size,1),axis=0) ind[ind > 6.0] = 6.0 bins = 1.0 / (bins+1e-20) cbins = np.append(np.array(0),cbins) I = (I - cbins[ind.astype(int)]) * bins[ind.astype(int)] I = map[ind,:3] * (1-I.reshape(I.size,1)) + map[ind+1,:3] * I.reshape(I.size,1) I[I<0] = 0 I[I>1] = 1 return I def error_colormap(): cols = np.array([ [0/3.0, 0.1875, 49, 54, 149], [0.1875/3.0, 0.375, 69, 117, 180], [0.375/3.0, 0.75, 116, 173, 209], [0.75/3.0, 1.5, 171, 217, 233], [1.5/3.0, 3, 224, 243, 248], [3/3.0, 6, 254, 224, 144], [6/3.0, 12, 253, 174, 97], [12/3.0, 24, 244, 109, 67], [24/3.0, 48, 215, 48, 39], [48/3.0, np.inf, 165, 0, 38 ]]) cols[:,2:] = cols[:,2:] / 255 return cols def disp_error_image(D_gt, D_est, tau, dilate_radius=1): E_D_gt_val = disp_error_map(D_gt,D_est) E0 = E_D_gt_val[0] D_val = E_D_gt_val[1] mask = E0/tau[0] > (E0 / abs(D_gt))/tau[1] E = E0 / tau[0] E[mask] = ((E0 / abs(D_gt))/tau[1])[mask] cols = error_colormap(); D_err = np.zeros(D_gt.shape+(3,)) for i in range(cols.shape[0]): (v,u) = np.where((D_val>0)*(E>=cols[i,0])*(E<=cols[i,1])) D_err[v,u,0] = cols[i,2] D_err[v,u,1] = cols[i,3] D_err[v,u,2] = cols[i,4] #TODO D_err = imdilate(D_err, strel('disk',dilate_radius)) #D_err = cv2.dilate(D_err, kernel=?) return D_err def disp_error_map(D_gt, D_est): D_gt_val = (D_gt>0) E = abs(D_gt-D_est) E[D_gt_val==0] = 0 return E, D_gt_val # Metrics def D1_error(D_gt,D_est,tau): E = abs(D_gt-D_est) n_err = ((D_gt>0)*(E>tau[0])*(E/(D_gt+1e-10)>tau[1])).sum().astype(float) n_total = (D_gt>0).sum() d_err = n_err/n_total return d_err def end_point_error(D_gt, D_est): E = abs(D_gt-D_est) n_total = (D_gt>0).sum() E[D_gt == 0] = 0 return E.sum() / n_total def N_pixel_error(D_gt, D_est, n): E = abs(D_gt-D_est) n_total = (D_gt>0).sum() n_err = ((D_gt>0)*(E>n)).sum().astype(float) return n_err / n_total def A_percent_error_quantile(D_gt, D_est, A): E = abs(D_gt-D_est).reshape(D_gt.size) E.sort() return E[int(A*E.size/100.0)] def sizes_equal(size1, size2): return size1[0] == size2[0] and size1[1] == size2[1] def DisplayError(indices, errs, err_names): for ind in indices: print((err_names[ind]+(': %f' % errs[ind])))
#!/usr/bin/env python3 ''' tsacheck - Check intregrity of downloaded files ''' import sys import os import sqlite3 import subprocess import hashlib # --------------------------------------------------------------------------- # def check(argv): '''Check integrity of downloaded files :param argv: The command line arguments given by the user :type argv: list ''' #Get directory try: if argv[1] == '-c': checkFile = True argv.pop(1) else: checkFile = False directory = os.path.normpath(os.path.abspath(argv[1])) except IndexError: checkFile = False directory = os.getcwd() dbPath = os.path.join(directory, "archive.db") if not os.path.isfile(dbPath): print("ERROR: No archive database found!") return try: #Connect to database db = connectDB(dbPath) r = db.execute("SELECT id,name,checksum FROM videos;") for item in r.fetchall(): filePath = os.path.join(directory, item[1]) #Check if file exists if not os.path.isfile(filePath): print("ERROR: File {} not found".format(item[1])) continue #Check file integrity if checkFile: cmd = ["ffmpeg", "-v", "error", "-i", filePath, "-f", "null", "-"] out, _ = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT).communicate() if out: print("ERROR: File \"{}\" corrupt!".format(item[1])) else: print("File \"{}\" check passed".format(item[1])) #Calculate checksum sha256 = hashlib.sha256() with open(filePath, "rb") as vf: for chunk in iter(lambda: vf.read(4096), b""): sha256.update(chunk) checksum = sha256.hexdigest() if item[2]: #Compare checksums if checksum == item[2]: print("File \"{}\" checksums match".format(item[1])) else: print("ERROR: File \"{}\" checksums mismatch".format(item[1])) else: print("File \"{}\" no checksum saved yet".format(item[1])) db.execute("UPDATE videos SET checksum = ? WHERE id = ?;", (checksum, item[0])) #Close database closeDB(db) except sqlite3.Error as e: print("ERROR: " + e) return # ########################################################################### # # --------------------------------------------------------------------------- # def connectDB(path): '''Connect to a database :param path: The path of the database :type path: string :raises: :class:``sqlite3.Error: Unable to connect to database :returns: Connection to the database :rtype: sqlite3.Connection ''' #Connect database dbCon = sqlite3.connect(path) #Return database connection return dbCon # ########################################################################### # # --------------------------------------------------------------------------- # def closeDB(dbCon): '''Close the connection to a database :param dbCon: Connection to the database :type dbCon: sqlite3.Connection :raises: :class:``sqlite3.Error: Unable to close database ''' if dbCon: dbCon.commit() dbCon.close() # ########################################################################### # # --------------------------------------------------------------------------- # if __name__ == "__main__": try: check(sys.argv) except KeyboardInterrupt: print("Aborted!") # ########################################################################### #
#!/usr/bin/env python # encoding: utf-8 # # Utility.py # Copyright (c) 2012 Thorsten Philipp <kyrios@kyri0s.de> # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in the # Software without restriction, including without limitation the rights to use, copy, # modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, subject to the # following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, # INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A # PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # import os import unittest import tempfile from subprocess import * class Cmd(object): """Run a binary""" def __init__(self,command,args=""): super(Cmd, self).__init__() self.command = command self.arguments = args self.isError = 0 self.error = [] self.response = [] def run(self): """Execute the command with all it's arguments.""" cmd = self.command + " " + self.arguments process = Popen(cmd,stdout=PIPE,stderr=PIPE,shell="true") stdout, stderr = process.communicate() self.response = stdout.splitlines() self.error = stderr.splitlines() if len(self.error) > 0: self.isError = 1 def response_asString(self): """return the response as a string (instead of line by line)""" return("\n".join(self.response)) def filetemp(): (fd, fname) = tempfile.mkstemp() return (os.fdopen(fd, "w+b"), fname) class UtilityTests(unittest.TestCase): def setUp(self): pass if __name__ == '__main__': unittest.main()
import os import imutils from flask import Flask, request, render_template, redirect, url_for, jsonify from random import randint import numpy as np import secrets from BGRemoval import * from orientation import * from smile import smile_inference from crop_rotate import * from poseNet import poseNet template_path = os.path.join('templates') static_path = os.path.join('static') app = Flask(__name__, template_folder=template_path, static_folder=static_path) dir_path = os.path.join('temp/') @app.route('/') def home(): return render_template('index.html') @app.route('/start', methods=['POST']) def start(): if 'files' not in request.files: return "file input error" img_path = dir_path + "temp.jpg" uploaded_files = request.files.getlist("files") file = uploaded_files[0] file.save(img_path) width = int(int(request.form['width']) * 3.7795275591) height = int(int(request.form['height']) * 3.7795275591) red = int(request.form['red']) green = int(request.form['green']) blue = int(request.form['blue']) single_face = False smile_check = False output = orientation(img_path) if output==None: print("No human faces detected") else: img,b = output if b==False: print("More than one face detected") else: single_face = True smile_status,value = smile_inference(img) BG = BGRemove() rgb = (red,green,blue) image = BG.inference(img,rgb) detector = MTCNN() rects = detector.detect_faces(image) aligned_face = AlignFace(image,rects) crop_img = poseNet(aligned_face) cv2.imwrite(dir_path + "crop_img.jpg", crop_img) data = {} if single_face == False: data["single_face"]=False else: data["single_face"]=False data["smile"]=[smile_status,value] return data if __name__ == "__main__": port = 7000 host = '0.0.0.0' app.run(host=host, port=port, threaded=True)
from grazyna.utils import register, init_plugin from grazyna.utils.event_loop import loop from grazyna import format from grazyna_rpg.db import get_session, get_engine from grazyna_rpg.randomized_map import RandomMap from grazyna_rpg.world_manager import WorldManager, PathNotFound from grazyna_rpg.enums import DirectionEnum from json import load as load_json @init_plugin def on_load(plugin, protocol): config = plugin.config engine = get_engine(config['db_uri']) plugin.temp['s'] = get_session(engine) #with open(config['world_path']) as fp: # json = load_json(fp) plugin.temp['world'] = world = WorldManager(RandomMap()) world.create_connections_with_levels() world.actual_level = world.seek_respawn() @loop(time_config_key="tick_time", default=10) def tick(protocol, plugin, config): pass @register(cmd='go') def go(bot, where: DirectionEnum): try: bot.plugin.temp['world'].move(where) except PathNotFound: bot.say('direction %s doesnt exist' % where.name) else: where_i_am(bot) #shorcuts methods for direction in DirectionEnum: x = register( reg='^%s *$' % direction.value, name='go_%s' % direction.name, )(lambda bot: go(bot, direction)) print(x.name) @register(cmd='where') def where_i_am(bot): level = bot.plugin.temp['world'].actual_level bot.say('{name}{type} dirs: {dirs}'.format( name=format.bold(level.name), type=format.bold(format.color( ' (%s)' % level.type.name if level.name else level.type.name, format.color.white )), dirs=' '.join( format.color(direction.value, format.color.light_green) for direction in level.directions ), )) @register(cmd='eat') def eat(bot, item): pass @register(cmd='kill') def kill(bot, who): pass @register(reg='^(\w+)(!{1,3})') def shout(bot, spell, power: lambda x: len(x)): pass
from __future__ import annotations from discord.ui import View from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from imp.better import BetterBot class BetterView(View): def __init__( self, client: BetterBot, timeout: Optional[int] = None ): super().__init__(timeout=timeout) self.client: BetterBot = client
from pathlib import Path import io import sys import os import math import numpy as np import requests import json import kornia.augmentation as K from base64 import b64encode from omegaconf import OmegaConf import imageio from PIL import ImageFile, Image ImageFile.LOAD_TRUNCATED_IMAGES = True from taming.models import cond_transformer, vqgan import transformers import torch from torch import nn, optim from torch.nn import functional as F from torchvision import transforms from torchvision.transforms import functional as TF try: import clip except ImportError: from CLIP import clip from utils import * from upscale_dream import ScaleImage class ReplaceGrad(torch.autograd.Function): @staticmethod def forward(ctx, x_forward, x_backward): ctx.shape = x_backward.shape return x_forward @staticmethod def backward(ctx, grad_in): return None, grad_in.sum_to_size(ctx.shape) class ClampWithGrad(torch.autograd.Function): @staticmethod def forward(ctx, input, min, max): ctx.min = min ctx.max = max ctx.save_for_backward(input) return input.clamp(min, max) @staticmethod def backward(ctx, grad_in): input, = ctx.saved_tensors return grad_in * (grad_in * (input - input.clamp(ctx.min, ctx.max)) >= 0), None, None class Text2Image: ''' Deep dream text with torch, vqgan, esrgan, clip and diffusion. Adjust settings for more illusive dreams. ''' def __init__(self, settings={}): self.settings = { # required 'seed': -1, 'prompt': '', 'width': 256, 'height': 256, 'clip_model': 'ViT-B/32', # available ['RN50', 'RN101', 'RN50x4', 'RN50x16', 'ViT-B/32','ViT-B/16'] 'vqgan_model': 'vqgan_imagenet_f16_16384', # available ["vqgan_imagenet_f16_16384", "vqgan_imagenet_f16_1024", "wikiart_16384", "coco", "sflckr"] 'initial_image': '', 'target_images': '', 'input_images': '', 'output_folder': 'vqgan-steps', 'output_name': '', 'noise_prompt_seeds': [], 'noise_prompt_weights': [], 'key_frames': True, 'generate_video': False, 'upscale_dream': False, 'upscale_strength': 2, 'video_length': 60, # seconds 'target_fps': 30, 'iterations_per_frame': 3, 'angle': 0, 'zoom': 1, 'translation_x': 0, 'translation_y': 0, 'display_frequency': 10, # additional 'vq_init_weight': 0.0, 'vq_step_size': 0.1, 'vq_cutn': 64, 'vq_cut_pow': 1.0, # model links 'pretrained_models': { 'vqgan_imagenet_f16_1024_ckpt': 'https://heibox.uni-heidelberg.de/f/140747ba53464f49b476/?dl=1', 'vqgan_imagenet_f16_1024_yaml': 'https://heibox.uni-heidelberg.de/f/6ecf2af6c658432c8298/?dl=1', 'vqgan_imagenet_f16_16384_ckpt': 'https://heibox.uni-heidelberg.de/f/867b05fc8c4841768640/?dl=1', 'vqgan_imagenet_f16_16384_yaml': 'https://heibox.uni-heidelberg.de/f/274fb24ed38341bfa753/?dl=1', 'coco_ckpt': 'https://dl.nmkd.de/ai/clip/coco/coco.ckpt', 'coco_yaml': 'https://dl.nmkd.de/ai/clip/coco/coco.yaml', 'wikiart_16384_ckpt': 'http://eaidata.bmk.sh/data/Wikiart_16384/wikiart_f16_16384_8145600.ckpt', 'wikiart_16384_yaml': 'http://eaidata.bmk.sh/data/Wikiart_16384/wikiart_f16_16384_8145600.yaml', 'sflckr_ckpt': 'https://heibox.uni-heidelberg.de/d/73487ab6e5314cb5adba/files/?p=%2Fcheckpoints%2Flast.ckpt&dl=1', 'sflckr_yaml': 'https://heibox.uni-heidelberg.de/d/73487ab6e5314cb5adba/files/?p=%2Fconfigs%2F2020-11-09T13-31-51-project.yaml&dl=1', } } for key, value in settings.items(): self.settings[key] = value self.dir_path = os.path.dirname(os.path.abspath(__file__)) os.makedirs(f"{self.dir_path}/{self.settings['output_folder']}/", exist_ok=True) self.down_pretrained_models() self.replace_grad = ReplaceGrad.apply self.clamp_with_grad = ClampWithGrad.apply self.model_name = self.settings['vqgan_model'] self.total_iterations = self.settings['video_length'] * self.settings['target_fps'] self.clean_cache() if self.settings['seed'] == -1: self.seed = None else: self.seed = self.settings['seed'] if self.settings['key_frames']: try: self.prompts = self.settings['prompt'] self.prompts_series = split_key_frame_text_prompts( parse_key_frames(self.settings['prompt']), self.total_iterations ) except RuntimeError: self.display_message( "WARNING: You have selected to use key frames, but you have not " "formatted `prompt` correctly for key frames.\n" ) self.prompts = f"0: ({self.settings['prompt']}:1)" self.prompts_series = split_key_frame_text_prompts( parse_key_frames(self.settings['prompt']), self.total_iterations ) try: self.target_images = self.settings['target_images'] self.target_images_series = split_key_frame_text_prompts( parse_key_frames(self.settings['target_images']), self.total_iterations ) except RuntimeError: self.display_message( "WARNING: You have selected to use key frames, but you have not " "formatted `target_images` correctly for key frames.\n" ) self.target_images = f"0: ({self.settings['target_images']}:1)" self.target_images_series = split_key_frame_text_prompts( parse_key_frames(self.settings['target_images']), self.total_iterations ) try: self.angle_series = get_inbetweens(parse_key_frames(self.settings['angle']), self.total_iterations) except RuntimeError: self.display_message( "WARNING: You have selected to use key frames, but you have not " "formatted `angle` correctly for key frames.\n" ) self.angle = f"0: ({self.settings['angle']})" self.angle_series = get_inbetweens(parse_key_frames(self.settings['angle']), self.total_iterations) try: self.zoom_series = get_inbetweens(parse_key_frames(self.settings['zoom']), self.total_iterations) except RuntimeError: self.display_message( "WARNING: You have selected to use key frames, but you have not " "formatted `zoom` correctly for key frames.\n" ) self.zoom = f"0: ({self.settings['zoom']})" self.zoom_series = get_inbetweens(parse_key_frames(self.settings['zoom']), self.total_iterations) try: self.translation_x_series = get_inbetweens(parse_key_frames(self.settings['translation_x']), self.total_iterations) except RuntimeError: self.display_message( "WARNING: You have selected to use key frames, but you have not " "formatted `translation_x` correctly for key frames.\n" ) self.translation_x = f"0: ({self.settings['translation_x']})" self.translation_x_series = get_inbetweens(parse_key_frames(self.settings['translation_x']), self.total_iterations) try: self.translation_y_series = get_inbetweens(parse_key_frames(self.settings['translation_y']), self.total_iterations) except RuntimeError: self.display_message( "WARNING: You have selected to use key frames, but you have not " "formatted `translation_y` correctly for key frames.\n" ) self.translation_y = f"0: ({self.settings['translation_y']})" self.translation_y_series = get_inbetweens(parse_key_frames(self.settings['translation_y']), self.total_iterations) try: self.iterations_per_frame_series = get_inbetweens( parse_key_frames(self.settings['iterations_per_frame']), self.total_iterations, integer=True ) except RuntimeError: self.display_message( "WARNING: You have selected to use key frames, but you have not " "formatted `iterations_per_frame` correctly for key frames.\n" ) self.iterations_per_frame = f"0: ({self.settings['iterations_per_frame']})" self.iterations_per_frame_series = get_inbetweens( parse_key_frames(self.settings['iterations_per_frame']), self.total_iterations, integer=True ) else: self.prompts = [phrase.strip() for phrase in self.settings['prompt'].split("|")] if self.prompts == ['']: self.prompts = [] self.target_images = self.settings['target_images'] if self.target_images == "None" or not self.target_images: self.target_images = [] else: self.target_images = self.target_images.split("|") self.target_images = [image.strip() for image in self.target_images] self.angle = float(self.settings['angle']) self.zoom = float(self.settings['zoom']) self.translation_x = float(self.settings['translation_x']) self.translation_y = float(self.settings['translation_y']) self.iterations_per_frame = int(self.settings['iterations_per_frame']) self.clean_cache() for var in ['device', 'model', 'perceptor', 'z']: try: del globals()[var] except: pass self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') self.display_message('Deep dream initiated') self.display_message(f'Using {self.device}') if self.prompts: self.display_message(f'I am dreaming about {self.prompts}') if self.target_images: self.display_message(f'Using dream state {self.target_images}') if self.seed == None: self.seed = torch.seed() torch.manual_seed(self.seed) self.display_message(f'Dream seed {self.seed}') # config self.vqgan_config = f'{self.dir_path}/models/{self.model_name}.yaml' self.vqgan_checkpoint = f'{self.dir_path}/models/{self.model_name}.ckpt' self.model = self.load_vqgan_model(self.vqgan_config, self.vqgan_checkpoint) if torch.cuda.device_count() > 1: self.display_message(f"Let's use {torch.cuda.device_count()} GPUs!") self.model = nn.DataParallel(self.model, device_ids=[_id for _id in range(torch.cuda.device_count())]) self.model.to(self.device) self.model = self.model.module else: self.model.to(self.device) self.perceptor = clip.load(self.settings['clip_model'], jit=False)[0].eval().requires_grad_(False).to(self.device) self.cut_size = self.perceptor.visual.input_resolution self.e_dim = self.model.quantize.e_dim self.f = 2**(self.model.decoder.num_resolutions - 1) self.make_cutouts = MakeCutouts(self.cut_size, self.settings['vq_cutn'], cut_pow=self.settings['vq_cut_pow']) self.n_toks = self.model.quantize.n_e self.toksX, self.toksY = self.settings['width'] // self.f, self.settings['height'] // self.f self.sideX, self.sideY = self.toksX * self.f, self.toksY * self.f self.z_min = self.model.quantize.embedding.weight.min(dim=0).values[None, :, None, None] self.z_max = self.model.quantize.embedding.weight.max(dim=0).values[None, :, None, None] self.next_loop_stop = False # ensure proper stop for GPU mem for i in range(self.total_iterations): if self.next_loop_stop: break if self.settings['key_frames']: self.prompts = self.prompts_series[i] self.prompts = [phrase.strip() for phrase in self.prompts.split("|")] if self.prompts == ['']: self.prompts = [] self.settings['prompt'] = self.prompts self.target_images = self.target_images_series[i] if self.target_images == "None" or not self.target_images: self.target_images = [] else: self.target_images = self.target_images.split("|") self.target_images = [image.strip() for image in self.target_images] self.settings['target_images'] = self.target_images self.angle = self.angle_series[i] self.zoom = self.zoom_series[i] self.translation_x = self.translation_x_series[i] self.translation_y = self.translation_y_series[i] self.iterations_per_frame = self.iterations_per_frame_series[i] if i == 0 and self.settings['initial_image'] != "": self.img_0 = read_image_workaround(self.settings['initial_image']) self.z, *_ = self.model.encode(TF.to_tensor(self.img_0).to(self.device).unsqueeze(0) * 2 - 1) elif i == 0 and not os.path.isfile(f'{self.dir_path}/{self.settings["output_folder"]}/{i:04}.png'): self.one_hot = F.one_hot( torch.randint(self.n_toks, [self.toksY * self.toksX], device=self.device), self.n_toks ).float() self.z = self.one_hot @ self.model.quantize.embedding.weight self.z = self.z.view([-1, self.toksY, self.toksX, self.e_dim]).permute(0, 3, 1, 2) else: self.img_0 = read_image_workaround(f'{self.dir_path}/{self.settings["output_folder"]}/{i:04}.png') self.center = (1 * self.img_0.shape[1]//2, 1 * self.img_0.shape[0]//2) self.trans_mat = np.float32( [[1, 0, self.translation_x], [0, 1, self.translation_y]] ) self.rot_mat = cv2.getRotationMatrix2D(self.center, self.angle, self.zoom) self.trans_mat = np.vstack([self.trans_mat, [0,0,1]]) self.rot_mat = np.vstack([self.rot_mat, [0,0,1]]) self.transformation_matrix = np.matmul(self.rot_mat, self.trans_mat) self.img_0 = cv2.warpPerspective( self.img_0, self.transformation_matrix, (self.img_0.shape[1], self.img_0.shape[0]), borderMode=cv2.BORDER_WRAP ) self.z, *_ = self.model.encode(TF.to_tensor(self.img_0).to(self.device).unsqueeze(0) * 2 - 1) i += 1 self.z_orig = self.z.clone() self.z.requires_grad_(True) self.opt = optim.Adam([self.z], lr=self.settings['vq_step_size']) self.normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]) self.pMs = [] for prompt in self.prompts: txt, weight, stop = parse_prompt(prompt) self.embed = self.perceptor.encode_text(clip.tokenize(txt).to(self.device)).float() self.pMs.append(Prompt(self.embed, self.replace_grad, weight, stop).to(self.device)) for prompt in self.target_images: path, weight, stop = parse_prompt(prompt) self.img = resize_image(Image.open(path).convert('RGB'), (self.sideX, self.sideY)) self.batch = self.make_cutouts(TF.to_tensor(self.img).unsqueeze(0).to(self.device)) self.embed = self.perceptor.encode_image(self.normalize(self.batch)).float() self.pMs.append(Prompt(self.embed, self.replace_grad, weight, stop).to(self.device)) for seed, weight in zip(self.settings['noise_prompt_seeds'], self.settings['noise_prompt_weights']): gen = torch.Generator().manual_seed(seed) self.embed = torch.empty([1, self.perceptor.visual.output_dim]).normal_(generator=gen) self.pMs.append(Prompt(self.embed, self.replace_grad, weight).to(self.device)) try: self.dream(i) except KeyboardInterrupt: self.next_loop_stop = True pass # upscale/gen video if self.settings['upscale_dream']: scale_settings = { 'input': f'{self.dir_path}/{self.settings["output_folder"]}', 'output': f'{self.dir_path}/{self.settings["output_folder"]}-upscaled', 'suffix': '', 'netscale': int(self.settings['upscale_strength']), 'outscale': int(self.settings['upscale_strength']) } out_folder = f'{self.dir_path}/{self.settings["output_folder"]}-upscaled' ScaleImage(scale_settings) else: out_folder = f'{self.dir_path}/{self.settings["output_folder"]}' if self.settings['generate_video']: frames_to_video(out_folder, f'{self.dir_path}/out.mp4', self.settings['target_fps']) def dream(self, i): x = 0 while True: if x >= self.iterations_per_frame: break else: self.train(i) x += 1 def train(self, i): self.opt.zero_grad() lossAll = self.ascend_txt(i, True) if i % self.settings['display_frequency'] == 0: self.checkin(i, lossAll) loss = sum(lossAll) loss.backward() self.opt.step() with torch.no_grad(): self.z.copy_(self.z.maximum(self.z_min).minimum(self.z_max)) def save_output(self, i, img): if self.settings['output_name'] == '': filename = f"{self.dir_path}/{self.settings['output_folder']}/{i:04}.png" else: filename = f"{self.dir_path}/{self.settings['output_folder']}/{self.settings['output_name']}.png" imageio.imwrite(filename, np.array(img)) def ascend_txt(self, i, save): out = self.synth(self.z) iii = self.perceptor.encode_image(self.normalize(self.make_cutouts(out))).float() result = [] if self.settings['vq_init_weight']: result.append(F.mse_loss(self.z, self.z_orig) * self.settings['vq_init_weight'] / 2) for prompt in self.pMs: result.append(prompt(iii)) img = np.array(out.mul(255).clamp(0, 255)[0].cpu().detach().numpy().astype(np.uint8))[:,:,:] img = np.transpose(img, (1, 2, 0)) if save: self.save_output(i, img) return result @torch.no_grad() def checkin(self, i, losses): losses_str = ', '.join(f'{loss.item():g}' for loss in losses) self.display_message(f'i: {i}, loss: {sum(losses).item():g}, losses: {losses_str}') out = self.synth(self.z) TF.to_pil_image(out[0].cpu()).save('progress.png') def vector_quantize(self, x, codebook): d = x.pow(2).sum(dim=-1, keepdim=True) + codebook.pow(2).sum(dim=1) - 2 * x @ codebook.T indices = d.argmin(-1) x_q = F.one_hot(indices, codebook.shape[0]).to(d.dtype) @ codebook return self.replace_grad(x_q, x) def synth(self, z): z_q = self.vector_quantize(z.movedim(1, 3), self.model.quantize.embedding.weight).movedim(3, 1) return self.clamp_with_grad(self.model.decode(z_q).add(1).div(2), 0, 1) def display_message(self, msg): print(msg) def clean_cache(self): torch.cuda.empty_cache() with torch.no_grad(): torch.cuda.empty_cache() def load_vqgan_model(self, config_path, checkpoint_path): config = OmegaConf.load(config_path) if config.model.target == 'taming.models.vqgan.VQModel': model = vqgan.VQModel(**config.model.params) model.eval().requires_grad_(False) model.init_from_ckpt(checkpoint_path) elif config.model.target == 'taming.models.cond_transformer.Net2NetTransformer': parent_model = cond_transformer.Net2NetTransformer(**config.model.params) parent_model.eval().requires_grad_(False) parent_model.init_from_ckpt(checkpoint_path) model = parent_model.first_stage_model else: raise ValueError(f'unknown model type: {config.model.target}') del model.loss return model def stream_down(self, url, path): self.display_message(f'Model down {self.settings["vqgan_model"]} in progress') with requests.get(url, stream=True) as r: r.raise_for_status() with open(path, 'wb') as f: for chunk in r.iter_content(chunk_size=8192): f.write(chunk) self.display_message(f'Model down {self.settings["vqgan_model"]} done') def down_pretrained_models(self): models_path = f'{self.dir_path}/models/' os.makedirs(models_path, exist_ok=True) if os.path.exists(models_path + self.settings['vqgan_model'] + '.ckpt') == False: self.stream_down( self.settings['pretrained_models'][f'{self.settings["vqgan_model"]}_ckpt'], models_path + f'{self.settings["vqgan_model"]}.ckpt' ) self.stream_down( self.settings['pretrained_models'][f'{self.settings["vqgan_model"]}_yaml'], models_path + f'{self.settings["vqgan_model"]}.yaml' ) # total iterations = video_length * target_fps # key_frames = True, allows setup such as 10: (Apple: 1| Orange: 0), 20: (Apple: 0| Orange: 1| Peach: 1) # from frame 0 to frame 10 show Apple, from frame 10 to 20 show Orange & Peach if __name__ == "__main__": settings = { 'key_frames': True, 'generate_video': True, 'video_length': 6, # seconds 'target_fps': 30, 'upscale_dream': True, 'upscale_strength': 2, # available [2, 4] -> 2x or 4x the generated output 'initial_image': '', # start from image 'target_images': '', # target the shape 'prompt': '10: (Apple: 1| Orange: 0), 20: (Apple: 0| Orange: 1| Peach: 1)', 'width': 256, 'height': 256, 'angle': '10: (0), 30: (10), 50: (0)', 'zoom': '10: (1), 30: (1.2), 50: (1)', 'translation_x': '0: (0)', 'translation_y': '0: (0)', 'iterations_per_frame': '0: (1)', 'vqgan_model': 'vqgan_imagenet_f16_16384', # available ["vqgan_imagenet_f16_16384", "vqgan_imagenet_f16_1024", "wikiart_16384", "coco", "sflckr"] 'clip_model': 'ViT-B/32' # available ['RN50', 'RN101', 'RN50x4', 'RN50x16', 'ViT-B/32','ViT-B/16'] } Text2Image(settings)
# SPDX-FileCopyrightText: 2021 Melissa LeBlanc-Williams for Adafruit Industries # # SPDX-License-Identifier: MIT """Pin definitions for the Khadas VIM3.""" from adafruit_blinka.microcontroller.amlogic.a311d import pin GPIOAO_0 = pin.GPIO496 GPIOAO_1 = pin.GPIO497 GPIOAO_2 = pin.GPIO498 GPIOAO_3 = pin.GPIO499 GPIOAO_4 = pin.GPIO500 GPIOAO_5 = pin.GPIO501 GPIOAO_6 = pin.GPIO502 GPIOAO_7 = pin.GPIO503 GPIOAO_8 = pin.GPIO504 GPIOAO_9 = pin.GPIO505 GPIOAO_10 = pin.GPIO506 GPIOAO_11 = pin.GPIO507 GPIOE_0 = pin.GPIO508 GPIOE_1 = pin.GPIO509 GPIOE_2 = pin.GPIO510 GPIOZ_0 = pin.GPIO427 GPIOZ_1 = pin.GPIO428 GPIOZ_2 = pin.GPIO429 GPIOZ_3 = pin.GPIO430 GPIOZ_4 = pin.GPIO431 GPIOZ_5 = pin.GPIO432 GPIOZ_6 = pin.GPIO433 GPIOZ_7 = pin.GPIO434 GPIOZ_8 = pin.GPIO435 GPIOZ_9 = pin.GPIO436 GPIOZ_10 = pin.GPIO437 GPIOZ_11 = pin.GPIO438 GPIOZ_12 = pin.GPIO439 GPIOZ_13 = pin.GPIO440 GPIOZ_14 = pin.GPIO441 GPIOZ_15 = pin.GPIO442 GPIOH_0 = pin.GPIO443 GPIOH_1 = pin.GPIO444 GPIOH_2 = pin.GPIO445 GPIOH_3 = pin.GPIO446 GPIOH_4 = pin.GPIO447 GPIOH_5 = pin.GPIO448 GPIOH_6 = pin.GPIO449 GPIOH_7 = pin.GPIO450 GPIOH_8 = pin.GPIO451 BOOT_0 = pin.GPIO452 BOOT_1 = pin.GPIO453 BOOT_2 = pin.GPIO454 BOOT_3 = pin.GPIO455 BOOT_4 = pin.GPIO456 BOOT_5 = pin.GPIO457 BOOT_6 = pin.GPIO458 BOOT_7 = pin.GPIO459 BOOT_8 = pin.GPIO460 BOOT_9 = pin.GPIO461 BOOT_10 = pin.GPIO462 BOOT_11 = pin.GPIO463 BOOT_12 = pin.GPIO464 BOOT_13 = pin.GPIO465 BOOT_14 = pin.GPIO466 BOOT_15 = pin.GPIO467 GPIOC_0 = pin.GPIO468 GPIOC_1 = pin.GPIO469 GPIOC_2 = pin.GPIO470 GPIOC_3 = pin.GPIO471 GPIOC_4 = pin.GPIO472 GPIOC_5 = pin.GPIO473 GPIOC_6 = pin.GPIO474 GPIOC_7 = pin.GPIO475 GPIOA_0 = pin.GPIO460 GPIOA_1 = pin.GPIO461 GPIOA_2 = pin.GPIO462 GPIOA_3 = pin.GPIO463 GPIOA_4 = pin.GPIO464 GPIOA_5 = pin.GPIO465 GPIOA_6 = pin.GPIO466 GPIOA_7 = pin.GPIO467 GPIOA_8 = pin.GPIO468 GPIOA_9 = pin.GPIO469 GPIOA_10 = pin.GPIO470 GPIOA_11 = pin.GPIO471 GPIOA_12 = pin.GPIO472 GPIOA_13 = pin.GPIO473 GPIOA_14 = pin.GPIO474 GPIOA_15 = pin.GPIO475 GPIOX_0 = pin.GPIO476 GPIOX_1 = pin.GPIO477 GPIOX_2 = pin.GPIO478 GPIOX_3 = pin.GPIO479 GPIOX_4 = pin.GPIO480 GPIOX_5 = pin.GPIO481 GPIOX_6 = pin.GPIO482 GPIOX_7 = pin.GPIO483 GPIOX_8 = pin.GPIO484 GPIOX_9 = pin.GPIO485 GPIOX_10 = pin.GPIO486 GPIOX_11 = pin.GPIO487 GPIOX_12 = pin.GPIO488 GPIOX_13 = pin.GPIO489 GPIOX_14 = pin.GPIO490 GPIOX_15 = pin.GPIO491 GPIOX_16 = pin.GPIO492 GPIOX_17 = pin.GPIO493 GPIOX_18 = pin.GPIO494 GPIOX_19 = pin.GPIO495 SCL = pin.GPIOX_18 SDA = pin.GPIOX_17 SCLK = pin.SPI0_SCLK MCLK0 = pin.SPI0_MCLK0 MISO = pin.SPI0_SDO MOSI = pin.SPI0_SDI D0 = GPIOAO_10 # PIN_13 D1 = GPIOH_6 # PIN_15 D2 = GPIOH_7 # PIN_16 D3 = GPIOAO_1 # PIN_18 D4 = GPIOAO_2 # PIN_19 D5 = GPIOA_15 # PIN_22 D6 = GPIOA_14 # PIN_23 D7 = GPIOAO_2 # PIN_25 D8 = GPIOAO_3 # PIN_26 D9 = GPIOA_1 # PIN_29 D10 = GPIOA_0 # PIN_30 D11 = GPIOA_3 # PIN_31 D12 = GPIOA_2 # PIN_32 D13 = GPIOA_4 # PIN_33 D14 = GPIOH_5 # PIN_35 D15 = GPIOH_4 # PIN_37 D16 = GPIOZ_15 # PIN_39
#!/usr/bin/env python # -*- encoding: utf-8 -*- """ @File : receive.py @Time : 2019/8/6 10:15 @Author : Crisimple @Github : https://crisimple.github.io/ @Contact : Crisimple@foxmail.com @License : (C)Copyright 2017-2019, Micro-Circle @Desc : None """ import xml.etree.ElementTree as ET def parse_xml(webData): if len(webData) == 0: return None xmlData = ET.fromstring(webData) msg_type = xmlData.find('MsgType').text if msg_type == 'text': return TextMsg(xmlData) elif msg_type == 'image': return ImageMsg(xmlData) elif msg_type == 'voice': return VoiceMsg(xmlData) elif msg_type == 'video': return VideoMsg(xmlData) elif msg_type == 'shortvideo': return ShortVideoMsg(xmlData) elif msg_type == 'event': return EventMsg(xmlData) class Msg(object): def __init__(self, xmlData): self.ToUserName = xmlData.find('ToUserName').text self.FromUserName = xmlData.find('FromUserName').text self.CreateTime = xmlData.find('CreateTime').text self.MsgType = xmlData.find('MsgType').text # self.MsgId = xmlData.find('MsgId').text class TextMsg(Msg): def __init__(self, xmlData): Msg.__init__(self, xmlData) self.Content = xmlData.find('Content').text.encode('utf-8') class ImageMsg(Msg): def __init__(self, xmlData): Msg.__init__(self, xmlData) self.PicUrl = xmlData.find('PicUrl').text self.MediaId = xmlData.find('MediaId').text class VoiceMsg(Msg): def __init__(self, xmlData): Msg.__init__(self, xmlData) self.MediaId = xmlData.find('MediaId').text self.Format = xmlData.find('Format').text class VideoMsg(Msg): def __int__(self, xmlData): Msg.__init__(self, xmlData) self.MediaId = xmlData.find('MediaId').text self.ThumbMediaId = xmlData.find('ThumbMediaId').text class ShortVideoMsg(Msg): def __int__(self, xmlData): Msg.__init__(self, xmlData) self.MediaId = xmlData.find('MediaId').text self.ThumbMediaId = xmlData.find('ThumbMediaId').text class EventMsg(Msg): def __init__(self, xmlData): Msg.__init__(self, xmlData) self.Event = xmlData.find('Event').text if self.Event.lower() in ['click']: self.EventKey = xmlData.find('EventKey').text elif self.Event == 'location_select': self.Location_X = xmlData.find('SendLocationInfo/Location_X').text self.Location_Y = xmlData.find('SendLocationInfo/Location_Y').text self.Scale = xmlData.find('SendLocationInfo/Scale').text self.Label = xmlData.find('SendLocationInfo/Label').text self.Poiname = xmlData.find('SendLocationInfo/Poiname').text elif self.Event == 'LOCATION': self.Longitude = xmlData.find('Longitude').text self.Latitude = xmlData.find('Latitude').text self.Precision = xmlData.find('Precision').text
class User: def __init__(self, id, first_name, last_name, email, account_creation_date): self.id = id self.first_name = first_name self.last_name = last_name self.email = email self.account_creation_date = account_creation_date
