content
stringlengths
5
1.05M
import os import unittest import paramiko from shutil import copyfile from paramiko.client import RejectPolicy, WarningPolicy from tests.utils import make_tests_data_path from webssh.policy import ( AutoAddPolicy, get_policy_dictionary, load_host_keys, get_policy_class, check_policy_setting ) class TestPolicy(unittest.TestCase): def test_get_policy_dictionary(self): classes = [AutoAddPolicy, RejectPolicy, WarningPolicy] dic = get_policy_dictionary() for cls in classes: val = dic[cls.__name__.lower()] self.assertIs(cls, val) def test_load_host_keys(self): path = '/path-not-exists' host_keys = load_host_keys(path) self.assertFalse(host_keys) path = '/tmp' host_keys = load_host_keys(path) self.assertFalse(host_keys) path = make_tests_data_path('known_hosts_example') host_keys = load_host_keys(path) self.assertEqual(host_keys, paramiko.hostkeys.HostKeys(path)) def test_get_policy_class(self): keys = ['autoadd', 'reject', 'warning'] vals = [AutoAddPolicy, RejectPolicy, WarningPolicy] for key, val in zip(keys, vals): cls = get_policy_class(key) self.assertIs(cls, val) key = 'non-exists' with self.assertRaises(ValueError): get_policy_class(key) def test_check_policy_setting(self): host_keys_filename = make_tests_data_path('host_keys_test.db') host_keys_settings = dict( host_keys=paramiko.hostkeys.HostKeys(), system_host_keys=paramiko.hostkeys.HostKeys(), host_keys_filename=host_keys_filename ) with self.assertRaises(ValueError): check_policy_setting(RejectPolicy, host_keys_settings) try: os.unlink(host_keys_filename) except OSError: pass check_policy_setting(AutoAddPolicy, host_keys_settings) self.assertEqual(os.path.exists(host_keys_filename), True) def test_is_missing_host_key(self): client = paramiko.SSHClient() file1 = make_tests_data_path('known_hosts_example') file2 = make_tests_data_path('known_hosts_example2') client.load_host_keys(file1) client.load_system_host_keys(file2) autoadd = AutoAddPolicy() for f in [file1, file2]: entry = paramiko.hostkeys.HostKeys(f)._entries[0] hostname = entry.hostnames[0] key = entry.key self.assertIsNone( autoadd.is_missing_host_key(client, hostname, key) ) for f in [file1, file2]: entry = paramiko.hostkeys.HostKeys(f)._entries[0] hostname = entry.hostnames[0][1:] key = entry.key self.assertTrue( autoadd.is_missing_host_key(client, hostname, key) ) file3 = make_tests_data_path('known_hosts_example3') entry = paramiko.hostkeys.HostKeys(file3)._entries[0] hostname = entry.hostnames[0] key = entry.key with self.assertRaises(paramiko.BadHostKeyException): autoadd.is_missing_host_key(client, hostname, key) def test_missing_host_key(self): client = paramiko.SSHClient() file1 = make_tests_data_path('known_hosts_example') file2 = make_tests_data_path('known_hosts_example2') filename = make_tests_data_path('known_hosts') copyfile(file1, filename) client.load_host_keys(filename) n1 = len(client._host_keys) autoadd = AutoAddPolicy() entry = paramiko.hostkeys.HostKeys(file2)._entries[0] hostname = entry.hostnames[0] key = entry.key autoadd.missing_host_key(client, hostname, key) self.assertEqual(len(client._host_keys), n1 + 1) self.assertEqual(paramiko.hostkeys.HostKeys(filename), client._host_keys) os.unlink(filename)
#!/usr/bin/python # # Copyright 2019 Polyaxon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: v1/agent.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.protobuf import timestamp_pb2 as google_dot_protobuf_dot_timestamp__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='v1/agent.proto', package='v1', syntax='proto3', serialized_options=None, serialized_pb=_b('\n\x0ev1/agent.proto\x12\x02v1\x1a\x1fgoogle/protobuf/timestamp.proto\"\xf9\x01\n\x05\x41gent\x12\x0c\n\x04uuid\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\x11\n\tnamespace\x18\x03 \x01(\t\x12.\n\x0bversion_api\x18\x04 \x03(\x0b\x32\x19.v1.Agent.VersionApiEntry\x12.\n\ncreated_at\x18\x05 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12.\n\nupdated_at\x18\x06 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x1a\x31\n\x0fVersionApiEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\";\n\x10\x41gentBodyRequest\x12\r\n\x05owner\x18\x01 \x01(\t\x12\x18\n\x05\x61gent\x18\x02 \x01(\x0b\x32\t.v1.Agent\"_\n\x12ListAgentsResponse\x12\r\n\x05\x63ount\x18\x01 \x01(\x05\x12\x1a\n\x07results\x18\x02 \x03(\x0b\x32\t.v1.Agent\x12\x10\n\x08previous\x18\x03 \x01(\t\x12\x0c\n\x04next\x18\x04 \x01(\t\"\xb9\x01\n\x05Queue\x12\x0c\n\x04uuid\x18\x01 \x01(\t\x12\r\n\x05\x61gent\x18\x02 \x01(\t\x12\x0c\n\x04name\x18\x03 \x01(\t\x12\x10\n\x08priority\x18\x04 \x01(\x05\x12\x13\n\x0b\x63oncurrency\x18\x05 \x01(\x05\x12.\n\ncreated_at\x18\x06 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12.\n\nupdated_at\x18\x07 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\"J\n\x10QueueBodyRequest\x12\r\n\x05owner\x18\x01 \x01(\t\x12\r\n\x05\x61gent\x18\x02 \x01(\t\x12\x18\n\x05queue\x18\x03 \x01(\x0b\x32\t.v1.Queue\"_\n\x12ListQueuesResponse\x12\r\n\x05\x63ount\x18\x01 \x01(\x05\x12\x1a\n\x07results\x18\x02 \x03(\x0b\x32\t.v1.Queue\x12\x10\n\x08previous\x18\x03 \x01(\t\x12\x0c\n\x04next\x18\x04 \x01(\tb\x06proto3') , dependencies=[google_dot_protobuf_dot_timestamp__pb2.DESCRIPTOR,]) _AGENT_VERSIONAPIENTRY = _descriptor.Descriptor( name='VersionApiEntry', full_name='v1.Agent.VersionApiEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='v1.Agent.VersionApiEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='v1.Agent.VersionApiEntry.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=_b('8\001'), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=256, serialized_end=305, ) _AGENT = _descriptor.Descriptor( name='Agent', full_name='v1.Agent', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='uuid', full_name='v1.Agent.uuid', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='name', full_name='v1.Agent.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='namespace', full_name='v1.Agent.namespace', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='version_api', full_name='v1.Agent.version_api', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='created_at', full_name='v1.Agent.created_at', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='updated_at', full_name='v1.Agent.updated_at', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_AGENT_VERSIONAPIENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=56, serialized_end=305, ) _AGENTBODYREQUEST = _descriptor.Descriptor( name='AgentBodyRequest', full_name='v1.AgentBodyRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='owner', full_name='v1.AgentBodyRequest.owner', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='agent', full_name='v1.AgentBodyRequest.agent', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=307, serialized_end=366, ) _LISTAGENTSRESPONSE = _descriptor.Descriptor( name='ListAgentsResponse', full_name='v1.ListAgentsResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='count', full_name='v1.ListAgentsResponse.count', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='results', full_name='v1.ListAgentsResponse.results', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='previous', full_name='v1.ListAgentsResponse.previous', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='next', full_name='v1.ListAgentsResponse.next', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=368, serialized_end=463, ) _QUEUE = _descriptor.Descriptor( name='Queue', full_name='v1.Queue', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='uuid', full_name='v1.Queue.uuid', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='agent', full_name='v1.Queue.agent', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='name', full_name='v1.Queue.name', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='priority', full_name='v1.Queue.priority', index=3, number=4, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='concurrency', full_name='v1.Queue.concurrency', index=4, number=5, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='created_at', full_name='v1.Queue.created_at', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='updated_at', full_name='v1.Queue.updated_at', index=6, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=466, serialized_end=651, ) _QUEUEBODYREQUEST = _descriptor.Descriptor( name='QueueBodyRequest', full_name='v1.QueueBodyRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='owner', full_name='v1.QueueBodyRequest.owner', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='agent', full_name='v1.QueueBodyRequest.agent', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='queue', full_name='v1.QueueBodyRequest.queue', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=653, serialized_end=727, ) _LISTQUEUESRESPONSE = _descriptor.Descriptor( name='ListQueuesResponse', full_name='v1.ListQueuesResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='count', full_name='v1.ListQueuesResponse.count', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='results', full_name='v1.ListQueuesResponse.results', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='previous', full_name='v1.ListQueuesResponse.previous', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='next', full_name='v1.ListQueuesResponse.next', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=729, serialized_end=824, ) _AGENT_VERSIONAPIENTRY.containing_type = _AGENT _AGENT.fields_by_name['version_api'].message_type = _AGENT_VERSIONAPIENTRY _AGENT.fields_by_name['created_at'].message_type = google_dot_protobuf_dot_timestamp__pb2._TIMESTAMP _AGENT.fields_by_name['updated_at'].message_type = google_dot_protobuf_dot_timestamp__pb2._TIMESTAMP _AGENTBODYREQUEST.fields_by_name['agent'].message_type = _AGENT _LISTAGENTSRESPONSE.fields_by_name['results'].message_type = _AGENT _QUEUE.fields_by_name['created_at'].message_type = google_dot_protobuf_dot_timestamp__pb2._TIMESTAMP _QUEUE.fields_by_name['updated_at'].message_type = google_dot_protobuf_dot_timestamp__pb2._TIMESTAMP _QUEUEBODYREQUEST.fields_by_name['queue'].message_type = _QUEUE _LISTQUEUESRESPONSE.fields_by_name['results'].message_type = _QUEUE DESCRIPTOR.message_types_by_name['Agent'] = _AGENT DESCRIPTOR.message_types_by_name['AgentBodyRequest'] = _AGENTBODYREQUEST DESCRIPTOR.message_types_by_name['ListAgentsResponse'] = _LISTAGENTSRESPONSE DESCRIPTOR.message_types_by_name['Queue'] = _QUEUE DESCRIPTOR.message_types_by_name['QueueBodyRequest'] = _QUEUEBODYREQUEST DESCRIPTOR.message_types_by_name['ListQueuesResponse'] = _LISTQUEUESRESPONSE _sym_db.RegisterFileDescriptor(DESCRIPTOR) Agent = _reflection.GeneratedProtocolMessageType('Agent', (_message.Message,), { 'VersionApiEntry' : _reflection.GeneratedProtocolMessageType('VersionApiEntry', (_message.Message,), { 'DESCRIPTOR' : _AGENT_VERSIONAPIENTRY, '__module__' : 'v1.agent_pb2' # @@protoc_insertion_point(class_scope:v1.Agent.VersionApiEntry) }) , 'DESCRIPTOR' : _AGENT, '__module__' : 'v1.agent_pb2' # @@protoc_insertion_point(class_scope:v1.Agent) }) _sym_db.RegisterMessage(Agent) _sym_db.RegisterMessage(Agent.VersionApiEntry) AgentBodyRequest = _reflection.GeneratedProtocolMessageType('AgentBodyRequest', (_message.Message,), { 'DESCRIPTOR' : _AGENTBODYREQUEST, '__module__' : 'v1.agent_pb2' # @@protoc_insertion_point(class_scope:v1.AgentBodyRequest) }) _sym_db.RegisterMessage(AgentBodyRequest) ListAgentsResponse = _reflection.GeneratedProtocolMessageType('ListAgentsResponse', (_message.Message,), { 'DESCRIPTOR' : _LISTAGENTSRESPONSE, '__module__' : 'v1.agent_pb2' # @@protoc_insertion_point(class_scope:v1.ListAgentsResponse) }) _sym_db.RegisterMessage(ListAgentsResponse) Queue = _reflection.GeneratedProtocolMessageType('Queue', (_message.Message,), { 'DESCRIPTOR' : _QUEUE, '__module__' : 'v1.agent_pb2' # @@protoc_insertion_point(class_scope:v1.Queue) }) _sym_db.RegisterMessage(Queue) QueueBodyRequest = _reflection.GeneratedProtocolMessageType('QueueBodyRequest', (_message.Message,), { 'DESCRIPTOR' : _QUEUEBODYREQUEST, '__module__' : 'v1.agent_pb2' # @@protoc_insertion_point(class_scope:v1.QueueBodyRequest) }) _sym_db.RegisterMessage(QueueBodyRequest) ListQueuesResponse = _reflection.GeneratedProtocolMessageType('ListQueuesResponse', (_message.Message,), { 'DESCRIPTOR' : _LISTQUEUESRESPONSE, '__module__' : 'v1.agent_pb2' # @@protoc_insertion_point(class_scope:v1.ListQueuesResponse) }) _sym_db.RegisterMessage(ListQueuesResponse) _AGENT_VERSIONAPIENTRY._options = None # @@protoc_insertion_point(module_scope)
# users/views.py from rest_framework import viewsets from . import models from . import serializers from rest_framework import permissions class UserViewSet(viewsets.ModelViewSet): queryset = models.CustomUser.objects.all() serializer_class = serializers.UserSerializer permission_classes = (permissions.IsAuthenticated,)
from django.conf.urls import url from . import views urlpatterns = [ url(r'^$', views.signup, name='signup'), ]
# 133. Clone Graph 133 # ttungl@gmail.com # Definition for a undirected graph node # class UndirectedGraphNode: # def __init__(self, x): # self.label = x # self.neighbors = [] class Solution: def __init__(self): self.visited = {} # @param node, a undirected graph node # @return a undirected graph node def cloneGraph(self, node): # sol 1 # use BFS (queue) # time O(n^2) # space O(n) # runtime: 72ms if not node: return node root = UndirectedGraphNode(node.label) queue, visit = [node], {} # add nodes to queue. visit[node.label] = root # init value for dict. while queue: top = queue.pop() for n in top.neighbors: # check its neighbors if visited. if n.label not in visit: # add node. queue.append(n) visit[n.label] = UndirectedGraphNode(n.label) visit[top.label].neighbors.append(visit[n.label]) return root # sol 2: # use DFS # runtime: 79ms # time: O(n^2) # space: O(n) if not node: return node if node.label in self.visited: return self.visited[node.label] clone = UndirectedGraphNode(node.label) # init graphnode self.visited[node.label] = clone # init value for dict. [clone.neighbors.append(self.cloneGraph(n)) for n in node.neighbors] return clone # sol 3 # use DFS (stack) # runtime: 122ms # time: O(n^2) # space: O(n) def DFS(node, visited): if node in visited: return visited[node] clone = UndirectedGraphNode(node.label) visited[node] = clone [clone.neighbors.append(DFS(x, visited)) for x in node.neighbors] return clone if not node: return node return DFS(node, {}) # sol 4 # use BFS (queue) # runtime: 95ms # time: O(n^2) # space: O(n) def BFS(node, visited, queue): clone = UndirectedGraphNode(node.label) visited[node] = clone while queue: top = queue.pop() for nb in top.neighbors: if nb not in visited: # neighbor not in visited dictionary clonecp = UndirectedGraphNode(nb.label) visited[nb] = clonecp visited[top].neighbors.append(clonecp) queue.append(nb) else: visited[top].neighbors.append(visited[nb]) return clone if not node: return node visited, queue = {}, [node] return BFS(node, visited, queue)
from .Bible import * class BibleParserBase: name = "Base" fileEndings = [] def __init__(self, file_name): self.file_name = file_name self.bible = Bible() def isValidFileEnding(self, file_name): for ending in self.fileEndings: if '.'+ending in file_name: return True return False def getParserName (self): return self.name def getParserEndings (self): return self.fileEndings def loadAll(self): pass def loadInfo(self): pass def check_extention(type_class, file_name): return type_class.isValidFileEnding(type_class, file_name)
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import django.core.validators class Migration(migrations.Migration): dependencies = [ ('api', '0050_remove_userpreferences_accept_friend_requests'), ] operations = [ migrations.AddField( model_name='userpreferences', name='mal', field=models.CharField(validators=[django.core.validators.RegexValidator(b'^[0-9a-zA-Z-_\\.]*$', b'Only alphanumeric and - _ characters are allowed.')], max_length=20, blank=True, help_text='Write your username only, no URL.', null=True, verbose_name=b'MyAnimeList'), preserve_default=True, ), migrations.AddField( model_name='userpreferences', name='otonokizaka', field=models.CharField(validators=[django.core.validators.RegexValidator(b'^[0-9a-zA-Z-_\\.]*$', b'Only alphanumeric and - _ characters are allowed.')], max_length=20, blank=True, help_text='Write your username only, no URL.', null=True, verbose_name=b'Otonokizaka.org Forum'), preserve_default=True, ), migrations.AddField( model_name='userpreferences', name='twitch', field=models.CharField(blank=True, max_length=20, null=True, help_text='Write your username only, no URL.', validators=[django.core.validators.RegexValidator(b'^[0-9a-zA-Z-_\\.]*$', b'Only alphanumeric and - _ characters are allowed.')]), preserve_default=True, ), ]
""" Unit Conversion Agent for Whyis Uses <http://tetherless-world.github.io/whyis/inference> as a template. """ from __future__ import division from past.utils import old_div import nltk, re, pprint from rdflib import * from rdflib.resource import Resource from time import time from whyis import autonomic from whyis import nanopub from whyis.namespace import sioc_types, sioc, sio, dc, prov, whyis from .attr_converter import convert_attr_to_units class UnitConverter(autonomic.GlobalChangeService): activity_class = URIRef("http://nanomine.org/ns/WhyisUnitConverterV002") def getInputClass(self): return sio.Entity def getOutputClass(self): return URIRef("StandardizedConversionEntity") def get_query(self): query = '''SELECT ?s WHERE { ?s <http://semanticscience.org/resource/hasAttribute> ?attr. ?attr <http://semanticscience.org/resource/hasUnit> []; <http://semanticscience.org/resource/hasValue> []; a [ <http://nanomine.org/ns/hasPreferredUnit> ?prefUnit ]. }''' return query def process(self, i, o): for attr in i.objects(sio.hasAttribute): converted = convert_attr_to_units(attr) if converted: activity = BNode() for new_meas in converted: # Add new measurement to graph o.add(sio.hasAttribute, new_meas) # note provenance of new data--SUPERSEDED by superclass's explain() function # o.graph.add((new_meas.identifier, prov.wasGeneratedBy, activity)) # o.graph.add((activity, prov.used, attr.identifier)) # o.graph.add((activity, prov.generated, new_meas.identifier)) # o.graph.add((activity, prov.atTime, Literal(util.date_time(t=time())))) # o.graph.add((activity, prov.wasAssociatedWith, URIRef("http://nanomine.org/ns/WhyisUnitConverterV002"))) # Add all triples for the measurement for p_, o_ in new_meas.predicate_objects(): if isinstance(o_, Resource): o.graph.add((new_meas.identifier, p_.identifier, o_.identifier)) else: o.graph.add((new_meas.identifier, p_.identifier, o_))
import discord from discord.commands import slash_command from discord.ext import commands class BonkV1(commands.Cog): def __init__(self, bot): self.bot = bot @slash_command(name="bonk", description="bonkkk") async def bonk_user(self, ctx): embedVar = discord.Embed() embedVar.description = f"Bonked {ctx.author.mention}" file = discord.File("./Bot/Cogs/images/bonk.gif") embedVar.set_image(url="attachment://bonk.gif") await ctx.respond(embed=embedVar, file=file) def setup(bot): bot.add_cog(BonkV1(bot))
# Copyright (c) 2014 Hewlett-Packard Development Company, L.P. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from oslo_log import log as logging from oslo_serialization import jsonutils from oslo_utils import encodeutils import six from six.moves import http_client as http import webob.exc from wsme.rest import json from glance.api import policy from glance.api.v2 import metadef_namespaces as namespaces from glance.api.v2.model.metadef_namespace import Namespace from glance.api.v2.model.metadef_property_type import PropertyType from glance.api.v2.model.metadef_property_type import PropertyTypes from glance.common import exception from glance.common import wsgi import glance.db import glance.gateway from glance.i18n import _ import glance.notifier import glance.schema LOG = logging.getLogger(__name__) class NamespacePropertiesController(object): def __init__(self, db_api=None, policy_enforcer=None, notifier=None): self.db_api = db_api or glance.db.get_api() self.policy = policy_enforcer or policy.Enforcer() self.notifier = notifier or glance.notifier.Notifier() self.gateway = glance.gateway.Gateway(db_api=self.db_api, notifier=self.notifier, policy_enforcer=self.policy) def _to_dict(self, model_property_type): # Convert the model PropertyTypes dict to a JSON encoding db_property_type_dict = dict() db_property_type_dict['schema'] = json.tojson( PropertyType, model_property_type) db_property_type_dict['name'] = model_property_type.name return db_property_type_dict def _to_model(self, db_property_type): # Convert the persisted json schema to a dict of PropertyTypes property_type = json.fromjson( PropertyType, db_property_type.schema) property_type.name = db_property_type.name return property_type def index(self, req, namespace): try: filters = dict() filters['namespace'] = namespace prop_repo = self.gateway.get_metadef_property_repo(req.context) db_properties = prop_repo.list(filters=filters) property_list = Namespace.to_model_properties(db_properties) namespace_properties = PropertyTypes() namespace_properties.properties = property_list except exception.Forbidden as e: LOG.debug("User not permitted to retrieve metadata properties " "within '%s' namespace", namespace) raise webob.exc.HTTPForbidden(explanation=e.msg) except exception.NotFound as e: raise webob.exc.HTTPNotFound(explanation=e.msg) except Exception as e: LOG.error(encodeutils.exception_to_unicode(e)) raise webob.exc.HTTPInternalServerError() return namespace_properties def show(self, req, namespace, property_name, filters=None): try: if filters and filters['resource_type']: rs_repo = self.gateway.get_metadef_resource_type_repo( req.context) db_resource_type = rs_repo.get(filters['resource_type'], namespace) prefix = db_resource_type.prefix if prefix and property_name.startswith(prefix): property_name = property_name[len(prefix):] else: msg = (_("Property %(property_name)s does not start " "with the expected resource type association " "prefix of '%(prefix)s'.") % {'property_name': property_name, 'prefix': prefix}) raise exception.NotFound(msg) prop_repo = self.gateway.get_metadef_property_repo(req.context) db_property = prop_repo.get(namespace, property_name) property = self._to_model(db_property) except exception.Forbidden as e: LOG.debug("User not permitted to show metadata property '%s' " "within '%s' namespace", property_name, namespace) raise webob.exc.HTTPForbidden(explanation=e.msg) except exception.NotFound as e: raise webob.exc.HTTPNotFound(explanation=e.msg) except Exception as e: LOG.error(encodeutils.exception_to_unicode(e)) raise webob.exc.HTTPInternalServerError() return property def create(self, req, namespace, property_type): prop_factory = self.gateway.get_metadef_property_factory(req.context) prop_repo = self.gateway.get_metadef_property_repo(req.context) try: new_property_type = prop_factory.new_namespace_property( namespace=namespace, **self._to_dict(property_type)) prop_repo.add(new_property_type) except exception.Forbidden as e: LOG.debug("User not permitted to create metadata property within " "'%s' namespace", namespace) raise webob.exc.HTTPForbidden(explanation=e.msg) except exception.Invalid as e: msg = (_("Couldn't create metadata property: %s") % encodeutils.exception_to_unicode(e)) raise webob.exc.HTTPBadRequest(explanation=msg) except exception.NotFound as e: raise webob.exc.HTTPNotFound(explanation=e.msg) except exception.Duplicate as e: raise webob.exc.HTTPConflict(explanation=e.msg) except Exception as e: LOG.error(encodeutils.exception_to_unicode(e)) raise webob.exc.HTTPInternalServerError() return self._to_model(new_property_type) def update(self, req, namespace, property_name, property_type): prop_repo = self.gateway.get_metadef_property_repo(req.context) try: db_property_type = prop_repo.get(namespace, property_name) db_property_type._old_name = db_property_type.name db_property_type.name = property_type.name db_property_type.schema = (self._to_dict(property_type))['schema'] updated_property_type = prop_repo.save(db_property_type) except exception.Invalid as e: msg = (_("Couldn't update metadata property: %s") % encodeutils.exception_to_unicode(e)) raise webob.exc.HTTPBadRequest(explanation=msg) except exception.Forbidden as e: LOG.debug("User not permitted to update metadata property '%s' " "within '%s' namespace", property_name, namespace) raise webob.exc.HTTPForbidden(explanation=e.msg) except exception.NotFound as e: raise webob.exc.HTTPNotFound(explanation=e.msg) except exception.Duplicate as e: raise webob.exc.HTTPConflict(explanation=e.msg) except Exception as e: LOG.error(encodeutils.exception_to_unicode(e)) raise webob.exc.HTTPInternalServerError() return self._to_model(updated_property_type) def delete(self, req, namespace, property_name): prop_repo = self.gateway.get_metadef_property_repo(req.context) try: property_type = prop_repo.get(namespace, property_name) property_type.delete() prop_repo.remove(property_type) except exception.Forbidden as e: LOG.debug("User not permitted to delete metadata property '%s' " "within '%s' namespace", property_name, namespace) raise webob.exc.HTTPForbidden(explanation=e.msg) except exception.NotFound as e: raise webob.exc.HTTPNotFound(explanation=e.msg) except Exception as e: LOG.error(encodeutils.exception_to_unicode(e)) raise webob.exc.HTTPInternalServerError() class RequestDeserializer(wsgi.JSONRequestDeserializer): _disallowed_properties = ['created_at', 'updated_at'] def __init__(self, schema=None): super(RequestDeserializer, self).__init__() self.schema = schema or get_schema() def _get_request_body(self, request): output = super(RequestDeserializer, self).default(request) if 'body' not in output: msg = _('Body expected in request.') raise webob.exc.HTTPBadRequest(explanation=msg) return output['body'] @classmethod def _check_allowed(cls, image): for key in cls._disallowed_properties: if key in image: msg = _("Attribute '%s' is read-only.") % key raise webob.exc.HTTPForbidden(explanation=msg) def create(self, request): body = self._get_request_body(request) self._check_allowed(body) try: self.schema.validate(body) except exception.InvalidObject as e: raise webob.exc.HTTPBadRequest(explanation=e.msg) property_type = json.fromjson(PropertyType, body) return dict(property_type=property_type) def update(self, request): body = self._get_request_body(request) self._check_allowed(body) try: self.schema.validate(body) except exception.InvalidObject as e: raise webob.exc.HTTPBadRequest(explanation=e.msg) property_type = json.fromjson(PropertyType, body) return dict(property_type=property_type) def show(self, request): params = request.params.copy() query_params = { 'filters': params } return query_params class ResponseSerializer(wsgi.JSONResponseSerializer): def __init__(self, schema=None): super(ResponseSerializer, self).__init__() self.schema = schema def show(self, response, result): property_type_json = json.tojson(PropertyType, result) body = jsonutils.dumps(property_type_json, ensure_ascii=False) response.unicode_body = six.text_type(body) response.content_type = 'application/json' def index(self, response, result): property_type_json = json.tojson(PropertyTypes, result) body = jsonutils.dumps(property_type_json, ensure_ascii=False) response.unicode_body = six.text_type(body) response.content_type = 'application/json' def create(self, response, result): response.status_int = http.CREATED self.show(response, result) def update(self, response, result): response.status_int = http.OK self.show(response, result) def delete(self, response, result): response.status_int = http.NO_CONTENT def _get_base_definitions(): return { "positiveInteger": { "type": "integer", "minimum": 0 }, "positiveIntegerDefault0": { "allOf": [ {"$ref": "#/definitions/positiveInteger"}, {"default": 0} ] }, "stringArray": { "type": "array", "items": {"type": "string"}, "minItems": 1, "uniqueItems": True } } def _get_base_properties(): base_def = namespaces.get_schema_definitions() return base_def['property']['additionalProperties']['properties'] def get_schema(require_name=True): definitions = _get_base_definitions() properties = _get_base_properties() mandatory_attrs = PropertyType.get_mandatory_attrs() if require_name: # name is required attribute when use as single property type mandatory_attrs.append('name') schema = glance.schema.Schema( 'property', properties, required=mandatory_attrs, definitions=definitions ) return schema def get_collection_schema(): namespace_properties_schema = get_schema() # Property name is a dict key and not a required attribute in # individual property schema inside property collections namespace_properties_schema.required.remove('name') return glance.schema.DictCollectionSchema('properties', namespace_properties_schema) def create_resource(): """NamespaceProperties resource factory method""" schema = get_schema() deserializer = RequestDeserializer(schema) serializer = ResponseSerializer(schema) controller = NamespacePropertiesController() return wsgi.Resource(controller, deserializer, serializer)
import os import win32security,win32file,win32api,ntsecuritycon,win32con from security_enums import TRUSTEE_TYPE,TRUSTEE_FORM,ACE_FLAGS,ACCESS_MODE fname = os.path.join(win32api.GetTempPath(), "win32security_test.txt") f=open(fname, "w") f.write("Hello from Python\n"); f.close() print("Testing on file", fname) new_privs = ((win32security.LookupPrivilegeValue('',ntsecuritycon.SE_SECURITY_NAME),win32con.SE_PRIVILEGE_ENABLED), (win32security.LookupPrivilegeValue('',ntsecuritycon.SE_SHUTDOWN_NAME),win32con.SE_PRIVILEGE_ENABLED), (win32security.LookupPrivilegeValue('',ntsecuritycon.SE_RESTORE_NAME),win32con.SE_PRIVILEGE_ENABLED), (win32security.LookupPrivilegeValue('',ntsecuritycon.SE_TAKE_OWNERSHIP_NAME),win32con.SE_PRIVILEGE_ENABLED), (win32security.LookupPrivilegeValue('',ntsecuritycon.SE_CREATE_PERMANENT_NAME),win32con.SE_PRIVILEGE_ENABLED), (win32security.LookupPrivilegeValue('','SeEnableDelegationPrivilege'),win32con.SE_PRIVILEGE_ENABLED) ##doesn't seem to be in ntsecuritycon.py ? ) ph = win32api.GetCurrentProcess() th = win32security.OpenProcessToken(ph,win32security.TOKEN_ALL_ACCESS) ##win32con.TOKEN_ADJUST_PRIVILEGES) win32security.AdjustTokenPrivileges(th,0,new_privs) all_security_info = \ win32security.OWNER_SECURITY_INFORMATION|win32security.GROUP_SECURITY_INFORMATION| \ win32security.DACL_SECURITY_INFORMATION|win32security.SACL_SECURITY_INFORMATION sd=win32security.GetFileSecurity(fname,all_security_info) old_sacl=sd.GetSecurityDescriptorSacl() if old_sacl==None: old_sacl=win32security.ACL() old_dacl=sd.GetSecurityDescriptorDacl() if old_dacl==None: old_dacl=win32security.ACL() my_sid = win32security.GetTokenInformation(th,ntsecuritycon.TokenUser)[0] tmp_sid = win32security.LookupAccountName('','tmp')[0] pwr_sid = win32security.LookupAccountName('','Power Users')[0] ## MultipleTrustee,MultipleTrusteeOperation,TrusteeForm,TrusteeType,Identifier ## first two are ignored my_trustee = {} my_trustee['MultipleTrustee']=None my_trustee['MultipleTrusteeOperation']=0 my_trustee['TrusteeForm']=TRUSTEE_FORM.TRUSTEE_IS_SID my_trustee['TrusteeType']=TRUSTEE_TYPE.TRUSTEE_IS_USER my_trustee['Identifier']=my_sid tmp_trustee = {} tmp_trustee['MultipleTrustee']=None tmp_trustee['MultipleTrusteeOperation']=0 tmp_trustee['TrusteeForm']=TRUSTEE_FORM.TRUSTEE_IS_NAME tmp_trustee['TrusteeType']=TRUSTEE_TYPE.TRUSTEE_IS_USER tmp_trustee['Identifier']='rupole\\tmp' pwr_trustee = {} pwr_trustee['MultipleTrustee']=None pwr_trustee['MultipleTrusteeOperation']=0 pwr_trustee['TrusteeForm']=TRUSTEE_FORM.TRUSTEE_IS_SID pwr_trustee['TrusteeType']=TRUSTEE_TYPE.TRUSTEE_IS_USER pwr_trustee['Identifier']=pwr_sid expl_list=[] expl_list.append( { 'Trustee':my_trustee, 'Inheritance':ACE_FLAGS.NO_INHERITANCE, 'AccessMode':ACCESS_MODE.SET_AUDIT_SUCCESS, ##|ACCESS_MODE.SET_AUDIT_FAILURE, 'AccessPermissions':win32con.GENERIC_ALL } ) expl_list.append( { 'Trustee':my_trustee, 'Inheritance':ACE_FLAGS.NO_INHERITANCE, 'AccessMode':ACCESS_MODE.SET_AUDIT_FAILURE, 'AccessPermissions':win32con.GENERIC_ALL } ) expl_list.append( { 'Trustee':tmp_trustee, 'Inheritance':ACE_FLAGS.NO_INHERITANCE, 'AccessMode':ACCESS_MODE.SET_AUDIT_SUCCESS, 'AccessPermissions':win32con.GENERIC_ALL } ) expl_list.append( { 'Trustee':tmp_trustee, 'Inheritance':ACE_FLAGS.NO_INHERITANCE, 'AccessMode':ACCESS_MODE.SET_AUDIT_FAILURE, 'AccessPermissions':win32con.GENERIC_ALL } ) old_sacl.SetEntriesInAcl(expl_list) expl_list=[] expl_list.append( { 'Trustee':tmp_trustee, 'Inheritance':ACE_FLAGS.NO_INHERITANCE, 'AccessMode':ACCESS_MODE.DENY_ACCESS, 'AccessPermissions':win32con.DELETE } ) expl_list.append( { 'Trustee':tmp_trustee, 'Inheritance':ACE_FLAGS.NO_INHERITANCE, 'AccessMode':ACCESS_MODE.GRANT_ACCESS, 'AccessPermissions':win32con.WRITE_OWNER } ) expl_list.append( { 'Trustee':pwr_trustee, 'Inheritance':ACE_FLAGS.NO_INHERITANCE, 'AccessMode':ACCESS_MODE.GRANT_ACCESS, 'AccessPermissions':win32con.GENERIC_READ } ) expl_list.append( { 'Trustee':my_trustee, 'Inheritance':ACE_FLAGS.NO_INHERITANCE, 'AccessMode':ACCESS_MODE.GRANT_ACCESS, 'AccessPermissions':win32con.GENERIC_ALL } ) old_dacl.SetEntriesInAcl(expl_list) sd.SetSecurityDescriptorSacl(1,old_sacl,1) sd.SetSecurityDescriptorDacl(1,old_dacl,1) sd.SetSecurityDescriptorOwner(pwr_sid,1) win32security.SetFileSecurity(fname, all_security_info, sd)
# -*- coding:utf-8 -*- # __author__="X1gang" # Date:2018/12/02 import os,sys from conf.settings import USER_BANK_FILE from core.log_write import user_logger,bank_logger from core.login import json_func,check_online users_atm = json_func(USER_BANK_FILE) def check_amount(amount): if not amount.isdigit() or not(float(amount) > 0): return False return float(amount) def check_user(user): if user in users_atm: return True def check_user_amount(user,amount): if users_atm[user]["usable"] < amount: return False return True def check_user_status(func): def wrapper(*args,**kwargs): user = args[0] if users_atm[user]["status"] == 1: return func(*args,**kwargs) user_logger.info("%s 账户已被冻结,不可进行此次操作,请联系管理员解冻!" % user) bank_logger.info("已冻结账户 %s 尝试进行ATM操作,请管理员留意!" % user) return wrapper @check_online @check_user_status def transfer_amount(user,in_user,amount): if not check_user(in_user): print("入账账户 %s 不存在!"%(user,in_user)) user_logger.warning("%s转账时,入账账户%s不存在!"%(user,in_user)) return False amount = check_amount(amount) if not amount: print("输入的金额非正数") user_logger.warning("%s转账时,输入的金额非正数"%user) return False fee = 0.05*amount if not check_user_amount(user,(amount+fee)): print("账户余额为 %s元,不足转账!"%(users_atm[user]["usable"])) user_logger.warning("%s转账时,账户余额 %s 已不足!"%(user,users_atm[user]["usable"])) return False users_atm[user]["usable"] -= (amount+fee) users_atm[in_user]["usable"] += amount users_atm["admin"]["usable"] += fee print("成功转账给 %s 金额 %s 元!收取手续费用 %s 元!" % (in_user,amount,fee)) user_logger.info("%s 成功转账给 %s 金额 %s 元!手续费用 %s !"% (user,in_user,amount,fee)) bank_logger.info("%s 成功转账给 %s 金额 %s 元!手续费用 %s !"% (user,in_user,amount,fee)) bank_logger.info("admin 账户收入手续费金额 %s 元!"%fee) @check_online @check_user_status def look_info(user): user_logger.debug("%s 查询余额!"% user) print("您的信用卡额度为 %s 元,当前可用余额为:%s 元"%(users_atm[user]["limit"],users_atm[user]["usable"])) @check_online @check_user_status def withdraw_amount(user,amount): amount = check_amount(amount) if not amount: print("输入的提现金额非正数") user_logger.warning("%s提现时,输入的提现金额非正数" %user) return False fee = 0.05 * amount if not check_user_amount(user, (amount + fee)): print("账户余额 %s元 不足提现!" % (users_atm[user]["usable"])) user_logger.warning("%s提现时,账户余额 %s 已不足!" % (user, users_atm[user]["usable"])) return False users_atm[user]["usable"] -= (amount + fee) users_atm["admin"]["usable"] += fee print("成功提现金额 %s 元!收取手续费用 %s 元" % (amount,fee)) user_logger.info("%s 成功提现金额 %s 元!手续费用 %s 元" % (user, amount,fee)) bank_logger.info("%s 成功提现金额 %s 元!手续费用 %s 元" % (user, amount,fee)) bank_logger.info("admin 账户收入手续费金额 %s 元!" % fee) @check_online @check_user_status def repay_amount(user,amount): amount = check_amount(amount) used_amount = users_atm[user]["limit"] - users_atm[user]["usable"] if not amount: print("输入的还款金额非正数") user_logger.warning("%s还款时,输入的还款金额非正数" %user) return False if amount > used_amount: print("输入的还款金额大于已用金额,只需还款 %s 元!" %(used_amount)) user_logger.info("%s还款时,输入的还款金额大于已用金额,只需还款 %s 元!" %(user,used_amount)) return False users_atm[user]["usable"] += amount users_atm["admin"]["usable"] += amount print("成功还款金额 %s 元!" % (amount)) user_logger.info("%s 成功还款金额 %s 元!" % (user, amount)) bank_logger.info("%s 成功还款金额 %s 元!" % (user, amount)) bank_logger.info("admin 账户收入 %s 的还款金额 %s 元!" % (user, amount)) @check_online @check_user_status def consume_amount(user,amount): usable_amount = users_atm[user]["usable"] if not amount: print("扣款金额非正数" % user) user_logger.warning("%s扣款时,传递的扣款金额非正数" % user) return False if amount > usable_amount: print("扣款金额 %s 大于可用金额%s 元!扣款失败!" % ( amount, usable_amount)) user_logger.warning("%s扣款时,扣款金额 %s 大于可用金额%s 元!扣款失败!" % (user, amount, usable_amount)) return False users_atm[user]["usable"] -= amount print("成功扣款您的金额 %s 元!" % (amount)) user_logger.info("%s 成功扣款金额 %s 元!" % (user, amount)) bank_logger.info("%s 成功扣款金额 %s 元!" % (user, amount)) return True
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Generated from FHIR 4.0.0-a53ec6ee1b on 2019-05-07. # 2019, SMART Health IT. import os import io import unittest import json from . import familymemberhistory from .fhirdate import FHIRDate class FamilyMemberHistoryTests(unittest.TestCase): def instantiate_from(self, filename): datadir = os.environ.get('FHIR_UNITTEST_DATADIR') or '' with io.open(os.path.join(datadir, filename), 'r', encoding='utf-8') as handle: js = json.load(handle) self.assertEqual("FamilyMemberHistory", js["resourceType"]) return familymemberhistory.FamilyMemberHistory(js) def testFamilyMemberHistory1(self): inst = self.instantiate_from("familymemberhistory-example.json") self.assertIsNotNone(inst, "Must have instantiated a FamilyMemberHistory instance") self.implFamilyMemberHistory1(inst) js = inst.as_json() self.assertEqual("FamilyMemberHistory", js["resourceType"]) inst2 = familymemberhistory.FamilyMemberHistory(js) self.implFamilyMemberHistory1(inst2) def implFamilyMemberHistory1(self, inst): self.assertEqual(inst.condition[0].code.coding[0].code, "315619001") self.assertEqual(inst.condition[0].code.coding[0].display, "Myocardial Infarction") self.assertEqual(inst.condition[0].code.coding[0].system, "http://snomed.info/sct") self.assertEqual(inst.condition[0].code.text, "Heart Attack") self.assertTrue(inst.condition[0].contributedToDeath) self.assertEqual(inst.condition[0].note[0].text, "Was fishing at the time. At least he went doing someting he loved.") self.assertEqual(inst.condition[0].onsetAge.code, "a") self.assertEqual(inst.condition[0].onsetAge.system, "http://unitsofmeasure.org") self.assertEqual(inst.condition[0].onsetAge.unit, "yr") self.assertEqual(inst.condition[0].onsetAge.value, 74) self.assertEqual(inst.date.date, FHIRDate("2011-03-18").date) self.assertEqual(inst.date.as_json(), "2011-03-18") self.assertEqual(inst.id, "father") self.assertEqual(inst.identifier[0].value, "12345") self.assertEqual(inst.instantiatesUri[0], "http://example.org/family-member-history-questionnaire") self.assertEqual(inst.meta.tag[0].code, "HTEST") self.assertEqual(inst.meta.tag[0].display, "test health data") self.assertEqual(inst.meta.tag[0].system, "http://terminology.hl7.org/CodeSystem/v3-ActReason") self.assertEqual(inst.relationship.coding[0].code, "FTH") self.assertEqual(inst.relationship.coding[0].display, "father") self.assertEqual(inst.relationship.coding[0].system, "http://terminology.hl7.org/CodeSystem/v3-RoleCode") self.assertEqual(inst.sex.coding[0].code, "male") self.assertEqual(inst.sex.coding[0].display, "Male") self.assertEqual(inst.sex.coding[0].system, "http://hl7.org/fhir/administrative-gender") self.assertEqual(inst.status, "completed") self.assertEqual(inst.text.div, "<div xmlns=\"http://www.w3.org/1999/xhtml\">Father died of a heart attack aged 74</div>") self.assertEqual(inst.text.status, "generated") def testFamilyMemberHistory2(self): inst = self.instantiate_from("familymemberhistory-example-mother.json") self.assertIsNotNone(inst, "Must have instantiated a FamilyMemberHistory instance") self.implFamilyMemberHistory2(inst) js = inst.as_json() self.assertEqual("FamilyMemberHistory", js["resourceType"]) inst2 = familymemberhistory.FamilyMemberHistory(js) self.implFamilyMemberHistory2(inst2) def implFamilyMemberHistory2(self, inst): self.assertEqual(inst.condition[0].code.coding[0].code, "371041009") self.assertEqual(inst.condition[0].code.coding[0].display, "Embolic Stroke") self.assertEqual(inst.condition[0].code.coding[0].system, "http://snomed.info/sct") self.assertEqual(inst.condition[0].code.text, "Stroke") self.assertEqual(inst.condition[0].onsetAge.code, "a") self.assertEqual(inst.condition[0].onsetAge.system, "http://unitsofmeasure.org") self.assertEqual(inst.condition[0].onsetAge.unit, "yr") self.assertEqual(inst.condition[0].onsetAge.value, 56) self.assertEqual(inst.id, "mother") self.assertEqual(inst.meta.tag[0].code, "HTEST") self.assertEqual(inst.meta.tag[0].display, "test health data") self.assertEqual(inst.meta.tag[0].system, "http://terminology.hl7.org/CodeSystem/v3-ActReason") self.assertEqual(inst.relationship.coding[0].code, "MTH") self.assertEqual(inst.relationship.coding[0].display, "mother") self.assertEqual(inst.relationship.coding[0].system, "http://terminology.hl7.org/CodeSystem/v3-RoleCode") self.assertEqual(inst.status, "completed") self.assertEqual(inst.text.div, "<div xmlns=\"http://www.w3.org/1999/xhtml\">Mother died of a stroke aged 56</div>") self.assertEqual(inst.text.status, "generated")
import git import os import shutil import platform from tkinter import * import jsonCreator #import imp from git import Repo,remote import webbrowser #import finalPrinter import subprocess from subprocess import Popen, PIPE, STDOUT import stat #try: #imp.find_module('pyperclip') #found = True #except ImportError: #found = False #if found: import pyperclip devMode = False src=os.path.dirname(os.path.realpath(__file__)) usn='Insert username here!' pwd='Insert password here!' abortWhenClose=True def onerror(func, path, exc_info): if not os.access(path, os.W_OK): os.chmod(path, stat.S_IWUSR) func(path) else: raise if(os.path.exists(f'{src}/quiz')): shutil.rmtree(f'{src}/quiz', onerror=onerror) git.Git(".").clone("https://github.com/cubered/quiz.git") def clearScreen(): if(platform.system()=='Windows'): os.system('cls') else: os.system('clear') return root=Tk() final=[] tempbool=False temp=[] name="" root.title('Földrajz quiz') root.iconphoto(True, PhotoImage(file="./Data/bolygo.png")) NevText=Label(root, text="Név: ") NevText.pack() NevEntry=Entry(root) NevEntry.pack() index = 1 def closeAddQTab(entry, tab): global temp global final temp[0]=str(entry.get()) tab.destroy() print('tempwhenclose: ', temp) final.append(temp) return def closeAddAnsTab(entry, tab, checkbx): global temp global tempbool temp.append([str(entry.get()), tempbool]) tab.destroy() return def makeAddQTab(): global temp temp=[] temp.append("") addQTab=Tk() KerdesText=Label(addQTab, text="Kérdés: ") entry = Entry(addQTab) KerdesText.pack() entry.pack() addAnsButton=Button(addQTab, text='Válasz hozzáadása', command= lambda: addAnswer()) closeBTN=Button(addQTab, text='Kész', command= lambda: closeAddQTab(entry, addQTab)) addAnsButton.pack() closeBTN.pack() addQTab.title('Kérdés hohzzáadása') #addQTab.iconphoto(True, PhotoImage(file="./Data/bolygo.png")) addQTab.mainloop() print('temp: ', temp) #del temp[-1] #del temp[-1] return def toggle(): global tempbool tempbool=not(tempbool) def addAnswer(): global temp global tempbool tempbool=False addAnsTab=Tk() addAnsTab.title('Válasz hozzáadása') #addAnsTab.iconphoto(True, PhotoImage(file="./Data/bolygo.png")) ValaszText=Label(addAnsTab, text="Válasz: ") entry = Entry(addAnsTab) ValaszText.pack() entry.pack() correct=Checkbutton(addAnsTab, text="Helyes?", command=toggle) correct.pack() closeBTN=Button(addAnsTab, text='Kész', command= lambda: closeAddAnsTab(entry, addAnsTab, correct)) closeBTN.pack() def addQuestion(): makeAddQTab() print('final:', final) return def cancelQuiz(): global root root.destroy() def done(entry): global root global name global abortWhenClose name=str(entry.get()) if(name==''): name='unnamed' print(name) abortWhenClose=False root.destroy() addQButton=Button(root, text='Kérdés hozzáadása', command= lambda: addQuestion()) addQButton.pack() doneButton=Button(root, text='Kész', command= lambda: done(NevEntry)) doneButton.pack() cancelButton=Button(root, text='Mégse', command= lambda: cancelQuiz()) cancelButton.pack() root.mainloop() if not(abortWhenClose): print('final2: ', final) jsonCreator.main(final) clearScreen() def callback(url): webbrowser.open_new(url) nameind=2 if(os.path.exists(f'{src}/quiz/{name}')): while(True): if(os.path.exists(f'{src}/quiz/{name}({nameind}))')): nameind+=1 else: break name=f'{name}({nameind})' os.system(f'mkdir {src}/quiz/{name}') dirstocopy = ['img','sass'] filestocopy = ['index.html','output.css','output.css.map'] for item in dirstocopy: shutil.copytree(f'{src}/quiz/template/{item}', f'{src}/quiz/{name}/{item}') for item in filestocopy: shutil.copyfile(f'{src}/quiz/template/{item}', f'{src}/quiz/{name}/{item}') shutil.copyfile(f'{src}/final.js', f'{src}/quiz/{name}/index.js') os.remove('final.js') print('done!') bf=open('push.bat','w') bf.write(f'cd quiz && git init && git remote set-url origin https://{usn}:{pwd}@github.com/cubered/quiz.git && git add . && git commit -m "Added {name}" && git push origin master') bf.close() os.system('push') '''subprocess.call(['git init'], cwd=f'{src}/quiz', shell=True) subprocess.call([f'git remote set-url origin https://{usn}:{pwd}@github.com/cubered/quiz.git'], cwd=f'{src}/quiz', shell=True) #subprocess.call(['git checkout gh-pages'], cwd=f'{src}/quiz', shell=True) #subprocess.call(['git branch -u origin/gh-pages gh-pages'], cwd=f'{src}/quiz', shell=True) subprocess.call(['git add .'], cwd=f'{src}/quiz', shell=True) subprocess.call([f'git commit -m "Added {name}"'], cwd=f'{src}/quiz', shell=True) subprocess.call(['git push origin master'], cwd=f'{src}/quiz', shell=True)''' '''p = Popen( ['git push origin master'], cwd=f'{src}/quiz', shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE) p.stdin.write(f'{usn}') p.stdin.write(f'{pwd}') stdout, stderr = p.communicate() print('---STDOUT---') print(stdout) print('---STDERR---') print(stderr)''' print('---') clearScreen() '''print('Siker! Lehetséges, hogy a quiz csak pár perc múlva lesz látható.') print(f'Link: https://quiz.cubered.xyz/{name}')''' os.remove(f'{src}/push.bat') '''if found: pyperclip.copy(f'https://quiz.cubered.xyz/{name}')''' if not(devMode): shutil.rmtree(f'{src}/quiz', onerror=onerror) '''finalfile=open('textfile.txt','w') finalfile.write(f'Siker! Lehetséges, hogy a quiz csak pár perc múlva lesz látható!\nLink: https://quiz.cubered.xyz/{name}') finalfile.close() if devMode: finalPrinter.main() else: subprocess.Popen(([r".\finalPrinter.exe"]))''' #finalPrinter.main(f'https://quiz.cubered.xyz/{name}',True) finalTab=Tk() def closefinaltab(): global finalTab finalTab.destroy() def copytoclipboard(): pyperclip.copy(f'https://quiz.cubered.xyz/{name}') finalTab.title('Kész!') finalTab.iconphoto(True, PhotoImage(file="./Data/bolygo.png")) finalText=Label(finalTab, text="Siker! Lehetséges, hogy a quiz csak pár perc múlva lesz látható!") Link=Label(finalTab,text=f'https://quiz.cubered.xyz/{name}',fg='blue',cursor='hand2') copyButton=Button(finalTab,text='Link másolása',command=lambda: copytoclipboard()) finalButton=Button(finalTab,text='Bezárás',command=lambda: closefinaltab()) finalText.pack() Link.pack() copyButton.pack() finalButton.pack() Link.bind("<Button-1>", lambda e: callback(f'https://quiz.cubered.xyz/{name}')) finalTab.mainloop() print('Done!')
