content
stringlengths
5
1.05M
""" Definition of Fluid, IncompressibleFlow as well as fluid-related functions. """ from phi import math, field from phi.field import GeometryMask, AngularVelocity, Grid, divergence, CenteredGrid, spatial_gradient, where, HardGeometryMask from phi.geom import union from ._boundaries import Domain def make_incompressible(velocity: Grid, domain: Domain, obstacles: tuple or list = (), solve_params: math.LinearSolve = math.LinearSolve(None, 1e-3), pressure_guess: CenteredGrid = None): """ Projects the given velocity field by solving for the pressure and subtracting its spatial_gradient. This method is similar to :func:`field.divergence_free()` but differs in how the boundary conditions are specified. Args: velocity: Vector field sampled on a grid domain: Used to specify boundary conditions obstacles: List of Obstacles to specify boundary conditions inside the domain (Default value = ()) pressure_guess: Initial guess for the pressure solve solve_params: Parameters for the pressure solve Returns: velocity: divergence-free velocity of type `type(velocity)` pressure: solved pressure field, `CenteredGrid` iterations: Number of iterations required to solve for the pressure divergence: divergence field of input velocity, `CenteredGrid` """ input_velocity = velocity active = domain.grid(HardGeometryMask(~union(*[obstacle.geometry for obstacle in obstacles])), extrapolation=domain.boundaries['active_extrapolation']) accessible = domain.grid(active, extrapolation=domain.boundaries['accessible_extrapolation']) hard_bcs = field.stagger(accessible, math.minimum, domain.boundaries['accessible_extrapolation'], type=type(velocity)) velocity = layer_obstacle_velocities(velocity * hard_bcs, obstacles).with_(extrapolation=domain.boundaries['near_vector_extrapolation']) div = divergence(velocity) if domain.boundaries['near_vector_extrapolation'] == math.extrapolation.BOUNDARY: div -= field.mean(div) # Solve pressure def laplace(p): grad = spatial_gradient(p, type(velocity)) grad *= hard_bcs grad = grad.with_(extrapolation=domain.boundaries['near_vector_extrapolation']) div = divergence(grad) lap = where(active, div, p) return lap pressure_guess = pressure_guess if pressure_guess is not None else domain.scalar_grid(0) converged, pressure, iterations = field.solve(laplace, y=div, x0=pressure_guess, solve_params=solve_params, constants=[active, hard_bcs]) if math.all_available(converged) and not math.all(converged): raise AssertionError(f"pressure solve did not converge after {iterations} iterations\nResult: {pressure.values}") # Subtract grad pressure gradp = field.spatial_gradient(pressure, type=type(velocity)) * hard_bcs velocity = (velocity - gradp).with_(extrapolation=input_velocity.extrapolation) return velocity, pressure, iterations, div def layer_obstacle_velocities(velocity: Grid, obstacles: tuple or list): """ Enforces obstacle boundary conditions on a velocity grid. Cells inside obstacles will get their velocity from the obstacle movement. Cells outside will be unaffected. Args: velocity: centered or staggered velocity grid obstacles: sequence of Obstacles velocity: Grid: obstacles: tuple or list: Returns: velocity of same type as `velocity` """ for obstacle in obstacles: if not obstacle.is_stationary: obs_mask = GeometryMask(obstacle.geometry) obs_mask = obs_mask.at(velocity) angular_velocity = AngularVelocity(location=obstacle.geometry.center, strength=obstacle.angular_velocity, falloff=None).at(velocity) obs_vel = angular_velocity + obstacle.velocity velocity = (1 - obs_mask) * velocity + obs_mask * obs_vel return velocity
from SlowRecorder import SlowRecorder import sys if __name__ == "__main__": app = SlowRecorder() app.startApp() sys.exit(app.app.exec_())
#!/usr/bin/env python import ansible from ansible.parsing.dataloader import DataLoader from ansible.vars.manager import VariableManager from ansible.inventory.manager import InventoryManager from ansible.module_utils.common.collections import ImmutableDict from ansible.playbook.play import Play from ansible.executor.task_queue_manager import TaskQueueManager from ansible.plugins.callback import CallbackBase import ansible.constants as C from ansible import context from collections import namedtuple import os from os.path import expanduser import shutil class ResultCallback(CallbackBase): def v2_runner_on_ok(self, result, **kwargs): self.status = 'ok' self.check_result(result) def v2_runner_on_failed(self, result, ignore_errors=False): self.status = 'failed' self.check_result(result) def v2_runner_on_unreachable(self, result): self.status = 'unreachable' self.check_result(result) def check_result(self, res): try: result = res._result host = res._host.name self.set_result(host, result) except AttributeError: self.set_result('', '') def set_result(self, hostname, result): self.result = {'ansible_status': self.status, hostname: result} class Runner(): def __init__(self, host, remote_user='icinga-check', private_key_file=None): self.host=host sources = '%s,' % (host) module_path = os.path.abspath(os.path.join(os.path.dirname(os.path.realpath(__file__)), "modules")) if private_key_file == None: private_key_file = '%s/.ssh/id_rsa' % (expanduser('~')) # Options = namedtuple('Options', ['ask_pass','connection','module_path', 'forks', 'check' ,'become', 'become_method', 'become_user', 'private_key_file', 'remote_user', 'diff', 'ssh_extra_args']) context.CLIARGS = ImmutableDict(connection='smart', module_path=[module_path], forks=100, become=None,become_method=None, become_user=None, check=False, diff=False, ssh_extra_args='-o StrictHostKeyChecking=no', private_key_file=private_key_file, remote_user=remote_user,) # self.options = Options(ask_pass=False, connection='smart', module_path=[module_path], forks=100, check=False, become=None, become_method=None, become_user=None, private_key_file=private_key_file, remote_user=remote_user, diff=False , ssh_extra_args='-o StrictHostKeyChecking=no') #Since there is no possibility to use ssh passwords for decryption we do not use any passwords self.passwords = dict() self.results_callback = ResultCallback() self.loader = DataLoader() self.inventory = InventoryManager(loader=self.loader, sources=sources) self.variable_manager = VariableManager(loader =self.loader, inventory=self.inventory) def run_play(self, module , args=dict(), playname="Ansible Remote Icinga Check"): play_source = dict( name = playname, hosts = self.host, gather_facts = 'no', tasks = [dict(action=dict(module=module, args=args)) ] ) self.play = Play().load(play_source, variable_manager=self.variable_manager, loader=self.loader) self.tqm = TaskQueueManager( inventory=self.inventory, variable_manager=self.variable_manager, loader=self.loader, passwords=self.passwords, stdout_callback=self.results_callback ) try: self.tqm.run(self.play) finally: if self.tqm is not None: self.tqm.cleanup() # Remove ansible tmpdir shutil.rmtree(C.DEFAULT_LOCAL_TMP, True) if hasattr(self.results_callback, 'result'): return self.results_callback.result else: return {'status': 'no status'}
"""Scrape the first ten pages of stackoverflow jobs for python jobs. - The job title - The company name - The location - The date posted (in whatever date format makes the most sense to you) - The link to the actual job posting """ from bs4 import BeautifulSoup as bs from datetime import datetime import os import requests DOMAIN = 'https://stackoverflow.com' def scrape_for_jobs(response): """Scrape a page for Python jobs. Returns the url for the next page of jobs. """ content = bs(response.content, 'html.parser') jobs = content.find_all('div', class_='-job-summary ') all_job_data = [] for job in jobs: languages = job.find('div', class_='-tags') if not languages: continue if 'python' not in languages.get_text(): continue job_data = [] title = job.find('a', class_='job-link').text job_data.append(title if title else '') company = job.find('div', class_='-company') company_name = company.find('div', class_='-name').text.strip() job_data.append(company_name if company_name else '') company_location = company.find('div', class_='-location').text.strip('\r\n -') job_data.append('"{}"'.format(company_location) if company_location else '') date_posted = job.find('p', class_='-posted-date').text.strip() job_data.append(date_posted if date_posted else '') link = job.find('a', class_='job-link').get('href') full_link = DOMAIN + link job_data.append(full_link) all_job_data.append(job_data) return all_job_data def save_results(results, output): """Save the scraping results to a file.""" data = [','.join(job_data) for job_data in results] output.write('\n' + '\n'.join(data)) def get_job_page(page_num): """Scrape num page of the job postings.""" response = requests.get(DOMAIN + '/jobs?pg={}'.format(page_num)) return scrape_for_jobs(response) if __name__ == '__main__': dir_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'results') output_file = 'Python jobs - {}.csv'.format(datetime.now().strftime('%m-%d-%y')) output_path = os.path.join(dir_path, output_file) with open(output_path, 'w') as output: output.write('Job Title,Company,Location,Date Posted,Link') output = open(output_path, 'a') print('Scraping the StackOverflow Job site for Python jobs!') for n in range(1, 11): print('Scraping page {}...'.format(n)) data = get_job_page(n) save_results(data, output) output.close() print('Done! Results saved in results/{}'.format(output_file))
import tensorflow as tf import time import numpy as np import mdl_data import sys GPUNUM = sys.argv[1] FILEPATH = sys.argv[2] with tf.device('/gpu:' + GPUNUM): #Source reference: https://github.com/aymericdamien/TensorFlow-Examples.git/input_data.py def dense_to_one_hot(labels_dense, num_classes=10): """Convert class labels from scalars to one-hot vectors.""" num_labels = labels_dense.shape[0] index_offset = np.arange(num_labels) * num_classes labels_one_hot = np.zeros((num_labels, num_classes)) labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 return labels_one_hot # Load data data = mdl_data.YLIMED('YLIMED_info.csv', FILEPATH + '/YLIMED150924/audio/mfcc20', FILEPATH + '/YLIMED150924/keyframe/fc7') X_img_train = data.get_img_X_train() y_train = data.get_y_train() Y_train = dense_to_one_hot(y_train) # Shuffle initial data p = np.random.permutation(len(Y_train)) X_img_train = X_img_train[p] Y_train = Y_train[p] # Load test data X_img_test = data.get_img_X_test() y_test = data.get_y_test() Y_test = dense_to_one_hot(y_test) learning_rate = 0.001 training_epochs = 100 batch_size = 256 display_step = 1 # Network Parameters n_hidden_1 = 1000 # 1st layer num features n_hidden_2 = 600 # 2nd layer num features n_input_img = 4096 # YLI_MED image data input (data shape: 4096, fc7 layer output) n_classes = 10 # YLI_MED total classes (0-9 digits) dropout = 0.75 #image part x = tf.placeholder("float", [None, n_input_img]) y = tf.placeholder("float", [None, n_classes]) keep_prob = tf.placeholder(tf.float32) #dropout (keep probability) # Create model def multilayer_perceptron(_X, _weights, _biases, _dropout): layer_1 = tf.nn.relu(tf.add(tf.matmul(_X, _weights['h1']), _biases['b1'])) #Hidden layer with RELU activation drop_1 = tf.nn.dropout(layer_1, _dropout) layer_2 = tf.nn.relu(tf.add(tf.matmul(drop_1, _weights['h2']), _biases['b2'])) #Hidden layer with RELU activation drop_2 = tf.nn.dropout(layer_2, _dropout) return tf.matmul(drop_2, _weights['out']) + _biases['out'] # Store layers weight & bias weights = { 'h1': tf.Variable(tf.random_normal([n_input_img, n_hidden_1])), 'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])), 'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes])) } biases = { 'b1': tf.Variable(tf.random_normal([n_hidden_1])), 'b2': tf.Variable(tf.random_normal([n_hidden_2])), 'out': tf.Variable(tf.random_normal([n_classes])) } # Construct model pred = multilayer_perceptron(x, weights, biases, keep_prob) # Define loss and optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) # Softmax loss optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Adam Optimizer # Initializing the variables init = tf.initialize_all_variables() # Launch the graphe with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=True)) as sess: sess.run(init) #Training cycle for epoch in range(training_epochs): avg_cost = 0. total_batch = int(len(Y_train)/batch_size) #Loop oveer all batches for i in range(total_batch): batch_xs, batch_ys, finish = data.next_batch(X_img_train, Y_train, batch_size, len(Y_train)) # Fit traning using batch data sess.run(optimizer, feed_dict = {x: batch_xs, y: batch_ys, keep_prob: dropout}) # Compute average loss avg_cost += sess.run(cost, feed_dict = {x: batch_xs, y: batch_ys, keep_prob: 1.}) / total_batch #Shuffling if finish: p = np.random.permutation(len(Y_train)) X_img_train = X_img_train[p] Y_train = Y_train[p] # Display logs per epoch step if epoch % display_step == 0: print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost) print "Optimization Finished!" # Test model correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) # Calculate accuracy accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print "Accuracy:", accuracy.eval({x: X_img_test, y: Y_test, keep_prob: 1.}) print 'DNNIMAGE.py'
import random all_words = [] with open(r'words.txt', 'r') as f: for line in f: for word in line.split(): all_words.append(word) def get_word(): word = random.choice(all_words) return word.lower() def play(word): word_to_complete = "_" * len(word) guessed_letters = [] num_of_guessed_letters = 0 correct_guesses = 0 guessed = False number_of_tries = 5 print("I am thinking of a word that is", len(word), "letters long! Try to guess this word!") print("you have", number_of_tries, "guesses left!") while not guessed and number_of_tries > 0: guess = input("Please enter a letter: ") if len(guess) == 1 and guess.isalpha(): if guess in guessed_letters: print("You already guessed the letter", guess) elif guess not in word: print("wrong guess!") number_of_tries -= 1 guessed_letters.append(guess) else: print("good guess!") guessed_letters.append(guess) number_of_tries -= 1 correct_guesses += 1 word_as_list = list(word_to_complete) indices = [i for i, letter in enumerate(word) if letter == guess] for index in indices: word_as_list[index] = guess num_of_guessed_letters += 1 word_to_complete = "".join(word_as_list) if "_" not in word_to_complete: guessed = True else: print("Not a valid guess. Please enter a letter of the English alphabet.") print(word_to_complete) if not guessed and number_of_tries >=1: print("you have", number_of_tries, "guesses left!") guess_word = input("Please enter the corresponding word: ").lower() if guess_word == word: guessed = True else: guessed = False if guessed: score = 100 + (num_of_guessed_letters * correct_guesses) print("You win! Your score is:", score) else: score = num_of_guessed_letters * correct_guesses print("You lost. The word was " + word + ". Your score is:", score) def main(): word = get_word() play(word) if __name__ == "__main__": main()
''' #The auxiliary function that will return the larger number to main() def maxx(a,b): if a>b: return a elif b>a: return b elif b==a: return a #The main() function, which requests two values as an input, and with the maxx() function prints the larger value def main(): one, two = eval(input("Enter two values: ")) print(maxx(one,two), "is the larger value") main() ''' ''' #The auxiliary function which returns the completed string with the longer answer prompt def maxx(a,b,c): if a>b: c[0]=a if b>a: c[0]=b #The def main(): answer=[1] one,two=eval(input("Enter two values: ")) maxx(one,two,answer[0]) print(maxx(answer[0], "is the larger of the two")) main() ''' ''' #A function that swaps the two values def swap(a,b): return b,a def main(): one, two=eval(input("Two values! ")) one, two=swap(one,two) print(one,two) main() ''' ''' #A program that models a tv remote def getbutton(): newbutton=input() while newbutton!="u" and newbutton!="d" and newbutton!="o": newbutton=input() return newbutton def nextch(oldchannel,button): if button=="u": if oldchannel==13: return 2 else: return oldchannel+1 else: if oldchannel==2: return 13 else: return oldchannel-1 def main(): channel=2 print(channel) button=getbutton() while button!="o": channel=nextch(channel,button) print (channel) button=getbutton() print("Goodbye!") main() '''
import socket import os import sys import json from blackfire.exceptions import * import _blackfire_profiler as _bfext from collections import defaultdict from blackfire.utils import urlparse, get_logger, IS_PY3, parse_qsl, read_blackfireyml_content, \ replace_bad_chars, get_time, unquote, UC, unicode_or_bytes log = get_logger(__name__) _blackfire_keys = None class Protocol(object): MAX_RECV_SIZE = 4096 MAX_SEND_SIZE = 4096 ENCODING = 'utf-8' HEADER_MARKER = '\n' MARKER = '\n\n' if IS_PY3: HEADER_MARKER = bytes(HEADER_MARKER, ENCODING) MARKER = bytes(MARKER, ENCODING) class Connection(object): def __init__(self, agent_socket, agent_timeout): self.agent_socket = agent_socket self.agent_timeout = agent_timeout self._closed = False self.agent_response = None # parse & init sock params sock_parsed = urlparse(self.agent_socket) if sock_parsed.scheme == "unix": family = socket.AF_UNIX self._sock_addr = sock_parsed.path elif sock_parsed.scheme == "tcp": family = socket.AF_INET # there are some URLs like: tcp://[::]:10666 which might contain # `:` in the host section. That is why we use rsplit(...) below host, port = sock_parsed.netloc.rsplit(':', 1) # is this a IPv6 address? if host.startswith('['): host = host[1:-1] family = socket.AF_INET6 self._sock_addr = ( host, int(port), ) else: raise BlackfireApiException( "Unsupported socket type. [%s]" % (sock_parsed.scheme) ) # init the real socket self._socket = socket.socket(family, socket.SOCK_STREAM) self._socket.settimeout(self.agent_timeout) # it is advised to disable NAGLE algorithm try: self._socket.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) except: pass def __del__(self): try: self.close() except: pass def _contains_blackfireyaml_header(self, recv_wnd): BFYAML_HDR = 'blackfire_yml=true' if IS_PY3: BFYAML_HDR = bytes(BFYAML_HDR, Protocol.ENCODING) return BFYAML_HDR in recv_wnd def connect(self, config=None): # check if signature is valid even before connecting to the Agent if config and _blackfire_keys and not _blackfire_keys.is_expired(): sig = replace_bad_chars(unquote(config.signature)) msg = config.challenge_raw signature_verified = False for key in _blackfire_keys: signature_verified = _bfext._verify_signature(key, sig, msg) log.debug("_verify_signature(key=%s, sig=%s, msg=%s) returned %s." % \ (key, sig, msg, signature_verified)) if signature_verified: break if not signature_verified: raise BlackfireInvalidSignatureError( 'Invalid signature received. (%s)' % (sig) ) log.debug('Signature verified.') log.debug("Connecting to agent at %s." % str(self._sock_addr)) try: self._socket.connect(self._sock_addr) except Exception as e: raise BlackfireApiException( 'Agent connection failed.[%s][%s]' % (e, self.agent_socket) ) # if no config provided, it is APM case if config: self._write_prolog(config) def close(self): if self._closed: return self._socket.close() self._closed = True log.debug("Agent connection closed.") def send(self, data): # Agent expects data is written in chunks try: while (data): self._socket.sendall(data[:Protocol.MAX_SEND_SIZE]) data = data[Protocol.MAX_SEND_SIZE:] except Exception as e: raise BlackfireApiException( 'Agent send data failed.[%s][%s]' % (e, data) ) def recv(self): result = '' if IS_PY3: result = bytes(result, Protocol.ENCODING) try: while (True): data = self._socket.recv(Protocol.MAX_RECV_SIZE) if not len(data): # other side indicated no more data will be sent raise Exception('Agent closed the connection.') result += data # when blackfire_yaml header is present in the recv_window # do not try to read until Protocol.MARKER found. This will # be a header only msg if self._contains_blackfireyaml_header(result) and \ result.endswith(Protocol.HEADER_MARKER): break if result.endswith(Protocol.MARKER): break except Exception as e: raise BlackfireApiException('Agent recv data failed.[%s]' % (e)) return result def _write_prolog(self, config): global _blackfire_keys blackfire_yml = bool(int(config.args.get('flag_yml', '1'))) blackfire_yml_content = None if blackfire_yml: blackfire_yml_content = read_blackfireyml_content() log.debug('Sending .blackfire.yml along with profile data.') bf_probe_header = 'python-%s, config' % (sys.hexversion) # recv timespan entries if timespan enabled recv_timespan = bool(int(config.args.get('flag_timespan', '0'))) if recv_timespan: bf_probe_header += ', timespan' # it is an expected situation to not have the bf_yaml file in place # even it is defined as a flag if blackfire_yml_content: bf_probe_header += ', blackfire_yml' # blackfire.yaml asked from build&scenarios? Agent will not wait # for anymore data when noop is seen if config.is_blackfireyml_asked(): bf_probe_header += ', noop' if bool(int(config.args.get('no_pruning', '0'))): bf_probe_header += ', no_pruning' if bool(int(config.args.get('no_anon', '0'))): bf_probe_header += ', no_anon' headers = { 'Blackfire-Query': '%s&signature=%s&%s' % ( config.challenge_raw, config.signature, config.args_raw, ), 'Blackfire-Probe': bf_probe_header, } # add Blackfire-Auth header if server_id/server_token are defined as # env. vars bf_server_id = os.environ.get('BLACKFIRE_SERVER_ID') bf_server_token = os.environ.get('BLACKFIRE_SERVER_TOKEN') if bf_server_id and bf_server_token: headers['Blackfire-Auth' ] = '%s:%s' % (bf_server_id, bf_server_token) hello_req = BlackfireRequest(headers=headers) self.send(hello_req.to_bytes()) log.debug("SEND hello_req ('%s')", hello_req.to_bytes()) response_raw = self.recv() self.agent_response = BlackfireResponse().from_bytes(response_raw) _blackfire_keys = self.agent_response.get_blackfire_keys() if self.agent_response.status_code != BlackfireResponse.StatusCode.OK: raise BlackfireApiException( 'Invalid response received from Agent. [%s]' % (self.agent_response) ) log.debug("RECV hello_req response. ('%s')", self.agent_response) if self.agent_response.status_val_dict.get('blackfire_yml') == 'true': blackfire_yml_req = BlackfireRequest( headers={'Blackfire-Yaml-Size': len(blackfire_yml_content)}, data=blackfire_yml_content, ) self.send(blackfire_yml_req.to_bytes()) log.debug( "SEND blackfire_yml_req ('%s')", blackfire_yml_req.to_bytes() ) # as we send blackfire_yml back, the first agent_response should include # some extra params that might be changed with blackfire_yml file. # e.x: fn-args, timespan entries, metric defs. response_raw = self.recv() blackfire_yml_response = BlackfireResponse( ).from_bytes(response_raw) if blackfire_yml_response.status_code != BlackfireResponse.StatusCode.OK: raise BlackfireApiException( 'Invalid response received from Agent to blackfire_yml request. [%s]' % (blackfire_yml_response) ) # There can be Blackfire-Fn-Args + Blackfire-Const, Blackfire-Keys all # update the .args dict self.agent_response.args.update(blackfire_yml_response.args) log.debug( "RECV blackfire_yml_req response. ('%s')", blackfire_yml_response.to_bytes() ) class BlackfireMessage(object): def to_bytes(self): pass def save(self, path): with open(path, "wb") as f: f.write(self.to_bytes()) class BlackfireKeys(object): def __init__(self, keys): '''Parses the received Blackfire-Keys line and presents necessary fields as attributes. keys: a string that contains Blackfire-Keys entries. e.g: max_age (secs);Key1, Key2, Key3 ''' self._keys_raw = keys keys = keys.split(',') max_age, key1 = keys[0].split(';') keys = [key1] + keys[1:] keys = list(map(replace_bad_chars, keys)) self._keys = keys self._expiration_time = get_time() + int(max_age) def is_expired(self): return self._expiration_time <= get_time() def __iter__(self): return iter(self._keys) def __repr__(self): return "keys=%s, expiration_time=%s" % ( self._keys, self._expiration_time ) class BlackfireResponseBase(BlackfireMessage): TIMESPAN_KEY = 'Blackfire-Timespan' FN_ARGS_KEY = 'Blackfire-Fn-Args' CONSTANTS_KEY = 'Blackfire-Const' BLACKFIRE_KEYS_KEY = 'Blackfire-Keys' def get_blackfire_keys(self): keys = self.args.get(self.BLACKFIRE_KEYS_KEY, []) if len(keys) == 1: # defensive # Blackfire-Keys is not repeated like other headers. Keys are sent # in a single line as comma separated values return BlackfireKeys(keys[0]) def get_timespan_selectors(self): result = {'^': set(), '=': set()} ts_selectors = self.args.get(self.TIMESPAN_KEY, []) for ts_sel in ts_selectors: if ts_sel[0] not in ['^', '=']: log.warning("Ignoring invalid timespan selector '%s'.", ts_sel) continue result[ts_sel[0]].add(ts_sel[1:]) return result def get_constants(self): return self.args.get(self.CONSTANTS_KEY, []) def get_instrumented_funcs(self): result = {} # convert the fn-args string to dict for faster lookups on C side fn_args = self.args.get(self.FN_ARGS_KEY, []) for fn_arg in fn_args: fn_name, arg_ids_s = fn_arg.rsplit(" ", 1) fn_name = fn_name.strip() if fn_name in result: log.warning( "Function '%s' is already instrumented. Ignoring fn-args directive %s.", fn_name, fn_arg ) continue arg_ids = [] for arg_id in arg_ids_s.strip().split(','): if arg_id.isdigit(): arg_ids.append(int(arg_id)) else: arg_ids.append(arg_id) result[fn_name] = arg_ids return result class BlackfireRequest(BlackfireMessage): __slots__ = 'headers', 'data' def __init__(self, headers=None, data=None): if not headers: headers = {} self.headers = {} for k, v in headers.items(): # these headers are not expected to be lower-case if k not in [ 'Blackfire-Query', 'Blackfire-Probe', 'Blackfire-Yaml-Size' ]: self.headers[k.lower()] = v continue self.headers[k] = v self.data = data def to_bytes(self): result = '' # There are multiple BlackfireRequest messages between Agent->Probe. If this # message contains file-format or Blackfire-Query header, we make sure it is the first line # in the protocol. While this is not mandatory, this is to comply with other # probes. if 'file-format' in self.headers: result += 'file-format: %s\n' % (self.headers['file-format']) if 'Blackfire-Query' in self.headers: result += 'Blackfire-Query: %s\n' % ( self.headers['Blackfire-Query'] ) for k, v in self.headers.items(): if k in ['Blackfire-Query', 'file-format']: continue result += '%s: %s\n' % (UC(k), UC(v)) if len(self.headers): result += '\n' if self.data: result += str(self.data) # Py2 note: # Py2 treats the string as ASCII encoded unless you explicitly do it. # As we have used UC() on most of the headers passed to this function, # we are safe to encode to Protocol.ENCODING directly here return unicode_or_bytes(result) def from_bytes(self, data): data = data.decode(Protocol.ENCODING) dsp = data.split(Protocol.MARKER.decode(Protocol.ENCODING)) header_lines = [] if len(dsp) == 3: header_lines = dsp[0] self.data = dsp[1] + '\n' + dsp[2] # timespan + trace? elif len(dsp) == 2: header_lines, self.data = dsp elif len(dsp) == 1: header_lines = dsp[0] else: raise BlackfireApiException( 'Invalid BlackfireRequest message. [%s]' % (data) ) header_lines = header_lines.split('\n') for line in header_lines: spos = line.find(':') if spos > -1: self.headers[line[:spos].strip()] = line[spos + 1:].strip() return self def __repr__(self): container_dict = {"headers": self.headers, "data": self.data} return json.dumps(container_dict, indent=4) class BlackfireAPMRequest(BlackfireRequest): def to_bytes(self): result = '' # APM protocol requires the first header to be FileFormat result += 'file-format: %s\n' % (self.headers['file-format']) for k, v in self.headers.items(): if k == 'file-format': continue result += '%s: %s\n' % (k, v) if self.data is not None: result += str(self.data) result += '\n\n' if IS_PY3: result = bytes(result, Protocol.ENCODING) return result class BlackfireAPMResponse(BlackfireResponseBase): TIMESPAN_KEY = 'timespan' FN_ARGS_KEY = 'fn-args' def __init__(self): self.args = defaultdict(list) self.key_pages = [] self.raw_data = '' self.update_config = False def __repr__(self): return self.raw_data def from_bytes(self, data): if IS_PY3: data = data.decode(Protocol.ENCODING) self.raw_data = data.strip() lines = self.raw_data.split('\n') # first line is the status line resp = lines[0].split(':') resp_type = resp[0] resp_val = resp[1] if resp_type == 'Blackfire-Error': raise BlackfireAPMException( 'Agent could not send APM trace. reason=%s' % (resp_val) ) resp_type = resp_type.strip() self.status_val = resp_val.strip() self.status_val_dict = dict(parse_qsl(self.status_val)) if 'false' in self.status_val_dict['success']: raise BlackfireAPMStatusFalseException( self.status_val_dict.get( 'error', "status=False and no error received from Agent." ) ) self.update_config = False if self.status_val_dict.get( 'update_config', 'false' ) == 'false' else True key_page = None for line in lines[1:]: line = line.strip() # every key-page entry starts with `key-page(` and endswith `)` if line.startswith('key-page('): key_page = {} continue elif line.startswith(')'): self.key_pages.append(key_page) key_page = None continue # split only first occurrence resp_key, resp_val = line.split(':', 1) resp_key = resp_key.strip() resp_val = resp_val.strip() # are we parsing a key-page entry? if key_page is not None: key_page[resp_key] = resp_val else: # there are arguments which occur multiple times with different # values (e.g: fn-args) # e.g: # timespan: =mysql_connect # timespan: =mysql_query # timespan: ^PDO:: # fn-args: file_get_contents 1,2 # fn-args: PDO::query 1 self.args[resp_key].append(resp_val) return self class BlackfireResponse(BlackfireResponseBase): class StatusCode: OK = 0 ERR = 1 def __init__(self): self.status_code = BlackfireResponse.StatusCode.OK self.status_val = None self.raw_data = None self.args = defaultdict(list) def from_bytes(self, data): if IS_PY3: data = data.decode(Protocol.ENCODING) self.status_code = BlackfireResponse.StatusCode.OK self.raw_data = data.strip() lines = self.raw_data.split('\n') # first line is the status line resp_type, resp_val = lines[0].split(':') resp_type = resp_type.strip() self.status_val = resp_val.strip() self.status_val_dict = dict(parse_qsl(self.status_val)) if resp_type == 'Blackfire-Error': self.status_code = BlackfireResponse.StatusCode.ERR for line in lines[1:]: resp_key, resp_val = line.split(':', 1) resp_key = resp_key.strip() resp_val = resp_val.strip() # there are arguments which occur multiple times with different # values (e.g: fn-args) self.args[resp_key].append(resp_val) return self def to_bytes(self): result = '' # add the status line if self.status_code == BlackfireResponse.StatusCode.ERR: result += 'Blackfire-Error: ' elif self.status_code == BlackfireResponse.StatusCode.OK: result += 'Blackfire-Response: ' result += self.status_val # add .args if len(self.args) > 0: result += '\n' for arg_key, arg_values in self.args.items(): for arg_val in arg_values: result += '%s: %s\n' % (arg_key, arg_val) if IS_PY3: result = bytes(result, Protocol.ENCODING) return result def __repr__(self): return "status_code=%s, args=%s, status_val=%s" % ( self.status_code, self.args, self.status_val )
from plenum.common.config_util import getConfig from plenum.common.event_bus import InternalBus from plenum.common.messages.internal_messages import VoteForViewChange from plenum.common.timer import TimerService, RepeatingTimer from plenum.server.suspicion_codes import Suspicions from stp_core.common.log import getlogger logger = getlogger() class ForcedViewChangeService: def __init__(self, timer: TimerService, bus: InternalBus): self._timer = timer self._bus = bus self._config = getConfig() # Force periodic view change if enabled in config force_view_change_freq = self._config.ForceViewChangeFreq if force_view_change_freq > 0: self._force_view_change_timer = RepeatingTimer(self._timer, force_view_change_freq, self._force_view_change) def cleanup(self): self._force_view_change_timer.stop() def _force_view_change(self): self._bus.send(VoteForViewChange(Suspicions.DEBUG_FORCE_VIEW_CHANGE))
from matplotlib import pyplot as plt import numpy as np from scipy import stats from IPython.core.pylabtools import figsize def main(): # create the observed data # sample size of data we observe, try varying this # (keep it less than 100 ;) N = 15 # the true parameters, but of course we do not see these values... lambda_1_true = 1 lambda_2_true = 3 #...we see the data generated, dependent on the above two values. data = np.concatenate([ stats.poisson.rvs(lambda_1_true, size=(N, 1)), stats.poisson.rvs(lambda_2_true, size=(N, 1)) ], axis=1) print "observed (2-dimensional,sample size = %d):" % N, data # plotting details. x = y = np.linspace(.01, 5, 100) likelihood_x = np.array([stats.poisson.pmf(data[:, 0], _x) for _x in x]).prod(axis=1) likelihood_y = np.array([stats.poisson.pmf(data[:, 1], _y) for _y in y]).prod(axis=1) L = np.dot(likelihood_x[:, None], likelihood_y[None, :]) # figsize(12.5, 12) # matplotlib heavy lifting below, beware! jet = plt.cm.jet plt.subplot(221) uni_x = stats.uniform.pdf(x, loc=0, scale=5) uni_y = stats.uniform.pdf(x, loc=0, scale=5) M = np.dot(uni_x[:, None], uni_y[None, :]) im = plt.imshow(M, interpolation='none', origin='lower', cmap=jet, vmax=1, vmin=-.15, extent=(0, 5, 0, 5)) plt.scatter(lambda_2_true, lambda_1_true, c="k", s=50, edgecolor="none") plt.xlim(0, 5) plt.ylim(0, 5) plt.title("Landscape formed by Uniform priors on $p_1, p_2$.") plt.subplot(223) plt.contour(x, y, M * L) im = plt.imshow(M * L, interpolation='none', origin='lower', cmap=jet, extent=(0, 5, 0, 5)) plt.title("Landscape warped by %d data observation;\n Uniform priors on $p_1, p_2$." % N) plt.scatter(lambda_2_true, lambda_1_true, c="k", s=50, edgecolor="none") plt.xlim(0, 5) plt.ylim(0, 5) plt.subplot(222) exp_x = stats.expon.pdf(x, loc=0, scale=3) exp_y = stats.expon.pdf(x, loc=0, scale=10) M = np.dot(exp_x[:, None], exp_y[None, :]) plt.contour(x, y, M) im = plt.imshow(M, interpolation='none', origin='lower', cmap=jet, extent=(0, 5, 0, 5)) plt.scatter(lambda_2_true, lambda_1_true, c="k", s=50, edgecolor="none") plt.xlim(0, 5) plt.ylim(0, 5) plt.title("Landscape formed by Exponential priors on $p_1, p_2$.") plt.subplot(224) # This is the likelihood times prior, that results in the posterior. plt.contour(x, y, M * L) im = plt.imshow(M * L, interpolation='none', origin='lower', cmap=jet, extent=(0, 5, 0, 5)) plt.scatter(lambda_2_true, lambda_1_true, c="k", s=50, edgecolor="none") plt.title("Landscape warped by %d data observation;\n Exponential priors on \ $p_1, p_2$." % N) plt.xlim(0, 5) plt.ylim(0, 5) plt.show() if __name__ == '__main__': main()
import time as t import datetime as dt import winsound as ws #import playsound as ps #ps.playsound(r"C:\\Users\\paava\\Desktop\\New folder\\sd.mp3") def counter(T, remindBuffer): remindBuffer = remindBuffer * 60 actTime = T while T > 0: if T % remindBuffer == 0 or round(T/actTime*100) == 17: ws.Beep(5550,2) timer = dt.timedelta(seconds = T) print(timer, end="\r") t.sleep(1) T -= 1 print("Bzzz! Countdown at zero!!!") ws.Beep(5550,300) #takes input in hours the timer is to be set def hoursTimer(): H = int(input("Set Timer in hours: ")) rem = int(input("Remind every __ in minutes: ")) if H > 3: print("Set an alarm") else: H = H*3600 counter(H,rem) #takes input in minutes the timer is to be set def minutesTimer(): M = int(input("Set Timer in Minutes: ")) rem = int(input("Remind every __ in minutes: ")) if M > 180: print("Set an alarm") else: M = M*60 counter(M,rem) #takes input in seconds the timer is to be set def secondsTimer(): S = int(input("Set Timer in Seconds: ")) rem = int(input("Remind every __ in minutes: ")) if S > 10000: print("Set an alarm") else: counter(S,rem) #takes input in datetime format the timer is to be set def standardTimer(): H = int(input("Number in hours: ")) M = int(input("Number in minutes: ")) S = int(input("Number in seconds: ")) rem = int(input("Remind every __ in minutes: ")) if H > 3: print("Set an alarm") else: T = H*3600 + M * 60 + S counter(T,rem) while True: print("Select time in \n1. Hours\n2. Minutes\n3. Seconds\n4. Classic") N = int(input()) if N == 1: print(hoursTimer()) break elif N == 2: minutesTimer() break elif N == 3: secondsTimer() break elif N == 4: standardTimer() break else: print("Choose suitable type") continue
import pandas as pd data = pd.read_csv('grades.csv') data["Total"]= (0.25*data["Final"]+0.75*data["MidTerm"]) print(data) data.to_csv("new-grades.csv")
from pymongo import MongoClient from pymongo import ReadPreference from biokbase.service.Client import Client as ServiceClient import json as _json import os import mysql.connector as mysql import requests import time import math from datetime import date from datetime import datetime #import pprint #pp = pprint.PrettyPrinter(indent=4) requests.packages.urllib3.disable_warnings() to_workspace = os.environ["WRK_SUFFIX"] def get_narrative_and_owners(db_connection): """ returns dict of keys: narrative_id and values: owner's username """ narrative_owner_dict = dict() cursor = db_connection.cursor() select_ws_owners_query = ( "select ws_id, username " "from metrics_reporting.workspaces_current " "where narrative_version > 0" ) cursor.execute(select_ws_owners_query) for (ws_id, username) in cursor: narrative_owner_dict[ws_id] = username return narrative_owner_dict; def get_kbase_staff(db_connection): """ get set of usernames that are kbase_staf """ kbase_staff_set = set() cursor = db_connection.cursor() select_staff_query = ( "select username from metrics.user_info " "where kb_internal_user = 1" ) cursor.execute(select_staff_query) for (username) in cursor: kbase_staff_set.add(username[0]) return kbase_staff_set; def get_top_lvl_objects(db, narrative_id): """ returns dict of objnumber => {"numver":#,"del":1,"hide":1} """ top_level_lookup_dict = dict() tl_ws_obj_cursor = db.workspaceObjects.find( {"ws": narrative_id}, {"id": 1, "numver": 1, "del": 1, "hide": 1, "_id": 0} ) for tl_object in tl_ws_obj_cursor: top_level_lookup_dict[tl_object["id"]] = { "numver": tl_object["numver"], "del": tl_object["del"], "hide": tl_object["hide"], } return top_level_lookup_dict; def process_narrative_objects(db, narrative_id, top_lvl_object_lookup, kbase_staff_set, owner_username): """ goes through all the workspaces objects for a narrative gets data from Mongo and also the provenance prints out: Object_ID Narrative_ID Version Owner_Username KBase_Staff Data_Type Core_Data_Type Size Creation_Date Created_By Created_By_KBase_staff Is_Top_Lvl Is_deleted Is_hidden Copied Created_By_Method Input_object_ids """ ws_objects_dict = dict() #key is full reference 12/2/3 ws_id / obj_id / ver_num #to a second level dict the other keys and values. provenance_obj_refs = set() provenance_param_dict = dict() provenance_is_deleted_dict = dict() provenance_id_obj_ref_dict = dict() ws_obj_vers_cursor = db.workspaceObjVersions.find( {"ws": narrative_id}, { "id":1, "ver":1, "type": 1, "savedate":1, "savedby":1, "size":1, "copied":1, "provenance":1 }, ) for ws_obj_ver in ws_obj_vers_cursor: object_type_full = ws_obj_ver["type"] (core_object_type, object_spec_version) = object_type_full.split("-") obj_ref = str(narrative_id) + "/" + str(ws_obj_ver["id"]) + "/" + str(ws_obj_ver["ver"]) #do top lvl object logic here (remember that lower level objects inherit is_deleted and is_hidden is_top_lvl = 0 if ws_obj_ver["ver"] == top_lvl_object_lookup[ws_obj_ver["id"]]["numver"]: is_top_lvl = 1 is_hidden = top_lvl_object_lookup[ws_obj_ver["id"]]["hide"] is_deleted = top_lvl_object_lookup[ws_obj_ver["id"]]["del"] #KBase_staff_checks owner_kbase_staff = 0 if owner_username in kbase_staff_set: owner_kbase_staff = 1 created_by_kbase_staff = 0 if ws_obj_ver["savedby"] in kbase_staff_set: created_by_kbase_staff = 1 if ws_obj_ver["provenance"]: provenance_id_obj_ref_dict[ws_obj_ver["provenance"]] = obj_ref #BUILD UP THE OBJECTS ws_objects_dict[obj_ref] = { "Object_ID" : ws_obj_ver["id"], "Narrative_ID" : narrative_id, "Version" : ws_obj_ver["ver"], "Owner_Username" : owner_username, "Owner_KBase_Staff" : owner_kbase_staff, "Data_Type" : object_type_full, "Core_Data_Type" : core_object_type, "Size" : ws_obj_ver["size"], "Creation_Date" : ws_obj_ver["savedate"], "Created_By" : ws_obj_ver["savedby"], "Created_By_KBase_Staff" : created_by_kbase_staff, "Copied" : ws_obj_ver["copied"], "Is_Top_Lvl" : is_top_lvl, "Is_deleted" : is_deleted, "Is_hidden" : is_hidden, "Created_By_Method" : None, "Input_object_ids" : None } # print(str(obj_ref) + " : " + str(is_deleted) ) temp_ws_objects_dict = get_provenamce_info(db, provenance_id_obj_ref_dict) for obj_ref in temp_ws_objects_dict: ws_objects_dict[obj_ref].update(temp_ws_objects_dict[obj_ref]) # PRINT OUT THE OBJECT LINES for ws_obj_ref in ws_objects_dict: print("%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s" % ( ws_objects_dict[ws_obj_ref]["Object_ID"], ws_objects_dict[ws_obj_ref]["Narrative_ID"], ws_objects_dict[ws_obj_ref]["Version"], ws_objects_dict[ws_obj_ref]["Owner_Username"], ws_objects_dict[ws_obj_ref]["Owner_KBase_Staff"], ws_objects_dict[ws_obj_ref]["Data_Type"], ws_objects_dict[ws_obj_ref]["Core_Data_Type"], ws_objects_dict[ws_obj_ref]["Size"], ws_objects_dict[ws_obj_ref]["Creation_Date"], ws_objects_dict[ws_obj_ref]["Created_By"], ws_objects_dict[ws_obj_ref]["Created_By_KBase_Staff"], ws_objects_dict[ws_obj_ref]["Is_Top_Lvl"], ws_objects_dict[ws_obj_ref]["Is_deleted"], ws_objects_dict[ws_obj_ref]["Is_hidden"], ws_objects_dict[ws_obj_ref]["Copied"], ws_objects_dict[ws_obj_ref]["Created_By_Method"], ws_objects_dict[ws_obj_ref]["Input_object_ids"] ) ) return 1; def get_provenamce_info(db, provenance_id_obj_ref_dict): return_dict = dict() provenance_ids_list = list(provenance_id_obj_ref_dict.keys()) iterations = math.ceil(len(provenance_ids_list)/1000) i = 0 while i < iterations: # Loop through the objects do up to 1000 at a time sub_list_provenance_ids = list() if i < iterations: index_start = i * 1000 index_end = ((i + 1) * 1000) - 1 if i == (iterations - 1): # do up to end of the list index_end = -1 sub_list_provenance_ids = provenance_ids_list[index_start:index_end] # Get the provenance information prov_cursor = db.provenance.find({"_id" : { "$in": provenance_ids_list}},{"_id" : 1, "actions" : 1}) for prov in prov_cursor: all_method_version_list = list() all_input_objects_list = list() for action in prov["actions"]: service = "" method = "" # Total Methods list if "service" in action: service = str(action["service"]) if "method" in action: method = str(action["method"]) # Total input objects list if "wsobjs" in action: input_obj_list = action["wsobjs"] all_method_version_list.append(service + "/" + method) temp_inputs = "[" + ",".join(input_obj_list) + "]" all_input_objects_list.append(temp_inputs) return_dict[provenance_id_obj_ref_dict[prov["_id"]]] = dict() return_dict[provenance_id_obj_ref_dict[prov["_id"]]]["Created_By_Method"] = "[" + ",".join(all_method_version_list) + "]" return_dict[provenance_id_obj_ref_dict[prov["_id"]]]["Input_object_ids"] = "[" + ",".join(all_input_objects_list) + "]" i+=1 return return_dict def narrative_objects_main(): """ Is the "main" function to get the object data for all the workspace objects. The goal is to print out the following columns for each workspace object (if possible) Object_ID Narrative_ID Version Owner_Username Owner_KBase_Staff Data_Type Core_Data_Type Size Creation_Date Created_By Created_By_KBase_staff Is_Top_Lvl Is_deleted Is_hidden Copied # Created_By_Method # Input_object_ids """ start_time = time.time() metrics_mysql_password = os.environ["METRICS_MYSQL_PWD"] mongoDB_metrics_connection = os.environ["MONGO_PATH"] to_workspace = os.environ["WRK_SUFFIX"] client = MongoClient(mongoDB_metrics_connection + to_workspace) db = client.workspace sql_host = os.environ["SQL_HOST"] query_on = os.environ["QUERY_ON"] # connect to mysql db_connection = mysql.connect( host=sql_host, user="metrics", passwd=metrics_mysql_password, database="metrics" ) cursor = db_connection.cursor() query = "use " + query_on cursor.execute(query) narrative_owners_lookup = get_narrative_and_owners(db_connection) kbase_staff_set = get_kbase_staff(db_connection) # print(str(narrative_owners_lookup)) # print("Pre removal narrative count : " + str(len(narrative_owners_lookup))); # TO DO A SUBSET # temp_narrative_owners_lookup = dict() # for narrative_id in narrative_owners_lookup: # if narrative_id == 78503: # if narrative_id == 79132: # if narrative_id >= 79132: #1178 # if narrative_id >= 80232: #142 # if narrative_id >= 80247 and narrative_id <= 80254: # if narrative_id >= 80249 and narrative_id <= 80252: # temp_narrative_owners_lookup[narrative_id] = narrative_owners_lookup[narrative_id] # narrative_owners_lookup = temp_narrative_owners_lookup # print("Post removal narrative count : " + str(len(narrative_owners_lookup))); # return 1; # print(str(kbase_staff_set)) db_connection.close() #print column headers print( "Object_ID\tNarrative_ID\tVersion\tOwner_Username\tOwner_KBase_Staff\tData_Type\tCore_Data_Type\t", "Size\tCreation_Date\tCreated_By\tCreated_By_KBase_Staff\tIs_Top_Lvl\tIs_deleted\tIs_hidden\tCopied\t", "Created_By_Method\tInput_object_ids" ) # connect to workspace mongoDB_metrics_connection = os.environ["MONGO_PATH"] to_workspace = os.environ["WRK_SUFFIX"] client = MongoClient(mongoDB_metrics_connection + to_workspace) db = client.workspace for narrative_id in sorted(narrative_owners_lookup): #top_lvl_object_lookup = dict: key obj_id , version version_number top_lvl_object_lookup = get_top_lvl_objects(db, narrative_id) # print(str(top_lvl_object_lookup)) process_narrative_objects(db, narrative_id, top_lvl_object_lookup, kbase_staff_set, narrative_owners_lookup[narrative_id]) total_time = time.time() - start_time # print("--- total time %s seconds ---" % (total_time)) return 1; narrative_objects_main()
from django.apps import AppConfig class RentalPropertyConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'rental_property' verbose_name = 'My Rental Property'
""" Classes for GP models with Stan, using a given distance matrix. """ from argparse import Namespace import time import copy import numpy as np from scipy.spatial.distance import cdist from bo.pp.pp_core import DiscPP import bo.pp.stan.gp_distmat as gpstan import bo.pp.stan.gp_distmat_fixedsig as gpstan_fixedsig from bo.pp.gp.gp_utils import kern_exp_quad, kern_matern32, \ get_cholesky_decomp, solve_upper_triangular, solve_lower_triangular, \ sample_mvn, squared_euc_distmat, kern_distmat from bo.util.print_utils import suppress_stdout_stderr class StanGpDistmatPP(DiscPP): """ Hierarchical GPs using a given distance matrix, implemented with Stan """ def __init__(self, data=None, modelp=None, printFlag=True): """ Constructor """ self.set_model_params(modelp) self.set_data(data) self.ndimx = self.modelp.ndimx self.set_model() super(StanGpDistmatPP,self).__init__() if printFlag: self.print_str() def set_model_params(self, modelp): """ Set self.modelp """ if modelp is None: pass #TODO self.modelp = modelp def set_data(self, data): """ Set self.data """ if data is None: pass #TODO self.data_init = copy.deepcopy(data) self.data = copy.deepcopy(self.data_init) def set_model(self): """ Set GP regression model """ self.model = self.get_model() def get_model(self): """ Returns GPRegression model """ if self.modelp.model_str=='optfixedsig' or \ self.modelp.model_str=='sampfixedsig': return gpstan_fixedsig.get_model(print_status=True) elif self.modelp.model_str=='opt' or self.modelp.model_str=='samp': return gpstan.get_model(print_status=True) elif self.modelp.model_str=='fixedparam': return None def infer_post_and_update_samples(self, seed=543210, print_result=False): """ Update self.sample_list """ data_dict = self.get_stan_data_dict() with suppress_stdout_stderr(): if self.modelp.model_str=='optfixedsig' or self.modelp.model_str=='opt': stanout = self.model.optimizing(data_dict, iter=self.modelp.infp.niter, #seed=seed, as_vector=True, algorithm='Newton') seed=seed, as_vector=True, algorithm='LBFGS') elif self.modelp.model_str=='samp' or self.modelp.model_str=='sampfixedsig': stanout = self.model.sampling(data_dict, iter=self.modelp.infp.niter + self.modelp.infp.nwarmup, warmup=self.modelp.infp.nwarmup, chains=1, seed=seed, refresh=1000) elif self.modelp.model_str=='fixedparam': stanout = None print('-----') self.sample_list = self.get_sample_list_from_stan_out(stanout) if print_result: self.print_inference_result() def get_stan_data_dict(self): """ Return data dict for stan sampling method """ if self.modelp.model_str=='optfixedsig' or \ self.modelp.model_str=='sampfixedsig': return {'ig1':self.modelp.kernp.ig1, 'ig2':self.modelp.kernp.ig2, 'n1':self.modelp.kernp.n1, 'n2':self.modelp.kernp.n2, 'sigma':self.modelp.kernp.sigma, 'D':self.ndimx, 'N':len(self.data.X), 'y':self.data.y.flatten(), 'distmat':self.get_distmat(self.data.X, self.data.X)} elif self.modelp.model_str=='opt' or self.modelp.model_str=='samp': return {'ig1':self.modelp.kernp.ig1, 'ig2':self.modelp.kernp.ig2, 'n1':self.modelp.kernp.n1, 'n2':self.modelp.kernp.n2, 'n3':self.modelp.kernp.n3, 'n4':self.modelp.kernp.n4, 'D':self.ndimx, 'N':len(self.data.X), 'y':self.data.y.flatten(), 'distmat':self.get_distmat(self.data.X, self.data.X)} def get_distmat(self, xmat1, xmat2): """ Get distance matrix """ # For now, will compute squared euc distance * .5, on self.data.X return squared_euc_distmat(xmat1, xmat2, .5) def get_sample_list_from_stan_out(self, stanout): """ Convert stan output to sample_list """ if self.modelp.model_str=='optfixedsig': return [Namespace(ls=stanout['rho'], alpha=stanout['alpha'], sigma=self.modelp.kernp.sigma)] elif self.modelp.model_str=='opt': return [Namespace(ls=stanout['rho'], alpha=stanout['alpha'], sigma=stanout['sigma'])] elif self.modelp.model_str=='sampfixedsig': sdict = stanout.extract(['rho','alpha']) return [Namespace(ls=sdict['rho'][i], alpha=sdict['alpha'][i], sigma=self.modelp.kernp.sigma) for i in range(sdict['rho'].shape[0])] elif self.modelp.model_str=='samp': sdict = stanout.extract(['rho','alpha','sigma']) return [Namespace(ls=sdict['rho'][i], alpha=sdict['alpha'][i], sigma=sdict['sigma'][i]) for i in range(sdict['rho'].shape[0])] elif self.modelp.model_str=='fixedparam': return [Namespace(ls=self.modelp.kernp.ls, alpha=self.modelp.kernp.alpha, sigma=self.modelp.kernp.sigma)] def print_inference_result(self): """ Print results of stan inference """ if self.modelp.model_str=='optfixedsig' or self.modelp.model_str=='opt' or \ self.modelp.model_str=='fixedparam': print('*ls pt est = '+str(self.sample_list[0].ls)+'.') print('*alpha pt est = '+str(self.sample_list[0].alpha)+'.') print('*sigma pt est = '+str(self.sample_list[0].sigma)+'.') elif self.modelp.model_str=='samp' or \ self.modelp.model_str=='sampfixedsig': ls_arr = np.array([ns.ls for ns in self.sample_list]) alpha_arr = np.array([ns.alpha for ns in self.sample_list]) sigma_arr = np.array([ns.sigma for ns in self.sample_list]) print('*ls mean = '+str(ls_arr.mean())+'.') print('*ls std = '+str(ls_arr.std())+'.') print('*alpha mean = '+str(alpha_arr.mean())+'.') print('*alpha std = '+str(alpha_arr.std())+'.') print('*sigma mean = '+str(sigma_arr.mean())+'.') print('*sigma std = '+str(sigma_arr.std())+'.') print('-----') def sample_pp_post_pred(self, nsamp, input_list, full_cov=False, nloop=None): """ Sample from posterior predictive of PP. Inputs: input_list - list of np arrays size=(-1,) Returns: list (len input_list) of np arrays (size=(nsamp,1)).""" if self.modelp.model_str=='optfixedsig' or self.modelp.model_str=='opt' or \ self.modelp.model_str=='fixedparam': nloop = 1 sampids = [0] elif self.modelp.model_str=='samp' or \ self.modelp.model_str=='sampfixedsig': if nloop is None: nloop=nsamp nsamp = int(nsamp/nloop) sampids = np.random.randint(len(self.sample_list), size=(nloop,)) ppred_list = [] for i in range(nloop): samp = self.sample_list[sampids[i]] postmu, postcov = self.gp_post(self.data.X, self.data.y, np.stack(input_list), samp.ls, samp.alpha, samp.sigma, full_cov) if full_cov: ppred_list.extend(list(sample_mvn(postmu, postcov, nsamp))) else: ppred_list.extend(list(np.random.normal(postmu.reshape(-1,), postcov.reshape(-1,), size=(nsamp, len(input_list))))) return list(np.stack(ppred_list).T), ppred_list def sample_pp_pred(self, nsamp, input_list, lv=None): """ Sample from predictive of PP for parameter lv. Returns: list (len input_list) of np arrays (size (nsamp,1)).""" x_pred = np.stack(input_list) if lv is None: if self.modelp.model_str=='optfixedsig' or self.modelp.model_str=='opt' \ or self.modelp.model_str=='fixedparam': lv = self.sample_list[0] elif self.modelp.model_str=='samp' or \ self.modelp.model_str=='sampfixedsig': lv = self.sample_list[np.random.randint(len(self.sample_list))] postmu, postcov = self.gp_post(self.data.X, self.data.y, x_pred, lv.ls, lv.alpha, lv.sigma) pred_list = list(sample_mvn(postmu, postcov, 1)) ###TODO: sample from this mean nsamp times return list(np.stack(pred_list).T), pred_list def gp_post(self, x_train, y_train, x_pred, ls, alpha, sigma, full_cov=True): """ Compute parameters of GP posterior """ kernel = lambda a, b, c, d: kern_distmat(a, b, c, d, self.get_distmat) k11_nonoise = kernel(x_train, x_train, ls, alpha) lmat = get_cholesky_decomp(k11_nonoise, sigma, 'try_first') smat = solve_upper_triangular(lmat.T, solve_lower_triangular(lmat, y_train)) k21 = kernel(x_pred, x_train, ls, alpha) mu2 = k21.dot(smat) k22 = kernel(x_pred, x_pred, ls, alpha) vmat = solve_lower_triangular(lmat, k21.T) k2 = k22 - vmat.T.dot(vmat) if full_cov is False: k2 = np.sqrt(np.diag(k2)) return mu2, k2 # Utilities def print_str(self): """ Print a description string """ print('*StanGpDistmatPP with modelp='+str(self.modelp)+'.') print('-----')