from typing import Dict, Any import json import datetime import xml.sax.saxutils import re from ask_sdk_model import (RequestEnvelope, Application, Session, Context, Request, User, Permissions, Device, SupportedInterfaces, LaunchRequest, IntentRequest, Intent, Slot, IntentConfirmationStatus, SlotConfirmationStatus, # Response, ResponseEnvelope) from ask_sdk_model.interfaces.system.system_state import SystemState from ask_sdk_model.interfaces.audioplayer.audio_player_interface import AudioPlayerInterface from ask_sdk_model.slu.entityresolution.resolutions import Resolutions from ask_sdk_model.slu.entityresolution.resolution import Resolution from ask_sdk_model.slu.entityresolution.status import Status from ask_sdk_model.slu.entityresolution.status_code import StatusCode from ask_sdk_core.serialize import DefaultSerializer from lxml import etree import requests SESSION_ID = "amzn1.echo-api.session.0000" USER_ID = "amzn1.ask.account.0000" DEVICE_ID = "amzn1.ask.device.0000" APPLICATION_ID = "amzn1.ask.skill.6f9a57d5-4e2b-452c-9fd3-037240133075" API_ENDPOINT = "https://api.amazonalexa.com" REQUEST_ID_BASE = "amzn1.echo-api.request.0000" RESOLUTION_AUTHORITY_BASE = "amzn1.er-authority.echo-sdk.amzn1.ask.skill.0000" def create_request_envelope(session_attributes: Dict[str, Any], request: Request) -> RequestEnvelope: """Creates a request envelope.""" application = Application( application_id=APPLICATION_ID ) user = User( user_id=USER_ID, access_token=None, permissions=Permissions( consent_token=None ) ) request_envelope = RequestEnvelope( version="1.0", session=Session( new=False, session_id=SESSION_ID, user=user, attributes=session_attributes, application=application ), context=Context( system=SystemState( application=application, user=user, device=Device( device_id=DEVICE_ID, supported_interfaces=SupportedInterfaces( audio_player=AudioPlayerInterface(), display=None, video_app=None ) ), api_endpoint=API_ENDPOINT, api_access_token=None ) ), request=request ) return request_envelope def create_launch_request() -> LaunchRequest: """Creates an launch request.""" launch_request = LaunchRequest( request_id='{}.0'.format(REQUEST_ID_BASE), timestamp=datetime.datetime.utcnow(), locale='en-US' ) return launch_request def create_intent_request(round_index: int, user_utterance: str) -> IntentRequest: """Creates an intent request.""" intent_request = IntentRequest( request_id='{}.{}'.format(REQUEST_ID_BASE, round_index), timestamp=datetime.datetime.utcnow(), locale='en-US', dialog_state=None, intent=Intent( name='ConverseIntent', slots=dict( Text=Slot( name='Text', value=user_utterance, confirmation_status=SlotConfirmationStatus.NONE, resolutions=Resolutions( resolutions_per_authority=[ Resolution( authority='{}.TEXT'.format(RESOLUTION_AUTHORITY_BASE), status=Status( code=StatusCode.ER_SUCCESS_NO_MATCH ) ) ] ) ) ), confirmation_status=IntentConfirmationStatus.NONE ) ) return intent_request def send_request(endpoint_url: str, request_envelope: RequestEnvelope) -> ResponseEnvelope: """Sends a request to the endpoint and returns the response.""" serializer = DefaultSerializer() r = requests.post( endpoint_url, json=serializer.serialize(request_envelope), ) response_envelope = serializer.deserialize( payload=r.text, obj_type=ResponseEnvelope ) return response_envelope def unescape_ssml(text: str) -> str: """Unescapes XML control characters in SSML. See: https://console.bluemix.net/docs/services/text-to-speech/http.html#escape We first unescape the text in case it already contains escaped control characters. """ return xml.sax.saxutils.unescape(text, {"&quot;": '"', "&apos;": "'"}) def remove_ssml_tags(text: str) -> str: root = etree.fromstring(text) text = u' '.join(root.itertext()) return re.sub(r' +', ' ', text)
import pandas as pd import numpy as np import os # ログイン情報を管理する class Management: def __init__(self, user_id, password): self.user = user_id self.password = password self.file_name = './lib/User/userManagement.csv' # 未登録か否かを判断して未登録で未使用のユーザ名なら登録 def signup(self): if os.path.exists(self.file_name): df = pd.read_csv(self.file_name) users = list(df['User']) passwords = list(df['Password']) if self.user in users: flg = False else: self.registration(user=users, password=passwords) flg = True else: self.registration(user=[], password=[]) flg = True return flg # 未登録か否かを判断する。 def checkLogin(self): if os.path.exists(self.file_name): df = pd.read_csv(self.file_name) flg = self.checkUserPassword(df=df) return flg else: return False # 登録ユーザの更新 def save_data(self, df): df.to_csv(self.file_name, index=False) # 新規登録 def registration(self, user, password): user.append(self.user) password.append(self.password) data = np.array([user, password]).T print('siginup;', data) df = pd.DataFrame(data=data, columns=['User','Password']) self.save_data(df=df) # 既に使用されているユーザかを確認。 def checkUserPassword(self, df): users = list(df['User']) if self.user in users: password = list(df[df['User'] == self.user]['Password'])[0] if password == self.password: return True else: return False else: return False
ORDER = ('six', 'five', 'four', 'three', 'two', 'one') YIN_YANG = {'hhh': '----o----', 'hht': '---- ----', 'htt': '---------', 'ttt': '----x----'} def oracle(arr): return '\n'.join(YIN_YANG[''.join(sorted(a[1:]))] for a in sorted(arr, key=lambda b: ORDER.index(b[0])))
# Implementation of Singly Linked list # Class Node: It creates node which is used by Class SinglyLinkedList # # node = Node() is not a member of singlylinkedlist class just because we have to create multiple Node instance per one # singlyLinkedList. Node instance is created only when user enter a data # 3 pointers are declared 1. head: points to first node always # 2. tail: points to last node always # 3. current_node: varies position as per requirements class Node: def __init__(self,key=None): self.key=key self.next=None class SinglyLinkedList(object): """docstring for SinglyLinkedList""" def __init__(self,head=None): """Initializing a linked list with the valid argument, if nothing given default is None. So the head points to None Otherwise it points to the node. """ self.head = head def pushFront(self,key): """When a element named key is pushed then it create a node to which the head pointer points to""" node = Node(key) #print(node.key) if self.head is None: self.head = node else: node.next = self.head self.head = node def topFront(self): """No parameter taken return""" if self.head is None: return "List is Empty" return self.head.key def popFront(self): """doc string""" if self.head: self.head = self.head.next else: print("list is empty") def pushBack(self,key): """Find the last element and then add node after that""" node = Node(key) current_node = self.head if self.head is None: self.head = node else: while current_node.next: current_node = current_node.next current_node.next = node def topBack(self): """ returns the last element of the linked list""" current_node = self.head if self.head is None: return "list is empty" else: while current_node.next: current_node = current_node.next return current_node.key def printD(self): current_node = self.head while current_node.next: print(self.head.key) current_node = current_node.next def popBack(self): """ Pop up the end node """ current_node = self.head if self.head is None: print("list is empty") return None else: while current_node.next.next: current_node = current_node.next #return current_node.next.key current_node.next = None def find(self, key): """To search the first occurance of the key """ current_node = self.head c=0 if self.head is None: return "List is empty" else: while current_node.next: c+=1 if current_node.key == key: return c current_node = current_node.next # def erase(self,key): # """doc string""" # pass # def isEmpty(self): # """doc string""" # pass # def addBefore(self,key): # """doc string""" # pass # def addAfter(self,key): # """doc string""" # pass # def __str__(self): # """doc string""" # pass # def __repr__(self): # """doc string""" # pass s = SinglyLinkedList() s.pushFront(1) print("1______") print(s.topFront()) print(s.topBack()) s.pushFront(2) print("2___1_____") print(s.topFront()) print(s.topBack()) s.pushBack(3) s.pushBack(4) s.pushFront(5) print("5__2___1___3__4") print(s.topFront()) print(s.topBack()) s.popBack() print("5__2___1___3__") print(s.topFront()) print(s.topBack()) s.popFront() print("2___1_____3") print(s.topFront()) print(s.topBack()) # print(s.topFront()) # print(s.topBack()) # print("I am 2 and key is {}".format(s.head.key)) # print("I am 2 and next key is {}".format(s.head.next.key)) # s.pushFront(3) # print("I am 3 and key is {}".format(s.head.key)) # print("I am 3 and next key is {}".format(s.head.next.key)) # s.pushFront(4) # print("I am 4 and key is {}".format(s.head.key)) # print("I am 4 and next key is {}".format(s.head.next.key)) # s.pushFront(5) # print("I am 5 and key is {}".format(s.head.key)) # print("I am 5 and next key is {}".format(s.head.next.key))
from datetime import datetime import json from pathlib import Path from datetime import timedelta user_exp_database_filename = Path("database_files/user_exp_database.json") user_exp_database = None addedExp = 100 role_name_list =["goku", "vegeta", "frieza", "cell", "boo", "gohan", "18", "17", "trunks", "piccolo", "krillyn", "tien", "yamacha", "yajirobe", "mortals"] role_exp_amount = [90000, 78000, 67000, 57000, 48000, 40000, 32000, 26000, 20000, 14000, 10000, 6000, 3000, 1000, 0] def get_user_exp_database(): global user_exp_database return user_exp_database def set_user_exp_database(): global user_exp_database try: f = open(user_exp_database_filename, 'r+') except FileNotFoundError: f = open(user_exp_database_filename, 'w+') user_exp_database= json.load(f) return def save_user_exp_database(): local_user_exp_database = get_user_exp_database() with open(user_exp_database_filename, 'w') as outfile: json.dump(local_user_exp_database, outfile) return def check_user_in_exp_database(user_id): local_user_exp_database = get_user_exp_database() if user_id in local_user_exp_database: return True else: return False def add_new_user_to_exp_database(userID, userName): local_user_exp_database = get_user_exp_database() local_user_exp_database[userID] = {"name": userName, "id": userID, "exp": 0, "last_given_exp": "" } save_user_exp_database() return def add_exp(userID): local_user_exp_database = get_user_exp_database() currrentExp = local_user_exp_database[userID]["exp"] local_user_exp_database[userID]["exp"] = currrentExp + addedExp local_user_exp_database[userID]["last_given_exp"] = datetime.today().strftime("%b-%d-%Y, %H:%M:%S") save_user_exp_database() return def get_user_exp(userID): local_user_exp_database = get_user_exp_database() return local_user_exp_database[userID]["exp"] def get_last_time_user_given_exp(userID): local_user_exp_database = get_user_exp_database() return local_user_exp_database[userID]["last_given_exp"] def can_user_get_exp(userID): last_given_exp = get_last_time_user_given_exp(userID) last_given_exp = last_given_exp.strptime(last_given_exp, '%b-%d-%Y, %H:%M:%S') if datetime.now() < last_given_exp + timedelta(minutes= 2): return False else: return True def ready(): set_user_exp_database() return """ formatted = datetime.datetime.today().strftime("%b-%d-%Y, %H:%M:%S") date = datetime.datetime.strptime(formatted, '%b-%d-%Y, %H:%M:%S') print(date) """
mySocialMedia_posts = [ {'Likes': 21, 'Comments': 2}, {'Likes': 13, 'Comments': 2, 'Shares': 1}, {'Likes': 33, 'Comments': 8, 'Shares': 3}, {'Comments': 4, 'Shares': 2}, {'Comments': 1, 'Shares': 1}, {'Likes': 19, 'Comments': 3} ] total_likes = 0 for n,post in enumerate(mySocialMedia_posts): try: # This is just a test. It would probably be better to use "post.get('Likes', 0)" print(n, end='--') total_likes = total_likes + post['Likes'] except KeyError as msg: print(f"The post {post} doesn't have {msg}.", end='--') continue else: continue finally: # Checking if finally really is executed before continuing. print(n) print("\n", total_likes, sep='')
############# Credits and version info ############# # Definition generated from Assembly XML tag def # Date generated: 2018/12/03 04:56 # # revision: 1 author: Assembly # Generated plugin from scratch. # revision: 2 author: -DeToX- # Mapped out the Raw Entry Table struct # revision: 3 author: Lord Zedd # Matching Zonesets # revision: 4 author: Moses_of_Egypt # Cleaned up and converted to SuPyr definition # #################################################### from ..common_descs import * from .objs.tag import * from .play import play_body from supyr_struct.defs.tag_def import TagDef zone_resource_type = Struct("resource_type", BytesRaw("guid", SIZE=16), Array("unknown_array", SUB_STRUCT=SInt16("unknown"), SIZE=4), h3_string_id("name"), ENDIAN=">", SIZE=28 ) zone_resource_structure_type = Struct("resource_structure_type", BytesRaw("guid", SIZE=16), h3_string_id("name"), ENDIAN=">", SIZE=20 ) zone_tag_resource_resource_fixup = Struct("resource_fixup", SInt32("block_offset"), h3_page_offset_info("address_info"), ENDIAN=">", SIZE=8, COMMENT=""" Block Offset: Offset in tag data sub-buffer. Address: Fix-up address(either in the data sub-buffer, or a cache-resource offset.""" ) zone_tag_resource_resource_definition_fixup = Struct("resource_definition_fixup", h3_page_offset_info("offset_info"), dyn_senum32("resource_structure_type", DYN_NAME_PATH="........resource_structure_types.STEPTREE[DYN_I].name.string", WIDGET_WIDTH=32 ), ENDIAN=">", SIZE=8 ) zone_tag_resource = Struct("tag_resource", h3_dependency("parent_tag"), UInt16("salt"), dyn_senum8("resource_type", DYN_NAME_PATH=".....resource_types.STEPTREE[DYN_I].name.string", WIDGET_WIDTH=32 ), UInt8("flags"), SInt32("fixup_info_offset"), SInt32("fixup_info_size"), SInt32("secondary_fixup_info_offset"), Bool16("pages_used", "primary", "secondary", ), SInt16("segment_index"), h3_page_offset_info("root_definition_address_info"), h3_reflexive("resource_fixups", zone_tag_resource_resource_fixup), h3_reflexive("resource_definition_fixups", zone_tag_resource_resource_definition_fixup), ENDIAN=">", SIZE=64, ) zone_zoneset_raw_pool = Struct("raw_pool", Bool32("active_members", *("active_member_%s" % i for i in range(32))), ENDIAN=">", SIZE=4 ) zone_zoneset_resource_type = QStruct("resource_type", UInt16("unknown0"), UInt16("unknown1"), UInt16("unknown2"), UInt16("unknown3"), UInt16("unknown4"), UInt16("unknown5"), UInt16("unknown6"), UInt16("unknown7"), UInt16("unknown8"), UInt16("unknown9"), #BytesRaw("unknown", SIZE=20, VISIBLE=False), VISIBLE=False, ENDIAN=">", SIZE=20 ) zone_zoneset = Struct("zoneset", h3_reflexive("required_raw_pool", zone_zoneset_raw_pool), BytesRaw("unknown_0", SIZE=12, VISIBLE=False), h3_reflexive("optional_raw_pool", zone_zoneset_raw_pool), h3_reflexive("optional_raw_pool_2", zone_zoneset_raw_pool), BytesRaw("unknown_1", SIZE=20, VISIBLE=False), h3_string_id("set_name"), h3_reflexive("resource_types", zone_zoneset_resource_type), h3_reflexive("required_tag_pool", zone_zoneset_raw_pool), h3_reflexive("optional_tag_pool", zone_zoneset_raw_pool), BytesRaw("unknown_2", SIZE=12, VISIBLE=False), ENDIAN=">", SIZE=120 ) zone_scenario_zoneset_group = Struct("scenario_zoneset_group", h3_string_id("name"), SInt32("bsp_group_index"), Bool32("import_loaded_bsps", *("bsp_%s" % i for i in range(32))), Bool32("loaded_bsps", *("bsp_%s" % i for i in range(32))), Bool32("loaded_designer_zonesets", *("set_%s" % i for i in range(32))), Bool32("unknown_loaded_designer_zonesets", *("set_%s" % i for i in range(32))), Bool32("unloaded_designer_zonesets", *("set_%s" % i for i in range(32))), Bool32("loaded_cinematic_zonesets", *("set_%s" % i for i in range(32))), SInt32("bsp_atlas_index"), ENDIAN=">", SIZE=36 ) zone_scenario_bsp = Struct("scenario_bsp", h3_dependency("bsp"), ENDIAN=">", SIZE=16 ) zone_unknown_4 = QStruct("unknown_4", UInt32("unknown0"), UInt32("unknown1"), UInt32("unknown2"), UInt32("unknown3"), UInt32("unknown4"), #BytesRaw("unknown", SIZE=20, VISIBLE=False), VISIBLE=False, ENDIAN=">", SIZE=20 ) zone_prediction_a = QStruct("prediction_a", UInt32("key"), ENDIAN=">", SIZE=4 ) zone_prediction_b = QStruct("prediction_b", SInt16("overall_index"), SInt16("a_count"), SInt32("a_index"), ENDIAN=">", SIZE=8 ) zone_prediction_c = QStruct("prediction_c", SInt16("overall_index"), SInt16("b_index"), ENDIAN=">", SIZE=4 ) zone_prediction_d_tag = QStruct("prediction_d_tag", SInt16("c_count"), SInt16("c_index"), SInt16("a_count"), SInt16("a_index"), ENDIAN=">", SIZE=8 ) zone_prediction_d2_tag = Struct("prediction_d2_tag", dependency_uint32("tag", VISIBLE=False), SInt32("first_value"), SInt32("second_value"), ENDIAN=">", SIZE=12 ) zone_body = Struct("tagdata", SEnum16("map_type", *zone_map_type), SInt16("flags"), h3_reflexive("resource_types", zone_resource_type, DYN_NAME_PATH='.name.string'), h3_reflexive("resource_structure_types", zone_resource_structure_type, DYN_NAME_PATH='.name.string'), Struct("play_data", INCLUDE=play_body), h3_reflexive("tag_resources", zone_tag_resource), Struct("zonesets", h3_reflexive("designer", zone_zoneset), h3_reflexive("global", zone_zoneset), BytesRaw("unknown_0", SIZE=12, VISIBLE=False), h3_reflexive("unattached", zone_zoneset), h3_reflexive("disc_forbidden", zone_zoneset), h3_reflexive("disc_always_streaming", zone_zoneset), h3_reflexive("bsp_1", zone_zoneset), h3_reflexive("bsp_2", zone_zoneset), h3_reflexive("bsp_3", zone_zoneset), h3_reflexive("cinematic", zone_zoneset), h3_reflexive("scenario", zone_zoneset), BytesRaw("unknown_1", SIZE=24, VISIBLE=False), ), h3_reflexive("scenario_zoneset_groups", zone_scenario_zoneset_group), h3_reflexive("scenario_bsps", zone_scenario_bsp), BytesRaw("unknown_2", SIZE=36, VISIBLE=False), h3_rawdata_ref("fixup_info"), BytesRaw("unknown_3", SIZE=20, VISIBLE=False), h3_reflexive("unknown_4", zone_unknown_4), BytesRaw("unknown_5", SIZE=96, VISIBLE=False), h3_reflexive("prediction_a", zone_prediction_a), h3_reflexive("prediction_b", zone_prediction_b), h3_reflexive("prediction_c", zone_prediction_c), h3_reflexive("prediction_d_tags", zone_prediction_d_tag), h3_reflexive("prediction_d2_tags", zone_prediction_d2_tag), SInt32("campaign_id"), SInt32("map_id"), ENDIAN=">", SIZE=532 ) def get(): return zone_def zone_def = TagDef("zone", h3_blam_header('zone'), zone_body, ext=".%s" % h3_tag_class_fcc_to_ext["zone"], endian=">", tag_cls=H3Tag )
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class LoanPayConsultOrder(object): def __init__(self): self._out_order_no = None self._seller_user_id = None @property def out_order_no(self): return self._out_order_no @out_order_no.setter def out_order_no(self, value): self._out_order_no = value @property def seller_user_id(self): return self._seller_user_id @seller_user_id.setter def seller_user_id(self, value): self._seller_user_id = value def to_alipay_dict(self): params = dict() if self.out_order_no: if hasattr(self.out_order_no, 'to_alipay_dict'): params['out_order_no'] = self.out_order_no.to_alipay_dict() else: params['out_order_no'] = self.out_order_no if self.seller_user_id: if hasattr(self.seller_user_id, 'to_alipay_dict'): params['seller_user_id'] = self.seller_user_id.to_alipay_dict() else: params['seller_user_id'] = self.seller_user_id return params @staticmethod def from_alipay_dict(d): if not d: return None o = LoanPayConsultOrder() if 'out_order_no' in d: o.out_order_no = d['out_order_no'] if 'seller_user_id' in d: o.seller_user_id = d['seller_user_id'] return o
""" Given a set of distinct integers, nums, return all possible subsets (the power set). Note: The solution set must not contain duplicate subsets. """ import itertools def subsets(nums): subsets = [] for i in range(len(nums)): combinations = [list(i) for i in itertools.combinations(nums, i)] subsets.extend(combinations) subsets.append(nums) return subsets answer = subsets([1, 2, 3]) print(answer) assert answer == [[], [1], [2], [3], [1, 2], [1, 3], [2, 3], [1, 2, 3]]
#!/usr/bin/env python # pylint: disable=disallowed-name # pylint: disable=missing-class-docstring, # pylint: disable=missing-function-docstring, # pylint: disable=no-self-use import unittest from paramobject import ParametrizedObject, parameter, Parameter class TestParametrizedObject(unittest.TestCase): def test_basic_values(self): class ClassUnderTest(ParametrizedObject): foo = Parameter(default=42) bar = Parameter() @parameter(stored=True, default=123) def baz(self): return self.params_storage['baz'] @parameter(stored=True) def qux(self): return self.params_storage['qux'] @parameter def quux(self): return 11 * self.bar # missing mandatory parameter value must raise ValueError self.assertRaises(ValueError, ClassUnderTest) self.assertRaises(ValueError, ClassUnderTest, bar=1) self.assertRaises(ValueError, ClassUnderTest, qux=2) # check correct default values obj = ClassUnderTest(bar=1, qux=2) self.assertEqual(obj.foo, 42) self.assertEqual(obj.baz, 123) # check correct values obj = ClassUnderTest(foo=1, bar=2, baz=3, qux=4) self.assertEqual(obj.foo, 1) self.assertEqual(obj.bar, 2) self.assertEqual(obj.baz, 3) self.assertEqual(obj.qux, 4) self.assertEqual(obj.quux, 22) def test_wither(self): class ClassUnderTest(ParametrizedObject): foo = Parameter(default=42) bar = Parameter(default=77) @bar.wither def with_bar(self, bar, as_string=False): if as_string: bar = str(bar) return self.with_params(bar=bar) # check values obj = ClassUnderTest() self.assertEqual(obj.foo, 42) self.assertEqual(obj.bar, 77) # check default wither obj = ClassUnderTest() self.assertEqual(obj.with_foo(10).foo, 10) # check custom wither obj = ClassUnderTest() self.assertEqual(obj.with_bar(10).bar, 10) self.assertEqual(obj.with_bar(10, as_string=True).bar, '10') def test_caster(self): class ClassUnderTest(ParametrizedObject): radius = Parameter(default=10) @parameter def diameter(self): return 2 * self.radius @radius.caster def cast_radius(self, default, **kwargs): radius = kwargs.get('radius', default) if 'diameter' in kwargs: radius = kwargs['diameter'] / 2 return radius # check default obj = ClassUnderTest() self.assertEqual(obj.radius, 10) self.assertEqual(obj.diameter, 20) # check init with radius obj = ClassUnderTest(radius=100) self.assertEqual(obj.radius, 100) self.assertEqual(obj.diameter, 200) # check init with diameter obj = ClassUnderTest(diameter=100) self.assertEqual(obj.radius, 50) self.assertEqual(obj.diameter, 100) # check wither obj = ClassUnderTest() self.assertEqual(obj.with_radius(100).diameter, 200) def test_subclassing(self): class ClassUnderTest(ParametrizedObject): foo = Parameter(default=42) class SubClassUnderTest(ClassUnderTest): bar = Parameter(default=77) # check values obj = SubClassUnderTest() self.assertEqual(obj.foo, 42) self.assertEqual(obj.bar, 77) def test_nested_parametrized_object(self): class ContainedClassUnderTest(ParametrizedObject): bar = Parameter(default=42) class ClassUnderTest(ParametrizedObject): foo = Parameter(default=ContainedClassUnderTest()) # check value obj = ClassUnderTest() self.assertEqual(obj.foo.bar, 42) # check wither, contained class must return an instance of the # containing class obj = ClassUnderTest() self.assertIsInstance(obj.foo.with_bar(10), ClassUnderTest) self.assertEqual(obj.foo.with_bar(10).foo.bar, 10) if __name__ == '__main__': unittest.main()
from gevent import monkey monkey.patch_all() import click from corgie import scheduling from corgie.log import logger as corgie_logger from corgie.log import configure_logger @click.command() @click.option('--lease_seconds', '-l', nargs=1, type=int, required=True) @click.option('--queue_name', '-q', nargs=1, type=str, required=True) @click.option('-v', '--verbose', count=True, help='Turn on debug logging') def worker(lease_seconds, queue_name, verbose): configure_logger(verbose) executor = scheduling.Executor(queue_name=queue_name) executor.execute(lease_seconds=lease_seconds)
# coding: utf-8 # In[1]: # Name: Alex Egg # Email: eggie5@gmail.com # PID: A53112354 from pyspark import SparkContext sc = SparkContext() # In[2]: from pyspark.mllib.linalg import Vectors from pyspark.mllib.regression import LabeledPoint from string import split,strip from pyspark.mllib.tree import GradientBoostedTrees, GradientBoostedTreesModel from pyspark.mllib.tree import RandomForest, RandomForestModel from pyspark.mllib.util import MLUtils # In[3]: # Read the file into an RDD # If doing this on a real cluster, you need the file to be available on all nodes, ideally in HDFS. path='/HIGGS/HIGGS.csv' inputRDD=sc.textFile(path) # In[4]: # Transform the text RDD into an RDD of LabeledPoints Data=inputRDD.map(lambda line: [float(strip(x)) for x in line.split(',')]).map(lambda a: LabeledPoint(a[0], a[1:])) # In[5]: Data1=Data.sample(False,0.1).cache() (trainingData,testData)=Data1.randomSplit([0.7,0.3]) # In[7]: from time import time errors={} for depth in [10]: start=time() model=GradientBoostedTrees.trainClassifier(trainingData, categoricalFeaturesInfo={}, numIterations=10, maxDepth=depth, learningRate=0.25, maxBins=35) errors[depth]={} dataSets={'train':trainingData,'test':testData} for name in dataSets.keys(): # Calculate errors on train and test sets data=dataSets[name] Predicted=model.predict(data.map(lambda x: x.features)) LabelsAndPredictions = data.map(lambda lp: lp.label).zip(Predicted) Err = LabelsAndPredictions.filter(lambda (v,p): v != p).count()/float(data.count()) errors[depth][name]=Err print depth,errors[depth],int(time()-start),'seconds' # Expected test error <= 27.5% # Expected running time <= 350 seconds # 10 {'test': 0.2806224626238058, 'train': 0.26497137638847573} 66 seconds # 10 {'test': 0.27378476281278563, 'train': 0.24796675763802906} 67 seconds
################################################################ # Starts a specified WL managed server using the admin server # The Admin server must be running ################################################################ #Functions ################################################################ def getServerStatus(svrName): slrBean = cmo.lookupServerLifeCycleRuntime(svrName) return slrBean.getState() adminServerT3 = 't3://wladmin:7001' adminUsername = 'weblogic' adminPassword = os.environ.get("ADMIN_PASSWORD") srvName = os.environ.get("HOSTNAME") #Connect to admin server connect(username=adminUsername, password=adminPassword, url=adminServerT3) domainRuntime() #Check if the server is already running serverStatus = getServerStatus(srvName) if (serverStatus == 'RUNNING'): print 'Server is already running' exit() #Start the server async start(srvName,'Server',block='false')
# Python Version: 3.x # -*- coding: utf-8 -*- import json import posixpath import re import urllib.parse from typing import * import bs4 import requests import onlinejudge.dispatch import onlinejudge.implementation.logging as log import onlinejudge.implementation.utils as utils import onlinejudge.type from onlinejudge.type import SubmissionError # This is a workaround. AtCoder's servers sometime fail to send "Content-Type" field. # see https://github.com/kmyk/online-judge-tools/issues/28 and https://github.com/kmyk/online-judge-tools/issues/232 def _request(*args, **kwargs): resp = utils.request(*args, **kwargs) log.debug('AtCoder\'s server said "Content-Type: %s"', resp.headers.get('Content-Type', '(not sent)')) resp.encoding = 'UTF-8' return resp @utils.singleton class AtCoderService(onlinejudge.type.Service): def login(self, get_credentials: onlinejudge.type.CredentialsProvider, session: Optional[requests.Session] = None) -> bool: session = session or utils.new_default_session() url = 'https://practice.contest.atcoder.jp/login' # get resp = _request('GET', url, session=session, allow_redirects=False) msgs = AtCoderService._get_messages_from_cookie(resp.cookies) for msg in msgs: log.status('message: %s', msg) if msgs: return 'login' not in resp.url # post username, password = get_credentials() resp = _request('POST', url, session=session, data={'name': username, 'password': password}, allow_redirects=False) msgs = AtCoderService._get_messages_from_cookie(resp.cookies) AtCoderService._report_messages(msgs) return 'login' not in resp.url # AtCoder redirects to the top page if success def is_logged_in(self, session: Optional[requests.Session] = None) -> bool: session = session or utils.new_default_session() url = 'https://practice.contest.atcoder.jp/login' resp = _request('GET', url, session=session, allow_redirects=False) msgs = AtCoderService._get_messages_from_cookie(resp.cookies) return bool(msgs) def get_url(self) -> str: return 'https://atcoder.jp/' def get_name(self) -> str: return 'atcoder' @classmethod def from_url(cls, s: str) -> Optional['AtCoderService']: # example: https://atcoder.jp/ # example: http://agc012.contest.atcoder.jp/ result = urllib.parse.urlparse(s) if result.scheme in ('', 'http', 'https') \ and (result.netloc in ('atcoder.jp', 'beta.atcoder.jp') or result.netloc.endswith('.contest.atcoder.jp')): return cls() return None @classmethod def _get_messages_from_cookie(cls, cookies) -> List[str]: msgtags = [] # type: List[str] for cookie in cookies: log.debug('cookie: %s', str(cookie)) if cookie.name.startswith('__message_'): msg = json.loads(urllib.parse.unquote_plus(cookie.value)) msgtags += [msg['c']] log.debug('message: %s: %s', cookie.name, str(msg)) msgs = [] # type: List[str] for msgtag in msgtags: soup = bs4.BeautifulSoup(msgtag, utils.html_parser) msg = None for tag in soup.find_all(): if tag.string and tag.string.strip(): msg = tag.string break if msg is None: log.error('failed to parse message') else: msgs += [msg] return msgs @classmethod def _report_messages(cls, msgs: List[str], unexpected: bool = False) -> bool: for msg in msgs: log.status('message: %s', msg) if msgs and unexpected: log.failure('unexpected messages found') return bool(msgs) class AtCoderProblem(onlinejudge.type.Problem): def __init__(self, contest_id: str, problem_id: str): self.contest_id = contest_id self.problem_id = problem_id self._task_id = None # type: Optional[int] def download_sample_cases(self, session: Optional[requests.Session] = None) -> List[onlinejudge.type.TestCase]: session = session or utils.new_default_session() # get resp = _request('GET', self.get_url(), session=session) msgs = AtCoderService._get_messages_from_cookie(resp.cookies) if AtCoderService._report_messages(msgs, unexpected=True): # example message: "message: You cannot see this page." log.warning('are you logged in?') return [] # parse soup = bs4.BeautifulSoup(resp.content.decode(resp.encoding), utils.html_parser) samples = utils.SampleZipper() lang = None for pre, h3 in self._find_sample_tags(soup): s = utils.textfile(utils.dos2unix(pre.string.lstrip())) name = h3.string l = self._get_tag_lang(pre) if lang is None: lang = l elif lang != l: log.info('skipped due to language: current one is %s, not %s: %s ', lang, l, name) continue samples.add(s, name) return samples.get() def _get_tag_lang(self, tag): assert isinstance(tag, bs4.Tag) for parent in tag.parents: for cls in parent.attrs.get('class') or []: if cls.startswith('lang-'): return cls def _find_sample_tags(self, soup) -> Generator[Tuple[bs4.Tag, bs4.Tag], None, None]: for pre in soup.find_all('pre'): log.debug('pre tag: %s', str(pre)) if not pre.string: continue prv = utils.previous_sibling_tag(pre) # the first format: h3+pre if prv and prv.name == 'h3' and prv.string: yield (pre, prv) else: # ignore tags which are not samples # example: https://atcoder.jp/contests/abc003/tasks/abc003_4 while prv is not None: if prv.name == 'pre': break prv = utils.previous_sibling_tag(prv) if prv is not None: continue # the second format: h3+section pre if pre.parent and pre.parent.name == 'section': prv = pre.parent and utils.previous_sibling_tag(pre.parent) if prv and prv.name == 'h3' and prv.string: yield (pre, prv) def get_url(self) -> str: return 'http://{}.contest.atcoder.jp/tasks/{}'.format(self.contest_id, self.problem_id) def get_service(self) -> AtCoderService: return AtCoderService() @classmethod def from_url(cls, s: str) -> Optional['AtCoderProblem']: # example: http://agc012.contest.atcoder.jp/tasks/agc012_d result = urllib.parse.urlparse(s) dirname, basename = posixpath.split(utils.normpath(result.path)) if result.scheme in ('', 'http', 'https') \ and result.netloc.count('.') == 3 \ and result.netloc.endswith('.contest.atcoder.jp') \ and result.netloc.split('.')[0] \ and dirname == '/tasks' \ and basename: contest_id = result.netloc.split('.')[0] problem_id = basename return cls(contest_id, problem_id) # example: https://beta.atcoder.jp/contests/abc073/tasks/abc073_a m = re.match(r'^/contests/([\w\-_]+)/tasks/([\w\-_]+)$', utils.normpath(result.path)) if result.scheme in ('', 'http', 'https') \ and result.netloc in ('atcoder.jp', 'beta.atcoder.jp') \ and m: contest_id = m.group(1) problem_id = m.group(2) return cls(contest_id, problem_id) return None def get_input_format(self, session: Optional[requests.Session] = None) -> str: session = session or utils.new_default_session() # get resp = _request('GET', self.get_url(), session=session) msgs = AtCoderService._get_messages_from_cookie(resp.cookies) if AtCoderService._report_messages(msgs, unexpected=True): return '' # parse soup = bs4.BeautifulSoup(resp.content.decode(resp.encoding), utils.html_parser) for h3 in soup.find_all('h3'): if h3.string in ('入力', 'Input'): tag = h3 for _ in range(3): tag = utils.next_sibling_tag(tag) if tag is None: break if tag.name in ('pre', 'blockquote'): s = '' for it in tag: s += it.string or it # AtCoder uses <var>...</var> for math symbols return s return '' def get_language_dict(self, session: Optional[requests.Session] = None) -> Dict[str, onlinejudge.type.Language]: session = session or utils.new_default_session() # get url = 'http://{}.contest.atcoder.jp/submit'.format(self.contest_id) resp = _request('GET', url, session=session) msgs = AtCoderService._get_messages_from_cookie(resp.cookies) if AtCoderService._report_messages(msgs, unexpected=True): return {} # check whether logged in path = utils.normpath(urllib.parse.urlparse(resp.url).path) if path.startswith('/login'): log.error('not logged in') return {} # parse soup = bs4.BeautifulSoup(resp.content.decode(resp.encoding), utils.html_parser) select = soup.find('select', class_='submit-language-selector') # NOTE: AtCoder can vary languages depending on tasks, even in one contest. here, ignores this fact. language_dict = {} for option in select.find_all('option'): language_dict[option.attrs['value']] = {'description': option.string} return language_dict def submit_code(self, code: bytes, language: str, session: Optional[requests.Session] = None) -> onlinejudge.type.DummySubmission: assert language in self.get_language_dict(session=session) session = session or utils.new_default_session() # get url = 'http://{}.contest.atcoder.jp/submit'.format(self.contest_id) # TODO: use beta.atcoder.jp resp = _request('GET', url, session=session) msgs = AtCoderService._get_messages_from_cookie(resp.cookies) if AtCoderService._report_messages(msgs, unexpected=True): raise SubmissionError # check whether logged in path = utils.normpath(urllib.parse.urlparse(resp.url).path) if path.startswith('/login'): log.error('not logged in') raise SubmissionError # parse soup = bs4.BeautifulSoup(resp.content.decode(resp.encoding), utils.html_parser) form = soup.find('form', action=re.compile(r'^/submit\?task_id=')) if not form: log.error('form not found') raise SubmissionError log.debug('form: %s', str(form)) # post task_id = self._get_task_id(session=session) form = utils.FormSender(form, url=resp.url) form.set('task_id', str(task_id)) form.set('source_code', code) form.set('language_id_{}'.format(task_id), language) resp = form.request(session=session) resp.raise_for_status() # result msgs = AtCoderService._get_messages_from_cookie(resp.cookies) AtCoderService._report_messages(msgs) if '/submissions/me' in resp.url: # example: https://practice.contest.atcoder.jp/submissions/me#32174 # CAUTION: this URL is not a URL of the submission log.success('success: result: %s', resp.url) # NOTE: ignore the returned legacy URL and use beta.atcoder.jp's one url = 'https://beta.atcoder.jp/contests/{}/submissions/me'.format(self.contest_id) return onlinejudge.type.DummySubmission(url) else: log.failure('failure') log.debug('redirected to %s', resp.url) raise SubmissionError def _get_task_id(self, session: Optional[requests.Session] = None) -> int: if self._task_id is None: session = session or utils.new_default_session() # get resp = _request('GET', self.get_url(), session=session) msgs = AtCoderService._get_messages_from_cookie(resp.cookies) if AtCoderService._report_messages(msgs, unexpected=True): raise SubmissionError # parse soup = bs4.BeautifulSoup(resp.content.decode(resp.encoding), utils.html_parser) submit = soup.find('a', href=re.compile(r'^/submit\?task_id=')) if not submit: log.error('link to submit not found') raise SubmissionError m = re.match(r'^/submit\?task_id=([0-9]+)$', submit.attrs['href']) assert m self._task_id = int(m.group(1)) return self._task_id class AtCoderSubmission(onlinejudge.type.Submission): def __init__(self, contest_id: str, submission_id: int, problem_id: Optional[str] = None): self.contest_id = contest_id self.submission_id = submission_id self.problem_id = problem_id @classmethod def from_url(cls, s: str, problem_id: Optional[str] = None) -> Optional['AtCoderSubmission']: submission_id = None # type: Optional[int] # example: http://agc001.contest.atcoder.jp/submissions/1246803 result = urllib.parse.urlparse(s) dirname, basename = posixpath.split(utils.normpath(result.path)) if result.scheme in ('', 'http', 'https') \ and result.netloc.count('.') == 3 \ and result.netloc.endswith('.contest.atcoder.jp') \ and result.netloc.split('.')[0] \ and dirname == '/submissions': contest_id = result.netloc.split('.')[0] try: submission_id = int(basename) except ValueError: pass submission_id = None if submission_id is not None: return cls(contest_id, submission_id, problem_id=problem_id) # example: https://beta.atcoder.jp/contests/abc073/submissions/1592381 m = re.match(r'^/contests/([\w\-_]+)/submissions/(\d+)$', utils.normpath(result.path)) if result.scheme in ('', 'http', 'https') \ and result.netloc == ('atcoder.jp', 'beta.atcoder.jp') \ and m: contest_id = m.group(1) try: submission_id = int(m.group(2)) except ValueError: submission_id = None if submission_id is not None: return cls(contest_id, submission_id, problem_id=problem_id) return None def get_url(self) -> str: return 'http://{}.contest.atcoder.jp/submissions/{}'.format(self.contest_id, self.submission_id) def get_problem(self) -> AtCoderProblem: if self.problem_id is None: raise ValueError return AtCoderProblem(self.contest_id, self.problem_id) def get_service(self) -> AtCoderService: return AtCoderService() def download(self, session: Optional[requests.Session] = None) -> str: session = session or utils.new_default_session() # get resp = _request('GET', self.get_url(), session=session) msgs = AtCoderService._get_messages_from_cookie(resp.cookies) if AtCoderService._report_messages(msgs, unexpected=True): raise RuntimeError # parse soup = bs4.BeautifulSoup(resp.content.decode(resp.encoding), utils.html_parser) code = None for pre in soup.find_all('pre'): log.debug('pre tag: %s', str(pre)) prv = utils.previous_sibling_tag(pre) if not (prv and prv.name == 'h3' and 'Source code' in prv.text): continue code = pre.string if code is None: log.error('source code not found') raise RuntimeError return code onlinejudge.dispatch.services += [AtCoderService] onlinejudge.dispatch.problems += [AtCoderProblem] onlinejudge.dispatch.submissions += [AtCoderSubmission]
from . import resources, util from .airbase import AirbaseClient, AirbaseRequest __all__ = ["AirbaseClient", "AirbaseRequest", "resources", "util"]