import matplotlib.pyplot as plt class Stduent(object): def __init__(self,name,score): self.name = name self.score = score bart = Stduent()
import os,sys; sys.path.insert(0, os.path.abspath('.')) from absl import app, flags, logging import json from time import sleep import torch import random import pyglet from truss_state import TrussState, BreakableTrussState from models.config import args from bfs import AStarNode, GreedyNode, search from view import View FLAGS = flags.FLAGS def render_build(view, path, state, save_images=False, stay_open=True): """ run the build path actions in the simulation environment and render the results step by step """ for i, action in enumerate(path): logging.debug("Doing action {}".format(action)) sleep(0.5) state.action_update(action) view.show(state) if save_images: filename = "logs/images/step_{:03d}.png".format(i) pyglet.image.get_buffer_manager().get_color_buffer().save(filename) if not view.window_still_open: break while stay_open and view.window_still_open: view.show(state) sleep(0.1) def save_log_file(file_path, stats): """ Save the environment definition and action path for action replay visualisation """ if os.path.isfile(file_path): with open(file_path, 'r') as f: all_stats = json.load(f) else: all_stats = [] all_stats.append(stats) with open(file_path, 'w') as f: json.dump(all_stats, f) def plan_path(start_state, greedy, heuristic, render, checkpoint=None, model_config=None, batch_size=32, eps=1000, save_images=False, timeout=0, return_examples=False, pretrained_net=None, show_search=False): """ Runs the search to plan an action path for the truss build Args: start_state greedy: use greedy search instead of A* heuristic: type of heuristic to use, see astar.py render: if True, render the build process graphically checkpoint model_config batch_size eps save_images timeout return_examples: returns training examples if True pretrained_net """ view = View() if render else None if view: view.show(start_state) Node = GreedyNode if greedy else AStarNode Node.heuristic = heuristic Node.batch_size = batch_size if pretrained_net is not None: Node.nnet = pretrained_net Node.device = 'cuda' if torch.cuda.is_available() else 'cpu' elif (heuristic == 'HNet') or (heuristic == 'HNet_batch'): Node.device = 'cuda' if torch.cuda.is_available() else 'cpu' config = args[model_config] Node.nnet = config['nnet'](config).to(Node.device) if checkpoint is not None: checkpoint = torch.load(checkpoint, map_location=Node.device) Node.nnet.load_state_dict(checkpoint['state_dict']) root = Node(state=start_state.clone()) end_state, stats = search(root, eps=eps, view=view if show_search else None) if timeout and stats['time'] > timeout: logging.debug("Timed out after {} seconds".format(stats['time'])) else: logging.debug("Search took {} seconds".format(stats['time'])) logging.debug("Action path {}".format(stats['path'])) if view and view.window_still_open: render_build(view, stats['path'], start_state.clone(), save_images=save_images) logging.debug("Construction took {} seconds with {} steps and {} nodes explored".format( stats['time'], len(stats['path']), stats['explored_nodes'] )) stats['scene_config'] = root.scene_config if return_examples: return root.get_train_examples(stats['path']) if stats['goal_complete'] else [], end_state._state else: return stats def main(_argv): if FLAGS.debug: logging.set_verbosity(logging.DEBUG) BreakableTrussState.max_unbraced_struts = FLAGS.max_unsupported_struts if FLAGS.scene_config_file: with open(FLAGS.scene_config_file, "r") as f: config = json.load(f) else: config = random.choice(TrussState.get_start_configs(FLAGS.target_dist)) with open('logs/config.json', "w") as f: json.dump(config, f) checkpoint = "models/{}.pt".format(FLAGS.model_config) if FLAGS.checkpoint is None else FLAGS.checkpoint plan_path( start_state=BreakableTrussState.from_config(config, add_obstacles=FLAGS.add_obstacles), greedy=FLAGS.greedy, heuristic=FLAGS.heuristic, render=FLAGS.render, checkpoint=checkpoint, model_config=FLAGS.model_config, batch_size=FLAGS.batch_size, eps=FLAGS.eps, save_images=FLAGS.save_images, show_search=FLAGS.show_search ) if __name__ == '__main__': flags.DEFINE_boolean('debug', False, 'show debug logging messages') flags.DEFINE_integer('max_unsupported_struts', 1, 'maximum number of connected unsupported struts before collapse') flags.DEFINE_integer('eps', 0, 'number of expansions to do per stage. Unlimmited if 0') flags.DEFINE_integer('target_dist', 2, 'triangular lattice manhattan distance to target') flags.DEFINE_string('log_file_path', "./logs/astar_log.json", 'result statistics log file') flags.DEFINE_string('model_config', "GIN", 'nueral net configutation arguments') flags.DEFINE_string('scene_config_file', None, 'scene configuration file') flags.DEFINE_integer('batch_size', 32, 'network input batch size') flags.DEFINE_boolean('render', True, 'display the build steps') flags.DEFINE_boolean('show_search', False, 'show each search state') flags.DEFINE_boolean('add_obstacles', False, 'add obstacles to the space') flags.DEFINE_string('checkpoint', None, 'nueral net parameter checkpoint') flags.DEFINE_boolean('greedy', True, 'use greedy search') flags.DEFINE_boolean('cleanup', False, 'post processing to remove unnecessary components') flags.DEFINE_boolean('save_images', False, 'snaphot an image of each build step in the render') flags.DEFINE_enum('heuristic', 'HNet_batch', ['Manhattan', 'Mean', 'HNet', 'HNet_batch', 'MeanTopK'], 'type of heuristic function to use in search') app.run(main)
import glfw from OpenGL.GL import * class DisplayManager: delta = 0 def __init__(self, width, height, title): self.window = None self.title = '' self.last_time = 0 self.create_window(width, height, title) def create_window(self, width, height, title): if not glfw.init(): return self.set_hints() self.window = glfw.create_window(width, height, title, None, None) glfw.make_context_current(self.window) glfw.swap_interval(0) glViewport(0, 0, width, height) def render_window(self): self.set_window_fps() self.update_delta() glfw.poll_events() glfw.swap_buffers(self.window) def update_delta(self): current_time = glfw.get_time() * 1000 DisplayManager.delta = (current_time - self.last_time) / 1000 self.last_time = current_time __nb_frames = 0 __last_time = 0 def set_window_fps(self): current_time = glfw.get_time() DisplayManager.__nb_frames += 1 if current_time - DisplayManager.__last_time > 1.0: fps = str(DisplayManager.__nb_frames) + "fps" ms = str("%.2f" % (1000/DisplayManager.__nb_frames)) + "ms" self.title = fps + " | " + ms + " - pyGL" DisplayManager.__nb_frames = 0 DisplayManager.__last_time += 1.0 glfw.set_window_title(self.window, self.title) def should_close(self): if glfw.window_should_close(self.window): return True else: return False @staticmethod def set_hints(): glfw.window_hint(glfw.CONTEXT_VERSION_MAJOR, 4) glfw.window_hint(glfw.CONTEXT_VERSION_MINOR, 4) glfw.window_hint(glfw.OPENGL_PROFILE, glfw.OPENGL_CORE_PROFILE) glfw.window_hint(glfw.OPENGL_FORWARD_COMPAT, GL_TRUE) @staticmethod def terminate(): glfw.terminate()
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/cloud/dialogflow_v2/proto/session.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 from dialogflow_v2.proto import context_pb2 as google_dot_cloud_dot_dialogflow__v2_dot_proto_dot_context__pb2 from dialogflow_v2.proto import intent_pb2 as google_dot_cloud_dot_dialogflow__v2_dot_proto_dot_intent__pb2 from dialogflow_v2.proto import session_entity_type_pb2 as google_dot_cloud_dot_dialogflow__v2_dot_proto_dot_session__entity__type__pb2 from google.protobuf import struct_pb2 as google_dot_protobuf_dot_struct__pb2 from google.rpc import status_pb2 as google_dot_rpc_dot_status__pb2 from google.type import latlng_pb2 as google_dot_type_dot_latlng__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='google/cloud/dialogflow_v2/proto/session.proto', package='google.cloud.dialogflow.v2', syntax='proto3', serialized_pb=_b('\n.google/cloud/dialogflow_v2/proto/session.proto\x12\x1agoogle.cloud.dialogflow.v2\x1a\x1cgoogle/api/annotations.proto\x1a.google/cloud/dialogflow_v2/proto/context.proto\x1a-google/cloud/dialogflow_v2/proto/intent.proto\x1a:google/cloud/dialogflow_v2/proto/session_entity_type.proto\x1a\x1cgoogle/protobuf/struct.proto\x1a\x17google/rpc/status.proto\x1a\x18google/type/latlng.proto\"\xbb\x01\n\x13\x44\x65tectIntentRequest\x12\x0f\n\x07session\x18\x01 \x01(\t\x12\x41\n\x0cquery_params\x18\x02 \x01(\x0b\x32+.google.cloud.dialogflow.v2.QueryParameters\x12;\n\x0bquery_input\x18\x03 \x01(\x0b\x32&.google.cloud.dialogflow.v2.QueryInput\x12\x13\n\x0binput_audio\x18\x05 \x01(\x0c\"\x96\x01\n\x14\x44\x65tectIntentResponse\x12\x13\n\x0bresponse_id\x18\x01 \x01(\t\x12=\n\x0cquery_result\x18\x02 \x01(\x0b\x32\'.google.cloud.dialogflow.v2.QueryResult\x12*\n\x0ewebhook_status\x18\x03 \x01(\x0b\x32\x12.google.rpc.Status\"\x95\x02\n\x0fQueryParameters\x12\x11\n\ttime_zone\x18\x01 \x01(\t\x12)\n\x0cgeo_location\x18\x02 \x01(\x0b\x32\x13.google.type.LatLng\x12\x35\n\x08\x63ontexts\x18\x03 \x03(\x0b\x32#.google.cloud.dialogflow.v2.Context\x12\x16\n\x0ereset_contexts\x18\x04 \x01(\x08\x12K\n\x14session_entity_types\x18\x05 \x03(\x0b\x32-.google.cloud.dialogflow.v2.SessionEntityType\x12(\n\x07payload\x18\x06 \x01(\x0b\x32\x17.google.protobuf.Struct\"\xcb\x01\n\nQueryInput\x12\x44\n\x0c\x61udio_config\x18\x01 \x01(\x0b\x32,.google.cloud.dialogflow.v2.InputAudioConfigH\x00\x12\x35\n\x04text\x18\x02 \x01(\x0b\x32%.google.cloud.dialogflow.v2.TextInputH\x00\x12\x37\n\x05\x65vent\x18\x03 \x01(\x0b\x32&.google.cloud.dialogflow.v2.EventInputH\x00\x42\x07\n\x05input\"\xb8\x04\n\x0bQueryResult\x12\x12\n\nquery_text\x18\x01 \x01(\t\x12\x15\n\rlanguage_code\x18\x0f \x01(\t\x12%\n\x1dspeech_recognition_confidence\x18\x02 \x01(\x02\x12\x0e\n\x06\x61\x63tion\x18\x03 \x01(\t\x12+\n\nparameters\x18\x04 \x01(\x0b\x32\x17.google.protobuf.Struct\x12#\n\x1b\x61ll_required_params_present\x18\x05 \x01(\x08\x12\x18\n\x10\x66ulfillment_text\x18\x06 \x01(\t\x12H\n\x14\x66ulfillment_messages\x18\x07 \x03(\x0b\x32*.google.cloud.dialogflow.v2.Intent.Message\x12\x16\n\x0ewebhook_source\x18\x08 \x01(\t\x12\x30\n\x0fwebhook_payload\x18\t \x01(\x0b\x32\x17.google.protobuf.Struct\x12<\n\x0foutput_contexts\x18\n \x03(\x0b\x32#.google.cloud.dialogflow.v2.Context\x12\x32\n\x06intent\x18\x0b \x01(\x0b\x32\".google.cloud.dialogflow.v2.Intent\x12#\n\x1bintent_detection_confidence\x18\x0c \x01(\x02\x12\x30\n\x0f\x64iagnostic_info\x18\x0e \x01(\x0b\x32\x17.google.protobuf.Struct\"\xde\x01\n\x1cStreamingDetectIntentRequest\x12\x0f\n\x07session\x18\x01 \x01(\t\x12\x41\n\x0cquery_params\x18\x02 \x01(\x0b\x32+.google.cloud.dialogflow.v2.QueryParameters\x12;\n\x0bquery_input\x18\x03 \x01(\x0b\x32&.google.cloud.dialogflow.v2.QueryInput\x12\x18\n\x10single_utterance\x18\x04 \x01(\x08\x12\x13\n\x0binput_audio\x18\x06 \x01(\x0c\"\xf3\x01\n\x1dStreamingDetectIntentResponse\x12\x13\n\x0bresponse_id\x18\x01 \x01(\t\x12R\n\x12recognition_result\x18\x02 \x01(\x0b\x32\x36.google.cloud.dialogflow.v2.StreamingRecognitionResult\x12=\n\x0cquery_result\x18\x03 \x01(\x0b\x32\'.google.cloud.dialogflow.v2.QueryResult\x12*\n\x0ewebhook_status\x18\x04 \x01(\x0b\x32\x12.google.rpc.Status\"\x8a\x02\n\x1aStreamingRecognitionResult\x12X\n\x0cmessage_type\x18\x01 \x01(\x0e\x32\x42.google.cloud.dialogflow.v2.StreamingRecognitionResult.MessageType\x12\x12\n\ntranscript\x18\x02 \x01(\t\x12\x10\n\x08is_final\x18\x03 \x01(\x08\x12\x12\n\nconfidence\x18\x04 \x01(\x02\"X\n\x0bMessageType\x12\x1c\n\x18MESSAGE_TYPE_UNSPECIFIED\x10\x00\x12\x0e\n\nTRANSCRIPT\x10\x01\x12\x1b\n\x17\x45ND_OF_SINGLE_UTTERANCE\x10\x02\"\x9d\x01\n\x10InputAudioConfig\x12\x41\n\x0e\x61udio_encoding\x18\x01 \x01(\x0e\x32).google.cloud.dialogflow.v2.AudioEncoding\x12\x19\n\x11sample_rate_hertz\x18\x02 \x01(\x05\x12\x15\n\rlanguage_code\x18\x03 \x01(\t\x12\x14\n\x0cphrase_hints\x18\x04 \x03(\t\"0\n\tTextInput\x12\x0c\n\x04text\x18\x01 \x01(\t\x12\x15\n\rlanguage_code\x18\x02 \x01(\t\"^\n\nEventInput\x12\x0c\n\x04name\x18\x01 \x01(\t\x12+\n\nparameters\x18\x02 \x01(\x0b\x32\x17.google.protobuf.Struct\x12\x15\n\rlanguage_code\x18\x03 \x01(\t*\xfb\x01\n\rAudioEncoding\x12\x1e\n\x1a\x41UDIO_ENCODING_UNSPECIFIED\x10\x00\x12\x1c\n\x18\x41UDIO_ENCODING_LINEAR_16\x10\x01\x12\x17\n\x13\x41UDIO_ENCODING_FLAC\x10\x02\x12\x18\n\x14\x41UDIO_ENCODING_MULAW\x10\x03\x12\x16\n\x12\x41UDIO_ENCODING_AMR\x10\x04\x12\x19\n\x15\x41UDIO_ENCODING_AMR_WB\x10\x05\x12\x1b\n\x17\x41UDIO_ENCODING_OGG_OPUS\x10\x06\x12)\n%AUDIO_ENCODING_SPEEX_WITH_HEADER_BYTE\x10\x07\x32\xd4\x02\n\x08Sessions\x12\xb4\x01\n\x0c\x44\x65tectIntent\x12/.google.cloud.dialogflow.v2.DetectIntentRequest\x1a\x30.google.cloud.dialogflow.v2.DetectIntentResponse\"A\x82\xd3\xe4\x93\x02;\"6/v2/{session=projects/*/agent/sessions/*}:detectIntent:\x01*\x12\x90\x01\n\x15StreamingDetectIntent\x12\x38.google.cloud.dialogflow.v2.StreamingDetectIntentRequest\x1a\x39.google.cloud.dialogflow.v2.StreamingDetectIntentResponse(\x01\x30\x01\x42\x9b\x01\n\x1e\x63om.google.cloud.dialogflow.v2B\x0cSessionProtoP\x01ZDgoogle.golang.org/genproto/googleapis/cloud/dialogflow/v2;dialogflow\xf8\x01\x01\xa2\x02\x02\x44\x46\xaa\x02\x1aGoogle.Cloud.Dialogflow.V2b\x06proto3') , dependencies=[google_dot_api_dot_annotations__pb2.DESCRIPTOR,google_dot_cloud_dot_dialogflow__v2_dot_proto_dot_context__pb2.DESCRIPTOR,google_dot_cloud_dot_dialogflow__v2_dot_proto_dot_intent__pb2.DESCRIPTOR,google_dot_cloud_dot_dialogflow__v2_dot_proto_dot_session__entity__type__pb2.DESCRIPTOR,google_dot_protobuf_dot_struct__pb2.DESCRIPTOR,google_dot_rpc_dot_status__pb2.DESCRIPTOR,google_dot_type_dot_latlng__pb2.DESCRIPTOR,]) _AUDIOENCODING = _descriptor.EnumDescriptor( name='AudioEncoding', full_name='google.cloud.dialogflow.v2.AudioEncoding', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='AUDIO_ENCODING_UNSPECIFIED', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='AUDIO_ENCODING_LINEAR_16', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='AUDIO_ENCODING_FLAC', index=2, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='AUDIO_ENCODING_MULAW', index=3, number=3, options=None, type=None), _descriptor.EnumValueDescriptor( name='AUDIO_ENCODING_AMR', index=4, number=4, options=None, type=None), _descriptor.EnumValueDescriptor( name='AUDIO_ENCODING_AMR_WB', index=5, number=5, options=None, type=None), _descriptor.EnumValueDescriptor( name='AUDIO_ENCODING_OGG_OPUS', index=6, number=6, options=None, type=None), _descriptor.EnumValueDescriptor( name='AUDIO_ENCODING_SPEEX_WITH_HEADER_BYTE', index=7, number=7, options=None, type=None), ], containing_type=None, options=None, serialized_start=2791, serialized_end=3042, ) _sym_db.RegisterEnumDescriptor(_AUDIOENCODING) AudioEncoding = enum_type_wrapper.EnumTypeWrapper(_AUDIOENCODING) AUDIO_ENCODING_UNSPECIFIED = 0 AUDIO_ENCODING_LINEAR_16 = 1 AUDIO_ENCODING_FLAC = 2 AUDIO_ENCODING_MULAW = 3 AUDIO_ENCODING_AMR = 4 AUDIO_ENCODING_AMR_WB = 5 AUDIO_ENCODING_OGG_OPUS = 6 AUDIO_ENCODING_SPEEX_WITH_HEADER_BYTE = 7 _STREAMINGRECOGNITIONRESULT_MESSAGETYPE = _descriptor.EnumDescriptor( name='MessageType', full_name='google.cloud.dialogflow.v2.StreamingRecognitionResult.MessageType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='MESSAGE_TYPE_UNSPECIFIED', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='TRANSCRIPT', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='END_OF_SINGLE_UTTERANCE', index=2, number=2, options=None, type=None), ], containing_type=None, options=None, serialized_start=2394, serialized_end=2482, ) _sym_db.RegisterEnumDescriptor(_STREAMINGRECOGNITIONRESULT_MESSAGETYPE) _DETECTINTENTREQUEST = _descriptor.Descriptor( name='DetectIntentRequest', full_name='google.cloud.dialogflow.v2.DetectIntentRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='session', full_name='google.cloud.dialogflow.v2.DetectIntentRequest.session', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='query_params', full_name='google.cloud.dialogflow.v2.DetectIntentRequest.query_params', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='query_input', full_name='google.cloud.dialogflow.v2.DetectIntentRequest.query_input', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='input_audio', full_name='google.cloud.dialogflow.v2.DetectIntentRequest.input_audio', index=3, number=5, type=12, cpp_type=9, label=1, has_default_value=False, default_value=_b(""), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=345, serialized_end=532, ) _DETECTINTENTRESPONSE = _descriptor.Descriptor( name='DetectIntentResponse', full_name='google.cloud.dialogflow.v2.DetectIntentResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='response_id', full_name='google.cloud.dialogflow.v2.DetectIntentResponse.response_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='query_result', full_name='google.cloud.dialogflow.v2.DetectIntentResponse.query_result', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='webhook_status', full_name='google.cloud.dialogflow.v2.DetectIntentResponse.webhook_status', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=535, serialized_end=685, ) _QUERYPARAMETERS = _descriptor.Descriptor( name='QueryParameters', full_name='google.cloud.dialogflow.v2.QueryParameters', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='time_zone', full_name='google.cloud.dialogflow.v2.QueryParameters.time_zone', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='geo_location', full_name='google.cloud.dialogflow.v2.QueryParameters.geo_location', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='contexts', full_name='google.cloud.dialogflow.v2.QueryParameters.contexts', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='reset_contexts', full_name='google.cloud.dialogflow.v2.QueryParameters.reset_contexts', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='session_entity_types', full_name='google.cloud.dialogflow.v2.QueryParameters.session_entity_types', index=4, number=5, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='payload', full_name='google.cloud.dialogflow.v2.QueryParameters.payload', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=688, serialized_end=965, ) _QUERYINPUT = _descriptor.Descriptor( name='QueryInput', full_name='google.cloud.dialogflow.v2.QueryInput', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='audio_config', full_name='google.cloud.dialogflow.v2.QueryInput.audio_config', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='text', full_name='google.cloud.dialogflow.v2.QueryInput.text', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='event', full_name='google.cloud.dialogflow.v2.QueryInput.event', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='input', full_name='google.cloud.dialogflow.v2.QueryInput.input', index=0, containing_type=None, fields=[]), ], serialized_start=968, serialized_end=1171, ) _QUERYRESULT = _descriptor.Descriptor( name='QueryResult', full_name='google.cloud.dialogflow.v2.QueryResult', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='query_text', full_name='google.cloud.dialogflow.v2.QueryResult.query_text', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='language_code', full_name='google.cloud.dialogflow.v2.QueryResult.language_code', index=1, number=15, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='speech_recognition_confidence', full_name='google.cloud.dialogflow.v2.QueryResult.speech_recognition_confidence', index=2, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='action', full_name='google.cloud.dialogflow.v2.QueryResult.action', index=3, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='parameters', full_name='google.cloud.dialogflow.v2.QueryResult.parameters', index=4, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='all_required_params_present', full_name='google.cloud.dialogflow.v2.QueryResult.all_required_params_present', index=5, number=5, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='fulfillment_text', full_name='google.cloud.dialogflow.v2.QueryResult.fulfillment_text', index=6, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='fulfillment_messages', full_name='google.cloud.dialogflow.v2.QueryResult.fulfillment_messages', index=7, number=7, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='webhook_source', full_name='google.cloud.dialogflow.v2.QueryResult.webhook_source', index=8, number=8, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='webhook_payload', full_name='google.cloud.dialogflow.v2.QueryResult.webhook_payload', index=9, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='output_contexts', full_name='google.cloud.dialogflow.v2.QueryResult.output_contexts', index=10, number=10, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='intent', full_name='google.cloud.dialogflow.v2.QueryResult.intent', index=11, number=11, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='intent_detection_confidence', full_name='google.cloud.dialogflow.v2.QueryResult.intent_detection_confidence', index=12, number=12, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='diagnostic_info', full_name='google.cloud.dialogflow.v2.QueryResult.diagnostic_info', index=13, number=14, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1174, serialized_end=1742, ) _STREAMINGDETECTINTENTREQUEST = _descriptor.Descriptor( name='StreamingDetectIntentRequest', full_name='google.cloud.dialogflow.v2.StreamingDetectIntentRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='session', full_name='google.cloud.dialogflow.v2.StreamingDetectIntentRequest.session', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='query_params', full_name='google.cloud.dialogflow.v2.StreamingDetectIntentRequest.query_params', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='query_input', full_name='google.cloud.dialogflow.v2.StreamingDetectIntentRequest.query_input', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='single_utterance', full_name='google.cloud.dialogflow.v2.StreamingDetectIntentRequest.single_utterance', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='input_audio', full_name='google.cloud.dialogflow.v2.StreamingDetectIntentRequest.input_audio', index=4, number=6, type=12, cpp_type=9, label=1, has_default_value=False, default_value=_b(""), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1745, serialized_end=1967, ) _STREAMINGDETECTINTENTRESPONSE = _descriptor.Descriptor( name='StreamingDetectIntentResponse', full_name='google.cloud.dialogflow.v2.StreamingDetectIntentResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='response_id', full_name='google.cloud.dialogflow.v2.StreamingDetectIntentResponse.response_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='recognition_result', full_name='google.cloud.dialogflow.v2.StreamingDetectIntentResponse.recognition_result', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='query_result', full_name='google.cloud.dialogflow.v2.StreamingDetectIntentResponse.query_result', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='webhook_status', full_name='google.cloud.dialogflow.v2.StreamingDetectIntentResponse.webhook_status', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1970, serialized_end=2213, ) _STREAMINGRECOGNITIONRESULT = _descriptor.Descriptor( name='StreamingRecognitionResult', full_name='google.cloud.dialogflow.v2.StreamingRecognitionResult', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='message_type', full_name='google.cloud.dialogflow.v2.StreamingRecognitionResult.message_type', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='transcript', full_name='google.cloud.dialogflow.v2.StreamingRecognitionResult.transcript', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='is_final', full_name='google.cloud.dialogflow.v2.StreamingRecognitionResult.is_final', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='confidence', full_name='google.cloud.dialogflow.v2.StreamingRecognitionResult.confidence', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _STREAMINGRECOGNITIONRESULT_MESSAGETYPE, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2216, serialized_end=2482, ) _INPUTAUDIOCONFIG = _descriptor.Descriptor( name='InputAudioConfig', full_name='google.cloud.dialogflow.v2.InputAudioConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='audio_encoding', full_name='google.cloud.dialogflow.v2.InputAudioConfig.audio_encoding', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='sample_rate_hertz', full_name='google.cloud.dialogflow.v2.InputAudioConfig.sample_rate_hertz', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='language_code', full_name='google.cloud.dialogflow.v2.InputAudioConfig.language_code', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='phrase_hints', full_name='google.cloud.dialogflow.v2.InputAudioConfig.phrase_hints', index=3, number=4, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2485, serialized_end=2642, ) _TEXTINPUT = _descriptor.Descriptor( name='TextInput', full_name='google.cloud.dialogflow.v2.TextInput', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='text', full_name='google.cloud.dialogflow.v2.TextInput.text', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='language_code', full_name='google.cloud.dialogflow.v2.TextInput.language_code', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2644, serialized_end=2692, ) _EVENTINPUT = _descriptor.Descriptor( name='EventInput', full_name='google.cloud.dialogflow.v2.EventInput', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='google.cloud.dialogflow.v2.EventInput.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='parameters', full_name='google.cloud.dialogflow.v2.EventInput.parameters', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='language_code', full_name='google.cloud.dialogflow.v2.EventInput.language_code', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2694, serialized_end=2788, ) _DETECTINTENTREQUEST.fields_by_name['query_params'].message_type = _QUERYPARAMETERS _DETECTINTENTREQUEST.fields_by_name['query_input'].message_type = _QUERYINPUT _DETECTINTENTRESPONSE.fields_by_name['query_result'].message_type = _QUERYRESULT _DETECTINTENTRESPONSE.fields_by_name['webhook_status'].message_type = google_dot_rpc_dot_status__pb2._STATUS _QUERYPARAMETERS.fields_by_name['geo_location'].message_type = google_dot_type_dot_latlng__pb2._LATLNG _QUERYPARAMETERS.fields_by_name['contexts'].message_type = google_dot_cloud_dot_dialogflow__v2_dot_proto_dot_context__pb2._CONTEXT _QUERYPARAMETERS.fields_by_name['session_entity_types'].message_type = google_dot_cloud_dot_dialogflow__v2_dot_proto_dot_session__entity__type__pb2._SESSIONENTITYTYPE _QUERYPARAMETERS.fields_by_name['payload'].message_type = google_dot_protobuf_dot_struct__pb2._STRUCT _QUERYINPUT.fields_by_name['audio_config'].message_type = _INPUTAUDIOCONFIG _QUERYINPUT.fields_by_name['text'].message_type = _TEXTINPUT _QUERYINPUT.fields_by_name['event'].message_type = _EVENTINPUT _QUERYINPUT.oneofs_by_name['input'].fields.append( _QUERYINPUT.fields_by_name['audio_config']) _QUERYINPUT.fields_by_name['audio_config'].containing_oneof = _QUERYINPUT.oneofs_by_name['input'] _QUERYINPUT.oneofs_by_name['input'].fields.append( _QUERYINPUT.fields_by_name['text']) _QUERYINPUT.fields_by_name['text'].containing_oneof = _QUERYINPUT.oneofs_by_name['input'] _QUERYINPUT.oneofs_by_name['input'].fields.append( _QUERYINPUT.fields_by_name['event']) _QUERYINPUT.fields_by_name['event'].containing_oneof = _QUERYINPUT.oneofs_by_name['input'] _QUERYRESULT.fields_by_name['parameters'].message_type = google_dot_protobuf_dot_struct__pb2._STRUCT _QUERYRESULT.fields_by_name['fulfillment_messages'].message_type = google_dot_cloud_dot_dialogflow__v2_dot_proto_dot_intent__pb2._INTENT_MESSAGE _QUERYRESULT.fields_by_name['webhook_payload'].message_type = google_dot_protobuf_dot_struct__pb2._STRUCT _QUERYRESULT.fields_by_name['output_contexts'].message_type = google_dot_cloud_dot_dialogflow__v2_dot_proto_dot_context__pb2._CONTEXT _QUERYRESULT.fields_by_name['intent'].message_type = google_dot_cloud_dot_dialogflow__v2_dot_proto_dot_intent__pb2._INTENT _QUERYRESULT.fields_by_name['diagnostic_info'].message_type = google_dot_protobuf_dot_struct__pb2._STRUCT _STREAMINGDETECTINTENTREQUEST.fields_by_name['query_params'].message_type = _QUERYPARAMETERS _STREAMINGDETECTINTENTREQUEST.fields_by_name['query_input'].message_type = _QUERYINPUT _STREAMINGDETECTINTENTRESPONSE.fields_by_name['recognition_result'].message_type = _STREAMINGRECOGNITIONRESULT _STREAMINGDETECTINTENTRESPONSE.fields_by_name['query_result'].message_type = _QUERYRESULT _STREAMINGDETECTINTENTRESPONSE.fields_by_name['webhook_status'].message_type = google_dot_rpc_dot_status__pb2._STATUS _STREAMINGRECOGNITIONRESULT.fields_by_name['message_type'].enum_type = _STREAMINGRECOGNITIONRESULT_MESSAGETYPE _STREAMINGRECOGNITIONRESULT_MESSAGETYPE.containing_type = _STREAMINGRECOGNITIONRESULT _INPUTAUDIOCONFIG.fields_by_name['audio_encoding'].enum_type = _AUDIOENCODING _EVENTINPUT.fields_by_name['parameters'].message_type = google_dot_protobuf_dot_struct__pb2._STRUCT DESCRIPTOR.message_types_by_name['DetectIntentRequest'] = _DETECTINTENTREQUEST DESCRIPTOR.message_types_by_name['DetectIntentResponse'] = _DETECTINTENTRESPONSE DESCRIPTOR.message_types_by_name['QueryParameters'] = _QUERYPARAMETERS DESCRIPTOR.message_types_by_name['QueryInput'] = _QUERYINPUT DESCRIPTOR.message_types_by_name['QueryResult'] = _QUERYRESULT DESCRIPTOR.message_types_by_name['StreamingDetectIntentRequest'] = _STREAMINGDETECTINTENTREQUEST DESCRIPTOR.message_types_by_name['StreamingDetectIntentResponse'] = _STREAMINGDETECTINTENTRESPONSE DESCRIPTOR.message_types_by_name['StreamingRecognitionResult'] = _STREAMINGRECOGNITIONRESULT DESCRIPTOR.message_types_by_name['InputAudioConfig'] = _INPUTAUDIOCONFIG DESCRIPTOR.message_types_by_name['TextInput'] = _TEXTINPUT DESCRIPTOR.message_types_by_name['EventInput'] = _EVENTINPUT DESCRIPTOR.enum_types_by_name['AudioEncoding'] = _AUDIOENCODING _sym_db.RegisterFileDescriptor(DESCRIPTOR) DetectIntentRequest = _reflection.GeneratedProtocolMessageType('DetectIntentRequest', (_message.Message,), dict( DESCRIPTOR = _DETECTINTENTREQUEST, __module__ = 'google.cloud.dialogflow_v2.proto.session_pb2' , __doc__ = """The request to detect user's intent. Attributes: session: Required. The name of the session this query is sent to. Format: ``projects/<Project ID>/agent/sessions/<Session ID>``. It's up to the API caller to choose an appropriate session ID. It can be a random number or some type of user identifier (preferably hashed). The length of the session ID must not exceed 36 bytes. query_params: Optional. The parameters of this query. query_input: Required. The input specification. It can be set to: 1. an audio config which instructs the speech recognizer how to process the speech audio, 2. a conversational query in the form of text, or 3. an event that specifies which intent to trigger. input_audio: Optional. The natural language speech audio to be processed. This field should be populated iff ``query_input`` is set to an input audio config. A single request can contain up to 1 minute of speech audio data. """, # @@protoc_insertion_point(class_scope:google.cloud.dialogflow.v2.DetectIntentRequest) )) _sym_db.RegisterMessage(DetectIntentRequest) DetectIntentResponse = _reflection.GeneratedProtocolMessageType('DetectIntentResponse', (_message.Message,), dict( DESCRIPTOR = _DETECTINTENTRESPONSE, __module__ = 'google.cloud.dialogflow_v2.proto.session_pb2' , __doc__ = """The message returned from the DetectIntent method. Attributes: response_id: The unique identifier of the response. It can be used to locate a response in the training example set or for reporting issues. query_result: The results of the conversational query or event processing. webhook_status: Specifies the status of the webhook request. ``webhook_status`` is never populated in webhook requests. """, # @@protoc_insertion_point(class_scope:google.cloud.dialogflow.v2.DetectIntentResponse) )) _sym_db.RegisterMessage(DetectIntentResponse) QueryParameters = _reflection.GeneratedProtocolMessageType('QueryParameters', (_message.Message,), dict( DESCRIPTOR = _QUERYPARAMETERS, __module__ = 'google.cloud.dialogflow_v2.proto.session_pb2' , __doc__ = """Represents the parameters of the conversational query. Attributes: time_zone: Optional. The time zone of this conversational query from the `time zone database <https://www.iana.org/time-zones>`__, e.g., America/New\_York, Europe/Paris. If not provided, the time zone specified in agent settings is used. geo_location: Optional. The geo location of this conversational query. contexts: Optional. The collection of contexts to be activated before this query is executed. reset_contexts: Optional. Specifies whether to delete all contexts in the current session before the new ones are activated. session_entity_types: Optional. The collection of session entity types to replace or extend developer entities with for this query only. The entity synonyms apply to all languages. payload: Optional. This field can be used to pass custom data into the webhook associated with the agent. Arbitrary JSON objects are supported. """, # @@protoc_insertion_point(class_scope:google.cloud.dialogflow.v2.QueryParameters) )) _sym_db.RegisterMessage(QueryParameters) QueryInput = _reflection.GeneratedProtocolMessageType('QueryInput', (_message.Message,), dict( DESCRIPTOR = _QUERYINPUT, __module__ = 'google.cloud.dialogflow_v2.proto.session_pb2' , __doc__ = """Represents the query input. It can contain either: 1. An audio config which instructs the speech recognizer how to process the speech audio. 2. A conversational query in the form of text,. 3. An event that specifies which intent to trigger. Attributes: input: Required. The input specification. audio_config: Instructs the speech recognizer how to process the speech audio. text: The natural language text to be processed. event: The event to be processed. """, # @@protoc_insertion_point(class_scope:google.cloud.dialogflow.v2.QueryInput) )) _sym_db.RegisterMessage(QueryInput) QueryResult = _reflection.GeneratedProtocolMessageType('QueryResult', (_message.Message,), dict( DESCRIPTOR = _QUERYRESULT, __module__ = 'google.cloud.dialogflow_v2.proto.session_pb2' , __doc__ = """Represents the result of conversational query or event processing. Attributes: query_text: The original conversational query text: - If natural language text was provided as input, ``query_text`` contains a copy of the input. - If natural language speech audio was provided as input, ``query_text`` contains the speech recognition result. If speech recognizer produced multiple alternatives, a particular one is picked. - If an event was provided as input, ``query_text`` is not set. language_code: The language that was triggered during intent detection. See `Language Support <https://dialogflow.com/docs/reference/language>`__ for a list of the currently supported language codes. speech_recognition_confidence: The Speech recognition confidence between 0.0 and 1.0. A higher number indicates an estimated greater likelihood that the recognized words are correct. The default of 0.0 is a sentinel value indicating that confidence was not set. You should not rely on this field as it isn't guaranteed to be accurate, or even set. In particular this field isn't set in Webhook calls and for StreamingDetectIntent since the streaming endpoint has separate confidence estimates per portion of the audio in StreamingRecognitionResult. action: The action name from the matched intent. parameters: The collection of extracted parameters. all_required_params_present: This field is set to: - ``false`` if the matched intent has required parameters and not all of the required parameter values have been collected. - ``true`` if all required parameter values have been collected, or if the matched intent doesn't contain any required parameters. fulfillment_text: The text to be pronounced to the user or shown on the screen. fulfillment_messages: The collection of rich messages to present to the user. webhook_source: If the query was fulfilled by a webhook call, this field is set to the value of the ``source`` field returned in the webhook response. webhook_payload: If the query was fulfilled by a webhook call, this field is set to the value of the ``payload`` field returned in the webhook response. output_contexts: The collection of output contexts. If applicable, ``output_contexts.parameters`` contains entries with name ``<parameter name>.original`` containing the original parameter values before the query. intent: The intent that matched the conversational query. Some, not all fields are filled in this message, including but not limited to: ``name``, ``display_name`` and ``webhook_state``. intent_detection_confidence: The intent detection confidence. Values range from 0.0 (completely uncertain) to 1.0 (completely certain). diagnostic_info: The free-form diagnostic info. For example, this field could contain webhook call latency. """, # @@protoc_insertion_point(class_scope:google.cloud.dialogflow.v2.QueryResult) )) _sym_db.RegisterMessage(QueryResult) StreamingDetectIntentRequest = _reflection.GeneratedProtocolMessageType('StreamingDetectIntentRequest', (_message.Message,), dict( DESCRIPTOR = _STREAMINGDETECTINTENTREQUEST, __module__ = 'google.cloud.dialogflow_v2.proto.session_pb2' , __doc__ = """The top-level message sent by the client to the ``StreamingDetectIntent`` method. Multiple request messages should be sent in order: 1. The first message must contain ``session``, ``query_input`` plus optionally ``query_params`` and/or ``single_utterance``. The message must not contain ``input_audio``. 2. If ``query_input`` was set to a streaming input audio config, all subsequent messages must contain only ``input_audio``. Otherwise, finish the request stream. Attributes: session: Required. The name of the session the query is sent to. Format of the session name: ``projects/<Project ID>/agent/sessions/<Session ID>``. It’s up to the API caller to choose an appropriate . It can be a random number or some type of user identifier (preferably hashed). The length of the session ID must not exceed 36 characters. query_params: Optional. The parameters of this query. query_input: Required. The input specification. It can be set to: 1. an audio config which instructs the speech recognizer how to process the speech audio, 2. a conversational query in the form of text, or 3. an event that specifies which intent to trigger. single_utterance: Optional. If ``false`` (default), recognition does not cease until the client closes the stream. If ``true``, the recognizer will detect a single spoken utterance in input audio. Recognition ceases when it detects the audio's voice has stopped or paused. In this case, once a detected intent is received, the client should close the stream and start a new request with a new stream as needed. This setting is ignored when ``query_input`` is a piece of text or an event. input_audio: Optional. The input audio content to be recognized. Must be sent if ``query_input`` was set to a streaming input audio config. The complete audio over all streaming messages must not exceed 1 minute. """, # @@protoc_insertion_point(class_scope:google.cloud.dialogflow.v2.StreamingDetectIntentRequest) )) _sym_db.RegisterMessage(StreamingDetectIntentRequest) StreamingDetectIntentResponse = _reflection.GeneratedProtocolMessageType('StreamingDetectIntentResponse', (_message.Message,), dict( DESCRIPTOR = _STREAMINGDETECTINTENTRESPONSE, __module__ = 'google.cloud.dialogflow_v2.proto.session_pb2' , __doc__ = """The top-level message returned from the ``StreamingDetectIntent`` method. Multiple response messages can be returned in order: 1. If the input was set to streaming audio, the first one or more messages contain ``recognition_result``. Each ``recognition_result`` represents a more complete transcript of what the user said. The last ``recognition_result`` has ``is_final`` set to ``true``. 2. The next message contains ``response_id``, ``query_result`` and optionally ``webhook_status`` if a WebHook was called. Attributes: response_id: The unique identifier of the response. It can be used to locate a response in the training example set or for reporting issues. recognition_result: The result of speech recognition. query_result: The result of the conversational query or event processing. webhook_status: Specifies the status of the webhook request. """, # @@protoc_insertion_point(class_scope:google.cloud.dialogflow.v2.StreamingDetectIntentResponse) )) _sym_db.RegisterMessage(StreamingDetectIntentResponse) StreamingRecognitionResult = _reflection.GeneratedProtocolMessageType('StreamingRecognitionResult', (_message.Message,), dict( DESCRIPTOR = _STREAMINGRECOGNITIONRESULT, __module__ = 'google.cloud.dialogflow_v2.proto.session_pb2' , __doc__ = """Contains a speech recognition result corresponding to a portion of the audio that is currently being processed or an indication that this is the end of the single requested utterance. Example: 1. transcript: "tube" 2. transcript: "to be a" 3. transcript: "to be" 4. transcript: "to be or not to be" is\_final: true 5. transcript: " that's" 6. transcript: " that is" 7. recognition\_event\_type: ``RECOGNITION_EVENT_END_OF_SINGLE_UTTERANCE`` 8. transcript: " that is the question" is\_final: true Only two of the responses contain final results (#4 and #8 indicated by ``is_final: true``). Concatenating these generates the full transcript: "to be or not to be that is the question". In each response we populate: - for ``MESSAGE_TYPE_TRANSCRIPT``: ``transcript`` and possibly ``is_final``. - for ``MESSAGE_TYPE_END_OF_SINGLE_UTTERANCE``: only ``event_type``. Attributes: message_type: Type of the result message. transcript: Transcript text representing the words that the user spoke. Populated if and only if ``event_type`` = ``RECOGNITION_EVENT_TRANSCRIPT``. is_final: The default of 0.0 is a sentinel value indicating ``confidence`` was not set. If ``false``, the ``StreamingRecognitionResult`` represents an interim result that may change. If ``true``, the recognizer will not return any further hypotheses about this piece of the audio. May only be populated for ``event_type`` = ``RECOGNITION_EVENT_TRANSCRIPT``. confidence: The Speech confidence between 0.0 and 1.0 for the current portion of audio. A higher number indicates an estimated greater likelihood that the recognized words are correct. The default of 0.0 is a sentinel value indicating that confidence was not set. This field is typically only provided if ``is_final`` is true and you should not rely on it being accurate or even set. """, # @@protoc_insertion_point(class_scope:google.cloud.dialogflow.v2.StreamingRecognitionResult) )) _sym_db.RegisterMessage(StreamingRecognitionResult) InputAudioConfig = _reflection.GeneratedProtocolMessageType('InputAudioConfig', (_message.Message,), dict( DESCRIPTOR = _INPUTAUDIOCONFIG, __module__ = 'google.cloud.dialogflow_v2.proto.session_pb2' , __doc__ = """Instructs the speech recognizer how to process the audio content. Attributes: audio_encoding: Required. Audio encoding of the audio content to process. sample_rate_hertz: Required. Sample rate (in Hertz) of the audio content sent in the query. Refer to `Cloud Speech API documentation </speech/docs/basics>`__ for more details. language_code: Required. The language of the supplied audio. Dialogflow does not do translations. See `Language Support <https://dialogflow.com/docs/languages>`__ for a list of the currently supported language codes. Note that queries in the same session do not necessarily need to specify the same language. phrase_hints: Optional. The collection of phrase hints which are used to boost accuracy of speech recognition. Refer to `Cloud Speech API documentation </speech/docs/basics#phrase-hints>`__ for more details. """, # @@protoc_insertion_point(class_scope:google.cloud.dialogflow.v2.InputAudioConfig) )) _sym_db.RegisterMessage(InputAudioConfig) TextInput = _reflection.GeneratedProtocolMessageType('TextInput', (_message.Message,), dict( DESCRIPTOR = _TEXTINPUT, __module__ = 'google.cloud.dialogflow_v2.proto.session_pb2' , __doc__ = """Represents the natural language text to be processed. Attributes: text: Required. The UTF-8 encoded natural language text to be processed. Text length must not exceed 256 bytes. language_code: Required. The language of this conversational query. See `Language Support <https://dialogflow.com/docs/languages>`__ for a list of the currently supported language codes. Note that queries in the same session do not necessarily need to specify the same language. """, # @@protoc_insertion_point(class_scope:google.cloud.dialogflow.v2.TextInput) )) _sym_db.RegisterMessage(TextInput) EventInput = _reflection.GeneratedProtocolMessageType('EventInput', (_message.Message,), dict( DESCRIPTOR = _EVENTINPUT, __module__ = 'google.cloud.dialogflow_v2.proto.session_pb2' , __doc__ = """Events allow for matching intents by event name instead of the natural language input. For instance, input ``<event: { name: “welcome_event”, parameters: { name: “Sam” } }>`` can trigger a personalized welcome response. The parameter ``name`` may be used by the agent in the response: ``“Hello #welcome_event.name! What can I do for you today?”``. Attributes: name: Required. The unique identifier of the event. parameters: Optional. The collection of parameters associated with the event. language_code: Required. The language of this query. See `Language Support <https://dialogflow.com/docs/languages>`__ for a list of the currently supported language codes. Note that queries in the same session do not necessarily need to specify the same language. """, # @@protoc_insertion_point(class_scope:google.cloud.dialogflow.v2.EventInput) )) _sym_db.RegisterMessage(EventInput) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('\n\036com.google.cloud.dialogflow.v2B\014SessionProtoP\001ZDgoogle.golang.org/genproto/googleapis/cloud/dialogflow/v2;dialogflow\370\001\001\242\002\002DF\252\002\032Google.Cloud.Dialogflow.V2')) _SESSIONS = _descriptor.ServiceDescriptor( name='Sessions', full_name='google.cloud.dialogflow.v2.Sessions', file=DESCRIPTOR, index=0, options=None, serialized_start=3045, serialized_end=3385, methods=[ _descriptor.MethodDescriptor( name='DetectIntent', full_name='google.cloud.dialogflow.v2.Sessions.DetectIntent', index=0, containing_service=None, input_type=_DETECTINTENTREQUEST, output_type=_DETECTINTENTRESPONSE, options=_descriptor._ParseOptions(descriptor_pb2.MethodOptions(), _b('\202\323\344\223\002;\"6/v2/{session=projects/*/agent/sessions/*}:detectIntent:\001*')), ), _descriptor.MethodDescriptor( name='StreamingDetectIntent', full_name='google.cloud.dialogflow.v2.Sessions.StreamingDetectIntent', index=1, containing_service=None, input_type=_STREAMINGDETECTINTENTREQUEST, output_type=_STREAMINGDETECTINTENTRESPONSE, options=None, ), ]) _sym_db.RegisterServiceDescriptor(_SESSIONS) DESCRIPTOR.services_by_name['Sessions'] = _SESSIONS # @@protoc_insertion_point(module_scope)