class Solution(object): def canCross(self, stones): """ :type stones: List[int] :rtype: bool """ if stones[0] != 0 or stones[1] != 1: return False return self.canCrossHelper(1, 1, stones[-1], set(stones), {}) def canCrossHelper(self, curStone, lastJump, goal, stones, memo): if curStone == goal: return True elif (curStone, lastJump) in memo: return memo[(curStone, lastJump)] elif curStone not in stones: return False else: res = self.canCrossHelper( curStone + lastJump + 1, lastJump + 1, goal, stones, memo) res = res or self.canCrossHelper( curStone + lastJump, lastJump, goal, stones, memo) if lastJump != 1: res = res or self.canCrossHelper( curStone + lastJump - 1, lastJump - 1, goal, stones, memo) memo[(curStone, lastJump)] = res return res
from os.path import join, dirname, realpath from setuptools import setup import sys assert sys.version_info.major == 3 and sys.version_info.minor >= 6, \ "Require Python 3.7 or greater." setup( name='adaeq', py_modules=['adaeq'], version='0.0.3', install_requires=[ 'numpy', 'joblib', 'mujoco-py>=2.0.2.1', 'gym>=0.17.2' ], description="Adaptive Ensemble Q-learning: Minimizing Estimation Bias via Error Feedback", author="Hang Wang, Sen Lin, Junshan Zhang", )
# coding=utf-8 ######################################################################################## ### Do not forget to adjust the following variables to your own plugin. # The plugin's identifier, has to be unique plugin_identifier = "remote_timelapse" # The plugin's python package, should be "octoprint_<plugin identifier>", has to be # unique plugin_package = "octoprint_remote_timelapse" # The plugin's human readable name. Can be overwritten within OctoPrint's internal data # via __plugin_name__ in the plugin module plugin_name = "OctoPrint-Remote-Timelapse" # The plugin's version. Can be overwritten within OctoPrint's internal data via # __plugin_version__ in the plugin module plugin_version = "0.0.1" # The plugin's description. Can be overwritten within OctoPrint's internal data via # __plugin_description__ in the plugin module plugin_description = ( "Automatically upload rendered timelapses to a remote host. Can also delete after " "upload to save space. Additionally, replaces the link to the download the " "timelapse directly from the remote server rather than the RPI." ) # The plugin's author. Can be overwritten within OctoPrint's internal data via # __plugin_author__ in the plugin module plugin_author = "Milo Gertjejansen" # The plugin's author's mail address. plugin_author_email = "milo@milogert.com" # The plugin's homepage URL. Can be overwritten within OctoPrint's internal data via # __plugin_url__ in the plugin module plugin_url = "https://github.com/milogert/OctoPrint-Remote-Timelapse" # The plugin's license. Can be overwritten within OctoPrint's internal data via # __plugin_license__ in the plugin module plugin_license = "AGPLv3" # Any additional requirements besides OctoPrint should be listed here plugin_requires = [] ### ------------------------------------------------------------------------------------ ### More advanced options that you usually shouldn't have to touch follow after this ### point ### ------------------------------------------------------------------------------------ # Additional package data to install for this plugin. The subfolders "templates", # "static" and "translations" will already be installed automatically if they exist. # Note that if you add something here you'll also need to update MANIFEST.in to match # to ensure that python setup.py sdist produces a source distribution that contains all # your files. This is sadly due to how python's setup.py works, see also # http://stackoverflow.com/a/14159430/2028598 plugin_additional_data = [] # Any additional python packages you need to install with your plugin that are not # contained in <plugin_package>.* plugin_additional_packages = [] # Any python packages within <plugin_package>.* you do NOT want to install with your # plugin plugin_ignored_packages = [] # Additional parameters for the call to setuptools.setup. If your plugin wants to # register additional entry points, define dependency links or other things like that, # this is the place to go. Will be merged recursively with the default setup parameters # as provided by octoprint_setuptools.create_plugin_setup_parameters using # octoprint.util.dict_merge. # # Example: # plugin_requires = ["someDependency==dev"] # additional_setup_parameters = { # "dependency_links": [ # "https://github.com/user/repo/archive/master.zip#egg=someDependency-dev" # ] # } additional_setup_parameters = {} ######################################################################################## from setuptools import setup try: import octoprint_setuptools except: print( "Could not import OctoPrint's setuptools, are you sure you are running that under " "the same python installation that OctoPrint is installed under?" ) import sys sys.exit(-1) setup_parameters = octoprint_setuptools.create_plugin_setup_parameters( identifier=plugin_identifier, package=plugin_package, name=plugin_name, version=plugin_version, description=plugin_description, author=plugin_author, mail=plugin_author_email, url=plugin_url, license=plugin_license, requires=plugin_requires, additional_packages=plugin_additional_packages, ignored_packages=plugin_ignored_packages, additional_data=plugin_additional_data, ) if len(additional_setup_parameters): from octoprint.util import dict_merge setup_parameters = dict_merge(setup_parameters, additional_setup_parameters) setup(**setup_parameters)
"""Policies""" import logging import numpy as np log = logging.getLogger(__name__) class PolicyQ1(): """Custom policy when making decision based on neural network.""" def __init__(self, tau=1., clip=(-500., 500.)): self.tau = tau self.clip = clip def select_action(self, q_values): """Return the selected action # Arguments q_values (np.ndarray): List of the estimations of Q for each action # Returns Selection action """ assert q_values.ndim == 1 q_values = q_values.astype('float64') nb_actions = q_values.shape[0] exp_values = np.exp(np.clip(q_values / self.tau, self.clip[0], self.clip[1])) probs = exp_values / np.sum(exp_values) action = np.random.choice(range(nb_actions), p=probs) log.info(f"Chosen action by q-learner {action} - probabilities: {probs}") return action
# -*- coding: utf-8 -*- from setuptools import setup, find_packages with open('README.rst') as readme_file: readme = readme_file.read() with open('LICENSE') as lic_file: license_text = lic_file.read() setup( name="Termux-API", version="0.0.1", description="Python script to provide access to termux api", long_description=readme, author="lonely-v3n1x", author_email="", license=license_text, packages=find_packages(exclude=('tests', 'docs')) )
from pathlib import Path import librosa import imageio import numpy as np from natsort import natsorted from .misc import DataType, EXTENSIONS def split_spectrogram(spec, chunk_size, truncate=True, axis=1): """ Split a numpy array along the chosen axis into fixed-length chunks Args: spec (np.ndarray): The array to split along the chosen axis chunk_size (int): The number of elements along the chosen axis in each chunk truncate (bool): If True, the array is truncated such that the number of elements along the chosen axis is a multiple of `chunk_size`. Otherwise, the array is zero-padded to a multiple of `chunk_size`. axis (int): The axis along which to split the array Returns: list: A list of arrays of equal size """ if spec.shape[axis] >= chunk_size: remainder = spec.shape[axis] % chunk_size if truncate: spec = spec[:, :-remainder] else: spec = np.pad(spec, ((0, 0), (0, chunk_size - remainder)), mode="constant") chunks = np.split(spec, spec.shape[axis] // chunk_size, axis=axis) else: chunks = [spec] return chunks def load_image(path, flip=True, **kwargs): """ Load an image as an array Args: path: The file to load image from flip (bool): Whether to flip the image vertically """ path = _decode_tensor_string(path) kwargs["format"] = kwargs.get("format") or "exr" spec = imageio.imread(path, **kwargs) if flip: spec = spec[::-1] return spec def load_arrays(path, concatenate=False, stack=False): """ Load a sequence of spectrogram arrays from a npy or npz file Args: path: The file to load arrays from concatenate (bool): Whether to concatenate the loaded arrays (along axis 1) stack (bool): Whether to stack the loaded arrays """ if concatenate and stack: raise ValueError( "Cannot do both concatenation and stacking: choose one or neither." ) path = _decode_tensor_string(path) with np.load(path) as npz: keys = natsorted(npz.keys()) chunks = [npz[k] for k in keys] if concatenate: return np.concatenate(chunks, axis=1) elif stack: return np.stack(chunks) return chunks def audio_to_spectrogram(audio, normalize=False, norm_kwargs=None, **kwargs): """ Convert an array of audio samples to a mel spectrogram Args: audio (np.ndarray): The array of audio samples to convert normalize (bool): Whether to log and normalize the spectrogram to [0, 1] after conversion norm_kwargs (dict): Additional keyword arguments to pass to the spectrogram normalization function """ norm_kwargs = norm_kwargs or {} spec = librosa.feature.melspectrogram(audio, **kwargs) if normalize: spec = normalize_spectrogram(spec, **norm_kwargs) return spec def spectrogram_to_audio(spec, denormalize=False, norm_kwargs=None, **kwargs): """ Convert a mel spectrogram to audio Args: spec (np.ndarray): The mel spectrogram to convert to audio denormalize (bool): Whether to exp and denormalize the spectrogram before conversion norm_kwargs (dict): Additional keyword arguments to pass to the spectrogram denormalization function """ norm_kwargs = norm_kwargs or {} if denormalize: spec = denormalize_spectrogram(spec, **norm_kwargs) audio = librosa.feature.inverse.mel_to_audio(spec, **kwargs) return audio # TODO: Remove dependency on settings.TOP_DB def normalize_spectrogram( spec, scale_fn=None, top_db=80, ref=np.max, **kwargs ): """ Log and normalize a mel spectrogram using `librosa.power_to_db()` """ scale_fn = scale_fn or librosa.power_to_db return (scale_fn(spec, top_db=top_db, ref=ref, **kwargs) / top_db) + 1 def denormalize_spectrogram( spec, scale_fn=None, top_db=80, ref=32768, **kwargs ): """ Exp and denormalize a mel spectrogram using `librosa.db_to_power()` """ scale_fn = scale_fn or librosa.db_to_power return scale_fn((spec - 1) * top_db, ref=ref, **kwargs) def save_arrays(chunks, output, compress=True): """ Save a sequence of arrays to a npy or npz file. Args: chunks (list): A sequence of arrays to save output (str): The file to save the arrays to' compress (bool): Whether to use `np.savez` to compress the output file """ save = np.savez_compressed if compress else np.savez save(str(output), *chunks) def save_image(spec, output, flip=True, **kwargs): """ Save an array as an image. Args: spec (np.ndarray): A array to save as an image output (str): The path to save the image to flip (bool): Whether to flip the array vertically """ if flip: spec = spec[::-1] kwargs["format"] = kwargs.get("format") or "exr" imageio.imwrite(output, spec, **kwargs) def save_images(chunks, output: str, flip=True, **kwargs): """ Save a sequence of arrays as images. Args: chunks (list): A sequence of arrays to save as images output (str): The directory to save the images to flip (bool): Whether to flip the images vertically """ output = Path(output) for j, chunk in enumerate(chunks): save_image(chunk, output.joinpath(f"{j}.exr"), flip=flip, **kwargs) def load_images(path, flip=True, concatenate=False, stack=False, **kwargs): """ Load a sequence of spectrogram images from a directory as arrays Args: path: The directory to load images from flip (bool): Whether to flip the images vertically concatenate (bool): Whether to concatenate the loaded arrays (along axis 1) stack (bool): Whether to stack the loaded arrays """ if concatenate and stack: raise ValueError( "Cannot do both concatenation and stacking: choose one or neither." ) path = _decode_tensor_string(path) path = Path(path) if path.is_file(): files = [path] else: files = [] for ext in EXTENSIONS[DataType.IMAGE]: files.extend(path.glob(f"*.{ext}")) files = natsorted(files) chunks = [load_image(file, flip=flip, **kwargs) for file in files] if concatenate: return np.concatenate(chunks, axis=1) elif stack: return np.stack(chunks) return chunks def _decode_tensor_string(tensor): try: return tensor.numpy().decode("utf8") except: return tensor
# AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty # https://github.com/google-research/augmix import numpy as np from PIL import Image, ImageOps, ImageEnhance import numpy as np from PIL import Image IMAGE_SIZE = None def int_parameter(level, maxval): return int(level * maxval / 10) def float_parameter(level, maxval): return float(level) * maxval / 10. def sample_level(n): return np.random.uniform(low=0.1, high=n) def autocontrast(pil_img, _): return ImageOps.autocontrast(pil_img) def equalize(pil_img, _): return ImageOps.equalize(pil_img) def posterize(pil_img, level): level = int_parameter(sample_level(level), 4) return ImageOps.posterize(pil_img, 4 - level) def rotate(pil_img, level): degrees = int_parameter(sample_level(level), 30) if np.random.uniform() > 0.5: degrees = -degrees return pil_img.rotate(degrees, resample=Image.BILINEAR) def solarize(pil_img, level): level = int_parameter(sample_level(level), 256) return ImageOps.solarize(pil_img, 256 - level) def shear_x(pil_img, level): level = float_parameter(sample_level(level), 0.3) if np.random.uniform() > 0.5: level = -level return pil_img.transform((IMAGE_SIZE, IMAGE_SIZE), Image.AFFINE, (1, level, 0, 0, 1, 0), resample=Image.BILINEAR) def shear_y(pil_img, level): level = float_parameter(sample_level(level), 0.3) if np.random.uniform() > 0.5: level = -level return pil_img.transform((IMAGE_SIZE, IMAGE_SIZE), Image.AFFINE, (1, 0, 0, level, 1, 0), resample=Image.BILINEAR) def translate_x(pil_img, level): level = int_parameter(sample_level(level), IMAGE_SIZE / 3) if np.random.random() > 0.5: level = -level return pil_img.transform((IMAGE_SIZE, IMAGE_SIZE), Image.AFFINE, (1, 0, level, 0, 1, 0), resample=Image.BILINEAR) def translate_y(pil_img, level): level = int_parameter(sample_level(level), IMAGE_SIZE / 3) if np.random.random() > 0.5: level = -level return pil_img.transform((IMAGE_SIZE, IMAGE_SIZE), Image.AFFINE, (1, 0, 0, 0, 1, level), resample=Image.BILINEAR) def color(pil_img, level): level = float_parameter(sample_level(level), 1.8) + 0.1 return ImageEnhance.Color(pil_img).enhance(level) def contrast(pil_img, level): level = float_parameter(sample_level(level), 1.8) + 0.1 return ImageEnhance.Contrast(pil_img).enhance(level) def brightness(pil_img, level): level = float_parameter(sample_level(level), 1.8) + 0.1 return ImageEnhance.Brightness(pil_img).enhance(level) def sharpness(pil_img, level): level = float_parameter(sample_level(level), 1.8) + 0.1 return ImageEnhance.Sharpness(pil_img).enhance(level) augmentations = [ autocontrast, equalize, posterize, rotate, solarize, shear_x, shear_y, translate_x, translate_y, color, contrast, brightness, sharpness ] def apply_op(image, op, severity): image = np.clip(image * 255., 0, 255).astype(np.uint8) pil_img = Image.fromarray(image) pil_img = op(pil_img, severity) return np.asarray(pil_img) / 255. class AutoAugment: def __init__(self, size, severity=3, depth=-1, alpha=1.): self.severity = severity self.depth = depth self.alpha = alpha def __call__(self, img): img = np.array(img) / 255. m = np.float32(np.random.beta(self.alpha, self.alpha)) d = self.depth if self.depth > 0 else np.random.randint(1,4) for _ in range(d): op = np.random.choice(augmentations) img = apply_op(img, op, self.severity) img = np.clip(img * 255., 0, 255).astype(np.uint8) return Image.fromarray(img)
#!/usr/bin/env python """Storage Report for Python""" # import pyhesity wrapper module from pyhesity import * from datetime import datetime import codecs # command line arguments import argparse parser = argparse.ArgumentParser() parser.add_argument('-v', '--vip', type=str, required=True) parser.add_argument('-u', '--username', type=str, default='helios') parser.add_argument('-d', '--domain', type=str, default='local') parser.add_argument('-i', '--useApiKey', action='store_true') parser.add_argument('-pwd', '--password', type=str) parser.add_argument('-of', '--outfolder', type=str, default='.') args = parser.parse_args() vip = args.vip username = args.username domain = args.domain password = args.password folder = args.outfolder useApiKey = args.useApiKey # authenticate apiauth(vip=vip, username=username, domain=domain, password=password, useApiKey=useApiKey) print('Collecting report data...') cluster = api('get', 'cluster') title = 'Storage Report for %s' % cluster['name'] now = datetime.now() datestring = now.strftime("%Y-%m-%d") htmlfileName = '%s/storageReport-%s-%s.html' % (folder, cluster['name'], datestring) csvfileName = '%s/storageReport-%s-%s.csv' % (folder, cluster['name'], datestring) csv = codecs.open(csvfileName, 'w', 'utf-8') csv.write("Job/View Name,Environment,Local/Replicated,GiB Logical,GiB Ingested,GiB Consumed,Dedup Ratio,Compression,Reduction\n") html = '''<html> <head> <style> p { color: #555555; font-family:Arial, Helvetica, sans-serif; } span { color: #555555; font-family:Arial, Helvetica, sans-serif; } table { font-family: Arial, Helvetica, sans-serif; color: #333333; font-size: 0.75em; border-collapse: collapse; width: 100%; } tr { border: 1px solid #F1F1F1; } td, th { text-align: left; padding: 6px; } tr:nth-child(even) { background-color: #F1F1F1; } </style> </head> <body> <div style="margin:15px;"> <img src=" asAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAXEgAAFxIBZ5/SUgAAAVlpVFh0WE1MOmNvbS5hZG9i ZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9Il hNUCBDb3JlIDUuNC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9y Zy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZG Y6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6dGlmZj0iaHR0cDovL25zLmFkb2JlLmNvbS90 aWZmLzEuMC8iPgogICAgICAgICA8dGlmZjpPcmllbnRhdGlvbj4xPC90aWZmOk9yaWVudGF0aW 9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4K TMInWQAAF3RJREFUeAHdnAmUlcWVx7/v7d10gwu4x4VxGcUlMYoaTQLS0GLUODO2TsYxaDxBBT GuMS6ZPM9JYjSajDFAglscHbd3NC5HUewWFPctTFwSzVGMioMgUZZe3vrN71/vu4/Xj/foB84o Zy7eV1W3bt26detf9dW3tL63LiURZUNxMhaLjSc/Ad4P/gK8HRwPgmCp7/vvkn8BfrBQKCwgFc XhIlxSoQFJpwAHqqePr5B8DXt7Y1f2W2G1/5jyW6QvFIvFBaTvwSL5mIdr+4giU98j4/H4P5FK zy+VSstofyd56fuw65e0HpmNrUIbKsex8R427iavthG4hN8T8Xln6nKRSET9IG6aAtpEaFPA7v 20WgkP8m3GQ5OT1x45183F1BePbo2u7t/XK/q7ojfC9yPSbUh+pBQERS+G/j2zOue9FwQerjp1 +e9Ho9F/pPsdybs45vN5je1Dp0H8qe+ifnPKOVjj/TSkoT6YzWbfSqVSoxlvJ8ZicJH5TRHHew cGBt6mLFzIn6HIzRE+HsOgdoUHaJAglktktJoqYGYyv0tn06kUkNchjOyCUPx1+Hyc6iH9EcB+ ilShM2CQHUQJSgqSh0PHYudssrLh0Z+SQUS9K2N/GfV3k16twCCUfQesqgay3Y/dcej+xuTYEN KegJfACprrn7QemY0ObMwyBWz0kn8SXgrLKcXud+hsJx9JK4hB3hRZG8WBSb6PRurbAbjrrq7E tUdmstPmj2sLSomz/ZXZExjumERbzGE5DMu6/Ti4stoKgZfaLOGtWtonf+/MeF3EKqN4CTAj8f kG+h9hBvBhFT7cqjJzP4Y6jc2qP1Wq+GB7FEZ+yMI5kHIlrjIMZr5FciAs32rnFNEgaqHUDw4m kipmldhj95VqQLtgsoJ2oYObGIwDmRpAfbA6Exi0e4q0KgQM2ZBsgpiOLqL9z8hrp6wFtfpQmz aCNoc+NBAj9aFdW/bUTtFUWWCU/a1w+AwCcyJtLyQwBth6AZBMZPZWka8eq6sc4sdsCGBa6Gtg jV8k3+L4k2cMKqsf6SvVuJsljW0YbHZdO4E5c3wmd/q8iYd6Jf+mluHx3UrFwMv1FgJYcXedlp Pygq+I3FqjFTZzfYVcoVR6RkaP9zLqS3EVKRYajwAteynYxkvW6ale41a9zYc6U99K5bN1TrYy 9mqZdAlR0Ebqdl7mL8P8HYPsX5D1w7J9ALj5Mbi5lLzsukVNWktus0EoezPDSm00w7CXZT5OtU mWkRwdjcXoXPJbwJoYWzEGYkROruAoCGKRHJBMq+dynGvHziXkZcOCYGDegfqHcWAMdSIBWX5U 9yF5Ldngh9N2NjZG08f3UVK/1oe1MVDZ+CSXXjMUgqUCTAOB2lbbCLjEFQmi5Na/xrhBpPaMx8 AUpF/rSqTHZHLTuydNDHxvbrItHh1Ylc/qApAcFktEYn4qKBmm6nSFJ8VcyRs2MumtXNK3YM7E 7neBoM+/wFPEX3Ntqsdh47OYyR+NR6ARDVpsZVHltzr2hoVKpWXCMdpclNiMzmL+vk799rAWjO gSZHOZ06fIu13YSdf+2IahK/tViHeDtTlazC/D7gvqRJxPJpN7sHoeJT8ctlVpTv4Z2S3wUxhb goOoFrdi4OPg0ynvTJ3I2l2Mcytw7hfIFH23YEjbkT9EqtBKV4EzIC/Azm3Ye5Xzls6TUQCzHW kHfAq8JawAavHI3gXY+og+riSvSdHuaGQAqS6rr2bI9MxGbbliQwdD/FVZOtJ/Hn4amXbdCkDI NyK1LyQSiaf7+/u9rrsOiQLm/jO6O0YDqbsSrbFodk2+N5qIDAu0Q/cV7/GC0jw/iHzsRlxttV j0ShG/7EzgB5+835uK+PGF1SohmE1k47LUxhslpq8SW21Io2DF23QU53581pHl2+Q1d5oTte2G X6GunbR6LnxkUULljgfUCV8rkJ2FDZ3bhTH1oavBLPgAWJuX5jgPGwmnOfCnc/NpoVB9q/2T+H w5qfnpRRnA83AA98GFMK8bn3PDxo0Stb0m1Ff7XJh/vbYBV4DfhXU6A5neMpw8ula3pjyctjeF bav7CJAfFOoq2G4BYq+rSlf6WiA7hnq2osPiOol2B+0CJ4Y2LBYfItaOItIEJtFZXK2DL+e42o 34GZceF3M7KW3P6Om869wXjwqm9UzqO+vJyUrfn/7IJBvnBlnXzl7VwMa+NX4vCX3PK2UsAqjI Nphyqf5vG22W1rQfag5lyRaNwKoYXxfaEBacH6TafUUCsOkrL9qSGL8TtukN06yOyeVqL+4aoH Q6ggNhrRQNWuBQfly4y5J1K0ZytTGWbhGd75GeD4u069yAbFK56BzTk4yJyKeEMgVZg1qC3v7s 9g+Ql20bhNmXTH2s4nJyCmkaFklPlxtdHq9RCtnxplz6DH7ZdQb1gi92mdYOLR+bZW+fsS1RoB dMmz/xi4zqaM7Ksp3KZ4sDflA8fGbnvOfOebrLLTZVNCLO31E9EZn64pfjWiA60TTSbSDXrieq 9V1zoXF5AEg79+DBl3deVSsGNpfVNqRvtl3KvE8nZm8jFxZsVz8PrHSEZbUXVlwdC+Aq9HeirK u7WxQMcDpPSBaH5bwa6HHH2Rp5NdFwCh0+gcwuCdXbv6kKVLIBLgtXszBW024x7R4NFVxdmD8z THtJXWDo8zjy78P1zkyhugOqQJ2jj8voY0/6OIGyHFZgDmKgx9CnHn3psqXLVT2yibW0no5kVm 9pI716cjtmKC42QfX01pFlt1rmJjkoRcal2qKp7OpCNjU8nsyuyl05s6PnTT3t+OVXMmtO7zl8 +0gkdphf9HS+CGhEGIMix5CPSn7+zd9MyCzBeF9X0BXtyoyOZLyM+bROnw0EBoR6/jsMACC3m9 a0t37UzvI1KpWi6t2c4vzJ5A1nAqrwdi2sDVY3pioPMMfHhbqKk1jy37PRXU8qn51vMRQnoLgr AjmiSdTquhuA3EmqVaWden2Tq3YyGMH4HFKRWz2kqvM4n++OvSOUNwKU1wPQZylLtxEITV0Aca BnV/wRtiZT1lnMnb3wfwp5AVoDrUv4kORxn+oUCPlrEyeZkcapRVHZAayiyVQLWCQb9ey7ypqf QjrteekDXnKxItS7u0fMtM4PFL1IPHav9GeNX7BGZ2vfizzcMjyxm6sLH0XrGF/MgZFibOm07k mPszfNmulnBBLO5V1RnpgMBTCpGq1vrm1MllobpfVk1fW1ec1pHAwsZEfW+fciWDY0SX8PLn/K PJ9FXnMxijmeTSrqg3UV0P3TNAkg4dSNMYKiAU0I12SLZpYTp7i+AYZqDvACkyZSrMmRPTdIrg BfJa8VKeC6Mxr93kRe1GywNbAYoHyDtnaDoYGIxsK6GdGKFtX6HNDuw3KVt5pUwVTgallynbdF H5eTDfrV1UckP2SrGS69tleX4uR8JtPucoEXK+ZL2XxfsNYPP/KN9q1Tu/V/kltTGCj0cyzJ8m huIN9fGOC5czGWjG6TGhE/wYv4j0/v7rwam57AnA7SFieJNiVyixhgXoxTL8PCjvAQMMczALU2 Lh1X55CMhA3MOmoKzEtVDVcwpMKXYJEJX6WDF8qiDfrVhAgg1eQmCUDvj4OSa4JbcOYtVt+r1Y pN5GVLuzmPVkuPYu+ksKym23EU2YMrxIsq1KE4wTmaNu/SdzupLTbnH/rOOVKqgyRXgQ9JD6lj Z5AIP9wh1YS02Zn8F/Bla1J3CbS6BqmPz28Aun5AXH60Fni9zhvfK0RikaQXKW5WaRtEHl+9dG AVj+SGux06GrpNohcpALxYGChm/ajf2rJl4txpPRN3mDXh0RPSfrrhlati+/PJKP7CYIE5OZX4 /YG8Njx3LEX2M8C8D+VjYeFTpwdN0k3gJ6M8NGhsMSq3paEqyj++/yfyjXY66W0IOcBgf6ewkZ XfpLxqQwxVtwdwb+K3VreCIZt6haw+6gFagWjFh/8kHQRAlWtJscC2iZWpFExYJ7XYTWcCzqS9 tXHyOvoSCfDxWCR2YaFUuLLrl4ekMt4zPBLz3gpbB4nWqDewqqTJXKQbQs7Qf5zRPfmQvo+yHV 40KJbCLYi37q200VXq2MSwWCu7drZ3RdZvG5k6/oyeSW/OnjDvh+n542Lp8QvML1Q3GXJAZWEv InYX4NXPYV3NNb/7hkzi4pUitG8D5vMkgNw5vJwt//Ie1ddZVOQuSwDjo3LR/f5vBcD6sImv7q OquyGzzh8A/QmD0hGkDZbMR7YZsnoGDFTu8lZPoY5MNhUP7QjWvo7aOiK1G7RjrKNRFsimnI3T y2auRTLpdh8vVlqYXZ0vsMumeKEi7QunPjLpDsD85zIo576OTLwOnfnIpF2y/fkbk63xcYA6D6 g9wH7pad0Tbk+P73n96PSXWx9Iv5Qfxi15+XZiHROfh8DNqTrmZHAVoO4k2wFrfssxKcfKjsMz kOsYprJ0BpEmrXYCKh0M0vx0hVpQfBZ9mMfWl3bzZllHGwVTba092fWS9GwRqO36WHopXQ0g9e UtX/6OW3Czx3c/S/ExXqqo5754KsrHO1736T2dY9lhGy5Kfcj06855i2cf/uh4wPw4O7XsDpB6 MT96pvrwW9YYQFTclEiLW7utnk3LV129BVgbr+Il+hWb1kOkGlvt8Vb1boJ1E7QN7IDNTjeqaq erBaLabAzZ8cKBg8vGFhtjhDbOH64iOlfaijWZbvbqkYKhwOi+QGczBaN6EdsYDbjSV7B2gPeC rZ7sYCJW1ccT8OnO6H9FS5NT3cfghmWbBeKwOfycKhek38lXvq4LIpeyS0/kDWErZ+U18Zbo9t z2PTf9sUk3c2qfh+VlUT8oaVDRgP+iwfJrx89ddNIjk4bd0jmvlzcBZ2fXFJ6L8pqcM7VW5OHq 4/4L39BNuddLFFgkmxrp/iqhm37uQS4gLr+lrLnSMOXty+zg55Ma2XxZ2aVSfA/eAzaw7Ulel3 KdoxtOJnXNkNrjW/DXcDcye3+HnAufA1gzdkzHtQfQu2PPpsTJKH9gSjWp6vsIRhfpEliAXR/Y FMQ8O8U/Y/N28s2QxW4O/fyEBrpb1wQNRTYp8rHIp6LFNB8mpTsyL0ybP+m7APp6HuG15fuLK1 Ec3rp5YgrfaUwpZMvuKwCKqz5cmtbdefasjkeu0YdNs8ZnFvF28bloMvrVQr8D9HYz5k/eAdC/ P5RDm0I95+k7APXF4GYn/LG5uo28zmDrxY0mVzuXSHnR3pxjvljObvCvwFB9WXNgYydbFFpSvW hPHN69nG36V7a0WkWHlpNKWd+NvBHKGiXOFyot/bR69dpb8OWnwDoUy4b8kZ6jdFcmr2fHs8bP u4HvOE5ih861bpnk+2fP7/84t5onGf2lQinPU408QM7zaK+fHZzZC84Lnzm7hYRBvrmRSffuO8 HlQEDY1MnioO/PLZa181X3RskGJhDrTCLSJdxdklgZpzhJ+TBuQA9FdRN1KtYKUodu8yB1xC7y dJi1RzLatr9l1WE6VJJAQfb1kP0bobINTs8wl8G6sohqg6DXtbaYZEdj0sKrZclVL7IrQLnU3K +10Q6tfDM82DIPWca8ngnSPDue3fHoraVSsHf/37I3g8u+ZHu8nbeHLXBczJd4cWQt8Ra6KXnz 9czZvfIuWxxRXiaEIvD4AKrg5nZwZ5tcqTJvbIKVfOhlMzj0YuxsT7IjP0+jsbBbIQDmO8huoW 4BMpskWzGIBpHq3c7JZfoo+N1cLvfHUMM5QVlfb3Uj64BtFZ7Dy7vrODP9BZmB1erC5pVEYBSY 9ZD9QpIdYIHZXQ3w9zbyIvO1XKr65XWtgV++NhqLWrixkJq+ZM2S2ZUNs9Ns24peOu2Vgh+l/d fYqX87KaP4nHz2E50XsT8fzH67B5tBu5akz1d1nDniA6ty7/Kp1/XuKcgBC/Iznpg8qpgvfqlY 4MStCAX+0g8O3XwJOZU2Zlw0+0xJn+bWPmJthI1BjjkAEKAfA4r7qRGwdEOkHeZuPms8DDD+ib xIwahdJerETRxA/jY2bsYRfZ12BYvhGuqWw+pDN0C/or6DvHZpPW5JcfOZIT04LGtFSrd2ZaoP B2b6mELenkGq3yR2F9PXLeRFzZxba+2XW679tXpL19YMnbP4aBxDAUf2NTal0lW+QjouTH3x7c jJ88fFe5ePKv371zL/TeXvKwo1Ge3oaS/tbJTyhfPYvbcZWF3Ipdpjidya/BMZP1PsmjmmLTP9 tTWb2GO7mpF8uqICrz+PeYAz7a2A418pCtCamC0A57OA6GTqFUgFve4kAWDdff4cFuUA7iXIjg Ro+1N2gFcfyGTnH2DtZJLvh+x5Li8nsnBeCWUk6xJ6P0B6eVgj4GqBidS3/NJYbIck+7mQnqKI +srJBv0awK1RMOeAl7SQ3WI2YaM0Hb4N5EXKDD8WuTDL13o6dxf42L9U8Geq3crFPBP5f04CgY BR5M5yGqCxNzOaEIFkOOC8B3k3qS7rL6O3grTE7r0FC+BAeCpl7bIiTaj+HEZn5CudpLwDqZ88 AJ+BrYPIbwdLVwHeh4XzXyycOeTvo/4tjiF6BBdlkY0iHRv2ocUh0u6uBae3nL9modwTlrVA7J xM9v+eai+LxOhgxnE0PW8Bu4U8hBcCsf5IVvcxq+BqUPszeiaPLsbyichAJNC1M8cyjsbJh8QN oa8yt4fxWDwyGuh+J56KfTM/UCD+3uq2kcl23ipeO7tz3kvVN4wNHttV7Jr9TSTdIL8ENAFXQF gN4CYDqAfJ6ymHDAlYulnUH4x2kOpDbL2lYS5Lm4d1JA5k2knaVWBiT8XWHcqHpDqmRHfevv6e rIf8CFjg1BWhDflppKcxuSvpQ48MBVgBw0AqPdlxN37o36oFQlk01KAFlI0la2tpxY5uXPBRZX fUIN+FX10VhSYzLIJvMu77UY/zJ1ie/gTrjO7Ow4peca5X5C/D436BU3XEPTvWB6MhheWAB5ix aEsklYjpVXmezSjw20e1tK9Znu2ZNWHeWVIPv7izq5pENp5GqXTWR7Xt1qe7wXXEVpui2tkxri kbpmyA+wCQHIah62gthwVQAUq7h3ZtgXJreFtYQJdMdcpLV3+ZfSS7+I3ktVhk38CmY0KCupdw 9hDyf4DVTgDth2VHu5qAvj2sftS3+tDLH+XtKca/YeckyiJNkvVhqc26+tSC1WJolmptWFvZGk SM1WTSUV4LVGNplnWVEimujlYk1oRAKR3BE4xhjKyFmeWDKp6/wkotH5YVk1Ser+4Acy+P8Fpb RiRbAPPty1cMP1JGtTs742Pcr/th4VX7LpnFzMa/Vnltrrqutn113doWG5kjtsKkSDEVmX/lUo Nfgc5IDgo0vewWU9klbyF/LnwUPByuR7rBE/FHnMGNtLuMvD7TlF05UOuE6yO80TyIPmYQ2O/R dkd0W2AjtbPFZn2o7kH03R9Dhorqp/rSbruGAcTSkehZXdi0YeL0WHS6MdYuYX5tQ7HWxlahFS 3MjSLG4wUR/kiWZce3FrFrd5urBcxVLnJcgufLPHPmSUW5W/0KNZZKTwJM8DELbwV54cJz60WF vuIVszrm3aHq8vcfmXKMXpPEka4sW7u+g0AfbumqmmT+VFnurKxX+2t1ShUPkWuPPYu16ZRrN/ 5Xf+Wv+OvqXT0P67VfDWh1rVXhQMJOvZD8Qv29FgMdzxHjIAzvgkyvnQU299cpTPwz7JYPU34P Fqm9ItNoxVofOlP/Ar3ZXHKPID0C+/vB2zIIHWektwJ+B34K+X30Yy9o1L8GVg1miuUbKPzVR+ NXUNbXWfrm+33yS6QA1bYpS9f+up2BcS3EvzmI9QeeCez8hfzSUE19a1f+Cbb3JTbakS3Qloaq DRPFR3+uVkwkis/KwAfblv3nSutPfyz4j9UfDuyJ1T7YFvdgY+XtQrUD/I8L3gaWTwPkZ0xpXP kLu+rxWn4Zfv8Av3cj1Wakv7vsIb5q6n7MRk1qdR8g/z7NRoftS8R8fqhrO3dN06aK5t/fsHsJ /u1Fqj/KjTMH94YWzIe6Bv8HK7O28QoteKsAAAAASUVORK5CYII=" style="width:180px"> <p style="margin-top: 15px; margin-bottom: 15px;"> <span style="font-size:1.3em;">''' html += title html += '''</span> <span style="font-size:1em; text-align: right; padding-top: 8px; padding-right: 2px; float: right;">''' html += datestring html += '''</span> </p> <table> <tr> <th>Job/View Name</th> <th>Environment</th> <th>Local/Replicated</th> <th>GiB Logical</th> <th>GiB Ingested</th> <th>GiB Consumed</th> <th>Dedup Ratio</th> <th>Compression</th> <th>Reduction</th> </tr>''' def processStats(stats, name, environment, location): logicalBytes = stats['statsList'][0]['stats'].get('totalLogicalUsageBytes', 0) dataIn = stats['statsList'][0]['stats'].get('dataInBytes', 0) dataInAfterDedup = stats['statsList'][0]['stats'].get('dataInBytesAfterDedup', 0) dataWritten = stats['statsList'][0]['stats'].get('dataWrittenBytes', 0) consumedBytes = stats['statsList'][0]['stats'].get('storageConsumedBytes', 0) if dataInAfterDedup > 0 and dataWritten > 0: dedup = round(float(dataIn) / dataInAfterDedup, 1) compression = round(float(dataInAfterDedup) / dataWritten, 1) else: dedup = 0 compression = 0 if consumedBytes > 0: reduction = round(float(logicalBytes) / consumedBytes, 1) else: reduction = 0 consumption = round(float(consumedBytes) / (1024 * 1024 * 1024), 1) logical = round(float(logicalBytes) / (1024 * 1024 * 1024), 1) dataInGiB = round(float(dataIn) / (1024 * 1024 * 1024), 1) print('%30s: %11s %s' % (name, consumption, 'GiB')) csv.write('%s,%s,%s,%s,%s,%s,%s,%s,%s\n' % (name, environment, location, logical, dataInGiB, consumption, dedup, compression, reduction)) return '''<tr> <td>%s</td> <td>%s</td> <td>%s</td> <td>%s</td> <td>%s</td> <td>%s</td> <td>%s</td> <td>%s</td> <td>%s</td> </tr>''' % (name, environment, location, logical, dataInGiB, consumption, dedup, compression, reduction) jobs = api('get', 'protectionJobs?allUnderHierarchy=true') print("\n Local ProtectionJobs...") for job in sorted(jobs, key=lambda job: job['name'].lower()): if job['policyId'].split(':')[0] == str(cluster['id']): if cluster['clusterSoftwareVersion'] > '6.5.1b' and job['environment'] == 'kView': stats = api('get', 'stats/consumers?consumerType=kViewProtectionRuns&consumerIdList=%s' % job['id']) else: stats = api('get', 'stats/consumers?consumerType=kProtectionRuns&consumerIdList=%s' % job['id']) if 'statsList' in stats and stats['statsList'] is not None: html += processStats(stats, job['name'], job['environment'][1:], 'Local') print("\n Unprotected Views...") views = api('get', 'views?allUnderHierarchy=true') for view in sorted([v for v in views['views'] if 'viewProtection' not in v], key=lambda view: view['name'].lower()): stats = api('get', 'stats/consumers?consumerType=kViews&consumerIdList=%s' % view['viewId']) if 'statsList' in stats and stats['statsList'] is not None: html += processStats(stats, view['name'], 'View', 'Local') print("\n Replicated ProtectionJobs...") for job in sorted(jobs, key=lambda job: job['name'].lower()): if job['policyId'].split(':')[0] != str(cluster['id']): if cluster['clusterSoftwareVersion'] > '6.5.1b' and job['environment'] == 'kView': stats = api('get', 'stats/consumers?consumerType=kViewProtectionRuns&consumerIdList=%s' % job['id']) else: stats = api('get', 'stats/consumers?consumerType=kReplicationRuns&consumerIdList=%s' % job['id']) if 'statsList' in stats and stats['statsList'] is not None: html += processStats(stats, job['name'], job['environment'][1:], 'Replicated') html += '''</table> </div> </body> </html> ''' print('\nsaving report as %s' % htmlfileName) print(' and %s\n' % csvfileName) f = codecs.open(htmlfileName, 'w', 'utf-8') f.write(html) f.close()
import argparse import logging from twitchio import Message from src.bot.RoundsQueue import RoundsQueue, Round from src.bot.TeamData import TeamData from src.bot.botstates.BotState import BotState from src.bot.commandhandlers import trivia, number_game class ArgumentParser(argparse.ArgumentParser): def error(self, message): raise Exception(message) class RoundsBot(BotState): async def can_join(self, msg: Message) -> bool: return True def __init__(self, rounds_queue: RoundsQueue, team_data: TeamData): self.rounds_queue = rounds_queue self.team_data = team_data async def handle_join(self, msg: Message) -> None: pass async def handle_event_message(self, msg: Message) -> None: if not msg.author.is_mod or "!rounds" in msg.content: return if msg.content.lower() == "start": await self.rounds_queue.start() return parser = ArgumentParser(description='Create a round.') parser.add_argument('repeats', metavar='n', type=int, help='Number of times the game should repeat.') subparsers = parser.add_subparsers(help='trivia or number', dest='game') number_parser = subparsers.add_parser('number', help='Specify a number to count to!') number_parser.add_argument('-c', '--count', type=int, help="Number users will count to.") trivia_parser = subparsers.add_parser('trivia', help='Optionally specify a category') trivia_parser.add_argument('-c', '--category', metavar='TRIVIA CATEGORY', type=str, help='Any valid trivia category.') msg_content = msg.content.lower() try: round_args = parser.parse_args(msg_content.split()) except Exception as err: logging.error(err) await msg.channel.send(err) return for i in range(0, round_args.repeats): if round_args.game == 'trivia': self.rounds_queue.add_round(Round(name=round_args.game, on_round_start=lambda: trivia.start_trivia(send_message=msg.channel.send, category=round_args.category, team_data=self.team_data, botState=self.context))) elif round_args.game == 'number': self.rounds_queue.add_round(Round(name=round_args.game, on_round_start=lambda: number_game.start_number_game(team_data=self.team_data, botState=self.context, send_message=msg.channel.send, target_number=round_args.count)))
import datetime import pytest from django.urls import reverse from django.utils.translation import gettext_lazy as _ from rest_framework import status from rest_framework_gis.fields import GeoJsonDict from traffic_control.models import AdditionalSignContentReal, AdditionalSignReal from .factories import ( add_additional_sign_real_operation, get_additional_sign_content_real, get_additional_sign_real, get_api_client, get_owner, get_traffic_control_device_type, get_traffic_sign_real, get_user, ) from .test_base_api_3d import test_point_2_3d # AdditionalSignReal tests # =============================================== @pytest.mark.parametrize("geo_format", ("", "geojson")) @pytest.mark.django_db def test__additional_sign_real__list(geo_format): client = get_api_client() for owner_name in ["foo", "bar", "baz"]: asr = get_additional_sign_real(owner=get_owner(name_fi=owner_name)) get_additional_sign_content_real(parent=asr) response = client.get( reverse("v1:additionalsignreal-list"), data={"geo_format": geo_format} ) response_data = response.json() assert response.status_code == status.HTTP_200_OK assert response_data["count"] == 3 for result in response_data["results"]: obj = AdditionalSignReal.objects.get(pk=result["id"]) assert result["content"][0]["id"] == str(obj.content.first().pk) if geo_format == "geojson": assert result["location"] == GeoJsonDict(obj.location.json) else: assert result["location"] == obj.location.ewkt @pytest.mark.parametrize("geo_format", ("", "geojson")) @pytest.mark.django_db def test__additional_sign_real__detail(geo_format): client = get_api_client() asr = get_additional_sign_real() ascr = get_additional_sign_content_real(parent=asr) operation_1 = add_additional_sign_real_operation( asr, operation_date=datetime.date(2020, 11, 5) ) operation_2 = add_additional_sign_real_operation( asr, operation_date=datetime.date(2020, 11, 15) ) operation_3 = add_additional_sign_real_operation( asr, operation_date=datetime.date(2020, 11, 10) ) response = client.get( reverse("v1:additionalsignreal-detail", kwargs={"pk": asr.pk}), data={"geo_format": geo_format}, ) response_data = response.json() assert response.status_code == status.HTTP_200_OK assert response_data["id"] == str(asr.pk) assert response_data["parent"] == str(asr.parent.pk) assert response_data["content"][0]["id"] == str(ascr.pk) # verify operations are ordered by operation_date operation_ids = [operation["id"] for operation in response_data["operations"]] assert operation_ids == [operation_1.id, operation_3.id, operation_2.id] if geo_format == "geojson": assert response_data["location"] == GeoJsonDict(asr.location.json) else: assert response_data["location"] == asr.location.ewkt @pytest.mark.parametrize("admin_user", (False, True)) @pytest.mark.django_db def test__additional_sign_real__create_without_content(admin_user): """ Test that AdditionalSignReal API endpoint POST request doesn't raise validation errors for missing content data and that the sign is created successfully """ client = get_api_client(user=get_user(admin=admin_user)) traffic_sign_real = get_traffic_sign_real() data = { "parent": traffic_sign_real.pk, "location": str(traffic_sign_real.location), "owner": get_owner().pk, } response = client.post(reverse("v1:additionalsignreal-list"), data=data) response_data = response.json() if admin_user: assert response.status_code == status.HTTP_201_CREATED assert AdditionalSignReal.objects.count() == 1 assert AdditionalSignContentReal.objects.count() == 0 asr = AdditionalSignReal.objects.first() assert response_data["id"] == str(asr.pk) assert response_data["parent"] == str(data["parent"]) assert response_data["owner"] == str(data["owner"]) else: assert response.status_code == status.HTTP_403_FORBIDDEN assert AdditionalSignReal.objects.count() == 0 assert AdditionalSignContentReal.objects.count() == 0 @pytest.mark.parametrize("admin_user", (False, True)) @pytest.mark.django_db def test__additional_sign_real__create_with_content(admin_user): """ Test that AdditionalSignReal API endpoint POST request creates AdditionalSignContent instances successfully """ client = get_api_client(user=get_user(admin=admin_user)) traffic_sign_real = get_traffic_sign_real() dt = get_traffic_control_device_type() data = { "parent": traffic_sign_real.pk, "location": str(traffic_sign_real.location), "owner": get_owner().pk, "content": [ {"text": "Test content 1", "order": 1, "device_type": str(dt.pk)}, {"text": "Test content 2", "order": 2, "device_type": str(dt.pk)}, ], } response = client.post(reverse("v1:additionalsignreal-list"), data=data) response_data = response.json() if admin_user: assert response.status_code == status.HTTP_201_CREATED assert AdditionalSignReal.objects.count() == 1 asr = AdditionalSignReal.objects.first() assert response_data["id"] == str(asr.pk) assert response_data["parent"] == str(data["parent"]) assert response_data["owner"] == str(data["owner"]) assert AdditionalSignContentReal.objects.count() == 2 ascr_1 = asr.content.order_by("order").first() assert ascr_1.text == "Test content 1" assert ascr_1.order == 1 assert ascr_1.device_type.pk == dt.pk ascr_2 = asr.content.order_by("order").last() assert ascr_2.text == "Test content 2" assert ascr_2.order == 2 assert ascr_2.device_type.pk == dt.pk else: assert response.status_code == status.HTTP_403_FORBIDDEN assert AdditionalSignReal.objects.count() == 0 assert AdditionalSignContentReal.objects.count() == 0 @pytest.mark.parametrize("admin_user", (False, True)) @pytest.mark.django_db def test__additional_sign_real__create_with_content_id(admin_user): """ Test that AdditionalSignReal API endpoint POST request raises an error if any of the content instances have a id defined. Pre-existing content instances can not be assigned for newly created additional signs. """ client = get_api_client(user=get_user(admin=admin_user)) traffic_sign_real = get_traffic_sign_real() dt = get_traffic_control_device_type() ascr = get_additional_sign_content_real(device_type=dt) data = { "parent": traffic_sign_real.pk, "location": str(traffic_sign_real.location), "owner": get_owner().pk, "content": [ { "id": str(ascr.pk), "text": "Test content", "order": 1, "device_type": str(dt.pk), } ], } response = client.post(reverse("v1:additionalsignreal-list"), data=data) response_data = response.json() asr = AdditionalSignReal.objects.exclude(pk=ascr.parent.pk).first() if admin_user: assert response.status_code == status.HTTP_400_BAD_REQUEST assert response_data == { "content": [ { "id": [ ( "Creating new additional sign with pre-existing " "content instance is not allowed. Content objects " 'must not have "id" defined.' ) ] } ] } else: assert response.status_code == status.HTTP_403_FORBIDDEN assert not asr assert AdditionalSignContentReal.objects.count() == 1 @pytest.mark.parametrize("admin_user", (False, True)) @pytest.mark.django_db def test__additional_sign_real__create_with_incomplete_data(admin_user): """ Test that AdditionalSignReal API endpoint POST request raises validation error correctly if required data is missing. """ client = get_api_client(user=get_user(admin=admin_user)) traffic_sign_real = get_traffic_sign_real() data = { "parent": traffic_sign_real.pk, "location": str(traffic_sign_real.location), "owner": get_owner().pk, "content": [{"text": "Test content", "order": 1}], } response = client.post(reverse("v1:additionalsignreal-list"), data=data) response_data = response.json() if admin_user: assert response.status_code == status.HTTP_400_BAD_REQUEST assert response_data == { "content": [{"device_type": [_("This field is required.")]