import numpy as np import tensorflow as tf default_path = 'C:/Users/DimKa/Documents/' def data(path=default_path): log_root = path (im_train, y_train), (im_test, y_test) = tf.keras.datasets.cifar10.load_data() # Normalize to 0-1 range and subtract mean of training pixels im_train = im_train / 255 im_test = im_test / 255 mean_training_pixel = np.mean(im_train, axis=(0, 1, 2)) x_train = im_train - mean_training_pixel x_test = im_test - mean_training_pixel image_shape = x_train[0].shape labels = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] return x_train, y_train, x_test, y_test, image_shape, log_root, labels
# -*- coding: utf-8 -*- from cleo.commands import Command class Foo5Command(Command): def __init__(self): pass
import gzip import os import json from nltk import sent_tokenize from utils.dataset import * from dataset_loader.base_loader import LoaderBase class Loader(LoaderBase): def __init__(self, cfg): super().__init__(cfg) self.is_dialogue = False def load(self): for data_type in ['train', 'val', 'test']: source_path = os.path.join(self.cfg.train.dataset_path, f"{data_type}.source") target_path = os.path.join(self.cfg.train.dataset_path, f"{data_type}.target") source = read_list_asline(source_path) target = read_list_asline(target_path) self.data[data_type] = [sent_tokenize(x) for x in source] # we need to split document into sentences self.label[data_type] = target return self.data, self.label
import pytest from .. import * def test_bytes_base32(): expr = Bytes("base32", "7Z5PWO2C6LFNQFGHWKSK5H47IQP5OJW2M3HA2QPXTY3WTNP5NU2MHBW27M") assert expr.type_of() == TealType.bytes expected = TealSimpleBlock([ TealOp(Op.byte, "base32(7Z5PWO2C6LFNQFGHWKSK5H47IQP5OJW2M3HA2QPXTY3WTNP5NU2MHBW27M)") ]) actual, _ = expr.__teal__() assert actual == expected def test_bytes_base32_empty(): expr = Bytes("base32", "") assert expr.type_of() == TealType.bytes expected = TealSimpleBlock([ TealOp(Op.byte, "base32()") ]) actual, _ = expr.__teal__() assert actual == expected def test_bytes_base64(): expr = Bytes("base64", "Zm9vYmE=") assert expr.type_of() == TealType.bytes expected = TealSimpleBlock([ TealOp(Op.byte, "base64(Zm9vYmE=)") ]) actual, _ = expr.__teal__() assert actual == expected def test_bytes_base64_empty(): expr = Bytes("base64", "") assert expr.type_of() == TealType.bytes expected = TealSimpleBlock([ TealOp(Op.byte, "base64()") ]) actual, _ = expr.__teal__() assert actual == expected def test_bytes_base16(): expr = Bytes("base16", "A21212EF") assert expr.type_of() == TealType.bytes expected = TealSimpleBlock([ TealOp(Op.byte, "0xA21212EF") ]) actual, _ = expr.__teal__() assert actual == expected def test_bytes_base16_prefix(): expr = Bytes("base16", "0xA21212EF") assert expr.type_of() == TealType.bytes expected = TealSimpleBlock([ TealOp(Op.byte, "0xA21212EF") ]) actual, _ = expr.__teal__() assert actual == expected def test_bytes_base16_empty(): expr = Bytes("base16", "") assert expr.type_of() == TealType.bytes expected = TealSimpleBlock([ TealOp(Op.byte, "0x") ]) actual, _ = expr.__teal__() assert actual == expected def test_bytes_utf8(): expr = Bytes("hello world") assert expr.type_of() == TealType.bytes expected = TealSimpleBlock([ TealOp(Op.byte, "\"hello world\"") ]) actual, _ = expr.__teal__() assert actual == expected def test_bytes_utf8_special_chars(): expr = Bytes("\t \n \r\n \\ \" \' 😀") assert expr.type_of() == TealType.bytes expected = TealSimpleBlock([ TealOp(Op.byte, "\"\\t \\n \\r\\n \\\\ \\\" \' \\xf0\\x9f\\x98\\x80\"") ]) actual, _ = expr.__teal__() assert actual == expected def test_bytes_utf8_empty(): expr = Bytes("") assert expr.type_of() == TealType.bytes expected = TealSimpleBlock([ TealOp(Op.byte, "\"\"") ]) actual, _ = expr.__teal__() assert actual == expected def test_bytes_invalid(): with pytest.raises(TealInputError): Bytes("base23", "") with pytest.raises(TealInputError): Bytes("base32", "Zm9vYmE=") with pytest.raises(TealInputError): Bytes("base64", "?????") with pytest.raises(TealInputError): Bytes("base16", "7Z5PWO2C6LFNQFGHWKSK5H47IQP5OJW2M3HA2QPXTY3WTNP5NU2MHBW27M")
# -*- coding: utf-8 -*- """ .. module:: perform_saob :synopsis: module performing a Systematic Analysis Of Biases .. moduleauthor:: Aurore Bussalb <aurore.bussalb@mensiatech.com> """ import warnings import pandas as pd import numpy as np import random from sklearn.linear_model import LassoCV, LassoLarsIC from sklearn.model_selection import LeaveOneOut import statsmodels.api as sm from sklearn import tree import graphviz def effect_size_within_subjects(mean_post_test_treatment, mean_pre_test_treatment, std_post_test_treatment, std_pre_test_treatment): """Computes effects sizes inside a treatment group, this effect size reflects the evolution inside a group between pre and post test. The fomula used comes from Cohen J. (1988), *Statistical Power Analysis for the Behavioral Sciences*. Parameters ---------- n_treatment: int Number of patients included in the treatment group. mean_post_test_treatment: float Mean score after the treatment. mean_pre_test_treatment: float Mean score before the treatment. std_pre_test_treatment: float Standard deviation of the mean score before the treatment. std_post_test_treatment: float Standard deviation of the mean score before the treatment. Returns ------- effect_size: float Value estimating the efficacy of the treatment. If it's negative, the result is in favor of the treatment. Notes ----- Effect sizes computed for each study correspond to the effect sizes within subjects. Thus, the effect size is computed from the pre and post test values of the treatment group. So here a control group is not neccessary. """ Effect_size_treatment = (mean_post_test_treatment - mean_pre_test_treatment)/np.sqrt((std_pre_test_treatment**2 + std_post_test_treatment**2)/2) return Effect_size_treatment def normalize_severity_at_baseline(mean_pre_test_treatment, maximum_on_clinical_scale): """Normalizes the pre-test scores in order to include them in the SAOB analysis. Parameters ---------- mean_post_test_treatment: float Mean score after the treatment. maximum_on_clinical_scale: int Maximum score possible to be obtained on the clinical scale. Returns ------- severity_at_baseline: float Normalized pre-test score. """ severity_at_baseline = mean_pre_test_treatment/maximum_on_clinical_scale return severity_at_baseline def detect_and_reject_outliers(df, y): """Detects and rejects outliers in the distribution of within effect sizes. Studies with a within effect size out of the bounds are excluded. Parameters ---------- df: pandas.DataFrame Dataframe containing all observations in rows, factors and also values to compute the effect size within subjects in columns. It is obtained after the import of the csv file containing all data by ``import_csv_for_factors``. y: pandas.Series Effect size within subjects computed for each observation. Returns ------- df: pandas.DataFrame Dataframe containing all observations with outliers excluded. y: pandas.Series Effect size within subjects with outliers excluded. """ # Compute mean and standard deviation of all the within effect sizes mean_wES = y.mean() std_wES = y.std() # Compute the thresholds of acceptance bound_inf = mean_wES - 3*std_wES bound_sup = mean_wES + 3*std_wES # Detect outliers df_outlier = df[ (y < bound_inf) | (y > bound_sup) ] # Reject outlier df = df.drop(df_outlier.index.values, axis=0) y = y.drop(df_outlier.index.values, axis=0) return df, y def preprocess_factors(df): """Preprocesses factors before running the SAOB. Factors with too many missing values and with too many identical observations will be removed. Besides, values can be standardized. The categorical variables will be coded as dummies. Parameters ---------- df: pandas.DataFrame Dataframe containing all observations in rows, factors and also values to compute the effect size within subjects in columns. It is obtained after the import of the csv file containing all data by ``import_csv_for_factors`` and the outlier rejection. Returns ------- X: pandas.DataFrame Preprocessed dataframe containing all observations in rows and factors in columns. Factors with too many missing values and with too many identical observations have been removed. Categorical variables are coded in dummies. Values here are standardized. X_non_standardized: pandas.DataFrame Preprocessed dataframe containing all observations in rows and factors in columns. Factors with too many missing values and with too many identical observations have been removed. Categorical variables are coded in dummies. Values here are not standardized. """ # Dataframe containing only factors X = df.drop(['mean_post_test_treatment', 'mean_pre_test_treatment','n_treatment', 'raters', 'score_name', 'std_post_test_treatment', 'std_pre_test_treatment', 'effect_size_treatment', 'maximum_on_clinical_scale'], axis=1) # Remove factors with too few observations X_number_of_nans = X.isnull().sum() columns_to_remove_nans = X_number_of_nans[(X_number_of_nans > round(len(X)*20/100) + 1)] X = X.drop(columns_to_remove_nans.index.values, axis=1) # Turn into dummy variables the categorical variables categorical_factors = list(set(X.columns) - set(X._get_numeric_data().columns)) X = pd.get_dummies(X, columns=categorical_factors, drop_first=True) # Remove categorical factors too homogeneous bool_cols = [col for col in X if X[col].dropna().value_counts().index.isin([0,1]).all()] X_categorical = X[bool_cols] X_categorical_count = X_categorical.apply(pd.value_counts) columns_to_remove_no = X_categorical_count.iloc[0][(X_categorical_count.iloc[0] > round(len(df)*80/100) + 1)] columns_to_remove_yes = X_categorical_count.iloc[1][(X_categorical_count.iloc[1] > round(len(df)*80/100) + 1)] columns_to_remove = columns_to_remove_no.index.tolist() + columns_to_remove_yes.index.tolist() X = X.drop(columns_to_remove, axis=1) # Put -1 instead of NaNs in continuous factors X.fillna(value=-1, inplace=True) # Standardization of the independent variables for WLS and Lasso X_non_standardized = X X = (X - X.mean())/X.std() return X, X_non_standardized def weighted_linear_regression(df, X, y): """Performs Weighted Least Squares. Dependent variable = effect size within subjects; independent variable = factors. P independent variables and n observations. model: WXB = Wy; W (nxn) diagonal matrix of weights, y (nx1) column vector of dependent variables, X (nxP) matrix of independent variables, B (Px1) column vector of coefficients. Parameters ---------- df: pandas.DataFrame Dataframe containing all observations in rows, factors in columns and also values to compute the effect size within subjects. It is obtained after the import of the csv file containing all data by ``import_csv_for_factors`` and the outlier rejection. X: pandas.DataFrame Preprocessed dataframe containing all observations in rows and factors in columns (the independent variables). Factors with too many missing values and with too many identical observations have been removed. Besides, values have been standardized. Categorical variables are coded in dummies. This dataframe is obtained thanks to the ``preprocess_factors function``. y: pandas.Series Effect size within subjects computed for each observation (the dependent variable) obtained after the outlier rejection. Returns ------- summary: statsmodels.iolib.summary.Summary Summary of the WLS regression. In particular values of coefficients, associated pvalues, F-statistics, Prob(Omnibus), skew and kurtosis. """ # Find the number of scales per study df['number_of_scales'] = df.index.value_counts() # Compute the weight of each ES: number_of_treatment_patients_in_the_study/number_of_scales_in_the_study df['weight'] = df['n_treatment']/df['number_of_scales'] W = np.diag(df['weight']) # Get rank of the moment matrix and its condition number: it has to be full rank, # to have eigen values > 0 and a high condition number to be invertible rank_X = np.linalg.matrix_rank(X) X_transpose = X.transpose() W_transpose = W.transpose() rank_W = np.linalg.matrix_rank(W) moment_matrix = np.linalg.multi_dot([X_transpose,W_transpose,W,X]) moment_matrix_rank = np.linalg.matrix_rank(moment_matrix) eigen_values_moment_matrix = np.linalg.eigvals(moment_matrix) condition_number = np.linalg.cond(moment_matrix) if moment_matrix.shape[0] == moment_matrix_rank: print('Moment matrix is invertible') else: warnings.warn('Moment matrix is not invertible, be carefull while interpreting the results') # WLS weighted_regression = sm.WLS(y, sm.add_constant(X), weights=df['weight']) weighted_regression_fit = weighted_regression.fit() summary = weighted_regression_fit.summary() return summary def ordinary_linear_regression(X, y): """Performs Ordinary Least Squares. Dependent variable = effect size within subjects; independent variable = factors. P independent variables and n observations. model: XB = y; y (nx1) column vector of dependent variables, X (nxP) matrix of independent variables, B (Px1) column vector of coefficients. Parameters ---------- X: pandas.DataFrame Preprocessed dataframe containing all observations in rows and factors in columns (the independent variables). Factors with too many missing values and with too many identical observations have been removed. Besides, values have been standardized. Categorical variables are coded in dummies. This dataframe is obtained thanks to the ``preprocess_factors`` function. y: pandas.Series Effect size within subjects computed for each observation (the dependent variable) obtained after the outlier rejection. Returns ------- summary_ols: statsmodels.iolib.summary.Summary Summary of the OLS regression. In particular values of coefficients, associated pvalues, F-statistics, Prob(Omnibus), skew and kurtosis. """ # Get rank of the moment matrix and its condition number: it has to be full rank, # to have eigen values > 0 and a high condition number to be invertible rank_X = np.linalg.matrix_rank(X) X_transpose = X.transpose() moment_matrix = np.dot(X_transpose,X) moment_matrix_rank = np.linalg.matrix_rank(moment_matrix) eigen_values_moment_matrix = np.linalg.eigvals(moment_matrix) condition_number = np.linalg.cond(moment_matrix) if moment_matrix.shape[0] == moment_matrix_rank: print('Moment matrix is invertible') else: warnings.warn('Moment matrix is not invertible, be carefull while interpreting the results') # Run the OLS regression = sm.OLS(y, sm.add_constant(X)) regression_fit = regression.fit() summary_ols = regression_fit.summary() return summary_ols def regularization_lassocv(X, y): """Performs Lasso linear model with iterative fitting along a regularization path. The best model is selected by cross-validation. Dependent variable = effect size within subjects; independent variable = factors. P independent variables and n observations. Parameters ---------- X: pandas.DataFrame Preprocessed dataframe containing all observations in rows and factors in columns (the independent variables). Factors with too many missing values and with too many identical observations have been removed. Besides, values have been standardized. Categorical variables are coded in dummies. This dataframe is obtained thanks to the ``preprocess_factors`` function. y: pandas.Series Effect size within subjects computed for each observation (the dependent variable) obtained after the outlier rejection. Returns ------- coeff: pandas.DataFrame Results of the Lasso. Column with coefficients obtained after regularization and the names of the associated factors. mse_test: numpy.ndarray Mean square error for the test set on each fold, varying alpha. Shape (n_alphas, n_folds). alphas: numpy.ndarray The grid of alphas used for fitting. Shape (n_alphas). alpha: float The amount of penalization chosen by cross validation. """ # Cross validation (leave one out) to choose the tuning parameter alpha loo = LeaveOneOut() lassocv = LassoCV(alphas = None, cv = loo) # leave one out method, internal cross validation: it performs cv on the # data it receives # Fit all the data with the alpha found lassocv.fit(X, y) alpha = lassocv.alpha_ alphas = lassocv.alphas_ mse_test = lassocv.mse_path_ # Coefficients that don't explain the model are now reduced to exactly zero coeff = pd.DataFrame({'Factors':X.columns, 'Coefficients':lassocv.coef_}) return coeff, mse_test, alphas, alpha def regularization_lassoAIC(X, y): """Performs Lasso model fit with Lars using AIC for model selection. Dependent variable = effect size within subjects; independent variable = factors. P independent variables and n observations. model: XB = y; y (nx1) column vector of dependent variables, X (nxP) matrix of independent variables, B (Px1) column vector of coefficients. Parameters ---------- X: pandas.DataFrame Preprocessed dataframe containing all observations in rows and factors in columns (the independent variables). Factors with too many missing values and with too many identical observations have been removed. Besides, values have been standardized. Categorical variables are coded in dummies. This dataframe is obtained thanks to the ``preprocess_factors`` function. y: pandas.Series Effect size within subjects computed for each observation (the dependent variable) obtained after the outlier rejection. Returns ------- coeff_aic: pandas.DataFrame Results of the Lasso. Column with coefficients obtained after regularization and the names of the associated factors. """ model = LassoLarsIC(criterion='aic') model.fit(X, y) coeff_aic = pd.DataFrame({'Factors':X.columns, 'Coefficients':model.coef_}) return coeff_aic def decision_tree(X_non_standardized, y): """Computes a Decision tree. Non linear and hierarchical method. Parameters ---------- X: pandas.DataFrame Preprocessed dataframe containing all observations in rows and factors in columns (the independent variables). Factors with too many missing values and with too many identical observations have been removed. Besides, values have been standardized. Categorical variables are coded in dummies. This dataframe is obtained thanks to the ``preprocess_factors`` function. y: pandas.Series Effect size within subjects computed for each observation (the dependent variable) obtained after the outlier rejection. Returns ------- decision_tree: pdf Decision tree obtained. """ # Decision tree (criterion: mean square error) clf = tree.DecisionTreeRegressor(criterion='mse', min_samples_leaf=8) clf.fit(X_non_standardized, y) score_decision_tree = clf.score(X_non_standardized, y) print('R² decision tree', score_decision_tree) # Visualization dot_data = tree.export_graphviz(clf, feature_names=X_non_standardized.columns, out_file=None, rounded=True) graph = graphviz.Source(dot_data) graph.render('decision_tree', view=True)
# -*- coding: utf-8 -*- # REDIS 配置,请自行替换 REDIS_HOST = 'your_redis_ip' REDIS_PORT = 6379 REDIS_PASSWORD = 'your_redis_password' REDIS_DB = 0 # REDIS KEY的格式,会接收用户的open_id作为变量 REDIS_KEY='wechat-dialog:demo:%(open_id)s' # 初始配置,根据用户信息分配对应的会话处理器 ROUTER = { 'text': [ # 文本消息,用文本内容进行匹配 ('^累加器$', 'accumulator'), # 格式为(<匹配模式>, <处理函数>), 匹配模式为正则表达式 ('^github$', 'show_links'), ('^会话记录$', 'context_origin'), # 通过is_replay避免重复执行某段代码 ('^会话菜单$', 'context_menu'), # 通过raise UnexpectAnswer将某个不合法输入当做下一个输入的入口 ('.*', 'show_help'), # 默认的处理函数,请务必指定一个 ], 'event': [ # 事件消息,用事件类型进行匹配,事件类型包括关注(subscribe)和取关(unsubscribe) ('^subscribe$', 'show_welcome'), ('.*', 'show_help'), # 默认的处理函数,请务必指定一个 ], } HELP = '''这个公众号是wechat-dialog项目的demo,可以用编写命令行程序的体验来编写公众号深度会话 源代码在GITHUB上,输入"github"(全小写)可以获得链接 共有三个DEMO: - 回复"累加器"玩一玩累加,这是基本功能 - 回复"会话记录"看一下如何防止数据重复写入 - 回复"会话菜单"了解如何静默切换会话逻辑''' # 下面这些是对话处理函数 - 一个python生成器(generator) # 接收一个参数to_user: 这是用户的open_id # 返回一个元祖:(<MsgType>, <内容>) # 目前只测试过文本消息(TextMsg)和链接消息(NewsMsg) # 相关例子可以看show_help和show_links # accumulator是DEMO的核心 - 通过用户问答实现了一个累加器 def show_help(to_user): # 下面两行用于初始化,请保留 yield None msg_content, is_replay = yield None # 获得用户的消息内容 return ('TextMsg', HELP) # 如果没有后续会话就return,return格式(<MsgType>, <内容>) def show_welcome(to_user): yield None msg_content, is_replay = yield None msg = '感谢关注!\n'+HELP return ('TextMsg', msg) def show_links(to_user): yield None msg_content, is_replay = yield None return ('NewsMsg', [ { 'title': '项目源码', 'description': 'github上的项目源码,喜欢的话顺手点个STAR吧(๑•ᴗ•๑)', 'url': 'https://github.com/arthurmmm/wechat-dialog', # 可以选择不设置pic_url,使用默认缩略图。在reply.py中可以设置默认缩略图。 'pic_url': 'https://help.github.com/assets/images/site/be-social.gif', }, # 最多支持8个链接 ]) def accumulator(to_user): yield None msg_content, is_replay = yield None num_count, is_replay = yield ('TextMsg', '您需要累加几个数字?') try: num_count = int(num_count) except Exception: return ('TextMsg', '输入不合法!我们需要一个整数,请输入"开始"重新开启累加器') res = 0 for i in range(num_count): num, is_replay = yield ('TextMsg', '请输入第%s个数字, 目前累加和:%s' % (i+1, res)) try: num = int(num) except Exception: return ('TextMsg', '输入不合法!我们需要一个整数,请输入"开始"重新开启累加器') res += num # 注意:最后一个消息一定要用return不要用yield!return用于标记会话结束。 return ('TextMsg', '累加结束,累加和: %s' % res) context_start = None def context_origin(to_user): yield None msg_content, is_replay = yield None global context_start from datetime import datetime if not is_replay: # 加上这句可以让context_start只更新一次,避免replay过程中的重复操作 context_start = datetime.now() context_start = datetime.strftime(context_start, '%Y-%m-%d %H:%M:%S') msg_content, is_replay = yield ('TextMsg', '您在%s开启了这段对话,随便聊聊吧,回复“结束”结束对话' % context_start) while True: if msg_content == '结束': return ('TextMsg', '会话结束,这段会话的开始时间是%s' % context_start) else: msgtime = datetime.now() msgtime = datetime.strftime(msgtime, '%Y-%m-%d %H:%M:%S') msg_content, is_replay = yield ('TextMsg', '%s:%s' % (msgtime, msg_content)) def context_menu(to_user): yield None msg_content, is_replay = yield None msg_content, is_replay = yield ('TextMsg', '菜单:\n1. 苹果\n2. 香蕉\n回复数字选择,如果回复的内容不合法会直接跳转,比如回复"累加器"会直接跳转到累加器对话。') if msg_content == '1': return ('TextMsg', '您选择的是:苹果') elif msg_content == '2': return ('TextMsg', '您选择的是:香蕉') else: # 不用输入特殊消息结束,直接进入下一段对话 from wechat.bot import UnexpectAnswer raise UnexpectAnswer
import sys, os, subprocess, json, MySQLdb, time service_root = os.path.dirname(__file__) if service_root != '': service_root = service_root + '/' sys.path.insert(0, os.path.join(service_root, '../httpsqs')) from httpsqs_client import httpsqs converter = "pdf2swf %s -o %s -s /data/xpdf-chinese-simplified/" def convert(): while True: try: sqs = httpsqs('127.0.0.1', '1218', 'pdf2swf') result = sqs.gets('pdf2swf') if result: data = result['data'] if data != False and data != 'HTTPSQS_ERROR': op = json.loads(data) input_file = service_root + '../../data/' + op['folder'] + op['name'] output_file_folder = service_root + '../../public/attachments/' + op['folder'] output_file = output_file_folder + op['raw_name'] + '.swf' try: if not os.path.exists(output_file_folder): os.makedirs(output_file_folder) status = subprocess.call(converter % (input_file, output_file), shell = True) sql = "UPDATE docs SET path = '%s', status = '%s' WHERE id=%d" if status == 0: sql = sql % (op['folder'] + op['raw_name'] + '.swf', 'success', op['id']) else: sql = sql % ('', 'fail', op['id']) db = MySQLdb.connect(host='localhost',user='pdf2swf',passwd='VMeHUf5zS5XnKWh4',db='wenku-demo', read_default_file="/data/lampstack/mysql/my.cnf") cursor = db.cursor() cursor.execute(sql) cursor.close() db.close() except Exception, e: print e except Exception, e: print e time.sleep(1) if __name__ == "__main__": convert()
from myutils import * import numpy as np from time import * from pcheck import * import sys from copy import * def filter_data(F, R, variants): m = len(F) n = len(F[0]) F1 = [[zero for _ in range(len(F[0]))] for _ in range(len(F))] R1 = [[zero for _ in range(len(R[0]))] for _ in range(len(R))] for i in range(0, m): for j in range(0, n): if F[i][j] >= 0.05: F1[i][j] = F[i][j] R1[i][j] = R[i][j] else: F1[i][j] = zero R1[i][j] = zero F1 = list(map(list, zip(*F1))) R1 = list(map(list, zip(*R1))) chosen_variants = [] removed_variants = [] F2 = [] R2 = [] for i in range(0, n): seen_times = [] for j in range(0, m): if F1[i][j] > zero: seen_times.append(j) if len(seen_times) >= 2 and seen_times == list(range(min(seen_times), max(seen_times) + 1)): chosen_variants.append(variants[i]) F2.append(F1[i]) R2.append(R1[i]) else: removed_variants.append(variants[i]) F2 = list(map(list, zip(*F2))) R2 = list(map(list, zip(*R2))) if chosen_variants: F3, R3, rearranged_variants, _ = rearrange_penalty(F2, R2, chosen_variants) return F3, R3, rearranged_variants, removed_variants else: return F2, R2, chosen_variants, removed_variants def get_max_diff(l1, l2): return max(map(lambda x, y: abs(x - y), l1, l2)) def diff_below_cutoff(l1, l2, cutoff): if len(l1) != len(l2): return False for i in range(0, len(l1)): if abs(l1[i] - l2[i]) > cutoff: return False return True def average_column(l1, l2): # Assume equal length return list(map(lambda x, y: (x + y) / 2, l1, l2)) def cluster_data(F, R, variants, threshold): F_t = list(map(list, zip(*F))) R_t = list(map(list, zip(*R))) str_variants = list(map(str, variants)) clusters = [(str_variants[0], F_t[0], R_t[0])] i = 1 while i < len(F_t): new_cluster = True for j in range(0, len(clusters)): (header, column, r_column) = clusters[j] if diff_below_cutoff(F_t[i], column, threshold): clusters[j] = ( header + "_" + str_variants[i], average_column(F_t[i], column), average_column(R_t[i], r_column)) new_cluster = False break if new_cluster: clusters.append((str_variants[i], F_t[i], R_t[i])) i = i + 1 cluster_variants = [] cluster_F = [] cluster_R = [] for (cluster_variant, column, r_column) in clusters: cluster_variants.append(cluster_variant) cluster_F.append(column) cluster_R.append(r_column) cluster_F = list(map(list, zip(*cluster_F))) cluster_R = list(map(list, zip(*cluster_R))) return cluster_F, cluster_R, cluster_variants def best_scoring_ancestor(F, S, order, parents, clone_index, prev_clone_arrival_time, curr_clone_arrival_time): num_clones = len(order) scores = [zero] * len(order) row_index = prev_clone_arrival_time for i in range(0, clone_index): clone = order[i] scores[clone] = F[row_index][clone] children = parents_to_children(parents, num_clones) new_scores = [zero] * len(order) for i in range(0, clone_index): clone = order[i] children_sum = zero cur_children = children[clone] for child in cur_children: children_sum = children_sum + F[row_index][child] new_scores[clone] = scores[clone] - children_sum penalized_scores = [zero] * len(order) for i in range(0, clone_index): clone = order[i] cur_children = children[clone] cur_children.append(order[clone_index]) penalty = zero for t in range(curr_clone_arrival_time, len(F)): children_sum = zero children_variance = zero for child in cur_children: children_sum = children_sum + F[t][child] children_variance = children_variance + (S[t][child] ** 2) temp = F[t][clone] - children_sum if temp < 0: denominator = Decimal(sqrt((S[t][clone] ** 2) + children_variance)) # if denominator > zero: penalty = penalty + (temp / denominator) penalized_scores[clone] = new_scores[clone] + penalty temp = [] for i in range(0, clone_index): temp.append((order[i], penalized_scores[order[i]])) ancestor = max(temp, key=lambda i: i[1])[0] return ancestor, new_scores[ancestor], penalized_scores[ancestor] - new_scores[ancestor] def tree_score(F, S, order, parents, arrival_times, upto): num_clones = len(order) children = parents_to_children(parents, num_clones) final_score = one final_penalty = zero for clone_index in range(1, upto + 1): prev_clone = order[clone_index - 1] curr_clone = order[clone_index] parent = parents[curr_clone] prev_clone_arrival_time = arrival_times[prev_clone] curr_clone_arrival_time = arrival_times[curr_clone] row_index = prev_clone_arrival_time score = F[row_index][parent] children_sum = zero cur_children = children[parent] for child in cur_children: children_sum = children_sum + F[row_index][child] new_score = score - children_sum penalty = zero for t in range(curr_clone_arrival_time, len(F)): children_sum = zero children_variance = zero for child in cur_children: children_sum = children_sum + F[t][child] children_variance = children_variance + (S[t][child] ** 2) temp = F[t][parent] - children_sum if temp < 0: denominator = Decimal(sqrt((S[t][parent] ** 2) + children_variance)) if denominator > zero: # print(str(temp) + "\t" + str(denominator) + "\t" + str(temp / denominator)) penalty = penalty + (temp / denominator) # penalty = penalty + temp final_penalty = final_penalty + penalty final_score = final_score * new_score return final_score, final_penalty def new_algorithm(F, R, k=0): # Empty check if len(F) == 0: return [], -1, [] # parents_vector, score S = rd_to_sd(F, R) # Add founder my_F = add_founder(F) my_S = add_founder_penalty(S) num_clones = len(my_F[0]) # Get the step structure of the step matrix steps, arrival_times = get_step_structure(my_F) steps = correct_steps_for_known_founders(steps, k) parents = {} for clone in range(1, num_clones): parents[clone] = -1 order = list(range(0, num_clones)) final_score = one final_penalty = zero clone_counter = 1 starting_step = 1 if k > 0: for i in range(0, k): parents[i + 1] = 0 if k > 1: G, vertices = get_partial_order(my_F, [steps[1][0], steps[1][-1]]) ts = topological_sort(G, vertices) order = [0] + ts + list(range(steps[1][-1] + 1, num_clones)) score, penalty = tree_score(my_F, my_S, order, parents, arrival_times, steps[1][-1]) max_score = score max_penalty = penalty max_order = order for i in range(0, len(ts)): for j in range(0, i): new_ts = ts[:] new_ts.remove(ts[i]) new_ts.insert(j, ts[i]) temp_order = [0] + new_ts + list(range(steps[1][-1] + 1, num_clones)) temp_score, temp_penalty = tree_score(my_F, my_S, temp_order, parents, arrival_times, i + 1) if (temp_score + temp_penalty) > (max_score + max_penalty): max_score = temp_score max_penalty = temp_penalty max_order = temp_order order = max_order[:] final_score = max_score final_penalty = max_penalty clone_counter = steps[1][-1] + 1 starting_step = 2 else: clone_counter = 2 starting_step = 2 for step_counter in range(starting_step, len(steps)): step = steps[step_counter] if len(step) == 1: clone = order[clone_counter] parent, score, penalty = best_scoring_ancestor(my_F, my_S, order, parents, clone_counter, arrival_times[order[clone_counter - 1]], arrival_times[order[clone_counter]]) parents[clone] = parent final_score = final_score * score final_penalty = final_penalty + penalty clone_counter = clone_counter + 1 else: G, vertices = get_partial_order(my_F, [step[0], step[-1]]) ts = topological_sort(G, vertices) new_order = order[:step[0]] + ts + order[step[-1] + 1:] for i in range(0, len(ts)): clone = new_order[clone_counter] parent, score, penalty = best_scoring_ancestor(my_F, my_S, new_order, parents, clone_counter, arrival_times[order[clone_counter - 1]], arrival_times[order[clone_counter]]) max_parents = parents.copy() max_parents[clone] = parent max_score = final_score * score max_penalty = final_penalty + penalty max_order = new_order[:] for j in range(0, i): new_ts = ts[:] new_ts.remove(ts[i]) new_ts.insert(j, ts[i]) common_ancestor = parents[new_ts[j + 1]] temp_parents = parents.copy() temp_parents[clone] = common_ancestor temp_order = order[:step[0]] + new_ts + order[step[-1] + 1:] temp_score, temp_penalty = tree_score(my_F, my_S, temp_order, temp_parents, arrival_times, clone_counter) if (temp_score + temp_penalty) > (max_score + max_penalty): max_parents = temp_parents.copy() max_score = temp_score max_penalty = temp_penalty max_order = temp_order parents = max_parents.copy() final_score = max_score final_penalty = max_penalty new_order = max_order[:] clone_counter = clone_counter + 1 order = new_order[:] parents_vector = [0] for i in range(1, num_clones): parents_vector.append(parents[i]) return parents_vector, final_score + final_penalty, order def valid_parent_value(parents, F, fail_threshold): # F may not be square m = len(F) vp = True cur_parent = parents[-1] children = get_children(parents, cur_parent) for t in range(cur_parent, m): children_sum = zero for child in children: children_sum += F[t][child] if F[t][cur_parent] - children_sum < fail_threshold: vp = False return vp return vp def valid_parent_order(order_validity, parents): cur_variant = len(parents) - 1 cur_path = deepcopy(order_validity[cur_variant]) temp = parents[cur_variant] while temp != 0: cur_path.discard(temp) temp = parents[temp] cur_path.discard(0) return len(cur_path) == 0 def c_row(f_row, parents): m = len(f_row) C = [] for parent in range(0, m): children = get_children(parents, parent) children_sum = zero for child in children: children_sum += f_row[child] C.append(f_row[parent] - children_sum) return C def smart_predict_original(F, m, fail_threshold, clones=[], S=[]): # Assumes square F if len(F) == 0: return [], [], [], -1 # Add founder my_F = add_founder(F) # m = len(my_F) choices_stack = [[0]] chosen_parents = [0] valid_parents = white_list(list(range(m)), clones) order_validity = black_list(list(range(m)), clones) success = False while choices_stack: chosen_parents = choices_stack.pop() i = len(chosen_parents) - 1 if not valid_parent_value(chosen_parents, my_F, fail_threshold): continue if clones: if not valid_parent_order(order_validity, chosen_parents): continue if i == (m - 1): success = True break C_row = c_row(my_F[i], chosen_parents) next_choices = list((np.array(C_row)).argsort()) for next_choice in next_choices: if C_row[next_choice] > fail_threshold and next_choice <= i and next_choice in valid_parents[i + 1]: temp = chosen_parents[:] temp.append(next_choice) choices_stack.append(temp) if not success: return [], my_F, [], -1 C = [] for i in range(0, m): C.append(c_row(my_F[i], chosen_parents)) p = one for i in range(1, m): p = p * C[i - 1][chosen_parents[i]] return C, my_F, chosen_parents, p def variant_penalty1(parents, F, S): # F may not be square m = len(F) pen = 0 cur_parent = parents[-1] children = get_children(parents, cur_parent) for t in range(cur_parent, m): children_sum = zero cs_sds = zero for child in children: children_sum += F[t][child] cs_sds += (S[t][child] ** 2) temp = F[t][cur_parent] - children_sum if temp < 0: denominator = Decimal(sqrt((S[t][cur_parent] ** 2) + cs_sds)) if denominator > zero: pen += temp / denominator return pen def scores(F, parents, penalty, S=[]): i = len(parents) - 1 C_row = c_row(F[i], parents) for j in range(0, len(C_row)): if S: pen = penalty(parents + [j], F, S) C_row[j] = C_row[j] + pen return C_row def smart_predict_penalty(F, m, fail_threshold, clones=[], S=[]): # Assumes square F if len(F) == 0: return [], [], [], -1 # Add founder my_F = add_founder(F) my_S = [] if S: my_S = add_founder_penalty(S) # m = len(my_F) choices_stack = [[0]] chosen_parents = [0] valid_parents = white_list(list(range(m)), clones) order_validity = black_list(list(range(m)), clones) success = False while choices_stack: # print(choices_stack) chosen_parents = choices_stack.pop() i = len(chosen_parents) - 1 if not S: if not valid_parent_value(chosen_parents, my_F, fail_threshold): continue if clones: if not valid_parent_order(order_validity, chosen_parents): continue if i == (m - 1): success = True break sc = scores(my_F, chosen_parents, variant_penalty1, my_S) next_choices = list((np.array(sc)).argsort()) for next_choice in next_choices: if next_choice <= i and next_choice in valid_parents[i + 1]: temp = chosen_parents[:] temp.append(next_choice) choices_stack.append(temp) if not success: return [], my_F, [], -1 C = [] for i in range(0, m): C.append(c_row(my_F[i], chosen_parents)) p = one for i in range(1, m): p = p * C[i - 1][chosen_parents[i]] return C, my_F, chosen_parents, p def old_algorithm(F, R, smart_predict_algo): # Empty check if len(F) == 0: return [], -1 # parents_vector, score S = rd_to_sd(F, R) num_clones = len(F[0]) order = [] steps, arrival_times = get_step_structure(F) choices_stack = [(0, [0], [])] (cur_score, cur_T, cur_P) = (0, [0], []) success = False while choices_stack: (cur_score, cur_T, cur_P) = choices_stack.pop() cur_m = 1 for item in cur_P: cur_m += len(item) i = len(cur_P) if i == len(steps): success = True break cur_step = steps[i] temp = [] j = 0 # topo_permutations, F_mod = topological_valid_permutations(F_iter, cur_step) # F_iter = deepcopy(F_mod) # for permutation in topo_permutations: for permutation in permutations(cur_step): perm_ss = deepcopy(cur_P) perm_ss.append(list(permutation)) perm_F = squarify(F, perm_ss) perm_S = squarify(S, perm_ss) _, _, perm_T, perm_score = smart_predict_algo(perm_F, cur_m + len(permutation), zero, clones=[], S=perm_S) if perm_score != -1: temp.append((perm_score, perm_T, perm_ss)) if temp: temp_sorted = sorted(temp, key=lambda x: x[0]) choices_stack = choices_stack + temp_sorted if success: variants_in = list(range(1, num_clones + 1)) variants_out = reorder(variants_in, chain.from_iterable(cur_P)) parents_out = remap_parents(variants_out, cur_T) return parents_out, cur_score else: return [], -1 def predict(F, variants, algo, R=[], filter=True, k=0): start = process_time() if len(R) == 0: R = [[Decimal(sys.maxsize) for _ in range(len(F[0]))] for _ in range(len(F))] if filter: F1, R1, variants1, removed_variants = filter_data(F, R, variants) else: removed_variants = [] F1 = deepcopy(F) R1 = deepcopy(R) variants1 = deepcopy(variants) F2, R2, _, removed_time_points = remove_redundant_time_points(F1, R1) order = [] if variants: # F2, R2, variants1 = cluster_data(F2, R2, variants1, 0.05) # F2, R2, _, _ = remove_redundant_time_points(F2, R2) parents = [] score = zero if algo == 0: parents, score = old_algorithm(F2, R2, smart_predict_original) elif algo == 1: parents, score, order = new_algorithm(F2, R2, k) elif algo == 2: parents, score = old_algorithm(F2, R2, smart_predict_penalty) else: exit("Invalid parameter for algo.") else: parents = [] score = zero end = process_time() return parents, score, variants1, removed_variants, len(F2), end - start, removed_time_points, F1, R1, order
##parameters=text_format, text, SafetyBelt='', **kw ## from Products.CMFDefault.exceptions import EditingConflict from Products.CMFDefault.exceptions import ResourceLockedError from Products.CMFDefault.utils import Message as _ if text_format != context.text_format or text != context.EditableBody(): try: context.edit(text_format, text, safety_belt=SafetyBelt) return context.setStatus(True, _(u'Document changed.')) except (ResourceLockedError, EditingConflict), errmsg: return context.setStatus(False, errmsg) else: return context.setStatus(False, _(u'Nothing to change.'))
version="0.2.2b-dev"
import Orange from Orange.evaluation.testing import CrossValidation from orangecontrib.recommendation import * from sklearn.metrics import mean_squared_error, mean_absolute_error import math import time def test_learners(): start = time.time() # Load data #data = Orange.data.Table('epinions_test.tab') data = Orange.data.Table('filmtrust/ratings.tab') trust = Orange.data.Table('filmtrust/trust.tab') print('- Loading time: %.3fs' % (time.time() - start)) # Global average start = time.time() learner = GlobalAvgLearner() recommender = learner(data) print('- Time (GlobalAvgLearner): %.3fs' % (time.time() - start)) rmse = math.sqrt(mean_squared_error(data.Y, recommender(data))) mae = mean_absolute_error(data.Y, recommender(data)) print('- RMSE (GlobalAvgLearner): %.3f' % rmse) print('- MAE (GlobalAvgLearner): %.3f' % mae) print('') # Item average start = time.time() learner = ItemAvgLearner() recommender = learner(data) print('- Time (ItemAvgLearner): %.3fs' % (time.time() - start)) rmse = math.sqrt(mean_squared_error(data.Y, recommender(data))) mae = mean_absolute_error(data.Y, recommender(data)) print('- RMSE (ItemAvgLearner): %.3f' % rmse) print('- MAE (ItemAvgLearner): %.3f' % mae) print('') # User average start = time.time() learner = UserAvgLearner() recommender = learner(data) print('- Time (UserAvgLearner): %.3fs' % (time.time() - start)) rmse = math.sqrt(mean_squared_error(data.Y, recommender(data))) mae = mean_absolute_error(data.Y, recommender(data)) print('- RMSE (UserAvgLearner): %.3f' % rmse) print('- MAE (UserAvgLearner): %.3f' % mae) print('') # User-Item baseline start = time.time() learner = UserItemBaselineLearner() recommender = learner(data) print('- Time (UserItemBaselineLearner): %.3fs' % (time.time() - start)) rmse = math.sqrt(mean_squared_error(data.Y, recommender(data))) mae = mean_absolute_error(data.Y, recommender(data)) print('- RMSE (UserItemBaselineLearner): %.3f' % rmse) print('- MAE (UserItemBaselineLearner): %.3f' % mae) print('') # BRISMF start = time.time() learner = BRISMFLearner(num_factors=10, num_iter=15, learning_rate=0.01, lmbda=0.1, verbose=0) recommender = learner(data) print('- Time (BRISMFLearner): %.3fs' % (time.time() - start)) rmse = math.sqrt(mean_squared_error(data.Y, recommender(data))) mae = mean_absolute_error(data.Y, recommender(data)) print('- RMSE (BRISMFLearner): %.3f' % rmse) print('- MAE (BRISMFLearner): %.3f' % mae) print('') # SVD++ start = time.time() learner = SVDPlusPlusLearner(num_factors=10, num_iter=15, learning_rate=0.01, lmbda=0.1, verbose=0) recommender = learner(data) print('- Time (SVDPlusPlusLearner): %.3fs' % (time.time() - start)) rmse = math.sqrt(mean_squared_error(data.Y, recommender(data))) mae = mean_absolute_error(data.Y, recommender(data)) print('- RMSE (SVDPlusPlusLearner): %.3f' % rmse) print('- MAE (SVDPlusPlusLearner): %.3f' % mae) print('') # TrustSVD start = time.time() learner = TrustSVDLearner(num_factors=10, num_iter=15, learning_rate=0.01, lmbda=0.12, social_lmbda=0.9, trust=trust, verbose=0) recommender = learner(data) print('- Time (TrustSVD): %.3fs' % (time.time() - start)) rmse = math.sqrt(mean_squared_error(data.Y, recommender(data))) mae = mean_absolute_error(data.Y, recommender(data)) print('- RMSE (TrustSVD): %.3f' % rmse) print('- MAE (TrustSVD): %.3f' % mae) print('') def test_CV(): # Load data data = Orange.data.Table('filmtrust/ratings_small.tab') trust = Orange.data.Table('filmtrust/trust_small.tab') # Learners global_avg = GlobalAvgLearner() items_avg = ItemAvgLearner() users_avg = UserAvgLearner() useritem_baseline = UserItemBaselineLearner() brismf = BRISMFLearner(num_factors=15, num_iter=10, learning_rate=0.07, lmbda=0.1) svdpp = SVDPlusPlusLearner(num_factors=15, num_iter=10, learning_rate=0.007, lmbda=0.1) trustsvd = TrustSVDLearner(num_factors=15, num_iter=10, learning_rate=0.007, lmbda=0.1, social_lmbda=0.05, trust=trust) learners = [global_avg, items_avg, users_avg, useritem_baseline, brismf, svdpp, trustsvd] res = CrossValidation(data, learners, k=5) rmse = Orange.evaluation.RMSE(res) r2 = Orange.evaluation.R2(res) print("Learner RMSE R2") for i in range(len(learners)): print( "{:8s} {:.2f} {:5.2f}".format(learners[i].name, rmse[i], r2[i])) if __name__ == "__main__": #pass test_learners()
row, col = map(int, input().split()) n, m, d = map(int, input().split()) data = [] dx = [-1, 0, 1, 0] dy = [0, 1, 0, -1] dir_types = [0, 1, 2, 3] #북동남서 for i in range(row): i = list(map(int, input().split())) data.append(i)
from selenium import webdriver if __name__ == "__main__": driver = webdriver.Chrome() base_url = 'https://www.baidu.com' driver.get(base_url)
from django.urls import path from . import views urlpatterns = [ #tarfas path('',views.tarefas,name='tarefas'), path('tarefa/<int:categoria_id>/',views.tarefas_por_categoria,name='tarefas_por_categoria'), path('tarefa/concluir/<int:tarefa_id>/',views.concluir_tarefa,name='concluir_tarefa'), path('tarefa/cadastrar/', views.cadastrar_tarefa, name='cadastrar_tarefa'), path('tarefa/excluir/<int:tarefa_id>/',views.excluir_tarefa, name='excluir_tarefa'), path('tarefa/editar/<int:tarefa_id>/',views.editar_tarefa,name='editar_tarefa'), #categorias path('categoria/cadastrar/',views.cadastrar_categoria,name='cadastrar_categoria'), path('categoria/listar', views.listar_categorias, name='listar_categorias'), path('categoria/excluir/<int:categoria_id>/',views.excluir_categoria, name='excluir_categoria'), path('categoria/editar/<int:categoria_id>/',views.editar_categoria,name='editar_categoria'), ]
import os import os.path # import traitlets.config import Config from traitlets import default, Unicode from nbconvert.exporters.html import HTMLExporter from traitlets.log import get_logger class HideCodeHTMLExporter(HTMLExporter): def __init__(self, config=None, **kw): # self.register_preprocessor('hide_code.HideCodePreprocessor', True) super(HideCodeHTMLExporter, self).__init__(config, **kw) # self.preprocessors = ['hide_code.HideCodePreprocessor'] # self._init_preprocessors() @default('template_file') def _template_file_default(self): return 'hide_code_full.tpl' @property def template_path(self): """ We want to inherit from HTML template, and have template under `./templates/` so append it to the search path. (see next section) """ return super(HideCodeHTMLExporter, self).template_path + [os.path.join(os.path.dirname(__file__), "Templates")] # return [os.path.join(os.path.dirname(__file__), "Templates")] # @default('template_path') # def _default_template_path(self): # return os.path.join(os.path.dirname(__file__), "Templates")
import re import os import shutil import urllib.parse from zlib import compress import base64 import string plantuml_alphabet = string.digits + string.ascii_uppercase + string.ascii_lowercase + '-_' base64_alphabet = string.ascii_uppercase + string.ascii_lowercase + string.digits + '+/' b64_to_plantuml = bytes.maketrans(base64_alphabet.encode('utf-8'), plantuml_alphabet.encode('utf-8')) class MarkdownResult: def __init__(self): self.title = "" self.files = [] class MarkdownParser: def __init__(self,parent,filename,token,user): self.user = user self.token = token self.parent = parent self.filename = filename self.url = None self.gistId = None def deflate_and_encode(plantuml_text): """zlib compress the plantuml text and encode it for the plantuml server. """ zlibbed_str = compress(plantuml_text.encode('utf-8')) compressed_string = zlibbed_str[2:-4] return base64.b64encode(compressed_string).translate(b64_to_plantuml).decode('utf-8') def parse(self): reUrl = re.compile(r'\[gist-sync-url\]:(.*)',re.I) file_path = os.path.join(self.parent, self.filename) with open(file_path, 'r') as f: for line in f: urlMatch = reUrl.match(line) if urlMatch: self.url = urlMatch.group(1) urlret = urllib.parse.urlparse(self.url) path = urlret.path if path[-1] == '/': path = path[:-1] self.gistId = path.split('/')[-1] # self.user = path.split('/')[-2] break return self.gistId != None and self.user != None def syncTo(self, path): if not self.gistId or not self.user: return None reTitle = re.compile(r'\s?#\s+(.*)') reImg = re.compile(r'.*!\[.*\]\((.*)\)') reCode = re.compile(r'(\s*)```(\w*)') retObj = MarkdownResult() retObj.files.append("index.md") mdPath = os.path.join(path, "index.md") inCode = False preSpace = "" codeTxt = "" with open(mdPath, 'w') as mdf: file_path = os.path.join(self.parent, self.filename) with open(file_path, 'r') as f: for line in f: codeMatch = reCode.match(line) if codeMatch: info = codeMatch.group(2) if not inCode and (info == "puml" or info == "plantuml"): inCode = True codeTxt = "" preSpace = codeMatch.group(1) line = "" elif inCode: inCode = False pumlCode = MarkdownParser.deflate_and_encode(codeTxt) codeTxt = "" line = f'\n{preSpace}![plantuml](https://www.plantuml.com/plantuml/png/{pumlCode})\n' if inCode: codeTxt += line continue titleMatch = reTitle.match(line) if titleMatch: retObj.title = titleMatch.group(1) imgMatch = reImg.match(line) if imgMatch: imgStr = imgMatch.group(1) imgPath = imgStr.split()[0] newFilename = self._convertImgFileName(imgPath) print("find img:", imgStr) if newFilename is not None: oldFile = os.path.join(self.parent, imgPath) newFile = os.path.join(path, newFilename) shutil.copyfile(oldFile, newFile) retObj.files.append(newFilename) # The path ref https://gist.github.com/cben/46d9536baacb7c5d196c/ newPath = os.path.join(self.gistId, "raw" , newFilename) line = line.replace(imgPath, newPath) mdf.write(line) for parent,dirnames,filenames in os.walk(path): if ".git" in parent: continue for filename in filenames: if filename not in retObj.files: # print("remove file:" + filename) os.remove(os.path.join(parent, filename)) return retObj def _convertImgFileName(self, path): if path.startswith("http"): return None newFilename = "z"+path.replace("/", "_").replace("..", "_") return newFilename
import matplotlib.pyplot as plt import numpy as np import scipy.stats as stats # (a) n = 100 rng = np.random.default_rng(42) mu = 5 data = rng.normal(mu, 1, size=n) # (b) mu_lim = (3, 7) k = 5000 mus = np.linspace(*mu_lim, k) likelihood = np.ones(k) for x in data: likelihood *= stats.norm.pdf(x, loc=mus) mu_density = likelihood * 1 mu_density /= mu_density.sum() fig_b, ax_b = plt.subplots() ax_b.set(xlabel="Mu", ylabel="Posterior density") ax_b.plot(mus, mu_density) fig_b.savefig("11-02b.png", bbox_inches="tight") # (c) drawn_mus = rng.choice(mus, size=1000, p=mu_density) fig_c, ax_c = plt.subplots() ax_c.set(xlabel="Mu", ylabel="Frequency") ax_c.hist(drawn_mus, bins=150, range=mu_lim) fig_c.savefig("11-02c.png", bbox_inches="tight") # (d) drawn_thetas = np.exp(rng.choice(mus, size=10000, p=mu_density)) theta_lims = (75, 220) fig_d, axs_d = plt.subplots(1, 2, figsize=(14, 6)) axs_d[0].set(xlabel="Theta", ylabel="Frequency") axs_d[0].hist(drawn_thetas, bins="auto", range=theta_lims) thetas = np.geomspace(*theta_lims, k) log_thetas = np.log(thetas) diff = np.tile(log_thetas, n).reshape((n, -1)).transpose() - data propto = np.exp(-0.5 * np.sum(diff ** 2, axis=1)) theta_density = propto / propto.sum() axs_d[1].set(xlabel="Theta", ylabel="Posterior density") axs_d[1].plot(thetas, theta_density) fig_d.savefig("11-02d.png", bbox_inches="tight") # (e) mu_cdf = mu_density.cumsum() alpha = 0.05 mu_left_idx = np.argmax(mu_cdf >= alpha / 2) mu_right_idx = np.argmax(mu_cdf >= 1 - alpha / 2) mu_pi = (mus[mu_left_idx], mus[mu_right_idx]) print( "95% posterior interval for mu is given by", f"[{mu_pi[0]:.3f}, {mu_pi[1]:.3f}]", ) # (f) theta_cdf = theta_density.cumsum() alpha = 0.05 theta_left_idx = np.argmax(theta_cdf >= alpha / 2) theta_right_idx = np.argmax(theta_cdf >= 1 - alpha / 2) theta_pi = (thetas[theta_left_idx], thetas[theta_right_idx]) print( "95% posterior interval for theta is given by", f"[{theta_pi[0]:.3f}, {theta_pi[1]:.3f}]", )
from flask import Flask, Reponse, request from flask_sqlalchemy import import mysql.connector
"""This module is the Python part of the CAD Viewer widget""" import base64 import json from textwrap import dedent import numpy as np import ipywidgets as widgets from ipywidgets.embed import embed_minimal_html, dependency_state from traitlets import Unicode, Dict, List, Tuple, Integer, Float, Any, Bool, observe from IPython.display import HTML, update_display from pyparsing import ParseException from .utils import get_parser, to_json, bsphere, normalize class AnimationTrack: """ Defining a three.js animation track. Parameters ---------- path : string The path (or id) of the cad object for which this track is meant. Usually of the form `/top-level/level2/...` action : {"t", "tx", "ty", "tz", "q", "rx", "ry", "rz"} The action type: - "tx", "ty", "tz" for translations along the x, y or z-axis - "t" to add a position vector (3-dim array) to the current position of the CAD object - "rx", "ry", "rz" for rotations around x, y or z-axis - "q" to apply a quaternion to the location of the CAD object times : list of float or int An array of floats describing the points in time where CAD object (with id `path`) should be at the location defined by `action` and `values` values : list of float or int An array of same length as `times` defining the locations where the CAD objects should be according to the `action` provided. Formats: - "tx", "ty", "tz": float distance to move - "t": 3-dim tuples or lists defining the positions to move to - "rx", "ry", "rz": float angle in degrees - "q" quaternions of the form (x,y,z,w) the represent the rotation to be applied Examples -------- ``` AnimationTrack( '/bottom/left_middle/lower', # path 'rz', # action [0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0], # times (seconds) [-15.0, -15.0, -15.0, 9.7, 20.0, 9.7, -15.0, -15.0, -15.0] # angles ) AnimationTrack( 'base/link_4_6', # path 't', # action [0.0, 1.0, 2.0, 3.0, 4.0], # times (seconds) [[0.0, 0.0, 0.0], [0.0, 1.9509, 3.9049], [0.0 , -3.2974, -16.7545], [0.0 , 0.05894 , -32.0217], [0.0 , -3.2212, -13.3424]] # 3-dim positions ) ``` See also -------- - [three.js NumberKeyframeTrack](https://threejs.org/docs/index.html?q=track#api/en/animation/tracks/NumberKeyframeTrack) - [three.js QuaternionKeyframeTrack](https://threejs.org/docs/index.html?q=track#api/en/animation/tracks/QuaternionKeyframeTrack) """ def __init__(self, path, action, times, values): if len(times) != len(values): raise ValueError("Parameters 'times' and 'values' need to have same length") self.path = path self.action = action self.times = times self.values = values self.length = len(times) def to_array(self): """ Create an array representation of the animation track Returns ------- array-like The 4 dim array comprising of the instance variables `path`, `action`, `times` and `values` """ def tolist(obj): if isinstance(obj, np.ndarray): return obj.tolist() elif isinstance(obj, (list, tuple)): return [tolist(subarray) for subarray in obj] else: return obj return [self.path, self.action, tolist(self.times), tolist(self.values)] @widgets.register class CadViewerWidget(widgets.Output): # pylint: disable-msg=too-many-instance-attributes """The CAD Viewer widget.""" _view_name = Unicode("CadViewerView").tag(sync=True) _model_name = Unicode("CadViewerModel").tag(sync=True) _view_module = Unicode("cad-viewer-widget").tag(sync=True) _model_module = Unicode("cad-viewer-widget").tag(sync=True) _view_module_version = Unicode("1.3.2").tag(sync=True) _model_module_version = Unicode("1.3.2").tag(sync=True) # # Display traits # title = Unicode(allow_none=True).tag(sync=True) "unicode string of the title of the sidecar to be used. None means CAD view will be opened in cell" anchor = Unicode(allow_none=True).tag(sync=True) "unicode string whether to add a view to the right sidebar ('right') or as a tab to the main window ('tab')" cad_width = Integer().tag(sync=True) "unicode string: Width of the canvas element" height = Integer(allow_none=True).tag(sync=True) "int: Height of the canvas element" tree_width = Integer(allow_none=True).tag(sync=True) "int: Width of the navigation tree element" theme = Unicode(allow_none=True).tag(sync=True) "unicode string: UI theme, can be 'dark' or 'light' (default)" pinning = Bool(allow_none=True, default_value=None).tag(sync=True) "bool: Whether to show the pin a png button or not" # # Viewer traits # shapes = Dict(allow_none=True).tag(sync=True, to_json=to_json) "unicode: Serialized nested tessellated shapes" states = Dict(Tuple(Integer(), Integer()), allow_none=True).tag(sync=True) "dict: State of the nested cad objects, key = object path, value = 2-dim tuple of 0/1 (hidden/visible) for object and edges" tracks = List(allow_none=True).tag(sync=True) "unicode: Serialized list of animation track arrays, see [AnimationTrack.to_array](/widget.html#cad_viewer_widget.widget.AnimationTrack.to_array)" timeit = Bool(allow_none=True, default_value=None).tag(sync=True) "bool: Whether to output timing info to the browser console (True) or not (False)" tools = Bool(allow_none=True, default_value=None).tag(sync=True) "bool: Whether to show CAD tools (True) or not (False)" glass = Bool(allow_none=True, default_value=None).tag(sync=True) "bool: Whether to use the glass mode (CAD navigation as transparent overlay) or not" ortho = Bool(allow_none=True, default_value=None).tag(sync=True) "bool: Whether to use orthographic view (True) or perspective view (False)" control = Unicode().tag(sync=True) "unicode: Whether to use trackball controls ('trackball') or orbit controls ('orbit')" axes = Bool(allow_none=True, default_value=None).tag(sync=True) "bool: Whether to show coordinate axes (True) or not (False)" axes0 = Bool(allow_none=True, default_value=None).tag(sync=True) "bool: Whether to center coordinate axes at the origin [0,0,0] (True) or at the CAD object center (False)" grid = Tuple(Bool(), Bool(), Bool(), allow_none=True).tag(sync=True) "tuple: Whether to show the grids for `xy`, `xz`, `yz`." ticks = Integer(allow_none=True).tag(sync=True) "integer: Hint for the number of ticks for the grids (will be adjusted for nice intervals)" transparent = Bool(allow_none=True, default_value=None).tag(sync=True) "bool: Whether to show the CAD objects transparently (True) or not (False)" black_edges = Bool(allow_none=True, default_value=None).tag(sync=True) "bool: Whether to shows the edges in black (True) or not(False)" collapse = Integer(allow_none=True, default_value=None).tag(sync=True) "int: Collapse CAD tree (1: collapse nodes with single leaf, 2: collapse all nodes)" normal_len = Float(allow_none=True).tag(sync=True) "float: If > 0, the vertex normals will be rendered with the length given be this parameter" default_edge_color = Unicode(allow_none=True).tag(sync=True) "unicode: The default edge color in web format, e.g. '#ffaa88'" default_opacity = Float(allow_none=True).tag(sync=True) "unicode: The default opacity for transparent objects" ambient_intensity = Float(allow_none=True).tag(sync=True) "float: The intensity of the ambient light" direct_intensity = Float(allow_none=True).tag(sync=True) "float: The intensity of the 8 direct lights" # # Generic UI traits # tab = Unicode(allow_none=True).tag(sync=True) "unicode: Whether to show the navigation tree ('tree') or the clipping UI ('clip')" clip_intersection = Bool(allow_none=True, default_value=None).tag(sync=True) "bool: Whether to use intersection clipping (True) or not (False)" clip_planes = Bool(allow_none=True, default_value=None).tag(sync=True) "bool: Whether to show colored clipping planes (True) or not (False)" clip_normal_0 = Tuple(Float(), Float(), Float(), allow_none=True, default_value=None).tag(sync=True) "tuple: Normal of clipping plane 1 as a 3-dim tuple of float (x,y,z)" clip_normal_1 = Tuple(Float(), Float(), Float(), allow_none=True, default_value=None).tag(sync=True) "tuple: Normal of clipping plane 2 as a 3-dim tuple of float (x,y,z)" clip_normal_2 = Tuple(Float(), Float(), Float(), allow_none=True, default_value=None).tag(sync=True) "tuple: Normal of clipping plane 3 as a 3-dim tuple of float (x,y,z)" clip_slider_0 = Float(allow_none=True, default_value=None).tag(sync=True) "float: Slider value of clipping plane 1" clip_slider_1 = Float(allow_none=True, default_value=None).tag(sync=True) "float: Slider value of clipping plane 2" clip_slider_2 = Float(allow_none=True, default_value=None).tag(sync=True) "float: Slider value of clipping plane 3" reset_camera = Bool(allow_none=True, default_value=None).tag(sync=True) "bool: Whether to reset camera (True) or not (False)" position = Tuple(Float(), Float(), Float(), allow_none=True).tag(sync=True) "tuple: Position of the camera as a 3-dim tuple of float (x,y,z)" quaternion = Tuple(Float(), Float(), Float(), Float(), allow_none=True).tag(sync=True) "tuple: Rotation of the camera as 4-dim quaternion (x,y,z,w)" target = Tuple(Float(), Float(), Float(), allow_none=True).tag(sync=True) "tuple: Camera target to look at as 3-dim tuple (x,y,z)" zoom = Float(allow_none=True).tag(sync=True) "float: Zoom value of the camera" position0 = Tuple(Float(), Float(), Float(), allow_none=True).tag(sync=True) "tuple: Initial position of the camera as a 3-dim tuple of float (x,y,z)" quaternion0 = Tuple(Float(), Float(), Float(), Float(), allow_none=True).tag(sync=True) "tuple: Initial rotation of the camera as 4-dim quaternion (x,y,z,w)" zoom0 = Float(allow_none=True).tag(sync=True) "float: Initial zoom value of the camera" target0 = Tuple(Float(), Float(), Float(), allow_none=True).tag(sync=True) "tuple: Initial camera target to look at as 3-dim tuple (x,y,z)" zoom_speed = Float(allow_none=True).tag(sync=True) "float: Speed of zooming with the mouse" pan_speed = Float(allow_none=True).tag(sync=True) "float: Speed of panning with the mouse" rotate_speed = Float(allow_none=True).tag(sync=True) "float: Speed of rotation with the mouse" animation_speed = Float(allow_none=True).tag(sync=True) "float: Animation speed" state_updates = Dict(Tuple(Integer(), Integer()), allow_none=True).tag(sync=True) "dict: Dict with paths as key and a 2-dim tuple of 0/1 (hidden/visible) for object and edges" # # Read only traitlets # lastPick = Dict(key_trait=Unicode(), value_trait=Any(), allow_none=True, read_only=True).tag(sync=True) "dict: Describes the last picked element of the CAD view" result = Unicode(allow_none=True).tag(sync=True) "unicode string: JSON serialized result from Javascript" # # Internal traitlets # disposed = Bool(default=False, allow_none=True, default_value=None).tag(sync=True) "unicode string: Whether the Javascript viewer is disposed" initialize = Bool(allow_none=True, default_value=None).tag(sync=True) "bool: internally used to control initialization of view. Do not use!" js_debug = Bool(allow_none=True, default_value=None).tag(sync=True) "bool: Whether to show infos in the browser console (True) or not (False)" image_id = Unicode(allow_none=True).tag(sync=True) "unicode string: the id of the image tag to use for pin as png" @observe("result") def func(self, change): if change["new"] is not None: data = json.loads(change["new"]) if data.get("display_id") is not None: html = f"""<img src="{data['src']}" width="{data['width']}px" height="{data['height']}px"/>""" update_display(HTML(html), display_id=data["display_id"]) else: if self.test_func is not None and callable(self.test_func): self.test_func(base64.b64decode(data["src"].split(",")[1])) # pylint: disable=not-callable else: with open(data["filename"], "wb") as fd: fd.write(base64.b64decode(data["src"].split(",")[1])) self.result = None class CadViewer: """ The main class for the CAD Viewer encapsulating the three-cad-viewer Javascript module Parameters ---------- cad_width : int, default: 800 Width of the canvas element height : int, default: 600 Height of the canvas element tree_width : int, default: 240 Width of the navigation tree element theme : string, default: 'light' UI theme, can be 'dark' or 'light' (default) tools : bool, default: True Whether to show CAD tools (True) or not (False) glass : bool, default: False Whether to use glass mode (True) or not (False) pinning: bool, default: False Whether to allow replacing the CAD View by a canvas screenshot See also -------- - [three-cad-viewer](https://github.com/bernhard-42/three-cad-viewer) ([Demo](https://bernhard-42.github.io/three-cad-viewer/example.html)) - [threejs](https://threejs.org/docs/index.html#manual/en/introduction/Creating-a-scene) """ def __init__( self, cad_width=800, height=600, tree_width=240, theme="browser", glass=False, tools=True, pinning=False, title=None, anchor=None, ): if cad_width < 400: raise ValueError("Ensure cad_width >= 400") if tree_width < 240: raise ValueError("Ensure tree_width >= 240") self.widget = CadViewerWidget( cad_width=cad_width, height=height, tree_width=tree_width, theme=theme, glass=glass, tools=tools, pinning=pinning, title=title, anchor=anchor, ) self.widget.test_func = None self.msg_id = 0 self.parser = get_parser() self.empty = True self.tracks = [] def _parse(self, string): try: return self.parser.parseString(string).asList() except ParseException: return None def dispose(self): """ Dispose the CAD Viewer """ self.execute("viewer.dispose") def add_shapes( self, shapes, states, tracks=None, # render options normal_len=0, default_edge_color="#707070", default_opacity=0.5, ambient_intensity=0.5, direct_intensity=0.3, # viewer options tools=None, glass=None, cad_width=None, tree_width=None, height=None, control="trackball", ortho=True, axes=False, axes0=False, grid=None, ticks=10, transparent=False, black_edges=False, collapse=0, position=None, quaternion=None, target=None, zoom=None, reset_camera=True, zoom_speed=1.0, pan_speed=1.0, rotate_speed=1.0, timeit=False, js_debug=False, ): """ Adding shapes to the CAD view Parameters ---------- shapes : dict Nested tessellated shapes states : dict State of the nested cad objects, key = object path, value = 2-dim tuple of 0/1 (hidden/visible) for object and edges tracks : list or tuple, default None List of animation track arrays, see [AnimationTrack.to_array](/widget.html#cad_viewer_widget.widget.AnimationTrack.to_array) title: str, default: None Name of the title view to display the shapes. ortho : bool, default True Whether to use orthographic view (True) or perspective view (False) cad_width : int, default: None Width of the canvas element height : int, default: None Height of the canvas element tree_width : int, default: None Width of the navigation tree element tools : bool, default: None Whether to show CAD tools (True) or not (False) glass : bool, default: None Whether to use glass mode (True) or not (False) control : string, default 'trackball' Whether to use trackball controls ('trackball') or orbit controls ('orbit') axes : bool, default False Whether to show coordinate axes (True) or not (False) axes0 : bool, default False Whether to center coordinate axes at the origin [0,0,0] (True) or at the CAD object center (False) grid : 3-dim list of bool, default None Whether to show the grids for `xy`, `xz`, `yz` (`None` means `(False, False, False)`) ticks : int, default 10 Hint for the number of ticks for the grids (will be adjusted for nice intervals) transparent : bool, default False Whether to show the CAD objects transparently (True) or not (False) black_edges : bool, default False Whether to shows the edges in black (True) or not(False) collapse : int, default 0 Collapse CAD tree (1: collapse nodes with single leaf, 2: collapse all nodes) normal_Len : int, default 0 If > 0, the vertex normals will be rendered with the length given be this parameter default_edge_color : string, default "#707070" The default edge color in web format, e.g. '#ffaa88' default_opacity : float, default 0.5 The default opacity level for transparency between 0.0 an 1.0 ambient_intensity : float, default 0.9 The intensity of the ambient light direct_intensity : float, default 0.12 The intensity of the 8 direct lights position : 3-dim list of float, default None Position of the camera as a 3-dim tuple of float (x,y,z) quaternion : 4-dim list of float, default None Rotation of the camera as 4-dim quaternion (x,y,z,w) target : 3-dim list of float, default None Camera target to look at, default is the center of the object's bounding box zoom : float, default None Zoom value of the camera reset_camera : bool, default True Keep the camera position and rotation when showing new shapes (True) or not (False) zoom_speed : float, default 1.0 Speed of zooming with the mouse pan_speed : float, default 1.0 Speed of panning with the mouse rotate_speed : float, default 1.0 Speed of rotation with the mouse timeit : bool, default False Whether to output timing info to the browser console (True) or not (False) Examples -------- A simple cube with edge len of 1 is tessellated like the `shape` element of the first (and only) element of the `parts` list: ``` shapes = { "name": "Group", "id": "/Group", "loc": None, # would be (<position>, <quaternion>), e.g. ([0,0,0), (0,0,0,1)]), "bb": { "xmin": -0.5, "xmax": 0.5, "ymin": -0.5, "ymax": 0.5, "zmin": -0.5, "zmax": 0.5 } "parts": [{ "name": "Part_0", "id": "/Group/Part_0", "type": "shapes", "shape": {"vertices": [ [-0.5, -0.5, -0.5], [-0.5, -0.5, 0.5], [-0.5, 0.5, -0.5], [-0.5, 0.5, 0.5], [0.5, -0.5, -0.5], [0.5, -0.5, 0.5], [0.5, 0.5, -0.5], [0.5, 0.5, 0.5], [-0.5, -0.5, -0.5], [0.5, -0.5, -0.5], [-0.5, -0.5, 0.5], [0.5, -0.5, 0.5], [-0.5, 0.5, -0.5], [0.5, 0.5, -0.5], [-0.5, 0.5, 0.5], [0.5, 0.5, 0.5], [-0.5, -0.5, -0.5], [-0.5, 0.5, -0.5], [0.5, -0.5, -0.5], [0.5, 0.5, -0.5], [-0.5, -0.5, 0.5], [-0.5, 0.5, 0.5], [0.5, -0.5, 0.5], [0.5, 0.5, 0.5]], "triangles": [ 1, 2, 0, 1, 3, 2, 5, 4, 6, 5, 6, 7, 11, 8, 9, 11, 10, 8, 15, 13, 12, 15, 12, 14, 19, 16, 17, 19, 18, 16, 23, 21, 20, 23, 20, 22 ], "normals": [ [-1, 0, 0], [-1, 0, 0], [-1, 0, 0], [-1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [0, -1, 0], [0, -1, 0], [0, -1, 0], [0, -1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 0, -1], [0, 0, -1], [0, 0, -1], [0, 0, -1], [0, 0, 1], [0, 0, 1], [0, 0, 1], [0, 0, 1] ], "edges": [ [[-0.5, -0.5, -0.5], [-0.5, -0.5, 0.5]], [[-0.5, -0.5, 0.5], [-0.5, 0.5, 0.5]], [[-0.5, 0.5, -0.5], [-0.5, 0.5, 0.5]], [[-0.5, -0.5, -0.5], [-0.5, 0.5, -0.5]], [[0.5, -0.5, -0.5], [0.5, -0.5, 0.5]], [[0.5, -0.5, 0.5], [0.5, 0.5, 0.5]], [[0.5, 0.5, -0.5], [0.5, 0.5, 0.5]], [[0.5, -0.5, -0.5], [0.5, 0.5, -0.5]], [[-0.5, -0.5, -0.5], [0.5, -0.5, -0.5]], [[-0.5, -0.5, 0.5], [0.5, -0.5, 0.5]], [[-0.5, 0.5, -0.5], [0.5, 0.5, -0.5]], [[-0.5, 0.5, 0.5], [0.5, 0.5, 0.5]] ]}, "color": "#e8b024", "renderback": false }] } states = {'/Group/Part_0': [1, 1]} ``` A nested object (with shapes shortened) looks like: ``` { 'id': '/bottom', 'name': 'bottom', 'loc': ['<position>', '<quaternion>'], 'parts': [{ 'id': '/bottom/bottom_0', 'name': 'bottom_0', 'type': 'shapes', 'color': '#bfbfbf', 'shape': {'vertices': [...], 'triangles': [...], 'normals': [...], 'edges': [...]