from typing import List from moodle import BaseMoodle from moodle.base.general import GeneralStatus from .page import PagesResponse class BasePage(BaseMoodle): def get_pages_by_courses(self, courseids: List[int]) -> PagesResponse: """Returns a list of pages in a provided list of courses, if no list is provided all pages that the user can view will be returned. Args: courseids (List[int]): Array of course ids Returns: PagesResponse: Response """ data = self.moodle.post( "mod_page_get_pages_by_courses", courseids=courseids, ) return self._tr(PagesResponse, **data) def view_page(self, pageid: int) -> GeneralStatus: """Simulate the view.php web interface page: trigger events, completion, etc... Args: pageid (int): page instance id Returns: GeneralStatus: Response """ data = self.moodle.post( "mod_page_view_page", pageid=pageid, ) return self._tr(GeneralStatus, **data)
import numpy as np import cv2 class DinoResultsHandler: def __init__(self, database): self.database = database def drawGreenBox(self, queryImage, segImage, kpImage): # green box gray = cv2.cvtColor(segImage,cv2.COLOR_BGR2GRAY) ret,thresh = cv2.threshold(gray,127,255,0) (_, cnts, _) = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if len(cnts) > 0: cnt = sorted(cnts, key = cv2.contourArea, reverse = True)[0] rect = np.int32(cv2.boxPoints(cv2.minAreaRect(cnt))) cv2.drawContours(kpImage, [rect], -1, (0,255,0),2) return kpImage def showTexts(self, matchedResults): if len(matchedResults) == 0: print("No samples are matched to the query !") else: for(i, (score, samplePath)) in enumerate(matchedResults): description = self.database[samplePath[samplePath.rfind("/") + 1:]] print("{}.{:.2f}% : {}".format(i + 1, score * 100, description)) results = cv2.imread(samplePath) # only show the highest matching image cv2.imshow("Right: Matched Sample", results) cv2.waitKey(5000)
import numpy as np from swervedrive.icr.timescaler import TimeScaler def assert_scaling_bounds(beta_dot_b, beta_2dot_b, phi_2dot_b, dbeta, d2beta, dphi_dot): """ Function to ensure that the inequalities in the second paper hold, given certain velocity/acceleeration bounds and commands. """ scaler = TimeScaler(beta_dot_b, beta_2dot_b, phi_2dot_b) ds_lower, ds_upper, d2s_lower, d2s_upper = scaler.compute_scaling_bounds( dbeta, d2beta, dphi_dot ) # inequalities are reversed for negative values (lower_beta, upper_beta) = (1, 0) if dbeta < 0 else (0, 1) (lower_phi, upper_phi) = (1, 0) if dphi_dot < 0 else (0, 1) ignore_beta = np.isclose(dbeta, 0, atol=0.01) ignore_phi = np.isclose(dphi_dot, 0, atol=0.01) if not ignore_beta: # check that we satisfy equation 36a assert ds_lower >= beta_dot_b[lower_beta] / dbeta assert ds_upper <= beta_dot_b[upper_beta] / dbeta # check that we satisfy equation 36b assert d2s_lower >= ( (beta_2dot_b[lower_beta] - d2beta * (ds_upper ** 2)) / dbeta ) assert d2s_upper <= ( (beta_2dot_b[upper_beta] - d2beta * (ds_upper ** 2)) / dbeta ) if not ignore_phi: # check that we satify equation 36c assert ds_lower >= phi_2dot_b[lower_phi] / dphi_dot assert ds_upper <= phi_2dot_b[upper_phi] / dphi_dot scaler.compute_scaling_parameters(ds_lower, ds_upper, d2s_lower, d2s_upper) beta_dot, beta_2dot, phi_2dot = scaler.scale_motion(dbeta, d2beta, dphi_dot) assert beta_dot_b[0] <= beta_dot <= beta_2dot_b[1] assert beta_2dot_b[0] <= beta_2dot <= beta_2dot_b[1] assert phi_2dot_b[0] <= phi_2dot <= beta_2dot_b[1] def test_positive_velocities_in_range(): # angular vel/accel bounds beta_dot_b = [-1, 1] # rad/sec beta_2dot_b = [-1, 1] # rad/sec^2 # wheel rotation bounds phi_2dot_b = [-1, 1] # motion commands generated from the kinematic model for this timestep dbeta, d2beta, dphi_dot = np.array([0.5]), np.array([0.25]), np.array([0.25]) assert_scaling_bounds(beta_dot_b, beta_2dot_b, phi_2dot_b, dbeta, d2beta, dphi_dot) def test_negative_velocities_in_range(): # angular vel/accel bounds beta_dot_b = [-1, 1] # rad/sec beta_2dot_b = [-1, 1] # rad/sec^2 # wheel rotation bounds phi_2dot_b = [-1, 1] # motion commands generated from the kinematic model for this timestep dbeta, d2beta, dphi_dot = np.array([-0.5]), np.array([-0.25]), np.array([-0.25]) assert_scaling_bounds(beta_dot_b, beta_2dot_b, phi_2dot_b, dbeta, d2beta, dphi_dot) def test_positive_velocities_not_in_range(): # angular vel/accel bounds beta_dot_b = [-1, 1] # rad/sec beta_2dot_b = [-1, 1] # rad/sec^2 # wheel rotation bounds phi_2dot_b = [-1, 1] # motion commands generated from the kinematic model for this timestep dbeta, d2beta, dphi_dot = np.array([5]), np.array([1.5]), np.array([1.5]) assert_scaling_bounds(beta_dot_b, beta_2dot_b, phi_2dot_b, dbeta, d2beta, dphi_dot) def test_negative_velocities_not_in_range(): # angular vel/accel bounds beta_dot_b = [-1, 1] # rad/sec beta_2dot_b = [-1, 1] # rad/sec^2 # wheel rotation bounds phi_2dot_b = [-1, 1] # motion commands generated from the kinematic model for this timestep dbeta, d2beta, dphi_dot = np.array([-5]), np.array([-1.5]), np.array([-1.5]) assert_scaling_bounds(beta_dot_b, beta_2dot_b, phi_2dot_b, dbeta, d2beta, dphi_dot) def test_dbeta_zero(): # angular vel/accel bounds beta_dot_b = [-1, 1] # rad/sec beta_2dot_b = [-1, 1] # rad/sec^2 # wheel rotation bounds phi_2dot_b = [-1, 1] # motion commands generated from the kinematic model for this timestep dbeta, d2beta, dphi_dot = 0.01, -1.5, -1.5 dbeta, d2beta, dphi_dot = np.array([0.01]), np.array([-1.5]), np.array([-1.5]) assert_scaling_bounds(beta_dot_b, beta_2dot_b, phi_2dot_b, dbeta, d2beta, dphi_dot) def test_d2beta_zero(): # angular vel/accel bounds beta_dot_b = [-1, 1] # rad/sec beta_2dot_b = [-1, 1] # rad/sec^2 # wheel rotation bounds phi_2dot_b = [-1, 1] # motion commands generated from the kinematic model for this timestep dbeta, d2beta, dphi_dot = np.array([5]), np.array([0.01]), np.array([-1.5]) assert_scaling_bounds(beta_dot_b, beta_2dot_b, phi_2dot_b, dbeta, d2beta, dphi_dot) def test_dphi_dot_zero(): # angular vel/accel bounds beta_dot_b = [-1, 1] # rad/sec beta_2dot_b = [-1, 1] # rad/sec^2 # wheel rotation bounds phi_2dot_b = [-1, 1] # motion commands generated from the kinematic model for this timestep dbeta, d2beta, dphi_dot = np.array([-5]), np.array([-1.5]), np.array([0]) assert_scaling_bounds(beta_dot_b, beta_2dot_b, phi_2dot_b, dbeta, d2beta, dphi_dot) def test_opposing_signs(): # angular vel/accel bounds beta_dot_b = [-1, 1] # rad/sec beta_2dot_b = [-1, 1] # rad/sec^2 # wheel rotation bounds phi_2dot_b = [-1, 1] # motion commands generated from the kinematic model for this timestep dbeta, d2beta, dphi_dot = 5, -1.5, -5 dbeta, d2beta, dphi_dot = np.array([5]), np.array([-1.5]), np.array([-5]) assert_scaling_bounds(beta_dot_b, beta_2dot_b, phi_2dot_b, dbeta, d2beta, dphi_dot) def test_all_zero(): # angular vel/accel bounds beta_dot_b = [-1, 1] # rad/sec beta_2dot_b = [-1, 1] # rad/sec^2 # wheel rotation bounds phi_2dot_b = [-1, 1] # motion commands generated from the kinematic model for this timestep dbeta, d2beta, dphi_dot = np.array([0]), np.array([0]), np.array([0]) assert_scaling_bounds(beta_dot_b, beta_2dot_b, phi_2dot_b, dbeta, d2beta, dphi_dot)
""" This plugin is primarily useful for plugin authors who want to debug their plugins. It prints each hook that is called to stderr, along with details of the event that was passed to the hook. To do that, this plugin overrides :meth:`nose2.events.Plugin.register` and, after registration, replaces all existing :class:`nose2.events.Hook` instances in ``session.hooks`` with instances of a Hook subclass that prints information about each call. """ import sys from nose2 import events INDENT = [] __unittest = True class PrintHooks(events.Plugin): """Print hooks as they are called""" configSection = 'print-hooks' commandLineSwitch = ('P', 'print-hooks', 'Print names of hooks in order of execution') def register(self): """Override to inject noisy hook instances. Replaces Hook instances in ``self.session.hooks.hooks`` with noisier objects. """ super(PrintHooks, self).register() # now we can be sure that all other plugins have loaded # and this plugin is active, patch in our hook class self.session.hooks.hookClass = NoisyHook for attr, hook in self.session.hooks.hooks.items(): newhook = NoisyHook(attr) newhook.plugins = hook.plugins self.session.hooks.hooks[attr] = newhook class NoisyHook(events.Hook): def __call__(self, event): _report(self.method, event) _indent() try: return super(NoisyHook, self).__call__(event) finally: _dedent() def _report(method, event): sys.stderr.write("\n%s%s: %s" % (''.join(INDENT), method, event)) def _indent(): INDENT.append(' ') def _dedent(): if INDENT: INDENT.pop()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np import unittest import paddle.fluid as fluid from paddle.fluid.dygraph.dygraph_to_static import ProgramTranslator from paddle.fluid.dygraph.jit import declarative program_translator = ProgramTranslator() # 0. for in range var.numpy()[0] @declarative def for_in_range(x): z = fluid.layers.fill_constant([1], 'int32', 0) x = fluid.dygraph.to_variable(x) for i in range(x.numpy()[0]): z = z + i return z # 1. for iter list @declarative def for_iter_list(x_array): z = fluid.layers.fill_constant([1], 'int32', 0) for x in x_array: z = z + x return z # 2. for enumerate list @declarative def for_enumerate_list(x_array): z = fluid.layers.fill_constant([1], 'int32', 0) for i, x in enumerate(x_array): z = z + x + i return z # 3. for iter var.numpy() @declarative def for_iter_var_numpy(x_array): z = fluid.layers.fill_constant([1], 'int32', 0) x_array = fluid.dygraph.to_variable(x_array) for x in x_array.numpy(): z = z + x return z # 4. for enumerate var.numpy() @declarative def for_enumerate_var_numpy(x_array): y = fluid.layers.fill_constant([1], 'int32', 0) z = fluid.layers.fill_constant([1], 'int32', 0) x_array = fluid.dygraph.to_variable(x_array) for i, x in enumerate(x_array.numpy()): y = y + i z = z + x return y, z # 5. for enumerate var.numpy() with start @declarative def for_enumerate_var_numpy_with_start(x_array): y = fluid.layers.fill_constant([1], 'int32', 0) z = fluid.layers.fill_constant([1], 'int32', 0) x_array = fluid.dygraph.to_variable(x_array) for i, x in enumerate(x_array.numpy(), 1): y = y + i z = z + x return y, z # 6. for in range with break @declarative def for_in_range_with_break(x): z = fluid.layers.fill_constant([1], 'int32', 0) x = fluid.dygraph.to_variable(x) for i in range(x.numpy()[0]): z = z + i if i > 2: break return z # 7. for enumerate var.numpy() with break @declarative def for_enumerate_var_numpy_with_break(x_array): y = fluid.layers.fill_constant([1], 'int32', 0) z = fluid.layers.fill_constant([1], 'int32', 0) x_array = fluid.dygraph.to_variable(x_array) for i, x in enumerate(x_array.numpy()): y = y + i z = z + x if i > 2: break return y, z # 8. for enumerate var.numpy() with continue @declarative def for_enumerate_var_numpy_with_continue(x_array): y = fluid.layers.fill_constant([1], 'int32', 0) z = fluid.layers.fill_constant([1], 'int32', 0) x_array = fluid.dygraph.to_variable(x_array) for i, x in enumerate(x_array.numpy()): y = y + i if i > 2: continue z = z + x return y, z # 9. for enumerate var.numpy() with start & break @declarative def for_enumerate_var_numpy_with_start_break(x_array): y = fluid.layers.fill_constant([1], 'int32', 0) z = fluid.layers.fill_constant([1], 'int32', 0) x_array = fluid.dygraph.to_variable(x_array) for i, x in enumerate(x_array.numpy(), 1): y = y + i z = z + x if i > 2: break return y, z # 10. for enumerate var.numpy() with start & continue @declarative def for_enumerate_var_numpy_with_start_continue(x_array): y = fluid.layers.fill_constant([1], 'int32', 0) z = fluid.layers.fill_constant([1], 'int32', 0) x_array = fluid.dygraph.to_variable(x_array) for i, x in enumerate(x_array.numpy(), 1): y = y + i if i > 2: continue z = z + x return y, z # 11. for iter var @declarative def for_iter_var(x_array): z = fluid.layers.fill_constant([1], 'int32', 0) x_array = fluid.dygraph.to_variable(x_array) for x in x_array: z = z + x return z # 12. for enumerate var @declarative def for_enumerate_var(x_array): y = fluid.layers.fill_constant([1], 'int32', 0) z = fluid.layers.fill_constant([1], 'int32', 0) x_array = fluid.dygraph.to_variable(x_array) for i, x in enumerate(x_array): y = y + i z = z + x return y, z # 13. for iter list[var] @declarative def for_iter_var_list(x): # 1. prepare data, ref test_list.py x = fluid.dygraph.to_variable(x) iter_num = fluid.layers.fill_constant(shape=[1], value=5, dtype="int32") a = [] for i in range(iter_num): a.append(x + i) # 2. iter list[var] y = fluid.layers.fill_constant([1], 'int32', 0) for x in a: y = y + x return y # 14. for enumerate list[var] @declarative def for_enumerate_var_list(x): # 1. prepare data, ref test_list.py x = fluid.dygraph.to_variable(x) iter_num = fluid.layers.fill_constant(shape=[1], value=5, dtype="int32") a = [] for i in range(iter_num): a.append(x + i) # 2. iter list[var] y = fluid.layers.fill_constant([1], 'int32', 0) z = fluid.layers.fill_constant([1], 'int32', 0) for i, x in enumerate(a): y = y + i z = z + x return y, z class TestTransformBase(unittest.TestCase): def setUp(self): self.place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda( ) else fluid.CPUPlace() self.set_input() self.set_test_func() def set_input(self): self.input = [1, 2, 3] def set_test_func(self): raise NotImplementedError( "For Enumerate test should implement set_test_func") def _run(self, to_static): program_translator.enable(to_static) with fluid.dygraph.guard(): return self.dygraph_func(self.input) def get_dygraph_output(self): return self._run(to_static=False) def get_static_output(self): return self._run(to_static=True) class TestTransform(TestTransformBase): def transformed_result_compare(self): dy_outs = self.get_dygraph_output() if not isinstance(dy_outs, tuple): dy_outs = (dy_outs, ) st_outs = self.get_static_output() if not isinstance(st_outs, tuple): st_outs = (st_outs, ) for x, y in zip(dy_outs, st_outs): self.assertTrue(np.allclose(x.numpy(), y.numpy())) class TestTransformError(TestTransformBase): def transformed_error(self, etype): with self.assertRaises(etype): dy_out = self.get_dygraph_output() st_out = self.get_static_output() class TestForInRange(TestTransform): def set_input(self): self.input = np.array([5]) def set_test_func(self): self.dygraph_func = for_in_range def test_transformed_result_compare(self): self.transformed_result_compare() class TestForIterList(TestTransform): def set_test_func(self): self.dygraph_func = for_iter_list def test_transformed_result_compare(self): self.transformed_result_compare() class TestForEnumerateSimple(TestForIterList): def set_test_func(self): self.dygraph_func = for_enumerate_list class TestForInRangeWithBreak(TestForInRange): def set_test_func(self): self.dygraph_func = for_in_range_with_break class TestForIterVarNumpy(TestTransform): def set_input(self): self.input = np.array([1, 2, 3, 4, 5]) def set_test_func(self): self.dygraph_func = for_iter_var_numpy def test_transformed_result_compare(self): self.transformed_result_compare() class TestForEnumerateVarNumpy(TestForIterVarNumpy): def set_test_func(self): self.dygraph_func = for_enumerate_var_numpy class TestForEnumerateVarNumpyWithStart(TestForIterVarNumpy): def set_test_func(self): self.dygraph_func = for_enumerate_var_numpy_with_start class TestForEnumerateVarNumpyWithBreak(TestForIterVarNumpy): def set_test_func(self): self.dygraph_func = for_enumerate_var_numpy_with_break class TestForEnumerateVarNumpyWithBreak(TestForIterVarNumpy): def set_test_func(self): self.dygraph_func = for_enumerate_var_numpy_with_continue class TestForEnumerateVarNumpyWithStartAndBreak(TestForIterVarNumpy): def set_test_func(self): self.dygraph_func = for_enumerate_var_numpy_with_start_break class TestForEnumerateVarNumpyWithStartAndBreak(TestForIterVarNumpy): def set_test_func(self): self.dygraph_func = for_enumerate_var_numpy_with_start_continue class TestForIterVar(TestForIterVarNumpy): def set_test_func(self): self.dygraph_func = for_iter_var class TestForEnumerateVar(TestForIterVarNumpy): def set_test_func(self): self.dygraph_func = for_enumerate_var class TestForIterVarList(TestForInRange): def set_test_func(self): self.dygraph_func = for_iter_var_list class TestForEnumerateVarList(TestForInRange): def set_test_func(self): self.dygraph_func = for_enumerate_var_list if __name__ == '__main__': unittest.main()
# funções def l(): print('+ ' * 20) def soma(a, b): print('+ ' * 15) print(f'A vale {a} e B vale {b}') s = a + b print(f'A soma de A e B vale {s}') # programa principal soma(b=4, a=5) soma(8, 9) soma(2, 1) # empacotar parametros def contador(*num): tam = len(num) s = 0 for n in num: s += n print(f'Recebi os valores {num} ao todo são {tam} numeros e a soma foi: {s}') def dobra(lst): pos = 0 while pos < len(lst): lst[pos] *= 2 pos += 1 # programa principal l() contador(1, 4, 3) contador(5, 8, 3, 9, 5) contador(12, 3) l() print() l() print('Drobrar valores') lista = [1, 5, 3, 9, 6, 2] print(f'Lista normal {lista}') dobra(lista) print(f'Lista Dobrada {lista}') l()
from flask import request from flask_login import current_user from oarepo_enrollment_permissions.proxies import current_enrollment_permissions class PermissionCollection: def __init__(self, *permissions, combining_operation='or'): self.permissions = permissions self.combining_operation = combining_operation def can(self): if not self.permissions: return False for perm in self.permissions: if perm.can(): if self.combining_operation == 'or': return True else: if self.combining_operation == 'and': return False return self.combining_operation == 'and' def read_permission_factory(*args, **kwargs): return current_enrollment_permissions.get_action_permission(current_user, 'read', **kwargs) def update_permission_factory(*args, **kwargs): return current_enrollment_permissions.get_action_permission(current_user, 'update', **kwargs) def delete_permission_factory(*args, **kwargs): return current_enrollment_permissions.get_action_permission(current_user, 'delete', **kwargs) def create_permission_factory(*args, **kwargs): return current_enrollment_permissions.get_action_permission( current_user, 'create', data=request.json, **kwargs)
# -*- coding: utf-8 -*- # Copyright (c) Vispy Development Team. All Rights Reserved. # Distributed under the (new) BSD License. See LICENSE.txt for more info. from .base_camera import BaseCamera from .perspective import PerspectiveCamera from .panzoom import PanZoomCamera from .arcball import ArcballCamera from .turntable import TurntableCamera from .fly import FlyCamera def make_camera(cam_type, *args, **kwargs): """ Factory function for creating new cameras using a string name. Parameters ---------- cam_type : str May be one of: * 'panzoom' : Creates :class:`PanZoomCamera` * 'turntable' : Creates :class:`TurntableCamera` * None : Creates :class:`Camera` Notes ----- All extra arguments are passed to the __init__ method of the selected Camera class. """ cam_types = {None: BaseCamera} for camType in (BaseCamera, PanZoomCamera, PerspectiveCamera, TurntableCamera, FlyCamera, ArcballCamera): cam_types[camType.__name__[:-6].lower()] = camType try: return cam_types[cam_type](*args, **kwargs) except KeyError: raise KeyError('Unknown camera type "%s". Options are: %s' % (cam_type, cam_types.keys()))
import sys import os sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..', 'bitpay'))) from splinter import Browser import time import six import json from bitpay_client import Client import bitpay_key_utils as key_utils import re ROOT_ADDRESS = os.environ['RCROOTADDRESS'] USER_NAME = os.environ['RCTESTUSER'] PASSWORD = os.environ['RCTESTPASSWORD'] PEM = '-----BEGIN EC PRIVATE KEY-----\nMHQCAQEEICg7E4NN53YkaWuAwpoqjfAofjzKI7Jq1f532dX+0O6QoAcGBSuBBAAK\noUQDQgAEjZcNa6Kdz6GQwXcUD9iJ+t1tJZCx7hpqBuJV2/IrQBfue8jh8H7Q/4vX\nfAArmNMaGotTpjdnymWlMfszzXJhlw==\n-----END EC PRIVATE KEY-----\n' client = Client() invoice = None exception = None @given(u'the user pairs with BitPay with a valid pairing code') def step_impl(context): time.sleep(1) claim_code = get_claim_code_from_server() global client client = Client(api_uri=ROOT_ADDRESS, insecure=True, pem=PEM) try: client.pair_pos_client(claim_code) except Exception as error: if error.args[0] == "500: Unable to create token because of too many requests.": time.sleep(60) client.pair_pos_client(claim_code) assert client.tokens['pos'] @given(u'the user requests a client-side pairing') def step_impl(context): global pairing_code time.sleep(1) client = Client(api_uri=ROOT_ADDRESS, insecure=True, pem=PEM) try: pairing_code = client.create_token("merchant") except Exception as error: if error.args[0] == "500: Unable to create token because of too many requests.": time.sleep(60) pairing_code = client.create_token("merchant") @then(u'they will receive a claim code') def step_impl(context): assert re.match("^\w{7,7}$", pairing_code) != None @then(u'the user is paired with BitPay') def step_impl(context): assert client.verify_tokens() @given(u'the user fails to pair with a semantically {valid} code {code}') def step_impl(context, code, valid): time.sleep(1) try: client.pair_pos_client(code) except Exception as error: global exception exception = error if exception.args[0] == "500: Unable to create token because of too many requests.": time.sleep(60) try: client.pair_pos_client(code) except Exception as error: global exception exception = error @given(u'that a user knows an invoice id') def step_impl(context): global client global invoice client = client_from_stored_values() create_invoice(10, "USD") @then(u'they can retrieve that invoice') def step_impl(context): global client global invoice amount = invoice['price'] invoice_id = invoice['id'] retrieved_invoice = client.get_invoice(invoice_id) assert amount == retrieved_invoice['price'] @then(u'they will receive a {error} matching {message}') def step_impl(context, error, message): assert exception.__class__.__name__ == error and exception.args[0] == message, "%s != %s" % (exception.args[0], message) @given(u'the user is authenticated with BitPay') def step_impl(context): global client client = client_from_stored_values() assert client.verify_tokens() @given(u'the user waits {wait:d} seconds') def step_impl(context, wait): time.sleep(wait) @when(u'the user creates an invoice for {amount:f} {currency} with float input') def step_impl(context, amount, currency): create_invoice(amount, currency) @when(u'the user creates an invoice for {amount:d} {currency} with integer input') def step_impl(context, amount, currency): create_invoice(amount, currency) @when(u'the user creates an invoice for {amount} {currency} with string input') def step_impl(context, amount, currency): if amount == '""': amount = "" if currency == '""': currency == "" create_invoice(amount, currency) @then(u'they should recieve an invoice in response for {amount:g} {currency}') def step_impl(context, amount, currency): global invoice assert invoice['price'] == amount and invoice['currency'] == currency def create_invoice(amount, currency): global client global invoice try: token = client.tokens['pos'] invoice = client.create_invoice({"price": amount, "currency": currency, "token": token }) except Exception as error: global exception print(error.__class__.__name__) print(error.args[0]) exception = error def client_from_stored_values(): for f in ["local.pem", "tokens.json"]: try: open("temp/" + f) exists = True except: exists = False break if exists: f = open("temp/local.pem", 'r') pem = f.read() f = open("temp/tokens.json", 'r') token = f.read() token = json.loads(token) client = Client(api_uri=ROOT_ADDRESS, insecure=True, pem=pem, tokens=token) else: claim_code = get_claim_code_from_server() pem = key_utils.generate_pem() client = Client(api_uri=ROOT_ADDRESS, insecure=True, pem=pem) token = json.dumps(client.pair_pos_client(claim_code)) if not os.path.exists("temp"): os.makedirs("temp") f = open("temp/local.pem", 'w') f.write(pem) f = open("temp/tokens.json", 'w') f.write(token) return client def get_claim_code_from_server(): browser = Browser('phantomjs', service_args=['--ignore-ssl-errors=true']) browser.visit(ROOT_ADDRESS + "/merchant-login") time.sleep(5) browser.fill_form({"email": USER_NAME, "password": PASSWORD}) browser.find_by_id("loginButton")[0].click() time.sleep(1) browser.visit(ROOT_ADDRESS + "/api-tokens") browser.find_by_css(".token-access-new-button").find_by_css(".btn").find_by_css(".icon-plus")[0].click() browser.find_by_id("token-new-form").find_by_css(".btn")[0].click() return browser.find_by_css(".token-claimcode")[0].html
import os import luigi from resolving import ResolvingWorkflow def resolve_separately(identifier, max_jobs=48, target='local'): task = ResolvingWorkflow path = '/g/kreshuk/data/FIB25/data.n5' exp_path = '/g/kreshuk/data/FIB25/exp_data/mc.n5' # objects_group = 'resolving/oracle/perfect_oracle' objects_group = 'resolving/oracle/%s' % identifier assignment_in_key = 'node_labels/multitcut_filtered' assignment_out_key = 'node_labels/resolve_separately/%s' % identifier tmp_folder = './tmp_folders/tmp_resolve_separately_%s' % identifier os.makedirs(tmp_folder, exist_ok=True) # TODO write to actual output ws_key = 'volumes/segmentation/watershed' out_key = 'volumes/segmentation/resolve_separately/%s' % identifier t = task(tmp_folder=tmp_folder, config_dir='./configs', max_jobs=max_jobs, target=target, problem_path=exp_path, path=path, objects_group=objects_group, assignment_in_key=assignment_in_key, assignment_out_key=assignment_out_key, ws_key=ws_key, out_key=out_key) ret = luigi.build([t], local_scheduler=True) assert ret, "Resolving failed" if __name__ == '__main__': resolve_separately('perfect_oracle')
from __future__ import annotations from dataclasses import dataclass import bbgo_pb2 from ..enums import ChannelType from ..enums import DepthType @dataclass class Subscription: exchange: str channel: ChannelType symbol: str depth: DepthType = None interval: str = None def to_pb(self) -> bbgo_pb2.Subscription: subscription_pb = bbgo_pb2.Subscription( exchange=self.exchange, channel=self.channel.value, symbol=self.symbol, ) if self.depth is not None: subscription_pb.depth = self.depth.value if self.interval is not None: subscription_pb.interval = self.interval return subscription_pb
"""Unit tests for the Robot Framework Jenkins plugin source.""" from .jenkins_plugin_test_case import JenkinsPluginTestCase, JenkinsPluginTestsMixin class RobotFrameworkJenkinsPluginTest(JenkinsPluginTestCase, JenkinsPluginTestsMixin): """Unit tests for the Robot Framework Jenkins plugin metrics.""" source_type = "robot_framework_jenkins_plugin" def setUp(self): super().setUp() self.jenkins_json = dict(overallTotal=2, overallFailed=1, overallPassed=1) async def test_nr_of_tests(self): """Test that the number of tests is returned.""" metric = dict(type="tests", addition="sum", sources=self.sources) response = await self.collect(metric, get_request_json_return_value=self.jenkins_json) self.assert_measurement(response, value="2", total="2") async def test_failed_tests(self): """Test that the number of failed tests is returned.""" self.sources["source_id"]["parameters"]["test_result"] = ["fail"] metric = dict(type="tests", addition="sum", sources=self.sources) response = await self.collect(metric, get_request_json_return_value=self.jenkins_json) self.assert_measurement(response, value="1", total="2") async def test_passed_tests(self): """Test that the number of passed tests is returned.""" self.sources["source_id"]["parameters"]["test_result"] = ["pass"] metric = dict(type="tests", addition="sum", sources=self.sources) response = await self.collect(metric, get_request_json_return_value=self.jenkins_json) self.assert_measurement(response, value="1", total="2")
from django.conf import settings from .utils import is_valid_ip from . import defaults as defs NON_PUBLIC_IP_PREFIX = tuple([ip.lower() for ip in defs.IPWARE_NON_PUBLIC_IP_PREFIX]) TRUSTED_PROXY_LIST = tuple([ip.lower() for ip in getattr(settings, 'IPWARE_TRUSTED_PROXY_LIST', [])]) def get_ip(request, real_ip_only=False, right_most_proxy=False): """ Returns client's best-matched ip-address, or None @deprecated - Do not edit """ best_matched_ip = None for key in defs.IPWARE_META_PRECEDENCE_ORDER: value = request.META.get(key, request.META.get(key.replace('_', '-'), '')).strip() if value is not None and value != '': ips = [ip.strip().lower() for ip in value.split(',')] if right_most_proxy and len(ips) > 1: ips = reversed(ips) for ip_str in ips: if ip_str and is_valid_ip(ip_str): if not ip_str.startswith(NON_PUBLIC_IP_PREFIX): return ip_str if not real_ip_only: loopback = defs.IPWARE_LOOPBACK_PREFIX if best_matched_ip is None: best_matched_ip = ip_str elif best_matched_ip.startswith(loopback) and not ip_str.startswith(loopback): best_matched_ip = ip_str return best_matched_ip def get_real_ip(request, right_most_proxy=False): """ Returns client's best-matched `real` `externally-routable` ip-address, or None @deprecated - Do not edit """ return get_ip(request, real_ip_only=True, right_most_proxy=right_most_proxy) def get_trusted_ip(request, right_most_proxy=False, trusted_proxies=TRUSTED_PROXY_LIST): """ Returns client's ip-address from `trusted` proxy server(s) or None @deprecated - Do not edit """ if trusted_proxies: meta_keys = ['HTTP_X_FORWARDED_FOR', 'X_FORWARDED_FOR'] for key in meta_keys: value = request.META.get(key, request.META.get(key.replace('_', '-'), '')).strip() if value: ips = [ip.strip().lower() for ip in value.split(',')] if len(ips) > 1: if right_most_proxy: ips.reverse() for proxy in trusted_proxies: if proxy in ips[-1]: return ips[0] return None
from setuptools import setup, find_packages setup( name='lib', description='Holds the demo classes', version='0.0.1', author='James Dooley', author_email='xxx@yyy.com', packages=find_packages(exclude=('test',)), url='' )
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Wed Jun 7 12:57:47 2017 @author: ayanava """ import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as ticker import os iters = [1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000] acc_8 = [48.333333333333336, 50.0, 90.83333333333333, 100.0, 68.33333333333333, 95.83333333333334, 97.5, 88.33333333333333, 75.83333333333333, 76.66666666666667] acc_10 = [47.5, 39.166666666666664, 51.66666666666667, 61.66666666666667, 98.33333333333333, 100.0, 72.5, 80.0, 100.0, 100.0] fig, ax = plt.subplots(1,1) axis_font = {'fontname':'Arial', 'size':'50'} p1, =plt.plot( iters, acc_8, label="d", linewidth=5, marker='o', markeredgewidth= '5', markerfacecolor='black', color='b') p2, =plt.plot( iters, acc_10, label="d", linewidth=5, marker='o', markeredgewidth= '5', markerfacecolor='black', color='r') # major ticks every 20, minor ticks every 5 major_ticks = np.arange(0, 101, 5) minor_ticks = np.arange(-101, 101, 1) ax.set_xticks(major_ticks) ax.set_xticks(minor_ticks, minor=True) ax.set_yticks(major_ticks) ax.set_yticks(minor_ticks, minor=True) # and a corresponding grid ax.grid(which='both') plt.xlim([900,10100]) plt.ylim([30,110]) plt.ylabel('Accuracy Measures', **axis_font) plt.xlabel('Number of Iterations', **axis_font) ax.yaxis.set_major_locator(ticker.MultipleLocator(5)) ax.xaxis.set_major_locator(ticker.MultipleLocator(1000)) ax.xaxis.set_tick_params(labelsize=30) ax.yaxis.set_tick_params(labelsize=35) plt.legend([p1, p2], ["B=2, M=1, C=8", "B=2, M=1, C=10"], loc='lower right', fontsize = 40, borderaxespad=0.) # plt.show() #save the figure #fig.savefig('plot_small_neurons.png')
"""2D plots of sound fields etc.""" import matplotlib as _mpl import matplotlib.pyplot as _plt from mpl_toolkits import axes_grid1 as _axes_grid1 import numpy as _np from . import default as _default from . import util as _util def _register_cmap_clip(name, original_cmap, alpha): """Create a color map with "over" and "under" values.""" from matplotlib.colors import LinearSegmentedColormap cdata = _plt.cm.datad[original_cmap] if isinstance(cdata, dict): cmap = LinearSegmentedColormap(name, cdata) else: cmap = LinearSegmentedColormap.from_list(name, cdata) cmap.set_over([alpha * c + 1 - alpha for c in cmap(1.0)[:3]]) cmap.set_under([alpha * c + 1 - alpha for c in cmap(0.0)[:3]]) _plt.cm.register_cmap(cmap=cmap) # The 'coolwarm' colormap is based on the paper # "Diverging Color Maps for Scientific Visualization" by Kenneth Moreland # http://www.sandia.gov/~kmorel/documents/ColorMaps/ _register_cmap_clip('coolwarm_clip', 'coolwarm', 0.7) def _register_cmap_transparent(name, color): """Create a color map from a given color to transparent.""" from matplotlib.colors import colorConverter, LinearSegmentedColormap red, green, blue = colorConverter.to_rgb(color) cdict = {'red': ((0, red, red), (1, red, red)), 'green': ((0, green, green), (1, green, green)), 'blue': ((0, blue, blue), (1, blue, blue)), 'alpha': ((0, 0, 0), (1, 1, 1))} cmap = LinearSegmentedColormap(name, cdict) _plt.cm.register_cmap(cmap=cmap) _register_cmap_transparent('blacktransparent', 'black') def virtualsource(xs, ns=None, type='point', *, ax=None): """Draw position/orientation of virtual source.""" xs = _np.asarray(xs) ns = _np.asarray(ns) if ax is None: ax = _plt.gca() if type == 'point': vps = _plt.Circle(xs, .05, edgecolor='k', facecolor='k') ax.add_artist(vps) for n in range(1, 3): vps = _plt.Circle(xs, .05+n*0.05, edgecolor='k', fill=False) ax.add_artist(vps) elif type == 'plane': ns = 0.2 * ns ax.arrow(xs[0], xs[1], ns[0], ns[1], head_width=0.05, head_length=0.1, fc='k', ec='k') def reference(xref, *, size=0.1, ax=None): """Draw reference/normalization point.""" xref = _np.asarray(xref) if ax is None: ax = _plt.gca() ax.plot((xref[0]-size, xref[0]+size), (xref[1]-size, xref[1]+size), 'k-') ax.plot((xref[0]-size, xref[0]+size), (xref[1]+size, xref[1]-size), 'k-') def secondary_sources(x0, n0, *, grid=None): """Simple plot of secondary source locations.""" x0 = _np.asarray(x0) n0 = _np.asarray(n0) ax = _plt.gca() # plot only secondary sources inside simulated area if grid is not None: x0, n0 = _visible_secondarysources(x0, n0, grid) # plot symbols for x00 in x0: ss = _plt.Circle(x00[0:2], .05, edgecolor='k', facecolor='k') ax.add_artist(ss) def loudspeakers(x0, n0, a0=0.5, *, size=0.08, show_numbers=False, grid=None, ax=None): """Draw loudspeaker symbols at given locations and angles. Parameters ---------- x0 : (N, 3) array_like Loudspeaker positions. n0 : (N, 3) or (3,) array_like Normal vector(s) of loudspeakers. a0 : float or (N,) array_like, optional Weighting factor(s) of loudspeakers. size : float, optional Size of loudspeakers in metres. show_numbers : bool, optional If ``True``, loudspeaker numbers are shown. grid : triple of array_like, optional If specified, only loudspeakers within the *grid* are shown. ax : Axes object, optional The loudspeakers are plotted into this `matplotlib.axes.Axes` object or -- if not specified -- into the current axes. """ x0 = _util.asarray_of_rows(x0) n0 = _util.asarray_of_rows(n0) a0 = _util.asarray_1d(a0).reshape(-1, 1) # plot only secondary sources inside simulated area if grid is not None: x0, n0 = _visible_secondarysources(x0, n0, grid) # normalized coordinates of loudspeaker symbol (see IEC 60617-9) codes, coordinates = zip(*( (_mpl.path.Path.MOVETO, [-0.62, 0.21]), (_mpl.path.Path.LINETO, [-0.31, 0.21]), (_mpl.path.Path.LINETO, [0, 0.5]), (_mpl.path.Path.LINETO, [0, -0.5]), (_mpl.path.Path.LINETO, [-0.31, -0.21]), (_mpl.path.Path.LINETO, [-0.62, -0.21]), (_mpl.path.Path.CLOSEPOLY, [0, 0]), (_mpl.path.Path.MOVETO, [-0.31, 0.21]), (_mpl.path.Path.LINETO, [-0.31, -0.21]), )) coordinates = _np.column_stack([coordinates, _np.zeros(len(coordinates))]) coordinates *= size patches = [] for x00, n00 in _util.broadcast_zip(x0, n0): # rotate and translate coordinates R = _util.rotation_matrix([1, 0, 0], n00) transformed_coordinates = _np.inner(coordinates, R) + x00 patches.append(_mpl.patches.PathPatch(_mpl.path.Path( transformed_coordinates[:, :2], codes))) # add collection of patches to current axis p = _mpl.collections.PatchCollection( patches, edgecolor='0', facecolor=_np.tile(1 - a0, 3)) if ax is None: ax = _plt.gca() ax.add_collection(p) if show_numbers: for idx, (x00, n00) in enumerate(_util.broadcast_zip(x0, n0)): x, y = x00[:2] - 1.2 * size * n00[:2] ax.text(x, y, idx + 1, horizontalalignment='center', verticalalignment='center', clip_on=True) def _visible_secondarysources(x0, n0, grid): """Determine secondary sources which lie within *grid*.""" x, y = _util.as_xyz_components(grid[:2]) idx = _np.where((x0[:, 0] > x.min()) & (x0[:, 0] < x.max()) & (x0[:, 1] > y.min()) & (x0[:, 1] < x.max())) idx = _np.squeeze(idx) return x0[idx, :], n0[idx, :] def amplitude(p, grid, *, xnorm=None, cmap='coolwarm_clip', vmin=-2.0, vmax=2.0, xlabel=None, ylabel=None, colorbar=True, colorbar_kwargs={}, ax=None, **kwargs): """Two-dimensional plot of sound field (real part). Parameters ---------- p : array_like Sound pressure values (or any other scalar quantity if you like). If the values are complex, the imaginary part is ignored. Typically, *p* is two-dimensional with a shape of *(Ny, Nx)*, *(Nz, Nx)* or *(Nz, Ny)*. This is the case if `sfs.util.xyz_grid()` was used with a single number for *z*, *y* or *x*, respectively. However, *p* can also be three-dimensional with a shape of *(Ny, Nx, 1)*, *(1, Nx, Nz)* or *(Ny, 1, Nz)*. This is the case if :func:`numpy.meshgrid` was used with a scalar for *z*, *y* or *x*, respectively (and of course with the default ``indexing='xy'``). .. note:: If you want to plot a single slice of a pre-computed "full" 3D sound field, make sure that the slice still has three dimensions (including one singleton dimension). This way, you can use the original *grid* of the full volume without changes. This works because the grid component corresponding to the singleton dimension is simply ignored. grid : triple or pair of numpy.ndarray The grid that was used to calculate *p*, see `sfs.util.xyz_grid()`. If *p* is two-dimensional, but *grid* has 3 components, one of them must be scalar. xnorm : array_like, optional Coordinates of a point to which the sound field should be normalized before plotting. If not specified, no normalization is used. See `sfs.util.normalize()`. Returns ------- AxesImage See :func:`matplotlib.pyplot.imshow`. Other Parameters ---------------- xlabel, ylabel : str Overwrite default x/y labels. Use ``xlabel=''`` and ``ylabel=''`` to remove x/y labels. The labels can be changed afterwards with :func:`matplotlib.pyplot.xlabel` and :func:`matplotlib.pyplot.ylabel`. colorbar : bool, optional If ``False``, no colorbar is created. colorbar_kwargs : dict, optional Further colorbar arguments, see `add_colorbar()`. ax : Axes, optional If given, the plot is created on *ax* instead of the current axis (see :func:`matplotlib.pyplot.gca`). cmap, vmin, vmax, **kwargs All further parameters are forwarded to :func:`matplotlib.pyplot.imshow`. See Also -------- sfs.plot2d.level """ p = _np.asarray(p) grid = _util.as_xyz_components(grid) # normalize sound field wrt xnorm if xnorm is not None: p = _util.normalize(p, grid, xnorm) if p.ndim == 3: if p.shape[2] == 1: p = p[:, :, 0] # first axis: y; second axis: x plotting_plane = 'xy' elif p.shape[1] == 1: p = p[:, 0, :].T # first axis: z; second axis: y plotting_plane = 'yz' elif p.shape[0] == 1: p = p[0, :, :].T # first axis: z; second axis: x plotting_plane = 'xz' else: raise ValueError("If p is 3D, one dimension must have length 1") elif len(grid) == 3: if grid[2].ndim == 0: plotting_plane = 'xy' elif grid[1].ndim == 0: plotting_plane = 'xz' elif grid[0].ndim == 0: plotting_plane = 'yz' else: raise ValueError( "If p is 2D and grid is 3D, one grid component must be scalar") else: # 2-dimensional case plotting_plane = 'xy' if plotting_plane == 'xy': x, y = grid[[0, 1]] elif plotting_plane == 'xz': x, y = grid[[0, 2]] elif plotting_plane == 'yz': x, y = grid[[1, 2]] dx = 0.5 * x.ptp() / p.shape[0] dy = 0.5 * y.ptp() / p.shape[1] if ax is None: ax = _plt.gca() # see https://github.com/matplotlib/matplotlib/issues/10567 if _mpl.__version__.startswith('2.1.'): p = _np.clip(p, -1e15, 1e15) # clip to float64 range im = ax.imshow(_np.real(p), cmap=cmap, origin='lower', extent=[x.min()-dx, x.max()+dx, y.min()-dy, y.max()+dy], vmax=vmax, vmin=vmin, **kwargs) if xlabel is None: xlabel = plotting_plane[0] + ' / m' if ylabel is None: ylabel = plotting_plane[1] + ' / m' ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) if colorbar: add_colorbar(im, **colorbar_kwargs) return im def level(p, grid, *, xnorm=None, power=False, cmap=None, vmax=3, vmin=-50, **kwargs): """Two-dimensional plot of level (dB) of sound field. Takes the same parameters as `sfs.plot2d.amplitude()`. Other Parameters ---------------- power : bool, optional See `sfs.util.db()`. """ # normalize before converting to dB! if xnorm is not None: p = _util.normalize(p, grid, xnorm) L = _util.db(p, power=power) return amplitude(L, grid=grid, xnorm=None, cmap=cmap, vmax=vmax, vmin=vmin, **kwargs) def particles(x, *, trim=None, ax=None, xlabel='x (m)', ylabel='y (m)', edgecolor='', marker='.', s=15, **kwargs): """Plot particle positions as scatter plot""" XX, YY = [_np.real(c) for c in x[:2]] if trim is not None: xmin, xmax, ymin, ymax = trim idx = _np.where((XX > xmin) & (XX < xmax) & (YY > ymin) & (YY < ymax)) XX = XX[idx] YY = YY[idx] if ax is None: ax = _plt.gca() if xlabel: ax.set_xlabel(xlabel) if ylabel: ax.set_ylabel(ylabel) return ax.scatter(XX, YY, edgecolor=edgecolor, marker=marker, s=s, **kwargs) def vectors(v, grid, *, cmap='blacktransparent', headlength=3, headaxislength=2.5, ax=None, clim=None, **kwargs): """Plot a vector field in the xy plane. Parameters ---------- v : triple or pair of array_like x, y and optionally z components of vector field. The z components are ignored. If the values are complex, the imaginary parts are ignored. grid : triple or pair of array_like The grid that was used to calculate *v*, see `sfs.util.xyz_grid()`. Any z components are ignored. Returns ------- Quiver See :func:`matplotlib.pyplot.quiver`. Other Parameters ---------------- ax : Axes, optional If given, the plot is created on *ax* instead of the current axis (see :func:`matplotlib.pyplot.gca`). clim : pair of float, optional Limits for the scaling of arrow colors. See :func:`matplotlib.pyplot.quiver`. cmap, headlength, headaxislength, **kwargs All further parameters are forwarded to :func:`matplotlib.pyplot.quiver`. """ v = _util.as_xyz_components(v[:2]).apply(_np.real) X, Y = _util.as_xyz_components(grid[:2]) speed = _np.linalg.norm(v) with _np.errstate(invalid='ignore'): U, V = v.apply(_np.true_divide, speed) if ax is None: ax = _plt.gca() if clim is None: v_ref = 1 / (_default.rho0 * _default.c) # reference particle velocity clim = 0, 2 * v_ref return ax.quiver(X, Y, U, V, speed, cmap=cmap, pivot='mid', units='xy', angles='xy', headlength=headlength, headaxislength=headaxislength, clim=clim, **kwargs) def add_colorbar(im, *, aspect=20, pad=0.5, **kwargs): r"""Add a vertical color bar to a plot. Parameters ---------- im : ScalarMappable The output of `sfs.plot2d.amplitude()`, `sfs.plot2d.level()` or any other `matplotlib.cm.ScalarMappable`. aspect : float, optional Aspect ratio of the colorbar. Strictly speaking, since the colorbar is vertical, it's actually the inverse of the aspect ratio. pad : float, optional Space between image plot and colorbar, as a fraction of the width of the colorbar. .. note:: The *pad* argument of :meth:`matplotlib.figure.Figure.colorbar` has a slightly different meaning ("fraction of original axes")! \**kwargs All further arguments are forwarded to :meth:`matplotlib.figure.Figure.colorbar`. See Also -------- matplotlib.pyplot.colorbar """ ax = im.axes divider = _axes_grid1.make_axes_locatable(ax) width = _axes_grid1.axes_size.AxesY(ax, aspect=1/aspect) pad = _axes_grid1.axes_size.Fraction(pad, width) current_ax = _plt.gca() cax = divider.append_axes("right", size=width, pad=pad) _plt.sca(current_ax) return ax.figure.colorbar(im, cax=cax, orientation='vertical', **kwargs)