}] } else: assert response.status_code == status.HTTP_403_FORBIDDEN assert AdditionalSignReal.objects.count() == 0 assert AdditionalSignContentReal.objects.count() == 0 @pytest.mark.parametrize("admin_user", (False, True)) @pytest.mark.django_db def test__additional_sign_real__update_without_content(admin_user): """ Test that AdditionalSignReal API endpoint PUT request update is successful when content is not defined. Old content should be deleted. """ client = get_api_client(user=get_user(admin=admin_user)) dt = get_traffic_control_device_type(code="A1234") asr = get_additional_sign_real() get_additional_sign_content_real(parent=asr) traffic_sign_real = get_traffic_sign_real(device_type=dt) data = { "parent": traffic_sign_real.pk, "location": str(traffic_sign_real.location), "owner": get_owner(name_en="New owner").pk, } assert AdditionalSignContentReal.objects.count() == 1 response = client.put( reverse("v1:additionalsignreal-detail", kwargs={"pk": asr.pk}), data=data ) response_data = response.json() if admin_user: assert response.status_code == status.HTTP_200_OK assert response_data["id"] == str(asr.pk) assert response_data["owner"] == str(data["owner"]) assert AdditionalSignContentReal.objects.count() == 0 else: assert response.status_code == status.HTTP_403_FORBIDDEN assert asr.owner != data["owner"] assert AdditionalSignContentReal.objects.count() == 1 @pytest.mark.parametrize("admin_user", (False, True)) @pytest.mark.django_db def test__additional_sign_real__update_with_content(admin_user): """ Test that AdditionalSignReal API endpoint PUT request replaces AdditionalSignContentReal instances when content does not have id defined. A new content instance should be created. """ client = get_api_client(user=get_user(admin=admin_user)) dt = get_traffic_control_device_type(code="A1234") asr = get_additional_sign_real() original_ascr = get_additional_sign_content_real(parent=asr) traffic_sign_real = get_traffic_sign_real(device_type=dt) data = { "parent": traffic_sign_real.pk, "location": str(traffic_sign_real.location), "owner": get_owner().pk, "content": [{"text": "New content", "order": 123, "device_type": str(dt.pk)}], } response = client.put( reverse("v1:additionalsignreal-detail", kwargs={"pk": asr.pk}), data=data ) response_data = response.json() asr.refresh_from_db() if admin_user: assert response.status_code == status.HTTP_200_OK assert response_data["id"] == str(asr.pk) assert response_data["owner"] == str(data["owner"]) new_ascr = asr.content.first() content = response_data["content"][0] assert content["id"] == str(new_ascr.pk) assert content["text"] == "New content" assert content["order"] == 123 assert not AdditionalSignContentReal.objects.filter( pk=original_ascr.pk ).exists() else: assert response.status_code == status.HTTP_403_FORBIDDEN assert asr.owner != data["owner"] assert asr.content.count() == 1 original_ascr.refresh_from_db() assert original_ascr.parent == asr @pytest.mark.parametrize("admin_user", (False, True)) @pytest.mark.django_db def test__additional_sign_real__update_with_content_id(admin_user): """ Test that AdditionalSignReal API endpoint PUT request updates AdditionalSignContent instances successfully when id is defined. """ client = get_api_client(user=get_user(admin=admin_user)) dt = get_traffic_control_device_type(code="A1234") asr = get_additional_sign_real() ascr = get_additional_sign_content_real(parent=asr) traffic_sign_real = get_traffic_sign_real(device_type=dt) data = { "parent": traffic_sign_real.pk, "location": str(traffic_sign_real.location), "owner": get_owner().pk, "content": [ { "id": str(ascr.pk), "text": "Updated content", "order": 100, "device_type": str(dt.pk), } ], } response = client.put( reverse("v1:additionalsignreal-detail", kwargs={"pk": asr.pk}), data=data ) response_data = response.json() asr.refresh_from_db() ascr.refresh_from_db() if admin_user: assert response.status_code == status.HTTP_200_OK assert response_data["id"] == str(asr.pk) assert response_data["owner"] == str(data["owner"]) content = response_data["content"][0] assert content["id"] == str(ascr.pk) assert content["text"] == "Updated content" assert content["order"] == 100 else: assert response.status_code == status.HTTP_403_FORBIDDEN assert asr.owner != data["owner"] assert ascr.text != "Updated text" @pytest.mark.parametrize("admin_user", (False, True)) @pytest.mark.django_db def test__additional_sign_real__update_with_unrelated_content_id(admin_user): """ Test that AdditionalSignReal API endpoint PUT request raises validation error if content is not related to the parent AdditionalSignReal. """ client = get_api_client(user=get_user(admin=admin_user)) dt = get_traffic_control_device_type(code="A1234") asr = get_additional_sign_real() ascr = get_additional_sign_content_real( parent=get_additional_sign_real(location=test_point_2_3d) ) traffic_sign_real = get_traffic_sign_real(device_type=dt) data = { "parent": traffic_sign_real.pk, "location": str(traffic_sign_real.location), "owner": get_owner().pk, "content": [ { "id": str(ascr.pk), "text": "Updated content", "order": 100, "device_type": str(dt.pk), } ], } response = client.put( reverse("v1:additionalsignreal-detail", kwargs={"pk": asr.pk}), data=data ) response_data = response.json() asr.refresh_from_db() ascr.refresh_from_db() if admin_user: assert response.status_code == status.HTTP_400_BAD_REQUEST assert response_data == { "content": [ { "id": [ ( "Updating content instances that do not belong to " "this additional sign is not allowed." ) ] } ] } assert ascr.parent != asr else: assert response.status_code == status.HTTP_403_FORBIDDEN assert asr.owner != data["owner"] assert ascr.text != "Updated text" @pytest.mark.parametrize("admin_user", (False, True)) @pytest.mark.django_db def test__additional_sign_real__partial_update_without_content(admin_user): """ Test that AdditionalSignReal API endpoint PATCH request update is successful when content is not defined. Old content should not be deleted. """ client = get_api_client(user=get_user(admin=admin_user)) dt = get_traffic_control_device_type(code="A1234") asr = get_additional_sign_real() get_additional_sign_content_real(parent=asr) traffic_sign_real = get_traffic_sign_real(device_type=dt) data = { "parent": traffic_sign_real.pk, "location": str(traffic_sign_real.location), "owner": get_owner(name_en="New owner").pk, } assert AdditionalSignContentReal.objects.count() == 1 response = client.patch( reverse("v1:additionalsignreal-detail", kwargs={"pk": asr.pk}), data=data ) response_data = response.json() asr.refresh_from_db() assert AdditionalSignContentReal.objects.count() == 1 assert asr.content.exists() if admin_user: assert response.status_code == status.HTTP_200_OK assert response_data["id"] == str(asr.pk) assert response_data["owner"] == str(data["owner"]) else: assert response.status_code == status.HTTP_403_FORBIDDEN assert asr.owner != data["owner"] assert AdditionalSignContentReal.objects.count() == 1 @pytest.mark.parametrize("admin_user", (False, True)) @pytest.mark.django_db def test__additional_sign_real__partial_update_with_content(admin_user): """ Test that AdditionalSignReal API endpoint PATCH request replaces AdditionalSignContentReal instances when content does not have id defined. A new content instance should be created. """ client = get_api_client(user=get_user(admin=admin_user)) dt = get_traffic_control_device_type(code="A1234") asr = get_additional_sign_real() original_ascr = get_additional_sign_content_real(parent=asr) traffic_sign_real = get_traffic_sign_real(device_type=dt) data = { "parent": traffic_sign_real.pk, "location": str(traffic_sign_real.location), "owner": get_owner().pk, "content": [{"text": "New content", "order": 123, "device_type": str(dt.pk)}], } response = client.patch( reverse("v1:additionalsignreal-detail", kwargs={"pk": asr.pk}), data=data ) response_data = response.json() asr.refresh_from_db() if admin_user: assert response.status_code == status.HTTP_200_OK assert response_data["id"] == str(asr.pk) assert response_data["owner"] == str(data["owner"]) new_ascr = asr.content.first() content = response_data["content"][0] assert content["id"] == str(new_ascr.pk) assert content["text"] == "New content" assert content["order"] == 123 assert not AdditionalSignContentReal.objects.filter( pk=original_ascr.pk ).exists() else: assert response.status_code == status.HTTP_403_FORBIDDEN assert asr.owner != data["owner"] assert asr.content.count() == 1 original_ascr.refresh_from_db() assert original_ascr.parent == asr @pytest.mark.parametrize("admin_user", (False, True)) @pytest.mark.django_db def test__additional_sign_real__partial_update_with_content_id(admin_user): """ Test that AdditionalSignReal API endpoint PATCH request updates AdditionalSignContent instances successfully when id is defined. """ client = get_api_client(user=get_user(admin=admin_user)) dt = get_traffic_control_device_type(code="A1234") asr = get_additional_sign_real() ascr = get_additional_sign_content_real(parent=asr) traffic_sign_real = get_traffic_sign_real(device_type=dt) data = { "parent": traffic_sign_real.pk, "location": str(traffic_sign_real.location), "owner": get_owner().pk, "content": [ { "id": str(ascr.pk), "text": "Updated content", "order": 100, "device_type": str(dt.pk), } ], } response = client.patch( reverse("v1:additionalsignreal-detail", kwargs={"pk": asr.pk}), data=data ) response_data = response.json() asr.refresh_from_db() ascr.refresh_from_db() if admin_user: assert response.status_code == status.HTTP_200_OK assert response_data["id"] == str(asr.pk) assert response_data["owner"] == str(data["owner"]) content = response_data["content"][0] assert content["id"] == str(ascr.pk) assert content["text"] == "Updated content" assert content["order"] == 100 else: assert response.status_code == status.HTTP_403_FORBIDDEN assert asr.owner != data["owner"] assert ascr.text != "Updated text" @pytest.mark.parametrize("admin_user", (False, True)) @pytest.mark.django_db def test__additional_sign_real__partial_update_with_unrelated_content_id(admin_user): """ Test that AdditionalSignReal API endpoint PATCH request raises validation error if content is not related to the parent AdditionalSignReal. """ client = get_api_client(user=get_user(admin=admin_user)) dt = get_traffic_control_device_type(code="A1234") asr = get_additional_sign_real() ascr = get_additional_sign_content_real( parent=get_additional_sign_real(location=test_point_2_3d) ) traffic_sign_real = get_traffic_sign_real(device_type=dt) data = { "parent": traffic_sign_real.pk, "location": str(traffic_sign_real.location), "owner": get_owner().pk, "content": [ { "id": str(ascr.pk), "text": "Updated content", "order": 100, "device_type": str(dt.pk), } ], } response = client.patch( reverse("v1:additionalsignreal-detail", kwargs={"pk": asr.pk}), data=data ) response_data = response.json() asr.refresh_from_db() ascr.refresh_from_db() if admin_user: assert response.status_code == status.HTTP_400_BAD_REQUEST assert response_data == { "content": [ { "id": [ ( "Updating content instances that do not belong to " "this additional sign is not allowed." ) ] } ] } assert ascr.parent != asr else: assert response.status_code == status.HTTP_403_FORBIDDEN assert asr.owner != data["owner"] assert ascr.text != "Updated text" @pytest.mark.parametrize("admin_user", (False, True)) @pytest.mark.django_db def test__additional_sign_real__delete(admin_user): user = get_user(admin=admin_user) client = get_api_client(user=user) asr = get_additional_sign_real() response = client.delete( reverse("v1:additionalsignreal-detail", kwargs={"pk": asr.pk}) ) if admin_user: assert response.status_code == status.HTTP_204_NO_CONTENT asr.refresh_from_db() assert not asr.is_active assert asr.deleted_by == user assert asr.deleted_at else: assert response.status_code == status.HTTP_403_FORBIDDEN asr.refresh_from_db() assert asr.is_active assert not asr.deleted_by assert not asr.deleted_at @pytest.mark.django_db def test__additional_sign_real__soft_deleted_get_404_response(): user = get_user() client = get_api_client() asr = get_additional_sign_real() asr.soft_delete(user) response = client.get( reverse("v1:additionalsignreal-detail", kwargs={"pk": asr.pk}) ) assert response.status_code == status.HTTP_404_NOT_FOUND # AdditionalSignContentReal tests # =============================================== @pytest.mark.django_db def test__additional_sign_content_real__list(): client = get_api_client() dt = get_traffic_control_device_type(code="H17.1") for i in range(3): get_additional_sign_content_real(order=i, device_type=dt) response = client.get(reverse("v1:additionalsigncontentreal-list")) response_data = response.json() assert response.status_code == status.HTTP_200_OK assert response_data["count"] == 3 for i in range(3): result = response_data["results"][i] assert result["order"] == i assert result["device_type"] == str(dt.pk) @pytest.mark.django_db def test__additional_sign_content_real__detail(): client = get_api_client() dt = get_traffic_control_device_type(code="H17.1") ascr = get_additional_sign_content_real(device_type=dt) response = client.get( reverse("v1:additionalsigncontentreal-detail", kwargs={"pk": ascr.pk}) ) response_data = response.json() assert response.status_code == status.HTTP_200_OK assert response_data["id"] == str(ascr.pk) assert response_data["parent"] == str(ascr.parent.pk) assert response_data["order"] == 1 assert response_data["text"] == "Content" assert response_data["device_type"] == str(dt.pk) assert response_data["created_by"] == str(ascr.created_by.pk) assert response_data["updated_by"] == str(ascr.updated_by.pk) @pytest.mark.parametrize("admin_user", (False, True)) @pytest.mark.django_db def test__additional_sign_content_real__create(admin_user): client = get_api_client(user=get_user(admin=admin_user)) asr = get_additional_sign_real() dt = get_traffic_control_device_type(code="H17.1") data = { "parent": str(asr.pk), "order": 1, "text": "Content", "device_type": str(dt.pk), } response = client.post(reverse("v1:additionalsigncontentreal-list"), data=data) response_data = response.json() if admin_user: assert response.status_code == status.HTTP_201_CREATED assert AdditionalSignContentReal.objects.count() == 1 assert response_data["id"] == str(AdditionalSignContentReal.objects.first().pk) assert response_data["parent"] == data["parent"] assert response_data["order"] == data["order"] assert response_data["text"] == data["text"] assert response_data["device_type"] == data["device_type"] else: assert response.status_code == status.HTTP_403_FORBIDDEN assert AdditionalSignContentReal.objects.count() == 0 @pytest.mark.parametrize("admin_user", (False, True)) @pytest.mark.django_db def test__additional_sign_content_real__update(admin_user): client = get_api_client(user=get_user(admin=admin_user)) ascr = get_additional_sign_content_real() dt = get_traffic_control_device_type(code="H17.1") data = { "parent": get_additional_sign_real(owner=get_owner(name_fi="New owner")).pk, "text": "Updated content", "order": 100, "device_type": str(dt.pk), } response = client.put( reverse("v1:additionalsigncontentreal-detail", kwargs={"pk": ascr.pk}), data=data, ) response_data = response.json() if admin_user: assert response.status_code == status.HTTP_200_OK assert response_data["id"] == str(ascr.pk) assert response_data["parent"] == str(data["parent"]) assert response_data["text"] == data["text"] assert response_data["order"] == data["order"] assert response_data["device_type"] == str(data["device_type"]) else: assert response.status_code == status.HTTP_403_FORBIDDEN ascr.refresh_from_db() assert ascr.parent.pk != data["parent"] assert ascr.text != data["text"] assert ascr.order != data["order"] assert ascr.device_type.pk != data["device_type"] @pytest.mark.parametrize("admin_user", (False, True)) @pytest.mark.django_db def test__additional_sign_content_real__delete(admin_user): user = get_user(admin=admin_user) client = get_api_client(user=user) ascr = get_additional_sign_content_real() response = client.delete( reverse("v1:additionalsigncontentreal-detail", kwargs={"pk": ascr.pk}) ) if admin_user: assert response.status_code == status.HTTP_204_NO_CONTENT assert not AdditionalSignContentReal.objects.filter(pk=ascr.pk).exists() else: assert response.status_code == status.HTTP_403_FORBIDDEN assert AdditionalSignContentReal.objects.filter(pk=ascr.pk).exists()
from django.contrib import admin from .models import Test, Question, Choice # Register your models here. class ChoiceInline(admin.TabularInline): model = Choice extra = 0 class QuestionAdmin(admin.ModelAdmin): inlines = [ChoiceInline] admin.site.register(Test) admin.site.register(Question, QuestionAdmin) admin.site.register(Choice)
#coding:utf-8 # # id: bugs.core_1315 # title: Data type unknown # decription: # tracker_id: CORE-1315 # min_versions: [] # versions: 2.1 # qmid: bugs.core_1315 import pytest from firebird.qa import db_factory, isql_act, Action # version: 2.1 # resources: None substitutions_1 = [] init_script_1 = """""" db_1 = db_factory(sql_dialect=3, init=init_script_1) # test_script_1 #--- # cur = db_conn.cursor() # try: # statement = cur.prep('select coalesce(?,1) from RDB$DATABASE') # except Exception,e: # print ('Failed!',e) # else: # cur.execute(statement,[2]) # printData(cur) # print() # cur.execute(statement,[None]) # printData(cur) #--- #act_1 = python_act('db_1', test_script_1, substitutions=substitutions_1) expected_stdout_1 = """COALESCE ----------- 2 COALESCE ----------- 1 """ @pytest.mark.version('>=2.1') @pytest.mark.xfail def test_1(db_1): pytest.fail("Test not IMPLEMENTED")
""" Creates the initial galaxy database schema using the settings defined in config/galaxy.ini. This script is also wrapped by create_db.sh. .. note: pass '-c /location/to/your_config.ini' for non-standard ini file locations. .. note: if no database_connection is set in galaxy.ini, the default, sqlite database will be constructed. Using the database_file setting in galaxy.ini will create the file at the settings location (??) .. seealso: galaxy.ini, specifically the settings: database_connection and database file """ import logging import os.path import sys sys.path.insert(1, os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir, 'lib'))) from galaxy.model.migrate.check import create_or_verify_database as create_db from galaxy.model.orm.scripts import get_config from galaxy.model.tool_shed_install.migrate.check import create_or_verify_database as create_install_db from galaxy.webapps.tool_shed.model.migrate.check import create_or_verify_database as create_tool_shed_db logging.basicConfig(level=logging.DEBUG) log = logging.getLogger(__name__) def invoke_create(): config = get_config(sys.argv) if config['database'] == 'galaxy': create_db(config['db_url'], config['config_file']) elif config['database'] == 'tool_shed': create_tool_shed_db(config['db_url']) elif config['database'] == 'install': create_install_db(config['db_url']) if __name__ == "__main__": invoke_create()
import tensorflow as tf from edflow.iterators.model_iterator import PyHookedModelIterator class TFHookedModelIterator(PyHookedModelIterator): def make_feeds(self, batch): feeds = { pl: batch[name] for name, pl in self.model.inputs.items() if name in batch } return feeds def run(self, fetches, feed_dict): get_global_step = fetches.pop("global_step") results = self.session.run(fetches, feed_dict=feed_dict) results["global_step"] = get_global_step() return results def iterate(self, batch_iterator): with self.session.as_default(): super().iterate(batch_iterator) @property def session(self): # session that is initialized the first time it is needed if hasattr(self, "_session"): return self._session sess_config = tf.ConfigProto() if self.config.get("nogpu", False): self.logger.info("Hiding GPUs.") sess_config.device_count["GPU"] = 0 sess_config.gpu_options.allow_growth = self.config.get("gpu_mem_growth", False) gpu_mem_fraction = self.config.get("gpu_mem_fraction", None) if gpu_mem_fraction is not None: self.logger.info("Setting GPU MEM Fraction to {}".format(gpu_mem_fraction)) sess_config.gpu_options.per_process_gpu_memory_fraction = gpu_mem_fraction self._session = tf.Session(config=sess_config) return self._session
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import, print_function, unicode_literals import collections import os import pytest from bustard.template import Template current_dir = os.path.dirname(os.path.abspath(__file__)) template_dir = os.path.join(current_dir, 'templates') def echo(*args, **kwargs): return args, sorted(kwargs.items()) test_data = ( # var ('{{ abc }}', {'abc': 'foobar'}, 'foobar'), ('b{{ abc }}c', {'abc': 'foobar'}, 'bfoobarc'), ('{{ abc }', {'abc': 'foobar'}, '{{ abc }'), # comment ('{# abc #}', {'abc': 'foobar'}, ''), # index ('{{ abc[1] }}', {'abc': [1, 2]}, '2'), # key ('{{ abc["key"] }}', {'abc': {'key': 'eg'}}, 'eg'), # dot ('{{ abc.key }}', {'abc': collections.namedtuple('abc', 'key')('你好')}, '你好'), # func ('{{ echo(1, 2, 3, a=1, b=a) }}', {'echo': echo, 'a': 4}, '((1, 2, 3), [(&apos;a&apos;, 1), (&apos;b&apos;, 4)])'), # if ('{% if abc %}true{% endif %}', {'abc': True}, 'true'), ('{% if "a" in abc %}true{% endif %}', {'abc': 'aa'}, 'true'), ('{% if a in abc %}true{% endif %}', {'a': 'a', 'abc': 'aa'}, 'true'), # if + func ('{% if len(abc) %}true{% endif %}', {'abc': 'abc'}, 'true'), ('{% if len(abc) > 1 %}true{% endif %}', {'abc': 'aa'}, 'true'), # if ... else ... ('{% if abc %}true{% else %}false{% endif %}', {'abc': ''}, 'false'), # if ... elif ... else ('{% if abc == "abc" %}true' + '{% elif abc == "efg" %}{{ abc }}' + '{% else %}false{% endif %}', {'abc': 'efg'}, 'efg'), # for x in y ('{% for item in items %}{{ item }}{% endfor %}', {'items': [1, 2, 3]}, '123'), ('{% for n, item in enumerate(items) %}' + '{{ n }}{{ item }},' + '{% endfor %}', {'items': ['a', 'b', 'c']}, '0a,1b,2c,'), # for + if ('{% for item in items %}' + '{% if item > 2 %}{{ item }}{% endif %}' + '{% endfor %}' + '{{ items[1] }}', {'items': [1, 2, 3, 4]}, '342'), # escape ('<a>{{ title }}</a>', {'title': '<a>'}, '<a>&lt;a&gt;</a>'), # noescape ('<a>{{ noescape(title) }}</a>', {'title': '<a>'}, '<a><a></a>'), ('{{ list(map(lambda x: x * 2, [1, 2, 3])) }}', {}, '[2, 4, 6]'), ('{{ sum(filter(lambda x: x > 2, numbers)) }}', {'numbers': [1, 2, 3, 2, 4]}, '7'), ('{{ noescape(str) }}', {}, "<class 'str'>"), ('{{ noescape(abs) }}', {}, '<built-in function abs>'), ) @pytest.mark.parametrize( ('tpl', 'context', 'result'), test_data ) def test_base(tpl, context, result): assert Template(tpl).render(**context) == result @pytest.mark.parametrize(('tpl', 'context'), [ ('{{ hello }}', {}), ('{{ SystemExit }}', {}), ('{{ __name__ }}', {}), ('{{ __import__ }}', {}), ]) def test_name_error(tpl, context): with pytest.raises(NameError): assert Template(tpl).render(**context) def test_include(): with open(os.path.join(template_dir, 'index.html')) as fp: template = Template(fp.read(), template_dir=template_dir) assert template.render(items=[1, 2, 3]) == ( '<ul>' '<li>1</li>' '<li>2</li>' '<li>3</li>\n' '</ul>\n' ) def test_extends(): with open(os.path.join(template_dir, 'child.html')) as fp: template = Template(fp.read(), template_dir=template_dir) expect = '''<html> <p>hello</p> child_header parent_header <p>world</p> child_footer <ul><li>1</li><li>2</li><li>3</li> </ul> yes <p>!</p> </html> ''' result = template.render(items=[1, 2, 3]) assert result == expect
# -*- coding: utf-8 -*- import json from datetime import datetime import logging from pathlib import Path import click import pandas as pd from .. import paths class AustralianHousingLoader: def __init__(self, sdmx_json): self.sdmx_json = sdmx_json def header(self): obs_codes = self.sdmx_json['structure']['dimensions']['observation'] return [obs_code['name'] for obs_code in obs_codes] + ['Value'] def decode(self): assert len(self.sdmx_json['dataSets']) == 1, 'Only SDMX json with a single dataset is supported, got {}'.format(len(self.sdmx_json['dataSets'])) obs_codes = self.sdmx_json['structure']['dimensions']['observation'] for idx, obs_code in enumerate(obs_codes): if 'keyPosition' in obs_code: assert(idx == int(obs_code['keyPosition'])), 'Observation code at index {} is {}'.format(idx, obs_code) for structured_key, values in self.sdmx_json['dataSets'][0]['observations'].items(): key_parts = structured_key.split(':') assert len(key_parts) == len(obs_codes), 'Expected key of length {}, got {}'.format(len(obs_codes), len(key_parts)) key_parts = [int(k) for k in key_parts] key_parts_decoded = [] for idx, k in enumerate(key_parts): assert k < len(obs_codes[idx]['values']), 'Cannot decode index {}, because {}th value is requested, but there are only {} available'.format(idx, k, len(obs_code[idx]['values'])) if obs_codes[idx]['id'] == 'TIME_PERIOD': # we immediately decode the string to a date sdate = obs_codes[idx]['values'][k]['id'] key_parts_decoded.append(datetime.strptime(sdate, '%Y-%m')) else: # all non-date key parts are decoded using their code in dimensions key_parts_decoded.append(obs_codes[idx]['values'][k]['name']) # we discard all but one of the values as they do not contain information (which we check for safety) assert values[1] == 0 and values[2] is None and values[3] == 0 and values[4] == 0, 'Got unexpected data in values {} at key {}'.format(values, structured_key) yield key_parts_decoded + values[:1] def to_dataframe(self): df = pd.DataFrame(self.decode(), columns=self.header()) df.index = df['Time'] del df['Time'] return df @click.command() @click.option('--input_file', type=click.Path(exists=True), default=paths.manager.raw_data_file, help='Raw sdmx json input file') @click.option('--output_file', type=click.Path(), default=paths.manager.interim_data_file, help='Output file for decoded data') def extract_dataframe(input_file, output_file): """Decode raw json file and convert to dataframe. Output is saved in data/interim. """ logger = logging.getLogger(__name__) logger.info('loading data') with open(input_file) as f: sdmx_json = json.load(f) logger.info('creating data frame...') loader = AustralianHousingLoader(sdmx_json) df = loader.to_dataframe() logger.info('decoding and conversion to data frame successful') logger.info('saving data to {}'.format(output_file)) df.to_csv(output_file) logger.info('iterim data saved')
#!flask/bin/python from sbr_ui import app app.run()
#! /usr/bin/python3 # External deps import os, sys # Internal deps os.chdir(sys.path[0]) sys.path.append("..") import df_common as dfc ######################################################################################################################## # HELPERS ######################################################################################################################## def print_qemu_peripheral_counts(): arm_p_cnt = len(dfc.get_all_qemu_strs_by_arch('arm', get_cpus=False, get_devs=True)) arm64_p_cnt = len(dfc.get_all_qemu_strs_by_arch('arm64', get_cpus=False, get_devs=True)) mips_p_cnt = len(dfc.get_all_qemu_strs_by_arch('mips', get_cpus=False, get_devs=True)) ppc_p_cnt = len(dfc.get_all_qemu_strs_by_arch('ppc', get_cpus=False, get_devs=True)) print("ARM: {}".format(arm_p_cnt)) print("ARM64: {}".format(arm64_p_cnt)) print("MIPS: {}".format(mips_p_cnt)) print("PPC: {}".format(ppc_p_cnt)) print("Total: {}".format(arm_p_cnt + arm64_p_cnt + mips_p_cnt + ppc_p_cnt)) if __name__ == "__main__": print_qemu_peripheral_counts()
from ._base_optimizer import _BaseOptimizer import numpy as np class SGD(_BaseOptimizer): def __init__(self, learning_rate=1e-4, reg=1e-3): super().__init__(learning_rate, reg) def update(self, model): ''' Update model weights based on gradients :param model: The model to be updated :param gradient: The Gradient computed in forward step :return: None, but the model weights should be updated ''' self.apply_regularization(model) ############################################################################# # TODO: # # 1) Update model weights based on the learning rate and gradients # ############################################################################# #upadta of weights depending on learning rate for wi in model.weights: model.weights[wi]-=self.learning_rate*model.gradients[wi] ############################################################################# # END OF YOUR CODE # #############################################################################
# coding: utf8 """ weasyprint.text --------------- Interface with Pango to decide where to do line breaks and to draw text. :copyright: Copyright 2011-2014 Simon Sapin and contributors, see AUTHORS. :license: BSD, see LICENSE for details. """ from __future__ import division # XXX No unicode_literals, cffi likes native strings import pyphen import cffi import cairocffi as cairo from .compat import basestring ffi = cffi.FFI() ffi.cdef(''' typedef enum { PANGO_STYLE_NORMAL, PANGO_STYLE_OBLIQUE, PANGO_STYLE_ITALIC } PangoStyle; typedef enum { PANGO_WEIGHT_THIN = 100, PANGO_WEIGHT_ULTRALIGHT = 200, PANGO_WEIGHT_LIGHT = 300, PANGO_WEIGHT_BOOK = 380, PANGO_WEIGHT_NORMAL = 400, PANGO_WEIGHT_MEDIUM = 500, PANGO_WEIGHT_SEMIBOLD = 600, PANGO_WEIGHT_BOLD = 700, PANGO_WEIGHT_ULTRABOLD = 800, PANGO_WEIGHT_HEAVY = 900, PANGO_WEIGHT_ULTRAHEAVY = 1000 } PangoWeight; typedef enum { PANGO_VARIANT_NORMAL, PANGO_VARIANT_SMALL_CAPS } PangoVariant; typedef enum { PANGO_STRETCH_ULTRA_CONDENSED, PANGO_STRETCH_EXTRA_CONDENSED, PANGO_STRETCH_CONDENSED, PANGO_STRETCH_SEMI_CONDENSED, PANGO_STRETCH_NORMAL, PANGO_STRETCH_SEMI_EXPANDED, PANGO_STRETCH_EXPANDED, PANGO_STRETCH_EXTRA_EXPANDED, PANGO_STRETCH_ULTRA_EXPANDED } PangoStretch; typedef enum { PANGO_WRAP_WORD, PANGO_WRAP_CHAR, PANGO_WRAP_WORD_CHAR } PangoWrapMode; typedef unsigned int guint; typedef int gint; typedef gint gboolean; typedef void* gpointer; typedef ... cairo_t; typedef ... PangoLayout; typedef ... PangoContext; typedef ... PangoFontMetrics; typedef ... PangoLanguage; typedef ... PangoFontDescription; typedef ... PangoLayoutIter; typedef ... PangoAttrList; typedef ... PangoAttrClass; typedef struct { const PangoAttrClass *klass; guint start_index; guint end_index; } PangoAttribute; typedef struct { PangoLayout *layout; gint start_index; gint length; /* ... */ } PangoLayoutLine; double pango_units_to_double (int i); int pango_units_from_double (double d); void g_object_unref (gpointer object); void g_type_init (void); PangoLayout * pango_cairo_create_layout (cairo_t *cr); void pango_layout_set_width (PangoLayout *layout, int width); void pango_layout_set_attributes( PangoLayout *layout, PangoAttrList *attrs); void pango_layout_set_text ( PangoLayout *layout, const char *text, int length); void pango_layout_set_font_description ( PangoLayout *layout, const PangoFontDescription *desc); void pango_layout_set_wrap ( PangoLayout *layout, PangoWrapMode wrap); PangoFontDescription * pango_font_description_new (void); void pango_font_description_free (PangoFontDescription *desc); void pango_font_description_set_family ( PangoFontDescription *desc, const char *family); void pango_font_description_set_variant ( PangoFontDescription *desc, PangoVariant variant); void pango_font_description_set_style ( PangoFontDescription *desc, PangoStyle style); void pango_font_description_set_stretch ( PangoFontDescription *desc, PangoStretch stretch); void pango_font_description_set_weight ( PangoFontDescription *desc, PangoWeight weight); void pango_font_description_set_absolute_size ( PangoFontDescription *desc, double size); PangoAttrList * pango_attr_list_new (void); void pango_attr_list_unref (PangoAttrList *list); void pango_attr_list_insert ( PangoAttrList *list, PangoAttribute *attr); PangoAttribute * pango_attr_letter_spacing_new (int letter_spacing); void pango_attribute_destroy (PangoAttribute *attr); PangoLayoutIter * pango_layout_get_iter (PangoLayout *layout); void pango_layout_iter_free (PangoLayoutIter *iter); gboolean pango_layout_iter_next_line (PangoLayoutIter *iter); PangoLayoutLine * pango_layout_iter_get_line_readonly ( PangoLayoutIter *iter); int pango_layout_iter_get_baseline (PangoLayoutIter *iter); typedef struct { int x; int y; int width; int height; } PangoRectangle; void pango_layout_line_get_extents ( PangoLayoutLine *line, PangoRectangle *ink_rect, PangoRectangle *logical_rect); PangoContext * pango_layout_get_context (PangoLayout *layout); PangoFontMetrics * pango_context_get_metrics ( PangoContext *context, const PangoFontDescription *desc, PangoLanguage *language); void pango_font_metrics_unref (PangoFontMetrics *metrics); int pango_font_metrics_get_ascent (PangoFontMetrics *metrics); int pango_font_metrics_get_descent (PangoFontMetrics *metrics); int pango_font_metrics_get_approximate_char_width (PangoFontMetrics *metrics); int pango_font_metrics_get_approximate_digit_width (PangoFontMetrics *metrics); int pango_font_metrics_get_underline_thickness (PangoFontMetrics *metrics); int pango_font_metrics_get_underline_position (PangoFontMetrics *metrics); int pango_font_metrics_get_strikethrough_thickness (PangoFontMetrics *metrics); int pango_font_metrics_get_strikethrough_position (PangoFontMetrics *metrics); void pango_cairo_update_layout (cairo_t *cr, PangoLayout *layout); void pango_cairo_show_layout_line (cairo_t *cr, PangoLayoutLine *line); ''') def dlopen(ffi, *names): """Try various names for the same library, for different platforms.""" for name in names: try: return ffi.dlopen(name) except OSError: pass # Re-raise the exception. return ffi.dlopen(names[0]) # pragma: no cover gobject = dlopen(ffi, 'gobject-2.0', 'libgobject-2.0-0', 'libgobject-2.0.so', 'libgobject-2.0.dylib') pango = dlopen(ffi, 'pango-1.0', 'libpango-1.0-0', 'libpango-1.0.so', 'libpango-1.0.dylib') pangocairo = dlopen(ffi, 'pangocairo-1.0', 'libpangocairo-1.0-0', 'libpangocairo-1.0.so', 'libpangocairo-1.0.dylib') gobject.g_type_init() units_to_double = pango.pango_units_to_double units_from_double = pango.pango_units_from_double PYPHEN_DICTIONARY_CACHE = {} PANGO_STYLE = { 'normal': pango.PANGO_STYLE_NORMAL, 'oblique': pango.PANGO_STYLE_OBLIQUE, 'italic': pango.PANGO_STYLE_ITALIC, } PANGO_VARIANT = { 'normal': pango.PANGO_VARIANT_NORMAL, 'small-caps': pango.PANGO_VARIANT_SMALL_CAPS, } PANGO_STRETCH = { 'ultra-condensed': pango.PANGO_STRETCH_ULTRA_CONDENSED, 'extra-condensed': pango.PANGO_STRETCH_EXTRA_CONDENSED, 'condensed': pango.PANGO_STRETCH_CONDENSED, 'semi-condensed': pango.PANGO_STRETCH_SEMI_CONDENSED, 'normal': pango.PANGO_STRETCH_NORMAL, 'semi-expanded': pango.PANGO_STRETCH_SEMI_EXPANDED, 'expanded': pango.PANGO_STRETCH_EXPANDED, 'extra-expanded': pango.PANGO_STRETCH_EXTRA_EXPANDED, 'ultra-expanded': pango.PANGO_STRETCH_ULTRA_EXPANDED, } PANGO_WRAP_MODE = { 'WRAP_WORD': pango.PANGO_WRAP_WORD, 'WRAP_CHAR': pango.PANGO_WRAP_CHAR, 'WRAP_WORD_CHAR': pango.PANGO_WRAP_WORD_CHAR } def utf8_slice(string, slice_): return string.encode('utf-8')[slice_].decode('utf-8') def unicode_to_char_p(string): """Return ``(pointer, bytestring)``. The byte string must live at least as long as the pointer is used. """ bytestring = string.encode('utf8').replace(b'\x00', b'') return ffi.new('char[]', bytestring), bytestring def get_size(line): logical_extents = ffi.new('PangoRectangle *') pango.pango_layout_line_get_extents(line, ffi.NULL, logical_extents) return (units_to_double(logical_extents.width), units_to_double(logical_extents.height)) def get_ink_position(line): ink_extents = ffi.new('PangoRectangle *') pango.pango_layout_line_get_extents(line, ink_extents, ffi.NULL) return (units_to_double(ink_extents.x), units_to_double(ink_extents.y)) def first_line_metrics(first_line, text, layout, resume_at, hyphenated=False): length = first_line.length if not hyphenated: first_line_text = utf8_slice(text, slice(length)) if first_line_text.endswith(' ') and resume_at: # Remove trailing spaces layout.set_text(first_line_text.rstrip(' ')) first_line = next(layout.iter_lines(), None) length = first_line.length if first_line is not None else 0 width, height = get_size(first_line) baseline = units_to_double(pango.pango_layout_iter_get_baseline(ffi.gc( pango.pango_layout_get_iter(layout.layout), pango.pango_layout_iter_free))) return layout, length, resume_at, width, height, baseline class Layout(object): """Object holding PangoLayout-related cdata pointers.""" def __init__(self, hinting, font_size, style): self.dummy_context = ( cairo.Context(cairo.ImageSurface(cairo.FORMAT_ARGB32, 1, 1)) if hinting else cairo.Context(cairo.PDFSurface(None, 1, 1))) self.layout = ffi.gc( pangocairo.pango_cairo_create_layout(ffi.cast( 'cairo_t *', self.dummy_context._pointer)), gobject.g_object_unref) self.font = font = ffi.gc( pango.pango_font_description_new(), pango.pango_font_description_free) assert not isinstance(style.font_family, basestring), ( 'font_family should be a list') family_p, family = unicode_to_char_p(','.join(style.font_family)) pango.pango_font_description_set_family(font, family_p) pango.pango_font_description_set_variant( font, PANGO_VARIANT[style.font_variant]) pango.pango_font_description_set_style( font, PANGO_STYLE[style.font_style]) pango.pango_font_description_set_stretch( font, PANGO_STRETCH[style.font_stretch]) pango.pango_font_description_set_weight(font, style.font_weight) pango.pango_font_description_set_absolute_size( font, units_from_double(font_size)) pango.pango_layout_set_font_description(self.layout, font) def iter_lines(self): layout_iter = ffi.gc( pango.pango_layout_get_iter(self.layout), pango.pango_layout_iter_free) while 1: yield pango.pango_layout_iter_get_line_readonly(layout_iter) if not pango.pango_layout_iter_next_line(layout_iter): return def set_text(self, text): text, bytestring = unicode_to_char_p(text) self.text = text self.text_bytes = bytestring pango.pango_layout_set_text(self.layout, text, -1) def get_font_metrics(self): context = pango.pango_layout_get_context(self.layout) return FontMetrics(context, self.font) def set_wrap(self, wrap_mode): pango.pango_layout_set_wrap(self.layout, wrap_mode) class FontMetrics(object): def __init__(self, context, font): self.metrics = ffi.gc( pango.pango_context_get_metrics(context, font, ffi.NULL), pango.pango_font_metrics_unref) def __dir__(self): return ['ascent', 'descent', 'approximate_char_width', 'approximate_digit_width', 'underline_thickness', 'underline_position', 'strikethrough_thickness', 'strikethrough_position'] def __getattr__(self, key): if key in dir(self): return units_to_double( getattr(pango, 'pango_font_metrics_get_' + key)(self.metrics)) def create_layout(text, style, hinting, max_width): """Return an opaque Pango layout with default Pango line-breaks. :param text: Unicode :param style: a :class:`StyleDict` of computed values :param hinting: whether to enable text hinting or not :param max_width: The maximum available width in the same unit as ``style.font_size``, or ``None`` for unlimited width. """ layout = Layout(hinting, style.font_size, style) layout.set_text(text) # Make sure that max_width * Pango.SCALE == max_width * 1024 fits in a # signed integer. Treat bigger values same as None: unconstrained width. if max_width is not None and max_width < 2 ** 21: pango.pango_layout_set_width( layout.layout, units_from_double(max_width)) word_spacing = style.word_spacing letter_spacing = style.letter_spacing if letter_spacing == 'normal': letter_spacing = 0 if text and (word_spacing != 0 or letter_spacing != 0): letter_spacing = units_from_double(letter_spacing) space_spacing = units_from_double(word_spacing) + letter_spacing attr_list = pango.pango_attr_list_new() def add_attr(start, end, spacing): attr = pango.pango_attr_letter_spacing_new(spacing) attr.start_index = start attr.end_index = end pango.pango_attr_list_insert(attr_list, attr) text_bytes = layout.text_bytes add_attr(0, len(text_bytes) + 1, letter_spacing) position = text_bytes.find(b' ') while position != -1: add_attr(position, position + 1, space_spacing) position = text_bytes.find(b' ', position + 1) pango.pango_layout_set_attributes(layout.layout, attr_list) pango.pango_attr_list_unref(attr_list) return layout def split_first_line(text, style, hinting, max_width, line_width): """Fit as much as possible in the available width for one line of text. Return ``(layout, length, resume_at, width, height, baseline)``. ``layout``: a pango Layout with the first line ``length``: length in UTF-8 bytes of the first line ``resume_at``: The number of UTF-8 bytes to skip for the next line. May be ``None`` if the whole text fits in one line. This may be greater than ``length`` in case of preserved newline characters. ``width``: width in pixels of the first line ``height``: height in pixels of the first line ``baseline``: baseline in pixels of the first line """ # In some cases (shrink-to-fit result being the preferred width) # this value is coming from Pango itself, # but floating point errors have accumulated: # width2 = (width + X) - X # in some cases, width2 < width # Increase the value a bit to compensate and not introduce # an unexpected line break. if max_width is not None: max_width += style.font_size * 0.2 # Step #1: Get a draft layout with the first line layout = None if max_width: expected_length = int(max_width / style.font_size * 2.5) if expected_length < len(text): # Try to use a small amount of text instead of the whole text layout = create_layout( text[:expected_length], style, hinting, max_width) lines = layout.iter_lines() first_line = next(lines, None) second_line = next(lines, None) if second_line is None: # The small amount of text fits in one line, give up and use # the whole text layout = None if layout is None: layout = create_layout(text, style, hinting, max_width) lines = layout.iter_lines() first_line = next(lines, None) second_line = next(lines, None) resume_at = None if second_line is None else second_line.start_index # Step #2: Don't hyphenize when it's not needed if max_width is None: # The first line can take all the place needed return first_line_metrics(first_line, text, layout, resume_at) first_line_width, _height = get_size(first_line) if second_line is None and first_line_width <= max_width: # The first line fits in the available width return first_line_metrics(first_line, text, layout, resume_at) # Step #3: Try to put the first word of the second line on the first line if first_line_width <= max_width: # The first line may have been cut too early by Pango second_line_index = second_line.start_index first_part = utf8_slice(text, slice(second_line_index)) second_part = utf8_slice(text, slice(second_line_index, None)) else: # The first word is longer than the line, try to hyphenize it first_part = '' second_part = text next_word = second_part.split(' ', 1)[0] if not next_word: # We did not find a word on the next line return first_line_metrics(first_line, text, layout, resume_at) # next_word might fit without a space afterwards. # Pango previously counted that space’s advance width. new_first_line = first_part + next_word layout.set_text(new_first_line) lines = layout.iter_lines() first_line = next(lines, None) second_line = next(lines, None) first_line_width, _height = get_size(first_line) if second_line is None and first_line_width <= max_width: # The next word fits in the first line, keep the layout resume_at = len(new_first_line.encode('utf-8')) + 1 return first_line_metrics(first_line, text, layout, resume_at) # Step #4: Try to hyphenize hyphens = style.hyphens lang = style.lang and pyphen.language_fallback(style.lang) total, left, right = style.hyphenate_limit_chars hyphenated = False # Automatic hyphenation possible and next word is long enough if hyphens not in ('none', 'manual') and lang and len(next_word) >= total: first_line_width, _height = get_size(first_line) space = max_width - first_line_width if style.hyphenate_limit_zone.unit == '%': limit_zone = max_width * style.hyphenate_limit_zone.value / 100. else: limit_zone = style.hyphenate_limit_zone.value if space > limit_zone or space < 0: # The next word does not fit, try hyphenation dictionary_key = (lang, left, right, total) dictionary = PYPHEN_DICTIONARY_CACHE.get(dictionary_key) if dictionary is None: dictionary = pyphen.Pyphen(lang=lang, left=left, right=right) PYPHEN_DICTIONARY_CACHE[dictionary_key] = dictionary for first_word_part, _ in dictionary.iterate(next_word): new_first_line = ( first_part + first_word_part + style.hyphenate_character) temp_layout = create_layout( new_first_line, style, hinting, max_width) temp_lines = temp_layout.iter_lines() temp_first_line = next(temp_lines, None) temp_second_line = next(temp_lines, None) if (temp_second_line is None and space >= 0) or space < 0: hyphenated = True # TODO: find why there's no need to .encode resume_at = len(first_part + first_word_part) layout = temp_layout first_line = temp_first_line second_line = temp_second_line temp_first_line_width, _height = get_size(temp_first_line) if temp_first_line_width <= max_width: break # Step 5: Try to break word if it's too long for the line overflow_wrap = style.overflow_wrap first_line_width, _height = get_size(first_line) space = max_width - first_line_width # If we can break words and the first line is too long if overflow_wrap == 'break-word' and space < 0: if hyphenated: # Is it really OK to remove hyphenation for word-break ? new_first_line = new_first_line.rstrip( new_first_line[-(len(style.hyphenate_character)):]) if second_line is not None: second_line_index = second_line.start_index second_part = utf8_slice(text, slice(second_line_index, None)) new_first_line += second_part hyphenated = False # TODO: Modify code to preserve W3C condition: # "Shaping characters are still shaped as if the word were not broken" # The way new lines are processed in this function (one by one with no # memory of the last) prevents shaping characters (arabic, for # instance) from keeping their shape when wrapped on the next line with # pango layout. Maybe insert Unicode shaping characters in text ? temp_layout = create_layout(new_first_line, style, hinting, max_width) temp_layout.set_wrap(PANGO_WRAP_MODE['WRAP_WORD_CHAR']) temp_lines = temp_layout.iter_lines() temp_first_line = next(temp_lines, None) temp_second_line = next(temp_lines, None) temp_second_line_index = ( len(new_first_line) if temp_second_line is None else temp_second_line.start_index) resume_at = temp_second_line_index first_part = utf8_slice(text, slice(temp_second_line_index)) layout = create_layout(first_part, style, hinting, max_width) lines = layout.iter_lines() first_line = next(lines, None) return first_line_metrics(first_line, text, layout, resume_at, hyphenated) def line_widths(text, style, enable_hinting, width): """Return the width for each line.""" layout = create_layout(text, style, enable_hinting, width) for line in layout.iter_lines(): width, _height = get_size(line) yield width def show_first_line(context, pango_layout, hinting): """Draw the given ``line`` to the Cairo ``context``.""" context = ffi.cast('cairo_t *', context._pointer) if hinting: pangocairo.pango_cairo_update_layout(context, pango_layout.layout) pangocairo.pango_cairo_show_layout_line( context, next(pango_layout.iter_lines()))
# -*- coding: utf-8 -*- # Implementation of Densely Connected Convolutional Networks (CVPR 2017) # https://arxiv.org/abs/1608.06993 import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from collections import OrderedDict import os class DenseCompositionFunction(nn.Module): def __init__(self,in_channels,growth_rate,bottle_neck = True): super(DenseCompositionFunction,self).__init__() bn_size = 4 self.bottle_neck = bottle_neck if self.bottle_neck: self.bn_1 = nn.BatchNorm2d(in_channels) self.conv_1 = nn.Conv2d(in_channels=in_channels,kernel_size=[1,1], out_channels=bn_size*growth_rate,stride=[1,1],padding=0,bias = False) self.bn_2 = nn.BatchNorm2d(bn_size*growth_rate) self.conv_2 = nn.Conv2d(in_channels=bn_size*growth_rate,kernel_size=[3,3], out_channels=growth_rate,stride=[1,1],padding=1,bias = False) else: self.bn_1 = nn.BatchNorm2d(in_channels) self.conv_1 = nn.Conv2d(in_channels=in_channels,kernel_size=[3,3], out_channels=growth_rate,stride=[1,1],padding=1,bias = False) def forward(self,x_input): out = self.conv_1(F.relu(self.bn_1(x_input))) if self.bottle_neck == True: out = self.conv_2(F.relu(self.bn_2(out))) out = torch.cat((x_input,out),1) return out class DenseBlock(nn.Module): def __init__(self,num_layers,in_channels,growth_rate,bottle_neck = True): super(DenseBlock,self).__init__() self.layers = nn.ModuleDict() for l in range(num_layers): layer = DenseCompositionFunction(in_channels + l * growth_rate,growth_rate,bottle_neck) self.layers['denselayer%d' % (l + 1)] = layer def forward(self, init_features): feature_maps = init_features for name, layer in self.layers.items(): new_features = layer(feature_maps) feature_maps = new_features return feature_maps class Transition_Layer(nn.Module): def __init__(self, num_input_features, num_output_features): super(Transition_Layer, self).__init__() self.bn = nn.BatchNorm2d(num_input_features) self.conv = nn.Conv2d(num_input_features, num_output_features, kernel_size=1, stride=1,padding=0, bias=False) def forward(self, x): out = self.conv(F.relu(self.bn(x))) out = F.avg_pool2d(out, 2) return out class DenseNet(nn.Module): def __init__(self,growth_rate,layers,num_classes,channels = 3): super(DenseNet, self).__init__() self.k = growth_rate #Growth Rate self.L = layers #Number of Layers in each Dense block self.compression = 2 #Set to 2 for compression self.bottle_neck = True #Image Dimensions self.channels= channels self.num_classes = num_classes self.num_init_features = int(2*self.k) #First convolution self.features = nn.Sequential(OrderedDict([ ('conv0', nn.Conv2d(self.channels, self.num_init_features, kernel_size=3, stride=1, padding=1, bias=False))])) num_features = self.num_init_features #Note should be 2 times growth rate for i, num_layers in enumerate(self.L): dBlock = DenseBlock(num_layers,num_features,growth_rate,bottle_neck = self.bottle_neck) self.features.add_module('denseblock%d' % (i + 1), dBlock) num_features = num_features + num_layers * growth_rate if i < (len(self.L) - 1): trans = Transition_Layer(num_input_features=num_features, num_output_features= int(num_features // self.compression)) self.features.add_module('transition%d' % (i + 1), trans) num_features = int(num_features // self.compression) self.num_features = num_features # Final batch norm self.features.add_module('norm_Final',nn.BatchNorm2d(self.num_features)) # Linear layer self.classifier = nn.Linear(self.num_features, self.num_classes) def forward(self, x): out = self.features(x) out = F.relu(out) out = torch.squeeze(F.adaptive_avg_pool2d(out, (1, 1))) out_classifier = self.classifier(out) return out,out_classifier def save_models(self,epoch,optimizer_dict,save_dir): if not os.path.exists(save_dir): os.makedirs(save_dir) if optimizer_dict is not None: state = { 'epoch': epoch, 'state_dict': self.state_dict(), 'optimizer': optimizer_dict, } else: state = { 'epoch': epoch, 'state_dict': self.state_dict(), } torch.save(state,save_dir +'/Model' +str(2*np.sum(self.L)+4) + "_{}.model".format(epoch)) print("Check Point Saved")
import json from config.api2_0_config import * from config.amqp import * from on_http_api2_0 import ApiApi as Api from on_http_api2_0 import rest from modules.logger import Log from modules.amqp import AMQPWorker from datetime import datetime from proboscis.asserts import assert_equal from proboscis.asserts import assert_false from proboscis.asserts import assert_raises from proboscis.asserts import assert_not_equal from proboscis.asserts import assert_is_not_none from proboscis.asserts import assert_true from proboscis import SkipTest from proboscis import test from json import dumps, loads import time LOG = Log(__name__) @test(groups=['workflows_api2.tests']) class WorkflowsTests(object): def __init__(self): self.__client = config.api_client self.__task_worker = None self.workflowDict = { "friendlyName": "Shell Commands API 2.0 Hwtest_1", "injectableName": "Graph.post.test.api2", "tasks": [{"taskName": "Task.Trigger.Send.Finish"}] } self.workflowDict2 = { "friendlyName": "Shell Commands API 2.0 Hwtest_2", "injectableName": "Graph.post.test.api2", "tasks": [{"taskName": "Task.Trigger.Send.Finish"}] } @test(groups=['delete_all_active_workflows_api2']) def delete_all_active_workflows(self): """Testing node DELETE:/nodes/identifier/workflows/active""" Api().nodes_get_all() nodes = loads(self.__client.last_response.data) for node in nodes: if node.get('type') == 'compute': id = node.get('id') assert_not_equal(id,None) try: Api().nodes_del_active_workflow_by_id(id) except rest.ApiException as err: LOG.warning(err) @test(groups=['workflows_get_api2'], depends_on_groups=['delete_all_active_workflows_api2']) def test_workflows_get(self): """ Testing GET:/workflows""" Api().workflows_get() assert_equal(200,self.__client.last_response.status) assert_not_equal(0, len(json.loads(self.__client.last_response.data)), message='Active workflows list was empty!') @test(groups=['workflows_post_api2'], depends_on_groups=['delete_all_active_workflows_api2']) def test_workflows_post(self): """Testing POST:/workflows""" Api().workflows_post(body={"name": 'Graph.noop-example'}) assert_equal(201, self.__client.last_response.status) rawj = json.loads(self.__client.last_response.data) instance_id = rawj.get('instanceId') assert_is_not_none(instance_id) assert_equal('Graph.noop-example', str(rawj['definition'].get('injectableName'))) @test(groups=['workflows_get_id_api2'], depends_on_groups=['workflows_get_api2']) def test_workflows_id_get(self): """ Testing GET:/workflows/identifier""" # Getting the identifier of the first workflow in order to validate the get-id function Api().workflows_get() rawj = json.loads(self.__client.last_response.data) instance_id = rawj[0].get('id') assert_is_not_none(instance_id) Api().workflows_get_by_id(instance_id) assert_equal(200,self.__client.last_response.status) @test(groups=['workflows_get_id_api2'],depends_on_groups=['workflows_get_api2']) def test_negative_workflows_id_get(self): """ Negative Testing GET:/workflows/identifier""" try: Api().workflows_get_by_id("WrongIdentifier") assert_equal(404, self.__client.last_response.status, message='status should be 404. No exception raised') except Exception,e: assert_equal(404,e.status, message = 'status should be 404') @test(groups=['workflows_graphs_get_api2']) def test_workflows_graphs_get(self): """Testing GET:/workflows/graphs""" Api().workflows_get_graphs() assert_equal(200,self.__client.last_response.status) assert_not_equal(0, len(json.loads(self.__client.last_response.data)), message='Workflows list was empty!') @test(groups=['workflows_graphs_put_api2']) def test_workflows_graphs_put(self): """ Testing PUT:/workflows/graphs """ # Make sure there is no workflowTask with the same name Api().workflows_get_graphs_by_name('*') rawj = json.loads(self.__client.last_response.data) for i, var in enumerate(rawj): if self.workflowDict['injectableName'] == str(rawj[i].get('injectableName')): fnameList = str(rawj[i].get('friendlyName')).split('_') suffix = int(fnameList[1]) + 1 self.workflowDict['friendlyName'] = fnameList[0] + '_' + str(suffix) break # Add a workflow task LOG.info ("Adding workflow task : " + str(self.workflowDict)) Api().workflows_put_graphs(body=self.workflowDict) resp = self.__client.last_response assert_equal(201,resp.status) # Validate the content Api().workflows_get_graphs() rawj = json.loads(self.__client.last_response.data) foundInsertedWorkflow = False for i, var in enumerate(rawj): if self.workflowDict['injectableName'] == str(rawj[i].get('injectableName')): foundInsertedWorkflow = True readWorkflowTask = rawj[i] readFriendlyName = readWorkflowTask.get('friendlyName') readInjectableName = readWorkflowTask.get('injectableName') assert_equal(readFriendlyName,self.workflowDict.get('friendlyName')) assert_equal(readInjectableName,self.workflowDict.get('injectableName')) assert_equal(foundInsertedWorkflow, True) @test(groups=['workflows_graphs_get_by_name_api2'], depends_on_groups=['workflows_graphs_put_api2']) def test_workflows_library_id_get(self): """ Testing GET:/workflows/graphs/injectableName""" Api().workflows_get_graphs_by_name(self.workflowDict.get('injectableName')) assert_equal(200,self.__client.last_response.status) rawj = json.loads(self.__client.last_response.data) assert_equal(self.workflowDict.get('friendlyName'), str(rawj[0].get('friendlyName'))) @test(groups=['workflows_graphs_put_by_name_api2'], depends_on_groups=['workflows_graphs_get_by_name_api2']) def test_workflows_graphs_name_put(self): """Testing PUT:/workflows/graphs""" # Test updating a graph Api().workflows_get_graphs_by_name(self.workflowDict.get('injectableName')) rawj = json.loads(self.__client.last_response.data) assert_equal(self.workflowDict.get('friendlyName'), str(rawj[0].get('friendlyName'))) Api().workflows_put_graphs(body=self.workflowDict2) assert_equal(201,self.__client.last_response.status) Api().workflows_get_graphs_by_name(self.workflowDict.get('injectableName')) rawj = json.loads(self.__client.last_response.data) assert_equal(self.workflowDict2.get('friendlyName'), str(rawj[0].get('friendlyName'))) @test(groups=['workflows_graphs_delete_by_name_api2'], depends_on_groups=['workflows_graphs_put_by_name_api2']) def test_workflows_graphs_delete(self): """Testing DELETE:/workflows/graphs/injectableName""" Api().workflows_get_graphs_by_name(self.workflowDict.get('injectableName')) rawj = json.loads(self.__client.last_response.data) assert_equal(self.workflowDict2.get('friendlyName'), str(rawj[0].get('friendlyName'))) Api().workflows_delete_graphs_by_name(self.workflowDict.get('injectableName')) assert_equal(200,self.__client.last_response.status) Api().workflows_get_graphs_by_name(self.workflowDict.get('injectableName')) assert_equal(0, len(json.loads(self.__client.last_response.data))) @test(groups=['node_workflows_post_api2'], depends_on_groups=['workflows_graphs_put_api2', 'delete_all_active_workflows_api2']) def test_node_workflows_post(self): """Testing POST:/nodes/id/workflows""" Api().nodes_get_all() nodes = loads(self.__client.last_response.data) for n in nodes: if n.get('type') == 'compute': id = n.get('id') assert_not_equal(id,None) LOG.info('starting amqp listener for node {0}'.format(id)) self.__task_worker = AMQPWorker(queue=QUEUE_GRAPH_FINISH, callbacks=[self.handle_graph_finish]) try: Api().nodes_del_active_workflow_by_id(id) except Exception,e: assert_equal(404,e.status, message='status should be 404') Api().nodes_post_workflow_by_id(id, name='Graph.noop-example', body={}) self.__task_worker.start() def handle_graph_finish(self,body,message): routeId = message.delivery_info.get('routing_key').split('graph.finished.')[1] assert_not_equal(routeId,None) Api().workflows_get() workflows = loads(self.__client.last_response.data) message.ack() for w in workflows: injectableName = w['definition'].get('injectableName') if injectableName == 'Graph.noop-example': graphId = w['context'].get('graphId') if graphId == routeId: if 'target' in w['context']: nodeid = w['context']['target'] or 'none' else: nodeid = 'none' status = body['status'] if status == 'succeeded': LOG.info('{0} - target: {1}, status: {2}, route: {3}'. format(injectableName,nodeid,status,routeId)) self.__task_worker.stop() break