}, }, { 'id': '/bottom/top', 'name': 'top', 'loc': ['<position>', '<quaternion>'], 'parts': [{ 'id': '/bottom/top/top_0', 'name': 'top_0', 'type': 'shapes', 'color': '#bfbfbf', 'shape': {'vertices': [...], 'triangles': [...], 'normals': [...], 'edges': [...]}, }] }, { 'id': '/bottom/front_stand', 'name': 'front_stand', 'loc': ['<position>', '<quaternion>'], 'parts': [{ 'id': '/bottom/front_stand/front_stand_0', 'name': 'front_stand_0', 'type': 'shapes', 'color': '#7fcce5', 'shape': {'vertices': [...], 'triangles': [...], 'normals': [...], 'edges': [...]}, }] }, { 'id': '/bottom/back_stand', 'name': 'back_stand', 'loc': ['<position>', '<quaternion>'], 'parts': [{ 'id': '/bottom/back_stand/back_stand_0', 'name': 'back_stand_0', 'type': 'shapes', 'color': '#7fcce5', 'shape': {'vertices': [...], 'triangles': [...], 'normals': [...], 'edges': [...]}, }] }, { 'id': '/bottom/right_back', 'name': 'right_back', 'loc': ['<position>', '<quaternion>'], 'parts': [{ 'id': '/bottom/right_back/right_back_0', 'name': 'right_back_0', 'type': 'shapes', 'color': '#ffa500', 'shape': {'vertices': [...], 'triangles': [...], 'normals': [...], 'edges': [...]}, }, { 'id': '/bottom/right_back/lower', 'name': 'lower', 'loc': ['<position>', '<quaternion>'], 'parts': [{ 'id': '/bottom/right_back/lower/lower_0', 'name': 'lower_0', 'type': 'shapes', 'color': '#ffa500', 'shape': {'vertices': [...], 'triangles': [...], 'normals': [...], 'edges': [...]}, }] }] }, ... ] } states = { '/bottom/bottom_0': [1, 1], '/bottom/top/top_0': [1, 1], '/bottom/front_stand/front_stand_0': [1, 1], '/bottom/back_stand/back_stand_0': [1, 1], '/bottom/right_back/right_back_0': [1, 1], '/bottom/right_back/lower/lower_0': [1, 1], ... } ``` Notes ----- Vector : float[3] := [x, y, z] VectorList : Vector[n] := [ [x0, y0, z0], [x1, xy1, z1], ... ] Index : int[m] := [ i0, i1, i2, ... ] Edge : Vector[2] := [ [x0, y0, z0], [x1, xy1, z1]] EdgeList : Edge[k] := [ [[x0, y0, z0], [x1, xy1, z1]], [[x2, y2, z2], [x3, xy3, z3]], ... ] Shape, Faces := { "id": "<str>", "name": "<str>", "type": "shapes", "color": "#ffffff", "renderback": false "shape": { "vertices": <VectorList>, "triangles": <Index>, "normals": <VectorList>, "edges": <EdgeList> } } Edges := { "id": "</path/to/<name>>", "name": "<name>", "type": "edges", "color": "#ffffff", "width": 3, "renderback": false "shape": <EdgeList> } Vertices := { "id": "</path/to/<name>>", "name": "<name>", "type": "vertices", "color": "#ffffff", "size": 6 "shape": <VectorList> } """ if control == "orbit" and quaternion is not None: raise ValueError("Camera quaternion cannot be used with Orbit camera control") if control == "trackball" and position is not None and quaternion is None: raise ValueError("For Trackball camera control, position paramater also needs quaternion parameter") if grid is None: grid = [False, False, False] # If one changes the control type, override reset_camera with "True" if self.empty or self.widget.control != control: reset_camera = True self.empty = False # Don't show warning on first call if self.widget.control != "": print("Camera control changed, so camera was resetted") if reset_camera: center, radius = bsphere(shapes["bb"]) if position is None: position = (normalize(np.array((1, 1, 1))) * 5.5 * radius + center).tolist() if quaternion is None and control == "trackball": quaternion = ( 0.1759198966061612, 0.42470820027786693, 0.8204732385702833, 0.33985114297998736, ) if target is None: target = center.tolist() if zoom is None: zoom = 4 / 3 w = self.widget.cad_width if cad_width is None else cad_width h = self.widget.height if height is None else height if w >= h: zoom *= h / w else: copy = lambda v: None if v is None else (*v,) position = copy(self.widget.position) quaternion = copy(self.widget.quaternion) target = copy(self.widget.target) zoom = self.widget.zoom self.widget.initialize = True with self.widget.hold_trait_notifications(): self.widget.shapes = shapes self.widget.states = states self.widget.default_edge_color = default_edge_color self.widget.default_opacity = default_opacity self.widget.ambient_intensity = ambient_intensity self.widget.direct_intensity = direct_intensity self.widget.normal_len = normal_len self.widget.control = control if tools is not None: self.widget.tools = tools if glass is not None: self.widget.glass = glass if cad_width is not None: self.widget.cad_width = cad_width if tree_width is not None: self.widget.tree_width = tree_width if height is not None: self.widget.height = height self.widget.axes = axes self.widget.axes0 = axes0 self.widget.grid = grid self.widget.ticks = ticks self.widget.ortho = ortho self.widget.transparent = transparent self.widget.black_edges = black_edges self.widget.collapse = collapse self.widget.reset_camera = reset_camera self.widget.position = position self.widget.quaternion = quaternion self.widget.target = target self.widget.zoom = zoom # If reset_camera, position0, quaternion0 and zoom0 need to be set if reset_camera: self.widget.position0 = (*position,) if control == "trackball": self.widget.quaternion0 = (*quaternion,) self.widget.target0 = (*target,) self.widget.zoom0 = zoom self.widget.zoom_speed = zoom_speed self.widget.pan_speed = pan_speed self.widget.rotate_speed = rotate_speed self.widget.timeit = timeit self.widget.js_debug = js_debug self.add_tracks(tracks) self.widget.initialize = False if tools is not None: self.widget.tools = tools if glass is not None: self.widget.glass = glass def update_states(self, states): """Set navigation tree states for a CAD view""" all_paths = list(self.widget.states.keys()) for path, state in states.items(): if not path in all_paths: raise ValueError(f"Path {path} is not a valid state") self.widget.state_updates = states def update_camera_location(self): """Sync position, quaternion and zoom of camera to Python""" self.execute("updateCamera", []) def close(self): """ Close the underlying Javascript viewer """ self.widget.disposed = True @property def disposed(self): """ Whether the Javascript viewer is disposed """ return self.widget.disposed # # UI and scene accessors # @property def ambient_intensity(self): """ Get or set the CadViewerWidget traitlet `ambient_intensity`. see [CadViewerWidget.ambient_intensity](./widget.html#cad_viewer_widget.widget.CadViewerWidget.ambient_intensity) """ return self.widget.ambient_intensity @ambient_intensity.setter def ambient_intensity(self, value): self.widget.ambient_intensity = value @property def direct_intensity(self): """ Get or set the CadViewerWidget traitlet `direct_intensity` see [CadViewerWidget.direct_intensity](./widget.html#cad_viewer_widget.widget.CadViewerWidget.direct_intensity) """ return self.widget.direct_intensity @direct_intensity.setter def direct_intensity(self, value): self.widget.direct_intensity = value @property def axes(self): """ Get or set the CadViewerWidget traitlet `axes` see [CadViewerWidget.axes](./widget.html#cad_viewer_widget.widget.CadViewerWidget.axes) """ return self.widget.axes @axes.setter def axes(self, value): self.widget.axes = value @property def axes0(self): """ Get or set the CadViewerWidget traitlet `axes0` see [CadViewerWidget.axes0](./widget.html#cad_viewer_widget.widget.CadViewerWidget.axes0) """ return self.widget.axes0 @axes0.setter def axes0(self, value): self.widget.axes0 = value @property def grid(self): """ Get or set the CadViewerWidget traitlet `grid` see [CadViewerWidget.grid](./widget.html#cad_viewer_widget.widget.CadViewerWidget.grid) """ return self.widget.grid @grid.setter def grid(self, value): self.widget.grid = value @property def ortho(self): """ Get or set the CadViewerWidget traitlet `ortho` see [CadViewerWidget.ortho](./widget.html#cad_viewer_widget.widget.CadViewerWidget.ortho) """ return self.widget.ortho @ortho.setter def ortho(self, value): self.widget.ortho = value @property def transparent(self): """ Get or set the CadViewerWidget traitlet `transparent` see [CadViewerWidget.transparent](./widget.html#cad_viewer_widget.widget.CadViewerWidget.transparent) """ return self.widget.transparent @transparent.setter def transparent(self, value): self.widget.transparent = value @property def black_edges(self): """ Get or set the CadViewerWidget traitlet `black_edges` see [CadViewerWidget.black_edges](./widget.html#cad_viewer_widget.widget.CadViewerWidget.black_edges) """ return self.widget.black_edges @black_edges.setter def black_edges(self, value): self.widget.black_edges = value @property def normal_len(self): """ Get or set the CadViewerWidget traitlet `normal_len` """ return self.widget.black_edges @property def default_edge_color(self): """ Get or set the CadViewerWidget traitlet `default_edge_color` see [CadViewerWidget.default_edge_color](./widget.html#cad_viewer_widget.widget.CadViewerWidget.default_edge_color) """ return self.widget.default_edge_color @default_edge_color.setter def default_edge_color(self, value): if value.startswith("#"): self.widget.default_edge_color = value else: self.widget.default_edge_color = f"#{value}" @property def default_opacity(self): """ Get or set the CadViewerWidget traitlet `default_opacity` see [CadViewerWidget.default_opacity](./widget.html#cad_viewer_widget.widget.CadViewerWidget.default_opacity) """ return self.widget.default_opacity @default_opacity.setter def default_opacity(self, value): if value.startswith("#"): self.widget.default_opacity = value else: self.widget.default_opacity = f"#{value}" @property def clip_intersection(self): """ Get or set the CadViewerWidget traitlet `clip_intersection` see [CadViewerWidget.clip_intersection](./widget.html#cad_viewer_widget.widget.CadViewerWidget.clip_intersection) """ return self.widget.clip_intersection @clip_intersection.setter def clip_intersection(self, value): self.widget.clip_intersection = value @property def clip_normal_0(self): """ Get or set the CadViewerWidget traitlet `clip_normal_0` see [CadViewerWidget.clip_normal_0](./widget.html#cad_viewer_widget.widget.CadViewerWidget.clip_normal_0) """ return self.widget.clip_normal_0 @clip_normal_0.setter def clip_normal_0(self, value): self.widget.clip_normal_0 = value @property def clip_normal_1(self): """ Get or set the CadViewerWidget traitlet `clip_normal_1` see [CadViewerWidget.clip_normal_1](./widget.html#cad_viewer_widget.widget.CadViewerWidget.clip_normal_1) """ return self.widget.clip_normal_1 @clip_normal_1.setter def clip_normal_1(self, value): self.widget.clip_normal_1 = value @property def clip_normal_2(self): """ Get or set the CadViewerWidget traitlet `clip_normal_2` see [CadViewerWidget.clip_normal_2](./widget.html#cad_viewer_widget.widget.CadViewerWidget.clip_normal_2) """ return self.widget.clip_normal_2 @clip_normal_2.setter def clip_normal_2(self, value): self.widget.clip_normal_2 = value @property def clip_value_0(self): """ Get or set the CadViewerWidget traitlet `clip_slider_0` see [CadViewerWidget.clip_slider_0](./widget.html#cad_viewer_widget.widget.CadViewerWidget.clip_slider_0) """ return self.widget.clip_slider_0 @clip_value_0.setter def clip_value_0(self, value): self.widget.clip_slider_0 = value @property def clip_value_1(self): """ Get or set the CadViewerWidget traitlet `clip_slider_1` see [CadViewerWidget.clip_slider_1](./widget.html#cad_viewer_widget.widget.CadViewerWidget.clip_slider_1) """ return self.widget.clip_slider_1 @clip_value_1.setter def clip_value_1(self, value): self.widget.clip_slider_1 = value @property def clip_value_2(self): """ Get or set the CadViewerWidget traitlet `clip_slider_2` see [CadViewerWidget.clip_slider_2](./widget.html#cad_viewer_widget.widget.CadViewerWidget.clip_slider_2) """ return self.widget.clip_slider_2 @clip_value_2.setter def clip_value_2(self, value): self.widget.clip_slider_2 = value @property def clip_planes(self): """ Get or set the CadViewerWidget traitlet `clip_planes` see [CadViewerWidget.clip_planes](./widget.html#cad_viewer_widget.widget.CadViewerWidget.clip_planes) """ return self.widget.clip_planes @clip_planes.setter def clip_planes(self, value): self.widget.clip_planes = value @property def js_debug(self): """ Get or set the CadViewerWidget traitlet `js_debug` see [CadViewerWidget.js_debug](./widget.html#cad_viewer_widget.widget.CadViewerWidget.js_debug) """ return self.widget.js_debug @js_debug.setter def js_debug(self, value): self.widget.js_debug = value @property def tools(self): """ Get or set the CadViewerWidget traitlet `tools` see [CadViewerWidget.tools](./widget.html#cad_viewer_widget.widget.CadViewerWidget.tools) """ return self.widget.tools @tools.setter def tools(self, value): self.widget.tools = value @property def glass(self): """ Get or set the CadViewerWidget traitlet `glass` see [CadViewerWidget.tools](./widget.html#cad_viewer_widget.widget.CadViewerWidget.glass) """ return self.widget.glass @glass.setter def glass(self, value): self.widget.glass = value @property def cad_width(self): """ Get or set the CadViewerWidget traitlet `cad_width` see [CadViewerWidget.tools](./widget.html#cad_viewer_widget.widget.CadViewerWidget.cad_width) """ return self.widget.cad_width @cad_width.setter def cad_width(self, value): self.widget.cad_width = value @property def tree_width(self): """ Get or set the CadViewerWidget traitlet `tree_width` see [CadViewerWidget.tools](./widget.html#cad_viewer_widget.widget.CadViewerWidget.tree_width) """ return self.widget.tree_width @tree_width.setter def tree_width(self, value): self.widget.tree_width = value @property def height(self): """ Get or set the CadViewerWidget traitlet `height` see [CadViewerWidget.tools](./widget.html#cad_viewer_widget.widget.CadViewerWidget.height) """ return self.widget.height @height.setter def height(self, value): self.widget.height = value @property def pan_speed(self): """ Get or set the CadViewerWidget traitlet `pan_speed` see [CadViewerWidget.pan_speed](./widget.html#cad_viewer_widget.widget.CadViewerWidget.pan_speed) """ return self.widget.pan_speed @pan_speed.setter def pan_speed(self, value): self.widget.pan_speed = value @property def rotate_speed(self): """ Get or set the CadViewerWidget traitlet `rotate_speed` see [CadViewerWidget.rotate_speed](./widget.html#cad_viewer_widget.widget.CadViewerWidget.rotate_speed) """ return self.widget.rotate_speed @rotate_speed.setter def rotate_speed(self, value): self.widget.rotate_speed = value @property def zoom_speed(self): """ Get or set the CadViewerWidget traitlet `zoom_speed` see [CadViewerWidget.zoom_speed](./widget.html#cad_viewer_widget.widget.CadViewerWidget.zoom_speed) """ return self.widget.zoom_speed @zoom_speed.setter def zoom_speed(self, value): self.widget.zoom_speed = value # # Camera position handling # @property def zoom(self): """ Get or set the CadViewerWidget traitlet `zoom` see [CadViewerWidget.zoom](./widget.html#cad_viewer_widget.widget.CadViewerWidget.zoom) """ return self.widget.zoom @zoom.setter def zoom(self, value): self.widget.zoom = value @property def position(self): """ Get or set the CadViewerWidget traitlet `position` see [CadViewerWidget.position](./widget.html#cad_viewer_widget.widget.CadViewerWidget.position) """ return self.widget.position @position.setter def position(self, value): self.widget.position = value @property def quaternion(self): """ Get or set the CadViewerWidget traitlet `quaternion` see [CadViewerWidget.quaternion](./widget.html#cad_viewer_widget.widget.CadViewerWidget.quaternion) """ if self.widget.control == "orbit": print("quaternion controlled internally for control=='orbit'") return None else: return self.widget.quaternion @quaternion.setter def quaternion(self, value): if self.widget.control == "orbit": print("quaternion controlled internally for control=='orbit'") else: self.widget.quaternion = value @property def target(self): """ Get or set the CadViewerWidget traitlet `target` see [CadViewerWidget.position](./widget.html#cad_viewer_widget.widget.CadViewerWidget.target) """ # self.update_camera_location() return self.widget.target @target.setter def target(self, value): self.widget.target = value @property def last_pick(self): """ Get or set the CadViewerWidget traitlet `lastPick` see [CadViewerWidget.lastPick](./widget.html#cad_viewer_widget.widget.CadViewerWidget.lastPick) """ return self.widget.lastPick @property def control(self): """ Get or set the CadViewerWidget traitlet `control` see [CadViewerWidget.control](./widget.html#cad_viewer_widget.widget.CadViewerWidget.control) """ return self.widget.control @property def pinning(self): """ Get or set the CadViewerWidget traitlet `pinning` see [CadViewerWidget.pinning](./widget.html#cad_viewer_widget.widget.CadViewerWidget.pinning) """ return self.widget.pinning @pinning.setter def pinning(self, flag): self.widget.pinning = flag # # Animation handling # def clear_tracks(self): """ Remove animation tracks from CAD view """ self.tracks = [] self.widget.tracks = [] def _check_track(self, track): paths = self.widget.states.keys() if not any([(f"{path}/").startswith(f"{track.path}/") for path in paths]): raise ValueError(f"{track.path} is not a valid subpath of any of {list(paths)}") actions = ["t", "tx", "ty", "tz", "q", "rx", "ry", "rz"] if not track.action in actions: raise ValueError(f"{track.action} is not a valid action {list(actions)}") if len(track.times) != len(track.values): raise ValueError(f"Track times and values need to have same length") if not all([isinstance(t, (int, float)) for t in track.times]): raise ValueError(f"Time values need to be int or float") if track.action in ["tx", "ty", "tz", "rx", "ry", "rz"]: if not all([isinstance(t, (int, float)) for t in track.values]): raise ValueError(f"Value values need to be int or float for action '{track.action}'") if track.action in ["t", "q"]: size = 3 if track.action == "t" else 4 if not all( [ isinstance(v, (list, tuple)) and (len(v) == size) and all([isinstance(x, (int, float)) for x in v]) for v in track.values ] ): raise ValueError( f"Value values need to be {size} dim lists of int or float for action '{track.action}'" ) return track def add_track(self, track): """ Add an animation track to CAD view Parameters ---------- track: AnimationTrack Animation track, see [AnimationTrack](/widget.html#cad_viewer_widget.widget.AnimationTrack) """ self.tracks.append(self._check_track(track)) def add_tracks(self, tracks): """ Add a list of animation tracks to CAD view Parameters ---------- tracks: list of AnimationTrack List of Animation tracks, see [AnimationTrack](/widget.html#cad_viewer_widget.widget.AnimationTrack) """ checked_tracks = ( [] if tracks is None else [self._check_track(track) for track in tracks] ) # enforce a new array self.tracks = checked_tracks def animate(self, speed=1): """ Send animation tracks to CAD view Parameters ---------- speed : float, default: 1 Animation speed, will be forwarded via `animation_speed` traitlet """ self.widget.tracks = [track.to_array() for track in self.tracks] self.widget.animation_speed = speed self.execute("animate") # self.play() def play(self): """ Start or unpause animation """ self.execute("viewer.controlAnimation", ["play"]) def stop(self): """ Stop animation """ self.execute("viewer.controlAnimation", ["stop"]) def pause(self): """ Pause or unpause animation """ self.execute("viewer.controlAnimation", ["pause"]) def pin_as_png(self): """ Pin CAD View as PNG """ self.execute("pinAsPng", None) def export_png(self, filename): """ Save CAD View as PNG """ self.execute("saveAsPng", filename) self.execute("viewer.update", True) # # Tab handling # def select_tree(self): """ Select Navigation tree tab """ self.widget.tab = "tree" def select_clipping(self): """ Select Clipping tab """ self.widget.tab = "clip" # # Rotations # def set_camera(self, direction): """ Set camera to one of the predefined locations Parameters ---------- direction : string one of ["iso", "top", "bottom", "left", "right", "front", "rear"] """ self.execute("viewer.camera.presetCamera", [direction]) self.execute("viewer.update", []) def rotate_x(self, angle): """ Rotate CAD obj around x-axis - trackball controls only Parameters ---------- angle : float The rotation angle in degrees """ if self.control != "trackball": raise NameError("rotateX only works for trackball control") self.execute("viewer.controls.rotateX", (angle,)) def rotate_y(self, angle): """ Rotate CAD obj around y-axis - trackball controls only Parameters ---------- angle : float The rotation angle in degrees """ if self.control != "trackball": raise NameError("rotateY only works for trackball control") self.execute("viewer.controls.rotateY", (angle,)) def rotate_z(self, angle): """ Rotate CAD obj around z-axis - trackball controls only Parameters ---------- angle : float The rotation angle in degrees """ if self.control != "trackball": raise NameError("rotateZ only works for trackball control") self.execute("viewer.controls.rotateZ", (angle,)) def rotate_up(self, angle): """ Rotate CAD obj up (positive angle) and down (negative angle) - orbit controls only Parameters ---------- angle : float The rotation angle in degrees """ if self.control != "orbit": raise NameError("rotateUp only works for orbit control") self.execute("viewer.controls.rotateUp", (angle,)) def rotate_left(self, angle): """ Rotate CAD obj to the left (positive angle) and right (negative angle) - orbit controls only Parameters ---------- angle : float The rotation angle in degrees """ if self.control != "orbit": raise NameError("rotateLeft only works for orbit control") self.execute("viewer.controls.rotateLeft", (angle,)) # # Exports # def export_html(self, filename="cadquery.html", title="CadQuery"): if self.widget.title != None: raise RuntimeError("Export_html does not work with sidecar. Show the object again in a cell viewer") pinning = self.pinning self.pinning = False embed_minimal_html(filename, title=title, views=[self.widget], state=dependency_state(self.widget)) self.pinning = pinning # # Custom message handling # def execute(self, method, args=None): """ Execute a method of a Javascript object Parameters ---------- method : string A 'CadViewer' object based Javascrip object path, e.g. `abc.def[3].method(args)` where `abc.def[3]` is the object notation relative to the 'CadViewer' object and `method` is the method to call args : list of any The arguments passed to `abc.def[3].method(args)` """ def wrapper(change=None): if change is None: self.msg_id += 1 path = self._parse(method) content = { "type": "cad_viewer_method", "id": self.msg_id, "method": json.dumps(path), "args": json.dumps(args), } self.widget.send(content=content, buffers=None) return self.msg_id if args is not None and not isinstance(args, (tuple, list)): args = [args] return wrapper() def remove_ui_elements(self, elements): self.execute("viewer.trimUI", [elements, False]) def dump_model(self, shapes=False): print( dedent( f""" DISPLAY title: {self.widget.title} anchor: {self.widget.anchor} cad_width: {self.widget.cad_width} height: {self.widget.height} tree_width: {self.widget.tree_width} theme: {self.widget.theme} pinning: {self.widget.pinning} SHAPES shapes: {self.widget.shapes if shapes else "... (set shapes=True)"} states: {self.widget.states} tracks: {self.widget.tracks} RENDERER normal_len: {self.widget.normal_len} default_edge_color: {self.widget.default_edge_color} default_opacity: {self.widget.default_opacity} ambient_intensity: {self.widget.ambient_intensity} direct_intensity: {self.widget.direct_intensity} VIEWER timeit: {self.widget.timeit} tools: {self.widget.tools} glass: {self.widget.glass} ortho: {self.widget.ortho} control: {self.widget.control} axes: {self.widget.axes} axes0: {self.widget.axes0} grid: {self.widget.grid} ticks: {self.widget.ticks} transparent: {self.widget.transparent} black_edges: {self.widget.black_edges} collapse: {self.widget.collapse} tab: {self.widget.tab} clip_intersection: {self.widget.clip_intersection} clip_planes: {self.widget.clip_planes} clip_normal_0: {self.widget.clip_normal_0} clip_normal_1: {self.widget.clip_normal_1} clip_normal_2: {self.widget.clip_normal_2} clip_slider_0: {self.widget.clip_slider_0} clip_slider_1: {self.widget.clip_slider_1} clip_slider_2: {self.widget.clip_slider_2} reset_camera: {self.widget.reset_camera} position: {self.widget.position} quaternion: {self.widget.quaternion} target: {self.widget.target} zoom: {self.widget.zoom} position0: {self.widget.position0} quaternion0: {self.widget.quaternion0} target0: {self.widget.target0} zoom0: {self.widget.zoom0} zoom_speed: {self.widget.zoom_speed} pan_speed: {self.widget.pan_speed} rotate_speed: {self.widget.rotate_speed} animation_speed: {self.widget.animation_speed} state_updates: {self.widget.state_updates} lastPick: {self.widget.lastPick} INTERNAL result: {self.widget.result} disposed: {self.widget.disposed} initialize: {self.widget.initialize} js_debug: {self.widget.js_debug} image_id: {self.widget.image_id} """ ) )
# pylint: disable=consider-using-f-string """Wrapper over the FTrack API to make it more pythonic to use. Supports the querying and creation of objects, and a way to build event listeners. It's designed to hide the SQL-like syntax in favour of an object orientated approach. Inspiration was taken from SQLALchemy. """ __all__ = ['FTrackQuery', 'entity', 'and_', 'or_', 'not_', 'event', 'select', 'create', 'update', 'delete'] __version__ = '1.7.0' import ftrack_api from . import utils from .abstract import AbstractStatement from .query import Query, entity, and_, or_, not_ from .event import event from .statement import select, create, update, delete class FTrackQuery(ftrack_api.Session): # pylint: disable=arguments-differ """Expansion of the ftrack_api.Session class.""" def __init__(self, **kwargs): """Attempt to initialise the connection. If the debug argument is set, the connection will be ignored. """ self.debug = kwargs.pop('debug', False) self._logger = kwargs.pop('logger', utils.logger) self._logger.debug('Connecting...') if not self.debug: super(FTrackQuery, self).__init__(**kwargs) self._logger.debug('New session initialised.') def __getattribute__(self, attr): """Get an entity type if it exists. The standard AttributeError will be raised if not. """ try: return super(FTrackQuery, self).__getattribute__(attr) except AttributeError: if self.debug or attr in super(FTrackQuery, self).__getattribute__('types'): return Query(self, attr) raise def close(self, *args, **kwargs): """Avoid error when closing session in debug mode.""" if not self.debug: return super(FTrackQuery, self).close(*args, **kwargs) def get(self, value, _value=None, *args, **kwargs): # pylint: disable=keyword-arg-before-vararg """Get any entity from its ID. The _value argument is for compatibility with ftrack_api.Session. """ if _value is None: entity = 'Context' else: entity, value = value, _value self._logger.debug('Get: %s(%r)', entity, value) return super(FTrackQuery, self).get(entity, value, *args, **kwargs) def query(self, query, *args, **kwargs): """Create an FTrack query object from a string.""" query = str(query) self._logger.debug('Query: %s', query) return super(FTrackQuery, self).query(query, *args, **kwargs) def create(self, entity, data, *args, **kwargs): """Create a new entity.""" if not kwargs.get('reconstructing', False): self._logger.debug('Create: %s(%s)', entity, utils.dict_to_str(data)) return super(FTrackQuery, self).create(entity, data, *args, **kwargs) def delete(self, entity, *args, **kwargs): """Delete an FTrack entity.""" self._logger.debug('Delete: %r', entity) return super(FTrackQuery, self).delete(entity, *args, **kwargs) def where(self, *args, **kwargs): """Set entity type as TypedContext if none provided.""" return self.TypedContext.where(*args, **kwargs) def commit(self, *args, **kwargs): """Commit changes.""" self._logger.debug('Changes saved.') return super(FTrackQuery, self).commit(*args, **kwargs) def rollback(self, *args, **kwargs): """Rollback changes.""" self._logger.debug('Changes discarded.') return super(FTrackQuery, self).rollback(*args, **kwargs) def populate(self, entities, projections): """Populate new values.""" if isinstance(projections, (list, tuple, set)): projections = ','.join(map(str, projections)) return super(FTrackQuery, self).populate(entities, projections) def execute(self, stmt): """Execute a statement.""" if isinstance(stmt, AbstractStatement): return stmt.execute(self) raise NotImplementedError(type(stmt))
#! -*- coding: utf-8 -*- # bert做Seq2Seq任务,采用UNILM方案 # 介绍链接:https://kexue.fm/archives/6933 from bert4torch.models import build_transformer_model from bert4torch.tokenizers import Tokenizer, load_vocab from bert4torch.snippets import sequence_padding, text_segmentate from bert4torch.snippets import AutoRegressiveDecoder, Callback, ListDataset import torch from torchinfo import summary import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader import glob # 基本参数 maxlen = 256 batch_size = 16 epochs = 10000 # bert配置 config_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/bert_config.json' checkpoint_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/pytorch_model.bin' dict_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/vocab.txt' device = 'cuda' if torch.cuda.is_available() else 'cpu' # 加载并精简词表,建立分词器 token_dict, keep_tokens = load_vocab( dict_path=dict_path, simplified=True, startswith=['[PAD]', '[UNK]', '[CLS]', '[SEP]'], ) tokenizer = Tokenizer(token_dict, do_lower_case=True) def collate_fn(batch): """单条样本格式:[CLS]篇章[SEP]答案[SEP]问题[SEP] """ batch_token_ids, batch_segment_ids = [], [] for txt in batch: text = open(txt, encoding='utf-8').read() text = text.split('\n') if len(text) > 1: title = text[0] content = '\n'.join(text[1:]) token_ids, segment_ids = tokenizer.encode(content, title, maxlen=maxlen) batch_token_ids.append(token_ids) batch_segment_ids.append(segment_ids) batch_token_ids = torch.tensor(sequence_padding(batch_token_ids), dtype=torch.long, device=device) batch_segment_ids = torch.tensor(sequence_padding(batch_segment_ids), dtype=torch.long, device=device) return [batch_token_ids, batch_segment_ids], [batch_token_ids, batch_segment_ids] train_dataloader = DataLoader(ListDataset(glob.glob('F:/Projects/data/corpus/sentence_classification/THUCNews/*/*.txt')), batch_size=batch_size, shuffle=True, collate_fn=collate_fn) model = build_transformer_model( config_path, checkpoint_path, with_mlm='linear', application='unilm', keep_tokens=keep_tokens, # 只保留keep_tokens中的字,精简原字表 ).to(device) summary(model, input_data=[next(iter(train_dataloader))[0]]) class CrossEntropyLoss(nn.CrossEntropyLoss): def __init__(self, **kwargs): super().__init__(**kwargs) def forward(self, outputs, target): ''' y_pred: [btz, seq_len, vocab_size] targets: y_true, y_segment unilm式样,需要手动把非seq2seq部分mask掉 ''' _, y_pred = outputs y_true, y_mask = target y_true = y_true[:, 1:]# 目标token_ids y_mask = y_mask[:, 1:] # segment_ids,刚好指示了要预测的部分 y_pred = y_pred[:, :-1, :] # 预测序列,错开一位 y_pred = y_pred.reshape(-1, y_pred.shape[-1]) y_true = (y_true*y_mask).flatten() return super().forward(y_pred, y_true) model.compile(loss=CrossEntropyLoss(ignore_index=0), optimizer=optim.Adam(model.parameters(), 1e-5)) class AutoTitle(AutoRegressiveDecoder): """seq2seq解码器 """ @AutoRegressiveDecoder.wraps(default_rtype='logits') def predict(self, inputs, output_ids, states): token_ids, segment_ids = inputs token_ids = torch.cat([token_ids, output_ids], 1) segment_ids = torch.cat([segment_ids, torch.ones_like(output_ids, device=device)], 1) _, y_pred = model.predict([token_ids, segment_ids]) return y_pred[:, -1, :] def generate(self, text, topk=1, topp=0.95): max_c_len = maxlen - self.maxlen token_ids, segment_ids = tokenizer.encode(text, maxlen=max_c_len) output_ids = self.beam_search([token_ids, segment_ids], topk=topk) # 基于beam search return tokenizer.decode(output_ids.cpu().numpy()) autotitle = AutoTitle(start_id=None, end_id=tokenizer._token_end_id, maxlen=32, device=device) def just_show(): s1 = u'夏天来临,皮肤在强烈紫外线的照射下,晒伤不可避免,因此,晒后及时修复显得尤为重要,否则可能会造成长期伤害。专家表示,选择晒后护肤品要慎重,芦荟凝胶是最安全,有效的一种选择,晒伤严重者,还请及 时 就医 。' s2 = u'8月28日,网络爆料称,华住集团旗下连锁酒店用户数据疑似发生泄露。从卖家发布的内容看,数据包含华住旗下汉庭、禧玥、桔子、宜必思等10余个品牌酒店的住客信息。泄露的信息包括华住官网注册资料、酒店入住登记的身份信息及酒店开房记录,住客姓名、手机号、邮箱、身份证号、登录账号密码等。卖家对这个约5亿条数据打包出售。第三方安全平台威胁猎人对信息出售者提供的三万条数据进行验证,认为数据真实性非常高。当天下午 ,华 住集 团发声明称,已在内部迅速开展核查,并第一时间报警。当晚,上海警方消息称,接到华住集团报案,警方已经介入调查。' for s in [s1, s2]: print(u'生成标题:', autotitle.generate(s)) class Evaluator(Callback): """评估与保存 """ def __init__(self): self.lowest = 1e10 def on_epoch_end(self, steps, epoch, logs=None): # 保存最优 if logs['loss'] <= self.lowest: self.lowest = logs['loss'] # model.save_weights('./best_model.pt') # 演示效果 just_show() if __name__ == '__main__': evaluator = Evaluator() model.fit( train_dataloader, steps_per_epoch=100, epochs=epochs, callbacks=[evaluator] ) else: model.load_weights('./best_model.pt')