import sys import numpy as np def minCostPath(cost,m,n): # cost is the matrix we are trying to traverse # m is the row idx of cost matrix # n is the column index of the cost matrix if (n < 0) or (m < 0): return sys.maxsize elif n == 0 and m == 0: return cost[m][n] else: return cost[m][n] + min (minCostPath(cost,m-1,n),\ minCostPath(cost,m,n-1),minCostPath(cost,m-1,n-1)) cost = [[1, 2, 3], [4, 7, 20], [1, 4, 3]] print(minCostPath(cost,2,2))
#!/usr/bin/env python # -*- encoding: utf-8 -*- """ @File : progressHelper.py @Time : 2018/12/28 @Author : Yaronzz @Version : 2.0 @Contact : yaronhuang@foxmail.com @Desc : Show ProgressBar """ import sys import threading class ProgressTool(object): def __init__(self, maxCount, barLength=50, icon='▓', unit='', desc=''): self.curCount = 0 # 当前计数 self.maxCount = maxCount # 最大数量 self.barLength = barLength # 进度条长度 self.icon = icon # 进度符号 self.mutex = threading.Lock() # 互斥锁 self.isFinish = False self.unit = unit self.desc = '' if len(desc) > 0: self.desc = '(' + desc + ')' def reset(self, maxCount): if self.mutex.acquire(): self.curCount = 0 self.maxCount = maxCount self.isFinish = False self.mutex.release() def setCurCount(self, curCount): if self.mutex.acquire(): if self.isFinish is False: if curCount >= self.maxCount: curCount = self.maxCount self.isFinish = True self.curCount = curCount self.__show__() self.mutex.release() def addCurCount(self, addCount): count = self.curCount + addCount self.setCurCount(count) def step(self): count = self.curCount + 1 self.setCurCount(count) def __show__(self): try: # 计算显示几个进度块 numBlock = int(self.curCount * self.barLength / self.maxCount) # 计算显示多少个'>' # 计算显示几个空格 numEmpty = self.barLength - numBlock # 计算百分比 percent = self.curCount * 100.0 / self.maxCount # 输出字符串 process = '%3d' % percent + '%|' process += self.icon * numBlock + ' ' * numEmpty + '| ' process += str(round(self.curCount, 2)) + '/' process += str(round(self.maxCount, 2)) + ' ' + self.unit + self.desc # 判断是否要换行 process += '\r' if self.curCount < self.maxCount else '\n' sys.stdout.write(process) sys.stdout.flush() except: pass
from sortedcontainers import SortedList import numpy as np from .utils import log_grad def identify_turning_points( x_raw, local_radius=17, peak_ratio=0.2, min_log_grad=0.01): """ Identifies the set of 'turning points' in a time series. Time complexity is O(N log(local_radius)). Parameters ---------- x_raw : array_like the time series, should be convertible to a 1D numpy array local_radius : int a peak/trough must satisfy the condition of being the max/min of any values within 'local_radius' time steps forwards or backwards peak_ratio : float a peak must satisfy the condition of being at least peak_ratio * the value of the previous peak min_log_grad : float a turning point must satisfy the condition of having a log_gradient magnitude of at least min_log_grad from the previous turning point Returns ------- array-like sequence of 0-based indices representing the identified turning points. The first turning point will be a trough, and proceed to alternate between peak and trough. """ x = np.array(x_raw) x[x<0] = 0 # Preprocess: cache right-side peak/trough neighbourhood validity, O(N logN) # valid_peak[i] = True iff x[i] >= max(x[i+1], ..., x[i+local_radius]) # valid_trough[i] = True iff x[i] <= min(x[i+1], ..., x[i+local_radius]) valid_peak = np.full((len(x)), False) valid_trough = np.full((len(x)), False) next_values = SortedList([x[-1]]) valid_peak[-1] = True valid_trough[-1] = True for i in range(len(x)-2, -1, -1): valid_peak[i] = x[i] >= next_values[-1] valid_trough[i] = x[i] <= next_values[0] if i + local_radius < len(x): next_values.remove(x[i+local_radius]) # O(log l) next_values.add(x[i]) # O(log l) # For now, we assume the first TP will be a trough. # TODO: Generalise to allow for starting at a peak. tps = [0] recent_values = SortedList([x[0]]) for i in range(1, len(x)): # Update peak/trough validity based on left-side neighbourhood. valid_peak[i] &= (x[i] >= recent_values[-1]) valid_trough[i] &= (x[i] <= recent_values[0]) if len(tps) % 2 == 1: # The last TP we addded was a trough (odd number of turning points). if x[i] < x[tps[-1]]: # Replace last trough with this lower one. tps[-1] = i elif (x[i] > x[tps[-1]] and valid_peak[i] and (len(tps) < 2 or x[i] >= x[tps[-2]] * peak_ratio) and abs(log_grad(tps[-1], x[tps[-1]], i, x[i])) >= min_log_grad): # New peak: greater-or-equal to surrounding 'l' values and greater than # previous trough and passes peak ratio check with prev peak and # log_grad ratio check with prev trough. tps.append(i) else: # The last TP we added was a peak. if x[i] > x[tps[-1]]: # Replace recent peak with this one. tps[-1] = i elif (x[i] < x[tps[-1]] and valid_trough[i] and abs(log_grad(tps[-1], x[tps[-1]], i, x[i])) >= min_log_grad): # New trough: less-or-equal to surrounding 'l' values and less than # previous peak and passes log_grad ratio check with prev peak. tps.append(i) if i >= local_radius: recent_values.remove(x[i-local_radius]) recent_values.add(x[i]) return tps
#!/usr/bin/env python # -*- coding: utf-8 -*- """ File: convert_camrest_data.py """ import json import ast import numpy as np def convert_text_for_sample(input_file, out_file): kbs = [] dialogs = [] count = 0 with open(input_file, 'r') as fr, open(out_file, 'w') as fw: for line in fr: line = line.strip() if line: if 'R_' in line: triple = line.split()[1:] triple_str = ' '.join(triple).replace('R_', '') kbs.append(triple_str) elif 'api_call' in line: usr_sent = line.split('\t')[0] usr_sent = ' '.join(usr_sent.split()[1:]) elif '<SILENCE>' in line: sys_sent = line.split('\t')[1] assert usr_sent is not None dialog = usr_sent + '\t' + sys_sent dialogs.append(dialog) else: u, s = line.split('\t') u = ' '.join(u.split()[1:]) dialog = u + '\t' + s dialogs.append(dialog) else: new_kbs = [] entities = [] for triple in kbs: subj, rel, obj = triple.split() entities.append(subj) entities.append(obj) poi_triple = [subj, 'poi', subj] poi_triple = ' '.join(poi_triple) if poi_triple not in new_kbs: new_kbs.append(poi_triple) new_kbs.append(triple) gold_ents = [] entities = set(entities) for i, dialog in enumerate(dialogs): u, s = dialog.split('\t') sys_toks = s.split() gold_entity = [] for tok in sys_toks: if tok in entities: gold_entity.append(tok) gold_ents.append(gold_entity) for triple in new_kbs: kb_line = '0 ' + triple fw.write(kb_line) fw.write('\n') assert len(gold_ents) == len(dialogs) for i, dialog in enumerate(dialogs): dialog_line = str(i+1) + ' ' + dialog + '\t' + str(gold_ents[i]) fw.write(dialog_line) fw.write('\n') fw.write('\n') kbs = [] dialogs = [] count += 1 print("total dialogs:", count) def convert_text_for_model(input_file, out_file): all_samples = [] sample = {} uid = [] dialog = [] kb = [] gold_entity = [] ptr_index = [] kb_index = [] with open(input_file, 'r') as fr: for line in fr: line = line.strip() if line: if line.startswith('0'): triple = line.split()[1:] kb_triple = ' '.join(triple) kb.append(kb_triple) else: u, s, gold_ent = line.split('\t') u = " ".join(u.split()[1:]) uid.append('1') dialog.append(u) uid.append('0') dialog.append(s) gold_ent = ast.literal_eval(gold_ent) gold_entity.append(gold_ent) ptr = [1 if (w in gold_ent and len(kb) > 0) else 0 for w in s.split()] ptr_index.append(ptr) if len(kb) == 0: kb_ptr = [0] else: kb_ptr = [] for triple in kb: tup = triple.split() assert len(tup) == 3 sub, rel, obj = tup[0], tup[1], tup[2] if obj in s.split(): kb_ptr.append(1) else: kb_ptr.append(0) kb_index.append(kb_ptr) else: sample['task'] = 'restaurant' sample['uid'] = uid sample['dialog'] = dialog sample['gold_entity'] = gold_entity sample['ptr_index'] = ptr_index sample['kb_index'] = kb_index if len(kb) == 0: sample['kb'] = ["<pad> <pad> <pad>"] else: sample['kb'] = kb all_samples.append(sample) sample = {} uid = [] dialog = [] kb = [] gold_entity = [] ptr_index = [] kb_index = [] print("total samples:", len(all_samples)) for i, s in enumerate(all_samples): if len(s['uid']) == 0: print("index=%d utterance is None! filtered." % i) del all_samples[i] print("max utterances:", max([len(s['uid']) for s in all_samples])) # 16 print("min utterances:", min([len(s['uid']) for s in all_samples])) # 4 print("avg utterances:", np.mean([len(s['uid']) for s in all_samples])) # 7.98 / 8.32 / 8.32 print("max kb triples:", max([len(s['kb']) for s in all_samples])) # 452 / 248 / 112 print("min kb triples:", min([len(s['kb']) for s in all_samples])) # 1 print("avg kb triples:", np.mean([len(s['kb']) for s in all_samples])) # 23.57 / 21.64 / 22.62 with open(out_file, 'w') as fw: for sample in all_samples: line = json.dumps(sample) fw.write(line) fw.write('\n') if __name__ == '__main__': data_dir = "./data/CamRest" modes = ['train', 'dev', 'test'] for mode in modes: input_file1 = "%s/camrest676-%s.txt" % (data_dir, mode) out_file1 = "%s/%s.txt" % (data_dir, mode) convert_text_for_sample(input_file1, out_file1) for mode in modes: input_file2 = "%s/%s.txt" % (data_dir, mode) out_file2 = "%s/%s.data.txt" % (data_dir, mode) convert_text_for_model(input_file2, out_file2)
#!/usr/bin/env python3 """ FormatBlock - Escape Codes Functions to test against/strip terminal escape codes from strings. -Christopher Welborn 2-17-18 """ import re from typing import ( Any, Dict, List, ) _codepats = ( # Colors. r'(([\d;]+)?m{1})', # Cursor show/hide. r'(\?25l)', r'(\?25h)', # Move position. r'(([\d]+[;])?([\d]+[Hf]))', # Save/restore position. r'([su])', # Others (move, erase). r'([\d]+[ABCDEFGHJKST])', ) # Used to strip escape codes from a string. codepat = re.compile( '\033\[({})'.format('|'.join(_codepats)) ) # Used to grab codes from a string. codegrabpat = re.compile('\033\[[\d;]+?m{1}') def get_codes(s: Any) -> List[str]: """ Grab all escape codes from a string. Returns a list of all escape codes. """ return codegrabpat.findall(str(s)) def get_code_indices(s: Any) -> Dict[int, str]: """ Retrieve a dict of {index: escape_code} for a given string. If no escape codes are found, an empty dict is returned. """ indices = {} i = 0 codes = get_codes(s) for code in codes: codeindex = s.index(code) realindex = i + codeindex indices[realindex] = code codelen = len(code) i = realindex + codelen s = s[codeindex + codelen:] return indices def get_indices(s: Any) -> Dict[int, str]: """ Retrieve a dict of characters and escape codes with their real index into the string as the key. """ codes = get_code_indices(s) if not codes: # This function is not for non-escape-code stuff, but okay. return {i: c for i, c in enumerate(s)} indices = {} for codeindex in sorted(codes): code = codes[codeindex] if codeindex == 0: indices[codeindex] = code continue # Grab characters before codeindex. start = max(indices or {0: ''}, key=int) startcode = indices.get(start, '') startlen = start + len(startcode) indices.update({i: s[i] for i in range(startlen, codeindex)}) indices[codeindex] = code if not indices: return {i: c for i, c in enumerate(s)} lastindex = max(indices, key=int) lastitem = indices[lastindex] start = lastindex + len(lastitem) textlen = len(s) if start < (textlen - 1): # Grab chars after last code. indices.update({i: s[i] for i in range(start, textlen)}) return indices def get_indices_list(s: Any) -> List[str]: """ Retrieve a list of characters and escape codes where each escape code uses only one index. The indexes will not match up with the indexes in the original string. """ indices = get_indices(s) return [ indices[i] for i in sorted(indices, key=int) ] def is_escape_code(s: Any) -> bool: """ Returns True if `s` appears to be any kind of escape code. """ return codepat.match(str(s)) is not None def strip_codes(s: Any) -> str: """ Strip all color codes from a string. Returns empty string for "falsey" inputs. """ return codepat.sub('', str(s) if (s or (s == 0)) else '')
#coding=utf-8 import pandas as pd import statsmodels.api as sm #import pylab import glob def Lowess_detrend(x,y): # z = sm.nonparametric.lowess(y, x) # z1 = sm.nonparametric.lowess(y, x, frac=0.1) # z45 = sm.nonparametric.lowess(y, x, frac=0.45) z9 = sm.nonparametric.lowess(y, x, frac=0.9) # pylab.plot(x, y, 'o') # pylab.plot(z[:,0], z[:,1], 'r-') # pylab.plot(z1[:,0], z1[:,1], 'g-') # pylab.plot(z45[:,0], z45[:,1], 'b-') # pylab.plot(z9[:,0], z9[:,1], 'y-') # pylab.show() return z9[:,1] if __name__ == '__main__': base_dir = r'F:\crop-climate\crucsv\*.csv' filelist = glob.glob(base_dir) zero_list=[0]*116 for filename in filelist: df = pd.read_csv(filename) #用pandas读入数据 grid_id=filename[-10:-4] year_list = df['Year'] #获取年份列("Year")的数据 # dataframe1=pd.DataFrame({'Year':year_list}) dataframe2=pd.DataFrame({'Year':year_list}) factor=['Cld','Pre','Tmn','Tmp','Tmx'] for f in factor: cru_list = df[f] if len(set(cru_list))==1: break ys=Lowess_detrend(year_list, cru_list) if list(ys)==zero_list: break # dataframe1[f]=cru_list-ys dataframe2[f]=cru_list/ys if len(set(cru_list))==1 or list(ys)==zero_list: continue # dataframe1.to_csv(r'F:\crop-climate\cru_detrend\lowess-additive/%s.csv' % (grid_id),index=False) dataframe2.to_csv(r'F:\crop-climate\cru_detrend\lowess-multiplicative/%s.csv' % (grid_id),index=False)
# -*- coding: utf-8 -*- ''' Anonymize reactions: randomize participant ids so that they do not match the ids of the source data. ''' import gazelib import random def run(input_files, output_files): # Read reaction sequences seqs = gazelib.io.load_json(input_files[0]) # Generate 100 random participant ids and # consume them, one per participant. This way we avoid # overlapping ids. Still, ensure that the sequence remains the same # between runs by seeding the generator. random.seed(420) new_ids = list(map(lambda x: str(x).zfill(4), range(100,200))) random.shuffle(new_ids) # Mapping from head_id to new id. If head_id is faced after generating # iteration, we do not generate a new one but use the one stored here. head_id_to_new_id = {} for seq in seqs: if len(seq) > 0: head_id = seq[0]['head_id'] if head_id in head_id_to_new_id: new_id = head_id_to_new_id[head_id] else: # Get new id new_id = new_ids.pop(0) head_id_to_new_id[head_id] = new_id # Overwrite true participant ids for trial in seq: trial['head_id'] = new_id gazelib.io.write_json(output_files[0], seqs, human_readable=True)
__author__ = 'Thomas Kountis' class BaseWhitelist(object): def __init__(self): pass def allow(self, host, port): pass class DefaultWhitelist(BaseWhitelist): def __init__(self): BaseWhitelist.__init__(self) def allow(self, host, port): return True class StaticListWhitelist(BaseWhitelist): def __init__(self, allowed): BaseWhitelist.__init__(self) self.allowed = allowed def allow(self, host, port): return host in self.allowed
# Copyright (c) 2015-2020 The Botogram Authors (see AUTHORS) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. from . import syntaxes def process(bot, chains, update): """Process an inline update""" for hook in chains["inline"]: bot.logger.debug("Processing update #%s with the hook %s..." % (update.update_id, hook.name)) result = hook.call(bot, update) if result is {'ok': True, 'result': True}: bot.logger.debug("Update #%s was just processed by the %s hook." % (update.update_id, hook.name)) return bot.logger.debug("No hook actually processed the #%s update." % update.update_id) def inline_feedback_process(bot, chains, update): """Process a chosen inline result update""" for hook in chains["inline_feedback"]: bot.logger.debug("Processing update #%s with the hook %s..." % (update.update_id, hook.name)) result = hook.call(bot, update) if result is {'ok': True}: bot.logger.debug("Update #%s was just processed by the %s hook." % (update.update_id, hook.name)) return bot.logger.debug("No hook actually processed the #%s update." % update.update_id) class InlineInputMessage: """A factory for InputMessageContent Telegram objects""" def __init__(self, text, syntax=None, preview=True): self.text = text self.syntax = syntax self.preview = preview def _serialize(self): args = { "message_text": self.text, "disable_web_page_preview": not self.preview, } syntax = syntaxes.guess_syntax(self.text, self.syntax) if syntax: args["parse_mode"] = syntax return args class InlineInputLocation: """A factory for InputLocationMessageContent Telegram objects""" def __init__(self, latitude, longitude, live_period=None): self.latitude = latitude self.longitude = longitude self.live_period = live_period def _serialize(self): args = { "latitude": self.latitude, "longitude": self.longitude, } if self.live_period is not None: args["live_period"] = self.live_period return args class InlineInputVenue: """A factory for InputVenueMessageContent Telegram objects""" def __init__(self, latitude, longitude, title, address, foursquare_id=None, foursquare_type=None): self.latitude = latitude self.longitude = longitude self.title = title self.address = address self.foursquare_id = foursquare_id self.foursquare_type = foursquare_type def _serialize(self): args = { "latitude": self.latitude, "longitude": self.longitude, "title": self.title, "address": self.address, } if self.foursquare_id is not None: args["foursquare_id"] = self.foursquare_id if self.foursquare_type is not None: args["foursquare_type"] = self.foursquare_type return args class InlineInputContact: """A factory for InputContactMessageContent Telegram objects""" def __init__(self, phone, first_name, last_name=None, vcard=None): self.phone_number = phone self.first_name = first_name self.last_name = last_name self.vcard = vcard def _serialize(self): args = { "phone_number": self.phone_number, "first_name": self.first_name, } if self.last_name is not None: args["last_name"] = self.last_name if self.vcard is not None: args["vcard"] = self.vcard return args
from flask import ( Blueprint, redirect, render_template, request, flash, ) from flask_babel import gettext from flask_login import login_required from app.models import EmailOut from .forms import * from .logic import get_emails, send_email from app.modules.contacts.logic import get_contact emails = Blueprint('emails', __name__, template_folder='templates') # List @emails.route("/") @login_required def index(): emails_out = get_emails() return render_template('emails/index.html', emails=emails_out ) # View @emails.route("/<email_id>/") @login_required def view(email_id): email = EmailOut.query.get(email_id) return render_template('emails/view.html', email=email ) # ADD @emails.route("/send", methods=('GET', 'POST')) @login_required def send(): form_email = FormEmailOut() if form_email.validate_on_submit(): send_email(form_email) if 'return_url' in request.args: return redirect(request.args.get('return_url')) return redirect('/account/emails/') if 'contact_id' in request.args and 'return_url' in request.args: contact = get_contact(request.args.get('contact_id')) form_email.email_recipient.data = contact.email flash(gettext( 'Sending email to {}'.format(contact.email) )) return_url = request.args.get('return_url') return render_template('emails/send.html', form_email=form_email, contact=contact, return_url=return_url ) return render_template('emails/send.html', form_email=form_email )
import argparse import logging import time from collections import Counter from pathlib import Path import PIL import cv2 import numpy as np import torch from utils.datasets import LoadImages from constants import DEFAULT_IOU_THRESHOLD, DEFAULT_CONF_THRESHOLD, DEFAULT_DETECTED_IMAGE_DIR, \ DEFAULT_INPUT_RESOLUTION, RED, BLUE, END_COLOR, NORMALIZATION_FACTOR from python_model.coreml_model import CoreMLModel from python_model.pytorch_model import PyTorchModel from python_model.tflite_model import TFLiteModel from python_utils.plots import plot_boxes IMG_FORMATS = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] class Detector: def __init__(self, model_path, pt_input_resolution=DEFAULT_INPUT_RESOLUTION): logging.basicConfig(format='%(asctime)s %(message)s', datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) self.model_path = model_path self.pt_input_resolution = pt_input_resolution self.__init_model() def __init_model(self): # Init model (TFLite, CoreML, PyTorch) self.model_name = Path(self.model_path).name if not Path(self.model_path).exists(): logging.info(f"{RED}Model not found:{END_COLOR} '{self.model_path}'") exit(0) logging.info('SETUP: finding the type of the model...') if self.model_name.endswith('.tflite'): logging.info('- The model is a TFLite model.') self.prefix = 'tflite' try: self.model = TFLiteModel(self.model_path) except ValueError as e: raise ValueError(f"{RED}An error occured while initializing the model:{END_COLOR} {e}") self.do_normalize, self.img_size, self.batch_size, self.pil_image, self.channel_first = self.model.get_input_info() self.labels = self.model.get_labels() elif self.model_name.endswith('.mlmodel'): logging.info('- The model is a CoreML model.') self.prefix = 'coreml' try: self.model = CoreMLModel(self.model_path) except Exception as e: raise Exception(f"{RED}An error occured while initializing the model:{END_COLOR} {e}") self.do_normalize, self.img_size, self.batch_size, self.pil_image, self.channel_first = self.model.get_input_info() self.labels = self.model.get_labels() elif self.model_name.endswith('.onnx'): logging.info('- The model is a ONNX model.') self.prefix = 'onnx' try: self.model = ONNXModel(self.model_path) except Exception as e: raise Exception(f"{RED}An error occurred while initializing the model:{END_COLOR} {e}") self.do_normalize, self.img_size, self.batch_size, self.pil_image, self.channel_first = self.model.get_input_info() self.labels = self.model.get_labels() elif self.model_name.endswith('.pt'): logging.info('- The model is a PyTorch model.') self.prefix = 'pytorch' try: self.model = PyTorchModel(self.model_path, self.pt_input_resolution) except Exception as e: raise Exception(f"{RED}An error occured while initializing the model:{END_COLOR} {e}") self.do_normalize, self.img_size, self.batch_size, self.pil_image, self.channel_first = self.model.get_input_info() self.labels = self.model.get_labels() else: logging.info( f"{RED}Model format not supported:{END_COLOR} {self.model_name}. Supported format: .mlmodel, .onnx, .tflite, .pt.") exit(0) def detect_image(self, img, iou_threshold=DEFAULT_IOU_THRESHOLD, conf_threshold=DEFAULT_CONF_THRESHOLD): img = img.float() if self.do_normalize: # Normalize image img = img.float() / NORMALIZATION_FACTOR if not self.channel_first: img = img.permute(1, 2, 0) if self.pil_image: img = PIL.Image.fromarray(img.numpy().astype(np.uint8), 'RGB') else: img = img.unsqueeze(0) # Inference start_time = time.time() yxyx, classes, scores, nb_detected = self.model.predict(img, iou_threshold, conf_threshold) inference_time = time.time() - start_time yxyx = yxyx if isinstance(yxyx, torch.Tensor) else torch.from_numpy(yxyx) classes = classes if isinstance(classes, torch.Tensor) else torch.from_numpy(classes) scores = scores if isinstance(scores, torch.Tensor) else torch.from_numpy(scores) return yxyx, classes, scores, nb_detected, inference_time def detect(self, img_dir, max_img=-1, out_path=DEFAULT_DETECTED_IMAGE_DIR, iou_threshold=DEFAULT_IOU_THRESHOLD, conf_threshold=DEFAULT_CONF_THRESHOLD, save_img=True, return_image=False, verbose=True): img_path = Path(img_dir) out_path = Path(out_path) if not img_path.exists(): logging.info(f"{RED}Directory not found:{END_COLOR} {img_dir}.") exit(1) dataset = LoadImages(img_dir, img_size=self.img_size, auto=False) if not out_path.exists() and save_img: out_path.mkdir(exist_ok=True, parents=True) detections = [] inference_times = [] image_names = [] imgs_annotated = [] try: if verbose: logging.info(f"{BLUE}DETECTION START{END_COLOR}") for i, (img_path, img, img_orig, _) in enumerate(dataset): if max_img != -1 and (i + 1) * self.batch_size > max_img: break img_name = Path(img_path).name image_names.append(img_name) if verbose: logging.info( f"{BLUE}Image {i + 1}:{END_COLOR} ({img_name}: {img_orig.shape[0]}x{img_orig.shape[1]})") img = torch.from_numpy(img) yxyx, classes, scores, nb_detected, inference_time = self.detect_image(img, iou_threshold=iou_threshold, conf_threshold=conf_threshold) end_time = time.time() inference_times.append(inference_time) # Plot the bounding box if save_img or return_image: plot_boxes(self.img_size, [img_orig], yxyx, classes, scores, nb_detected, self.labels) end_plot_time = time.time() # Save the results img_annotated = img_orig out_path_img = str(out_path / f"{self.prefix}_{img_name.rsplit('.')[0]}_boxes_{self.model_name.rsplit('.')[0]}.png") if save_img: cv2.imwrite(out_path_img, img_annotated) if return_image: imgs_annotated.append(img_annotated) counter = get_counter_detections(self.labels, classes, nb_detected) if verbose: logging.info(f"\t- {sum([v for v in counter.values()])} detected objects") for k, v in counter.items(): logging.info(f"\t\t{v} {k}{'s' if v > 1 else ''}") detections.append({k: v for k, v in counter.items()}) if verbose: logging.info( f"\t- It took {inference_time:.3f} seconds to run the inference") if save_img: logging.info(f"\t- It took {end_plot_time - end_time:.3f} seconds to plot the results.") logging.info(f"The output is saved in {out_path_img}.") except IndexError as e: raise IndexError(f"An error occured during the detection: {e}") return detections, inference_times, image_names, imgs_annotated def get_counter_detections(labels, classes, nb_detected): # Get the number of detections and their label nb_det = int(nb_detected[0]) detected_objects = [labels[int(x)] for x in classes[0][:nb_det]] counter = Counter(detected_objects) return counter if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--model', type=str, required=True, help=f"The path to the converted model (tflite or coreml).") parser.add_argument('--img-dir', type=str, required=True, help=f"The path to the images.") parser.add_argument('--max-img', type=int, default=-1, help="The number of images to predict (maximum) among all the images in the directory. Default: -1 (no limit: all images in the directory will be processed).") parser.add_argument('--out', type=str, default=DEFAULT_DETECTED_IMAGE_DIR, help=f"The path to the output directory (where to save the results). Default: '{DEFAULT_DETECTED_IMAGE_DIR}'.") parser.add_argument('--iou-threshold', type=float, default=DEFAULT_IOU_THRESHOLD, help=f'IoU threshold. Default: {DEFAULT_IOU_THRESHOLD}') parser.add_argument('--conf-threshold', type=float, default=DEFAULT_CONF_THRESHOLD, help=f'Confidence threshold. Default: {DEFAULT_CONF_THRESHOLD}') parser.add_argument('--no-save', action='store_true', help="If set, does not save the images.") opt = parser.parse_args() detector = Detector(opt.model) detector.detect(img_dir=opt.img_dir, max_img=opt.max_img, out_path=opt.out, iou_threshold=opt.iou_threshold, conf_threshold=opt.conf_threshold, save_img=not opt.no_save)
import tensorflow as tf from utils.bert import bert_utils from task_module import pretrain, classifier, pretrain_albert def get_pretrain_logits(model_config, model_api, features, labels, logits, mode, target, embedding_table_adv=None, embedding_seq_adv=None, stop_gradient=False, sampled_binary_mask=None, is_training=True, pretrain_loss_type="normal", emb_adv_pos="emb_adv_post", **kargs): model = model_api(model_config, features, labels, mode, target, reuse=tf.AUTO_REUSE, embedding_table_adv=embedding_table_adv, embedding_seq_adv=embedding_seq_adv, stop_gradient=stop_gradient, emb_adv_pos=emb_adv_pos, **kargs) if model_config.model_type == 'bert': masked_lm_fn = pretrain.get_masked_lm_output seq_masked_lm_fn = pretrain.seq_mask_masked_lm_output print("==apply bert masked lm==") elif model_config.model_type == 'albert': masked_lm_fn = pretrain_albert.get_masked_lm_output seq_masked_lm_fn = pretrain_albert.seq_mask_masked_lm_output print("==apply albert masked lm==") elif model_config.model_type == 'funnelbert': masked_lm_fn = pretrain.get_masked_lm_output seq_masked_lm_fn = pretrain.seq_mask_masked_lm_output print("==apply funnelbert masked lm==") else: masked_lm_fn = pretrain.get_masked_lm_output seq_masked_lm_fn = pretrain_albert.seq_mask_masked_lm_output print("==apply bert masked lm==") if model_config.get("model_type", "bert") == "funnelbert": if n_block > 1 and model_config.get('pretrain_loss', "ae") == "ae": seq_masked_lm_fn = pretrain.denoise_autoencoder discriminator_mode = model_config.get('discriminator_mode', "ce_loss") loss_converage = model_config.get("loss_converage", 'global') tf.logging.info("***** discriminator_mode: %s *****"%(discriminator_mode)) tf.logging.info("***** loss_converage: %s *****"%(loss_converage)) tf.logging.info(seq_masked_lm_fn) model_config.corrupted = True tf.logging.info("*** apply reconstruction ***") if loss_converage in ['global']: sampled_binary_mask = tf.identity(features['input_mask']) tf.logging.info("***** loss_converage: %s ***** with input-mask"%(loss_converage)) elif loss_converage in ['local']: sampled_binary_mask = tf.reduce_sum(features['target_mapping'], axis=1) tf.logging.info("***** loss_converage: %s ***** with target-mapping mask"%(loss_converage)) else: discriminator_mode = model_config.get('discriminator_mode', "ce_loss") loss_converage = model_config.get("loss_converage", 'global') tf.logging.info(seq_masked_lm_fn) else: discriminator_mode = "ce_loss" loss_converage = model_config.get("loss_converage", 'global') tf.logging.info(seq_masked_lm_fn) tf.logging.info(masked_lm_fn) if input_ori_ids is not None and model_config.get("corrupted", True): (masked_lm_loss, masked_lm_example_loss, masked_lm_log_probs, masked_lm_mask) = seq_masked_lm_fn(model_config, model.get_sequence_output(output_type=return_type), model.get_embedding_table(), features['normal_input_mask'], features['input_ori_ids'], features['input_ids'], sampled_binary_mask, reuse=tf.AUTO_REUSE, embedding_projection=model.get_embedding_projection_table(), pretrain_loss_type="normal", discriminator_mode=discriminator_mode, loss_converage=loss_converage) masked_lm_ids = input_ori_ids tf.logging.info("*** apply sequential mlm loss ***") else: masked_lm_positions = features["masked_lm_positions"] masked_lm_ids = features["masked_lm_ids"] masked_lm_weights = features["masked_lm_weights"] (masked_lm_loss, masked_lm_example_loss, masked_lm_log_probs, masked_lm_mask) = masked_lm_fn( model_config, model.get_sequence_output(output_type=return_type), model.get_embedding_table(), masked_lm_positions, masked_lm_ids, masked_lm_weights, reuse=tf.AUTO_REUSE, embedding_projection=model.get_embedding_projection_table(), pretrain_loss_type="normal", discriminator_mode=discriminator_mode, loss_converage=loss_converage) tf.logging.info("*** apply bert-like mlm loss ***") return masked_lm_log_probs
from pelita.player import SimpleTeam from .demo_player import KangarooPlayer # (please use relative imports inside your package) # The default myteam factory function, which this package must export. # It must return an instance of `SimpleTeam` containing # the name of the myteam and the respective instances for # the first and second player. def team(): return SimpleTeam("Kangaroo Team", KangarooPlayer(), KangarooPlayer()) # For testing purposes, one may use alternate factory functions:: # # def alternate_team(): # return SimpleTeam("Our alternate Team", # AlternatePlayer(), AlternatePlayer()) # # To be used as follows:: # # $ pelita path_to/groupN/:alternate_team
# -*- coding: utf-8 -*- # Copyright (c) 2020-2021 Ramon van der Winkel. # All rights reserved. # Licensed under BSD-3-Clause-Clear. See LICENSE file for details. from django.utils import timezone from django.test import TestCase from BasisTypen.models import IndivWedstrijdklasse from Competitie.models import (Competitie, DeelCompetitie, CompetitieKlasse, LAAG_REGIO, LAAG_RK, LAAG_BK) import datetime def zet_competitie_fase(comp, fase): """ deze helper weet hoe de competitie datums gemanipuleerd moeten worden zodat models.Competitie.zet_fase() de gevraagde fase terug zal geven """ if fase == 'Z': comp.alle_bks_afgesloten = True comp.save() return comp.alle_bks_afgesloten = False now = timezone.now() vandaag = datetime.date(year=now.year, month=now.month, day=now.day) gister = vandaag - datetime.timedelta(days=1) morgen = vandaag + datetime.timedelta(days=1) if fase >= 'P': # BK fases comp.alle_rks_afgesloten = True if fase == 'P': comp.bk_eerste_wedstrijd = morgen comp.save() return comp.bk_eerste_wedstrijd = gister if fase == 'Q': comp.bk_laatste_wedstrijd = morgen # vandaag mag ook comp.save() return # fase R of S: vaststellen uitslagen + afsluiten BK comp.bk_laatste_wedstrijd = gister comp.save() return comp.alle_rks_afgesloten = False if fase >= 'K': # RK fases comp.alle_regiocompetities_afgesloten = True if fase == 'K': comp.rk_eerste_wedstrijd = morgen comp.save() return comp.rk_eerste_wedstrijd = gister if fase == 'L': comp.rk_laatste_wedstrijd = morgen # vandaag mag ook comp.save() return # fase M of N: vaststellen uitslag in elk rayon + afsluiten RK comp.rk_laatste_wedstrijd = gister comp.save() return comp.alle_regiocompetities_afgesloten = False # fase A begon toen de competitie werd aangemaakt if fase == 'A': comp.begin_aanmeldingen = morgen comp.klassegrenzen_vastgesteld = False comp.save() return if comp.competitieklasse_set.count() == 0: # pragma: no cover raise NotImplementedError("Kan niet naar fase %s zonder competitie klassen!" % fase) comp.klassegrenzen_vastgesteld = True comp.begin_aanmeldingen = gister if fase == 'B': comp.einde_aanmeldingen = morgen comp.save() return comp.einde_aanmeldingen = gister if fase == 'C': comp.einde_teamvorming = morgen # vandaag mag ook comp.save() return comp.einde_teamvorming = gister if fase == 'D': comp.eerste_wedstrijd = morgen comp.save() return comp.eerste_wedstrijd = gister if fase == 'E': comp.laatst_mogelijke_wedstrijd = morgen comp.save() return comp.laatst_mogelijke_wedstrijd = gister # fase F of G: vaststellen uitslag in elke regio + afsluiten regiocompetitie comp.save() return class TestCompetitieFase(TestCase): def test_zet_fase(self): now = timezone.now() now = datetime.date(year=now.year, month=now.month, day=now.day) einde_jaar = datetime.date(year=now.year, month=12, day=31) if now == einde_jaar: # pragma: no cover einde_jaar += datetime.timedelta(days=1) # needed once a year.. gisteren = now - datetime.timedelta(days=1) # maak een competitie aan en controleer de fase comp = Competitie() comp.begin_jaar = 2000 comp.uiterste_datum_lid = datetime.date(year=2000, month=1, day=1) comp.begin_aanmeldingen = comp.einde_aanmeldingen = comp.einde_teamvorming = einde_jaar comp.eerste_wedstrijd = comp.laatst_mogelijke_wedstrijd = einde_jaar comp.rk_eerste_wedstrijd = comp.rk_laatste_wedstrijd = einde_jaar comp.bk_eerste_wedstrijd = comp.bk_laatste_wedstrijd = einde_jaar comp.save() deelcomp_regio = DeelCompetitie(competitie=comp, is_afgesloten=False, laag=LAAG_REGIO) deelcomp_regio.save() deelcomp_rk = DeelCompetitie(competitie=comp, is_afgesloten=False, laag=LAAG_RK) deelcomp_rk.save() deelcomp_bk = DeelCompetitie(competitie=comp, is_afgesloten=False, laag=LAAG_BK) deelcomp_bk.save() comp.bepaal_fase() self.assertEqual(comp.fase, 'A') comp.begin_aanmeldingen = gisteren comp.bepaal_fase() self.assertEqual(comp.fase, 'A') # maak de klassen aan indiv = IndivWedstrijdklasse.objects.all()[0] CompetitieKlasse(competitie=comp, indiv=indiv, min_ag=0.0).save() comp.begin_aanmeldingen = comp.einde_aanmeldingen comp.bepaal_fase() self.assertEqual(comp.fase, 'A') comp.klassegrenzen_vastgesteld = True comp.bepaal_fase() self.assertEqual(comp.fase, 'A') # tussen begin en einde aanmeldingen = B comp.begin_aanmeldingen = gisteren comp.bepaal_fase() self.assertEqual(comp.fase, 'B') # na einde aanmeldingen tot einde_teamvorming = C comp.einde_aanmeldingen = gisteren comp.bepaal_fase() self.assertEqual(comp.fase, 'C') # na einde teamvorming tot eerste wedstrijd = D comp.einde_teamvorming = gisteren comp.bepaal_fase() self.assertEqual(comp.fase, 'D') # na eerste wedstrijd = E comp.eerste_wedstrijd = gisteren comp.bepaal_fase() self.assertEqual(comp.fase, 'E') # na laatste wedstrijd = F comp.laatst_mogelijke_wedstrijd = gisteren comp.bepaal_fase() self.assertEqual(comp.fase, 'F') # na afsluiten regio deelcomp = G deelcomp_regio.is_afgesloten = True deelcomp_regio.save() comp.bepaal_fase() self.assertEqual(comp.fase, 'G') comp.alle_regiocompetities_afgesloten = True comp.bepaal_fase() self.assertEqual(comp.fase, 'K') comp.rk_eerste_wedstrijd = gisteren comp.bepaal_fase() self.assertEqual(comp.fase, 'L') comp.rk_laatste_wedstrijd = gisteren comp.bepaal_fase() self.assertEqual(comp.fase, 'M') # na afsluiten RK = N deelcomp_rk.is_afgesloten = True deelcomp_rk.save() comp.bepaal_fase() self.assertEqual(comp.fase, 'N') comp.alle_rks_afgesloten = True comp.bepaal_fase() self.assertEqual(comp.fase, 'P') comp.bk_eerste_wedstrijd = gisteren comp.bepaal_fase() self.assertEqual(comp.fase, 'Q') comp.bk_laatste_wedstrijd = gisteren comp.bepaal_fase() self.assertEqual(comp.fase, 'R') # na afsluiten BK = S deelcomp_bk.is_afgesloten = True deelcomp_bk.save() comp.bepaal_fase() self.assertEqual(comp.fase, 'S') comp.alle_bks_afgesloten = True comp.bepaal_fase() self.assertEqual(comp.fase, 'Z') def test_zet_competitie_fase(self): """ test de helper functie die de competitie fase forceert """ einde_jaar = datetime.date(year=2000, month=12, day=31) comp = Competitie() comp.begin_jaar = 2000 comp.uiterste_datum_lid = datetime.date(year=2000, month=1, day=1) comp.begin_aanmeldingen = comp.einde_aanmeldingen = comp.einde_teamvorming = einde_jaar comp.eerste_wedstrijd = comp.laatst_mogelijke_wedstrijd = einde_jaar comp.rk_eerste_wedstrijd = comp.rk_laatste_wedstrijd = einde_jaar comp.bk_eerste_wedstrijd = comp.bk_laatste_wedstrijd = einde_jaar comp.save() comp.bepaal_fase() self.assertEqual(comp.fase, 'A') zet_competitie_fase(comp, 'A') comp.bepaal_fase() self.assertEqual(comp.fase, 'A') # maak de klassen aan en controleer de fase weer indiv = IndivWedstrijdklasse.objects.all()[0] CompetitieKlasse(competitie=comp, indiv=indiv, min_ag=0.0).save() zet_competitie_fase(comp, 'A') comp.bepaal_fase() self.assertEqual(comp.fase, 'A') comp.klassegrenzen_vastgesteld = True zet_competitie_fase(comp, 'A') comp.bepaal_fase() self.assertEqual(comp.fase, 'A') sequence = 'BCDEGKLNPQSQPNLKGEDCBKSEBZLQC' # let op! F en R kunnen niet for fase in sequence: zet_competitie_fase(comp, fase) comp.bepaal_fase() self.assertEqual(comp.fase, fase) # for # end of file
import time from authlib.integrations.sqla_oauth2 import OAuth2ClientMixin, OAuth2TokenMixin, OAuth2AuthorizationCodeMixin from sqlalchemy import Column, Integer, ForeignKey from sqlalchemy.orm import relationship from core.models import Base, ModelMixin class Client(Base, ModelMixin, OAuth2ClientMixin): __tablename__ = 'oauth_clients' user_id = Column(Integer, ForeignKey('user_users.id', ondelete='CASCADE')) user = relationship('User') class Token(Base, ModelMixin, OAuth2TokenMixin): __tablename__ = 'oauth_tokens' user_id = Column(Integer, ForeignKey('user_users.id', ondelete='CASCADE')) user = relationship('User') def is_refresh_token_active(self): if self.revoked: return False expires_at = self.issued_at + self.expires_in * 2 return expires_at >= time.time() class AuthorizationCode(Base, ModelMixin, OAuth2AuthorizationCodeMixin): __tablename__ = 'oauth_codes' user_id = Column(Integer, ForeignKey('user_users.id', ondelete='CASCADE')) user = relationship('User')
import logging import unittest import psycopg2 import sqlalchemy import testing.postgresql from pedsnetdcc.indexes import _indexes_sql, add_indexes, drop_indexes from pedsnetdcc.utils import make_conn_str, stock_metadata from pedsnetdcc.transform_runner import TRANSFORMS from pedsnetdcc.db import Statement logging.basicConfig(level=logging.DEBUG, filename="logfile") Postgresql = None def setUpModule(): # Generate a Postgresql class which caches the init-ed database across # multiple ephemeral database cluster instances. global Postgresql Postgresql = testing.postgresql.PostgresqlFactory( cache_intialized_db=True) def tearDownModule(): # Clear cached init-ed database at end of tests. Postgresql.clear_cache() class IndexesTest(unittest.TestCase): def setUp(self): self.model_version = '2.2.0' def test_add_indexes(self): sql = _indexes_sql(self.model_version) sample_expected = ( 'CREATE INDEX obs_otcn_89a4742c38ecb8ba35_ix ON observation (observation_type_concept_name)', # noqa 'CREATE INDEX dea_s_4906dc6995505fc71431f_ix ON death (site)', 'CREATE INDEX vis_vsaim_f1537dca8da9ab914_ix ON visit_occurrence (visit_start_age_in_months)', # noqa ) for sample in sample_expected: self.assertIn(sample, sql) sample_not_expected = ( 'CREATE INDEX idx_concept_vocabulary_id ON concept (vocabulary_id)', # noqa ) for sample in sample_not_expected: self.assertNotIn(sample, sql) def test_drop_indexes(self): sql = _indexes_sql(self.model_version, drop=True) sample_expected = ( 'DROP INDEX obs_otcn_89a4742c38ecb8ba35_ix', 'DROP INDEX dea_s_4906dc6995505fc71431f_ix', 'DROP INDEX vis_vsaim_f1537dca8da9ab914_ix' ) for sample in sample_expected: self.assertIn(sample, sql) sample_not_expected = ( 'DROP INDEX idx_concept_vocabulary_id ON concept (vocabulary_id)', ) for sample in sample_not_expected: self.assertNotIn(sample, sql) def test_add_indexes_for_vocabulary(self): sql = _indexes_sql(self.model_version, vocabulary=True) sample_expected = ( 'CREATE INDEX idx_concept_class_id ON concept (concept_class_id)', 'CREATE INDEX idx_concept_synonym_id ON concept_synonym (concept_id)' # noqa ) for sample in sample_expected: self.assertIn(sample, sql) sample_not_expected = ( 'CREATE INDEX con_lcn_f7a508db6a172c78291_ix ON concept_synonym (language_concept_name)', # noqa 'CREATE INDEX con_s_d9ad76e415cb919c49e49_ix ON concept_class (site)' # noqa ) for sample in sample_not_expected: self.assertNotIn(sample, sql) class IndexesDatabaseTest(unittest.TestCase): def setUp(self): # Create a postgres database in a temp directory. self.postgresql = Postgresql() self.dburi = self.postgresql.url() self.conn_str = make_conn_str(self.dburi) self.engine = sqlalchemy.create_engine(self.dburi) # Create transformed pedsnet metadata self.model_version = '2.2.0' self.metadata = stock_metadata(self.model_version) for t in TRANSFORMS: self.metadata = t.modify_metadata(self.metadata) def tearDown(self): # Destroy the postgres database. self.postgresql.stop() def expected_measurement_index_names(self): # Return a set of expected measurement (non-vocab) index names. # This may need to be modified if the PEDSnet CDM or transformations # change. return {'idx_measurement_concept_id', 'idx_measurement_person_id', 'idx_measurement_visit_id', 'mea_pcn_74e171086ab53fdef03_ix', 'mea_maim_fafec5cb283b981155_ix', 'mea_mcn_2396c11b8e9dc80fad6_ix', 'mea_mraim_b3652804e85e68491_ix', 'mea_ucn_a1d8526ef0526700f9b_ix', 'mea_vacn_cdbccecc93bc04359c_ix', 'mea_mtcn_0512b6f39c80e05694_ix', 'mea_ocn_adee9ca63d3ce5cf5ca_ix', 'mea_mscn_a15f3175cfbed7967a_ix', 'mea_rlocn_49286b9222656be21_ix', 'mea_s_c389be51cb02c33ef7d70_ix', 'mea_rhocn_2ddf11b3636910434_ix', } def expected_concept_index_names(self): # Return a set of expected concept (vocab) index names. return {'idx_concept_class_id', 'idx_concept_code', 'idx_concept_domain_id', 'idx_concept_vocabulary_id', } def test_drop(self): # Instantiate the transformed pedsnet database structure. self.metadata.create_all(self.engine) # Grab the measurement table created measurement = sqlalchemy.Table('measurement', sqlalchemy.MetaData(), autoload=True, autoload_with=self.engine) index_names = [i.name for i in measurement.indexes] # Check that the measurement table has all extra indexes. for idx in self.expected_measurement_index_names(): self.assertIn(idx, index_names) # Drop indexes on the non-vocabulary tables. drop_indexes(self.conn_str, self.model_version) # Check that the measurement table has no indexes measurement = sqlalchemy.Table('measurement', sqlalchemy.MetaData(), autoload=True, autoload_with=self.engine) self.assertEqual(len(measurement.indexes), 0) # Check that vocab indexes were not dropped concept = sqlalchemy.Table('concept', sqlalchemy.MetaData(), autoload=True, autoload_with=self.engine) concept_index_names = [i.name for i in concept.indexes] self.assertNotEqual(self.expected_concept_index_names(), concept_index_names) # Check that an exception is raised when double-dropping with self.assertRaises(psycopg2.ProgrammingError): drop_indexes(self.conn_str, self.model_version) def test_add(self): # Instantiate the transformed pedsnet database structure. self.metadata.create_all(self.engine) # Drop indexes on the non-vocabulary tables. drop_indexes(self.conn_str, self.model_version) # Drop indexes on vocabulary tables. drop_indexes(self.conn_str, self.model_version, vocabulary=True) # Verify that the measurement table has no indexes measurement = sqlalchemy.Table('measurement', sqlalchemy.MetaData(), autoload=True, autoload_with=self.engine) self.assertEqual(len(measurement.indexes), 0) # Verify that the concept table has no indexes concept = sqlalchemy.Table('concept', sqlalchemy.MetaData(), autoload=True, autoload_with=self.engine) self.assertEqual(len(concept.indexes), 0) # Create indexes on non-vocabulary tables. add_indexes(self.conn_str, self.model_version) # Check that the measurement table has the right indexes measurement = sqlalchemy.Table('measurement', sqlalchemy.MetaData(), autoload=True, autoload_with=self.engine) self.assertEqual(self.expected_measurement_index_names(), set([i.name for i in measurement.indexes])) # Check that the concept table has no indexes concept = sqlalchemy.Table('concept', sqlalchemy.MetaData(), autoload=True, autoload_with=self.engine) self.assertEqual(len(concept.indexes), 0) # Check that an exception is raised if we double-add with self.assertRaises(psycopg2.ProgrammingError): add_indexes(self.conn_str, self.model_version) def test_add_force(self): # Instantiate the transformed pedsnet database structure (including # indexes) self.metadata.create_all(self.engine) # Create indexes on non-vocabulary tables. This should not raise # an exception, even though the indexes already exist. add_indexes(self.conn_str, self.model_version, force=True) def test_drop_force(self): # Instantiate the transformed pedsnet database structure. self.metadata.create_all(self.engine) # Remove an index Statement('DROP INDEX idx_measurement_concept_id').execute( self.conn_str) # Verify that this index is gone measurement = sqlalchemy.Table('measurement', sqlalchemy.MetaData(), autoload=True, autoload_with=self.engine) self.assertNotIn('idx_measurement_concept_id', [i.name for i in measurement.indexes]) # Drop indexes on the non-vocabulary tables. # This should not raise an exception. drop_indexes(self.conn_str, self.model_version, force=True)