import logging import logging.config import os import shutil from functools import wraps from pathlib import Path from typing import Optional import yaml from autoconf.directory_config import RecursiveConfig, PriorConfigWrapper, AbstractConfig, family from autoconf.json_prior.config import JSONPriorConfig logger = logging.getLogger(__name__) LOGGING_CONFIG_FILE = "logging.yaml" def get_matplotlib_backend(): try: return instance["visualize"]["general"]["general"]["backend"] except KeyError: return "default" class DictWrapper: def __init__(self, paths): self._dict = dict() self.paths = paths def __contains__(self, item): return item in self._dict def items(self): return self._dict.items() def __setitem__(self, key, value): if isinstance(key, str): key = key.lower() self._dict[key] = value def __getitem__(self, key): if isinstance(key, str): key = key.lower() try: return self._dict[key] except KeyError: raise KeyError( f"key {key} not found in paths {self.paths_string}" ) @property def paths_string(self): return "\n".join( map(str, self.paths) ) def __repr__(self): return repr(self._dict) def family(self, cls): for item in family(cls): try: return self[item] except KeyError: pass raise KeyError( f"config for {cls} or its parents not found in paths {self.paths_string}" ) class Config: def __init__(self, *config_paths, output_path="output"): """ Singleton to manage configuration. Configuration is loaded using the __getitem__ syntax where the key entered can refer to a directory, file, section or item. Configuration is first attempted to be loaded from the directory indicated by the first config_path. If no configuration is found the second directory is searched and so on. This allows a default configuration to be defined with additional configuration overriding it. Parameters ---------- config_paths Indicate directories where configuration is defined, in the order of priority with configuration in the first config_path overriding configuration in later config paths output_path The path where data should be saved. """ self._configs = list() self._dict = DictWrapper( self.paths ) self.configs = list(map( RecursiveConfig, config_paths )) self.output_path = output_path def configure_logging(self): """ Set the most up to date logging configuration """ logging_config = self.logging_config if logging_config is not None: logging.config.dictConfig( logging_config ) @property def logging_config(self) -> Optional[dict]: """ Loading logging configuration from a YAML file from the most recently added config directory for which it exists. """ for config in self.configs: path = config.path try: if LOGGING_CONFIG_FILE in os.listdir( config.path ): with open( path / LOGGING_CONFIG_FILE ) as f: return yaml.safe_load(f) except FileNotFoundError: logger.debug( f"No configuration found at path {config.path}" ) return None @property def configs(self): return self._configs @configs.setter def configs(self, configs): self._configs = configs def recurse_config( config, d ): try: for key, value in config.items(): if isinstance( value, AbstractConfig ): if key not in d: d[key] = DictWrapper( self.paths ) recurse_config( value, d=d[key] ) else: d[key] = value except KeyError as e: logger.debug(e) for config_ in reversed(configs): recurse_config(config_, self._dict) def __getitem__(self, item): return self._dict[item] @property def paths(self): return [ config.path for config in self._configs ] @property def prior_config(self) -> PriorConfigWrapper: """ Configuration for priors. This indicates, for example, the mean and the width of priors for the attributes of given classes. """ return PriorConfigWrapper([ JSONPriorConfig.from_directory( path / "priors" ) for path in self.paths ]) def push( self, new_path: str, output_path: Optional[str] = None, keep_first: bool = False ): """ Push a new configuration path. This overrides the existing config paths, with existing configs being used as a backup when a value cannot be found in an overriding config. Parameters ---------- new_path A path to config directory output_path The path at which data should be output. If this is None then it remains unchanged keep_first If True the current priority configuration mains such. """ logger.debug( f"Pushing new config with path {new_path}" ) self.output_path = output_path or self.output_path if self.configs[0] == new_path or ( keep_first and len(self.configs) > 1 and self.configs[1] == new_path ): return new_config = RecursiveConfig( new_path ) configs = list(filter( lambda config: config != new_config, self.configs )) if keep_first: self.configs = configs[:1] + [new_config] + configs[1:] else: self.configs = [new_config] + configs self.configure_logging() def register(self, file: str): """ Add defaults for a given project Parameters ---------- file The path to the project's __init__ """ self.push( Path(file).parent / "config", keep_first=True ) current_directory = Path(os.getcwd()) default = Config( current_directory / "config", current_directory / "output/" ) instance = default def output_path_for_test( temporary_path="temp", remove=True ): """ Temporarily change the output path for the scope of a function (e.g. a test). Remove the files after the test has completed execution. Parameters ---------- temporary_path The path to temporarily output files to remove Should the path be removed? Returns ------- The original function, decorated """ def remove_(): if remove: shutil.rmtree( temporary_path, ignore_errors=True ) def decorator(func): @wraps(func) def wrapper(*args, **kwargs): remove_() original_path = instance.output_path instance.output_path = temporary_path result = func(*args, **kwargs) remove_() instance.output_path = original_path return result return wrapper return decorator def with_config(*path: str, value): """ Create a decorator that swaps a value in configuration defined by path for the scope of a test. Parameters ---------- path A path through config. e.g. "general", "output", "identifier_version" value The value to temporarily set for the config field Returns ------- A decorator """ def decorator(func): @wraps(func) def wrapper(*args, **kwargs): config = instance for string in path[:-1]: config = config[string] original_value = config[path[-1]] config[path[-1]] = value result = func(*args, **kwargs) config[path[-1]] = original_value return result return wrapper return decorator
#!/usr/bin/env python # # Metricinga - A gevent-based performance data forwarder for Nagios/Icinga # # Author: Jeff Goldschrafe <jeff@holyhandgrenade.org> from argparse import ArgumentParser import atexit import cPickle as pickle import os import logging import logging.handlers from pprint import pformat, pprint import re import signal import socket import struct import sys import time import gevent from gevent import Greenlet, Timeout import gevent.monkey from gevent.queue import PriorityQueue try: import gevent_inotifyx as inotify use_inotify = True except ImportError, ex: use_inotify = False gevent.monkey.patch_all() log = logging.getLogger('log') # # Custom daemonizer (python-daemon has unexplained issues with gevent) # class Daemon: """Daemon class for Metricinga """ def __init__(self, opts, stdin='/dev/null', stdout='/dev/null', stderr='/dev/null'): self.opts = opts self.stdin = stdin self.stdout = stdout self.stderr = stderr def daemonize(self): """Daemonize the application Do the UNIX double-fork magic, see Stevens' "Advanced Programming in the UNIX Environment" for details (ISBN 0201563177) http://www.erlenstar.demon.co.uk/unix/faq_2.html#SEC16 """ try: pid = os.fork() if pid > 0: # exit first parent sys.exit(0) except OSError, e: log.error("fork #1 failed: %d (%s)\n" % (e.errno, e.strerror)) sys.exit(1) # decouple from parent environment os.chdir("/") os.setsid() os.umask(0) # do second fork try: pid = os.fork() if pid > 0: # exit from second parent sys.exit(0) except OSError, e: log.error("fork #2 failed: %d (%s)\n" % (e.errno, e.strerror)) sys.exit(1) # redirect standard file descriptors sys.stdout.flush() sys.stderr.flush() si = open(self.stdin, 'r') so = open(self.stdout, 'a+') se = open(self.stderr, 'a+', 0) os.dup2(si.fileno(), sys.stdin.fileno()) os.dup2(so.fileno(), sys.stdout.fileno()) os.dup2(se.fileno(), sys.stderr.fileno()) # write pidfile atexit.register(self.delpid) pid = str(os.getpid()) open(self.opts.pidfile,'w+').write("%s\n" % pid) def delpid(self): """Delete configured pid file """ os.remove(self.opts.pidfile) def start(self): """Start the daemon """ # Check for a pidfile to see if the daemon already runs try: with open(self.opts.pidfile, 'r') as pf: pid = int(pf.read().strip()) except IOError: pid = None if pid: message = "pidfile %s already exists. Check that the daemon is not already running.\n" log.error(message % self.opts.pidfile) sys.exit(1) # Start the daemon self.daemonize() self.run() def stop(self): """Stop the daemon """ # Get the pid from the pidfile try: with open(self.opts.pidfile,'r') as pf: pid = int(pf.read().strip()) except IOError: pid = None if not pid: message = "pidfile %s does not exist. Daemon not running?\n" log.error(message % self.opts.pidfile) return # not an error in a restart # Try killing the daemon process try: while True: os.kill(pid, SIGTERM) time.sleep(0.1) except OSError, err: err = str(err) if err.find("No such process") > 0: if os.path.exists(self.opts.pidfile): os.remove(self.opts.pidfile) else: log.error(err) sys.exit(1) def restart(self): """Restart the daemon """ self.stop() self.start() def run(self): """Assemble Voltron and form blazing sword """ cw = CarbonPickleWriter(self.opts) lp = LineProcessor(self.opts) lp.on_metric_found.subscribe( lambda metric: cw.send(PublishMetricRequest(metric))) fp = FileProcessor(self.opts) fp.on_line_found.subscribe( lambda line: lp.send(ParseLineRequest(line))) iw = InotifyWatcher(self.opts) iw.on_find.subscribe( lambda path: fp.send(ParseFileRequest(path))) sp = SpoolRunner(self.opts) sp.on_find.subscribe( lambda path: fp.send(ParseFileRequest(path))) actors = [cw, lp, fp] tasklets = [iw, sp] workers = actors + tasklets def shutdown(actors, tasklets): log.info("Received shutdown signal") for actor in actors: actor.send(ShutdownRequest(), priority=0) for tasklet in tasklets: tasklet.kill() gevent.signal(signal.SIGINT, shutdown, actors, tasklets) gevent.signal(signal.SIGTERM, shutdown, actors, tasklets) log.info("Starting up...") for worker in workers: worker.start() log.info("All workers started.") gevent.joinall(workers) log.info("Shut down successfully.") # # Utility classes # class Metric(object): """Represents a single datapoint of a system metric """ def __init__(self, path=[], timestamp=0, value=0, source=None): self.path = path self.timestamp = timestamp self.value = value self.source = source class PurgedFileFactory(object): """Manage state of PurgedFileToken instances Singleton-like factory to ensure file paths are not shared between PurgedFileToken instances. """ instances = {} @staticmethod def create(path): """Create a unique PurgedFileToken for a path If this is the first request to create a PurgedFileToken for a path, create a new instance and return it. If an instance already exists, return None. """ if PurgedFileFactory.instances.get(path): return None else: PurgedFileFactory.instances[path] = True return PurgedFileToken(path) @staticmethod def destroy(path): """Remove the PurgedFileToken associated with a path """ if path in PurgedFileFactory.instances: del PurgedFileFactory.instances[path] class PurgedFileToken(object): """Deletes a file when the last reference to the token leaves scope """ def __init__(self, path): self.path = path def __del__(self): log.debug("Unlinking file `{0}'".format(self.path)) try: os.remove(self.path) except OSError, ex: err = "Tried to delete `{path}', but it doesn't exist" log.warn(err.format(path=self.path)) PurgedFileFactory.destroy(self.path) class SourcedString(object): """Pairs a string with the PurgedFileToken it originated from Allows the original source to be purged when all references to its data have been removed from scope. """ def __init__(self, string_, source): self.string_ = string_ self.source = source # # Message encapsulation classes # class ParseFileRequest(object): """Request that an Actor parse a file """ def __init__(self, path): self.path = path class ParseLineRequest(object): """Request that an Actor parse a line """ def __init__(self, line): self.line = line class PublishMetricRequest(object): """Request that an Actor publish a Metric """ def __init__(self, metric): self.metric = metric class ShutdownRequest(object): """Request that an Actor clean up and terminate execution """ pass # # Event binding classes # class BoundEvent(object): """Helper for defining subscribable events on classes """ def __init__(self): self._fns = [] def __call__(self, *args, **kwargs): for f in self._fns: f(*args, **kwargs) def subscribe(self, fn): self._fns.append(fn) def unsubscribe(self, fn): self._fns.remove(fn) class event(object): """Decorator for defining subscribable events on classes """ def __init__(self, func): self.__doc__ = func.__doc__ self._key = ' ' + func.__name__ def __get__(self, obj, cls): try: return obj.__dict__[self._key] except KeyError, exc: be = obj.__dict__[self._key] = BoundEvent() return be # # Greenlet classes # class Actor(Greenlet): """Simple implementation of the Actor pattern """ def __init__(self): self.inbox = PriorityQueue() self._handlers = {ShutdownRequest: self.receive_shutdown} Greenlet.__init__(self) def receive(self, msg): """Dispatch a received message to the appropriate type handler """ #log.debug("Received a message: " + repr(msg)) cls = msg.__class__ if cls in self._handlers.keys(): self._handlers[cls](msg) else: raise NotImplemented() def receive_shutdown(self, msg): self.running = False def send(self, msg, priority=50): """Place a message into the actor's inbox """ self.inbox.put((priority, msg)) def _run(self): """Run the Actor in a blocking event loop """ self.running = True while self.running: prio, msg = self.inbox.get() self.receive(msg) del msg class CarbonWriter(Actor): """Dispatch PublishMetricRequest messages to Carbon """ def __init__(self, opts): self.opts = opts self.backoff_secs = 0 self.max_backoff_secs = 32 self.sleep_secs = 0 Actor.__init__(self) self._handlers[PublishMetricRequest] = self.receive_publish self._connect() def receive_publish(self, msg): """Handle received PublishMetricRequest messages Extract the Metric from the request, massage it into Carbon pickle format, and send it to Graphite. If the send fails because the socket is in an invalid state, requeue the metric at the front of the queue and then attempt to reconnect. """ metric = msg.metric (path, timestamp, value) = (metric.path, metric.timestamp, metric.value) name = '.'.join([self._sanitize_metric_name(x) for x in path]) try: log.debug("Sending metric to Carbon: %s %s %s" % (name, timestamp, value)) message = self._serialize(metric) self._sock.sendall(message) log.debug("Sent metric successfully.") gevent.sleep(self.sleep_secs) except socket.error, ex: # Attempt to reconnect, then re-queue the unsent metric log.warn("Couldn't send to %s:%s: %s" % (self.opts.host, self.opts.port, ex)) self.send(PublishMetricRequest(metric), priority=49) self._connect() def _connect(self): """Connect to the Carbon server Attempt to connect to the Carbon server. If the connection attempt fails, increase the backoff time and sleep the writer greenlet until the backoff time has elapsed. """ gevent.sleep(self.backoff_secs) self._sock = socket.socket() try: log.info("Connecting to Carbon instance at %s:%s" % (self.opts.host, self.opts.port)) self._sock.connect((self.opts.host, self.opts.port)) log.info("Connected to Carbon successfully") self._reset_backoff() except socket.error, ex: log.warn("Failed to connect to {host}:{port}; retry in {secs} seconds".format( host=self.opts.host, port=self.opts.port, secs=self.backoff_secs)) self._increase_backoff() def _increase_backoff(self): """Increase the backoff timer until configured max is reached """ if self.backoff_secs == 0: self.backoff_secs = 1 elif self.backoff_secs < self.max_backoff_secs: self.backoff_secs *= 2 def _reset_backoff(self): """Reset the backoff timer to 0 """ self.backoff_secs = 0 def _sanitize_metric_name(self, s): """Replace unwanted characters in metric with escape sequence """ return re.sub("[^\w-]", self.opts.replacement_char, s) class CarbonLineWriter(CarbonWriter): def _serialize(self, metric): path_s = '.'.join([self._sanitize_metric_name(x) for x in metric.path]) return "{path} {value} {timestamp}\n".format(path=path_s, value=metric.value, timestamp=metric.timestamp) class CarbonPickleWriter(CarbonWriter): def _serialize(self, metric): path_s = '.'.join([self._sanitize_metric_name(x) for x in metric.path]) pickle_list = [(path_s, (metric.timestamp, metric.value))] payload = pickle.dumps(pickle_list) header = struct.pack("!L", len(payload)) return header + payload class FileProcessor(Actor): """Parse files and dispatch events when lines found. """ def __init__(self, opts): self.opts = opts Actor.__init__(self) self._handlers[ParseFileRequest] = self.receive_parse @event def on_line_found(self, line): """Called when a line is parsed from the file """ def receive_parse(self, message): """Handle received ParseFileRequest messages Validate whether the requested file has already been seen. If it is a new file, read it line-by-line and dispatch the read lines to any event listener. If the file has already been seen (i.e. it is currently being processed), ignore the request. """ path = message.path log.debug("Received file parse request: " + path) source = PurgedFileFactory.create(path) if source: log.debug("Accepted file parse request: " + path) try: with open(path, "r") as fp: for line in fp: sstr = SourcedString(line.rstrip(os.linesep), source) self.on_line_found(sstr) gevent.sleep(0) except IOError, ex: log.warn("Couldn't open file `{path}': {error}".format( path=path, error=ex.strerror)) else: log.debug("Received request to parse {0}, but file is already known".format(path)) class InotifyWatcher(Greenlet): """Monitor spool directory for inotify activity and emit events """ def __init__(self, opts): self.opts = opts Greenlet.__init__(self) @event def on_find(self): """Called when a file is finished being written into spool """ def _run(self): if not use_inotify: log.warn("gevent_inotifyx not loaded; not using inotify") return fd = inotify.init() wd = inotify.add_watch(fd, self.opts.spool_dir, inotify.IN_CLOSE_WRITE | inotify.IN_MOVED_TO) while True: events = inotify.get_events(fd) for event in events: path = os.path.sep.join([self.opts.spool_dir, event.name]) # Filter out inotify events generated for files that # have been already unlinked from the filesystem # (IN_EXCL_UNLINK emulation) if os.path.exists(path): self.on_find(path) class LineProcessor(Actor): """Process lines of check results """ def __init__(self, opts): self.opts = opts Actor.__init__(self) self._handlers[ParseLineRequest] = self.receive_line self.tokenizer_re = \ r"([^\s]+|'[^']+')=([-.\d]+)(c|s|us|ms|B|KB|MB|GB|TB|%)?(?:;([-.\d]+))?(?:;([-.\d]+))?(?:;([-.\d]+))?(?:;([-.\d]+))?" @event def on_metric_found(self, metric): """Called when a metric is extracted by the line processor. """ @event def on_parse_failed(self, line): """Called when the line processor fails to parse a line. """ def receive_line(self, message): """Handle received ParseLineRequest messages Parse a line of performance data and validate that it is well-formed. If it is well-formed, emit one or more Metrics containing the performance data. If it is not well-formed, ignore it. """ line = message.line.string_ source = message.line.source fields = self._extract_fields(line) if not self._fields_valid(fields): return self.on_parse_failed(line) for metric in self._make_metrics(fields, source): self.on_metric_found(metric) gevent.sleep(0) def _extract_fields(self, line): """Parse KEY::VALUE pairs from a line of performance data """ acc = {} field_tokens = line.split("\t") for field_token in field_tokens: kv_tokens = field_token.split('::') if len(kv_tokens) == 2: (key, value) = kv_tokens acc[key] = value return acc def _fields_valid(self, d): """Verify that all necessary fields are present """ generic_fields = ['DATATYPE', 'HOSTNAME', 'TIMET'] host_fields = ['HOSTPERFDATA'] service_fields = ['SERVICEDESC', 'SERVICEPERFDATA'] if 'DATATYPE' not in d: return False datatype = d['DATATYPE'] if datatype == 'HOSTPERFDATA': fields = generic_fields + host_fields elif datatype == 'SERVICEPERFDATA': fields = generic_fields + service_fields else: return False for field in fields: if field not in d: return False return True def _make_metrics(self, fields, source): """Parse a field set for performance data and return Metrics """ metric_path_base = [] graphite_prefix = fields.get('GRAPHITEPREFIX') graphite_postfix = fields.get('GRAPHITEPOSTFIX') if self.opts.prefix: metric_path_base.append(self.opts.prefix) hostname = fields['HOSTNAME'].lower() metric_path_base.append(hostname) datatype = fields['DATATYPE'] if datatype == 'HOSTPERFDATA': metric_path_base.append('host') elif datatype == 'SERVICEPERFDATA': service_desc = fields.get('SERVICEDESC') graphite_postfix = fields.get('GRAPHITEPOSTFIX') if graphite_postfix is not None: metric_path_base.append(graphite_postfix) else: metric_path_base.append(service_desc) timestamp = int(fields['TIMET']) perfdata = fields[datatype] counters = self._parse_perfdata(perfdata) for (counter, value) in counters: metric_path = metric_path_base + [counter] yield Metric(path=metric_path, timestamp=timestamp, value=value, source=source) def _parse_perfdata(self, s): """Parse performance data from a *PERFDATA string """ metrics = [] counters = re.findall(self.tokenizer_re, s) if counters is None: log.warning("Failed to parse performance data: %s" % (s,)) return metrics for (key, value, uom, warn, crit, min, max) in counters: try: metrics.append((key, float(value))) except ValueError, ex: log.warning("Couldn't convert value '%s' to float" % (value,)) return metrics class SpoolRunner(Greenlet): def __init__(self, opts): self.opts = opts Greenlet.__init__(self) @event def on_find(self): """Called when a file is found by the spool runner """ def _find_files(self): for filename in os.listdir(self.opts.spool_dir): self.on_find(os.path.sep.join([self.opts.spool_dir, filename])) def _run(self): while True: self._find_files() if self.opts.poll_interval is not None: gevent.sleep(self.opts.poll_interval) else: break def parse_arguments(args): parser = ArgumentParser() parser.set_defaults(daemonize=False, host=None, prefix=None, replacement_char='_', pidfile='/var/run/metricinga.pid', poll_interval=60, port=2004, spool_dir='/var/spool/metricinga') parser.add_argument('-d', '--daemonize', action='store_true', help='Run as a daemon') parser.add_argument('--pidfile', help='Path to daemon pidfile') parser.add_argument('-v', '--verbose', action='store_true', help='Enable verbose output') parser.add_argument('-P', '--prefix', help='Prefix to prepend to all metric names') parser.add_argument('-r', '--replacement-char', help='Replacement char for illegal metric characters') parser.add_argument('-D', '--spool-dir', help='Spool directory to watch for perfdata files') parser.add_argument('--poll-interval', type=int, help='Spool polling interval (if not using inotify)') parser.add_argument('-H', '--host', help='Graphite host to submit metrics to') parser.add_argument('-p', '--port', type=int, help='Port to connect to') return parser.parse_args(args) def main(): opts = parse_arguments(sys.argv[1:]) if opts.host is None: print("Fatal: No Graphite host specified!") sys.exit(1) log_level = logging.INFO if opts.verbose: log_level = logging.DEBUG if use_inotify: opts.poll_interval = None if opts.daemonize: log_handler = logging.handlers.SysLogHandler('/dev/log') formatter = logging.Formatter( "%(filename)s: %(levelname)s %(message)s") else: log_handler = logging.StreamHandler() formatter = logging.Formatter( "%(asctime)s %(filename)s: %(levelname)s %(message)s", "%Y/%m/%d %H:%M:%S") log_handler.setFormatter(formatter) log.addHandler(log_handler) log.setLevel(log_level) app = Daemon(opts) if opts.daemonize: app.start() else: app.run() if __name__ == '__main__': main()
from __future__ import division import cvxopt import numpy as np from pylab import * import math # from cvxpy import numpy as my_numpy from cvxpy import * # Taken from CVX website http://cvxr.com/cvx/examples/ # Example: Compute and display the Chebyshev center of a 2D polyhedron # Ported from cvx matlab to cvxpy by Misrab Faizullah-Khan # Original comments below # Boyd & Vandenberghe, "Convex Optimization" # Joelle Skaf - 08/16/05 # (a figure is generated) # # The goal is to find the largest Euclidean ball (i.e. its center and # radius) that lies in a polyhedron described by linear inequalites in this # fashion: P = { x : a_i'*x <= b_i, i=1,...,m } where x is in R^2 # Create the problem # variables radius = Variable(1) center = Variable(2) # constraints a1 = cvxopt.matrix([2,1], (2,1)) a2 = cvxopt.matrix([2,-1], (2,1)) a3 = cvxopt.matrix([-1,2], (2,1)) a4 = cvxopt.matrix([-1,-2], (2,1)) b = cvxopt.matrix(1, (4,1)) constraints = [ a1.T*center + np.linalg.norm(a1, 2)*radius <= b[0], a2.T*center + np.linalg.norm(a2, 2)*radius <= b[1], a3.T*center + np.linalg.norm(a3, 2)*radius <= b[2], a4.T*center + np.linalg.norm(a4, 2)*radius <= b[3] ] # objective objective = Maximize(radius) p = Problem(objective, constraints) # The optimal objective is returned by p.solve(). result = p.solve() # The optimal value print radius.value print center.value # Convert to 1D array. center_val = np.asarray(center.value[:,0]) # Now let's plot it x = np.linspace(-2, 2, 256,endpoint=True) theta = np.linspace(0,2*np.pi,100) # plot the constraints plot( x, -x*a1[0]/a1[1] + b[0]/a1[1]) plot( x, -x*a2[0]/a2[1] + b[0]/a2[1]) plot( x, -x*a3[0]/a3[1] + b[0]/a3[1]) plot( x, -x*a4[0]/a4[1] + b[0]/a4[1]) # plot the solution plot( center_val[0] + radius.value*cos(theta), center_val[1] + radius.value*sin(theta) ) plot( center_val[0], center_val[1], 'x', markersize=10 ) # label title('Chebyshev Centering') xlabel('x1') ylabel('x2') axis([-1, 1, -1, 1]) show()
#!/usr/bin/env python3 import argparse import numpy as np import csv import matplotlib.pyplot as plt def read_data(filename): header = [] entries = [] with open(filename) as csvfile: reader = csv.reader(csvfile, delimiter=',', quotechar='"') for row in reader: if row[0][0] == '#': header.append(row) else: entries.append([float(r) for r in row]) return (header, np.array(entries)) def compute_rtfs(data): # Compute time deltas real_dt = np.diff(real_time) sim_dt = np.diff(sim_time) # Compute rtf and some statistics rtfs = sim_dt / real_dt return rtfs if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('filename') parser.add_argument('--summarize', action='store_true') parser.add_argument('--plot', action='store_true') parser.add_argument('--hist', action='store_true') args = parser.parse_args() (header, data) = read_data(args.filename) real_time = data[:,0] + 1e-9 * data[:,1] sim_time = data[:,2] + 1e-9 * data[:,3] rtfs = compute_rtfs(data) if args.summarize: iters = len(data) mean = np.mean(rtfs) median = np.median(rtfs) mn = np.min(rtfs) mx = np.max(rtfs) amn = np.argmin(rtfs) amx = np.argmax(rtfs) mn_sim = sim_time[amn] mx_sim = sim_time[amx] mn_real = real_time[amn] mx_real = real_time[amx] print(f'Iterations: {iters}') print(f'Mean RTF: {mean:0.5f}') print(f'Median RTF: {median:0.5f}') print(f'Min RTF: {mn:0.5f}') print(f' Iteration: {amn}') print(f' Sim Time: {mn_sim}') print(f' Real Time: {mn_real:0.5f}') print(f'Max RTF: {mx:0.5f}') print(f' Iteration: {amx}') print(f' Sim Time: {mx_sim:0.5f}') print(f' Real Time: {mx_real:0.5f}') if args.plot: plt.figure() plt.plot(sim_time[:-1], rtfs) plt.title('Sim Time vs Real Time Factor') plt.xlabel('Sim Time (s)') plt.ylabel('Real Time Factor') plt.grid(True) if args.hist: plt.figure() _ = plt.hist(rtfs, bins=100) plt.title('Real Time Factor Histogram') plt.xlabel('Real Time Factor') plt.ylabel('Iteration Count') plt.grid(True) plt.show()
from rest_framework.serializers import ModelSerializer from rest_framework import serializers from recruiting.models import KeySkill, Resume, Vacancy, Respond from accounts.api.v1.serializers import CompanySerializer, ApplicantSerializer class CreateResumeSerializer(ModelSerializer): class Meta: model = Resume fields = '__all__' class CreateVacancySerializer(ModelSerializer): class Meta: model = Vacancy fields = '__all__' class ResumeSerializer(ModelSerializer): applicant = ApplicantSerializer(required=False) class Meta: model = Resume fields = '__all__' def create(self, validated_data): validated_data['applicant'] = self.context['request'].user.applicant return super(ResumeSerializer, self).create(validated_data) class KeySkillsSerializer(ModelSerializer): class Meta: model = KeySkill fields = ('id', 'title') class ResumeDetailSerializer(ModelSerializer): key_skills = KeySkillsSerializer(read_only=True, many=True) applicant = ApplicantSerializer() class Meta: model = Resume fields = ('header', 'text', 'applicant', 'key_skills', 'avatar', 'education', 'edu_institution', 'specialization', 'edu_end_year', 'is_open', 'last_modified') class CreateResumeSerializer(ModelSerializer): class Meta: model = Resume fields = '__all__' class ResumeTitleSerializer(ModelSerializer): class Meta: model = Vacancy fields = ('header',) class VacancySerializer(ModelSerializer): employer = CompanySerializer(required=False) class Meta: model = Vacancy fields = '__all__' def create(self, validated_data): print(self.context['request'].user.company) validated_data['employer'] = self.context['request'].user.company return super(VacancySerializer, self).create(validated_data) class VacancyMutateSerializer(ModelSerializer): class Meta: model = Vacancy fields = '__all__' class VacancyTitleSerializer(ModelSerializer): class Meta: model = Resume fields = ('header',) class RespondSerializer(ModelSerializer): vacancy = VacancyTitleSerializer() resume = ResumeTitleSerializer() class Meta: model = Respond fields = '__all__' class CreateRespondSerilaizer(ModelSerializer): class Meta: model = Respond fields = '__all__' read_only_fields = ['vacancy', 'resume']
#!/usr/bin/env python import rospy import pyaudio import numpy as np import wave from cordial_msgs.msg import Sound from std_msgs.msg import String class WavFilePublisher: def __init__(self): rospy.init_node('wav_player', anonymous=True) self._wav_header_length = rospy.get_param( 'cordial/sound/wav/header_length', 24 ) rospy.Subscriber(rospy.get_param('cordial_sound/play_wav_topic'), String, self.play_wav_file) self._sound_publisher = rospy.Publisher(rospy.get_param('cordial_sound/play_stream_topic'), Sound, queue_size=1) self._pyaudio = pyaudio.PyAudio() def play_wav_file(self, data): file_path = data.data try: wf = wave.open(file_path, 'rb') except IOError: rospy.logerr("Not a valid wav file: '{}'".format(file_path)) return audio_format = self._pyaudio.get_format_from_width(wf.getsampwidth()) framerate = wf.getframerate() num_channels = wf.getnchannels() data = np.fromfile(file_path, np.uint8)[self._wav_header_length:] data = data.astype(np.uint8).tostring() sound_msg = Sound() sound_msg.format = audio_format sound_msg.num_channels = num_channels sound_msg.framerate = framerate sound_msg.data = data rospy.loginfo("Publishing sound from '{}'".format(file_path)) self._sound_publisher.publish(sound_msg) if __name__ == '__main__': WavFilePublisher() rospy.spin()
import serial import time import string import pynmea2 def location(): while True: port="/dev/ttyAMA0" ser=serial.Serial(port, baudrate=9600, timeout=0.5) dataout = pynmea2.NMEAStreamReader() newdata=ser.readline() if newdata[0:6] == "$GPRMC": newmsg=pynmea2.parse(newdata) lat=newmsg.latitude lng=newmsg.longitude gps = "Latitude=" + str(lat) + " and Longitude=" + str(lng) return(gps)
#------------------------------------------------------------------------------ # Import necessary modules #------------------------------------------------------------------------------ verbose = True # Standard modules import os import time import sys import json import psycopg2 # Related major packages import project_minecraft import anuga #from anuga.culvert_flows.culvert_class import Culvert_flow #from anuga.culvert_flows.culvert_routines import boyd_generalised_culvert_model # Application specific imports #from floodpoint import * #from polygons import * #from breaklines import * #from culverts import * #------------------------------------------------------------------------------ # Preparation of topographic data # Convert ASC 2 DEM 2 PTS using source data and store result in source data #------------------------------------------------------------------------------ # Create DEM from asc data anuga.asc2dem(project_minecraft.tmppath + 'mc_heightv2_utm.asc', use_cache=False, verbose=verbose) # Create pts file for onshore DEM anuga.dem2pts(project_minecraft.tmppath + 'mc_heightv2_utm.dem', use_cache=False, verbose=verbose) #------------------------------------------------------------------------------ # Create the triangular mesh and domain based on # overall clipping polygon with a tagged # boundary and interior regions as defined in project.py #------------------------------------------------------------------------------ bounding_polygon = anuga.read_polygon(project_minecraft.configpath+'extent_minecraft.csv') meshname = project_minecraft.tmppath+'output_minecraft.msh' mesh = anuga.create_mesh_from_regions(bounding_polygon, boundary_tags={'top': [0], 'east': [1], 'bottom': [2], 'west': [3]}, maximum_triangle_area=project_minecraft.default_res, filename=meshname, interior_regions=None, interior_holes=None, hole_tags=None, #breaklines = breaklines, breaklines = None, use_cache=False, verbose=True) domain = anuga.Domain(meshname,use_cache=False,verbose = True) inflow = anuga.Inflow(domain, center=(project_minecraft.center), radius=project_minecraft.radius, rate=project_minecraft.rate) domain.forcing_terms.append(inflow) # Print some stats about mesh and domain print 'Number of triangles = ', len(domain) print 'The extent is ', domain.get_extent() print domain.statistics() #------------------------------------------------------------------------------ # Setup parameters of computational domain #------------------------------------------------------------------------------ domain.set_name(project_minecraft.outpath+'anuga_output_minecraft') # Name of sww file domain.set_datadir('.') # Store sww output here domain.set_minimum_storable_height(0.01) # Store only depth > 1cm #------------------------------------------------------------------------------ # Setup initial conditions #------------------------------------------------------------------------------ tide = 0.0 domain.set_quantity('stage', -10) domain.set_quantity('friction', 0.0) domain.set_quantity('elevation', filename=project_minecraft.tmppath+'mc_heightv2_utm.pts', use_cache=True, verbose=True, alpha=0.1) #for record in culverts: # culvert = Culvert_flow(domain, # label=record[1], # description='This culvert is a test unit', # end_point0=[record[2], record[3]], # end_point1=[record[4], record[5]], # width=record[6], # height=record[7], # culvert_routine=boyd_generalised_culvert_model, # number_of_barrels=1, # verbose=verbose) # domain.forcing_terms.append(culvert) print 'Available boundary tags', domain.get_boundary_tags() Bd = anuga.Dirichlet_boundary([tide, 0, 0]) # Mean water level Bs = anuga.Transmissive_stage_zero_momentum_boundary(domain) # Neutral boundary Br = anuga.Reflective_boundary(domain) # Huge 50m wave starting after 60 seconds and lasting 1 hour. Bw = anuga.Time_boundary(domain=domain, function=lambda t: [(60<t<3660)*11, 0, 0]) domain.set_boundary({ 'east': Br, 'bottom': Br, 'west': Br, 'top': Br}) #------------------------------------------------------------------------------ # Evolve system through time #------------------------------------------------------------------------------ import time t0 = time.time() tend = project_minecraft.tend from numpy import allclose scenario = 'fixed_wave_minecraft' name = project_minecraft.outpath+'anuga_' + scenario which_var = 2 if which_var == 0: # Stage outname = name + '_stage' quantityname = 'stage' if which_var == 1: # Absolute Momentum outname = name + '_momentum' quantityname = '(xmomentum**2 + ymomentum**2)**0.5' #Absolute momentum if which_var == 2: # Depth outname = name + '_depth' quantityname = 'stage-elevation' #Depth if which_var == 3: # Speed outname = name + '_speed' quantityname = '(xmomentum**2 + ymomentum**2)**0.5/(stage-elevation+1.e-30)' #Speed if which_var == 4: # Elevation outname = name + '_elevation' quantityname = 'elevation' #Elevation # Save every 20 secs for t in domain.evolve(yieldstep=20, finaltime=tend): print domain.timestepping_statistics() anuga.sww2dem(project_minecraft.outpath+'anuga_output_minecraft.sww', outname+'.asc', quantity=quantityname, cellsize=0.5, easting_min=627724, easting_max=627893, northing_min=5804634, northing_max=5804828, reduction=max, verbose=False) #print domain.boundary_statistics(tags='east') # Save every 30 secs as wave starts inundating ashore #for t in domain.evolve(yieldstep=100, finaltime=10000, # skip_initial_step=True): # print domain.timestepping_statistics() # print domain.boundary_statistics(tags='east') print'.That took %.2f seconds' %(time.time()-t0)
import os import click from sentinelsat import SentinelAPI @click.command() @click.argument('image_id') @click.argument('out_path') @click.option('--username', '-U', required=True, type=str, default=None, help="Copernicus SciHub username to use for authenticating download.") @click.option('--password', '-P', required=True, type=str, default=None, help="Copernicus SciHub password to use for authenticating download.") def main(image_id, out_path, username, password): """Download data from Copernicus Scihub""" # check that the output path exists if os.path.exists(out_path) is False: raise FileExistsError("out_path {} does not exist".format(out_path)) # connect to the api api = SentinelAPI(username, password) print("Identifying UUID of image ID {}".format(image_id)) products = api.query(filename='{}.SAFE'.format(image_id)) if len(products) == 0: raise ValueError("Could not identify product with the input image ID.") elif len(products) > 1: raise ValueError("Unexpected result: identified multiple products with the input image ID.") product_id = list(products.keys())[0] print("Downloading archive from Scihub") api.download_all([product_id], directory_path=out_path) print("Process completed successfully.") if __name__ == '__main__': main()
import sys, os os.environ["PATH"] = os.path.dirname(sys.executable) + os.pathsep + os.environ["PATH"] import click import pandas as pd import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from collections import defaultdict from sklearn.neighbors.kde import KernelDensity from sklearn.mixture import GaussianMixture import scipy.stats as ss from scipy.signal import find_peaks from aux_data_in_pyvar import config_rcparams def clustering_ccf(df): """ Clusters CCF according to the peaks of their distribution :param df: dataframe of variants :return: returns cluster assignment to each variant as well as density values of the distribution """ # Oriol Pich' piece of code to cluster ccf values # hardcoded! best_band = 0.09 # remove extreme cases ccf_list = df['vaf*cnv'] max_ccf = np.amax(df['vaf*cnv']) if max_ccf < 2.8: upbound = max_ccf else: print('there are ccf bigger than 2.8') upbound = 2.8 # do the log2 of each of the ccf values ccf = [np.log2(x) for x in ccf_list] variant = df['Variant'].tolist() X = np.array(ccf).reshape(-1, 1) X_var = np.array(variant).reshape(-1, 1) kde = KernelDensity(kernel='gaussian', bandwidth=best_band).fit(X) grid2 = np.linspace(np.amin(ccf_list), upbound, num=150).reshape(-1, 1) grid2 = np.array([np.log2(x) for x in grid2]) flat_array = grid2.flatten() log_density = kde.score_samples(grid2) density = np.exp(log_density) # find the maximum peaks number_components = len(find_peaks(density, height=0.1)[0]) if number_components == 0: # at least 1 component which indicates one cluster print("peaks unfound") gmm = GaussianMixture(n_components=1, max_iter=2000).fit(X) else: gmm = GaussianMixture(n_components=number_components, max_iter=2000).fit(X) cluster_assign_val = defaultdict(list) cluster_assign_var = defaultdict(list) df_results = pd.DataFrame() for ix, prob in enumerate(np.argmax(gmm.predict_proba(X), axis=1)): cluster_assign_val[prob].append(X[ix]) cluster_assign_var[prob].append(X_var[ix]) df_results = df_results.append({'Variant': X_var[ix][0], 'ccf_log2': X[ix][0], 'cluster': prob}, ignore_index=True) return df_results, cluster_assign_val, flat_array, density def plot_ccf(cluster_assign, flat_array, density, outfile_plot, comparison, df_purities, cut_off): """ Plot density plot of CCF variants and add peaks and cut -off of clonality categorization to have overview of the estimates """ sam_purity = df_purities[df_purities['comparison'] == comparison].reset_index() ## make plot config_rcparams() fig, ax = plt.subplots(1, 1, figsize=(5, 5)) for clust, vals in cluster_assign.items(): center = np.median(vals) ax.text(center + 0.1, 1, round(2 ** center, 3)) ax.vlines(center, 0, 1, color='red') for cut, val in cut_off.items(): ax.text(np.log2(val), 1, cut, fontsize=5, rotation=45) ax.vlines(np.log2(val), 0, 1, color='blue') ax.plot(flat_array, density, c='#31a354', lw=2) plt.xlabel('VAF*CNV') xtickslocs = ax.get_xticks() ax.set_xticklabels([2 ** i for i in xtickslocs], rotation=45) # Add purities estimated by other software to visually compare with the one estimated and used here ax.title.set_text(" Sample {} \n purity facets {} \n purity ascat {}".format(comparison, sam_purity.loc[0, 'purity_facets'], sam_purity.loc[0, 'purity_ascat'])) plt.tight_layout() plt.savefig(os.path.join(outfile_plot, comparison + '_ccf_clustering.png'), dpi=200) plt.close() def new_ccf(rw, purity): """ Compute CCF with estimate of purity :param rw: row (variant) :param purity: purity :return: CCF of each variant """ vaf = rw['t_alt_reads']/(rw['t_ref_reads']+rw['t_alt_reads']) # definition of CCF rw['ccf'] = vaf*(purity*rw['cnv_facets'] + (1-purity)*2)/purity return rw def get_prob(rw, purity): """ Assign probabilities to each variant from adjusted betabinomial distribution :param rw: row(variant) :param purity: purity :return:row with probability """ max_CN = rw['cnv_facets'] alt_count = rw['t_alt_reads'] depth = rw['t_alt_reads']+rw['t_ref_reads'] mu = purity/(purity*max_CN + (1-purity)*2) val = ss.betabinom.cdf(k=alt_count, n=depth, a=mu * (1 - 0.01) / 0.01, b=(1 - mu) * (1 - 0.01) / 0.01) rw['prob'] = val return rw def take_closest(num,collection): return min(collection,key=lambda x:abs(x-num)) @click.command() @click.option('--output_path_plot', '-out_pp', type=click.Path(exists=True), required = True, help="Output path to make plot") @click.option('--output_path_maf', '-out_pp', type=click.Path(exists=True), required = True, help="Output path to write data frame") @click.option('--input_path', '-in_path', required=True, help="input maf file") @click.option('--input_purities', '-pur', required=True, help="Data frame with all purities estimated by sample by other software (ASCAT and FACETS)." "you can find this in ../ext_files/purity_ploidy_TALL_adult.tsv") @click.option('--comparison', '-com', required=True, help="Comparison structure showing somatic calls from tumor (normally TumorID_vs_normalID). This" "is like a sample id in our project.") def cli(output_path_plot, output_path_maf, input_path,comparison,input_purities): """ Infer purity from distribution of CCF of variants as the maximum point and categorize mutations as clonal or subclonal """ # read file df_in = pd.read_csv(input_path, sep='\t') # compute VAF df_in['vaf'] = df_in.apply(lambda x: x['t_alt_reads'] / (x['t_alt_reads'] + x['t_ref_reads']), axis=1) # compute depth and filter print(len(df_in)) df_in['depth'] = df_in.apply(lambda x: x['t_alt_reads'] + x['t_ref_reads'], axis=1) df_in = df_in[df_in['depth'] > 5] print(len(df_in)) # compute ccf assuming 100 of purity df_in['cnv_facets'] = df_in['cnv_facets'].astype(int) df_in['vaf*cnv'] = df_in['vaf'] * df_in['cnv_facets'] # cluster ccf df_results, cluster_assign, flat_array, density = clustering_ccf(df_in) # parse results cluster assignment grps = df_results.groupby('cluster') df_results = pd.DataFrame() for g in grps.groups: cluster = grps.get_group(g) ccfs = cluster['ccf_log2'] center = np.median(ccfs) name = round(2 ** center, 3) cluster['center_cluster'] = name df_results = df_results.append(cluster, ignore_index=True) df_out = df_in.merge(df_results, how='inner', on='Variant') df_pur_decision = df_out[['center_cluster', 'Variant']].groupby('center_cluster').count() suma = df_pur_decision['Variant'].sum() df_pur_decision['proportion'] = df_pur_decision['Variant'].apply(lambda x: x / suma) df_pur_decision.reset_index(inplace=True) df_pur_decision.rename(columns={'index': 'center_cluster'}, inplace=True) df_pur_decision.sort_values(by='center_cluster', ascending=False, inplace=True) df_pur_decision.reset_index(inplace=True) val = 0 for i, rw in df_pur_decision.iterrows(): if i == 0 and rw['proportion'] > 0.1: pur = rw['center_cluster'] break elif i != 0 and val > 0.1: pur = rw['center_cluster'] break else: val = val + rw['proportion'] continue print(pur) # manually added after inspection, Hardcoded sorry if comparison == 'AE6526_vs_AE6525': pur = 0.253 elif comparison == 'AE6533_vs_AE6534': pur = 0.65 elif comparison == 'AE6518_vs_AE6519': pur = 0.345 elif comparison == "AE6514_vs_AE6513": pur = 0.532 elif comparison == 'AE6544_vs_AE6543': pur = 0.927 elif comparison == 'SJTALL014_D_vs_SJTALL014_G': pur = 0.792 else: pass df_out = df_out.apply(lambda x: get_prob(x, pur), axis=1) df_out.sort_values('prob', inplace=True, ascending=True) df_out['purity'] = pur cut_off = dict() cut_off['0.01'] = df_out[df_out['prob'] == take_closest(0.01, df_out['prob'].tolist())].reset_index().loc[0, 'vaf*cnv'] df_out['clonal_classification'] = df_out.apply(lambda x: 'subclonal' if x['prob'] < 0.01 else 'clonal', axis=1) # density plot dff_purities = pd.read_csv(input_purities, sep='\t') plot_ccf(cluster_assign, flat_array, density, output_path_plot, comparison, dff_purities, cut_off) # compute ccf df_out = df_out.apply(lambda x: new_ccf(x, pur), axis=1) # drop unnecessary columns df_out.drop(labels=['VAF','ccf_log2'], axis='columns', inplace=True) # write results df_out.to_csv(output_path_maf, index=False, sep='\t') if __name__ == '__main__': cli()
""" 链家二手房数据抓取 """ import requests from lxml import etree import time import random from fake_useragent import UserAgent import pymongo class LianJiaSpider: def __init__(self): self.url = 'https://lf.lianjia.com/ershoufang/pg{}/' # 3个对象 self.conn = pymongo.MongoClient('localhost', 27017) self.db = self.conn['lianjiadb'] self.myset = self.db['lianjiaset'] def get_html(self, url): headers = {'User-Agent':UserAgent().random} html = requests.get(url=url, headers=headers).text # 直接调用解析函数 self.parse_html(html) def parse_html(self, html): eobj = etree.HTML(html) li_list = eobj.xpath('//ul/li[@class="clear LOGVIEWDATA LOGCLICKDATA"]') for li in li_list: item = {} name_list = li.xpath('.//div[@class="positionInfo"]/a[1]/text()') item['name'] = name_list[0] if name_list else None address_list = li.xpath('.//div[@class="positionInfo"]/a[2]/text()') item['address'] = address_list[0] if address_list else None info_list = li.xpath('.//div[@class="houseInfo"]/text()') item['info'] = info_list[0] if info_list else None total_list = li.xpath('.//div[@class="totalPrice"]/span/text()') item['total'] = total_list[0] if total_list else None unit_list = li.xpath('.//div[@class="unitPrice"]/span/text()') item['unit'] = unit_list[0] if unit_list else None print(item) self.myset.insert_one(item) def crawl(self): for page in range(1, 101): page_url = self.url.format(page) self.get_html(url=page_url) # 控制数据抓取的频率 time.sleep(random.randint(1, 2)) if __name__ == '__main__': spider = LianJiaSpider() spider.crawl()
import rt def factorial(n): result = 1 for i in range(1, n + 1): if i % 10 == 0: rt.pause() print("i = %d" % i) result *= i return result def handler(event, context): return factorial(event["n"])
"""Tests for the awair component."""