import toml class TomlError(Exception): pass # Read configuration file def load_config(filename): config = toml.load(filename) # Check the necessary fields are provided in the toml if config.get('contract') is None or config['contract'].get('pricefeeds') is None or config['contract'].get('wrb') is None: raise TomlError("Please specify pricefeed and wrb as \n[contract]\npricefeed=0xaaaa\nwrb=0xbbbb") elif config.get('account') is None or config['account'].get('address') is None: raise TomlError("Please specify account as \n[account]\naddress=0xaaaa") elif config.get('network') is None or config['network'].get('provider') is None: raise TomlError("Please specify account as \n[network]\nprovider=127.0.0.1:8545") else: return config
def format_error(error_message): return {"err": error_message}
#!/usr/bin/env python """Tests for `pyargcbr` package.""" import os from typing import List, Dict import pytest from pyargcbr.agents.metrics import levenshtein_distance as cmp from pyargcbr.cbrs.domain_cbr import DomainCBR from pyargcbr.knowledge_resources.domain_case import DomainCase from pyargcbr.knowledge_resources.domain_context import DomainContext from pyargcbr.knowledge_resources.justification import Justification from pyargcbr.knowledge_resources.premise import Premise from pyargcbr.knowledge_resources.problem import Problem from pyargcbr.knowledge_resources.similar_domain_case import SimilarDomainCase def similar_domain_case_comparison(case1: SimilarDomainCase, case2: SimilarDomainCase): premises1 = list(case1.case.problem.context.premises.values()) premises2 = list(case2.case.problem.context.premises.values()) solutions1 = case1.case.solutions solutions2 = case2.case.solutions if case1.similarity == case2.similarity \ and cmp(case1.case.justification.description, case2.case.justification.description) == 0 \ and len(premises1) == len(premises2) \ and len(solutions1) == len(solutions2): for i in range(0, len(premises1)): if premises1[i] != premises2[i]: return False for i in range(0, len(solutions1)): if solutions1[i].conclusion.id != solutions2[i].conclusion.id \ or cmp(solutions1[i].conclusion.description, solutions2[i].conclusion.description) > 0: return False return True class TestDomainCBR: cbr: DomainCBR = None def retrieval_accuracy(self): for a_case in self.cbr.get_all_cases_list(): retrieved_cases = self.cbr.retrieve_and_retain(a_case, 1.0) for sim_case in retrieved_cases: equal = True sim_premises = list(sim_case.case.problem.context.premises.values()) a_premises = list(a_case.problem.context.premises.values()) for i in range(0, len(a_premises)): if sim_premises[i] != a_premises[i]: equal = False assert equal def retrieval_consistency(self): all_cases = self.cbr.get_all_cases() all_cases2: List[List[DomainCase]] = [] for cases_list in all_cases: all_cases2.append(cases_list) for cases_list in all_cases2: for a_case in cases_list: # Query the domainCBR for the list similarCases1 similar_cases1 = self.cbr.retrieve_and_retain(a_case, 0.0) # Query again the domainCBR for the list of similarCases2 similar_cases2 = self.cbr.retrieve_and_retain(a_case, 0.0) for case1 in similar_cases1: found: bool = False for case2 in similar_cases2: if similar_domain_case_comparison(case1, case2): assert True found = True break if not found: assert False def case_duplication(self): all_cases = self.cbr.get_all_cases() all_cases2: List[List[DomainCase]] = [] for cases_list in all_cases: all_cases2.append(cases_list) for cases_list in all_cases2: for a_case in cases_list: similar_cases = self.cbr.retrieve_and_retain(a_case, 0.0) for i in range(len(similar_cases)): case1 = similar_cases.pop(0) assert case1 not in similar_cases def operating(self): first_case: DomainCase = self.cbr.get_all_cases_list()[0] similar_to_first_case = self.cbr.retrieve_and_retain(first_case, 0.0) assert similar_domain_case_comparison(similar_to_first_case[0], SimilarDomainCase(first_case, similar_to_first_case[0].similarity)) premises: Dict[int, Premise] = {} for premise in first_case.problem.context.premises.values(): premises[premise.id] = premise first_premise = list(premises.values())[0] first_premise.content += "aa" solutions = first_case.solutions justification = Justification("justification") dom_case = DomainCase(problem=Problem( context=DomainContext(premises=premises)), solutions=solutions, justification=justification) self.cbr.add_case(dom_case) similar_cases = self.cbr.retrieve_and_retain(dom_case, 0.0) assert similar_domain_case_comparison(similar_cases[0], SimilarDomainCase(dom_case, similar_cases[0].similarity)) similar_to_first_case = self.cbr.retrieve_and_retain(first_case, 0.0) assert similar_domain_case_comparison(similar_to_first_case[0], SimilarDomainCase(first_case, similar_to_first_case[0].similarity)) @pytest.fixture def domain_cbr_setup(self): file = os.path.abspath("tests/domain_cases_py.dat") self.cbr = DomainCBR(file, "/tmp/null", -1) def test_content(self, domain_cbr_setup): self.retrieval_accuracy() self.retrieval_consistency() self.case_duplication() # This part is really slow self.operating()
"""System Module""" from django.test import TestCase class UrlWeatherTest(TestCase): """URL Loading Test""" def test_weather_url(self): """Test to observe if weather page URL is loading correctly""" response = self.client.get('') self.assertEqual(response.status_code, 200)
from pathlib import Path from typing import Iterable import git import pytest from commodore.component import Component def setup_components_upstream(tmp_path: Path, components: Iterable[str]): # Prepare minimum component directories upstream = tmp_path / "upstream" component_urls = {} component_versions = {} for component in components: repo_path = upstream / component component_urls[component] = f"file://#{repo_path.resolve()}" component_versions[component] = "master" repo = git.Repo.init(repo_path) class_dir = repo_path / "class" class_dir.mkdir(parents=True, exist_ok=True) (class_dir / "defaults.yml").touch(exist_ok=True) repo.index.add(["class/defaults.yml"]) repo.index.commit("component defaults") return component_urls, component_versions def _setup_component(tmp_path: Path, cn: str): urls, _ = setup_components_upstream(tmp_path, [cn]) return Component(cn, repo_url=urls[cn], directory=tmp_path / "test-component") @pytest.mark.bench def bench_component_checkout(benchmark, tmp_path: Path): c = _setup_component(tmp_path, "test-component") benchmark(c.checkout)
import numpy as np import matplotlib.pyplot as plt import time import sys sys.path.append('../') from FollyHighLevelControllerV2 import FollyHighLevelControllerV2 # Initialize Molly position molly_position = np.array([-4, -8]) # Initialize Folly position folly_position = np.array([-2, -7.5, 0]) # object length object_length = 2 # line path constraint path_constraints = np.array([[4, 10, 80]]) # simulation T = 150 # Total time dt = 0.5 # time per iteration sigma = 0.0 # simulation noise standard deviation # initialize MPC Alg follyHLC = FollyHighLevelControllerV2(molly_position, folly_position, object_length, path_constraints, # path_contraints 10, # horizon length dt, # step time 0.1 # maximum speed ) # constant molly velocity molly_velocity_command = np.array([0.01, 0.05]) # total deviation deviation = 0 # path_constaints plot function def plot_constraints(path_constraints, x_domain=np.linspace(-10, 0, 10)): for n in range(path_constraints.shape[0]): plt.plot(x_domain, (-path_constraints[n, 2] - path_constraints[n, 0] * x_domain) / path_constraints[n, 1]) prev_time = time.time() # time iteration for real time plot new_time = time.time() plt.show(block=False) for t in range(T): load_length_deviation = np.linalg.norm(folly_position[0:2] - molly_position) - object_length deviation += np.abs(load_length_deviation) plt.clf() # plot current state plot_constraints(path_constraints) # constraint path plt.plot([molly_position[0], folly_position[0]], [molly_position[1], folly_position[1]], 'b-', linewidth=2, label='Load: dev {:.1f}cm'.format(load_length_deviation * 100)) # object lifted plt.plot(molly_position[0], molly_position[1], '.', color='olive', label='Molly Position') # MollyPosition plt.plot(folly_position[0], folly_position[1], 'r.', label='Folly Position') # Folly Actual Positions plt.legend() plt.axis('equal') plt.title( 'Folly High Level Controller V2 {0}/{1} Iteration Time {2:.2f}s'.format(t, T, follyHLC.optimizer.m.options.SOLVETIME)) # plt.title( # 'Folly High Level Controller V2 {0}/{1} Iteration Time {2:.2f}s'.format(t, T, new_time - prev_time)) plt.xlabel('[m]') plt.ylabel('[m]') plt.pause(0.01) time.sleep(np.maximum(dt - (new_time - prev_time), 0.01)) # pause to match real time prev_time = new_time new_time = time.time() # actuate molly command with noise molly_position = molly_position + dt * molly_velocity_command + dt * np.random.normal(0, sigma, 2) # compute folly command folly_velocity_command = follyHLC.update_then_calculate_optimal_actuation(molly_position, folly_position, molly_velocity_command) # actuate optimal command with noise folly_position = folly_position + dt * folly_velocity_command + dt * np.random.normal(0, sigma, 3) print('The average deviation was {:.1f}cm.'.format(deviation / T * 100))
# Same problem setup as in `dq_darcy_stokes.py` except mixed # formulation is used to solve the Darcy subproblem and thus # we have a Lagrange multiplier on the interface to enforce the # coupling (mass conservation in particular) from utils import rotate import sympy as sp from dolfin import * from xii import * import ulfy def setup_problem(i, mms, parameters, stokes_CR): '''Solution of the Darcy-emmersed-Stokes test case''' meshD, boundariesD = mms['get_geometry'](i, 'inner') meshS, boundariesS = mms['get_geometry'](i, 'outer') interface, subdomainsI = mms['get_geometry'](i, 'interface') dsD = Measure('ds', domain=meshD, subdomain_data=boundariesD) nD = FacetNormal(meshD) dsS = Measure('ds', domain=meshS, subdomain_data=boundariesS) nS = FacetNormal(meshS) tS = rotate(nS) dx_ = Measure('dx', domain=interface, subdomain_data=subdomainsI) nD_ = OuterNormal(interface, [0.5, 0.5]) nS_ = -nD_ # We have nS as master tS_ = rotate(nS_) # And now for the fun stuff if not stokes_CR: VS = VectorFunctionSpace(meshS, 'CG', 2) QS = FunctionSpace(meshS, 'CG', 1) else: VS = VectorFunctionSpace(meshS, 'CR', 1) QS = FunctionSpace(meshS, 'DG', 0) VD = FunctionSpace(meshD, 'RT', 1) QD = FunctionSpace(meshD, 'DG', 0) M = FunctionSpace(interface, 'DG', 0) W = [VS, VD, QS, QD, M] uS, uD, pS, pD, l = map(TrialFunction, W) vS, vD, qS, qD, m = map(TestFunction, W) TuS, TvS = (Trace(x, interface) for x in (uS, vS)) TuD, TvD = (Trace(x, interface) for x in (uD, vD)) # Material parameters mu, K, alpha = (Constant(parameters[key]) for key in ('mu', 'K', 'alpha')) a = block_form(W, 2) a[0][0] = (Constant(2*mu)*inner(sym(grad(uS)), sym(grad(vS)))*dx + alpha*inner(dot(TuS, tS_), dot(TvS, tS_))*dx_) # Stabilization for CR if stokes_CR: hA = FacetArea(meshS) a[0][0] += 2*mu/avg(hA)*inner(jump(uS, nS), jump(vS, nS))*dS a[0][2] = -inner(pS, div(vS))*dx a[0][4] = inner(l, dot(TvS, nS_))*dx_ a[1][1] = (1/K)*inner(uD, vD)*dx a[1][3] = -inner(pD, div(vD))*dx a[1][4] = inner(l, dot(TvD, nD_))*dx_ a[2][0] = -inner(qS, div(uS))*dx a[3][1] = -inner(qD, div(uD))*dx a[4][0] = inner(m, dot(TuS, nS_))*dx_ a[4][1] = inner(m, dot(TuD, nD_))*dx_ # We will have 7, 8 as Neumann boundaries for Stokes and 5, 6 for Dirichlet lm_tags = (1, 2, 3, 4) L = block_form(W, 1) L[0] = (inner(mms['fS'], vS)*dx # Contribution from Neumann bcs on the boundary + sum(inner(mms['traction_S'][tag], vS)*dsS(tag) for tag in (7, 8)) # Multiplier contrib from sigma.n.t - sum(inner(mms['g_t'][tag], dot(vS, tS))*dsS(tag) for tag in lm_tags)) # Multiplier contrib from sigma.n.n L[1] = sum(inner(mms['g_n'][tag], dot(vD, nD))*dsD(tag) for tag in lm_tags) L[3] = -inner(mms['fD'], qD)*dx # Interface mass conservation L[4] = sum(inner(mms['g_u'][tag], m)*dx_(tag) for tag in lm_tags) VS_bcs = [DirichletBC(VS, mms['velocity_S'][tag], boundariesS, tag) for tag in (5, 6)] W_bcs = [VS_bcs, [], [], [], []] return a, L, W, W_bcs # -------------------------------------------------------------------- if __name__ == '__main__': from common import ConvergenceLog, H1_norm, L2_norm, Hdiv_norm, broken_norm from dq_darcy_stokes import setup_mms import sys, argparse parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) # Decide material parameters ... parser.add_argument('--param_mu', type=float, default=1, help='Stokes viscosity') parser.add_argument('--param_K', type=float, default=1, help='Darcy conductivity') parser.add_argument('--param_alpha', type=float, default=1, help='BJS') # ... and whether to use CR-P0 discretization for Stokes parser.add_argument('--stokes_CR', type=int, default=0, choices=[0, 1]) args, _ = parser.parse_known_args() # Reduce verbosity set_log_level(40) # For checking convergence we pick the solution of the test case ... material_params = {k.split('_')[-1] : v for k, v in vars(args).items() if k.startswith('param_')} mms = setup_mms(material_params) uS_true, uD_true, pS_true, pD_true = (mms['solution'][k] for k in ('uS', 'uD', 'pS', 'pD')) lm_true = mms['solution']['lm'] clog = ConvergenceLog({'uS': (uS_true, H1_norm, '1'), 'uD': (uD_true, Hdiv_norm, 'div'), 'pS': (pS_true, L2_norm, '0'), 'pD': (pD_true, L2_norm, '0'), # Multiplier is defined piecewise 'lm': (lm_true.expressions, broken_norm(lm_true.subdomains, L2_norm), '0') }) print(clog.header()) for i in range(6): a, L, W, bcs = setup_problem(i, mms, parameters=material_params, stokes_CR=args.stokes_CR) # Use direct solver to get the solution A, b = map(ii_assemble, (a, L)) A, b = apply_bc(A, b, bcs) A, b = map(ii_convert, (A, b)) wh = ii_Function(W) LUSolver(A, 'mumps').solve(wh.vector(), b) uSh, uDh, pSh, pDh, lmh = wh clog.add((uSh, uDh, pSh, pDh, lmh)) print(clog.report_last(with_name=False)) rates = tuple(clog[var].get_rate()[0] for var in ('uS', 'uD', 'pS', 'pD', 'lm')) if args.stokes_CR: expected = (1, )*5 else: expected = (2, 1, 2, 1, 1) passed = all(abs(r-e) < 0.1 for r, e in zip(rates, expected)) sys.exit(int(passed))
#! python3 # -*- encoding: utf-8 -*- def test_repr_str(): from class_object import Pair p = Pair(3, 4) print(p) print('p is {0!r}'.format(p)) print('p is {0}'.format(p)) def test_custom_date_format(): from class_object import Date from datetime import date d = date.today() d = Date(d.year, d.month, d.day) print(format(d)) print(format(d, 'mdy')) print('The date is {:ymd}'.format(d)) def test_lazy_connection(): from functools import partial from class_object import LazyConnection conn = LazyConnection(('www.python.com', 80)) with conn as s: s.send(b'GET /index.html HTTP/1.0\r\n') s.send(b'HOST: www.python.org\r\n') s.send(b'\r\n') resp = b''.join(iter(partial(s.recv, 8192), b'')) print(resp) def test_circle(): from class_object import Circle c = Circle(4.0) print(c.radius) print(c.area) print(c.perimeter) def test_extend(): # print(B.__mro__) from class_object import SubPerson s = SubPerson('Guido') print(s) def test_descriptor(): from class_object import Stock s = Stock('a', 10, 15.0) print(s) def test_lazyproperty(): from class_object import Circle c = Circle(4.0) print(vars(c)) print(c.area) print(vars(c)) del c.area print(vars(c)) print(c.area) def test_sorteditems(): from class_object import SortedItems items = SortedItems([5, 1, 3]) print(list(items)) items.add(2) print(list(items)) def test_proxy(): class Spam: def __init__(self, x): self.x = x def bar(self, y): print('Spam.bar:', self.x, y) s = Spam(2) from class_object import Proxy p = Proxy(s) print(p.x) def test_mixin(): from class_object import LoggedMappingMixin class LoggedDict(LoggedMappingMixin, dict): pass d = LoggedDict() d['x'] = 23 print(d['x']) del d['x'] from collections import defaultdict from class_object import SetOnceMappingMixin class SetOnceDefaultDict(SetOnceMappingMixin, defaultdict): pass d = SetOnceDefaultDict(list) d['x'].append(2) d['x'].append(3) print(d) def test_state(): from class_object import Connection1 c = Connection1() print(c._state) c.open() print(c._state) print(c.read()) print(c.write('hello')) c.close() print(c._state) def test_getattr(): from class_object import Point p = Point(2, 3) d = getattr(p, 'distance')(0, 0) print(d) import operator d = operator.methodcaller('distance', 0, 0)(p) print(d) points = [ Point(1, 2), Point(3, 0), Point(10, -3), Point(-5, -7), Point(-1, 8), Point(3, 2) ] points.sort(key=operator.methodcaller('distance', 0, 0)) print(points) def test_visitor(): from class_object import Number from class_object import Add from class_object import Evaluator a = Number(0) for n in range(1, 100000): a = Add(a, Number(n)) e = Evaluator() print(e.visit(a)) def test_comparable(): from class_object import House from class_object import Room h1 = House('h1', 'Cape') h1.add_room(Room('Master Bedroom', 14, 21)) h1.add_room(Room('Living Room', 18, 20)) h1.add_room(Room('Kitchen', 12, 16)) h1.add_room(Room('Office', 12, 12)) h2 = House('h2', 'Ranch') h2.add_room(Room('Master Bedroom', 14, 21)) h2.add_room(Room('Living Room', 18, 20)) h2.add_room(Room('Kitchen', 12, 16)) h3 = House('h3', 'Split') h3.add_room(Room('Master Bedroom', 14, 21)) h3.add_room(Room('Living Room', 18, 20)) h3.add_room(Room('Office', 12, 16)) h3.add_room(Room('Kitchen', 15, 17)) houses = [h1, h2, h3] print('Is h1 bigger than h2?', h1 > h2) print('Is h2 smaller than h3?', h2 < h3) print('Which one is biggest?', max(houses)) def test_cache_object(): import weakref class CachedSpamManager: def __init__(self): self._cache = weakref.WeakValueDictionary() @staticmethod def get_spam(self, name): if name not in self._cache: s = Spam._new(name) self._cache[name] = s else: s = self._cache[name] return s def clear(self): self._cache.clear() class Spam: # _spam_cache = weakref.WeakValueDictionary() manager = CachedSpamManager() # def __new__(cls, name): # if name in cls._spam_cache: # return cls._spam_cache[name] # # else: # self = super().__new__(cls) # cls._spam_cache[name] = self # def __init__(self, name): # print('Initializing Spam') # self.name = name # def get_spam(self, name): # return Spam.manager.get_spam(name) @classmethod def _new(cls, name): self = cls.__new__(cls) self.name = name return self c = CachedSpamManager() s = c.get_spam('Dave') print(s) t = c.get_spam('Dave') print(t) print(s is t) if __name__ == '__main__': test_cache_object()
# Generated by Django 3.2.9 on 2021-11-24 21:25 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('SocialLinks', '0005_csseditor_title'), ] operations = [ migrations.AddField( model_name='csseditor', name='link_hover_color', field=models.CharField(default='#000000', max_length=7), ), ]
"""Test a specific audio driver (either for platform or silent). Only checks the use of the interface. Any playback is silent.""" from __future__ import absolute_import, print_function from tests import mock import queue import pytest import time import pyglet _debug = False pyglet.options['debug_media'] = _debug pyglet.options['debug_media_buffers'] = _debug import pyglet.app from pyglet.media.drivers import silent from pyglet.media.drivers.silent import SilentAudioDriver from pyglet.media.sources import SourceGroup from pyglet.media.sources.procedural import Silence def _delete_driver(): if hasattr(pyglet.media.drivers._audio_driver, 'delete'): pyglet.media.drivers._audio_driver.delete() pyglet.media.drivers._audio_driver = None def test_get_platform_driver(): driver = pyglet.media.drivers.get_audio_driver() assert driver is not None assert not isinstance(driver, SilentAudioDriver), 'Cannot load audio driver for your platform' _delete_driver() def test_get_silent_driver(): driver = pyglet.media.drivers.get_silent_audio_driver() assert driver is not None assert isinstance(driver, SilentAudioDriver) _delete_driver() class MockPlayer(object): def __init__(self, event_loop): self.queue = queue.Queue() self.event_loop = event_loop def dispatch_event(self, event_type, *args): if _debug: print('MockPlayer: event {} received @ {}'.format(event_type, time.time())) self.queue.put((event_type, args)) self.event_loop.interrupt_event_loop() def wait_for_event(self, timeout, *event_types): end_time = time.time() + timeout try: while time.time() < end_time: if _debug: print('MockPlayer: run for {} sec @ {}'.format(end_time-time.time(), time.time())) self.event_loop.run_event_loop(duration=end_time-time.time()) event_type, args = self.queue.get_nowait() if event_type in event_types: return event_type, args except queue.Empty: return None, None def wait_for_all_events(self, timeout, *expected_events): if _debug: print('Wait for events @ {}'.format(time.time())) end_time = time.time() + timeout expected_events = list(expected_events) received_events = [] while expected_events: event_type, args = self.wait_for_event(timeout, *expected_events) if _debug: print('MockPlayer: got event {} @ {}'.format(event_type, time.time())) if event_type is None and time.time() >= end_time: pytest.fail('Timeout before all events have been received. Still waiting for: ' + ','.join(expected_events)) elif event_type is not None: if event_type in expected_events: expected_events.remove(event_type) received_events.append((event_type, args)) return received_events def wait(self, timeout): end_time = time.time() + timeout while time.time() < end_time: duration = max(.01, end_time-time.time()) self.event_loop.run_event_loop(duration=duration) #assert time.time() - end_time < .1 @pytest.fixture def player(event_loop): return MockPlayer(event_loop) class SilentTestSource(Silence): def __init__(self, duration, sample_rate=44800, sample_size=16): super(Silence, self).__init__(duration, sample_rate, sample_size) self.bytes_read = 0 def get_audio_data(self, nbytes): data = super(Silence, self).get_audio_data(nbytes) if data is not None: self.bytes_read += data.length return data def has_fully_played(self): return self.bytes_read == self._max_offset def get_drivers(): drivers = [silent] ids = ['Silent'] try: from pyglet.media.drivers import pulse drivers.append(pulse) ids.append('PulseAudio') except: pass try: from pyglet.media.drivers import openal drivers.append(openal) ids.append('OpenAL') except: pass try: from pyglet.media.drivers import directsound drivers.append(directsound) ids.append('DirectSound') except: pass return {'params': drivers, 'ids': ids} @pytest.fixture(**get_drivers()) def driver(request): if _debug: print('Create driver @ {}'.format(time.time())) driver = request.param.create_audio_driver() assert driver is not None def fin(): driver.delete() request.addfinalizer(fin) return driver def _create_source_group(*sources): source_group = SourceGroup(sources[0].audio_format, None) for source in sources: source_group.queue(source) return source_group def test_create_destroy(driver): driver.delete() def test_create_audio_player(driver, player): source_group = _create_source_group(Silence(1.)) audio_player = driver.create_audio_player(source_group, player) audio_player.delete() def test_audio_player_play(driver, player): source = SilentTestSource(.1) source_group = _create_source_group(source) audio_player = driver.create_audio_player(source_group, player) try: audio_player.play() player.wait_for_all_events(1., 'on_eos', 'on_source_group_eos') assert source.has_fully_played(), 'Source not fully played' finally: audio_player.delete() def test_audio_player_play_multiple(driver, player): sources = (SilentTestSource(.1), SilentTestSource(.1)) source_group = _create_source_group(*sources) audio_player = driver.create_audio_player(source_group, player) try: audio_player.play() player.wait_for_all_events(1., 'on_eos', 'on_eos', 'on_source_group_eos') for source in sources: assert source.has_fully_played(), 'Source not fully played' finally: audio_player.delete() def test_audio_player_add_to_paused_group(driver, player): """This is current behaviour when adding a sound of the same format as the previous to a player paused due to end of stream for previous sound.""" source = SilentTestSource(.1) source_group = _create_source_group(source) if _debug: print('Create player @ {}'.format(time.time())) audio_player = driver.create_audio_player(source_group, player) try: audio_player.play() player.wait_for_all_events(1., 'on_eos', 'on_source_group_eos') source2 = SilentTestSource(.1) source_group.queue(source2) audio_player.play() player.wait_for_all_events(1., 'on_eos', 'on_source_group_eos') assert source2.has_fully_played(), 'Source not fully played' finally: audio_player.delete() def test_audio_player_delete_driver_with_players(driver, player): """Delete a driver with active players. Should not cause problems.""" source = SilentTestSource(10.) source_group = _create_source_group(source) audio_player = driver.create_audio_player(source_group, player) audio_player.play() def test_audio_player_clear(driver, player): """Test clearing all buffered data.""" source = SilentTestSource(10.) source_group = _create_source_group(source) audio_player = driver.create_audio_player(source_group, player) try: audio_player.play() player.wait(.5) assert 0. < audio_player.get_time() < 5. audio_player.stop() source.seek(5.) audio_player.clear() audio_player.play() player.wait(.3) assert 5. <= audio_player.get_time() < 10. finally: audio_player.delete() def test_audio_player_time(driver, player): """Test retrieving current timestamp from player.""" source = SilentTestSource(10.) source_group = _create_source_group(source) audio_player = driver.create_audio_player(source_group, player) try: audio_player.play() last_time = audio_player.get_time() # Needs to run until at least the initial buffer is processed. Ideal time is 1 sec, so run # more than 1 sec. for _ in range(15): player.wait(.1) assert last_time < audio_player.get_time() last_time = audio_player.get_time() if _debug: print('='*80) print('Time:', last_time) print('Bytes read:', source.bytes_read) print('='*80) finally: audio_player.delete()
from django.db import models from json import JSONEncoder from django.core.serializers.json import DjangoJSONEncoder import datetime # Create your models here. class Encoder(DjangoJSONEncoder): def default(self, value): if isinstance(value, datetime.date): return DjangoJSONEncoder.default(self, value) class Pilot(models.Model): firstname = models.CharField(max_length=60) lastname = models.CharField(max_length=60) starting_date = models.DateField() class Airplane(models.Model): modelname = models.CharField(max_length=60) builddate = models.DateField() class Airport(models.Model): name = models.CharField(max_length=60) code = models.CharField(max_length=60) city = models.CharField(max_length=60) class Flight(models.Model): pilot = models.ForeignKey(Pilot, on_delete=models.CASCADE) airplane = models.ForeignKey(Airplane, on_delete=models.CASCADE) departure_airport = models.ForeignKey(Airport, on_delete=models.CASCADE, related_name='+') arrival_airport = models.ForeignKey(Airport, on_delete=models.CASCADE, related_name='+') departure_time = models.DateTimeField() arrival_time = models.DateTimeField()
from rply.token import BaseBox from Main.Errors import error, errors import sys class BinaryOp(BaseBox): def __init__(self, left, right): self.left = left self.right = right if self.right.kind == "string" or self.left.kind == "string": self.kind = "string" else: self.kind = self.left.kind class Sum(BinaryOp): def eval(self): try: return self.left.eval() + self.right.eval() except: try: return self.left.sum(self.right) except: error(errors.IMPOSSIBLEOPERATION, "", { "type": "values, types, operationtype", "operationtype": "Addition", "values": [self.left.eval(), self.right.eval()], "types": [self.left.kind.tostr(), self.right.kind.tostr()] }) sys.exit(1) class Sub(BinaryOp): def eval(self): try: return self.left.eval() - self.right.eval() except: try: return self.left.sub(self.right) except: error(errors.IMPOSSIBLEOPERATION, "", { "type": "values, types, operationtype", "operationtype": "Substraction", "values": [self.left.eval(), self.right.eval()], "types": [self.left.kind.tostr(), self.right.kind.tostr()] }) sys.exit(1) class Mul(BinaryOp): def eval(self): try: return self.left.eval() * self.right.eval() except: try: return self.left.mul(self.right) except: error(errors.IMPOSSIBLEOPERATION, "", { "type": "values, types, operationtype", "operationtype": "Multiplication", "values": [self.left.eval(), self.right.eval()], "types": [self.left.kind.tostr(), self.right.kind.tostr()] }) sys.exit(1) class Div(BinaryOp): def eval(self): try: return self.left.eval() / self.right.eval() except: try: return self.left.div(self.right) except: error(errors.IMPOSSIBLEOPERATION, "", { "type": "values, types, operationtype", "operationtype": "Division", "values": [self.left.eval(), self.right.eval()], "types": [self.left.kind.tostr(), self.right.kind.tostr()] }) sys.exit(1) class DivEu(BinaryOp): def eval(self): try: return self.left.eval() // self.right.eval() except: try: return self.left.diveu(self.right) except: error(errors.IMPOSSIBLEOPERATION, "", { "type": "values, types, operationtype", "operationtype": "Euclidean Division", "values": [self.left.eval(), self.right.eval()], "types": [self.left.kind.tostr(), self.right.kind.tostr()] }) sys.exit(1) class Pow(BinaryOp): def eval(self): try: return self.left.eval() ** self.right.eval() except: try: return self.left.pow(self.right) except: error(errors.IMPOSSIBLEOPERATION, "", { "type": "values, types, operationtype", "operationtype": "Power", "values": [self.left.eval(), self.right.eval()], "types": [self.left.kind.tostr(), self.right.kind.tostr()] }) sys.exit(1) class Mod(BinaryOp): def eval(self): try: return self.left.eval() % self.right.eval() except: try: return self.left.mod(self.right) except: error(errors.IMPOSSIBLEOPERATION, "", { "type": "values, types, operationtype", "operationtype": "Modulo", "values": [self.left.eval(), self.right.eval()], "types": [self.left.kind.tostr(), self.right.kind.tostr()] }) sys.exit(1)
import csv import web import json import datetime import energyServer urls = ("/vehicleData", "vehicles", # "/subwayTotal", "subwayTotal", # "/subwayChanges", "subwayChanges", "/", "check") class check: def GET(self): return "200 OK" def getTime(): web.header('Access-Control-Allow-Origin', '*') web.header('Access-Control-Allow-Credentials', 'true') now = datetime.datetime.now() hour = now.hour minute = now.minute return (hour, minute) class vehicles: def GET(self): hour, minute = getTime() B = energyServer.S.vehicleChangesList jsonDump = json.dumps(B) #energyServer.S.clearList() return jsonDump # class subwayTotal: # def GET(self): # B = energyServer.S.totalChangesList # jsonDump = json.dumps(B) # return jsonDump # class subwayChanges: # def GET(self): # data = web.input() # BBL = data.BBL # populationDifference = energyServer.S.totalChanges[BBL] # return json.dumps(populationDifference) vehicleData = web.application(urls, locals());