# ----------------------------------------------------------- # Behave Step Definitions for Aries DIDComm File and MIME Types, RFC 0044: # https://github.com/hyperledger/aries-rfcs/blob/main/features/0044-didcomm-file-and-mime-types/README.md # # ----------------------------------------------------------- from behave import given, then import json from agent_backchannel_client import agent_backchannel_POST @given('"{agent}" is running with parameters "{parameters}"') def step_impl(context, agent: str, parameters: str): agent_url = context.config.userdata.get(agent) params_json = json.loads(parameters) data = { "parameters": params_json } (resp_status, resp_text) = agent_backchannel_POST(agent_url + "/agent/command/", "agent", operation="start", data=data) assert resp_status == 200, f'resp_status {resp_status} is not 200; {resp_text}' @then('"{requester}" can\'t accept the invitation') def step_impl(context, requester): requester_url = context.config.userdata.get(requester) data = context.responder_invitation data["use_existing_connection"] = False (resp_status, resp_text) = agent_backchannel_POST(requester_url + "/agent/command/", "out-of-band", operation="receive-invitation", data=data) assert resp_status == 500, f'agent command should fail but resp_status {resp_status} is not 500; {resp_text}'
import ConfigSpace def get_hyperparameter_search_space_small(seed): """ Small version of gradient boosting config space Parameters ---------- seed: int Random seed that will be used to sample random configurations Returns ------- cs: ConfigSpace.ConfigurationSpace The configuration space object """ cs = ConfigSpace.ConfigurationSpace('sklearn.ensemble.GradientBoostingClassifier', seed) # fixed to deviance, as exponential requires two classes learning_rate = ConfigSpace.hyperparameters.UniformFloatHyperparameter( name='gradientboostingclassifier__learning_rate', lower=0.01, upper=2, default_value=0.1, log=True) n_estimators = ConfigSpace.hyperparameters.UniformIntegerHyperparameter( name='gradientboostingclassifier__n_estimators', lower=64, upper=512, default_value=100, log=False) subsample = ConfigSpace.UniformFloatHyperparameter( name='gradientboostingclassifier__subsample', lower=0.0, upper=1.0, default_value=1.0) min_samples_split = ConfigSpace.hyperparameters.UniformIntegerHyperparameter( name='gradientboostingclassifier__min_samples_split', lower=2, upper=20, default_value=2) max_depth = ConfigSpace.hyperparameters.UniformIntegerHyperparameter( name='gradientboostingclassifier__max_depth', lower=1, upper=10, default_value=3) cs.add_hyperparameters([ learning_rate, n_estimators, subsample, min_samples_split, max_depth, ]) return cs
# -*- coding: utf-8 -*- import os, sys, random import argparse import numpy as np import toml import asteval from pbpl import compton # import Geant4 as g4 # from Geant4.hepunit import * import h5py import pbpl.common as common from pbpl.common.units import * from collections import namedtuple def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description='Combine energy deposition', epilog='''\ Example: .. code-block:: sh pbpl-compton-combine-deposition combine-deposition.toml ''') parser.add_argument( 'config_filename', metavar='conf-file', help='Configuration file') return parser def get_args(): parser = get_parser() args = parser.parse_args() args.conf = toml.load(args.config_filename) return args def get_input(conf): edep = {} for c in conf: with h5py.File(c['Filename'], 'r') as fin: run_index = tuple(c['RunIndex']) _num_events = fin['num_events'][run_index] gin = fin[c['Group']] _edep = gin['edep'][run_index]*MeV _xbin = gin['xbin'][:]*mm _ybin = gin['ybin'][:]*mm _zbin = gin['zbin'][:]*mm if len(edep) == 0: xbin = _xbin ybin = _ybin zbin = _zbin num_events = _num_events else: assert(np.array_equal(xbin, _xbin)) assert(np.array_equal(ybin, _ybin)) assert(np.array_equal(zbin, _zbin)) assert(num_events == _num_events) edep[c['Key']] = _edep return edep, xbin, ybin, zbin, num_events def main(): args = get_args() conf = args.conf edep, xbin, ybin, zbin, num_events = get_input(conf['Input']) with h5py.File(conf['Output']['Filename'], 'w') as fout: fout['num_events'] = np.array((num_events,)) fout['i0'] = np.array((np.string_('yo'),)) if 'Group' in conf['Output']: gout = fout.create_group(conf['Output']['Group']) else: gout = fout gout['edep'] = ((edep['A'] + edep['B'])/MeV).astype('float32')[np.newaxis,:] gout['edep'].attrs.create('num_events', num_events) gout['edep'].attrs.create('unit', np.string_('MeV')) gout['xbin'] = xbin/mm gout['ybin'] = ybin/mm gout['zbin'] = zbin/mm for dset_name in ['xbin', 'ybin', 'zbin']: gout[dset_name].attrs.create('unit', np.string_('mm')) fout.close() return 0 if __name__ == '__main__': sys.exit(main())
#!/usr/bin/env python # pylint: disable=missing-docstring # # Copyright 2017, 2018 Red Hat, Inc. and/or its affiliates # and other contributors as indicated by the @author tags. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import base64 import json import os import pipes from ansible.module_utils.basic import AnsibleModule DOCUMENTATION = ''' --- module: docker_creds short_description: Creates/updates a 'docker login' file in place of using 'docker login' version_added: "2.4" description: - This module creates a docker config.json file in the directory provided by 'path' on hosts that do not support 'docker login' but need the file present for registry authentication purposes of various other services. options: path: description: - This is the message to send to the sample module required: true registry: description: - This is the registry the credentials are for. required: true username: description: - This is the username to authenticate to the registry with. required: true password: description: - This is the password to authenticate to the registry with. required: true test_login: description: - Attempt to connect to registry with username + password provided. default: true required: false test_timeout: description: - Timeout in seconds for each attempt to connect to registry. default: 20 required: false author: - "Michael Gugino <mgugino@redhat.com>" ''' EXAMPLES = ''' # Pass in a message - name: Place credentials in file docker_creds: path: /root/.docker registry: registry.example.com:443 username: myuser password: mypassword test_login: True test_timeout: 30 ''' def check_dest_dir_exists(module, dest): '''Check if dest dir is present and is a directory''' dir_exists = os.path.exists(dest) if dir_exists: if not os.path.isdir(dest): msg = "{} exists but is not a directory".format(dest) result = {'failed': True, 'changed': False, 'msg': msg, 'state': 'unknown'} module.fail_json(**result) else: return 1 else: return 0 def create_dest_dir(module, dest): try: os.makedirs(dest, mode=0o700) except OSError as oserror: result = {'failed': True, 'changed': False, 'msg': str(oserror), 'state': 'unknown'} module.fail_json(**result) def load_config_file(module, dest): '''load the config.json in directory dest''' conf_file_path = os.path.join(dest, 'config.json') if os.path.exists(conf_file_path): # Try to open the file and load json data try: with open(conf_file_path) as conf_file: data = conf_file.read() jdata = json.loads(data) except IOError as ioerror: result = {'failed': True, 'changed': False, 'msg': str(ioerror), 'state': 'unknown'} module.fail_json(**result) except ValueError as jsonerror: result = {'failed': True, 'changed': False, 'msg': str(jsonerror), 'state': 'unknown'} module.fail_json(**result) return jdata else: # File doesn't exist, we just return an empty dictionary. return {} # pylint: disable=too-many-arguments def gen_skopeo_cmd(registry, username, password, proxy_vars, test_timeout, test_image, tls_verify): '''Generate skopeo command to run''' skopeo_temp = ("{proxy_vars} timeout {test_timeout} skopeo inspect" " {creds} docker://{registry}/{test_image}") # this will quote the entire creds argument to account for special chars. creds = pipes.quote('--creds={}:{}'.format(username, password)) skopeo_args = {'proxy_vars': proxy_vars, 'test_timeout': test_timeout, 'creds': creds, 'registry': registry, 'test_image': test_image, 'tls_verify': tls_verify} return skopeo_temp.format(**skopeo_args).strip() def validate_registry_login(module, skopeo_command): '''Attempt to use credentials to log into registry''' # skopeo doesn't honor docker config file proxy settings; need to specify # proxy vars on the cli. rtnc, _, err = module.run_command(skopeo_command, use_unsafe_shell=True) if rtnc: result = {'failed': True, 'changed': False, 'msg': str(err), 'state': 'unknown'} module.fail_json(**result) def update_config(docker_config, registry, encoded_auth): '''Add our registry auth credentials into docker_config dict''' # Add anything that might be missing in our dictionary if 'auths' not in docker_config: docker_config['auths'] = {} if registry not in docker_config['auths']: docker_config['auths'][registry] = {} # check if the same value is already present for idempotency. if 'auth' in docker_config['auths'][registry]: if docker_config['auths'][registry]['auth'] == encoded_auth: # No need to go further, everything is already set in file. return False docker_config['auths'][registry]['auth'] = encoded_auth return True def write_config(module, docker_config, dest): '''Write updated credentials into dest/config.json''' if not isinstance(docker_config, dict): docker_config = docker_config.decode() conf_file_path = os.path.join(dest, 'config.json') try: with open(conf_file_path, 'w') as conf_file: json.dump(docker_config, conf_file, indent=8) except IOError as ioerror: result = {'failed': True, 'changed': False, 'msg': str(ioerror), 'state': 'unknown'} module.fail_json(**result) def run_module(): '''Run this module''' module_args = dict( path=dict(aliases=['dest', 'name'], required=True, type='path'), registry=dict(type='str', required=True), username=dict(type='str', required=True), password=dict(type='str', required=True, no_log=True), test_login=dict(type='bool', required=False, default=True), proxy_vars=dict(type='str', required=False, default=''), test_timeout=dict(type='int', required=False, default=60), test_image=dict(type='str', required=True), tls_verify=dict(type='bool', required=False, default=True) ) module = AnsibleModule( argument_spec=module_args, supports_check_mode=False ) # First, create our dest dir if necessary dest = module.params['path'] registry = module.params['registry'] username = module.params['username'] password = module.params['password'] test_login = module.params['test_login'] proxy_vars = module.params['proxy_vars'] test_timeout = module.params['test_timeout'] test_image = module.params['test_image'] tls_verify = module.params['tls_verify'] if not check_dest_dir_exists(module, dest): create_dest_dir(module, dest) docker_config = {} else: # We want to scrape the contents of dest/config.json # in case there are other registries/settings already present. docker_config = load_config_file(module, dest) # Test the credentials if test_login: skopeo_command = gen_skopeo_cmd(registry, username, password, proxy_vars, test_timeout, test_image, tls_verify) validate_registry_login(module, skopeo_command) # base64 encode our username:password string encoded_auth = base64.b64encode('{}:{}'.format(username, password).encode()) # Put the registry auth info into the config dict. changed = update_config(docker_config, registry, encoded_auth) if changed: write_config(module, docker_config, dest) result = {'changed': changed, 'rc': 0} module.exit_json(**result) def main(): run_module() if __name__ == '__main__': main()
""" Elvis main module: the golden-layout panel creator. """ import panel as pn import os from .bokeh import HoloviewsBokeh from enum import Enum from .themes import LayoutTheme class Block(Enum): stack = 'stack' row = 'row' column = 'column' class GoldenPanel: """ Generates a jinja2 template, specifically tailored for the (slightly modified) golden-layout that can be served using panel. Only create golden panels in one go; use one compose method and nest the stack, row, colum, and panel methods. Do not create panels without adding them to the composition string. """ def __init__(self, theme: LayoutTheme=LayoutTheme.DARK): """ :param theme: use elvis.LayoutTheme.DARK or elvis.LayoutTheme.LIGHT """ self.theme = theme self.panels = {} self.counter = 0 self.app = None def serve(self, static_dirs=None, **kwargs): """ Wrapper for pn.serve(), with the inclusion of the required static assets. :static_dirs: Specify directories with static assets in addition to the standard elvis assets. :kwargs: key word arguments that are passed on to pn.serve """ static_dirs = {} if static_dirs is None else static_dirs assets_elvis = {'assets': os.path.abspath( os.path.join(os.path.dirname(__file__), os.pardir, 'assets'))} self._set_assets("assets\\", self.theme) return pn.serve(self.app, static_dirs={**assets_elvis, **static_dirs}, **kwargs) def servable(self, **kwargs) -> None: """ !!! NOT WORKING !!! Wrapper for pn.app.servable(), with the inclusion of the required static assets. """ #raise NotImplementedError # self._set_assets("assets\\", self.theme) # static_dirs = {} if static_dirs is None else static_dirs # assets_elvis = {'assets': os.path.abspath( # os.path.join(os.path.dirname(__file__), os.pardir, 'assets'))} self._set_assets(os.path.join(os.path.dirname(__file__), os.pardir, 'assets\\'), self.theme) self.app.servable(**kwargs) def _set_assets(self, root: str, theme: LayoutTheme): """ Add the static files (.css and .js) to the panel config. """ css_base = [root + 'goldenlayout-base.css', root + 'goldenlayout-elvis.css', root + 'panel-customizations.css'] css_theme = {LayoutTheme.LIGHT: [root + 'goldenlayout-elvis-light.css', root + 'panel-customizations-light.css'], LayoutTheme.DARK: [root + 'goldenlayout-elvis-dark.css', root + 'panel-customizations-dark.css']} js_files = {'jquery': root + 'js\jquery-1.11.1.min.js', 'goldenlayout': root + 'js\goldenlayout.min.js'} css_files = css_base + css_theme[theme] pn.config.js_files = js_files pn.config.css_files = css_files def compose(self, golden_layout: str) -> None: """ Creates a servable template from a golden layout js code string. Any GoldenPanel object needs to call compose exactly once to function as expected. :param golden_layout: Result of nesting stacks, columns, rows, and panels using the methods in this class. """ template = ClientSideCodeStrings.JINJA2_BASE % golden_layout self.app = pn.Template(template=template) for panel_ID, panel in self.panels.items(): self.app.add_panel(panel_ID, panel) def stack(self, *args: str) -> str: """ Adds a 'tab' element. Every argument should be a view or another nestable (stack, column, row).""" return self._block(*args, type=Block.stack) def column(self, *args: str) -> str: """ Vertically aligned panels. Every argument should be a view or another nestable (stack, column, row).""" return self._block(*args, type=Block.column) def row(self, *args: str) -> str: """ Horizontally aligned panels. Every argument should be a view or another nestable (stack, column, row).""" return self._block(*args, type=Block.row) def _block(self, *args: str, type: Block=Block.stack) -> str: """ Creates nestable js code strings. Note that 'stack', 'colum' and 'row' are the strings dictated by the golden layout js code. """ content = ''.join(arg for arg in args) return ClientSideCodeStrings.NESTABLE % (type.name, content) def view(self, view, title: str=None, width: int=None, height: int=None, scrollable=True) -> str: """ Adds a viewable panel. :param view: The panel to show in this golden layout sub section. :param title: The text to show at the top of the panel. :param width: Initial width. :param height: Initial height. :param scrollable: if True, the the view will get scroll bars, if the content is larger than the panel size. """ # We need to register every panel with a unique name such that after # composing the jinja2 template, we can perform add_panel (see compose function). self.counter = self.counter + 1 panel_ID = "panel_" + str(self.counter) self.panels[panel_ID] = pn.panel(view, sizing_mode='stretch_both') title_str = "title: '%s'," % str(title) if title is not None else "title: ''," width_str = "width: %s," % str(width) if width is not None else "" height_str = "height: %s," % str(height) if height is not None else "" scroll_str = "css_classes: ['not_scrollable']" if not scrollable else "" settings = title_str + height_str + width_str + scroll_str return ClientSideCodeStrings.VIEW % (panel_ID, settings) def header(self, header: str, height: int=90) -> str: """ Convenience function to make a title style view.""" return self.view(pn.pane.HTML(f"<div class='title'>{header}</div>", sizing_mode='stretch_width'), height=height) class ClientSideCodeStrings: """ Namespace class to hold client size code (html, javascript and jinja2) """ JINJA2_BASE = \ """ {%% extends base %%} {%% block postamble %%} <head> <link rel="icon" href="/assets/favicon.ico" type="image/x-icon"/> </head> {%% endblock %%} <!-- goes in body --> {%% block contents %%} <script type="text/javascript"> var config = { settings: { hasHeaders: true, constrainDragToContainer: true, reorderEnabled: true, selectionEnabled: true, popoutWholeStack: false, blockedPopoutsThrowError: true, closePopoutsOnUnload: true, showPopoutIcon: false, showMaximiseIcon: true, showCloseIcon: false }, dimensions: { borderWidth: 5, minItemHeight: 10, minItemWidth: 10, headerHeight: 30, dragProxyWidth: 300, dragProxyHeight: 200 }, content: [ %s ] }; var myLayout = new GoldenLayout(config); myLayout.registerComponent('view', function(container, componentState) { const {height, width, css_classes} = componentState; if(height) container.on('open', () => container.setSize(container.width, height)); if(width) container.on('open', () => container.setSize(width, container.height)); if (css_classes) css_classes.map((item) => container.getElement().addClass(item)); container.setTitle(componentState.title); container.getElement().html(componentState.model); container.on('resize', () => window.dispatchEvent(new Event('resize'))); }); myLayout.init(); </script> {%% endblock %%} """ NESTABLE = \ """ { type: '%s', content: [ %s ] }, """ VIEW = \ """ { type: 'component', componentName: 'view', componentState: { model: '{{ embed(roots.%s) }}', %s }, isClosable: false, }, """
import re import random import torch from pytorch_pretrained_bert import BertTokenizer, BertModel, BertForMaskedLM from scripts.baseline_utils import process_baseline from collections import defaultdict def get_tokenized_text(sen, tokenizer): marked_text = "[CLS] " + sen + " [SEP] " tokenized_text = tokenizer.tokenize(marked_text) return tokenized_text[1:len(tokenized_text)-1] def tokenize_sentences(sentences, np_to_indices, tokenizer): for i,sentence in enumerate(sentences): gold = sentence['aligns'] gold_filtered = [] for goldalign in gold: en = re.findall('\d+', goldalign[0] ) hu = re.findall('\d+', goldalign[1] ) gold_filtered.append((str(en[0]), str(hu[0]))) sentence["aligns_filtered"] = gold_filtered sentence_en = [] sentence_hu = [] np_to_indices[i]["en_sen"] = [] np_to_indices[i]["hu_sen"] = [] en_str_to_tokenize = [] for token in sentence["en_sen"]: if type(token) == tuple: sentence_en += get_tokenized_text(" ".join(en_str_to_tokenize), tokenizer) en_str_to_tokenize = [] start_ind = len(sentence_en) tokenized_np = get_tokenized_text(" ".join(token[1]), tokenizer) end_ind = start_ind + len(tokenized_np) - 1 np_to_indices[i]["en_sen"].append((token[0], start_ind, end_ind)) sentence_en += tokenized_np else: en_str_to_tokenize.append(token) sentence_en += get_tokenized_text(" ".join(en_str_to_tokenize), tokenizer) hu_str_to_tokenize = [] for token in sentence["hu_sen"]: if type(token) == tuple: sentence_hu += get_tokenized_text(" ".join(hu_str_to_tokenize), tokenizer) hu_str_to_tokenize = [] start_ind = len(sentence_hu) tokenized_np = get_tokenized_text(" ".join(token[1]), tokenizer) end_ind = start_ind + len(tokenized_np) - 1 np_to_indices[i]["hu_sen"].append((token[0], start_ind, end_ind)) sentence_hu += tokenized_np else: hu_str_to_tokenize.append(token) sentence_hu += get_tokenized_text(" ".join(hu_str_to_tokenize), tokenizer) sentence["sentence_hun"] = sentence_hu sentence["sentence_en"] = sentence_en def get_sentence_embeddings(sentences, np_to_indices, tokenizer, model): too_long_sentences = [] for i,sentence in enumerate(sentences): batch_i = 0 text_hu = sentences[i]["sentence_hun"] text_en = sentences[i]["sentence_en"] tokenized_text = [] tokenized_text.append("[CLS]") tokenized_text += text_en tokenized_text.append("[SEP]") tokenized_text += text_hu if len(tokenized_text) > 512: too_long_sentences.append(i) continue indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text) segments_ids = [0] * (len(sentences[i]["sentence_en"]) + 2) + [1] * len(sentences[i]["sentence_hun"]) """ print(tokenized_text) print(len(tokenized_text)) print(len(segments_ids)) """ tokens_tensor = torch.tensor([indexed_tokens]) segments_tensors = torch.tensor([segments_ids]) with torch.no_grad(): encoded_layers, _ = model(tokens_tensor, segments_tensors) token_embeddings = [] # For each token in the sentence... for token_i in range(len(tokenized_text)): # Holds 12 layers of hidden states for each token hidden_layers = [] # For each of the 12 layers... for layer_i in range(len(encoded_layers)): # Lookup the vector for `token_i` in `layer_i` vec = encoded_layers[layer_i][batch_i][token_i] hidden_layers.append(vec) token_embeddings.append(hidden_layers) concatenated_last_4_layers = [torch.cat((layer[-1], layer[-2], layer[-3], layer[-4]), 0) for layer in token_embeddings] # [number_of_tokens, 3072] summed_last_4_layers = [torch.sum(torch.stack(layer)[-4:], 0) for layer in token_embeddings] # [number_of_tokens, 768] en_emb = [] hu_emb = [] for np in np_to_indices[i]["en_sen"]: en_emb.append((np[0], summed_last_4_layers[np[1]+1:np[2]+2])) for np in np_to_indices[i]["hu_sen"]: hu_emb.append((np[0], summed_last_4_layers[np[1]+len(text_en)+2:np[2]+len(text_en)+3])) np_to_indices[i]["en_emb"] = en_emb np_to_indices[i]["hu_emb"] = hu_emb def get_vocabulary(sentences, np_to_indices): i = 0 word2idx = defaultdict(dict) voc = [] for sen in sentences: en_sen = [] hu_sen = [] indices = np_to_indices[sen['id']] for ind in indices['en_sen']: words = sen['sentence_en'][ind[1]:ind[2]+1] np_i = [] for w in words: np_i.append(str(i)) voc.append(str(i)) i+=1 en_sen.append((ind[0], np_i)) for ind in indices['hu_sen']: words = sen['sentence_hun'][ind[1]:ind[2]+1] np_i = [] for w in words: np_i.append(str(i)) voc.append(str(i)) i+=1 hu_sen.append((ind[0], np_i)) word2idx[sen['id']]["sentence_en"] = en_sen word2idx[sen['id']]["sentence_hun"] = hu_sen return word2idx, voc def init_bert_embeddings(np_to_indices): bert_weights = [] for np in np_to_indices: for emb in np_to_indices[np]['en_emb']: for e in emb[1]: bert_weights.append(e.tolist()) for emb in np_to_indices[np]['hu_emb']: for e in emb[1]: bert_weights.append(e.tolist()) return bert_weights def process(): tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased') # Load pre-trained model (weights) model = BertModel.from_pretrained('bert-base-multilingual-cased') # Put the model in "evaluation" mode, meaning feed-forward operation. model.eval() sentences = process_baseline("1984.sen-aligned.np-aligned.gold") sentences[125]["en_sen"] = [(0, ['Audience'])] sentences[125]["hu_sen"] = [(0, ['A', 'hallgatóság'])] sentences[125]["aligns"] = [('0', '0')] np_to_indices = defaultdict(dict) tokenize_sentences(sentences, np_to_indices, tokenizer) get_sentence_embeddings(sentences, np_to_indices, tokenizer, model) word2idx, voc = get_vocabulary(sentences, np_to_indices) voc_to_id = {} for i in voc: voc_to_id[i] = int(i) bert_weights = init_bert_embeddings(np_to_indices) return sentences, np_to_indices, word2idx, voc, voc_to_id, bert_weights
import nibabel as nib import numpy as np import torch from functools import partial from collections import defaultdict from pairwise_measures import PairwiseMeasures from src.utils import apply_transform, non_geometric_augmentations, generate_affine, to_var_gpu, batch_adaptation, soft_dice def evaluate(args, preds, targets, prefix, metrics=['dice', 'jaccard', 'sensitivity', 'specificity', 'soft_dice', 'loads', 'haus_dist', 'vol_diff', 'ppv', 'connected_elements']): output_dict = defaultdict(list) nifty_metrics = ['dice', 'jaccard', 'sensitivity', 'specificity', 'haus_dist', 'vol_diff', 'ppv', 'connected_elements'] for pred, target in zip(preds, targets): seg = np.where(pred > 0.5, np.ones_like(pred, dtype=np.int64), np.zeros_like(pred, dtype=np.int64)) ref = np.where(target > 0.5, np.ones_like(target, dtype=np.int64), np.zeros_like(target, dtype=np.int64)) pairwise = PairwiseMeasures(seg, ref) for metric in nifty_metrics: if metric in metrics: if metric == 'connected_elements': TPc, FPc, FNc = pairwise.m_dict[metric][0]() output_dict[prefix + 'TPc'].append(TPc) output_dict[prefix + 'FPc'].append(FPc) output_dict[prefix + 'FNc'].append(FNc) else: output_dict[prefix + metric].append(pairwise.m_dict[metric][0]()) if 'soft_dice' in metrics: output_dict[prefix + 'soft_dice'].append(soft_dice(pred, ref, args.labels)) if 'loads' in metrics: output_dict[prefix + 'loads'].append(np.sum(pred)) if 'per_pixel_diff' in metrics: output_dict[prefix + 'per_pixel_diff'].append(np.mean(np.abs(ref - pred))) return output_dict def inference_tumour(args, p, model, whole_volume_dataset, iteration=0, prefix='', infer_on=None): """ This function should run inference on a set of volumes, save the results, calculate the dice """ def save_img(format_spec, identifier, array): img = nib.Nifti1Image(array, np.eye(4)) fn = format_spec.format(identifier) nib.save(img, fn) return fn with torch.set_grad_enabled(False): model.eval() preds_0, preds_ema = [], [] preds, targets = [], [] predsAug, predsT = [], [] range_of_volumes = range(len(whole_volume_dataset)) if infer_on is None else infer_on print('Evaluating on {} subjects'.format(len(range_of_volumes))) for index in range(len(range_of_volumes)): print('Evaluating on subject {}'.format(str(index))) inputs, labels = whole_volume_dataset[index] #TODO: inputs is of size (4, 170, 240, 160), need to change inference values accordingly. subj_id = whole_volume_dataset.get_subject_id_from_index(index) targetL = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[-1])) outputS = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[-1])) inputsS = np.zeros(shape=(inputs.shape[0], args.paddtarget, args.paddtarget, inputs.shape[-1])) outputsT = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[-1])) outputsAug = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[-1])) for slice_index in np.arange(0, inputs.shape[-1], step=args.batch_size): index_start = slice_index index_end = min(slice_index+args.batch_size, inputs.shape[-1]) batch_input = np.einsum('ijkl->lijk', inputs[:, :, :, index_start:index_end]) batch_labels = np.einsum('ijk->kij', labels[:, :, index_start:index_end]) batch_input = torch.tensor(batch_input) batch_labels = torch.tensor(np.expand_dims(batch_labels, axis=1)) batch_input, batch_labels = batch_adaptation(batch_input, batch_labels, args.paddtarget) batch_input, batch_labels = to_var_gpu(batch_input), to_var_gpu(batch_labels) outputs, _, _, _, _, _, _, _, _, _ = model(batch_input) outputs = torch.sigmoid(outputs) if args.method == 'A2': Theta, Theta_inv = generate_affine(batch_input, degreeFreedom=args.affine_rot_degree, scale=args.affine_scale, shearingScale=args.affine_shearing) inputstaug = apply_transform(batch_input, Theta) outputstaug, _, _, _, _, _, _, _, _, _ = model(inputstaug) outputstaug = torch.sigmoid(outputstaug) outputs_t = apply_transform(outputs, Theta) elif args.method == 'A4': batch_trs = batch_input.cpu().numpy() batch_trs = p.map(partial(non_geometric_augmentations, method='bias', norm_training_images=None), np.copy(batch_trs)) batch_trs = p.map(partial(non_geometric_augmentations, method='kspace', norm_training_images=None), np.copy(batch_trs)) inputstaug = torch.Tensor(batch_trs).cuda() outputstaug, _, _, _, _, _, _, _, _, _ = model(inputstaug) outputstaug = torch.sigmoid(outputstaug) elif args.method in ['A3', 'adversarial', 'mean_teacher']: batch_trs = batch_input.cpu().numpy() batch_trs = p.map(partial(non_geometric_augmentations, method='bias', norm_training_images=None), np.copy(batch_trs)) batch_trs = p.map(partial(non_geometric_augmentations, method='kspace', norm_training_images=None), np.copy(batch_trs)) inputstaug = torch.Tensor(batch_trs).cuda() Theta, Theta_inv = generate_affine(inputstaug, degreeFreedom=args.affine_rot_degree, scale=args.affine_scale, shearingScale=args.affine_shearing) inputstaug = apply_transform(inputstaug, Theta) outputstaug, _, _, _, _, _, _, _, _, _ = model(inputstaug) outputstaug = torch.sigmoid(outputstaug) outputs_t = apply_transform(outputs, Theta) outputS[:, :, index_start:index_end] = np.einsum('ijk->jki', np.squeeze(outputs.detach().cpu().numpy())) targetL[:, :, index_start:index_end] = np.einsum('ijk->jki', np.squeeze(batch_labels.detach().cpu().numpy())) inputsS[:, :, :, index_start:index_end] = np.einsum('ijkl->jkli', np.squeeze(batch_input.detach().cpu().numpy())) if args.method in ['A2', 'A3', 'A4', 'adversarial', 'mean_teacher']: outputsAug[:, :, index_start:index_end] = np.einsum('ijk->jki', np.squeeze(outputstaug.detach().cpu().numpy())) if args.method in ['A3', 'A2', 'adversarial', 'mean_teacher']: outputsT[:, :, index_start:index_end] = np.einsum('ijk->jki', np.squeeze(outputs_t.detach().cpu().numpy())) format_spec = '{}_{}_{}_{}_{}_{}_'.format(prefix, args.method, args.source, args.target, args.tag, iteration) + \ '_{}_' + f'{str(subj_id)}.nii.gz' ema_format_spec = '{}_{}_{}_{}_{}_{}_'.format(prefix, args.method, args.source, args.target, args.tag, 'EMA') + \ '_{}_' + f'{str(subj_id)}.nii.gz' if iteration == 0: fn = save_img(format_spec=ema_format_spec, identifier='Prediction', array=outputS) else: pred_zero = f'{prefix}_{args.method}_{args.source}_{args.target}' \ f'_{args.tag}_0__Prediction_{str(subj_id)}.nii.gz' outputs_0 = nib.load(pred_zero).get_data() preds_0.append(outputs_0) alpha = 0.9 pred_ema_filename = f'{prefix}_{args.method}_{args.source}_{args.target}' \ f'_{args.tag}_EMA__Prediction_{str(subj_id)}.nii.gz' pred_ema_t_minus_one = nib.load(pred_ema_filename).get_data() pred_ema = alpha * outputS + (1 - alpha) * pred_ema_t_minus_one preds_ema.append(pred_ema) save_img(format_spec=ema_format_spec, identifier='Prediction', array=pred_ema) save_img(format_spec=format_spec, identifier='Prediction', array=outputS) save_img(format_spec=format_spec, identifier='target', array=targetL) for idx, modality in enumerate(['flair', 't1c', 't1', 't2']): save_img(format_spec=format_spec, identifier='{}_mri'.format(modality), array=inputsS[idx, ...]) preds.append(outputS) targets.append(targetL) if args.method in ['A2', 'A3', 'A4', 'adversarial', 'mean_teacher']: predsAug.append(outputsAug) save_img(format_spec=format_spec, identifier='Aug', array=outputsAug) if args.method in ['A2', 'A3', 'adversarial', 'mean_teacher']: predsT.append(outputsT) save_img(format_spec=format_spec, identifier='Transformed', array=outputsT) performance_supervised = evaluate(args=args, preds=preds, targets=targets, prefix='supervised_') performance_i = None if args.method in ['A2', 'A3', 'A4', 'adversarial', 'mean_teacher']: if args.method in ['A2', 'A3', 'adversarial', 'mean_teacher']: performance_i = evaluate(args=args, preds=predsAug, targets=predsT, prefix='consistency_') else: performance_i = evaluate(args=args, preds=predsAug, targets=preds, prefix='consistency_') if iteration == 0: return performance_supervised, performance_i, None, None else: performance_compared_to_0 = evaluate(args=args, preds=preds, targets=preds_0, prefix='diff_to_0_', metrics=['per_pixel_diff']) performance_compared_to_ema = evaluate(args=args, preds=preds, targets=preds_ema, prefix='diff_to_ema_', metrics=['per_pixel_diff']) return performance_supervised, performance_i, performance_compared_to_0, performance_compared_to_ema def inference_ms(args, p, model, whole_volume_dataset, iteration=0, prefix='', infer_on=None, eval_diff=True): """ This function should run inference on a set of volumes, save the results, calculate the dice """ def save_img(format_spec, identifier, array): img = nib.Nifti1Image(array, np.eye(4)) fn = format_spec.format(identifier) nib.save(img, fn) return fn with torch.set_grad_enabled(False): model.eval() preds_0, preds_ema = [], [] preds, targets = [], [] predsAug, predsT = [], [] print('Evaluating on {} subjects'.format(len(whole_volume_dataset))) range_of_volumes = range(len(whole_volume_dataset)) if infer_on is None else infer_on for index in range_of_volumes: print('Evaluating on subject {}'.format(str(index))) inputs, labels = whole_volume_dataset[index] subj_id = whole_volume_dataset.get_subject_id_from_index(index) targetL = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2])) outputS = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2])) inputsS = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2])) outputsT = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2])) outputsAug = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2])) for slice_index in np.arange(0, inputs.shape[2], step=args.batch_size): index_start = slice_index index_end = min(slice_index+args.batch_size, inputs.shape[2]) batch_input = np.einsum('ijk->kij', inputs[:, :, index_start:index_end]) batch_labels = np.einsum('ijk->kij', labels[:, :, index_start:index_end]) batch_input = torch.tensor(np.expand_dims(batch_input, axis=1).astype(np.float32)) batch_labels = torch.tensor(np.expand_dims(batch_labels, axis=1)) batch_input, batch_labels = batch_adaptation(batch_input, batch_labels, args.paddtarget) batch_input, batch_labels = to_var_gpu(batch_input), to_var_gpu(batch_labels) outputs, _, _, _, _, _, _, _, _, _ = model(batch_input) outputs = torch.sigmoid(outputs) if args.method == 'A2': Theta, Theta_inv = generate_affine(batch_input, degreeFreedom=args.affine_rot_degree, scale=args.affine_scale, shearingScale=args.affine_shearing) inputstaug = apply_transform(batch_input, Theta) outputstaug, _, _, _, _, _, _, _, _, _ = model(inputstaug) outputstaug = torch.sigmoid(outputstaug) outputs_t = apply_transform(outputs, Theta) elif args.method == 'A4': batch_trs = batch_input.cpu().numpy() batch_trs = p.map(partial(non_geometric_augmentations, method='bias', norm_training_images=None), np.copy(batch_trs)) batch_trs = p.map(partial(non_geometric_augmentations, method='kspace', norm_training_images=None), np.copy(batch_trs)) inputstaug = torch.Tensor(batch_trs).cuda() outputstaug, _, _, _, _, _, _, _, _, _ = model(inputstaug) outputstaug = torch.sigmoid(outputstaug) elif args.method in ['A3', 'adversarial', 'mean_teacher']: batch_trs = batch_input.cpu().numpy() batch_trs = p.map(partial(non_geometric_augmentations, method='bias', norm_training_images=None), np.copy(batch_trs)) batch_trs = p.map(partial(non_geometric_augmentations, method='kspace', norm_training_images=None), np.copy(batch_trs)) inputstaug = torch.Tensor(batch_trs).cuda() Theta, Theta_inv = generate_affine(inputstaug, degreeFreedom=args.affine_rot_degree, scale=args.affine_scale, shearingScale=args.affine_shearing) inputstaug = apply_transform(inputstaug, Theta) outputstaug, _, _, _, _, _, _, _, _, _ = model(inputstaug) outputstaug = torch.sigmoid(outputstaug) outputs_t = apply_transform(outputs, Theta) outputS[:, :, index_start:index_end] = np.einsum('ijk->jki', outputs.detach().cpu().numpy()[:, 0, ...]) targetL[:, :, index_start:index_end] = np.einsum('ijk->jki', batch_labels.detach().cpu().numpy()[:, 0, ...]) inputsS[:, :, index_start:index_end] = np.einsum('ijk->jki', batch_input.detach().cpu().numpy()[:, 0, ...]) if args.method in ['A2', 'A3', 'A4', 'adversarial', 'mean_teacher']: outputsAug[:, :, index_start:index_end] = np.einsum('ijk->jki', outputstaug.detach().cpu().numpy()[:, 0, ...]) if args.method in ['A3', 'A2', 'adversarial', 'mean_teacher']: outputsT[:, :, index_start:index_end] = np.einsum('ijk->jki', outputs_t.detach().cpu().numpy()[:, 0, ...]) format_spec = '{}_{}_{}_{}_{}_{}_'.format(prefix, args.method, args.source, args.target, args.tag, iteration) +\ '_{}_' + f'{str(subj_id)}.nii.gz' ema_format_spec = '{}_{}_{}_{}_{}_{}_'.format(prefix, args.method, args.source, args.target, args.tag, 'EMA') + \ '_{}_' + f'{str(subj_id)}.nii.gz' if iteration == 0: save_img(format_spec=ema_format_spec, identifier='Prediction', array=outputS) elif eval_diff and iteration > 0: pred_zero = f'{prefix}_{args.method}_{args.source}_{args.target}' \ f'_{args.tag}_{0}__Prediction_{str(subj_id)}.nii.gz' outputs_0 = nib.load(pred_zero).get_data() preds_0.append(outputs_0) alpha = 0.9 pred_ema_filename = f'{prefix}_{args.method}_{args.source}_{args.target}' \ f'_{args.tag}_EMA__Prediction_{str(subj_id)}.nii.gz' print(pred_ema_filename) pred_ema_t_minus_one = nib.load(pred_ema_filename).get_data() pred_ema = alpha * outputS + (1 - alpha) * pred_ema_t_minus_one preds_ema.append(pred_ema) save_img(format_spec=ema_format_spec, identifier='Prediction', array=pred_ema) else: print('Not computing diff') save_img(format_spec=format_spec, identifier='Prediction', array=outputS) save_img(format_spec=format_spec, identifier='target', array=targetL) save_img(format_spec=format_spec, identifier='mri', array=inputsS) preds.append(outputS) targets.append(targetL) if args.method in ['A2', 'A3', 'A4', 'adversarial', 'mean_teacher']: predsAug.append(outputsAug) save_img(format_spec=format_spec, identifier='Aug', array=outputsAug) if args.method in ['A2', 'A3', 'adversarial', 'mean_teacher']: predsT.append(outputsT) save_img(format_spec=format_spec, identifier='Transformed', array=outputsT) performance_supervised = evaluate(args=args, preds=preds, targets=targets, prefix='supervised_') performance_i = None if args.method in ['A2', 'A3', 'A4', 'adversarial', 'mean_teacher']: if args.method in ['A2', 'A3', 'adversarial', 'mean_teacher']: performance_i = evaluate(args=args, preds=predsAug, targets=predsT, prefix='consistency_') else: performance_i = evaluate(args=args, preds=predsAug, targets=preds, prefix='consistency_') if iteration == 0: return performance_supervised, performance_i, None, None else: performance_compared_to_0 = evaluate(args=args, preds=preds, targets=preds_0, prefix='diff_to_0_', metrics=['per_pixel_diff']) performance_compared_to_ema = evaluate(args=args, preds=preds, targets=preds_ema, prefix='diff_to_ema_', metrics=['per_pixel_diff']) return performance_supervised, performance_i, performance_compared_to_0, performance_compared_to_ema def inference_crossmoda(args, p, model, whole_volume_dataset, iteration=0, prefix='', infer_on=None, eval_diff=True): """ This function should run inference on a set of volumes, save the results, calculate the dice """ def save_img(format_spec, identifier, array): img = nib.Nifti1Image(array, np.eye(4)) fn = format_spec.format(identifier) nib.save(img, fn) return fn with torch.set_grad_enabled(False): model.eval() preds_0, preds_ema = [], [] preds, targets = [], [] predsAug, predsT = [], [] print('Evaluating on {} subjects'.format(len(whole_volume_dataset))) range_of_volumes = range(len(whole_volume_dataset)) if infer_on is None else infer_on for index in range_of_volumes: print('Evaluating on subject {}'.format(str(index))) inputs, labels = whole_volume_dataset[index] subj_id = whole_volume_dataset.get_subject_id_from_index(index) targetL = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2])) outputS = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2])) inputsS = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2])) outputsT = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2])) outputsAug = np.zeros(shape=(args.paddtarget, args.paddtarget, inputs.shape[2])) for slice_index in np.arange(0, inputs.shape[2], step=args.batch_size): index_start = slice_index index_end = min(slice_index+args.batch_size, inputs.shape[2]) batch_input = np.einsum('ijk->kij', inputs[:, :, index_start:index_end]) batch_labels = np.einsum('ijk->kij', labels[:, :, index_start:index_end]) batch_input = torch.tensor(np.expand_dims(batch_input, axis=1).astype(np.float32)) batch_labels = torch.tensor(np.expand_dims(batch_labels, axis=1)) batch_input, batch_labels = batch_adaptation(batch_input, batch_labels, args.paddtarget) batch_input, batch_labels = to_var_gpu(batch_input), to_var_gpu(batch_labels) outputs, _, _, _, _, _, _, _, _, _, _ = model(batch_input) outputs = torch.sigmoid(outputs) if args.method == 'A2': Theta, Theta_inv = generate_affine(batch_input, degreeFreedom=args.affine_rot_degree, scale=args.affine_scale, shearingScale=args.affine_shearing) inputstaug = apply_transform(batch_input, Theta) outputstaug, _, _, _, _, _, _, _, _, _ = model(inputstaug) outputstaug = torch.sigmoid(outputstaug) outputs_t = apply_transform(outputs, Theta) elif args.method == 'A4': batch_trs = batch_input.cpu().numpy() batch_trs = p.map(partial(non_geometric_augmentations, method='bias', norm_training_images=None), np.copy(batch_trs)) batch_trs = p.map(partial(non_geometric_augmentations, method='kspace', norm_training_images=None), np.copy(batch_trs)) inputstaug = torch.Tensor(batch_trs).cuda() outputstaug, _, _, _, _, _, _, _, _, _, _ = model(inputstaug) outputstaug = torch.sigmoid(outputstaug) elif args.method in ['A3', 'adversarial', 'mean_teacher']: batch_trs = batch_input.cpu().numpy() batch_trs = p.map(partial(non_geometric_augmentations, method='bias', norm_training_images=None), np.copy(batch_trs)) batch_trs = p.map(partial(non_geometric_augmentations, method='kspace', norm_training_images=None), np.copy(batch_trs)) inputstaug = torch.Tensor(batch_trs).cuda() Theta, Theta_inv = generate_affine(inputstaug, degreeFreedom=args.affine_rot_degree, scale=args.affine_scale, shearingScale=args.affine_shearing) inputstaug = apply_transform(inputstaug, Theta) outputstaug, _, _, _, _, _, _, _, _, _, _ = model(inputstaug) outputstaug = torch.sigmoid(outputstaug) outputs_t = apply_transform(outputs, Theta) outputS[:, :, index_start:index_end] = np.einsum('ijk->jki', outputs.detach().cpu().numpy()[:, 0, ...]) targetL[:, :, index_start:index_end] = np.einsum('ijk->jki', batch_labels.detach().cpu().numpy()[:, 0, ...]) inputsS[:, :, index_start:index_end] = np.einsum('ijk->jki', batch_input.detach().cpu().numpy()[:, 0, ...]) if args.method in ['A2', 'A3', 'A4', 'adversarial', 'mean_teacher']: outputsAug[:, :, index_start:index_end] = np.einsum('ijk->jki', outputstaug.detach().cpu().numpy()[:, 0, ...]) if args.method in ['A3', 'A2', 'adversarial', 'mean_teacher']: outputsT[:, :, index_start:index_end] = np.einsum('ijk->jki', outputs_t.detach().cpu().numpy()[:, 0, ...]) format_spec = '{}_{}_{}_{}_{}_{}_'.format(prefix, args.method, args.source, args.target, args.tag, iteration) +\ '_{}_' + f'{str(subj_id)}.nii.gz' ema_format_spec = '{}_{}_{}_{}_{}_{}_'.format(prefix, args.method, args.source, args.target, args.tag, 'EMA') + \ '_{}_' + f'{str(subj_id)}.nii.gz' if iteration == 0: save_img(format_spec=ema_format_spec, identifier='Prediction', array=outputS) elif eval_diff and iteration > 0: pred_zero = f'{prefix}_{args.method}_{args.source}_{args.target}' \ f'_{args.tag}_{0}__Prediction_{str(subj_id)}.nii.gz' outputs_0 = nib.load(pred_zero).get_data() preds_0.append(outputs_0) alpha = 0.9 pred_ema_filename = f'{prefix}_{args.method}_{args.source}_{args.target}' \ f'_{args.tag}_EMA__Prediction_{str(subj_id)}.nii.gz' print(pred_ema_filename) pred_ema_t_minus_one = nib.load(pred_ema_filename).get_data() pred_ema = alpha * outputS + (1 - alpha) * pred_ema_t_minus_one preds_ema.append(pred_ema) save_img(format_spec=ema_format_spec, identifier='Prediction', array=pred_ema) else: print('Not computing diff') save_img(format_spec=format_spec, identifier='Prediction', array=outputS) save_img(format_spec=format_spec, identifier='target', array=targetL) save_img(format_spec=format_spec, identifier='mri', array=inputsS) preds.append(outputS) targets.append(targetL) if args.method in ['A2', 'A3', 'A4', 'adversarial', 'mean_teacher']: predsAug.append(outputsAug) save_img(format_spec=format_spec, identifier='Aug', array=outputsAug) if args.method in ['A2', 'A3', 'adversarial', 'mean_teacher']: predsT.append(outputsT) save_img(format_spec=format_spec, identifier='Transformed', array=outputsT) performance_supervised = evaluate(args=args, preds=preds, targets=targets, prefix='supervised_') performance_i = None if args.method in ['A2', 'A3', 'A4', 'adversarial', 'mean_teacher']: if args.method in ['A2', 'A3', 'adversarial', 'mean_teacher']: performance_i = evaluate(args=args, preds=predsAug, targets=predsT, prefix='consistency_') else: performance_i = evaluate(args=args, preds=predsAug, targets=preds, prefix='consistency_') if iteration == 0: return performance_supervised, performance_i, None, None else: performance_compared_to_0 = evaluate(args=args, preds=preds, targets=preds_0, prefix='diff_to_0_', metrics=['per_pixel_diff']) performance_compared_to_ema = evaluate(args=args, preds=preds, targets=preds_ema, prefix='diff_to_ema_', metrics=['per_pixel_diff']) return performance_supervised, performance_i, performance_compared_to_0, performance_compared_to_ema