"""COMMAND : .join , .pay , .work , .push , .aag , .climb, .ohh, .suckit, .lovestory, .bf""" import asyncio import random from telethon.tl.types import ChannelParticipantsAdmins from userbot import LOGS from darkbot.utils import admin_cmd, sudo_cmd, edit_or_reply from userbot.cmdhelp import CmdHelp @bot.on(admin_cmd(pattern="join$", outgoing=True)) @bot.on(sudo_cmd(pattern="join$", allow_sudo=True)) async def _(event): if event.fwd_from: return mentions = "`━━━━━┓ \n┓┓┓┓┓┃\n┓┓┓┓┓┃ ヽ○ノ ⇦ Me When You Joined \n┓┓┓┓┓┃. /  \n┓┓┓┓┓┃ ノ) \n┓┓┓┓┓┃\n┓┓┓┓┓┃\n┓┓┓┓┓┃\n┓┓┓┓┓┃\n┓┓┓┓┓┃\n┓┓┓┓┓┃\n┓┓┓┓┓┃\n┓┓┓┓┓┃\n┓┓┓┓┓┃\n┓┓┓┓┓┃\n┓┓┓┓┓┃\n┓┓┓┓┓┃\n┓┓┓┓┓┃\n┓┓┓┓┓┃\n┓┓┓┓┓┃\n┓┓┓┓┓┃`" chat = await event.get_input_chat() async for x in borg.iter_participants(chat, filter=ChannelParticipantsAdmins): mentions += f"" reply_message = None if event.reply_to_msg_id: reply_message = await event.get_reply_message() await reply_message.reply(mentions) else: await edit_or_reply(event, mentions) @bot.on(admin_cmd(pattern="pay$", outgoing=True)) @bot.on(sudo_cmd(pattern="pay$", allow_sudo=True)) async def _(event): if event.fwd_from: return mentions = "`█▀▀▀▀▀█░▀▀░░░█░░░░█▀▀▀▀▀█\n█░███░█░█▄░█▀▀░▄▄░█░███░█\n█░▀▀▀░█░▀█▀▀▄▀█▀▀░█░▀▀▀░█\n▀▀▀▀▀▀▀░▀▄▀▄▀▄█▄▀░▀▀▀▀▀▀▀\n█▀█▀▄▄▀░█▄░░░▀▀░▄█░▄▀█▀░▀\n░█▄▀░▄▀▀░░░▄▄▄█░▀▄▄▄▀▄▄▀▄\n░░▀█░▀▀▀▀▀▄█░▄░████ ██▀█▄\n▄▀█░░▄▀█▀█▀░█▄▀░▀█▄██▀░█▄\n░░▀▀▀░▀░█▄▀▀▄▄░▄█▀▀▀█░█▀▀\n█▀▀▀▀▀█░░██▀█░░▄█░▀░█▄░██\n█░███░█░▄▀█▀██▄▄▀▀█▀█▄░▄▄\n█░▀▀▀░█░█░░▀▀▀░█░▀▀▀▀▄█▀░\n▀▀▀▀▀▀▀░▀▀░░▀░▀░░░▀▀░▀▀▀▀`" chat = await event.get_input_chat() async for x in borg.iter_participants(chat, filter=ChannelParticipantsAdmins): mentions += f"" reply_message = None if event.reply_to_msg_id: reply_message = await event.get_reply_message() await reply_message.reply(mentions) else: await edit_or_reply(event, mentions) @bot.on(admin_cmd(pattern="climb$", outgoing=True)) @bot.on(sudo_cmd(pattern="climb$", allow_sudo=True)) async def _(event): if event.fwd_from: return mentions = "`😏/\n/▌ \n/ \\n████\n╬╬\n╬╬\n╬╬\n╬╬\n╬╬\n╬╬\n╬╬\😦\n╬╬/▌\n╬╬/\`" chat = await event.get_input_chat() async for x in borg.iter_participants(chat, filter=ChannelParticipantsAdmins): mentions += f"" reply_message = None if event.reply_to_msg_id: reply_message = await event.get_reply_message() await reply_message.reply(mentions) else: await edit_or_reply(event, mentions) @bot.on(admin_cmd(pattern="aag$", outgoing=True)) @bot.on(sudo_cmd(pattern="aag$", allow_sudo=True)) async def _(event): if event.fwd_from: return mentions = "`😲💨 🔥\n/|\ 🔥🔥\n/ \ 🔥🔥🔥`" chat = await event.get_input_chat() async for x in borg.iter_participants(chat, filter=ChannelParticipantsAdmins): mentions += f"" reply_message = None if event.reply_to_msg_id: reply_message = await event.get_reply_message() await reply_message.reply(mentions) else: await edit_or_reply(event, mentions) @bot.on(admin_cmd(pattern="push$", outgoing=True)) @bot.on(sudo_cmd(pattern="push$", allow_sudo=True)) async def _(event): if event.fwd_from: return mentions = "`. 😎\n |\👐\n / \\\n━━━━━┓ \\ \n┓┓┓┓┓┃\n┓┓┓┓┓┃ ヽ😩ノ\n┓┓┓┓┓┃   / \n┓┓┓┓┓┃ ノ)  \n┓┓┓┓┓┃\n┓┓┓┓┓┃\n┓┓┓┓┓┃\n┓┓┓┓┓┃\n┓┓┓┓┓┃\n┓┓┓┓┓┃\n┓┓┓┓┓┃\n┓┓┓┓┓┃\n┓┓┓┓┓┃\n┓┓┓┓┓┃\n┓┓┓┓┓┃\n┓┓┓┓┓┃`" chat = await event.get_input_chat() async for x in borg.iter_participants(chat, filter=ChannelParticipantsAdmins): mentions += f"" reply_message = None if event.reply_to_msg_id: reply_message = await event.get_reply_message() await reply_message.reply(mentions) else: await edit_or_reply(event, mentions) @bot.on(admin_cmd(pattern="work$", outgoing=True)) @bot.on(sudo_cmd(pattern="work$", allow_sudo=True)) async def _(event): if event.fwd_from: return mentions = "`📔📚           📚\n📓📚📖  😫  📚📚📓\n📕📚📚  📝  📗💻📘\n📖⁣📖📖📖📖📖📖📖📖`" chat = await event.get_input_chat() async for x in borg.iter_participants(chat, filter=ChannelParticipantsAdmins): mentions += f"" reply_message = None if event.reply_to_msg_id: reply_message = await event.get_reply_message() await reply_message.reply(mentions) else: await edit_or_reply(event, mentions) @bot.on(admin_cmd(pattern="suckit$", outgoing=True)) @bot.on(sudo_cmd(pattern="suckit$", allow_sudo=True)) async def _(event): if event.fwd_from: return mentions = "`......................................... \n \n𝕔𝕠𝕞𝕖 𝕥𝕠 𝕞𝕖, 𝕞𝕪 𝕔𝕙𝕚𝕝𝕕𝕣𝕖𝕟 \n`` \n. . /. ))) . . . . . . . . . (((ヽ \n/. .ノ ̄. . . ___. . . ̄ Y .\ \n| . (.\, . . . ( ͡° ͜ʖ ͡°). . . ./.) . ) \nヽ.ヽ..ᯢ._.|﹀|._._ノ₄₂₀ // \n. . .\|. 𓀐𓂸Y. . ࿕. . . / \n. . . .|. \. . ᯪ. . .|. . ᯪ. . ノ \n. . . . . \ .トー仝ーイ \n. . . . . . . |. ミ土彡 / \n. . . . . . . )\. . .° . ./( \n. . . . . . /. . .\͎̦ ̷̫ ̴́ ̴̢/̴͖. . \ \n. . . . . /. ⁶⁹ . /̴͝Ѽ̔̕☰̴̈́☰☰☰☰D,̰̱ \n. . . . /. / . . / . . .\. \. . \ \n. . . .((. . . .(. . . . .). . . .)) \n. . . .| . . . .). . . . .(|. . . / \n. . . . |. . . /. . . . /. . . ./ \n. . . . |. . ..| . . . ./. . ./. . ... . . 𓁉𓀏𓀃𓁏`" chat = await event.get_input_chat() async for x in borg.iter_participants(chat, filter=ChannelParticipantsAdmins): mentions += f"" reply_message = None if event.reply_to_msg_id: reply_message = await event.get_reply_message() await reply_message.reply(mentions) else: await edit_or_reply(event, mentions) @bot.on(admin_cmd(pattern="ohh$", outgoing=True)) @bot.on(sudo_cmd(pattern="ohh$", allow_sudo=True)) async def _(event): if event.fwd_from: return mentions = "`´´´´´████████´´\n´´`´███▒▒▒▒███´´´´´\n´´´███▒●▒▒●▒██´´´\n´´´███▒▒👄▒▒██´´\n´´█████▒▒████´´´´´\n´█████▒▒▒▒███´´\n█████▒▒▒▒▒▒███´´´´\n´´▓▓▓▓▓▓▓▓▓▓▓▓▓▒´´\n´´▒▒▒▒▓▓▓▓▓▓▓▓▓▒´´´´´\n´.▒▒▒´´▓▓▓▓▓▓▓▓▒´´´´´\n´.▒▒´´´´▓▓▓▓▓▓▓▒\n..▒▒.´´´´▓▓▓▓▓▓▓▒\n´▒▒▒▒▒▒▒▒▒▒▒▒\n´´´´´´´´´███████´´´´\n´´´´´´´´████████´´´´´´\n´´´´´´´█████████´´´´´\n´´´´´´██████████´´´\n´´´´´´██████████´´\n´´´´´´´█████████´\n´´´´´´´█████████´\n´´´´´´´´████████´´´\n´´´´´´´´´´´▒▒▒▒▒´´´\n´´´´´´´´´´▒▒▒▒▒´´´\n´´´´´´´´´´▒▒▒▒▒´´´\n´´´´´´´´´´▒▒´▒▒´´´\n´´´´´´´´´▒▒´´▒▒´´´\n´´´´´´´´´´▒▒´´´▒▒´´´\n´´´´´´´´´▒▒´´´▒▒´´´\n´´´´´´´´▒▒´´´´´▒▒´´´\n´´´´´´´´▒▒´´´´´´▒▒´´´\n´´´´´´´´███´´´´███´´´\n´´´´´´´´████´´███´´´\n´´´´´´´´█´´███´´████´´´`" chat = await event.get_input_chat() async for x in borg.iter_participants(chat, filter=ChannelParticipantsAdmins): mentions += f"" reply_message = None if event.reply_to_msg_id: reply_message = await event.get_reply_message() await reply_message.reply(mentions) else: await edit_or_reply(event, mentions) @bot.on(admin_cmd(pattern="lovestory$", outgoing=True)) @bot.on(sudo_cmd(pattern="lovestory$", allow_sudo=True)) async def _(event): if event.fwd_from: return animation_interval = 3 animation_ttl = range(0, 103) await edit_or_reply(event, "Starting asf") animation_chars = [ "1 ❤️ love story", " 😐 😕 \n/👕\ <👗\ \n 👖 /|", " 😉 😳 \n/👕\ /👗\ \n 👖 /|", " 😚 😒 \n/👕\ <👗> \n 👖 /|", " 😍 ☺️ \n/👕\ /👗\ \n 👖 /|", " 😍 😍 \n/👕\ /👗\ \n 👖 /|", " 😘 😊 \n /👕\/👗\ \n 👖 /|", " 😳 😁 \n /|\ /👙\ \n / / |", "😈 /😰\ \n<|\ 👙 \n /🍆 / |", "😅 \n/(),✊😮 \n /\ _/\\/|", "😎 \n/\\_,__😫 \n // // \\", "😖 \n/\\_,💦_😋 \n // // \\", " 😭 ☺️ \n /|\ /(👶)\ \n /!\ / \ ", "The End 😂...", ] for i in animation_ttl: await asyncio.sleep(animation_interval) await event.edit(animation_chars[i % 103]) @bot.on(admin_cmd(pattern="bf$", outgoing=True)) @bot.on(sudo_cmd(pattern="bf$", allow_sudo=True)) async def pressf(f): if f.fwd_from: return """Pays respects""" args = f.text.split() arg = (f.text.split(" ", 1))[1] if len(args) > 1 else None if len(args) == 1: r = random.randint(0, 3) LOGS.info(r) if r == 0: await edit_or_reply(f, "┏━━━┓\n┃┏━━┛\n┃┗━━┓\n┃┏━━┛\n┃┃\n┗┛") elif r == 1: await edit_or_reply(f, "╭━━━╮\n┃╭━━╯\n┃╰━━╮\n┃╭━━╯\n┃┃\n╰╯") else: arg = "F" if arg is not None: out = "" F_LENGTHS = [5, 1, 1, 4, 1, 1, 1] for line in F_LENGTHS: c = max(round(line / len(arg)), 1) out += (arg * c) + "\n" await edit_or_reply(f"`" + out + "`") @bot.on(admin_cmd(pattern="session$", outgoing=True)) @bot.on(sudo_cmd(pattern="session$", allow_sudo=True)) async def _(event): if event.fwd_from: return mentions = "**telethon.errors.rpcerrorlist.AuthKeyDuplicatedError: The authorization key (session file) was used under two different IP addresses simultaneously, and can no longer be used. Use the same session exclusively, or use different sessions (caused by GetMessagesRequest)**" await edit_or_reply(event, mentions) CmdHelp("fun2").add_command( "join", None, "Use and see" ).add_command( "bf", None, "Use and see" ).add_command( "push", None, "Use and see" ).add_command( "lovestory", None, "Use and see" ).add_command( "session", None, "Use and see" ).add_command( "ohh", None, "Use and see" ).add_command( "suckit", None, "Use and see" ).add_command( "work", None, "Use and see" ).add_command( "aag", None, "Use and see" ).add_command( "climb", None, "Use and see" ).add_command( "pay", None, "Use and see" ).add()
"""archetypal OpaqueMaterial.""" import collections import numpy as np from sigfig import round from validator_collection import validators from archetypal.template.materials.material_base import MaterialBase from archetypal.utils import log class NoMassMaterial(MaterialBase): """Use this component to create a custom no mass material.""" _ROUGHNESS_TYPES = ( "VeryRough", "Rough", "MediumRough", "MediumSmooth", "Smooth", "VerySmooth", ) __slots__ = ( "_roughness", "_solar_absorptance", "_thermal_emittance", "_visible_absorptance", "_moisture_diffusion_resistance", "_r_value", ) def __init__( self, Name, RValue, SolarAbsorptance=0.7, ThermalEmittance=0.9, VisibleAbsorptance=0.7, Roughness="Rough", MoistureDiffusionResistance=50, **kwargs, ): """Initialize an opaque material. Args: Name (str): The name of the material. RValue (float): Number for the R-value of the material [m2-K/W]. SolarAbsorptance (float): An number between 0 and 1 that represents the absorptance of solar radiation by the material. The default is set to 0.7, which is common for most non-metallic materials. ThermalEmittance (float): An number between 0 and 1 that represents the thermal absorptance of the material. The default is set to 0.9, which is common for most non-metallic materials. For long wavelength radiant exchange, thermal emissivity and thermal emittance are equal to thermal absorptance. VisibleAbsorptance (float): An number between 0 and 1 that represents the absorptance of visible light by the material. The default is set to 0.7, which is common for most non-metallic materials. Roughness (str): A text value that indicated the roughness of your material. This can be either "VeryRough", "Rough", "MediumRough", "MediumSmooth", "Smooth", and "VerySmooth". The default is set to "Rough". MoistureDiffusionResistance (float): the factor by which the vapor diffusion in the material is impeded, as compared to diffusion in stagnant air [%]. **kwargs: keywords passed to parent constructors. """ super(NoMassMaterial, self).__init__(Name, **kwargs) self.r_value = RValue self.Roughness = Roughness self.SolarAbsorptance = SolarAbsorptance self.ThermalEmittance = ThermalEmittance self.VisibleAbsorptance = VisibleAbsorptance self.MoistureDiffusionResistance = MoistureDiffusionResistance @property def r_value(self): """Get or set the thermal resistance [m2-K/W].""" return self._r_value @r_value.setter def r_value(self, value): self._r_value = validators.float(value, minimum=0) @property def Roughness(self): """Get or set the roughness of the material. Hint: choices are: "VeryRough", "Rough", "MediumRough", "MediumSmooth", "Smooth", "VerySmooth". """ return self._roughness @Roughness.setter def Roughness(self, value): assert value in self._ROUGHNESS_TYPES, ( f"Invalid value '{value}' for material roughness. Roughness must be one " f"of the following:\n{self._ROUGHNESS_TYPES}" ) self._roughness = value @property def SolarAbsorptance(self): """Get or set the solar absorptance of the material [-].""" return self._solar_absorptance @SolarAbsorptance.setter def SolarAbsorptance(self, value): self._solar_absorptance = validators.float(value, minimum=0, maximum=1) @property def ThermalEmittance(self): """Get or set the thermal emittance of the material [-].""" return self._thermal_emittance @ThermalEmittance.setter def ThermalEmittance(self, value): self._thermal_emittance = validators.float(value, minimum=0, maximum=1) @property def VisibleAbsorptance(self): """Get or set the visible absorptance of the material [-].""" return self._visible_absorptance @VisibleAbsorptance.setter def VisibleAbsorptance(self, value): self._visible_absorptance = validators.float( value, minimum=0, maximum=1, allow_empty=True ) @property def MoistureDiffusionResistance(self): """Get or set the vapor resistance factor of the material [%].""" return self._moisture_diffusion_resistance @MoistureDiffusionResistance.setter def MoistureDiffusionResistance(self, value): self._moisture_diffusion_resistance = validators.float(value, minimum=0) def combine(self, other, weights=None, allow_duplicates=False): """Combine two OpaqueMaterial objects. Args: weights (list-like, optional): A list-like object of len 2. If None, the density of the OpaqueMaterial of each objects is used as a weighting factor. other (OpaqueMaterial): The other OpaqueMaterial object the combine with. Returns: OpaqueMaterial: A new combined object made of self + other. """ # Check if other is the same type as self if not isinstance(other, self.__class__): msg = "Cannot combine %s with %s" % ( self.__class__.__name__, other.__class__.__name__, ) raise NotImplementedError(msg) # Check if other is not the same as self if self == other: return self if not weights: log( 'using OpaqueMaterial density as weighting factor in "{}" ' "combine.".format(self.__class__.__name__) ) weights = [self.Density, other.Density] meta = self._get_predecessors_meta(other) new_obj = NoMassMaterial( **meta, Roughness=self._str_mean(other, attr="Roughness", append=False), SolarAbsorptance=self.float_mean(other, "SolarAbsorptance", weights), r_value=self.float_mean(other, "r_value", weights), ThermalEmittance=self.float_mean(other, "ThermalEmittance", weights), VisibleAbsorptance=self.float_mean(other, "VisibleAbsorptance", weights), TransportCarbon=self.float_mean(other, "TransportCarbon", weights), TransportDistance=self.float_mean(other, "TransportDistance", weights), TransportEnergy=self.float_mean(other, "TransportEnergy", weights), SubstitutionRatePattern=self.float_mean( other, "SubstitutionRatePattern", weights=None ), SubstitutionTimestep=self.float_mean( other, "SubstitutionTimestep", weights ), Cost=self.float_mean(other, "Cost", weights), EmbodiedCarbon=self.float_mean(other, "EmbodiedCarbon", weights), EmbodiedEnergy=self.float_mean(other, "EmbodiedEnergy", weights), MoistureDiffusionResistance=self.float_mean( other, "MoistureDiffusionResistance", weights ), ) new_obj.predecessors.update(self.predecessors + other.predecessors) return new_obj def to_dict(self): """Return OpaqueMaterial dictionary representation.""" self.validate() # Validate object before trying to get json format data_dict = collections.OrderedDict() data_dict["$id"] = str(self.id) data_dict["MoistureDiffusionResistance"] = self.MoistureDiffusionResistance data_dict["Roughness"] = self.Roughness data_dict["SolarAbsorptance"] = round(self.SolarAbsorptance, 2) data_dict["ThermalEmittance"] = round(self.ThermalEmittance, 2) data_dict["VisibleAbsorptance"] = round(self.VisibleAbsorptance, 2) data_dict["RValue"] = round(self.r_value, 3) data_dict["Cost"] = self.Cost data_dict["EmbodiedCarbon"] = self.EmbodiedCarbon data_dict["EmbodiedEnergy"] = self.EmbodiedEnergy data_dict["SubstitutionRatePattern"] = self.SubstitutionRatePattern data_dict["SubstitutionTimestep"] = self.SubstitutionTimestep data_dict["TransportCarbon"] = self.TransportCarbon data_dict["TransportDistance"] = self.TransportDistance data_dict["TransportEnergy"] = self.TransportEnergy data_dict["Category"] = self.Category data_dict["Comments"] = validators.string(self.Comments, allow_empty=True) data_dict["DataSource"] = self.DataSource data_dict["Name"] = self.Name return data_dict @classmethod def from_dict(cls, data, **kwargs): """Create an NoMassMaterial from a dictionary. Args: data (dict): The python dictionary. **kwargs: keywords passed to MaterialBase constructor. .. code-block:: python { "$id": "140532076832464", "Name": "R13LAYER", "MoistureDiffusionResistance": 50.0, "Roughness": "Rough", "SolarAbsorptance": 0.75, "ThermalEmittance": 0.9, "VisibleAbsorptance": 0.75, "RValue": 2.29, "Cost": 0.0, "EmbodiedCarbon": 0.0, "EmbodiedEnergy": 0.0, "SubstitutionRatePattern": [1.0], "SubstitutionTimestep": 100.0, "TransportCarbon": 0.0, "TransportDistance": 0.0, "TransportEnergy": 0.0, "Category": "Uncategorized", "Comments": "", "DataSource": None, } """ _id = data.pop("$id") return cls(id=_id, **data, **kwargs) @classmethod def from_epbunch(cls, epbunch, **kwargs): """Create a NoMassMaterial from an EpBunch. Note that "Material", "Material:NoMAss" and "Material:AirGap" objects are supported. Hint: (From EnergyPlus Manual): When a user enters such a “no mass” material into EnergyPlus, internally the properties of this layer are converted to approximate the properties of air (density, specific heat, and conductivity) with the thickness adjusted to maintain the user’s desired R-Value. This allowed such layers to be handled internally in the same way as other layers without any additional changes to the code. This solution was deemed accurate enough as air has very little thermal mass and it made the coding of the state space method simpler. For Material:AirGap, a similar strategy is used, with the exception that solar properties (solar and visible absorptance and emittance) are assumed null. Args: epbunch (EpBunch): EP-Construction object **kwargs: """ if epbunch.key.upper() == "MATERIAL": return cls( Conductivity=epbunch.Conductivity, Density=epbunch.Density, Roughness=epbunch.Roughness, SolarAbsorptance=epbunch.Solar_Absorptance, SpecificHeat=epbunch.Specific_Heat, ThermalEmittance=epbunch.Thermal_Absorptance, VisibleAbsorptance=epbunch.Visible_Absorptance, Name=epbunch.Name, idf=epbunch.theidf, **kwargs, ) elif epbunch.key.upper() == "MATERIAL:NOMASS": # Assume properties of air. return cls( Conductivity=0.02436, # W/mK, dry air at 0 °C and 100 kPa Density=1.2754, # dry air at 0 °C and 100 kPa. Roughness=epbunch.Roughness, SolarAbsorptance=epbunch.Solar_Absorptance, SpecificHeat=100.5, # J/kg-K, dry air at 0 °C and 100 kPa ThermalEmittance=epbunch.Thermal_Absorptance, VisibleAbsorptance=epbunch.Visible_Absorptance, Name=epbunch.Name, idf=epbunch.theidf, **kwargs, ) elif epbunch.key.upper() == "MATERIAL:AIRGAP": gas_prop = { "AIR": dict( Conductivity=0.02436, Density=1.754, SpecificHeat=1000, ThermalEmittance=0.001, ), "ARGON": dict( Conductivity=0.016, Density=1.784, SpecificHeat=1000, ThermalEmittance=0.001, ), "KRYPTON": dict( Conductivity=0.0088, Density=3.749, SpecificHeat=1000, ThermalEmittance=0.001, ), "XENON": dict( Conductivity=0.0051, Density=5.761, SpecificHeat=1000, ThermalEmittance=0.001, ), "SF6": dict( Conductivity=0.001345, Density=6.17, SpecificHeat=1000, ThermalEmittance=0.001, ), } for gasname, properties in gas_prop.items(): if gasname.lower() in epbunch.Name.lower(): thickness = properties["Conductivity"] * epbunch.Thermal_Resistance return cls( Name=epbunch.Name, Thickness=thickness, **properties, idf=epbunch.theidf, ) else: thickness = ( gas_prop["AIR"]["Conductivity"] * epbunch.Thermal_Resistance ) return cls( Name=epbunch.Name, Thickness=thickness, **gas_prop["AIR"], idf=epbunch.theidf, ) else: raise NotImplementedError( "Material '{}' of type '{}' is not yet " "supported. Please contact package " "authors".format(epbunch.Name, epbunch.key) ) def to_epbunch(self, idf): """Convert self to an epbunch given an IDF model. Args: idf (IDF): An IDF model. Returns: EpBunch: The EpBunch object added to the idf model. """ return idf.newidfobject( "MATERIAL:NOMASS", Roughness=self.Roughness, Thermal_Resistance=self.r_value, Thermal_Absorptance=self.ThermalEmittance, Solar_Absorptance=self.SolarAbsorptance, Visible_Absorptance=self.VisibleAbsorptance, ) def validate(self): """Validate object and fill in missing values. Hint: Some OpaqueMaterial don't have a default value, therefore an empty string is parsed. This breaks the UmiTemplate Editor, therefore we set a value on these attributes (if necessary) in this validation step. """ if getattr(self, "SolarAbsorptance") == "": setattr(self, "SolarAbsorptance", 0.7) if getattr(self, "ThermalEmittance") == "": setattr(self, "ThermalEmittance", 0.9) if getattr(self, "VisibleAbsorptance") == "": setattr(self, "VisibleAbsorptance", 0.7) return self def mapping(self, validate=True): """Get a dict based on the object properties, useful for dict repr. Args: validate (bool): If True, try to validate object before returning the mapping. """ if validate: self.validate() return dict( RValue=self.r_value, MoistureDiffusionResistance=self.MoistureDiffusionResistance, Roughness=self.Roughness, SolarAbsorptance=self.SolarAbsorptance, ThermalEmittance=self.ThermalEmittance, VisibleAbsorptance=self.VisibleAbsorptance, Cost=self.Cost, EmbodiedCarbon=self.EmbodiedCarbon, EmbodiedEnergy=self.EmbodiedEnergy, SubstitutionRatePattern=self.SubstitutionRatePattern, SubstitutionTimestep=self.SubstitutionTimestep, TransportCarbon=self.TransportCarbon, TransportDistance=self.TransportDistance, TransportEnergy=self.TransportEnergy, Category=self.Category, Comments=self.Comments, DataSource=self.DataSource, Name=self.Name, ) def duplicate(self): """Get copy of self.""" return self.__copy__() def __add__(self, other): """Overload + to implement self.combine. Args: other (OpaqueMaterial): """ return self.combine(other) def __hash__(self): """Return the hash value of self.""" return hash((self.__class__.__name__, getattr(self, "Name", None))) def __eq__(self, other): """Assert self is equivalent to other.""" if not isinstance(other, NoMassMaterial): return NotImplemented else: return all( [ self.r_value == other.r_value, self.SolarAbsorptance == other.SolarAbsorptance, self.ThermalEmittance == other.ThermalEmittance, self.VisibleAbsorptance == other.VisibleAbsorptance, self.Roughness == other.Roughness, self.Cost == other.Cost, self.MoistureDiffusionResistance == self.MoistureDiffusionResistance, self.EmbodiedCarbon == other.EmbodiedCarbon, self.EmbodiedEnergy == other.EmbodiedEnergy, self.TransportCarbon == other.TransportCarbon, self.TransportDistance == other.TransportDistance, self.TransportEnergy == other.TransportEnergy, np.array_equal( self.SubstitutionRatePattern, other.SubstitutionRatePattern ), self.SubstitutionTimestep == other.SubstitutionTimestep, ] ) def __copy__(self): """Create a copy of self.""" new_om = self.__class__(**self.mapping()) return new_om
from django.contrib import admin from . import models @admin.register(models.FacebookID) class FacebookIDAdmin(admin.ModelAdmin): list_display = ('fb_id', 'user') readonly_fields = ('fb_id', 'user', 'create')
'''Performs the predictor step for the continuation power flow ''' from numpy import r_, array, angle, zeros, linalg, exp from scipy.sparse import hstack, vstack from scipy.sparse.linalg import spsolve from pypower.dSbus_dV import dSbus_dV from pypower.cpf_p_jac import cpf_p_jac def cpf_predictor(V, lam, Ybus, Sxfr, pv, pq, step, z, Vprv, lamprv, parameterization): # sizes pvpq = r_[pv, pq] nb = len(V) npv = len(pv) npq = len(pq) # compute Jacobian for the power flow equations dSbus_dVm, dSbus_dVa = dSbus_dV(Ybus, V) j11 = dSbus_dVa[array([pvpq]).T, pvpq].real j12 = dSbus_dVm[array([pvpq]).T, pq].real j21 = dSbus_dVa[array([pq]).T, pvpq].imag j22 = dSbus_dVm[array([pq]).T, pq].imag J = vstack([ hstack([j11, j12]), hstack([j21, j22]) ], format="csr") dF_dlam = -r_[Sxfr[pvpq].real, Sxfr[pq].imag].reshape((-1,1)) dP_dV, dP_dlam = cpf_p_jac(parameterization, z, V, lam, Vprv, lamprv, pv, pq) # linear operator for computing the tangent predictor J = vstack([ hstack([J, dF_dlam]), hstack([dP_dV, dP_dlam]) ], format="csr") Vaprv = angle(V) Vmprv = abs(V) # compute normalized tangent predictor s = zeros(npv+2*npq+1) s[-1] = 1 z[r_[pvpq, nb+pq, 2*nb]] = spsolve(J, s) z = z / linalg.norm(z) Va0 = Vaprv Vm0 = Vmprv lam0 = lam # prediction for next step Va0[pvpq] = Vaprv[pvpq] + step * z[pvpq] Vm0[pq] = Vmprv[pq] + step * z[nb+pq] lam0 = lam + step * z[2*nb] V0 = Vm0 * exp(1j * Va0) return V0, lam0, z
import numpy as np from psyneulink.core.components.functions.transferfunctions import Logistic from psyneulink.core.components.mechanisms.processing.transfermechanism import TransferMechanism from psyneulink.core.components.process import Process from psyneulink.core.components.projections.pathway.mappingprojection import MappingProjection from psyneulink.core.components.system import System from psyneulink.core.globals.keywords import EXECUTION, LEARNING, PROCESSING, SOFT_CLAMP, VALUE from psyneulink.core.globals.preferences.componentpreferenceset import REPORT_OUTPUT_PREF, VERBOSE_PREF from psyneulink.library.components.mechanisms.processing.objective.comparatormechanism import MSE def test_multilayer(): Input_Layer = TransferMechanism( name='Input Layer', function=Logistic, default_variable=np.zeros((2,)), ) Hidden_Layer_1 = TransferMechanism( name='Hidden Layer_1', function=Logistic(), # default_variable=np.zeros((5,)), size=5 ) Hidden_Layer_2 = TransferMechanism( name='Hidden Layer_2', function=Logistic(), default_variable=[0, 0, 0, 0], ) Output_Layer = TransferMechanism( name='Output Layer', function=Logistic, default_variable=[0, 0, 0], ) Input_Weights_matrix = (np.arange(2 * 5).reshape((2, 5)) + 1) / (2 * 5) Middle_Weights_matrix = (np.arange(5 * 4).reshape((5, 4)) + 1) / (5 * 4) Output_Weights_matrix = (np.arange(4 * 3).reshape((4, 3)) + 1) / (4 * 3) # TEST PROCESS.LEARNING WITH: # CREATION OF FREE STANDING PROJECTIONS THAT HAVE NO LEARNING (Input_Weights, Middle_Weights and Output_Weights) # INLINE CREATION OF PROJECTIONS (Input_Weights, Middle_Weights and Output_Weights) # NO EXPLICIT CREATION OF PROJECTIONS (Input_Weights, Middle_Weights and Output_Weights) # This projection will be used by the process below by referencing it in the process' pathway; # note: sender and receiver args don't need to be specified Input_Weights = MappingProjection( name='Input Weights', matrix=Input_Weights_matrix, ) # This projection will be used by the process below by assigning its sender and receiver args # to mechanismss in the pathway Middle_Weights = MappingProjection( name='Middle Weights', sender=Hidden_Layer_1, receiver=Hidden_Layer_2, matrix=Middle_Weights_matrix, ) # Commented lines in this projection illustrate variety of ways in which matrix and learning signals can be specified Output_Weights = MappingProjection( name='Output Weights', sender=Hidden_Layer_2, receiver=Output_Layer, matrix=Output_Weights_matrix, ) p = Process( # default_variable=[0, 0], size=2, pathway=[ Input_Layer, # The following reference to Input_Weights is needed to use it in the pathway # since it's sender and receiver args are not specified in its declaration above Input_Weights, Hidden_Layer_1, # No projection specification is needed here since the sender arg for Middle_Weights # is Hidden_Layer_1 and its receiver arg is Hidden_Layer_2 # Middle_Weights, Hidden_Layer_2, # Output_Weights does not need to be listed for the same reason as Middle_Weights # If Middle_Weights and/or Output_Weights is not declared above, then the process # will assign a default for missing projection # Output_Weights, Output_Layer ], clamp_input=SOFT_CLAMP, learning=LEARNING, learning_rate=1.0, target=[0, 0, 1], prefs={ VERBOSE_PREF: False, REPORT_OUTPUT_PREF: False }, ) stim_list = {Input_Layer: [[-1, 30]]} target_list = {Output_Layer: [[0, 0, 1]]} def show_target(): i = s.input t = s.target_input_states[0].parameters.value.get(s) print('\nOLD WEIGHTS: \n') print('- Input Weights: \n', Input_Weights.get_mod_matrix(s)) print('- Middle Weights: \n', Middle_Weights.get_mod_matrix(s)) print('- Output Weights: \n', Output_Weights.get_mod_matrix(s)) print('\nSTIMULI:\n\n- Input: {}\n- Target: {}\n'.format(i, t)) print('ACTIVITY FROM OLD WEIGHTS: \n') print('- Middle 1: \n', Hidden_Layer_1.parameters.value.get(s)) print('- Middle 2: \n', Hidden_Layer_2.parameters.value.get(s)) print('- Output:\n', Output_Layer.parameters.value.get(s)) s = System( processes=[p], targets=[0, 0, 1], learning_rate=1.0, ) # s.reportOutputPref = True results = s.run( num_trials=10, inputs=stim_list, targets=target_list, call_after_trial=show_target, ) objective_output_layer = s.mechanisms[4] results_list = [] for elem in s.results: for nested_elem in elem: nested_elem = nested_elem.tolist() try: iter(nested_elem) except TypeError: nested_elem = [nested_elem] results_list.extend(nested_elem) expected_output = [ (Output_Layer.get_output_values(s), [np.array([0.22686074, 0.25270212, 0.91542149])]), (objective_output_layer.output_states[MSE].parameters.value.get(s), np.array(0.04082589331852094)), (Input_Weights.get_mod_matrix(s), np.array([ [ 0.09900247, 0.19839653, 0.29785764, 0.39739191, 0.49700232], [ 0.59629092, 0.69403786, 0.79203411, 0.89030237, 0.98885379], ])), (Middle_Weights.get_mod_matrix(s), np.array([ [ 0.09490249, 0.10488719, 0.12074013, 0.1428774 ], [ 0.29677354, 0.30507726, 0.31949676, 0.3404652 ], [ 0.49857336, 0.50526254, 0.51830509, 0.53815062], [ 0.70029406, 0.70544225, 0.71717037, 0.73594383], [ 0.90192903, 0.90561554, 0.91609668, 0.93385292], ])), (Output_Weights.get_mod_matrix(s), np.array([ [-0.74447522, -0.71016859, 0.31575293], [-0.50885177, -0.47444784, 0.56676582], [-0.27333719, -0.23912033, 0.8178167 ], [-0.03767547, -0.00389039, 1.06888608], ])), (results, [ [np.array([0.8344837 , 0.87072018, 0.89997433])], [np.array([0.77970193, 0.83263138, 0.90159627])], [np.array([0.70218502, 0.7773823 , 0.90307765])], [np.array([0.60279149, 0.69958079, 0.90453143])], [np.array([0.4967927 , 0.60030321, 0.90610082])], [np.array([0.4056202 , 0.49472391, 0.90786617])], [np.array([0.33763025, 0.40397637, 0.90977675])], [np.array([0.28892812, 0.33633532, 0.9117193 ])], [np.array([0.25348771, 0.28791896, 0.9136125 ])], [np.array([0.22686074, 0.25270212, 0.91542149])] ]), ] # Test nparray output of log for Middle_Weights for i in range(len(expected_output)): val, expected = expected_output[i] # setting absolute tolerance to be in accordance with reference_output precision # if you do not specify, assert_allcose will use a relative tolerance of 1e-07, # which WILL FAIL unless you gather higher precision values to use as reference np.testing.assert_allclose(val, expected, atol=1e-08, err_msg='Failed on expected_output[{0}]'.format(i)) def test_multilayer_log(): Input_Layer = TransferMechanism( name='Input Layer', function=Logistic, default_variable=np.zeros((2,)), ) Hidden_Layer_1 = TransferMechanism( name='Hidden Layer_1', function=Logistic(), # default_variable=np.zeros((5,)), size=5 ) Hidden_Layer_2 = TransferMechanism( name='Hidden Layer_2', function=Logistic(), default_variable=[0, 0, 0, 0], ) Output_Layer = TransferMechanism( name='Output Layer', function=Logistic, default_variable=[0, 0, 0], ) Input_Weights_matrix = (np.arange(2 * 5).reshape((2, 5)) + 1) / (2 * 5) Middle_Weights_matrix = (np.arange(5 * 4).reshape((5, 4)) + 1) / (5 * 4) Output_Weights_matrix = (np.arange(4 * 3).reshape((4, 3)) + 1) / (4 * 3) # TEST PROCESS.LEARNING WITH: # CREATION OF FREE STANDING PROJECTIONS THAT HAVE NO LEARNING (Input_Weights, Middle_Weights and Output_Weights) # INLINE CREATION OF PROJECTIONS (Input_Weights, Middle_Weights and Output_Weights) # NO EXPLICIT CREATION OF PROJECTIONS (Input_Weights, Middle_Weights and Output_Weights) # This projection will be used by the process below by referencing it in the process' pathway; # note: sender and receiver args don't need to be specified Input_Weights = MappingProjection( name='Input Weights', matrix=Input_Weights_matrix, ) # This projection will be used by the process below by assigning its sender and receiver args # to mechanismss in the pathway Middle_Weights = MappingProjection( name='Middle Weights', sender=Hidden_Layer_1, receiver=Hidden_Layer_2, matrix=Middle_Weights_matrix, ) # Commented lines in this projection illustrate variety of ways in which matrix and learning signals can be specified Output_Weights = MappingProjection( name='Output Weights', sender=Hidden_Layer_2, receiver=Output_Layer, matrix=Output_Weights_matrix, ) p = Process( # default_variable=[0, 0], size=2, pathway=[ Input_Layer, # The following reference to Input_Weights is needed to use it in the pathway # since it's sender and receiver args are not specified in its declaration above Input_Weights, Hidden_Layer_1, # No projection specification is needed here since the sender arg for Middle_Weights # is Hidden_Layer_1 and its receiver arg is Hidden_Layer_2 # Middle_Weights, Hidden_Layer_2, # Output_Weights does not need to be listed for the same reason as Middle_Weights # If Middle_Weights and/or Output_Weights is not declared above, then the process # will assign a default for missing projection # Output_Weights, Output_Layer ], clamp_input=SOFT_CLAMP, learning=LEARNING, learning_rate=1.0, target=[0, 0, 1], prefs={ VERBOSE_PREF: False, REPORT_OUTPUT_PREF: False }, ) Middle_Weights.set_log_conditions(('mod_matrix', PROCESSING)) stim_list = {Input_Layer: [[-1, 30]]} target_list = {Output_Layer: [[0, 0, 1]]} def show_target(): i = s.input t = s.target_input_states[0].parameters.value.get(s) print('\nOLD WEIGHTS: \n') print('- Input Weights: \n', Input_Weights.get_mod_matrix(s)) print('- Middle Weights: \n', Middle_Weights.get_mod_matrix(s)) print('- Output Weights: \n', Output_Weights.get_mod_matrix(s)) print('\nSTIMULI:\n\n- Input: {}\n- Target: {}\n'.format(i, t)) print('ACTIVITY FROM OLD WEIGHTS: \n') print('- Middle 1: \n', Hidden_Layer_1.parameters.value.get(s)) print('- Middle 2: \n', Hidden_Layer_2.parameters.value.get(s)) print('- Output:\n', Output_Layer.parameters.value.get(s)) s = System( processes=[p], targets=[0, 0, 1], learning_rate=1.0, ) s.run( num_trials=10, inputs=stim_list, targets=target_list, call_after_trial=show_target, ) expected_log_val = np.array( [ ['System-0'], [[ [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[2], [2], [2], [2], [2], [2], [2], [2], [2], [2]], [ [[ 0.05, 0.1 , 0.15, 0.2 ], [ 0.25, 0.3 , 0.35, 0.4 ], [ 0.45, 0.5 , 0.55, 0.6 ], [ 0.65, 0.7 , 0.75, 0.8 ], [ 0.85, 0.9 , 0.95, 1. ]], [[ 0.04789907, 0.09413833, 0.14134241, 0.18938924], [ 0.24780811, 0.29388455, 0.34096758, 0.38892985], [ 0.44772121, 0.49364209, 0.54060947, 0.58849095], [ 0.64763875, 0.69341202, 0.74026967, 0.78807449], [ 0.84756101, 0.89319513, 0.93994932, 0.98768187]], [[ 0.04738148, 0.08891106, 0.13248753, 0.177898 ], [ 0.24726841, 0.28843403, 0.33173452, 0.37694783], [ 0.44716034, 0.48797777, 0.53101423, 0.57603893], [ 0.64705774, 0.6875443 , 0.73032986, 0.77517531], [ 0.84696096, 0.88713512, 0.92968378, 0.97435998]], [[ 0.04937771, 0.08530344, 0.12439361, 0.16640433], [ 0.24934878, 0.28467436, 0.32329947, 0.36496974], [ 0.44932147, 0.48407216, 0.52225175, 0.56359587], [ 0.64929589, 0.68349948, 0.72125508, 0.76228876], [ 0.84927212, 0.88295836, 0.92031297, 0.96105307]], [[ 0.05440291, 0.08430585, 0.1183739 , 0.15641064], [ 0.25458348, 0.28363519, 0.3170288 , 0.35455942], [ 0.45475764, 0.48299299, 0.51573974, 0.55278488], [ 0.65492462, 0.68238209, 0.7145124 , 0.75109483], [ 0.85508376, 0.88180465, 0.91335119, 0.94949538]], [[ 0.06177218, 0.0860581 , 0.11525064, 0.14926369], [ 0.26225812, 0.28546004, 0.31377611, 0.34711631], [ 0.46272625, 0.48488774, 0.51236246, 0.54505667], [ 0.66317453, 0.68434373, 0.7110159 , 0.74309381], [ 0.86360121, 0.88382991, 0.9097413 , 0.94123489]], [[ 0.06989398, 0.08959148, 0.11465594, 0.14513241], [ 0.27071639, 0.2891398 , 0.31315677, 0.34281389], [ 0.47150846, 0.48870843, 0.5117194 , 0.54058946], [ 0.67226675, 0.68829929, 0.71035014, 0.73846891], [ 0.87298831, 0.88791376, 0.90905395, 0.93646 ]], [[ 0.07750784, 0.09371987, 0.11555569, 0.143181 ], [ 0.27864693, 0.29343991, 0.31409396, 0.3407813 ], [ 0.47974374, 0.49317377, 0.5126926 , 0.53847878], [ 0.68079346, 0.69292265, 0.71135777, 0.73628353], [ 0.88179203, 0.89268732, 0.91009431, 0.93420362]], [[ 0.0841765 , 0.09776672, 0.11711835, 0.14249779], [ 0.28559463, 0.29765609, 0.31572199, 0.34006951], [ 0.48695967, 0.49755273, 0.51438349, 0.5377395 ], [ 0.68826567, 0.69745713, 0.71310872, 0.735518 ], [ 0.88950757, 0.89736946, 0.91190228, 0.93341316]], [[ 0.08992499, 0.10150104, 0.11891032, 0.14250149], [ 0.29158517, 0.30154765, 0.31758943, 0.34007336], [ 0.49318268, 0.50159531, 0.51632339, 0.5377435 ], [ 0.69471052, 0.70164382, 0.71511777, 0.73552215], [ 0.8961628 , 0.90169281, 0.91397691, 0.93341744]]] ]] ], dtype=object ) log_val = Middle_Weights.log.nparray(entries='mod_matrix', header=False) assert log_val[0] == expected_log_val[0] for i in range(1, len(log_val)): try: np.testing.assert_allclose(log_val[i], expected_log_val[i]) except TypeError: for j in range(len(log_val[i])): np.testing.assert_allclose( np.array(log_val[i][j][0]), np.array(expected_log_val[i][j][0]), atol=1e-08, err_msg='Failed on test item {0} of logged values'.format(i) ) Middle_Weights.log.print_entries() # Test Programatic logging Hidden_Layer_2.log.log_values(VALUE, s) log_val = Hidden_Layer_2.log.nparray(header=False) expected_log_val = np.array( [ ['System-0'], [[ [[1]], [[0]], [[0]], [[0]], [[[0.8565238418942037, 0.8601053239957609, 0.8662098921116546, 0.8746933736954071]]] ]] ], dtype=object ) assert log_val[0] == expected_log_val[0] for i in range(1, len(log_val)): try: np.testing.assert_allclose(log_val[i], expected_log_val[i]) except TypeError: for j in range(len(log_val[i])): np.testing.assert_allclose( np.array(log_val[i][j][0]), np.array(expected_log_val[i][j][0]), atol=1e-08, err_msg='Failed on test item {0} of logged values'.format(i) ) Hidden_Layer_2.log.print_entries() # Clear log and test with logging of weights set to LEARNING for another 5 trials of learning Middle_Weights.log.clear_entries(entries=None, confirm=False) Middle_Weights.set_log_conditions(('mod_matrix', LEARNING)) s.run( num_trials=5, inputs=stim_list, targets=target_list, ) log_val = Middle_Weights.log.nparray(entries='mod_matrix', header=False) expected_log_val = np.array( [ ['System-0'], [[ [[1], [1], [1], [1], [1]], # RUN [[0], [1], [2], [3], [4]], # TRIAL [[1], [1], [1], [1], [1]], # PASS [[1], [1], [1], [1], [1]], # TIME_STEP [ [[0.09925812411381937, 0.1079522130303428, 0.12252820028789306, 0.14345816973727732], [0.30131473371328343, 0.30827285172236585, 0.3213609999139731, 0.3410707131678078], [0.5032924245149345, 0.5085833053183328, 0.5202423523987703, 0.5387798509126243], [0.70518251216691, 0.7088822116145151, 0.7191771716324874, 0.7365956448426355], [0.9069777724600303, 0.9091682860319945, 0.9181692763668221, 0.93452610920817]], [[0.103113468050986, 0.11073719161508278, 0.12424368674464399, 0.14415219181047598], [0.3053351724284921, 0.3111770895557729, 0.3231499474835138, 0.341794454877438], [0.5074709829757806, 0.5116017638574931, 0.5221016574478528, 0.5395320566440044], [0.7095115080472698, 0.7120093413898914, 0.7211034158081356, 0.7373749316571768], [0.9114489813353512, 0.9123981459792809, 0.9201588001021687, 0.935330996581107]], [[0.10656261740658036, 0.11328192907953168, 0.12587702586370172, 0.14490737831188183], [0.30893272045369513, 0.31383131362555394, 0.32485356055342113, 0.3425821330631872], [0.5112105492674988, 0.5143607671543178, 0.5238725230390068, 0.5403508295336265], [0.7133860755337162, 0.7148679468096026, 0.7229382109974996, 0.7382232628724675], [0.9154510531345043, 0.9153508224199809, 0.9220539747533424, 0.936207244690072]], [[0.10967776822419642, 0.11562091141141007, 0.12742795007904037, 0.14569308665620523], [0.3121824816018084, 0.316271366885665, 0.3264715025259811, 0.34340179304134666], [0.5145890402653069, 0.5168974760377518, 0.5255545550838675, 0.5412029579613059], [0.7168868378231593, 0.7174964619674593, 0.7246811176253708, 0.7391062307617761], [0.9190671994078436, 0.9180659725806082, 0.923854327015523, 0.9371193149131859]], [[0.11251466428344682, 0.11778293740676549, 0.12890014813698167, 0.14649079441816393], [0.31514245505635713, 0.3185271913574249, 0.328007571201157, 0.3442341089776976], [0.5176666356203712, 0.5192429413004418, 0.5271516632648602, 0.5420683480396268], [0.7200760707077265, 0.7199270072739019, 0.7263361597421493, 0.7400030122347587], [0.922361699102421, 0.9205767427437028, 0.9255639970037588, 0.9380456963960624]]] ]] ], dtype=object ) assert log_val.shape == expected_log_val.shape assert log_val[0] == expected_log_val[0] assert len(log_val[1]) == len(expected_log_val[1]) == 1 for i in range(len(log_val[1][0])): try: np.testing.assert_allclose(log_val[1][0][i], expected_log_val[1][0][i]) except TypeError: for j in range(len(log_val[1][0][i])): np.testing.assert_allclose( np.array(log_val[1][0][i][j]), np.array(expected_log_val[1][0][i][j]), atol=1e-08, err_msg='Failed on test item {0} of logged values'.format(i) )
import itertools from os import makedirs def maybe_create_folder(folder): makedirs(folder, exist_ok=True) def progressive_filename_generator(pattern="file_{}.ext"): for i in itertools.count(): yield pattern.format(i)
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import typing from google.api import annotations_pb2 from google.api import http_pb2 from google.protobuf import descriptor_pb2 from gapic.schema import metadata from gapic.schema import wrappers def test_service_properties(): service = make_service(name='ThingDoer') assert service.name == 'ThingDoer' def test_service_host(): service = make_service(host='thingdoer.googleapis.com') assert service.host == 'thingdoer.googleapis.com' def test_service_no_host(): service = make_service() assert service.host == '<<< SERVICE ADDRESS >>>' assert bool(service.host) is False def test_service_scopes(): service = make_service(scopes=('https://foo/user/', 'https://foo/admin/')) assert 'https://foo/user/' in service.oauth_scopes assert 'https://foo/admin/' in service.oauth_scopes def test_service_no_scopes(): service = make_service() assert len(service.oauth_scopes) == 0 def test_service_python_modules(): service = make_service() assert service.python_modules == ( ('a.b.v1', 'c_pb2'), ('foo', 'bacon_pb2'), ('foo', 'bar_pb2'), ('foo', 'baz_pb2'), ('x.y.v1', 'z_pb2'), ) def test_service_python_modules_lro(): service = make_service_with_method_options() assert service.python_modules == ( ('foo', 'bar_pb2'), ('foo', 'baz_pb2'), ('foo', 'qux_pb2'), ('google.api_core', 'operation'), ) def test_service_no_lro(): service = make_service() assert service.has_lro is False def test_service_has_lro(): service = make_service_with_method_options() assert service.has_lro def test_service_no_field_headers(): service = make_service() assert service.has_field_headers is False def test_service_has_field_headers(): http_rule = http_pb2.HttpRule(get='/v1/{parent=projects/*}/topics') service = make_service_with_method_options(http_rule=http_rule) assert service.has_field_headers def test_module_name(): service = make_service(name='MyService') assert service.module_name == 'my_service' def make_service(name: str = 'Placeholder', host: str = '', scopes: typing.Tuple[str] = ()) -> wrappers.Service: # Declare a few methods, with messages in distinct packages. methods = ( get_method('DoThing', 'foo.bar.ThingRequest', 'foo.baz.ThingResponse'), get_method('Jump', 'foo.bacon.JumpRequest', 'foo.bacon.JumpResponse'), get_method('Yawn', 'a.b.v1.c.YawnRequest', 'x.y.v1.z.YawnResponse'), ) # Define a service descriptor, and set a host and oauth scopes if # appropriate. service_pb = descriptor_pb2.ServiceDescriptorProto(name=name) if host: service_pb.options.Extensions[annotations_pb2.default_host] = host service_pb.options.Extensions[annotations_pb2.oauth].scopes.extend(scopes) # Return a service object to test. return wrappers.Service( service_pb=service_pb, methods={m.name: m for m in methods}, ) def make_service_with_method_options(*, http_rule: http_pb2.HttpRule = None, ) -> wrappers.Service: # Declare a method with options enabled for long-running operations and # field headers. method = get_method( 'DoBigThing', 'foo.bar.ThingRequest', 'google.longrunning.operations.Operation', lro_response_type='foo.baz.ThingResponse', lro_metadata_type='foo.qux.ThingMetadata', http_rule=http_rule, ) # Define a service descriptor. service_pb = descriptor_pb2.ServiceDescriptorProto(name='ThingDoer') # Return a service object to test. return wrappers.Service( service_pb=service_pb, methods={method.name: method}, ) def get_method(name: str, in_type: str, out_type: str, lro_response_type: str = '', lro_metadata_type: str = '', http_rule: http_pb2.HttpRule = None, ) -> wrappers.Method: input_ = get_message(in_type) output = get_message(out_type) # Define a method descriptor. Set the field headers if appropriate. method_pb = descriptor_pb2.MethodDescriptorProto( name=name, input_type=input_.proto_path, output_type=output.proto_path, ) if lro_response_type: output = wrappers.OperationType( lro_response=get_message(lro_response_type), lro_metadata=get_message(lro_metadata_type), ) if http_rule: ext_key = annotations_pb2.http method_pb.options.Extensions[ext_key].MergeFrom(http_rule) return wrappers.Method( method_pb=method_pb, input=input_, output=output, ) def get_message(dot_path: str) -> wrappers.MessageType: # Pass explicit None through (for lro_metadata). if dot_path is None: return None # Note: The `dot_path` here is distinct from the canonical proto path # because it includes the module, which the proto path does not. # # So, if trying to test the DescriptorProto message here, the path # would be google.protobuf.descriptor.DescriptorProto (whereas the proto # path is just google.protobuf.DescriptorProto). pieces = dot_path.split('.') pkg, module, name = pieces[:-2], pieces[-2], pieces[-1] return wrappers.MessageType( fields={}, message_pb=descriptor_pb2.DescriptorProto(name=name), meta=metadata.Metadata(address=metadata.Address( package=pkg, module=module, )), )
# aspi <-> web app json from rest_framework import serializers from django.contrib.auth.models import User from.models import Medico class MedicoSerializer(serializers.ModelSerializer): class Meta: model = Medico fields = '__all__' extra_kwargs = {'password':{'write_only': True}} def create(self, validated_data): user = User( username=validated_data['email'] ) medico = Medico( tipo_documento=validated_data['tipo_documento'], numero_documento=validated_data['numero_documento'], password=validated_data['password'], username=validated_data['username'], email=validated_data['email'], telefono=validated_data['telefono'], sexo=validated_data['sexo'], fecha_nacimiento=validated_data['fecha_nacimiento'], grupo_sanguineo=validated_data['grupo_sanguineo'], estrato=validated_data['estrato'], estado_civil=validated_data['estado_civil'], id_perfil=validated_data['id_perfil'], id_agenda=validated_data['id_agenda'], id_especialidad=validated_data['id_especialidad'], ) medico.save() user.set_password(validated_data['password']) user.save() return medico
from ._marker import Marker