class TermsOfDeliveryService(object): """ :class:`fortnox.TermsOfDeliveryService` is used by :class:`fortnox.Client` to make actions related to TermsOfDelivery resource. Normally you won't instantiate this class directly. """ """ Allowed attributes for TermsOfDelivery to send to Fortnox backend servers. """ OPTS_KEYS_TO_PERSIST = ['Code', 'Description'] SERVICE = "TermsOfDelivery" def __init__(self, http_client): """ :param :class:`fortnox.HttpClient` http_client: Pre configured high-level http client. """ self.__http_client = http_client @property def http_client(self): return self.__http_client def list(self, **params): """ Retrieve all TermsOfDelivery Returns all TermsOfDelivery available to the Company, according to the parameters provided :calls: ``get /termsofdeliveries`` :param dict params: (optional) Search options. :return: List of dictionaries that support attriubte-style access, which represent collection of TermsOfDelivery. :rtype: list """ _, _, terms_of_deliveries = self.http_client.get("/termsofdeliveries", params=params) return terms_of_deliveries def retrieve(self, code): """ Retrieve a single TermsOfDelivery Returns a single TermsOfDelivery according to the unique TermsOfDelivery ID provided If the specified TermsOfDelivery does not exist, this query returns an error :calls: ``get /termsofdeliveries/{code}`` :param int id: Unique identifier of a TermsOfDelivery. :return: Dictionary that support attriubte-style access and represent TermsOfDelivery resource. :rtype: dict """ _, _, terms_of_delivery = self.http_client.get("/termsofdeliveries/{code}".format(code=code)) return terms_of_delivery def create(self, *args, **kwargs): """ Create a TermsOfDelivery Creates a new TermsOfDelivery **Notice** the TermsOfDelivery's name **must** be unique within the scope of the resource_type :calls: ``post /termsofdeliveries`` :param tuple *args: (optional) Single object representing TermsOfDelivery resource. :param dict **kwargs: (optional) terms_of_delivery attributes. :return: Dictionary that support attriubte-style access and represents newely created TermsOfDelivery resource. :rtype: dict """ if not args and not kwargs: raise Exception('attributes for TermsOfDelivery are missing') attributes = args[0] if args else kwargs attributes = dict((k, v) for k, v in attributes.items() if k in self.OPTS_KEYS_TO_PERSIST) attributes.update({'service': self.SERVICE}) _, _, terms_of_delivery = self.http_client.post("/termsofdeliveries", body=attributes) return terms_of_delivery def update(self, code, *args, **kwargs): """ Update a TermsOfDelivery Updates a TermsOfDelivery's information If the specified TermsOfDelivery does not exist, this query will return an error **Notice** if you want to update a TermsOfDelivery, you **must** make sure the TermsOfDelivery's name is unique within the scope of the specified resource :calls: ``put /termsofdeliveries/{code}`` :param int id: Unique identifier of a TermsOfDelivery. :param tuple *args: (optional) Single object representing TermsOfDelivery resource which attributes should be updated. :param dict **kwargs: (optional) TermsOfDelivery attributes to update. :return: Dictionary that support attriubte-style access and represents updated TermsOfDelivery resource. :rtype: dict """ if not args and not kwargs: raise Exception('attributes for TermsOfDelivery are missing') attributes = args[0] if args else kwargs attributes = dict((k, v) for k, v in attributes.items()) attributes.update({'service': self.SERVICE}) _, _, terms_of_delivery = self.http_client.put("/termsofdeliveries/{code}".format(code=code), body=attributes) return terms_of_delivery
import torch from torch import nn import torch.nn.functional as F import torchvision from torchvision import datasets, transforms, models from collections import OrderedDict from torch import optim from torch.autograd import Variable class PreTrainedCNN: def __init__(self, arch, gpu, hidden_units, pretrained): self.model = getattr(models, arch)(pretrained=pretrained) self.gpu = gpu self.arch = arch self.hidden_units = hidden_units for param in self.model.parameters(): param.requires_grad = False classifier = nn.Sequential(OrderedDict([ ('fc1', nn.Linear(25088, hidden_units)), ('relu', nn.ReLU()), ('fc2', nn.Linear(hidden_units, 500)), ('relu', nn.ReLU()), ('fc3', nn.Linear(500, 102)), ('output', nn.LogSoftmax(dim=1)) ])) self.model.classifier = classifier self.criterion = nn.NLLLoss() self.loading_shapes = ['|', '/', '-', '\\'] self.loading_idx = 0 self.loading_shapes_len = 4 #save few nanoseconds if gpu: self.model.cuda() def save(self, save_dir, class_to_idx): to_serialize = { "arch": self.arch, "hidden_units": self.hidden_units, "state_dict": self.model.state_dict(), "class_to_idx": class_to_idx } torch.save(to_serialize, save_dir + '/checkpoint.pth') def train(self, loader, lr, epochs): steps = 0 running_loss = 0 print_every = 100 self.optimizer = optim.Adam(self.model.classifier.parameters(), lr) print("Training started") for e in range(epochs): self.model.train() for ii, (inputs, labels) in enumerate(loader): self.loading() steps += 1 self.optimizer.zero_grad() inputs, labels = Variable(inputs), Variable(labels) if self.gpu: inputs, labels = inputs.cuda(), labels.cuda() outputs = self.model.forward(inputs) loss = self.criterion(outputs, labels) loss.backward() self.optimizer.step() running_loss += loss.item() if steps % print_every == 0: print("Epoch: {}/{}... ".format(e+1, epochs), "Loss: {:.4f}".format(running_loss/print_every)) running_loss = 0 print ("Training complete") def validate(self, loader): self.model.eval() accuracy = 0 test_loss = 0 steps = 0 print("Validating model") for ii, (inputs, labels) in enumerate(loader): self.loading() steps += 1 self.optimizer.zero_grad() inputs, labels = Variable(inputs), Variable(labels) if self.gpu: inputs, labels = inputs.cuda(), labels.cuda() output = self.model.forward(inputs) test_loss += self.criterion(output, labels).data.item() ps = torch.exp(output).data equality = (labels.data == ps.max(1)[1]) accuracy += equality.type_as(torch.FloatTensor()).mean() print("Test Loss: {:.3f}.. ".format( test_loss / len(loader) ), "Test Accuracy: {:.3f}".format( accuracy / len(loader)) ) def loading(self, index=None, tot=None): perc = "" if index != None and tot != None: n = round(index / tot * 100) perc = ' {0:02d}%'.format(n) print("\r" + self.loading_shapes[self.loading_idx % self.loading_shapes_len] + perc, end = '\r') self.loading_idx += 1
""" Taylor Polynomial Approximations of 1. SiLU 2. ReLU https://en.wikipedia.org/wiki/Taylor_series#Definition """ import torch import torch.nn as nn class SiLUTaylorApprox(nn.Module): def __init__(self, order=2): super(SiLUTaylorApprox, self).__init__() self.coeffs = torch.tensor([0.0, 1/2., 1/4., 0.0, -1/48, 0.0, 1/480, 0.0, -17/80640., 0.0, 31/1451520]) self.order = order def forward(self, x): out = 0 for i in range(self.order+1): out = out + self.coeffs[i] * x**i return out class ReLUTaylorApprox(nn.Module): def __init__(self, order=2): super(ReLUTaylorApprox, self).__init__() self.coeffs = torch.tensor([0.0, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) self.order = order def forward(self, x): out = 0 for i in range(self.order+1): out = out + self.coeffs[i] * x**i return out if __name__ == "__main__": s = SiLUTaylorApprox() r = ReLUTaylorApprox()
import json from datetime import datetime from datetime import date from powerbi.enums import DataSourceType from typing import Union from enum import Enum # https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/entity-data-model-primitive-data-types # https://docs.microsoft.com/en-us/power-bi/developer/automation/api-dataset-properties#data-type-restrictions # https://docs.microsoft.com/en-us/analysis-services/multidimensional-models/mdx/mdx-cell-properties-format-string-contents?view=asallproducts-allversions class PowerBiEncoder(json.JSONEncoder): def __init__(self, *args, **kwargs): json.JSONEncoder.__init__(self, *args, **kwargs) def default(self, obj): if isinstance(obj, Columns): return obj.columns elif isinstance(obj, Measures): return obj.measures if isinstance(obj, Column): return obj.column elif isinstance(obj, Measure): return obj.measure elif isinstance(obj, Dataset): return obj.push_dataset elif isinstance(obj, Tables): return obj.tables elif isinstance(obj, Table): return obj.table elif isinstance(obj, Relationships): return obj.relationships elif isinstance(obj, Relationship): return obj.relationship elif isinstance(obj, DataSources): return obj.datasources elif isinstance(obj, DataSource): return obj.data_source elif isinstance(obj, Dataset): return obj.push_dataset class Column(): """ ### Overview ---- Represents a column inside of a `PowerBiTable` object. """ def __init__(self, name: str, data_type: Union[str, Enum]) -> None: """Initializes a new `Column` object. ### Parameters ---- name : str The column name. data_type : Union[str, Enum] One of the allowed data types. """ if isinstance(data_type, Enum): data_type = data_type.value self.column = { 'name': name, 'dataType': data_type, 'dataCategory': '', 'formatString': '', 'isHidden': False, 'sortByColumn': None, 'summarizeBy': None } @property def name(self) -> str: """The column name. ### Returns ---- str : The column name. """ return self.column.get('name', None) @name.setter def name(self, name: str) -> None: """Sets the column name. ### Parameters ---- name : str The name you want the column to be. """ self.column.update({'name': name}) @property def data_type(self) -> str: """Returns the data type of column. ### Returns ---- str : One of the allowed data types. """ return self.column.get('dataType', None) @data_type.setter def data_type(self, data_type: Union[str, Enum]) -> None: """Sets the column data type. ### Parameters ---- data_type : Union[str, Enum] One of the allowed data types. """ if isinstance(data_type, Enum): data_type = data_type.value self.column.update({'dataType': data_type}) @property def format_string(self) -> str: """Returns the format string of the column. ### Returns ---- str : The format of the column as specified in FORMAT_STRING. """ return self.column.get('formatString', None) @format_string.setter def format_string(self, format_string: str) -> None: """Sets the optional format of the column. ### Parameters ---- format_string : str The format of the column as specified in FORMAT_STRING. """ self.column.update({'formatString': format_string}) @property def data_category(self) -> str: """Returns the data category of the column, if any is specified. ### Returns ---- str : String value to be used for the data category which describes the data within this column. """ return self.column.get('dataCategory', None) @data_category.setter def data_category(self, data_category: str) -> None: """Sets the data category of the column. ### Parameters ---- data_category : str Value to be used for the data category which describes the data within this column. Some common values include: `[Address, City, Continent, Country, Image, ImageUrl, Latitude, Longitude, Organization, Place, PostalCode, StateOrProvince, WebUrl]` """ self.column.update({'dataCategory': data_category}) @property def is_hidden(self) -> bool: """Returns the property indicating if the column is hidden from view. ### Returns ---- bool : If `True` the column is hidden, `False` otherwise. """ return self.column.get('isHidden', None) @is_hidden.setter def is_hidden(self, is_hidden: bool) -> None: """Sets the `isHidden` property of the column. ### Parameters ---- is_hidden : bool Property indicating if the column is hidden from view. Default is `False`. """ self.column.update({'isHidden': is_hidden}) @property def sort_by_column(self) -> str: """Returns the property indicating the column that the table is ordered by. ### Returns ---- str : String name of a column in the same table to be used to order the current column. """ return self.column.get('sortByColumn', None) @sort_by_column.setter def sort_by_column(self, sort_by_column: str) -> None: """Sets the `sortByColumn` property of the column. ### Parameters ---- sort_by_column : str String name of a column in the same table to be used to order the current column. """ self.column.update({'sortByColumn': sort_by_column}) @property def summarize_by(self) -> str: """Returns the property indicating how the column is aggregated. ### Returns ---- str : Aggregate Function to use for summarizing this column. """ return self.column.get('summarizeBy', None) @summarize_by.setter def summarize_by(self, summarize_by: Union[str, Enum]) -> None: """Sets the `summarizeBy` property of the column. ### Parameters ---- summarize_by : Union[str, Enum] Aggregate Function to use for summarizing this column. """ if isinstance(summarize_by, Enum): summarize_by = summarize_by.value self.column.update({'summarizeBy': summarize_by}) def to_dict(self) -> dict: """Returns the column properties. ### Returns ---- dict A dictionary containing each of the column properties. """ return self.column class Measure(): """ ### Overview ---- Represents a `Measure` inside of a `PowerBiColumn` object. """ def __init__(self, name: str, expression: str) -> None: """Initializes a new `Measure` object. ### Parameters ----- name : str The measure name. expression : str A valid DAX expression. """ self.measure = { 'name': name, 'expression': expression, 'formatString': '', 'isHidden': False, } @property def name(self) -> str: """The measure name. ### Returns ---- str : The measure name. """ return self.measure.get('name', None) @name.setter def name(self, name: str) -> None: """Sets the measure name. ### Parameters ---- name : str The name you want the measure to be. """ self.measure.update({'name': name}) @property def expression(self) -> str: """Returns the measure DAX expression. ### Returns ---- str : A valid DAX expression. """ return self.measure.get('dataType', None) @expression.setter def expression(self, expression: str) -> None: """Sets the measure DAX expression. ### Parameters ---- expression : str A valid DAX expression. """ self.measure.update({'expression': expression}) @property def format_string(self) -> str: """Returns the format string of the measure. ### Returns ---- str : The format of the measure as specified in FORMAT_STRING. """ return self.measure.get('formatString', None) @format_string.setter def format_string(self, format_string: str) -> None: """Sets the optional format of the measure. ### Parameters ---- format_string : str The format of the measure as specified in FORMAT_STRING. """ self.measure.update({'formatString': format_string}) @property def is_hidden(self) -> bool: """Returns the property indicating if the measure is hidden from client tools. ### Returns ---- bool : If `True` the measure is hidden, `False` otherwise. """ return self.measure.get('isHidden', None) @is_hidden.setter def is_hidden(self, is_hidden: bool) -> None: """Sets the `isHidden` property of the column. ### Parameters ---- is_hidden : bool Property indicating if the measure is hidden from client tools. Default is `False`. """ self.measure.update({'isHidden': is_hidden}) def to_dict(self) -> dict: """Returns the measure properties. ### Returns ---- dict A dictionary containing each of the measure properties. """ return self.measure def to_json(self) -> str: """Returns the measure properties as a JSON formatted string. ### Returns ---- str A string that contains the measure properties. """ return json.dumps(obj=self.measure, indent=4) class Relationship(): """ ### Overview ---- Represents a `Relationship` inside of a `PowerBiModel` object. """ def __init__(self, name: str, from_table: str, to_table: str, from_column: str, to_column: str) -> None: """Initializes a new `Relationship` object. ### Parameters ----- name : str The measure name. expression : str A valid DAX expression. """ self.relationship = { 'name': name, 'fromColumn': from_column, 'toColumn': to_column, 'fromTable': from_table, 'toTable': to_table, 'crossFilteringBehavior': 'OneDirection' } @property def name(self) -> str: """The relationship name. ### Returns ---- str : The relationship name. """ return self.relationship.get('name', None) @name.setter def name(self, name: str) -> None: """Sets the relationship name. ### Parameters ---- name : str The name you want the relationship to be. """ self.relationship.update({'name': name}) @property def from_table(self) -> str: """Returns the `fromTable` property. ### Returns ---- str : Name of the foreign key table. """ return self.relationship.get('fromTable', None) @from_table.setter def from_table(self, from_table: str) -> None: """Sets the `fromTable` propery. ### Parameters ---- from_table : str Name of the foreign key table. """ self.relationship.update({'fromTable': from_table}) @property def to_table(self) -> str: """Returns the `toTable` property. ### Returns ---- str : Name of the primary key table. """ return self.relationship.get('toTable', None) @to_table.setter def to_table(self, to_table: str) -> None: """Sets the `toTable` propery. ### Parameters ---- to_table : str Name of the primary key table. """ self.relationship.update({'toTable': to_table}) @property def from_column(self) -> str: """Returns the `toColumn` property. ### Returns ---- str : Name of the foreign key column. """ return self.relationship.get('fromColumn', None) @from_column.setter def from_column(self, from_column: str) -> None: """Sets the `fromColumn` propery. ### Parameters ---- from_column : str Name of the foreign key column. """ self.relationship.update({'fromColumn': from_column}) @property def to_column(self) -> str: """Returns the `toColumn` property. ### Returns ---- str : Name of the primary key column. """ return self.relationship.get('toColumn', None) @to_column.setter def to_column(self, to_column: str) -> None: """Sets the `toColumn` propery. ### Parameters ---- to_column : str Name of the primary key column. """ self.relationship.update({'toColumn': to_column}) @property def cross_filtering_behavior(self) -> str: """Returns the `crossFilteringBehavior` property. ### Returns ---- str : The filter direction of the relationship: [`OneDirection`, `BothDirections`, `Automatic`]. """ return self.relationship.get('crossFilteringBehavior', None) @cross_filtering_behavior.setter def cross_filtering_behavior(self, cross_filtering_behavior: str = 'OneDirection') -> None: """Sets the `crossFilteringBehavior` propery. ### Parameters ---- cross_filtering_behavior : str (optional, Default='OneDirection') The filter direction of the relationship: [`OneDirection`, `BothDirections`, `Automatic`]. """ self.relationship.update( {'crossFilteringBehavior': cross_filtering_behavior}) def to_dict(self) -> dict: """Returns the relationship properties. ### Returns ---- dict A dictionary containing each of the relationship properties. """ return self.relationship class Columns(): """ ### Overview ---- Represents a collection of `Column` objects that are found inside of a `PowerBiTable` object. """ def __init__(self) -> None: self.columns = [] def __setitem__(self, index: int, data: Column) -> None: self.columns.append(data) def __getitem__(self, index: int) -> Column: return self.columns[index] def __delitem__(self, index: int) -> None: del self.columns[index] def __len__(self) -> int: return len(self.columns) def __iter__(self): return iter(self.columns) class Measures(): """ ### Overview ---- Represents a collection of `Measure` objects that are found inside of a `PowerBiTable` object. """ def __init__(self) -> None: self.measures = [] def __setitem__(self, index: int, data: Column) -> None: self.measures[index] = data def __getitem__(self, index: int) -> Column: return self.measures[index] def __delitem__(self, index: int) -> None: del self.measures[index] def __len__(self) -> int: return len(self.measures) def __iter__(self): return iter(self.measures) class Relationships(): """ ### Overview ---- Represents a collection of `Relationship` objects that are found inside of a `PowerBiDataset` object. """ def __init__(self) -> None: self.relationships = [] def __setitem__(self, index: int, data: Column) -> None: self.relationships[index] = data def __getitem__(self, index: int) -> Column: return self.relationships[index] def __delitem__(self, index: int) -> None: del self.relationships[index] def __len__(self) -> int: return len(self.relationships) def __iter__(self): return iter(self.relationships) class Tables(): """ ### Overview ---- Represents a collection of `Table` objects that are found inside of a `PowerBiDataset` object. """ def __init__(self) -> None: self.tables = [] def __setitem__(self, index: int, data: Column) -> None: self.tables.append(data) def __getitem__(self, index: int) -> Column: return self.tables[index] def __delitem__(self, index: int) -> None: del self.tables[index] def __len__(self) -> int: return len(self.tables) def __iter__(self): return iter(self.tables) class DataSources(): """ ### Overview ---- Represents a collection of `Datasource` objects that are found inside of a `PowerBiDataset` object. """ def __init__(self) -> None: self.datasources = [] def __setitem__(self, index: int, data: object) -> None: self.datasources.append(data) def __getitem__(self, index: int) -> object: return self.datasources[index] def __delitem__(self, index: int) -> None: del self.datasources[index] def __len__(self) -> int: return len(self.datasources) def __iter__(self): return iter(self.datasources) class Table(): """ ### Overview ---- Represents a Table inside of a PowerBi dataset. """ def __init__(self, name: str) -> None: """Initializes the `Table` object. ### Parameters ---- name : str User defined name of the table. It is also used as the identifier of the table. """ self._columns = Columns() self._measures = Measures() self.table = { 'name': name, 'columns': self._columns, 'measures': self._measures, 'rows': [] } def __repr__(self) -> str: """Represents the string representation of the table object. ### Returns ---- str A JSON formatted string. """ return json.dumps(obj=self.table, indent=4, cls=PowerBiEncoder) def __getitem__(self, index: int) -> object: return self.table[index] def __delitem__(self, index: int) -> None: del self.table[index] def __iter__(self): return iter(self.table) @property def name(self) -> str: """The table name. ### Returns ---- str : User defined name of the table. It is also used as the identifier of the table. """ return self.table.get('name', None) @name.setter def name(self, name: str) -> None: """Sets the table name. ### Parameters ---- name : str User defined name of the table. It is also used as the identifier of the table. """ self.table.update({'name': name}) @property def columns(self) -> str: """Gets the `columns` property. ### Returns ---- str : Collection of `Column` objects. """ return self._columns def add_column(self, column: Column) -> None: """Adds a new `Column` to the `Columns` collection. ### Parameters ---- column : Column A `Column` object with the properties set. """ self._columns[len(self._columns)] = column def get_column(self, index: int) -> Column: """Gets a `Column` from the `Columns` collection. ### Parameters ---- index : int The index of the column you want to return from the collection. ### Returns ---- Column : A `PowerBiColumn` object. """ return self._columns[index] def del_column(self, index: int) -> None: """Deletes a `Column` to the `Columns` collection. ### Parameters ---- index : int The index of the column you want to delete from the collection. """ del self._columns[index] @property def measures(self) -> str: """Gets the `measures` property. ### Returns ---- str : Collection of `measure` objects. """ return self._measures @property def add_measure(self, measure: Measure) -> None: """Adds a column to the `measures` collection. ### Parameters ---- measure : measure A `Measure` object with the properties set. """ measures = self.table.get('measures', []) measures.append(measure) def del_measure(self, index: int = 0) -> None: """Deletes a `Measure` in the `measures` collection. ### Parameters ---- index : int (optional=, Default=0) The index of the `Measure` object that you wish to delete. """ measures = self.table.get('measures', []) measures.pop(index) def get_measure(self, index: int = 0) -> Column: """Gets a `Measure` in the `measures` collection by indexing it. ### Parameters ---- index : int (optional=, Default=0) The index of the `Measure` object that you wish to get. """ return self.table.get('measures', [])[index] @property def rows(self) -> str: """Gets the `rows` property. ### Returns ---- str : Collection of `row` objects. """ return self.table.get('rows', []) def add_row(self, row: Union[list, dict]) -> None: """Adds a `Row` object to the `rows` collection. ### Parameters ---- row : dict A `Row` object with the properties set. """ rows = self.table.get('rows', []) if isinstance(row, dict): rows.append(row) elif isinstance(row, list): rows.extend(row) def del_row(self, index: int = 0) -> None: """Deletes a `Row` in the `rows` collection. ### Parameters ---- index : int (optional=, Default=0) The index of the `Row` object that you wish to delete. """ rows = self.table.get('rows', []) rows.pop(index) def get_row(self, index: int = 0) -> dict: """Gets a `Row` in the `rows` collection by indexing it. ### Parameters ---- index : int (optional=, Default=0) The index of the `Row` object that you wish to get. """ return self.table.get('rows', [])[index] def as_dict(self) -> dict: return self.table class Dataset(): """ ### Overview ---- Represents a `PowerBiDataset` object with different tables, relationships, and data sources. """ def __init__(self, name: str, tables: Tables = []) -> None: """Initializes the `Dataset` object. ### Parameters ---- name : str User defined name of the dataset. It is also used as the identifier of the dataset. tables : Tables (optional, Default=[]) A collection of `Table` objects you want to be part of the dataset. """ if len(tables) == 0: self._tables = Tables() else: self._tables = tables self._relationships = Relationships() self._data_sources = DataSources() self.push_dataset = { 'name': name, 'tables': self._tables, 'datasources': self._data_sources, 'defaultMode': '', 'relationships': self._relationships } def __repr__(self) -> str: """Represents the string representation of the table object. ### Returns ---- str A JSON formatted string. """ return json.dumps(obj=self.push_dataset, indent=4, cls=PowerBiEncoder) def __getitem__(self, index: int) -> object: return self.push_dataset[index] def __delitem__(self, index: int) -> None: del self.push_dataset[index] @property def name(self) -> str: """The dataset name. ### Returns ---- str : The dataset name. """ return self.push_dataset.get('name', None) @name.setter def name(self, name: str) -> None: """Sets the dataset name. ### Parameters ---- name : str The name you want the dataset to be. """ self.push_dataset.update({'name': name}) @property def default_mode(self) -> str: """Gets the `defaultMode` property. ### Returns ---- str : The dataset mode or type. """ return self.push_dataset.get('defaultMode', None) @default_mode.setter def default_mode(self, default_mode: str) -> None: """Sets the `defaultMode` property. ### Parameters ---- default_mode : str The dataset mode or type. """ self.push_dataset.update({'defaultMode': default_mode}) @property def tables(self) -> Tables: """Returns the `Tables` collection from the dataset. ### Returns ---- Tables The dataset's `Tables` collection. """ return self._tables def add_table(self, table: Table) -> None: """Adds a new `Table` object to the `Tables` collection. ### Parameters ---- table : Table A table object with the properties set. """ self._tables[len(self._tables)] = table def del_table(self, index: int) -> None: """Deletes a `Table` to the `Tables` collection. ### Parameters ---- index : int The index of the table you want to delete from the collection. """ del self._tables[index] def get_table(self, index: int) -> Table: """Gets a `Table` to the `Tables` collection. ### Parameters ---- index : int The index of the table you want to get from the collection. """ return self._tables[index] @property def relationships(self) -> Relationships: """Returns the `Relationships` collection from the dataset. ### Returns ---- Relationships The dataset's `Relationships` collection. """ return self._relationships def add_relationship(self, relationship: Relationship) -> None: """Adds a `Relationship` to the `Relationships` collection. ### Parameters ---- relationship : Relationship The relationship object you want to add to the collection. """ self._relationships[len(self._relationships)] = relationship def del_relationship(self, index: int) -> None: """Deletes a `Relationship` to the `Relationships` collection. ### Parameters ---- index : int The index of the relationship you want to delete from the collection. """ del self._relationships[index] def get_relationship(self, index: int) -> Relationship: """Gets a `Relationship` to the `Relationships` collection. ### Parameters ---- index : int The index of the relationship you want to get from the collection. """ return self._relationships[index] @property def data_sources(self) -> DataSources: """Returns the `DataSources` collection from the dataset. ### Returns ---- Datasources The dataset's `DataSources` collection. """ return self._data_sources def add_data_source(self, data_source: object) -> None: """Adds a `DataSource` to the `DataSources` collection. ### Parameters ---- data_source : DataSource The data source object you want to add to the collection. """ self._data_sources[len(self._data_sources)] = data_source def del_data_source(self, index: int) -> None: """Deletes a `DataSource` to the `DataSources` collection. ### Parameters ---- index : int The index of the data source you want to delete from the collection. """ del self._data_sources[index] def get_data_source(self, index: int) -> object: """Adds a `DataSource` to the `DataSources` collection. ### Parameters ---- index : int The index of the data source you want to add to the collection. """ return self._data_sources[index] def _prep_for_post(self) -> dict: """Preps the `Dataset` object so it's valid JSON for the PostDataset endpoint. ### Returns ---- dict A dataset with valid keys. """ copy_push_dataset = self.push_dataset.copy() del copy_push_dataset['datasources'] for table in copy_push_dataset['tables']: del table['rows'] return copy_push_dataset class DataSource(): """ ### Overview ---- Represents a `DataSource` object that is part of a `PowerBiDataset` object. """ def __init__(self, data_source_type: Union[str, Enum]) -> None: """Initializes the `DataSource` object. ### Parameters ---- data_source_type : Union[str, Enum] The datasource type, can also be a `DataSourceType` enum. """ if isinstance(data_source_type, Enum): data_source_type = data_source_type.value self.data_source_type = data_source_type self.data_source = { 'datasourceType': self.data_source_type, 'connectionDetails': {}, 'dataSourceId': '', 'gatewayId': '' } @property def data_source_type(self) -> str: """Gets the `dataSourceType` property. ### Returns ---- str : The `dataSourceType` property. """ return self.data_source.get('datasourceType', None) @data_source_type.setter def data_source_type(self, data_source_type: str) -> None: """Sets the `dataSourceType` property. ### Parameters ---- data_source_type : str The `dataSourceType` with the properties set. """ self.data_source.update({'datasourceType': data_source_type}) @property def connection_details(self) -> str: """Gets the `connectionDetails` property. ### Returns ---- str : The `connectionDetails` property. """ return self.data_source.get('connectionDetails', None) @connection_details.setter def connection_details(self, connection_details: str) -> None: """Sets the `connectionDetails` property. ### Parameters ---- connection_details : str The `connectionDetails` with the properties set. """ self.data_source.update({'connectionDetails': connection_details}) class ConnectionDetails(): def __init__(self) -> None: pass
# Copyright 2015 NICTA # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from django.contrib import admin from django.contrib import messages from dashboard_loader.models import Loader from dashboard_loader.management.update_data import update from dashboard_loader.loader_utils import LoaderException @admin.register(Loader) class LoaderAdmin(admin.ModelAdmin): list_display=("app", "refresh_rate", "suspended", "last_locked", "last_run", "last_loaded") list_editable=("refresh_rate", "suspended") fields = ('app', 'refresh_rate', 'suspended', 'last_loaded', 'last_run', "last_locked", "locked_by_process", "locked_by_thread", "last_api_access") list_filter=("suspended",) readonly_fields=("app", "last_loaded", "last_run", "locked_by_process", "locked_by_thread") actions = [ 'update_data' ] def update_data(self, request, queryset): infos = [] errors = [] for l in queryset: try: infos.extend(update(l, verbosity=3, force=True, async=False)) except LoaderException, e: errors.append(unicode(e)) for err in errors: self.message_user(request, err, level=messages.ERROR) for msg in infos: self.message_user(request, msg) update_data.short_description = "Update data for Loader"
#!/usr/bin/env python # -*- coding: utf-8 -*- # # (c) Copyright 2003-2015 HP Development Company, L.P. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Author: Don Welch # __version__ = '0.1' __title__ = 'Device Setup Utility' __mod__ = 'hp-devicesettings' __doc__ = "Device settings utility for HPLIP supported printers. (Note: Not all printers require the use of this utility)." #Std Lib import sys import re import getopt import time import operator import os # Local from base.g import * from base import device, utils, maint, tui, module from prnt import cups try: from importlib import import_module except ImportError as e: log.debug(e) from base.utils import dyn_import_mod as import_module try: mod = module.Module(__mod__, __title__, __version__, __doc__, None, (GUI_MODE,), (UI_TOOLKIT_QT4, UI_TOOLKIT_QT5)) mod.setUsage(module.USAGE_FLAG_DEVICE_ARGS, see_also_list=['hp-toolbox']) opts, device_uri, printer_name, mode, ui_toolkit, lang = \ mod.parseStdOpts() device_uri = mod.getDeviceUri(device_uri, printer_name, filter={'power-settings': (operator.gt, 0)}) if not device_uri: sys.exit(1) log.info("Using device : %s\n" % device_uri) if not utils.canEnterGUIMode4(): log.error("%s -u/--gui requires Qt4 GUI support. Exiting." % __mod__) sys.exit(1) # try: # from PyQt4.QtGui import QApplication # from ui4.devicesetupdialog import DeviceSetupDialog # except ImportError: # log.error("Unable to load Qt4 support. Is it installed?") # sys.exit(1) QApplication, ui_package = utils.import_dialog(ui_toolkit) ui = import_module(ui_package + ".devicesetupdialog") app = QApplication(sys.argv) dlg = ui.DeviceSetupDialog(None, device_uri) dlg.show() try: log.debug("Starting GUI loop...") app.exec_() except KeyboardInterrupt: sys.exit(0) except KeyboardInterrupt: log.error("User exit") log.info("") log.info("Done.")