# -*- coding: utf-8 -*- import scrapy from ..items import YangguangItem class YgSpider(scrapy.Spider): name = 'yg' allowed_domains = ['wz.sun0769.com'] start_urls = ['http://wz.sun0769.com/index.php/question/questionType?type=4&page=0'] def parse(self, response): """提取列表页的数据""" # 1.提取当前页的数据,先分组,再提取 tr_list = response.xpath("//div[@class='greyframe']/table[2]/tr/td/table/tr") for tr in tr_list: item = YangguangItem() item["num"] = tr.xpath("./td[1]/text()").extract_first() item["title"] = tr.xpath("./td[2]/a[2]/text()").extract_first() item["href"] = tr.xpath("./td[2]/a[2]/@href").extract_first() item["status"] = tr.xpath("./td[3]/span/text()").extract_first() item["name"] = tr.xpath("./td[4]/text()").extract_first() item["publish_date"] = tr.xpath("td[5]/text()").extract_first() # 构建Request对象,每次遍历时候把主页的每条数据生成request,获得response后传递到parse_detail()接收,继续请求获取对应详情页的数据 yield scrapy.Request( item["href"], callback=self.parse_detail, meta={"key": item} ) # 2.构造下一页的请求,翻页 next_url = response.xpath("//a[text()='>']/@href").extract_first() if next_url is not None: yield scrapy.Request(next_url, callback=self.parse) def parse_detail(self, response): """提取详情页的数据""" item = response.meta["key"] item["img"] = response.xpath("//div[@class='textpic']/img/@src").extract_first() # 文本内容有多个换行,结果有多个 item["content"] = response.xpath("//div[@class='c1 text14_2']//text()").extract() yield item
from typing import Optional import numbers import dynet as dy import numpy as np from xnmt import logger from xnmt.param_collections import ParamManager from xnmt.persistence import serializable_init, Serializable from xnmt import utils """ The purpose of this module is mostly to expose the DyNet trainers to YAML serialization, but may also be extended to customize optimizers / training schedules """ class XnmtOptimizer(object): """ A base classe for trainers. Trainers are mostly simple wrappers of DyNet trainers but can add extra functionality. Args: optimizer: the underlying DyNet optimizer (trainer) skip_noisy: keep track of a moving average and a moving standard deviation of the log of the gradient norm values, and abort a step if the norm of the gradient exceeds four standard deviations of the moving average. Reference: https://arxiv.org/pdf/1804.09849.pdf """ def __init__(self, optimizer: dy.Trainer, skip_noisy: bool = False) -> None: self.optimizer = optimizer self.skip_noisy = skip_noisy if skip_noisy: self.rolling_stats = utils.RollingStatistic() def update(self) -> None: """ Update the parameters. """ try: if not (self.skip_noisy and self._check_gradients_noisy()): self.optimizer.update() else: logger.info("skipping noisy update") except RuntimeError: logger.warning("Failed to perform update. Skipping example and clearing gradients.") for subcol in ParamManager.param_col.subcols.values(): for param in subcol.parameters_list(): param.scale_gradient(0) def status(self) -> None: """ Outputs information about the trainer in the stderr. (number of updates since last call, number of clipped gradients, learning rate, etc…) """ return self.optimizer.status() def set_clip_threshold(self, thr: numbers.Real) -> None: """ Set clipping thershold To deactivate clipping, set the threshold to be <=0 Args: thr: Clipping threshold """ return self.optimizer.set_clip_threshold(thr) def get_clip_threshold(self) -> numbers.Real: """ Get clipping threshold Returns: Gradient clipping threshold """ return self.optimizer.get_clip_threshold() def restart(self) -> None: """ Restarts the optimizer Clears all momentum values and assimilate (if applicable) """ return self.optimizer.restart() @property def learning_rate(self): return self.optimizer.learning_rate @learning_rate.setter def learning_rate(self, value): self.optimizer.learning_rate = value def _check_gradients_noisy(self) -> bool: sq_norm = 0 for subcol in ParamManager.param_col.subcols.values(): for param in subcol.parameters_list(): cur_grads = param.grad_as_array() sq_norm += np.sum(np.square(cur_grads)) log_norm = np.log(np.sqrt(sq_norm)) self.rolling_stats.update(log_norm) if self.rolling_stats.average is None: # too few statistics return False else: req_min = self.rolling_stats.average - 4*self.rolling_stats.stddev req_max = self.rolling_stats.average + 4*self.rolling_stats.stddev return not (req_min < log_norm < req_max) class SimpleSGDTrainer(XnmtOptimizer, Serializable): """ Stochastic gradient descent trainer This trainer performs stochastic gradient descent, the goto optimization procedure for neural networks. Args: e0: Initial learning rate skip_noisy: keep track of a moving average and a moving standard deviation of the log of the gradient norm values, and abort a step if the norm of the gradient exceeds four standard deviations of the moving average. Reference: https://arxiv.org/pdf/1804.09849.pdf """ yaml_tag = '!SimpleSGDTrainer' @serializable_init def __init__(self, e0: numbers.Real = 0.1, skip_noisy: bool = False) -> None: super().__init__(optimizer=dy.SimpleSGDTrainer(ParamManager.global_collection(), e0), skip_noisy=skip_noisy) class MomentumSGDTrainer(XnmtOptimizer, Serializable): """ Stochastic gradient descent with momentum This is a modified version of the SGD algorithm with momentum to stablize the gradient trajectory. Args: e0: Initial learning rate mom: Momentum skip_noisy: keep track of a moving average and a moving standard deviation of the log of the gradient norm values, and abort a step if the norm of the gradient exceeds four standard deviations of the moving average. Reference: https://arxiv.org/pdf/1804.09849.pdf """ yaml_tag = '!MomentumSGDTrainer' @serializable_init def __init__(self, e0: numbers.Real = 0.01, mom: numbers.Real = 0.9, skip_noisy: bool = False) -> None: super().__init__(optimizer=dy.MomentumSGDTrainer(ParamManager.global_collection(), e0, mom), skip_noisy=skip_noisy) class AdagradTrainer(XnmtOptimizer, Serializable): """ Adagrad optimizer The adagrad algorithm assigns a different learning rate to each parameter. Args: e0: Initial learning rate eps: Epsilon parameter to prevent numerical instability skip_noisy: keep track of a moving average and a moving standard deviation of the log of the gradient norm values, and abort a step if the norm of the gradient exceeds four standard deviations of the moving average. Reference: https://arxiv.org/pdf/1804.09849.pdf """ yaml_tag = '!AdagradTrainer' @serializable_init def __init__(self, e0: numbers.Real = 0.1, eps: numbers.Real = 1e-20, skip_noisy: bool = False) -> None: super().__init__(optimizer=dy.AdagradTrainer(ParamManager.global_collection(), e0, eps=eps), skip_noisy=skip_noisy) class AdadeltaTrainer(XnmtOptimizer, Serializable): """ AdaDelta optimizer The AdaDelta optimizer is a variant of Adagrad aiming to prevent vanishing learning rates. Args: eps: Epsilon parameter to prevent numerical instability rho: Update parameter for the moving average of updates in the numerator skip_noisy: keep track of a moving average and a moving standard deviation of the log of the gradient norm values, and abort a step if the norm of the gradient exceeds four standard deviations of the moving average. Reference: https://arxiv.org/pdf/1804.09849.pdf """ yaml_tag = '!AdadeltaTrainer' @serializable_init def __init__(self, eps: numbers.Real = 1e-6, rho: numbers.Real = 0.95, skip_noisy: bool = False) -> None: super().__init__(optimizer=dy.AdadeltaTrainer(ParamManager.global_collection(), eps, rho), skip_noisy=skip_noisy) class AdamTrainer(XnmtOptimizer, Serializable): """ Adam optimizer The Adam optimizer is similar to RMSProp but uses unbiased estimates of the first and second moments of the gradient Args: alpha: Initial learning rate beta_1: Moving average parameter for the mean beta_2: Moving average parameter for the variance eps: Epsilon parameter to prevent numerical instability skip_noisy: keep track of a moving average and a moving standard deviation of the log of the gradient norm values, and abort a step if the norm of the gradient exceeds four standard deviations of the moving average. Reference: https://arxiv.org/pdf/1804.09849.pdf """ yaml_tag = '!AdamTrainer' @serializable_init def __init__(self, alpha: numbers.Real = 0.001, beta_1: numbers.Real = 0.9, beta_2: numbers.Real = 0.999, eps: numbers.Real = 1e-8, skip_noisy: bool = False) -> None: super().__init__(optimizer=dy.AdamTrainer(ParamManager.global_collection(), alpha, beta_1, beta_2, eps), skip_noisy=skip_noisy) class NoamTrainer(XnmtOptimizer, Serializable): """ Proposed in the paper "Attention is all you need" (https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf) [Page 7, Eq. 3] In this the learning rate of Adam Optimizer is increased for the first warmup steps followed by a gradual decay Args: alpha: dim: warmup_steps: beta_1: beta_2: eps: skip_noisy: keep track of a moving average and a moving standard deviation of the log of the gradient norm values, and abort a step if the norm of the gradient exceeds four standard deviations of the moving average. Reference: https://arxiv.org/pdf/1804.09849.pdf """ yaml_tag = '!NoamTrainer' @serializable_init def __init__(self, alpha: numbers.Real = 1.0, dim: numbers.Integral = 512, warmup_steps: Optional[numbers.Integral] = 4000, beta_1: numbers.Real = 0.9, beta_2: numbers.Real = 0.98, eps: numbers.Real = 1e-9, skip_noisy: bool = False) -> None: super().__init__(optimizer=dy.AdamTrainer(ParamManager.global_collection(), alpha=alpha, beta_1=beta_1, beta_2=beta_2, eps=eps), skip_noisy=skip_noisy) self.dim = dim self.warmup_steps = warmup_steps self.steps = 0 def update(self) -> None: self.steps += 1 if self.warmup_steps: decay = (self.dim ** (-0.5)) * np.min([self.steps ** (-0.5), self.steps * (self.warmup_steps ** (-1.5))]) else: decay = (self.dim ** (-0.5)) * self.steps ** (-0.5) self.optimizer.learning_rate = 1. * decay super().update() if self.steps % 200 == 0: logger.info('> Optimizer Logging') logger.info(' Steps=%d, learning_rate=%.2e' % (self.steps, self.optimizer.learning_rate)) class DummyTrainer(XnmtOptimizer, Serializable): """ A dummy trainer that does not perform any parameter updates. """ yaml_tag = "!DummyTrainer" @serializable_init def __init__(self) -> None: pass def update(self) -> None: pass def status(self) -> None: pass def set_clip_threshold(self, thr) -> None: pass def get_clip_threshold(self) -> None: pass def restart(self) -> None: pass @property def learning_rate(self): return 1.0 @learning_rate.setter def learning_rate(self, value): pass
from batchgenerators.utilities.file_and_folder_operations import * import numpy as np if __name__ == '__main__': # input_file = '/home/fabian/data/nnUNet_preprocessed/Task004_Hippocampus/nnUNetPlansv2.1_plans_3D.pkl' # output_file = '/home/fabian/data/nnUNet_preprocessed/Task004_Hippocampus/nnUNetPlansv2.1_LISA_plans_3D.pkl' # a = load_pickle(input_file) # a['plans_per_stage'][0]['batch_size'] = int(np.floor(6 / 9 * a['plans_per_stage'][0]['batch_size'])) # save_pickle(a, output_file) input_file = '../../data/nnUNet_preprocessed/Task100_LiTSbaseline/nnUNetPlansv2.1_plans_3D.pkl' output_file = '../../data/nnUNet_preprocessed/Task100_LiTSbaseline/nnUNetPlansv2.1_plans_3D.pkl' a = load_pickle(input_file) print(a['plans_per_stage']) # a['plans_per_stage'][0]['batch_size'] = int(np.floor(6 / 9 * a['plans_per_stage'][0]['batch_size'])) a['plans_per_stage'][0]['patch_size'] = np.array([128, 128, 128]) a['plans_per_stage'][1]['patch_size'] = np.array([128, 128, 128]) a['plans_per_stage'][0]['num_pool_per_axis'] = np.array([5, 5, 5]) a['plans_per_stage'][1]['num_pool_per_axis'] = np.array([5, 5, 5]) a['plans_per_stage'][0]['pool_op_kernel_sizes'] = [[2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]] a['plans_per_stage'][1]['pool_op_kernel_sizes'] = [[2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]] a['plans_per_stage'][0]['conv_kernel_sizes'] = [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]] a['plans_per_stage'][1]['conv_kernel_sizes'] = [[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]] save_pickle(a, output_file)
#!/usr/bin/env python # -*- coding: utf-8 -*- # #################################################################################### # Copyright (c) 2016, Francesco De Carlo # # All rights reserved. # # # # Redistribution and use in source and binary forms, with or without # # modification, are permitted provided that the following conditions are met: # # # # * Redistributions of source code must retain the above copyright notice, this # # list of conditions and the following disclaimer. # # # # * Redistributions in binary form must reproduce the above copyright notice, # # this list of conditions and the following disclaimer in the documentation # # and/or other materials provided with the distribution. # # # # * Neither the name of project nor the names of its # # contributors may be used to endorse or promote products derived from # # this software without specific prior written permission. # # # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # #################################################################################### """ Module for describing ..... """ from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy __authors__ = "First Name Last Name" __copyright__ = "Copyright (c) 2016, Affiliation" __version__ = "0.1.0" __docformat__ = "restructuredtext en" __all__ = ['function_03', 'function_04'] def function_03(parameter_01, parameter_02, parameter_03): """ Function description. Parameters ---------- parameter_01 : type Description. parameter_02 : type Description. parameter_03 : type Description. Returns ------- return_01 Description. """ return_01 = parameter_01 + parameter_02 + parameter_03 return return_01 def function_04(parameter_01, parameter_02, parameter_03): """ Function description. Parameters ---------- parameter_01 : type Description. parameter_02 : type Description. parameter_03 : type Description. Returns ------- return_01 Description. """ return_01 = parameter_01 + parameter_02 + parameter_03 return return_01
from selenium import webdriver import constants as const class Add_Skill: driver = None def __init__(self, driver): self.driver = driver def move_to_skills(self): self.driver.get(const.CONNECTIONS) def get_people(self): xpath = '//div[contains(@class, "mn-connection-card")]' list_of_people = self.driver.find_elements_by_xpath(xpath) return list_of_people
from logics.classes.predicate.semantics import Model class ArithmeticModel(Model): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fixed_denotations.update({ '0': 0, 's': lambda x: x + 1, '+': lambda x, y: x + y, '*': lambda x, y: x * y, '**': lambda x, y: x ** y, '=': lambda x, y: '1' if x == y else '0', '>': lambda x, y: '1' if x > y else '0', '<': lambda x, y: '1' if x < y else '0', }) class RealNumberArithmeticModel(Model): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fixed_denotations.update({ '+': lambda x, y: x + y, '-': lambda x, y: x - y, '*': lambda x, y: x * y, '/': lambda x, y: x / y, '//': lambda x, y: x // y, '**': lambda x, y: x ** y, '=': lambda x, y: '1' if x == y else '0', '>': lambda x, y: '1' if x > y else '0', '<': lambda x, y: '1' if x < y else '0', }) def denotation(self, term, free_variable_denotation_dict=None): """In real number arithmetic have every numeral as constant""" if type(term) == str: try: num = int(term) return num except ValueError: try: num = float(term) return num except ValueError: pass return super().denotation(term, free_variable_denotation_dict)
#! /usr/bin/env python # by caozj # Jun 4, 2019 # 8:09:11 PM import os os.environ["KERAS_BACKEND"] = "tensorflow" os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" import time import argparse import numpy as np import dca_modpp.api import Cell_BLAST as cb import utils def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("-i", "--input", dest="input", type=str, required=True) parser.add_argument("-g", "--genes", dest="genes", type=str, required=True) parser.add_argument("-o", "--output", dest="output", type=str, required=True) parser.add_argument("--n-latent", dest="n_latent", type=int, default=32) parser.add_argument("--n-hidden", dest="n_hidden", type=int, default=64) parser.add_argument("--n-layers", dest="n_layers", type=int, default=1) parser.add_argument("--n-epochs", dest="n_epochs", type=int, default=1000) parser.add_argument("--patience", dest="patience", type=int, default=30) parser.add_argument("-s", "--seed", dest="seed", type=int, default=None) # Not exactly be reproducible though parser.add_argument("-t", "--threads", dest="threads", type=int, default=None) parser.add_argument("-d", "--device", dest="device", type=str, default=None) parser.add_argument("--clean", dest="clean", type=str, default=None) cmd_args = parser.parse_args() cmd_args.output_path = os.path.dirname(cmd_args.output) if not os.path.exists(cmd_args.output_path): os.makedirs(cmd_args.output_path) os.environ["CUDA_VISIBLE_DEVICES"] = utils.pick_gpu_lowest_memory() \ if cmd_args.device is None else cmd_args.device return cmd_args def main(cmd_args): dataset = cb.data.ExprDataSet.read_dataset(cmd_args.input, sparsify=True) if cmd_args.clean is not None: dataset = utils.clean_dataset(dataset, cmd_args.clean) if cmd_args.genes is not None: genes = dataset.uns[cmd_args.genes] else: genes = None dataset = dataset.to_anndata() start_time = time.time() dataset, model = dca_modpp.api.dca( dataset, genes, mode="latent", normalize_per_cell=10000, scale=False, hidden_size= (cmd_args.n_hidden, ) * cmd_args.n_layers + (cmd_args.n_latent, ) + (cmd_args.n_hidden, ) * cmd_args.n_layers, epochs=cmd_args.n_epochs, early_stop=cmd_args.patience, random_state=cmd_args.seed, threads=cmd_args.threads, return_model=True, copy=True ) cb.data.write_hybrid_path( time.time() - start_time, "//".join([cmd_args.output, "time"]) ) cb.data.write_hybrid_path( dataset.obsm["X_dca"], "//".join([cmd_args.output, "latent"]) ) model.encoder.save(os.path.join(cmd_args.output_path, "model.h5")) np.savetxt(os.path.join(cmd_args.output_path, "genes.txt"), genes, "%s") if __name__ == "__main__": main(parse_args()) print("Done!")
import typing as t import os import yaml from loguru import logger __all__ = ["config"] class ConfigClass: database: str cogs: t.List[str] admins: t.List[int] token: str invite: str source: str ball: t.Dict[str, t.List[str]] log_channel: int def __init__(self) -> None: self.reload_config() def load_env_var(self, name: str) -> str: var = os.getenv(name) if var is None: raise KeyError(f"Enviroment var '{name}' not found") return var def reload_config(self): logger.info("loading config.yaml") with open("config.yaml") as f: self.raw_data = yaml.load(f, Loader=yaml.BaseLoader) self.cogs = self.raw_data["cogs"] self.admins = [int(id_) for id_ in self.raw_data["admins"]] self.invite = self.raw_data["invite"] self.source = self.raw_data["source"] self.ball = self.raw_data["8ball"] self.log_channel = int(self.raw_data["botlogs"]) # .env vars logger.info("loading enviroment vars") self.token = self.load_env_var("TOKEN") self.database = self.load_env_var("DATABASE_URL") config = ConfigClass()
"""The Config class contains the general settings that we want all environments to have by default.Other environment classes inherit from it and can be used to set settings that are only unique to them. Additionally, the dictionary app_config is used to export the environments we've specified. """ import os class Config(object): """Parent configuration class""" DEBUG = False CSRF_ENABLED = True SECRET_KEY = os.getenv('SECRET') SQLALCHEMY_DATABASE_URI = os.environ.get('DATABASE_URL') SQLALCHEMY_TRACK_MODIFICATIONS = False JWT_BLACKLIST_ENABLED = True MAIL_SERVER = 'smtp.gmail.com' MAIL_PORT = 465 MAIL_USE_SSL = True MAIL_USERNAME = os.environ.get('EMAIL') MAIL_PASSWORD = os.environ.get('PASSWORD') MAIL_DEFAULT_SENDER = os.environ.get('EMAIL') class DevelopmentConfig(Config): """Configurations for Development""" DEBUG = True MAIL_SUPPRESS_SEND = True class TestingConfig(Config): """Configurations for Testing""" DEBUG = True TESTING = True SQLALCHEMY_DATABASE_URI = os.environ.get('TEST_DATABASE_URL') class StagingConfig(Config): """Configuraions for Staging""" DEBUG = True class ProductionConfig(Config): """Configurations for production""" DEBUG = False TESTING = False app_config = { 'development': DevelopmentConfig, 'testing': TestingConfig, 'staging': StagingConfig, 'production': ProductionConfig }
""" author: name : Do Viet Chinh personal email: dovietchinh1998@mgail.com personal facebook: https://www.facebook.com/profile.php?id=100005935236259 VNOpenAI team: vnopenai@gmail.com via team : date: 26.3.2021 """ import numpy as np import cv2 import os import math from albumentations import ( PadIfNeeded, HorizontalFlip, VerticalFlip, CenterCrop, Crop, Compose, Transpose, RandomRotate90, ElasticTransform, GridDistortion, OpticalDistortion, RandomSizedCrop, OneOf, CLAHE, RandomBrightnessContrast, RandomGamma, HueSaturationValue, RGBShift, RandomBrightness, RandomContrast, MotionBlur, MedianBlur, GaussianBlur, GaussNoise, ChannelShuffle, CoarseDropout, ShiftScaleRotate ) crop_size = (256-32, 256-32) size = (256, 256) x_min = 10 y_min = 10 x_max = -x_min + size[0] y_max = -y_min + size[1] ops = { 'CenterCrop' : CenterCrop(p=1, height=crop_size[0], width=crop_size[1]), 'Crop' : Crop(p=1, x_min=x_min, x_max=x_max, y_min=y_min, y_max=y_max), # RandomRotate90(p=1), #Transpose(p=1), 'ElasticTransform': ElasticTransform( p=1, alpha=120, sigma=120 * 0.05, alpha_affine=120 * 0.03), 'GridDistortion':GridDistortion(p=1), #OpticalDistortion(p=1, distort_limit=2, shift_limit=0.5), #'VerticalFlip': VerticalFlip(p=1), 'HorizontalFlip': HorizontalFlip(p=1), 'RandomBrightnessContrast': RandomBrightnessContrast(p=1), 'RandomGamma' : RandomGamma(p=1), 'HueSaturationValue': HueSaturationValue(p=1), 'RGBShift': RGBShift(p=1), 'RandomBrightness': RandomBrightness(p=1), 'RandomContrast': RandomContrast(p=1), 'MotionBlur': MotionBlur(p=1, blur_limit=7), 'MedianBlur': MedianBlur(p=1, blur_limit=9), 'GaussianBlur':GaussianBlur(p=1, blur_limit=9), 'GaussNoise': GaussNoise(p=1), 'ChannelShuffle':ChannelShuffle(p=1), 'CoarseDropout': CoarseDropout(p=1, max_holes=8, max_height=32, max_width=32), 'ShiftScaleRotate': ShiftScaleRotate(p =1,shift_limit=0.1, scale_limit=0.1, rotate_limit=30, interpolation=cv2.INTER_NEAREST, border_mode=cv2.BORDER_REPLICATE) } get_policy_for_each_transformation = { 'CenterCrop': None, 'Crop': None, 'ElasticTransform': None, 'GridDistortion': None, 'HorizontalFlip': None, 'RandomBrightnessContrast': None, 'RandomContrast': None, 'MotionBlur': None, 'MedianBlur': None, 'GaussianBlur': None, 'ChannelShuffle': None, 'CoarseDropout': None, 'ShiftScaleRotate': None, } class RandAugment(): def __init__(self,N=3,M=10): """[summary] Args: N (int, optional): [numbers of transformations will apply to image seuqentially]. Defaults to 3. M (int, optional): [policy for each transformations, see ]. Defaults to 10. """ self.N = N self.M = M def get_random_ops(self,): """[pick randomly N transformation functions in ops dictionary] Returns: [type]: [return list of transformation functions] """ n = np.random.randint(1,self.N+1) ops_random = np.random.choice( list(ops.keys()), n) return ops_random def __call__(self,img,mask): img_aug = img.copy() mask_aug = mask.copy() ops_random= self.get_random_ops() for name in ops_random: aug = ops[name] augmented = aug(image=img_aug, mask=mask_aug) img_aug = augmented['image'] mask_aug = augmented['mask'] if img_aug.shape[0] !=256: img_aug = cv2.resize(img_aug,(256,256)) mask_aug = cv2.resize(mask_aug,(256,256)) return img_aug,mask_aug if __name__ =='__main__': x = cv2.imread('data/train/new_images/train_00000.jpg', cv2.IMREAD_COLOR) y = cv2.imread('data/train/new_masks/train_00000.png', cv2.IMREAD_GRAYSCALE) x_aug = x.copy() y_aug = y.copy() #ops_random = np.random.choice( ops, 4) #for aug in ops_random: for name in ops: aug = ops[name] print(aug) augmented = aug(image=x_aug, mask=y_aug) x_aug = augmented['image'] y_aug = augmented['mask'] if (x_aug.shape[0]!=256): x_aug = cv2.resize(x_aug,(256,256)) y_aug = cv2.resize(y_aug,(256,256)) cv2.imshow('a',x_aug) cv2.imshow('b',y_aug) k = cv2.waitKey(0) if k==ord('q'): break print(x_aug.shape,y_aug.shape) cv2.destroyAllWindows()
# # Copyright (c) 2018 Wind River Systems, Inc. # # SPDX-License-Identifier: Apache-2.0 # from django.views import generic from openstack_dashboard.api.rest import urls from openstack_dashboard.api.rest import utils as rest_utils from starlingx_dashboard.api import fm @urls.register class AlarmSummary(generic.View): """API for retrieving alarm summaries.""" url_regex = r'fm/alarm_summary/$' @rest_utils.ajax() def get(self, request): """Get an alarm summary for the system""" include_suppress = request.GET.get('include_suppress', False) result = fm.alarm_summary_get(request, include_suppress) return result.to_dict()
import json from phonenumbers import NumberParseException from utils.db_api.database import TimedBaseModel, db from utils.db_api.models.custumers import Custumer class Phone(TimedBaseModel): __tablename__ = "phones" id = db.Column(db.Integer, primary_key=True, autoincrement=True) customer_id = db.Column(db.BigInteger, db.ForeignKey('customers.id')) source_number = db.Column(db.String(150)) number = db.Column(db.String(50)) region = db.Column(db.String(100)) operator = db.Column(db.String(50)) old_operator = db.Column(db.String(50)) @classmethod async def add(cls, customer_id: int, source_number: str): import requests from phonenumbers import parse try: phone_obj = parse(number=source_number, region="RU") except NumberParseException.NOT_A_NUMBER: return { 'info': f"Неверный формат номера: <pre>{source_number}</pre>", 'example': ["+74959898533", "74959898533", "84959898533", "4959898533"] } url = "http://num.voxlink.ru/get/" querystring = {"num": f"+{phone_obj.country_code}{phone_obj.national_number}"} payload = "" response = requests.request("GET", url, data=payload, params=querystring) phone_obj = json.loads(response.text) if phone_obj.get('info'): return phone_obj.get('info', '') + " - разрешенный формат: " + ", ".join(phone_obj.get('example', '')) else: obj = cls(customer_id=customer_id, source_number=source_number, number=phone_obj.get('full_num'), region=phone_obj.get('region'), operator=phone_obj.get('operator'), old_operator=phone_obj.get('old_operator')) await obj.create()
from fnal_column_analysis_tools import hist from fnal_column_analysis_tools.hist import plot from fnal_column_analysis_tools.util import numpy as np from .systematics import jet_pt_systs,jet_weight_systs def fill_plots_presel(dataset,gencat,systematic,leadingak8jet,weight,plots): genW = np.sign(weight) plots['sumw'].fill(dataset=dataset, systematic=systematic, sumw=genW) plots['hjetpt'].fill(dataset=dataset, ak8_isHadronicV=gencat.sum(), systematic=systematic, ak8_pt=leadingak8jet.pt.sum(), weight=weight) plots['hsculpt'].fill(dataset=dataset, ak8_isHadronicV=gencat.sum(), systematic=systematic, ak8_pt=leadingak8jet.pt.sum(), ak8_msd=leadingak8jet.msd_corr_8.sum(), ak8_deepdoubleb=leadingak8jet.deepdoubleb.sum(), ak8_deepdoublec=leadingak8jet.deepdoublec.sum(), ak8_deepdoublecvb=leadingak8jet.deepdoublecvb.sum(), weight=weight) def fill_plots_sr(dataset,gencat,systematic,leadingak8jet,weight,plots): plots['hjetpt_sr'].fill(dataset=dataset, ak8_isHadronicV=gencat.sum(), systematic=systematic, ak8_pt=leadingak8jet.pt.sum(), weight=weight) plots['hsculpt_sr'].fill(dataset=dataset, ak8_isHadronicV=gencat.sum(), systematic=systematic, ak8_pt=leadingak8jet.pt.sum(), ak8_msd=leadingak8jet.msd_corr_8.sum(), ak8_deepdoubleb=leadingak8jet.deepdoubleb.sum(), ak8_deepdoublec=leadingak8jet.deepdoublec.sum(), ak8_deepdoublecvb=leadingak8jet.deepdoublecvb.sum(), weight=weight) #preselection and signal region plots def signal_region(gghbbcuts, dataset, gencat, presel_weight, eventInfo, leadingak8jet, looseMuons,looseElectrons,looseTaus, hasTightVJet, plots): #for name,vari in jet_systs: # attr = "pt" # if len(vari) > 0: attr += "_"+vari systematic = "central" srweight_nomet = ( #jet selection ((leadingak8jet.pt > gghbbcuts.PTCUT).sum() > 0) & ((leadingak8jet.msd_corr_8 > gghbbcuts.MASSCUT).sum() > 0) & ((leadingak8jet.jtN2b1sdddt_8 < 0).sum() > 0) & hasTightVJet & #lepton vetos (looseMuons.counts == 0) & (looseElectrons.counts == 0) & (looseTaus.counts == 0) ) #met selection (remove events with large MET, fake or real) pfmetweight = (eventInfo['pfmet'].sum() < gghbbcuts.METCUT) jetweight = leadingak8jet.weight.sum() #jetweight[jetweight > 0.] = 1.0 #for now #preselection weight = jetweight * presel_weight fill_plots_presel(dataset,gencat,systematic,leadingak8jet, weight, plots) #signal region no met cut weight_srnomet = weight * srweight_nomet plots['pfmet_nminus1_sr'].fill(dataset=dataset, ak8_isHadronicV=gencat.sum(), systematic=systematic, ak8_pt=leadingak8jet.pt.sum(), ak8_msd=leadingak8jet.msd_corr_8.sum(), pfmet=eventInfo['pfmet'].sum(), weight=weight_srnomet ) #signal region variables weight_sr = weight_srnomet * pfmetweight weight_sr = weight_sr fill_plots_sr(dataset,gencat,systematic,leadingak8jet, weight_sr, plots)
import base64 import json from datetime import datetime from enum import Enum from typing import List from urllib.parse import urljoin import requests from pygrocy.utils import parse_date, parse_float, parse_int, localize_datetime DEFAULT_PORT_NUMBER = 9192 class ShoppingListItem(object): def __init__(self, parsed_json): self._id = parse_int(parsed_json.get("id")) self._product_id = parse_int(parsed_json.get("product_id", None)) self._note = parsed_json.get("note", None) self._amount = parse_float(parsed_json.get("amount"), 0) self._row_created_timestamp = parse_date( parsed_json.get("row_created_timestamp", None) ) self._shopping_list_id = parse_int(parsed_json.get("shopping_list_id")) self._done = parse_int(parsed_json.get("done")) @property def id(self) -> int: return self._id @property def product_id(self) -> int: return self._product_id @property def note(self) -> str: return self._note @property def amount(self) -> float: return self._amount class MealPlanResponse(object): def __init__(self, parsed_json): self._id = parse_int(parsed_json.get("id")) self._day = parse_date(parsed_json.get("day")) self._type = parsed_json.get("type") self._recipe_id = parse_int(parsed_json.get("recipe_id")) self._recipe_servings = parse_int(parsed_json.get("recipe_servings")) self._note = parsed_json.get("note", None) self._product_id = parsed_json.get("product_id") self._product_amount = parse_float(parsed_json.get("product_amount"), 0) self._product_qu_id = parsed_json.get("product_qu_id") self._row_created_timestamp = parse_date( parsed_json.get("row_created_timestamp") ) self._userfields = parsed_json.get("userfields") @property def id(self) -> int: return self._id @property def day(self) -> datetime: return self._day @property def recipe_id(self) -> int: return self._recipe_id @property def recipe_servings(self) -> int: return self._recipe_servings @property def note(self) -> str: return self._note class RecipeDetailsResponse(object): def __init__(self, parsed_json): self._id = parse_int(parsed_json.get("id")) self._name = parsed_json.get("name") self._description = parsed_json.get("description") self._base_servings = parse_int(parsed_json.get("base_servings")) self._desired_servings = parse_int(parsed_json.get("desired_servings")) self._picture_file_name = parsed_json.get("picture_file_name") self._row_created_timestamp = parse_date( parsed_json.get("row_created_timestamp") ) self._userfields = parsed_json.get("userfields") @property def id(self) -> int: return self._id @property def name(self) -> str: return self._name @property def description(self) -> str: return self._description @property def base_servings(self) -> int: return self._base_servings @property def desired_servings(self) -> int: return self._desired_servings @property def picture_file_name(self) -> str: return self._picture_file_name class QuantityUnitData(object): def __init__(self, parsed_json): self._id = parse_int(parsed_json.get("id")) self._name = parsed_json.get("name") self._name_plural = parsed_json.get("name_plural") self._description = parsed_json.get("description") self._row_created_timestamp = parse_date( parsed_json.get("row_created_timestamp") ) class LocationData(object): def __init__(self, parsed_json): self._id = parse_int(parsed_json.get("id")) self._name = parsed_json.get("name") self._description = parsed_json.get("description") self._row_created_timestamp = parse_date( parsed_json.get("row_created_timestamp") ) @property def id(self) -> int: return self._id @property def name(self) -> str: return self._name @property def description(self) -> str: return self._description class ProductData(object): def __init__(self, parsed_json): self._id = parse_int(parsed_json.get("id")) self._name = parsed_json.get("name") self._description = parsed_json.get("description", None) self._location_id = parse_int(parsed_json.get("location_id", None)) self._product_group_id = parse_int(parsed_json.get("product_group_id", None)) self._qu_id_stock = parse_int(parsed_json.get("qu_id_stock", None)) self._qu_id_purchase = parse_int(parsed_json.get("qu_id_purchsase", None)) self._qu_factor_purchase_to_stock = parse_float( parsed_json.get("qu_factor_purchase_to_stock", None) ) self._picture_file_name = parsed_json.get("picture_file_name", None) self._allow_partial_units_in_stock = bool( parsed_json.get("allow_partial_units_in_stock", None) == "true" ) self._row_created_timestamp = parse_date( parsed_json.get("row_created_timestamp", None) ) self._min_stock_amount = parse_int(parsed_json.get("min_stock_amount", None), 0) self._default_best_before_days = parse_int( parsed_json.get("default_best_before_days", None) ) barcodes_raw = parsed_json.get("barcode", "") if barcodes_raw is None: self._barcodes = None else: self._barcodes = barcodes_raw.split(",") @property def id(self) -> int: return self._id @property def product_group_id(self) -> int: return self._product_group_id @property def name(self) -> str: return self._name @property def barcodes(self) -> List[str]: return self._barcodes class ChoreData(object): def __init__(self, parsed_json): self.id = parse_int(parsed_json.get("id")) self.name = parsed_json.get("name") self.description = parsed_json.get("description") self.period_type = parsed_json.get("period_type") self.period_config = parsed_json.get("period_config") self.period_days = parse_int(parsed_json.get("period_days")) self.track_date_only = parsed_json.get("track_date_only") self.rollover = parsed_json.get("rollover") self.assignment_type = parsed_json.get("assignment_type") self.assignment_config = parsed_json.get("assignment_config") self.next_execution_assigned_to_user_id = parse_int( "next_execution_assigned_to_user_id" ) self.userfields = parsed_json.get("userfields") class UserDto(object): def __init__(self, parsed_json): self._id = parse_int(parsed_json.get("id")) self._username = parsed_json.get("username") self._first_name = parsed_json.get("first_name") self._last_name = parsed_json.get("last_name") self._display_name = parsed_json.get("display_name") @property def id(self) -> int: return self._id @property def username(self) -> str: return self._username @property def first_name(self) -> str: return self._first_name @property def last_name(self) -> str: return self._last_name @property def display_name(self) -> str: return self._display_name class CurrentChoreResponse(object): def __init__(self, parsed_json): self._chore_id = parse_int(parsed_json.get("chore_id"), None) self._last_tracked_time = parse_date(parsed_json.get("last_tracked_time")) self._next_estimated_execution_time = parse_date( parsed_json.get("next_estimated_execution_time") ) @property def chore_id(self) -> int: return self._chore_id @property def last_tracked_time(self) -> datetime: return self._last_tracked_time @property def next_estimated_execution_time(self) -> datetime: return self._next_estimated_execution_time class CurrentStockResponse(object): def __init__(self, parsed_json): self._product_id = parse_int(parsed_json.get("product_id")) self._amount = parse_float(parsed_json.get("amount")) self._best_before_date = parse_date(parsed_json.get("best_before_date")) self._amount_opened = parse_float(parsed_json.get("amount_opened")) self._product = ProductData(parsed_json.get("product")) @property def product_id(self) -> int: return self._product_id @property def amount(self) -> float: return self._amount @property def best_before_date(self) -> datetime: return self._best_before_date @property def amount_opened(self) -> float: return self._amount_opened @property def product(self) -> ProductData: return self._product class MissingProductResponse(object): def __init__(self, parsed_json): self._product_id = parse_int(parsed_json.get("id")) self._name = parsed_json.get("name") self._amount_missing = parse_float(parsed_json.get("amount_missing")) self._is_partly_in_stock = bool( parse_int(parsed_json.get("is_partly_in_stock")) ) @property def product_id(self) -> int: return self._product_id @property def name(self) -> str: return self._name @property def amount_missing(self) -> float: return self._amount_missing @property def is_partly_in_stock(self) -> bool: return self._is_partly_in_stock class CurrentVolatilStockResponse(object): def __init__(self, parsed_json): self._expiring_products = [ CurrentStockResponse(product) for product in parsed_json.get("expiring_products") ] self._expired_products = [ CurrentStockResponse(product) for product in parsed_json.get("expired_products") ] self._missing_products = [ MissingProductResponse(product) for product in parsed_json.get("missing_products") ] @property def expiring_products(self) -> List[CurrentStockResponse]: return self._expiring_products @property def expired_products(self) -> List[CurrentStockResponse]: return self._expired_products @property def missing_products(self) -> List[MissingProductResponse]: return self._missing_products class ProductDetailsResponse(object): def __init__(self, parsed_json): self._last_purchased = parse_date(parsed_json.get("last_purchased")) self._last_used = parse_date(parsed_json.get("last_used")) self._stock_amount = parse_int(parsed_json.get("stock_amount")) self._stock_amount_opened = parse_int(parsed_json.get("stock_amount_opened")) self._next_best_before_date = parse_date( parsed_json.get("next_best_before_date") ) self._last_price = parse_float(parsed_json.get("last_price")) self._product = ProductData(parsed_json.get("product")) self._quantity_unit_purchase = QuantityUnitData( parsed_json.get("quantity_unit_purchase") ) self._quantity_unit_stock = QuantityUnitData( parsed_json.get("quantity_unit_stock") ) raw_location = parsed_json.get("location") if raw_location is None: self._location = None else: self._location = LocationData(raw_location) @property def last_purchased(self) -> datetime: return self._last_purchased @property def last_used(self) -> datetime: return self._last_used @property def stock_amount(self) -> int: return self._stock_amount @property def stock_amount_opened(self) -> int: return self._stock_amount_opened @property def next_best_before_date(self) -> datetime: return self._next_best_before_date @property def last_price(self) -> float: return self._last_price @property def product(self) -> ProductData: return self._product class ChoreDetailsResponse(object): def __init__(self, parsed_json): self._chore = ChoreData(parsed_json.get("chore")) self._last_tracked = parse_date(parsed_json.get("last_tracked")) self._next_estimated_execution_time = parse_date( parsed_json.get("next_estimated_execution_time") ) self._track_count = parse_int(parsed_json.get("track_count")) next_user = parsed_json.get("next_execution_assigned_user") if next_user is not None: self._next_execution_assigned_user = UserDto(next_user) else: self._next_execution_assigned_user = None if self._last_tracked is None: self._last_done_by = None else: self._last_done_by = UserDto(parsed_json.get("last_done_by")) @property def chore(self) -> ChoreData: return self._chore @property def last_done_by(self) -> UserDto: return self._last_done_by @property def last_tracked(self) -> datetime: return self._last_tracked @property def next_estimated_execution_time(self) -> datetime: return self._next_estimated_execution_time @property def track_count(self) -> int: return self._track_count @property def next_execution_assigned_user(self) -> UserDto: return self._next_execution_assigned_user class TransactionType(Enum): PURCHASE = "purchase" CONSUME = "consume" INVENTORY_CORRECTION = "inventory-correction" PRODUCT_OPENED = "product-opened" class TaskResponse(object): def __init__(self, parsed_json): self.id = parse_int(parsed_json.get("id")) self.name = parsed_json.get("name") self.description = parsed_json.get("description") self.due_date = parse_date(parsed_json.get("due_date")) self.done = parse_int(parsed_json.get("done")) self.done_timestamp = parse_date(parsed_json.get("done_timestamp")) self.category_id = parse_int(parsed_json.get("category_id")) self.assigned_to_user_id = parse_int(parsed_json.get("assigned_to_user_id")) self.userfields = parsed_json.get("userfields") class GrocyApiClient(object): def __init__( self, base_url, api_key, port: int = DEFAULT_PORT_NUMBER, verify_ssl=True ): self._base_url = "{}:{}/api/".format(base_url, port) self._api_key = api_key self._verify_ssl = verify_ssl if self._api_key == "demo_mode": self._headers = {"accept": "application/json"} else: self._headers = {"accept": "application/json", "GROCY-API-KEY": api_key} def _do_get_request(self, end_url: str): req_url = urljoin(self._base_url, end_url) resp = requests.get(req_url, verify=self._verify_ssl, headers=self._headers) resp.raise_for_status() if len(resp.content) > 0: return resp.json() def _do_post_request(self, end_url: str, data: dict): req_url = urljoin(self._base_url, end_url) resp = requests.post( req_url, verify=self._verify_ssl, headers=self._headers, json=data ) resp.raise_for_status() if len(resp.content) > 0: return resp.json() def _do_put_request(self, end_url: str, data): req_url = urljoin(self._base_url, end_url) up_header = self._headers.copy() up_header["accept"] = "*/*" if isinstance(data, dict): up_header["Content-Type"] = "application/json" data = json.dumps(data) else: up_header["Content-Type"] = "application/octet-stream" resp = requests.put( req_url, verify=self._verify_ssl, headers=up_header, data=data ) resp.raise_for_status() if len(resp.content) > 0: return resp.json() def get_stock(self) -> List[CurrentStockResponse]: parsed_json = self._do_get_request("stock") return [CurrentStockResponse(response) for response in parsed_json] def get_volatile_stock(self) -> CurrentVolatilStockResponse: parsed_json = self._do_get_request("stock/volatile") return CurrentVolatilStockResponse(parsed_json) def get_product(self, product_id) -> ProductDetailsResponse: url = f"stock/products/{product_id}" parsed_json = self._do_get_request(url) if parsed_json: return ProductDetailsResponse(parsed_json) def get_chores(self) -> List[CurrentChoreResponse]: parsed_json = self._do_get_request("chores") return [CurrentChoreResponse(chore) for chore in parsed_json] def get_chore(self, chore_id: int) -> ChoreDetailsResponse: url = f"chores/{chore_id}" parsed_json = self._do_get_request(url) if parsed_json: return ChoreDetailsResponse(parsed_json) def execute_chore( self, chore_id: int, done_by: int = None, tracked_time: datetime = datetime.now(), ): localized_tracked_time = localize_datetime(tracked_time) data = {"tracked_time": localized_tracked_time.isoformat()} if done_by is not None: data["done_by"] = done_by return self._do_post_request(f"chores/{chore_id}/execute", data) def add_product( self, product_id, amount: float, price: float, best_before_date: datetime = None, transaction_type: TransactionType = TransactionType.PURCHASE, ): data = { "amount": amount, "transaction_type": transaction_type.value, "price": price, } if best_before_date is not None: data["best_before_date"] = best_before_date.strftime("%Y-%m-%d") return self._do_post_request(f"stock/products/{product_id}/add", data) def consume_product( self, product_id: int, amount: float = 1, spoiled: bool = False, transaction_type: TransactionType = TransactionType.CONSUME, ): data = { "amount": amount, "spoiled": spoiled, "transaction_type": transaction_type.value, } self._do_post_request(f"stock/products/{product_id}/consume", data) def get_shopping_list(self) -> List[ShoppingListItem]: parsed_json = self._do_get_request("objects/shopping_list") return [ShoppingListItem(response) for response in parsed_json] def add_missing_product_to_shopping_list(self, shopping_list_id: int = None): data = None if shopping_list_id: data = {"list_id": shopping_list_id} self._do_post_request("stock/shoppinglist/add-missing-products", data) def add_product_to_shopping_list( self, product_id: int, shopping_list_id: int = 1, amount: int = 1 ): data = { "product_id": product_id, "list_id": shopping_list_id, "product_amount": amount, } self._do_post_request("stock/shoppinglist/add-product", data) def clear_shopping_list(self, shopping_list_id: int = 1): data = {"list_id": shopping_list_id} self._do_post_request("stock/shoppinglist/clear", data) def remove_product_in_shopping_list( self, product_id: int, shopping_list_id: int = 1, amount: int = 1 ): data = { "product_id": product_id, "list_id": shopping_list_id, "product_amount": amount, } self._do_post_request("stock/shoppinglist/remove-product", data) def get_product_groups(self) -> List[LocationData]: parsed_json = self._do_get_request("objects/product_groups") return [LocationData(response) for response in parsed_json] def upload_product_picture(self, product_id: int, pic_path: str): b64fn = base64.b64encode("{}.jpg".format(product_id).encode("ascii")) req_url = "files/productpictures/" + str(b64fn, "utf-8") with open(pic_path, "rb") as pic: self._do_put_request(req_url, pic) def update_product_pic(self, product_id: int): pic_name = f"{product_id}.jpg" data = {"picture_file_name": pic_name} self._do_put_request(f"objects/products/{product_id}", data) def get_userfields(self, entity: str, object_id: int): url = f"userfields/{entity}/{object_id}" return self._do_get_request(url) def set_userfields(self, entity: str, object_id: int, key: str, value): data = {key: value} self._do_put_request(f"userfields/{entity}/{object_id}", data) def get_last_db_changed(self): resp = self._do_get_request("system/db-changed-time") last_change_timestamp = parse_date(resp.get("changed_time")) return last_change_timestamp def get_tasks(self) -> List[TaskResponse]: parsed_json = self._do_get_request("tasks") return [TaskResponse(data) for data in parsed_json] def complete_task(self, task_id: int, done_time: datetime = datetime.now()): url = f"tasks/{task_id}/complete" localized_done_time = localize_datetime(done_time) data = {"done_time": localized_done_time.isoformat()} self._do_post_request(url, data) def get_meal_plan(self) -> List[MealPlanResponse]: parsed_json = self._do_get_request("objects/meal_plan") return [MealPlanResponse(data) for data in parsed_json] def get_recipe(self, object_id: int) -> RecipeDetailsResponse: parsed_json = self._do_get_request(f"objects/recipes/{object_id}") if parsed_json: return RecipeDetailsResponse(parsed_json) def add_generic(self, entity_type: str, data: object): self._do_post_request(f"objects/{entity_type}", data)