import json import re import uuid from urllib2 import ( HTTPError, URLError, ) import requests from pylons import app_globals as g from r2.lib import amqp from r2.lib.db import tdb_cassandra from r2.lib.media import MediaEmbed, Scraper, get_media_embed, _OEmbedScraper from r2.lib.utils import sanitize_url, TimeoutFunction, TimeoutFunctionException from reddit_liveupdate import pages from reddit_liveupdate.models import LiveUpdateStream, LiveUpdateEvent from reddit_liveupdate.utils import send_event_broadcast _EMBED_WIDTH = 485 def get_live_media_embed(media_object): if media_object['type'] == "twitter.com": return _TwitterScraper.media_embed(media_object) if media_object["type"] == "embedly-card": return _EmbedlyCardFallbackScraper.media_embed(media_object) return get_media_embed(media_object) def queue_parse_embeds(event, liveupdate): msg = json.dumps({ 'liveupdate_id': unicode(liveupdate._id), # serializing UUID 'event_id': event._id, # Already a string }) amqp.add_item('liveupdate_scraper_q', msg) def parse_embeds(event_id, liveupdate_id, maxwidth=_EMBED_WIDTH): """Find, scrape, and store any embeddable URLs in this liveupdate. Return the newly altered liveupdate for convenience. Note: This should be used in async contexts only. """ if isinstance(liveupdate_id, basestring): liveupdate_id = uuid.UUID(liveupdate_id) try: event = LiveUpdateEvent._byID(event_id) liveupdate = LiveUpdateStream.get_update(event, liveupdate_id) except tdb_cassandra.NotFound: g.log.warning("Couldn't find event/liveupdate for embedding: %r / %r", event_id, liveupdate_id) return urls = _extract_isolated_urls(liveupdate.body) liveupdate.media_objects = _scrape_media_objects(urls, maxwidth=maxwidth) liveupdate.mobile_objects = _scrape_mobile_media_objects(urls) LiveUpdateStream.add_update(event, liveupdate) return liveupdate def _extract_isolated_urls(md): """Extract URLs that exist on their own lines in given markdown. This style borrowed from wordpress, which is nice because it's tolerant to failures and is easy to understand. See https://codex.wordpress.org/Embeds """ urls = [] for line in md.splitlines(): url = sanitize_url(line, require_scheme=True) if url and url != "self": urls.append(url) return urls def _scrape_mobile_media_objects(urls): return filter(None, (_scrape_mobile_media_object(url) for url in urls)) def _scrape_mobile_media_object(url): scraper = _LiveEmbedlyScraper(url) try: _, _, result, _ = scraper.scrape() result['oembed']['original_url'] = url return result['oembed'] except: pass return None def _scrape_media_objects(urls, autoplay=False, maxwidth=_EMBED_WIDTH, max_urls=3): """Given a list of URLs, scrape and return the valid media objects.""" return filter(None, (_scrape_media_object(url, autoplay=autoplay, maxwidth=maxwidth) for url in urls[:max_urls])) def _scrape_media_object(url, autoplay=False, maxwidth=_EMBED_WIDTH): """Generate a single media object by URL. Returns None on failure.""" scraper = LiveScraper.for_url(url, autoplay=autoplay, maxwidth=maxwidth) try: thumbnail, preview, media_object, secure_media_object = scraper.scrape() except (HTTPError, URLError): g.log.info("Unable to scrape suspected scrapable URL: %r", url) return None # No oembed? We don't want it for liveupdate. if not media_object or 'oembed' not in media_object: return None # Use our exact passed URL to ensure matching in markdown. # Some scrapers will canonicalize a URL to something we # haven't seen yet. media_object['oembed']['url'] = url return media_object class LiveScraper(Scraper): """The interface to Scraper to be used within liveupdate for media embeds. Has support for scrapers that we don't necessarily want to be visible in reddit core (like twitter, for example). Outside of the hook system so that this functionality is not live for all uses of Scraper proper. """ @classmethod def for_url(cls, url, autoplay=False, maxwidth=_EMBED_WIDTH): if (_TwitterScraper.matches(url)): return _TwitterScraper(url, maxwidth=maxwidth) scraper = super(LiveScraper, cls).for_url( url, autoplay=autoplay, maxwidth=maxwidth) return _EmbedlyCardFallbackScraper(url, scraper) # mostly lifted from the EmbedlyScraper in r2 class _LiveEmbedlyScraper(_OEmbedScraper): OEMBED_ENDPOINT = "https://api.embed.ly/1/oembed" @classmethod def matches(cls, url): return True def __init__(self, url): super(_LiveEmbedlyScraper, self).__init__( url, maxwidth=500, ) self.allowed_oembed_types = {"video", "rich", "link", "photo"} self.oembed_params["key"] = g.embedly_api_key def fetch_oembed(self): return super(_LiveEmbedlyScraper, self).fetch_oembed( self.OEMBED_ENDPOINT ) def scrape(self): if not self.oembed: return None, None, None, None media_object = self.make_media_object(self.oembed) return None, None, media_object, None class _EmbedlyCardFallbackScraper(Scraper): def __init__(self, url, scraper): self.url = url self.scraper = scraper def scrape(self): thumb, preview, media_object, secure_media_object = self.scraper.scrape() # ok, the upstream scraper failed so let's make an embedly card if not media_object: media_object = secure_media_object = { "type": "embedly-card", "oembed": { "width": _EMBED_WIDTH, "height": 0, "html": pages.EmbedlyCard(self.url).render(style="html"), }, } return thumb, preview, media_object, secure_media_object @classmethod def media_embed(cls, media_object): oembed = media_object["oembed"] return MediaEmbed( width=oembed["width"], height=oembed["height"], content=oembed["html"], ) class _TwitterScraper(Scraper): OEMBED_ENDPOINT = "https://api.twitter.com/1/statuses/oembed.json" URL_MATCH = re.compile(r"""https?: //(www\.)?twitter\.com /\w{1,20} /status(es)? /\d+ """, re.X) def __init__(self, url, maxwidth, omit_script=False): self.url = url self.maxwidth = maxwidth self.omit_script = False @classmethod def matches(cls, url): return cls.URL_MATCH.match(url) def _fetch_from_twitter(self): params = { "url": self.url, "format": "json", "maxwidth": self.maxwidth, "omit_script": self.omit_script, } content = requests.get(self.OEMBED_ENDPOINT, params=params).content return json.loads(content) def _make_media_object(self, oembed): if oembed.get("type") in ("video", "rich"): return { "type": "twitter.com", "oembed": oembed, } return None def scrape(self): oembed = self._fetch_from_twitter() if not oembed: return None, None, None, None media_object = self._make_media_object(oembed) return ( None, # no thumbnails for twitter None, media_object, media_object, # Twitter's response is ssl ready by default ) @classmethod def media_embed(cls, media_object): oembed = media_object["oembed"] html = oembed.get("html") width = oembed.get("width") # Right now Twitter returns no height, so we get ''. # We'll reset the height with JS dynamically, but if they support # height in the future, this should work transparently. height = oembed.get("height") or 0 if not html and width: return return MediaEmbed( width=width, height=height, content=html, ) def process_liveupdate_scraper_q(): @g.stats.amqp_processor('liveupdate_scraper_q') def _handle_q(msg): d = json.loads(msg.body) try: fn = TimeoutFunction(parse_embeds, 10) liveupdate = fn(d['event_id'], d['liveupdate_id']) except TimeoutFunctionException: g.log.warning( "Timed out on %s::%s", d["event_id"], d["liveupdate_id"]) return except Exception as e: g.log.warning("Failed to scrape %s::%s: %r", d["event_id"], d["liveupdate_id"], e) return payload = { "liveupdate_id": "LiveUpdate_" + d['liveupdate_id'], "media_embeds": liveupdate.embeds, "mobile_embeds": liveupdate.mobile_embeds, } send_event_broadcast(d['event_id'], type="embeds_ready", payload=payload) amqp.consume_items('liveupdate_scraper_q', _handle_q, verbose=False)
from helpers.alex import * date = datetime.date.today().strftime('%Y-%m-%d') state = 'UT' def fetch(url, **kwargs): if 'date' not in kwargs.keys() or kwargs['date']==False: kwargs['date'] = date if 'state' not in kwargs.keys() or kwargs['state']==False: kwargs['state'] = state return(fetch_(url, **kwargs)) def run_UT(args): # Load existing data data_folder = Path(project_root, state, 'data') csv_location = Path(data_folder, 'data.csv') if not os.path.exists(data_folder): os.makedirs(data_folder) if Path(data_folder, 'data.csv').exists(): existing_df = pd.read_csv(csv_location) else: existing_df = pd.DataFrame([]) # Fetch raw data # Get date to fetch if 'day' in args: date_obj = datetime.date(args['year'], args['month'], args['day']) date = date_obj.strftime('%Y-%m-%d') else: # If none provided, assume today if datetime.datetime.now().hour >= 15: date_obj = datetime.date.today() # Unless before 3pm, then assume yesterday else: date_obj = datetime.date.today() - datetime.timedelta(days=1) date = date_obj.strftime('%Y-%m-%d') earliest_date_w_demographics = '2020-04-02' # Whether to fetch current date, re-do all from raw data, or backfill with Wayback run_mode = 'normal' # normal, from scratch, backfill if run_mode == 'from scratch': date_list = pd.date_range(start=earliest_date_w_demographics, end=date).astype(str).to_list() date_rows = [] elif run_mode == 'backfill': existing_df = pd.read_csv(csv_location) date_rows = existing_df.to_dict('records') all_dates = pd.date_range(start=earliest_date_w_demographics, end=date).astype(str).to_list() fetched_dates = [r['date'] for r in date_rows] missing_dates = [d for d in all_dates if d not in fetched_dates] date_list = missing_dates if len(date_list)==0: print('No missing dates!') else: date_list = [date] existing_df = pd.read_csv(csv_location) date_rows = existing_df.to_dict('records') #date_list = ['2020-09-26'] for row_date in date_list: url = 'https://coronavirus-dashboard.utah.gov/' if run_mode=='backfill': time.sleep(1) print(f'Filling in missing historical date: {row_date}') raw = fetch(url, date=row_date, time_travel='wayback') else: raw = fetch(url, date=row_date) if not raw: print(f'Could not pull data for {state}: {row_date}') continue soup = BeautifulSoup(raw, 'html.parser') # Top level data cases_html = soup.find('div', id=re.compile('covid\-19\-cases')) cases_str = cases_html.find('span', {'class':'value-output'}).get_text() cases = int(re.sub(r'[^0-9]', '', cases_str)) # Starting around July 17 Utah started reporting separate numbers for # "people tested" and "total tests reported" (since one person can be # tested more than once). Prior to that, they appear to have only # repoted the "people tested" number. patterns = [ re.compile('total\-reported\-people\-tested'), re.compile('reported\-people\-tested'), re.compile('total\-people\-tested') ] for p in patterns: tested_html = soup.find('div', id=p) if type(tested_html)!=type(None): break tested_str = tested_html.find('span', {'class':'value-output'}).get_text() tested = int(re.sub(r'[^0-9]', '', tested_str)) tests = False try: tests_html = soup.find('div', id=re.compile('total\-tests\-reported')) tests_str = tests_html.find('span', {'class':'value-output'}).get_text() tests = int(re.sub(r'[^0-9]', '', tests_str)) except: pass # hospitalizations aggregated from age breakdown data belwo #hosp_html = soup.find('div', id=re.compile('covid\-19\-hospitalizations')) #hosp_str = hosp_html.find('span', {'class':'value-output'}).get_text() #hosp = int(re.sub(r'[^0-9]', '', hosp_str)) deaths_html = soup.find('div', id=re.compile('covid\-19\-deaths')) deaths_str = deaths_html.find('span', {'class':'value-output'}).get_text() deaths = int(re.sub(r'[^0-9]', '', deaths_str)) # Overall age breakdown patterns = [ re.compile('utah\-residents\-diagnosed\-with\-covid\-19\-by\-age'), re.compile('utah\-residents\-with\-covid\-19\-demographics\-table'), re.compile('total\-utah\-residents\-with\-covid\-19\-by\-age'), re.compile('total\-people\-living\-in\-utah\-with\-covid\-19\-by\-age') ] for p in patterns: age_html = soup.find('div', id=p) if type(age_html)!=type(None): break age_json = json.loads(age_html.find('script').text) age_df = pd.DataFrame(age_json['x']['data']).T #print(age_json) age_df.columns = pd.read_html(age_json['x']['container'])[0].columns age_df['Age Group'] = age_df['Age Group'].apply(lambda r: r.rstrip(' years')) age_df.loc[0, 'Age Group'] = '0-1' age_df['Age Group'] = 'Age [' + age_df['Age Group'] + ']' age_df = age_df.set_index('Age Group') age_data = age_df['Case Count'].astype(int).to_dict() # Age breakdown by sex patterns = [ re.compile('utah\-residents\-with\-covid\-19\-demographics\-chart'), re.compile('total\-people\-living\-in\-utah\-with\-covid-19\-by\-age\-chart'), re.compile('total\-utah\-residents\-with\-covid\-19\-by\-age\-chart') ] for p in patterns: age_sex_html = soup.find('div', id=p) if type(age_sex_html)!=type(None): break age_sex_json = json.loads(age_sex_html.find('script').text) female_age_json = [d for d in age_sex_json['x']['data'] if d['name']=='Female'][0] female_text = pd.Series(female_age_json['text']) female_counts = pd.DataFrame(female_text.apply(lambda r: re.findall(f'Count: ([0-9]+)', r)[0])) female_age_bins = female_text.apply(lambda r: re.findall(f'Age Group: ([0-9][0-9]?\-[0-9][0-9]?|[0-9][0-9]\+|Unknown)', r)[0]) #female_age_bins = female_age_bins.replace({'0-1':'<1'}) female_counts['Age Group'] = female_age_bins female_counts['Age Group'] = 'Female_Age [' + female_counts['Age Group'] + ']' female_counts = female_counts.set_index('Age Group')[0].astype(int) all_female = female_counts.sum() female_age_data = female_counts.to_dict() male_age_json = [d for d in age_sex_json['x']['data'] if d['name']=='Male'][0] male_text = pd.Series(male_age_json['text']) male_counts = pd.DataFrame(male_text.apply(lambda r: re.findall(f'Count: ([0-9]+)', r)[0])) male_age_bins = male_text.apply(lambda r: re.findall(f'Age Group: ([0-9][0-9]?\-[0-9][0-9]?|[0-9][0-9]\+|Unknown)', r)[0]) #male_age_bins = male_age_bins.replace({'0-1':'<1'}) male_counts['Age Group'] = male_age_bins male_counts['Age Group'] = 'Male_Age [' + male_counts['Age Group'] + ']' male_counts = male_counts.set_index('Age Group')[0].astype(int) all_male = male_counts.sum() male_age_data = male_counts.to_dict() sex_data = { 'Female': all_female, 'Male': all_male, **female_age_data, **male_age_data } # Hospitalization data hosp_pattern = 'utah\-residents\-who\-have\-been\-hospitalized\-with\-covid\-19\-by\-age|total\-utah\-covid\-19\-cases\-by\-hospitalization\-status\-and\-age' hosp_age_html = soup.find('div', id=re.compile(hosp_pattern)) hosp_age_json = json.loads(hosp_age_html.find('script').text) hosp_bins = pd.Series(hosp_age_json['x']['layout']['xaxis']['ticktext']) #hosp_bins = hosp_bins.replace({'0-1':'<1'}) hosp_index = 'Hospitalized_Age [' + hosp_bins + ']' hosp_by_age_df = pd.DataFrame([], index=hosp_index) hosp_by_age_df[0] = 0 hosp_by_age = [d for d in hosp_age_json['x']['data'] if d['name']=='Yes'][0] hosp_by_age_df.loc[hosp_by_age_df.index[np.array(hosp_by_age['x'])-1],0] = hosp_by_age['y'] hosp_by_age_data = hosp_by_age_df[0].to_dict() hosp_index = 'HospitalizedPending_Age [' + hosp_bins + ']' hosp_pending_by_age_df = pd.DataFrame([], index=hosp_index) hosp_pending_by_age_df[0] = 0 hosp_pending_by_age = [d for d in hosp_age_json['x']['data'] if d['name']=='Under Investigation'][0] hosp_pending_by_age_df.loc[hosp_pending_by_age_df.index[np.array(hosp_pending_by_age['x'])-1],0] = hosp_pending_by_age['y'] hosp_pending_by_age_data = hosp_pending_by_age_df[0].to_dict() hosp_total = hosp_by_age_df[0].sum() hosp_pending_total = hosp_pending_by_age_df[0].sum() hosp_data = { 'Hospitalizations': hosp_total, **hosp_by_age_data, 'HospitalizationsPending': hosp_pending_total, **hosp_pending_by_age_data } if row_date>'2020-04-15': race_html = soup.find('div', id=re.compile('by\-raceethnicity')) race_json = json.loads(race_html.find('script').text) race_df = pd.DataFrame(race_json['x']['data']).T race_df.columns = pd.read_html(race_json['x']['container'])[0].columns race_df = race_df.replace({'&lt;5':'<5'}) race_df = race_df.rename(columns={'Cases': 'Case Count'}) race_df['Columns'] = 'Race_Cases [' + race_df['Race/Ethnicity'] + ']' race_cases = race_df.set_index('Columns')['Case Count'].astype(int).to_dict() race_df['Columns'] = 'Race_Hospitalizations [' + race_df['Race/Ethnicity'] + ']' race_hosp = race_df.set_index('Columns')['Hospitalizations'].to_dict() if row_date>'2020-06-14': race_df['Columns'] = 'Race_Deaths [' + race_df['Race/Ethnicity'] + ']' race_deaths = race_df.set_index('Columns')['Deaths'].to_dict() else: race_deaths = {} race_data = { **race_cases, **race_hosp, **race_deaths } else: race_data = {} pullTime = get_pull_time(existing_df, row_date) row_data = { 'state': 'Utah', 'stateAbbrev': 'UT', 'date': row_date, 'Cases': cases, 'Tested': tested, 'Deaths': deaths, **hosp_data, **age_data, **sex_data, **race_data, 'pullTime': pullTime } if tests: row_data['Tests'] = tests existing_dates = [r['date'] for r in date_rows] if row_date in existing_dates: idx = existing_dates.index(row_date) date_rows[idx] = row_data else: date_rows.append(row_data) timeseries = pd.DataFrame(date_rows) timeseries = timeseries.sort_values('date') timeseries.to_csv(csv_location, index=False) if __name__=='__main__': run_UT({})
#!/usr/bin/env python2.7 # license removed for brevity import rospy import tf2_ros from geometry_msgs.msg import TransformStamped from rospy_helpers import unpack_ROS_xform class FrameListener: def __init__(self, refreshRate=300): """ Listens to a particular transform and reports it periodically """ # Start the node rospy.init_node('FrameListener') # Set rate self.heartBeatHz = refreshRate # ----------- Node refresh rate [Hz] # Best effort to maintain 'heartBeatHz' # URL: http://wiki.ros.org/rospy/Overview/Time self.idle = rospy.Rate(self.heartBeatHz) # Start subscribers self.tfBuffer = tf2_ros.Buffer() # Needed for tf2 self.listener = tf2_ros.TransformListener(self.tfBuffer) # Start publishers self.pub = rospy.Publisher( "/viz/wristXform", TransformStamped, queue_size=10) # Init vars self.initTime = rospy.Time.now().to_sec() self.runCount = 0 def run(self): """ Listen and report transform """ # While ROS is running while (not rospy.is_shutdown()): try: xform = self.tfBuffer.lookup_transform( "base", "right_hand", rospy.Time(0)) self.pub.publish(xform) self.runCount += 1 # NOTE: Some time before the proper transform is broadcast if 0 and self.runCount % 150 == 0: posn, ornt = unpack_ROS_xform(xform) rospy.loginfo("WRIST FRAME: Received Pose:") rospy.loginfo("WRIST FRAME: Position: {}".format(posn)) rospy.loginfo("WRIST FRAME: Orientation: {}".format(ornt)) except (tf2_ros.TransformException) as err: rospy.logwarn("WRIST FRAME: tf2_ros Error! {}".format(err)) # Wait until the node is supposed to fire next self.idle.sleep() # Post-shutdown activities else: rospy.loginfo("Node Shutdown after %d seconds.", rospy.Time.now().to_sec() - self.initTime) if __name__ == "__main__": try: refreshRateHz = rospy.get_param('graphics_refresh_rate', 60) obj = FrameListener(refreshRateHz) obj.run() except rospy.ROSInterruptException: pass
# -*- coding: utf-8 -*- u"""GitHub Login GitHub is written Github and github (no underscore or dash) for ease of use. :copyright: Copyright (c) 2016-2019 RadiaSoft LLC. All Rights Reserved. :license: http://www.apache.org/licenses/LICENSE-2.0.html """ from __future__ import absolute_import, division, print_function from pykern import pkcollections from pykern import pkconfig from pykern import pkinspect from pykern.pkdebug import pkdc, pkdexc, pkdlog, pkdp from sirepo import api_perm from sirepo import auth from sirepo import cookie from sirepo import http_request from sirepo import uri_router from sirepo import auth_db from sirepo import util import flask import flask.sessions import flask_oauthlib.client import sirepo.template AUTH_METHOD = 'github' #: User can see it AUTH_METHOD_VISIBLE = True #: Used by auth_db AuthGithubUser = None #: Well known alias for auth UserModel = None #: module handle this_module = pkinspect.this_module() # cookie keys for github _COOKIE_NONCE = 'sragn' _COOKIE_SIM_TYPE = 'srags' @api_perm.allow_cookieless_set_user def api_authGithubAuthorized(): """Handle a callback from a successful OAUTH request. Tracks oauth users in a database. """ # clear temporary cookie values first expect = cookie.unchecked_remove(_COOKIE_NONCE) or '<missing-nonce>' t = cookie.unchecked_remove(_COOKIE_SIM_TYPE) oc = _oauth_client() resp = oc.authorized_response() if not resp: util.raise_forbidden('missing oauth response') got = flask.request.args.get('state', '<missing-state>') if expect != got: pkdlog( 'mismatch oauth state: expected {} != got {}', expect, got, ) return auth.login_fail_redirect(t, this_module, 'oauth-state') d = oc.get('user', token=(resp['access_token'], '')).data with auth_db.thread_lock: u = AuthGithubUser.search_by(oauth_id=d['id']) if u: # always update user_name u.user_name = d['login'] else: u = AuthGithubUser(oauth_id=d['id'], user_name=d['login']) u.save() return auth.login( this_module, model=u, sim_type=t, data=d, ) @api_perm.require_cookie_sentinel def api_authGithubLogin(simulation_type): """Redirects to Github""" t = sirepo.template.assert_sim_type(simulation_type) s = util.random_base62() cookie.set_value(_COOKIE_NONCE, s) cookie.set_value(_COOKIE_SIM_TYPE, t) if not cfg.callback_uri: # must be executed in an app and request context so can't # initialize earlier. cfg.callback_uri = uri_router.uri_for_api('authGithubAuthorized') return _oauth_client().authorize(callback=cfg.callback_uri, state=s) @api_perm.allow_cookieless_set_user def api_oauthAuthorized(oauth_type): """Deprecated use `api_authGithubAuthorized`""" return api_authGithubAuthorized() def avatar_uri(model, size): return 'https://avatars.githubusercontent.com/{}?size={}'.format( model.user_name, size, ) def init_apis(app, *args, **kwargs): global cfg cfg = pkconfig.init( key=pkconfig.Required(str, 'Github key'), secret=pkconfig.Required(str, 'Github secret'), callback_uri=(None, str, 'Github callback URI (defaults to api_authGithubAuthorized)'), ) app.session_interface = _FlaskSessionInterface() auth_db.init_model(app, _init_model) class _FlaskSession(dict, flask.sessions.SessionMixin): pass class _FlaskSessionInterface(flask.sessions.SessionInterface): """Emphemeral session for oauthlib.client state Without this class, Flask creates a NullSession which can't be written to. Flask assumes the session needs to be persisted to cookie or a db, which isn't true in our case. """ def open_session(*args, **kwargs): return _FlaskSession() def save_session(*args, **kwargs): pass def _init_model(db, base): """Creates User class bound to dynamic `db` variable""" global AuthGithubUser, UserModel class AuthGithubUser(base, db.Model): __tablename__ = 'auth_github_user_t' oauth_id = db.Column(db.String(100), primary_key=True) user_name = db.Column(db.String(100), unique=True, nullable=False) uid = db.Column(db.String(8), unique=True) UserModel = AuthGithubUser def _oauth_client(): return flask_oauthlib.client.OAuth(flask.current_app).remote_app( 'github', consumer_key=cfg.key, consumer_secret=cfg.secret, base_url='https://api.github.com/', request_token_url=None, access_token_method='POST', access_token_url='https://github.com/login/oauth/access_token', authorize_url='https://github.com/login/oauth/authorize', )
from abc import ABC, abstractmethod import logging import threading from typing import List, Optional, TypeVar from justbackoff import Backoff from xaynet_sdk import xaynet_sdk # rust participant logging xaynet_sdk.init_logging() # python participant logging LOG = logging.getLogger("participant") TrainingResult = TypeVar("TrainingResult") TrainingInput = TypeVar("TrainingInput") class ParticipantABC(ABC): @abstractmethod def train_round(self, training_input: Optional[TrainingInput]) -> TrainingResult: """ Trains a model. `training_input` is the deserialized global model (see `deserialize_training_input`). If no global model exists (usually in the first round), `training_input` will be `None`. In this case the weights of the model should be initialized and returned. Args: self: The participant. training_input: The deserialized global model (weights of the global model) or None. Returns: The updated model weights (the local model). """ raise NotImplementedError() @abstractmethod def serialize_training_result(self, training_result: TrainingResult) -> list: """ Serializes the `training_result` into a `list`. The data type of the elements must match the data type defined in the coordinator configuration. Args: self: The participant. training_result: The `TrainingResult` of `train_round`. Returns: The `training_result` as a `list`. """ raise NotImplementedError() @abstractmethod def deserialize_training_input(self, global_model: list) -> TrainingInput: """ Deserializes the `global_model` from a `list` to the type of `TrainingInput`. The data type of the elements matches the data type defined in the coordinator configuration. If no global model exists (usually in the first round), the method will not be called by the `InternalParticipant`. Args: self: The participant. global_model: The global model. Returns: The `TrainingInput` for `train_round`. """ raise NotImplementedError() def participate_in_update_task(self) -> bool: """ A callback used by the `InternalParticipant` to determine whether the `train_round` method should be called. This callback is only called if the participant is selected as an update participant. If `participate_in_update_task` returns the `False`, `train_round` will not be called by the `InternalParticipant`. If the method is not overridden, it returns `True` by default. Returns: Whether the `train_round` method should be called when the participant is an update participant. """ return True def on_new_global_model(self, global_model: Optional[TrainingInput]) -> None: """ A callback that is called by the `InternalParticipant` once a new global model is available. If no global model exists (usually in the first round), `global_model` will be `None`. If a global model exists, `global_model` is already the deserialized global model. (See `deserialize_training_input`) If the method is not overridden, it does nothing by default. Args: self: The participant. global_model: The deserialized global model or `None`. """ def on_stop(self) -> None: """ A callback that is called by the `InternalParticipant` before the `InternalParticipant` thread is stopped. This callback can be used, for example, to show performance values ​​that have been collected in the participant over the course of the training rounds. If the method is not overridden, it does nothing by default. Args: self: The participant. """ class InternalParticipant(threading.Thread): def __init__( self, coordinator_url: str, participant, p_args, p_kwargs, state, scalar, ): # xaynet rust participant self._xaynet_participant = xaynet_sdk.Participant( coordinator_url, scalar, state ) # https://github.com/python/cpython/blob/3.9/Lib/multiprocessing/process.py#L80 # stores the Participant class with its args and kwargs # the participant is created in the `run` method to ensure that the participant/ ml # model is initialized on the participant thread otherwise the participant lives on the main # thread which can created issues with some of the ml frameworks. self._participant = participant self._p_args = tuple(p_args) self._p_kwargs = dict(p_kwargs) self._exit_event = threading.Event() self._poll_period = Backoff(min_ms=100, max_ms=10000, factor=1.2, jitter=False) # global model cache self._global_model = None self._error_on_fetch_global_model = False self._tick_lock = threading.Lock() super().__init__(daemon=True) def run(self): self._participant = self._participant(*self._p_args, *self._p_kwargs) try: self._run() except Exception as err: # pylint: disable=broad-except LOG.error("unrecoverable error: %s shut down participant", err) self._exit_event.set() def _fetch_global_model(self): LOG.debug("fetch global model") try: global_model = self._xaynet_participant.global_model() except ( xaynet_sdk.GlobalModelUnavailable, xaynet_sdk.GlobalModelDataTypeMisMatch, ) as err: LOG.warning("failed to get global model: %s", err) self._error_on_fetch_global_model = True else: if global_model is not None: self._global_model = self._participant.deserialize_training_input( global_model ) else: self._global_model = None self._error_on_fetch_global_model = False def _train(self): LOG.debug("train model") data = self._participant.train_round(self._global_model) local_model = self._participant.serialize_training_result(data) try: self._xaynet_participant.set_model(local_model) except ( xaynet_sdk.LocalModelLengthMisMatch, xaynet_sdk.LocalModelDataTypeMisMatch, ) as err: LOG.warning("failed to set local model: %s", err) def _run(self): while not self._exit_event.is_set(): self._tick() def _tick(self): with self._tick_lock: self._xaynet_participant.tick() if ( self._xaynet_participant.new_global_model() or self._error_on_fetch_global_model ): self._fetch_global_model() if not self._error_on_fetch_global_model: self._participant.on_new_global_model(self._global_model) if ( self._xaynet_participant.should_set_model() and self._participant.participate_in_update_task() and not self._error_on_fetch_global_model ): self._train() made_progress = self._xaynet_participant.made_progress() if made_progress: self._poll_period.reset() self._exit_event.wait(timeout=self._poll_period.duration()) else: self._exit_event.wait(timeout=self._poll_period.duration()) def stop(self) -> List[int]: """ Stops the execution of the participant and returns its serialized state. The serialized state can be passed to the `spawn_participant` function to restore a participant. After calling `stop`, the participant is consumed. Every further method call on the handle of `InternalParticipant` leads to an `UninitializedParticipant` exception. Note: The serialized state contains unencrypted **private key(s)**. If used in production, it is important that the serialized state is securely saved. Returns: The serialized state of the participant. """ LOG.debug("stopping participant") self._exit_event.set() with self._tick_lock: state = self._xaynet_participant.save() LOG.debug("participant stopped") self._participant.on_stop() return state
""" Simple http server, that returns data in json. Executes get data for sensors in the background. Endpoints: http://0.0.0.0:5000/data http://0.0.0.0:5000/data/{mac} Requires: asyncio - Python 3.5 aiohttp - pip install aiohttp """ from aiohttp import web from ruuvitag_sensor.ruuvi_rx import RuuviTagReactive allData = {} async def get_all_data(request): return web.json_response(allData) async def get_data(request): mac = request.match_info.get('mac') if mac not in allData: return web.json_response(status=404) return web.json_response(allData[mac]) def setup_routes(app): app.router.add_get('/data', get_all_data) app.router.add_get('/data/{mac}', get_data) if __name__ == '__main__': tags = { 'F4:A5:74:89:16:57': 'kitchen', 'CC:2C:6A:1E:59:3D': 'bedroom', 'BB:2C:6A:1E:59:3D': 'livingroom' } def handle_new_data(data): global allData data[1]['name'] = tags[data[0]] allData[data[0]] = data[1] ruuvi_rx = RuuviTagReactive(list(tags.keys())) data_stream = ruuvi_rx.get_subject() data_stream.subscribe(handle_new_data) # Setup and start web application app = web.Application() setup_routes(app) web.run_app(app, host='0.0.0.0', port=5000)
#!/usr/bin/env python # -*- coding: utf-8 -*- #配置scrapyd的URI:scrapyd_list = [{},{}..] 如:scrapyd_list = [ 'http://192.168.68.128:6800'] SCRAPYD_LIST = [ 'http://192.168.68.128:6800'] SCRAPYD_PROJECT_NAME = 'tbSpider' SCRAPYD_SPIDER_NAME = 'tbSpider' #配置redis的地址,unique = True 格式:redis://[:password]@localhost:6379/db REDIS_URL = 'redis://192.168.68.128:6379/1' #设置redis中队列, 记录的键名 REDIS_QUEUE_NAME = 'tasks_queue' REDIS_RECORD_NAME = 'fetch_record' #mongodb设置 MONGO_URI = 'mongodb://192.168.68.128:27017' MONGO_DATABASE_USERS = 'users' MONGO_DATABASE_USERS_SPIDERS_TASKS_COLLECTION = 'users_spiders_tasks'
import bisect import numpy as np class CombinedScheduler: def __init__(self, schedulers=None): self.schedulers = [] if schedulers is not None: for scheduler in schedulers: if scheduler is None: continue elif hasattr(scheduler, 'schedulers'): self.schedulers += scheduler.schedulers else: self.schedulers.append(scheduler) def __call__(self, step): # insert subject into an ordered list without sorting index = bisect.bisect_left(self._offsets, step) - 1 index = max(0, min(index, len(self.schedulers) - 1)) scheduler = self.schedulers[index] offset = self._offsets[index] return scheduler(step - offset) @property def _steps(self): return [scheduler.steps for scheduler in self.schedulers] @property def steps(self): return sum(self._steps) @property def _offsets(self): # np.cumsum() returns the cumulative sum of the elements along a given axis return np.cumsum(np.concatenate([[0], self._steps])) def multiply_steps(self, val): for scheduler in self.schedulers: scheduler.steps *= val
import numpy as np def read_params(): principal = input('enter principal: ') rate = input('enter rate (as decimal): ') payment = input('enter payment: ') period = input('enter period (in months): ') print(principal, rate, payment, period) return principal, rate, payment, period def calculate_period(principal, rate, payment): print('in method') period = np.math.log((payment/(payment-rate*principal)), 1+rate) print(period) def calculate_payment(principal, rate, period): payment = principal*(rate*numpy.power((1+rate),period)/(numpy.power((1+rate),period)-1)) print(payment) if __name__ == "__main__": principal, rate, payment, period = read_params() if period == '': print('calculating period...') calculate_period(float(principal), float(rate), float(payment)) elif(payment == ''): print('calculating payment...') calculate_payment(float(principal), float(rate), float(period))
""" This reference script has been taken from rq-dashboard with some modifications """ import importlib import logging import os import sys from urllib.parse import quote as urlquote, urlunparse from redis.connection import (URL_QUERY_ARGUMENT_PARSERS, UnixDomainSocketConnection, SSLConnection) from urllib.parse import urlparse, parse_qs, unquote import click from flask import Flask, Response, request from rqmonitor.defaults import RQ_MONITOR_REDIS_URL, RQ_MONITOR_REFRESH_INTERVAL from rqmonitor.version import VERSION from rqmonitor.bp import monitor_blueprint logger = logging.getLogger("werkzeug") def add_basic_auth(blueprint, username, password, realm="RQ Monitor"): """Add HTTP Basic Auth to a blueprint. Note this is only for casual use! """ @blueprint.before_request def basic_http_auth(*args, **kwargs): auth = request.authorization if auth is None or auth.password != password or auth.username != username: return Response( "Please login", 401, {"WWW-Authenticate": 'Basic realm="{}"'.format(realm)}, ) def create_app_with_blueprint(config=None, username=None, password=None, url_prefix='', blueprint=monitor_blueprint): """Return Flask app with default configuration and registered blueprint.""" app = Flask(__name__) # Override with any settings in config file, if given. if config: app.config.from_object(importlib.import_module(config)) # Override from a configuration file in the env variable, if present. if "RQ_MONITOR_SETTINGS" in os.environ: app.config.from_envvar("RQ_MONITOR_SETTINGS") # Optionally add basic auth to blueprint and register with app. if username: add_basic_auth(blueprint, username, password) app.register_blueprint(blueprint, url_prefix=url_prefix) return app def check_url(url, decode_components=False): """ Taken from redis-py for basic check before passing URL to redis-py Kept here to show error before launching app For example:: redis://[[username]:[password]]@localhost:6379/0 rediss://[[username]:[password]]@localhost:6379/0 unix://[[username]:[password]]@/path/to/socket.sock?db=0 Three URL schemes are supported: - ```redis://`` <https://www.iana.org/assignments/uri-schemes/prov/redis>`_ creates a normal TCP socket connection - ```rediss://`` <https://www.iana.org/assignments/uri-schemes/prov/rediss>`_ creates a SSL wrapped TCP socket connection - ``unix://`` creates a Unix Domain Socket connection There are several ways to specify a database number. The parse function will return the first specified option: 1. A ``db`` querystring option, e.g. redis://localhost?db=0 2. If using the redis:// scheme, the path argument of the url, e.g. redis://localhost/0 3. The ``db`` argument to this function. If none of these options are specified, db=0 is used. The ``decode_components`` argument allows this function to work with percent-encoded URLs. If this argument is set to ``True`` all ``%xx`` escapes will be replaced by their single-character equivalents after the URL has been parsed. This only applies to the ``hostname``, ``path``, ``username`` and ``password`` components. Any additional querystring arguments and keyword arguments will be passed along to the ConnectionPool class's initializer. The querystring arguments ``socket_connect_timeout`` and ``socket_timeout`` if supplied are parsed as float values. The arguments ``socket_keepalive`` and ``retry_on_timeout`` are parsed to boolean values that accept True/False, Yes/No values to indicate state. Invalid types cause a ``UserWarning`` to be raised. In the case of conflicting arguments, querystring arguments always win. """ url = urlparse(url) url_options = {} for name, value in (parse_qs(url.query)).items(): if value and len(value) > 0: parser = URL_QUERY_ARGUMENT_PARSERS.get(name) if parser: try: url_options[name] = parser(value[0]) except (TypeError, ValueError): logger.warning(UserWarning( "Invalid value for `%s` in connection URL." % name )) else: url_options[name] = value[0] if decode_components: username = unquote(url.username) if url.username else None password = unquote(url.password) if url.password else None path = unquote(url.path) if url.path else None hostname = unquote(url.hostname) if url.hostname else None else: username = url.username or None password = url.password or None path = url.path hostname = url.hostname # We only support redis://, rediss:// and unix:// schemes. if url.scheme == 'unix': url_options.update({ 'username': username, 'password': password, 'path': path, 'connection_class': UnixDomainSocketConnection, }) elif url.scheme in ('redis', 'rediss'): url_options.update({ 'host': hostname, 'port': int(url.port or 6379), 'username': username, 'password': password, }) # If there's a path argument, use it as the db argument if a # querystring value wasn't specified if 'db' not in url_options and path: try: url_options['db'] = int(path.replace('/', '')) except (AttributeError, ValueError): pass if url.scheme == 'rediss': url_options['connection_class'] = SSLConnection else: valid_schemes = ', '.join(('redis://', 'rediss://', 'unix://')) raise ValueError('Redis URL must specify one of the following ' 'schemes (%s)' % valid_schemes) return True @click.command() @click.option( "-b", "--bind", default="0.0.0.0", help="IP or hostname on which to bind HTTP server", ) @click.option( "-p", "--port", default=8899, type=int, help="Port on which to bind HTTP server" ) @click.option( "--url-prefix", default="", help="URL prefix e.g. for use behind a reverse proxy" ) @click.option( "--username", default=None, help="HTTP Basic Auth username (not used if not set)" ) @click.option("--password", default=None, help="HTTP Basic Auth password") @click.option( "-c", "--config", default=None, help="Configuration file (Python module on search path)", ) @click.option( "-u", "--redis-url", default=[RQ_MONITOR_REDIS_URL], multiple=True, help="Redis URL. Can be specified multiple times. Default: redis://127.0.0.1:6379", ) @click.option( "--refresh-interval", "--interval", "refresh_interval", default=RQ_MONITOR_REFRESH_INTERVAL, type=int, help="Refresh interval in ms", ) @click.option( "--extra-path", default=".", multiple=True, help="Append specified directories to sys.path", ) @click.option("--debug/--normal", default=False, help="Enter DEBUG mode") @click.option( "-v", "--verbose", is_flag=True, default=False, help="Enable verbose logging" ) def run( bind, port, url_prefix, username, password, config, redis_url, refresh_interval, extra_path, debug, verbose, ): """Run the RQ Monitor Flask server. All configuration can be set on the command line or through environment variables of the form RQ_MONITOR_*. For example RQ_MONITOR_USERNAME. A subset of the configuration (the configuration parameters used by the underlying flask blueprint) can also be provided in a Python module referenced using --config, or with a .cfg file referenced by the RQ_MONITOR_SETTINGS environment variable. """ if extra_path: sys.path += list(extra_path) click.echo("RQ Monitor version {}".format(VERSION)) app = create_app_with_blueprint(config, username, password, url_prefix, monitor_blueprint) app.config["RQ_MONITOR_REDIS_URL"] = redis_url app.config["RQ_MONITOR_REFRESH_INTERVAL"] = refresh_interval # Conditionally disable Flask console messages # See: https://stackoverflow.com/questions/14888799 if verbose: logger.setLevel(logging.DEBUG) else: logger.setLevel(logging.ERROR) logger.error(" * Running on {}:{}".format(bind, port)) for url in redis_url: check_url(url) app.run(host=bind, port=port, debug=debug) def main(): run(auto_envvar_prefix="RQ_MONITOR") if __name__ == '__main__': main()
# ======================================================================================================================================= # VNU-HCM, University of Science # Department Computer Science, Faculty of Information Technology # Authors: Nhut-Nam Le (Tich Phan Suy Rong) # © 2020 import unittest """ Return the sum of the numbers in the array, except ignore sections of numbers starting with a 6 and extending to the next 7 (every 6 will be followed by at least one 7). Return 0 for no numbers. sum67([1, 2, 2]) → 5 sum67([1, 2, 2, 6, 99, 99, 7]) → 5 sum67([1, 1, 6, 7, 2]) → 4 """ def sum67(nums): result = 0 flag = False for num in nums: if num == 6: flag = True if (flag): if num == 7: flag = False else: result += num return result class TestSum67(unittest.TestCase): def test_case_00(self): self.assertEqual(sum67([1, 2, 2]), 5) def test_case_01(self): self.assertEqual(sum67([1, 2, 2, 6, 99, 99, 7]), 5) def test_case_02(self): self.assertEqual(sum67([1, 1, 6, 7, 2]), 4) def test_case_03(self): self.assertEqual(sum67([1, 6, 2, 2, 7, 1, 6, 99, 99, 7]), 2) def test_case_04(self): self.assertEqual(sum67([1, 6, 2, 6, 2, 7, 1, 6, 99, 99, 7]), 2) def test_case_05(self): self.assertEqual(sum67([2, 7, 6, 2, 6, 7, 2, 7]), 18) def test_case_06(self): self.assertEqual(sum67([2, 7, 6, 2, 6, 2, 7]), 9) def test_case_07(self): self.assertEqual(sum67([1, 6, 7, 7]), 8) def test_case_06(self): self.assertEqual(sum67([6, 7, 1, 6, 7, 7]), 8) def test_case_07(self): self.assertEqual(sum67([6, 8, 1, 6, 7]), 0) def test_case_08(self): self.assertEqual(sum67([]), 0) def test_case_09(self): self.assertEqual(sum67([6, 7, 11]), 11) def test_case_10(self): self.assertEqual(sum67([11, 6, 7, 11]), 22) def test_case_11(self): self.assertEqual(sum67([2, 2, 6, 7, 7]), 11) if __name__ == "__main__": unittest.main()
from tools.machine_learning import getAccuracy, preprocess_data, sliding_window from sklearn.model_selection import train_test_split from sklearn.multiclass import OneVsRestClassifier from sklearn.metrics import classification_report from sklearn.model_selection import GridSearchCV from sklearn.preprocessing import StandardScaler from tools.load_nc import load_nc_sat import matplotlib.pyplot as plt from sklearn.svm import SVC import numpy as np import pickle import cv2 import os from skimage.feature import hog from sklearn.externals import joblib # To save scaler sst_path = 'C:/Users/47415/Master/TTK-4900-Master/data/sst_train.npz' ssl_path = 'C:/Users/47415/Master/TTK-4900-Master/data/ssl_train.npz' uvel_path = 'C:/Users/47415/Master/TTK-4900-Master/data/uvel_train.npz' vvel_path = 'C:/Users/47415/Master/TTK-4900-Master/data/vvel_train.npz' phase_path = 'C:/Users/47415/Master/TTK-4900-Master/data/phase_train.npz' lon_path = 'C:/Users/47415/Master/TTK-4900-Master/data/lon.npz' lat_path = 'C:/Users/47415/Master/TTK-4900-Master/data/lat.npz' model_fpath = 'C:/Users/47415/Master/TTK-4900-Master/models/svm_model.h5' scaler_fpath = "C:/Users/47415/Master/TTK-4900-Master/models/svm_norm_scaler.pkl" #new #200_days_2018 # Create a scaler for each channel nChannels = 2 scaler = [StandardScaler() for _ in range(nChannels)] #scaler = MinMaxScaler(feature_range=(-1,1)) winW, winH = int(11), int(6) probLim = 0.95 def train_model(): winW2, winH2 = winW*4, winH*4 X = [] with np.load(uvel_path, allow_pickle=True) as data: X.append(data['arr_0'][:,0]) with np.load(vvel_path, allow_pickle=True) as data: X.append(data['arr_0'][:,0]) Y = data['arr_0'][:,1] nTeddies = len(X[0]) for c in range(nChannels): # For each channel for i in range(nTeddies): # For each Training Eddy X[c][i] = cv2.resize(X[c][i], dsize=(winH2, winW2), interpolation=cv2.INTER_CUBIC) # Reshape data for SVM (sample, width, height, channel) X_svm = np.zeros((nTeddies,winW2,winH2,nChannels)) for i in range(nTeddies): # Eddies for lo in range(winW2): # Row for la in range(winH2): # Column for c in range(nChannels): # Channels X_svm[i,lo,la,c] = X[c][i][lo][la] # Create and set the scaler for each channel #X_svm = X_svm.reshape(nTeddies, -1, nChannels) for c in range(nChannels): X_svm[:,:,c] = scaler[c].fit_transform(X_svm[:,:,c]) joblib.dump(scaler, scaler_fpath) # Save the Scaler model # flatten each sample for svm, the method should be able to find the non-linear # relationships between the seperate channels anyways. X_svm = X_svm.reshape(nTeddies, -1) for i in range(nTeddies): X_svm[i] = X_svm[i].flatten() # If land presetn (NaN), just set to zero X_svm = np.nan_to_num(X_svm) # Want classes to be from 0-2, I've used -1,0,1 for i in range(len(Y)): if Y[i] == -1: Y[i]=2 Y = Y.astype('int') # Train/test split X_train, X_test, y_train, y_test = train_test_split(X_svm, Y[:nTeddies], test_size=0.33) pipeline = OneVsRestClassifier(SVC(kernel='rbf', verbose=1, probability=True)) #pipeline = SVC(kernel='rbf', verbose=1, probability=True) # Single-class parameters = { #'estimator__gamma': [0.0001, 0.0003, 0.0006, 0.001], #'estimator__C': [1, 3, 6, 8], #'estimator__kernel': ['rbf'], 'estimator__gamma': [0.01, 0.1, 1, 10], 'estimator__C': [0.1, 1, 10], 'estimator__kernel': ['rbf'], } # Classifier object with the classifier and parameter candidates for cross-validated grid-search model = GridSearchCV(pipeline, param_grid=parameters, n_jobs=4, verbose=3, scoring="accuracy") model.fit(list(X_train), y_train) pickle.dump(model, open(model_fpath, 'wb')) y_pred = model.predict(list(X_test)) accuracy = getAccuracy(y_pred, y_test) print(f"> The accuracy of the model is {accuracy}") print("Best parameters set found on development set:") print(model.best_params_) print("Grid scores on development set:") means = model.cv_results_['mean_test_score'] stds = model.cv_results_['std_test_score'] for mean, std, params in zip(means, stds, model.cv_results_['params']): print("%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params)) print("Detailed classification report:\n") print("The model is trained on the full development set.") print("The scores are computed on the full evaluation set.") y_true, y_pred = y_test, model.predict(X_test) print(classification_report(y_true, y_pred)) def svm_predict_grid(data_in=None, win_sizes=[((int(8), int(5)), 2, 1),((int(10), int(6)), 3, 2),((int(13), int(8)), 4, 3)], problim = 0.95, model_fpath=model_fpath, nc_fpath='D:/Master/data/cmems_data/global_10km/noland/phys_noland_2016_060.nc', storedir=None): print("\n\n") lon,lat,x,y,ssl,uvel,vvel = data_in # Recreate the exact same model purely from the file model = pickle.load(open(model_fpath, 'rb')) #ssl_clf = keras.models.load_model(C:/Users/47415/Master/TTK-4900-Master/models/cnn_{}class_ssl.h5'.format(cnntype)) nx, ny = ssl.shape # Create canvas to show the cv2 rectangles around predictions fig, ax = plt.subplots(figsize=(15, 12)) n=-1 color_array = np.sqrt(((uvel.T-n)/2)**2 + ((vvel.T-n)/2)**2) # x and y needs to be equally spaced for streamplot if not (same_dist_elems(x) or same_dist_elems(y)): x, y = np.arange(len(x)), np.arange(len(y)) ax.contourf(x, y, ssl.T, cmap='rainbow', levels=150) ax.streamplot(x, y, uvel.T, vvel.T, color=color_array, density=10) #ax.quiver(x, y, uvel.T, vvel.T, scale=3) fig.subplots_adjust(0,0,1,1) fig.canvas.draw() im = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) im = im.reshape(fig.canvas.get_width_height()[::-1] + (3,)) imCopy = cv2.cvtColor(im,cv2.COLOR_RGB2BGR) imH, imW, _ = imCopy.shape # col, row winScaleW, winScaleH = imW*1.0/nx, imH*1.0/ny # Scalar coeff from dataset to cv2 image # Only use uvel and vvel to be scaled and use for CNN to_be_scaled = [1,2] data = [ssl, uvel, vvel] scaler = joblib.load(scaler_fpath) # Import the std sklearn scaler model # Holds rectangle coordinates with dataset and image indexes cyc_r, acyc_r = [], [] cyc_r_im, acyc_r_im = [], [] print("++ Performing sliding window and predicting using pre-trained CNN model") # Loop over different window sizes, they will be resized down to correct dimensiona anyways for wSize, wStep, hStep in win_sizes: # loop over the sliding window of indeces for rectIdx, (i, j, (xIdxs, yIdxs)) in enumerate(sliding_window(ssl, wStep, hStep, windowSize=wSize)): if xIdxs[-1] >= nx or yIdxs[-1] >= ny: continue winW2, winH2 = winW*4, winH*4 winSize = (winH2, winW2) masked = False # Continue if window hits land data_window, data_scaled_window = [], [] for c in range(len(data)): # Creates window, checks if masked, if not returns the window a = check_window(data[c], xIdxs, yIdxs) if a is None: masked = True break # append window if not masked data_window.append( a ) # Resize the original window to CNN input dim data_window[c] = cv2.resize(data_window[c], dsize=(winSize), interpolation=cv2.INTER_CUBIC) if c in to_be_scaled: # Create a copy of window to be scaled data_scaled_window.append(data_window[c].copy()) k = len(data_scaled_window) - 1 # Flatten array before applying scalar data_scaled_window[k] = data_scaled_window[k].flatten() # Scale the data data_scaled_window[k] = scaler[k].transform([data_scaled_window[k]])[0] # Reshape scaled data to original shape data_scaled_window[k] = data_scaled_window[k].reshape(winW2, winH2) # continue to next window if mask (land) is present if masked: continue X_svm = np.zeros((1,winW2,winH2,nChannels)) for lo in range(winW2): # Row for la in range(winH2): # Column for c in range(nChannels): # Channels X_svm[0,lo,la,c] = data_scaled_window[c][lo,la] # Flatten array X_svm = X_svm.reshape(1,-1) # Predict and receive probability prob = model.predict(X_svm) # y starts in top left for cv2, want it to be bottom left xr, yr = int(winScaleW*(i)), int(winScaleH*(ny-j)) # rect coords xrW, yrW= int(winScaleW*winW), int(winScaleH*winH) # rect width if any(p >= problim for p in prob[0,1:]): if prob[0,1] >= problim: acyc_r.append([i, j, i + winW, j + winH]) acyc_r_im.append([xr, yr, xr + xrW, yr - xrW]) cv2.rectangle(imCopy, (xr, yr), (xr + xrW, yr - xrW), (217, 83, 25), 2) #print('anti-cyclone | prob: {}'.format(prob[0,1]*100)) else: cyc_r.append([i, j, i + winW, j + winH]) cyc_r_im.append([xr, yr, xr + xrW, yr - xrW]) cv2.rectangle(imCopy, (xr, yr), (xr + xrW, yr - xrW), (0, 76, 217), 2) #print('cyclone | prob: {}'.format(prob[0,2]*100)) # Group the rectangles according to how many and how much they overlap cyc_r_im_grouped, _ = cv2.groupRectangles(rectList=cyc_r_im, groupThreshold=1, eps=0.2) acyc_r_im_grouped, _ = cv2.groupRectangles(rectList=acyc_r_im, groupThreshold=1, eps=0.2) # if a store directory is defined, create and store image at location imgdir = 'C:/Users/47415/Master/images/compare/' if isinstance(storedir, str): if not os.path.isdir(imgdir + storedir): os.makedirs(imgdir + storedir) cv2.imwrite(imgdir + f'{storedir}/full_pred_grid.png', imCopy) imCopy = cv2.cvtColor(im,cv2.COLOR_RGB2BGR) draw_rectangles(imCopy, cyc_r_im_grouped, lon, lat, winScaleW, winScaleH, 'cyclone') draw_rectangles(imCopy, acyc_r_im_grouped, lon, lat, winScaleW, winScaleH, 'anti-cyclone') cv2.imwrite(imgdir + f'{storedir}/grouped_pred_grid.png', imCopy) #cv2.imshow("Window", imCopy) #cv2.waitKey(0) #cyc_r, _ = cv2.groupRectangles(rectList=cyc_r, groupThreshold=1, eps=0.2) #acyc_r, _ = cv2.groupRectangles(rectList=acyc_r, groupThreshold=1, eps=0.2) plt.close(fig) return cyc_r, acyc_r def check_window(data, lonIdxs, latIdxs): """ Check if window is masked, if not return array """ a = np.zeros((len(lonIdxs), len(latIdxs))) for i, lo in enumerate(lonIdxs): for j, la in enumerate(latIdxs): x = data[lo,la] if np.ma.is_masked(x): return None a[i,j] = x return a if __name__ == '__main__': #train_model() #test_model() #real_time_test()