from ....extensions import ExtensionMixin from ...flarum.core.forum import Forum class ForumMixin(Forum): @property def markdown_mdarea(self) -> bool: """ Whether or not the MDArea is enabled for markdown. """ return self.attributes.get("flarum-markdown.mdarea", False) class MarkdownExtension(ExtensionMixin): """ https://packagist.org/packages/flarum/markdown """ AUTHOR = 'flarum' NAME = 'markdown' @classmethod def mixin(cls): super().mixin(Forum, ForumMixin)
from manpy.simulation.applications.MilkPlant.imports import * from manpy.simulation.imports import ExcelHandler, ExitJobShop from manpy.simulation.Globals import runSimulation import time start = time.time() # how many liters is one milk pack milkUnit = 1.0 T1 = MilkTank("T1", "T1", capacity=3200 / float(milkUnit)) T2 = MilkTank("T2", "T2", capacity=2600 / float(milkUnit)) T3 = MilkTank("T3", "T3", capacity=7000 / float(milkUnit)) TBM2 = MilkTank("TBM2", "Tank Before F", capacity=float("inf")) TAM2 = MilkTank("TAM2", "Tank After F", capacity=float("inf")) TBM3 = MilkTank("TBM3", "Tank Before W", capacity=float("inf")) TAM3 = MilkTank("TAM3", "Tank After W", capacity=float("inf")) Tr1 = MilkTransport("Tr1", "Tr1") Tr2 = MilkTransport("Tr2", "Tr2") Tr3 = MilkTransport("Tr3", "Tr3") Tr4 = MilkTransport("Tr4", "Tr4") Tr5 = MilkTransport("Tr5", "Tr5") M2 = MilkProcess("M2", "F") M3 = MilkProcess("M3", "W") E = MilkExit("E", "Exit") route1 = [ {"stationIdsList": ["T1"]}, { "stationIdsList": ["Tr1"], "processingTime": {"Fixed": {"mean": 0.034682 * milkUnit}}, }, ] route2 = [ {"stationIdsList": ["T3"]}, { "stationIdsList": ["Tr3"], "processingTime": {"Fixed": {"mean": 0.222222 * milkUnit}}, }, ] commonRoute = [ {"stationIdsList": ["T2"]}, { "stationIdsList": ["Tr2"], "processingTime": {"Fixed": {"mean": 0.03 * milkUnit}}, "volume": 1000, }, {"stationIdsList": ["TBM2"]}, { "stationIdsList": ["M2"], "processingTime": {"Fixed": {"mean": 180}}, "volume": 1000, }, {"stationIdsList": ["TAM2"]}, { "stationIdsList": ["Tr4"], "processingTime": {"Fixed": {"mean": 0.06 * milkUnit}}, "volume": 1000, }, {"stationIdsList": ["TBM3"]}, { "stationIdsList": ["M3"], "processingTime": {"Fixed": {"mean": 20}}, "volume": 1000, }, {"stationIdsList": ["E"]}, ] MPList = [] for i in range(int(865 / float(milkUnit))): MP = MilkPack( "MT_A" + str(i), "MT_A" + str(i), route=route1 + commonRoute, liters=milkUnit, fat=3.8 * milkUnit, productId="Product X", ) MPList.append(MP) for i in range(int(135 / float(milkUnit))): MP = MilkPack( "MT_B" + str(i), "MT_B" + str(i), route=route2 + commonRoute, liters=milkUnit, fat=0.1 * milkUnit, productId="Product X", ) MPList.append(MP) runSimulation( [T1, T2, T3, TBM2, TAM2, TBM3, TAM3, Tr1, Tr2, Tr3, Tr4, Tr5, M2, M3, E] + MPList, 1000, trace="Yes", ) ExcelHandler.outputTrace("MilkPlant2") for productId in E.finishedProductDict: volume = E.finishedProductDict[productId]["volume"] totalFat = E.finishedProductDict[productId]["totalFat"] exitTime = E.finishedProductDict[productId]["exitTime"] fat = totalFat / float(volume) print( ( "from", productId, volume, "liters were produced of", fat, "% fat. Product ready at t=", exitTime, ) ) print(("Execution Time=", time.time() - start))
# SheetManager Exceptions class GoogleConnectionException(Exception): pass class InitSheetManagerException(Exception): pass class AuthSheetManagerException(Exception): pass class CreateSheetException(Exception): pass class OpenSheetException(Exception): pass class WriteTableException(Exception): pass class ProtectColumnsException(Exception): pass class FetchTableException(Exception): pass class CheckinProcessException(Exception): pass class TableCheckinException(Exception): pass class FatalCheckinException(Exception): pass class UpdateStatusException(Exception): pass class UpdateRowException(Exception): pass class UpdateTableException(Exception): pass # Holdings Exceptions class HoldingsQueryException(Exception): pass class BadBibstemException(Exception): pass #Tasks Exceptions class DBCommitException(Exception): """Non-recoverable Error with making database commits.""" pass class DBReadException(Exception): """Non-recoverable Error with making database selection.""" pass class DBClearException(Exception): """Non-recoverable Error with clearing a full table (prior to reload).""" pass class InvalidTableException(Exception): pass class WriteDataToSheetException(Exception): pass class TableCheckinException(Exception): pass class TableCheckoutException(Exception): pass class ClearTableException(Exception): pass #Utils Exceptions class ReadBibstemException(Exception): pass class ReadCompletenessException(Exception): pass class ReadCanonicalException(Exception): pass class ReadEncodingException(Exception): pass class RequestsException(Exception): pass class ReadRefsourcesException(Exception): pass class ExportBibstemsException(Exception): pass class ExportISSNException(Exception): pass class BackupFileException(Exception): pass
import qrcode location_in = input("Enter Location:") qr=qrcode.QRCode(version=1,box_size=10,border=5) qr.add_data('https://www.google.co.in/maps/place/'+location_in) qr.make(fit=True) img=qr.make_image(fill="black",back_color="white") img.save("1.png")
from django.db import models from home.models import FeatureContent # Create your models here. class ApplContent(FeatureContent): button_text = models.CharField(blank=True, max_length=50) load_file = models.FileField(blank=True, null=True)
from importlib import reload import numpy as np import itertools as it from tumorstoppy import distances, measures, data, knn data_points = 979 Data = data.Data cdr3 = data.CDR3_13 cut_cdr3 = Data( [ Data(['./data/processed_data/TumorCDR3s_test/TumorCDR3s_test_13.txt', './data/processed_data/NonTumorCDR3s_test/NonTumorCDR3s_test_13.txt'], ['tumorous', 'benign'], data_points), Data(['./data/processed_data/TumorCDR3s_training/TumorCDR3s_training_13.txt', './data/processed_data/NonTumorCDR3s_training/NonTumorCDR3s_training_13.txt'], ['tumorous', 'benign'], data_points), ], ['test', 'training'], ) error_evaluation = measures.error_evaluation distance = distances.blosum62_distance #print(error_evaluation(None, cdr3['training'], verbose=True)) weights1 = np.array([8.31503303, 6.3603994 , 2.26271026, -1.51866793, 7.5740573 , 7.66745514, 4.72895374, 1.29182651, 6.50981513, 3.79679703, 6.12735646, 1.11650591, 1.27719528]) weights2 = np.array([7.21814821, 5.19300206, 3.53396301, 3.07099894, 3.13081365, 3.36293533, 3.70343292, 2.65573896, 3.89459912, 2.69011136, 4.32294453, 5.33310198, 6.140785]) def dist(s1, s2): return distance(s1, s2, weights2) results_cancer = [] for seq in cut_cdr3['test','tumorous']: print('Testing ' + seq) results_cancer.append(knn.nearest_neighbor(seq, *cut_cdr3['training'], dist)) print('Finished tumorous tests') results_cancer = np.array(results_cancer) results_non_cancer = [] for seq in cut_cdr3['test','benign']: print('Testing ' + seq) results_non_cancer.append(knn.nearest_neighbor(seq, *cut_cdr3['training'], dist)) results_non_cancer = np.array(results_non_cancer) print('Finished benign tests') with open('results.txt', 'w') as FILE: FILE.write(str(results_cancer)) FILE.write('\n\n') FILE.write(str(results_non_cancer))
import math import time import torch import torch.nn as nn import torch.nn.functional as F import torch.autograd.profiler as profiler from pykeops.torch import LazyTensor from geometry_processing import ( curvatures, mesh_normals_areas, tangent_vectors, atoms_to_points_normals, ) from helper import soft_dimension, diagonal_ranges from benchmark_models import DGCNN_seg, PointNet2_seg, dMaSIFConv_seg def knn_atoms(x, y, x_batch, y_batch, k): N, D = x.shape x_i = LazyTensor(x[:, None, :]) y_j = LazyTensor(y[None, :, :]) pairwise_distance_ij = ((x_i - y_j) ** 2).sum(-1) pairwise_distance_ij.ranges = diagonal_ranges(x_batch, y_batch) # N.B.: KeOps doesn't yet support backprop through Kmin reductions... # dists, idx = pairwise_distance_ij.Kmin_argKmin(K=k,axis=1) # So we have to re-compute the values ourselves: idx = pairwise_distance_ij.argKmin(K=k, axis=1) # (N, K) x_ik = y[idx.view(-1)].view(N, k, D) dists = ((x[:, None, :] - x_ik) ** 2).sum(-1) return idx, dists def get_atom_features(x, y, x_batch, y_batch, y_atomtype, k=16): idx, dists = knn_atoms(x, y, x_batch, y_batch, k=k) # (num_points, k) num_points, _ = idx.size() idx = idx.view(-1) dists = 1 / dists.view(-1, 1) _, num_dims = y_atomtype.size() feature = y_atomtype[idx, :] feature = torch.cat([feature, dists], dim=1) feature = feature.view(num_points, k, num_dims + 1) return feature class Atom_embedding(nn.Module): def __init__(self, args): super(Atom_embedding, self).__init__() self.D = args.atom_dims self.k = 16 self.conv1 = nn.Linear(self.D + 1, self.D) self.conv2 = nn.Linear(self.D, self.D) self.conv3 = nn.Linear(2 * self.D, self.D) self.bn1 = nn.BatchNorm1d(self.D) self.bn2 = nn.BatchNorm1d(self.D) self.relu = nn.LeakyReLU(negative_slope=0.2) def forward(self, x, y, y_atomtypes, x_batch, y_batch): fx = get_atom_features(x, y, x_batch, y_batch, y_atomtypes, k=self.k) fx = self.conv1(fx) fx = fx.view(-1, self.D) fx = self.bn1(self.relu(fx)) fx = fx.view(-1, self.k, self.D) fx1 = fx.sum(dim=1, keepdim=False) fx = self.conv2(fx) fx = fx.view(-1, self.D) fx = self.bn2(self.relu(fx)) fx = fx.view(-1, self.k, self.D) fx2 = fx.sum(dim=1, keepdim=False) fx = torch.cat((fx1, fx2), dim=-1) fx = self.conv3(fx) return fx class AtomNet(nn.Module): def __init__(self, args): super(AtomNet, self).__init__() self.args = args self.transform_types = nn.Sequential( nn.Linear(args.atom_dims, args.atom_dims), nn.LeakyReLU(negative_slope=0.2), nn.Linear(args.atom_dims, args.atom_dims), nn.LeakyReLU(negative_slope=0.2), nn.Linear(args.atom_dims, args.atom_dims), nn.LeakyReLU(negative_slope=0.2), ) self.embed = Atom_embedding(args) def forward(self, xyz, atom_xyz, atomtypes, batch, atom_batch): # Run a DGCNN on the available information: atomtypes = self.transform_types(atomtypes) return self.embed(xyz, atom_xyz, atomtypes, batch, atom_batch) class Atom_embedding_MP(nn.Module): def __init__(self, args): super(Atom_embedding_MP, self).__init__() self.D = args.atom_dims self.k = 16 self.n_layers = 3 self.mlp = nn.ModuleList( [ nn.Sequential( nn.Linear(2 * self.D + 1, 2 * self.D + 1), nn.LeakyReLU(negative_slope=0.2), nn.Linear(2 * self.D + 1, self.D), ) for i in range(self.n_layers) ] ) self.norm = nn.ModuleList( [nn.GroupNorm(2, self.D) for i in range(self.n_layers)] ) self.relu = nn.LeakyReLU(negative_slope=0.2) def forward(self, x, y, y_atomtypes, x_batch, y_batch): idx, dists = knn_atoms(x, y, x_batch, y_batch, k=self.k) # N, 9, 7 num_points = x.shape[0] num_dims = y_atomtypes.shape[-1] point_emb = torch.ones_like(x[:, 0])[:, None].repeat(1, num_dims) for i in range(self.n_layers): features = y_atomtypes[idx.reshape(-1), :] features = torch.cat([features, dists.reshape(-1, 1)], dim=1) features = features.view(num_points, self.k, num_dims + 1) features = torch.cat( [point_emb[:, None, :].repeat(1, self.k, 1), features], dim=-1 ) # N, 8, 13 messages = self.mlp[i](features) # N,8,6 messages = messages.sum(1) # N,6 point_emb = point_emb + self.relu(self.norm[i](messages)) return point_emb class Atom_Atom_embedding_MP(nn.Module): def __init__(self, args): super(Atom_Atom_embedding_MP, self).__init__() self.D = args.atom_dims self.k = 17 self.n_layers = 3 self.mlp = nn.ModuleList( [ nn.Sequential( nn.Linear(2 * self.D + 1, 2 * self.D + 1), nn.LeakyReLU(negative_slope=0.2), nn.Linear(2 * self.D + 1, self.D), ) for i in range(self.n_layers) ] ) self.norm = nn.ModuleList( [nn.GroupNorm(2, self.D) for i in range(self.n_layers)] ) self.relu = nn.LeakyReLU(negative_slope=0.2) def forward(self, x, y, y_atomtypes, x_batch, y_batch): idx, dists = knn_atoms(x, y, x_batch, y_batch, k=self.k) # N, 9, 7 idx = idx[:, 1:] # Remove self dists = dists[:, 1:] k = self.k - 1 num_points = y_atomtypes.shape[0] out = y_atomtypes for i in range(self.n_layers): _, num_dims = out.size() features = out[idx.reshape(-1), :] features = torch.cat([features, dists.reshape(-1, 1)], dim=1) features = features.view(num_points, k, num_dims + 1) features = torch.cat( [out[:, None, :].repeat(1, k, 1), features], dim=-1 ) # N, 8, 13 messages = self.mlp[i](features) # N,8,6 messages = messages.sum(1) # N,6 out = out + self.relu(self.norm[i](messages)) return out class AtomNet_MP(nn.Module): def __init__(self, args): super(AtomNet_MP, self).__init__() self.args = args self.transform_types = nn.Sequential( nn.Linear(args.atom_dims, args.atom_dims), nn.LeakyReLU(negative_slope=0.2), nn.Linear(args.atom_dims, args.atom_dims), ) self.embed = Atom_embedding_MP(args) self.atom_atom = Atom_Atom_embedding_MP(args) def forward(self, xyz, atom_xyz, atomtypes, batch, atom_batch): # Run a DGCNN on the available information: atomtypes = self.transform_types(atomtypes) atomtypes = self.atom_atom( atom_xyz, atom_xyz, atomtypes, atom_batch, atom_batch ) atomtypes = self.embed(xyz, atom_xyz, atomtypes, batch, atom_batch) return atomtypes def combine_pair(P1, P2): P1P2 = {} for key in P1: v1 = P1[key] v2 = P2[key] if v1 is None: continue if key == "batch" or key == "batch_atoms": v1v2 = torch.cat([v1, v2 + v1[-1] + 1], dim=0) elif key == "triangles": # v1v2 = torch.cat([v1,v2],dim=1) continue else: v1v2 = torch.cat([v1, v2], dim=0) P1P2[key] = v1v2 return P1P2 def split_pair(P1P2): batch_size = P1P2["batch_atoms"][-1] + 1 p1_indices = P1P2["batch"] < batch_size // 2 p2_indices = P1P2["batch"] >= batch_size // 2 p1_atom_indices = P1P2["batch_atoms"] < batch_size // 2 p2_atom_indices = P1P2["batch_atoms"] >= batch_size // 2 P1 = {} P2 = {} for key in P1P2: v1v2 = P1P2[key] if (key == "rand_rot") or (key == "atom_center"): n = v1v2.shape[0] // 2 P1[key] = v1v2[:n].view(-1, 3) P2[key] = v1v2[n:].view(-1, 3) elif "atom" in key: P1[key] = v1v2[p1_atom_indices] P2[key] = v1v2[p2_atom_indices] elif key == "triangles": continue # P1[key] = v1v2[:,p1_atom_indices] # P2[key] = v1v2[:,p2_atom_indices] else: P1[key] = v1v2[p1_indices] P2[key] = v1v2[p2_indices] P2["batch"] = P2["batch"] - batch_size + 1 P2["batch_atoms"] = P2["batch_atoms"] - batch_size + 1 return P1, P2 def project_iface_labels(P, threshold=2.0): queries = P["xyz"] batch_queries = P["batch"] source = P["mesh_xyz"] batch_source = P["mesh_batch"] labels = P["mesh_labels"] x_i = LazyTensor(queries[:, None, :]) # (N, 1, D) y_j = LazyTensor(source[None, :, :]) # (1, M, D) D_ij = ((x_i - y_j) ** 2).sum(-1).sqrt() # (N, M) D_ij.ranges = diagonal_ranges(batch_queries, batch_source) nn_i = D_ij.argmin(dim=1).view(-1) # (N,) nn_dist_i = ( D_ij.min(dim=1).view(-1, 1) < threshold ).float() # If chain is not connected because of missing densities MaSIF cut out a part of the protein query_labels = labels[nn_i] * nn_dist_i P["labels"] = query_labels class dMaSIF(nn.Module): def __init__(self, args): super(dMaSIF, self).__init__() # Additional geometric features: mean and Gauss curvatures computed at different scales. self.curvature_scales = args.curvature_scales self.args = args I = args.in_channels O = args.orientation_units E = args.emb_dims H = args.post_units # Computes chemical features self.atomnet = AtomNet_MP(args) self.dropout = nn.Dropout(args.dropout) if args.embedding_layer == "dMaSIF": # Post-processing, without batch norm: self.orientation_scores = nn.Sequential( nn.Linear(I, O), nn.LeakyReLU(negative_slope=0.2), nn.Linear(O, 1), ) # Segmentation network: self.conv = dMaSIFConv_seg( args, in_channels=I, out_channels=E, n_layers=args.n_layers, radius=args.radius, ) # Asymmetric embedding if args.search: self.orientation_scores2 = nn.Sequential( nn.Linear(I, O), nn.LeakyReLU(negative_slope=0.2), nn.Linear(O, 1), ) self.conv2 = dMaSIFConv_seg( args, in_channels=I, out_channels=E, n_layers=args.n_layers, radius=args.radius, ) elif args.embedding_layer == "DGCNN": self.conv = DGCNN_seg(I + 3, E,self.args.n_layers,self.args.k) if args.search: self.conv2 = DGCNN_seg(I + 3, E,self.args.n_layers,self.args.k) elif args.embedding_layer == "PointNet++": self.conv = PointNet2_seg(args, I, E) if args.search: self.conv2 = PointNet2_seg(args, I, E) if args.site: # Post-processing, without batch norm: self.net_out = nn.Sequential( nn.Linear(E, H), nn.LeakyReLU(negative_slope=0.2), nn.Linear(H, H), nn.LeakyReLU(negative_slope=0.2), nn.Linear(H, 1), ) def features(self, P, i=1): """Estimates geometric and chemical features from a protein surface or a cloud of atoms.""" if ( not self.args.use_mesh and "xyz" not in P ): # Compute the pseudo-surface directly from the atoms # (Note that we use the fact that dicts are "passed by reference" here) P["xyz"], P["normals"], P["batch"] = atoms_to_points_normals( P["atoms"], P["batch_atoms"], atomtypes=P["atomtypes"], resolution=self.args.resolution, sup_sampling=self.args.sup_sampling, ) # Estimate the curvatures using the triangles or the estimated normals: P_curvatures = curvatures( P["xyz"], triangles=P["triangles"] if self.args.use_mesh else None, normals=None if self.args.use_mesh else P["normals"], scales=self.curvature_scales, batch=P["batch"], ) # Compute chemical features on-the-fly: chemfeats = self.atomnet( P["xyz"], P["atom_xyz"], P["atomtypes"], P["batch"], P["batch_atoms"] ) if self.args.no_chem: chemfeats = 0.0 * chemfeats if self.args.no_geom: P_curvatures = 0.0 * P_curvatures # Concatenate our features: return torch.cat([P_curvatures, chemfeats], dim=1).contiguous() def embed(self, P): """Embeds all points of a protein in a high-dimensional vector space.""" features = self.dropout(self.features(P)) P["input_features"] = features #torch.cuda.synchronize(device=features.device) #torch.cuda.reset_max_memory_allocated(device=P["atoms"].device) begin = time.time() # Ours: if self.args.embedding_layer == "dMaSIF": self.conv.load_mesh( P["xyz"], triangles=P["triangles"] if self.args.use_mesh else None, normals=None if self.args.use_mesh else P["normals"], weights=self.orientation_scores(features), batch=P["batch"], ) P["embedding_1"] = self.conv(features) if self.args.search: self.conv2.load_mesh( P["xyz"], triangles=P["triangles"] if self.args.use_mesh else None, normals=None if self.args.use_mesh else P["normals"], weights=self.orientation_scores2(features), batch=P["batch"], ) P["embedding_2"] = self.conv2(features) # First baseline: elif self.args.embedding_layer == "DGCNN": features = torch.cat([features, P["xyz"]], dim=-1).contiguous() P["embedding_1"] = self.conv(P["xyz"], features, P["batch"]) if self.args.search: P["embedding_2"] = self.conv2( P["xyz"], features, P["batch"] ) # Second baseline elif self.args.embedding_layer == "PointNet++": P["embedding_1"] = self.conv(P["xyz"], features, P["batch"]) if self.args.search: P["embedding_2"] = self.conv2(P["xyz"], features, P["batch"]) #torch.cuda.synchronize(device=features.device) end = time.time() #memory_usage = torch.cuda.max_memory_allocated(device=P["atoms"].device) memory_usage = 0 conv_time = end - begin return conv_time, memory_usage def preprocess_surface(self, P): P["xyz"], P["normals"], P["batch"] = atoms_to_points_normals( P["atoms"], P["batch_atoms"], atomtypes=P["atomtypes"], resolution=self.args.resolution, sup_sampling=self.args.sup_sampling, distance=self.args.distance, ) if P['mesh_labels'] is not None: project_iface_labels(P) def forward(self, P1, P2=None): # Compute embeddings of the point clouds: if P2 is not None: P1P2 = combine_pair(P1, P2) else: P1P2 = P1 conv_time, memory_usage = self.embed(P1P2) # Monitor the approximate rank of our representations: R_values = {} R_values["input"] = soft_dimension(P1P2["input_features"]) R_values["conv"] = soft_dimension(P1P2["embedding_1"]) if self.args.site: P1P2["iface_preds"] = self.net_out(P1P2["embedding_1"]) if P2 is not None: P1, P2 = split_pair(P1P2) else: P1 = P1P2 return { "P1": P1, "P2": P2, "R_values": R_values, "conv_time": conv_time, "memory_usage": memory_usage, }
from time import time import jwt from .config import ServiceAccount class JSONWebTokenHandler: """Handles bearer tokens from a service account.""" def __init__(self, service_account: ServiceAccount, audience: str): self._service_account = service_account self._audience = audience self._issued_time = time() def __str__(self): return self.token @property def _headers(self) -> dict: return {"alg": "RS256", "typ": "JWT", "kid": self._service_account.private_key_id} @property def _payload(self) -> dict: """Returns payload to be encoded""" if time() > self._issued_time + 1200: self._issued_time = time() payload = { "aud": self._audience, "iss": self._service_account.client_email, "sub": self._service_account.client_email, "iat": self._issued_time, "exp": self._issued_time + 1200, } return payload @property def token(self) -> str: """Returns an encoded token.""" return jwt.encode( payload=self._payload, key=self._service_account.private_key, algorithm="RS256", headers=self._headers, ) __all__ = ["JSONWebTokenHandler"]
import json from rest_framework.views import status from django.urls import reverse # local imports from .base_test import TestBase class TagCreation(TestBase): """Test if a tag list is created""" def test_tag_addition(self): """Test tags addition to article""" self.verify_user() response = self.client.post( self.article_url, data=json.dumps(self.valid_taglist_data), content_type='application/json' ) length_of_taglist = len(response.data["tag_list"]) self.assertEqual(length_of_taglist, 2) self.assertEqual(response.status_code, status.HTTP_201_CREATED) def test_tag_update(self): """Test tags update""" self.verify_user() response = self.client.post( self.article_url, data=json.dumps(self.valid_taglist_data), content_type='application/json' ) slug = response.data['slug'] response = self.client.put( reverse( 'articles:detail_article', kwargs={'slug': slug}, ), data=json.dumps(self.valid_taglist_update_data), content_type='application/json' ) length_of_taglist = len(response.data["tag_list"]) self.assertEqual(length_of_taglist, 4) self.assertEqual(response.status_code, status.HTTP_200_OK)
import sys import time from urllib.request import urlopen from .error import OmeError from .util import remove, get_terminal_width, is_terminal def format_size(n): if n < 1024: return '%d B' % n elif n < 1024**2: return '%.1f KB' % (float(n) / 1024) elif n < 1024**3: return '%.1f MB' % (float(n) / 1024**2) elif n < 1024**4: return '%.1f GB' % (float(n) / 1024**3) def format_bar(value, total, max_width): width = value * max_width // total return '=' * width + ' ' * (max_width - width) class Progress(object): def __init__(self, length, file=sys.stdout): self.length = length self.file = file self.is_terminal = is_terminal(file) self.start_time = time.time() self.transferred = 0 self.last_time = self.start_time self.last_transferred = 0 self.rate = None self.last_line = '' def update(self, transferred): if self.is_terminal: self.transferred += transferred now = time.time() if now - self.last_time > 1.0: self.rate = (self.transferred - self.last_transferred) / (now - self.last_time) self.last_time = now self.last_transferred = self.transferred rate = format_size(self.rate) + '/s' if self.rate is not None else '' if self.length: bar = format_bar(self.transferred, self.length, int(get_terminal_width() / 3)) line = '\r\x1B[K[{0}] {1}% ({2} of {3}) @ {4}'.format( bar, self.transferred * 100 // self.length, format_size(self.transferred), format_size(self.length), rate) else: line = '\r\x1B[K=> {0} @ {1}\x1B[K'.format(format_size(self.transferred), rate) if line != self.last_line: self.file.write(line) self.file.flush() self.last_line = line def finish(self): if self.is_terminal: self.file.write('\r\x1B[K') def download(url, path): print('ome: downloading', url) try: with open(path, 'wb') as output: with urlopen(url) as input: progress = Progress(input.length) try: while True: buf = input.read(1024) if not buf: break progress.update(len(buf)) output.write(buf) finally: progress.finish() except KeyboardInterrupt: remove(path) raise except Exception as e: remove(path) raise OmeError('ome: download failed: {}'.format(e))
def product(*args): """This method returns the product of items passed as arguments Returns product of the arguments passed. If args length is zero then ti will return 0 """ if len(args) == 0: return 0 result = 1 for arg in args: result *= arg return result def convert_curreny(amount, **kwargs): """This function converts from one currency to other """ #amount = kwargs['amount'] source = kwargs['source'] destination = kwargs['destination'] rate = kwargs['rate'] target = amount * rate return target def is_leap(year): """This function finds if the year passed is leap or not Arguments: year (int): year Return: True if leap false other wise """ if year % 4 == 0: if year % 100 == 0: if year % 400 == 0: return True else: return False return True else: return False if __name__ == '__main__': convert_curreny(source='usd', destination='inr', amount=135, rate=74.5)