# -*- coding: utf-8 -*- u"""履歴管理""" from __future__ import absolute_import, division, print_function from maya import cmds _RECENT_FILES_KEY = "squid_recent_fbx_files" _RECENT_FILES_LIMIT = 10 def get_recent_files(): u"""最近使用したファイルリストを返す Returns: list of unicode: 最近使用したファイルリスト """ if not cmds.optionVar(ex=_RECENT_FILES_KEY): return [] res = list(cmds.optionVar(q=_RECENT_FILES_KEY)) res.reverse() return res def add_recent_file(path): u"""指定ファイルを履歴に追加 Args: path (unicode): パス """ if not path: return if cmds.optionVar(ex=_RECENT_FILES_KEY): files = cmds.optionVar(q=_RECENT_FILES_KEY) for i in xrange(0, len(files)): if path == files[i]: cmds.optionVar(rfa=(_RECENT_FILES_KEY, i)) break cmds.optionVar(sva=(_RECENT_FILES_KEY, path)) files = cmds.optionVar(q=_RECENT_FILES_KEY) if len(files) <= _RECENT_FILES_LIMIT: return for i in xrange(0, len(files) - _RECENT_FILES_LIMIT): cmds.optionVar(rfa=(_RECENT_FILES_KEY, 0))
""" ASGI spec conformance test suite. Calling the functions with an ASGI channel layer instance will return you a single TestCase instance that checks for conformity on that instance. You MUST also pass along an expiry value to the sets of tests, to allow the suite to wait correctly for expiry. It's suggested you configure the layer for 1-second expiry during tests, and use a 1.1 second expiry delay. The channel layers should be empty to start with, and discarded after use, as they'll be full of test data. If a layer supports the "flush" extension, it'll be flushed before every test. """ from __future__ import unicode_literals import six import time import unittest class ConformanceTestCase(unittest.TestCase): """ Tests that core ASGI functionality is maintained. """ channel_layer = None expiry_delay = None capacity_limit = None receive_tries = 1 def receive(self, channels): """ Allows tests to automatically call channel_layer.receive() more than once. This is necessary for testing ChannelLayer implementations that do not guarantee a response will be returned on every receive() call, even when there are messages on the channel. This would be the case, for example, for a channel layer designed for a multi-worker environment with multiple backing hosts, that checks a different host on each call. """ for _ in range(self.receive_tries): channel, message = self.channel_layer.receive(channels) if channel is not None: return channel, message return None, None @classmethod def setUpClass(cls): # Don't let this actual class run, it's abstract if cls is ConformanceTestCase: raise unittest.SkipTest("Skipping base class tests") def setUp(self): if self.channel_layer is None: raise ValueError("You must define 'channel_layer' when subclassing the conformance tests.") if self.expiry_delay is None: raise ValueError("You must define 'expiry_delay' when subclassing the conformance tests.") if "flush" in self.channel_layer.extensions: self.channel_layer.flush() def skip_if_no_extension(self, extension): """ Handy function for skipping things without an extension. We can't use the decorators, as we need access to self. """ if extension not in self.channel_layer.extensions: raise unittest.SkipTest("No %s extension" % extension) def test_send_recv(self): """ Tests that channels can send and receive messages right. """ self.channel_layer.send("sr_test", {"value": "blue"}) self.channel_layer.send("sr_test", {"value": "green"}) self.channel_layer.send("sr_test", {"value": "yellow"}) self.channel_layer.send("sr_test2", {"value": "red"}) # Receive from the first channel twice response_messages = [] for i in range(3): channel, message = self.receive(["sr_test"]) response_messages.append(message) self.assertEqual(channel, "sr_test") for response in response_messages: self.assertTrue("value" in response) # Check that all messages were returned; order is not guaranteed self.assertEqual(set([r["value"] for r in response_messages]), set(["blue", "green", "yellow"])) # And the other channel with multi select channel, message = self.receive(["sr_test", "sr_test2"]) self.assertEqual(channel, "sr_test2") self.assertEqual(message, {"value": "red"}) def test_single_process_receive(self): """ Tests that single-process receive gets anything with the right prefix. """ self.channel_layer.send("spr_test!a", {"best": "ponies"}) channel, message = self.receive(["spr_test!"]) self.assertEqual(channel, "spr_test!a") self.assertEqual(message, {"best": "ponies"}) self.channel_layer.send("spr_test!b", {"best": "pangolins"}) channel, message = self.receive(["spr_test!"]) self.assertEqual(channel, "spr_test!b") self.assertEqual(message, {"best": "pangolins"}) def test_single_process_receive_error(self): """ Tests that single-process receive isn't allowed with a local part. """ with self.assertRaises(Exception): self.receive(["spr_test!c"]) def test_message_expiry(self): """ Tests that messages expire correctly. """ self.channel_layer.send("me_test", {"value": "blue"}) time.sleep(self.expiry_delay) channel, message = self.receive(["me_test"]) self.assertIs(channel, None) self.assertIs(message, None) def test_new_channel_single_reader(self): """ Tests that new single-reader channel names are made correctly. """ pattern = "test.foo?" name1 = self.channel_layer.new_channel(pattern) self.assertFalse(name1.endswith("?")) self.assertTrue("?" in name1) self.assertEqual(name1.find("?"), name1.rfind("?")) self.assertIsInstance(name1, six.text_type) # Send a message and make sure new_channel on second pass changes self.channel_layer.send(name1, {"value": "blue"}) name2 = self.channel_layer.new_channel(pattern) # Make sure we can consume off of that new channel channel, message = self.receive([name1, name2]) self.assertEqual(channel, name1) self.assertEqual(message, {"value": "blue"}) def test_new_channel_failures(self): """ Tests that we don't allow bad new channel names. """ with self.assertRaises(Exception): self.channel_layer.new_channel("test!") with self.assertRaises(Exception): self.channel_layer.new_channel("test.foo") def test_strings(self): """ Ensures byte strings and unicode strings both make it through serialization properly. """ # Message. Double-nested to ensure serializers are recursing properly. message = { "values": { # UTF-8 sequence for british pound, but we want it not interpreted into that. "utf-bytes": b"\xc2\xa3", # Actual unicode for british pound, should come back as 1 char "unicode": "\u00a3", # Emoji, in case someone is using 3-byte-wide unicode storage "emoji": "\u1F612", # Random control characters and null "control": b"\x01\x00\x03\x21", } } # Send it and receive it self.channel_layer.send("str_test", message) _, received = self.receive(["str_test"]) # Compare self.assertIsInstance(received["values"]["utf-bytes"], six.binary_type) self.assertIsInstance(received["values"]["unicode"], six.text_type) self.assertIsInstance(received["values"]["emoji"], six.text_type) self.assertIsInstance(received["values"]["control"], six.binary_type) self.assertEqual(received["values"]["utf-bytes"], message["values"]["utf-bytes"]) self.assertEqual(received["values"]["unicode"], message["values"]["unicode"]) self.assertEqual(received["values"]["emoji"], message["values"]["emoji"]) self.assertEqual(received["values"]["control"], message["values"]["control"]) def test_groups(self): """ Tests that basic group addition and send works """ self.skip_if_no_extension("groups") # Make a group and send to it self.channel_layer.group_add("tgroup", "tg_test") self.channel_layer.group_add("tgroup", "tg_test2") self.channel_layer.group_add("tgroup", "tg_test3") self.channel_layer.group_discard("tgroup", "tg_test3") self.channel_layer.send_group("tgroup", {"value": "orange"}) # Receive from the two channels in the group and ensure messages channel, message = self.receive(["tg_test"]) self.assertEqual(channel, "tg_test") self.assertEqual(message, {"value": "orange"}) channel, message = self.receive(["tg_test2"]) self.assertEqual(channel, "tg_test2") self.assertEqual(message, {"value": "orange"}) # Make sure another channel does not get a message channel, message = self.receive(["tg_test3"]) self.assertIs(channel, None) self.assertIs(message, None) def test_groups_process(self): """ Tests that group membership and sending works with process-specific channels. """ self.skip_if_no_extension("groups") # Make a group and send to it self.channel_layer.group_add("tgroup", "tgp!test") self.channel_layer.group_add("tgroup", "tgp!test2") self.channel_layer.group_add("tgroup", "tgp!test3") self.channel_layer.group_discard("tgroup", "tgp!test2") self.channel_layer.send_group("tgroup", {"value": "orange"}) # Receive from the two channels in the group and ensure messages channel, message = self.receive(["tgp!"]) self.assertIn(channel, ["tgp!test", "tgp!test3"]) self.assertEqual(message, {"value": "orange"}) channel, message = self.receive(["tgp!"]) self.assertIn(channel, ["tgp!test", "tgp!test3"]) self.assertEqual(message, {"value": "orange"}) # Make sure another channel does not get a message channel, message = self.receive(["tgp!"]) self.assertIs(channel, None) self.assertIs(message, None) def test_group_channels(self): """ Tests that group membership check works """ self.skip_if_no_extension("groups") # Make a group self.channel_layer.group_add("tgroup", "tg_test") self.channel_layer.group_add("tgroup", "tg_test2") self.channel_layer.group_add("tgroup", "tg_test3") # Check group members self.assertEqual( set(self.channel_layer.group_channels("tgroup")), {"tg_test", "tg_test2", "tg_test3"}, ) # Discard from group self.channel_layer.group_discard("tgroup", "tg_test3") self.assertEqual( set(self.channel_layer.group_channels("tgroup")), {"tg_test", "tg_test2"}, ) def test_flush(self): """ Tests that messages go away after a flush. """ self.skip_if_no_extension("flush") # Send something to flush self.channel_layer.send("fl_test", {"value": "blue"}) self.channel_layer.flush() channel, message = self.receive(["fl_test"]) self.assertIs(channel, None) self.assertIs(message, None) def test_flush_groups(self): """ Tests that groups go away after a flush. """ self.skip_if_no_extension("groups") self.skip_if_no_extension("flush") # Add things to a group and send to it self.channel_layer.group_add("tfg_group", "tfg_test") self.channel_layer.send_group("tfg_group", {"value": "blue"}) self.channel_layer.flush() channel, message = self.receive(["tfg_test"]) self.assertIs(channel, None) self.assertIs(message, None) def test_group_expiry(self): """ Tests that group expiry is provided, and test it if it's less than 20 seconds. """ self.skip_if_no_extension("groups") # Check group expiry is provided, and see if we can continue expiry = getattr(self.channel_layer, "group_expiry", None) if expiry is None: self.fail("group_expiry is not defined") if expiry > 20: raise unittest.SkipTest("Expiry too long for test") # Add things to a group self.channel_layer.group_add("tge_group", "tge_test") # Wait group expiry plus one time.sleep(expiry + 1) # Ensure message never arrives self.channel_layer.send_group("tge_group", {"value": "blue"}) channel, message = self.receive(["tge_test"]) self.assertIs(channel, None) self.assertIs(message, None) def test_capacity(self): """ Tests that the capacity limiter on send() raises ChannelFull after the right number of messages. Only runs if capacity_limit is set. """ if self.capacity_limit is None: raise unittest.SkipTest("No test capacity specified") for _ in range(self.capacity_limit): self.channel_layer.send("cap_test", {"hey": "there"}) with self.assertRaises(self.channel_layer.ChannelFull): self.channel_layer.send("cap_test", {"hey": "there"}) def test_capacity_process(self): """ Tests that the capacity limiter works on process-specific channels overall """ if self.capacity_limit is None or self.capacity_limit < 2: raise unittest.SkipTest("Test capacity is unspecified or too low") for i in range(self.capacity_limit): self.channel_layer.send("capp!%s" % i, {"hey": "there"}) with self.assertRaises(self.channel_layer.ChannelFull): self.channel_layer.send("capp!final", {"hey": "there"}) def test_capacity_group(self): """ Tests that the capacity limiter on group_send() never raises ChannelFull. """ self.skip_if_no_extension("groups") self.channel_layer.group_add("tcg_group", "tcg_test") if self.capacity_limit is None: raise unittest.SkipTest("No test capacity specified") for _ in range(self.capacity_limit + 1): self.channel_layer.send_group("tcg_group", {"hey": "there"}) def test_exceptions(self): """ Tests that the two exception classes exist on the channel layer """ self.assertTrue(hasattr(self.channel_layer, "MessageTooLarge")) self.assertTrue(hasattr(self.channel_layer, "ChannelFull")) def test_message_alteration_after_send(self): """ Tests that a message can be altert after it was send through a channel without affecting the object inside the queue. """ message = {'value': [1, 2, 3]} self.channel_layer.send('channel', message) message['value'][0] = 'new value' _, message = self.receive(['channel']) self.assertEqual(message, {'value': [1, 2, 3]})
import csv import tempfile import pytest from datarobot_batch_scoring.batch_scoring import run_batch_predictions from utils import PickableMock from datarobot_batch_scoring.reader import DETECT_SAMPLE_SIZE_SLOW def test_gzipped_csv(live_server, ui): base_url = '{webhost}/predApi/v1.0/'.format(webhost=live_server.url()) ret = run_batch_predictions( base_url=base_url, base_headers={}, user='username', pwd='password', api_token=None, create_api_token=False, pid='56dd9570018e213242dfa93c', lid='56dd9570018e213242dfa93d', import_id=None, n_retry=3, concurrent=1, resume=False, n_samples=10, out_file='out.csv', keep_cols=None, delimiter=None, dataset='tests/fixtures/temperatura_predict.csv.gz', pred_name=None, timeout=None, ui=ui, auto_sample=False, fast_mode=False, dry_run=False, encoding='', skip_dialect=False, max_batch_size=1000 ) assert ret is None def test_explicit_delimiter(live_server): ui = PickableMock() base_url = '{webhost}/predApi/v1.0/'.format(webhost=live_server.url()) ret = run_batch_predictions( base_url=base_url, base_headers={}, user='username', pwd='password', api_token=None, create_api_token=False, pid='56dd9570018e213242dfa93c', lid='56dd9570018e213242dfa93d', import_id=None, n_retry=3, concurrent=1, resume=False, n_samples=10, out_file='out.csv', keep_cols=None, delimiter=',', dataset='tests/fixtures/temperatura_predict.csv', pred_name=None, timeout=None, ui=ui, auto_sample=False, fast_mode=False, dry_run=False, encoding='', skip_dialect=False ) assert ret is None def test_explicit_delimiter_gzip(live_server): ui = PickableMock() base_url = '{webhost}/predApi/v1.0/'.format(webhost=live_server.url()) ret = run_batch_predictions( base_url=base_url, base_headers={}, user='username', pwd='password', api_token=None, create_api_token=False, pid='56dd9570018e213242dfa93c', lid='56dd9570018e213242dfa93d', import_id=None, n_retry=3, concurrent=1, resume=False, n_samples=10, out_file='out.csv', keep_cols=None, delimiter=',', dataset='tests/fixtures/temperatura_predict.csv.gz', pred_name=None, timeout=None, ui=ui, auto_sample=False, fast_mode=False, dry_run=False, encoding='', skip_dialect=False ) assert ret is None def test_tab_delimiter(live_server): ui = PickableMock() base_url = '{webhost}/predApi/v1.0/'.format(webhost=live_server.url()) ret = run_batch_predictions( base_url=base_url, base_headers={}, user='username', pwd='password', api_token=None, create_api_token=False, pid='56dd9570018e213242dfa93c', lid='56dd9570018e213242dfa93d', import_id=None, n_retry=3, concurrent=1, resume=False, n_samples=10, out_file='out.csv', keep_cols=None, delimiter='\t', dataset='tests/fixtures/temperatura_predict_tab.csv', pred_name=None, timeout=None, ui=ui, auto_sample=False, fast_mode=False, dry_run=False, encoding='', skip_dialect=False ) assert ret is None def test_empty_file(live_server): ui = PickableMock() base_url = '{webhost}/predApi/v1.0/'.format(webhost=live_server.url()) with pytest.raises(csv.Error) as ctx: run_batch_predictions( base_url=base_url, base_headers={}, user='username', pwd='password', api_token=None, create_api_token=False, pid='56dd9570018e213242dfa93c', lid='56dd9570018e213242dfa93d', import_id=None, n_retry=3, concurrent=1, resume=False, n_samples=10, out_file='out.csv', keep_cols=None, delimiter=',', dataset='tests/fixtures/empty.csv', pred_name=None, timeout=None, ui=ui, auto_sample=False, fast_mode=False, dry_run=False, encoding='', skip_dialect=False ) assert "The csv module failed to detect the CSV dialect." in str(ctx.value) def test_no_delimiter(live_server): ui = PickableMock() base_url = '{webhost}/predApi/v1.0/'.format(webhost=live_server.url()) with pytest.raises(csv.Error) as ctx: run_batch_predictions( base_url=base_url, base_headers={}, user='username', pwd='password', api_token=None, create_api_token=False, pid='56dd9570018e213242dfa93c', lid='56dd9570018e213242dfa93d', import_id=None, n_retry=3, concurrent=1, resume=False, n_samples=10, out_file='out.csv', keep_cols=None, delimiter=';', dataset='tests/fixtures/temperatura_predict.csv', pred_name=None, timeout=None, ui=ui, auto_sample=False, fast_mode=False, dry_run=False, encoding='', skip_dialect=False ) assert str(ctx.value) == ("Could not determine delimiter") def test_bad_newline(live_server): ui = PickableMock() base_url = '{webhost}/predApi/v1.0/'.format(webhost=live_server.url()) run_batch_predictions( base_url=base_url, base_headers={}, user='username', pwd='password', api_token=None, create_api_token=False, pid='56dd9570018e213242dfa93c', lid='56dd9570018e213242dfa93d', import_id=None, n_retry=3, concurrent=1, resume=False, n_samples=10, out_file='out.csv', keep_cols=None, delimiter=',', dataset='tests/fixtures/diabetes_bad_newline.csv', pred_name=None, timeout=None, ui=ui, auto_sample=False, fast_mode=False, dry_run=False, encoding='', skip_dialect=False ) lines = len(open('out.csv', 'rb').readlines()) assert lines == 5 ui.warning.assert_any_call('Detected empty rows in the CSV file. ' 'These rows will be discarded.') def test_header_only(live_server): ui = PickableMock() base_url = '{webhost}/predApi/v1.0/'.format(webhost=live_server.url()) with pytest.raises(ValueError) as ctx: run_batch_predictions( base_url=base_url, base_headers={}, user='username', pwd='password', api_token=None, create_api_token=False, pid='56dd9570018e213242dfa93c', lid='56dd9570018e213242dfa93d', import_id=None, n_retry=3, concurrent=1, resume=False, n_samples=10, out_file='out.csv', keep_cols=None, delimiter=',', dataset='tests/fixtures/header_only.csv', pred_name=None, timeout=None, ui=ui, auto_sample=False, fast_mode=False, dry_run=False, encoding='', skip_dialect=False ) assert str(ctx.value) == ("Input file 'tests/fixtures/header_only.csv' " "is empty.") def test_quotechar_in_keep_cols(live_server): base_url = '{webhost}/predApi/v1.0/'.format(webhost=live_server.url()) ui = PickableMock() with tempfile.NamedTemporaryFile(prefix='test_', suffix='.csv', delete=False) as fd: head = open("tests/fixtures/quotes_input_head.csv", "rb").read() body_1 = open("tests/fixtures/quotes_input_first_part.csv", "rb").read() body_2 = open("tests/fixtures/quotes_input_bad_part.csv", "rb").read() fd.file.write(head) size = 0 while size < DETECT_SAMPLE_SIZE_SLOW: fd.file.write(body_1) size += len(body_1) fd.file.write(body_2) fd.close() ret = run_batch_predictions( base_url=base_url, base_headers={}, user='username', pwd='password', api_token=None, create_api_token=False, pid='56dd9570018e213242dfa93c', lid='56dd9570018e213242dfa93d', import_id=None, n_retry=3, concurrent=1, resume=False, n_samples=10, out_file='out.csv', keep_cols=["b", "c"], delimiter=None, dataset=fd.name, pred_name=None, timeout=None, ui=ui, auto_sample=True, fast_mode=False, dry_run=False, encoding='', skip_dialect=False ) assert ret is None last_line = open("out.csv", "rb").readlines()[-1] expected_last_line = b'1044,2,"eeeeeeee ""eeeeee"" eeeeeeeeeeee' assert last_line[:len(expected_last_line)] == expected_last_line def test_quoted_newline_in_keep_cols_in_fast_mode_fails(live_server): base_url = '{webhost}/predApi/v1.0/'.format(webhost=live_server.url()) ui = PickableMock() with tempfile.NamedTemporaryFile(prefix='test_', suffix='.csv', delete=False) as fd: head = open("tests/fixtures/quotes_input_head.csv", "rb").read() body_1 = open("tests/fixtures/quotes_input_first_part.csv", "rb").read() body_2 = open("tests/fixtures/quotes_input_bad_part_with_newline.csv", "rb").read() fd.file.write(head) size = 0 while size < DETECT_SAMPLE_SIZE_SLOW: fd.file.write(body_1) size += len(body_1) fd.file.write(body_2) fd.close() ret = run_batch_predictions( base_url=base_url, base_headers={}, user='username', pwd='password', api_token=None, create_api_token=False, pid='56dd9570018e213242dfa93c', lid='56dd9570018e213242dfa93d', import_id=None, n_retry=3, concurrent=1, resume=False, n_samples=10, out_file='out.csv', keep_cols=["b", "c"], delimiter=None, dataset=fd.name, pred_name=None, timeout=None, ui=ui, auto_sample=True, fast_mode=True, dry_run=False, encoding='', skip_dialect=False ) assert ret is 1
# LIGHT: # 1) методами строк очистить текст от знаков препинания; # 2) сформировать list со словами (split); # 3) привести все слова к нижнему регистру (map); # 4) получить из list пункта 3, dict, ключами которого являются слова, а значениями их количество появлений в тексте; # 5) вывести 5 наиболее часто встречающихся слов (sort), вывести количество разных слов в тексте (set). # PRO: # 6) выполнить light с условием: в пункте 2 дополнительно к приведению к нижнему регистру выполнить лемматизацию. # text = """Все счастливые семьи похожи друг на друга, каждая несчастливая семья несчастлива по-своему. Все смешалось в доме Облонских. Жена узнала, что муж был в связи с бывшею в их доме француженкою-гувернанткой, и объявила мужу, что не может жить с ним в одном доме. Положение это продолжалось уже третий день и мучительно чувствовалось и самими супругами, и всеми членами семьи, и домочадцами. Все члены семьи и домочадцы чувствовали, что нет смысла в их сожительстве и что на каждом постоялом дворе случайно сошедшиеся люди более связаны между собой, чем они, члены семьи и домочадцы Облонских. Жена не выходила из своих комнат, мужа третий день не было дома. Дети бегали по всему дому, как потерянные; англичанка поссорилась с экономкой и написала записку приятельнице, прося приискать ей новое место; повар ушел вчера со двора, во время самого обеда; черная кухарка и кучер просили расчета. На третий день после ссоры князь Степан Аркадьич Облонский — Стива, как его звали в свете, — в обычный час, то есть в восемь часов утра, проснулся не в спальне жены, а в своем кабинете, на сафьянном диване. Он повернул свое полное, выхоленное тело на пружинах дивана, как бы желая опять заснуть надолго, с другой стороны крепко обнял подушку и прижался к ней щекой; но вдруг вскочил, сел на диван и открыл глаза. «Да, да, как это было? — думал он, вспоминая сон. — Да, как это было? Да! Алабин давал обед в Дармштадте; нет, не в Дармштадте, а что-то американское. Да, но там Дармштадт был в Америке. Да, Алабин давал обед на стеклянных столах, да, — и столы пели: Il mio tesoro 1 и не Il mio tesoro, а что-то лучше, и какие-то маленькие графинчики, и они же женщины», — вспоминал он. Глаза Степана Аркадьича весело заблестели, и он задумался, улыбаясь. «Да, хорошо было, очень хорошо. Много еще что-то там было отличного, да не скажешь словами и мыслями даже наяву не выразишь». И, заметив полосу света, пробившуюся сбоку одной из суконных стор, он весело скинул ноги с дивана, отыскал ими шитые женой (подарок ко дню рождения в прошлом году), обделанные в золотистый сафьян туфли, и по старой, девятилетней привычке, не вставая, потянулся рукой к тому месту, где в спальне у него висел халат. И тут он вспомнил вдруг, как и почему он спит не в спальне жены, а в кабинете; улыбка исчезла с его лица, он сморщил лоб. «Ах, ах, ах! Ааа!..» — замычал он, вспоминая все, что было. И его воображению представились опять все подробности ссоры с женою, вся безвыходность его положения и мучительнее всего собственная вина его. «Да! она не простит и не может простить. И всего ужаснее то, что виной всему я, виной я, а не виноват. В этом-то вся драма, — думал он. — Ах, ах, ах!» — приговаривал он с отчаянием, вспоминая самые тяжелые для себя впечатления из этой ссоры. Неприятнее всего была та первая минута, когда он, вернувшись из театра, веселый и довольный, с огромною грушей для жены в руке, не нашел жены в гостиной; к удивлению, не нашел ее и в кабинете и, наконец, увидал ее в спальне с несчастною, открывшею все, запиской в руке. Она, эта вечно озабоченная, и хлопотливая, и недалекая, какою он считал ее, Долли, неподвижно сидела с запиской в руке и с выражением ужаса, отчаяния и гнева смотрела на него. — Что это? это? — спрашивала она, указывая на записку. И при этом воспоминании, как это часто бывает, мучало Степана Аркадьича не столько самое событие, сколько то, как он ответил на эти слова жены. С ним случилось в эту минуту то, что случается с людьми, когда они неожиданно уличены в чем-нибудь слишком постыдном. Он не сумел приготовить свое лицо к тому положению, в которое он становился перед женой после открытия его вины. Вместо того чтоб оскорбиться, отрекаться, оправдываться, просить прощения, оставаться даже равнодушным — все было бы лучше того, что он сделал! — его лицо совершенно невольно («рефлексы головного мозга», — подумал Степан Аркадьич, который любил физиологию), совершенно невольно вдруг улыбнулось привычною, доброю и потому глупою улыбкой. Эту глупую улыбку он не мог простить себе. Увидав эту улыбку, Долли вздрогнула, как от физической боли, разразилась, со свойственною ей горячностью, потоком жестоких слов и выбежала из комнаты. С тех пор она не хотела видеть мужа.""" # 1) text1 = ' ' text = text.replace(("!"), text1) text = text.replace(("?"), text1) text = text.replace((";"), text1) text = text.replace((","), text1) text = text.replace(("."), text1) text = text.replace(("-"), text1) text = text.replace((":"), text1) text = text.replace(("—"), text1) text = text.replace(("«"), text1) text = text.replace(("»"), text1) text = text.replace((" "), text1) text = text.replace((" "), text1) text = text.replace(("\n"), text1) print(text) # 2) list_1 = text.split(' ') print(list_1) # 3) list_2 = list(map(lambda x: x.lower(), list_1)) print(list_2) #4) dict_ = {} for i in range(len(list_2)): sum = 0 word = list_2[i] for y in range(len(list_2)): if word == list_2[y]: sum+=1 dict_[word] = sum print(dict_) #5) list_3 = (list(dict_.values())) list_3.sort() list_3.reverse() list_4 = list(filter(lambda x:x>16, list_3)) inv_dict_ = {value: key for key, value in dict_.items()} print(inv_dict_[list_4[0]],inv_dict_[list_4[1]],inv_dict_[list_4[2]],inv_dict_[list_4[3]],inv_dict_[list_4[4]],) # почему то третьим наиболее встречающимся "словом", стал пробел... не пойму как он попал в list_2 ? m_1 = set(list_2) print(len(m_1))
""" ******************************************************************************************************************* | | Name : get_tags.py | Description : Retrieves a list of all tags associated with a client via the RiskSense REST API. | Copyright : (c) RiskSense, Inc. | License : Apache-2.0 (https://www.apache.org/licenses/LICENSE-2.0.txt) | ******************************************************************************************************************* """ import json import os import toml import requests def read_config_file(filename): """ Reads TOML-formatted configuration file. :param filename: Path to file to be read. :type filename: str :return: Variables found in config file. :rtype: dict """ # Read the config file toml_data = open(filename).read() # Load the definitions contained in the config file data = toml.loads(toml_data) return data def get_tags(platform, key, client_id): """ Retrieve a list of all of the tags that are associated with the specified client ID. :param platform: URL of the RiskSense platform to be queried. :type platform: str :param key: API Key. :type key: str :param client_id: ID of the client to be queried. :type client_id: int :return: A list of all tags returned by the API. :rtype: list """ # Assemble the URL for the API call url = platform + "/api/v1/client/" + str(client_id) + "/tag/search" # Set the page size for returned results page_size = 100 # Set the initial page of results to retrieve page = 0 # Define the header for the API call header = { "x-api-key": key, "content-type": "application/json" } # Define the filters to be used in your query. You can get a list of fields # that can be filtered on from the /client/{clientId}/tag/filter API endpoint. filters = [ # In this case we are filtering for all tags created in 2018. You can # stack multiple filters here, to further narrow your results, just as # you can in the UI. { "field": "created", "exclusive": False, "operator": "LIKE", "value": "2018" } ] # Define the body for your API call. body = { "filters": filters, # The filters you specified above "projection": "basic", "sort": [ # Sort results returned by tag ID (ascending) { "field": "id", "direction": "ASC" } ], "page": page, "size": page_size } # Send your request to the API, and get the number of pages of results # that are available. response = requests.post(url, headers=header, data=json.dumps(body)) # If the status code returned equals success... if response and response.status_code == 200: jsonified_result = json.loads(response.text) else: print("There was an error retrieving the tags from the API.") print(f"Status Code Returned: {response.status_code}") print(f"Response: {response.text}") exit(1) number_of_pages = jsonified_result['page']['totalPages'] all_tags = [] # Cycle thorough all of the pages of tag results and add them to a list to be returned. while page < number_of_pages: # Send the API request print(f"Getting page {page + 1}/{number_of_pages} of tags for client id {client_id}...") response = requests.post(url, headers=header, data=json.dumps(body)) # If the status code returned equals success... if response and response.status_code == 200: jsonified_result = json.loads(response.text) else: print(f"There was an error retrieving page {page} of the found tags.") print(f"Status Code: {response.status_code}") print(f"Response: {response.text}") exit(1) # Append the tags found to our list to be returned. for item in jsonified_result['_embedded']['tags']: all_tags.append(item) # Increment the page number to retrieve in the next run. page += 1 body['page'] = page return all_tags def main(): """ Main body of script """ # Define the path to the config file, and read it. conf_file = os.path.join(os.path.abspath(os.path.dirname(os.path.dirname(__file__))), 'conf', 'config.toml') configuration = read_config_file(conf_file) # Set our variables based on what is read from the config file. rs_url = configuration['platform']['url'] api_key = configuration['platform']['api_key'] client_id = configuration['platform']['client_id'] # Get a list of the tags returned. tags = get_tags(rs_url, api_key, client_id) # Get the length of the list that was returned. This is the number of tags found. number_of_tags = len(tags) # Print basic information about each tag found to the console. print("Tags found:") print() for tag in tags: print(f"Tag ID: {tag['id']}") print(f"Tag Name: {tag['name']}") print(f"Tag Desc: {tag['description']}") print() # Print the total number of tags that were found to the console. print(f"{number_of_tags} tag(s) were retrieved from the RiskSense API.") print() # Execute the script if __name__ == '__main__': main() """ Copyright 2019 RiskSense, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for `tf.data.TFRecordDataset`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import gzip import os import zlib from tensorflow.python.data.kernel_tests import test_base from tensorflow.python.data.ops import dataset_ops from tensorflow.python.data.ops import readers from tensorflow.python.framework import test_util from tensorflow.python.lib.io import python_io from tensorflow.python.platform import test from tensorflow.python.util import compat @test_util.run_all_in_graph_and_eager_modes class TFRecordDatasetTest(test_base.DatasetTestBase): def setUp(self): super(TFRecordDatasetTest, self).setUp() self._num_files = 2 self._num_records = 7 self.test_filenames = self._createFiles() def dataset_fn(self, filenames, compression_type="", num_epochs=1, batch_size=None): repeat_dataset = readers.TFRecordDataset( filenames, compression_type).repeat(num_epochs) if batch_size: return repeat_dataset.batch(batch_size) return repeat_dataset def _record(self, f, r): return compat.as_bytes("Record %d of file %d" % (r, f)) def _createFiles(self): filenames = [] for i in range(self._num_files): fn = os.path.join(self.get_temp_dir(), "tf_record.%d.txt" % i) filenames.append(fn) writer = python_io.TFRecordWriter(fn) for j in range(self._num_records): writer.write(self._record(i, j)) writer.close() return filenames def testReadOneEpoch(self): # Basic test: read from file 0. dataset = self.dataset_fn(self.test_filenames[0]) self.assertDatasetProduces( dataset, expected_output=[self._record(0, i) for i in range(self._num_records)]) # Basic test: read from file 1. dataset = self.dataset_fn(self.test_filenames[1]) self.assertDatasetProduces( dataset, expected_output=[self._record(1, i) for i in range(self._num_records)]) # Basic test: read from both files. dataset = self.dataset_fn(self.test_filenames) expected_output = [] for j in range(self._num_files): expected_output.extend( [self._record(j, i) for i in range(self._num_records)]) self.assertDatasetProduces(dataset, expected_output=expected_output) def testReadTenEpochs(self): dataset = self.dataset_fn(self.test_filenames, num_epochs=10) expected_output = [] for j in range(self._num_files): expected_output.extend( [self._record(j, i) for i in range(self._num_records)]) self.assertDatasetProduces(dataset, expected_output=expected_output * 10) def testReadTenEpochsOfBatches(self): dataset = self.dataset_fn( self.test_filenames, num_epochs=10, batch_size=self._num_records) expected_output = [] for j in range(self._num_files): expected_output.append( [self._record(j, i) for i in range(self._num_records)]) self.assertDatasetProduces(dataset, expected_output=expected_output * 10) def testReadZlibFiles(self): zlib_files = [] for i, fn in enumerate(self.test_filenames): with open(fn, "rb") as f: cdata = zlib.compress(f.read()) zfn = os.path.join(self.get_temp_dir(), "tfrecord_%s.z" % i) with open(zfn, "wb") as f: f.write(cdata) zlib_files.append(zfn) expected_output = [] for j in range(self._num_files): expected_output.extend( [self._record(j, i) for i in range(self._num_records)]) dataset = self.dataset_fn(zlib_files, compression_type="ZLIB") self.assertDatasetProduces(dataset, expected_output=expected_output) def testReadGzipFiles(self): gzip_files = [] for i, fn in enumerate(self.test_filenames): with open(fn, "rb") as f: gzfn = os.path.join(self.get_temp_dir(), "tfrecord_%s.gz" % i) with gzip.GzipFile(gzfn, "wb") as gzf: gzf.write(f.read()) gzip_files.append(gzfn) expected_output = [] for j in range(self._num_files): expected_output.extend( [self._record(j, i) for i in range(self._num_records)]) dataset = self.dataset_fn(gzip_files, compression_type="GZIP") self.assertDatasetProduces(dataset, expected_output=expected_output) def testReadWithBuffer(self): one_mebibyte = 2**20 dataset = readers.TFRecordDataset( self.test_filenames, buffer_size=one_mebibyte) expected_output = [] for j in range(self._num_files): expected_output.extend( [self._record(j, i) for i in range(self._num_records)]) self.assertDatasetProduces(dataset, expected_output=expected_output) def testReadFromDatasetOfFiles(self): files = dataset_ops.Dataset.from_tensor_slices(self.test_filenames) expected_output = [] for j in range(self._num_files): expected_output.extend( [self._record(j, i) for i in range(self._num_records)]) dataset = readers.TFRecordDataset(files) self.assertDatasetProduces(dataset, expected_output=expected_output) def testReadTenEpochsFromDatasetOfFilesInParallel(self): files = dataset_ops.Dataset.from_tensor_slices( self.test_filenames).repeat(10) expected_output = [] for j in range(self._num_files): expected_output.extend( [self._record(j, i) for i in range(self._num_records)]) dataset = readers.TFRecordDataset(files, num_parallel_reads=4) self.assertDatasetProduces( dataset, expected_output=expected_output * 10, assert_items_equal=True) if __name__ == "__main__": test.main()
import sys, os sys.path.append(os.path.join(os.path.dirname(__file__), '..')) import bibtexparser from utility_library.constants import * from utility_library.util import * import collections import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.axes_grid1.inset_locator import inset_axes import matplotlib.ticker as mtick plt.rcParams['font.size'] = 22 with open('../../map.bib') as bibtex_file: bib_db = bibtexparser.load(bibtex_file) bib_db.entries = format_entries(bib_db) cnt_metrics = collections.Counter() for c, i in enumerate(bib_db.entries): try: if i.get('problem', None): print(i['metrics']) for metric in i['metrics']: cnt_metrics[metric] += 1 except: continue print(len(cnt_metrics.keys())) old_cnt_values = np.array(list(cnt_metrics.copy().values())) for metric in cnt_metrics.copy().keys(): if metric not in PRETTY_METRIC: print('removing', metric, 'and putting in others') cnt_metrics['others'] += cnt_metrics.pop(metric) cnt_metrics = { k: v for k, v in reversed(sorted(cnt_metrics.items(), key=lambda item: item[1])) } print("Number of articles", len(bib_db.entries)) cnt_metrics['others'] = cnt_metrics.pop('others') fig, ax = plt.subplots(figsize=(8.4, 4.8)) xs = list(map(PRETTY_METRIC.get, cnt_metrics.keys())) ys = np.array(list(cnt_metrics.values())) ys = 100 * ys / len(bib_db.entries) bars = ax.bar(xs, ys, color='k') for x, bar in zip(xs, bars): if x in 'Coverage,ILD,EPC,PRg,Others,Outros': bar.set_color('grey') for tick in ax.get_xticklabels(): tick.set_rotation(45) tick.set_horizontalalignment('right') for x, y in zip(xs, ys): ax.annotate("%d" % (y), xy=(x, y), ha='center', va='bottom') if LANG == 'en': ax.set_ylabel('Percentage of Studies') elif LANG == 'br': ax.set_ylabel('Porcentagem de Estudos') ax.set_ylim(top=max(ys) + 5) ax.yaxis.set_major_formatter(mtick.PercentFormatter()) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) fig.savefig('../../results/metrics_count.png', bbox_inches='tight') fig.savefig('../../results/metrics_count.eps', bbox_inches='tight')
#!/usr/bin/env python # -*- coding: utf-8 -*- header_test_suite = { "name": "Header tests", "scenarios": [ { "name": "simple header", "args": ["-b", "basic", "--header=0,3"], "input": '''\ 1,2 3,4 5,6 7,8 9,0 1,2 3,4 ''' , "output": '''\ +---+---+ | 1 | 2 | +---+---+ | 3 | 4 | | 5 | 6 | +---+---+ | 7 | 8 | +---+---+ | 9 | 0 | | 1 | 2 | | 3 | 4 | +---+---+ ''' }, ]}