# -*- coding: utf-8 -*- ''' Created on 2016-10-20 @author: hustcc ''' from app.wraps.login_wrap import login_required from app import app, v from app.utils import ResponseUtil, RequestUtil, AuthUtil from app.database.model import Collaborator, User # get server list @app.route('/api/collaborator/list', methods=['GET']) @login_required() @v.param({'webhook_id': v.int()}) def api_collaborator_list(webhook_id): # login user user_id = RequestUtil.get_login_user().get('id', '') if not AuthUtil.has_readonly_auth(user_id, webhook_id): return ResponseUtil.standard_response(0, 'Permission deny!') collaborators = Collaborator.query.filter_by(webhook_id=webhook_id).all() collaborators = [collaborator.dict() for collaborator in collaborators] return ResponseUtil.standard_response(1, collaborators) # new server @app.route('/api/collaborator/new', methods=['POST']) @login_required() @v.param({'webhook_id': v.int(), 'user_id': v.str()}) def api_collaborator_new(webhook_id, user_id): # login user login_user_id = RequestUtil.get_login_user().get('id', '') if login_user_id == user_id: return ResponseUtil.standard_response(0, '`%s` is Creator!' % user_id) if not AuthUtil.has_admin_auth(login_user_id, webhook_id): return ResponseUtil.standard_response(0, 'Permission deny!') collaborator = Collaborator.query.filter_by(webhook_id=webhook_id, user_id=user_id).first() # not exist if collaborator: return ResponseUtil.standard_response(0, 'Collaborator exist!') # 开始添加 user = User.query.get(user_id) if not user: user = User(id=user_id, name=user_id) user.save() collaborator = Collaborator(webhook_id=webhook_id, user=user) collaborator.save() return ResponseUtil.standard_response(1, collaborator.dict()) @app.route('/api/collaborator/delete', methods=['POST']) @login_required() @v.param({'collaborator_id': v.int()}) def api_collaborator_delete(collaborator_id): # login user user_id = RequestUtil.get_login_user().get('id', '') collaborator = Collaborator.query.get(collaborator_id) if not collaborator: return ResponseUtil.standard_response(0, 'Permission deny!') webhook_id = collaborator.webhook_id if not AuthUtil.has_admin_auth(user_id, webhook_id): return ResponseUtil.standard_response(0, 'Permission deny!') collaborator.delete() return ResponseUtil.standard_response(1, 'Success')
from django.forms import forms, ModelForm, TextInput, Textarea, Select, CharField, PasswordInput, NumberInput from django.contrib.auth.password_validation import validate_password from eadmin.models import User from . models import DeliveryStaff class NewStaffForm(ModelForm): class Meta: model = DeliveryStaff exclude = ['id', 'shop'] widgets = { # 'id': Select( # attrs={ # 'class': 'form-control', # 'required': 'required' # } # ), 'name': TextInput( attrs={ 'class': 'form-control', 'required': 'required' } ), 'staff_id': TextInput( attrs={ 'class': 'form-control', 'placeholder': '5CB387D65JCE25' } ), 'address': Textarea( attrs={ 'class': 'form-control' } ), 'phone': TextInput( attrs={ 'class': 'form-control', 'type': 'number', 'maxlength': 10, 'minvalue': 6666666666, 'placeholder': 'XX XXX XXX XX' } ), }
""" File transfer protocol used to send and receive files using FTP server. Use credentials to provide access to the FTP client Note: Do not use root username & password for security reasons Create a seperate user and provide access to a home directory of the user Use login id and password of the user created cwd here stands for current working directory """ from ftplib import FTP ftp = FTP('xxx.xxx.x.x') # Enter the ip address or the domain name here ftp.login(user='username', passwd='password') ftp.cwd('/Enter the directory here/') """ The file which will be received via the FTP server Enter the location of the file where the file is received """ def ReceiveFile(): FileName = 'example.txt' """ Enter the location of the file """ with open(FileName, 'wb') as LocalFile: ftp.retrbinary('RETR ' + FileName, LocalFile.write, 1024) ftp.quit() """ The file which will be sent via the FTP server The file send will be send to the current working directory """ def SendFile(): FileName = 'example.txt' """ Enter the name of the file """ with open(FileName, 'rb') as LocalFile: ftp.storbinary('STOR ' + FileName, LocalFile) ftp.quit()
from output.models.nist_data.atomic.date.schema_instance.nistschema_sv_iv_atomic_date_pattern_1_xsd.nistschema_sv_iv_atomic_date_pattern_1 import NistschemaSvIvAtomicDatePattern1 __all__ = [ "NistschemaSvIvAtomicDatePattern1", ]
""" Bot API Author: Irfan Chahyadi Source: github.com/irfanchahyadi/Odong2Bot """ import requests, json, time, urllib, os, dotenv from datetime import datetime from src.bot_message import KEYBOARD dotenv.load_dotenv() class botAPI(): def __init__(self): token = os.getenv('TOKEN') self.base_url = 'https://api.telegram.org/bot{}/'.format(token) self.timeout = 60 def set_webhook(self): webhook_url = os.getenv('URL') url = self.base_url + 'setWebhook?url=' + webhook_url return requests.get(url).json()['ok'] def get_me(self, key): url = self.base_url + 'getMe' res = requests.get(url) jsn = res.json() d = {'id': jsn['result']['id'], 'username': jsn['result']['username']} return d[key] def get_updates(self, offset): url = self.base_url + 'getUpdates?timeout=' + str(self.timeout) if offset: url += '&offset={}'.format(offset) res = requests.get(url) jsn = res.json() return jsn def extract_updates(self, msg): update_id = msg['update_id'] if 'message' in msg.keys(): user_id = msg['message']['from']['id'] username = msg['message']['from']['username'] date = msg['message']['date'] date = datetime.fromtimestamp(date) date_str=date.strftime('%d-%m-%Y %H:%M:%S') if 'text' in msg['message'].keys(): type = 'text' data = msg['message']['text'] print("[" + date_str + "] " + username + ": " + data) elif 'location' in msg['message'].keys(): type = 'location' latitude = msg['message']['location']['latitude'] longitude = msg['message']['location']['longitude'] data = (latitude, longitude) print("[" + date_str + "] " + username + ": Send location, latitude: " + str(data[0]) + ', longitude: ' + str(data[1])) elif 'photo' in msg['message'].keys(): type = 'photo' if 'caption' in msg['message']: caption = msg['message']['caption'] else: caption = '' file_id = msg['message']['photo'][0]['file_id'] data = (caption, file_id) print("[" + date_str + "] " + username + ": Send photo, caption: " + ('\'\'' if data[0] == '' else data[0]) + ', file_id: ' + data[1]) elif 'document' in msg['message'].keys(): type = 'document' if 'caption' in msg['message']: caption = msg['message']['caption'] else: caption = '' file_id = msg['message']['document']['file_id'] data = (caption, file_id) print("[" + date_str + "] " + username + ": Send document, caption: " + ('\'\'' if data[0] == '' else data[0]) + ', file_id: ' + data[1]) else: type = 'unknown' elif 'callback_query' in msg.keys(): type = 'callback_query' user_id = msg['callback_query']['from']['id'] username = msg['callback_query']['from']['username'] if 'text' in msg['callback_query']['message'].keys(): text = msg['callback_query']['message']['text'] elif 'caption' in msg['callback_query']['message'].keys(): text = msg['callback_query']['message']['caption'] data = {'data': msg['callback_query']['data'], 'text': text, 'callback_query_id': msg['callback_query']['id'], 'message_id': msg['callback_query']['message']['message_id'], 'chat_id': msg['callback_query']['message']['chat']['id']} # date = msg['callback_query']['message']['date'] date = datetime.now() date_str=date.strftime('%d-%m-%Y %H:%M:%S') print("[" + date_str + "] " + username + ": Send callback_query, data: " + str(data['data'])) else: type = 'unknown' if type == 'unknown': data = '' upd = {'update_id': update_id, 'type': type, 'date': date, 'user_id': user_id, 'username': username, 'data': data} return upd def get_address(self, lat, lon): url = 'https://nominatim.openstreetmap.org/reverse?lat={}&lon={}&format=json'.format(lat, lon) res = requests.get(url) jsn = res.json() return jsn['display_name'] def extract_menu(self, text): menu_dict = {} menus = text.split('\n')[1][1:-1].split('] [') for menu in menus: k, v = menu.split(': ') menu_dict[k] = v return menu_dict def build_keyboard(self, menu, text): reply_markup = {} # CREATE KEYBOARD if menu in ['MAIN'] or (menu == 'CART' and text.startswith('Your Cart is empty')): keyb = [['Product List', 'My Cart'], ['My Order', "Today's Promo"]] elif menu == 'CHECKOUT': keyb = [[{'text':'Send Location', 'request_location':True}]] elif menu == 'CHECK OUT INPG': keyb = [[{'text':'Kirim Sekarang'}],[{'text':'Kirim Ulang Lokasi', 'request_location':True}],[{'text':'Kembali'}]] else: keyb = None # CREATE INLINE KEYBOARD if menu in ['PRODUCT']: ikeyb = KEYBOARD['product'] elif menu in ['CART'] and not text.startswith('Your Cart is empty'): ikeyb = KEYBOARD['cart'] elif menu == 'CHECKOUT_CONFIRMATION': ikeyb = KEYBOARD['checkout_confirmation'] else: ikeyb = None if menu in ['HIDE']: reply_markup['hide_keyboard'] = True elif keyb: reply_markup['keyboard'] = keyb reply_markup['one_time_keyboard'] = True reply_markup['resize_keyboard'] = True elif ikeyb: reply_markup['inline_keyboard'] = ikeyb return json.dumps(reply_markup) def delete_message(self, data): url = self.base_url + 'deleteMessage?message_id={}&chat_id={}'.format(data['message_id'], data['chat_id']) res = requests.get(url) def send_promo(self, user_id, promo, caption): caption_parsed = urllib.parse.quote_plus(caption) url = self.base_url + 'sendPhoto?chat_id={}&photo={}&caption={}&parse_mode=Markdown'.format(user_id, promo, caption_parsed) url += '&reply_markup={}'.format(self.build_keyboard('MAIN', caption)) a = requests.get(url).json() def send_product(self, user_id, product, caption): caption_parsed = urllib.parse.quote_plus(caption) url = self.base_url + 'sendPhoto?chat_id={}&photo={}&caption={}&parse_mode=Markdown'.format(user_id, product[3], caption_parsed) keyboard = [[]] if len(product) == 7: # for edit order in cart for i in range(7): if i == 0: keyboard.insert(0, [{'text': 'Remove', 'callback_data':'RemoveCart' + str(product[6])}]) elif i < 6: keyboard[1].append({'text': str(i), 'callback_data':'UpdateCart' + str(product[6]) + 'pcs' + str(i)}) else: keyboard[1].append({'text': 'More', 'callback_data':'UpdateCart' + str(product[6]) + 'pcsMore'}) else: # for add product to cart for i in range(1, 7): if i < 6: keyboard[0].append({'text': str(i), 'callback_data':'AddToCart' + str(product[0]) + 'pcs' + str(i)}) else: keyboard[0].append({'text': 'More', 'callback_data':'AddToCart' + str(product[0]) + 'pcsMore'}) url += '&reply_markup={}'.format(json.dumps({'inline_keyboard': keyboard})) requests.get(url) def send_message(self, user_id, text, menu): text_parsed = urllib.parse.quote_plus(text) url = self.base_url + 'sendMessage?chat_id={}&text={}&parse_mode=Markdown&disable_web_page_preview=True'.format(user_id, text_parsed) keyboard = self.build_keyboard(menu, text) if keyboard: url += '&reply_markup={}'.format(keyboard) res = requests.get(url).json() def answer_callback(self, data): url_answer = self.base_url + 'answerCallbackQuery?callback_query_id={}'.format(data['callback_query_id']) requests.get(url_answer) def edit_message(self, text, data): self.answer_callback(data) text_parsed = urllib.parse.quote_plus(text) url = self.base_url + 'editMessageText?message_id={}&chat_id={}&text={}&parse_mode=Markdown&disable_web_page_preview=True'.format(data['message_id'], data['chat_id'], text_parsed) if data['data'] in ['PRODUCT', 'Cancel', 'Clear', 'CancelToProduct', 'Prev', 'Next'] or data['data'].startswith(('Sortby', 'FilterCategory', 'OrderProdId')): keyboard = KEYBOARD['product'] elif data['data'] == 'Sort': keyboard = KEYBOARD['sort_product'] elif data['data'] == 'Search': keyboard = None elif data['data'] == 'Filter': keyboard = [] for category in data['categories']: keyboard.append([{'text':category[0], 'callback_data':'FilterCategory' + category[0].replace(' ', '_')}]) keyboard.append([{'text':'Cancel', 'callback_data':'CancelToProduct'}]) elif data['data'] == 'OrderProduct': keyboard = [] for prod in data['products']: keyboard.append([{'text': prod[0] + ' - ' + '{:0,.0f}'.format(prod[1]), 'callback_data':'OrderProdId' + str(prod[2])}]) elif data['data'] == 'EditCart': keyboard = [] for item in data['cart']: keyboard.append([{'text': item[0], 'callback_data':'EditCartId' + str(item[1])}]) elif data['data'] == 'RemoveCart': keyboard = KEYBOARD['cart'] else: keyboard = None if keyboard: url += '&reply_markup={}'.format(json.dumps({'inline_keyboard': keyboard})) res = requests.get(url).json()
# file openpyxl/tests/test_iter.py # Copyright (c) 2010-2011 openpyxl # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # @license: http://www.opensource.org/licenses/mit-license.php # @author: see AUTHORS file from nose.tools import eq_, raises, assert_raises import os.path from openpyxl.tests.helper import DATADIR from openpyxl.reader.iter_worksheet import get_range_boundaries from openpyxl.reader.excel import load_workbook from openpyxl.shared.compat import xrange import datetime class TestWorksheet(object): workbook_name = os.path.join(DATADIR, 'genuine', 'empty.xlsx') def _open_wb(self): return load_workbook(filename = self.workbook_name, use_iterators = True) class TestDims(TestWorksheet): expected = [ 'A1:G5', 'D1:K30', 'D2:D2', 'A1:C1' ] def test_get_dimensions(self): wb = self._open_wb() for i, sheetn in enumerate(wb.get_sheet_names()): ws = wb.get_sheet_by_name(name = sheetn) eq_(ws._dimensions, self.expected[i]) def test_get_highest_column_iter(self): wb = self._open_wb() ws = wb.worksheets[0] eq_(ws.get_highest_column(), 7) class TestText(TestWorksheet): sheet_name = 'Sheet1 - Text' expected = [['This is cell A1 in Sheet 1', None, None, None, None, None, None], [None, None, None, None, None, None, None], [None, None, None, None, None, None, None], [None, None, None, None, None, None, None], [None, None, None, None, None, None, 'This is cell G5'], ] def test_read_fast_integrated(self): wb = self._open_wb() ws = wb.get_sheet_by_name(name = self.sheet_name) for row, expected_row in zip(ws.iter_rows(), self.expected): row_values = [x.internal_value for x in row] eq_(row_values, expected_row) def test_get_boundaries_range(self): eq_(get_range_boundaries('C1:C4'), (3, 1, 3, 4)) def test_get_boundaries_one(self): eq_(get_range_boundaries('C1'), (3, 1, 4, 1)) def test_read_single_cell_range(self): wb = self._open_wb() ws = wb.get_sheet_by_name(name = self.sheet_name) eq_('This is cell A1 in Sheet 1', list(ws.iter_rows('A1'))[0][0].internal_value) class TestIntegers(TestWorksheet): sheet_name = 'Sheet2 - Numbers' expected = [[x + 1] for x in xrange(30)] query_range = 'D1:E30' def test_read_fast_integrated(self): wb = self._open_wb() ws = wb.get_sheet_by_name(name = self.sheet_name) for row, expected_row in zip(ws.iter_rows(self.query_range), self.expected): row_values = [x.internal_value for x in row] eq_(row_values, expected_row) class TestFloats(TestWorksheet): sheet_name = 'Sheet2 - Numbers' query_range = 'K1:L30' expected = expected = [[(x + 1) / 100.0] for x in xrange(30)] def test_read_fast_integrated(self): wb = self._open_wb() ws = wb.get_sheet_by_name(name = self.sheet_name) for row, expected_row in zip(ws.iter_rows(self.query_range), self.expected): row_values = [x.internal_value for x in row] eq_(row_values, expected_row) class TestDates(TestWorksheet): sheet_name = 'Sheet4 - Dates' def test_read_single_cell_date(self): wb = self._open_wb() ws = wb.get_sheet_by_name(name = self.sheet_name) eq_(datetime.datetime(1973, 5, 20), list(ws.iter_rows('A1'))[0][0].internal_value) eq_(datetime.datetime(1973, 5, 20, 9, 15, 2), list(ws.iter_rows('C1'))[0][0].internal_value)
/home/runner/.cache/pip/pool/62/f8/1b/da37f497a4b80b6ad701b8dba5445817aca352009dc034ab9e989903c5
from bs4 import BeautifulSoup class LeadersScrapper: def scrap(self, html): soup = BeautifulSoup(html, features="html.parser") title = soup.find("h1").text date = soup.find("div",{"class":"infos"}).text data = [ arti.text for arti in soup.find("div", {"class":"article_body"}).findChildren()] idx = data.index("Lire aussi") article = " ".join(data[:idx]) return {"title":title, "date":date, "article":article}
import fnmatch import botocore COPY_METHODS = {"copy", "copy_object", "copy_upload_part"} LIST_METHODS = {"list_objects", "list_objects_v2", "list_object_version"} def _route_bucket_and_key(api_params, config, map): for profile in config: mapping = config[profile] if "Bucket" in api_params: if fnmatch.fnmatch(api_params["Bucket"], mapping["source_bucket_pattern"]): if "Key" in api_params: if "source_key_pattern" in mapping: if not fnmatch.fnmatch(api_params["Key"], mapping["source_key_pattern"]): continue if "mapped_prefix" in mapping: api_params["Key"] = mapping["mapped_prefix"] + api_params["Key"] if "mapped_bucket_name" in mapping: api_params["Bucket"] = mapping["mapped_bucket_name"] return map.get(profile), api_params return map.get("default"), api_params def _route_list_params(kwargs, config, map): if "Prefix" in kwargs: client_to_call, result_args = _route_bucket_and_key( api_params={"Bucket": kwargs.get("Bucket"), "Key": kwargs.get("Prefix")}, config=config, map=map) kwargs["Prefix"] = result_args["Key"] else: client_to_call, result_args = _route_bucket_and_key(api_params=kwargs, config=config, map=map) kwargs["Bucket"] = result_args["Bucket"] return client_to_call, kwargs class PaginatorWrapper(object): """Wrapper for a boto paginator. Holds multiple paginators, one for each client, and dispatches calls to the appropriate paginator according to botos3router's mapping configuration """ def __init__(self, mapping, config, operation_name): """Init PaginatorWrapper. Initialize paginator for each client. :param dict mapping: The mapping between the profiles to the s3 clients :param dict[dict] config: The configuration rules for the clients routing :param str operation_name: The operation name of the paginator """ self.mapping = mapping self.config = config self.paginators = dict() for client in self.mapping: self.paginators[client] = self.mapping[client].get_paginator(operation_name) def paginate(self, **kwargs): """iterate over the pages of the paginator API operation results. accepts a PaginationConfig named argument that can be used to customize the pagination. """ paginator_to_call, kwargs = _route_list_params(kwargs, self.config, self.paginators) return getattr(paginator_to_call, "paginate")(**kwargs) class BotoS3RouterBuilder(object): """This class creates a botos3router client that wraps boto clients. * Holds boto clients and routes the requests between them by bucket/prefix configuration. * Create its methods on the fly according to boto3 client AWS methods. * Holds special treatment for functions that operate on multiple buckets or keys """ def __init__(self): """Init BotoS3RouterBuilder.""" self.default = None self.mapping = None self.config = None def build(self, mapping, config): """build BotoS3RouterBuilder client. initialize default client. create boto client methods. """ if not isinstance(mapping, dict): raise TypeError("Invalid client mapping type: " + str(type(mapping)) + " expected dict") if "default" not in mapping: raise ValueError("default client is required") self.mapping = mapping self.config = config self.default = mapping.get("default") for k, v in self.mapping.items(): if not isinstance(v, botocore.client.BaseClient): raise TypeError("mapping: " + k + "Invalid client type: " + str(type(v)) + " expected boto.s3.client") for profile in self.config: if not self.mapping.get(profile): raise ValueError("profile " + profile + " in config does not appear in mapping") if "source_bucket_pattern" not in self.config[profile]: raise ValueError("profile " + profile + " source_bucket_pattern is required") class_attributes = self._create_methods() cls = type("s3", (), class_attributes) return cls() def _create_methods(self): op_dict = {} operations = [func for func in dir(self.default) if (callable(getattr(self.default, func)) and not func.startswith('_'))] for operation_name in operations: if operation_name == "get_paginator": op_dict[operation_name] = self._create_get_paginate_method(operation_name) elif operation_name == "can_paginate": op_dict[operation_name] = self._create_can_paginate_method(operation_name) elif operation_name == "delete_objects": op_dict[operation_name] = self._create_delete_objects_method(operation_name) elif operation_name in LIST_METHODS: op_dict[operation_name] = self._create_list_method(operation_name) elif operation_name in COPY_METHODS: op_dict[operation_name] = self._create_copy_method(operation_name) else: op_dict[operation_name] = self._create_api_method(operation_name) op_dict["meta"] = self.default.meta return op_dict def _create_api_method(self, operation_name): def _api_call(_, *args, **kwargs): if args: raise TypeError("%s() only accepts keyword arguments." % operation_name) client_to_call = self.default client_to_call, kwargs = _route_bucket_and_key(api_params=kwargs, config=self.config, map=self.mapping) return getattr(client_to_call, operation_name)(**kwargs) _api_call.__name__ = str(operation_name) return _api_call def _create_list_method(self, operation_name): def _api_call(_, *args, **kwargs): if args: raise TypeError("%s() only accepts keyword arguments." % operation_name) client_to_call, kwargs = _route_list_params(kwargs, self.config, self.mapping) return getattr(client_to_call, operation_name)(**kwargs) _api_call.__name__ = str(operation_name) return _api_call def _create_copy_method(self, operation_name): def _api_call(_, *args, **kwargs): if args: raise TypeError("%s() only accepts keyword arguments." % operation_name) client_to_call_source = self.default client_to_call_dest = self.default if "CopySource" in kwargs: # copy operation if isinstance(kwargs["CopySource"], str): raise TypeError("accepts only type dict as CopySource") client_to_call_source, kwargs["CopySource"] = _route_bucket_and_key(api_params=kwargs["CopySource"], config=self.config, map=self.mapping) res = _route_bucket_and_key(api_params=kwargs, config=self.config, map=self.mapping) client_to_call_dest, api_params = res if client_to_call_source != client_to_call_dest: raise ValueError("client source and client destination are different") return getattr(client_to_call_source, operation_name)(**api_params) _api_call.__name__ = str(operation_name) return _api_call def _create_get_paginate_method(self, operation_name): def _paginator_api_call(*args, **kwargs): return PaginatorWrapper(self.mapping, self.config, kwargs['operation_name']) _paginator_api_call.__name__ = str(operation_name) return _paginator_api_call def _create_can_paginate_method(self, operation_name): def _can_paginate_api_call(*args, **kwargs): return getattr(self.default, operation_name)(**kwargs) _can_paginate_api_call.__name__ = str(operation_name) return _can_paginate_api_call def _create_delete_objects_method(self, operation_name): def _delete_objects_api_call(_, *args, **kwargs): if args: raise TypeError("%s() only accepts keyword arguments." % operation_name) if "Delete" in kwargs: # delete objects operation for i, obj in enumerate(kwargs["Delete"]["Objects"]): client_to_call, result_agrs = _route_bucket_and_key( api_params={"Bucket": kwargs.get("Bucket"), "Key": obj["Key"]}, config=self.config, map=self.mapping) bucket = result_agrs["Bucket"] kwargs["Delete"]["Objects"][i]["Key"] = result_agrs["Key"] if i == 0: prev_client = client_to_call else: if prev_client != client_to_call: raise ValueError("can't delete objects that mapped to different clients") prev_client = client_to_call kwargs["Bucket"] = bucket return getattr(client_to_call, operation_name)(**kwargs) _delete_objects_api_call.__name__ = str(operation_name) return _delete_objects_api_call
import foo as f # print(foo) # NameError: name 'foo' is not defined print(f) # <module 'foo' from '/home/treedbox/treedbox/dev/python/python.1.0.0/python/module/import/as/foo.py'> print(f.foo()) # Foo text from module foo # None # None is because the return is a print() inside another print() f.bar() # Foo text from module foo f.foo() # Bar text from module foo
from abc import ABC, abstractmethod class AbstractSolver(ABC): """ Abstract solver for different problems in calculus of variation. """ @abstractmethod def _general_solution(self): """ Find general solution. """ self.general_solution = None @abstractmethod def _coefficients(self): """ Find particular solution coefficients. """ self.coefficients = None @abstractmethod def _particular_solution(self): """ Substitute particular solution coefficients to general solution. """ particular_solution = self.general_solution.subs(self.coefficients) self.particular_solution = particular_solution @abstractmethod def _extrema_value(self): """ Find extrema value for particular solution. """ self.extrema_value = None @abstractmethod def solve(self, verbose: bool = True): """ Solve task using all encapsulated methods. """ self._general_solution() self._coefficients() self._particular_solution() self._extrema_value() if verbose: print(self) print(f"general_solution: {self.general_solution}") print(f"coefficients: {self.coefficients}") print(f"particular_solution: {self.particular_solution}") print(f"extrema_value: {self.extrema_value}") print()
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from typing import Dict, Mapping class OverrideDefinition(dict): """Definition of a overridable field of a component job.""" def __init__(self, schema_dict: Dict): super(OverrideDefinition, self).__init__(schema_dict) def get_override_definition_from_schema(schema: str) -> Mapping[str, OverrideDefinition]: """Ger override definition from a json schema. :param schema: Json schema of component job. :return: A dictionary from a override definition name to a override definition. """ # TODO: gen override definition return None
from django.db import models from wagtail.admin.edit_handlers import FieldPanel, StreamFieldPanel from wagtail.core import blocks from wagtail.core.models import Page from wagtail.core.fields import RichTextField, StreamField from wagtail.images.blocks import ImageChooserBlock class ImagePanelBlock(blocks.StructBlock): photo = ImageChooserBlock() text = blocks.RichTextBlock() class HomePage(Page): body = RichTextField(blank=True) image_panels = StreamField([('ImagePanel', ImagePanelBlock())], blank=True, null=True) content_panels = Page.content_panels + [ FieldPanel('body', classname="full"), StreamFieldPanel('image_panels'), ]
from enum import Enum class Order(Enum): Asc = "asc" Desc = "desc"
# Constantes usadas en el juego class Constants: # Colors BLACK = (0, 0, 0) WHITE = (255, 255, 255) BLUE = (12, 153, 204) # Screen dimensions DISPLAY_WIDTH = 1500 DISPLAY_HEIGHT = 900 SPEED = 40 # Images FROG_IMAGE = "game_engine/sprites/ranita_resized.png" ROCK_IMAGE = "game_engine/sprites/rock_resized.png" FLY_IMAGE = "game_engine/sprites/fly_resized.png" FROG_IMAGE_L = "game_engine/sprites/sprite_left_resized.png" FROG_IMAGE_R = "game_engine/sprites/sprite_right_resized.png" # Objects dimensions FROG_WIDTH = 50 FROG_HEIGHT = 50 ITEM_WIDTH = 50 ITEM_HEIGHT = 50 FROG_SPEED = 50 # Frog Sprite dimensions and values FROG_SPRITE_WIDTH = 700 FROG_SPRITE_HEIGHT = 250 FROG_SPRITE_NUMBER = 14 FROG_HATS_NUMBER = 5 # Original size # FROG_SPRITE_WIDTH = 5460 # FROG_SPRITE_HEIGHT = 780
""" Problem Statement: - Implement a function findKthMax(root,k) which will take a BST and any number “k” as an input and return kth maximum number from that tree. Output: - Returns kth maximum value from the given tree Sample Input: bst = { 6 -> 4,9 4 -> 2,5 9 -> 8,12 12 -> 10,14 } where parent -> leftChild,rightChild k = 3 Sample Output: - 10 """ from Node import Node from BinarySearchTree import BinarySearchTree def findKthMax(root, k): inorder_tree = list(inorder_traverse(root)) return inorder_tree[-k] def inorder_traverse(root): if root.leftChild: yield from inorder_traverse(root.leftChild) yield root.val if root.rightChild: yield from inorder_traverse(root.rightChild) if __name__ == "__main__": BST = BinarySearchTree(6) BST.insert(1) BST.insert(133) BST.insert(12) print(findKthMax(BST.root, 3))
from player import * ann = Player('Ann', 2, 4) bob = Player('Bob', 3, 5) print(ann) print(bob) ann.randomize_hand() print(ann) bob.randomize_hand() print(bob)
import json import os import errno import sys from time import monotonic from pprint import pprint import shutil import urllib.request import multiprocessing import re # from tqdm import tqdm from queue import SimpleQueue from collections import defaultdict from itertools import chain from functools import partial from PIL import Image, ImageDraw from UnityPy import Environment from UnityPy.export.SpriteHelper import get_triangles, SpritePackingRotation, SpritePackingMode MANIFESTS = { "jp": "manifest/assetbundle.manifest.json", "en": "manifest/assetbundle.en_us.manifest.json", "cn": "manifest/assetbundle.zh_cn.manifest.json", "tw": "manifest/assetbundle.zh_tw.manifest.json", } IMG_EXT = ".png" IMG_ARGS = { ".png": {"optimize": False}, ".webp": {"lossless": True, "quality": 0}, } def save_img(img, dest): check_target_path(dest) img.save(dest, **IMG_ARGS[IMG_EXT]) def save_json(data, dest): check_target_path(dest) with open(dest, "w", encoding="utf8", newline="") as fn: json.dump(data, fn, indent=2) class ParsedManifestFlat(dict): def __init__(self, manifest): super().__init__({}) with open(manifest) as f: for line in f: url, label = [l.strip() for l in line.split("|")] self[label] = url def get_by_pattern(self, pattern): if not isinstance(pattern, re.Pattern): pattern = re.compile(pattern, flags=re.IGNORECASE) return list(filter(lambda x: pattern.search(x[0]), self.items())) def get_by_diff(self, other): return list(filter(lambda x: x[0] not in other.keys() or x[1] != other[x[0]], self.items())) class AssetEntry: URL_FORMAT = "http://dragalialost.akamaized.net/dl/assetbundles/Android/{h}/{hash}" def __init__(self, asset, raw=False): self.name = asset["name"] self.hash = asset["hash"] self.url = AssetEntry.URL_FORMAT.format(h=self.hash[0:2], hash=self.hash) if "dependencies" in asset and asset["dependencies"]: self.dependencies = asset["dependencies"] else: self.dependencies = None self.size = asset["size"] self.group = asset["group"] self.dependents = None self.raw = raw def map_dependencies(self, pm): if self.dependencies: mapped = [] for dep in self.dependencies: mapped.append(pm[dep]) if pm[dep].dependents: pm[dep].dependents.append(self) else: pm[dep].dependents = [self] self.dependencies = mapped def __repr__(self): if self.dependencies: return f"{self.name} ({self.hash})\n-> {self.dependencies}" else: return f"{self.name} ({self.hash})" def __eq__(self, other): return self.hash == other.hash def __ne__(self, other): return self.hash != other.hash class SimpleAssetEntry: def __init__(self, asset_entry): self.name = asset_entry.name self.hash = asset_entry.hash self.url = asset_entry.url self.raw = asset_entry.raw class ParsedManifest(dict): def __init__(self, manifest): super().__init__({}) self.path = manifest with open(manifest) as f: tree = json.load(f) for category in tree["categories"]: for asset in category["assets"]: self[asset["name"]] = AssetEntry(asset) for asset in tree["rawAssets"]: self[asset["name"]] = AssetEntry(asset, raw=True) @staticmethod def flatten(targets): return [(k, SimpleAssetEntry(v)) for k, v in targets] def get_by_pattern(self, pattern): if not isinstance(pattern, re.Pattern): pattern = re.compile(pattern, flags=re.IGNORECASE) targets = filter(lambda x: pattern.search(x[0]), self.items()) return ParsedManifest.flatten(targets) def get_by_diff(self, other): targets = filter(lambda x: x[0] not in other.keys() or x[1] != other[x[0]], self.items()) return ParsedManifest.flatten(targets) def get_by_pattern_diff(self, pattern, other): if not isinstance(pattern, re.Pattern): pattern = re.compile(pattern, flags=re.IGNORECASE) targets = filter( lambda x: pattern.search(x[0]) and (x[0] not in other.keys() or x[1] != other[x[0]]), self.items(), ) return ParsedManifest.flatten(targets) def report_diff(self, other): added_keys = set() changed_keys = set() removed_keys = set() for key, value in self.items(): if key not in other: added_keys.add(key) elif value != other[key]: changed_keys.add(key) for key in other.keys(): if key not in self: removed_keys.add(key) print("===========ADDED===========") pprint(added_keys) print("==========CHANGED==========") pprint(changed_keys) print("==========REMOVED==========") pprint(removed_keys) def check_target_path(target, is_dir=False): if not is_dir: target = os.path.dirname(target) try: os.makedirs(target, exist_ok=True) except OSError as exc: # Guard against race condition if exc.errno != errno.EEXIST: raise def merge_path_dir(path): new_dir = os.path.dirname(path).replace("/", "_") return os.path.join(new_dir, os.path.basename(path)) def process_json(tree): while isinstance(tree, dict): if "dict" in tree: tree = tree["dict"] elif "list" in tree: tree = tree["list"] elif "entriesValue" in tree and "entriesKey" in tree: return {k: process_json(v) for k, v in zip(tree["entriesKey"], tree["entriesValue"])} else: return tree return tree def serialize_memoryview(value): try: return str(value.hex()) except AttributeError: return str(value) def unpack_TypeTree(obj, dest, ex_paths, obj_by_pathid, name=None): data = obj.read() result = data.type_tree.to_dict() try: name = str(obj.type) + "." + data.name.replace("/", "_") except AttributeError: print(result) pass dest = os.path.join(dest, name + ".json") save_json(result, dest) def unpack_MonoBehaviour(obj, dest, ex_paths, obj_by_pathid, name=None, process=True): data = obj.read() if data.path_id in ex_paths: return name = name or data.name or data.m_Script.get_obj().read().name result = data.type_tree.to_dict() if process: result = process_json(result) if not result: return dest = os.path.join(dest, name + ".json") save_json(result, dest) ex_paths.add(data.path_id) def unpack_TextAsset(obj, dest, ex_paths, obj_by_pathid): data = obj.read() if data.path_id in ex_paths: return dest = os.path.join(dest, data.name) check_target_path(dest) try: with open(dest, "w", encoding="utf8", newline="") as f: f.write(data.text) except UnicodeDecodeError: with open(dest, "wb") as f: f.write(data.script) ex_paths.add(data.path_id) def unpack_GameObject(obj, dest, ex_paths, obj_by_pathid): data = obj.read() component_monos = [] for component in data.m_Components: if component.type == "MonoBehaviour": mono_data = component.read() mono_json_data = mono_data.type_tree.to_dict().get("_data") if not mono_json_data: try: mono_name = mono_data.m_Script.get_obj().read().name if data.name != mono_name: mono_name = f"{data.name}.{mono_name}" elif not mono_name: mono_name = data.name except AttributeError: mono_name = data.name unpack_MonoBehaviour(component, dest, ex_paths, obj_by_pathid, name=mono_name, process=False) continue component_monos.append(mono_json_data) ex_paths.add(mono_data.path_id) # else: # unpack_TypeTree(component, dest, ex_paths, obj_by_pathid, name=data.name) if component_monos: dest = os.path.join(dest, data.name + ".json") save_json(component_monos, dest) # def find_ref(container): # ref = os.path.splitext(os.path.basename(container))[0] # if len(ref) < 4: # ref = None # elif ref[3] == "_": # ref = ref.split("_")[-1] # if len(ref) != 8: # ref = None # elif ref[0] == "d": # parts = ref.split("_") # if len(parts[0]) == 9: # ref = parts[0] # else: # ref = parts[0] + parts[1] # return ref def unpack_Animation(obj, dest, ex_paths, obj_by_pathid): data = obj.read() if data.path_id in ex_paths: return obj_type_str = str(obj.type) # ref = None # if obj.container is not None: # ref = find_ref(obj.container) # else: # for asset in obj.assets_file.objects.values(): # if asset.container is not None: # ref = find_ref(asset.container) # if ref is not None: # break dest = f"{dest}/{obj_type_str}.{data.name}.json" tree = data.type_tree.to_dict() tree["pathID"] = data.path_id # tree["ref"] = ref save_json(tree, dest) ex_paths.add(data.path_id) def other_tex_env(material, mat_paths): for key, tex_env in material.m_SavedProperties.m_TexEnvs.items(): try: data = tex_env.m_Texture.get_obj().read() if data.path_id not in mat_paths: yield key, data.image, data.name except AttributeError: continue def tex_env_img(obj_by_pathid, material, mat_paths, ex_paths, key, image_only=True): try: # this will work 1day i belieeeeeve # data = material.m_SavedProperties.m_TexEnvs[key].m_Texture.get_obj().read() path_id = material.m_SavedProperties.m_TexEnvs[key].m_Texture.path_id if path_id in ex_paths: return None data = obj_by_pathid[path_id].read() if not data.m_Width or not data.m_Height: return None mat_paths.add(path_id) if image_only: return data.image return data except (KeyError, AttributeError): return None def merge_Alpha(m_img, a_img): if a_img.mode == "RGB" or a_img.getextrema()[3][0] == 255: alpha = a_img.convert("L") else: _, _, _, alpha = a_img.split() m_img.putalpha(alpha) return m_img def merge_YCbCr(y_img, cb_img, cr_img, a_img=None): # Sometimes MonoBehaviour can carry the mapping instead of Material # print(y_img, cb_img, cr_img, a_img) _, _, _, Y = y_img.convert("RGBA").split() Cb = cb_img.convert("L").resize(y_img.size, Image.ANTIALIAS) Cr = cr_img.convert("L").resize(y_img.size, Image.ANTIALIAS) ycbcr_img = Image.merge("YCbCr", (Y, Cb, Cr)).convert("RGBA") if a_img: merge_Alpha(ycbcr_img, a_img) return ycbcr_img def unpack_Material(obj, dest, ex_paths, obj_by_pathid): data = obj.read() mat_paths = set() # unpack_TypeTree(obj, dest, ex_paths, obj_by_pathid) get_tex = partial(tex_env_img, obj_by_pathid, data, mat_paths, ex_paths) if (y_img := get_tex("_TexY")) and (cb_img := get_tex("_TexCb")) and (cr_img := get_tex("_TexCr")): save_img(merge_YCbCr(y_img, cb_img, cr_img, a_img=get_tex("_TexA")), os.path.join(dest, f"{data.m_Name}{IMG_EXT}")) else: m_data = get_tex("_MainTex", image_only=False) if not m_data: return m_img, m_name = m_data.image, m_data.name # _MaskAlphaTex is probably always path_id = 0 if (a_img := get_tex("_AlphaTex")) or (a_img := get_tex("_MaskAlphaTex")): merge_Alpha(m_img, a_img) save_img(m_img, os.path.join(dest, f"{m_name}{IMG_EXT}")) obj_by_pathid[m_data.path_id] = m_img # for key, env_img, env_img_name in other_tex_env(data, mat_paths): # save_img(env_img, os.path.join(dest, f"{data.name}{key}.{env_img_name}{IMG_EXT}")) ex_paths.update(mat_paths) YCBCR_PATTERN = re.compile(r"(.*)_(Y|Cb|Cr)") def unpack_Texture2D(obj, dest, ex_paths, obj_by_pathid): data = obj.read() if data.path_id in ex_paths: return if not data.m_Width or not data.m_Height: return if obj.assets_file: # try to find ycbcr if res := YCBCR_PATTERN.match(data.name): img_name = res.group(1) found_ycbcr = {res.group(2): data} for other_pathid, other_obj in obj.assets_file.objects.items(): if other_pathid in ex_paths or str(other_obj.type) != "Texture2D": continue other_data = other_obj.read() if (res := YCBCR_PATTERN.match(other_data.name)) and res.group(1) == img_name and res.group(2) not in found_ycbcr: found_ycbcr[res.group(2)] = other_data if len(found_ycbcr) == 3: img_name = f"{img_name}{IMG_EXT}" save_img(merge_YCbCr(found_ycbcr["Y"].image, found_ycbcr["Cb"].image, found_ycbcr["Cr"].image), os.path.join(dest, img_name)) for ycbcr_data in found_ycbcr.values(): ex_paths.add(ycbcr_data.path_id) return if len(obj.assets_file.container_) == 2: # try to find alpha for other_container, other_ptr in obj.assets_file.container_.items(): if other_container == obj.container: continue other_obj = other_ptr.get_obj() if str(other_obj.type) != "Texture2D": continue other_data = other_obj.read() if data.name in other_data.name: img_name = f"{data.name}{IMG_EXT}" m_img, a_img = data.image, other_data.image elif other_data.name in data.name: img_name = f"{other_data.name}{IMG_EXT}" m_img, a_img = other_data.image, data.image else: continue save_img(merge_Alpha(m_img, a_img), os.path.join(dest, img_name)) ex_paths.add(data.path_id) ex_paths.add(other_data.path_id) return save_img(data.image, os.path.join(dest, f"{data.name}{IMG_EXT}")) ex_paths.add(data.path_id) SPRITE_ROTATION = { SpritePackingRotation.kSPRFlipHorizontal: Image.FLIP_TOP_BOTTOM, SpritePackingRotation.kSPRFlipVertical: Image.FLIP_LEFT_RIGHT, SpritePackingRotation.kSPRRotate180: Image.ROTATE_180, SpritePackingRotation.kSPRRotate90: Image.ROTATE_270, } def unpack_Sprite(obj, dest, ex_paths, obj_by_pathid): # see UnityPy.SpriteHelper.get_image_from_sprite data = obj.read() if data.path_id in ex_paths: return atlas = data.m_RD texture = obj_by_pathid[atlas.texture.path_id] if not isinstance(texture, Image.Image): return texture_rect = atlas.textureRect settings_raw = atlas.settingsRaw texture = texture.transpose(Image.FLIP_TOP_BOTTOM) sprite_img = texture.crop((texture_rect.x, texture_rect.y, texture_rect.x + texture_rect.width, texture_rect.y + texture_rect.height)) if settings_raw.packed == 1: # DL sprites are pmuch never packed=1 sprite_img = sprite_img.transpose(SPRITE_ROTATION[settings_raw.packingRotation]) if settings_raw.packingMode == SpritePackingMode.kSPMTight: mask = Image.new("1", sprite_img.size, color=0) draw = ImageDraw.ImageDraw(mask) for triangle in get_triangles(data): draw.polygon(triangle, fill=1) if sprite_img.mode == "RGBA": empty_img = Image.new(sprite_img.mode, sprite_img.size, color=0) sprite_img = Image.composite(sprite_img, empty_img, mask) else: sprite_img.putalpha(mask) sprite_img = sprite_img.transpose(Image.FLIP_TOP_BOTTOM) save_img(sprite_img, os.path.join(dest, f"{data.name}{IMG_EXT}")) ex_paths.add(data.path_id) obj_by_pathid[data.path_id] = data.name IMAGE_TYPES = ("Texture2D", "Material", "Sprite", "AssetBundle") UNPACK_PRIORITY = { "GameObject": 10, "Material": 9, # "AssetBundle": 8, } def get_unpack_priority(obj): return UNPACK_PRIORITY.get(str(obj.type), 0) UNPACK = { "MonoBehaviour": unpack_MonoBehaviour, "GameObject": unpack_GameObject, "TextAsset": unpack_TextAsset, "AnimationClip": unpack_Animation, "AnimatorController": unpack_Animation, "AnimatorOverrideController": unpack_Animation, "Texture2D": unpack_Texture2D, "Sprite": unpack_Sprite, "Material": unpack_Material, # "AssetBundle": unpack_TypeTree, # "MonoScript": unpack_TypeTree, } ### multiprocessing ### def mp_extract(ex_dir, ex_img_dir, ex_target, dl_filelist): unity_env = Environment() unity_env.load_files(dl_filelist) ex_paths = set() obj_by_pathid = {} for asset in unity_env.assets: for obj in asset.get_objects(): # print(obj.type, obj.read().name, obj.read().path_id) if UNPACK.get(str(obj.type)): obj_by_pathid[obj.read().path_id] = obj # else: # print(obj.type, obj.read().name, obj.read().path_id) ex_dest = None if ex_dir is None else os.path.join(ex_dir, ex_target) img_dest = None if ex_img_dir is None else os.path.join(ex_img_dir, ex_target) print_counter = 0 for obj in sorted(obj_by_pathid.values(), key=get_unpack_priority, reverse=True): if (dest := img_dest if obj.type in IMAGE_TYPES else ex_dest) is None: continue method = UNPACK[str(obj.type)] check_target_path(dest, is_dir=True) method(obj, dest, ex_paths, obj_by_pathid) if print_counter == 0: print("=", end="", flush=True) print_counter = 10 print_counter -= 1 path_id_to_string = {pathid: sprite for pathid, sprite in obj_by_pathid.items() if isinstance(sprite, str)} if path_id_to_string: with open(os.path.join(img_dest, "_path_id.json"), "w") as fn: json.dump(path_id_to_string, fn, indent=2) def mp_download(target, source, extract, region, dl_dir, overwrite): dl_target = os.path.join(dl_dir, region, target.replace("/", "_")) check_target_path(dl_target) if overwrite or not os.path.exists(dl_target): try: urllib.request.urlretrieve(source.url, dl_target) print("-", end="", flush=True) except Exception as e: print(f"\n{e}") return else: print(".", end="", flush=True) if extract is None: extract = os.path.dirname(target).replace("/", "_") ex_target = os.path.join(region, extract) return (source, ex_target, dl_target) ### multiprocessing ### class Extractor: def __init__(self, dl_dir="./_download", ex_dir="./_extract", ex_img_dir="./_images", overwrite=False): self.pm = {} self.pm_old = {} for region, manifest in MANIFESTS.items(): self.pm[region] = ParsedManifest(manifest) self.pm_old[region] = ParsedManifest(f"{manifest}.old") self.dl_dir = dl_dir self.ex_dir = ex_dir self.ex_img_dir = ex_img_dir self.extract_list = [] self.overwrite = overwrite ### multiprocessing ### def pool_download_and_extract(self, download_list, region=None): if not download_list: return NUM_WORKERS = multiprocessing.cpu_count() pool = multiprocessing.Pool(processes=NUM_WORKERS) if region is None: dl_args = [ ( target, source, extract, region, self.dl_dir, self.overwrite, ) for region, extract, matched in download_list for target, source in matched ] else: dl_args = [ ( target, source, extract, region, self.dl_dir, self.overwrite, ) for extract, matched in download_list for target, source in matched ] print(f"Download {len(dl_args)}", flush=True) # tqdm(dl_args, desc="download", total=len(dl_args)) downloaded = list(filter(None, pool.starmap(mp_download, dl_args))) pool.close() pool.join() sorted_downloaded = defaultdict(list) for source, ex_target, dl_target in downloaded: if source.raw: if self.ex_dir: ex_target = os.path.join(self.ex_dir, ex_target) check_target_path(ex_target, is_dir=True) shutil.copy(dl_target, ex_target) continue sorted_downloaded[ex_target.replace("s_images", "images")].append(dl_target) pool = multiprocessing.Pool(processes=NUM_WORKERS) ex_args = [(self.ex_dir, self.ex_img_dir, ex_target, dl_targets) for ex_target, dl_targets in sorted_downloaded.items()] print(f"\nExtract {tuple(sorted_downloaded.keys())}", flush=True) # tqdm(ex_args, desc="extract", total=len(ex_args)) pool.starmap(mp_extract, ex_args) pool.close() pool.join() print("", flush=True) ### multiprocessing ### def download_and_extract_by_pattern_diff(self, label_patterns): download_list = [] for region, label_pat in label_patterns.items(): for pat, extract in label_pat.items(): matched = self.pm[region].get_by_pattern_diff(pat, self.pm_old[region]) if not matched: continue download_list.append((region, extract, matched)) self.pool_download_and_extract(download_list) def download_and_extract_by_pattern(self, label_patterns): download_list = [] for region, label_pat in label_patterns.items(): for pat, extract in label_pat.items(): matched = self.pm[region].get_by_pattern(pat) if not matched: continue download_list.append((region, extract, matched)) self.pool_download_and_extract(download_list) def download_and_extract_by_diff(self, region="jp"): download_list = self.pm[region].get_by_diff(self.pm_old[region]) self.pool_download_and_extract(((None, download_list),), region=region) def report_diff(self, region="jp"): self.pm[region].report_diff(self.pm_old[region]) def cmd_line_extract(): EX_PATTERNS = { "jp": { r"^emotion/story/chara/110334_02": None, }, } if len(sys.argv) > 1: if sys.argv[1] == "diff": ex = Extractor(ex_dir=None) if len(sys.argv) > 2: region = sys.argv[2] print(f"{region}: ", flush=True, end="") ex.download_and_extract_by_diff(region=region) else: for region in MANIFESTS.keys(): ex.download_and_extract_by_diff(region=region) elif sys.argv[1] == "report": ex = Extractor() ex.report_diff() else: ex = Extractor() ex.download_and_extract_by_pattern({"jp": {sys.argv[1]: None}}) else: # ex_dir="./_ex_sim", ex = Extractor(ex_dir=None, overwrite=False) ex.ex_dir = ex.ex_img_dir ex.download_and_extract_by_pattern(EX_PATTERNS) if __name__ == "__main__": cmd_line_extract() # pm = ParsedManifest(MANIFESTS["jp"]) # pprint(pm.get_by_pattern(r"images/icon/form/m/", mode=1))