# getter & setter class CovidtatusVo(object): ...
#!/usr/bin/env python3 # ver 1.0 import requests import os import datetime from time import sleep from lxml import html import pandas as pd item={'気温':'temp','降水量':'rain','湿度':'humd','気圧':'pres','風速':'wind','日照時間':'sun','積雪深':'snow'} listdf=pd.read_csv('crawl.txt',comment='#') for i,v in listdf.iterrows(): obsnum=v['観測所番号'] url="http://www.jma.go.jp/jp/amedas_h/yesterday-"+str(obsnum)+".html" res = requests.get(url) res.encoding = res.apparent_encoding dom = html.fromstring(res.text) table_xpath = """//*[@id="tbl_list"]""" table = dom.xpath(table_xpath)[0] df = pd.read_html(html.tostring(table),skiprows=[1],header=0) df0=df[0] now=datetime.datetime.now() yesterday=datetime.datetime(now.year,now.month,now.day,0,0,0)-datetime.timedelta(days=1) rrdfile=str(obsnum)+".rrd" if not os.path.exists('data/'+rrdfile): # temp,rain,humd,pres,wind,sun,snow - 35days/1h ,105days/3h ,548days/day ,3990days/1w os.system("/usr/bin/rrdtool create data/"+rrdfile+" --start "+str(int(yesterday.timestamp()))+" --step 3600 DS:temp:GAUGE:7200:-100:100 DS:rain:GAUGE:7200:0:1000 DS:humd:GAUGE:7200:0:100 DS:pres:GAUGE:7200:800:1100 DS:wind:GAUGE:7200:0:100 DS:sun:GAUGE:7200:0:1 DS:snow:GAUGE:7200:0:100000 RRA:AVERAGE:0.5:1:840 RRA:AVERAGE:0.5:3:840 RRA:MIN:0.5:3:840 RRA:MAX:0.5:3:840 RRA:AVERAGE:0.5:24:548 RRA:MIN:0.5:24:548 RRA:MAX:0.5:24:548 RRA:AVERAGE:0.5:168:570 RRA:MIN:0.5:168:570 RRA:MAX:0.5:168:570") for n in range(24): temp = rain =humd = pres = wind = sun = snow = 'nan' time=yesterday+datetime.timedelta(hours=n+1) for m in range(len(df0.columns)-1): ns=locals() ns[item.get(df0.columns[m+1])]=df0.loc[n,[df0.columns[m+1]]][0] os.system("/usr/bin/rrdtool update data/"+rrdfile+" "+str(int(time.timestamp()))+":"+str(temp)+":"+str(rain)+":"+str(humd)+":"+str(pres)+":"+str(wind)+":"+str(sun)+":"+str(snow)) sleep(1)
#!/usr/bin/python # -*- coding: utf-8 -*- import argparse import sys from imma_formats import TABLES def log(level, message): sys.stderr.write('[{level}] {message}\n'.format(level=level, message=message)) def parse_line(line): ''' Parses a line in the IMMA format (http://icoads.noaa.gov/e-doc/imma/R2.5-imma_short.pdf) ''' data, index = parse_attachment(line, 'c0', 0) return data def parse_attachment(line, table_name, start_index=0): def convert_value(data_type, string_value): if ' ' * len(string_value) == string_value: return data_type(0) else: return data_type(string_value) def log_conversion(variable_name, data_type, value): log('ERROR', 'Value error for variable {name}: ' '{data_type}({value}).\n' 'Exception was "{error_message}"'. format(name=variable_name, data_type=data_type.__name__, value=value, error_message=e.message)) data = list() for column in TABLES[table_name]: no, data_type, size, name, description, min_value, max_value, units =\ column string_value = line[start_index:start_index + size] try: value = convert_value(data_type, string_value) except ValueError, e: log_conversion(name, data_type, string_value) data.append((name, value)) start_index += size return data, start_index if __name__ == '__main__': parser = argparse.ArgumentParser( description='This tool parses text file in the ' 'International Maritime Meteorological ' 'Archive (IMMA) Form ' 'and out them in csv format') parser.add_argument('-in', '--infile', help='File to read from (stdin if not specified)') parser.add_argument('-out', '--outfile', help='File to write to (stdout if not specified)') parser.add_argument('-from', '--from-line', type=int, help='Output starting from <from_line>') parser.add_argument('-to', '--to-line', type=int, help='Output ending at <to_line>') args = parser.parse_args() input_file = args.infile and open(args.infile) or sys.stdin output_file = args.outfile and open(args.outfile, 'a+') or sys.stdout line_number = 0 for line in input_file: try: line_number += 1 if args.from_line and args.from_line > line_number: continue if args.to_line and args.to_line < line_number: break data = parse_line(line) output_file.write(','.join( [str(element[1]) for element in data]) + '\n') except Exception, e: log('ERROR', 'Error parsing line "{}".\n' 'The error message was "{}"'.format(line, e.message))
# coding: utf-8 import pprint import six from enum import Enum class RestCountryState: swagger_types = { 'code': 'str', 'country_code': 'str', 'id': 'str', 'name': 'str', } attribute_map = { 'code': 'code','country_code': 'countryCode','id': 'id','name': 'name', } _code = None _country_code = None _id = None _name = None def __init__(self, **kwargs): self.discriminator = None self.code = kwargs.get('code', None) self.country_code = kwargs.get('country_code', None) self.id = kwargs.get('id', None) self.name = kwargs.get('name', None) @property def code(self): """Gets the code of this RestCountryState. The code of the state identifies the state. The code is typically used within addresses. Some countries may not provide a code. For those the field is null. :return: The code of this RestCountryState. :rtype: str """ return self._code @code.setter def code(self, code): """Sets the code of this RestCountryState. The code of the state identifies the state. The code is typically used within addresses. Some countries may not provide a code. For those the field is null. :param code: The code of this RestCountryState. :type: str """ self._code = code @property def country_code(self): """Gets the country_code of this RestCountryState. The country code in ISO two letter format (e.g. UK, DE, CH, US). :return: The country_code of this RestCountryState. :rtype: str """ return self._country_code @country_code.setter def country_code(self, country_code): """Sets the country_code of this RestCountryState. The country code in ISO two letter format (e.g. UK, DE, CH, US). :param country_code: The country_code of this RestCountryState. :type: str """ self._country_code = country_code @property def id(self): """Gets the id of this RestCountryState. The ID of the state corresponds to the subdivision identifier defined in ISO 3166-2. The format consists of the country code followed by a dash and a subdivision identifier. :return: The id of this RestCountryState. :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this RestCountryState. The ID of the state corresponds to the subdivision identifier defined in ISO 3166-2. The format consists of the country code followed by a dash and a subdivision identifier. :param id: The id of this RestCountryState. :type: str """ self._id = id @property def name(self): """Gets the name of this RestCountryState. The name is a human readable label of the state in the language of the region. :return: The name of this RestCountryState. :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this RestCountryState. The name is a human readable label of the state in the language of the region. :param name: The name of this RestCountryState. :type: str """ self._name = name def to_dict(self): result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) elif isinstance(value, Enum): result[attr] = value.value else: result[attr] = value if issubclass(RestCountryState, dict): for key, value in self.items(): result[key] = value return result def to_str(self): return pprint.pformat(self.to_dict()) def __repr__(self): return self.to_str() def __eq__(self, other): if not isinstance(other, RestCountryState): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
# -*- coding: utf-8 -*- # # infer_score.py # # Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import time import argparse from .utils import load_model_config, load_raw_triplet_data, load_triplet_data from .models.infer import ScoreInfer class ArgParser(argparse.ArgumentParser): def __init__(self): super(ArgParser, self).__init__() self.add_argument('--model_path', type=str, default='ckpts', help='the place where to load the model') self.add_argument('--format', type=str, help='The format of input data'\ 'h_r_t: all lists of head, relation and tail are provied.\n' \ 'h_r_*: both lists of head and relation are provided and tail includes all entities.\n' \ 'h_*_t: both lists of head and tail are provied and relation includes all kinds of relations.\n' \ '*_r_t: both lists of relation and tail are provied and head includes all entities.\n' \ 'h_*_*: only lists of head is provided and both relation and tail include all possible ones.\n' \ '*_r_*: only lists of relation is provided and both head and tail include all possible ones.\n' \ '*_*_t: only lists of tail is provided and both head and relation include all possible ones.\n') self.add_argument('--data_files', type=str, default=None, nargs='+', help='A list of data file names. This is used to provide necessary files containing the requried data ' \ 'according to the format, e.g., for h_r_t, three files are required as h_data, r_data and t_data, ' \ 'while for h_*_t, two files are required as h_data and t_data') self.add_argument('--raw_data', default=False, action='store_true', help='whether the data provided in data_files is in the raw object naming space, e.g. string name of the entity ' \ 'or in DGL-KE converted integer id space \n' \ 'If True, the data is in the original naming space and the inference program will do the id translation' \ 'according to id mapping files generated during the training progress. \n' \ 'If False, the data is just interger ids and it is assumed that user has already done the id translation') self.add_argument('--exec_mode', type=str, default='all', help='How to calculate scores for triplets and calculate topK: \n' \ 'triplet_wise: head, relation and tail lists have the same length N, and we calculate the similarity triplet by triplet:' \ 'result = topK([score(h_i, r_i, t_i) for i in N]), the result shape will be (K,)\n' \ 'all: three lists of head, relation and tail ids are provided as H, R and T, and we calculate all possible combinations' \ 'of all triplets (h_i, r_j, t_k):' \ 'result = topK([[[score(h_i, r_j, t_k) for each h_i in H] for each r_j in R] for each t_k in T]), the result shape will be (K,)\n' \ 'batch_head: three lists of head, relation and tail ids are provided as H, R and T, and we calculate topK for each element in head:' \ 'result = topK([[score(h_i, r_j, t_k) for each r_j in R] for each t_k in T]) for each h_i in H, the result shape will be (sizeof(H), K)\n' \ 'batch_rel: three lists of head, relation and tail ids are provided as H, R and T, and we calculate topK for each element in relation:' \ 'result = topK([[score(h_i, r_j, t_k) for each h_i in H] for each t_k in T]) for each r_j in R, the result shape will be (sizeof(R), K)\n' \ 'batch_tail: three lists of head, relation and tail ids are provided as H, R and T, and we calculate topK for each element in tail:' \ 'result = topK([[score(h_i, r_j, t_k) for each h_i in H] for each r_j in R]) for each t_k in T, the result shape will be (sizeof(T), K)\n') self.add_argument('--topK', type=int, default=10, help='How many results are returned') self.add_argument('--score_func', type=str, default='none', help='What kind of score is used in ranking and will be output: \n' \ 'none: $score = x$ \n' 'logsigmoid: $score = log(sigmoid(x))$') self.add_argument('--output', type=str, default='result.tsv', help='Where to store the result, should be a single file') self.add_argument('--entity_mfile', type=str, default=None, help='Entity ID mapping file name. Required if Raw ID is used.') self.add_argument('--rel_mfile', type=str, default=None, help='Relation ID mapping file name. Required if Raw ID is used.') self.add_argument('--gpu', type=int, default=-1, help='GPU device to use in inference, -1 means CPU') def main(): args = ArgParser().parse_args() config = load_model_config(os.path.join(args.model_path, 'config.json')) emap_file = args.entity_mfile rmap_file = args.rel_mfile data_files = args.data_files # parse input data first if args.format == 'h_r_t': if args.raw_data: assert emap_file is not None, 'When using RAW ID through --raw_data, ' \ 'entity_mfile should be provided.' assert rmap_file is not None, 'When using RAW ID through --raw_data, ' \ 'rel_mfile should be provided.' assert len(data_files) == 3, 'When using h_r_t, head.list, rel.list and tail.list ' \ 'should be provided.' head, rel, tail, id2e_map, id2r_map = load_raw_triplet_data(head_f=data_files[0], rel_f=data_files[1], tail_f=data_files[2], emap_f=emap_file, rmap_f=rmap_file) else: head, rel, tail = load_triplet_data(head_f=data_files[0], rel_f=data_files[1], tail_f=data_files[2]) elif args.format == 'h_r_*': if args.raw_data: assert emap_file is not None, 'When using RAW ID through --raw_data, ' \ 'entity_mfile should be provided.' assert rmap_file is not None, 'When using RAW ID through --raw_data, ' \ 'rel_mfile should be provided.' assert len(data_files) == 2, 'When using h_r_*, head.list and rel.list ' \ 'should be provided.' head, rel, tail, id2e_map, id2r_map = load_raw_triplet_data(head_f=data_files[0], rel_f=data_files[1], tail_f=None, emap_f=emap_file, rmap_f=rmap_file) else: head, rel, tail = load_triplet_data(head_f=data_files[0], rel_f=data_files[1], tail_f=None) elif args.format == 'h_*_t': if args.raw_data: assert emap_file is not None, 'When using RAW ID through --raw_data, ' \ 'entity_mfile should be provided.' assert rmap_file is not None, 'When using RAW ID through --raw_data, ' \ 'rel_mfile should be provided.' assert len(data_files) == 2, 'When using h_*_t, head.list and tail.list ' \ 'should be provided.' head, rel, tail, id2e_map, id2r_map = load_raw_triplet_data(head_f=data_files[0], rel_f=None, tail_f=data_files[1], emap_f=emap_file, rmap_f=rmap_file) else: head, rel, tail = load_triplet_data(head_f=data_files[0], rel_f=None, tail_f=data_files[1]) elif args.format == '*_r_t': if args.raw_data: assert emap_file is not None, 'When using RAW ID through --raw_data, ' \ 'entity_mfile should be provided.' assert rmap_file is not None, 'When using RAW ID through --raw_data, ' \ 'rel_mfile should be provided.' assert len(data_files) == 2, 'When using *_r_t rel.list and tail.list ' \ 'should be provided.' head, rel, tail, id2e_map, id2r_map = load_raw_triplet_data(head_f=None, rel_f=data_files[0], tail_f=data_files[1], emap_f=emap_file, rmap_f=rmap_file) else: head, rel, tail = load_triplet_data(head_f=None, rel_f=data_files[0], tail_f=data_files[1]) elif args.format == 'h_*_*': if args.raw_data: assert emap_file is not None, 'When using RAW ID through --raw_data, ' \ 'entity_mfile should be provided.' assert rmap_file is not None, 'When using RAW ID through --raw_data, ' \ 'rel_mfile should be provided.' assert len(data_files) == 1, 'When using h_*_*, only head.list should be provided.' head, rel, tail, id2e_map, id2r_map = load_raw_triplet_data(head_f=data_files[0], rel_f=None, tail_f=None, emap_f=emap_file, rmap_f=rmap_file) else: head, rel, tail = load_triplet_data(head_f=data_files[0], rel_f=None, tail_f=None) elif args.format == '*_r_*': if args.raw_data: assert emap_file is not None, 'When using RAW ID through --raw_data, ' \ 'entity_mfile should be provided.' assert rmap_file is not None, 'When using RAW ID through --raw_data, ' \ 'rel_mfile should be provided.' assert len(data_files) == 1, 'When using *_r_*, only rel.list should be provided.' head, rel, tail, id2e_map, id2r_map = load_raw_triplet_data(head_f=None, rel_f=data_files[0], tail_f=None, emap_f=emap_file, rmap_f=rmap_file) else: head, rel, tail = load_triplet_data(head_f=None, rel_f=data_files[0], tail_f=None) elif args.format == '*_*_t': if args.raw_data: assert emap_file is not None, 'When using RAW ID through --raw_data, ' \ 'entity_mfile should be provided.' assert rmap_file is not None, 'When using RAW ID through --raw_data, ' \ 'rel_mfile should be provided.' assert len(data_files) == 1, 'When using *_*_t, only tail.list should be provided.' head, rel, tail, id2e_map, id2r_map = load_raw_triplet_data(head_f=None, rel_f=None, tail_f=data_files[0], emap_f=emap_file, rmap_f=rmap_file) else: head, rel, tail = load_triplet_data(head_f=None, rel_f=None, tail_f=data_files[0]) else: assert False, "Unsupported format {}".format(args.format) model = ScoreInfer(args.gpu, config, args.model_path, args.score_func) model.load_model() result = model.topK(head, rel, tail, args.exec_mode, args.topK) with open(args.output, 'w+') as f: f.write('head\trel\ttail\tscore\n') for res in result: hl, rl, tl, sl = res hl = hl.tolist() rl = rl.tolist() tl = tl.tolist() sl = sl.tolist() for h, r, t, s in zip(hl, rl, tl, sl): if args.raw_data: h = id2e_map[h] r = id2r_map[r] t = id2e_map[t] f.write('{}\t{}\t{}\t{}\n'.format(h, r, t, s)) print('Inference Done') if __name__ == '__main__': main()
import typer import hashlib from pathlib import Path from typing import Optional from tqdm import tqdm app = typer.Typer() # Main command @app.command() def main(algorithm: str, path: str, compare_with: Optional[str] = typer.Argument(None)): hash = Hash(algorithm, path, compare_with) # Initialize a Hash object typer.secho(hash.display_progress()) class Hash(): def __init__(self, algorithm, path, compare_with): ''' Default constructor ''' self.algorithm = algorithm self.path = path self.compare_with = compare_with def generate_file_hash(self): ''' Function to generate and return file hash as a string ''' if self.algorithm not in hashlib.algorithms_available: # If the user defined algorithm is not available raise TypeError(f'Algorithm: {self.algorithm} not supported!') # Opens a file, and returns it as a file object with open(self.path, 'rb') as f: algorithm = hashlib.new(self.algorithm) file_size = Path(self.path).stat().st_size with tqdm(total=file_size, unit='B', unit_scale=True) as pbar: while True: chunk = f.read(8192) if not chunk: # If no more bytes to be read break algorithm.update(chunk) pbar.update(len(chunk)) return algorithm.hexdigest() # hexdigest() returns a string def display_progress(self): ''' Calls 'generate_file_hash' function and displays the file hash along with algorithm, path or file hash compared with ''' file_hash = self.generate_file_hash() typer.secho( f'\nFILE_HASH: {typer.style(file_hash, fg=typer.colors.BLUE)}') dictionary = (vars(self)) # Convert class properties into a dictionary # Iterate over the key value pairs in the dictionary and print them for key, value in dictionary.items(): typer.secho( f'{key.upper()}: {typer.style(value, fg=typer.colors.BLUE)}') if self.compare_with is not None: # If the user defined a hash to be compared with typer.secho('\nMATCH', fg=typer.colors.GREEN) if ( file_hash == self.compare_with) else typer.secho('\nDIFFERENT', fg=typer.colors.RED)
# -*- coding: utf-8 -*- from django.contrib.auth.hashers import make_password from django.contrib.auth.models import User from rest_framework import serializers from rest_framework.validators import UniqueValidator from user_manage import models # Json结构化返回数据写法 class UserSerializer(serializers.ModelSerializer): class Meta: model = User fields = ('username', 'password') extra_kwargs = { 'username': { 'required': True, }, 'password': { 'write_only': True, 'required': True, }, } def validate(self, attrs): print "--------------------" if User.objects.filter(username=attrs['username']).count() != 0: raise serializers.ValidationError('用户已注册') return attrs def validate_password(self, password): print "===================" return make_password(password) # class StudentSerializer(serializers.ModelSerializer): # user = UserSerializer() # class Meta: # model = models.Student # fields = ('name', 'class_name', 'user') class StudentSerializer(serializers.ModelSerializer): username = serializers.CharField(source='user.username') password = serializers.CharField(source='user.password') class Meta: model = models.Student fields = ('username', 'password', 'name', 'class_name',) extra_kwargs = { 'password': {'write_only': True, 'required': True, }, } # 对应insert def create(self, validated_data): return super(StudentSerializer, self).create(validated_data) # 对应update def update(self, instance, validated_data): return super(StudentSerializer, self).update(instance, validated_data) # 对应updateOrinsert def save(self, **kwargs): return super(StudentSerializer, self).save(**kwargs) class FieldTestSerializer(serializers.Serializer): read_field = serializers.CharField(read_only=True) write_field = serializers.CharField(write_only=True) normal_field =serializers.CharField()
# coding:utf-8 import maya.cmds as cmds name = "ASSET_ribbon_PART" length = 5 ribbon = cmds.nurbsPlane(name="surf_{}".format(name), axis=[0,1,0], degree=3, lengthRatio=length, patchesU=1, patchesV=5, constructionHistory=False)[0] cmds.rebuildSurface(ribbon, degreeU=1, degreeV=3, spansU=0, spansV=length, constructionHistory=False) # rebuild ribbon (make U linear, keep V cubic) for i in range(length): loc = cmds.spaceLocator(name="rivet_{}_01".format(name, (i+1)))[0] point_on_surface_info = cmds.createNode("pointOnSurfaceInfo", name="ptOnSurfInfo_{}".format(loc)) four_by_four_matrix = cmds.createNode("fourByFourMatrix", name = "fbfMatrix_{}".format(loc)) decompose_matrix = cmds.createNode("decomposeMatrix", name="dMatrix_{}".format(loc)) joint = cmds.createNode("joint", name= "bind_{}_0{}".format(name, (i+1))) cmds.parent(joint, loc) # Make connection system cmds.connectAttr("{}.worldSpace[0]".format(ribbon), "{}.inputSurface".format(point_on_surface_info)) cmds.connectAttr("{}.normalX".format(point_on_surface_info), "{}.in00".format(four_by_four_matrix)) cmds.connectAttr("{}.normalY".format(point_on_surface_info), "{}.in01".format(four_by_four_matrix)) cmds.connectAttr("{}.normalZ".format(point_on_surface_info), "{}.in02".format(four_by_four_matrix)) cmds.connectAttr("{}.tangentVx".format(point_on_surface_info), "{}.in10".format(four_by_four_matrix)) cmds.connectAttr("{}.tangentVy".format(point_on_surface_info), "{}.in11".format(four_by_four_matrix)) cmds.connectAttr("{}.tangentVz".format(point_on_surface_info), "{}.in12".format(four_by_four_matrix)) cmds.connectAttr("{}.tangentUx".format(point_on_surface_info), "{}.in20".format(four_by_four_matrix)) cmds.connectAttr("{}.tangentUy".format(point_on_surface_info), "{}.in21".format(four_by_four_matrix)) cmds.connectAttr("{}.tangentUz".format(point_on_surface_info), "{}.in22".format(four_by_four_matrix)) cmds.connectAttr("{}.positionX".format(point_on_surface_info), "{}.in30".format(four_by_four_matrix)) cmds.connectAttr("{}.positionY".format(point_on_surface_info), "{}.in31".format(four_by_four_matrix)) cmds.connectAttr("{}.positionZ".format(point_on_surface_info), "{}.in32".format(four_by_four_matrix)) cmds.connectAttr("{}.output".format(four_by_four_matrix), "{}.inputMatrix".format(decompose_matrix)) cmds.connectAttr("{}.outputRotate".format(decompose_matrix), "{}.rotate".format(loc)) cmds.connectAttr("{}.outputTranslate".format(decompose_matrix), "{}.translate".format(loc)) # Set up U, V parameters for spacing rivet on ribbon ratio = 1.0/length paramV = ratio*(i+1) - 0.1 cmds.setAttr("{}.turnOnPercentage".format(point_on_surface_info), 1) cmds.setAttr("{}.parameterU".format(point_on_surface_info), 0.5) cmds.setAttr("{}.parameterV".format(point_on_surface_info), paramV)
from pytest import fixture, mark from sls.document import Document, Position from sls.indent.indent import Indentation from sls.services.hub import ServiceHub from tests.e2e.utils.fixtures import hub indent_unit = " " @fixture def ws(magic): return magic() @fixture def indentor(): return Indentation(service_registry=ServiceHub(hub)) @mark.parametrize( "story,expected", [ ("http server", indent_unit), ("", ""), ("$", ""), ("ams $.", ""), ("= . ", ""), ("/foo/b", ""), ("http :", ""), ('http "foo"', ""), ("function int", indent_unit), ("http fetch", ""), ("redis get", ""), ("invalidService get", ""), ("a = 1", ""), ("b = [1,2,3].length()", ""), ("when", indent_unit), ("foreach", indent_unit), ("foreach foo", indent_unit), ("foreach foo as b", indent_unit), ("if", indent_unit), ("if 2 + 2", indent_unit), ("else", indent_unit), ("while", indent_unit), ("while [1,2,3].length() > 0", indent_unit), ('while (redis get: "foo")', indent_unit), ("try", indent_unit), ("catch", indent_unit), ("function foo", indent_unit), ("function foo arg1:int", indent_unit), ("storyscript/crontab entrypoint", ""), ("noService noAction", ""), ("http noAction", ""), (indent_unit + "a = 1", indent_unit), (indent_unit + "redis get", indent_unit), (indent_unit + "when", 2 * indent_unit), (indent_unit + "foreach", 2 * indent_unit), (indent_unit + "if", 2 * indent_unit), (indent_unit + "else", 2 * indent_unit), (indent_unit + "while", 2 * indent_unit), (indent_unit + "try", 2 * indent_unit), (indent_unit + "catch", 2 * indent_unit), ("when srv listen", indent_unit), ('when srv listen path:"/counter"', indent_unit), ('when http server listen path:"/counter"', indent_unit), ('when http server listen path:"/counter" as request', indent_unit), ("http server as srv", indent_unit), ], ) def test_indent(indentor, ws, story, expected): doc = Document(uri=".my.uri.", text=story) lines = story.split("\n") # select the last pos in the provided story pos = Position(line=len(lines) - 1, character=len(lines[-1])) assert ( indentor.indent(ws, doc, pos, indent_unit=" ")["indent"] == expected ) def test_indent_options(indentor, ws): doc = Document(uri=".my.uri.", text=" try") pos = Position(line=0, character=8) assert ( indentor.indent(ws, doc, pos, indent_unit=" ")["indent"] == " " ) def test_indent_edits(indentor, ws): doc = Document(uri=".my.uri.", text="a = 1") pos = Position(line=0, character=5) assert indentor.indent(ws, doc, pos, indent_unit=" ") == { "indent": "", "textEdits": [ { "newText": "\n", "range": { "end": {"character": 5, "line": 0}, "start": {"character": 5, "line": 0}, }, } ], } def test_indent_edits2(indentor, ws): doc = Document(uri=".my.uri.", text="\ntry") pos = Position(line=1, character=3) assert indentor.indent(ws, doc, pos, indent_unit=" ") == { "indent": indent_unit, "textEdits": [ { "newText": "\n" + indent_unit, "range": { "end": {"character": 3, "line": 1}, "start": {"character": 3, "line": 1}, }, } ], }
#!/usr/bin/env python3 # A very simple load tester # Copyright 2018 Google # Sebastian Weigand tdg@google.com import poke import os import signal import time import argparse from multiprocessing import Pool from functools import partial parser = argparse.ArgumentParser( description='A simple load tester!', epilog='A Sab handy-dandy script.') parser.add_argument( 'url', nargs=1, type=str, help='The URL you wish to test.' ) parser.add_argument( '--fulltext', action='store_true', default=False, help= 'print the full text of HTTP response, instead of just the code (this will print a lot of text).' ) parser.add_argument( '-i', '--iterations', type=int, nargs='?', default=20, help='The number of iterations to run [20].' ) parser.add_argument( '-c', '--chunks', type=int, nargs='?', default=os.cpu_count(), help='The number of simultaneous processes to invoke [cpu_count].' ) args = parser.parse_args() args.url[0] = args.url[0].rstrip('/') if not args.url[0].startswith('http://'): args.url[0] = 'http://' + args.url[0] def init_worker(): ''' We establish an init_worker so that we can intercept signals, and kill the concurrent subprocesses: ''' signal.signal(signal.SIGINT, signal.SIG_IGN) def concurrent_test(url, iterations, chunks, fulltext): ''' A simple function which wraps the call, generates the collection of URLs to test, and feeds the appropriate pool. ''' print('Getting "{}", {} times, {} calls at a time...'.format( url, iterations, chunks)) try: pool = Pool(chunks, init_worker) # We need to pass in a keyword argument to the map, so use a partial: mapfunc = partial(poke.poke, full_text=args.fulltext) pool.map(mapfunc, (url for i in range(iterations))) except KeyboardInterrupt: print('\n [Abort requested] - Roger that!') pool.terminate() pool.join() else: pool.close() pool.join() concurrent_test(args.url[0], args.iterations, args.chunks, args.fulltext)
import datetime import numpy as np import os import json def calc_metric_score(y=None, preds=None, metric=None, threshold=None): if threshold: preds = preds > threshold return(metric(y, preds)) def calc_threshold_metric_score(y=None, preds=None, classes=[], metrics=[], thresholds=np.arange(.05, 1, 0.05)): output = {} for threshold_i in thresholds: for metric_i in metrics: # Calc overall performance key_name = f"{metric_i.__name__}_@{threshold_i:.2f}" output[key_name] = calc_metric_score(y=y, preds=preds, metric=metric_i, threshold=threshold_i) for class_idx in range(0, len(classes)): key_name = f"{metric_i.__name__}_#{classes[class_idx]}_@{threshold_i:.2f}" output[key_name] = calc_metric_score(y=y[:,class_idx], preds=preds[:,class_idx], metric=metric_i, threshold=threshold_i) return(output) def load_json(filepath): with open(filepath) as f: data = json.load(f) return(data) def save_json(data, filepath, indent=2): with open(filepath, 'w') as f: json.dump(data, f, indent=indent) def walk_dir(parent_dir): results = [] crawl_cnt = 0 for dir_name, sub_dir_list, file_list in os.walk(parent_dir): for file_name in file_list: file_path = os.path.join(os.path.realpath(dir_name), file_name) file_info = {} file_info['path'] = file_path file_info['filename'] = os.path.basename(file_path) file_info['file_type'] = os.path.splitext(file_path)[1].lower() # file_info['modified_date'] = time.strftime("%Y%m%dT%H%M%S000+10:00", time.gmtime(os.stat(file_path).st_mtime)) # file_info['created_date'] = time.strftime("%Y%m%dT%H%M%S000+10:00", time.gmtime(os.stat(file_path).st_ctime)) try: file_info['modified_date'] = datetime.date.fromtimestamp(os.path.getmtime(file_path)) file_info['created_date'] = datetime.date.fromtimestamp(os.path.getctime(file_path)) file_info['size'] = os.path.getsize(file_path) file_info['error'] = False except Exception as e: print(e) file_info['error'] = True file_info['crawl_cnt'] = crawl_cnt results.append(file_info) crawl_cnt += 1 return (results)
# REQUIRES: python-psutil # llvm.org/PR33944 # REQUIRES: nowindows # FIXME: This test is fragile because it relies on time which can # be affected by system performance. In particular we are currently # assuming that `short.py` can be successfully executed within 2 # seconds of wallclock time. # Test per test timeout using external shell # RUN: not %{lit} \ # RUN: %{inputs}/shtest-timeout/infinite_loop.py \ # RUN: %{inputs}/shtest-timeout/short.py \ # RUN: -j 1 -v --debug --timeout 2 --param external=1 > %t.extsh.out 2> %t.extsh.err # RUN: FileCheck --check-prefix=CHECK-OUT-COMMON < %t.extsh.out %s # RUN: FileCheck --check-prefix=CHECK-EXTSH-ERR < %t.extsh.err %s # # CHECK-EXTSH-ERR: Using external shell # Test per test timeout using internal shell # RUN: not %{lit} \ # RUN: %{inputs}/shtest-timeout/infinite_loop.py \ # RUN: %{inputs}/shtest-timeout/short.py \ # RUN: -j 1 -v --debug --timeout 2 --param external=0 > %t.intsh.out 2> %t.intsh.err # RUN: FileCheck --check-prefix=CHECK-OUT-COMMON < %t.intsh.out %s # RUN: FileCheck --check-prefix=CHECK-INTSH-OUT < %t.intsh.out %s # RUN: FileCheck --check-prefix=CHECK-INTSH-ERR < %t.intsh.err %s # CHECK-INTSH-OUT: TIMEOUT: per_test_timeout :: infinite_loop.py # CHECK-INTSH-OUT: command output: # CHECK-INTSH-OUT: command reached timeout: True # CHECK-INTSH-ERR: Using internal shell # Test per test timeout set via a config file rather than on the command line # RUN: not %{lit} \ # RUN: %{inputs}/shtest-timeout/infinite_loop.py \ # RUN: %{inputs}/shtest-timeout/short.py \ # RUN: -j 1 -v --debug --param external=0 \ # RUN: --param set_timeout=2 > %t.cfgset.out 2> %t.cfgset.err # RUN: FileCheck --check-prefix=CHECK-OUT-COMMON < %t.cfgset.out %s # RUN: FileCheck --check-prefix=CHECK-CFGSET-ERR < %t.cfgset.err %s # # CHECK-CFGSET-ERR: Using internal shell # CHECK-OUT-COMMON: TIMEOUT: per_test_timeout :: infinite_loop.py # CHECK-OUT-COMMON: Timeout: Reached timeout of 2 seconds # CHECK-OUT-COMMON: Command {{([0-9]+ )?}}Output # CHECK-OUT-COMMON: PASS: per_test_timeout :: short.py # CHECK-OUT-COMMON: Expected Passes{{ *}}: 1 # CHECK-OUT-COMMON: Individual Timeouts{{ *}}: 1 # Test per test timeout via a config file and on the command line. # The value set on the command line should override the config file. # RUN: not %{lit} \ # RUN: %{inputs}/shtest-timeout/infinite_loop.py \ # RUN: %{inputs}/shtest-timeout/short.py \ # RUN: -j 1 -v --debug --param external=0 \ # RUN: --param set_timeout=1 --timeout=2 > %t.cmdover.out 2> %t.cmdover.err # RUN: FileCheck --check-prefix=CHECK-CMDLINE-OVERRIDE-OUT < %t.cmdover.out %s # RUN: FileCheck --check-prefix=CHECK-CMDLINE-OVERRIDE-ERR < %t.cmdover.err %s # CHECK-CMDLINE-OVERRIDE-ERR: Forcing timeout to be 2 seconds # CHECK-CMDLINE-OVERRIDE-OUT: TIMEOUT: per_test_timeout :: infinite_loop.py # CHECK-CMDLINE-OVERRIDE-OUT: Timeout: Reached timeout of 2 seconds # CHECK-CMDLINE-OVERRIDE-OUT: Command {{([0-9]+ )?}}Output # CHECK-CMDLINE-OVERRIDE-OUT: PASS: per_test_timeout :: short.py # CHECK-CMDLINE-OVERRIDE-OUT: Expected Passes{{ *}}: 1 # CHECK-CMDLINE-OVERRIDE-OUT: Individual Timeouts{{ *}}: 1
from rubiks_cube_gym.envs.rubiks_cube_222 import RubiksCube222Env import numpy as np from operator import itemgetter class RubiksCube222EnvOrtega(RubiksCube222Env): def __init__(self): super(RubiksCube222EnvOrtega, self).__init__() self.FF = None self.OLL = None def check_FF(self): for pos in FF_POS: if itemgetter(*pos)(self.cube_reduced) == itemgetter(*pos)("WWWWOOGGRRBBOOGGRRBBYYYY"): return True return False def check_OLL(self): for pos in OLL_POS: if itemgetter(*pos)(self.cube_reduced) == itemgetter(*pos)("WWWWOOGGRRBBOOGGRRBBYYYY"): return True return False def check_solved(self): if self.cube_reduced == "WWWWOOGGRRBBOOGGRRBBYYYY": return True def reward(self): reward = -15 * self.FF - 25 * self.OLL done = False if self.check_FF(): reward += 15 self.FF = True else: self.FF = False if self.check_OLL(): reward += 25 self.OLL = True else: self.OLL = False if self.check_solved(): reward += 60 done = True if reward <= 0: reward -= 1 return reward, done def reset(self, scramble=None): super(RubiksCube222EnvOrtega, self).reset(scramble=scramble) self.FF = self.check_FF() self.OLL = self.check_OLL() return self.cube_state FF_POS = [[0, 1, 2, 3], [4, 5, 12, 13], [6, 7, 14, 15], [8, 9, 16, 17], [10, 11, 18, 19], [20, 21, 22, 23]] OLL_POS = [[0, 1, 2, 3, 20, 21, 22, 23], [4, 5, 8, 9, 12, 13, 16, 17], [6, 7, 10, 11, 14, 15, 18, 19], ]
import threading """ Threaded class which monitor all services health, recover from failure if possible, reports to server and restarts App TODO: implement @param service_objs """ class MonitorThread(threading.Thread): def __init__(self, app): threading.Thread.__init__(self) self.m_app = app
#!/usr/bin/env python """Publisher node for weight sensor. """ import glob import os import rospy import serial import time from std_msgs.msg import Float32MultiArray from std_srvs.srv import Empty class WeightPublisher(object): """Publisher ROS node for weight sensors. Topics ------ weights : Float32MultiArray The weights from each of the load cell sensors in grams, listed in order of ID. Services -------- tare : Empty Zeros the scale at the current load. """ def __init__(self, rate=20.0, id_mask='F1804'): """Initialize the weight publisher. Parameters ---------- id_mask : str A template for the first n digits of the device IDs for valid load cells. """ self._rate = rospy.Rate(rate) self._pub = rospy.Publisher('~weights', Float32MultiArray, queue_size=10) rospy.loginfo('Connecting serial') self._serials = self._connect(id_mask) if len(self._serials) == 0: raise ValueError('Error -- No loadstar weight sensors connected to machine!') # Tare the sensor rospy.loginfo('Tareing') self._tare() # Flush the sensor's communications self._flush() # Set up Tare service self._tare_service = rospy.Service('~tare', Empty, self._handle_tare) # Main loop -- read and publish while not rospy.is_shutdown(): weights = self._read_weights() self._pub.publish(Float32MultiArray(data=weights)) self._rate.sleep() def _handle_tare(self, request): """Handler for tare service. """ self._tare() return [] def _connect(self, id_mask): """Connects to all of the load cells serially. """ # Get all devices attached as USB serial all_devices = glob.glob('/dev/ttyUSB*') # Identify which of the devices are LoadStar Serial Sensors sensors = [] for device in all_devices: try: ser = serial.Serial(port=device, timeout=0.5, exclusive=True) ser.write('ID\r') ser.flush() time.sleep(0.05) resp = ser.read(13) ser.close() if len(resp) >= 10 and resp[:len(id_mask)] == id_mask: sensors.append((device, resp.rstrip('\r\n'))) except: continue sensors = sorted(sensors, key=lambda x : x[1]) # Connect to each of the serial devices serials = [] for device, key in sensors: ser = serial.Serial(port=device, timeout=0.5) serials.append(ser) rospy.loginfo('Connected to load cell {} at {}'.format(key, device)) return serials def _flush(self): """Flushes all of the serial ports. """ for ser in self._serials: ser.flush() ser.flushInput() ser.flushOutput() time.sleep(0.02) def _tare(self): """Zeros out (tare) all of the load cells. """ for ser in self._serials: ser.write('TARE\r') ser.flush() ser.flushInput() ser.flushOutput() time.sleep(0.02) def _read_weights(self): """Reads weights from each of the load cells. """ weights = [] grams_per_pound = 453.592 # Read from each of the sensors for ser in self._serials: ser.write('W\r') ser.flush() time.sleep(0.02) for ser in self._serials: try: output_str = ser.readline() weight = float(output_str) * grams_per_pound weights.append(weight) except: weights.append(0.0) # Log the output log_output = '' for w in weights: log_output +='{:.2f} '.format(w) rospy.loginfo(log_output) return weights if __name__ == '__main__': try: rospy.init_node('weight_sensor') id_mask = rospy.get_param('~id_mask', 'F1804') rate = rospy.get_param('~rate', 20.0) rospy.loginfo('Starting') WeightPublisher(rate, id_mask) except rospy.ROSInterruptException: pass
""" This module computes the canonical HRF used in fMRIstat, both the 2-term spectral approximation and the Taylor series approximation, to a shifted version of the canonical Glover HRF. References ---------- Liao, C.H., Worsley, K.J., Poline, J-B., Aston, J.A.D., Duncan, G.H., Evans, A.C. (2002). \'Estimating the delay of the response in fMRI data.\' NeuroImage, 16:593-606. """ import numpy as np import numpy.linalg as L from scipy.interpolate import interp1d from sympy import Function from nipy.modalities.fmri import hrf, formula from nipy.modalities.fmri.fmristat.invert import invertR def spectral_decomposition(hrf2decompose, ncomp=2, time=None, delta=None): """ Perform a PCA expansion of a symbolic HRF, evshifted over the values in delta, returning the first ncomp components. This smooths out the HRF as compared to using a Taylor series approximation. Parameters ---------- hrf2decompose : sympy expression An expression that can be vectorized as a function of 't'. This is the HRF to be expanded in PCA ncomp : int Number of principal components to retain. time : np.ndarray Default value of np.linspace(-15,50,3751) chosen to match fMRIstat implementation. Presumed to be equally spaced. delta : np.ndarray Default value of np.arange(-4.5, 4.6, 0.1) chosen to match fMRIstat implementation. Returns ------- hrf : [sympy expressions] A sequence of symbolic HRFs that are the principal components. approx : TODO """ if time is None: time = np.linspace(-15,50,3751) dt = time[1] - time[0] if delta is None: delta = np.arange(-4.5, 4.6, 0.1) hrft = hrf.vectorize(hrf2decompose(hrf.t)) H = [] for i in range(delta.shape[0]): H.append(hrft(time - delta[i])) H = np.nan_to_num(np.asarray(H)) U, S, V = L.svd(H.T, full_matrices=0) basis = [] for i in range(ncomp): b = interp1d(time, U[:, i], bounds_error=False, fill_value=0.) if i == 0: d = np.fabs((b(time) * dt).sum()) b.y /= d basis.append(b) W = np.array([b(time) for b in basis[:ncomp]]) WH = np.dot(L.pinv(W.T), H.T) coef = [interp1d(delta, w, bounds_error=False, fill_value=0.) for w in WH] if coef[0](0) < 0: coef[0].y *= -1. basis[0].y *= -1. def approx(time, delta): value = 0 for i in range(ncomp): value += coef[i](delta) * basis[i](time) return value approx.coef = coef approx.components = basis (approx.theta, approx.inverse, approx.dinverse, approx.forward, approx.dforward) = invertR(delta, approx.coef) symbasis = [] for i, b in enumerate(basis): symbasis.append(formula.aliased_function('%s%d' % (str(hrf2decompose), i), b)) return symbasis, approx def taylor_approx(hrf2decompose, tmax=50, tmin=-15, dt=0.02, delta=np.arange(-4.5, 4.6, 0.1)): """ Perform a PCA expansion of fn, shifted over the values in delta, returning the first ncomp components. This smooths out the HRF as compared to using a Taylor series approximation. Parameters ---------- hrf2decompose : sympy expression An expression that can be vectorized as a function of 't'. This is the HRF to be expanded in PCA ncomp : int Number of principal components to retain. References ---------- Liao, C.H., Worsley, K.J., Poline, J-B., Aston, J.A.D., Duncan, G.H., Evans, A.C. (2002). \'Estimating the delay of the response in fMRI data.\' NeuroImage, 16:593-606. """ hrft = hrf.vectorize(hrf2decompose(hrf.t)) time = np.arange(tmin, tmax, dt) dhrft = interp1d(time, -np.gradient(hrft(time), dt), bounds_error=False, fill_value=0.) dhrft.y *= 2 H = np.array([hrft(time - d) for d in delta]) W = np.array([hrft(time), dhrft(time)]) W = W.T WH = np.dot(L.pinv(W), H.T) coef = [interp1d(delta, w, bounds_error=False, fill_value=0.) for w in WH] def approx(time, delta): value = (coef[0](delta) * hrft(time) + coef[1](delta) * dhrft(time)) return value approx.coef = coef approx.components = [hrft, dhrft] (approx.theta, approx.inverse, approx.dinverse, approx.forward, approx.dforward) = invertR(delta, approx.coef) dhrf = formula.aliased_function('d%s' % str(hrf2decompose), dhrft) return [hrf2decompose, dhrf], approx canonical, canonical_approx = taylor_approx(hrf.glover) spectral, spectral_approx = spectral_decomposition(hrf.glover)
""" Given an integer array nums, return true if there exists a triple of indices (i, j, k) such that i < j < k and nums[i] < nums[j] < nums[k]. If no such indices exists, return false.   Example 1: Input: nums = [1,2,3,4,5] Output: true Explanation: Any triplet where i < j < k is valid. Example 2: Input: nums = [5,4,3,2,1] Output: false Explanation: No triplet exists. Example 3: Input: nums = [2,1,5,0,4,6] Output: true Explanation: The triplet (3, 4, 5) is valid because nums[3] == 0 < nums[4] == 4 < nums[5] == 6.   Constraints: 1 <= nums.length <= 105 -231 <= nums[i] <= 231 - 1   Follow up: Could you implement a solution that runs in O(n) time complexity and O(1) space complexity? """ class Solution: def increasingTriplet(self, nums: List[int]) -> bool: small, big = None, None for n in nums: if small is None or n <= small: small = n elif big is None or n <= big: big = n else: return True return False
import numpy as np class circlequeue: def __init__(self, _len, _dim): self.length = _len self.dimension = _dim self.data = np.zeros((_len, _dim)) self.index_start = 0 self.index_end = 0 self.datasize = 0 def add(self, new_data): self.data[self.index_end, :] = new_data self.index_end = (self.index_end + 1) % self.length if self.datasize < self.length: self.datasize = self.datasize + 1 else: self.index_start = (self.index_start + 1) % self.length def addArray(self, new_data): nRowNew = new_data.shape[0] p_new_start = (self.index_end % self.length) p_new_end = p_new_start + nRowNew if p_new_end <= self.length: self.index_end = p_new_end self.data[p_new_start: p_new_end,:] = new_data else: nFirstPart = self.length - self.index_end nLeftPart = nRowNew - nFirstPart self.data[p_new_start: self.length,:] = new_data[: nFirstPart,:] self.data[: nLeftPart,:] = new_data[nFirstPart: nRowNew,:] self.index_end = p_new_end - self.length if self.datasize + nRowNew <= self.length: self.datasize = self.datasize + nRowNew else: self.datasize = self.length self.index_start = (self.index_end % self.length) def get(self, index, *args): if len(args) < 1: dim = np.arange(self.data.shape[1]) else: dim = args[1] if index > self.length or index < 0: raise NotImplementedError return self.data[self.getOrignalIdx(index), dim] def getLast(self): return self.data[self.index_end-1,:] def getLastN(self, n): if self.datasize < n: idxStart = self.index_start idxEnd = self.index_end else: idxStart = self.getOrignalIdx(self.datasize - n) idxEnd = self.index_end if idxEnd > idxStart: d = self.data[idxStart:idxEnd,:] else: mid = self.length - idxStart d = np.zeros((n, self.dimension)) d[: mid, :] = self.data[idxStart: self.length,:] d[mid: n, :] = self.data[:idxEnd, :] return d def get_fromEnd(self, index, *args): if len(args) < 1: dim = np.arange(self.data.shape[1]) else: dim = args[1] if index >= self.length or index < 0: raise NotImplementedError idx = self.index_end-index if idx < 0: idx += self.length return self.data[idx, dim] # return self.get(self.index_end-index) # idx = self.getOrignalIdx(self.index_end-1-index) # # idx = self.getOrignalIdx(self.index_start + (self.datasize-index)) # # idx = (self.index_end - index + 1 % self.length) + 1 # d = self.data[idx, dim] # # return d def pop(self): if self.datasize == 0: return [] d = self.data[self.index_end-1, :] self.index_end -= 1 if self.index_end < 0: self.index_end += self.length self.datasize -= 1 return d def pop_fromBeginning(self): if self.datasize == 0: return [] d = self.data[self.index_start,:] self.index_start += 1 if self.index_start >= self.length: self.index_start -= self.length # self.index_start = (self.index_start - 1 + 1 % self.length) + 1 self.datasize = self.datasize - 1 return d def getOrignalIdx(self, idxQueue): return (self.index_start + idxQueue) % self.length # idxArray = (self.index_start + idxQueue) % self.length # print(idxArray) # idxArray = self.index_start + idxQueue # if idxArray >= self.length: # idxArray = idxArray - self.length # if idxArray >= self.length: # # print(idxArray) # return idxArray def set(self, range_start, range_end, value, *args): # range_start, range_end, value, dim # range_start, range_end, value = args[0], args[1], args[2] if len(args) < 1: dim = np.arange(self.data.shape[1]) else: dim = args[0] idxStart = self.getOrignalIdx(range_start) idxEnd = self.getOrignalIdx(range_end) if idxEnd >= idxStart: self.data[idxStart: idxEnd, dim] = value else: # nTotalData = size(value, 1) nTotalData = value.shape[0] if nTotalData > 1: nFirstPart = self.length - idxStart self.data[idxStart: self.length, dim] = value[: nFirstPart,:] self.data[: idxEnd, dim] = value[nFirstPart: nTotalData,:] else: self.data[idxStart: self.length, dim] = value self.data[1: idxEnd, dim] = value def getArray(self, range_start, range_end, *args): if len(args) < 1: dim = np.arange(self.data.shape[1]) else: dim = args[0] idxStart = self.getOrignalIdx(range_start) idxEnd = self.getOrignalIdx(range_end) if idxEnd >= idxStart: d = self.data[idxStart:idxEnd, dim] else: d1 = self.data[idxStart:self.length, dim] d2 = self.data[:idxEnd, dim] d = np.concatenate([d1, d2]) return d def getArrayAll(self): return self.getLastN(self.datasize)
# -*- coding: UTF-8 -*- #-----------IMPORTACIONES Y LIBRERÍAS---------------------------------- import numpy as np #Comandos trabajados: savetxt,array,loadtxt import os as o #Comandos trabajados: system,name,remove,getcwd from time import sleep #---------------parte gráfica de la jugabilidad------------------------- def tablero_inicial(tablero,filas,columnas): for y in range(filas): if y%2 == 0: for x in range(columnas): if float(x%2) ==0: tablero[y][x]='+' else: tablero[y][x]=' ' else: for x in range(columnas): tablero[y][x]=' ' def mostrar_tablero(tablero,filas,columnas): #corregir interfaz gráfica auxc = int((columnas + 1)/2) auxs = int((filas + 1)/2) orden = 0 if auxs<9: print(" ",end="") else: print(" ",end="") for n in range(auxc): if auxc>9: print(n+1, end=" ") else: print(n+1,end=" ") print() for i in range(filas): if float(i%2)== 0: if auxs>9: print(orden+1, end=" ") else: print(orden+1,end=" ") orden+=1 else: if auxs>9: print(" ", end=" ") else: print(" ",end=" ") orden+=1 for j in range(columnas): print(tablero[i][j],end=" ") print() def despliegue_menu(): print("+","-"*21,"+") print("+ 1) Nueva Partida +") print("+ 2) Continuar Juego +") print("+ 3) Jugadores +") print("+ 4) Estadísticas +") print("+ 5) Salir +") print("+","-"*21,"+") #------------------------condiciones de juego y configuración interna-------------------- def valido(x1,x2,y1,y2): conf1 = (x1-x2)**2 conf2 = (y1-y2)**2 if conf1 >= 1 and conf2 >= 1: return False else: return True def libre(a,b): if tablero[a][b]==' ': return True else: return False def completo(x,y,fila,columna,tablero): pos = 0 # 1: / 2: / 3: /4: / 5: / 6: if tablero[x][y]=='-' and x!=0 and x!=fila: if (tablero[x+1][y-1]=='|' and tablero[x+1][y+1]=='|' and tablero[x+2][y]=='-')and(tablero[x-1][y-1]=='|' and tablero[x-1][y+1]=='|' and tablero[x-2][y]=='-'): pos = 5 elif tablero[x+1][y-1]=='|' and tablero[x+1][y+1]=='|' and tablero[x+2][y]=='-': pos = 2 elif tablero[x-1][y-1]=='|' and tablero[x-1][y+1]=='|' and tablero[x-2][y]=='-': pos = 1 elif tablero[x][y]=='-' and x==0: if tablero[x+1][y-1]=='|' and tablero[x+1][y+1]=='|' and tablero[x+2][y]=='-': pos = 2 elif tablero[x][y]=='-' and x==fila: if tablero[x-1][y-1]=='|' and tablero[x-1][y+1]=='|' and tablero[x-2][y]=='-': pos = 1 elif tablero[x][y]=='|' and y!=0 and y!=columna: if (tablero[x][y+2]=='|' and tablero[x+1][y+1]=='-' and tablero[x-1][y+1]=='-') and (tablero[x][y-2]=='|' and tablero[x+1][y-1]=='-' and tablero[x-1][y-1]=='-'): pos = 6 elif tablero[x][y+2]=='|' and tablero[x+1][y+1]=='-' and tablero[x-1][y+1]=='-': pos = 3 elif tablero[x][y-2]=='|' and tablero[x+1][y-1]=='-' and tablero[x-1][y-1]=='-': pos = 4 elif tablero[x][y]=='|' and y==0: if tablero[x][y+2]=='|' and tablero[x+1][y+1]=='-' and tablero[x-1][y+1]=='-': pos = 3 elif tablero[x][y]=='|' and y == columna: if tablero[x][y-2]=='|' and tablero[x+1][y-1]=='-' and tablero[x-1][y-1]=='-': pos = 4 return pos def cuadro_para(turno,jugadores,x,y,pos,tablero,puntos): print(jugadores[turno]," ha completado un cuadro") nombre = jugadores[turno] inicial = nombre[0] if pos == 1: tablero[x-1][y]= inicial elif pos == 2: tablero[x+1][y]= inicial elif pos == 3: tablero[x][y+1]= inicial elif pos == 4: tablero[x][y-1]= inicial elif pos == 5: tablero[x+1][y]= inicial tablero[x-1][y]= inicial puntos[turno]+=1 elif pos == 6: tablero[x][y+1]= inicial tablero[x][y-1]= inicial puntos[turno]+=1 print("El jugador ha ganado otro turno por completar un cuadro") return def lista_jugadores(jugadores,num,puntos): for i in range (num): puntos[i]=0 print("Jugador #",i,": ") nombre = input("Digite el nombre del jugador: ") if i>0: for j in range (i): aux_nom = jugadores[j] while nombre[0] == aux_nom[0]: nombre = input("Digite otro nombre para el jugador con inicial diferente") jugadores[i]= nombre else: jugadores[0]= nombre def clear(): if o.name == "nt": o.system("cls") else: o.system("clear") def guardado_tablero(filas,columnas,tablero,ultimo,jugadores,puntos,num): txt = " ultimo_juego.txt" line1 = str(filas) + " " + str(columnas) + " " + str(ultimo) + " " + str(num)+ "\n" line2 = "" line3 = "" for j in range(num): line2 += str(jugadores[j]) + " " line3 += str(puntos[j]) + " " copia_pausa = [[0 for i in range(columnas)]for j in range(filas)] for x in range(filas): for y in range(columnas): copia_pausa[x][y]= ord(tablero[x][y]) guardado = np.array(copia_pausa) if txt in o.listdir(".") and o.path.isfile(txt) : o.remove(o.getcwd + "/" + txt) print("Se ha reemplazado un archivo de partida pausada") np.savetxt("ultimo_juego.txt",guardado) print("Tablero guardado con éxito") datos = open("datos_juego.txt","w") #orden de guardado de datos: fila,columna,turno,num_jugadores,jugadores,puntos datos.write(line1) datos.write(line2) datos.write("\n") datos.write(line3) print("Datos guardados correctamente") datos.close() def carga_datos(jugadores,puntos,tablero): matriz = "ultimo_juego.txt" txt = "datos-juego.txt" if not (txt in o.listdir(".") and o.path.isfile(txt)): print("Error accediendo a los registros") fila = columna = turno = num = -1 return fila,columna,turno,num recarga = open(txt,"r") cargados = np.loadtxt(matriz) line1 = recarga.readline() line1 = line1.split() fila = int(line1[0]) columna = int(line1[1]) turno = int(line1[2]) num = int(line1[3]) line2 = recarga.readline() line2 = line2.split() line3 = recarga.readline() line3 = line3.split() for j in range(num): jugadores[j]= line2[j] puntos[j]= int(line3[j]) for x in range(fila): for y in range(columna): tablero[x][y]=chr(cargados[x][y]) recarga.close() o.remove(o.getcwd()+ matriz) o.remove(o.getcwd()+ txt) print("Datos de partida cargados correctamente, recuerde al cargarlos no se podrá jugar la misma partida posteriormente") return fila,columna,turno,num #------------------------jugabilidad y desarrollo--------------------------------------- def tu_turno(fila,columna,turno,tablero,jugadores,puntos,num): print("Es el turno del jugador: ",jugadores[turno]) x=y=x1=x2=y1=y2=con=0 while not(valido(x1,x2,y1,y2) and libre(x,y)): if con>0: print("Movimiento inválido,vuelva a digitar por favor:") print("Recuerde que para pausar el juego debe oprimir -1") x1=int(input("Digite la coordenada x1: ")) if x1 == -1: guardado_tablero(fila, columna, tablero, turno, jugadores, puntos, num) turno = -1 return turno y1=int(input("Digite la coordenada y1: ")) if y1 == -1: guardado_tablero(fila, columna, tablero, turno, jugadores, puntos, num) turno = -1 return turno x2=int(input("Digite la coordenada x2: ")) if x2 == -1: guardado_tablero(fila, columna, tablero, turno, jugadores, puntos, num) turno = -1 return turno y2=int(input("Digite la coordenada y2: ")) if y2 == -1: guardado_tablero(fila, columna, tablero, turno, jugadores, puntos, num) turno = -1 return turno x = x1+x2-2 y = y1+y2-2 con+=1 if x%2 == 0 and y%2!=0: tablero[x][y]='-' else: tablero[x][y]='|' pos = completo(x,y,fila,columna,tablero) if pos!= 0: puntos[turno]+=1 cuadro_para(turno,jugadores,x,y,pos,tablero,puntos) sleep(1) else: turno +=1 if turno >= num: turno = 0 return turno def disponibles(tablero,fila,columna): for i in range(fila): for j in range(columna): if tablero[i][j]==' ': return True return False #------------------------DESARROLLO DEL MAIN CUADRITO--------------------------------- jugadores=[' ',' ',' ',' ',' '] puntos=[0,0,0,0,0] filas = columnas = 0 turno = 0 seguir = True print("Bienvenido al juego de cuadrito de Daniel López, versión en Python") despliegue_menu() opt = int(input("Digite su opción: ")) clear() if opt==1: print("Cargando tablero vacio y espacio de juego,¿está listo?") filas = int(input("Digite el número de filas: ")) columnas = int(input("Digite el número de columnas: ")) filas = filas*2-1 columnas = columnas*2-1 tablero = [['°' for i in range(25)]for i in range (25)] num= int(input("Digite el número de jugadores: ")) lista_jugadores(jugadores,num,puntos) print("El juego empieza: ") tablero_inicial(tablero,filas,columnas) while(True): mostrar_tablero(tablero,filas,columnas) turno = tu_turno(filas,columnas,turno,tablero,jugadores,puntos,num) if turno == -1: print("Se ha detenido el juego, gracias por jugar") break seguir = disponibles(tablero,filas, columnas) if not seguir: print("No ha movimientos disponibles, el juego ha terminado") break clear() print() elif opt==2: print("Buscando en el historial de partida, recuerde verificar que el guardado del juego se realizo correctamente") filas,columnas,turno,num = carga_datos(jugadores, puntos, tablero) if filas != -1 and num !=-1: print("El juego continua: ") while(True): mostrar_tablero(tablero,filas,columnas) turno = tu_turno(filas,columnas,turno,tablero,jugadores,puntos,num) if turno == -1: print("Se ha detenido el juego, gracias por jugar") break seguir = disponibles(tablero,filas, columnas) if not seguir: print("No ha movimientos disponibles, el juego ha terminado") break clear() else: print("Volviendo al menú principal...") elif opt==3: print("A continuación se muestra las opciones disponibles para jugador") elif opt==4: print("Cargando datos y estadísticas") print("-"*15) print("Gracias por venir, espero haya disfrutado del juego")
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import copy import importlib import paddle.nn as nn from paddle.jit import to_static from paddle.static import InputSpec import paddle def create_input_specs(): src_word = paddle.static.InputSpec( name="src_word", shape=[None, None], dtype="int64") trg_word = paddle.static.InputSpec( name="trg_word", shape=[None, None], dtype="int64") return [src_word, trg_word] def apply_to_static(config, model): support_to_static = config.get('to_static', False) if support_to_static: specs = create_input_specs() model = to_static(model, input_spec=specs) return model
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! import grpc from google.ads.google_ads.v4.proto.resources import keyword_view_pb2 as google_dot_ads_dot_googleads__v4_dot_proto_dot_resources_dot_keyword__view__pb2 from google.ads.google_ads.v4.proto.services import keyword_view_service_pb2 as google_dot_ads_dot_googleads__v4_dot_proto_dot_services_dot_keyword__view__service__pb2 class KeywordViewServiceStub(object): """Proto file describing the Keyword View service. Service to manage keyword views. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetKeywordView = channel.unary_unary( '/google.ads.googleads.v4.services.KeywordViewService/GetKeywordView', request_serializer=google_dot_ads_dot_googleads__v4_dot_proto_dot_services_dot_keyword__view__service__pb2.GetKeywordViewRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v4_dot_proto_dot_resources_dot_keyword__view__pb2.KeywordView.FromString, ) class KeywordViewServiceServicer(object): """Proto file describing the Keyword View service. Service to manage keyword views. """ def GetKeywordView(self, request, context): """Returns the requested keyword view in full detail. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_KeywordViewServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetKeywordView': grpc.unary_unary_rpc_method_handler( servicer.GetKeywordView, request_deserializer=google_dot_ads_dot_googleads__v4_dot_proto_dot_services_dot_keyword__view__service__pb2.GetKeywordViewRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v4_dot_proto_dot_resources_dot_keyword__view__pb2.KeywordView.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'google.ads.googleads.v4.services.KeywordViewService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,))