# -*- coding: utf8 -*- TP_SERVER_VER = "3.1.0"
# coding=utf-8 # -------------------------------------------------------------------------- # -------------------------------------------------------------------------- from .resource import Resource class StorageAccount(Resource): """The storage account. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Resource Id :vartype id: str :ivar name: Resource name :vartype name: str :ivar type: Resource type :vartype type: str :param location: Resource location :type location: str :param tags: Resource tags :type tags: dict :param properties: :type properties: :class:`StorageAccountProperties <petstore.models.StorageAccountProperties>` """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'properties': {'key': 'properties', 'type': 'StorageAccountProperties'}, } def __init__(self, location=None, tags=None, properties=None): super(StorageAccount, self).__init__(location=location, tags=tags) self.properties = properties
from vit.formatter.parent import Parent class ParentLong(Parent): pass
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-10-18 00:13 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import forum.models class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('forum', '0010_auto_20171012_1129'), ] operations = [ migrations.AddField( model_name='post', name='readers', field=models.ManyToManyField(related_name='read_posts', to=settings.AUTH_USER_MODEL), ), migrations.AlterField( model_name='post', name='body', field=forum.models.MarkdownField(blank=True, help_text='<a data-toggle="modal" data-target="#MarkdownHelp"><span class="octicon octicon-markdown"></span> Markdown</a> will be used to format your post.'), ), ]
# -*- coding: utf-8 -*- """ vsphere_activate_vm will activate a VM in a Nuage environment, it can use both split activation or metadata. --- Author --- Philippe Dellaert <philippe.dellaert@nuagenetworks.net> --- Version history --- 2017-03-26 - 1.0 2020-07-06 - 1.1 - Migrate to v6 API --- Usage --- run 'python vsphere_activate_vm.py -h' for an overview --- Config file structure ---- [NUAGE] # VSD API server vsd_api_url = https://localhost:8443 # VSD API user vsd_api_user = csproot # VSD API password vsd_api_password = csproot # VSD API enterprise vsd_api_enterprise = csp [VSPHERE] # vSphere server vsphere_api_host = 10.189.1.21 # vSphere port vsphere_api_port = 443 # vSphere user vsphere_api_user = administrator@vsphere.local # vSphere password vsphere_api_password = vmware [LOG] # Log directory # Where to store the log directory = /var/log/nuage # Log file # Filename of the log file = vsphere_activate_vm.log # Log level # define your level of logging, possible values: # DEBUG, INFO, WARNING, ERROR, CRITICAL # Warning: If you enable DEBUG, your log will get flooded with messages, # only enable this for short amounts of time. level = WARNING """ from __future__ import print_function from future import standard_library standard_library.install_aliases() from builtins import str from builtins import input import argparse import atexit import configparser import ipaddress import logging import os import sys from time import sleep from pyVim.connect import SmartConnect, SmartConnectNoSSL, Disconnect from pyVmomi import vim, vmodl from vspk import v6 as vsdk def get_args(): parser = argparse.ArgumentParser(description="Tool to activate a VM in a Nuage environment.") parser.add_argument('-c', '--config-file', required=False, help='Configuration file to use, if not specified ~/.nuage/config.ini is used', dest='config_file', type=str) parser.add_argument('-m', '--mode', required=False, help='Mode of activation: metadata or split-activation. Default is metadata', dest='mode', choices=['metadata', 'split-activation'], default='metadata', type=str) parser.add_argument('-n', '--vm-name', required=False, help='The VM in vCenter that should be connected to Nuage', dest='vcenter_vm_name', type=str) parser.add_argument('-e', '--vm-enterprise', required=False, help='The Nuage enterprise to which the VM should be connected', dest='nuage_vm_enterprise', type=str) parser.add_argument('-d', '--vm-domain', required=False, help='The Nuage domain to which the VM should be connected', dest='nuage_vm_domain', type=str) parser.add_argument('-z', '--vm-zone', required=False, help='The Nuage zone to which the VM should be connected', dest='nuage_vm_zone', type=str) parser.add_argument('-s', '--vm-subnet', required=False, help='The Nuage subnet to which the VM should be connected', dest='nuage_vm_subnet', type=str) parser.add_argument('-i', '--vm-ip', required=False, help='The IP the VM should have', dest='nuage_vm_ip', type=str) parser.add_argument('-p', '--vm-policy-group', required=False, help='The policy group the VM should have', dest='nuage_vm_policy_group', type=str) parser.add_argument('-r', '--vm-redirection-target', required=False, help='The redirection target the VM should have', dest='nuage_vm_redirection_target', type=str) parser.add_argument('-u', '--vm-user', required=False, help='The Nuage User owning the VM', dest='nuage_vm_user', type=str) args = parser.parse_args() return args def parse_config(config_file): """ Parses configuration file """ cfg = configparser.ConfigParser() cfg.read(config_file) # Checking the sections of the config file if not cfg.has_section('VSPHERE') or \ not cfg.has_section('NUAGE') or \ not cfg.has_section('LOG'): print('Missing section in the configuration file {0:s}, please check the documentation'.format(config_file)) sys.exit(1) # Checking the NUAGE options if not cfg.has_option('NUAGE', 'vsd_api_url') or \ not cfg.has_option('NUAGE', 'vsd_api_user') or \ not cfg.has_option('NUAGE', 'vsd_api_password') or \ not cfg.has_option('NUAGE', 'vsd_api_enterprise'): print('Missing options in the NUAGE section of configuration file {0:s}, please check the documentation'.format(config_file)) sys.exit(1) # Checking the VSPHERE options if not cfg.has_option('VSPHERE', 'vsphere_api_host') or \ not cfg.has_option('VSPHERE', 'vsphere_api_user') or \ not cfg.has_option('VSPHERE', 'vsphere_api_password') or \ not cfg.has_option('VSPHERE', 'vsphere_api_port'): print('Missing options in the VSPHERE section of configuration file {0:s}, please check the documentation'.format(config_file)) sys.exit(1) # Checking the LOG options if not cfg.has_option('LOG', 'directory') or \ not cfg.has_option('LOG', 'file') or \ not cfg.has_option('LOG', 'level'): print('Missing options in the LOG section of configuration file {0:s}, please check the documentation'.format(config_file)) sys.exit(1) return cfg def clear(): logging.debug('Clearing terminal') os.system(['clear', 'cls'][os.name == 'nt']) def find_vm(vc, name): """ Find a virtual machine by its name and return it """ content = vc.content obj_view = content.viewManager.CreateContainerView(content.rootFolder, [vim.VirtualMachine], True) vm_list = obj_view.view for vm in vm_list: logging.debug('Checking virtual machine %s' % vm.name) if vm.name == name: logging.debug('Found virtual machine %s' % vm.name) return vm return None def main(): """ Manage the activation of a vSphere VM """ # Handling arguments args = get_args() if args.config_file: cfg = parse_config(args.config_file) elif os.path.isfile('{0:s}/.nuage/config.ini'.format(os.path.expanduser('~'))): cfg = parse_config('{0:s}/.nuage/config.ini'.format(os.path.expanduser('~'))) else: print('Missing config file') return 1 mode = args.mode nuage_vm_enterprise = None if args.nuage_vm_enterprise: nuage_vm_enterprise = args.nuage_vm_enterprise nuage_vm_domain = None if args.nuage_vm_domain: nuage_vm_domain = args.nuage_vm_domain nuage_vm_zone = None if args.nuage_vm_zone: nuage_vm_zone = args.nuage_vm_zone nuage_vm_subnet = None if args.nuage_vm_subnet: nuage_vm_subnet = args.nuage_vm_subnet nuage_vm_ip = None if args.nuage_vm_ip: nuage_vm_ip = args.nuage_vm_ip nuage_vm_user = None if args.nuage_vm_user: nuage_vm_user = args.nuage_vm_user nuage_vm_policy_group = None if args.nuage_vm_policy_group: nuage_vm_user = args.nuage_vm_policy_group nuage_vm_redirection_target = None if args.nuage_vm_redirection_target: nuage_vm_user = args.nuage_vm_redirection_target vcenter_vm_name = None if args.vcenter_vm_name: vcenter_vm_name = args.vcenter_vm_name # Handling logging log_dir = cfg.get('LOG', 'directory') log_file = cfg.get('LOG', 'file') log_level = cfg.get('LOG', 'level') if not log_level: log_level = 'ERROR' log_path = None if log_dir and log_file and os.path.isdir(log_dir) and os.access(log_dir, os.W_OK): log_path = os.path.join(log_dir, log_file) logging.basicConfig(filename=log_path, format='%(asctime)s %(levelname)s - %(name)s - %(message)s', level=log_level) logging.info('Logging initiated') try: vc = None nc = None # Connecting to Nuage try: logging.info('Connecting to Nuage server {0:s} with username {1:s} and enterprise {2:s}'.format( cfg.get('NUAGE', 'vsd_api_url'), cfg.get('NUAGE', 'vsd_api_user'), cfg.get('NUAGE', 'vsd_api_enterprise'))) nc = vsdk.NUVSDSession(username=cfg.get('NUAGE', 'vsd_api_user'), password=cfg.get('NUAGE', 'vsd_api_password'), enterprise=cfg.get('NUAGE', 'vsd_api_enterprise'), api_url=cfg.get('NUAGE', 'vsd_api_url')) nc.start() except IOError: pass if not nc or not nc.is_current_session(): logging.error( 'Could not connect to Nuage host {0:s} with user {1:s}, enterprise {2:s} and specified password'.format( cfg.get('NUAGE', 'vsd_api_url'), cfg.get('NUAGE', 'vsd_api_user'), cfg.get('NUAGE', 'vsd_api_enterprise'))) return 1 # Connecting to vCenter try: logging.info( 'Connecting to vCenter server {0:s} with username {1:s}'.format(cfg.get('VSPHERE', 'vsphere_api_host'), cfg.get('VSPHERE', 'vsphere_api_user'))) vc = SmartConnectNoSSL(host=cfg.get('VSPHERE', 'vsphere_api_host'), user=cfg.get('VSPHERE', 'vsphere_api_user'), pwd=cfg.get('VSPHERE', 'vsphere_api_password'), port=int(cfg.get('VSPHERE', 'vsphere_api_port'))) except IOError: pass if not vc: logging.error('Could not connect to vCenter host {0:s} with user {1:s} and specified password'.format( cfg.get('VSPHERE', 'vsphere_api_host'), cfg.get('VSPHERE', 'vsphere_api_user'))) return 1 logging.info('Connected to both Nuage & vCenter servers') logging.debug('Registering vCenter disconnect at exit') atexit.register(Disconnect, vc) vcenter_vm = None vm_enterprise = None vm_user = None vm_domain = None vm_is_l2domain = False vm_zone = None vm_subnet = None vm_ip = None vm_policy_group = None vm_redirection_target = None # Verifying the vCenter VM existence or selecting it if vcenter_vm_name: vcenter_vm = find_vm(vc, vcenter_vm_name) if vcenter_vm is None: logging.critical('Unable to find specified VM with name {0:s}'.format(vcenter_vm_name)) return 1 else: logging.debug('Offering a choice of which VM to activate') content = vc.content obj_view = content.viewManager.CreateContainerView(content.rootFolder, [vim.VirtualMachine], True) vm_list = obj_view.view clear() print('Please select your VM:') index = 0 for cur_vm in vm_list: print('%s. %s' % (index + 1, cur_vm.name)) index += 1 while vcenter_vm is None: choice = eval(input('Please enter the number of the VM [1-%s]: ' % len(vm_list))) choice = int(choice) if choice > 0 and choice - 1 < len(vm_list): vcenter_vm = vm_list[choice - 1] break print('Invalid choice, please try again') # Verifying the Nuage Enterprise existence or selecting it if nuage_vm_enterprise: logging.debug('Finding Nuage enterprise %s' % nuage_vm_enterprise) vm_enterprise = nc.user.enterprises.get_first(filter="name == '%s'" % nuage_vm_enterprise) if vm_enterprise is None: logging.error('Unable to find Nuage enterprise %s' % nuage_vm_enterprise) return 1 logging.info('Nuage enterprise %s found' % nuage_vm_enterprise) else: clear() print('VM: %s' % vcenter_vm.name) print(80 * '-') print('Please select your enterprise:') index = 0 all_ent = nc.user.enterprises.get() for cur_ent in all_ent: print('%s. %s' % (index + 1, cur_ent.name)) index += 1 while vm_enterprise is None: choice = eval(input('Please enter the number of the enterprise [1-%s]: ' % len(all_ent))) choice = int(choice) if choice > 0 and choice - 1 < len(all_ent): vm_enterprise = all_ent[choice - 1] break print('Invalid choice, please try again') # Verifying the Nuage User existence or selecting it if nuage_vm_user: logging.debug('Finding Nuage user %s' % nuage_vm_user) vm_user = vm_enterprise.users.get_first(filter="userName == '%s'" % nuage_vm_user) if vm_user is None: logging.error('Unable to find Nuage user %s' % nuage_vm_user) return 1 logging.info('Nuage user %s found' % nuage_vm_user) else: clear() print('VM: %s' % vcenter_vm.name) print('Enterprise: %s' % vm_enterprise.name) print(80 * '-') print('Please select your user:') index = 0 all_users = vm_enterprise.users.get() for cur_user in all_users: print('%s. %s' % (index + 1, cur_user.user_name)) index += 1 while vm_user is None: choice = eval(input('Please enter the number of the user [1-%s]: ' % len(all_users))) choice = int(choice) if choice > 0 and choice - 1 < len(all_users): vm_user = all_users[choice - 1] break print('Invalid choice, please try again') # Verifying the Nuage Domain existence or selecting it if nuage_vm_domain: logging.debug('Finding Nuage domain %s' % nuage_vm_domain) vm_domain = vm_enterprise.domains.get_first(filter="name == '%s'" % nuage_vm_domain) if vm_domain is None: logging.debug('Unable to find the domain {0:s} as an L3 domain'.format(nuage_vm_domain)) vm_domain = vm_enterprise.l2_domains.get_first(filter="name == '%s'" % nuage_vm_domain) vm_is_l2domain = True if vm_domain is None: logging.error('Unable to find Nuage domain {0:s}'.format(nuage_vm_domain)) return 1 logging.info('Nuage domain %s found' % nuage_vm_domain) else: clear() print('VM: %s' % vcenter_vm.name) print('Enterprise: %s' % vm_enterprise.name) print('User: %s' % vm_user.user_name) print(80 * '-') print('Please select your domain:') index = 0 all_l3_dom = vm_enterprise.domains.get() all_l2_dom = vm_enterprise.l2_domains.get() all_dom = all_l2_dom + all_l3_dom for cur_dom in all_l2_dom: print('%s. L2 %s - %s/%s' % (index + 1, cur_dom.name, cur_dom.address, cur_dom.netmask)) index += 1 for cur_dom in all_l3_dom: print('%s. L3 - %s' % (index + 1, cur_dom.name)) index += 1 while vm_domain is None: choice = eval(input('Please enter the number of the domain [1-%s]: ' % len(all_dom))) choice = int(choice) if choice > 0 and choice - 1 < len(all_dom): vm_domain = all_dom[choice - 1] if type(vm_domain) is vsdk.NUL2Domain: vm_is_l2domain = True break print('Invalid choice, please try again') # Verifying the Nuage Zone existence or selecting it if not vm_is_l2domain and nuage_vm_zone: logging.debug('Finding Nuage zone %s' % nuage_vm_zone) vm_zone = vm_domain.zones.get_first(filter="name == '%s'" % nuage_vm_zone) if vm_zone is None: logging.error('Unable to find Nuage zone %s' % nuage_vm_zone) return 1 logging.info('Nuage zone %s found' % nuage_vm_zone) elif not vm_is_l2domain: clear() print('VM: %s' % vcenter_vm.name) print('Enterprise: %s' % vm_enterprise.name) print('User: %s' % vm_user.user_name) print('Domain: %s' % vm_domain.name) print(80 * '-') print('Please select your zone:') index = 0 all_zone = vm_domain.zones.get() for cur_zone in all_zone: print('%s. %s' % (index + 1, cur_zone.name)) index += 1 while vm_zone is None: choice = eval(input('Please enter the number of the zone [1-%s]: ' % len(all_zone))) choice = int(choice) if choice > 0 and choice - 1 < len(all_zone): vm_zone = all_zone[choice - 1] break print('Invalid choice, please try again') # Verifying the Nuage Subnet existence or selecting it if not vm_is_l2domain and nuage_vm_subnet: logging.debug('Finding Nuage subnet %s' % nuage_vm_subnet) vm_subnet = vm_zone.subnets.get_first(filter="name == '%s'" % nuage_vm_subnet) if vm_subnet is None: logging.error('Unable to find Nuage subnet %s' % nuage_vm_subnet) return 1 logging.info('Nuage subnet %s found' % nuage_vm_subnet) elif not vm_is_l2domain: clear() print('VM: %s' % vcenter_vm.name) print('Enterprise: %s' % vm_enterprise.name) print('User: %s' % vm_user.user_name) print('Domain: %s' % vm_domain.name) print('Zone: %s' % vm_zone.name) print(80 * '-') print('Please select your subnet:') index = 0 all_subnet = vm_zone.subnets.get() for cur_subnet in all_subnet: print('%s. %s - %s/%s' % (index + 1, cur_subnet.name, cur_subnet.address, cur_subnet.netmask)) index += 1 while vm_subnet is None: choice = eval(input('Please enter the number of the subnet [1-%s]: ' % len(all_subnet))) choice = int(choice) if choice > 0 and choice - 1 < len(all_subnet): vm_subnet = all_subnet[choice - 1] break print('Invalid choice, please try again') # Verifying the IP or asking for it if nuage_vm_ip: logging.debug('Verifying if IP %s is inside Nuage subnet %s range' % (nuage_vm_ip, vm_subnet.name)) if not ipaddress.ip_address(nuage_vm_ip) in ipaddress.ip_network('%s/%s' % (vm_subnet.address, vm_subnet.netmask)): logging.error('IP %s is not part of subnet %s with netmask %s' % (nuage_vm_ip, vm_subnet.address, vm_subnet.netmask)) return 1 vm_ip = nuage_vm_ip else: clear() print('VM: %s' % vcenter_vm.name) print('Enterprise: %s' % vm_enterprise.name) print('User: %s' % vm_user.user_name) if not vm_is_l2domain: print('Domain: %s' % vm_domain.name) print('Zone: %s' % vm_zone.name) print('Subnet: %s - %s/%s' % (vm_subnet.name, vm_subnet.address, vm_subnet.netmask)) else: print('Domain: %s - %s/%s' % (vm_domain.name, vm_domain.address, vm_domain.netmask)) print(80 * '-') print('If you want a static IP, please enter it. Or press enter for a DHCP assigned IP.') while vm_ip is None: choice = eval(input('Please enter the IP or press enter for a DHCP assigned IP: ')) if not choice or ipaddress.ip_address(choice) in ipaddress.ip_network( '%s/%s' % (vm_subnet.address, vm_subnet.netmask)): vm_ip = choice break print('Invalid choice, please try again') # Verifying the Nuage policy group existence or selecting it if nuage_vm_policy_group: logging.debug('Finding Nuage policy group %s' % nuage_vm_policy_group) vm_policy_group = vm_domain.policy_groups.get_first(filter="name == '%s'" % nuage_vm_policy_group) if vm_policy_group is None: logging.error('Unable to find Nuage policy group {0:s}'.format(nuage_vm_policy_group)) return 1 logging.info('Nuage policy group %s found' % nuage_vm_policy_group) else: clear() print('VM: %s' % vcenter_vm.name) print('Enterprise: %s' % vm_enterprise.name) print('User: %s' % vm_user.user_name) if not vm_is_l2domain: print('Domain: %s' % vm_domain.name) print('Zone: %s' % vm_zone.name) print('Subnet: %s - %s/%s' % (vm_subnet.name, vm_subnet.address, vm_subnet.netmask)) else: print('Domain: %s - %s/%s' % (vm_domain.name, vm_domain.address, vm_domain.netmask)) if vm_ip: print('IP: {0:s}'.format(vm_ip)) print(80 * '-') print('Please select your policy group:') index = 0 all_pg = vm_domain.policy_groups.get() print('0. None') for cur_pg in all_pg: print('%s. %s' % (index + 1, cur_pg.name)) index += 1 while vm_policy_group is None: choice = eval(input('Please enter the number of the policy group [0-%s]: ' % len(all_pg))) choice = int(choice) if choice == 0: vm_policy_group = None break elif choice > 0 and choice - 1 < len(all_pg): vm_policy_group = all_pg[choice - 1] break print('Invalid choice, please try again') # Verifying the Nuage redirection target existence or selecting it if nuage_vm_redirection_target: logging.debug('Finding Nuage redirection target %s' % nuage_vm_redirection_target) vm_redirection_target = vm_domain.redirection_targets.get_first( filter="name == '%s'" % nuage_vm_redirection_target) if vm_redirection_target is None: logging.error('Unable to find Nuage redirection target {0:s}'.format(nuage_vm_redirection_target)) return 1 logging.info('Nuage redirection target %s found' % nuage_vm_redirection_target) else: clear() print('VM: %s' % vcenter_vm.name) print('Enterprise: %s' % vm_enterprise.name) print('User: %s' % vm_user.user_name) if not vm_is_l2domain: print('Domain: %s' % vm_domain.name) print('Zone: %s' % vm_zone.name) print('Subnet: %s - %s/%s' % (vm_subnet.name, vm_subnet.address, vm_subnet.netmask)) else: print('Domain: %s - %s/%s' % (vm_domain.name, vm_domain.address, vm_domain.netmask)) if vm_ip: print('IP: {0:s}'.format(vm_ip)) if vm_policy_group: print('Policy group: {0:s}'.format(vm_policy_group.name)) print(80 * '-') print('Please select your redirection target:') index = 0 all_rt = vm_domain.redirection_targets.get() print('0. None') for cur_rt in all_rt: print('%s. %s' % (index + 1, cur_rt.name)) index += 1 while vm_redirection_target is None: choice = eval(input('Please enter the number of the redirection target [0-%s]: ' % len(all_rt))) choice = int(choice) if choice == 0: vm_redirection_target = None break elif choice > 0 and choice - 1 < len(all_rt): vm_redirection_target = all_rt[choice - 1] break print('Invalid choice, please try again') logging.info('Using following Nuage values:') logging.info('Enterprise: %s' % vm_enterprise.name) logging.info('User: %s' % vm_user.user_name) if not vm_is_l2domain: logging.info('Domain: %s' % vm_domain.name) logging.info('Zone: %s' % vm_zone.name) logging.info('Subnet: %s - %s/%s' % (vm_subnet.name, vm_subnet.address, vm_subnet.netmask)) else: logging.info('Domain: %s - %s/%s' % (vm_domain.name, vm_domain.address, vm_domain.netmask)) if vm_ip: logging.info('Static IP: %s' % vm_ip) if vm_policy_group: logging.info('Policy group: {0:s}'.format(vm_policy_group.name)) if vm_redirection_target: logging.info('Redirection target: {0:s}'.format(vm_redirection_target.name)) clear() if mode == 'metadata': print('Setting Nuage Metadata on VM') # Setting Nuage metadata logging.info('Setting Nuage Metadata') vm_option_values = [] # Enterprise vm_option_values.append(vim.option.OptionValue(key='nuage.enterprise', value=vm_enterprise.name)) if vm_is_l2domain: # L2 Domain vm_option_values.append(vim.option.OptionValue(key='nuage.nic0.l2domain', value=vm_domain.name)) else: # Domain vm_option_values.append(vim.option.OptionValue(key='nuage.nic0.domain', value=vm_domain.name)) # Zone vm_option_values.append(vim.option.OptionValue(key='nuage.nic0.zone', value=vm_zone.name)) # Subnet vm_option_values.append(vim.option.OptionValue(key='nuage.nic0.network', value=vm_subnet.name)) # Network type vm_option_values.append(vim.option.OptionValue(key='nuage.nic0.networktype', value='ipv4')) # User vm_option_values.append(vim.option.OptionValue(key='nuage.user', value=vm_user.user_name)) # IP if vm_ip: vm_option_values.append(vim.option.OptionValue(key='nuage.nic0.ip', value=vm_ip)) # Policy group if vm_policy_group: vm_option_values.append( vim.option.OptionValue(key='nuage.nic0.policy-group', value=vm_policy_group.name)) # Redirection target if vm_redirection_target: vm_option_values.append( vim.option.OptionValue(key='nuage.nic0.redirection-target', value=vm_redirection_target.name)) logging.debug('Creating of config spec for VM') config_spec = vim.vm.ConfigSpec(extraConfig=vm_option_values) logging.info('Applying advanced parameters. This might take a couple of seconds') config_task = vcenter_vm.ReconfigVM_Task(spec=config_spec) logging.debug('Waiting for the advanced paramerter to be applied') while True: info = config_task.info if info.state == vim.TaskInfo.State.success: logging.debug('Advanced parameters applied') break elif info.state == vim.TaskInfo.State.error: if info.error.fault: logging.info( 'Applying advanced parameters has quit with error: %s' % info.error.fault.faultMessage) else: logging.info('Applying advanced parameters has quit with cancelation') break sleep(5) elif mode == 'split-activation': print('Creating vPort and VM in VSD for split activation') logging.debug('Starting split activation') # Getting VM UUID logging.debug('Getting VM UUID, MAC & IP') vcenter_vm_uuid = vcenter_vm.config.uuid logging.debug('Found UUID %s for VM %s' % (vcenter_vm_uuid, vcenter_vm.name)) vcenter_vm_mac = None vcenter_vm_hw = vcenter_vm.config.hardware for dev in vcenter_vm_hw.device: if isinstance(dev, vim.vm.device.VirtualEthernetCard): if dev.macAddress: logging.debug('Found MAC {0:s} for VM {1:s}'.format(dev.macAddress, vcenter_vm.name)) vcenter_vm_mac = dev.macAddress break if vcenter_vm_mac is None: logging.critical('Unable to find a valid mac address for VM') return 1 # Creating vPort logging.debug('Creating vPort for VM %s' % vcenter_vm.name) nc_vport = vsdk.NUVPort(name='{0:s}-vport'.format(vcenter_vm.name), address_spoofing='INHERITED', type='VM', description='Automatically created, do not edit.') if vm_is_l2domain: vm_domain.create_child(nc_vport) else: vm_subnet.create_child(nc_vport) # Creating VM logging.debug('Creating a Nuage VM for VM %s' % vcenter_vm) nc_vm = vsdk.NUVM(name=vcenter_vm.name, uuid=vcenter_vm_uuid, interfaces=[{ 'name': vcenter_vm_mac, 'VPortID': nc_vport.id, 'MAC': vcenter_vm_mac }]) nc.user.create_child(nc_vm) else: logging.critical('Invalid mode') return 1 except vmodl.MethodFault as e: logging.critical('Caught vmodl fault: {0:s}'.format(e.msg)) return 1 except Exception as e: logging.critical('Caught exception: {0:s}'.format(str(e))) return 1 print('Activation of VM finished') # Start program if __name__ == "__main__": main()
import numpy as np def _iterate(arrays, cur_depth, iterators, n): """ dfs algorithm for returning the next iterator value Args: arrays: A list of 1-D arrays cur_depth: the depth of the dfs tree in current call iterators: a list of iterators n: number of arrays Returns: new iterator value """ if cur_depth >= 0 and cur_depth < n - 1: iterators = _iterate(arrays, cur_depth + 1, iterators, n) iterators[cur_depth] += (iterators[cur_depth + 1] // len(arrays[cur_depth + 1])) iterators[cur_depth + 1] %= len(arrays[cur_depth + 1]) return iterators elif cur_depth == n - 1: iterators[cur_depth] += 1 return iterators def _get_item_from_arrays(arrays, iterators, n): item = np.zeros((n), dtype=type(arrays[0][0])) for i, arr in enumerate(arrays): item[i] = arr[iterators[i]] return item def smart_meshgrid(*arrays): """ get the next value in the meshgrid iteration, like numpy meshgrid does. Args: arrays: The array for which to do meshgrid """ N = len(arrays) iterators = np.zeros((N,), dtype=np.int) total_elements = np.prod([len(arr) for arr in arrays]) for _ in xrange(total_elements): yield _get_item_from_arrays(arrays, iterators, N) iterators = _iterate(arrays, 0, iterators, N)
# sunrise_alarm.py # Written for the Electronics Starter Kit for the Raspberry Pi by MonkMakes.com with help from Henry Budden (@pi_tutor) from Tkinter import * import RPi.GPIO as GPIO import time, math GPIO.cleanup() # Configure the Pi to use the BCM (Broadcom) pin names, rather than the pin positions GPIO.setmode(GPIO.BCM) # Set sunrise limit. This works for testing in a light room when torch aimed at LDR. Use 30 for accurate sunrise detection. sunrise = 50 # Pin a charges the capacitor through a fixed 1k resistor and the thermistor in series # pin b discharges the capacitor through a fixed 1k resistor a_pin = 18 b_pin = 23 # Setup pins as outputs for the buzzer and the two LEDs buzzer_pin = 24 red_pin1 = 27 red_pin2 = 22 GPIO.setup(buzzer_pin, GPIO.OUT) GPIO.setup(red_pin1, GPIO.OUT) GPIO.setup(red_pin2, GPIO.OUT) # empty the capacitor ready to start filling it up def discharge(): GPIO.setup(a_pin, GPIO.IN) GPIO.setup(b_pin, GPIO.OUT) GPIO.output(b_pin, False) time.sleep(0.01) # return the time taken for the voltage on the capacitor to count as a digital input HIGH # than means around 1.65V def charge_time(): GPIO.setup(b_pin, GPIO.IN) GPIO.setup(a_pin, GPIO.OUT) GPIO.output(a_pin, True) t1 = time.time() while not GPIO.input(b_pin): pass t2 = time.time() return (t2 - t1) * 1000000 # Take an analog readin as the time taken to charge after first discharging the capacitor def analog_read(): discharge() return charge_time() # Convert the time taken to charge the cpacitor into a value of resistance # To reduce errors, do it 100 times and take the average. def read_resistance(): n = 20 total = 0; for i in range(1, n): total = total + analog_read() reading = total / float(n) resistance = reading * 6.05 - 939 return resistance def light_from_r(R): # Log the reading to compress the range return math.log(1000000.0/R) * 10.0 while True: GPIO.output(red_pin1, False) GPIO.output(red_pin2, False) light = light_from_r(read_resistance()) print light x = 0 if light > sunrise: GPIO.output(red_pin1, True) # True means that LED turns on GPIO.output(red_pin2, False) # False means that LED turns off while True: x = x + 1 GPIO.output(buzzer_pin, True) time.sleep(0.001) GPIO.output(buzzer_pin, False) time.sleep(0.001) if x == 250: x = 0 break GPIO.output(red_pin1, False) GPIO.output(red_pin2, True) while True: x = x + 1 GPIO.output(buzzer_pin, True) time.sleep(0.001) GPIO.output(buzzer_pin, False) time.sleep(0.001) if x == 250: x = 0 break
from abc import ABC import torch from multiprocessing import Process, Manager from tqdm import tqdm from typing import List, Dict, Any import os from his_evaluators.metrics import TYPES_QUALITIES from .base import PairedMetricRunner, UnpairedMetricRunner, Evaluator from ..utils.io import mkdir class MotionImitationModel(object): def __init__(self, output_dir): """ Args: output_dir: """ self.output_dir = mkdir(output_dir) self.si_out_dir = mkdir(os.path.join(output_dir, "self_imitation")) self.ci_out_dir = mkdir(os.path.join(output_dir, "cross_imitation")) self.num_preds_si = 0 self.num_preds_ci = 0 def imitate(self, src_infos: Dict[str, Any], ref_infos: Dict[str, Any]) -> List[str]: """ Running the motion imitation of the self.model, based on the source information with respect to the provided reference information. It returns the full paths of synthesized images. Args: src_infos (dict): the source information contains: --images (list of str): the list of full paths of source images (the length is 1) --smpls (np.ndarray): (length of images, 85) --kps (np.ndarray): (length of images, 19, 2) ref_infos (dict): the reference information contains: --images (list of str): the list of full paths of reference images. --smpls (np.ndarray): (length of images, 85) --kps (np.ndarray): (length of images, 19, 2) --self_imitation (bool): the flag indicates whether it is self-imitation or not. Returns: preds_files (list of str): full paths of synthesized images with respects to the images in ref_infos. """ raise NotImplementedError def build_model(self): """ You must define your model in this function, including define the graph and allocate GPU. This function will be called in @see `MotionImitationRunnerProcessor.run()`. Returns: None """ raise NotImplementedError def terminate(self): """ Close the model session, like if the model is based on TensorFlow, it needs to call sess.close() to dealloc the resources. Returns: """ raise NotImplementedError def personalization(self, src_infos): """ some task/method specific data pre-processing or others. Args: src_infos (dict): the source information contains: --images (list of str): the list of full paths of source images (the length is 1) --smpls (np.ndarray): (length of images, 85) --kps (np.ndarray): (length of images, 19, 2) Returns: processed_src_infos (dict): the source information contains: --images (list of str): the list of full paths of source images (the length is 1) --smpls (np.ndarray): (length of images, 85) --kps (np.ndarray): (length of images, 19, 2) ... """ processed_src_infos = src_infos return processed_src_infos class MotionImitationRunnerProcessor(Process): def __init__(self, model, protocols, return_dict: Manager): """ The processor of running motion imitation models. Args: model (MotionImitationModel): protocols (Protocols): return_dict (Manager) """ self.model = model self.protocols = protocols self.return_dict = return_dict super().__init__() def run(self): self.model.build_model() # si means self-imitation all_si_preds_ref_file_list = [] # ci means cross-imitation all_ci_preds_ref_file_list = [] for vid_info in tqdm(self.protocols): # source information, contains {"images", "smpls", "kps"}, # here "images" are the list of full paths of source images (the length is 1) src_infos = vid_info["source"] # run personalization src_infos = self.model.personalization(src_infos) # si means (self-imitation) si_infos = vid_info["self_imitation"] si_pred_files = self.model.imitate(src_infos, si_infos) # ci means (cross-imitation) ci_infos = vid_info["cross_imitation"] ci_pred_files = self.model.imitate(src_infos, ci_infos) si_pred_ref_files, ci_pred_ref_files = self.post_format_metric_file_list( si_pred_files, si_infos["images"], ci_pred_files, vid_info["flag"] ) all_si_preds_ref_file_list.extend(si_pred_ref_files) all_ci_preds_ref_file_list.extend(ci_pred_ref_files) # break self.return_dict["all_si_preds_ref_file_list"] = all_si_preds_ref_file_list self.return_dict["all_ci_preds_ref_file_list"] = all_ci_preds_ref_file_list def terminate(self) -> None: self.model.terminate() def post_format_metric_file_list(self, si_preds_files, si_ref_files, ci_preds_files, ci_ref_files): """ make [(si_pred, si_ref), ...], and [(ci_pred, ci_ref), ...] Args: si_preds_files: si_ref_files: ci_preds_files: ci_ref_files: Returns: si_preds_ref_files: ci_preds_ref_files: """ si_preds_ref_files = list(zip(si_preds_files, si_ref_files)) ci_preds_ref_files = list(zip(ci_preds_files, ci_ref_files)) return si_preds_ref_files, ci_preds_ref_files class MotionImitationEvaluator(Evaluator, ABC): def __init__(self, dataset, data_dir): super().__init__(dataset, data_dir) # please call `build_metrics` to instantiate these two runners. self.paired_metrics_runner = None self.unpaired_metrics_runner = None def reset_dataset(self, dataset, data_dir): super().__init__(dataset, data_dir) def build_metrics( self, pair_types=("ssim", "psnr", "lps"), unpair_types=("is", "fid", "PCB-freid", "PCB-CS-reid"), device=torch.device("cpu") ): paired_metrics_runner = PairedMetricRunner(metric_types=pair_types, device=device) unpaired_metrics_runner = UnpairedMetricRunner(metric_types=unpair_types, device=device) self.paired_metrics_runner = paired_metrics_runner self.unpaired_metrics_runner = unpaired_metrics_runner def run_metrics(self, self_imitation_files, cross_imitation_files, image_size=512): assert (self.paired_metrics_runner is not None or self.unpaired_metrics_runner is not None), \ "please call `build_metrics(pair_types, unpair_types)` to instantiate metrics runners " \ "before calling this function." si_results = self.paired_metrics_runner.evaluate(self_imitation_files, image_size) ci_results = self.unpaired_metrics_runner.evaluate(cross_imitation_files, image_size) return si_results, ci_results def evaluate(self, *args, **kwargs): raise NotImplementedError def run_inference(self, *args, **kwargs): raise NotImplementedError class IPERMotionImitationEvaluator(MotionImitationEvaluator): def __init__(self, data_dir, dataset="iPER"): super().__init__(dataset=dataset, data_dir=data_dir) def run_inference(self, model, src_infos, ref_infos): """ Args: model (MotionImitationModel): the model object, it must define and implements the function `imitate(src_infos, ref_infos, is_self_imitation) -> List[str]` src_infos (dict): the source information contains: --images (list of str): the list of full paths of source images (the length is 1) --smpls (np.ndarray): --kps (np.ndarray): ref_infos (dict): the reference information contains: --images (list of str): --smpls (np.ndarray): --kps (np.ndarray): --self_imitation (bool): Returns: file_paths (list of str): [pred_img_path_0, pred_img_path_1, ..., pred_img_path_i, ..., pred_img_path_n)] """ assert hasattr(model, "imitate"), '{} must implement imitate(src_infos, ref_infos) -> List[str]' file_paths = model.imitate(src_infos, ref_infos) return file_paths def evaluate(self, model, num_sources=1, image_size=512, pair_types=("ssim", "psnr", "lps"), unpair_types=("is", "fid", "PCB-freid", "PCB-CS-reid"), device=torch.device("cpu")): # 1. setup protocols self.protocols.setup(num_sources=num_sources, load_smpls=True, load_kps=True) # 2. declare runner processor for inference return_dict = Manager().dict({}) runner = MotionImitationRunnerProcessor(model, self.protocols, return_dict) runner.start() runner.join() del model all_si_preds_ref_file_list = return_dict["all_si_preds_ref_file_list"] all_ci_preds_ref_file_list = return_dict["all_ci_preds_ref_file_list"] # run metrics self.build_metrics(pair_types, unpair_types, device) si_results, ci_results = self.run_metrics(all_si_preds_ref_file_list, all_ci_preds_ref_file_list, image_size) return si_results, ci_results def preprocess(self, *args, **kwargs): pass def save_results(self, out_path, si_results, ci_result): """ save the the results into the out_path. Args: out_path (str): the full path to save the results. si_results (dict): the self-imitation results. ci_result (dict): the cross-imitation results. Returns: None """ with open(out_path, "w") as writer: writer.write("########################Self-imitation Results########################\n") for key, val in si_results.items(): writer.write("{} = {}, quality = {}\n".format(key, val, TYPES_QUALITIES[key])) writer.write("########################Cross-imitation Results########################\n") for key, val in ci_result.items(): writer.write("{} = {}, quality = {}\n".format(key, val, TYPES_QUALITIES[key]))
x=input('Olá, poderia me dizer seu nome?').strip() n1= x.split() print('Prazer em te conhecer!') print(f'Seu primeiro nome é {n1[0]}!') print(f'Seu ultimo nome é {n1[-1]}!')
#!/bin/env/python # From: https://stackoverflow.com/a/33012308 # Runs coveralls if Travis CI is detected import os from subprocess import call if __name__ == '__main__': if 'TRAVIS' in os.environ: rc = call('coveralls') raise SystemExit(rc) else: print("Travis was not detected -> Skipping coveralls")
import os import logging from tempfile import TemporaryFile from enverus_direct_access import ( DirectAccessV2, DADatasetException, DAQueryException, DAAuthException, ) from tests.utils import set_token set_token() LOG_LEVEL = logging.DEBUG if os.environ.get("GITHUB_SHA"): LOG_LEVEL = logging.ERROR DIRECTACCESS_API_KEY = os.environ.get("DIRECTACCESS_API_KEY") DIRECTACCESS_CLIENT_ID = os.environ.get("DIRECTACCESS_CLIENT_ID") DIRECTACCESS_CLIENT_SECRET = os.environ.get("DIRECTACCESS_CLIENT_SECRET") DIRECTACCESS_TOKEN = os.environ.get("DIRECTACCESS_TOKEN") def test_v2_query(): d2 = DirectAccessV2( api_key=DIRECTACCESS_API_KEY, client_id=DIRECTACCESS_CLIENT_ID, client_secret=DIRECTACCESS_CLIENT_SECRET, access_token=DIRECTACCESS_TOKEN, retries=5, backoff_factor=10, log_level=LOG_LEVEL, ) query = d2.query("rigs", pagesize=10000, deleteddate="null") records = list() for i, row in enumerate(query, start=1): records.append(row) if i % 1000 == 0: break assert records def test_docs(): d2 = DirectAccessV2( api_key=DIRECTACCESS_API_KEY, client_id=DIRECTACCESS_CLIENT_ID, client_secret=DIRECTACCESS_CLIENT_SECRET, access_token=DIRECTACCESS_TOKEN, retries=5, backoff_factor=10, log_level=LOG_LEVEL, ) docs = d2.docs("well-origins") if docs: assert isinstance(docs, list) return def test_ddl(): d2 = DirectAccessV2( api_key=DIRECTACCESS_API_KEY, client_id=DIRECTACCESS_CLIENT_ID, client_secret=DIRECTACCESS_CLIENT_SECRET, access_token=DIRECTACCESS_TOKEN, retries=5, backoff_factor=10, log_level=LOG_LEVEL, ) ddl = d2.ddl("rigs", database="pg") with TemporaryFile(mode="w+") as f: f.write(ddl) f.seek(0) for line in f: assert line.split(" ")[0] == "CREATE" break # Neg - test ddl with invalid database parameter try: ddl = d2.ddl("rigs", database="invalid") except DAQueryException: pass return def test_count(): d2 = DirectAccessV2( api_key=DIRECTACCESS_API_KEY, client_id=DIRECTACCESS_CLIENT_ID, client_secret=DIRECTACCESS_CLIENT_SECRET, access_token=DIRECTACCESS_TOKEN, retries=5, backoff_factor=10, log_level=LOG_LEVEL, ) count = d2.count("rigs", deleteddate="null") assert count is not None assert isinstance(count, int) # Neg - test count for invalid dataset try: count = d2.count("invalid") except DADatasetException as e: pass return def test_token_refresh(): d2 = DirectAccessV2( api_key=DIRECTACCESS_API_KEY, client_id=DIRECTACCESS_CLIENT_ID, client_secret=DIRECTACCESS_CLIENT_SECRET, retries=5, backoff_factor=10, log_level=LOG_LEVEL, access_token="invalid", ) invalid_token = d2.access_token count = d2.count("rigs", deleteddate="null") query = d2.query("rigs", pagesize=10000, deleteddate="null") assert len([x for x in query]) == count assert invalid_token != d2.access_token # Test client with no credentials try: d2 = DirectAccessV2( api_key=None, client_id=None, client_secret=None, log_level=LOG_LEVEL ) except DAAuthException as e: pass return